
New Compilation Methods for
Complex User-Defined Functions

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Denis Hirn
aus Tübingen

Tübingen
2024

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls
Universität Tübingen.

Tag der mündlichen Qualifikation: 19.06.2024
Dekan: Prof. Dr. Thilo Stehle
1. Berichterstatter: Prof. Dr. Torsten Grust
2. Berichterstatter: Prof. Dr. Hannes Mühleisen
3. Berichterstatter: Ass. Prof. Dr. Amir Shaikhha

“If I have seen further it is by standing on the shoulders of Giants.”

—Sir Isaac Newton

Acknowledgements

I am extremely proud of the work that we have been able to ac-
complish during my time as a PhD student under the supervision
of Torsten Grust. Torsten has been an incredible mentor, that has
always been supportive and encouraging. While he typically had
some ideas on where to go next, he was also the kind of supervisor
that let me explore my own ideas, because he knew that eventually,
some of them would turn out to be good ones. I am grateful for the
trust that he has put in me, and for the freedom that he has given
me to explore and to grow as a researcher. Thank you, Torsten!

I would also like to thank Hannes Mühleisen for agreeing to be a
reviewer of this dissertation. I did not take this for granted, and I
am grateful for the time that he has spent reading and reviewing my
work. Having him review it was a huge motivational push for me to
get it done and to polish it to the best of my ability.

Also, I want to thank Amir Shaikhha, who also agreed to be a reviewer
of this dissertation. This is nothing that I take lightly, and I am
delighted that he has agreed to spend his time reading and reviewing
my work.

Last but not least, I would like to thank the members of the disserta-
tion committee for letting me defend this dissertation and approve
me for the PhD degree.

Research is teamwork, and without my colleagues, this dissertation
would be a very different one. I would like to thank Tim Fischer, who
has been an immense help during the writeup of this work. I knew
that I could always lend myself some brainpower from him, and he
always had a good idea or two to share. He motivated me to just
do the work, and to dig deeper into some remaining problems that I
had not yet solved. This eventually led to some of the results that
are presented in this dissertation. Also, I would like to thank Louisa
Lambrecht who did help me with proofreading this dissertation.

Finally, I would like to thank my family and friends for their support
and encouragement throughout my time as a PhD student. I am
especially thankful for the patience and understanding that Anna
has shown me during this time. I am thankful for the opportunities
that I have been given, and for the people that have been part of
this journey with me.

Thank you all!

Abstract

User-defined functions (UDFS) can be used to extend database
systems with custom functionality. However, the performance of
UDFS is often disappointing, which renders them useless for many
applications. It has become common developer wisdom to avoid
UDFS in performance-critical applications if possible. Previous work
on UDF performance improvements has left many insights by the
programming languages community unexplored. This thesis aims
to fill this gap by leveraging programming language techniques.
We show that these techniques can be adapted such that SQL can
be used to express both iterative and recursive UDFS in a way that
improves performance over the initial UDF formulation.

In the first part of this thesis, we will focus on iterative UDFS writ-
ten in variants of PL/SQL. The imperative statement-by-statement
style of programming clashes with the plan-based evaluation of SQL
queries resulting in an impedance mismatch and therefore friction
at runtime, slowing PL/SQL execution down significantly. State
of the art approaches can only compile UDFS with simple, linear
control flow and cannot handle looping control flow at all, or they re-
quire database extensions, which are not portable and not available
on all systems. We present a novel approach to UDF compilation
that uses trampolined style to compile UDFS with arbitrarily complex
looping control flow to pure SQL queries. After compilation, the
PL/SQL interpreter is no longer needed. The entire computation
is expressed in SQL and can be executed without switching back
and forth between the SQL executor and PL/SQL interpreter. This
solves the impedance mismatch and eliminates the friction during
execution. It also allows the database system to optimize the compu-
tation as a whole. Since the computation is expressed in SQL, it can
be executed on any system that supports contemporary SQL. This
can be used to bring UDFS to systems that lack native support. We
show how this compilation approach can be used to improve per-
formance, and the planner’s optimization capabilities. We present a
collection of 18 UDFS that we use to evaluate our approach. In our
experiments, we show that our approach can improve performance
by up to 3 times. We also show cases where our approach does not
improve, or even degrades performance. We discuss the reasons for
this and show how to avoid these pitfalls.

The second part of this thesis focuses on recursive UDFS. Perfor-
mance of such recursive UDFS is often disastrous, because database
systems are not optimized for these kinds of computations. We use
POSTGRESQL as an example to show why recursive UDFS are slow,
and why the system spends most of the runtime on parsing and
planning. This repeated overhead penalizes every function call at
runtime, rendering programming with recursive UDFS largely im-
practical. We propose to take recursive UDFS for what they are:
functions. Using tried and tested techniques from the field of pro-
gramming languages, we show how to compile recursive UDFS to
pure SQL queries. We reuse large parts of the compilation pipeline
from the first part of this thesis, and show that it can be used to
compile recursive UDFS as well. Trampolined style will again be the

vehicle for expressing the computation in SQL. We use a set of 10
recursive UDFS to evaluate our approach. Our experiments show
that these UDFS typically suffer from over 90% overhead. Compila-
tion eliminates this overhead and improves performance by up to
180 times. This shows that even though functions are not first-class
in SQL, they can still be efficient.

The significance of this thesis lies in its identification of trampolined-
style SQL as a powerful tool for expressing computations in SQL. It
shows that SQL is expressive enough for arbitrarily complex compu-
tations, and that it achieves excellent performance. The detailed set
of rules presented in this thesis can be used to implement a compiler
for UDFS in any database system that supports LATERAL joins and
recursive CTES.

Zusammenfassung

User-defined functions (UDFS) können verwendet werden, umDaten-
banksysteme um benutzerdefinierte Funktionen zu erweitern. Die
Performance von UDFS ist jedoch oft enttäuschend, was sie für
viele Anwendungen unbrauchbar macht. Es ist inzwischen eine ver-
breitete Entwicklerweisheit, UDFS in performancekritischen An-
wendungen zu vermeiden, wenn möglich. Frühere Arbeiten zur
Verbesserung der UDF-Performance haben viele Erkenntnisse der
Programmiersprachen-Community unberücksichtigt gelassen.Diese
Arbeit zielt darauf ab, diese Lücke zu schließen, indem Program-
miersprachentechniken eingesetzt werden. Wir zeigen, dass diese
Techniken so angepasst werden können, dass SQL verwendet wer-
den kann, um sowohl iterative als auch rekursive UDFS in einer Weise
auszudrücken, die die Performance gegenüber der ursprünglichen
UDF-Formulierung verbessert.

Im ersten Teil dieser Arbeit konzentrieren wir uns auf iterative UDFS,
die in Varianten von PL/SQL implementiert sind. Der imperative
Programmierstil von PL/SQL steht imWiderspruch zur planbasierten
Auswertung von SQL-Abfragen, was zu einem Impedanzmismatch
und damit zu Problemen während der Laufzeit führt und die Aus-
führung vonPL/SQL erheblich verlangsamt. State-of-the-Art-Ansätze
können nurUDFSmit einfachem, linearemKontrollfluss kompilieren
und können entweder keinen Schleifenkontrollfluss verarbeiten,
oder sie erfordern Datenbankerweiterungen, die nicht portabel
beziehungsweise nicht auf allen Systemen verfügbar sind.Wir stellen
einen neuartigen Ansatz zur UDF-Kompilierung vor, der trampolined
style verwendet, um UDFS mit beliebig komplexem Kontrollfluss
in reine SQL-Abfragen zu kompilieren. Nach der Kompilierung
wird der PL/SQL-Interpreter nicht mehr benötigt. Die gesamte
Berechnung wird mittels SQL ausgedrückt und kann ohne ständi-
ges Hin- und Herwechseln zwischen dem SQL-Executor und dem
PL/SQL-Interpreter ausgeführt werden. Dies löst den Impedanzmis-
match auf und beseitigt die Probleme zur Laufzeit. Es erlaubt
dem Datenbanksystem auch, die Berechnung als Ganzes zu op-
timieren. Da die Berechnung in SQL ausgedrückt wird, kann sie

auf jedem System ausgeführt werden, das zeitgemäßes SQL unter-
stützt. Dadurch können UDFS auf Systeme gebracht werden, die
keine native Unterstützung bieten. Wir zeigen, dass dieser Kom-
pilierungsansatz verwendet werden kann, um die Performance und
die Optimierungsmöglichkeiten des Planers zu verbessern. Wir
präsentieren eine Sammlung von 18 UDFS, die wir zur Evaluierung
unseres Ansatzes verwenden. In unseren Experimenten zeigen wir,
dass unser Ansatz die Performance um bis zu Faktor 3 verbessern
kann. Wir zeigen auch Fälle, in denen unser Ansatz die Performance
nicht verbessert oder sogar verschlechtert und erörtern die Gründe
dafür und zeigen, wie man diese Fallstricke vermeiden kann.

Der zweite Teil dieser Arbeit konzentriert sich auf rekursive UDFS.
Die Performance solcher rekursiven UDFS ist oft katastrophal, da
Datenbanksysteme nicht für diese Art von Berechnungen optimiert
sind.Wir verwenden POSTGRESQL als Beispiel, um zu zeigen, warum
rekursive UDFS langsam sind und warum das System den Großteil
der Laufzeit für das Parsen und Planen aufwendet. Dieser wieder-
holte Overhead bestraft jeden Funktionsaufruf zur Laufzeit und
macht das Programmieren mit rekursiven UDFS weitgehend unprak-
tikabel. Wir schlagen vor, rekursive UDFS als das zu betrachten, was
sie sind: Funktionen. Mit bewährten Techniken aus dem Bereich der
Programmiersprachen zeigen wir, wie man rekursive UDFS in reine
SQL-Abfragen kompilieren kann. Dabei verwenden wir große Teile
der Kompilierungspipeline aus dem ersten Teil dieser Arbeit wieder
und zeigen, dass sie auch zur Kompilierung rekursiver UDFS ver-
wendet werden kann. Trampolined style wird wieder das Mittel sein,
um die Berechnung in SQL auszudrücken. Wir verwenden einen
Satz von 10 rekursiven UDFS, um unseren Ansatz zu evaluieren.
Unsere Experimente zeigen, dass diese UDFS typischerweise unter
einem Overhead von über 90% leiden. Die Kompilierung eliminiert
diesen Overhead und verbessert die Performance um bis zu Faktor
180. Dies zeigt, dass Funktionen in SQL zwar nicht von erster Klasse
sind, aber dennoch effizient sein können.

Die Signifikanz dieser Arbeit liegt darin, dass sie trampolined-style
SQL als ein leistungsfähiges Werkzeug zum Ausdruck von Berech-
nungen in SQL identifiziert. Sie zeigt, dass SQL ausdrucksstark
genug ist, um beliebig komplexe Berechnungen auszudrücken, und
dass eine hervorragende Performance erreicht werden kann. Das de-
tailliert beschriebene Regelwerk der Kompilierung kann verwendet
werden, um einen Compiler für UDFS in jedem Datenbanksystem
zu implementieren, sofern LATERAL Joins und rekursive CTES unter-
stützt werden.

Contents

Contents ix

1. Introduction 1
1.1. Thesis Overview and Contributions . 4

1.1.1. Compiling PL/SQL Away . 4
1.1.2. Functional Programming on Top of SQL Engines 7

1.2. Structure of the Thesis . 9

COMPILING PL/SQL AWAY 11

2. Avoid PL/SQL if you can… 13
2.1. Context Switching . 13
2.2. Drawbacks of PL/SQL Evaluation . 16
2.3. Behind the Scenes of PL/SQL . 17

2.3.1. Embedded SQL . 17
2.4. Case Study: UDF route . 19

3. One Way to Trade PL/SQL for SQL 23
3.1. The Expressive Power of SQL . 24
3.2. The PL/SQL Language . 26
3.3. PL/SQL Control Flow in Terms of GOTO . 29
3.4. Tail Recursion Replaces GOTO . 31
3.5. Trampolined Style Tames Mutual Recursion . 34
3.6. Trampolined Style in SQL . 36

4. Trampolined Style Manages Control, and Data Flow, Too 39
4.1. From Scalar Values To Tables . 39
4.2. Control Flow Management . 40
4.3. Data Flow Management . 41
4.4. The Impact of Data Rows in Trampolined Style SQL 42

5. From PL/SQL to SQL: Behind the Scenes 45
5.1. From PL/SQL to SSA . 45
5.2. From SSA to ANF . 47
5.3. From ANF to Trampolined Style ANF . 49
5.4. From Trampolined Style ANF to SQL . 50

6. Experiments 53
6.1. Compiling a Collection of UDFS . 53
6.2. POSTGRESQL 11 vs. 15—What has changed? . 56

6.2.1. Cost-based Optimization . 58
6.3. To Recurse is Divine, to ITERATE Space-Saving . 59

7. Related Work and Conclusion 63
7.1. Conclusions . 63
7.2. Related Work: Froid . 65
7.3. Related Work: Aggify . 66

7.4. Related Work: ByePy . 67
7.5. Related Work: User-Defined Operators . 67
7.6. Related Work: Tupleware . 68
7.7. More Related Work . 69

FUNCTIONAL PROGRAMMING ON TOP OF SQL ENGINES 71

8. Recursive SQL UDFS 73
8.1. From 1000s of Plans to One Plan . 73

9. Treating Recursive UDFS Like Functions 77
9.1. Translation from SQL to SSAREC . 78
9.2. Transition to ANFREC . 80
9.3. From Recursion Towards Iteration: CPS and Defunctionalization 81
9.4. Trampolined Style: A Single Loop Replaces Mutual Recursion 85
9.5. Memoizing the Results of Recursive Calls . 88
9.6. Implementation of Continuation Stacks . 89

10. Experiments 91

11. From Recursion to Iteration to SQL—Marching Squares 95
11.1. Recursive Marching Squares . 95
11.2. Recursive PL/SQL . 96
11.3. Experiments . 99

12. Conclusion and Related Work 103
12.1. Conclusions . 103
12.2. Related Work: Functional-Style SQL UDFS . 104
12.3. Related Work: First-Class Functions for First-Order Database Engines 105
12.4. Related Work: Fun SQL . 105
12.5. Incrementalization . 106

FINAL REMARKS 107

13. Wrap-Up 109
13.1. Future Work . 110

APPENDIX 113

A. PL/SQL UDF Definitions 115
Function bbox. 115
Function global. 115
Function force. 116
Function items. 116
Function late. 117
Function margin. 117
Function markov. 118
Function packing. 119
Function savings. 120

Function sched. 121
Function service. 121
Function sheet. 122
Function ship. 123
Function sight. 123
Function visible. 124
Function vm. 125
Function ray. 126

B. Recursive UDF Definitions 127
Function comps. 127
Function dtw. 127
Function eval. 127
Function fsm. 128
Function lcs. 128
Function mbrot. 128
Function paths. 128
Function vm. 129

Bibliography 131

List of Terms 139

Introduction 1.
Modern SQL1 is a domain-specific programming language that is

1: I consider SQL:1999 and newer as
modern.both declarative and Turing-complete. Today, it has all the features

needed to handle analytical and transactional workloads. Each new
revision of the SQL standard extends and improves the language’s
feature set, which in turn improves its usability and usefulness in
various applications. During the early days of SQL—particularly
prior to SQL:1999—this was not the case. Since its beginnings in
1974, SQL has evolved as the query language of relational database
management systems. Chamberlin and Boyce’s work on “SEQUEL: A
Structured English Query Language” [1] laid the foundation for today’s

[1]: Chamberlin et al. (1974), ‘SE-
QUEL: A Structured English Query
Language’

SQL. The expressive power of SEQUEL corresponded to the first
order predicate calculus, which was sufficient at first. However, with
the increasing use of relational databases, applications require more
complex programming. SQL ultimately failed to meet the needs of
developers at the time, because it was not possible to (1) express
complex formulas, (2) use procedural logic, or (3) execute a batch
of multiple queries [2]

[2]: Feuerstein et al. (2014), Oracle
PL/SQL Programming.

Even though SQL is Turing-complete since SQL:1999 and can—at
least in theory—be used to express any computation, many de-
velopers are educated and biased to think of imperative solutions
to programming problems first. Instead of using SQL, computa-
tions are expressed in other ways. In practice, this can negatively
affect performance. As is common with declarative languages, SQL
queries specify what to compute, but not how to implement that
computation. Because of this property, SQL alone is not powerful
enough—or rather, not designed—to express consecutive or imper-
ative statements. To overcome these limitations, database-backed
applications are often implemented outside the database system,
e.g., using imperative programming languages.

This typically results in an access pattern in which the database
system must process one SQL statement after another, resulting
in context switching overhead. This is especially bad in a networked
environment, where every SQL statement issued generates network
traffic and is subject to network latency. The parts involved in such
a setup are visualized in Figure 1.1. Database applications typically
send SQL queries to the DBMS, which performs the computation
and returns the result. Regardless of the communication channel,
these data transmissions take time. Data transfer latency and con-
text switching overhead can be a major drawback for applications
that require fast data access, and fast response times, as both can
be compromised. This latency and overhead may become a bottle-
neck.

A number of technologies are available to simplify in-database pro-
gramming and improve the overall quality of life. For example,
user-defined functions (UDFS) have several advantages over us-
ing external database operations, including the ability to express

2 1. Introduction

Figure 1.1.: Database applications
usually communicate with theDBMS
using SQL queries. This communica-
tion, however, takes time STOPWATCH and can
slow down the application consider-
ably, depending on the communica-
tion channel.

COGS
Application

Database
DBMS

SQL Result

CLOUDSTOPWATCH

complex calculations directly in the database. UDFS allow to encap-
sulate frequently used logic into reusable functions which reduces
code duplication and simplifies maintenance because the function is
stored in a single location. Updates to this function can be made as
needed and will have an effect on all queries that use this function.
In addition, UDFS provide an abstraction layer that hides imple-
mentation details. Overall, UDFS can help to keep computations in
the database, which can reduce the need to transfer data between
the database server and its clients. Many database systems support
different languages for UDFS, allowing functions to be written in
a familiar programming paradigm. This can improve productivity
and reduces the time it takes to implement a solution.

The disparity between imperative and “database-friendly” declara-
tive SQL solutions is known as impedance mismatch. The literature
describes two common categories: (1) A conceptual impedance mis-
match occurs, when two programming languages that support dif-
ferent programming paradigms are used jointly to implement an
application. For example, SQL and a strictly procedural language
would conflict with each other, because it is not possible to execute
both languages using the same execution strategy. (2) A structural
impedance mismatch exists when the used languages support different
data types, which means that data is represented differently. This
can make it hard to exchange data between the two languages. For
example, queries typically return sets of tuples. This means, that
there must be a mechanism to loop over the query result and a way
to extract and convert attributes from the relational structure to a
usable data structure in the programming language [3]

[3]: Copeland et al. (1984), ‘Making
smalltalk a database system’ .

PL/SQL. The “Procedural Language extension to the Structured Query
Language” (PL/SQL) [4] made its debut in 1988 with ORACLE’s

[4]: Oracle 19c PL/SQLDocumentation RDBMS version 6. It is a high-level procedural programming lan-
guage that allows developers to write custom functions, operators,
and algorithms that are not supported by the built-in functions of
the database system. The principle idea was to solve SQL’s shortcom-
ings regarding procedural logic. The introduction of this technology
was a huge step forward for in-database computing, because SQL’s
capabilities were not up to today’s standards2. Instead of sending a

2: To put this into perspective,
PL/SQL emerged about two decades
before the first database systems fea-
tured Turing-complete SQL in the
form of WITH RECURSIVE.

single SQL statement at a time, PL/SQLmade it possible to send im-
perative programs with embedded SQL statements to the database
system (see Listing 1.1, for example). This allows developers to move
the computation from the application, i.e., far away from the data,
directly into the database server and therefore close to the data it
operates on, which is generally recommended. This integration elim-
inates network traffic and allows the database server’s resources to
be used for complex operations, improving performance. PL/SQL

3

effectively behaves like a database application running inside the
DBMS.

Listing 1.1: A prototypical SQL script
with consecutive statements.

SQL
IF ... THEN
SQL

ELSE
SQL

END IF;
SQL

PL/SQL predates many conveniences and technologies used in
modern development stacks. It can run on any platform where the
database system can run, effectively rendering the language platform-
independent. Back in the day, this was a huge advantage and selling
point, because it enabled and simplified development of in-database
computation. This saved time during development. PL/SQL was a
role model and has been adopted by many database systems, some
of which are listed in Figure 1.2.

1988

1998

2001

2005

2009

ORACLE’s PL/SQL
Version 6
POSTGRESQL’s PL/PGSQL
Version 6.4
IBM DB2’s SQL PL
Version 7
MYSQL’s stored procedures
Version 5.0
IBM DB2’s PL/SQL front-end
Version 9.7

Figure 1.2.: This is a rough timeline
of PL/SQL implementations in major
database systems.

While this approach can improve the performance compared to
database-external solutions, it does not solve the fundamental con-
text switching problem. This is due to the way PL/SQL is built.
PL/SQL is an interpreted language, implemented on top of SQL
engines. The imperative, non-SQL statements are interpreted by
the PL/SQL subsystem, while all embedded SQL queries are sent
to the SQL executor. This means that PL/SQL runs in a separate
context from the SQL queries. SQL queries run in context of the
SQL engine, and PL/SQL code runs in context of the PL/SQL sub-
system. Because these execution contexts are completely disparate,
each switch from one context to the other (and back) takes time
and therefore causes context switching overhead. It is important
to note, however, that it is generally not possible to merge the two
execution contexts without bridging the gap between imperative
and declarative programming. Finding a solution to this problem is
one of the challenges of this thesis.

Recursive User-Defined Functions. Recursive formulations of al-
gorithms are often easy to understand and implement. However,
although SQL database systems typically support UDFS, program-
ming recursively with these functions is rarely recommended. The
plan-based execution strategy of these systems penalizes each func-
tion call at runtime. This is because recursive UDFS can have a
significant negative impact on performance and can even cause the
query execution to fail due to memory exhaustion. Database systems
are not designed to handle recursive UDF computations efficiently.
However, the programming language community has been devel-
oping techniques to do this for decades. This thesis explores how
these techniques can be applied to SQL.

4 1. Introduction

1.1. Thesis Overview and Contributions

Throughout this thesis, we will distinguish between two classes of
in-database functions, namely (1) imperative PL/SQL functions, and
(2) recursive UDFS. Both classes of UDFS raise performance issues
and can wreck query execution times. The main focus of this work
is to explore new compilation methods for these complex UDFS,
using proven and tested techniques developed by the programming
language community. The goal is to improve the performance of
these functions and to make them more usable.

To do this, we use common intermediate representations (IRS) used by
compilers for imperative, and functional programming languages.
These IRS have well-studied correspondences to each other. There-
fore, for some of these IRS it is possible to transform one into another
if certain constraints are met. Relying on well-established techniques
and transformations avoids reinventing the wheel, which makes com-
pilation “easier” and more trustworthy. However, since none of the
techniques were developed with SQL as an application in mind,
some tweaking is required.

We will use these techniques to develop compilation pipelines ca-
pable of transforming UDFS into a single query. This eliminates
the context switching overhead for PL/SQL functions, and removes
SQL engine-induced inefficiencies for recursive UDFS. For both
classes of UDFS, we will show that compilation can significantly
improve performance. To determine effectiveness, we will use sets of
UDFS and measure important runtime metrics (e.g., speedup factors,
memory consumption, and context switches).

This thesis is divided into parts ‘Compiling PL/SQL Away’, and
‘Functional Programming on Top of SQL Engines’, to reflect the two
different classes ofUDFSwe are dealingwith. Each part will establish
the necessary theory and terminology right before these concepts
are used. In Chapter 13, we will summarize the main finding of this
thesis and discuss open questions and future work. The following
sections provide a brief overview of the two parts of this thesis, and
the contributions made in each part.

1.1.1. Compiling PL/SQL Away

RDBMSs are experts in the plan-based execution of SQL queries,
which is in stark contrast to the imperative evaluation that PL/SQL
provides. Even though computations expressed with PL/SQL take
place entirely within the database system, the context switching
overhead can still become significant. Also, PL/SQL interferes with
the database system’s ability to optimize queries, because these
functions are like black-boxes to the system. This makes it hard to
determine cardinalities, prevents global optimizations, and gener-
ally means that the system’s optimizer will not be able to generate
an optimal execution plan. This can be a major factor in causing
suboptimal performance when using PL/SQL.

1.1. Thesis Overview and Contributions 5

In this part of the thesis, we describe a compiler that takes PL/SQL
UDFS as input and produces semantically equivalent plain (recur-
sive) SQL queries. The compilation pipeline uses the following
intermediate program representations:

Static single assignment form (SSA). Programs in SSA express all
control flow in terms of basic blocks and GOTO statements. SSA
has been well studied and is widely used as an IR in modern
compilers [5, 6]. The properties associated with programs in

[5]: Novillo (2003), ‘Tree SSA a new
optimization infrastructure for GCC’

[6]: Lattner (2002), ‘LLVM: An infras-
tructure for multi-stage optimization’

SSA form enable many program optimization techniques, such
as dead code elimination, and constant propagation.

Administrative normal form (ANF). ANF is a direct-style program
representation typically used in compilers for functional pro-
gramming languages such as HASKELL’s GHC [7, 8]. Control

[7]: Maurer et al. (2017), ‘Administra-
tive normal form, continued’

[8]: Maurer et al. (2017), ‘Compiling
without Continuations’

flow is expressed in terms of functions and tail-recursive func-
tion calls. To bridge the gap between SSA and ANF, we will
use a formal mapping described by Chakravarty, Keller, and
Zadarnowski.

Trampolined Style. A program in trampolined style is organized
as a single “scheduler” loop, the so-called TRAMPOLINE, which
manages all control flow. Execution of such programs proceeds
in discrete steps. After each step, control and the remaining
work are returned to the TRAMPOLINE, which then proceeds to
transfer control again [10]. This cycle continues until the pro-

[10]: Ganz et al. (1999), ‘Trampolined
style’gram execution is finished. Using TRAMPOLINING, the program

is effectively transformed into a state machine. This technique
can be used for tail call elimination [11, 12]. However, we exploit

[11]: Tarditi et al. (1992), ‘No Assem-
bly Required: Compiling Standard
ML to C’

[12]: Schinz et al. (2001), ‘Tail call
elimination on the Java Virtual Ma-
chine’

the property, that only a single loop is required to express arbi-
trary control flow. This restricted form of control flow perfectly
matches the semantics of SQL’s WITH RECURSIVE construct.

Compiling PL/SQL to recursive SQL solves the conceptual imped-
ance mismatch of PL/SQL. Once compiled, there will be no more
friction, because the execution will be performed entirely within the
SQL context. Switching back and forth between PL/SQL’s inter-
preter and the SQL executor is no longer necessary, which improves
performance. A goal of this effort is to reinvent as few techniques
as possible. Therefore, this compiler consists of techniques devel-
oped by the programming language community, adapted only when
necessary to make it work in the context of SQL.

PL/SQL is the name ORACLE coined for their programming lan-
guage. However, there is a whole family of imperative in-database
programming languages, i.e., ORACLE’s PL/SQL, POSTGRESQL’s
PL/PGSQL, or MICROSOFT’s T-SQL. Throughout this thesis, we will
almost exclusively use PL/SQL or PL/PGSQL to refer to these lan-
guages. However, the principle idea of compiling iterative control
flow in terms of recursive CTES works for all of these languages.

Once PL/SQL is gone, we are left with a recursive SQL query. As
the PL/SQL interpreter is no longer required for execution, the
query can be executed on any database system featuring a contem-
porary SQL dialect. Thereby enabling imperative PL/SQL style
programmability of the SQL engine, without the need to implement

6 1. Introduction

a PL/SQL interpreter. This allows developers to use the program-
ming paradigm they are most familiar with and still benefit from the
power of a SQL engine.

Related Publications. The first part of this thesis is based on the
following articles:

Christian Duta, Denis Hirn, and Torsten Grust. ‘Compiling
PL/SQL Away’. In: Proc. CIDR. 2020

Denis Hirn and Torsten Grust. ‘PL/SQL Without the PL’. In:
Proc. SIGMOD. 2020

Denis Hirn and Torsten Grust. ‘One WITH RECURSIVE is Worth
Many GOTOs’. In: Proc. SIGMOD. 2021

Denis Hirn and Torsten Grust. ‘A Fix for the Fixation on Fix-
points’. In: Proc. CIDR. 2023

Denis Hirn. ‘Data is Data and Control Should be Data, Too’.
In: Proc. VLDB. 2023

Contributions.

▶ We present a brief overview of the key elements of PL/SQL.
This includes control flow statements, table-valued functions,
and the SQL engine’s interpreted executionmodel for PL/SQL
(Sections 2.3 and 3.2 and Chapter 2).

▶ We formally describe all IRS and transformation steps required
to compile PL/SQL functions into pure SQL queries (Chap-
ter 5). Not all PL/SQL functions can be compiled into recur-
sive SQL, therefore we also describe which characteristics a
function needs to fulfill to be eligible for this transformation
(Section 3.2).

▶ We will identify, where context switching occurs during the
execution of PL/SQL, and determine the performance impact
(Sections 2.3 and 2.4). This will be done using POSTGRESQL’s
variant PL/PGSQL of PL/SQL (Section 2.1). We will show that
the compilation eliminates context switching overhead.

▶ Wewill show that the compilation pipeline is non-invasive, and
that the resulting CTES can be evaluated efficiently by SQL en-
gines. This means that the compilation does not interfere with
the database system’s ability to optimize queries (Chapter 6).

▶ We will describe a set of PL/PGSQL functions and their com-
piled SQL counterparts to determine how much performance
gain can be expected from compilation (Table 6.1 in Chap-
ter 6). We will also motivate why table-valued functions are
particularly well suited for this technique (Chapter 4).

▶ Based on the results of these experiments, we will deduce
characteristics of PL/SQL functions, to determine when com-
piling to SQL is likely to improve performance, and when the
compiling may degrade performance (Sections 4.1, 6.1 and 7.1).

1.1. Thesis Overview and Contributions 7

1.1.2. Functional Programming on Top of SQL Engines

Complex in-database computation can be expressed in many ways.
One is functional programming, using recursive SQL UDFS. How-
ever, this style of programming is rarely supported by SQL database
systems and therefore results in abysmal performance characteris-
tics. SQL engines are not optimized for this kind of computation.
We consider this a real loss for in-database computation, because
functional programming and recursion in general often allow pro-
grams to be written in a very concise and elegant way. This can make
it easier to understand and maintain these programs.

In this part of the thesis, we will treat recursive SQL UDFS for
what they are: functions. This allows us to construct a pipeline of
function translation techniques that have been well-established and
battle-tested by the programming language community. The com-
bination of continuation-passing-style (CPS), defunctionalization, and
trampolined style forms the foundation for a non-invasive SQL-level
compiler for recursive SQL UDFS. The compilation chain generates
a recursive CTE that can be evaluated efficiently by SQL engines.
This allows functional programming close to the data to still be effi-
cient, even though functions are not first class in SQL. Compared
to the current state of the art, which is to avoid recursive UDFS
altogether, this is a significant improvement.

Functional representation of UDFS. We will describe a first-order
functional IR with embedded SQL expressions for recursive
SQL UDFS. These expressions are wrapped in “black boxes”,
and are not affected by the following compilation steps. The
contained SQL fragments are only unwrapped once the final
CTE is created.

Continuation passing style (CPS). Since our target is a single-loop
interpreter that does not perform any recursive calls, we will
rewrite the function into CPS. All functions in CPS take an
additional parameter which represents “the rest of the com-
putation”, that is the continuation. All calls are therefore tail-
calls, and the computation is effectively sequentialized [18] [18]: Danvy (1994), ‘Back to direct

style’
.

Programs in CPS are generally higher order.

Defunctionalization. Higher-order functional programs can be con-
verted to first-order programs using Reynold’s defunctionaliza-
tion technique [19, 20]. We use defunctionalization in prepa-

[19]: Reynolds (1972), ‘Definitional In-
terpreters for Higher-Order Program-
ming Languages’

[20]: Danvy et al. (2001), ‘Defunction-
alization at Work’

ration for the compilation back to SQL, where functions are
not first class. Applying this technique to the continuations
allows us to represent these in terms of data. This is required
to proceed to the final step. The resulting program is first-order
and mutually tail-recursive.

Trampolined Style. We will use trampolined style to transform the
mutually tail-recursive program into a single loop. This is the
same technique we used in the PL/SQL compilation pipeline
and we will be able to reuse most of the machinery. We will
again target SQL’s WITH RECURSIVE construct as themain driver
for the function execution.

8 1. Introduction

Related Publications. The second part of this thesis is based on the
following article:

Tobias Burghardt, Denis Hirn, and Torsten Grust. ‘Functional
Programming on Top of SQL Engines’. In: Practical Aspects of
Declarative Languages: 24th International Symposium, PADL 2022,
Philadelphia, PA, USA, January 17–18, 2022, Proceedings. Philadel-
phia, PA, USA: Springer-Verlag, 2022. ISBN: 978-3-030-94478-0

Contributions.

▶ We will describe a functional IR with embedded SQL expres-
sions for recursive SQL UDFS (Figure 9.2). The SQL expres-
sions are wrapped inside “black boxes”. This allows us to apply
our function translation pipeline without the need to consider
any SQL specifics.

▶ We will formally define all IRS and translation rules required
for the compilation (Chapter 9). Parts of this pipeline can be
reused from the PL/SQL compilation pipeline (Section 9.4).

▶ Wewill show that the compilation pipeline is non-invasive, and
that the resulting CTES can be evaluated efficiently by SQL
engines (Chapter 10).

▶ Based on a collection of 10 UDFS, we determine the perfor-
mance gains this compilation achieves (Table 10.1). We will
show that compilation eliminates the overhead introduced by
the SQL engine’s terrible execution model for recursive UDFS
(Section 9.4).

▶ We will show that the compilation technique can be applied
to other recursive UDF languages such as PL/SQL. We will
also motivate why table-valued functions are particularly well
suited for this technique (Chapter 11).

▶ Finally we will highlight the benefits of this approach and also
discuss the limitations and drawbacks. We will also motivate
future research directions (Chapter 12).

1.2. Structure of the Thesis 9

1.2. Structure of the Thesis

iterative
(Section 3.2)

GOTO
(Section 3.3)

recursive
(Figure 9.2)

GOTO
(Figure 9.3)

recursive
(Figure 9.7)

higher-order
(Figure 9.10)

tail-recursive
(Section 3.4)

single loop
(Section 3.5)

WITH RECURSIVESQL

ANF +

ANF

CPS

ANFREC

SSARECSSA

UDF

f

PL/SQL

f

Qf

Part 1
(Compiling PL/SQL Away)

Part 2
(Functional Programming on Top of SQL Engines)

(Figure 9.5)

(Figure 9.8)

(Figure 9.11)

(Figure 9.15)

(Section 5.3)

(Section 5.4)

(Section 5.1)

(Section 5.2)

Figure 1.3.: Here is an overview of the two compilation pipelines described in Part 1 and Part 2. While the front ends are
different, the back end is the same and can be reused.

COMPILING PL/SQL AWAY

Avoid PL/SQL if you can… 2.
“Move your computation close to the data” [22] is decades-old advice

[22]: Rowe et al. (1987), ‘The POST-
GRES Data Model’but still very relevant today. The database community has been

aware for quite some time that it is not efficient to frequently move
large amounts of data, e.g., between a database server and its clients.
A database client typically communicates with the server through
(1) an inter-process communication system (IPC) provided by the
operating system (this can be used when the server and client pro-
cesses run on the same machine), or (2) over a network. Network
communication, however, is typically much slower than using an
IPC [23].

[23]: Bales (2015), Beginning Oracle
PL/SQLThe overhead involved can become the most time-consuming part

of the application. This is especially true if the application is im-
plemented in a way that requires frequent communication with the
database server, for example, if the application is implemented in an
imperative programming language and uses SQL queries to retrieve
data from the database server. In such cases, the application must
send the SQL queries to the database server, wait for the server
to execute the query, and then receive the result. This process is
repeated for each query, which can be very inefficient. Therefore, it is
generally recommended to move the computation closer to the data,
instead of moving the data to the application. However, this is not
always a trivial task, especially when the computation is complex,
or implemented imperatively.

In this chapter, we will discuss the problem of moving computa-
tion closer to the data in more detail, and why PL/SQL should be
avoided. At first we will have a look at the typical control flow of
database-backed applications and discuss the associated overhead
in Section 2.1. We will then discuss several problems of PL/SQL exe-
cution in Section 2.2.We will then proceed to discuss POSTGRESQL’s
implementation of PL/SQL. In Section 2.3 we will examine where
the context switching overhead occurs. Finally, we will make this
concrete in Section 2.4 and further explain why it is generally rec-
ommended to avoid PL/SQL if possible.

2.1. Context Switching

In many cases, database-backed applications are implemented using
general-purpose programming languages. A typical pattern found
in such applications is code that submits SQL queries to retrieve
some data from the database system. This data is then processed
iteratively in a row-by-row fashion [24]. The resulting control flow

[24]: Gupta et al. (2020), ‘Aggify: Lift-
ing the Curse of Cursor Loops using
Custom Aggregates’

of such applications is sketched in Figure 2.1a. Each time the appli-
cation issues a SQL query, there is some amount of overhead , e.g.,
because of context switching, network latency, or IPC overhead [25].

[25]: Shao et al. (2020), ‘Database-
Access Performance Antipatterns in
Database-Backed Web Applications’

Upon receiving, the database system executes the query and returns
the result , which again is affected by overhead. Both directions

14 2. Avoid PL/SQL if you can…

Figure 2.1.: Different execution pat-
terns of database-backed applica-
tions.

App SQL

useful
work

time

𝑡𝛼

𝑡𝜔

overhead

(a) Context switching
from application code to
the SQL database and
back .

PL/SQL SQL

useful
work

time

𝑡𝛼

𝑡𝛿

overhead

(b) Improved context
switching situation
using PL/SQL instead
of a database-external
application.

App SQL

useful
work

time

𝑡𝛼

𝑡𝛿

(c) Ideal situation of the
program execution. Only
a single context switch
to SQL , and a single
switch back is required.

take time in which no useful work is performed. This is generally
undesirable. The situation is particularly dire when these queries
are placed in tight loops. In that case, switching back and forth
between the application and the database system occurs very fre-
quently, which multiplies the overhead, and ultimately slows down
the application.

PL/SQL and related solutions address part of this issue by providing
an imperative in-database programming language close to the data
the programs operate on. Instead of connecting to the database
system remotely in order to retrieve some data, imperative PL/SQL
programs that contain SQL queries can be sent to, and—in case
of STORED PROCEDURES—be stored in the database directly. These
programs are then executed by the database system, mitigating
the need to switch back and forth between the application and the
database system. Thereby implementing Rowe and Stonebraker’s
advice. This is something we need. Because even though SQL has
been around since the 1970s developers are still educated and thereby
somewhat biased to prefer imperative code over declarative queries
in SQL [26]

[26]: Olston et al. (2008), ‘Pig Latin:
A Not-so-Foreign Language for Data
Processing’

.

While that bias may not be an issue on its own, using imperative and
declarative programming together creates a whole host of problems.
Over the years, it has become common knowledge that PL/SQL is
slow and should be avoided if possible [27]. Nevertheless, PL/SQL
has been used for decades to implement complex database-backed
applications [28]

[28]: Harris (2020), A (Not So) Brief
But (Very) Accurate History of PL/SQL

. As it continues to be used, the database commu-
nity has taken on the challenge of making PL/SQL performance
tolerable, resulting in several publications addressing the problem
[24, 27, 29]

[24]: Gupta et al. (2020), ‘Aggify: Lift-
ing the Curse of Cursor Loops using
Custom Aggregates’

[27]: Ramachandra et al. (2018),
‘Froid: Optimization of Imperative
Programs in a Relational Database’

[29]: Simhadri et al. (2014), ‘Decorre-
lation of user defined function invo-
cations in queries’

, [13–15].
[13]: Duta et al. (2020), ‘Compiling
PL/SQL Away’

[14]: Hirn et al. (2020), ‘PL/SQL
Without the PL’

[15]: Hirn et al. (2021), ‘One WITH
RECURSIVE is Worth Many GOTOs’

PL/SQL’s slow execution can be attributed to the structural imped-
ance mismatch happening between SQL’s declarative programming

2.1. Context Switching 15

paradigm, and PL/SQL’s imperative paradigm. In practice, this
means that classical interpretation-based systems such as POST-
GRESQL require two evaluation contexts. While SQL is evaluated
in a set-oriented, plan-based manner, PL/SQL entails statement-by-
statement interpretation. Figure 2.1b shows this typical switching
pattern between PL/SQL and SQL. As is the case for database
external applications, PL/SQL encounters frequent context switch-
ing effort. For each embedded SQL query, the PL/SQL interpreter
invokes the SQL executor , which takes time. The query is exe-
cuted and the result is returned, again incurring some overhead
. This design, too, can result in a lot of context switching over-

head, which slows down execution. A key observation is that both,
(1) database external applications in Figure 2.1a, and (2) database in-
ternal solutions using PL/SQL in Figure 2.1b show the exact same—
problematic—execution pattern. Assuming that both programs per-
form the same computation, and that both the query runtimes and
the useful work take about the same amount of time, PL/SQL is
likely to be faster by time 𝑡𝛿. This is because the context switching
overhead is reduced compared to the database external solution.
PL/SQL has managed to improve the situation somewhat, but the
fundamental problem is still there and is still causing performance
problems. Solving the performance issues requires solving the struc-
tural impedance mismatch, and therefore requires to completely
rethink PL/SQL execution.

RDBMSs can be classified by a multitude of characteristics. One
important criterion is the implementation of the execution strategy.
The most common execution methods are (1) Volcano-iterator in-
terpretation (POSTGRESQL, SQLITE3, MYSQL), (2) vectorization
(SNOWFLAKE, VECTORWISE, DUCKDB), and (3) data-centric code gen-
eration (HYPER, UMBRA) [30].

[30]: Kersten et al. (2018), ‘Every-
thing You Always Wanted to Know
About Compiled and Vectorized
Queries But Were Afraid to Ask’

HYPER and UMBRA both have sup-
port for imperative in-databaseUDFS.
The fundamental context switching
problem with UDFS still exists in
these systems, even though they com-
pile UDFS and SQL into a single pro-
gram representation.

In this work, we subscribe to the radical idea to eliminate PL/SQL
altogether, and instead replace it with a computationally equivalent,
probably recursive SQL query. After making this transition, there are
no more context switches between the PL/SQL interpreter and the
SQL executor. In fact, no PL/SQL interpreter is required at all. This
situation is depicted in Figure 2.1c. There is some initial overhead

when issuing the query, and some overhead when the result is
returned . However, the actual computation requires no context
switches at all and is completely executed by the SQL executor.

16 2. Avoid PL/SQL if you can…

2.2. Drawbacks of PL/SQL Evaluation

Besides context switching, PL/SQL performance can be bad for
a variety of other reasons. While we describe the reasons in this
thesis mainly in context of POSTGRESQL, other systems show similar
behavior. We will briefly discuss the drawbacks in this section. The
following list is not exhaustive, but highlights the most important
issues.

Row by agonizing row (RBAR) Execution. Database systems are
designed to process sets of rows at a time. PL/SQL UDFS, however,
force the system to invoke them for each input row individually. This
mode of execution has been coined RBAR and is inefficient [31, 32].

[31]: Moden (2005), Calculating Work
Days

[32]: Fritchey et al. (2014), ‘Row-by-
Row Processing’

Instead of using fast bag-oriented operations, the systems often have
to resort to less efficient algorithms. Because the database system
can take advantage of parallelism and bulk processing techniques,
bag-oriented SQL operations are usually faster to process. For ex-
ample, think of nested loop joins as opposed to hash joins. While
nested loop joins have a complexity of 𝑂(𝑛 × 𝑚), hash joins use so-
phisticated data structures to reduce this complexity to 𝑂(𝑛 + 𝑚).
RBAR execution may prevent the use of such algorithms. This is
because function calls can, e.g., hide implicit joins.

Optimization. Query optimizers historically treat PL/SQL UDFS
exclusively as black boxes, because the database system knows
nothing about the function’s behavior. This can negatively impact
planning of queries containing calls to such functions, because
the system’s optimizer can not estimate the cost-factor. In case of
table-valued functions (TVFS), the number of returned rows is also
unknown, which can eventually result in suboptimal query plans.

POSTGRESQL version 12 added support for dynamic function optimiza-
tion information annotations. A planner support function can provide
the optimizer with additional knowledge about the cost-factor the
function introduces, and the estimated number of returned rows.
Previous to version 12 it was only possible to provide a static cost-
factor and a static number of returned rows. A planner support
function can be attached to a UDF during creation by specifying
the SUPPORT clause. However, these functions must be written in
C, which limits accessibility for users [33, §38.11]. Furthermore,

[33]: POSTGRESQL 15 Documentation the optimizer still treats the function as a black box and cannot
optimize the execution of the function itself. It can only use the
information provided to estimate the cost factor and the number of
rows returned. This is a step in the right direction, but it does not
solve the problem.

Interpretation. PL/PGSQL is implemented as an abstract syntax
tree (AST) interpreter. The ASTS are created by the parser and
are cached per database session. Caching is the only optimization
applied, however. Current PL/PGSQL (shipped with POSTGRESQL
version 15) does not apply any defacto standard techniques such as
constant propagation or folding, or dead code elimination.

2.3. Behind the Scenes of PL/SQL 17

2.3. Behind the Scenes of PL/SQL

POSTGRESQL is an ideal platform to learn about one possible way how
PL/SQL is implemented in a respected and well-known database
system. An advantage of studying PL/SQL in POSTGRESQL is the
open-source nature of the database system, its robustness, and its
reputation for adherence to industry standards. Even though the fine
details will likely vary between different systems, the overall principle
architectural issues of PL/SQL translate to other systems.

The execution of a PL/PGSQL function is handled by the POST-
GRESQL system-function plpgsql_call_handler1. Execution pro-

1: Source location:
src/pl/plpgsql/src/pl_handler.cceeds in four basic steps:

1. A connection to the database using the server programming
interface (SPI) is established. SPI is a C-level interface expos-
ing the database internals. It can be used to run SQL queries
inside language C UDFS. Several functions simplify access to
the parser, planner, and executor.

2. PL/PGSQL functions are stored as strings in the database.
Therefore the functions must be compiled before they can be
executed using plpgsql_compile2. The resulting data struc-

2: Source location:
src/pl/plpgsql/src/pl_comp.ctures are cached until invalidation or until the end of the cur-

rent database session. This prevents re-compilation on every
function invocation which saves time.

3. PL/PGSQL’s execution entry point is plpgsql_exec_function3.
3: Source location:
src/pl/plpgsql/src/pl_exec.cThis function (1) prepares all required temporary data struc-

tures for execution, (2) calls the main interpreter function
which returns the final result, (3) cleans up the temporary data
structures, and (4) returns the final result to the caller.

4. Disconnect from the SPI manager, which will internally release
the memory that is no longer needed.

All of these steps, with the exception of step 2, must be performed
each time a PL/PGSQL function is called.

2.3.1. Embedded SQL

For each embedded SQL query, the system must switch from the
PL/PGSQL interpreter to the SQL executor and back. PL/PGSQL
does not implement its own expression evaluator, instead it com-
pletely relies on the SQL executor of the system. This functionality
is handled by function exec_eval_expr4, which performs the follow-

4: Source location:
src/pl/plpgsql/src/pl_exec.cing steps:

1. If the query is executed for the first time, plan the query and
add it to the plan cache. Otherwise, retrieve the plan from the
cache instead. Caching reduces the overhead associated with
repeatedly parsing, planning, and optimizing queries.

2. Execute the query. PL/PGSQL differentiates between simple
expressions and regular queries to optimize performance:

▶ If the query is a simple expression, PL/PGSQL bypasses
SPI and uses POSTGRESQL’s expression evaluator directly.
A query qualifies as simple, if (1) it is a plain SELECT query

18 2. Avoid PL/SQL if you can…

without any input tables, (2) there are no aggregates and
no window-functions, and (3) the following clauses are
not used WHERE, HAVING, GROUP BY, ORDER BY, DISTINCT,
LIMIT, OFFSET. Function exec_simple_check_plan5, im-

5: Source location:
src/pl/plpgsql/src/pl_exec.c plements these checks. Bypassing SPI is extremely benefi-

cial, because the runtime impact of creating a full executor
instance is significant. Performance would be much worse
without this optimization.

