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Abstract

Attention is a key factor for successful learning, with research indicating strong associations
between (in)attention and learning outcomes. This dissertation advanced the field by
focusing on the automated detection of attention-related processes using eye tracking,
computer vision, and machine learning, offering a more objective, continuous, and scalable
assessment than traditional methods such as self-reports or observations. It introduced
novel computational approaches for assessing various dimensions of (in)attention in online
and classroom learning settings and addressing the challenges of precise fine-granular
assessment, generalizability, and in-the-wild data quality.

First, this dissertation explored the automated detection of mind-wandering, a shift in
attention away from the learning task. Temporal patterns in aware and unaware mind
wandering and their associations with learning outcomes were investigated. The two types
of mind wandering, previously conflated in detection research, were distinguished using
predictive modeling based on gaze data. Based on this, the precision and robustness
of aware and unaware mind-wandering detection were enhanced by employing a novel
multimodal approach that integrated eye tracking, video, and physiological data and
outperformed unimodal approaches. Further, the generalizability of scalable webcam-based
mind-wandering detection across diverse tasks, settings, and target groups was examined
using a fine-tuned transfer learning approach to address low-quality data in real-world
settings. Second, this thesis investigated attention indicators during online learning,
inferring information from the group level. Eye-tracking analyses revealed significantly
greater gaze synchronization among attentive learners. Third, it addressed attention-related
processes in classroom learning by detecting hand-raising as an indicator of behavioral
engagement using a novel view-invariant and occlusion-robust skeleton-based approach.
It further explored the correlation between automatically annotated hand-raisings and
self-reported learner engagement, interest, and involvement, demonstrating the potential
of automated assessments for large-scale video analysis.

This thesis advanced the automated assessment of attention-related processes within
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educational settings by developing and refining methods for detecting mind wandering,
on-task behavior, and behavioral engagement. It bridges educational theory with advanced
methods from computer science, enhancing our understanding of attention-related processes
that significantly impact learning outcomes and educational practices.
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Zusammenfassung

Aufmerksamkeit ist ein zentraler Faktor für erfolgreiches Lernen, denn die Forschung weist
auf starke Zusammenhänge zwischen (Un-)Aufmerksamkeit und Lernerfolgen hin. Diese
Dissertation entwickelte dieses Forschungsfeld weiter, indem sie sich auf die automatisierte
Erkennung von Aufmerksamkeitsprozessen mit Hilfe von Eye Tracking, Computer Vi-
sion und maschinellem Lernen konzentrierte und damit, im Gegensatz zu traditionellen
Methoden wie Selbstberichten oder Beobachtungen, eine objektive, kontinuierliche und
skalierbare Messung ermöglicht. Es wurden neuartige computergestützte Ansätze zur Er-
fassung verschiedener Dimensionen der (Un-)Aufmerksamkeit während des Online-Lernens
und im Klassenzimmer entwickelt und die Herausforderungen einer präzisen, feingranularen
Erfassung, der Generalisierbarkeit und der Datenqualität in naturalistischen Umgebungen
adressiert.

Zunächst erforschte diese Dissertation die automatische Erkennung von geistigem Ab-
schweifen, einer Verlagerung der Aufmerksamkeit von der Lernaufgabe weg. Untersucht
wurden zeitliche Muster des bewussten und unbewussten Abschweifens und deren Zusam-
menhang mit Lernergebnissen. Die beiden Arten des geistigen Abschweifens, die bisher
in der Erkennungsforschung miteinander vermischt wurden, wurden durch prädiktive
Modellierung auf der Grundlage von Blickdaten unterschieden. Darüber hinaus wur-
den die Präzision und Robustheit der Erkennung von bewusstem und unbewusstem Ab-
schweifen verbessert, indem ein neuartiger multimodaler Ansatz verwendet wurde, der
Blickverfolgungs-, Video- und physiologische Daten integriert und unimodale Ansätze
übertraf. Darüber hinaus wurde die Generalisierbarkeit der skalierbaren Webcam-basierten
Erkennung von geistigem Abschweifen über verschiedene Aufgaben, Umgebungen und
Zielgruppen hinweg mit Hilfe eines fein abgestimmten Transfer-Learning-Ansatzes unter-
sucht, um Daten geringer Qualität in realen Umgebungen zu berücksichtigen. Anschließend
wurden in dieser Arbeit Aufmerksamkeitsindikatoren beim Online-Lernen untersucht, wobei
Informationen von der Gruppenebene abgeleitet wurden. Eye Tracking Analysen offen-
barten eine signifikant höhere Blicksynchronität bei aufmerksamen Lernenden. Zuletzt
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wurden aufmerksamkeitsbezogene Prozesse beim Lernen im Klassenzimmer untersucht,
indem das Handheben als Indikator für das Verhaltensengagement mit Hilfe eines neuarti-
gen ansichtsinvarianten und okklusionsrobusten skelettbasierten Ansatzes erkannt wurde.
Darüber hinaus wurde die Korrelation zwischen automatisch annotierten Meldungen und
dem selbstberichteten Engagement, dem Interesse und der Beteiligung der Lernenden ermit-
telt, um das Potenzial automatisierter Bewertungen für eine groß angelegte Videoanalysen
zu demonstrieren.

Diese Arbeit verbesserte die automatisierte Bewertung von Aufmerksamkeitsprozessen in
Lernumgebungen durch die Entwicklung und Verfeinerung von Methoden zur Erkennung
von geistigem Abschweifen, aufgabenorientiertem Verhalten und Verhaltensengagement.
Sie schlägt eine Brücke zwischen Bildungstheorie und fortschrittlichen Methoden aus der
Informatik, um unser Verständnis von aufmerksamkeitsbezogenen Prozessen zu verbessern,
die einen erheblichen Einfluss auf Lernergebnisse und Bildungspraxis haben.
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1.4. Scientific Contribution

This work explores the automatic assessment of different manifestations of (in-)attention
in online and classroom learning, leveraging interdisciplinary synergies from research
domains such as human-computer interaction, machine learning, research on education,
and psychology. It proposes innovative approaches to assess attention while grounding in
education and learning theories. This dissertation comprises several important scientific
contributions, which are listed below.

• Novel exploration of temporal patterns of sub-dimensions of mind-wandering meta-
awareness during lecture viewing and their impact on learning.
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1.4. Scientific Contribution

• Initial fine-granular automatic differentiation of aware and unaware mind wandering
based on eye gaze.

• Multimodal machine learning approach to aware and unaware mind wandering
detection, employing a novel combination of modalities: Eye tracking, video, and
physiology (electrodermal activity and heart rate).

• Examination of generalizability of video-based mind wandering detection to in-the-
wild settings, new tasks, and diverse target groups, proposing a new deep learning
approach based on facial expression recognition transfer learning.

• Investigation of gaze synchrony as a reliable indicator for self-reported attention in
online learning and its association to learning outcomes.

• Novel approach to assessing behavioral engagement in authentic classroom videos
via view-invariant, occlusion-robust skeleton-based hand-raising detection.

In doing so, this thesis contributes to a more fine-grained and objective assessment of
attention during learning. By bridging educational theory with advanced methods from
computer science, it enhances our understanding of attention-related processes, which have
important consequences for learning outcomes and educational practices.
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2. Introduction

2.1. Attention as a Prerequisite for Learning

Attention is a core component of the learning process, as it is crucial for learning and
knowledge construction [8]. Yet, learners frequently find it challenging to maintain attention
over extended periods [9]. Therefore, understanding and promoting attention in various
learning environments is a fundamental building block for improving learning processes
and outcomes. Strategies to support this goal range from enhancing teacher training
and learning materials [10] to implementing adaptive support in attention-aware learning
technologies [11].

Attention can be seen as a multidimensional construct that varies in intensity [12,
10] and is determined by its task-relatedness. The term attention encompasses a broad
spectrum of definitions depending on the field. In psychology, attention is often defined
as a selection mechanism, enabling us to focus on certain stimuli while ignoring others
and allowing for more efficient information processing given the limited capacity of our
cognitive resources [13, 14]. In neuroscience, attention is considered a complex array of
interconnected mechanisms and processes that involve nearly all regions of the human
brain [15, 16]. Research on education, specifically in the context of classroom instruction,
has focused on overt student behavior, which serves as an indicator for attention-related
cognitive processes. Attention is seen as a component of behavioral engagement in school
learning [17].

Research demonstrates the relationship between these attention-related behaviors and
learning outcomes. (In)attention can be investigated by using rather generic approaches
to cover the construct, revealing a correlation between different manifestations of on- or
off-task behavior and learning outcomes [18]. Other works focus on specific aspects of
behavioral engagement closely related to attention. For instance, inattention and disruptive
behavior [19] were negatively associated with academic achievement. In contrast, active
participation in classroom discussions was positively related to performance on a reading
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2.1. Attention as a Prerequisite for Learning

literacy test [20]. A recent study showed that the frequency of students’ hand-raising
is related to academic achievement and cognitive engagement [21]. However, studies in
classroom contexts often have rather small sample sizes limited to specific grades, age
groups, and school subjects [22, 21], resulting in a lack of generalizability of results.

Whereas such research has concentrated on studying students’ visible attention-related
behaviors, another ubiquitous phenomenon is that learners struggle to maintain attention
without displaying explicit off-task behaviors. Such a state of decoupled attention hin-
ders the learner from processing information from the external environment, inhibiting
information integration into internal representations [23]. This phenomenon is called mind
wandering and is defined as the shift of attention away from the current task to task-
unrelated thought [24]. According to theories on cognitive load and executive functioning,
ensuring adequate mental resource allocation is vital for regulating cognitive processes to
maintain attention during learning tasks [25, 26, 27, 28, 29]. Along these lines, one theory
hypothesizes that mind wandering occurs as thoughts compete for the limited resources
available in working memory and depend on available executive functions [30]. The execu-
tive control failure hypothesis, as proposed by Kane and McVay [31], suggests that mind
wandering indicates both temporary lapses and persistent deficiencies in executive control
functions. This view is reinforced by findings that lower working-memory capacity is linked
to more frequent off-task thoughts during challenging tasks [32].

Learners typically engage around 30% of the time spent in educational activities, like
watching lectures or reading, in mind wandering [33]. The occurrence of task-unrelated
thought is consistently linked with lower test performance across various tasks, subjects,
and age groups, accounting for approximately 7% of the variability in learning outcomes
[33]. This negative correlation is consistent for surface-level or inference-based learning
across subjects, age groups, and various tasks. For instance, mind wandering has been
shown to negatively impact reading comprehension [34, 35, 36, 37, 38] and lecture retention
[9, 39, 40, 41].

Mind wandering itself is a heterogeneous multidimensional concept rather than a dichoto-
mous state [42], although often operationalized as such. Definitions of mind wandering
employed in research differ in intentionality, task-relatedness, and relationships to external
stimuli [42]. Therefore, its definition and conceptualization have been the subject of ongoing
controversy in the literature. On the one hand, Christoff et al. [43] criticize the use of mind
wandering as an umbrella term for disparate mental phenomena. Instead, they propose a
dynamic framework in which the defining feature of mind wandering is that it arises and
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2. Introduction

proceeds unconstrained and relatively free. On the other hand, Seli et al. [42, 44], advocate
for a family resemblance view under which several manifestations of the phenomenon fall,
including, for instance, perseverative and purposeful task-unrelated thoughts. Instead
of restricting the concept more strongly, from their point of view, the regarded types of
thoughts have to be precisely defined in the respective research. Research on the content of
learners’ thoughts during learning activities showed the prevalence of arising thoughts that
are not focused on the here and now of the lecture but task-related thoughts or thoughts
on lecture comprehension [45]. Those are positively related to lecture retention [46, 47],
aligning with research on self-regulated learning showing that the use of cognitive and
metacognitive learning strategies, such as elaboration and self-monitoring of one’s learning
progress, has a positive effect on learning outcomes [48, 49]. Consequently, this work adopts
the definition of mind wandering as task-unrelated thoughts [24] and applies measurement
approaches that disentangle task-unrelated thoughts from other cognitive processes that
represent integral parts of learning.

The commonly observed phenomenon of catching oneself mind wandering, utilized in
self-caught mind-wandering probes, suggests that people engage in task-unrelated thoughts
without being aware of the fact [50]. This indicates a temporary lack of meta-awareness—a
reflection on one’s conscious thoughts and their alignment with one’s goals [51]. Awareness
of thought digression is essential for detecting and terminating mind-wandering episodes
to refocus on the main task. However, research shows that people frequently report
the continuance of mind wandering even after gaining awareness of it [52]. Smallwood,
McSpadden, and Schooler [50] categorized mind wandering into two distinct states: ’tune-
outs’ with and ’zone-outs’ without awareness, noting these can dynamically transition over
time. It is critical to distinguish between the dimension of meta-awareness and the dimension
of intentionality [52], the latter defining whether task-unrelated thoughts are deliberate or
spontaneous [e.g., 53, 54, 55]. According to Seli et al. [52], although a lack of meta-awareness
and intentionality may initially coincide at the onset of a mind-wandering episode, they
often diverge as the episode progresses. Unaware mind wandering appears to be more
strongly linked to failures in response inhibition and deficits in reading comprehension [50,
56] than aware mind wandering, while the two states exhibit distinct neurological activities
[57], indicating varied implications for task performance and underlying cognitive processes.
Consequently, the two types of mind wandering require different interventions and solutions.
However, meta-awareness of mind wandering and its association with learning have not
been thoroughly investigated in educational settings.
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2.2. Traditional Attention Measurement Approaches

Having established the substantial association between different dimensions of student
attention and learning success, this thesis employs a cross-disciplinary definition of attention
as a multifaceted construct [10]. As described above, several research gaps concerning
attention and learning persist, including the need for more precise differentiation and
continuous measurement. A more fine granular investigation of types of mind wandering
and their relation to learning outcomes is warranted. Further, large-scale research on
behavioral attention indicators in classroom instruction is still scarce. More research is
needed to understand the exact relationships between different dimensions of attention
and learning to improve learning processes and outcomes. The following chapters explain
to what extent these and other impediments caused by traditional attention measurement
methods can be overcome by new automated measurement methods such as those developed
in this dissertation. The following Section 2.2 outlines traditional methods for measuring
attention and the challenges they present. This is followed by a detailed discussion of
automated assessment techniques for attention-related processes in Section 2.3 and an
overview of the objectives of this thesis in Section 2.4.

2.2. Traditional Attention Measurement Approaches

To quantitatively investigate attention and its impact on learning, it is necessary to make
the attentional states of learners measurable, typically achieved through external observer
ratings by trained experts or the collection of self-reports.

2.2.1. Observations

One way to measure attention is with the help of observation ratings from trained human
experts. A significant advantage of this method is that it is neither intrusive nor interruptive
and even allows behavioral development to be obtained over time. Elaborate rating manuals
to rate student engagement continuously over time have been developed [58]. The main
drawback of observations is rater bias, which refers to discrepancies among raters that
stem from varying interpretations of the rating scales or distinct, individual perceptions of
the subject being assessed [59]. To increase the objectivity of ratings, raters are trained
extensively, and information needs to be rated by two or more independent raters. This
makes the processes resource-intensive, leading to considerable time and cost expenditures.
However, even extensive training might not reduce rater bias in the desired way [60]. This
issue is particularly pronounced when assessing higher-level constructs such as engagement,
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where even the presence of exemplary behavioral indicators may result in unsatisfactory
inter-rater reliability [61]. Another limitation is that human observers might have difficulty
assessing specific aspects of attention because they do not have access to the student’s
internal state of mind. Raters must, therefore, rely entirely on students’ observable
behavioral cues and have enormous difficulty detecting internal cognitive states as mind
wandering [62].

2.2.2. Self-reports

To gather information on students’ hidden cognitive processes, which are almost entirely
of introspective nature, self-reports, i.e., questionnaires in which students indicate their
own attention levels, can be employed. Self-reports are comparatively low-cost and easy to
administer. However, self-reports depend on students’ compliance and awareness of their
attentional state. Further, they are subject to response biases, such as social desirability
or acquiescence bias [63]. When collected retrospectively, they may be biased by primacy
and recency memory effects [64]. A solution to that problem is experience sampling, which
means polling participants during the learning task at multiple points in time [65]. The
major disadvantage of such an approach is that it is intrusive and disruptive, and the
interruption of the activity itself can affect students’ attention [66]. In research on mind
wandering, a frequently employed alternative is the self-caught method, for which learners
are instructed to report whenever they have caught themselves drifting off [67]. Both forms
of mind-wandering self-reports are deemed reliable in educational settings [68]. However,
one disadvantage of the self-caught method is that it requires learners to monitor their
attention. Learners need to become aware of their internal state without external probes,
which only allows learners to report their mind wandering when they have gained awareness
of its occurrence [63, 69]. This makes the self-caught method unsuitable for studying
different states of meta-awareness in mind wandering. Overall, self-reports suffer from
the fact that they offer potentially inaccurate–in case of retrospective assessment–or only
discrete rather than continuous information in case of experience sampling.

A potential solution to many of these drawbacks of traditional attention measurement that
opens up new possibilities is its automated recognition using machine learning techniques,
which will be discussed in the following section.
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2.3. Automated Assessment of Attention

2.3. Automated Assessment of Attention

Recent developments in the areas of computer vision and machine learning offer a new
potential for automated attention measurement. One great opportunity for automated
detection of (in)attention is that it significantly reduces the cost of data collection compared
to observer ratings. In turn, this enables the analysis of large-scale data, which is a
particular advance in quantitative research. Compared to concurrent self-reporting, it
is non-obtrusive since there is no need to interrupt the current task, therefore allowing
continuous measurement over time. Besides these advantages, similar to the observer-based
measurement approach, most automated measurements are also based on the externally
visible behavior of students. However, related works show that machine learning algorithms
and human observers rely on divergent cues when detecting inattention [62]. In addition,
data collection modules, such as eye tracking or physiological sensors, can be included,
capturing information at a much finer granularity than human observers can perceive.
Furthermore, automated detection approaches can be implemented in attention-aware
learning technologies [36, 70, 71], which can support learners’ self-regulation to sustain or
redirect their attention. This section gives an overview of different modalities employed
in the automated assessment of attention, describes and discusses the use of predictive
modeling, and highlights the importance of explainability and fairness of employed methods.

2.3.1. Modalities for Measuring Attention

Automated attention detection approaches employ a range of modalities, such as video
recordings, eye-tracking, or physiological sensors, to gather student data during learning
tasks. Typically, multiple indicators are extracted from this data. This section reviews
four key modalities: video, eye tracking, physiology, and log files, with an overview of the
attention indicators extractable from each modality presented in Table 1.

Video Recordings for Attention Detection

Video recordings are a crucial data source for the automated assessment of attention-related
processes in educational environments. In the context of teacher training and teaching
quality research, education research uses classroom videos [e.g., 107] that are later, for
instance, rated by observers to assess teaching quality [e.g., 108]. Similar videos can be
employed for attention research, often covering the entire classroom from various angles,
capturing multiple students and teachers simultaneously [78, 61, 79, 109]. In computer-
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2. Introduction

Table 1.: Modalities Used for Assessing Attention and the Corresponding Attention Indica-
tors Extracted.

Modality Indicators of Attention Exemplary Works
Video Facial Action Units (AUs) [72, 73, 74]

Facial Expressions [75, 61, 76, 77]
Gaze Direction [78, 79, 80, 81, 75]
Head Pose [78, 73, 82, 58, 61, 83]
Head and Body Motion [84, 72, 73, 75]
Body Pose [83, 85, 86]

Eye Tracking Fixations [87, 88, 89, 74, 90]
Saccades [87, 88, 89, 74, 90]
Pupillometry [87, 90, 91]
Blinks [87, 90, 91]
Area of Interest (AOI) [89, 90]
Locality Features [92, 74]
Vergence [93, 94]

Physiology Electrodermal Activity (EDA) [95, 91, 96]
Heart Rate [97, 98]
Temperature [95, 96]
Electroencephalography (EEG) [99, 100, 101, 102]

Log Files Keystrokes [103, 104]
Mouse Tracking [105]
Time Spent [106]

mediated settings, webcams offer an accessible opportunity to capture facial videos of
learners during educational activities [64, 73]. The process of automatically analyzing and
understanding those videos is called computer vision [110]. The field of computer vision has
seen significant advances with the rise of deep learning, for instance, Convolutional Neural
Networks (CNNs) and Autoencoders, and the increased availability of publicly available,
large-scale, labeled datasets [111]. Core tasks in computer vision are image classification,
object recognition, semantic segmentation, action recognition, and human pose estimation
[111].

For the video-based assessment of attention, computer vision techniques are employed to
extract behavioral cues, such as facial expressions, that indicate emotional states. Emotions
are significantly related to a person’s cognitive functions and, consequently, attentional
processes [112]. Studies have demonstrated that Facial Action Units (AUs), which encode
facial muscle movements [113], are effective predictors of mind wandering [72, 73, 74] and
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Figure 1.: Webcam Image With Depiction of Openface Head Pose, Gaze and Facial Land-
mark Features and Classroom Video Frame With Openpose Pose Estimations.

engagement levels [78, 64]. Additionally, advanced Facial Emotion Recognition (FER)
techniques applied to webcam and classroom videos have proven effective for detecting
mind wandering [75], estimating engagement [61], and assessing emotion regulation in
remote collaborative settings [76, 77]. Video analysis also facilitates the extraction of gaze
information through appearance-based gaze estimation [78, 79], and webcam-based eye
tracking [80, 81, 75]. Further, head pose, approximating gaze direction and described
by pitch, yaw, roll, and rotation, is a relevant attention marker [78, 73, 82, 58, 61, 83].
Researchers have also utilized head and body motion to detect attention-related processes
[84, 72, 73, 75]. In addition to video recordings, Kinect motion sensors can be employed
in classrooms to extract such indicators [114]. Figure 1 features a webcam image on the
left showing estimated head pose (blue), gaze vectors (green), and facial landmarks (red)
analyzed with the OpenFace toolbox [115]. On the right, body pose estimation algorithms
like OpenPose in classroom videos estimate skeletal key points [116], allowing inference
of attention-related behaviors such as hand-raising [83, 85, 86]. In summary, it has been
shown from this review that video recordings are a scalable, accessible, and rich data source
for the extraction of various attention-related cues. However, processing image or video
data involves high computational demands due to the high dimensionality of data and
complexity of the operations involved, especially compared to other modalities employed
to detect attention, such as eye tracking, which will be reviewed in the following section.

Eye Tracking for Attention Detection

Eye gaze is a critical feature in understanding visual attention [117], indicating which
information is being cognitively processed [118]. According to the mind-eye link, cognitive
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processes are reflected in eye movements [119, 118, 120]. It can be most precisely measured
with eye trackers, which use various methods to estimate gaze. The most common include
video-oculography, which uses video-based tracking with head-mounted or remote visible
light cameras, video-based infrared pupil-corneal reflection, and Electrooculography [121].
These enable the detection of gaze metrics such as fixations (periods of stable gaze) and
saccades (rapid eye movements), which in combination result in the visual scanpath [122,
123]. Other measures frequently used include spatial information, for instance, the location
of fixations on a particular Area of Interest (AOI). Figure 2 shows a remote SMI eye tracker
on the left and illustrates a scanpath gaze visualization during remote learning on the
right.

Eye tracking is often used to assess mental processes [124] and visual attention in various
scenarios, mainly critical use cases, such as driving [e.g., 125, 126, 127, 128] or in medical
education [e.g., 129, 130, 131]. In recent years, eye tracking has been increasingly employed
in classroom settings, including virtual reality classrooms, to understand learning processes
and interaction during learning and teaching [e.g., 132, 133, 134, 135, 136, 137, 138, 109,
139]. Mobile eye trackers have been employed in real-world classrooms to study student
[138, 139] and teacher attention [109, 137], but their use for automated assessment remains
unexplored in this setting. For online learning environments, remote eye trackers attached
to computer screens are commonly used. Eye tracking studies on lecture video watching
indicate that visualizations of gaze data can help instructors assess learners’ attention levels
[140] and understanding of the material [141]. In this line, studies suggest that attentive
students display similar eye movement patterns when following instructional videos [142].
Beyond the overt attention direction, eye tracking is highly relevant for detecting certain
forms of (in-)attention related to hidden cognitive states, such as mind wandering [e.g.,
96, 88, 143]. Research has utilized global gaze features like fixations and saccades, as
well as local features including spatial gaze properties, pupil size, and blink dynamics,
to predict attentional states [87, 88, 89, 74]. Studies indicate that the average fixation
duration on slides increases during mind wandering, suggesting decreased visual processing
efficiency [144] and increased mental workload [145]. This behavior supports the decoupling
hypothesis, which posits that mind wandering impairs the processing of external information
[146, 147], and manifests in varied fixation dispersion [148]. Mind wandering episodes
also feature reduced blink rates [149] and increased pupil diameters [150], indicative of
higher cognitive loads [151] and emotional demands [152], although environmental factors
may also influence these metrics [153]. Eye vergence, particularly tonic vergence, which
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Figure 2.: Remote SMI Eye Tracker and Exemplary Scanpath Visualization during Remote
Learning.

indicates a visually relaxed state where the eyes do not fixate, has been used to enhance
predictions of internal thoughts in computational models [93, 94]. Despite these insights,
no definitive set of gaze behaviors is consistently linked to mind wandering or attention,
leading to varied results across studies. Variability in these results may be attributed to
task-specific demands that affect spatial allocation and visual processing, suggesting a
compensatory adjustment in the visual system during mind-wandering episodes [148].

Physiological Data for Attention Detection

Another approach to automated attention assessment during learning involves physiological
sensor data. One of the most accessible physiological sensors is Electrodermal Activity
(EDA) (also Galvanic Skin Response (GSR) or skin conductance), reflecting changes in the
skin’s electrical properties triggered by sweat production, which alters skin conductivity
[154]. Additionally, heart rate can be assessed using wearable devices, for instance, by
Blood Volume Pressure (BVP), pulse, or photoplethysmography sensing [155]. Other
physiological signals include Electroencephalography (EEG) as the primary method to
assess brain activity. However, this involves the application of more high-cost, high-stakes
sensors requiring controlled settings. On the contrary, EDA, temperature, and heart rate
can be measured using low threshold wearable devices such as the Empatica E4 wristband,
shown on the left in Figure 3. The right side of the figure displays continuous BVP and
EDA signals derived from such wearables.

In the context of attention assessment, signals are meaningful due to the correlation
between sympathetic nervous activity, reflected in, for instance, in GSR and skin temper-
ature and attentional states [156]. GSR, or EDA, is linked to increased effort and task
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Figure 3.: Empatica E4 Wristband and EDA and BVP (Heart Rate) Signals.

engagement [157, 158, 159], with lower GSR levels associated with mind wandering [160].
GSR has been utilized to automatically assess episodes of mind wandering [95, 91, 96] and
classroom engagement [98, 161, 162]. In addition, heart rate is of particular importance as
it is related to physiological arousal. This, in turn, is correlated with states of attention
such as wandering thoughts, which is presumably due to increased emotional engagement
[160, 163]. This connection has led to using heart rate in automated systems to detect mind
wandering [97] to measure engagement [98]. Additionally, EEG has been used for attention
assessment, particularly focusing on the synchronization of brain activity in classroom
settings [99, 100, 101]. It has proven effective for detecting mind wandering during lecture
video viewing [102] and in classroom environments [164]. However, as previously mentioned,
EEG measurements require high-end sensors, and their use is typically restricted to more
controlled settings, limiting their large-scale applicability in naturalistic settings.

Interaction Data for Attention Detection

Log files record information on user interactions in computer-mediated tasks, for instance,
information on keystrokes, mouse tracking, and button presses. Log data has been
extensively employed in education research [165] and is especially relevant when using
Intelligent Tutoring Systems (ITSs) and Massive Open Online Courses (MOOCs), which
require learners to interact with educational technologies [e.g., 166, 167].

Log data can provide valuable insights for detecting attention, as attention lapses
influence reaction times [168] and fine motor movements [169] captured in this data. For
instance, keystrokes have been used to predict attentional states and task-unrelated thought
in online conversations [103, 104]. Furthermore, mouse tracking has revealed a correlation
between mind wandering and mouse movements during online tasks [105]. Also, patterns of
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interaction with reading interfaces, such as the amount of time spent reading, can indicate
mind wandering [106]. Log files are insightful but only relevant to learning tasks that
require active technology use and interaction. They are ineffective for passive activities
like lecture viewing, which lack direct system interaction, or learning activities that might
not involve technology use, such as classroom instruction.

2.3.2. Predictive Modeling of Attention-Related Processes

The goal of employing behavioral and observable indicators to assess attention is to
enable continuous, non-intrusive, and objective measurement of attention-related processes.
Numerous studies have used the modalities discussed above [e.g., 91, 90, 143] in predictive
modeling to infer attentional states. These methods mark a shift from traditional statistical
analysis primarily because they focus on prediction rather than explanation [170]. Unlike
conventional models that explain the relationship between variables, machine-learning
models are designed to effectively predict future observations, utilizing training and test
datasets to optimize and evaluate the model’s performance and generalizability [170].
Furthermore, the importance of individual predictors can be analyzed using explainable
machine-learning techniques after the model has been developed [171]. Another difference
lies in the modeling approach: data-centric versus algorithmic [172]. Traditional models rely
on pre-established assumptions, which may skew the findings based on the model’s design
rather than the actual data. In contrast, machine learning adopts an algorithmic approach
that tests multiple models to identify the best fit based on performance, making it ideal for
scenarios like sensor-based attention detection where the complex, potentially non-linear
relationships between numerous features and the target variable are not predefined. This
also constitutes the decisive difference to the traditional use of behavioral measures in
education research, such as eye tracking. As reviewed above, even though the indicators
extracted from those modalities show associations with attention processes, no clear set
of indices correlated to attentional states can be identified. This may be due to the task-
and setting dependencies of those indicators [148]. However, these findings underscore the
relevance of employing machine learning to capture complex, non-linear relationships in
attention-related data.

The primary goal of predictive modeling is to automatically identify non-directly observ-
able or measurable attentional states, such as mind wandering, from observable indicators
like eye gaze [36] using machine learning algorithms. Figure 4 outlines the schematic
steps of prediction pipelines for attentional states, beginning with a learner engaged in a
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Figure 4.: Schematic Pipeline for Predictive Modeling of Attentional States. ML – Machine
Learning.

specific task. Signals are collected via various modalities, such as eye tracking or videos,
and features are then extracted from these signals to serve as inputs for a supervised
machine-learning model. An alternative approach, made possible by advancements in
deep learning, particularly in computer vision, involves feeding raw data, for instance,
images, directly into models, as illustrated by the dotted array in Figure 4. This allows the
models to learn internal representations and has been successfully applied to engagement
estimation in classroom settings [61, 173]. Given the often limited size of educational data
sets, these models frequently rely on transfer learning. This approach involves pre-training
a deep model on a sufficiently large available dataset that stems from a related task, then
fine-tuning the model to the current task at hand, for which only limited data is available.

The ground truth data for training attention detection models typically comes from
learner self-reports or observer ratings. These labels are used to train the model to predict
specific outcomes. The model’s prediction performance is evaluated using a separate test
set containing unseen examples. In the field of learner attention research, datasets often
include multiple instances from the same individual. To ensure the model generalizes
to new learners, this process is usually conducted in a person-independent manner [36,
174]. Additionally, the common issue of highly imbalanced data distribution due to the
varied attentiveness levels among learners [62, 74] requires the implementation of balancing
techniques during the learning phase.

Predictive modeling using machine learning techniques offers great potential for assessing
attention non-intrusively. However, the employment of machine learning in the educational
context raises concerns about the lack of transparency in the decision-making processes of
many of those models [175]. One way to address this concern is by using explainability
tools.
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2.3.3. Explainability and Fairness of Automated Attention Detection

Employing explainability methods can help account for Fairness, Accountability, Trans-
parency, and Ethics (FATE) concerns, which is crucial when employing machine learning
techniques in educational contexts to develop adaptive and personalized educational inter-
ventions [176]. Explainability enhances the transparency and fairness of machine learning
models by elucidating their internal processes and providing a clear rationale for their out-
comes [175, 177]. These explanations are highly relevant for fostering trust and confidence
in the models employed. Further, they allow us to gain deeper insights into how specific
features impact predictions to better understand the relation between data modalities and
attentional states. Highly predictive attention prediction models are typically explained
with so-called post-hoc explainablity methods. This adds one more step to the analysis
pipeline: after model training, i.e., post-hoc, the model’s decision is explained with the
help of a separate algorithm. Two of the most prominent post-hoc explainability methods,
which were also employed in this thesis, will be discussed in more detail. First, SHapley
Additive exPlanations (SHAP) values [178] serve to quantify the impact of each feature
in a model on the probability of predicting a specific class. These values measure how
much each feature contributes positively or negatively to the difference between the current
prediction and the model’s average prediction across the entire dataset. This method
helps to clarify which features are most influential in the model’s decision-making process
and how they affect the outcome for each prediction class. Another visualization-based
explainability tool often employed to make computer vision models more understandable is
Local Interpretable Model-agnostic Explanations (LIME) [179]. It identifies and highlights
specific areas of an image, called super-pixels, that significantly influence the algorithm’s
prediction. This process allows users to see which parts of an image lead the model to
classify it in a particular way, providing insight into its reasoning. Using explainability
methods is crucial for detecting any unintended biases or correlations that the model might
have learned, potentially due to artifacts in the data collection process [179]. Having
reviewed relevant modalities and established the potential of predictive modeling and
the importance of explainability in automated attention assessment, the following section
presents the main objectives of this dissertation.
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2.4. Objectives

As outlined above, there is a strong association between attention and learning success.
However, further quantitative research, especially concerning finer distinctions of inatten-
tion, is required to understand the underlying processes and interplay between the two.
While previous research on automated attention estimation has shown promising results,
individual attention estimation and mind-wandering detection methods have not reached
sufficient accuracy and have not yet been performed on the granularity level needed in edu-
cation research or adaptive learning technologies. The automated assessment approaches
facilitate the evaluation of phenomena that have not yet been sufficiently researched, ideally
progressing in tandem with theoretical development [36].

This thesis aimed to advance the state-of-the-art by leveraging machine learning methods,
eye-tracking methodologies, and computer vision techniques to assess nuanced aspects
and indicators of attention-related processes and facilitate future quantitative research on
different aspects of attention. It examined different dimensions of (in)attention in diverse
learning settings such as remote, computer-based, and classroom learning. To achieve this
overall objective, multiple individual research steps were carried out. Specifically, this
dissertation addressed the following challenges and outlined approaches to address them in
realistic learning scenarios.

The first part of this thesis aimed to enhance the automated assessment of mind
wandering. As described in section 2.1, mind wandering is a multidimensional construct,
but its sub-factors have not yet been sufficiently investigated and assessed in the learning
context. In advancing the automated detection of mind wandering, this dissertation focused
on meta-awareness, multimodality, and generalizability reflected in the following objectives:

O1 The first objective of this thesis was to differentiate mind-wandering types blended
in previous research on learning. To this end, this work investigated the tempo-
ral patterns of aware and unaware mind wandering and their relation to learning
outcomes.

O2 Previous research focused on the automated detection of mind wandering as a unitary
construct. To enable the continuous assessment of meta-awareness in mind wandering
over time, the initial differentiation of the two sub-forms–aware and unaware mind
wandering–using eye gaze and machine learning were explored.

O3 To improve the accuracy and robustness of detecting aware and unaware mind
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wandering, this work used a novel multimodal machine learning approach. Leveraging
complementary information encoded in eye tracking, video, and physiology (EDA
and heart rate), the interplay and impact of different modalities in predicting mind
wandering by meta-awareness were examined using explainability approaches.

O4 The generalizability of a webcam-based detection approach across different settings
(lab to in the wild), tasks (reading to lecture video watching), and culturally diverse
target groups (US to Korean) were examined, employing two distinct datasets. To
improve generalizability to low quality in the wild data, a novel transfer-deep-learning
approach was employed and fine-tuned to the mind-wandering detection problem.

The second part of this thesis focuses on indicators of attention during computer-
based online learning, specifically lecture video watching. Visual attention indicates what
information is being cognitively processed; consequently, when paying attention to a
lecture, students should focus on parts of the slides that are relevant at that moment.
Initial experimental studies suggest that learners’ gaze may synchronize during episodes of
attentiveness [142] leading to the following objective:

O5 To explore whether gaze synchrony serves as a reliable indicator of self-reported
attention during online learning, this work applied and compared three gaze synchrony
measures and investigated the relationship between self-reported attention, gaze
synchrony, and learning outcomes.

The last part of this dissertation addresses attention-related processes in classroom
learning. The most studied concept in this domain is behavioral engagement [61, 58, 83].
Due to the challenges of automatically predicting such higher-level constructs, such as low
interrater reliability [61], this work focused on detecting one specific indicator of behavioral
engagement and active participation in the classroom discourse: hand-raising.

O6 To advance previous hand-raising detection research primarily focusing on staged
videos and to tackle the challenges of real-world classrooms and authentic student
hand-raisings, a novel skeleton-based detection approach in authentic classroom
videos was proposed, employing fine-tuned view-invariant, occlusion robust pose
embeddings, and temporal models.

O7 Investigating the potential of automated assessment of hand raising as a substitute for
manual observations and large-scale analysis of classroom videos, the relationship be-
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tween automatically annotated hand-raisings and self-reported cognitive engagement,
interest, and involvement of learners was investigated.

All the objectives mentioned were successfully achieved through interdisciplinary efforts
and advanced the state-of-the-art in the area of automated assessment of attention during
learning. This work led to multiple contributions accepted and published in leading
journals and conferences at the intersection of computer science and education research.
The methods employed to achieve these objectives are explained in more detail in Chapter
3.
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In this chapter, the major contributions toward the objectives outlined previously in
Chapter 2.4 are summarized. Initially, the contributions to automated mind wandering are
recapped, focusing on meta-awareness, multimodality, and generalizability. Following this,
an overview of the examination of gaze synchrony as an attention indicator during video
lecture viewing and the automated detection of hand-raising as a behavioral indicator of
engagement in classroom settings is provided. Figure 5 presents a schematic overview of
all contributions made in this thesis.

Figure 5.: Schematic Overview Over the Contributions in this Dissertation, Structured by
Attention-Related Processes and Learning Settings.
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3.1. Automated Mind Wandering Detection: Investigating
Meta-Awareness, Multimodality and Generalizability

The first contributions of this thesis revolve around the automated detection of mind wan-
dering, a cognitive process related to inattention. The first section details the contribution
towards data-driven theory development, investigating temporal patterns of meta-awareness
of mind wandering, its relation to learning outcomes, and discernability employing eye
tracking-based automated detection. This is followed by a multimodal machine learning ap-
proach, fusing eye-tracking, video, and physiological data for automated aware and unaware
mind wandering detection. The third section focuses on examining the generalizability of
video-based mind-wandering detection, proposing a transfer learning approach.

3.1.1. Meta-awareness of Mind Wandering and its Impact on Learning

[1] Babette Bühler, Efe Bozkir, Patricia Goldberg, Hannah Deininger, Sidney D’Mello,
Peter Gerjets, Ulrich Trautwein, and Enkelejda Kasneci. “Temporal Dynamics of
Meta-Awareness of Mind Wandering During Lecture Viewing: Implications for Learn-
ing and Automated Detection Using Machine Learning.” In: Journal of Educational
Psychology. In Press.

Motivation

Several studies have demonstrated that mind-wandering episodes can occur both with
and without meta-awareness, indicating variability in whether an individual is aware of
their occurrence [51, 50]. However, research on education has not extensively investigated
the levels of meta-awareness in mind wandering or how they evolve over time in learning
settings. These different manifestations likely stem from different underlying cognitive
processes [43], necessitating tailored interventions and solutions. It is, therefore, essential
to further investigate these different forms of mind wandering and their impact on learning
within educational contexts. One major challenge is the reliance on experience-sampling self-
reports that, although providing reliable assessment, can only capture discrete moments.
Using machine learning on sensor data presents a promising method for unobtrusive,
continuous, and systematic monitoring of thought processes over time in realistic learning
scenarios [74, 71, 91]. However, current methods primarily focus on binary detection
of mind wandering—either occurring or not—and lack the ability to distinguish more
nuanced variations. Automated recognition of aware and unaware mind wandering, enabling
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continuous assessment over time, could allow for in-depth analysis of temporal dynamics
of meta-awareness of task-unrelated thoughts over extended periods without the need
for disruptive probes. Furthermore, it could open up possibilities for more effective
interventions and tailored learning content in attention-aware technologies [71, 70].

This work determined the meta-awareness and temporal patterns of mind-wandering
episodes during a 60-minute prerecorded Zoom lecture using 15 thought probes. The
sequences of meta-awareness in mind wandering using clustering to identify typical thought
patterns were analyzed. Additionally, the effects of these mind-wandering patterns, both
aware and unaware, on both fact-based learning (e.g., memory for facts or details) and
inference-level learning (e.g., integration of information with prior knowledge) [180, 33] were
assessed. To address the limitations of relying solely on discrete self-reports in temporal
analysis, a predictive modeling approach based on eye-tracking data and machine learning
was applied. This method distinguishes between on-task behavior and aware or unaware
task-unrelated thoughts, offering a promising way to assess and differentiate types of
mind wandering. Using post-hoc explainability techniques allowed for insights into how
specific gaze behaviors relate to different types of mind wandering. This approach not only
sheds light on meta-awareness in mind wandering during video lectures but also sets the
groundwork for future large-scale research using observable gaze data.

