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CHAPTER 1

Introduction

1.1 Abstract

In this thesis we study toric hypersurfaces in the context of higher-dimensional
algebraic geometry. The topics are quite complicated but restricting to generic
situations and almost smooth birational models (minimal models), we are able
to get good results. We ask how to calculate invariants like the Plurigenera
or the Hodge numbers of toric hypersurfaces. Deforming such hypersurfaces
within the surrounding toric variety we study a Kodaira-Spencer map, param-
eterizing infinitesimal deformations one-to-one and the infinitesimal Torelli
theorem, bridging deformation theory and Hodge theory, both by very explicit
formulas, though for this part we restrict to surfaces in toric 3-folds.

People familiar to toric geometry and toric hypersurfaces should get a stronger
insight of how much interest this topic is in higher-dimensional algebraic
geometry. People working on complex algebraic geometry should find these
results helpful both for checking open problems within this region and getting
a large set of examples. Based on knowledge in complex algebraic geometry
we use several preworks like famous works on toric hypersurfaces and many
written books on complex geometry, algebraic geometry and toric geometry.
We list some particular important sources as well as the notation at the end
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of the introduction referencing to the sources within the introduction by the
letters a) to g).

1.2 Historical Motivation

Let us broach just one issue of this thesis by giving some historical motivation:
Given a nondegenerate Laurent polynomial

f= Z Ay - ™ (1.1)

meAnM

with n-dimensional Newton polytope A let
Zy={f=0}cT.

We are looking for a good compactification of Z; realized as closure in a
suitable projective toric variety. The Newton polytope A defines a projective
toric variety Pa via its normal fan and there is a diagram

= smooth compactification of Z;

— .

Zf - P

J» p

Zf - ZA,f - Pa

= closure of Z; in P

where p denotes a toric resolution of singularities and Z 7 the preimage of Zx ¢
under p. In 1986 Vladimir I. Danilov and Askold G. Khovanskii invented
ideas how the Hodge-Deligne numbers of Z; and the Hodge numbers of Zf
could be calculated. In examples this program works nice in lower dimensions
or if the normal fan 5 of A is simplicial.

Criticism and open questions:

e The mixed Hodge components
H™ 4=V (2;,C) (1.2)

of weight n — 1 and their dimensions are of particular interest for us.
There is neither a natural basis for these components nor a uniform
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equation or formula for the Hodge-Deligne numbers depending just on
n € N (the formulas of Danilov and Khovanskii get very complicated
already for n =4 or n = 5).

o The authors stay somehow ,loose” in specifying a nice compactification
of Z;: They do not construct or deal with special compactifications,
that are of great importance in higher-dimensional algebraic geometry,
though their methods are quite general and if ¥ is simplicial the
compactification Za 5 is already useful enough for the calculations of
the Hodge numbers.

First improvement (due to V. Batyrev):

One breakthrough was made in ([Bat22]). There it is constructed a pro-
jective toric variety P to a fan 3, such that the closure

Zrc Yy P

of Z; gets a minimal model of Z;, that is
» Y has terminal singularities and
¢ The canonical divisor Ky, is nef.

In the first part of this thesis we heavily exploit these results: Concerning the
birational model Y = Y} we extend results of ([DKS86]) by giving an explicit
formula for the plurigenera P,,(Y') of Y, that specialize to the geometric genus
for m = 1. The Kodaira dimension and the canonical volume of Y are then
gotten from the asymptotic behavior of the plurigenera.

Second improvement:

We find a vector space representation of the mixed Hodge components
as quotient of a vector space L*(k - A) by a subspace Uy, of which we specify
generators. This is necessary for dealing with the concept of an infinitesimal
variation of Hodge structure (due to Philipp Griffiths) for toric hypersurfaces
in the last chapter.

A deficit is that these generators of Uy are not linearly independent for
k = 3, that is the goal to obtain the Hodge-Deligne numbers directly is much
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to optimistic. But still the results we get are sufficient for our purposes.

Further common methods with Danilov, Khovanskii and Batyrev:

« We reduce the calculation of the Hodge component H" %*~1(Y}; C) to
the calculation of (similarly to but restricting to n = 3.

« We follow |(e)[ to define the jacobian ring Ry and the (interior) module
Rint,r over Ry which identifies the components (1.2]) with vector spaces
defined by the lattice geometry of integral multiples of A.

1.3 The combinatorial construction of mini-
mal models

In the dissertation ([Fine83]) Jonathan Fine, a student of Miles Reid, came
up with the idea of associating a polytope F'(A), the so called Fine interior
of A, to a lattice polytope A < Mg (in connection with the resolution of
singularities). This polytope has been resumed by Miles Reid and many
years later by V. V. Batyrev, with most success in @ This polytope plays a
decisive role in the construction of P: At the very basic P is shown to exists
if and only if the Fine interior F'(A) is nonempty.

In case A is reflexive F'(A) equals the origin and the adjoint divisor Kp + Y
is trivial. In general given a lattice polytope A with F(A) # J the Fine
interior equals the polytope associated to this adjoint divisor, thereby gener-
alizing the classical case of Calabi-Yau minimal toric hypersurfaces. Besides
to construct P another polytope C(A), the canonical closure of A has to
be recalled from [(a)| (definition [3.1.5). The following inclusions set some
superficial understanding on the relationship between these polytopes

convhull (Int(A) n M) = F(A) < A < C(A),
Quite often the last inclusion turns out to be an equality, for example if A

is reflexive, though at least in higher dimensions there are examples where
C(A) is just a rational polytope.
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1.4 Birational invariants of Y

In [(a)] it is shown that the Kodaira dimension of Y = Y7 is given by
k(Y) = min (dim F(A), n— 1).

We get a higher result

Theorem 1.4.1. Let A be an n-dimensional lattice polytope with k :=
dim F(A) = 0. The plurigenera P,,(Y) := h°(Y,mKy) are given by

I(m-F(A)=1*((m—-1)-F(A)), k=n
P,Y)=< l(m-F(A)+1*(m—-1)-F(A)), k=n—-1
l(m- F(A)) k<n-—1,

with exception of the special case n =0 and m = 1.

This answers a problem stated by M. Reid in ([Rei87, (4.12),(4.13)]). Restrict-
ing to birational models of Y with at most terminal singularities P,,(Y"), m > 1
are birational invariants.

Thereafter we deduce an explicit formula for the Canonical volume of
Y (see Corollary , that is the maximal self-intersection number K ' of
the canonical class Ky of Y. We are very granted V.V. Batyrev, who already
knew and proved this formula earlier, for the hint that it follows pretty easily
from Theorem and the characterization of K7 ! as leading coefficient of
P,.(Y), considered as a polynomial in m of degree n.

1.5 Infinitesimal deformations of Y}

Beginning with chapter 5[ we get results which are partly oriented on known
results and proofs, though basically we work with skillful and own ideas and
much more general methods, approximately comparable to the relationship
between projective and toric hypersurfaces. Throughout the chapters [5 and [6]
we set 3 restrictions on A (conditions (+))
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o C(A) is a lattice polytope.

Concerning more general assumptions we guess the conditions n > 2 and
F(A) # & are sufficient for our results (with the exception n = 2, dim F(A) €
{0,1}), though this requires some efforts in proving (see [Gie22al, still missing
the generalization F'(A) # J, unpublished).

Let U,eq(A) denote the set of nondegenerate Laurent polynomials with New-
ton polytope A and let B = B(A) denote the projectivization of U,.4(A).
The second projection

X:={(,f)ePx BlreY¥;} "3 B

defines a natural deformation of Y; over B. Given a tangent vector v : C' —
B at f € B, where C' denote the dual numbers we build the pullback diagram

XxC - X
mxidl lpw (1.3)
C ——— B
to construct an infinitesimal deformation (abbreviate inf.def.) A&, : X x

C O of Y; in X (that is also one in IP). Switching from X to X, some
information get losted, though restricting to A, is still enough to obtain
usefull results.

In ([KoSp58]) Kunihiko Kodaira and Donald C. Spencer introduced a linear
map, the Kodaira-Spencer map, that allows to parameterize (infinitesi-
mal) deformations of (algebraic) varieties. Their thoughts were influenced
by methods from complex analysis and differential equations, but later the
ideas were extended mainly by people working on deformation theory, Hodge
theory and (complex) algebraic geometry.

We study this situation under the assumptions (+) : For this we identify

L(C(A))/C - f =~ {Inf. def. of Y in P }/iso. ——L— HY(Y,Ty)
ul K ll

L(A)/C- f = { Inf. def. of Y in X }/iso. { Inf. def. of Y }/iso.
(1.4)
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Kp,f is a connecting homomorphism (called the Kodaira-Spencer map) and
Ky its restriction. These maps parameterize the infinitesimal deformations of
Y in P (in X respectively) one to one.

The kernel of xp 4:

The family X — B is isotrivial, that is all fibres are isomorphic, if and
only if Ky = 0 for all f € B. The kernel of kp; has been calculated for
curves in toric surfaces (n = 2) by Jan Koelman in|(c)| and for (quasi-)smooth
hypersurfaces in projective or weighted projective spaces P by Phillip Grif-
fiths, Joseph Steenbrink and others, see [(f)] Other questions on p s include
the study of isotrivial deformations, an iterated Kodaira-Spencer map, the
Shafarevich conjecture (see [Kov05]) and extensions of k say to a logarithmic
context. The main result of chapter [J] is

Theorem 1.5.1. Given the conditions (+)
ker(kp s) = Lie Aut(P), (1.5)

where Aut(P) denotes the automorphism group of P and Lie Aut(P) the Lie
algebra of Aut(P).

The cokernel of xp 4:

Concerning all infinitesimal deformations there might be some additional, not
in Im(kp,r), namely

o deformations of Y} induced by deformations of P in H*(P, Tp).

o In some (more exceptional) cases there are other (non-projective) defor-
mations (Example: K3-surfaces, see section Example |5.6.2)).

These questions have been studied in an explicit way for Calabi-Yau toric
hypersurfaces in ([Mav03]): If A is (quite general n-dimensional and) reflex-
ive then H1(Y,Ty) splits into infinitesimal deformations of Y inside P and
,non-polynomial“infinitesimal deformations of Y. The later are induced by
deformations of P inside a larger toric variety Py sy, where I'* varies over
the 2-dimensional faces of the dual polytope of A.
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1.6 Explicit calculations of the kernels of the
Kodaira-Spencer maps

Classically to the fan ¥ (or similarly any other complete fan) there are integral
vectors R(N, ), so called roots (due to M. Demazure, [DemT70]).

Example: The 2-dimensional standard simplex (left), its normal fan (middle)
and the 4 roots of the normal fan (thick, right)

The point is that each root «; gives an element z(«;) in the Lie algebra of
the automorphism group of P and

Lie Aut(P) =~ Lie(T) & (—TB 2(a;) - C r:=|R(N,Y)|, (1.6)

see ([Cox95]). In view of the last section we specify Laurent polynomials
supported on C(A) and A giving bases for ker(xp ) and ker(xs): Here we
heavily exploit the results from Bruns and Gubeladze (|[BG99]) and thereby
define certain new Laurent polynomials w_,(f) for every root a of X:

w_o(f) = Z ht_o(m) - ay, - ™.
meAnM

Our results:

Corollary and Theorem 1.6.1. Given the conditions (+)

0
ker(kp,f) = <x1 : 8f

i

1i=1,2,3, w_al(f), aeR(N,2)>.
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The roots of Xa form a subset of the roots of ¥ and

0
ker(ky) = <xz : ﬁ—f |i=1,2,3, w_o(f) aecR(N,Xa) >
ox;
This result is much explicit both in specifying a basis of Laurent polynomials
for the kernel and in dealing with a concrete situation (f varying in B), being
useful in examples.

1.7 Mixed Hodge components of Z;

In chapter [7| we deal with the Hodge components of H"*(Y, C). Apart from
one result, that should generalize with minor changes, we do not restrict to
n = 3. The cohomological data of Y} that is of interest is already contained
in the affine part Z;, that is to say given the inclusions j : Z; — Y} and
¢t : Yy — P the pullback homomorphism

J*H"(Y;,C) = Griy ' H*Y(Z,C)  (modulo * H?*(P,Q)),

defines an isomorphism onto a graded component Grﬁ;l = Wt /wne2)
modulo cohomology classes that arise as restrictions of cohomology classes
from P.

We recall the definition of the (graded) jacobian ring of Batyrev Ry and
the (graded) interior module Ry over Ry, that settles an isomorphism

HY R gn=Y(7, C) = Grp * Gryy ' H Y (Z;,C) = R’}m £

as is shown in , thereby reducing the calculation of the mixed Hodge
components of weight n — 1 to a lattice geometric problem.

[lustrating the module R, s at some 3-dimensional polytopes gave us in-
tuition that the construction of Ry, given in might be improved: The
original construction defines Ry, s as a graded Ry-module, leaving a picture
for the homogeneous components R’}nt’ s widely open. Concerning the dimen-
sions the situation is not much better: dim R'fnt, s stays mysterious except for
k=1,2,n,n+ 1 and that the dimensions are symmetric around the middle
index. We introduce slightly different polynomials gr(f), where I' < A,

a(f) =Y aw- ((nr,m)—Mina(nr)) - 2™

meMnA
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. . . k .
to give a more precise presentation of Rj,, ;:

Proposition 1.7.1. Given an n-dimensional lattice polytope A with I*(A) > 0
and f € Uyeg(A) take facets I'y,...,I'niq of A with np,, ..., np,,,, affine linearly
independent. Then

Rp, ;=L k-A)/Upx  fork=1,..,n+1,
where Uy, denotes the C-vector space spanned by
gr,(f)-2z" i=1,..,n+1, velnt((k—1)-A)nM (1.7)
gr(f)-z¥ T <A, velnt((k—1)-T) n M. (1.8)
This seems promising but still for £ > 3 the generators in and fail

to be linear independent. Nevertheless this result is sufficient for us.

1.8 Infinitesimal Variation of Hodge struc-
tures

Given the conditions (+) in chapter [§| we define a period map
0 2
B> f o [H(;.95,))

This map is holomorphic and by results of Griffiths the differential of Pp s
factors through x (working with x; and not sp ¢ is no restriction here)

L(A)/C - f —— HY (Y, Ty,)

m rbf (1.9)

Hom<R}nt,f7 R%nt,f)

The classical infinitesimal Torelli Theorem (ITT) for Y; asks ® to be
injective. The period map arises from complex geometry and the dimension of
its kernel might very well depend on the (less generically) chosen f. The ITT
is of interest as roughly speaking it gives information in as much the classical
Hodge numbers serve for the classfication of (smooth) algebraic varieties. Of
course the period map Pp s itself and questions concerning the injectivity
of this map (the global Torelli theorem) would give more direct and global
geometric information.
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After dealing with some preparations on a quotient M(A) of B by a canonical
action of the torus T on B in a rather technical part, we turn to the kernel
of dPp s In (e) the differential dPp s is shown to be simply induced by the
addition map

L(A) — Hom(L*(A), L*(2 - A)) (1.10)

m — (m' —m+m).
Here we work with the representation of Proposition 1) for R’fnm s

Our idea is straightforward: Working with diagram calculate the kernel
of dPp,y and compare it with the kernel of ks to deduce on the kernel of
@ i1m ;- Despite of the simpleness of we did not tackled the problem
of calculating ker(dPp ) but instead end up with a conjecture, where only
the inclusion 2 is clear.

