
Microscopic derivation of

Vlasov equations

with

singular potentials

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
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Tag der mündlichen Qualifikation: 15.03.2024

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter: Prof. Dr. Peter Pickl
2. Berichterstatter: Prof. Dr. Michael Kiessling



Abstract

The Vlasov equation is an effective equation which is used to describe
the coarse-grained time evolution of a many particle system subject to
Newtonian time evolution. The most interesting interaction forces one
can consider for such systems are highly singular, for example Coulomb
or Newton’s gravitational force. Although progress has been made in
proving the validity of this macroscopic model, the full Coulomb case
without regularization, like a cut-off, is still an open problem. But also
other highly singular forces, for example delta like forces have gained a
lot of interest in the last decades.

The aim of this thesis is to make advancements in the rigorous mathe-
matical derivation of the Vlasov-Poisson equation in regard to the cut-off
size and provide a rigorous mathematical derivation of the Vlasov-Dirac-
Benney equation in the large N limit of interacting particles.

In the first part of the thesis we probabilistically prove the mean-field limit
and propagation of chaos of an N -particle system in three dimensions
with pair potentials of the form N3β−1φ(Nβx) for β ∈

[
0, 17
]
and φ ∈

L∞(R3) ∩ L1(R3). Provided that the initial positions of the N -particle
trajectories are independent and identically distributed with respect to
the initial density k0, we show that under certain assumptions on k0, the
characteristics of the Vlasov-Dirac-Benney equation provide a reliable
approximation of the N -particle trajectories.

In the second part we give a probabilistic proof of the mean-field limit
and propagation of chaos of an N -particle system in three dimensions for
a Coulomb force fN (q) = ± q

|q|3 with a cut-off |q| > N− 5
12

+σ, where σ > 0

can be arbitrarily small. In particular, the cut-off diameter is of a smaller
order of magnitude than the average distance between the particles and
their nearest neighbors.

In the third part of the thesis we give an outlook on a novel technique,
which gives rise to highly significant improvements for the full Coulomb
case. In order to control stronger singularities, the estimation of prob-
abilities for extremely rare events, i.e. particles coming very close to
each other, becomes crucial. However, relying solely on the information
that the true and mean-field trajectories exhibit a certain distance allows
for only a rough approximation. The ability to govern the extent to
which a variation in the initial trajectory impacts subsequent changes
will lead to better result. In other words we have to exchange the notion
of convergence from a convergence in probability to a convergence in
distributional sense.

We state a necessary theorem on this regard. By a probabilistic mean-
field approach we show that a small displacement of a particle at time
zero entails a small effect for the dynamics of the whole system, i.e. the
distance between the true dynamic and the disturbed dynamic is small
for later times. For that we show that the deviation remains in the order



of magnitude of the displacement. We are able to show a even stronger
result for the particles which were not disturbed at the beginning, namely
that the deviation decreases as the number of particles increases.



Zusammenfassung

Die Vlasov-Gleichung ist eine effektive Gleichung, die zur makroskopischen
Beschreibung der zeitlichen Entwicklung von Vielteilchensystemen verwen-
det wird. Die interessantesten Wechselwirkungskräfte, die für ein solches
System in Betracht gezogen werden können, sind hochgradig singulär,
wie zum Beispiel die Coulomb-Kraft oder die newtonsche Gravitation-
skraft. Obwohl Fortschritte bei der Beweisführung der Gültigkeit dieses
makroskopischen Modells erzielt wurden, ist der vollständige Coulomb-
Fall ohne Regularisierung, wie zum Beispiel einem Cut-off, immer noch
ein offenes Problem. Aber auch andere hochgradig singuläre Kräfte, zum
Beispiel Delta-ähnliche Kräfte, haben in den letzten Jahrzehnten viel
Interesse geweckt.

Das Ziel dieser Arbeit ist es, Fortschritte bei der rigorosen mathematischen
Herleitung der Vlasov-Poisson-Gleichung in Bezug auf die Cut-off-Größe
zu erzielen und eine strenge mathematische Herleitung der Vlasov-Dirac-
Benney-Gleichung für eine große Anzahl von wechselwirkenden Teilchen
bereitzustellen.

Im ersten Teil der Arbeit beweisen wir probabilistisch die Mittelfeldnäherung
und die Ausbreitung des Chaos eines N -Teilchensystems mit Paarpoten-
tialen der Form N3β−1φ(Nβx) für β ∈

[
0, 17
]
und φ ∈ L∞(R3) ∩ L1(R3).

Wir zeigen, dass unter bestimmten Annahmen zur Anfangsdichte k0
die Charakteristiken der Vlasov-Dirac-Benney-Gleichung eine sehr gute
Approximation des N -Teilchensystems liefern, vorausgesetzt, ihre An-
fangspositionen sind unabhängig und identisch verteilt bezüglich der
Dichte k0.

Im zweiten Teil der Arbeit liefern wir einen probabilistischen Beweis
für die Mittelfeldnäherung und die Ausbreitung des Chaos eines N -
Teilchensystems in drei Dimensionen für eine Coulomb-Wechselwirkung
fN (q) = ± q

|q|3 mit einem Cut-off |q| > N− 5
12

+σ, wobei σ > 0 beliebig

klein sein kann. Bemerkenswert ist, dass der Durchmesser des Cut-offs
im Vergleich zum durchschnittlichen Abstand zwischen den Teilchen und
ihren nächsten Nachbarn von deutlich kleinerer Ordnung ist.

Im dritten Teil der Arbeit geben wir einen Ausblick auf eine neuar-
tige Technik, die zu signifikanten Verbesserungen für den vollständigen
Coulomb-Fall führt. Um stärkere Singularitäten zu kontrollieren, ist die
Schätzung von Wahrscheinlichkeiten für extrem seltene Ereignisse, also
Teilchen, die einander sehr nahe kommen, von entscheidender Bedeutung.
Wenn man sich jedoch ausschließlich auf die Information verlässt, dass die
Trajektorien des wahren und mittleren Feldes einen bestimmten Abstand
aufweisen, ist nur eine grobe Annäherung möglich. Die Fähigkeit, das
Ausmaß zu steuern, in dem sich eine Variation der anfänglichen Flugbahn
auf nachfolgende Änderungen auswirkt, führt zu besseren Ergebnissen.
Mit anderen Worten müssen wir den Begriff der Konvergenz von einer
Wahrscheinlichkeitskonvergenz in eine Verteilungskonvergenz umwandeln.



Wir beweisen hierfür ein grundlegendes Theorem. Durch einen probabilis-
tischen Mean-Field-Ansatz zeigen wir, dass eine kleine Verschiebung eines
Teilchens zum Zeitpunkt Null einen kleinen Effekt auf die Dynamik des
Gesamtsystems mit sich bringt, d.h. der Abstand zwischen der wahren
Dynamik und der gestörten Dynamik ist für spätere Zeitpunkte ger-
ing. Dazu zeigen wir, dass die Abweichung in der Größenordnung der
Verschiebung bleibt. Für die anfangs ungestörten Teilchen können wir
ein noch stärkeres Ergebnis zeigen, nämlich dass die Abweichung mit
zunehmender Teilchenzahl abnimmt.
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Chapter 1

Introduction

Parts of this chapter are a reprint of

Pickl. P and Feistl, M. (2023). Microscopic derivation of Vlasov equation with
compactly supported pair potentials.

A preprint of this version is online at https://arxiv.org/abs/2307.06146.
My own contribution. This paper is joint work with my supervisor Peter Pickl. I
contributed substantially to all results. In particular, I worked out the main idea and
its proof. The final version was edited under guidance of my supervisor Peter Pickl.

1.1 Motivation

Understanding the dynamics of large ensembles of identical particles is a fundamental
challenge in various scientific disciplines. In many physical systems, the number of
particles is so vast that considering the exact dynamics of each individual particle
becomes practically infeasible. To tackle this complexity, mean-field models are
employed, which approximate the collective behavior of the particles in a more
manageable way. The central aim of this work is to investigate and justify the
mean-field approximation for systems with a large number of identical particles
subject to Newtonian time evolution.
In the realm of classical mechanics, a solitary point particle moving within a 3-
dimensional Euclidean space is endowed with 3 degrees of freedom. Conventionally
the phase space for a single particle is in R

3 × R
3, encompassing all conceivable

positions and momenta accessible to an unconstrained solitary particle in the 3-
dimensional Euclidean setting. In the context of a system comprised of N identical
point particles in motion within this 3-dimensional Euclidean space, the cumulative
count of degrees of freedom expands to 3N . For example at a temperature of 273 K
and a pressure of 1.01× 105 Pa, it is observed that within a volume of 2.24× 10−2

m3, the number of molecules present in any ideal gas corresponds to Avogadro’s
number 6.02× 1023 [31]. As the value of N approaches this magnitude, managing
the entire N -particle phase space becomes unfeasible. In an astrophysical setting,
N -particle calculations also quickly reach their limits. The Milky Way contains
approximately 200 billion stars. With such a number of particles, the N -particle
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scenario necessitates substantial technical efforts in numerical computation and often
results in the emergence of inherent limitations.

Mean-field models offer a solution by simplifying the system’s complexity, often
reducing it to a single-particle phase space where the count of degrees of freedom
remains fixed and uninfluenced by N . When the overall particle count reaches a
substantial level, the system’s state at a given time t can be statistically described
through a distribution function kt(q, p) in the context of the one-particle phase space.
This function characterizes the density of particles located at position q ∈ R

3 with
momentum p ∈ R

3 during time t.
On this macroscopic scale, precision gives way to a level of approximation. Instead

of individual components of the gas, averaged quantities in terms of macroscopic
observables such as densities are investigated. At this scale, effective interactions
are considered, focusing on the outcomes arising from the collective actions of the
particles. This approach is well-suited for computational analysis because at this
level, a partial differential equation, known as an effective equation, is commonly
applicable. This equation encapsulates the behavior of the system as a whole, which
is an outcome of the amalgamated influence of the particles actions.
The Vlasov equation is a classical example of an effective equation which describes
the coarse-grained time evolution of such a system. While notable strides have
been taken in recent times to establish a rigorous foundation for this approach, the
persistence of highly singular interaction potentials that hold physical significance
introduces a need for significant further advancements to attain a fully compelling
outcome. The primary objective of this thesis is to drive forth additional progress in
this specific regard. More precisely we delve into the exploration of two Vlasov-type
mean-field equations, which find application in describing various physical systems
like plasmas, molecules, and vortices in incompressible fluids. These mean-field
equations come to the forefront as approximations derived from the complete set
of motion equations, particularly as the number of particles rises. These equations
have been established and effectively applied in the realm of physics for numerous
decades, serving as a macroscopic portrayal of collisionless plasmas composed of
charged or gravitating particles. They possess an intuitive quality that a proficient
physicist might readily anticipate. Nonetheless, a precise mathematical derivation
from foundational principles has remained unresolved. In this research, we present
findings achieved through a suitable microscopic regularization, one that diminishes
as the particle count grows large. The underlying mathematical frameworks employed
to validate these approximations are introduced and thoroughly examined.

The quest to establish the validity of the mean-field approximation entails a
comparative analysis between the precise dynamics of individual particles, governed by
Newton’s second law, and the motion equation of a representative particle influenced
by its cumulative interactions with all other particles.

In summary, this work aims to explore and validate the mean-field approximation
for systems composed of a large number of identical particles. By investigating
the mathematical foundations and practical implications of mean-field models, a
deeper understanding of the collective behavior of such systems can be achieved.
In particular we focus on deterministic second order systems leading to the kinetic
Vlasov equation.
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1.2 Previous results

Numerous models have been proposed in the literature which reproduce the kinetic
effects in effective equations describing gases or fluids. One example of such an
effective equation goes back to Vlasov [44], which has been derived with mathematical
rigour by Neunzert and Wick in 1974 [35]. Classical results of this kind are valid for
Lipschitz-continuous forces [8, 13]. One difficulty is handling clustering of particles
for singular interactions like Coulomb or Newtons gravitational force [41]. Hauray
and Jabin examined singular interaction forces in three dimensions, which are scaling
like 1/|q|λ with λ < 1 [28]. They included the physically more interesting case with
λ smaller but close to 2 with a lower bound on the cut-off at q = N−1/6 a few years
later [27]. They had to choose quite specific initial conditions, according to the
respective N -particle law. The last deterministic result we would like to mention in
the Coulomb interaction setting is [30]. It assumes no cut-off and is valid for repulsive
pair-interactions, but requires a bound on the maximal forces of the microscopic
system. One major difference to our work is that the results rely on deterministic
initial conditions, even if some of them are formulated probabilistically. In contrast to
the previous approaches Boers and Pickl [7] derive the Vlasov equations for stochastic
initial conditions with interaction forces scaling like |x|−3λ+1 with (5/6 < λ < 1).

They obtained a cut-off as small as the typical inter particle distance at N− 1
3 . By

exploiting the second order nature of the dynamics and introducing anisotropic
scaling of the relevant metric to include the Coulomb singularity Lazarovici and
Pickl [32] extended the method in [7] and obtained a microscopic derivation of the
Vlasov-Poisson equation with a cut-off of N−δ with 0 < δ < 1

3 . More recently, by
examining the collisions which could occur and using the second order nature of the
dynamics, the cut-off parameter was reduced to as small as N− 7

18
+σ, with σ > 0 in

[22]. For delta like potentials of the form N3β−1φ(Nβ) with 0 < β f 1
3 there are two

note worthy results in the classical setting by Ölschläger [37], including Brownian
motion, or [36] which addresses the derivation of the continuity equation in the
monokinetic setting. Griffin-Pickering and Iacobelli [34] derived the Vlasov-Dirac-
Benney equation without considering Brownian motion or making assumptions such
as monokineticity. Their derivation is valid for a scaling parameter of order β < 1

15 .

1.3 Present result

The strategy presented in this thesis uses stochastic initial conditions, as it is based on
the technique proposed in [7, 32, 22]. We present the mean-field limit for the Vlasov
Dirac Benney equation and the Vlasov Poisson equation. A frequently discussed
system where Vlasov type equations are used to draw the main physical features are
plasmas, i.e. gases of very high temperature. At such high temperatures a significant
portion of the particles are ionized, thus plasmas consist of a mixture of electrons
and positively charged ions. Since the mass of the electrons is very small compared
to the masses of the ions, the long-range-part of the electric field of the ions gets
neutralized and the motion of the ions is effectively described by a model of particles
with short rang interaction (see [24] for a more detailed discussion). At the relevant
time-scales, i.e. times of an order where the interaction has an effect on the dynamics,
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this means short range but strong coupling for the interaction. Thus our derivation
in Chapter 2 deals with potentials of the form N3β−1φ(Nβ) with β ∈ [0, 17 ] and
φ ∈ L∞

R
3) ∩ L1(R3) instead of a Coulomb potential like in Chapter 3. The usual

methods for deriving effective descriptions for microscopic dynamics fail here because
there is no kind of Lipschitz condition for the force. The whole interaction has a
Lipschitz constant that depends on N . In all mentioned papers above, in most of
the cases the potential is nice and smooth. The main part of these proofs considers
cases where the force either Lipschitz-continuous or negligible due to probabilistic
arguments. In our case, we have an interaction that can be felt by the leading order
and additionally has a large derivative. So the force is not Lipschitz-continuous at
all. With regard to our goal, the derivation of the Vlasov-Dirac-Benney equation
from the microscopic Newtonian N -particle dynamics, we compare the N -particle
Newtonian flow with the effective flow given by the macroscopic equation in the limit
N → ∞ for a pair potential of the form

φβ
N = N3β−1φ(Nβ)

with β ∈
[
0, 17
]
and φ ∈ L∞(R3) ∩ L1(R3). Our system in Chapter 2 is between

collision and mean-field behavior and describes physical situations with a long-range
interaction, since the typical distance between particles is of order N

1
3 . On the one

hand, the interaction force is collision-like, so that interactions only rarely occur, i.e.
one particle interacts only with a selection of particles of order k 1 but j N and
not with all particles. On the other hand, the behavior can be described with the
mean-field approach. The system couples strongly but is localized so a mean-field
approach can be applied. The effect of the instabilities are much more drastic. In
the following we prove that the measure of the set where the maximal distance of the
Newtonian trajectory and the mean-field trajectory is large gets vanishingly small as
N increases.

In Chapter 3 we provide the currently most advanced derivation of the Vlasov-
Poisson equation’s optimal cut-off. This equation is a classical example of an effective
equation describing the coarse-grained time evolution of a N -particle system with
Coulomb or Newtonian pair interaction in the large N limit. Specifically, this
interaction is governed by

fN (q) = ± q

|q|3 for |q| > N− 5
12

+σ

with cut-off at |q| = N− 5
12

+σ for arbitrarily small σ > 0. The cut-off diameter is of
smaller order than the average distance of a particle to its nearest neighbour and
has been significantly improved compared to the results of Grass and Pickl [22]. The
underlying poof technique shows that a further improvement is possible by utilizing
a finer subdivision of particle subsets.
In Chapter 4, we provide a essential stability result, i.e. we show by a probabilistic
mean-field approach, that a small displacement of a particle at the beginning entails
a small effect for the dynamics of the whole system, i.e. the distance between the
true dynamics and the disturbed dynamic will be small at later times. This will be
fundamental for a novel proof technique in which we want to improve the cut-off by
changing the notion of distance by convergence in distribution.
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1.4 The microscopic model

We consider a classical N -particle system subject to Newtonian dynamics interacting
through a pair interaction force. Our system is distributed as a trajectory in
phase space R

6N . We use the notation X = (Q,P ) = (q1, . . . , qN , p1, . . . , pN ), where
(Q)j = qj ∈ R

3 denotes the one-particle position and (P )j = pj ∈ R
3 stands for its

momentum. The Hamiltonian, the operator corresponding to the total energy of the
system, is given by

HN (X) =

N∑

j=1

p2j
2m

+
∑

1fj<kfN

φβ(qj − qk), (1.1)

with φβ ∈ L∞(R3) ∩ L1(R3) and xj = (qj , pj) ∈ R
6. As long as the conditions on

the solution of the effective equation are valid an external potential can be added
to the Hamiltonian, but it does not affect the derivation of the equation as it has
the same impact on all particles regardless of their distribution. Since we consider
differences between exact Newtonian dynamics and mean-field dynamics we omit the
external potential without loss of generality. Setting the mass m = 1 leads us to the
equations of motion, which determine the particle trajectories

{
q̇j = pj

ṗj(t) = −∑N
k=1∇qjφ

β
N (qj − qk) = −∑N

k=1
1
N fβ

N (qj − qk).
(1.2)

We consider the system in the mean-field scaling. An N -dependent coupling might
seen unphysical on the first view. However on can arrive ant such a system by rescaling
space, time and velocity coordinates accordingly, using that fN is homogeneous (up
to technical cutoff). Note that the scaling we chose is such that, as N increases,
the dynamics of the cloud remains fixed (both in q and p) while its density grows
linearly with N . Furthermore the scaling ensures that the total interaction per
particle remains of order 1. If one chooses a much smaller scaling factor than 1/N ,
the force term becomes negligible, resulting in nearly free time-evolution for large N .
On the other hand for a scaling factor k 1/N , the force term becomes increasingly
dominant, leading to highly complex and possibly singular behaviour that strongly
depends on microscopic interaction details.

The interaction potential φβ
N is defined in Chapter 2 and is of the form φβ

N =
N3β−1φ(Nβx) with β ∈ [0, 17 ], for some bounded spherical symmetric φ : R3 → R

with ∇φ(0) = 0. In contrast, the interaction potential φβ
N in Chapter 3 is a coulomb

potential with a cut-off.
Furthermore fN

β denotes the pair interaction force for the system. Analogously the

total force of the system is given by F : R6N → R
3N , where the force exhibited on a

single coordinate j is given by

(F (X))j :=
∑

i ̸=j

1

N
fN
β (qi − qj).

By introducing the N -particle force we can characterize the Newtonian flow as a
solution of the next equation. As the vector field is Lipschitz for fixed N we have
global existence and uniqueness of solutions and hence a N -particle flow.
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Definition 1.1. The Newtonian flow ΨN
t,s(X) = (Ψ1,N

t,s (X),Ψ2,N
t,s (X)) on R

6N is
defined by the solution of:

d

dt
ΨN

t,s(X) = V (ΨN
t,s(X)) ∈ R

3N × R
3N (1.3)

where V is given by V (X) = (P, F (X)).

The crucial observation is that the force looks like the empirical mean of the
continuous function ∇φ(qj − ·) of the random variable qj . In the limit N → ∞, one
might expect this to be equal to the expectation value of ∇φ given by the convolution
fN
β ∗ k̃t, where k̃t(q, p) denotes the mass density at q with momentum p at time t.
In the following section we explain the general strategy that we follow in this thesis
based on [7, 32, 22].

1.5 Heuristics and sketch of the proof

There are two common techniques to translate the microscopic to the macroscopic sys-
tem or vice versa. For ΨN

t,0(X) = (qi(t), pi(t))i=1,..,N , one can define the corresponding
microscopic or empirical density by

µN
t [X] = µN

0 [ΨN
t,0(X)] :=

1

N

N∑

i=1

δ(· − qi(t))δ(· − pi(t)).

By changing the level of description one can consider an equation for a continuous
mass density, which describes the same situation but from a macroscopic point of
view. Furthermore, the microscopic force can be written as

1

N

N∑

j=1

fN (qi − qj) = fN ∗ µN
t [X](qi).

This relation is often used to translate the microscopic dynamics into a Vlasov-type
equation, allowing to treat µN

t [X] and kt on the same footing to proof the validity
of the common physical descriptions. For typical X, the empirical density µN

t [X]
and the solution kt of the Vlasov-type equation, which among other things is used
to describes the time evolution of the distribution function of a plasma consisting
of charged particles, are close to each other as N → ∞. The underlying technique
of this thesis operates the other way around. We translate the density kt into a
trajectory. The core concept of our strategy consists of two steps. First we sample
the regularized mean-field dynamics along trajectories with random initial conditions.
Then we estimate the difference between the true microscopic trajectories and the
mean-field trajectories in terms of expectation. We will not translate the trajectory
into a density as it is often done. Instead of summing up all iteration terms one
expects a single particle to feel only the mean-field produced by all particles together.
But as there is only the external force fN , the time evolution of kt is dictated by the
continuity equation on R

6 and by inserting the expectation value from above it leads
us to the partial non-linear Vlasov type equation, which solution theory is studied
for both types of singular interactions force discussed in this thesis (see Chapter 1.6).
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Construction of the mean-field force

The strategy to construct the mean-field force can heuristically be explained as
follows.

We split the universe into j boxes of the same volume, such that each box contains
nj particles. As the density is defined as the number of particles per volume we get
kt(q, p) =

nj

VjN
and the force acting on one particle can be written as

f̄(q) =
∑

j

nj

N
f(q − qj) =

∑

j

Vjkt(qj , pj)f(q − qj).

This can be read as a Riemann sum and so it can be written as

≈
�

kt(q, p)f(q − qj)d
3pd3qj = kt ∗ f(q)

which is the convolution of kt and f in the q-coordinate. The mean-field particles
move independently, because we use the same force for every particle and we do
not have pair interactions, which could lead to correlations. Thus each particle has
its own force-term. In summary for fixed k0, N ∈ N and any initial configuration
X ∈ R

6N we consider two different time-evolutions ΨN
t,0(X), given by the microscopic

equations and ΦN
t,0(X), given by the time-dependent mean-field force generated by

fN
t . Our goal is to show that for typical X, the two time-evolutions are close in
an appropriate sense. In other words, we have a non-linear time-evolution in which
ϕN
t,s(· ; k0) is the one-particle flow induced by the mean-field dynamics with initial

distribution k0, while, in turn, k0 is transported with the flow ϕN
t,s.

Quantifying the accuracy of the mean-field description

We want to show that the time derivative of the distance dtd(Ψ
N
t ,ΦN

t ) fulfills a
Gronwall inequality. If |f |L < ∞ it is easy to check, but most physically interesting
cases are not Lipschitz continuous. For technical reasons it is useful to distinguish
two cases ∥ΨN

t − ΦN
t ∥ f N−γ and ∥ΨN

t − ΦN
t ∥ > N−γ for γ > 0. So we introduce a

stochastic process of the following form

Jt := min{1, Nγ∥ΨN
t − ΦN

t ∥∞}. (1.4)

Note, that the stochastic process in Chapter 2 and 3 is slightly different from the one
shown above. Furthermore in Chapter 3 a differential version of Gronwall Lemma is
applied, but in the upcoming simplified form the idea of the proof stays the same.
The process Jt helps us to establish a Grönwall type argument of the following kind.
For all t ∈ R

+ the expectation E(Jt) value of Jt tends to zero if E(J0) tends to zero.
More precisely we will estimate

dtE(Jt) f C(E(Jt) + σN (1))

to receive

E(Jt) f eCt(E(J0) + σN (1)).
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This is useful to model the underlying problem because, if E(Jt) is small, then
the probability to hit 1 is small, that means that the probability

P(A) for A = {|ΨN
s,0(x)− ΦN

s,0(X)| g N−γ}

is small, too. If E(J0) → 0 and for all t ∈ R
+ it holds that dtE(Jt) f C(E(Jt)+σN (1)).

With Gronwall Lemma it can be shown, that E(Jt) f eCt(E(J0) + σN (1)) and so we
get E(Jt) → 0. Note that we chose the same initial conditions for ΨN and for ΦN , so
J0 = 0.

It is advantageous to do a Grönwall estimate on Jt than directly on P (A), because
we need some kind of smoothness for the derivative. Each probability of the set A
can be translated into an expectation value of the characteristic function with E(χA),
but the stochastic process Jt starts to smoothly decline at the boundary of A. Both
descriptions are basically the same, apart from the superiority of Jt in the later proof.
The cut-off in the Definition of Jt has been chosen at 1, such that if Jt is smaller
than 1 it is directly implied, that |ΨN

t,0(X)− ΦN
t,0(X)|∞ < N−γ .

In order to estimate the time derivative of E(Jt), we note that the inequality
d
dtE(Jt) f C(E(Jt) + oN (1)) is trivial because the random variable Jt has reached its
maximum, the value 1. The configurations where Jt is maximal, that is |ΨN

t,0(X)−
ΦN

t,0(X)|∞ g N−γ are irrelevant for finding an upper bound of E0(Jt+dt) − E0(Jt).
The set of such configurations will be called At and the expectation value E(Jt+dt−Jt)
restricted on the set At is less or equal 0.

Proof skeleton

The following proof techniques will be applied in Chapter 2-4. In Chapter 3 a further
division of the particles into subsets depending on their relative position and speed
is necessary.

In Chapter 4 we are interested in the distance between the true and the shifted
system instead of the distance between the true and the mean-field system, where
the proof has similarities to the upcoming sketch.

We utilize the distinction of configurations belonging to At or respectively to Ac
t

to estimate the expectation value

dtJt = lim
dt→0

E(Jt+dt − Jt)

dt
f E(| d

dt
Jt|) = E(|J̇t|At) + E(|J̇t|AC

t ).

If X ∈ At we have ∥ΨN
t − ΦN

t ∥ > N−γ and by the definition of the help process
we get Jt(X) = 1 and consequently Jt+dt(X) f 1. This provides E(|J̇t|At) = 0.
Furthermore for E(|J̇t||Ac

t) one can estimate

E(|J̇t||Ac) = E(∥ ˙ΨN
t − ΦN

t ∥∞|Ac)Nγ

f E(∥F (ΨN
t )− F̄ (ΦN

t )∥∞|Ac)Nγ + E(Jt|Ac)

f E(∥F (ΨN
t )− F (ΦN

t )∥∞)Nγ + E(∥F (ΦN
t )− F̄ (ΦN

t )∥∞|Ac)Nγ

+ E(Jt|Ac).

The last summand E(Jt|Ac) is trivially bounded by ∥ ˙ΨN
t − ΦN

t ∥∞ due to Newtons
law.
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To estimate the other terms we will introduce a version of law of large numbers
and use the Markov inequality. Therefore the first addend needs some preparatory
work, because we can not apply law of large numbers directly. For this we will
estimate the difference by a mean value argument

∥F (ΨN
t )− F (ΦN

t )∥∞Nγ = ∥ 1

N

∑

j ̸=k

f(q
ΨN

T

j − q
ΨN

t

k )− f(q
ΦN

t

j − q
ΦN

t

k )∥∞Nγ

f
∑

j ̸=1

g(qΦ
N

1 − qΦ
N

j ) · 2 ∥ΨN − ΦN∥∞︸ ︷︷ ︸
fN−γ

.

The last term is independent from ΨN
t , i.e. stochastically independent. In Chapter 2

the estimation of g provided by the law of large numbers determines the choice of
the parameter β due to the occurring variance term.

1.6 Vlasov-type equations

Looking for a macroscopic law of motion for the particle density leads us to the Vlasov
equation. It is a differential equation describing time evolution of the distribution
function of plasma. Depending on the choice of interaction potential we will consider
two types of Vlasov equations in this thesis.

1.6.1 Vlasov-Poisson equation

The Vlasov-Poisson equation describes the time evolution of a plasma consisting of
charged particles with gravitational or electrostatic force. It reads as follows





∂tk + p · ∇qk + E(t, q) · ∇pk = 0,

E(t, q) = f ∗ k̃t = 1
4π

�
R3

k̃t(y)(q−y)
|q−y|3 d3y,

k̃t(y) =
�
R3 kt(y, p) d

3p,

(1.5)

with the initial density k0(q, p). The enduring relevance of the Poisson kernel,
an ancient concept tracing its origins to Newton’s theory of gravitation, persists
in the fields of cosmology and astrophysics. Its continued utilization is primarily
attributed to its applicability on a large scale, where relativistic effects can often be
considered negligible. Within this framework, each individual particle within the
system symbolizes either a star or a more extensive celestial structure.

In situations involving repulsive interactions, the Poisson kernel is employed
to describe electrostatic interactions among particles, frequently in the realm of
plasma physics, where it encompasses the consideration of various particle species or
components.

Moreover, the Poisson kernel plays a pivotal role in first-order models, notably
in contexts like chemotaxis, which revolves around the motion of bacteria or cells
induced by a chemical potential. In the context of such biological systems the force
field EN can be interpreted as the gradient of concentration for a chemical substance
generated by each individual particle.



1.6 Vlasov-type equations 10

In the case of the regularized interaction force fN defined in Definition 3.1
the solution theory is known by Braun and Hepp [8]. In this case the force is
Lipschitz continuous. The Cauchy problem for the Vlasov-Poisson system for the
non-regularized, singular force f∞ has been a subject of extensive research in recent
decades. Global existence and uniqueness of classical solutions in two dimensions
were achieved by Ukai and Okabe [43] and later global weak solutions with finite
energy were first constructed by Arsenev [1] in dimension d = 3.

Subsequently, global existence and uniqueness for specified cases of more regular
solutions were separately established by Lion and Perthame [33] and by Pfaffelmoser
[38] using different techniques. To achieve this they had to control the plasma
velocities over all time. Lion and Perthame [33] constructed weak solutions with
finite velocity moments expressed as

� �
R3×R3 |p|mkt(q, p) d

3q d3p < ∞ for m > 3. Di
Perna and Lions [12] proved that such solutions remain constant along the trajectories
in a weakly sense.

Pfaffelmosers approach [38] hinges on a meticulous examination of the charac-
teristics to control the expansion of velocity support. This approach results in the
achievement of global existence and uniqueness of classical, compactly supported
solutions. Moreover, these solutions propagate the regularity of the initial density
due to the work of L. Desvillettes, E. Miot and C. Saffirio [11].

For further enhancements and developments, one may refer to the works of
Schaeffer [16], Wollman [17], Castella [9], Loeper [18], Chen and Zhang [10]. Further-
more, Gasser, Jabin, and Perthame [19] have established the propagation of velocity
moments for m > 2, with an additional assumption regarding space moments. In
[40] Salort demonstrated the existence and uniqueness of weak solutions for small
moments.

For our purposes, a result established by Horst [26] is sufficient, as it provides
global existence of classical solutions (uniquely) under conditions that closely align
with the assumptions required for the proof of our Theorem 3.2 in Chapter 3. He
specifically shows that there is a continuously differentiable function k : [0, T ]×R

6 →
[0,∞) for any T > 0 that satisfies the Vlasov-Poisson equation for any initial condition
k(0, ·) = k0 ∈ L1(R6), which is non-negative, continuously differentiable, and satisfies
the following conditions for a suitable constant C > 0, some δ > 0, and all (q, p) ∈ R

6:

(i) k0(q, p) f
C

(1 + |p|)3+δ

(ii) |∇k0(q, p)| f
C

(1 + |p|)3+δ

(iii)

�
R6

|p|2k0(q, p)d3qd3p < ∞.

Essentially, for each time interval [0, T ), there exists a constant C > 0, depending on
k0 and T , such that

sup
0fs<T

|k̃s|∞ < C(T, k0).

Then for any time interval [0, T ] ¦ [0,∞) there exists a unique solution to the
Vlasov-Poisson equation with initial data k0.
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1.6.2 Vlasov-Dirac-Benney equation

The Vlasov-Dirac-Benney equation is a Vlasov type equation with the interaction
potential replaced by a Dirac mass. It reads as follows





∂tk + p · ∇qk + E(t, q) · ∇pk = 0,

E(t, q) = f ∗ k̃t,

k̃t(y) =

�
Rd

kt(y, p) d
dp

(1.6)

with the initial density k|t=0 = k0(q, p). The nomenclature goes back to the fact that
in one of the most important configurations, i.e. initial data near a one-bump profile,
it is equivalent to the Benney-equation [2]. The Vlasov-Dirac-Benney equation
describes a plasma, i.e. gases of very high temperature. At such high temperatures a
significant portion of the particles are ionized, thus plasmas consist of a mixture of
electrons and positively charged ions. Since the mass of the electrons is very small
compared to the masses of the ions, the long-range-part of the electric field of the
ions gets neutralized and the motion of the ions is effectively described by a model of
particles with short rang interaction (see [24] for a more detailed discussion). At the
relevant time-scales, i.e. times of an order where the interaction has an effect on the
dynamics, this means short range but strong coupling for the interaction. Thus our
derivation deals with potentials of the form N3β−1φ(Nβ) for some positive potentials
φ. But due to its highly singular nature, the solution theory is not trivial. One
existence result we want to mention here is [6]. The authors consider so called water
bags, which are piecewise constant functions, as initial data. Another result is [15]
which proves the existence for short times of analytical solutions in dimension one.
Bardos and Besse [4, 3] could show, in dimension one, that the problem is wellposed
for functions that for all q have the shape of one bump.

Another approach is to use the Penrose stability condition, introduced in [39] for
homogeneous, i.e. q-independent equilibria k(p)

Definition 1.2. For p 7→ k(p) the Penrose function is defined by

P(γ, τ, η, k) = 1−
� +∞

0
e−(γ+iτ)s iη

1 + |η|2 ·(Fp∇pk)(ηs) ds, γ > 0, τ ∈ R, η ∈ R
d\{0}

where Fp denotes the Fourier transform in momentum coordinate p. The profile k
satisfies the c0 Penrose stability condition if

inf
(γ,τ,η)∈(0,+∞)×R×Rd\{0}

|P(γ, τ, η, k)| g c0. (1.7)

These assumptions are for example satisfied in a small data regime, for “one
bump” profiles in d = 1 and also for any radial non-increasing functions in any
dimension.

Han-Kwan and Rousset [25] used Penrose stability in the q-dependent case. They
assumed that k0(q, p) satisfies the c0

2 Penrose stability condition for any q ∈ R
d.

Furthermore they required that the initial density k0(q, p) ∈ H2m
2r with 2m >
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4+ d
2 + +d2,, 2r > max(d, 2+ d

2 ) , where the weighted Sobolev norms for k ∈ N, r ∈ R

are given by

∥k∥Hk
r
:=


 ∑

|α|+|β|fk

�
Td

�
Rd

(1 + |p|2)r|∂α
q ∂

β
p k|2 ddpddq




1/2

,

where α = (α, · · · , αd), β = (β1, · · · , βd) ∈ N
d, |α| = ∑d

i=1 α, |β| =
∑d

i=1 βi, and

∂α := ∂α1
q1 · · · ∂αd

qd
, ∂β

p := ∂β1
p1 · · · ∂βd

pd .
Under these assumptions, Han-Kwan and Rousset proved in any dimension

existence and uniqueness of solutions of the Vlasov-Dirac-Benney equation (1.6) on
a compact time interval.

In Chapter 2 of this thesis we will assume existence of a C∞ solution of the Vlasov-
Dirac-Benney equation and derive it from the microscopic N -particle dynamics.

1.7 The mean-field model

To compare the microscopic system and the macroscopic system we translate the
density kt of the Vlasov-type equations into a trajectory. We will now define the
characteristic flow in alignment with the heuristics (Section 1.5) previously introduced.
The characteristics of Vlasov equation similar to Definition 1.1 are given by the
following system of Newtonian differential equations

{
dq̄
dt = p̄
dp̄
dt = fN ∗ k̃t(q̄) := f̄N

t

(1.8)

where k̃t denotes the previously introduced ‘spatial density’. We now introduce the
effective one-particle flow (ϕN

t,s)tfs for any probability density k0 : R6 → R
+
0 and lift

it up to the N-particle phase space.

