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Abstract

Despite 50 years of dedicated efforts in the "War on Cancer", the results achieved in
treating cancer have been regrettably unsatisfactory. Particularly challenging are
tumors characterized by high inter- and intratumoral heterogeneity and an advanced
stage. These complex cancers, including ovarian, breast and glioblastoma, present
significant barriers to effective therapy. Nowadays, the healthcare system faces two
major issues in cancer treatment: low success rates of newly approved anti-cancer
drugs and ineffective treatments leading to adverse side effects in patients. The ability
to pre-select and pre-determine individualized treatment options prior to clinical care,
as envisioned in the context of personalized medicine, could thus facilitate therapeutic
decision making and ultimately improve patient outcomes. This will require advances
in the implementation of diagnostic tools for detailed and accurate patient stratification,
and advances in the prediction of patient-specific response to treatment. To enable
preclinical validation of anticancer drug efficacy in personalized cancer therapy, it is
crucial to develop patient-derived tumor models that mirror the unique complexity of
individual tumors and account for the significant impact of the tumor microenvironment
and cellular diversity on drug response. In this context, this study presents an ex vivo
tumor model composed of patient-derived 3D microtumors (PDM) and autologous
tumor-infiltrating immune cells (TIL), established and validated for ovarian cancer,
breast cancer, and glioblastoma patients to identify individual tumor vulnerabilities. By
limited digestion and subsequent culture in defined media, PDM and TIL cultures with
high viability were successfully generated from freshly resected primary tumors. In-
depth histopathological, immunohistological and proteomic analyses of PDM and
corresponding primary tumors were performed and confirmed conserved subtype-
specific histology, tumor marker expression, and the presence of tumor
microenvironment components including extracellular matrix, tumor-associated
macrophages, and cancer-associated fibroblasts. Comprehensive protein profiling of
up to 200 analytes was performed in both primary tumors and PDM with limited sample
material using advanced technologies such as DigiWest® and RPPA immunoassay
screening. The preservation of molecular protein signatures and molecular
heterogeneity of the original primary tumor in PDM was confirmed by the extensive
protein data obtained. Functional drug testing on PDM and PDM-TIL co-cultures with
small molecules, chemotherapeutic as well as immunotherapeutic agents identified

tumors sensitive to specific treatments, enabling the prediction of individual therapeutic



susceptibility. In combination with the collected proteomic data, molecular protein
signatures have been revealed that correlate with treatment response and resistance.
The clinical utility of PDM is based on their efficient isolation process, time-saving
generation, ethical non-animal culture conditions, patient-specific representation,
preservation of tissue architecture and TME components, and compatibility with
various downstream readout technologies. These combined advantages position PDM
as a powerful and versatile tool that holds great promise for drug mode of action

analyses, biomarker identification and personalized therapeutic sensitivity prediction.



Zusammenfassung

Trotz 50 Jahre langer, intensiver Bemuhungen im "Krieg gegen den Krebs" sind die
Ergebnisse der Krebstherapie leider immer noch unbefriedigend. Insbesondere
Tumoren, die durch eine hohe inter- und intratumorale Heterogenitat und ein
fortgeschrittenes  Stadium gekennzeichnet sind, stellen eine besondere
Herausforderung dar. Dazu zahlen unter anderem das Ovarial- und das
Mammakarzinom sowie das Glioblastom. Heutzutage sieht sich das
Gesundheitssystem bei der Behandlung von Krebs mit zwei Hauptproblemen
konfrontiert: geringe Erfolgsraten neu zugelassener Krebsmedikamente und
unwirksame Behandlungen, die zu unerwlinschten Nebenwirkungen fuhren. Die
Moglichkeit, Behandlungsoptionen vor der Behandlung vorauszuwahlen und zu
definieren, wie es in der personalisierten Medizin angestrebt wird, konnte daher die
therapeutische Entscheidungsfindung erleichtern und letztlich die Uberlebensraten
verbessern. Dies erfordert Fortschritte bei der Einfihrung von Diagnoseinstrumenten,
die eine detaillierte und genaue Stratifizierung der Patienten ermdglichen, sowie
Fortschritte bei der Vorhersage des patientenspezifischen Ansprechens auf die
Behandlung. Fur die praklinische Validierung effektiver, personalisierter Therapien ist
es unerlasslich patienten-abgeleitete Tumormodelle zu entwickeln, die die einzigartige
Komplexitat individueller Tumoren widerspiegeln und den signifikanten Einfluss der
Mikroumgebung des Tumors und der zellularen Diversitat auf das Therapieansprechen
bericksichtigen. In diesem Zusammenhang wird in dieser Studie ein neues ex vivo
Tumormodell vorgestellt, das aus patientenabgeleiteten 3D Mikrotumoren (PDM) und
autologen tumorinfiltrierenden Immunzellen (TIL) besteht, das fur Patienten mit
Ovarialkarzinom, Mammakarzinom und Glioblastom etabliert und validiert wurde, um
individuelle Tumorschwachstellen zu identifizieren. Aus frisch resezierten
Primartumoren  konnten durch eingeschrankten = Gewebeaufschluss und
anschlieBende Kultivierung in definierten Medien erfolgreich PDM- und TIL-Kulturen
mit hoher Viabilitdt gewonnen werden. Ausfuhrliche histopathologische,
immunhistologische und Proteomanalysen von PDM und den entsprechenden
Primartumoren bestatigten die tumorspezifische Histologie, die Expression von
Tumormarkern und die Prasenz von Komponenten des Tumormikromilieus, wie eine
extrazellulare Matrix, tumor-assoziierte Makrophagen und tumor-assoziierte
Fibroblasten. Mit fortschrittichen Technologien wie DigiWest® und RPPA-

Immunoassay-Screenings wurden umfassende Proteinprofile mit bis zu 200 Analyten



in  Primartumoren und PDM mit begrenztem Probenmaterial erstellt. Die
umfangreichen Proteindaten bestatigten den Erhalt der molekularen Proteinsignaturen
des ursprunglichen Primartumors im PDM. Funktionelle Wirkstofftests an PDM- und
PDM-TIL-Kokulturen mit  ,small molecules®, chemotherapeutischen und
immuntherapeutischen  Wirkstoffen  konnten therapieempfindliche  Tumoren
identifizieren und damit eine individuelle Therapiesensitivitat vorhersagen. Kombiniert
mit den gesammelten Proteomdaten wurden molekulare Proteinsignaturen ermittelt,
die mit Therapieansprechen und -resistenz korrelieren. Zusammenfassend lasst sich
sagen, dass der klinische Nutzen von PDMs auf dem effizienten Isolierungsprozess,
der zeitsparenden Herstellung, den ethischen Bedingungen einer tierfreien Kultur, der
patientennahen Abbildung, der Erhaltung der urspriinglichen Gewebearchitektur und
der TME-Komponenten sowie der Kompatibilitat mit verschiedenen nachgeschalteten
Analysen beruht. Diese Vorteile machen PDM zu einem vielversprechenden und
vielseitigen Werkzeug zur Analyse der Arzneimittelwirkung, zur Identifizierung von

Biomarkern und zur personalisierten Vorhersage des Therapieansprechens.
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Chapter 1

Introduction






1 Introduction

1 Introduction

1.1 The Battle Against Cancer: Are We Winning?

The year 2021 marked not only a year in pandemic history with the global spread of
COVID 19, but also 50 years since the proclamation of the "War on Cancer" by then
President of the United States of America, Richard Nixon. The signing of the National
Cancer Act in 1971 led to a substantial increase of the budget of the National Cancer
Institute (NCI). This financial growth initially raised the deceptive hope that cancer
might soon be curable. In 1986, Bailar and Smith drew the disappointing conclusion
that intensive efforts to improve cancer treatment had failed [3]. However, in recent
decades, pessimism has given way to optimism, thanks to incredible advances in basic
cancer research [4]. Furthermore, new initiatives, such as the Cancer Moonshot
program revised by President Biden in February 2022, have been launched to
accelerate progress in cancer prevention and survivorship. New goals were set to
reduce cancer mortality by at least 50% over the next 25 years, with the ultimate goal
of ending the "War on Cancer" [5, 6]. As a result of these investments, major advances
in cancer treatment have been made over the past decades, including the development
of new therapies such as targeted small molecules, monoclonal antibodies such as
trastuzumab for HER2-positive breast cancer (BC), antibody-drug conjugates and
immunotherapies including immune checkpoint inhibitors such as ipilimumab and
chimeric antigen receptor (CAR)-T cell therapies such as idecabtagene vicleucel for
myeloma patients [7].

Despite such progress, there is still no "cure" for cancer. It remains the second most
common cause of death after cardiovascular diseases, with cancers of the breast,
prostate, lung and colon being the most common, and lung cancer having the highest
mortality rate (Figure 1). Already 100 years ago, it was described by Theodor Boveri
that cancer arises from normal cells of the human body [8]. Cancer is caused by the
uncontrolled growth and division of abnormal cells, which are phenotypically
heterogeneous and plastic, adapting, evolving and becoming resistant to treatment. It
is a puzzling set of diseases, complex and highly heterogenous with over 100 different
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Figure 1: Global health estimates 2019. (A) General causes of death worldwide with
cardiovascular diseases causing the highest mortality, followed by malignant neoplasms
(cancer). (B) Cancer-related deaths in women and men worldwide. Cancer of the trachea,
bronchus and lung have the highest mortality rates in men, while breast cancer is the leading
cause of cancer-related death in women. Data source: Global health estimates: leading
causes of death, accessed 05.07.2023. https.//www.who.int/data/gho/data/themes/mortality-
and-global-health-estimates [1].

types, located in different organs and subtissues and originating from different cell

types. Understanding how cancer develops, how it wreaks havoc, and most
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importantly, which factors promote or inhibit its growth, requires solving complicated
biological and medical problems. As we continue to unravel the mysteries of this
heterogeneous disease, it is becoming increasingly clear that cancer must be fully
understood in all of its natural complexity in order to ensure successful treatment and
tumor management. Well, the 'War on Cancer' is not yet over, and it's questionable

whether we're going to succeed in fighting at least for a ceasefire.

1.2 Unmasking Cancer's Complexity: A Journey Through Tumoral
Heterogeneity
Tumor heterogeneity reflects the complexity and diversity of cancer, referring to the
observation that cancer cells can have distinct phenotypic profiles. The Darwinian
selection as the basis for subclonal diversity provided the foundation for our
understanding of tumor evolution: a succession of genetic alterations, each conferring
one or another type of growth advantage, leads to the progressive transformation of
normal human cells into cancer cells, allowing subclonal cells to spread and gain
dominance in a local tissue environment [9-11]. These cells ultimately evolve into a
tumor cell phenotype with eight essential tumor characteristics (cancer hallmarks):
sustained proliferative signaling, evasion of growth suppressors, resistance to cell
death, replicative immortality, angiogenesis induction, tissue invasion and metastasis,
cellular energetics deregulation and immune destruction avoidance [9, 12]. Early
observations by Gloria Heppner supported a model of nonlinear branched tumor
growth in which subpopulation of cells (subclones) descended from a common
ancestor eventually diverge and spread simultaneously with differing fitness.
Consequently, molecularly and phenotypically distinct subclones coexist within a
tumor, termed intratumoral heterogeneity (ITH) [13, 14], alongside intertumoral
heterogeneity, the diversity of phenotypic profiles between two tumors of the same
type [15]. The coexistence of clonal variants is determined by an interplay of genetic,
epigenetic and microenvironmental factors that are intimately intertwined [16-19].
With the revolution in DNA sequencing technologies such as next generation
sequencing (NGS), genetic heterogeneity has become the most studied and best
understood mechanisms of ITH [20, 21]. However, it is still far from complete [22].
Genotypic variability occurs only when genetic changes manifest in the cellular
phenotype, mainly as a result of genomic instability and other mechanisms such as
defects in homologous recombination, chromosomal instability, chromothripsis,
dysregulation of APOBEC enzymes, and drug treatment [23]. For premalignant cells
3



1 Introduction

to become cancerous, they accumulate large numbers of mutations [24]. NGS has
revealed an average of more than 10,000 somatic mutations within “passenger” and
“driver” genes, affecting cancer-related genes that lead to activation of oncogenes and
inactivation of tumor suppressor genes, and “passenger” genes [25-33]. On average,
5-15 driver mutations with selective growth advantage and 40-100 protein-coding
alterations in passenger genes that may alter cell functions are found within tumors
[34-36]. Due to external or internal exposure to mutagens and impaired DNA repair
mechanisms, tumors increase their mutational capacity [37-40]. A large number of
such aberrations arise in short bursts [41, 42] in between long periods of relative
mutational equilibrium [43] as demonstrated in triple-negative breast cancer (TNBC)
[44]. In particular, large-scale genomic alterations (copy number changes) associated
with chromosomal instability, exert significant phenotypic effects and accelerate
genomic diversification [45, 46]. Such heritable phenotypes can be acquired not only
through genetic alterations, but also through non-mutational epigenetic mechanisms
[47-49]. Epigenetic landscapes and gene regulatory networks directly regulate the
phenotypic plasticity of tumor cells [50]. They are an illustration of the repertoire of
stable (and unstable) phenotypes from the same genetic material and provide a
comprehensive overview of nongenetic sources of phenotypic heterogeneity in cancer
[51]. Epigenetic mechanisms, particularly DNA methylation [52], histone modifications,
and regulation of non-coding RNA, directly modulate the genetic makeup of a cell. This
leads to the formation of distinct, cell type-specific epigenetic profiles which influence
cell fate in normal biological processes [53]. In both aging and senescence, and
particularly in cancer, dysregulations and perturbations of the epigenetic machinery
are frequently found altering the cell-specific epigenetic landscape and their
transcriptome [54-57]. Epigenetic changes, such as epigenetic activation or silencing
of driver genes (such as DNA repair genes), are more common, heritable, and
reversible in cancer, and thus more influential than genetic aberrations [58]. Epigenetic
landscapes of isogenic cell populations produce distinct functional states of cells e.g.
differentiated cell types, stem-cell states, stressed states, activated states, each with
optimized expression patterns [51]. Transient cell states of a uniform, isogenic cell
population are mainly induced by gene expression noise [59] and add to the diversity
of phenotypes.

In general, transitions between phenotypic states (cell types) can be triggered by

oncogenic transformation, genetic perturbations, and abnormal environments, or by
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changes in the "topology of the epigenetic landscape" (genetic endowment; signals
from the microenvironment). Thus, environmental stress, changes in the
microenvironment, and therapeutic pressure, among other stress factors, can trigger
an adaptive response in cancer cells through dynamic transitions from one state to
another through epigenetic and transcriptional changes (cellular plasticity) [60-62] (i.e.,
inflammation and therapy). The process of epithelial-mesenchymal transition (EMT)
exemplifies this cellular plasticity [63] [64]. Environmental stress or microenvironmental
perturbations including changes in the components, properties of stromal cells and
remodeling of the EMT can exert selective pressure on cells, leading to adaptive
responses, i.e. phenotypic changes [65-68]. Under normal conditions, the tissue
environment provides the optimal conditions for the supply of tissue-specific cells.
Alterations in these optimal tissue conditions often occur with aging and chronic
inflammation, and are associated with an increased risk for tumorigenesis [69, 70].
Most importantly, perturbation of the microenvironment was found to promote tumor
progression in invasive tumors or metastases [69, 70]. The stromal and epithelial
disorganization translates into distinct and novel topological landscapes with spatial
and temporal variability in nutrients, oxygen supply, stiffness, growth factors,
inflammation and pH [68, 71], which directly links microenvironmental features to
phenotypic diversification. Furthermore, the spatial distribution of genetically distinct
tumor cell populations due to the presence of different microhabitats with different
conditions (nutrients, oxygen, growth factors) is often associated with poor clinical
outcomes [72-74].

As we continue to unravel the complexity of tumorigenesis and pathogenesis, features
such as cell plasticity or non-mutational epigenetic reprogramming contribute
significantly to ITH and could be incorporated into the hallmarks of cancer framework
as novel cancer cell characteristics and enabling features, along with “polymorphic
microbiomes” and “senescent cells” [75]. Ultimately, all these characteristics result in a
high degree of phenotypic heterogeneity within the tumor and lead to a heterogeneous
susceptibility of tumor cells to anticancer drugs and cytotoxic immunity, which has

important implications for cancer therapy.

1.3 Decoding the Tumor Terrain: Exploring the Intricate Landscape of the
Tumor Microenvironment

The tumor microenvironment (TME) is defined by a mass of cancer cells surrounded

by a collection of stromal non-cancerous cells including fibroblasts/myofibroblasts,
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vascular, epithelial, fat and immune cells embedded in an extracellular matrix (ECM)
scaffold of connective tissue [76, 77]. While these cells are not inherently malignant,
the reciprocal interaction with malignant cells and the ECM creates a dysregulated
TME phenotype with altered functions that actively promotes tumor cell growth, local
invasion, and metastasis [78]. Abnormal interactions result in fibroblasts and immune
cells producing growth factors, cytokines and chemokines that directly stimulate tumor
cell growth and progenitor recruitment, further promoting abnormal growth and
proliferation.

The ECM of connective tissue mainly consists of elastic and collagen fibers, as well as
so called ground substance containing glycosaminoglycans e.g. hyaluronic acid
(GAGs), proteoglycans (PGs), and glycoproteins providing a scaffold for tissues and
organs [79, 80]. Its biophysical characteristics determine topography, molecular
density and stiffness of the connective tissue [81]. Primarily, fibroblasts as the
predominant cells in the stroma, are responsible for the deposition, the maintenance
and remodeling of the fibrillar ECM-type I, Ill and V collagen and fibronectin providing
structural support of cells and maintenance of tissue integrity [82]. By secretion of type
IV collagen and laminin, fibroblasts further support the formation of the basement
membrane [83]. In normal tissue the dynamic process of ECM-turnover is tightly
controlled by ECM protein production and fibroblast-derived matrix metalloproteinases
(MMPs)-associated degradation [83, 84]. In tumors, Schor and colleagues (1986) [85]
found an altered appearance of these fibroblasts, capable of driving noncancerous
cells into a tumor-like state through oncogenic signaling and initiating epithelial tumor
growth [86]. Tumor-associated fibroblast are usually referred to as myofibroblasts or
cancer-associated fibroblasts (CAFs). CAF phenotypes are hallmarked by high
proliferative index, extensive collagen deposition causing fibrillar collagen compaction
[82], and increased hyaluronate and epithelial growth factor synthesis [87], often
initiated by tumoral TGF[3 secretion [87, 88]. Further they were found to promote tumor
angiogenesis, invasion and metastasis [89-91].

The complex vascular system in the human body is designed to keep our tissues
oxygenated and nourished. In the case of fast-growing tumors, oxygen and nutrient
supply is no longer sufficient, requiring the formation of new blood vessels and a tumor-
vascular network to surpass a certain tumor size [92, 93]. Angiogenesis is induced by
hypoxia-inducible factors (HIFs), which activate the transcription of angiogenic growth

factor genes, including platelet-derived growth factor (PDGF), epidermal growth factor



1 Introduction

(EGF) and vascular endothelial growth factor (VEGF), during oxygen deprivation [94].
Mainly VEGF is considered to be the master regulator of angiogenesis. It causes the
attraction of endothelial cells (ECs) from nearby vessels, leading to the formation of
new basement membranes and vascular spreading, a characteristic feature of tumors
in response to low oxygen levels [77, 94]. In TME, these blood vessels often fail to
mature, and the excessive secretion of angiogenic factors resulting from hypoxia leads
to a vicious cycle in which the tumor is never reoxygenated [77, 95]. To restore tissue
oxygenation during tumor growth and metastasis [96], hypoxic ECs demonstrate high
adaptability [97]. Apart from this, ECs show high cellular plasticity being able to
transition into CAFs through the process of EMT, promoting tumor progression.
Modification of the endothelial barrier in response to tumor cell intravasation and
leakiness of the blood vessels facilitates the passage of migrating cells through the
vasculature and infiltration of other areas [95].

In non-malignant tissues, both the innate and adaptive immune system work hand in
hand to defend the body against foreign bodies (pathogens), infections, or abnormal
cells, thus mainly acting suppressive. In the dynamic process of cancer immunoediting,
complex cross-talk between transformed cells and immune cells determines if
neoplastic cells get eliminated, persist or outgrow [95, 98, 99]. The presence of immune
cells in the TME can have an ambivalent effect on tumor growth, either tumor
promoting or tumor antagonizing. Whether neoplastic cells are eliminated or immune
cells execute a pro-tumorigenic activity depends on the immune cell composition as
well as the density and localization of the immune contexture within the TME, including
innate (natural killer cells, macrophages, neutrophils, mast cells and dendritic cells)
and adaptive (T and B cells) immune cells. The innate immune system generates an
unspecialized, rapid immune response against a foreign antigen, while the adaptive
immune system is activated by contact with specific antigens and uses immunological
memory to evaluate the threat and amplify the immune response. In the TME,
inflammatory neutrophils, M2-polarized tumor-associated macrophages (TAMs), TH2
CD4* T cells (MDCSs) were found to induce pro-tumorigenic effects supporting tumor
angiogenesis, stimulate proliferation, facilitate tissue invasion and metastasis [100-
103] contrary to anti-tumoral M1-macrophages, Tu1 CD4* T cells and cytotoxic CD8*
cells [104]. These processes are controlled by the release of immunologically active
growth factors (cytokines, chemokines, angiogenic factors, interferons) and various

proteolytic enzymes [9, 105]. Distinct immune contextures of the TME in solid tumors
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and the activation of adaptive immune response are associated with improved patient
survival. For example, effective antigen presentation, IFN signaling and sufficient
numbers of T cells correlate with better prognosis [106-110]. This has led to the
implementation of the "Immunoscore” (validated for CRC) [111], which differentiates T
cell-inflamed (hot) TME, composed of high levels of infiltrating T cells, from uninflamed
[112] TME, characterized by low levels of infiltrating T cells, low tumor-specific
(neoantigen) antigen expression and lack of IFN signal [113]. “Cold” TMEs are actively

shaped by the complex interaction between tumor, stromal and immune cells.

Cold Tumor Hot Tumor
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Figure 2. “Cold” non T cell inflamed versus “hot” T cell inflamed tumors. “Cold”

tumors are poorly infiltrated with effector T cells, which are mostly found embedded in

surrounding stroma. Further, they are often characterized by the presence of

immunosuppressive cells, such as cancer-associated fibroblasts (CAFs), Treg cells or

tumor-associated macrophages (TAM), which dampen the immune response and inhibit

the migration of T cells into the tumor. “Hot” tumors are characterized by T cell infiltration,

the production of proinflammatory cytokines and immune activation. (Figure created with

Biorender)
Distinct secretomes of ECs and CAFs disrupt T cell extravasation, remodel the ECM
and trap T cells within it, resulting in low levels of tumor-infiltrating lymphocytes (TIL),
while encouraging the recruitment and polarization of regulatory cells and monocytes
[114-116]. Other mechanisms of stromal cells are found to directly suppress anti-tumor
immune responses such as the upregulation of PD-L1 [117-119]. The PD-1 (PD-L1)
axis has a critical role in the maintenance of immune homeostasis. Binding of PD-L1

to PD-1 on TILs counteracts the TCR signaling cascade and inhibits the activation of
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T cells, thereby preventing hyperactivation [120] and the development of autoimmune
diseases [121]. Upregulation of PD-L1 on cancer cells and on cells in the TME, such
as macrophages, dendritic cells, CAFs, thus creates an immunosuppressive
environment that supports cancer cell growth through impaired T cell activation [122-
124].

Summarized, understanding the complexity of the TME and its role in cancer
progression is essential to the development of new therapeutic strategies for the
treatment of this devastating disease. Recently, molecular strategies for tumor
treatment have focused on the unique interplay between various aspects of the tumor
and the microenvironment. By identifying and targeting specific molecular pathways
involved in tumor cell-microenvironment interactions, researchers hope to develop
effective treatments to halt tumor growth and metastasis. Approaches include the
blockade of TAM recruitment, blockade of MDM infiltration into the TME, interference
with TAM differentiation, modulation of dendritic cells and inhibition of proinflammatory
cytokines [125]. Various therapies are under clinical evaluation in various tumors,
including CSF1-R-inhibibtors to deplete TAMs, CCL2-inhibitors to block TAM-
recruitment, dendritic cell-modulating agents FLT3L and GM-CSF, or FAP-targeting
agents (e.g., PT630, RO6874281, and sibrotuzumab) [125].

1.4 Tumor Heterogeneity and Therapy Resistance — a Call for Precision
Oncology

1.4.1 Anti-cancer Therapies

With the advancements in deciphering molecular mechanisms of tumorigenesis and
causes of tumor heterogeneity the development in clinical oncology has evolved from
the radical surgical approaches towards novel cancer therapies including targeted
therapies using small molecule inhibitors (SMIs) or monoclonal antibodies (mAbs),
checkpoint inhibitory mAbs, adoptive T cell therapies including chimeric antigen
receptor (CAR)-T cell therapy or TCR-transgenic T cell therapy, antitumor vaccines,
and oncolytic viruses (OVs) [126]. Nevertheless, surgical removal remains the primary
treatment for many solid cancers e.g. BC, ovarian cancer (OvCa), unless the tumor
has metastasized and spread to other parts of the body [127]. In the case of aggressive
tumors, it is often combined with radiation therapy, chemotherapy or targeted
therapies. These treatments use high-dose radiation and/or drugs with the aim to kill

rapidly dividing cells and shrink the tumor. However, the low specificity of
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chemotherapies also damages proliferating healthy cells, resulting in common adverse
events and toxicities [128]. Besides chemotherapy's low specificity for cancer cells,
some tumors, such as glioblastoma (GBM), are usually resistant to chemotherapy,
making recurrence inevitable and the tumor incurable. The relatively non-specific
chemotherapy is contrasted with the targeted therapy with SMI and mAbs, which has
a higher tumor specificity and general lower toxicities [129-132]. However, targeted
therapies have unexpectedly a whole new set of toxicities and therefore may have
similar levels of toxicity in some cases [133]. One of the reasons for the toxicity of
targeted therapies is the unexpected cross-reactivity between the targets on the tumor
cells and the normal cells of the host, which leads to toxicity in other organs. This is
the case for EGFR targets such as afatinib and cetuximab [134] or for HER-2 targets.
The fact that HER2 is also expressed on normal heart muscle cells increases the risk
that HER2" BC patients will develop cardiac dysfunction when they receive HER2-
targeted therapy [135]. Notwithstanding some limitations, targeted therapy, in
particular mAbs, represent a promising option in cancer therapy due to their low
toxicity, high specificity, and scalability [136, 137], and interest in developing and using
mADbs in cancer therapy has increased significantly over the past 20 years [138]. SMIs
and mAbs have a molecular weight of less than 900 kDa and are capable of specifically
binding to molecular targets such as growth factor receptors, oncogenes, cyclin-
dependent kinases, proteasomes, and poly-ADP-ribose polymerase [139, 140].
Targeted therapies aim to reduce tumor growth by specifically inhibiting signal
transduction pathways involved in cancer cell growth, proliferation, differentiation,
survival and migration of cancer cells, or by altering the TME [129]. Several targeted
agents are currently approved by the Food and Drug Administration and in clinical use
for the treatment of various types of cancer. These are used as first-line therapy in
certain cancers where druggable driver gene mutations have been identified through
extensive genomic analyses. For example, in lung cancer, gefitinib or cetuximab target
an EGFR aberrant gene product [141], trastuzumab and pertuzumab [142, 143] target
HER2 in HER2 positive breast cancer (BC), crizotinib and ceritinib target an ALK
mutation [144] non-small-cell lung cancers [145, 146], and vemurafenib or dabrafenib

target a BRAF mutation in melanoma [147, 148].
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1 Introduction

Targeted therapies are also used to block the crosstalk between the TME and the
tumor. For example, attempts are being made to suppress hypoxia-induced tumor cell
angiogenic signals, such as VEGF, which lead to the formation of heterogeneous,
chaotic vessels [149, 150]. The first anti-angiogenic drug approved by FDA was
bevacizumab, targeting VEGF [151]. Table 1 lists a number of targeted therapies that
have been approved by the FDA specifically for BC, OvCa, and GBM, and shows the
success of drug development over the past two decades. It is clear from the table that
fewer targeted therapies have been approved for the treatment of OvCa and GBM
compared to BC. Nevertheless, there have been important developments in recent
years with the approval of PARP inhibitors for BRCA-mutated OvCa or the approval of
dabrafenib and trametinib for BRAF-V600E-mutated pediatric GBM (Table 1).

Immunotherapy, which uses the patient's own immune system to kill cancer cells and
generate systemic, protective anticancer immunity, rather than reducing tumor burden
(through chemotherapy), is another therapeutic option that has evolved in recent years.
Immunotherapies include mAbs, checkpoint inhibitors (CPI), cytokines, vaccines and
adoptive cell transfer, including chimeric antigen receptor (CAR)-T cell therapies and
TCR-engineered T cell therapy. Significant progress has been made in recent years
with immunological CPI as new cancer therapies, with the FDA approving 6 new CPI
drugs [152]. These are primarily immune checkpoint blockade (ICB) therapies in which
mADbs block/inhibit the interaction of T cell co-inhibitory receptors and their ligands.
These are often over-expressed by tumors in order to evade the T cell immune
response [153], which ultimately leads to increased T cell cytotoxicity. The first ICB
drug to receive FDA approval was the CTLA-4 inhibitor ipilimumab in melanoma
patients in 2011 [154]. Next, in 2014, the FDA approved the PD-1-targeting ICB drug
nivolumab for melanoma [155] and later for first-line treatment of non-small cell lung
cancer [156], renal cell carcinoma [157], urothelial carcinoma [158], Hodgkin's
lymphoma [159] and others. Recent FDA-approved ICBs target PD-1 ligand PD-L1,
including atezolizumab [160] and durvalumab [161]. The current status of
immunotherapy clinical trials in BC, OvCa and GBM is shown in Figure 2. Many of the
ongoing trials are mainly focused on testing CPIs and vaccines. In particular, across

phase one to phase three clinical trials, there are an increasing number of trials
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investigating the use of ICBs, CAR-T/CAR-NK and vaccines in BC. In contrast, current

TCR-engineered T-cell trials are limited to OvCa studies.

Immune checkpoint TCR-engineered T cells CAR-T/CAR-NK cells Vaccines
inhibitors 8 7 120
120
L 8 100
- o -
® i} =}
5 E° Es =
= 5 Es g T
i E = i BC
E Ta T S 60
S 60 5 % 3 s ~——GBM
5] =3 e o
5 a5 & 2 S 2 —O0vCa
a E, E2 E
E S E S
3 = < =
=z 20 \ 1 1 =
0 0 ‘/\ . .
active  completed terminated actie  completed  terminated active  completed terminated active  completed terminated
Immune checkpoint TCR-engineered T cells CAR-T/CAR-NK cells Vaccines
inhibitors
70 6 5 16
8 X ) a2 A
£ 60 B £ £ 14
i for Za =
S50 8 g s
E = £ £
o © T 3 =l
T 2 2 2 , -
2 23 2 2
T30 g g 5 u GEM
L] ® Q2 s g
] 52 s s mOvCa
L 20 = pu =
o @ I} g 4
o o o1 -1
E 10 El E E 5
2 A 2 a : IR 2
0 0 ] 0 o= =

Early Phase 1 Phase2 Phase3 Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3 Early Phase Phase 1 Phase 2 Phase 3
Phase 1 1

Figure 3. Immunotherapy clinical trials: Total number and active trials. (A) Number of active,
completed or terminated immunotherapy clinical trials by therapy and cancer type. (B) Number of active
immunotherapy clinical trials in breast cancer (BC), ovarian cancer (OvCa) and glioblastoma (GBM) by
clinical trial phase. Data source: https.//www.clinicaltrials.gov/

1.4.2 Therapy Resistance Unmasked: Cracking the Code to Healing

Despite the development of new cancer therapies such as immunotherapies and
targeted therapies, drug resistance remains the greatest challenge in treating cancer.
While cancer therapies often elicit a good initial response, the emergence of treatment
resistance and relapse during progression or metastasis is almost inevitable in most
tumors [162]. As a result, patients with advanced solid tumors continue to be faced
with poor clinical outcomes. Worryingly, 75% of patients do not achieve a response
regardless of the type of treatment [163-165], even when a large proportion of cancer
cells are killed. One of the main reasons for high recurrence rates or resistance is the
"one size fits all" approach that still prevails for many cancers, where treatments are
applied based on clinical treatment guidelines and mostly without consideration of
patient-individual or cohort-specific differences. Cancers with high recurrence rates
include GBM with 75.3% local and 6.1% distant disease progression [166] and OvCa
with 80% disease progression at advanced stages [167]. Developing new therapeutics
is based on the simple approach of trying to develop effective therapies for the
"average patient" [168]: Successful for some patients, but not for many. In many cases,
13
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this oversimplified model does not lead to a successful treatment, but rather to
unnecessary side effects for the patient. Current therapeutic approaches neglect inter-
and intra-tumoral heterogeneity at the morphological-histological and molecular levels,
which often leads to therapeutic resistance [169-172]. Following an initial response,
treatment resistance can either be acquired due to somatic events/new mutations that
subsequently alter signal transduction pathways [173], or it is already prevalent due to
the presence of pre-existing subclones that are selected by therapy [174-176]. This
was demonstrated in several tumor types [177-181]. For example, genetic alterations
leading to response failure include mutations that prevent the drug from binding to the
target as with imatinib in CML and GIST [182, 183], that circumvent the targeted
pathway blockade as with B-RAF inhibition in resistant BRAFV600-mutant melanoma
[184], or that restore the wildtype function of a protein as with BRCA2 in BRCA-mutated
cancers [185]. By contrast, pre-existing chemotherapy-resistant subclones have been
identified by single-cell RNA sequencing in metastatic estrogen receptor positive (ER)
BC patients, as well as fulvestrant- and tamoxifen-resistant subclones in ER* BC cell
lines [50, 174, 186]. Resistant tumor cells arise not only from direct genetic alterations
but also from non-genetic epigenetic changes that alter gene expression patterns in
genetically identical cells in a semi-stable manner [50, 187-193]. In most cases, for
surviving subpopulations to become fully resistant phenotypes, additional gene
expression changes must occur alongside transient resistance-gene expression
changes [194, 195]. Besides genetic and non-genetic changes, therapies generate a
specific TME that also acts to select for specific phenotypes. For example, certain
growth factors secreted by tumor cells or stromal cells in the TME [196], ECM-tumor
cell interactions [197], or hypoxic, acidic, and nutritional conditions in the TME [198]
influence the development of intrinsic resistance. As such, the higher the pre-existing
ITH, the more likely certain tumor cell subpopulations will survive and undergo further
phenotypic adaptation due to therapy-induced selection pressure, leading to a more

resistant phenotype and thus likely relapse.

1.4.3 Personalizing Oncology: Promise for a Cure?

All of this points to the need for a treatment approach that takes an individualized and
holistic view of the patient's tumor. In the last decade, attempts have been made to
move away from the antiquated 'one-size-fits-all' approach to a patient-specific

treatment approach known as 'personalized medicine' [199] and subsequently
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'precision medicine' [200]. The FDA defines precision medicine as "an innovative
approach to tailoring disease prevention and treatment by taking into account
differences in people's characteristics, environments, and lifestyles. The goal of
precision medicine is to target the right treatments to the right patients at the right time
[168]”. The goal of precision oncology is therefore to identify, develop, and deliver
highly selective drugs against specific cancer targets to the appropriate sub-population
of individual cancer types [200, 201]. In this context, oncology includes precision
diagnostics that provides accurate diagnosis, classification into subtypes, and
treatment stratification of each individual patient tumor [202]. A stratified medical
approach with more precise and data-driven treatment strategies is enabled by the
integration of molecular categorization of tumors using tumor-specific biomarkers (so-
called "signatures") [203, 204]. One example is the identification of BRCA1/2 mutations
in BC, which supports individual risk stratification [205, 206]. On the other hand,
precision oncology encompasses precision therapy, in which the most effective
treatment is tailored to each patient on the basis of genetic and phenotypic profiling
data. For some tumors, genomics has succeeded in developing tailored targeted
therapies, such as the first "personalized" treatment of HERZ2-positive BC with
traszuzumab in 1998 [207, 208] or targeting the driver mutations EGFR or ALK in lung
adenocarcinoma or BRAF in melanoma, and PD-1/PD-L1 in microsatellite unstable
tumors [209]. On average, 38-40% of cancer patients have detectable genetic
susceptibilities. However, there are far fewer genetic alterations that can be targeted
by a targeted agent, and relapsed cancers are particularly unlikely to respond, as
several clinical trials have shown [210-215]. Few patients are likely to benefit from this
type of personalized treatment approach, suggesting that genomic analysis alone is
not sufficient to predict response to therapy. Many nongenetic and epigenetic
mechanisms affecting response to therapy determine many discrete and metastatic
cancer cell phenotypes [55], which must be considered in the context of precision
oncology. Bridging the gap between the genotypic effects and the phenotypic
manifestation may be achieved in particular with the help of multiomic techniques such
as transcriptome, proteome and metabolome analyses. Many challenges remain
before precision oncology can be fully integrated into mainstream care, although this
approach promises to improve clinical outcomes, increase cost-effectiveness, and

protect patients from unnecessary treatments.
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1.4.4 Preclinical Models and Functional Analyses

Precise diagnosis and prediction of treatment outcome is one of the major hurdles to
successful precision oncology. In particular, developing functional predictive
biomarkers can be used to guide treatment decisions and risk stratification. On the
other hand, there is a need for deep tumor profiling for tumor classification and the
development of new targeted therapies. Besides multiomics analyses, this primarily
requires the development of preclinical models. The use of preclinical patient-derived
models capable of reflecting patients' tumors can, on the one hand, assess the
sensitivity or resistance of tumor samples from affected patients to clinically approved
drugs (functional precision medicine) [216] and, on the other hand, support drug
discovery. Functional data from patient-derived models can be used to detect
vulnerabilities, such as protein signaling pathways and epigenetic alterations and/or
changes in non-genomic pathways and provide predictive data prior to the initiation of
treatment. This would allow therapies to be selected individually based on their
functional effectiveness. Integrated with genomic, proteomic and transcriptomic data,
this "next generation" functional assay [217] promises to increase therapeutic
efficiency. This would help decide which genomic aberrations are valid targets to avoid
mistreatment like RAF inhibitors in BRAF V600E mutant CRC [218]. With the advent
of 3D cell culture systems, new tumor models have been established in oncology over
the past decade. These replace mainly 2D monolayer cultures in both in vitro/ex vivo
drug screening and personalized functional testing [219-221]. 2D cell culture is still
widely used in drug discovery due to its advantages such as expediency, simplicity,
and cost-effectiveness. However, the results obtained show virtually no clinical
applicability [222]. This is primarily due to the lack of essential components of the 3D
tissue structures that are critical for the efficacy of the drug [223]. One is dimensionality,
which provides a more relevant environment that more closely mimics the
pathophysiological environment in vivo, allowing for dynamic cell-cell and cell-ECM
interactions. The 3D matrix given by dimensionality has a strong influence on
morphology, phenotypic cell states and expression profiles [224-226]. Through the
spatial positioning of cells, the stiffness of the matrix, and the molecules of the ECM
(including glycoproteins, ECM fibers, proteoglycans), the ECM largely affects the
efficacy of a drug [227-229]. Moreover, dimensionality creates a gradient of soluble
metabolites, oxygen concentration, and pH [230, 231] that contributes to ITH and

influences proliferation and chemotaxis [227]. Finally, 2D tumor cell lines cannot
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accurately mimic cell growth [232] and cannot represent tumor subtypes such as
luminal A BC [233] and thus intertumoral heterogeneities. Today, oncologists use 47%
animal models, including two-thirds mouse models, and 18% 3D cell culture systems
and 3D organoids [234]. Among them, patient-derived tumor models such as patient-
derived organoid (PDO) or patient-derived xenograft [235] models have been
established from clinical cancer biopsies [219, 220, 236]. PDX models are generated
by implantation of primary patient-derived tumor cells, biopsied tumor tissue or cultured
PDO into immunodeficient mice [237-239] mostly subcutaneously or orthotopic [240].
They largely represent inter- and intratumoral tumor heterogeneity, exhibit similar
structural, functional, histopathology and genetic characteristics as the primary tumor
[236] and are being investigated for patient stratification [241]. Indeed, PDX models of
BC have been shown to predict metastatic recurrence [242-244] and patient response
to therapy [245]. PDO models, which could be developed for a variety of tumor types,
also have a great potential for precision therapy [246-250]. In pancreatic and colorectal
tumor models, PDO and primary tumors have been shown to correlate genotypically
and phenotypically [251, 252] and may also partially predict drug response [253-256].
PDO models are generated by dissociating primary tumoral tissues containing cancer
cells, adult stem cells, pluripotent stem cells or cancer stem cells, which are cultured
under defined 3D culture conditions in a 3D matrix. This produces functional units (3D
cell units) with tissue-specific structure, containing both differentiated cells and stem
cells [257, 258]. As a testament to the current efforts in PDO culture and its promising
applicability in drug screening and functional precision medicine, Y.-H. Lo et al. [2]
reviewed currently established PDO cultures for various tumor types, success rates,
application for drug testing, and available correlation data with patient outcomes [259].
However, the generation of reliable data and detailed evaluation of the models are
critical to the clinical relevance and predictive value of such models. Several factors
can significantly impact the clinical relevance of such models. For example, the
temporal availability and the speed with which results can be generated are of great
importance to clinicians. Furthermore, the general availability and required amount of
fresh tumor tissue, which is not given in metastatic disease or needle biopsies, as well
as sufficient cell yields are relevant. Major limitations of the use of PDOs in functional
precision medicine include long ex vivo culture time (weeks/months), lack of an intrinsic
tumor microenvironment, in particular the stromal and immune compartments, high

cost of conditioned medium and matrices, potentially interfering growth factors in
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medium, no vascularity and the variable success rates in establishing PDOs [209, 259-
261]. Varying engraftment rates, low success rates for low tumor burden-cancers
compared to high success rates for metastatic cancers, high cost, long periods, low
scalability, host-tumor interactions, lack of functional immune system and mouse-
specific selection pressure causing genetic drift are several drawbacks of PDX models
[209, 261, 262]. Despite technological advances, there is a continuing need for
clinically meaningful patient-derived preclinical tumor models to assess the
susceptibility and treatability of individual patients. The greatest challenge remains the
development of a preclinical model that reflects the phenotypic and pharmacological
diversity of a tumor while preserving the TME. Disappointing success rates of 3.4% -
5.1% for the approval of new anti-cancer drugs demonstrate the limits of the
translatability of current tumor models [263]. The demand for models incorporating a
functional TME with an immune component is also emphasized by the emergence of
promising immunotherapies. Gaps in precision medicine can be filled and decisively
shaped in the near future by the establishment of more accurate, cost-effective and
efficient preclinical technologies for in vitro/ex vivolin vivo methods, the refinement of
established models and the development of new, complementary short- and long-term
models and their accurate validation. Ultimately, no single model will be able to
represent a 'patient avatar'. Rather, all available models will represent complementary

tools in PM, each best suited and used for specific applications.
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2 Objectives of the Thesis

The individual response to cancer therapies and the development of resistance
remains poorly understood despite the success of new methods such as the
establishment of patient-derived tumor models or the genomic and transcriptomic
analysis of disease determinants. There is an urgent need to address gaps in
personalized cancer therapy, such as the lack of patient-derived models for all tumor
types, low efficacy rates, or long culture times that hinder use in personalized medicine.
The aim of this study was the development and validation of a complementary,
clinically relevant, patient-derived model for highly heterogeneous and advanced tumor
entities. For this purpose, a novel 3D ex vivo tumor model of BC, OvCa and GBM was
established, consisting of patient-derived microtumors (PDM) and TILs obtained by
mechanical and enzymatic dissociation of tumor tissue within maximum of 24 hours
after receipt. Extensive phenotypic analysis and validation was performed using
clinically relevant histological (H&E staining), immunohistochemical (DAB staining) and
quantitative multiparameter flow cytometry methods. Emphasis was placed on the
histopathologic comparability of PDM and corresponding patient tumor tissue,
preserving tumor subtype characteristics, and intertumoral heterogeneity between
individual patient tumors. Furthermore, the preservation of ECM components such as
collagen and PGs/GAGs in PDM, which have been shown to influence treatment
response, was evaluated using Movat’s Pentachrome staining. These results were
complemented by RPPA and DigiWest®-based protein signal transduction profiling by
adapting proteomic technologies to small PDM sample sizes. A number of protein
pathways and their functional status were recorded in a variety of PDM in order to
define their molecular, patient-specific, phenotypic profiles. Subsequently, their
preclinical use in parallelized drug efficacy testing was evaluated to determine
individual responses to chemotherapy, targeted therapy, and immunotherapy using
PDM alone and in co-culture with autologous TILs, and to novel treatment
combinations. Finally, this thesis explored the integration of drug efficacy testing and
protein pathway analysis to decipher molecular patterns of treatment resistance and
sensitivity in order to predict treatment response. Moving from genomic profiling to
proteomic profiling enables the identification of individual susceptibilities at the protein
level, i.e. at the level of drug action, thereby defining more effective treatments and
personalizing therapy approaches. In conclusion, the results of this thesis obtained in

three distinct heterogeneous tumor types demonstrate the preclinical applicability of
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PDM and autologous TILs in drug development and as a complementary ex vivo tumor
model with the potential to support clinical decision making in personalized oncology

by decoding patient-specific vulnerabilities.
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Results I:

Unraveling the Heterogeneity of Ovarian
Cancer: 3D Microtumors Provide Personalized

Insights into Treatment Vulnerabilities

The contents of this chapter are based on:
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Microtumors Provide Personalized Insights into Treatment
Vulnerabilities

In the future, personalizing cancer treatment and predicting treatment response will be
one of the main challenges to improve therapeutic efficacy. Advances in the genomic
and transcriptomic profiling of tumors have enabled a detailed investigation of the
drivers of disease. This includes a major effort to unravel the intertumoral heterogeneity
of cancer types with dismal rates of success in treatment, such as advanced stage
OvCa [264-266]. However, OvCa is often diagnosed at a late stage due to a lack of
early symptoms and diagnosis, which is associated with an advanced stage of the
disease and a 5-year survival of only 31%, resulting in a high mortality rate (worldwide
>185 000 in 2018) [267, 268]. To make matters worse, the high degree of molecular
and genetic heterogeneity contributes to the complexity of the disease and thus to the
high variability in response to first-line chemotherapy in advanced stage OvCa [269].
Yet, the principles underlying treatment response and, importantly, the development of
resistance in OvCa remain poorly understood [266] highlighting the urgent need to
define more effective treatments and identify individual susceptibilities. However, due
to lack of efficacy and heterogeneity of response, trials of targeted therapies in OvCa
often fail in clinical phase | and Il studies or even at preclinical development in cell
lines, calling into question the use of current preclinical OvCa tumor models [270-272].
This study describes the establishment of a novel 3D ex vivo model for OvCa
comprised of PDM and TIL enabling parallel drug testing and the identification of
appropriate treatment responses in individual patients. A modified pre-existing protocol
was applied to generate a patient-specific ex vivo platform consisting of PDM and TIL
from residual fresh OvCa tumor tissue. Clinically relevant methods such as histology,
immunohistochemical staining (IHC), and flow cytometric immune cell analysis are
utilized to study and characterize the obtained PDM and TIL. RPPA analysis provided
a rapid, cost-effective, sensitive high-throughput method to assess the tumor
heterogeneity and protein expression patterns of different OvCa ex vivo samples.
Further, potential responders to chemotherapy, targeted therapy and immunotherapy
were identified through functional drug testing. Autologous PDM-TIL co-cultures were
used to assess the efficacy of CPI, and FACS analysis helped to identify differences

in the TIL populations involved. Finally, RPPA pathway profiling combined with
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functional drug testing identified molecular protein patterns correlating with treatment

response or resistance.

3.1 Comprehensive Analysis of PDM and TIL from Freshly Resected Ovarian
Cancer Tissue

3.1.1 Promising Isolation Success and Viability Rates of Ovarian Cancer
Microtumors

The development of a new tumor model that allows individualization of cancer therapy
through preclinical identification of patient-specific therapeutic vulnerabilities and
sensitivities is a challenging task. Despite the great importance of 2D tumor cell lines
and various tumor mouse models in the past, and the recent development of organoid
and tumor-organoid technology and its transformative impact on cancer research,
there are still many challenges that remain to be addressed. As a complement to
existing PDO models for OvCa [273-275], the goal was to establish an ex vivo tumor
model that overcomes limitations such as preservation of existing cell-cell contacts,
maintenance of an intrinsic microenvironment, and most importantly, is clinically
relevant for personalized cancer therapy. In this context, the main issues to be
addressed are the timeframe from generation to applicability, as well as the usability
for elucidating treatment-relevant molecular mechanisms together with the
preservation of central features of the corresponding primary tumor tissue. To this end,
PDM were isolated and generated from residual fresh ovarian tumor tissues of
consenting patients as shown in Scheme | (Anderle et al. 2022, Appendix I, Scheme
[), adapting the protocol of Kondo et al. (2011) [276]. Isolation relied on tissue
dissociation by mechanical fragmentation followed by two-hour enzymatic digestion.
Isolation relied on tissue dissociation by mechanical shredding followed by two-hour
enzymatic digestion. The yield of dissociated viable and functionally active cells was
maximized by using optimal concentrations and ratios of collagenase |, collagenase II
and Dispase® in the applied research grade Liberase ™DH [277]. Tumor fragments of
various sizes with intact cell-cell contacts, referred to as PDM, were obtained by
filtering out larger portions of digested tissue and dissociated single cells. PDM were
cultured in suspension for 2-3 days before use for subsequent analyses. Further, the
protocol was optimized for the parallel collection of autologous TILs, present in the
single cell fraction. Residual fresh tumor specimen were obtained from n = 16 OvCa
patients who underwent tumor debulking surgery. For n = 14 samples, PDM samples

with varying amounts of available PDM for downstream analyses were successfully
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retrieved, representing a success rate of 87.5%. Instead, 12.5% of the samples failed
to recover PDM (Anderle et al. 2022, Appendix |, Figure 1A). The ovarian tumor
specimens received were predominantly high-grade serous carcinomas (HGSC) of
epithelial origin, the most common type of OvCa, one mucinous carcinoma, one low-
grade serous carcinoma and one granulosa cell tumor of sex cord-stromal origin
(Anderle et al. 2022, Appendix I, Table 1). Thereby the generation of PDM was
independent of age, lymph node spread, distant cancer spread, perineural invasion or
the FIGO stage (Anderle et al. 2022, Appendix |, Table S1). After 2-3 days of
cultivation, PDM were analyzed by 3D live cell imaging and image-based quantification
to quantify cell viability after isolation. Calcein-AM and Sytox™ orange were used for
labeling of both viable and dead cells (Anderle et al. 2022, Appendix I, Figure 1B-C).
With an average of < 7% dead cells, staining confirmed robust viability of PDM.
Underscoring its potential preclinical applicability and compatibility with time frames of
clinical decision making, PDM can be generated from primary OvCa tissue in a short

time and have high viability across multiple samples after limited enzymatic digestion.

3.1.2 Unveiled Histopathologic and Immunohistochemical Tumor Profiles in
Microtumors

In order to further assess the clinical relevance of OvCa-PDM, the PDM have been
thoroughly characterized and compared to the parent tumors. Routine H&E staining,
still the gold standard of clinical cancer diagnosis, was performed on both PDM-FFPE
and clinically available, corresponding primary tumor tissue (PTT) cryosections for
blinded histopathologic comparison by an expert pathologist (Anderle et al. 2022,
Appendix I, Figure 2A and S1). In addition to classical histopathologic analysis, such
as assessing cell changes, atypia and growth patterns in H&E sections, the scope of
analysis was expanded to include IHC examination of tumor-specific markers, ECM
components and immune cell markers. DAB staining of the different protein markers
was evaluated semi-quantitatively (Anderle et al. 2022, Appendix I, Figure 2A-B and
S1). Professional evaluation by a board-certified pathologist confirmed the presence
of typical, distinct histopathologic features of OvCa. HGSC-derived OvCa PDM
exhibited histopathologic features such as papillary growth pattern, irregular branching,
cystic and glandular structures comparable to PTT, whereas the low-grade mucosal
PDM model showed none of these features. Similar to routine HGSC differential
histopathology [278], both p53 and Wilms' tumor 1 (WT1) proteins were analyzed by

IHC, showing high concordance with corresponding primary tumors except for one
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sample. Furthermore, CA125 expression confirmed ovarian origin, but somehow
differed in PDM as previously reported by other studies [279, 280]. The possible
presence of a TME within the PDM consisting of stromal cells (immune cells,
fibroblasts) and ECM components was investigated as it influences tumor progression,
metastasis, and response to therapy [281-284]. Besides ECM factors collagen |,
C1QBP and FAPa, CD163" TAMs were found in individual PDM samples (Anderle et
al. 2022, Appendix I, Figure 2A, S1). In most cases, these markers, especially FAPa
and C1QBP, showed the same expression in PDM as in the corresponding primary
tumor. For collagen I, three samples showed differential expression between PDM and
PTT. However, it should be noted that in some cases only n = 1 sections were
considered. To conclude, the typical histologic features of the corresponding primary
ovarian tumors are preserved in PDM, allowing the differentiation of different tumor
subtypes. Furthermore, the TME is partially preserved in the obtained PDM, indicating
that the isolation method used is advantageous in retaining intrinsic tumor

microenvironmental structures.

3.1.3 In-depth RPPA-based Signaling Pathway Profiling of Ovarian Cancer
PDM

RPPA enables multiplex analysis of total and post-translationally modified protein
analytes in multiple biological samples using small amounts of protein lysate [285-287].
Using RPPA, protein expression patterns of n = 7 OvCa- and n = 1 BC-PDM samples
were generated and provided insight into the tumor heterogeneity and differential
signal transduction phenotypes. Abundances were measured using n = 100 — 150
PDM per sample for 116 different total and phosphorylated proteins (Anderle et al.
2022, Appendix |, Figure 3A). Pathways interrogated by the platform included the cell
cycle, DNA damage response, apoptosis, chromatin regulation, MAPK/RTK, PI3K/Akt
with mTOR, Wnt, NFkB as well as tumor and stem-cell markers. Three PDM clusters
were identified by cluster analysis of protein expression patterns distinguishing a
HGSC-subtype cluster (n = 4) from a granulosa cell tumor cluster (OvCa #21) and a
third cluster including the BC-PDM sample together with OvCa PDM #19 (Anderle et
al. 2022, Appendix I, Figure 3A). In both the granulosa cell tumor PDM (OvCa #19)
originating from the sex cord stroma and the BC-PDM, WT1 expression, a marker of
epithelial OvCa [288, 289], was strongly decreased. In addition, the clusters differed in
the expression of Nanog, a key stem cell marker [290], with higher protein levels in the
HGSC cluster.
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OvCa PDM showed a heterogeneous activation profile (Figure 3B, Table S2) when
looking at the different signaling pathways. An enhanced MAPK/RTK signaling activity
was found in OvCa PDM #17, 21, 23, and 24 (log2 NFI: 0.30; 0.38; 0.32; 0.31)
compared to an attenuated signaling in the BC model (log2 NFI: - 0.47) (Anderle et al.
2022, Appendix I, Figure 3B, Table S2). Up to 50% upregulation of cell cycle signaling
was observed in OvCa PDM #17 and #24 in comparison to #21 (log2 NFI = -0.33).
PDM #17 and #24 further exhibited high PI3K/Akt and #24 additionally exhibited high
MTOR (log2 NFI = 0.54) protein abundances. A significant difference of apoptosis-
related proteins was detected between BC-PDM (logz NFI = 1.41) and OvCa PDM #25
(log2 NFI = 0.75), while tumor/stem-cell related markers were found to be significantly
upregulated in OvCa PDM #17 and #23 compared to BC-PDM. To sum up, the
applicability of RPPA for protein profiling of 3D ex vivo PDM was demonstrated and
phenotypic features of different OvCa PDM with preserved OvCa-related tumor

heterogeneity were identified.

