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Abstract

Magnetic Resonance Imaging (MRI) is a fascinating example of how basic research in
physics, studying nuclear spin and magnetism, has evolved into a highly successful tech-
nology that enables non-invasive medical imaging. As such, it provides insight into both
anatomy and physiology, and aids in the diagnosis of a wide range of pathologies. In ad-
dition, functional MRI is a central tool for addressing neuroscientific questions that seek,
for example, a better understanding of the human brain. The basic principle of Magnetic
Resonance (MR) technology is that nuclear spins can be manipulated and probed by
electromagnetic fields. When done properly, the interactions between the spins, as well
as with their microscopic electronic environment and the external electromagnetic fields,
allow a large variety of different tissue properties to be accessed and imaged without the
use of harmful ionizing radiation. This makes MRI an inherently multimodal imaging
technique, yielding information about, for example, proton density, relaxation times,
diffusion and perfusion, blood oxygenation, molecular structure, temperature, magnetic
susceptibility, electrical and even mechanical properties.
Despite the versatility and advantages of this technology, probably the most striking

limitation of MRI lies in the comparatively long acquisition times required to obtain the
necessary information, especially to achieve sufficient Signal to Noise Ratio (SNR). To
address this problem, the aforementioned manipulation and probing of nuclear magne-
tization has been subject to extensive research and engineering efforts. In particular,
approaches to optimize and speed up MRI can be broadly classified into three cate-
gories: 1) faster imaging sequences such as Fast Low Angle Shot (FLASH) or Echo
Planar Imaging (EPI), 2) hardware-based improvements such as better gradient coils
and so-called Parallel Imaging (PI), and 3) reconstruction methods based on tailored
signal processing.
This thesis covers two distinct topics in the context of optimizing MRI acquisition

and reconstruction. As the first topic, a novel concept for improving PI at Ultra-high
Field (UHF) MRI is presented. Among all technical developments to speed up MRI
acquisition, PI is one of the most successful and widely applied techniques. It relies on the
additional localization information provided by the spatial sensitivity profiles of multiple
Radio Frequency (RF) receive coils used to detect nuclear magnetization. However, the
maximum achievable PI acceleration factor that still provides acceptable image quality
is fundamentally limited by the number and spatial independence of the coil sensitivity
profiles. The proposed novel concept to improve PI is based on electronically modulated
time-varying receive sensitivities enabled by custom-built reconfigurable RF coils. It
is investigated and demonstrated how these can be realized experimentally and used
advantageously in acquisition and reconstruction. This work thus can be seen as falling
into categories 2 and 3 above.
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As a second topic, Chemical Exchange Saturation Transfer (CEST) is considered as
one of the MRI contrast mechanisms listed above that promises to provide insights into
the molecular microenvironment and to detect low concentration metabolites. Due to
the required sequence structure of repeated RF-prepared readouts, CEST MRI suffers
from long scan times. In addition, the extraction of the desired contrast information
usually requires computationally complex processing steps. In this context, a data-driven
linear projection method for CEST parameter estimation from the acquired raw data
is proposed, which allows simple and fast contrast generation and a potential reduction
of acquisition times by providing insight into which parts of the CEST data contain
relevant information and which parts could be omitted. This project can be seen as
belonging to categories 1 and 3 of the MRI optimization methods mentioned above.
Finally, a novel and experimental method of optimizing MRI contrast generation is

proposed, where both acquisition and contrast mapping are treated as a joint numerical
optimization problem. Departing from the conventional way of basing such optimiza-
tions on theoretical models and numerical simulations, a model-free framework is imple-
mented here that optimizes both acquisition parameters and contrast extraction schemes
purely based on automated exploratory acquisitions running on a real MRI scanner. The
method can also be seen as belonging to categories 1 and 3. A proof-of-principle demon-
stration of this framework is given in the context of CEST MRI. The approach may be
particularly useful in situations where a theoretical description of the targeted problem
is not available, such as hardware system imperfections. This in turn suggests a possible
link to category 2 of the MRI optimization methods mentioned above.
Overall, all of these projects highlight the potential that lies in synergistically consid-

ering all aspects of MRI related to hardware, acquisition, and reconstruction in order to
strive for optimization of acquisition times and information retrieval.
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Zusammenfassung

Die Magnetresonanztomographie (MRT) ist ein faszinierendes Beispiel dafür, wie sich
physikalische Grundlagenforschung an Kernspin und Magnetismus zu einer äußerst er-
folgreichen Technologie entwickelt hat, die eine nicht-invasive medizinische Bildgebung
ermöglicht. Als solche bietet sie Einblicke in Anatomie und Physiologie, und hilft bei der
Diagnose einer Vielzahl von Krankheiten. Darüber hinaus ist die funktionelle MRT ein
zentrales Instrument zur Beantwortung neurowissenschaftlicher Fragestellungen, die bei-
spielsweise auf ein besseres Verständnis des menschlichen Gehirns abzielen. Das Grund-
prinzip der MR-Technologie besteht darin, dass Kernspins durch elektromagnetische Fel-
der manipuliert und untersucht werden können. Hierbei ermöglichen die Wechselwirkun-
gen der Spins untereinander sowie mit ihrer mikroskopischen elektronischen Umgebung
und den externen elektromagnetischen Feldern den Zugang zu einer großen Vielfalt un-
terschiedlicher Gewebeeigenschaften und deren Abbildung ohne den Einsatz schädlicher
ionisierender Strahlung. Dies macht die MRT zu einem inhärent multimodalen Bildge-
bungsverfahren, das Informationen beispielsweise über Protonendichte, Relaxationszei-
ten, Diffusion und Perfusion, Sauerstoffsättigung des Blutes, molekulare Struktur, Tem-
peratur, magnetische Suszeptibilität, elektrische und sogar mechanische Eigenschaften
liefern kann.
Trotz der Vielseitigkeit und der Vorteile dieser Technologie liegt die wohl hervorste-

chendste Einschränkung der MRT in den vergleichsweise langen Messzeiten, die erfor-
derlich sind, um die notwendigen Informationen zu erhalten, insbesondere um ein aus-
reichendes Signal-Rausch-Verhältnis (SNR) zu erzielen. Um dieses Problem zu lösen, ist
die oben erwähnte Manipulation und Untersuchung der Kernmagnetisierung zum Gegen-
stand umfangreicher Forschungs- und Entwicklungsarbeiten geworden. Die Ansätze zur
Optimierung und Beschleunigung der MRT lassen sich grob in drei Kategorien einteilen:
1) schnellere Bildgebungssequenzen wie Fast Low Angle Shot (FLASH) oder Echo Pla-
nar Imaging (EPI), 2) Hardware-basierte Verbesserungen wie bessere Gradientenspulen
und so genannte Parallele Bildgebung (PI) und 3) Rekonstruktionsmethoden, die auf
maßgeschneiderter Signalverarbeitung basieren.
Diese Arbeit befasst sich mit zwei verschiedenen Themen im Zusammenhang mit der

Optimierung von MRT-Datenaufnahme und -Rekonstruktion. Als erstes Thema wird ein
neuartiges Konzept zur Verbesserung der Parallelen Bildgebung bei der Ultra-Hochfeld-
MRT vorgestellt. Unter allen technischen Entwicklungen zur Beschleunigung der MRT-
Datenaufnahme ist die Parallele Bildgebung eine der erfolgreichsten und am häufigsten
verwendeten Techniken. Sie basiert auf der zusätzlichen Lokalisationsinformation, die
durch die räumlichen Sensitivitätsprofile mehrerer Hochfrequenz-Empfangsspulen zur
Detektion der Kernmagnetisierung zur Verfügung gestellt wird. Der maximal erreichbare
Beschleunigungsfaktor durch Parallele Bildgebung, der noch eine akzeptable Bildqualität
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ermöglicht, ist jedoch grundsätzlich durch die Anzahl und räumliche Unabhängigkeit der
Sensitivitätsprofile der Spulen begrenzt. Das vorgeschlagene neue Konzept zur Verbes-
serung der Parallelen Bildgebung basiert auf elektronisch modulierten, zeitlich variieren-
den Sensitivitätsprofilen, die durch speziell angefertigte rekonfigurierbare Hochfrequenz-
Spulen ermöglicht werden. Es wird untersucht und demonstriert, wie diese experimentell
realisiert und vorteilhaft bei der Datenaufnahme und Rekonstruktion eingesetzt werden
können. Diese Arbeit kann somit den oben genannten Kategorien 2 und 3 zugeordnet
werden.
Als zweites Thema wird Chemical Exchange Saturation Transfer (CEST) als einer

der oben aufgeführten MRT-Kontrastmechanismen betrachtet, der Einblicke in die mo-
lekulare Mikro-Umgebung und die Detektion niedrig konzentrierter Metaboliten ver-
spricht. Aufgrund der erforderlichen Sequenzstruktur von wiederholter Hochfrequenz-
präparierter Signalauslese leidet die CEST MRT unter besonders langen Messzeiten.
Darüber hinaus erfordert die Extraktion der gewünschten Kontrastinformation in der
Regel rechnerisch komplexe Verarbeitungsschritte. In diesem Zusammenhang wird eine
datengetriebene lineare Projektionsmethode zur Schätzung von CEST-Parametern aus
den gemessenen Rohdaten vorgeschlagen, die eine einfache und schnelle Kontrasterzeu-
gung und eine potenzielle Verringerung der Messzeiten ermöglicht, indem sie Aufschluss
darüber gibt, welche Teile der CEST-Daten relevante Informationen enthalten und wel-
che Teile weggelassen werden können. Dieses Projekt kann den Kategorien 1 und 3 der
oben erwähnten MRT-Optimierungsmethoden zugeordnet werden.
Schließlich wird eine neuartige und experimentelle Methode zur Optimierung der

MRT-Kontrasterzeugung vorgeschlagen, bei der sowohl die Datenaufnahme als auch die
Kontrastberechnung als ein gemeinsames numerisches Optimierungsproblem behandelt
werden. Abweichend von konventionellen Methoden, bei denen solche Optimierungen
auf theoretischen Modellen und numerischen Simulationen basieren, wird hier eine mo-
dellfreie Methode implementiert, die sowohl die Datenaufnahmeparameter als auch die
Schemata zur Kontrastberechnung ausschließlich auf der Grundlage automatisierter ex-
plorativer Messungen optimiert, die auf einem echten MRT-Scanner laufen. Diese Me-
thode kann ebenfalls als zu den Kategorien 1 und 3 gehörig betrachtet werden. Eine
grundlegende Demonstration dieser Methode wird im Kontext von CEST MRT durch-
geführt. Der vorgestellte Ansatz könnte besonders in Situationen nützlich sein, in denen
eine theoretische Beschreibung des anvisierten Problems nicht zur Verfügung steht, wie
z. B. bei Imperfektionen von Hardware-Systemen. Dies wiederum legt eine mögliche
Verbindung zu Kategorie 2 der oben erwähnten MRT-Optimierungsmethoden nahe.
Insgesamt unterstreichen alle diese Projekte das Potenzial, das in der synergetischen

Betrachtung aller Aspekte der MRT in Bezug auf Hardware, Datenaufnahme und Re-
konstruktion liegt, um eine Optimierung der Messzeiten und des Informationsgewinns
anzustreben.
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Acronyms and Definitions

ADC Analog-to-Digital
Converter

APT Amide Proton Transfer

B0 Static Magnetic Field
Strength

B1 Magnetic Component of
Radio Frequency Fields

B−
1 counter-clockwise rotating

Magnetic Component of
RF Fields (”Receive
Field”)

B+
1 clockwise rotating

Magnetic Component of
RF Fields (”Transmit
Field”)

CEST Chemical Exchange
Saturation Transfer

CAIPIRINHA Controlled Aliasing in
Parallel Imaging Results in
Higher Acceleration

CP Circular Polarization

DC Direct Current

DFT Discrete Fourier Transform

EPI Echo Planar Imaging

FA Flip Angle

FFT Fast Fourier Transform

FLASH Fast Low Angle Shot

FLAIR Fluid Attenuated Inversion
Recovery

FOV Field Of View

GM Gray Matter

GRAPPA Generalized
Autocalibrating Partially
Parallel Acquisitions

GRE Gradient Echo

LASSO Least Absolute Shrinkage
and Selection Operator

MPRAGE Magnetization Prepared
Rapid Gradient Echo

MR Magnetic Resonance

MRI Magnetic Resonance
Imaging

MSE Mean Squared Error

NOE Nuclear Overhauser Effect

NRMSE Normalized Root Mean
Squared Error

NUFFT Non-Uniform Fast Fourier
Transform

PCA Principal Component
Analysis

PCB Printed Circuit Board

PE Phase Encoding

PI Parallel Imaging

PSNR Peak Signal to Noise Ratio

pTx Parallel Transmission

RF Radio Frequency

RMSE Root Mean Squared Error

rNOE exchange-relayed NOE

RO Readout

ROI Region Of Interest

RSC Receive Sensitivity
Configuration
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Contents

SAR Specific Absorption Rate

SENSE Sensitivity Encoding

SNR Signal to Noise Ratio

SSIM Structural Similarity Index
Measure

ssMT semi-solid Magnetization
Transfer

TSE Turbo Spin Echo

T1 Longitudinal Relaxation
Constant

T2 Tranversal Relaxation
Constant

TE Echo Time

TR Repetition Time

UHF Ultra-high Field

WM White Matter

Constants

kB = 1.380649 . . . · 10−23 J
K

(Boltzmann Constant)

γ/2π ≈ 42.577478518 . . . MHz
T

(Proton Gyromagnetic Ratio)

ℏ ≈ 1.054571817 . . . · 10−34 Js (Reduced Planck Constant)

Notation

Vectors denoted with arrows correspond to physical vector quantities in R3 like macro-
scopic magnetization M⃗ or magnetic field strength B⃗.

Quantum mechanical operators are denoted with a hat, e.g. the spin
ˆ⃗
S.

Boldface vectors, e.g. x or y, correspond to collections of data points with variable di-
mension. Expectation value and covariance matrix of a random variable x are denoted
as E(x) and cov(x), respectively.
AT and AH indicate the transpose and Hermitian conjugate of a matrix A, respectively.
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2. Introduction

This chapter provides a summary of the theoretical concepts and foundations that serve
as the basis for the results presented in this thesis.

First, in section 2.1, a compilation of results related to linear regression models is pro-
vided, since the underlying mathematical framework is used in different manifestations
in all manuscripts included in this thesis. Then, in section 2.2, a brief introduction to the
basics of MRI is provided, including a description of spatial encoding and PI. Finally,
basic aspects of CEST MRI are presented in section 2.3.

2.1. Linear Models

This section provides a brief overview of the basics of linear regression models, includ-
ing multiple linear regression, (generalized) least squares estimation, and estimation of
parameter variance. This summary is based on the textbooks [1–4], in which a more
general and comprehensive treatment of the topic can be found.

Linear models are a central tool in statistics and are ubiquitously used in virtually
all quantitative fields of study, be it science, engineering, economics, etc. They are
popular because they are simple, have favorable analytical properties, and often provide
adequate and interpretable results. Under certain conditions, they can even surpass the
predictive performance of more complicated non-linear models (chapter 3 of [1]).

First, consider the multiple linear regression model

y = β0 + β1x1 + β2x2 + . . .+ βkxk + ε, (2.1)

for which a scalar response variable y is modeled as linear combination of predictors xi

with regression coefficients βi, up to random errors ε. Note that this model is linear in
the coefficients β even if arbitrary fixed non-linear transforms of the original predictors
x are included as new predictors, for instance y = β0 + β1x + β2x

2 + β3x
3 + . . . + ε.