Definition 1.3. Let k0 : R6 → R
+
0 be a probability density and k : R × R

6 → R
+
0 ,

which gives for each time t the effective distribution function time-evolved with respect
to ϕN

t,s : k(0, ·) = k0 and

kNt (x) := kN (t, x) = k0(ϕ
N
0,t(x)).

For x = (q, p), the effective flow ϕN
t,s itself is defined by

d

dt
ϕN
t,s(x) = vt(ϕN

t,s(x))

where vt is given by vt(x) = (p, f̄N
t (q)). Here the mean-field force f̄N

t is defined as
f̄N
t = fN

β ∗ k̃Nt and k̃Nt : R× R
3 → R

+
0 is given by

k̃Nt (q) :=

�
kNt (p, q)d3p.
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By using this approach, a new trajectory is obtained that is influenced by the
mean-field force instead of the pair interaction force like in the Newtonian system
(1.2). Now we have two trajectories which we will compare and show later that they
are close to each other.
To this end, we consider the lift of ϕN

t,s(·) to the N -particle phase-space, which we

denote by ΦN
t,s. To lift the effective one-particle flow to the N-particle space we define

the mean-field flow by:

Definition 1.4. The respective ΦN
t,s = (Φ1,N

t,s ,Φ2,N
t,s ) = (ϕN

t,s)
¹N satisfies

d

dt
ΦN
t,s(X) = V̄t(X), (1.9)

with V̄t(X) = (P, F̄t(Q)) and F̄t given by (F̄t(Q))j := f̄N
t (qj).

The mean-field particles move independent because the same force acts on every
particle and we do not have pair interactions, which lead to correlations. For fixed
k0, N ∈ N and for any initial configuration X ∈ R

6N , we considere the two time-
evolutions from Definitions 1.4 and 1.1. On the one hand the Newtonian flow ΨN

t,0(X),

given by the microscopic equations and on the other hand the mean-field flow ΦN
t,0(X),

given by the time-dependent mean-field force generated by fN
t . Our goal is to show

that for typical X, these two time-evolutions are close in an appropriate sense. In
other words, we have non-linear time-evolution in which ϕN

t,s(· ; k0) is the one-particle
flow induced by the mean-field dynamics with initial distribution k0, while, in turn,
k0 is transported with the flow ϕN

t,s. It generally suffices to consider the initial time

s = 0, since ϕN
t,s fullfills the semi-group property ϕN

t,s′ ◦ ϕN
s′,s = ϕN

t,s [32].
In the following two sections we show that the two flows defined in Definition

1.4 and 1.1 are close to each other in the context of the Vlasov-Poisson for Coulomb
interaction (fN defined in Definition 3.1) and Vlasov-Dirac-Benney equation for
delta like interactions (fN defined in Definition 2.1) and hence the microscopic and
the macroscopic approach describe the same system.

Therefore we will show that the mean-field limit and propagation of chaos of
an N -particle system with the respective pair potential. Furthermore we will show
that the characteristics of the considered Vlasov type equation provide a reliable
approximation of the N -particle trajectories, provided their initial positions are
independent and identically distributed with respect to density k0.



Chapter 2

Microscopic derivation of the

Vlasov-Dirac-Benney equation

with with a strong short range

force

The main parts of this chapter are a reprint of

Pickl. P and Feistl, M. (2023). Microscopic derivation of Vlasov equation with
compactly supported pair potentials.

A preprint of this version is online at https://arxiv.org/abs/2307.06146.
My own contribution. This paper is joint work with my supervisor Peter Pickl. I
contributed substantially to all results. In particular, I worked out the main idea and
its proof. The final version was edited under guidance of my supervisor Peter Pickl.

In the following we consider a classical N -particle system, distributed as a
trajectory in phase space R

6N and subject to Newtonian dynamics like introduced
in Chapter 1. The interaction potential φβ

N in dimension three that underlies this
chapter is given by

φβ
N = N3β−1φ(Nβx), β ∈

[
0,

1

7

]
,

for some bounded spherical symmetric φ : R3 → R with ∇φ(0) = 0. We show that
the N -particle trajectory Ψt starting from Ψ0 (i.i.d. with the common density k0)
remains close to the mean-field trajectory Φt with the same initial configuration
Ψ0 = Φ0 during any finite time [0, T ] and so the microscopic and the macroscopic
approach describe the same system. Throughout this Chapter C denotes a positive
finite constant which may vary from place to place but most importantly it will
be independent of N . The factor β ∈ R determines the scaling behavior of the
interaction and depending on how one chooses β one gets another hydrodynamic
equation. Usually φβ

N scales with the particle number such that the total interaction
energy scales in the same way as the total kinetic energy of the N particles, so
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that the L1-norm of φβ
N is proportional to N−1 with φβ

N (x) = N−1+3βφ(Nβx) for
φ ∈ L∞(R3) ∩ L1(R3). Note that we assume that φ and thus the pair interaction
force f will be independent of the momentum.

The case β = 0 was studied in [8]. The strength of the interaction is of order 1
N

and hence the equations of motion consider a weakly interaction gas. For positive
β the support of the potential shrinks and the strength of the interaction increases
with N and limN→∞ φN = δ0. Thus the case β = 1

3 describes in contrast a strong
interaction process. The interaction strength is of order 1 but two particles only
interact when their distance is of order of the typical inter particle distance in R

3.
As long as β < 1/3 the mean-field approximation is from the heuristical point of
view not surprising because the interaction potentials overlap as the typical particle
distance has approximately the size of N

1
3 . This mean inter-particle distance is

consequently smaller than the range of the interaction. Hence, on average, every
particle interacts with many other particles, and the interactions are weak since
N−1N3β → 0 as N → ∞. As long as the correlations are sufficiently mild, the law
of large numbers gives that the interaction can be replaced by its expectation value,
the so-called mean-field.

The potential gradient ∇qφ
β
N = fN

β determines the pair interaction function,
which is given by

Definition 2.1. For N ∈ N∪{∞} and a smooth function l ∈ W 1,∞(R3)∩W 1,1(R3),
vanishing at infinity with bounded derivatives, the interaction force fN

β : R3 → R
3 is

given by

fN
β (q) = N4βl(Nβq)

with 0 < β f 1
7 .

Analogously the total force of the system is given by F : R6N → R
3N , where the

force exhibited on a single coordinate j is given by

(F (X))j :=
∑

i ̸=j

1

N
fN
β (qi − qj).

By introducing this N -particle force we can characterize the Newtonian flow by
Definition 1.1. As the vector field is Lipschitz for fixed N we have global existence
and uniqueness of solutions and hence a N -particle flow.

2.1 Statement of the results

Theorem 2.2. Assume that the parameter β, describing the scaling of the interaction,
satisfies β f 1

7 . Let T > 0 be such that a solution k ∈ C([0, T ],H2m−1
2r ) of the Vlasov-

Dirac-Benney equation (1.6) exists. Moreover, let (Φ∞
t,s)t,s∈R be the related lifted

effective flow defined in Definition 1.4 as well as (ΨN
t,s)t,s∈R the N -particle flow defined

in Definition 1.1. If 0 < α < β f 1
7 , Then for any γ > 0 there exists a Cγ > 0 such

that for any 0 < α < β and any N ∈ N with N g N0(T, β, k0) it holds that

P
(
X ∈ R

6N : sup
0fsfT

|ΨN
s,0(X)− Φ∞

s,0(X)|∞ > N−α
)
f CγN

−γ . (2.1)
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It is intuitively clear that the coarse grained effective description gets more
appropriate as the number of particles increases and becomes exact in the limit
N → ∞. This Theorem implies Propagation of Chaos and thus convergence of the
marginals of the N -particle density towards products of solutions of the mean-field
equation.

2.1.1 Notation and preliminary studies

The solution of the Vlasov-Dirac-Benney equation kNt : R6 → R
+
0 can be read as

a one-particle probability density. The probabilities and expectation values in this
and the following section are meant with respect to the product measure given at
a certain time. For any random variable R : R6N → R and any element B of the
Borell σ-algebra we have

Pt(R ∈ B) =

�
R−1(B)

N∏

j=1

kNt (xj)dX and Et(R) =

�
R6N

R(X)
N∏

j=1

kNt (xj)dX.

Since the measure is invariant under ΦN
t,s it follows that

Es(R ◦ ΦN
t,s) =

�
R6N

R(ΦN
t,s(X))

N∏

j=1

kNs (xj)dX =

�
R6N

R(X)
N∏

j=1

kNs (ϕN
s,t(xj))dX

and since kNs (ϕN
s,t(xj)) = kNt (xj) we get Es(R ◦ ΦN

t,s) = Et(R). During the proof it
is helpful to deviate into cases and therefore we will restrict ourselves to certain
configurations. For this purpose we introduce the restricted expectation value.

Definition 2.3. Let X be a random variable and A ¢ R
6N a set, then the restricted

expectation value is given by

E(X|A) := E(XA) with XA(ω) =

{
X(ω) ω ∈ A

0 ω ̸∈ A,

E(X) =
∑

ω∈R6N

X(ω)P(ω) and E(X|A) =
∑

ω∈A
X(ω)P(ω).

Now we introduce a suitable notation of distance on R
6, which enables us to

prove that for finite time ΨN
t,0 and ΦN

t,0 will typically be close with respect to that
notation of this distance. Since we are dealing with probabilistic initial conditions
we introduce a stochastic process Jt which is such that a small expectation value of
Jt implies that ΨN

t,0(X) an ΦN
t,0(X) are close as described in the previous chapter.

In view of Theorem 2.2, our aim is to show that P0(sup0fsft |ΨN
s,0 − ΦN

s,0|∞ > N−γ)
tends to zero faster than any inverse power of N . This will be implemented modifying
the stochastic process Jt (1.4) in order to separate the error terms coming from the
law of large numbers from other sources of errors. This can be done by defining Jt
in the following way:

Definition 2.4. Let ΦN
s,0(X) be the mean-field flow defined in Definition 1.4 and

ΨN
s,0(X) the microscopic flow defined in Definition 1.1. We denote the projection
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onto the spatial or respectively the momentum coordinates by ΦN,1
s,0 (X) and ΦN,2

s,0 (X).
Let for T > 0 and without loose of generality N > 1 the auxiliary process be defined
as follows

JN
t (X) : = min

{
1, sup

0fsft

{
σN,tN

α
( √

ln(N)
∣∣∣Ψ1,N

t,0 (X)− Φ1,N
t,0 (X)

∣∣∣
∞

+
∣∣∣Ψ2,N

t,0 (X)− Φ2,N
t,0 (X)

∣∣∣
∞

+N5β−1
)}}

for 0 f t f T with scaling factor σN,s = eλ
√

ln(N)(T−s). Here | · |∞ denotes the
supremum norm on R

6N .

The metric |ΨN
t,0(X)− ΦN

t,0(X)|∞ allows better stability estimates as it is much
stronger than usual weak distances between probability measures.

The spatial and momentum coordinates are weighed differently to take advantage
of the system’s second-order nature when comparing microscopic trajectories to the
mean-field equation’s characteristic curves. The growth of the spatial distance is
trivially bounded by the difference of the respective momenta due to Newton law.
The idea behind this weighted norm is to be a little more ’strict’ on deviations
in space and to obtain better control on fluctuations of the force. Moreover the

scaling factor eλ
√

ln(N)(T−s) optimizes the rate of convergence as compensates the
time dependent natural fluctuations.

We now want to estimate the time derivative of E(JN
t ). As already described

in Chapter 1.5, whenever the random variable Jt has the value 1, it has reached
its maximum so the inequality ∂+

t E(J
N
t ) f C(E(JN

t ) + oN (1))) is trivial. The
configurations where Jt is maximal, that is |ΨN

t,0(X)−ΦN
t,0(X)|∞ g N−α are irrelevant

for finding an upper bound of ∂+
t E(Jt). The set of such configurations will be called

At. We will show that the expectations value ∂+
t E(J

N
t ) restricted on the set At is

less or equal 0.
We only have to consider the cases where JN

t is smaller than 1 since ∂+
t J

N
t = 0 for

JN
t = 1, but then we have the boundary condition by definition of the random variable,

i.e |Ψ2,N
t,0 (X)− Φ2,N

t,0 (X)|∞ < N−α. Due to the pre-factor
√
ln(N) in Definition 2.4,

the particular anisotropic scaling of our metric will allow us to ’trade’ part of this

divergence for a tighter control on spatial fluctuations. Note that e
√

ln(N) grows
slower than N ε for any ε > 0. This will suffice to establish the desired convergence
([32] implemented the same idea).

By the definition of JN
t we get the boundary condition for free and the construction

of JN
t motivates the following lemma.

Lemma 2.5. For t > 0 there exists a constant Cγ < ∞, under the assumptions of
Theorem 2.2, such that

E0(J
N
t ) f CγN

−γ .

for γ > 0.

Theorem 2.2 follows directly from Lemma 2.5, since the following probability can
be estimated according to the description above.

P0( sup
0fsft

|ΨN
s,0(X)− ΦN

s,0(X)|) g N−α) = P0(J
N
t = 1) f E0(J

N
t ).
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The proof of Lemma 2.5 is based on a Gronwall argument and therefore we will give
an upper bound on ∂+

t E0(Jt) by introducing a suitable partition of the phase space
R
6N . A first observation is that the growth of ∂+

t E0(Jt) stems from the fluctuation
in the force, which itself can be estimated by

∣∣F (ΨN
t,0(X))− F̄ (ΦN

t,0(X))
∣∣
∞ f

∣∣F (ΨN
t,0(X))− F (ΦN

t,0(X))
∣∣
∞

+
∣∣F (ΦN

t,0(X))− F̄ (ΦN
t,0(X))

∣∣
∞ .

To control theses two addends we will introduce unlikely sets. The sets of configura-
tionsX for which the second term |F (ΦN

t,0(X))−F̄ (ΦN
t,0(X))|∞ is large will be denoted

by Bt. Large means in our case larger than N5β−1 ln(N). Since any difference in the
force is directly translatable into a growth in the difference |ΨN

t,0(X) − ΦN
t,0(X)|∞

which is multiplied by N−α in the definition of JN
t . We will see, that the prob-

ability to be in Bt is indeed small. If F was globally Lipschitz continuous, the
first term |F (ΨN

t,0(X)) − F (ΦN
t,0(X))|∞ would directly translate in the difference

|ΨN
t,0(X) − ΦN

t,0(X)|∞ as |F (ΨN
t,0(X)) − F (ΦN

t,0(X))|∞ f LLip|ΨN
t,0(X) − ΦN

t,0(X)|∞
and the result would be proven. The forces we consider are singular and so unfortu-
nately there is no global Lipschitz constant. Although there are configurations for
which the force becomes singular in the limit N → ∞, for example when all particles
have the same position, these configurations are not very likely. To control the first
addend and to implement this argument we will introduce a function g in Definition
2.7 which controls the difference |fN (x)− fN (x+ δ)|∞ for a 2N−α > δ ∈ R

3. This
will be proven in Lemma 2.8 observing that we only need to take into account
fluctuations smaller than N−α by Definition of JN

t . In a further step we will control
G = 1

N

∑N
j=1 g(qj

large, denoted by Ct, is very unlikely. For the configurations which are left we use the
fact that the force term is short range and the associated scaling behavior is in our
favour. Consequently we will get a good estimate on |F (ΨN

t,0(X))− F (ΦN
t,0(X))|∞.

Controlling the growth of the force

In the following section we overcome the problem that forces fN
β become singular in

the limit N → ∞ and hence do not satisfy a uniform Lipschitz bound. The function
l : R3 → R occurring in the definition of fN was defined such that D1l,D2l and
D3l are defined everywhere and are bounded functions. Its easy to check that lN (q)
satisfy a Lipschitz condition by a mean value argument.

Lemma 2.6. Let l ∈ L∞(R3) ∩ L1(R3) : ||Dαl||∞ f Cα be a smooth vanishing at
infinity function with α = (α1, . . . , αn) ∈ N

n
0 . Then there is a L > 0 such that

|l(a)− l(b)|∞ f L|a− b|∞

Proof. Since Dil is bounded for i ∈ {1, 2, 3} there is a S1 = sup(||D1f(x)|| : X ∈
R
3), S2 = sup(||D2l(x)|| : X ∈ R

3) and S3 = sup(||D1l(x)|| : X ∈ R
3). For a, b ∈ R

3

we can estimate the difference l(a)− l(b) by the triangle inequality

|l(a)− l(b)| f |l(a1, a2, a3)− l(a1, a2, b3)|+ |l(a1, a2, b3)− l(a1, b2, b3)| (2.2)

+ |l(a1, b2, b3)− l(b1, b2, b3)| .
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Since the partial derivatives exist everywhere in R
3, we can use the one-dimensional

mean Value Theorem to show that there is some ξ such that:

l(a1, a2, a3)− l(a1, b2, a3)

a2 − b2
= D2l(a1, ξ, a3).

By the definition of S2, it follows that |l(a1, a2, a3)− l(a1, b2, a3)| f S2|a2 − b2|. And
similarly for the other addends of estimate (2.2). Additionally using Cauchy-Schwarz
inequality, we obtain

|l(a)− l(b)| f S1|a1 − b1|+ S2|a2 − b2|+ S3|a3 − b3|

f
√
S2
1 + S2

2 + S2
3 ·
(
(a1 − b1)

2 + (a2 − b2)
2 + (a3 − b3)

2
)

=
√
S2
1 + S2

2 + S2
3 · ||a− b||

So l is indeed Lipschitz continuous with L =
√

S2
1 + S2

2 + S2
3 .

Next we define a function gβN , which provides a bound for fluctuations of fβ
N .

Definition 2.7. Let g : R3 → R
3 with

gβN (q) := L ·N5β
1{suppl}(N

βq).

and the total fluctuation G be defined by (G(X))j :=
∑N

j=1
1
N gβN (qi−qj). Furthermore

Ḡt is given by (Ḡt(X))j := ḡt(qj) with ḡt(q) = gβN ∗ k̃Nt (q).

To show that the difference |fβ
N (x) − fβ

N (x + δ)|∞ can be controlled by gβN we
prove the following lemma.

Lemma 2.8. For any δ ∈ R
3 it follows that

|fβ
N (x)− fβ

N (x+ δ)|∞ f gβN (q)|δ|∞.

Proof. We recall that fβ
N was defined by

fβ
N (q) = N4βl(Nβq)

and that l is Lipschitz continuous by Lemma 2.6. Hence we get

|fβ
N (x)− fβ

N (x+ δ)|∞ f LN4β |Nβδ|∞ f LN5β |δ|∞ = gβN (q)|δ|∞.

Notice that in the case where we use G to control the fluctuation we know by
the construction of JN

t that |Ψ−Φ| < N−α. Furthermore the following observations

of the force fβ
N and the fluctuation gβN turn out to be very helpful in the sequel.

One crucial consequence of the bounded density is that the mean-field force remains
bounded, as well.
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Lemma 2.9. Let gN (x) be defined in Definition 2.7 and k̃ ∈ W 2,1(R3) ∩W 2,∞(R3).
Then there exists a constant C > 0 independent of N such that

∥fβ
N ∗ k̃∥∞ f C∥∇k̃∥∞ (2.3)

and

∥gβN ∗ k̃∥∞ f C∥∆k̃∥∞. (2.4)

Proof. The function φ : R3 → R is rotationally symmetric. It holds that φ(x) =
h(||x||) for some measurable functions h : R

+
0 → R and hence

�
Ka,b

φ(x)dx =

ωn

� b
a h(r)r2dr for Ka,b := {X ∈ R

3 : a < ||x|| < b} . For φ ∈ L∞(R3) ∩ L1(R3) the
theorem on coordinate transformation provides

∥φN∥1 =
�
R3

|N3βφ(Nβx)dx| f C

�
R3

|φ(y)|dy f C

and for fβ
N ∈ C∞(R3) Leibniz integral rule implies

∥fβ
N ∗ k̃∥∞ = ∥∇φN ∗ k̃∥∞ = ∥φN ∗ ∇k̃∥∞ f C∥φN∥1∥∇k̃∥∞ f C∥∇k̃∥∞.

Analogously we can estimate

∥gβN ∗ k̃∥∞ = ∥∆φN ∗ k̃∥∞ = ∥φN ∗∆k̃∥∞ f C∥φN∥1∥∆k̃∥∞ f C∥∆k̃∥∞.

By applying the Vlasov property kt(q, p) = k0(X̄(q, p)) and the assumptions on k
according to the solution theory we can see that ∥fN ∗ k̃∥∞ and ∥gN ∗ k̃∥∞ are
bounded by a constant not depending on N .

2.1.2 The evolution of E(JN
t )

Since d
dtJ

N
t (X) f 0 if sup

0fsft
|ΨN

s,0(X)− ΦN
s,0(X)|∞ g N−α we only have to consider

situations in which mean-field trajectories and microscopic trajectories are close. In
order to control the evolution of E(JN

t ) we will partition the phase space as described
in Section 1.5.

Definition 2.10. Let for any t ∈ R the sets At,Bt, Ct be given by

X ∈ At ô |JN
t | = 1

X ∈ Bt ô |F (ΦN
t,0(X))− F̄ (ΦN

t,0(X))|∞ > N−1+5β ln(N)

X ∈ Ct ô |G(ΦN
t,0(X))− Ḡ(ΦN

t,0(X))|∞ > N−1+7β ln(N).

For estimating the probability of configurations X ∈ Bt and X ∈ Ct we will use a
law of large numbers argument. It will turn out, that these configurations are very
unlikely.
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Law of large numbers

The underlying proof technique is designed for stochastic initial conditions, thus
allowing for law of large number estimates that turn out to be very powerful. Note
that the particles evolving with the mean-field flow remain statistically independent
at all times. We use the following Lemma to provide the probability bounds of
random variables.

Lemma 2.11. Let Z1, · · · , ZN be i.i.d. random variables with E[Zi] = 0, E[Z2
i ] f

r(N) and |Zi| f C
√
Nr(N). Then for any γ > 0, the sample mean Z̄ = 1

N

∑N
i=1 Zi

satisfies

P

(
|Z̄| g Cγ

√
r(N) ln(N)√

N

)
f N−γ ,

where Cγ depends only on C and γ.

The proof can be seen in [21, Lemma 1]. It is a direct result of Taylor’s expansion
and Markov’s inequality. Furthermore it is a direct consequence of the following
Lemma.

Lemma 2.12. For N ∈ N let Z1, . . . , ZN be independent and identically distributed
random variables on R

3 with ||Zj ||∞ f C, E(Zj) = 0, E(Z2
j ) f C

N for all i ∈
{1, . . . , N}, then the finite sum of the random variables SN :=

∑N
i=1 Zi full fills

E(e|SN |) f C.

Proof. From the Taylor series expansion we have ex = 1 + x+ x2eµ with |µ| < |x|.
As the expectation value is linear and using the properties of the random variable
we get

E(eZ) = 1 + E(Z) + E(Z2 · eµ) f 1 + 0 + E(Z2) · C f 1 +
C

N
.

For the (positive or negative) sum of the independent and identically distributed
random variables a similar inequality follows

E(e±Sn) = E(e±
∑N

j=1 Zj )
iid
= (E(e±Zj ))N f (1± C

N
)N

N→∞−→ e±C .

So in total we get E(e|Sn|) f C as e|x| f ex + e−x for all X ∈ R.

By Markov inequality we get for µ > 0

P(e|SN | g µ) f C

µ
⇒ P(|SN | g ln(µ)) f C

ln(µ)

and Lemma 2.11 is a direct consequence.
Now we will estimate the probability of the unlikely sets defined in Definition 2.10.
Therefore we recall the notation

(F
N
(Xt))i :=

�
R3

fN
β (qti − q)kNt (q)d3q and (G

N
(Xt))i :=

�
R3

gβN (qti − q)kNt (q)d3q

(2.5)

and introduce the underlying version of the Law of Large Numbers for the thesis.
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Lemma 2.13. At any fixed time t ∈ [0, T ], suppose that Xt satisfies the mean-field

dynamics, introduced in Definition 1.4, then FN and F
N
, defined in Definition

2.1 and (2.5) and respectively GN and G
N
, introduced in Definition 2.8, fulfill the

following statement. For any γ > 0 and 0 f β f 1
7 , there is a constant Cγ > 0

depending only on γ, T and k0 such that

P

(∥∥∥FN (Xt)− F
N
(Xt)

∥∥∥
∞

g CγN
5β−1 ln(N)

)
f N−γ , (2.6)

and
P

(∥∥∥GN (Xt)−G
N
(Xt)

∥∥∥
∞

g CγN
7β−1 ln(N)

)
f N−γ . (2.7)

Proof. We prove Lemma 2.13 by applying Lemma 2.11 and the following generalized
version of Young’s inequality for convolutions for p, r ∈ L1.

∥p ∗ r∥∞ f∥p∥1∥r∥∞

Since ∥k̃N∥1 = 1 and ∥k̃N∥∞ are bounded, it holds due to Lemma 2.9 that

∥k̃Nt (q1) ∗ fβ
N∥∞ f ∥∇k̃Nt (q1)∥1 f C∥∇k̃∥1 (2.8)

∥k̃Nt (q1) ∗ gβN∥∞ f C∥∆k̃Nt (q1)∥1. (2.9)

Hence we get
∥∥∥fβ

N ∗ k̃Nt (q1)
∥∥∥
∞

f C and
∥∥∥gβN ∗ k̃Nt (q1)

∥∥∥
∞

f C.

Using inequality (2.8) and (2.9) we get
∣∣∣fβ

N (q1 − qj)− fβ
N ∗ k̃Nt (q1)

∣∣∣ f C. Analo-

gously in the case of the fluctuation we get
∣∣∣gβN (q1 − qj)− gβN ∗ k̃Nt (q1)

∣∣∣ f C. The

expectation values of
∣∣∣fN

β (q1 − qj)
∣∣∣
2
and

∣∣∣gβN (q1 − qj)
∣∣∣
2
can be estimated using the

theorem on coordinate transformation by�
k̃Nt (qj)

∣∣fN
β (q1 − qj)

∣∣2 d3qj f C

� (
N4βl(Nβq)

)2
d3q

f CN8βN−3β f CN5β

and analogously�
k̃Nt (qj)

∣∣∣gβN (q1 − qj)
∣∣∣
2
d3qj f C

� (
CN5β

1{suppl}(N
βq)
)2

d3q

f CN10β−3β f CN7β .

Due to the exchangeability of particles, we can estimate

(FN (Xt))1 − (F
N
(Xt))1 =

1

N

N∑

j=2

fN
β (qt1 − qtj)−

�
R3

fN
β (qt1 − q)k̃Nt (q)d3q =

1

N

N∑

j=2

Zj ,

for the random variable

Zj := fN
β (qt1 − qtj)−

�
R3

fN
β (qt1 − q)k̃Nt (q)d3q.
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Since qt1 and qtj are independent if j ̸= 1 and fN
β (0) = 0, let us consider qt1 as given

and denote E
′[·] = E[·|qt1]. The condition E

′[Zj ] = 0 of Lemma 2.11 holds since

E
′ [fN

β (qt1 − qtj)
]
=

�
R6

fN
β (qt1 − q)kNt (q, p)d3qd3p =

�
R3

fN
β (qt1 − q)k̃Nt (q)d3q.

Additionally we need a bound for the variance

E
′[|Zj |2

]
= E

′
[∣∣∣∣f

N
β (qt1 − qtj)−

�
R3

fN
β (qt1 − q)k̃Nt (q)d3q

∣∣∣∣
2
]
.

We know by Lemma 2.9 that

�
R3

fN
β (qt1 − q)k̃Nt (q)dq f C(∥k̃N∥1 + ∥k̃N∥∞),

which suffices to estimate expectation value

E
′[fN

β (qt1 − qtj)
]
=

�
R3

fN
β (qt1 − q)k̃Nt (q)dq f C(∥k̃N∥1 + ∥k̃N∥∞)Nβ f C

and the variance

E
′[fN

β (qt1 − qtj)
2
]
=

�
R3

fN
β (qt1 − q)2k̃Nt (q)dq f ∥k̃N∥∞∥k̃N∥22N5β f CN5β .

Hence we get

E
′[|Zj |2

]
f CN5β .

For r(N) = CN5β it follows that |Zj | f C
√
Nr(N). Using Lemma 2.11, we have

the probability bound

P

(∣∣∣(FN (Xt))1 − (F
N
(Xt))1

∣∣∣ g CN5β−1 ln(N)
)
f N−γ .

Similarly, the same bound also holds for all other indexes i = 2, . . . , N , which leads
to

P

(∥∥∥FN (Xt)− F
N
(Xt)

∥∥∥
∞

g CN5β−1 ln(N)
)
f N1−γ . (2.10)

Let Cγ be the constant C in (2.10) which is only depending on γ, T and k0, then we
conclude the proof of bound (2.6). To prove the second bound (2.7), we follow the
same procedure as above

(GN (Xt))1 − (G
N
(Xt))1 =

1

N

N∑

j=2

gβN (qt1 − qtj)−
�
R3

gβN (qt1 − q)k̃Nt (q)d3q =
1

N

N∑

j=2

Zj ,

with the random variable

Zj = gβN (qt1 − qtj)−
�
R3

gβN (qt1 − q)k̃Nt (q)d3q.
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It holds that E
′[Zj ] = 0. By using the definition of gβN and the fact that the

integration by substitution yields the rescaling factor N−3β in dimension d = 3, the
expectation value and variance is bounded by

E
′[gβN (qt1 − qtj)

]
=

�
R3

gβN (qt1 − q)k̃Nt (q)d3q f N2βC(∥k̃N∥1 + ∥k̃N∥∞) f C,

E
′[gβN (qt1 − qtj)

2
]
=

�
R3

gβN (qt1 − q)2k̃Nt (q)d3q f CN7β(∥k̃N∥1 + ∥k̃N∥∞) f CN7β .

Hence we get

E
′[|Zj |2

]
f CN7β .

For r(N) = CN7β it follows that |Zj | f C
√

Nr(N). With Lemma 2.11 we can
derive the probability bound

P

(∣∣∣(GN (qt))1 − (G
N
(qt))1

∣∣∣ g CN7β−1 ln(N)
)
f N−γ ,

which leads to

P

(∥∥∥GN (Xt)−G
N
(Xt)

∥∥∥
∞

g CN7β−1 ln(N)
)
f N1−γ . (2.11)

Thus, inequality (2.7) follows from inequality (2.11).

So far we could show, that the probability of X being in one of the unlikely set
defined in Definition 2.10 decreases faster than any negative power of N . For any
time 0 < t < T , initial conditions in (Bt∩Ct)

c are typical with respect to the product
measure K0 := ¹Nk0 on R

6N .

Controlling the Expectation value of JN
t

We are left to estimate the expectation E0(J
N
t ) and remember that it was split into

E0(J
N
t ) = E0(J

N
t | At) +E0

(
JN
t | Ac

t \ (Bc
t ∩ Cc

t )
)
+E0

(
JN
t | (At ∪ Bt ∪ Ct)

)c
.

As we already know that, on the set At the process JN
t (X) is already maximal and

we have d
dtJ

N
t (X) = 0 and thus also d

dt Et(J
N
t | At) = 0. To estimate the remaining

terms we remember that for X ∈ Ac
t the probability for X ∈ Bt ∩ Ct decreases faster

than any power of N . Further more right derivative of JN
t with respect to t is given

by

∂+
t J

N,λ
t (X)

f max
{
0,

d

dt

(
σN,t

(
Nα
√

ln(N)
∣∣∣Ψ1,N

t,0 (X)− Φ1,N
t,0 (X)

∣∣∣
∞

+Nα
∣∣∣Ψ2,N

t,0 (X)− Φ2,N
t,0 (X)

∣∣∣
∞

+N5β+α−1
))}

f max
{
0,−λ

√
ln(N)eλ

√
ln(N)(T−t)

(
Nα
√

ln(N)| Ψ1,N
t,0 (X)− Φ1,N

t,0 (X)|∞

+|Ψ2,N
t,0 (X)− Φ2,N

t,0 (X)|∞ +N5β+α−1
)
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+ eλ
√

ln(N)(T−t)Nα∂t

(√
ln(N)| Ψ1,N

t,0 (X)− Φ1,N
t,0 (X)|∞

+ |Ψ2,N
t,0 (X)− Φ2,N

t,0 (X)|∞
)}

For the derivative of the position coordinate and for the momentum coordinate we
further estimate

∂t|Ψ1,N
t,0 (X)− Φ1,N

t,0 (X)|∞ f |∂t(Ψ1,N
t,0 (X)− Φ1,N

t,0 (X))|∞
f |Ψ2,N

t,0 (X)− Φ2,N
t,0 (X)|∞

f sup
0fsft

|Ψ2,N
s,0 (X)− Φ2,N

s,0 (X)|∞

∂t|Ψ2,N
t,0 (X)− Φ2,N

t,0 (X)|∞ f |∂t(Ψ2,N
t,0 (X)− Φ2,N

t,0 (X))|∞
f |FN (Ψ1

t,0(X))− F t(Φ
1
t,0(X))|∞.

Secondly the total force is bounded |F (X)|∞ f N4β and the mean-field force F̄
is of order one. Since X ∈ Ac

t we get Nβ |Ψ2,N
t,0 (X) − Φ2,N

t,0 (X)| f 1 and hence

sup{|∂+
t J

N
t (X)| : X ∈ Ac

t} f Ceλ
√

ln(N)TN4β for some C > 0. According to Lemma
2.11 the probability for X ∈ Bt ∩ Ct decreases faster than any power of N . Hence,
we can find for any γ > 0 a constant Cγ , such that

∂+
t E(J

N
t | Ac

t \ (Bc
t ∩ Cc

t )) f sup{|∂+
t J

N
t (X)| : X ∈ Ac

t}P
[
(At ∪ Bt)

]

f eλ
√

ln(N)TCγN
−γ .

It remains to control E0(J
N
t | (At ∪ Bt ∪ Ct)c) which is defined on the most likely

initial conditions. The relevant term can be estimated by

|FN (Ψ1
t,0(X))− F t(Φ

1
t,0(X))|∞ f |FN (Ψ1

t,0(X))− FN (Φ1,N
t,0 (X))|∞

+ |FN (Φ1,N
t,0 (X))− F t(Φ

1,N
t,0 (X))|∞.

Since X /∈ Bt, it follows for the second addend

|FN (Φ1
t,0(X))− F (Φ1

t,0(X))|∞ < N5β−1 ln(N).

For the first addend we use the triangle inequality to get for any 1 f i f N

∣∣∣
(
FN (Ψ1

t,0(X))− FN (Φ1
t,0(X))

)
i

∣∣∣
∞

f
∣∣∣ 1
N

N∑

j=1

fN
β (Ψ1

i −Ψ1
j )− fN

β (Φ1
i − Φ1

j )
∣∣∣
∞

f 1

N

N∑

j=1

∣∣fN
β (Ψ1

i −Ψ1
j )− fN

β (Φ1
i − Φ1

j )
∣∣
∞

and application of a version of mean value theorem stated in Lemma 2.8 leads to

∣∣fN
β (Ψ1

i −Ψ1
j )− fN

β (Φ1
i − Φ1

j )
∣∣
∞ f gβN (Φ1

i − Φ1
j )|(Ψ1

i −Ψ1
j )− (Φ1

i − Φ1
j )|∞

f 2 gβN (Φ1
i − Φ1

j )|Ψ1
t,0 − Φ1

t,0|∞.
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Since X ∈ Ac
t we have, by the construction of JN

t (X), in particular for N large
enough

sup
0fsft

|Ψ1,N
s,0 (X)− Φ1,N

s,0 (X)|∞ < N−α.

Additionally X /∈ Ct from which we can conclude that

|G(ΦN
t,0(X))− Ḡ(ΦN

t,0(X))|∞ f CN7β−1 ln(N)

and in particular

1

N

N∑

j=1

gβN (Φ1
i − Φ1

j ) =
(
GN (Φt,0(X)

)
i

f ∥gβN ∗ k̃Nt (q)∥∞ +N7β−1 ln(N)

f CN7β−1 ln(N).

For the derivative of the momentum we can conclude

d

dt
|Ψ2

t (X)− Φ2
t,0(X)|∞ f CN7β−1 ln(N)

∣∣Ψ1
t,0(X)− Φ1

t,0(X)
∣∣
∞ +N5β−1 ln(N).

We observe that for X ∈ (At ∪Bt ∪ Ct)
c and β f 1

7

∂+
t

(√
ln(N)|Ψ1

t,0(X)− Φ1
t,0(X)|∞ + |Ψ2

t,0(X)− Φ2
t,0(X)|∞

) ∣∣∣
At∩Bt∩Ct

f
√

ln(N)
d

dt
|Ψ1

t,0(X)− Φ1
t,0(X)|∞ +

d

dt
|Ψ2

t,0(X)− Φ2
t,0(X)|∞

f
√

ln(N)|Ψ2
t,0(X)− Φ2

t,0(X)|∞
+ C ln(N)

(
N7β−1|Ψ1

t,0(X)− Φ1
t,0(X)|∞ +N5β−1

)

f C
√

ln(N)
(√

ln(N)|Ψ1
t,0(X)− Φ1

t,0(X)|∞ + |Ψ2
t,0(X)− Φ2

t,0(X)|∞
)
+N5β−1.