3.1.4 Expanding and Phenotyping of Tumor-infiltrating, Autologous
Lymphocytes

Modifying the protocol used to generate ex vivo PDM from OvCa residual fresh tumor
tissue allowed for the additional collection of autologous TILs. In general, OvCa are
considered to be immunogenic tumors, as they can become infiltrated by immune cells
[291-293], but they are often functionally impaired by inhibitory receptors or an
immunosuppressive environment [294]. This tumor surveillance has been shown to be
mediated by different immune cell populations in OvCa [292]. Phenotypic
characterization of T lymphocyte populations in TIL samples from n = 13 OvCa tumors
by multicolor flow cytometry revealed that 57.8% of infiltrating cells were CD4" helper
T cells (Th) and had a significantly lower proportion CD8* cytotoxic T cells (CTL)
(Anderle et al. 2022, Appendix I, Figure 5A, Table S5). CD8* TIL were further
characterized by expression of co-inhibitory, immune-checkpoint receptors (PD-1,
CTLA-4), the tumor-specificity, checkpoint and exhaustion marker CD39 [295] and the
co-stimulatory activation marker CD137 (4-1BB) (Anderle et al. 2022, Appendix I,
Figure 5A). Evidence for pre-exposure to tumor antigens (CD137*) and subsequent
CD8 T cell activation [296] varied from 0-10% in the samples. More than 5% of positive
CD8*CD137" cells were detected in the samples of OvCa #1, 3, and 5. The frequencies
of the co-inhibitory receptors PD-1 and CTLA-4, known CPI targets, were not

significantly different among analyzed samples (Anderle et al. 2022, Appendix |, Table
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S5). Exhausted CD8* TIL populations showed >10% PD-1 (OvCa #3, 7, 25) or CTLA-
4 expression (OvCa #5, 13, 26) (Anderle et al. 2022, Appendix |, Figure 5B).
Furthermore, significant differences between the frequency of tumor antigen-specific,
exhausted CD8"CD39" TILs [297-299] and CD8*CD39" bystander TILs, which mainly
recognize viral antigens [300] were observed. On average, 40.5% of the measured TIL
populations were CD8*CD39*, while 9.5% were CD8*CD39- (Anderle et al. 2022,
Appendix I, Figure 5A). While the frequency of CD8* CTLs was strongly correlated
with a higher frequency of CD39" CTLs, the number of CD4* cells was inversely
correlated (Anderle et al. 2022, Appendix I, Figure S4B, Table S6). Among cell counts
of exhausted PD-1*/CTLA-4", tumor-specific CD39* CTL were also of interest, as these
could be directly targeted by immune checkpoint inhibitors (ICIs) to elicit an anti-tumor
immune response. Compared with CTLA4*CD39* CTLs, more PD-1"CD39* CTLs
were detected in these OvCa samples (Anderle et al. 2022, Appendix |, Figure 5A,
Table S5). The exhaustion state primarily affects tumor-specific CD39* CTLs, since
the number of PD-1* CTLs correlates with the number of CD39*PD-1* tumor-specific
CTLs (Anderle et al. 2022, Appendix |, Figure S4B, Table S6). These TILs are
described as terminally differentiated effector cells with limited survival but immediate
effector functions, as opposed to CD39PD-1* cells with a stem-like phenotype found
in 7.3% of TILs [300, 301] (Anderle et al. 2022, Appendix I, Table S5). Lymph node
metastasis was associated with both CD8" and CD8*CD39* TIL infiltration of tumors
when correlating the presence of specific populations with clinical data (Anderle et al.
2022, Appendix I, Figure 5C).

3.2 Individual Tumor Vulnerability to Chemo-, Targeted and Immunotherapy of
PDM and PDM-TIL Co-Cultures

3.2.1 Examining Drug Sensitivity in Ovarian Cancer PDM for Identification of
Patient-individual Treatment Responses
Using patient-derived ex vivo tumor models to combine functional drug testing with
tumor screening analysis prior to patient treatment is one approach to personalizing
cancer therapy. It would allow for a direct assessment of the individual response of a
tumor to a specific agent or to a range of drugs worth considering for individualized
treatment. Therefore, the suitability of the PDM/TIL ex vivo platform to determine the
individual tumor susceptibility to chemotherapy, targeted therapy and immunotherapy
was evaluated. Since RPPA protein profiling of PDM samples previously revealed the
greatest differences in cell cycle and MAPK/RTK signaling (Anderle et al. 2022,
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Appendix |, Figure 3A-B), the drug efficacy of targeted inhibition of these pathways
was evaluated with the CDK4/6 inhibitor palbociclib, the MEK1/2 inhibitor selumetinib,
and the Src inhibitor saracatinib. Drug activity was compared to standard platinum-
based chemotherapy (carboplatin) (Anderle et al. 2022, Appendix |, Figure 3C). Based
on the reported Cmax values, three different concentrations were used for each drug
[302]. Individual OvCa PDM exhibited heterogeneous drug-induced cytotoxic cell death
with the maijority of 6 out of 7 PDM responding well to carboplatin and selumetinib. At
75 uM carboplatin induced a high level of cytotoxicity after 72 h in OvCa #17, 24, but
only at higher dose in OvCa #23,25. In all of these models, the cell cycle pathway was
upregulated to a comparatively high degree, and most significantly in OvCa #17&24
(Anderle et al. 2022, Appendix I, Figure 3A-B). In contrast, treatment with palbociclib,
which inhibits G1 cell cycle progression, failed to elicit a response in these two high
cell cycle activity models. Palbociclib induced significant responses in OvCa #25 and
#26, which showed a moderate level of cell cycle signaling and significant lower MAPK
pathway signaling (#21 vs. #26) (Anderle et al. 2022, Appendix |, Figure 3B),
associated with CDK4/6 inhibitor-resistance. Compared to palbociclib-resistant OvCa
samples, OvCa #25 and #26 showed low CDK4 but high CDK4P-Thr127, overall low
CDK6/CDK6-P-Tyr24 and moderate Cyclin E2 protein levels (Figure 4), which are
markers associated with resistance [303-306]. Saracatinib had a dose-dependent and
significant effect only in OvCa #26, inducing early cell death after 24 hours. Inhibiting
the MAPK pathway with selumetinib caused significant cytotoxicity in OvCa #17,19,
21, 23 at 100-150 nM. The MAPK/RTK pathway was comparatively more upregulated

in OvCa #21, which also showed the greatest increase in cell death.
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Figure 4. Expression of resistance markers for CDK4/6 inhibition in OvCa PDM. (A) Protein
abundances for CDK4, CDK4-P-Thr172, CDK6 and CDK6-P-Tyr24 in OvCa PDM samples. (B) Cyclin
E2 marker expression in OvCa PDM samples. Each Analyte is displayed as median-centered, log2
transformed NFI| (normalized fluorescent intensity) signal.

These heterogeneous drug responses in functional drug testing confirmed the
molecular heterogeneity of OvCa PDM as determined by protein expression analysis.
PDM that were resistant to standard carboplatin chemotherapy (OvCa #19, #26)
instead proved sensitive to targeted therapeutic approaches.

Therapeutic efficacy of ICls and the functional, tumor cell-killing capacity of TILs was
assessed in autologous PDM-TIL co-cultures of OvCa #24 and #26 (Anderle et al.
2022, Appendix I, Figure 5D-F). TILs induced basal killing of PDM in both co-culture
models, whereas isotype control of CPI antibodies did not affect PDM viability (Anderle
et al. 2022, Appendix I, Figure 5E-F). Applied monotherapy failed to elicit a response
in OvCa #24 PDM, while CPl combination treatment with PD-L1 and CTLA
(atezolizumab and ipilimumab) significantly increased the treatment response (Anderle
et al. 2022, Appendix I, Figure 5E). In contrast, OvCa #26 PDM responded to anti-
CTLA-4 and anti-PD-L1 monotherapy but did not respond to anti-PD-1 monotherapy.
The effects of the monotherapies were not additive in combination for this PDM model
(Anderle et al. 2022, Appendix I, Figure 5F). In conclusion, either combined CPI
therapy (OvCa #24) or specific anti-PD-L1 therapy (OvCa #26) enhanced TIL-specific
killing of PDM. The beneficial effects of these immunotherapies may be related to the
profiled TIL OvCa #24 and #26 phenotypes. The TIL populations had a greater
population of CTLA-4* CTLs and a lower proportion of terminally exhausted, tumor-
specific (CD8*CD39"PD-1*) CTLs compared to other profiled models (Anderle et al.
2022, Appendix I, Figure 5B).

28



3 Results I: Unraveling the Heterogeneity of Ovarian Cancer: 3D Microtumors Provide Personalized
Insights into Treatment Vulnerabilities

3.2.2 Specific Molecular Protein Signatures Dictate Responsiveness to
Chemotherapy in Ovaria Cancer PDM

In order to investigate the specific responses to carboplatin, PDM were divided into
responders and non-responders based on the results of the drug test, and their protein
expression patterns were compared (Anderle et al. 2022, Appendix I, Figure 3C). HCL
cluster analysis identified five protein clusters with differential expression between
responders and non-responders (Anderle et al. 2022, Appendix |, Figure 4A). The
proteins were sorted according to their pathway affiliation. This revealed proteins that
were either up- or downregulated in the treatment response group (Anderle et al. 2022,
Appendix |, Figure 4B). Carboplatin sensitivity was significantly associated with
upregulation of cell cycle, RTK, PI3K/Akt/NFkB and apoptosis/DNA damage response
pathways, including, as previously reported, increased levels of mitosis-associated
proteins [307], as well as cleaved-caspase 8 and cleaved PARP (Anderle et al. 2022,
Appendix |, Figure S2A). Sensitivity to therapy was highly correlated with p-aurora
A/B/C, cyclin B1 and PCNA (Anderle et al. 2022, Appendix I, Table S3). Carboplatin
resistance was associated with low expression of aurora A, cyclin B1, p-S6P, PDGFR
and snail1, but high expression of GO/G1-related proteins. Despite the small cohort
size, analysis of available clinical follow-up data of corresponding patients
demonstrated a prolonged median OS of 16.2 months for tested carboplatin-responder
versus 9.2 months for non-responder PDM (Anderle et al. 2022, Appendix |, Table
S4).

3.2.3 Drug Mode-of-Action Analysis in Carboplatin Treated OvCa-PDM

Examining treatment-related changes in protein profiles of carboplatin-treated OvCa
#24 PDM revealed substantial and time-dependent changes in treatment-to-control
signal ratios (TR). Immediate proteomic changes occurred after 30 min of carboplatin
treatment: downregulation of the cell cycle-related proteins p-CDK2, CDK1, and p-
histone H3 (Ser10), affecting chromatin condensation during cell division, and
induction of known stress response mechanisms [307] by upregulating the mTOR
effector proteins S6RP and p-S6RP (Anderle et al. 2022, Appendix |, Figure 4C,
Figure S3). Within the first four hours after treatment, the stress response via the
PI3K/Akt/mTOR pathway was significantly increased compared to vehicle control, and
the expression of p-aurora ABC and histone H3 raised. While cell cycle,
PI3K/Akt/mTOR, and MAPK/RTK signaling were significantly downregulated after 72
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hours of treatment, apoptosis-related signaling activity increased with elevated cleaved
caspase and acetylate p53 levels. In summary, RPPA has been shown to map
treatment-induced temporal changes in signaling pathways in a single PDM sample.

However, it has the potential to provide insight into treatment response mechanisms.
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4 Results ll: Harnessing Breast Cancer Patient-Derived
Microtumors for Protein-Based Stratification and Functional
Validation of Individualized Drug Treatment

BC remains the most common cancer and the second leading cause of death among
women. It has been classified into 19 different histologic subtypes due to the great
genetic, morphologic, and clinical heterogeneity of these tumors [308]. Global gene
expression analyses have further classified BC into four molecular subtypes with
distinct gene expression patterns: HR-related luminal A and B tumors versus HR-
negative, HER2-enriched, and basal-like tumors [309-313]. These reflect distinct
phenotypes with different prognoses, different treatment paradigms, and different
responses to therapy [314-318]. The development of treatment resistance, side effects,
and inadequate efficacy remain major treatment challenges despite advances in the
clinical stratification of BC patients by H&E and IHC analysis of HRs, HER2, and Ki67
expression [194, 309-311] and the application of genetic testing including
MammaPrint® and Oncotype DX® [319]. Most importantly, the enormous diversity of
tumor cell profiles within a patient’s tumor determined by genomic, epigenomic,
proteomic alterations, the TME and other factors [320, 321], determines systemic
treatment failure [194]. The development of tailored BC therapies has the potential to
increase treatment efficacy and reduce side effects. However, to accurately assess the
individual efficacy of potential therapies, ex vivo patient-derived models that closely
mimic the patient's primary tumor would be of high value. In addition, protein
expression profiling can provide a comprehensive understanding of treatment
resistance mechanisms at the protein level by revealing information that may not be
reflected in genomic mutation and gene expression analysis. For this purpose, PDM
were established from a cohort of n = 102 residual fresh mammary carcinoma tissue
samples comprising tumor cells, TME and ECM components. PDM were successfully
obtained from various BC subtypes with histopathologic features and ECM
components (e.g. collagen, PGs/GAGs) corresponding to those of the original primary
tumor according to the blinded assessment of a certified pathologist. Heterogeneous
signaling pathway activity was revealed by protein profiling of BC-PDM using the
DigiWest® technology, reflecting the intertumoral heterogeneity of the disease. The
expression levels of BC-related proteins and the profiles of signaling pathways were
highly correlated with those of the corresponding primary tumors. Hierarchical

clustering grouped BC-PDM according to classification and molecular signature of
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protein expression. The combination of functional drug testing and pathway analysis
was used to assess patient-specific treatment responses and identify treatment
sensitivity/resistance markers in BC-PDM. This allowed for the identification of
phenotypic hallmarks of treatment resistance and sensitivity in BC and thus the

stratification of individualized treatment.

4.1 In-Depth Profiling of PDM Derived from Surgically Resected BC
Specimens for Ex Vivo BC Modeling

4.1.1 lIsolation of Viable PDM and TIL from a Heterogenous Population of BC
Patients

The aim of the study was to extend the previously established 3D platform of PDM and
TILs described in Anderle et al. (2022) [322] to investigate intra- and intertumoral
heterogeneity as well as treatment response in BC. A total of n = 102 fresh residual
BC tissue samples were obtained from debulking surgical procedures performed at the
Women's Hospital in Tubingen, Germany. Patients over 18 years of age with a
diagnosis of BC of any molecular subtype were eligible for participation. TIL
populations were successfully isolated and expanded in >95% of samples analyzed,
with average TIL viability >90% (Figure S1A-B). Heterogeneous subpopulations of
regulatory and exhausted T cell populations were identified by multicolor flow
cytometry analysis (Figure S1C-H). BC microtumor isolation was performed as
previously described (Anderle, 2002 #512). Here, the protocol was adapted by the
extension of the tissue digestion time from two hours to overnight. In this way, PDM
could be successfully generated in more than 75% of the cases. 50% of the 102 tissue
samples received yielded more than 100 PDM per sample (Anderle et al. 2023,
Appendix I, Figure 1D). When correlating the available clinical data of the obtained
tumor specimens with the obtained PDM specimens, there was no correlation between
the success of PDM isolation and clinical features (Anderle et al. 2023, Appendix I,
Figure 1E). High viability of freshly isolated PDM was demonstrated by live-dead cell
staining with Calcein-AM and Sytox™ Orange of PDM from 27 different patients
(Anderle et al. 2023, Appendix Il, Figure 1A-B). The microtumors varied in size with a
mean area of 59,261 um? (Anderle et al. 2023, Appendix Il, Figure 1C, Table S2). The
higher the number of single PDM recovered per patient, the more downstream
analyses were performed per patient. These downstream analyses included IHC,

anticancer drug efficacy testing, and/or protein profiling.
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4.1.2 Preservation of Breast Cancer Subtype Specific Histopathologic
Features in NST and ILC PDM

H&E staining of tissue biopsies is the most important technique in histopathologic
diagnosis. It allows visualization of morphologic features and assessment of
morphologic changes in tumor tissue. BCs are characterized by highly heterogeneous
histopathology, with nineteen different BC subtypes distinguished by WHO [308], most
commonly invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC).
FFPE sections of BC-PDM and corresponding PTT were H&E stained, imaged, and
qualitatively evaluated in a blinded fashion by a board-certified pathologist at the
University Women's Hospital, Tuebingen, Germany, to compare histopathologic and
cytologic characteristics of BC-PDM and corresponding PTT (Anderle et al. 2023,
Appendix Il, Figure 2A-C). Pathologic evaluation revealed that PDM specimens
resembled breast tumor histology in n = 39/40 cases and matched the histologic tumor
type in 95% (n = 36/38) (Anderle et al. 2023, Appendix Il, Figure 2C). A distinct and
irregular growth pattern was observed in PTT sections of IDCs of no specific type
(NST), with or without in situ lesions. Tumor cells formed invasive nests, clusters,
cords, and sheets within the surrounding stroma. Tissue sections also showed clear
ascitic structures filled with tumor cells, small tubular structures with small lumina,
papillary structures, or no clear architecture. NST-PDM tumor cells resembled the
solid, cohesive, papillary growth pattern with closely spaced cells clearly separated
from the ECM compartment, similar to the histopathology of NST-PTT (Anderle et al.
2023, Appendix Il, Figure 2A). In comparison, the arrangement of tumor cells in ILC-
PDM mimicked that of primary infiltrating tumor lesions, which grow scattered and
disjointed in the surrounding stromal tissue, similar to slender strands ("Indian files").
Alternatively, invasive cells grew concentrically around ducts or lobules in PTT
sections. Meanwhile ducts and ascites of in situ lesions in PTT retained their overall
structure. When comparing cellular aberrations, similar cellular atypia was observed,
with some samples showing small homogeneous cells without marked nuclear
aberrations common to in situ lesions, whereas most BC-PDM showed moderate to
severe nuclear pleomorphism and hyperchromasia (Anderle et al. 2023, Appendix II,
Figure 2B-C). In 59% of the samples, the BC-PDM nuclear grade was reduced by 1
degree (Anderle et al. 2023, Appendix Il, Figure S1A). Further, a stromal compartment
was found in over half of the BC-PDM (Anderle et al. 2023, Appendix Il, Figure 2C).
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These results suggest close histopathologic correspondence between BC-PDM and

PTT sections.

4.1.3 Verification of Preserved Extracellular Matrix Composition Using Movat’s
Pentachrome Staining of Breast Cancer PDM and PTT.

The TME is defined as a composite of various cells, stroma and soluble molecules
influencing tumor growth, progression, invasion and resistance to therapy [76, 323,
324]. The stroma itself is made up of a variety of cells, including fibroblasts, immune
cells, blood vessels and the ECM. The ECM serves as a scaffold that surrounds the
cells of the tissues and organs to provide structure, support and a reservoir for e.g.
growth factors [325, 326]. The ECM consists of fibrils (e.g. collagen, elastin),
glycoproteins (laminin, fibronectin), proteoglycans (PGs) and glycosaminoglycans
(GAGs). The ECM of BC-PDM and corresponding BC-PTT was examined by Movat’s
pentachrome staining [327], highlighting major components of the BC-related ECM:
PGs/GAGs in cyan/blue, collagen fibers in yellow, mucin in blue/grey and elastin in
black (Anderle et al. 2023, Appendix Il, Figure 2D). Most of the collagen fibers and
PG/GAGs were overlapped, resulting in a green color. Despite enzymatic degradation
(collagenase | and Il, dispase) of received tumor tissue, the ECM scaffold found within
PTT was not completely destroyed when PDM extracted. Thus, various PDM displayed
ECM components of corresponding PTT, but to a lesser degree. The expression of
collagen (yellow/green) was detected in BC-PDM #29,36,58,53,70, with a less specific
arrangement than that in PTT, serving more as a backbone scaffold for the tumor cells.
In PTT increased collagen deposition leads to dense collagen fibers in the vicinity of
the tumor masses and causes stiffening of the tissue [326]. The collagen fibers varied
in appearance in the PTTs, sometimes short and wavy, sometimes thin and straight,
and sometimes thick and straight. Strikingly, the stromal areas adjacent to the in situ
lesions in the PTT sections, where the collagen fibers were tightly wrapped around the
tumor cell masses, showed the thickest fibers. They were either drawn at tangential
angle around these lesions or at a perpendicular angle to the direction of cell invasion,
as described in Provenzano et al. (2006) [328]. In addition to collagen, PGs/GAGs
were conserved in BC-PDM, when their expression was found to be high in the tumor
masses in corresponding PTT (e.g. #29, 31, #58). Either PG/GAGs were located within
tumor masses or delineated them from tumor stroma and collagen fibers in PTT. Elastic
fibers (black) were more abundant in the PTT of the ILC compared to the IDC and were
mostly associated with collagen. BC-PDM #102 was the only PDM that showed elastin
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in correlation with the primary tumor. Mucin was also sporadically detected as an ECM
component. Mucin was secreted by PTT #31 and 86, and corresponding PDM. After
the identification of various ECM components in BC-PDM, the correlation between
tumor subtype and the extent of collagen deposition was investigated (Anderle et al.
2023, Appendix Il, Figure 2E-F). Color deconvolution and evaluation of the collagen-
positive %-area fraction using Image J, revealed significant higher amount of collagen
fibers within ILC-PTT, as previously reported [329]. The extent of collagen deposition
in the PDM was not comparable to the extent of deposition in tissues but showed a
similar (non-significant) trend toward slightly higher levels in ILC-PDM. In conclusion,
Movat's pentachrome staining visualized different primary tumor ECM components
within BC-PDM. Compared to whole tumor masses in tumor tissue, ECM
compartments in BC-PDM are less abundant and have a slightly different arrangement.
Thus, PDM are similar to tumor fragments removed from the corresponding PTT,
containing the central tumor cell mass along with its ECM components, but without the

surrounding thick collagen fibers.

4.1.4 Immunohistochemical Analysis of BC-Specific Tumor Markers and
Stromal Cell Markers

Complementary to the histologic assessment of BC-PDM, the expression of several
relevant BC markers was analyzed by IHC of FFPE PDM sections and semi quantified
using color deconvolution as described [330]. Beyond the histological classification of
breast tumors into different subtypes, breast tumors are classified at the molecular
level based on the expression of hormone receptors (HR). Expression of HER2,
cytokeratins (CKs), CAFs and immune cell markers were examined in addition to ERa
and PgR expression. Based on the results of pathologic examination of the associated
primary tumors, the BC-PDM were classified as HR* or TNBC, with TNBC being an
aggressive subtype lacking HR or HER2 expression. The expression of HR and HER2
in BC-PDM was compared with the pathological classification of the corresponding
primary tumors (Anderle et al. 2023, Appendix Il, Figure 3A-B). The results showed
that the expression of ERa and PgR expression in BC-PDM matched the
corresponding clinical classification and was increased in HR* BC-PDM compared to
TNBC PDM. In contrast, HER2 expression was detected in only a few HR* BC-PDM
(#10 & 37) and the expression varied with respect to HER score (Anderle et al. 2023,
Appendix Il, Figure 3A).
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CKs are intermediate filaments found in the cytoskeleton of epithelial cells. The luminal
epithelial cells line the ducts and lobules of the breast and are surrounded by
myoepithelial cells that form the basement membrane. Different CKs help to distinguish
between these two cell types and are also used to classify breast tumors into basal-
like CK5/6/7/14* and luminal subtypes CK8/18/19* [309, 325, 331-333]. The differential
expression patterns between the HR* and TNBC PDM as well as the ILC and NST
PDM were analyzed. Both HR* and TNBC PDM exhibited highly heterogeneous
expression of CKs, with HR* PDM expressing significantly higher levels of CK18, a
marker for luminal carcinoma (Anderle et al. 2023, Appendix Il, Figure 3C-D). Apart
from TNBC PDM #38, TNBC PDM did not express CK18, but did express CK5/6 to a
moderate extent. Due to the high level of CK5/6 positivity, which correlates with a
worse prognosis [334], TNBC PDM #38 was considered to represent a basal-like
subtype of TNBC. Four groups based on CK expression were identified within HR*
PDM: CK5/CK18* (luminal, differential glandular phenotype), CK5* (basal), CK5/6*
(basal, stem cell phenotype), and CK5/6/18* (intermediate glandular phenotype) [335]
(Anderle et al. 2023, Appendix Il, Figure 3C-D). Comparison of CK5/6 expression
between Iluminal and myoepithelial subtypes revealed significantly increased
expression in HR* CK5* PDM and HR* CK5/6* PDM (Anderle et al. 2023, Appendix I,
Figure 3D). Within the CK5CK18* subgroup, CK18 was significantly enriched in
comparison to CK5 or CK6. Some of the HR* BC-PDM models were positive for all
three of the CKs. When comparing the ILC and NST BC subtypes, the HMW CKs
(CK5/6) were upregulated in the ILC PDM, whereas the luminal CK18 was elevated in
the NST PDM (Anderle et al. 2023, Appendix Il, Figure 3E).

The presence of the stromal cell and immune cell markers FAP, CD163, CD8 and PD-
L1 in BC-PDM was also examined (Anderle et al. 2023, Appendix Il, Figure 3F). FAP*
CAFs were found in all BC-PDM, as opposed to immune cells such as CD8* T cells
and CD163* M2 macrophages, which were only sporadically detected. ILC PDM
contained significantly more FAP* CAFs compared to NST PDM (Anderle et al. 2023,
Appendix Il, Figure 3E, p = 0.028). In summary, BC PDM generally reflect the HR
status of the corresponding PTT, and show variable expression of CKs and FAPq,
which differ in HR* and TNBC PDM, as well as in NST and ILC PDM.
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41.5 DigiWest®-based Protein Profiling of BC-PDM Captures Disease
Heterogeneity and Reveals Conserved Primary Molecular Tumor Profiles
In-depth quantitative protein profiling analysis was performed on 20 matched BC-PDM-
PTT pairs using DigiWest® technology [336]. Protein expression and activity of key
signal transduction pathways were determined by measurement of 142 total and
phosphorylated proteins (Anderle et al. 2023, Appendix Il, Table S3-4). Proteins
analyzed were representative of the cell cycle, JAK/STAT, MAPK, RTK, PI3K/Akt,
EMT/cytoskeleton, and Wnt/NFkB signaling pathways. To investigate the conservation
of primary tumor protein expression signatures in BC-PDM, DigiWest® protein signals
from n = 20 paired PDM and corresponding primary tumors were compared. Overall,
there was a strong positive correlation (Pr = 0.856) between the averaged protein
signals of matched BC-PDM and PTT (Anderle et al. 2023, Appendix Il, Figure 4A).
This was confirmed by similar pathway activity and breast-cancer-associated protein
expression (Anderle et al. 2023, Appendix Il, Figure 4B, Table S5). Eighteen analytes
were identified as significantly differentially expressed between BC-PDM and PTT
(Anderle et al. 2023, Appendix Il, Figure 4C-D). Consistent with the findings from IHC
analysis of BC-PDM, BC-PDM demonstrated elevated levels of the cytoskeletal
proteins CK5 and CKG6, and reduced expression of immune cell markers including
CD11c, CD16, CD68, CD8 alpha, CD25, PD-1, and PD-L1. The remaining proteins
were distributed in a variety of signaling pathways and had lower expression levels,
including p38 MAPK-pThr180/Tyr163, PI3K p85/p55-pTyrd58/199, and NFkB p65-
pSer172, IKK alpha-pThr23, IKK epsilon-pSer172 (Anderle et al. 2023, Appendix II,
Figure 4C-D). The correlation of the majority of analyzed individual protein levels
between the BC-PDM and the corresponding PTT resulted in an overall positive
correlation (Anderle et al. 2023, Appendix Il, Figure 4E-F). There were strong,
significant correlations between individual protein abundances of BC-PDM and PTT
across pathways, including the ERa protein expression with a Pr= 0.86 (Anderle et al.
2023, Appendix Il, Table S6). Summarized, at the protein level, the cellular signaling
activity of the primary tumor is preserved in the PDM, as demonstrated by the
correlation between BC-PDM and the corresponding PTT. Moreover, the IHC findings
were confirmed: PDM are small tumor fragments with ECM components harboring

some stromal cells and rare immune cell infiltration.
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4.1.6 Microtumors lllustrate the Pronounced Intertumoral Heterogeneity of
Corresponding Primary Breast Cancer

Valuable information on patient-specific altered protein expression, modification and
interaction in key signaling pathways was obtained from the protein profiling data of n
= 42 BC-PDM. Using hierarchical cluster linkage (HCL) analysis BC-PDM samples
were classified into different sample clusters based on patient-specific signaling
pathway activity (Anderle et al. 2023, Appendix I, Figure 5, Table S7). Samples were
assigned according to the clinical classification of the corresponding PTT (Anderle et
al. 2023, Appendix Il, Table S1). Four groups of samples with different levels of
expression of cell cycle related proteins, such as transcriptional activators E2F-1, E2F-
2, transcriptional repressor E2F-4 and p53, were characterized (Anderle et al. 2023,
Appendix Il, Figure 5A). Elevated levels of cell cycle related proteins were found in
the cluster with TNBC, HER2* and some HR* BC-PDM (n = 16). Samples with low and
mixed levels of cell cycle activity were grouped into cluster 2 (n = 8) and 3 (n = 17).
Further, BC-PDM exhibited distinct profiles of MAPK/RTK signaling activity, with n =
19 HR* BC-PDM showing lower overall protein abundance and n = 19 TNBC, HER2*,
and HR* PDM showing high protein expression, including c-Met, RSK1-pThr573, NF1
and c-Raf (Anderle et al. 2023, Appendix Il, Figure 5B). Comparison of PI3K/Akt
pathway activity revealed two clusters of BC-PDM: one cluster with only HR* BC PDM
with relatively low PI3K/Akt pathway activity and the second cluster with all TNBC and
HER2* PDM plus additional HR* PDM with high PI3K/Akt pathway activity (Anderle et
al. 2023, Appendix ll, Figure 5C). Substantial differences were noted in the expression
of beta catenin, FoxO3a, Akt-pSer4d73, CREB, CREB-pSer133, PDK1 and IKKalpha-
pThr23.

Moreover, the individual BC-PDM protein profiling data presented in box-whisker plots
reflected the individuality of each PDM model at the molecular protein level (Anderle
et al. 2023, Appendix Il, Figure 5D, Table S8). Median-centered protein profiling data
identified samples with increased cell cycle, MAPK/RTK, and PI3K/AKT protein
abundance. Eight samples showed enhanced cell cycle activity, 11 samples showed
amplified MAPK/RTK signaling, and seven samples showed upregulated PI3K/AKT
pathway activity. All three pathways were upregulated in four of the BC-PDM samples
(#20, #78, #92 and #96), which do not share a common histologic or molecular
subtype. Other BC-PDM samples showed a simultaneous down-regulation of all
pathways (#15, #18, #60, #89, #99; log2 AFI < 1). Thus, pathway analysis in individual
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BC-PDM allowed characterization of individual protein expression profiles with
reproducible TNBC tumor-specific pathway activity in TNBC-PDM. In addition, with
PDM samples having similar signal transduction but no common histologic or
molecular subtype, the data suggest a potential subtype independence of pathway

activity.

4.1.7 Protein Profiling Data of TNBC-PDM

Genetic alterations in the upstream regulators of the PI3K/Akt and MAPK/ERK
pathways, including mutations in PI3K, Ras, b-Raf, and loss-of-function in PTEN, as
well as EGFR overexpression, are prevalent in TNBC resulting in oncogenic signaling,
cellular dysregulation and chemoresistance [337-344]. In line with this, significant
alterations in the PIBK/AKT and MAPK/RTK were identified in the DigiWest® protein
data of BC-PDM, allowing differentiation of TNBC from HR* PDM (Anderle et al. 2023,
Appendix Il, Figure 5E). For cell cycle and NFkB/Wnt signaling, however, no
significant differences were observed. Protein levels of AKT (p = 0.022), elF2a-pSer51
(p = 0.009), elF4E (p = 0.049), GSK3beta (p = 0.006), GSK3beta-pSer9 (p = 0.007),
PTEN (p = 0.040), PTEN non-p (p = 0.044), p70S6K (p =0.009), CREB-pSer133 (p =
0.041), PIBK/AKT pathway regulators associated with TNBC, were significantly
upregulated. Like the PI3K/AKT pathway [345, 346], the MAPK/RTK pathway is one of
the major drivers of TNBC and is associated with a high rate of disease recurrence
[347]. Significantly enhanced MAPK/RTK pathway proteins in TNBC PDM included
Erk1/2, MEK2, Src-pSer17 and Src-pTyr527 (Anderle et al. 2023, Appendix Il, Figure
5F). TNBC was distinguished from HR* PDM by hyperactivation of CDK2 and CDK2-
pThr160, which are associated with basal BC, and increased expression of CDK4 and
CDK4-pThr172, which are associated with drug resistance [347-349]. Also consistent
with the increased phosphorylation of elF2a in the TNBC PDM and the associated
upregulation of aerobic glycolysis was the upregulation of metabolism-related proteins,
including GLUT1 (p = 0.029) and IDH1 (p = 0.029) [350-352]. In summary, the BC-
PDM protein profiling data are consistent with previous studies in TNBC and are an
accurate reflection of the activation characteristics of the primary breast tumor

signaling pathways.
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4.2 Combination of Protein Profiling and Functional Drug Testing Elucidates
Treatment Response Mechanisms

4.2.1 Patient-specific Treatment Responses of Ex Vivo BC-PDM towards
Hormonal Therapy, Chemotherapy and Targeted Therapy

Tumor heterogeneity plays a critical role in the resistance to therapy and thus
influences the response to treatment and the outcome of BC. Since patient tumor
derived BC-PDM are heterogeneous in cellular composition and reflect intertumoral
heterogeneity as described above, they have been used to investigate patient-specific
responses to cancer therapies. Three BC treatment strategies were evaluated in a
microplate-based cytotoxicity assay: hormonal therapy with the selective estrogen
receptor modulator (SERM) tamoxifen (TAM), chemotherapy with the taxanes
docetaxel (DTX) and paclitaxel (PTX), and targeted therapy with the CDK4/6 inhibitor
palbociclib [353]. Treatment-related cell death was measured in a time series (24h,
48h and 72h) and compared to the respective vehicle control (Anderle et al. 2023,
Appendix I, Table S9). There was no prior stratification of samples by receptor status.
Based on significant or non-significant measured cell death signals (FC vehicle vs. FC
treatment), samples were categorized into responder (R) and non-responder (non-R)
groups. BC-PDM showed variable response to drug treatment. The most common drug
response was to treatment with DTX, with n = 9/29 (31%) of the BC-PDM s tested found
to be sensitive. N = 6/27 (22.2%) had a significant response to PTX treatment. N =
4/29 (13.8%) PDM were sensitive to TAM treatment, compared to n = 5/26 (19.23%)
PDM sensitive to PAP treatment (Anderle et al. 2023, Appendix Il, Figure 6A).

4.2.2 I|dentification of Treatment Resistance and Sensitivity Marker Panels
Using BC-PDM
For each treatment, the protein expression profiles of treatment responsive and non-
responsive PDM samples were compared. Resistance and sensitivity protein marker
panels were generated for TAM, DTX, PTX, and PAB treatments to help discriminate
between BC-PDM responders and non-responders. These panels identified proteins
previously associated with therapy resistance or sensitivity, significantly differentially
expressed between responder and non-responder BC-PDM or involved in therapy-
related signaling pathways. Nine proteins significantly differentially expressed in
responder versus non-responder BC-PDM treated with TAM were identified in both
resistance and sensitivity marker panels (Anderle et al. 2023, Appendix Il, Figure
6B,D, Table 2). Treatment-resistant BC-PDM had elevated phosphoprotein levels of
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ERa-pSer167, FGFR-pTyr653/654, P13-kinase p85/p55-pTyrd58/199, and IKKepsilon-
pSer172 protein levels, which were previously associated with TAM resistance [354-
359]. Furthermore, cell cycle-related proteins such as CDK6 were found to be
significantly differentially expressed (Anderle et al. 2023, Appendix Il, Figure 6C) and
negatively affected the likelihood of TAM response with a 50% decrease of the odds
(OR = 0.5, 95% CI 0.21-0.82) (Anderle et al. 2023, Appendix Il, Figure S4B, Table
S10). Comparatively, the TAM-sensitive BC-PDM exhibited higher protein levels of
ERa, the transcriptional repressor protein E2F-4, the microtubule protein aTubulin,
proteins involved in cancer cell metabolism (GLUT1, LDHA and PDK1-pSer241) and
stress response (elF2A-pSer51).

Proteins involved in the induction of EMT and in drug metabolism have previously been
implicated in the resistance to DTX/PTX drugs [360, 361]. In accordance with these
reports, elevated levels of vimentin-pSer56, NFkB p100/p52, IKKe-pSer172, caveolin-
1, cyclin E1, and b-Raf-pSer445 contributed to DTX resistance and discriminated non-
responder from responder BC-PDM. Both caveolin-1 (*p = 0.029) and b-Raf-pSer445
(***p < 0.001) were significantly enriched in non-responding BC-PDM and decreased
the odds of DTX response by 44% (OR = 0.56, 95% CI: 0. 0.32-0.88) and 54%
respectively (OR =0.46, 95% CI: 0.25 to 0.72) (Anderle et al. 2023, Appendix I, Figure
6E-F, S4D, Table 2, S10). Moreover, the combination of elevated ERa, luminal cell
marker (CK 8/18), inactive beta-catenin-pSer552 and microtubule-associated protein
tau-pSer202, among others, predicted the sensitivity to DTX treatment (Anderle et al.
2023, Appendix Il, Figure 6H). In the present panel, CK 8/18 (***p < 0.001) and tau-
pSer202 (*p = 0.028) were identified as significantly enriched and associated with DTX
treatment response in BC-PDM (Anderle et al. 2023, Appendix Il, Figure 6H, S4D,
Table 2, S10).

PTX resistance in BC-PDM was determined by a 9-protein panel with comparably
elevated levels of caveolin-1, PgR, mTOR, phosphorylated MEK1/2 (pSer217/221) of
the Erk/MAPK pathway, phosphorylated IKKa (pThr23) of the NFkB pathway,
microtubule-associated protein Tau, and the basal BC markers CK5, CK6, and
vimentin-pSer56 (Anderle et al. 2023, Appendix Il, Figure 61-J, Table 2). Vimentin-
pSer56 was significantly upregulated in responders and decreased the likelihood of
response to PTX (Anderle et al. 2023, Appendix Il, Figure S4D, Table S10). To
differentiate between PTX-sensitive and resistant BC-PDM, a 13-protein panel was

identified. Higher protein abundances of several cell cycle-associated proteins (e.g.
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CDK1, CDK4-pThr172), luminal epithelial cell markers (e.g. E-cadherin, CK 8/18), the
microtubule-forming protein tubulin (acetylated Tubulin, tubulin beta-chain), the Ras-
inhibitor NF1 (neurofibromin), c-Met-pTyr1003 and beta-catenin-pSer55 affected PTX
treatment sensitivity (Anderle et al. 2023, Appendix Il, Figure 6K-L). Increased
expression of GATA3 (OR=2.34, 95% CI: 1.24-6.2) and NF1 (OR=2.15, 95% CI: 1.25-
4.5) doubled the odds of responding to PTX (Anderle et al. 2023, Appendix Il, Figure
6L, S4D, Table S10). To the best of our knowledge, there have been no previous
studies that have correlated the expression of these proteins with the response to PTX
treatment.

As a selective inhibitor of the cyclin-dependent kinases CDK4 and CDK6, PAB
prevents the cell progression through the G1 phase of the cell cycle [362]. A panel of
proteins previously associated with PAB resistance has been identified in PAB-
resistant BC-PDM: CDKG6, cyclin E1 and FGFR [363]. Together with the basal cell
markers CK6 and vimentin, the MAPK signaling protein Erk1/2- pThr202/Tyr204 and
the active mTOR signaling protein elF4E-pSer209, these proteins differentiated PAB-
resistant from PAB-sensitive BC-PDM (Anderle et al. 2023, Appendix Il, Figure 6M).
In contrast, PAB-sensitivity was defined by an 8-protein panel consisting of elevated
ERa, HER2, CDK2-pThr160, E-cadherin-pSer838/840, cyclin D1, c-Raf-p259,
JNK/SAPK-pThr183/Tyr185 and p38MAPK-pThr180/Tyr182 (Anderle et al. 2023,
Appendix Il, Figure 6N-O). PAB response was significantly dependent on high levels
of ERa (OR = 2.15, 95% CI: 1.2-5.91) [364, 365], HER2 (OR = 72.48, 95% ClI: 2.36-
14948598) and E-cadherin-pSer838/840 (OR = 1.84, 95% CI: 1.15 to 3.55), which
more than doubled the odds of PAB response (Anderle et al. 2023, Appendix Il, Figure
S4D; Table S10). In conclusion, differential responses to multiple anticancer therapies
relevant to BC could be assessed using the ex vivo BC-PDM platform. By analyzing
the molecular protein signaling pathways in both sensitive and resistant BC-PDM, new
insights into the treatment response mechanisms of BC cells were obtained while the
histopathology, protein expression profiles, and heterogeneity of primary breast tumors
are preserved. These findings support a role for protein markers that are already known
to influence the resistance or sensitivity of a patient to therapy. However, novel markers
have also been identified that were highly correlated with an individual’s response to
treatment in the present study.
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Particularly GBM, the most common malignant brain tumor in adults [366] currently
lacks effective therapies, which is reflected in poor overall median survival and high
recurrence rates [367-371]. Despite promising preclinical studies [372-374], a plethora
of phase lll clinical trials have disappointingly failed [375-380], with some recent
exceptions [381]. This highlights the urgent need for new therapeutic strategies to
prolong the overall survival of GBM patients. Immunotherapies have been successfully
used to treat several cancer types and may represent a promising treatment alternative
and are currently being investigated for GBM [381-386]. Yet, they mostly failed to
improve overall survival (OS) in GBM patients [379, 387-390]. Main causes are high
tumoral heterogeneity and the highly immunosuppressive TME of GBM [391]. Each
subtype of GBM has a distinct immunologic landscape with varying degrees of
infiltration by T cells and macrophages/microglia [392]. Preclinical studies have shown
that targeting the TME through inhibition of the CSF-1/CSF1R axis is a novel
therapeutic option that may transform the TME into a non-tumorigenic environment
[393, 394] and may be an adjunct to anti-PD-1 immunotherapy [395]. CSF1R blockade
directly targets pro-tumorigenic M2 macrophages (TAMs), which are the major
immunosuppressive stimuli in GBM [396, 397], inducing prolonged overall survival
[394] and microenvironmental remodeling in preclinical studies [398] compared to a
phase Il clinical trial that showed no objective response, with the primary endpoint of
6-month progression-free survival being only 8.6% [393].

Using an autologous experimental ex vivo platform of PDM co-cultured with and
without TIL from residual GBM tissue, this study aimed to investigate the effects of anti-
CSFR1 monotherapy [399] and combination therapy with anti-PD-1. Thereby,
treatment effects that directly affect or remodel the TME were investigated. Based on
the transcriptomic data of Neubert et al. [2] [395], the potential additive effect of anti-
CSF1R blockade to anti-PD-1 therapy in GBM was studied based on the enrichment
of non-anti-PD-1-responsive CD8" T cells with CSF-1. In this context, using an ex vivo
system derived from patient material allowed capturing both tumor heterogeneity and

the patient's immune system, complementing the study's in vivo assays.
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5.1 Targeting the TME by CSF1R-Blockade in Glioblastoma-PDM Co-Cultured
With and Without Autologous TILs

To study the efficacy of a novel immunotherapy strategy inhibiting the
immunosuppressive TME in experimental ex vivo GBM, PDM and autologous TILs
were isolated from fresh residual tissue of GBM resections as illustrated before [322].
Tissue dissociation was performed by mechanical shredding, enzymatic disruption,
and filtration. Microtumors were successfully isolated as tumor fragments > 100 uyM in
size with intact cell-cell contacts and a three-dimensional architecture (Przystal et
al.2021, Appendix lll, Figure 7A). GBM microtumors were assayed for viability after
2-3 days in culture, while patient-specific TILs were expanded using anti-CD3/CD28
stimulation and low cytokine doses after isolation (Przystal et al.2021, Appendix lll,
Figure S5A, S6C). Calcein-AM was used to stain living cells of GBM-PDM. After
hydrolysis of the acetoxymethyl ester by intracellular esterases, the initially non-
fluorescent calcein-AM is converted to green, fluorescent calcein. Compromised dead
cells on the other hand were stained with the nucleic acid dye Sytox™ Orange.
Furthermore, IHC staining confirmed targeted expression of CSF1R in PDM models
#1 and #2, whereas CD68*CD204* macrophages were identified only in PDM model 2
(Przystal et al.2021, Appendix lll, Figure 7A, S6A). Model 1 GBM-PDM were
subsequently co-cultured with autologous TILs and treated with either anti-CSF1R
[399], anti-PD-1, or the combination of both at various concentrations. The cytotoxicity
induced by the monotherapy was measured at 6 different concentrations after 72 hours
of treatment. The addition of autologous TILs to the PDM culture in the absence of
immunotherapy already resulted in the killing of the tumor cells. The addition of 1 or 5
pMg/mL of CSF1R inhibitor further enhanced this effect and resulted in significant
responses relative to IgG control treatment (Przystal et al.2021, Appendix Ill, Figure
7B). At the lowest combination dose, similar treatment responses were observed with
50 ug/mL or 125 pg/mL of anti-PD-1 or the combination of both. These results suggest
therapy induced activation of the immune system.

In order to investigate the mechanism of CSF1R or PD-1 blockade on PDM-infiltrating
TAM, PDM were treated without the addition of TILs (Przystal et al.2021, Appendix
lll, Figure 7A(2), C). Treatment of PDM with either anti-CSF1R, anti-PD-1 or the
combination in the absence of TlLs (model 2) resulted in different outcomes. Except
for the highest dose (125uM), monotherapies failed to induce significant cytotoxic
effects (Przystal et al.2021, Appendix lll, Figure 7C). Again, the combination of anti-

44



5 Results lll: Immune Suppression in Glioblastoma: Microtumors as a Valuable Tool for
Immunotherapy Evaluation

PD-1 and CSF1R treatment resulted in significant tumor cell death, with the lowest
combination dose being most effective in comparison to IgG control treatment and
monotherapies. To confirm the finding of combination efficacy in ex vivo GBM models,
the immunotherapy was evaluated in a third PDM model derived from another GBM
patient. Again, the strongest effect was obtained by combination treatment of the two
inhibitors (Przystal et al.2021, Appendix Ill, Figure S6B). Similar to the PDM model 2,
TAMs were detected in model 3 as well as high levels of CSFR1 expression (Przystal
et al.2021, Appendix lll, Figure S6A).

5.2 Characterization of Affected TIL Populations by Flow Cytometry

Different populations of T cells have different effects on the tumor. They can be
immunosuppressive or immunostimulatory. For example, a high proportion of cytotoxic
CD8* T cells is correlated with a better prognosis in GBM [400], while Treg cells are
mainly associated with recurrence and poor prognosis in GBM patients [401]. T cell
populations within the TILs were characterized by multicolor flow cytometry to draw
conclusions about the immunotherapy responses to anti-CSF1R and anti-PD-1 in the
PDM-TIL coculture. Cytotoxic CD8* T cells (55.5%) and fewer CD4* helper T cells
(37.7%) comprised slightly more than half of the CD3" TILs (Przystal et al.2021,
Appendix lll, Figure S5). Both the CD8" and the CD4* TlLs showed activation by the
expression of CD137 and CD107, which identify antigen-stimulated T cells [402]. Thus,
PDM model 1 TILs were mainly composed of tumor antigen-stimulated T cells, which
were able to induce tumor-specific cell killing when added to GBM-PDM (Przystal et
al.2021, Appendix Ill, Figure 7C). In summary, this study demonstrates the feasibility
of investigating the therapeutic potential of immunotherapy ex vivo in a patient-derived
platform consisting of PDM cultured with and without autologous TILs. Results from ex
vivo cultures of three separate GBM patients suggest that parallel inhibition of TAMs
and PD-1 might have the potential to increase the cytotoxic efficacy of anti-PD-1
therapy and represent a novel potential immunotherapy strategy.
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Over the past few decades, research has made great strides in the fight against cancer.
Much of this has been driven by the development of new technologies, new therapies,
and new preclinical models. The downside is: Tumor diseases are more complex than
originally thought. The complexity of tumors is a result of inter- and intratumoral
heterogeneity, which is influenced by a multitude of components, mechanisms, and
signals. Recently, the impact of TME on tumor heterogeneity and its impact on drug
efficacy has been elucidated [403-405]. The high recurrence rates in OvCa [267], the
vast tumor heterogeneity leading to therapy resistance in BC and OvCa [265, 266,
406], and the lack of treatment options in GBM [407] underscore the need to develop
new and effective treatment approaches. This includes, on the one hand, the
development of new targeted therapies, including TME targeting drugs, and on the
other hand, new treatment strategies that take a personalized approach. Over the past
decade, personalized cancer therapy has emerged as a new approach aimed at
identifying and assessing individual tumor susceptibility and subsequently tailoring
treatment [199, 200]. To this end, new pre- and clinical methods are being elaborated
in the context of clinical validation, sampling and histopathological analysis of tumor
material, preclinical models, drug development and multiomic analysis, to enable
comprehensive stratification of individual patients. These include restructuring of
clinical trials from drug- to patient-oriented studies, performing genome-/transcriptome-
/proteome-based biomarker analysis, developing new drug concepts and
multitargeting treatment approaches, and developing more reliable preclinical tumor
models [219, 220, 408-412]. Tumor models that accurately represent the complexity of
a patient’s tumor and that can be applied to multiple readout modalities are gaining
significance. Although a number of different ex vivo platforms have been established,
including PDO, PDX, tumor explants and others [413-415], well validated and
characterized, readily available patient-derived preclinical models that fully mimic
tumor heterogeneity, tumor microenvironment including connective tissue, immune
and stromal compartments, are still lacking [209, 416-418]. In this sense, this study
aimed to establish and validate a novel, ex vivo patient-derived 3D model accurately
recapitulating highly heterogeneous and advanced tumors focusing on BC, OvCa and
GBM. Finally, its preclinical applicability for individual patient stratification through
functional testing of different cancer therapies and the identification of potential therapy

resistance/sensitivity markers based on proteomic data is demonstrated.
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6.1 Establishment of Viable PDM and Autologous TIL: Efficacy of the Isolation
Procedure

The present study demonstrates the successful implementation and advancement of
a previously reported protocol [276] for isolation of 3D tumor fragments termed
microtumors and autologous TILs from primary OvCa, BC and GBM tumor specimen.
Using mechanical disruption, enzymatic dissociation, and filtration, a repertoire of
highly viable PDM and autologous TIL samples was successfully generated. For both
OvCa (87.5%) and BC (75%), success rates for PDM generation are comparable to
PDO [250, 259, 274, 419]. When the success of PDM isolation was correlated with the
clinical characteristics of the tumors, no bias was observed. Concluding that the
success of PDMs isolation is independent of the tumor subtype. On average, hundreds
to thousands of microtumors can be isolated from fresh tissue samples for
individualized in-depth multiparametric analysis and functional drug testing, based on
experience with the various tumor types in this study. Successful PDM isolation is
primarily determined by the tumor tissue provided and its quality. Criteria include tissue
size, tumor cell density, tissue viability, and the extent of fibrosis and necrosis. Factors
that also play a role in the establishment of PDO [420-422]. The good quality of the
tissues obtained is confirmed by the robust and high viability of the obtained PDM. This
also rules out quality problems in the transport chain as a cause for the sometimes
lower numbers of PDM, as was the case in 50% of the BC samples with less than 100
PDM. To ensure optimal tissue quality for successful PDM generation, close
collaboration and coordination with clinicians and surgeons is indispensable.

A limitation of this model in comparison to PDO [420] is the limited number of PDM that
can be isolated from tumor tissue digestion. However, laborious procedures such as
splitting larger PDM into multiple smaller ones could increase the number of PDM per
sample. Conversely, as known from classical cell line culture, expansion and repeated
passages in PDO generation cause genetic drift and clonal selection [259]. Although
limited by the number of PDM obtained, samples with high PDM amounts are suitable
for drug screening purposes in a 384-well format. This raises the question of what drug
throughput can be used in PDM cultures, unlike spheroids derived from cancer cell
lines or organoids that are expandable. [423-425]. Although possible, the
establishment of a patient-specific functional drug test to assess patient-specific

susceptibility was the primary objective of this study.
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Unlike other patient-derived tumor models [420, 422, 426-428], the time from tumor
tissue collection to PDM recovery is very short, less than 24 hours. The rapid
availability of PDM allows immediate downstream analysis within the diagnosis-to-
treatment interval, making PDM a clinically relevant tumor model for individualized
functional drug testing. Furthermore, suspension culture of PDM eliminates the need
for an artificial ECM matrix, thus avoiding the use of animal material such as Matrigel
or chemically defined hydrogels as is required for PDO generation and expansion.
Therefore, the influence of animal origin and batch-dependent differences in the
composition of Matrigel on the comparability with human tumor tissue has to be
considered for PDO cultures [429, 430]. However, synthetic alternatives to Matrigel
are being developed. To summarize, PDM have the advantage over PDO that they
can be obtained more quickly, easily and cheaply from patient tumor tissue, do not
require culturing in an extracellular matrix, and are directly available for functional

testing without expansion.

6.2 The Reproducibility of the Primary Tumor

6.2.1 Histopathologic and Immunohistologic Correlation: Preservation of
Histopathological and Subtype Specific Features of the Primary Tumor in
PDM
Detailed characterization is required for a clinically relevant, i.e. translatable, tumor
model. Specifically, the ex vivo reproducibility of subtype specific tumor tissues must
be ensured first and foremost by demonstrating histopathologic similarity to the primary
tumor, which is still the gold standard and fundamental for diagnosis and patient
stratification. Pathologic tumor classification is routinely performed according to
specific histologic features, i.e. tissue and cell structures typical for the specific tumor
type, such as degree of pleomorphism, cellular atypicality, mitotic activity, and stromal
circumference. Standard H&E stains were performed and reviewed by a certified
pathologist and compared to sections of the corresponding primary tumor tissue in a
blinded fashion to determine these characteristics and identify differences and
similarities on the obtained PDM specimens. The results of the histopathologic
assessment of OvCa- and BC-PDM demonstrate retention of histopathologic and
subtype specific features such as growth pattern, cellular pleomorphism and atypia of
the corresponding primary tumors comparable to PDO cultures [250, 274, 419]. PDM

from patients with different tumor subtypes show different expression of these features,
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illustrating preservation of histopathologic tumor characteristics of primary tumors.
Specifically, typical high-grade tumor characteristics such as papillary growth pattern,
irregular branching, pleomorphism, and high nuclear-cytoplasmic ratio are conserved
in HGSC OvCa-PDM and are distinct from low-grade mucosa-derived OvCa, a slow-
growing OvCa subtype [431, 432]. Further, this study could histologically differentiate
BC-PDM into NST or ILC based on preserved subtype specific tissue patterns [308,
433] found in corresponding primary tumors.

Similar to grading differences between punch biopsies and surgical specimens due to
the underestimation of mitotic count [434-437], some BC-PDM were graded lower than
the primary tumor. As is the case with punch biopsies, this may be attributable to ITH
[438]. Histopathologic evaluation of breast tumor PDO showed a similar picture: PDO
could also not be clearly assigned to a tumor status and were frequently graded lower
[250]. Finally, meaningful comparison of the grading would require more PDM sections
(minimum n = 10) per patient for accurate staging.