▶ If the query is not simple, a full executor instance must be
created. Internally, the engine’s functions ExecutorStart,
ExecutorRun, and ExecutorEnd are used to create the ex-
ecutor instance (i.e., copy the cached plan into a runtime
data structure and instantiate the query’s placeholders),
run the query, and to free temporary memory contexts,
respectively.

3. Check that the query returned exactly one column and at most
a single row, since PL/PGSQL variables are single scalar values.
Table-valued variables are not supported. Therefore, multiple
return values cannot be handled in a meaningful way.

4. Return the result.

The PL/PGSQL query invocation is well optimized, but is still the
main contributor to the context switching overhead + during
interpretation. POSTGRESQL generally tries to use plan caching to
ensure, that such embedded queries are compiled and optimized
ideally only once on its first encounter during interpretation. While
fetching plans from the cache still takes time, it is faster than having
to plan and optimize the query completely.

PL/PGSQL reuses the PREPARE-statement infrastructure for the plan
cache. Prepared statements can be executed with either a generic plan,
or a custom plan. Generic plans are static for all executions, while
custom plans are generated using the parameter values given in that
call. Custom plans create more planning overhead, but can be more
efficient to execute in some situations because the planner can use
the actual parameter values, possibly resulting in a better plan [33,
§PREPARE]. Since POSTGRESQL version 12, it is possible to change

[33]: POSTGRESQL 15 Documentation how prepared statements are executed. This can be configured using
the plan_cache_mode, which by default is set to auto [33, §20.7
Query Planning]. A suboptimal configuration of this parameter
potentially introduces additional planning overhead , which can
slow down PL/PGSQL interpretation.

Other database systems with PL/SQL interpreters show similar
behavior, which ultimately led to the Froid [27, 34] and Aggify [24]

[27]: Ramachandra et al. (2018),
‘Froid: Optimization of Imperative
Programs in a Relational Database’

[34]: Ramachandra et al. (2019),
‘BlackMagic: Automatic Inlining of
Scalar UDFS into SQL Queries with
Froid’

[24]: Gupta et al. (2020), ‘Aggify: Lift-
ing the Curse of Cursor Loops using
Custom Aggregates’

efforts inMicrosoft SQL Server [35], for example. These approaches

[35]: Microsoft SQL Server 2022 Docu-
mentation

also attempt to eliminate PL/SQL to optimize performance. We will
discuss them in more detail in Sections 7.2 and 7.3.

2.4. Case Study: UDF route 19

2.4. Case Study: UDF route

We will now investigate the performance of PL/PGSQL UDFS using
the route UDF as an example. UDF route of Figure 2.2 is imple-
mented in POSTGRESQL’s PL/SQL dialect PL/PGSQL [36]. A call

[36]: POSTGRESQL 15 PL/PGSQL Doc-
umentationroute(𝑠, 𝑑, 𝑡𝑡𝑙) returns an array of all intermediate nodes, on the path

between a source node 𝑠 and destination 𝑑, in a point-to-point net-
work (see Figure 2.4a as an example). Each row (ℎ, 𝑡, 𝑣, 𝑐) in table
connections (Figure 2.4b) indicates that the cheapest path from ℎ to
𝑡 goes via hop 𝑣 for an overall cost of 𝑐. Function route returns NULL,
should the costs exceed the budget 𝑡𝑡𝑙. A selection of the resulting
paths computed by route can be seen in Figure 2.4c.

PL/PGSQL UDF route contains multiple SQL expressions like
loc <> dest.ttl , ttl < hop.cost , or route || loc (see lines 10,
14, and 18 in Figure 2.2). These SQL expressions qualify as sim-
ple and are therefore evaluated without SPI. Instead, the fast path
directly uses the system’s SQL expression evaluator.

However, route also contains the SQL SELECT-block Q1 which queries
the routing table for the next hop from loc towards dest. Q1 has
two free variables loc and dest (see Line 13 of Figure 2.2) which
have to be instantiated for each invocation. As explained in Sec-
tion 2.3.1, each of the potentially many evaluations of the embedded
query requires:

1. the instantiation of the runtime data structures for Q1’s plan,
2. creating an instance of the SQL executor to evaluate Q1, and
3. releasing and cleaning up of temporary data structures, before

returning the result back to the PL/PGSQL interpreter.

The overhead of such embedded queries typically constitutes the
lion share of the friction between SQL and PL/SQL. A call to UDFS
like route is typically embedded in a top-level SQL query, say Q0.
Here, the query finds paths that consists of more than two hops:

SELECT c.here, c.there, route(c.here, c.there, 10)
FROM connections AS c (Q0)
WHERE cardinality(route(c.here, c.there, 10)) > 2;

Query Q0 executes UDF route for each row in table connections,
which results in context switches in two directions:

Q→f [switch from the top-level query Q to UDF f] For each row of
table connections, the SELECT and WHERE clauses in Q0 invoke
the PL/SQL interpreter to evaluate the embedded UDF route.

f→Q [switch from UDF f to embedded query Q] UDF route con-
tains the assignment of variable hop in Line 11 of Figure 2.2.
Each execution calls on the SQL engine to evaluate the embed-
ded query Q1, which required plan instantiation and cleanup, as
described in Section 2.3.1. Note, that this assignment is located
inside a WHILE loop and will therefore be iterated. One invoca-
tion of route can lead to several route→Q1 context switches.

The resulting switching between the PL/SQL interpreter and SQL
executor is depicted in Figure 2.3. From top to bottom, execution

20 2. Avoid PL/SQL if you can…

1 CREATE FUNCTION route(source node, dest node, ttl int)
2 RETURNS node [] AS $$
3 DECLARE
4 route node[]; -- path between source and dest
5 loc node; -- current location in network
6 hop connection; -- next hop leading from loc to dest
7 BEGIN
8 loc := source; -- move to source
9 route := array[loc]; -- path starts at source
10 WHILE loc <> dest LOOP -- while dest has not been reached:
11 hop := (SELECT c -- consult routing table
12 FROM connections AS c -- to find next hop
13 WHERE c.here = loc AND c.there = dest);
14 IF ttl < hop.cost THEN -- bail out if
15 RETURN NULL; -- budget exceeded
16 END IF;
17 loc := hop.via; -- move to found hop
18 route := route || loc; -- add hop to path
19 END LOOP;
20 RETURN route; -- return constructed path
21 END;
22 $$ LANGUAGE PLPGSQL;

Q1[⋅,⋅]

Figure 2.2.: Original PL/SQL UDF route. Q1[⋅, ⋅] denotes an embedded SQL query containing the free variables loc and dest.

starts in the SQL context of top-level query Q0. Every invocation
of UDF route requires a context switch Q→f to the PL/SQL inter-
preter. Each time embedded query Q1 needs to be evaluated, interpre-
tation of UDF route is suspended to establish a new SQL context.
This, again results in a context switch to create the executor in-
stance, and another context switch back when finished. As this
query is placed inside a WHILE-loop (marked), this may happen
many times. The execution of RETURN in Line 20 of route marks
the end of PL/SQL interpretation, and control returns f→Q to the
top-level context of Q0 until the next invocation of route occurs.

These context switching efforts add up and significantly contribute
to the overall execution time: in the time frame t𝜔 – t𝛼, only the time
slices perform useful work such as plan evaluation or statement
interpretation. The rest of the time is spent on context switching.

2.4. Case Study: UDF route 21

SQL PL/SQL SQL

time

Q↔f

Q→f

f→Q

Q→f

Q1

Q1

Q1

top-level
SQL query Q0

WHILE loop
in route

𝑡𝛼

𝑡𝜔

overhead

Figure 2.3.:Context switching as top-
level query Q0 executes.

A B

C D

8
2

1

4

(a) Network.

here there via cost
B A D 6
C A D 3
C B D 5
D A A 2
D B B 4
D C C 1
(six more rows)

Table connections

(b) Routing table.

source dest route()
B A B, D, A
C A C, D, A
C B C, D, B
D A D, A
D B D, B
D C D, C

(c) Sample routes. Figure 2.4.: Sample network with
distance-vector routing table.

One Way to Trade PL/SQL for
SQL 3.

Without drastic measures, PL/SQL’s context switching issue cannot
be fixed. Correcting this requires eliminating the aforementioned
structural impedance mismatch, which is the root cause of the prob-
lem. So our goal here is to remove PL/SQL completely. The following
sections describe a compilation method that is capable of compiling
iterative PL/SQL UDFS (with possibly deeply nested control flow)
into recursive yet plain SQL queries.

The compiler is structured as a series of stages. The first stage re-
ceives an imperative PL/SQL UDF f, and the last one emits a plain
declarative SQL query Qf. The final query Qf no longer requires
a PL/SQL interpreter anymore because the entire computation is
expressed in SQL. This eliminates the structural impedance mis-
match. The compiler is not specific to any database system, as it is
realized as a source-to-source translation. The underlying RDBMS
remains unchanged. This means, that the resulting query Qf can
be executed on any RDBMS with support for WITH RECURSIVE, and
LATERAL joins. Both SQL language features are widely supported
and have been around for more than two decades [37, 38]. This work

[37]: Eisenberg et al. (1999),
‘SQL:1999, Formerly Known as
SQL3’

[38]: SQL:1999 Standard. Database
Languages–SQL–Part 2: Foundation

thus also provides a foundation upon which PL/SQL support can
be built for systems that do not have a PL/SQL interpreter at all.

iterative
(Section 3.2)

GOTO
(Section 3.3)

tail-recursive
(Section 3.4)

single loop
(Section 3.5)

WITH RECURSIVE

evaluated inside the
database kernel

outside the
database kernel

PL/SQL

f

SSA

ANF

ANF +

SQL

Qf

(Section 5.1)

(Section 5.2)

(Section 5.3)

(Section 5.4)

Figure 3.1.: Compilation stages and
intermediate UDF forms.

24 3. One Way to Trade PL/SQL for SQL

3.1. The Expressive Power of SQL

Before proceeding with the description of the compilation chain,
it is important to understand the required subset of SQL and its
expressiveness, since this is the target language. SQL is optimized
for expressing database queries in a declarative manner, rather than
being a general-purpose programming language. Loops, statement
sequencing, and variable assignment do not have direct language
support. However, these are the core features of PL/SQL, so an
appropriate mapping to SQL is required. SQL provides developers
with a great deal of useful functionality that continues to grow
with each revision of the SQL standard. The SQL:1999 standard is
particularly relevant to this work, as this version introduced LATERAL
joins and recursive common table expressions (CTES)—which made SQL
a Turing-complete language.

Although SQL is a standardized language, virtually all relational
database systems deviate at least slightly from the standard and have
developed their own dialect with syntactic and semantic differences.
In practice, this means that it is not simple to take an SQL query
from one system and run it on another1. To simplify the discussion,

1: This is known as vendor lock-in, and
makes a customer dependent on a par-
ticular product because switching to
another product involves significant
switching costs.

we will argue mainly using the SQL dialect of POSTGRESQL, as this
problem is not specific to this work, but complicates migration from
one system to another in general. Furthermore, POSTGRESQL tries
to be as standards-compliant as possible.

Non-recursive CTES. A CTE provides a way to structure and sim-
plify (complex) queries by binding an intermediate relation to a
name. The relation exists only within the scope of the statement and
can be used multiple times. CTES are related to temporary tables,
but without the overhead involved with creating an actual table [33,
§7.8WITH]. The example in Figure 3.2 defines the CTES cte1, cte2,[33]: POSTGRESQL 15 Documentation … , ctek. Without using the RECURSIVE keyword, cte1 can be used in
Q2..k as well as in Qf, but not in its defining query Q1. Similarly, cte2
can be used in Q3..k and in Qf, but not in Q{1,2}. The bindings are
performed in a sequential manner, and any form of self-reference is
prohibited. In a sense, non-recursive CTES can be seen as a simple
syntactic convenience.

1 WITH
2 cte₁(a₁,…,aₙ) AS (Q₁),
3 cte₂(b₁,…,bₘ) AS (Q₂),
4 ⋮

5 cteₖ(k₁,…,kₒ) AS (Qₖ)
6 Qf

Figure 3.2.: This query defines the
non-recursive CTES cte{1,2..k}. Pre-
viously defined CTES 1..n-1 can be
used in Qn, which defines cten.

Recursive CTES. Using the RECURSIVE keyword is a completely dif-
ferent story, and allows for a much more powerful language feature.
The previous restriction that the definition of cteₙ, Qₙ, cannot use
itself recursively does not apply. Figure 3.4a shows a recursive CTE
with the name T. The definition of a recursive CTE T is divided into
two parts connected by a UNION [ALL] operation. Note that this is a
recursive UNION [ALL] operation and should not be confused with
the regular set operation. The first operand of the recursive UNION
[ALL] always contains the initialization query q₁, the iterated query
q∞ (read: “q loop”) is the second operand. While q∞ can refer to T
(with certain restrictions), the initialization query q₁ must not refer
to T. Although the UNION [ALL] keyword has been reused to express
recursive CTES, we are dealing with a different semantics in this

3.1. The Expressive Power of SQL 25

context. While recursive CTES are typically used to express com-
putations over hierarchical structures [39], their fixpoint semantics

[39]: Shalygina et al. (2017), ‘Imple-
menting Common Table Expressions
for MariaDB’

generally allow any Turing-complete computation to be expressed.
PL/SQL is also Turing-complete, so this is critical.

2005

2009

2009

2014

2017

2020

MICROSOFT SQL SERVER
Version 2005

POSTGRESQL
Version 8.4

ORACLE
Version 11g Release 2

SQLITE3
Version 3.8.3

MYSQL
Version 8.0.1

DUCKDB
Version 0.1.5

Figure 3.3.: This timeline shows a se-
lection of database systems and their
respective year and version when re-
cursive CTES were added.

Figure 3.3 shows, for a small sample of database systems, when
recursive CTES were introduced. While this feature is widely avail-
able today, it took decades for most SQL dialects to become Turing
complete. Prior to this, Turing-complete computations could not be
expressed in pure SQL. This is one of the reasons why PL/SQL was
invented.

Fixpoint-based Semantics. Fixpoint theory [40] is a way to formally

[40]: Tarski (1955), ‘A lattice-
theoretical fixpoint theorem and its
applications.’

describe the semantics of recursive programs and is used to spec-
ify the semantics of recursive CTES. Essentially, recursive CTES
compute the least fixpoint T = q₁ UNION [ALL] q∞(T). This fixpoint
is guaranteed to exist, and to be unique, when q∞ is monotonic [41,
42]. Monotonicity means that adding rows to the input set will not

[41]: Bancilhon et al. (1986), ‘An
Amateur’s Introduction to Recursive
Query Processing Strategies’

[42]: Finkelstein et al. (1996), Expres-
sive Recursive Queries in SQL

remove or change any rows in the result. This leads to syntactic re-
strictions on q∞ that prevent any use of negation (e.g., NOT EXISTS),
INTERSECT/EXCEPT, outer joins, deduplication of rows via DISTINCT,
or grouping and aggregation. However, it enables the semi-naive eval-
uation of q∞ over only the rows produced in the immediately preceding
iteration [43]. Recursive CTES initially evaluate the non-recursive

[43]: Bancilhon (1986), ‘Naive Evalua-
tion of Recursively DefinedRelations’

SQL query q1 once, then q∞ is iterated. Figure 3.4b shows this loop-
based semi-naive evaluation algorithm used by most DBMSs. This
simple linear computation scheme corresponds to the call graph of
Figure 3.4c. Three table-valued variables are required:

w (working table): contains the rows produced by the immediately
preceding iteration. This table can be accessed by q∞ using the
table name T.

i (intermediate table): holds the rows of the current evaluation of
q∞. The recursive CTE exits the LOOP, if i is empty (see Lines 5
and 6 in Figure 3.4b).

u (union table): collects the rows returned by q₁ and any interme-
diate tables computed by q∞. This table defines the result of
the CTE.

The monotonicity constraint on q∞ ensures that the loop in Fig-
ure 3.4b conforms to the original SQL:1999 fixpoint semantics.

1 WITH RECURSIVE
2 T(c₁,...,cₙ) AS (
3 q₁
4 UNION [ALL]
5 q∞(T)
6)
7 TABLE t;

(a) SQL syntax for recur-
sive CTES.

1 u ← q₁
2 w ← u
3
4 LOOP
5 i ← q∞(w)
6 IF i = ∅ THEN BREAK
7 u ← u ⊎ i
8 w ← i
9 RETURN u

(b) Semi-naive operational se-
mantics for recursive CTES.

q1

q∞

(c) Recursion in a
CTE.

Figure 3.4.: SQL syntax and impera-
tive operational semantics for recur-
sive SQL CTES.

26 3. One Way to Trade PL/SQL for SQL

3.2. The PL/SQL Language

The following sections describe a formal way to transform any (non-
recursive) imperative program into a program representation that
can then be expressed with a single (recursive) SQL query.

The PL/SQL language is composed of imperative language con-
structs, and of embedded SQL expressions and queries. This design
integrates seamlessly with SQL while allowing imperative computa-
tion to be expressed in the database. This is supported by the fact,
that both languages use SQL’s type system. Using the same data
types removes the need to convert query results into an appropriate
data type in PL/SQL, which saves time. Because of the nesting of
SQL and PL/SQL, we are effectively dealing with two programming
languages at once. In such a situation, the programming language
community typically refers to PL/SQL as the metalanguage and
SQL as the object-language. We will use this terminology as well.

The key elements of PL/SQL are

▶ variable assignments v := (a),
▶ control flow in terms of, e.g., IF … ELSE, LOOP, WHILE, FOR,
EXIT, CONTINUE, and

▶ embedded SQL queries and expressions.

Any scalar, array, or composite data type can be used as PL/SQL
function arguments, return type, and variables. There are two kinds
of PL/SQL functions: (1) Scalar functions return a single value of
type 𝜏, or NULL. This is done via the RETURN statement. The return
value of a function cannot be left undefined. If control reaches the
end of the function without passing through a RETURN statement,
PL/SQL throws a run-time error. (2) TVFS return a table of values,
or no values at all. The individual rows to return are specified using
the RETURN NEXT or RETURN QUERY statements. A final RETURN state-
ment without arguments can optionally be used to indicate that the
execution is finished [36].

[36]: POSTGRESQL 15 PL/PGSQL Doc-
umentation

Figure 3.5.: PL/SQL language subset
covered by the compiler.

𝑓 ⩴ CREATE FUNCTION 𝑣(𝑣 𝜏) RETURNS
[SETOF] 𝜏 AS

PL/SQL UDF

$$ 𝑝 $$ LANGUAGE PLPGSQL
STABLE;

𝑝 ⩴ DECLARE 𝑑; BEGIN 𝑠; END UDF body
𝑑 ⩴ 𝑣 𝜏 | 𝑣 𝜏 ∶= 𝑎 | 𝑑; 𝑑 variable declarations
𝑠 ⩴ 𝑣 ∶= 𝑎 statements

| IF 𝑎 THEN 𝑠; [ELSE 𝑠;] END IF
| LOOP 𝑠; END LOOP
| WHILE 𝑎 LOOP 𝑠; END LOOP
| FOR 𝑣 IN 𝑎..𝑎 LOOP 𝑠; END LOOP
| EXIT | CONTINUE | RETURN 𝑎
| RETURN NEXT 𝑎 | RETURN QUERY 𝑎 table-valued statements
| 𝑠; 𝑠

𝑎 ⩴ SQL query [𝑣] boxed SQL query
𝑣 ⩴ ⟨identifier⟩ variable/function name
𝜏 ⩴ ⟨scalar SQL type⟩ scalar value type

3.2. The PL/SQL Language 27

Figure 3.5 formally defines the admissible PL/SQL dialect that the
compiler can handle. The subset of PL/SQL does not restrict the
expressible control flow, and allows various forms of loops which
can be nested, cut short via CONTINUE, or left early using EXIT or
RETURN. The source of context switching between the SQL executor
and the PL/SQL interpreter are embedded SQL queries, expressed
in terms of non-terminal 𝑎.

Blackboxing. Internal details of embedded queries and expressions
are not required during the following translation steps. The non-
terminal 𝑎 is therefore a parameterized black box Q . It is only at the
very last compilation step that the parameters are substituted into
the actual SQL code.

Unsupported PL/SQL Features. PL/SQL has a few features that
are not supported by the compilation technique described in the
following Sections 3.3 to 3.6.

Dynamic SQL. PL/SQL allows users to build SQL statements at
the time of execution. Since the final compilation target is a
single pure SQL query, this feature is not compilable, as it
would require modifying the source code of the current SQL
query at runtime. This is not possible in SQL.

Exception Handling. PL/SQL allows users to define custom ex-
ception handlers. This can be used to catch and handle errors
that occur during execution, e.g., when a division by zero is
performed, or when the connection to the database is lost
[33, Appendix A. POSTGRESQL Error Codes]. It is not possi-

[33]: POSTGRESQL 15 Documentationble to compile such handlers, because SQL does not support
exception handling.

INSERT/UPDATE/DELETE Statements. With PL/SQL, it is possible to
modify the state of the database by inserting, updating, or
deleting rows in tables. PL/SQL supports this because each
statement is executed in its own SQL execution context. After
compilation, there is only one SQL execution context. Nesting
of SELECT statements with INSERT, UPDATE, and DELETE state-
ments to this extend is not supported in SQL. In particular,
it is impossible to modify a table and read its modified state
in the same query, as this would violate the ACID property of
the system [44, 45].

[44]: Gray (1981), ‘The Transaction
Concept: Virtues and Limitations (In-
vited Paper)’

[45]: Haerder et al. (1983), ‘Principles
of Transaction-OrientedDatabase Re-
covery’

Data definition language (DDL) Statements. Statements such as
CREATE, DROP, and ALTER can be executed by PL/SQL, but they
cannot be placed within a regular SELECT query. Therefore,
these statements cannot be compiled either.

Cursor Loops. These loops are used to iterate through the result
of a query. While it is not technically impossible to compile these
loops, the compiled version is usually inefficient. This is because
cursors are not a language feature of SQL. This means that it is not
possible to read the result of a query row by row using a recursive
CTE without re-executing the query, or materialization of the entire
query result first.

28 3. One Way to Trade PL/SQL for SQL

1 CREATE FUNCTION ... AS $$
2 DECLARE
3 v 𝜏;
4 BEGIN
5 FOR v IN Q[...] LOOP
6 body
7 END LOOP;
8 END
9 $$ LANGUAGE PLPGSQL;

(a) Original PL/SQL UDF with cur-
sor loop.

1 CREATE FUNCTION ... AS $$
2 DECLARE
3 v 𝜏;
4 rows BIGINT;
5 BEGIN
6 rows := (SELECT COUNT(*)
7 FROM (Q[...]));
8
9 FOR i IN 0..rows LOOP

10 v := (SELECT * FROM Q[...]
11 LIMIT 1 OFFSET i);
12 body
13 END LOOP;
14 END
15 $$ LANGUAGE PLPGSQL;

(b) Emulation of PL/SQL cursor
loop using a FOR loop, and SQL’s
LIMIT/OFFSET clauses.

1 CREATE FUNCTION ... AS $$
2 DECLARE
3 v 𝜏;
4 rows 𝜏[];
5 BEGIN
6 rows := (SELECT ARRAY_AGG(q)
7 FROM (Q[...]) AS q);
8
9 FOR v IN rows LOOP
10 body
11 END LOOP;
12 END
13 $$ LANGUAGE PLPGSQL;

(c) Emulation of PL/SQL cursor loop
using a materialized array and a FOR
loop.

Figure 3.6.: Original PL/SQL cursor loop and two emulation techniques.

However, cursor loops can be mimicked with the help of supported
control flow elements. Figure 3.6a defines a PL/SQL function that
uses a cursor loop to iterate over the result of query Q[...] . Fig-
ures 3.6b and 3.6c depict feasible emulation techniques for cursor
loops that can be used. Both options have drawbacks. The tech-
nique in Figure 3.6b has to evaluate query Q[...] 𝑛 + 1 times. Once
to determine the number of rows returned by the query, and once
per iteration. It is important to note that the query results must be
ordered to ensure that we iterate over the entire result set in the
correct order. Without ordering, there is no guarantee that this will
happen. The entire query result is materialized as an array in the al-
ternative technique shown in Figure 3.6c. If the query returns many
rows, the array contains many entries, which can be problematic
after compilation. Since our compilation target involves a recur-
sive CTE, the array needs to be copied during each iteration of the
CTE, resulting in excessive overhead and potentially a slowdown in
execution time.

3.3. PL/SQL Control Flow in Terms of GOTO 29

3.3. PL/SQL Control Flow in Terms of GOTO

In general, programming languages come with a lot of features that
make them easy to use. This includes various types of loops, con-
ditional branching, etc. However, these features are not technically
required and make the compilation process more difficult. There-
fore, many compilers use small and simple core IRS, that are easy to
reason about and easy to compile to. This compiler follows the same
design philosophy. The first compilation pass reduces language com-
plexity and transforms the body of the input UDF into a simple
imperative control flow graph (CFG). All LOOP-statements and all
control flow is expressed exclusively in the form of IF … ELSE … and
GOTO-statements. Labeled basic blocks with ;-separated statement
sequences are used to organize the code. All blocks end with either
GOTO 𝜅 (passing control to the basis block with label 𝜅), or RETURN.
The syntax of this IR is defined in Figure 3.7.

A CFG [46] is a directed graph 𝐺 = (𝑉, 𝐸) program representation
[46]: Allen (1970), ‘Control flow anal-
ysis’with nodes𝑉 and edges 𝐸. Each CFG has a unique entry point start,

where all control flow enters. In this work, all CFG nodes represent
a basic block containing a sequence of statements. The edges indicate
any jump or branching statements. Despite the simplicity of such
a GOTO-based form, arbitrarily complex control flow patterns can
be expressed. This simplicity is the key to streamlining the entire
compilation. The construction of a CFG is typically based on the
input AST and can be done very efficiently [47]. The translation

[47]: Stanier et al. (2013), ‘Interme-
diate Representations in Imperative
Compilers: A Survey’

from PL/SQL to the GOTO-based form as mapping # is described in
detail in Section 5.1. Figure 3.8 visualizes the CFG for the PL/SQL
UDF route of Figure 2.2. During the compilation, all embedded
SQL expressions and queries are preserved. The non-terminal 𝑎 in
the PL/SQL grammar of Figure 3.5 and the GOTO IR in Figure 3.7 are
identical. Loops in the input UDF materialize as cycles in the CFG.
For example, the cycle while loop meet represents the WHILE-loop
in UDF route. Nodes with multiple predecessors (e.g., while) are
called join nodes.

CFGS are a simple but very powerful tool for implementing control
flow optimizations like inlining. Block inlining [48–51] can reduce

[48]: Peyton Jones et al. (2002), ‘Se-
crets of the Glasgow Haskell Com-
piler inliner’

[49]: Chang et al. (1989), ‘Inline Func-
tion Expansion for Compiling C Pro-
grams’

[50]: Ferrante et al. (1987), ‘The Pro-
gram Dependence Graph and Its Use
in Optimization’

[51]: Waddell et al. (1997), ‘Fast and
Effective Procedure Inlining’

𝑓 ⩴ fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏 {𝑏} top-level function
𝑏 ⩴ 𝜅 : 𝑝 𝑠; labelled block
𝑝 ⩴ 𝑣: 𝜏 ← ϕ(𝜅 ∶ 𝑣); 𝑝 SSA phi function

| 𝜀
𝑠 ⩴ 𝑣 ← 𝑎 statement

| IF 𝑣 THEN 𝑡 ELSE 𝑡
| 𝑡 block terminal
| EMIT 𝑎 table-valued result
| 𝑠; 𝑠 statement sequence

𝑡 ⩴ GOTO 𝜅 jump to block 𝜅
| RETURN 𝑎 return a value

𝑎 ⩴ SQL query [𝑣] boxed SQL query
𝑣 ⩴ ⟨identifier⟩ variable/procedure name
𝜏 ⩴ ⟨scalar SQL type⟩ parameter/return type
𝜅 ⩴ ⟨block label⟩ jump target for GOTO

Figure 3.7.: GOTO-based imperative in-
termediate form.

30 3. One Way to Trade PL/SQL for SQL

the number of basic blocks, and thereby the number of GOTO state-
ments in a program. A basic block can be inlined into another block
by simply replacing the GOTO 𝜅 statement with the statements of
block 𝜅. However, inlining can lead to exponential code growth, if 𝜅
has more than one predecessor. Therefore, inlining must be used
carefully. In this work, we use inlining to simplify the CFG and to
reduce the number of GOTO statements.

Static single assignment form (SSA). Next, we transform the CFG
into SSA [52]. In SSA, each variable is assigned exactly once in the

[52]: Cytron et al. (1991), ‘Efficiently
Computing Static Single Assignment
Form and the Control Dependence
Graph’

program code2. Once this property is established, SSA ensures

2: Note: This is a property of the pro-
gram code. During execution of a
loop, for example, the same variable
can be assigned several times.

referential transparency, just like programs implemented using pure
functional programming languages do [53]. SSA simplifies data flow

[53]: Rastello et al. (2022), SSA-based
Compiler Design

optimizations by making def-use chains explicit. SSA’s phi functions
[52] are used to specify which variable versions are live for blocks
with multiple predecessors (see block while in Figure 3.8, for exam-
ple). This enables further well-known simplifications such as dead
code elimination, unused variable detection, common subexpression
elimination, or constant folding [5].

[5]: Novillo (2003), ‘Tree SSA a new
optimization infrastructure for GCC’

We will not go into the fine details of SSA construction, as it is
well studied and described, e.g., in [53]. However, we will give a
brief overview because we have some unusual requirements that
simplify the following compilation steps. The construction of the
SSA property is a multi-step process. The two main steps are (1) phi
function placement, and (2) variable renaming. Compilers usually
try to insert the minimal number of phi functions to obtain so-called
minimal SSA, pruned SSA, or semi-pruned SSA [54].

[54]: Braun et al. (2013), ‘Simple and
Efficient Construction of Static Sin-
gle Assignment Form’

Pruned SSA: A program is in pruned SSA form if every variable 𝑣
bound by a ϕ function 𝑣 ← ϕ(…) is used by a non-ϕ expression
[55].

[55]: Choi et al. (1991), ‘Automatic
Construction of Sparse Data Flow
Evaluation Graphs’

Semi-pruned SSA: This form reduces the number of ϕ functions
using the set of block-local variables (see p0 in block while
of Figure 3.8 for an example). Such variables never need a ϕ
function [56].

[56]: Briggs et al. (1998), ‘Practical Im-
provements to the Construction and
Destruction of Static Single Assign-
ment Form’

Minimal SSA: Minimal SSA places ϕ functions only in join nodes,
and only in blocks where different definitions of a variable 𝑣
meet [52, 54] (see loc1 in Figure 3.8).

Minimal SSA is advantageous for certain types of optimizations and
is produced by most compilers. However, this work benefits from
what Appel calls “the crude approach” [57]:

[57]: Appel (1998), ‘SSA is Functional
Programming’ Crude SSA: Crude SSA places ϕ functions for all live variables, in

every node. Compared to minimal SSA, this results in many
more ϕ functions (see dest1,2,3, ttl1,2,3, loc2,3, route2,3, and
hop2,4 in Figure 3.8).

While placing so many (allegedly unnecessary) ϕ functions is a bad
idea for most compilers, it is almost trivial to compute and makes
the next compilation steps much easier. We will get back to this in
the next section.

3.4. Tail Recursion Replaces GOTO 31

start:
loc0 ← (SELECT source);
route0 ← (SELECT array[loc0]);
hop0 ← (SELECT NULL :: connections);
GOTO while;

while:
dest1 ← ϕ(start:dest, meet:dest3);
ttl1 ← ϕ(start:ttl, meet:ttl3);
loc1 ← ϕ(start:loc0, meet:loc4);
route1 ← ϕ(start:route0, meet:route4);
hop1 ← ϕ(start:hop0, meet:hop4);
p0 ← (SELECT loc1 <> dest);
IF NOT p0 THEN
RETURN (SELECT route);

ELSE
GOTO loop;

loop:

dest2 ← ϕ(while:dest1);
ttl2 ← ϕ(while:ttl1);
loc2 ← ϕ(while:loc1);
route2 ← ϕ(while:route1);
hop2 ← ϕ(while:hop1);
hop3 ← Q1[loc2,dest2];
p1 ← (SELECT ttl < hop3.cost);
IF p1 THEN
RETURN (SELECT NULL);

ELSE
GOTO meet;

meet:
dest3 ← ϕ(while:dest2);
ttl3 ← ϕ(while:ttl2);
loc3 ← ϕ(loop:loc2);
route3 ← ϕ(loop:route2);
hop4 ← ϕ(loop:hop3);
loc4 ← (SELECT hop4.via);
route4 ← (SELECT route || loc4);
GOTO while;

Figure 3.8.:CFG for UDF routewith
code blocks in SSA form.

3.4. Tail Recursion Replaces GOTO

SSA is typically intended to be used with languages that have scop-
ing and a mutable state. However, SQL has no direct support for
a mutable state. So we have to emulate it. This situation is similar
to that of pure functional programming languages like HASKELL, for
example. These languages also have no state, but that does not limit
their expressiveness in any way. There are solutions to this problem
on the functional programming side of the fence.

Consider the imperative code in Figure 3.9a. This program computes
the COLLATZ conjecture3 [58] for input x and returns the number of

3: COLLATZ is defined as:

𝑓(𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

𝑛
2

if 𝑛≡0 (mod 2)
3𝑛 + 1 if 𝑛≡1 (mod 2)

Based on 𝑓(𝑥) we can define a se-
quence starting from any positive in-
teger 𝑥∈ℕ:

𝑎𝑖 =
⎧⎪⎨
⎪⎩
𝑛 for 𝑖 = 0
𝑓(𝑎𝑖−1) for 𝑖 > 0

The COLLATZ conjecture is that 𝑎𝑖
ends in ... , 4, 2, 1 for all 𝑛∈ℕ.
[58]: Lagarias (1985), ‘The 3x + 1 Prob-
lem and its Generalizations’

steps n the algorithm took to terminate. Both variables are updated
during execution (see Lines 4, 7 and 9 of Figure 3.9a). This state
update is a side effect. We rely on the execution context to manage
the state of these variables and assume the appropriate semantics
when they are updated.

In contrast, the pure functional code in Figure 3.9b performs the
exact same computation without the need for mutable variables.
Instead, the state is passed explicitly as parameters to the function
(see Lines 7, 8 and 11 of Figure 3.9b). Rather than relying on the
execution context to manage the state of variables x and n for us,
we use function arguments to emulate the state. This is something
we can easily express using SQL. The elegance of this approach is
that all data flow is explicit and no side effects are required. The
state monad is a popular metaphor for this idiom in the functional
programming community [59]. The COLLATZ conjecture is a simple

[59]:Wadler (1993), ‘Monads for func-
tional programming’

32 3. One Way to Trade PL/SQL for SQL

Figure 3.9.: Imperative and purely
functional computation of the COL-
LATZ conjecture.

1 fun collatz(x int) : int {
2 n ← 0;
3 WHILE x != 1 LOOP
4 n ← n + 1;
5 IF x % 2 == 0
6 THEN
7 x ← x / 2;
8 ELSE
9 x ← x * 3 + 1;
10 END LOOP;
11 RETURN n;
12 }

(a) Imperative program with mutable
variables x and n.

1 fun collatz(x int) : int {
2 while(x int, n int) : int {
3 LET n1 = n + 1 IN
4 IF x != 1
5 THEN
6 IF x % 2 == 0
7 THEN while(x / 2, n1)
8 ELSE while(x * 3 + 1, n1)
9 ELSE n
10 }
11 while(x, 0)
12 }

(b) Pure functional program that emu-
lates state using function arguments.

example, but this technique can be used to express arbitrarily com-
plex state machines. This is the key to emulating mutable variables
in SQL.

The compilation from the imperative code in Figure 3.9a to the pure
functional code in Figure 3.9b is well-known and systematic. This is
due to the correspondence between SSA and functional code (either
in administrative normal form (ANF) or CPS form) that Kelsey
[60] and Appel [57, 61] identified. This correspondence allows bi-

[60]: Kelsey (1995), ‘A Correspon-
dence between Continuation Passing
Style and Static Single Assignment
Form’

[57]: Appel (1998), ‘SSA is Functional
Programming’

[61]: Appel (1997), Modern Compiler
Implementation in ML: Basic Tech-
niques

directional compilation from SSA to functional code and vice versa,
and has been the subject of extensive study in the programming
language community. We are aiming for the direct style ANF IR
[62]. It consists of conditionals, LET bindings, and function calls.

[62]: Flanagan et al. (1993), ‘The
Essence of Compiling with Contin-
uations’

Direct style means that there are no higher-order functions. This
is important because SQL has no direct means of expressing such
functions4.

4: We will get back to this in Part
“Functional Programming on Top of
SQL Engines”, when we compile re-
cursive UDFS into SQL.

The basic idea of how to compile SSA to ANF is relatively straight-
forward. In short, each basic block labeled 𝜅 becomes a function 𝜅().
The sequence of assignment statements 𝑣 ← 𝑎 in the block is ex-
pressed in terms of LET 𝑣 = 𝑎 bindings. GOTO 𝜅 statements result in
a tail call to function 𝜅(). Figure 3.10 shows the grammar definition
for our ANF language. Note that the non-terminals 𝑎, 𝑣, and 𝜏 are
identical to the ones in the SSA grammar in Figure 3.7. This means
that we can reuse the concrete values when compiling from SSA
to ANF. To perform this step, we follow the work of Chakravarty,
Keller, and Zadarnowski [9] who formalized the compilation of SSA

[9]: Chakravarty et al. (2004), ‘A func-
tional perspective on SSA optimisa-
tion algorithms’

Figure 3.10.: Intermediate functional
language in ANF.

𝑝 ⩴ fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏 {𝑓} top-level function
𝑓 ⩴ 𝑣(𝑣 𝜏) ∶ 𝜏 = 𝑒 function definition
𝑒 ⩴ 𝑎 expression

| 𝑣(𝑎)
| IF 𝑣 THEN 𝑒 ELSE 𝑒
| LET 𝑣 = 𝑎 IN 𝑒
| EMIT 𝑎; 𝑒 emit value

𝑎 ⩴ SQL query [𝑣] boxed SQL query
𝑣 ⩴ ⟨identifier⟩ variable/function name
𝜏 ⩴ ⟨scalar SQL type⟩ parameter/return type

3.4. Tail Recursion Replaces GOTO 33

start(source,dest,ttl)
LET loc0 = (SELECT source) IN
LET route0 = (SELECT array[loc0]) IN
LET hop0 = (SELECT NULL :: connections) IN
while(dest, ttl, loc0, route0, hop0)

while(dest,ttl,loc,route,hop)

LET p0 = (SELECT loc <> dest) IN
IF NOT p0 THEN
(SELECT route)

ELSE
loop(dest,ttl,loc,route,hop)

loop(dest,ttl,loc,route,hop)

LET hop3 = Q1[loc,dest] IN
LET p1 = (SELECT ttl < hop3.cost) IN
IF p1 THEN
(SELECT NULL)

ELSE
meet(dest, ttl, loc, route, hop3)

meet(dest,ttl,loc,route,hop)

LET loc4 = (SELECT hop.via) IN
LET route4 = (SELECT route || loc4) IN
while(dest, ttl, loc4, route4, hop)

Figure 3.11.: Call graph for UDF
route after ANF conversion.

programs into ANF. We will instantiate our own version of this
compilation in Section 5.2.

When we apply this idea to the route UDF in Figure 3.8, we end
up with a set of mutually recursive functions while, loop, and meet.
Each function takes arguments (dest,ttl,loc,route,hop) . Fig-
ure 3.11 shows the resulting function call graph. Note that the func-
tions are all top-level and have the same arguments. The use of crude
SSA yields this property. If we had used minimal SSA, the function
arguments would be different for each of the functions. To ensure
proper scoping for each identifier, the functions would then need to
be nested.

ANF has a solid foundation of well-established optimizations [62,
63]. In our case, function inlining is the most important optimization,

[62]: Flanagan et al. (1993), ‘The
Essence of Compiling with Contin-
uations’

[63]: Jagannathan et al. (1996), ‘Flow-
directed inlining’

because it reduces the number of functions in the call graph, which is
critical for the performance of the final SQL query. Figure 3.12 shows
the final optimized version of UDF route in ANF. Functions loop()
and meet() have been inlined into while() . This gives us a family
with two functions. Inlining in ANF is generally applicable to all
nodes with one predecessor. Function start() must not call itself,
however. In general, if the input CFG contains 𝑛 cycles, exhaustive
inlining will result in a call graph of 𝑛 + 1 functions (+1 for the
start() function).

34 3. One Way to Trade PL/SQL for SQL

Figure 3.12.: Call graph for UDF
route after inlining optimization.

start(source, dest, ttl)
LET loc0 = (SELECT source) IN
LET route0 = (SELECT array[loc0]) IN
while(dest, ttl, loc0, route0)

while(dest, ttl, loc, route)
LET p0 = (SELECT loc <> dest) IN
IF NOT p0 THEN (SELECT route)
ELSE
LET hop3 = Q1[loc,dest] IN
LET p1 = (SELECT ttl < hop3.cost) IN
IF p1 THEN (SELECT NULL)
ELSE
LET loc4 = (SELECT hop.via) IN
LET route4 = (SELECT route || loc4) IN
while(dest, ttl, loc4, route4)

3.5. Trampolined Style Tames Mutual
Recursion

Complex UDFS that express (potentially deeply nested) looping
computation and the simple iterative semantics of SQL’s WITH
RECURSIVE appear to be at odds. Yet, that gap can be bridged. Al-
though the fixpoint semantics does not immediately resemble a
general purpose loop, it does provide the semantics of a single
WHILE loop. This is already sufficient to model any arbitrarily nested
looping control flow [64]. However, the programsmust be structured

[64]: Solin (2011), ‘Normal forms in
total correctness for while programs
and action systems’

in a specific way, for example in trampolined style [10].

A program in trampolined style is organized as a single “scheduler”
loop, the so-called trampoline, which manages all control flow. Ex-
ecution of such programs proceeds in discrete steps. After each
step, control is returned to the trampoline, which then proceeds
to transfer control again [10]. This cycle continues until the pro-

[10]: Ganz et al. (1999), ‘Trampolined
style’ gram execution is finished. Using trampolined style, the program is

effectively transformed into a state machine. We exploit the prop-
erty, that only a single loop is required to express arbitrary control
flow. This restricted form of control flow perfectly matches the se-
mantics of SQL’s WITH RECURSIVE construct. The grammar of the
trampolined-style ANF is shown in Figure 3.13.

3.5. Trampolined Style Tames Mutual Recursion 35

𝑝 ⩴ fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏
{𝑓 [𝑓]}

top-level function

𝑓 ⩴ 𝑣(𝑣 𝜏) ∶ 𝜏 = 𝑒 function definition
𝑒 ⩴ 𝑎 expression

| trampoline(𝑎) trampoline invocation
| IF 𝑣 THEN 𝑒 ELSE 𝑒
| LET 𝑣 = 𝑎 IN 𝑒
| EMIT 𝑎; 𝑒 emit value
| CASE 𝑣 OF '𝑣' ∶ 𝑒 dispatching case

𝑎 ⩴ SQL query [𝑣] boxed SQL query
𝑣 ⩴ ⟨identifier⟩ variable/function name
𝜏 ⩴ ⟨scalar SQL type⟩ parameter/return type
𝑡 ⩴ start | trampoline trampoline function names Figure 3.13.: Intermediate functional

language in trampolined ANF.

start()

trampoline()

𝑓1() 𝑓2() 𝑓3()

rec? = false

call = '𝑓3'

Figure 3.14.: Trampolined style.

If we apply trampolined style to the final ANF version of PL/SQL
UDFS, we get the single-cycle call graph shown in Figure 3.14. All
functions 𝑓𝑖() are inlined into the trampoline() and pass control
back to the dispatcher on function return, so trampoline() has full
control over whether and how the computation continues. During
execution, two parameters determine the transfer of control:

rec?∈ {true, false}: If parameter rec? is false, the trampoline
will stop calculating and return.

call∈ {𝑓1, ... , 𝑓𝑛}: Otherwise, parameter call specifies the function
to call next. When the function is finished, it returns control
to the trampoline with new rec? and call values.

When we arrive at the pure SQL query after the final translation,
these two control parameters and the state parameters are repre-
sented as a row in the working table of the recursive CTE. Because
this row controls whether and how the trampoline() continues, we
call these rows control rows.

To make this more concrete, Figure 3.15 shows a rewritten version
of the ANF program in Figure 3.12 for UDF route. In this represen-
tation, the dispatcher trampoline() is central and provides the only
way to exit the computation if the parameter rec? is false (Line 5).
For the UDF route, there is only one function that the dispatcher
can call (i.e., there is only call ∈ {while}) because the control flow
is very simple. Where the while() function previously returned a
value to the caller, it now passes this return value to the trampoline
as parameter res and parameter rec? = false to mark the compu-
tation as complete (see Lines 11 and 18). Recursive (self-)invocations
are now achieved by passing the parameters rec? = true, call =
'while' to the trampoline() (see Line 22).

Note that all trampolined-style programsmatch the call graph shapes
of Figures 3.14 and 3.15 and therefore fit into the restricted single-
cycle iteration scheme implemented by WITH RECURSIVE (remember
Figure 3.4). This is extremely powerful, because arbitrary programs
of mutually recursive functions are susceptible to the trampoline
transformation [10]. Therefore, trampolined style is a universal way

[10]: Ganz et al. (1999), ‘Trampolined
style’to compile any iterative (and, as we will see in part “Functional

Programming on Top of SQL Engines”, recursive) computation into

36 3. One Way to Trade PL/SQL for SQL

Figure 3.15.: Program in trampolined
style (ANF body of route inlined into
trampoline). Compare to Figure 3.12.

start(source, dest, ttl)
1 LET loc0 = (SELECT source) IN
2 LET route0 = (SELECT array[loc0]) IN
3 trampoline(true, 'while', ⊥, loc0, route0)

body of while()

trampoline(rec?, call, res, loc, route)

4 IF NOT rec? THEN
5 res
6 ELSE
7 CASE call OF
8 'while':
9 LET p0 = (SELECT loc <> dest) IN
10 IF NOT p0 THEN
11 trampoline(false, ⊥, route, ⊥, ⊥)
12 ELSE
13 LET hop3 = (SELECT c
14 FROM connections AS c
15 WHERE c.here = loc AND c.there = dest) IN
16 LET p1 = (SELECT ttl < hop3.cost) IN
17 IF p1 THEN
18 trampoline(false, ⊥, NULL, ⊥, ⊥)
19 ELSE
20 LET loc4 = (SELECT hop.via) IN
21 LET route4 = (SELECT route || loc4) IN
22 trampoline(true, 'while', ⊥, loc4, route4)

SQL. This insight is fundamental to this line of research and a key
contribution of this work.

3.6. Trampolined Style in SQL

The final stage of compilation is to convert the trampolined ANF
into plain SQL. To do this, we must

1. translate the function body of start() into SQL SELECT block
bstart, and trampoline() into SQL SELECT blocks tramp0,...,n
and then

2. place these blocks in the WITH RECURSIVE based template that
implements the trampoline. The instantiated template is the
final output of the compiler.

The function bodies of start() and trampoline() consist of cas-
caded LET expressions, IF-ELSE conditionals, and trampoline() tail
calls. The trampoline() function also contains the central CASE OF
expression, which implements the dispatching of control to the ap-
propriate function label. In step 1, a SQL SELECT block is constructed
for each case of this CASE OF expression. The formal translation from
trampolined style ANF to SQL is realized in terms of mapping ↦𝒜

in Section 5.3.

Ramachandra et al. have pioneered a UDF compilation approach
for branching yet linear, non-looping control flow, called FROID [27].