In total the right derivative of JN
t is given by

∂+
t J

N
t (X) f max

{
0,

d

dt

(
σN,t

(
Nα

(√
ln(N)|Ψ1

t,0(X)− Φ1
t,0(X)|∞

+|Ψ2
t,0(X)− Φ2

t,0(X)|∞ +N5β−1
)))}

with

d

dt

(
σN,t

(
Nα

(√
ln(N)|Ψ1

t,0(X)− Φ1
t,0(X)|∞ + |Ψ2

t,0(X)− Φ2
t,0(X)|∞

)
+N5β−1

))

f −λ
√

ln(N)eλ
√

ln(N)(T−t)
(
Nα

(√
ln(N)|Ψ1

t,0(X)− Φ1
t,0(X)|∞

+ |Ψ2
t,0(X)− Φ2

t,0(X)|∞
)
+N5β−1

)

+ eλ
√

ln(N)(T−t)Nα
(
C
√
logN

(√
ln(N)|Ψ1

t,0(X)− Φ1
t,0(X)|∞

+ |Ψ2
t,0(X)− Φ2

t,0(X)|∞
)
+N5β−1

)

=
√
ln(N)Nαeλ

√
ln(N)(T−t)

[
(C − λ)

(√
ln(N)|Ψ1

t,0(X)− Φ1
t,0(X)|∞
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+ |Ψ2
t,0(X)− Φ2

t,0(X)|∞ +
(
(ln(N))−

1
2 − λ

)
N5β−1

) ]
.

By choosing λ = C this derivative is negative and thus we get

∂+
t E(J

N
t | Ac

t ∩ Bc
t ∩ Cc

t ) = 0.

Finally we can conclude for the right derivative of the expectation value of the
auxiliary process

∂+
t E(J

N
t ) f eλ

√
ln(N)TCγN

−γ .

And thus by the linearity of the expectation value the following bound holds

E0(J
N
t )− E0(J

N
0 ) = E0

(
JN
t − JN

0

)
f Teλ

√
ln(N)TCγN

−γ ,

uniformly in t ∈ [0, T ]. The initial states where chosen such that
(√

ln(N)|Ψ1
0,0(X)− Φ1

0,0(X)|∞ + |Ψ2
0,0(X)− Φ2

0,0(X)|∞
)
= 0

and thus at time t = 0 the auxiliary process JN
0 (X) ≡ eλ

√
ln(N)TN5β+α−1 which for

N sufficient large and 0 < α < β f 1
7 is bounded by

eλ
√

ln(N)TN5β+α−1 f eλ
√

ln(N)TN5β+α−1 f 1

2

as e
√

ln(N) grows slower than than N ε for all ε > 0. We observe that the random
variable JN

t − JN
0 is certainly non-negative and it follows that

P0

[
JN
T (X)− JN

0 (X) g 1

2

]
f 2Teλ

√
ln(N)TCγN

−γ .

In the case JN
t − JN

0 < 1
2 we have JN

t (X) < 1 and thus we can conclude

P0

[
sup

0fsfT

{(√
ln(N)|Ψ1

t,0(X)− Φ1
t,0(X)|∞ + |Ψ2

t,0(X)− Φ2
t,0(X)|∞

)}
g N−α

]

f P0

[
JN
T (X)− JN

0 (X) g 1

2

]

f 2Teλ
√

ln(N)TCγN
−γ f 2TCγN

1−γ−5β−α.

We can find for any given γ̃ > 0 by choosing γ := γ̃ + 1− 5β − α a Cγ̃ such that

P0

[
sup

0fsfT

{(√
ln(N)|Ψ1

t,0(X)− Φ1
t,0(X)|∞ + |Ψ2

t,0(X)− Φ2
t,0(X)|∞

)}
g N−α

]

f TCγ̃N
−γ̃ .

This proves Lemma 2.5.
We are left to show that the we fully approximate the non regularized system

and therefore we define

∆N (t) := sup
x∈R6

sup
0fsfT

|ϕ1
s,0(X)− ϕ∞

s,0(X)| f 2N−α,

for f∞ = δ0(x) which will conclude the proof of Theorem 2.2.
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2.2 Proof of Theorem 2.2

Let t ∈ [0, T ] be such that still ∆N (t) f N−α, then it holds for x ∈ R
6 andN ∈ N\{1}

that

∂t sup
x∈R6

|ϕ1,N
t,0 (x)− 1ϕ∞

t,0(x)| = sup
x∈R6

|ϕ2,N
t,0 (x)− ϕ2,∞

t,0 (x)|

f sup
q0,p0∈R3

|k̃Nt ∗ fN
β (qNt (q0, p0))− k̃Nt ∗ fN

β (q∞t (q0, p0))|

+ sup
q0,p0∈R3

|k̃Nt ∗ fN
β (q∞t (q0, p0))− k̃Nt ∗ f∞(q∞t (q0, p0))|

+ sup
q0,p0∈R3

|k̃Nt ∗ f∞(q∞t (q0, p0))− k̃∞t ∗ f∞(q∞t (q0, p0))| .

f ∥k̃Nt ∗ ∇fN
β ∥∥qNt − q∞t ∥∞ + ∥k̃Nt ∗ fN

β − k̃Nt ∗ f∞∥∞ + ∥k̃Nt ∗ f∞ − k̃∞t ∗ f∞∥∞.

The first addend is bounded by C∆N (t) due to Lemma 2.9 and because of the
restrictions on k̃

∣∣∣k̃Nt (q)− k̃∞t (q)
∣∣∣ f

� ∣∣k0(qNt , pNt )− k0(q
∞
t , p∞t )

∣∣ d3p0

f
� (

sup
h∈R3;|h|=1

∇k0(q
∞
t , p∞t + h)

)
|xNt − x∞t |d3p0 .

for a time t such that ∆N (t) f 1. The second one is also bounded due to Lemma 2.9
by

∥k̃Nt ∗ fN
β − k̃Nt ∗ f∞∥∞ f ∥k̃Nt ∗ (fN

β − f∞)∥∞ f ∥k̃Nt ∗ fN
β ∥∞ f C∆N (t)

So we get by Gronwalls lemma

sup
q0,p0∈R3

|xNs (q0, p0)− x∞s (q0, p0)| f CN−α ,

which implies

∥∥ΦN
s,0 − Φ∞

s,0

∥∥
∞ < CN−α .

That shows that the initial assumption ∆N (t) f N−α stays true for times t < T
provided that N ∈ N is large enough.

2.3 Molecular chaos

This result implies molecular chaos in the sense of Corollary 2.15 which is stated
below. Therefore we introduce the following notation of distance which we require to
estimate the dissimilarity between the two probability measures.
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Definition 2.14. Let P(Rn) be the set of probability measures on R
n.For µ, ν ∈

P(Rn), let Π(µ, ν) be the set of all probability measures R
n × R

n with marginal µ
and ν. Then, for p ∈ [1,+∞), the p’th Wasserstein distance on P(Rn) is defined by

Wp(µ, ν) := inf
π∈Π(µ,ν)

( �

Rn×Rn

|x− y|p dπ(x, y)
)1/p

.

For p = ∞ the infinite Wasserstein distance is defined by

W∞(µ, ν) = inf{π − esssup |x− y| : π ∈ Π(µ, ν)}.
In particular this notion of distance implies weak convergence in P(Rn). Theorem

2.2 implies molecular chaos in the following sense:

Corollary 2.15. Let KN
0 := ¹Nk0 be the n-fold solution of the considered effective

equation and KN
t := ΨN

t,0#K0 the N -particle distribution at time t ∈ [0, T ] evolving
with the microscopic flow (1.4). Then the i-particle marginal

(i)KN
t (x1, ..., xi) :=

�
KN

t (X) d6xi+1...d
6xN

converges weakly to ¹ikt as N → ∞ for all k ∈ N, where kt is the unique solution
of the Vlasov-Dirac-Benney equation (1.6) with initial density kN |t=0= k0. More
precisely, under the assumptions of Theorem 2.2, we get a constant C > 0 such that
for all N g N0

W1(
(i)KN

t ,¹ikt) f i eTC
√

ln(N)N−α, for all 0 f t f T.

Proof. For a fixed time 0 f t f T and A ¢ R
6N defined in Definition 2.10 we have

proven in Theorem 2.2, that P0(A) f TCγN
−γ for sufficiently large N . Using the

notion of distance above an that all test-functions are Lipschitz with ∥h∥Lip = 1,

W1(
(i)KN

t ,¹i kt)

= sup
∥h∥Lip=1

∣∣∣
� (

KN
t (X)−¹Nkt(X)

)
g(x1, ..., xi)d

6x1... d
6xk...d

6xN

∣∣∣

= sup
∥h∥Lip=1

∣∣∣
� (

ΨN
t,0#KN

0 (X)− ΦN
t,0#KN

0 (X)
)
g(x1, ..., xi) d

6NX
∣∣∣

= sup
∥h∥Lip=1

∣∣∣
�

KN
0 (X)

(
h(πiΨ

N
t,0(X))− h(πiΦ

N
t,0(X))

)
d6NX

∣∣∣

= sup
∥h∥Lip=1

∣∣∣
�

A

KN
0 (X)

(
h(πiΨ

N
t,0(X))− h(πiΦ

N
t,0(X))

)
d6NX

∣∣∣

+ sup
∥h∥Lip=1

∣∣∣
�

Ac

KN
0 (X)

(
h(πiΨ

N
t,0(X))− h(πiΦ

N
t,0(X))

)
d6NX

∣∣∣

for the projection πi : RN → R
i, (x1, ..., xN ) 7→ (x1, ..., xi). The first addend is

bounded by

sup
∥h∥Lip=1

∣∣∣
�

A

KN
0 (X)(h

(
πiΨ

N
t,0(X))− h(πiΦ

N
t,0(X))

)
d6NX

∣∣∣
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f P(Ac)∥KN
0 ∥∞|ΨN

t,0(X)− ΦN
t,0(X)|,

with ∥KN
0 ∥∞ = (∥k0∥∞)N . By the initialization of the initial conditions we trivially

have that |ΨN
0,0(X)− ΦN

0,0(X)|∞ = 0 and by Newtons law

|Ψ2,N
t,0 (X)− Φ2,N

t,0 (X)|∞ f
t�

0

|FN (Ψ1,N
s,0 (X))− F (Φ1,N

s,0 (X))|∞ ds,

|Ψ1,N
t,0 (X)− Φ1,N

t,0 (X)|∞ f
t�

0

|Ψ2,N
s,0 (X)−Ψ2,N

s,0 (X)|∞ ds.

The mean-field force F is of order 1 and the microscopic force FN is bounded by N4β .
Hence, there exists a constant C > 0 such that |Ψ2,N

t,0 (X) − Φ2,N
t,0 (C)|∞ f TCN4β

and consequently to Newtons law |Ψ1,N
t,0 (X)− Φ1,N

t,0 (X)|∞ f T 2CN4β for all times
t f T . Choosing γ := 5β in Theorem 2.2 we thus get a constant C such that

P(Ac)∥KN
0 ∥∞|ΨN

t,0(X)− ΦN
t,0(X)| f Cmax{T 2, T 3}N−β ,

for all times 0 f t f T . On the other hand, for X ∈ Ac, we have for any h with
∥h∥Lip = 1,

|h(πiΨN
t,0(X))− h(πiΦ

N
t,0(X))| f |ΨN

t,0(X)− ΦN
t,0(X)|∞ f N−α

for all t f T and thus

sup
∥g∥Lip=1

∣∣∣
�

Ac

KN
0 (X)

(
h(πiΨ

N
t,0(X))− h(πiΦ

N
t,0(X))

)
d6NX

∣∣∣ f N−α.

It follows that there exists a constant C such that

W1

(
(i)KN

t ,¹ikNt

)
f C(1 + T 3)N−α,

for all times 0 f t f T and due to the property that kN approximate k (see [32,
Prob. 9.1] the statement follows.

Molecular chaos in the sense of Corollary 2.15 implies convergence in law of the
empirical distribution to the solution of the Vlasov Dirac Benney equation kt (see
e.g. [29], [23], [42, Prop.2.2]). Finally one can derive the macroscopic mean-field
equation (1.6) from the microscopic particle system 1.1. We define the empirical
measure associated to the microscopic N -particle system and respectively to the
macroscopic by

µΦ(t) :=
1

N

N∑

i=1

δ(q − qti)δ(p− pti), µΨ(t) :=
1

N

N∑

i=1

δ(q − qti)δ(p− pti)

and will see that the empirical measure µΦ(t) converges to the solution of the
Vlasov-Dirac-Benney equation in Wp distance with high probability.
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Theorem 2.16 (Particle approximation of the Vlasov-Dirac-Benney system). Let
k0 be a probability measure satisfying the assumptions of Theorem 2.2 and Ψt,s be
the N -particle flow defined in Definition 1.1. Then, the empirical density µΦ0(t)

converges to the solution of the Vlasov-Dirac-Benney equation in the following sense:
For any T > 0 there exists a constant C depending on the initial density k0 and T
such that for all N g N0 and some η, ι > 0

P

[
max
t∈[0,T ]

∈ [0, T ] : Wp(µΦ, kt) > N−η
]
f Ce−CN1−ι

,

where k is the unique solution of the Vlasov-Dirac-Benney system on [0, T ].

Proof. In order to prove this let us split Wp(µΦ(t), kt) into three parts

Wp(µΦ(t), kt) f Wp(kt, k
N
t ) +Wp(k

N
t , µΨ(t)) +Wp(µΨ(t), µΦ(t)).

The convergence of the first addend is a deterministic result stated in [32, Prob. 9.1],
the second addend is bounded in probability due to[32, Cor. 9.4] and the last term
is bounded in probability due to Theorem 2.2.



Chapter 3

On the mean-field limit for the

Vlasov-Poisson system

The Poisson kernel has its origins in Newton’s theory of gravity. In the field of
astrophysics, it is employed to investigate the development and transformation of
galaxies and galaxy clusters, particularly when relativistic effects can be disregarded
on a large scale. In this context, individual particles represent stars or even more
substantial structures.
When considering repulsive interactions, the Poisson kernel corresponds to the
electrostatic forces acting between particles. This is commonly applied in plasma
physics, often involving multiple species or components.
Additionally, the Poisson kernel finds application in first-order models, such as in
the realm of chemotaxis, which involves the movement of bacteria or cells induced
by a chemical gradient. In this scenario, the force experienced can be understood
as the gradient of the concentration of a chemical substance produced by each
particle. The singularity of the kernel creates challenges for both theoretical analysis
and numerical simulations. To address this issue in numerical computations, a
straightforward solution is to introduce regularization to the kernel. Consequently,
instead of working with f∞, the non-regularized singular force, the focus shifts to
fN , where the regularization depends on the parameter N .

In this Chapter we present a microscopic derivation of the Vlasov-Poisson system.
Therefore we consider a system consisting of N interacting particles subject to
Newtonian time evolution. Our system is distributed by a trajectory in phase space
R
6N with X = (Q,P ) = (q1, . . . , qN , p1, . . . , pN ) ∈ R

6N , where (Q)j = qj ∈ R
3

denotes the one-particle position and and (P )j = pj stands for its momentum. The
evolution of the system is given by the coupled differential equations

i ∈ {1, ..., N},
{

q̇i =
pi
m

ṗi =
1
N

∑
j ̸=i f

N (qi − qj)
(3.1)

with particle mass m > 0, which will always be set equal 1 in our considerations.
We consider a Coulomb force with a cut-off at N−β for β f 5

12 − σ and arbitrary
σ > 0. Remarkably this cut-off can be chosen distinctly smaller than the typical
inter particle distance which is given by N− 1

3 . The interaction force for this Chapter
is defined by the following.
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Definition 3.1. For N ∈ N ∪ {∞} the interaction force is given by

fN : R3 → R
3, q 7→

{
aN3βq if |q| f N−β

a q
|q|3 if |q| > N−β

for 0 < β f 5
12 − σ, some positive σ and a ∈ R.

Remark. Note, that we do not have any further constraints on the choice of a. In
particular we consider both, attractive and repulsive interactions. We will use the
notation FN : R6N → R

3N the total force of the system. Thus the i’th component of
FN gives the force exhibited on a single coordinate j :

(FN (X))j :=
∑

i ̸=j

1

N
fN (qi − qj).

We also consider the system in the mean-field scaling. The prefactor 1
N constitutes

such a scaling factor. This scaling factor is discussed in Section 1.4 and is the most
common choice in this setting [31].

Note that the scaling we chose is such that, as N → ∞ the dynamics of the cloud
remains fixed (both in q and p) while the density grows linearly with N . Furthermore
the scaling ensures that the interaction per particle remains of order 1.

We want to derive the Vlasov-Poisson equation from the microscopic Newtonian
N -particle dynamics with an improved cut-off. According to the typical approach, we
compare the microscopic N -particle time evolution ΨN

t,s with an effective one-particle

description given by the mean-field flow (ϕN
t,s)t,s∈R : R6 → R

6 and prove convergence

of ΨN
t,s to the product of ϕN

t,s in the limit N → ∞ in a suitable sense. From this, weak
convergence of the s-particle marginals of the N -particle system to the corresponding
s-fold products of solutions of the Vlasov equation follows. This is usually referred
to as propagation of molecular chaos [7, 32, 22].

3.0.1 Dynamics of the Newtonian and of the effective system

By introducing the N -particle Coulomb force with cut-off, defined in Definition 3.1,
we can characterize the Newtonian flow ΨN

t,s∈R : R6N → R
6N , defined in Definition

1.1, as a solution of the system of equations (3.1) since the vector field is Lipschitz
for fixed N and thus we have global existence and uniqueness of solutions. ΨN

t,s(X)

indicates the position of the particles in phase space, the first component Ψ1,N
t,s (X)

denotes the positions of the particles in physical space and the second component
Ψ2,N

t,s (X) the respective velocities.
Looking for a macroscopic law of motion for the particle density leads us to

a continuity equation. For N ∈ N ∪ {∞}, and k : R
6 → R

+
0 we consider the

corresponding mean-field equation, namely the Vlasov-Poisson equation (1.5). For a
fixed initial distribution k0 ∈ L∞(R3 × R

3) with k0 g 0 we denote by kNt the unique
solution of the Vlasov-Poisson equation (1.5) with initial datum kNt (0, ·, ·) = k0.
The global existence and uniqueness of solutions of the Vlasov-Poisson equation
for suitable initial conditions is well understood, even for singular interactions (see
Section 1.6.1). The characteristics of Vlasov equation similar to the system of
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equations (3.1) are given by the solution of equation (1.9). This system is uniquely
solvable on any interval [0, T ] and this provides us the flow (ϕ∞

s,t)s,t∈R.
The one-particle flow (ϕs,t)s,t∈R = (ϕ1

·,s(x), ϕ
2
·,s(x)) solves the equations (1.9)

where ϕs,s(x) = x for any x ∈ R
6 and s ∈ R. With this construction we get a new

trajectory which is influenced by the mean-field force and not by the pair interaction
force like in the Newtonian system. Now we have two trajectories which we will
compare and later show that they are close to each other. To this end, we consider
the lift of ϕN

t,s(·) to the N -particle phase-space, which we denote by ΦN
t,s (Definition

1.4). The lift of the mean field force to the N -particle phase-space F̄ : R3N → R
3N

is given by
(F t(X))i := fN ∗ k̃Nt [kt](xi)

for X = (x1, ..., xN ).
In contrast to ΨN , ΦN conserves independence, which is crucial for the later

proof. This is due to the fact that ΦN consists of N copies of ϕt. Hence the particles
are distributed i.i.d. with respect to the particle density kN of the Vlasov-Dirac-
Benney equation (1.6). The mean-field particles move independently, because we
use the same force for every particle and thus we do not have pair interactions,
which lead to correlations. In summary, for fixed k0 and N ∈ N, we consider for
any initial configuration X ∈ R

6N two different time-evolutions: ΨN
t,0(X), given

by the microscopic equations and ΦN
t,0(X), given by the time-dependent mean-field

force generated by the force fN
t . We are going to show that for typical X, the two

time-evolutions are close in an appropriate sense. In other words, we have non-linear
time-evolution in which ϕN

t,s(· ; k0) is the one-particle flow induced by the mean-field
dynamics with initial density k0, while, in turn, k0 is transported with the mean-field
flow ϕN

t,s.

3.0.2 Statement of the results

In the following section we show that the N -particle trajectory Ψt starting from Ψ0

(i.i.d. with the common density k0) remains close to the mean-field trajectory Φt

with the same initial configuration Ψ0 = Φ0 during any finite time [0, T ] and so the
microscopic and the macroscopic approach describe the same system.

Theorem 3.2. Let T > 0 and k0 ∈ L1(R6) be a continuously differentiable probability
density fulfilling supN∈N sup0fsfT ||k̃Ns ||∞ f ∞. Moreover, let (Φ∞

t,s)t,s∈R be the

related lifted effective flow defined in Definition 1.4 as well as (ΨN
t,s)t,s∈R the N -

particle flow defined in Definition 1.1. If σ > 0 and β = 5
12 − σ, then for any γ > 0

there exists a Cγ > 0 such that for all N ∈ N it holds that

P

(
X ∈ R

6N : sup
0fsfT

∣∣ΨN
s,0(X)− Φ∞

s,0(X)
∣∣
∞ > N− 1

6

)
f CγN

−γ . (3.2)

This Theorem implies Propagation of Chaos. The main difference to [7] and [32]
is that in the current case we analyse the advantages of the second order nature of
the equation to transfer more information from the mean-field system to the true
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particles as introduced in [22]. As long as the true and their related mean-field
particles are close in phase space, the types of their collisions are expected to be
similar.

Therefore we will divide the particles into sets, a ‘good’, a ‘bad’ and a ‘superbad’
set, depending on their mean-field particle partners. If for certain particles, pair
collision are expected according to their auxiliary trajectories, then depending on
the distance and their relative velocity, they will be labelled ‘bad’ or ‘superbad’. As
for such particles larger deviations are expected after the collisions, we will allow
larger distances to their related mean-field particles. The greater the distance to
their related mean-field particles is, the worse the label gets. An advantage is that
the number of ‘bad’ or ‘superbad’ particles is typically much smaller than the total
particle number N .

Additionally, by using the integral version of Gronwalls Lemma we will make full
use of the second order nature of the dynamics. If two particle come exceptionally
close to each other, one can expect a correspondingly large deviation of the true and
mean-field trajectory. However, for the vast majority, these deviations are typically
only of a very limited duration. In order not to overestimate the deviations between
them, it makes sense to compare the dynamics on longer time periods.

The idea of dividing the particles into sets and using the integral version of
Gronwalls Lemma were previously implemented in the work of Grass and Pickl [22]
for two particle sets, a so called ‘good’ and a ‘bad’ one.

3.0.3 Heuristics for the particle groups

The technical implementation works by dividing the particles into subsets. The closer
particles get to each other and the lower their relative speed, the worse they are
in the sense that their interactions leads to comparably large deviations from their
mean-field evolution. However, it will be shown that the number of bad particles
compared to N is extremely small. The small number will be useful in the estimates.
It helps to control the future effect of the other particles despite their comparably
large deviation form the mean field particle. In a first step we will classify the
particles according to their distance from one another and their relative velocities.
Roughly one should think of

M0 : = {i ∈ {1, . . . , N}|∃t g 0 : |q̄j − q̄k| f N−r0 and |p̄j − p̄k| f N−v0}
M1 : = {i ∈ {1, . . . , N}|∃t g 0 : |q̄j − q̄k| < N−r1 and |p̄j − p̄k| f N−v1} \M0

...

Ml : = {i ∈ {1, . . . , N}|∃t g 0 : |q̄j − q̄k| f N−rl and |p̄j − p̄k| f N−vl} \
l−1⋃

n=0

Mn.

for 0 f rl f r1 f r0 and 0 f vl f v1 f v0. It holds that {1 . . . N} =
⋃̇
Mn. The

particles contained in M0 are the most problematic particles, the so-called ‘superbad’
particles. An adjusted definition to the precise technical needs will be defined in
Section 3.1 by so called collision classes. As we are only interested to show the
advantage of introducing more particle subsets we limit ourselves to three subsets.
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Note that the definition of the sets Ml only refers to the mean-field dynamics Φ
which conserves independence, not Ψ. This makes it easy to calculate a bound for the
probability of Xi belonging to these sets. Standard law of large numbers arguments
give that for all γ ∈ N there exists a Cγ such that P(|Ml| g N δl) f CγN

−γ for some
δl > 0.
Let us next calculate the probability for a hit. It should be given by the Bolz-
manzylinder P(hit) = Cr2vrel for the relative velocity vrel. In our case vrel is also
probabilistic with P(vrel f vcut) ≈ v3cut. So we should get a probabilistic bound of
the form

P(vrel f vcut and hit) f Cr2v4cut.

The probability of finding k particles inside the set Ml around a bad particle is
thus bounded from above by the binomial probability mass function with parameter
p := P(j ∈ Ml) at position k, i.e. for any natural number 0 f A f N and any
tn f t f tn+1

P (card (Ml g A)) f
N∑

j=A

(
N
j

)
pj(1− p)N−j .

The mean of a binomially distributed random variables is given by Np and thus
the standard deviation by

√
Np(1− p) <

√
Np. The probability to find more than

Np + a
√
Np particles in the set Ml is exponentially small in a, i.e. there is a

sufficiently large N for any γ > 0 and any t with t ∈ [tn, tn+1] such that

P

(
card (Ml) g Np+ a

√
Np
)
f a−γ .

The binomial distribution can be seen as a normal distribution when N is sufficiently
large because of the central limit theorem. Hence the probability of finding more
than 2Np = Np+

√
Np

√
Np (i.e. a =

√
Np) particles in the set Ml is smaller than

any polynomial in N , i.e. there is a Cγ for any γ > 0 and any t with tn f t f tn+1

such that
P (card (Ml) g 2Np) f CγN

−γ .

This preliminary consideration leads us to assume that the number of particles in a
bad subset can be estimated by N2−2rl−4vl , which will also be proven later.

3.0.4 Preliminary studies

To implement this proposed strategy we collect and derive necessary results and
properties. Constants appearing in this thesis will generically be denoted by C. More
precisely we will not distinguish constants appearing in a sequence of estimates, i.e.
in an inequality chain a f Cb f Cd, the constants C may differ.

The following Lemma constitutes the probability of a hit i.e. the probability of
the different types of collisions.

Lemma 3.3. Let (ϕN
t,s)t,s∈R be the related effective flow for β g 0 then there is an

C > 0 such that for N−ak , N−bk > 0, N ∈ N and [t1, t2] ¢ [0, T ] it holds that

P

(
X ∈ R

6 :
(
∃t ∈ [t1, t2] : |ϕ1

t,0(X)− ϕ1
t,0(Y )| f N−ak−1
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' |ϕ2
t,0(X)− ϕ2

t,0(Y )| f N−bk−1
))

f C((N−ak−1)2(N−bk−1)4(t2 − t1) + (N−ak−1)3max(N−ak−1 , N−bk−1)3)

The proof of Lemma 3.3 can be found in [22, Lemma 2.1.4]. This Lemma
constitutes a probability bound for amount of particles belonging to a certain particle
group,i.e.

P(Y ∈ R
6 : Y ∈ Ml(Xk)) f C(N−al−1)2((N−bl−1)4.

So far all N particles were taken into account as possible interaction partners for the
considered particle Xi particle. This constitutes a worst case estimate. The possible
types of collisions and, accordingly, the impact on the force term can differ. This
will be taken into account later by defining collision classes.

We further introduce the underlying Gronwall Lemma, which takes into account
the second order nature of the equation. The unlikely collisions are usually only of a
limited duration. An integral Gronwall version can take that into account.

Lemma 3.4. Let u : [0,∞) → [0,∞) be a continuous and monotonously increasing
map as well as l, f1 : R → [0,∞) and f2 : R×R → [0,∞) continuous maps such that
for some n ∈ N and for all t1 > 0, x1, x2 g 0

(i) x1 < x2 ⇒ f2(t1, x1) f f2(t1, x2)

(ii) ∃K1, δ > 0 : sup
x,y∈[f1(0),f1(0)+δ]

s∈[0,δ]

|f2(s, x)− f2(s, y)| f K1|x− y|.

(iii)

f1(t1) +

� t1

0
...

� tn

0
f2(s, u(s))dsdtn...dt2 < u(t1) '

f1(t1) +

� t1

0
...

� tn

0
f2(s, l(s))dsdtn...dt2 g l(t1),

then it holds for all t g 0 that l(t) f u(t).

The proof of Lemma 3.4 can be found in [22, Lemma 2.1.1]. We need the
fluctuation and the rate of change in the proof and therefore we introduce a kind of
first derivative of f given by

Definition 3.5. For N ∈ N ∪ {∞} we define

gN : R3 → R
3, q 7→

{
2N3β if |q| f 3N−β

54 1
|q|3 if |q| > 3N−β

for 0 < β.

Lemma 3.6. a) For a, b, c ∈ R
3 with |a| f min(|b|, |c|) the following relations

hold

|fN (b)− fN (c)| f gN (a)|b− c|. (3.3)
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b) If ∥Xt −Xt∥∞ f 2N−β, then it holds that

∥∥FN (Xt)− FN (Xt)
∥∥
∞ f C∥GN (Xt)∥∞∥Xt −Xt∥∞, (3.4)

for some C > 0 independent of N .

Proof. a) For the case |a| f 3N−β we have ∥∇fN∥∞ f 2N3β and thus 2N3β

constitutes a Lipschitz-constant for fN .
For |a| g 3N−β , we get by the mean value theorem and the fact, that ∇fN (x)
is decreasing

fN (b)− fN (c)|| f ∇fN (a)||b− a| f
(
C

|a|

)3

|b− c| f C
|b− c|
|1|3 f CgN (a)|b− a|.

b) For any x, ξ ∈ R
3 with |ξ| < 2N−β , we have for |x| < 3N−β

|fN (x+ ξ)− fN (x)| f 2N3β |ξ| f gN (x)|ξ| (3.5)

by applying estimate 3.3 and for choosing without loss of generality a = b = x+ξ
and c = x. For |x| g 3N−β we use the fact that in this case small changes in
the argument of the function lead to small changes in the function values, i.e.
for ξ f 2N−β we have gN (x+ ξ) f CgN (x). Thus we have by estimate 3.3

|fN (x+ ξ)− fN (x)| f CgN (x+ ξ)|ξ| f CgN (x)|ξ|.

Applying claim (3.5) one has

|(FN (Xt))i − (FN (Xt))i| f
1

N

N∑

j ̸=i

∣∣fN (xti − xtj)− fN (xti − xtj)
∣∣

f C

N

N∑

j ̸=i

gN (xti − xtj)
∣∣xti − xtj − xti + xtj

∣∣

f C(gN (Xt))i
∣∣Xt −Xt

∣∣
∞ , (3.6)

which leads to estimate (3.4).

Analogously to the total force of the system FN , the total fluctuation of the
system is given by GN : R6N → R

3N , where the force exhibited on a single coordinate
j is given by

(GN (X))j :=
∑

i ̸=j

1

N
gN (qi − qj).

Since f and g are not differentiable, we now prove some estimates for differences of
function values. Also an important fact of the system is that the distance between
the mean-field particles stay of the same order over time. This is provided by the
following Lemma.
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Lemma 3.7. Let T > 0 and k0 be a probability density fulfilling the assumptions of
Theorem 3.2 where (ϕN,c

t,s )t,s∈R shall be the related effective flow defined in Definition
1.4. Then there exist a C1, C2 > 0 such that for all configurations X,Y ∈ R

6, N ∈
N ∪ {∞} and t, t0 ∈ [0, T ] it holds that

|ϕN
t,t0(X)− ϕN

t,t0(Y )| f |X − Y |eC1|t−t0|

and

|fN
c ∗ k̃Nt (1X)− fN

c ∗ k̃Nt (1Y )| f C2|1X − 1Y |.
The proof of this Lemma can be found in [22] (Lemma 2.1.2). Last but not least

we come to the most important corollary of this chapter. It provides suitable upper
bounds for almost all integrals appearing in the proof of the main theorem.

Corollary 3.8. Let k0 be a probability density fulfilling the assumptions of Theorem
3.2 and (ϕN,c

t,s )t,s∈R be the related effective flow defined in Definition 1.4 as well

as (ΨN,c
t,s )t,s∈R the N -particle flow defined in Definition 1.1. Let additionally for

N,n ∈ N, 1 < λ f 3, C0 > 0 and cN > 0 hN : R3 → R
n be a continuous map

fulfilling

|hN (q)| f
{
C0c

−λ
N , |q| f cN

C0

|q|λ , |q| > cN
.

(i) Let for Y, Z ∈ R
6 tmin ∈ [0, T ] be a point in time where

min
0fsfT

|ϕ1,N
s,0 (Z)− ϕ1,N

s,0 (Y )| =|ϕ1,N
tmin,0

(Z)− ϕ1,N
tmin,0

(Y )| =: ∆r > 0 '

|ϕ2,N
tmin,0

(Z)− ϕ2,N
tmin,0

(Y )| =: ∆v > 0,

then there exists a C1 > 0 (independent of Y, Z ∈ R
6 and N ∈ N) such that

� T

0
|hN (1ϕN

s,0(Z)− 1ϕN
s,0(Y ))|ds f C1min

( 1

∆rλ
,

1

cλ−1
N ∆v

,
1

∆rλ−1∆v

)
.

(ii) Let T > 0, i, j ∈ {1, ..., N}, i ≠ j, X ∈ R
6N and Y, Z ∈ R

6 be given such that
for some δ > 0

N δ|ϕ1,N
tmin,0

(Y )− ϕ1,N
tmin,0

(Z)| f |ϕ2,N
tmin,0

(Y )− ϕ2,N
tmin,0

(Z)| =: ∆v

and

sup
0fsfT

|ϕN
s,0(Y )− [ΨN

s,0(X)]i| f N−δ∆v' sup
0fsfT

|ϕN
s,0(Z)− [ΨN

s,0(X)]j | f N−δ∆v

where tmin shall fulfil the same conditions as in item (i). Then there exists a
N0 ∈ N and C2 > 0 (independent of X ∈ R

6N , Y, Z ∈ R
6) such that for all

N g N0 � T

0
|hN ([Ψ1,N

s,0 (X)]i − [Ψ1,N
s,0 (X)]j)|ds

fC2min
( 1

cλ−1
N ∆v

,
1

min
0fsfT

|[Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j |λ−1∆v

)
.

The proof of this Corollary can be found in [22]( Corollary 2.1.1).
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3.1 Proof of Theorem 3.2

This proof and the notation is based on the work of Pickl and Grass [22]. Some
of their estimates can be directly implied in our situation. For simplification we
consider three different subsets of particles depending on their distance and relative
velocity to other particles. The first set Ms of the ‘superbad’ ones includes all
particles j ∈ {1 . . . N} for which there is a time t g 0 such that |q̄j − q̄k| f N−sr and
|p̄j − p̄k| f N−sv . They are expected to come very close to other particles with small
relative velocity. The second set Mb, containing the so called ‘bad’ particles, which
come intermediate close with intermediate relative velocity, is defined by analogue
conditions |q̄j − q̄k| f N−br and |p̄j − p̄k| f N−bv , excluding the particles already in
Ms. Finally the reaming unproblematic ‘good’ ones, which never come close to each
other while having small relative velocity are contained in Mg = (Mb ∪Ms)

c. An
important point in the proof is that the better the particle is, we allow less distance
to the mean-field particle. Furthermore it depends only on their corresponding
mean-field particle whether a particle is considered good, bad or superbad . In the
course of a simple notation we introduce collision classes, which turn out to be very
important throughout the proof, as each collision class has a different impact on
the force term. They are intended to cover all possible ways in which particles can
interact and thus the particle subsets can be defined using this notation.

Definition 3.9. For r,R, v, V ∈ R
+
0 ∪ {∞}, t1, t2 ∈ [0, T ] and Y ∈ R

6 the set

M
N,(t1,t2)
(r,R),(v,V )(Y ) ¢ R

6 is defined as follows:

Z ∈ M
N,(t1,t2)
(r,R),(v,V )(Y ) ô Z ̸= Y ' ∃t ∈ [t1, t2] :

r f min
t1fsft2

|ϕ1
s,0(Z)− ϕ1

s,0(Y )| = |ϕ1
t,0(Z)− ϕ1

t,0(Y )| f R

' v f |ϕ2
t,0(X)− ϕ2

t,0(Y )| f V.

Here (ϕN
s,r)s,r∈R is the one particle mean-field flow, defined in Definition 1.3,

related to the considered initial density k0. In addition, we will use the following
short notation:

M
N,(t1,t2)
R;V (Y ) := M

N,(t1,t2)
(0,R),(0,V )(Y )

MN
(r,R),(v,V )(Y ) := M

N,(0,T )
(r,R),(v,V )(Y )

MN
R,V (Y ) := M

N,(0,T )
(0,R),(0,V )(Y ).