Conjecture 1.8.1. Let A be a 3-dimensional lattice polytope with (0,0,0) €
Int(A) n M and Int(A) n M & E (plane). Then

mod Lie(T)

ker(dPg. ¢) =" gr(f)-x¥ e L(IA)/C- f|T <A a facet,
w+ve (Int(A) uInt(T)) N M, Vvelnt(A)n M).

1.9 Some set of illustrating examples

We mention/work with some Examples.

« Smooth projective curves in toric surfaces. Given a lattice polygon
A with F(A) # & we have I*(A) > 0 and C(A) = A is automatic.
Computing the main invariants of Y reduces to the genus formula
g(Y) = |Int(A) n M|. The kernel ker(xy) has been computed in the
dissertation of J. Koelman . The ITT is known to be true except if

dim F(A) =1, |Int(A)n M| = 3,

that is if Y} is hyperelliptic of genus > 3. In this case the ITT fails,
though this failure could not be seen from the infinitesimal defomrations
of Yy in Im(ky).
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« Nondegenerate surfaces Y < P? of degree d > 4 (the case of
hypersurfaces Y < P", n > 4 is almost the same). Here A = d- Az with
Aj the standard 3-simplex). The invariants P, (Y) and K% are known
(see BHPVO04]). Given d > 5 the Kodaira-Spencer map x is surjective.
In case d = 4 then Y is a K3-surface and there are non-algebraic
deformations of Y (in this case xp s is not surjective).

ker(ky) = J}l,

Jp = (afhom 0 fhom

6% g oeeny 61‘3 >§](C[ZE07...,ZL‘3],

where from denotes the homogenization of f. This result is due to
Griffiths and Jy is called the jacobian ring of Griffiths. The ITT is
known to be true, see .

+ Kanev/Todorov surfaces. Beginning with certain 3-dimensional
lattice polytopes A we study minimal surfaces Y with

p(Y)=1, ¢qY)=0, K;j= 1 9.

Kanev surfaces Todorov surfaces

in section [4.4] and section Depending on the coefficients (@, )meann
we obtain examples with

2, Y; = Kanev surfaces
dim ker(®sirmy;) = 3, Yy = Todorov surfaces (1.11)
0, in both cases

that is the I'TT may fail though all of our counterexamples seem to be
known see ([Cat78], [SSU85]).

1.10 Improvements, open problems and sub-
sequent issues

Deformation theory, Hodge theory and moduli spaces of
(higher dimensional) algebraic varieties or toric hypersurfaces:

o Generalize the results beginning with chapter 5[ by replacing the con-
ditions (+) by n = 2 and F(A) # ¢ (with the exception n = 2,
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dim F(A) < 1). This seems to get a bit complicated but should be
done since it puts everything into a nice framework, see (|Gie22b|) for
some attempts. We omit such attempts here due to the larger amount
of work and the non-triviality of finding (counter-)examples in this
context, that would be necessary for a better understanding.

 Given say k(Y) = 2 work with the invariants (y := x(Y), K := KZ) of
Y and (similarly to [Catll] or other articles) the (Giesecker-)moduli
space M, g of surfaces of general type with these invariants. Determine
the dimension of those [X] € M, g2 ,isomorphic® to a nondegenerate
toric hypersurface, or say ,,deformation equivalent”, or ,up to smooth-
ing* (similarly to what is done in [Mav03|] for Calabi-Yau varieties).
Generalize this to higher dimensions n > 4. This enters a vast region.

e The work we have done in this thesis includes other topics from Hodge-
theory concerning toric hypersurfaces: The generic Picard number, the
Noether-Lefschetz locus, the Hodge numbers or even the Hodge conjecture
just to mention very important ones (see [BrGrl0], [BrGrl7], [BrMo22|).

o Study coker(xy) and the remaining part ker(®fjcorers;) of the ITT.
Generalize this to n = 4 (This might get very complicated).

Higher-dimensional algebraic geometry:

e In higher-dimensional algebraic geometry the plurigenera of a suffi-
ciently smooth (projective) variety X are of much interest: There are
current (open) questions concerning P,,(X) for the case k(X) = n,
on the pluricanonical embeddings of X or connections between the
Kodaira dimension and the litaka fibration of X for 0 < x(X) < n (see
[BiZh15], [ViZh08]). Work with the deformation equivalence of P, (X)
on projective birational models of X with say terminal singularities (see
[Tsu02]) to see in as much our formulas for P,,(Y) and the subsequent
results in ([Gie22al) apply.

Generalizing the framework:

o Work with quasismooth toric hypersurfaces (defined by the quotient
construction of simplicial projective toric varieties), and similar questions
for this setting, compare the two situations.
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« Replace the assumption f € U,¢,(A) on f by other generic conditions on
f € L(A) introduced by 1. Moissejewitsch, M. Michailowitsch Kapranov
and Andrei Zelevinsky (see [GKZ94]) to get a more complete picture.

» Generalize the theory/ideas/results of this thesis to complete intersec-
tions in toric varieties.

o Working with f € L(A) having Newton polytope slightly smaller than
A might get interesting for examples and subfamilies of X — B with
monomial bases.
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(f) The infinitesimal Torelli theorem for smooth hypersurfaces in P": The
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1.13 Notation

We recapitulate some standard notation (though most of our notions are
defined within this thesis).

w.r.t.: ,with respect to“
|Al: The cardinality of a (finite) set A.
gcd: The greatest common divisor.

convhull(S):  The convex hull of a subset S of some vector space.
(U1, ey VR The span of vy, ..., v, as a (Q, R or C)-vector space (in case
k = 2 also the scalar product).

M: The standard lattice Z". Mr := M ®z R.
N: The dual lattice of M. Nr := N ®; R.
T: The torus N ®, C*.
Given a rational polytope P ¢ Mg let

Cone(P x {1}): The cone over the polytope P.

Int(P): The relative interior of P, that is the interior of P in an
affine subspace of Mg of the same dimension as P.
Bound(P): The set P\ Int(P).
L(P): The C-vector space with basis the characters
{(X"|mePn M}
L*(P): The C-vector space with basis the characters

{xX™ | meInt(P)n M}.
I(P) : dime L(P) = |P ~ M].
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I*(P) : dime L*(P) = | Int(P) n M|.

YA The normal fan of A.

Pa: The projective toric variety to the normal fan X5 of A.
Ps: The toric variety to the fan X.

Given an n-dimensional lattice polytope A ¢ Mg and f € L(A) let
Uyeg(A): The set of nondegenerate Laurent polynomials with Newton poly-
tope A.

We assume the following standard notation:
A ={xe Mg|{x,v;) = —=b;, i=1,...,1}, (1.12)
and setting I' < A to denote a facet of A we use the notation

Lyi={xe Mg |{z,v;) = —b} n A, 1=1,..,r.

Zy: {f=0}cT.
ZAf: The Zariski closure of Z; in Pa.
Zs The Zariski closure of Z¢ in Py,.

A variety X over a field k is understood in the sense of Hartshorne (see
[Hart77, Ch.I, Def. after Remark 3.1.1, Ch.II, Prop.2.6]). We always assume
k = C. Given a smooth projective variety X, dim X = n, let

OF The sheaf of differential p-forms on X

Kx: The canonical line bundle Q% (in case X is singular K is
defined in section [5.1)).

Tx: The tangent sheaf (Q%)* on X

Given another normal projective algebraic variety Y, we denote a morphism
between X and Y by X % Y and a rational map by X Ly

Given a sheaf F on X (F is always either a coherent sheaf of Ox-modules
or one of the constant sheaves Z,Q,R,C) and Cartier divisors D, D" and
Dy, ...;D, on X let



1.13. Notation 23

Ox(D): The invertible sheaf (of Ox-modules) associated to D
(In case D is a Weil divisor Ox (D) is just a rank 1 reflexive
sheaf)
s (F): The pushforward sheaf of F under p
(given an open subset & # U < Y: p,(F)(U) := F(p~1(U))).
F The dual sheaf of F.
HY(X,F): The k-th sheaf cohomology group of F.
HP(X, C): The Hodge component of HP*4( X, C) of type (p, q).

HP1H%(Z; C):  The mixed Hodge component of coh. with support of
Z; of weigth k and type (p, q).

hP( X, C): The dimension of H?4(X, C).
he1H%(Z;,C):  The dimension of HPH"(Z;,C).
D~y D' D is linear equivalent to D’.

D;....D,: The (topological) intersection number of Dy, ..., D,
(compare [Laz00, Ch. 1.1.C]).

D" Abbreviation for D....D.
=

n-times
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CHAPTER 2

Toric varieties and nondegenerate toric hypersurfaces

In this first chapter we recall some basic definitions from algebraic geometry,
the definition of projective toric varieties, toric morphisms, divisors on toric
varieties and nondegenerate toric hypersurfaces. By an (algebraic) variety we
always mean an irreducible variety over the complex numbers C. A curve
(surface) is an algebraic variety of dimension 1 (2).

Let X be a normal projective variety: A divisor D on X is a Weil divi-
sor, that is a Z-linear combination of subvarieties of X of codimension 1. D
is Cartier if there is a covering {U;},c; of X such that

Dy, = div(f;)
is the divisor associated to a rational function f;. D is Q-Cartier if m - D is
Cartier for some m € Ns;. Whether D is (Q-)Cartier or not just depends

on the linear equivalence class of D. The sheaves Ox (D) and Ox(D’) are
isomorphic as Ox-modules if and only if D ~;, D (see [Rei79, App. to §1]).

X is Q-factorial if every Weil divisor is Q-Cartier. Given normal algebraic
varieties X, Y, a surjective morphism ¢ : X — Y let D be a Cartier divisor on
X with Dyy = div(f) on some Zariski open subset U. Then on V := ¢~ *(U)
the pullback ¢*(D) of D is defined as

¢* (D) = div(f o ¢y ).
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¢*(D) is again Cartier and the functor ¢* respects linear equivalence.

Definition 2.0.1. A divisor D on an n-dimensional complete normal variety
X s called nef if

D.C=>0
for all irreducible curves C < X. A nef divisor D is called big if D™ > 0.

For X,Y normal algebraic varieties,
p: X ->Y

a surjective morphism and D < Y a Cartier divisor, then D is nef if and only
if ¢*(D) is nef ([Laz00, Ex.1.4.4]).

2.1 Toric Vaieties

In this section we recall some basic facts about toric varieties from ([CLS11]):
Let M denote an n-dimensional lattice Z"™ with dual lattice N. We write Mg
for M @R and let

T:=N@®;C*"~ (C*)"

be the n-dimensional torus. By a rational polytope F' < Myr we mean a
polytope, whose vertices have coordinates in (. We may represent a rational
polytope F' as intersection of finitely many half-planes

F = {x € MR‘ <$,VZ‘> = —bi, 1= 1, ...,7”},

where v; € N are primitive and b; € Q. To F' is associated a normal fan
Y r. The normal fan consists of a collection of cones in Ng, such that the
1-dimensional cones in ¥z have cone generators n; and different n;’s span a
cone in X if and only if the facets the n; are normal to intersect.

We denote the i-dimensional cones of a fan 3 by ¥[i]. For i = 1 we iden-
tify 3[1] with the primitive lattice points n; generating the rays. For A an
n-dimensional lattice polytope or more generally a rational polytope let

Mina (v) := mi£1<m, vy, veN,
me

such that Mina(v;) = —b;. Given a complete fan X, that is a fan whose
support equals Ngr, we associate a complete normal toric variety, which we
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denote by Py. If ¥ = ¥p is the normal fan to F', Py, is projective and we
denote it by Pg. Since we construct toric varieties via fans all toric varieties
we consider are normal as algebraic varieties. If A © My is a lattice polytope
there is a different way to construct Pa: Take the cone Cone(A x {1}) over
A and the semigroup algebra

Sa = C[Cone(A x {1}) n (M x Z)].

By ([CLSIT, Thm.7.A.1])
]P)A = Pl"Oj (SA)

o
Y i

Cone(A x {1})

The polytope A in the middle and two possible constructions of Pa: Via the
cone over A (on the left) and via the normal fan (on the right).

To o € ¥[n — k] is associated a k-dimensional torus orbit O(o) of Ps. The
closure V(7) of O(7) in Py, equals

V()= o).

By definition the canonical divisor Kp, is the divisor on Py, associated to
a rational differential form, for example the form

dxq dz,
— A A —
X T,

which is regular on 7. We get
Kp, =— > D (2.1)

ViEE[l]
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Proposition 2.1.1. ([CLS11, Prop.4.2.7])
Py, is Q-factorial if and only if each cone o € ¥ is simplicial, that is the
generators v; of o are linearly independent over R.

]

Construction 2.1.2. Given lattices N and N’, fans ¥ and >’ in N and N’
and a homomorphism of lattices

¢: N — N
with R-linear extension ¢p : N — Ng assume that for every o’ € ¥/ there is
o € X with B

op(0c’) c o

Using T'=~ N ®; C*, T" ~ N’ ®z C* the homomorphism
n®z— d(n')®z

between tori continues to a morphism ¢ : Py, — Px. between toric varieties
([CLS11, Ch.3.3, Thm.3.3.4]). By definition ¢ is a toric morphism. By
(JHLY02, Prop.2.1.4]) any irreducible fiber of ¢ admits again the structure of
a toric variety.

Proposition 2.1.3. ([CLS11, Ch.5.3])

Given two complete fans ¥ and X' such that X[1] and ¥'[1] belong to the
same lattice N and X' refines 3 there is an induced birational morphism
p: Pg/ — Pg.

]

A=4-A,

Hlustration of the blow up of P? at a torus fixed point: The normal fan ¥
gets refined by inserting the dashed ray (1,1). By cutting off the vertex (0,0)
in the picture for A on the left we get a new polytope A’ whose normal fan
Yar equals the refinement on the right.
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Proposition 2.1.4. ([CLS11, Prop.3.3.7])

Let N' = N be a sub-lattice of finite index (N : N') and let X' < Ng be a fan.
With respect to the lattice N, the fan % is denoted by 3. Then the inclusion
N’ c N induces a finite toric morphism Py, — Px, of degree (N : N').

O
Example 2.1.5. For the following figure let
Ny = {(2n1,2n9,2n3)| ny,ng,nge N} < N.

and Py = P2, Write (¢o : t; : t2) for the homogeneous coordinates on P? and
t1 t
T:{ 1,*1,*2 E]Pﬂyto,tl,tQ?fO}
to to

for the torus in P2. The inclusion ¢, : N’ — N induces the following
homomorphism (¢)r between tori

i) (- ()

o) continues to the toric morphism
(¢2)
by : P2 — P2
(to:ty 1 ta) — (5 : 15 1 £3).

Given a toric variety P and [ € N5 in Construction we recall a multipli-
cation map ¢; due to Fujino generalizing the map ¢o from above.

Ilustration of the fan Xz, of P? with respect to the standard lattice N (on
the left) and with respect to the sub-lattice Ny (on the right).
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Construction 2.1.6. To a divisor

D = aiDi, a; € Z

r
i=1

on a complete toric variety Py we associate a polytope
PD = {.CE S M]R’ <x,yl-> = —a;, V€ 2[1]}, (22)

which is at least rational, and which computes the global sections of D, that
is (compare [CLS11l, Prop.4.3.3])

H(Py,0p, (D))= @ C-x™

mePpnM

where for m = (my,...,m,) the function x™ denotes the character
t= (b1, s by) o £ = £

of T'. Note that given k£ > 1 the polytope P,p associated to k- D equals k- Pp
(ICLS1L Exc. 4.3.2]).