Besides reflecting histopathologic characteristics of the original tumor, PDM also
preserve the expression of subtype-specific markers of the corresponding primary
tumors as confirmed by IHC. These include CA125, p53 and WT1 expression in OvCa
subtypes [278, 439], HR and CK expression in BC subtypes [309, 311, 318, 331, 332,
440], and CSF1R as a marker for glioma-associated microglia/macrophages within
GBM [441]. Similar to PDO cultures [250, 274, 419], BC-PDM could be differentiated
into HR* and TNBC samples based on HR expression, while OvCa-PDM could be
classified as HGSC on the basis of p53 and WT1 expression [442]. As determined by
IHC, the pathologically determined HR status was maintained in BC-PDM. In contrast
to other PDO studies [250, 443, 444], multiple CK expression profiles of BC-PDM were
characterized as reported by Abd EI-Rehim et al. (2004) [331]. Here, PDM were further
differentiated into CK5* and double-positive CK5/6-expressing PDM. Our results
indicate reduced luminal CK18 levels in TNBC PDM, consistent with previous reports
[331, 440]. However, contrary to findings that only 17% of the ILCs express basal CKs
[445], a generally high expression level of basal CKs was found within the ILC as
compared to the NST PDM. Further evaluation in a larger ILC cohort is warranted for
this unexpected finding. As described in primary BC tumors [331, 335], some of the
HR* BC PDM were positive for all luminal and myoepithelial CKs. Unexpectedly, the
overall expression of CK5 and CK6 were upregulated in BC-PDM regardless of

subtype compared to the corresponding primary tumors as shown by DigiWest®
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protein analysis. This discrepancy of CK5/6 levels between PDM and PTT was also
observed in BC-PDO cultures [443] and may result from estrogen-deprived culture
conditions or even from ECM-free cultivation, which may cause CK upregulation to
support tumor sphere formation in suspension [446-448]. The possibility that the PDM
culture conditions select for basal-like subclones (CK5/CK6*), which are frequently
observed in BRCA-1-related BC [449, 450] and are underrepresented in the primary
tumor, cannot be ruled out. This should be subject of following studies. Overall, the
long-term effects of PDM culture conditions over a period of more than three weeks to
several months on the stability of BC, OvCa and GBM tumor-specific markers and the
underlying mechanisms are beyond the scope of this study and require further
investigation.

In conclusion, PDM mimic the histopathology of the original primary tumor such as
cellular atypia, morphology, and cytology, and further allow for the differentiation of
tumor subtypes of BC and OvCa. As previously observed with PDO in breast tumors,
tumor grade cannot be clearly determined from a few PDM sections and would need
to be re-examined using more sections. Overall, PDM reflect the expression of tumor-
specific markers important for tumor stratification and can be considered an equivalent
tumor model to PDO in this regard [250, 274, 419, 422]. Beyond that, this study
suggests that the expression of CK5/6 in ex vivo cultured 3D BC-models such as PDO

and PDM is affected by the cultivation conditions.

6.2.2 Modeling the Tumor Microenvironment

Several processes of tumorigenesis are substantially influenced by the surrounding
tissue. Reciprocal and dynamic crosstalk between tumor cells and the non-
cellular/cellular components of the TME results in TME reorganization. This crosstalk
controls tumor growth, progression, metastasis, clonal evolution, tumor heterogeneity,
EMT, neovascularization and drug resistance to targeted, chemo- or immunotherapies
in OvCa, BC and GBM [281, 282, 284, 325, 326, 451-455]. It is regulated by a intricate
network of tumor cells, tumor stromal cells such as stromal fibroblasts, endothelial
cells, and immune cells such as microglia, macrophages, and lymphocytes, as well as
the non-cellular components of the ECM such as tissue fibers (collagen), glycoproteins
(e.g, elastin, fibronectin, laminin), PGs, and GAGs, (e.g. hyaluronan) [325, 326]. The
better a model represents this complexity, the better it will be able to reflect the tumor

biology and therapeutic response of the patient's tumor. Pathologic examination, DAB
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immunohistochemistry and Movat’s pentachrome staining [327] demonstrated the
presence of a native TME in PDM sections of BC, OvCa and GBM. Similar to PTT,
OvCa-PDM expressed the CAF marker FAPa, which is detectable in 90% of epithelial
OvCa and induces tumor progression and chemoresistance [283]. Subtype specific
expression profiles have further been identified in BC-PDM. ILC PDM contained
significantly more FAP-expressing CAFs compared to NST PDM, as described
previously [456]. Interactions between CAFs and BC cells have been shown to promote
the migration, invasion and ultimately the metastasis of cancer cells [457-460]. The
roles of CAFs are diverse and include the production of ECM proteins, the induction of
angiogenesis via FGF2 and VEGFa [461], and serving as a source of nutrients for
tumor cells [462]. Which of these processes occur in PDM has not been investigated
but should be the subject of future studies. The presence of "tumor tissue native" CAFs
in PDM provides a platform with preserved tumor stroma to study cellular effects of
CAFs on therapeutic response on the one hand and to evaluate the effect of CAF-
targeted therapies on the other hand [463-465]. Importantly, since PDO are known to
lack endogenous tumor-associated stromal components, particularly immune cells and
fibroblasts, this can only be achieved in PDO models by co-culturing PDO with CAFs
[466-468].

Tumor-associated connective tissue elements such as PGs, hyaluronic acid-
associated GAGs and collagen fibers [329, 469], as detected by Movat’'s pentachrome
staining or by the expression of C1QBP [470] and collagen in IHC, are retained in PDM,
but collagen at comparatively lower levels than in the corresponding PTT. This may be
due to enzymatic digestion of tumor tissue with collagenase I, required to isolate PDM.
Tumor-specific expression patterns of these connective tissue elements, such as
increased collagen deposition in ILC tumors [454], have been demonstrated in this
study. Collagen deposition, fiber density and orientation induce ECM stiffening and
impact tumor aggressiveness, invasiveness, therapy response, and correlate with
prognosis in BC [328, 471-474]. Notably, collagen |, like FAP, promotes tumor
progression and invasiveness in OvCa [321, 475, 476] and BC [328, 454, 474].

While PDM show conserved native, endogenous ECM of primary tissues, organoid
models are rather simplistic as they lack native ECM and stromal cells, which are
important regulators of drug responses in patients [262, 477]. Organoids consist of
dissociated single tumor cells of epithelial origin that lack cell-ECM interactions and

only grow in 3D when embedded in a biological or synthetic scaffold, most commonly
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Matrigel, and with various exogenous growth factors [478]. Matrigel is derived from
mouse sarcoma and comes with several drawbacks in this regard [429, 479] such as
high batch-to-batch variability, the potential for transmission of animal pathogens due
to the origin of the material [480, 481] and a composition or stiffness of the ECM that
may not provide the ideal tissue-specific microenvironment [482, 483]. To overcome
this limitation of organoid culture, great efforts are being made to generate natural
matrices and synthetic hydrogels[484-488]. The need for extrinsic biological or
synthetic ECM is easily eliminated when the intrinsic cell-cell contacts of a resected
tissue are maintained, as in PDM isolation, thereby preserving non-cancerous cells,
cell-cell and cell-ECM interactions on the one hand, and the 3D microarchitecture on
the other.

In order to overcome the limitations of syngeneic mouse models, which only represent
mouse tumors and not human tumors, PDX models have been developed for different
tumor types by implantation of patient-derived tumor tissue, tumor cells or organoids
into immunodeficient mice [237]. While the subcutaneous implantation of tumors in
PDX is very simple and allows for little tissue damage and easy monitoring [489], the
orthotopic implantation in the organ corresponding to the tumor ensures a matched
anatomical microenvironment [235]. Besides the lack of a functional immune system,
the use of orthotopic PDX for drug discovery is hampered by the fact that the human
stroma, as part of the implanted tissue, is replaced by the mouse stroma after only a
few passages, with the fastest replacement occurring with CAFs [235, 477, 490, 491].
Although PDM demonstrate preservation of tumor-derived ECM, CAFs and connective
tissue, the long-term maintenance of this ECM is unknown and warrants further
investigation.

Besides the influence of ECM, the presence of immunosuppressive TME is a major
limitation for the success of novel therapeutic approaches such as immunotherapies
in GBM [451, 452]. Therefore, the fact that GBM-PDM possess an immunosuppressive
TME due to the high expression of myeloid CSF1R and infiltration with TAM (CD204*)
[392], indicating immunologically cold tumors with multidimensional resistance
mechanisms to immunotherapy [492-497], is advantageous for immunotherapy
evaluation over PDO and PDX. In contrast, immunosuppressive TAM and CD8 TIL are
sporadically found in PDM of OvCa and BC. Low CD8 T cell infiltrated, immunologically
cold tumors are associated with poorer patient survival in OvCa [292] and BC [498,

499], and are largely unresponsive to immunotherapies [113, 500]. The low immune
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cell content within the OvCa-/BC-PDM may either truly resemble immunologically cold
tumors with low intratumoral TILs [501], defined as lymphocytes in direct contact with
tumor cells within the tumor nests, or it may reflect the cell culture-related depletion of
non-proliferating immune cells. In any case, this is also reflected in the low level of
NFkB signaling in the PDM, as measured by the DigiWest®. However, since tumor
tissue-isolated TILs could be cultured, expanded and characterized by flow cytometry,
the presence of stromal TlLs [501] located in the stroma between tumor nests without
tumor cell contact can be confirmed. This allows for the direct investigation of
immunotherapies in autologous PDM-TIL co-cultures. Summarized, PDM may exhibit
an immune cell infiltrate, albeit varying in individual patients and between tumor
entities, reflecting tumor heterogeneity. This highlights the importance of individual
tumor analysis to decipher the unique immunologic tumor landscapes.

Reliable cancer models for personalized oncology and drug development, especially
for immunotherapies, that preserve the key features of the native TME and molecular
properties of the native tumor at the individual patient level, are highly desired as a
translational tool to improve cancer research [502, 503]. PDM, mainly distinguishable
from PDO and PDX by the preservation of a native TME with connective tissue and
stromal cells, can serve as a novel tumor model to enable fast and effective evaluation
of anti-cancer drugs, especially targeting the TME. Nevertheless, newly developed
humanized PDX models with a functional immune system [504-506] will play a

particularly important role in the preclinical testing of immunotherapeutics.

6.2.3 Molecular PDM Profiles: The Heterogeneity of Signal Transduction

The development of NGS has resulted in several multigene expression tests (e.g.,
MammaPrint™  Oncotype DX™, and Prosigna ROR™ and PAMS50) [507, 508] that
have been applied to characterize BC subtypes and estimate the risk of recurrence as
well as the benefit of adjuvant chemotherapy [509-511]. Using such gene expression
analysis, trials attempted to target specific driver mutations of tumors. Disappointingly,
in the largest precision oncology trial (NCI-MATCH) [211], only a minority of patients
with predicted genetic vulnerabilities - identified in 38% of patients - benefited from
targeted treatment. A number of additional studies have reported similar findings [212,
213, 512-515]. This failure is illustrative of the fact that changes in DNA or RNA do not
always translate into changes at the protein level, and thus into changes in cellular

function and in the tumor phenotype [516]. Because cancer cell phenotypic
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heterogeneity is determined by non-genomic as well as mutation-related mechanisms
[55, 60, 61] genomics alone cannot fully predict therapeutic response. For this reason,
treatment decisions should not be made solely on the basis of DNA/RNA profiles,
especially in very aggressive cancers e.g. TNBC [517-520]. By identifying altered
pathways and dysregulated proteins associated with genetic alterations [521],
proteomics can resolve tumor heterogeneity [522-524]. In this way, proteomics can
contribute to the identification of suitable prognostic biomarkers [525, 526], cancer
diagnosis, cancer subtyping [527] and patient stratification [528], as well as the
identification of new therapeutic targets [525, 526] and markers of treatment resistance
[529]. Given the limitations of genomic analysis to decipher the cellular function and
translation to phenotype, this study identified phenotypic tumor profiles of various PDM
utilizing DigiWest® and RPPA protein profiling contrasting commonly applied genomic
and transcriptomic analyses in OvCa and BC PDO [250, 274, 419, 530]. These highly
sensitive and robust immunoassays allowed quantification of >110 or 142 proteins from
limited OvCa-/BC-PDM sample material for relative protein expression and post-
translational modifications (e.g. cleavage, phosphorylation, acetylation) [336, 531].
Both methods allowed the interrogation of key signaling transduction pathways and
confirmed intertumoral heterogeneity of cellular signaling activity in PDM previously
observed by IHC. Samples hierarchically clustered according to their classification and
their pathway activity profiles (protein expression signatures). The data highlighted
significant differences in cell cycle and MAPK/RTK pathway activity in OvCa-PDM and
confirmed known TNBC protein signatures in TNBC-PDM, such as upregulated
PI3K/Akt and MAPK/RTK signaling [344, 346, 347, 532], overexpressed proteins
associated with stress response [533, 534], higher relapse rates, mortality [347, 535,
536], tumor growth and EMT [537-539]. Furthermore, a high correlation between PDM
protein expression and corresponding primary tumors is shown not only semi
quantitatively by IHC, but also quantitatively by DigiWest®. Strikingly, the detected,
reduced expression of NFkB pathway proteins, which mainly regulate immune and
inflammatory processes and are involved in the immune defense against transformed
cells [540, 541], is comparable to the reduced expression of immune-related genes in
a PDM-similar GBM model [422]. The decreased NFkB-related signals in BC-PDM
likely reflect the limited presence of immune cells within BC-PDM, discussed previously

in section 6.2.2.. Further, DigiWest® confirmed the elevated CK5/6 protein levels of
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PDM compared to PTT as previously demonstrated by IHC staining and discussed in
section 6.2.1..

In conclusions, RPPA- and DigiWest-based protein profiling allows for the identification
of molecular signatures and grouping of phenotypically similar PDM. Significantly,
PDM preserve key molecular profiles and the intertumoral heterogeneity of the native
primary tumors. Ultimately, the combination of translational omics approaches
(genomics, transcriptomics, proteomics and metabolomics), of tumors and
corresponding PDM may enable stratified, patient-specific medicine, and the prediction

of treatment response.

6.3 Utility of PDM and TIL in Functional Testing of Therapeutic Modalities

The ability to predict patient-specific responses to anticancer drugs prior to treatment
will ultimately enable the personalization of cancer treatment. To this end, functional
validation of cancer therapies in patient-derived ex vivo models will be required to
complement the molecular and histopathological analysis of individual tumors. To date,
the limited reproducibility of tumor complexity in ex vivo preclinical models in terms of
TME and intratumoral heterogeneity has led to a large discrepancy between preclinical
results and clinical success [542]. Given the preserved tumor heterogeneity and key
molecular pathways of the primary tumor, PDM provide an excellent platform for the
evaluation of personalized drug efficacy and drug sensitivity. The study provides proof
of concept that validation of individual susceptibility of PDM to chemo-, targeted and/or
immunotherapies at Cmax drug concentrations previously reported in clinical trials [302]
is feasible. Despite the relatively good response to first line cytoreductive surgery and
platinum-based chemotherapy in patients with OvCa, treatment resistance and
disease recurrence are prevalent [543]. Respective treatment responses to carboplatin
were found in OvCa-PDM with four out of seven models being sensitive to treatment.
Comparison of molecular protein profiles of PDM revealed high cell cycle signaling
associated with carboplatin sensitivity. Notably, carboplatin-resistant PDM were
instead sensitive to targeted therapy with the MEK inhibitor selumetinib, underscoring
the importance of validated functional drug testing to identify patient-specific
susceptibility and drug resistance prior to treatment. Similarly, BC-PDM showed
divergent treatment responses to TAM (13.8%), PAX (22.2%) or PAB (19.25%), with
DTX showing the highest response rate with 31%, consistent with its high activity as

an anti-microtubule agent in the neoadjuvant and adjuvant treatment of early node-
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positive, anthracycline-resistant, advanced or metastatic BC [544-546]. The differential
response to anticancer drugs suggests that PDMs are a reflection of the patient-
specific heterogeneity and complexity of the primary tumor and its differential
sensitivity to drugs. Combined gene expression analysis and functional drug testing of
PDM would further enable genotype-drug and phenotype-drug correlation to evaluate
the targetability of individual gene alterations [221, 419]. For example, the patient-
specific sensitivity to PARP inhibitors and the correlation with BRCA1 and BRCA2
mutations would be of great interest for future follow-up studies in OvCa- and BC-PDM
[547-549]. This would integrate not only proteomic but also genomic evaluation into
functional drug testing [217] of PDM. The capability to perform functional drug testing
makes the PDM an ex vivo platform that can quickly and easily test patient responses
to standard of care and targeted therapies in a clinically relevant timeframe. However,
subsequent validation in PDX as reported in PDO [250, 273], followed by prospective
validation in co-clinical studies will be required to demonstrate the comparability and
the predictability of the ex vivo results obtained.

Due to the lack of major changes in treatment strategies for several tumor types,
immunotherapy is increasingly being investigated as a new treatment approach to
improve long-term remission in resistant tumors such as recurrent OvCa [550-552] and
GBM [553-555]. Common preclinical models used for this purpose include syngeneic
mice [556], PDX [557] and humanized PDX [558-560], each of which has its
advantages and disadvantages. As a non-animal replacement for some of these
models, this study demonstrates the feasibility of conducting ex vivo immunotherapy
evaluations using OvCa- and GBM-PDM combined with autologous TILs. The
immunogenicity of both tumor types [561, 562] with CD4* and CD8" isolated TILs as
demonstrated by flow cytometry data and their correlation with progression-free
survival and overall survival [291, 293, 400, 401, 563-565] are rational to pursue
immuno-oncologic treatments such as ICl in these tumors. Isolated OvCa-TIL have
been found to be predominantly composed of CD4* TILs. This suggests a higher
degree of immunosuppression, which in turn is associated with a worse prognosis of
patients with OvCa [563]. Furthermore, since CD39 expression was restricted to
CD8*PD-1* TILs, our data suggest that CD8" TIL levels directly correlate with the level
of tumor-specific CD8" CD39* TIL levels and represent an exhausted, memory T cell-
like phenotype [566] in OvCa patients. In general, ICl is aimed at reinvigorating

exhausted, tumor antigen-specific TIL by inhibiting immune checkpoints such as PD-
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1, CTLA-4, LAG-3 and TIM3 [567], thereby enhancing their effector activity. Most
notably, these include successful approved monotherapies such as anti-PD-1/PD-L1
(Nivolumab/Atezolizumab) antibodies and CLTA-4 (Ipilimumab) for T cell mediated
(immunologically "hot") tumors such as melanoma, NSCLC, etc. [154, 155, 568-571].
Despite being immunogenic tumors, GBM and OvCa show on average a lower T cell
infiltrate compared to other tumor types [572, 573] and therefore a lower response rate
to different ICIs [379, 389, 390, 574, 575]. Immunotherapeutic response is mainly
dependent on the composition of the TME, the degree of infiltrating cytotoxic CD8" T
cells, their exhaustion state described by high PD-1 [576-578], neoantigen load and
mutational burden [579-583]. These factors trigger heterogeneous, patient-specific
responses to mono- and combination immunotherapies as detected in OvCa-PDM and
TIL co-cultures [584], with one co-culture showing increased T cell mediated tumor
killing after monotherapy with anti-CLTA-4 and anti-PD-L1, and one responding only
to combination therapy with anti-PD-1/anti-PD-L1 and anti-CLTA-4. The ICI efficacy
assessment was complemented by immunophenotyping of the expanded TIL
populations, suggesting an association between successful anti-CTLA-4 treatment and
increased presence of CTLA-4-positive CTLs combined with low proportions of
terminally exhausted CD39'PD-1* CTLs. Thus, blockade of CTLA-4 suggests
enhanced activity of the tumor-specific TILs. Prospective studies using OvCa-PDM co-
cultures could make an important contribution to improving the success rates of clinical
interventional trials by allowing the efficacy of specific combination therapies to be pre-
tested and ineffective combinations to be excluded in advance. Examples of
combination therapies currently under investigation include anti-CTLA-4 with anti-PD-
1 (NCT03342417, NCT02498600, and NCT03355976) [294], PARPi with CPls
(NCT02571725, NCT02485990, NCT03522246, NCT03642132, NCT02484404,
NCT02657889, NCT03602859, NCT03737643, and NCT03740165) [294] and even
CPIs with chemotherapy [353, 585].

GBM poses an even greater challenge to successful immunotherapy, as one third of

the tumor mass consists of immunosuppressive TAM, as confirmed by IHC of GBM-
PDM, which inhibit TIL activation [576, 586, 587]. Blocking CSF1R, a key receptor for
macrophage differentiation and survival [396, 588] with an oncogenic role in
gliomagenesis [589], represents a promising target in GBM to modify the
immunosuppressive TME [394, 398]. The differential expression of
immunosuppressive TAM and CSF1R detected in GBM-PDM allows for the
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individualized evaluation of TME-targeted therapy and ICB therapy ex vivo. Contrary
to the limited clinical success of anti-CSF1R monotherapy [393], PDM-TIL co-cultures
support the potential of a combined anti-CSF1R and anti-PD-1 treatment strategy, as
the combined PD-1 and CSF1R inhibition potentiated treatment-induced cytotoxicity
and increased immune cell infiltration in parallel experiments in mouse models [590].
Co-culture of TILs resulted in tumor-specific cell killing mainly by activated T cells with
high expression of CD137, CD107 and effector cytokines (TNFa, GranzymeB). This is
supported by preclinical studies showing that combining CSF1R- and PD-1 inhibitors
prolongs survival and reverses immune resistance [395, 591]. Especially the
application of combination therapies holds great promise as it may prevent adaptive
resistance of tumor cells to immunotherapies [592]. Optional combination with radiation
or chemotherapy might further overcome resistance in GBM and would be of interest
to investigate [593]. Finally, the rapid availability of PDM, the preservation of tumor
heterogeneity and an intrinsic TME, together with the isolation of autologous TILs,
provides an important platform for the evaluation of immunotherapy responses. PDM-
TIL co-culture systems may be valuable for both the identification of potential
immunotherapy biomarker and the preselection of patients most likely to benefit from
immunotherapy [594, 595].

6.4 Proteomic Analysis of PDM to Allow for the Identification of Patient-
Specific Treatment Susceptibilities and Markers of Therapy-Response
The need for personalized approaches to improve patient outcomes is undeniable.
However, the question remains: What are the best approaches to achieve precision
oncology? Genomics has been the driving force in most cases. However, with only
modest objective responses in genotype-drug-matched patients, the individual
predispositions identified by genomic analysis were not the precise targets hoped for
[213, 596-598]. Some of the reasons for the rather disappointing results include: low
matching rates of patients to drugs (5% - 49%), enrollment of patients with end-stage
disease, ITH and constantly evolving genomic landscapes, the lack of available
matched targeted agents, incomplete pathway inhibition, targeting of non-driver or
passenger mutations, presence of other driver mutations, no obvious targetable DNA
alterations and difficulties in combining targeting agents due to treatment toxicities
[409, 599-602]. Proteomic methods (e.g. mass spectrometry, RPPA, DigiWest®) [286,
336, 499, 603, 604] can help to overcome some of these limitations by providing
information on deregulated proteins, subtype-specific protein expression patterns
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driven by genetic and non-genetic alterations, and the activity state of different
pathways, thus potentially detecting aberrations that act as oncogenic drivers [521-
524, 527, 605, 606]. As an innovation over PDO studies, the combination of RPPA and
DigiWest® protein profiling analysis with functional drug data in 3D microtumors
demonstrates a valuable way to identify mechanisms of treatment resistance and
sensitivity. RPPA-based proteome profiling could assign individual OvCa-PDM drug
responses to specifically up- or down-regulated pathway activities. Most importantly,
PDM patterns most likely to respond to chemotherapy or targeted therapy were
identified. Consistent with the ability of cytostatic drugs to induce apoptosis, particularly
in actively dividing cells [607], a further correlation was found between proteins relevant
to cell cycle progression through S and G2/M phases and carboplatin response of
OvCa PDM. Specifically, our data suggest that elevated levels of aurora A, cyclin B1,
and PCNA proteins may aid in identifying carboplatin responsive tumors. In addition,
consistent with previous reports, we confirmed that reduced capacity to repair DNA
damage and undergo apoptosis [608] is associated with carboplatin sensitivity in OvCa
PDM, as demonstrated by increased levels of cleaved caspase-7 and cleaved PARP.
By comparison of RPPA-based protein signaling pathway transduction of untreated
and carboplatin-treated OvCa-PDM, previously reported therapy-induced transient
protein changes as well as direct on- and off-target pathway effects [609] were
determined. A rapid stress response mechanism was induced in carboplatin-sensitive
PDM in addition to the concomitant degradation of cell cycle proteins and the increase
in apoptosis-associated proteins. This manifests as elevated mTOR pathway activity
with raised levels of S6RP and phospho-S6RP [307]. Excessive mTOR activity in
combination with cellular stress and failure of cells to adapt to cellular stress can lead
to p53 upregulation [610, 611] and drive cells into senescence or apoptosis [612, 613].
Similarly, in this study, n = 29 BC-PDM were tested for treatment resistance/sensitivity
phenotypes using a combination of DigiWest®-based protein profiling analysis and
functional drug testing of TAM, PTX, DTX and PAB. Overexpression of CDK6 has been
shown to be an inhibitor of fulvestrant-mediated apoptosis and an inducer of
fulvestrant-resistance [614]. Among the TAM-resistant PDM of this cohort, CDKG6 levels
were also elevated and shown to negatively impact the likelihood of responding to TAM
treatment, suggesting similar resistance mechanisms between the two hormonal
therapies. While TAM acts as a competitive inhibitor of the ER with some agonistic

activity, fulvestrant acts as a selective ER degrader by inducing a conformational
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change in the ER [615]. However, both of these therapies work by inhibiting the
hormone-driven signaling of these receptors. Both the activation of ERa activation via
Ser167 phosphorylation and the activation of FGFR may also contribute to TAM
resistance [354, 358, 616], and showed increased levels in TAM-resistant PDM.
Elevated total ERa levels are associated with TAM sensitivity in PDM [617], consistent
with the clinical use of TAM in HR* BC. Comparative PDO studies show that the
functional testing of TAM has only been performed in small BCO sample cohorts, but
with similarly heterogeneous responses [250, 443, 618].

The most effective treatment for BC-PDM has been found to be DTX. The
chemotherapeutic agent DTX inhibits cancer cell growth by inhibiting the
depolymerization of microtubules during mitosis, halting the progression of the cell
cycle with the highest cell killing effect in the S phase [619, 620]. It has shown
significant efficacy in the treatment of BC patients [544]. Less invasive, luminal-like
CK®8/18"Ngh with low EMT, and ERahig" BC-PDM were sensitive to treatment, in line with
previous studies [621-623]. Contrary our data indicate that DTX resistance is
associated with high expression of EMT-related proteins, DTX-metabolizing CYP1B1
and Caveolin-1 [360, 361, 624, 625]. Unlike this study, there are currently no reports
on the effect of Tau-pSer202 or b-Raf-pSer445 on response to taxane-based
treatments. As discussed by M. V. Barbolina et al. [2], it is controversial whether the
expression of tau, which is thought to bind to the same microtubule target sites as
taxanes, correlates with response to taxanes [620, 626]. In particular, very little is
known about the function of the post-translational modifications of tau [627]. However,
phosphorylation of tau results in the loss of its ability to bind microtubules [628, 629]
and thus of its ability to compete with taxanes. Tau phosphorylation may therefore be
a marker of taxane sensitivity. In PTX resistance, the EMT process plays a critical role
in treatment resistance [630], which is in line with the resistance and sensitivity marker
panel identified for BC-PDM. This panel includes EMT regulatory proteins such as
vimentin-pSer56, CK5, CK6, E-cadherin, CK8/18, IKKa-pThr23, and beta-catenin-
pSer55. Since, unlike DTX, increased tau levels correlate with resistance, further
studies are warranted to investigate the influence of tau expression, but also
phosphorylated tau, on taxane treatment response. Besides, the previously reported
association between high levels of PgR and decreased PTX sensitivity was confirmed
in BC-PDM [631]. Again, additional proteins not previously described to be directly

linked to taxane treatment but associated with BC development were found to
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significantly affect PTX sensitivity in BC-PDM: GATAS3, NF1, and c-Met-pTyr1003 [632-
634].

The comparison of PDM expression profiles between PAB-treated responders and
non-responders, in addition to endocrine therapy and chemotherapy, provided
intriguing results. PAB is approved for the treatment of ER* metastatic BC in
combination with fulvestrant and has been shown to prolong progression-free survival
compared to fulvestrant alone [635]. Several intrinsic and acquired resistance
mechanisms to CDK4/6 inhibition have been described preclinically. However, these
have failed to translate to the clinic [636]. BC-PDM resistance/sensitivity panel
identified multiple proteins with potential predictive value for PAB treatment response.
Some of these have been implicated in PAB resistance/sensitivity in previous studies,
including CDKG®, cyclinE1, FGFR, cyclinD1, and ERa [636]. Surprisingly, the data also
point to the expression of vimentin, CK6, CDK2-p and HERZ proteins as novel markers
of responsiveness. Elevated levels of vimentin and CK6 may define a more aggressive
and invasive type of tumor that is resistant to PAB, which is also reflected by the fact
that two of the PAB-sensitive PDM (#20,# #81) are derived from TNBC patients [637,
638]. CDK4/6 inhibitors are currently being investigated in clinical trials for the
treatment of TNBC [639]. While the presence of CDK2-p, which is required for the
transition from G1 to S phase, contributed to PAB sensitivity in BC-PDM, other studies
have reported the opposite, as the cyclin E-CDK2 pathway can bypass the cyclin D1-
CDK4/6 axis in acquired resistance [636]. One interpretation could be that the initial
response to PAB is driven by pre-existing CDK2-p levels and thus active cell cycle
progression. However, further upregulation during treatment could lead to acquired
resistance via cyclin E-CDK2 signaling. Further studies of long-term treatment
responses are warranted to decipher aquired resistance mechanisms. Differential
responses to PAB treatment should also be investigated in early stage and metastatic
aggressive BC-PDM.

Summarized drug responses in PDM correlate with differential treatment responses
observed in cancer patients and allowed the identification of potential responder and
non-responders. Furthermore, when combined with protein profiling, the results show
that previously described sensitivity and resistance markers for the tested agents are
also detectable in BC-PDM. This underlines the translational relevance of this model
system. Besides matching known resistance/susceptibility markers, identifying new

markers with possible predictive potential seems possible. Finally, PDM enable the
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identification of patient vulnerabilities through the combination of functional drug testing
and comprehensive molecular protein profiling. Proteomics is providing valuable
insights into the complex protein networks, pathways, and processes in the
heterogeneous tumor phenotypes that influence the response to treatment. While
genomics allows the identification of changes in the genome, it is at the protein level
that the manifestation of mutations in cellular signaling can be tracked and used to
functionally classify tumors. Information about the expression levels, modifications and
interactions of proteins in the pathophysiological environment is an important source
of biomarkers and therapeutic targets for the individualized treatment of cancer
patients [640]. Correlating these data with clinical follow-up data from respective
patients will be essential to successfully implement functional testing and proteomic
profiling of PDM as an ex vivo platform for precision oncology. In comparison, in
cohorts with a limited number of cases (maximum n <10), treatment responses in PDO
have already been correlated with patient responses and have been shown to
recapitulate patient responses to chemotherapy and targeted therapy [221, 250, 256,
419, 641]. In the analyzed OvCa cohort, carboplatin response in PDM correlated with
longer median metastasis-free survival (MFS) of corresponding patients.
Unfortunately, patient outcome and overall response could not be correlated as the
required follow-up data was not available within the time frame of the study. Especially
for BC, the patient collective consists of patients with non-metastatic disease, who
received primary tumor resection and eventually adjuvant tamoxifen when ER®.
Adjuvant tamoxifen reduces recurrence risk by one-third in the first 15 years [642],
complicating comparison of patient response data with ex vivo functional data from
PDM trials within the short study period. A focus on other patient populations, such as
metastatic disease or TNBC, which have a broader therapeutic spectrum, would be
more relevant for future studies to correlate patient response with PDM treatment
response. Furthermore, extending the methods used to a larger cohort will increase
the robustness of results.

6.5 Conclusion

To enable biomarker validation and demonstrate clinical utility for patient stratification
in precision oncology, there is an undisputed need for cost-effective, reproducible
preclinical models that resemble the genetic and proteomic background, the inter- and

intratumoral heterogeneity, and the TME of human tumors. To lay the foundation for
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successful patient stratification and treatment, it is important to develop, establish and
thoroughly characterize additional ex vivo tumor models in addition to existing models
such as PDO or PDX, which will undoubtedly remain useful in preclinical research.
This study introduced and validated the establishment of PDM from freshly resected
tumor specimen as complementary tumor model for heterogenous OvCa, BC and
GBM. Like an ideal preclinical tumor model, PDMs mimic phenotypic and
pharmacological diversity and, in contrast to PDO and PDX, preserve TME
components of the native patient tumor. PDM hereby preserve healthy tumor cells
within a heterogenous 3D structure including cell-cell interactions and ECM
components and display histopathological and immunohistological similarities to
corresponding primary tumors. Primarily, intertumoral heterogeneity is maintained
within the PDM, as evidenced the levels of expression of tumor and TME markers, and
the differential activity of signaling pathways that correlate with the corresponding
primary tumor. Applied comprehensive protein profiling analyses and combined
functional drug testing of PDM highlight the potential of identifying tumor-associated
differentially expressed proteins to enable the stratification of treatment responders
and non-responders. Functional drug testing in PDM identifies treatment-sensitive
tumors and helps predict individual therapeutic susceptibility. Further, parallel isolation
and expansion of autologous TIL allows for characterization of tumor-specific immune
phenotypes as well as the assessment of immunotherapy and TME-targeting drug
responses in PDM co-cultures. Clinical utility is demonstrated by isolation-efficacy,
time efficiency of PDM generation, straightforward and well-established as well as
animal-free culture conditions, patient-specificity, conserved tissue architecture and
TME components, as well as by compatibility with a variety of downstream readout
technologies. As a complement to genomic mutation analysis and standard subtype
classification, the combination of individual histopathologic analysis, preclinical drug
testing, and parallel protein profiling analyses of PDM may hold promise for identifying
predictive markers of treatment resistance, prevent patients from receiving ineffective
treatments, replace, refine and reduce the use of animals in cancer research, support
clinical decision making and improve patient stratification. In the future, all available
patient-derived tumor models will be complementary tools in the personalization of
cancer care, each best suited and used for specific applications. For PDM, further
confirmatory studies are warranted in larger sample cohorts that provide comparability

with clinical follow-up data. These studies will relate functional data and protein profiles
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of PDM to clinical response to treatment in individual, matched patients. Ultimately, the
goal is the integration of these data with other omics data to develop an automated
prediction model of treatment response for precision oncology (Figure 5). The main
challenges will be the tumor complexity, the interpretation, and the integration of the

generated data, especially when complemented by genomic data.
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Figure 5. Overview of precision oncology. Shown is the pipeline for personalized cancer care,
starting with patient sample collection, histopathology, and generation of patient-derived tumor
models for multiomic analysis and drug validation. This is followed by clinical validation of novel
therapies, patient treatment and monitoring of cancer patients.
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Simple Summary: For personalized oncology, it is crucial to develop appropriate patient-derived
tumor models that allow individualized validation of the most effective cancer therapy. The objective
of this study was to develop and characterize a new patient-derived ovarian cancer tumor model
composed of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes
(TIL). In contrast to other preclinical tumor models, such as patient-derived organoids, PDM are
generated within 24 h from fresh ovarian tumor samples. From immunohistochemical comparison
with the original primary tumor, we conclude that the histopathological features of the original tumor
are essentially preserved. Importantly, we successfully identified treatment-sensitive and treatment-
resistant tumor models for standard platinum-based therapy by reverse-phase protein array (RPPA)
analysis of PDM. Furthermore, we were able to evaluate the efficacy of cancer immunotherapy by
co-culturing PDM and autologous TILs. PDM and TILs may therefore serve as a preclinical platform
to identify individualized, tailored cancer treatments in the future.

Abstract: In light of the frequent development of therapeutic resistance in cancer treatment, there
is a strong need for personalized model systems representing patient tumor heterogeneity, while
enabling parallel drug testing and identification of appropriate treatment responses in individual
patients. Using ovarian cancer as a prime example of a heterogeneous tumor disease, we developed
a 3D preclinical tumor model comprised of patient-derived microtumors (PDM) and autologous
tumor-infiltrating lymphocytes (TILs) to identify individual treatment vulnerabilities and validate
chemo-, immuno- and targeted therapy efficacies. Enzymatic digestion of primary ovarian cancer
tissue and cultivation in defined serum-free media allowed rapid and efficient recovery of PDM, while
preserving histopathological features of corresponding patient tumor tissue. Reverse-phase protein
array (RPPA)-analyses of >110 total and phospho-proteins enabled the identification of patient-
specific sensitivities to standard, platinum-based therapy and thereby the prediction of potential
treatment-responders. Co-cultures of PDM and autologous TILs for individual efficacy testing of
immune checkpoint inhibitor treatment demonstrated patient-specific enhancement of cytotoxic
TIL activity by this therapeutic approach. Combining protein pathway analysis and drug efficacy
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testing of PDM enables drug mode-of-action analyses and therapeutic sensitivity prediction within a
clinically relevant time frame after surgery. Follow-up studies in larger cohorts are currently under
way to further evaluate the applicability of this platform to support clinical decision making.

Keywords: patient-derived tumor model; ovarian cancer; anti-cancer drug sensitivity; RPPA protein
profiling; cancer immunotherapy

1. Introduction

In the context of personalized medicine, patient-derived model systems are expected
to play an important role in order to identify suitable and effective therapies for the indi-
vidual patient as well as existing therapeutic resistances of the patient’s tumor. Especially
for cancer types with dismal treatment success rates such as ovarian cancer (OvCa), these
model systems will be valuable for future cancer therapy. OvCa is among the most lethal
gynecological diseases in women, with >185,000 deaths worldwide in 2018 [1]. Late diag-
nosis and disease complexity characterized by strong molecular and genetic heterogeneity
are causative for its poor survival rates and varying treatment response to first-line ther-
apy. Substantial efforts have been made to resolve the complexity of OvCa, especially for
high-grade serous carcinomas (HGSC) [2-4]. Despite the application of genomics and tran-
scriptomics in elucidating disease determinants, the principles of responsiveness to therapy
are still poorly understood [4]. The establishment of patient-derived tumor organoids
(PDO) allowed addressing a number of these challenges for example by in-depth genetic
and phenotypic tumor characterization and analysis of intra-tumoral heterogeneity in
PDOs side-by-side with corresponding tumor tissue [5-8]. Even though recent studies
have described the combination of PDO cultures with components of the tumor microenvi-
ronment including fibroblasts, endothelial cells and immune cells [9], PDOs do not fully
reflect the original composition of primary tumor tissue in terms of extracellular matrix,
tumor-associated fibroblasts, tumor-infiltrating lymphocytes (TILs), macrophages (TAMs),
and tumor endothelial cells. Another challenge of current PDO models in terms of ap-
plicability for individualized drug response testing relates to the required establishment
time of 1-3 months with a corresponding impact on the timeframe to obtain drug testing
results [10]. Using OvCa as a prime model of a heterogeneous tumor disease, we intro-
duce a three-dimensional (3D) preclinical ex vivo model composed of patient-derived
microtumors (PDM) as well as autologous tumor-infiltrating lymphocytes (TILs) extracted
from primary OvCa tissue specimen in a clinically relevant time-frame. Importantly, PDM
recapitulate a 3D histo-architecture with retained cell-cell contacts and native intra-tumoral
heterogeneity featuring the corresponding primary tumor microenvironment (including
extracellular matrix proteins, stromal fibroblasts and immune cells). In combination with
functional compound efficacy testing and multiplexed TILs phenotyping, we demonstrate
the correlation of individual OvCa PDM responses to chemotherapeutic as well as im-
munotherapeutic treatment approaches using OvCa PDM alone and in co-culture with
autologous TILs, respectively. We apply reverse-phase protein array (RPPA) analysis to
map protein-signaling pathways of PDM and to measure on- and off-target drug effects
in compound treated PDM. Albeit based on a small patient cohort the available clinical
follow-up data suggests a correlation of obtained treatment responses in OvCa PDM mod-
els and corresponding patients indicating prolonged metastasis-free survival of identified
carboplatin responders as compared to non-responders.

Based on the data presented here, we envision that our preclinical assay system
combining PDM, autologous TILs and protein signaling pathway profiling could aid
clinical decision making in the future and assist in the pre-selection of a personalized
clinical treatment strategy for OvCa.
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2. Materials and Methods
2.1. Human Specimens

Ovarian tumor samples were obtained from nineteen patients diagnosed with ovar-
ian cancer undergoing surgery at the Center for Women’s Health, University Hospital
Tuebingen. Written informed consent was obtained from all participants. The tumors
were classified according to International Federation of Gynecology and Obstetrics (FIGO)
grading system. Tumor samples were delivered on the day of operation. The research
project was approved by the ethics committee (IRB#275/2017BO2 and IRB#788/2018B0O2).

2.2. Isolation and Cultivation of Patient-Derived Microtumors and Tumor-Infiltrating Lymphocytes

The procedure was adapted from Kondo et al. (2011) [11] and modified as follows. Tu-
mor specimens were washed in HBSS (Gibco, Thermo Fisher Scientific, Waltham, MA, USA),
minced with forceps, and digested with LiberaseTM DH [12] for 2 h at 37 °C. Digested
tissue was centrifuged (300 g, 5 min), washed with HBSS and filtered through a stainless
500 pm steel mesh (VWR). The flow-through was again filtered through a 40 um cell strainer
(Corning, Corning, NY, USA). The filtrate containing the TIL fraction was resuspended
in Advanced RPMI 1640 (Gibco) supplemented with 2 mM Glutamine (Gibco), 1% MEM
Vitamins (Gibco), 5% human serum (Sigma-Aldrich, St. Louis, MO, USA) and 100 pg/mL
primocin (Invivogen, San Diego, CA, USA). IL-2 (100 U/mL), IL-7 (10 U/mL) and IL-15
(23.8 U/mL) (Peprotech , East Windsor, NJ, USA) were freshly added to culture media.
For expansion, CD3/CD28 dynabeads were added (Milteny Biotech, Auburn, CA, USA).
PDM, held back by cell strainer, were washed in HBSS and cultured in suspension in
StemPro® hESC SFM (Gibco) supplemented with 8 ng/mL FGF-basic (Gibco), 0.1 mM
(3-mercaptoethanol (Gibco), 1.8% BSA (Gibco) and 100 pg/mL primocin (Invivogen) within
cell-repellent culture dish (60 x 15 mm) (Corning).

2.3. RPPA and Protein Data Analysis

Detailed methods of sample preparation and RPPA processing are provided in SI
Materials. RPPA protein analysis and protein data processing was applied as reported
before [13-16]. From the arrays, PDM sample signals were extracted as protein-normalized,
background-corrected mean fluorescence intensity (NFI), as measured from two technical
sample replicates. NFI signals, median-centered for each protein over all measured samples
(including OvCa PDM and BC PDM samples) and log, transformed, reflect a measure
for relative protein abundance. Small NFI protein signals at around blank assay level
(0.02 NFI) were as a limiting quality criterion excluded from further analysis; otherwise, all
NFI signals were used for further protein data analysis. Protein heat maps were generated
and cluster analysis (HCL) performed using the freely available MultiExperiment Viewer
(MeV) software. For the comparison of protein profiles of treatment responders and
non-responders (defined by functional compound testing), only proteins with a >20%
difference between the means were used for analysis. On- and off-target pathway effects
were evaluated from one biological and two technical replicate samples per model at three
different treatment times (0.5, 4 and 72 h). Treated sample to respective DMSO vehicle
control NFI ratios (TR) were calculated for each treatment condition and log,-transformed.
A treatment-specific threshold of protein change (carboplatin: minimum 50% difference)
was set. Only proteins showing treatment effects above the threshold were shown.

2.4. Efficacy of Compounds Validated in PDM Cultures

Efficacy of compounds was validated by applying the real-time CellTox™ Green Cyto-
toxicity assay (Promega). Assays were performed according to manufacturer’s protocol.
PDM were cultured a maximum of 1-2 weeks in PDM culture medium prior testing. Per
treatment, three to eight replicates were performed using # = 15 PDM per replicate in a
total volume of 150 pL phenol-red free PDM culture medium. Cell death was measured as
relative fluorescent unit (RFU) (485-500 nm Excitation/520-530 nm Emission), relative to
the number of dead, permeable cells after 24 h, 48 h and 72 h with the Envision Multilabel
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Plate Reader 2102 and Tecan Spark Multimode Plate Reader. RFU values were normalized
to DMSO control according to used drug solvent. Treatment effects were measured as fold
change (FC) compared to control. Differences between treated PDM and untreated PDM
were calculated as fold change values separately for each time point. Statistical significance
was evaluated by two-way ANOVA multiple comparison test. Outliers were identified
with the Iglewicz and Hoaglin’s robust test for multiple outliers applying a recommended
Z-score of >3.5[17].

2.5. FACS Analysis

To characterize lymphocyte populations within autologous TIL, cells were harvested
(up to 1 x 10° cells/staining depending on available number of cells), washed 2 x with PBS
(200 rpm, 5 min at 4 °C), resuspended in staining buffer (PBS plus 10% FBS) and plated
in a 96-well V-bottom plate (100 uL/well) (Corning). To verify >90% cell viability, cells
were counted with a Nucleocounter (Chemotec) before plating. For each panel staining,
an unstained control and, if necessary, a FMO control were prepared. For extracellular
staining, cells were incubated with antibodies (see SI Materials) for 30 min at 4 °C in the
dark. For subsequent intracellular staining, cells were washed 2-3 times (200 rpm, 5 min at
4 °C) in eBioscience™ Permeabilization buffer (250 puL/well) (Invitrogen) and resuspended
in eBioscience™ Fixation/Permeabilization solution (Invitrogen) for 20 min at 4 °C. After
2-3 washing steps (200 rpm, 5 min at 4 °C), cells were incubated with antibodies (30 min,
4 °C in dark) (see SI Materials). After the staining process, cells were washed 2-3 times and
analyzed with a BD FACS Melody machine (BD Biosciences, Franklin Lakes, NJ, USA).

2.6. Co-Culture of PDM and Autologous TILs

To measure if the expanded, autologous TILs are able to kill corresponding PDM, we
performed endpoint killing assays in a 96-well format with an image-based analysis using
Imaris 8.0 software. First, PDM were pretreated with IFINvy (200 ng/mL) for 24 h to stimu-
late antigen presentation. In parallel, 96-well plates were coated with 5 g/mL of anti-CD28
antibody (Biolegend) o/n at 4 °C to provide a co-stimulatory signal during co-culture. On
the next day, coated plates were washed 3x with PBS. PDM were washed in HBSS, cen-
trifuged and resuspended in co-culture assay media consisting of RPMI 1640 phenol red free
(GIBCO) supplemented with 2 mM Glutamin (Gibco), 5% human serum (Sigma-Aldrich,
St. Louis, MO, USA), 1x MEM Vitamins (Gibco) and 100 pg/mL Primocin (Invivogen).
Prior to assembling the co-culture, TILs were labeled with CellTracker™ Deep Red Dye
(Thermo Fisher Scientific, Waltham, MA, USA) to differentiate between PDM and TILs.
Labeled TILs were then co-cultured with PDM and in the presence of selected checkpoint
immune inhibitors (CPIs: Pembrolizumab, Atezolizumab, Ipilimumab; Selleck Chemicals
GmbH) or control anti-IgG4 antibody with an E:T ratio of 4:1. Thereby we counted 200 cells
per single PDM. Per condition, we prepared triplicates each with 15 PDM and 12,000 TILs
per well. After 92 h, cells were incubated with a staining solution consisting of live cell
stain Calcein-AM (Thermo Fisher Scientific) and Sytox™ Orange dead cell stain (Thermo
Fisher Scientific). After 1 h, Z-stacks of n = 3 PDM per well were imaged using a spinning
disk microscope (ZEISS CellObserver Z1). Only viable PDM were positively stained by
Calcein-AM, while all dead cells were stained by Sytox™ Orange. TILs were filtered by
CellTracker™ Deep Red signal. Using the Imaris 8.0 software, we applied three masks, one
for dead cells, one for dead TILs and one for live PDMs. For each mask, the total sum of all
fluorescent intensities (FI) was calculated and the following ratio determined:

total dead [FI| — dead TIL [FI]

% ratio dead vs. viable PDM [FI| = viable PDM [FT]

)

2.7. Statistical Analysis

Statistical analysis was performed using GraphPad Prism. For Boxplot data, whiskers
represent quartiles with minimum and maximum values and the median. Datasets with no
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clear normal distribution were analyzed with unpaired, two-tailed Mann-Whitney-U-test,
otherwise as indicated. Correlation data were evaluated by Spearman’s rank correlation.
For all analyses, p values < 0.05 were considered statistically significant. Recommended
post hoc tests were applied for multiple comparisons.

3. Results
3.1. Isolation of Patient-Derived Microtumors with High Viability from Primary OvCa Tissue
Specimen by Limited Enzymatic Digestion

Residual fresh tumor tissue samples were collected from n = 16 OvCa patients under-
going primary tumor debulking surgery. The PDM and TIL isolation procedure (further
developed from Kondo et al. 2011) [11] was performed on freshly excised tumor tissue
specimen (Scheme 1).

patient-derived
microtumor

-

.

>4

surgical tumor mechanic enzymatic digestion 2x filtration
resection shredding (collagenase I+l], dispase) (500pm and 40pm strainer)

autologous tumor
infiltrating lymphocytes

Scheme 1. PDM and TIL isolation from OvCa tumor samples within 3 h after receipt of the tumor
sample. Tumor tissue derived from surgical tumor resection is kept in culture media for transportation.
Immediately after receipt of the sample, the tissue is mechanically disrupted into smaller pieces
and enzymatically digested for 2 h. Afterwards, the digested tissue gets filtered twice using cell
strainers. Within the first filtrate, tumor-infiltrating lymphocytes are obtained and are ready for
culturing or cryopreservation. From the residue of the second strainer, PDMs are gained and are
ready for culturing or cryopreservation. (Created with Biorender.com).

Available anonymized clinico-pathological characteristics including International Fed-
eration of Gynecology and Obstetrics (FIGO) staging and pathological TNM-classification
of respective individuals are summarized in Table 1. Overall, 2/19 patients (OvCa #4 and
OvCa #18) received neoadjuvant treatment with carboplatin/paclitaxel chemotherapy. The
majority of included samples (1 = 15) were derived from the most common type of OvCa,
i.e., epithelial OvCa, with a majority of high-grade serous carcinomas (HGSC). One sample
was classified as sex cord—stromal ovarian carcinoma that is either non-malignant or at a
low stage.
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Table 1. Clinical patient data from OvCa tumor specimen included into the study with successful PDM isolation and/or TIL expansion.

Sample  Ageat Histopathological Isolated Expanded

Cellular Origin Grade FIGO Stage T N M L \' Pn R

OvCa#  Surgery Classification PDM TIL
#1 53 HGSC epithelial HG 11 pT3c (liver/splenic capsule) pNla (2/14) Mx L1 V1 Pnl  Rx yes yes
#3 88 HGSC epithelial HG 1B pT2b (peritoneum douglas) Nx Mx Lo Vo Pn0 Rx yes yes
#4 54 HGSC epithelial HG/ G3 e ypT3c ypNO Mx LO Vo Pn0  Rx yes yes
#5 59 HGSC epithelial HG/ G3 1Ic pT3c pN1la (2/18) Mx LO Vo Pn0  Rx no yes
#7 67 HGSC epithelial/peritoneal HG IVa Tx Nx Mx Lx Vx Pnx  Rx yes yes
#8 44 MC epithelial LG Ia Tla Nx Mx Lx Vx Pnx  Rx yes no

#13 71 LGSC epithelial LG/G2 mcC pT3c pNO Mx LO Vo Pn0  Rx yes yes
#17 62 HGSC epithelial HG i@ pT3c pNO Mx L1 Vo Pn0  Rx yes yes
#18 61 HGSC epithelial HG/ G3 1IIC ypT3c ypNO cMO L0 Vo Pnx RO yes yes
#19 60 HGSC epithelial HG/ G3 1IB pT3b pNO MO0 LO Vo Pn0 RO yes no
#20 66 HGSC epithelial HG IVa pT3c (pleural effusion) pNla pMla LO VO Pn0 Rx no yes
#21 74 adult-type GCT sex cord-stromal - IA pTla PNx MO0 LO Vo Pn0 RO yes no
#23 71 HGSC epithelial HG/ G3 mc pT3c (Omentum metastasis) pNla pMx L1 Vo Pn0  Rx yes yes
#24 73 HGSC epithelial HG (@ pT3c pN1b (58/75) Mx L1 Vo Pnx RO yes yes
#25 54 HGSC epithelial HG IIA pT2a (tube) pNO MO0 Lo Vo Pn0  cRO yes yes
#26 67 HGSC epithelial HG/ G3 Ic pT3c PNx Mx L1 Vo Pn0  cRO yes yes

GCT, granulosa cell tumor; HGSC, high grade serous carcinoma; LGSC, low grade serous carcinoma; MC: mucinous carcinoma T: extent (size) of the tumor; N: spread to nearby lymph
nodes; M: spread to distant sites; L, lymphatic invasion; V, venous invasion; Pn, perineural invasion; R, residual tumor; p, pathological state; c, clinical stage; y, restaged after neoadjuvant
therapy; x, not assessed.
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Isolation of PDM was successful in 87.5% (14/16) of the tumor samples (Figure 1A)
with varying amounts of available PDM for downstream analyses such as live-dead
staining, immunohistochemical characterization, protein signaling pathway analyses and
efficacy drug testing of standard-of-care therapy as well as immunotherapy. PDMs were
cultured in suspension in the absence of serum for a maximum of three weeks. No cor-
relation was observed between successful isolation of PDM and available clinical patient
data such as age, lymph node spread, distant cancer spread, perineural invasion or FIGO
stage (Table S1). PDM viability was assessed by parallel staining with Calcein-AM and
SYTOX™ Orange (Figure 1B). The 2D projections of 3D images displayed highly viable
PDM with few dead cells. Dead PDM cells (according to nuclear SYTOX™ Orange staining)
detached from PDM and thus observed mostly as single cells floating in the culture media.
The quantification of the viable cell volume and dead cell volume in 3D projections of four
exemplary OvCa PDM models are shown in Figure 1C. In each analyzed model, <7% of
the total PDM cell mass represented dead cells confirming robust PDM viability.

A B
Total n =16
OvCa samples

OvCa #1 OvCa #3

n=2
(12.5%)

n=14
(87.5%)

mm successful isolation
B unsuccsessful isolation

c *okk

n=3 n=7 n=4 n=7
100+
80
60

NP ,&1} a° Bl dead
4(’0 Ac;b SN
o o o

cell volume
8

Percentage (%) of viable/dead

Figure 1. Patient-derived 3D microtumors (PDM) derived from primary OvCa tumor specimen show
high viability. (A) Efficiency of isolating OvCa PDM from a total of # = 16 fresh primary OvCa tumor
tissues samples. PDM were successfully isolated from n = 14 specimen with a success rate of 87.5%.
(B) Viability of OvCa PDM models. Exemplary 2D images from 3D projections of n = 4 OvCa PDM
models confirm high viability according to Calcein-AM (viable cells) and SYTOX™ Orange (dead
cells) staining. (C) Percentage of viable and dead cells in OvCa PDM. Viability was assessed by an
image-based analysis (see SI Methods) in # = 4 OvCa PDM models shown in (B). Data are shown as
mean values with SEM from at least n = 3 PDM of each model. *** p < 0.001, multiple paired ¢-test
with Holm-Sidék’s post hoc test. Scale bar 50 um.