The set GN (Y ) ¢ R
6 of non-problematic particle interactions is defined by

GN (Y ) := (MN
6rb,vb

∪MN
6rs,vs)

c = (MN
6rb,vb

)c, (3.7)

for rb = N− 7
24

−σ, vb = N− 1
6 , rs = N− 1

3
−σ and vs = N− 5

18 by application of such
collision classes. Next we split the particles in three subsets using the notation of the
collision classes as mentioned before: A ‘superbad’ subset where super hard collisions
are expected to happen, a ‘bad’ subset where hard collisions are expected and a
subset of the remaining ‘good’ particles.

MN
g (X) : = {i ∈ {1, . . . , N} : ∀j ∈ {1, . . . , N} \ {i} : Xj ∈ GN (Xi))}
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MN
s (X) : = {i ∈ {1, . . . , N} : ∃j ∈ {1, . . . , N} \ {i} : Xj ∈ MN

(0,rs),(0,vs)
(Xj)}

MN
b (X) : = {1, . . . , N} \ (MN

g (X) ∪MN
s (X)).

The labelling ‘good’, ‘bad’ or ‘superbad’ depends only on their corresponding mean-
field particle, as the sets above are defined by application of the collision classes
which themselves are defined by the mean-field flow.

Each of the three particle subsets has its own stopping time which is defined by

τNg := sup{t ∈ [0, T ] : max
i∈MN

g

sup
0fsft

|[ΨN
s,0(X)]i − ϕN

s,0(Xi)| f δNg = N− 5
12

+σ}

τNb := sup{t ∈ [0, T ] : max
i∈MN

b

sup
0fsft

|[ΨN
s,0(X)]i − ϕN

s,0(Xi)| f δNb = N− 7
24

−σ}

τNs := sup{t ∈ [0, T ] : max
i∈MN

s

sup
0fsft

|[ΨN
s,0(X)]i − ϕN

s,0(Xi)| f δNsb = N− 1
6
−σ}.

The stopping time for the whole system is given by

τN (X) := min(τNg (X), τNb (X), τNs (X)), (3.8)

where δNg = N−β , δNb = N−db and δNs = N−ds .

We will see that configurations fulfilling τN (X) < T become sufficiently small in
probability for large values of N and hence Theorem 3.2 follows.
The main part of the proof is based on the application of Gronwall’s Lemma to show
that sup0fsft |[ΨN

s,0(X)]i − ϕN
s,0(Xi)|∞ stays typically small for large N .

Therefore we estimate the right derivative of sup0fsft |[ΨN
s,0(X)]i − ϕN

s,0(Xi)|, which
is given by

d

dt+
sup
0fsft

∣∣∣
[
Ψ1,N

s,0 (X)
]
i
− ϕ1,N

s,0 (Xi)
∣∣∣

f
∣∣∣
[
Ψ2,N

t,0 (X)
]
i
− ϕ2,N

t,0 (Xi)
∣∣∣

f

∣∣∣∣∣∣

� t

0

1

N

∑

j ̸=i

fN

([
Ψ1,N

s,0 (X)
]
i
−
[
Ψ1,N

s,0 (X)
]
j

)
− fN ∗ k̃Ns (ϕ1,N

s,0 (Xi))ds

∣∣∣∣∣∣
.

For technical reasons we will distinguish between observing a ‘good’, ‘bad’ or ‘super-
bad’ particle for further estimation of this expression.

3.1.1 Controlling the deviations of good particles

In the first Section we focus on the case, that the considered particle Xi is ‘good’
and use a similar proof technique as presented in [7, 32, 22]. First we break down
the equation in terms of interaction partners. They themselves can be ‘superbad’,
‘bad’ or ‘good’ relative to Xi. Of course the set of particles having a bad or superbad
interaction is empty in this case as having an unpleasant collision is symmetrical and
consequently the underlying term will vanish later, but still, it will be technically
useful to split the equation in that way.
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Let i ∈ MN
g (X) and 0 f t1 f t f T

∣∣∣∣∣∣

� t

t1

1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)− fN ∗ k̃Ns (ϕ1,N
s,0 (Xi))ds

∣∣∣∣∣∣
(3.9)

f

∣∣∣∣∣∣

� t

t1

1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)1(GN (Xi))C (Xj)ds

∣∣∣∣∣∣

+

∣∣∣∣∣∣

� t

t1

( 1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)1GN (Xi)(Xj)

−fN ∗ k̃Ns (ϕ1,N
s,0 (Xi))

)
ds
∣∣∣ . (3.10)

Using triangle inequality in the last two lines of Equation 3.10 one gets that the
previous Term 3.9 is bounded by

∣∣∣∣∣∣

� t

t1

1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)1(GN (Xi))C (Xj)ds

∣∣∣∣∣∣
(3.11)

+

∣∣∣∣∣∣

� t

t1

1

N

∑

j ̸=i

(
fN ([Ψ1,N

s,0 (X)]i − [Ψ1,N
s,0 (X)]j)1GN (Xi)(Xj)

−fN (ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Xj))1GN (Xi)(Xj)
)
ds
∣∣∣ (3.12)

+

∣∣∣∣∣∣

� t

t1

1

N

∑

j ̸=i

fN (ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Xj))1GN (Xi)(Xj)ds

−
� t

t1

�
R6

fN (ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Y ))1GN (Xi)(Y )k0(Y )d6Y ds

∣∣∣∣ (3.13)

+

∣∣∣∣
� t

t1

�
R6

fN (ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Y ))1GN (Xi)(Y )k0(Y )d6Y ds

−
� t

t1

fN ∗ k̃Ns (ϕ1,N
s,0 (Xi))ds

∣∣∣∣ (3.14)

Estimate of Term 3.11 and Term 3.14

Recall that i ∈ MN
g (X) and that the set (GN (Xi))

c = MN
6rb,vb

includes all particles
which come close to Xi while having small relative velocity. Thus the characteristic
function 1(GN (Xi))c(Xj) = 0 for i ∈ MN

g (X) and therefore Term 3.11 vanishes and we
are left to estimate Term 3.14. For the Lebesgue measure preserving diffeomorphism
the following holds

fN ∗ k̃Ns (ϕ1,N
s,0 (Xi)) =

�
R6

fN (ϕ1,N
s,0 (Xi)− 1Y )kNs (Y )d6Y

=

�
R6

fN (ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Y ))k0(Y )d6Y.
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So we get for Term 3.14

∣∣∣∣
� t

t1

�
R6

fN (ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Y ))k0(Y )1GN (Xi)(Y )d6Y ds

−
� t

t1

fN ∗ k̃Ns (ϕ1,N
s,0 (Xi))ds

∣∣∣∣

=
∣∣
� t

t1

�
R6

fN (ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Y ))k0(Y )(1GN (Xi)(Y )− 1)d6Y ds
∣∣

fT∥fN∥∞
�
R6

1(GN (Xi))C (Y )k0(Y )d6Y

fTN2β
P
(
Y ∈ R

6 : Y /∈ GN (Xi)
)

fTN2β
P
(
Y ∈ R

6 : Y ∈ MN
rb,vb

(Xi)
)

fCTN2βN−2br−4bv

This is small under a suitable choice of parameters.

Law of large numbers for Term 3.12 and Term 3.13

For the remaining Terms (3.12) and (3.13) we provide a version of law of large
numbers which takes into account the different types of collision classes which could
occur. Each collision type has a different impact on the force and a certain probability.
For that reason it is useful for the estimates to distinguish between them.

Theorem 3.10. Let δ, C0 > 0, N∈ N and let (Xk)k∈N be a sequence of i.i.d. random
variables Xk : Ω → R

6 distributed with respect to a probability density k ∈ L1(R6).
Moreover, let (MN

i )i∈I be a family of (possibly N -dependent) sets MN
i ¦ R

6 fulfilling⋃
i∈I M

N
i = R

6 where |I| < C0 and hN := R
6 → R are measurable functions which

fulfil on the one hand ∥hN∥∞ f C0N
1−δ and on the other hand

max
i∈I

�
MN

i

hN (X)2k(X)d6X f C0N
1−δ.

Then for any γ > 0 there exists a constant Cγ > 0 such that for all N ∈ N

Pt

[∣∣∣ 1
N

N∑

j ̸=i

hN (Xk)−
�
R6

hN (Z)kt(Z)d6Z
∣∣∣ g 1

]
f Cγ

Nγ
. (3.15)

Proof. By Markov’s inequality, we have for every M ∈ N:

Pt

[∣∣∣ 1
N

N∑

j ̸=i

hN (Xk)−
�
R6

hN (X)kt(X)d6X
]
| (3.16)

f E

[
N−2M

∣∣∣ 1
N

N∑

j=1

hN (Xk)−
�
R6

hN (X)kt(X)d6X
∣∣∣
2M]

, (3.17)

where E[·] denotes the expectation with respect to the N-fold product of k.
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Let M := {γ ∈ N
N
0 | |γ| = 2M} be the set of multiindices γ = (γ1, ..., γN ) with

N∑
j=1

γj = 2M . Let

Gγ(X) :=
N∏

j=1

(
hN (Xj)−

�
R6

hN (X)kt(X)d6X)γi . (3.18)

Then

N−2M
E

[( N∑

k=1

hN (Xk)−
�
R6

hN (X)kt(X)d6Z
))2M]

f N−2M
∑

γ1,...,γN∈M
E

[(
Gγ(X))γk

]
.

Note that E(Gγ) = 0 whenever there is a 1 f j f N such that γj = 1. This can be
seen by integrating the j’th variable first.

For the remaining terms, we have for any 1 f m f M :

|
(
hN (Xj)−

�
R6

hN (X)kt(X)d6X
)γi | f 2γk |hN (Xj)|γk + |

�
R6

hN (X)kt(X)d6X|γk .

As ||hN || f C0N
1−δ, it follows for m g 2

�
R6

|h|m(X)kt(X) d6X f C0max
i∈I

�
MN

i

|h|m(X)kt(X) d6X

fC0||hN ||m−2
∞ max

i∈I

�
MN

i

hN (X)2k(X)d6X f C0(C
m−2
0 N (m−2)(1−δ))(C0N

1−δ)

Let R :=
√�

R6 h2N (X)d6X, then it holds that

�
R6

|h|(X)kt(X) d6X f 1

R

�
R6

h2(X)kt(X)

︸ ︷︷ ︸
=R2

+

�
R6

|h(X)|1[0,R]kt(X)

︸ ︷︷ ︸
fR

f 2
(
Cmax

i∈I

�
MN

i

h2N (X)k(X)d6X
) 1

2 f CM
1
2
(1−δ).

Since the constraints on the maps hN become more stringent with an increase in
the chosen value of δ, we can restrict our consideration to specific values, such
as the interval (0, 1]. If we additionally identify |γ| := |{i ∈ {1, ..., N} : γi ≠ 0}|
and recall that only tuples matter where γi ≠ 1 for all i ∈ {1, ..., N} as well as∑N

i=1 γi = 2M , then application of these estimates and relations above yield that for
all other multiindices, we get

Et(G
γ) f

N∏

j=1:γig2

(
CγiN (γi−2)(1−δ)N1−δ

)
f C2MN2M(1δ)N |γ|(δ−1),
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by using that the particles are statistically independent. Finally, we observe that for
any l g 1, the number of multiindices γ ∈ M with #γ = l is bounded by

∑

#γ=l

1 f
(
N

l

)
(2M)l f (2M)2MN l.

Thus

1

N2M

∑

γ∈M
E(Gγ)

f N2M(1−δ)

N2M

∑

γ∈M
CMN |γ|(δ−1)

f CMN−2M(δ
M∑

k=1

Nk(2M)MNk(δ−1)

f (CM)MN−δM ,

where C is some constant depending on M . Choosing M arbitrary large proofs the
Theorem.

Estimate of Term 3.13

It is left to show that the third Term 3.13, respectively

∣∣∣∣∣∣

� t

t1

1

N

∑

j ̸=i

fN
(
ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Xj)
)
1GN (Xi) (Xj)

−
�
R6

fN (ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Y ))1GN (Xi)(Y )k0(Y )d6Y ds

∣∣∣∣

stays small for typical initial data. Analogously to the function hN from Theorem
3.10, we define for arbitrary Y ∈ R

6 the function

ht1,N (y, ·) : R6 → R
3, Z 7→ Nα

� t

0
fN (ϕ1,N

s,0 (Y )− ϕ1,N
s,0 (Z))ds1GN (Y )(Z), (3.19)

with 0 < α f 5
12 or more precisely 0 < α = β + σ. As ht1,N (Y, ·) does not map to R

as assumed in Theorem 3.10 it can still be applied on each component separately. If
it holds for each component then it holds for the related vector valued map. The fact
that the Theorem only makes statements for certain points in time will be generalized
later.

We are left to check if the assumptions of Theorem 3.10 on the force term are
fulfilled. Therefore we abbreviate r̃ := max(r,N−β) for r g 0 and we obtain by
Corollary 3.8 and Lemma 3.3 for 0 f v f V , 0 f r f R and λ = 2 that

�
MN

(r,R),(v,V )
(Y )

(� t

0
|fN (ϕ1,N

s,0 (Z)− ϕ1,N
s,0 (Y ))|ds

)2

k0(Z)d6Z
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fC
(
min(

1

r̃λ
,

1

r̃λ−1v
)
)2

�
MN

(r,R),(v,V )
(Y )

k0(Z)d6Z

fCmin
( 1

r̃2λ
,

1

r̃2(λ−1)v2
)
min

(
1, R2, R2V 4 +R3max(V 3, R3)

)

fCmin
( 1

r̃2(λ−1)v2
,

R2

r̃2(λ−1)v2
,

R2V 4

r̃2(λ−1)max(r̃, v)2
+

R6

r̃2λ
)

fCmin
( 1

r̃2v2
,
R2

r̃2v2
,

R2V 4

r̃2max(r̃, v)2
+

R6

r̃4
)
. (3.20)

Let us define a suitable cover of R6, i.e. the collision classes, in order to apply
Theorem 3.10. The classes are chosen finer as the collision strength becomes larger.
If the particles keep distance of order 1 no splitting will be necessary. Let therefore
be k, l ∈ Z, N ∈ N \ {1}, δ > 0 and 0 f r, v f 1 and the family of sets given by

(i) MN
(0,r)(0,v)(Y ) (ii) MN

(0,r)(N lδv,NN(l+1)δv)
(Y ) (3.21)

(iii) MN
(0,r)(1,∞)(Y ) (iv) MN

(Nkδr,NN(k+1)δr)(0,v)
(Y )

(v) MN
(Nkδr,NN(k+1)δr)(N lδv,NN(l+1)δv)

(Y ) (vi) MN
(Nkδr,N(k+1)δr)(1,∞)

(Y )

(vii) MN
(N−δr,∞)(0,∞)(Y ),

for 0 f k f + ln( 1
r
)

δ ln(N),, 0 f l f + ln( 1
v
)

δ ln(N),. In this case we choose r = v = N−β and the
number of sets belonging to this list is some integer Iδ independent of N .

We will apply 3.20 for each collision class family and get the bounds

(i)
(N−β)6

(N−β)4
= N−2β (ii)

N−2βN4[(k+1)δ−β]

N−2βN2(kδ−β)
= N−2β+2kδ+4δ

(iii)
(N−β)2

(N−β)2
= 1 (iv)

N6(kδ−β)

N4(kδ−β)
= N−2β+2kδ+6δ

(v)
N2(kδ+δ−β)N4(lδ+δ−β)

N2(kδ−β)N2(lδ−β)
+

N6(kδ−β)

N4(kδ−β)
= N−2β+2lδ+6δ +N−2β+2kδ+6δ

(vi)
(NkδN−β)2

(Nkδ−β)2
= N2δ (vii)

1

(N−δ)4
= N4δ

for 0 f k, l f +βδ ,. All these terms are bounded by N6δ.
For a law of large numbers argument we need

∥h1,N∥∞ f C0N
1−δ and max

i∈I

�
MN

i

h1,N (X)2k(X)d6X f C0N
1−δ.

Due to the estimates for each collision class it follows for all i ∈ I
�
MN

(ri,Ri),(vi,Vi)
(Y )

ht1,N (Y, Z)2k0(Z)d6Z f CN2αN6δ f C(Nα)2
(
CN6δ

)
f CN2(3δ+α).

For δ > 0 small enough and due to the fact that α = β+σ it follows that 6δ+2α < 1
and the first assumption of Theorem 3.10 is fulfilled as β < 1

2 − 3δ.
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It holds due to Corollary 3.8 that for a point in time tmin, where the mean-field
particles are close

� t

0
|fN (ϕ1,N

s,0 (Y )− ϕ1,N
s,0 (Z))|1GN (Z)(Y )ds

fmin
( Ct

|ϕ1,N
tmin,0

(Y )− ϕ1,N
tmin,0

(Z)|2
,

CNβ

|ϕ2,N
tmin,0

(Y )− ϕ2,N
tmin,0

(Z)|
,

C

|ϕ1,N
tmin,0

(Y )− ϕ1,N
tmin,0

(Z)| · |ϕ2,N
tmin,0

(Y )− ϕ2,N
tmin,0

(Z)|

)
1GN (Z)(Y ). (3.22)

This is where we break down the time integral into several parts. If v is large, the
assumptions of Theorem 3.10 are fulfilled directly. If v is small we made use of the
fact that the collision time is not very large. Remember the definition of the ‘good’
set

GN (Z) :=
(
(MN

rb,vb
(Z) \MN

rs,vs(Z)) ∪MN
rs,vs(Z)

)C
.

For xmin := |ϕ1,N
tmin,0

(Y ) − ϕ1,N
tmin,0

(Z)| and vmin := |ϕ2,N
tmin,0

(Y ) − ϕ2,N
tmin,0

(Z)| the
following implication holds due to the definition of GN (Z)

xmin f N−rs ⇒ vmin g N−vb (3.23)

N−sr f xmin f N−br ⇒ vmin g N−bv (3.24)

N−br f xmin ⇒ vmin ∈ R
+ (3.25)

and thus the term is bounded in the first case (3.23) by

CNβ+bv .

for the second case (3.24), the term is bounded by

min(CNβ+bv , CN sr+bv).

And for the last case (3.25) we get a bound of

CtN2br .

As α = β + σ from Theorem 3.10 the term is bounded by

CtN2br + CNβ+bv .

The second upper bound controls the cases where xmin f 6N−br . This yields for
small enough σ > 0 and β + α+ bv < 1 that

||ht1,N (Y, ·)||∞ f NαC(N2br +Nβ+bv) f CN1−σ.
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We now apply our estimate on ht1,N (y) defined in (3.19) to control Term 3.13.

Therefore we introduce the set BN,σ
1,i ¢ R

6N , i ∈ {1, . . . , N}:

X ∈ BN,σ
1,i ¦ R

6N

ô∃t1, t2 ∈ [0, T ] :
∣∣∣ 1
N

∑

j ̸=i

� t2

t1

fN (ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Xj))1GN (Xi)(Xj)ds

−
�
R6

� t2

t1

fN (ϕN
s,0(Xi)− ϕN

s,0(Y ))1GN (Xi)(Y )dsk0(Y )d6Y
∣∣∣ > N−α = N−β−σ.

(3.26)

The law of large numbers makes only statements for certain points in time. We can
overcome this problem, because it further tells us that at one considered moment
large fluctuations are extremely unlikely. On very short time intervals fluctuations
cannot change significantly since the force is bounded due to the cut off by N2β . By
the definition of the set BN,σ

1,i and by the fact that any continuous map a : R → R
m

fulfills

∣∣
� t2

t1

a(s)ds
∣∣ =

∣∣
� t2

0
a(s)ds−

� t1

0
a(s)ds

∣∣

f
∣∣
� + t2

δN
,δN

0
a(s)ds

∣∣+
� t2

+ t2
δN

,δN
|a(s)|ds+

∣∣
� + t1

δN
,δN

0
a(s)ds

∣∣+
� t1

+ t1
δN

,δN
|a(s)|ds

f2 max
k∈{0,...,+ T

δN
,}

(∣∣
� kδN

0
a(s)ds

∣∣+
� (k+1)δN

kδN

|a(s)|ds
)
,

for m ∈ N, t1, t2 ∈ [0, T ] it follows for δN > 0 that

X ∈ BN,σ
1,i

⇒∃k ∈ {0, ..., + T

δN
,} :

(∣∣
� kδN

0

( 1

N

∑

j ̸=i

fN (ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Xj))1GN (Xi)(Xj)

−
�
R6

fN (ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Y ))1GN (Xi)(Y )k0(Y )d6Y
)
ds
∣∣ g N− 5

12

4

)
(

( � (k+1)δN

kδN

(∣∣ 1
N

∑

j ̸=i

fN (ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Xj))1GN (Xi)(Y )
∣∣

+
∣∣
�
R6

fN (ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Y ))1GN (Xi)(Y )k0(Y )d6Y
∣∣
)
ds g N− 5

12

4

)

If we choose δN := N−α

8||fN ||∞ f CN−α−βλ = N−α−2β = N−3β−σ the second constraint
of the assumption is true. For the current estimate we assumed that all particles
form a single cluster because it is sufficient for our estimates. We could choose δN of
much larger order.
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According to the previous reasoning for at least one k ∈ {0, . . . , + T
δN

,} the event

related to the first constraint must occur if X ∈ BN,σ
1,i , but the law of large numbers

tells us that for any of these events and any γ > 0 there exists a Cγ > 0 such that its
probability is smaller than CγN

−γ since ht1,N (Y, ·) fulfils the assumptions of Theorem
3.10.

As β = 5
12 − σ and α = β + σ the number of such events is bounded by

+ T

δN
,+ 1 f CNα+2β f CNσ+3β = CN

5
4
+σ

and thus it holds for all N ∈ N that

P(∃i ∈ {1, . . . , N} : X ∈ BNσ
1,i ) f NP(X ∈ BNσ

1,i ))

f N
(
CN

5
4 (Cγ+ 9

4
N−(γ+ 9

4
))
)

f CγN
−γ .

For typical initial data and large enough N ∈ N Term 3.13 stays smaller than
N− 5

12
+σ.

Estimate of Term 3.12

Let us estimate Term 3.12, i.e. the difference of the real force acting on the real
particles and the real force acting on the mean-field particles

∣∣∣∣∣∣

� t

t1

1

N

∑

j ̸=i

(
fN
(
[Ψ1,N

s,0 (X)]i − [Ψ1,N
s,0 (X)]j

)

−fN (ϕ1,N
s,0 (Xi)− ϕ1,N

s,0 (Xj))
)
1GN (Xi)(Xj)ds

∣∣∣ .

We abbreviate the following notation for the allowed difference between mean-field
particle and the real one, depending on the subset membership. We allow less
control if the particle is bad but have strict requirements if the particle is good.
∆N

g (t,X) describes the largest spatial deviation of the ‘good’ particles, ∆N
b (t,X) the

corresponding value for the ‘bad’ ones and ∆N
sb(t,X) the corresponding value for the

‘superbad’ ones. The worse the subset (in the sense of ‘bad’ or ‘superbad’), the more
deviation is allowed.

∆N
g (t,X) := max

j∈MN
g (X)

sup
0fsft

∣∣∣∣
[
Ψ1,N

s,0 (X)
]
j
− ϕ1,N

s,0 (Xj)

∣∣∣∣ = N− 5
12

+σ

∆N
b (t,X) := max

j∈MN
b
(X)

sup
0fsft

∣∣∣∣
[
Ψ1,N

s,0 (X)
]
j
− ϕ1,N

s,0 (Xj)

∣∣∣∣ = N− 7
24

−σ

∆N
sb(t,X) := max

j∈MN
sb
(X)

sup
0fsft

∣∣∣∣
[
Ψ1,N

s,0 (X)
]
j
− ϕ1,N

s,0 (Xj)

∣∣∣∣ = N− 1
6
−σ.

We further introduce a subset of the good particles

G̃N (·) := GN (·) ∩
(
MN

3N−
1
2+σ ,∞

(·)
)C
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which helps us to shorten the upcoming estimates. By definition of G̃N (·) (applied
for the first inequality) and the stopping time τN (X)

τNg := sup

{
t ∈ [0, T ] : max

i∈MN
g

sup
0fsft

∣∣∣
[
ΨN

s,0(X)
]
i
− ϕN

s,0(Xi)
∣∣∣ f δNg

}

τNb := sup

{
t ∈ [0, T ] : max

i∈MN
b

sup
0fsft

∣∣∣
[
ΨN

s,0(X)
]
i
− ϕN

s,0(Xi)
∣∣∣ f δNb

}

τNsb := sup

{
t ∈ [0, T ] : max

i∈MN
sb

sup
0fsft

∣∣∣
[
ΨN

s,0(X)
]
i
− ϕN

s,0(Xi)
∣∣∣ f δNsb

}

as well as τN (X) := min(τNg (X), τNb (X), τNsb (X)) with δNg = N−β = N− 5
12

+σ, δNb =

N−db = N− 7
24

−σ and δNsb = N−dsb = N− 1
6
−σ it holds for Xj ∈ G̃N (Xi) and times

s ∈ [0, τN (X)] that

max
(
2N−β ,

2

3
|ϕ1,N

s,0 (Xj)− ϕ1,N
s,0 (Xi)|

)
g max

(
2N−β , 2N− 1

2
+σ
)
g 2∆N

g (t,X).

In the next step we subdivide the sum according to whether the particle interacting
with i is itself ‘superbad’, ‘bad’ or ‘good’. Furthermore, the map gN was defined
such that |fN (q+ δ)− fN (q)| f gN (q)|δ| for q, δ ∈ R

3 where max
(
2N−β , 23 |q|

)
g |δ|,

see Definition 3.5. Thus the subsequent estimates are fulfilled for all times 0 f t1 f
t f τN (X).

∣∣
� t

t1

( 1

N

∑

j ̸=i

(
fN ([Ψ1,N

s,0 (X)]j − [Ψ1,N
s,0 (X)]i)

− fN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (Xi))
)
1GN (Xi)(Xj)

)
ds
∣∣ (3.27)

f
� t

0

( 1

N

∑

j ̸=i
j∈MN

sb(X)

(∣∣fN ([Ψ1,N
s,0 (X)]j − [Ψ1,N

s,0 (X)]i)

− fN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (Xi))
∣∣
)
1GN (Xi)(Xj)

)
ds (3.28)

+

� t

0

( 1

N

∑

j ̸=i
j∈MN

b (X)

(∣∣fN ([Ψ1,N
s,0 (X)]j − [Ψ1,N

s,0 (X)]i)

− fN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (Xi))
∣∣
)
1GN (Xi)(Xj)

)
ds (3.29)

+

� t

0

( 1

N

∑

j ̸=i
j∈MN

g (X)

(∣∣fN ([Ψ1,N
s,0 (X)]j − [Ψ1,N

s,0 (X)]i)
∣∣

+
∣∣fN (ϕ1,N

s,0 (Xj)− ϕ1,N
s,0 (Xi))

∣∣
)
1GN (Xi)∩MN

3N
−

1
2+σ

,∞

(Xi)
(Xj)

)
ds (3.30)

+

� t

0

2

N

∑

j ̸=i
j∈MN

g (X)

gN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (Xi))∆
N
g (s,X)1

G̃N (Xi)
(Xj)ds. (3.31)



3.1 Proof of Theorem 3.2 51

For the last term we applied the previous considerations and to estimate this one we
define a set

X ∈ BN,σ
2,i ¦ R

6N

ô∃t1, t2 ∈ [0, T ] :
∣∣∣ 1
N

∑

j ̸=i

� t2

t1

gN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (Xi))1G̃N (Xi)
(Xj)ds

−
�
R6

� t2

t1

gN (ϕ1,N
s,0 (Y )− ϕ1,N

s,0 (Xi))1G̃N (Xi)
(Y )dsk0(Y )d6Y

∣∣∣ > 1

(3.32)

For Y, Z ∈ R
6 it holds by definition of G̃N (·) and the definition of gN (see 3.5) that

� t

0
gN (ϕ1,N

s,0 (Y )− ϕ1,N
s,0 (Z))1

G̃N (Z)
(Y )ds

fCNβ

� t

0
|fN (ϕ1,N

s,0 (Y )− ϕ1,N
s,0 (Z))|1GN (Z)(Y )ds (3.33)

fCN
5
12

−σ

� t

0
|fN (ϕ1,N

s,0 (Y )− ϕ1,N
s,0 (Z))|1GN (Z)(Y )ds. (3.34)

Analogously to the previous section, Term 3.34 fulfils the assumptions of Theorem
3.10. Following the same reasoning for the map htN (Y, ·) one can show that for an
arbitrary γ > 0 there exists a Cγ > 0 such that for all N ∈ N

P
(
∃i ∈ {1, ..., N} : X ∈ BN,σ

2,i

)
f CγN

−γ . (3.35)

It remains to determine an upper bound for the terms (3.30), (3.28) and (3.29).
We start with the last two terms, which describe the interaction of a good particle
with a superbad particle respectively bad one. We show that the ‘superbad’ and
‘bad’ particles do typically not infect the ‘good’ ones which corresponds to deriving
a suitable bound for Term (3.28) and (3.29). Since the allowed maximal value for
for the largest deviation of a ‘bad’ or ‘superbad’ particle ∆N

b (t,X) and ∆N
s (t,X)

is distinctly larger than the corresponding value for the good particle ∆N
g (t,X),

problems could arise if the number of ‘bad’ or ‘superbad’ particles coming close to
a ‘good’ one exceeds a certain value. But we can show that the probability of such
events is sufficiently small for large N .

Analogously to the previous section we introduce ht2,N (Y, ·) according to Theorem
3.10 with

ht2,N (y, ·) : R6 → R
3, Z 7→ Nα

� t

0
fN (ϕ1,N

s,0 (Y )− ϕ1,N
s,0 (Z))ds1GN (Y )(Z). (3.36)

Let us also implement a family of ‘collision classes’
(
MN

(ri,Ri),(vi,Vi)
(Y )

)
i∈Iδ which

covers R6 and check if ht2,N (Y, ·) in combination with this cover fulfils the assumptions
of Theorem 3.10 to derive an upper bound for the terms (3.28) and (3.29). Similar
to the list stated in (3.21) we define

(
MN

(ri,Ri),(vi,Vi)
(Y )

)
i∈Iδ for the parameters

r := rb = 6N− 7
24

−σ and v := 6vb = 6N− 1
6 for Term (3.29) and for the parameters
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r := rs = 6N− 1
3
−σ and v := 6vs = 6N− 5

18 for Term (3.28) (instead of r = v := N−c

and δ := σ like in (3.21)). Thus we define for i ∈ {1, ..., N} the sets BN,σ
3b,i

,BN,σ
3s,i

¦ R
6N

as follows

X ∈ BN,σ
3b,i

¦ R
6N

ô∃l ∈ Iσ :
(
Rl ̸= ∞ '

∑

j∈MN
b
(X)

1MN
(rl,Rl),(vl,Vl)

(Xi)
(Xj) g Nσ 3

4
⌈
N

3
4R2

l min
(
max(Vl, Rl), 1

)4⌉) (

∑

j∈MN
b
(X)

1 = |MN
b (X)| g N2v4b r

2
b g N

3
4
(1+σ).

(3.37)

Respectively for Term (3.28)

X ∈ BN,σ
3sb,i

¦ R
6N

ô∃l ∈ Iσ :
(
Rl ̸= ∞ '

∑

j∈MN
sb
(X)

1MN
(rl,Rl),(vl,Vl)

(Xi)
(Xj) g Nσ( 2

9
)
⌈
N

2
9R2

l min
(
max(Vl, Rl), 1

)4⌉) (

∑

j∈MN
sb
(X)

1 = |MN
sb(X)| g N2v4sbr

2
sb g N

2
9
(1+σ).

(3.38)

The last line in each case gives an estimate of the absolute number of bad or superbad
particles and the line above an estimate of how many bad or superbad particles come
close to a good one given a certain inter-particle distance and velocity. We now derive

an upper bound for Term (3.28) and (3.29) under the condition that X ∈
(
BN,σ
3sb,i

)C

respectively X ∈
(
BN,σ
3b,i

)C
and prove later that P

(
X ∈ BN,σ

3sb,i

)
and P

(
X ∈ BN,σ

3b,i

)
get

small as N increases.
To this end, we abbreviate for 0 f r f R and 0 f v f V

M̃N
(r,R),(v,V )(Xi) := GN (Xi) ∩MN

(r,R),(v,V )(Xi)

to distinguish between the collision classes. As mentioned before, for Term (3.28) we
only consider values of r and R that satisfy the constraint

(
r = 0 'R = 6δNsb = 6N−δs

)
(
(
r g 6δNsb 'R = Nσr

)
, (3.39)

respectively for Term (3.29)

(
r = 0 'R = 6δNb = 6N−δb

)
(
(
r g 6δNb 'R = Nσr

)
. (3.40)

We will see in Section 3.1.1 that those are the worst case options for the estimates.
Recall that

sup
0fsft

|ΨN
s,0(X)− ΦN

s,0(X)|∞ f N−sδ = δNsb = N− 1
6
−σ

and
sup
0fsft

|ΨN
s,0(X)− ΦN

s,0(X)|∞ f N−bδ = δNb = N− 7
24

−σ
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depending on which of the two term we devote ourselves to and for times before the
stopping time is ‘triggered’. Thus, we obtain for 0 f t f τN (X) depending on the
choice of r that Term (3.28) can be estimated by

� t

0

1

N

∑

j ̸=i
j∈MN

sb(X)

(∣∣fN ([Ψ1,N
s,0 (X)]j − [Ψ1,N

s,0 (X)]i)

− fN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (Xi))
∣∣
)
1
M̃N

(r,R),(v,V )
(Xi)

(Xj)ds

f
� t

0

1

N

∑

j ̸=i
j∈MN

sb(X)

(∣∣fN ([Ψ1,N
s,0 (X)]j − [Ψ1,N

s,0 (X)]i)
∣∣

+
∣∣fN (ϕ1,N

s,0 (Xj)− ϕ1,N
s,0 (Xi))

∣∣
)
1
M̃N

(r,R),(v,V )
(Xi)

(Xj)ds1[0,6δN
sb
](r)

+
2

N
∆N

sb(t,X) sup
Y ∈M̃N

(r,R),(v,V )
(Xi)

� t

0
gN (ϕ1,N

s,0 (Y )− ϕ1,N
s,0 (Xi))ds

·
∑

j ̸=i
j∈MN

b (X)

1
M̃N

(r,R),(v,V )
(Xi)

(Xj)1[6δN
sb
,∞)(r).

Analogously Term (3.29) can be estimated by

� t

0

1

N

∑

j ̸=i
j∈MN

b (X)

(∣∣fN ([Ψ1,N
s,0 (X)]j − [Ψ1,N

s,0 (X)]i)

− fN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (Xi))
∣∣
)
1
M̃N

(r,R),(v,V )
(Xi)

(Xj)ds

f
� t

0

1

N

∑

j ̸=i
j∈MN

b (X)

(∣∣fN ([Ψ1,N
s,0 (X)]j − [Ψ1,N

s,0 (X)]i)
∣∣

+
∣∣fN (ϕ1,N

s,0 (Xj)− ϕ1,N
s,0 (Xi))

∣∣
)
1
M̃N

(r,R),(v,V )
(Xi)

(Xj)ds1[0,6δN
b
](r)

+
2

N
∆N

b (t,X) sup
Y ∈M̃N

(r,R),(v,V )
(Xi)

� t

0
gN (ϕ1,N

s,0 (Y )− ϕ1,N
s,0 (Xi))ds

·
∑

j ̸=i
j∈MN

b (X)

1
M̃N

(r,R),(v,V )
(Xi)

(Xj)1[6δN
b
,∞)(r)

where we utilzied that |fN (q + δ) − fN (q)| f gN (q)|δ| for q, δ ∈ R
3 provided that

max
(
2N−c, 23 |q|

)
g |δ|.

Application of Corollary 3.8 yields that the previous terms are bounded by

(3.28) fC

N

1

N−βv

∑

j ̸=i
j∈MN

sb(X)

1
M̃N

(r,R),(v,V )
(Xi)

(Xj)1[0,6δN
sb
](r)
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+
C

N

∆N
b (t,X)

r2max(r, v)

∑

j ̸=i
j∈MN

sb(X)

1
M̃N

(r,R),(v,V )
(Xi)

(Xj)1[6δN
sb
,∞)(r). (3.41)

and

(3.29) fC

N

1

N−βv

∑

j ̸=i
j∈MN

b (X)

1
M̃N

(r,R),(v,V )
(Xi)

(Xj)1[0,6δN
b
](r)

+
C

N

∆N
b (t,X)

r2max(r, v)

∑

j ̸=i
j∈MN

b (X)

1
M̃N

(r,R),(v,V )
(Xi)

(Xj)1[6δN
b
,∞)(r). (3.42)

Estimate of Term 3.29 (i good j bad)

Remark that the assumptions of the Corollary 3.8 are indeed fulfilled in the current
situation since according to the constraints on the possible parameters (see (3.40))
r ∈ [0, 6δNb ] implies R = δNb and r = 0. Considering the definition of the set of ‘good’
particles GN (Xi) it follows that

M̃N
(0,6δN

b
),(v,V )

(Xi) = MN
(0,6δN

b
),(v,V )

(Xi) ∩GN (Xi) ¦
(
MN

6δN
b
,N−

1
6
(Xi)

)C

which in turn provides

Xj ∈ M̃N
(0,6δN

b
),(v,V )

(Xi)

⇒|ϕ2,N
tmin,0

(Xj)− ϕ2,N
tmin,0

(Xi)| g N− 1
6 (3.43)

where tmin shall denote a point in time where |ϕ1,N
·,0 (Xj)−ϕ1,N

·,0 (Xi)| takes its minimum
on [0, T ].
Now we want to derive an upper bound for Term 3.42 under the condition that

∑

j∈MN
b
(X)

1MN
(r,R),(v,V )

(Xi)
(Xj) f N

3σ
4
⌈
N

3
4R2min

(
max(V,R), 1

)4⌉
.