This forms a polynomial regression model, which is an example of the more general
class of so-called basis-function methods (chapter 5 of [1]). Writing equation (2.1) for n
observations in matrix forms yields

y1
y2
...
yn

 =


1 x11 x12 . . . x1k

1 x21 x22 . . . x2k
...

...
...

. . .
...

1 xn1 xn2 . . . xnk



β0

β1
...
βk

+


ε1
ε1
...
εn

 (2.2)
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2. Introduction

or in short
y = Xβ + ε (2.3)

with the n× (k + 1) design matrix X, in which the additional column of ones accounts
for the constant intercept term. A typical assumption is that the errors have zero mean
(E(ε) = 0), are uncorrelated, and have all the same variance σ2; the latter two conditions
being summarized as cov(ε) = σ2I with the identity matrix I. In this case, estimating
the coefficients β by minimizing the residual sum-of-squares

RSS(β) = ||y −Xβ||22 =
n∑

i=1

∣∣∣∣∣yi − β0 −
k∑

j=1

xijβj

∣∣∣∣∣
2

, (2.4)

i.e., the least-squares approach, is guaranteed by the Gauss-Markov theorem to yield a
so-called best linear unbiased estimator1 [1], leading to the analytical solution

β̂ = arg min
β

{RSS(β)} = X+y (2.5)

with the Moore-Penrose pseudoinverse X+ = (XTX)−1XT .
Due to the randomness of ε and thus y, the estimated regression coefficients β̂ are

random variables as well, for which the covariance matrix can be shown to be

cov(β̂) = σ2(XTX)−1. (2.6)

In case of non-spherical errors, i.e., error variances that are not identical for the
different predictors and potentially correlated, the approach can be extended to the so-
called generalized least squares [5]. Given the error covariance matrix cov(ε) = Σ =
σ2V, with a known positive definite matrix V, the best linear unbiased estimator of the
regression coefficients is

β̂ = (XTV−1X)−1XTV−1y (2.7)

with covariance matrix
cov(β̂) = σ2(XTV−1X)−1. (2.8)

This result follows from the Gauss-Markov theorem, applying a de-correlation (also
called pre-whitening) step: The matrix V permits a decomposition as V = PPT , e.g.
by Cholesky factorization or applying the matrix square root P = V1/2. Multiplying
equation (2.3) by P−1 from the left results in a transformed linear regression system
ỹ = X̃β + ε̃ with ỹ = P−1y, X̃ = P−1X and de-correlated errors ε̃ = P−1ε, for
which cov(ε̃) = σ2I, i.e., the original assumptions of spherical errors holds again. Thus,
substituting the de-correlated quantities ỹ and X̃ into equations (2.5) and (2.6), one
obtains equations (2.7) and (2.8). The same solution is obtained in the framework of
maximum likelihood estimation, assuming a multivariate Gaussian distribution of the
error terms [2].

1This means that among all estimators β̂ that are linear in y and fulfill E(β̂) = β, it has the lowest
variance, i.e., is least sensitive to noise ε.
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2.1. Linear Models

In the case of multiple response variables, i.e., a vector-valued instead of scalar target
that should be modeled by the predictors X, the resulting general linear model for
number of responses m can be formulated as

Y = XB+ E (2.9)

with the n × m target matrix Y, the (k + 1) × m coefficient matrix B and random
errors E. Applying least-squares estimation as above, the matrix of optimal regression
coefficients turns out to be again given by the pseudoinverse as B̂ = (XTX)−1XTY.
Thus, comparing with equation (2.5), the problem decouples intom linear regressions for
each column of Y separately, meaning that multiple outputs do not influence regression
parameter estimation among each other.
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2. Introduction

2.2. Basics of MRI

This section introduces some physical background to MRI, intended as a coarse overview
of the concepts relevant to the projects that are summarized in this work. A thorough
treatment of spin physics and MR imaging can be found in the textbooks [6–8], on which
this chapter is based.

2.2.1. Spin

The fundamental physics underlying MRI is the interaction of nuclear spins with external
magnetic fields. Spin is a property of elementary particles as well as composite particles
like protons. It describes an intrinsic angular momentum that cannot be related to
a mechanical rotation by classical physics; instead, it can be accurately described in

the framework of quantum mechanics [6]. A particle with spin
ˆ⃗
S exhibits a magnetic

moment
ˆ⃗µ = γ

ˆ⃗
S, (2.10)

where the so-called gyromagnetic ratio γ depends on the type of particle. In an exter-
nal magnetic field B⃗0 = (0, 0, B0), here assumed along the z-axis, a particle with spin

quantum number s is described by the Hamiltonian Ĥ = − ˆ⃗µ · B⃗0. This results in 2s+1
eigenstates with energies

Es = −γmsℏB0, (2.11)

where ms is the magnetic quantum number that assumes the values ms = −s,−s +
1, . . . , s− 1, s. The splitting of energy levels in a magnetic field is called Zeeman effect.

The hydrogen nucleus 1H, which is the most abundant nucleus in the human body and
consists of a single proton, has a spin quantum number of s = 1/2 and thus ms = ±1/2.
According to equation (2.11), in a magnetic field, its two eigenstates |↑⟩ = |ms = +1/2⟩
and |↓⟩ = |ms = −1/2⟩ have an energy difference of

∆E = ℏγB0 = ℏω0 (2.12)

with the Larmor frequency ω0 = γB0. This energy is absorbed or emitted during transi-
tions between the spin states, which can be caused by time-varying magnetic fields. In
a quantum electrodynamical description, this corresponds to absorption or emission of
(virtual) photons [9], whose energy Eph = ℏωrf matches the energy difference of the spin
states, equation (2.12), leading to the resonance condition ωrf = γB0. The dynamics of

the expectation value ⟨ ˆ⃗µ⟩ of the magnetic moment (equation (2.10)) due to an external

magnetic field B⃗ can be obtained from the Ehrenfest theorem [10, 11] as

d

dt
⟨ ˆ⃗µ⟩ = γ ⟨ ˆ⃗µ⟩ × B⃗. (2.13)

This expression can be identified with the equation of motion for a classical magnetic
moment in an external field.

6



2.2. Basics of MRI

2.2.1.1. Chemical Shift

Nuclear spins in biological tissue reside in atoms and molecules, whose electronic orbitals
react to the external field B0 by inducing local magnetic fields. This causes a partial
shielding or de-shielding of the external field at the location of the spin, which results in
a slightly shifted Larmor frequency compared to an isolated nucleus. The resulting shift
of the resonance frequency ω compared to a reference frequency ωref is conventionally
stated relatively as

δ =
ωref − ω

ωref

(2.14)

in units of parts per million (ppm), which is independent of B0. This so-called chemical
shift depends on the electronic environments of the considered nucleus, i.e., electron
density and electronegativity of molecular groups. Consequently, it bears information
about molecular structure and conformation as well as functional groups and is thus
central to the analysis of MR spectroscopy and CEST MRI (section 2.3).

2.2.2. Macroscopic Magnetization and Bloch Equations

The situation encountered in MRI applied in a biophysical context always involves en-
sembles of a large number N (usually N ≳ 1023) of nuclei. Thus, the overall behavior of
the system can be expected to be well described by a classical limit of quantum statistics.
It is customary to consider the macroscopic magnetization density

M⃗ =
1

V

N∑
i=1

⟨ ˆ⃗µ⟩ (2.15)

in a volume V . At temperature T , the population fraction of the two energy levels in
thermal equilibrium is approximately described by the Boltzmann distribution as

n↑

n↓
= exp

(
ℏω0

kBT

)
. (2.16)

From that, it follows that for typical body temperature (T ≈ 310K) and MRI field
strength (B0 ≈ 1.5T to 9.4T), thermal fluctuations strongly dominate (kBT ≫ ℏγB0),
such that only a very small excess population in the lower energy state remains (relative
fraction on the order of 10−6). This results in the thermal equilibrium value of the
macroscopic magnetization

M0 ≈
1

4

N

V

γ2ℏ2

kBT
B0, (2.17)

which is aligned along B⃗0 [8]. From this equation it can be seen that the magnetization
usable for MRI is proportional to the main magnetic field strength B0, which underlines
the advantage of UHF MRI in terms of signal strength [12]. The dynamics of the
macroscopic magnetization in an external magnetic field directly follow from equations
(2.13) and (2.15) as dM⃗/dt = γM⃗ × B⃗. The same result can be derived by applying
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2. Introduction

the density matrix formalism to an ensemble of non-interacting spins [6]. However, in
a realistic setting, interactions between nuclear spins cannot be neglected. To account
for that, a modification of the previous equation in order to phenomenologically include
typical interactions was introduced by Felix Bloch [13], leading to the Bloch equations

dM⃗

dt
= γM⃗ × B⃗ +

(M0 −Mz)e⃗z
T1

− Mxe⃗x +Mye⃗y
T2

(2.18)

=

−1/T2 γBz −γBy

−γBz −1/T2 γBx

γBy −γBx −1/T1

Mx

My

Mz

+

 0
0

M0/T1

 . (2.19)

According to these, the time evolution of M⃗ consist of rotation around B⃗ (first term
in equation (2.18)) and relaxation: The longitudinal magnetization component Mz un-
dergoes exponential recovery towards the thermal equilibrium M0 with the Longitudinal
Relaxation Constant (T1) (second term in equation (2.18)), which accounts for energy ex-
change between excited nuclear spins and their surrounding atomic environment. In ad-
dition, the transversal components Mx and My decay exponentially with the Tranversal
Relaxation Constant (T2) (third term in equation (2.18)). On a microscopic level, this
corresponds to a loss of phase coherence between spin packets due to various reasons,
such as local magnetic field disturbances or spin-spin interactions. The empirical inclu-
sion of relaxation terms in equation (2.18) can be justified and related to microscopic
interactions between spins by appropriate quantum mechanical treatment [14].

2.2.3. MR imaging

Most phenomena that are relevant in the context of MRI can be comprehensively under-
stood from the Bloch equations (equation (2.18)), and the Maxwell equations of classical
electrodynamics that describe the magnetic fields involved in the excitation, encoding
and detection processes.

2.2.3.1. Signal Reception

In MRI, detection of the desired signal happens through an induced voltage Uind in
appropriate RF receive coils close to the investigated object. This can be understood
from Faraday’s law of induction

Uind = −dΦ

dt
(2.20)

with the magnetic flux Φ =
∫
coil area

B⃗ · dA⃗ through the coil, which is equivalent to the

Maxwell equation ∇⃗ × E⃗ = −dB⃗/dt. It can be found that the time evolution of the

nuclear magnetization M⃗ causes a magnetic flux of

Φ(t) =

∫
sample

B⃗receive(r⃗) · M⃗(r⃗, t) d3r, (2.21)
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2.2. Basics of MRI

where B⃗receive is the hypothetical field that would be produced by the receive coil at
location r⃗ when driven with a unit current [8]. This is an example of the principle of
Lorentz reciprocity [15], which follows from symmetries of the Maxwell equations under
certain conditions and allows reversing the roles of magnetization sources and detection
coils for MR signal strength calculations. Further analysis shows [8, 15, 16] that the
received signal is given by

s(t) ∝
∫
sample

M+(r⃗)B
−
1 (r⃗) e

iϕ(r⃗,t) d3r, (2.22)

which indicates that only the transverse component of the magnetization, here written
as the complex quantity M+ = Mx + iMy with phase ϕ(r⃗, t), as well as the circularly
polarized component of the hypothetical receive field B−

1 = (Breceive,x− iBreceive,y)/2 that
rotates at the Larmor frequency in an opposite sense to the magnetization (counter-
clockwise) contribute to the detectable signal. In an MRI scanner, this signal gets
amplified, demodulated and digitized by an Analog-to-Digital Converter (ADC). As
B−

1 (r⃗) indicates how sensitive a receive coil is to excited magnetization at a certain
location, this quantity is also referred to as receive coil sensitivity. The spatial pattern
of coil sensitivities depends on the electromagnetic properties of the receive coils, the
RF wavelength, which in turn scales inversely with the Larmor frequency and thus B0,
and on the electrical conductivity and permittivity of the object inside the coil [17].

2.2.3.2. RF excitation

As seen in the previous section, only the transverse components of M⃗ can be detected
through an induced voltage in a receive coil. To create transversal magnetization, a
magnetic RF field B⃗1(r⃗, t) = B⃗1(r⃗)e

iωRFt is applied via a so-called transmit coil. Accord-
ing to equation (2.18), this field needs to have x or y components in order to deflect
the magnetization from its thermal equilibrium of alignment along the z axis. It can be
found that only the circularly polarized component B+

1 = (B1,x+iB1,y)/2 that rotates at
the Larmor frequency in the same sense of rotation as the magnetization (clockwise) ef-
fectively contributes to this deflection [8]. When applying an on-resonant (ωrf = ω0) RF

pulse of duration tp, the magnetization M⃗ rotates around B+
1 and stops at the so-called

flip angle α = γ
∫ tp
0

B+
1 (t

′) dt′ between M⃗ and the z-axis. This process is often referred

to as excitation of the magnetization. Following from equation (2.18), M⃗ subsequently
precesses with the Larmor frequency around the z axis and undergoes the described T1

and T2 relaxation.

2.2.3.3. Spatial Encoding

Having created excited magnetization in the transversal plane by an excitation pulse
as described in the previous section, the detected signal of the precessing and decaying
magnetization according to equations (2.18) and (2.22) is a damped oscillation, a so-
called free induction decay (FID). This signal results from integration over the entire

9



2. Introduction

sample and thus does not yield any spatial information. In order to perform imaging, i.e.,
obtain spatially resolved information, most applications employ time-varying magnetic
gradient fields G⃗(t) [18] that are created by gradient coils and designed such that the z
component of the magnetic field varies linearly along each spatial direction as Bz(r⃗, t) =

B0+ G⃗(t) · r⃗, assuming a perfectly homogeneous main magnetic field. Consequently, the

Larmor frequency becomes a function of space as ωL(r⃗, t) = γ(B0 + G⃗(t) · r⃗). Resulting
from that, the phase of the transversal magnetization in equation (2.22) after an RF
pulse at t = 0 at different locations evolves as

ϕ(r⃗, t) = −
∫ t

0

ωL(r⃗, τ) dτ = −ω0t− γ

∫ t

0

G⃗(τ) · r⃗ dτ (2.23)

With the conventionally performed quadrature demodulation of the signal with the
Larmor frequency ω0 [8], the first term on the right in equation (2.23) vanishes. Finally,
with the definition

k⃗(t) = γ

∫ t

0

G⃗(τ) dτ, (2.24)

equations (2.22) and (2.23) can be combined to yield the signal

s(t) ∝
∫
sample

ρ(r⃗) e−i⃗k(t)·r⃗ d3r, (2.25)

summarizing receive sensitivity and transversal magnetization including possible relax-
ation effects as the effective spin density ρ(r⃗). Equation (2.25) shows that the acquired

signal s(t) is the continuous Fourier transform of ρ(r⃗) evaluated at the coordinates k⃗(t)
in reciprocal space, called k-space [19–21]. Image reconstruction is thus the problem
of recovering an approximation of ρ(r⃗) from samples of its Fourier transform along the

k-space trajectory k⃗(t) and is described in section 2.2.4. By controlling the gradient

waveforms G⃗(t) appropriately, a large variety of different k-space trajectories can be
used for image encoding, the most common ones being rectilinear (Cartesian) [22], ra-
dial [18, 23] and spiral [19, 20, 24]. However, long trajectories are problematic due to
T2

∗ decay and off-resonance effects caused by B0 inhomogeneities, which cause image
artifacts. Thus, image encoding is usually performed along multiple trajectory segments
(also called shots), each following a new excitation pulse.