Principal Methodology

In this study, data were collected from 96 university students. After excluding those with
technical issues and non-native German speakers, 87 students (age 19-33 years, M =
23.44, SD = 2.6, 19% male) qualified for analysis. In a lab setting, participants watched
a 60-minute lecture video, which was interrupted in 3-5 minute intervals by 15 thought
probes assessing mind wandering and its meta-awareness. The probes were composed of
two stages to assess thought content at the first question to disentangle being on task,
elaborations, and metacognitive monitoring from task-unrelated thoughts. In the second
stage, participants were asked whether they were aware of their minds wandering off. Before
and after the lecture, they answered questionnaires on person-specific characteristics, as
well as pre- and post-knowledge tests.

To determine the temporal pattern of aware and unaware mind wandering, self-report
sequences derived from the 15 thought probes were analyzed by clustering these sequences
using the agglomerative clustering algorithm Agnes with the Ward method to identify
distinct patterns of mind wandering. The similarity between sequences was quantified
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using Optimal Matching (OM), which calculates the minimal cost of transforming one
sequence into another through insertion, deletion, and substitution operations, allowing to
cluster based on the general temporal unfolding of thoughts and not just specific timings.
Then, a linear regression analysis to investigate the link between meta-awareness of mind-
wandering patterns and learning outcomes was conducted, using knowledge post-test scores
as independent variables and cluster membership as the dependent variable while adjusting
for confounders like age, gender, prior knowledge, and self-concept.

During the study, participants’ eye movements were tracked using remote SMI eye trackers
at 250 Hz sampling rates. Eye-movement events like fixations and saccades were analyzed
using the BeGaze software [181]. Information was extracted from a 10-second window
before each thought probe, and additional features like gaze vergence and fixation dispersion
were created. Summary statistics from the eye-tracking data (e.g., mean, min, max, std,
skew) were compiled to create input features for the machine-learning model to differentiate
attention states. It was analyzed how meta-awareness of mind wandering is reflected in
eye movements by comparing the gaze features during aware and unaware episodes to
those during on-task periods, using t-tests for mean comparisons. The investigation was
enhanced by implementing various machine-learning classifiers, including Random Forest,
XG Boost (XGB), Support Vector Machine (SVM), and Multi-layer Perceptron (MLP),
to distinguish between aware and unaware task-unrelated thoughts based on eye-tracking
data, addressing data imbalance with techniques like Synthetic Minority Over-sampling
Technique (SMOTE) [182] and random oversampling. Our analysis applied rigorous
validation through person-independent three-fold nested cross-validation to ensure the
generalizability of our findings, aiming for robust predictions of mind-wandering states
from eye movements. Further, SHAP analysis was employed to investigate how individual
eye-tracking features contributed to predicting aware and unaware mind wandering.

Main Findings

During thought probes, participants reported being on task 35% of the time, having task-
related elaborations 8% of the time, engaging in metacognitive comprehension monitoring
16% of the time, and experiencing task-unrelated thoughts 41% of the time, with 63% of
all task-unrelated thoughts occurring with meta-awareness. Correlation analysis revealed
significant correlations between individual characteristics and types of mind wandering,
including negative associations between metacognitive self-regulation and unaware task-
unrelated thoughts, and positive correlations with self-concept and dispositional interest
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related to on-task behavior and lecture comprehension; situational interest, self-reported
involvement, and cognitive engagement showed negative correlations with both types of
task-unrelated thoughts, with stronger associations observed for unaware mind wandering.

In the study, hierarchical clustering identified five distinct clusters of mind-wandering
patterns during the lecture, depicted in Figure 6, labeled as on-task, mixed-TUT, zone-out,
occasional tune-out, and tune-out clusters. The on-task cluster demonstrated the highest
level of sustained attention with minimal mind-wandering, while the zone-out cluster
exhibited consistent unaware mind wandering throughout the lecture. Analysis of variance
revealed significant differences between clusters in terms of on-task engagement and types
of mind wandering.

Linear regression analysis to investigate how different thought patterns influenced learn-
ing outcomes revealed that participants in the zone-out cluster, characterized by high rates
of unaware mind wandering, scored significantly lower on fact-based and deep-level inference
learning tests than the on-task cluster. Participants in the tune-out cluster, predomi-
nantly engaged in aware-task-unrelated thoughts, also demonstrated lower performance,
particularly in inference learning. Additionally, the analysis confirmed that higher levels of
self-concept in statistics and prior knowledge positively influenced learning outcomes. A
gender effect indicated slightly lower inference test scores for male participants.

To examine how meta-awareness in mind wandering influences gaze behavior, the average
levels of gaze features were compared across different self-reported thought groups, revealing
significant differences through t-tests; notably, unaware mind-wandering episodes had fewer
fixations and a higher fixation to saccade duration ratio compared to on-task instances.
Further analysis identified no significant differences in gaze features between on-task and
aware mind-wandering instances. However, the latter showed modestly higher values for
some features, such as saccade velocity and acceleration, with aware mind wandering having
a higher fixation count similar to on-task levels.

Multiple state-of-the-art machine-learning classifiers were employed to differentiate
instances of aware and unaware mind wandering from a combined on-task and metacognitive
monitoring category, where the Random Forest (RF) model showed the best performance
slightly above chance with an F1 score of 0.215 for unaware task-unrelated thoughts.
The Support Vector Classifier (SVC) and MLP classifiers demonstrated better prediction
capabilities for aware task-unrelated thoughts with F1 scores of 0.332 and 0.282, respectively,
achieving macro F1 scores marginally above chance. Additionally, a binary classification
approach distinguishing between on-task and combined task-unrelated thought instances
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Figure 6.: Attentional State Distribution Plots by Cluster.

yielded significantly higher detection accuracy with an MLP classifier achieving an F1 score
of 0.529, which is 24% above chance level.

To understand how gaze features relate to the meta-awareness of task-unrelated thoughts,
SHAP values were computed for the best-performing RF classifier, revealing that specific
saccade, blink, vergence, and fixation duration features were crucial for predicting both
aware and unaware task-unrelated thoughts. The variability in these features, especially in
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vergence and pupil distances, played a significant role, with higher variance often indicating
aware task-unrelated thoughts due to phenomena like ”staring into nothingness.” At the
same time, more stable metrics suggested on-task focus. Additionally, factors such as the
variability in pupil diameter and saccade velocities contributed differently to each class.
The findings underscore the complexity of gaze behavior’s relationship with mind-wandering
states.

This study investigated the meta-awareness of mind wandering during video lectures,
identifying distinct temporal patterns of thought sequences that correlate differently with
learning outcomes. By employing probes that inquired about participants’ current thoughts
and their awareness of them, the study revealed that zone-out patterns negatively impact
both fact-based and deep-level inference learning, whereas tune-out patterns primarily affect
deep-level understanding. Furthermore, initial efforts in predictive modeling using gaze data
showed promise in distinguishing between aware and unaware forms of mind wandering,
suggesting potential directions for future research that could enhance understanding and
measurement of these phenomena using advanced computational methods and larger data
sets. One way to enhance the robustness and precision of predictions is to add indicators
derived from additional data sources. The following section presents a novel approach to
the multimodal detection of aware and unaware mind wandering.

3.1.2. Multimodal Detection of Aware and Unaware Mind Wandering

[5] Babette Bühler, Efe Bozkir, Hannah Deininger, Patricia Goldberg, Peter Gerjets,
Ulrich Trautwein, and Enkelejda Kasneci. “Detecting Aware and Unaware Mind
Wandering During Lecture Viewing: A Multimodal Machine Learning Approach
Using Eye Tracking, Facial Videos and Physiological Data.” Submitted to ACM
International Conference on Multimodal Interaction 2024. Under Review.

Motivation

In research on automated detection of mind wandering, a variety of modalities next to
eye tracking [70, 71, 183, 88, 143], such as physiological signals like skin conductance
[91] and heart rate [97], and facial video recordings [73, 75] have been employed. The
integration of different modalities aims to improve performance and ensure robustness by
addressing noisy data, resolving ambiguities, and capitalizing on intermodal correlations
[184]. Recent findings from a meta-analysis by Kuvar et al. [174] indicate that multimodal
methods surpass unimodal approaches in detecting mind wandering. However, the extent
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of improvement and its consistency varies across studies and tasks. These results suggest
that the benefits of combining features might not be consistently additive, highlighting
the need for further research [174]. Motivated by these findings, our study introduced a
novel approach by merging data from eye tracking, facial video analysis, and physiological
sensors. Similar to Bühler et al. [1] described in Section 3.1.1, the aim is to detect aware
and aware mind wandering, as each type of mind wandering may require different types of
interventions to effectively support learning [50, 146, 57, 185].

This study contributes novel insights by employing a combination of eye tracking, video,
and physiological sensors (heart rate and electrodermal activity) to detect both aware and
unaware mind wandering. Additionally, to facilitate comparisons to previous research, a
combined mind-wandering category, including aware and unaware mind wandering, was
predicted. This multimodal approach was evaluated for its effectiveness in differentiating
mind-wandering categories during lecture viewing. Further, it was analyzed which features
from each modality were most influential in recognizing aware, unaware, and combined mind-
wandering states. This deeper understanding of the temporal dynamics of mind-wandering
meta-awareness and its impacts on learning outcomes provides a critical foundation for
further developing adaptive educational technologies and targeted interventions that support
learners in remote learning environments. Such advancements are crucial for optimizing
engagement and learning efficiency in digital education settings.

Principal Methods

For this study, data from 87 university students was employed, parts of which, specifically
self-reports and gaze data, have been employed in Bühler et al. [1]. Participants viewed a
60-minute recorded Zoom lecture on the topic of statistics while their eye gaze, facial videos,
and physiological responses were tracked using remote SMI eye trackers, standard webcams,
and E4 Empatica wristbands. Throughout the session, which included mid-point eye tracker
recalibration, 15 thought probes were administered at 3-5 minute intervals. Participants
were asked to categorize their thoughts into predefined categories reflecting either task-
related or task-unrelated thoughts; task-unrelated thoughts were further classified based
on their meta-awareness into aware mind wandering and unaware mind wandering, serving
as ground truth for the following machine learning task. Due to occasional eye-tracking
failures, including abnormally long blinks, the initial dataset of 1305 instances was reduced
by excluding 11 instances with incomplete data. This resulted in a final dataset of 1284
instances used for the analysis.
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For our analysis, data from eye-tracking, video, and physiological sensors was extracted
for 30-second intervals prior to each thought probe, a duration validated by prior studies
for multi-modal mind wandering detection during video lectures [89]. Using proprietary
SMI BeGaze Software [181], eye-tracking events such as fixations, saccades, and blinks
were extracted. Additional features like fixation dispersion and vergence were computed,
focusing on global gaze features to capture broad eye movement patterns that were less
dependent on task specifics and to enhance their generalizability. Using the OpenFace
toolbox [115], facial video data was processed to obtain features like facial action units
and head pose. Additionally, physiological data from wrist-worn Empatica E4 sensors
provided electrodermal activity and heart rate data; these were standardized and cleaned to
ensure consistency [186]. The resulting features from each modality were summarized over
30-second intervals, and various statistics for each feature, including minimum, maximum,
mean, median, standard deviation, 25% and 75% percentiles, skewness, and kurtosis, were
computed.

Three binary classification tasks were performed to predict aware and unaware mind
wandering, as well as a combined category separately, using both individual and combined
feature sets from various modalities. Employing an early fusion approach, aggregated
feature arrays were concatenated to integrate these modalities at the feature level, which
has been shown to outperform decision-level fusion [96]. SMOTE [182] and random
oversampling were used during the training phase to mitigate the highly imbalanced
dataset. The sklearn package was utilized to train various classifiers—RF, SVC, MLP, and
XGB. To interpret the multimodal models, the SHAP method [178] was used, providing
post-hoc explanations by calculating Shapley values, which quantify how individual features
influence the prediction relative to the average prediction of the sample. These explanations
revealed the impact of specific features on different types of mind wandering. The large
feature vectors resulting from multimodal fusion led to potential overfitting, so models
were refined to focus only on the top 100 features identified by SHAP as most influential.
Validation was conducted using Leave-One-Person-Out Cross-Validation, focusing on the
area under the precision-recall curve to robustly assess performance across imbalanced
classes [187].

Main Findings

In this study, the predictive power of a novel multimodal combination of eye-tracking,
facial videos, and physiological signals for detecting aware, unaware, and combined mind
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wandering during video lectures was investigated. Integrating these three modalities
significantly enhanced prediction accuracy compared to using any single modality, with
the fused multimodal feature set refined to the 100 most influential features showing
the best performance across all mind-wandering categories. Specifically, aware mind
wandering was detected at 20% above chance (Area Under the Precision-Recall Curve
(AUC-PR) = 0.396), unaware mind wandering at 14% above chance (AUC-PR = 0.267),
and the combined category at 40% above chance (AUC-PR = 0.637). Notably, all top 100
feature subsets contained variables stemming from all three modalities, highlighting each
modality’s complementary information. Average prediction accuracies by mind-wandering
category and feature set are displayed in Figure 7. As Kuvar et al. [174] hypothesized, the
performances of modality feature sets appear not to be additive. Nevertheless, this study
finds significant improvements over unimodal approaches, contrasting with prior research.
Our findings revealed that unaware mind wandering was the most challenging to detect,
likely due to fewer instances available for training, adding more data could potentially
improve accuracies.

The analysis of unimodal approaches showed that eye-tracking was most effective for
predicting aware mind wandering, whereas facial video features excelled in detecting
unaware mind wandering, with physiological signals showing lower standalone predictive
power but contributing valuable information when combined with other modalities. SHAP
analysis of the top-performing multimodal models highlights that for aware mind wandering,
the key predictors are saccade velocities, pupil diameter, facial expressions, head pitch, and
physiological signals like BVP and tonic EDA. In contrast, the critical features for unaware
mind wandering include AUs, such as the absence of lip sucking and the presence of nose
wrinkling, which indicates a strong predictive power of facial expressions. Additionally,
gaze-related features such as frequent blinking, albeit video-based, played a significant role
in detecting unaware mind wandering.

These results emphasize the importance of multimodal approaches in enhancing the
robustness and accuracy of mind-wandering detection systems, suggesting a promising
direction for future research and application in educational technologies. Future work
should aim to validate these approaches in more ecological, diverse settings to enhance gen-
eralizability and examine the effectiveness of sophisticated machine-learning techniques on
larger datasets. The potential generalizability of the scalable video-based mind-wandering
detection is investigated in the following section.
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Figure 7.: Avergage Classification Results (Above Chance Based on AUC-PR) by Mind
Wandering Category and Modality Feature Set.

3.1.3. Examining the Generalizability of Video-Based Mind Wandering
Detection

[2] Babette Bühler, Efe Bozkir, Patricia Goldberg, Ömer Sümer, Sidney D’Mello, Peter
Gerjets, Ulrich Trautwein, and Enkelejda Kasneci. “From the Lab to the Wild:
Examining Generalizability of Video-based Mind Wandering Detection.” In: In-
ternational Journal of Artificial Intelligence in Education. (2024), pp. 1–35. doi:
https://doi.org/10.1007/s40593-024-00412-2.

Motivation

In considering the integration of mind-wandering detection into educational technologies
to enhance adaptiveness and attention awareness, the scalability and accessibility of the
employed modalities emerge as critical factors. Recent advancements in automated mind-
wandering detection involve using physiological sensors and eye trackers in controlled
environments, which, while insightful, are not scalable or cost-effective for widespread
use [89, 188]. Conversely, emerging research indicates that consumer-grade webcams can
successfully detect mind wandering in more naturalistic settings, enhancing the potential
for broader application in real-world educational environments [73, 75]. However, challenges
remain in ensuring the generalizability and fairness of these systems across tasks, different
cultures, and demographic groups, necessitating further research into robust, culturally
aware models that respect the diversity of learners [189, 174].

Traditional mind-wandering detection has relied on explicit features like Action Units
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(AUs) and gaze metrics, which are often tailored to specific tasks and may not generalize
well across different settings [72, 73, 75]. By leveraging transfer learning from pre-trained
CNN on large, diverse datasets and employing FER technologies, this study examines
the potential of latent features derived from facial expressions to improve generalizability
and interpretability using explainability tools like LIME [179]. Incorporating temporal
dynamics, which have been shown to be critical for accurately detecting mind wandering
[73, 72], this research utilizes advanced models capable of processing time-series data to
learn temporal relationships directly from video input. To test the robustness of these
approaches across various environments and cultural contexts, the study extends beyond
lab-based settings to naturalistic environments by applying models trained on lab data
to ’in-the-wild’ scenarios [190, 73, 75]. This cross-context application not only challenges
the universality of facial expressions but also addresses potential cultural biases in facial
recognition algorithms, aiming to ensure that these models are effective and fair across
diverse global user groups.

Principal Methods

Our research utilizes two distinct datasets: one from a laboratory setting involving 135 U.S.
university students who self-reported mind wandering while reading scientific texts [73],
and another from an in-the-wild setting with 15 Korean students who were probed about
their mind wandering while watching a lecture at home [75]. The lab data is used for both
training and within-dataset evaluations, consisting of 1,031 mind-wandering and 2,406
non-mind-wandering instances, while the in-the-wild data, containing 205 mind-wandering
and 1,009 non-mind-wandering instances, is used solely for cross-dataset evaluation to
assess generalizability and real-world application.

To extract deep learning-based facial expression features from video frames, a CNN with a
ResNet50 architecture, pre-trained on the AffectNet dataset [191], where faces are detected
and aligned using RetinaFace [192, 193] was employed. This process generated a 2048-digit
long latent feature vector per frame, which can be utilized by downstream classifiers to
predict mind wandering. In comparison, explicit features such as Action Units (AUs), facial
landmarks, head pose, gaze direction, and eye region landmarks are extracted using the
OpenFace toolkit [115] from each frame for potential use in alternative models. Recurrent
neural networks, specifically Long Short-Term Memory Model (LSTM) and Bidirectional
Long Short-Term Memory Model (BiLSTM), were employed to capture temporal dynamics
in the data, using these models alongside traditional machine learning methods like
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SVM and XGB, with performance comparisons made through person-independent 4-fold
validation splits [194, 195]. To handle the diverse data inputs, features were aggregated
across frames and refined through feature selection, with class imbalance addressed by
techniques such as SMOTE [196]. Additionally, a CNN-LSTM model was finetuned to
better adapt the feature extraction to our specific task, utilizing a two-step training process
that initially freezes and then partially trains the CNN to refine its understanding of
mind-wandering-related features.

Figure 8.: Mind wandering detection pipeline.

To evaluate the generalizability of our mind-wandering detection model across different
settings and tasks, it was trained using the lab-based reading task data and then applied
to predict mind wandering during a lecture in a naturalistic setting on the in-the-wild data.
To gain a better understanding of the model, LIME [179], an explainability algorithm
to highlight the most informative image areas, was applied. Comparative analysis for
prediction accuracies across genders was conducted to examine the fairness of predictions.

Main Findings

Our study demonstrated that latent features from a pre-trained CNN on the AffectNet
facial expression dataset effectively predict mind wandering, showing an approximately
14% improvement over chance when integrated with deep learning models like Deep
Neural Network (DNN), LSTM, and BiLSTM. These transfer-learned features performed
comparably to explicit feature sets (AUs, facial landmarks, gaze vectors) extracted via
OpenFace, indicating the richness of information contained in the latent representations of
basic emotional expressions for mind-wandering detection. Visualization of the model’s
focus areas revealed significant encoding of eye and mouth regions, validating the relevance
of these facial areas in recognizing mind wandering [73]. Transfer learning can mitigate
the issue of insufficient data for training deep learning models on this task. While fine-
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tuning these features in an end-to-end model slightly enhanced performance, the degree of
improvement heavily depends on the quantity of available data.

When applying these models to a new dataset that varied in task, setting, and cultural
background, the latent features generalized effectively, achieving results approximately
11.4% above chance, surpassing performance on explicit features and indicating better
generalizability without manual feature engineering. This suggests that facial expressions,
being less task-specific than, for instance, gaze metrics, are more robust across diverse
settings, including naturalistic environments [75, 190]. Moreover, despite cultural differences
in facial expression interpretation between Western and East Asian contexts, our transfer-
learned features performed well across these diverse groups, underscoring their potentially
universal applicability despite ongoing debates about the cultural specificity of facial
expressions [197, 198, 189, 199, 200, 201].

Additionally, our findings indicated gender-based differences in prediction accuracy, with
models performing better for females, possibly due to the higher proportion of women in the
datasets and their higher mind-wandering rates, highlighting the importance of unbiased
data sets. The selection of an optimal predictive model also proved critical; adjusting
decision-making thresholds could enhance prediction efficacy, particularly in cross-dataset
scenarios. This customization allows for a better balance between recall and precision,
essential for tailoring applications to specific needs such as material testing or intervention
deployment without disrupting learners who are already attentive [73].

The preceding sections have shown the potential of multimodal automated assessment
approaches to detect mind wandering, i.e., lapses of attention during computer-based
learning. However, the modalities discussed particularly eye tracking, can also be leveraged
to examine behavioral indicators during attentive learning, which is explored in the following
section.

3.2. Synchrony as Attention Indicator during Online Learning

Turning towards the detection of attention during online learning the following section
presents a summary of the investigation of gaze synchrony in attentive learners.
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3.2.1. Synchronization of Attentive Learners’ Gaze during Video Lecture
Watching

[3] Babette Bühler, Efe Bozkir, Hannah Deininger, Peter Gerjets, Ulrich Trautwein, and
Enkelejda Kasneci. “On Task and in Sync: Examining the Relationship between
Gaze Synchrony and Self-reported Attention During Video Lecture Learning”. In:
Proc. ACM Hum.-Comput. Interact. 8.ETRA (May 2024). doi: https://doi.org

/10.1145/3655604.

Motivation

Detecting attention to a given task based on behavioral indicators is challenging. Attention
direction is primarily manifested through the mind-eye connection reflected in our gaze
patterns [119, 118, 120]. Where we direct our gaze indicates where our attention lies,
allowing our cognitive system to absorb and process information. In educational contexts
such as lecture videos, one might infer attentiveness by whether individuals focus on
currently relevant slide components being discussed. However, this inference greatly
depends on the stimulus. To ascertain what is deemed relevant can be achieved by inferring
information from the group level; attentive learners viewing the same content concurrently
should exhibit similar eye movements, thus synchronizing their gaze [142]. The forthcoming
study investigated whether this synchronization truly occurs among learners in naturalistic
attention fluctuation.

Recent studies have utilized visualizations of eye gaze data to enable instructors to gauge
the attention levels of learners and adapt instructional strategies accordingly [140, 141].
Furthermore, studies have examined the potential of synchrony in eye movements among
students during video lectures as an indicator of attention levels and comprehension [142].
These studies suggest that attentive students exhibit similar gaze patterns, which could
be predictive of their learning outcomes as measured by test scores. However, attempts
to replicate these findings using webcam-based eye-tracking have highlighted reliability
issues, underscoring the challenges of implementing this technology in educational settings
[202, 203]. Moreover, previous research methods often involve experimental manipulations,
such as introducing a secondary task to simulate inattention, which may not accurately
represent the natural dynamics of learner distraction and engagement. Real-world learning
experiences involve more subtle and varied attention fluctuations, influenced by both
external distractions [204] and internal cognitive processes like mind wandering [205].

This study aims to deepen the understanding of how gaze synchrony relates to naturalistic
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fluctuations of attention and learning outcomes in educational settings. By examining
the relationship between gaze synchrony measured by two distinct methodologies and
self-reported attention during a pre-recorded Zoom lecture, it is investigated whether
gaze synchrony can reliably indicate attention levels and predict learning outcomes. This
approach allows us to assess the practical implications of using gaze data to enhance
learning experiences in digital environments, moving beyond the constraints of controlled
experimental setups to determine the real-time dynamics of learner engagement.

Principal Methods

For this study, data stemming from the same data collection as the data in publications
[1] and [5] were employed. After exclusions, data from 84 university students aged 19
to 33 (19% male) were used for analysis. Gaze data was collected using an SMI Red
remote eye tracker in a laboratory setting where participants, after calibration and initial
questionnaires, watched a 60-minute pre-recorded Zoom lecture on statistics, followed by a
post-test. The video stimulus used in the study featured a typical Zoom layout with lecture
slides and a webcam display of the lecturer, where the slides were primarily static, with
a cursor used for pointing at specific locations. 15 experience sampling thought probes,
administered every three to five minutes, were used to assess attention during the lecture;
participants responded to a screen prompt asking about their current focus, with responses
categorized from ”I was on task, following the lecture” to ”Everyday personal concerns,”
allowing for analysis of attentive versus inattentive states. This method revealed that while
36% of responses indicated attentiveness, most thoughts related to personal concerns or
lecture content elaborations, with attention levels showing significant fluctuation throughout
the lecture. Participants completed a pre-test assessing prior knowledge on the topic and a
post-video knowledge test featuring 14 questions—seven on factual memory and seven on
deep understanding—tailored to the lecture content on linear regression analysis, scoring
an average of 5.63 out of 14.

To extract eye movement events such as fixations, saccades, and blinks from gaze data,
utilizing the BeGaze software. A 10-second window cut before each of the 15 probes was
used for synchrony analysis, yielding 1335 instances. The average calibration error of
our nine-point calibration procedure was 0.31°, ensuring precise gaze data for analysis.
blinks over 500 ms [206, 207] were excluded and gaze sequences with less than a 75%
tracking ratio, which, due to quality thresholds, reduced the dataset to 785 instances from
84 participants.
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To assess gaze synchrony, two primary measures were employed: the Kullback-Leibler
Divergence (KLD) and the MultiMatch scanpath comparison algorithm. The KLD measures
discrepancies between gaze density maps by comparing gaze distributions, quantifying
the degree of visual attention pattern differences between two sets of gaze data [208, 209,
210]. Additionally, the MultiMatch algorithm evaluates scanpath similarities in terms
of shape, direction, length, position, and duration, offering a comprehensive assessment
of gaze alignment [211, 212, 213]. Additionally, the Inter-Subject Correlation (ISC) was
calculated as a baseline, aggregating data on gaze position and pupil diameter [142, 140,
203]. These measures were applied to 10-second video segments preceding attention probes
and analyzed to discern the synchrony between groups classified as attentive or inattentive
based on self-reported attention, with results standardized across video sequences.

The relationship between gaze synchrony and attention self-reports was analyzed. To
address multiple measurement points per participant, mixed linear regression was employed,
treating participant ID as a random effect and self-reported attention as a fixed effect,
with the probe number included as a categorical variable to account for variability. In a
separate analysis, the potential of gaze synchrony measures as indicators for attention was
investigated by correlating these measures with learning outcomes. Average gaze synchrony
scores and the proportion of on-task self-reports for each participant were calculated. Linear
regression analyses were employed to examine the relationships between these aggregated
values and post-test scores, adjusting for pre-test scores to control for prior knowledge. This
approach allowed us to examine how well attentional states are reflected in synchronized
gaze behavior and to assess the effectiveness of gaze synchrony as an indicator of attention
by analyzing its relation to learning outcomes.

Main Findings

This study investigated the relationship between gaze synchrony and self-reported attention
during video lectures, revealing that participants who reported being attentive exhibited
higher gaze synchrony. Although the differences in gaze synchrony by self-reported attention
were statistically significant, they were relatively small in magnitude, suggesting a nuanced
relationship between natural attentiveness and gaze alignment during educational tasks.
Figure 9 shows example scanpaths for self-reported attentive and inattentive episodes.
Interestingly, of all MultiMatch dimensions, the position similarity—how similarly partici-
pants focused their gaze—showed the strongest link to reported attentiveness, emphasizing
the importance of specific visual engagement with content as a component of cognitive
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engagement [212, 213]. In contrast, saccade length similarity, which measures the move-
ment distance between fixations, did not correlate significantly with self-reported attention,
suggesting that the extent of eye movement does not necessarily reflect attentiveness [213].

Figure 9.: Example scannpath visualizations of one 10-second video sequence by self-
reported attention.

Despite these insights, the study did not find that average levels of gaze synchrony
were predictive of post-test scores, which contrasts with previous research suggesting
gaze synchrony could reflect learning effectiveness [142, 203]. However, self-reported
attentiveness did correlate significantly with learning outcomes, affirming its importance
as a predictor of educational success [202].

These findings highlight that while gaze synchrony provides valuable insights into
attentional engagement, its direct linkage to learning outcomes remains unclear. The
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variation in gaze synchrony’s predictive power might be influenced by the type of video
content used in the study, which featured more traditional, slide-based lectures rather than
dynamic or interactive content [202, 214]. This suggests that the educational context and
the nature of the video material might significantly affect gaze behavior and its synchrony.
Further research is needed to investigate these relationships more deeply, particularly
considering different types of educational videos and extending the analysis to longer time
windows to potentially enhance the robustness of gaze synchrony measures in predicting
learning outcomes.

This section has described the examination of gaze synchrony as an indicator for attention
during lecture video watching. The following section will focus on the detection of behavioral
indicators in a different learning setting, the classroom.

3.3. Hand-Raising as an Indicator of Behavioral Engagement in
the Classroom

Transitioning to the complex environment of the classroom, assessing attention and en-
gagement presents unique challenges. One difficulty arises from the reliance on observer
ratings of higher-level constructs, which can introduce subjectivity, and a stronger need for
inferences, becoming evident from low inter-rater reliability [61] as detailed in Section 2.2.1.
Such imprecise ground truth poses challenges for the training of machine learning models.
One way to overcome this is to focus automated detection on specific indicators of the
concept under consideration that are easier for human raters to annotate. Therefore this
work concentrates on a specific and more distinctively observable indicator of behavioral
engagement in the classroom: hand-raising [21]. The following section presents a novel
approach to hand-raising detection and automated annotation in authentic classroom
videos.

3.3.1. Occlusion-Roboust and View-Invariant Hand-raising Detection in
Authentic Classroom Videos

[4] Babette Bühler, Ruikun Hou, Efe Bozkir, Patricia Goldberg, Peter Gerjets, Ulrich
Trautwein, and Enkelejda Kasneci. “Automated hand-raising detection in classroom
videos: A view-invariant and occlusion-robust machine learning approach”. In:
International Conference on Artificial Intelligence in Education. Springer. 2023,
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pp. 102–113. doi: https://doi.org/10.1007/978-3-031-36272-9_9.

Motivation

This study is motivated by the recognition that students’ active participation, particularly
through hand-raising, plays a critical role in attention and engagement and, consequently,
academic success within classroom environments. Hand-raising is a visible measure of
participation and engagement, linked to students’ achievement, cognitive engagement,
emotional support from teachers, and motivation [21, 22]. Despite its importance, research
on hand-raising has been limited by the labor-intensive and costly process of manual
observation, which restricts sample sizes and reduces the generalizability of findings [22,
21]. Advancements in computer vision and machine learning now offer the potential to
automate the detection of hand-raising events, thereby facilitating more extensive and less
intrusive studies of classroom interaction. The goal of this research is to develop a robust
automated approach that can reliably detect hand-raising activities in classroom videos.
This approach aims to substitute manual annotation methods, enabling large-scale research
applications and providing a more efficient tool for assessing student engagement.

To address the complexities of real-world classroom environments, such as diverse filming
angles and potential occlusions by classmates or objects, this study introduces a novel
approach that employs view-invariant and occlusion-robust techniques. By focusing on
body pose estimations [86] rather than directly employing video frames [215, 83], this
method also upholds student privacy by eliminating the need to store sensitive video data.
Ultimately, this research not only aims to validate the effectiveness of automated hand-
raising detection but also investigates its correlation with cognitive engagement and other
learning-related activities. This approach could significantly enhance our understanding of
the dynamics of classroom participation and its impact on learning processes, setting the
stage for future research that can utilize these automated techniques.

Principal Methods

In this study, data gathered from 36 real-world classroom sessions at a German secondary
school involving 127 students across various grades (5-12) and subjects was employed.
Each session was video-recorded and followed by a student questionnaire to assess learning
activities in the lesson, including self-reported involvement [216], cognitive engagement
[217], and situational interest [218], resulting in 323 student-lesson instances. Hand-raisings
were manually annotated by two raters with high inter-rater reliability (ICC = 0.96),
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resulting in 2442 events recorded. Constructing the automated hand-raising detection
model required detailed annotations. For this purpose, hand-raising in half of the data,
18 videos, was annotated using the VIA software [219], noting the start and end times
and bounding boxes with a joint agreement probability of 83.36% for two annotators. The
annotations from both raters were combined to create ground truth by intersecting their
temporal data, resulting in 1584 hand-raising instances with an average duration of 15.6
seconds.

Classroom

Videos

2D Poses Pose Windows Embeddings

Prediction

Tracker & Embedding

Model Classifier

Pose

Detector Windowing

Figure 10.: Hand-raising detection pipeline.

To develop a skeleton-based hand-raising detector, the OpenPose [116] library was used
to estimate 25 body key points per student in each frame, focusing on 13 upper body key
points that represent the head, torso, and arms due to frequent occlusions of the lower
body in classroom settings. To track students’ movements over time, an intersection-over-
union (IOU) tracker was applied based on the torso key points. This process created
skeleton tracks for each student across frames. The 18 videos that were annotated for both
temporal duration and spatial location of hand-raising events constituted the dataset for
classifier training and testing. Annotations were segmented into subsequences labeled as
”hand-raising” or ”non-hand-raising” and were further broken down into 2-second windows
without overlap. This process generated a large-scale dataset comprising 243,069 instances,
with approximately 5% (12,839 instances) representing hand-raising events, highlighting
the challenge of imbalance in the dataset.

To address challenges related to viewpoint changes and partial occlusions, an approach by
Liu et al. [220] to develop view-invariant and occlusion-robust pose embeddings was adapted.
These embeddings are probabilistic, forming a Gaussian distribution that accurately
captures ambiguities in 2D pose projection from 3D, enhanced by synthetic keypoint
occlusion for training. The training, conducted on the Human3.6M dataset[221], focused
on upper body key points to optimize the embeddings for classroom settings, resulting in a
combined 64D feature vector of mean and variance for downstream classification. To predict
hand-raisings LSTM models performing binary classification of sequential inputs, using
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sequences of 2-second frame-wise feature vectors. Alongside LSTMs, also non-temporal
RF models for baseline comparisons were trained, adjusting for imbalanced data during
training. Model performance was assessed independently across different videos, using a
set for training and another for testing to ensure the robustness and generalizability of our
detection approach. The detection pipeline is displayed in Figure 10.

In the last step, the proposed hand-raising detection method was applied to estimate
the frequency of hand-raisings for students across the 22 unseen classroom videos. Using a
sliding window technique on tracks generated for each student, hand-raising occurrences
were annotated by applying the trained classifier on pose embeddings and merging adjacent
detections. This approach allowed us to robustly detect and count hand-raisings and
correlate them to self-reported learning-related activities.

Main Findings

Our study introduced a novel automated detection method for hand-raising using view-
invariant and occlusion-robust pose embeddings, which proved more effective than simpler
geometric features previously used [85]. Further temporal LSTM models outperformed
shallow Random Forrest classifiers. Temporal models based on body pose embeddings
reached an F1 score of 0.76. Analysis of misclassified instances showed that similar skeletal
positions, such as scratching the head or resting it on a hand, are often mistakenly identified
as hand-raising. In contrast, more subtle gestures like a raised index finger or low hand
raises were more frequently not recognized as hand-raising.

Furthermore, this work confirmed that student hand-raising significantly correlates with
self-reported learning activities across a broad range of subjects and grades, supporting its
use as an indicator of classroom engagement. The automated instance-wise annotation
of hand-raisings resulted in a Mean Absolute Error (MAE) of 3.76, with students raising
their hands on average 6.10 times per lesson. It was possible to improve the performance
to a MAE of 3.34 when the analysis was limited to data, allowing for consistent stu-
dent tracking and addressing issues like complete occlusions and pose estimation failures.
Despite overestimations in individual hand-raising counts, our automated hand-raising
instance annotations aligned closely with manual methods in correlating hand-raising to
learning-related activities, cognitive engagement, situational interest, and involvement,
demonstrating its utility for large-scale educational research.

This method not only enhances the feasibility of large-scale studies by eliminating the
labor-intensive process of manual coding but also offers a robust, privacy-preserving tool,
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adaptable to various classroom environments without the need to store video data. Future
improvements could focus on enhancing pose estimation accuracy and incorporating hand
key point detection to refine hand-raising identification, especially in subtle instances.
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This chapter discusses the findings and contributions presented in the previous Chapter
3 and aligns them with the objectives of the thesis outlined in Section 2.4. The central
aspects are data-driven theory development [1, 3] and the use of various modalities for
objectively and non-intrusively assessing attention, including eye tracking [1, 5, 3], video [5,
2, 4], and physiological data [5]. Moreover, advanced machine learning strategies based on
transfer and deep learning [2, 4] were applied to address challenges in authentic, in-the-wild
educational environments and limitations in model selection due to restricted dataset sizes.
This is followed by a discussion of challenges encountered in the automated assessment of
attention-related assessment, a review of the potential applications of such methods and
implications for educational practice, as well as a summary of resulting ethical implications.
Finally, an outlook on potential future research is given.

4.1. The Potential of Automated Assessment of
Attention-Related Processes During Learning

This dissertation significantly advanced the current state-of-the-art in automated assessment
of attentional processes. The concepts employed are strongly rooted in educational theories
and contributed to an improved understanding of these processes using objective and
fine-granular data derived from multiple modalities. By developing and refining automated
methods for detecting aware and unaware mind wandering, gaze synchrony, and hand-
raising, this thesis enhanced the capacity to assess and understand how students engage in
learning and how this is linked to learning outcomes.

The first part of this thesis advanced the assessment of mind wandering during learning
along three dimensions: Fine-granular assessment, differentiating by meta-awareness,
robustness and precision, leveraging multimodality and generalizability, improving cross-
dataset predictions. The first study revealed complex associations of distinct thought
patterns during lecture viewing with learning outcomes, highlighting a negative correlation
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between patterns dominated by unaware mind wandering and both fact-based and deep-
level understanding, while persistent aware mind-wandering patterns specifically impaired
deep-level understanding. These findings reinforce the need to investigate mind-wandering
processes at this level of granularity and suggest that interventions should be customized
based on a detailed understanding of meta-awareness and its manifestations. Further, it
was demonstrated for the first time that gaze-based machine learning could differentiate
aware and unaware minds wandering above chance. Advancing the accuracy and robustness
of fine granular mind wandering assessment, a multimodal approach was employed that
combined video, gaze, and physiological data. In line with previous findings [174], the
multimodal approach outperformed all unimodal approaches, demonstrating that different
modalities can provide complementary information. SHAP analysis further highlighted the
importance of all three modalities for aware and, specifically, video-based facial expression
features for unaware mind wandering detection. A novel transfer-deep-learning approach,
fine-tuned to the mind-wandering detection problem, showed promising results for cross-
dataset predictions. It overcomes restrictions set by often limited dataset sizes [e.g., 75]
in education research and highlights the potential of advanced deep learning methods to
generalize across different settings, specifically in-the-wild learning tasks and culturally
diverse, potentially global user groups.

The second part of this thesis advances the scientific understanding and assessment
of attentive gaze behavior in online learning environments by rigorously investigating
gaze synchrony. Overcoming previous limitations of experimental attention manipulation
[142] using self-reports and analyzing three eye-tracking synchrony measures, the findings
support the hypothesis that attentive learners exhibit similar eye movements [141, 142,
140]. However, synchrony scores were not significantly associated with learning outcomes,
contrary to the self-reports of attention, underscoring the complexity of using synchrony
as a direct indicator of attention.

The third part of this thesis targeted attention-related processes in real-world classroom
environments by focussing on the automated assessment of an observable indicator of
behavioral engagement hand-raising. Using fine-tuned view-invariant, occlusion-robust pose
embeddings, overcoming challenges such as occlusions by peers and various camera angles
[85], and temporal models, capturing temporal dynamics, this method could substantively
improve hand-raising detection in authentic classroom videos. It could further show
promising results when employing those modes for automated annotations of hand-raising
instances in a new set of videos. They showed high correlations with self-reported cognitive
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engagement and involvement, similar to manual annotations. This supports the hypothesis
that hand-raising is a significant indicator in this context [21] and emphasizes the potential
of automated annotation tools for large-scale educational research.

Overall, this thesis leveraged substantive and methodological synergies (an expression
coined by Marsh et al. [222]) and contributed to data-driven theory development, showing
the discernability of aware and unaware mind wandering based on objective measures [1]
and supporting the gaze synchronization hypothesis during attentive lecture watching [3].
Further, it examined the employment of a range of modalities to objectively and non-
intrusively assess attention, including eye tracking [1, 5, 3], video [5, 2, 4], and physiological
data [5]. Additionally, advanced machine learning approaches based on transfer and
deep learning were proposed [2, 4] to encounter challenges posed by authentic, in-the-wild
educational settings and restraints in model selection due to limited dataset sizes, advancing
state-of-the-art research in this domain.

4.2. Challenges for Automated Assessment

This research underscores the significant potential of automated assessments in measuring
attention but also delineates the prevailing limitations and challenges. The detection
accuracies for the cognitive and behavioral constructs studied are rather moderate, which
may be due to several potential reasons. One of them being that for nuanced covert
cognitive processes such as aware and unaware mind wandering, there might exist limits to
the precision with which these can be inferred from observable indicators. Computational
models currently outperform human observers in recognizing these processes [62], which
indicates the potential of automated methods yet highlights the complexity of detecting
these cognitive phenomena.