3.2. OvCa PDM Sections Display Histopathological Characteristics Comparable to the
Corresponding Primary Tumor Tissue (PTT)

We next performed Hematoxylin and Eosin staining (H&E) of FFPE- and cryo-sections,
respectively, derived from OvCa PDM and corresponding primary tumor tissue sections
(PTT) for histopathological comparison. Professional assessment of PDM by a certified
pathologist, confirmed the presence of typical, distinct histopathological characteristics of
OvCa in respective PDM (Figures 2 and S1). HGSC derived PDM reflected architectural
patterns such as papillary growth, irregular branching, cystic and glandular structures
(Figure 2 OvCa #17-23; Figure S1, OvCa #24, 26) comparable to the corresponding PTT
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specimen. Pleomorphic nuclei/ cells, high nucleus:cytoplasm ratio as well as hyperchro-
masia were similar in PDM and corresponding PTT sections reflecting the high-grade of
analyzed HGSC tumors. These tumor features were not detected within OvCa PDM #8
(Figure S1), which originated from low-grade mucosal OvCa known for slow tumor growth.
Instead, OvCa #8 PDM displayed a unicellular epithelium and mostly stromal remains. In
summary, histopathological analyses of PDM confirmed structural and cellular similarities

to the corresponding primary tumor specimen and the conservation of typical histological
features of ovarian carcinomas.

A OvCa#i7 OvCa #18 OvCa #23
PTT PDM PTT PDM PTT PDM

CA125

c

]

o
i)
©
Qo

FAPa

Figure 2. Cont.
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Figure 2. OvCa PDM show histopathological features comparable to corresponding primary tu-
mor tissue. (A) Hematoxylin and Eosin (H&E) as well as immunohistochemical DAB staining of
OvCa PDM (FPPE, 3 um) and corresponding primary tumor tissue (PTT) (Cryosections, 4-6 um)
sections. H&E stainings revealed features of malignant cells (including giant cells with more than
one nucleolus, hyperchromatic cells with dark nuclei and high nuclei:cytoplasma ratio) confirming
the cancerous origin. Expression of OvCa histotype specific markers (p53, WT1), tumor markers
(CA125, MSLN), tumor-associated macrophages (CD163), immune/tumor marker (PD-L1), cancer-
associated fibroblasts (FAPx) and extracellular matrix components (Hyaloronan C1QBP, Collagen
I) is shown. Scale bars indicate 500 um for PTT; 50 um for PDM; 20 um for magnifications (PTT
and PDM). (B) Quantification of IHC stainings for indicated markers within OvCa #17, #18 and #23
PDM and corresponding PTT sections. Shown is the %Area Fraction of positive DAB-stain. For PTT,
a minimum of 3 representative regions of interest from tumor areas were used for quantification.
*p<0.1,*p<0.01,**p <0.001, Two-way ANOVA analysis with Sidak’s multiple comparisons test
(e = 0.05). FAP«, cancer-associated fibroblast protein alpha; C1QBP, hyaluronan binding protein;
WT1, wilms tumor 1; MSNL, mesothelin.

3.3. Immunohistochemical Staining of PDM Identifies Expression of Histopathological OvCa
Markers and Patterns of Extracellular Matrix and Tumour Microenvironment Components
Comparable to Corresponding Primary Tumour Tissue Sections

For further characterization of histological similarities and differences between OvCa
PDM and corresponding PTT, the expression of histotype specific markers together with
tumor cell-, extracellular matrix- and immune cell-markers were assessed by immunobhis-
tochemistry. The degree of marker-specific staining patterns in obtained images of PDM
and PTT sections was quantified by image-based analysis (Figures 2 and S1). In the clinics,
immunohistochemical staining of p53 and Wilms Tumor 1 (WT1) is applied for differen-
tial diagnosis of HGSCs [18]. These two markers are the only ones examined in routine
histopathology. In-depth histopathological assessment by a certified pathologist revealed
that the HGSC phenotype of the original tumor persists in the corresponding PDM (see
above). In line with this, expression of WT1/p53 in PDM corresponded well with either
low-to-moderate (OvCa #17, #18 and #25) or strong expression (OvCa #23, #24 and #26)
in respective PTT sections (Figures 2 and S1). Except for OvCa #24, where PDM showed
significantly pronounced p53 staining as compared to corresponding PTT, image-based
analysis did not show significant differences between PDM and PTT for WT1.

Mesothelin (MSLN) and CA125 (MUC16) were investigated as additional OvCa markers.

Mesothelin, known to be over-expressed on the cell surface in OvCa [19-21], was found
to be differentially expressed in four out of seven analyzed PDM models as compared to
corresponding PTT sections, with OvCa PDM #17 and #18 displaying higher and OvCa
PDM #23 and #26 showing lower MSLN expression as compared to respective PTT sections
(Figures 2B and S1B).
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For CA125, no significant difference in expression between PDM and PTT sections
of the OvCa models studied here was observed. CA125 expression has previously been
described as an immunohistochemical marker to confirm ovarian origin of the tumor [22].
As shown before [23,24], expression of CA125 in OvCa sections can vary within one type
and between the different OvCa tumor types. Accordingly, PTT sections derived from
non-HGSC displayed no CA125 expression (OvCa #8) in contrast to HGSC-derived tumor
sections (OvCa #18 and #24). CA125 expression was low or not detectable within the
other PDM models studied here. As the tumor microenvironment is known to play a
major role in tumor progression and metastasis [25-27], we analyzed the presence of
extracellular matrix (ECM) and stromal components in OvCa PDM and corresponding
PTT. Sections were stained for FAP« (Fibroblast associated protein alpha), a marker of
cancer-associated fibroblasts (CAFs). FAPo expression in tumor stroma is observed in 90%
of human cancers of epithelial origin and has been described to induce tumor progression
and chemoresistance [28]. FAP« expression was detectable in 7 out of 11 OvCa PDM
models studied. The observed FAP« staining pattern did not significantly differ between
PDM and corresponding PTT sections from 5 of 7 OvCa models analyzed in our study
(Figures 2 and S1). OvCa PDM #17 displayed a significantly higher expression of FAP«x
as compared to the corresponding PTT sections. In contrast, for OvCa PDM #25 a lower
degree of FAP« expression compared to respective PTT sections was observed.

Expression of the ECM component Collagen I, known to promote invasiveness and
tumor progression in epithelial OvCa [29], was also prominent within OvCa PDM. Except
for OvCa #18, #23 and #25, where a lower expression of Collagen I was observed in PDM
as compared to corresponding PTT, the observed Collagen I staining pattern in PDM did
not significantly differ from respective PTT sections.

In addition, we observed a correlation of the expression of another ECM component
(Hyaluronan Binding Protein 1 (C1QBP)) in PDM and corresponding PTT for the majority
of analyzed samples except for OvCa #25, where PDM expressed significantly lower levels
of this marker as compared to respective PTT sections (Figures 2 and S1). C1QBP is known
to interact with the major ECM component hyaluronan [30].

In summary, the analyzed stromal and ECM components were found to be expressed
in the majority of generated OvCa PDM models. In most cases, the observed expres-
sion pattern of respective markers in PDM did not significantly differ from expression in
corresponding PTT sections.

To further examine tumor microenvironment (TME) components of PDM, we studied
the infiltration with tumor-associated macrophages (TAMs) via CD163 expression together
with the expression of the inhibitory checkpoint receptor ligand PD-L1. IHC analyses
rarely detected M2-like TAMs (CD163+) within PTT and PDM sections and if so, mostly
in stromal tissue parts of PTT. While macrophages were abundant in OvCa #24 PTT,
they were not detected in the corresponding PDM (Figure S1). In contrast, for OvCa
#17, CD163+ TAMs were detected in both PDM and PTT sections (Figure 2). Immune
checkpoint receptor ligands are known to be expressed on tumor and/or immune cells of
the tumor microenvironment. Here, PD-L1 expression was mostly absent in OvCa PTT and
corresponding PDM sections.

In conclusion, parallel immunohistochemical staining of OvCa PDM and correspond-
ing PTT sections showed their comparability for the majority of samples with PDM re-
garding features of the original tumor including presence of ECM and TME components
together with expression of p53 and WT1 as markers important for the histopathological
assessment of OvCa. In comparison with corresponding PTT sections, pure stromal areas
were mostly absent from stained PDM sections, which might explain abovementioned dif-
ferences in marker expression observed between PDM and corresponding PTT with regard
to immune cell infiltration and degree of expression of stromal components. Moreover, in
PTT, expression of CA125 and MSLN appeared to be mostly restricted to tumor cells at the
margin of the stroma, which are less detectable within PDM.
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3.4. Protein Signaling Pathway Profiling of OvCa PDM by RPPA

After initial immunohistochemical characterization of the 3D OvCa PDM that con-
firmed the presence of TME components in PDM similar to corresponding PTT, we per-
formed an in-depth examination of the heterogeneity and molecular composition of dif-
ferent OvCa PDM models by generating signaling pathway protein profiles using RPPA.
Protein abundances of 116 different proteins (including total and post-translationally modi-
fied forms) were measured in OvCa PDM samples each with a sample size of n = 100-150
per individual PDM (Figure 3A). One further PDM sample derived from human BC (breast
cancer) was included to scale up the protein sample data and for comparison as both
cancer types are known to share molecular and microenvironmental similarities (26, 30).
Obtained protein-normalized, background-corrected mean fluorescence intensity (INFI)
signals were median-centered to all samples (1 = 8) and log, transformed. Protein profiles
of PDM samples covered signaling pathways such as for cell cycle, DNA damage response,
apoptosis, chromatin regulation, MAPK/RTK, PI3K/AKT with mTOR, Wnt and NFkB, as
well as OvCa tumor/stem cell markers. By hierarchical clustering (HCL), PDM samples
were grouped according to their similarities in relative protein signal intensity (Figure 3A).
Data analysis revealed three clusters: (1) OvCa #21 (OvCa granulosa cell tumor) and #23
(HGSC), with the most distinct protein profiles as compared to the other PDM analyzed;
(2) OvCa #19 (HGSC) and the BC PDM shared more similarities than OvCa #19 with the
other OvCa PDM models; (3). The remaining PDM samples resembled the third cluster
with the most similar protein expression profiles containing exclusively HGSC models.
Long distances of the sample dendrogram further underlines the proteomic heterogeneity
of similar histopathological OvCa tumor types.

To compare protein abundances within different signaling pathways as well as of tu-
mor/stem cell markers, proteins with impact on pathway activity were sorted according to
their pathway affiliation (Figure 3B, Table S2). Significant differences between PDM models
were observed for the cell cycle pathway and the MAPK/RTK pathway. Highest cell cycle
activity was found in OvCa #17 and #24 with almost 50% higher median NFI signals com-
pared to OvCa #21 with the lowest median signals (median NFI = —0.33 log,) resembling
a different histopathological tumor type compared to the other PDM models analyzed.
MAPK/RTK pathway signaling was increased in OvCa #21 (median NFI = 0.38 log,), #23
(median NFI= 0.32 logy), #24 (median NFI = 0.31 log,) and #17 (median NFI = 0.30 log).
The BC PDM model was characterized by decreased median NFI signals of MAPK/RTK
proteins (median NFI = —0.47 logy). Proteins related to PI3K/AKT pathway and of associ-
ated pathways were more abundant in OvCa #17 and #24. The mTOR pathway levels were
elevated in OvCa #24 (median NFI = 0.54 log) in other OvCa PDM this pathway showed
comparable activity. Median NFI signals from apoptosis-related proteins were significantly
different between OvCa #25 (median NFI = 0.75 log,) and BC PDM (median NFI= 1.41 log>).
OvCa tumor/stem cell marker protein abundance was significantly upregulated in both
OvCa #17 and #23 compared to BC PDM. Thus, RPPA protein profiling analysis demon-
strated the heterogeneous activity of several signaling pathways within different OvCa
PDM. Apoptosis-related proteins and OvCa tumor/stem cell marker proteins indicated the
strongest differences between OvCa PDM models and the BC PDM model.
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Figure 3. RPPA protein profiling of OvCa PDM identifies significant differences in active protein
signaling pathways as molecular basis for OvCa PDM drug treatment responses. (A) Protein heat map
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covering 116 analytes analyzed in OvCa PDM (n = 7) and BC PDM (n = 1) generated from sample
sizes of n = 100-150 PDM. Protein abundances for each analyte are displayed as median-centered,
log,-transformed NFI signals. Samples were subjected to hierarchical clustering using Euclidean
distance (complete linkage). (B) Activation state of different pathways in the different OvCa PDM
models. Proteins related to an “active” pathway were selected for each of the plotted pathways (see
Table S4). Protein signals are shown as median-centered, log, transformed NFI signals. Dotted lines
indicate log, values of +0.6 (fold change of +1.5) and —1 log, (fold change of —0.5). Data are shown
as box and whiskers plots with minimum and maximum range. * p < 0.05, ** p < 0.01, *** p < 0.001,
Kruskal-Wallis test with Dunn’s post hoc test. (C) Cytotoxicity measurement of OvCa PDM treated
with standard platinum-based chemotherapy (carbo 75-125 uM) and/or targeted therapy (selum
100-200 nM, palbo 100-200 nM, sara 1-2 uM). Four replicates per treatment with n = 15 PDM per
well were performed and measured after 24 h, 48 h and 72 h. Signals were measured as RFU
(Relative Fluorescent Unit), background corrected and normalized to vehicle control (DMSO). In case
of palbociclib to H,O control. Data are shown as mean values. Statistical significances compared to
vehicle control or HyO are shown. * p < 0.05, ** p < 0.01, *** p < 0.001, Two-way ANOVA with Dunnett’s
multiple comparison test. Carbo: carboplatin; Selum: selumetinib; Palbo: palbociclib; Sara: saracatenib.

3.5. Heterogeneous Treatment Responses towards Chemo- and Targeted Therapy Assessed by
Functional Compound Testing in OvCa PDM

Studies of targeted therapies in OvCa are often limited to clinical phase I and II or
even cell-line-based preclinical studies [31-33], as treatment efficacies are heterogeneous
and mostly not beneficial compared to standard chemotherapy. However, targeting spe-
cific signaling pathways could demonstrate a treatment alternative for individual OvCa
patients either as first-line or recurrent cancer therapy. As we have discovered that protein
abundances differed the most in the cell cycle and MAPK/RTK pathway in OvCa PDM
(Figure 3A,B), we investigated efficacy of targeted inhibition of these pathways with the
CDK4/6 inhibitor palbociclib, the MEK1/2 inhibitor selumetinib, as well as the Src-inhibitor
saracatinib and compared these treatments to standard platinum-based chemotherapy
(Figure 3C). PDM were treated with respective drugs, each at three different concentrations,
chosen according to previously reported Cmax concentrations [34]. Treatment efficacy in
OvCa PDM—as measured by cytotoxicity—was heterogeneous among individual PDM
models, with some specifically responding to carboplatin and others to targeted therapy.
Carboplatin induced the most significant cytotoxic effects at the lowest dose (75 uM) at
longest duration t =72 h in OvCa #17 and #24 (Figure 3C). On the molecular level, RPPA pro-
tein profiling revealed significantly increased cell cycle activity in both models (Figure 3B),
which might be associated with the stronger carboplatin response observed in OvCa PDM
#17 and #24. Two additional PDM models were also carboplatin sensitive, but responded
to treatment at higher dose (OvCa #23, #25). Accordingly, both had shown intermediate cell
cycle activity in protein profiling analyses (Figure 3A,B). Selumetinib induced significant
cell death in OvCa #17, #19, #21 and #23 at a final concentration of 100-150 nM (Figure 3C).
The strongest effect was observed for OvCa #21, which displayed comparatively high
MAPK/RTK pathway activity (Figure 3B). Palbociclib, an inhibitor of G1-cell cycle progres-
sion, caused significant cytotoxicity in OvCa #26, which had shown moderate cell cycle
activity compared to the other models in RPPA protein analysis (Figure 3B). PDM models
with significantly higher cell cycle activity as measured by RPPA (OvCa #17, #24), did
not respond to palbociclib treatment. Inhibition of the Src-pathway by saracatinib caused
significant and dose-dependent killing effects in OvCa #26. Saracatinib triggered rapid
PDM death already after 24-48 h of treatment. In conclusion, functional compound testing
further confirmed the molecular heterogeneity of studied OvCa PDM models identified by
protein profiling. Interestingly, PDM models showing resistance to standard chemotherapy
with carboplatin were instead sensitive towards targeted therapeutic approaches.
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3.6. Correlation of Carboplatin Treatment Response and Activation State of Protein Signaling
Pathways

With a focus on platinum-based standard-of-care chemotherapy, we next related
the analyzed protein signaling pathways of untreated OvCa PDM to observed treatment
responses. Therefore, protein NFI signals of PDM were grouped into responder and non-
responder profiles according to significant carboplatin treatment effects from previously
shown functional compound testing (Figure 3C). Mean protein signals (NFI) with >20%
difference between responder and non-responder were plotted as a heat map, and signifi-
cant differences between pathway signaling were analyzed. Further, we examined the on-
and off-target pathway effects within different OvCa PDM models by RPPA to assess drug
mode-of-action. For this aim, OvCa PDM were treated at one compound concentration
and compared to vehicle (DMSO) control. Treatment-to-control signal ratios (TR) were
determined from protein NFI signals of treated PDM samples and DMSO vehicle controls
at three different time points for each treatment: immediate (30 min), early (4 h) and late
(72 h). This enabled the exploration of fast and late treatment response based on changes of
protein abundances within a given time frame.

3.6.1. Carboplatin Treatment Sensitivity of OvCa PDM Correlates with High Protein
Abundance of G2-M Cell Cycle Proteins

HCL clustering of PDM protein NFI signals led to five clusters that distinguish carbo-
platin sensitive and resistant PDM models (Figure 4A). To analyze significant differences
related to activation or inactivation of signal transduction pathways, proteins from the HCL
clustering were sorted according to their pathway affiliation and according to upregulation
or downregulation in responder PDM models. Carboplatin-responder PDM models showed
significantly increased cell cycle activity (p < 0.001; Figure 4B) with upregulated protein abun-
dance observed for Aurora A kinase (mean NFI = 0.74 log,), CDK2 (mean NFI = 0.8 logy),
Cyclin Bl (mean NFI = 0.84 log;), PCNA (mean NFI = 0.84 log,), and acetylated Tubulin
(mean NFI = 0.1 logp) (Figure S2A), which are mostly related to “mitosis” (35, 36). Phospho-
Aurora A/B/C (Spearman’s r = 0.8827, p = 0.044), Cyclin Bl (Spearman’s r = 0.971, p = 0.011)
and PCNA (Spearman’s r = 0.8827, p = 0.044) significantly correlated with carboplatin
treatment sensitivity (Table S3), which was graded according to recorded significance lev-
els from “0-3” (“0”: p > 0.05; “1”: p < 0.05; “2”: p < 0.01; “3”: p < 0.001; Figure 3C). At the
same time, carboplatin non-responder PDM models showed higher abundance of CDK1
(mean NFI = 0.38 logy), phospho-CDK2 (mean NFI = 0.77 log,) and phospho-CDK4 (mean
NFI = 0.37 logp) (Figure S2B), which are more related to the G0/G1 cell cycle phase. In
addition, the apoptosis/DNA damage response pathway was significantly upregulated
in carboplatin-responder compared to non-responder PDM models (p = 0.021; Figure 4B),
especially with high abundance of cleaved caspase-8 and cleaved PARP (Figure S2A). Addi-
tional significant differences between carboplatin-responder and non-responder OvCa PDM
were detected within the RTK and the PI3K/AKT/NFkB signaling pathways (p < 0.001;
Figure 4B). These pathways were downregulated in the carboplatin non-responder group.
Higher EMT/tumor/CSC marker abundance was significantly associated with the carbo-
platin responder group (Figure 4B) including protein markers Mesothelin, Nanog, STAT1,
and E-Cadherin (Figure S2A). In contrast, there were few proteins found, which were down-
regulated in the carboplatin responder group. Collectively, this panel of down-regulated
proteins differed significantly compared to the carboplatin non-responder group (Figure 4B).
It contained early cell cycle markers, e.g., Aurora A and Cyclin B1, the mTOR pathway
effector phospho-S6RP, PDGFR and SNAIL. We further assessed metastasis-free-survival
(MFS) between the described carboplatin-responder (OvCa #17, #23-25) and non-responder
(OvCa #19, #26) PDM models (Table S4). Metastasis-free-survival (MFS) analyses of avail-
able clinical follow-up patient data revealed prolonged median MFS of 16.2 months in
carboplatin responder vs. versus 9.2 months in carboplatin non-responder models.

In summary, the activation state of different signaling pathways composed of proteins
with >20% difference in abundance, allowed us to significantly distinguish carboplatin-
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responder from non-responder OvCa PDM models. Importantly, these protein signaling
response profiles were well in line with results from functional compound efficacy testing
assays using those OvCa PDM models.
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Figure 4. Carboplatin drug response in OvCa PDM correlates with the activity of diverse signaling
pathways. (A) Heat map of protein abundances (calculated from median-centered NFI values) averaged
over carboplatin-responder (R) and non-responder (Non-R) OvCa PDM. Carboplatin responders and
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non-responders were grouped according to significant treatment effects from functional compound
testing (Figure 3C). Only proteins with >20% increased or decreased abundance between responder
and non-responder group were selected. Data was HCL clustered with Euclidean distance (aver-
age linkage). (B) Signaling pathway activation in carboplatin-responder vs. non-responder OvCa
PDM. Proteins were sorted according to their pathway affiliation and according to upregulation or
downregulation within responder group. * p < 0.05, ** p < 0.01, *** p < 0.001, Mann-Whitney-U-test.
(C) Proteomic on- and off-target pathway effects in carboplatin-treated (75 uM) OvCa #24 PDM
analyzed by RPPA. Treated PDM were analyzed from an immediate (0.5 h), an early (4 h) and a
late (72 h) treatment time. For each time point, protein values are displayed as log,-transformed
treatment-to-control signal ratios (TR) calculated from NFI signals of treated PDM and corresponding
vehicle control (DMSO). Only proteins with >50% differential protein abundance compared to vehicle
control were selected. Straight lines above plots indicate statistical significances compared to vehicle
control. *p < 0.05, ** p < 0.01, *** p < 0.001, One-way ANOVA using nonparametric Kruskal-Wallis
with Dunn’s ad hoc test.

3.6.2. Carboplatin Treatment Is Associated with Early Induction of Stress Response and
Late Apoptosis

Next, we sought to investigate the carboplatin drug mode-of-action within OvCa PDM.
Therefore, the carboplatin-responding OvCa PDM #24 was treated with carboplatin at a
concentration of 75 pM, which had significantly induced PDM cytotoxicity in this model (see
Figure 3C). Protein NFI signals were measured at three different time points and normalized
to vehicle control. Proteins revealing >50% difference in TR signals (Figure S3) were selected
to focus on the strongest changes in abundance. Cell cycle progression proteins (phospho-
CDK2, CDK1) and phospho-Histone H3 (Ser10), affecting chromatin condensation during
cell division, were downregulated quickly within 30 min (Figure 4C). After 4 h of treatment,
TR signals of phospho-Aurora A/B/C protein and Histone H3 was strongly increased
(Figure S3). Longer incubation with carboplatin (72 h) resulted in strong downregulation
of these proteins (Figure 4C). Diminished abundance of cell cycle proteins after 72 h of
carboplatin treatment differed significantly from vehicle control (p < 0.001) and from early
treatment (4 h; p < 0.001). While levels of cell cycle-related proteins decreased over time,
apoptotic markers such as cleaved caspases as well as acetylated p53 were elevated after
72 h (Figure S3). Induction of apoptosis-related proteins was already observed after 4 h of
treatment (Figure 4C) with increasing abundances of cleaved caspase-7 and acetylated p53
(Figure S3). Focusing on down-stream PI3K/AKT/mTOR/Wnt pathway regulation, the
abundances of mTOR effector proteins (S6RP, S6RP-phospho) were quickly upregulated
after immediate (0.5 h) carboplatin treatment (Figure S3), which is in line with previous re-
ports about transcriptional regulation of stress response by the mTOR pathway [35]. We also
observed additional elevation of mTOR pathway-related proteins after 4 h of carboplatin
treatment. Furthermore, overactive mTOR signaling might have resulted in increased p53 ac-
tivation through upregulated acetylated p53 levels (Figure S3) as described before [35]. The
PI3K/AKT/mTOR pathway was significantly upregulated within 4 h of carboplatin treat-
ment compared to vehicle control (p = 0.021; Figure 4C). Similar to proteins related to cell cy-
cle, this pathway was completely abrogated as compared to vehicle control after 72 h of treat-
ment (p < 0.001; Figure 4C). Changes in protein abundance differed significantly during all
three measured time points (0.5 h vs. 4 h: p = 0.003; 4 h vs. 72 h and 0.5 h vs.72 h: p < 0.001
Figure 4C). Pronounced, significant downregulation of MAPK/RTK pathway occurred after
72 h of treatment (p = 0.017; Figure 4C). The observed proteomic changes within MAPK/RTK-
related proteins over time were significant (0.5h vs. 4 h: p =0.009; 4 h vs. 72 h: p < 0.001;
Figure 4C). Thus, carboplatin treatment of OvCa #24 illustrated substantial and time-
dependent changes in TR signals. Short treatment with carboplatin apparently triggered
the induction of stress responses while longer treatment duration caused the induction
of apoptosis.
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3.7. Characterization of Tumor-Infiltrating Lymphocyte Populations from Primary OvCa Tissue Samples

Our established procedure of tissue processing and PDM isolation enabled us to
obtain single-cell suspensions containing tumor-infiltrating lymphocytes (TILs) from re-
spective OvCa tumor specimen. This allowed for expansion of these autologous TILs
in the presence of low-dosed cytokines and antigenic stimulation in order to investigate
immuno-phenotypes of respective patient samples. The immunogenicity of OvCa has
been demonstrated in prior studies and is confirmed by the frequent infiltration of ovarian
tumors with TILs [36-38]. As reported by Sato et al. (2005), different T cell populations
diversely influence tumor immunosurveillance in OvCa. High intraepithelial CD8* /CD4*
T cell ratios in patients were associated with improved survival as CD4* T cells executed
immunosuppressive functions. To determine the composition of the isolated immune cell
infiltrate within our sample cohort, we characterized the phenotype of autologous TIL
populations by multi-color flow cytometry (Figure S4A). Within isolated and expanded
OvCa TIL populations from different specimen, we found that the proportion of CD4+
TILs was 57.8% and significantly more abundant than CD8* TILs with 33.5% (p = 0.003 **;
Figure 5A, Table S5).

3.7.1. Isolated CD8* OvCa TILs Are Composed of Tumor-Specific CD39*, Stem-like
CD39~PD1* and Terminally Differentiated CD39*PD1* Populations

Within the isolated CD8" TIL populations, we identified different phenotypes ac-
cording to expression of the co-inhibitory receptors PD-1 and CTLA-4, the tumor-antigen
specificity marker CD39 and the activation marker CD137 (Figure 5A). To investigate the
activation status of CD8" TILs, cells were examined for co-expression of the co-stimulatory
receptor CD137 (4-1BB). CD137 is upregulated in activated T cells and has been suggested
to be a marker for antigen-activated T cells [39]. The mean percentage of CD8" CD137*
TILs was 3.1% and varied between 0-10% (Table S5), and >5% of the CD8" cytotoxic T-
cells (CTLs) from OvCa #1, #3 and #5 (Figure 5B) co-expressed CD137, indicating their
pre-exposure to tumor antigens. Expression of co-inhibitory receptors PD-1 and CTLA-4
on CD8* TILs did not differ significantly among analyzed TIL populations but tended
to higher PD-1 expression levels (mean 6.9% vs. 3.4%; Table S5). TILs from OvCa #3, #7
and #25 as well as #5, #13 and #26 were among those displaying an exhausted pheno-
type with >10% of CD8*PD-1* or CD8*CTLA-4" TILs (Figure 5B). Moreover, in recent
reports CD39 expression in CD8" TILs was described as a marker for tumor-antigen spe-
cific TILs that have undergone tumor-antigen-driven clonal expansion, exhibit resident
memory T cell-like phenotypes and express a variety of co-stimulatory and co-inhibitory
receptors [40—42]. Here, CD39* CTLs (mean 40.5%; range 4.4-96.8%, Table S5) were signifi-
cantly more abundant than CD39~ CTLs (mean 9.5%; range 0-48.3%, Table S5), so-called
‘bystander TILs’, known to recognize mostly viral antigens (43) (p < 0.001, Figure 5A).
The amount of CD39" TILs strongly correlated with the amount of CD8* TILs (Spearman
r = 0.88, Figure S4B; p < 0.001, Table S6) and conversely with the amount of CD4" TILs
(Spearman r = —0.80, Figure S4B; p = 0.002, Table S6). Thus, the abundance of CD4* and
CD8* TILs appeared to significantly determine the amount of CD39* CTLs. In addition,
CD39 expression was largely limited to CD8" TILs. As co-inhibitory receptors play a role in
T cell exhaustion and are important targets for immune checkpoint-inhibition, we analyzed
PD-1 and CTLA-4 expression on the tumor-specific CD39* CTL population. PD1*CD39*
were more frequent than CTLA-4* CD39" (15.7% vs. 5.4% Figure 5A, Table S5). The to-
tal amount of CD8*PD1* TILs thereby correlated with the amount of CD8*CD39*PD1*
TILs (Spearman r = 0.79, Figure S4B; p = 0.002, Table S6) of a PDM model. Thus, CD39
expression was limited to tumor-antigen-stimulated and -exhausted TILs (e.g., OvCa #7,
#17 and #25; Figure 5B). In contrast to ‘terminally differentiated cells” [43], OvCa TILs
with a ‘stem cell-like’ CD39~PD1" phenotype were found in 7.3% of the CTLs (Table S5).
This population showed the highest proportional variability with a maximum of 50.5%
cells vs. a minimum of 0% as compared to other CD8" TIL populations (CV 208%). The
frequency of CD8"CD39* and stem cell-like CD8"*CD39~PD1* was negatively correlated
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(Spearman r = —0.63, Figure S4B; p = 0.024, Table S6). These results confirm the feasibil-
ity of extracting and expanding TIL populations from fresh OvCa tissue samples and
identify heterogeneous, patient-specific immuno-phenotypes with potential relevance for
immuno-oncological treatment approaches.
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Figure 5. CPI treatment in OvCa PDM-TIL co-cultures increased functional TIL killing capacity.
Autologous TIL populations were isolated and expanded from OvCa tissue specimen. (A) Percentages
of different TIL populations within CD3-, CD8- and CD4-positive T cells of different models were
quantified by multicolor flow cytometry. Data are shown as means + SEM of at least n = 10 OvCa
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samples. * p < 0.05, ** p < 0.01, *** p < 0.001, ANOVA with Holm-Sidak’s post hoc test. (B) Phenotypes
of extracted TIL populations shown separately for each OvCa model. (C) Percentages of CD8* and
CD8*CD39* TILs in OvCa patients with lymph node spread (1 = 1) and without lymph node spread
(n = 0). All points with median are shown. * p < 0.05, ** p < 0.01, Mann-Whitney-U-test. (D) PDM
killing effects were measured in an image-based assay format as ratio of fluorescent intensities (FI)
of dead cells vs. viable PDM cells. Per treatment n = 3 PDM in three replicates were analyzed.
Masks for viable PDM (Calcein-AM staining), dead cells (SYTOX™ Orange dead cell staining) and
TILs (CellTracker™ Deep Red staining) were applied using Imaris 8.0 software. Scale bars indicate
50 pm. FI from TILs were subtracted from the total dead FI. (E,F) Killing effects of autologous TILs on
corresponding PDM in co-cultures treated with immune checkpoint inhibitors (CPI). TILs of OvCa
#24 (E) and #26 (F) were co-cultured with n = 15 PDM using an E:T ratio of 4:1. * p < 0.05, ** p < 0.01,
*#* 1 < 0.001, ANOVA with Holm-Sidak’s post hoc test. Pembro: pembrolizumab 60 jg/mL; Ipilim:
ipilimumab 50 pug/mL; Atezo: atezolizumab 50 pg/mL.

3.7.2. Specific TIL Phenotypes Isolated from OvCa Tumor Specimen Correlate with
Regional Lymph Node Metastasis

We further analyzed the correlation between specific TIL populations and clinical
follow-up patient data. OvCa patients with regional lymph node metastasis (1 = 1) tended
to present with significantly more extensive CD8" TIL infiltration in their tumors than those
with no lymph node metastasis (n = 0) (p = 0.016) (Figure 5C). Moreover, the frequency
of CD8* TILs appeared to significantly correlate with that of CD8*CD39* TILs in OvCa
(Figure 5C). Despite a small sample size, our data implicate a significant correlation between
lymph node spread (n = 1) and the presence of a CD8*CD39" population (p = 0.008).

3.8. OvCa PDM Killing by Autologous TIL Populations Is Enhanced by Immune Checkpoint
Inhibitor Treatment

To evaluate the functional, tumor cell killing capacity of autologous TILs on OvCa
PDM and the corresponding treatment efficacy of established immune checkpoint in-
hibitors (CPI), we subjected co-cultures of TILs and PDM from OvCa #24 and #26 to
image-based analysis of CPI-treatment response. A total of nine PDM were imaged per
treatment (three PDM per well in triplicates) and a dead:live PDM ratio was calculated
according to the sum of measured fluorescent intensities (FI) (Figure 5D-F). Addition
of TILs to autologous PDM induced a basal killing effect in PDM in both models ana-
lyzed in the absence of CPI treatment (Figure 5E,F). As the addition of matched isotype
controls showed no additional effect in both co-culture models, we excluded the pos-
sibility of unspecific killing effects of CPI antibodies. TIL killing effects in OvCa #24
co-cultures were observed in response to treatment with either the combination of anti-
PD1 and anti-CTLA-4 (pembrolizumab + ipilimumab) or anti-PD-L1 and anti-CTLA-4
(atezolizumab + ipilimumab) (p = 0.039) compared to isotype control treatment (Figure 5E).
Single agents induced no significant increase in PDM killing. In OvCa #26 CPI treatment
almost doubled PDM killing (Figure 5F). In comparison, co-cultures treated with ipili-
mumab (p = 0.004) or atezolizumab (p < 0.001) showed significant PDM killing compared
to untreated PDM. The killing effect of TILs was significantly amplified by atezolizumab
treatment compared to co-culture controls (PDM + TIL: p = 0.021; PDM + TIL + IgG4:
p = 0.018; Figure 5F), In line with this observation, respective OvCa PDM models showed
weakly positive PD-L1 staining (Figure S1). Further, atezolizumab treatment significantly
increased the TIL killing effect towards PDM as compared to pembrolizumab (p = 0.026).
Autologous CD8 TILs from both tested OvCa PDM models were composed of high amounts
of tumor-specific, non-terminally differentiated CD8*CD39* TIL populations as compared
to other OvCa TILs (Figures 5B and S5). Moreover, these CD8 TILs were prominently
positive for CTLA-4, which might explain the observed increase in PDM killing in re-
sponse to ipilimumab (Anti-CTLA4) treatment (Figures 5B and S5). Thus, the co-culture
of autologous TILs and PDM offers the possibility to extent compound efficacy testing
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beyond chemotherapeutic compounds to immune oncological treatment approaches in a
patient-specific setting.

4. Discussion

Recently, we could show the establishment of PDM from human glioblastoma tissue
specimen containing important components of the tumor stroma (e.g., tumor-associated
macrophages), and their application for the assessment of responses towards CSF1R- and
PD1-targeting antibodies as well as the small molecule inhibitor Argyrin F [44,45]. In the
present study, we have now further extended this approach to a patient-derived model
system composed of PDM and autologous TILs extracted from a panel of primary OvCa
tissue specimen and their in-depth characterization by immunohistochemistry, protein
profiling, immune cell phenotyping and focused compound efficacy testing. Our results
show an 87.5% success rate for isolation of PDM with robust viability and in suitable
amounts for further, multi-parametric downstream analyses. In-depth histopathological
assessment of PDM sections by a certified pathologist confirmed the conservation of typical
histological features of respective OvCa types by this model system. Importantly, the
complexity of the ovarian cancer TME with respect to the presence of cancer-associated fi-
broblasts and extracellular matrix components including collagen and hyaluronan-binding
protein observed in primary OvCa tissue sections was conserved and did not differ signifi-
cantly in the majority of PDM models generated in our study. The presence of these TME
components has previously been correlated with tumor stage, prognosis, and progression
and shown to substantially influence treatment responses [29,46,47]. Moreover, our data
show that PDM and corresponding PTT express similar levels of markers important for
histopathological assessment of ovarian cancer such as p53, WT1 and CA125. Interestingly,
we could also identify immune cell infiltration within a subset of OvCa PDM, reflecting the
immunogenicity of OvCa as previously reported [36,37,48]. We also identified differences
in protein expression between PDM and PTT (e.g., MSLN, Collagen or FAP«). This could
be explained at least in part by the low proportion of pure stromal areas within PDM as
compared to PTT.

While OvCa patient-derived organoids (PDO) were often studied by genomic and
transcriptomic sequencing [6-8], we were the first (to our knowledge) to investigate inter-
tumoral heterogeneity and differential drug response mechanisms by RPPA-based protein
profiling in a patient-derived 3D OvCa preclinical cell model. Here, analyses of a panel
of >110 phospho- and total proteins allowed for the clustering of histologically similar
OvCa PDM models, pathway activity profiling and investigation of on- and off target
drug effects. Obtained RPPA protein profiles confirmed the heterogeneity of OvCa PDM
observed via immunohistochemistry and previously reported for HGSC, the most common
type of OvCa. Our work identified significant differences in the activity of cell cycle and
MAPK/RTK pathways within analyzed OvCa PDM and enabled their distinction from a
breast cancer derived PDM model by differential expression of OvCa tumor and stem cell
markers as well as apoptosis-related proteins.

Seven OvCa PDM models were applied for individualized compound efficacy test-
ing using a panel of clinically approved drugs at Cpax drug concentrations previously
reported in clinical trials. For analyzed OvCa PDM models, we observed patient-specific
heterogeneity of response towards chemotherapy and targeted therapy. Correlation with
RPPA protein profiling data allowed the allocation of individual PDM drug responses to
specifically up- or down-regulated signaling pathway activities and, importantly, enabled
the prediction of PDM models with high probability of response towards chemotherapy
or targeted therapy. In accordance with the ability of cytostatic drugs to induce apoptosis
especially in actively dividing cells [49], our work identified additional correlation between
proteins relevant for S and G2/M cell cycle phase progression and carboplatin response.
Specifically, our data implicate that elevated abundances of Aurora A, Cyclin B1 and PCNA
proteins may allow for identification of carboplatin treatment response. Furthermore and
in line with previous reports, we confirmed that decreased DNA damage repair and the
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ability to undergo apoptosis [50] is associated with carboplatin treatment sensitivity in
OvCa. This was illustrated by increased levels of cleaved caspase-7 and cleaved PARP.
Our results did not identify a correlation of carboplatin resistance and markers of cancer
stem cells (CSCs) [51,52] or epithelial-to-mesenchymal transition (EMT) [53,54]. Instead,
we found the cancer stem cell-related protein Nanog as well N-Cadherin strongly upreg-
ulated in carboplatin-responding PDM. These differing results might arise from the fact
that above-mentioned previous studies were performed in adherent cell lines and not
within a patient-derived 3D tumor model. Importantly, we identified protein signatures
of OvCa PDM allowing for the identification and prediction of PDM models with high
probability of response towards chemotherapy or targeted therapy. The correlation of
our results with clinical data indicated a significant correlation of carboplatin treatment
response with prolonged metastasis-free survival of respective patients. Given the small
sample cohort analyzed here, these results need to be interpreted with caution but warrant
further investigation.

We further assessed proteomic changes upon PDM treatment such as effects on protein
abundance, directed on- and off-target pathway effects and drug mechanism-of-action
within OvCa PDM. In a carboplatin sensitive PDM model, we observed a time-dependent
decrease in cell cycle- and an increase in apoptosis-inducing protein abundance. In parallel,
we found a fast stress response upon treatment as indicated by an activated mTOR pathway
with high S6RP and active phospho-S6RP levels [35]. Overactive mTOR in combination
with cell stress and the inability of cells to adapt to cellular stress might be responsible for
p53 elevation [55,56] and driving cells into senescence or apoptosis [57,58].

Apart from testing the response of OvCa PDM to conventional chemotherapy, we
sought to investigate the applicability of this model system for efficacy assessment of
immuno-oncological treatment approaches. For this aim, we applied immunophenotyp-
ing of autologous TIL populations followed by their co-culture with respective PDM
in the presence and absence of immunotherapeutic mono- and combination treatment
schedules. Immunosurveillance of cancer strongly depends on the composition of tumor-
infiltrated immune cells and the degree of tumor tissue infiltration and is known to influence
treatment efficacies. As a result, the idea of an immunoscore, identifying a patient’s im-
munophenotype, emerged [59]. Our work uncovered several immunophenotypes within
expanded TILs from OvCa patients by multicolor flow cytometry compared to previous
immunohistochemistry-based analysis [60]. As described by Sato et al. (2005) [36] and
Zhang et al. (2003) [37] high numbers of intraepithelial CD8* TILs are associated with better
prognosis in OvCa. We found that OvCa TILs were largely composed of CD4" rather than
CD8* TILs. In this regard, OvCa models with high amounts of suppressive CD4* TILs and
low numbers of CD8" TILs are suggested to have worse prognosis [61]. In line with previ-
ous reports [62], we identified expression of CD39 in OvCa TIL populations, a marker that
distinguishes between tumor-specific CTLs (CD39") and bystander TILs (CD397) [40,41].
Interestingly, we found that CD8" TIL amounts correlated with that of CD8* CD39* TILs,
and could confirm that these tumor-specific T cells constitute an exhausted, memory T
cell-like phenotype, as CD39 expression was limited to CD8*PD-1* TILs. Importantly,
our results further demonstrated that co-cultures of PDM and autologous TILs could be
applied to assess the treatment effect of CPIs in a preclinical and patient-specific setting.
Such PDM-TIL co-culture systems could potentially be used to identify OvCa patients,
who would most likely benefit from immunotherapies. In the limited OvCa tumor tissue
cohort investigated here, OvCa tumors with regional lymph node metastasis contained
higher numbers of CD8" and CD8"CD39* TILs. The co-culture models tested in our study
for response towards CPI treatment were derived from lymph-node spreading primary
tumors, which might suggest that immunogenicity of OvCa increases upon metastasis.

Our work illustrates several advantages of PDM over patient-derived cancer organoid
(PDO) models. First, once the tissue sample is processed, PDM can be isolated within 2 days
and used for various types of analyses including those we used here. In contrast, a period
of weeks to months is usually required to establish a PDO line. Another advantage of PDM
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is their cellular composition and complexity with the presence of components of the ECM
as well as the TME (including. Collagen, C1QBP, tumor-associated fibroblasts), which is
more similar to the patient tumor than PDO, which are lacking these components [63].
Moreover, PDM are cultured in suspension, whereas PDO are usually cultured in ECM
matrix from mouse tumors (Matrigel). Influences of animal origin and batch-dependent
differences in the composition of matrigel on comparability with human tumor tissue need
to be considered for PDO [64,65]. In contrast, PDM are cultured in defined medium without
the addition of animal components.

Limitations of our PDM model are currently the restricted number of PDM available
from digestion of individual tumor tissue samples. From experience with different tumor
types, an average of several hundred to several thousand microtumors can be isolated
from fresh tissue samples. This number depends on the amount of tissue available for
PDM isolation as well as tissue composition (including degree of fibrosis and necrosis).
PDMs are therefore presently not suitable for high-throughput drug screening approaches,
but for focused drug testing in late preclinical and translational drug development as
well as in the context of precision oncology. For our study, only a limited amount of
corresponding primary tumor tissue was available for comparative analyses with isolated
PDM. Comparative, RPPA-based analyses between PDM and PTT were not feasible here
due to this limitation. Furthermore, the limitation of our present study with regard to
sample size should be noted.

5. Conclusions

In conclusion, patient-derived microtumors isolated from OvCa tumor specimen rep-
resent a novel ex vivo tumor model for OvCa displaying histopathological similarities to
corresponding primary patient tumors and revealing intertumoral heterogeneity as evidenced
by immunohistochemical and protein profiling analyses. The combination of functional drug
testing with analyses of protein signaling pathways and drug-mode of action enabled the
identification of PDM models susceptible to platinum-based treatment and allowed for the
prediction of individual therapeutic sensitivity. Parallel isolation and culturing of autologous
TILs further allowed for the characterization of patient-individual immune-phenotypes as
well as the assessment of responses towards immunotherapy in PDM-TIL co-cultures. While
the rapid PDM/TIL extraction procedure and quick availability of resulting datasets within
3-4 weeks is in good accordance with timelines of clinical decision making, we plan to confirm
our findings in future studies with larger sample cohorts.

Supplementary Materials: The following supporting information can be downloaded at: https://www:.
mdpi.com/article/10.3390/ cancers14122895/5s1, SI Methods: IHC/FACS/RPPA antibody lists; Figure S1:
Histology and immunohistochemistry of OvCa microtumors and corresponding primary tumor tissue;
Figure 52: Up- and downregulated proteins in carboplatin-responder and non-responder OvCa PDM;
Figure S3: Time-dependent alterations of signaling pathways in carboplatin sensitive OvCa PDM;
Figure S4: Gating schemes of expanded TILs, the correlation of TIL populations and their comparison
between different OvCa models; Figure S5: Gating schemes of expanded OvCa TILs #24 and #26;
Table S1: Correlation of PDM isolation-success and clinical patient-data; Table S2: Log2-transformed,
median-centered NFI signals of signaling pathway proteins from OvCa and BC PDM from RPPA
analysis; Table S3: Spearman correlation of carboplatin-treatment sensitivity and protein abundances
of OvCa PDM models; Table S4: Significant difference in metastasis-free-survival between OvCa
PDM carboplatin responder and non-responder. Table S5: Descriptive statistics of analyzed OvCa TIL
populations; Table S6: Correlation of TIL phenotypes (Spearman correlation, p-values). Reference [66]
is cited in the supplementary materials.

Author Contributions: Conceptualization and design of the study, N.A., C.S,, M.P, K.S.-L., S.Y.B. and
A.H.; data collection, data analysis, investigation and interpretation, N.A., B.G.,, M.P, AK, A.-LK,,
AS., S.Y.B. and C.S.; writing—original draft, N.A. and C.S.; writing—review and editing, N.A., C.S.,
M.P, A-LK,KS-L, AK,SYB., AH. and A.S; visualization, N.A., C.S. and S.Y.B.; supervision,
C.S. and A.K,; project administration: N.A., C.S. and A.K. All authors have read and agreed to the
published version of the manuscript.



Cancers 2022, 14, 2895 23 of 25

Funding: This work received financial support from the Ministry of Baden-Wuerttemberg for Eco-
nomic Affairs, Labor and Tourism (grant 3-4332.62-HSG/84).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of the University
Hospital Tuebingen, Germany (protocol code IRB#275/2017BO2 and IRB#788/2018BO2).

Informed Consent Statement: The use of human samples was approved by the local Ethics Com-
mission at the Medical Faculty of Tuebingen under the reference numbers IRB#275/2017BO2 and
IRB#788/2018BO2. All patients enrolled gave their informed consent to participate in the study.

Data Availability Statement: All data needed to evaluate the conclusions of the paper are included in
this published article and its supplementary information file. Material and further data are available
upon request after signature of an MTA from the corresponding authors.

Acknowledgments: We gratefully acknowledge the Department of Women’s Health, Women’s
University Hospital, Tuebingen University Hospital for excellent support, helpful discussions and
providing fresh tumor tissue biopsies and corresponding FFPE material. We thank all patients and
healthy volunteers enrolled for giving their informed consent for secondary use of residual tissue,
respectively.

Conflicts of Interest: AH received consulting and speaking fees from GSK, AstraZeneca and Clovis.
N.A, AK,BG,A-LK,AS,SYB, MP, KS.-L. and C.S. declare no competing interest.

References

1. Bray, F; Ferlay, ]J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of
incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer |. Clin. 2018, 68, 394-424. [CrossRef] [PubMed]

2. Izar, B,; Tirosh, I; Stover, E.H.; Wakiro, I.; Cuoco, M.S.; Alter, I.; Rodman, C.; Leeson, R.; Su, M.]; Shah, P; et al. A single-cell
landscape of high-grade serous ovarian cancer. Nat. Med. 2020, 26, 1271-1279. [CrossRef] [PubMed]

3.  The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609-615.
[CrossRef] [PubMed]

4. Zhang, H,; Liu, T.; Zhang, Z.; Payne, S.H.; Zhang, B.; McDermott, ].E.; Zhou, ].-Y.; Petyuk, V.A.; Chen, L.; Ray, D.; et al. Integrated
proteogenomic characterization of human high-grade serous ovarian cancer. Cell 2016, 166, 755-765. [CrossRef]

5. Verduin, M.; Hoeben, A.; De Ruysscher, D.; Vooijs, M. Patient-derived cancer organoids as predictors of treatment response.
Front. Oncol. 2021, 11, 641980. [CrossRef]

6. Chen, H.; Gotimer, K.; De Souza, C.; Tepper, C.G.; Karnezis, A.N.; Leiserowitz, G.S.; Chien, ].; Smith, L.H. Short-term organoid
culture for drug sensitivity testing of high-grade serous carcinoma. Gynecol. Oncol. 2020, 157, 783-792. [CrossRef]

7. Kopper, O.; De Witte, CJ.; Lohmussaar, K.; Valle-Inclan, J.E.; Hami, N.; Kester, L.; Balgobind, A.V,; Korving, ].; Proost, N.; Begthel, H.; et al.
An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 2019, 25, 838-849. [CrossRef]

8. Hill, S.J.; Decker, B.; Roberts, E.A.; Horowitz, N.S.; Muto, M.G.; Worley, M.]., Jr.; Feltmate, C.M.; Nucci, M.R.; Swisher,
E.M.; Nguyen, H.; et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids.
Cancer Discov. 2018, 8, 1404-1421. [CrossRef]

9. Neal, J.T; Li, X.; Zhu, ].; Giangarra, V.; Grzeskowiak, C.L.; Ju, J.; Liu, I.H.; Chiou, S.-H.; Salahudeen, A.A.; Smith, A.R.; et al.
Organoid modeling of the tumor immune microenvironment. Cell 2018, 175, 1972-1988.€1916. [CrossRef]

10. Wensink, G.E.; Elias, S.G.; Mullenders, J.; Koopman, M.; Boj, S.F,; Kranenburg, O.W.; Roodhart, ].M.L. Patient-derived organoids
as a predictive biomarker for treatment response in cancer patients. NPJ Precis. Oncol. 2021, 5, 30. [CrossRef]

11.  Kondo, J.; Endo, H.; Okuyama, H.; Ishikawa, O.; lishi, H.; Tsujii, M.; Ohue, M.; Inoue, M. Retaining cell-cell contact enables
preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc. Natl. Acad. Sci. USA
2011, 108, 6235-6240. [CrossRef] [PubMed]

12.  Shuford, S.; Wilhelm, C.; Rayner, M.; Elrod, A.; Millard, M.; Mattingly, C.; Lotstein, A.; Smith, A.M.; Guo, Q.J.; O’Donnell, L.; et al.
Prospective validation of an ex vivo, patient-derived 3d spheroid model for response predictions in newly diagnosed ovarian
cancer. Sci. Rep. 2019, 9, 11153. [CrossRef] [PubMed]

13. Pirnia, F; Pawlak, M.; Thallinger, G.G.; Gierke, B.; Templin, M.E,; Kappeler, A.; Betticher, D.C.; Gloor, B.; Borner, M.M. Novel
functional profiling approach combining reverse phase protein microarrays and human 3-d ex vivo tissue cultures: Expression of
apoptosis-related proteins in human colon cancer. Proteomics 2009, 9, 3535-3548. [CrossRef] [PubMed]

14. Pawlak, M.; Carragher, N.O. Reverse phase protein arrays elucidate mechanisms-of-action and phenotypic response in 2d and 3d
models. Drug Discov. Today Technol. 2017, 23, 7-16. [CrossRef]

15. Kresbach, G.M.; Pawlak, M. High precision rppa: Concept, features, and application performance of the integrated zeptosens
platform. Adv. Exp. Med. Biol. 2019, 1188, 31-59.

16. Pawlak, M.; Schick, E.; Bopp, M.A.; Schneider, M.].; Oroszlan, P.; Ehrat, M. Zeptosens’ protein microarrays: A novel high

performance microarray platform for low abundance protein analysis. Proteomics 2002, 2, 383-393. [CrossRef]



Cancers 2022, 14, 2895 24 of 25

17.
18.