[27]: Ramachandra et al. (2018),
‘Froid: Optimization of Imperative
Programs in a Relational Database’

FROID compiles suchUDFS into a single relational expression through
a process called algebrization. This relational expression can then be
inlined into the calling query, which essentially results in a (possibly

3.6. Trampolined Style in SQL 37

dispatcher

1 WITH RECURSIVE run("rec?", call, res, ...) AS (
2 ⟨bstart⟩
3 UNION ALL -- recursive UNION ALL
4 SELECT result.*
5 FROM run,
6 LATERAL (⟨tramp₀⟩ WHERE run.call = 'tramp0'
7 UNION ALL
8 ⋮

9 UNION ALL
10 ⟨trampₙ⟩ WHERE run.call = 'trampn'
11) AS result
12 WHERE run."rec?"
13)
14 SELECT run.res FROM run WHERE NOT run."rec?" Figure 3.16.: SQL:1999-based tram-

poline template.

correlated) subquery. We largely adopt their strategy of compiling
non-looping control flow. However, we generalize it. Instead of work-
ing with relational operators, we work exclusively with SQL. Also,
instead of using the MICROSOFT SQL SERVER-specific CROSS APPLY
[65], which they use to describe FROID’s compilation approach, we

[65]: Galindo-Legaria et al. (2001),
‘Orthogonal Optimization of Sub-
queries and Aggregation’

use the SQL standard LATERAL join to express nested LET bindings.
Additionally, we do not use CASE WHEN expressions for IF statements,
we use predicated UNION ALL queries instead. We will discuss FROID
in more detail in Section 7.2.

When evaluated, each block bstart, tramp0,..., trampn must return a
control row to inform the dispatcher on how to proceed. The leading
columns "rec?" and call determine the next block to jump to, or
whether execution should terminate. The trailing columns contain
the arguments that make up the state, as determined by the SSA
to ANF conversion (see arguments loc and route in Figures 3.15
and 3.17). For scalar UDFS, the control row uses the res column to
encode the result of the function call.

Step 2 embeds the SELECT blocks bstart, tramp0,...,trampn in the SQL-
based trampoline template of Figure 3.16. The bstart SELECT block
is placed in the non-recursive part of the recursive CTE. Remember
that this will initialize the CTE (Section 3.1). The dispatcher is
then evaluated repeatedly in Lines 6 to 10. In each iteration, the
dispatchers uses the call column to select one tramp𝑖 SELECT block
for evaluation. Only the selected SELECT block places a new control
row in the working table. Since all SELECT blocks must define new
values for columns call and "rec?", the dispatcher knows how to
proceed in the next iteration.

This iterative evaluation process continues until a SELECT block
returns a control row in which the "rec?" column is false. The
predicate in Line 12 will filter this row, resulting in an empty work-
ing table in the next iteration. This is the stop criterion for WITH
RECURSIVE. The last control row and all of the rows collected before
it are returned in the UNION table run. For scalar UDFS, the last
control row contains the final result of the compiled UDF in the res
column. This result is extracted in Line 14.

Instantiating the template completes the compilation process. Fig-
ure 3.17 shows the final trampolined style SQL query for the UDF
route of Figure 2.2. Note that this query can be further optimized.

38 3. One Way to Trade PL/SQL for SQL

Variable route matches variable res perfectly, so one of them can
be eliminated.

Wherever the original database application makes a call to the
PL/SQL UDF route, the query code in Figure 3.17 Lines 2 to 27 can
be used to replace that call. However, for convenience, the query
is wrapped in a regular LANGUAGE SQL UDF. This allows us to eas-
ily replace the PL/SQL function without touching the application.
Unfortunately, POSTGRESQL, for example, does not consider this
query as simple enough to inline the code into the calling query.
Therefore, replacing the function call with the plain SQL query is
still required for best results.

rec? call res loc route
true while NULL C C
true while NULL D C,D
true while NULL A C,D,A
false NULL C,D,A NULL NULL

Table run

Table 3.1.: UNION table computed by
the recursive CTE in Figure 3.17 for
call route(C,A,10).

With the table instances in Figure 2.4, and the call route(C,A,10) ,
the recursive CTE computes the UNION table run in Table 3.1. This
UNION table contains the entire history of the calculation steps. It shows
that the while() function was called three times, and returned the
partial paths (C), (C,D), and (C,D,A) before the final path C,D,A
can be extracted. There was no context switching between the SQL
executor and the PL/SQL interpreter to compute this result—in fact,
no PL/SQL interpreter is required at all. The entire computation is
performed by the SQL engine. This solves the problem of PL/SQL’s
poor performance and scalability. SQL dialect differences aside, this
compilation therefore allows PL/SQL UDFS to run on database
engines that do not provide a PL/SQL interpreter.

1 CREATE FUNCTION route(source node, dest node, ttl int) RETURNS node[] AS $$
2 WITH RECURSIVE run("rec?", call, res, loc, route) AS (
3 SELECT true AS "rec?", 'while' AS call, NULL as res, source as loc, array[source] AS route
4 UNION ALL -- recursive UNION ALL
5 SELECT result.*
6 FROM run,
7 LATERAL (SELECT if_p0.*
8 FROM (SELECT loc <> dest) AS let_p0(p0),
9 LATERAL (SELECT false AS "rec?", NULL AS call, route AS res, NULL AS loc, NULL AS route
10 WHERE NOT p0
11 UNION ALL
12 SELECT if_p1.*
13 FROM (SELECT (SELECT c
14 FROM connections AS c
15 WHERE c.here = loc AND c.there = dest)) AS let_hop(hop),
16 LATERAL (SELECT ttl < hop.cost) AS let_p1(p1),
17 LATERAL
18 (SELECT false AS "rec?", NULL AS call, NULL AS res, NULL AS loc, NULL AS route
19 WHERE p1
20 UNION ALL
21 SELECT true AS "rec?", NULL AS res, 'while' AS call, hop.via AS loc, route || hop.via AS route
22 WHERE NOT p1) AS if_p1
23 WHERE p0) AS if_p0
24 WHERE run.call = 'while') AS result
25 WHERE run."rec?"
26)
27 SELECT run.res FROM run WHERE NOT run."rec?"
28 $$ LANGUAGE SQL;

Figure 3.17.: The final plain SQL code output for the PL/SQL UDF route shown in Figure 2.2, complete with the instantiated
trampoline.

Trampolined Style Manages
Control, and Data Flow, Too 4.

In Chapter 3, we described a compilation method to transform
scalar PL/SQLUDFS to a single recursive SQL CTE.While keeping
the basic idea and compilation chain as is, we now separate the
management of control flow and data flow to make the compilation
suitable for Table-valued functions (TVFS). To this end, we introduce
the concept of data rows in addition to control rows. Previously, the
compiler used only control rows which is not sufficient to handle
TVFS.

In what follows, we describe how to adapt and generalize the CTE-
based PL/SQL UDF compilation strategy to also cover TVFS like
march of Figure 4.2a. We aim to (1) support the idiomatic RETURN
NEXT style of UDF authoring, (2) avoid the materialization and copy-
ing of intermediate results, and (3) still avoid PL/SQL↔SQL switch
overhead (which adds to 20% in the case of UDF march).

4.1. From Scalar Values To Tables

Let us look at an example. UDF march of Figure 4.2a is a TVF and im-
plements the popular computer graphics algorithmMarching Squares
[66] in POSTGRESQL’s PL/PGSQL [36]. Whenever such a TVF en-

[66]: Maple (2003), ‘Geometric de-
sign and space planning using the
marching squares and marching cube
algorithms’

[36]: POSTGRESQL 15 PL/PGSQL Doc-
umentation

counters a RETURN NEXT, the POSTGRESQL interpreter adds a new
result to the function’s result set before the UDF resumes execution.
In this example, march(start) returns a set of rows , representing
the contour for a two-dimensional object (see Figure 4.1a for an
example).

(a) Object.

◱ ◲ ◰ ◳ dir
◻ ◻ ◻ ◼ →
◻ ◻ ◼ ◻ ↑
◻ ◻ ◼ ◼ →
◻ ◼ ◻ ◼ ↓
◻ ◼ ◼ ◼ ↓

(ten more rows)

directions

(b) Directions table.

Figure 4.1.: Sample object and
directions-table.

To find this contour, march starts at an arbitrary 2×2 contouring cell
of pixels somewhere on the contour. Each contouring cell is stored
as a row in table squares. The symbol in Figure 4.1a marks the
center of the start cell location. In each iteration of the WHILE-loop,
Q1 performs a join between the directions and squares tables to
determine the direction to move in next. For instance, starting at
, the contouring cell is encountered. The corresponding row in
table directions specifies, that the current location (cur) moves
one step to the right →. In the next iteration, the cell configuration
is , therefore cur moves down ↓. The iteration continues until the
start position is reached again. The movements in the directions
table are carefully designed to prevent the algorithm from returning
to a previously visited part of the contour.

During this march around the contour, the RETURN NEXT statement
in Line 15 of Figure 4.2a just adds each visited location cur to the
function’s materialized result set, rather than actually streaming it
out of the function. This, potentially sizable, return set is material-
ized during execution and returned as a whole when the function
exits [36].

40 4. Trampolined Style Manages Control, and Data Flow, Too

Q1[⋅]

1 CREATE FUNCTION march(start vec2) RETURNS SETOF vec2 AS $$
2 DECLARE
3 goal vec2 := start;
4 cur vec2 := start;
5 dir vec2;
6
7 BEGIN
8 WHILE true LOOP
9 dir := (SELECT d.dir
10 FROM directions AS d, squares AS s
11 WHERE s.xy = cur
12 AND (s.ll, s.lr, s.ul, s.ur)
13 = (d.ll, d.lr, d.ul, d.ur));
14
15 RETURN NEXT cur;
16
17 cur := (cur.x + dir.x, cur.y + dir.y) :: vec2;
18 EXIT WHEN cur = goal OR dir IS NULL;
19 END LOOP;
20 RETURN;
21 END;
22 $$ LANGUAGE PLPGSQL STRICT;

(a) Table-Valued version of PL/SQL UDF march.

Q1[⋅]

1 CREATE FUNCTION march-arr(start vec2) RETURNS vec2[] AS $$
2 DECLARE
3 goal vec2 := start;
4 cur vec2 := start;
5 dir vec2;
6 result vec2[] := ARRAY[] :: vec2[];
7 BEGIN
8 WHILE true LOOP
9 dir := (SELECT d.dir
10 FROM directions AS d, squares AS s
11 WHERE s.xy = cur
12 AND (s.ll, s.lr, s.ul, s.ur)
13 = (d.ll, d.lr, d.ul, d.ur));
14
15 result := result || cur;
16
17 cur := (cur.x + dir.x, cur.y + dir.y) :: vec2;
18 EXIT WHEN cur = goal OR dir IS NULL;
19 END LOOP;
20 RETURN result;
21 END;
22 $$ LANGUAGE PLPGSQL STRICT;

(b) Marching Squares as an array-based PL/SQL UDF.

Figure 4.2.: Q1[⋅] is an embedded SQL query with the free variable cur.

An alternative implementation as a scalar PL/SQL UDF (see march-
arr in Figure 4.2b) iteratively builds the result as an array of type
vec2[]. Our compilation strategy does handle march-arr, but the
resulting SQL query will exhibit disappointing performance: the
compilation creates a recursive CTE whose iteration expresses the
iteration of the original UDF. This CTE maintains the local state of
all UDF variables in a single row of the CTE’s working table. For
UDF march-arr, maintaining the array result iteratively results in
significant runtime overhead because the array has to be copied (and
extended) in each iteration. For 𝑛 iterations, this amounts to a total of
𝑛 × (1 + 2 + ... + (𝑛 − 1)) ≡ 1

2
𝑛2 × (𝑛 − 1) copy operations. In consequence,

the CTE’s working table grows to 16MB during the execution of
the compiled UDF march-arr.

4.2. Control Flow Management

Recall that after compilation, each call to UDF march is encoded
as a control row in the working table of run. This row determines
the state of the machine, and thus which part of the computation
to perform next. In Figure 4.3, each CFG construct that yields a
control row is marked . The control row for each call is initially
created in the non-recursive part of run (see Line 2 of Figure 4.5). In
the recursive part of run, the row is read, because the two control
columns rec? and call determine the transfer of control during
execution.

4.3. Data Flow Management 41

start:
goal0 ← start;
cur0 ← start;
dir0 ← NULL;
GOTO while;

while:
cur0 ← ϕ(start:cur0,while:cur1);
dir1 ← (Q₁[cur0]);
emit cur0;
cur1 ← (cur0.x + dir1.x, cur0.y + dir1.y);
p1 ← (cur1 = goal0 OR dir1 IS NULL);
IF p1 THEN
GOTO exit;

ELSE
GOTO while;

exit:
RETURN;

Figure 4.3.:CFG for UDF marchwith
code blocks in SSA form.

Reminder
rec?: If column rec? is false,

the trampoline will stop
calculating and return.

call: Otherwise, column call
specifies the function to
execute next. When the
function is finished, it re-
turns a control row to
the trampoline with new
rec? and call values.

The recursive part of run in Lines 4 to 23 of Figure 4.5 implements
the dispatcher. Figure 4.4 depicts the central role of the dispatcher
trampoline and how it realizes the control flow for UDF march.

start

trampoline

while

emit cur

exit

¬ rec?

control

data

Figure 4.4.: Trampolined style.

The call column selects one function ∈ {while(), exit()} for eval-
uation. All functions must return a new control row with columns
"rec?" and call, so the dispatcher knows how to proceed in the next
iteration (see Lines 13, 16 and 21 of Figure 4.5). This process contin-
ues until a block returns a control row with column "rec?"=false
(see Line 21 of Figure 4.5). Theworking table in the next iterationwill
be empty, and WITH RECURSIVE evaluation stops. The trampolined-
style SQL query thus implements the control flow of the original
UDF march.

4.3. Data Flow Management

While scalar UDFS return a single value in the last trampoline iter-
ation, table-valued UDFS can return any number of values during
execution (see emit cur0 in Figure 4.3). The CTE of Figure 4.5 en-
codes these returned values in dedicated rows marked in Line 8
of Figure 4.5. Two columns manage this data flow:

data?∈ {true, false}: Column data? indicates if this row has a
valid return value in column res.

res: Contains this return value.

We call rows with column data?=true data rows. When a UDF uses
either RETURN NEXT or RETURN QUERY, such data rows are created in
addition to control rows.

Given the UDF of Figure 4.2a and assuming a call march((8,7)) ,
overall the recursive CTE computes table run as shown on the next
page. After the initialization, marked , each iteration (separated
by) can generate two types of rows, data rows and control rows.

42 4. Trampolined Style Manages Control, and Data Flow, Too

WHILE

EXIT

1 WITH RECURSIVE run("rec?","data?",call,res,cur) AS (
2 SELECT true AS "rec?", false AS "data?", 'while' AS call, NULL::vec2 AS res, start AS cur
3 UNION ALL -- recursive UNION ALL
4 SELECT result.*
5 FROM run,
6 LATERAL (SELECT if_p1.*
7 FROM (Q1[run.cur]) AS let_dir(dir),
8 LATERAL (SELECT NULL AS "rec?", true AS "data?", NULL AS call, run.cur AS res, NULL AS cur
9 UNION ALL
10 SELECT if_p2.*
11 FROM (SELECT ((run.cur).x + dir.x, (run.cur).y + dir.y) :: vec2) AS let_cur(cur),
12 LATERAL (SELECT let_cur.cur = start OR dir IS NULL) AS let_p1(p1),
13 LATERAL (SELECT true AS "rec?", false AS "data?", 'while' AS call, NULL AS res, let_cur.cur AS cur
14 WHERE NOT p1
15 UNION ALL
16 SELECT true AS "rec?", false AS "data?", 'exit' AS call, NULL AS res, NULL AS cur
17 WHERE p1) AS if_p2
18) AS if_p1
19 WHERE run.call = 'while'
20 UNION ALL
21 SELECT false AS "rec?", false AS "data?", NULL AS call, NULL AS res, NULL AS cur
22 WHERE run.call = 'exit') AS result
23 WHERE run."rec?")
24 SELECT run.res FROM run WHERE run."rec?" IS NULL AND run."data?";

Figure 4.5.: Final plain SQL code emitted for the table-valued PL/SQL UDF march of Figure 4.2a.

(In general, any number of data rows can be created in each itera-
tion.) Note how the last iteration indicates the end of execution via
(rec?,data?)=(false,false).

rec? data? call res cur
true false while NULL (8,7)
false true NULL (8,7) NULL
true false while NULL (9,7)
false true NULL (9,7) NULL

false true NULL (8,8) NULL
true false exit NULL (8,8)
false false NULL NULL NULL

Table run Recall that the original PL/SQL UDF has to materialize its table-
valued result during execution, and returns all of it as a whole. This
materialization prevents the surrounding execution plan from ter-
minating prematurely, for example, when a LIMIT clause is used:
SELECT * FROM march((8,7)) LIMIT 5 . After compilation, these result
values are immediately returned to the parent operator in terms
of data rows, without having to materialize the entire result. This
saves memory and reduces the runtime. In addition, important met-
rics such as CPU cost and cardinalities can be estimated more ac-
curately, making planning of the translation much more effective:
While PL/SQL UDFS are effectively a black box for the planner, the
translation is a regular SQL query that the planner is designed to
handle.

4.4. The Impact of Data Rows in Trampolined
Style SQL

Both UDFS, march and march-arr, indeed exhibit the infamous con-
text switching overhead that gives PL/SQL programming its bad
reputation. We have measured that the back and forth between
PL/SQL and SQL accounts for 20% of the overall evaluation time
for both variants (see Table 4.1). The compilation to recursive SQL
CTES described in [13, 15] avoids this particular overhead for the

[13]: Duta et al. (2020), ‘Compiling
PL/SQL Away’

[15]: Hirn et al. (2021), ‘One WITH
RECURSIVE is Worth Many GOTOs’

two UDFS.

However, the naive treatment of the iterative result array construc-
tion and copying in the CTE for the scalar UDF march-arr quickly
eats up all the gains: the quadratic array maintenance costs men-
tioned at the beginning of this chapter add up to about 50% of the

4.4. The Impact of Data Rows in Trampolined Style SQL 43

UDF Return Overhead Runtime Memory
Type

march-arr vec2[] 20% 112.8% (0.88×) 16MB
march SETOF vec2 20% 38.2% (2.61×) 110 kB

Table 4.1.: The context switching
overhead before and speedup as well
as working table size after compila-
tion.

overall CTE runtime. If we double the size of UDF input, the work-
ing table of the CTE for march-arr grows by a factor of four (from
16MB to 64MB) and the array maintenance overhead increases to
56%. Ultimately, this leads to a slowdown of march-arr after compila-
tion.

In stark contrast, the control- and data-flow-aware compilation strat-
egy sketched in Section 3.5, translates the table-valued UDF into
the recursive SQL CTE of Figure 4.5. Array construction and copy-
ing is avoided altogether and the working table size remains small:
doubling the UDF input size—and thus the number of iterations
performed—linearly grows the working table’s size from 110 kB to a
mere 220kB. Overall, compilation of UDF march leads to runtime
reduction of 62% (i.e., post-compilation the UDF runs about 2.6
times faster). In addition, materialization is entirely avoided: the
CTE of Figure 4.5 can stream the rows of the resulting table to the
downstream plan. This is a major advantage over the PL/SQL UDF
that materializes the entire result before returning it.

From PL/SQL to SQL: Behind
the Scenes 5.

Four syntactic transformations are part of the PL/SQL UDF com-
piler implementation. This chapter describes these transformations
in detail, using syntax-to-syntax mappings ↦𝒮, ↦𝒜, ↦𝒯, and ↦𝒬. We
have chosen to use inference rules to define these mappings according
to syntactic cases: the case (or consequence) below the line follows
if the antecedents above the line are satisfied. Read these rules in
order 1 , 2 , 3 , as shown in Figure 5.1.

2 antecedents

1 input ↦ 3 output
(EXAMPLE)

Figure 5.1.: Inference rule reading or-
der.

Throughout the inference rules, we will use color to highlight syn-
tax elements of the input language, color for the output language,
and color is used for SQL fragments.

5.1. From PL/SQL to SSA

The set of inference rules for compiling from PL/SQL to SSA con-
sists of ↦𝒮, and auxiliaries # and ↬. Compilation starts with the
top-level rule UDF, which takes a PL/SQLUDF as input and returns
a GOTO-based program. The subsequent rules map the body of the
PL/SQL UDF into a dictionary 𝑠 of blocks. These blocks contain
statements of the simple imperative GOTO-based form defined in Sec-
tion 3.3. Within the dictionary 𝑠, each block is identified by its label
𝜅. The core of these rules is the relation Γ ⊢ ⟨𝑐 | 𝜅1 | 𝑠1⟩ ↦𝒮 ⟨𝜅2 | 𝑠2⟩ ,
which defines the transformation of single PL/SQL statements 𝑐 into
a sequence of simple imperative statements. These simple statements
are appended to the statements in the block labeled 𝜅1. The old
label-to-block dictionary 𝑠1 is updated to 𝑠2 via 𝑠2 ≡ 𝑠1 +𝜅 [⟨statements⟩] ,
which creates block 𝜅1 in 𝑠2 if it does not already exist in 𝑠1. Once
𝑐 has been translated, subsequent statements are to be appended
to block 𝜅2. The auxiliary # uses the continuation block label 𝜅2
to compile entire sequences of PL/SQL statements (see Rules SEQ
and SEQ0).

𝜅init

𝜅head 𝜅end

𝜅loop

Figure 5.2.: Block labels produced
by auxiliary↬ for arbitrary looping
control flow.

Auxiliary ↬ (Rule ITER) is used to compile any form of iteration like
LOOP, WHILE, and FOR statements. For such statements, rule ↦𝒮 uses
auxiliary ↬ to translate the loop body, and to create the necessary
block labels which are returned as a quadruple (𝜅init, 𝜅head, 𝜅body, 𝜅end) .
Rules LOOP, WHILE, and FOR use these block labels to establish loop-
ing control flow as shown in Figure 5.2. This block arrangement sim-
plifies the compilation of PL/SQL’s CONTINUE and EXIT statements
in terms of the imperative statements GOTO 𝜅head and GOTO 𝜅end, re-
spectively (see Rules EXIT and CONT). Because PL/SQL loops can
be nested, all rules pass or maintain a stack Γ of ⟨𝜅head, 𝜅end⟩ , the
top entry of which refers to the current innermost loop.

The inference rules produce a program that is not yet in SSA form.
However, as already mentioned in Section 3.3, this is a straightfor-
ward process following standard algorithms [52, 54, 57]

[52]: Cytron et al. (1991), ‘Efficiently
Computing Static Single Assignment
Form and the Control Dependence
Graph’

[54]: Braun et al. (2013), ‘Simple and
Efficient Construction of Static Sin-
gle Assignment Form’

[57]: Appel (1998), ‘SSA is Functional
Programming’

. Since we
are aiming for crude SSA, this is even easier to achieve.

46 5. From PL/SQL to SQL: Behind the Scenes

Function Definition.

∅ ⊢ �𝑝 | start | []� ↦𝒮 ⟨𝜅1 | 𝑠1⟩ blocks ≡ �
𝜅∈𝑠1

𝜅: 𝜀 𝑠1[𝜅]

⊢
CREATE FUNCTION 𝑣(𝑣0 𝜏0,...,𝑣𝑛 𝜏𝑛)
RETURNS [SETOF] 𝜏𝑟 AS $$ 𝑝 $$
LANGUAGE PLPGSQL STABLE;

↦𝒮
fun 𝑣(𝑣0 𝜏0,...,𝑣𝑛 𝜏𝑛) : [SETOF] 𝜏𝑟 {
blocks

}

(UDF)

Γ ⊢ ⟨vars | 𝜅 | 𝑠⟩ # ⟨𝜅1 | 𝑠1⟩ Γ ⊢ ⟨stmts | 𝜅1 | 𝑠1⟩ # ⟨𝜅2 | 𝑠2⟩
Γ ⊢ ⟨DECLARE vars BEGIN stmts END | 𝜅 | 𝑠⟩ ↦𝒮 ⟨𝜅2 | 𝑠2⟩

(BODY)

Reminder
𝑓 ⩴ CREATE FUNCTION 𝑣(𝑣 𝜏)

RETURNS [SETOF] 𝜏 AS $$ 𝑝 $$
LANGUAGE PLPGSQL STABLE;

𝑝 ⩴ DECLARE 𝑑; BEGIN 𝑠; END
𝑑 ⩴ 𝑣 𝜏 | 𝑣 𝜏 ∶= 𝑎 | 𝑑; 𝑑
𝑠 ⩴ 𝑣 ∶= 𝑎

| IF 𝑎 THEN 𝑠; [ELSE 𝑠;] END IF
| LOOP 𝑠; END LOOP
| WHILE 𝑎 LOOP 𝑠; END LOOP
| FOR 𝑣 IN 𝑎..𝑎 LOOP 𝑠; END LOOP
| EXIT | CONTINUE | RETURN 𝑎
| RETURN NEXT 𝑎 | RETURN QUERY 𝑎
| 𝑠; 𝑠

𝑎 ⩴ SQL query [𝑣]
𝑣 ⩴ ⟨identifier⟩
𝜏 ⩴ ⟨scalar SQL type⟩

𝑓 ⩴ fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏 {𝑏}
𝑏 ⩴ 𝜅 : 𝑝 𝑠;
𝑝 ⩴ 𝑣: 𝜏 ← ϕ(𝜅 ∶ 𝑣); 𝑝

| 𝜀
𝑠 ⩴ 𝑣 ← 𝑎

| IF 𝑣 THEN 𝑡 ELSE 𝑡
| 𝑡
| EMIT 𝑎
| 𝑠; 𝑠

𝑡 ⩴ GOTO 𝜅
| RETURN 𝑎

𝑎 ⩴ SQL query [𝑣]
𝑣 ⩴ ⟨identifier⟩
𝜏 ⩴ ⟨scalar SQL type⟩
𝜅 ⩴ ⟨block label⟩

Statement Sequences.

Γ ⊢ ⟨stmt | 𝜅 | 𝑠⟩ ↦𝒮 ⟨𝜅1 | 𝑠1⟩ Γ ⊢ ⟨stmts | 𝜅1 | 𝑠1⟩ # ⟨𝜅2 | 𝑠2⟩
Γ ⊢ ⟨stmt;stmts | 𝜅 | 𝑠⟩ # ⟨𝜅2 | 𝑠2⟩

(SEQ)

Γ ⊢ ⟨𝜀 | 𝜅 | 𝑠⟩ # ⟨𝜅 | 𝑠⟩
(SEQ0)

Statements.

𝑠1 ≡ 𝑠 +𝜅 [𝑣 ← 𝑞;]
Γ ⊢ �𝑣 𝜏 := 𝑞 | 𝜅 | 𝑠� ↦𝒮 ⟨𝜅 | 𝑠1⟩

(DECL)

𝑠1 ≡ 𝑠 +𝜅 [𝑣 ←(SELECT NULL);]
Γ ⊢ ⟨𝑣 𝜏 | 𝜅 | 𝑠⟩ ↦𝒮 ⟨𝜅 | 𝑠1⟩

(DECL0)

𝑠1 ≡ 𝑠 +𝜅 [𝑣 ← 𝑞;]
Γ ⊢ �𝑣 := 𝑞 | 𝜅 | 𝑠� ↦𝒮 ⟨𝜅 | 𝑠1⟩

(ASSIGN)

Loops.

𝜅init, 𝜅head, 𝜅body, 𝜅end ≡ new block labels
Γ, ⟨𝜅head, 𝜅end⟩ ⊢ ⟨stmts | 𝜅body | 𝑠⟩ # ⟨𝜅1 | 𝑠1⟩ 𝑠2 ≡ 𝑠1 +𝜅 [GOTO 𝜅init;]

Γ ⊢ ⟨stmts | 𝜅 | 𝑠⟩ ↬ ��𝜅init, 𝜅head, 𝜅body, 𝜅end� � 𝜅1 � 𝑠2�
(ITER)

Γ ⊢ ⟨stmts | 𝜅 | 𝑠⟩ ↬ ��𝜅init, 𝜅head, 𝜅body, 𝜅end� � 𝜅1 � 𝑠1�
𝑠2 ≡ 𝑠1 +𝜅init [GOTO 𝜅head;] +𝜅head [GOTO 𝜅body;] +𝜅1 [GOTO 𝜅head;]

Γ ⊢ ⟨LOOP stmts; END LOOP | 𝜅 | 𝑠⟩ ↦𝒮 ⟨𝜅end | 𝑠2⟩
(LOOP)

Γ ⊢ ⟨stmts | 𝜅 | 𝑠⟩ ↬ ��𝜅init, 𝜅head, 𝜅body, 𝜅end� � 𝜅1 � 𝑠1� 𝑝 ≡ new var
𝑏 ≡ [𝑝 ← 𝑞;, IF 𝑝 THEN GOTO 𝜅body ELSE GOTO 𝜅end;]
𝑠2 ≡ 𝑠1 +𝜅init [GOTO 𝜅head;] +𝜅head 𝑏 +𝜅1 [GOTO 𝜅head;]

Γ ⊢ �WHILE 𝑞 LOOP stmts; END LOOP | 𝜅 | 𝑠� ↦𝒮 ⟨𝜅end | 𝑠2⟩
(WHILE)

5.2. From SSA to ANF 47

Γ ⊢ ⟨stmts | 𝜅 | 𝑠⟩ ↬ ��𝜅init, 𝜅head, 𝜅body, 𝜅end� � 𝜅1 � 𝑠1� 𝑝, 𝑣1 ≡ new vars
𝑏0 ≡ [𝑣 ← 𝑞0;, GOTO 𝜅head;]

𝑏1 ≡ [𝑣1 ← 𝑞1;, 𝑝 ← 𝑣<=𝑣1;, IF 𝑝 THEN GOTO 𝜅body ELSE GOTO 𝜅end;]
𝑠2 ≡ 𝑠1 +𝜅init 𝑏0 +𝜅head 𝑏1 +𝜅1 [𝑣 ← 𝑣 + 1;, GOTO 𝜅head;]

Γ ⊢ �FOR 𝑣 IN 𝑞0..𝑞1 LOOP stmts; END LOOP | 𝜅 | 𝑠� ↦𝒮 ⟨𝜅end | 𝑠2⟩
(FOR)

𝑠1 ≡ 𝑠 +𝜅 [GOTO 𝜅end;]
Γ, ⟨𝜅head, 𝜅end⟩ ⊢ ⟨EXIT | 𝜅 | 𝑠⟩ ↦𝒮 ⟨𝜅 | 𝑠1⟩

(EXIT)

𝑠1 ≡ 𝑠 +𝜅 [GOTO 𝜅head;]
Γ, ⟨𝜅head, 𝜅end⟩ ⊢ ⟨CONTINUE | 𝜅 | 𝑠⟩ ↦𝒮 ⟨𝜅 | 𝑠1⟩

(CONT)

Linear Control Flow.

𝜅then, 𝜅else, 𝜅meet ≡ new block labels 𝑝 ≡ new var
Γ ⊢ ⟨stmts1 | 𝜅then | 𝑠⟩ # ⟨𝜅1 | 𝑠1⟩ Γ ⊢ ⟨stmts2 | 𝜅else | 𝑠1⟩ # ⟨𝜅2 | 𝑠2⟩

𝑏 ≡ [𝑝 ← 𝑞;, IF 𝑝 THEN GOTO 𝜅then ELSE GOTO 𝜅else;]
𝑠3 ≡ 𝑠2 +𝜅 𝑏 +𝜅1 [GOTO 𝜅meet;] +𝜅2 [GOTO 𝜅meet;]

Γ ⊢ �IF 𝑞 THEN stmts1; ELSE stmts2; END IF | 𝜅 | 𝑠� ↦𝒮 ⟨𝜅meet | 𝑠3⟩
(IFELSE)

Γ ⊢ �IF 𝑞 THEN stmts; ELSE 𝜀 END IF | 𝜅 | 𝑠� ↦𝒮 ⟨𝜅1 | 𝑠1⟩
Γ ⊢ �IF 𝑞 THEN stmts; END IF | 𝜅 | 𝑠� ↦𝒮 ⟨𝜅1 | 𝑠1⟩

(IF)

𝑠1 ≡ 𝑠 +𝜅 [RETURN 𝑞;]
Γ ⊢ �RETURN 𝑞 | 𝜅 | 𝑠� ↦𝒮 ⟨𝜅 | 𝑠1⟩

(RETURN)

5.2. From SSA to ANF

This set of inference rules is an adaptation of thework ofChakravarty,
Keller, and Zadarnowski published in [9]. Since we know that the

[9]: Chakravarty et al. (2004), ‘A func-
tional perspective on SSA optimisa-
tion algorithms’

input is always in crude SSA, we can specialize the algorithm to our
grammar and thus simplify it. Rules↦𝒜 and auxiliary⤇𝒜 implement
all necessary translations. The translation is mostly straightforward.
However, GOTO statements require that we first create a data structure
that we can use to store argument lists for translated GOTOs. Auxil-
iary ⤇𝒜 traverses all ϕ-functions of all blocks, and collects a set of
triples (⟨from 𝜅⟩, ⟨to 𝜅⟩, ⟨[arguments]⟩) . During translation, a lookup
in this data structure suffices to determine the function call argu-
ments. For the example in Figure 5.3, ⤇𝒜 constructs the following
set: {𝜅1, 𝜅1, [𝑐1, ... , 𝑐𝑛]} . This information is then used in Rule GOTO
to compile GOTO 𝜅1 to 𝜅1(𝑐1,...,𝑐𝑛).

1 fun 𝑣(𝑣 𝜏,...,𝑣 𝜏) : 𝜏 {
2 𝜅1:
3 𝑣1:𝜏1 ← ϕ(...,𝜅1:𝑐1,...);
4 ⋮

5 𝑣𝑛:𝜏𝑛 ← ϕ(...,𝜅𝑛:𝑐𝑛,...);
6 ⋮

7 GOTO 𝜅1;
8 }

1 fun 𝑣(𝑣 𝜏,...,𝑣 𝜏) : 𝜏 {
2 𝜅1(𝑣1: 𝜏1 ,..., 𝑣𝑛: 𝜏𝑛):
3 ⋮

4 𝜅1(𝑐1 ,..., 𝑐𝑛);
5 }

Figure 5.3.: The top code is in SSA
form, the bottom code is in ANF
form.

The second auxiliary ⇛𝒜 (Rules PHI and PHI EMPTY) traverses the
ϕ-functions of one block and collects the names 𝑣 and types 𝜏. This in-
formation is then used to create the parameter list of function 𝜅(ps).
See Figure 5.3 for an example. Auxiliary ⇛𝒜 extracts 𝑣1:𝜏1 ,...,𝑣𝑛:𝜏𝑛
to create function signature 𝜅1(𝑣1:𝜏1,...,𝑣𝑛:𝜏𝑛).

48 5. From PL/SQL to SQL: Behind the Scenes

The Translation Function.

⊢ ⟨𝜅𝑖: b𝑖 | ∅⟩ ⤇𝒜 𝑉𝑖 �𝑖=0...𝑛 𝑉 ≡ �
𝑖=0...𝑛

𝑉𝑖

𝑉 ⊢ b𝑖 ↦𝑏 f𝑖 |𝑖=0...𝑛

fun 𝑣(𝑣 𝜏) : 𝜏
{ 𝜅0: b0;...;𝜅n: bn }

↦𝒜
fun 𝑣(𝑣 𝜏) : 𝜏
{ f0 ... fn }

(FUNCTION)

Reminder
𝑓 ⩴ fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏 {𝑏}
𝑏 ⩴ 𝜅 : 𝑝 𝑠;
𝑝 ⩴ 𝑣: 𝜏 ← ϕ(𝜅 ∶ 𝑣); 𝑝

| 𝜀
𝑠 ⩴ 𝑣 ← 𝑎

| IF 𝑣 THEN 𝑡 ELSE 𝑡
| 𝑡
| EMIT 𝑎
| 𝑠; 𝑠

𝑡 ⩴ GOTO 𝜅
| RETURN 𝑎

𝑎 ⩴ SQL query [𝑣]
𝑣 ⩴ ⟨identifier⟩
𝜏 ⩴ ⟨scalar SQL type⟩
𝜅 ⩴ ⟨block label⟩

𝑝 ⩴ fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏 {𝑓}
𝑓 ⩴ 𝑣(𝑣 𝜏) ∶ 𝜏 = 𝑒
𝑒 ⩴ 𝑎

| 𝑣(𝑎)
| IF 𝑣 THEN 𝑒 ELSE 𝑒
| LET 𝑣 = 𝑎 IN 𝑒
| EMIT 𝑎; 𝑒

𝑎 ⩴ SQL query [𝑣]
𝑣 ⩴ ⟨identifier⟩
𝜏 ⩴ ⟨scalar SQL type⟩

Convert a Block Into a Function.

⟨Γ, 𝜅⟩ ⊢ 𝑝 ⇛𝒜 ps ⟨Γ, 𝜅⟩ ⊢ 𝑠 ↦𝒜 𝑠1
Γ ⊢ 𝜅: 𝑝 𝑠; ↦𝑏 𝜅(ps) = 𝑠1

(BLOCK)

Convert SSA Statements Into ANF Expressions.

Γ ⊢ 𝑠 ↦𝒜 𝑠1
Γ ⊢ 𝑣 ← 𝑎; 𝑠 ↦𝒜 LET 𝑣 = 𝑎 IN 𝑠1

(ASSIGN)

Γ ⊢ 𝑡0 ↦𝒜 𝑒0 Γ ⊢ 𝑡1 ↦𝒜 𝑒1
Γ ⊢ IF 𝑣 THEN 𝑡0 ELSE 𝑡1 ↦𝒜 IF 𝑣 THEN 𝑒0 ELSE 𝑒1

(IF)

Γ ⊢ 𝑠 ↦𝒜 𝑠0
Γ ⊢ EMIT 𝑎; 𝑠 ↦𝒜 EMIT 𝑎; 𝑠0

(EMIT)

Convert Block Terminals Into ANF Expressions.

𝑝 ≡ {𝑣 | (𝜅₀, 𝜅₁, 𝑣)∈Γ ∧ 𝜅₀ = 𝜅𝑡 ∧ 𝜅₁ = 𝜅}
⟨Γ, 𝜅𝑡⟩ ⊢ GOTO 𝜅 ↦𝒜 𝜅(𝑝)

(GOTO)

Γ ⊢ RETURN 𝑎 ↦𝒜 𝑎
(RETURN)

Find Function Parameters Based on ϕ Functions.

Γ ⊢ 𝑝 ⇛𝒜 𝑒
Γ ⊢ 𝑣: 𝜏 ← ϕ(…); 𝑝 ⇛𝒜 𝑣: 𝜏 ⊎ 𝑒

(PHI)

Γ ⊢ 𝜀 ⇛𝒜 ∅
(PHI EMPTY)

Prepare Argument Lists for Translated GOTOs.

pred ≡ {(𝜅, 𝜅0, 𝑣) | 𝜅0 ∶ 𝑣∈𝑃} Γ ⊢ �𝜅 | 𝑝 | 𝑉 ⊎ pred� ⤇𝒜 𝑝0
Γ ⊢ �𝜅 | 𝑣 ← ϕ(𝑃)); 𝑝 | 𝑉� ⤇𝒜 𝑝0

(CALLEE)

g ≡ ��𝜅, 𝜅₀, �𝑣 � (𝜅₁, 𝜅₂, 𝑣) ∈𝑉 ∧ 𝜅 = 𝜅₁ ∧ 𝜅₀ = 𝜅₂�� � (𝜅, 𝜅₀, 𝑣₀)∈𝑉�

Γ ⊢ ⟨𝜅 | 𝜀 | 𝑉⟩ ⤇𝒜 g
(CALLEE EMPTY)

5.3. From ANF to Trampolined Style ANF 49

5.3. From ANF to Trampolined Style ANF

This set of inference rules ↦𝒯 transforms the ANF input program
into trampolined-style ANF. The top-level function signature re-
mains the same. The mutually recursive function family f0 ... fn is
eliminated in this process (see Rule FUNCTION). Only the start and
trampoline functions remain. The start function is the entry point
of the program. It calls the trampoline with the initial arguments.
The trampoline function is responsible for dispatching the execu-
tion to the correct function based on the function label argument.

Rules TRAMPOLINE and RETURN transform every call to a function
f0 ... fn, and every return of a value into a call to the now central
trampoline. There are no structural changes to the other syntax
elements (see Rules IFELSE, LET, and EMIT).

Reminder
𝑝 ⩴ fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏 {𝑓}
𝑓 ⩴ 𝑣(𝑣 𝜏) ∶ 𝜏 = 𝑒
𝑒 ⩴ 𝑎

| 𝑣(𝑎)
| IF 𝑣 THEN 𝑒 ELSE 𝑒
| LET 𝑣 = 𝑎 IN 𝑒
| EMIT 𝑎; 𝑒

𝑎 ⩴ SQL query [𝑣]
𝑣 ⩴ ⟨identifier⟩
𝜏 ⩴ ⟨scalar SQL type⟩

𝑝 ⩴ fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏 {𝑓 [𝑓]}
𝑓 ⩴ 𝑣(𝑣 𝜏) ∶ 𝜏 = 𝑒
𝑒 ⩴ 𝑎

| trampoline(𝑎)
| IF 𝑣 THEN 𝑒 ELSE 𝑒
| LET 𝑣 = 𝑎 IN 𝑒
| EMIT 𝑎; 𝑒
| CASE 𝑣 OF '𝑣' ∶ 𝑒

𝑎 ⩴ SQL query [𝑣]
𝑣 ⩴ ⟨identifier⟩
𝜏 ⩴ ⟨scalar SQL type⟩
𝑡 ⩴ start | trampoline

The Translation Rules.

fi ↦𝒯 𝑏i|𝑖=0...𝑛 fstart ≡ start(𝑣 𝜏) : 𝜏 = 𝑏0
params ≡ "rec?" BOOL, call TEXT, res 𝜏, "data?" BOOL, 𝑣 𝜏

ftramp ≡

trampoline(params) : 𝜏 =
IF NOT "rec?" THEN
res

ELSE
CASE call OF
'f1': 𝑏1
⋮

'fn': 𝑏n

fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏
{ f0 ... fn }

↦𝒯
fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏
{ fstart ftramp }

(FUNCTION)

Trampoline Calls and Returns.

𝑣(𝑎) ↦𝒯 trampoline(true,'𝑣', NULL,false, 𝑎)
(TRAMPOLINE)

𝑎 ↦𝒯 trampoline(false,NULL, 𝑎,true, NULL)
(RETURN)

Other ANF Expressions.

𝑒1 ↦𝒯 𝑡1 𝑒2 ↦𝒯 𝑡2
IF 𝑣 THEN 𝑒1 ELSE 𝑒2 ↦𝒯 IF 𝑣 THEN 𝑡1 ELSE 𝑡2

(IFELSE)

𝑒 ↦𝒯 𝑡
LET 𝑣 = 𝑎 IN 𝑒 ↦𝒯 LET 𝑣 = 𝑎 IN 𝑡

(LET)

𝑒 ↦𝒯 𝑡
EMIT 𝑎; 𝑒 ↦𝒯 EMIT 𝑎; 𝑡

(EMIT)

50 5. From PL/SQL to SQL: Behind the Scenes

5.4. From Trampolined Style ANF to SQL

The last set of inference rules ↦𝒬 transforms programs in trampo-
lined style ANF to the final SQL query. The top-level Rule NONREC is
used for linear, non-looping programs. In this case, there is no need
for a trampoline and therefore no need for a recursive CTE. Other-
wise, Rule REC instantiates the WITH RECURSIVE-based template for
trampolined-style programs.

We use 𝑒𝑖 ↦𝒬 (𝑞𝑖, 𝑡𝑖) to translate expression 𝑒𝑖 into a list of SQL tables
𝑞𝑖. Each of these tables can be referenced by its unique row variable
𝑡𝑖. To read the value of 𝑒𝑖, we can simply use SELECT 𝑡𝑖.* FROM 𝑞𝑖 .

▶ Rule EMBED handles blackboxed subexpressions Q [𝑣1, ... , 𝑣𝑛].
Such subexpressions may include variable references, entire
SQL queries, or the use of built-in functions and operators.
The rule substitutes the free variables in Q with the appro-
priate parameters 𝑣1, ... , 𝑣𝑛. The resulting SQL expression is
wrapped in a simple SELECT to ensure proper behavior with
empty results. In this case, (SELECT q) ensures that the empty
result is converted to a NULL value. This is important because
this expression is used as part of a join in the FROM clause of the
final translation. Since we are using simple LATERAL joins to
chain these expressions, a single empty result means that the
entire join would be empty. This would cause the execution to
terminate prematurely.

▶ Rule CALL handles all trampoline interactions, and generally
produces a control row that encodes how to proceed. The
control row contains the function label 𝑙, and the arguments
𝑎1, ... , 𝑎𝑛. This row is then returned to the trampoline which
then uses this information to dispatch the execution to the
correct function. The control row is also used to determine
whether the execution should terminate.

▶ Rule LET translates all variable bindings LET 𝑣 = 𝑎 IN 𝑒 . To
map this semantics to SQL, the expression 𝑎 must first be
evaluated and its value bound to 𝑣, then the expression 𝑒 is
evaluated. A LATERAL join is perfectly in line with this evalua-
tion semantics [38, 65]. Nested LETs and SQL’s row variable

[38]: SQL:1999 Standard. Database
Languages–SQL–Part 2: Foundation

[65]: Galindo-Legaria et al. (2001),
‘Orthogonal Optimization of Sub-
queries and Aggregation’

visibility coincide. That is, whatever is bound to the left of
LATERAL is visible to the right.

▶ RuleCOND compiles IF 𝑣 THEN 𝑒 ELSE 𝑒 conditionals in terms
of SQL’s UNION ALL clause. The WHERE predicates 𝑝𝑖 are inde-
pendent of their respective query blocks 𝑏𝑖. This is important
because it allows us to use SQL’s RESULT operator to imple-
ment lazy evaluation of conditionals (see Paragraph Multi-way
Conditionals).

▶ Rule EMIT is used for table-valued UDFS. This rule constructs
a data row for the emitted value 𝑎, which is returned to the
trampoline in addition to the control row. Again, we use SQL’s
UNION ALL clause to combine these rows into one result. This
is possible because the control row and the data row have the
same schema.

5.4. From Trampolined Style ANF to SQL 51

Multi-way Conditionals. Rules COND and CASE compile conditional
statements into SQL. These rules use a stack of 𝑛 − 1 UNION ALLs to
implement the case distinction between query blocks 𝑏1, ... , 𝑏𝑛. These
query blocks contain mutually exclusive WHERE predicates 𝑝𝑖 that are
independent of their block. See Rule CASE, for example. Here, predi-
cates WHERE call='𝑣𝑖' do not depend on values produced by 𝑏𝑖. For
POSTGRESQL, this translates to the physical plan in Figure 5.4. The
RESULT operator evaluates the one-time filter 𝑝𝑖 once before processing
the subplan for block 𝑏𝑖 [33]. If the predicate 𝑝𝑖 is evaluated to be

[33]: POSTGRESQL 15 Documentation
false, then the plan for 𝑏𝑖 will never be executed. This execution
behavior exactly implements the expected laziness of IF ELSE or
CASE OF conditionals. We have found this to be a compositional
and performant translation of conditionals on POSTGRESQL. Other
RDBMSs implement similar operator configurations and runtime
behavior. For example, in ORACLE [67], a UNION ALL/FILTER pair

[67]: Oracle Database PL/SQL Lan-
guage Reference 21censures that either 𝑏1 or 𝑏2 is evaluated.

APPEND

RESULT[𝑝1]

⟨plan for 𝑏1⟩

RESULT[𝑝2]

⟨plan for 𝑏2⟩

Figure 5.4.: Physical plan on POST-
GRESQL for conditionals.

However, there are exceptions. DUCKDB [68], for example, imple-

[68]: Raasveldt et al. (2019), ‘DuckDB:
an Embeddable Analytical Database’

ments a push-based execution model, not a pull-based one. In short,
this means that execution is bottom-up, not top-down as is the case
in systems using the volcano iterator model. Therefore, in such sys-
tems, the plans for 𝑏1 and 𝑏2 are evaluated before a FILTER or RESULT
node can prevent execution. As a result, the execution is not lazy.
Local changes to the emitted SQL code by ↦𝒬 should be able to
accommodate the specifics of a wide range of RDBMS targets. For
example, instead of using the predicated UNION ALL branches, it may
be sufficient to use CASE WHEN expressions to get lazy execution of
conditionals.

To SQL Rules.