Another major challenge is the reliability of ground-truth labels used for training machine
learning models. These labels are primarily derived from self-reports, necessitating inter-
ruptions of learners or requiring them to self-monitor their attention. Such interventions
could potentially alter the learning process, although the extent of this impact remains
unclear. Additionally, although temporal data is collected, pinpointing the exact onset of
phenomena such as mind wandering is challenging. Moreover, from a theoretical standpoint,
the measured constructs might not be distinctly enough defined in research on automated
detection. The presented research introduces a more refined differentiation, demonstrating
that aware and unaware mind wandering can be distinguished. However, as discussed above,
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wandering is a multidimensional construct and has potentially overlapping dimensions,
such as intentionality. The reliance on observer ratings further complicates the accuracy
of labels, evidenced by low inter-rater reliability [109]. Consequently, hand-raising was
chosen as a more observable indicator. However, agreement between raters is still imperfect,
leading to ambivalence regarding the exact start of a signal or the adequacy of certain
gestures, such as only extending the index finger. These ambiguities introduce additional
complexities in labeling for machine learning models.

Another major challenge faced is that datasets for detecting attention-related processes
are typically smaller compared to those used to train machine learning models in other
domains. This arises from the labor-intensive and costly data collection process via self-
reports or observations, which is discussed in Section 2.2. This limited dataset size tends to
lead to overfitting more quickly and does not provide the model with sufficient examples to
detect rare patterns and weak signals in the data. Concurrently, it restricts the application
of more complex models, such as deep learning and temporal models, which are too complex
for the small amounts of data available. In an attempt to address this issue, for example,
transfer learning [2, 4] was employed. However, large-scale datasets suitable for transfer
learning are unavailable for some modalities and tasks. In fine-grained mind-wandering
studies, sensors with high sampling rates are utilized that capture extensive information
within brief measurement intervals. However, the total number of measurement points
remains too small to effectively use recurrent neural networks, which are designed to process
this type of sequential data. Consequently, these signals are aggregated over time windows,
which risks losing potentially important information.

Arguably, one of the biggest challenges, especially for the generalizability of results, is
the limited data quality of data collected in naturalistic settings. As shown in Section
3.1.3 [2], low data quality, for example, due to low luminance and reduced resolutions,
may impair feature extraction and reduce prediction accuracies. Consequently, detection
accuracies on lab-based data might not be directly transferable to naturalistic settings,
highlighting the need for further research to enable real-world applications, as described in
the next section.

4.3. Applications and Implications for Educational Practice

The proposed methods in this dissertation allow for continuous and unobtrusive assessment
of attention, setting the basis for future quantitative, large-scale research on attentional
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processes during learning. They further enable research on temporal dynamics, moderators
of attention, and the effectiveness of interventions. Specifically, the automated annotation
of hand-raising in classroom videos could be meaningful in research on teacher-learner
interactions, which is still limited and heavily relies on manual annotations.

Furthermore, the proposed automated detection techniques, based on low-threshold
sensors, could be employed in attention-aware learning technologies to adapt to the learner’s
attentional state in real-time. This would enable the customization of learning content
and targeted interventions, enhancing intelligent learning systems’ ability to support
self-regulated learning effectively. Such interventions could include feedback mechanisms,
content adaptation, and interactive elements like quizzes, which have traditionally been
generic [46, 39] but can now be tailored to the learner’s attentional state. Initial studies on
real-time interventions triggered during instances of automatically detected mind wandering,
such as during reading or within an ITS, have demonstrated promising outcomes for
enhancing long-term retention and comprehension [70, 71], despite relying on imperfect
prediction accuracies. The nuanced recognition of, for instance, specific mind-wandering
states allows for interventions aimed explicitly at combating frequent zone-outs by enhancing
metacognitive strategies or alleviating persistent tune-outs by adjusting the difficulty and
engagement level of the content.

Given the current limitations in predicting attentional states and the risk of false
positive detections, interventions should focus on non-disruptive methods. Nonintrusive
interventions, such as follow-up prompts to review potentially missed learning content, help
enhance self-regulated learning while minimizing distractions. Setting thresholds based on
prediction confidence or duration could also improve the quality of interventions.

However, the effectiveness of such measures requires thorough empirical research, and a
comprehensive assessment of the impact of such technologies on education is needed. Recent
studies suggest a trend where students overly rely more on provided Artificial Intelligence
(AI) support rather than learning from it [223]. Hence, it is paramount to give learners
agency and responsibility over their own learning [224, 225] in attention-aware learning
environments. Further, the potential implementation of real-time attention detection
necessitates consideration of ethics, learner privacy, and data use, as discussed in the
following section.

48



4.4. Ethical Implications

4.4. Ethical Implications

Detecting attention-related processes offers promising potential for research on education
and enhancements for educational technologies but raises significant privacy concerns. For
instance, videos capturing students’ faces require careful data management to protect
privacy. Methods developed for automated attention detection should facilitate the real-
time processing of features, thus eliminating the need to store sensitive data, which is
crucial when dealing with vulnerable groups, such as minors, who stand to benefit from
attention detection technologies such as ITSs. Privacy-preserving techniques previously
developed for face recognition [226], gaze estimation [227], and classroom contexts [228]
provide a framework for the safe deployment of attention detection systems. Another
practical strategy involves employing federated learning systems [229, 230], where machine
learning models are trained locally on user devices. This method keeps sensitive data
private by only sharing the trained models with a central server for aggregation rather
than the data itself. Ensuring privacy by design is paramount, and any data processing
must be fully transparent to users, with clear communication about how and why data is
used [231]. The tools developed should not be employed to monitor students. Informed
consent is essential, ensuring that students are fully aware of how their data are used and
have the autonomy to opt out [231].

Further, ensuring Fairness, Accountability, Transparency, and Ethics (FATE) principles
when employing AI in education is crucial [176]. In this regard, the inclusiveness of data
and algorithms needs to be ensured [231]. To promote fairness and equality, it is essential
for these algorithms to be developed and validated using diverse and unbiased datasets to
prevent biases that could adversely affect underrepresented learner groups. Furthermore,
the models used should be explainable [231], as this is essential in offering clear explanations
and justifications for the decisions made by AI systems [176].

4.5. Outlook

Looking ahead, this research can expand in several promising directions. First, collecting
larger datasets will enable the use of more complex models, potentially increasing the
accuracy of detecting attention-related processes. Also, the initial use of transfer learning
techniques leveraging related large-scale datasets of FER and action recognition can be
further expanded and explored. Moreover, current developments in the field of generative
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AI open up new possibilities for data analysis. The rapid development of foundation
models beyond large language models, expanding into various other domains such as
vision [232] and multimodal [233, 234], combining text, image, and audio, along with their
potential to analyze sequential data, could significantly enhance attention recognition efforts.
Additionally, their potential future capability to generate synthetic supplementary training
data, as already utilized, for instance, in medical research [e.g., 235], could help overcome
challenges associated with limited dataset sizes, offering promising improvements in model
training. In parallel, further investigation into the ground truth and the concepts that
are being measured will enhance the validity and applicability of the findings. Employing
the proposed detection techniques to study the temporal dynamics of attention can
inform data-driven theory development, contributing to a more nuanced understanding
of educational engagement over time. Further, detection methods should be evaluated
based on datasets that are more diverse in target groups and settings to ensure fairness
and generalizability. Moreover, research should investigate whether current levels of
detection accuracy are sufficient to be integrated into adaptive learning technologies to
support learners’ self-regulated learning through targeted, non-intrusive interventions aimed
at improving learning experiences and outcomes while ensuring fairness, accountability,
transparency, and privacy. Also, in this context, generative AI opens up new opportunities
for advancing attention-aware educational technologies, such as developing optimally
tailored interventions, automatically adapting and creating learning content, and providing
personalized learning experiences [236]. With the increasing integration of adaptive
generative AI in educational technology, the investigation of attention, self-regulation, and
mind wandering in the collaboration between learners and AI is moving to the center of
attention.
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A.1. Temporal Dynamics of Meta-Awareness of Mind Wandering
During Lecture Viewing: Implications for Learning and
Automated Assessment Using Machine Learning

A.1.1. Abstract

Remote learning settings require students to self-regulate their behavioral, affective, and
cognitive processes, including preventing mind wandering. Such engagement in task-
unrelated thoughts (TUTs) has a negative impact on learning outcomes and can occur with
or without students’ awareness of it. However, research on the meta-awareness of mind
wandering in education remains limited, predominantly relying on self-report measures
that capture discrete information at specific time points. Therefore, there is a need to
investigate and measure temporal dynamics in the meta-awareness of mind wandering
continuously over time. This study examined the temporal patterns of 15 mind-wandering
and meta-awareness probes in a sample of university students (N = 87 ) while they watched
a video lecture. We found that the majority (60%) of mind wandering occurred with
meta-awareness. Cluster analysis identified five distinct thought sequence clusters. Thought
patterns dominated by unaware mind wandering were negatively associated with fact-
and inference-based learning, whereas persistent aware mind-wandering patterns were
linked to reduced deep-level understanding. Initial exploration into predictive modeling,
based on eye gaze features, revealed that the models could distinguish between aware and
unaware mind-wandering instances above the chance level (Macro F1 = 0.387). Model
explainability methods were employed to investigate the intricate relationship between
gaze and mind wandering. It revealed the importance of eye vergence and saccade velocity
in distinguishing mind wandering types. The findings contribute to understanding mind-
wandering meta-awareness dynamics and highlight the capacity of continuous assessment
methods to capture and address mind wandering in remote learning environments.

A.1.2. Introduction

Learner attention is crucial for learning and knowledge construction [8]. However, when
following a class or lecture, commonly 45 to 90 min, it can be challenging to sustain
attention over a longer period. This task becomes even more demanding when shifted
to remote learning settings, such as watching school lessons or university lectures online
(either live-streamed or recorded) [237]. In such settings, learners receive less adaptive
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support from instructors to maintain attention. Students’ experiences may vary depending
on the lecture style and format, particularly in terms of opportunities for teacher-student
interactions, discussions, or assessments of understanding, which are, for instance, impossi-
ble in asynchronous online formats. Thus, learners’ ability to self-regulate their behavioral,
affective, and cognitive processes becomes even more crucial. Besides learners being likely
to be exposed to greater external distractions [e.g., media use 40], they are at higher risk
of digression [237]. This shift of attention away from the current task to task-unrelated
thoughts (TUTs) is known in the literature as mind wandering [30]. Learners tend to
engage in mind wandering for about 30% of the time spent in educational activities, such
as lecture viewing or reading, [33]. Overall, TUTs are significantly related to poorer test
performance across tasks, topics, and age groups [33] and are therefore a serious concern.

Whereas the exact nature and definition of mind wandering are still being debated [42, 43],
several studies have shown that mind-wandering episodes can occur with and without meta-
awareness, which means that they differ in whether a person is aware of their occurrence or
not [51, 50]. However, the levels of meta-awareness and its temporal unfolding over time have
not yet been studied extensively in research on education. These manifestations are likely
related to different underlying mechanisms, which in turn require different interventions
and solutions. It is therefore crucial to investigate these manifestations of mind wandering
and their relationships with learning in educational settings. One challenge in research is
the reliance on self-report measures such as probe-caught or self-caught methods, which,
although they provide robust and reliable assessment, can capture only discrete moments in
time [238]. However, a promising way to achieve unobtrusive, continuous, and systematic
observations of thought processes over time during realistic learning scenarios is to use
machine learning on sensor data [e.g., 74, 71, 91]. Especially gaze behavior, due to its
property of reflecting cognitive processes [119, 118, 120], has been shown to be indicative
of episodes of mind wandering [e.g., 89, 87]. Recent advancements have predominantly
considered mind wandering to be a unitary state. However, based on the premise of distinct
cognitive mechanisms underlying aware and unaware TUTs, discernible eye movements
should manifest accordingly. Consequently, it is imperative to investigate the potential of
eye-tracking-based computational modeling of aware and unaware TUTs in educational
contexts. A continuous, objective, and noninterruptive assessment would further allow
researchers to investigate the temporal dynamics of meta-awareness during TUTs for a
better understanding of underlying processes, their influence on learning, and effective
interventions.
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In this study, we aimed to shed light on the meta-awareness and temporal patterns
of mind-wandering episodes during a 60-min prerecorded Zoom lecture by employing
15 thought probes. Related to the dynamic nature of mind wandering, we examined
the sequences of mind-wandering meta-awareness, as reported in thought probes, using
clustering to identify typical patterns of thought. Furthermore, we investigated the impact
of the unaware and aware mind-wandering patterns we identified on fact-based (e.g.,
memory for facts or details) and inference-level (e.g., integration of information with prior
knowledge) learning [180]. To investigate the distinctiveness of forms of mind wandering
based on eye tracking and potentially overcome a limitation of temporal analyses (i.e.,
their reliance on discrete self-reports), we chose to apply a predictive modeling approach
that was based on eye-tracking features and machine learning. This approach can be
applied to distinguish between on-task, aware, and unaware TUTs, thus offering promising
opportunities to potentially assess and differentiate aware and unaware mind wandering and
take a critical first step for future large-scale research. Employing posthoc explainability
techniques, we aimed to gain deeper insights into the complex relationships of specific
gaze indicators and mind-wandering types. Therefore, in this study, we uniquely explored
meta-awareness in mind wandering during video lectures, unveiling temporal patterns and
their association with learning outcomes while also pioneering predictive modeling using
observable gaze behavior.

Self-Regulation, Cognitive Control, and Mind Wandering

Remote, asynchronous video learning requires learners to engage more intensively in self-
regulated learning (SRL) because they are primarily responsible for their own learning.
SRL can be seen as an expansive set of skills that enable learners to systematically initiate,
sustain, monitor, and regulate their cognitive, motivational, behavioral, and affective states
and processes in pursuit of their learning objectives [239]. Prominent models of SRL [240,
241, 242, 243, 244] describe the monitoring and control of learning activities, alongside
the motivational and emotional processes that either foster or impede active involvement
in these activities. The use of cognitive and metacognitive learning strategies, which are
part of the skills that constitute SRL, such as the elaboration and self-monitoring of one’s
learning progress, has been shown to have a positive effect on learning outcomes [48, 49].

Furthermore, more low-level self-regulation abilities extending beyond the mere utilization
of strategies, such as executive functions and attention control in working memory, have
also been shown to be highly relevant for successful learning in academic settings [245,
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246]. Accordingly, recent studies have tried to bridge cognitive load theories and self-
regulated learning frameworks [247]. Moreover, more fine-grained aspects of SRL, for
instance, fundamental executive functioning [EF; 26, 27], enable individuals to regulate
their thoughts and behaviors in alignment with goals by maintaining, manipulating, or
inhibiting the contents that require the focus of attention and occupy limited working-
memory resources [28, 29]. Consequently, ensuring proper mental resource investment is a
crucial part of regulating cognitive processes to sustain attention during a learning task.
In this vein, one theory of mind wandering suggests that thoughts compete for limited
resources in working memory capacity and depend on available executive resources [30].
According to the executive control failure hypothesis proposed by Kane and McVay [31],
the occurrence of mind wandering is considered to be indicative of both momentary failures
of and enduring deficiencies in executive-control functions. This account is supported by
the finding that lower working-memory capacity (WMC) is associated with more frequent
off-task thoughts during demanding tasks [32].

Meta-Awareness of Mind Wandering

Definitions of mind wandering employed in research vary in content, intentionality, task-
relatedness, and relationships to external stimuli [42]. The most widely adopted definition
of mind wandering is a shift of attention away from the current task to TUTs [30]. However,
mind wandering is a heterogeneous, multidimensional construct rather than a dichotomous
state, the definition and conceptualization of which has been the subject of ongoing
controversy in the literature [42, 43]. On the one hand, Christoff et al. [43] criticized the
use of mind wandering as an umbrella term for disparate mental phenomena. Instead,
they proposed a dynamic framework in which the defining feature of mind wandering is
that it arises and proceeds in an unconstrained and relatively free fashion. On the other
hand, Seli et al. [42, 248] advocated for a family resemblance view under which several
manifestations of the phenomenon fall, including, for instance, perseverative and purposeful
TUTs. Instead of restricting the concept more strongly, from their point of view, the types
of thoughts under consideration have to be precisely defined in the respective research. In
this work, we adopted the most widely used definition of mind wandering as TUTs, which
might vary in terms of meta-awareness [30, 50, 146].

The extensively reported experience of catching oneself in the act of mind wandering,
also exploited when using self-caught mind-wandering probes, indicates that engaging
in TUTs often happens without awareness [50]. This lack of awareness suggests that
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mind wandering is associated with a temporary lack of meta-awareness, which refers to
the ability to reflect on the content of one’s basic consciousness and its alignment with
one’s goals [51]. Smallwood, McSpadden, and Schooler [50] defined mind wandering with
and without awareness as two different states and referred to them as tune-outs and
zone-outs, respectively, which unfold dynamically over time and can also transition into
each other. It is important to note that the dimension of meta-awareness is distinct
from the dimension of intentionality [52], which describes whether engagement in TUTs
happens deliberately/intentionally or spontaneously/unintentionally [e.g., 53, 54, 55]. Seli
et al. [52] reported that whereas the two dimensions might overlap at the ignition of a
mind-wandering episode, as awareness and unawareness are prerequisites for intentional
and unintentional engagement in TUTs, respectively, they might fluctuate in opposite
directions as the episode continues.

Being aware of the digression of one’s thoughts is the prerequisite for being able to catch
one’s mind wandering and terminating an episode to redirect one’s attention back to the
primary task. However, studies have shown that people also allow their mind-wandering
episodes to continue after becoming aware that an episode has occurred [52]. This finding
leads to the assumption that the two manifestations of mind wandering (i.e., unaware and
aware mind wandering) are based on different cognitive processes. Consistent with this
account, studies have shown that unaware mind wandering is more strongly associated with
response inhibition failures [50, 56] and reading comprehension deficits [185]. Furthermore,
the two states are neurologically dissociable, showing different brain activity patterns
[57]. These results suggest that the two manifestations of mind wandering have different
implications for task performance and different underlying cognitive processes.

When individuals are aware that their mind is wandering, they should consequently
be able to self-catch and terminate the episode. However, as individuals have reported
aware mind wandering in thought probes, meaning that they gained meta-awareness before
being interrupted by the probe, people seem to allow their minds to wander [52]. This
phenomenon could indicate that participants, who are learners in this context, might not
be fully attempting to focus on the primary task. Therefore, they might not be trying
to ignore distractors [52], especially when those distracting thoughts have a great deal of
personal importance for them [249]. Learners might consequently then end up pursuing a
competing goal. Such pursuit of a competing goal is especially relevant in an experimental
setting but might still hold in real-world learning contexts.

An alternative account posits that when aware mind wandering potentially overlaps
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with intentionality, it may be considered a deliberate allocation of cognitive resources away
from the primary task rather than a failure of control [250]. For example, aware mind
wandering may serve as a regulatory mechanism for managing affective states, such as
lack of motivation or heightened frustration during task performance [9]. The effect of
motivation on lecture retention has been shown to be mediated by TUTs [251]. Additionally,
TUTs have been shown to reduce the negative effect of a boring task on participants’ moods
[252].

In contrast to episodes of aware TUTs, individuals engaging in unaware TUTs do so
without conscious awareness. In terms of typical SRL frameworks, one could argue that
this state signifies, at least temporarily, a suspension of the (successful) monitoring of
one’s own cognitive processes (which would mean catching oneself in the act of mind
wandering), thereby rendering control and adjustment (i.e., redirecting attention to the
primary task) unfeasible. Consequently, we argue that the two manifestations of TUTs
can best be understood as representing distinct facets within the domain of self-regulation
during learning. Aware TUTs potentially indicate deficiencies in regulating motivational or
affective states or signify the pursuit of conflicting personal goals. Conversely, unaware
TUTs may signal deficiencies in the monitoring and regulation of cognitive processes.

Mind Wandering While Viewing a Lecture

A recent meta-analysis by Wong et al. [33] demonstrated that the frequent occurrence of
TUTs during learning is significantly associated with lower test performance and explains
about 7% of the variability in learning outcomes. This negative relationship holds equally
for fact-based and inference-level learning and is consistent across learning tasks and
topics (i.e., STEM vs. non-STEM). For instance, mind wandering has been shown to
have a negative effect on reading comprehension [34, 35, 36, 37] and lecture retention
in classrooms [253] as well as video-based, asynchronous online-learning settings [9, 39,
40, 41]. A comparison of mind-wandering rates during a live versus a video lecture by
Wammes and Smilek [237] revealed that the technology-mediated form of a video lecture
presentation led to more off-task thoughts in students. Remote live lectures, potentially
offering remote lecturer support, represent a critical intermediate synchronous format
between in-person and video lectures. However, limited research has been conducted in
this area. Whereas the effect sizes that have been reported are nontrivial, Wong et al. [33]
argued that not all TUTs are uniformly bad, and the effect might partially stem from the
heterogeneity of off-task thoughts. Most of the studies covered by Wong et al. [33] captured
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mind wandering as a unitary state and did not look at more fine-grained dimensions, such
as thought content. Another limitation of previous research on the relationship between
TUTs and learning outcomes was the focus on fact-based memory representations rather
than inference-level learning outcomes [33].

The content of mind wandering varies with task type and is therefore very context-
sensitive [254]. In educational contexts, open-ended thought probes have revealed a large
proportion of thoughts that were stimulus-independent but task-related [i.e., not to the
here and now of the lecture, but to lecture-related content or thoughts about metacognitive
lecture comprehension 45, 255]. Such thoughts might be confounded with TUTs when
mind wandering is assessed in a binary fashion. Studies by Kane et al. [46] and Jing,
Szpunar, and Schacter [47] distinguished different types of off-task thoughts by their content
and showed that thoughts about lecture-related topics were positively related to lecture
retention, as they might indicate cognitive strategies, such as elaboration, an integral part
of SRL. By contrast, TUTs (i.e., lecture-unrelated thoughts, e.g., personal concerns or
daydreams) were negatively associated with learning outcomes. Whereas Kane et al. [46]
included task-relevant cognition (e.g., lecture-related and comprehension-related thoughts)
in their mind-wandering definition, in this study, we employed the more common, more
restrictive definition of TUTs.

With regard to the intentionality of mind wandering, which has been studied more
extensively in the educational context, diverging results have been presented in the literature.
In a study asking about intentional and unintentional mind wandering during a video lecture,
both forms were negatively associated with lecture retention and mediated the influence of
motivation on retention [251]. Other investigations have revealed that intentional mind
wandering was negatively associated with short-term academic performance in the form of
in-class quizzes, whereas unintentional mind wandering affected long-term learning outcomes
manifested in course grades [256]. However, the meta-awareness of mind wandering has not
received much attention in educational contexts, and—to our knowledge—has not yet been
considered in lecture viewing. Differentiating between different types of mind wandering
in learning situations is crucial for understanding their associations with learning success.
Whereas studies on simple attention tasks indicate a stronger influence of unaware mind
wandering on performance deficits [50], and research on reading comprehension indicates a
poorer mental model [185], their occurrence and implications in the context of video-lecture
watching have yet to be investigated. To develop appropriate interventions and to improve
learning materials accordingly, it is necessary to distinguish between different manifestations
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of mind wandering with diverging underlying processes, one of them being the dimension of
meta-awareness: Learners who engage in mind wandering without noticing it due to failed
executive control require a different kind of support than learners who allow themselves
to dwell on TUTs because they already know the learning content. To properly support
learners in their SRL, we need to understand the mechanisms that underlie why they lose
focus in specific learning situations.

Several studies have shown that mind-wandering rates increase with time on task [257],
for example, during lecture viewing [9]. Regarding lecture viewing as a sustained attention
task, two accounts can be considered for an explanation. As a prolonged sustaining of
attention occupies resources for executive control, the likelihood of executive control failure
should also increase with time on task [258, 259]. Other underlying reasons for an increase
in mind wandering could be decreased motivation and increased frustration as a function of
time [9]. In this context, it is particularly interesting to look at the temporal dynamics of
aware and unaware mind wandering during the continuation of a lecture and to investigate
whether both forms increase to the same extent over time. In addition, it could be intriguing
to delve into the distinct temporal patterns that each form exhibits over time. Analyzing
these typical patterns and temporal unfoldings may offer insights into how the awareness of
mind wandering evolves throughout a lecture. Such an analysis will be especially interesting,
given the theoretical account that these patterns might transition into each other [50].
Furthermore, it may uncover whether the two forms, aware and unaware mind wandering,
follow similar trajectories or exhibit different progression rates throughout the task. This
investigation into the temporal evolution of types of mind wandering could provide valuable
nuances in the understanding of their cognitive underpinnings and differences in occurrence
patterns during sustained attention tasks, such as lecture viewing.

Gaze Indicators of Mind Wandering

So far, meta-awareness in mind wandering has largely been measured only with the help
of explicit thought probes. This approach entails the repeated interruption of students
at irregular time intervals throughout a lecture, followed by inquiries about where their
attention is presently focused [238]. However, another approach is to employ observable
behaviors to make inferences about a person’s cognitive state. One data source that is
frequently used to assess mind wandering is eye movement data. The approach builds upon
the mind-eye-link concept, which suggests that eye movements can provide insights into
underlying cognitive processes [119, 118, 120]. Mind wandering is described as a state in
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which attention is decoupled from external stimuli, and internal thoughts are prioritized
over the processing of external information [146]. Thus, mind wandering could potentially
hinder visual processing by depleting executive resources [32] or by diminishing the visual
[147, 260, 261] and cognitive [262] processing of information. Global gaze features, such
as fixations (periods of stable gaze) and saccades (rapid eye movements between two
consecutive fixations), local features that characterize the spatial properties of gaze, as
well as pupil size and blink properties, have been employed extensively in research aiming
to predict attentional states [e.g., 87, 88, 89, 74]. These studies have supported the idea
that mind wandering appears to be reflected in gaze. However, no specific set of gaze
behaviors that are indicative of mind wandering can be defined. Thus, inconsistent results
have sometimes been reported in empirical studies. Faber et al. [148], for example, argued
that the observed diversity can be attributed to task-inherent properties that require
different levels of spatial allocation and visual processing, representing a compensatory
shift in the functioning of the visual system during instances of mind wandering. Hence, we
emphasize studies that focused on a lecture task in our subsequent review of the established
correlations between gaze characteristics and mind wandering.

Previous studies have revealed that the average duration of participants’ fixation on
slides increased during mind wandering [144, 149]. This extended duration implies a
potential decrease in visual processing efficiency, likely due to participants requiring more
time to process information at each location before transitioning to the next one [144].
Increased fixation durations are also related to increased mental workload [145], in line
with findings on the relationship between longer fixation durations and task difficulty [263].
According to the decoupling hypothesis of mind wandering impairing the processing of
external information [146, 147], this gaze behavior could express that the learner is gazing
at slides without processing the corresponding perceptual information [144]. Accompanying
the longer fixation durations, the dispersion of fixations across the slides decreased during
mind-wandering episodes, signifying that the fixations were restricted to a smaller part
of the screen [144, 149]. Contradictory results were found by Faber et al. [148], where
mind wandering was associated with a larger fixation dispersion and no varying fixation
durations during lecture viewing. The investigation of saccades (i.e., rapid eye movements
between two fixations) by Faber et al. [148] revealed that mind wandering was associated
with larger saccade amplitudes during a lecture task. Contrasting results were found by
Jang, Yang, and Kim [149], indicating smaller saccade amplitudes and a lower total number
of saccades, with lower saccade peak velocity during mind wandering.
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Further research is needed to get to the bottom of these sometimes contradictory results
on global gaze features. However, it is noteworthy that the presentation of the lectures
in the previous studies was fundamentally different. Whereas Faber et al. [148] used a
recording of an in-person lecture in a lecture hall, depicting slides projected onto a wall
and a lecturer in one frame, the stimulus employed by Zhang et al. [144] consisted of two
online lectures, which comprised a screen recording of the slides and a facial video of the
lecturer. This discrepancy highlights the importance of the differences in visual processing
even within similar tasks with different stimuli [148].

When analyzing the frequency of fixations in specific areas of interest (AOIs) during
video lecture watching, Zhang et al. [144] found that learners increasingly looked at
the instructor’s image during mind wandering. When employing a predictive modeling
approach, Hutt et al. [89] found that employing grid-based locality gaze features did not
improve the prediction accuracy of mind wandering above global gaze features, such as
fixations, saccade durations, and saccade amplitude.

Additionally, previous research has examined a range of oculometric characteristics, such
as blinks. A decreased blink count was identified for self-reported mind-wandering episodes
during lecture viewing [149].

Another oculometric indicator, the pupil diameter, was found to be significantly larger
during mind-wandering episodes when participants watched a lecture video [149]. Moreover,
pupil dilation is associated with a high cognitive processing load [151] and emotional
demands [152]. Additionally, increased pupil diameter and its associated standard error
were observed when participants provided incorrect responses in working memory tasks,
indicating a momentary diversion or inattention to the ongoing task [264]. Yet, it is
known that pupillary responses change according to the brightness of the environment and
stimulus as well, making it challenging to identify whether the measured changes were due
to the cognitive states of the participants or environmental conditions [153]. Another gaze
measure that was found to improve the prediction of internal thought and was employed as
an indicator in a computational modeling paradigm is eye vergence [93]. Vergence measures
the rotation of both eyes either inwards or outwards, thereby capturing the phenomenon
of the visually relaxed state of not fixating on anything, referred to as tonic vergence [94].

Part of the heterogeneity found in gaze indices of mind wandering could be attributed
not only to the varying idiosyncratic task-processing demands but also to the heterogeneity
of mind wandering itself. The gaze patterns associated with mind wandering might also
differ across subdimensions, such as whether somebody is aware of their mind wandering
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[148]. Given this inherent heterogeneity in the relationship between gaze features and mind
wandering, we investigated gaze indices through the lens of the meta-awareness of mind
wandering during lecture viewing. In line with previous findings, we included previously
employed fixation-, saccade-, blink-, and pupil-derived feature groups to investigate their
relationships with the meta-awareness of mind wandering, thereby contributing to the state
of the art.

Prediction of Mind Wandering Using Machine Learning

Several studies have employed physiological sensors, such as eye-tracking [e.g., 90] or
electrodermal activity (EDA) data [e.g., 91], in predictive modeling approaches to make
inferences about a unitary mind-wandering state and potentially allowing researchers to
measure it non obtrusively and continuously over time. These approaches diverge from
traditional statistical analyses in two key dimensions. First, they differ in their primary
objective, focusing on prediction rather than explanation (see Yarkoni and Westfall [170] for
a more extensive discussion). Whereas traditional models aim to explain the relationship
between variables and outcomes, machine-learning models prioritize finding the most
suitable model for predicting future observations [170]. This priority is evident in the
typical practice of dividing data into training and test sets to train the algorithm on
one set and evaluate it on unseen data. The second dimension of differentiation lies in
the modeling paradigms: data-centric versus algorithmic [172]. In the former paradigm,
models are chosen on the basis of prior assumptions, potentially leading to conclusions that
are based on the model’s mechanism rather than on actual data patterns. By contrast,
machine learning employs an algorithmic modeling approach by exploring multiple models
and selecting the one that best fits the data based on performance metrics. This property
makes machine-learning models particularly appealing when there is a need to handle many
features, where the intricate interplay and direct association with the target variable cannot
be hypothesized in advance, aligning with the scenario of sensor-based mind-wandering
prediction [265]. Please refer to D’Mello and Mills [36] for a brief tutorial on computational
modeling for mind wandering.

However, machine learning models are often referred to as ”black box models” due to
the lack of transparency in how these models make decisions [175]. In educational settings,
specifically learning analytics research, when applying machine learning to create adaptive
and personalized interventions, concerns related to Fairness, Accountability, Transparency,
and Ethics (FATE) are increasingly being debated, leading to a focus on Explainable
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Artificial Intelligence [XAI; 266]. Explainability methods can help ensure the transparency
and fairness of machine learning models by clarifying their internal processes and providing
clear reasons for their outcomes [175, 177]. These explanations are crucial for building trust
and confidence in the models used. Black-box machine learning models can be explained
using post-hoc explainability methods. This involves an additional step in the analysis
pipeline: after model training, a separate algorithm explains the model’s decisions. This
offers deeper insights into how specific features influence predictions [171], helping us
understand the relationship between input variables and outcome, i.e., attentional states.
The interpretability of the provided explanations, however, relies on human-interpretable
input variables.

The automated assessment of mind wandering has been investigated based on a range
of physiological and behavioral modalities, including electrodermal activity [95] or facial
videos [73]. However, gaze is the most prominent sensor and has been employed in the
predictive modeling of mind wandering across a diverse range of learning tasks. These tasks
encompass activities such as reading [87, 267, 254, 88], and Intelligent Tutoring System
(ITS) [74]. Only a few works have investigated the predictive modeling of mind wandering
with gaze behavior while learning with video lectures [89, 268]. Hutt et al. [89] employed
two sets of eye-tracking features to predict probe-caught mind wandering while participants
watched a lecture video. The first set included global gaze features, such as fixation and
saccade duration. The second set of local gaze features consisted of saliency-based AOI
fixation information. Model performance is evaluated by employing the F1 score, which is a
measure in machine learning that combines the precision (accuracy of positive predictions)
and recall (how many actual positives were predicted correctly) into a single number, which
is helpful for evaluating how well a model performs in finding the target outcomes, such
as mind wandering. This approach is particularly valuable when dealing with unbalanced
data (please refer to the "Mind Wandering Assessment by Meta-Awareness Employing
Gaze Features" section for detailed information). The best results were achieved (F1 =
0.47) by employing global gaze features in a Bayesian network classifier, constituting a
24% improvement above chance (F1 = 0.3). In an attempt to develop a more scalable,
online detection of mind wandering, Zhao, Lofi, and Hauff [268] compared predictions
based on gaze features from an eye tracker with webcam-based gaze-tracking features.
They used 6 - 8-min-long lecture videos as learning material. The best results, 11% above
chance (F1 = 0.29), were achieved when predicting self-reported mind wandering employing
webcam-based global gaze features with a Naive Bayes classifier (F1 = 0.4). A recent study
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by Bixler and D’Mello [92], who investigated the potential for cross-domain predictions of
mind-wandering models trained on one task to predict mind wandering in another, also
included a lecture-viewing task. For the within-data-set prediction based on global gaze
features, they achieved a 21% (F1 = 0.57) improvement above chance (F1 = 0.45).

However, to our knowledge, existing approaches are limited to the binary detection of
mind wandering (i.e., mind wandering vs. not mind wandering) and cannot make more
fine-grained distinctions. In general, the automated recognition of mind wandering offers
the potential to assess mind-wandering states continuously over time and consequently to
study and understand the temporal unfolding of meta-awareness and TUTs over longer
periods of time without employing intrusive thought probes. This new approach would
allow us to study mind wandering in ecologically valid educational settings, such as schools
or homes, and to collect large-scale data.

Additionally, it would provide new opportunities for effective interventions and adap-
tations of learning content in attention-aware learning technology [71, 70]. Nevertheless,
these kinds of interventions can be designed more effectively if the different mind-wandering
states and their possible relationships with learning are considered adequately.

The Present Study

In this study, we investigated metacognitive awareness of mind-wandering episodes during
lecture viewing and their patterns over time. We aimed to disentangle TUTs from other
stimulus-independent thoughts by employing a thought-content probe, followed by a meta-
awareness probe. We investigated the person-specific sequences of thought self-reports
to investigate the temporal unfolding of meta-awareness in TUTs throughout a video
lecture. Additionally, we employed a clustering approach in these sequences to identify
distinctive temporal patterns that each form exhibits. We furthermore studied how the
identified patterns were related to fact-based and inference-level learning outcomes. This
approach constitutes a novel addition to the existing literature, as prior studies have
predominantly concentrated on a binary differentiation between being on task and TUTs
and have motivated the main contribution of the paper: employing observable behavioral
measures for the continuous assessment of meta-awareness in mind wandering.

To this end, we investigated the relationships between these subdimensions of mind
wandering with behavioral eye gaze measures by employing eye tracking. Research has
highlighted the significance of eye gaze as a valuable objective indicator of cognitive processes
such as mind wandering. Its intricate and multilayered nature, coupled with the absence
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of clear linear associations, advocates for the adoption of more complex algorithms within
computational models to enhance the prediction of mind wandering [265], specifically when
distinguishing it via meta-awareness. Identifying these differences, derived from objective
gaze behavior measures, can enhance and progress the theory by distinguishing between
these two states of mind wandering by collecting data-driven evidence. The adoption of
explainability techniques for machine learning models enabled a detailed examination of
the intricate connections between eye gaze and meta-awareness of mind wandering. The
present study addressed the following research questions:

1. What different kinds of mind wandering along the dimensions of thought content and
meta-awareness can be observed during video-lecture viewing?

2. Can typical patterns of aware and unaware mind-wandering sequences be identified
over the course of time?

3. How do different patterns of aware and unaware mind wandering affect fact-based
learning and inference learning during lecture viewing?

4. Can eye-tracking-based machine learning models differentiate between aware and
unaware mind wandering to achieve a continuous measurement of these states?

A.1.3. Methods

The ethics committee of the Faculty of Economics and Social Sciences, University of
Tübingen (Date of approval January 13th, 2022, approval #A2.5.4-210_ns) approved our
study procedures, and all participants gave written consent to the data collection.

Participants

In this study, we collected data from N = 96 university students. Six participants had to
be excluded due to technical errors during the study and three because they did not speak
German at the native level, leading to a final sample of N = 87 participants for analyses.
They were between 19 and 33 years old (M = 23.44, SD = 2.6), and 19% of the participants
were male. Additionally, we assessed information about participants’ subjects of study,
with the three predominant groups being psychology, teacher training, and languages, along
with details about the study year (M = 2.88, SD = 1.7), which was coded numerically
from 1 to 8, corresponding to the year of university study.
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Procedure

First, participants were asked to complete questionnaires on individual prerequisites and
a pretest on the topic of linear regression analysis. We then began recording gaze data
with a brief 9-point pulsating calibration of the remote eye tracker. Participants then
watched a prerecorded video of a real-world lecture held over Zoom, namely, "Statistics
1." The students could see the lecture slides and a webcam image of the lecturer’s face
on the right, as shown in Figure A.11. The slides incorporated a mix of text, formulas,
and simple visuals (i.e., scatterplots) typically seen in standard lecture formats. The total
duration of the video lecture was approximately 60 min. We included 15 quasirandomized
thought probes that appeared on the screen in 3- to 5-min intervals. The video was paused
after approximately 30 min to recalibrate the eye trackers. After the session, participants
were asked to complete a knowledge test on the topic of the session and a questionnaire on
situation-specific variables. Along with the time for the general instructions, the total time
came to about 120 min per participant, for which they were compensated with 20€.

Figure A.11.: Zoom Lecture Video Layout.

Instruments

Mind-Wandering Probes Participants’ mind wandering was measured with the probe-
caught method, interrupting participants at quasirandomized points in time to ask them
for mind-wandering self-reports. The 60-min lecture was interrupted by 15 of these thought
probes at intervals ranging from 3 to 5 min. This repeated assessment over a long period
allowed us to draw a quasicontinuous picture of the time course of the mind wandering
over a lecture. Because we were interested in the thought content of mind wandering and
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whether participants were aware of their TUTs, we administered a two-stage probe at each
interruption. We first asked participants to indicate what they were thinking about and
offered six answer categories adapted from Kane et al. [46] plus a seventh open-ended
answer option. The exact probes can be found in Figure A.12.

In accordance with the definition of mind wandering as TUTs, we defined Categories 3–6
as mind wandering. For further analysis, we additionally combined Category 2, "task-related
thought" (TRT), with Category 1, "on task," because Category 2 was comparatively small (n
= 107) and because it represented elaborations to the lecture content, which is very closely
related to Catergory 1. Answers to the open-ended category (n = 117) were independently
manually coded by two raters in an iterative approach in which new categories were defined
and then the answers were assigned to the categories. The inter-rater reliability (Cohen’s
κ = .64) was limited. This may be due to the fine-grained approach to coding involving
a large number of 12 categories (see Figure A.21). When disagreement occurred (n =
39), the raters discussed their coding results to reach a consensus. In this process, four
additional TUT categories were identified: thoughts about the video stimulus (e.g., quality
of the lecture), thoughts about the study (e.g., when the next interruption will happen),
lecture-triggered but TUTs (e.g., lectures in one’s own curricula), and blank mind. Few
participants reported being distracted by their environment (n = 10) or falling asleep (n =
2). Those answers were allocated to an "other" category. In a second step, participants were
asked to indicate, if applicable, whether they were aware that their mind was wandering
before they were interrupted (adapted from Schooler et al. [146] and Christoff et al. [57]; see
Figure A.12). The answer to the second question was then utilized to divide the previously
defined TUT category into aware and unaware TUTs. Following these guidelines resulted
in five categories: on task, lecture comprehension (MM), aware TUTs, unaware TUTs, and
other.

Learning Outcomes The postvideo knowledge test we administered consisted of 14
questions that tested participants’ understanding of the video lecture content in the form of
seven fact-based memory and seven inference questions. The test was designed specifically
for the prerecorded lecture on the topic of linear regression analysis and included questions
that referred to topics such as empirical covariance, method of local averaging, and least
squares estimation. Examples of fact-based and inference questions are presented in Figure
A.13. The sum scores we calculated for each participant ranged from 0 to 14, with each
accurately answered question contributing 1 point. The test’s internal consistency was
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Figure A.12.: Two-Stage Mind Wandering Probe.

acceptable (Kuder and Richardson Formula 20 (KR − 20) = .72). We computed a sum
score due to the independent nature of the individual questions on the test, because the test
itself was not designed to evaluate a unified competency but rather to assess knowledge of
specific facts and concepts presented at distinct points in the 60-min video. Consequently,
the sum score of correct answers could potentially serve as a quantitative measure that
captured participants’ levels of attentiveness over time during the lecture video.