19.
20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Iglewicz, B.; Hoaglin, D.C. How fo Detect and Handle Outliers; ASQC Quality Press: Milwaukee, WI, USA, 1993; p. ix. 87p.
Kobel, M.; Rahimi, K.; Rambau, PF,; Naugler, C.; Le Page, C.; Meunier, L.; De Ladurantaye, M.; Lee, S.; Leung, S.; Goode, E.L.; et al.
An immunohistochemical algorithm for ovarian carcinoma typing. Int. . Gynecol. Pathol. 2016, 35, 430—441. [CrossRef]

Hilliard, T. The impact of mesothelin in the ovarian cancer tumor microenvironment. Cancers 2018, 10, 277. [CrossRef]

Hassan, R.; Kreitman, R.J.; Pastan, I.; Willingham, M.C. Localization of mesothelin in epithelial ovarian cancer. Appl. Immunohis-
tochem. Mol. Morphol. 2005, 13, 243-247. [CrossRef]

Chang, M.-C.; Chen, C.-A; Chen, P-J.; Chiang, Y.-C.; Chen, Y.-L.; Mao, T-L.; Lin, H--W,; Lin Chiang, W.-H.; Cheng, W.-F.
Mesothelin enhances invasion of ovarian cancer by inducing mmp-7 through mapk/erk and jnk pathways. Biochem. |. 2012, 442,
293-302. [CrossRef]

Tornos, C.; Soslow, R.; Chen, S.; Akram, M.; Hummer, A.].; Abu-Rustum, N.; Norton, L.; Tan, L.K. Expression of wtl, ca 125, and
gcdfp-15 as useful markers in the differential diagnosis of primary ovarian carcinomas versus metastatic breast cancer to the
ovary. Am. J. Surg. Pathol. 2005, 29, 1482-1489. [CrossRef] [PubMed]

Kriplani, D.; Patel, M.M. Immunohistochemistry: A diagnostic aid in differentiating primary epithelial ovarian tumors and
tumors metastatic to the ovary. S. Asian J. Cancer 2013, 2, 254-258. [CrossRef] [PubMed]

Neunteufel, W.; Breitenecker, G. Tissue expression of ca 125 in benign and malignant lesions of ovary and fallopian tube: A
comparison with ca 19-9 and cea. Gynecol. Oncol. 1989, 32, 297-302. [CrossRef]

Cox, T.R. The matrix in cancer. Nat. Rev. Cancer 2021, 21, 217-238. [CrossRef] [PubMed]

Bhat, R.; Bissell, M.J. Of plasticity and specificity: Dialectics of the microenvironment and macroenvironment and the organ
phenotype. WIREs Dev. Biol. 2014, 3, 147-163. [CrossRef]

Roskelley, C.D.; Bissell, M.]. The dominance of the microenvironment in breast and ovarian cancer. Semin. Cancer Biol. 2002, 12,
97-104. [CrossRef]

Mhawech-Fauceglia, P; Yan, L.; Sharifian, M.; Ren, X,; Liu, S.; Kim, G.; Gayther, S.A.; Pejovic, T.; Lawrenson, K. Stromal expression
of fibroblast activation protein alpha (fap) predicts platinum resistance and shorter recurrence in patients with epithelial ovarian
cancer. Cancer Microenviron. 2015, 8, 23-31. [CrossRef]

Nissen, N.I.; Karsdal, M.; Willumsen, N. Collagens and cancer associated fibroblasts in the reactive stroma and its relation to
cancer biology. J. Exp. Clin. Cancer Res. 2019, 38, 115. [CrossRef]

Saha, P.; Datta, K. Multi-functional, multicompartmental hyaluronan-binding protein 1 (habp1/p32/gclqr): Implication in cancer
progression and metastasis. Oncotarget 2018, 9, 10784-10807. [CrossRef]

Iyengar, M.; O'Hayer, P; Cole, A.; Sebastian, T.; Yang, K.; Coffman, L.; Buckanovich, R.]. Cdk4/6 inhibition as maintenance and
combination therapy for high grade serous ovarian cancer. Oncotarget 2018, 9, 15658-15672. [CrossRef]

Farley, ].; Brady, W.E.; Vathipadiekal, V.; Lankes, H.A.; Coleman, R.; Morgan, M.A.; Mannel, R.; Yamada, S.D.; Mutch, D.; Rodgers, W.H.;
et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: An open-label, single-arm,
phase 2 study. Lancet Oncol. 2013, 14, 134-140. [CrossRef]

McGivern, N.; El-Helali, A.; Mullan, P.; McNeish, I.A.; Paul Harkin, D.; Kennedy, R.D.; McCabe, N. Activation of mapk signalling
results in resistance to saracatinib (azd0530) in ovarian cancer. Oncotarget 2018, 9, 4722-4736. [CrossRef] [PubMed]

Liston, D.R.; Davis, M. Clinically relevant concentrations of anticancer drugs: A guide for nonclinical studies. Clin. Cancer. Res.
2017, 23, 3489-3498. [CrossRef]

Aramburu, J.; Ortells, M.C.; Tejedor, S.; Buxadé, M.; Lépez-Rodriguez, C. Transcriptional regulation of the stress response by
mtor. Sci. Signal. 2014, 7, re2. [CrossRef] [PubMed]

Sato, E.; Olson, S.H.; Ahn, J.; Bundy, B.; Nishikawa, H.; Qian, E; Jungbluth, A.A.; Frosina, D.; Gnjatic, S.; Ambrosone, C.; et al.
Intraepithelial cd8+ tumor-infiltrating lymphocytes and a high cd8+/regulatory t cell ratio are associated with favorable
prognosis in ovarian cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 18538-18543. [CrossRef] [PubMed]

Zhang, L.; Conejo-Garcia, ].R.; Katsaros, D.; Gimotty, P.A.; Massobrio, M.; Regnani, G.; Makrigiannakis, A.; Gray, H.; Schlienger, K.;
Liebman, M.N,; et al. Intratumoral t cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. ]. Med. 2003, 348, 203-213.
[CrossRef] [PubMed]

Hamanishi, ].; Mandai, M.; Iwasaki, M.; Okazaki, T.; Tanaka, Y.; Yamaguchi, K.; Higuchi, T.; Yagi, H.; Takakura, K.; Minato, N.; et al.
Programmed cell death 1 ligand 1 and tumor-infiltrating cd8+ t lymphocytes are prognostic factors of human ovarian cancer.
Proc. Natl. Acad. Sci. USA 2007, 104, 3360-3365. [CrossRef]

Ye, Q.; Song, D.G.; Poussin, M.; Yamamoto, T.; Best, A ; Li, C.; Coukos, G.; Powell, D.J. Cd137 accurately identifies and enriches
for naturally occurring tumor-reactive t cells in tumor. Clin. Cancer. Res. 2014, 20, 44-55. [CrossRef]

Duhen, T.; Duhen, R.; Montler, R.; Moses, J.; Moudgil, T.; de Miranda, N.F; Goodall, C.P; Blair, T.C.; Fox, B.A.; McDermott, J.E;
et al. Co-expression of cd39 and cd103 identifies tumor-reactive c¢d8 t cells in human solid tumors. Nat. Commun. 2018, 9, 2724.
[CrossRef]

Simoni, Y.; Becht, E.; Fehlings, M.; Loh, C.Y.; Koo, S.-L.; Teng, K W.W.; Yeong, ] P.S.; Nahar, R.; Zhang, T.; Kared, H.; et al. Bystander
cd8+ t cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018, 557, 575-579. [CrossRef]
Canale, EP,; Ramello, M.C.; Nufiez, N.; Furlan, C.L.A.; Bossio, S.N.; Serran, M.G.; Boari, ].T.; Del Castillo, A.; Ledesma, M.; Sedlik, C.;
et al. Cd39 expression defines cell exhaustion in tumor-infiltrating cd8+t cells. Cancer Res. 2018, 78, 115-128. [CrossRef] [PubMed]



Cancers 2022, 14, 2895 25 of 25

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.
65.
66.

Jansen, C.S.; Prokhnevska, N.; Master, V.A.; Sanda, M.G.; Carlisle, J.W.; Bilen, M.A.; Cardenas, M.; Wilkinson, S.; Lake, R.;
Sowalsky, A.G.; et al. An intra-tumoral niche maintains and differentiates stem-like cd8 t cells. Nature 2019, 576, 465-470.
[CrossRef]

Przystal, ].M.; Becker, H.; Canjuga, D.; Tsiami, F; Anderle, N.; Keller, A.-L.; Pohl, A.; Ries, C.H.; Schmittnaegel, M.; Korinetska, N.; et al.
Targeting csflr alone or in combination with pd1 in experimental glioma. Cancers 2021, 13, 2400. [CrossRef] [PubMed]

Walter, B.; Canjuga, D.; Yiiz, S.G.; Ghosh, M.; Bozko, P; Przystal, ] M.; Govindarajan, P.; Anderle, N.; Keller, A.L.; Tatagiba, M.; et al.
Argyrin f treatment-induced vulnerabilities lead to a novel combination therapy in experimental glioma. Adv. Ther. 2021, 4,
2100078. [CrossRef]

Yu, G.; Wang, ]. Significance of hyaluronan binding protein (habp1/p32/gclqr) expression in advanced serous ovarian cancer
patients. Exp. Mol. Pathol. 2013, 94, 210-215. [CrossRef] [PubMed]

Yu, H; Liu, Q.; Xin, T; Xing, L.; Dong, G.; Jiang, Q.; Lv, Y.; Song, X.; Teng, C.; Huang, D.; et al. Elevated expression of hyaluronic
acid binding protein 1 (habp1)/p32/clqbp is a novel indicator for lymph node and peritoneal metastasis of epithelial ovarian
cancer patients. Tumor Biol. 2013, 34, 3981-3987. [CrossRef] [PubMed]

Barnett, B.; Kryczek, I.; Cheng, P.; Zou, W.; Curiel, T.J. Regulatory t cells in ovarian cancer: Biology and therapeutic potential.
Am. ]. Reprod. Immunol. 2005, 54, 369-377. [CrossRef]

Valeriote, F.; van Putten, L. Proliferation-dependent cytotoxicity of anticancer agents: A review. Cancer Res. 1975, 35, 2619-2630.
Vasey, P.A. Resistance to chemotherapy in advanced ovarian cancer: Mechanisms and current strategies. Br. |. Cancer 2003, 89,
23-28. [CrossRef]

Haygood, C.L.W. Ovarian cancer stem cells: Can targeted therapy lead to improved progression-free survival? World J. Stem Cells
2014, 6, 441. [CrossRef]

Bapat, S.A.; Mali, A.M.; Koppikar, C.B.; Kurrey, N.K. Stem and progenitor-like cells contribute to the aggressive behavior of
human epithelial ovarian cancer. Cancer Res. 2005, 65, 3025-3029. [CrossRef] [PubMed]

Deng, J.; Wang, L.; Chen, H.; Hao, J.; Ni, J.; Chang, L.; Duan, W.; Graham, P; Li, Y. Targeting epithelial-mesenchymal transition
and cancer stem cells for chemoresistant ovarian cancer. Oncotarget 2016, 7, 55771-55788. [CrossRef]

Liu, S; Sun, J.; Cai, B,; Xi, X.; Yang, L.; Zhang, Z.; Feng, Y.; Sun, Y. Nanog regulates epithelial-mesenchymal transition and
chemoresistance through activation of the stat3 pathway in epithelial ovarian cancer. Turmor Biol. 2016, 37, 9671-9680. [CrossRef]
[PubMed]

Lee, C.H.; Inoki, K.; Karbowniczek, M.; Petroulakis, E.; Sonenberg, N.; Henske, E.P.; Guan, K.L. Constitutive mtor activation in tsc
mutants sensitizes cells to energy starvation and genomic damage via p53. EMBO J. 2007, 26, 4812—4823. [CrossRef]
Vadysirisack, D.D.; Baenke, E; Ory, B.; Lei, K.; Ellisen, L.W. Feedback control of p53 translation by redd1 and mtorcl limits the
p53-dependent DNA damage response. Mol. Cell. Biol. 2011, 31, 4356-4365. [CrossRef] [PubMed]

Leontieva, O.V.; Blagosklonny, M.V. DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive
re-activation of mtor is associated with conversion to senescence. Aging 2010, 2, 924-935. [CrossRef] [PubMed]

Astle, M.V.; Hannan, KM.; Ng, P.Y.; Lee, R.S.; George, A.J.; Hsu, AK,; Haupt, Y.; Hannan, R.D.; Pearson, R.B. Akt induces
senescence in human cells via mtorcl and p53 in the absence of DNA damage: Implications for targeting mtor during malignancy.
Oncogene 2012, 31, 1949-1962. [CrossRef] [PubMed]

Gajewski, T.E; Schreiber, H.; Fu, Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013, 14,
1014-1022. [CrossRef]

Hwang, W.T.; Adams, S.F; Tahirovic, E.; Hagemann, 1.S.; Coukos, G. Prognostic significance of tumor-infiltrating t cells in ovarian
cancer: A meta-analysis. Gynecol. Oncol. 2012, 124, 192-198. [CrossRef]

Curiel, TJ.; Coukos, G.; Zou, L.; Alvarez, X.; Cheng, P.; Mottram, P,; Evdemon-Hogan, M.; Conejo-Garcia, ].R.; Zhang, L.; Burow, M.; et al.
Specific recruitment of regulatory t cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med.
2004, 10, 942-949. [CrossRef]

Leem, G.; Park, J.; Jeon, M.; Kim, E.-S.; Kim, SW.; Lee, Y.J.; Choi, S.J.; Choi, B.; Park, S.; Ju, Y.S.; et al. 4-1bb co-stimulation further
enhances anti-pd-1-mediated reinvigoration of exhausted cd39* cd8 t cells from primary and metastatic sites of epithelial ovarian
cancers. J. Immunol. Ther. Cancer 2020, 8, e001650. [CrossRef] [PubMed]

Gronholm, M.; Feodoroff, M.; Antignani, G.; Martins, B.; Hamdan, F,; Cerullo, V. Patient-derived organoids for precision cancer
immunotherapy. Cancer Res. 2021, 81, 3149-3155. [CrossRef] [PubMed]

Aisenbrey, E.A.; Murphy, W.L. Synthetic alternatives to matrigel. Nat. Rev. Mater. 2020, 5, 539-551. [CrossRef] [PubMed]
Kozlowski, M.T.; Crook, C.J.; Ku, H.T. Towards organoid culture without matrigel. Commun. Biol. 2021, 4, 1387. [CrossRef]
Ruifrok, A.C.; Johnston, D.A. Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 2001, 23,
291-299.



Appendix

Appendix Il:

Anderle, N., Schafer-Ruoff, F., Staebler, A., Kersten, N., Koch, A., Onder, C., Keller,
A-L., Liebscher, S., Hartkopf, A., Hahn, M., Templin, M., Brucker, SY., Schenke-
Layland, K., Schmees, C. Breast cancer patient-derived microtumors resemble tumor
heterogeneity and enable protein-based stratification and functional validation of
individualized drug treatment. (PREPRINT available at Research Square, 2023;
https://doi.org/10.21203/rs.3.rs-2781727/v1) - Accepted: 28 July 2023;
Published: 18 August 2023: J Exp Clin Cancer Res42, 210 (2023).
https://doi.org/10.1186/s13046-023-02782-2

96


https://doi.org/10.21203/rs.3.rs-2781727/v1

Breast cancer patient-derived microtumors resemble
tumor heterogeneity and enable protein-based
stratification and functional validation of
individualized drug treatment

Nicole Anderle", Felix Schafer-Ruoff!, Annette Staebler?, Nicolas Kersten34, André Koch5,
Cansu Onder®, Anna-Lena Keller', Simone Liebscher®, Andreas Hartkopf>’, Markus Hahn?®,
Markus Templin', Sara Y. Brucker5®, Katja Schenke-Layland'%2, Christian Schmees'

'NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen,
Germany

?|nstitute of Pathology and Neuropathology, Eberhard Karls University Tuebingen, 72076 Tuebingen,
Germany

SInterfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tuebingen, 72076
Tuebingen, Germany

4FZI Research Center for Information Technology, 76131 Karlsruhe, Germany

5Department of Women’s Health, University Women’s Hospital, Eberhard Karls University Tuebingen,
72076 Tuebingen, Germany

SInstitute of Biomedical Engineering, Department for Medical technologies and Regenerative Medicine,
Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany

"Department of Gynecology and Obstetrics, University Hospital of Ulm, 89081 Ulm, Germany

8Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor
Therapies”,Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany

*Email: nicole.anderle@nmi.de; christian.schmees@nmi.de



mailto:nicole.anderle@nmi.de
mailto:christian.schmees@nmi.de

1. Abstract

Despite tremendous progress in deciphering breast cancer at the genomic level, the
pronounced intra- and intertumoral heterogeneity remains a major obstacle to the
advancement of novel and more effective treatment approaches. Frequent treatment failure
and the development of treatment resistance highlight the need for patient-derived tumor
models that reflect the individual tumors of breast cancer patients and allow a
comprehensive analyses and parallel functional validation of individualized and
therapeutically targetable vulnerabilities in protein signal transduction pathways. Here, we
introduce the generation and application of breast cancer patient-derived 3D microtumors
(BC-PDMs). Residual fresh tumor tissue specimens were collected from n=102 patients
diagnosed with breast cancer and subjected to BC-PDMs isolation. BC-PDMs retained
histopathological characteristics, and extracellular matrix (ECM) components together with
key protein signaling pathway signatures of the corresponding primary tumor tissue.
Accordingly, BC-PDMs reflect the inter- and intratumoral heterogeneity of breast cancer and
its key signal transduction properties. DigWest®-based protein expression profiling of
identified treatment responder and non-responder BC-PDMs enabled the identification of
potential resistance and sensitivity markers of individual drug treatments, including markers
previously associated with treatment response and yet undescribed proteins. The
combination of individualized drug testing with comprehensive protein profiling analyses of
BC-PDMs may provide a valuable complement for personalized treatment stratification and

response prediction for breast cancer.
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3. Background

According to the SEER (The Surveillance, Epidemiology, and End Results - Program)
database, breast cancer (BC) remains the most common cancer in women. Despite a 5-year
survival rate of 90% (all cancer stages), BC is the 2" leading cause of cancer death in
women. Since 1989, BC mortality rates have been reduced by 43%, primarily through early
detection by mammography, improved local treatment, and increasingly effective systemic
adjuvant therapies in early stages of cancer (1). Based on the genetic, morphologic, and
clinical intertumoral heterogeneity, BC is classified into different subtypes. The WHO
distinguishes 19 different histological subtypes including invasive BC, which infiltrate the
stroma and surrounding breast tissue, and non-invasive, in-situ carcinomas, which are the
preinvasive counterparts. If they arise in the mammary ducts, they are referred to as invasive
ductal carcinomas (IDC) or ductal carcinoma in-situ (DCIS). Whereas invasive lobular
carcinomas (ILC) and lobular carcinomas in-situ (LCIS) arise from the lobules of the
mammary glands (2). The most common invasive subtype is IDC of no special type (NST)
showing no distinct architectural features (3). IDC subtypes with defined, distinctive
architectural features are less common. Global gene expression analyses have further
classified BC into four molecular subtypes with distinct gene expression patterns: the
hormone receptor-related luminal-A and luminal B tumors versus the hormone receptor-
negative, HER2-enriched and basal-like tumors (4-6). These reflect different phenotypes,
disease prognosis, treatment paradigms and responses to therapies (7-11). In clinical
practice, BC stratification is performed by the immunohistochemical determination of routine
pathologic markers such as estrogen receptor a (ERa), progesterone receptor (PgR) and
human epidermal growth factor receptor 2 (HER2), and by semiquantitative evaluation of Ki-
67. In this regard, BC is pathologically classified as ERa/PR-positive, HER2-positive or as
triple-negative breast cancer (TNBC), which lack the expression of these receptors and can
themselves be considered a very heterogeneous group of cancers (12, 13). Besides this
intertumoral heterogeneity, enormous diversity of tumor cell profiles is also observed within
the same tumor, termed intratumoral heterogeneity (14). Alterations in genome,
epigenome/transcriptome, and proteome, in invasive capacity, proliferation, stemness, cell
plasticity but also the extrinsic interplay with the tumor microenvironment (15) contribute to
the heterogeneity of individual tumor cell subpopulations. This leads to diverse disease
manifestations in individual patients and failure of systematic treatment (16). With regard to
the TME, we are only at the beginning of our understanding of its interaction with the tumor
and how it influences the response to therapy (17, 18). Apparently, different TME gene
expression patterns alter BC phenotypes (19, 20). Despite the success of genomic
expression analysis in classifying BC according to different gene signatures or revealing

gene alterations, a comprehensive understanding of treatment failures due to extensive



tumor heterogeneity is still lacking (21, 22). Therefore, more effective therapies need to be
developed and the mechanisms of resistance better understood. In particular, a personalized
treatment approach based on functional analysis of protein expression data could help to

improve treatment efficacy and patient outcome.

Here, we demonstrate the applicability of patient-derived microtumors (PDM) isolated from
residual fresh mammary carcinoma tissue samples as an ex vivo 3D breast cancer model
that not only consists of tumor cells but also of TME and extracellular matrix (ECM)
components of the corresponding patient tumor. We successfully generated microtumor
samples of different BC subtypes with histopathological features and ECM components
corresponding to those of the original primary tumor tissue. Protein profiling of BC-PDMs by
DigiWest™ revealed heterogeneous signaling pathway activity similar to the patient’s tumor
and reflected the intertumoral heterogeneity of BC. We combined functional drug testing with
signaling pathway analyses in BC-PDMs to evaluate therapy responses and identified

markers of treatment sensitivity/resistance.



4. Materials and Methods

4.1. Human specimen

Non-processed human breast tumor samples were collected after surgery and completion of
pathological examination from patients with primary breast cancer as part of the publicly
funded PRIMO project (Personalized medicine for tailored cancer therapies). Written
informed consent was obtained from all participants prior to surgery. The research project
was approved by the ethics commission at the Medical Faculty Tuebingen (project number
#788/2018B02). Clinical patient data for the above-mentioned samples were submitted in
pseudonymized form. A total of n = 102 samples were obtained from consenting participants,
who underwent surgery at Center for Women'’s Health, University Hospital Tuebingen.
Inclusion criteria were individuals > 18 years of age who had given informed consent to
participate in the project, with unilateral invasive primary and recurrent breast carcinomas
regardless of ER-/PgR- and HER2-status, tumor size, nodal-status and grading. Enrolled
patients did not receive neoadjuvant treatment. Patients with distant metastatic disease were

excluded.

4.2. Generation of patient-derived microtumors from residual fresh breast
tumor tissue

Fresh dissected breast tumor tissues were transported within DMEM/F12 culture media
(Gibco) and subsequently processed as previously described (2022) (23). The isolation of
patient-derived microtumors was adapted from Kondo et al. (24). Briefly, tumors were
washed in HBSS (Gibco), fragmented with forceps, and digested with Liberase DH (Roche)
for 2 hours at 37°C. The digested tissue was filtered through a 500 ym stainless steel mesh
(VWR) followed by a 40 ym cell strainer (Corning). Tumor fragments retained by the cell
strainer were washed in HBSS and cultured in suspension in StemPro® hESC SFM (Gibco)
supplemented with 8 ng/ml FGF-basic (Gibco), 0.1 mM B-mercaptoethanol (Gibco), 1.8%
BSA (Gibco) and 100 pg/ml Primocin (Invivogen) in a cell-repellent culture dish (60x15mm)
(Corning). The single-cell filtrate was used for the expansion of tumor-infiltrating lymphocytes
in Advanced RPMI 1640 (GIBCO) supplemented with 2 mM glutamine (Gibco), 1% MEM
vitamins (Gibco), 5% human serum (SigmaAldrich) and 100 pg/ml primocin (Invivogen). IL-2
(100 U/ml), IL-7 (10 U/ml) and IL-15 (23.8 U/ml) (Peprotech) were freshly added to the
culture media. CD3/CD28 Dynabeads (Milteny Biotech) were added for expansion.

4.3. Viability measurement of BC-PDMs using Calcein-AM live cell and
SYTOX™ Orange dead cell stain

Viability of BC-PDMs was assessed by live/dead-cell staining using 6.6 uM Calcein-AM™

(Invitrogen) live cell stain and 5 yM SYTOX™ Orange nucleic acid dead cell stain



(Invitrogen). To visualize nuclei 1 ug/mL of Hoechst 33258 (Invitrogen) was added. BC-
PDMs were directly picked from the suspension culture and resuspended in staining solution
consisting of DMEM/F12 phenol-red free media (Gibco) supplemented with StemPro® hESC
supplement (Gibco), 8 ng/ml FGF-basic (STEMCELL Technologies), 0.1 mM 2-mercapto-
ethanol (Gibco), 1.8 % BSA (Gibco) and 100 pg/ml primocin (Invivogen). After 30 min of
incubation, z-stack images were taken using the Zeiss CellObserver Z1 (Carl Zeiss).
Maximum intensity projections of the 3D z-stacks were generating using the ZEN software
(Version 2.6). Imaris software (version 8.0) was used to create 3D surface masks for viable
and dead cells in the FITC and TRITC channel. For each surface mask, the fluorescent
intensity sums and the volume was measured. Fluorescent intensities were normalized to the
total (BC-PDMs) volume (um3).

4.4. Histology and immunohistochemistry

For histology BC-PDMs were fixed for 1 hour in 4% Roti® Histofix (Carl Roth) at RT and
incubated for 5 min in Harris Hematoxylin (Leica Biosystems), shortly washed in dH,O and
dehydrated in an ethanol series (2x 50% ethanol, 2x 70% ethanol, each for 15 min). Using
Tissue-Tek® Cryomolds® (Sakura), BC-PDMs were embedded in Richard-Allan Scientific™
HistoGel™ (Thermo Fisher Scientific). Tissue processing was performed using the HistoCore
PEARL (Leica Biosystems). After processing, BC-PDMs histogel-blocks were paraffin-
embedded for sectioning. Three micrometer sections of FFPE BC-PDMs samples were cut.
In contrast, corresponding PTT were snap frozen on dry ice and cut as cryosections (5-7
um). PTT-cryosections were immersed in ice-cold 4% Roti® Histofix (Carl Roth) for 10 min at
2-4°C and washed afterwards 3x with PBS. Hematoxylin and eosin (H&E) as well as Movat-
pentachrome staining was performed on BC-PDMs-FFPE and PTT-cryosections.
Immunohistochemical staining of BC-PDMs was performed using the Autostainer Link 48
(Agilent) in combination with the Dako PT Link (Agilent) for antigen-retrieval according to the
manufacturer’'s recommendations. Detailed information of the used antibodies is listed below
(Table 1). Stained FFPE/cryosections were imaged with Axio Scan Z1. All primary antibodies
were validated in normal, healthy tissues as well as in FFPE and cryosections. DAB and
collagen staining (Movat-pentachrome staining) was semi-quantified using ImagedJ Fiji
software. The color deconvolution plugin was used to separate stains using Ruifrok and
Johnston's method for DAB stains (25), and manual deconvolution for collagen stain. The
percentage of area positive for DAB/collagen was determined. Percent area fraction was
measured as the percentage of pixels in the image or selection to which thresholds were

applied. The certified pathologist was blinded for evaluation of microtumor H&E stainings.



Table 1. Antibodies for IHC staining.

Antibody Manufacturer Product No. Additional Usage
reagents

rabbit anti-human ERalpha Abcam ab16660 Rb Linker 1:30
Enhancer

rabbit anti-human HER2/ErbB2  Cell Signaling 4290 Rb Linker 1:80

Technology Enhancer

mouse anti-human PgR Dako IR068 Ms Linker R.T.U

rabbit anti-human cytokeratin 5  Abcam ab64081 Rb Linker 1:200
Enhancer

rabbit anti-human cytokeratin 6  Abcam ab93279 Rb Linker 1:50
Enhancer

mouse anti-human cytokeratin Dako IR618 Ms Linker R.T.U

18 Enhancer

rabbit anti-human FAPalpha BioRad AHP1322 Rb Linker 1:50

rabbit anti-human CD163 Abcam ab182422 Rb Linker 1:200

mouse anti-human PD-L1 Dako 22C3 Ms Linker 1:50
Enhancer

mouse anti-human CD8 Dako IR623 - R.T.U

4.5. Multiplex protein profiling via DigiWest

DigiWest was performed as described previously (26). Western blot was carried out using
the NuUPAGE system (Life Technologies) with a 4-12% Bis-Tris gel and PVDF membranes.

Membranes were washed with PBST and proteins were biotinylated by adding 50 yM NHS-
PEG12-Biotin in PBST for 1 h. The membranes were washed with PBST and dried overnight.
Each protein (Western-Blot) lane was cut into 96 strips of 0.5 mm each. Western Blot-strips
were sorted by molecular weight into a 96-well plate (Greiner Bio-One). Proteins were eluted
using a 10 pl of elution buffer (8 M Urea, 1% Triton-X100 in 100 mM Tris-HCI pH 9.5).
Proteins of each 96-well representing a distinct molecular weight fraction were coupled
overnight to Neutravidin-coated MagPlex beads (Luminex) of a distinct color ID. Non-bound
binding sites were blocked with 500 uM deactivated NHS-PEG12-Biotin for 1 h. To
reconstruct the original Western blot lane, the beads were pooled, with the color IDs
representing the molecular weight fraction of the proteins. For antibody incubation 5 pl of the
DigiWest bead mixes were added to 50 ul assay buffer (Blocking Reagent for ELISA (Roche)
supplemented with 0.2% milk powder, 0.05% Tween-20 and 0.02% sodium azide) in a 96-
well plate. In the next step, the assay buffer was discarded, 30 pl of primary antibody solution
was added per well to the DigiWest bead mixes and incubated overnight at 15°C on a shaker
(for primary antibody list, see S| Materials). Bead mixes were washed 2x with PBST before
adding 30 pl secondary antibody (labeled with phycoerythrin — PE) solution. After 1h of
incubation at 23°C, the bead mixes were washed 2x in PBST. Read-outs were performed
using the Luminex FlexMAP 3D instrument. Protein bands were displayed as peaks by
plotting the molecular weight against the corresponding median signal intensity. To integrate

peaks of an expected molecular weight, a macro-based algorithm created in excel was



applied. The local background was subtracted and for each peak the integral of the area was
calculated (averaged fluorescent intensities — AFI). The resulting signals were normalized to
total protein amount loaded onto the beads, if applicable centered on median of all BC-

PDMs/PTT or only BC-PDMs samples. Subsequently, weak protein signals were determined

as “lower detection limit minus one”. Further data processing is described in the figures.

4.6. Drug testing in BC-PDMs using CellTox Green™ Cytotoxicity Assay

To assess cell killing effects of different anti-cancer therapies and targeted therapies for
breast cancer in BC-PDMs, the real-time CellTox™ Green Cytotoxicity assay (Promega) was
performed according to manufacturer’s protocol. After the isolation of BC-PDMs from breast
carcinoma specimen, the BC-PDMs were cultured for 1-2 weeks prior efficacy compound
testing. The assays were performed according to manufacturer’s protocol. For each
treatment, three to five replicates each with n = 15 BC-PDMs were prepared in phenol-red
free BC-PDMs culture medium with a total volume of 150 ul. A proprietary cyanine dye binds
to DNA in compromised cells leading to enhanced fluorescent signal. The dye is excluded
from viable cells and thereby shows no increase in fluorescence. The fluorescent signal
produced by the dye binding to DNA is therefore proportional to cell death. The dye was
diluted 1:1000 and signals were measured as relative fluorescent unit (RFU) (485-500 nm
Excitation / 520-530 nm Emission) using the Envision Multilabel Plate Reader 2102 and
Tecan Spark Multimode Plate Reader. RFU values were background-corrected and
treatment to DMSO (H20) control fold changes were calculated for each measured time
point. Outliers were excluded using Iglewicz and Hoaglin’s robust test for multiple outliers

applying a recommended Z-score of 2 3.5 (27).

4.7. Statistical analysis

Statistical analysis was performed using GraphPad Prism software. Statistical methods are
illustrated in the respective figure legends. For Boxplot data, whiskers represent quartiles
with minimum and maximum values and the median. Datasets with no normal distribution
were analyzed with unpaired, two-tailed Mann-Whitney-U-test, otherwise as indicated. For all
analyses, p values < 0.05 were considered statistically significant. Recommended post-hoc
tests were applied for multiple comparisons. Data is analyzed as mean with standard error of
the mean (SEM).



5. Results

5.1. BC-PDMs can be isolated from breast tumor tissues of different types with
high viability
We previously established a novel 3D platform consisting of patient-derived microtumors
(PDM) and tumor infiltrating lymphocytes (TILs) to identify treatment responses and
therapeutic vulnerabilities in ovarian cancer and glioblastoma (23, 28, 29). Here, we aimed to
extend the PDM and TIL isolation (Figure S1) method to BC. Isolation and expansion of TIL
populations was successful in >95% of analyzed tissue samples with an average TIL viability
of >90% (Figure S1A-B). Multicolor flow cytometry analyses identified the presence of
heterogenous subpopulations of regulatory and exhausted T cell populations (Figure S1C-H).
The study enrolled patients over 18 years of age diagnosed with BC of all molecular
subtypes. In total, we obtained n = 102 residual fresh mammary carcinoma tissue samples
from debulking surgeries conducted at the University Hospital Tuebingen (Table S1). To
analyze the viability of BC-PDMs after the isolation from BC specimen, we combined live-
dead cell staining with 3D spinning disc confocal microscopy. As shown in Figure 1A, viable
cells were stained with Calcein-AM, dead cells with SYTOX™ Orange and nuclei with
Hoechst dye. Comparing the fluorescent intensities of viable and dead cells normalized to
the total measured volume (um?®) in n = 27 BC-PDMs models (Figure 1B), the number of
viable cells was significantly higher than that of dead cells (Wilcoxon signed rank test, p <
0.001). Within the n = 27 BC-PDMs samples, microtumors had variable sizes, with an
average area of 59261 ym?, a maximum area of 888481 ym? and a minimum area of 7003
um? (Figure 1C, Table S2). The overall success rate of BC-PDMs isolation from n = 102
breast carcinomas was > 75%. We were able to isolate more than 100 PDM per sample from
50% of the tissue samples obtained (Figure 1D). In 25.5% of cases, PDM were generated
with less than n = 100 PDM per sample, while in the remaining 24.5%, no PDM were
recovered from the tissue sample. In total, we successfully established n = 77 BC microtumor
samples. Depending on the number of PDM recovered per sample, different downstream
analyses could be performed such as immunohistochemistry (IHC), anti-cancer drug efficacy
testing and/or protein profiling (see below). To determine whether the success rate of BC-
PDMs isolation was related to specific clinical features of the original primary tumor, we
correlated the available clinical data of the corresponding tumor samples and the obtained
BC-PDMs models (including samples with > 100 isolated PDM) (Figure 1E). The success
rate of BC-PDMs isolation appeared to be largely independent of clinical features of the
corresponding primary tumor tissue (PTT). BC-PDMs were successfully isolated from breast
tumor tissue samples regardless of tumor grade, histological tumor type and hormone

receptor status.
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Figure 1. Isolation success of BC-PDMs. (A) Live-dead cell staining of isolated breast cancer (BC) BC-PDMs
from representative breast carcinoma tissue samples. BC-PDMs were stained with Calcein-AM (viable cells),
SYTOX™ Orange (dead cells) and Hoechst 33258 (nuclei). Scale bars 50 um. (B) Quantification of viable and
dead cells in n = 27 BC models (on average three BC-PDMs per model) reveals high viability of BC-PDMs.
Fluorescent intensities and volumes (um3) were assessed using the Imaris Software. Wilcoxon paired signed
rank test, ***p < 0.001. (C) Area measurement of BC-PDMs from n = 27 BC models. Data are shown as mean
values with SD. (D) Success rate of microtumor isolation from n = 102 breast carcinomas. 50% of BC BC-PDMs
models reached a total number of more than 100 single microtumors. (E) Correlation of BC-PDMs isolation
success rate and clinical characteristics of corresponding breast carcinomas tissue samples.



5.2. Histotype-specific pathological characteristics of breast tumor tissue are
conserved in corresponding BC-PDMs.

Breast carcinomas form a heterogenous group of tumors and show high variability in
morphologic features, e.g. degree of pleomorphism, cellular atypia, mitotic activity or stromal
circumference. Yet, there are morphological features characteristic of different histologic sub-
types. Among others, tumor cells form nests, clusters, cords, trabeculae, or single file lines
(“Indian File”) (30) depending on the specific sub-type. Using H&E staining, a certified
pathologist compared the histopathological and cytological characteristics of the isolated BC-
PDMs and the corresponding PTT. We divided the specimens according to histological
classification into invasive ductal carcinomas of no special type (NST) and invasive lobular
carcinomas (ILC) with or without in-situ components. Tumor cells of NST-PTT formed
irregular invasive nests/clusters, cords, and sheets within the stroma, in some tissues with
glandular features (Figure 2A). PTT further displayed distinct ascitic structures filled with
tumor cells (#33, #68), tubular structures (#58, #68) with small lumina, papillary structures or
no distinct architecture. Similar to corresponding PTT, tumor cells of NST-BC-PDMs formed
solid (cohesive), papillary nests with closely spaced cells (BC-PDMs/PTT: #33, #42, #58,
#68, #90) and a clear separation from the ECM compartment. In addition, glandular
structures were also evident within NST-BC-PDMs (#31 and #45). The histopathologic
architecture of ILCs with in-situ sites is more specific than that of IDC. The lobular ascites of
in-situ lesions retained their overall structure in PTT and were filled with small, round,
monomorphic epithelial cells almost without lumen (e.g. #70, #86). Infiltrating cells within
ILCs were dispersed with poor cohesion and grew in slender strands or single files (so called
“Indian Files”) or concentrically around ducts or lobules (PTT e.g. #25, #70, #86). Tumor cells
of ILC-BC-PDMs were mostly discohesive and dissociated in the surrounding stromal tissue
(#25, #53, #86, #92, #102), thus resembling primary infiltrating tumor lesions (Figure 2B).
This histological feature was also found in NST-BC-PDMs #96. Overall, pathological
evaluation of BC-PDMs specimens revealed histological similarity to breast tumor tissue in
97.5% of cases (n = 39/40) and to histological tumor type (IDC/NST) in 95% of cases (n =
36/38) (Figure 2C). Stromal compartments were present in 57.5% of cases (n = 23/40). In
result of comparison of the cytopathology of BC-PDMs and corresponding PTT, similar
cellular atypia was found. While some BC-PDMs consisted of small, rather homogenous cells
without prominent nucleoli (e.g. #25, #29, #45, #53), other samples exhibited moderate (#31,
#33, #58, #96) to strong nuclear pleomorphism (#68, #70, #86, #90, #92, #102) with large,
hyperchromatic nuclei and prominent nucleoli. Most BC-PDMs resembled a moderate
nuclear grade (n = 21) with moderate hyperchromasia (n = 19). While 20.5% (n = 8/39) of

samples had a similar nuclear grade of BC-PDMs and corresponding PTT, the majority



(59%) of BC-PDMs had a nuclear grade decreased by 1 degree (Figure S2A). In summary,

BC-PDMs largely resemble the histopathology of the corresponding primary tumor tissue.

5.3. BC-PDMs contain extracellular matrix components of the original tumor
tissue

The ECM, representing a complex network of tissue fibers, glycoproteins (e.g. elastin,
laminin, fibronectin), proteoglycans (PGs), and glycosaminoglycans (GAGs), not only
provides stability and a reservoir for e.g. growth factors, but also plays a role in breast
tumorigenesis, invasiveness (31, 32) and therapy response (33). Furthermore, ECM stiffness
and density were found to correlate with prognosis in breast cancer (34) (35). To evaluate
and compare the ECM within BC-PDMs and corresponding PTT, we used the Movat-
pentachrome staining to visualize different components of connective tissue on a single slide
(36). In PTT sections, the predominant ECM components were PGs/GAGs (cyan blue) and
collagen fibers (yellow), which mostly overlapped (green) (Figure 2D). In all PTT, dense
collagen networks were detected in close proximity to the tumor masses due to increased
collagen deposition. This leads to the “stiffening” of the tissue (31). The collagen fibers
exhibited different morphologies: short and wavy (e.g. PTT #29), thin and linear (e.g. PTT
#31) or thick and linear (e.g. #36, #53). Most notable were dense and thick collagen fibers
wrapped around tumor masses (e.g PTT #31, 58), especially in stromal areas adjacent to in-
situ lesions (e.g. PTT #36, #86, #102). Tumor borders were either relatively smooth, with
collagen fibers drawn at a tangential angle around the tumor (e.g. PTT #86) or oriented
perpendicular in the direction of cell invasion (e.g. PTT #58) (Provenzano, 2006 #522).
Corresponding BC-PDMs exhibited ECM components to a lesser extent compared to primary
tissue. Despite limited enzymatic tissue disruption during BC-PDMs isolation with
collagenase | and I, we detected collagen expression (yellow/green) in the corresponding
BC-PDMs (e.g. BC-PDMs #29, #36, #58, #53, #70). Compared to tumor masses in the PTT,
which are surrounded by thick collagen fibers, the arrangement of collagen in BC-PDMs was
less specific. In BC-PDMs, the collagen rather formed a backbone structure for the tumor
cells. In general, BC-PDMs appeared like small tumor fragments excised from tumor masses
of the corresponding primary tumor tissue and consisted of the inner tumor cell mass with its
ECM components, but without the framing collagen fibers. In addition to cross-linked
collagen-fibers, PGs/GAGs (cyan blue) were found within tumor masses/islets of the PTT
(e.g. #29, #58, #53, #70) and demarcated tumor masses from the stroma as a single layer
separated from collagen fibers (e.g. PTT #58, #86, #102). PGs/GAGs were found in BC-
PDMs when their expression within tumor masses in corresponding PTT was high (e.g., BC-
PDMs #29, 31, #58). Elastic fibers (black) were mostly attached to collagen fibers (e.g. PTT
#53, #86, #102) and were more abundant in ILC compared to IDC (NST) tissues. In contrast
to other BC-PDMs, the ECM of BC-PDMs #102 exhibited elastic fibers, as in the



corresponding primary tumor. Further, mucin (blue/gray) secreted by tumor cells was found
in sections of PTT #31 and #86 and in the corresponding BC-PDMs. Different amounts of
collagen were observed between ILC and NST tumors, both in PTT and PDM samples
(Figure 2E). Within ILC-PTT, significant higher amounts of collagen fibers were detected
compared to NST-PTT (Figure 2F), as previously reported (37). Collagen deposition in PDM
was reduced as compared to corresponding PTT sections as expected due to the restricted
amount of BC-PDM available for these analyses. Data showed a non-significant trend
towards higher collagen deposition in ILC BC-PDM (Figure 2E-F). In conclusion, the Movat-
pentachrome staining allowed the visualization of different ECM components of the primary
tumor within BC-PDMs. Compared to whole tumor masses in tumor tissues, the ECM

compartments in BC-PDMs occur to a lesser extent and in slightly different arrangement.

5.4. Immunohistochemical analysis of hormone receptor expression enables
distinction of BC-PDMs isolated from hormone receptor positive and
TNBC primary tumors.

To further characterize BC-PDMs, we performed immunohistochemistry (IHC) analysis of
FFPE-BC-PDMs sections. We examined the expression of hormone receptors, cytokeratins
as well as cancer-associated fibroblasts (CAFs) and immune cell markers using DAB
staining. To analyze the expression of clinical molecular markers, we stained BC-PDMs
sections for ERa, PgR and HER2. BC-PDMs were classified as hormone receptor positive
(HR+) or triple negative (TNBC) as determined by pathologic evaluation of the primary tumor
(Figure 3A). TNBC is an aggressive type of BC usually with higher grade, higher rate of early
recurrence and a worse 5-year prognosis (38-41). It is defined by lacking expression of
hormone receptors and HER2. For each tissue sample, the corresponding immunoreactive
scores (IRS) and HER2 scores (0-3) were determined (Table S1). ERa and PgR staining of
BC-PDMs was consistent with the corresponding clinical classification and was increased in
BC-PDMs originating from HR+ PTT (Figure 3B). The level of ERa and PgR expression
varied within HR+ BC-PDMs. In contrast, HR expression was strongly reduced in TNBC-
PDMs. HER2 was detectable in HR+ BC-PDMs sample #10 and #37. However, HER2
expression in BC-PDMs #37 did not resembile its clinical HER2 score, which was reported to
be zero. In conclusion, IHC staining enabled the identification of BC-PDMs isolated from
linical HR+ breast tumors and those isolated from clinical TNBC tumors based on hormone

receptor expression.
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Figure 2. Histopathology and cytology of BC-PDMs and corresponding PTT. H&E staining of BC-PDMs and
corresponding primary, (A) invasive ductal breast carcinomas (NST) with/without ductal in-situ (DCIS) lesions and (B)
invasive lobular breast carcinomas (ILC) with/without lobular in-situ (LCIS) lesions. (C) Pathological evaluation of BC-
PDMs. n = 39/40 BC-PDMs resembled histopathology of breast carcinomas, n = 36/38 of the corresponding primary
tumor histotype (NST/ILC; NST/ILC histology not available for one sample; one other sample classified as medullary
carcinoma and excluded from comparison of NST and ILC BC-PDMs) and n = 23/40 BC-PDMs displayed stromal
parts. Histopathological tumor characteristics of BC-PDMs were assessed such as hyperchromasia and nuclei
differentiation (nuclear grade 1: nuclei with little variation in size and shape; grade 3: large nuclei with high variation in
size and shape; grade 2: nuclei show features between 1 and 3. (D) Movat-pentachrome staining revealed connective
tissue compartments in BC-PDMs and PTT e.g. collagen fibers (yellow), PGs/GAGs (cyan blue), collagen/PGs/GAGs-
superimposition (green), mucins (blue) and elastin (black; representative images shown for n = 8 matched pairs of BC-
PDMs and corresponding PTT). (E) Amount of collagen fibers within BC-PTT and BC-PDMs. Collagen fibers are
measured semi-quantitatively as %-area fraction. RGB images were unmixed by subtractive mixing (color
deconvolution) via ImageJ. (F) Averaged %-area fraction of BC-PTT and BC-PDM (n = 17) samples shown in (E). Data
are mean with SEM. *p < 0.05, **p < 0.01, ***p < 0.001. Unpaired, parametric t-test. Scale bars BC-PDMs: 50 um/10
um (zoom); PTT: 500 um/50 um (zoom; paired sections of BC-PDMSs and corresponding PTT specimen were available
from n=17 samples displaying stromal parts for Movat-pentachrome stainings).

5.5. BC-PDMs display differential expression of luminal and basal cytokeratins

Since cytokeratin (CK) expression is thought to be stable throughout carcinogenesis (42),
CKs are studied as differentiation markers in precancerous breast lesions. Breast tissue
normally consists of a stratified epithelium with luminal epithelial cells surrounded by a
basement membrane composed of myoepithelial cells, both with different CK phenotypes
(43, 44). Breast carcinomas are found to express different CKs, such as the luminal subtype
expressing luminal epithelial CKs (CK8/CK18/CK19) or the basal subtype expressing basal
myoepithelial high molecular weight (HMW) CKs (CK5/CK6/ CK7/CK14) (4, 45, 46).
Nevertheless, some breast tumors were shown to express both types of CKs (44, 47). Here,
we analyzed CK5, CK6 and CK18 staining of HR+ and TNBC-PDMs. We found highly
heterogenous staining of CKs in HR+ and TNBC -PDM. The heterogenous CK expression
allowed us to subdivide the BC-PDMs based on CK expression. Thus, we divided HR+ BC-
PDMs into four groups based on the evaluated CK expression: CK5/CK18* (luminal,
differential glandular phenotype), CK5* (basal), CK5/6" (basal, stem cell phenotype) and
CK5/6/18" (intermediate glandular phenotype) (48)(Figure 3C). CK5/CK18*-PDM showed
significantly higher CK18 expression compared to CK5 (**p = 0.004) or CK6 (**p = 0.005)
(Figure 3D). The abundances of CK5 and CK6 were significantly higher in the CK5" (p =
0.006) and CK5/6" (p = 0.020) groups compared to the CK5/CK18" group. Some HR+ BC-
PDMs were positive for all three CKs. Comparing the CK expression between HR+ BC-
PDMs and TNBC -PDM, we found significantly increased CK18 expression (p = 0.006), a
marker for luminal carcinomas, in HR+ BC-PDMs (Figure 3D). TNBC BC-PDMs did not show
CK18 expression, but moderate expression of CK5/6. This is consistent with the literature
(44). As a hallmark of EMT, lack of CK18 expression has been associated with tumor
progression (49) as it promotes cancer cell migration (50). Two of the four TNBC -PDM
analyzed here showed strong CK5 expression, and BC-PDMs #38 also displayed high CK6
expression. Due to high CK5/6 positivity correlating with poorer prognosis (51), TNBC -PDM
#38 was defined as a basal-like subtype of TNBC. Overall, CK5/6 expression was not



significantly different among HR+ and TNBC -PDMs (Figure 3D). When ILC and NST BC-
PDM were compared, ILC BC-PDM showed a non-significant trend towards higher
expression of the HMW cytokeratins (CK5/6), whereas NST BC-PDM showed a non-
significant trend towards higher expression of luminal CK18 (Figure 3E). We next analyzed
additional markers such as FAPa, associated with CAFs (cancer-associated fibroblasts), and
immune cell markers CD163, CD8 and PD-L1 (Figure 3F). PD-L1, a T cell inhibitory
checkpoint marker, and CD8, a marker for cytotoxic T cells, were mostly absent from BC-
PDMs except for BC-PDMs #70. CD8* T cells were detected in BC-PDMs #78. Sporadic

expression of CD163 indicating the presence of M2 macrophages was found in BC-PDMs
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Figure 3. Immunohistochemical analysis of breast cancer specific and immune cell markers in BC-PDMs.
DAB staining was analyzed semi-quantitatively as %-area fraction of a BC-PDMs. RGB images were unmixed by
Subtractive mixing (color deconvolution) using Imaged software. (A) Hormone receptor (HR) DAB staining of clinically
classified HR+ BC-PDMs vs. TNBC BC-PDMs. Clinically assessed immunoreactive scores (IRS) from primary tumor
are indicated. HR+ BC-PDMs were arranged in ascending order of ERa expression (B) HR+ BC-PDMs have
increased HR expression (ERa, PgR, HER2) compared to TNBC BC-PDMs. (C) DAB staining of luminal cytokeratin
(CK18) and basal cytokeratins (CK5 and CK6). BC-PDMs were grouped into four groups according to CK staining:
CK5 CK18*, CK5*, CK5/6* and CK5/6/18*. (D) Significantly elevated expression of luminal CK18 vs. basal CK5/CK6
in HR+ compared to TNBC BC-PDMs. Mann-Whitney U test, **p = 0.006. Differences in CK18, CK5 and CK6
expression in HR+ and TNBC BQ-PDMs according to their classification into the previously determined groups. Within
group: One-way ANOVA, Holm-Sidak’s multiple comparisons test. Different group comparison: Two-way ANOVA,
Holm-Sidak’s multiple comparisons test. (E) Differences in CK and FAPa expression in ILC BC-PDMs vs. NST BC-
PDMs. NST-BC-PDMs show higher levels of CK18, while ILC-BC-PDMs show significant higher levels of FAPa.
Mann-Whitney U-test, *p = 0.028. Both ILC/NST-BC-PDMs express basal CK5 and 6. (F) DAB staining of FAPa and
immune markers in BC BC-PDMs grouped into HR+ and TNBC. For HR+ BC-PDMs, BC-PDMs were arranged in
ascending order of FAPa expression. Data are mean with SEM. *p < 0.05, **p < 0.01, ***p < 0.001. ERa: estrogen
receptor alpha; PgR: progesterone receptor; HER2: HER2/neu-ErbB2 receptor.
(e.g. #68, #53, #70, #34). In contrast, FAPa was detectable in all stained BC-PDMs, to
varying degrees. Among them, ILC-BC-PDMs showed significantly stronger FAPa staining
(Figure 3E, p = 0.028) in accordance with the literature (52). Significant differences between
TNBC and HR+ BC-PDMs were not identified. In conclusion, BC-PDMs largely reflect the
hormone receptor status of the corresponding tumor tissue and exhibit heterogeneous
expression of CKs and FAPa, which are markedly different in HR+ and TNBC and ILC-NST
BC-PDMs. In addition, immune cell markers could be identified sporadically in BC-PDMs and

independent of hormone receptor status.

5.6. Protein expression and signaling pathway activity of BC-PDMs correlate
with corresponding primary tumors

Following histological characterization, we extended the comparison of BC-PDMs with
corresponding primary tumor tissues by in-depth quantitative protein profiling analyses. We
therefore measured protein expression and activity of key signal transduction pathways in n
= 20 matched BC-PDMs-PTT pairs employing the DigiWest® technology (26). In this way,
we generated protein profiling datasets covering 142 total and phosphorylated proteins (raw
data: Table S3; BC-PDMs-PTT data: Table S4). The analyzed profiling panel comprised
proteins from the cell cycle, Jak/STAT, MAPK, RTK, PI3K/Akt, EMT/cytoskeleton and Wnt
signaling pathways. Pearson correlation revealed an overall high, positive correlation of
averaged protein signals between matched BC-PDMs and PTT with P, = 0.856 (p < 0.001;
Figure 4A). Furthermore, comparison of signaling pathway activity and expression of breast
cancer-related proteins, resulted in no significant differences. Overall, the average protein
expression of BC-PDMs resembled that of matched breast cancer tissue (Figure 4B, Table
S5). Subsequently, changes in protein abundance were determined between BC-PDMs and
PTT pairs. In total, n = 18 analytes displayed significant differences in expression (-log10 (q)
> 1.3) and a log: fold change of at least |1| (Figure 4C-D). BC-PDMs had increased protein
levels of the cytoskeletal protein cytokeratin 5 and 6 (CK5/6), while expression of immune
cell markers CD11c, CD16, CD68, CD8 alpha, CD25, PD1 and PD-L1 were decreased. This

is consistent with our IHC data, demonstrating that BC-PDMs are small tumor fragments



20
breast cancer marker cell cycle MAPK/RTK
s 360
e Ly w 207 887 204 | L 20-
= s I | o 340
o]
o o  —
3 10+ @ 154 oo 154 o © 15+ 5
£ £= 0° &b g
= £< o b2o] :g
5 5 < 10 % % 104 ¥ 10-
8’ =] o 0p5°
B P 0.856 3= . ﬁ-q <5 % o
earsonr=0. e o 5+ . 5
0 T T T 1 E o o s &
0 5 10 15 20 Z 0 . o
log,(mean PTT) PDM PTT PDM  PTT PDM  PTT
c PI3K/IAKT NFkB/Wnt EMT/cytoskeleton
PDM vs. PTT
20+ 20+ 20+ 699
6= ; 355 436 o
; 15 15 [ ] 154 oo
& : 2 * e oo o ©%
‘g i €D25, POLT NFg Pe-pSer4o @ B o ® ®
™ CD11c a0 —@ % 10+ 8%6 L [o) gj&
= PD1 : & o o ©o ®
o 3+ § b © co © 00 o
= : Cytokeratin 5 ' 5+ 5 ° 5+ 8
E’ 2= %%81 glpha Cytokeratin 6
' .
14 : T 0 0 0
. " _:%" gt PDM PTT PDM  PTT PDM  PTT
0 ] | | ﬂ .I | ) 1

-8 6 -4 -2 0 2 4 6 8

loga(FC) , 2
2 £ 2 £ o
g s23 § § = S0s o
& @ 5 [ (]
D E 3 : :
Protein 10910 peiiog2) 2 £ g 43
value) 9 % 5% - s
ATGS 217 1.34 g as
Edi sk
Caveolin-1 148 -1.32 00 Eon
Cytokeratin 5 217 3.35
Cytokeratin 6 1.85 541
CD11c 343 -3.63
CcD16 1.89 -5.59
CcDeg8 1.53 -1.16
CD8 alpha 2.10 -5.70
CD25 433 -4.70
PD1 321 -3.40
PD-L1 433 428
p38 MAPK-pThr180/Tyr182 148 -2.29
CREB-pSer133 217 -2.25
IKK alpha-pThr23 2.53 -2.22
IKK epsilon-pSer172 149 -3.22
NF-xB p65-pSerd68 433 247
Pi3-kinase p85/p55-
pTyrd58/Tyr198 Peak1 217 2.21
Y
o 1.0 PTT
—_—
=
-0
28
c
(=
[T
E i
<
=
c
S
-
53
[
‘5 Median = 0.44
054—1T-
o
Pearson r

PDM [—
<0 05 0 05 10

Figure 4. Comparison of protein profiles from BC-PDMs and corresponding primary tumor tissue.

N = 20 matched BC-PDMs and PTT-pairs were analyzed. (A) X-Y plot of correlated protein means of BC-PDMs and
PTT. Protein signals of measured BC-PDMs-PTT samples were correlated using Pearson correlation. DigiWest AFI
protein signals were averaged for BC-PDMs/ PTT and log:2 transformed. Each dot represents one protein. Pearson r =
0.856; ***p < 0.001. (B) Overall signaling pathway activity in BC-PDMs resembled that of primary BC tumors. Proteins
were sorted by pathway affiliation. Shown are AFI protein signals, averaged for BC-PDMs/PTT and log2 transformed.
Mann-Whitney test; p values as indicated. (C-D) Differently expressed proteins of matched BC-PDMs-PTT samples.
Volcano plot shows proteins with significantly decreased or increased expression in BC-PDMs (red) with an adjusted
FDR p-value (-log10 (q)) > 1.3 and a log2 fold change > |1|; multiple t-test with Welch correction; Benjamini, Krieger,
and Yekutieli FDR. Exact values are shown in D. (E) Heatmap of unclustered pearson correlation coefficients (r) shows
moderate correlation of AFI protein signals over BC-PDMs and matched PTT samples. (F) Pearson correlation
coefficients (r) displayed as scatter plot with a median correlation of r = 0.44. Data are mean with SEM. AFI: averaged
fluorescent intensities.



composed of tumor cells, ECM proteins and partially stromal cells of the corresponding tumor
tissue, with immune cell infiltrates in a few cases. Other proteins displaying reduced
expression in BC-PDMs as compared to matched PTT belong to different signaling
pathways. Among them were mainly phospho-proteins of the MAPK pathway (p38 MAPK-
pThr180/Tyr163), the PI3K pathway (PI3K p85/p55-pTyrd58/199) and the NFkB pathway
(NFkB p65-pSer172, IKK alpha-pThr23, IKK epsilon-pSer172). Correlation data of individual
proteins showed a general, positive correlation between protein signals of matched BC-
PDMs/PTT-pairs (Figure 4E) with a median coefficient of r = 0.44 (Figure 4F). Table S6 lists
the proteins whose signal levels correlated significantly with those of the primary tumors.
Significant positive correlations were found across all signaling pathways. Among them, ERa
protein expression was significantly correlated between BC-PDMs and matched PTT (r =
0.86, **p < 0.001). ERa is clinically relevant for the classification of breast tumors. In
addition to the histological assessment, we demonstrated at the protein level that the protein
signaling pathway profiles of BC-PDMs are similar to those of the original tumor tissue
across several signaling pathways. In individual cases, differences between the results of
protein profiling analyses and histopathological assessment were observed. The
corresponding tumor of BC-PDM #81 was classified as TNBC according to histopathology,
whereas the result of protein profiling identified this model as ERa positive. In contrast, tumor
sample #36 showed expression of ER according to histopathology, but not according to
protein profiling. Overall, protein expression of PTT is reflected in BC-PDMs with high

correlation.