An example of a basic Cartesian 2D imaging sequence (spoiled GRE) with associated
k-space trajectory is shown in Figure 2.1. Here, Phase Encoding (PE) is applied to one
spatial axis (y by convention), which means that a trapezoidal gradient is played out
before the ADC is open, traveling to a certain initial position along ky in k-space. The
other axis (here: x) is frequency encoded, which involves opening the ADC during a
constant gradient, such that signal is sampled along straight lines with constant velocity
in k-space. Note that for such single-line acquisitions, the time between acquisition of
two data points along the PE direction (between shots) is the Repetition Time (TR)
(usually on the ms scale), while along the Readout (RO) direction it is the much shorter
ADC dwell time (usually µs scale). Spatial localization along the remaining z axis can
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}
Δk kx

ky

kmax-kmax

(a)

Gz

Gx

Gy

ADC

RF
TR

TE

(b)

Figure 2.1.: (a) Examplary sequence diagram of a 2D GRE sequence (spoiling not shown
for clarity). It consists of repeated slice selective excitation by combina-
tion of RF pulses and Gz gradients, phase encoding (Gy) of variable am-
plitude, frequency encoding (Gx) and signal sampling by the ADC. (b)
Corresponding k-space trajectory. Data points are sampled on a Cartesian
grid, enabling simple FFT reconstruction. Colors correspond to the respec-
tive phase encoding gradients in different repetitions.
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2. Introduction

be performed either by PE as well (3D encoding), or by slice-selective excitation. In the
latter case (shown in the Figure), a shaped RF pulse with certain bandwidth (e.g., a
sinc-shaped pulse) is applied during a constant z-gradient. Thus, only spin packets at
locations for which the local Larmor frequency lies within the bandwidth of the pulse
get excited, enabling selective excitation of certain slices or slabs.

2.2.3.4. Noise in MRI

Data collected at an MRI scanner are inevitably corrupted by noise of various sources, the
principal contribution arising from random thermal fluctuations in the imaged sample,
as well as from resistive elements in the receive coils and electronics. In most situation
relevant for human MRI, the sample noise dominates [25] and can be characterized as
additive, complex, and white. The standard deviation of thermal noise at temperature
T is given by σnoise =

√
4kBT ·R · BW with the effective resistance R and receiver

bandwidth BW [8]. If the image reconstruction, i.e. the mapping from measured complex
k-space data to the final image, is a unitary linear transform (as it is the case for a simple
Fourier transform), the uniform Gaussian nature of the noise is preserved in the complex
image. If magnitude images are considered, as well as for multi-coil-combined images
and PI techniques, the noise statistics in image space are better described by potentially
spatially varying Rician or non-central chi distributions [26]. As a central measure for
image quality, the SNR being defined as the ratio of voxel signal and noise standard
deviation depends on a multitude of factors such as B0, the scanner hardware including
RF coils, sample properties and sequence parameters. For the latter, the most important
proportionality is given by SNR ∝ V · √tacq, meaning that the SNR scales linearly with
the voxel volume V and the square root of the acquisition time tacq [27].

2.2.4. Sampling and Image Reconstruction

The effective spin density ρ(r⃗), i.e., the image that is ideally to be reconstructed, is a
continuous function, whereas the ADC of an MRI system can only sample a finite number
of discrete data points of the k-space signal si = s(ti), i = 1 . . . Nk with usually equally
spaced times ti according to equation (2.25). Consequently, perfect reconstruction of
ρ(r⃗) is impossible and several assumptions have to be made, e.g. the image being of
finite support, called the Field Of View (FOV), and composed of a set of chosen voxel
basis functions, usually a grid of Dirac peaks [28]. With that, equation (2.25) can be
cast into the linear measurement model

s = Eρ+ ε (2.26)

with the vectors of voxel intensities ρ = (ρ1, . . . , ρNr) corresponding to spatial positions
r⃗j and k-space samples s = (s1, . . . sNk

), related through the Nk × Nr encoding matrix

Ei,j = ei⃗k(ti)·r⃗j and complex, zero-mean, uncorrelated, temporally white Gaussian noise
ε [28]. Equation 2.26 can be identified with the general linear model introduced in
section 2.1, equation (2.3); thus, the least-squares solution of the reconstruction problem
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2.2. Basics of MRI

is given according to equation (2.5) by the pseudo-inverse of the encoding matrix as
ρ̂ = (EHE)−1EHs. However, the accuracy of this reconstruction depends strongly on the
k-space trajectory used. The Nyquist–Shannon sampling theorem [29] applied to MRI
states that for a faithful reconstruction, neighboring samples in k-space should be no
more than ∆k = 2π/FOV apart. Conversely, a maximum k-space value of kmax = π/∆x
is required to achieve a spatial resolution, i.e., voxel size of ∆x along each axis. When
data are acquired on such a Cartesian Nyquist-sampled k-space grid (Figure 2.1b), the
encoding matrix E becomes a regular Discrete Fourier Transform (DFT) matrix, which is
unitary up to a normalization constant (EH = NkE

−1), meaning that its pseudo-inverse
is simply given by its Hermitian conjugate, E+ = 1

Nk
EH [4]. Therefore, reconstruction

can be performed by inverse DFT, efficiently computed by the FFT algorithm [30]. This
is the most common and simple MRI reconstruction method.
A major drawback is that obtaining a Nyquist-sampled k-space is inevitably time-

consuming, which is why most MRI acceleration methods involve some form of under-
sampling. Regular undersampling on a Cartesian grid leads to coherent aliasing, also
called ghosting, whereas irregular or non-Cartesian sampling results in incoherent alias-
ing that spreads over the entire image. The task of acceleration methods such as PI,
which will be introduced in the next section, is then to eliminate these aliasing artifacts
by filling in the missing information in k-space.

2.2.5. Parallel Imaging

The above introduction of image encoding and reconstruction assumed a single receive
coil. However, for most imaging applications, it is common to use multiple receive coils
connected to independent receive channels.
An illustrative example is given in Figure 2.2. The original purpose of this so-called

phased array coil concept [31] was to improve the SNR by making use of small local
surface coils that are less sensitive to noise compared to large volume coils, but can be
combined to still yield large volume coverage. In addition, forming a central milestone in
the development of rapid MRI methods, it was recognized that the sensitivity informa-
tion of multiple local receive coils provides complementary spatial encoding information
that can be used to partially omit the time-consuming gradient encoding introduced
in section 2.2.3.3 [32–34]. This can be understood by noting that in conventional MRI
(i.e., based only on gradient encoding), all information is acquired sequentially as a one-
dimensional signal in time. This is manifested in equation (2.25), where by means of the
integration over the sample, all direct spatial information is collapsed into a single sig-
nal value (i.e., induced voltage) at a time. Consequently, conventional gradient encoding
uses only the temporal degree of freedom of the electromagnetic fields created by pre-
cessing magnetization at different locations, which makes it inherently time-consuming.
However, also the spatial degrees of freedom of these electromagnetic fields carry image
information. With knowledge of the sensitivity patterns B−

1 (r⃗) of multiple receive coils in
equation (2.22), some information about these spatial degrees of freedom is retrieved and
can be used for image reconstruction, complementary to the temporal, gradient-encoded
information [35].
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coil 1 coil 2

coil 3coil 4

coil image

object

receive sensitivity

Figure 2.2.: Illustrative example of a receive array consisting of four surface loop coils.
Due to the different spatial locations and electromagnetic properties of the
coils, the images reconstructed from each channel are given by the underlying
image ρ(r⃗) weighted by the respective coil sensitivity ck(r⃗), according to
equation (2.22). Knowledge of this spatial weighting forms the basis of PI.

An immense amount of research exists on such PI methods and algorithms, of which
Sensitivity Encoding (SENSE) [34] and Generalized Autocalibrating Partially Parallel
Acquisitions (GRAPPA) [36] are the most widely used. Due to its relevance for Publi-
cation 1 and 2 of this thesis, in the following, SENSE is introduced in more detail. An
overview of other methods can be found in the review articles [35, 37–40].

The SENSE method can be elegantly formulated in the framework of linear least-
squares reconstruction as introduced in section 2.2.4, based on the general theory of
linear models outlined in section 2.1. Assuming an array of Nc receive coils and denoting
their sensitivities B−

1 (r⃗) as ck(r⃗), k = 1, . . . , Nc, the signal equation (2.22) reads sk(t) ∝∫
sample

ck(r⃗)ρ(r⃗) e
−i⃗k(t)·r⃗ d3r. It can, equivalently to equation (2.26), be discretized to

yield the linear equation system s = Eρ+ ε, with the multi-channel encoding matrix

E(ik),j = ck(r⃗j)e
i⃗k(ti)·r⃗j (2.27)

and multi-channel data vector s of stacked data samples from each channel. Note that in
the row dimension of the encoding matrix, equation (2.27), the k-space indices i and coil
indices k occur concurrently in a vectorized manner, which highlights the complemen-
tary gradient and sensitivity-based encoding. For multi-channel acquisition, the noise ε
among channels is generally correlated, as fluctuating noise sources at a certain location
may simultaneously affect multiple receive coils nearby [34, 41]. In this case, assuming a
known receiver noise covariance matrix Ψ and following the concept of generalized least-
squares introduced in section 2.1, equation (2.7), the optimal reconstruction is obtained
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2.2. Basics of MRI

as ρ̂ = (EHΨ−1E)−1EHΨ−1s. As the encoding matrix is now composed of coil sensi-
tivities and Fourier terms, it is possible to violate the Nyquist criterion for pure Fourier
encoding and use undersampled, thus accelerated k-space trajectories (Figure 2.3). As
a drawback, E is no longer unitary and thus the variance of the reconstruction, i.e., the
noise level in the image, will potentially be amplified and vary in space. According to
equation (2.8), the corresponding covariance matrix, called image noise matrix is given
by X = (EHΨ−1E)−1. Application of SENSE thus leads to two distinct mechanisms of
SNR degradation: One is related to the inevitably reduced noise averaging when acquir-
ing a reduced number of k-space samples Nkred = Nk/R with the acceleration factor R
compared to full Nyquist sampling. The other is due to the potentially amplified and
spatially varying noise level resulting from a non-unitary encoding matrix. This can
concisely be written as

SNRPI =
SNRref

g ·
√
R

(2.28)

with the SNR of the PI reconstruction and Nyquist sampled reference reconstruction
SNRPI and SNRref, respectively; and the so-called geometry factor or g-factor

gj =
√

(EHΨ−1E)−1
j,j (E

HΨ−1E)j,j (2.29)

in the j-th voxel. A derivation of equation (2.29) is given in the Appendix, section C.1.
Note that by a noise de-correlation step as described in section 2.1 and [42], the receiver
noise covariance matrix Ψ can be eliminated from the above equations.

The g-factor is a central quality metric for PI, as it quantifies the spatial encoding
capability of the combination of coil sensitivities and k-space sampling scheme. Conse-
quently, it is frequently used to guide both receive coil design [43–46] as well as sampling
pattern optimization [47–51]. The concept of the g-factor can be related to the statis-
tical framework of Cramér-Rao lower bounds2 [52, 53]. Additionally, it is connected
to the condition number of the encoding matrix E, which quantifies how sensitive the
solution of equation (2.26) is to small perturbations (e.g., noise) of the right hand side
of the equation3. Generally, the encoding matrix becomes increasingly ill-conditioned
for stronger acceleration, since for reduced Fourier encoding, more and more spatial
information needs to be encoded by the coil sensitivities. These in turn are not fully
spatially independent (or, in a mathematical sense, orthogonal), as their spatial pat-
terns are governed by electrodynamics, typically resulting in a smooth and partially
overlapping behavior.

Consequently, for both stronger acceleration (Figure 2.3(a-c)) as well as more strongly
overlapping sensitivity profiles (Figure 2.4), an increase in g-factors and condition num-

2In the context of statistics and estimation theory, the Cramér-Rao inequality gives a lower bound on
the variance of an unbiased estimator [4]. In PI, the SENSE reconstruction is a linear estimator and
its variance quantifies the image noise.

3The condition number of a matrixA with respect to a chosen norm ||·|| is given by κ(A) = ||A||·||A−1||
[54], from which the similarity with the definition of the SENSE g-factor, equation (2.29), can be
seen.
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Figure 2.3.: Examples of SENSE applied for different Cartesian k-space sampling pat-
terns, namely (a) two-fold, (b) three-fold and (c) four-fold regular under-
sampling along the PE direction (ky), as well as (d) 2× 2 undersampling in
two PE directions (ky and kz) of a 3D acquisition and (e) the same acceler-
ation along ky and kz but with an additional so-called CAIPIRINHA shift
[47, 55]. First row: part of the k-space sampling pattern. Second row: A
zero-filled FFT reconstruction (no PI applied), showing the aliasing pattern
in image space associated with the respective sampling scheme. Third row:
SENSE reconstruction, showing aliasing-free images, which, however can
suffer from noise amplification. Fourth row: Inverse g-factor maps (close
to one means little noise amplification, while lower values indicate stronger
SNR loss). For this illustrative example, 8 receive coils at B0 = 3T were
assumed.
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mean = 1.15, max = 1.78

mean = 2.40, max = 4.65

g-factor, Ry = 4sensitivity maps

9.4T 

3T 

Figure 2.4.: Dependence of g-factors on spatial independence of receiver sensitivity
profiles obtained at different B0. Upper panel: Coil sensitivities at 3T
with stronger spatial overlap result in higher g-factors due to increased ill-
conditioning of the matrix inversions required for SENSE reconstructions.
Bottom panel: Less overlapping sensitivities at 9.4T result in significantly
lower g-factors. Cartesian undersampling along one axis with acceleration
factor R = 4 was assumed. Sensitivity maps were acquired both on a human
3T scanner using the vendor’s 20-channel head coil and on a human 9.4T
scanner using the same phantom and a custom-built 31-channel head coil
[56]. For illustration purposes, only the 8 coil elements with the highest
signal in the slice are shown and used to calculate g-factors.

ber κ(E) can be observed. In particular, due the lower RF wavelength at higher B0 (see
section 2.2.3.1), coil sensitivities at UHF tend to be more spatially independent and thus
generally yield lower g-factors compared to e.g. 3T. As another general observation, g-
factors are higher if there are larger gaps in the k-space sampling pattern, corresponding
to a large overlap of aliases in image space. Therefore, avoiding large gaps by distribut-
ing the undersampling among two PE directions of a 3D acquisition (Figure 2.3(d)) and
using so-called CAIPIRINHA [47, 55] shifts (Figure 2.3(e)) is generally advantageous.

It has to be emphasized that for practical applications, storing the encoding matrix E
in memory and performing the matrix inversion required for obtaining reconstructions
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Figure 2.5.: Exemplary depiction of the linear equation system formulated for SENSE
reconstruction in image space for regular Cartesian k-space undersampling
(here shown for an acceleration factor of R = 2 and two receive coils). A
voxel in the coil images of each channel sk (leftmost column) is given by the
superposition (aliasing) of image intensities at the aliased locations m (third
and fifth column), weighted by the respective coil sensitivity ck (second and
fourth column). For the shown two-fold undersampling, the aliased locations
have a distance of half of the FOV. As indicated by the equations below the
images, this can be formulated as the linear equation system s = Cm, which
can be solved for the ”unfolded” image intensities m if the coil sensitivities
in C are known. Figure adapted from [38].

and analytical g-factors is infeasible4. Therefore, for general (especially non-Cartesian)
encoding, the linear reconstruction problem, equation (2.26), is commonly solved iter-
atively, for example with the conjugate gradient method [42, 57]. In the special case
of regular Cartesian undersampling, due to the coherent aliasing (Figure 2.3), the re-
construction problem can be decomposed into small sub-problems, corresponding to
unfolding of a small number of aliased voxels in image space, which can be solved indi-
vidually. An illustrative example of this procedure is shown in Figure 2.5 and a detailed
description of this special case is given in [34].