Scales and Participant Characteristics As a person-specific characteristic, self-concept
in statistics, referring to one’s self-perception of competencies and skills in this field of
study, was assessed with five items (e.g., "Some topics in statistics are just so difficult that
I already know beforehand that I won’t understand them"; α = .83; adapted from [269]).
We assessed metacognitive self-regulation with a 12-item subtest from the MLSQ (e.g.,
"When I’m reading for a course, I think of questions to help me concentrate while reading";
α = .67; [270, 271, 272]). Dispositional mind wandering was assessed with the five items
from the mind wandering questionnaire (e.g., "I have difficulty concentrating on simple
or repetitive tasks"; α = .75; [273]). We measured dispositional interest in statistics with
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Figure A.13.: Fact-Based and Inference Example Questions From the Posttest.

four items (e.g., "I like statistics"; α = .94; [274]). Additionally, situational interest was
measured with the situational interest scale (seven items, e.g., "Today’s lecture captured
my attention"; α = .86; [275]). As a further situation-specific variable, we measured
involvement with four items (e.g., "During the lecture, I focused heavily on the situation";
α = .68; [276]). Cognitive engagement was measured with six items (e.g., "I tried as hard
as I could during the session"; α = .69; [277]). We assessed emotions with the seven items
from the emotion scale by Pekrun et al. [278] (e.g., "How intensely did you experience
the feeling of "enthusiasm" during the lecture?"). Because the internal consistency for the
negative emotion subscale was too low, we included only the positive emotion subscale in
our analyses (positive emotions: α = .69, negative emotions: α = .46).

We assessed previous knowledge of the lecture topic before the lecture started with a
pretest consisting of 8 general questions on the topic of regression analysis. This test
covered a wide range of topics in statistics and questions of varying difficulty. We created
the sum score for the pretest, ranging from 0 to 8, with every correctly answered question
scoring 1 point. Further, we asked for demographic information on age and gender as
well as information on study subject and study year (refer to the Participants section for
detailed information).

Eye Tracking While participants viewed the lecture, we additionally collected participants’
eye movement data by employing remote eye trackers (SMI, 250 HZ sampling rate) that
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were attached to the bottom of the laptop screens on which the lecture video was watched.
We employed analysis software BeGaze provided by SMI to extract eye-movement events,
such as fixations (dispersion-based threshold) and saccades (velocity-based threshold) from
the raw gaze data [181]. Fixations are defined as stable eye movements across a certain area
in the stimulus, whereas saccades are high-speed eye movements that reflect movement of
the eyes from one fixation location to another. After detecting fixations and saccades, we
then extracted the information right before a thought probe, choosing a 10-s time window
derived from the related literature on mind-wandering detection.

As we used this data to train a machine learning model, we had to ensure high data
quality, as poor-quality eye tracking data, characterized by excessive noise or invalid
measurements, has the potential to compromise or entirely invert the outcomes [279]. We
employ quality criteria of data loss, expressed in tracking ratio and gaze offset, expressed in
angular distance between fixation location and intended fixation target [280] in a validation
calibration at the end of the study. Data quality may be influenced by participant-specific
factors such as wearing glasses or mascara [280, 281]. Concerning spatial accuracy Holmqvist
and Andersson [280] report that many studies employ an accuracy of 0.5°. A high spatial
precision is of less importance when stimulus-independent measures, like in this study, are
used. Therefore, we excluded participants with less than 1.0° accuracy during a validation
test at the end of the videos exhibiting large gaze offsets and, consequently, invalid gaze
measurements. In our study a total of 17 of 87 participants was affected, leading to the
exclusion of 255 instances from predictive analysis. As we noted spectacle wearers in the
experiment protocol, we were able to determine that half of these excluded participants
wore spectacles during the experiment, whereas the overall proportion of glass wearers was
33%. This further supports our assumption that invalid measurements and the associated
exclusion are related to technical requirements of the eye tracker and participant criteria
that are not systematically related to mind wandering itself. Holmqvist and Andersson
[280] assume an expected data loss of 3-10% under perfect laboratory conditions. To
balance high data quality and minimize exclusion we excluded instances with less than
70% tracking ratio for the respective ten-second window, constituting a data loss of more
than 30%. This threshold led to the exclusion of 23 instances.

In addition, it is a known deficiency of the eye trackers we used that tracking failures
are sometimes recorded as unusually long blinks [206]. Therefore, blinks longer than 500
ms (i.e., those exceeding an expected blink duration range between 100 to 400 ms; [207])
were excluded. Following this criterion led to a total exclusion of 278 examples, resulting
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in a data set containing 1,027 examples, 622 of which were labeled as on task, TRT, or
MM; 249 as aware TUTs; and 147 as unaware TUTs, based on the subsequent probe-based
self-reports. Following the exclusion process, the general distribution across self-reported
attentional states remained unchanged (on task: 61%, aware TUTs: 24%, and unaware
TUTs: 15%). This outcome suggests the absence of the systematic exclusion of crucial
instances, particularly those related to mind wandering.

To create gaze features that would serve as input for our machine-learning model, we
created summary statistics (i.e., minimum, maximum, mean, median, standard deviation,
skewness, kurtosis, and range) for all eye-tracking events. Based on the event statistics, we
created additional features, such as the number of fixations and blinks, fixation dispersion,
pupil diameter, and vergence. Table A.1 reports a complete list and description of the
features we employed.

Table A.1.: Eye Tracking Features.
Feature Description
Fixation Count Number of fixations
Fixation Duration Duration of fixations in ms
Fixation Dispersion Square root of distances between individual fixations

to average fixation position in pixels
Fixation Saccade Ratio Ratio between fixation duration and saccade duration
Saccade Duration Duration of saccades in ms
Saccade Amplitude Visual angle in degrees
Saccade Length Saccade distance in pixels
Saccade Velocity Average Average saccade length/saccade duration in °/s
Saccade Velocity Peak Peak saccade length/saccade duration in °/s
Saccade Acceleration Average Average derivative of saccade length/saccade

duration in °/s2
Saccade Acceleration Peak Peak derivative of saccade length/saccade duration

in °/s2
Blink Count Number of blinks
Blink Duration Duration of Blinks in ms
Vergence Angle between gaze vectors in degrees and distances

between the pupil’s position of the left and right eye
in pixels

Pupil Diameter Pupil diameter during fixations in mm, with
person-specific subtractive baseline correction
(baseline length: 50 ms)
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Analysis

Mind Wandering Sequence Clustering To investigate the pattern of mind wandering
and its association with meta-awareness over the course of a lecture, we created thought
sequences based on the 15 thought probes administered during the lecture. Consequently,
one person’s sequence consisted of 15 time points, with information on whether their
attention was directed to the task, they were thinking about understanding the lecture, or
they engaged in aware or unaware TUTs. The resulting sequences yielded information on
the temporal unfolding of meta-awareness in TUTs. These sequences were then clustered to
identify distinct patterns the two forms of mind wandering might exhibit. We applied the
agglomerative hierarchical clustering algorithm Agnes with the Ward method, frequently
used for sequence clustering. We employed Optimal Matching (OM) to assess the similarity
between two sequences on which the clustering algorithm based its clustering decisions. OM
quantifies the similarity between two sequences by determining the minimal cost required to
transform one sequence into the other [282]. This process involves the consideration of costs
for insertion (the addition of an element at a specific position) and deletion (the removal of
an element from a given position), collectively referred to as indel operations. Additionally,
the analysis encompasses substitution operations, which entail replacing one element with
another. We applied a constant cost of one for all aforementioned operations. The OM
distance measure considers small time shifts in the sequences and is less sensitive to exact
timing than other distance measures, thus rendering our measure particularly suitable for
comparing thought probe sequences with an interest in general temporal unfolding.

We identified the optimal number of clusters by inspecting the cluster dendrogram
(see Figure A.22), average silhouette width, Hubert’s C coefficient, and the point biserial
correlation (see Figure A.23). To investigate the differences between clusters, we compared
the person-level proportion of each thought category by employing one-way multivariate
analysis of variance (ANOVA) with Pillai’s Trace statistic and follow-up univariate Welch
ANOVAs, using a Bonferroni-adjusted alpha level of .0125. We then conducted pairwise
comparisons between the clusters using the Games-Howell post hoc test with Tukey’s
studentized range distribution to compute the p-values.

Predicting Learning Outcomes From Cluster-Belonging With the goal of examining
the association between the meta-awareness of mind-wandering patterns and learning
outcomes, we conducted a linear regression analysis. The post knowledge test total sum
scores and the fact-based and inference sum scores served as independent variables for the
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analyses, whereas cluster-belonging was a categorical dependent variable. We additionally
included person-specific characteristics, such as age, gender, previous knowledge, and
self-concept in statistics in the model, as they might have a confounding impact on test
scores. Dispositional interest in statistics, another potential confounder, could not be
included due to its high collinearity with self-concept (r = .57, p < .01). To compare the
indications of our clustering approach, we additionally computed regression analyses to
investigate the influence of thought category rates, summarized over the whole sequence
and not entailing information about temporal dynamics, on posttest scores.

Mind Wandering Assessment by Meta-Awareness Employing Gaze Features We ex-
plored how meta-awareness in mind wandering manifests in eye movements. For descriptive
comparisons of average gaze features extracted during aware and unaware mind wandering
instances with those that occurred during on-task instances, see Appendix Section A.1.5.
To emphasize the potential of predictive modeling methods to capture complex, nonlinear
relationships, we trained several machine-learning classifiers based on the eye-tracking fea-
tures extracted from 10-s windows before each thought probe and labeled those based on the
self-reports. As the goal was to detect mind-wandering episodes and specifically distinguish
between aware and unaware TUTs, we conducted a three-class classification, summarizing
the previous thought categories on task, TRT, and MM into one category. Missing values
were imputed by using constant value imputation, and values were z-standardized. Algo-
rithms tend to exhibit a bias toward the majority class (i.e., in our study, the on-task state),
particularly in data sets characterized by a high level of imbalance, as observed in our data.
To address this issue, balancing techniques are commonly employed [e.g., 188, 89]. These
methods are aimed at mitigating the imbalance by equalizing the class distribution within
the training set, allowing machine-learning models to effectively learn representations from
the minority classes. Our study utilized various balancing methods, including random
oversampling. This technique involves randomly duplicating instances from the minority
class within the training set. Additionally, we employed SMOTE [182], a method that
generates synthetic samples to augment the representation of the minority classes during
training. These techniques collectively ensured a more balanced and representative training
environment for our study, contributing significantly to the robustness and reliability of
our findings.

In line with standard practices in machine-learning research, we utilized various classifica-
tion algorithms, each carefully chosen for their unique strengths and compatibility with our
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specific problem. These algorithms adopt distinct strategies for learning patterns within
the eye-tracking data, thus allowing us to compare the achieved classification outcomes
across different approaches. We employed Random Forest, XGBoost, Support Vector
Machine, and Multilayer Perceptron models. Random Forest is renowned for its robustness
and ability to handle nonlinear data, making it particularly suitable for complex data sets
such as ours. XGBoost, known for its efficiency and performance, is ideal for large data
sets and has demonstrated effectiveness in reducing overfitting. We chose the Support
Vector Machine (SVM) for its effectiveness in high-dimensional spaces, crucial for handling
the intricate patterns in eye-tracking data. Lastly, the Multilayer Perceptron (MLP), a
type of neural network, offers the advantage that it can learn nonlinear relationships, an
advantage that was essential for capturing the subtleties in our data. This selection of
standard machine-learning classifiers has also been employed in previous research on binary
mind-wandering classification based on eye-tracking data [e.g., 143, 254]. Their demon-
strated track record in similar studies provided a solid foundation for their application in
our research, ensuring that we were building upon established methods while also exploring
the unique aspects of our data set. This combination of demonstrated and innovative
approaches was expected to yield comprehensive insights into the patterns present in the
eye-tracking data, contributing significantly to the field of machine learning and cognitive
research.

We then applied person-independent three-fold nested cross-validation for hyperparameter
optimization, model training, and evaluation. Cross-validation is a process in which distinct
subsets of the data are used repeatedly to train and test a model to prevent overfitting on
a single test set [283]. By creating these folds in a person-independent manner, we ensured
that the prediction accuracies we reported would generalize to new, unseen participants.
Each classifier allowed us to set specific hyperparameters, such as the number of decision
trees learned in a Random Forest classifier. Hyperparameter tuning, which describes
the process of finding the optimal setting of those parameters for a specific classification
problem, was conducted by a grid search. A table of the tested hyperparameter grids per
classifier can be found in Table A.9 in the Appendix. We employed nested cross-validation
to test the best hyperparameter settings of every single classifier within each fold on a
validation set to avoid overfitting to the test set.

Due to our sample’s highly imbalanced data distribution, we evaluated the prediction
performance by reporting F1 scores, representing the harmonic mean of precision and
the recall of predictions. This measure is commonly used as a performance metric in
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cases in which one class (e.g., being on task in these data) greatly outnumbers one or
more minority classes (i.e., aware/unaware TUTs) that are of specific interest in terms of
prediction performance. This measure has repeatedly been employed in previous research
on mind-wandering detection [e.g., 74, 89]. We computed the F1 scores for each of the
single predicted classes and the macro score, which is the average of all F1 scores. Please
find more details on the evaluation metrics in the Appendix Section A.1.5.

However, comparing the performance of models across data sets with different underlying
class distributions is difficult, as a higher F1 score becomes more likely as the proportion of
the minority class increases, which occurs because the chance level of predicting the minority
class becomes higher. Consequently, a useful measure, particularly when comparing the
performance of data sets with different class distributions, is the model’s improvement over
the chance level. This improvement is calculated as follows:

AboveChanceLevel = ActualPerformance − Chance

PerfectPerformance − Chance

To investigate the relationship between gaze and mind-wandering predictions as modeled
by the machine learning approach, we applied explainability methods. Specifically, we
computed SHAP (SHapley Additive exPlanations) values [178]. These values quantify
the contribution of each feature to the likelihood of predicting each class, relative to the
model’s average prediction across the dataset.

Transparency and Openness

We report how we determined our sample size, all data exclusions, all manipulations, and
measures in the study, and we follow JARS [284]. We plan to make the survey and sensor
data collected in this project, as well as all analysis scripts, openly available at a later
point in time. Supplemental materials are available at https://osf.io/4qkvx/?view

_only=096cc5bc171c496283f85064f82067d6. We conducted statistical analyses using
R, version 4.2.2 [285], and clustering by employing the package TraMineR, version 2.2.7
[286]. Machine-learning approaches were conducted using Python, version 3.8.5 [287] and
the package scikit-learn, version 1.3.2 [288]. This study’s design and analysis were not
preregistered. Parts of this data, specifically eye-tracking data, were analyzed regarding
gaze synchrony during self-reported on-task behavior [3].
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A.1.4. Results

Descriptive statistics and correlations between self-reports, person characteristics, and the
knowledge tests administered before and after the learning sequence can be found in Table
A.5.

Mind-Wandering Meta-Awareness During Lecture Viewing

Overall, when probed, participants reported the following proportions of answers: 35%
being on task, 8% task-related thoughts, 16% metacognitive comprehension monitoring, and
41% TUTs. The last category is a combination of seven thought content categories. The
overall distribution of the thought content categories is presented in Figure A.14 (please see
Table A.6 for the absolute and relative numbers). The largest proportion of TUTs consisted
of thoughts about participants’ current physical, psychological, or emotional states (19%;
e.g., whether somebody was hungry or cold). This category was followed by personal
matters (12%; e.g., thoughts about normal everyday things, life concerns, or personal
worries). Furthermore, 63% of all combined TUTs occurred with meta-awareness, indicating
that participants had already realized they had drifted off before the interruption. Figure
A.15 displays all content TUT categories by meta-awareness (refer to Table A.7 for the
absolute and relative numbers). Whereas for most categories, the majority were reported
to occur with awareness, the ratio was almost balanced for the personal matters category.
Only daydreaming and a blank mind predominantly occurred without meta-awareness.

Upon analyzing the correlations between the different types of mind wandering and
individual characteristics (see Table A.5), several significant associations were observed. We
found a significant negative relationship between metacognitive self-regulation and unaware
TUTs, whereas no correlation was detected with aware mind wandering. Conversely, positive
correlations were noted between self-concept, dispositional interest in the lecture subject,
statistics, on-task rates, and reflecting on lecture comprehension. Notably, no significant
correlations were found between TUT categorized by meta-awareness and the dispositional
mind-wandering scale. Regarding situational variables surveyed immediately after the video
lecture, negative correlations were identified between situational interest in the lecture
and both aware and unaware TUTs. Similarly, self-reported involvement in the lecture
exhibited negative correlations, with a slightly stronger association seen in relation to aware
mind wandering frequency. By contrast, cognitive engagement was significantly negatively
correlated with both types of TUTs, demonstrating a more pronounced relationship with
unaware mind wandering. Furthermore, positive emotions experienced during the lecture
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Figure A.14.: Content Probes.

exhibited a significant negative correlation only with the incidence of aware TUTs, while
showing a notable positive association with the frequency of on-task reports.

Temporal Patterns of Mind-Wandering Meta-Awareness

Figure A.16 shows the self-reported thought category sequences by person (left) and the
category distribution (right) over time. The visualization of individual sequences shows the
dynamic transition between different thought and mind-wandering categories of participants
over the course of the lecture video. In the state distribution plot, it can be seen that TUTs
begin to increase around Probes 4 and 5, which were administered around 10 to 15 min
into the video lecture. It is possible to observe a slight increase in overall zone-outs over
time, whereas the tune-out rates fluctuated slightly. There was a brief interruption after
Probe 8 (approximately 30 min into the video) to recalibrate the eye trackers, potentially
reflected in the slightly lower TUT rates at Probe 9.

Utilizing OM distances to apply hierarchical clustering to cluster thought probes on
the basis of their temporal progression yielded the identification of five distinct clusters
that represented different thought patterns. The individual thought sequences and the
distribution of thought categories within each cluster are graphically presented in Figures
A.17 and A.18, respectively. The clusters were assigned titles that correspond to their
predominant thought structures. The first cluster, referred to as the on-task cluster,
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Figure A.15.: Content Probe TUTs by Meta-Awareness.

consisted primarily of participants who remained focused on the task at hand throughout
the lecture. On average, they indicated being engaged in the task during 11 of the 15
thought probes (refer to Figure A.24). These individuals reported thoughts related to
understanding, particularly in the latter part of the lecture, along with sporadic instances
of aware TUTs. Overall, this cluster demonstrated a high level of sustained attention
toward the lecture and exhibited the lowest rate of mind wandering. The second cluster,
the mixed-TUT cluster, displayed an increasing occurrence of unaware mind wandering
over time compared with the first cluster. On average, participants in this cluster reported
an equal number of on-task instances and instances of TUTs, with the majority of TUTs
being unaware. Participants reported metacognitive monitoring throughout the lecture,
particularly in the first half.

By contrast, the zone-out cluster was primarily characterized by a prevalence of unaware
TUTs. This cluster displayed a brief peak in aware TUTs followed by a relatively consistent
occurrence of zone-outs throughout the last two-thirds of the lecture. Participants in this
cluster reported experiencing zone-outs in six of the 15 probes on average, followed by four
instances of tune-outs and only three instances of being on task. Conversely, the occasional
tune-out cluster demonstrated minimal unaware TUTs. On average, participants in this
cluster reported being on task approximately half of the time. However, after a transitional
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Figure A.16.: Thought Category Sequence Index and Distribution Plots.

phase characterized by increased reports of metacognitive monitoring interspersed with
indications of tune-outs, participants in this cluster reported being on task an average of
five times per person. The tune-out cluster exhibited a more extreme form of aware mind
wandering and was also the smallest cluster we identified (n = 6). Participants in this
cluster reported tune-outs in nine of the 15 probes on average, with only two instances of
being on task and minimal zone-outs. After Probes 3 to 4, which occurred around 10 to 15
min into the lecture, participants in this cluster consistently engaged in aware TUTs. An
interesting observation is that the overall rates of metacognitive monitoring were similar
across all five clusters, suggesting that self-reflection on understanding was a common
element within each distinct TUT pattern.

To investigate the differences between the single clusters, we conducted a one-way
multivariate analysis of variance (MANOVA) to determine the differences in the proportion
of overall on-task, MM, unaware, and aware TUT reports per person. There was a
statistically significant difference between the clusters on the combined dependent variables
(on-task rate, MM rate, unaware TUT rate, aware TUT rate), F(8, 164) = 43.441, p <
.001. Follow-up univariate Welch ANOVAs, using a Bonferroni-adjusted alpha level of
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.0125, showed that there was a statistically significant difference in task rate, F(4, 27.9)
= 69, p < .001, unaware TUT rate, F(4, 25.9) = 47.5, p < .001, and aware TUT rate,
F(4, 24.7) = 35.5, p < .001, between clusters. No significant difference was found for MM
rates. Pairwise comparisons, employing a Games-Howell post hoc test between clusters by
outcome variables, can be seen in Figure A.19. On-task rates were significantly different
between all clusters except the mixed-TUT and occasional-TUT clusters, as well as between
the zone-out and tune-out clusters. Aware TUT rates differed significantly between all
clusters except for the on-task and occasional-TUT clusters, as well as the mixed-TUT and
zone-out clusters. For unaware TUT rates, no significant differences were found between
on-task and tune-outs and mixed TUTs and tune-outs, but significant differences were
found for all other cluster pairs.

Mind-Wandering Patterns and Learning Outcomes

To investigate the potential associations between specific thought patterns and varying
levels of learning, a comprehensive linear regression analysis was conducted to assess the
relationships between the thought clusters and the different test scores. The results are
presented in Table A.2. The findings from the linear regression analysis indicated that
membership in the zone-out cluster, characterized by thought patterns predominantly
defined by increasing rates of unaware mind wandering over time, showed a significant
negative association with fact-based memory learning and deep-level inference learning
compared with the on-task cluster. Conversely, belonging to the tune-out cluster, which
entailed consistent engagement in aware-task-unrelated thoughts throughout the lecture,
was significantly associated with lower performance solely in inference learning. Notably,
both the zone-out and tune-out clusters demonstrated significantly poorer performance
in terms of the overall test score when compared with the on-task cluster. The two
clusters, namely, the mixed-TUT and occasional tune-out clusters, which exhibited less
extreme patterns of TUTs, did not show statistically significant relationships with any
of the test scores compared with the on-task cluster. Furthermore, higher levels of self-
concept in statistics were positively related to learning outcomes across all three test
scores. Additionally, prior knowledge exhibited a positive relationship with the test scores,
indicating that possessing a greater knowledge base in the subject matter contributes to
improved performance. A small significant gender effect was found for the inference-based
test score such that male participants displayed slightly inferior performance compared
with their female counterparts.
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Figure A.17.: Sequence Index Plots by Cluster.

To validate these results, we additionally conducted a regression analysis to investigate
the relationship between thought category rates per person and posttest scores (see Table
A.8). Similar overall patterns were identified: The overall zone-out rate had negative asso-
ciations with fact- and inference-based scores, whereas aware-TUT rates had a significant
negative impact only on inference-based learning. Notably, the MM rate and deep-level
understanding had a significant negative relationship.
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Figure A.18.: State Distribution Plots by Cluster.

Mind-Wandering Meta-Awareness Prediction Using Machine Learning

Based on the hypothesis that meta-awareness in mind wandering is reflected in gaze
behavior, we employed a predictive modeling approach based on eye tracking features.
Descriptive comparisons of mean levels of extracted gaze features across distinct self-
reported thought groups can be found in the appendix in Table A.4. Using the self-reported
thought probes, we employed machine-learning classifiers to predict instances of aware and
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Figure A.19.: Thought Content Rates by Cluster and MANOVA-Based Games-Howell Post
Hoc Pairwise Comparisons.

unaware mind wandering in distinction to a combined on-task category, which encompassed
reports of being on task, TRT, and MM. The results of the trained classifiers are presented
in Table A.3. The first three columns provide F1 scores, precision, and recall for each
prediction category, whereas the last column reports macro scores across all categories.
The last row represents the baseline performance levels of predicting by chance. The
findings indicate that the models achieved predictions slightly above chance for unaware
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TUTs, with the Random Forest model performing the best, yielding an F1 score of 0.215
(approximately 9% above chance). For aware TUTs, the SVM and MLP classifiers achieved
F1 scores of 0.332 (approximately 12% above chance) and 0.282 (approximately 5% above
chance), respectively, resulting in Macro F1 scores of 0.377 (approximately 5% above
chance) and 0.361 (approximately 3% above chance). A Random Forest classifier achieved
the best overall results with macro F1 scores of 0.387 (approximately 6% above chance).
Comparatively, when applying binary classification to distinguish between on-task and
combined TUT instances using the same data, the F1 scores for TUTs reached 0.529
when an MLP classifier was used (see Table A.10), indicating a detection accuracy of
approximately 24% above the chance level.

To delve deeper into the connection between gaze features and the meta-awareness of
TUTs, as modeled with our machine-learning approach, we computed SHAP values [178]
for the Random Forest classifier, which achieved the highest macro F1 score. SHAP is a
local explainability approach for machine learning models, quantifying how each feature
contributes to an individual prediction made. The SHAP values for the ten most important
features by predicted class are depicted in Figure A.20. The most important features for
predicting aware and unaware TUTs include saccade-, blink-, vergence- and fixation-derived
duration features.

The preeminent feature for classifying all three classes is the ratio of the standard
deviations of fixation and saccade durations in the 10 s before the probe. A low value
in this variable, indicating that the variability in the duration of fixations relative to
saccades is smaller, contributes to on-task prediction, whereas the relationship with both
mind-wandering classes is reversed.

Aggregated data on the two vergence features we utilized, namely, vergence angles and
pupil distance, which characterize eye rotations and can capture the phenomenon of staring
into nothingness, constituted another vital feature group. The figure reveals the importance
of variation in gaze vergence, depicted by the standard deviation of vergence angles and
standard deviation of pupil distance, for predicting aware TUTs. A high variance in
vergence, which might reflect the occurrence of staring into nothingness, increases the
likelihood of an aware mind wandering prediction. On the contrary, low values for variance
in vergence angles, which might indicate a stable focus on the computer screen assuming a
constant distance, increase the probability of on-task predictions. This is further supported
by the positive impact of high average vergence angles on on-task predictions.

Ranking third in importance for on-task and second for unaware mind-wandering predic-
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tions is the standard deviation of average pupil diameter during fixations, elucidating the
fluctuation in pupil diameters between fixations. It appears to have a diverse effect on the
prediction of both classes with the plot depicting both positive and negative influences,
suggesting that this feature interacts with other factors in complex ways.

Further, the 75% quantile of the average saccade velocity feature heavily impacts the clas-
sification, with higher average velocities often leading to an unaware mind-wandering clas-
sification, whereas lower velocities are associated with on-task and aware mind-wandering
classifications. Several important features like the saccade velocity peak maximum value,
the standard deviation of saccade velocity peak, the standard deviation in saccade accelera-
tion, and average high saccade velocity indicate the importance of high saccade velocity and
high-velocity variance for unaware mind wandering predictions. This becomes especially
visible in comparison to aware mind wandering predictions, which are positively impacted
by low variance of saccade velocity peaks and lower values for average saccade velocity.
Further, also the distance the eye travels during a saccade impacts the prediction. Lower
values in the 75% quantile of saccade amplitudes and lower variability in saccade lengths
increase the likelihood of predicting unaware mind wandering whereas the effects of both
features seem to be reversed for predicting aware mind wandering.

Another very important gaze indicator impacting the predictions is the duration of blinks.
A higher variance in blink durations tilts the prediction towards aware mind wandering,
whereas lower values slightly push the prediction to on task. Higher values in the blink
duration 75% quantile lead to unaware mind wandering classification, in contrast, to lower
blink durations increasing the likelihood of on-task predictions. In general, the aggregation
form of standard deviations is the most prominent one in these groups of most important
features. This indicates that especially the amount of variance in certain gaze features over
the observed time windows yield significant information. Summary statistics for the most
important features identified by SHAP analysis can be found in the appendix Table A.11.

In terms more accessible to general education researchers and practitioners, learners were
predicted to be mind wandering and unaware of it when their eye movements showed overall
higher speed, high variability in how quickly their eyes moved, longer blink durations, and
shorter distances moved by the eyes. Learners were predicted to be mind wandering and
aware of it when their eye movements were slower, their blink durations were more variable,
the distances their eyes moved were more variable, and they showed signs of not focusing
on the computer screen, such as staring into space.
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Figure A.20.: SHAP Analysis by Prediction Class.
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A.1.5. Discussion

This study examined the meta-awareness of mind wandering during video lecture viewing
by employing probes that asked participants’ about the content and their awareness of
their thoughts. The findings revealed distinct patterns of thought sequences, shedding
light on the temporal dynamics of aware and unaware mind wandering. These patterns
exhibited varying associations with learning outcomes, such that zone-out patterns were
negatively related to fact-based and inference-based learning, whereas tune-out patterns
were negatively associated with deep-level understanding. Moreover, an initial exploration
into the predictive modeling of mind wandering–in which we distinguished TUTs by meta-
awareness and utilized gaze data–appears to have the potential to successfully distinguish
between these two forms of mind wandering, offering prospects for future research.

A Better Understanding of Mind-Wandering Meta-Awareness

The findings from the current study provide several significant observations that can be
applied to improve the understanding of meta-awareness in mind wandering during learning.
First, approximately 41% of the probes administered during Zoom video lecture viewing
uncovered instances of mind wandering, which predominantly focused on participants’
current state and personal concerns. This number is slightly higher than the average mind-
wandering rates reported by Wong et al. [33] of about 30% during educational activities. By
contrast, participants reported being on task in our study only 35.4% of the time, with the
rest of the time engaging in elaborations and meta-cognitive monitoring. Interestingly, the
majority (60%) of the TUTs that were reported occurred with meta-awareness, indicating
that participants were conscious of their mind wandering before they were interrupted by
the probe.

In these instances, participants appear to allow themselves to continue mind wandering
after becoming aware of it, thus not fully attempting to focus on the lecture and to ignore
distractors [52], as such distractors might be more personally important to them [249].
This aware mind wandering might also regulate affective states, as it allows learners to
cope with a lack of motivation or increased frustration [9]. This hypothesis was supported
by the negative association between positive emotions experienced during the lecture and
the number of reported aware TUTs in this study. Unaware TUTs, namely, engaging in
non-lecture-related thought without realizing that the mind has wandered off, constituted
the smaller part of the observed mind-wandering instances in this study (30%). Specifically,
this particular form of mind wandering exhibited a negative correlation with participants’
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metacognitive self-regulation skills. This finding reinforces the supposition that from an
SRL perspective, the incidence of unaware TUTs during learning represents students’
temporal inability to effectively monitor and regulate cognitive activities, whereas aware
mind wandering may be indicative of what would be referred to in an SRL framework as
failures in regulating motivational or affective states. These findings stress the importance
of differentiating between the different manifestations of mind wandering during learning
activities.

Second, similar to observations made in previous research [9], the examination of person-
specific thought sequences revealed an increase in TUTs as a function of time for the first
half of the video lecture. This pattern was evident for both aware and unaware instances
of TUTs. Nevertheless, during the latter 30 min of the lecture, a relatively consistent rate
of TUTs emerged without a discernible continued upward trajectory, implying the presence
of a potential ceiling effect. An in-depth examination of individual sequences by clustering
participants’ thoughts into distinct thought patterns unveiled nuanced insights, revealing
disparate temporal effects among participants and characteristic thought trajectories.
Through cluster analysis, five distinct patterns of thought sequences were identified: an
on-task cluster, a mixed-TUT cluster, a zone-out cluster, an occasional tune-out cluster,
and a tune-out cluster.

The clustering of temporal sequences of meta-awareness in TUTs offers valuable insights
into the temporal unfolding of both aware and unaware mind wandering that revealed
how distinct groups of participants exhibit analogous patterns. This distinction thereby
provides a way to identify characteristic thought trajectories. Whereas a small group (n =
16) of participants in the on-task cluster was able to maintain their attention throughout
the whole lecture, participants in the mixed-TUT cluster (n = 23) showed a slight increase
over time in unaware TUTs interspersed with aware TUTs and on-task episodes, a pattern
that probably shows the process of catching one’s mind wandering and refocusing on the
lecture. The smaller zone-out cluster (n = 14), on the other hand, shows increasing and
then fairly constant unaware TUTs over the last two-thirds of the lecture. To explain
these patterns robustly, it is necessary to explore whether the observed increase in unaware
TUT rates over time within the zone-out clusters can be attributed to failures in executive
control [31], possibly linked to individual differences in working memory capacities [32].
By contrast, the persistent rates of aware mind wandering evident in the tune-out cluster
(n = 6) almost from the start suggest that some participants may deliberately choose to
allow their minds to wander throughout the video. This awareness brings up the intriguing
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possibility that such behavior might overlap with intentionality, reflecting a conscious
decision to engage in TUTs [9] and might be related to a lack of motivation [251]. Further
research is warranted to comprehensively address these nuanced aspects of mind wandering
and its underlying mechanisms, especially with regard to potential strategies for reducing
mind wandering. For instance, a learner categorized within the occasional tune-out cluster,
who briefly engages in aware TUTs, as they are already familiar with the current lecture
content, but reverts to attentive listening later on, requires different support than an
individual who, for instance, due to a lack of motivation, consistently tunes-out for the
entire duration.

Third, the temporal mind-wandering patterns we identified exhibited varying associations
with learning outcomes. The zone-out pattern was significantly correlated with lower
fact-based and inference-based learning outcomes, whereas the tune-out pattern had a
statistically significant relationship solely with deep-level understanding when compared
with on-task thought sequences. The other two clusters were not significantly related to
the learning outcomes. These findings are consistent with previous studies that showed a
negative association between higher TUT rates and learning [33]: Clusters characterized
by higher proportions of TUTs and lower on-task rates were more strongly negatively
related to the learning outcomes. Furthermore, akin to previous studies that highlighted
the heightened influence of zone-outs on attentional task performance [50] and mental
model construction during reading [185], our results that pertained to lecture retention
indicated a stronger statistically significant negative relationship between zone-outs and
fact-based learning. However, concerning deep-level understanding, both types of mind
wandering exhibited comparable and significant negative associations in the present study.

Lastly, an initial exploration into the predictive modeling of the meta-awareness of mind-
wandering employing gaze data achieved prediction accuracies of 12% and 9% above the
chance level for aware and unaware TUTs, respectively. Whereas the predictive modeling
of a summarized mind-wandering state, combining aware and unaware TUTs resulted in
slightly higher prediction accuracies (24% above the chance level; see Table A.10), similar
to previous research on eye-tracking-based automated mind-wandering detection during
lecture viewing, which ranged from 11% to 24% above the chance level [89, 144, 92], the
more fine-grained approach appears to be more challenging. This finding may have resulted
primarily from the limited data available for this specific classification in the current
study, notably the smallest class representing unaware mind wandering comprising only
147 instances. This assumption gained support from the observed significant disparities
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in various gaze features between unaware TUTs and instances of being on task during
binary group analysis. However, there may be upper limits to the extent to which the
meta-awareness of mind wandering is distinctly reflected in observable eye-tracking data,
considering that they represent inherently internal cognitive processes.

Employing SHAP explainability methods, the most influential feature we identified
was the ratio between fixation and saccade duration variance. Another very important
feature group impacting the prediction of aware TUT was vergence features, indicating
that the occurrence of staring into nothingness or the fixation on something aside from
the computer screen could indicate aware mind wandering. Gaze behavior increasing the
likelihood of predicting unaware mind wandering indicated higher saccade velocities, while
the reverse relationships are found for aware TUT prediction. Other important features
include blink duration aggregations, the standard deviation of pupil diameter, and duration
and amplitude features from saccades, shedding light on predictive factors for both aware
and unaware TUTs.

This study tested complex theoretical assumptions about the temporal dynamics of mind
wandering and its meta-awareness through sophisticated analytical techniques, including
cluster analysis, machine learning algorithms, and SHAP explainability methods. The
outcomes derived from this computational modeling approach demonstrate the discernibility
between meta-awareness in mind wandering and on-task behavior through the objective
behavioral indicator of eye gaze. Utilizing Machine Learning allowed us to explore the
nuanced and often non-linear relationships between those cognitive processes and gaze
behavior. Unlike traditional statistical methods, these techniques can extract insights from
datasets with high dimensionality of features, allowing for a comprehensive analysis of
numerous gaze indicators. We unraveled the complex interplay between these indicators and
different types of mind wandering using SHAP explanatory methods. This discernibility
delineates two forms of mind wandering previously reported by learners and theoretically
postulated, thereby contributing to advancing further theory development. Moreover,
these findings highlight the promising potential of utilizing gaze data for continuous,
non-interruptive measurement in future endeavors, as accuracies might be improved by
substantively increasing the sample size or including additional data sensors, such as video or
physiological data [91]. This opens up new opportunities for a deeper understanding of their
impact on learning. Consequently, our results contribute to refining the conceptualization of
mind wandering meta-awareness in video learning and illustrate the practical implications
of leveraging predictive modeling to discern between aware and unaware mind-wandering
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patterns.

Implications for Educational Practice

The present study highlights that mind wandering in an educational context includes several
facets with respect to the unfolding of meta-awareness that need to be considered in order
to support learners in practice. It is plausible that addressing these diverse manifestations
of mind wandering may necessitate distinct and tailored solutions concerning the role of
teachers and the design of learning materials. Furthermore, the proposed fine-grained
automated detection, based on low threshold sensors, has the potential to allow for the
personalized adaptivity of learning content and targeted interventions in the development
of intelligent learning systems to provide suitable support for self-regulated learning.

Examples of possible interventions consist of providing feedback, suggesting rewatching,
asking intermediate questions, and adapting the presented content when a user loses focus.
Most intervention studies on mind wandering [e.g., 46, 66] have not been geared to be
specific to the mental state of the learner and have therefore been limited to general
support. An attention-aware system, implementing eye tracking, could predict the learner’s
attentional state in real time by analyzing gaze data using the pre-trained mind-wandering
detection models. When mind wandering is detected, the system can attempt to redirect
the learner’s attention to the learning material, for instance, by asking the learner a
question on the content. This intervention might cause the learner to mentally re-engage
with the content and possibly realize that some information has been missed. The impact
of the respective intervention on attention, learning, and performance can be evaluated.

On account of the presumably different explanations for the occurrence of aware and
unaware TUTs, consequently requiring distinct solutions, the refined fine-grained recognition
of aware and unaware TUTs enables even more precise interventions for learners by taking
into account different underlying processes. For example, in the case of frequent zone-outs,
which might be caused by failures in executive control, one might aim to support learners
by letting them take a break or giving them feedback to improve their metacognitive
self-regulation skills and strategies. Meanwhile, in the case of persistent tune-outs, which
might be caused by frustration or boredom, one might want to adapt learning content to
make it easier to understand and more appealing.

Initial research on real-time interventions during automatically detected mind-wandering
instances (e.g., prompting rereading [71] or repeating content and asking questions in an
ITS [70]) have shown promising results for long-term retention and comprehension, even
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when they were based on imperfect prediction accuracies. However, given the current
limitations in predicting the meta-awareness of mind wandering and the potential for
false positives, interventions should prioritize methods that do not disrupt the learning
process. Nonintrusive interventions, such as follow-up prompts for revisiting critical
learning content, focus on fostering self-regulated learning while minimizing distractions.
Additionally, implementing thresholds that are based on confidence in predictions or
duration can help maintain intervention quality.

The effectiveness of these and other interventions requires extensive empirical research,
the premise of which we established in this study by refining the underlying theory and
automated recognition approach. Recent studies on AI support and student agency have
indicated a trend where students tend to depend on the support that is provided rather
than actively learning from it [223]. This highlights the need to ensure learners’ agency
and responsibility when designing interventions [240].

Further, this potential integration of real-time interventions raises points that should be
considered regarding ethics, learner privacy, and data use. Obtaining informed consent
becomes crucial when implementing any form of automated detection techniques. Students
should be aware of the data that are being collected and how that data will be used and
should have the right to opt-out if they desire to guarantee full autonomy. Further, ensuring
that learners’ personal information is ethically managed and that their data are safeguarded
is paramount, as intelligent learning systems advance in personalized adaptivity. Further,
steps must be taken to avoid potential biases that may disproportionately impact certain
groups of learners.

Limitations and Future Work

A substantial proportion of participants exhibited awareness of TUTs during the lecture-
viewing task. We posit that this finding can be attributed in part to the lab setting, where
participants might not be completely aligned with the primary goal of comprehending
the video lecture [9]. Given the absence of personal gain and potentially limited intrinsic
motivation to sustain attention, participants may exhibit a tendency to engage in distracting
thoughts that hold greater personal significance [249]. Thus, this tendency might impact
the ecological validity of the reported results. Even if we assume that aware mind wandering
is lower in more naturalistic learning environments, competing personal thoughts with
heightened short-term importance may persist, particularly in lectures in real study
programs, where exams may be scheduled several months ahead. Hence, conducting
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analogous investigations in regular university lecture settings will be of considerable interest
for further exploration. Further, it would be interesting to assess the overlap with the
intentionality of mind-wandering episodes to gain deeper insights into whether specific
episodes of aware mind wandering can be regarded as a deliberate allocation of cognitive
resources [9]. Moreover, distractions from the environment and the participants’ reflections
on study-related prompts reported in the open-answer option of thought prompts suggest
that learners were cognizant of their participation in a study. This awareness might imply
increased self-monitoring among the learners during the study session and might have had
an impact on the observed outcomes.

Although we emphasized the importance of investigating thought patterns of mind
wandering with respect to the meta-awareness of TUTs, the current analysis was based
on discrete measurement points. As a result, it cannot provide the granularity required
for a comprehensive analysis of the temporal unfolding and switching between states of
aware and unaware mind wandering during learning, highlighting the importance of using
a continuous measurement approach in future research. Furthermore, due to the limited
amount of data available, the clusters identified in our analysis became relatively small
and might not be distinct enough to fully capture the heterogeneity inherent in thought
patterns. This study was conducted with university students, and thus, the results might
not be generalizable to other age or educational groups. Increasing the sample size and
obtaining more diverse data sets would enhance the robustness and generalizability of
the findings. Another limitation lies in the measurement of learning outcomes. Although
we assessed both surface and deep-level understanding immediately after the lecture, the
evaluation focused on short-term memory and comprehension. Long-term memory and
understanding were not addressed but should be considered in future investigations.