We will deal with the addends related to 1[0,6δN
b
](r) and 1[6δN

b
,∞)(r) separately.

Regarding the first addend, we already discussed that r = 0 and R = 6δNb due to
condition (3.40). We obtain

C

N

1

N−β∆v

∑

j ̸=i
j∈MN

b (X)

1
M̃N

(r,R),(v,V )
(Xi)

(Xj)1[0,6δN
b
](r) (3.44)

f N
3σ
4

Nβ+1max(v, δb)
+

C|Mb|R2min(V, 1)4

N−β−1max(v, δb)
(3.45)

f N
3σ
4

Nβ+1max(v, δb)
+

CR2min(V, 1)4N
3
4
(1+σ)

N−β+1max(N−bδ , v)
(3.46)
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f CN−3σ− 5
12 + CN− 5

12
−3σ min(V, 1)4

max(N−bδ , v)
(3.47)

for R = δNb = N−bδ = N− 7
24

−σ since we only have to consider values with v >

N−bv = N− 1
6 , see (3.43).

For the allowed deviation ∆N
b (t,X) f N−bδ = δNb = N− 7

24
−σ and R = Nσr for

r g 6δNb (see (3.40)) it follows for the second term of (3.42) that

C

N

∆N
b (t,X)

r2max(r, v)

∑

j ̸=i
j∈MN

b (X)

1
M̃N

(r,R),(v,V )
(Xi)

(Xj)

fC

N

(N−2br−4bv+2+σR2min
(
max(V,R), 1

)4

r2max(r, v)
+

N
3σ
4

r2max(r, v)

)
N−bδ

fC
(min

(
max(V,R), 1

)4

max(r, v)
N− 13

24 +N− 41
48

+3σ
)
f CN− 13

24 f CN− 5
12 . (3.48)

In total we got an upper bound for Term (3.29). All sets belonging to the family(
MN

(ri,Ri),(vi,Vi)
(Y )

)
i∈Iσ are contained in a ‘collision class’ which takes one of the

subsequent forms for suitable parameter r, v ∈ [0, 1]

(i) MN
(0,6δN

b
),(0,6δN

b
)
(Y )

(ii) MN
(0,6δN

b
),(v,Nσv)

(Y )

(iii) MN
(0,6δN

b
),(1,∞)

(Y )

(iv) MN
(r,Nσr),(0,6δN

b
)
(Y )

(v) MN
(r,Nσr),(v,Nσv)(Y )

(vi) MN
(r,Nσr),(1,∞)(Y ),

except for MN
(N−σ ,∞),(0,∞)(Y ), which will be considered separately. Recall that

the number of ‘collision classes’ belonging to the cover |Iσ| is independent of N ,
analogously to Section 3.1.1. By comparing the possible values of r, R, v, and V

with the estimates (3.47) and (3.48), it is evident that if X ∈
(
BN,σ
3,i

)C
and σ > 0 is

chosen sufficiently small for the relevant terms, a set of type (ii), (iv), or (v) with
v = N−σ or r = N−σ results in the ’worst-case scenario.’ Consequently, the overall
expression for Term (3.29) can be bounded as follows:

CN− 5
12 . (3.49)

The class where the previous general considerations can not be applied,MN
(N−σ ,∞),(0,∞)(Y ),

the following holds:
� t

0

1

N

∑

j ̸=i
j∈MN

b (X)

(∣∣fN ([Ψ1,N
s,0 (X)]j − [Ψ1,N

s,0 (X)]i)

− fN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (Xi))
∣∣
)
1MN

(N−σ,∞),(0,∞)
(Xi)

(Xj)ds

f 2

N
sup

Y ∈MN

(N−σ,∞),(0,∞)
(Xi)

� t

0
gN (ϕ1,N

s,0 (Y )− ϕ1,N
s,0 (Xi))ds

∑

j ̸=i
j∈MN

b (X)

∆N
b (t,X)︸ ︷︷ ︸
fN−bδ
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f 2

N

(
T

C

(N−σ)3
)
N−bδ |MN

b (X)|︸ ︷︷ ︸
fN2−2br−4bv(1+σ)

f CN1−2br−4bv−bδ+cσ

f CN− 13
24

+ 3
4
σ

for X ∈
(
BN,σ
3,i

)C
and t f τN (X).

Estimate of Term 3.28 (i good j superbad)

The estimates on Term 3.29 are quite similar to the previous one, except that now
j ∈ MN

sb(X).
We get for times 0 f t f τN (X) the following r-depending estimate

� t

0

1

N

∑

j ̸=i
j∈MN

sb(X)

(∣∣fN ([Ψ1,N
s,0 (X)]j − [Ψ1,N

s,0 (X)]i)

− fN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (Xi))
∣∣
)
1
M̃N

(r,R),(v,V )
(Xi)

(Xj)ds (3.50)

f C

N

1

N−β∆v

∑

j ̸=i
j∈MN

s (X)

1
M̃N

(r,R),(v,V )
(Xi)

(Xj)1[0,6δNs ](r) (3.51)

+
C∆N

sb(t,X)

N max(r, v)r2

∑

j ̸=i
j∈MN

sb(X)

1
M̃N

(r,R),(v,V )
(Xi)

(Xj)1[6δNs ,∞](r). (3.52)

For the first summand, rs := N− 1
3
−σ, vs := N− 5

18 and δs = N− 1
6 and in view of the

definition of GN (Xi) it follows that

M̃N
(0,6δNs ),(v,V )(Xi) = MN

(0,6δNs ),(v,V )(Xi) ∩GN (Xi) ¦
(
MN

6δNs ,N−
1
6
(Xi)

)C
,

were N− 1
6 is the velocity cut off of the bad particles not the superbad ones. This

provides us the necessary implication

Xj ∈ M̃N
(0,6δN

b
),(v,V )

(Xi)

⇒|ϕ2,N
tmin,0

(Xj)− ϕ2,N
tmin,0

(Xi)| g N− 1
6 (3.53)

where tmin shall denote a point in time where |ϕ1,N
·,0 (Xj)−ϕ1,N

·,0 (Xi)| takes its minimum
on [0, T ].
We derive an upper bound for Term 3.29 under the condition that

∑

j∈MsN (X)

1MN
(r,R),(v,V )

(Xi)
(Xj) f N

2σ
9
⌈
N

2
9R2min

(
max(V,R), 1

)4⌉
.

For the first summand we have for R = δs

C

N

1

N−β∆v

∑

j ̸=i
j∈MN

sb(X)

1
M̃N

(r,R),(v,V )
(Xi)

(Xj)1[0,6δN
sb
](r)
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f C

N

R2min(V, 1)4|Msb|
N−β+1max(v,N− 1

6 )
+

CN
2
9
σ

N−β max(v,N− 1
6 )

f CR2min(V, 1)4|Msb|
max(N− 1

6 , v)N−β+1
+

CN
2
9
σ

N−β+1max(N− 1
6 , v)

f CN1+β−2sr−4sv−2sδ
min(V, 1)4

max(N− 1
6 , v)

+N
2
9
σ+ 5

12
−σ+ 1

6
−1 (3.54)

f CN− 19
12 + CN− 5

12 (3.55)

Taking additionally into account that ∆N
sb(t,X) f N sδ = δNsb as well as R = Nσr for

r g 6δNsb (see (3.39)) it follows for the second term of (3.28) that

C

N

∆N
sb(t,X)

r2max(r, v)

∑

j ̸=i
j∈MN

b (X)

1
M̃N

(r,R),(v,V )
(Xi)

(Xj)

fC

N

(N−2sr−4sv+2+σR2min
(
max(V,R), 1

)4

r2max(r, v)
+

N
2σ
3

r2max(r, v)

)
N−sδ

fC
(min

(
max(V,R), 1

)4

max(r, v)
N1−2sr−4sv−sδ +N cσ−1−sδ+bv

)

fCN− 17
18 + CN−1. (3.56)

The sum of Terms (3.55) and (3.56) forms an upper bound for Term (3.28) under the
current assumption. All sets which belong to the family

(
MN

(ri,Ri),(vi,Vi)
(Y )
)
i∈Iσ are

contained in a ‘collision class’ which takes one of the subsequent forms for suitable
parameter r, v ∈ [0, 1]

(i) MN
(0,6δNs ),(0,6δNs )

(Y )

(ii) MN
(0,6δNs ),(v,Nσv)

(Y )

(iii) MN
(0,6δNs ),(1,∞)

(Y )

(iv) MN
(r,Nσr),(0,6δNs )

(Y )

(v) MN
(r,Nσr),(v,Nσv)(Y )

(vi) MN
(r,Nσr),(1,∞)(Y ),

except for MN
(N−σ ,∞),(0,∞)(Y ), which will be discussed separately like in the previous

section. A set of kind (ii), (iv) or (v) with v = N−σ or r = N−σ yields the ‘worst
case option’ and thus in total Term (3.28) is bounded by

CN− 5
12 if X ∈

(
BN,σ
3,i

)C
. (3.57)

For the last class MN
(N−σ ,∞),(0,∞)(Y ) the following holds

� t

0

1

N

∑

j ̸=i
j∈MN

sb(X)

(∣∣fN ([Ψ1,N
s,0 (X)]j − [Ψ1,N

s,0 (X)]i)

− fN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (Xi))
∣∣
)
1MN

(N−σ,∞),(0,∞)
(Xi)

(Xj)ds
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f 2

N
sup

Y ∈MN

(N−σ,∞),(0,∞)
(Xi)

� t

0
gN (ϕ1,N

s,0 (Y )− ϕ1,N
s,0 (Xi))ds

∑

j ̸=i
j∈MN

sb(X)

∆N
s (t,X)︸ ︷︷ ︸
fN−sδ

f 2

N

(
T

C

(N−σ)3
)
N−sδ |MN

sb(X)|︸ ︷︷ ︸
fN

2
9 (1+σ)

fCN−1+ 2
9
−sδ+cσ

fCN− 19
18

+Cσ, (3.58)

for X ∈
(
BN,σ
3sb,i

)C
and t f τN (X). This is distinctly smaller than necessary for small

enough σ > 0 and concludes the estimates for Term (3.28).

Unlikely sets BN,σ
3b,i and BN,σ

3s,i

It only remains to show that the probability related to the sets BN,σ
3b,i and BN,σ

3s,i is
indeed small enough, i.e. that for any γ > 0 there exists a Cγ such that

P

( ∑

j∈MN
b
(X)

1MN
R,V (Xi)

(Xj) g N
3σ
4
⌈
N

3
4R2min

(
max(R, V ), 1

)4⌉

( |MN
b (X)| > N

3
4
(1+σ)

)
f CγN

−γ

and analogously that for any η > 0 there exists a Cη such that

P

( ∑

j∈MN
b
(X)

1MN
R,V (Xi)

(Xj) g N
2σ
9
⌈
N

2
2R2min

(
max(R, V ), 1

)4⌉

( |MN
b (X)| > N

2
9
(1+σ)

)
f CηN

−η

The proof follows the same pattern as in [22] and is similar in both cases (’bad’ and
’superbad’), so we confine ourselves to the proof in the bad particles case. For clarity,
we define

M :=
⌈
N

3
4
σ+N 3

4R2min
(
max(V,R), 1

)4,
⌉
.

Recall that j ∈ MN
b (X) implies that there is at least on Xk ∈

(
GN (Xj)

)C
for some

k ∈ {1, ..., N} \ {j}. We will see that for R, V > 0

∑

j∈MN
b
(X)

1MN
R,V (Xi)

(Xj) g M (3.59)

either implies that there exists a j ∈ {1, ..., N} such that

N∑

k=1

1(GN (Xj))C (Xk) g +N
σ
4

2
,
)

(3.60)
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or there exists a set S ¦ {1, ..., N}2 \⋃N
n=1{(n, n)} with the following properties

(i) |S| = +N
−σ

4 M

2
,

(ii) ∀(j, k) ∈ S : Xj ∈ (GN (Xk))
C ∩MN

R,V (Xi)

(iii) (j1, k1), (j2, k2) ∈ S ⇒ {j1, k1} ∩ {j2, k2} = ∅. (3.61)

In the proof of this implication we will name the event Xm ∈ MN
R,V (Xn) by the phrase

’collision between particles m,n’ and the phrase ’hard collision between particles m,n’
will be applied synonymously to the event Xm ∈ (G(Xn))

C . Note that if assumption

(3.60) is not fulfilled, it implies that a given ’bad’ particle can have at least +N
σ
4

2 ,
’hard collisions’ with different particles. Such a ’bad’ particle can, ’infect’ not more

than +N
σ
4

2 , other particles, causing them to be included in the set MN
b (X).

For the following considerations we stick to this case and we will see that under
this constraint the relation (3.59), i.e.

∑

j∈MN
b
(X)

1MN
R,V (Xi)

(Xj) g M

implies that the event related to (3.61) is fulfilled.
In this case there is a set C0 ¦ MN

b (X) of ‘bad’ particles which have ’collisions’
with the particle i. By assumption (3.59) we have |C0| g M and as the event related

to (3.60) does not occur, there are at most +N
σ
4

2 , particles having a ’hard collision’
with particle i. We construct a new set C1 ¦ C0 by ‘detaching’ all of these at most

+N
σ
4

2 , particles, which are possibly contained in C0, and it obviously holds that

|C1| g M − +N
σ
4

2
, g 1,

for N large enough. Similarly we take one of these remaining ‘bad’ particles j1 out
of C1 and since j1 ∈ C1 ¦ C0 ¦ MN

b (X), there must be at least one further particle
having a ’hard collision’ with j1. By construction of C1 this can not be i, so lets
call it k1. This gets us our first tuple (j1, k1) which fulfils condition (ii) of the set S
appearing in (3.61). In a next step we ‘detach’ j1 and k1 and all of their at most

2+N
σ
4

2 , − 2 remaining ’hard collision partners’ from C1 to obtain a new set C2 ¦ C1.
This gives us an iteration process (provided that C2 ̸= ∅) by choosing the next particle
j2 out of C2 and afterwards an arbitrary one of its ’hard collision partners’ k2. Then
the next round can start after having removed j2 and k2 as well as their remaining
’hard collision partners’ from C2 to obtain C3 ¦ C2. By construction after each round

of this process at most 2+N
σ
4

2 , ‘particle labels’ are removed from the set Ck to obtain

Ck+1. Considering that M g N
3σ
4 , we can reiterate this procedure at least

+M − +N
σ
4

2 ,
N

σ
4

, g +N
−σ

4 M

2
,

times. The removal of the ’hard collision partners’ of the occurring tuples after
each round ensures that condition (iii) is fulfilled and thus this provides us a set S
consisting of tuples (ji, ki) like claimed in (3.61).
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Due to this considerations we can determine an upper bound for the probability
P(X ∈ BN,σ

3b,i ). Starting with assumption (3.61) we abbreviate

M1 := +N
−σ

4 M

2
, with M =

⌈
N

3
4
σ+N 3

4R2min
(
max(V,R), 1

)4,
⌉
.

There are less than
(
N2

K

)
different possibilities to choose K ‘disjoint’ (condition (iii)

of (3.61) is fulfilled) pairs (j, k) belonging to {1, ..., N}2 \⋃N
n=1{(n, n)}. Application

of this, Lemma 3.3 and supY ∈R6 P
(
X1 ∈ (GN (Y ))C

)
f CN− 11

6
−2σ yields that the

probability of the existence of a set S satisfying the three conditions in 3.61 is small
for large N , i.e.

P

(
∃S ¦ {1, ..., N}2 \

N⋃

n=1

{(n, n)} : |S| = M1 '
(
∀(j, k) ∈ S : Xj ∈ (GN (Xk))

C ∩MN
R,V (Xi)

)
'

(
(j1, k1), (j2, k2) ∈ S ⇒ {j1, k1} ∩ {j2, k2} = ∅

))

f
(
N2

M1

)
P

(
∀(j, k) ∈ {(2, 3), (4, 5), ..., (2M1, 2M1 + 1)} :

Xj ∈ (GN (Xk))
C ∩MN

R,V (X1)
)

fN2M1

M1!

(
sup
Y ∈R6

P
(
X ∈ (GN (Y ))C

)
sup
Z∈R6

P
(
X ∈ MN

R,V (Z)
))M1

fCM1
N2M1

MM1
1

(
N− 11

6
−2σ
)M1

(
R2min

(
max(V,R), 1

)4)M1

f(CN− 5σ
4 )

N
σ
4
2 , (3.62)

since M1 g N
σ
4

2 for

M1 = +N
−σ

4

2
M, with M =

⌈
N

3
4
σ+N 3

4R2min
(
max(V,R), 1

)4,
⌉
.

For any class which appears in
(
MN

(ri,Ri),(vi,Vi)
(Y )
)
i∈Iδ where Rl ̸= ∞ this probability

decays distinctly faster than necessary.
To prove that

∑
k∈MN

b
(X) 1 f N

3
4
(1+σ) we can also apply the considerations from

above by setting the collision class parameters R, V to infinity and thus we obtain the

event 1MN
∞,∞(Xi)(Xj) = 1. In the case M1 := +N

3
4+σ

4

2 , and P
(
X1 ∈ MN

R,V (Y )
)
= 1.

Applying the above procedure, we get

P
( ∑

k∈MN
b
(X)

1 f N
3
4
(1+σ)

)
f CN−σN

3
4

which is small enough. Now, let’s proceed with the considerations regarding assump-

tion (3.60). Therefore we abbreviate M2 := +N
σ
4

2 , and estimate

P

(
X ∈ R

6N :
(
∃j ∈ {1, ..., N} :

∑

k ̸=j

1(GN (Xj))C (Xk) g M2

))
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fNP

(
X ∈ R

6N :

N∑

k=2

1(GN (X1))C (Xk) g M2

)

fN

(
N

M2

)
sup
Y ∈R6

P
(
Z ∈ R

6 : Z ∈ (GN (Y ))C
)M2

fN
NM2

M2!

(
CN− 11

6
−2σ
)M2

fCN− 1
4
+N

σ
4
2

,, (3.63)

which decreases fast enough as N increases. In total we obtain as desired

P
(
X ∈ BN,σ

3b,i

)

f|Iσ| sup
R,V >0

P

( ∑

j∈MN
b
(X)

1MN
R,V (Xi)

(Xj) g N
3σ
4
⌈
N

3
4R2min

(
max(R, V ), 1

)4⌉)

+ P
( ∑

k∈MN
b
(X)

1 g N
3
4
(1+σ)

)

f(CN− 5σ
4 )

N
σ
4
2 (3.64)

Similarly we can show that the probability related to the set BN,σ
3s,i in the superbad

particle case is indeed small enough. A similar estimate holds for the superbad
particles

P
(
X ∈ BN,σ

3s,i

)

f|Iσ| sup
R,V >0

P

( ∑

j∈MN
b
(X)

1MN
R,V (Xi)

(Xj) g N
2σ
9
⌈
N

2
9R2min

(
max(R, V ), 1

)4⌉)

+ P
( ∑

k∈MN
b
(X)

1 g N
2
9
(1+σ)

)

f(CN− 16σ
9 )

N
σ
9
2 (3.65)

Estimate of Term 3.30 (i good j good)

Now we are left with the last Term 3.30 which measures the fluctuation between two
good particles. To estimate the term we identify

vNmin = N bv = N− 1
6 ,

since i, j ∈ MN
g (X). To estimate the term we apply Corollary 3.8 and subdivide the

term depending on the relative velocity of the particles so that the first term deals
with collisions where the relative velocity is below order N− 1

9
+3σ and the second deals

with the rest. The choice of the value is more or less random as long as the equations
stay small. Corollary 3.8 (ii) is applicable since the relative velocity values for the
considered ‘collision classes’ are of distinctly larger order than the deviation between
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corresponding particle trajectories of the microscopic and the auxiliary system. Note
that GN (Xi) ¦ M(N

6δN
b
,vNmin

(Xi))
c where δNb = N− 7

24
−σ and

max
i∈MN

g (X)
sup

0fsfτN (X)

|[ΨN
s,0(X)]i − ϕN

s,0(Xi)| f N− 5
12

+σ = N− 1
4
+σvNmin.

Thus Term 3.30 is bounded by

� t

0

( 1

N

∑

j ̸=i
j∈MN

g (X)

(∣∣fN ([Ψ1,N
s,0 (X)]j − [Ψ1,N

s,0 (X)]i)
∣∣

+
∣∣fN (ϕ1,N

s,0 (Xj)− ϕ1,N
s,0 (Xi))

∣∣
)
1GN (Xi)∩MN

3N
−

1
2+σ

,∞

(Xi)
(Xj)

)
ds

fC

N

1

N−βvNmin

∑

j ̸=i

1GN (Xi)∩MN

3N
−

1
2+σ

,N
−

1
9+3σ

(Xi)
(Xj)

+
C

N

1

N−βN− 1
9
+3σ

∑

j ̸=i

1GN (Xi)∩MN

3N
−

1
2+σ

,∞

(Xi)
(Xj). (3.66)

This stays sufficiently small since the concerned sets are very unlikely. To prove this
we define

X ∈ BN,σ
4,i ¦ R

6N

ô
∑

j ̸=i

1MN

6N
−

1
2+σ

,N
−

1
9+3σ

(Xi)
(Xj) g N

σ
2 '

∑

j ̸=i

1MN

6N
−

1
2+σ

,∞

(Xi)
(Xj) g N3σ

. (3.67)

Set M1 := +N σ
2 , and M2 := +N3σ,. By the same proof as applied in (3.63) and

application of Lemma 3.3 we can estimate the probability

P
(
X ∈ BN,σ

4,i

)

fNM1

M1!
sup
Y ∈R6

P
(
Xi ∈ MN

6N−
1
2+σ ,N−

1
9+3σ

(Y )
)M1

+
NM2

M2!
sup
Y ∈R6

P
(
Xi ∈ MN

6N−
1
2+σ ,∞

(Y )
)M2

f(CN)M1

M1!

(
N2(− 1

2
+σ)
)M1

(
N4(− 1

9
+3σ)

)M1 + CM2
NM2

(N3σ)M2

(
N2(− 1

2
+σ)
)M2

fC
(
N− 4

9
+14σ

)N σ
2
+
(
CN−σ

)N3σ

, (3.68)

which for σ > 0 small enough decreases fast enough.
Due to our estimates it holds for X ∈ (BN,σ

4,i )C that Term (3.66), and thereby
Term (3.30), is bounded by

C

N

1

N−βvNb
N

σ
2 +

C

N

1

N−βN− 1
9
+3σ

N3σ
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fCN− 5
12

−σ
2 + CN− 17

36 f CN− 5
12 (3.69)

Due to the previous probability estimates on the unlikely sets it easily follows that
for small enough σ > 0 and an arbitrary γ > 0 there is a constant C > 0 such that

P
( ⋃

j∈{1,2,3,4}

N⋃

i=1

BN,σ
j,i

)
f CN−γ .

Conclusion for case 1 (labelled particle Xi is good)

For i ∈ MN
g (X) we determined an upper bound for the term

∣∣
� t

t1

1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)− fN ∗ k̃Ns (ϕ1,N
s,0 (Xi))ds

∣∣

which is given by the sum of bounds of the four Terms (3.11), (3.12), (3.13) and

(3.14). We restrict ourselves to the configurations X ∈
(⋃

j∈{1,2,3,4}
⋃N

i=1 B
N,σ
j,i

)C

and all upper bounds hold for any times t1, t ∈ [0, τN (X)]. For a suitable constant

C > 0, CN− 5
12 dominates all of these upper bounds except for Term (3.31). But for

our underlying configurations it holds for any i ∈ {1, ..., N} and times t1, t ∈ [0, T ]
that

∣∣
� t

t1

( 1

N

N∑

j=1

gN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (Xi))1GN (Xi)(Xj)

−
�
R6

gN (ϕ1,N
s,0 (Y )− ϕ1,N

s,0 (Xi))1GN (Xi)(Y )k0(Y )d6Y
)
ds
∣∣∣ f 1.

By the definition of BN,σ
2,i and thus for N > 1 and t1 f t we receive

� t

t1

1

N

N∑

j=1

gN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (Xi))1GN (Xi)(Xj)ds

f1 +

� t

t1

�
R6

gN (ϕ1,N
s,0 (Y )− ϕ1,N

s,0 (Xi))1GN (Xi)(Y )k0(Y )d6Y ds

f1 + C ln(N)(t− t1). (3.70)

We used the fact that for N > 1

sup
t1fsft

�
R6

gN (ϕ1,N
s,0 (Y )− ϕ1,N

s,0 (Xi))1GN (Xi)(Y )k0(Y )d6Y

fC sup
t1fsft

�
R3

min
(
N3β ,

1

|Y − ϕ1,N
s,0 (Xi)|3

)
k̃Ns (Y )d3Y

fC ln(N)

holds. This leads us in particular for times t1 f t to

∆N
g (t,X) f ∆N

g (t1, X) +

� t

t1

δNg (s,X)ds,
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with the common abbreviations

δNg (t,X) := max
i∈MN

g (X)
|[Ψ2,N

t,0 (X)]i − ϕ2,N
t,0 (Xi)|,

∆N
g (t,X) := max

i∈MN
g (X)

sup
0fsft

|[Ψ1,N
s,0 (X)]i − ϕ1,N

s,0 (Xi)|. (3.71)

By choosing the subsequent sequence of time steps t∗ := tn+1 − tn = C√
ln(N)

for some

constant C > 0 with

tn = n
C√
ln(N)

for n ∈ {0, ..., +
√
ln(N)

C
τN (X), − 1},

t
+
√

ln(N)

C
τN (X),

= τN (X)

the previous relation implies that for tn f t f τN (X)

∆N
g (t,X) f

n∑

k=1

sup
0fsftk

δNg (s,X)t∗ +
� t

tn

δNg (s,X)ds. (3.72)

It follows that for any ‘good’ particle i ∈ MN
g (X), the considered configurations

and for all times t ∈ [tn, tn+1], where n ∈ {0, ..., +
√

ln(N)

C τN (X), − 1} the following
inequality holds

δNg (t,X)

fδNg (tn, X) + max
i∈MN

g (X)

∣∣
� t

tn

( 1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)

− fN ∗ k̃Ns (ϕ1,N
s,0 (Xi))

)
ds
∣∣

f max
i∈{1,...,N}

� t

tn

2

N

N∑

j=1

gN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (Xi))1GN (Xi)(Xj)∆
N
g (s,X)

︸ ︷︷ ︸
f∆N

g (t,X)

ds

+ δNg (tn, X) + CN− 5
12

f
(
1 + C ln(N) (t− tn)︸ ︷︷ ︸

ftn+1−tn=t∗

)( n∑

k=1

sup
0fsftk

δNg (s,X)t∗ +
� t

tn

δNg (r,X)dr
)

+ δNg (tn, X) + CN− 5
12

f
(
1 + C ln(N)t∗

) � t

tn

δNg (r,X)dr

+
(
2 + C ln(N)(t∗)2

) n∑

k=1

sup
0fsftk

δNg (s,X) + CN− 5
12 . (3.73)

Application of Gronwall‘s Lemma implies that for all times t ∈ [tn, tn+1] it holds that

δNg (t,X)
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f
((

2 + C ln(N)(t∗)2
) n∑

k=1

sup
0fsftk

δNg (s,X) + CN− 5
12

)
et

∗+C ln(N)(t∗)2 . (3.74)

Especially for t ∈ [0, tn], we can exchange the left-hand side by its supremum over
[0, tn+1]. For t

∗ = C1√
ln(N)

with C1 := min
(

1√
C
, 1
)
the previous relation implies

sup
0fsftn+1

δNg (s,X) f 3e2
n∑

k=1

sup
0fsftk

δNg (s,X) + Ce2N− 5
12 . (3.75)

Due to this relation it follows for n ∈ {1, ..., +
√

ln(N)

C1
τN (X),} that

sup
0fsftn

δNg (s,X) f Ce2N− 5
12 (3e2 + 1)n−1. (3.76)

For n = 1 the relation is obvious due to (3.75) and if it holds for k ∈ {1, ..., n}, n ∈ N,
where we fix the constant C for these estimates, then we obtain that

sup
0fsftn+1

δNg (s,X)

f3e2
n∑

k=1

sup
0fsftk

δNg (s,X)

︸ ︷︷ ︸
fCe2N−

5
12 (3e2+1)k−1

+Ce2N− 5
12

f3e2
(
Ce2N− 5

12
(3e2 + 1)n − 1

(3e2 + 1)− 1

)
+ Ce2N− 5

12

=Ce2N− 5
12 (3e2 + 1)n.

This confirms the claim and it follows that

sup
0fsfτN (X)

δNg (s,X) fCe2N− 5
12 (3e2 + 1)

+
√

ln(N)

C1
τN (X),−1

fCe2N− 5
12N

ln(3e2+1)
ln(N)

√
ln(N)

C1
T

fCN− 5
12

+σ
2 , (3.77)

for N large enough. The received upper bound for the velocity deviation implies that

max
i∈MN

g (X)
sup

0fsfτN (X)

|[ΨN
s,0(X)]i − ϕN

s,0(Xi)| f CN− 5
12

+σ
2 , (3.78)

which is smaller than necessary since CN− 5
12

+σ
2 < N− 5

12
+σ for σ > 0 and N large

enough.

3.1.2 Controlling the deviation of the bad and superbad particles

Most estimates for the second part can be applied analogously, except that we allow
more distance of the observed ‘bad’ or ‘superbad’ particle to its mean-field partner,
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since δs = N− 1
6
−σ > N− 5

12
+σ and δb = N− 7

24
−σ > N− 5

12
+σ. For the ‘good’ particle

this distance is of the same order as the cut-off radius. The vast majority of particles
is typically ‘good’, so we have control over the ‘collision partners’ in most cases. By
the definition of the distance, the considered ‘bad’ or ‘superbad’ particle is inside a
ball of radius N− 1

6
−σ or respectively N− 7

24
−σ around its related mean-field particle.

To circumvent this problem, we define a cloud of auxiliary ‘mean-field particles’
around the ‘bad’ or ‘superbad’ particle, like proposed in [22]. ‘Hard’ or ‘Superhard’
collisions might cause that the observed particle departs too far from its initially
corresponding mean-field particle, that propagates homogeneously in time. Phillip
was able to show that for any point in time, we can find an auxiliary particle around
the ‘bad’ or ‘superbad’ particle with a disance small than the cut-off. By exchanging
the these particles, we can copy the estimates from Section 3.1.1.

To ensure that we can apply Theorem 3.10, we have to introduce a ‘cloud’ of
auxiliary particles instead of a single one when needed, because the introduced
auxiliary particle would depend on the whole configuration and thus be correlated
with the remaining particles and we would loose the big advantage of the ‘mean-field
particle’. If we propagate the whole ‘cloud’ from the beginning at the time of a
‘hard collision’ for a certain particle the initial positions of the related auxiliary
particles are chosen independently of the remaining configuration. We will show that
all of the auxiliary particles which belong to the small ‘cloud’ fulfill corresponding
demands with high probability like in the previous situation, where we could show
for typical initial data that the related mean-field particles fulfill properties which
made it possible to prove that the effective and the microscopic dynamics are usually
close. In the upcoming part we will end up in a very similar situation as in Section
3.1.1 and we will benefit from the proof techniques of the previous chapter.

3.1.3 Controlling the deviation of the superbad particles

To create the particle cloud we first define

QN :={−+N 1
4 ,, ...,−1, 0, 1, ..., +N 1

4 ,}6 (3.79)

and for (k1, ..., k6) ∈ QN the positions or the initial data of the auxiliary particles

Xi
k1,...,k6

:= Xi +
∑6

j=1 kjN
− 5

12
+σ

2 ej , where ej , j ∈ {1, ..., 6} is the j-th basis vector

of R6. According to Lemma 3.7, which ensures that the distance between mean-field
particles stays of the same order, and δs = N− 1

6
−σ for t f τ , it holds for arbitrary

t1 ∈ [0, τN (X)] and large enough N that

|ϕN
0,t1([Ψ

N
t1,0(X)]i)−Xi| f C|[ΨN

t1,0(X)]i − ϕN
t1,0(Xi)| < CN− 1

6
−σ f N− 1

6 . (3.80)

It is always possible to find a tuple (k1, ..., k6) ∈ QN for N large enough such that

|ϕN
0,t1([Ψ

N
t1,0(X)]i)−Xi

k1,...,k6 | f
√
6

2
N− 5

12
+σ

2 (3.81)

since (3.80) is of smaller order with respect to N than the diameter of the auxiliary
‘particle cloud’ around Xi. Lemma 3.7 implies in turn that

|[ΨN
t1,0(X)]i − ϕN

t1,0(X
i
k1,...,k6)| f CN− 5

12
+σ

2 . (3.82)
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If we choose N ∈ N large enough such that CN− 5
12

+σ
2 < 1

2N
− 5

12
+σ and σ > 0

sufficiently small, then there exists a further point in time t2 ∈ (t1, T ] such that not
only

sup
s∈[t1,t2]

|[Ψ1,N
s,0 (X)]i − ϕ1,N

s,0 (Xi
k1,...,k6)| f N− 5

12
+σ

holds, but also the following bound for the velocity deviation

sup
s∈[t1,t2]

|[Ψ2,N
s,0 (X)]i − 2ϕN

s,0(X
i
k1,...,k6)| f N− 1

6
−σ.