4For an image matrix size of 256 × 256, an undersampled k-space trajectory with acceleration factor
R = 2 and Nc = 8 receive coils, storing the entries of the encoding matrix as complex double-
precision floating point numbers in memory would consume (256)4/2 · 8 · 16 bytes ≈ 275 gigabytes.

18



2.3. Basics of CEST MRI

o
o

o
o

o

o

o o
o

o

o

o
o o o

RF

slice selection

phase encoding

readout gradient

ADC

saturation phase
excitation,
encoding
and readout

M0

irradiation frequency offset Δω

in
te

ns
ity

 n
or

m
al

iz
ed

 b
y

unsaturated image

saturated
images

M ( )sat Δω

(a) (b)B1

tp td

Figure 2.6.: (a) Schematic sequence diagram of a CEST MRI sequence, consisting of a
saturation block during which a train of RF pulses of amplitude B1, dura-
tion tp and interpulse delay time td are applied, followed by a conventional
imaging sequence. (b) If the sequence blocks displayed in (a) are repeated
for different off-resonance frequencies ∆ω of the RF pulses, a Z-spectrum in
every voxel can be obtained by normalizing the acquired images Msat(∆ω)
with an unsaturated image M0. Figure adapted from [64].

2.3. Basics of CEST MRI

CEST MRI is based on the indirect detection of labile protons within a target compound
(e.g metabolite) that have a chemically shifted Larmor frequency relative to bulk water
protons (section 2.2.1.1) by means of selective saturation. [58–61]. This saturation is
achieved by off-resonant RF irradiation. In the microscopic picture, saturation refers to
a temporarily induced equilibrium between the populations of the two spin states |↑⟩
and |↓⟩ (section 2.2.1), leaving zero net macroscopic magnetization. In the macroscopic
view of the Bloch equations, saturation is modeled by relaxation during the rotation
induced by an RF pulse [62].

When labile solute protons exchange with water protons (exchange rate k, typically
in the range of 10Hz - several kHz), the saturation is progressively transferred to the
water pool, resulting in a reduced bulk water signal. If RF irradiation is applied for a
sufficiently long saturation time tsat (on the order of seconds for typical applications), this
saturation transfer can occur multiple times, resulting in a detectable build-up of water
pool saturation that can be recorded using MR imaging sequences as described in section
2.2.3. The process of accumulated saturation serves as a signal amplification mechanism
for the solute target protons (concentration on the order of mM) by exploiting the much
larger water proton concentration (∼ 110M).

The magnetization dynamics of proton pools that are linked via exchange can be
described by the Bloch-McConnell equations [63]; a detailed description of this theory
is given in [64].
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Figure 2.6a shows a typical CEST MRI sequence. It consists of a saturation block
with the RF pulse amplitude B1 and frequency offset ∆ω relative to the water Larmor
frequency ω0. This saturation phase is followed by an imaging sequence (c.f. Figure
2.1), acquiring one or more k-space lines. In the extreme case, an entire 2D or 3D k-
space can be acquired after a single saturation phase (snapshot-CEST [65]). Repeating
these blocks of saturation and image acquisition for different off-resonance frequencies
∆ω yields a set of images, each depicting a differently altered water magnetization
signal Msat(∆ω), which is potentially affected by various exchange effects. The need for
such repeated acquisitions in order to achieve high spectral resolution makes CEST MRI
intrinsically lengthy. A so-called Z-value is then obtained by normalizing theMsat images
with a reference image acquired at a far off-resonant RF frequency, which provides the
thermal-equilibrium magnetization M0, leading to

Z(∆ω) =
Msat(∆ω)

M0

. (2.30)

Plotting these values as a function of the off-resonance frequency (in ppm) yields so-called
Z-spectra in each of the acquired voxels (Figure 2.6b). By convention, 0 ppm corresponds
to the water Larmor frequency and the frequency axis is plotted from ”upfield” (positive
ppm values) to ”downfield” (negative ppm values). Optionally, Z-spectra can be acquired
at multiple saturation amplitudes B1 to correct for B+

1 inhomogeneities [66], which
become increasingly pronounced at UHF, or for quantitative parameter estimation [67–
69]. However, this necessitates even longer acquisition times.
A plethora of analysis methods and metrics have been proposed for the evaluation

of CEST data. They vary in the extent to which they can provide quantitative in-
formation about the pool system, disentangle concomitant effects, as well as in their
complexity, stability and computational requirements. For example, the simplest and
most widely used metric is the asymmetry analysis of Z-spectra [60], which is given by
MTRasym(∆ω) = Z(−∆ω)− Z(+∆ω). This metric is easy to calculate, but is sensitive
to B0 inhomogeneity and fails to disentangle effects occurring on either side of the water
resonance, as is the case with the complex structure of in vivo Z-spectra. On the other
hand, fitting numerical or approximated analytical solutions of the Bloch-McConnell
equations to acquired Z-spectra theoretically allows full quantification of exchange rates
and concentrations of CEST pools [68–70]. However, such approaches are computation-
ally expensive, susceptible to data fluctuations and the results are highly dependent on
internal parameters of the fitting procedure [71]. As a compromise, semi-quantitative
models such as a sum of Lorentzian peaks with different amplitudes, widths and spec-
tral positions are often used to fit Z-spectra. These methods have proven to be useful
estimators of isolated CEST effects in different settings [66, 72–74].
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Figure 2.7.: Example of in vivo Z-spectra of the human brain (White Matter (WM)),
acquired for different RF saturation amplitudes B1 at a 9.4T scanner. The
most prominent contributions to saturation transfer observed for in vivo Z-
spectra are delineated. Common to all effects is that after applying a train
of off-resonant RF pulses, saturation is transferred to the bulk water pool,
leading to a detectable reduction of the water signal. Saturation transfer
can either happen by chemical exchange, as in the case of amide or amine
systems, or by exchange-relayed dipolar cross relaxation as in the case of
rNOEs and ssMT. The schematic includes typical values for chemical shifts
∆ω and exchange rates k of the respective pools. Figure adapted from [71].
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2.3.1. Contributions to the in vivo Z-spectrum in the human brain

Figure 2.7 shows in vivo Z-spectra of the human brain acquired at an UHF MRI scan-
ner (B0 = 9.4T) for several B1 levels. The main effects contributing to the in vivo
Z-spectrum are also shown in the Figure. As living tissue is a complex composition of
different structures, compounds and molecules, in vivo Z-spectra exhibit several over-
lapping contributions. Therefore, it is generally not possible to clearly attribute CEST
effects to specific metabolites. Still, through extensive research in model solutions and
animal and human studies, certain correlations and signal origins have been identified.
In the following, the most relevant effects that are observed in the human brain are
briefly described.

Direct Water Saturation The large signal drop at 0 ppm is caused by direct water
saturation, meaning that the bulk water pool itself is saturated by the RF irradiation.
The width of the direct saturation peak increases with shorter T2, higher RF saturation
amplitude B1 and lower static field B0 [62].

Semi-solid Magnetization Transfer The ssMT effect occurs due to protons bound
to macromolecules, cell membranes, lipids, and other structures in a semi-solid matrix.
Magnetization transfer from such protons to bulk water is caused by combinations of
dipolar cross-relaxation pathways [59, 75] and chemical exchange [76, 77]. Due to the
restricted mobility of the macromolecular protons, they have short T2 of less than 1ms,
resulting in broad spectral linewidths. This causes a background contribution in in vivo
Z-spectra that is spread across a large spectral range of several kHz.

Amide and Amine CEST The downfield side of the in vivo Z-spectrum (positive
chemical shift) shows CEST effects from several endogenous metabolites originating
from exchangeable protons in functional groups such as amides and amines. The Amide
Proton Transfer (APT) effect around 3.5 ppm is widely studied and related to mobile
tissue proteins and peptides with exchange rates around 100Hz [78]. In addition, there
are various contributions from several exchangeable groups in the range of 1 − 6 ppm;
for example, amine protons resonating around ∼ 2 ppm, which cause a corresponding
amine CEST peak and have much higher exchange rates in the order of kHz. Amide
CEST has been shown to provide interesting information in the context of brain tumors.
For example, increased effect size in the tumor area has been observed [79], and isolated
amide CEST contrast were shown to correlate with gadolinium ring enhancement [72, 80].

Relayed Nuclear Overhauser Effects Besides chemical exchange of labile protons,
Nuclear Overhauser Effect (NOEs) constitute another way of magnetization transfer
between neighboring spins mediated by dipolar interactions. For in vivo Z-spectra, the
dominant contributions are homo-nuclear (1H–1H) rNOEs between water and aliphatic
protons that occur at the upfield side of the spectrum (negative chemical shift) in the
range of −2 to −5 ppm [81]. For these rNOEs, the saturation is first relayed from
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non-exchanging to exchangeable protons through dipolar coupling and is subsequently
transferred to the bulk water molecules by chemical exchange [76, 82]. The strength of
dipolar interaction is strongly dependent on the spatial distance between the involved
protons and thus sensitive to molecular configuration. Consequently, NOEs can provide
information about folding state and aggregation of proteins [83–85], which makes them
an interesting subject to investigate in the context of neurodegenerative diseases [86].
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3. Research Objectives

In the course of this thesis, several novel and unconventional ways to address and opti-
mize aspects of MRI of the human brain are presented.
In the first two included publications, PI is addressed as one of the most successful

techniques for reducing the inherently long acquisition times required by MRI. As
described in section 2.2.5, conventional PI relies on the spatial sensitivity profiles of
different RF receiver coils, which are usually constant in time. In contrast, here it
is investigated whether electronically modulated time-varying receive sensitivities can
be realized experimentally as a novel degree of freedom in spatial encoding for UHF
MRI at 9.4T and can improve PI, thus offering the potential to further accelerate image
acquisition. In the course of this project, suitable acquisition and reconstruction methods
as well as reconfigurable receive coil designs are developed and investigated. It is shown
that rapid sensitivity modulation during k-space traversal can indeed reduce g-factors
and enable lower reconstruction artifacts compared to conventional PI.
As a second topic, the third an fourth publication included in this thesis address con-

trast generation, particularly in the context of CEST MRI. Conventionally, as described
in section 2.3, the extraction of the desired CEST contrasts requires repeated acquisi-
tions while sweeping the frequency of off-resonant saturation pulses to achieve sufficient
spectral resolution, which is inevitably time-consuming. The resulting spectra are then
usually processed by simple normalization procedures or spectral line fitting. In contrast,
here the task of CEST contrast generation is approached by a data-driven linear pro-
jection method that uses previously acquired and evaluated data to map directly to the
desired contrast in a single and fast computational step, integrating field inhomogeneity
compensation. In addition, this method allows for a regularization-based procedure that
reduces the number of acquisitions required to map to the target contrast, offering the
potential to accelerate CEST MRI acquisitions. This demonstrates that beyond direct
human intuition, there is potential room for improvement in conventional MRI meth-
ods regarding the design of sequences and contrast extraction schemes for maximum
information retrieval in minimum scan time. In line with this notion, in the fourth pub-
lication, a novel, experimental method for automated contrast generation is presented
that minimizes human interaction to providing a representative object in the scanner,
a desired target contrast, and an appropriately parameterized template sequence. The
parameters of this sequence are then modified by an optimization algorithm without
the necessity to provide a theoretical model of MRI, but in a data-driven manner. For
this purpose, a real MR scanner is controlled by the optimization algorithm to perform
exploratory acquisitions in order to achieve as good as possible mapping to the desired
target contrast. A proof-of-principle for this method is carried out on the example of
metabolite concentration mapping in the context of CEST MRI.
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4. Publication Summaries

In this chapter, a brief summary of the included publications is given. The figures shown
in this chapter are reprinted with permission of John Wiley & Sons (Publications 1–3)
and Elsevier Inc. (Publication 4), respectively.
In the first publication, a novel method of improving PI (introduced in section 2.2.5)

by exploiting electronically modulated time-varying receive sensitivities is introduced.
In the second publication, this concept is extended from 2D to 3D imaging by using
reconfigurable dipole antennas instead of loops as receive elements. For the third pub-
lication, the issue of inherently long acquisition times for CEST sequences is addressed
by a linear parameter quantification method that can reduce the number of required
measurements based on prior knowledge of desired target contrasts. The fourth publica-
tion demonstrates a framework for model-free, target-driven MR sequence optimization
running live on a real scanner system.

4.1. Publication 1

As mentioned before, PI is one of the most successful techniques for accelerating MRI
acquisitions. One reason for that is its versatility, as it can be advantageously com-
bined with practically all MR sequences, given that suitable multi-channel receive coils
[31] are available. However, higher acceleration factors and partially overlapping coil
sensitivities lead to increased ill-conditioning of the reconstruction problem (see section
2.2.5). For linear reconstruction methods like SENSE, this results in noise amplification
(as quantified by the g-factor, equation (2.28)) and artifacts [34].
Extensive research has been conducted on ways to improve PI, including the use of

advanced, often non-linear algorithms (e.g. [87–89]) and optimized receive hardware
with more coil elements [45, 46, 56, 90–92]. Another branch of research has focused
on using rapid B0 modulations to improve the conditioning of the PI reconstruction
problem [48, 93, 94]. In all of these methods, the rapid modulations provide additional
spatial information, which is complementary to conventional Fourier encoding (section
2.2.4). As a more exotic approach, physically rotating RF coils have been demonstrated
to improve PI reconstruction due to an increased effective number of available sensitivity
profiles at the different rotational positions of the coil array [95–97]. Inspired by these
ideas, the underlying idea of the present work was to explore whether rapid electronic
modulations of receive sensitivities (B−

1 ) instead of physical rotation can be experimen-
tally realized and utilized to improve PI. In contrast to conventional PI, for which coil
sensitivities are static, here the goal was to enable time-varying coil sensitivities as a
novel degree of freedom for image encoding.
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The principle employed to dynamically modulate B−
1 is to alter the values of dis-

tributed capacitances within a receive coil loop. Conventionally, receive loop coils for
UHF MRI contain a set of equal capacitors distributed symmetrically along the loops
in order to reduce the electrical length [98] and thus yield a homogeneous current dis-
tribution. As described in section 2.2.3.1, according to the principle of reciprocity, the
receive sensitivity of a coil, i.e., the induced voltage due to excited nuclear magnetiza-
tion at a certain location is proportional to the B−

1 field component that the coil would
hypothetically produce at the same location when driving it with a unit current. Thus,
modulating current distributions within a loop by increasing capacitances in one arm
and decreasing it in the other arm leads to distinct spatial sensitivity profiles. This
could be confirmed by numerical electromagnetic simulations (Figure 4.1B and Figure
1 of the publication). Importantly, decreasing capacitances evenly on one side of a loop
while increasing them on the other side by the same factor ensures a constant resonance
frequency.

Preliminary investigations on this concept had been carried out using varactor diodes
as adjustable capacitors [99], which allowed for continuous sensitivity modulation. With
that, it was found that rapid switching between the two most distinct sensitivity profiles,
i.e., highest and lowest possible capacitances, yielded the strongest potential for PI
improvement. However, the required switching speed on the order of microseconds could
not be realized with varactors.