Example 2.1.7. Up to isomorphism there is only one complete 1-dimensional
fan 3, namely

with toric variety Py, = P!. It follows that given complete fans ¥ in Ny and
Y in Ny, where

dim Nj = (dim Ng) + 1
and a toric morphism p : Py, — Py, of relative dimension 1, the fiber F of p
is isomorphic to P! since p is proper.

Example 2.1.8. Let A be an n-dimensional lattice simplex, that is |[Xa[1]] =
n + 1, say
Sall] = {vo, s Un},

then P, is denoted a fake weighted projective space. In this case there
are unique qo, ..., ¢, € Ns; with ged(qo, ..., ¢,) = 1 and

1=0
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The numbers qq, ..., ¢, are the weights of Pa. If vy, ..., 1, generate the lattice
N then P, is a weighted projective space. The weights qq, ..., ¢, determine
PA up to isomorphism and we write

IP)A = IP)(q07 7QTL)

It
IN:Z-q+..+7Z-q,)>1,

then Pa depends on g, ..., g, and the torsion in Cl(Pa) (see [Kas09]).

2.2 Nondegenerate hypersurfaces in toric va-
rieties
Definition 2.2.1. Let f be a Laurent polynomial with presentation

f= Z 2™,  ay, €C (2.3)
for some finite nonempty subset A < M. The support of [ is defined as

Supp(f) := {m € Ala,, # 0}.

The Newton polytope is the convex hull of Supp(f).

The presentation in (2.3) we be our standard notation for f. We always
assume that the affine span of A over R equals Mg, though A is not required
to generate M affinely over Z.

Definition 2.2.2. Given a Laurent polynomial f with Newton polytope A
we call f nondegenerate w.r.t. A (or A-reqular) if Zy is smooth and for
every face o of A with associated torus orbit O(o) of Pa the intersection
Zng 0 O(0) is either empty or smooth of codimension one in O(o).

Remark 2.2.3. This condition may also be expressed by saying that Z is
smooth and for every face I' of A

ofir Jfir
f|F7 Zy - Txlv sy L axn (24)
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have no common zero in (C*)", where

Jir = Z amx™.

meANT

We denote the set of nondegenerate Laurent polynomials f € L(A) by Uyq(A).
Throughout this thesis f is always assumed to be nondegenerate. We take
abbreviations like: For a lattice polytope A and a given f to mean that f is
a nondegenerate Laurent polynomial with Newton polytope A.

Remark 2.2.4. Given an n-dimensional lattice polytope A and A = A n M
the condition for f to be A-regular is a Zariski open nonempty condition on
the coefficients (a,,)mea, given by the non-vanishing locus of the principal
A-determinant E4 (see [GKZ94, Ch.10]) for the case that A affinely generates
M and [Bat03l Prop.2.16] else).

Let us check at hand that the condition in Remark is true on a nonempty
Zariski open subset of C#4 if A consists just of the vertices of an n-dimensional
lattice polytope A:

Let I be a k-dimensional face of A. Choose k + 1 affine linear indepen-
dent vertices of I and take the k-dimensional simplex I'” which is the convex
hull of these vertices. Assume that the assertion holds for simplices then it is

fulfilled for I".

Varying the coefficients of the remaining vertices of I' in a Zariski open
subset does not violate the condition in Remark [2.2.3] Thus iterating over
all faces I' of A we have to intersect finitely many nonempty Zariski open
subsets to get our subset. We are left to deal with the case that A is a
simplex with vertices vy, ..., v,. We apply an unimodular transformation to
A (this is allowed by |[GKZ94, Ch.9 Prop.1.4, Ch.10 Thm.1.2]) such that
V0, -, Un_1 € {x, = 0}. Setting

6f:

ow,

0

Ty

in (2.4) we must have 2" = 0 and there is no solution in the torus (C*)".
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A lattice polygon A and a subsimplex whose vertices are also vertices of A.

Construction 2.2.5. Given f € L(A) the closure Y in the toric variety Py
to an n-dimensional complete fan ¥ is a Weil divisor linear equivalent to

Vi ~im — Y, Mina(v) - D (2.5)

1/1-62[1]

(see [Bat22, Prop.7.1]). Therefore we are just interested in the linear equiva-
lence class of Y;. Since A is always a lattice polytope Y is an integral divisor.
The divisor Y is Cartier if and only if Mina is a support function for Y, that
is

Mina : Ng — R

is linear on each cone of 3 and Mina (V) < Z. Similarly Y is Q-Cartier if
just Mina (V) < Q.
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CHAPTER 3

Minimal models of nondegenerate toric hypersurfaces

In this chapter we introduce the necessary definitions and methods both
from the combinatorial point of view and from the background in algebraic
geometry to construct minimal models of nondegenerate toric hypersurfaces.
Largely we follow the article ([Bat22]).

3.1 Modifications of the Newton polytope A

Definition 3.1.1. An n-dimensional rational polytope A < Mg has a presen-
tation
A = {zx e Mg |{x,v;) = Mina(v;), v; € La[l]}

and we define the Fine interior F(A) of A as

F(A) := {x € Mg|{xz,v) = Mina(v) + 1, v € N\{0}}.

Remark 3.1.2. The Fine interior was introduced by J. Fine in ([Fine83]). In
general it is only a rational polytope though if dim A = 2 and A is a lattice
polytope then F(A) turns out to be a lattice polytope as well, namely it
equals the convex span of the interior lattice points of A ([Batl7, Prop.2.9]).
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[lustration of the construction of the Fine interior F(A) from A.

Remark 3.1.3. In order to construct the Fine interior F'(A) of A we have
to move every hyperplane which touches some face of A ,one step* into
the interior of A. In general it is not enough to move just the hyperplanes
defining facets one step into the interior (see Figure . Even worse it might
happen that an hyperplane cuts out a facet of A but does not touch F(A)
after replacing one step into the interior of A. This happens if and only if

A # C(A) (see Lemma below).

Obviously we have L(F(A)) = L*(A). If A = d- A, with A, the n-

dimensional standard simplex we have
FA)=(d—n—-1)-A,.

This is because if we just move the facets of A one step into the interior we
already get the lattice polytope (d —n — 1) - A, = convhull(Int(A) n M).

Definition 3.1.4. Let A be a rational polytope with F(A) # &. The set of
lattice points v € N\{0} with

Minpa)(v) = Mina(v) + 1

is called the support Sp(A) of F(A) to A.
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Figure on the support vectors: On the left A and on the right ¥A[1]. F(A)
equals the unique interior lattice point of A. By ([Bat22, Prop.3.11]) the
support vectors Sp(A) are always contained in the convex span of the rays
Ya[l]. In particular Sp(A) is a finite set. The above pictures show that
(O, —1) € SF(A)

Definition 3.1.5. For A a rational polytope with F(A) # &
C(A) :={xe Mg |{z,v) = Mina(v) VveSp(A)}
is called the canonical closure of A. A is canonically closed if C(A) = A.
Remark 3.1.6. ([Bat22, Prop.3.17(b), Cor.3.19, Prop.4.4])
Given a lattice polytope A with F(A) # &
AcC(A), C(CA)=C(A), F(C(A)=FA).
Besides
o dim(A)=2: C(A) = A.
o dim(A) =3: C(A) = A in all known examples.
o dim(A)

A\

4: C(A) is just a rational polytope in general.
Let us summarize useful properties of C'(A) in a technical lemma:

Lemma 3.1.7. ([Bat22, Prop.3.17a), Cor.3.18, Prop.4.3]
An n-dimensional lattice polytope A with F(A) # & is canonically closed if
and only if Xa[1] € Sp(A). Besides Sp(C(A)) = Sp(A) and for v e Sp(A)

Mingay(v) = Mina (v).
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Construction 3.1.8. ([Bat22, Thm.6.5])
Let A < Mg be an n-dimensional lattice polytope with F'(A) # ¢J. Define
A as Minkowski sum

A:=C(A) + F(A)

The normal fan X3 is the coarsest refinement of Yc(a) and Xpa). Besides
YA[l] < Sr(A).

Let 3 be a simplicial fan with X[1] = Sp(A), which refines ¥ 5.

3.2 The construction of minimal models

For convenience we write P instead of Py, and denote the closure of Zy in P
by Y; or Y. There is a diagram

P

Px
/ X
Poa) Pra

where 7 and p are birational since both Xz refines Y (a) and ¥ refines X3 in
N. The morphism @ is birational if and only if

(3.1)

)

dim(F(A)) = dim(A).

Summarizing results: We explain the notions ,terminal “and ,canonical®
singularities in the Appendix of this chapter (section [3.5)).

Theorem 3.2.1. (/Bat22, Thm.7.5])

Let A be an n-dimensional lattice polytope with F(A) # . Then the closures
Zx; and Yy of Zy define normal algebraic varieties, since they do not contain
any (n — 2)-dimensional torus orbit of Px and P.

Proposition 3.2.2. ([Bat22, Prop.7.4/)
The divisor Y < P is nef, big and Q-Cartier.
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Definition 3.2.3. Given a normal projective variety Y birational to Z; with
at most terminal singularities and Ky nef Y is called a minimal model of Zy.

Theorem 3.2.4. ([Bat22, Cor.6.6])
Given an n-dimensional lattice polytope A < My with F(A) # &, the toric
variety P has at most terminal singularities. The adjoint divisor Kp + Y 1is

nef.
Remark 3.2.5. The adjunction formula
Ky = (KP + Y)|y

applies since Y does not contain any (n — 2)-dimensional torus orbit of P (see
[Bat22, Thm.7.5]).

Corollary 3.2.6. [Bat22, Thm.8.2]
Let A be an n-dimensional lattice polytope with F(A) # &. Then'Y =Yy is
a minimal model of Zy.

Remark 3.2.7. Pz has at most canonical singularities and the morphism
m: P — Py is crepant, that is 7*(Kp, ) = Kp and similarly for Z5 ; and the
morphism Yy — Z5 ; (see [Bat22, Cor.6.5, Thm.8.1]).

3.3 Further properties of Y

Lemma 3.3.1. Y < P is Cartier if and only if C(A) is a lattice polytope.

Proof. We work with the representation of the linear equivalence class of Yy

from Construction [2.2.5| By Lemma given v € ¥[1] = Sp(A)
Mina (v) = Mingay(v).

The function Minga) : Ng — R is linear on the cones of ¥ since ¥ refines
the normal fan of C'(A). Thus

Y < P Cartier < Minga)(N) € Z < C(A) is a lattice polytope.
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Remark 3.3.2. (Compatibility of nondegeneracy of f with the fan X)

Given an n-dimensional lattice polytope A and a Laurent polynomial f
the singular locus Pg;,, of P always equals the union of torus orbits of P
([CLS11), Prop.11.1.2]). We mention two easier cases

o C(A) = A: Here ¥ refines ¥ and Y intersects the toric strata of
[P transversely in a subset of codimension 1 ([Bat94], see also [Trel0,
Prop.5.1.3]) and Y behaves nondegenerate w.r.t. P just as Z does
w.r.t. Pa. As a consequence

}/sing =Yn ]P)sing'

o C(A) is a lattice polytope: Here Y < IP is Cartier by Lemma and
Ysing © Y 0 Pging by the jacobian criterion for smoothness (see [Hart77,
Ch.L5 Definition]).

General situation: In general Y should define a quasismooth hypersurface
in P. This would imply
Y;ing cYn Psing

by ([BaCo94, Def.3.2, Rem.3.3]).

Remark 3.3.3. For an n-dimensional lattice polytope A with F'(A) # ¢ and
a given f, the polytope associated to Y = Y} equals C'(A) by Construction

2.1.6] that is
H(P,0p(Y)) = L(C(A)).

Besides the polytope associated to Y + Kp equals F'(A) by Construction m
and formula (2.2.5)).

Definition 3.3.4. Given a normal projective surface Y, we write k(Y') for
the Kodaira dimension of Y, which is defined to be the Kodaira dimension
of a resolution of singularities Y’ of Y. The latter could be defined as the
number k = k(Y') measuring the growth of the plurigenera of Y', that is

a-m® <h(Y' , mKy) <A m"

for some constants a, A > 0 and all sufficiently large and divisible m € N (see
[Laz00, Cor.2.1.58]).
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Theorem 3.3.5. ([Bat22, Thm.9.2])
Let A < Mg be an n-dimensional lattice polytope with F(A) # & and
k:=dim F(A). ThenY has Kodaira dimension

n—1, k=n
K(Y)=<X n—-1 k=n-1
k k<n-—1.

Example 3.3.6. Given A = d - A,, with d > n + 1 then
FA)y=(d—-n—-1)-A, #g, C(A)=A

and P = Pp = P". Given an f the closure Y = Zx ; < P" is smooth (even
slightly more special) and Ky is nef.

Definition 3.3.7. A reflexive polytope A is a lattice polytope with facet
presentation
A = {x e Mg|{x,v;) = —1}.

Example 3.3.8. Given such a polytope
F(A)={0}, C(A)=A = A=A

and Sr(A) equals the lattice points on the boundary of the dual polytope of
A by ([Bat22, Prop.4.9]).

3.4 Three-dimensional lattice polytopes A with
I'(A) =1 and dim F(A) =3
Example 3.4.1. There are 49 three-dimensional lattice polytopes A with

It(A) A M = { 8 } dim F(A) = 3.
0

(see [Sch18, Appendix A.3]). We list them in Tables and and picture
those with C(A) = A in Figures[9.1]and [9.2]

Remark 3.4.2.
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o The 49 polytopes are similar to reflexive polytopes: There is exactly
one I' < A with integral distance 2 to (0,0,0) (see the pictures). All
other facets have distance 1 to (0,0, 0).

o Up to unimodular equivalence there are just 5 rational polytopes P
occurring as Fine interior F/(A) = P.

o For P one of these 5 polytopes there is exactly one maximal polytope
A w.rt. ,c“with FI(A) = P.

o Given a maximal polytope A up to replacing A the Fine interior F'(A)
is proportional to A.

Dividing the 49 polytopes into classes a),b), ), d) and e) according to their
Fine interior, we picture the maximal polytopes in Figure . In a) and c)
the maximal polytopes are simplices, PA is a fake weighted projective space
to the weights

a):(2,1,1,1), ¢):(2,2,1,1).

In ¢), d) and e) the Fine interior F'(A) equals

¢) : F(A) = ((0,0,0),(1,1/2,2), (1,1/4,1), (1,3/4,1))
d) : F(A) = {(0,0,0), (1,—1/2,1), (1,—1/2,0), (1, —3/4,1/2), (1, —1/4,1/2))
e): F(A) = {(0,0,0),(1,3/2,—1),(1,3/4,0), (1,1/2,0), (1,3/4, —1/2))

Concerning the other 46 polytopes we list the Fine interior in the Tables 9.1
and [9.2] and Figure [3.3]



3.4. Three-dimensional lattice polytopes A with I*(A) = 1 and

dim F(A) =3 13
The maximal polytopes in the classes a), b), ¢), d) and e).

a):A ={a=(21,-2),b=(20,1),d=(2,2,1),p = (—4,-2,1))

b):A = a = (2,-3,1),b = (2,—1,2),¢ = (2,0, 1) d=(2,-1,0),p = (—4,3,—2))

c):A=<{a=(215),p=(-2,—-1,-3),b=(2,0,1),d = (2,2, 1)>

d):A={a=(2-1,3),b=(201),c=(2 -1 —1), = (2,-2,1),

p= (_2717_ >>

€):A={a=(2,01),b=(21-1),c=(2,4,-3),d=(2,1,1),p = (-2, —
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3.5 Appendix: Singularities of the minimal
model program

In order to complete the definition of this chapter we mention the following
results:

Definition 3.5.1. [Rei83, (1.11)]
Consider a fan 3 in Ng and a cone o of .. Then o is called canonical (of
index j € N), if there exists a primitive vector m € M such that

(m,v;y =3 foruv; e ol[l]
and
{m,ny>=j forneon N,n¢{0,..0)}uvo[l] (3.2)

o 1s called terminal if we have strict inequality in . The fan ¥ is called
canonical (terminal) if all its cones are canonical (terminal).