5.7. Cross-comparison of protein profiling data among individual BC-PDMs
identifies personalized pathway activation signatures

To classify the BC-PDMs samples based on their individual protein profiles, we analyzed
signaling pathway activity of n = 42 BC-PDMs samples using hierarchical cluster linkage
(HCL) analysis (Figure 5; Table S7). In addition, samples were assigned according to clinical
data as HR+, TNBC or HER2-positive (HER2+) (illustrated in Table S1). Cluster analysis of
cell cycle-related proteins resulted in four sample groups with different levels of cell cycle
regulator expression (Figure 5A). In addition to cluster 1, which included the BC-PDMs
sample #38, all HR+ BC-PDMs samples with either weak or mixed expression levels were
grouped into cluster 2 (n = 8) and 3 (n = 17). Clusters differed mainly in the expression of
transcriptional activators E2F-1, E2F-2, transcriptional repressor E2F-4 and p53. TNBC,
HER2+ and the remaining HR+ BC-PDMs samples were grouped into cluster 4 (n = 16) and
showed overall increased expression of cell cycle regulatory proteins. HCL of MAPK-RTK
pathway proteins distinguished three sample groups separating n = 19 HR+ BC-PDMs with
overall decreased protein abundances from n = 19 TNBC-, HER2+- and HR+ BC-PDMs with
elevated expression levels (Figure 5B). Notably c-Met, RSK1-pThr573, NF1 and c-Raf were



upregulated in the latter group compared with the HR+-only group. When comparing
PI3K/Akt pathway activity among individual BC-PDMs models, samples were divided into two
groups, too, with one group again consisting of HR+ samples and the other containing all
TNBC and HER2+ samples (Figure 5C). Here, BC-PDMs were characterized by enhanced
levels of beta-catenin, FoxO3a, Akt-pSer473, CREB, CREB-pSer133, PDK1 and IKKalpha-
pThr23.

Next, we visualized the median-centered protein profiling data of BC-PDMs in box-whisker
plots. This allowed us to identify individual BC-PDMs samples with increased expression of
proteins belonging to cell cycle, MAPK/RTK and/or PI3K/AKT signaling pathways,
respectively (Figure 5D). Of interest were BC-PDMs samples with median-centered protein
expression log> AFIl = 1, corresponding to a fold change = 2 (Table S8). Upregulated cell
cycle activity was identified in n = 8 BC-PDMs, whereas MAPK/RTK signaling was amplified
in n = 11 BC-PDMs with median expression levels = 1. Higher PI3K/Akt pathway activity was
present in n = 7 BC-PDMs. Interestingly, all three signaling pathways were concomitantly
upregulated in the four BC-PDMs samples #20, #78, #92 and #96. At the same time other
BC-PDMs models showed simultaneous downregulation of all analyzed signaling pathways
as indicated by log> AFI values < -1 (e.g. BC-PDMs #15, #18, #60, #89, #99). Pathway
analysis thus allowed the classification of individual BC-PDMs samples based on specific
protein expression profiles. Histopathologic phenotypes were not observed to correlate with

pathway activity.

5.8. TNBC-PDMs exhibit increased PISBK/AKT and MAPK/RTK pathway activity

DigiWest-based protein profiling of BC-PDMs also enabled the differentiation of TNBC -PDM
from HR+ BC-PDMs samples. TNBCs are known to be characterized by altered oncogenic
signaling pathways such as PI3K/Akt and MAPK/Erk (53). Genetic aberrations of upstream
regulators, such as activating mutations of PI3K, Ras, b-Raf, loss of function mutations of
PTEN, overexpression of EGFR, have been shown to be common in breast cancer and play
an important role in its dysregulation (54-59). These changes can cause the development of
chemoresistance in TNBC patients (60-62). In line with these findings, we found PI3K/AKT (p
= 0.006) and MAPK/RTK (p = 0.032) pathways significantly upregulated within TNBC -PDM
as compared to HR+ BC-PDMs (Figure 5E). Proteins with significantly elevated abundance
included AKT (p = 0.022), elF2a-pSer51 (p = 0.009), elF4E (p = 0.049), GSK3beta (p =
0.006), GSK3beta-pSer9 (p = 0.007), PTEN (p = 0.040), PTEN non-p (p = 0.044), p70S6K (p
=0.009), CREB-pSer133 (p = 0.041). All these regulators have previously been associated
with TNBC. Furthermore, we were able to assign additional proteins with elevated
abundance in TNBC -PDM to the MAPK/RTK pathway. Parallel to the PI3K signaling, the
MAPK pathway is another driving force in TNBC (63) and correlates with high disease



recurrence rates in patients with TNBC (64). We observed significant upregulation for Erk1/2
(p =0.022), MEK2 (p = 0.002), Src-pSer17 (p = 0.012) and Src-pTyr527 (p = 0.014) (Figure
5F). Other signaling pathways (e.g. cell cycle, NFkB-Wnt) did not show a significant
distinction in expression between TNBC- and HR+ BC-PDMs. However, we identified

upregulation of individual proteins related to the cell cycle: CDK2 (p = 0.022),
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Figure 5 DigiWest-based protein pathway profiling of BC BC-PDMs. Hierarchical cluster linkage analysis
(HCL) of median-centered, log: transformed AFI protein signals of n = 42 BC BC-PDMs samples, divided into cell
cycle, MAPK/RTK and PI3K/Akt pathways. Molecular subtype classifications of BC BC-PDMs samples as
indicated. (A) HCL of sample and cell cycle-related analytes with complete linkage. Four sample clusters were
identified based on differential expression levels. (B) HCL of sample and MAPK/RTK-related analytes with
average linkage. There are two main sample clusters (excl. BC BC-PDMs #25) that separate samples with high
MAPK/PI3K protein expression from those with low expression. (C) HCL of sample and PI3K/AKT-related
analytes with complete linkage. Two main sample clusters were identified: “high-expression” and “low-
expression”. (D) Differences in signal transduction in BC BC-PDMs samples. Box-whisker plots show median-
centered, log2 transformed AFI protein signals of different pathways. Data distribution within samples is illustrated
by lines connecting min. and max. values. Each red dot represents a protein. Black lines in box plots indicate the
“median” of measured proteins within a sample. Blue lines delineate the values > |1| corresponding to a fold
change > 0.5. (E) TNBC BC-PDMs showing elevated PISK/AKT- and MAPK/RTK- pathway activity. The
averaged, log2 transformed protein signals are compared between TNBC and HR+ BC-PDMs within different
pathways. Mann-Whitney U test, PI3K: p = 0.006, MAPK/RTK: p = 0.032. (F) Differentially expressed proteins in
TNBC BC-PDMs. Comparison of mean protein expression in TNBC vs. HR+ BC BC-PDMs. Enhanced protein
abundances in TNBC BC-PDMs were found for several proteins associated with cell cycle, metabolism, immune
system, PIBK/AKT, MAPK/RTK and NFkB pathway. Mann-Whitney U test, *p < 0.05, **p < 0.01, ***p < 0.001.
Data are mean with SEM.

CDK2-pThr160 (p < 0.001), CDK4 (p = 0.025) and CDK4-pThr172 (p = 0.019). While CDK2
hyperactivation is linked to basal-like breast cancer tumors (65), aberrant expression of
CDK4 is linked to drug resistance (66). Consistent with increased elF2a-phosphorylation in
TNBC -PDM and the associated upregulation of aerobic glycolysis (67-69), we also found an
upregulation of metabolism-related proteins including GLUT1 (p = 0.029) and IDH1 (p =
0.029). When comparing BC-PDMs derived from NST and ILC tumors, we detected no
differences in overall signaling pathway activity (Figure S3A). However, we observed
differential expression for individual proteins such as E-Cadherin-pSer838/840, CK8-pSer23
and ERa (Figure S3B). Decreased E-Cadherin levels in ILC-BC-PDMs are in accordance
with inactivating CDH1 (E-Cadherin) mutations that are frequently observed in ILC tumors
and disrupt cellular adhesion/epithelial integrity (70, 71). In accordance with G. Ciriello et al.
(72), we discovered lower GATA 3 protein levels in ILC tumors. Reduced ERa signal in ILC-
BC-PDMs may be explained by decreased GATAS expression, as it plays a pivotal role in the
recruitment of the ER transcription complex (73). In summary, identified overexpressed
signaling proteins in TNBC -PDM affect many different cellular processes in cancer cells,
including proliferation, differentiation, migration, cell growth and survival. Our results are
consistent with previous findings in TNBC and show that BC-PDMs reflect protein signaling

pathway activation characteristics of corresponding primary breast tumors.

5.9. Identification of marker panels for individualized responses towards
hormone- and chemotherapy using combined cytotoxicity and protein
profiling analyses of BC-PDMs

BC-PDMs responses to four anti-cancer drugs were evaluated by a microplate-based
cytotoxicity assay. Microtumors derived from different patients were treated with the selective
estrogen receptor modulator (74) tamoxifen (TAM), the taxane chemotherapeutics docetaxel
(DTX) and paclitaxel (PTX), and the CDK4/6 inhibitor palbociclib (75). Samples were not

differentiated according to receptor status since differences regarding the receptor status



determined by histopathology and by protein profiling analysis, respectively, were observed
in individual cases (see Section 5.6). Treatment-induced cell death was measured in a time
series (24h, 48h and 72h) and compared to the respective vehicle control (Table S9). A
significant treatment effect, defined as a significant fold change in cell death between vehicle
control and treatment, was considered a response, whereas a nonsignificant effect was
considered a non-response or treatment resistance. (Mixed-effects model, Fisher’s
uncorrected LSD test). This approach allowed to divide the samples into responder (R) and
non-responder (Non-R) groups (Figure 6A). BC-PDMs responded heterogeneously to the
applied drug treatment. Most frequently they responded to treatment with DTX (9/29). Four
samples showed a response to TAM (4/29), six samples to PTX (6/29) and five samples to
PAB (5/29). Next, we compared the protein expression profiles (median-centered, log:
transformed data) of the previously determined responder and non-responder BC-PDMs
groups. Using DigiWest® analysis, we generated resistance/sensitivity protein marker panels
that clearly distinguished responder from non-responder BC-PDMs (Figure 6). For each
treatment, we selected proteins that are associated with therapy response/resistance
according to literature and are significantly differentially expressed in responder vs. non-
responder BC-PDMs or are involved in therapy-related signaling pathways (Table 2, Figure
S4).

In the TAM responder group, we identified a panel of nine proteins with significantly
decreased abundances (Figure 6B, Mann Whitney U test, ***p < 0.001). Phosphorylated
proteins that were elevated in the treatment-resistant BC-PDMs group (Table 2) included
ERa-pSer167, FGFR-pTyr653/654, PI3-kinase p85/p55-pTyr458/199, and IKKepsilon-
pSer172, all of which are directly or indirectly related to TAM resistance according to the

literature (76-81). The panel further contained regulators of the cell cycle (CDK8, Cyclin B1)

Table 2. Treatment-resistance and -sensitivity panel of BC derived microtumors

Tamoxifen Docetaxel Paclitaxel Palbociclib
ERa-pSer167 Caveolin-1 Caveolin-1 Cytokeratiné
@ |FGFreceptor-pTyr653/654 Vimentin-pSer56 PgR Vimentin-pSer56
& |IGF1Rbeta CyclinE1 Cytokeratin5 CDK6
% Src-pSer17 B-Raf-pSer445 Cytokeratin6 CyclinE1
2 |PI3-kinase p85/p55-pTyrd58/199  IKKe-pSer172 Vimentin-pSer56 Erk1/2-pThr202/Tyr204
'g CDK6 NF-kB p100/p52 MEK1/2-pSer217/221 FGFRpTyr653/654
'g Cyclin B1 Cyp1B1 mMTOR(FRAP) elF4E-pSer209
= |IKKepsilon-pSer172 IKKa-pThr23
beta-Catenin(non-pSer33/37/Thr41) Tau
ERa ERa GATA3 CDK2-pThr160
E2F-4 E2F-4 Cytokeratin8/18 CyclinD1
Src-pTyr527 CIP2A E-Cadherin ER
< [aTubulin Cytokerating/18 Tubulin-ac Her2
S [Tubulin-ac Tau-pSer202 Tubulin beta-1chain  c-Raf-pSer259
; elF2a-pSer51 Erk1/2-pThr202/Tyr204 cdc2(CDK1) JNK/SAPK-pThr183/Tyr185
'S |GLUTA beta-Catenin-pSer552 CDK4-pThr172 p38MAPK-pThr180/Tyr182
2 ILDHA Cyclin B1 E-Cadherin-pSer838/840
S |PDK1-pSer241 E2F-2
@ Rb-pSer807/811
NF1(Neurofibromin)
c-Met-pTyr1003
beta-Catenin-pSer552




and the Wnt-signaling pathway (non-phosphorylated beta-catenin). Within this panel, CDK6
expression was significantly different in non-responder versus responder BC-PDMs (Figure
6C, Mann-Whitney U test, *p = 0.035). In simple logistic regression analysis, CDK6 was
found to negatively affect the likelihood of response to TAM with a 50% decrease in the odds
(OR =10.5, 95% CI 0.21-0.82) (Figure S4B; Table S10; p < 0.05 [Wald, LRT]). A panel of nine
proteins with increased abundance was found to correlate with TAM sensitivity (Figure 6D,
Mann Whitney U test, ***p < 0.001). This included ERa, the transcriptional repressor protein
E2F-4, the microtubule protein aTubulin and proteins involved in cancer cell metabolism
(GLUT1, LDHA and PDK1-pSer241) and stress responses (elF2A-pSer51).

Using a 7-protein resistance panel, we were able to significantly distinguish DTX non-
responder from DTX responder BC-PDMs (Figure 6E, Mann Whitney U-test, ***p < 0.001).
This panel included proteins associated with EMT induction (Vimentin-pSer56, NFkB
p100/p52 and IKKe-pSer172) or drug metabolism (CYP1B1), which are also known to induce
drug resistance to DTX and PTX in cancer cells (82, 83) (Table 2). In addition, higher
Caveolin-1, Cyclin E1 and b-Raf-pSer445 protein levels contributed to DTX resistance of BC-
PDMs. We found Caveolin-1 (*p = 0.029) and the MAPK-pathway related protein b-Raf-
pSerd45 (***p < 0.001) to be significantly enriched in non-responder BC-PDMs (Figure 6F,
Mann Whitney U-test). Figure 6G shows the protein panel predicting sensitivity of BC-PDMs
to DTX treatment (Mann Whitney U-test, *p = 0.017) with increased expression of e.g. ERa,
luminal-cell marker (Cytokeratin 8/18), inactive beta-catenin-pSer552 and microtubule
associated protein Tau-pSer202 (Table 2). In this panel, we identified Cytokeratin 8/18
(Figure 6H, Mann Whitney U-test, ***p < 0.001) and Tau-pSer202 (Figure 6H, Mann Whitney
U-test, p = 0.028) to be significantly enriched. By logistic regression analysis, expression of
Caveolin-1 and b-Raf-pSer445 was shown to decrease the odds of DTX response of BC-
PDMs by 44% (OR = 0.56, 95% CI: 0. 0.32-0.88) and 54% (OR = 0.46, 95% CI: 0.25 t0 0.72)
and thus contribute to DTX resistance. In contrast, elevated Tau-pSer202 (OR = 1.46, 95%
Cl: 1.06 to 2.22) and CK8/18 (OR = 1.54, 95% CI: 1.06 to 2.67) levels were significantly
associated with DTX treatment response in BC -PDM (Figure S4D; Table S10; p < 0.05
[Wald, LRT])).

Paclitaxel treatment resistance of BC-PDMs was determined by a heterogenous panel of 9
proteins enriched in non-responder BC-PDMs (Figure 61, Mann Whitney U-test, ***p < 0.001).
Resistance-associated proteins were Caveolin-1, PgR, mTOR, phosphorylated MEK1/2
(pSer217/221) of the Erk/MAPK signaling pathway, phosphorylated IKKa (pThr23) of the
NFkB pathway, the microtubule-associated protein Tau and the basal breast cancer markers
Cytokeratin 5, Cytokeratin 6 and Vimentin-pSer56 (Table 2). Moreover, we identified
Vimentin-pSer56 to be significantly enriched in the PTX non-responder BC-PDMs (Figure 6J,
Mann Whitney U-test, **p = 0.004). Using a 13-protein panel, we could differentiate PTX



sensitive from resistant BC-PDMs (Mann Whitney U-test, ***p < 0.001). We discovered
several cell cycle-associated proteins (e.g. CDK1, CDK4-pThr172), luminal epithelial cell
markers (e.g. E-Cadherin, Cytokeratin 8/18), the microtubule-forming protein Tubulin
(acetylated Tubulin, Tubulin beta-chain), the Ras-inhibitor NF1 (Neurofibromin), c-Met-
pTyr1003 and beta-Catenin-pSer55, whose expression affected BC-PDMs sensitivity to PTX
treatment. Protein abundances differed significantly for GATA3 (Figure 6L, Mann Whitney U-
test, **p = 0.009), NF1 (Figure 6L, Mann Whitney U-test, **p = 0.005) and c-Met-pTyr1003
(Figure 6L, Mann Whitney U-test, *p = 0.020). The probability of BC-PDMs response to PTX
was doubled by increased GATAS3 (OR =2.34, 95% CI: 1.24-6.2) and NF1 (OR = 2.15, 95%
Cl: 1.25-4.5) expression and decreased levels of Vimentin-pSer56 (OR = 0.72, 95% CI: 0.51-
0.93) (Figure S4F; Table S10; p < 0.01 [Wald, LRT]). To the best of our knowledge, there are
no studies to date that have reported a link between the expression of these proteins and

PTX treatment response.

For PAB treatment, we identified a resistance panel including proteins previously associated
with PAB resistance: CDKB6, Cyclin E1 and FGFR. Combined with basal breast cancer
markers Cytokeratin 6 and Vimentin, the MAPK-signaling protein Erk1/2- pThr202/Tyr204
and the active mTOR signaling protein elF4E-pSer209, these proteins could differentiate
PAB resistant from PAB sensitive BC-PDMs (Figure 6M, Mann Whitney U-test, ***p < 0.001).
In contrast, sensitivity to PAB was predicted by a 8-protein panel (Figure 6N and 60, Mann
Whitney U-test, ***p < 0.001) with increased ERa (**p = 0.003), HER2 (**p = 0.003), CDK2-
pThr160 (**p = 0.004), E-Cadherin-pSer838/840 (*p = 0.014), Cyclin D1, c-Raf-p259,
JNK/SAPK-pThr183/Tyr185 and p38MAPK-pThr180/Tyr182 signals in responder BC-PDMs.
An increase of ERa (OR = 2.15, 95% CI: 1.2-5.91), HER2 (OR = 72.48, 95% ClI: 2.36-
14948598) and E-Cadherin-pSer838/840 (OR = 1.84, 95% CI: 1.15 to 3.55) by one level
more than doubled the odds of BC-PDMs responding to PAB therapy (Figure S4H; Table
S10; p < 0.01 [Wald, LRT]).

In summary, we identified heterogeneous responses to anti-cancer drug treatment in BC-
PDMs. Through comprehensive molecular protein signaling pathway analysis of treatment-
responsive and -resistant BC-PDMs, we gained insights into the treatment response
mechanisms of breast cancer cells in microtumors, which were shown to resemble
histopathological and protein expression profile characteristics of the corresponding primary
breast tumor. Our data confirmed several proteins known to play a role in treatment
resistance and/or sensitivity, and also identified novel markers that significantly correlate with

individualized treatment responses.
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Figure 6. Treatment responses analyzed in BC-PDMs and identification of resistance and sensitivity marker panels.
(A) Treatment response of breast cancer (BC) PDM to anti-cancer drugs. Microtumors were classified as “responder” and non-
responder” based on the results of cytotoxicity measurements (Celltox Green™ assay; Promega). Cytotoxicity was determined
in a time series (24h, 48h and 72h). Treatment effects were analyzed as fold change of the respective control for each
measurement time point using a mixed-effects model (REML) and Fisher’s uncorrected LST test. Statistically significant fold
changes were defined as “response” and BC-PDMs were accordingly classified as “responders”. The numbers indicate BC
sample number. (B-D) TAM, (E-H) DTX, (I-L) PTX and (M-O) PAB resistance and sensitivity marker panels. Median-centered,
logz-transformed DigiWest AFI protein signals were compared between R and Non-R groups. Each data point within the
scatter bar plots represents the same protein in R and Non-R. Lines connect protein data points between Non-R and R.
Therapy resistance and sensitivity panels were identified including up to thirteen proteins (for detailed protein list see Table

1.). Comparison of R and Non-R protein “panel” signals by non-parametric, unpaired Mann-Whitney U test. Within these
protein panels individual, differentially expressed proteins are depicted (non-parametric, unpaired Mann-Whitney U test). *p <
0.05, **p < 0.01 and ***p < 0.001. Shown are mean with SEM. AFI: average fluorescent intensities; Non-R: non-responder; R:
responder; TAM: tamoxifen (100 nM), DTX: docetaxel (5.5 uM), PTX: paclitaxel (4 pM), PAB: Palbociclib (150 nM).



6. Discussion

Breast cancer is a highly heterogenous disease with profound morphological, genetic and
phenotypical variability resulting in multiple disease manifestations with different response to
treatment (16). Gene expression analysis and classical immunohistochemical analysis has
enabled the differentiation of BC subtypes and subsequently served to guide treatment
selection and patient stratification in BC (4-6). Still, development of treatment resistance
remains a major challenge in the management of this malignancy, largely due to the
pronounced intra-tumoral heterogeneity that characterizes BC beyond genetic profiles (16).
Apart from the intrinsic changes and interactions of tumor cells, also the crosstalk of tumor
cells with the complex TME impacts the BC phenotypic manifestation and thus the
development of treatment resistance (19, 20). In this context, the use of tumor models
accurately representing the complexity of patient tumors, while at the same time being
applicable for a variety of readout methods, is becoming increasingly important. To date, a
number of different ex vivo platforms and model systems have been described in this
context, such as patient-derived tumor organoids, tumor explants, tumor slices, and others
(84-86). In this study, we successfully generated a repertoire of microtumor samples from
different BC subtypes representing disease heterogeneity. We applied previously published
protocols for isolating microtumors from primary tumor tissues (23, 28, 29). BC-PDMs
recapitulate general histological features and tumor-type specific features of NST (IDC) and
ILC like growth patterns, cellular pleomorphism and atypia of the corresponding primary
tumor tissue. Using Movat-pentachrome stainings, we found the most abundant BC-related
ECM proteins (37, 87), collagen and PGs/GAGs, also present in BC-PDMs and show a
tendency for increased collagen deposition within ILC-type PDM comparable to PTT. Studies
demonstrated that collagen deposition, which increases ECM stiffness, and the density and
orientation of collagen fibers affect tumor aggressiveness, invasiveness, therapy responses
and correlates with prognosis in BC (88-90). Hence, BC tumor models that comprise ECM
structures of native tumors like BC-PDMs represent relevant test systems to investigate

disease biology and therapy resistance.

Moreover, our results highlight other features in BC-PDMs characteristic of different BC
subtypes as previously described, including hormone-receptor expression in HR+ BC-PDMs
compared with TNBC -PDM, increased collagen deposition in ILC-derived BC-PDMs (37),
heterogenous expression profiles of luminal (CK18) and basal cell markers (CK5 and CK6)
(44) with decreased CK18 expression in TNBC -PDM (49), and high FAPa expression in ILC-
BC-PDMs (52). Regarding the CK expression in BC-PDM, we observed similar cellular
profiles as described previously by Abd EI-Rehim, D.M. et al (44), i.e. the differentiated
glandular phenotype (CK18%), the stem cell phenotype (CK5/6*) and an intermediate
glandular phenotype (CK5/6*, CK18%) (48). In contrast to this study, we did further



differentiate CK5* BC-PDMs from CK5/CK6* BC-PDMs. According to several reports, 17% of
ILCs express basal CKs (91). In our study, ILC-BC-PDMs expressed relatively high levels of
CK5/6 compared to NST-BC-PDMs, which is therefore somewhat surprising. In order to
provide a more precise statement on this, BC-PDMs established from a larger cohort of ILC
samples would need to be evaluated. However, differential protein expression analysis
revealed an overall higher expression of CK5 and CK6 in BC-PDMs regardless of breast
tumor type compared to primary tumors. Overexpressed CK5 could be attributable to low
estrogen concentrations during culture of BC-PDMs as described before (92-94). Similar
results have been observed in organoids derived from BC patients (95). We cannot exclude
the possibility that the culture conditions for BC-PDMs may favor the selection and outgrowth
of BC subclones with a basal epithelial phenotype (CK5/CK6"), which are often associated
with BRCA-1 mutated BC (96, 97) and are underrepresented in the primary tumor. This

observation warrants further investigation in future studies.

Compared to frequently employed gene expression analysis of tumor models, our study
investigated BC microtumors on the protein level using the DigiWWest® method covering 142
total and phosphoproteins. Thereby, breast cancer-related protein expression levels and
signaling pathway profiles largely correlated with those of corresponding primary tumors.
Hierarchical cluster analysis grouped BC-PDMs according to their classification and
molecular protein expression signature. Further, our DigiWest® data confirmed protein
signatures of TNBC-PDMs consistent with those in the literature, characterized by
upregulated PI3K/Akt and MAPK/RTK signaling (53, 63, 64, 98) with overexpressed proteins
associated with integrated stress response (99-102), higher relapse rates, mortality (64, 103,
104), tumor growth and EMT (29, 105-107). When comparing BC-PDMs and primary tumor
profiles, we found decreased expression of NFKB signaling pathway proteins NFkB regulates
processes of immune and inflammatory responses and is part of the immune defense
against transformed cells (108, 109). Because the protein data also showed diminished
expression of immune cell markers in BC-PDMs, the attenuated presence of immune cells in
microtumors might explain the observed, decreased NFkB-related signals as compared to
PTT.

Our study validates the application of BC-PDM for in vitro functional drug testing, as
demonstrated previously for ovarian cancer and glioblastoma microtumors (23, 28, 29), to
functionally complement molecular and histopathological analyses. Protein profiling analysis
combined with functional drug testing allowed us to identify phenotypic hallmarks of
treatment resistance and sensitivity, as opposed to genetic alterations that may not correlate
with clinical benefit (21). As the growth of some types of BC is driven by increased signaling
from estrogen and progesterone receptors, hormone therapies have been developed that

prevent hormones from binding to these receptors. TAM is a competitive inhibitor of the



estrogen receptor known as a selective modulator, while fulvestrant is a selective ER
degrader (110). It has been reported that overexpressed CDKG6 inhibits fulvestrant-mediated
(ER-down regulation-induced) apoptosis and thus induces fulvestrant-resistance (111). Our
data implicates that TAM resistance may also be characterized by high CDK6 levels in BC-
PDMs illustrating the possibility of resistance mechanisms similar to fulvestrant. Furthermore,
it is known that ERa activation through phosphorylation of Ser167 in an estrogen-
independent manner and FGFR activation can cause TAM resistance: both proteins were
identified within our BC-PDMs TAM resistance panel (76, 80, 112). In line with the clinical
application of TAM in HR+ BC (113), increased total ERa levels contribute to TAM sensitivity
in BC-PDMs.

Drug treatment assays with BC-PDMs were conducted independently of hormone receptor
status. In individual cases, differences in the result of histopathological analysis of hormone
receptor expression in tumor tissue compared to protein analysis were evident. Residual
fresh tumor tissue specimens received for BC-PDM isolation and protein expression
analyses were inherently not identical to the sample of the corresponding tumor tissue
examined by histopathology. Breast carcinoma is characterized by marked intratumoral
heterogeneity, with consequences previously described in the literature, including reduced
concordance rates in receptor expression between core and excisional biopsies (114-117). In
addition, a minority of approximately 10% ER-negative breast carcinomas together with a
molecularly defined subset of TNBC have been described in the literature to show response
to tamoxifen (118, 119).

The chemotherapeutic agent DTX has shown high activity as an antimicrotubular agent in
both neoadjuvant and adjuvant application in advanced and metastatic breast cancer (120).
It also had the strongest effect on BC-PDMs treatment response as compared to other anti-
cancer drugs tested. In line with previous studies, BC-PDMs generated from less invasive
BC, luminal-like CK8/18 high BC-PDMs with inactive B-catenin signaling and thus lower
EMT-transition, and BC-PDMs with high ER expression were sensitive to treatment (121-
123). Contrary, we confirmed that high expression of EMT-related and EMT- inducible
proteins, high expression of DTX-metabolizing CYP1B1 and increased Caveolin-1 in BC-
PDMs predict DTX resistance (82, 83, 124, 125). Surprisingly we did identify Ser202
phosphorylated Tau to positively and b-Raf-pSer445 to negatively influence DTX sensitivity
of BC-PDMs. To date, there are no reports on either protein or their potential impact on
response to taxane treatment. However, there are conflicting data on whether the expression

of tau correlates with taxane response (126, 127).

As the first taxane compound discovered, PTX has a similar function to DTX as

antimicrotubular agent (128). The critical role of the EMT process in PTX resistance, (83), is



well represented indicated by the resistance and sensitivity marker panel we identified in BC-
PDMs, including EMT-regulator proteins such as Vimentin-pSer56, CK5, CK6, E-Cadherin,
CK8/18, IKKa-pThr23, beta-Catenin-pSer55. Contrary to DTX, our results regarding PTX
resistance of BC-PDMs indicate that increased total Tau protein levels correlate with
treatment resistance. Further studies are warranted to further investigate the importance of
Tau protein expression in taxane treatment response of breast cancer. In line with previous
in vitro studies our data suggest a correlation between high PgR levels and decreased PTX
sensitivity (129). Interestingly, we found three proteins being significantly elevated in PTX
sensitive BC-PDMs: GATA3, NF1 and c-Met-pTyr1003. So far, these proteins have not been
linked to taxane sensitivity, but have generally been associated with breast cancer
development (130-133).

In addition to endocrine and chemotherapy, we also tested the CDK4/6 inhibitor palbociclib
(75). The emergence of several intrinsic and acquired resistance mechanisms has been
described preclinically, however without verification in the clinical setting (134). Our
comparison of responder and non-responder BC-PDMs protein expression profiles provided
intriguing results regarding PAB treatment. We identified several proteins in our BC-PDMs
resistance/sensitivity panel to be predictive for PAB response that have been linked to PAB
resistance/sensitivity in previous studies, such as CDK®6, Cyclin E1, FGFR, Cyclin D1 and
ERa (134). Surprisingly, our data also suggest Vimentin, CK6, CDK2-p and HER2 protein
expression as novel PAB-treatment response markers. Increased Vimentin and CK6 levels
may define a more aggressive and invasive tumor type that is resistant to PAB (51, 135). Our
analyses identified phosphorylated CDK2 to contribute to PAB-sensitivity of BC-PDMs, while
other studies reported the opposite, as the cyclin E-CDK2 pathway is an important bypass
mechanism of the cyclin D1-CDK4/6 axis in acquired PAB-resistance (134). Both CDK4/6-
Cyclin D and CDK2-Cyclin E complexes are decisive for the transition of G1- to S-phase and
thus required for cell cycle progression. Further studies are warranted to evaluate this

differential response in BC-PDMs.

In summary, we have shown that a salient feature of BC-PDMs, in addition to their
histopathological and molecular similarity to the corresponding patient tumor, is the
representation of native ECM components that collectively represent the disease
heterogeneity of BC. Limitations of this novel patient-derived model system are the restricted
number of microtumors available for downstream analyses, the reduced expression of
immune cell markers and NFkB signaling proteins, as well as the enhanced expression of
CK5 and CK6 as compared to corresponding primary tumor tissue. Further evaluation in
additional sample cohorts will be needed to understand the underlying mechanism and to
assess the long-term stability of HR-expression in BC-PDMs cultures. In this context, a

subtype-specific analysis of drug treatment effects in BC-PDMs, with a particular focus on



TNBC cases, would also be of special interest for future studies. Moreover, the application of
BC-PDMs in patient-derived xenograft mouse models would allow the study of long-term
growth kinetics as well as processes of tumor metastasis as recently described (136).
Regarding the application of BC-PDMs for assessment of immune cell interaction and
immune-oncological treatment responses, we have previously shown functional drug testing
of immune checkpoint inhibitors in co-cultures of ovarian cancer and glioblastoma PDM and

autologous immune cells (23, 28, 29).

7. Conclusion

Based on comprehensive protein profiling analyses in combination with functional drug
testing assays in BC-PDMs our study highlights the potential of identifying patient-tumor
specific, differentially expressed proteins to discriminate treatment responders from non-
responders and warrants further, confirmatory studies in larger sample cohorts. Specifically,
future studies will focus on the comparison of functional drug testing and protein profiling
data from BC-PDMs with clinical treatment response in respective patients. As a complement
to genomic mutation analysis and standard subtype classification, the combination of
individual histopathologic analysis, preclinical drug testing, and parallel protein profiling
analyses of BC-PDMs may hold promise for identifying predictive markers of treatment

resistance and sensitivity to personalize breast cancer therapies.



8. List of abbreviations

BC breast cancer

CAFs cancer-associated fibroblasts

CK cytokeratin

DAB 3,3'-Diaminobenzidin

DCIS ductal carcinoma in-situ

DMSO Dimethyl sulfoxide

DTX docetaxel

ECM extracellular matrix

EMT epithelial-to-mesenchymal transition
ER estrogen receptor

FAPa fibroblast-associated protein a
FC fold change

FFPE formalin-fixed paraffin-embedded
GAGs glycosaminoglycans

H&E hematoxylin and eosin staining
HCL hierarchical clustering

HER2 human epidermal growth factor receptor 2
HR hormone receptor

IDC invasive ductal carcinoma

IHC immunohistochemistry

ILC invasive lobular carcinoma

IRS immunoreactive score

LCIS lobular carcinoma in-situ

NST invasive ductal carcinoma of no special type
PAB palbociclib

PDM patient-derived microtumors
PgR progesterone receptor

PGs proteoglycans

PTT primary tumor tissue

PTX paclitaxel

RFU relative fluorescent units

TAM tamoxifen

TIL tumor infiltrating lymphocytes
TME tumor microenvironment

TNBC triple-negative breast cancer



9. Declarations

Institutional Review Board Statement: The study was conducted in accordance with the
Declaration of Helsinki and approved by the Institutional Review Board (or Ethics Committee)
of the University Hospital Tuebingen, Germany (788/2018B0O2, November 15" 2018).

Consent Statement: The use of human samples was approved by the local Ethics
Commission at the Medical Faculty Tuebingen under the reference number 788/2018B02
(15 November 2018). All patients enrolled gave their informed consent to participate in the

study prior to surgery.

Data Availability Statement: The data that support the findings of this study are available
from the corresponding authors upon reasonable request and after signature of an MTA from

the corresponding authors.

Competing interests: A.H. received consulting and speaking fees from AstraZeneca,
Amgen, Clovis, Daichii Synkyo, Eisai, ExactScience, Gilead, GSK, Hexal, Lilly, MSD,
Novartis, Pfizer, Roche, Pierre-Fabre and Seagen. N.A., F.S-R., N.K, AK,, A-LK,, B.G.,
AS., S.L,MP,MH., S.Y.B,, K.S-L., M.T. and C.S. declare no competing interest.

Funding: This work received financial support from the Ministry of Baden-Wuerttemberg for
Economic Affairs, Labor, and Tourism (grant 3-4332.62-HSG/84).

Author Contributions: Conceptualization and design of the study, C.S., M.T., N.A., A K,
A.H., S.Y.B, and K.S-L.; data collection, data analysis, investigation and interpretation, N.A.,
F.S-R, S.L,, AK,, A-LK, AS., N.K. and C.S.; writing—original draft, N.A. and C.S;
writing—review and editing, N.A., C.S., A-L.K,, K.S-L., AK.,, S.Y.B.,, AH.and AS;
visualization, N.A., C.S.; supervision, C.S., S.Y.B., K.S-L.; project administration: N.A., C.S.

and A.K. All authors have read and agreed to the published version of the manuscript.

Acknowledgments: We gratefully acknowledge Prof. Dr. Diethelm Wallwiener (Department
of Women's Health, University Women's Hospital, TUbingen University Hospital) for his
excellent support, helpful discussions and providing fresh tumor tissue biopsies. We thank all
patients and healthy volunteers enrolled for giving their informed consent for secondary use

of residual tissue, respectively.



10. References

1. Caswell-Jin JL, Plevritis SK, Tian L, Cadham CJ, Xu C, Stout NK, et al. Change in
Survival in Metastatic Breast Cancer with Treatment Advances: Meta-Analysis and
Systematic Review. JNCI Cancer Spectr. 2018;2(4):pky062.

2. Lakhani SR, Ellis IO, Schnitt S, Tan PH, van de Vijver M. WHO Classification of
Tumours of the Breast. 2012.

3. Tavassoli FA. Pathology and genetics of tumours of the breast and female genital
organs. World Hhealth Organization Classification of Tumours. 2003.

4, Perou CM, Sgrlie T, Eisen MB, Van De Rijn M, Jeffrey SS, Rees CA, et al. Molecular
portraits of human breast tumours. Nature. 2000;406(6797):747-52.

5. Sarlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene
expression patterns of breast carcinomas distinguish tumor subclasses with clinical
implications. Proc Natl Acad Sci U S A. 2001;98(19):10869-74.

6. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated
observation of breast tumor subtypes in independent gene expression data sets. Proc Natl
Acad Sci U S A. 2003;100(14):8418-23.

7. Tsang JYS, Tse GM. Molecular Classification of Breast Cancer. Adv Anat Pathol.
2020;27(1):27-35.

8. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple
negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer
Res. 2007;13(8):2329-34.

9. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, et al.
Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clinical
cancer research. 2005;11(16):5678-85.

10. Martin M, Romero A, Cheang MC, Lopez Garcia-Asenjo JA, Garcia-Saenz JA, Oliva
B, et al. Genomic predictors of response to doxorubicin versus docetaxel in primary breast
cancer. Breast Cancer Res Treat. 2011;128(1):127-36.

11. Glick S, Ross JS, Royce M, McKenna EF, Jr., Perou CM, Avisar E, et al. TP53
genomics predict higher clinical and pathologic tumor response in operable early-stage
breast cancer treated with docetaxel-capecitabine * trastuzumab. Breast Cancer Res Treat.
2012;132(3):781-91.

12. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al.
Identification of human triple-negative breast cancer subtypes and preclinical models for
selection of targeted therapies. J Clin Invest. 2011;121(7):2750-67.

13. Lehmann BD, Jovanovi¢ B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al.
Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for
Neoadjuvant Chemotherapy Selection. PLoS One. 2016;11(6):e0157368.

14. Koren S, Bentires-Alj M. Breast Tumor Heterogeneity: Source of Fitness, Hurdle for
Therapy. Mol Cell. 2015;60(4):537-46.

15. Hong SP, Chan TE, Lombardo Y, Corleone G, Rotmensz N, Bravaccini S, et al.
Single-cell transcriptomics reveals multi-step adaptations to endocrine therapy. Nature
Communications. 2019;10(1):3840.

16. Laond F, Tiede S, Christofori G. Breast cancer as an example of tumour
heterogeneity and tumour cell plasticity during malignant progression. Br J Cancer.
2021;125(2):164-75.

17. Heindl A, Sestak I, Naidoo K, Cuzick J, Dowsett M, Yuan Y. Relevance of Spatial
Heterogeneity of Immune Infiltration for Predicting Risk of Recurrence After Endocrine
Therapy of ER+ Breast Cancer. JNCI: Journal of the National Cancer Institute.
2017;110(2):166-75.

18. Natrajan R, Sailem H, Mardakheh FK, Arias Garcia M, Tape CJ, Dowsett M, et al.
Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology-
Genomic Integration Analysis. PLoS Med. 2016;13(2):e1001961.

19. Glajcar A, Szpor J, Pacek A, Tyrak KE, Chan F, Streb J, et al. The relationship
between breast cancer molecular subtypes and mast cell populations in tumor
microenvironment. Virchows Arch. 2017;470(5):505-15.



20. Bareche Y, Buisseret L, Gruosso T, Girard E, Venet D, Dupont F, et al. Unraveling
Triple-Negative Breast Cancer Tumor Microenvironment Heterogeneity: Towards an
Optimized Treatment Approach. J Natl Cancer Inst. 2020;112(7):708-19.

21. Pezo RC, Chen TW, Berman HK, Mulligan AM, Razak AA, Siu LL, et al. Impact of
multi-gene mutational profiling on clinical trial outcomes in metastatic breast cancer. Breast
Cancer Res Treat. 2018;168(1):159-68.

22. Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, et al. Personalized In
Vitro and In Vivo Cancer Models to Guide Precision Medicine. Cancer Discov.
2017;7(5):462-77.

23. Anderle N, Koch A, Gierke B, Keller A-L, Staebler A, Hartkopf A, et al. A Platform of
Patient-Derived Microtumors ldentifies Individual Treatment Responses and Therapeutic
Vulnerabilities in Ovarian Cancer. Cancers (Basel). 2022;14(12):2895.

24. Kondo J, Endo H, Okuyama H, Ishikawa O, lishi H, Tsuijii M, et al. Retaining cell-cell
contact enables preparation and culture of spheroids composed of pure primary cancer cells
from colorectal cancer. Proc Natl Acad Sci U S A. 2011;108(15):6235-40.

25. Ruifrok AC, Johnston DA. Quantification of histochemical staining by color
deconvolution. Anal Quant Cytol Histol. 2001;23(4):291-9.

26. Treindl F, Ruprecht B, Beiter Y, Schultz S, Déttinger A, Staebler A, et al. A bead-
based western for high-throughput cellular signal transduction analyses. Nature
Communications. 2016;7(1):12852.

27. Iglewicz B, Hoaglin DC. How to detect and handle outliers. Milwaukee, Wis.:
Milwaukee, Wis. : ASQC Quality Press; 1993. ix, 87 p. p.

28. Przystal JM, Becker H, Canjuga D, Tsiami F, Anderle N, Keller A-L, et al. Targeting
CSF1R Alone or in Combination with PD1 in Experimental Glioma. Cancers (Basel).
2021;13(10):2400.

29.  Walter B, Canjuga D, Yuz SG, Ghosh M, Bozko P, Przystal JM, et al. Argyrin F
Treatment-Induced Vulnerabilities Lead to a Novel Combination Therapy in Experimental
Glioma. Advanced Therapeutics. 2021:2100078.

30. McCart Reed AE, Kalinowski L, Simpson PT, Lakhani SR. Invasive lobular carcinoma
of the breast: the increasing importance of this special subtype. Breast Cancer Res.
2021;23(1):6.

31. Lepucki A, Orlinska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosihska-Vassev
K. The Role of Extracellular Matrix Proteins in Breast Cancer. Journal of Clinical Medicine.
2022;11(5):1250.

32. Klimonda Z, Karwat P, Dobruch-Sobczak K, Piotrzkowska-Wrdblewska H, Litniewski
J. Breast-lesions characterization using Quantitative Ultrasound features of peritumoral
tissue. Sci Rep. 2019;9(1).

33. Henke E, Nandigama R, Ergln S. Extracellular matrix in the tumor microenvironment
and its impact on cancer therapy. Frontiers in molecular biosciences. 2020;6:160.

34, Bergamaschi A, Tagliabue E, Sarlie T, Naume B, Triulzi T, Orlandi R, et al.
Extracellular matrix signature identifies breast cancer subgroups with different clinical
outcome. The Journal of pathology. 2008;214(3):357-67.

35. Riaz M, Sieuwerts AM, Look MP, Timmermans MA, Smid M, Foekens JA, et al. High
TWIST1 mRNA expression is associated with poor prognosis in lymph node-negative and
estrogen receptor-positive human breast cancer and is co-expressed with stromal as well as
ECM related genes. Breast Cancer Res. 2012;14(5):1-15.

36. Movat HZ. Demonstration of all connective tissue elements in a single section;
pentachrome stains. AMA Arch Pathol. 1955;60(3):289-95.

37. Natal RdA, Paiva GR, Pelegati VB, Marenco L, Alvarenga CA, Vargas RF, et al.
Exploring Collagen Parameters in Pure Special Types of Invasive Breast Cancer. Sci Rep.
2019;9(1):7715.

38. Carey L, Winer E, Viale G, Cameron D, Gianni L. Triple-negative breast cancer:
disease entity or title of convenience? Nature Reviews Clinical Oncology. 2010;7(12):683-92.
39. Dent R, Trudeau M, Pritchard Kl, Hanna WM, Kahn HK, Sawka CA, et al. Triple-
negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res.
2007;13(15 Pt 1):4429-34.



40. Yin W-J, Lu J-S, Di G-H, Lin Y-P, Zhou L-H, Liu G-Y, et al. Clinicopathological
features of the triple-negative tumors in Chinese breast cancer patients. Breast Cancer Res
Treat. 2009;115(2):325-33.

41. Dignam JJ, Dukic V, Anderson SJ, Mamounas EP, Wickerham DL, Wolmark N.
Hazard of recurrence and adjuvant treatment effects over time in lymph node-negative breast
cancer. Breast Cancer Res Treat. 2009;116(3):595-602.

42. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human
cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell.
1982;31(1):11-24.

43. Taylor-Papadimitriou J, Stampfer M, Bartek J, Lewis A, Boshell M, Lane EB, et al.
Keratin expression in human mammary epithelial cells cultured from normal and malignant
tissue: relation to in vivo phenotypes and influence of medium. J Cell Sci. 1989;94 ( Pt
3):403-13.

44. Abd EI-Rehim DM, Pinder SE, Paish CE, Bell J, Blamey R, Robertson JF, et al.
Expression of luminal and basal cytokeratins in human breast carcinoma. The Journal of
Pathology. 2004;203(2):661-71.

45. Wetzels R, Kuijpers H, Lane EB, Leigh IM, Troyanovsky S, Holland R, et al. Basal
cell-specific and hyperproliferation-related keratins in human breast cancer. The American
journal of pathology. 1991;138(3):751.

46. Birnbaum D, Bertucci F, Ginestier C, Tagett R, Jacquemier J, Charafe-Jauffret E.
Basal and luminal breast cancers: basic or luminous? Int J Oncol. 2004;25(2):249-58.

47. Bocker W, Moll R, Poremba C, Holland R, Van Diest PJ, Dervan P, et al. Common
adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a
new cell biological concept. Lab Invest. 2002;82(6):737-46.

48. Korsching E, Packeisen J, Agelopoulos K, Eisenacher M, Voss R, Isola J, et al.
Cytogenetic Alterations and Cytokeratin Expression Patterns in Breast Cancer: Integrating a
New Model of Breast Differentiation into Cytogenetic Pathways of Breast Carcinogenesis.
Lab Invest. 2002;82(11):1525-33.

49, Woelfle U, Sauter G, Santjer S, Brakenhoff R, Pantel K. Down-Regulated Expression
of Cytokeratin 18 Promotes Progression of Human Breast Cancer. Clinical Cancer Research.
2004;10(8):2670-4.

50. Fortier A-M, Asselin E, Cadrin M. Keratin 8 and 18 Loss in Epithelial Cancer Cells
Increases Collective Cell Migration and Cisplatin Sensitivity through Claudin1 Up-regulation.
J Biol Chem. 2013;288(16):11555-71.

51. Rodriguez-Pinilla SM, Sarrié D, Honrado E, Hardisson D, Calero F, Benitez J, et al.
Prognostic significance of basal-like phenotype and fascin expression in node-negative
invasive breast carcinomas. Clin Cancer Res. 2006;12(5):1533-9.

52. Park CK, Jung WH, Koo JS. Expression of cancer-associated fibroblast-related
proteins differs between invasive lobular carcinoma and invasive ductal carcinoma. Breast
Cancer Res Treat. 2016;159(1):55-69.

53. Zhao JJ, Liu Z, Wang L, Shin E, Loda MF, Roberts TM. The oncogenic properties of
mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary
epithelial cells. Proc Natl Acad Sci U S A. 2005;102(51):18443-8.

54. The Cancer Genome Atlas N. Comprehensive molecular portraits of human breast
tumours. Nature. 2012;490(7418):61-70.

55. Liu T, Yacoub R, Taliaferro-Smith LD, Sun S-Y, Graham TR, Dolan R, et al.
Combinatorial Effects of Lapatinib and Rapamycin in Triple-Negative Breast Cancer Cells.
Mol Cancer Ther. 2011;10(8):1460-9.

56. Cossu-Rocca P, Orru S, Muroni MR, Sanges F, Sotgiu G, Ena S, et al. Analysis of
PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer. PLoS One.
2015;10(11):e0141763.

57. Ooms LM, Binge LC, Davies EM, Rahman P, Conway JR, Gurung R, et al. The
Inositol Polyphosphate 5-Phosphatase PIPP Regulates AKT1-Dependent Breast Cancer
Growth and Metastasis. Cancer Cell. 2015;28(2):155-69.

58. Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J, et al. Lung cancer:
intragenic ERBB2 kinase mutations in tumours. Nature. 2004;431(7008):525-6.



59. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et
al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of
non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129-39.

60. LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA. Targeting the
PISK/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist
Updat. 2008;11(1-2):32-50.

61. McCubrey JA, Steelman LS, Kempf CR, Chappell WH, Abrams SL, Stivala F, et al.
Therapeutic resistance resulting from mutations in RaffMEK/ERK and PI3K/PTEN/Akt/mTOR
signaling pathways. J Cell Physiol. 2011;226(11):2762-81.

62. Steelman LS, Navolanic PM, Sokolosky ML, Taylor JR, Lehmann BD, Chappell WH,
et al. Suppression of PTEN function increases breast cancer chemotherapeutic drug
resistance while conferring sensitivity to mTOR inhibitors. Oncogene. 2008;27(29):4086-95.
63. Umemura S, Yoshida S, Ohta Y, Naito K, Osamura RY, Tokuda Y. Increased
phosphorylation of Akt in triple-negative breast cancers. Cancer Sci. 2007;98(12):1889-92.
64. Eralp Y, Derin D, Ozluk Y, Yavuz E, Guney N, Saip P, et al. MAPK overexpression is
associated with anthracycline resistance and increased risk for recurrence in patients with
triple-negative breast cancer. Ann Oncol. 2008;19(4):669-74.

65. Sviderskiy VO, Blumenberg L, Gorodetsky E, Karakousi TR, Hirsh N, Alvarez SW, et
al. Hyperactive CDK2 Activity in Basal-like Breast Cancer Imposes a Genome Integrity
Liability that Can Be Exploited by Targeting DNA Polymerase €. Mol Cell. 2020;80(4):682-
98.e7.

66. Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer Treat Rev.
2016;45:129-38.

67.  Warburg O, Wind F, Negelein E. THE METABOLISM OF TUMORS IN THE BODY. J
Gen Physiol. 1927;8(6):519-30.

68.  Alluri P, Newman LA. Basal-like and triple-negative breast cancers: searching for
positives among many negatives. Surg Oncol Clin N Am. 2014;23(3):567-77.

69. Pelicano H, Zhang W, Liu J, Hammoudi N, Dai J, Xu RH, et al. Mitochondrial
dysfunction in some triple-negative breast cancer cell lines: role of mMTOR pathway and
therapeutic potential. Breast Cancer Res. 2014;16(5):434.

70. Vlug E, Ercan C, van der Wall E, van Diest PJ, Derksen PWB. Lobular Breast Cancer:
Pathology, Biology, and Options for Clinical Intervention. Arch Immunol Ther Exp (Warsz).
2014;62(1):7-21.

71. Christgen M, Derksen PWB. Lobular breast cancer: molecular basis, mouse and
cellular models. Breast Cancer Res. 2015;17(1):16.

72. Ciriello G, Michael, Andrew, Matthew, Suhn, Pastore A, et al. Comprehensive
Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 2015;163(2):506-19.

73. Liu Z, Merkurjev D, Yang F, Li W, Oh S, Friedman MJ, et al. Enhancer activation
requires trans-recruitment of a mega transcription factor complex. Cell. 2014;159(2):358-73.
74. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational
evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395-9.
75. Shu CA, Gainor JF, Awad MM, Chiuzan C, Grigg CM, Pabani A, et al. Neoadjuvant
atezolizumab and chemotherapy in patients with resectable non-small-cell lung cancer: an
open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020;21(6):786-95.

76. Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H.
Phosphatidylinositol 3-Kinase/AKT-mediated Activation of Estrogen Receptor &#x3b1;: A
NEW MODEL FOR ANTI-ESTROGEN RESISTANCE *. J Biol Chem. 2001;276(13):9817-24.
77. Ghayad SE, Vendrell JA, Larbi SB, Dumontet C, Bieche |, Cohen PA. Endocrine
resistance associated with activated ErbB system in breast cancer cells is reversed by
inhibiting MAPK or PI3K/Akt signaling pathways. Int J Cancer. 2010;126(2):545-62.

78. Guo JP, Shu SK, Esposito NN, Coppola D, Koomen JM, Cheng JQ. IKKepsilon
phosphorylation of estrogen receptor alpha Ser-167 and contribution to tamoxifen resistance
in breast cancer. J Biol Chem. 2010;285(6):3676-84.

79. Kastrati |, Joosten SEP, Semina SE, Alejo LH, Brovkovych SD, Stender JD, et al. The
NF-kB Pathway Promotes Tamoxifen Tolerance and Disease Recurrence in Estrogen
Receptor—Positive Breast Cancers. Mol Cancer Res. 2020;18(7):1018-27.



80. Lv Q, Guan S, Zhu M, Huang H, Wu J, Dai X. FGFR1 Is Associated With Tamoxifen
Resistance and Poor Prognosis of ER-Positive Breast Cancers by Suppressing ER Protein
Expression. Technol Cancer Res Treat. 2021;20:15330338211004935.

81. Wang W, Nag SA, Zhang R. Targeting the NFkB signaling pathways for breast cancer
prevention and therapy. Curr Med Chem. 2015;22(2):264-89.

82. McFadyen MC, McLeod HL, Jackson FC, Melvin WT, Doehmer J, Murray Gl.
Cytochrome P450 CYP1B1 protein expression: a novel mechanism of anticancer drug
resistance. Biochem Pharmacol. 2001;62(2):207-12.

83. Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, et al. New
insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a
novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother.
2021;141:111824.

84. Foo MA, You M, Chan SL, Sethi G, Bonney GK, Yong W-P, et al. Clinical translation
of patient-derived tumour organoids- bottlenecks and strategies. Biomarker Research.
2022;10(1):10.

85. He L, Deng C. Recent advances in organotypic tissue slice cultures for anticancer
drug development. Int J Biol Sci. 2022;18(15):5885-96.

86. Templeton AR, Jeffery PL, Thomas PB, Perera MPJ, Ng G, Calabrese AR, et al.
Patient-Derived Explants as a Precision Medicine Patient-Proximal Testing Platform
Informing Cancer Management. Front Oncol. 2021;11:767697.

87. Troup S, Njue C, Kliewer EV, Parisien M, Roskelley C, Chakravarti S, et al. Reduced
expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with
poor outcome in node-negative invasive breast cancer. Clin Cancer Res. 2003;9(1):207-14.
88. Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, et al.
Aligned Collagen Is a Prognostic Signature for Survival in Human Breast Carcinoma. The
American Journal of Pathology. 2011;178(3):1221-32.

89. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, et al.
Collagen density promotes mammary tumor initiation and progression. BMC Med.
2008;6(1):11.

90. Walsh AJ, Cook RS, Lee JH, Arteaga CL, Skala MC. Collagen density and alignment
in responsive and resistant trastuzumab-treated breast cancer xenografts. Journal of
biomedical optics. 2015;20(2):026004.