Now we have a sufficiently good approximation for the trajectory of real particle,
given by the trajectory of the auxiliary particle with initial datum Xi

k1,...,k6
for this

time span. We apply this to prove that

sup
t1fsft

|[ΨN
s,0(X)]i − ϕN

s,0(Xi)|

f sup
t1fsft

|[ΨN
s,0(X)]i − ϕN

s,0(X
i
k1,...,k6)|+ sup

t1fsft
|ϕN

s,0(X
i
k1,...,k6)− ϕN

s,0(Xi)| (3.83)

grows slow enough on this interval. The considerations for the first term is mostly
analogous to the estimates of case 1, see Section 3.1.1, because the spatial distance
between the considered auxiliary particle and the ‘real’ particle is bounded by N− 5

12
+σ

like the largest allowed deviation for a ‘good’ particle.
From now on we will assume that for an arbitrary point in time t1 ∈ [0, τN (X)) and

X ∈ R
6N the initial position of the auxiliary particle Xi

k1,...,k6
and t2 ∈ (t1, τ

N (X)] are
chosen such that the previously introduced demands are fulfilled on [t1, t2]. Following
the notation of [22] we abbreviate X̃i := Xi

k1,...,k6
but remind that t2 and the choice

of (k1, ..., k6) ∈ QN depends on i, t1 and X.
Controlling the growth of the second term is a simple application of Lemma 3.7. It
follows for arbitrary t ∈ [t1, t2] that

|ϕN
t,0(X̃i)− ϕN

t,0(Xi)|
feC(t−t1)|ϕN

t1,0(X̃i)− ϕN
t1,0(Xi)|

feC(t−t1)
(∣∣ϕN

t1,0(Xi)− [ΨN
t1,0(X)]i

∣∣+
∣∣[ΨN

t1,0(X)]i − ϕN
t1,0(X̃i)

∣∣)

feC(t−t1)
(∣∣ϕN

t1,0(Xi)− [ΨN
t1,0(X)]i

∣∣+N− 5
12

+σ
)
, (3.84)

where we applied bound (3.80) according to the choice of X̃i. This concludes the
estimates for this term and we will return to it at the end of this subsection after
estimating Term (3.88), Term (3.89) and Term (3.87).
For the second term we first remark that

|[2ΨN
t,0(X)]i − 2ϕN

t,0(X̃i)|
f|[2ΨN

t1,0(X)]i − 2ϕN
t1,0(X̃i)|

+
∣∣
� t

t1

( 1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)− fN ∗ k̃s(ϕ1,N
s,0 (X̃i))

)
ds
∣∣. (3.85)
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To derive an upper bound for the force term, note that the same structure as in the
previous case. Thus we can again apply multiple times triangle inequality and obtain
essentially the four terms of case 1, see Section 3.1.1,

∣∣
� t

t1

1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)− fN ∗ k̃s(ϕ1,N
s,0 (X̃i))ds

∣∣ (3.86)

f
∣∣
� t

t1

1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)1(GN (X̃i))C
(Xj)ds

∣∣ (3.87)

+
∣∣
� t

t1

1

N

∑

j ̸=i

(
fN ([Ψ1,N

s,0 (X)]i − [Ψ1,N
s,0 (X)]j)1GN (X̃i)

(Xj)

− fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Xj))1GN (X̃i)
(Xj)

)
ds
∣∣ (3.88)

+
∣∣
� t

t1

1

N

∑

j ̸=i

fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Xj))1GN (X̃i)
(Xj)ds

−
� t

t1

�
R6

fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Y ))1
GN (X̃i)

(Y )k0(Y )d6Y ds
∣∣ (3.89)

+
∣∣
� t

t1

( �
R6

fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Y ))1
GN (X̃i)

(Y )k0(Y )d6Y

− fN ∗ k̃Ns (ϕ1,N
s,0 (X̃i))

)
ds
∣∣. (3.90)

Estimate of Term 3.90

An upper bound for Term (3.90) can be derived analogously to the estimates of Term

3.14 and thus is also given by CN− 5
12 as

fN ∗ k̃Ns (ϕ1,N
s,0 (X̃i))

=

�
R6

fN (ϕ1,N
s,0 (X̃i)− 1Y )kNs (Y )d6Y

=

�
R6

fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Y ))k0(Y )d6Y,

which yields

∣∣
� t

t1

�
R6

fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Y ))k0(Y )1
GN (X̃i)

(Y )d6Y ds

−
� t

t1

fN ∗ k̃Ns (ϕ1,N
s,0 (X̃i))ds

∣∣

=
∣∣
� t

t1

�
R6

fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Y ))k0(Y )(1
GN (X̃i)

(Y )− 1)d6Y ds
∣∣

fT∥fN∥∞
�
R6

1
(GN (X̃i))C

(Y )k0(Y )d6Y

fCTN2β(N−2br−4bv +N−2sr−4sv)

fCTN
15
18

−2br−4bv
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fCN− 5
12

−4σ

Estimate of Term 3.88 and Term 3.89

For the Terms (3.88) and (3.89) we will utilize Theorem 3.10. Since according to the

choice of t1, t2 and X̃i it holds that supt1fsft2 |[Ψ
1,N
s,0 (X)]i − ϕ1,N

s,0 (X̃i)| f N− 5
12

+σ, it

follows by estimating with the map gN that

∣∣
� t

t1

1

N

∑

j ̸=i

(
fN ([Ψ1,N

s,0 (X)]i − [Ψ1,N
s,0 (X)]j)1GN (X̃i)

(Xj)

− fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Xj))1GN (X̃i)
(Xj)

)
ds
∣∣ (3.91)

f
∣∣
� t

t1

1

N

∑

j∈MN
b
(X)\{i}

(
fN ([Ψ1,N

s,0 (X)]i − [Ψ1,N
s,0 (X)]j)1GN (X̃i)

(Xj)

− fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Xj))1GN (X̃i)
(Xj)

)
ds
∣∣

+

� t

t1

1

N

∑

j∈MN
g (X)\{i}

(
gN (ϕ1,N

s,0 (X̃i)− ϕ1,N
s,0 (Xj))1GN (X̃i)

(Xj)

·
(
|[Ψ1,N

s,0 (X)]i − ϕ1,N
s,0 (X̃i)|+ |[Ψ1,N

s,0 (X)]j − ϕ1,N
s,0 (Xj)|

))
ds. (3.92)

All of these terms have basically the same structure as in case 1, see Section 3.1.1,
and the upper bound of the deviation of the true and the auxiliary dynamic is the
same as the allowed deviations of ‘good’ particles and so we only have to make
minor modifications to the definitions of the unlikely sets BN,σ

i,j . We define for
(k1, ..., k6) ∈ QN

X ∈ BN,σ
1,i,(k1,..,k6)

¦ R
6N

ô∃t′1, t′2 ∈ [0, T ] :
∣∣∣
� t′2

t′1

( 1

N

∑

j ̸=i

fN (ϕ1,N
s,0 (Xi

k1,...,k6)− ϕ1,N
s,0 (Xj))1GN (Xi

k1,...k6
)(Xj)

−
�
R6

fN (ϕ1,N
s,0 (Xi

k1,...,k6)− ϕ1,N
s,0 (Y ))

· 1GN (Xi
k1,...k6

)(Y )k0(Y )d6Y
)
ds
∣∣∣ > N− 5

12 ( (3.93)

∣∣∣
� t′2

t′1

( 1

N

∑

j ̸=i

gN (ϕ1,N
s,0 (Xi

k1,...,k6)− ϕ1,N
s,0 (Xj))1GN (Xi

k1,...k6
)(Xj)

−
�
R6

gN (ϕ1,N
s,0 (Xi

k1,...,k6)− ϕ1,N
s,0 (Y ))

· 1GN (Xi
k1,...k6

)(Y )k0(Y )d6Y
)
ds
∣∣∣ > 1 (3.94)

Hence, statement (3.93) has the same structure as BN,σ
1,i but note that in this

case Xi is replaced by the initial data of another auxiliary particle Xi
k1,...,k6

:=
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Xi +
∑6

j=1 kjN
− 5

12
+σ

2 ej . For statement (3.94) a corresponding relationship holds,

however with respect to BN,σ
2,i . It follows analogous, to the reasoning applied for the

sets BN,σ
j,i , j ∈ {1, 2} that for any γ > 0 there exists a Cγ > 0 such that for all N ∈ N

P
(
X ∈ BN,σ

1,i,(k1,...,k6)

)
f CγN

−γ .

By restricting the initial data to this set we can estimate Term (3.89) and the second
term of (3.92). We are left with the considerations for the first term of (3.92) and
Term (3.87). In the proof of case 1, see Section 3.1.1 the set BN,σ

3,i was introduced
to deal with the corresponding term of (3.92). Since the situation is basically the
same we just have to modify the definition such that it applies for Xi

k1,...,k6
and for

(k1, ..., k6) ∈ QN :

X ∈ BN,σ
2,i,(k1,...,k6)

¦ R
6N

ô∃l ∈ Iσ :
(
Rl ̸= ∞ '

∑

j∈MN
s (X)\{i}

1MN
(rl,Rl),(vl,Vl)

(Xi
k1,...,k6

)(Xj) g N
2σ
9
⌈
N

2
9R2

l min
(
max(Vl, Rl), 1

)4⌉) (

∑

j∈MN
s (X)\{i}

1 g N
2
9
(1+σ) (3.95)

For X ∈
(
BN,σ
2,i,(k1,...,k6)

)C
and t ∈ [t1, t2] the term

∣∣
� t

t1

1

N

∑

j∈MN
s (X)\{i}

(
fN ([Ψ1,N

s,0 (X)]j − [Ψ1,N
s,0 (X)]i)1GN (X̃i)

(Xj)

− fN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (X̃i))1GN (X̃i)
(Xj)

)
ds
∣∣ (3.96)

can be estimated similar to case 1, see Section 3.1.1. For this purpose, one has to
take into account the choice of the interval [t1, t2], because for this time span it holds
that

sup
t∈[t1,t2]

|[Ψ1,N
s,0 (X)]j − ϕ1,N

s,0 (X̃i)| f N− 5
12

+σ '

sup
t∈[t1,t2]

|[Ψ2,N
s,0 (X)]j − 2ϕN

s,0(X̃i)| f N− 1
6
−σ.

The estimates from case 1, see Section 3.1.1, can be copied to the current situation
and hence the previously derived upper bound CN− 5

12 can be applied.
This concludes the considerations for Term (3.88). Due to the definition of the set
(3.94) and the subsequent reasoning it holds for configurations X ∈

(
BN,σ
1,i,(k1,...,k6)

∪
BN,σ
2,i,(k1,...,k6)

)C
and t ∈ [t1, t2] that

∣∣
� t

t1

1

N

∑

j∈MN
b
(X)\{i}

(
fN ([Ψ1,N

s,0 (X)]i − [Ψ1,N
s,0 (X)]j)1GN (X̃i)

(Xj)
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− fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Xj))1GN (X̃i)
(Xj)

)
ds
∣∣

+

� t

t1

1

N

∑

j∈MN
g (X)\{i}

(
gN (ϕ1,N

s,0 (X̃i)− ϕ1,N
s,0 (Xj))1GN (X̃i)

(Xj)

·
(
|[Ψ1,N

s,0 (X)]i − ϕ1,N
s,0 (X̃i)|+ |[Ψ1,N

s,0 (X)]j − ϕ1,N
s,0 (Xj)|

))
ds

fCN− 5
12

+
(
1 +

� t

t1

�
R6

gN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Y ))k0(Y )d6Y ds
)

· sup
s∈[t1,t]

(
|[Ψ1,N

s,0 (X)]i − ϕ1,N
s,0 (X̃i)|+ max

j∈MN
g (X)

|[Ψ1,N
s,0 (X)]j − ϕ1,N

s,0 (Xj)|
)

fCN− 5
12 + C

(
1 + (t− t1) ln(N)

)
N− 5

12 . (3.97)

The derivation of the upper bound for the first term was already discussed previously.
For the upper bound of the second term we remind that 0 f gN (q) f Cmin(N3β , 1

|q|3 )

which leads to the factor C ln(N) after the integration. Further for s ∈ [t1, t] since
t ∈ [t1, t2] ¦ [t1, τ

N (X)] it holds that

|[Ψ1,N
s,0 (X)]i − ϕ1,N

s,0 (X̃i)|+ max
j∈MN

g (X)
|[Ψ1,N

s,0 (X)]j − ϕ1,N
s,0 (Xj)| f 2N− 5

12 ,

by the constraints on t2 and the definition of the stopping time, see 3.8).

Estimate of Term 3.87

In contrast to case 1, see Section 3.1.1, the last remaining Term (3.87) has impact
on the prove. It takes into account the impact of the ‘superhard’ collisions with
‘superbad’ or ‘hard’ with ‘bad’ collision partners and is given by

∣∣∣∣∣∣

� t

t1

1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)1(GN (X̃i))C
(Xj)ds

∣∣∣∣∣∣
.

The non-negligibility of this term is the first significant modification in contrast
to the considerations for the ‘good’ particles in case 1, see Section 3.1.1. For this
reason we introduce a set of inappropriate initial data for (k1, . . . , k6) ∈ QN and
i ∈ {1, . . . , N}

X ∈ BN,σ
3,i,(k1,...,k6)

¦ R
6N ô

∑

j ̸=i

1MN

6N
−

1
3−σ

,N
−

5
18

(Xi
k1,...,k6

)(Xj) g N
σ
2

(3.98)

It measures the amount of particles coming very close to the auxiliary particle cloud.
For configurations X /∈ BN,σ

3,i,(k1,...,k6)
it holds that this last remaining term is bounded

by

CN
σ
2
−1∥fN∥∞|t− t1| f CN

σ
2
−1
(
N

5
12

−σ
)2|t− t1|
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f CN− 1
6
− 3σ

2 |t− t1|. (3.99)

As P
(
Y ∈ R

6 : Y /∈ GN (Xi)
)
f CN− 5

4
−2σ it follows that

P
(
X ∈ BN,σ

3,i,(k1,...,k6)

)
f
(

N

+N σ
2 ,

)(
CN− 5

4
−2σ
)+N σ

2 , f CN− 1
4
+N

σ
2 ,. (3.100)

Conclusion case 2 (labelled particle Xi is superbad)

All applied estimates work for arbitrary t1, t2 fulfilling the initially introduced de-
mands

X ∈
( ⋃

j∈{1,2,3}

N⋃

i=1

⋃

(k1,...,k6)∈QN

BN,σ
j,i,(k1,...,k6)

)C
.

From now on we restrict ourselves to these good configurations. We already discussed
that for any γ > 0 there exists a constant Cγ > 0 such that P

(
X ∈ BN,σ

1,i,(k1,...,k6)

)
f

CγN
−γ and according to the proof of the first case it holds that P

(
X ∈ BN,σ

2,i,(k1,...,k6)

)
f

(CN− 16σ
9 )

N
σ
9
2 . Since |QN | f (3+N 1

4 ,)6 f CN
3
2 (see (3.79)), it is possible to choose

the constant Cγ > 0 such that

P

( ⋃

j∈{1,2,3}

N⋃

i=1

⋃

(k1,...,k6)∈QN

BN,σ
j,i,(k1,...,k6)

)
f CγN

−γ

holds for a given γ > 0 and all N ∈ N and for all configurations

X ∈
( ⋃

j∈{1,2,3}

N⋃

i=1

⋃

(k1,...,k6)∈QN

BN,σ
j,i,(k1,...,k6)

)C

all derived upper bounds are fulfilled for arbitrary ‘triples’ t1, t2 and X̃i provided
they are chosen according to the introduced constraints on them. We obtain that
Term (3.88) is bounded by C(1+ (t− t1) ln(N))N− 5

12 , see (3.124). The upper bound

for Term (3.89) and Term (3.90) is given by N− 5
12 . The upper bound for Term (3.87)

is given by CN− 1
6
− 3σ

2 (t− t1). It follows for t ∈ [t1, t2] and for small enough σ > 0
that the Term (3.86) is bounded by

C
(
N− 1

6
− 3σ

2 (t− t1) +N− 5
12
)
.

With |[ΨN
t1,0

(X)]i − ϕN
t1,0

(X̃i)| f N−
5
12+σ

2 we obtain that for any i ∈ {1, . . . , N} and
for all times t ∈ [t1, t2] the following inequality holds

|[Ψ2,N
t,0 (X)]i − ϕ2,N

t,0 (X̃i)|
f|[Ψ2,N

t1,0
(X)]i − ϕ2,N

t1,0
(X̃i)|

+
∣∣
� t

t1

( 1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)− fN ∗ k̃Ns (ϕ1,N
s,0 (X̃i))

)
ds
∣∣
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f|[Ψ2,N
t1,0

(X)]i − ϕ2,N
t1,0

(X̃i)|+ C
(
N− 1

6
− 3σ

2 (t− t1) +N− 5
12
)

(3.101)

f N− 5
12

+σ

2
+ C

(
N− 1

6
− 3σ

2 (t− t1) +N− 5
12
)
. (3.102)

Now it is straightforward to find an upper bound for the spatial deviation for
t ∈ [t1, t2]:

|[Ψ1,N
t,0 (X)]i − ϕ1,N

t,0 (X̃i)|

f|[Ψ1,N
t,0 (X)]i − ϕ1,N

t,0 (X̃i)|+
� t

t1

|[2ΨN
s,0(X)]i − 2ϕN

s,0(X̃i)|ds

fN− 5
12

+σ

2
+ C

(
N− 1

6
− 3σ

2 (t− t1)
2 +N− 5

12 (t− t1)
)
. (3.103)

The time t1 denotes an arbitrary moment in [0, τN (X)) before the stopping time
is triggered. At this point in time we argued that it is always possible to find an
auxiliary particle of the introduced ‘auxiliary cloud’ which is closer in phase space

to the observed ‘real’ particle than N−β

2 = N−
5
12+σ

2 . At time t2 ∈ (t1, τ
N (X)] the

distance in (physical) space between this auxiliary particle and the ‘real’ one still
fulfils

sup
t1ftft2

|[Ψ1,N
t,0 (X)]i − ϕ1,N

t,0 (X̃i)| f N− 5
12

+σ,

while for the velocity deviation the much larger upper bound

sup
t1ftft2

|[Ψ2,N
t,0 (X)]i − ϕ2,N

t,0 (X̃i)| f N− 1
6
−σ

was allowed. After that point in time maybe a new auxiliary particle of the ‘auxiliary
cloud’ which is closer to the observed ‘real’ particle must be chosen for further
estimates. The possible length of such an interval [t1, t2], where the same auxiliary
particle can be applied can be derived by (3.102) and (3.103).

However, for large enough N ∈ N and σ > 0 small enough the subsequent
implication holds

t− t1 f N− 1
8 ⇒





N−
5
12+σ

2 + C
(
N− 1

6
− 3σ

2 (t− t1)
2 +N− 5

12 (t− t1)
)
f N− 5

12
+σ

N−
5
12+σ

2 + C
(
N− 1

6
− 3σ

2 (t− t1) +N− 5
12

)
f CN− 7

24
− 3σ

2 f N− 1
6
−σ

and thus, according to relations (3.102) and (3.103), the point in time t2 := t1+N− 1
8

is a possible option such that the constraints on t2 are fulfilled. Hence, bound (3.102)
and (3.103) yield for t2 and small enough σ > 0 that

sup
t1fsft2

|[ΨN
t,0(X)]i − ϕN

t,0(X̃i)| f CN− 1
6
− 3σ

2 (t2 − t1) = CN− 7
24

− 3σ
2 .

Considering estimate (3.84) we obtain for t ∈ [t1, t1 +N− 1
8 ], the considered configu-

rations, large enough N and sufficiently small σ > 0 that Term (3.83) is bounded
by

sup
t1fsft

|[ΨN
s,0(X)]i − ϕN

s,0(Xi)|
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f sup
t1fsft

|[ΨN
s,0(X)]i − ϕN

s,0(X
i
k1,...,k6)|+ sup

t1fsft
|ϕN

s,0(X
i
k1,...,k6)− ϕN

s,0(Xi)|

fCN− 7
24

− 3σ
2 + eC(t−t1)

∣∣[ΨN
t1,0(X)]i − ϕN

t1,0(Xi)
∣∣. (3.104)

The first point in time t1 ∈ [0, τN (X)) was chosen arbitrarily and based on that we
define a sequence of time steps

tn := nN− 1
8 for n ∈ {0, . . . , +τN (X)N

1
8 , − 1} and t

+τN (X)N
1
8 ,

:= τN (X)

and thereby receive a corresponding sequence of inequalities

sup
tnfsftn+1

|[ΨN
s,0(X)]i − ϕN

s,0(Xi)| f CN− 7
24

− 3σ
2 + eCN−

1
8
∣∣[ΨN

tn,0(X)]i − ϕN
tn,0(Xi)

∣∣.

Inductively we derive that

sup
0fsftn

|[ΨN
s,0(X)]i − ϕN

s,0(Xi)| f CN− 7
24

− 3σ
2

n−1∑

k=0

e2CN−
1
8 k.

An upper bound for the possible values of n is given by +TN 1
8 , and this yields that

sup
0fsfτN (X)

|[ΨN
s,0(X)]i − ϕN

s,0(Xi)| f CN− 1
6
− 3

2
σ.

For sufficiently large N this value stays smaller than the allowed distance between
the mean-field and the real trajectory N− 1

6
−σ, which shows that also the ‘superbad’

particles do typically not ‘trigger’ the stopping time for the relevant N and σ.

3.1.4 Controlling the deviation of the bad particles

Now we are left with the last set, the set of bad particles. This intermediate set was
defined as

MN
b (X) := {1, . . . , N} : ∃j ∈ {1, . . . , N} \ {i} : Xj ∈ (MN

(rb,vb)
(Xj) \MN

(rs,vs)
(Xj)).

The advantage of this set is that it contains less particles than the amount of good
particles, but more than amount of superbad ones. For particles in this set we
allow intermediate deviation to their mean-field partners as bad events, i.e. particles
coming close to each other, still occur. We would also like to use the estimates of
case 1, see Section 3.1.1, and therefore we introduce the particle cloud which provides
us the auxiliary particles like in case 2. This time QN is given by

QN :={−+N 1
8 ,, . . . ,−1, 0, 1, . . . , +N 1

8 ,}6 (3.105)

for (k1, . . . , k6) ∈ QN the positions Xi
k1,...,k6

:= Xi+
∑6

j=1 kjN
− 5

12
+σ

2 ej . Let us apply
Lemma 3.7 and the condition on the distance between the corresponding ‘real’ and
mean-field particle before the stopping time is ‘triggered’. This gets us for the point
in time t1 ∈ [0, τN (X)] and large enough N that

|ϕN
0,t1([Ψ

N
t1,0(X)]i)−Xi| f C|[ΨN

t1,0(X)]i − ϕN
t1,0(Xi)| < CN− 7

24
−σ.
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By construction, this distance is of smaller order with respect to N than the diameter
of the auxiliary ‘particle cloud’ around Xi and if N is sufficiently large it is always
possible to find a tuple (k1, . . . , k6) ∈ QN such that

|ϕN
0,t1([Ψ

N
t1,0(X)]i)−Xi

k1,...,k6 | f
√
6

2
N− 5

12
−σ

2 . (3.106)

Lemma 3.7 implies in turn that

|[ΨN
t1,0(X)]i − ϕN

t1,0(X
i
k1,...,k6)| f CN− 5

12
−σ

2 . (3.107)

For CN− 5
12

−σ
2 < 1

2N
− 5

12 with N ∈ N large enough, there exists a further point in
time t2 ∈ (t1, T ] such that

sup
s∈[t1,t2]

|[Ψ1,N
s,0 (X)]i − ϕ1,N

s,0 (Xi
k1,...,k6)| f N− 5

12

and the bound for the velocity deviation

sup
s∈[t1,t2]

|[Ψ2,N
s,0 (X)]i − 2ϕN

s,0(X
i
k1,...,k6)| f N− 1

6

holds for σ > 0 sufficiently small. Like in the previous cases we have to show that
supt1fsft |[ΨN

s,0(X)]i − ϕN
s,0(Xi)| grows slow enough on this time interval. Since this

variable is bounded by

sup
t1fsft

|[ΨN
s,0(X)]i − ϕN

s,0(X
i
k1,...,k6)|+ sup

t1fsft
|ϕN

s,0(X
i
k1,...,k6)− ϕN

s,0(Xi)| (3.108)

and estimate the growth of these deviations instead.
The considerations for the first term is mostly analogous to the estimates of case

1 or case 2, see Section 3.1.1 and 3.1.3. By construction, the spatial distance between
the considered auxiliary particle and the ‘real’ particle is bounded from above by
N− 5

12
+σ.

We use the abbreviation X̃i := Xi
k1,...,k6

and assume for the rest of the proof that for

an arbitrary point in time t1 ∈ [0, τN (X)) and X ∈ R
6N the initial position of the

auxiliary particle Xi
k1,...,k6

and t2 ∈ (t1, τ
N (X)] are chosen such that the previously

introduced demands are fulfilled on [t1, t2].
The second term has the same structure like 3.84 in case 2 an can be controlled by
application of Lemma 3.7. It follows for arbitrary t ∈ [t1, t2] that

|ϕN
t,0(X̃i)− ϕN

t,0(Xi)|
feC(t−t1)|ϕN

t1,0(X̃i)− ϕN
t1,0(Xi)|

feC(t−t1)
(∣∣ϕN

t1,0(Xi)− [ΨN
t1,0(X)]i

∣∣+
∣∣[ΨN

t1,0(X)]i − ϕN
t1,0(X̃i)

∣∣)

feC(t−t1)
(∣∣ϕN

t1,0(Xi)− [ΨN
t1,0(X)]i

∣∣+N− 5
12
)
, (3.109)

where we regarded the allowed upper bound for
∣∣[ΨN

t1,0
(X)]i − ϕN

t1,0
(X̃i)

∣∣ according
to the choice of X̃i. We will return to this term later.
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For the second term we remark that

|[Ψ2,N
t,0 (X)]i − 2ϕN

t,0(X̃i)|
f|[Ψ2,N

t1,0
(X)]i − ϕ2,N

t1,0
(X̃i)|

+
∣∣
� t

t1

( 1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)− fN ∗ k̃s(ϕ1,N
s,0 (X̃i))

)
ds
∣∣. (3.110)

The second summand can be estimated by multiple applications of the triangle
inequality and we essentially obtain the four terms of case 1 or 2, Section 3.1.1 and
3.1.3.

∣∣
� t

t1

1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)− fN ∗ k̃s(ϕ1,N
s,0 (X̃i))ds

∣∣ (3.111)

f
∣∣
� t

t1

1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)1(GN (X̃i))C
(Xj)ds

∣∣ (3.112)

+
∣∣
� t

t1

1

N

∑

j ̸=i

(
fN ([Ψ1,N

s,0 (X)]i − [Ψ1,N
s,0 (X)]j)1GN (X̃i)

(Xj)

− fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Xj))1GN (X̃i)
(Xj)

)
ds
∣∣ (3.113)

+
∣∣
� t

t1

1

N

∑

j ̸=i

fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Xj))1GN (X̃i)
(Xj)ds

−
� t

t1

�
R6

fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Y ))1
GN (X̃i)

(Y )k0(Y )d6Y ds
∣∣ (3.114)

+
∣∣
� t

t1

( �
R6

fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Y ))1
GN (X̃i)

(Y )k0(Y )d6Y

− fN ∗ k̃Ns (ϕ1,N
s,0 (X̃i))

)
ds
∣∣ (3.115)

Estimate of Term 3.115

A suitable upper bound for Term (3.115) can be derived analogously to the previous

two cases and thus is given by CN− 5
12 .

∣∣
� t

t1

�
R6

fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Y ))k0(Y )1
GN (X̃i)

(Y )d6Y ds

−
� t

t1

�
R6

fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Y ))k0(Y )d6Y ds
∣∣

=
∣∣
� t

t1

�
R6

fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Y ))k0(Y )(1
GN (X̃i)

(Y )− 1)d6Y ds
∣∣

fT∥fN∥∞
�
R6

1
(GN (X̃i))C

(Y )k0(Y )d6Y

fTN2β
P
(
Y ∈ R

6 : Y /∈ GN (X̃i)
)
f TN2β

P
(
Y ∈ R

6 : Y ∈ MN
6N−br ,N−bv (X̃i)

)

fTN2βC(N−br)2(N−bv)4
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fTN
5
12

−2σ (3.116)

Estimate of Term 3.113 and Term 3.114

Let us focus on the two Terms (3.113) and (3.114), as both can be estimated
by Theorem 3.10. Since according to the choice of t1, t2 and X̃i it holds that
supt1fsft2 |[Ψ

1,N
s,0 (X)]i−ϕ1,N

s,0 (X̃i)| f N− 5
12

+σ. It follows by estimating with the map

gN that

∣∣
� t

t1

1

N

∑

j ̸=i

(
fN ([Ψ1,N

s,0 (X)]i − [Ψ1,N
s,0 (X)]j)1GN (X̃i)

(Xj)

− fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Xj))1GN (X̃i)
(Xj)

)
ds
∣∣ (3.117)

f
∣∣
� t

t1

1

N

∑

j∈MN
b
(X)\{i}

(
fN ([Ψ1,N

s,0 (X)]i − [Ψ1,N
s,0 (X)]j)1GN (X̃i)

(Xj)

− fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Xj))1GN (X̃i)
(Xj)

)
ds
∣∣

+

� t

t1

1

N

∑

j∈MN
g (X)\{i}

(
gN (ϕ1,N

s,0 (X̃i)− ϕ1,N
s,0 (Xj))1GN (X̃i)

(Xj)

·
(
|[Ψ1,N

s,0 (X)]i − ϕ1,N
s,0 (X̃i)|+ |[Ψ1,N

s,0 (X)]j − ϕ1,N
s,0 (Xj)|

))
ds. (3.118)

All these terms have basically the same structure as in case 1 or 2, see Section 3.1.1
and 3.1.3. We just have to amend the definitions of the sets BN,σ

i,j from the previous
to the current situation. We define for (k1, . . . , k6) ∈ QN

X ∈ BN,σ
1,i,(k1,...,k6)

¦ R
6N

ô∃t′1, t′2 ∈ [0, T ] :
∣∣∣
� t′2

t′1

( 1

N

∑

j ̸=i

fN (ϕ1,N
s,0 (Xi

k1,...,k6)− ϕ1,N
s,0 (Xj))1GN (Xi

k1,...,k6
)(Xj)

−
�
R6

fN (ϕ1,N
s,0 (Xi

k1,...,k6)− ϕ1,N
s,0 (Y ))

· 1GN (Xi
k1,...,k6

)(Y )k0(Y )d6Y
)
ds
∣∣∣ > N−β+σ ( (3.119)

∣∣∣
� t′2

t′1

( 1

N

∑

j ̸=i

gN (ϕ1,N
s,0 (Xi

k1,...,k6)− ϕ1,N
s,0 (Xj))1GN (Xi

k1,...k6
)(Xj)

−
�
R6

gN (ϕ1,N
s,0 (Xi

k1,...,k6)− ϕ1,N
s,0 (Y ))

· 1GN (Xi
k1,...,k6

)(Y )k0(Y )d6Y
)
ds
∣∣∣ > 1. (3.120)

For the second statement (3.120) we proceed similarly. It follows analogous to the
reasoning applied for the sets BN,σ

j,i , j ∈ {1, 2} that for any γ > 0 there exists a
Cγ > 0 such that for all N ∈ N

P
(
X ∈ BN,σ

1,i,(k1,...,k6)

)
f CγN

−γ .
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Like in case 1 or 2, see Section 3.1.1 and 3.1.3, restricting the initial data to
this set is already enough to handle Term (3.114) and the second term of (3.118).
Thus, we continue with the first term of (3.118) and finally deal with Term (3.115).
Therefore we modify the definition of the set BN,σ

3,i such that it applies for Xi
k1,...,k6

for (k1, . . . , k6) ∈ QN

X ∈ BN,σ
2,i,(k1,...,k6)

¦ R
6N

ô∃l ∈ Iσ :
(
Rl ̸= ∞ '

∑

j∈MN
b
(X)\{i}

1MN
(rl,Rl),(vl,Vl)

(Xi
k1,...,k6

)(Xj) g N (2−2bv−4br)σ (3.121)

⌈
N2−2bv−4brR2

l min
(
max(Vl, Rl), 1

)4⌉) (
∑

j∈MN
b
(X)\{i}

1 g N
3
4
(1+σ) (3.122)

For X ∈
(
BN,σ
2,i,(k1,...,k6)

)C
and t ∈ [t1, t2] the term

∣∣
� t

t1

1

N

∑

j∈MN
b
(X)\{i}

(
fN ([Ψ1,N

s,0 (X)]j − [Ψ1,N
s,0 (X)]i)1GN (X̃i)

(Xj)

− fN (ϕ1,N
s,0 (Xj)− ϕ1,N

s,0 (X̃i))1GN (X̃i)
(Xj)

)
ds
∣∣ (3.123)

can be handled by the same estimates as in case 1, see Section 3.1.1. For this purpose,
one has to take into account the choice of the interval [t1, t2] because for this time
span it holds that

sup
t∈[t1,t2]

|[Ψ1,N
s,0 (X)]j − ϕ1,N

s,0 (X̃i)| f N− 5
12 '

sup
t∈[t1,t2]

|[Ψ2,N
s,0 (X)]j − ϕ2,N

s,0 (X̃i)| f N− 1
6 .

The estimates can be copied form the previous cases and hence also the previously
derived upper bound CN− 5

12 can be applied.
This concludes the considerations for Term (3.113) and Term (3.117). Due to

Definition (3.120) and the subsequent reasoning it holds for configurations X ∈(
BN,σ
1,i,(k1,...,k6)

∪ BN,σ
2,i,(k1,...,k6)

)C
and t ∈ [t1, t2] that

∣∣
� t

t1

1

N

∑

j∈MN
b
(X)\{i}

(
fN ([Ψ1,N

s,0 (X)]i − [Ψ1,N
s,0 (X)]j)1GN (X̃i)

(Xj)

− fN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Xj))1GN (X̃i)
(Xj)

)
ds
∣∣

+

� t

t1

1

N

∑

j∈MN
g (X)\{i}

(
gN (ϕ1,N

s,0 (X̃i)− ϕ1,N
s,0 (Xj))1GN (X̃i)

(Xj)

·
(
|[Ψ1,N

s,0 (X)]i − ϕ1,N
s,0 (X̃i)|+ |[Ψ1,N

s,0 (X)]j − ϕ1,N
s,0 (Xj)|

))
ds
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fCN− 5
12

+
(
1 +

� t

t1

�
R6

gN (ϕ1,N
s,0 (X̃i)− ϕ1,N

s,0 (Y ))k0(Y )d6Y ds
)

· sup
s∈[t1,t]

(
|[Ψ1,N

s,0 (X)]i − ϕ1,N
s,0 (X̃i)|+ max

j∈MN
g (X)

|[Ψ1,N
s,0 (X)]j − ϕ1,N

s,0 (Xj)|
)

fCN− 5
12

+σ + C
(
1 + (t− t1) ln(N)

)
N− 5

12 (3.124)

The upper bound for the first summand was already discussed in the previously
part. For the second summand we regarded that 0 f gN (q) f Cmin(N− 5

12 , 1
|q|3 ).

This leads to the factor C ln(N) after the integration. Further it holds for s ∈ [t1, t]
due to t ∈ [t1, t2] ¦ [t1, τ

N (X)], that

|[Ψ1,N
s,0 (X)]i − ϕ1,N

s,0 (X̃i)|+ max
j∈MN

g (X)
|[Ψ1,N

s,0 (X)]j − ϕ1,N
s,0 (Xj)| f 2N− 5

12

by the constraints on t2 and the definition of the stopping time.

Estimate of Term 3.112

We finally arrived at the last remaining Term (3.112)

∣∣
� t

t1

1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)1(GN (X̃i))C
(Xj)ds

∣∣

Remember that i ∈ MN
b (X). This term takes into account the impact of the ‘hard’

collisions which were excluded for the ‘good’ particles. But ‘superhard’ collisions are
excluded again like in case 1, see Section 3.1.1, because the considered particle Xi is
‘bad’. That simplifies the situation for us to

∣∣
� t

t1

1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)1(GN (X̃i))C\Msb(X̃i)
(Xj)ds

∣∣ =

∣∣
� t

t1

1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)1Mb(X̃i)
(Xj)ds

∣∣.

Fortunately, the estimates for this remaining term are straightforward and a
simple application of Corollary 3.8 but first we need to define a set of inappropriate
initial data for (k1, ..., k6) ∈ QN and i ∈ {1, ..., N}:

X ∈ BN,σ
3,i,(k1,...,k6)

¦ R
6N

ô
∑

j ̸=i

1MN

6N
−

7
24−σ

,N
−

1
6

(Xi
k1,...,k6

)(Xj) g N
3σ
4

(3.125)

It follows for configurations X /∈ BN,σ
3,i,(k1,...,k6)

that

∣∣
� t

t1

1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)1Mb(X̃i)
(Xj)ds

∣∣
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f N
3σ
4

N
Cmin

( 1

N−β∆v
,

1

min
0fsfT

|[1ΨN,β
s,0 (X)]i − [1ΨN,β

s,0 (X)]j |∆v

)

f N
3σ
4

N
Cmin

( 1

N−βN− 1.5
9

,
1

N− 7
24

−σN− 1.5
9

)
f CN− 7

8
+ 3σ

4 .

This last remaining term is bounded by

CN− 7
8
+ 3σ

4 (3.126)

Moreover, by taking into account that P
(
Y ∈ R

6 : Y /∈ GN (Xi)
)
f CN− 5

4
−2σ it

follows that

P
(
X ∈ BN,σ

3,i,(k1,...,k6)

)
f
(

N

+N 3σ
4 ,

)(
CN− 5

4
−2σ
)+N 3σ

4 , f CN− 1
4
+N

3σ
4 , (3.127)

which obviously drops sufficiently fast.

Conclusion case 3 (labelled particle Xi is bad)

Analogously to case 2, see Section 3.1.3 we have to merge all upper bounds. All
applied estimates work for arbitrary t1, t2 fulfilling the initially in

X ∈
( ⋃

j∈{1,2,3}

N⋃

i=1

⋃

(k1,...,k6)∈QN

BN,σ
j,i,(k1,...,k6)

)C
.

We already discussed that for any γ > 0 there exists a constant Cγ > 0 such that

P
(
X ∈ BN,σ

1,i,(k1,...,k6)

)
f CγN

−γ and according to the proof of the first case it holds

that P
(
X ∈ BN,σ

2,i,(k1,...,k6)

)
f (CN− 7σ

3 )
N

σ
3
2 , see (3.64). Since |QN | f (3+N 1

8 ,)6 f CN ,

see (3.105), it is possible to choose the constant Cγ > 0 such that

P

( ⋃

j∈{1,2,3}

N⋃

i=1

⋃

(k1,...,k6)∈QN

BN,σ
j,i,(k1,...,k6)

)
f CγN

−γ

holds for a given γ > 0 and all N ∈ N. For arbitrary ‘triples’ t1, t2 and X̃i all derived
upper bounds are fulfilled for configurations

X ∈
( ⋃

j∈{1,2,3}

N⋃

i=1

⋃

(k1,...,k6)∈QN

BN,σ
j,i,(k1,...,k6)

)C
,

provided they are chosen according to the introduced constraints. We obtain that
(3.113) is bounded by C(1 + (t− t1) ln(N))N− 5

12
+σ, the bound for Term (3.114) is

N− 5
12

+σ by definition, the bound for (3.115) is CN− 5
12 , as derived in case 1, see

Section 3.1.1 and CN− 7
8
+ 3σ

4 constitutes an upper bound for (3.112). Hence the force
term can be estimated by

CN− 5
12

+σ.
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With |[ΨN
t1,0

(X)]i − ϕN
t1,0

(X̃i)| f N−
5
12+σ

2 for t ∈ [t1, t2] and σ > 0 for small enough.
We obtain that for any i ∈ {1, . . . , N} and for all times t ∈ [t1, t2] the following holds

|[Ψ2,N
t,0 (X)]i − ϕ2,N

t,0 (X̃i)|
f|[Ψ2,N

t1,0
(X)]i − ϕ2,N

t1,0
(X̃i)|

+

∣∣∣∣∣∣

� t

t1

( 1

N

∑

j ̸=i

fN ([Ψ1,N
s,0 (X)]i − [Ψ1,N

s,0 (X)]j)− fN ∗ k̃Ns (ϕ1,N
s,0 (X̃i))

)
ds

∣∣∣∣∣∣

f
∣∣∣[Ψ2,N

t1,0
(X)]i − ϕ2,N

t1,0
(X̃i)

∣∣∣+ CN− 5
12 (3.128)

fN− 5
12

+σ

2
+ CN− 5

12 (3.129)

Now it is straightforward to find an upper bound for the spatial deviation for
t ∈ [t1, t2]:

|[Ψ1,N
t,0 (X)]i − ϕ1,N

t,0 (X̃i)|

f|[Ψ1,N
t,0 (X)]i − ϕ1,N

t,0 (X̃i)|+
� t

t1

|[2ΨN
s,0(X)]i − 2ϕN

s,0(X̃i)|ds

fN− 5
12

+σ

2
+ C

(
N− 5

12
−σ

2 (t− t1)
)

(3.130)

It is always possible to find an auxiliary particle of the introduced ‘cloud’ which is
closer in phase space to the observed ‘real’ particle due to previous considerations.
After the time t2 it may be necessary for further estimates to choose a new auxiliary
particle of the ‘cloud’ which is closer to the observed ‘real’ particle. For large enough
N ∈ N and small enough σ, δ > 0 the subsequent implication holds

t− t1 f N−δ ⇒





N−
5
12

2 + C
(
N− 5

12
−σ

2 (t− t1)
)
f N− 5

12

N−
5
12

2 + C
(
N− 5

12
− 1σ

2 (t− t1)
)
f CN− 5

12

and thus according to relations (3.129) and (3.130), t2 := t1 + N−δ is a possible
option such that the constraints on t2 are fulfilled. Hence, relation (3.129) and (3.130)
yield for this choice of t2 and small enough σ > 0 that

sup
t1fsft2

|[ΨN
t,0(X)]i − ϕN

t,0(X̃i)| f CN− 5
12

− 3σ
2 (t2 − t1) = CN− 5

12
−δ− 3σ

2 .