𝑒start ↦𝒬 �𝑞start | 𝑡�

fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏
{ fstart(𝑣 𝜏) : 𝜏1 = 𝑒start }

↦𝒬

CREATE FUNCTION 𝑣(𝑣 𝜏) RETURNS [SETOF] 𝜏 AS $$
SELECT 𝑡.* FROM 𝑞start

$$ LANGUAGE SQL;

(NONREC)

𝑒start ↦𝒬 ⟨𝑞start | 𝑡start⟩ 𝑒tramp ↦𝒬 ⟨𝑞tramp | 𝑡tramp⟩

fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏
{ fstart(𝑣 𝜏) : 𝜏1 = 𝑒start
ftramp(𝑣 𝜏) : 𝜏2 = 𝑒tramp }

↦𝒬

CREATE FUNCTION 𝑣(𝑣 𝜏) RETURNS [SETOF] 𝜏 AS $$
WITH RECURSIVE run("rec?", call, res, "data?", 𝑣 𝜏) AS (
SELECT 𝑡start.* FROM 𝑞start
UNION ALL -- recursive UNION

SELECT 𝑡tramp.* FROM run, LATERAL 𝑞tramp
WHERE run."rec?"

) SELECT run.res FROM run WHERE NOT run."rec?" AND
run."data?"

$$ LANGUAGE SQL;

(REC)

Trampoline Call to SQL Row.

𝑡 ≡ fresh row var
𝑞 ≡ (SELECT 𝑎1,...,𝑎𝑛) AS 𝑡
trampoline(𝑎) ↦𝒬 �𝑞 | 𝑡�

(CALL)

52 5. From PL/SQL to SQL: Behind the Scenes

Other Trampolined ANF Expressions.

𝑎 ↦𝒬 �𝑞1 | 𝑡1� 𝑒 ↦𝒬 �𝑞2 | 𝑡2�

LET 𝑣 = 𝑎 IN 𝑒 ↦𝒬 �𝑞1, LATERAL 𝑞2 | 𝑡2�
(LET)

𝑎 ↦𝒬 �𝑞1 | 𝑡1� 𝑒 ↦𝒬 �𝑞2 | 𝑡2�

𝑞1 ≡ (WITH 𝑡1(𝑣) AS MATERIALIZED
(SELECT 𝑞1 AS 𝑡1(𝑣))) SELECT * FROM 𝑡1(𝑣)

LET 𝑣 = 𝑎 IN 𝑒 ↦𝒬 �𝑞1, LATERAL 𝑞2 | 𝑡2�
(LETMAT)

𝑡 ≡ fresh row var 𝑒1 ↦𝒬 �𝑞1 | 𝑡1� 𝑒2 ↦𝒬 �𝑞2 | 𝑡2�
𝑏1 ≡ SELECT 𝑡1.* FROM 𝑞1 WHERE 𝑣

𝑏2 ≡ SELECT 𝑡2.* FROM 𝑞2 WHERE NOT 𝑣
IF 𝑣 THEN 𝑒1 ELSE 𝑒2 ↦𝒬 ⟨(𝑏1 UNION ALL 𝑏2) AS 𝑡 | 𝑡⟩

(COND)

𝑡 ≡ fresh row var 𝑒𝑖 ↦𝒬 ⟨𝑏𝑖 | 𝑡𝑖⟩�𝑖=1..𝑛

𝑞 ≡

(SELECT 𝑡1.* FROM 𝑏1 WHERE call='𝑣1'
UNION ALL
⋮

UNION ALL
SELECT 𝑡𝑛.* FROM 𝑏𝑛 WHERE call='𝑣𝑛') AS 𝑡

CASE 𝑣 OF 𝑣 ∶ 𝑒 ↦𝒬 �(𝑞) AS 𝑡 | 𝑡�
(CASE)

𝑡 ≡ fresh row var 𝑎 ↦𝒬 �𝑞1 | 𝑡1� 𝑒 ↦𝒬 �𝑞2 | 𝑡2�
𝑏1 ≡ SELECT false,NULL,v,true,NULL FROM (𝑞1) AS v

𝑏2 ≡ SELECT 𝑡2.* FROM 𝑞2
EMIT 𝑎; 𝑒 ↦𝒬 ⟨(𝑏1 UNION ALL 𝑏2) AS 𝑡 | 𝑡⟩

(EMIT)

𝑡 ≡ fresh row var
𝑞 ≡ apply substitution of the 𝑛 parameters in Q

Q [𝑣1, ... , 𝑣𝑛] ↦𝒬 �(SELECT 𝑞) AS 𝑡 | 𝑡�
(EMBED)

Experiments 6.
The deliberately simple PL/SQL UDF route as introduced in Sec-
tion 2.4 only uses a single embedded SQL query Q1 . However, it did
highlight the challenges associated with repeated route↔Q1 context
switching. The situation gets worse as we increase the complexity
of the UDF. This chapter examines 18 PL/SQL UDFS, ranging in
complexity from low to extremely high, and quantifies the runtime
and memory impact that compiling to plain SQL can have on these
UDFS. We also compare the performance of different POSTGRESQL
versions to see if the problems with PL/PGSQL have remained the
same or not. We also measure if the compilation to SQL has im-
proved between POSTGRESQL versions. All of the following measure-
ments have been performed on a 64-bit Linux x86 host (two AMD
EPYC™ 7402 CPUs at 2.8GHz and 2TB of RAM). If not stated
otherwise, the timings were averaged over five runs, ignoring the
worst and best times.

6.1. Compiling a Collection of UDFS

Table 6.1 lists 18 UDFS that we use to measure the impact of the
translation. Some of these UDFS are created based on the TPC-H
benchmark, others are taken from the literature (mostly from the
FROID paper), and some are our own creations. The UDFS imple-
ment a variety of algorithms—such as 2D/3D geometry routines,
simulation of VMs and spreadsheets, or optimization problems over
TPC-H data—on a multitude of built-in and user-defined data types
(see column Return Type). We attempt to characterize the UDFS in
terms of code size and loop nestingwith columns LOC (lines of code),
|Q𝑖| (number of non-fast-path embedded SQL queries), and Loop
constructs. Note that the number of loops determines the size of the
ANF function family: ray consists of four loops (nested inside
each other), resulting in the functions start(), 𝑓1(), ... , 𝑓4() after
the ANF conversion. TheUDFS service and ship contain branching
control flow, but do not iterate at all. Their ANF conversion results
in a single start() function, a case covered by Rule NONREC in Sec-
tion 5.4. No trampoline or recursive CTE is generated. Froid [27]

[27]: Ramachandra et al. (2018),
‘Froid: Optimization of Imperative
Programs in a Relational Database’

would output similar SQL code for these two UDFS. We will take a
closer look at Froid in Chapter 7. CC (cyclomatic complexity) counts
the number of independent control flow paths [69] through the

[69]: McCabe (1976), ‘A Complexity
Measure’

PL/SQL UDFS and constitutes a measure of control flow complex-
ity (LOC and CC for route are 22 and 3, respectively).

Compilation of UDFS from PL/PGSQL to SQL is based on the hy-
pothesis that we can save context switching effort byworking entirely
on the SQL side of the fence. Column Q→f+f→Q𝑖 overhead quantifies
this effort, which may even exceed the time invested in the actual
UDF evaluation. For example, UDF sight wastes 69.8% of its run-
time on overhead, instead of actual useful work. This overhead can
be completely eliminated by compiling to pure SQL queries. This

54 6. Experiments

Table 6.1.: A collection of PL/SQL UDFS with context switching overhead before and speedup after compilation to SQL.

UDF Return |Q𝑖| LOC Loop CC Q→f+f→Q𝑖 Runtime (speedup) Trampoline
type constructs overhead after compilation transitions

bbox detect bounding box of a 2D object box 2 41 1 5 32.5% 60.76% (1.65×) 1157
force 𝑛-body simulation (Barnes-Hut quad tree) point 3 43 1 5 52.7% 51.72% (1.93×) 263
global does TPC-H order ship intercontinentally? boolean 1 20 1 3 32.8% 69.60% (1.44×) 9
items count items in hierarchy (adapted from [70]) int 2 27 1 2 56.2% 32.97% (3.03×) 4097
late find delayed orders (transcribed TPC-H 𝑄21) boolean 1 25 1 4 34.3% 86.25% (1.16×) 9

march track border of 2D object (Marching Squares) point[] 2 40 1 5 30.5% 72.41% (1.38×) 4568
margin buy/sell TPC-H orders to maximize margin row 3 57 1 5 15.6% 83.68% (1.19×) 59
markov Markov-chain based robot control int 3 44 1 3 15.9% 86.89% (1.15×) 1026
packing pack TPC-H lineitems tightly into containers int[][] 3 82 3 9 45.6% 72.94% (1.37×) 312
savings optimize supply chain of a TPC-H order row 6 66 1 4 42.0% 46.38% (2.16×) 9
sched schedule production of TPC-H lineitems row array 5 77 2 6 31.8% 77.66% (1.29×) 33

service determine service level (taken from [71]) text 1 22 0 ∅ 3 28.1% 61.70% (1.62×) 0
ship customer’s preferred shipping mode text 3 34 0 ∅ 3 16.7% 76.73% (1.30×) 0

sight compute polygon seen by point light source polygon 3 49 2 3 69.8% 69.13% (1.45×) 662
visible derive visibility in a 3D hilly landscape boolean 2 57 1 3 42.8% 57.32% (1.74×) 258

vm execute program on a simple virtual machine numeric 1 28 1 17 39.9% 77.46% (1.29×) 7166

ray complete PL/SQL ray tracer (adapted from [72]) int[] 5 230 4 25 22.6% 829.37% (0.12×) 59642
sheet evaluate inter-dependent spreadsheet formulæ float 9 117 4 19 27.3% 186.33% (0.54×) 2811

may improve performance beyond that: for example, POSTGRESQL
used 56.2% of the execution time for PL/PGSQL UDF items for
context switching, but the function runs 3.03 times faster after com-
pilation, see column Runtime (speedup) after compilation. This is
exactly what the compilation is supposed to improve. The geometric

The full definitions of the UDFS in
Table 6.1 are given in Appendix A. mean speedup of all UDFS except sheet and ray is 51.45%.

However, compiling is not always advantageous. For example, UDFS
ray and sheet show a slowdown after compilation. We included
these UDFS primarily to demonstrate that the techniques of Chap-
ter 3 scale to super-complex control flows. Such UDFS are rarely
found in practice, and stretch the idea of computation close to the
data. Performance suffers due to (1) the construction of large inter-
mediate data structures, e.g., arrays of 1800+ pixels in the case of ray,
(2) extensive sets of live variables (44 for ray), and (3) complex
control flow that leads to a high number of transitions through the
trampoline (Column Trampoline transitions). While (1) and (2) af-
fect the width, (3) determines the cardinality of the UNION table built
by the recursive CTE. However, if we can keep the resulting memory
pressure on the system’s buffer cache down, things look considerably
better even for these super-complex UDFS (see Section 6.3).

Reminder

1 u ← q₁
2 w ← u
3
4 LOOP
5 i ← q∞(w)
6 IF i = ∅ THEN BREAK
7 u ← u ⊎ i
8 w ← i
9 RETURN u

Figure 6.1.: Semi-naive operational
semantics for recursive CTES.

In general, it is very important to minimize transitions through
the trampoline. The semi-naive evaluation strategy used in WITH
RECURSIVE queries (recall Section 3.1) requires copying the rows
produced by the previous iteration to the working table of the next
iteration. When WITH RECURSIVE needs to perform fewer iterations,
this results in fewer rows appended to the resulting UNION table.
This emphasizes the importance of optimizations that reduce the
size of the ANF function family. Function inlining removes function
calls that are passed through the trampoline(). For UDF packing,
this optimization reduces the number of ANF functions from 6 to
3, which as a result reduces the transitions through trampoline()
from 608 to 312. Also, the UNION table shrinks from 103kB to 52 kB.
Function inlining can also reduce the number of live variables, which
in turn reduces the working table size.

6.1. Compiling a Collection of UDFS 55

67
9

119
16

203
28

327
44

460
60

848
114

1272
173

1953
267

(all)
(plan)

#embedded SQL eval.s (force→Q𝑖)

4

8

16

32

64

128

256

512

1024

2048

4096

8192

#
in
vo

ca
tio

ns
(Q
→
fo
rc
e)

49 49 52 56 47 48 51 56 62 70 79 89
50 50 52 56 47 48 51 56 62 70 79 89
52 50 53 56 47 48 51 56 62 71 79 89
54 52 54 57 47 49 51 56 62 70 78 88
59 55 56 58 48 49 51 57 62 70 79 88
58 61 58 60 50 50 52 57 62 70 78 86
61 59 65 63 53 51 54 59 63 70 78 84

64 62 72 59 56 57 61 65 71 77 83
67 65 58 60 61 64 67 73 78 83

72 62 59 62 68 71 74 78 83
68 67 66 68 79 82 86

74 75 79 82 91

49 49 52 56 47 48 51 56 62 70 79 89
50 50 52 56 47 48 51 56 62 70 79 89
52 50 53 56 47 48 51 56 62 71 79 89
54 52 54 57 47 49 51 56 62 70 78 88
59 55 56 58 48 49 51 57 62 70 79 88
58 61 58 60 50 50 52 57 62 70 78 86
61 59 65 63 53 51 54 59 63 70 78 84

64 62 72 59 56 57 61 65 71 77 83
67 65 58 60 61 64 67 73 78 83

72 62 59 62 68 71 74 78 83
68 67 66 68 79 82 86

74 75 79 82 91

49 49 52 56 47 48 51 56 62 70 79 89
50 50 52 56 47 48 51 56 62 70 79 89
52 50 53 56 47 48 51 56 62 71 79 89
54 52 54 57 47 49 51 56 62 70 78 88
59 55 56 58 48 49 51 57 62 70 79 88
58 61 58 60 50 50 52 57 62 70 78 86
61 59 65 63 53 51 54 59 63 70 78 84

64 62 72 59 56 57 61 65 71 77 83
67 65 58 60 61 64 67 73 78 83

72 62 59 62 68 71 74 78 83
68 67 66 68 79 82 86

74 75 79 82 91

(a) Heat map for UDF force.

111
26

239
58

495
122

2038
508

8182
2044

(all)
(plan)

#embedded SQL eval.s (bbox→Q𝑖)

4

8

16

32

64

128

256

#
in
vo

ca
tio

ns
(Q
→
bb
ox

)

13 19 27 38 47 54 59
22 33 41 48 55 59 61
36 43 55 57 57 61 63
47 50 64 61 60 63 64

61 69 67 64 64
68 64 70 67 65

68 58 71 68

13 19 27 38 47 54 59
22 33 41 48 55 59 61
36 43 55 57 57 61 63
47 50 64 61 60 63 64

61 69 67 64 64
68 64 70 67 65

68 58 71 68

13 19 27 38 47 54 59
22 33 41 48 55 59 61
36 43 55 57 57 61 63
47 50 64 61 60 63 64

61 69 67 64 64
68 64 70 67 65

68 58 71 68

(b) Heat map for UDF bbox.

322
50

682
106

1402
218

5722
890

23002
3578

92122
14330

(all)
(plan)

#embedded SQL eval.s (vm→Q1)

4

8

16

32

64

128

256

512

1024

#
in
vo

ca
tio

ns
(Q
→
vm

)

78 76 75 75 75 75 75 75 74
79 77 75 75 75 75 74 75 75
83 79 76 76 75 74 75 75 75
88 80 78 77 76 75 74 75 75
89 87 82 78 77 76 76 76 75
102 88 86 81 78 76 75 76 75

99 89 87 82 78 77 77 75
97 86 85 80 78 76 77

94 87 85 81 77 76

78 76 75 75 75 75 75 75 74
79 77 75 75 75 75 74 75 75
83 79 76 76 75 74 75 75 75
88 80 78 77 76 75 74 75 75
89 87 82 78 77 76 76 76 75
102 88 86 81 78 76 75 76 75

99 89 87 82 78 77 77 75
97 86 85 80 78 76 77

94 87 85 81 77 76

78 76 75 75 75 75 75 75 74
79 77 75 75 75 75 74 75 75
83 79 76 76 75 74 75 75 75
88 80 78 77 76 75 74 75 75
89 87 82 78 77 76 76 76 75
102 88 86 81 78 76 75 76 75

99 89 87 82 78 77 77 75
97 86 85 80 78 76 77

94 87 85 81 77 76

(c) Heat map for UDF vm.

Figure 6.2.: Runtime (in % of PL/SQL UDFS) after compilation, Q→f and f→Q𝑖 context switches varied (lower/lighter is better).

The Impact of Q→f and f→Q𝑖. In the heat maps in Figure 6.2, we
focus on the UDFS force, bbox, and vm. We vary the number of
context switches (Q→f: the number of invocations, f→Q𝑖: evaluation
of embedded SQL queries per invocation) during the experimental
runs. We adapt the top-level query to control the number of UDF
invocations. Similarly, we change the input size of the function to
vary the number of intra-function iterations and thus the number
of embedded SQL queries evaluated per invocation. This method
provides some, but not exact, control over the total number of f→Q𝑖
context switches and is the reason for the irregular f→Q𝑖 axes in
the heat maps. The value all refers to all such switches, while the
value plan refers to the subset of those switches that required query
planning and did not qualify for the fast path evaluation. The entries
in the heat map show the runtime required after the compilation
into SQL, relative to the original PL/SQL UDF. For example: 46

means that the compiled UDF ran in 46% of the original runtime,
lower/lighter is better. Values less than 10ms are ignored. For these
UDFS, the runtimes per invocation range from (leftmost heat map
column) 2.55ms to 57.74ms (rightmost column) after compilation.

When reading a heat map column from bottom to top, it is observed
that as the number of UDF calls increases, the runtime of the com-
piled version decreases. This is because the Q→f overhead is avoided
repeatedly. This phenomenon is particularly evident when the work-
load within f is minimal, which is the case on the left side of the heat
maps. In this case, PL/SQL has limited ability to offset the costs
associated with Q→f context switching.

The compiled UDF force (see Figure 6.2a) requires only 47% of
the original runtime when many invocations are made. This is a
significant improvement. As the size of the input increases, and with
it the number of trampoline() iterations, this time increases to 89%
of the PL/SQL runtime. To calculate force, the input size is based on
the number of bodies that are represented by an underlying Barned-
Hut [73] quad tree. As the number of bodies increases, the tree

[73]: Barnes et al. (1986), ‘A Hierar-
chical 𝑂(𝑁 log𝑁) Force-Calculuation
Algorithm’

depth and intermediate data structures also become larger. force
uses a breadth-first traversal approach and stores any unexplored
nodes in a SQL array. Both factors contribute to an increase in the

56 6. Experiments

size of the working table which in turn affects the runtime of the
compiled function.

The original PL/SQL variant of vm performs a vm→Q1 context switch
for every instruction executed by the simulated VM. In the heat map
for vm, the top-right run executes approximately 1024 × 14330 vm→Q𝑖
switches. The embedded query Q1 is simple and executes quickly.
Therefore, the expensive context switching from vm to Q1 can never
be compensated. This is a best-case scenario for compiling to SQL,
with no context switches after compilation. The compiled version of
vm executes approximately 25% faster in the top-right half of the heat
map. As we approach the lower-left corner of the heat map and the
number of opportunities for saving context switching decreases, the
difference in runtime between the original and compiled versions
becomes smaller.

6.2. POSTGRESQL 11 vs. 15—What has changed?

In [15], we first reported on the 18 UDFS in Table 6.1, measured with
[15]: Hirn et al. (2021), ‘One WITH
RECURSIVE is Worth Many GOTOs’ POSTGRESQL 11.31, the most recent version at the time. There have

1: The results have been validated
by SIGMOD’s reproducibility efforts.
All artifacts needed to repeat the
experiments are publicly available
here: https://dl.acm.org/doi/abs/
10.1145/3448016.3457272

been about four years of improvements between version 11.3 and
version 15. The question is whether the problems with PL/SQL have
remained the same or not. To answer this question, we performed a
re-measurement of all UDFS with POSTGRESQL 15.

We have found that PL/PGSQL exhibits nearly identical amounts
of context switching overhead (recall column Q→f+f→Q𝑖 overhead in
Table 6.1) for both POSTGRESQL 11 and POSTGRESQL 15. Hence, our
main hypothesis remains valid. When comparing the runtime of
our UDFS across the different POSTGRESQL versions, it is evident
that the system’s performance has improved. Figure 6.3 shows the
speedup or, in some cases, slowdown values for both the PL/PGSQL
version and the translations. On average, the execution time of all
UDFS is 12.7% faster on POSTGRESQL 15. The translations, on the
other hand, improved by an average of only 4.6%. In comparison to
their performance on POSTGRESQL 11, some translations are even
slightly slower.

This should not come as a surprise. Database systems are incred-
ibly complex, and query optimization is particularly complicated.
Identifying the best plan to execute can save several orders of mag-
nitude in execution time compared to executing a bad plan. But the
search space is huge, and an exhaustive search becomes impossible.
For this reason, many databases use the classic SYSTEM R optimizer
[74], which limits the search space to a manageable size. This is

[74]: Selinger et al. (1979), ‘Access
Path Selection in a Relational Data-
base Management System’

done using a cost model that estimates the processing time required
and dynamic programming to eliminate duplicate work. However,
the fact that such cost-based models are always only an approxima-
tion makes query optimization quite unstable [75, 76]. Even small

[75]: Haritsa (2010), ‘The Picasso
Database Query Optimizer Visual-
izer’

[76]: Abhirama et al. (2010), ‘On the
Stability of Plan Costs and the Costs
of Plan Stability’

changes to a system’s optimizer can have a big impact. Therefore,
ensuring the reliability and robustness of database systems is critical
so that they function correctly and efficiently. While these systems

https://dl.acm.org/doi/abs/10.1145/3448016.3457272
https://dl.acm.org/doi/abs/10.1145/3448016.3457272

6.2. POSTGRESQL 11 vs. 15—What has changed? 57

1

1.
25 1.
5

bbox
force
global
items
late

march
march-tvf

margin
markov
packing
savings
sched
service

ship
sight

visible
vm
ray

sheet

+1
2.
7%

PL/PGSQL

0.
8 1

1.
25 1.
5

+4
.6
%

Tr (REC) Tr (IT)

Figure 6.3.: A runtime comparison
of POSTGRESQL 11 and POSTGRESQL
15 for both, PL/PGSQL, and the cor-
responding translations. The dotted
line () shows the geometric mean
of the speedup values.

are always trying to improve performance without performance re-
gressions in the general case, some changes can end up degrading
performance for some queries. This is especially true for complex
queries that are difficult to optimize. In such cases, the optimizer
may choose a suboptimal plan. This is exactly what happens to some
of our UDF translations. The POSTGRESQL 15 optimizer chooses a
different plan than the POSTGRESQL 11 optimizer, which is slower
for some of our examples. This is not a problem with the translation,
but rather a consequence of the complexity of the system.

Table 6.2.: A runtime comparison of
POSTGRESQL 11 and POSTGRESQL 15.

UDF Speedup (%)

PL/PGSQL REC IT

bbox 9.81 3.89 2.75
force 6.60 15.05 13.58
global 7.30 4.35 4.67
items 16.59 11.61 13.50
late 20.99 15.79 16.23

march 11.06 2.90 −2.44
march-tvf 13.07 −3.62 6.68

margin 4.01 10.68 10.21
markov 13.85 12.96 12.96
packing 10.81 −1.49 −0.72
savings 8.63 −0.13 −0.72
sched 4.89 −2.18 −2.00
service 9.27 6.82 7.22

ship 4.41 3.17 5.53
sight 13.43 37.02 37.79

visible 3.99 4.12 4.18
vm 17.23 −9.16 −7.48
ray 55.84 0.36 1.08

sheet 18.75 −14.07 −19.50

Simple Expressions. The performance of the PL/SQL version of
ray improved by approximately 56%. This is more than twice the
speedup of any other UDF. So we took a closer look. To do so, we
used a stack trace visualizer2. This tool is used to display hierarchical

2: https://github.com/
brendangregg/FlameGraph

data as a flame graph and can help to identify the most frequent code
paths in programs. Comparing the two flame graphs of both versions
of POSTGRESQL shows a difference in the PL/PGSQL function exec_-
eval_expr. This function is used to execute embedded SQL queries
and expressions. It also performs fast path evaluation for simple
expressions as explained in Section 2.3.1. While there are just a
few queries in ray, there are many simple expressions that PL/SQL
evaluates using the fast path. It turns out, that this fast path has
been improved in a recent version of POSTGRESQL. We were able to
pinpoint exactly which patch was responsible for this speedup3

3: Patch: https://github.com/
postgres/postgres/commit/8f59f6b

Discussion: https://www.
postgresql.org/message-id/
CAFj8pRDRVfLdAxsWeVLzCAbkLFZhW549K+
67tpOc-faC8uH8zw@mail.gmail.com

. This
patch has been part of POSTGRESQL since version 134

4: https://www.postgresql.org/
docs/release/13.0/
“Improve performance of simple
PL/pgSQL expressions (Tom Lane,
Amit Langote)”

and optimizes
the plan caching PL/PGSQL uses for simple expressions. According
to the patch notes, the overhead of managing plans can be greater
than the cost of evaluating simple expressions. Additionally, the
patch is said to improve performance by about 2 times. Although
not all the speedup is directly due to this patch, it still explains
more than half of it. The rest of the improvement can be attributed
to a general enhancement of the system’s performance. ray is a
best-case scenario for PL/SQL, but a worst-case scenario for our
compilation strategy. This is because the function contains many

https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph
https://github.com/postgres/postgres/commit/8f59f6b
https://github.com/postgres/postgres/commit/8f59f6b
https://github.com/postgres/postgres/commit/8f59f6b
https://www.postgresql.org/message-id/CAFj8pRDRVfLdAxsWeVLzCAbkLFZhW549K+67tpOc-faC8uH8zw@mail.gmail.com
https://www.postgresql.org/message-id/CAFj8pRDRVfLdAxsWeVLzCAbkLFZhW549K+67tpOc-faC8uH8zw@mail.gmail.com
https://www.postgresql.org/message-id/CAFj8pRDRVfLdAxsWeVLzCAbkLFZhW549K+67tpOc-faC8uH8zw@mail.gmail.com
https://www.postgresql.org/message-id/CAFj8pRDRVfLdAxsWeVLzCAbkLFZhW549K+67tpOc-faC8uH8zw@mail.gmail.com
https://www.postgresql.org/message-id/CAFj8pRDRVfLdAxsWeVLzCAbkLFZhW549K+67tpOc-faC8uH8zw@mail.gmail.com
https://www.postgresql.org/docs/release/13.0/
https://www.postgresql.org/docs/release/13.0/

58 6. Experiments

Figure 6.4.: Runtime of UDF bbox
(in % of PL/SQL UDFS) after com-
pilation on POSTGRESQL 11.3 and
POSTGRESQL 15, Q→f and f→Q𝑖 context
switches varied (lower/lighter is bet-
ter).

111
26

239
58

495
122

2038
508

8182
2044

(all)
(plan)

#embedded SQL eval.s (bbox→Q𝑖)

4

8

16

32

64

128

256

#
in
vo

ca
tio

ns
(Q
→
bb
ox

)

67 79 46 47 49 49 51
67 80 47 48 48 49 51
68 80 48 48 49 50 51
71 80 49 48 49 50 51
73 81 52 50 50 50 52
69 81 56 52 51 51 52
82 84 62 57 52 52 53

(a) Heat map for UDF bbox on
POSTGRESQL 11.3.

111
26

239
58

495
122

2038
508

8182
2044

(all)
(plan)

#embedded SQL eval.s (bbox→Q𝑖)

4

8

16

32

64

128

256

#
in
vo

ca
tio

ns
(Q
→
bb
ox

)

13 19 27 38 47 54 59
22 33 41 48 55 59 61
36 43 55 57 57 61 63
47 50 64 61 60 63 64

61 69 67 64 64
68 64 70 67 65

68 58 71 68

13 19 27 38 47 54 59
22 33 41 48 55 59 61
36 43 55 57 57 61 63
47 50 64 61 60 63 64

61 69 67 64 64
68 64 70 67 65

68 58 71 68

13 19 27 38 47 54 59
22 33 41 48 55 59 61
36 43 55 57 57 61 63
47 50 64 61 60 63 64

61 69 67 64 64
68 64 70 67 65

68 58 71 68

(b) Heat map for UDF bbox on
POSTGRESQL 15.

simple expressions executed in deeply nested loops, but very few
queries. This results in only 22.6% context switching overhead. The
evaluation of recursive SQL queries is not free. As a result, the
evaluation overhead is greater than the PL/SQL overhead, which
leads to bad performance of the translation.

6.2.1. Cost-based Optimization

Figure 6.4 shows two heat maps for UDF bbox. The heat map on
the left is measured on POSTGRESQL 11, and the one on the right
is measured on POSTGRESQL 15. On POSTGRESQL 11, there is a
notable dark-light boundary at 239 bbox→Q𝑖 embedded SQL query
evaluations in the heat map for UDF bbox. This is due to a change
in the query plan. POSTGRESQL 11 switches from a SEQ SCAN to an
INDEX SCAN for table squares as the input table size increases (see
Figure 6.5), resulting in a significant runtime reduction for the com-
piled function. The situation is different for POSTGRESQL 15. The
query plan does not change in this version of POSTGRESQL, and the
performance on the left side of the heat map (Figure 6.4b) is excep-
tionally good—we will get to this in the next paragraph. After compi-
lation, the two SQL queries embedded in the bbox are planned and
optimized as a whole. Furthermore, the optimizer knows the sizes of
the input tables and can use this information for planning. Runtime
improvements beyond the saved context switching overhead are due
to such multi-query optimization effects [77]. Multi-query optimizer

[77]: Sellis (1998), ‘Multiple-Query
Optimization’ decisions do not apply to PL/SQL UDFS. PL/SQL is unable to

merge multiple statements into one. Such an optimization would
be required in order to combine multiple SQL queries into one.
Thus, the SQL optimizer and executor only ever receive one SQL
query at a time, which prevents multi-query optimizations. This is
a fundamental limitation of PL/SQL. The only way to overcome
this limitation is to compile the UDF into a single SQL query. This
allows the optimizer to plan the query as a whole. This is exactly
what our compilation strategy is designed to do.

Memoization. POSTGRESQL 14 introduced memoization plans that
allow the system to cache results from parameterized scans within
nested-loop joins. This type of plan allows skipping scans to the
underlying plans when the current parameter results are already
cached. This is implemented by the MEMOIZE operator. Memoization

6.3. To Recurse is Divine, to ITERATE Space-Saving 59

trampoline()

NESTED LOOP1

⟨CALL GENERATION⟩
[X,Y]

Memoize
CACHE: [X,Y]

RECURSIVE UNION

RESULT(X,Y)
NESTED LOOP

WT SCAN APPEND

RESULT RESULT

NESTED LOOP

NESTED LOOP

INDEX
SCAN

SQUARES

SEQ
SCAN

DIRECTIONS

APPEND

RESULT RESULT RESULT

Figure 6.5.: Slightly simplified physi-
cal plan of bbox on POSTGRESQL 15.

can reduce runtime significantly in the presence of duplicates on
the left side (i.e., the binding or call generating side) of the NESTED
LOOP join by eliminating duplicate work. The physical plan of UDF
bbox on POSTGRESQL 15 makes use of this feature (see Figure 6.5).
This plan utilizes memoization for the top-level NESTED LOOP1 join,
which generates parameters x and y for each invocation. These invo-
cations are not unique, meaning that the UDF can be called multiple
times with the same parameters. During execution of this plan, the
MEMOIZE operator first checks whether a cached result already exists
for the pair of parameters [x,y]. The RECURSIVE UNION operator,
which implements the trampoline(), is only executed if there is no
cached result. The trampoline execution is the most computationally
intensive task, so the reduction of duplicate work can be a significant
time saver.

The probability of these duplicates is highest on the left side of the
heat map and decreases towards the right side. On the left side of
the heat map, almost all invocation results are cached. This effect
decreases as the number of duplicate calls reduces.

6.3. To Recurse is Divine, to ITERATE
Space-Saving

The evaluation of the recursive CTE that forms the SQL trampo-
line builds a UNION table run that contains a trace of all trampoline
transitions. While this stack-like trace can be revealing and aid in
function debugging [14], its construction can consume significant

[14]: Hirn et al. (2020), ‘PL/SQL
Without the PL’memory. This is especially true for compiled functions that main-

tain many live variables with large contents (resulting in wide UNION
tables) and transition through the trampoline often (long UNION ta-
bles containing one row per transition). We have recorded the size
of the resulting UNION table in Table 6.3 under the heading WITH
RECURSIVE. We have excluded the non-looping UDFS service and
ship as they do not allocate a UNION table at all. Table 6.3 reports
worst-case runs in which the functions processed large inputs, cor-
responding to the rightmost columns in the heat maps in Figure 6.2.

60 6. Experiments

POSTGRESQL stores the entire UNION table in secondary memory if
it exceeds the buffer space allocated for the WITH RECURSIVE eval-
uation. Table 6.3 also shows the number of page writes for buffer
sizes of 512kB and 100MB. UDFS with a large number of trampoline
transitions (ray, vm) and/or significant live variable sets (march, ray,
sheet) are particularly noticeable.

This can be countered by noting that all rows except those with
"rec?" = false or "data?" = true are discarded from the UNION
table before the final function result is returned. The control rows
of the stack-like trace of the computation are never consumed and
never need to be stored.

We built this behavior directly into POSTGRESQL in the form of
WITH ITERATE, a variant of WITH RECURSIVE that stores only rows
where the "data?" column is set to true. Note that compared to
[13–15], the version described here is a slightly generalized version

[13]: Duta et al. (2020), ‘Compiling
PL/SQL Away’

[14]: Hirn et al. (2020), ‘PL/SQL
Without the PL’

[15]: Hirn et al. (2021), ‘One WITH
RECURSIVE is Worth Many GOTOs’

of WITH ITERATE. Instead of ignoring all but the last row in the work-
ing table, all data rows are collected. This generalized semantics is
necessary for appropriate handling of table-valued functions. Effec-
tively, the predicate "data?" is pushed down into the computation
of the recursive CTE—otherwise, its semantics remain as is. In
a VOLCANO-style query execution engine [78], WITH ITERATE does

[78]: Graefe (1994), ‘Volcano—An Ex-
tensible and Parallel Query Evalua-
tion System’

not return to its parent operator before producing a data row. The
space savings can be significant, although the query evaluation time
is only marginally reduced. We only ever allocate space for data
rows. For scalar UDFS, that is exactly one row, so no page I/O is
required regardless of the buffer size (see columns under heading
WITH ITERATE in Table 6.3). It is precisely those compiled UDFS
that have been penalized the most by the UNION table construction
that benefit from this. A one-line change from WITH RECURSIVE to
WITH ITERATE in the SQL trampoline in Rule REC restores the low
memory requirements of the original PL/SQL UDF. The complex
UDF sheet is sped up by a factor of 2.21×. UDFS ray and march
benefit less, but the speedups are still significant.

WITH ITERATE can provide significant runtime and space savings.
But, its implementation reaches into the POSTGRESQL kernel, de-
fying the ideal of a pure source-to-source compilation approach.
So we consider WITH ITERATE to be an optimization rather than an
integral part of the core design.

Figure 6.6.: Runtime of UDF march
after compilation. Q→f and f→Q𝑖 con-
text switches varied (lower/lighter is
better).

111
26

239
58

495
122

2038
508

8182
2044

(all)
(plan)

#embedded SQL eval.s (march→Q𝑖)

4

8

16

32

64

128

256

#
in
vo

ca
tio

ns
(Q
→
ma
rc
h)

13 21 31 47 66 96 150
23 36 48 58 76 103155
37 48 62 68 79 106161
49 55 71 73 81 106 161
68 63 69 79 88 107162

76 78 89 111 160
80 87 110 159

13 21 31 47 66 96 150
23 36 48 58 76 103155
37 48 62 68 79 106161
49 55 71 73 81 106 161
68 63 69 79 88 107162

76 78 89 111 160
80 87 110 159

13 21 31 47 66 96 150
23 36 48 58 76 103155
37 48 62 68 79 106161
49 55 71 73 81 106 161
68 63 69 79 88 107162

76 78 89 111 160
80 87 110 159

(a) Heat map for speedup WITH RECURSIVE

PL/SQL
for UDF march.

111
26

239
58

495
122

2038
508

8182
2044

(all)
(plan)

#embedded SQL eval.s (march→Q𝑖)

4

8

16

32

64

128

256

#
in
vo

ca
tio

ns
(Q
→
ma
rc
h)

98 97 94 90 85 77 63
99 95 93 90 85 77 63
99 95 94 91 86 77 63
98 96 95 92 86 78 63
98 95 94 94 86 77 62

91 91 89 76 62
92 86 78 64

98 97 94 90 85 77 63
99 95 93 90 85 77 63
99 95 94 91 86 77 63
98 96 95 92 86 78 63
98 95 94 94 86 77 62

91 91 89 76 62
92 86 78 64

98 97 94 90 85 77 63
99 95 93 90 85 77 63
99 95 94 91 86 77 63
98 96 95 92 86 78 63
98 95 94 94 86 77 62

91 91 89 76 62
92 86 78 64

(b) Heat map for speedup WITH ITERATE

WITH RECURSIVE
for UDF march on POSTGRESQL 15.

6.3. To Recurse is Divine, to ITERATE Space-Saving 61

UDF WITH RECURSIVE WITH ITERATE
UNION #writes working #writes Speedup over
table 512 kB 100MB table RECURSIVE

bbox 122 kB 55 793 0 161 b 0

m
ar
gi
na

l

force 1 155 kB 633 756 0 81 b 0
global 789b 0 0 85b 0
items 448 kB 100 0 69b 0
late 10 kB 0 0 1192b 0

margin 7 kB 0 0 121 b 0
markov 40 kB 0 0 41 b 0

packing 52 kB 0 0 580b 0
savings 2 kB 0 0 714b 0
sched 21 kB 0 0 1088b 0
sight 3 544 kB 14 143 0 15 kB 0

visible 40 kB 0 0 152b 0
vm 1 643 kB 198 849 0 432b 0

march 256MB 33.5M 33.5M 256 kB 0 1.54×
ray 244MB 2M 2M 15 kB 0 1.32×

sheet 100MB 6.5M 6.5M 62 kB 0 2.21×

Table 6.3.: WITH RECURSIVE vs.
WITH ITERATE: Memory allocation
and buffer page writes due to UNION
table construction.

Related Work and Conclusion 7.
7.1. Conclusions

With PL/SQL, we can move computations to where the data lives.
This avoids network latency and unnecessary data transfers in gen-
eral. The PL/SQL interpreter has direct access to table data and
sits right inside the database. Still, the tension between imperative
and declarative programming and their respective execution modes
spoils the promising PL/SQL idea [13–15, 27]. However, the need

[13]: Duta et al. (2020), ‘Compiling
PL/SQL Away’

[14]: Hirn et al. (2020), ‘PL/SQL
Without the PL’

[15]: Hirn et al. (2021), ‘One WITH
RECURSIVE is Worth Many GOTOs’

[27]: Ramachandra et al. (2018),
‘Froid: Optimization of Imperative
Programs in a Relational Database’

for complex in-database computation is only going to grow. This is
exemplified by current efforts to host machine learning algorithms
within database systems [79–82]. While there are efforts to express

[79]: Boehm et al. (2019), Data Man-
agement in Machine Learning Systems

[80]: Jankov et al. (2019), ‘Declara-
tive Recursive Computation on an
RDBMS (or Why You Should Use
a Database for Distributed Machine
Learning)’

[81]: Feng et al. (2012), ‘Towards a
Unified Architecture for in-RDBMS
Analytics’

[82]: Blacher et al. (2022), ‘Machine
learning, linear algebra, and more: Is
SQL all you need’

such algorithms in regular programming languages and compile
them into SQL queries [83, 84], we believe that PL/SQL is partic-

[83]: Emani et al. (2016), ‘Extract-
ing Equivalent SQL from Imperative
Code in Database Applications’

[84]: Grust et al. (2010), ‘Avalanche-
Safe LINQ Compilation’

ularly worthy of study. PL/SQL’s wide availability, its SQL-native
type system, and its seamless embedding of SQL queries make it
particularly well-suited for data-oriented computation.

While the performance of such PL/SQL functions is often disap-
pointing, we were able to prove that our compilation method can
significantly improve the situation. The experiments in Chapter 6
show that for 18 UDFS, the runtime after compilation improves by an
average of 51.45%. However, not all UDFS benefit from compilation.
Functions that collect large intermediate data structures or that do
not have much context switching overhead due to embedded SQL
queries can be slowed down. It is not possible to statically determine
whether a UDF benefits from compilation or not. But these findings
can be used as a rule of thumb.

The inference rules in Chapter 5 are tailored to compile PL/SQL
functions into SQL, but the general idea is more universal. The
realization that trampolined-style conversion can be used to express
any computation in SQL is an important contribution of this work,
and can in principle be used to compile any imperative control flow
into SQL. The BYEPY project (see Section 7.4) has shown that we can
attach a variety of different frontends to this set of rules, as long as
the language can be compiled into our SSA IR. The same is true for
different backends. While the last rule set generates the SQL dialect
of POSTGRESQL, any database system that supports LATERAL joins
and recursive CTES can be targeted. This allows imperative PL/SQL
execution on database systems without the need to implement a
PL/SQL interpreter—which may be impossible to do in case of
closed-source systems—and without the drawbacks associated with
that.

Functional SSA. Our PL/SQL to SQL compilation (recall Chap-
ters 3 and 5) relies on the imperative SSA IR with ϕ functions, and
the functional ANF IR. In this first part of the thesis, ANF is mainly

64 7. Related Work and Conclusion

used to determine the columns of the working table, and to estab-
lish TRAMPOLINED STYLE. Both operations would be possible using
an alternative to this design that does not require the use of ANF.
MLIR [85] uses a functional SSA IR, that combines the properties of

[85]: Lattner et al. (2020), ‘MLIR: A
Compiler Infrastructure for the End
of Moore’s Law’

SSA and ANF. Instead of using ϕ functions, MLIR uses a functional
form of SSA in which basic blocks are parameterized and GOTO state-
ments explicitly pass values to these block arguments defined by the
successor block. This effectively represents the same information as
using the combination of SSA and ANF, but with a single IR. While
fewer IRS are generally desirable as it reduces the number of data
structures, in the context of this thesis it makes sense to keep the
ANF IR. This is because we will be reusing parts of the PL/SQL
to SQL rule set in the following Part ‘Functional Programming on
Top of SQL Engines’. Also, the compilation effort would not be
reduced by using this alternative design. To translate from SSA to
ANF, we instantiated a customized version of Chakravarty, Keller,
and Zadarnowski’s algorithm. This algorithm uses the information
encoded by SSA’s ϕ functions to remove all basic blocks and replace
them with a mutually recursive function family. The exact same in-
formation is needed to create the MLIR-style functional SSA IR.
Therefore, the choice between using a classical SSA in combination
with ANF, or using a functional SSA IR boils down to a mere design
decision. While there may be local advantages to using one or the
other, overall the same algorithms are required because the same
transformations must be applied. This is not surprising, since the
correspondence between SSA and ANF has been shown many times
[9, 57].

[9]: Chakravarty et al. (2004), ‘A func-
tional perspective on SSA optimisa-
tion algorithms’

[57]: Appel (1998), ‘SSA is Functional
Programming’

Alternative Trampoline drivers. Recursive CTES are great and irre-
placeable for this research, but they often suffer from suboptimal
performance. Efficient execution strategies beyond semi-naive eval-
uation is often neglected by database systems. This is because the
feature is not widely understood and is therefore sometimes per-
ceived as alien to the language. This limits the number of users of the
feature, and thus the pressure on database providers to improve it.
While most major database systems support recursive CTES, there
has not been much research into more efficient execution strategies.
While the outcome of such a research effort is unclear, there are
certainly cases that can be optimized [86, 87]. Although our compila-

[86]: Wang et al. (2020), ‘RASQL: A
Powerful Language and Its System
for Big Data Applications’

[87]: Passing et al. (2017), ‘SQL-and
Operator-centric Data Analytics in
Relational Main-Memory Databases.’

tion strategy produces recursive CTES that theoretically require only
a single WHILE loop, even modern code-generating database systems
such as Umbra [88] cannot completely eliminate the overhead of

[88]: Neumann et al. (2020), ‘Umbra:
A Disk-Based Systemwith In-Memory
Performance.’

fixed-point evaluation [89].

[89]: Sichert et al. (2022), ‘User-
defined operators: Efficiently inte-
grating custom algorithms into mod-
ern databases’

Trampolined style and its characteristic limited complexity of con-
trol flow may allow for different execution strategies. In [16], we

[16]: Hirn et al. (2023), ‘A Fix for the
Fixation on Fixpoints’

explored several alternative semantics for recursive CTES that differ
from the fixed-point semantics. Similar to this branch of research,
a “WITH TRAMPOLINE” database operator, specifically designed to ex-
ecute trampolined-style SQL, could improve performance and/or
memory usage. Without the need to adhere to the fixed-point se-
mantics of recursive CTES, such an operator could employ different
parallelization strategies.

7.2. Related Work: Froid 65

7.2. Related Work: Froid

FROID [27, 34] is described as an extensible framework for optimiz-
[27]: Ramachandra et al. (2018),
‘Froid: Optimization of Imperative
Programs in a Relational Database’

[34]: Ramachandra et al. (2019),
‘BlackMagic: Automatic Inlining of
Scalar UDFS into SQL Queries with
Froid’

ing imperative programs in relational database systems. The basic
idea is to transform UDFS into a SQL-compatible form so that the
UDF can be embedded into the calling SQL query. Similar to our
approach, FROID also converts sequences of PL/SQL statements into
subqueries. These subqueries are concatenated using SQL SERVER’s
OUTER APPLY. This similarity to our approach is no coincidence, since
we have adapted and generalized FROID’s statement chaining tech-
nique to compile loop-free control flow structures. FROID’s approach
is elegant and straightforward, but it has serious limitations: in par-
ticular, the translation only works for functions that have a loop-free
control flow. This limitation does not diminish its value for loop-free
UDFS, but it does limit the applicability of FROID.

Translation Rules. This paragraph is partially based on [90]. FROID
[90]: Franz et al. (2024), ‘Dear User-
Defined Functions, Inlining isn’t
working out so great for us. Let’s
try batching to make our relationship
work. Sincerely, SQL’

performs its translation on the basis of relational algebra operators.
It is not implemented and described as a SQL-to-SQL translation.
This may be the reason why there is no formal set of translation
rules in the relevant publications. In the following, we present an
approximate set of formal translation rules, reverse-engineered from
the description in the publications, and from the actual implemen-
tation in SQL SERVER. This was done by comparing the execution
plans generated by FROID with the execution plans of translations
using the inference rules. Note, however, that this set of rules may
not always perfectly match FROID’s output. In particular, the actual
implementation may perform additional optimizations that are not
described in the publications. Nevertheless, the rules provide a use-
ful basis for learning how FROID’s translation works, and can serve
as a valuable resource for understanding its optimization.

𝑓 ⩴ CREATE FUNCTION 𝑣(𝑣 𝜏,...,𝑣 𝜏)
RETURNS 𝜏 AS BEGIN 𝑑; 𝑠 END;

𝑑 ⩴ DECLARE 𝑣 𝜏
| 𝑑; 𝑑

𝑠 ⩴ SET 𝑣 = 𝑎;
| IF 𝑎 𝑠 [ELSE 𝑠] ENDIF;
| RETURN 𝑎;
| BEGIN 𝑠 END
| 𝑠 𝑠

𝑎 ⩴ scalar SQL expression
𝑣 ⩴ ⟨UDF/variable identifier⟩
𝜏 ⩴ ⟨scalar SQL type⟩

Figure 7.1.: FROID SQL UDF Gram-
mar.

Target inputUDFSmust conform to the grammar shown in Figure 7.1.
These UDFS are loop-free, but can include statement sequences and
branching control flow. The translation ⤇𝑖 assumes that all control
flow paths of the input UDF end in RETURN 𝑎 and return a result
value. As a result, branching control flow paths never merge, which
allows for a compact and simple set of rules that avoids the use of
SSA. This normalization of the UDFS may result in some duplica-
tion of code, but it preserves the length of the control flow path
(no additional work is done at runtime). The rules map statements
s to the pair ⟨𝑞AS t(c) | 𝑡⟩ , where the scalar SQL query 𝑞 returns
its result in column t.c (the row variable t is made explicit to facili-
tate translation of statement sequences). Assignment statements are
handled by Rule ASSIGN. Column 𝑐≡𝑣 for the assignment SET 𝑣 = 𝑎 .
Otherwise 𝑐≡retVal, i.e., the statement’s result value (Rules IF, IF-
ELSE and RETURN). Sequences of statements 𝑠0 𝑠1 are translated as
LATERAL joins (Rule SEQ). This join type allows the query 𝑞1 corre-
sponding to 𝑠1 to access the values of variables bound by statement
𝑠0’s associated query 𝑞0 through its row variable 𝑡0. Sequences of 𝑛
statements lead to a chain of 𝑛 − 1 LATERAL joins. This is similar to
our translation as described in Section 5.4.