Definition 3.5.2. ([Rei87/)

A normal algebraic variety Y (over C) is said to have at most terminal
(canonical) singularities if Ky is Q-Cartier and writing m for the smallest
natural number with mKy Cartier, then for every resolution of singularities
o:Y' =Y we have

mKy: = oc*(mKy) + Z a; B, (3.3)

i=1
where a; are integers with a; > 0 (a; = 0). Here E, ..., E, are the exceptional
divisors of o.

According to [Rei83l (1.12)] we have the following result:

Theorem 3.5.3. The toric variety P has at most canonical (terminal) singu-
larities if and only if the fan ¥ is canonical (terminal).

Remark 3.5.4. ([Rei87])

A normal algebraic surface X has canonical (terminal) singularities if and
only if it has at most rational double points (is smooth). A variety with
terminal singularities has a locus of singularities of codimension > 3.



CHAPTER 4

The plurigenera of minimal models

In this section we compute the plurigenera h°(Y, mKy) of a minimal toric
hypersurface and derive from this a formula for the maximal self intersection
number K7 '. Together with the vanishing ¢(Y) = 0 this allows us to
compute the main invariants of the algebraic surfaces from section [3.4]

4.1 Two toric vanishing Theorems

There are two vanishing Theorems which we will use several times:

Theorem 4.1.1. (Demazure’s vanishing Theorem), ([CLS1I, Thm.9.2.3])
Let P be a complete normal toric variety and D a Q-Cartier nef divisor on P.
Then

HP(P,Op(D)) =0, p=>0.
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Theorem 4.1.2. (Batyrev-Borisov vanishing Theorem) , (|[CLS11, Thm.9.2.7])
For D a Q-Cartier nef divisor D on a complete normal toric variety P

{0 p # dim Pp

HP(P, Op(—D)) = @ C-x" p=dim Pp

mEL*(fpp)

Remark 4.1.3. (Toric Serre duality)
Let P be an n-dimensional complete normal toric variety, then for D a
Q-Cartier divisor we have

HP(P,Op(D))* = H" P(P,Op(—D + Kp))

by (J[CLS11, Thm.9.2.10a)]). There is an action of the character group M
on the cohomology groups and in the situation of Theorem we have
splittings

H" P(P,Op(Kp + D)) = @@ H" P(P,Op(Kp + D)) - X™

meM

HP(P,0p(—D)) = P H”(P,Op(—D))m - X"

meM
By (|CLS11), Ex.9.12 formula (9.2.9)]) Serre duality restricts to a duality

*

H" (P, Op(Kp + D))y = (H?(P, Op(=D))-m) .
Due to the change of sign at m we get

0 p # dim Pp
H" (P, Op(Kp + D)) = @ C-x™ p=dim Pp

T)’LEL*(PD)

In chapter [5| we deal with a complicated vanishing Theorem where the sheaves
of differential p-forms Q} appear for 1 < p < n.

4.2 The Plurigenera
Theorem 4.2.1. Let A be an n-dimensional lattice polytope with k :=
dim F(A) = 0. Then the plurigenera P,,(Y) := h%(Y,mKy) are given by

I(m- F(A)) = I*((m — 1) - F(A)), k=n
Po(Y) =14 I(m-F(A)) +1*((m—1)-F(A), k=n—1
l(m - F(A)) k<n-—1.

with exception of the special case n =0 and m = 1.
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Proof.
H(P,m(Kp+Y)) = L(im-F(A)) me Ny,

since the polytope associated to m - (Kp + Y') equals m - F'(A). We use an
ideal sheaf sequence for Y and apply the adjunction formula

Ky = (Y + Kp)|y
to get an exact sequence

0— H'(P,(m —1)(Kp+Y) + Kp) > H'(P,m(Kp +Y)) (4.1)
— H(Y,mKy) — H'(P,(m — 1)(Kp +Y) + Kp) — 0

Here we have applied Theorem to the divisor Kp + Y which is Q-Cartier
and nef by (Theorem [3.2.4]).

HY(P,m(Ke +Y)) = 0
by Theorem [£.1.1] If m = 1 then
(P, Kp) =0, h'(P,Kp) =0

by Remark and P, (Y) is given by

Given m > 2 we apply Serre duality to the Q-Cartier divisor D := (m — 1) -
(Kp +Y) and use Remark

0 dim F(A) <n—1

H(P, D+ Kp) = { L,*((m —1)- F(4)), dim F(A)=n

and

L*((m—1)- F(A)), dim F(A)=n—1

1 ~
H (P’D+KP)={ 0, dim F(A) #n—1

The result follows by adding the dimensions in the exact sequence [4.1]
O
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Example 4.2.2. If dim(A) = 2 and F(A) # ¢ then Y := Z, is a smooth
curve and we distinguish

elliptic curve if dim F(A) =0
Y = hyperelliptic curve, g(Y) > 2 if dim F(A) =1
non-hyperelliptic curve, g(Y) > 3 if dim F(A) =2

This assertion follows from
g(Y) = A(Y) = I*(A).
Given dim F(A) = 1 then by Example
Pra) = P!

and o7 : P — P! induces a morphism Y — P! of degree 2. It remains to
check that this morphism coincides with the morphism induced by the linear
system |Ky| to see that Y is hyperelliptic (see [Gie22al, section 6]).

4.3 The invariants K} ' and ¢(Y)

The lattice normalized volume Volz(F') of a rational polytope F' may be
defined by

Voly(F) = lim I(m - F) - (dim F)!

(4.2)

([BRO9, Lemma 3.19]). Here normalized means that the standard n-simplex
A, has Volz(A,) = 1. See ([BR09]) for details.

Corollary 4.3.1. Let A be an n-dimensional lattice polytope, where n = 2,
with k := dim F(A) = 0. Then

Volz(F(A)) + > Volz(Q) k=n
K _ Q<F(a)
Y T\ 2-Volz(F(A)) k=mn-—1
0 kE<n-—1

Proof. By ([Laz00, Remark after Def. 2.2.31]) we have

— - ANY, mK
K;},_lz hm (n ) h‘( , 1 Y)

m—00 mnfl
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By the formula of Theorem (4.2.1)) given dim F(A) <n — 1 then Ky ! = 0.
Given dim F(A) =n — 1 then

L= DB (m=1) - FA) L (n= 1)L I(m - F(A))

by ([BR09, Thm.4.1]). If dim F(A) = n then write
En(Y) = l(m-F(A))=l((m=1)-F(A))+1((m=1)-F(A))=I"((m=1)- F(A)).

= Volz(F(A))

By formula [4.2| we have
UmP(A) ~ 1((m — DF(A)
m—00 mn=1/(n —1)!
Finally by ([BR09, Thm.5.6]) we have
o 1= DF) (o= DF@) _ 5o

m—00 mn=1/(n —1)!

— Vol (F(A)).

Volz(Q).
Q<F(A)

We deduce from the article of Danilov and Khovanskii:

Proposition 4.3.2. Let A be a 3-dimensional lattice polytope with F(A) # .
Then
a(Y) = 1Y, Q) = 0.

Proof. By the Hodge decomposition it is enough to show that H!(Y,C) =0
(see chapter [7]). By ([DK86, Prop.3.4]) we have

H'(Za,C) = 0.

Choose a partial toric resolution of singularities o : " — PA modifying just
the 1-dimensional torus orbits of Pa such that o : Z/ — Za is a resolution of
singularities. This works since by nondegeneracy Za does not pass through
the torus fixed points of Po. For E a og-exceptional curve on Z’ we have
E ~P!. An argument using the Mayer-Vietoris sequence shows that

rt(Z',C) = 0.

Since Z' is gotten by blowing up Y at several points ([BHPV04, Ch. III
Cor.4.4]), H}(Y,C) = 0. O



50 4. The plurigenera of minimal models

4.4 Kanev and Todorov surfaces

The main invariants of (smooth) algebraic surfaces include the geometric
genus py(Y) := Py(Y), the irregularity ¢(Y) and K3.

Example 4.4.1. In case n = 3 and A is reflexive then

and by the adjunction formula Ky = Oy. Y is called a K3 surface.

For the 49 examples from section [3.4] we get
Ky e{1,2}, p,(Y)=1, qY)=0.

Definition 4.4.2. (compare ([Cat78d]))
A Kanev (or Kunev/Kynev) surface is a minimal complex projective surface
Y with

p(Y)=1, q(Y)=0, Kj=1

Remark 4.4.3. By ([Cat78, Thm.2.2]) these surfaces are simply connected.
Surfaces Y with
p(Y) =1, q(Y)=0, Ky=2

are deal with in (J[CD89]). Given such a surface Y the linear system |2 - Ky |
defines a finite morphism ¢q., : Y — P3. If the image of Y is a quadric cone
then Y has fundamental group

m(Y) = Z/2Z. (4.3)

For our Examples the spaces H(Y, m - Ky ) have monomial bases by Theorem
4.2.1] and we may compute such bases for m = 2 in ¢), d) and e):

c):  wo:=(0,0,0),w; :=(2,1,4),wy := (2,1,3),ws := (2,1, 2)
d): wo:=(0,0,0),w; :=(2,-1,2),wy := (2,—-1,1), w3 := (2,—1,0)
6) : Wo = (07070)7w1 = (2,1,0),11)2 = (2727 —1),11)3 = (2737 _2)

This notation means that the characters ¢ — #“ build a basis of H°(Y,2- Ky).
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In ¢),d) and e) we have 2 - wy = w; + ws. Since the morphism ¢ok, as-
sociated to |2 - Ky | restricted to the torus 7" is given by

t = (tl, tQ, tg) land (twl, th, tw3)
Gar, (Y) is a quadric cone in ¢),d) and e) and (by [CD89]) m(Y') = Z/27Z.

Remark 4.4.4. Interestingly some Kanev surfaces and surfaces of the second
type where K% = 2 are closely related to K3 surfaces: For Y a Kanev surface
2Ky defines a finite morphism ¢of, : Y — P2 of degree 4. If this morphism
factors through a K3 surface with R.D.P. then in the literature Y is called
special. These special Kanev surfaces are of particular interest (see chapter

For Y a surface with

the morphism ¢or, : Y — P3 is of degree 1,2, 4 or 8. If ¢ox, factors through
a K3 surface with R.D.P. then Y is called a Todorov surface. In fact for the
definition of a Todorov surface there condition K2 = 2 is weakened to the
condition

Kiefl,..8}

([Mor87]). Some of these surfaces are known to fail the infinitesimal Torelli
Theorem.

Example 4.4.5. Consider the sub-lattice
M :={(my,ma,m3) € M|my€2-Z} =« M

of index 2 in M with dual lattice N’ > N. Let A’ be the polytope A with
respect to the lattice M’. Then A’ is a lattice polytope since all vertices of
A have even first coordinate and A’ turns out to be reflexive. The inclusion
N — N’ induces a degree 2 toric morphism

o1 : Pa — Par.
We compute bases of H(Y, 2Ky ):

a):  (0,0,0),(2,1,0),(2,1,-1)
b):  (0,0,0),(2,—1,1),(2,-2,1).
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It follows that given an f as in (2.3|) with a,, = 0 for
me (M\M') n A

then ¢, factors through the restriction of ¢; to Y. Since A’ is reflexive Zas
gets a K3 surface with R.D.P (Example and Remark {4.4.1) and Y is
special.

Thus we find subfamilies of special Kanev surfaces by setting the follow-
ing monomials to zero (only in the maximal polytopes)

a),b) : by, dy,ab,be, ad, cd.

Similarly in ¢), d) and e) we get Todorov surfaces if we set the coefficients to
the following monomials to zero:

c),d),e) : ab,ad, be, cd.



CHAPTER b

The Kodaira-Spencer maps kp s and x; and their kernels

Given an n-dimensional Newton polytope A with F'(A) # & the toric variety
P does not depend on the Laurent polynomial f. In fact even more: P is the
same for all lattice polytopes A with F/(A) # & and fixed C(A). In this way
we get explicit deformations of Y} by varying f € Uy¢y(A).

Throughout this and the next chapter we restrict to (conditions (+))
e n=23
o« I*(A)>0
o C(A) is a lattice polytope

The first point ensures that Y is smooth. The second point is exploited
in order to prove h°(Y,Ty) = 0 (see Proposition [5.4.3)) and the third point
guarantees that Y defines a Cartier divisor on P by Lemma [3.3.1]

In this rather technical chapter we introduce a Kodaira-Spencer map kg
parameterizing one-to-one the infinitesimal deformations of Y} arising when
varying f. We extend ks by introducing a second Kodaira-Spencer map Kp, s
parameterizing the infinitesimal deformations of Y} in IP.
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We abstractly identify ker(xp s) and ker(ky) with some vector spaces, post-
poning the explicit calculations of

ker(kps) = L(C(A))/C- f
ker(kf) < L(A)/C- f

to the next chapter.

5.1 Tangent sheaf, Normal sheaf and Sheaves
of differential p-forms

Since P is not necessarily smooth we have to recall the notion of reflexive
sheaves which weakens the definition of locally free sheaves.

Definition 5.1.1. A coherent sheaf F on a normal variety X is called
reflexive if the natural map F — F** is an isomorphism, where F** denotes

the double dual (reflexive hull) of the sheaf F.

Remark 5.1.2. ([CLS11, Prop.8.0.1, Thm.8.0.4])
If X is normal and j : U < X an open subset with Codim(X\U) = 2, a
reflexive sheaf is uniquely determined by its restriction to U, that is

F = 3.(Fu). (5.1)

Conversely if F is a coherent sheaf with Fj;; locally free and codim(X\U) > 2
then j,.(Fjy) is reflexive ([SchO8, Prop.2.12]). The dual of a coherent sheaf
on a normal variety is always reflexive, in particular the reflexive hull of a
coherent sheaf is reflexive.

Remark 5.1.3. With this definition the map

{WEeil divisors on X} — {rank one reflexive sheaves on X'}

gets linear, that is Ox (D + D’) = Ox(D) ®, Ox(D’).

If F is reflexive and £ a line bundle on X then F ® L is easily seen to
be reflexive by checking the condition with the double dual stalk-wise using
([Hart77, Ch.3, Prop.6.8]).
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Definition 5.1.4. Given an n-dimensional normal algebraic variety X we
define the reflexive sheaves

OF =000 1<p<n,
Tx = (%)%,
where v : U — X denotes the inclusion of the smooth locus of X.

Remark 5.1.5. If X is smooth then
TX = Q&_l ® Ox<—Kx)

by ([Hart77, Ch. II Ex.5.16b)]). Applying this to the inclusion of the smooth
locus ¢ : U — P and taking the push-forward under the inclusion ¢ gives

TP = Q]%D ®r OP<—KP),
which we will use later.