Because of that, the prototype that was built for the presented work utilized fast
switching PIN diodes to form two distinct RSCs. To that end, switchable units were
designed that consisted of a PIN diode in series with a 20 pF capacitor, which were
connected in parallel to a smaller 1.5 pF – 2.4 pF capacitor (Figure 4.1A). Depending on
whether the PIN diode is being driven in forward or reverse bias, the effective capacitance
of such a switchable unit becomes ∼ 22 pF or ∼ 2.5 pF. Placing four switchable units on
each side of a loop allows forming the distinct switchable sensitivity profiles observed in
simulation (Figure 4.1B), which could subsequently confirmed in phantom measurements
(Figure 4.1C and Figure 4 of the publication). Concurrently, a theoretical framework
for describing PI with time-varying sensitivities was established by means of a modified
SENSE [34] formulation. By explicitly incorporating a temporal degree of freedom for
the coil sensitivities, the encoding operator (c.f. section 2.2.5, equation (2.27)) was
formulated as

E(β,κ),ρ = cβ(r⃗ρ, tκ)e
i⃗kκ·r⃗ρ (4.1)

with the sensitivities of the βth coil cβ(r⃗ρ, tκ) at location r⃗ρ and time step tκ, and

k-space trajectory k⃗κ = k⃗(tκ). As detailed in the theory section 2.2.5, this frame-
work allowed obtaining reconstructions for arbitrary k-space trajectories and sensitivity
switching patterns. Additionally, g-factors could be calculated according to equation
(2.29) for assessing the performance of a certain encoding scheme. To gain intuition
of how time-varying sensitivities during gradient encoding, i.e. k-space traversal, affect
image reconstruction, a series of numerical experiments with different switching patterns
were conducted (Figure 5 of the publication).
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Figure 4.1.: (A) Circuit diagram of a single receive loop of the experimental receive array
prototype, showing four switchable units, which consist of a PIN diode and
two capacitors, on each arm of the loop. Alternating between forward and
reverse bias of the PIN diodes yields two distinct B−

1 patterns (RSCs) that
can be rapidly switched. (B) Surface current distribution in a loop-like coil
for two configurations. Left: loop with high current (HC) in the left arm
and low current (LC) in the right arm; right: loop coil with HC in the right
arm. The resonance frequency of these three configurations remains about
identical at 400MHz. Below: Corresponding simulated sensitivity profiles
(B−

1 field) in a central transverse plane (front view). (C) Fully sampled
single coil images for both RSCs acquired in a homogeneous phantom. Note
that additionally to the intensity weighting by the receive sensitivities (B−

1 ),
transmit inhomogeneity affects the spatial intensity patterns (B+

1 pattern of
CP mode). Modified and reprinted with permission of John Wiley & Sons.
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Figure 4.2.: Theoretical g-factor maps according to equation (2.29) for different RSC
switching patterns and four-fold acceleration (R = 4) with sensitivity maps
of both RSCs estimated from the phantom measurement shown in Figure
4.1C. (A) Only static RSC1 and (B) RSC2. (C) Hypothetical case of
combining all sensitivity maps from both RSCs to effectively form a 16-
element instead of the physical 8-element receive array. (D) PE switching
for every and (E) every two acquired lines, as well as (F) switching only once
in the center of k-space (similar to partial Fourier imaging for each RSC)
yields worse g-factors than the static configurations. In contrast, (G) RO
switching for every ADC sample, (H) for every second ADC sample or (I) for
every second ADC sample with additional CAIPIRINHA-like shifting of the
switching pattern for every second acquired line improves g-factors compared
to the static configurations. In case (G), g-factors are identical to case (C),
as fast RO switching with oversampling acts as time-division multiplexing
of both RSCs. Labels indicate mean ± std / max of g-factor values for the
respective maps. Color scales for all maps are identical. Reprinted with
permission of John Wiley & Sons.
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It was found that switching sensitivities between RF excitations (on the order of TR,
millisecond scale), e.g. for every other k-space line along the PE direction did not yield
g-factor improvements (Figure 4.2D,E,F) compared to conventional static sensitivities
(Figure 4.2A,B). This could be understood from observations regarding the overlapping
aliases in image space that are created by both undersampling and sensitivity switch-
ing. In contrast, rapid modulation during acquisition of a k-space line along the read
direction (on the order of the ADC dwell time, microsecond scale) was found to result in
lower g-factors (Figure 4.2G,H,I) than for static PI. As a central finding, switching be-
tween every k-space sample of a two-fold oversampled readout yields g-factors identical
to the hypothetical case of using all sensitivity profiles of both configurations simulta-
neously for encoding (Figure 4.2C,G). This can be considered as a form of time-division
multiplexing [96]. A theoretical proof of this result is given in Appendix C.2. Due to
these insights, fast RO switching was realized experimentally. For that, a procedure was
developed based on a strongly oversampled GRE readout to image periodic sensitivity
modulations at 1 µs time resolution, while switching every 10µs (Figure S1 and Methods
section of the publication). When applying this method, it was observed that switching
was accompanied by detrimental signal spikes that manifested as a line-shaped pulsat-
ing artifact of up to 8µs duration in the images (Figure 3 and S4 of the publication).
The artifact could be corrected in post-processing by discarding corrupted data samples,
which, however, reduces SNR, as there are less data points available for noise averaging.
A better post-processing correction was found in applying robust Principal Component
Analysis (PCA) [100, 101], which performs a matrix decomposition into a sparse com-
ponent, which contains mainly the artifact, and a low-rank component, which contains
mainly the desired signal.

While it was observed that robust PCA correction worked remarkably well (Figures
S5 and S6 of the publication), it was concluded that a solution on the hardware level
would still be favorable. In the mean time since this project was published, such a
solution could indeed be found: It was noticed that the digital switching electronics on
the Printed Circuit Board (PCB), which was formerly placed near to the receive elements
(shown in Figure 2B of the publication), emitted the spurious signals while switching.
Consequently, placing the PCB inside a shielded copper box outside of the scanner room
and bringing the switching signal to the coil by means of a shielded coaxial cable could
be shown to eliminate the switching artifact.

Finally, fast RO switching was applied for an in vivo measurement and retrospectively
accelerated PI reconstructions were compared for the cases of conventional static and
switched sensitivities (Figure 4.3). Up to an acceleration of R = 3, low reconstruc-
tion errors with respect to Nyquist-sampled ground truth reconstructions were observed
throughout. For acceleration R = 4 and above, the conventional static reconstructions
showed increasingly strong artifacts, which were less pronounced for the case of switched
sensitivities. This could be confirmed by quantitative reconstruction metrics (Figure
9B,C,D of the publication). Similarly, g-factors were lower for the case of switched com-
pared to static sensitivities, where the improvements due to switching were stronger at
higher acceleration factors. For R = 4, the maximum g-factor for the better of the
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Figure 4.3.: (A) In vivo reconstruction results for different retrospectively applied ac-
celeration factors, shown for static RSCs 1 (”config 1”) and 2 (”config 2”)
with 8 sensitivity maps, respectively, as well as for the case of fast RSC
switching during k-space acquisition (full RO switching, see Figure 4.2G),
which effectively yields 16 multiplexed sensitivity maps. (B) Correspond-
ing inverse g-factor maps (i.e., fraction of retained SNR compared to fully
sampled, all on the same color scale) obtained according to equation (2.29)
for the case of regular Cartesian undersampling and RSC switching. La-
bels indicate mean ± std / max of g-factor values for the respective maps.
Reprinted with permission of John Wiley & Sons.
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static cases was 3.2, while it was 2.4 for switched sensitivities, which constitutes an
improvement of 25%.
In conclusion, in the course of the presented project, tailored receive hardware, ac-

quisition and reconstruction techniques were introduced to explore time-varying receive
sensitivities as an experimental, novel degree of freedom for image encoding and recon-
struction at UHF. For the presented setup, this was shown to offer the potential to
improve PI, i.e., to yield lower noise amplification and reconstruction errors compared
to conventional static PI.
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In the previous publication (section 4.1), the concept of PI with electronically modulated
time-varying B−

1 has been introduced. Improvements of image quality and g-factors com-
pared to conventional PI due to this new method could be observed, but were limited by
the still somewhat similar sensitivity profiles of the two RSCs, which only yielded par-
tially independent spatial information. Additionally, the proof-of-concept study focused
only on 2D imaging, for which dynamic sensitivity modulation could only be exploited
within the imaging plane. Consequently, building on this previous work, the objective
of the present project was to extend the concept of time-varying B−

1 to volumetric (3D)
imaging. For that, the goal was to enable PI acceleration simultaneously in the transver-
sal plane (i.e., left-right or anterior-posterior direction) and along the z-axis (head-foot
direction). This means that undersampling can be performed along both PE directions
of a 3D acquisition, enabling for example acceleration patterns like Ry×Rz = 2×2. This
is beneficial for many applications, as it allows for greater flexibility than accelerating
along only one direction and makes better use of spatial coil sensitivity variations [51].
In order to achieve the required sensitivity variation along the z-axis, a new single-row
receive array was conceptualized (Figure 4.4A) and constructed (Figure 4.4C). For that,
the formerly used receive loop elements were replaced by 8 reconfigurable receive dipoles.

Dipole antennas have been investigated in various setups for UHF head imaging as
transmit-only, receive-only or transceiver elements [102–104], showing the potential for
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improved Specific Absorption Rate (SAR) efficiency in case of transmit and central SNR
in case of receive, especially when combined with surface loop elements [105, 106]. Here,
a novel type of receive dipole element was implemented that, like the reconfigurable
loops in the previous work, enables modulation of current distribution and thus B−

1

patterns along the dipole length. To that end, electronically-controlled switchable units
were placed in each dipole arm. The units were designed to change their impedance
between capacitive and inductive, depending on the state of the contained PIN diodes.
Details on this principle are shown in Figure 4.5. By shorting the PIN diodes in one
arm (positive bias), the impedance of the switchable unit becomes inductive (Figure
4.5B), which increases the electrical length of this arm. Conversely, the PIN diode
in the opposite arm is negatively biased, such that the impedance of the capacitors
counteracts the inductive impedance and the total impedance of the switchable unit
becomes capacitive, decreasing the electrical length of that arm. As a consequence, the
maximum of the corresponding current distribution and thus the region of maximum
sensitivity moves closer to the inductive impedance (Figure 4.5C). Alternating between
these states again forms two distinct RSCs along the dipole’s axis that can be rapidly
switched (Figure 4.5C).
As in the previous publication, the proposed reconfigurable dipole array was examined

by numerical electromagnetic simulations (Figures 5 and 6 of the publication), as well
as phantom (Figure 6 of the publication) and in vivo measurements (Figures 7 and
8 of the publication), especially with regard to g-factor improvement. In particular,
numerical simulations showed that switching between the two RSCs allows using PI
acceleration factor 2 along the z-axis with acceptable g-factors (maximum 2.08), which
is not possible with conventional static, symmetric dipoles as shown in the top part of
Figure 4.5A (maximum g-factor 547, Figure 5 of the publication).
Another result from the simulations was that driving the dipoles in so-called “alternat-

ing” order (i.e., flipping every second dipole compared to its neighbors) provided lower
noise correlation between the elements compared to the “direct” order (Figure 4.4B)
and also resulted in slightly lower g-factors (Figure 5C of the publication). Interestingly,
for the experimentally realized case of alternating arrangement, 2-fold acceleration along
the z-axis is even possible with maximum g-factors below 6 using static only sensitivities,
i.e., not switching at all during the acquisition (Figures 6-8 of the publication). At first,
this appears surprising given the exploding g-factors (maximum g-factor > 500) for the
case of conventional symmetric, non-reconfigurable receive dipoles (Figure 5AB of the
publication). The reason for this is that the alternating order of reconfigurable dipole
elements breaks the radial symmetry of sensitivity profiles with respect to the central
axis of the cylindrical array. For the conventional symmetric dipoles (Figure 5AB of the
publication), this symmetry leads to strong ill-conditioning, while for the alternating
arrangement of asymmetric sensitivity profiles, there is sufficient sensitivity variation
among the elements to support z-acceleration even in the static case. Still, as observed
in the previous publication, rapid switching between the two RSCs was found to improve
g-factors compared to static sensitivities only (Figure 4.6A), e.g. by a factor of 1.66,
1.65 and 2.2 for the cases of 1 × 2, 2 × 2 and 3 × 2 (Ry × Rz) acceleration with regard
to maximum g-factor in vivo, respectively. Similarly, improvements of reconstruction
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quality metrics with respect to non-PI-accelerated ground truth images (Figure 7A of
the publication) were again found for switched compared to static sensitivities (Figure
4.6B). Taking into account the SNR loss not only due to the g-factor, but also due to the
reduced acquisition time (factor

√
Ry ·Rz), according to equation (2.28), it was found

that Ry × Rz = 2 × 2 acceleration with switched RSCs yields comparable total SNR
as in the case of 1 × 2 acceleration with static sensitivities only. Thus, the g-factor
improvements due to switching can ideally allow a 2-fold reduction in scan time with no
additional SNR penalty.

In summary, it could be demonstrated that rapid sensitivity modulation along the
head-foot direction can be achieved by reconfigurable dipole receive elements. Applying
the modulation during image encoding effectively emulates two virtual rows of receive
elements instead of the actual physical single row, and thus offers the potential to improve
PI performance along this direction. Thus, building on the insights gained in the previous
publication, this work forms a next step of exploring time-varying receive sensitivities
as a novel, experimental degree of freedom for potentially accelerated MR imaging at
UHF.
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Despite the promising potential of CEST MRI as an imaging modality that is sensi-
tive to molecular microenvironment, it generally suffers from various problems. The
probably most striking one is the inherently long acquisition time due to the typical
sequence structure of alternating RF saturation and imaging blocks that need to be
repeated for every frequency offset ∆ω (see section 2.3, Figure 2.6). Both correction of
field inhomogeneities (B0 and, particularly at UHF, B+

1 ) and separation of the convo-
luted signal contributions usually require sufficiently densely sampled Z-spectra, i.e., a
large number of acquired frequency offsets and potentially even multiple B1 saturation
amplitude levels. Depending on the protocol, the duration of the RF saturation blocks
can account for more than 80% of the total acquisition time [107]. Because of that,
solely focusing on accelerating the imaging blocks (e.g. by PI, compressed sensing [108]
and similar techniques) has only limited potential for reduction of the overall scan dura-
tion. Additionally, performing all the required corrections and contrast extraction steps
often requires complex mathematical modeling, which results in time-consuming post-
processing that has to be conducted manually and off-line (i.e., on a separate computer
that is not part of the MRI scanner system).

In the presented publication, it was striven to address both the complicated post-
processing and the long acquisition times due to repeated acquisitions of CEST-weighted
images by introducing a linear projection-based parameter estimation method. In the
spirit of a first-order Taylor expansion, the complicated non-linear mapping function
from raw acquired Z-spectral data to contrast parameters of interest (here: Lorentzian
fit amplitudes), which involved spline interpolation and non-linear least squares fitting,
was approximated by a linear mapping. This process consisted of finding the optimal
linear combination of acquired raw images that resemble the desired contrast as closely
as possible. Like that, generating CEST contrast can be expressed in analogy to the
discrete Fourier transform as projecting the raw acquired spectra onto appropriate weight
vectors (Figure 4.7). Finding such weight vector coefficients could be formulated as a
linear regression problem. Being a data-driven supervised learning approach, the method
makes use of previously acquired and conventionally evaluated data, and generalization
to new, unseen data is investigated.