66 7. Related Work and Conclusion

Figure 7.2.: Defines the UDF transla-
tion from PL/SQL to plain SQL, fol-
lowing the FROID-style UDF inlining
strategy.

𝑠 ⤇𝑖 ⟨𝑞|𝑡⟩

CREATE FUNCTION 𝑣(𝑣0 𝜏0,...,𝑣𝑛 𝜏𝑛)
RETURNS 𝜏𝑟 AS BEGIN 𝑑; 𝑠 END;

⤇𝑖
SELECT 𝑡.retVal
FROM 𝑞

(INLINE)

𝑠0 ⤇𝑖 ⟨𝑞0|𝑡0⟩ 𝑠1 ⤇𝑖 ⟨𝑞1|𝑡1⟩
𝑠0 𝑠1 ⤇𝑖 ⟨𝑞0,LATERAL 𝑞1|𝑡1⟩

(SEQ)
𝑠 ⤇𝑖 ⟨𝑞|𝑡⟩

BEGIN 𝑠 END⤇𝑖 ⟨𝑞|𝑡⟩
(BLOCK)

𝑠0 ⤇𝑖 ⟨𝑞0|𝑡0⟩ 𝑡 ≡ fresh row var

IF 𝑎 𝑠0 ENDIF;⤇𝑖 �
(SELECT CASE WHEN 𝑎

THEN (SELECT 𝑡0.retVal FROM 𝑞0)
END) AS 𝑡(retVal)

� 𝑡�

(IF)

𝑠0 ⤇𝑖 ⟨𝑞0|𝑡0⟩ 𝑠1 ⤇𝑖 ⟨𝑞1|𝑡1⟩ 𝑡 ≡ fresh row var

IF 𝑎 𝑠0 ELSE 𝑠1 ENDIF;⤇𝑖 �

(SELECT CASE WHEN 𝑎
THEN (SELECT 𝑡0.retVal FROM 𝑞0)
ELSE (SELECT 𝑡1.retVal FROM 𝑞1)
END) AS 𝑡(retVal)

� 𝑡�

(IF-ELSE)

𝑡 ≡ fresh row var
SET 𝑣 = 𝑎;⤇𝑖 ⟨(SELECT 𝑎) AS 𝑡(𝑣)|𝑡⟩

(ASSIGN)

𝑡 ≡ fresh row var
RETURN 𝑎;⤇𝑖 ⟨(SELECT 𝑎) AS 𝑡(retVal)|𝑡⟩

(RETURN)

7.3. Related Work: Aggify

With AGGIFY [24], the FROID team has developed an approach that
[24]: Gupta et al. (2020), ‘Aggify: Lift-
ing the Curse of Cursor Loops using
Custom Aggregates’

can include limited forms of looping. AGGIFY compiles loops into
user-defined aggregate functions and places the loop logic inside the
aggregate’s accumulator routine. This approach was first proposed
in [71]. AGGIFY manages to improve performance significantly. For

[71]: Simhadri et al. (2014), ‘Decorre-
lation of User Defined Functions in
Queries’

some use cases, the runtime is reduced by several orders of mag-
nitude. The authors also propose a two-step approach in which a
UDF is first loop-eliminated using AGGIFY, and then the now loop-
free UDF is eliminated using Froid. The authors call this scenario
AGGIFY+.

However, there are some drawbacks to this approach. Aggregate
functions, by their nature, cannot be aborted prematurely, they gen-
erally read their entire input. This inflexibility results in the necessity
that the number of loop iterations must be known in advance. It also
means that a conditional early EXIT, for example, cannot stop the
iteration. If the number of iterations is high, this can be problematic,
and the loop may exit prematurely, resulting in poor performance.
Another notable drawback of AGGIFY lies in the proposal to imple-
ment the accumulator function in C#. While this choice makes
sense in some contexts, it is problematic for approaches that target
plain SQL. We believe that the use of trampoline-based PL/SQL
compilation, which allows completely arbitrary control flow, is a clear
advantage in this case.

Despite the drawbacks of implementing the main logic of the ag-

7.4. Related Work: ByePy 67

gregate function in C#, AGGIFY manages to significantly improve
the performance of iterative UDFS in SQL SERVER. They were able
to show that their approach can reduce runtime by several orders
of magnitude for some examples. They also used AGGIFY to move
database-external computations implemented in JAVA into the data-
base system. The result was a reduction in the runtime and the
amount of data transferred.

7.4. Related Work: ByePy

As part of the BYEPY project [91, 92], Fischer applied the compi-
[91]: Fischer et al. (2022), ‘Snakes on
a plan: Compiling python functions
into plain SQL queries’

[92]: Fischer (2023), ‘To Iterate Is Hu-
man, to Recurse Is Divine—Mapping
Iterative Python to Recursive SQL’

lation chain as described in Chapter 5 to PYTHON functions. The
focus was on data-intensive PYTHON functions using PSYCOPG2, a
widely used database API targeting POSTGRESQL backends. Such
functions suffer from many of the same problems as PL/SQL func-
tions and external database applications, i.e., a constant back and
forth between the PYTHON interpreter and the SQL database engine.
This is problematic because the context switching overhead for such
PYTHON functions is drastically higher than that of PL/SQL UDFS,
since PYTHON is typically executed externally and not right inside the
database kernel. Such programs suffer from both a structural and
a conceptual impedance mismatch. This results in a lot of friction
during execution. Fischer was able to reduce run times by up to two
orders of magnitude by compiling these PYTHON programs into a
pure SQL query. Note that these measurements were taken without
network latency. The PYTHON programs and the database system
were hosted on the same machine. Introducing network latency
makes the situation worse.

Instead of using PL/SQL UDFS as input to the first compilation
stage, Fischer developed a novel PYTHON front-end, for a restricted
subset of the language. No changes have been made to the backend.
BYEPY exemplifies the flexibility and adaptability of our compi-
lation process, even when it is applied to different programming
languages and environments. The BYEPY project shows that the
compilation process can be used to improve the performance of
database-external programs. This is a promising result, as it shows
that the compilation process is not limited to PL/SQL.

7.5. Related Work: User-Defined Operators

Sichert and Neumann present User-defined operators (UDOS) [89]
[89]: Sichert et al. (2022), ‘User-
defined operators: Efficiently inte-
grating custom algorithms into mod-
ern databases’

as a concept for moving complex algorithms inside database sys-
tems. Their system allows users to write code in any programming
language. This code can then be compiled and integrated into the
existing database system. Instead of using SQL to express these
algorithms, UDOS use algebraic operators to extend the relational
algebra used by database systems. This allows users to write algo-
rithms in a more natural way, without having to worry about the
limitations of SQL. UDOS can handle arbitrary control flow, loops,
and conditionals. Table-valued functions are also valid input.

68 7. Related Work and Conclusion

UDOS are currently implemented for both UMBRA [88] and POST-
[88]: Neumann et al. (2020), ‘Umbra:
A Disk-Based Systemwith In-Memory
Performance.’

GRESQL1. In the case of UMBRA, the UDO query compiler takes the

1: https://github.com/tum-db/
user-defined-operators

user input and integrates it into an existing query plan. Interfacing
with database system internals is handled by the UDO compiler, so
the user does not need to know about them. UMBRA is a compiling
database system, which means that query execution is not done in
the classical interpreted way. The system uses its own LLVM IR for
this. The UDO compiler also compiles into this IR, which allows
further optimization of the user-provided code. Since POSTGRESQL
does not compile queries, these optimizations are not possible in
this case.

While UDOS support similar features as input as we do, modifica-
tions to the database internals are required to make UDOS work.
This limits the applicability of the approach, as not all systems sup-
port UDOS or can bemodified to do so. POSTGRESQL is open source,
so a custom version can be created and distributed, but unless the
functionality is merged into the code base, users will have to compile
the system themselves.

UDOS do not have to rely on recursive CTES to emulate loops and
arbitrary control flow in general. Since this SQL construct comes
with its own overhead, this can be beneficial for performance. How-
ever, compared to a SQL solution, the UDF code remains separate
unless it is optimized at the LLVM IR level. Such an optimization is
only possible for code-generating systems.

7.6. Related Work: Tupleware

TUPLEWARE [93] is a system optimized for compute-intensive, in-
[93]: Crotty et al. (2015), ‘Tupleware:”
Big” Data, Big Analytics, Small Clus-
ters.’

memory analytics on small clusters. The system combines ideas
from the database and compiler communities to create an easy-to-use
and highly efficient end-to-end data analytics solution. Recognizing
the growing need for custom algorithms expressed as workflows
of UDFS [94], TUPLEWARE provides a language-agnostic solution

[94]: Crotty et al. (2015), ‘An Archi-
tecture for Compiling UDF-Centric
Workflows’

that allows users to use their preferred programming language by
compiling the language into LLVM code. This allows the system to
collect statistics for low-level optimizations.

This architecture allows UDF-centric workflows to be compiled
using data statistics, UDF properties, and the underlying hardware
to optimize the generated code. Crotty et al. have shown that the
TUPLEWARE prototype can achieve orders of magnitude speedups
over alternative systems.

The idea is related to UDOS as both approaches use LLVM to com-
pile into a common IR. TUPLEWARE also recognizes the importance of
UDFS and the need for efficient execution, so the system compiles to
LLVM code, which makes sense for code-generating systems. How-
ever, the approach still suffers from a lack of portability. Without
support from the database system, the compilation cannot be used.
While this is not necessarily a problem for newly designed database
systems, legacy systems most likely cannot use these ideas.

https://github.com/tum-db/user-defined-operators
https://github.com/tum-db/user-defined-operators

7.7. More Related Work 69

7.7. More Related Work

Blacher et al. [82] also recognize the Turing completeness of SQL,
[82]: Blacher et al. (2022), ‘Machine
learning, linear algebra, and more: Is
SQL all you need’

and that the language is capable of expressing arbitrary computa-
tions. In their approach, they use UNION ALL and WITH RECURSIVE
clauses to express basic imperative primitives in SQL to write com-
plex algorithms using SQL. Their approach is closely related to
the method described in this thesis, but differs in details. While
they also use WITH RECURSIVE to express looping control flow, they
choose a different encoding for variables. Where we use LATERAL
joins, they use WITH clauses instead. Conditionals, on the other
hand, are encoded exactly the same. Similar to the BYEPY project,
they compile PYTHON programs. Since these programs can fail, they
added error support. They applied this approach to several machine
learning algorithms and compared the performance of NUMPY, HY-
PER [95], and POSTGRESQL. Although NUMPY is a dedicated high-

[95]: Kemper et al. (2011), ‘HyPer:
A hybrid OLTP&OLAP main mem-
ory database system based on virtual
memory snapshots’

performance computing package for PYTHON, Blacher et al. showed
that the SQL version executed by HYPER can outperform NUMPY by
a factor of 3. This supports our hypothesis and shows that SQL-only
algorithms are not a gimmick, but have high practical value.

FUNCTIONAL PROGRAMMING ON TOP OF SQL
ENGINES

Recursive SQL UDFS 8.
In the first part of this thesis, we described a compilation method
that is capable of compiling imperative PL/SQL UDFS into plain
SQL.We have developed formal sets of rules that allow us to compile
suchUDFSwith arbitrary control flow structures, i.e., (deeply nested)
loops, conditionals, variable assignments, etc., and express them in
a SQL-compatible form. However, this compilation method can not
handle any form of recursive UDFS.

In this part of the thesis, we will shift the focus to recursive functions
and show that the compilation method can be extended to handle
recursion as well. We will extend and modify the compilation chain
as needed to transform recursive UDFS into a SQL-compatible form,
and demonstrate the effectiveness of the compilation through an
experimental study. To do this, we will again use long-established
ideas and techniques from the programming language community,
namely continuation passing style (CPS) [96] and defunctionaliza-

[96]: Reynolds (1993), ‘The discover-
ies of continuations’tion [19]. Using these two techniques, any recursive program can be

[19]: Reynolds (1972), ‘Definitional In-
terpreters for Higher-Order Program-
ming Languages’

transformed into a first-order, tail-recursive program with an explicit
stack [97–100]. In effect, we turn the program into a state machine

[97]: Danvy et al. (2001), ‘Defunction-
alization at work’

[98]: Gibbons (2021), ‘Continuation-
Passing Style, Defunctionalization,
Accumulations, and Associativity’

[99]: Schöpp (2013), ‘On interaction,
continuations and defunctionaliza-
tion’

[100]: Danvy (2008), ‘Defunctional-
ized interpreters for programming
languages’

[101]. This way, we can once again use trampolined style to compile

[101]: Gurevich (2000), ‘Sequential
abstract-state machines capture se-
quential algorithms’

the UDF into a single recursive SQL query.

8.1. From 1000s of Plans to One Plan

SQL database engines are experts at plan-based query execution.
Engine internals are specifically designed to support query-to-plan
compilation, optimization through plan rewriting, and the—often
interpreted—evaluation of the resulting plans. This idea works well
for SQL and has been proven to be powerful many times over the
years. However, SQL has its limitations, and developers often need
more expressive or ergonomic language features. One manifesta-
tion of such a language feature, or extension, are SQL scripting
languages such as PL/SQL.

Some database systems support LANGUAGE SQL UDFS, also known
as query language functions. These functions do not support imper-
ative language features. They simply execute an arbitrary list of
SQL statements and return the result of the last query in the list.
SQL UDFS also receive plan-centric treatment, but the results can
only be described as disappointing. UDF runtime performance is
often subpar, and it is a well-known fact in the SQL development
community that UDFS should be avoided as a result [15, 27, 102]

[15]: Hirn et al. (2021), ‘One WITH
RECURSIVE is Worth Many GOTOs’

[27]: Ramachandra et al. (2018),
‘Froid: Optimization of Imperative
Programs in a Relational Database’

[102]: Lawson (2005), ‘How Func-
tions can Wreck Performance’

. In
fact, SQL applications incur a cost with every function call due to
the engines’ plan-based approach to UDF evaluation.

To illustrate this, consider the UDF floyd(n,s,e) in Figure 8.1,
which implements Floyd &Warshall’s algorithm [103] for finding the

[103]: Floyd (1962), ‘Algorithm 97:
Shortest Path’length of the shortest path between nodes s and e in a directed

graph. The function operates over table edges, where a row ⟨ℎ, 𝑡, 𝑤⟩

74 8. Recursive SQL UDFS

Figure 8.1.: Recursive UDF floyd, a
SQL transcription of function floyd
of Figure 8.2b. Yields NULL if there
is no path from nodes s to e via
nodes 1 ... n.

1 -- length of shortest path (via nodes 1...n) from node s to e
2 CREATE FUNCTION floyd(n int, s int, e int) RETURNS int AS
3 $$
4 SELECT CASE WHEN n = 0
5 THEN (SELECT edge.w
6 FROM edges AS edge
7 WHERE (edge.here, edge.there) = (s, e))
8 ELSE LEAST(floyd(n-1, s, e),
9 floyd(n-1, s, n) + floyd(n-1, n, e))

10 END;
11 $$ LANGUAGE SQL STABLE;

Figure 8.2.: Floyd & Warshall’s algo-
rithm over a directed graph (no nega-
tive cycles). We have floyd(4, 2, 3) = 2
and floyd(3, 3, 2) = ∞, for example.

1

2

3

4

-2
4 3

2-1

here there w
1 3 -2
2 1 4
2 3 3
3 4 2
4 2 -1

Table edges

(a) Graph encoding.

floyd(0, 𝑠, 𝑒) =
⎧⎪⎨
⎪⎩

𝑤 if 𝑠 𝑒𝑤

∞ otherwise
floyd(𝑛, 𝑠, 𝑒) = min�floyd(𝑛−1, 𝑠, 𝑒),

floyd(𝑛−1, 𝑠, 𝑛) + floyd(𝑛−1, 𝑛, 𝑒)�

(b) Algorithm in its recursive, textbook style.

represents the directed edge ℎ 𝑡𝑤 of length 𝑤 (Figure 8.2a shows
a sample graph and its encoding in table edges).

Note that the code in Figure 8.1 is a direct translation of the recursive
function floyd (see Figure 8.2b) into SQL. This functional style [104,
105] formulation results in a compact and readable SQL implemen-

[104]: Duta et al. (2020), ‘Functional-
Style SQL UDFS with a Capital ’F’’

[105]: Duta (2022), ‘Another Way to
Implement Complex Computations:
Functional-Style SQL UDF’

tation of floyd, but causes a flood of recursive UDF calls during
evaluation (the UDF of Figure 8.1 performs ∑n

𝑖=1 3
𝑖 = (3n+1−3)

2
such

calls in the absence of memoization). On each top-level or recursive
call, the SQL engine creates a new plan context for callee floyd to

(P1) compile the SELECT block comprising the function’s body into
a plan,

(P2) improve this initial plan through optimizing plan rewrites,
(P3) instantiate the resulting plan given the current arguments n, s,

and e,
(P4) evaluate the plan using a Volcano-style interpreter [78], and

[78]: Graefe (1994), ‘Volcano—An Ex-
tensible and Parallel Query Evalua-
tion System’

finally
(P5) tear down plan data structures before the result is returned

and the evaluation of the calling query’s plan can resume.

Since the engine needs to keep the plans for callers and callees
around, the evaluation of any recursive UDF f leads to a nesting of
plan contexts 𝑐0, 𝑐1, ... as depicted in Figure 8.3. The repeated effort
of plan generation and instantiation (steps P1 and P2, denoted call
in Figure 8.3) plus teardown and resumption of the caller’s plan
(P5, denoted ret) adds up to a significant runtime toll that can easily
dwarf the productive time spent evaluating the plan for the body of
f (steps P3 and P4, denoted eval). Plans are rich data structures and,
in a sense, the engine finds itself creating and destroying “super-heavy
stack frames” to drive the evaluation of recursive UDFS.

If we profile the query engine of POSTGRESQL (version 15) during the
evaluation of a call to floyd—which, in this particular case, results
in 88,573 recursive calls—we find that the system spends 96% of the

8.1. From 1000s of Plans toOne Plan 75

SQL plan contexts
𝑐0
𝑐1
𝑐2
𝑐3
𝑐4

top-level Q
f
f
f

(base case) f

eval
call re

t recursion
depth of f

time
overhead (call+ret)

𝑡𝛼 𝑡𝜔
useful work (eval)

Figure 8.3.: Nested plan contexts
built to evaluate a top-level SQL
query Q that contains a call to a linear-
recursive UDF f. Overall evaluation
time for Q is 𝑡𝜔 − 𝑡𝛼.

total runtime on function body analysis, query compilation, and
plan handling. POSTGRESQL implements function inlining (albeit
to depth 1 only which thus is of limited use for recursive UDFS)
and plan caching: steps P1 and P2 are performed only on the first
encounter of a UDF f and the resulting plan is saved for reuse
during future invocations of f. This plan caching, however, does not
apply to self-invocations and we observe that POSTGRESQL performs
steps P1–P5 over and over for every recursive call.

The situation is certainly dire, but POSTGRESQL actually compares
favorably to other off-the-shell SQL DBMSs: MySQL forbids the
use of recursion in SQL UDFS (or stored functions) entirely [106,
§25.8]

[106]: MySQL 8.0 Documentation

, while Oracle and MicrosoftSQLServer impose restrictions
such as recursion depth limits on UDFS (50 and 32, respectively).
POSTGRESQL will bail out when the stacked plan contexts exhaust
the available process memory of the DBMS server [33, 35, 67]

[33]: POSTGRESQL 15 Documentation

[35]: Microsoft SQL Server 2022 Docu-
mentation

[67]: Oracle Database PL/SQL Lan-
guage Reference 21c. The

bottom line is that UDFS seem to be more of an afterthought in SQL
engine design than anything else.

Goal: Treating SQL UDFS Like Functions (not Queries). Does
the associated runtime penalty thus render the use of function-
centric SQL code—and recursion, in particular—impractical? Since
functional-style UDFS are an elegant way to express and perform
complex computation close to the data [22, 104]

[22]: Rowe et al. (1987), ‘The POST-
GRES Data Model’

[104]: Duta et al. (2020), ‘Functional-
Style SQL UDFS with a Capital ’F’’

, we would consider this
a real loss.

In this part of the thesis, we propose a compilation method that
eliminates immediate (re-)planning on each recursive call. Instead,
we treat recursive UDFS for what they are: functions. This opens up
a box that contains tools other than the plan hammer:

(F1) We consider a UDF f to be a plain function f in the sense of
functional programming (FP). Function f operates on SQL
data model values and embeds scalar SQL expressions, but is
otherwise a vanilla function (Section 9.2).

(F2) To f, we then apply a pipeline of established function compi-
lation techniques, see Figure 8.4. Specifically, we translate f
into CPS [57, 107]

[57]: Appel (1998), ‘SSA is Functional
Programming’

[107]: Sussmann et al. (1975),
‘Scheme: An Interpreter for Ex-
tended Lambda Calculus’

, use defunctionalization [19]

[19]: Reynolds (1972), ‘Definitional In-
terpreters for Higher-Order Program-
ming Languages’

, and finally
transform f into trampolined style [10]

[10]: Ganz et al. (1999), ‘Trampolined
style’

(Sections 9.3 and 9.4).
(F3) Function f in trampolined style implements a single loopwhich

is readily expressed in terms of a recursive CTE, i.e., an itera-
tive query form that is widely supported by SQL DBMSs since
the advent of the SQL:1999 standard [37, 38, 42]

[37]: Eisenberg et al. (1999),
‘SQL:1999, Formerly Known as
SQL3’

[38]: SQL:1999 Standard. Database
Languages–SQL–Part 2: Foundation

[42]: Finkelstein et al. (1996), Expres-
sive Recursive Queries in SQL

. We obtain
SQL query Qf, essentially an CTE-based interpreter loop for
UDF f.

76 8. Recursive SQL UDFS

(F4) Qf does not perform any recursive UDF calls and thus will
be planned once in tandem with its enclosing SQL query. In
addition, the compiled form provides hooks for a variety of
optimizations—most notably memoization—that make the
evaluation of Qf significantly more efficient than the original
UDF f, which Qf can completely replace (Section 9.4).

The compilation stages in Figure 8.4 implement a source-to-source
translation from recursive UDFS to CTES that is non-invasive and
applicable to any DBMS that adheres to SQL:1999—note that this
even includes systems that do not natively support recursive UDFS
(likeMySQL). Chapter 10 applies this approach toUDF compilation
to a set of recursive functions of varying complexity to demonstrate
that function-centric SQL code indeed is one viable way to efficiently
compute close to database-resident data.

The main focus of this part is on the marked area in Figure 8.4.
Most of the compilation steps can be reused from Part 1 ‘Compiling
PL/SQL Away’ with only minor local changes.

Figure 8.4.: Compilation stages and
intermediate UDF forms.

recursive
(Figure 9.2)

GOTO
(Figure 9.3)

recursive
(Figure 9.7)

higher-order
(Figure 9.10)

tail-recursive
(Section 3.4)

single loop
(Section 3.5)

WITH RECURSIVE

UDF

f

SSAREC

ANFREC

CPS

ANF

ANF +

SQL

Qf

(Figure 9.5)

(Figure 9.8)

(Figure 9.11)

(Figure 9.15)

(Section 5.3)

(Section 5.4)

Treating Recursive UDFS Like
Functions 9.

In the following, we will unfold the details of SQL-to-SQL compi-
lation of recursive UDFS into CTES. We start with recursive SQL
functions that follow the grammar definition in Figure 9.2. We as-
sume that the UDF is already in this form and will not go into detail
on how to do this. The reason for this is that we would need a full
SQL grammar definition to properly define this transformation. This
is not only beyond the scope of this thesis, but also does not add
any new insight.

We will reuse some of the existing ideas from the PL/SQL compila-
tion. Again, we use black boxing of SQL subexpressions to prepare
the compilation of UDF f. This focuses the compilation on the
essence of the recursive computation that f performs, i.e., (1) the
conditionals that separate base from recursive cases, and (2) the
sites of recursive calls. These essentials are preserved while all other
SQL expressions are wrapped in black boxes. The contents of these
boxes have no effect on subsequent UDF compilation steps, and the
SQL fragments they contain only reappear when the final CTE Qf
is generated. Consequently, the atomic types of this language are
just the scalar SQL types.

Figure 9.1 shows the boxes Q1 , ... ,Q3 and the scalar SQL expressions
they contain for UDF floyd of Figure 8.1. Free variables and recur-
sive call sites inside a box Q[𝑣0, ... , 𝑣𝑛] are exposed in terms of box
parameters 𝑣𝑖: replacing 𝑣𝑖 by 𝑒𝑖 in Q yields the original SQL expres-
sion. (We abbreviate 𝑣0 [𝑣0] by 𝑣0 and Q[] by Q to aid readability.)
Besides the boxes, we are left with the top-level SELECT block whose
CASE-WHEN-ELSE-END conditional identifies the base and recursive
cases in floyd.

Q1[⋅]

Q2[⋅,⋅]

Q3[⋅, ⋅ ,⋅]

1 -- length of shortest path (via nodes 1...n) from node s to e
2 CREATE FUNCTION floyd(n int, s int, e int) RETURNS int AS
3 $$
4 SELECT CASE WHEN (v0 = 0)[n]
5 THEN (SELECT edge.w
6 FROM edges AS edge
7 WHERE (edge.here, edge.there) = (v0, v1))[s, e]
8 ELSE LEAST(v0, v1 + v2)[floyd(n-1, s, e),
9 floyd(n-1, s, n),

10 floyd(n-1, n, e)]
11 END;
12 $$ LANGUAGE SQL STABLE; Figure 9.1.: UDF floyd and SQL

subexpression boxes.

78 9. Treating Recursive UDFS Like Functions

Figure 9.2.: Admissible SQL UDF di-
alect.

𝑢𝑑𝑓 ⩴ CREATE FUNCTION 𝑓(𝑣 𝜏)
RETURNS [SETOF] 𝜏 AS

SQL UDF

$$ 𝑞 $$ LANGUAGE SQL STABLE;
𝑞 ⩴ SELECT e; UDF body
𝑒 ⩴ CASE 𝑤 ELSE 𝑒 END conditional

| 𝑝
𝑝 ⩴ 𝑎

| 𝑓(𝑝) recursive UDF call
𝑤 ⩴ WHEN 𝑒 THEN 𝑒
𝑎 ⩴ SQL query [𝑝] boxed SQL query
𝑣 ⩴ ⟨identifier⟩ variable/function name
𝑓 ⩴ ⟨name of recursive SQL UDF⟩
𝜏 ⩴ ⟨scalar SQL type⟩ scalar value type

9.1. Translation from SQL to SSAREC

𝑓 ⩴ fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏
{𝑏}

𝑏 ⩴ 𝜅 : 𝑝 𝑠;
𝑝 ⩴ 𝑣: 𝜏 ← ϕ(𝜅:𝑣,…,𝜅:𝑣);

𝑝
| 𝜀

𝑠 ⩴ 𝑣 ← 𝑎
| REC 𝑣 = 𝑣(𝑎)
| IF 𝑣 THEN 𝑡 ELSE 𝑡
| 𝑡
| EMIT 𝑎
| 𝑠; 𝑠

𝑡 ⩴ GOTO 𝜅
| RETURN 𝑎

𝑎 ⩴ SQL query [𝑣]
𝑣 ⩴ ⟨identifier⟩
𝜏 ⩴ ⟨scalar SQL type⟩
𝜅 ⩴ ⟨block label⟩

Figure 9.3.: GOTO-based imperative
intermediate form extended with ex-
plicit binding for recursive calls.

The first compilation step is to convert the recursive SQL UDF to
SSAREC form as shown in Figure 9.3. The specifics of ϕ-function
placement will not be discussed here, as this is a very common
technique. We refer the reader to the literature on SSA for more
details [53].

[53]: Rastello et al. (2022), SSA-based
Compiler Design

Again, we want to emphasize that this and all following compilation
steps leave the boxes Q intact: in particular, we are never concerned
with the SSA-equivalent of SQL’s SELECT-FROM-WHERE blocks (as
contained in box Q2 , for example). The boxes are not unpacked
before we reach the end of the translation pipeline and are ready to
assemble the recursive CTE.

The inference rules for compiling from recursive SQL UDFS to SSA
consists of ↦ℛ, and auxiliaries ⤇ℛ and ⇛ℛ. Compilation starts with
the top-level Rule UDF, which takes a recursive SQL UDF and re-
turns a GOTO-based program. The body of the UDF is mapped into
a dictionary 𝑠 of blocks, which contain statements of the simple
imperative GOTO-based form defined in Figure 9.3. Each block in dic-
tionary 𝑠 is identified by its label 𝜅. This label-to-block dictionary can
be updated via 𝑠2 ≡ 𝑠1 +𝜅 [⟨statements⟩] . The block 𝜅1 is created if it
does not already exist in 𝑠1. Otherwise, the statements are appended
to the existing block 𝜅1. The relation Γ ⊢ ⟨𝑐 | 𝜅1 | 𝑠1⟩ ↦ℛ ⟨𝜅2 | 𝑠2⟩ is
the core of the rules ↦ℛ and ⤇ℛ. It transforms the input 𝑐 into a se-
quence of simple imperative statements. After 𝑐 has been compiled,
compilation continues using the block label 𝜅2. This is identical to
the inference rule setup described in Section 5.1.

-- Input expression:
𝑓(𝑓(𝑓(Q[𝑝1, ... , 𝑝𝑛])))

-- Resulting program in SSA:
𝑣1 ← 𝑝1;
⋮

𝑣𝑛 ← 𝑝𝑛;
𝑣𝑞 ← Q[𝑣1, ... , 𝑣𝑛]
REC 𝑣𝑟1 = 𝑓(𝑣𝑞);
REC 𝑣𝑟2 = 𝑓(𝑣𝑟1);
REC 𝑣𝑟3 = 𝑓(𝑣𝑟2);
RETURN 𝑣𝑟3;

Figure 9.4.: Example of applying
Rule PROXY and auxiliary rules ⇛ℛ
to a nested expression.

The recursive SQL UDF dialect allows arbitrary nesting of black-
box parameters and recursive call parameters. This is encoded in
the grammar’s non-terminals 𝑝 and 𝑎 in Figure 9.2. To establish the
SSA property and for later compilation steps, this nesting must be
eliminated and flattened with variable assignments 𝑣 ← 𝑎 and recur-
sive binds REC 𝑣 = 𝑣(𝑎) . This flattening transformation sequential-
izes computations and thereby ensures that the parameters of the
black boxes will always be values. The auxiliary ⇛ℛ performs this
transformation. This auxiliary defines a slightly different relation
Γ ⊢ ⟨𝑐 | 𝜅1 | 𝑠1⟩ ⇛ℛ ⟨𝜅2 | 𝑠2 | 𝑣⟩ , which returns the binding of the final

9.1. Translation from SQL to SSAREC 79

∅ ⊢ ⟨𝑒 | start | []⟩ ↦ℛ ⟨𝜅1 | 𝑠1⟩ blocks ≡ �
𝜅∈𝑠1

𝜅: 𝜀 𝑠1[𝜅]

⊢
CREATE FUNCTION 𝑓(𝑣 𝜏)
RETURNS [SETOF] 𝜏𝑟 AS
$$ SELECT 𝑒 $$
LANGUAGE SQL STABLE;

↦ℛ
fun 𝑓(𝑣 𝜏) : [SETOF] 𝜏𝑟 {
blocks

}

(UDF)

Γ ⊢ �𝑤 | 𝜅 | 𝑠� ⤇ℛ ⟨𝜅when | 𝑠1⟩ Γ ⊢ ⟨𝑒 | 𝜅when | 𝑠1⟩ ↦ℛ ⟨𝜅else | 𝑠2⟩
Γ ⊢ �CASE 𝑤 ELSE 𝑒 END | 𝜅 | 𝑠� ↦ℛ ⟨𝜅else | 𝑠2⟩

(CASE)

𝜅then, 𝜅else, 𝜅meet ≡ new block labels 𝑝 ≡ new var
Γ ⊢ ⟨𝑒1 | 𝜅 | 𝑠⟩ ↦ℛ ⟨𝜅1 | 𝑠1⟩
Γ ⊢ ⟨𝑒2 | 𝜅1 | 𝑠1⟩ ↦ℛ ⟨𝜅2 | 𝑠2⟩
Γ ⊢ �𝑤 | 𝜅2 | 𝑠2� ⤇ℛ ⟨𝜅3 | 𝑠3⟩

𝑏 ≡ [𝑝 ← 𝑞;, IF 𝑝 THEN GOTO 𝜅then ELSE GOTO 𝜅else;]
𝑠3 ≡ 𝑠2 +𝜅 𝑏 +𝜅1 [GOTO 𝜅meet;] +𝜅2 [GOTO 𝜅meet;]
Γ ⊢ �WHEN 𝑒1 THEN 𝑒2 𝑤 | 𝜅 | 𝑠� ⤇ℛ ⟨𝜅3 | 𝑠3⟩

(WHEN1)

Γ ⊢ ⟨𝜀 | 𝜅 | 𝑠⟩ ⤇ℛ ⟨𝜅 | 𝑠⟩
(WHEN2)

Γ ⊢ �𝑝 | 𝜅 | 𝑠� ⇛ℛ �𝜅 | 𝑠1 | 𝑝1� 𝑠2 ≡ 𝑠1 +𝜅 [RETURN 𝑝1]
Γ ⊢ �𝑝 | 𝜅 | 𝑠� ↦ℛ ⟨𝜅 | 𝑠2⟩

(PROXY)

Γ ⊢ �𝑝 | 𝜅 | 𝑠� ⇛ℛ �𝜅 | 𝑠 | 𝑝1� 𝑣 ≡ new var 𝑠1 ≡ 𝑠 +𝜅 [𝑣 ← Q [𝑝1];]
Γ ⊢ � Q [𝑝] | 𝜅 | 𝑠� ⇛ℛ ⟨𝜅 | 𝑠1 | 𝑣⟩

(BOX)

Γ ⊢ �𝑝 | 𝜅 | 𝑠� ⇛ℛ �𝜅 | 𝑠 | 𝑝1�
𝑣 ≡ new var 𝑠1 ≡ 𝑠 +𝜅 [REC 𝑣 = 𝑓(𝑝1);]

Γ ⊢ �𝑓(𝑝) | 𝜅 | 𝑠� ⇛ℛ ⟨𝜅 | 𝑠1 | 𝑣⟩
(CALL)

Figure 9.5.: Translation from recur-
sive SQL UDFS to SSA.

unnested expression. Rule PROXY plays a special role in this part
of the transformation. The rule is the entry point for such nested
expressions and produces a block terminal RETURN 𝑣 , where 𝑣 is the
final generated bound identifier. Figure 9.4 shows an example of
these rules in action.

If we apply this set of inference rules to UDF floyd in Figure 9.1,
we get the SSA variant in Figure 9.6. Note that we have made some
simplifications that are common practice. This is done to improve
readability. Also, note that we have applied the ϕ-function place-
ment transformation to the SSA program. The SSA program is still
recursive, but the recursive calls are now explicitly marked with the
REC keyword. Also, the recursive calls are now sequentialized and no
longer nested. This is important for the next step in the compilation
pipeline.

80 9. Treating Recursive UDFS Like Functions

Figure 9.6.: Function floyd after
translation to SSAREC.

1 fun floyd(n int, s int, e int) : int {
2 start:
3 v0 ← Q1 [n];
4 IF v0
5 THEN RETURN Q2 [s,e];
6 ELSE GOTO 𝜅then;
7 𝜅then:
8 n ← ϕ(start:n);
9 s ← ϕ(start:s);

10 e ← ϕ(start:e);
11 REC v1 = floyd(n-1, s, e);
12 REC v2 = floyd(n-1, s, n);
13 REC v3 = floyd(n-1, n, e);
14 RETURN Q3 [v1,v2,v3];
15 }

9.2. Transition to ANFREC

The input UDF f is now transformed from SSAREC to a first-order
function f expressed in a simple ANFREC-style language (see Fig-
ure 9.7). This language is closely related to the ANF language used
in the first part of this thesis (recall Section 3.4). But it is extended
with explicit recursive function calls: REC 𝑣 = 𝑣(𝑎) IN 𝑒 . Impor-
tantly, since SQL subexpression boxing has left us with the recursive
backbone of the UDF, (1) IF-THEN-ELSE conditionals, (2) function
invocations, and (3) the boxed expressions themselves already make
a complete target language. However, we do have support for a few
more syntax constructs to handle recursive PL/SQL functions as
well.

The translation from SSAREC to ANFREC is exactly the same as
described in Sections 3.4 and 5.2. This set of inference rules can be
reused as is. However, since we have extended the SSA grammar
to include recursive binds, we need to add the additional inference
rule in Figure 9.8 to handle this case. For UDF floyd, the resulting
function is reproduced in Figure 9.9. We have again applied some
common program simplifications. Most notably, function inlining.

Figure 9.7.: Intermediate functional
language in ANF extended with ex-
plicit binding for recursive calls.

𝑝 ⩴ fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏 {𝑓}
𝑓 ⩴ 𝑣(𝑣 𝜏) ∶ 𝜏 = 𝑒
𝑒 ⩴ 𝑎

| 𝑣(𝑎)
| IF 𝑣 THEN 𝑒 ELSE 𝑒
| LET 𝑣 = 𝑎 IN 𝑒
| EMIT 𝑎; 𝑒
| REC 𝑣 = 𝑣(𝑎) IN 𝑒 recursive function call

𝑎 ⩴ SQL query [𝑣]
𝑣 ⩴ ⟨identifier⟩
𝜏 ⩴ ⟨scalar SQL type⟩

Figure 9.8.: Additional translation
rule for the Chakravarty, Keller, and
Zadarnowski-style SSA to ANF trans-
lation in Section 5.2.

Γ ⊢ 𝑠 ↦𝒜 𝑠1
Γ ⊢ REC 𝑣 = 𝑎; 𝑠 ↦𝒜 REC 𝑣 = 𝑎 IN 𝑠1

(REC)

9.3. From Recursion Towards Iteration: CPS and Defunctionalization 81

1 fun floyd(n int, s int, e int) : int {
2 LET v0 = Q1 [n] IN
3 IF v0
4 THEN
5 Q2 [s,e]
6 ELSE
7 REC v1 = floyd(n-1, s, e) IN
8 REC v2 = floyd(n-1, s, n) IN
9 REC v3 = floyd(n-1, n, e) IN

10 Q3 [v1,v2,v3];
11 }

Figure 9.9.: Function floyd after
translation from SSAREC to ANFREC.
Function inlining has been applied.

9.3. From Recursion Towards Iteration: CPS
and Defunctionalization

Now that we have a direct-style ANF representation of the program
with explicit recursive calls, we need to remove all recursive func-
tion calls and replace them with tail calls. This problem is very
well studied by the programming language community and can be
archived using the CPS transformation [108–111]. Programs in CPS

[108]: Appel (2007), Compiling with
continuations

[109]: Kennedy (2007), ‘Compiling
with continuations, continued’

[110]: Cong et al. (2019), ‘Compil-
ing with Continuations, or without?
Whatever.’

[111]: Paraskevopoulou et al. (2021),
‘Compiling with continuations, cor-
rectly’

are higher-order and perform only tail calls. Later, we will translate
these tail calls into iteration. CPS also explicitly orders the evalua-
tion of function arguments. We will need this property later when
we instantiate the CTE-based interpreter. The function floyd in CPS
(see Figure 9.12) computes the intermediate results v1, v2, and v3
(in that order) and passes them to the continuations 𝜅1, 𝜅2, and 𝜅3,
respectively.

Although CPS is very well researched, many publications only show
translation rules for the simple lambda calculus (as is commonpractice
in the programming language community), if there are any rules at
all. So we have to define the transformation ourselves if we want to
apply it to our own ANF IR. The CPS grammar shown in Figure 9.10,
and the CPS translation rules are loosely based on [112]. The explicit

[112]: Müller et al. (2023), ‘Back to
Direct Style: Typed and Tight’encoding of continuations in the grammar is the most important

aspect of their CPS grammar. This makes the CPS translation (see
Figure 9.11), and the following defunctionalization step easy to
define and reason about.

𝑓 ⩴ def 𝑣(𝑣 𝜏 p 𝜅 : ¬𝜏) : 𝜏 {𝑡} top-level function
𝑡 ⩴ 𝜅(𝑎) jump

| IF 𝑣 THEN 𝑡 ELSE 𝑡
| LET 𝑣 = 𝑎 IN 𝑡
| cnt 𝜅(𝑣 𝜏) { 𝑡 }; 𝑣(𝑎 p 𝜅) continuation
| EMIT 𝑎; 𝑡 emit value

𝑎 ⩴ SQL query [𝑣] boxed SQL query
𝑣 ⩴ ⟨identifier⟩ variable/function name
𝜅 ⩴ ⟨identifier⟩ continuation identifier
𝜏 ⩴ ⟨scalar SQL type⟩ parameter/return type

| ¬𝜏 continuation type Figure 9.10.: Intermediate functional
language in CPS.

82 9. Treating Recursive UDFS Like Functions

Figure 9.11.: Translation to continua-
tion passing style.

𝒞J IF 𝑣 THEN 𝑒0 ELSE 𝑒1 K𝜅 = IF 𝑣 THEN 𝒞J𝑒0K𝜅 ELSE 𝒞J𝑒1K𝜅
𝒞J REC 𝑣 = 𝑎 IN 𝑒 K𝜅 = cnt 𝜅0(𝑣) { 𝒞J𝑒K𝜅 }; 𝒞J𝑎K𝜅0 where 𝜅0 fresh
𝒞J 𝑣(𝑎) K𝜅 = 𝑣(𝑎 p 𝜅)
𝒞J fun 𝑣(𝑣) {𝑒0}; 𝑒 K𝜅 = def 𝑣(𝑣 p 𝜅0) { 𝒞J𝑒0K𝜅0 }; 𝒞J𝑒K𝜅 where 𝜅0 fresh
𝒞J EMIT 𝑎; 𝑡 K𝜅 = EMIT 𝑎; 𝒞J𝑡K𝜅
𝒞J 𝑎 K𝜅 = 𝜅(𝑎)
𝒞J LET 𝑣 = 𝑎 IN 𝑒 K𝜅 = LET 𝑣 = 𝑎 IN 𝒞J𝑒K𝜅

Figure 9.12.: Function floyd after
translation from ANFREC to CPS.

1 def floyd(n int, s int, e int p 𝜅0 : stack) : int {
2 LET v0 = Q1 [n] IN
3 IF v0
4 THEN
5 𝜅0(Q2 [s,e])
6 ELSE
7 cnt 𝜅1(v1) {
8 cnt 𝜅2(v2) {
9 cnt 𝜅3(v3) {

10 𝜅0(Q3 [v1,v2,v3])
11 }; floyd(n-1, n, e p 𝜅3)
12 }; floyd(n-1, s, n p 𝜅2)
13 }; floyd(n-1, s, e p 𝜅1)
14 }

Continuations As Data: Defunctionalization. CPS leaves us with a
higher-order program representation. But functions are not first-
class in the SQL domain, which means we have to eliminate all
higher-order functions to get back to SQL. Although CPS is a
whole program transformation, it is important to note that only
the continuations created by the CPS transformation are truly new
and higher-order. So we can selectively eliminate those. We choose
to represent the higher-order continuations in terms of data. Fig-
ure 9.16 shows the function floyd after this transformation.

Defunctionalization [19] introduces closure records ⟨l, env⟩ in which
[19]: Reynolds (1972), ‘Definitional In-
terpreters for Higher-Order Program-
ming Languages’

tag l identifies the continuation (for floyd, k ∈ {𝜅1, 𝜅2, 𝜅3}) and env
holds the environment of free variables. For floyd, the environment
is env ≡ n, s, e, v1, v2, v3 . We replace a variable 𝑣 with NULL if 𝑣 is un-
defined in its environment, and thus get fixed-width closure records
(1 + 5 = 6 in the case of floyd). This replacement is done in Rule DE-
FUN CONT of Figure 9.15. The nesting of continuations is encoded
in terms of a stack of closure records (see argument 𝜅𝑠 with opera-
tions EMPTY, PUSH, POP, TOP in Figure 9.16). The auxiliary function
apply(…, x,𝜅) examines the tag l of the topmost closure record
on the stack 𝜅 and invokes the corresponding continuation on the
argument x. If apply detects that the continuation stack 𝜅 is empty,
the final result x is returned (see Line 14 of Figure 9.16). So we can
start the computation with an empty stack.

Figure 9.15 shows this translation from CPS back to a direct-style
representation in ANF. The required ANF grammar is shown in
Figure 9.14 and is equivalent to the ANF grammar used in Part 1
of this thesis (remember Section 3.4), except for the dispatching
CASE extension. The inference rules consist of ↦𝒟ℱ and auxiliary
⤇𝒟ℱ which define the relation params | Γ ⊢ 𝑡 ↦𝒟ℱ ⟨𝑒 | 𝑎⟩ . A CPS term
𝑡 is transformed into an ANF expression 𝑒. If 𝑡 is a continuation, an
additional apply branch 𝑎 is returned (see Rule DEFUN CONT). The
context of the inference rules params | Γ is divided into the fixed

9.3. From Recursion Towards Iteration: CPS and Defunctionalization 83

set of function parameters params and the set of bound variables Γ.
These sets are initially equal. The translation of a CPS program
starts with the Rule DEFUN DEF. This rule instantiates the apply and
start function templates and creates the initial translation context
(see 𝑣 | 𝑣 ⊢ 𝑡). Most of the heavy lifting is done in Rule DEFUN
CONT. This rule translates a higher-order continuation back to a first-
order function call with an explicit stack. The stack contains closure
records in the form of tuples, based on the set of used variables (for
the floyd function, this set contains the variables {n, s, e, v1, v2, v3}).
If a variable is not (yet) bound, i.e., not contained in the set Γ, it is
replaced by NULL .

floyd

apply

invoke

tail call

return

Figure 9.13.: Call graph after defunc-
tionalization.

The naming of the continuation stack variable is a subtle but im-
portant detail of this rule set. For the original function, the stack is
named 𝜅𝑠, while for apply it is named 𝜅. This naming scheme sim-
plifies the stack management in the defunctionalized version of the
program (for function floyd, see Lines 8, 9 and 19 to 21). The variable
𝜅𝑠 is defined as the TAIL of the stack in the apply function template.
This ensures that the top element of the stack is either replaced or
removed during execution. The original function keeps the stack
as it is, perhaps pushing an additional element. Figure 9.13 shows
the call graph of function floyd after defunctionalization. Regular
arrows indicate that the stack will remain unchanged. A stack
PUSH operation is marked with , and the removal or replacement
of the top element is marked with arrows .

𝑝 ⩴ fun 𝑣(𝑣 𝜏) : [SETOF] 𝜏 {𝑓}
𝑓 ⩴ 𝑣(𝑣 𝜏) ∶ 𝜏 = 𝑒
𝑒 ⩴ 𝑎

| 𝑣(𝑎)
| IF 𝑣 THEN 𝑒 ELSE 𝑒
| LET 𝑣 = 𝑎 IN 𝑒
| EMIT 𝑎; 𝑒
| CASE 𝑣 OF '𝑣' ∶ 𝑒 dispatching case

𝑎 ⩴ SQL query [𝑣]
𝑣 ⩴ ⟨identifier⟩
𝜏 ⩴ ⟨scalar SQL type⟩

Figure 9.14.: Intermediate functional
language in ANF.