91. Fadare O, Wang SA, Hileeto D. The expression of cytokeratin 5/6 in invasive lobular
carcinoma of the breast: evidence of a basal-like subset? Hum Pathol. 2008;39(3):331-6.
92. Fettig LM, McGinn O, Finlay-Schultz J, LaBarbera DV, Nordeen SK, Sartorius CA.
Cross talk between progesterone receptors and retinoic acid receptors in regulation of
cytokeratin 5-positive breast cancer cells. Oncogene. 2017;36(44):6074-84.

93. Kabos P, Haughian JM, Wang X, Dye WW, Finlayson C, Elias A, et al. Cytokeratin 5
positive cells represent a steroid receptor negative and therapy resistant subpopulation in
luminal breast cancers. Breast Cancer Res Treat. 2011;128(1):45-55.

94, McGinn O, Ward AV, Fettig LM, Riley D, lvie J, Paul KV, et al. Cytokeratin 5 alters -
catenin dynamics in breast cancer cells. Oncogene. 2020;39(12):2478-92.

95. Campaner E, Zannini A, Santorsola M, Bonazza D, Bottin C, Cancila V, et al. Breast
Cancer Organoids Model Patient-Specific Response to Drug Treatment. Cancers (Basel).
2020;12(12).

96. Foulkes WD, Brunet J-Sb, Stefansson IM, Straume O, Chappuis PO, Bégin LR, et al.
The Prognostic Implication of the Basal-Like (Cyclin Ehigh/p27low/p53+/Glomeruloid-
Microvascular-Proliferation+) Phenotype of BRCA1-Related Breast Cancer. Cancer Res.
2004;64(3):830-5.

97. Foulkes WD, Stefansson IM, Chappuis PO, Bégin LR, Goffin JR, Wong N, et al.
Germline BRCA1 Mutations and a Basal Epithelial Phenotype in Breast Cancer. JNCI:
Journal of the National Cancer Institute. 2003;95(19):1482-5.

98. Bartholomeusz C, Gonzalez-Angulo AM, Liu P, Hayashi N, Lluch A, Ferrer-Lozano J,
et al. High ERK protein expression levels correlate with shorter survival in triple-negative
breast cancer patients. Oncologist. 2012;17(6):766-74.



99. Bai X, Ni J, Beretov J, Wasinger VC, Wang S, Zhu Y, et al. Activation of the
elF2a/ATF4 axis drives triple-negative breast cancer radioresistance by promoting
glutathione biosynthesis. Redox Biol. 2021;43:101993.

100. Pakos-Zebrucka K, Koryga |, Mnich K, Ljujic M, Samali A, Gorman AM. The
integrated stress response. EMBO Rep. 2016;17(10):1374-95.

101. Pouysségur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to
enforce tumour regression. Nature. 2006;441(7092):437-43.

102. Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes:
mechanisms and biological targets. Cell. 2009;136(4):731-45.

103. Bhat M, Robichaud N, Hulea L, Sonenberg N, Pelletier J, Topisirovic |. Targeting the
translation machinery in cancer. Nature Reviews Drug Discovery. 2015;14(4):261-78.

104. Flowers A, Chu QD, Panu L, Meschonat C, Caldito G, Lowery-Nordberg M, et al.
Eukaryotic initiation factor 4E overexpression in triple-negative breast cancer predicts a
worse outcome. Surgery. 2009;146(2):220-6.

105. McCawley LJ, Li S, Wattenberg EV, Hudson LG. Sustained activation of the mitogen-
activated protein kinase pathway. A mechanism underlying receptor tyrosine kinase
specificity for matrix metalloproteinase-9 induction and cell migration. J Biol Chem.
1999;274(7):4347-53.

106. WeiY, Chen YH, LiLY, Lang J, Yeh SP, Shi B, et al. CDK1-dependent
phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic
differentiation of human mesenchymal stem cells. Nat Cell Biol. 2011;13(1):87-94.

107. Yang CC, LaBaff A, Wei Y, Nie L, Xia W, Huo L, et al. Phosphorylation of EZH2 at
T416 by CDK2 contributes to the malignancy of triple negative breast cancers. Am J Transl
Res. 2015;7(6):1009-20.

108. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its
regulation. Cold Spring Harb Perspect Biol. 2009;1(4):a000034.

109. Chen F, Castranova V. Nuclear Factor-kB, an Unappreciated Tumor Suppressor.
Cancer Res. 2007;67(23):11093-8.

110. Nathan MR, Schmid P. A Review of Fulvestrant in Breast Cancer. Oncology and
Therapy. 2017;5(1):17-29.

111.  Alves CL, Elias D, Lyng M, Bak M, Kirkegaard T, Lykkesfeldt AE, et al. High CDK6
Protects Cells from Fulvestrant-Mediated Apoptosis and is a Predictor of Resistance to
Fulvestrant in Estrogen Receptor—Positive Metastatic Breast Cancer. Clinical Cancer
Research. 2016;22(22):5514-26.

112. Yamnik RL, Digilova A, Davis DC, Brodt ZN, Murphy CJ, Holz MK. S6 Kinase 1
Regulates Estrogen Receptor &#x3b1; in Control of Breast Cancer Cell Proliferation *. J Biol
Chem. 2009;284(10):6361-9.

113. Early Breast Cancer Trialists' Collaborative G. Relevance of breast cancer hormone
receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis
of randomised trials. The Lancet. 2011;378(9793):771-84.

114. Andrade VP, Gobbi H. Accuracy of typing and grading invasive mammary carcinomas
on core needle biopsy compared with the excisional specimen. Virchows Arch.
2004;445(6):597-602.

115. Burge CN, Chang HR, Apple SK. Do the histologic features and results of breast
cancer biomarker studies differ between core biopsy and surgical excision specimens?
Breast. 2006;15(2):167-72.

116. Ough M, Velasco J, Hieken TJ. A comparative analysis of core needle biopsy and
final excision for breast cancer: histology and marker expression. Am J Surg.
2011;201(5):692-4.

117. Richter-Ehrenstein C, Muller S, Noske A, Schneider A. Diagnostic accuracy and
prognostic value of core biopsy in the management of breast cancer: a series of 542
patients. Int J Surg Pathol. 2009;17(4):323-6.

118. Manna S, Holz MK. Tamoxifen Action in ER-Negative Breast Cancer. Sign Transduct
Insights. 2016;5:1-7.



119. Scarpetti L, Oturkar CC, Juric D, Shellock M, Malvarosa G, Post K, et al. Therapeutic
Role of Tamoxifen for Triple-Negative Breast Cancer: Leveraging the Interaction Between
ERPB and Mutant p53. Oncologist. 2023;28(4):358-63.

120. Nowak AK, Wilcken NRC, Stockler MR, Hamilton A, Ghersi D. Systematic review of
taxane-containing versus non-taxane-containing regimens for adjuvant and neoadjuvant
treatment of early breast cancer. The Lancet Oncology. 2004;5(6):372-80.

121. Kim K, Lu Z, Hay ED. DIRECT EVIDENCE FOR A ROLE OF B-CATENIN/LEF-1
SIGNALING PATHWAY IN INDUCTION OF EMT. Cell Biol Int. 2002;26(5):463-76.

122. ShiR, Liu L, Wang F, He Y, Niu Y, Wang C, et al. Downregulation of cytokeratin 18
induces cellular partial EMT and stemness through increasing EpCAM expression in breast
cancer. Cell Signal. 2020;76:109810.

123. Tham Y-L, Gomez LF, Mohsin S, Gutierrez MC, Weiss H, Hilsenbeck SG, et al.
Clinical response to neoadjuvant docetaxel predicts improved outcome in patients with large
locally advanced breast cancers. Breast Cancer Res Treat. 2005;94(3):279-84.

124. Marin-Aguilera M, Codony-Servat J, Reig O, Lozano JJ, Fernandez PL, Pereira MV,
et al. Epithelial-to-Mesenchymal Transition Mediates Docetaxel Resistance and High Risk of
Relapse in Prostate CancerEMT Role in Docetaxel Resistance. Mol Cancer Ther.
2014;13(5):1270-84.

125. Yang C-PH, Galbiati F, Volonté D, Horwitz SB, Lisanti MP. Upregulation of caveolin-1
and caveolae organelles in Taxol-resistant A549 cells. FEBS Lett. 1998;439(3):368-72.

126. Barbolina MV. Dichotomous role of microtubule associated protein tau as a biomarker
of response to and a target for increasing efficacy of taxane treatment in cancers of epithelial
origin. Pharmacol Res. 2021;168:105585.

127. Pusztai L, Jeong J-H, Gong Y, Ross JS, Kim C, Paik S, et al. Evaluation of
Microtubule-Associated Protein-Tau Expression As a Prognostic and Predictive Marker in the
NSABP-B 28 Randomized Clinical Trial. J Clin Oncol. 2009;27(26):4287-92.

128. Verweij J, Clavel M, Chevalier B. Paclitaxel (Taxol) and docetaxel (Taxotere): not
simply two of a kind. Ann Oncol. 1994;5(6):495-505.

129. Schmidt M, Bremer E, Hasenclever D, Victor A, Gehrmann M, Steiner E, et al. Role of
the progesterone receptor for paclitaxel resistance in primary breast cancer. Br J Cancer.
2007;96(2):241-7.

130. Beviglia L, Matsumoto K, Lin C-S, Ziober BL, Kramer RH. Expression of the C-
Met/HGF receptor in human breast carcinoma: Correlation with tumor progression. Int J
Cancer. 1997;74(3):301-9.

131. Edakuni G, Sasatomi E, Satoh T, Tokunaga O, Miyazaki K. Expression of the
hepatocyte growth factor/c-Met pathway is increased at the cancer front in breast carcinoma.
Pathol Int. 2001;51(3):172-8.

132. Mehra R, Varambally S, Ding L, Shen R, Sabel MS, Ghosh D, et al. Identification of
GATAS as a Breast Cancer Prognostic Marker by Global Gene Expression Meta-analysis.
Cancer Res. 2005;65(24):11259-64.

133. Pearson A, Proszek P, Pascual J, Fribbens C, Shamsher MK, Kingston B, et al.
Inactivating NF1 Mutations Are Enriched in Advanced Breast Cancer and Contribute to
Endocrine Therapy Resistance. Clinical Cancer Research. 2020;26(3):608-22.

134. Pandey K, An H-J, Kim SK, Lee SA, Kim S, Lim SM, et al. Molecular mechanisms of
resistance to CDK4/6 inhibitors in breast cancer: A review. Int J Cancer. 2019;145(5):1179-
88.

135. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A Switch from E-Cadherin to N-
Cadherin Expression Indicates Epithelial to Mesenchymal Transition and Is of Strong and
Independent Importance for the Progress of Prostate Cancer. Clinical Cancer Research.
2007;13(23):7003-11.

136. Vilgelm AE, Bergdorf K, Wolf M, Bharti V, Shattuck-Brandt R, Blevins A, et al. Fine-
Needle Aspiration-Based Patient-Derived Cancer Organoids. iScience. 2020;23(8):101408.



Supplementary Information

S| Materials:

S| Materials 1. Antibodies used in DigiWest protein profiling analysis.

Supplementary Figures:

Figure S1. Multicolor flow cytometry analysis of isolated and expanded TILs from BC
specimen

Figure S2. Correlation of nuclear grade in PDM and PTT.
Figure S3. Proteomic comparison of NST and ILC-derived BC PDM.

Figure S4. Identification of resistance and sensitivity marker panels in treatment responder
and non-responder microtumors and regression analysis of differently expressed proteins.

Supplementary Tables:
Table S1. Clinical patient data of the patient cohort.

Table S2. Descriptive statistics of “area” and “fluorescent intensity live/dead” measurements
in PDM.

Table S3. Raw data of DigiWest® protein signals in PDM and PTT samples and total
measured protein amounts.

Table S4. DigiWest®-based AFI protein signals in matched PDM-PTT pairs DigiWest®-
based AFI protein signals in matched PDM-PTT pairs.

Table S5. DigiWest®-based AFI protein signals of matched PDM-PTT pairs sorted by
pathway affiliation

Table S6. Pearson correlation of protein abundances in PDM and corresponding PTT
(PDM/PTT pairs).

Table S7. DiglWest®-based AFI protein signals of n = 42 PDM samples.

Table S8. Descriptive statistics of averaged, median-centered and log2 transformed protein
signals for cell cycle, MAPK/RTK and PI3K/AKT pathway in n = 42 PDM samples.

Table S9. Celltox™ Green assay RFU (relative fluorescent unit) values of BC microtumors
treated with TAM, DTX, PTX and PAB.

Table S10. Descriptive statistics of simple logistic regression analysis of differentially
expressed proteins in treatment responder and non-responder groups.



S| Materials

SI Materials 1. Antibodies used in DigiWest protein profiling analysis.

Analyte Uniprot  Product_No  Supplier
4E-BP1 Q13541 1557-1 Abcam
53BP1 Q12888 4937 Cell Signaling
53BP1-pThr543 Q12888 3428 Cell Signaling
Akt P31749 4685 Cell Signaling
Akt-pSerd73 P31749 4060 Cell Signaling
alpha-SMA P62736 14968 Cell Signaling
alpha-Tubulin P68366 302211 Synaptic Systems
A-Raf P10398 4432 Cell Signaling
ATG5 Q9H1YO0 12994 Cell Signaling
Beclin-1 Q14457 3738 Cell Signaling
beta-Catenin P35222 8480 Cell Signaling
beta-Catenin(non- P35222 8814 Cell Signaling
pSer33/37/Thr41)
beta-Catenin-pSer552 P35222 9566 Cell Signaling
b-Raf P15056 14814 Cell Signaling
b-Raf-p-Ser445 P15056 2696 Cell Signaling
BRCA1 P38398 9010 Cell Signaling
Caveolin-1 Q03135 3238 Cell Signaling
CD11c P20702 45581 Cell Signaling
CD16 P08637 80006 Cell Signaling
CD25 P01589 13517 Cell Signaling
CD3epsilon P07766 4443 Cell Signaling
CD4 P01730 PA5-87425 Thermo Fisher
Scientific
CD56 P13591 3576 Cell Signaling
CD68 P34810 86985 Cell Signaling
CD8alpha P01732 85336 Cell Signaling
cdc2(CDK1) P06493 9112 Cell Signaling
CDK2 P24941 2546 Cell Signaling
CDK2-pThr160 P24941 2561 Cell Signaling
CDK4 P11802 12790 Cell Signaling
CDK4-pThr172 P11802 PA-64482 Invitrogen
CDK6 Q00534  sc-7961 Santa Cruz
CDKN2A P42771 10883-1-AP Protein Tech Group
CIP2A Q8TCG1 A301-454A Bethyl
c-Met P08581 3148 Cell Signaling
c-Met-pTyr1003 P08581 3135 Cell Signaling
c-Raf P04049 9422 Cell Signaling
c-Raf-pSer259 P04049 9421 Cell Signaling
CREB P16220 9197 Cell Signaling
CREB-pSer133 P16220 9198 Cell Signaling
CTMP Q96KR2 4612 Cell Signaling
CyclinD1 P24385 2978 Cell Signaling
CyclinE1 P24864 4129 Cell Signaling
Cyp1B1 Q16678  sc-374228 Santa Cruz
Cytokeratin5 P13647 M3270 Spring Bioscience
Cytokeratin6 P02538 2302-1 Abcam
Cytokeratin8/18 P05783 4546 Cell Signaling
Cytokeratin8-pSer23 P05787 21471 abcam (Epitomics)
E2F-1 Q01094 3742 Cell Signaling
E2F-2 Q14209 DR1095- Millipore
100UG
E2F-4 Q16254  orb10571 Biorbyt




E-Cadherin
E-Cadherin-pSer838/840
elF2alpha-pSer51

elF4E

elF4E-pSer209

ER

ERalpha-pSer167
Erk1/2
Erk1/2-pThr202/Tyr204
FGFreceptor1
FGFreceptor-pTyr653/654
FLOWER(C9orf7)
FoxO3a

GATA3

GLUT-1

GSK3beta
GSK3beta-pSer9
HDAC1

Her2

HIF1beta(ARNT)
HistoneH3

HLA-A,B,C

IDH1

IGF1Rbeta
IGF1R-pTyr1135/Tyr1136
IKKalpha
IKKalpha-pThr23
IKKepsilon
IKKepsilon-pSer172
JNK/SAPK
JNK/SAPK-pThr183/Tyr185
Ki-67

LAMC1

LDHA

MAD2L1

MEK1
MEK1/2-pSer217/221
MEK2

mMmTOR(FRAP)
NF1(Neurofibromin)
NF-kBp65-pSer468
p38MAPK
p38MAPK-pThr180/Tyr182
p53

p53-pSer37
p70S6kinase
p70S6kinase-pThr389
PADI4

PAK1/2/3

PARP
PARP-cleavedAsp214
PD1

PDKA1

PDK1-pSer241

PD-L1

P13-kinase p85

P12830
P12830
P05198
P06730
P06730
P03372

#NV
P28482
P28482
P11362
P11362
QoUGQ2
043524
P23771
P11166
P49841
P49841
Q13547
P04626
P27540
P68431
n.a.
075874
P08069
P08069
015111
015111
Q14164
Q14164
P45983
P45983
P46013
P11047
P0O0338
Q13257
Q02750
Q02750
P36507
P42345
P21359
Q04206
Q16539
Q16539
P04637
P04637
P23443
P23443
Q9UMO7
Q13153
P09874
P09874
Q15116
Q15118
Q15118
QONzQ7
P27986

sc-59778
2239-1
3398

2067

9741
RM-9101-S

2514
4695
4370
9740
3476
orb164624
2497
5852
07-1401
9315
9336
2062
A0485
5537
9715

8137
3018
3024
2682
ab38515
2905
8766
9252
4668
K1700-05D
92921
2012
4636
9124
9154
9125
2983
14623
3039
9212
4511
9282
9289
2708
9206
sc-365369
2604
9532
9541
86163
3062
3061
13684
4292

Santa Cruz
Abcam

Cell Signaling
Cell Signaling
Cell Signaling
Thermo Fisher
Scientific

Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Biorbyt

Cell Signaling
Cell Signaling
Millipore

Cell Signaling
Cell Signaling
Cell Signaling
Dako

Cell Signaling
Cell Signaling
AG Stevanovic
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Abcam

Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
US Biologicals
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Santa Cruz
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling



PP2AC
PP2AC-pTyr307
PgR

PTEN

PTEN non-
pSer380/Thr382/Thr383
PTEN-pSer380
Rad51

Ras

Rb-pSer795
Rb-pSer807/811
RSK1(p90RSK)-pThr573
S6RP
S6RP-pSer235/236
Snail

Src

Src-pSer17
Src-pTyr527
STAT3
STAT3-pTyr705
Tau

Tau-pSer202
Tubulin acetylated
Tubulinbeta-1chain
Vimentin
Vimentin-pSer56

P67775
P67775
P06401
P60484
P60484

P60484
Q06609
P01116
P06400
P06400
Q15418
P62753
P62753
095863
P12931
P12931
P12931
P40763
P40763
P10636
P10636
P68366
Q9H4B7
P08670
P08670

2259
AF3989
8757
9552
7960

9551
ab109107
8955
9301
8516
ab62324
2217
2211
3879
2109
5473
2105
4904
9145
sc-32274
39357
T6793
MAB16676
5741
7391

Cell Signaling
R&D

Cell Signaling
Cell Signaling
Cell Signaling

Cell Signaling
Abcam

Cell Signaling
Cell Signaling
Cell Signaling
Abcam

Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Santa Cruz
Cell Signaling
Cell Signaling
Abnova

Cell Signaling
Cell Signaling



Supplementary Figures

A B

TIL expansion

Total=67 R
8 100
=3 E
P 80+ .
o g
S 60
=,
> 40
T 204
= 92.46
= 95.52% successful 2 0
=S

B 4.48% unsuccessful

SSC-A
FSC-H

CcD8
CTLA-4

CD69
CD25

CcD103

1004 *

% CD3" positive cells

% positive cells
% CD8" positive cells




Figure S2. Multicolor flow cytometry analysis of isolated and expanded TILs from BC specimen. TILs were
isolated in parallel to PDM isolation as a filtered single cell fraction from digested tumor samples. (A) TILs derived
from n = 67 tissue samples were subsequently cultured, expanded and characterized by flow cytometry. BC-TIL
expansion was highly successful with a 95.52% success rate (B) Viability of expanded TILs measured by
NucleoCounter® NC-200™ prior to FACS staining. Average viability was 92.46%. (C) Gating strategy for lymphocyte
and single cells. (D) Lymphocytes gated for CD3*CD4* and regulatory T cells. (E) Lymphocytes gated for CD3*CD8*
cells. Cells are further differentiated into tumor-specific CD39" cells expressing activation markers (PD1, CLTA-4,
CD137, CD69, CD25) or the tissue-residence marker (CD103). (F-H) Cell frequencies of n = 67, n = 65 and n = 60

expanded BC-TIL samples; Paired t-test or Friedman test with Dunn’s multiple comparison test; *p < 0.05, **p < 0.01,
***p < 0.001. Data are mean with SEM.
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Figure S1. Correlation of nuclear grade in
PDM and PTT. Nuclear grading of n = 39 PDM
and PTT was assessed by a pathologist. In
20.5% of the specimen, nuclear grading of
PTT was reflected by PDM. In 59% of the
cases, PDM resembled a one-degree lower
nuclear grade.
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Figure S3. Proteomic comparison
of NST and ILC-derived BC PDM.
(A) Signaling pathway comparison of
NST- and ILC-derived BC PDM.
Normalized protein signals (AFI) in
NST-/ILC-BC PDM were averaged
and log?2 transformed. No significant
differences were detected. Mann-
Whitney U test, p < 0.05.(B)
Differenially expressed proteins in
NSTt-/ILC-BC PDM. Enhanced
protein abundances in NST- BC PDM
were identified for several proteins
associated with cell cytoskeleton,
PI3K/AKT pathway and chromatin
regulation, and with general breast
cancer markers. Mann-Whitney U
test, *p < 0.05, **p < 0.01, **p <
0.001. Data are mean with SEM.
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Figure S4. Identification of resistance and sensitivity marker panels in treatment responder and non-
responder microtumors and regression analysis of differently expressed proteins. Microtumors were
treated with four anti-cancer drugs and grouped into treatment responder and non-responders based on the
results of cell death assays (CellTox ™ green cytotoxicity assay, Promega). DigiWest AFI protein signals of
microtumors were median-centered, log2-transformed and compared between R and Non-R groups. Proteins
that are associated with response/resistance to therapy according to literature, are differentially expressed, or
are involved in therapy-related signaling pathways were plotted as interleaved scatter plots for tamoxifen (A),
docetaxel (C), paclitaxel (E), and palbociclib (G) treatment. Blue symbols indicate the mean protein signal of
the non-responder group, green symbols indicate the mean protein signal of the responder group. Simple
logistic regression of differentially expressed proteins are depicted in (B) for tamoxifen, (D) for docetaxel, (F)
for paclitaxel and (H) for palbociclib responses (1 = response; 0 = no response). Protein signals are displayed
as logz transformed AFI signals. As indicated by p-values (LRT) < 0.05, the amount of the shown proteins
(predictor variables) significantly affected the likelihood of response to treatment. Descriptive statistics of

simple logistic regressions are shown in Table S10. *p < 0.05, **p < 0.01 and

*kk,

/)

< 0.001. Shown are mean

with SEM. Non-R and R. AFI: average fluorescent intensities; Non-R: non-responder; R: responder.
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Table S1. Clinical patient data of the patient cohort.

ample Study- Histological Tumor ER- PR- Her2-IHC-

D# ID# Age Tumor status type grade ER IRS PR IRS Her2 Score pT_pN cM pL pV pPn|
C1 #001 77 __primary carcinoma ILC 2 1 12 0 0 0 0 2 2 0 0 0 0
C2 #002 92 primary carcinoma NST 3 0 0 0 0 1 3+ 3 X X 1 Q 0

BC3 #003 57  primary carcinoma NST 2 1 12 0 0 0 1+ 3 3a 1 1 Q 0
|BC4 #004 B2 _primary carcinoma NST 3 1 12_ 0 0 0 1+ 2 a0 1 0 1
IBC5 #005 62 primary carcinoma ILC 2 1 12 1 12 0 2+ 2 3a 0 0 0 1
C8 #006 48  primary carcinoma ILC 2 1 8 1 2 0 0 3 2a 0 0 0 o0
C7 #007 56 primary carcinoma NST 2 1 122 1 12 0 1+ 4b 3a O 1 0 1
C8 #008 55 primary carcinoma NST 2 12 12 0 0 3 1a 0 0 0

IBC8 #008 55 primary carcinoma NST 2 12 12 0 0 3 1a 0 0 1]

IBCS #009 61 primary carcinoma NST %] 4 1 0 0 4d  3b 1 0 0
C10 #010 83 primary carcinoma NST 2 1 12 1 12 2] 1+ 4b  1a 0 0 Q 0

EC 1 #011 54  primary carcinoma NST 3 12_ 0 0 0 2+ 3 0 o] o] Q a
C12 #012 84 primary carcinoma NST 1 121 12 0 2+ 1c_1a 0 0 0 0
BC13 #013 54 primary carcinoma NST ] 9 1 6 0 2+ 2 0 1 0 0
IBC14 #014 78 primary carcinoma NST 2 0 0 1+ 2 0 1] 0 0
BC15 #015 50 primary carcinoma ILC 2 1 121 12 0 2+ 2 i 0 0 Q0
C16 #016 74 primary carcinoma NST 2 1 12 1 4 0 1+ ic _1a 0 1 0 0
C17 #017 87 primary carcinoma NST 3 112 1 12 2+ 2 1a 1 1 0 0

IBC18 #018 48 primary carcinoma NST 3 1 12 1 9 0 2+ 2 4] Q 0 0 Q

IBC19 #019 70 second primary carcinomaNST 3 0 0 0 0 0 0 1c ] 0 0

IBC20 #020 64 primary carcinoma NST 3 0 0 0 0 0 0 3 0 0 0 0 0

BC21 #021 82 primary carcinoma NST 2 1 12 1 12 0 2+ ic 0 0 0 0 0
C22 #022 54 primary carcinoma NST 1 1 12 i) 12 0 1+ 18 0 0 o] Q Q

Ecza #023 6 __primary carcinoma mucinous 2 112 2 2+ 2 1a 0 0 0 o0
C24 #024 4 __primary carcinoma NST 2 1 12 2 0 2+ 2 1 0 0 0
BC25 #025 9 primary carcinoma ILC 2 1 12 2 0 1+ 2. 0 1] 0 0
|BC26 #026 1 primary carcinoma NST 3 1 12 6 0 2+ 2 1 0 0 0
|BC27 #027 77 primary carcinoma ILC 2 1 12 1 4 [+] 0 3 1a Q Q Q
C28 #028 66__primary carcinoma NST 2 1 12 1 9 0 1+ 2 1a 1 0 0
C29 #029 87 primary carcinoma NST 2 1 12 0o 2 0 1+ 2 2a X 0 0 1
IBC30 #030 48 primary carcinoma NST 3 1 12 1 6 0 2+ 2 0 Q 0 0
IBC31 #031 74 primary carcinoma NST 3 1 4 0 0 0 0 2 0 0 0 0
|BC32 #032 61 primary carcinoma NST 3 1 12 1 9 [*] 2+
C33 #033 82 primary carcinoma NST 2 1 12 1 12 0 0 2 0 X 0 Q 0
C34 #034 3 primary carcinoma 3 0 0 0 0 © 0 3 0 [1] 1 Q
C35 #035 66 primary carcinoma NST 2 1 12, 1 2 0 1+ ic 0 1 0 0
C36 #0368 1__primary carcinoma NST a 1 3 0 0 1 3+ 2 1 X 0 1] [1]
C37 #037 34  primary carcinoma NST 3 1 9 1 2 0 0 3 3a x 0 Q 0
C38 #038 87 primary carcinoma NST 3 0 0 0 0 0 2+ 2 2a 1 1 )]
IBC39 #039 51 primary carcinoma medullary 3 1 6 0 0 0 0 2 0 ] 0 1]
EC40 #040 51 primary carcinoma NST 3 1 1 0 1+ 2 1a 1 0 Q

BC41 #04 84 primary carcinoma NST 3 112 1 2 0 1+ 2 3 x 1 1 0

BC42 #042 60 primary carcinoma NST 3 1 121 12 0 1+ 2 2a 0 0 0

BC43 #04 42 primary carcinoma ILC 2 1 12 1 12 0 1+ 2 1a x 0 0 0

[BC44 #044 76 primary carcinoma ILC 2 1 12 1 6 0 0 2 1a ] Q Q
C45 #045 66 __primary carcinoma NST 3 1 12 1 4 0 1+ 2 1a 0 0 o0
C46 #046 51 primary carcinoma DCIS 3 1 9 0 0 is  x 0 0 o0
C47 #047 75 primary carcinoma NST 3 1 12 1 2 0 0 2 33 x 1 0 0
C48 #048 62 primary carcinoma NST 3 0 0 0 1 0 0 ic__ 0 0 1] 0

|BC49 #049 79 primary carcinoma NST 2 1 12 1 12 0 2+ 2 0(i+) x 0 0 0

|BC50 #050 80 primary carcinoma ILC 2 1 12 1 3 0 0 1c 0(-) X 0 0 Q

IBC51 #051 82 primary carcinoma ILC 2 1 12 1 g 0 0 2 1ia X Q Q Q
C52 #052 57 _primary carcinoma NST 3 0 0 1] 0 4] 1+ 2 X 0 0 Q
C53 #053 55 primary carcinoma ILC 2 1 12 1 [] 0 1+ 2 2a 0 0 [i]
C54 #054 79 primary carcinoma SPC 2 1 121 8 0 0 2 1 1 0 ]
C55 #055 70  primary carcinoma NST 3 1 8 1 0 0 2+ 2 1a 0 Q )]

IBC56 #056 52 _primary carcinoma ILC 1 12 1 12 0 0 3 1a X 0 1] 0
CE7 #0ST 72 primary carcinoma NST 2 1 121 8 0 2+ 2 0 2] 0 0
C58 #058 48 rimary carcinoma NST 2 1 12 1 120 2+ 2 1a ) 0 Q
C59 #059 74 primary carcinoma ILC 2 12 12 0 2+ 2 0 ] ) Q
CE0 #060 40 primary carcinoma NST 2 0 1+ 2 1 X 1 0 0

IBC61 #061 63 primary carcinoma 12 9 0 1+ 2 0 X 1] 0 0

IBC62 #0682 79  primary carcinoma NST 0 0 0 0 1 3+ 2 0 0 0 Q

BCB3 #0683 B4 primary carcinoma micropapillary 2 1 12 1 4 0 2+ ic__1a 1 0 1
C64 #064 60 primary carcinoma NST 3 1 12 1 12 0 1+ 2 1a__ x 0 0 Q
C85 #065 79 primary carcinoma NST 3 1 12 1 8 4] 2+ 2 1a X 1] 0 0
CE6 #0686 64 primary carcinoma ILC 2 1 12 1 12 0 1+ 1c 0 Q Q 0
CE6 #066 64  primary carcinoma ILC 2 1 12 1 6 0 1+ 2 1la  x 0 Q 0

IBC87 #067 85 primary carcinoma NST 2 0 0 0 0 0 2+ 2 0 X 0 0 0
CE8 #068 47 rimary carcinoma NST 2 1 1 [*] 0 2 0 0 0 0
CE9 #069 79 primary carcinoma ILC 2 1 12 1 9 0 2+ 2 1a 1 Q 0
C70 #070 48 primary carcinoma ILC 2 1 12 1 12 0 2+ 1c 0 X 0 0 0
C71 #071 61 recidiv NST 2 1 122 1 12 0 1+ 1¢ 0 X 0 0 Q

BC72 #072 61 recidiv ILC 2 112 1 3 0 2+ 2 0 0 0 0 o

IBC73 #073 49 primary carcinoma NST 2 1 12 1 8 0 2+ 2 0 0 0 0

BC74 #074 84 primary carcinoma ILC 2 1 12 1 9 0 1+ 1c 1a 1 0 0
C75 #075 54 primary carcinoma NST 2 12 1 12 0 2+ 2 1a x 0 0 0
C76 #076 64 primary carcinoma ILC 2 12 1 0 2+ 3 1a x 0 0 0

IBC77 #077 71__primary carcinoma NST 2 12 1 0 1+ 2 1a 0 0 0

IBC78 #078 66 recidiv NST 3 121 0 1+ 2 0 0 0 o

IBC79 #079 73 primary carcinoma ILC 2 1 12 1 9 0 2+ 2 0 0 0 0 0

BC80 #080 8 primary carcinoma NST 2 1 12 1 12 0 1+ 2 X X 0 0 0

BC81 #0! 75 primary carcinoma NST 3 0 0 0o o0 © 0 4 0 0O 0 o0

BC82 #082 59 primary carcinoma NST 3 0 0 0 0 0 0 2 1a 0 0 o]

BC83 #0 59 primary carcinoma LC 2 1 12 _ 0 0 0 1+ 2 0(-) O 0 0 ]

BC84 #084 87 _primary carcinoma NST 3 1 12_ 0 1 0 2+ a X X 0 0 0

ECES #085 79 primary carcinoma ILC 2 1 12 1 8 4] 2+ 3 0 X 1 0 0
C86 #086 77 __recidiv ILC 2 1 121 ) 0 2+ 2 0(-) O 0 0 Q
C87 #087 43 primary carcinoma NST 2 12 12_ 0 1+ 2 0 1 0 0
C88 #088 80 primary carcinoma NST 3 12 6 0 1+ 4b  3a 1 0 0

|BCag #089 71 __primary carcinoma ILC 2 12 12 0 1+ 2 0(i-) 0 0 0

|BCgO #0390 82 primary carcinoma NST 2 12 [] 0 2+ 2 0 0 1] 0 0

BC51 #091 61 primary carcinoma ILC 2 1 12 1 6 o] 1+ 3 0(-) x 8] 0 1
C92 #092 68 primary carcinoma ILC 2 1 12 1 12 0 0 1c 0 x 0 0 0
Co3 #083 78 primary carcinoma NST 2 1 12 1 g 0 1+ ic 0 x 0 0 0

BCo4 #094 51 primary carcinoma NST 2 1 121 12_ 0 2+ 4b  1a  x 1 0 1]

|BCe5 #0895 71__primary carcinoma NST 2 1 9 1 [] 0 0 2 1a x 0 0 0

|Bcee #0396 48 primary carcinoma NST 2 1 12 1 12 0 0 3 3a 1 Q0 Q
Co97 #097 49 primary carcinoma ILC 2 1 12 1 12 0 2+ 3 1a 0 0 o0
C. #098 54 primary carcinoma NST 2 1 ? 0 0 0 o] 2 1a X 1 0 Q
C99 #099 61 primary carcinoma NST 2 1 12 1 12 0 2+ 2 1a x 0 0 0
C100  #100 52 primary carcinoma ILC 2 1 12 1 [] 0 1+ 2 0 X 0 0 0

BC101  #101 51 primary carcinoma 7O0%IC30% 5, 4 12 1 3 0 24 2 1a x 0 0 0

NST (ILC
BC102  #102 51 primary carcinoma :105?? :Ilfcfo% 112 1 g8 0 1+ 3 1(mi) x 1 0o 0

BC: breast carcinoma; NST:
invasive ductal carcinoma of
no special type; ILC:
invasive lobular carcinoma;
DCIS: ductal carcinoma in-
situ; ER: estrogen receptor
status; PR: progesterone
receptor status; HER2:
HERZ2/neu-Erb-b2 receptor
stauts; IRS: immunoreactive
score (0-12); p: patholocigal;
c: clinical; T: tumor size; N:
lymph node spread; M:
metastasis; L: lymphatic
vessel spread; V: blood
vessel spread, Pn:
perineural invasion; “0” (ER,
PR, HER2) = negative; “1”
(ER, PR, HER?2) = positive



Table S2. Descriptive statistics of “area” and “fluorescent intensity live/dead” measurements in PDM.

Calcein-AMFI/ Sytox OrangeFl /

Aroa Total Volume Total Volume
Number of values 81 80 80
Minimum 7003 1 0
Maximum 888481 42306 6973
Range 881478 42305 6973
Mean 59261 9081 909.7
Std. Deviation 130386 9396 1097
Std. Error of Mean 14487 1051 122.7
Lower 95% CI of mean 30430 6990 665.6
Upper 95% Cl of mean 88092 11172 1154
Coefficient of variation  220.0% 103,5% 120,6%

Table S3. Raw data of DigiWest® protein signals in PDM and PTT samples and total measured
protein amounts.

Table S4. DigiWest®-based AFI protein signals in matched PDM-PTT pairs DigiWest®-based
AFI protein signals in matched PDM-PTT pairs.

Table S5. DigiWest®-based AFI protein signals of matched PDM-PTT pairs sorted by
pathway affiliation

Table S6. Pearson correlation of protein abundances in
PDM and corresponding PTT (PDM/PTT pairs).

Pearsonr p-value

Cytokeratin 8-pSer23 0.55 0013 *
ERa 0.86 <0.001 **
GATA3 0.83 <0.001 ***
CDK4 0.52 0019 *
CDKN2A 0.66 0.002 **
E2F-4 0.45 0.048 *
PP2AC 0.58 0.007 **
HDAC1 0.56 0010 ~
alpha-Tubulin 0.63 0.003 ¥
53BP1 0.72 <0.001 ¥
PARP 0.45 0.048 *
E-Cadherin-pSer838/840 0.69 <0.001 ***
HIF1 beta (ARNT) 0.49 0029 *
JNK/SAPK 0.47 0037 *
JNK/SAPK-pThr183/Tyr185 0.61 0.004 ¥
p38 MAPK 0.56 0010 *
GLUT-1 0.70 <0.001 M7
PAK 1/2/3 0.63 0.003 **
IKK alpha 0.68 <0.001 **
elF4E 0.56 0010 **
elFAE-pSer209 0.71 <0.001 ***
GSK3 beta 0.60 0.005 **
mTOR (FRAP) 0.58 0.008 **
PDK1 0.52 0020
PDK1-pSer241 0.45 0.046 *
Pi3-kinase p85 0.69 <0.001 ¥
PTEN 0.56 oom ¥
S6 ribosomal protein 0.49 0.027 *
S6RP-pSer235/236 0.60 0.005 **
IGF1 receptor beta 0.59 0.006 o
Src 0.50 0.029 *
Src-pSer1? 0.54 0014 *
Src-pTyr527 0.55 0o ¥
STAT 3 0.86 <0.001 **
beta-Catenin 0.50 0.024 *

beta-Catenin-pSer552 0.78 <0.001




Table S7. DiglWest®-based AFI protein signals of n = 42 PDM samples.

Table S8. Descriptive statistics of averaged, median-centered and log2 transformed protein signals for cell cycle, MAPK/RTK and PI3K/AKT pathway in n = 42 PDM samples.

cell cycle MAPK/RTK PI3K/AKT

Lower Upper Lowsr Upper Lower  Upper

Sample NumberMin. Max. 25% . 5% . _Median Range 95% Cl of 92 Cl of Sample NumberMin. Max. 25% . 5% .._Median Range $5% Cl of Ssp"ll.). Cl of Sample Number Min. Max. 5% . 75% . Median Range 95% Cl of 9;’2 Cl of
Percentile Percentile Percentile Percentile Percentile  Percentile

mean mean mean mean mean mean
BC14(HR+) 15 -544 332 -3.18 1.85 145 876 -2.584 0.4253 BC14(HR+) 15 544 332 -3.18 1.85 -145 876 -2584 0.4253 BC14{HR+) 21 -1.62 2.87 -0.665 0.335 -0.18 449 -0.4901 04472
BC15(HR+) 15 748 12 -553 -1.46 385 868 -5.18 -2.269 BC15(HR+) 15 -748 12 553 -1.46 -395 868 -518 -2.269 BC15(HR+) 21 -5.85 1.37 -4.32 -1.85 -3.28  7.22 -3.765 -2.178
BC18(HR+) 15 -8.27 0.28 -7.39 -2.61 -375 799 -5.788 -2.857 BC18(HR+) 15 -8.27 -0.28 -7.39 -2.61 -3.75 798 -5788 -2.857 BC18(HR+) 21 -6.62 1.39 -4.605 -2.665 -3.56  8.01 -4.325 -2.653
BC20(TNBC) 15 -5.53 39 025 243 1.89 943 -0.1528 2359 BC20(TNBC) 15 -553 39 025 2.43 1.89 9.43 -0.1528  2.359 BC20{TNBC) 21 -5.16 519 0.03 2.085 1.17 10.35 0.09389 1.928
BC23(HR+) 15 -4.27 369 -1.12 178 -004 796 -1.117 1.119 BC23(HR+) 15 -4.27 368 -1.12 1.78 -0.04 798 1117 1.119 BC23(HR+) 21 5986 299 -093 007 -065 895 -1.231 0.3114
BC24(HR+) 15 -6.09 157 -165 0.55 -0.64 766 -2.246 01737 BC24(HR+) 15 -6.09 157 -1.65 0.55 -0.64 7668 -2248 0.1737 BC24{HR+) 21 -1.86 1.02 -066 0.645 0 295 -0.4791  0.2858
BC25(HR+) 15 -7.48 -04 -553 -2.51 -3.98 708 -5295 -2.866 BC25(HR+) 15 -748 04 -553 -2.51 -3.98 708 -5295 -2.866 BC25(HR+) 21 -5.32 177 -3795 -1.78 -2.43 7.09 -3.391 -1.894
BC28(HR+) 15 016 228 032 1.2¢ 0.94 212 08103 1.347 BC28(HR+) 15 0168 228 032 1.29 0.4 212 08103 1.347 BC28{HR+) 21 005 508 042 1.285 0.57 503 0.5325 1.488
BC32(HR+) 15 -6.53 272 -0.29 1.2 0.56 8256 -0.7142 1458 BC32(HR+) 15 -5.63 272 029 1.2 0.56 825 07142 1.458 BC22(HR+) 21 -1.44 6.2 0.325 1.395 0.84 7.64 0.3218  1.597
BC36(HR+) 15 -748 1.18 -4.27 0.03 085 866 -3.401 -0.4483 BC36(HR+) 15 -748 1.18 -4.27 0.03 -095 8.66 -3401 -0.4483 BC36(HR+) 21 444 331 -1.305 0175 -0.16  7.75 -1.567 0.1052
BC38(TNBC) 15 -13.111.43 -4.36 1.17 -2 14.54 -4.809 -0.3086 BC3B(TNBC) 15 -13.111.43  -4.36 117 -2 14.54 -4.8089 -0.3056 BC38(TNBC) 21 532 24 017 1.665 1 772 -0.1621  1.368
BC39(HR+) 15 -3.95 206 -0.55 1.1 034 601 -0.9878 0.8892 BC3%(HR+) 15 -3.95 2.06 -0.55 1.1 0.34 6.01 -0.9878 0.8892 BC39(HR+) 21 -5.85 2.58 0.075 1.305 0.85 8.43 -0.6886  1.184
BC42(HR+) 15 -748 28 -5.44 -2.01 3.1 1028 -4.628 -1.562 BC42(HR+) 15 -7.48 28 -544 -2.01 -3.11 10.28 -4.628 -1.562 BC42{(HR+) 21 -5.96 1.08 -2.71 -0.285 -0.86 7.04 -2.419 -0.5609
BC43(HR+) 15 -88 085 -574 -1.88 -395 045 -5.651 -2.612 BC43(HR+) 15 -88 065 -574 -1.88 -3.85 945 -5651 -2.812 BC43{HR+) 21 -5.96 168 -3795 0.445 -1.14 7.64 -2.615 -0.3798
BCa5(HR+) 15 -6.09 3.05 -3.18 2.38 054 914 1705 1.425 BC45(HR+) 15 -6.09 3.058 -3.18 2.38 0.54 9.14 -1.705 1.425 BC45{HR+) 21 748 288 -3975 1.825 0.86 10.34 -2.063 0.8826
BC46(HR+) 15 -3.25 191 -0.87 0.48 0 516 -0.7778 0.5685 BC46(HR+) 15 -325 1.1 -0.87 0.48 0 5.16 -0.7778  0.5685 BC46(HR+) 21 -2.51 089 -1.59 -0.14 -1.05 34 -1.314 -0.6334
BCS4(HR+) 14 -1.86 2 -0.1125  1.263 0725 386 -0.006738 1.154 BC54(HR+) 14 -1.86 2 01125  1.263 0725 388 -0006738 1.154 BC54(HR+) 21 -748 1.81 -0.695 0.34 0.04 9.29 -1.356 0.3466
BC58(HR+) 15 -3.18 334 041 1.49 093 652 0.0843 1676 BCS58(HR+) 15 -318 3.34 041 1.49 0.93 6.52 0.0843 1678 BC53(HR+) 21 -489 182 -082 079 0.08 671 -1.028 05189
BCE6O(HR+) 13 -3.52 009 -2.23 -1.385 -1.82 381 -2.401 -1.199 BC6O(HR+) 13 -3.52 0.08 -2.23 -1.385 -1.82 361 -2401 -1.189 BC60{HR+) 21 -319 029 -2.035 -0.31 -1.18 348 -1.681 -0.6923
BCE&1(HR+) 15 -7TA8 308 -0.03 1.42 077 10.54 -1.343 1652 BC61(HR+) 15 -7.48 3.08 -0.03 1.42 0.77 10.54 -1.343 1.652 BC61(HR+) 21 -7.48 1.47 046 0.985 0.24 8.85 -1.251 0.6418
BC62(HER2) 15 -8.27 191 -0.23 1.36 041 10,18 -2.146 1.193 BC62(HER2) 15 -8.27 1.91 -0.23 1.36 0.41 10,18 -2.146 1.1893 BC62(HER2) 21 -748 235 -0.045 0.97 0.55 9.83 -0.9415  0.9539
BC63(HR+) 15 -5.53 143 -0.07 1.15 082 696 -1.335 1.025 BCGB3(HR+) 15 -5.53 1.43 -0.07 1.15 0.82 6.96 -1.335 1.025 BC63(HR+) 21 -3.56 1.59 -0.485 0.59 0 515 -0.8611  0.4535
BCBS(HR+) 15 -1.54 387 036 259 076 541 04103 2144 BCE5(HR+) 15 -154 3867 036 259 0.76 541 04103 2.144 BCE5{HR+) 21 -4.89 385 -220 0863 0.08 8.74 -1.493 0.5491
BCG6E(HR+) 15 -1.52 476 088 1.76 1.12 628 0.5321 2231 BC66{HR+) 15 -1.52 476 088 1.76 1.12 628 05321 2.231 BCE6(HR+) 21 -4.89 397 0285 1235 0.56 8.86 -0.5272 118
BCE8(HR+) 15 -553 324 -049 0.83 0286 877 -1.632 0.8548 BCEB(HR+) 15 -553 324 049 0.83 0.26 877 -18632 0.9548 BCE8(HR+) 21 -7.48 1.67 -0.265 1.065 0.15 9.15 -1.125 0.8076
BCE&9(HR+) 15 -4.27 316 021 1.67 1.04 743 -0.1099 1715 BC6Y(HR+) 15 -427 3.16 021 167 1.04 7.43  -01099 1.715 BCE9(HR+) 21 -4.03 197 -0.085 0.72 0.18 8 -0.3726  0.6669
BC70(HR+) 15 -5.53 391 -0.36 1.15 029 044 -1.253 1.189 BC70(HR+) 15 -553 3.1 -0.36 1.15 0.29 9.44 -1.253 1.189 BC70{HR+) 21 -4.67 302 -003 0.485 023 789 -0.4791 08925
BC74(HR+) 15 -13.11-0.15 -5.74 -1.96 -3.985 12.96 -6.452 -2.582 BC74HR+) 15 -13.11-0.15 574 -1.86 -3.95 12.86 -6.452 -2.582 BC74(HR+) 20 -5.32 167 -2698 -0.515 -1.28 699 -2.351 -0.8208
BC78(HR+) 15 -3.95 356 1.39 327 224 751 0.8144 2.867 BC78(HR+) 15 -3.95 356 1.39 327 224 751 0.8144 2.867 BC78(HR+) 21 -748 3.9 1.705 2.545 2.31 11.38 0.1737  2.651
BC80(HR+) 15 -5.53 376 -1.05 1.91 15 929 -1.183 1.796 BC8O(HR+) 15 -553 376 -1.05 1.81 1.5 928 -1.183 1.796 BC8O(HR+) 21 -748 273 -0.02 154 0.53 10.21 -1.083 1.223
BC81(TNBC) 15 6.09 259 -0.05 1.36 0.48 868 -1.383 1.386 BC81(TNBC) 15 -6.08 258 -0.05 1.36 0.48 868 -1.383 1.386 BC81(TNBC) 21 532 3.18 083 2.045 1.24 85 0.09048 1.904
BC82(TNBC) 15 -2.85 425 034 2.48 2.05 71 0.6467 2.596 BCB2(TNBC) 15 -2.85 425 034 2.48 2.05 71 0.8467 2.598 BC82{TNBC) 21 019 498 021 1885 0.83 518 0.692 1917
BC88(HR+) 15 -449 26  -1.02 2.01 -02 709 -1.48 1.118 BC88(HR+) 15 -449 26 -1.02 2.01 -0.2 7.08 -148 1.118 BC88({HR+) 21 644 284 126 0245 -0.5 928 -1.749 0.09642
BC89(HR+) 14 -6.01 253 -4.585 -0.4675 29 854 -3.996 -1.015 BC89(HR+) 14 -6.01 2.53 -4.585 -04875 -2.9 8.54 -3.996 -1.015 BC89{HR+) 21 -4.89 064 -1.445 -0.085 -1.05 553 -1.525 -0.4046
BCO90O(HR+) 13 -5.53 05 -3.23 -1.265 -2.31 503 3127 -1.615 BCO0(HR+) 13 -553 05 -323 -1.265 231 503 -3.127 -1.515 BCSO{HR+) 21 -35 -0.05 -2515 -1.38 -1.78 345 -2.298 -1.484
BC92(HR+) 15 04 444 132 223 1.65 404 1.353 2.566 BC92(HR+) 15 04 444 132 223 1.85 404 1.353 2.566 BC92(HR+) 21 -444 591 1.185 2125 1.85 10.35 08762 2544
BC94(HR+) 15 -8.27 269 -3.18 0 -042 10,96 -2.905 0177 BC94HR+) 15 -8.27 2.68 -3.18 0 -0.42 1086 -2.905 0.177 BC94(HR+) 21 532 19 -0.44 0.61 0.04 722 -1.041 0.6011
BC95(HR+) 15 -8.27 393 -0.84 1.25 036 122 -2122 1319 BC95(HR+) 15 -8.27 3.93 084 1.25 0.36 122 -2122 1.319 BC95(HR+) 21 -0.88 327 0.08 1.97 1.01 415 0.5648  1.888
BC96(HR+) 15 -3.18 332 081 1.93 15 65 0.5196 2092 BCY96(HR+) 15 -3.18 3.32 091 1.93 1.5 6.5 0.5196 2.092 BC96(HR+) 21 02 655 1.045 221 1.77 835 1.288 2,504
BCY7(HR+) 15 -3.18 133 -161 -0.25 09 451 -1.498 -0.2954 BC97(HR+) 15 -318 133 161 -0.25 -09 4.51 -1.498 -0.2854 BC97(HR+) 21 -2.53 1.06 -1.92 -0.37 -1.17 359 -1.569 -0.7107
BC99(HR+) 15 -3.24 014 -3.09 -0.24 217 338 -2.406 -0.9967 BCO99(HR+) 15 -324 014 -309 -0.24 =217 338 -2408 -0.9867 BC29{HR+) 21 -6.05 002 416 -2.53 -3.07 6.07 -4.054 -2.677
BC102(HR+) 15 -3.18 114 -1.68 -0.21 -0.48 432  -1.331 -0.08369 BC102(HR+) 15 -318 1.14 -168 -0.21 -0.48 432 1331 -0.08369 BC102(HR+) 21 -1.97 091 -1.15 -0.32 -1.01 2.88 -1.166 -0.5299

Table S9. Celltox™ Green assay RFU (relative fluorescent unit) values of BC microtumors treated with TAM, DTX, PTX and PAB.



Table S10. Descriptive statistics of simple logistic regression analysis of differentially expressed proteins in treatment responder and non-responder groups.

Tamoxifen Docetaxel Paclitaxel Palbociclib
CDK6 Caveolin-1 b-Raf-pSer445 CK8/18 Tau-pSer202 Vimentin-pSer56 NF1 GATA3 ERa HER2 CDK2-pThr160 ESS;%T;QZO
Best-fit values
BO -2.412 -1.047 -2.026 -0.9766 -2.318 -1.478 271 -1.559 F2.141 -4.158 -2.853 -2.283
B1 -0.6962 -0.574 -0.7759 0.4319 0.3803 -0.3253 0.7651 0.8498 0.7645 4.283 0.5589 0.6073
X at 50% -3.464 -1.824 -2.611 2.261 6.094 -4.544 3.542 1.834 2.8 0.9709 5.106 3.759
Std. Error
B0 0.7999 0.4884 0.7463 0.5074 0.8766 0.5781 0.9364 0.6658 0.9107 2.906 0.9945 0.8229
B1 0.3181 0.2512 0.2636 0.2291 0.1808 0.145 0.3106 0.3956 0.3939 3.702 0.234 0.2736
X at 50% 1.408 0.9346 0.7265 1.306 1.778 2.224 0.864 0.7744 0.9501 0.2443 1.301 1.319
95% CI (profile likelihood)
BO -4.432 to-1.120 -2.138 t0 -0.1641 -3.846 t0-0.7921 -2.139t0-0.06383 -4.4791t0-0.8688  |-2,822 to -0,4622 -5,118 to 1,213 -3,196 t0 -0,4431 4,484 to-0,7581 -14,05 t0 -1,355 -5,492 t0-1,296 -4,325 t0-0,9220
B1 -1.570 to -0.1940 -1.13910-0.1283  -1.39310-0.3247  0.05950 t0 0.9818 0.05628 to 0.7967 10,6691 to -0,07848 0,2238 to 1,504 0,2120 t0 1,825 0,1825 to 1,777 0,8570 to 16,52 0,1507 to 1,128 0,1393 to 1,268
X at 50% -10.26 to -1.538 -7.251t0-0.3149  -4.628 to-1.293 0.1759 to 15.32 3.438 t023.33 17,40 to-1,343 2,159 107,748 0,6087 to 6,184 1,340 to 8,557 0,6588 to 2,421 3,069 to 12,26 1,814 to 11,11
Odds ratios
BO 0.08968 0.3509 0.1319 0.3766 0.0985 0.2281 0.06651 0.2104 0.1176 0.01563 0.05765 0.102
B1 0.4985 0.5633 0.4603 1.54 1.463 0.7223 2.149 2.339 2.148 72.48 1.749 1.836
95% CI (profile likelihood) for odds ratios
7,894¢-007 to
gO 0.01189 to 0.3262 |0.1179 to 0.8487 0.02136 t0 0.4529  0.1178 to 0.9382 0.01134 t0 0.4195 |0,05946 to 0,6299  0,005986 to 0,2972 0,04092 to 0,6421 [0,01129 to 0,4685 0,2579 0,004120 t0 0,2735 0,01324 to 0,3977
B1 0.2081 to 0.8236 0.3201 to0 0.8796 0.2484 t0 0.7227 1.061 to 2.669 1.058 t0 2.218 0,5122 to 0,9245 1,251 t0 4,502 1,236 t0 6,201 1,200 to 5,914 2,356 to 14948598 1,163 to 3,088 1,149 to 3,552

Is slope significantly non-zero?