Regarding the automated approach using eye tracking and machine learning, the classifi-
cation results obtained in this study did not show high predictive performance. Whereas
they showed the potential of the approach to distinguish between aware and unaware TUTs,
they have not yet obtained the performance required for reliable continuous measurement
and automated detection. A significant constraint in this study was using a relatively small
data set, especially for implementing complex machine-learning algorithms. Subsequent re-
search should investigate the opportunities to improve the prediction of the meta-awareness
of TUTs using larger-scale data sets. Further, more advanced eye-tracking features, such
as scanpath features and temporal algorithms, could be employed to enhance prediction
accuracies. The use of more elaborate methods, for instance temporal models and further
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optimization of the hyperparameters tested, could also contribute to this. Additionally,
the Overall, the outcomes of this study underscore the significance of future research in
making finer distinctions regarding the meta-awareness of mind wandering throughout the
learning process.

Conclusion

In summary, this study sheds light on the prevalence and characteristics of mind wandering
and meta-awareness during Zoom video-lecture viewing. The findings underscore the
significance of different mind-wandering patterns and their implications for metacognitive
self-regulation. The identified patterns revealed nuanced associations with learning, showing
a negative relation between patterns dominated by unaware mind wandering with fact-based
and deep-level understanding, whereas persistent aware mind-wandering patterns specifically
deteriorated deep-level understanding. Through gaze tracking, specific eye-movement
indicators were linked to different mind-wandering states. Notably, predictive modeling
using gaze data displayed great promise for distinguishing between aware and unaware mind
wandering, albeit with constraints due to limited data set size and the inherently internal
nature of cognitive processes. This study underscores the complexity of mind wandering in
educational settings, suggesting the need for tailored interventions based on the nuanced
understanding of meta-awareness and its manifestations. It lays the groundwork for future
investigations into that fine-grained, automated detection of mind wandering through
low-threshold sensors. Such detection could enable personalized learning adaptations and
interventions, potentially enhancing self-regulated learning through strategies like feedback,
content adaptation, and intermediate questioning while highlighting ethical considerations
in implementing such technologies.

Supplemental Material

Eye-Gaze Features by Mind Wandering Meta-Awareness

The investigation of how meta-awareness in mind wandering manifests in eye movements
involved comparing the average gaze features extracted during aware and unaware mind
wandering instances with those that occurred during on-task instances. To achieve this
comparison, we computed t tests to compare the mean values of each eye-gaze feature
among groups that reported being on task, aware of mind wandering, and unaware of mind
wandering.
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A.1. Temporal Dynamics of Meta-Awareness of Mind Wandering

We investigated how meta-awareness in mind wandering is reflected in gaze behavior
by initially comparing mean levels of extracted gaze features across distinct self-reported
thought groups. Table A.4 delineates all features’ mean values and standard deviations
from 10-s time windows categorized by self-reported thought type. For simplicity, we only
report summary statistics of eye-tracking features resulting from mean aggregations over
time in this table omit other statistical aggregations computed during data pre-processing.
Employing t tests presented in the final three columns of Table A.4, we scrutinized the
statistical differences across the groups. Notably, the t tests revealed that instances of
unaware mind wandering exhibited a significantly smaller number of fixations (p < .01),
averaging 16.43 fixations per 10 s compared with 18.73 fixations during on-task instances.
Additionally, the ratio between average fixation and saccade duration was notably higher
(p < .05) during episodes of TUTs without awareness compared to attentive lecture viewing.
Discrepancies in eye movement speed were also apparent. Specifically, the mean and
peak saccade velocity and acceleration were notably higher (p < .05), whereas the peak
deceleration was lower during instances of unaware TUTs. No significant differences were
found in any extracted features between on-task and aware mind-wandering instances.
Nevertheless, it is intriguing to note that the general trend paralleled unaware mind
wandering across most features, except for fixation count, with differences being less
pronounced. Notably, modestly higher values for fixation saccade ratio, saccade velocity,
and acceleration features were observed in comparison with the on-task group, positioning
these values between the mean values of the on-task and unaware TUT instances across
these dimensions. When comparing aware and unaware TUT instances, a significant
difference (p < .05) in the number of fixations was noted, indicating a higher fixation count
on the screen when participants engaged in mind wandering with awareness, comparable to
on-task instances. This analysis focused on a subset of the features utilized for subsequent
computational modeling, specifically mean values over time. This approach was adopted to
enhance clarity and facilitate interpretability purposes. In the predictive modeling stage,
various other statistical aggregation methods, including minimum and maximum values
along with standard deviations, were also incorporated, as detailed in the Instruments
section.

This investigation into differences in gaze indicators by the meta-awareness of mind
wandering showed that differences in single features were more pronounced and were statis-
tically significant only during unaware TUTs compared with on-task episodes. Specifically,
a higher number of fixations, a higher fixation saccade duration ratio, and higher values for
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A. Automated Mind Wandering Detection

saccade velocity and acceleration were found for mind wandering without meta-awareness.
Whereas for most of these gaze characteristics, a similar, less strong trend was found for
aware TUTs, we found a significantly lower number of fixations compared with unaware
TUTs, which was very similar to the average fixation count while being on task. These
results confirm the previously identified high task and stimulus dependency of gaze features
[148].

Evaluation Metrics

The F1 scores were calculated as follows:

F1 = 2 × Precision × Recall

Precision + Recall

where the precision (i.e., the proportion of correctly predicted positives of all predicted
positives) and recall (i.e., the proportion of correctly predicted positives of all positive
instances; sensitivity) are defined as:

Precision = TP

TP + FP
, Recall = TP

TP + FN
.

TP, FP, TN, and FN represent true positive, false positive, true negative, and false negative,
respectively.

Additional Figures and Tables

96



A.1. Temporal Dynamics of Meta-Awareness of Mind Wandering

Figure A.21.: Content Categories for Coding Open-Ended Answers.

Figure A.22.: Agnes Clustering Dendogram.
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Table A.6.: Content Probes.
Content Probe Count Proportion
On task 462 0.354
Ideas about lecture (TRT) 102 0.078
Lecture Comprehension (MM) 213 0.163
Current state (TUT) 244 0.187
Personal matters (TUT) 157 0.120
Daydreaming (TUT) 61 0.047
Video stimulus (TUT) 20 0.015
Lecture triggered (TUT) 16 0.012
Experiment (TUT) 11 0.008
Blank (TUT) 7 0.005
Other 12 0.009
Total 1305 1

Table A.7.: Content Probe TUTs by Meta-Awareness.
Content Probe (TUT) Awareness Probe Count Proportion
Current state (TUT) aware 171 0.713

unaware 69 0.288
Personal matters (TUT) aware 80 0.513

unaware 76 0.487
Daydreaming (TUT) aware 27 0.458

unaware 32 0.542
Lecture triggered (TUT) aware 13 0.867

unaware 2 0.133
Video stimulus (TUT) aware 14 0.737

unaware 5 0.263
Experiment (TUT) aware 9 0.818

unaware 2 0.182
Blank (TUT) aware 2 0.333

unaware 4 0.667
Total aware 316 0.625

unaware 190 0.375
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A.1. Temporal Dynamics of Meta-Awareness of Mind Wandering

Figure A.23.: Average Silhouette Width (ASW), Hubert’s C Coefficient (HC), and Point
Biserial Correlation (PBC) for 2-8 Clusters.
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Figure A.24.: Average Reports per Category Plots by Cluster.
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Figure A.25.: Modal Category by Probe Plots by Cluster.
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Table A.9.: Hyperparameter Grids by Classification Model.
Model Hyperparameter Grid
Random Forest balancing technique SMOTE, Upsampling, None

bootstrap true, false
max depth 6, 10, 20, 50, None
max features sqrt, None
min samples leaf 1, 2, 4
min samples split 2, 5, 10
number of estimators 50 100, 200

XGBoost balancing technique SMOTE, Upsampling, None
subsample 0.6, 0.8, 1
max depth 3, 6, 10
number of estimators 100, 500
colsample by tree 0.1, 0.5, 1.0

SVM balancing technique SMOTE, Upsampling, None
C 0.1, 5, 10
gamma 1, 0.1, 0.01
kernel linear, rbf

MLP balancing technique SMOTE, Upsampling, None
activation tanh, relu
solver sdg, adam, lbfgs
alpha 0.06, 0.05, 0.004
learning rate constant, adaptive

Table A.10.: Binary Mind Wandering Classification Results.
Model F1 Score Precision Recall AUC-PR
Random forest 0.474 0.424 0.538 0.399
XGBoost 0.488 0.479 0.497 0.453
SVC 0.474 0.435 0.525 0.471
MLP 0.529 0.460 0.624 0.463
Chance Level 0.384 0.387 0.383 0.401
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A.1. Temporal Dynamics of Meta-Awareness of Mind Wandering

Table A.12.: The 10 Most Important Gaze Features in Random Forest Classification of
Meta-Awareness in Mind Wandering.
Gaze Feature Gini importance
Fixation Saccade Ratio Std 0.048
Saccade Velocity Average Quantile 75 [°/s2] 0.017
Fixation Average Pupil Diameter Std [mm] 0.016
Saccade Duration Min [ms] 0.014
Saccade Velocity Peak Std [%] 0.014
Veregence Angles Mean [rad] 0.012
Blink Duration Quantile 75 [ms] 0.012
Fixation Duration Min [ms] 0.011
Pupil Distance Std [px] 0.011
Saccade Velocity Peak Median [%] 0.010
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A.2. Detecting Aware and Unaware Mind Wandering During
Lecture Viewing: A Multimodal Machine Learning Approach
Using Eye Tracking, Facial Videos and Physiological Data

A.2.1. Abstract

Learners often experience aware and unaware mind wandering during educational tasks,
both negatively impacting learning outcomes. Differentiating these types of task-unrelated
thoughts is crucial, as they stem from different cognitive processes and warrant tailored
support that addresses the specific nature of mind wandering. Automated detection
of these episodes could help mitigate their adverse effects, for example, by developing
adaptive, attention-aware learning environments. In this study (N = 87), we explored
a novel multimodal approach, combining eye tracking, facial videos, and physiological
wristbands (i.e., electrodermal activity and heart rate), to predict aware and unaware mind
wandering during lecture video watching. In addition, to allow comparison to previous
research, we also predicted an integrated mind-wandering category. Mind wandering was
assessed using 15 two-stage thought probes to determine task-unrelated thoughts and the
participants’ awareness of their mind wandering. Our findings indicate that a multimodal
approach, utilizing the top 100 features from the fused data, outperforms unimodal methods.
Specifically, aware mind wandering was detected at 20% above chance (AUC-PR = 0.396),
unaware mind wandering at 14% above chance (AUC-PR = 0.267), and the combined
category at 40% above chance (AUC-PR = 0.637). Eye tracking and video features proved
more predictive than physiological measures when used as standalone modalities. SHAP
analysis, employed to explain the results, highlighted the significance of integrating features
from all three modalities for effective detection, particularly emphasizing the role of video-
based facial expressions in identifying unaware mind wandering. Going beyond the current
state of the art, this study demonstrates the potential of leveraging multimodal data to
enhance the precision of aware and unaware mind-wandering detection and differentiation,
setting a foundation for advancing educational technologies that respond dynamically to
learners’ cognitive states.

A.2.2. Introduction

Learners’ minds wander about 30% of the time spent in learning activities, preventing them
from absorbing learning content, which in turn has a negative effect on learning outcomes
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[33]. Mind wandering is defined as a shift of attention away from the current task to
task-unrelated thoughts (TUTs) [30]. Specifically in remote learning and self-study settings,
like video lecture viewing, learners experience mind-wandering episodes [237, 9, 39, 40, 41],
presumably as they offer less external support to sustain attention on a given learning task.
One way to promote learners’ self-regulation in such situations is through attention-aware
learning technologies [70, 71, 183]that can provide support measures or adapt learning
content based on the learners’ needs. The prerequisite for such supportive measures is
the automated detection of mind wandering using observable indicators. Several studies
have explored this automated detection [88, 143] and demonstrated the suitability of eye
tracking [143], physiological signals, such as skin conductance [91] and heart rate [97], and
facial video recordings [73, 75] as input modalities for mind-wandering detection. Beyond
unimodal approaches, several studies combined two or more modalities [96, 91, 74, 176].

The goals of combining different modalities are to enhance performance and increase
robustness by compensating for temporarily noisy data, resolving ambiguities, and lever-
aging correlations across modalities [184]. A recent meta-analysis by Kuvar et al. [174]
found that multimodal approaches combining two or more modalities for mind-wandering
detection consistently outperformed unimodal approaches when directly compared, showing
great opportunities when combining complementary information gathered from different
modalities. However, the review also highlights the modest size of improvements and
between-study differences, showing partially superior detection performance in unimodal
studies. This suggests that feature performance may not be additive and vary across tasks,
warranting further exploration of feature combinations [174]. Motivated by these findings
and going beyond the current state of the art, we employ and compare a novel combination
of modalities in this study, fusing features extracted from eye tracking, facial videos, and
physiological sensors.

In addition, previous research on automated detection has predominantly treated mind
wandering as a unitary state. However, mind wandering is not a homogeneous construct
[42]. Individuals may engage in TUTs without noticing them, without meta-awareness, also
called “zone-out” [30, 50, 146]. However, over time, a person usually catches their mind
wandering and gains awareness of the content of thoughts. The person then may redirect
their attention to the task. However, people also report engaging in TUTs with meta-
awareness [52, 50], so-called “tune-outs.” In such a case, the individual is not able or willing
to direct their attention back to the learning task. Those two types of mind wandering–
aware and unaware–are neurologically dissociable [57], therefore are hypothesized to have
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distinct underlying cognitive processes and appear to have distinct effects on learning [185,
1]. During the task of lecture video watching, persistent zone-out patterns are associated
with lower fact- and inference-based learning, whereas persistent tune-outs mostly had a
negative impact on deep-level understanding [1]. This suggests that different interventions
or forms of support are needed in case of the prevalence of either mind-wandering type,
like suggesting a short break or taking notes in contrast to adapting the content difficulty.
This highlights the importance of distinguishing mind wandering along the lines of meta-
awareness for automated detection. An initial study using gaze data to model the awareness
levels of mind-wandering showed the potential to automatically differentiate between the
two types of mind-wandering [1].

Novelty and Contribution

The present research explores, for the first time, the automated detection of aware and
unaware mind wandering, employing a novel combination of modalities, namely eye
tracking, video, and physiology, namely heart rate and electrodermal activity (EDA).
This study makes several important contributions to research on mind wandering and
learning. First, it compares and contrasts prediction performances across three individual
and combined modalities for different categories of mind wandering observed during lecture
viewing. We present an in-depth analysis of which features, derived from which modalities,
most significantly influence the recognition of aware, unaware, and combined forms of
mind wandering. Furthermore, this research contributes to a deeper understanding of
the temporal dynamics of mind-wandering meta-awareness and its impact on learning
outcomes. Demonstrating automated detection and differentiation of mind wandering
by meta-awareness levels will enable continuous and fine-grained assessments in future
research into the causes, effects, and mitigation strategies for mind wandering during
learning. Consequently, this study lays a crucial foundation for further developing effective
adaptive learning technologies and targeted interventions to support learners in remote
learning environments.

A.2.3. Related Work

Automatically detecting mind wandering during learning is challenging, as mind wandering
is an internal cognitive process that even human observers cannot detect [62]. Therefore, the
ground truth typically used to train detection models is self-reports gained by experience
sampling. These self-reports are either gathered in a probe-caught or self-caught fashion
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[238]. In the first case, participants are interrupted at specific time points during a task
and asked where their attention was directed; in the latter, participants report, for instance,
via a key press, when they catch themselves mind wandering (i.e., become aware of it).
However, there is evidence that mind wandering is also reflected in observable indicators.
Various sensors, in conjunction with machine learning algorithms, have been employed to
automatically assess mind wandering non-intrusively during various learning tasks [174].
We focus on eye tracking, video, and physiological EDA and heartrate modalitites employed
in this study. Other modalities used encompass, for instance, log data [105] and EEG [164,
289].

Unimodal Mind Wandering Detection Approaches

Eye-Tracking-Based Detection The most popular and most successfully employed modal-
ity is eye tracking [174]. Due to the mind-eye link, cognitive processes are reflected in eye
movements [119, 118, 120], and task-demand-specific gaze indices have been linked to mind
wandering [148]. D’Mello, Cobian, and Hunter [290] used eye-tracking derived global and
local gaze features to detect TUTs during reading, achieving a Kappa of 0.23. Similarly,
Faber, Bixler, and D’Mello [291] predicted mind wandering during reading, employing
global gaze features and achieving AUROCs of 0.64 (28% above chance). Developing mind
wandering detection during narrative film watching Mills et al. [90] employed local and
global gaze features, achieving an F1 score of 0.49 (29% above chance). For detection during
video lecture viewing Hutt et al. [89] used global and local eye-tracking features, achieving
an F1 score of 0.47, which was 24% above the chance level (0.30), using 30-second windows.
Zhao, Lofi, and Hauff [268] compared webcam-based gaze estimation to eye-tracking for
mind wandering detection during massive open online courses (MOOCs), finding similar
SVM classifier performance with an F1 score of 0.41 (16% above chance) for eye tracking
and F1 score of 0.40 (11% above chance) for webcam features. Bixler and D’Mello [92]
examined cross-domain predictions of TUTs, achieving a 21% improvement over chance
(F1 = 0.57) for within-dataset predictions on a video lecture task using global gaze features
from 40-second windows. Several studies combined eye-tracking-derived features with some
contextual features, mostly derived from the stimulus, which could already be considered a
form of multimodality. Bixler and D’Mello [69] employed a combination of gaze features
derived by eye tracking and context features (e.g., reading time, words skipped) to predict
TUTs during reading, achieving a Kappa of 0.31. Hutt et al. [143] also fused global gaze
and contextual features (i.e., pretest score, time into session) during intelligent tutoring
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system (ITS) usage, achieving F1-scores of 0.49 (37% above chance). In a follow-up study
on the same ITS, Hutt et al. [292] brought their study from the lab to a classroom setting
and added local gaze features, achieving F1-scores of 0.59 (46% above chance). In a recent
study Bühler et al. [1] attempted to automatically differentiate meta-awareness of mind
wandering during lecture video watching, employing global gaze features and achieved
prediction accuracies of 12% (F1= 0.33) and 9% (F1= 0.22) above chance level for aware
and unaware TUTs.

Video-Based Detection Another strand of literature focused on the more scalable use of
facial videos. A simple webcam, built-in in most personal computers, can enable low-cost,
in-the-wild assessment. Features like facial expressions, head pose, and appearance-
based gaze estimation can be extracted from those videos. Stewart et al. [72] initiated
webcam-based mind wandering detection during film viewing in a lab, achieving an F1

score of 0.39 (13% above chance) using SVM on aggregated facial features from 45-second
windows. Subsequently, Stewart, Bosch, and D’Mello [190] explored cross-task classification,
predicting TUTs in reading from film-watching data with a C4.5 decision tree, achieving
F1 scores of 0.41 and 0.44 (21% and 22% above chance) for film to reading and vice versa.
Bosch and D’Mello [73] conducted mind wandering detection using facial features in lab
and classroom settings during reading tasks and ITS usage, respectively, achieving F1

scores of 0.478 and 0.41 (25% and 20% above chance). Adopting a similar approach in
in-the-wild settings, Lee et al. [75] detected mind wandering during lecture viewing using
webcam videos. The authors expanded the set of video-derived features to extract gaze
dynamics, emotion prediction, and head movement, achieving an F1 of 0.36 (15% above
chance) with XGBoost. Hutt et al. [80] conducted in-the-wild studies using webcam-based
eye tracking for reading tasks, achieving an F1 score of 0.25 (9% above chance).

Physiology-Based Detection The third set of modalities employed in mind wandering
detection research is physiological sensors, which are meaningful due to the relationship
between physiological arousal and attention states [160]. Blanchard et al. [95] used a
combination of physiology, namely skin conductance and skin temperature, with context
features, for instance, text difficulty and time elapsed, as input for their detector during
a reading task, achieving Kappa of 0.22. Additionally, episodes of mind wandering were
associated with increased heart rate due to heightened arousal, [50]; thus, this physiological
marker has also been utilized for automated detection [97]. Heart rate measures and lecture
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content features were merged in a study by Pham and Wang [97] on learning with MOOCs,
obtaining a Kappa of 0.22. Heart rates were extracted from image frames via mobile
cameras, capturing participants’ fingertips, so-called photoplethysmography sensing.

Multimodal Mind Wandering Detection Approaches

All those modalities capture different observable indicators of mind wandering. Therefore,
several researchers have aimed to combine modalities to improve the precision and robustness
of predictions. Bixler et al. [96] combined gaze, physiological (i.e., skin conductance and
temperature), and context (e.g., time on task, difficulty) features for mind wandering
detection during reading. The authors achieved a Kappa of 0.19 with feature-level fusion,
representing an 11% improvement over the best-performing unimodal approach. Similarly,
Brishtel et al. [91] employed eye tracking, EDA, and questionnaire (i.e., interest) features
during a reading task. The best models obtained prediction accuracies of Kappa 0.41. A
recent study by Khosravi et al. [176] explored merging physiology, galvanic skin response,
and heart rate with eye tracking during video watching, reporting accuracies of 0.90.
A study that fused video and eye tracking features was presented by Hutt et al. [74].
The fusion (F1= 0.45; 29% above-chance accuracy) could not improve over the unimodal
approach only employing eye-tracking features (Global gaze features F1= 0.45, 29% above-
chance accuracy; local gaze features F1: 0.49, 34% above-chance accuracy), which also
outperformed the facial-feature based classifier (AUs F1: 0.31, 10% above-chance accuracy;
co-occurring AUs F1: 0.3, 9% above-chance accuracy). However, a fusion of both features
could increase robustness by accounting for missing values in one of the two modalities.

All of these studies, with the exception of Bühler et al. [1], have in common that
they predicted a unitary mind-wandering state. In this study, we compare more fine-
granular mind-wandering definitions to a combined mind-wandering category and dissect
how different modalities contribute to predicting these categories. For this, we employ a
novel combination of previously successfully utilized modalities: Eye tracking, video, and
physiology (EDA and heart rate) to assess TUTs at a more fine-granular level, distinguishing
between aware and unaware mind wandering.
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A.2.4. Methods

Data

Participants In this study, we collected data from 96 university students. Due to technical
issues during data collection, six participants had to be excluded, and an additional three
were excluded for not having native-level language proficiency, which was a prerequisite
to understanding the lecture, resulting in a final sample of 87 participants for analysis.
The age range of participants was 19 to 33 years (M = 23.44, SD = 2.6), with 19% of the
sample being male.

Study Procedure Participants watched a 60-minute prerecorded Zoom lecture video
on introduction to statistics. The lecture video comprised both lecture slides and the
lecturer’s webcam image. The participant’s eye gaze, facial videos, and physiological
data were recorded. Remote SMI eye trackers with a sampling frequency of 250 Hz were
used for eye tracking. Facial videos of the participant were recorded using off-the-shelf
webcams (1090p, 30 frames per second). E4 Empatica wristbands were employed to collect
physiological data, recording EDA (4Hz) and blood volume pressure (BVP; 64Hz). To
gather mind-wandering self-reports, 15 thought probes were interspersed at 3- to 5-minute
intervals. The session included a mid-point recalibration of the eye trackers. Including pre-
and post-questionnaires, the entire session lasted approximately 120 minutes. Participants
received 20€ for their participation. The ethics committee of – blinded for review – approved
our study procedures, and all participants gave written consent to the data collection.
Parts of this dataset, specifically self-reports and gaze data, have previously been used for
analysis in Bühler et al. [1].

Mind Wandering Experience Sampling Mind wandering among participants was assessed
using the probe-caught method, which intermittently asked for self-reports on their thoughts
during the lecture. The lecture featured 15 such probes at 3- to 5-minute intervals.
Participants responded to a two-stage probe (depicted in Figure A.2.1 in the Appendix)
during each interruption. Initially, they were prompted to classify their thought content into
one of six predefined categories or provide an open-ended response. These categories, based
on previous research [46], included several that reflected TUTs, hence mind wandering (i.e.,
everyday personal concerns, daydreaming, current physical or emotional state). The first
three categories, describing following the lecture, lecture-related thoughts, or understanding
of the lecture, were combined due to their close relation to an “On-Task” category. In
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Table A.13.: Data by Mind Wandering Type
Aware MW Unaware MW Combined MW

Class Count Percentage Count Percentage Count Percentage
0 971 75.62% 1092 85.05% 779 60.67%
1 313 24.38% 192 14.95% 505 39.33%
Total 1284 100% 1284 100% 1284 100%

the second stage of the probe, participants reported their meta-awareness of TUTs, which
allowed for categorizing TUTs into aware and unaware mind wandering (MW). This led to
a final classification of thoughts into three categories: “On-Task” (n=779), “Aware MW”
(n=313), and “Unaware MW” (n=192). These self-reports then served as labels for the
machine-learning approach.

As each participant answered 15 thought probes, the total dataset comprised 1305
instances. Unfortunately, the eye trackers had occasional recording failures. A known
deficiency of eye trackers is that tracking failures are sometimes recorded as unusually long
blinks [206]. Therefore, blinks longer than 500 ms (i.e., those exceeding an expected blink
duration range between 100 to 400 ms; [207]) were excluded. These recording failures led
to entirely missing eye-tracking data for 11 instances. We excluded those from the whole
analysis to ensure comparability between modalities, resulting in a final dataset of 1284
instances, as depicted in Table A.13.

Feature Engineering

We extracted information from all collected modalities for 30-second intervals right before
each thought probe. Window sizes were chosen based on results of previous research,
finding that 30-second windows were the most suitable for mind wandering detection during
lecture video watching Hutt et al. [89].

Eye Tracking Data Eye tracking events (i.e., fixations, saccades, blinks) were extracted
from the raw data employing the proprietary SMI BeGaze Software. This processing
provided details such as event durations, fixation locations, saccade velocities, and pupil
diameters during fixations. We also calculated additional features like the total number of
fixations and blinks, fixation dispersion, saccade length, and eye vergence (see Table A.14
for a list of features). We focused on global gaze features, capturing broad eye movement
patterns across a visual scene, because they are less task-dependent than local features,
which focus on specific areas and, therefore, more generalizable [174] and showed exceeding
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Table A.14.: Feature Groups and Number of Features Extracted from Eye Tracking, Video
and Physiology Modalities.

Modality Feature Group Example Features # # Agg.

Eye Tracking

Fixations Fixation number, duration, dispersion, fixation-saccade ratio 5 37
Saccades Saccade duration, amplitude, acceleration, velocity, length, regression proportion 9 81
Blinks Blink number, duration 2 10
Pupil Diameter Fixation average pupil diameter 1 9
Vergence Vergence angle radians, pupil distance 2 18

Video

Facial Action Units Lid tightener, lips part, jaw drop, blink presence (0,1) and intensities (1-5) 35 315
Face Shape Parameters Face shape location, scale and rotation, non-rigid face deformation parameters (0-33) 40 360
Head Pose Roll, pitch and yaw, head location 6 54
Gaze Left and right eye gaze direction vectors (x,y,z), gaze angels in radians 8 75

Physiology EDA Cleaned signal, tonic, phasic, peak amplitude, peak rise and recovery time 8 72
BVP Cleaned signal, rate, peak 4 36

Total 120 1064

Note. All features that are not already aggregated (i.e., number of fixations) were aggregated over 30
seconds using nine summary statistics (e.g., mean, median, std, etc.).

performance in previous research [143]. To summarize this data over 30-second intervals, we
computed various statistics for each feature, including minimum, maximum, mean, median,
standard deviation, 25% and 75% percentiles, skewness, and kurtosis. After aggregation,
the set comprised 155 global gaze features.

Video Data We extracted facial expressions, head poses, and gaze features from the
recorded facial videos using the OpenFace toolbox [115]. Features included facial action
units (AUs; presence and intensity information) and face shape parameters, describing
the rigid face shape (location, scale, rotation) and non-rigid face shape (deformation due
to expression and identity). The head pose was depicted by pitch, yaw, and roll of the
head and the distance to the camera. Additionally, it included appearance-based gaze
estimation and deriving gaze vectors and angles. Those features were extracted frame-wise
and summarized using the same aggregation statistics as eye-tracking features, leading to
804 features.

Physiological Data We extracted EDA and blood-volume pressure (BVP), an indicator
for heart rate, from the Empatica E4 wristbands. Both signals were z-standardized within
participants to account for interindividual differences and cleaned using the NeuroKit2
[186] package in Python. We decomposed the cleaned EDA signal (4 Hz) into phasic
(i.e., phasic skin conductance response; SCR) and tonic (i.e., tonic skin conductance level;
SCL) components using NeuroKit2’s standard method. The phasic component reflects
stimulus-dependent fast-changing signal parts, i.e., it describes peaks in the signal; more
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Figure A.26.: Mind Wandering Detection Pipeline.

specifically, their amplitude, height, and time taken to rise (rise time) and fall again
(recovery time). The tonic component describes the slowly changing, continuous EDA
baseline signal. A PPG sensor with a 64 Hz sampling frequency measured the BVP signal,
providing information on its frequency and shape. We preprocessed the BVP signal using
the NeuroKit2 package, resulting in a cleaned BVP signal, the rate (i.e., heart rate baseline),
and peaks (i.e., systolic (local maxima) and diastolic (local minima) peak points in the
signal). Feature aggregation over time, as described above, resulted in 72 EDA and 36
BVP features and, consequently, 108 physiological features. After combining all modalities
by feature concatenation, the complete dataset entailed 1064 features.

Supervised Classification

Multimodal Fusion We conducted three binary classification tasks to predict both types of
mind wandering—aware and unaware—separately and combined. We utilized all available
modality feature sets separately and in combination for each task. Following an early fusion
approach, we integrated the modalities at the feature level by concatenating aggregated
feature arrays. An overview of the classification pipeline is depicted in Figure A.26. Feature
level fusion was also found to outperform decision level fusion in previous research [96].
We implemented mean imputation for missing values and scaled the data. Due to the
temporal aggregations resulting in constant features (i.e., min values of AUs were often 0),
a variance threshold of 0 was applied to remove these features.

Model Building To address the highly imbalanced nature of the data, we applied SMOTE
[182] or random oversampling to balance the classes during training. Using the sklearn
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[288] package in Python, we trained Random Forest (RF), Support Vector (SVC), and
Multi-layer Perceptron (MLP) classifiers, as well as XGBoost (XGB) utilizing the XGBoost
[293] package. We primarily relied on default parameters, making adjustments to prevent
overfitting. For the RF classifier, we set the maximum depth to 50. For the MLP classifier,
we implemented early stopping, and for XGB, we tested learning rates of 0.3 and 0.1.

We employed the explainability (XAI) method SHAP (SHapley Additive exPlanations)
[178] to generate explanations of the trained multimodal models for each of the mind-
wandering types. SHAP generates post-hoc, local explanations by calculating Shapley
values. These Shapley values gave us insights into how different features contributed to
the overall prediction of the different mind-wandering types by quantifying the influence
per variable on the outcome’s difference from the base value (i.e., the average prediction).
Positive Shapley values indicate an increase and negative values indicate a decrease in
the model’s prediction [178]. The feature fusion increased the size of feature vectors to
over a thousand, and large feature vectors can lead to overfitting and exacerbate the curse
of dimensionality, which increases the data sparsity and requires more data. Therefore,
according to the SHAP analysis, we retrained the models only on the 100 most important
features.

Validation To maximize training data while ensuring individual independence, we em-
ployed Leave-One-Person-Out Cross Validation, testing up to 15 instances stemming from
one individual and training on all other instances. To evaluate the performance of the clas-
sifiers on our highly imbalanced dataset, we focused on the area under the precision-recall
curve (AUC-PR) of the minority class’ mind wandering. We focus on this metric over
commonly used threshold metrics as F1 scores because they can be driven by high recall
and low prediction precision [187]. Such a discrepancy results in a high number of false
positives in mind-wandering detection, making it problematic to apply these classification
algorithms, for instance, in delivering interventions. The rank method AUC-PR, in contrast,
shows precision as a function of recall; therefore, it helps to balance the two measures and
is threshold-independent. For a better comparison of performances across mind-wandering
categories with different base rates, we also report the improvement of the model above
the chance level (refer to Appendix A.2.6 for details on the computation).
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Figure A.27.: Avergage Classification Results (Above Chance Based on AUC-PR) by Mind
Wandering Category and Modality Feature Set.

A.2.5. Results

Aware, Unaware, and Combined Mind Wandering Detection

We conducted three separate binary classification experiments to predict aware, unaware,
and a combined mind-wandering class. Classifiers were trained on single-modality-derived
feature sets and fused, multimodal feature sets. To manage the large size of the multimodal
feature vectors, which exceeded a thousand due to feature concatenation, we narrowed the
features down to the top 100 most important ones. This selection was based on the SHAP
analysis from the best-performing classifier for each category of mind wandering. Notably,
each of the 100 feature subsets contained features of all three modalities. After selecting
these features, we re-trained all classifiers using these refined feature sets. The classification
results are in Table A.15. For all three predicted mind-wandering categories, we found that
multimodal classifiers trained on the top 100 features outperformed unimodal approaches.
Multimodal approaches trained on the whole feature set not or only slightly (combined
MW) outperform unimodal approaches. However, when focusing on only about 10% of
the best features, the improvement over unimodal approaches becomes more distinct, as
depicted in Figure A.27.

For aware mind wandering, an AUC-PR of 0.396, representing a prediction accuracy of
20.21% above chance, was obtained when training on the 100 most important multimodal
features. For aware mind wandering, the most predictive modality in unimodal approaches
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is eye tracking, identifying these instances 9% above chance. Turning to unaware mind
wandering, the highest AUC-PR of 0.267, approximately 14% above chance (chance level
being 0.151), can be achieved using the 100 most important features from the multimodal
dataset. In contrast to aware mind wandering, the most successful unimodal approach was
based on video-derived features, predicting unaware mind wandering 7% above chance.
We formulated the detection tasks as binary classifications, necessitating combining one of
the two distinct mind-wandering categories with on-task instances into a single negative
category. One could assume that the two mind-wandering categories are more similar to
one another and, therefore, harder to distinguish. To explore this, we analyzed misclassified
examples to determine the composition of false positives. Our findings reveal that for
aware mind wandering, only 15% of false positives were actually unaware mind wandering
instances, while 85% were on-task instances. This means only 8% of unaware mind
wandering instances were classified as aware mind wandering. Conversely, for unaware
mind wandering classification, 25% of false positives were aware mind wandering instances,
and only 12% of all aware mind wandering instances in the data were classified as unaware
mind wandering. This analysis suggests that the two mind-wandering categories are
distinguishable within a binary classification framework. When integrating aware and
unaware mind wandering into one category, models trained on a set entailing eye tracking,
video, and physiological features obtained an AUC-PR of 0.637, a prediction of about
40% above chance (chance level being 0.393). For this broader mind-wandering definition,
overall eye tracking-based classifiers (16-18% above chance) perform best when comparing
unimodal approaches, except for the video-based XGBoost classifier (21% above chance).

In all three experiments, physiological features were the least predictive of mind wandering
when used as a standalone modality. However, physiological features were included in
the 100 most essential features of multimodal classifiers, highlighting their importance in
the prediction, potentially in correlation with other modalities. There is no clear trend
regarding which of the tested classifiers is the best suited for which classification problem
or feature set.

Feature Importance Analysis

Using the XAI method SHAP [178], we generated explanations for the test set predictions
based on the best-performing classifier for each classification problem. Figure A.28 depicts
SHAP summary plots – one for each mind-wandering type – giving information on the top
15 most influential features (on the y-axis) for the model’s prediction. Each dot in the plot
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represents one instance in the test set, and the color represents the feature value from low
(= blue) to high (= red). Positive Shapley values indicate an increase and negative values
indicate a decrease in the model’s prediction [178].

For aware mind wandering detection, the model used features stemming from all three
modalities, as seen in the first plot. Taking a look at the most important feature, minimum
saccade velocity peak, which describes the lowest peak velocity recorded for eye movements
between two fixation points, we observed a mixed pattern in the SHAP values, i.e., low
saccade velocity peak minima were related to positive and negative Shapley values. This
hints that potential interactions with other features, as well as complex non-linearities,
have an impact. A similar relationship was found for the eye tracking-based feature
median durations of saccades, where shorter saccades seem to have both positive and
negative impacts on predictions. In contrast, peaks in the 75% quantile of saccade velocity
seemed to have a linear effect on the prediction, with higher peaks in the 75% quantile of
saccade velocity peaks being associated with positive predictions. In addition, we found
a negative impact of smaller maximum pupil diameters during fixations on aware mind
wandering predictions. Key features obtained from video data include facial expressions
like AUs encoding upper eyelid raising and lip stretching, as well as face shape parameters.
Additionally, maximum horizontal gaze angle and head pose (pitch) are important features.
Regarding the physiological features, the kurtosis of the cleaned BVP signal and the 25%
quantile and kurtosis of the tonic signal were important, also showing a mixed impact on
the outcome, hinting again at non-linearities and higher-order interactions between the
input variables.

From the SHAP summary plot for the unaware mind wandering classifier (center in
Figure A.28), the model evidently used predominantly facial expression features derived
from the video recordings for prediction. The top 15 features are exclusively summary
statistics of the presence of certain AUs during the regarded time frame. More specifically,
the presence of facial action units describing a lip suck, lid tightener, and upper lid raiser
contributed negatively to the prediction, as higher values of this feature were associated
with negative mind-wandering model outputs. This might be typical facial expressions
associated with concentration. In contrast, higher values in aggregations of AUs depicted
brow lowering, nose wrinkling, lip tightener, or more blinks, tilting the prediction towards
unaware mind wandering.

The top 15 features for integrated aware and unaware mind-wandering predictions
consisted of a mixture of video and eye-tracking features. We found blink intensities
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extracted as AU from video data to be especially important. For example, lower skew
values, indicating a skew towards more frequent, higher blink intensities, push the model
towards mind-wandering predictions, similar to the effects of more frequent blinks observed
for unaware mind wandering. Further gaze-related features extracted from facial videos, like
the maximum, standard deviation, and skew of horizontal gaze angles, strongly impact the
model. Higher values in maximum horizontal gaze, indicating fixations of further right areas
on the screen, where the instructor image was located, push the predictions towards mind
wandering. Lower standard deviations in gaze angle, indicating less horizontal dispersion of
fixations, are associated with negative mind-wandering predictions. In contrast to the aware
mind wandering predictions, we found a mixed impact of facial expression features, like
different face shape parameters, upper lid raiser lips part, and lip stretcher AUs. Similar
to the aware mind wandering predictions, we found a mixed relation of minimum saccade
velocity peak and a negative impact of small maximum pupil diameters on combined mind
wandering predictions.

A.2.6. Discussion

Main Findings

In this study, we explored a novel combination of modalities to predict aware and unaware
mind wandering, as well as combined mind wandering during video lecture watching in
the lab. We found that combining the three modalities, eye tracking, facial videos, and
physiology, improves the accuracy of mind wandering prediction over single modalities.
This finding was consistent over the three different mind-wandering categories we predicted.
The highest accuracies could be achieved when subsetting the fused multimodal feature
set to the 100 most important features, based on Shapley values. Notably, the top 100
feature subsets of each mind-wandering classification task contained features of all three
modalities, highlighting the importance of multimodality while simultaneously showcasing
opportunities for minimal data use. As hypothesized by Kuvar et al. [174], performances
of modality feature sets are not additive; however, in contrast to previous research, the
improvements over unimodal approaches are considerable in this study.

When comparing prediction accuracies over the three different tasks, 14% above chance
for unaware, 20% for aware, and 40% for integrated mind wandering, it appears that
unaware mind wandering is the most difficult to detect. However, there seems to be a
correlation between the number of instances and detection accuracies, as typically observed
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Figure A.28.: SHAP Summary Plots of Best Performing Classifiers by Mind Wandering
Type. Characters in parenthesis indicate the corresponding feature modality (E = Eye
Tracking, V = Video, P = Physiology).
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in machine learning tasks, suggesting that more data could improve the prediction accuracy.
It remains uncertain whether the low detection accuracy of unaware mind wandering is
truly due to its inherent difficulty to detect or simply because of the limited number of
cases available (192), compared to unaware (313) and combined (505) mind wandering,
restricts the model’s ability to learn effectively. Our analysis of unimodal approaches
revealed differences in performance between individual modalities for detecting aware and
unaware mind wandering. Eye tracking features were, on average, most predictive for
aware mind wandering, while for unaware mind wandering, the models based on features
derived from the facial videos performed best. Physiology, specifically EDA and heart rate
features, displayed the lowest predictive power when used as a standalone modality for all
mind-wandering types.