84 9. Treating Recursive UDFS Like Functions

v | v ⊢ t ⤇𝒟ℱ ⟨t1 | branches⟩ vars ≡ fv (branches) apply ≡

fun start(v) {
𝑓(v, NULL, EMPTY_STACK())

}

fun apply(v, x, k) {
IF EMPTY(k)
THEN x
ELSE LET ⟨l,vars⟩ = TOP(k) IN

LET 𝜅𝑠 = TAIL(k) IN
CASE l OF
branches

}

⊢ def f (v p 𝜅𝑖) { t } ↦𝒟ℱ � fun f (v, x, 𝜅𝑠) { t1 } � apply�
(DEFUN DEF)

values ≡

⎡
⎢⎢⎢⎢⎢⎣

𝑥 if v𝑘 = 𝑢
𝑢 if 𝑢 ∈ Γ
NULL [] otherwise

�
�
𝑢 ∈ 𝑢𝑠𝑒𝑑(𝑡)

⎤
⎥⎥⎥⎥⎥⎦ tuple ≡ ('𝜅𝑖', values)

vs | v𝑘, Γ ⊢ t ⤇𝒟ℱ �f � branches� branch ≡ '𝜅𝑖': f

vs | Γ ⊢ cnt 𝜅𝑖(v𝑘) { t };
v(a p 𝜅𝑖)

⤇𝒟ℱ �v(a, NULL [], PUSH([tuple],𝜅𝑠)) � branch branches�
(DEFUN CONT)

vs | v, Γ ⊢ 𝜅𝑖(e) ⤇𝒟ℱ ⟨apply(vs,e [v ↦ 𝑥],𝜅𝑠) | ⟩
(DEFUN JUMP)

vs | Γ ⊢ t0 ⤇𝒟ℱ �p0 � branches0� vs | Γ ⊢ t1 ⤇𝒟ℱ �p1 � branches1�
vs | Γ ⊢ IF v THEN t0 ELSE t1 ⤇𝒟ℱ �IF v THEN p0 ELSE p1 � branches0 branches1�

(DEFUN IF)

vs | Γ ⊢ t ⤇𝒟ℱ �p � branches�
vs | Γ ⊢ EMIT 𝑎; t ⤇𝒟ℱ �EMIT 𝑎; p � branches�

(DEFUN EMIT)

vs | 𝑣, Γ ⊢ e ⤇𝒟ℱ �p � branches�
vs | Γ ⊢ LET 𝑣 = 𝑎 IN 𝑒 ⤇𝒟ℱ �LET 𝑣 = 𝑎 IN 𝑝 � branches�

(DEFUN LET)

Figure 9.15.: Translation from CPS back to direct-style ANF.

Figure 9.16.: Function floyd after
translation from CPS back to direct-
style ANF.

1 fun start(n int, s int, e int) : int {
2 floyd(n, s, e, NULL, EMPTY_STACK())
3 }
4
5 fun floyd(n int, s int, e int, x int, 𝜅𝑠 stack) : int {
6 LET v0 = Q1 [n] IN
7 IF v0
8 THEN apply(n, s, e, Q2 [s,e], 𝜅𝑠)
9 ELSE floyd(n-1, s, e, NULL, PUSH([('𝜅1',n,s,e,NULL,NULL)], 𝜅𝑠))
10 }
11
12 fun apply(n int, s int, e int, x int, 𝜅 stack) : int {
13 IF EMPTY(𝜅)
14 THEN x
15 ELSE
16 LET ⟨l, n, s, e, v1, v2, v3⟩ = TOP(𝜅) IN
17 LET 𝜅𝑠 = TAIL(𝜅) IN
18 CASE l OF
19 '𝜅1': floyd(n-1, s, n, NULL, PUSH([('𝜅2',n,s,e,x,NULL)], 𝜅𝑠))
20 '𝜅2': floyd(n-1, n, e, NULL, PUSH([('𝜅3',n,s,e,v1,x)], 𝜅𝑠))
21 '𝜅3': apply(n, n, e, Q3 [v1,v2,x], 𝜅𝑠)
22 }

9.4. Trampolined Style: A Single Loop Replaces Mutual Recursion 85

9.4. Trampolined Style: A Single Loop Replaces
Mutual Recursion

After applying CPS and defunctionalization, we have arrived at the
mutually tail-recursive pair of functions f/apply. This form of the
program now allows us to reuse the entire tail of the existing com-
pilation pipeline from the first part of this thesis (Sections 3.5, 3.6,
5.3 and 5.4). Therefore, the same arguments, considerations, and
inference rules apply. This is an important property of our approach
and shows that the trampolined style translation is a powerful and
general technique for compiling both iterative and recursive pro-
grams to SQL. The only difference is that we now have to maintain
the continuation stack explicitly.

trampoline

floyd apply

l = 'f' l = 'a'

EMPTY(𝜅)?

Figure 9.17.: Trampolined style (be-
fore inlining).

From ANF to Trampolined Style ANF. The complexity of the call
graph in Figure 9.13 is at odds with the single-loop iteration that
SQL’s recursive CTES can express (recall Section 3.1). A better fit
is trampolined style, where a designated trampoline function is
responsible for handling all function calls in a given program: to
call g from f, (1) f invokes trampoline, with the arguments to be
passed to g along with a function label l = 'g' , (2) then trampoline
calls g as directed by l. The trampoline’s full control over whether
and how calculations are performed allows for a wide variety of
trampolined-style applications. Here, we are primarily interested in
the inherent call graph simplification it provides (see Figure 9.17).

𝑒 ↦𝒯 𝑡
CASE 𝑣 OF '𝑣' ∶ 𝑒 ↦𝒯 CASE 𝑣 OF '𝑣' ∶ 𝑡

(CASE) Figure 9.18.: Additional translation
rule for the ANF to trampolined style
translation in Section 5.3.

Applying the inference rules of Section 5.3, extended by Rule CASE
in Figure 9.18, to the function floyd after defunctionalization (Fig-
ure 9.16) results in the trampolined version of floyd shown in Fig-
ure 9.19. Note that the function parameter 𝜅 of the apply function
has been replaced by 𝜅𝑠 using capture-free substitution. This is nec-
essary because the trampolined-style transformation requires the
same function parameters for the f/apply function family.

From Trampolined Style ANF to SQL. The final compilation step
is to instantiate the WITH RECURSIVE-based trampolined-style SQL
interpreter. Figure 9.20 shows the CTE we get from a straightfor-
ward translation of the f/apply function pair into SQL using the
inference rules in Section 5.4. Note that we have kept the black boxes
in place and the stack handling abstract for now. Here, the CTE
is wrapped in a SQL UDF floyd that could replace the original in
Figure 8.1. However, the CTE body in Lines 3 to 36 can also stand
alone: it contains no recursive calls and could therefore be inlined at
the call sites of floyd.

Just like the trampoline function, the recursive CTE works on tu-
ples (rec?, call, res, n, s, e, x, 𝜅𝑠) (in form of the working table). To
start the interpretation, Qinit (i.e., the SELECT of Line 4) places an

86 9. Treating Recursive UDFS Like Functions

1 fun start(n int, s int, e int) : int {
2 trampoline(true, 'floyd', NULL, n, s, e, NULL, EMPTY_STACK())
3 }
4
5 fun trampoline(rec? bool, call text, res int, n int, s int, e int, x int, 𝜅𝑠 stack) : int {
6 IF NOT rec? THEN
7 res
8 ELSE
9 CASE call OF

10 'floyd':
11 LET v0 = Q1 [n] IN
12 IF v0
13 THEN trampoline(true, 'apply', NULL, n , s, e, Q2 [s,e], 𝜅𝑠)
14 ELSE trampoline(true, 'floyd', NULL, n-1, s, e, NULL, PUSH([('𝜅1',n,s,e,NULL,NULL)], 𝜅𝑠))
15 'apply':
16 IF EMPTY(𝜅𝑠)
17 THEN trampoline(false, NULL, x, NULL, NULL, NULL, NULL, NULL)
18 ELSE
19 LET ⟨l, n, s, e, v1, v2, v3⟩ = TOP(𝜅𝑠) IN
20 LET 𝜅𝑠1 = TAIL(𝜅𝑠) IN
21 CASE l OF
22 '𝜅1': trampoline(true, 'floyd', NULL, n-1, s, n, NULL, PUSH([('𝜅2',n,s,e,x,NULL)], 𝜅𝑠1))
23 '𝜅2': trampoline(true, 'floyd', NULL, n-1, n, e, NULL, PUSH([('𝜅3',n,s,e,v1,x)], 𝜅𝑠1))
24 '𝜅3': trampoline(true, 'apply', NULL, n , n, e, Q3 [v1,v2,x], 𝜅𝑠1)
25 }

Figure 9.19.: Function floyd after translation to trampolined style.

appropriate tuple—or: “instruction”—in the working table. The
iterated query q∞ in Lines 6 to 35 reads the current instruction tuple
r from table run, processes it, and outputs the next instruction that
(1) replaces the current tuple in run and (2) is also added to the
union table u. Processing these instructions entails:

(IP1) accessing the topmost continuation on stack 𝜅𝑠. Similar to
the LET in Line 19 of Figure 9.19, we use a LATERAL join to
bind the tuple entries of the continuation to names and make
them available to the rest of the query. There are a number
of possible implementation alternatives on the SQL side for
the stack 𝜅𝑠 and its PUSH, TAIL, TOP, EMPTY operations. We will
return to this later in Section 9.6.

(IP2) Then, by checking the function call r.call ∈ {apply, floyd}
and the closure tag l ∈ {𝜅1, 𝜅2, 𝜅3} , the correct next instruction
is selected.

Function trampoline implements step (IP2) in the form of CASE-OF
multi-way conditionals. Here we use predicated SELECT-WHERE SQL
query blocks concatenatedwith UNION ALL. Note that the WHERE pred-
icates are mutually exclusive, so that at most one block can output
an instruction tuple per iteration. For contemporary RDBMSs, this
results in efficient physical execution plans (recall Section 5.4).

The assembly of the instruction tuples themselves directly mimics
the trampoline function (e.g., Line 24 of Figure 9.20 corresponds to
Line 22 of Figure 9.19). Once we unfold the contained black boxes,
we obtain a syntactically complete CTE that can replace the original
UDF of Figure 8.1. This concludes the compilation of recursive
UDFS to SQL.

9.4. Trampolined Style: A Single Loop Replaces Mutual Recursion 87

1 CREATE FUNCTION floyd(n int, s, int, e int) RETURNS int AS
2 $$
3 WITH RECURSIVE run("rec?", call, res, n, s, e, x, 𝜅𝑠) AS (
4 SELECT true, 'floyd', NULL, n, s, e, NULL, EMPTY_STACK()
5 UNION ALL -- recursive UNION
6 SELECT "case1".*
7 FROM run AS r,
8 LATERAL (SELECT "cond1".*
9 FROM (Q1 [n]) AS "if1"("v0"),
10 LATERAL (SELECT true, 'apply', NULL, n, s, e, Q2 [s,e], 𝜅𝑠
11 WHERE "if1"."v0"
12 UNION ALL
13 SELECT true, 'floyd', NULL, n-1, s, e, NULL, PUSH([('𝜅1',n,s,e,NULL,NULL)], 𝜅𝑠)
14 WHERE NOT "if1"."v0") AS "cond1"
15 WHERE r.call = 'floyd'
16 UNION ALL
17 SELECT "cond2".*
18 FROM (SELECT false, NULL, x, NULL, NULL, NULL, NULL, NULL
19 WHERE EMPTY(𝜅𝑠)
20 UNION ALL
21 SELECT "case2".*
22 FROM (SELECT TOP(𝜅𝑠).*) AS _1(l, n, s, e, v1, v2, v3),
23 LATERAL (SELECT TAIL(𝜅𝑠)) AS _2(𝜅𝑠1),
24 LATERAL (SELECT true, 'floyd', NULL, n-1, s, n, NULL, PUSH([('𝜅2',n,s,e,x,NULL)], 𝜅𝑠1)
25 WHERE l = '𝜅1'
26 UNION ALL
27 SELECT true, 'floyd', NULL, n-1, n, e, NULL, PUSH([('𝜅3',n,s,e,v1,x)], 𝜅𝑠1)
28 WHERE l = '𝜅2'
29 UNION ALL
30 SELECT true, 'apply', NULL, n, n, e, Q3 [v1,v2,x], 𝜅𝑠1)
31 WHERE l = '𝜅3'
32) AS "case2"
33 WHERE NOT EMPTY(𝜅𝑠)) AS "cond2"
34 WHERE r.call = 'apply') AS "case1"
35 WHERE r."rec?"
36) SELECT run.res FROM run WHERE NOT run."rec?"
37 $$ LANGUAGE SQL STABLE;

Figure 9.20.: Iterative CTE-based interpreter replacing the UDF floyd of Figure 8.1.

Union Table ≡ Instruction Trace. Given the semantics of recursive
CTES, each invocation of this SQL-based interpreter returns a union
table u that collects a trace of all instructions evaluated by the in-
terpreter. Each iteration contributes one row to u. To illustrate, Fig-
ure 9.21 shows a portion of the table resulting from a floyd(2,2,3)
call (ignore the annotations for now). As expected, we find rows
with l = floyd , representing the recursive calls to floyd (see Fig-
ure 9.19). Rows with l = apply correspond to the application of the
current top continuation on stack 𝜅𝑠 to the intermediate result x
(again, recall the invocations of apply in Figure 9.19). The last row
with call = NULL and rec? = false holds the overall result value in
column res. Exactly this (gray) table cell is extracted and returned
by the final SELECT block in Line 36 of Figure 9.20.

88 9. Treating Recursive UDFS Like Functions

Figure 9.21.: CTE union table result
for floyd(2,2,3).

rec? call res n s e x 𝜅𝑠
true floyd NULL 2 2 3 NULL
true floyd NULL 1 2 3 NULL
true floyd NULL 0 2 3 NULL

2 true apply NULL NULL NULL NULL 3 [k1, ⋅, ⋅]
3 true apply NULL NULL NULL NULL 4
4 true apply NULL NULL NULL NULL -2
1 true apply NULL NULL NULL NULL 2

true floyd NULL 1 2 2 NULL
6 true apply NULL NULL NULL NULL NULL

true floyd NULL 0 1 3 NULL
12 true apply NULL NULL NULL NULL -2
9 true apply NULL NULL NULL NULL 2 [k2, ⋅]
0 true apply NULL NULL NULL NULL 2
false NULL 2 NULL NULL NULL NULL

Table run

co
nt
in
ua

tio
n

st
ac
ks

9.5. Memoizing the Results of Recursive Calls

A reduction of function call overhead is welcome, and Chapter 10
will evaluate the performance advantage of the iterative interpreter
over recursive UDF evaluation. However, avoiding the (re-)evalua-
tion of functions altogether is certainly better than any execution
strategy. This is the promise of memoization[113, 114]: once we have

[113]: Michie (1968), ‘“Memo” Func-
tions and Machine Learning’

[114]: Bird (1980), ‘Tabulation Tech-
niques for Recursive Programs’

spent the effort to evaluate f(args) to value res, memoize the pair
(args, res) and immediately respond with res on subsequent calls
with arguments args. Memoization may be absolutely necessary for
UDFS like floyd, which otherwise perform 𝑂(3𝑛) recursive calls. In
this section, we will show how to add memoization to the SQL-based
interpreter of floyd without changing the original function. This is
possible because the recursive CTE already computes the results
of all recursive calls and stores them in the union table u. We can
therefore use u to extract the results of previous calls and avoid
re-computation.

The SQL-based interpreter can provide memoization for any UDF
f. No change to f is required. To do this, we associate an 𝑛-ary UDF
f with a table memo(args,res) of 𝑛+ 1 columns (for floyd, this memo
table has columns n,s,e,res with key (n,s,e)). The following lines
extend floyd’s interpreter of Figure 9.20 to do a lookup in memo for
the current arguments (r.n,r.s,r.e):

8 LATERAL (⟨lookup res in table memo for (r.n,r.s,r.e)⟩) AS m("memo?",res),
9 LATERAL (
10 SELECT true, 'apply', NULL, n, s, e, m.res AS x, 𝜅𝑠
11 WHERE call = 'floyd' AND m."memo?"
12 UNION ALL

On a successful lookup, indicated by m."memo?" = true , the mem-
oized value m.res is passed directly to the current continuation
on the stack 𝜅𝑠 (Line 10). In effect, the entire subtree of recursive
calls below floyd(n,s,e) is truncated, regardless of whether the
call occurs at the top level or deep in the recursion. This can save a
lot of computation effort.

How do we fill in the table memo? For an answer, examine the call
tree for the top-level call floyd(2,2,3) in Figure 9.22. When the
recursive call 2 to floyd(0,2,3) has computed the intermediate

9.6. Implementation of Continuation Stacks 89

floyd(2,2,3):2

(1,2,3):2

(0,2,3):3

2

(0,2,1):4

3

(0,1,3):-2

4

1

(1,2,2):NULL

(0,2,2):NULL

6

(0,2,1):4

7

(0,1,2):NULL

8

5

(1,2,3):2

(0,2,3):3

10

(0,2,1):4

11

(0,1,3):-2

12

9

0

Figure 9.22.: Call tree for top-level call floyd(2,2,3). Edge 𝑖 indicates the 𝑖 th call performed by the interpreter. Grey
values denote the results of the calls.

result 3, it passes the values x=3 to the top continuation on the
stack 𝜅𝑠 (which will continue with call 3 as determined by the CPS
transformation). Since the union table u collects a log of all such
continuation invocations in rows with l = 'apply' (see column x
in the row annotated with call 2 in Figure 9.21), it is a viable source
for memo entries:

(M1) Run the CTE-based interpreter, get the union table u.
(M2) In u, find all rows rwith r.l = 'apply' . If not already present,

insert row (args, r.x) into table memo, where args are the
arguments of the current call. (We find 13 such rows when
the interpreter has evaluated floyd(2,2,3), corresponding
to the 13 nodes in the call tree in Figure 9.22. The lookup in
the added Line 8 above will find these entries in subsequent
interpreter runs.) To facilitate this, we have carefully designed
the closure records to provide args. In Figure 9.21, for call
2 , the topmost closure records k1 would hold the arguments
(n,s,e) = (0,2,3) . Similarly, k2 would hold (1,2,3) for call
9 .

For a graph with 𝑛 nodes, floyd’s memo table will contain 𝑛3 rows
once it is completely filled. This form of memoization is highly effi-
cient due to built-in index support for the key lookups performed
by Line 8. It is important to note that the applicability of memoiza-
tion depends on the UDF being referentially transparent, either in
general (IMMUTABLE functions [33, §38.7]) or at least within a trans-

[33]: POSTGRESQL 15 Documentationaction context (STABLE functions like floyd due to their access to
table edges, see Line 6 in Figure 8.1). The lifetime of the table memo
is also defined by these degrees of referential transparency.

9.6. Implementation of Continuation Stacks

TOP(𝜅) ↦ 𝜅[1]
TAIL(𝜅) ↦ 𝜅[2:]
PUSH(t, 𝜅) ↦ t || 𝜅
EMPTY(𝜅) ↦ cardinality(𝜅) = 0
EMPTY_STACK() ↦ ARRAY[]

Figure 9.23.: One possible mapping
from abstract stack operations to
SQL.

So far, we have kept the implementation of the continuation stack
abstract, requiring only that the operations TOP, EMPTY, TAIL, and
PUSH are supported. Of course, these operations must be defined
on the basis of a data type supported by SQL. Since no database
system supports a real stack data type, we have to resort to another
representation. The SQL array type is a possible SQL-side imple-
mentation of the continuation stack in column 𝜅𝑠. The TOP, TAIL,

90 9. Treating Recursive UDFS Like Functions

and PUSH operations then effectively operate on the array head ele-
ment. Figure 9.23 shows how the abstract stack operations can be
translated into valid SQL expressions.

While this design works and exhibits the correct behavior, the length
of the array is determined by the recursion depth. If we recurse
deeply, large 𝜅𝑠 entries result in measurable overhead when the
CTE assembles instruction tuples to place in the working and union
tables.

Continuation Stacks Outside the Working Table and Union Table.
We have experimented with a POSTGRESQL extension that hosts the
continuation stack outside the working and union tables. Here, the
𝜅𝑠 column simply refers to a table-like structure of closure records
that live in a separate region of memory that is private to the SQL
query that executes the interpreter. Chapter 10 reports on the run-
time advantages of replacing the array-based stack with this tab-
ular representation. Keep in mind, however, that such an exten-
sion requires support from the database system, and is usually not
portable.

Experiments 10.
Recursive UDF processing, through repeated unfolding and plan-
ning of function bodies, makes relational DBMSs poor programming
environments [104, 115]. We believe that it does not have to be this

[104]: Duta et al. (2020), ‘Functional-
Style SQL UDFS with a Capital ’F’’

[115]: Aranda et al. (2013), ‘R-SQL: An
SQLDatabase Systemwith Extended
Recursion’

way: the SQL UDF compilation described in Chapter 9 can turn
database systems that support modern SQL, such as POSTGRESQL,
into a viable functional programming platform on which complex
computations can be performed with and alongside tabular data.

To illustrate this point, the 10 recursive UDFS in Table 6.11 address al-
1: The full SQL definitions of these
UDFS are given in Appendix B.gorithmic problems that would not typically be considered database-

resident computations due to (1) their inefficiency when expressed
as SQL functions, or (2) the prohibitive complexity of manually
formulating them in terms of a recursive CTE. Here, we implement
them as recursive UDFS in the compact and readable functional
style of floyd (Figure 8.1). We chose these UDFS to show a variety
of recursion patterns (see the Recursion column in Table 6.1).

For reference, the measurements below report the average of five
runs performed with POSTGRESQL version 13. We rely on the vanilla
system except where we explicitly mention the use of the query-
private table storage extension, recall Section 9.6. The database sys-
tem was hosted on a 64-bit Linux machine (two AMD EPYC™ 7402
CPUs at 2.8GHz and 512GB of RAM, 128GB of which were as-
signed to hold the database buffer). The execution stack size of the
database server was set to 6MB, which was sufficient to hold the
frames of all recursive UDFS in our experiments.

Reducing Function Call Overhead (No Memoization). Compila-
tion into CTE form results in iterative SQL queries that no longer
perform recursive UDF calls. The saved function call overhead (re-
member Figure 8.3) is the runtime reduction we are looking for. In
fact, we find that this overhead accounts for about 95% of the total
runtime of SQL queries Q that repeatedly invoke the UDFS with
random arguments (averaged over all UDFS, see column Overhead).
It is now clear that Figure 8.3 painted an optimistic picture: the eval

phases of useful work tend to be no more than 1/20 Q’s total time span
𝑡𝜔 − 𝑡𝛼.

Even without using memoization, UDF compilation reduces this
overhead to about 8% on average. The remaining overhead is due
to Q’s invocation of the non-recursive UDF that wraps the CTE
(see Figure 9.20). If this residual overhead is noticeable—e.g., for
computationally lightweight functions like fsm and paths, or for
frequently called UDFS (mbrot is called 16950 times by Q)—it may
be advisable to inline the CTE at the UDF call site(s) in Q. This
significant reduction in call overhead is reflected in the Time/Call
column, which shows the average runtime per top-level function call
before and after compilation. A reduction of the call time by a factor
of 10 is typical. For UDF vm, we measured an improvement of 180
times: vm is structured in the form of 9 conditional branches. Each

92 10. Experiments

Table 10.1.: Impact of compilation
and memoization for 10 recursive
SQL UDFS.

UDF Description Recursion Overhead [%] Time/Call [ms] Memoize
UDF CTE UDF CTE 15 000 calls

comps find connected DAG components 2-way 90.64 6.79 3.91 0.48
dtw Dynamic Time Warping distance 3-way 97.59 1.82 196.96 12.57
eval evaluate arithmetic expressions 2-way 96.00 3.21 22.45 1.04

floyd find lengths of shortest paths 3-way 96.74 1.88 9605.80 652.40
fsm parse with a finite state machine linear 94.08 15.24 0.92 0.10
lcs find longest common substring 2-way 98.43 0.67 140.88 11.04

mbrot compute Mandelbrot set tail 97.43 29.44 129.58 6.74
march trace border of 2D object linear 89.37 3.47 39.13 5.76
paths construct file system path names tail 92.27 19.75 0.60 0.06

vm run program on a virtual machine tail 98.17 1.61 401.00 2.19

branch handles one type of VM instruction. While the branches
are mutually exclusive, all 9 contain recursive calls to vm, which are
unfolded (once) and then planned for each call. None of this effort
remains after compilation.

Impact of Memoization. Recursive CTES require time and space
to construct the union table u. Our memoization approach aims to
take advantage of this effort and reuse the union table. Tail-recursive
functions do not require a stack. Therefore, the mbrot, path, and
vm UDFS only memoize the top-level call. The Memoize column of
Table 10.1 documents the runtime impact of memoization when we
enable it for a sequence of 15000 calls to the compiled UDFS. Over
time (from left to right), recursive calls find their random arguments
in the memo table with increasing probability, and as expected, call
times decrease. All 10 UDFS listed in Table 10.1 benefit from memo-
ization. The behavior of dtw reflects our choice of arguments in this
particular case: the function is evaluated over time series of increas-
ing length, and the timings ramp up until the maximum sequence
length is reached. At this point, the table memo has fully materialized
the function [104]. Note that for some UDFS, the effects of memoiza-

[104]: Duta et al. (2020), ‘Functional-
Style SQL UDFS with a Capital ’F’’ tion become apparent only after a large number of calls: for comps,

timings evolve like over the course of 150000 calls.

Zooming in on UDFS march and eval. In the context of database
applications, it is typical for a SQL query Q to invoke a UDFmultiple
times. The plots in Figures 10.1a and 10.1b show the total runtime of
queries Q that perform between 50 and 5000 top-level invocations of
the UDFS march and eval, respectively. Both plots show the order of
magnitude runtime differences between UDFS () and their CTE
() equivalent. The experiment also shows the effects of the CTE
optimizations described in Sections 6.3 and 9.6.

UDF march uses linear recursion to implement theMarching Squares
algorithm (recall Section 4.1, where we described an iterative ver-
sion of the algorithm), which traces the border of an object in the
2D plane. Each step of recursion adds one point to the border, lead-
ing to recursion depths of up to 480 in our experiments (far beyond
the depth limits enforced by engines like ORACLE or SQL SERVER).
Thus, when march is compiled and evaluated as a CTE, we find array-
encoded continuation stacks of the same length in the 𝜅𝑠 column
of the working and union tables. When the CTE-based interpreter
pushes on these stacks and embeds them in the next statement to
execute, POSTGRESQL performs expensive array copy operations.

93

10
0

50
0

1,
00
0

5,
00
0100

500
1,000

5,000
10,000 UDF

CTE

tabular
stack

WITH ITERATE

of top-level invocations

𝑡 [ms]

(a) UDF march (Marching Squares).

10
0

50
0

1,
00
0

5,
00
0100

500

1,000

5,000
10,000

UDF

CTE

tabular
stack

WITH ITERATE

of top-level invocations

𝑡 [ms]

(b) UDF eval (expression evaluation).
Figure 10.1.: Runtime of query Q
before/after compilation, impact of
CTE optimizations.

The tabular continuation stack representation outside the working
and union tables described in Section 9.6 avoids these copy costs
and allows constant-time PUSH and TAIL operations. The runtime
measurements in Figure 10.1a manifest these savings. In addi-
tion to large stacks, march has to deal with the construction of a
potentially large function result: ever-longer arrays of border points
accumulate in the column res of the rows in the union table. Switch-
ing from WITH RECURSIVE to WITH ITERATE can avoid the associated
row construction and table maintenance (at the cost of disabling
memoization), see in Figure 10.1a.

Both optimizations have a negligible impact on eval. The UDF per-
forms bottom-up evaluation of subexpressions in a large arithmetic
expression tree. The tree depth of 16 defines the maximum recursion
depth. This leads to short continuation stacks in column 𝜅𝑠, which
are handled efficiently even in their vanilla array representation: the
tabular stack optimization does not pay off (and overlap in
Figure 10.1b). Also, the CTE for eval keeps comparatively compact
results of type numeric in the res column of the union table. The
use of WITH ITERATE also has little effect (), and the system works
just fine with the standard WITH RECURSIVE construct.

From Recursion to Iteration to
SQL—Marching Squares 11.

Recursion is a powerful part of a programmer’s toolbox. Some
problems are much easier to solve using a recursive formulation
and many textbook-style algorithms are defined recursively. Iterative
versions are not always available. Using recursion in the context of
database systems is untypical at best, but disastrous at worst. We
have already established this for recursive SQL UDFS, and now we
will take a look at recursive PL/SQL UDFS.

Recursive PL/SQL UDFS suffer from the same problems during
execution as recursive SQL UDFS do, as described in Chapter 8.
If execution is possible at all, the ever-increasing stack size (recall
Figure 8.3) may cause the system to abort the computation when
the system’s available process memory is exhausted. As a result,
database systems typically either restrict recursion to some arbitrary
limits or do not support it at all. Some systems like POSTGRESQL are
able to execute such functions without major restrictions, however,
as we will see in Section 11.3, the performance of naive execution is
devastating.

In Chapter 9, we have extended the PL/SQL compilation chain from
Part 1 to be able to handle recursive SQL UDFS. We intentionally
converted the recursive SQL functions to the SSAREC IR before con-
verting back to the ANFREC equivalent. This was done in preparation
for the compilation of recursive PL/SQL functions. In this chapter,
we will use this compilation pipeline to compile both a scalar (see
Figure 11.3) and a table-valued (see Figure 11.6) recursive PL/SQL
version of UDF march to trampolined-style SQL.

11.1. Recursive Marching Squares

Recall that the Marching Squares algorithm [66] computes the con-
[66]: Maple (2003), ‘Geometric de-
sign and space planning using the
marching squares and marching cube
algorithms’

tour of a 2D object by marching around it (see Section 4.1). The
algorithm returns the 2D coordinates of the contour as the result.
The recursive SQL UDF in Figure 11.1 expresses this behavior using
four black boxes. Q1 checks whether we have reached the base case
or whether we need to evaluate the recursive case. When we reach
the base case, we are done and return the empty array. Otherwise,
Q4 computes the direction of the next move. Based on this result,
Q3 calculates the next position on the contour, which is used to re-
cursively call the march UDF again. Finally, Q2 combines the result
of the recursive call with the current position and returns it. This
evaluation order corresponds to the statement order of the SSA
program in Figure 11.2 after flattening the nested black boxes using
the translation rules in Section 9.1.

This formulation of the march UDF is considered linear recursive
because the function calls itself only once, but not in tail position.
The depth of the recursion is equal to the number of points on the
contour of the 2D object. This can easily become a problem, as the

96 11. From Recursion to Iteration to SQL—Marching Squares

Figure 11.1.: Recursive SQL UDF
march.

Q1[⋅,⋅]
Q2[⋅,⋅]

Q3[⋅,⋅]
Q4[⋅]

1 CREATE FUNCTION march(cur point, goal point) RETURNS point[] AS
2 $$
3 SELECT CASE
4 WHEN (v0 = v1)[cur,goal] THEN array[] :: point[]
5 ELSE (v1 || v0)
6 [march(point(v1.x + (v0.dir).x, v1.y + (v0.dir).y)
7 [(SELECT d
8 FROM squares AS s, directions AS d
9 WHERE v0 = s.xy
10 AND (s.ll,s.lr,s.ul,s.ur)
11 = (d.ll,d.lr,d.ul,d.ur))[cur]
12 , cur])
13 , goal)
14 , cur]
15 END;
16 $$ LANGUAGE SQL STRICT;

resulting stack frames quickly consume all of the available stack
memory of the database system.

11.2. Recursive PL/SQL

fun march(cur, goal) : point[] {
start:
IF Q1 [cur,goal]
THEN RETURN [] :: array[];
ELSE GOTO 𝜅then

𝜅then:
dd <- Q4 [cur]
new_cur <- Q3 [cur, dd]
REC v1 = march(new_cur, goal) IN
RETURN Q2 [new_cur, v1]

}

Figure 11.2.: SSAREC representation
of scalar recursive version of UDF
march.

Instead of using a language SQL UDF, we can formulate the same
algorithm using a recursive PL/SQLUDF. This allows us to combine
imperative statements (i.e., loops, conditionals, etc.) with recursion.
We can use statement sequencing to organize the evaluation instead
of using nested black boxes as in Figure 11.1. Figure 11.3 shows this
version of march.

Figure 11.3.: Recursive PL/SQL
UDF march with scalar return type
point[].

Q1[⋅,⋅]

Q2[⋅,⋅]

Q3[⋅,⋅]

Q4[⋅]

1 CREATE FUNCTION march(cur point, goal point) RETURNS point[] AS
2 $$
3 DECLARE
4 new_cur point;
5 dd directions;
6 v1 point[];
7 BEGIN
8 IF (cur = goal)
9 THEN RETURN [];
10 ELSE
11 dd := (SELECT d
12 FROM squares AS s, directions AS d
13 WHERE s.xy = cur
14 AND (s.ll,s.lr,s.ul,s.ur)
15 = (d.ll,d.lr,d.ul,d.ur));
16
17 -- Calculate next position on 2D contour
18 new_cur := point(cur.x + (dd.dir).x, cur.y + (dd.dir).y);
19 v1 := march(new_cur, goal);
20 RETURN new_cur || v1;
21 END IF;
22 END
23 $$ LANGUAGE PLpgSQL STRICT;

Although the recursive SQL version in Figure 11.1 and the recursive
PL/SQL version in Figure 11.3 initially use different languages to ex-
press this algorithm, once compiled into SSA (again, see Figure 11.2),
it is obvious that both versions are equivalent.

After defunctionalization, we end up with the code shown in Fig-
ure 11.4. Since the function is linear recursive, there is only one

11.2. Recursive PL/SQL 97

continuation generated by the CPS transformation. This gives us
some opportunities for improvement. The CASE l OF statement in
function apply is not needed because there is only one branch to
select (see Lines 14 and 15 in Figure 11.4). Therefore, we can elim-
inate this statement, and remove the corresponding continuation
label in the continuation stack type, which simplifies the stack to
type point[].

1 fun march(cur,goal,x,𝜅𝑠) : point[] {
2 IF Q1 [cur,goal] THEN apply(cur, goal, [], 𝜅𝑠)
3 ELSE
4 LET dd = Q4 [cur] IN
5 LET new_curr = Q3 [cur,dd] IN
6 march(new_curr, goal, NULL, PUSH([(𝜅1, new_cur)], 𝜅𝑠))
7 }
8
9 fun apply(cur,goal,x,𝜅) : point[] {
10 IF EMPTY(𝜅) THEN x
11 ELSE
12 LET ⟨l, new_cur⟩ = TOP(𝜅) IN
13 LET 𝜅𝑠 = TAIL(𝜅𝑠) IN
14 CASE l OF
15 '𝜅1': apply(cur, goal, Q2 [new_cur, x], 𝜅𝑠)
16 } Figure 11.4.: Defunctionalized ver-

sion of UDF march in Figure 11.2.

After applying the remaining compilation steps, we end up with
the trampolined-style version of SQL shown in Figure 11.5. This
translation is correct and computes the correct result, but it suffers
from the same arraymaintenance and copying overhead as described
in Section 4.1 that blows up the working table size. In this case, it
is even worse, because both columns res and k (the continuation
stack) are of type point[]. The CPS and defunctionalization-based
translation results in a two-phase trampolined style evaluation of
UDF march in Figure 11.5:

call = 'march': While descending recursively (see Lines 8 to 18),
the continuation stack grows continuously (see r.cur || r.k
in Line 17). Due to the simplification of the data type, only the
current contour point r.cur needs to be pushed to the stack.
This results in a total of 1

2
𝑛2 × (𝑛 − 1) copy operations.

call = 'apply': During the recursive ascend (see Lines 18 to 27),
the CTE effectively iterates over the continuation stack, con-
catenating all elements with the res column (see Line 25). This,
in turn, results in another 𝑛2 × (𝑛 − 1) copy operations.

The translation therefore requires a total of 3
2
𝑛2 × (𝑛 − 1) copy op-

erations, which has a negative impact on performance. Ideally, an
optimization step would recognize that the continuation stack al-
ready contains the final result after the recursive descent. This would
completely eliminate the need to ascend from the recursion in Lines 8
to 18, reducing the number of copy operations to 1

2
𝑛2 × (𝑛 − 1). This

would be an improvement, but still not ideal. However, we will not
use such an optimization in the following, but return to the idea
of Chapter 4 and consider using a TVF instead. The ideal solution
would be to eliminate the need for the copy operations altogether,
which TVFS allow us to do.

98 11. From Recursion to Iteration to SQL—Marching Squares

Q1[⋅,⋅]

Q1[⋅,⋅]

Q2[⋅,⋅]

Q3[⋅,⋅]

Q4[⋅]
march

apply

1 CREATE FUNCTION march(cur point, goal point) RETURNS point[] AS
2 $$
3 WITH RECURSIVE run("rec?", call, res, cur, goal, k) AS (
4 SELECT true, 'march', NULL :: point[], cur, goal, ARRAY[] :: point[]
5 UNION ALL
6 SELECT _.*
7 FROM run AS r,
8 LATERAL (SELECT true, 'apply', NULL :: point, r.cur, r.goal, r.k
9 WHERE r.call = 'march' AND r.cur = r.goal
10 UNION ALL
11 SELECT r.*
12 FROM (SELECT d.dir
13 FROM squares AS s, directions AS d
14 WHERE r.cur = s.xy
15 AND (s.ll,s.lr,s.ul,s.ur)
16 = (d.ll,d.lr,d.ul,d.ur)) AS d(dir),
17 LATERAL (SELECT true, 'march', NULL, point(cur.x + dir.x, cur.y + dir.y), r.goal, r.cur || r.k) AS r
18 WHERE r.call = 'march' AND NOT (r.cur = r.goal)
19 UNION ALL
20 SELECT apply.*
21 FROM (SELECT r.k[1]) AS _(current),
22 LATERAL (SELECT false, NULL, r.res, r.cur, r.goal, r.k
23 WHERE CARDINALITY(r.k) = 0
24 UNION ALL
25 SELECT true, 'apply', current || r.res, current, r.goal, r.k[2:]
26 WHERE CARDINALITY(r.k) <> 0) AS apply
27 WHERE r.call = 'apply'
28 WHERE run."rec?"
29) SELECT r.res FROM run AS r WHERE r."data?"
30 $$ LANGUAGE SQL strict;

Figure 11.5.: Final trampolined-style SQL version of the scalar recursive UDF march in Figures 11.1 and 11.3.

Recursive Table-Valued PL/SQL. Using recursive PL/SQL allows
us to formulate a table-valued version of march that does not need to
copy array elements at all (see Figure 11.6). While the basic structure
of Figure 11.6 is identical to Figure 11.3, black box Q2 no longer
exists. This piece of logic has been replaced by the RETURN NEXT and
RETURN QUERY statements in Lines 19 and 20. Since there is no further
interaction with the result of the recursive call to march (see Line 20),
the function is effectively tail-recursive and therefore identical to
the table-valued iterative formulation in Figure 4.2a of Section 4.1.
This eliminates the need for the continuation stack and the result
array, which greatly improves performance. Figure 4.5 shows the
final trampolined-style translation.

The key point to note is that even though we started with a UDF
definition that was recursive, we ended up with the same end result
as if we had used a loop. This is excellent, because it means that
using recursion does not necessarily have to be a runtime penalty.
We have defined a recursive formulation of the algorithm, but the
compiler has optimized it to be as efficient as the iterative version.

11.3. Experiments 99

Q1[⋅,⋅]

Q3[⋅,⋅]

Q4[⋅]

1 CREATE FUNCTION march(cur point, goal point) RETURNS SETOF point AS
2 $$
3 DECLARE
4 new_cur point;
5 dd directions;
6 BEGIN
7 IF (cur = goal)
8 THEN RETURN;
9 ELSE

10 dd := (SELECT d
11 FROM squares AS s, directions AS d
12 WHERE s.xy = cur
13 AND (s.ll,s.lr,s.ul,s.ur)
14 = (d.ll,d.lr,d.ul,d.ur));
15
16 -- Calculate next position on 2D contour
17 new_cur := point(cur.x + (dd.dir).x, cur.y + (dd.dir).y);
18
19 RETURN NEXT cur;
20 RETURN QUERY (TABLE march(new_cur, goal));
21 END IF;
22 END
23 $$ LANGUAGE PLpgSQL STRICT; Figure 11.6.:Recursive PL/SQLUDF

march with table-valued return type.

11.3. Experiments

SSAREC
(Figure 11.2)

Recursive
SQL UDF

(Figure 11.1)

Recursive
PL/SQL UDF
(Figure 11.6)

Trampolined-style SQL
with continuation stack

(Figure 11.5)

(a) Overview of the scalar versions of
UDF march.

SSA
(Figure 4.3)

Recursive
PL/SQL UDF
(Figure 11.6)

Iterative
PL/SQL UDF
(Figure 4.2a)

Trampolined-style SQL
(Figure 4.5)

(b) Overview of the table-valued ver-
sions of UDF march.

Figure 11.7.: Provides an overview of
the different input and translated out-
put versions of UDF march.

In the following, we will compare several different versions of UDF
march described in the previous Section 11.1 and in Chapter 4. All of
the measurements have been performed on a 64-bit Linux x86 host
(two AMD EPYC™ 7402 CPUs at 2.8GHz and 2TB of RAM). If
not stated otherwise, the timings were averaged over five runs, ignor-
ing the worst and best times. All measurements used POSTGRESQL
version 15 with 4GB of working memory. The execution stack size
was set to 6MB.

Speedup Over Naive SQL UDF march. In Figure 11.8 we show the
speedup factors of the different scalar versions of UDF march over
the recursive SQL UDF in Figure 11.1:

shows the speedup factor of the recursive PL/SQL UDF in Fig-
ure 11.3 over the recursive SQLUDF in Figure 11.1. This version
can only handle input sizes up to 256, even with the stack size
increased to 6MB. However, for the available data points, it
is up to about 12 times faster than the recursive SQL UDF
formulation. The average speedup factor is 8.25.

compares the speedup of the iterative version of march as shown in
Figure 4.2a of Chapter 4. Compared to the recursive PL/SQL
formulation , this version performs slightly better, as expected.
However, up to an input size of about 64, the versions perform
similarly. While this version maintains a speedup factor of
about 15 to 20 (12.78 times faster on average), the recursive
formulation experiences a performance degradation. This is
due to the allocation and deallocation of stack frames.

shows the speedup factor of the compiled version of Figures 11.1
and 11.3, which is the trampolined-style SQL version with a
continuation stack in Figure 11.5.While this version can handle
all input sizes, the speedup factor peaks at an input size of 32

100 11. From Recursion to Iteration to SQL—Marching Squares

and degrades significantly to a factor of about 2.3. This version
manages to improve performance by an average factor of 5.95.
The recursive PL/SQL version performs slightly better than
this version of the translation.

shows the speedup factor of the translation of the iterative ver-
sion of march as shown in Figure 4.2b. This version does not
have to manage the continuation stack, which avoids many
expensive copy operations. As a result, this version has the
best performance, with a speedup factor of up to 35 and 22.29
on average.

Both SQL versions (and) use the regular WITH RECURSIVE seman-
tics, not the optimized WITH ITERATE. We will investigate the effect
of WITH ITERATE later in Figure 11.10.

Figure 11.8.: Speedup factor of the
scalar UDF versions of march over the
naive recursive SQL UDF.

4 8 16 32 64 12
8

25
6

51
2

1

2
3

5

10
15

25
35
50

size of the 2D object’s contour

Speedup over
recursive SQL UDF PL/SQL recursive TS (stack)

PL/SQL iterative TS (stackless)

Table-Valued Versions. Similar to Figure 11.8, Figure 11.9 shows the
speedup factors of the different table-valued versions of UDF march
over the recursive SQL UDF in Figure 11.1. Note that the versions
also use WITH ITERATE:

this bar shows the recursive PL/SQL UDF version with a table-
valued return type, as shown in Figure 11.6. It performs slightly
worse than its scalar counterpart, with an average speedup fac-
tor of 5.93. However, it can handle all input sizes. This function
suffers from the same stack-related performance degradation
at large input sizes as the non-table-valued version.

shows the speedup factor of the iterative table-valued version of
march, as in Figure 4.2a. This variant performs almost identi-
cally to its scalar equivalent, with an average speedup factor of
13.01. There is no performance degradation for larger inputs.

shows the translation of and . This version does not require an
explicit continuation stack because the function is effectively
tail-recursive (see Figure 11.6). Without this stack, and without
an array return type, the expensive copy operations are elim-
inated. As a result, this version improves performance by an
average factor of 25.83. Removing these array data types from
the working table also eliminates performance degradation
with larger input sizes.

11.3. Experiments 101

4 8 16 32 64 12
8

25
6

51
2

1

2
3

5

10
15

25
35
50

size of the 2D object’s contour

Speedup over
recursive SQL UDF

PL/SQL TVF recursive PL/SQL TVF iterative TS (stackless) TVF

Figure 11.9.: Speedup factor of the
table-valued UDF versions of march
over the naive recursive SQL UDF.

The Effect of WITH ITERATE. The space-saving effect WITH ITERATE
(recall Section 6.3) provides is particularly interesting in the case of
recursive UDFS, since managing the continuation stack can become
expensive.

shows the speedup factor of WITH ITERATE over WITH RECURSIVE
in Line 3 of Figure 11.5.

shows the speedup factor when using WITH ITERATE instead of
WITH RECURSIVE in the translation of Figure 4.2b of Chapter 4.

shows the speedup factor when using WITH ITERATE instead of
WITH RECURSIVE in Figure 4.5 of Chapter 4.

While WITH ITERATE improves performance for all translations, there
is only a small benefit for versions without an explicit continuation
stack. However, since the translation of Figure 11.5 requires many
copy operations, WITH ITERATE really shines and reduces the mem-
ory footprint and thus performance. This effect is amplified by the
size of the input. Using WITH ITERATE improves the average speedup
factor of in Figure 11.8 from 5.95 to 8.95. The translation is then
at least equal to, and for most input sizes faster than, the original
recursive PL/SQL version.

4 8 16 32 64 12
8

25
6

51
2

1

1.25

2

3

size of the 2D object’s contour

Speedup factor
TS (stack) IT TS (stackless) IT TS (stackless) TVF IT

Figure 11.10.: Speedup factors of
WITH ITERATE over WITH RECURSIVE.

Conclusion and Related Work 12.
12.1. Conclusions

We are confident that the SQL UDF compiler as described in Chap-
ter 9 is more than just a curious excursion into the realm of pro-
gramming language compilation techniques. The compiler can help
to make recursive UDFS more accessible to users. This is because
transforming recursive UDFS into pure SQL queries makes the com-
putation more efficient and can be used in more database engines.
The runtime savings reported for 10 recursive UDFS in Chapter 10
of about 90% are significant. The applicability is immediate, as we
are pursuing a non-invasive source-to-source transformation that
can be implemented on top of any database engine with SQL:1999
support. In addition to the performance benefits, the compilation
approach also provides a way to write recursive UDF in a more
natural way. We think this is very important because it allows more
types of computation to be expressed directly in database systems.
The survey done in [105] suggests that users tend to prefer recur-

[105]: Duta (2022), ‘Another Way to
Implement Complex Computations:
Functional-Style SQL UDF’

sive UDFS when the algorithm itself is recursive. This is because
using a recursive UDFS is a more direct way to express the recursive
algorithm.

The array representation of the continuation stack is the main draw-
back of using CPS and defunctionalization. While this data type
is supported by most database engines, it is not efficient to use
within recursive CTES. This is because the array must be copied for
each iteration of the recursive CTE. This is a major performance
bottleneck. We have shown that the performance of recursive UDFS
can be improved by using WITH ITERATE instead of WITH RECURSIVE.
However, this is not a general solution because WITH ITERATE is not
standards-compliant and is therefore not supported by database
engines.

Intra-function Call Memoization. The memoization technique de-
scribed in Section 9.5 depends on the entries in the memo table.
However, these entries are not added to the table until after the
UDF call is completed. This prevents the function from reusing al-
ready computed values during a single call, thus limiting the impact
of memoization. There are two ways to solve this problem:

(1) We could add another array to the columns of the working
table that temporarily holds the memoization rows. This ar-
ray would allow us to use memoization already during the
current function call. While this approach can improve the
performance of functions with many overlapping subproblems,
it can actually slow down performance in cases where there
are fewer subproblems. For few overlapping subproblems, the
memoization rows may introduce excessive array copy over-
head. But a compiler could decide whether to add such an

104 12. Conclusion and Related Work

array based on the shape of the recursion. For example, tail
recursions and linear recursions do not benefit from such a
data structure, because a reappearing subproblemwouldmean
that the program is in an infinite loop. However, if the recur-
sion is tree-shaped, then this data structure can be used to
improve performance. We have not implemented this idea, but
we believe that it is a promising approach that could improve
the performance of recursive UDFS. We leave this as future
work.

(2) We could try to execute the function calls in such a way that
the subproblems are solved first. This would fill the memo table
iteratively, generating solutions to larger and larger subprob-
lems by using the solutions to smaller subproblems. We used
this idea for UDF dtw in Chapter 10, Table 10.1.
However, in order to automate this process, it is necessary to
specify the order in which the evaluations should be performed.
This does not fit well with our CPS-based approach, because
the CPS transformation linearizes the execution of function
calls and defines an explicit evaluation order. But the function
calls to be executed next are not known at compile time. We
would have to generate a call graph that we could evaluate
from the bottom up. A similar idea has been explored in the
context of functional-style SQL UDFS by Duta and Grust [104,
105, 116].