In a second step, employing the so-called ’Least Absolute Shrinkage and Selection
Operator (LASSO) regression’ approach [109], the linear regression model was extended
by L1 regularization, which promotes sparsity of the regression coefficients by exploiting
redundancies in the acquired frequency offsets and B1 amplitude levels. Hence, the
target contrasts could be approximated from only a subset of originally acquired CEST-
weighted images, where the subset selection was guided by the LASSO regularization.
This offers the possibility to completely omit certain repetitions of the CEST sequence
and thus a direct reduction of acquisition time.

Data for the study were acquired from six healthy subjects and one patient with a brain
tumor (glioblastoma WHO grade IV) at a 7T MRI scanner using a previously established
3D CEST MRI protocol [65, 110, 111]. Conventional contrast generation was performed
involving B0 inhomogeneity correction [112], PCA denoising [113], B1 inhomogeneity
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Figure 4.7.: Analogy of discrete Fourier transform and the proposed linear projection
approach for CEST evaluation. For the Fourier transform, a signal vector
S(t) is projected onto basis vectors β⃗1, ..., β⃗n consisting of the respective
harmonics to yield the Fourier coefficients A1, ..., An for different frequencies.
In case of linear CEST evaluation, acquired raw data are projected onto
coefficient vectors to yield desired target contrasts like APT, NOE and ssMT
amplitudes. The optimal coefficients can be found by linear regression from
conventionally evaluated training data. Reprinted with permission of John
Wiley & Sons.
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correction [66] and non-linear least squares fitting of a five-pool Lorentzian model (water,
amide, rNOE, amine and ssMT) [66, 72–74].
As outlined in the Theory section of the publication, the target parameters y, i.e.,

Lorentzian amplitudes corresponding to each CEST pool as well as off-resonance ∆B0,
were approximated as linear projections of acquired raw data x onto regression coeffi-
cients β as y = x · β + ε, taking noise into account as ε. Expressing this for multiple
target parameters and input/target pairs leads to the formulation as general linear model
Y = XB (see section 2.1, equation (2.9)) with input data matrix X, target data matrix
Y and matrix of regression coefficients B. Given a set of known input-target pairs (in
the context of supervised learning also called ”training data”), the optimal regression
coefficients could be obtained by application of the pseudo-inverse as described in section
2.1. For reduction of required measurements (frequency offsets and B1 amplitude levels)
that are needed to map to a multivariate target (i.e., multiple target amplitude param-
eters simultaneously), direct application of standard LASSO regression (equation (5) in
the publication) is not possible, as it only supports a single univariate target parameter
at a time. The result would thus be multiple different reduction schemes that are only
suited for one particular target parameter, respectively, but not for the others. Instead, a
single common reduction scheme that enables prediction of all targets simultaneously is
desirable. For achieving that, the row-sparsity-enforcing L2-L1 LASSO (”rowLASSO”)
[114], which is a special case of the multivariate group LASSO [115], was set up for the
given problem, resulting in the optimization problem

B̂rowLASSO = arg min
B

(
||Y −XB||2F + λ||B||2,1

)
with ||B||2,1 =

N∑
i=1

√∑M

j=1
|Bij|2 ,

(4.2)
which could be solved numerically [116]. Depending on the value of the regularization
parameter λ, the L2-L1 regularization enforces entire rows ofB to become zero, such that
the corresponding inputs do not contribute to the prediction of any target parameter
and can thus be completely omitted. Data and code for demonstration of the methods
introduced in this work have been made publicly available.6

In a first step, generalization of the linear model from training to test data was as-
sessed by obtaining regression coefficients based on the data of five healthy subjects and
applying them to a sixth healthy test dataset. It was found that the linear predictions
largely agreed with the conventionally evaluated reference contrasts, yielding a NRMSE
of 11%, 4.8%, 3.9% and 15% (for APT, NOE, ssMT and amine amplitudes, respec-
tively) and Root Mean Squared Error (RMSE) of 0.035 ppm for ∆B0 (Figure 1 of the
publication). In contrast to non-linear models like neural networks, the obtained linear
regression coefficients are amenable to direct human interpretation as weighting factors
for each point in the input spectra that are needed to produce the desired target values.
Indeed, physically plausible patterns of the coefficients were found both from real data
(Figure 4 of the publication) and in simulations with artificial data (Figures S2-S7 of

6https://github.com/fglang/linearCEST/
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Figure 4.8.: Coefficient vectors (columns of B) used to generate linear projection con-
trast maps of (A) APT, (B) NOE, (C) ssMT, (D) amine amplitudes, and
(E) ∆B0. Coefficients are plotted here exemplarily for the high-power in-
put data. Coefficients are obtained by linear regression with training data
generated from 5 healthy subject measurements. In blue, an example of the
corresponding voxel-wise input is given. Contrast parameters in each voxel
are then obtained by a simple dot product between input and coefficient
vectors. In this example, no LASSO regularization was applied, i.e., the
full Z-spectra were used for linear mapping. Modified and reprinted with
permission of John Wiley & Sons.

the publication), as they showed strong weightings around the respective CEST reso-
nances (Figure 4.8). The observed oscillatory sign switches of the coefficients could be
interpreted as forming weighted combinations of various spectral regions to compensate
for concomitant effects.

In a next step, input reduction by the rowLASSO procedure was investigated. By
analyzing the performance of increasingly regularized models, i.e. retaining gradually
fewer inputs, it was found that the method outperforms randomly subsampled input lists
(Figure 5 of the publication). By retaining an optimized list of 39 out of originally 110
inputs (acceleration factor of 2.8), linear projections were still possible with NRMSE=
15%, 6.7% and 5.9% for APT, NOE and ssMT amplitudes and RMSE=0.06 ppm for
∆B0 (Figure 7 of the publication).

Additionally, the rowLASSO-reduced linear prediction method was compared to con-
ventional Lorentzian fits from regularly undersampled frequency offset lists (Figure 6
of the publication). Undersampled conventional fitting was observed to perform bet-
ter for moderate acceleration up to factor 2, while for higher acceleration of factor 3,

44



4.3. Publication 3

rowLASSO predicitons of APT, NOE and ssMT amplitudes matched the reference data
more closely.
Finally, applicability of the method to pathology was investigated by applying linear

models trained on only healthy data to the glioblastoma patient dataset. Overall, the
general contrast of the reference parameter maps could still be matched by both full
and rowLASSO-reduced (acceleration factor 2.8) linear models (Figure 4.9), especially
preserving the clinically interesting APT hyperintensity in the tumor that has been
reported previously [79]. Furthermore, the proposed method was tested on a 3T dataset
that was used in a previous work for investigating deep learning based CEST data
evaluation (deepCEST) [117]. Also in this case, rowLASSO-reduced linear projection
(acceleration factor 55/18 ≈ 3) generalized from healthy training data to a glioblastoma
test dataset with NRMSE=15%, 10% and 9.9%, and RMSE=0.04 ppm for APT, NOE,
and ssMT amplitudes and ∆B0, respectively. It was found that the deepCEST neural
network introduced in this previous study yielded lower NRMSE than the new linear
method in all cases, however does not offer input reduction and thus no potential for
accelerated acquisition.
In summary, in the course of this project, a data-driven supervised learning-based

CEST evaluation technique was established, which employs a linear mapping as fast
and interpretable computation step incorporating B0 and B1 correction as well as con-
trast generation. By obtaining regression coefficients from conventionally acquired data,
the method generalized from healthy subject training data to unseen test data of both
healthy subjects and tumor patients. The introduced rowLASSO regularization enabled
a reduction of required measurements, i.e., frequency offsets and B1 amplitude levels,
by a factor of ∼ 3. This could potentially be directly translated to a corresponding
speed-up of CEST acquisitions. Input reduction was performed only retrospectively
in this work, but initial results from prospectively accelerated acquisitions guided by
rowLASSO appear promising [118]. In view of the facilitated computations and the
potential for accelerated acquisitions, this work might hopefully contribute to the per-
spective of bringing CEST MRI closer to clinical application.
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Figure 4.9.: Results of linear projection and LASSO in a tumor patient test dataset.
Clinical contrasts: (A) T1 weighted contrast-enhanced, (B) MPRAGE and
(C) FLAIR. (D) Reference Lorentzian fit results. Red arrows indicates
the glioblastoma. (E) Contrast maps obtained by linear projection with
coefficients obtained from 5 healthy subject datasets. (F) LASSO result for
39 retained inputs, corresponding to a reduction factor of R = 2.8. (G,H)
Difference maps to reference for linear projection and LASSO result, respec-
tively. For the amplitude parameters, relative differences to the reference
are given in %. (G) Voxel-wise scatter plots of linear prediction and LASSO
result versus reference with legends indicating NRMSE between predictions
and reference. Reprinted with permission of John Wiley & Sons.
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The previous publication dealt with CEST, which is one example of the multitude of
known MRI contrast mechanisms that can be exploited for addressing questions in a bio-
physical context. Traditionally, discovery of novel MRI contrasts as well as conventional
sequence parameter optimization mostly happened by trial-and-error, potentially involv-
ing laborious human interaction with the scanner or appropriate simulations. For the
latter, a theoretical description of the underlying MR physics, i.e., a model, is required
to capture the targeted contrast effects, for example the Bloch [13] or Bloch-McConnell
equations [63]. One recent example for that is the MRzero framework [119], which uses
supervised-learning based on a differentiable Bloch simulation to automatically gener-
ate sequences that yield a certain desired target contrast ”from zero”, i.e., not using
knowledge of human MRI experts. However, such a theoretical model inevitably re-
quires limiting assumptions, possibly neglecting concomitant effects and imperfections
that would occur in reality. Additionally, only parameters within the scope of the chosen
model can be investigated or optimized for, which obviously precludes finding truly new
contrast mechanisms.

In the present project, a paradigm-shift to these approaches was aimed at by investi-
gating in a model-free way whether a certain target contrast can be generated by MRI.
To that end, a real-world MRI optimization framework was implemented, in which a
search algorithm repeatedly updates and executes a parametrized sequence directly on
a real MR scanner, thus basing the optimization only on automated explorative mea-
surements. The goal was thus to overcome the need for any theoretical model, which
is why the framework was named ”MR-double-zero”. In this way, human interaction is
reduced to merely providing appropriate samples, desired target contrast and sequence
parametrization.

As a proof-of-principle, to mimic a real discovery, it was pretended that the CEST
effect of creatine guanidine protons would be unknown and needs to be ”re-discovered”
by the proposed framework. The objective was to jointly optimize RF preparation
parameters and image post-processing to map to absolute creatine concentration as a
target in appropriately prepared sample solutions. To make sure the framework would
not just simply exploit known T1 or T2 contrasts, which could vary with metabolite
concentration, the relaxation times for each sample vial were adjusted to constant in
vivo-like values by adding suitable amounts of agar and contrast agent (Figure 3 of the
publication) [120]. Moreover, samples were created that contained various concentrations
of glucose additionally to the creatine, representing a confounding CEST pool.

The implemented workflow of real-world scanner optimization is illustrated in Figure
4.10. The scanner is controlled by the optimization algorithm that runs on an offline
computer (not part of the scanner system). Sequences are defined in Pulseq [121], sent
to the scanner via local network and are executed there by a suitable Pulseq interpreter.
Acquired data automatically flow back to the offline computer via the local network, get
reconstructed and a contrast prediction P for the current iteration is formed. The de-
viation (Mean Squared Error (MSE)) between P and the given target contrast T (here:
known absolute creatine concentration in the sample vials) informs the optimization
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Figure 4.10.: Diagram of the MR-double-zero sequence development workflow. The op-
timizer sends the parametrized sequence (seq) to a real MR scanner. The
acquired data (in the depicted case for N = 2 images: Img1 and Img2)
get flattened into the matrix MRI(seq), which is used to determine coef-
ficients β̂ from linear regression of MRI(seq) to the target. With these
coefficients, the prediction (P ) is determined and the deviation from the
target (T) flows back to the optimizer. Our pipeline implements this using
so called .seq-files of the Pulseq standard [121] that are played out at the
scanner by a Pulseq interpreter sequence. Reprinted with permission of
Elsevier Inc.
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algorithm how to update the sequence for the next iteration. The sequence employed
for optimization consisted of multiple (enumerated by n = 1, . . . , N) RF-prepared 2D
GRE imaging blocks, with the amplitudes B1,n, frequency offsets ∆ωn and number of
pulses npn of the preparation pulse train before each imaging block as free parameters
(seq) that can be varied by the optimizer. RF pulse duration, duty cycle as well as
imaging parameters were kept constant. With this parametrization, a large range of
off-resonant magnetization preparation schemes can be explored. For mapping the ac-
quired data to the target creatine concentration maps, in this work, linear regression
(see section 2.1) was employed. After executing the sequence on the scanner, the N
reconstructed RF-prepared images Imgn(B1,n,∆ωn, npn) were arranged in a design ma-
trix as MRI(seq) = [Img1, . . . , ImgN ,1] and regression coefficients β that map to the
target T were obtained via β̂ = MRI(seq)+ · T. Predicted concentrations based on
this regression could subsequently be calculated as P = MRI(seq) · β̂. Finally, the
prediction error ||T−P||22 was passed as objective function value to the optimizer. With
this formulation, the optimizer has to find sequence parameters that enable the best
possible linear mapping of image intensities to the target. Optionally, to enable a more
flexible mapping function, the design matrix could be augmented by appending columns
of non-linearly transformed image intensities, e.g. Img2

n, Img3
n, . . ., forming for example

a polynomial regression model, which is still linear in the coefficients β (see section 2.1).
As the entire sequence optimization problem involving real acquired data is difficult

(non-convex, noisy, potentially ill-conditioned, neither analytical nor stable numerical
derivatives available), the CMA-ES algorithm [122] implemented in nevergrad [123] was
used, which is known to be suited for this class of problems.
In a first step, the shape of the real world data-based ”loss landscape”, in which the

optimization algorithm needs to operate, was investigated. For that, a reference image
with certain parameters seq = (B1,∆ω, np) was acquired. Next, a series of images was
acquired, for which two of the three parameters (e.g. ∆ω and np) were kept fixed and the
remaining one (e.g. B1) was linearly stepped in a certain reasonable range. Then, the
MSE loss between these images and the reference image was calculated, yielding a 1D
cut through the ”loss landscape” in the 3D parameter space. From these investigations
(Figure 2 of the publication), it could be concluded that the loss function may have
multiple local minima, but potentially might be smooth enough to permit successful
optimization.
An example of an MR-double-zero optimization result for samples that contained both

creatine and glucose is shown in Figure 4.11 and the corresponding loss and parameter
evolution (retrospectively sorted according to loss) is displayed in Figure 4.12. The
optimization was terminated after 300 iterations, which took ≈ 3 h. Indeed, an RF
preparation scheme for n = 2 images and corresponding linear regression coefficients
were found that enabled an accurate mapping to creatine concentration, even for a test
vial that was not included in but masked out during the optimization. The discovered
parameters involve one image with saturation close to the expected resonance frequency
of creatine guanidine protons (∆ω ≈ 2 ppm [124]), and the second image with different
saturation duration (due to different number of pulses np) and amplitude B1 on the same
side of the water resonance (positive ppm). This concept is different from conventional
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Figure 4.11.: Optimization result of MR-double-zero for samples that contained differ-
ent levels of glucose concentration as a confounding factor to the targeted
creatine mapping. The first row shows: (A) the target, (B) the exper-
imentally derived and (C) the difference in concentrations. Second row
shows the two images (D, E) with respective sequence parameters given
below. In (F) the predicted and target data are scattered for ROIs within
the different vials. The test vial (50mMol/L) that was not included in
the optimization process is highlighted in (C) and (F). Subscripts 1 and 2
refer to the image number for all parameters. Modified and reprinted with
permission of Elsevier Inc.