This modality gains significance when combined with others, as SHAP analysis of best-
performing multimodal models revealed. Key features for predicting aware mind wandering
include saccade velocities, pupil diameter, facial expressions, head pitch, and physiological
signals such as BVP and tonic EDA. For unaware mind wandering, the most critical
features are facial action units, particularly the absence of expressions like lip suck and the
presence of movements like nose wrinkling. These findings suggest a higher predictive power
of facial expressions for this category. However, frequent blinking, a feature associated
with video-based gaze information, also significantly contributes to detecting unaware
mind wandering. For simultaneous prediction of both aware and unaware types, the most
significant features encompass blinks, facial expressions, head distance, horizontal gaze
angle from video analysis, and eye-tracking metrics like saccade velocity peaks and pupil
diameter

The observation that gaze-related features from facial videos had more influence on
predictions than those from eye-tracking may relate to the moderate eye-tracking data
quality in this study, with an average tracking ratio of 82% (std = 22%). Despite these
issues, we opted not to apply strict exclusion criteria, which is common in eye-tracking
research, to maximize data utilization and capitalize on a multimodal approach [184]. We
excluded only time windows where complete eye-tracking data were missing, reflecting a
more naturalistic approach that acknowledges tracking issues in real-world applications.
This approach might explain the lesser influence of eye-tracking features in this study
compared to others [74, 91, 96]. It’s important to note that this reduced influence does not
diminish the overall significance of gaze in detecting mind wandering; rather, the importance
of video-based gaze features underscores its pivotal role. These findings illustrate the
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challenges of using remote eye trackers in realistic, prolonged learning scenarios like lectures
and the increased robustness that additional reliable modalities provide

Applications

This study highlights the complexity of mind wandering in educational contexts, arguing
for the need for differentiated support that considers distinct aspects of meta-awareness.
Utilizing automated, fine-grained detection across multiple modalities could facilitate per-
sonalized learning adjustments and targeted interventions, thereby supporting self-regulated
learning. Potential interventions might include feedback provision, content review prompts,
in-lesson questioning, and material adaptation to enhance learner engagement. However,
most intervention research currently offers only general support, such as intermediate
testing [39] or note-taking [46], without addressing specific attentional states. Initial stud-
ies employing real-time interventions during mind-wandering episodes detected through
automated methods in ITS learning [294] and reading contexts [88] have shown promise
in enhancing long-term retention and comprehension, despite the challenges posed by
moderate prediction accuracies.

This study underscores the opportunity to adress specific types of mind wandering, such
as prompting breaks for learners during unaware episodes or adapting content to mitigate
boredom or frustration during aware episodes. However, given the moderate detection
accuracies, the importance of non-intrusive, confidence-based interventions is emphasized.
Such interventions set a minimum certainty threshold for predictions before implementing
actions, minimizing the risk of inappropriate interventions. The effectiveness of facial
expression features and gaze data, particularly for detecting unaware mind wandering,
supports the viability of scalable detection in naturalistic settings with high-quality video,
as demonstrated in prior research [75]. Furthermore, webcam-based eye tracking has shown
potential for mind-wandering detection [80, 81]. As intelligent learning systems become
increasingly personalized, ethical considerations, privacy concerns, and potential biases also
highlight the need for informed consent, transparency, and careful data management. The
implications of interventions on educational practices and outcomes warrant a thorough
investigation to prevent adverse effects like students becoming overly reliant on automated
support.
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Limitations and Future Work

This study was conducted in a lab setting, allowing for comparatively high data quality,
whereas limiting the ecological validity of our prediction results. Future research aiming at
employing detection for attention-aware learning technologies should test the approach in
more naturalistic learning settings. The limited sample size and the homogeneity of our
participant pool, restricted to university students, might limit the generalizability of our
results to other demographics. Consequently, expanding the sample size and including
more diverse participant groups would enhance the robustness of the findings. Further,
the more accurate detection, with a larger number of mind-wandering instances, indicates
that with a larger dataset size, there is also the potential for more accurate predictions.
Future research should explore the opportunities of employing more sophisticated machine
learning algorithms, such as temporal models, on larger datasets.

Conclusion

Our study demonstrates the improved accuracy of multimodal mind-wandering detection,
fusing eye tracking, video, and physiology, outperforming unimodal approaches during
lecture video watching. It highlights the potential to detect mind-wandering types at a
more fine granular level, specifically to classify aware (20% above chance) and unaware
(14% above chance) mind wandering when employing those modalities. The consideration
of meta-awareness of mind wandering becomes highly relevant when employing automated
detection for attention-aware learning technologies, as the two forms may require tailored
support.
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Research Methods

The full two-stage thought probe employed to assess mind wandering ground truth is
depicted in Figure A.2.1.

Figure A.2.1.: Two-Stage Mind Wandering Thought Probe

The improvement of classification accuracy, defined by AUC-PR, above chance was
computed as follows:

AboveChanceLevel = ActualPerformance − Chance

PerfectPerformance − Chance

A.3. From the Lab to the Wild: Examining Generalizability of
Video-based Mind Wandering Detection

A.3.1. Abstract

Student’s shift of attention away from a current learning task to task-unrelated thought,
also called mind wandering, occurs about 30% of the time spent on education-related
activities. Its frequent occurrence has a negative effect on learning outcomes across learning
tasks. Automated detection of mind wandering might offer an opportunity to assess the
attentional state continuously and non-intrusively over time and hence enable large-scale
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research on learning materials and responding to inattention with targeted interventions.
To achieve this, an accessible detection approach that performs well for various systems and
settings is required. In this work, we explore a new, generalizable approach to video-based
mind wandering detection that can be transferred to naturalistic settings across learning
tasks. Therefore, we leverage two datasets, consisting of facial videos during reading
in the lab (N = 135) and lecture viewing in-the-wild (N = 15). When predicting mind
wandering, deep neural networks (DNN) and long short-term memory networks (LSTMs)
achieve F1 scores of 0.44 (AUC-PR = 0.40) and 0.459 (AUC-PR = 0.39), above chance
level, with latent features based on transfer-learning on the lab data. When exploring
generalizability by training on the lab dataset and predicting on the in-the-wild dataset,
BiLSTMs on latent features perform comparably to the state-of-the-art with an F1 score
of 0.352 (AUC-PR = 0.26). Moreover, we investigate the fairness of predictive models
across gender and show based on post-hoc explainability methods that employed latent
features mainly encode information on eye and mouth areas. We discuss the benefits of
generalizability and possible applications.

A.3.2. Introduction

Attention plays a central role in learning and knowledge construction [8]. However, a recent
meta-analysis by [33] showed that about 30% of the time learners spend in educational
activities, their thoughts are elsewhere. This shift of attention away from the current task
to task-unrelated thought is called mind wandering [30]. [33] further demonstrated that
frequent occurrence of task-unrelated thoughts during learning is significantly associated
with lower test performance and explains about 7% of the variability in learning outcomes.
This negative relationship holds equally for surface and inference-level learning and is
consistent across tasks. For instance, mind wandering has shown to have a negative effect
on reading comprehension [34, 35, 36, 37, 38] and lecture retention [9, 39, 40, 41].

This evident effect of mind wandering on learning should not be neglected. Therefore,
learning environments - physical as well as online - aim to create appealing conditions
that allow students to focus their attention on the relevant content and support successful
learning. The Covid19 pandemic has greatly accelerated the use [295] and development
[296] of online learning tools at all levels of education. These include intelligent tutoring
systems (ITSs), massive open online courses (MOOCs), as well as online lecture portals. To
support learners in online learning settings, one can either improve the presented learning
materials in a way that decreases mind wandering, for instance, by making texts more
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interesting [37], or one can try to direct attention back to the learning task, for instance,
through targeted interventions [e.g., 88].

One step that is foundational to those two approaches to support learners is the automated
detection of mind wandering, as it allows for continuous and unobtrusive measurement of
the state of attention over time. It can be used to test and optimize learning materials
and to conduct further research on the conditions under which mind wandering occurs and
its effects on learning outcomes. At the same time, it offers online learning systems the
possibility to implement targeted interventions to respond to the learners’ shift of attention
with adaptive and supporting actions. It has been demonstrated that such automated
interventions can reduce mind wandering and thus support learning. For example, feedback
following eye-tracking-based mind wandering detection mitigated its negative effect on
reading comprehension during computerized reading [183, 88]. Furthermore, repetition
and questioning interventions based on automatically detected mind wandering reduced
mind wandering and improved retention of students with low prior knowledge in an ITS in
certain cases [294].

Mind wandering detectors using supervised machine learning mostly rely on data from
modalities such as eye trackers [89, 188, 74, 148, 144, 88] or physiological sensors such
as EEG [297, 298]. While these modalities provide very useful process information, the
use of such sensors requires a well-controlled environment, is quite costly, and is difficult
to scale. However, another strand of recent research has shown that mind wandering
can also be detected above chance level using video recordings of the face obtained from
consumer-grade webcams, such as those found in almost all laptops [73, 75]. The use
of video recordings enables the detection of mind wandering on a large scale in natural
environments where online learning systems are commonly used, such as classrooms or
homes.

Video-based mind wandering detectors have the potential to be used in many different
systems and environments. Intelligent user interfaces for learning can combine multiple
stimuli, such as text and video, and may be used globally, i.e., by culturally diverse target
groups. However, to train suited machine-learning models, labeled ground truth data
is needed, i.e., collecting learner self-reports makes the whole process time-consuming,
effortful, and costly. Thus, approaches that generalize well across different settings, learning
tasks, and target groups are required in order to ensure the applicability of such solutions.

To obtain generalizability, facial features rather than gaze features, which are highly
predictive but also highly stimulus dependent [148], are suitable as they can achieve greater
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transferability between tasks. In this study, we use transfer-learning-based features trained
on a dataset of facial expressions in the wild [191], i.e., on a highly diverse set of facial
images. Previous research has shown that affective features such as facial action units
(AUs) and predictions of emotional state are informative for predicting mind wandering [72,
73]. However, this could pose a challenge when thinking about generalizing models across
subject groups with different cultural backgrounds, as there is an ongoing scientific debate
about the universality of facial expressions of emotion across different cultures [197, 198,
189]. This could have implications for cross-cultural generalizability when using features
derived from such classification tasks. This highlights one of the major limitations of
previous approaches—namely, the lack of sample diversity and the unexplored effects on
algorithms, which may bias results and impact generalizability [174].

The goal of the present work is to examine the generalizability of video-based mind
wandering detection. Towards this goal, we investigate whether (1) a new feature set
based on transfer learning of facial-expression recognition can be used in combination
with temporal models exploiting temporal relationships in video data to improve model
performance compared to explicit facial features. Furthermore, (2) we explore the potential
of its generalization across two datasets that differ with regard to the environment (lab
vs. in the wild), task (reading vs. watching a video lecture), and cultural background of
the target groups (American vs. Korean students). We then (3) examine the fairness of
our models across genders and (4) use explainable AI tools to investigate the information
encoded in latent features. Accurate detection of mind wandering is the first critical
step towards large-scale research and adaptive learning technologies that aim to enhance
engagement and learning outcomes.

A.3.3. Related Work

The automated detection of mind wandering episodes allows measuring this state non-
obtrusively and continuously over time. This is achieved by employing machine learning
methods and self-reports from learners as ground truth. Here, self-reports are used because
an objective, reliable measurement by neurophysiological or behavioral markers is not
possible so far [299]. When collecting self-reports with the probe-caught method, subjects
are repeatedly interrupted by a probe and explicitly asked about the direction of their
attention [30], while in the self-caught method, participants are instructed to report
whenever they become aware of their own shift of attention [146]. Research suggests that
both approaches allow for reliable measurement of mind wandering [300, 68]. Self-reports
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are associated with physiological signals [150, 95, 57] and consistently correlate with
objective performance measures [301], demonstrating predictive validity. Moreover, the
datasets on which mind wandering is examined are all very unbalanced with approximately
25-30% mind wandering rates. Therefore, the results of the prediction are reported using
the F1 measure, which represents a harmonized mean of precision (proportion of predicted
mind wandering instances that are truly mind wandering) and recall (proportion of true
mind wandering instances predicted as mind wandering). The reported improvement over
chance level is the proportion of above chance performance of the perfect above chance
prediction. For more details on the evaluation metrics, we refer the reader to section A.3.4.

Most studies on automated mind wandering can be divided into two main strands
according to the sensing modalities used for the detection: Eye tracking and physiological
measures, and video recordings. Therefore, in the following, we review this research focusing
on these areas and describe the novelty of our study.

Eye-tracking and Physiological Sensor-based Approaches

Most research on mind wandering detection has focused on eye movement data obtained by
eye trackers. According to the so-called mind-eye link, cognitive processes are reflected in
eye movements [119, 118, 120] thus making eye tracking suitable to identify mind wandering.
Global gaze features, such as fixations and saccades, as well as locality features describing
the spatial properties of gaze have widely been used in research to estimate attentional
states during a variety of learning-related tasks such as reading [87, 267, 254, 88], watching
video lectures [89, 149, 144] or using an ITS [74]. Also cross-task prediction of such features
was examined [148, 302]. Additionally, pupil size and blink rates have been shown to be
meaningful features to off-task thought detection [55, 91].

Further, several physiological sensors are utilized for mind wandering detection. Electro-
dermal activity (EDA) was used as a standalone modality [95] and in combination with
eye tracking [91] for mind wandering detection during reading. Furthermore, an increased
heart rate was detected in mind wandering episodes due to greater arousal [50], thus being
deployed for automated detection as well [97]. Another way of assessing mind wandering is
using EEG [297, 298, 164, 289], which has also been employed for learning related mind
wandering during the watching of online lectures [164, 289].

The collection of data employing eye trackers or physiological sensors requires highly
controlled settings (i.e., laboratory). Consequently, most of the studies were conducted in
a lab setting, with the exception of Hutt et al. [74]; who used commercial eye trackers in
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a classroom setting. Furthermore, respective modalities are often very expensive, which
again limits scalability. The alternative of video-based detection is more cost-effective.
Consumer-grade webcams can be employed and thus detection can be upscaled easily in
naturalistic settings (e.g., at home or in the classroom). Therefore, in this study, we focus
on mind wandering detection based only on facial videos.

Video-based Approaches

The first approach to detect mind wandering based on facial videos from webcams was
provided back in 2017 by [72]. The authors predicted self-reported mind wandering during
narrative film watching in a laboratory setting, based on features such as AUs, head pose,
face position, face size, and gross body movement. Employing support vector machine
(SVM) models, they achieved an F1 score of 0.39, which is an improvement of 13% above
chance level, on aggregated features from 45-second windows. In a following study, the
potential of cross-task classification in laboratory settings was shown, by predicting mind
wandering on a reading task from a model trained on mind wandering from a film watching
task and vice versa [190]. Employing the same feature set as in the previous study and a
decision tree based C4.5 classifier, their models generalized well and almost maintained
within-dataset prediction performance when training on film watching data and predicting
reading data (F1: 0.407; 21% above chance level) and also after adjusting the classification
threshold the other way around (F1: 0.441; 22% above chance level).

In a laboratory experiment to detect mind wandering during MOOCs, [268] implemented
webcam-based gaze estimation and compared it to predictions with specialized eye-tracking
data. With probe-caught mind wandering reports as ground truth they concluded that
SVM classifiers on both data sources perform equally well with the webcam-based approach
achieving an F1 score of 0.405, a 16% above-chance improvement.

Another recent study by [73] examined face-based mind wandering detection in the
laboratory during a reading task with self-caught mind wandering reports and in the
classroom during the usage of an ITS based on probe-caught mind wandering reports. In
addition to AUs, head pose, and body movement, they hand-crafted new features depicting
co-occurring AUs, temporal dynamics of AUs, and facial texture. In the classroom setting,
those features were extracted in real-time, avoiding the recording of children due to privacy
concerns. With SVM and deep neural networks on aggregated features sets over 10-second
windows, they achieved F1 scores of 0.478 in the lab and 0.414 in the classroom setting,
which represents 25% and 20% above-chance improvements respectively. Although eye-
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tracking features (Global gaze features F1: 0.45, 29% above-chance accuracy; Locality gaze
features F1: 0.49, 34% above-chance accuracy) outperform a facial-feature based approach
(AUs F1: 0.31, 10% above-chance accuracy; Co-occurring AUs F1: 0.3, 9% above-chance
accuracy) for mind wandering detection while using an intelligent tutor system in the same
classroom setting [74], a fusion of both features could increase robustness by accounting
for missing values in one of the two modalities.

In a recent paper by [75] mind wandering detection based on facial webcam videos
during lecture viewing in the wild, for example at home, was examined. Gaze-related
features (i.e., speed, dispersion, horizontal movement ratio), Eye Aspect Ratio (Eye-Aspect
Ratio (EAR)) features, head movement, as well as emotion predictions, were extracted
from facial videos. They employed eXtreme Gradient Boosting (XGBoost), Deep Neural
Network (DNN), and SVM classifiers on different time windows, achieving the best results
with XGBoost with an F1 score of 0.36 (15% over chance level improvement) utilizing
10-second windows.

Adopting webcam-based eye tracking for reading tasks, [80] executed two in-the-wild
studies: the first recruited participants through a university, and the second utilized Prolific
for participant recruitment. They predicted probe-caught mind wandering using global
and local gaze features, achieving an F1-score of 0.25 on a combined dataset (9% above
chance). In cross-dataset prediction between two data collections, training on one dataset
and predicting on the other, they achieved Kappa values of 0.09 and 0.15, respectively.

The overwhelming majority of these studies, except one cross-task laboratory-based
generalization study [190] and a very recent webcam-eye-tracking study [80], consider the
performance of their models only on the labeled data on which they were trained and
therefore do not test the generalizability of their models. As mentioned above, collecting
labeled data for this specific task is costly and may not be possible for every use case,
implying that generalizable models are necessary.

Novelty of this Work

While a large variety of machine learning and computer vision methods are used for
feature extraction, they are not directly targeted to generalizability. Hence, there are still
unexploited potentials of machine learning techniques, which we investigate in this study.
These techniques include utilizing features from pre-trained networks for similar but more
general tasks, employing temporal models, and an evaluation of generalizability, which are
discussed as follows.
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Deep Learning-based Features To our knowledge, all previous research in this field used
explicit features, such as AUs [72, 73] and gaze features [75] for predictions. In some
cases, additional hand-manufactured features, such as gaze dispersion [75], have been
created. While those appear to be informative in the data at hand, there is a risk that
some of those features, especially gaze-related features, might be very stimulus-specific.
Gaze in a reading task has a highly specific signature, whose features may be difficult
to transfer to different tasks [302, 148]. While there have been advances with webcam-
based eye tracking in recent years, enabling the detection of fixations of specific areas
of interest (AOIs) on the computer screen, there are still severe limitations compared
to specialized eye trackers. Especially in terms of mind wandering detection, more fine
granular eye movement indicators such as saccade duration are predictive and most likely
more generalizable. Those cannot be observed based on consumer-grade webcams at this
time, underlining the advantages of facial expression features. Moreover, recent studies
have showcased the utility of advanced Facial Emotion Recognition (FER) methods on
webcam videos in adjacent domains, particularly for evaluating emotion regulation in
remote collaborative learning settings [76, 77]. Further, the creation of hand-manufactured
features requires domain knowledge and might be tailored to the setting at hand.

In other image-based classification tasks such as facial expression recognition, deep
learning methods have been used successfully [303, 304]. Due to the limited sample sizes of
data for mind wandering detection, we use transfer learning, where the feature extraction
part of networks pre-trained on a similar task with available large datasets, is applied to a
new problem. Based on the previous successful use of facial expression features as facial
texture patches and AUs [73] and emotional state features [75] for mind wandering detection,
we argue that latent features learned by a CNN trained on the related task of FER can
be informative to the mind wandering classification problem at hand. Furthermore, as
they are trained on an in-the-wild data set, which assures large data variability, and thus
utilizing these features may contribute to making the models generalizable to in-the-wild
settings, i.e. in terms of image quality. To increase the confidence in these latent features,
which cannot be directly interpreted by humans, we use the Explainable AI tool LIME [179]
to illustrate which parts of the face are used for classification and are encoded respectively
in our latent representation.

Temporal Models Previous research indicates that temporal dynamics can be informative
for mind wandering detection. Recent studies showed the importance of hand-crafted
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features such as co-occurring AU pairs and temporal dynamics of AUs [73], as well as
body [72, 73] and head movement [75], which are explicitly designed to depict these
dynamics. If not represented by such manually generated features, they might be blurred
by aggregation over time. For this reason, we employ models that are able to take time-
series data such as the video data at hand as input and directly learn temporal relations
between features. The use of these temporal models allows us to additionally train an
end-to-end model, in which we can fine-tune the pre-trained Convolutional Neural Network
(CNN) used for frame-wise feature extraction to our specific classification task.

Generalizability In previous face-based mind wandering detection research, only cross-task
prediction in laboratory settings was explored [190], but the generalizability of lab settings
to other more naturalistic settings is still to be examined. We trained a model on data
collected during a reading task in the lab [73] and then applied it to in-the-wild data of
students watching a lecture video at home [75], resulting in a cross-context and cross-task
prediction. However, the two data sets differ additionally in the cultural backgrounds of
their subjects, as one was collected in the U.S. and the other in Korea. With regard to the
discussion about the cross-cultural universality of facial expressions in the literature [197,
198, 200], this is a further challenge for our model, which is based on such features
to generalize across culturally diverse user groups. Although the in-the-wild dataset is
relatively modest in size, it represents to our knowledge the only publicly available dataset
of its kind, enabling a crucial initial stride towards achieving generalizability in naturalistic
environments. For comparability, we used the reading-task data to carry out within-context
and within-task evaluation. We further compare the classification results for both across
gender to investigate potential biases.

A.3.4. Methodology

In this section, we discuss the details of the employed data, features that are utilized for
mind wandering detection, as well as training and inference processes.

Data

We employ two different datasets in our work, one [73] for within-dataset evaluation and
the other [75] for cross-dataset evaluation. Table A.16 provides a general overview of the
datasets, and they are described as follows.
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Figure A.3.2.: Example images of mind wandering (left) and non mind wandering (right)
instances in the lab data [73].

Lab Data by Bosch and D’Mello [73] This dataset is from a lab study, containing
facial videos, recorded using a Logitech C270 webcam, of N = 135 university students from
the U.S. reading a scientific text and their self-caught reports on mind wandering. Mind
wandering instances and on-task moments of 10 seconds each were cut from the original
videos [73]. The mind wandering instances are the time windows right before a self-report,
with a 4 second buffer before the self-report, to ensure the exclusion of the key-press
movement. The buffer length was validated in a pilot study. The on-task examples are
10-second clips taken from the time in-between, that do not include a page turn or fall into
30 seconds before a mind wandering self-report. The resulting dataset contains N = 1031
mind wandering instances and N = 2406 non-mind wandering instances. We use this
dataset for training our models in both within- and cross-task evaluation scenarios as it
contains more subjects and samples.
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In-the-wild Data by Lee et al. [75] This open-source dataset available for research
purposes contains facial videos of N = 15 university students in Korea and probe-based
mind wandering reports. The participants watched a one-hour-long lecture video at home,
were probed for mind wandering in 40-second intervals, and were filmed by their webcams.
In contrast to previously employed datasets, the data was collected in the wild (i.e., at
students’ homes), which is an increasingly realistic learning setting for MOOCs and other
online learning tools. In total, it contains N = 205 mind wandering and N = 1009
non-mind wandering instances with 30 FPS. Due to the smaller dataset size, we use this
dataset solely for evaluation purposes to detect mind wandering in the wild.

Table A.16.: Dataset comparison.

Specification Datasets
Lab data In-the-wild data

Study [73] [75]
Task Reading scientific text Watching lecture video
Setting Laboratory In the wild
Country USA Korea
Mind wandering self reports Self-caught Probe-caught
Participants 135 15
Total instances 3,437 1,220

Mind wandering 1,031 206
Non mind wandering 2,406 1,014

Video FPS 12.5 30

Features

To extract deep learning-based facial expression features, we use a CNN with a ResNet50 [193]
architecture pre-trained on the AffectNet dataset [191] containing 23,901 images classified
as belonging to seven discrete facial expressions (neutral, happy, sad, surprise, fear, disgust,
anger), as a feature extractor. The process is depicted exemplarily in Fig. A.3.3. This
model achieves an accuracy of 58% on the AffectNet validation set (see [305] for details on
model training). To extract latent features from our video clips, we apply frame-wise face
detection by employing RetinaFace [192] to our videos. In this step, we had to remove 74
instances, 31 of them mind wandering, because no face could be detected across all frames.
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We pre-process the resulting face images, aligning them based on five facial key points
extracted by the face detector, then they are cropped to size 224 × 224 and normalized. We
then insert them into the pre-trained ResNet50 model, from which the FER classification
layer was removed. The extracted latent feature vector is 2048 digits long and can be fed
into a downstream classifier. We provide insights into the most important image areas
encoded in the feature vectors by applying the Explainable AI tool LIME [179] to the
feature extraction model.

To compare our latent deep learning features to more explicit features, similar to those
used in previous research, we extract AUs, facial landmark locations, head location, pose
and rotation, as well as face shape parameters. Additionally, we extract gaze direction
vectors for both eyes and gaze angles, as well as 2D and 3D eye region landmarks, consisting
of 55 landmark points for each. All features were extracted using the OpenFace toolkit [115]
from each video frame respectively.

Figure A.3.3.: Pre-trained Resnet50 as feature extractor.

Training and Inference

In our analysis approach for binary mind wandering classification, we aim to leverage
pre-trained features from deep neural networks by employing transfer learning from the
related task of facial expression recognition and compare this approach to employing
explicit features as AUs and gaze vectors. Further, we examine whether these pre-trained
features enable our model to generalize to a new in-the-wild dataset.

Handling Temporal Data We aim to leverage temporal dynamics information which
may be lost by aggregation over time in non-temporal models, by employing recurrent
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neural network models for supervised classification. In particular, we train long short-term
memory (LSTM) [306] and bidirectional long short-term memory (BiLSTM) [307, 308]
recurrent neural networks. For both models, we employ an architecture consisting of
three recurrent layers with 100 neurons respectively, taking frame-wise extracted feature
vectors with 125-time steps as input. A dense layer stacked on top, implementing a sigmoid
activation function, outputs the binary mind wandering predictions.

The aforementioned self-reports serve as ground truth for our supervised machine learning
approach. In order to compare our results in a within-task and within-context evaluation
scenario, we employ the exact same person-independent 4-fold validation splits as in [73].
For each fold, a model is trained separately and results are averaged over all test folds. To
emphasize the minority class mind wandering during training we employ class weighting.
Furthermore, we employ early stopping of model training to avoid overfitting with a
patience of 5 epochs.

To compare the performance of temporal models with non-temporal models, we addi-
tionally train SVMs [194] with a radial basis function (RBF) kernel, which showed to be
the best performing models in previous research [73], as well as XGBoost [195] models
and simple DNNs with one hidden layer. To find the optimal parameter settings for each
model, we used person-independent, nested 4-fold cross-validation to apply grid-search
hyperparameter tuning. The best performing settings determined in inner 4-fold cross-
validation were used for prediction in each outer fold. An overview of the parameters tested
can be found in Table A.22 in the appendix. To generate suitable input, we aggregate
frame-wise extracted explicit features, computing the mean, median, minimum, maximum,
and standard deviation values for each feature over the whole clip. For our latent features,
we create statistical aggregations of the 2048-numbers long feature vector over all 125
frames. Since this procedure results in a large number of features with a lot of redundancy,
we apply mutual information-feature selection, a univariate feature selection method based
on the dependency between variables. Based on the training data, the 100 most meaning-
ful features were selected in each fold. To account for the imbalanced data, we employ
weighting or up-sampling of the training split using Synthetic Minority Over-sampling
Technique (SMOTE) [196]. We report the best performing combinations of balancing and
hyper-parameters.

Fine-tuned CNN-LSTM Employing temporal models allows us to not only employ the
pre-trained AffectNet-CNN as a feature extractor but also train and fine-tune an end-to-end
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Figure A.3.4.: Mind wandering detection pipeline.

CNN-LSTM model. This allows not only to train the temporal inference and classification
parts of the model for our present problem of mind wandering detection but also to adapt
the image feature extraction part of the model more precisely to the particularities of our
problem. As a first step, the pre-trained ResNet50 without classification layer is included
in the LSTM architecture to allow for video input and frame-wise feature extraction. Then,
the previously described RNN architectures are stacked on top. In a first training run, the
pre-trained weights in the CNN part of the model are frozen and only the top part of the
model is allowed to adapt with a learning rate of 0.001. In a second training run, the last
convolutional block of the ResNet50 model is set trainable and thus adapted to the mind
wandering classification task with a smaller learning rate of 0.00001.

Cross-dataset Prediction To examine the generalizability of the proposed approach over
different settings, tasks, and target groups, we perform cross-dataset prediction employing
our new approach. This means the aforementioned in-the-wild data is used to predict mind
wandering instances. To this end, we use the video data from our lab reading task and train
a model on the entire data. Using this model, we then predict mind wandering instances
in the in-the-wild lecture viewing data from [75]. We pre-process the in-the-wild dataset
in the same way as the lab data. Based on the provided mind wandering probes, we cut
10-second windows before each probe and extracted all features described in Section A.3.4.
For temporal models, we downsampled the 300 frames resulting from a higher recording
frame rate to 125 frames to match the sequence length.

Evaluation Metrics Due to the unbalanced nature of both our datasets with lab data
having 30% and in-the-wild data having 25% mind wandering instances, reporting the
accuracies of mind wandering prediction models could be misleading. A classifier always
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predicting non-mind wandering would achieve 70-75% accuracy without recognizing a single
mind wandering instance. Also commonly used threshold metrics focusing on the minority
class as F1 scores are highly influenced by the skew in the data [187]. Such measures can
be driven by high recall at low detection precision. For this reason, we report area under
Precision-Recall curve (AUC-PR) values, which show the precision as function of the recall.
This rank metric helps to balance precision and recall of the minority class.

Another measure that helps to evaluate the performance, especially when comparing
performances of datasets with differing class distributions, is the improvement of the model
above chance level, which is calculated as follows:

AboveChanceLevel = ActualPerformance − Chance

PerfectPerformance − Chance

To allow comparability to previous research, we additionally report the F1 scores for the
minority-class mind wandering, which is calculated as follows:

F1 = 2 × Precision × Recall

Precision + Recall

where the Precision (i.e., the proportion of correct mind wandering predictions of all
mind wandering predictions) and Recall (i.e., share of correctly predicted mind wandering
instances of all mind wandering instances) are defined as:

Precision = TP

TP + FP
, Recall = TP

TP + FN
.

TP, FP, TN, and FN represent "true positive", "false positive", "true negative", and "false
negative", respectively.

A.3.5. Results

In this section, we report within- and cross-dataset mind wandering detection results and
investigate potential model biases by comparing our results across gender and explain the
employed latent features.

Mind Wandering Detection

The results for within-task mind wandering detection, training, and predicting on the lab
data, are depicted in Table A.17. In the within-task prediction setting, models trained on
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latent features outperform the random baseline (i.e., F1 = 0.3 [73] and AUC − PR = 0.3)
to a significant extent.

The results are comparable to the state-of-the-art on this data [73], which achieved
similar performance between F1 scores of 0.414 and 0.478, mostly with hand-crafted features
and SVMs. However, the observed F1 scores are clearly driven by high recall values, while
precision values are rather low. While a high recall means that most mind wandering
instances are detected, simultaneously low precision also means that many instances are
falsely classified as mind wandering. Therefore, we introduce the AUC − PR score, which
is a rank metric that also reflects the ratio of precision and recall. Thus, the above chance
level values reported in the table are calculated on the basis of AUC − PR scores.

Table A.17.: Results of mind-wandering detection for the within-lab-data prediction.
Model Feature Set Method AUC-PR Above Chance-Level F1 Precision Recall ROC-AUC
SVM Explicit features OpenFace 0.288 -1.70% 0.391 0.286 0.636 0.482

Latent features AffectNet 0.365 9.30% 0.443 0.347 0.63 0.587

XG Boost Explicit features OpenFace 0.346 6.60% 0.332 0.348 0.321 0.543
Latent features AffectNet 0.372 10.30% 0.358 0.356 0.368 0.576

DNN Explicit features OpenFace 0.331 4.40% 0.367 0.333 0.439 0.507
Latent features AffectNet 0.398 14.00% 0.44 0.361 0.576 0.601

LSTM Explicit features OpenFace 0.323 3.23% 0.375 0.323 0.477 0.524
Latent features AffectNet 0.391 13.00% 0.459 0.362 0.636 0.612

BiLSTM Explicit features OpenFace 0.303 0.40% 0.335 0.288 0.462 0.483
Latent features AffectNet 0.383 11.90% 0.453 0.348 0.658 0.602

CNN-LSTM Fine-tuned latent features AffectNet 0.394 13.40% 0.41 0.389 0.445 0.605
CNN-BiLSTM Fine-tuned latent features AffectNet 0.384 12.00% 0.377 0.388 0.368 0.602

Random baseline lab data: F1 = 0.3; Base rate = 0.3

The results for cross-task mind wandering detection using in-the-wild data for evaluations
are reported in Table A.18. Similar to the within-task setting, our results outperform the
random baseline (i.e., F1 = 0.25 [75], AUC − PR = 0.17) despite the cross-task prediction
and in-the-wild setting. State-of-the-art on this dataset [75] achieved F1 scores between
0.25 and 0.36 using SVMs, XGBoost, and DNNs for mind wandering prediction in a
within-dataset setting. We achieve a very comparable performance to the best performance
of the state-of-the-art [75] despite cross-task evaluation, a culturally different target group,
and an in-the-wild setting.

A comparison of performance along the employed feature sets over all classifiers and
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Table A.18.: Results of mind-wandering detection for cross-dataset prediction. Training on
lab data, testing on in-the-wild data.

Model Feature Set Method AUC-PR Above Chance-Level F1 Precision Recall ROC-AUC
SVM Explicit features OpenFace 0.214 5.30% 0.330 0.241 0.524 0.6

Latent features AffectNet 0.242 8.70% 0.301 0.261 0.355 0.596

XGBoost Explicit features OpenFace 0.18 1.20% 0.169 0.193 0.15 0.534
Latent features AffectNet 0.196 3.10% 0.193 0.194 0.192 0.574

DNN Explicit features OpenFace 0.218 5.80% 0.291 0.23 0.398 0.589
Latent features AffectNet 0.257 10.50% 0.296 0.32 0.276 0.646

LSTM Explicit features OpenFace 0.194 2.90% 0.283 0.217 0.408 0.551
Latent features AffectNet 0.252 9.90% 0.323 0.234 0.524 0.634

BiLSTM Explicit features OpenFace 0.168 -0.20% 0.251 0.16 0.583 0.47
Latent features AffectNet 0.261 11.00% 0.352 0.224 0.825 0.658

CNN-LSTM Fine-tuned latent features AffectNet 0.263 11.00% 0.238 0.308 0.195 0.652
CNN-BiLSTM Fine-tuned latent features AffectNet 0.265 11.40% 0.254 0.285 0.229 0.658

Random baseline in-the-wild data: F1 = 0.25; Base rate = 0.17

prediction scenarios, depicted in Figure A.3.5, indicates that overall the latent features allow
a better mind wandering detection. Especially in cross-dataset prediction, the fine-tuning
of the latent features in an end-to-end CNN-LSTM leads to further improvement. This
could be due to the fact that more data, i.e., the complete lab data set, were available
for the training, hence fine-tuning, than in the case of the within the prediction. When
employing latent features, the use of temporal (i.e., LSTM, BiLSTM, CNN-LSTM, CNN-
BiLSTM) models, allows for a small improvement of prediction performance compared to
non-temporal classifiers (i.e., SVM, XGB, DNN) (Figure A.3.5, 2nd row), especially in the
cross-dataset prediction.

Figure A.3.6 shows the confusion matrices for within- and cross-dataset mind wandering
prediction of the fine-tuned CNN-BiLSTM model, as well as precision-recall curves for both
prediction scenarios. The confusion matrices reveal that the models are able to detect 37%
and 23% of mind wandering instances in the two scenarios. Depending on the detection
use case high recall might be favored over precision, which can be achieved by lowering the
prediction threshold.

When aggregating instance-by-instance predictions over time per participant, to assess
performance over longer time windows, we obtain a Pearson’s correlation coefficient of
0.578 (P < 0.001) between true and predicted mind wandering proportion per person in
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Figure A.3.5.: Average Performance by Feature Sets and Classifier Type.

the within-dataset prediction. For cross-dataset predictions, we found a correlation of 0.48
(P = 0.07) on a person-level. However, when adapting the prediction threshold from 0.5
to 0.3 we achieve a correlation of 0.8 (P < 0.001). This finding underscores the potential
to enhance mind wandering detection by fine-tuning the prediction threshold for specific
use cases, particularly in cross-dataset predictions that exhibit varying overall proportions
of mind wandering. Consequently, we conducted systematic experimentation to optimize
thresholds for enhanced detection accuracy and applicability.

Threshold Optimization

In alignment with previous research [190, 254] we employ threshold optimization to further
improve the detection of mind wandering instances. Threshold optimization is a technique
used to enhance the performance of a classification model by selecting the optimal cutoff
value for distinguishing between the two classes. In binary classification, models often
output a probability score that indicates the likelihood of an instance belonging to the
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Figure A.3.6.: Confusion Matrices and Precision-recall Curves for Within- and Cross-
dataset Prediction with CNN-BiLSTM.

positive class. The default threshold is typically set at 0.5. However, the default threshold of
0.5 may not always be the best choice for all datasets or objectives, especially in cases where
there is class imbalance. Particularly in the cross-dataset scenario, where the two different
datasets yielded varying mind wandering rates of 30% and 17%, threshold optimization
emerges as a critical approach, enabling the adjustment of classification cutoffs to better
reflect the disparate prevalence rates across datasets [190].

We systematically tested thresholds from 0.1 to 0.9 in increments of 0.1 for all employed
models. Tables A.19 and A.20 show the results for optimization according to F1 values
for within- and cross-dataset predictions. Optimal thresholds are smaller than 0.5 for
most classifiers. Those lower thresholds lead to notable improvements in F1 values. Figure
A.3.7 shows evaluation metrics by prediction thresholds for CNN-BiLSTM models in both
prediction scenarios. We can see that F1 values drop at the 0.3 and 0.4 thresholds, which
were identified as optimal for those models.

148



A.3. Examining Generalizability of Video-based Mind Wandering Detection

Table A.19.: Results of threshold optimization for within-lab-data mind wandering predic-
tion.

Model Threshold Feature Set Methods AUC-PR F1 Precision Recall ROC-AUC
SVM 0.5 Explicit features OpenFace 0.288 0.391 0.286 0.636 0.482

0.5 Latent features AffectNet 0.365 0.443 0.347 0.63 0.587

XGBoost 0.1 Explicit features OpenFace 0.346 0.434 0.313 0.703 0.543
0.1 Latent features AffectNet 0.372 0.456 0.334 0.717 0.576

DNN 0.1 Explicit features OpenFace 0.331 0.461 0.3 0.992 0.507
0.4 Latent features AffectNet 0.398 0.467 0.338 0.752 0.601

LSTM 0.1 Explicit features OpenFace 0.323 0.459 0.301 0.959 0.524
0.4 Latent features AffectNet 0.391 0.48 0.345 0.789 0.612

BiLSTM 0.1 Explicit features OpenFace 0.303 0.459 0.302 0.954 0.483
0.4 Latent features AffectNet 0.383 0.478 0.34 0.806 0.602

CNN-LSTM 0.3 Fine-tuned latent features AffectNet 0.394 0.472 0.334 0.806 0.605
CNN-BiLSTM 0.3 Fine-tuned latent features AffectNet 0.384 0.475 0.334 0.823 0.602

Comparison across Gender

To detect potential bias in the classification models and provide transparency with regard
to the fairness of prediction across gender, we compare the detection performance of mind
wandering by gender for the within- and cross-dataset predictions. We compare the results
of all models trained on latent features for both prediction scenarios. The lab data employed
for within-dataset predictions consists of 40.77% male and 59.23% female participants,
with females reporting an overall higher mind wandering rate of 32.64% and males a rate
of 26.41%.

The in-the-wild data, serving as an evaluation set for our cross-dataset predictions,
contains 53.33% female and 46.67% male participants, reporting mind wandering in 18%
and 16% of the mind wandering probes on average, respectively. The prediction results
by gender are displayed in Table A.21, with above chance values based on different base
rates by gender and dataset. In general, mind wandering instances are predicted more
accurately for females than for males. These results are most likely rooted in the imbalance
of the underlying datasets, both regarding overall gender rates as well as gender-specific
mind wandering rates, leading to overall fewer male mind wandering instances in the
data. However, this difference becomes larger when employing temporal models, especially
for within-dataset prediction scenarios. We can assume that this is due to the increased
number of parameters in the temporal models, requiring large training data. While the
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Table A.20.: Results of threshold optimization for cross-dataset mind wandering prediction.
Training on lab data, testing on in-the-wild data.

Model Threshold Feature Set Methods AUC-PR F1 Precision Recall ROC-AUC
SVM 0.5 Explicit features OpenFace 0.214 0.324 0.231 0.539 0.6

0.2 Latent features AffectNet 0.242 0.329 0.225 0.611 0.596

XGBoost 0.1 Explicit features OpenFace 0.18 0.286 0.188 0.597 0.534
0.1 Latent features AffectNet 0.196 0.297 0.182 0.793 0.574

DNN 0.4 Explicit features OpenFace 0.218 0.316 0.216 0.592 0.589
0.2 Latent features AffectNet 0.257 0.349 0.248 0.586 0.646

LSTM 0.2 Explicit features OpenFace 0.194 0.289 0.171 0.927 0.551
0.5 Latent features AffectNet 0.252 0.323 0.234 0.624 0.634

BiLSTM 0.1 Explicit features OpenFace 0.168 0.3 0.177 0.99 0.47
0.5 Latent features AffectNet 0.261 0.352 0.224 0.825 0.658

CNN-LSTM 0.3 Fine-tuned latent features AffectNet 0.263 0.356 0.235 0.737 0.652
CNN-BiLSTM 0.4 Fine-tuned latent features AffectNet 0.265 0.353 0.251 0.595 0.658

overall performance increases, only females seem to benefit from improved detection, as
there is more training data available.