For Term (3.108) and by additionally considering estimate (3.109), we obtain for
t ∈ [t1, t1 + N−δ], the considered configurations, large enough N and σ > 0 small
enough that

sup
t1fsft

|[ΨN
s,0(X)]i − ϕN

s,0(Xi)|

f sup
t1fsft

|[ΨN
s,0(X)]i − ϕN

s,0(X
i
k1,...,k6)|+ sup

t1fsft
|ϕN

s,0(X
i
k1,...,k6)− ϕN

s,0(Xi)|

fCN− 5
12

−δ− 3σ
2 + eC(t−t1)

∣∣[ΨN
t1,0(X)]i − ϕN

t1,0(Xi)
∣∣. (3.131)



3.2 Molecular of chaos 82

Since the point in time t1 ∈ [0, τN (X)) before the stopping time was triggered was
chosen arbitrarily, we can define a sequence of time steps

tn := nN−δ for n ∈ {0, ..., +τN (X)N δ, − 1} and t+τN (X)Nδ, := τN (X).

Thus we receive a corresponding sequence of inequalities

sup
tnfsftn+1

|[ΨN
s,0(X)]i − ϕN

s,0(Xi)|

fCN− 5
12

−δ− 3σ
2 + eCN−δ ∣∣[ΨN

tn,0(X)]i − ϕN
tn,0(Xi)

∣∣.

Inductively we derive that

sup
0fsftn

|[ΨN
s,0(X)]i − ϕN

s,0(Xi)| f CN− 5
12

−δ− 3σ
2

n−1∑

k=0

e2CN−δk.

An upper bound for the possible values of n is given by +TN δ, and this yields that

sup
0fsfτN (X)

|[ΨN
s,0(X)]i − ϕN

s,0(Xi)| f CN− 5
12

−δ− 3
2
σ.

For sufficient large N this value stays smaller than the allowed distance between the
mean-field and the real trajectory N− 7

24
−σ, which shows that also the ‘bad’ particles

do typically not ‘trigger’ the stopping time for the relevant N and σ.
This finally completes the main part of the proof.

We conclude the proof of Theorem 3.2 by showing that for N > 1

sup
x∈R6

sup
0fsfT

|ϕ1,N
s,0 (x)− ϕ1,∞

s,0 (x)| f eC
√

ln(N)N−2β (3.132)

which is smaller than necessary.

3.2 Molecular of chaos

As mentioned in Section 1.5 and analogously to Chapter 2, we finally prove Theorem
3.2 by showing that

∆N (t) := sup
x∈R6

sup
0fsfT

|ϕ1,N
s,0 (x)− ϕ1,∞

s,0 (x)| f eC
√

ln(N)N−2β (3.133)

holds for N large enough. Note, that this bound is much smaller than necessary.
Therefore let t ∈ [0, T ] be such that ∆N (t) f N− 5

12
+σ. It holds for x ∈ R

6 and
N ∈ N \ {1} that

|ϕ2,N
t,0 (x)− ϕ2,∞

t,0 (x)|

f
∣∣
� t

0

�
R6

(
fN (ϕ1,N

s,0 (x)− ϕ1,N
s,0 (y))− f∞(ϕ1,∞

s,0 (x)− ϕ1,∞
s,0 (y))

)
k0(y)d

6yds
∣∣

f
∣∣
� t

0

�
R6

(
fN (ϕ1,N

s,0 (x)− ϕ1,N
s,0 (y))− fN (ϕ1,∞

s,0 (x)− ϕ1,∞
s,0 (y))

)
k0(y)d

6yds
∣∣
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+
∣∣
� t

0

�
R6

(
fN (ϕ1,∞

s,0 (x)− ϕ1,∞
s,0 (y))− f∞(ϕ1,∞

s,0 (x)− ϕ1,∞
s,0 (y))

)
k0(y)d

6yds
∣∣

f
� t

0
2∆N (s)

�
R6

gN (ϕ1,N
s,0 (x)− ϕ1,N

s,0 (y))k0(y)d
6yds

+
∣∣
� t

0

�
R6

(
fN (ϕ1,∞

s,0 (x)− 1y)− f∞(ϕ1,∞
s,0 (x)− 1y)

)
k∞s (y)d6yds

∣∣

fC ln(N)

� t

0
∆(s)ds+

∣∣
� t

0

�
R6

1y

|1y|31(0,N−β ](|1y|)k∞s (y + ϕ∞
s,0(x))d

6yds
∣∣

+
∣∣
� t

0

�
R6

1yN3β
1(0,N−β ](|1y|)k∞s (y + ϕ∞

s,0(x))d
6yds

∣∣.

In the second step we applied the assumption ∆N (t) f N−β. Remember gN (q) is
bounded by Cmin

(
N3β , 1

|q|3
)
for all q ∈ R

3. The last two terms are quite similar.

Let us consider the first term and let us use the notation x = (1x, 2x) ∈ R
6. Due to

the slowly varying mass or charge density, cancellations arise such that this term
keeps small enough, i.e.

∣∣
� t

0

�
R6

1y

|1y|31(0,N−β ](|1y|)k∞s (y + ϕ∞
s,0(x))d

6yds
∣∣

=
∣∣
� t

0

�
R6

1y

|1y|31(0,N−β ](|1y|)
((

k∞s (y + ϕ∞
s,0(x))− k∞s ((0, 2y) + ϕ∞

s,0(x))
)

+ k∞s ((0, 2y) + ϕ∞
s,0(x))

)
d6yds

∣∣

f
� t

0

�
R6

1

|1y|21(0,N−β ](|1y|)
(∣∣k∞s (y + ϕ∞

s,0(x))− k∞s ((0, 2y) + ϕ∞
s,0(x))

∣∣
)
d6yds.

(3.134)

Note that due to symmetry

∣∣
� t

0

�
R6

1y

|1y|31(0,N−β ](|1y|)k∞s ((0, 2y) + ϕ∞
s,0(x))d

6yds
∣∣

=
∣∣
� t

0
k̃∞s (ϕ1,∞

s,0 (x))

�
R3

q

|q|31(0,N−β ](|q|)d3qds
∣∣ = 0.

Remember that the initial density fulfills |∇k0(x)| f C
(1+|x|)3+δ . It follows, that for

arbitrary z ∈ R
6 and s ∈ [0, T ]

∣∣k∞s (y + z)− k∞s ((0, 2y) + z)
∣∣1(0,N−β ](|1y|)

=
∣∣k0(ϕ∞

0,s(y + z))− k0(ϕ
∞
0,s((0,

2y) + z))
∣∣1(0,N−β ](|1y|)

f sup
z′∈ϕ∞

0,s(y+z)ϕ∞

0,s((0,
2y)+z)

|∇k0(z
′)|

· 1(0,N−β ](|1y|)
(∣∣ϕ∞

0,s(y + z)− ϕ∞
0,s((0,

2y) + z)
∣∣
)

f sup
z′∈ϕ∞

0,s(y+z)ϕ∞

0,s((0,
2y)+z)

C

(1 + |z′|)3+δ
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· 1(0,N−β ](|1y|)
(
C
∣∣(y + z)−

(
(0, 2y) + z

)∣∣
)

f sup
y′∈R3:|y′|fN−β

sup
z′∈ϕ∞

0,s((y
′,2y)+z)ϕ∞

0,s((0,
2y)+z)

CN−β

(1 + |z′|)3+δ
(3.135)

where xy := {(1 − η)x + ηy ∈ R
6 : η ∈ [0, 1]} for x, y ∈ R

6 and Lemma 3.7 was
applied in the second last step. Note that by choosing a sufficiently large value for
|2y|, as it appears in this expression, then all configurations within the set, over
which the supremum is taken, exhibit velocities of this magnitude due to the bounded
mean-field force. Consequently, Term (3.135) diminishes as |2y| increases, following
a decay pattern of CN−β

(1+|2y|)3+δ . Now we can estimate Term (3.134). For arbitrary

z ∈ R
6, in particular z := ϕ∞

s,0(x), we get that

∣∣
�
R6

1y

|1y|31(0,N−β ](|1y|)k∞s (y + z)d6y
∣∣

f
�
R3

1

|1y|21(0,N−β ](|1y|)d3(1y)

·
�
R3

sup
y′∈R3:|y′|fN−β

sup
z′∈ϕ∞

0,s((y
′,2y)+z)ϕ∞

0,s((0,
2y)+z)

CN−β

(1 + |z′|)3+δ
d3(2y)

fCN−2β .

So for any x ∈ R
6 it follows that

sup
0fsft

|ϕ1,N
s,0 (x)− ϕ1,∞

s,0 (x)|

f
� t

0
|ϕ2,N

s,0 (x)− ϕ2,∞
s,0 (x)|ds

fC ln(N)

� t

0

� s

0
∆N (r)drds+ CN−2βt. (3.136)

By means of this inequality, one derives by Gronwall Lemma 3.4 that

∆N (t) = sup
x∈R6

sup
0fsft

|ϕ1,N
s,0 (x)− ϕ1,∞

s,0 (x)| f CN−2βte
√

C ln(N)t

which shows that the initial assumption ∆N (t) f N−β = N− 5
12

+σ stays true for
arbitrarily large times t provided that N ∈ N is large enough.

Applying the stated bound to the relation

∣∣∣ϕ2,N
t,0 (x)− ϕ2,∞

t,0 (x)
∣∣∣ f C ln(N)

� t

0
∆N (s)ds+ CN−2β ,

yields the asserted result

sup
x∈R6

sup
0fsfT

|ϕN
s,0(x)− ϕ∞

s,0(x)| f eC
√

ln(N)N−2β (3.137)

for sufficiently large N . This completes the proof of Theorem 3.2.



Chapter 4

New Notion of distance

In the following, we want to examine what happens when two particles collide.
Within this section, we provide a preview of a pioneering technique, poised to yield
substantial enhancements in the realm of the full Coulomb case.

Effectively managing high singularities necessitates a precise estimation of proba-
bilities associated with exceedingly rare events like particles coming extremely close
to each other. However, relying solely on the information that the true and the mean-
field trajectories exhibit a certain distance offers only a rudimentary approximation.

The ability to estimate the impact of variations in the initial trajectory on
subsequent changes is paramount for achieving superior results. In essence, the
transition from convergence in probability to convergence in a distributional sense
becomes imperative.

The first step is to require a consistency argument for particle evolution. Minor
deviations in the initial configuration should not lead to substantial deviations at a
later point in time. We still consider a system consisting of N interacting particles
subject to Newtonian time evolution. By a probabilistic mean-field approach we will
show, that a small displacement of a particle at the beginning entails a small effect
for the dynamics of the whole system, i.e. the distance between the true dynamics
and the disturbed dynamic will be small at later times. Therefore, we are able to
show, that the deviation remains in the order of magnitude of the shift. For the
remaining particles, which were not disturbed at the beginning, we are able to show
an even stronger result. The deviation of the not disturbed particles from the true
and disturbed system decreases as N increases.

4.1 Introduction to the basic objectives

Our system is distributed as a trajectory in phase space R
6N and the dynamic is

given by the respective Newtonian flow ΨN
t,s : R

6N → R
6N , which was introduced in

1.4. The core of the idea shall be presented for a Coulomb-like model force with a
parameter λ to weaken the singularity and a cut-off at N−β for (λ+ 1)β < 1.

Definition 4.1. For N ∈ N ∪ {∞} the interaction force is given by

fN
β : R3 → R

3, q 7→
{
aN (λ+1)βq if |q| f N−β

a q
|q|λ+1 if |q| > N−β
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for 3
2 < λ f 2, 0 < β f 1

3 , such that (λ+ 1)β < 1 and a ∈ {−1, 1}. The total force
of the system is given by F : R6N → R

3N , where (F (X))j :=
∑

i ̸=j
1
N fN

β (qi − qj) is
the force exhibited on a single coordinate j.

In our pursuit of approximating a kinetic equation of the Vlasov type, we opt
to examine the system in the mean-field scaling. As discusseed in Section 1.5, this
choice ensures that the total mass of the system stays of order 1. In order to establish
the fluctuation and the changing rate of force, we will introduce a kind of

”
first and

second derivative“of f denoted as g and h respectively, which are required for the
proof. Both fulfil a mean value theorem.

Definition 4.2. a) For N ∈ N ∪ {∞} a function to control |fN
β (q)− fN

β (q + ξ)|
is given by

gNβ : R3 → R, q 7→
{
λN (λ+1)β if |q| f 3N−β

λ3λ+1 1
|q|λ+1 if |q| > 3N−β

for 3
2 < λ f 2, 0 < β f 1

3 such that (λ+ 1)β < 1.

And G is given by G : R6N → R
N , where (G(X))j :=

∑
i ̸=j

1
N gNβ (qi − qj).

b) For N ∈ N ∪ {∞} a function to control |gNβ (q)− gNβ (q + ξ)| is given by

hNβ : R3 → R, q 7→
{
CN (λ+2)β if |q| f 3N−β

C 1
|q|λ+2 if |q| > 3N−β

for 3
2 f λ f 2, 0 < β f 1

3 such that (λ+ 1)β < 1. Analogously H is given by
H : R6N → R

N , where (H(X))j :=
∑

i ̸=j
1
N hNβ (qi − qj).

In the mean-field scaling, the equations of motion for the regularized N -particle
system are given by the Newtonian equations of motion, as introduced in the system
of equations (1.2). Since the vector field is Lipschitz for fixed β and N , we have
global existence and uniqueness of solutions and hence a N -particle flow, which we
denote by

ΨN
t,s(X) =

(
Ψ1,N

t,s (X),Ψ2,N
t,s (X)

)
∈ R

3N × R
3N ,

as introduced in Definition 1.1. For the sake of readability, from now on we will omit
the index N . The proof of the main result is based on mean-field arguments for the
Vlasov Poisson equation 1.5 and it applies the results of [7, 32]. As introduced in
1.4, we have a mean-field flow and the lift of the mean-field force to the N -particle
space is given by

(F t(X))i := fN
β ∗ k̃Nt (xi), X = (x1, ..., xN ). (4.1)

Analogously we denote G : R
3N → R

3N and H : R
3N → R

3N , the lifts of the
derivatives of the mean-field force defined in 4.2 and 4.2 to the N -particle phase-
space, i.e.

(Gt(X))i := gNβ ∗ k̃Nt (xi), X = (x1, ..., xN ), (4.2)

(Ht(X))i := hNβ ∗ k̃Nt (xi), X = (x1, ..., xN ). (4.3)

Our objective is to show that a small displacement of a particle at the beginning
entails a small effect for the dynamics of the whole system at later times.
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Theorem 4.3. Let t > 0 and consider the N -particle Newtonian flows Ψt(X) and
Ψδ

t (X
δ) for Xδ = X + (δ, 0, . . . , 0) with δ g 0 given by Definition 1.1 and the

parameters of the interaction force chosen such that (λ+ 1)β < 1, then there is a
constant such that for the first component

P

(
sup
0fsft

∣∣∣
[
Ψδ

t

(
Xδ
)
−Ψt (X)

]
1

∣∣∣ > δ

)
N→∞−−−−→ 0.

In the case (λ + 1)β < 1 there is a zero sequence (aN (t))N∈N such that for all
components j ̸= 1

P

(
sup
0fsft

sup
j ̸=1

∣∣∣∣
[
Ψδ

t

(
Xδ
)
−Ψt (X)

]
j

∣∣∣∣ > aN (t)δ

)
N→∞−−−−→ 0.

For the parameters chosen such that (λ+ 1)β = 1, we have that

P

(
sup
0fsft

sup
j ̸=1

∣∣∣∣
[
Ψδ

t

(
Xδ
)
−Ψt (X)

]
j

∣∣∣∣ > C ln(N)δ

)
N→∞−−−−→ 0.

4.2 Preliminary studies

In this section we prove several lemmata that will be essential in the proof of
Theorem 4.3. The constants, which are independent of N will generically be denoted
by C. The constants appearing in a sequence of estimates may differ. For reasons
of clarity, we will usually forgo indexing fN

β , gNβ , hNβ and use the short notation

fN , gN , hN .

4.2.1 Estimates on f , g and h

Since f and g are generally not differentiable, we prove estimates for differences of
their function values.

Lemma 4.4. a) May ∥Xt −Xt∥∞ f 2N−β, then it holds that

∥∥FN (Xt)− FN (Xt)
∥∥
∞ f C∥GN (Xt)∥∞∥Xt −Xt∥∞,

for some C > 0 independent of N .

b) May ||Xt − X̄t||∞ f 2N−β, then it holds that

∥∥G(Xt)−G(X̄t)
∥∥
∞ f C

∥∥H(X̄t)
∥∥
∞ ||Xt − X̄t||∞

for some C independent of N .

c) For a, b, c ∈ R
3 with |a| f min(|b|, |c|) the following relations hold

|fN (b)− fN (c)| f gN (a)|b− c|
|gN (b)− gN (c)| f hN (a)|b− c|.

Proof. a) See 3.6
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b) For any ξ ∈ R
3 with |ξ| < 2N−β , we claim that

|gN (x+ ξ)− gN (x)| f ChN (x)|ξ|, (4.4)

where hN (x) is defined in 4.2. For |x| < 3N−β the estimate holds due to the
fact that ||∇gN ||∞ f N (λ+2)β. For |x| g 3N−β, there exists τ ∈ [0, 1] such
that

|gN (x+ ξ)− gN (x)| f |∇gN (x+ τξ)||ξ|,
where

|∇gN (x+ τξ)| f C|x+ τξ|−(λ+2).

The right hand side of the above expression takes its largest value when τ = 1
and

|x+ τξ|−(λ+2) f |x(1− |ξ|
|x|)|

−(λ+2).

Since |ξ| < 2N−β and |x| g 3N−β , it follows that |ξ|
|x| <

2
3 . Therefore, we get

|gN (x+ ξ)− gN (x)| f C

(
3

|x|

)(λ+2)

|ξ| f C
|ξ|

|x|(λ+2)
.

Applying claim (4.4) one has

|(GN (Xt))i − (GN (X̄t))i| f
1

N

N∑

j ̸=i

|gN (xti − xtj)− gN (xti − xtj)|

f C

N

N∑

j ̸=i

hN (xti − xtj)|xti − xtj − xti + xtj |

f C(HN (Xt))i∥Xt − X̄t∥∞,

which leads to the desired estimate of Lemma 4.4 b).

c) In case |a| f 3N−β the term gN (a) = λN (λ+1)β constitutes a Lipschitz-constant
for fN . In case |a| g 3N−β we get by the mean value theorem and the fact,
that ∇fN (x) is decreasing

|fN (b)−fN (c)|| f ∇fN (a)||b−a| f
(
C

|a|

)3

|b−c| f C
|b− c|
|1|3 f CgN (a)|b−a|.

In case |a| f 6N−β the term hN (a) = λN (λ+2)β constitutes a Lipschitz-constant
for gN . In case |a| g 3N−β we get by the mean value theorem and the fact,
that ∇gN (x) is decreasing

|gN (b)−gN (c)|| f ∇hN (a)||b−a| f
(
C

|a|

)λ+2

|b−c| f C
|b− c|
|a|λ+2

f CgN (a)|b−a|.
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The forces considered here become singular in the limit N → ∞ and hence do
not satisfy a uniform Lipschitz bound. Nevertheless, for the mean-field force fN

β ∗ k̃Nt ,

the global Lipschitz constant ∥fN ∗ k̃Nt ∥L diverges only logarithmically in the full
Coulomb-case with λ = 2 as the cut-off is lifted with increasing N . This statement
will be part of the next lemma, which will also contain important estimates for the
following proofs.

Lemma 4.5. Let 0 < β f 1
3 ,

3
2 < λ f 2 and assume that g : R3 → R satisfies

|g(q)| f c ·min{N (λ+1)β , |q|−λ−1} (4.5)

for some c > 0, then there exists a constant C > 0 such that the following estimates
hold.

a)

∥g ∗ k̃t(x)∥∞ f C
(
∥k̃∥1 + ∥k̃t∥∞

)
for λ < 2,

respectively

∥g ∗ k̃t(x)∥∞ f C ln(N)
(
∥k̃∥1 + ∥k̃t∥∞

)
for λ = 2.

b)

∥(gN )2 ∗ k̃t(x)∥∞ f CN (2λ−1)β
(
∥k̃∥1 + ∥k̃t∥∞

)
for λ < 2,

respectively

∥(gN )2 ∗ k̃t(x)∥∞ f CN3β
(
∥k̃∥1 + ∥k̃t∥∞

)
for λ = 2.

Proof. a) Let’s begin by estimating

∥g ∗ k̃t(x)∥∞ =
∥∥∥
�

g(x− y)k̃t(y) d
3y
∥∥∥
∞

(4.6)

f
∥∥∥

�

|x−y|<3N−β

g(x− y)k̃t(y) d
3y
∥∥∥
∞

(4.7)

+
∥∥∥

�

3N−β<|x−y|<1

g(x− y)k̃t(y) d
3y
∥∥∥
∞

(4.8)

+
∥∥∥

�

|x−y|>1

g(x− y)k̃t(y) d
3y
∥∥∥
∞
. (4.9)

We can bound the first Term (4.7) as follows:

∥∥∥
�

|x−y|<3N−β

g(x− y)k̃t(y) d
3y
∥∥∥
∞

f ∥k̃t∥∞∥gN∥∞|B(3N−β)|
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f 4

3
π(3N−β)3N (λ+1)β ∥k̃t∥∞ f C∥k̃t∥∞,

where B(r) represents a ball with radius r in R
3. For the second Term (4.8),

we have:

∥∥∥
�

3N−β<|x−y|<1

g(x− y)k̃t(y) d
3y
∣∣∣
∞

f ∥k̃t∥∞
�

3N−β<|y|<1

c

|y|λ+1
d3y

f 4πC ∥k̃t∥∞N (λ−2)β f C∥k̃t∥∞.

In case λ = 2, the second term can be estimated as:

∥∥∥
�

3N−β<|x−y|<1

g(x− y)k̃t(y) d
3y
∣∣∣
∞

f ∥k̃t∥∞
�

3N−β<|y|<1

c

|y|3 d
3y

f C∥k̃t∥∞ ln(N).

Finally, the last Term (4.9) is bounded by

∥∥∥
�

|x−y|>1

g(x− y)k̃t(y) d
3y
∥∥∥
∞

f c ∥k̃t∥1.

In total, we obtain

∥g ∗ k̃t(x)∥∞ =
∥∥∥
�

g(x− y)k̃t(y) d
3y
∥∥∥
∞

fC ln(N)(∥k̃t∥∞ + ∥k̃t∥1)

b) Similarly, we estimate

∥g2 ∗ k̃t(x)∥∞ =
∥∥∥
�

g2(x− y)k̃t(y) d
3y
∥∥∥
∞

(4.10)

f
∥∥∥

�

|x−y|<3N−β

g2(x− y)k̃t(y) d
3y
∥∥∥
∞

(4.11)

+
∥∥∥

�

3N−β<|x−y|<1

g2(x− y)k̃t(y) d
3y
∥∥∥
∞

(4.12)

+
∥∥∥

�

|x−y|>1

g2(x− y)k̃t(y) d
3y
∥∥∥
∞
. (4.13)

The first Term (4.11) is bounded by

∥∥∥
�

|x−y|<3N−β

g2(x− y)k̃t(y) d
3y
∥∥∥
∞
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f ∥k̃t∥∞∥(gN )2∥∞|B(3N−β)| f 4

3
π(3N−β)3N2(λ+1)β ∥k̃t∥∞

f CN2λβ+2β−3β∥k̃t∥∞ f CN2λβ−β∥k̃t∥∞,

where B(r) is the ball with radius r in R
3. The second Term (4.12) can be

estimated with

∥∥∥
�

3N−β<|x−y|<1

g2(x− y)k̃t(y) d
3y
∥∥∥
∞

f ∥k̃t∥∞
�

3N−β<|y|<1

c

|y|2λ+2
d3y

f 4πC ∥k̃t∥∞N (2λ+2−3)β

f CN2λβ−β∥k̃t|∞.

Finally, the last Term (4.13) is bounded by

∥∥∥
�

|x−y|>1

g2(x− y)k̃t(y) d
3y
∥∥∥
∞

f c ∥k̃t|1.

In total, we have

∥g2 ∗ k̃t(x)∥∞ =
∥∥∥
�

g2(x− y)k̃t(y) d
3y
∥∥∥
∞

f CN (2λ−1)β(∥k̃t|∞ + ∥k̃t|1)

Analogously, the estimates for the expectation value and the variance of H defined
in Definition 4.2 are valid.

Lemma 4.6. Let 0 < β f 1
3 , λ f 2 and assume that h : R3 → R satisfies

|h(q)| f C ·min{N (λ+2)β , |q|−λ−2)}

for some c > 0. Then there exists a constant Cl > 0 such that

∥h ∗ k̃t(x)∥∞ f CNλβ−β
(
∥k̃∥1 + ∥k̃t∥∞

)
.

and

∥h2 ∗ k̃t(x)∥∞ f CN2λβ+β
(
∥k̃∥1 + ∥k̃t∥∞

)
.

Proof. Similarily to the previous Lemma 4.5, we estimate the integral by splitting it
into three parts

∥h ∗ k̃t(x)∥∞ =
∥∥∥
�

h(x− y)k̃t(y) d
3y
∥∥∥
∞

(4.14)

f
∥∥∥

�

|x−y|<N−β

h(x− y)k̃t(y) d
3y
∥∥∥
∞

(4.15)
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+
∥∥∥

�

N−β<|x−y|<1

h(x− y)k̃t(y) d
3y
∥∥∥
∞

(4.16)

+
∥∥∥

�

|x−y|>1

h(x− y)k̃t(y) d
3y
∥∥∥
∞
. (4.17)

The first Term (4.15) is bounded by

∥∥∥
�

|x−y|<N−β

h(x− y)k̃t(y) d
3y
∥∥∥
∞

f ∥k̃t∥∞N (λ+2)β |B(N−β)| f 4

3
π ∥k̃t∥∞Nλβ−β ,

where B(r) is the ball with radius r in R
3 . The last Term (4.17) is bounded by

∥∥∥
�

|x−y|>1

h(x− y)k̃t(y) d
3y
∥∥∥
∞

f C ∥k̃t∥1.

Finally, the second Term (4.16) yields

∥∥∥
�

N−β<|x−y|<1

h(x− y)k̃t(y) d
3y
∥∥∥
∞

f ∥k̃t∥∞
�

N−β<|y|<1

c

|y|λ+2
d3y

f 4πcβ ∥k̃t∥∞N (λ+2)β−3β

f C ∥k̃t∥∞Nλβ−β .

We estimate, analogously to the previous lemma,

∥h2 ∗ k̃t(x)∥∞ =
∥∥∥
�

h2(x− y)k̃t(y) d
3y
∥∥∥
∞

(4.18)

f
∥∥∥

�

|x−y|<N−β

h2(x− y)k̃t(y) d
3y
∥∥∥
∞

(4.19)

+
∥∥∥

�

N−β<|x−y|<1

h2(x− y)k̃t(y) d
3y
∥∥∥
∞

(4.20)

+
∥∥∥

�

|x−y|>1

h2(x− y)k̃t(y) d
3y
∥∥∥
∞
. (4.21)

The first Term (4.19) is bounded by

∥∥∥
�

|x−y|<N−β

h2(x− y)k̃t(y) d
3y
∥∥∥
∞

f ∥k̃t∥∞N (2λ+4)β |B(N−β)| f 4

3
π ∥k̃t∥∞N2λβ+β ,

where B(r) is the ball with radius r in R
3. The last Term (4.21) is bounded by

∥∥∥
�

|x−y|>1

h2(x− y)k̃t(y) d
3y
∥∥∥
∞

f c ∥k̃t∥1.
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Finally, the second Term (4.20) yields

∥∥∥
�

N−β<|x−y|<1

h2(x− y)k̃t(y) d
3y
∥∥∥
∞

f ∥k̃t∥∞
�

N−β<|y|<1

c

|y|2λ+4
d3y

f 4πcβ ∥k̃t∥∞N (2λ+4)β−3β

f C ∥k̃t∥∞N2λβ+β .

In total we get for the variance

∥h2 ∗ k̃t(x)∥∞ =
∥∥∥
�

h2(x− y)k̃t(y) d
3y
∥∥∥
∞

f CN2λβ+β(∥k̃t∥∞ + ∥k̃t∥1)

4.2.2 Law of large numbers for G and H

We want to show two probability bounds for G and H, i.e. we will show, that the
random variables and their expectation value will not deviate much. Therefore we
apply the concentration inequality defined in Lemma 2.11 on

Zj =
(
gN (q̄t1 − q̄tj)− Ḡ(Q̄)j

)

in the first part of the proof and on

Zj =
(
hN (q̄t1 − q̄tj)− H̄(Q̄)j

)

in the second part. Therefore we prove the following version of the law of large
numbers.

Lemma 4.7. At any fixed time t ∈ [0, T ], suppose that X̄t satisfies the mean-field

dynamics, GN and ḠN are defined in Definition (4.22) and (4.2), HN and H
N

are
introduced in Definition (4.23) and (4.3). For any α > 0 and (λ+ 1)β < 1, there is
a constant C > 0 such that

P

(
∥GN (X̄t)−G

N
(X̄t)∥∞ g CN (λ+1)β−1 ln(N)

)
f N−α (4.22)

and

P

(
N−β∥HN (X̄t)−H

N
(X̄t)∥∞ g CN (λ+1)β−1 ln(N)

)
f N−α. (4.23)

Proof. We apply Lemma 2.11 to Zj := gN (qt1 − qtj)−
�
R3 g

N (qt1 − q)k̃N (q, t)dq and
due to the exchangeability of the particles, we can estimate

(GN (X̄t))1 − (ḠN (X̄t))1 =
1

N

N∑

j=2

gN (qt1 − qtj)−
�
R3

gN (qt1 − q)k̃N (q, t)d3q
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=
1

N

N∑

j=2

Zj .

The mean-field particles qt1 and qtj are independent for j ̸= 1 and gN (0) = 0. If we
denote E

′[ · ] = E[ · |qt1] and consider qt1 as given, then by

E
′ [gN (qt1 − qtj)

]
=

�
R6

gN (qt1 − q)kN (q, p, t)d3qd3p =

�
R3

gN (qt1 − q)k̃N (q, t)d3q.

it follows, that E
′[Zj ] = 0. So the first assumption on the expectation value of

Lemma 2.11 is fulfilled. We also get a bound for the variance

E
′[|Zj |2

]
= E

′
[∣∣∣∣g

N (qt1 − qtj)−
�
R3

gN (qt1 − q)k̃N (q, t)ddq

∣∣∣∣
2
]

by applying the previous Lemma 4.5. It follows in the case λ = 2, that

E
′[gN (qt1 − qtj)

]
=

�
R3

gN (qt1 − q)k̃N (q, t)dq f C ln(N)(∥k̃N∥1 + ∥k̃N∥∞) f C ln(N),

and

E
′[gN (qt1 − qtj)

2
]
=

�
R3

gN (qt1 − q)2k̃N (q, t)dq f CN3β .

similarly

E
′[gN (qt1 − qtj)

2
]
=

�
R3

gN (qt1 − q)2k̃N (q, t)dq f CN (λ+1)β .

for λ < 2. So one can apply Lemma 2.11 with the increasing sequence r(N) =
CN (2(λ+1)β−1 and it follows that |Zj | f CN (λ+1)β f C

√
Ng(N). By using Lemma

2.11, we get the bounds in probability

P

(∣∣(GN (X̄t))1 − (ḠN (X̄t))1
∣∣ g CN (λ+1)β−1 ln(N)

)
f N−α. (4.24)

and so for the indices i = 2, · · · , N we have

P

(
∥GN (X̄t)− ḠN (X̄t)∥∞ g CN (λ+1)β−1 ln(N)

)
f N1−α.

To prove (4.23) we estimate, like above,

(HN (X̄t))1 − (H
N
(X̄t))1

=
1

N

N∑

j=2

hN (qt1 − q̄tj)−
�
R3

hN (qt1 − q)k̃N (q, t)d3q =
1

N

N∑

j=2

Zj ,

with

Zj = hN (qt1 − qtj)−
�
R3

hN (qt1 − q)k̃N (q, t)d3q.
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It is easy to show that E′[Zj ] = 0 as well in the case of hN .

E
′ [hN (qt1 − qtj)

]
=

�
R6

hN (qt1 − q)kN (q, p, t)d3qd3p =

�
R3

hN (qt1 − q)k̃N (q, t)d3q.

To use Lemma 2.11, we also need a bound for the expectation value and the variance.
We estimate by applying lemma 4.6

E
′[hN (qt1 − qtj)

]
=

�
R3

hN (qt1 − q)k̃N (q, t)d3q f CNλβ−β(∥k̃∥1 + ∥k̃∥∞) f CNλβ−β ,

and

E
′[hN (qt1 − xtj)

2
]
=

�
R3

hN (qt1 − q)2k̃N (q, t)dq

f CN (2λ+1)β(∥k̃∥1 + ∥k̃∥∞)

f CN2λβ+β .

Hence one has for the variance

E
′[|Zj |2

]
f CN2λβ+β .

So the hypotheses of Lemma 2.11 are satisfied with r(N) = CN2λβ+4β−1. In
addition, it follows that N−β |Zj | f CN (λ+2)β−β f C

√
N · r(N)N−β . Hence we get

the probability bound

P

(∣∣∣N−β(HN (Xt))1 − (H̄N (Xt))1

∣∣∣ g CNλβ+β−1 ln(N)
)
f N−α,

by Lemma 2.11, which leads to

P

(
∥N−β(HN (Xt)−H

N
(Xt))∥∞ g CNλβ+β−1 ln(N)

)
f N1−α.

As a direct consequence of Lemma 4.7 we have the following statements.

Corollary 4.8. Let G,H : R
3 → R be functions which fulfill the assumptions

in Lemma 4.4 for some constant C and let the parameters be chosen such that
(λ+ 1)β < 1. Then there exists a zero sequence (aN )N∈N such that

P(||G(X)− Ḡ(X)||∞ > aN )
N→∞−−−−→ 0

and a zero sequence (bN )N∈N such that

P(N−β ||H(X)− H̄s(X)||∞ > bN )
N→∞−−−−→ 0.

Due to the proofs presented in [7, 32] the following holds.