Figure 4.12.: Optimization process of MR-double-zero for samples that contained differ-
ent levels of glucose concentration as a confounding factor to the targeted
creatine mapping, leading to the results shown in Figure 4.11. (A) shows
the loss for the explored sequence parameters shown in (B), (C) and (D).
Iterations were retrospectively sorted by loss instead of the actual time
course of acquisition. Subscripts 1 and 2 refer to the image number for all
parameters. Modified and reprinted with permission of Elsevier Inc.
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asymmetry evaluation for CEST effects (which would here involve measurements at
∆ω = ±2 ppm) and seems to enable appropriate labeling and isolation of the desired
creatine concentration information independent of the glucose contamination.
Still, for multiple runs of MR-double-zero with the same settings, samples and tar-

gets, as well as using non-augmented compared to augmented design matrices (up to
cubic polynomial order), different strategies are obtained that yield similar mapping
performance (shown in the Supplementary Information of the publication). Some of
these closely resembled the traditional asymmetry metric (subtracting two images satu-
rated at opposite sides of the water resonance), whereas others exhibited a less intuitive,
seemingly novel saturation scheme. The observation that different solutions are found is
likely due to the stochastic nature of the employed CMA-ES algorithm, which results in
finding different local minima for different runs. However, as all found strategies yield
similar loss, it can be concluded that there exist multiple different options that enable
a similarly good extraction of the creatine concentration.
Acquiring n = 3 instead of n = 2 images as well as using cubic instead of linear

regression was both found to yield better performance, i.e., lower loss (Figure 5 and
Supplementary Information of the publication). Among these, augmenting the mapping
function from linear to cubic regression brought a larger improvement than increasing
the number of images per iteration from 2 to 3. As running an optimization with n = 3
images takes significantly longer and requires a larger number of free parameters to be
optimized (namely 9 instead of 6), the cubic regression with n = 2 can be considered
superior.
In summary, in the course of this project, a tool for sequence parameter search on

a real MR scanner by means of an automatic data flow pipeline and a derivative-free
optimization algorithm was implemented, reducing the need for human interaction. For
running it, no theoretical model is required; instead, the sought-for effect has to be
represented by appropriately prepared samples. As a first proof-of-principle, the frame-
work could be shown to ”re-discover” the known CEST effect of creatine by finding a
somewhat novel acquisition and linear mapping scheme to isolate and quantify its con-
centration. To conclude, MR-double-zero has been introduced as an unconventional way
of MRI methods development that can already provide some new insights into sequence
design and, speculatively, even novel and accelerated discoveries.
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5. Conclusion and Outlook

As a main part of this PhD project, electronically modulated time-varying receive sen-
sitivities were explored as a novel method to improve PI for human MRI at 9.4T. In
Publications 1 (section 4.1) and 2 (section 4.2), prototype coil arrays with reconfigurable
loop and dipole elements were demonstrated for this purpose. In addition, suitable
switching schemes and reconstruction methods for the novel temporal degree of freedom
of the sensitivity profiles were investigated. A key finding was that rapid switching
during the acquisition of k-space lines, i.e. on the order of the ADC dwell time in the
microsecond range, effectively makes the sensitivity profiles of the different coil configu-
rations virtually simultaneously available for spatial encoding. For a given acceleration
factor, this additional spatial information in the SENSE reconstruction was found to
result in lower g-factors, i.e., noise amplification and smaller reconstruction artifacts,
compared to static sensitivities only. As with conventional static coil arrays, the accel-
eration performance of reconfigurable coils depends critically on the spatial separation
of the sensitivity profiles, both among elements and among switchable configurations.
Moving from the receive loops in Publication 1 to the receive dipoles in Publication 2
already represented a certain improvement in the spatial independence of the configu-
rations. Additionally, this opened up the possibility of using 2D PI for 3D acquisitions,
including acceleration along the head-foot direction, with only a single row of receive
elements, which is impossible with traditional coils. Nevertheless, an important possible
future research direction for this method could be to further investigate and optimize
different receive element geometries in order to make the switchable sensitivity profiles
as distinct as possible.

On the hardware level, the current setup for PI with time-varying sensitivities is highly
experimental and far from user-friendly, as it involves additional wiring and electronics.
Also, in terms of coil design, driving the PIN diodes in the setups of Publication 1 and 2
requires many Direct Current (DC) wires close to the receive elements. In the case of the
reconfigurable dipoles shown in Publication 2, two pairs of wires are required per dipole.
This is particularly problematic because dipoles are sensitive to parallel conductors,
which severely limits the scalability of the approach to more elements, e.g. arranged in
two rows. A possible solution to this problem is to build reconfigurable coaxial dipoles,
such that the central conductor of the coaxial line can be used to supply DC to the PIN
diodes, which strongly reduces the need for additional wires. Such coaxial dipoles have
been implemented, and first promising results for a prototype 8-channel array are shown
in [125]. This paves the way for possible future reconfigurable dipole coils with full head
coverage, using up to 32 elements (limited by the available number of receive channels
of the 9.4T system) arranged in multiple rows.
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On the reconstruction side, a linear SENSE-type reconstruction has been used up to
now, as this could be rather straightforwardly extended to include the temporal degrees
of freedom for the coil sensitivities and allowed an accessible evaluation of PI performance
in the form of analytically computable g-factors (see section 2.2.5). An extension to self-
calibrating PI methods such as GRAPPA [36] or SPIRIT [88] is conceivable, as these
tend to be more robust in situations where accurate coil sensitivity maps in image space
are difficult to obtain [37]. However, no major qualitative improvements are expected,
as these methods are generally subject to the same physical limitations regarding the
encoding capability of coil sensitivities as SENSE [126]. Many advanced acquisition
and reconstruction techniques beyond classical Cartesian PI still explicitly or implicitly
include coil sensitivities, making them possible candidates for investigating whether an
extension to time-varying sensitivities enabled by reconfigurable coils might be beneficial.
Some options for such possible future approaches are outlined in the following.

The investigations in Publications 1 and 2 all focused on regular Cartesian trajectories,
as these are widely used and facilitate PI reconstruction (see section 2.2.5). However,
non-Cartesian trajectories like radial and spiral can have several advantageous proper-
ties, such as taking full advantage of the maximum possible performance of the gradient
hardware for more efficient image encoding, reduced sensitivity to motion, or allowing
ultra-short Echo Time (TE) imaging [127]. In addition, it is commonly alleged that
non-Cartesian trajectories have beneficial properties with respect to PI [40]. Therefore,
a further direction of research is to combine non-Cartesian trajectories with time-varying
sensitivities to investigate whether this novel degree of freedom is also useful in this case.
One difficulty is that for non-Cartesian trajectories, the PI reconstruction problem must
be solved iteratively (see section 2.2.5). For the popular CG SENSE method [42], it
is known that image quality and noise amplification strongly depend on the number of
iterations8 [128]. This makes the choice of an appropriate termination criterion crucial
when analyzing the performance of non-Cartesian PI. First preliminary work on this
idea has been carried out by purely theoretical and retrospective numerical experiments,
using previously acquired sensitivity maps from Publication 1. It could be shown that
rapid sensitivity modulation has the potential to improve PI for radial and spiral trajec-
tories to a certain degree [129], i.e. to allow earlier convergence of the iterative algorithm
and thus reduce noise amplification and reconstruction artifacts. An example of this is
shown in Figure 5.1 for radial and spiral trajectories. It was found that radial trajectories
may be particularly suitable for being combined with time-varying sensitivities, as they
resulted in the earliest convergence of the employed conjugate gradient algorithm and
thus the lowest g-factors of all cases considered. This was consistent with the condition
numbers of the respective encoding matrices. In addition, radial trajectories seemed to
benefit not only from fast switching during readout (i.e., within a spoke, ”RO switch-
ing”, Figure 5.1(A), fourth row), but also from slower switching between spokes (”shot
switching”, Figure 5.1(A), third row), which is less demanding to implement experimen-

8In fact, it has been found by numerical investigations that terminating the conjugate gradient algo-
rithm at an early iteration, as commonly done in MRI reconstruction methods, effectively constitutes
a non-linear reconstruction method, even though the underlying reconstruction problem is linear.
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tally. The observed g-factors below 1 imply a denoising effect of the early terminated
conjugate gradient algorithm at the expense of slight image blurring.
As this work is purely theoretical so far, the next and ongoing steps are experimental

realization and investigation. This requires a flexible sequence implementation that can
handle both non-Cartesian trajectories and the necessary trigger outputs to external
hardware to control the sensitivity switching of the coil. Such a sequence could already
be implemented in the open Pulseq standard [121]. In addition, corrections for gradient
system imperfections and B0 inhomogeneities may be required, as these are known to
degrade image quality in long readout sequences such as spiral, especially at UHF [131].
Extending this direction of investigation of time-varying receive sensitivities, the ques-

tion arises if they could be combined with 3D non-Cartesian trajectories such as 3D radial
[132] or 3D cones [133], or even with freely optimized non-Cartesian trajectories as re-
cently proposed [49, 134–136]. In the course of the present project, free optimization
of 2D non-Cartesian trajectories was investigated with the goal of minimizing g-factors
for conventional static PI while still complying with the gradient system constraints,
i.e. maximum possible amplitude and slew rate [49]. An exemplary result of such an
optimized trajectory measured at a 3T human MRI scanner (Siemens Healthineers) is
shown in Figure 5.2.
Building on these attempts, a joint optimization of sensitivity switching patterns

and free non-Cartesian trajectories may be an interesting future direction. Even more
speculatively, the approach could, at least in theory, be combined with nonlinear gradient
imaging such as FRONSAC [93] or Spread MRI [94], thus moving further in the direction
of exotic but potentially advantageous spatial encoding techniques. However, apart from
foreseeable significant challenges at the hardware level, all these ideas are much more
computationally demanding than the cases shown so far, and require careful selection,
implementation, and evaluation of reconstruction methods.
Departing from the linear reconstruction theory underlying all the methods discussed

so far, the application of compressed sensing in MRI [108, 137] has received much atten-
tion. Based on prior knowledge about the statistics of typical imaged objects, such as
sparsity in certain transform domains like wavelets, images can be reconstructed from
much fewer samples than required by the Nyquist criterion, allowing even higher ac-
celeration factors than conventional PI. A key requirement for a successful application
of compressed sensing is incoherence between the encoding matrix and the sparsifying
transform matrix, which in the case of MRI can be achieved by random k-space un-
dersampling patterns [108]. However, such highly irregular trajectories require major
sequence modifications and are difficult to realize with respect to all three spatial di-
rections [138]. Alternatively, chirp RF pulses have been demonstrated to introduce the
required incoherence while allowing to stick to regular Cartesian trajectories [139]. In-
spired by that, it could be conjectured that random sensitivity switching during sampling
of regular Cartesian trajectories could provide a degree of incoherence that could then
be exploited for compressed sensing without the need for major sequence modifications.
An even more recent trend in MRI acceleration, as in virtually every other field, is

the application of deep learning [140] methods to reconstruction [141–143]. The cur-
rently most popular physics-inspired deep reconstruction networks [144, 145] can be
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Figure 5.1.: Non-Cartesian PI with time-varying sensitivities: Reconstruction results for
accelerated (R = 4) (A) radial and (B) spiral trajectories and different
sensitivity switching modes as schematically indicated in the respective first
column. Results are shown for static configurations of the reconfigurable
coil array in the first two rows, for switching between RF excitations (”shot
switch”) in the third row, and for rapid switching during readout (”RO
switch”) in the fourth row. Shown is an adjoint NUFFT reconstruction
[130] of a single channel, i.e, no PI applied to demonstrate the aliasing
caused by undersampling (second column); the CG SENSE [42] results with
the lowest reconstruction error (third column; number of required iterations
shown at bottom left); and g-factors for the same iteration (fourth column;
numbers indicate mean / max). Figure adapted from [129].
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k-space trajectory(A)

final iteration(B) Cartesian Nyquist(C)

g-factor(D) difference(E)

Figure 5.2.: Optimization of free non-Cartesian 2D k-space trajectories. The design
method is based on MRzero [119], i.e., a gradient descent-like numerical
optimization on a differentiable Bloch simulation that was extended by a PI-
capable CG SENSE [42] reconstruction. The objective function was set up
to find a trajectory that enables accurate reconstruction close to a Nyquist-
sampled reference reconstruction, while yielding low g-factors and respecting
gradient hardware constraints. Shown are (A) the obtained trajectory, (B)
the resulting reconstructed image compared to (C) a Cartesian Nyquist-
sampled reference reconstruction, as well as (D) the g-factor map for the
free trajectory and (E) the difference map of (B) and (C). All data shown
were acquired at a 3T human MRI scanner. Figure adapted from [49].
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seen as a generalization of compressed sensing, where instead of predefined regulariza-
tion terms such as wavelets or total variation, a data-driven regularization is learned
based on the statistics of a given training dataset. Such approaches have led to superior
image quality at impressive acceleration factors [146]. Since these methods generally
still rely on a SENSE-type encoding matrix as a backbone, incorporating time-varying
receive sensitivities into such networks is in principle possible and an interesting step for
further investigation. However, there is growing evidence that deep learning reconstruc-
tion methods may suffer rather from the necessarily limited coverage of their training
data, i.e. the different structures seen during training and application of the networks
[147, 148], than from the limited spatial information content of the coil sensitivities.
An indication of this is the observation that deep reconstruction networks can recon-
struct images for acceleration factors much higher than the number of coils, which is
impossible with classical linear PI [146]. This is made possible by the strong reliance
on prior knowledge about typical image structures introduced by the training data. In
the worst case, this reliance can lead to severe instabilities [149] and so-called hallucina-
tions [150], where e.g. pathological structures may erroneously disappear in the output
images [151]. Consequently, for such highly complicated and non-linear methods, it is
questionable whether reconfigurable coils can significantly contribute to alleviate their
major limitations.
In terms of future plans for coil design, the reconfigurable coil arrays built so far as

proof-of-principle have 8 elements, whereas typical state-of-the-art head coils for MRI at
7T or higher have 32 [90], 64 [152] or even 128 [153] elements. However, when increasing
the number of reconfigurable elements, the results of the ultimate intrinsic SNR theory
[154] should be considered. According to this, it has been shown in the context of PI
that adding more and more receive channels cannot reduce g-factors below a certain
threshold, the ”ultimate intrinsic g-factor” [155, 156]. The reason is that the spatial
appearance of coil sensitivity profiles is governed by electrodynamics, specifically the
RF wavelength, which depends inversely on B0. Since this determines the length scale
on which the sensitivity profiles can vary in space, adding more receive elements beyond
a certain number only provides redundant information and thus can no longer contribute
to spatial encoding. Consequently, for larger numbers of reconfigurable receive elements,
the relative benefit of switching between configurations is expected to become smaller as
the ultimate g-factor limit is approached. Nevertheless, reconfigurable coils may open
up interesting possibilities for approaching the ultimate SNR with as few elements as
possible, given the limited number of available ADC channels. A related insight from
the theory of ultimate intrinsic SNR is that the achievable PI acceleration, allowing for
feasible g-factors, grows with B0 as the RF wavelength decreases, and coil sensitivity
profiles show distinct spatial patterns that characterize the onset of wave behavior,
deviating from near-field behavior at lower B0 [157]. Since the formation of distinct
sensitivity configurations of the reconfigurable coils relies on such wavelength effects at
9.4T, it was found in simulations that the approach does not work for human head
imaging at 3T, where the configurations would be virtually identical. Here, it may be
a speculative idea to investigate larger reconfigurable elements for body imaging, where
the ratio of wavelength to object size may approach a regime where sufficient sensitivity
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modulation may be achievable. At 7T, simulations for human head geometry showed a
promising degree of modulation, so the approach could in principle be translated to this
field strength, which is gaining increasing clinical relevance [158].
Finally, leaving the realm of PI, there are first considerations to use reconfigurable

dipole antennas not for MR signal reception, but for RF transmission, i.e. exciting mag-
netization. In this context, so-called Parallel Transmission (pTx) systems with multiple
independent transmit channels and coil elements are used, especially at UHF to miti-
gate the inherent B+