1Z]| 2.189 2.285 2.943 1.885 2.104 2.243 2.464 2.148 1.941 1.157 2.389 2.219

P value 0.029 0.022 0.003 0.059 0.035 0.025 0.014 0.032 0.052 0.247 0.017 0.026
Deviation from zero? Significant Significant Significant Not Significant Significant Significant Significant Significant Not Significant Not Significant Significant Significant
Likelihood ratio test

Log-likelihood ratio (G squared) 8.095 6.646 134 5477 5.38 7.061 8.115 7.79 8.004 13.31 7.511 6.739

P value 0.004 0.01 <.001 0.019 0.02 0.008 0.004 0.005 0.005 <,001 0.006 0.009
Reject Null Hypothesis? Yes Yes Yes Yes Yes Yes Yes Yes [Yes Yes Yes Yes

P value summary - - ok * * . - o b whk . .

Area under the ROC curve

Area 0.8333 0.7556 0.8722 0.7697 0.7963 0.873 0.8254 0.85 0.8952 0.9095 0.8429 0.7647
Std. Error 0.1374 0.09898 0.07769 0.09002 0.1123 0.07197 0.1048 0.07929 0.06615 0.06314 0.1171 0.151
95% confidence interval 0.5640 to 1.000 0.5616 to 0.9495 0.7199 to 1.000 0.5933 to 0.9462 0.5762 to 1.000 10,7320 to 1,000 0,6199 to 1,000 0,6946 to 1,000 0,7656 to 1,000 0,7858 to 1,000 0,6133 to 1,000 0,4688 to 1,000
P value 0.036 0.03 0.002 0.029 0.033 0.006 0.017 0.011 0.007 0.005 0.019 0.078

Goodness of Fit

Tjur's R squared
Cox-Snell's R squared
Model deviance. G squared

0.4062
0.2511
14.87

0.222
0.2048

29.28

0.4362
037
22.52

0.1655
0.1836
27.34

0.2243
0.2008
21.61

0.2832
0.2301
21.54

03125
0.2596
20.49

0.2767
0.2589
20.3

0.4946
0.4006
12.15

0.3221
0.2509
17.95

0.3582
0.2639
16.84
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Simple Summary: Glioblastomas are incurable tumors of the central nervous system. Currently,
treatment strategies combine neurosurgical intervention, radiation therapy, and chemotherapy. Yet,
clinical experience shows that tumors acquire escape mechanisms. Furthermore, the tumor-associated
microenvironment, including macrophages expressing the receptor CSF1R, promote and nourish
tumor cells. The so-called PD1/PDL1 axis is a major reason why tumors can grow with a “magic hat”;
i.e., unrecognized from the immune system. The aim of our study was to assess treatment strategies
that target macrophages in the microenvironment by blocking CSF1R alone or in combination with
PD1 blockade. Using an immune competent mouse model and an ex vivo microtumor model using
freshly resected glioblastoma material, we observed prolonged survival of treated mice and an
improved “attack” of the immune system. We conclude that targeting CSF1R is a promising strategy
that should be explored in clinical trials, potentially in combination with PD1 blockade.

Abstract: Glioblastoma is an aggressive primary tumor of the central nervous system. Targeting
the immunosuppressive glioblastoma-associated microenvironment is an interesting therapeutic
approach. Tumor-associated macrophages represent an abundant population of tumor-infiltrating
host cells with tumor-promoting features. The colony stimulating factor-1/ colony stimulating factor-
1 receptor (CSF-1/CSFIR) axis plays an important role for macrophage differentiation and survival.
We thus aimed at investigating the antiglioma activity of CSFIR inhibition alone or in combination
with blockade of programmed death (PD) 1. We investigated combination treatments of anti-CSF1R
alone or in combination with anti-PD1 antibodies in an orthotopic syngeneic glioma mouse model,
evaluated post-treatment effects and assessed treatment-induced cytotoxicity in a coculture model
of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) ex
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vivo. Anti-CSFIR monotherapy increased the latency until the onset of neurological symptoms.
Combinations of anti-CSFIR and anti-PD1 antibodies led to longterm survivors in vivo. Furthermore,
we observed treatment-induced cytotoxicity of combined anti-CSFIR and anti-PD1 treatment in the
PDM/TILs cocultures ex vivo. Our results identify CSFIR as a promising therapeutic target for
glioblastoma, potentially in combination with PD1 inhibition.

Keywords: CSF1R; PD1; glioblastoma; sequential therapy; immunotherapy

1. Introduction

Glioblastoma is an incurable aggressive primary brain tumor. The median overall
survival is still in the range of 1.5 years despite multimodal therapy even in selected
clinical trial population [1-5], and 5-year survival rates are only approximately 5% [6].
Glioblastomas efficiently reprogram their microenvironment towards an immunosuppres-
sive milieu [7] by altered surface molecule expressions, e.g., human leucocyte antigen
(HLA)-E and lectin-like transcript-1 (LLT-1) [8,9]. Moreover, upregulated signal transducer
and activator of transcription 3 (STAT3) induces the production of immunosuppressive
cytokines like transforming growth factor (TGF)-beta and interleukin (IL)-6 [10,11]. Conse-
quently, immunotherapeutic strategies aimed at overcoming this glioblastoma-associated
immunosuppressive signature are considered promising. Various approaches are currently
in clinical development, e.g., peptide vaccination, cellular therapies, and immune check-
point blockade. Immune checkpoint blockade with antibodies targeting the programmed
cell death (PD)1 led to promising results in several metastatic cancers [12]. They act by inter-
fering with the interaction between PD1 and the respective ligands and thereby disrupting
the inhibitory effects on T cell-mediated immune reaction [13]. However, PD1 inhibition
did not led to the same clinical outcome in glioblastoma. In progressive glioblastoma,
nivolumab was not superior compared with bevacizumab (NCT02017717). Investiga-
tions of the efficacy of nivolumab in newly diagnosed glioblastoma are currently ongoing
(NCT02617589, NCT02667587). Postoperative treatment with PD1 antibody and radiation
therapy in O®-methylguanine DNA methyltransferase (MGMT)-unmethylated newly diag-
nosed glioblastoma did not improve overall survival compared with radiation therapy and
temozolomide (NCT02617589).

A potential strategy for enhancing the efficacy of PD1 in glioblastoma might be the
design of rational combination therapies. In melanoma, mining of publicly available tran-
scriptomic data sets indicated a coenrichment of CD8* T cells with colony stimulating
factor (CSF)1 and other macrophage-specific markers, which were associated with nonre-
sponsiveness to PD1 blockade [14]. In human gliomas, expression of CSF1 is present in glial
fibrillary acidic protein (GFAP)-positive cells [15]. Cultured glioblastoma sphere-forming
cells release CSF1 [16]. Moreover, CSF1 has an oncogenic role in gliomagenesis [17]. Yet,
a Phase II study investigating the compound PLX3397, an oral small molecule inhibitor
targeting CSF1R and KIT, in 37 patients, suggested that the compound is well-tolerated,
but monotherapy has no efficacy [18]. The inhibition of CSF1R in a preclinical study
using the RCAS-hPDGF-B/Nestin-Tv-a; Ink4a/Arf~/~ model led to prolonged overall
survival [19]. Moreover, microenvironmental alterations by CSF1R blockade rendered
tumor cells susceptible to receptor tyrosine kinase inhibitors dovitinib and vatalinib in
preclinical studies [20].

Based on these facts, we hypothesized that CSFIR blockade might be a promising
therapeutic strategy, either as monotherapy or in combination with PD1 inhibition [21].
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2. Results
2.1. Expression of CSF1R, CD204, CD163, PD1, and PD-L1 in Primary and
Progressive Glioblastoma

We investigated paired human glioblastoma samples from primary and subsequent
progressive disease for the presence of CSF1R, CD204, CD163, PD1, PD-L1, CD3, CD4,
and CDB8 (as illustrated in Figure 1). Six patients received radiotherapy only between
first diagnosis and progression, and 28 of 34 (82.4%) patients were treated with radia-
tion therapy and concomitant and adjuvant temozolomide [22]. For the analysis of the
immunohistochemical stainings, expression levels of tissue-dependent markers were as-
sessed. The expression of all markers was observed in most cases with usually low to
intermediate levels (as illustrated in Supplementary Table 52). We used the established
immunoreactive score (IRS) to link semiquantitative staining frequency and intensity pat-
tern. IRS calculations demonstrate the presence and strong staining signal particularly of
CD204 and CSF1R in both primary and corresponding progressive tissue (as illustrated in
Supplementary Figure S1). Highest mean IRS values were observed for tumor-associated
macrophages marker CD204 (meancppos: 7.16) and T cell marker CD4 (meancpg: 5.74).
Additionally, the treatment target CSF1R was consistently present (meancsgpir: 4.57), and
PD1 IRS were rather less seen in this cohort (meanpp;: 0.29). Furthermore, the frequency
of tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) was
stable in progressive compared with that of newly diagnosed tumor tissue.

Intrapatient expression patterns reveal rather stable expression of tumoral microenvi-
ronmental markers (as illustrated in Supplementary Table S3). As an example, 57.1% and
60% of the samples show the same expression levels for CSFIR and PD1 in primary and
recurrent tumor situations (as illustrated in Supplementary Table S3).

Next, we performed correlation analysis of tissue-based parameters. Potential corre-
lation of TAMs and TILs markers were of particular interest to link presence of both
compartments inside the tumor microenvironment in newly diagnosed and progres-
sive glioblastoma tissue (as illustrated in Supplementary Figure S2). Strongest pos-
itive linear correlation was found between CD204 and PD-L1 (correlation coefficient
Trecurr = 0.843, precurr < 0.0001). PD-L1 expression revealed intermediate to strong asso-
ciation with CD163 expression (rprim = 0.459, pprim < 0.006; rrecurr = 0.643, Precurr < 0.0001)
and CSFIR (rprim = 0.492, pprim. < 0.005). CSF1R showed moderate correlation with TAM-
marker CD204, too (fprim = 0,381, p < 0.003) We detected a correlation between PD1 and
CDA4 (rprim = 0.323, pprim. < 0.047). CD163 revealed intermediate association with CSF1R
(tprim = 0.492, pprim < 0.005), as well as with CD4 and CD8 (rprim = 0.373, Pprim. < 0.025).

T cell specific markers showed either strong or intermediate positive linear correla-
tion; for instance, general T cell marker CD3 correlated with CD4 and CD8 (rprim = 0.548,
Pprim. < 0.001; rrecurr = 0.569; Precurr < 0.003/0.039) (as illustrated in Supplementary Figure S2).
The remaining subgroups and tissue-dependent markers did not reveal significant effect
sizes and correlations.

Taken together, our stainings detected CSF1R and markers for TAM and TILs in
newly diagnosed and corresponding progressive glioblastoma samples. Our correlation
analysis mainly revealed an association between immunosuppressive signature (PD1
and PD-L1) and TAMs/TILs markers. Our data further suggest that CSF1R and PD1
stainings are comparable (as illustrated in Supplementary Table S2) in newly diagnosed
and corresponding progressive disease.

2.2. Monotherapies with PD1 Antibody and CSFIR Antibody Prolong the Latency until the Onset
of Neurological Symptoms In Vivo and Lead to an Altered Immune Signature in
the Microenvironment

We first investigated the efficacy of monotherapies with PD1 or CSF1R antibody in
a syngeneic mouse model. We implanted SMA-560 tumor cells into the right striatum of
VM/Dk mice (day 0) and started the treatment on day 14 with the anti-CSFI1R antibody
2G2, or the anti-PD1 antibody RMP1.14 or the respective control antibodies. The median
survival time in the control group was 18 days, in the anti-CSF1R group 22 days, and in
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the anti-PD1 group 23 days (as illustrated in Figure 2A). The survival time refers to the
experimental endpoint as outlined in material /methods.

Newly diagnosed glioblastoma First progression of glioblastoma

i iFe

REETs
P N
.

CSF1R

A

5 R
AR OR A

CD163

5 4'4 . &
L e & LR <)
VR SRR

e

o Caad®iawl

PD1

PD-L1

CD3

CD4

CD8

Figure 1. CSFIR and PD1 are present in primary and progressive glioblastoma. Representative tumor
areas from matched pairs of newly diagnosed and progressive glioblastoma. H&E staining (top row)
and immunohistochemical staining of CSFIR (1 = 28), CD204 (1 = 27), CD163 (1 = 31), PD1 (1 = 30),
PD-L1 (n =31), CD3 (n = 28), CD4 (n = 30), and CDS8 (1 = 28). Scale bars 50 um.
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= = control anti-CSF1R (MOPC-21)

3 75 = anti-CSF1R (2G2) saline 18
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s 50 == anti-PD1 (RMP1.14) = - |**

‘§ 55 anti-CSF1R 215 !
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control anti-PD1 control anti-CSF1R
saline .18.4) anti-PD1 (RMP1.14) (MOPC-21)

A Felom
control anti-CSF1R
(MOPC-21

Figure 2. Monotherapies with PD1 and CSF1R blockade in experimental syngeneic SMA-560 glioma
in vivo. (A): Kaplan-Meier plot showing symptom-free survival. Experimental groups (n = 10 in each
group) include control treatment (saline), anti-CSFIR (2G2) antibody, anti-PD1 (RPM1.14) antibody,
and respective control antibodies. Treatments started on day 14 post-tumor implantation. Tukey-
Kramer post hoc test was used after performing Log-rank (Mantel-Cox) test (p < 0.001). ** p < 0.001
Survival time depicted in Kaplan—-Meier plot refers to experimental endpoint as described in detail in
material /methods section and in Supplementary Table S1. (B,C): Immunohistochemical analysis in
post-treatment SMA-560 gliomas of one representative animal per group (7 = 1). Small inserts show
staining control without application of primary antibody. (scale bars in (B): 100 um; scale bars in (C):
50 pm).

We performed immunohistochemical analyses on post-treatment brains of each experi-
mental group and investigated infiltrations of tumor tissues by T cells and macrophages/mic-
roglia using CD3, CD4, CD8 (as illustrated in Figure 2B), CD11b, CD163, C204 (as illustrated
in Figure 2C), and PD1 and PD-L1 (as illustrated in Supplementary Figure S4). In the control
(saline treatment) group, CD3, CD4, CDS8 stainings revealed decreased staining distribution
with only few single positive cells (as illustrated in Figure 2B, first column). Of note, CD11b
and CD204 stainings showed strong signals (as illustrated in Figure 2C, first column). This
pattern was similar in the control antibody-treated tissues (as illustrated in Figure 2A,B,
second and fourth column). In contrast, the tumor tissue after a treatment with the anti-PD1
antibody showed strong stainings for CD3-, CD4-, and CD8-positive cells (as illustrated in
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Treatment schedule

Figure 2B, third column) and unaltered strong CD204 positivity (as illustrated in Figure 2C,
third column). The treatment with the anti-CSFIR antibody led to an increase of CD4-
positive cells (as illustrated in Figure 2A, last column) and a reduction of CD11b- and
CD204-positive cells (as illustrated in Figure 2C, last column).

2.3. Combinations of Anti-CSFIR and Anti-PD1 Antibodies Lead to Longer Term Surviving
Animals In Vivo If Applied Simultaneously or Sequentially, but Only If PD1 Blockade Follows
CSF-1R Blockade

Next, we investigated the impact of simultaneous and sequential combination treat-
ments in vivo (as illustrated in Figure 3A). Monotherapies with anti-CSF1R, anti-PD1, and
respective control antibodies served as control groups in the experimental setup. The
survival times refer to the experimental endpoint as outlined above and in Supplementary
Table S1. Median overall survival was prolonged with each monotherapy compared with
that of the respective control group (as illustrated in Figure 3B).

el L]

A g W AN anti-CSF1R + anti-PD1 (simultaneous)
day 7

Y
S W V) G G |

x Y v v 1st anti-CSF1R + 2nd anti-PD1

day 7
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vy ¥ v Add YA l l L anti-cSFIR (262) 30mgikg | P

1st anti-PD1 + 2nd anti-CSF1R

Percent of Survival

FFEEEFEREE

100—]_

75
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{  anti-PD1 (RMP1.14) 10mgikg | P.

C

1st anti-PD1 + 2nd anti-CSF1R

L R

1st anti-CSF1R + 2nd anti-PD1

anti-CSF1R + ant-PD1

8 16 2124 32 40 48 52

. 3 anti-PD1 (RMP1.14)

Days post-tumor implantation Nl
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aroup i anti-CSF1R (2G2) =

control anti-PD1 (C.1.18.4) MOPC.21 160 11

anti-PD1 (RMP1.14) A = L T

anti-CSF1R + anti-PD1 L I mp— oot oo control ant-CSF1R (MOPC-21) |

1st anti-PD1 + 2nd anti-CSF1R + anfi PO ny

control anti-CSF1R (MOPC-21) bttt 185 ——

anti-CSF1R (2G2) wagEol | 200 control ant-PD1 (C.1.18.4) 1%
1st anti-CSF1R + 2nd anti-PD1 + 2nd ani-CST 1R, 1é 1'7 =

Days post-tumor implantation

Figure 3. Simultaneous and sequential combinations of PD1 and CSFIR blockade in vivo. (A): Schematic overview of

experimental design. (B): Kaplan—Meier plots: combination therapies vs. monotherapies vs. controls. Experimental groups

(n = 10 in each group) are as indicated: Blue dashed line shows p-value between combination therapy group starting
with anti-CSF1R treatment and CSFIR control group. Green dashed lines show p-value between both control groups
vs. simultaneous combination group. P-values were calculated by using Tukey—Kramer post hoc test after performing
Log-rank (Mantel-Cox) test (p < 0.0001). (C): Symptom-free survival graph displaying each single mouse per experimental
group. Experimental groups are: control anti-PD1, control anti-CSFIR, anti-PD1, anti-CSF1R, anti-CSFIR plus anti-PD1,
anti-CSF1R and then anti-PD1, and anti-PD1 and then 2nd anti-CSF1R. Dashed line on day 16 represents median latency
until experimental endpoint in control group. Dashed line on day 17 shows time point where last animal of control group
reached experimental endpoint. Day 52 indicates last surviving animals. Experimental endpoints are described in detail in
the material /methods section and in Supplementary Table S1.



Cancers 2021, 13, 2400

7 of 18

CD163

CSF1R

Ki67

Caspase 3
cleaved

Simultaneous treatment with anti-CSF1R and anti-PD1 antibody led to a durable tail of
longer-term surviving animals. The sequential treatments only led to longer-term surviving
animals when anti-CSFIR antibody was administered before anti-PD1 antibody (as illustrated
in Figure 3C). The median overall survival, however, was not significantly prolonged.

2.4. Combined Anti-CSFIR and PD1 Antibodies Lead to Decreased CSFIR and Increased
CD8/CD4 and CD8/FoxP3 Ratios in Post-Treatment Tissues

To further understand the treatment effects of anti-CSF1R and anti-PD1 antibodies, we
investigated the immune signature in post-treatment tissues. First, we investigated the post-
treatment immune signature after 2 injections of anti-CSF1R and 3 injections of anti-PD1 anti-
bodies, i.e., around day 10 after the onset of treatment. The analysis of macrophage/microglia
markers (as illustrated in Figure 4) revealed a reduction of CD11b- and CD204-positive cells
with anti-CSFIR antibody monotherapy and combined treatments.

control anti-PD1 control anti-CSF1R anti-CSF1R
(MOPC-21)

(C.1.18.4)

anti-PD1 (RMP1.14) anti-CSF1R (2G2)

+ anti-PD1

Figure 4. Immunohistochemical analysis in post-treatment tissues (1 = 3 in each group were analysed). Representative IHC
staining patterns of tumor tissues with indicated antibodies after 2 injections of CSFIR antibodies and 3 injections of PD1
antibodies. Small inserts show staining control without application of primary antibody. Scale bars 50 pum.

Of note, the staining intensity of CSFIR was only reduced after anti-CSF1R antibody
monotherapy and combined treatments (as illustrated in Figure 4). Ki67 staining did not
significantly change after treatments. Treatments with anti-PD1 antibody and anti-CSF1R
antibody and their combinations led to a strong signal for cleaved caspase 3. Of note, PD1
and its ligand PD-L1 were present in all treatment groups (as illustrated in Supplementary
Figure 54). Quantifications indicated a lack of difference in Ki67 between treatment groups
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(as illustrated in Figure 5A), an increase of cleaved caspase 3 after anti-CSFIR monotherapy
(as illustrated in Figure 5B), and increased CD8"/CD4" ratio and CD8"/FoxP3" ratio
as monotherapy and in combination with anti-PD1 (as illustrated in Figure 5C-F and
Supplementary Figure S3). Moreover, quantification of macrophage/microglia marker
showed generally weak CD163 staining signal (as illustrated in Figure 5G) and CD204
reduction after anti-CSF1R monotherapy and after combination therapy with an anti-PD1-
antibody (as illustrated in Figure 5H).
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Figure 5. Quantification of Ki67, cleaved caspase 3, CD4, CD8 as well as CD8/CD4, and CD8/FoxP3 ratios in post-treatment
tissue. Quantification of Ki67 (A), cleaved caspase 3 (B), CD4 (C), CD8" (D), CD8" /CD4" ratio (E), FoxP3" (F), CD8/FoxP3
ratio (G), CD163 (H), and CD204 (I) in tumor tissues after 2 injections of CSFIR and 3 injections of PD1 antibodies. Three
animals (n = 3) in each group were analysed. Statistical analysis was done using one-way ANOVA followed by Tukey’s
multiple comparison test. ** p < 0.01, * p < 0.05.

We performed a thorough immunohistochemical analysis on post-tumor tissues from
simultaneous versus sequential treatments involving CD3, CD4, CDS8 (as illustrated in
Figure 6A), CD11b, CD163, CD204 (as illustrated in Figure 6B), and PD1, PD-L1 (as illus-
trated in Supplementary Figure 54). Furthermore, we quantified the effects on CD4 (data
not shown), CD8, CD8/CD4 ratio, and CD204 (as illustrated in Figure 6C). Anti-CSF1R
alone and in combination with anti-PD1 led to 3-fold and 2-fold increased infiltration with
CD8" cells (as illustrated in Figure 6C (1,2)), and 6-fold and 1.5-fold higher CD8/CD4
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(C.1.184)
CD11b
CD163 %

anti-PD1 (RMP1.14) (MOPC-21) anti-CSF1R (2G2) + anti-PD1 +2 anti-PD1 +2 anti-CSF1R

anti-PD1 (RMP1.14) (MOPC-21) anti-CSF1R (2G2) +anti-PD1

ratio compared with that of respective IgG controls (as illustrated in Figure 6C(3)). The
influx of CD4" cells was similar in all treatment groups compared with that of controls
(data not shown). CD204" cells decreased after treatments with anti-CSF1R blockade
alone (as illustrated in Figure 6B,C). Of note, the reduction of CD204™ cells is particularly
pronounced after combined treatments of anti-PD1 and anti-CSF1R blockade (as illustrated
in Figure 6B, last row, columns 3-5; Figure 6C (3)). We also observed a decrease in CD204"
cells after anti-PD1 blockade alone. Yet, this reduction was significantly lower compared to
that of the other treatment groups (as illustrated in Figure 6B,C).
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Figure 6. Inmunohistochemical analysis of one representative animal per group (1 = 1) of tumor-infiltrating host cells in

simultaneous versus sequential combinations of PD1 and CSF1R blockade in vivo. (A), H&E and immunohistochemical
analysis in representative tumor tissues. Scale bar 100 um. (B), Immunohistochemical analysis in representative tumor
tissues. Scale bars 50 um. Small inserts show staining control without application of primary antibody. (C), Quantification
of CD8* (1), CD8* /CD4" ratio (2), and CD204" (3) cells. For quantification, three tissue samples of different tumor depth
per animal were analysed. Statistical analysis was done using one-way ANOVA followed by Tukey’s multiple comparison

test. p < 0.05.

2.5. Coinhibition of CSFIR and PD1 Enhances Cytotoxicity in Glioblastoma PDM/TILs
Co-Cultures Ex Vivo

Based on our results so far, we concluded that anti-CSF1R antibodies reshape the
glioma-associated microenvironment by decreasing CD204" cells and increasing the influx
of CD8" cells. We aimed at understanding the functional consequence of this observa-
tion regarding a combination therapy with anti-PD1 antibody. To this end, we used
a patient-derived microtumor (PDM)/ tumor-infiltrating lymphocytes (TILs) coculture
model derived from fresh residual tissue of glioblastoma resection by enzymatic tissue
digestion (as illustrated in Figure 7B). Isolated autologous TILs were expanded and subse-
quently used in a coculture experiment with respective PDMs. We further characterized
the isolated TILs population by multicolor flow cytometry (as illustrated in Supplementary
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Figure S5) and detected CD8 and CD4 positive T cells. Further T cell subpopulations widely
expressed T cell activation markers like CD107 or CD137 (as illustrated in Supplementary
Figure S5).
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Figure 7. Treatment-induced cytotoxicity in PDMs and PDM/TILs coculture. (A) Immunohistochemistry staining of
(1) PDM model 1 and (2) PDM model 2 for markers of macrophages (CD68), tumor-associated macrophages markers
(CD204 and CD163), and CSFIR. Scale bars 100 um. (B) PDM model 1, coculture with autologous TILs, treatments and
concentrations as indicated after 72 h (n = 3 per concentration). Fold changes were normalized to PDMs only. Two-

way ANOVA followed by Dunnett’s multiple comparison test was used. PDMs+I1gG4-Control served as control group.
*##p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05. (C): PDM model 2 was treated in the absence of TILs with either CSFIR/
PD1 or combination treatments and concentrations as indicated. Cytotoxicity was measured after 72 h. Fold changes were

normalized to isotype control; significance above bars refer to control group. Two-way ANOVA followed by Dunnett’s
multiple comparison test was used. PDMs +IgG4-Control served as control group. *** p < 0.001, * p < 0.05.

For monotherapies or combination treatments, we used different concentrations of
anti-CSF1R [21] and anti-PD1 antibodies and measured the extent of treatment-induced
cytotoxicity (as illustrated in Figure 7C). We did not observe any changes in the treatment-
naive control groups, i.e., PDMs only and PDM + TILs (as illustrated in Figure 7B,C).
Anti-CSF1R antibody alone led to increased treatment-induced cytotoxicity at 1 pg and
5 ug/mL. Anti-PD1 antibody alone led to increased treatment-induced cytotoxicity at
50 ug/mL and 125 ug/mL (as illustrated in Figure 7B). Using different concentrations for
combination treatments, we observed an increased treatment-induced cytotoxicity already
with 25 ug/mL anti-PD1 combined with anti-CSF1R. Immunohistochemical staining of
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PDM model 1 showed low amounts of infiltrated CD204- and CD163-macrophages together
with prominent expression of target protein CSFIR (as illustrated in Figure 7A (1)).

Next, we generated another PDM model (PDM 2) derived from a different tumor
sample. Immunohistochemical analysis of PDM model 2 using CSF1R, CD68, CD204, and
CD163 revealed the presence of tumor-associated macrophage markers (as illustrated in
Figure 7A (2)). Of note, the treatment target CSF1R was strongly present inside PDM 2.

We treated this PDM model 2 without the addition of autologous TILs to investigate
the effects of anti-CSF1R and anti-PD1 antibodies on the compartment of tumor-associated
macrophages infiltrated into respective PDMs (as illustrated in Figure 7A (2),C).

In contrast to PDM model 1 (as illustrated in Figure 7B), all three tested combination
therapy regimes revealed significantly higher cytotoxicity in PDM model 2 (as illustrated
in Figure 7C). The most effective treatment regime was the combination of 10ug/mL anti-
CSF1R with 50 pg/mL anti-PD1. It showed significantly higher cytotoxicity compared with
vehicle and both monotherapies. Monotherapy with anti-PD1 only led to increased cyto-
toxicity with the highest anti-PD1 concentration (125 pg/mL) (as illustrated in Figure 7C).
Yet, by combining CSF1R and anti-PD1, already low concentrations of both compounds led
to an increased cytotoxicity in PDM 2. To further validate this result, we investigated the
combination therapy in a third PDM model (PDM model 3, as illustrated in Supplementary
Figure 56) with positive immunohistochemical CSF1R staining and moderate presence of
further TAM markers (as illustrated in Supplementary Figure S6A). Similar to previously
tested PDM models, the combination therapy showed highest cytotoxicity in PDM model 3
(as illustrated in Supplementary Figure S6B).

3. Discussion

Treatment strategies involving targets in the immunosuppressive glioma-associated
microenvironment could be a promising strategy to improve the currently available ther-
apeutic options for glioblastoma patients [23]. Glioma-associated macrophages display
distinct tumor-promoting features [24] and contribute to resistance in glioma immunother-
apy [25]. In melanoma, for example, macrophage-associated markers including CSF1
were associated with nonresponsiveness to PD1 inhibition [14]. Thus, we investigated
anti-CSF1R either alone or in combination with anti-PD1 in experimental glioma. A com-
prehensive immunophenotyping of newly diagnosed versus progressive glioblastoma
investigating tumor-infiltrating leukocytes (TILs) and peripheral blood leukocytes demon-
strated an exhaustion signature of TILs in progressive glioblastoma [26]. Of note, this
study analysed primary and progressive glioblastoma with matching age-related healthy
donors. Immunohistochemical staining in matched paired tumor tissues from primary and
corresponding progressive glioblastoma from our center indicated that the relevant targets
of the anti-CSFIR and anti-PD1 combination regimen, i.e., CSF1R, the macrophage markers
CD204, CD163, and PD1 and PD-L1, were present in patient-derived tissue of newly diag-
nosed and progressive disease (as illustrated in Figure 1, Supplementary Table S2). Our
data confirm previous studies that detected these markers in glioblastoma tissue [17,27];
yet, these studies did not investigate potential treatment-associated alterations between
newly diagnosed and progressive disease, nor did they correlate the presence of TILs
and TAMs inside the tumor microenvironment. In this context, the performed spearman
correlation analysis might suggest that mainly the PD1/PD-L1 axis correlates with histo-
logical markers for TAMs (CD204/CD163) and TILs (CD4) in primary and recurrent tissue
samples. Our findings might further indicate that TILs infiltration remained comparable
in newly diagnosed and corresponding progressive tissue in our cohort (as illustrated
in Supplementary Table S3), but larger sample studies will be necessary to validate this
finding. A noteworthy observation was that the molecular targets of our compounds, i.e.,
CSF1R and PD-1, were detected in newly diagnosed and progressive glioblastoma (as
illustrated in Figure 1). We conclude that a combined targeting of CSFIR and PD1 in future
clinical trials might be feasible in newly diagnosed and as well as in RT/TMZ-treated
progressive glioblastoma.
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Interestingly, CSF1R blockade alone led to a prolonged latency until the onset of
neurological symptoms (as illustrated in Figure 2). As indicated by reduced staining
distribution in post-treatment tissues from SMA-560 tumors for CSFIR, CD204, and CD11b
after CSFIR monotherapy, the target population is efficiently diminished by the anti-
CSF1R antibody in our experimental setup (as illustrated in Figure 2). These results are
comparable with other studies combining glioma-associated microenvironment targets
with an anti-PD1 checkpoint inhibitor. For example, combinations of C-X-C chemokine
receptor type 4 (CXCR-4)/ C-X-C chemokine Ligand (CXCL-12)-axis and led to reduced
microglial infiltration and improved PD1 efficacy [28].

We observed that combined treatments with CSF1R and PD1 antibodies altered the
immune signature in immunohistochemically analysed post-treatment tissues; in partic-
ular, increased T cell infiltration and elevated CD8*/CD4* and CD8" /FoxP3* ratios (as
illustrated in Figures 5 and 6). Higher CD8" /CD4" ratios were also observed with anti-
CXCR4 and anti-PD1 combination [28]. A recent study on 66 patients [29] highlighted
molecular determinants of response to nivolumab. One of the features of nonrespond-
ing PTEN-mutant tumors was a markedly reduced immune cell infiltration. Thus, the
increased immune cell infiltration by anti-CSF1R observed here might indicate a promising
signal for improving the treatment efficacy of PD1 inhibition in glioblastoma. Our data
interpretation is further supported by a recent study demonstrating that the combination of
anti-PD1 and anti-CSF1R antibodies prolonged the survival of BRAFV600E-driven mouse
melanoma [14]. The combination of a CSFIR inhibitor and PD1 reversed the development
of immune resistance in a dendritic cell vaccination model [30]. Combinations of PD1
antibodies with inhibition of the T cell exhaustion marker LAG-3 or an inhibition of the
tryptophan catabolic enzyme IDO showed comparable results, i.e., increased efficacy of
anti-PD1 treatment, later onset of neurological symptoms, and recomposition of the tumor
associated microenvironment [31,32]. In our combination treatments, we only observed
long-term surviving animals after simultaneous combination treatments or in sequential
treatments when PD1 blockade followed CSF1R blockade (as illustrated in Figure 3). This
might reflect that the CSF1R blockade-mediated reduction of activated macrophages in
post-treatment staining contributes to a better efficacy of subsequent PD1 blockade as
indicated by a reduction of CD204+ cells in post-treatment tissues (as illustrated in Figure 2,
Figures 4-6). Of note, anti-CSFIR also led to increased influx of CD8* cells (as illustrated
in Figure 6). This might further contribute to an efficacy of PD1 blockade. Of course, the
limitations of these results need to be considered too; we only observed two long-term sur-
viving mice upon sequential treatments with anti-CSF1R followed by PD1 antibodies. This
indicates that further underlying factors determine the efficacy of this combination therapy
that need to be investigated in more detail in upcoming studies. Yet, our observations in the
PDM culture and PDM/TILs coculture model further support the potential of a combined
anti-CSFIR and anti-PD1 strategy: a combined inhibition of PD1 and CSF1R enhanced
treatment-induced cytotoxicity (as illustrated in Figure 7B) already at a low concentration
of 25 ug/mL of anti-PD1, whereas 25 pg/mL of anti-PD1 monotherapy did not lead to
increased treatment-related cytotoxicity (as illustrated in Figure 7B).

Taken together, our study indicates that CSFIR inhibition might be a promising
therapeutic strategy for clinical translation in glioblastoma. Furthermore, our data indicate
that anti-CSF1R antibody might enhance the efficacy of anti-PD1 antibody even at lower
concentrations. Thus, for combinations of anti-CSF1R and anti-PD], it will be necessary to
investigate its sequence and dosage in early phase clinical trials. Recent phase I clinical
trials using neoadjuvant dosing of PD1 antibody in progressive glioblastoma suggest that
the timing of anti-PD1 antibody needs further consideration [33,34]. Thus, a thorough
investigation of novel combinatorial approaches, including anti-CSF1R and anti-PD1, in
early phase clinical trials will also have to consider their dosage and timing.
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4. Materials and Methods
4.1. SMA-560 Cell Implantation into Syngeneic VM/Dk Mice

All animal experiments were performed in accordance with the local authorities and
the German laws governing the use of experimental animals. All procedures are approved
by The Institute of Animal Welfare and the Veterinary Office at the University of Tubingen
and the Regional Council Tuebingen. We used the syngeneic SMA-560/VM/Dk mouse
model that was described before [35-37]).

Five thousand SMA-560 cells were implanted as described previously [38,39]. In brief,
adult mice were anesthetized with 3-component anesthesia (fentanyl, midazolam, and
medetomidin) before intracranial injection to the right striatum using a fixed stereotactic
apparatus. SMA-560 mouse cells were resuspended in 1 x PBS, and 5 x 10° cells in a
volume of 2 uL. were injected into female or male VM/Dk mice. Glioma-bearing mice were
randomized to the experimental groups and were carefully monitored and euthanized at
the onset of moderate clinical symptoms, which were evaluated according to a defined
scoring system that is outlined in detail in Supplementary Table S1.

4.2. Treatment Schedules In Vivo

The CSFIR (2G2), anti-PD1 antibodies and control antibodies (C.1.18.4 and MOPC-21)
were provided by Roche Diagnostics (Penzberg, Germany) [21]. Treatments with anti-
CSF1R and the control antibody were performed once weekly, 30 mg/kg by intraperitoneal
injection. The treatments with anti-PD1 and the control antibody were performed 3 times
per week for 2 weeks, 10 mg/kg by intraperitoneal injection.

4.3. Scoring of Experimental Animals

After surgery, the animals were closely monitored, and the clinical symptoms were
evaluated according to a defined scoring scheme (Supplementary Table S1). The endpoint
of the experiments was set at moderate distress. As soon as moderate clinical symptoms
were observed, the experimental animals were euthanized conforming to local standards
(Regional Council Tuebingen).

4.4. Immunohistochemistry of Murine Tumor Samples

The following antibodies were used: CD3, CD4, CD8, CD11b, CD163, FoxP3, Ki67
(Abcam, Cambridge, UK), CD204 (ThermoFisher, Waltham, MA, USA), and cleaved caspase
3 (Cell Signaling, Frankfurt am Main, Germany). Eight um thick sections were prepared
using a Leica CM3050S cryostat and stored at —80 °C. Frozen sections were air-dried at
room temperature for 10 min, fixed in ice-cold acetone at —20 °C for 10 min or 4% PFA for
15 min. Bloxall (Vector Laboratories, Peterborough, UK) was used to quench endogenous
peroxidase activity. Slides were incubated with 10% bovine serum albumin (BSA) in PBS-
Tween 0.3% for 1 h at room temperature and then incubated with primary antibody in
a humidity chamber overnight at 4 °C. The following day, slides were incubated for 1 h
at room temperature with biotinylated secondary antibodies, and positive staining was
detected using Vector NovaRED (Vector Laboratories, Burlingame, CA, USA). Stained tissue
sections were investigated under Carl Zeiss Axioplan2 Imaging brightfield microscope.
Staining analyses and picture processing were performed using Fiji Image] (National
Institutes of Health, Bethesda, MA, USA).

4.5. Immunohistochemistry of Human Glioblastoma Samples

We obtained the approval by the ethical board of the University Hospital Tiibingen
(permission number 077/2016BO2). We identified 34 patients who were treated at our
Neuro-oncology Centre where samples were available from the newly diagnosed treatment-
naive tissue and from first progression. All samples were classified as glioblastoma, IDH-
wildtype, WHO grade IV according to the current WHO classification of central nervous
system (CNS) tumors. Formalin-fixed, paraffin-embedded tissue microarray sections were
stained for CD3 (1:500, 40 min CC1 pretreatment, clone SP7, ThermoFisher, Waltham,
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MA, USA), CD4 (1:2, 24 min CC1, clone SP35, Ventana Medical Systems, Roche Group,
Indianapolis, IN, USA), CD8 (RTU, 64 min CC1, clone SP57, Ventana Medical Systems,
Roche Group, USA), CD163 (RTU, MRQ-26, Ventana Medical Systems, Roche Group,
USA), CSFIR (dilution 1:2500, 32 min CC1, clone 29, Roche Diagnostics GmbH, Penzberg,
Germany), PD1 (1:100, 64 min CC2, Clone MRQ-22, Zytomed, Berlin, Germany), PD-
L1 (1:100, 64 min CC1, ab205921, Abcam, Cambridge, UK), and CD204 (1:2500, 32 min
CC1, HPA000272, Sigma Aldrich, St. Louis, MI, USA) on the Ventana Benchmark XT.
immunohistochemistry system with a 32 min antibody incubation time each. The slides
were scanned at 20x using either the Ventana iScan HT or the Hamamatsu Nanozoomer®
bright field scanner, and positively stained cells within tumor tissue were evaluated and
quantified manually or by a semiautomated staining quantification using Image] (National
Institutes of Health, Bethesda, MA, USA, https://imagej.nih.gov/ij1997--2018/, (accessed
on 1 September.2020) as follows: none (<1% positive cells), low (<25%), intermediate
(<50%), high (<75%), very high (>75%).

Expression levels (as outlined in Supplementary Table S2) represent stained area
percentage of whole tissue cores and were evaluated either manually or by a semiau-
tomated staining quantification using Image]J. Expression levels were grouped in 4 or
5 interval-based subgroups, groups were represented by values 0 to 4, and mean values
were calculated. Additionally, an established immunoreactive score (IRS) was generated
(as shown in Supplementary Figure S1). [40,41] The staining intensity of tissue samples
was primarily semi-quantitatively scored as 0 (absent staining signal), 1 (weak expression),
2 (moderate expression), and 3 (strong expression). IRS was formed by multiplication
of the intensity score and semiquantitative staining quantification (score 0—4, as outlined
above). Difference in sample numbers is caused by incomplete transfer of tissue cores on
the tissue microarray and number of matched pair sample sets.

4.6. Patient-Derived Microtumors (PDMs) and Tumor Infiltrating Lymphocytes (TILs)

We used fresh residual tumor tissue from glioblastoma resections and generated
microtumors. The ethical board of the University Hospital Tiibingen approved this study.
We kept tumor tissue in DMEM F12 (Sigma Aldrich, St. Louis, MO, USA) plus 1% Primocin
(Invivogen, San Diego, CA, USA), and washed samples with Hank’s Balanced Salt Solution
(HBSS; Thermo Fisher, Waltham, MA, USA). Tissue fragments were crushed into small
(1-2 mm) pieces and were washed again. A digestion step was performed using a medium
containing 0.28 U/mL Liberase DH (Sigma Aldrich, St. Louis, MO, USA) solution and
incubated at 37 °C. Afterwards, the medium was discarded, and samples were washed
and sequentially filtered through a stainless-steel wire mesh (500 pm hole size; Fisher
Scientific, Waltham, MA, USA) and a 40 pm cell strainer (pluri Select Life Science, Leipzig,
Germany). For TILs isolation, single cells of the flow-through were collected and stored in
liquid nitrogen.

PDMs were carefully collected and cultured in StemPro® hESC SFM medium (Thermo
Fisher, Waltham, MA, USA) with bFGF (10 ug/mL; Peprotech, Rocky Hill, NJ, USA) and
1% Primocin (Invivogen, San Diego, CA, USA) at 5% CO, and 37 °C. Isolated cells of the
flow-through were resuspended for TILs expansion in T cell medium (Advanced RPMI
(Sigma Aldrich, St. Louis, MO, USA), containing Glutamine (200 mM; Thermo Fisher,
Waltham, MA, USA), 1x MEM Vitamins (Thermo Fisher, Waltham, MA, USA), human
AB serum (5%; Sigma Aldrich, St. Louis, MO, USA), Primocin (1%; Invivogen, San Diego,
CA, USA) containing IL-15 (23.8 U/mL; Peprotech, Rocky Hill, NJ, USA), IL-2 (100 U/mL;
Peprotech, Rocky Hill, NJ, USA), IL-7 (10U/mL, Peprotech, Rocky Hill, NJ, USA), and
CD3-/CD28-coated magnetic beads (Dynabeads Human T-Activator CD3/CD28, Thermo
Fisher, Waltham, MA, USA). TILs were expanded at 5% CO, and 37 °C.

PDM viability was assessed by costaining with Calcein-AM (Thermo Fisher Scientific;
green channel) for highlighting viable cells and SyTOX Orange (Thermo Fisher Scientific;
red channel) for identification of dead cells.
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4.7. Flow Cytometry for the Characterization of PDM-Derived TILs

We used FIX&PERM Cell Permeabilization Kit (Thermo Fisher, Waltham, MA, USA)
for fixation and permeabilization. TILs immune phenotypes were analyzed on an LSR
Fortessa cytometer (Beckton, Dickinson & Company, Franklin Lakes, NJ, USA) using
the following antibodies: Anti-CD4-BV510, Anti-CD107a-BV605, Anti-CD8-PerCP/Cy5.5,
Anti-CD3-FITC, Anti-CD137-APC/Cy?7, and Anti-CD25-Alexa Fluor 700 (all antibodies
purchased from BioLegend, San Diego, CA, USA). Data analysis was performed using
Flow]o v10.6.2.

4.8. Coculture Cytotoxicity Assay

PDMs were cultured in 96-well plates together with autologous TILs at an effector:
target cell ratio of 4:1 with the CellTox™ Green Cytotoxicity Assay reagent (Promega,
Madison, WI, USA) [42]. Treatments included anti-CSF1R antibody [21], anti-PD1 antibody
(Absource Diagnostics GmbH, Munich, Germany), and the respective human IgG4 isotype
control (Invivogen, San Diego, CA, USA) at indicated concentrations and time points (each
measured in triplicates). Fluorescence assay signal was measured using a multimode
microplate reader (Excitation filter: 485 (20) nm, Emission filter: 535 (20) nm; Tecan,
Minnedorf, Switzerland). Measured fluorescence units were background corrected and
plotted, and the resulting fold change values normalized to isotype treated controls.

4.9. Immunohistochemistry of PDMs

PDMs were isolated as described above (4.6), collected using 40 um cell strainers
(Corning, Glendale, AZ, USA), washed twice in HBSS (Thermo Fisher Scientific), and fixed
in 4% phosphate-buffered formaldehyde solution at pH7 (Carl Roth, Karlsruhe, Germany)
for 1 h at room temperature. Next, PDMs were stained with hematoxylin (Leica Biosystems,
NufSloch, Germany) for 5 min, washed briefly in H,O, and incubated twice in 50% EtOH
and 70% EtOH for 15 min each. PDMs were then embedded into a gel matrix (Richard-
Allan Scientific HistoGel, Fisher Scientific, Waltham, MA, USA) using a cryomold (Sakura
Finetek, Staufen im Breisgau, Germany) according to manufacturer’s instructions. The gel
matrix containing PDMs was stored in 70% EtOH for up to 2 weeks until further processing
for immunohistochemistry. For immunohistochemistry analyses, gel-embedded PDMs
were embedded into paraffin blocks. 5 pm sections were subjected to H&E staining (Leica
Biosystems) as well as IHC staining using a DAB (3,3’-Diaminobenzidine) staining solution
(Leica Biosystems). The following antibodies were used for IHC staining of PDM sections:
CSFIR (used at 1:200 dilution; Catalog Number: 25949-1-AP, Proteintech, Manchester, UK),
MSR1/CD204 (used at 1:1000 dilution; Catalog Number: HPA000272, Atlas Antibodies AB,
Bromma, Sweden), CD68 (used at 1:400 dilution, clone D4B9C, Catalog number: 76,437,
Cell Signaling Technology, Danvers, MA, USA), and CD163 (used at 1:500 dilution, clone
D6U1]J, Catalog number: 93,498, Cell Signaling Technology). Stained sections were imaged
on an Axio Scan.Z1 Slide Scanner (Carl Zeiss, Oberkochen, Germany) and equipped with
an EC Plan-Neofluar 20 x /0.5 objective (Carl Zeiss) and a Hitachi HV-F203SCL CCD color
camera (Hitachi, Tokyo, Japan).

4.10. Statistics

P values of IHC quantification were generated by using one-way Analysis of variance
(ANOVA) with Tukey’s multiple comparison test (GraphPad Prism 9). In in vivo survival
studies, Kaplan—-Meier method (Kaplan—-Meier survival fractions) was used to generate p
values and calculate the Log-rank (Mantel-Cox). Moreover, the Tukey—Kramer post hoc
test was used. Error bars represent standard error of the mean (SEM). For the analysis
of the immunohistochemical staining, a correlation of tissue-dependent markers was
assessed using spearman’s rank correlation. Correlation coefficient r was calculated and
results showing r > 0.30 with related p-values were included in Supplementary Figure S2.
Effect sizes were interpreted referring to Cohen’s standard, which describes r > 0.1 as
small association, r > 0.3 as moderate association, and r > 0.5 as strong association [43].
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Statistical significance in the coculture experiment was primarily tested with a two-way
ANOVA test followed by an Dunnett multiple comparison test (GraphPad Prism 8).

5. Conclusions

In summary, we report here data for a targeting of anti-CSF1R alone or in combination
with anti-PD1 in vivo and ex vivo. We conclude that our data contribute a novel therapeutic
strategy for clinical translation in future early phase clinical trials for glioblastoma patients.
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Table S1. Parameter for scoring of the experimental animals.

Parameter Phenotype Score

Clean skin and orifices, no pain, no weight loss 0

General appearance Sli.ght eye or nose discharge, slight pain, gp to 10% weight loss 1
Sticky eyes, moderate pain, up to 19% weight loss 2
Cramps, dehydration, strong pain, max. 20% weight loss 3
Normal spontaneous-explorative behavior, normal activity 0
Behavior Reduced spontaneous-explorative behavior, reduced activity 1
and motion activity Str9ngly reduced spontaneous-explorative behavior, strongly reduced ac- )
tivity
Total inactivity 3
Normal posture, normal facial expression 0
. . Slightly hunched back, less than 5 facial attributes with score 1, little pain 1
Posture, facial expression ) ] )
and assessment of pain with Moderately hunc.hed back, grimace score: all facial attributes are moder- )
the "grimace score" (1) ate, moderate pain ) ) )
Strongly hunched back, grimace score: all facial attributes are severe, se- 3
vere pain
Neurological symptoms None 0
(Behaviour in the cage Slight loss-of-balance, occasionally missed steps, slight paralysis 1
and on the grid, left paw paraly- Moderate loss-of-balance, every third step missed, moderate paralysis 2
sis) Strong loss-of-balance, total inactivity, strong paralysis 3
Table S2. Semi-quantitative analysis of immunohistochemical stainings.
Newly Diagnosed Glioblastoma Progressive Glioblastoma
N % n %
CSFIR expression n=28
none (<1%) 2/28 7.1 2/28 7.1
low (£ 10%) 12/28 429 15/28 53.6
intermediate (<25%) 6/28 214 5/28 17.9
high (> 25%) 8/28 28.6 6/28 214
Mean value 1.71 1.54
CD204 expression n=27
none (<1%) 0/27 0 0/27 0
low (£25%) 4/27 11.1 3/27 11.1
intermediate (<50%) 9/27 33.3 9/27 37.3
high (£75%) 8/27 33.3 8/27 25.9

very high (>75%) 6/27 22.2 7/27 25.9




Mean value 2.67 2.67
CD163 expression n=31
none (<1%) 8/31 25.8 2/31 3.2
low (£25%) 9/31 29.0 17/31 58.0
intermediate (<50%) 7/31 22.6 9/31 29.0
high (<75%) 7/31 22.6 3/31 9.7
very high (>75%) 0/31 0 0/31 0
Mean value 1.42 1.45
PD1 expression n=30
none (<1%) 20/30 66.7 22/30 76.7
low (£25%) 9/30 30.0 7/30 23.3
intermediate (<50%) 1/30 3.3 1/30 0
high (<75%) 0/30 0 0/30 0
very high (>75%) 0/30 0 0/30 0
Mean value 0.37 0.23
PD-L1 expression n=31
none (<1%) 5/31 16.1 1/31 3.2
low (£25%) 16/31 51.6 17/31 54.8
intermediate (<50%) 7/31 22.6 11/31 35.5
high (<75%) 3/31 9.7 2/31 6.5
very high (>75%) 0/31 0 0/31 0
Mean value 1.26 1.45
CD3expression n=28
none (<1%) 4/28 14.3 4/28 14.3
low (£5%) 17/28 60.7 15/28 57.1
intermediate (£10%) 6/28 25.0 9/28 28.6
high (<15%) 1/28 0 0/28 0
very high (>15%) 0/28 0 0/28 0
Mean value 1.11 1.14
CD4 expression n=30
none (<1%) 3/30 10.0 1/30 33
low (<5%) 5/30 16.7 3/30 10.0
intermediate (<10%) 9/30 30.0 10/30 33.3
high (<15%) 6/30 20.0 7/30 23.3
very high (>15%) 7/30 23.3 9/30 30.0
Mean value 2.3 2.67
CDS8 expression n=28
none (<1%) 5/28 17.9 2/28 7.1
low (<5%) 17/28 60.7 20/28 714
intermediate (<10%) 6/28 21.4 5/28 17.9
high (<15%) 0/28 0 1/28 3.6
very high (>15%) 0/28 0 0/28 0
Mean value 1.04 1.21

Table S3. Expression changes between primary and recurrent tumor tissue samples.

Marker n

Primary > Recurrent

Recurrent> Primary

Equal Expression

N % n % n %
CSFIR 28 7 25 5 17.8 16 57.1
CD204 27 7 25.6 7 25.6 13 48.1
CD163 30 9 30.0 12 40.0 9 30.0
PD1 30 7 23.3 4 13.3 19 63.3
PD-L1 31 5 16.1 11 35.5 15 48.4




CD3 28 8 28.6 7 25.0 13 46.4

CD4 30 10 33.3 20.0 14 46.6

(o)

CD8 28 9 32.1 5 17.9 14 50
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Figure S1. Frequency of alternative quantification of human tissue samples by a calculated immunoreactive score (IRS).
IRS was obtained by multiplying staining intensity score with semi-quantitative score of Supplementary table 2 (range 0-
12). Frequency of values are shown above. Sample numbers are as indicated in Supplementary table 2. Legend: “N”:
newly diagnosed Glioblastoma. “P”: Progressive Glioblastoma.
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Figure S2. Scatter plots outlining statistical correlation analysis of immunohistochemical markers in
tissue samples from newly diagnosed and corresponding progressive glioblastoma. Semiquantitia-
tive quantification of CSF-1R and CD204 (A), CSFIR and CD163 (B), PD-L1 and CD204 (C), PD-L1



and CD163 (D), PD1 and CD204 (E), CD3 and CDS8 (F), CD163 and CD8 (G) in newly diagnosed
glioblastoma. Semiquantitative quantification of PD-L1 and CD163 (H), PD-L1 and CD204 (I),
CD204 and CD163 (J) at first progression of glioblastoma. The spearman correlation test was used
for this analysis. Spearman correlation coefficient r and additional p-values as indicated. Sample
numbers are as indicated in Supplementary table 2.
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Figure S3. (A) Immunohistochemical analysis in post-treatment tissues (n=3 in each group were
an-alysed). Immunohistochemical analysis in representative tumor tissues with the indicated
antibod-ies after 2 injections of CSF1R antibodies and 3 injections of PD1 antibodies (as in Figure
4). Small inserts show staining control without application of primary antibody. Scale bars 50 pum.
(B) Whole brain HE sections illustrating the infiltrative growth of the SMA560 model. Sections of
exemplary animals, of the respective treatment group as indicated above. Upper image, 5x
magnification, scale bar 200pum. Bottom: overview image, scale bar 1000pm.
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Figure S4. Immunohistochemical analysis of PD1 and PD-L1 expression in post-treatment tissues
(in Figures 2, 5 and 6 in the main manuscript). Row 1 and 2, PD-L1 and PD1 expression refer to
Figure 2; rows 3 and 4 refer to Figure 4; rows 5 and 6 row refer to Figure 6 (further details are out-
lined in the text). One animal (n=1) per group was analysed. Small inserts show staining control
without application of primary antibody Scale bars 50 um.
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Figure S5. PDM morphology and TIL characterization of PDM model 1. (A) Representative fluores-
cent pictures highlighting viability of PDM model (1) 1 and (2) 2 following live-dead cell staining
with calcein-AM (green channel, viable cells) and SyTOX Orange (red channel; dead cells). Scale
bars 200um. (B) T cell gating strategy using multi-color flow cytometry. Exemplary workflow for
separating CD4+ and CD8+ cell population is shown. (C) Subpopulations of CD4+ and CD8+ cells
are gated for T cell activation markers CD25, CD107a, CD137, Granzyme B and TNFa. (D) Quanti-
fication of T cell activation markers, characterizing TIL fraction of PDM model 1.
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Figure S6. Treatment-induced cytotoxicity in PDM Model 3. (A) Immunohistochemistry staining of
PDM model 3 for markers of macrophages (CD68), and tumor-associated macrophages (CD204 and
CD163) as well as CSFIR. Scale bars 100um. (B) PDM model 3 was treated in the absence of TILs
with either CSFIR/ PD1 or combination, treatments and concentrations as indicated. Cytotoxicity
was measured after 72h. Fold changes were normalized to isotype control, significance above bars
refer to control group. Two-way ANOVA followed by Dunnett’s multiple comparison test was used.



PDMs +IgG4-Control served as control group. ***P<0.001 and **P<0.01. (C) Representative fluores-
cent pictures of PDM model 3. Live dead cell staining with calcein-AM (green channel, viable cells)
and SyTOX Orange (red channel; dead cells). Scale bars 200 pum.
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