Definition 5.1.6. Assume that n := dim A = 3 and that Y < P is Cartier.
Then we define the normal sheaf of Y in P as Nyp := Op(Y )y = (Z/Z3)*.

Remark 5.1.7. Given a normal variety X there is still a different method
for the construction of the tangent sheaf Tx: Let Q% 4, denote the sheaf of
Kéhler p-differentials on X and

Tx xant := (Qx gan)*

ist dual (compare [Hart77, ChIL8]). T kan is reflexive since Q gy is
coherent, and coincides with T’x on the smooth locus U of X. As a consequence

Tx xam = T'x.
Note that
HO (X, TX,Kéhl) = LlG(AUt(X)), (52)

by ([MuOd15, Ch.VI.1]), where Lie(Aut(X)) denotes the Lie algebra of the
automorphism group of X. In particular 2°(X, Tx) = 0 if Aut(X) is a finite

group.

For V' a normal projective toric variety Aut(V') is an algebraic group ([Cox95,
Prop.4.3]) of finite type. If V is not toric it is possible that h°(Y,Ty) = 0
though Aut(Y') is a discrete space with infinitely many components.
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Example 5.1.8. Take the Fermat quartic Y < P3
0=+ ...+ 3,

which defines a K3 surface. Then h°(Y,Ty) = 0 but Y has infinite automor-
phism group (see [ShInl0, Thm.5]).

5.2 Kodaira-Spencer maps

Let B := m(Uyey(A)), where m: L(A) — PL(A) denotes the natural projec-
tion. Take

X :={(z,f)ePx BlzeY;}.3 B. (5.3)
and the normal sheaf
Ny/;( = (Iy/l?;)* = Ox(Y)‘y,

where Zy denotes the ideal sheaf of Y in X'. Under the conditions (+) there
are two tangent sheaf sequences

0 - TY i T]p|y - Ny/]p i 0 (54)
0 - Ty - Tx‘y - Ny/;{ - O (55)

Definition 5.2.1. The two coboundary maps

Rp = Iﬁpzf . HO(Y, Ny/]p) — H1<Y, Ty)
k=rp: H'(Yy, Nyx)— H(Y,Ty)

are called Kodaira-Spencer maps for Y c P andY < X.

To motivate these Kodaira-Spencer maps geometrically let us recall some
facts from deformation theory: For this let D := Spec C[e]/(e*) denote the
dual numbers, then the underlying topological space of D is just a point, but
obviously D is a non-reduced scheme.

Definition 5.2.2. A deformation of Yy over D (also called a first order
infinitesimal deformation) is a flat surjective morphism Y — D such that
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the fiber over the underlying point {f} of D equals Y. If Y < X x D (or

YcPxD)and
N X x D
\ %
D

commutes (similarly for Y < P x D) then Y — D is called an infinitesimal
deformation of Yy in X (in IP).

A tangent vector in Tg s is the same as a morphism
D—B

which maps the underlying point of D to f ([Hart77, Ch. II Ex.2.8]). Given
such a tangent vector we get an induced infinitesimal deformation

X xgD—D
of Yy in X by using the fiber product.
Remark 5.2.3. We recall ([Ser06])

H°(Y, Ny,x) = {inf. def. of Y in X}/iso.
H°(Y, Ny ) = {inf. def. of Y in P}/iso.
HY(Y,Ty) = {inf. def. of Y /iso.

Then x; (and kp ) map an infinitesimal deformation of Y; in & (in P) onto
its equivalence class in H'(Yy, Ty,). In Proposition we prove that rp ¢
restricts to xy. The dimension dim I'm(ky) is called the number of moduli of
X — B.

Remark 5.2.4. Taking the exact sequence
0—0Op— Op(Y) > Nyp—0 (5.6)
and the vanishing H'(P, Op) = 0 due to Demazure we get
H(Y, Nyz) = H(P,Op(Y))/H(P,Op) = L(C(A))/C - f.

where we have used Remark [3.3.3]
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Remark 5.2.5. The normal sheaf Nyf sx 1s trivial, that is

(A)-1
NYf/X = @1 Oyf = TB’f Rc Oyf.

One argument works as follows: Write {f} = Hy n...n Hya)-1 as intersection
of projective hyperplanes intersecting transversely. Switching to hyperplanes
H} ~yin H; with f ¢ H{ 0.0 Hyay_, and setting G; = pr3(H,;), G; = pr3(H;)
we get

Oyf (G”yf) = Oyf (G;|Yf) = Oyf
and the first result follows. B is a nonempty open subset of PH&)~1 and
Ty = Trua) ;/C - f. In particular
H°(Yy, Ny,/x) = L(A)/C - f.

5.3 Mavlyutov’s Vanishing Theorem

Theorem 5.3.1. ([CLS11, Thm.9.3.3])
Let V' be an n-dimensional complete toric variety to a simplicial fan. If D is
a nef Cartier divisor on V', then

HP(V,Q, ® O(D)) =0
forp>q.
Construction 5.3.2. (Multiplication morphism)
([Fujod, 2.5, Prop.3.2], [CLS11, Lemma 9.2.6, Proof of Thm. 9.3.1])

Let V' be a normal toric variety, D a divisor on V and m € N5; such that
m - D is Cartier. There is a construction due to Fujita:

Namely given [ € N5, the map ¢, : N — N given by
n—Il-n

induces a toric morphism ¢; : V' — V. There results an injection (Remark
5.1.3))

H (V.04 , O(D)) — H(V, Q4 ®, O(ID))
= H"(V,Q4 ® O(ID)), p,q> 0.

This result becomes powerful for us especially when combined with Theorem

£.3.1] above.
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5.4 The Computation of ker(xp ;)

The following three sections deal with cohomological applications of what we
have introduced before.

Theorem 5.4.1. Under the conditions (+)
ker(rp, ;) = Lie Aut(PP). (5.7)

Proof. Given Y =Y} by the tangent sheaf sequence (5.4]), Remark and
Proposition below we have to show that

H(Y, Tyyy) = H(P, Tp).
The ideal sheaf sequence
0-TpROY)—=>1Tp — Tpy — 0
produces the cohomology sequence

0 H' (P, s ® O(-Y)) —» H'(P, Tp) — H(Y, Tyy)
— H'Y(P, T ® O(-Y)).

We conclude with the following Lemma.

Lemma 5.4.2.
WP, T ®@O(-Y)) = h'(P,Tp @ O(=Y)) = 0.

Proof. By Remark Tr ® O(—Y) is reflexive and with Remark we
get
T[p ® O(—Y) = QI2P’ & O(—Y — Kp)

By Construction replacing O(—Y — Kp) by a multiple

which is a line bundle and ®, by ® does not affect the cohomology groups.
Besides

H*P, 02 @ O(—mY —mKp)) = H¥F(P, Qb ® O(mY +mKp)) k=0,1.

by Serre duality (J[CLS11, Thm. 9.2.10b)]). The right hand side is 0 by
Theorem [(.3.11 [
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Proposition 5.4.3. Given a 3-dimensional lattice polytope A with I*(A) > 0
andY =Y} then
H(Y, Ty) = 0.

Proof. h°(Y,O(Ky)) = I*(A) > 0 by assumption and Theorem [4.2.1. The

vanishing
RO(Y,Ty) < (Y, Ty ® O(Ky)) = h°(Y, Q) = 0

follows from Proposition and Remark [5.1.5] O]

It seems hard (or at least much harder than we have done) to generalize this
Proposition to the case F(A) # (.

5.5 The computation of ker(xy)

Proposition 5.5.1. Under the conditions (+) kp s restricts to k.

The following reduction step has essentially been carried out in ([Koe91l
Ch.2.1] and [Voi03 Lemma 6.15]).

Proof. The two tangent sheaf sequences
0 — Ty — Ty — Nyjx — 0

0 — Ty — Toyy — Nyp — 0

are related via the differential
(pT’l)* : TX|Y - TP\Y,
of the first projection pr; : X — P. pry induces an isomorphism
Yy x {f} = Y;
(pri1). restricts to the identity on Ty. The map

(pr1)« : Nyjx = H(Y, Nysx) ® Oy < H(Y, Ny p) ® Oy — Ny sp
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is just given by multiplication of sections. The result of the Proposition
follows from the commutative diagram

0 —— H(Y, Tyyy) —— HO(Y, Nyjx) —2— H'Y(Y,Ty)

o] J Jo

0 —— HO(Y, Tpyy) —— HO(Y, Ny p) —Ls HY(Y,Ty)

]

Remark 5.5.2. Given the conditions (4) (C(A) should be a lattice polytope)
replacing A — C(A) gives ks = kp f, that is not much is lost in restricting
to Ky.

5.6 Appendix: Additional infinitesimal defor-
mations of Y,

Remark 5.6.1. Apparently
HY(Y,Nyp) =0

by the exact sequence ([5.6) and Theorem |4.1.1f Thus the cokernel of kp ¢
equals
HY (Y, Tpy)

and the infinitesimal deformations of P in H'(P,7Tp) induce infinitesimal

deformations of Y (see [Ser06, Prop.3.4.23]).

We see this by an ideal sheaf sequence for Y < P and Lemma [5.4.2
0— H' (P, Tp) — H'(Y, Tpy) — H*(P, T @ O(-Y)).

Very remarkably
H' (P, Tp)

parameterizes all infinitesimal deformations of P by a Theorem of Schlessinger
([Sch71]) since dim P = 4 and PP has just isolated quotient singularities, though
for general singular toric varieties Y the situation is much more complicated
(see [MTulg]).



62 5. The Kodaira-Spencer maps kp ¢ and ky and their kernels

Example 5.6.2. Let P = P>, A = 4. A3 then dim Im(kp) = 19 and
HY (P, Tp) = 0. But h'(Y,Ty) = 20 since Y is a K3 surface ([Huy16]). In
(|Gie22bl) we show that if n := dim A > 4 then such a phenomenon does not
occur.



CHAPTER 6

Explicit bases of the kernels of xp r and

In this chapter we compute explicit bases of ker(kp ) = L(C(A))/C - f and
ker(ky) < L(A)/C- f.

6.1 A basis for ker(xp /)

This part is rather technical and summarizing. The statments, most essential
for the first reading, are formula formula [6.2] and Corollary [6.1.5]

Definition 6.1.1.
R(N,Y) :={ae M|{a,n(a)) =1 for some n(a) € X[1]
and {a,njy <0 for n; € L[1]\{n(a)}}

denote the Demazure roots of the fan Y. (see [Cox9)]). Likewise we define
R(N,X¢ay) and R(N,Xa) by replacing X by Yeoa)y and Xa.

There are inclusions

Yewny1] c Y[1] = < convhull(XA[1]). (6.1)
(since X refines S (a)) (Figure[3.2)



64 6. Explicit bases of the kernels of kp y and Ky

Lemma 6.1.2. Let A be a 3-dimensional lattice polytope with F(A) # &.
Then
R(N,Xa) € R(N,%) = R(N,X¢(a)).

Proof. To the second equality: Let a € R(N,X¢(a)), that is
(n(@) =1, (amy <0 for ny € Sen [\ n(a))

= (a,n;) <0 for n; € X[1]\{n(a)}, that is a € R(V,X). Conversely assume
a € R(N,X). If n; ¢ Y¢a)[1] then a would have scalar product < 0 with
all vectors in Mg ay[1] and thus would be zero since ¥ refines ¥¢(a), a
contradiction. The first inclusion follows similarly by using . m

We ask for a basis of Laurent polynomials for
Lie Aut(P) < L(C(A))/C - f.
Remember the results from ([BG99]): Given f € B there is a map
¢p:T — DB

(t1,t2,t3) — <($1,$27l’3) — f(t1I1,t29€2,t3$3)>-

By differentiating ¢y we get an injective homomorphism (d¢y). : Lie(T) —
T s where e = (1,1, 1) with

0 0
Im(d(¢y)e) = <x1 : ajl ey T agi, .

For me M n C(A) and a € R(N, E¢(a)) define
ht_o(m) := max{k € Nyg|m — k- a e C(A)}. (6.2)

Given a € R(N, X (a)) we denote by I'_, < C(A) the facet to which n(«a) is
normal.

Remark 6.1.3. Assuming
F_a = {l’ € MR| <I,’I’LF> = br} M O(A)
and me M n C(A) then

ht_o(m) = {m,nr) — br. (6.3)
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On the left: The vector —a and all lattice points m € C'(A) with ht_,(m) > 0.
On the right: A replacement and the support vectors of w_,(f) (thick).

The function ht_, continues linearly to a map Sc(a) — Sc(a), which respects
the grading on S¢(a) (see section for the definition of S¢(a)). Define a

graded automorphism e, : Sca)y — Sc(a) by

A () = 2™ (14 A-a—)Metm \eC

see [BG99, section 3]). e  induces an automorphism of Pcay by the
(A)

«

description Pe(a) = Proj(Se(a)) and by functoriality of taking ,Proj “.

Corollary 6.1.4. ([BG99, Lemma 3.1, Thm.3.2b), Thm.5.4])
Lie Aut(P) has a basis of derivations acting on L(C(A)) as follows

xzi o myex™ 1=1,2,3,
820,-
0 A
2(a) = S;‘WO 2™ ht_o(m) -2, ae R(N, Se)).

By definition of the tangent sheaf sequence the homomorphism
j : HO(PJ TIP’) = HO(Y7 T]P’\Y) - HO(Y7 NY/]P’) = L(C<A>>/C ' f

is given by applying the derivations from Lie Aut(P) to f and restricting to
Y =Y. We get

Corollary 6.1.5. Under the conditions (+)

ker(kp,f) < L(C(A))/C- f
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equals the span of the Laurent polynomials

af af

xy - (9x1’m’x3. 61'3’ w*&(f)? OCER(N,Ec(A)>,
where
w_o(f) = Z ht_o(m) - @y - ™
meANnM
O
6.2 Examples
Example 6.2.1. Given
A =d- Az,

and f then Y} is a smooth degree d surface in P?. By ([Voi03, Lemma 6.15])
ker(ﬁp’f> = ker(/ff) = J;l,griff’ (64)

if we work with the family X — U,¢,(A) (if we projectivize then we have
to mod out f from the kernel). Here J]i{g”- ¢ denotes the d-th homogeneous
component of Griffiths Jacobian ideal

_(of of
Jf,griff = (axo,,axs> S‘(C[xo,...,xg]’

since

dim Aut(P?) = dim PGL(3,C) = 15

where PG L(3,C) denotes the projective linear group. There are 12 roots in
R(N,Y). These roots are given by

iei, 1= 1,2,3, i€i$€j, Z,j = 1,2,3, ’L#]
and if d > 4 Proposition restricts to (6.4]) up to homogenization.

Example 6.2.2. For the maximal polytope in a) we have

0 2
R(N,Z):{ _01 : _11}
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and for the maximal polytope in ¢) we have

0

R(N,Y) = { (1) }

In b),d) and e) we have R(N,Y) = ¢J. Starting with a maximal polytope A
we get for the number of moduli:

a) :dim Im(ky) =12, b): dimIm(ks) = 14,

c) :dimIm(kf) = 10, d), e):dimIm(ks) = 11.
By ([Tod80, Thm.2]) all Kanev surfaces vary in a single family with number
of moduli 2! (Y, Ty) = 18. Similarly by ([SSUS85, (1.3.2)]) all minimal surfaces

Y with
p(Y)=1, ¢q(Y)=0, Ky=2 m(Y)=Z/2Z

vary in a single family with number of moduli A*(Y,Ty) = 16.