Latent Feature Explanation

In order to gain deeper insights into the employed latent features, we apply the explainability
algorithm LIME [179] on our feature extraction CNN model, pre-trained on facial expression
recognition task, and fine-tuned to our mind wandering detection task. LIME is an
Explainable AI tool that helps to understand the decision-making of an algorithm, as it
allows highlighting areas of interest in the image, the so-called super-pixels, that contribute
positively or negatively to the model’s prediction. This helps to get an intuition on why
the model thinks this image belongs to a certain class and which part of a given image
the decision is based on. It is important to take this step to uncover any unintended
correlations that the classifier may have learned, such as those resulting from artifacts
produced in the data collection process [179].

In our study, these regions of interest let us draw conclusions about the information
encoded in the latent features that are fed into the temporal mind wandering classifier.
Therefore, it ensures the quality of feature extraction, by validating that the learned
information aligns with established theoretical frameworks. Example images from the lab
data including super-pixel boundaries and heatmaps, with dark blue encoding the most
important areas, are provided in Figure A.3.8. The super-pixel boundaries include the 5
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Table A.21.: Results of mind wandering detection using latent features by gender.

Model Gender Within-dataset prediction Cross-dataset prediction
AUC-PR Above chance AUC-PR Above chance

SVM Female 0.38 8% 0.283 12.6%
Male 0.326 8.4% 0.189 3.5%

XGB Female 0.365 5.7% 0.21 3.7%
Male 0.301 5.0% 0.186 3.1%

DNN Female 0.419 13.7% 0.351 20.9%
Male 0.355 12.4% 0.186 3.1%

LSTM Female 0.458 19.5% 0.335 18.9%
Male 0.328 8.7% 0.196 4.3%

BiLSTM Female 0.445 17.6% 0.335 18.9%
Male 0.306 5.7% 0.186 0.7%

CNN-LSTM Female 0.429 15.0% 0.29 13.4%
Male 0.334 9.5% 0.207 5.6%

CNN-BiLSTM Female 0.439 16.7% 0.333 18.7%
Male 0.316 7.1% 0.199 4.6%

151



A. Automated Mind Wandering Detection

Figure A.3.7.: Evaluation Metrics by Prediction Thresholds for Within- and Cross-dataset
Prediction with CNN-BiLSTM.

most important features positively contributing to the obtained prediction. The heatmaps
depict super-pixels by importance, by coloring the most important areas in dark blue.
We see that the CNN part of our classification model, employed for feature extraction,
mainly relies on information from the eye and mouth areas of the participants, which
are consequently inherently encoded in our feature vectors as well. We included example
images based on our mind wandering prediction results including a true positive, true
negative, false positive, and a false negative. These results are in line with previous studies
suggesting facial textures and AUs are meaningful features for video-based mind wandering
detection [73].

Since our analysis is based on video clips, the features shown are extracted from each
frame individually and then transferred to the LSTM module as a time series. In this way,
temporal dynamics can be displayed. To visualize this process, we have mapped the time
course of the most important features for a correctly predicted mind wandering instance in
Figure A.3.9. Every 25th frame from a 10 second clip is depicted. It is evident that the
focused regions undergo minimal changes based on facial expression and eye opening, but
the primary focus on the eye region remains consistent.

A.3.6. Discussion

In this section, we discuss our findings, also focusing on application scenarios and ethical
issues.
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Figure A.3.8.: Most important super-pixel boundaries (left) and super-pixel importance
heatmaps (right) of pre-trained ResNet50 FER model, calculated with LIME
for a true positive, true negative, false positive, and false negative samples
in the final mind wandering classification (top to bottom).

Main Findings

We showed that features extracted from a pre-trained CNN on the AffectNet facial
expression recognition dataset are informative for predicting mind wandering, even to a
higher degree when they are utilized with temporal models that use frame-wise extracted
features as input. The best results for within-dataset prediction were obtained using deep
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Figure A.3.9.: Temporal dynamics of extracted latent feature super pixels. Example
depiction of every 25th frame from one correctly predicted mind wandering
instance.

learning models such as DNN, LSTM, and BiLSTM, which allowed us to detect mind
wandering ≈ 14% above the chance level. This indicates that the latent representations
provided by a model based on the recognition of six basic facial expressions of emotion
contain information at the same level for the task of mind wandering recognition as a
set of explicit out-of-the-box features such as AUs, facial landmarks, and gaze vectors
extracted by the OpenFace toolbox. Further, visualizations of areas of interest from the
pre-trained FER model, fine-tuned on the mind wandering task showed that mainly eye
and mouth areas were encoded by the model and, therefore, most likely encoded in the
latent representation. these findings show that the features used represent meaningful
information and can increase confidence in the latent representations. The results are
comparable to those previously obtained by [73] using a CART fusion of five explicit and
hand-crafted feature groups on this data (F1 = 0.478; ≈ 25% above chance level). By
using transfer learning, the problem of insufficient data to train deep learning for this task
can be overcome. Fine-tuning these features in an end-to-end model on the task at hand
did slightly improve performance for the respective models but depends strongly on the
available amount of data.

When we evaluated these models with a new dataset that differed in the task, setting, and
target group, we showed that latent features generalized very well and achieved a prediction
performance (≈ 11.4% above chance level) that was comparable to the best performance
of a within-task prediction in the state-of-the-art [75]. Also for the cross-dataset setting,
the models on the latent features performed better overall than those on the OpenFace
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features. This indicates that the transfer-learned features generalize better than the explicit
out-of-the-box features without manual feature engineering. This may be due to the
fact that they are based purely on facial expression, which is less stimulus-specific than,
for example, gaze. Beyond the only existing generalization study of video-based mind
wandering recognition [190], which was based on AUs, we were able to show that latent
facial features are also predictive beyond the lab in naturalistic settings, such as the home.
These features were trained on an in-the-wild dataset, which might favor the transferability
of the features to an in-the-wild setting.

Nevertheless, the generalization results are remarkable because not only the setting and
task differ in our cross-dataset prediction, but also the culture of the target group. As
mentioned in section A.3.2, there is an ongoing debate about the universality of facial
expressions of emotion [197, 198, 189]. One position taken is that the facial expressions of
the six basic emotions relate to Western interpretations of these, but are not representative
for instance, of East Asian culture [189]. While often universality of facial expressions
of the six basic emotions is assumed, several studies tackled cross-cultural FER [199,
200, 201] and highlighted culture-specific differences in automated detection. The features
used in this work are based on a model that was pre-trained on AffectNet data without
accounting for culture-specific differences. Nevertheless, they generalize well from U.S. to
Korean subjects in detecting mind wandering.

When comparing the prediction performances across gender, for both scenarios, we
achieve better classification results for the female group. This difference could partly
be the result of a combination of a greater proportion of women in both datasets, and
the generally higher mind wandering rate for females in the training sample. However,
gender differences are higher for temporal models with a higher number of parameters,
in need of large training data. Another challenge is choosing the best prediction model.
We demonstrated that adjusting the threshold for decision-making, depending on its
application, can improve the effectiveness of these predictions, especially in cross-dataset
prediction. However, focusing on F1 scores can lead to an imbalance between recall and
precision of the mind wandering class, therefore we focus on the rank metric AUC-PR.
Depending on the application scenario, the need for optimization towards one or the other
can be advantageous. While it is important to capture all mind wandering instances when
used for research and testing of materials, it may be more useful to have high precision
when using interventions not to disturb learners in attentive moments.
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Applications

The ability of a machine learning model to generalize is of primary importance in terms of
its potential applications. On the one hand, it enables finding the optimal design of learning
materials and systems in a way that less mind wandering occurs. On the other hand,
automated detection of mind wandering has the potential to help learners in online learning
contexts such as ITSs and MOOCs to focus their attention on the task at hand, which
often consists of tasks such as the ones we explored in this study: reading or video lecture
viewing. This can be done through interventions such as providing feedback, suggesting
re-watching or re-reading, asking intermediate questions, or adapting the presented content
when a user loses focus. Such interventions can reduce user’s mind wandering [183, 294,
88] and therefore, based on the observed negative relationship between mind wandering
episodes and learning success [34, 35, 39, 40], improve learning outcomes. However, since
all of these studies examine short-term effects, there is a need to validate the long-term
impact of mind wandering interventions.

The automatic detection of learners’ off-task thoughts presented here can be used in
future research to provide learners with different types of interventions and feedback. An
experimental examination with corresponding questionnaires and knowledge tests could
examine whether these are suitable to help learners sustain their attention and whether
they actually lead to improved learning success without being distracting or disruptive.
While the efficacy of some interventions based on eye tracking has been investigated in
both lab and classroom context [183, 294, 88], a generalizable video-based recognition
approach proposed in this study will allow future research to investigate the effectiveness of
interventions outside the laboratory in naturalistic settings on a large scale. Furthermore,
it will allow to deploy mind wandering detection modules in interfaces used in settings, in
which eye tracking is not feasible.

While the current precision in predicting isolated occurrences of mind wandering might
evoke uncertainties, our research shows that by consolidating predictions at the participant
level correlations with the ground truth, ranging from moderate to high, can be achieved.
This underscores that when aggregated over longer periods of time, analogous to the
temporal scope utilized in interventions, models can yield improved outcomes. However,
given the current performance of state-of-the-art video-based mind wandering prediction
and the potential for false positive predictions, it is imperative to consider interventions
that do not impede the learning process. Among the viable options, two seem most suitable:
Non-interruptive interventions, like follow-up prompts to re-read or re-watch critical parts of
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learning materials, prioritize fostering self-regulated learning while minimizing disruptions
and distractions. By seamlessly integrating these interventions into the learning environ-
ment, a more favorable and effective learning experience can be achieved. Furthermore,
the implementation of thresholds, based on criteria such as prediction confidence or time
durations, ensures the maintenance of intervention quality. This approach mitigates the
risk of learner irritation or negative experiences resulting from inadequately controlled
interventions. In doing so, even if video-based mind wandering detection is less performant
than comparable tasks, such as emotion recognition, its use in online learning systems can
still lead to an improvement in attention. It is crucial to determine the required level of
precision for targeted interventions to attain their desired effect without impeding learning.
In general, the goal should be to support learners in self-regulated learning [309] rather
than to monitor or assess them. Therefore, it is important to consider user and data
privacy in any potential application.

Ethical Considerations

While the application of video-based mind wandering detection holds promise for supporting
learning in various applications, it also raises concerns regarding privacy, fairness, and
inclusiveness. Since videos capture the identifiable faces of students during learning tasks,
responsible handling of this data becomes imperative. While we work with raw videos,
for model development, one of the advantages of our approaches is that for real world
applications both explicit and latent features can be extracted on the fly in real time
without the need of saving videos in the first place. A similar approach was employed in the
classroom study of [73] to preserve privacy. This aspect is very important as particularly
vulnerable target groups such as school children (i.e., minors in dependent relationships),
as those can also benefit from MOOCs and ITSs that utilize mind wandering detection.
The HCI community has been addressing data privacy-related issues in different tasks such
as face recognition [226], gaze estimation [227], or even in the classroom context [228] and
similar approaches that preserve privacy should be utilized if one uses raw videos in an
end-to-end fashion when mind wandering detection modules are deployed in real-world
systems. Another convenient approach would also include utilizing federated learning
systems [229] where the training of machine learning models is carried out locally in user
devices by keeping the sensitive data away from other parties and only sending the trained
models to the computation party for aggregation. In brief, while the performance of mind
wandering detection is an important aspect, privacy issues are of paramount importance for
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real-world use. In any case the process of collecting and analyzing any form of data should
be transparent to the user with informed consent and clarity of the purposes the data
will be used for [231]. Another important aspect of deploying automated mind wandering
detection in educational settings is the inclusiveness in data and algorithms [231]. To
ensure fairness and equality across user groups, it is crucial that these algorithms are
trained and tested on diverse, unbiased data. This research underscores the significance
of these considerations by aiming to develop a culturally generalizable algorithm and
conduct a transparent analysis of gender fairness. While the results are promising with
regard to generalization, especially the found gender differences stemming from unbalanced
data, highlight the necessity for diverse and representative data that facilitate even better
adherence to these principles in future research.

Limitations and Future Work

Despite its novelty, the presented work exhibits several limitations. First of all, we examined
cross-setting predictions from the lab dataset to the in-the-wild dataset. This is partly
due to the fact that lab-based data collection is more controlled, and therefore, allows for
higher data quality. As reported in the original study [75] of the in-the-wild dataset, a large
amount of data had to be excluded during data preparation due to insufficient data quality,
for example, due to low luminance. From a practical standpoint, the generalizability from
labeled lab data to in-the-wild data is a likely setting for future applications. Related to
this point, the present in-the-wild dataset is rather small to train our proposed models on
it. The need for a comparatively large labeled dataset to enable us to use the proposed
temporal methods is a further limitation of this work. Currently, to our best knowledge,
no larger in-the-wild mind wandering dataset is available. Despite the limited size of the
in-the-wild dataset, this study examines the potential generalizability of state-of-the art
mind wandering detection to diverse datasets. However, it is important to exercise caution
when interpreting these findings due to the dataset’s size. Future research should focus on
collecting larger datasets to provide a more robust evaluation of the model’s performance
and enhance our understanding of its broader applicability. In general, further advances in
automated detection of mind wandering should be evaluated based on their generalizability
to in-the-wild settings to avoid the optimization of performance on single datasets at the
expense of generalizability, as was recently discussed in the related field of affect detection
[310].

While our cross-dataset prediction examines the models’ ability to generalize two cul-
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turally different target groups, the sample of university and college students is somewhat
homogeneous regarding other demographics, such as age. Future research should investi-
gate, how well the model can be transferred to other target groups, for example, to school
children. Furthermore, differences in predictive power by gender were revealed. A balanced
sample by gender, as well as further investigation of gender differences in mind wandering,
should be an important consideration for future studies to avoid bias.

In general, the presented results underscore the complexity of the recognition of mind wan-
dering solely through facial video analysis. The approach presented in this paper, alongside
previous approaches, can predict off-task thoughts above chance level, for dataset-specific
class distributions, albeit without achieving exceptionally high prediction performances.
While the achieved prediction accuracy may be considered moderate, and will potentially
lead to false positive predictions when employed in educational systems, it is crucial to
acknowledge the inherent difficulties associated with accurately identifying such a nuanced
cognitive process. A prior study hinting at upper bounds for appearance-based detection
showed that human observers only could identify mind wandering episodes to a similar
extent (F1= 0.406) as machine-learning based detection algorithms on the lab data [62].
These results strengthen the assumption that there is a limit to the accuracy with which
the covert cognitive state of mind wandering can be detected based only on appearance.
However, the required detection accuracy heavily depends on the desired application. Initial
studies exploring interventions, like reiterating content, and asking questions, based on
similar prediction performances show the potential success of those [183, 88, 294]. Future
investigations should deploy the presented automated mind wandering detection approach
to deliver interventions while assessing learning outcomes to determine the extent to which
interventions improve attention and learning outcomes, whether frequent or incorrectly
delivered mind wandering interventions hinder or interfere with learning and whether
predictions at the current precision level are sufficient to be integrated into systems. As
mentioned above, especially the use of non-intrusive interventions and the implementation
of quality thresholds should be considered in the context of moderate prediction accuracies.

Additionally, the limited performance of these elaborate models can be attributed to the
size constraints of the employed training dataset. Unfortunately, to our best knowledge, no
other video-based mind wandering detection dataset is publicly available at this moment.
To further advance the field and improve prediction outcomes, future research should
place emphasis on collecting large-scale datasets, particularly in in-the-wild scenarios.
By incorporating such diverse and extensive data, researchers can enhance the models’
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performance and pave the way for more accurate and robust mind wandering detection
systems. A commendable approach was employed by [80], who gathered webcam eye
tracking data both in university environments and via the platform Prolific, thereby
ensuring the inclusion of diverse target groups and settings. Further potential strategies for
enhancing prediction performance may include the implementation of personalization, such
as the use of personalized prediction thresholds. This approach could partially compensate
for the presumed interpersonal variations. Another way to improve prediction accuracy is
to add other signals, like behavioural trace data or physiological signals. In this work, we
focused on webcam videos due to the goal of scalability and low-threshold application in
naturalistic settings. One potential for future research in this realm could be the further
improvement of webcam-based eye tracking, since eye movements have been shown to be
highly predictive for mind wandering [80, 87, 267, 254, 88].

A.3.7. Conclusion

In this work, we proposed a novel and generalizable approach for mind wandering detection
utilizing facial features based on transfer learning from videos. Our results show the mean-
ingfulness and transferability of those features with within- and cross-dataset prediction
tasks on two challenging datasets. In particular, the results of the cross-dataset setting that
differed with regard to the task, target group, and environment show the generalizability
of our approach, which is key to the deployment of such models in intelligent learning
systems to support learners to keep their attention on a given task.
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Additional Tables

Table A.22.: Hyperparameter grids for employed non-temporal classification models.

Model Hyperparameter Grid

SVM C (1, 10, 1000, 1000)
Gamma (0.001, 0.01, 0.1)

DNN Hidden layer size (100, 64, 32)
Learning rate (0.001, 0.0001)
Alpha (0.0001, 0.001, 0.005)
Early stopping (True, False)

XGB Gamma (0.5, 1, 2,5)
Subsample (0.6, 0.8, 1)
Column sample by tree (0.6, 1)
Max depth (3, 5, 9)
Learning rate (0.01, 0.1, 0.3)
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Table A.23.: Results of mind-wandering detection for within- and cross-dataset prediction
with feature level fusion.

Prediction Model Method F1 Precision Recall AUC-PR Above Chance-Level

Within-dataset SVM OpenFace, AffectNet 0.405 0.331 0.525 0.336 5.143%
XG Boost OpenFace, AffectNet 0.338 0.382 0.307 0.364 9.143%
DNN OpenFace, AffectNet 0.401 0.382 0.693 0.397 13.857%
LSTM OpenFace, AffectNet 0.461 0.334 0.761 0.373 10.429%
BiLSTM OpenFace, AffectNet 0.450 0.346 0.697 0.377 11.000%

Cross-dataset SVM OpenFace, AffectNet 0.299 0.218 0.473 0.207 4.5%
XGBoost OpenFace, AffectNet 0.202 0.198 0.207 0.199 3.5%
DNN OpenFace, AffectNet 0.311 0.238 0.448 0.220 6.0%
LSTM OpenFace, AffectNet 0.315 0.192 0.864 0.250 9.6%
BiLSTM OpenFace, AffectNet 0.335 0.214 0.772 0.229 7.1%

162



B. Synchrony as Attention Indicator during
Online Learning

The following publication is enclosed in this chapter:

[3] Babette Bühler, Efe Bozkir, Hannah Deininger, Peter Gerjets, Ulrich Trautwein, and
Enkelejda Kasneci. “On Task and in Sync: Examining the Relationship between
Gaze Synchrony and Self-reported Attention During Video Lecture Learning”. In:
Proc. ACM Hum.-Comput. Interact. 8.ETRA (May 2024). doi: https://doi.org

/10.1145/3655604.

B.1. On Task and in Sync: Examining the Relationship between
Gaze Synchrony and Self-Reported Attention During Video
Lecture Learning

B.1.1. Abstract

Successful learning depends on learners’ ability to sustain attention, which is particularly
challenging in online education due to limited teacher interaction. A potential indicator
for attention is gaze synchrony, demonstrating predictive power for learning achievements
in video-based learning in controlled experiments focusing on manipulating attention. This
study (N=84) examines the relationship between gaze synchronization and self-reported
attention of learners, using experience sampling, during realistic online video learning.
Gaze synchrony was assessed through Kullback-Leibler Divergence of gaze density maps
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and MultiMatch algorithm scanpath comparisons. Results indicated significantly higher
gaze synchronization in attentive participants for both measures and self-reported attention
significantly predicted post-test scores. In contrast, synchrony measures did not correlate
with learning outcomes. While supporting the hypothesis that attentive learners exhibit
similar eye movements, the direct use of synchrony as an attention indicator poses challenges,
requiring further research on the interplay of attention, gaze synchrony, and video content
type.

B.1.2. Introduction

The increasing transition from traditional classroom settings to digital learning environments
changes student-teacher interactions, which are crucial for learning. Without a physically
present instructor to tailor content and provide support, learners need to self-regulate to
sustain focus on educational tasks [311]. This presents a significantly greater challenge for
students in a video lecture than in a traditional face-to-face lecture [312]. Although online
teaching can take place in real-time, it proves more difficult for lecturers to monitor and
manage learners’ attention, causing a desire for teachers to receive feedback [313]. This
has led to extensive research on assessing attention in online learning [311, 204, 314]. Eye
gaze is one of the most crucial sensing modalities for measuring human attention. As such
it has been extensively studied also in the educational context [58, 109, 130, 133, 134].
Recent studies showed that visualizations of gaze data enable instructors to estimate the
level of attention of learners [140] and their comprehension of learning content [141]. In
a pioneering study, [142] hypothesized that attentive learners follow instructional videos
similarly with their eyes. Measuring synchrony with inter-subject correlation (ISC) of
eye gaze within experimental groups of attentive and distracted students, they showed
that gaze synchrony levels were predictive of test scores. Additionally, they expanded
their approach to webcam-based eye-tracking data, suggesting the potential for real-time
assessment of attention and adaption of learning content. In a later study, [202] could
not reproduce these findings with unreliably sampled data, highlighting the challenges of
webcam-based eye-tracking for educational contexts. In another study, [203] only found
weak correlations between gaze synchrony and test scores and decreased synchrony when
using eye gaze models, whereas confirming previous findings that eye gaze models foster
learning [315].

A major limitation of previous research is that participants’ attention level was ex-
perimentally controlled by introducing a secondary distraction task in the inattentive
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condition [142, 203]. It remains uncertain whether these experimental manipulations
accurately reflect naturally occurring distractions [203]. The underlying mechanisms of
inattention during video learning are multifaceted and range from overt distraction by the
environment, for example, an incoming email [204], to hidden cognitive processes such as
mind wandering, i.e., the engagement in task-unrelated thought, for example, daydreaming
[205]. In realistic learning scenarios, the level of attention can be assumed to exhibit more
gradation. Distraction and cognitive disengagement are dynamic processes that evolve
and fluctuate over time [316]. Intruding thoughts may be less persistently inhibitory,
potentially less evident in eye movements than the artificially induced counting task, yet
still detrimental to learning. Further, only the very time-sensitive frame-wise ISC has
been employed as a synchrony measure, suitable for very dynamic stimuli, which are not
necessarily given in the educational context. A widespread video lecture setup presents an
instructor and slides.

In this paper, we investigate the hidden link between gaze synchrony, attention, and
learning outcomes. We examine the relationship between gaze synchrony and self-reported
attention in a realistic learning scenario, specifically during learning with a pre-recorded
Zoom video lecture. Gaze synchrony is assessed with two different measures: the Kullback-
Leibler divergence between gaze density maps and the MultiMatch scanpath comparison
method. Further, we examine the suitability of gaze synchrony as an indicator of attention
by investigating the relationship between gaze synchrony, self-reported attention, and
learning outcomes in the form of post-test scores. Our primary contributions include
investigating naturally occurring self-reported (in)attention and its association with gaze
synchrony, employing novel measures for gaze synchronization in video learning, and
examining whether gaze synchrony predicts learning outcomes in this setting.

B.1.3. Related Work

Synchrony during Learning

In their study, [142] proposed that learners synchronize their gaze during cognitive pro-
cessing of lecture videos, indicating attentiveness. To investigate this, participants in
two experimental conditions, attentive and distracted, viewed short informal instructional
videos. In the distracted condition, participants were instructed to do the serial subtraction
task (counting back in their minds from a randomly chosen prime number in decrements
of 7) while watching the video. The attentive condition did not get any extra instructions.
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The synchronicity of eye movements was significantly higher in the attentive than in
the distracted condition. They found a significant correlation between the level of gaze
synchronicity and test scores, and the results were robust across factual and comprehension
questions, as well as different video styles (animation vs. drawing figures).

In replicating the prior study, including various lecture video styles and using webcam-
based eye tracking, without extensive exclusion of low sampling rates, [202] did not observe
a predictive correlation between gaze ISC and test scores in a comprehensive quiz. This
underscores the constraints of current webcam-based eye-tracking methods and their
limitations in employing a synchrony measure in real-time remote settings. Additional
studies with high-end eye trackers confirmed the correlation between experimentally induced
distraction and ISC [203]. In a second experiment, however, [203] showed that the use
of gaze modeling decreased the level of gaze synchrony compared to a normal viewing
condition while still showing higher post-test results. A very weak correlation between
total gaze synchrony and test scores was found.

These studies strongly suggest the significance of gaze synchronization during video
learning, correlating with learning success, and suggest an interrelation to attention. Previ-
ous research investigating gaze patterns in live online lectures reinforces these observations,
highlighting a positive correlation between students’ focal attention and their ability to
retain lecture content [314]. However, it remains unclear if gaze (dis-)synchrony can indeed
be used as an indicator for naturally occurring (in-)attention and employed for attention
detection in a real-world learning scenario.

Measuring Gaze Synchrony

The only measure employed to date to assess gaze synchrony during learning is the ISC of
vertical and horizontal gaze positions and pupil diameter per video frame [142, 140, 203].
It is computed within the experimentally induced attentive and distracted groups. In the
webcam-based eye tracking setting, pre-computed median values and eye movement velocity
instead of pupil diameter were used for correlation computation [142, 140]. The ISC is a
very time-sensitive measure that assumes synchronization with minimal spatial-temporal
distances, which appears to be suitable for a very dynamic video stimulus, which more
strongly drives eye movements [317]. This raises the question of the applicability of ISC for
more static settings in the educational domain. A frequently selected format, particularly
in live teaching settings, is the presentation of lecture slides. This represents a relatively
static stimulus, in which the gaze is mainly guided by the lecturer’s verbal description of
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the content and potential pointers like cursors [140].
Various other measures have been proposed in different contexts to capture the syn-

chronicity of eye movements in dynamic scenes. This includes clustering-based approaches,
measuring the percentage of gaze falling into the main cluster [318]. Another set of proposed
measures works with fixation maps or probability distributions created by the additive
superposition of Gaussians, assessing the differences between those maps employing the
sum of squared pointwise subtraction [319] or computing the Kullback-Leibler divergence
(KLD) [208, 209]. Other studies computed the entropy of gaze density based on Gaussian
Mixture Modeling [320, 321] and temporal Normalized Scanpath Saliency (Normalized
Scanpath Saliency (NSS)) [317], demonstrating a high correlation with KLD to quantify
gaze similarity. A multidimensional scanpath comparison approach including gaze charac-
teristics alongside spatial and temporal properties is the vector-based MultiMatch [211, 212,
213] method. The derived similarity measure combines sub-measures assessing similarity in
scanpath shape, saccadic direction, length, fixation position, and duration. MultiMatch’s
inherent alignment of scanpaths reduces sensitivity for minor temporal shifts and manages
variations in the lengths of scanpaths [210]. However, a limitation of this metric is its
comparison between only two scanpaths at a time, while the objective in synchrony analysis
often involves comparing entire groups of subjects.

Each of the proposed methods captures slightly different characteristics of gaze behavior.
For this study, we chose to compute and compare two established gaze synchrony measures
that account for the properties of our relatively static video stimulus and incorporate
gaze characteristics beyond spatio-temporal properties: KLD of gaze density maps and
MultiMatch scanpath comparison.

B.1.4. Methods

Experiment

The ethics committee of the Faculty of Economics and Social Sciences, University of
Tübingen (Date of approval 13 January 2022, approval #A2.5.4-210_ns) approved our
study procedures, and all participants have given written consent to the data collection.

Participants The data employed for this study was collected from N = 96 university
students. Five participants had to be excluded from further data analysis due to technical
errors during the experiment, such as malfunction of the eye tracker or crashing of experi-
ment computers. Additionally, three participants were excluded from the further analysis
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because they were not fluent in the language used for the instructions, questionnaires, and
video content. Consequently, the study was completed with a total of N = 88 participants
(Ages 19-33, M = 23.44, SD = 2.6), of which 19% were male.

Study Procedure and Setup The data was collected in the laboratory using the SMI
Red remote eye tracker with a sampling rate of 250 Hz. We refrained from using chin rests,
as we wanted to ensure an ecologically valid setting. Further, research has shown that
even without a chin rest acceptable levels of accuracy for purposes not relying on small
eye movements are achieved [322]. After completing a short questionnaire and a test on
previous knowledge on the session topic of statistics, participants performed a nine-point
pulsating calibration of the eye tracker. Participants then watched a pre-recorded Zoom
lecture on introductory statistics. The video lecture’s total duration was approximately
60 minutes, which required a re-calibration of the eye tracker after about 30 minutes.
Participants were instructed to focus on the lecture and were not allowed to take notes or
use electronic devices, including phones, during the study. After the video was completed,
a comprehensive post-test of 14 questions targeting factual knowledge and deep-level
understanding was conducted. Including the time allocated for general instructions and
filling out questionnaires, the overall duration per participant averaged approximately 120
minutes. Participants received a compensation of €20.

Video Stimulus The video stimulus represented a typical Zoom layout, depicted in Figure
B.1.1, including lecture slides and a webcam display of the lecturer’s face on the top right.
Other participants in the Zoom lecture turned off their cameras so only participant tiles
were visible. The slides were primarily static, yet the instructor used the cursor to point at
specific locations on the slides.

Figure B.1.1.: Zoom lecture video layout.

168



B.1. Examining the Relationship between Gaze Synchrony and Self-Reported Attention

Attention Experience Sampling The most common method for directly assessing the
internal state of learners is through self-reports [63]. Given the potential inaccuracies
associated with retrospective reports, experience sampling, also known as probe-caught
method, is typically employed. This involves intermittently stopping participants during a
task and asking them to indicate where their attention was focused at that very moment.
Although these self-reports are subjective, previous research has revealed their correlation
with more objective but indirect measures of attention, such as physiological indicators,
response times, and task performance [63]. The study incorporated 15 quasi-randomized
thought probes presented at fixed three- to five-minute intervals to assess the participants’
attentional state throughout the lecture. All participants received the probes at identical
moments during the lecture. A probe was administered by displaying a screen with
a multiple-choice question asking what the participants thought about just now. Six
answer categories adapted from [46], ranging from “I was on task, following the lecture” to
“Everyday personal concerns” (See figure B.1.8 for all categories), and an open response
option was provided. Responses within the open-ended category underwent manual coding
by two independent raters. The process followed an iterative method involving assigning
responses to existing and establishing new off-task categories, like “External Distraction.”
As this study focuses on the difference between attentive and inattentive learners, we
dichotomized the answers accordingly. The “I was on task, following the lecture” answer
option was coded as attentive. In contrast, answers to all other categories encompassing
meta-cognitive monitoring, elaborations, distractions, and mind wandering were coded
as inattentive. Although elaborations or meta-cognitive monitoring mechanisms are not
inherently disruptive but are considered an essential part of the learning process, they still
impede learners from following the lecture’s content at that very moment.

For 36% of all thought probes during the 60-minute lecture, participants reported
being on task and following the lecture. Most of the time, however, their thoughts were
preoccupied with elaborations about the lecture topic, whether they understood the lecture
or something else entirely, such as personal concerns or their current state, for example,
tiredness or hunger (64%). The difference between attentive and inattentive self-reports
across all probes is significantly different from the uniform distribution (χ2 = 98.337,
p < 0.001). Figure B.1.2 shows the absolute frequency of the participant’s attention
self-reports for the attentive and inattentive categories by thought probe. It becomes
visible how the level of attention fluctuates over time. The peak in attention occurs at
the second probe, approximately ten minutes into the lecture. Another local peak can be
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observed at probe nine after the eye tracker re-calibrated, which allowed for a short break.

Figure B.1.2.: Absolute frequency of attention self-reports by experience sampling thought
probe.

Learning Outcomes To assess learning outcomes, we administered a post-video knowl-
edge test comprising 14 multiple-choice and open-ended questions to assess participants’
comprehension levels related to the video lecture content. This assessment included seven
fact-based memory questions and seven questions targeting deep-level understanding (see
Figure B.1.3 for an example of both types). Specifically tailored for the prerecorded lecture
on linear regression analysis, the questions covered topics such as empirical covariance,
method of local averaging, and least squares estimation. We ensured to include all topics
covered right before the thought probes in the test. Examples of both fact-based and
inference questions are illustrated in Figure B.1.3. The summative scores, ranging from 0
to 14, were derived by assigning 1 point for each correctly answered question. Participants
achieved an average score of 5.63 (sd = 2.663; see Figure B.1.9 in the appendix for score
distribution). To control for previous knowledge, a pre-test on the general topic of linear
regression analysis was conducted before the video lecture, including eight multiple-choice
and open-ended questions.

Eye Gaze Data Pre-processing

The average calibration error for our nine-point calibration procedure was 0.31°. We
used the analysis software BeGaze by SMI to extract eye movement events, including
fixations (determined by dispersion-based threshold), saccades (determined by velocity-
based threshold), and blinks from the raw gaze data [181]. We regard the time windows
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Figure B.1.3.: Example Posttest Questions.

right before the experience sampling probes for our gaze synchrony analysis. Therefore, we
cut 10-second windows before each of the 15 probes for each participant, resulting in a set
of 1335 instances with corresponding self-reported attention information. Furthermore, a
deficiency of the employed eye trackers that have been reported before is that tracking
failures are recorded as unusually long blinks [206]. Consequently, blinks longer than 500
ms, exceeding an expected blink duration range between 100 to 400 ms [207], were excluded.
We excluded gaze sequences with less than a 75% gaze tracking ratio to ensure high data
quality. For four participants, applying this criterion resulted in excluding all 15 sequences
due to insufficient data quality with less than 75% tracking ratio across the board. Overall,
this exclusion threshold led to 785 examples from 84 participants and an average tracking
ratio of 92.87%.

Gaze Synchrony Assessment

We employed two established measures to assess gaze synchrony. First, we computed the
KLD between gaze density maps [208, 209]. Gaze density maps per person and regarded
video sequence were created by superposing Gaussian probability density functions on
fixation counts and durations of the ten-second time windows before a thought probe.
When applied to gaze density maps, the KLD measures the discrepancy between two
distributions of gaze points, quantifying how much one density map diverges from another
[210]. This involves comparing the probability distribution of gaze points across the density
map generated by one set of gaze data to the reference distribution from another set,
thereby indicating the degree of similarity or difference in visual attention patterns between
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the two. For each point on the map, the KLD quantifies the difference by calculating the
logarithm of the ratio of the gaze density at that point in the first map to the gaze density
at the corresponding point in the second map, then weighting this by the gaze density of
the first map, and summing these values across all points. Equal gaze distributions would
result in a KLD of zero, while higher values would signify a more considerable dissimilarity
and, consequently, less synchronous gaze. We argue that gaze density maps, only capturing
the spatial distribution of the gaze, are suitable due to the relatively static nature of the
video stimulus presenting PowerPoint slides.

Additionally, to incorporate temporal synchrony dimensions, we employed the Multi-
Match scanpath comparison algorithm [211, 212, 213]. MultiMatch consists of five separate
measures to compare scanpaths, capturing a range of characteristics: shape, direction,
length, position, and duration. The shape similarity is derived by vector differences between
aligned pairs of saccades and averaged over the whole scanpath. The direction subdimen-
sion is computed by the angular differences between saccades, whereas length similarity
is defined as the absolute difference in amplitude of aligned saccades. These measures
are insensitive to fixation locations or durations. The position similarity is computed as
the Euclidean distance between aligned fixations. The duration measure is defined by
the absolute difference in fixation duration of aligned fixations and is insensitive toward
fixation locations and saccade information. An overall similarity score can be computed by
averaging all subdimension scores. We did not simplify the scanpaths, as small changes
can already be meaningful in our video setting. We used the MultiMatch_gaze python
implementation[323] to compute similarities. To obtain an aggregated scanpath similarity
measure, all five sub-measures were averaged.

For a baseline comparison, we calculated the ISC, previously utilized in research [142,
140, 203]. This involved computing correlations for vertical and horizontal gaze positions
and pupil diameter, which were then aggregated into a single ISC metric. All synchrony
measures were computed probe-wise for all 15 10-second video sequences preceding the
attention self-reports separately. The similarity score of each participant for a given
sequence was computed by comparing their gaze data with that of all other participants in
the same peer group, grouped as either attentive or inattentive based on their corresponding
self-reports of attention. This comparison was conducted in a pairwise fashion, and the
resultant similarity scores were averaged. To compare the synchrony between the two groups
across the video sequences, the synchrony values per video sequence were z-standardized.
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Analysis

Gaze Synchrony and Attention In the next step, we analyzed the relationship between
attention self-reports and gaze synchrony. This analysis was conducted at the probe level,
focusing on the relationship between each attention self-report and the gaze synchrony
values computed for the 10 seconds immediately preceding the report. Since we had up to
15 probes and thus multiple measurement time points per person, we employed a multi-level
analysis approach. Specifically, we utilized mixed linear regression with gaze synchrony as
the dependent variable. Within this model, participant ID was treated as a random effect,
and self-reported attention was incorporated as a fixed effect. Furthermore, to account
for potential variability across the video segments before each probe under analysis, we
included the probe number as a categorical variable in the model.

Predicting Learning Outcomes To explore the potential of using gaze synchrony measures
as indicators for attention, we investigated the relationship between gaze synchrony measures
and learning outcomes. To this end, we aggregated gaze synchrony scores to the participant
level by averaging the obtained synchrony values over all considered time windows for each
participant. Similarly, to aggregate the attention self-reports, we calculated the proportion
of on-task self-reports from the total number of reports for each participant, effectively
determining the share of self-reported attention. With these aggregated values, we then
performed linear regression analyses to compare the relation of self-reported attention,
KLD, and MultiMatch similarities to post-test scores, incorporating pre-test scores into all
models to adjust for prior knowledge.

B.1.5. Results

Gaze Synchrony and Attention

We calculated ISC as a baseline synchrony measure. When z-standar-dizing the measure at
the probe level, we found average ISC values of 0.104 (SD = 1.019) for the attentive group
and -0.069 (SD = 0.983) for the inattentive group, indicating a slightly higher gaze synchro-
nization for attentive learners. Results of Linear mixed-effects modeling of self-reported
attention on ISC can be found in the first two columns of Table B.1. Specifically, our results
indicated that participants who self-reported as attentive demonstrated significantly higher
inter-subject correlation of gaze position and pupil diameter (Estimate = 0.21, p < 0.01)
compared to those who reported being inattentive.
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Table B.1.: Linear mixed effects model of self-reported attention on Inter Subject Corre-
lation (ISC), Kullback-Leibler divergence (KLD) and MultiMatch similarity
(MM).

ISC KLD MM
Predictors Estimates CI Estimates CI Estimates CI
(Intercept) -0.09 -0.34 – 0.15 0.17 -0.07 – 0.41 -0.21 -0.45 – 0.03
Attentive 0.21 ** 0.06 – 0.37 -0.36 *** -0.51 – -0.22 0.38 *** 0.23 – 0.53
Stimulus 2 -0.06 -0.39 – 0.27 0.13 -0.17 – 0.43 -0.08 -0.39 – 0.22
Stimulus 3 -0.02 -0.37 – 0.33 0.12 -0.20 – 0.43 -0.04 -0.36 – 0.28
Stimulus 4 0.06 -0.28 – 0.39 -0.08 -0.38 – 0.21 0.10 -0.20 – 0.41
Stimulus 5 0.04 -0.31 – 0.39 -0.03 -0.35 – 0.29 0.09 -0.24 – 0.41
Stimulus 6 -0.01 -0.38 – 0.35 0.08 -0.25 – 0.40 -0.02 -0.36 – 0.31
Stimulus 7 0.01 -0.34 – 0.37 0.09 -0.23 – 0.41 0.01 -0.32 – 0.34
Stimulus 8 0.04 -0.32 – 0.40 0.02 -0.30 – 0.35 0.04 -0.30 – 0.37
Stimulus 9 -0.04 -0.40 – 0.32 0.13 -0.19 – 0.45 -0.09 -0.42 – 0.24
Stimulus 10 0.07 -0.31 – 0.45 -0.08 -0.42 – 0.26 0.09 -0.26 – 0.44
Stimulus 11 0.02 -0.35 – 0.38 0.06 -0.27 – 0.39 -0.01 -0.35 – 0.33
Stimulus 12 0.07 -0.29 – 0.44 -0.18 -0.51 – 0.15 0.19 -0.15 – 0.54
Stimulus 13 -0.02 -0.40 – 0.36 0.05 -0.29 – 0.39 -0.04 -0.39 – 0.31
Stimulus 14 -0.01 -0.40 – 0.37 0.04 -0.30 – 0.39 -0.02 -0.38 – 0.34
Stimulus 15 0.02 -0.38 – 0.42 -0.02 -0.38 – 0.34 0.01 -0.36 – 0.38
Random Effects
σ2 1 0.79 0.84
τ00id 0.02 0.21 0.17
ICC 0.02 0.21 0.17
Nid 84 84 84
Observations 785 785 785
Marg. R2 / Cond. R2 0.009 / 0.025 0.028 / 0.234 0.029 / 0.196

* p<0.05 ** p<0.01 *** p<0.001

Kullback-Leibler Divergence The analysis of gaze density maps, utilizing KLD to quantify
synchrony in gaze patterns, was conducted probe-wise. Each video sequence, spanning
10 seconds and leading up to a self-report probe, was individually z-standardized to
ensure comparability across different segments. The standardization process modifies the
KLD scale, allowing us to interpret smaller or negative values as indicative of reduced
differences between gaze maps, thereby signifying greater gaze synchrony. The distribution
of KLD, divided into attentive (M = −0.219, SD = 1.009) and inattentive (M = 0.142,
SD = 0.968) instances based on participant’s self-reports are depicted in Figure B.1.4. The
visible delineation suggests that participants who self-reported as inattentive exhibited a
marginally higher divergence in gaze patterns within their peer group, indicating a reduced
level of gaze synchrony compared to their attentive counterparts. This higher divergence
signifies smaller gaze synchrony within the distracted group. Although the trend is visible,
the two distributions largely overlap, illustrating that the differences are not particularly
large.
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Figure B.1.4.: Kullback-Leibler divergence of gaze density maps by self-reported attention,
z-standardized by video sequence.