[104]: Duta et al. (2020), ‘Functional-
Style SQL UDFS with a Capital ’F’’

[105]: Duta (2022), ‘Another Way to
Implement Complex Computations:
Functional-Style SQL UDF’

[116]: Duta (2022), ‘Viability of Recur-
sive SQL Functions’

12.2. Related Work: Functional-Style SQL
UDFS

Duta and Grust [104, 105, 116] also propose a strategy for compiling

[104]: Duta et al. (2020), ‘Functional-
Style SQL UDFS with a Capital ’F’’

[105]: Duta (2022), ‘Another Way to
Implement Complex Computations:
Functional-Style SQL UDF’

[116]: Duta (2022), ‘Viability of Recur-
sive SQL Functions’

recursive SQL UDFS into pure SQL queries. This compiler, too,
generates a recursive CTE that can replace the body of a recursive
UDF. However, the compilation approach and the resulting function
evaluation approach are different. After compilation, the former
recursive SQL UDFS are evaluated in two distinct phases. First, a
call graph is constructed as an explicit tabular data structure that
records the arguments of all recursive calls that a recursive function,
say f, would make. These calls are not yet evaluated. Second, the
call graph is traversed from the bottom up, evaluating the body of f
for the recorded calls. When the root of the call graph is reached,
the final result is returned.

Using a call graph allows them to apply several optimizations, such
as call sharing, which can reduce the size of the call graph, or mem-
oization, which allows them to reuse the results of already evaluated
recursive calls. However, the approach in its current state is limited
to recursive SQL UDFS only. Compilation requires a slicing step
that extracts only the relevant parts of the function body defini-
tion needed for the recursive call. Program slicing [117, 118] is well

[117]: Tip (1994), ‘A survey of program
slicing techniques’

[118]: Weiser (1984), ‘Program Slic-
ing’

understood in general, but not for SQL queries.

12.3. Related Work: First-Class Functions for First-Order Database Engines 105

12.3. Related Work: First-Class Functions for
First-Order Database Engines

Grust, Schweinsberg, and Ulrich [119, 120] describe a defunction-
[119]: Grust et al. (2013), ‘Functions
are data too: defunctionalization for
PL/SQL’

[120]: Grust et al. (2013), ‘First-class
functions for first-order database en-
gines’

alization approach for queries and show how this technique can
be applied to query languages (e.g., PL/SQL). They recognize that
functions can be interpreted as values, which allows higher-order
functions to be expressed in terms of regular values. Their goal is
to bring functional programming paradigms to PL/SQL, without
having to change existing database systems. To do that, they define
a higher-level version of PL/SQL as their input language, which
they then successively translate into regular PL/SQL. Similar to our
approach, closures (in our case defunctionalized continuations) are
represented as row values. A dispatcher implements dynamic func-
tion calls for closures. The dispatching logic itself is implemented
in PL/SQL. This allows them to use the existing PL/SQL runtime
to evaluate the function body.

In terms of performance, they found that dispatched function calls
had minimal impact on ORACLE’s performance compared to regular
static calls. For POSTGRESQL 9.2, however, it caused a significant
slowdown (factor 3.5). Although the slowdown would probably not
be as bad with today’s version of POSTGRESQL, compiling to SQL
could still improve the performance of such programs. Beyond per-
formance, higher-order functions can lead to concise and elegant
formulations of algorithms that are close to the data. This is very
much in line with the goals of this thesis.

While it may be possible to extend their approach to use recursive
CTES instead of PL/SQL to implement the dispatcher, this was not
the focus of their work. They also do not discuss the impact of their
approach on the performance of recursive UDFS.

12.4. Related Work: Fun SQL

FUNSQL [121] was proposed as a database language in the style of
[121]: Binnig et al. (2012), ‘FunSQL:
It is Time to Make SQL Functional’functional programming. This language attempts to allow devel-

opers to express application logic in imperative-like steps. While
FUNSQL’s function definitions are similar to PL/SQL, there are
some important differences: (1) Variable assignments are in SSA and
can be table-valued. (2) Tail-recursive functions are a dedicated fea-
ture. (3) Functions are compiled into a graph-based execution plan.
This allows intermediate results to be read by multiple statements,
and it allows cycles which is used for tail-recursion. These execution
plans are compiled into sequences of SQL statements that mate-
rialize their intermediate results into temporary tables as needed.
Supporting only tail recursive functions is a wise design decision
because, as we have discussed, they map directly to iterations. This
makes compilation much easier, and saves them the trouble of doing
things like CPS and defunctionalization.

106 12. Conclusion and Related Work

12.5. Incrementalization

Recursion elimination has been studied extensively. However, it has
remained extremely difficult to develop a general method for trans-
forming general recursion into iteration. Liu and Stoller [122–124]

[122]: Liu et al. (1999), ‘From recur-
sion to iteration: what are the opti-
mizations?’

[123]: Liu et al. (1998), ‘Static caching
for incremental computation’

[124]: Liu et al. (1995), ‘Systematic
derivation of incremental programs’

propose a powerful and systematic method to transform general
recursion into iteration based on incrementalization. Incremental
programs try to avoid unnecessary duplication of common compu-
tations by taking advantage of repeated computations on similar
inputs. Given a program 𝑓 and a certain input change ⊕, a program
𝑓′ that efficiently computes the value of 𝑓(𝑥 ⊕ 𝑦) using the value of
𝑓(𝑥) is called an incremental version of 𝑓 under ⊕ [124].

The method described in [122] consists of three steps: (1) identify
an input increment, (2) derive an incremental version under the
input increment, and (3) form an iterative computation using the
incremental version. The resulting programs reuse as much of the
existing solution as possible. This is related to the use of memoiza-
tion or dynamic programming [125]. These techniques are useful

[125]: Bellman (1954), ‘The theory of
dynamic programming’ optimizations for problems that can be decomposed into overlap-

ping subproblems. The key idea is to solve each subproblem only
once and store or reuse the solution. When the same subproblem
is encountered again, its solution can simply be reused rather than
recomputed. The relationship between dynamic programming and
incrementalization is that dynamic programming stores the solu-
tion to subproblems, while incrementalization focuses on efficiently
updating the solution.

The basic premise of compiling recursive computation into iteration
of the incrementalization line of work is the same as our approach
described in Chapter 8 of this thesis. However, incrementalization
avoids the use ofCPS and defunctionalization, butmore importantly,
it avoids the use of a continuation stack in many cases. As we saw
in Section 11.3 of Chapter 11, the continuation stack can be a major
issue when compiled to SQL. Eliminating the stack could bring
huge performance improvements, especially for programs with a
large number of copy operations.

FINAL REMARKS

Wrap-Up 13.
“Again, you can’t connect the dots
looking forward; you can only connect
them looking backward. So you have to
trust that the dots will somehow connect
in your future.”

—Steve Jobs

The defining goal of this thesis was to followRowe and Stonebraker’s
advice to “move your computation close to the data”—in our case
UDF-based workloads. As recognized by Ramachandra et al. [27], it-

[27]: Ramachandra et al. (2018),
‘Froid: Optimization of Imperative
Programs in a Relational Database’

erative UDFS suffer from an inherent impedance mismatch between
the database system and the PL/SQL interpreter. This impedance
mismatch is the root cause of the performance problems of UDFS.
Starting where FROID and AGGIFY left off, we explored how to elim-
inate this impedance mismatch using tried and tested techniques
from the field of programming languages. Most of these techniques
have not been used in the context of database systems before, but
we have shown how they can be adapted to work in this context.

The key insight is the SQL-based version of trampolined style, which
has proven itself to be a powerful tool for expressing any kind of
computation in SQL. This simple style of control flow can easily
be expressed using recursive CTES in SQL. The two paradigms
complement each other and allow for a simple and efficient imple-
mentation of trampolined style in SQL. We have shown that this
idea can be used to map both iterative and recursive formulations of
algorithms to pure SQL queries, and that these queries can improve
performance over the initial UDF formulation.

Our approach can be used on systems with UDF support to improve
performance, memory usage, and the planner’s optimization capa-
bilities. This is particularly useful in the context of legacy systems
where the database system cannot be changed, but the applica-
tion can be modified. In this case, the application can replace the
UDF with trampolined style queries, leaving the database system
untouched. But it can also be used to bring UDF support to sys-
tems without it, eliminating the need to implement, e.g., a PL/SQL
interpreter. For closed-source systems, this may be the only way
to add UDF support. But this approach also has advantages for
open-source systems. Instead of implementing a full PL/SQL inter-
preter, the database system only needs to support LATERAL joins and
recursive CTES, which is a much simpler task and already supported
by many systems. The UDF compilation can then be done without
modifying the database system, e.g., by doing the translation in an
extension if that is supported, or by doing the translation outside
the database system.

The fact that we were able to share large parts of the compilation
pipeline for iterative PL/SQL UDFS and for recursive UDFS is a
significant accomplishment. It shows that the compilation pipeline
is flexible enough to support different programming paradigms. But
most importantly, it shows that trampolined style is a viable vehicle
for implementing arbitrary computations in SQL. We believe that
this is a significant contribution to the field of database systems in
general, to the field of UDF compilation specifically, and that it will
be useful for future research. We hope this work will inspire others

110 13. Wrap-Up

to explore the possibilities of trampolined style in SQL. We are con-
fident that there are many more applications that can be approached
with this idea, because we have only scratched the surface.

13.1. Future Work

LATERAL Join Free Translation. Our method of translating UDFS to
trampolined style SQL queries requires the use of LATERAL joins to
express variable bindings. While LATERAL joins work fine on systems
such as POSTGRESQL, some systems do not support them, or they
may come with runtime penalties. Some modern database systems
such as DUCKDB [68] and UMBRADB [88] use a technique to unnest

[68]: Raasveldt et al. (2019), ‘DuckDB:
an Embeddable Analytical Database’

[88]: Neumann et al. (2020), ‘Umbra:
A Disk-Based Systemwith In-Memory
Performance.’

arbitrary correlated queries pioneered by Neumann and Kemper
[126]. This technique generally improves the performance of corre-
lated subqueries and LATERAL joins. However, decorrelation comes
at a cost and can degrade performance when many LATERAL joins are
used with few rows. This is exactly what our translation approach
generates, unfortunately.

UMBRADB supports UDFS, but at the
time of writing using UDFS limits the
amount of parallelism the system can
take advantage of.

While our approach can be used to bring UDF computation to these
modern systems, we believe that a different compilation strategy
might be beneficial. It is possible to translate UDFS to trampo-
lined style SQL queries without using LATERAL joins. This can be
done by using a different translation scheme. Instead of translating
variable bindings to LATERAL joins, we can translate them to non-
recursive CTES. We are confident that this dataflow-oriented trans-
lation (1) simplifies the compilation pipeline, while (2) maintaining
the performance improvement on legacy systems, but (3) improves
performance on modern database systems. This is something we
plan to look into in the future.

Batched Evaluation. We refer to batched evaluation as the process
of encoding multiple calls to the same UDF into the initial working
table of the recursive CTE. This is possible because the individual
control rows are independent of each other. The trampolined-style
translation preserves this property, and thus allows for batched
evaluation.

Huber has shown that batched evaluation has limited advantages for
POSTGRESQL [127]. While some of the UDFS we have used in our ex-

[127]: Huber (2022), ‘Optimiziation
of PL/PGSQL Translations Using
Batching and Multiple Recursive Ref-
erences’

perimental evaluation in Chapter 6 did benefit slightly from batched
evaluation and improved performance, the benefits were not sig-
nificant. To make matters worse, in some cases, batched evaluation
leads to performance degradations. This result is a bit disappointing
and counterintuitive because database systems promise to evaluate
entire data sets more efficiently than individual rows. However, this
does not seem to be the case for this particular workload. We believe
this is the case because the size of the working table quickly grows
larger than the available work_mem of the system. POSTGRESQL has
no choice but to materialize pages to disk after this point. The over-
head of writing to the disk was too high, even though the server

13.1. Future Work 111

used for the measurements had a fast SSD. Also, POSTGRESQL does
not have any parallelization capabilities for recursive CTES.

We think that batched evaluation can be useful for modern data-
base systems, especially those that support parallel recursive CTES.
Promising candidates are DUCKDB [68] and UMBRADB [88], which

[68]: Raasveldt et al. (2019), ‘DuckDB:
an Embeddable Analytical Database’

[88]: Neumann et al. (2020), ‘Umbra:
A Disk-Based Systemwith In-Memory
Performance.’

both have shown to be very fast for recursive CTES and support
parallel evaluation. We plan to investigate this in the future.

Code Generating Database Systems. Older database systems typi-
cally execute queries by interpreting them. These systems do not
generate machine code for the queries. Compilers have historically
not been fast enough to generate code at runtime, and the perfor-
mance overhead of interpreting queries has been negligible com-
pared to the cost of disk access [128]. Both of these reasons are no

[128]: Kersten et al. (2021), ‘Tidy Tu-
ples and Flying Start: fast compila-
tion and fast execution of relational
queries in Umbra’

longer valid. Modern compilers are fast enough to generate code at
runtime, and the performance overhead of interpreting queries is
no longer negligible.

HYPER [95] and UMBRADB [88] are examples of database systems
[95]: Kemper et al. (2011), ‘HyPer:
A hybrid OLTP&OLAP main mem-
ory database system based on virtual
memory snapshots’

that generate machine code for queries at runtime. Also, both sys-
tems have support for UDFS similar to PL/SQL. It would be interest-
ing to see if these compiled PL/SQL-like languages show the same
performance improvements with our approach on these systems as
we have seen on legacy systems, or if the code generation capabilities
of these systems are able to eliminate the overhead associated with
UDF execution.

Further Optimizations. We have shown that trampolined style can
be used to improve performance of UDFS on legacy systems. How-
ever, there is still room for improvement. The generated SQL queries
can be further optimized by the database system itself. This can be
done by improving the optimizer of the system to recognize patterns
generated by our translation approach and optimize them away. It
may also be possible to add specialized query operators to the sys-
tem that are tailored to trampoline-style queries. We think this is an
interesting direction for future research.

APPENDIX

PL/SQL UDF Definitions A.
In the following we list the iterative PL/SQL UDF definitions of the
UDFS in Table 6.1. The definitions are given in PL/PGSQL syntax.

All UDFS are available with
the necessary setup code
here: https://github.com/
One-WITH-RECURSIVE-is-Worth-Many-GOTOs/
CodeFunction bbox.

1 CREATE FUNCTION bbox(start vec2) RETURNS box AS
2 $$
3 DECLARE
4 "track?" boolean := false;
5 goal vec2;
6 bbox box := NULL;
7 current vec2 := start;
8 square squares;
9 dir directions;

10 BEGIN
11 WHILE true LOOP
12 IF "track?" AND current = goal THEN
13 EXIT;
14 END IF;
15
16 square := (SELECT s FROM squares AS s WHERE s.xy = current);
17 dir := (SELECT d
18 FROM directions AS d
19 WHERE (square.ll, square.lr, square.ul, square.ur)
20 = (d.ll, d.lr, d.ul, d.ur));
21
22 IF NOT "track?" AND dir."track?" THEN
23 "track?" := true;
24 goal := current;
25 bbox := box(point(goal.x, goal.y));
26 END IF;
27 IF "track?" THEN
28 bbox := bound_box(bbox, box(point(current.x, current.y)));
29 END IF;
30
31 current := (current.x + (dir.dir).x, current.y + (dir.dir).y) :: vec2;
32 END LOOP;
33
34 RETURN bbox;
35 END;
36 $$ LANGUAGE PLPGSQL STRICT;

Function global.

1 CREATE FUNCTION global(orderkey int) RETURNS boolean AS
2 $$
3 DECLARE
4 regions int[];
5 region int;
6 BEGIN
7 regions := (SELECT array_agg(n.n_regionkey)
8 FROM lineitem AS l, supplier AS s, nation AS n
9 WHERE l.l_orderkey = orderkey

10 AND l.l_suppkey = s.s_suppkey
11 AND s.s_nationkey = n.n_nationkey);
12
13 FOREACH region IN ARRAY regions LOOP
14 IF region <> regions[1] THEN RETURN true; END IF;
15 END LOOP;
16
17 RETURN false;
18 END;
19 $$ LANGUAGE PLPGSQL;

https://github.com/One-WITH-RECURSIVE-is-Worth-Many-GOTOs/Code
https://github.com/One-WITH-RECURSIVE-is-Worth-Many-GOTOs/Code
https://github.com/One-WITH-RECURSIVE-is-Worth-Many-GOTOs/Code

116 A. PL/SQL UDF Definitions

Function force.

1 CREATE FUNCTION force(body bodies, theta float) RETURNS point AS
2 $$
3 DECLARE
4 force point := point(0,0);
5 G CONSTANT float := 6.67e-11;
6 Q barneshut[];
7 node barneshut;
8 children barneshut[];
9 dist float;

10 dir point;
11 grav point;
12 BEGIN
13 node = (SELECT b FROM barneshut AS b WHERE b.node = 0);
14 Q = array[node];
15
16 WHILE cardinality(Q) > 0 LOOP
17 node = Q[1];
18 Q = Q[2:];
19 dist = GREATEST(node.center<->body.pos, 1e-10);
20 dir = node.center - body.pos;
21 grav = point(0,0);
22 IF NOT EXISTS (SELECT 1
23 FROM walls AS w
24 WHERE (body.pos <= body.pos ## w.wall) <>
25 (node.center <= node.center ## w.wall)) THEN
26 grav = (G * body.mass * node.mass / dist̂ 2) * dir;
27 END IF;
28 IF (node.node IS NULL) OR (width(node.bbox) / dist < theta) THEN
29 force = force + grav;
30 ELSE
31 children = (SELECT array_agg(b) FROM barneshut AS b WHERE b.parent = node.node);
32 Q = Q || children;
33 END IF;
34 END LOOP;
35
36 RETURN force;
37 END;
38 $$ LANGUAGE PLPGSQL STABLE STRICT;

Function items.

1 CREATE FUNCTION items(catid INT8) RETURNS INT8 AS
2 $$
3 DECLARE
4 totalcount INT8;
5 curcat INT8;
6 catitems INT8;
7 subcat INT8;
8 stack INT8[];
9 catrec category;

10 BEGIN
11 totalcount := 0 :: INT8;
12 stack := ARRAY[catid];
13
14 WHILE cardinality(stack) > 0 LOOP
15 curcat := stack[1];
16 stack := stack[2:];
17 catitems := (SELECT count(P_PARTKEY) FROM item WHERE category_id = curcat);
18 totalcount := totalcount + catitems;
19 stack := (SELECT array_agg(category_id :: INT8) FROM category WHERE parent_category = curcat) || stack;
20 END LOOP;
21 RETURN totalcount;
22 END
23 $$ LANGUAGE PLPGSQL;

Function late. 117

Function late.

1 CREATE FUNCTION late(suppkey int, orderkey int) RETURNS boolean AS
2 $$
3 DECLARE
4 lis lineitem[];
5 li lineitem;
6 blame boolean := false; -- is suppkey to blame?
7 multi boolean := false; -- does this order have multiple suppliers?
8 BEGIN
9 lis := (SELECT array_agg(l) FROM lineitem AS l WHERE l.l_orderkey = orderkey);

10 FOREACH li IN ARRAY lis LOOP
11 multi := multi OR li.l_suppkey <> suppkey;
12 IF li.l_receiptdate > li.l_commitdate THEN
13 IF li.l_suppkey <> suppkey
14 THEN RETURN false;
15 ELSE blame := true;
16 END IF;
17 END IF;
18 END LOOP;
19 RETURN multi AND blame;
20 END;
21 $$ LANGUAGE PLPGSQL;

Function margin.

1 CREATE FUNCTION margin(partkey int) RETURNS trade AS
2 $$
3 DECLARE
4 this_order dated_order;
5 buy int := NULL; sell int := NULL;
6 margin numeric(15,2) := NULL; cheapest numeric(15,2) := NULL;
7 cheapest_order int;
8 price numeric(15,2); profit numeric(15,2);
9 BEGIN

10 -- ➊ first order for the given part
11 this_order := (SELECT (o.o_orderkey, o.o_orderdate) :: dated_order
12 FROM lineitem AS l, orders AS o
13 WHERE l.l_orderkey = o.o_orderkey AND l.l_partkey = partkey
14 ORDER BY o.o_orderdate
15 LIMIT 1);
16
17 -- hunt for the best margin while there are more orders to consider
18 WHILE this_order IS NOT NULL LOOP
19 -- ➋ price of part in this order
20 price := (SELECT MIN(l.l_extendedprice * (1 - l.l_discount) * (1 + l.l_tax))
21 FROM lineitem AS l
22 WHERE l.l_orderkey = this_order.orderkey AND l.l_partkey = partkey);
23
24 -- if this the new cheapest price, remember it
25 cheapest := COALESCE(cheapest, price);
26 IF price <= cheapest THEN
27 cheapest := price;
28 cheapest_order := this_order.orderkey;
29 END IF;
30 -- compute current obtainable margin
31 profit := price - cheapest;
32 margin := COALESCE(margin, profit);
33 IF profit >= margin THEN
34 buy := cheapest_order;
35 sell := this_order.orderkey;
36 margin := profit;
37 END IF;
38
39 -- ➌ find next order (if any) that traded the part
40 this_order := (SELECT (o.o_orderkey, o.o_orderdate) :: dated_order
41 FROM lineitem AS l, orders AS o
42 WHERE l.l_orderkey = o.o_orderkey AND l.l_partkey = partkey
43 AND o.o_orderdate > this_order.orderdate
44 ORDER BY o.o_orderdate
45 LIMIT 1);
46 END LOOP;
47 RETURN (buy, sell, margin) :: trade;
48 END;
49 $$
50 LANGUAGE PLPGSQL;

118 A. PL/SQL UDF Definitions

Function markov.

1 CREATE FUNCTION markov(start_state int, success_at int, failure_at int, max_steps int)
2 RETURNS int AS $$
3 DECLARE
4 total_reward int = 0;
5 curr_state int = start_state;
6 curr_action text = '';
7 roll double precision;
8 BEGIN
9 FOR steps in 1..max_steps LOOP

10 -- Find the action the policy finds appropriate in the current state
11 curr_action = (SELECT p.action_name
12 FROM policy AS p, states AS s
13 WHERE curr_state = s.id AND p.state_id = s.id);
14 -- Random number (double precision) roll ∈ [0.0, 1.0)
15 roll = random();
16 -- Find the state we actually reach. There may be a chance we end up in another state.
17 curr_state = (SELECT possible_move.s_to
18 FROM (SELECT a.s_to, COALESCE(SUM(a.p) OVER w, 0.0) AS p_from,
19 SUM(a.p) OVER (ORDER BY a.id) AS p_to
20 FROM actions AS a
21 WHERE curr_state = a.s_from AND curr_action = a.name
22 WINDOW w AS (ORDER BY a.id ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING)
23) AS possible_move(s_to, p_from, p_to)
24 WHERE possible_move.p_from <= roll AND roll < possible_move.p_to);
25 -- Add the reward we receive by stepping on the state we actually reached
26 total_reward = total_reward + (SELECT s.r FROM states AS s WHERE curr_state = s.id);
27 IF total_reward >= success_at OR total_reward <= failure_at THEN
28 RETURN steps * sign(total_reward);
29 END IF;
30 END LOOP;
31 RETURN 0;
32 END
33 $$ LANGUAGE PLPGSQL;

Function packing. 119

Function packing.

1 CREATE FUNCTION packing(orderkey int, capacity int) RETURNS linenumber[][] AS
2 $$
3 DECLARE
4 n int; -- # of lineitems in order
5 items int; -- set of lineitems still to pack
6 size int; -- current pack size
7 subset int; -- current subset of lineitems considered for a pack
8 max_size int; -- maximum pack size found so far
9 max_subset int; -- pack subset of maximum size found so far

10 pack linenumber[]; -- current pack
11 packs linenumber[][]; -- current pack of packs
12 BEGIN
13 -- # of lineitems in order
14 n := (SELECT COUNT(*) FROM lineitem AS l WHERE l.l_orderkey = orderkey);
15 -- order key not found?
16 IF n = 0 THEN
17 RETURN array[] :: int[][];
18 END IF;
19
20 -- container capacity sufficient to hold largest part?
21 IF capacity < (SELECT MAX(p.p_size)
22 FROM lineitem AS l, part AS p
23 WHERE l.l_orderkey = orderkey
24 AND l.l_partkey = p.p_partkey) THEN
25 RETURN array[] :: int[][];
26 END IF;
27
28 -- initialize empty pack of packs
29 packs := array[] :: linenumber[][];
30 -- create full set of linenumbers {1,2,...,n}
31 items := 2 n̂ - 1;
32
33 -- as long as there are still lineitems to pack...
34 WHILE items <> 0 LOOP
35 max_size := 0;
36 max_subset := 0; -- ∅
37 -- iterate through all non-empty subsets of items
38 subset := items & -items;
39 LOOP
40 -- find size of current lineitem subset o
41 size := (SELECT SUM(p.p_size)
42 FROM lineitem AS l, part AS p
43 WHERE l.l_orderkey = orderkey
44 AND subset & (1 << l.l_linenumber - 1) <> 0
45 AND l.l_partkey = p.p_partkey);
46
47 if size <= capacity AND size > max_size THEN
48 max_size := size;
49 max_subset := subset;
50 END IF;
51 -- exit if iterated through all lineitem subsets ...
52 IF subset = items THEN
53 EXIT;
54 ELSE
55 -- ... else, consider next lineitem subset
56 subset := items & (subset - items);
57 END IF;
58 END LOOP;
59
60 -- convert bit set max_subset into set of linenumbers
61 pack := array[] :: linenumber[];
62 FOR linenumber IN 1..n LOOP
63 IF max_subset & (1 << linenumber - 1) <> 0 THEN
64 pack := pack || linenumber :: linenumber;
65 ELSE
66 pack := pack || 0 :: linenumber; -- 0 ≡ lineitem not in set
67 END IF;
68 END LOOP;
69 -- add pack to current packing
70 packs := packs || array[pack];
71
72 -- we've selected lineitems in set max_subset,
73 -- update items to remove these lineitems
74 items := items & ~max_subset;
75 END LOOP;
76
77 RETURN packs;
78 END;
79 $$
80 LANGUAGE PLPGSQL;

120 A. PL/SQL UDF Definitions

Function savings.

1 CREATE FUNCTION savings(orderkey int) RETURNS savings AS
2 $$
3 DECLARE
4 "order" orders;
5 items int;
6 lineitem lineitem;
7 partsupp partsupp;
8 min_supplycost numeric(15,2);
9 new_supplier int;

10 new_suppliers supplier_change[];
11 total_supplycost numeric(15,2);
12 new_supplycost numeric(15,2);
13 BEGIN
14 "order" := (SELECT o
15 FROM orders AS o
16 WHERE o.o_orderkey = orderkey);
17 IF "order" IS NULL THEN
18 RETURN NULL;
19 END IF;
20
21 -- # of lineitems (= parts) in order
22 items := (SELECT COUNT(*)
23 FROM lineitem AS l
24 WHERE l.l_orderkey = orderkey);
25
26 total_supplycost := 0.0;
27 new_supplycost := 0.0;
28 new_suppliers := array[] :: supplier_change[];
29
30 -- iterate over all lineitems in order
31 FOR item IN 1..items LOOP
32 -- pick current lineitem in order
33 lineitem := (SELECT l
34 FROM lineitem AS l
35 WHERE l.l_orderkey = orderkey AND l.l_linenumber = item);
36 -- find current supplier for lineitem's part
37 partsupp := (SELECT ps
38 FROM partsupp AS ps
39 WHERE lineitem.l_partkey = ps.ps_partkey AND lineitem.l_suppkey = ps.ps_suppkey);
40
41 -- find minimum supplycost (for ANY supplier that has sufficient stock) for the lineitem's part
42 min_supplycost := (SELECT MIN(ps.ps_supplycost)
43 FROM partsupp AS ps
44 WHERE ps.ps_partkey = lineitem.l_partkey
45 AND ps.ps_availqty >= lineitem.l_quantity);
46
47 -- new supplier with minimum supplycost
48 new_supplier := (SELECT MIN(ps.ps_suppkey)
49 FROM partsupp AS ps
50 WHERE ps.ps_supplycost = min_supplycost
51 AND ps.ps_partkey = lineitem.l_partkey);
52
53 -- record whether supplier has changed (part, old, new)
54 IF new_supplier <> partsupp.ps_suppkey THEN
55 new_suppliers := (lineitem.l_partkey, partsupp.ps_suppkey, new_supplier) :: supplier_change || new_suppliers;
56 END IF;
57
58 -- total supplycost of original and new supplier
59 total_supplycost := total_supplycost + partsupp.ps_supplycost * lineitem.l_quantity;
60 new_supplycost := new_supplycost + min_supplycost * lineitem.l_quantity;
61 END LOOP;
62
63 RETURN ((1.0 - new_supplycost / total_supplycost) * 100.0, new_suppliers) :: savings;
64 END;
65 $$
66 LANGUAGE PLPGSQL;

Function sched. 121

Function sched.

1 CREATE FUNCTION schedule(orderkey int) RETURNS scheduled[] AS
2 $$
3 DECLARE
4 "order" orders;
5 details order_details;
6 schedule_start date; -- production of order must happen
7 schedule_end date; -- between these dates
8 schedule scheduled[]; -- constructed schedule
9 busy daterange[]; -- when are we busy already?

10 lineitem lineitem; -- current lineitem to schedule
11 item_start date; -- production of current lineitem
12 item_end date; -- happens between these dates
13 BEGIN
14 -- access order, bail out if order does not exist
15 "order" := (SELECT o FROM orders AS o WHERE o.o_orderkey = orderkey);
16 IF "order" IS NULL THEN RETURN NULL; END IF;
17 details := (SELECT (COUNT(*), MAX(l.l_shipdate)) :: order_details FROM lineitem AS l WHERE l.l_orderkey = orderkey);
18 -- lineitems need to be produced between these dates
19 schedule_end := details.last_shipdate;
20 schedule_start := "order".o_orderdate;
21 schedule := array[] :: scheduled[]; -- start with an empty schedule
22 busy := array[] :: daterange[]; -- we're not busy yet
23 FOR prio IN 1..details.items LOOP
24 -- grab lineitem with given priority (~ l_extendedprice)
25 lineitem := (SELECT l.lineitem
26 FROM (SELECT ROW_NUMBER() OVER (ORDER BY p.p_retailprice DESC) AS priority, l AS lineitem
27 FROM lineitem AS l, part AS p
28 WHERE l.l_orderkey = orderkey AND l.l_partkey = p.p_partkey) AS l(priority, lineitem)
29 WHERE l.priority = prio);
30
31 -- initially, try to produce lineitem as late as possible
32 item_end := LEAST(lineitem.l_shipdate, schedule_end);
33 item_start := item_end - lineitem.l_quantity :: int;
34 -- move production forward until we find a non-busy period or
35 -- we learn that we cannot schedule the item in the available date range :-/
36 WHILE daterange(item_start, item_end) && ANY(busy) AND item_start >= schedule_start LOOP
37 item_end := (SELECT lower(b)
38 FROM unnest(busy) AS b
39 WHERE daterange(item_start, item_end) && b
40 ORDER BY b
41 LIMIT 1);
42 item_start := item_end - lineitem.l_quantity :: int;
43 END LOOP;
44 IF item_start >= schedule_start THEN
45 -- succeeded to schedule
46 schedule := schedule || (lineitem.l_linenumber, item_start) :: scheduled;
47 busy := busy || daterange(item_start, item_end);
48 END IF;
49 END LOOP;
50 -- order schedule by item start date
51 IF cardinality(schedule) > 0 THEN
52 schedule := (SELECT array_agg(s ORDER BY s."when") FROM unnest(schedule) AS s);
53 END IF;
54 RETURN schedule;
55 END;
56 $$ LANGUAGE PLPGSQL;

Function service.

1 CREATE FUNCTION service(custkey int) RETURNS text AS
2 $$
3 DECLARE
4 totalbusiness float; level text;
5 BEGIN
6 totalbusiness := (SELECT SUM(o.o_totalprice) FROM orders AS o WHERE o.o_custkey = custkey);
7
8 IF totalbusiness > 1000000 THEN level := 'Platinum';
9 ELSIF totalbusiness > 500000 THEN level := 'Gold';

10 ELSE level := 'Regular';
11 END IF;
12 RETURN level;
13 END;
14 $$ LANGUAGE PLPGSQL;

122 A. PL/SQL UDF Definitions

Function sheet.

1 CREATE FUNCTION eval_cell(c cell) RETURNS float AS
2 $$
3 DECLARE
4 deps cell[]; cells cell[]; open jsonb[]; formulae jsonb[]; rpn jsonb[]; exprs jsonb[];
5 expr jsonb; e jsonb; root jsonb; args arguments; dep cell; intermediates contents[];
6 stack float[];
7 BEGIN
8 -- 1 compute ordered array of dependencies for cell c
9 deps := array[c]; expr := (SELECT s.formula FROM sheet AS s WHERE s.cell = c);

10 open := array[expr];
11 WHILE cardinality(open) > 0 LOOP
12 expr := open[1]; open := open[2:];
13
14 IF expr->>'entry' = 'num' THEN CONTINUE;
15 ELSIF expr->>'entry' = 'op' THEN
16 formulae := (SELECT array_agg(f) FROM jsonb_array_elements(expr->'args') AS f);
17 open := open || formulae;
18 ELSIF expr->>'entry' = 'agg' THEN
19 args := (SELECT (array_agg(s.cell), array_agg(s.formula)) :: arguments
20 FROM sheet AS s
21 WHERE s.cell BETWEEN (expr->>'from') :: cell AND (expr->>'to') :: cell);
22 deps := args.cells || deps;
23 open := open || args.formulae;
24 ELSIF expr->>'entry' = 'cell' THEN
25 c := (expr->>'cell') :: cell;
26 deps := c || deps;
27 expr := (SELECT s.formula FROM sheet AS s WHERE s.cell = c);
28 open := open || expr;
29 END IF;
30 END LOOP;
31
32 -- intermediate cell contents found during evaluation
33 intermediates := array[] :: contents[];
34
35 -- 2 evaluate all relevant cells in dependency-order
36 FOREACH dep IN ARRAY deps LOOP
37 -- do not recompute known results
38 IF EXISTS(SELECT 1 FROM unnest(intermediates) AS i(c,v) WHERE i.c = dep) THEN CONTINUE; END IF;
39
40 e := (SELECT s.formula FROM sheet AS s WHERE s.cell = dep);
41 -- 2.1 transform expression tree into post-order
42 rpn := array[e]; exprs := array[] :: jsonb[];
43 WHILE cardinality(rpn) > 0 LOOP
44 root := rpn[1]; rpn := rpn[2:]; exprs := root || exprs;
45 IF root->>'entry' = 'num' THEN CONTINUE;
46 ELSIF root->>'entry' = 'op' THEN rpn := (SELECT array_agg(f)
47 FROM jsonb_array_elements(root->'args') AS f) || rpn;
48 ELSIF root->>'entry' = 'agg' THEN CONTINUE; ELSIF root->>'entry' = 'cell' THEN CONTINUE;
49 END IF;
50 END LOOP;
51
52 -- 2.2 evaluate post-order expression
53 stack := array[] :: float[];
54 FOREACH e in ARRAY exprs LOOP
55 IF e->>'entry' = 'num' THEN stack := (e->>'num') :: float || stack;
56 ELSIF e->>'entry' = 'op' THEN
57 IF e->>'op' = '+' THEN stack := (stack[1] + stack[2]) || stack[3:];
58 ELSIF e->>'op' = '-' THEN stack := (stack[1] - stack[2]) || stack[3:];
59 ELSIF e->>'op' = '*' THEN stack := (stack[1] * stack[2]) || stack[3:];
60 ELSIF e->>'op' = '/' THEN stack := (stack[1] / stack[2]) || stack[3:];
61 END IF;
62 ELSIF e->>'entry' = 'agg' THEN
63 stack := (SELECT CASE e->>'agg' WHEN 'sum' THEN SUM(i.v) WHEN 'avg' THEN AVG(i.v)
64 WHEN 'max' THEN MAX(i.v) WHEN 'min' THEN MIN(i.v) END
65 FROM unnest(intermediates) AS i(c,v)
66 WHERE i.c BETWEEN (e->>'from') :: cell AND (e->>'to') :: cell) || stack;
67 ELSIF e->>'entry' = 'cell' THEN
68 stack := (SELECT i.v FROM unnest(intermediates) AS i(c,v) WHERE i.c = (e->>'cell') :: cell) || stack;
69 END IF;
70 END LOOP;
71 -- 3 save resulting cell value as intermediate result
72 intermediates := intermediates || (dep, stack[1]) :: contents;
73 END LOOP;
74 -- 4 final cell value found in top of stack after formula evaluation
75 RETURN stack[1];
76 END;
77 $$ LANGUAGE PLPGSQL;

Function ship. 123

Function ship.

1 CREATE FUNCTION preferred_shipmode(custkey int) RETURNS TEXT AS
2 $$
3 DECLARE
4 ground int; air int; mail int;
5 BEGIN
6 -- collect shipping mode statistics
7 ground := (SELECT COUNT(*)
8 FROM lineitem AS l, orders AS o
9 WHERE l.l_orderkey = o.o_orderkey AND o.o_custkey = custkey AND l.l_shipmode IN ('RAIL', 'TRUCK'));

10 air := (SELECT COUNT(*)
11 FROM lineitem AS l, orders AS o
12 WHERE l.l_orderkey = o.o_orderkey AND o.o_custkey = custkey AND l.l_shipmode IN ('AIR', 'REG AIR'));
13 mail := (SELECT COUNT(*)
14 FROM lineitem AS l, orders AS o
15 WHERE l.l_orderkey = o.o_orderkey AND o.o_custkey = custkey AND l.l_shipmode = 'MAIL');
16 -- determine preferred shipping mode
17 IF ground >= air AND ground >= mail THEN RETURN 'ground';
18 ELSIF air >= ground AND air >= mail THEN RETURN 'air';
19 ELSIF mail >= ground AND mail >= air THEN RETURN 'mail';
20 END IF;
21 -- not reached
22 RETURN NULL;
23 END;
24 $$ LANGUAGE PLPGSQL;

Function sight.

1 CREATE FUNCTION sight(light point) RETURNS polygon AS
2 $$
3 DECLARE
4 points point[];
5 p0 point;
6 p1 point;
7 p2 point;
8 phi float := 0.001; -- ray angle offset ±(from p1, in radians)
9 target point;

10 ins point;
11 intersections point[];
12 BEGIN
13 -- ➊ edge points of all polygons
14 points := (SELECT array_agg(pt) FROM scene AS s, LATERAL unnest(points(s.poly)) AS pt);
15
16 intersections := array[] :: point[];
17
18 -- ➋ find intersection points of rays from light to all polygon edge points (+ jittering)
19 FOREACH p1 IN ARRAY points LOOP
20 p0 := point(light[0] + (p1[0] - light[0]) * cos(phi) - (p1[1] - light[1]) * sin(phi),
21 light[1] + (p1[0] - light[0]) * sin(phi) + (p1[1] - light[1]) * cos(phi));
22 p2 := point(light[0] + (p1[0] - light[0]) * cos(-phi) - (p1[1] - light[1]) * sin(-phi),
23 light[1] + (p1[0] - light[0]) * sin(-phi) + (p1[1] - light[1]) * cos(-phi));
24
25 FOREACH target in ARRAY array[p0,p1,p2] LOOP
26 ins := (SELECT ray(light, target) # lseg(seg0, seg1)
27 FROM scene AS s, LATERAL points(s.poly) AS pts,
28 LATERAL ROWS FROM (unnest(pts), unnest(pts[2:] || pts[1])) AS _(seg0,seg1)
29 ORDER BY light <-> (ray(light, target) # lseg(seg0, seg1))
30 LIMIT 1);
31
32 intersections := intersections || ins;
33 END LOOP;
34
35 END LOOP;
36
37 -- ➌ sort intersection points by angle
38 intersections := (SELECT array_agg(i ORDER BY degrees(atan2(light[0] - i[0], light[1] - i[1])))
39 FROM unnest(intersections) AS i
40 WHERE i IS NOT NULL);
41
42 RETURN polygon(intersections);
43 END;
44 $$
45 LANGUAGE PLPGSQL;

124 A. PL/SQL UDF Definitions

Function visible.

1 CREATE FUNCTION "visible?"(here point, there point, gridx int, gridy int, resolution int) RETURNS boolean AS
2 $$
3 DECLARE
4 step point; -- direction of MAX scan
5 loc point; -- current point of MAX scan
6 hhere float; -- height at point here
7 hloc float; -- height of current point loc during MAX scan
8 angle float; -- angle between point here and current point of MAX scan
9 max_angle float; -- maximum angle measured during MAX scan

10 BEGIN
11 -- extent of landscape in x/y dimensions
12 gridx := gridx - 1;
13 gridy := gridy - 1;
14 -- height of point here (see https://en.wikipedia.org/wiki/Bézier_surface)
15 hhere := (SELECT SUM((factorial(gridx) / (factorial(s.x) * ((factorial(gridx - s.x)))))
16 * u^s.x * (1 - u)̂ (gridx - s.x) *
17 (factorial(gridy) / (factorial(s.y) * ((factorial(gridy - s.y)))))
18 * v^s.y * (1 - v)̂ (gridy - s.y) * h) AS h
19 FROM -- iterate over all points (s.x,s.y) of surface
20 (SELECT x, y
21 FROM generate_series(0, gridx) AS x, generate_series(0, gridy) AS y) AS s(x,y)
22 -- add control points (c.x,c.y) where there are defined
23 LEFT JOIN controlp AS c ON (c.x,c.y) = (s.x,s.y),
24 LATERAL (VALUES ((here[0] / gridx) :: numeric
25 , (here[1] / gridy :: numeric), COALESCE(c.z, 0))) AS _(u,v,h));
26
27 step := (there - here) / resolution;
28 loc := here;
29 -- maximum angle observed so far unknown
30 max_angle := NULL :: float;
31 -- perform a MAX scan along the line from here to there
32 FOR i IN 1..resolution LOOP
33 -- compute height at current location loc in scan
34 loc := loc + step;
35 hloc := (SELECT SUM((factorial(gridx) / (factorial(s.x) * ((factorial(gridx - s.x)))))
36 * u^s.x * (1 - u)̂ (gridx - s.x) *
37 (factorial(gridy) / (factorial(s.y) * ((factorial(gridy - s.y)))))
38 * v^s.y * (1 - v)̂ (gridy - s.y) * h) AS h
39 FROM -- iterate over all points (s.x,s.y) of surface
40 (SELECT x, y
41 FROM generate_series(0, gridx) AS x, generate_series(0, gridy) AS y) AS s(x,y)
42 -- add control points (c.x,c.y) where there are defined
43 LEFT JOIN controlp AS c ON (c.x,c.y) = (s.x,s.y),
44 LATERAL (VALUES ((loc[0] / gridx) :: numeric
45 , (loc[1] / gridy) :: numeric, COALESCE(c.z, 0))) AS _(u,v,h));
46
47 -- viewing angle between here and current location of MAX scan
48 angle := degrees(atan((hloc - hhere) / (loc <-> here)));
49 -- save MAX angle observed during the scan
50 IF max_angle IS NULL OR angle > max_angle THEN max_angle := angle; END IF;
51 END LOOP;
52
53 -- point there is visible from here if its viewing angle is maximal
54 RETURN angle = max_angle;
55 END;
56 $$
57 LANGUAGE PLPGSQL;

https://en.wikipedia.org/wiki/Bézier_surface

Function vm. 125

Function vm.

1 CREATE FUNCTION vm(regs numeric[]) RETURNS numeric AS
2 $$
3 DECLARE
4 ip int := 0;
5 ins instruction;
6 BEGIN
7 LOOP
8 ins := (SELECT p FROM program AS p WHERE p.loc = ip);
9 ip := ip + 1;

10
11 IF ins.opc = 'lod' THEN regs := regs[:ins.reg1-1] || ins.reg2 || regs[ins.reg1+1:];
12 ELSIF ins.opc = 'mov' THEN regs := regs[:ins.reg1-1] || regs[ins.reg2] || regs[ins.reg1+1:];
13 ELSIF ins.opc = 'jeq' THEN IF regs[ins.reg1] = regs[ins.reg2] THEN ip := ins.reg3 :: int4; END IF;
14 ELSIF ins.opc = 'jmp' THEN ip := ins.reg1 :: int4;
15 ELSIF ins.opc = 'add' THEN regs := regs[:ins.reg1-1] || regs[ins.reg2] + regs[ins.reg3] || regs[ins.reg1+1:];
16 ELSIF ins.opc = 'sub' THEN regs := regs[:ins.reg1-1] || regs[ins.reg2] - regs[ins.reg3] || regs[ins.reg1+1:];
17 ELSIF ins.opc = 'mul' THEN regs := regs[:ins.reg1-1] || regs[ins.reg2] * regs[ins.reg3] || regs[ins.reg1+1:];
18 ELSIF ins.opc = 'div' THEN regs := regs[:ins.reg1-1] || regs[ins.reg2] / regs[ins.reg3] || regs[ins.reg1+1:];
19 ELSIF ins.opc = 'mod' THEN regs := regs[:ins.reg1-1] || regs[ins.reg2] % regs[ins.reg3] || regs[ins.reg1+1:];
20 ELSIF ins.opc = 'hlt' THEN RETURN regs[ins.reg1];
21 END IF;
22
23 END LOOP;
24 END;
25 $$
26 LANGUAGE PLPGSQL;

126 A. PL/SQL UDF Definitions

Function ray.