6.3 A basis for ker(xy)

x1~%, s .1173'% belong to L(A) but given A # C(A) the Laurent polynomials

w_q(f) need not have support on A as the following example shows. We
found this example with a computer search.

Example 6.3.1. Consider the following polytope
-1 5 -1 -1
A=< (1) 0], -1 >
—1 3 0 0

with I*(A) = 3, dim F(A) =1 and C(A) has the additional vertex (1,—1,1).
We obtain a family of elliptic surfaces X — B.

3\ /-1\ /-1\ /-1\ /-1\ /-1\ [0
R(N,Z):{ =l =3 =2 [ =1]. [ o], [ }
o) \-1) \=1) \=1) \=1) \=1/ \o
and
1

R(N, %) :R(N,E)u{ -1 }
1
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The column vector —a = (1,0, 1) belongs to the facet

5 -1 -1 1

F,a:<1,10,—1,—1>

3 0 0 1

of C(A).

vertex of A

and
—a+(—=1,-1,-1) = (0,—-1,0) ¢ A.

Thus only 6 of the roots in R(N, ¥) reduce the number of moduli.

Theorem 6.3.2. Under the conditions (+)
of
Tim
591,‘1-

w_o(f), aeR(N,Sa) >

ker(ky) = 1=1,..,3

Proof. The proof is rather technical. By Proposition [5.5.1
ker(kys) = ker(kp ) N L(A)

and R(N,YXa) © R(N,X¢(a)) by Lemmal6.1.2L Let R := R(N, X¢c(a))\R(N, Xa).

The Theorem is a consequence of the three points below.
« @€ R(N,Xa) = wolf) € L(A).
e ae R=w_,(f) ¢ L(A).
e Varying a € R the w_,(f) are linearly independent in L(C(A))/L(A).

The necessity of the first two points is obvious and the last point assures that
no linear combination of the w_,(f), where a € R, lies in ker(xy).
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First point: To a € R(N,XA) is associated both I'_, < A and IV, < C(A).
We show

r.,cr’

—o)

(6.5)

since then forme M n A, m¢ '_, we get m—a € A, that is w_,(f) € L(A).
Concerning (6.5)): Given n; € Ya[1] with {(a,n;) = 1 and n; € S¢a)[1] with
{a,n;) =1 then n; = n; by (6.1). It follows I'_, = I'"_, since

Minga)(ni) = Mina(n;).

Thus I'_, < T

Second point: There is a facet I'_, of C'(A) such that
m—aeC(A) formeC(A)nM, me¢l_,.

First assume that I'_, n A is also a facet of A. There is n; € Eao[1]\{nr_,}
with (o, n;) > 0 since o ¢ R(N,¥a). Given m € Vert(I';), then m € Supp(f)
and m — « ¢ A since

{m — a,njy < Mina(n;).

= w_o(f) ¢ L(A). Assume that I'_, n A is a face of A of dimension < n — 1.
The convex span
(meVert(A)|m—a¢A)

is of dimension > n — 1. = there is m € Vert(A) with
me¢l_o, m—a¢l,
that is w_n(f) ¢ L(A).
Third point: Given a fixed facet I' = I'_,, of C'(A) all
a € R(N, Sea)\R(N, Sa)

with I'_, = I" build the lattice points on a lattice polytope P < Mg.

Given a € Vert(P) there is m € Supp(f) such that 2% does not appear
in the support of any other w_.(f). Thus w_,(f) does not appear with
nonzero coefficient in any relation between the w_,/(f). We then break down
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P vertex by vertex.

Let I'y, I'y be two different facets of C'(A) and ay, ag € R(N, Yo a))\R(NV, Xa)
roots to these facets. Given a relation in

L(C(A))/L(A)

in which both w_,, (f) and w_,,(f) appear with nonzero coefficients there is
v € Supp(f) with

(v —a1,n1) < Mina(ny), v—a; +ase M nA.

Then
(v — a1 + ag,nyy = Mina(ny),

but {ag,n1) < 0 since s is a root for ny # ny, a contradiction.
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Hodge components and Jacobian rings

In this chapter we recall the purely combinatorial construction of the jacobian
ring Ry of Batyrev and the interior module Ry, over Ry. Both Ry and
Rty are Nyp-graded. Ry, s serves to calculate the cohomology classes in
H"Y(Z;,C) of minimal weight W"~!. We represent

Ry =L* (k- A)/Upi

for some subspace Uy, we specify generators of (see Proposition . The
big problem remaining open is to specify a basis for Uy ;. This seems to be
out of reach for us, though in some cases like A = d - A,, this problem might
be written of from the combinatorics of the multiples k - A.

7.1 The Jacobian ring of Batyrev

In the sections [7.1] and [7.2] we do not restrict to the dimension n = 3.

Definition 7.1.1. Let A be an n-dimensional lattice polytope and Sa denote
as in section the subalgebra of Clxg, x1, ..., x¥] spanned as C-vector space
by 1 and all monomials

k_mi
Toxi ... T

Mmn
n )

where k€ Nsy, mq,....m, € Z,
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such that the rational point

m.my My,
belongs to A. Denote the k-th graded piece of Sa by S&. The subalgebra Sk
is defined in the same way except that we require that m/k belongs to the

interior of A.
We identify lattice points m € M with monomials 2™ € C[zi", ..., 21].

Construction 7.1.2. [Bat93/
Given a Laurent polynomial f in the variables x1, ..., x,, with n-dimensional
Newton polytope A let

F(xo,z1,...,x0) = xof (21, ..., zp) — 1

which is an equation for the complement T\Z; < T := (C*)"*1,

Consider the logarithmic derivatives

L 0 _ (7(x0f)
Fi(zg,x) := xlaxiF(:Uo,x) =1 o,

0<i<n.

Definition 7.1.3. [Bat95/
The graded ideal Ja ; within Sa generated by Fy, ..., F,, is called the jacobian
ideal and the quotient ring

Rf = SA/JAJ

is called the Jacobian ring of Batyrev (associated to the Laurent polynomial
f). We denote the k-th homogeneous component of R, by R’}.

Theorem 7.1.4. [Bat93, Thm.4.8]

The jacobian ring Ry is a graded ring. It is finite dimensional as C-vector
space if and only if f is nondegenerate. In this case the dimensions of R’; are
independent of the polynomial f. f is nondegenerate if and only if Fy, ..., F,
are algebraically independent over C.

Definition 7.1.5. We denote the homogeneous ideal Ry N Sx of Ry by Rpne, ¢
and its k-th homogeneous component by R’}nt’f. We call Rpn,p the interior
Ry-module.

Remark 7.1.6. Poincaré duality on H?(Y,C) restricts to an isomorphism
k ~ pi—k
(Rlnt,f>* = RInt,f

by ([Bat93, Remark 9.5, Prop.9.7]). In ([Bat93, Ch.9]) Ry, s is denoted by
H; and should not be confused with the dualizing y-module Dy.



7.2. Construction of the components R}, ; 73

7.2 Construction of the components R];nt, 7
Remark 7.2.1. By definition
Rp. ;= L*(A)
(independently of f). More interestingly
Ry = LM(kA)/ (J5 ;0 L*(kA)), (7.1)
Since J g’ s is a graded ideal of Sa inductively
JN ;= L((k=1)A)- Jx

Aim: Switching to different generators of Jx ; allows us to describe the
relations in Rj,, ; more explicitly.

Ilustration of the construction of R, ; for a 2-simplex A = (vy, vy, vs) and
f having support on the vertices of A. The shaded regions do not belong to
R}, s, there are 4 points left in R, ;.

Construction 7.2.2. Let A be an n-dimensional lattice polytope with given
f asin (2.3). Given a facet I' = T'; < A, where i € {1, ..., r}, define

gr(f) == Z A, - ((ngym) + b;) - o™ = +b; Fy + Z(nz)jF] € Jx
meMnA (transforming) j=1
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where n; = ((nr)i, ..., (nr)n) and b; = —Mina(n;). The first representation
implies that

Supp(gr(f)) < (A n M)\(T' n M).

In case A is an n-simplex and
Supp(f) = Vert(A)

then gr,(f) ~ a¥ where v; is the vertex opposite to I'; (& means up multipli-
cation with a nonzero scalar). Conversely the matrix

by (nr)i .. (nr))a
(7.2)

br (nrr)l (npr)n

has rank n + 1 since nr,,...,nr, span Ng and (b1, ...,b.) # (0,...,0). Thus
Fy, ..., F,, are linear combinations of gr,(f), ..., gr,.(f) and we get new genera-
tors

JAvf = (9F1(f)7"'agrr(f))' (73)

Proposition 7.2.3. Let A be an n-dimensional lattice polytope with I*(A) >
0 and a given f. Given I't,...T 11 < A with np,,...,np affine linear
independent. Then

Ri;=L"k-A)/Upe k=1,...n+1

n+1

where Uy, denotes the vector space over C spanned by

gr,(f) 2" i=1,..,n+1, velnt((k—1)-A)nM (7.4)
gr(f) 2" T <A, velnt((k—1)-T)n M (7.5)

If k = 2 these polynomials are linearly independent.

Proof. The inclusion
Uy C (Jg,f A L*(kA)).

is a consequence of the definition of Ja ;.

To show: All relations

h-geL*(k-A), heldh; gelL((k—1)-A) (7.6)
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are of type (7.4) or (7.5)). First if Supp(g) < Int((k — 1) - A) n M then
the equation is a linear combination of the relations ([7.4) and without
restriction

Supp(g) < Bound((k — 1) - A) n M.
Write

h=ZCF'9F(f)

and take F' < A with
Supp(g) N ((k: —-1)-Fn M) # O,
(this assumption makes sense since Supp(g) # &f). Then
Supp(h) N (F'n M) = &
by . In case cr = 0 except for I' = F', then

Supp(g) = ((k—1) - F)

and we get a relation of type (7.5)). Restricting h to F' n M we get

hMram = ZCF : ( — brFor, + Z(nF)iE|F1) € <F0|1“1, ey Fn|F1>-
= .

i=1

Expanding and restricting to F' this means

ZCF Z A, (<np,m> — bp)moxm =0. (7.7)

meFnM

The left hand side in ([7.7)) equals

n

Z Ccr- ( - bI‘FO|I‘1 + Z(np)iF“pl) S <F0|p1, ey Fn‘pl>.
I

i=1

The F; are algebraically independent over C (Theorem [7.1.4)), since f is nonde-
generate with respect to A. Besides fir, remains nondegenerate with respect
to I'y (by the definition of nondegeneracy) and it follows that there is (up
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to scaling) only one relation between Fyr,, ..., Fyr,, the one of the second type.
For k = 2 we know the dimension ([Bat93, Thm.9.8])

dim R%,, ;= 1*(2- A) = (n+ 1) - 1*(A) = Y [ I*(D),

where sum ranges over all facets I' of A. Thus the last statement follows by
comparing dimensions. O]

Example 7.2.4. Let A be a simplex with vertices vy, ..., v, and assume that
f has support on the vertices of A. Then as already noted

where I'; denotes the facet opposite to v;. In this case we get a monomial
basis for example of R7,, ; by taking the quotient of L*(2 - A) by the span of

gt i=0,..,n, ve (Int(A)unt(T;)) n M.

Remark 7.2.5. For k > 2 the polynomials in the Proposition will not be
linear independent over C since we have the trivial relations

gr,(f) - gr,(f) - 2" — g0, (f) - gr,(f) - 2"

for v e L*((k — 2)A). It would be very interesting to find a minimal set of
relations between the gr, in R}, ; (see Remark below).

7.3 Hodge and mixed Hodge structures

In this section we recall some general facts on (mixed) Hodge structure,
thereby introducing the necessary notation. Let A be a 3-dimensional lattice
polytope with F(A) # ¢ and a given f. The interesting“ cohomology
classes of Y = Y} lie in H?*(Y,C) by Proposition m, Poincaré duality and
since Y is compact.

There is a Hodge decomposition ([Del75])

H*(Y,C) = H*(Y)@ H" (V) ® H**(Y),
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with HP?~P(Y) = H2P»(Y). Equivalently there is a descending filtration
H*(Y,C)=F’> ..o F>=0, where F' = @Hn%p(y).

p>i

with H*(Y,C) = FP n F3-P. The filtration F" is said to put a Hodge structure
of weight 2 on the complex vector space H := H?*(Y,C). The inclusion
L: 4y — T gives a pullback homomorphism

*: H(T,C) — H'(Z;,C), (7.8)

which is an isomorphism for ¢ < 2 and injective for ¢ = 2 by the Lefschetz
theorem for hypersurfaces in tori ([DK86, Remark 3.10]) and the cohomology
groups of T are well known since T' is homotopy equivalent to S x St. We
define the primitive cohomology of Z;

PH?(Z;,C) = coker (HQ(T, C) — H*(Zy, (C)).
There are two filtrations:

H*(Z;,C)=F’>..5F*=0 (Hodge filtration)
0=W,c..cW,=H*(Z;Q) (Weight filtration)

Grl = F'/F'"™ ) Grly = W/W_y.

The filtration F* induces a Hodge structure of weight r on
Gryy == (W,/W,_1) ®q C.
Definition 7.3.1. Given j € {0,1,2} and i € {0, ..., j + 2} the vector spaces
HP?7P(Y),  HY*TH?(Z;,C) := G}, Griy* H*(Z;,C)

are called the Hodge components of H*(Y,C) and H*(Z¢,C) and their dimen-
sions the Hodge numbers of Y and the Hodge-Deligne numbers of Zy.

Remark 7.3.2. The inclusion j : Zy — Y = Y} induces a pullback homo-
morphism
j* HY(Y,C) — H*(Z;,C)
with
J*(F'H*(Y,C)) c F'H*(Z;,C), j*H*(Y,C) < WoH?*(Z;,C)

(see [Voi02, Ch.7]).
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Remark 7.3.3. The natural (intersection) pairing
H*(Y,C)® H*(Y,C) - C

implies that
1
HYNY) = (H*°(Y) @ H**(Y))

(see [Voi02, Lemma 7.30]), where | means orthogonal w.r.t. this pairing.

7.4 The Hodge components of H*(Z;,C) and
H*(Yy, C)
Remark 7.4.1. By ([Bat93, Cor.3.10]) the image of
H*(T,C) — H*(Z;,C)

is contained in Gryy, H?(Z;, C). The filtrations F* and W, respect the primitive
cohomology.

Remark 7.4.2. We have an isomorphism of C vector spaces ([Bat93, Thm.6.9,
Cor.6.10])
PH(Z;,C) = R;.

This allows us to transport the Hodge and the weight filtration onto Ry (see
[Bat93, Thm.6.9, Thm.8.2]): The Hogde filtration on Ry is given by the
reverse integral grading on R; and the weight filtration on R;‘E is induced by
the subdivision of £ - A into j-dimensional faces where j = 0,...,3. In this
thesis we just need the following result:

Theorem 7.4.3. (/Bat93, Prop.9.2])
There is an isomorphism

Gry ' H" Y (Z;,C) = Rpnt -
which respects the Hodge filtration, that is
GriGriy "H" 1 (Z;,C) =~ R}, 7.