Further exploration through multi-level analysis, employing linear mixed effects models,
accentuated these findings. Specifically, our results indicated that participants who self-
reported as attentive demonstrated significantly lower gaze divergence (Estimate = −0.36,
p < 0.001) compared to those who reported being inattentive. This statistical significance
underscores a greater degree of gaze synchrony among participants who were on task
and focused on the lecture, as per their self-reports, albeit by a small effect size. Such a
relationship between self-reported attention states and gaze synchrony metrics, detailed in
Table B.1, provides empirical evidence supporting the assumption that attention levels, as
self-reported by participants, are intricately associated with measurable gaze behaviors
during video lecture viewing.

Figure B.1.5 shows visualizations of gaze density maps for attentive and inattentive
learners, according to their self-reports, for one video sequence of 10 seconds before a
preceding probe. The group-level depiction of gaze density illustrates that the attentive
group focused clearly on a specific point in the graphic on the slide shown. In contrast,
the gaze of the distracted group tended to be scattered across the slide, and a high gaze
density can only be seen directly by the lecturer. When looking at examples of single
participants, attentive heatmaps appeared more similar to each other and to the group
depiction, which is supported by the lower KLD values of −1.013 and −1.228. Contrarily,
the inattentive participants’ gaze patterns appeared less focused and more random, also
reflected in higher KLD Values of 0.916 and 0.462. Additionally, a correlation analysis
between the baseline ISC similarity scores and KLD distance values revealed a weak
negative significant correlation (r = −0, 12).
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Figure B.1.5.: Example gaze density heatmap visualizations by attentive and inattentive
self-reports in a video sequence. The top row shows the gaze density at
the group level, while images on the bottom show examples of individual
participants’ gazes and corresponding average Kullback-Leibler Divergences
(KLD).

Scanpath Comparisons with MultiMatch As a second measure of synchrony, we employed
the MultiMatch method to assess scanpath similarities computed at the probe level for
individual instances. The calculated similarities are presented in Figure B.1.6, where we
observed that attentive participants (M = 0.207, SD = 0.946) exhibited marginally more
similar scanpaths compared to their inattentive counterparts (M = −0.137, SD = 1.013).
This suggests a higher level of gaze synchronization among participants who reported being
on task during the respective video lecture sequences.

To delve deeper into the differences between groups, we applied mixed linear models
to analyze the data at the probe level. Table B.1 displays the models for MM and
its subdimensions. This analysis revealed that attentive learners demonstrated higher
MM scanpath similarities (Estimate = 0.38, p < 0.001), indicating a greater degree of
gaze synchronization though the effect size suggests these differences, while statistically
significant, are modest in magnitude. This finding was consistent across all subdimensions of
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the MM analysis, as displayed in Table B.3, with the exception of saccade length similarity
(Estimate = 0.02, p = 0.825), which did not show a significant difference between attentive
and inattentive groups. Notably, the most pronounced effect of attention was observed in
the similarity of gaze positions (Estimate = 0.42, p < 0.001), underscoring the impact of the
attentional state on visual engagement with the video content. When comparing KLD scores
to our ISC baseline, we found a weak, significantly positive correlation (r = 0, 17). Further,
we conducted a comparative analysis of MM similarities and KLD scores. This comparison
revealed a modest yet significant correlation (r = −0.45) between MultiMatch and KLD,
suggesting that both metrics, although distinct in their computational approaches, provide
complementary insights into the nature of gaze behavior and its association with attention.

A visualization of example scanpaths can be seen in Figure B.1.7. The three participants
depicted, attentive according to their self-reports, show very similar fixation patterns that
move back and forth between the presenter and the very few specific relevant points on the
slides. The scanpaths of distracted learners exhibit significantly greater diversity. In these
cases, fixations are dispersed across a broader area of the slide and do not seem to follow a
distinct pattern. While their gaze also briefly touches the relevant areas of the graphic,
they occasionally fixate on empty areas on the slides.

Figure B.1.6.: MultiMatch scanpath similarity scores by self-reported attention, z-
standardized by video sequence.

Predicting Learning Outcomes

We explored the relationship between gaze synchrony as an indicator of attention and
learning outcomes by aggregating self-reported attention and gaze synchrony metrics to the
participant level and then conducting linear regression analysis on post-test scores. This
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Figure B.1.7.: Example scannpath visualizations of one 10-second video sequence by self-
reported attention.

approach facilitates a detailed exploration and comparison of the relationships between
self-reported attention and gaze synchrony with learning outcomes, examining how each
correlates with educational success over the entire session. The results of linear regression
analysis are detailed in Table B.2. Our findings indicate a significant positive relationship
between the overall proportion of time participants reported being on task and their post-
test scores, even after adjusting for their prior knowledge of the session topic. This suggests
that self-reported attention strongly predicts learning success, underscoring the importance
of maintaining focus during educational sessions. In contrast, we could not find a significant
relationship between the computed gaze (a-)synchrony measures KLD and MultiMatch
similarity and learning outcomes. However, in these models, previous knowledge becomes
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significant. This lack of significant correlation suggests that while these measures provide
valuable insights into participants’ engagement and attention alignment, they may not
directly predict learning effectiveness as measured by post-test scores. Interestingly, in the
models incorporating gaze synchrony metrics, prior knowledge emerged as a significant
predictor. Models that do not account for previous knowledge are detailed in the appendix,
specifically in Table B.4.

Table B.2.: Linear regression of share of attentive self-reports, average Kullback-Leibler
divergence (KLD), and average MultiMatch scanpath similarity (MM) on
posttest scores, controlling for pretest scores.

Post-Test Score
Predictors Estimates CI Estimates CI Estimates CI
Intercept 2.89∗∗∗ 1.63 – 4.15 5.16∗∗∗ 4.44 – 5.88 5.17∗∗∗ 4.46 – 5.88
Pre-Test Score 0.55 -0.06 – 1.15 0.72∗ 0.05 – 1.39 0.70∗ 0.03 – 1.37
Attentive Share 0.05∗∗∗ 0.03 – 0.08
Average KLD 0.14 -0.74 – 1.02
Average MM -0.17 -1.06 – 0.72
Observations 84 84 84
R2 / R2 adjusted 0.224 / 0.205 0.054 / 0.030 0.054 / 0.031

∗ p<0.05 ∗∗ p<0.01 ∗∗∗ p<0.001

B.1.6. Discussion

Our study fills a crucial gap by exploring the relationship between gaze synchrony and
self-reported attention during lecture video watching. We identified significant differences in
gaze synchrony by self-reported attention, indicating higher synchronization when students
report attentiveness. However, these differences were observed to be relatively small in
magnitude. As a first study, this work establishes a connection between gaze synchrony
and experience-sampled attention reports, reinforcing the hypothesis that gaze synchrony,
beyond experimental conditions, is related to naturally occurring (in)attentiveness during
video lecture viewing.

When comparing and contrasting the two measures employed to assess gaze synchrony,
namely the Kullback-Leibler divergence and the MultiMatch Scanpath comparison, the
small significant correlation reveals a common trend but shows that the two measures
still depict distinct characteristics of the eye movements. While KLD focuses mainly on
the spatial distribution of fixations, MultiMatch incorporates the temporal dimension
by considering the sequence and a range of other multidimensional gaze properties, such
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as overall scanpath shape. Interestingly, the sub-dimension of MultiMatch that is most
strongly linked to self-reported attention is the one that assesses how similar fixation
positions are. This underscores the significance of where the eyes focus and the visual
engagement with specific content. On the contrary, the only subdimension that did not
show a significant relation was saccade length similarity. This discrepancy may indicate
that the amplitude of aligned eye movements does not exhibit increased synchronization in
the same way as other aspects of gaze behavior when learners are attentively engaged in a
task. Location may be more directly influenced by where attention is focused, reflecting
the cognitive engagement with specific content areas. Consequently, both measures appear
to be suitable for assessing gaze synchrony in the setting of video lecture learning while
providing complementary insights. When synchrony is assessed with these measures, it
demonstrates a stronger connection to self-reported attention than the previously used
ISC measure. This likely stems from their lower time sensitivity, which is more suitable
for relatively static stimuli like lecture slides. The exemplary visualization of gaze density
heatmaps and scanpaths shows that in many cases, the discrepancy in gaze movement
patterns associated with different attentional states can be readily discerned through visual
inspection, as described in previous studies [324].

Our study did not replicate the previously suggested finding [142, 203] that the average
level of gaze synchrony significantly predicts post-test scores. Conversely, as anticipated,
self-reported attention demonstrated a significant association with learning outcomes. A
similar finding was reported by [202], who attributed the lack of association between gaze
synchrony and test scores primarily to the poorer webcam-based eye-tracking sampling
rates. However, these diverging findings may also partially be attributed to distinctions
between the employed video stimuli. [142] used short, informal instructional videos, i.e.,
animations, while [202] and this study displayed more traditional lecture videos featuring
slides and a lecturer. These differences in video content might influence the observed gaze
synchrony patterns, highlighting the potential impact of video format on eye movement
behaviors. The presence of a presenter in the video changes the gaze distribution and
potentially how eye movements synchronize during attention. This suggestion is also
supported by findings of [202], that the amount of gaze on the presenter interacted with
ISC in the regression on post-test scores. Other studies revealed longer fixations on the
instructor during mind-wandering episodes [214].

A limitation of this study is the observation of relatively short time windows for calculating
gaze synchrony instead of the continuous observation over the entire lecture video. These
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brief intervals were specifically chosen to accommodate the inherently fluctuating nature of
attention, recognizing that it can vary significantly within short periods. However, this
methodological choice means that only a small proportion of the total gaze data is utilized
for synchrony computation and, consequently, to predict learning outcomes. Observing
eye movements over longer periods could increase the synchrony measures’ robustness and
potentially reveal a clearer relation to learning outcomes. Further, our study sample consists
of university students within a narrow age range, potentially affecting the generalizability
to other age groups such as school children. Moreover, the data is unbalanced in terms
of gender, with a smaller proportion of male participants. Additionally, the chosen video
lecture, which is not part of participants’ regular study programs, may have contributed
to lower intrinsic motivation, influencing their attention. While our findings provide
important insights into gaze synchrony and attention, they may not directly apply to live
online lectures, where participants might be visible through a webcam. Prior research
has identified a negative correlation between the time spent actively looking at one’s own
and other students’ webcam images and learning outcomes [314]. This suggests that the
mere visibility of these images could act as a distractor in live online educational contexts.
Another limitation of the current study is that in our effort to increase ecological validity,
we refrained from using chin rests. This decision, aimed at creating a more naturalistic
setting for participants, might have affected the accuracy of our eye-tracking measurements.

The observations in this study underline the complexity of directly using synchrony
as an attention indicator, suggesting that the findings are not as robust as previously
thought. Future research should investigate how gaze synchrony is influenced by the
educational video type, especially by the presence of a presenter. The choice of a synchrony
measure in future research should be informed by the dynamic nature of the video or
learning task at hand. Considering that KLD and MM appear to perform comparably
for static, slide-based stimuli, their selection might hinge on the computational demands
for real-time applications. KLD might be more computationally efficient, especially for
group-based comparisons. Nonetheless, for dynamic stimuli or in scenarios involving longer
time windows, MM might be preferable due to its capacity to incorporate the temporal
dimension. Additionally, the moderate correlation observed between KLD and MM suggests
they could be complementary. To leverage the unique insights provided by each, employing
a hybrid approach, such as Normalized Scanpath Saliency, may offer significant benefits
[210, 317]. Future research should systematically test and compare various synchrony
measures and how they relate to video types to find a more precise measure of synchrony
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that can eventually serve as a robust attention indicator during online learning.
This is particularly relevant for further research aimed at a better understanding of

the learning process in online environments and, for example, improving the quality of
learning materials. Moreover, this advancement carries significant implications for practical
applications. Prior research proposed the potential of employing webcam-based eye tracking
to enable real-time adaptability in online education based on attention [142]. The finding
that gaze synchrony correlates with momentary, naturally occurring attention presents
the prospect that an overall degree of gaze synchrony could be a meaningful metric for
lecturers and online educators, providing insights into the attentiveness of learners in live
online settings. This could potentially guide instructional strategies to enhance student
engagement and learning outcomes. However, ethical considerations take center stage when
contemplating the application of eye tracking in real-world settings. Researchers must
prioritize students’ privacy [325] by implementing robust measures to secure and anonymize
eye movement data [326, 327], as using eye movement data, it is possible to infer various
sensitive user attributes [328, 329]. Therefore, it is also essential to carefully consider issues
of consent, data security, and the responsible use of technology. Furthermore, researchers
should be mindful of the potential impact on learners, and steps should be taken to avoid
potential biases that can disadvantage learner groups.

B.1.7. Conclusion

In conclusion, this study investigated the relationship between gaze synchrony and self-
reported attention in a realistic video lecture setting. While we found attentive participants
exhibited higher synchronization of eye movements, our results did not show a significant
association between gaze synchrony and learning outcomes. The findings underscore the
complexity of using gaze synchrony as a reliable indicator of attention. Further research is
required to explore the interplay between attention, gaze synchrony, and the educational
video type to better understand their relationship.
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Figure B.1.8.: Attention thought probes, adapted from [46].

Figure B.1.9.: Post test scores.
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Table B.3.: Linear mixed effects models of self-reported attention on MultiMatch scanpath
similarity (MM) sub-dimensions.

MM Shape MM Length MM Direction MM Position MM Duration
Predictors Estimates CI Estimates CI Estimates CI Estimates CI Estimates CI
(Intercept) -0.28 * -0.54 – -0.02 -0.03 -0.27 – 0.21 -0.30 * -0.57 – -0.04 -0.20 -0.44 – 0.04 -0.16 -0.40 – 0.08
Attentive 0.30 *** 0.17 – 0.42 0.02 -0.14 – 0.17 0.29 *** 0.17 – 0.42 0.42 *** 0.27 – 0.58 0.30 *** 0.15 – 0.45
Stimulus 2 -0.05 -0.30 – 0.19 0.01 -0.31 – 0.33 -0.05 -0.30 – 0.20 -0.12 -0.44 – 0.21 -0.06 -0.37 – 0.25
Stimulus 3 -0.02 -0.27 – 0.24 0.01 -0.32 – 0.35 -0.02 -0.29 – 0.24 -0.05 -0.39 – 0.28 -0.03 -0.35 – 0.30
Stimulus 4 0.05 -0.20 – 0.29 0.02 -0.30 – 0.34 0.06 -0.20 – 0.31 0.12 -0.21 – 0.44 0.09 -0.23 – 0.40
Stimulus 5 0.06 -0.20 – 0.32 0.04 -0.30 – 0.38 0.06 -0.21 – 0.33 0.08 -0.27 – 0.42 0.07 -0.27 – 0.40
Stimulus 6 -0.04 -0.30 – 0.23 0.01 -0.34 – 0.36 -0.03 -0.30 – 0.25 -0.03 -0.38 – 0.32 -0.01 -0.35 – 0.33
Stimulus 7 -0.04 -0.30 – 0.23 0.01 -0.33 – 0.36 -0.02 -0.29 – 0.25 -0.00 -0.35 – 0.35 0.03 -0.30 – 0.37
Stimulus 8 -0.01 -0.28 – 0.25 0.00 -0.34 – 0.35 -0.01 -0.29 – 0.26 0.06 -0.29 – 0.41 0.04 -0.30 – 0.38
Stimulus 9 -0.02 -0.29 – 0.24 -0.01 -0.36 – 0.33 -0.03 -0.30 – 0.25 -0.07 -0.42 – 0.27 -0.07 -0.41 – 0.27
Stimulus 10 0.17 -0.11 – 0.45 -0.02 -0.38 – 0.34 0.16 -0.13 – 0.45 0.14 -0.23 – 0.50 0.07 -0.29 – 0.42
Stimulus 11 0.05 -0.22 – 0.33 -0.02 -0.37 – 0.33 0.05 -0.23 – 0.33 0.02 -0.34 – 0.37 0.00 -0.34 – 0.35
Stimulus 12 0.26 -0.02 – 0.53 0.03 -0.33 – 0.38 0.25 -0.03 – 0.53 0.18 -0.18 – 0.54 0.13 -0.22 – 0.48
Stimulus 13 0.13 -0.15 – 0.41 -0.04 -0.40 – 0.33 0.11 -0.18 – 0.40 -0.05 -0.41 – 0.32 -0.04 -0.40 – 0.32
Stimulus 14 0.02 -0.26 – 0.31 0.02 -0.35 – 0.39 0.04 -0.25 – 0.33 -0.02 -0.39 – 0.35 -0.02 -0.38 – 0.34
Stimulus 15 0.09 -0.21 – 0.38 0.00 -0.38 – 0.39 0.08 -0.22 – 0.39 0.03 -0.36 – 0.41 0.00 -0.38 – 0.38
Random Effects
σ2 0.52 0.90 0.56 0.93 0.87
τ00id 0.77 0.12 0.78 0.05 0.14
ICC 0.60 0.12 0.58 0.05 0.14
Nid 84 84 84 84 84
Observations 785 785 785 785 785
Marg. R2 / Cond. R2 0.017 / 0.603 0.000 / 0.122 0.015 / 0.589 0.036 / 0.087 0.018 / 0.153

* p<0.05 ** p<0.01 *** p<0.001

Table B.4.: Linear regression of pre-test Score, attentive self-report share, average Kullback-
Leibler divergence (KLD) and average MultiMatch scanpath similarity (MM)
on posttest scores.

Post-Test Score
Predictors Estimates CI Estimates CI Estimates CI Estimates CI
(Intercept) 5.18∗∗∗ 4.48 – 5.89 3.10∗∗∗ 1.85 – 4.36 5.62∗∗∗ 5.03 – 6.21 5.60∗∗∗ 5.01 – 6.20
Pre-Test Score 0.71∗ 0.04 – 1.37
Attentive Self-Report Share 0.06∗∗∗ 0.03 – 0.08
Average KLD 0.05 -0.84 – 0.95
Average MM Similarity -0.22 -1.13 – 0.69
Observations 84 84 84 84
R2 / R2 adjusted 0.053 / 0.041 0.193 / 0.183 0.000 / -0.012 0.003 / -0.009

∗p < 0.05∗∗ p<0.01 ∗∗∗ p<0.001
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C.1. Automated hand-raising detection in classroom videos: A
view-invariant and occlusion-robust machine learning
approach

C.1.1. Abstract

Hand-raising signals students’ willingness to participate actively in the classroom discourse.
It has been linked to academic achievement and cognitive engagement of students and
constitutes an observable indicator of behavioral engagement. However, due to the large
amount of effort involved in manual hand-raising annotation by human observers, research
on this phenomenon, enabling teachers to understand and foster active classroom par-
ticipation, is still scarce. An automated detection approach of hand-raising events in
classroom videos can offer a time- and cost-effective substitute for manual coding. From a
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technical perspective, the main challenges for automated detection in the classroom setting
are diverse camera angles and student occlusions. In this work, we propose utilizing and
further extending a novel view-invariant, occlusion-robust machine learning approach with
long short-term memory networks for hand-raising detection in classroom videos based
on body pose estimation. We employed a dataset stemming from 36 real-world classroom
videos, capturing 127 students from grades 5 to 12 and 2442 manually annotated authentic
hand-raising events. Our temporal model trained on body pose embeddings achieved an F1

score of 0.76. When employing this approach for the automated annotation of hand-raising
instances, a mean absolute error of 3.76 for the number of detected hand-raisings per
student, per lesson was achieved. We demonstrate its application by investigating the
relationship between hand-raising events and self-reported cognitive engagement, situa-
tional interest, and involvement using manually annotated and automatically detected
hand-raising instances. Furthermore, we discuss the potential of our approach to enable
future large-scale research on student participation, as well as privacy-preserving data
collection in the classroom context.

C.1.2. Introduction

Students’ active participation in classroom discourse contributes to academic achievement
in the school context [20]. To contribute verbally to the classroom discourse, students are
required to raise their hands. Therefore, hand-raising in the classroom is an indicator of
active participation and behavioral engagement, which is associated with achievement,
cognitive engagement, perceived teacher emotional support [21], and motivation [22].
Further, a significant variation in the hand-raising frequency of eighth graders was due
to situational interest in language art classes, and the self-concept in maths classes [22].
Results of such pioneering studies show the importance of hand-raising research to enable
educators to understand and foster student engagement and active classroom participation,
as well as the potential of employing hand-raising as an objective, low-inference behavioral
engagement indicator. To study active participation, human observers often rate student
behavior manually, which is time- and cost-intensive. Crowdsourcing strategies are often
not applicable due to data protection regulations. This is part of the reason why studies
of hand-raising have small sample sizes limited to certain grades, age groups, and school
subjects [22, 21], resulting in a lack of generalizability of results. Advances in computer
vision and machine learning offer alternatives through automated recognition. This study
aims to develop a robust approach to detect hand-raising events in classroom videos in an
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automated fashion and thus, develop a time- and cost-effective hand-raising assessment
tool, replacing manual annotations to enable future large-scale research.

Previous research tackled automated hand-raising detection by either aiming to detect
image patches of raised hands [215] or employing body pose estimation [86]. This research
mostly focused on the real-time assessment of hand-raisings on the classroom level, i.e.,
as part of classroom monitoring systems [83]. However, research on hand-raising and its
role in individual students’ learning processes is still scarce. Further, previous approaches,
mapping hand-raisings to individual students, are often not evaluated on real-world
classroom videos containing authentic hand-raisings. Therefore, we propose a hand-raising
detection approach, built and evaluated on diverse real-world classroom data, to identify
individual students’ hand-raisings for post hoc analysis in education research. To investigate
the relation between hand-raising and learning activities, (1) we conduct a correlation
analysis of manually annotated hand-raisings to cognitive engagement, involvement, and
situational interest reported after each lesson. For enabling such research with automated
action recognition in the classroom, one of the biggest challenges is that students are
often filmed from diverse angles and might be partially occluded by classmates or learning
materials. Therefore, (2) we propose a novel hand-raising gesture recognition approach
based on view-invariant and occlusion-robust embeddings of body pose estimations and
temporal classification. Since we are not directly working on the image stream, this
approach allows student privacy to be protected by directly extracting poses in real-time
and eliminating the need to store sensitive video data. Since, in addition to recognizing
the gesture itself, identifying who and how often someone raised their hand is of particular
interest for education research, (3) we apply and evaluate our classification approach for the
automated annotation of hand-raising instances for individual students. We then conduct
correlation analysis to learning-related activities comparing manually and automatically
annotated hand-raisings.

C.1.3. Related Work

Initial work addressing the automatic recognition of hand-raising gestures formulated it as
an object detection task, localizing raised hands and arms frame-by-frame. It investigated
hand-raising in simple and staged settings with few people in the frame, focusing on
techniques such as temporal and spatial segmentation, skin color identification, shape and
edge feature analysis [330] or the geometric structure of edges [331].

However, such methods reach their limits when applied in a real classroom where a large
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number of students are visible, they occlude each other, and image resolution becomes
lower.

Therefore, other works [215, 332, 333] aimed to overcome challenges of various gestures
and low resolution, by introducing architectural adaptions of deep learning models. They
achieved reliable results for detecting raised-hand image patches in realistic classroom
scenes, with mean average precision (Mean Average Precision (mAP)) ranging between
85.2% [333] and 91.4% [332].

Object detection approaches are useful for measuring hand-raising rates at the class level,
but it is challenging to analyze individual student behavior because raised hands cannot be
easily attributed to specific students. To this end, a two-step approach combining object
detection and pose estimation was performed by [334], heuristically matching the detected
hand bounding box to a student based on body keypoints. On six real-world classroom
videos, 83.1% detection accuracy was achieved. [335] chose the reverse approach, using
pose estimation to obtain arm candidate areas and then classifying the corresponding
image patch, achieving a F1-score of 0.922 on a test video of college students.

Another strand of work directly employed pose estimation algorithms to detect hand-
raising in the classroom. A classroom monitoring system by [83] used OpenPose [116] to
extract eight upper body keypoints, for which direction unit vectors and distance between
points were computed as geometric features. On scripted classroom scenes, a hand-raising
prediction accuracy of 94.6% with a multi-layer perceptron was reported. The evaluation
on real-world videos, only containing six hand-raising instances, yielded a recall of 50%.
Furthermore, a classroom atmosphere management system for physical and online settings
implemented rule-based hand-raising detection employing Kinect pose estimations [86].
The detection accuracy was however not evaluated on real-world classroom videos. Likewise,
geometric features (i.e., normalized coordinates, joint distances, and bone angles) extracted
from pose estimations were used by [85] for student behavior classification. Their approach
to detecting four behaviors was evaluated on six staged classroom videos with a precision
of 77.9% in crowded scenes.

As described above, utilizing pose estimation offers the advantage that hand-raisings
can be attributed to a specific student, which is important when studying participation on
the student level. One common limitation of previous research relying on pose estimation
is that either the performance of models has only been extensively evaluated on scripted
videos and small real-world datasets [83, 85], or it implemented rule-based detection that
was not evaluated on classroom videos at all [86]. How these approaches perform in a
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real-world classroom scenario, where hand-raisings are likely to be expressed with various,
sometimes subtle gestures, is unknown. In conclusion, automated annotation of hand-
raisings needs to be student specific and methodologically robust for real-world classroom
scenarios. Therefore, we propose a recognition approach based on pose estimation trained
and tested on a challenging dataset containing real-world school lessons with realistic
hand-raising behaviors, representing a wide range of age groups (grades 5 to 12) and school
subjects. Furthermore, our approach copes with the main technical challenges of such
videos, such as camera angles and occlusions of students. To tackle those, we adapted and
extended state-of-the-art view-invariant, occlusion-robust pose embeddings. Going beyond
related works which detected hand-raising in a frame-by-frame fashion, we developed a
classification model which integrates temporal information and is thus able to capture the
large variety of hand-raisings expressed in their dynamic process.

C.1.4. Methodology

Data

Data Collection The classroom videos utilized in the study were recorded in real-world
lessons at a German secondary school, approved by the ethics committee of the University
of Tübingen (Approval #A2.5.4-097_aa). A total of 127 students, 56.3% male, from grades
5 to 12 were videotaped during 36 lessons across a wide variety of subjects (see Table C.1).
All recordings were captured by cameras (24 frames per second) mounted in the front left
or right corner of the classroom. After each lesson, students completed a questionnaire
on learning activities in the lesson, including self-reported involvement [216], cognitive
engagement [217], and situational interest [218]. The employed scales have been shown to
be related to engagement observer ratings and learning outcomes [79]. This resulted in
video and questionnaire data for 323 student-lesson instances. Due to missing questionnaire
information (i.e., item non-response), 18 instances had to be excluded for correlation
analysis with learning-related activities.

Manual Annotation Two human raters manually annotated hand-raisings in all 36 videos.
The intra-class correlation coefficient of the two raters for the number of hand-raisings
per student and lesson was 0.96, indicating very high inter-rater reliability. The number
of hand-raisings averaged across the two observers was employed to analyze associations
between student hand-raising and self-reported learning activities. A total of 2442 hand-
raising events were annotated. Summary statistics on hand-raisings by students and lessons
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Table C.1.: Summary statistics of hand-raisings (N = 305).

Grade Subjects Lessons Hand-raisings per student Hand-raisings per lessons
M SD Md Min Max M SD Md Min Max

5 B 2 15.093 6.091 15 5 26 203.750 6.010 204 199.5 208
6 B, L 3 8.625 7.934 6 0 33 126.500 89.705 85 66 230
7 E, I 2 9.420 12.991 5 0 60 117.750 64.700 118 72 164
8 E, F, G, H, IMP, L 8 5.079 4.860 4 0 23 44.438 20.711 40 8 74
9 E, G 2 6.053 5.550 5 0 24 57.500 23.335 58 41 74
10 G, P. 3 8.912 7.997 5 0 26 50.500 14.309 58 34 60
11 A, ET, G, P, PS 6 7.813 7.203 6 0 24 52.083 17.019 53 33 83
12 C, H, M, P 10 5.169 5.061 4 0 31 36.700 22.671 40 7 89
Total 36 7.425 7.451 5 0 60 64.556 53.155 48 7 230

Subject abbreviations: B Biology, L Latin, E English, I Informatics, F French, G German, H History, IMP
Informatics Math & Physics, P Physics, A Arts, ET Ethics, PS Psychology, C Chemistry, M Math

across grades are shown in Table C.1. On average, one student raised their hand 7.4 times
per lesson, while an average total amount of 64.6 hand-raisings occurred per lesson.

Half of the data was used to build the automated hand-raising detection model, requiring
more fine-granular annotations. To this end, for 18 videos, hand-raising was annotated in a
spatio-temporal manner using the VIA software [219], including the start and end time of
hand-raisings as well as bounding boxes, with a joint agreement probability of 83.36%. To
increase reliability, we combined the two observers’ annotations by temporal intersection,
resulting in 1584 hand-raising instances with an average duration of 15.6 seconds. The
remaining 18 videos, only coded with regard to the number of hand-raisings of each student,
in addition to four videos employed as a test set for the hand-raising classifier, then served
to validate our developed model for automated annotation.

Skeleton-based Hand-raising Detection

This section presents our machine learning-based approach to automated hand-raising
gesture detection. Fig. C.1.1 depicts the processing pipeline: generating sequential poses,
extracting embeddings, and performing binary classification.

Classroom

Videos

2D Poses Pose Windows Embeddings

Prediction

Tracker & Embedding

Model Classifier

Pose

Detector Windowing

Figure C.1.1.: Hand-raising detection pipeline.
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Preprocessing To extract 2D human poses, we used the OpenPose library [116], estimating
25 body keypoints per student in each frame. Since students’ lower body parts are often
invisible due to occlusion, we focused on the 13 upper body keypoints representing the
head, torso, and arms. To generate one skeleton tracklet for each student over time,
we implemented an intersection-over-union tracker. Then, we used the 18 videos with
spatio-temporal annotations (Sect. C.1.4) to create a dataset for classifier development.
Based on the annotations, tracklets were divided into subsequences labeled as "hand-raising"
and "non-hand-raising" and then split into 2-second windows (48 frames) without overlap.
This resulted in a highly imbalanced large-scale dataset of 243,069 instances, of which
12,839 (ca. 5%) represented hand-raisings.

Pose Embeddings To handle issues of viewpoint change and partial visibility, we adopted
a recent approach by Liu et al. [220], attempting to extract pose embeddings. First, the
embedding space is view-invariant, where 2D poses projected from different views of the
same 3D poses are embedded close and those from different 3D poses are pushed apart.
Second, occlusion robustness is achieved by using synthetic keypoint occlusion patterns to
generate partially visible poses for training. Third, the pose embeddings are probabilistic,
composed of a mean and a variance vector, defining thus a Gaussian distribution that
takes ambiguities of 2D poses during projection from 3D space into consideration. We
tailored the training procedure to our classroom setup, training the embedding model from
scratch on Human3.6M [221], a human pose dataset containing a large number of recordings
from four camera views. We executed OpenPose on all images and neglected lower body
keypoints to focus on learning similarity in the upper body poses. We employed the neck
keypoint as the origin coordinate and normalized the skeletons by the neck-hip distance.
To find a trade-off between performance and computational cost, the embedding dimension
was selected as 32. This training process was independent of the classroom data, ensuring
the generalization capability of our approach. To leverage the probabilistic embeddings
as input to a downstream classifier, we concatenated the two embedding outputs (mean
and variance) into a 64D feature vector. Moreover, we extracted the following two types
of geometric features as baselines to compare their recognition performance against pose
embeddings: First, Lin et al. [85] distinguished between four student behaviors, by using
eight keypoints and designing a 26D feature vector that concatenates normalized keypoint
coordinates, keypoint distances, and bone angles. Second, Zhang et al. [336] proposed using
joint-line distances for skeleton-based action recognition. We computed the corresponding
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distances on the basis of the 13 upper body keypoints, resulting in a 297D feature vector.

Classification To achieve binary classification based on sequential inputs, we employed
long short-term memory (LSTM) models. Similar to [336], we constructed three LSTM
layers with 128 hidden units, followed by a fully connected layer applying a sigmoid
activation function. Thus, the multi-layer model directly takes a 2-second sequence of
frame-wise feature vectors as input, encodes temporal information, and estimates hand-
raising probability. We trained the model using an empirically derived batch size of 512,
binary cross-entropy loss, and Adam optimizer with a fixed learning rate of 0.001. To avoid
overfitting, we held out 10% of training examples as validation data and set up an early
stopping callback with the patience of 10 epochs according to validation loss. Additionally,
we trained non-temporal random forest (RF) models for baseline comparisons. For model
input, we generated an aggregated feature vector for each time window by calculating and
concatenating the mean and standard deviation of all features. To handle imbalanced
data, we compared the performance with and without class weighting while training both
models. Class weights were set inversely proportional to class frequencies in the training
set. We evaluated model performance in a video-independent manner, using 14 videos for
training and 4 videos for testing. Our videos, stemming from un-staged classroom lessons,
contain highly varying numbers of hand-raisings, making video-independent cross-validation
infeasible due to unequal class distributions in each fold.

Automated Hand-raising Annotation

Afterwards, we applied this hand-raising detection technique to estimate the number of
hand-raisings of a student in class. To take full advantage of our data, we utilized 22 videos
to evaluate the automated annotation performance, consisting of the second half of our
videos and the four videos used to test classifiers. Following the pipeline in Fig. C.1.1, we
generated one tracklet for each student in each video. To achieve a more robust temporal
detection, a tracklet was sliced into 48-frame sliding windows with a stride of 8 frames.
Then, we extracted pose embeddings and applied the trained classifier to estimate the
hand-raising probability for each window. When the average probability exceeded 0.5,
a frame was assigned to hand-raising, and consecutive frames were combined into one
hand-raising instance. We merged any two adjacent hand-raisings with an interval of fewer
than 4 seconds and discarded those with a duration of less than 1 second, which only occur
in less than 5% of the cases respectively according to the annotations of the training videos.
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This resulted in the number of estimated hand-raisings for each student in each video.

C.1.5. Results

Relation between hand-raising and self-reported learning activities

To demonstrate the importance of hand-raising analysis in classroom research, we examined
the association between manually annotated hand-raisings and self-reported learning
activities. The number of hand-raising instances of a student per lesson, annotated by
human raters, is significantly positively correlated to self-reports of cognitive engagement
(r = 0.288, p < 0.001), situational interest (r = 0.379, p < 0.001), and involvement
(r = 0.295, p < 0.001) of students.

Hand-raising Classification

To assess the performance of hand-raising classifiers, we utilized the F1-score which is
the harmonic mean of precision (i.e., the proportion of correct hand-raising predictions of
all hand-raising predictions) and recall (i.e., the share of correctly predicted hand-raising
instances of all hand-raising instances). We first tested different classification models
with and without class weighting, using pose embeddings as input features. The results
are shown in the upper part of Table C.2. The greater penalty for misclassifying any
hand-raising example when using weighting results in fewer false negatives and more false
positives, i.e., a higher recall but lower precision. The best performance was obtained by
the temporal LSTM model without class weighting, achieving a F1-score of 0.76.

In the second step, we compared three pose representations, namely pose embeddings and
two types of geometric features, employing LSTM classifiers. As shown in the lower part
of Table C.2, the pose embeddings generally yield better performance than the geometric
features with respect to all three metrics, revealing the effectiveness of the data-driven
approach. Notably, the pose embeddings achieve a noticeable increase in F1-score over
the features used in [85]. Moreover, despite the trivial improvement over the features
used in [336], the pose embeddings benefit from less computational effort for inference, in
comparison to the distance calculation over 297 joint-line combinations.

In order to gain a deeper understanding of our model, we investigated misclassified
instances. Figure C.1.2 depicts four misclassified examples, using the LSTM model on
pose embeddings. They reveal poses are misclassified as hand-raising when they have a
similar skeleton representation, e.g., when students scratch their heads (Fig. C.1.2a) or rest
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(a) (b) (c) (d)

Figure C.1.2.: Skeleton samples of misclassified windows using LSTM with pose embeddings.
True label: (a, b) non-hand-raising; (c, d) hand-raising.

their head on their hand (Fig. C.1.2b). In turn, subtle hand-raisings that do not involve
raising the hand or elbow above the shoulder are more difficult to recognize (Fig. C.1.2c).
Occasionally, students simply indicate hand-raisings by extending their index finger, which
can not be represented in the skeleton we used. Furthermore, the classifier is prone to
false predictions if keypoints of the hand-raising arm are not detected throughout the clip
(Fig. C.1.2d).

Table C.2.: Comparison of different classifiers and pose representations.
Classifier Pose Representation Precision Recall F1-Score

RF

Pose embeddings

0.950 0.540 0.688
RF (w/ weighting) 0.763 0.695 0.727

LSTM 0.818 0.709 0.760
LSTM (w/
weighting)

0.570 0.783 0.660

LSTM
Geometric

features [85]
0.816 0.576 0.676

Geometric
features [336]

0.812 0.694 0.748

Pose embeddings 0.818 0.709 0.760

Automated Hand-raising Annotation

After automatically annotating hand-raisings on a student level for the 22 validation videos
(see Sect. C.1.4), we compared the estimated hand-raising counts with the ground truth
by calculating the mean absolute error (MAE). The automated annotation, employing
the best-performing LSTM model achieved a MAE of 3.76. According to the ground
truth, a student raised their hand 6.10 times in a lesson on average. Besides the moderate
classification performance, this result can be attributed to the tracking capability. Some
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Table C.3.: Pearson correlations of different hand-raising annotations with self-reported
learning activities in validation videos (N = 173).

Hand-raising
annotation

Cognitive
engagement

Situational
interest Involvement

r p r p r p

Manually 0.222 0.003 0.326 0.000 0.213 0.005
Automated 0.222 0.003 0.288 0.000 0.201 0.008

targets cannot be tracked continuously due to occlusion or failing pose estimation. Using a
fragmentary tracklet can generate multiple sub-slots for one actual hand-raising instance,
resulting in overestimation. By using the subset of tracklets that span at least 90% of the
videos, the MAE decreased to 3.34. To demonstrate the application of such automated
annotations, we did a re-analysis of the relation of manually and automatically annotated
hand-raisings to self-reported learning activities on the validation videos. Table C.3 shows
that both annotations are significantly related to the three learning activities, showing
comparable r values.

C.1.6. Discussion

We found that the frequency of student hand-raisings is significantly related to self-reported
learning activities in a diverse real-world classroom dataset covering grades five to twelve
and a variety of subjects. These results are in line with previous research [22, 21] and
emphasize the important role of hand-raising as an observable cue for students’ engagement
in classroom discourse. To enable such analyses, we proposed a novel approach for the
automated detection of hand-raising events in classroom videos. The employed view-
invariant and occlusion-robust pose embeddings outperformed more simplistic geometric
features used in previous research [85]. When applying the developed classification model for
person-specific hand-raising instance annotation, the total amount of hand-raising instances
per person was slightly overestimated, mainly stemming from discontinuous pose tracks.
The comparison of correlation analysis between manually and automatically annotated
hand-raising and learning-related activities showed comparable results for the two methods,
despite the imperfect prediction accuracy, suggesting that automated annotation can be a
useful proxy for research. It is important to stress that we employed a dataset containing
un-staged real-world school lessons and authentic hand-raisings in naturalistic settings.
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This is why we employ and compare feature representations from previous research in our
setting rather than directly comparing the performance results which were based on either
scripted videos or extremely small sample sizes [83, 85]. Furthermore, the data includes
a wide span of age groups, ranging from 11- to 18-year-olds. As shown in Table C.1, the
frequency, as well as the manner of raising the hand and indicating the wish to speak in
the classroom, differs substantially between those age groups.

These results strengthen the potential of automated hand-raising annotation for research
investigating hand-raising as a form of participation in classroom discourse and an indicator
of behavioral engagement. Replacing time-consuming manual coding with an automated
process will allow cost-effective large-scale research on classroom interaction in the future.
The approach is highly robust to camera viewpoints and therefore presumably generalizes
well to new classroom setups. Further, the employment of pose estimation allows for
privacy-preserving data collection, as poses can be extracted in real-time, thus eliminating
the need to store video recordings. However, as students’ body-pose information might
be regarded as sensitive data, it is important to note that automated behavior detection
should solely be used as a post hoc analytical tool for research purposes instead of real-time
classroom monitoring.

One limitation of this work is that the absolute hand-raising frequency is still over- or
underestimated by an average of almost four instances per person. Future research should
continue to enhance the precision, by further improving the underlying pose estimation
and tracking. This can either be achieved by optimizing camera angles to be most suitable
for pose estimation as well as applying more advanced pose estimation techniques. Further
room for improvement lies in the differentiation of difficult cases as shown in Fig. C.1.2.
Here hand-raisings that are more restrained, i.e., if students do not raise the hand above
the head, are not recognized as such. A solution for this could be to include hand keypoint
estimation, as the hand posture can possibly provide further information.

C.1.7. Conclusion

Our results indicate that hand-raising correlates to cognitive engagement, situational
interest, and involvement and presents hence an important measure of active student
participation in the classroom. We further show that the automated annotation is a viable
substitute for manual coding of hand-raisings, opening up new possibilities for researching
hand-raising in classroom discourse and student engagement on a large scale.
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