Lemma 4.9. For the parameters chosen such that (λ + 1)β < 1, let Ψt,s be the
N -particle flow defined in Definition 1.1 with cut-off width N−β and let Φt,s be the
N -particle mean-field flow (1.4) induced by fN as defined in (1.4). Then, for any
T > 0, there is a constant Cδ such that for any δ > 0

P

[
∃t ∈ [0, T ] : ||ΨN

t,0(Z)− ΦN
t,0(X)||∞ g N−β

]
f TCδ

N δ
, (4.25)

where |·|∞ denotes the maximum-norm on R
6N .
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4.3 Effects of the Disturbance for the whole System

In this chapter, we examine the impact of a singular perturbation in the position on
the system’s evolution. The initial conditions of the disturbed system Xδ is given by
Xδ

1(0) = X1(0) + δ and Xδ
k(0) = Xk(0) for all k ≠ 1. Our primary interest lies in

investigating the distance between X and Xδ after a time t. We are interested in
how a single disturbance in the position affects the evolution of the whole system.
Therefore, in Chapter 4.3.1, we consider the effect of the disturbance on the first
coordinate, which is the one that was disturbed at time t = 0. In Chapter 4.3.2, we
will compute the impact of this disturbance on the remaining coordinates.
Since we consider a second order system X including a position and a momentum
part

∣∣∣Ψt(X)−Ψδ
t (X

δ)
∣∣∣
∗
= a

∣∣∣Ψ1
t (X)−Ψ1,δ

t (Xδ)
∣∣∣
∞

+ b
∣∣∣Ψ2

t (X)−Ψ2,δ
t (Xδ)

∣∣∣
∞

. The derivative of the difference is given by

d
∣∣Ψt(X)−Ψδ

t (X
δ)
∣∣
∗

dt
f a

∣∣∣Ψ1
t (X)−Ψ1,δ

t (Xδ)
∣∣∣
∞

+ b
∣∣∣F (Ψ1

t (X))− F (Ψ1,δ
t (Xδ))

∣∣∣
∞
.

In the case of λ = 2 we have to weight the norm by setting a =
√

ln(N), b = 1 while
in the case of λ < 2 we can set a = b = 1. The first term is already a sufficient bound
in view of Gronwall’s Lemma. To estimate this equation for proving Theorem 4.3 we
split the norm into two parts

∣∣∣Ψt(X)−Ψδ
t (X

δ)
∣∣∣
∞

=
∣∣∣
[
Ψt(X)−Ψδ

t (X
δ)
]
1

∣∣∣
∞

+

∣∣∣∣
[
Ψt(X)−Ψδ

t (X
δ)
]
\1

∣∣∣∣
∞
,

where [·]1 stands for the first component of the vector and [·]\1 for all other components

and use a Gronwall type argument for
∣∣Ψt(X)−Ψδ

t (X
δ)
∣∣
∞ .

4.3.1 Impact of the disturbance on the first coordinate

At first, we will estimate the difference in the first coordinate. Note that the first
coordinate of the second component of Ψt(X)−Ψδ

t (X
δ), namely the distance of the

momentum, is determined by

[
Ψ2

t (X)−Ψ2,δ
t

(
Xδ
)]

1

=

� t

0
ds

1

N

N∑

k=2

(
f
([
Ψ1

t (X)
]
1
−
[
Ψ1

t (X)
]
k

)
− f

([
Ψ1,δ

t

(
Xδ
)]

1
−
[
Ψ1,δ

t

(
Xδ
)]

k

))
.

As the growth stems from fluctuations in the forces, we will estimate the difference in

the forces exhibited in the first coordinate, where
[
Ψ1,δ

t (Xδ)
]
denotes the disturbed

position developing in time.

d

dt

∣∣∣
[
Ψ2

t (X)−Ψ2,δ
t (Xδ)

]
1

∣∣∣
∞
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f
∣∣∣∣∣
1

N

N∑

k=2

(
f
([
Ψ1

t (X)
]
1
−
[
Ψ1

t (X)
]
k

)
− f

([
Ψ1,δ

t (Xδ)
]
1
−
[
Ψ1,δ

t (Xδ)
]
k

))∣∣∣∣∣
∞

f
∣∣∣∣∣
1

N

N∑

k=2

(
f
([
Ψ1

t (X)
]
1
−
[
Ψ1

t (X)
]
k

)
− f

([
Ψ1,δ

t (Xδ)
]
1
−
[
Ψ1

t (X)
]
k

))

+ f
([

Ψ1,δ
t (Xδ)

]
1
−
[
Ψ1

t (X)
]
k

)
− f

([
Ψ1,δ

t (Xδ)
]
1
−
[
Ψ1,δ

t (Xδ)
]
k

)∣∣∣
∞

f
∣∣∣∣∣
1

N

N∑

k=2

(
f
([
Ψ1

t (X)
]
1
−
[
Ψ1

t (X)
]
k

)
− f

([
Ψ1,δ

t (Xδ)
]
1
−
[
Ψ1

t (X)
]
k

))∣∣∣∣∣
∞

(4.26)

+

∣∣∣∣∣
1

N

N∑

k=2

f
([

Ψ1,δ
t (Xδ)

]
1
−
[
Ψ1

t (X)
]
k

)
− f

([
Ψ1,δ

t (Xδ)
]
1
−
[
Ψ1,δ

t (Xδ)
]
k

)∣∣∣∣∣
∞
(4.27)

Both Terms (4.26) and (4.27) can be estimated by stochastic arguments using
the mean-field-force ḡNt defined by ḡNt (q) = gN ∗ k̃Nt (q), where k̃Nt : R × R

3 → R
+
0

is the spatial density from the Vlasov equation and X̄ := (Q̄, P̄ ) as defined in (4.2).
Heuristically spoken, we replace the force by its expectation value. We can show
that for typical initial conditions the disturbance in one coordinate does not effect
the system a lot, but in the case of clustering things can go wrong.
For f and g defined in Definition 4.1 and 4.2 we can show with the equalities from

Lemma 4.4 and by setting |[Ψt(X)]1 − [Ψt(X)]k| f
∣∣∣
[
Ψ1,δ

t (Xδ)
]
1
− [Ψt(X)]k

∣∣∣ without
loss of generality, that

(4.26) =

∣∣∣∣∣
1

N

N∑

k=2

f
([
Ψ1

t (X)
]
1
−
[
Ψ1

t (X)
]
k

)
− f

([
Ψ1,δ

t (Xδ)
]
1
−
[
Ψ1

t (X)
]
k

)∣∣∣∣∣
∞

f 1

N

N∑

k=2

Cg
([
Ψ1

t (X)
]
1
−
[
Ψ1

t (X)
]
k

) ∣∣∣
[
Ψ1

t (X)
]
1
−
[
Ψ1,δ

t (Xδ)
]
1

∣∣∣
∞

f C
(
G
(
Ψ1

t (X)
)
1
·
∣∣∣
[
Ψ1

t (X)
]
1
−
[
Ψ1,δ

t (Xδ)
]
1

∣∣∣
∞

)

f C

(
1

N

N∑

k=2

g
([
Ψ1

t (X)
]
1
−
[
Ψ1

t (X)
]
k

)
+ Ḡ (Φt(X))1 − Ḡ (Φt(X))1

+
1

N

N∑

k=2

g
(
ϕ1
t (X1)− ϕ1

t (Xk)
)
− 1

N

N∑

k=2

g
(
ϕ1
t (X1)− ϕ1

t (Xk)
)
)

·
∣∣∣
[
Ψ1

t (X)
]
1
−
[
Ψ1,δ

t (Xδ)
]
k

∣∣∣
∞(

Ḡ (Φt(X))1 +
1

N

N∑

k=2

h
(
ϕ1
t (X1)− ϕ1

t (Xk)
)

·
∣∣[−Ψ1

t (X)
]
k
+ ϕ1

t (X1) +
[
Ψ1

t (X)
]
1
− ϕ1

t (X1)
∣∣
∞

+
1

N

N∑

k=2

g
(
ϕ1
t (X1)− ϕ1

t (Xk)
)
− Ḡ

(
Φ1
t (X)

)
1

)
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f C
∣∣∣
[
Ψ1

t (X)
]
1
−
[
Ψ1,δ

t (Xδ)
]
1

∣∣∣

·
(
Ḡ
(
Φ1
t (X)

)
1

(4.28)

+ CHN
(
Φ1
t (X)

)
1
· |Ψ1

t (X)− Φ1
t (X)|∞ (4.29)

+
1

N

N∑

k=2

g
(
ϕ1
t (X1)− ϕ1

t (Xk)
)
− Ḡ (Φt(X))1

)
(4.30)

The second summand (4.27) is bounded by similar arguments, because we can show
with the equalities from Lemma 4.4, for f and g defined in (4.1) and (4.2) and

by setting
∣∣∣
[
Ψδ

t (X
δ)
]
1
−
[
Ψδ

t (X
δ)
]
k
|∞ f |

[
Ψ1,δ

t (Xδ)
]
1
− [Ψt(X)]k

∣∣∣
∞

without loss of

generality, that

(4.27) =

∣∣∣∣∣
1

N

N∑

k=2

f
([

Ψ1,δ
t (Xδ)

]
1
−
[
Ψ1

t (X)
]
k

)
− f

([
Ψ1,δ

t (Xδ)
]
1
−
[
Ψ1,δ

t (Xδ)
]
k

)∣∣∣∣∣
∞

f C

N

N∑

k=2

g
([

Ψ1,δ
t (Xδ)

]
1
−
[
Ψ1,δ

t (Xδ)
]
k

)
·
∣∣∣∣
([

Ψ1,δ
t (Xδ)

]
−
[
Ψ1

t (X)
])

\1

∣∣∣∣
∞

f C

∣∣∣∣
([

Ψ1,δ
t (Xδ)

]
−
[
Ψ1

t (X)
])

\1

∣∣∣∣
∞

·
∣∣∣G(Ψ1,δ(Xδ))1 − Ḡ(Φ1,δ(Xδ))1

+Ḡ(Φ1,δ(Xδ))1 −G(Φ1,δ(Xδ))1 +G(Φ1,δ(Xδ))1

∣∣∣
∞

f C

(
1

N

N∑

k=2

g
([

Ψ1,δ
t (Xδ)

]
1
−
[
Ψ1,δ

t (Xδ)
]
k

)
+ Ḡ

(
Φ1,δ
t (X)

)
1
− Ḡ

(
Φ1,δ
t (X)

)
1

+
1

N

N∑

k=2

g
(
ϕ1,δ
t (Xδ

1)− ϕ1,δ
t (Xδ

k)
)
− 1

N

N∑

k=2

g
(
ϕ1,δ
t (Xδ

1)− ϕ1,δ
t (Xδ

k)
))

·
∣∣∣∣
([

Ψ1,δ
t (Xδ)

]
−
[
Ψ1

t (X)
])

\1

∣∣∣∣
∞

f C ·
∣∣∣∣
([

Ψ1,δ
t (Xδ)

]
−
[
Ψ1

t (X)
])

\1

∣∣∣∣
∞

·
(
Ḡ
(
Φδ
t (X)

)
1
+

1

N

N∑

k=2

h
(
ϕ1,δ
t (Xδ

1)− ϕ1,δ
t (Xδ

k)
)

·
∣∣∣
[
−Ψ1,δ

t (Xδ)
]
k
+ ϕ1,δ

t (Xδ
1) +

[
Ψ1,δ

t (Xδ)
]
1
− ϕ1,δ

t (Xδ
1)
∣∣∣
∞

+
1

N

N∑

k=2

g
(
ϕ1,δ
t (Xδ

1)− ϕ1,δ
t (Xδ

k)
)
− Ḡ

(
Φ1,δ
t (Xδ)

)
1

)

f C

∣∣∣∣
([

Ψ1,δ
t (Xδ)

]
−
[
Ψ1

t (X)
])

\1

∣∣∣∣
∞
·

(
Ḡ
(
Φ1,δ
t (Xδ)

)
1

(4.31)
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+ CHN
(
Φ1,δ
t (Xδ)

)
1
· |Ψ1,δ

t (Xδ)− Φ1,δ
t (Xδ)|∞ (4.32)

+
1

N

N∑

k=2

g
(
ϕ1,δ
t (Xδ

1)− ϕ1,δ
t (Xδ

k)
)
− Ḡ

(
Φδ
t (X

δ)
)
1

)
(4.33)

To shorten the notation we will partition the phase space into subsets. In Lemma 4.7
and 4.9 it is shown that these configurations of the system are the most likely ones.

Definition 4.10. For any t ∈ R the sets At,Aδ
t ,Bt,Bδ

t , Ct, Cδ
t are given by

At =
{
|Ψt,0(X)− Φt,0(X)|∞ f N−β

}

Aδ
t =

{
|Ψδ

t,0(X
δ)− Φδ

t,0(X
δ)|∞ f N−β

}

Bt =
{∣∣∣GN (X̄t)−G

N
(X̄t)

∣∣∣
∞

f C ln(N)N (λ+1)β−1
}

Bδ
t =

{∣∣∣GN (X̄δt)−G
N
(X̄δ

t)
∣∣∣
∞

f C ln(N)N (λ+1)β−1
}

Ct =
{
(N−β

∣∣∣HN (X̄t)−H
N
(X̄t)

∣∣∣
∞

f CN (λ+1)β ln(N)
}

Cδ
t =

{
(N−β

∣∣∣HN (X̄δ
t)−H

N
(X̄δ

t)
∣∣∣
∞

f CN (λ+1)β ln(N)
}
.

Under the event At ∩ Bt ∩ Ct we can estimate Term (4.28) by Lemma 4.4. For
the second Term (4.29) it follows by 2.11 that HN (Q̄)1 f ||h ∗ k̃t||∞ +N (λ+2)β ln(N)
and we can estimate

∣∣∣∣∣
1

N

N∑

k=2

h
(
ϕ1
t (X1)− ϕ1

t (Xk)
)
−
[
Ψ1

t (X)
]
k
+ ϕ1

t (Xk) +
[
Ψ1

t (X)
]
1
− ϕ1

t (X1)

∣∣∣∣∣
∞

f CHN
(
ϕ1
t (X1)

)
·
∣∣Ψ1

t (X)− Φ1
t (X)

∣∣
∞

f
(
∥h ∗ k̃t∥∞ +N (λ+2)β−1 ln(N)

) ∣∣Ψ1
t (X)− Φ1

t (X)
∣∣
∞

f
(
C ·Nλβ+2β−1(∥k̃∥1 + ∥k̃t∥∞) +N (λ+1)β−1 ln(N)

) ∣∣Ψ1
t (X)− Φ1

t (X)
∣∣
∞ .

For the last Term (4.30) we apply 2.11, i.e. that P(| 1N
∑N

k=2 g(q̄1 − q̄k)− Ḡ(Q̄)1|∞ >

ln(N)N (λ+1)β) f CεN
−ε for some ε > 0.

In total we get a probabilistic bound for (4.26) and for the difference in the first
component that

d

dt

[
Ψ2

t (X)−Ψ2,δ
t (Xδ)

]
1
f C ln(N)N (λ+1)β−1

∣∣∣
[
Ψ1

t (X)
]
1
−
[
Ψ1,δ

t (Xδ)
]
1

∣∣∣
∞

+ CN (λ+1)β−1

∣∣∣∣
([

Ψ1
t (X)

]
−
[
Ψ1,δ

t (Xδ)
])

\1

∣∣∣∣
∞
.

Under the event Aδ
t ∩Bδ

t ∩Cδ
t we can estimate Term (4.31) by Lemma 4.4. It is either

of order one, or in case λ = 2 of order ln(N). For the second Term (4.32) it follows

by 2.11 that HN (
¯

Φ1,δ
t )1 f |h ∗ k̃t|+N (λ+2)β ln(N) and we can estimate

∣∣∣∣∣
1

N

N∑

k=2

h
(
ϕ1,δ
t (Xδ

1)− ϕ1,δ
t (Xδ

k)
)
−
[
Ψ1,δ

t (Xδ)
]
k
+ ϕ1,δ

t (Xδ
k) +

[
Ψ1,δ

t (Xδ)
]
1
− ϕ1,δ

t (Xδ
1)

∣∣∣∣∣
∞
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f CHN
(
ϕ1,δ
t (Xδ

1)
)
·
∣∣∣Ψ1,δ

t (Xδ)− Φ1,δ
t (Xδ)

∣∣∣
∞

f
(
||h ∗ k̃t||∞ +N (λ+2)β−1 ln(N)

) ∣∣∣Ψ1,δ
t (Xδ)− Φ1,δ

t (Xδ)
∣∣∣
∞

f
(
C ·Nλβ+2β−1(

∣∣∣k̃
∣∣∣
1
+
∣∣∣k̃t
∣∣∣
∞
) +N (λ+1)β−1 ln(N)

) ∣∣∣Ψ1,δ
t (Xδ)− Φ1,δ

t (Xδ)
∣∣∣
∞
.

In the last Term (4.33) we applied 2.11 again.
In total we get a probabilistic bound for (4.27) and for the difference in the first
component that

d

dt

[
Ψ2

t (X)−Ψ2,δ
t (Xδ)

]
1
f C ln(N)N (λ+1)β−1

∣∣∣
[
Ψ1

t (X)
]
1
−
[
Ψ1,δ

t (Xδ)
]
1

∣∣∣
∞

+ C ln(N)N (λ+1)β−1

∣∣∣∣
([

Ψ1
t (X)

]
−
[
Ψ1,δ

t (Xδ)
])

\1

∣∣∣∣
∞

f C ln(N)N (λ+1)β−1
[
Ψ1

t (X)−Ψ1,δ
t (Xδ)

]
.

4.3.2 Impact of the disturbance on 1 ̸= j−th component

Now we give an estimate for the influence of the disturbance for the other N − 1
components of the vector X − X̄.

d

dt

∣∣∣∣
[
Ψ2

t (X)−Ψ2,δ
t (Xδ)

]
\1

∣∣∣∣
∞

=
N∑

j=2

∣∣∣∣∣∣
1

N

∑

k ̸=j

(
f(
[
Ψ1

t (X)
]
j
−
[
Ψ1

t (X)
]
k
)

−f

([
Ψ1,δ

t (Xδ)
]
j
−
[
Ψ1,δ

t (Xδ)
]
k

))∣∣∣∣
∞

We will have a look at the difference in the j-th coordinate with j ̸= 1 and as the
difference in the trajectories stems from the difference in the respective force we argue
analogously to the previous section. To estimate the sum we split it into two terms,
one for k = 1 and one for the rest, as the first coordinate is the one that got disturbed.

Let j ≠ 1 and let us assume
∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψ1

t (X)
]
k

∣∣∣
∞

f
∣∣∣
[
Ψδ

t (X
δ)
]
j
−
[
Ψδ

t (X
δ)
]
k

∣∣∣
without loss of generality.

N∑

j=2

1

N

∣∣∣∣∣∣

∑

k ̸=j

(
f
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
k

)
− f

([
Ψδ

t (X
δ)
]
j
−
[
Ψδ

t (X
δ)
]
k

))∣∣∣∣∣∣
∞

=
N∑

j=2

1

N

∣∣∣∣∣∣


∑

k ̸=j

(
f
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
k

)
− f

([
Ψδ

t (X
δ)
]
j
−
[
Ψδ

t (X
δ)
]
k

))

+

(
f
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
1

)
− f

([
Ψ1,δ

t (Xδ)
]
j
−
[
Ψ1,δ

t (Xδ)
]
1

)))∣∣∣∣
∞

f
N∑

j=2

1

N

(
∑

k ̸=j,k ̸=1

(
g
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
k

)(∣∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψ1,δ

t (Xδ)
]
j

∣∣∣∣
∞

+
∣∣∣
[
Ψ1

t (X)
]
k
−
[
Ψ1,δ

t (Xδ)
]
k

∣∣∣
))

(4.34)
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+ g
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
1

)

·
(
|
[
Ψ1

t (X)
]
j
−
[
Ψ1,δ

t (Xδ)
]
j
|+ |

[
Ψ1

t (X)
]
1
−
[
Ψ1,δ

t (Xδ)
]
1

))
(4.35)

For the first summand (4.34) we get

1

N

N∑

j=2

∑

k ̸=j

g
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
k

)

·
(∣∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψδ

t (X
δ)
]
j

∣∣∣∣
∞

+
∣∣∣
[
Ψ1

t (X)
]
k
−
[
Ψδ

t (X
δ)
]
k

∣∣∣
∞

)

f 1

N

N∑

j=2

∑

k ̸=j

g
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
k

) ∣∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψδ

t (X
δ)
]
j

∣∣∣∣
∞

+
1

N

N∑

j=2

∑

k ̸=j

g
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
k

) ∣∣∣
[
Ψ1

t (X)
]
k
−
[
Ψδ

t (X
δ)
]
k

∣∣∣
∞

f 1

N

N∑

j=2

∣∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψδ

t (X
δ)
]
j

∣∣∣∣
∞

∑

k ̸=j

g
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
k

)

+
1

N

N∑

k=2

∣∣∣
[
Ψ1

t (X)
]
k
−
[
Ψδ

t (X
δ)
]
k

∣∣∣
∞

∑

j ̸=k

g
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
k

)

f 2

N − 1

N∑

j=2

∣∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψδ

t (X
δ)
]
j

∣∣∣∣
∞

∑

k ̸=j

g
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
k

)
,

We can switch the sums because they are finite and, like g, symmetric in k an j. The
inner sum can be estimated as follows

1

N

∑

k ̸=j

g
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
k

)

f C
(
Ḡ
(
Φ1
t (X)

)
j

+
1

N

N∑

k=2

h
([

Ψ1
t (X)

]
j
− ϕ1

t (Xk)
) ∣∣∣−

[
Ψ1

t (X)
]
k
+ ϕ1

t (Xk) +
[
Ψ1

t (X)
]
j
− ϕ1

t (Xj)
∣∣∣
∞

+
1

N

N∑

k=2

g
(
ϕ1
t (Xj)− ϕ1

t (Xk)
)
− Ḡ

(
Φ1
t (X)

)
j

)

f C ln(N)N (λ+1)β−1.

For the second summand (4.35) we get

1

N

N∑

j=2

(g(
[
Ψ1

t (X)
]
j
−
[
Ψ1

t (X)
]
1
)



4.3 Effects of the Disturbance for the whole System 102

·
(
|
[
Ψ1

t (X)
]
j
−
[
Ψδ

t (X
δ)
]
j
|+
∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψδ

t (X
δ)
]
1

∣∣∣
∞

)

f 1

N

N∑

j=2

Nλβ+β |
[
Ψ1

t (X)
]
j
−
[
Ψδ

t (X
δ)
]
j
|∞

+
1

N

N∑

j=2

g(
[
Ψ1

t (X)
]
j
−
[
Ψ1

t (X)
]
1
) · |
[
Ψ1

t (X)
]
1
−
[
Ψδ

t (X
δ)
]
1
|∞

f Nλβ+β−1
N∑

j=2

∣∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψδ

t (X
δ)
]
j

∣∣∣∣
∞

+ C
( 1

N

N∑

j=2

g

([
Ψδ

t (X
δ)
]
j
−
[
Ψδ

t (X
δ)
]
1

)
+ Ḡ(Φ1

t (X))1 − Ḡ(Φ1
t (X))1

+
1

N

N∑

j=2

g(ϕ1
t (X1)− ϕ1

t (Xk))−
1

N

N∑

j=2

g(ϕ1
t (X1)− ϕ1

t (Xk))
)

·
∣∣∣
[
Ψ1

t (X)
]
1
−
[
Ψδ

t (X
δ)
]
1

∣∣∣
∞

f Nλβ+β−1
N∑

j=2

∣∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψδ

t (X
δ)
]
j

∣∣∣∣
∞

+ C
(
Ḡ(Φ1

t (Xj))1 (4.36)

+ CHN (Φ1
t (X))1 · |Φ1

t − Φ1
t |∞) (4.37)

+
1

N

N∑

j=2

g(ϕ1
t (X1)− ϕ1

t (Xj))− Ḡ(Φ1
t (X))1

)
(4.38)

·
∣∣∣
[
Ψ1

t (X)
]
1
−
[
Ψδ

t (X
δ)
]
1

∣∣∣
∞
.

Under the event At ∩ Bt ∩ Ct, by estimating the terms analogous to the previous
section we get that

d

dt

∣∣∣∣
[
Ψ2

t (X)−Ψ2,δ
t (Xδ)

]
\1

∣∣∣∣
∞

f C

N
ln(N)N (λ+1)β

N∑

j=2

∣∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψδ

t (X
δ)
]
j

∣∣∣∣
∞

+ CNλβ+β−1
N∑

j=2

∣∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψδ

t (X
δ)
]
j

∣∣∣∣
∞

+ CN (λ+1)β−1 ln(N)
∣∣∣
[
Ψ1

t (X)
]
1
−
[
Ψδ

t (X
δ)
]
1

∣∣∣
∞

f C ln(N)N (λ+1)β−1

∣∣∣∣
[
Ψ1

t (X)−Ψ1,δ
t (Xδ)

]
\1

∣∣∣∣
∞

+ C ln(N)N (λ+1)β−1
N∑

j=2

∣∣∣
[
Ψ1

t (X)
]
1
−
[
Ψδ

t (X
δ)
]
1

∣∣∣
∞
.
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4.4 Definition of distance

To provide the probabilistic bound of Theorem 4.3 we introduce a suitable notion
of distance, which is defined similarly to Definition 1.4. This time it measures the
distance between Ψt(X)−Ψδ

t (X
δ)

Definition 4.11. Let Ψs,0(X) be the microscopic flow and the disturbed microscopic
flow Ψδ

s,0(X
δ) defined in Definition 1.1. We denote the projection onto the spatial

or respectively the momentum coordinates by Ψ1
s,0(X) = (qi(t))1fifN and Ψ2

s,0(X) =
(pi(t))1fifN . For T > 0 and without loss of generality N > 1 the auxiliary process is
defined by

JN
t (X) := min

{
1, sup

0fsft

{
1

δ
·
(
√

ln(N)
∣∣Ψ1

t,0(X)−Ψ1,δ
t,0 (X

δ)
∣∣
∞

+
∣∣Ψ2

t,0(X)−Ψ2,δ
t,0 (X

δ)
∣∣
∞

)}}

for 0 f t f T .

The factor
√
ln(N) is only necessary in the case β = 1

3 . Remember from
Chapter 1.5 that

P

(
sup
0fsft

∣∣∣
[
Ψt(X)−Ψ1,δ

t (Xδ)
]∣∣∣

∞
g δ

)
= P(JN

t = 1) f E(JN
t ).

Proof of Theorem 4.3. Let Lt = At∩Bt∩Ct∩Aδ
t∩Bδ

t∩Cδ
t and consider the expectation

E(JN
t ) which we split as follows

E(JN
t ) = E

(
JN
t | |JN

t (X)|∞ = 1
)
+ E

(
JN
t | |JN

t (X)|∞ < 1 ' X /∈ Lt

)

+ E(JN
t | X ∈ Lt).

For |JN
t (X)|∞ = 1, we have d

dtJ
N
t (X) = 0, since JN

t (Z) is already maximal and thus
also

d

dt
Et(J

N
t | |JN

t (X)|∞ = 1) = 0. (4.39)

Furthermore, according to Lemma 4.7, for any κ > 0 we can find the constant Cκ

such that
d

dt
E
(
JN
t | |JN

t (X)|∞ < 1 ' X /∈ Lt

)
f eλ

√
log(N)T Cκ

Nκ
.

The last summand E(JN
t | X ∈ Lt) is bounded due to Chapter 4.3.1. Under the

event Lt it holds that

d

dt

∣∣∣
[
Ψ2

t (X)−Ψ2,δ
t (Xδ)

]
1

∣∣∣
∞

f C ln(N)N (λ+1)β−1
∣∣∣
[
Ψ1

t (X)
]
1
−
[
Ψδ

t (X
δ)
]
1

∣∣∣
∞

+ CN (λ+1)β−1|(Ψ1
t (X)−Ψ,δ

t (X
δ))\1|∞

d

dt

∣∣∣∣
[
Ψ2

t (X)−Ψ2,δ
t (Xδ)

]
\1

∣∣∣∣
∞

f C

N
ln(N)N (λ+1)β−1

N∑

j=2

∣∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψδ

t (X
δ)
]
j

∣∣∣∣
∞
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+ CNλβ+β−1
N∑

j=2

∣∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψδ

t (X
δ)
]
j

∣∣∣∣
∞

+ CN (λ+1)β−1 ln(N)
∣∣∣
[
Ψ1

t (X)
]
1
−
[
Ψδ

t (X
δ)
]
1

∣∣∣
∞

f C ln(N)N (λ+1)β−1|(Ψ1
t (X)−Ψ,δ

t (X
δ))\1|∞

+ C ln(N)N (λ+1)β−1
N∑

j=2

∣∣∣
[
Ψ1

t (X)
]
1
−
[
Ψδ

t (X
δ)
]
1

∣∣∣
∞

For the whole vector we conclude that

d

dt

∣∣∣
[
Ψ2

t (X)−Ψ2,δ
t (Xδ)

]∣∣∣
∞

f CN (λ+1)β−1 ln(N)
∣∣∣
[
Ψ1

t (X)
]
1
−
[
Ψδ

t (X
δ)
]
1

∣∣∣
∞

We can consequently estimate

d

dt
E
(
JN
t

)
f CN (λ+1)β ln(N)E

(
JN
t

)
.

Gronwall’s inequality and the definition of JN
t implies that the magnitude of the

difference is bounded by δ with high probability, given that the initial difference is
only δ. Therefore there exists a η for every Cη such that

P

(
sup
0fsft

∣∣∣
[
Ψt(X)−Ψ1,δ

t (Xδ)
]∣∣∣

∞
g δ

)
f CηN

η

As a direct result we have

P( sup
0fsft

∣∣∣
[
Ψt(X)−Ψ1,δ

t (Xδ)
]
1

∣∣∣
∞

> δ)
N→∞−−−−→ 0,

for the parameters chosen such that (λ+ 1)β < 1.

This result tells us that after some time the deviation of these two systems is
only of size of the initial disturbance δ.

4.4.1 Effect of the disturbed particles on not disturbed ones

In the preceding Chapter we observed that the perturbation on the first particle
remains at a magnitude of δ over time. Furthermore, we can demonstrate that the
influence on the remaining particles is even more negligible.

Lemma 4.12. For parameters chosen such that (λ+1)β < 1 there is a zero sequence
(aN (t))N∈N such that

P( sup
0fsft

sup
j ̸=1

∣∣∣∣[Ψt(X)]j −
[
Ψδ

t (X
δ)
]
j

∣∣∣∣ > aN (t)δ)
N→∞−−−−→ 0.

For the parameters chosen such that (λ+ 1)β = 1 we have that

P( sup
0fsft

sup
j ̸=1

∣∣∣∣[Ψt(X)]j −
[
Ψδ

t (X
δ)
]
j

∣∣∣∣ > C ln(N)δ)
N→∞−−−−→ 0.
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Proof. Under the event of At ∩ Bt ∩ Ct Theorem 4.3 holds and therefore

∣∣∣∣
[
Ψ2

t (X)−Ψ2,δ
t (Xδ)

]
\1

∣∣∣∣
∞

f d

dt
max

j

∣∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψ1,δ

t (Xδ)
]
j

∣∣∣∣
∞

f 1

N

∑

k ̸=j

(
f
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
k

)
− f

([
Ψ1,δ

t (Xδ)
]
j
−
[
Ψ1,δ

t (Xδ)
]
k

))

f 1

N

∑

k ̸=j

g
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
k

)

·




∣∣∣∣
[
Ψ1

t (X)
]
j
−
[
Ψ1,δ

t (Xδ)
]
j

∣∣∣∣
∞

+
∣∣∣
[
Ψ1

t (X)
]
k
−
[
Ψ1,δ

t (Xδ)
]
k

∣∣∣
∞︸ ︷︷ ︸

f2δ by Theorem 4.3




f 1

N

∑

k ̸=j

g
([

Ψ1
t (X)

]
j
−
[
Ψ1

t (X)
]
k

)
· Cδ

f Cδ
( 1

N

N∑

k=2

g(
[
Ψ1

t (X)
]
j
−
[
Ψ1

t (X)
]
k
) + Ḡ(Φ1

t (X))j − Ḡ(Φ1
t (X))j

+
1

N

N∑

k=2

g(ϕ1
t (Xj)− ϕ1

t (Xk))−
1

N

N∑

k=2

g(ϕ1
t (Xj)− ϕ1

t (Xk))
)

f Cδ
(
Ḡ(Φ1

t (X)j +
1

N

N∑

k=2

g(
[
Ψ1

t (X)
]
j
−
[
Ψ1

t (X)
]
k
)

− 1

N

N∑

k=2

g(ϕ1
t (Xj)− ϕ1

t (Xk)) +
1

N

N∑

k=2

g(ϕ1
t (Xj)− ϕ1

t (Xk))− Ḡ(Φ1
t (X)j

)

f
(
Ḡ(Φ1

t (X)j

+
1

N

N∑

k=2

h
(
ϕ1
t (Xj)− ϕ1

t (Xk)
) ∣∣∣−

[
Ψ1

t (X)
]
k
+ ϕ1

t (Xk) +
[
Ψ1

t (X)
]
j
− ϕ1

t (Xj)
∣∣∣
∞

+
1

N

N∑

k=2

g(ϕ1
t (Xj)− ϕ1

t (Xk))− Ḡ(Φ1
t (X)j

)
· Cδ

f Cδ
(
Ḡ(Φ1

t (X)j︸ ︷︷ ︸
(4.36)

+CHN (Φ1
t (X)) ·

∣∣[Ψ1
t (X)

]
− (Φ1

t (X)j
∣∣
∞︸ ︷︷ ︸

(4.37)

+
1

N

N∑

k=2

g(ϕ1
t (Xj)− ϕ1

t (Xk))− Ḡ(Φ1
t (X)j

︸ ︷︷ ︸
(4.38)

)

f Cδ ln(N)N (λ+1)β−1
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So there is a zero sequence (an)n∈N and ε for every Cε such that

P( sup
0fsft

sup
j ̸=1

|
[
Ψ1

t (X)−Ψ1,δ
t (Xδ)

]
j
| > aN (t)δ)

f P(
∣∣∣GN (X̄t)−G

N
(X̄t)

∣∣∣
∞

g C ln(N)N (λ+1)β−1)

+ P((N−β |HN (X̄t)−H
N
(X̄t)|∞ g CN (λ+1)β ln(N))

+ P(|Ψt,0(Z)− Φt,0(X)|∞ g N−β)

+ P0( sup
0fsft

|
[
Ψ1

t (X)−Ψ1,δ
t (Xδ)

]
|∞ > δ) f CεN

−ε

This proves the lemma.

This shows, that a small displacement in the initial condition leads to small effects
on the time evolution of the system. The error term stays in size of the displacement
and this result provides the basis for introducing convergence in distribution in later
projects.



Chapter 5

Conclusion

This thesis has made significant strides in mathematically deriving the Vlasov-Poisson
equation concerning the cut-off size and provides a rigorous mathematical derivation
of the Vlasov-Dirac-Benney equation in the large N limit for N interacting particles.
In the first segment, a probabilistic proof of the mean-field limit and chaos propagation
of an N -particle system with pair potentials of the form

φβ
N = N3β−1φ(Nβx) for β ∈

[
0,

1

7

]

and φ ∈ L∞(R3) ∩ L1(R3) was established. Under specific assumptions about the
initial density k0, it was demonstrated that the characteristics of the Vlasov-Dirac-
Benney equation offer a reliable approximation of the N -particle trajectories, provided
their initial positions are independently and identically distributed with respect to
density k0.

The second part presented a probabilistic proof of the mean-field limit and chaos
propagation of an N -particle system in three dimensions for a Coulomb force

fN (q) = ± q

|q|3 with a cutoff |q| > N− 5
12

+σ,

where σ > 0 can be arbitrarily small. Notably the cut-off diameter was of a smaller
order compared to the average distance between particles and their nearest neighbors.
Nevertheless the results we obtained are just one step towards a conclusive derivation
and leave room for improvements. One likes to further reduce the size of the cut-off
or, ideally, dispense with the microscopic regularization altogether. But we can see
that adding a additional particle group improves the cut off size. This can be utilized
to further develop the optimal cut-off size, but it will result in significantly more
estimates. Due to Law of Large numbers this strategy has its limit at a cut-off size
of N− 1

2 , because we can not expect better control than N− 1
2 fluctuations around

the expectation. To further improve the cut-off size or give a derivation for Vlasov-
Poisson equation without regularization we believe one has to change the notion of
distance. The third section provided an outlook on a novel technique that could
lead to significant improvements for the full Coulomb case. This required redefining
the concept of convergence to a convergence in the distributional sense. Using a
probabilistic mean-field approach, it was demonstrated that a small displacement of
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a particle at time zero results in a small effect on the dynamics of the entire system.
Thus the deviation remains in the order of magnitude of the shift. Furthermore an
even stronger result was showcased for the remaining particles that were initially
undisturbed. The observation was made that the deviation of the undisturbed
particles from the true and disturbed system decreases as N increases.

Overall, this work has not only made substantial progress in mathematically
deriving Vlasov-like equations for highly singular interactions, but has also revealed
new avenues for improving these models. The probabilistic methods and approxi-
mations presented here offer promising ideas for studying complex systems with a
large particle limit and highly singular interaction. However there is still room for
further research, particularly regarding the complete Coulomb interaction without
regularization and new proof techniques within this context.
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de Saint-Flour XIX – 1989, volume 1464 of Lecture Notes in Mathematics,
Springer, Berlin, 165–251, 1991.

[43] S.Ukai, and T. Okabe. On classical solutions in the large in time of two-
dimensional Vlasov’s equation. Osaka Journal of Mathematics, 15(2): 245–
26,19781.

[44] A. A. Vlasov ”On Vibration Properties of Electron Gas”. J. Exp. Theor. Phys.
(in Russian). 8 (3): 291,1938.





Eidesstattliche Erklärung

Hiermit versichere ich an Eidesstatt, dass die Dissertation von mir selbstständig,
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