Remark 7.4.4. Knowing a minimal set of relations between the gr’s would
allow us to compute the dimensions of the Hodge components of H"*(Z, C)
of minimal weight.
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Remark 7.4.5. Let A be a 3-dimensional lattice polytope with F/(A) # .
Write

h
Y\Zf = UGZ u s
i=1

where G; := V/(7;) are irreducible curves and S equals the union of the fixed
points of P, that are isolated on Y.

Construction 7.4.6. Let Z := Y\D, where
D= Gl + ...+ Gh-

There is the following Gysin exact sequence (compare [DK86, Proof of
Thm.3.7)):

h
0— H'(Z;,C) > @ H(G,,C) & H(v,C)
=1
" h
L H*(Zy,C) > P H'(G;,C) — 0,

i=1
since h*(Y,C) = h*(Y,C) = 0. The inclusion j : Z; — Y yields the pullback

homomorphism j*, r is called the residue map and k, the so called Gysin
map. To be more precise k, is the homomorphism Poincaré dual to

h
k* =@k H*(Y,C) > P H*(G;,C),

i=1 i=1

>

where k; : G; — Y denotes the inclusion (compare [Voi02, 7.3.2]). r is in fact
a topological map (see [CMSP17, Ch.3.2]).
Setting

7 = Zf U S

we get

H"(Z;,C) =~ H*(Z,C) k

\%

1,
that is we may replace Z; by Z in the above sequence. The cohomology

groups H*(G;, C) for k = 0,1 carry Hodge structures of weight 0 and 1. Then

r(Gryy H*(Z;,C)) « @ G}, > H*1(G;,C) &k =1,2.

i=1
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and the image of H°(G;, C) under k, equals the image of Oy (G;) under the
first chern map
¢, : Pic(Y) — HY(Y,C) n H*(Y,Z)

(compare [V0i02, Thm.11.33, Ch.11 Ex.1}). Thus we obtain the exact sequence

>

0 — Gr2,H'(Z;,C) 5> (P H°(G,,C) 5 H2(Y,C) (7.9)

=1

% Gr2, HX(Z;,C) — 0.

Theorem 7.4.7. Let A be a 3-dimensional lattice polytope with F(A) # &
and let Y =Yy be a minimal model of Z;. Then

HP?>P(Y) ~ R’;;t{f (7.10)

where ~ means up to cohomology classes in P. These cohomology classes are
integral (that is they lie in H*(Y,Z), constant on the whole family and lie in
HYY(Y)).

]

7.5 Appendix: The algorithm of Danilov and
Khovanskii

In 1986 Vladimir I. Danilov and Askold G. Khovanskii invented ideas how
the Hodge-Deligne numbers of Z; and the Hodge numbers of a smooth
compactification of Z; could be calculated (see [DK86]). We shortly sketch
the inductive character of their algorithmic work: The authors work in
arbitrary dimension n but with a smooth (or at least quasismooth) birational

model of Z;. For this take a toric resolution of singularities p : P — P, in
which case the preimage

Zp=p ' (Zay)

is smooth. Poincaré duality yields a perfect pairing

HE(Zg,C) x H**7M(Z;,C) - C
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respecting the Hodge filtrations, where H” (Z +,C) denotes the cohomology
with compact support. For the calculations of main interest is the following
invariant of euler type

eP1(X) = Zn](—n’f -hP1HR (X, C) (7.11)

for X a variety. Writing Z r=2Zr0 |J Zp s for some polytope A’ majorizing

/<A
A, then

" Zy) = U Zp) + Y, N Zrvy) (7.12)

V<A

(see [DKS8G, 5.2] for details). For p+g>n—1

e (T =
ep,q<Zf):{ 0 (T) 2137&;]

by a Lefschetz theorem. Thus (7.12) serves to get an inductive calculation of
eP4(Zy) for p+ q > n— 1. By Poincaré duality

ePI(Zy) = e Zy)

is also known for p + ¢ < n — 1 and the last remaining number e 17P(Zy)
is gotten from the others and the relation

Yera(zy) = (~1)rt (p N ) + bnp(B)

Z +1

The term ¢,,_,(A) depends on the dimensions (*(j - A) for 7 > 1 (see [DK86]
4.4] for the last term). Last but not least

ePU(Zy) = £hPYH Y (Z;,C),  ePU(Zy) = £h**9(Z;,C) (7.13)

due to Theorems of Grothendieck and Lefschetz, giving the Hodge-Deligne
numbers (at least in theory).

Examples from: We list some examples from ([DK86, 5.11]):
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n=1= Z; equals (I(A) + 1) different points in C*
n=2:
hO’OHcl<Zf) ho’chl(Zf) Im-1 l*(A)
h'H (Zy) | W1 H, (Zy) MAa) | 0
where II := [{points in the 1-skeleton of A}]
=1(A) = I*(A).
n=3:
WEHE(Z,) | HE(Z,) | PRI ST EA N
WHAZ) | ) || = |
WOHZ(Zy) | HY HE(Zy) | h™2HE(Zy) =1 2 (T) | 1*(A)
T

where ht! = 1*(2- A) — 4 - 1*(A) — 3 =Y 1*(T).
T




CHAPTER 8

The infinitesimal Torelli Theorem (ITT)

Varying f we are keen to know whether the Hodge components of H?(Y;, C)
determine Y} in the family X — B up to isomorphism. One could make this
problem precise by introducing and studying properties of the period map Pp.
This leads to so called Torelli type Theorems. These are not really ,,uniform
Theorems” as there are algebraic varieties failing them, but such varieties
are often very exceptional.

In this chapter we restrict to the infinitesimal Torelli Theorem for X — B.
We ask if the kernel of the differential dPp ¢ at f, which factors through the
Kodaira-Spencer map for X — B, is strictly larger than the kernel of k.
For this we establish a conjecture on the kernel of dPp ¢ which though we do
not prove. We conclude by showing that some of the surfaces of general type
to our 49 polytopes A with

ja)

Int(A)n M =10]|, dim F(A)=3

e

fail this infinitesimal Torelli Theorem.
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8.1 Properties of the period map and its dif-
ferential

Definition 8.1.1. ([VoilZ, Thm.9.3, Ch.10.1.2, Ch.10.1.5])
Let A be a 3-dimensional lattice polytope with F(A) # & and f € B. The
period map Pp s for the 2-th cohomology is defined by

P, :B—-T\D
[l (Y],
where
H**(Yp) « H*(Yy,C) = H*(Y;,C)
Here

D : period domain (a quasiprojective variety)

[ : The monodromy group w1 (B, f)

We refer to ([Voi02, Ch.10], [Voi03, Ch.3]) for details.

Remark 8.1.2. H?%(Y}/) determines the Hodge structure on H*(Y},C) by
Remark [7.3.3] The period map Pg ;s is holomorphic (see [Voi02, Ch.10]). The
Torelli Theorem asks if the Hodge structure of a fiber of pry determines this
fibre (up to isomorphism). We study the situation infinitesimally.

Construction 8.1.3. (Result of Griffiths) ([Voi02, Thm.10.21])
The differential dPp ¢ of Pp ; fits into a diagram

Ts.s ) HY(Y}, Ty,)

e |m (5.1)

HOH]'(HO(Yf? Q%’f)? Hl (Yf7 Q%/f))

® is the homomorphism between cohomology groups induced by cup product
and the contraction

2 1
This diagram is important since it connects the Hodge-theoretic homomor-

phism dPp s with the Kodaira-Spencer map xy. Given the conditions (4) we
may replace k; by kp s by replacing A by C(A) (see Remark [5.5.2)).
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Remark 8.1.4. Starting with a smooth proper deformation Y — S of Y}
with § smooth, we define a Kodaira Spencer map ~g s and a period map Pg s
just as in the Definitions [5.2.1|and [8.1.1] The result of Griffiths remains valid:
dPgs ¢ factors through rg s and @, that is ® is universal.

Definition 8.1.5. The infinitesimal Torelli Theorem (short: ITT) for Yy
asks if ®; is injective. The infinitesimal Torelli Theorem for Yy in X B
asks if @piimr, is injective. The infinitesimal Torelli Theorem for X B
asks if @ yi1m e, s injective for f € B.

If k¢ is surjective of course the first and the third definition coincide. Choose

a reference point f € B and define a map from B into a mized period domain
D,pir (which has to be defined) by

of
f, = R}nt,f’ < Rlnt,f’ = Rlnt,f'

¢y is the entry of a mizved period map, which maps f’ onto the mixed Hodge
components of H*(Z;,C). Apparently ¢; just depends on the affine part Z
and not on the particular compactification Y.

Remark 8.1.6. ([Voi02, Ch. 9.2.1, Ch.10])

Just as the Hodge decomposition fits into a general context by introducing
Hodge structures, the differential dPp ¢ fits into the context of an infinitesimal
variation of Hodge structure by introducing a Gauf-Manin connection: We
remember the construction without going into details:

Varying f € B the vector spaces H?(Y, C) build a holomorphic vector bundle
R?(pry)«(C) and similarly do HP?7?(Y}) build the vector bundle H?~?. The
Gauf$-Manin connection

vp,Q—P . Hp,2fp N prl,?)fp ® QlB
is a connection, which could be defined fibrewise
VP HPE(Y) — H (Y © Q)

as the map with
=20
dPps(v)(z) = Vi (2)(v),
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for v € T ; and 2z € H*°(Y}), where the second bracket stand on the right
hand side means the contraction between T ; and Qf ;.

The cohomology groups with rational coefficients H*(Y;, Q) form a local
subsystem R*(prq).(Q) of H'! with

Vi'(z) =0 for 2 e HY(Y}, Q).

We justify the fact that the above map ¢ is enough for us (here we are a
bit pedantic, but this is more clear to us than in ([Bat93, Prop.11.8])) by the
following lemma:

Lemma 8.1.7. d¢; has image in Hom(R},, ;, R}, ;) and dPgy factors as

follows

doy
TB,f Hom(R}nt,f’ R%nt,f)

P J (8.2)
HOIn(‘HO(Yf? Q%f)? H1 (Yf7 Q%/f))

where the vertical map denotes the inclusion.

Proof.
H0<Yf7Q§/f) = R}nt,fﬂ Hl(yf7Q%/f) ~ R?nt,f?

by Theorem [7.4.7] where ~ means up to cohomology classes that come from
classes of P. The image of d¢; lies in

Hom(R}nt,ﬂ R?nt,f)

by the result of Griffiths (Construction [8.1.3)).
To show: Given v € Ty and z € R}, ; then

dPp(v)(2) € Ry

We prove

>

Rines = (D H(C.0)) (53

i=1

w.r.t the pairing
(Y HA(Y;,C)® H*(Y;,C) — C
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h

Given this assertion is valid, take v € Tpf, z € @ H*(G;,C) and z € Ry, ;
i=1

arbitrary.

= (V{'(2)(v),2) = (2, V; (2)(v))
by ([Voi03l, Prop.5.19 formula (5.14)]). Besides

=1,1

by Remark that is

V2(2)(v) @ HQ(GZ»,C)> — Rinty

and v?’o(z)(v) € R, ; by Construction 8.1.3|

Concerning (8.3): Since
Gi+..+G,

is an snc-divisor we get the inclusion ,o“ in (8.3)). The Gysin exact sequence
[7.9]is Poincaré dual to an exact sequence

0— (Gt H?(Zf,C))* — H(Y,C) & @ HX(G,,C) (8.4)
=1

Poincaré duality on H?(Y, C) restricts to an isomorphism
(R];nt,f)* = Réllr_n]?f
by Remark |7.1.6 that is dualizing the first term in (8.4) simply means to
reverse the Hodge filtration. Let y € @ HY(G;, C), x = k.(y) € @ H?*(G;,C)
i=1 i=1
and z € Ry r. Then
(,2) = Ckaly), 2) =, k*(2)) = 0

by the projection formula ([Voi02, 7.3.2]), proving (8.3).

By the definitions of Pg and ¢ as holomorphic maps mapping a Laurent
polynomial f onto the same vector spaces it is clear that dPp ¢ factors through
dpy. We are left to show that for v € Tp s and z € R}, ; we have

AP 1(0)(2) € By s
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We first show that
Rins = (é-)hﬂ(@(:))L (8.5)
i=1
with respect to the intersection pairing
() H*(Y;,C)® H*(Y;,C) — C.

We call the cohomology classes on the right of (8.3) also the primitive coho-
mology classes of Y.
Let v € T f, x be a primitive cohomology class of Yy and z € R}nt’f. Then

as in ([Voi03l Prop.5.19 formula (5.14)]) we have
V(@) 0) =~y (@))).
But as noted in Remark
Vi (z)=0
and thus Vjﬁo(z)(v) € Rpni,y and by Griffiths transversality € R7,, ;.
Remark 8.1.8. (see [Bat93, Prop.11.8])

d¢y is simply induced by the addition of lattice points

L(A) — Hom(L*(A), L*(2A)).

8.2 Smooth and stable points of M(A)

We do not restrict to n = 3 in this section. Given an n-dimensional lattice
polytope A and some polynomial f, the torus 7" acts on U,.4(A)

(th ...,tn).f(]}l, ceny In) = f(tll'l, ceey tnl’n), (tl, ,tn) eT.
T - f denotes the orbit of f under T'.

Let M(A) := B/T be the quotient of B by T. We omit equivalence classes
and write f € M(A).
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Definition 8.2.1. ([MuFo82, Def.1.7])

Let v e C'™*! and o = [v]. The point = is stable if the orbit T - v is closed
and of dimension dim A = n. The second condition is equivalent to the
condition

# Stabr(v) < 0,

where
Staby(v) := {t € T|t.v = v}

denotes the stabilizer of v w.r.t. the action of T.

Let r := [(A) — 1. The set (P")* of stable points of P" is Zariski open in P"
([MuFo82l §4]), but might be empty. Let

A, i={le,m| meMnA)

denote the r-dimensional standard simplex embedded into an affine hyperplane
in RU2). Then there is a map 7 : A, — A given by

2 A+ €, —> Z Am - m for Z Am = 1.

meMnA meMnA meMnA

To A, is associated the toric variety P" and given

a = (am)meMmA el

there is a natural (C*)" orbit through a of some dimension k € {0, ...,7}. We
denote the k-dimensional face of A, corresponding to this orbit by I'(a).

Proposition 8.2.2. ([KSZ, Prop.5.5])
(P™)* # & if and only if

(0,...,0) € Int(A) n M.

More precisely a € (P")* is stable if and only if 7(I'(a)) has full dimension n
and contains (0, ...,0) in its interior.

Corollary 8.2.3. If (0,...,0) € Int(A) n M and a := (am)merina € RIA) s
such that f as in lies in U,ey(A), then a is stable.

Proof. For m a vertex of A we have a,, # 0 and thus 7(I'(a)) o Int(A), in
particular (0, ...,0) € 7(I'(a)) and 7(I'(a)) is full-dimensional. O
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Corollary 8.2.4. If (0,...,0) € Int(A) then the quotient M(A) is smooth.

Proof. By definition L(A)\Uy¢4(A) = {E4 = 0}, where A := A n M by
Remark 2.2.4] In effect U,4(A) is affine.

The orbit T'- f is closed and n-dimensional since all f € M(A) are sta-
ble w.r.t. the action of T on P41 Applying Luna’s slice Theorem ([Drel2,
Prop.5.7]) to the affine variety U,¢,(A) and the projection

Ureg(A) — M(A)

gives us that M(A) is smooth at f if Stabr,cx(f) contains just the neutral
element (1,...,1).