1 CREATE FUNCTION ray(w int, h int) RETURNS int[] AS
2 $$
3 DECLARE
4 cam vec3 := (0.0, 0.0, -4.5); cam_lookat vec3 := (0.0, 0.0, 0.0); cam_up vec3 := (0.0, 1.0, 0.0);
5 light vec3; light_r real; fov real := 50.0; shadows boolean := true; max_rec_depth int := 10;
6 aspect_ratio real := w :: real/h;
7 epsilon real := 0.000001; ntriangles int; nspheres int; nprimitives int; cd vec3; tlen real;
8 rotx1 real; rotx2 real; rotx3 real; roty1 real; roty2 real; roty3 real; rotz1 real; rotz2 real; rotz3 real;
9 degx real; degy real; t vec3; rd vec3; ro vec3; do_ray boolean; shadow_done boolean; c rgb; intersection boolean;
10 mindist real; material material; mat material; ho rgb; col rgb; no vec3; triangle triangles; sphere spheres; prim_hit boolean;
11 v1 vec3; v2 vec3; v3 vec3; e1 vec3; e2 vec3; P vec3; T1 vec3; Q vec3; det real; u real; v real; tdist real; tdot real; sp vec3;
12 spr real; L vec3; tca real; d2 real; thc real; li vec3; r int[] := array[] :: int[];
13 BEGIN
14 ntriangles := (SELECT COUNT(*) FROM triangles); nspheres := (SELECT COUNT(*) FROM spheres); nprimitives := ntriangles + nspheres;
15 -- find light source among spheres
16 sphere := (SELECT sph FROM spheres AS sph WHERE sph.mat = 'l'); light := sphere.center; light_r := sphere.radius;
17 fov := fov * (pi() / 180.0); cd := (cam_lookat.x - cam.x, cam_lookat.y - cam.y, cam_lookat.z - cam.z);
18 tlen := sqrt(cd.x̂ 2 + cd.ŷ 2 + cd.ẑ 2); rotz1 := cd.x / tlen; rotz2 := cd.y / tlen; rotz3 := cd.z / tlen;
19 rotx1 := cam_up.y * rotz3 - cam_up.z * rotz2; rotx2 := cam_up.z * rotz1 - cam_up.x * rotz3;
20 rotx3 := cam_up.x * rotz2 - cam_up.y * rotz1; tlen := sqrt(rotx1̂ 2 + rotx2̂ 2 + rotx3̂ 2); rotx1 := rotx1 / tlen;
21 rotx2 := rotx2 / tlen; rotx3 := rotx3 / tlen; roty1 := rotz2 * rotx3 - rotz3 * rotx2; roty2 := rotz3 * rotx1 - rotz1 * rotx3;
22 roty3 := rotz1 * rotx2 - rotz2 * rotx1;
23 FOR pxy IN 0 .. h-1 LOOP
24 FOR pxx IN 0 .. w-1 LOOP
25 degx := (((pxx + 0.5) / w) - 0.5) * fov * aspect_ratio; degy := (((pxy + 0.5) / h) - 0.5) * fov;
26 t := (sin(degx), sin(degy), 1.0);
27 rd := (t.x*rotx1 + t.y*roty1 + t.z*rotz1, t.x*rotx2 + t.y*roty2 + t.z*rotz2, t.x*rotx3 + t.y*roty3 + t.z*rotz3);
28 ro := cam; do_ray := true; shadow_done := false; c := (0.0, 0.0, 0.0);
29 FOR rec IN 1 .. (1 + max_rec_depth + shadows :: int) LOOP
30 IF do_ray THEN
31 do_ray := false; tlen := sqrt(rd.x̂ 2 + rd.ŷ 2 + rd.ẑ 2); rd := (rd.x / tlen, rd.y / tlen, rd.z / tlen);
32 intersection := false; mindist := 999999; material := 'n'; no := (0.0, 0.0, 0.0);
33 FOR i IN 1 .. nprimitives LOOP
34 prim_hit := false;
35 IF i <= ntriangles THEN
36 triangle := (SELECT tri FROM triangles AS tri WHERE tri.id = i); v1 := triangle.p1; v2 := triangle.p2; v3 := triangle.p3;
37 mat := triangle.mat; col := triangle.color;
38 e1 := (v2.x - v1.x, v2.y - v1.y, v2.z - v1.z); e2 := (v3.x - v1.x, v3.y - v1.y, v3.z - v1.z);
39 P := (rd.y*e2.z - rd.z*e2.y, rd.z*e2.x - rd.x*e2.z, rd.x*e2.y - rd.y*e2.x); det := e1.x*P.x + e1.y*P.y + e1.z*P.z;
40 IF abs(det) > epsilon THEN
41 det := 1.0 / det; T1 := (ro.x - v1.x, ro.y - v1.y, ro.z - v1.z); u := (T1.x*P.x + T1.y*P.y + T1.z*P.z) * det;
42 IF u BETWEEN 0.0 AND 1.0 THEN
43 Q := (T1.y*e1.z - T1.z*e1.y, T1.z*e1.x-T1.x*e1.z, T1.x*e1.y-T1.y*e1.x); v := (rd.x*Q.x + rd.y*Q.y + rd.z*Q.z) * det;
44 IF v >= 0.0 AND u + v <= 1.0 THEN
45 tdist := (e2.x*Q.x + e2.y*Q.y + e2.z*Q.z) * det;
46 IF tdist > epsilon AND tdist < mindist THEN
47 prim_hit := true; intersection := true; mindist := tdist;
48 no := (e2.y*e1.z - e2.z*e1.y, e2.z*e1.x - e2.x*e1.z, e2.x*e1.y - e2.y*e1.x);
49 tlen := sqrt(no.x̂ 2 + no.ŷ 2 + no.ẑ 2); no := (no.x / tlen, no.y / tlen, no.z / tlen);
50 tdot := no.x*rd.x + no.y*rd.y + no.z*rd.z;
51 IF tdot > 0.0 THEN no := (-no.x, -no.y, -no.z); END IF; -- tdot > 0.0
52 END IF; -- tdist > epsilon AND tdist < mindist
53 END IF; -- v >= 0.0 AND u + v <= 1.0
54 END IF; -- u BETWEEN 0.0 AND 1.0
55 END IF; -- abs(det) > epsilon
56 ELSE
57 sphere := (SELECT sph FROM spheres AS sph WHERE sph.id = i - ntriangles);
58 sp := sphere.center; spr := sphere.radius; mat := sphere.mat; col := sphere.color;
59 L := (sp.x - ro.x, sp.y - ro.y, sp.z - ro.z); tca := L.x*rd.x + L.y*rd.y + L.z*rd.z; d2 := L.x̂ 2 + L.ŷ 2 + L.ẑ 2 - tcâ 2;
60 IF d2 <= spr̂ 2 THEN
61 thc := sqrt(spr̂ 2 - d2); tdist := 0.0;
62 IF tca - thc > 0.0 THEN tdist := tca - thc; END IF;
63 IF tca + thc > 0.0 THEN tdist := LEAST(tca + thc, tdist); END IF;
64 IF tdist > 0.0 AND tdist < mindist THEN
65 prim_hit := true; intersection := true; mindist := tdist;
66 no := (ro.x+tdist*rd.x-sp.x, ro.y+tdist*rd.y-sp.y, ro.z+tdist*rd.z-sp.z); tlen := sqrt(no.x̂ 2 + no.ŷ 2 + no.ẑ 2);
67 no := (no.x / tlen, no.y / tlen, no.z / tlen);
68 END IF; -- tdist > 0.0 AND tdist < mindist
69 END IF; -- d2 <= spr̂ 2
70 END IF; -- i < ntriangles
71 IF prim_hit THEN material := mat; -- if no primitive was hit by ray, material remains 'n'
72 IF material = 'm' THEN ho := col; END IF;
73 END IF; -- prim_hit
74 END LOOP; -- i
75 IF shadow_done THEN IF material <> 'l' THEN c := (0.0, 0.0, 0.0); END IF; -- material <> 'l'
76 ELSE
77 IF material = 'l' THEN c := (1.0, 1.0, 1.0); END IF; -- material = 'l'
78 IF material = 'm' THEN
79 li := (light.x-(ro.x+rd.x*mindist), light.y-(ro.y+rd.y*mindist), light.z-(ro.z+rd.z*mindist));
80 tlen := sqrt(li.x̂ 2 + li.ŷ 2 + li.ẑ 2); li := (li.x / tlen, li.y / tlen, li.z / tlen);
81 tdot := GREATEST(0.0, li.x*no.x + li.y*no.y + li.z*no.z); c := (ho.r * tdot, ho.g * tdot, ho.b * tdot);
82 IF shadows AND NOT shadow_done THEN
83 ro := (ro.x+rd.x*mindist+no.x*epsilon, ro.y+rd.y*mindist+no.y*epsilon, ro.z+rd.z*mindist+no.z*epsilon);
84 shadow_done := true; rd := (light.x - ro.x, light.y - ro.y, light.z - ro.z); do_ray := true;
85 END IF; -- shadows AND NOT shadow_done
86 END IF; -- material = 'm'
87 IF material = 'r' THEN
88 tdot := rd.x*no.x + rd.y*no.y + rd.z*no.z;
89 ro := (ro.x+rd.x*mindist+no.x*epsilon, ro.y+rd.y*mindist+no.y*epsilon, ro.z+rd.z*mindist+no.z*epsilon);
90 rd := (rd.x-2.0*no.x*tdot, rd.y-2.0*no.y*tdot, rd.z-2.0*no.z*tdot);
91 do_ray := true;
92 END IF; -- material = 'r'
93 END IF; -- shadow_done
94 END IF; -- do_ray
95 END LOOP; -- rec
96 IF intersection THEN r := r || array[(c.b * 255) :: int, (c.g * 255) :: int, (c.r * 255) :: int];
97 ELSE r := r || array[0, 0, 0];
98 END IF; -- intersection
99 END LOOP; -- pxx

100 END LOOP; -- pxy
101 RETURN r;
102 END;
103 $$ LANGUAGE PLPGSQL;

Recursive UDF Definitions B.
In the following we list the recursive UDF definitions of the UDFS
in Table 10.1. The definitions are given in SQL syntax. We use the
CREATE FUNCTION statement to define the UDFS.

All UDFS are available with
the necessary setup code
here: https://github.com/
FP-on-Top-of-SQL-Engines/Code

Function comps.

1 CREATE FUNCTION connected(node int, target int) RETURNS boolean AS $$
2 SELECT CASE
3 -- Components are connected.
4 WHEN node = target THEN TRUE
5 -- Reached a leaf without having found the target we are looking for
6 WHEN NOT EXISTS (SELECT n.id FROM nodes AS n WHERE n.id = node)
7 THEN FALSE
8 -- We found two children and thus, continue
9 -- to recurse with both child 'l' and 'r' as arguments.

10 WHEN (SELECT COUNT(*) FROM nodes AS n WHERE n.id = node) = 2
11 THEN connected((SELECT n.next FROM nodes AS n
12 WHERE (n.id, n.child) = (node, 'l')), target) OR
13 connected((SELECT n.next FROM nodes AS n
14 WHERE (n.id, n.child) = (node, 'r')), target)
15 ELSE -- Only one child was found.
16 connected((SELECT n.next FROM nodes AS n WHERE n.id = node), target)
17 END;
18 $$ LANGUAGE SQL STABLE STRICT;

Function dtw.

1 CREATE FUNCTION dtw(i int, j int) RETURNS double precision AS $$
2 SELECT CASE
3 WHEN i = 0 AND j = 0 THEN 0
4 WHEN (i <> 0 AND j = 0) OR (i = 0 AND j <> 0)
5 THEN 'Infinity' :: double precision
6 WHEN i <> 0 AND j <> 0
7 THEN (SELECT ABS(X.x-Y.y) + LEAST(dtw(i-1, j-1), dtw(i-1, j), dtw(i, j-1))
8 FROM X, Y
9 WHERE (X.t, Y.t) = (i, j))

10 END;
11 $$ LANGUAGE SQL STABLE STRICT;

Function eval.

1 CREATE FUNCTION eval(e expression) RETURNS numeric AS $$
2 SELECT CASE e.op
3 WHEN 'l' THEN e.lit
4 WHEN '+'
5 THEN eval((SELECT e1 FROM expression AS e1 WHERE e1.node = e.arg1))
6 +
7 eval((SELECT e2 FROM expression AS e2 WHERE e2.node = e.arg2))
8 WHEN '*'
9 THEN eval((SELECT e1 FROM expression AS e1 WHERE e1.node = e.arg1))

10 *
11 eval((SELECT e2 FROM expression AS e2 WHERE e2.node = e.arg2))
12 END;
13 $$ LANGUAGE SQL;

https://github.com/FP-on-Top-of-SQL-Engines/Code
https://github.com/FP-on-Top-of-SQL-Engines/Code

128 B. Recursive UDF Definitions

Function fsm.

1 CREATE FUNCTION parse(state int, input text) RETURNS boolean AS $$
2 SELECT CASE WHEN length(input) = 0
3 THEN (SELECT DISTINCT edge.final
4 FROM fsm AS edge
5 WHERE state = edge.source)
6 ELSE COALESCE(parse((
7 SELECT edge.target
8 FROM fsm AS edge
9 WHERE state = edge.source
10 AND strpos(edge.labels, left(input, 1)) > 0
11), right(input, -1)), false)
12 END;
13 $$ LANGUAGE SQL;

Function lcs.

1 CREATE FUNCTION lcs(l text, r text) RETURNS int AS $$
2 SELECT CASE
3 WHEN l = '' OR r = '' THEN 0
4 WHEN left(l,1) = left(r,1) THEN 1 + lcs(right(l,-1), right(r,-1))
5 ELSE GREATEST(lcs(right(l,-1), r), lcs(l, right(r,-1)))
6 END;
7 $$ LANGUAGE SQL STABLE STRICT;

Function mbrot.

1 CREATE FUNCTION m(iter int, cx float, cy float,
2 x float, y float) RETURNS int AS $$
3 SELECT CASE WHEN NOT (x̂ 2 + ŷ 2 < 4.0 AND iter < 28)
4 THEN iter
5 ELSE m(iter + 1,
6 cx,
7 cy,
8 x̂ 2 - ŷ 2 + cx,
9 2.0 * x * y + cy)
10 END;
11 $$
12 LANGUAGE SQL IMMUTABLE STRICT;

Function paths.

1 CREATE FUNCTION file_path(dir text, file_path text) RETURNS text AS $$
2 SELECT CASE
3 WHEN (SELECT d.PARENT_DIR_ID
4 FROM DIRS AS d
5 WHERE d.DIR_NAME = dir) IS NULL THEN '/'||dir||file_path
6 ELSE file_path((
7 SELECT d2.DIR_NAME
8 FROM DIRS AS d, DIRS AS d2
9 WHERE d.DIR_NAME = dir
10 AND d.PARENT_DIR_ID = d2.DIR_ID),
11 '/'||dir||file_path)
12 END;
13 $$ LANGUAGE SQL STABLE STRICT;

Function vm. 129

Function vm.

1 CREATE FUNCTION run(ins instruction, regs int[]) RETURNS int AS $$
2 SELECT CASE ins.opc
3 WHEN 'lod'
4 THEN run((SELECT p FROM program AS p WHERE p.loc = ins.loc+1),
5 regs[:ins.reg1-1] || ins.reg2 || regs[ins.reg1+1:])
6
7 WHEN 'mov'
8 THEN run((SELECT p FROM program AS p WHERE p.loc = ins.loc+1),
9 regs[:ins.reg1-1] || regs[ins.reg2] || regs[ins.reg1+1:])

10
11 WHEN 'jeq'
12 THEN run((SELECT p FROM program AS p
13 WHERE p.loc = CASE WHEN regs[ins.reg1] = regs[ins.reg2]
14 THEN ins.reg3
15 ELSE ins.loc + 1
16 END), regs)
17
18 WHEN 'jmp'
19 THEN run((SELECT p FROM program AS p WHERE p.loc = ins.reg1), regs)
20
21 WHEN 'add'
22 THEN run((SELECT p FROM program AS p WHERE p.loc = ins.loc+1),
23 regs[:ins.reg1-1] ||
24 regs[ins.reg2] + regs[ins.reg3] ||
25 regs[ins.reg1+1:])
26
27 WHEN 'mul'
28 THEN run((SELECT p FROM program AS p WHERE p.loc = ins.loc+1),
29 regs[:ins.reg1-1] ||
30 regs[ins.reg2] * regs[ins.reg3] ||
31 regs[ins.reg1+1:])
32
33 WHEN 'div'
34 THEN run((SELECT p FROM program AS p WHERE p.loc = ins.loc+1),
35 regs[:ins.reg1-1] ||
36 regs[ins.reg2] / regs[ins.reg3] ||
37 regs[ins.reg1+1:])
38
39 WHEN 'mod'
40 THEN run((SELECT p FROM program AS p WHERE p.loc = ins.loc+1),
41 regs[:ins.reg1-1] ||
42 regs[ins.reg2] % regs[ins.reg3] ||
43 regs[ins.reg1+1:])
44
45 WHEN 'hlt' THEN regs[ins.reg1]
46 END
47 $$
48 LANGUAGE SQL STABLE STRICT;

Bibliography

Here are the references in citation order.

[1] Donald D. Chamberlin and Raymond F. Boyce. ‘SEQUEL: A Structured English Query Lan-
guage’. In: Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD) Workshop on Data Description,
Access and Control. SIGFIDET ’74. Ann Arbor, Michigan: Association for ComputingMachinery,
1974, pp. 249–264. DOI: 10.1145/800296.811515 (cited on page 1).

[2] Steven Feuerstein and Bill Pribyl. Oracle PL/SQL Programming. ”O’Reilly Media, Inc.”, 2014
(cited on page 1).

[3] George P. Copeland and David Maier. ‘Making smalltalk a database system’. In: SIGMOD ’84.
1984 (cited on page 2).

[4] Oracle 19c PL/SQL Documentation. http://docs.oracle.com/en/database/oracle/oracle-
database/19/lnpls (cited on page 2).

[5] Diego Novillo. ‘Tree SSA a new optimization infrastructure for GCC’. In: Proceedings of the
2003 gCC developers’ summit. Citeseer. 2003, pp. 181–193 (cited on pages 5, 30).

[6] Chris Arthur Lattner. ‘LLVM: An infrastructure for multi-stage optimization’. PhD thesis.
University of Illinois at Urbana-Champaign, 2002 (cited on page 5).

[7] Luke Maurer et al. ‘Administrative normal form, continued’. In: (2017) (cited on page 5).
[8] LukeMaurer et al. ‘Compiling without Continuations’. In: Proceedings of the 38th ACMSIGPLAN

Conference on Programming Language Design and Implementation. PLDI 2017. Barcelona, Spain:
Association for Computing Machinery, 2017, pp. 482–494. DOI: 10.1145/3062341.3062380
(cited on page 5).

[9] Manuel MT Chakravarty, Gabriele Keller, and Patryk Zadarnowski. ‘A functional perspective
on SSA optimisation algorithms’. In: Electronic Notes in Theoretical Computer Science 82.2 (2004),
pp. 347–361 (cited on pages 5, 32, 47, 64, 80).

[10] Steven E Ganz, Daniel P Friedman, and Mitchell Wand. ‘Trampolined style’. In: Proceedings
of the fourth ACM SIGPLAN international conference on Functional programming. 1999, pp. 18–27
(cited on pages 5, 34, 35, 75).

[11] David Tarditi, Peter Lee, and Anurag Acharya. ‘No Assembly Required: Compiling Standard
ML toC’. In:ACMLett. Program. Lang. Syst. 1.2 (1992), pp. 161–177. DOI: 10.1145/151333.151343
(cited on page 5).

[12] Michel Schinz and Martin Odersky. ‘Tail call elimination on the Java Virtual Machine’. In:
Electronic Notes in Theoretical Computer Science 59.1 (2001), pp. 158–171 (cited on page 5).

[13] Christian Duta, Denis Hirn, and Torsten Grust. ‘Compiling PL/SQL Away’. In: Proc. CIDR.
2020 (cited on pages 6, 14, 42, 60, 63).

[14] Denis Hirn and Torsten Grust. ‘PL/SQL Without the PL’. In: Proc. SIGMOD. 2020 (cited on
pages 6, 14, 59, 60, 63).

[15] Denis Hirn and Torsten Grust. ‘One WITH RECURSIVE is Worth Many GOTOs’. In: Proc. SIGMOD.
2021 (cited on pages 6, 14, 42, 56, 60, 63, 73).

[16] Denis Hirn and Torsten Grust. ‘A Fix for the Fixation on Fixpoints’. In: Proc. CIDR. 2023 (cited
on pages 6, 64).

[17] Denis Hirn. ‘Data is Data and Control Should be Data, Too’. In: Proc. VLDB. 2023 (cited on
page 6).

https://doi.org/10.1145/800296.811515
http://docs.oracle.com/en/database/oracle/oracle-database/19/lnpls
http://docs.oracle.com/en/database/oracle/oracle-database/19/lnpls
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1145/151333.151343

[18] Olivier Danvy. ‘Back to direct style’. In: Science of Computer Programming 22.3 (1994), pp. 183–
195 (cited on page 7).

[19] John C. Reynolds. ‘Definitional Interpreters for Higher-Order Programming Languages’. In:
Proceedings of the ACM Annual Conference - Volume 2. ACM ’72. Boston, Massachusetts, USA:
Association for Computing Machinery, 1972, pp. 717–740. DOI: 10.1145/800194.805852 (cited
on pages 7, 73, 75, 82).

[20] Olivier Danvy and Lasse R. Nielsen. ‘Defunctionalization at Work’. In: Proceedings of the 3rd
ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming.
PPDP ’01. Florence, Italy: Association for Computing Machinery, 2001, pp. 162–174. DOI:
10.1145/773184.773202 (cited on page 7).

[21] Tobias Burghardt, Denis Hirn, and Torsten Grust. ‘Functional Programming on Top of SQL
Engines’. In: Practical Aspects of Declarative Languages: 24th International Symposium, PADL 2022,
Philadelphia, PA, USA, January 17–18, 2022, Proceedings. Philadelphia, PA, USA: Springer-Verlag,
2022, pp. 59–78. DOI: 10.1007/978-3-030-94479-7_5 (cited on page 8).

[22] L.A. Rowe and M. Stonebraker. ‘The POSTGRES Data Model’. In: Proc. VLDB. Brighton, UK,
Sept. 1987 (cited on pages 13, 14, 75, 109).

[23] Donald Bales. Beginning Oracle PL/SQL. Apress, 2015 (cited on page 13).
[24] S. Gupta, S. Purandare, and K. Ramachandra. ‘Aggify: Lifting the Curse of Cursor Loops

using Custom Aggregates’. In: Proc. SIGMOD. 2020 (cited on pages 13, 14, 18, 66).
[25] Shudi Shao et al. ‘Database-Access Performance Antipatterns in Database-Backed Web Appli-

cations’. In: 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME).
2020, pp. 58–69. DOI: 10.1109/ICSME46990.2020.00016 (cited on page 13).

[26] Christopher Olston et al. ‘Pig Latin: A Not-so-Foreign Language for Data Processing’. In:
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. SIGMOD
’08. Vancouver, Canada: Association for Computing Machinery, 2008, pp. 1099–1110. DOI:
10.1145/1376616.1376726 (cited on page 14).

[27] K. Ramachandra et al. ‘Froid: Optimization of Imperative Programs in a Relational Database’.
In: Proc. VLDB 11.4 (2018) (cited on pages 14, 18, 36, 53, 63, 65, 73, 109).

[28] J.H. Harris. A (Not So) Brief But (Very) Accurate History of PL/SQL. http://oracle-internals.
com/blog/2020/04/29/a-not-so-brief-but-very-accurate-history-of-pl-sql/. Apr. 2020
(cited on page 14).

[29] Varun Simhadri et al. ‘Decorrelation of user defined function invocations in queries’. In: 2014
IEEE 30th International Conference on Data Engineering. 2014, pp. 532–543. DOI: 10.1109/ICDE.
2014.6816679 (cited on page 14).

[30] Timo Kersten et al. ‘Everything You Always Wanted to Know About Compiled and Vectorized
Queries But Were Afraid to Ask’. In: Proc. VLDB Endow. 11.13 (2018), pp. 2209–2222. DOI:
10.14778/3275366.3275370 (cited on page 15).

[31] Jeff Moden. Calculating Work Days. https://web.archive.org/web/20071023061855/http:
//www.sqlservercentral.com/articles/Advanced+Querying/calculatingworkdays/1660/.
Jan. 2005 (cited on page 16).

[32] Grant Fritchey and Grant Fritchey. ‘Row-by-Row Processing’. In: SQL Server Query Performance
Tuning (2014), pp. 459–481 (cited on page 16).

[33] POSTGRESQL 15 Documentation. http://www.postgresql.org/docs/15/ (cited on pages 16, 18,
24, 27, 51, 75, 89).

[34] K. Ramachandra and K. Park. ‘BlackMagic: Automatic Inlining of Scalar UDFS into SQL
Queries with Froid’. In: Proc. VLDB 12.12 (2019) (cited on pages 18, 65).

[35] Microsoft SQL Server 2022 Documentation. http://docs.microsoft.com/en-us/sql (cited on
pages 18, 75).

https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/773184.773202
https://doi.org/10.1007/978-3-030-94479-7_5
https://doi.org/10.1109/ICSME46990.2020.00016
https://doi.org/10.1145/1376616.1376726
http://oracle-internals.com/blog/2020/04/29/a-not-so-brief-but-very-accurate-history-of-pl-sql/
http://oracle-internals.com/blog/2020/04/29/a-not-so-brief-but-very-accurate-history-of-pl-sql/
https://doi.org/10.1109/ICDE.2014.6816679
https://doi.org/10.1109/ICDE.2014.6816679
https://doi.org/10.14778/3275366.3275370
https://web.archive.org/web/20071023061855/http://www.sqlservercentral.com/articles/Advanced+Querying/calculatingworkdays/1660/
https://web.archive.org/web/20071023061855/http://www.sqlservercentral.com/articles/Advanced+Querying/calculatingworkdays/1660/
http://www.postgresql.org/docs/15/
http://docs.microsoft.com/en-us/sql

[36] POSTGRESQL 15 PL/PGSQL Documentation. http://www.postgresql.org/docs/15/plpgsql.
html (cited on pages 19, 26, 39).

[37] A. Eisenberg and J. Melton. ‘SQL:1999, Formerly Known as SQL3’. In: ACM SIGMOD Record
28.1 (Mar. 1999) (cited on pages 23, 75).

[38] SQL:1999 Standard. Database Languages–SQL–Part 2: Foundation. ISO/IEC 9075-2:1999 (cited
on pages 23, 50, 75).

[39] Galina Shalygina and Boris Novikov. ‘Implementing Common Table Expressions forMariaDB’.
In: Proceedings of the 2nd Conference on Software Engineering and Information Management (SEIM-
2017), St. Petersburg, Russia. Vol. 21. 2017 (cited on page 25).

[40] Alfred Tarski. ‘A lattice-theoretical fixpoint theorem and its applications.’ In: (1955) (cited on
page 25).

[41] Francois Bancilhon and Raghu Ramakrishnan. ‘An Amateur’s Introduction to Recursive Query
Processing Strategies’. In: Proceedings of the 1986 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’86. Washington, D.C., USA: Association for Computing
Machinery, 1986, pp. 16–52. DOI: 10.1145/16894.16859 (cited on page 25).

[42] S.J. Finkelstein et al. Expressive Recursive Queries in SQL. Joint Technical Committee ISO/IEC
JTC 1/SC 21 WG 3, Document X3H2-96-075r1. 1996 (cited on pages 25, 75).

[43] Francois Bancilhon. ‘Naive Evaluation of Recursively Defined Relations’. In: On Knowledge
Base Management Systems: Integrating Artificial Intelligence and d Atabase Technologies. Berlin,
Heidelberg: Springer-Verlag, 1986, pp. 165–178 (cited on page 25).

[44] Jim Gray. ‘The Transaction Concept: Virtues and Limitations (Invited Paper)’. In: Proceedings
of the Seventh International Conference on Very Large Data Bases - Volume 7. VLDB ’81. Cannes,
France: VLDB Endowment, 1981, pp. 144–154 (cited on page 27).

[45] Theo Haerder and Andreas Reuter. ‘Principles of Transaction-Oriented Database Recovery’.
In: ACM Comput. Surv. 15.4 (1983), pp. 287–317. DOI: 10.1145/289.291 (cited on page 27).

[46] Frances E Allen. ‘Control flow analysis’. In: ACM Sigplan Notices 5.7 (1970), pp. 1–19 (cited on
page 29).

[47] James Stanier and Des Watson. ‘Intermediate Representations in Imperative Compilers: A
Survey’. In: ACM Comput. Surv. 45.3 (2013). DOI: 10.1145/2480741.2480743 (cited on page 29).

[48] Simon Peyton Jones and Simon Marlow. ‘Secrets of the Glasgow Haskell Compiler inliner’.
In: Journal of Functional Programming 12 (July 2002), pp. 393–434 (cited on page 29).

[49] P. P. Chang and W.-W. Hwu. ‘Inline Function Expansion for Compiling C Programs’. In: Proc.
PLDI. Portland, OR, USA, June 1989 (cited on page 29).

[50] J. Ferrante, Karl J. Ottenstein, and Joe D. Warren. ‘The Program Dependence Graph and Its
Use in Optimization’. In: ACM TOPLAS 9.3 (July 1987) (cited on page 29).

[51] O. Waddell and R.K. Dybig. ‘Fast and Effective Procedure Inlining’. In: Proc. Int’l Symposium
on Static Analysis. Paris, France, Sept. 1997 (cited on page 29).

[52] R. Cytron et al. ‘Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph’. In: ACM TOPLAS 13.4 (1991) (cited on pages 30, 45).

[53] Fabrice Rastello and Florent Bouchez Tichadou. SSA-basedCompilerDesign. Singapore: Springer
Nature, 2022 (cited on pages 30, 78).

[54] M. Braun et al. ‘Simple and Efficient Construction of Static Single Assignment Form’. In: Proc.
Int’l Conference on Compiler Construction. Rome, Italy, Mar. 2013 (cited on pages 30, 45).

[55] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. ‘Automatic Construction of Sparse Data
Flow Evaluation Graphs’. In: Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. POPL ’91. Orlando, Florida, USA: Association for Computing
Machinery, 1991, pp. 55–66. DOI: 10.1145/99583.99594 (cited on page 30).

http://www.postgresql.org/docs/15/plpgsql.html
http://www.postgresql.org/docs/15/plpgsql.html
https://doi.org/10.1145/16894.16859
https://doi.org/10.1145/289.291
https://doi.org/10.1145/2480741.2480743
https://doi.org/10.1145/99583.99594

[56] Preston Briggs et al. ‘Practical Improvements to the Construction and Destruction of Static
Single Assignment Form’. In: Softw. Pract. Exper. 28.8 (1998), pp. 859–881 (cited on page 30).

[57] A.W. Appel. ‘SSA is Functional Programming’. In: ACM SIGPLAN Notices 33.4 (Apr. 1998) (cited
on pages 30, 32, 45, 64, 75).

[58] Jeffrey C. Lagarias. ‘The 3x + 1 Problem and its Generalizations’. In: The AmericanMathematical
Monthly 92.1 (1985), pp. 3–23. DOI: 10.1080/00029890.1985.11971528 (cited on page 31).

[59] Philip Wadler. ‘Monads for functional programming’. In: Program Design Calculi. Ed. by Man-
fred Broy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 233–264 (cited on page 31).

[60] Richard A. Kelsey. ‘A Correspondence between Continuation Passing Style and Static Single
Assignment Form’. In: SIGPLAN Not. 30.3 (1995), pp. 13–22. DOI: 10.1145/202530.202532
(cited on page 32).

[61] Andrew W. Appel. Modern Compiler Implementation in ML: Basic Techniques. Cambridge Univer-
sity Press, 1997 (cited on page 32).

[62] Cormac Flanagan et al. ‘The Essence of Compiling with Continuations’. In: Proceedings of the
ACM SIGPLAN 1993 Conference on Programming Language Design and Implementation. PLDI ’93.
Albuquerque, New Mexico, USA: Association for Computing Machinery, 1993, pp. 237–247.
DOI: 10.1145/155090.155113 (cited on pages 32, 33).

[63] Suresh Jagannathan and Andrew Wright. ‘Flow-directed inlining’. In: Proceedings of the ACM
SIGPLAN 1996 conference on Programming language design and implementation - PLDI ’96 (1996).
DOI: 10.1145/231379.231417 (cited on page 33).

[64] Kim Solin. ‘Normal forms in total correctness for while programs and action systems’. In: The
Journal of Logic and Algebraic Programming 80.6 (2011), pp. 362–375 (cited on page 34).

[65] C. Galindo-Legaria and M. Joshi. ‘Orthogonal Optimization of Subqueries and Aggregation’.
In: Proc. SIGMOD. 2001 (cited on pages 37, 50).

[66] C. Maple. ‘Geometric design and space planning using the marching squares and marching
cube algorithms’. In: Proc. GMAG 2003. 2003. DOI: 10.1109/GMAG.2003.1219671 (cited on
pages 39, 95).

[67] Oracle Database PL/SQL Language Reference 21c. https://docs.oracle.com/en/database/
oracle/oracle-database/21/lnpls/database-pl-sql-language-reference.pdf (cited on
pages 51, 75).

[68] Mark Raasveldt and Hannes Mühleisen. ‘DuckDB: an Embeddable Analytical Database’. In:
Proceedings of the 2019 International Conference on Management of Data. 2019, pp. 1981–1984 (cited
on pages 51, 110, 111).

[69] T.J. McCabe. ‘A Complexity Measure’. In: IEEE Transactions on Software Engineering SE-2.4
(Dec. 1976), pp. 308–320 (cited on page 53).

[70] R. Guravannavar and S. Sudarshan. ‘Rewriting Procedures for Batched Bindings’. In: Proc.
VLDB 1.1 (2008) (cited on page 54).

[71] V. Simhadri et al. ‘Decorrelation of User Defined Functions inQueries’. In: Proc. ICDE. Chicago,
IL, USA, Mar. 2014 (cited on pages 54, 66).

[72] Holtsetio. MySQL Raytracer. https://demozoo.org/productions/268459/. Oct. 2019 (cited on
page 54).

[73] J. Barnes and P. Hut. ‘A Hierarchical 𝑂(𝑁 log𝑁) Force-Calculuation Algorithm’. In: Nature
324.4 (1986) (cited on page 55).

[74] P. Griffiths Selinger et al. ‘Access Path Selection in a Relational Database Management Sys-
tem’. In: Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’79. Boston, Massachusetts: Association for Computing Machinery, 1979, pp. 23–34.
DOI: 10.1145/582095.582099 (cited on page 56).

https://doi.org/10.1080/00029890.1985.11971528
https://doi.org/10.1145/202530.202532
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/231379.231417
https://doi.org/10.1109/GMAG.2003.1219671
https://docs.oracle.com/en/database/oracle/oracle-database/21/lnpls/database-pl-sql-language-reference.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/21/lnpls/database-pl-sql-language-reference.pdf
https://demozoo.org/productions/268459/
https://doi.org/10.1145/582095.582099

[75] Jayant R. Haritsa. ‘The Picasso Database Query Optimizer Visualizer’. In: Proc. VLDB Endow.
3.1–2 (2010), pp. 1517–1520. DOI: 10.14778/1920841.1921027 (cited on page 56).

[76] M. Abhirama et al. ‘On the Stability of Plan Costs and the Costs of Plan Stability’. In: Proc.
VLDB Endow. 3.1–2 (2010), pp. 1137–1148. DOI: 10.14778/1920841.1920983 (cited on page 56).

[77] T.K. Sellis. ‘Multiple-Query Optimization’. In: ACM TODS 13.1 (Mar. 1998) (cited on page 58).
[78] G. Graefe. ‘Volcano—An Extensible and Parallel Query Evaluation System’. In: IEEE TKDE

6.1 (Feb. 1994) (cited on pages 60, 74).
[79] M. Boehm, A. Kumar, and J. Yang. Data Management in Machine Learning Systems. Synthesis

Lectures on Data Management. Morgan & Claypool, 2019 (cited on page 63).
[80] D. Jankov et al. ‘Declarative Recursive Computation on an RDBMS (or Why You Should Use

a Database for Distributed Machine Learning)’. In: Proc. VLDB 12.7 (2019) (cited on page 63).
[81] X. Feng et al. ‘Towards a Unified Architecture for in-RDBMS Analytics’. In: Proc. SIGMOD.

Scottsdale, AZ, USA, May 2012 (cited on page 63).
[82] Mark Blacher et al. ‘Machine learning, linear algebra, and more: Is SQL all you need’. In:

CIDR. www. cidrdb. org (2022), pp. 1–6 (cited on pages 63, 69).
[83] K.V. Emani et al. ‘Extracting Equivalent SQL from Imperative Code in Database Applications’.

In: Proc. SIGMOD. San Francisco, CA, USA, June 2016 (cited on page 63).
[84] Torsten Grust, Jan Rittinger, and Tom Schreiber. ‘Avalanche-Safe LINQ Compilation’. In: Proc.

VLDB 3.1 (Sept. 2010) (cited on page 63).
[85] C. Lattner et al. ‘MLIR: A Compiler Infrastructure for the End of Moore’s Law’. In: CoRR

(arXiv) abs/2002.11054 (2020) (cited on page 64).
[86] Jin Wang et al. ‘RASQL: A Powerful Language and Its System for Big Data Applications’. In:

Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. SIGMOD
’20. Portland, OR, USA: Association for Computing Machinery, 2020, pp. 2673–2676. DOI:
10.1145/3318464.3384677 (cited on page 64).

[87] Linnea Passing et al. ‘SQL-and Operator-centric Data Analytics in Relational Main-Memory
Databases.’ In: EDBT. 2017, pp. 84–95 (cited on page 64).

[88] Thomas Neumann and Michael J Freitag. ‘Umbra: A Disk-Based System with In-Memory
Performance.’ In: CIDR. Vol. 20. 2020, p. 29 (cited on pages 64, 68, 110, 111).

[89] Moritz Sichert and Thomas Neumann. ‘User-defined operators: Efficiently integrating custom
algorithms into modern databases’. In: Proceedings of the VLDB Endowment 15.5 (2022), pp. 1119–
1131 (cited on pages 64, 67).

[90] Kai Franz et al. ‘Dear User-Defined Functions, Inlining isn’t working out so great for us. Let’s
try batching to make our relationship work. Sincerely, SQL’. In: CIDR. 2024 (cited on page 65).

[91] Tim Fischer, Denis Hirn, and Torsten Grust. ‘Snakes on a plan: Compiling python functions
into plain SQL queries’. In: Proceedings of the 2022 International Conference on Management of
Data. 2022, pp. 2389–2392 (cited on page 67).

[92] Tim Fischer. ‘To Iterate Is Human, to Recurse Is Divine—Mapping Iterative Python to Recur-
sive SQL’. In: BTW 2023 (2023). DOI: 10.18420/BTW2023-73 (cited on page 67).

[93] Andrew Crotty et al. ‘Tupleware:” Big” Data, Big Analytics, Small Clusters.’ In: CIDR. 2015
(cited on page 68).

[94] Andrew Crotty et al. ‘An Architecture for Compiling UDF-Centric Workflows’. In: Proc. VLDB
Endow. 8.12 (2015), pp. 1466–1477. DOI: 10.14778/2824032.2824045 (cited on page 68).

[95] Alfons Kemper and Thomas Neumann. ‘HyPer: A hybrid OLTP&OLAPmainmemory database
system based on virtual memory snapshots’. In: 2011 IEEE 27th International Conference on Data
Engineering. IEEE. 2011, pp. 195–206 (cited on pages 69, 111).

[96] John C. Reynolds. ‘The discoveries of continuations’. In: Lisp and symbolic computation 6 (1993),
pp. 233–247 (cited on page 73).

https://doi.org/10.14778/1920841.1921027
https://doi.org/10.14778/1920841.1920983
https://doi.org/10.1145/3318464.3384677
https://doi.org/10.18420/BTW2023-73
https://doi.org/10.14778/2824032.2824045

[97] Olivier Danvy and Lasse R Nielsen. ‘Defunctionalization at work’. In: Proceedings of the 3rd
ACM SIGPLAN international conference on Principles and practice of declarative programming. 2001,
pp. 162–174 (cited on page 73).

[98] Jeremy Gibbons. ‘Continuation-Passing Style, Defunctionalization, Accumulations, and Asso-
ciativity’. In: arXiv preprint arXiv:2111.10413 (2021) (cited on page 73).

[99] Ulrich Schöpp. ‘On interaction, continuations and defunctionalization’. In: International
Conference on Typed Lambda Calculi and Applications. Springer. 2013, pp. 205–220 (cited on
page 73).

[100] Olivier Danvy. ‘Defunctionalized interpreters for programming languages’. In: ACM Sigplan
Notices 43.9 (2008), pp. 131–142 (cited on page 73).

[101] Yuri Gurevich. ‘Sequential abstract-state machines capture sequential algorithms’. In: ACM
Transactions on Computational Logic (TOCL) 1.1 (2000), pp. 77–111 (cited on page 73).

[102] C. Lawson. ‘How Functions can Wreck Performance’. In: The Oracle Magician IV.1 (Jan. 2005).
http://www.oraclemagician.com/mag/magic9.pdf (cited on page 73).

[103] R.W. Floyd. ‘Algorithm 97: Shortest Path’. In: Communications of the ACM 5.6 (1962) (cited on
page 73).

[104] Christian Duta and Torsten Grust. ‘Functional-Style SQL UDFS with a Capital ’F’’. In: Proc.
SIGMOD. 2020 (cited on pages 74, 75, 91, 92, 104).

[105] Christian Duta. ‘Another Way to Implement Complex Computations: Functional-Style SQL
UDF’. In: Proceedings of the Workshop on Human-In-the-Loop Data Analytics. HILDA ’22. Philadel-
phia, Pennsylvania: Association for Computing Machinery, 2022. DOI: 10.1145/3546930.
3547508 (cited on pages 74, 103, 104).

[106] MySQL 8.0 Documentation. http://dev.mysql.com/doc/ (cited on page 75).
[107] G.J. Sussmann and G.L. Steel. ‘Scheme: An Interpreter for Extended Lambda Calculus’. In:

AI Memo 349 (1975) (cited on page 75).
[108] Andrew W Appel. Compiling with continuations. Cambridge university press, 2007 (cited on

page 81).
[109] Andrew Kennedy. ‘Compiling with continuations, continued’. In: Proceedings of the 12th ACM

SIGPLAN international conference on Functional programming. 2007, pp. 177–190 (cited on page 81).
[110] Youyou Cong et al. ‘Compiling with Continuations, or without? Whatever.’ In: Proceedings of

the ACM on Programming Languages 3.ICFP (2019), pp. 1–28 (cited on page 81).
[111] Zoe Paraskevopoulou and Anvay Grover. ‘Compiling with continuations, correctly’. In: Pro-

ceedings of the ACM on Programming Languages 5.OOPSLA (2021), pp. 1–29 (cited on page 81).
[112] Marius Müller et al. ‘Back to Direct Style: Typed and Tight’. In: Proceedings of the ACM on

Programming Languages 7.OOPSLA1 (2023), pp. 848–875 (cited on page 81).
[113] D. Michie. ‘“Memo” Functions and Machine Learning’. In: Nature 218.306 (Apr. 1968) (cited

on page 88).
[114] R.S. Bird. ‘Tabulation Techniques for Recursive Programs’. In: ACM Computing Surveys 12.4

(Dec. 1980) (cited on page 88).
[115] G. Aranda et al. ‘R-SQL: An SQL Database System with Extended Recursion’. In: Electronic

Communications of the EASST 64 (Sept. 2013) (cited on page 91).
[116] Christian Duta. ‘Viability of Recursive SQL Functions’. PhD thesis. Universität Tübingen,

2022 (cited on page 104).
[117] Frank Tip. ‘A survey of program slicing techniques’. In: J. Program. Lang. 3 (1994) (cited on

page 104).
[118] Mark Weiser. ‘Program Slicing’. In: IEEE Transactions on Software Engineering SE-10.4 (1984),

pp. 352–357. DOI: 10.1109/TSE.1984.5010248 (cited on page 104).

http://www.oraclemagician.com/mag/magic9.pdf
https://doi.org/10.1145/3546930.3547508
https://doi.org/10.1145/3546930.3547508
http://dev.mysql.com/doc/
https://doi.org/10.1109/TSE.1984.5010248

[119] Torsten Grust, Nils Schweinsberg, and Alexander Ulrich. ‘Functions are data too: defunction-
alization for PL/SQL’. In: Proceedings of the VLDB Endowment 6.12 (2013), pp. 1214–1217 (cited
on page 105).

[120] Torsten Grust and Alexander Ulrich. ‘First-class functions for first-order database engines’.
In: arXiv preprint arXiv:1308.0158 (2013) (cited on page 105).

[121] Carsten Binnig et al. ‘FunSQL: It is Time to Make SQL Functional’. In: Proceedings of the 2012
Joint EDBT/ICDTWorkshops. EDBT-ICDT ’12. Berlin, Germany: Association for Computing
Machinery, 2012, pp. 41–46. DOI: 10.1145/2320765.2320786 (cited on page 105).

[122] Yanhong A Liu and Scott D Stoller. ‘From recursion to iteration: what are the optimizations?’
In: Proceedings of the 2000 ACM SIGPLAN workshop on Partial evaluation and semantics-based
program manipulation. 1999, pp. 73–82 (cited on page 106).

[123] Yanhong A Liu, Scott D Stoller, and Tim Teitelbaum. ‘Static caching for incremental com-
putation’. In: ACM Transactions on Programming Languages and Systems (TOPLAS) 20.3 (1998),
pp. 546–585 (cited on page 106).

[124] Yanhong A Liu and Tim Teitelbaum. ‘Systematic derivation of incremental programs’. In:
Science of Computer Programming 24.1 (1995), pp. 1–39 (cited on page 106).

[125] Richard Bellman. ‘The theory of dynamic programming’. In: Bulletin of the American Mathemati-
cal Society 60.6 (1954), pp. 503–515 (cited on page 106).

[126] Thomas Neumann and Alfons Kemper. ‘Unnesting arbitrary queries’. In: Datenbanksysteme für
Business, Technologie und Web (BTW 2015) (2015) (cited on page 110).

[127] Marcus Huber. ‘Optimiziation of PL/PGSQL Translations Using Batching and Multiple Re-
cursive References’. MA thesis. July 2022 (cited on page 110).

[128] Timo Kersten, Viktor Leis, and Thomas Neumann. ‘Tidy Tuples and Flying Start: fast com-
pilation and fast execution of relational queries in Umbra’. In: The VLDB Journal 30 (2021),
pp. 883–905 (cited on page 111).

https://doi.org/10.1145/2320765.2320786

Special Terms

A
ANF administrative normal form. x, 5, 32–37, 47–50, 52–54, 63, 64, 80–85, 95
AST abstract syntax tree. 16, 29

C
CFG control flow graph. 29, 30, 33, 40
CPS continuation passing style. x, 7, 32, 73, 75, 81–85, 89, 97, 103–106
crude SSA is a trivial form of SSA where all possible ϕ-functions are inserted. 30, 33, 45, 47
CTE common table expression. vi, vii, 24, 25, 27, 28, 35, 37–43, 50, 53, 54, 59, 60, 63, 64, 68, 75–78,

81, 85–93, 97, 103–105, 109–111

D
DDL data definition language. 27
defunctionalization is a program transformation which eliminates higher-order functions. x, 7, 73,

75, 81–83, 85, 96, 97, 103, 105, 106

I
IPC inter-process communication system. 13
IR intermediate representation. 4–8, 29, 32, 63, 64, 68, 81, 95

R
RBAR row by agonizing row. 16

S
SPI server programming interface. 17–19
SSA static single assignment form. x, 5, 30–33, 37, 41, 45, 47, 48, 63–65, 78–81, 95, 96, 99, 105

T
TVF table-valued function. 16, 26, 39, 60, 67, 97

U
UDF user-defined function. v–vii, x, xi, 1–4, 8, 9, 15, 17, 19, 20, 23, 28, 29, 31–43, 45, 50, 53–60, 63,

65–68, 73–80, 82, 84–93, 95–101, 103–105, 109–111, 115, 116, 118, 120, 122, 124, 126–128
UDO user-defined operator. 67, 68

	Contents
	Introduction
	Thesis Overview and Contributions
	Structure of the Thesis

	Compiling PL/SQL Away
	Avoid PL/SQL if you can…
	Context Switching
	Drawbacks of PL/SQL Evaluation
	Behind the Scenes of PL/SQL
	Case Study: UDF route

	One Way to Trade PL/SQL for SQL
	The Expressive Power of SQL
	The PL/SQL Language
	PL/SQL Control Flow in Terms of GOTO
	Tail Recursion Replaces GOTO
	Trampolined Style Tames Mutual Recursion
	Trampolined Style in SQL

	Trampolined Style Manages Control, and Data Flow, Too
	From Scalar Values To Tables
	Control Flow Management
	Data Flow Management
	The Impact of Data Rows in Trampolined Style SQL

	From PL/SQL to SQL: Behind the Scenes
	From PL/SQL to SSA
	From SSA to ANF
	From ANF to Trampolined Style ANF
	From Trampolined Style ANF to SQL

	Experiments
	Compiling a Collection of UDFs
	PostgreSQL 11 vs. 15—What has changed?
	To Recurse is Divine, to ITERATE Space-Saving

	Related Work and Conclusion
	Conclusions
	Related Work: Froid
	Related Work: Aggify
	Related Work: ByePy
	Related Work: User-Defined Operators
	Related Work: Tupleware
	More Related Work

	Functional Programming on Top of SQL Engines
	Recursive SQL UDF
	From 1000s of Plans to One Plan

	Treating Recursive UDF Like Functions
	Translation from SQL to SSAREC
	Transition to ANFREC
	From Recursion Towards Iteration: CPS and defunctionalization
	Trampolined Style: A Single Loop Replaces Mutual Recursion
	Memoizing the Results of Recursive Calls
	Implementation of Continuation Stacks

	Experiments
	From Recursion to Iteration to SQL—Marching Squares
	Recursive Marching Squares
	Recursive PL/SQL
	Experiments

	Conclusion and Related Work
	Conclusions
	Related Work: Functional-Style SQL UDF
	Related Work: First-Class Functions for First-Order Database Engines
	Related Work: Fun SQL
	Incrementalization

	Final Remarks
	Wrap-Up
	Future Work

	Appendix
	PL/SQL UDF Definitions
	Function bbox.
	Function global.
	Function force.
	Function items.
	Function late.
	Function margin.
	Function markov.
	Function packing.
	Function savings.
	Function sched.
	Function service.
	Function sheet.
	Function ship.
	Function sight.
	Function visible.
	Function vm.
	Function ray.

	Recursive UDF Definitions
	Function comps.
	Function dtw.
	Function eval.
	Function fsm.
	Function lcs.
	Function mbrot.
	Function paths.
	Function vm.

	Bibliography
	List of Terms