By definition
Stabr(f) = {(t,1) = (t1,...,t,,1) e TxC*| t"a,, = a, VYm with a,, # 0}.
Thus

Stabp(f) c {te T |t" =1 V vertices vy, ...,v;} x {1}

Consider n vertices vy, ..., v, which span My and apply an unimodular trans-
formation U : M — M such that

U(Ul)7 SERD) U(Un—l) € {(ml, ceny mn) S M| my, = 0}
Replace v; by U(v;) and note that for

(tl, ey tn) € StabT(f)

the entry ¢, is uniquely determined by %4, ...,%,_1 and the relation 1 = t"».
Further if (t1,...,t,—1) = (1,...,1) then also ¢, = 1. By this we have reduced
the assertion Stabr(f) = {(1,...,1)} to the lower-dimensional problem that
the only solution of

1= = .. =

ist=(1,...,1). We continue inductively.
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Remark 8.2.5. Given (0,...,0) € Int(A) n M and f € M(A) then f is
smooth and stable. Let ¢; : T' — B denote the map

(tl, ceey tn) —> f(tlxl, ceey tnxn)
Then as in section [6.1] the tangent space at the orbit T"- f is given by

J 0
Tr.pp = Im((doyg)e) = <x16i’ ...,xna?;f>,

where (d¢y). denotes the differential of ¢ at e = (1,...,1). We get
Tmys = Tpp/Trg g
of of 1
~ L(A e Ty ) =
( )/<f7xlax ) ’m”é’xn> Rf

1
where the first isomorphism follows from ([Bat93 Cor.11.3]).

8.3 Explicit description of dPM(A)’ f

Construction 8.3.1. (Computational description of dPpqa),r)

Assume (0,0,0) € Int(A) n M. By Corollary all points f € M(A) are
smooth. To the deformation X — B — M(A) there is a Kodaira-Spencer
map kaqa),s and a period map Paya),r. We study the resulting map

1 oy 1 2
Rf - Hom(Rlnt,fale,f)
and its kernel.

The assertion of the following elementary Remark is also a consequence of
diagram [8.1] and the results of Chapter [5

Remark 8.3.2. (Elementary proof that ker(kys) < ker(dPaa),f))
Let o€ R(N,XA). Then there is I'_, < A such that if v € Int(A) n M then
by definition of the roots

v—aelnt(A)nM or v—aelnt(l'_,) n M.
By formula
gr_ () 27" = w_a(f).
We obtain
w-a(f) 2" =gr_,(f) 2" € L*(24).
Since gr_, (f)-2"~* € JX ; we verified explicitly that w_o(f) € ker(dPrqa),z)-
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The kernel ker(dPaqa) s):
Remark 8.3.3. Assume (0,0,0) € Int(A) n M. First by definition
ker(dPuays) = {h € L(A) | Vo e Int(A) n M : h-a" € J3 ;}. (8.6)
and by Proposition [7.2.3]
L2 A) AR = (gr(f) -+ [T < A,
w € Int(A) n M or w e Int(T') n M).

Obviously

{gr(f) - 2" |I' < A a facet ,
w+ve (Int(A) uInt(l)) N M, Vovelnt(A)n M}

is contained in ker(dPaqa),f). In general given h € ker(dPaq(a),f)
hea’ = hry - gr(f) (8.7)
T
for v € Int(A) n M and Supp(hr,) < (Int(A) U Int(I')) N M.

Note: Restricting the condition w € Int(A) n M to 4 facets I'y, ..., Iy with

nr,, ..., nr, affine linearly independent this representation is unique by Propo-
sition [7.2.3]

Remark 8.3.4. hr, is completely determined by hr 00): Given h €
ker(dPuq(a),r) and v € Int(A) n M there are

hrp € (Int(A) U Int(T)) N M
such that
h=>"hry- gr(f) 27"
r
Setting hr := hr (0,0,0) the relation
Zhr'gr(f) a2t =h-at = Zhr,v'gr(f)
r r
implies
th = hr -t

by linear independence of the gr(f)’s.
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Conjecture 8.3.5. Let A be a 3-dimensional lattice polytope with (0,0,0) €
Int(A) n M and Int(A) n M & E (plane). Then

ker(dPua),r) =(gr(f) - =¥ € R} | T < A a facet,
w+ve (Int(A) uInt(T)) N M, Vvelnt(A)n M).

The inclusion 2 is clear. The problem with the opposite inclusion is that it
might happen that

e ge(f) € L(A). (53)

but hr - gr(f) ¢ L(A) for several I’s. Maybe under the additional assumption

Int(A) n M & plane

a proof of the conjecture gets more handable. But we could not finish a
proof and just end up with two Lemmas in the direction of a possible proof:
Suppose given an element of the kernel as in (8.8). Let

H,;:={reMr|{x,ny=1} neN, lelZ.

Lemma 8.3.6. Let Rr := (Int(A) u Int(T")) n M.

Supp(hr) < Cone(Int(I') n M) n H, N M, (8.9)

r,—lr

where Iy denotes the smallest natural number = 1 with
@ #* an,—lp N RF

(if lr does not exist, then Supp(hr) = & ).

Proof. If
(07 07 0) 7 Mme Supp(hf)

then some multiple 7 - m, r € Nyq, lies in Int(T') n M by (8.7). Thus
m € Cone(Int(I') n M). If there were m’ € Int(A) n M with

0> (m',nr) > (m,nr)
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then
(r—=1)-m+m'eInt(A)n M
:>r-m+m’=<(r—1)-m+m'>+ m € RrnM
elnt(A)nM eSupp(hr) by(E.7)
by (8.7)), a contradiction. O

Lemma 8.3.7. Assume that
hr - gr(f) € L(A)
for some facet I'. Then
z™ - gr(f) e L(A) Ym € Supp(hr) (8.10)

Proof. This is simple: Assume to the contrary that ™ - gr(f) ¢ L(A), say
that this polynomial jumps out of a facet I'y. Then choose n € N suitable
and find a vertex v € Vert(I';) such that m + v ¢ A n M and this vector
remains left in Supp(hr - gr(f)). O

8.4 Examples and Counterexamples to the
ITT

Remark 8.4.1. Assume

D hr - gr(f) € ker(dPp ).

Given w € Supp(hr) by Lemma (8.3.6])
(wynry = —=Ilp <0, and (w,nr) =0< w = (0,0,0).

In the latter case hy -2 = hr =0¢€ R]lc. Now given the conjecture and
given

- gr(f) € ker(dPg ¢)

we get

(w,ngy =0, VL #T
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for else 2% - gr(f) ¢ L(A). Thus if (w,nr) = —1, then ¥ - gr(f) € ker(xy).
The case ~
{wy,npy < =2, {w,ngy>=0 VI #T

remains, which seems to be very exceptional. In the following two examplex
assume that Conjecture is valid:

Example 8.4.2. By ([Fle86, Thm.3.1]) if
n>=2 and (d,n)# (3,3)

then the I'TT for smooth hypersurfaces Y < P" of degree d is known to be
true. Assume that n = 3 and note that in this case by [Voi03, Lemma 6.15]
the Kodaira-Spencer map is surjective if d > 5.

Therefore we may prove the ITT for nondegenerate smooth surfaces in P3:
We have A = d - Az. But obviously I = 1 for all facets I' < A with the
notation of Lemma [8.3.6] and we are done with the remark above.

Example 8.4.3. Given a 3-dimensional polytope A with
Int(A) n M = {(0,0,0)}

For A reflexive, that is C(A) = A and F(A) = {(0,0,0)}, we get a K3
surface and K3-surfaces fulfill the ITT (see [Huy16, Ch.6]). We may check
ker(®fi1mx,) = {0} here: We have I = 1 for all facets I'. Given gr(f)- 2" €
ker(dPuq(a),f) if <w,np) < 0 then (w,nr) = —1 and we are done.

Example 8.4.4. Switching to the (maximal) polytopes from section in
all examples there is exactly one facet I' with distance 2 to the origin (all
other facets have distance 1 to the origin, Remark [3.4.2)). The facet I' has
2 (or 3) interior lattice points, that we denote them by acy, acy in a) and b)
and by acy, acy, acg in ¢),d) and e), and

p+ac; € A.
p is the only vertex opposite to I and thus given f € B
gr(f) -z e ker(dPmayy),  gr(f) -z ¢ ker(ky).
On the other hand side if all coefficients (a,,)merm~a are nonzero in f, then
gr(f) -z ¢ L(A) for .

There are some lattice points on A lying between the facet I" and the plane
parallel to I" through (0, 0,0), which prevent gr(f) - ¥ to have support on A.
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Corollary 8.4.5. For A one of the 5 maximal polytopes and a given f generic
the ITT holds for X — M(A) at Y. But if we set the coefficients to the
following monomials (in all cases a),b),c),d),e)) to zero, then Y; fails the
ITT:

ab, ad, be, cd.

[
In a) and ¢) there is an additional facet IV with an v € Int(I") n M such that

gr(f) -2 € L(A)

but in this case v € —R(N,XA), that is nothing changes (compare section
6.2). In fact it follows with results from ([Cat78]) that

a),b) : dim ker(<I>f|1m,gf) = 27 C),d),@) : dim ker(q)flfmﬁf> =3.

Interestingly in ¢), d) and e) the surfaces Y failing the ITT are exactly those
surfaces in the family X' — B which are Todorov surfaces.

Remark 8.4.6. By section [£.4] the minimal model Y gets a Kanev surface,
in which case h'"'(Y) = 19 or a surface with

p(Y) =1, q(Y)=0, Ki=2 m(Y)=Z/2Z

in which case h'(Y') = 18.

There are known results on Kanev and Todorov surfaces failing the I'TT: There
is a 14-dimensional family of Kanev surfaces, containing the 12-dimensional
family of special Kanev surfaces, such that every member of this family fails
the ITT (see [Cat78al). Likewise a generic Todorov surfaces Y with K& = 2
fails the ITT (see [SSUSH, (1.4.2.1)]). We guess that our examples are not
new (compare the above monomials with the monomials in Example
but of course we applied different methods and our computations are more
explicit.

Concerning the other cases C(A) # A or dim F(A) € {1,2} we guess that
there are other counterexamples of polytopes A with dim F(A) = 1 yielding
proper elliptic surfaces in toric 3-folds (for example from the lists [Sch18|
Appendix A.1,A.2]). For other ,new* counterexamples we are more skeptical.
See the Example below for a naive approach.
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Example 8.4.7. We sketch a possible simplex A with [*(A) =1 ((0,0,0) is
the only interior lattice point) and one facet I' = (vy, vq, v3) with distance 3 to
(0,0,0) and an interior lattice point v € Int(I') n M. In case vy + ve An M
then we would get another counterexample to the I'T'T by choosing an f
which has support on the vertices of A (In this case gr(f)-2" =0in R7,, /
but v is not a root of ¥ 5 since the facet I" has distance 3 > 1 to (0,0,0)).
But all lattice polytopes A with

dim A =dim F(A) =3, ["(A)=1

have been classified in (|[BKS19]) and there are just the 49 polytopes we have
studied.

Uy

Such a lattice polytope does not exist.
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9.1 The polytopes A with C'(A) = A in a)

The 11 canonically closed polytopes out of 20 polytopes in the first class a).
The polytopes are ordered in rows descendingly by their number of lattice
points (The maximal polytope is additionaly put in the first row on the left).
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9.2 The polytopes A with C(A) = A in b)

The 15 canonically closed polytopes out of 26 polytopes in the second class b)
with the same convention on the rows as in case a) and also with the maximal
polytope put in the first row on the left.
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9.3 Data of all polytopes in a) and b)

Polytopes in a) such that A, := {a,b,d) sorted as in Figure from the top
to the bottom and from left to right. The arrows indicate that the polytopes
are not canonically closed and the ID of the canonical closure is the polytope
above the arrows (e.g. ID5389063 has canonical closure ID546219)

F(A) =<{(0,0,0), (1,1/3,0), (1,2/3,0), (1,1/2, —1/2))
pi=(—4,-2,1),as := (=2, —1,0),c5 := (=2, —1,1),by := (—1,—1,1),
dy :=(-1,0,1),a; := (0,0,—1),0 := (0,0,0),¢; := (0,0, 1),
ab:= (1,0,0),bc := (1,0,1),ad := (1,1,0),cd := (1,1, 1),
b:=(2,0,1),a:=(2,1,-2),ac; := (2,1,-1),acs := (2,1,0),
ci=(2,1,1),d:= (2,2,1)
ID spanning set for | number of

polytope A points on A
547444 Acan, P 18
474457 Acan7 as, Ca, dl, bl 17
= 545932 Acan,a2702 15

= 532384 Acan, asg, Co, dl 16
— 532606 | Avan, az,d1, by | 16
483109 | Avun,dy, b1, o, ay | 16
534669 Acan, C2,d1, ay 15
5934866 Acan, b1, a1, dy 15
534667 Acan7 Co, dl, b1 15

546062 Acan) b17 (45} 15
546205 Acan, ai, Co 14
546219 | Avan, 1, az 14
= 547524 | A, an 11
= 546863 | Acan, a2, be 12

= 539063 | Aan, s, be, cd 13
536498 Acan, b1, ad, co 14
537834 Acan,ab, ad, co 13
= 547525 | Acan, C2 11
= 546862 | Acan, ab, co 12
= 546663 | Acan,ad, co 12




9.3. Data of all polytopes in a) and b)

103

Polytopes in the class b) sorted as in Figure from top to bottom, left to

right. (with Aggp, i=

{a,b,c,dy and the same convention as in Table

F(A) ={(0,0,0), (1 -1, /2),( ,—2/3,1/3),(1,-1/2,1/2),(1,—-2/3,2/3))
p:=(—4,3, 2) =(-2,2,—-1),a9 := (—2,1,—1),by := (—1,1,0)
dy = (—1,1,-1),0:= (0,0,0),a; := (0,—1,0),¢1 := (0,1,0),cd := (1,0,0),
ad := (1, 1,0),ab (1,—-1,1),bc:= (1,0,1),ace := (2,—1,1),
acy = (2,-2,1),d:= (2,-1,0),c:=(2,0,1),a := (2,-3,1),b := (2, -1, 2)

ID spanning set for | number of

polytope A points on A

545317 Acan, P 18

354912 Acan, Co,a9,dy, by | 17

= 533513 | Acan, C2, o 15

= 481575 Acana Co, Q9, d1 16

372528 Acany dl, bl, Co, 1 16

372973 Acany bl, dl, a9, Cq 16

= 490511 | Acan, b1, dy, as 15

388701 Acan,a1,dy,by,c1 | 15

= 499287 | Aan,a1,dy, by 14

490485 Ac(m, C1, 02, dl 15

490481 Acany Co, bl, d1 15

490478 Acany dl, Co, aq 15

535952 Aca'm ag, Cq 14

536013 Acan, 1, C2 14

495687 Acan, di, o, ab 14

= 539313 | Acun, dy, o 13

499291 Acana Cy, bl, d1 14

= 538356 | Acan, b1, dq 13

499470 Acany as, bC, d1 14

= 539304 | Acun, a2, dq 13

501298 Acan, c2,ab, ad 13

= 547246 | Acan, C2 11

= 540602 | Acan, Co, ab 12

501330 Acan, a2, be, cd 13

= 547240 | Acan, a2 11

= 540663 | Acan, a2, be 12
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