1 inhomogeneities [159–161]. Interestingly, certain formulations of
pTx pulse design to achieve a desired spatial pattern of excited magnetization have a
strong mathematical similarity to SENSE when B−

1 and B+
1 are interchanged [162]. For

example, ill-conditioning due to spatially overlapping B+
1 patterns in pulse design leads

to amplified RF pulse amplitudes and thus undesirably high SAR, analogous to the am-
plification of noise in SENSE reconstructions. This even makes it possible to formulate
a ”pTx g-factor” [163] that quantifies the SAR amplification due to the limited number
and spatial independence of B+

1 patterns. Consequently, it is hoped that, analogous to
the observations made in publications 1 and 2, rapid switching of reconfigurable trans-
mit elements could effectively emulate a larger number of virtual transmit elements and
thus allow for lower SAR caused by designed pTx pulses. This would be particularly
desirable given the high cost of the RF power amplifiers required to increase the number
of transmit channels.
In Publication 3, a data-driven linear projection-based evaluation method for multi-

parametric CEST MRI was proposed that includes correction of B0 and B+
1 inhomo-

geneities as well as contrast generation in a simple and fast computation step. Both the
generation and application of the linear regression coefficients are fast (fractions of a sec-
ond) compared to conventional evaluation (several minutes) or neural network training
(several hours). Therefore, the method may be promising for fast online computations
running directly on the scanner system.
The presented linear model can be considered as the simplest possible supervised

learning-based regression method, which has the advantage of direct interpretability
and straightforward inclusion of sparsity-promoting regularizations such as LASSO. Re-
ducing the number of required frequency offsets of a CEST protocol, as enabled by the
LASSO method, may be considered the most promising and effective CEST acceleration
method, since the RF saturation phase typically accounts for a significant fraction of
the total sequence duration. For this reason, accelerating only the image encoding part
of a CEST sequence, e.g. by a factor of two, does not directly translate into a twofold
acceleration of the entire sequence, since the RF saturation blocks still have to be exe-
cuted for each readout. Such imaging acceleration methods for CEST MRI have been
proposed in various works using parallel imaging [65, 74, 164], keyhole imaging tech-
niques [165], fast readouts like EPI [107, 166], compressed sensing [167–169], or sparsity
exploiting methods [170]. In contrast, reducing the required frequency offsets by a factor
of two directly halves the total scan time. For even stronger acceleration, both offset
reduction and accelerated readouts as mentioned above could in principle be combined
synergistically. However, since the omission of offsets in Publication 3 was performed
retrospectively, i.e., by removing data points from a more densely sampled Z-spectrum
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acquisition in post-processing, further investigations and validation studies are required
on prospectively reduced offset lists. This would ideally involve applying the method also
in different pathologies, in order to assess the robustness and generalization capability
of the method in more realistic settings.

The linear regression used in Publication 3 can be seen as a baseline model in the
context of emerging data-driven methods in the field of CEST MRI against which more
sophisticated non-linear models can be compared. For example, neural networks have
been used to map from 3T Z-spectra to contrast parameters obtained at 9.4T [171]
and to accelerate contrast generation at 3T [117] or 7T [172], the latter of which has
also been explicitly compared to the proposed linear model. Despite the advantages of
the linear model, such as intrinsic interpretability and straightforward incorporation of
input feature reduction via LASSO, it unsurprisingly shows lower prediction accuracy
compared to more complicated non-linear models such as neural networks. Consequently,
investigations on combining similar feature reduction approaches with neural networks as
in [117, 171, 172] is an interesting future research direction. The simplest attempt would
be to simply train a neural network on input Z-spectral data previously reduced by a
linear LASSO procedure as in Publication 3, mapping to contrast parameters generated
from the original full data. Such an approach is not guaranteed to yield a reduced offset
list that is optimal for the neural network, which may be able to extract more or at
least different types of correlations among the retained Z-spectral points. Nevertheless,
first experiments with this approach have shown encouraging results. Alternatively,
input feature reduction, e.g. by appropriate regularization such as L1-L2, could be
directly incorporated into the neural network training procedure. However, training
such a network is a much more difficult, i.e. non-convex and locally non-differentiable,
optimization problem than solving the linear LASSO objective (equation (4.2)), and
has been found to lead to severe convergence problems. Still, various approaches to
overcome such problems and to integrate feature reduction in neural networks have
been proposed in the literature [173–178] and offer an interesting direction to explore in
future work. Given the plethora of published methods in the field of machine learning,
there is plenty of room for continued exploration of different methods in the context of
CEST MRI to find optimal and parsimonious ways to acquire only the minimum data
required to obtain the desired information. An example of such an ongoing approach,
building on the linear LASSO method presented in Publication 3, is ”comprehenCEST”
[179, 180], where the idea is to concurrently analyze data from a large number of reported
CEST protocols. The goal is then to find a comprehensive but sparsely sampled and
thus feasibly fast protocol that covers the most insightful CEST labeling and allows
the design of hypothesis generating clinical pilot studies. In this context, exploring
variational autoencoders9 [182], which are a popular method in the field of machine
learning, for CEST data might be an interesting future option with the hope of finding
insightful latent space representations of relevant contrast information.

As a common feature of the four Publications included in this thesis, all presented
methods rely on linear models (see section 2.1). In the case of PI with time-varying

9or their disentangled modification [181]
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sensitivities, as investigated in Publications 1 and 2, linear reconstruction (see section
2.2.4) allows a closed-form analytical assessment of the reconstruction quality, i.e., g-
factors and SNR, on which these works rely heavily. As discussed above, this is not the
case for more complicated methods such as compressed sensing and deep learning, where
the non-linearity and required iterative procedures impede a meaningful comparison
of reconstruction methods and results. The g-factor has been introduced in section
2.2.5 as a measure of voxel variance, which can be seen as a measure of uncertainty
in the reconstructed images. Uncertainty quantification, i.e. a probabilistic way to
assess the trustworthiness of a prediction (which may be a reconstructed image or a
CEST parameter), is a highly relevant topic especially in the context of medical imaging
[183]. As an active area of research, such a probabilistic extension to enable uncertainty
quantification has recently been demonstrated in neural networks for CEST MRI [117,
172]. In contrast, for the linear models used in Publication 3 for CEST MRI, uncertainty
quantification is readily possible based on the analytical expression for the covariance
matrix of the regression parameters (equation (2.6)): Suppose the prediction y0 of the
linear model for an input vector x0 is y0 = xT

0 β̂ with the least squares estimate of
the regression coefficients β̂ as in equation (2.5). The variance of this prediction is

cov(y0) = cov(xT
0 β̂) = xT

0 cov(β̂)x0
(2.6)
= σ2xT

0 (X
TX)−1x0, using basic properties of the

covariance matrix. The true noise variance σ2 is unknown, but can be estimated from
the regression residuals as s2 = ||y−Xβ̂||22/(n−k−1), so that the prediction uncertainty
becomes [2]

σ̂y0 = s
√

xT
0 (X

TX)−1x0. (5.1)

An example of using this expression in CEST MRI is shown in Figure 5.3 and compared
to the deepCEST [117] neural network approach. For demonstration purposes, in this
Figure a simulated implant-like B0 perturbation in the form of a magnetic dipole field has
been applied to the input Z-spectra of a glioblastoma patient dataset, effectively shifting
them along the frequency axis. When this B0 shift exceeds the range of shifts seen in
the training data, predictions become erroneous (Figure 5.3(E,F)). However, for both
the neural network and the linear model, increased uncertainties in the corresponding
regions of strong B0 perturbation indicate a loss of confidence in these predictions (Figure
5.3(G,H)), making it possible to detect potential failure due to corrupted data in the
absence of ground truth data. In this case, as well as in other tentative experiments, the
uncertainties of the linear model obtained in this way have shown a remarkable similarity
to the uncertainties of the neural network. Further analysis of the potential of such
linear covariance matrix-based approaches for uncertainty quantification in comparison
or synergy with neural networks may be of interest for future investigations.

Linear regression was also used in Publication 4, where it mapped the acquired data
to the defined target contrast at each iteration during MR-double-zero optimization.
In general, any mapping function from acquired data to target could be used in this
framework (e.g. non-linear regression models, neural networks etc.), forming a joint
optimization of data acquisition and post-processing. Still, the linear regression with
optional polynomial augmentation used here was found to be suitable as a first attempt
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Figure 5.3.: Examples of uncertainty quantification by the deepCEST 3T neural net-
work [117] and the linear regression method introduced in Publication 3.
For demonstration, an implant-like B0 artifact was simulated by placing a
magnetic dipole in the upper right corner of the displayed slice of a glioblas-
toma patient dataset. (A) The simulated off-resonance map caused by the
dipole field. (B) Conventional Lorentzian fit result, shown here is the APT
peak amplitude. (C) The deepCEST prediction and (D) linear prediction,
as well as the respective prediction errors with respect to the fit result for
(E) deepCEST and (F) linear model. (G) Uncertainty map of deepCEST
and (H) linear model, obtained from equation (5.1). The dataset and neu-
ral network were also used in [71, 117].
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because it is fast and simple to obtain (a single pseudo-inversion step), while allowing
the outer sequence parameter optimization to find an acquisition scheme that suits the
prescribed linear mapping.

The MR-double-zero approach of Publication 4 can be seen as a highly experimen-
tal framework and proof-of-principle for automatic, exploratory, and model-free MR
sequence optimization based on real-world data acquisition. This represents a largely
unexplored approach in the field of MRI and can be seen as a paradigm shift from
conventional sequence optimization, which traditionally involves theoretical models and
extensive human interaction with the scanner. Still, in the specific context of RF pulse
design, a similar approach has already been implemented in 1995 to refine an optimized
RF pulse under realistic experimental conditions [184]. More recently, a Bayesian op-
timization approach based on real-time scanner acquisitions has been proposed for MR
spectroscopy [185].

The results of Publication 4 can be interpreted as a proof-of-principle that MR-double-
zero has ”rediscovered” the supposedly unknown CEST effect of creatine and enabled
quantitative concentration mapping with only two acquisitions. In contrast, conven-
tional approaches for concentration mapping of CEST agents typically require a larger
number of presaturated images [186–188]. Thus, the framework could be seen as offering
potential for two types of acceleration: On the one hand, in speeding up the discovery
of new contrast mechanisms compared to the traditional trial-and-error approach, and
on the other hand, in terms of the scan time required by the final optimized sequence.

Since the proof-of-principle shown in Publication 4 was performed only in phantom
experiments, first experiments have been conducted to apply the framework in vivo
[189]. For demonstration purposes, the task was to optimize the tissue contrast of a
spoiled GRE sequence in the human brain. Since accurate tissue segmentation masks
as a target are difficult to obtain rapidly in vivo10, a suitable objective function had
to be established, ideally reference-free, i.e. depending only on the acquired image at
each iteration. For example, spatial gradient entropy has been used as a surrogate for
perceived image quality in optimization-based methods for correcting motion [190] or
phase artifacts [191]. Inspired by that, Hartigan’s dip test [192] was used as a reference-
free quality metric for tissue contrast between Gray Matter (GM) and White Matter
(WM), which is a measure of non-unimodality of the image intensity histograms. The
desired tissue contrast would ideally appear as a bimodal distribution in the histogram,
which could be quantified by the used dip metric. Investigations of such reference-free
quality metrics may be a worthwhile direction of further research.

On a technical level, MR-double-zero can be seen as an advanced, data-driven search
in a defined sequence parameter space to investigate whether a given contrast can be
obtained via MRI. In contrast, a classical equispaced grid search quickly becomes infea-
sible in higher dimensions due to combinatorial explosion. For the investigated setting,
a reasonable convergence could be observed for 300 iterations, even when going from 6
to 9 free parameters. Since only a small subspace of all possible sequence parameters

10In an extreme case, a new segmentation mask would be required for each iteration during optimization
due to the inevitable subject motion.
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was covered in these first experiments, this observation seems promising for extend-
ing the approach to larger problems, which, however, requires further investigation. A
central aspect for ongoing research in this regard is the chosen optimization algorithm
and its properties and limitations, which need to be carefully studied. The problem
posed by numerical optimization based on real scanner data is very complicated from an
optimization point of view, as it involves a non-convex, noisy, potentially multimodal ob-
jective function with no stable derivatives. The chosen CMA-ES optimization algorithm
belongs to the class of Evolution Strategies, i.e. stochastic, nature-inspired black-box
optimizers, and has been shown to outperform a large number of other algorithms for
the same class of difficult functions on larger dimensional search spaces [193]. How-
ever, in this survey only up to d = 40 dimensional test functions were considered, and
it was noticed that within a budget (i.e., number of allowed function evaluations) of
100 · d, even the best algorithm could solve only 25% of the considered problems. The
original CMA-ES implementation is recommended only for d ≤ 100 [194]. Although
modifications of this algorithm have been proposed to improve convergence in higher
dimensions [195–197], these are usually tested on rather artificial test functions such as
high-dimensional ellipsoids and still require a budget that scales at least linearly with
the number of dimensions d. One function evaluation in MR-double-zero corresponds to
generating a new Pulseq sequence file, sending it to the scanner, executing it, sending
the acquired data back to an off-line computer, reconstructing it, and attempting to map
it to the target. In the current implementation, this process takes approximately 30 s
plus the pure sequence run time due to overheads like network communication, which in
principle could be further reduced. However, for higher-dimensional sequence optimiza-
tion problems, the required budget is expected to quickly become infeasible due to the
extensive scan time required. For example, the optimization of a variable flip angle train
with, e.g., 128 free parameters (one parameter per k-space line) was found to be very
challenging at the current stage. One way to overcome this may be to use appropriately
chosen parameterizations of such a flip angle train (or other parameters of the sequence),
e.g., spline functions, which effectively control a large number of parameters by a smaller
number of basis coefficients. This has also been proposed for the design of non-Cartesian
trajectories [135], pTx pulses [198], and MR fingerprinting schedules [199], and may be
an interesting next step to explore. A preliminary numerical experiment with such an
approach is shown in Figure 5.4.
Because MR-double-zero does not rely on any theoretical model of MRI contrast mech-

anisms, a speculative application of the framework might be to use it to automatically
test hypotheses about whether and how a given target contrast could be generated by
an appropriately designed MRI method. Even more speculatively, it could be used to
design novel tailored MRI methods in a medical context. For example, data acquisition
and post-processing could be automatically optimized to map to a known diagnosis, out-
come, etc., rather than retrospectively searching for such correlations in conventionally
acquired, already existing data.
Finally, as a model-free method, the framework may be suited for investigating or

gaining insensitivity to system imperfections such as eddy currents, gradient delay, and
amplifier heating, which are difficult to model. For example, first steps towards learning-
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Figure 5.4.: Investigation of MR-double-zero optimization of the refocusing FA train
for a single-shot TSE, similar to the approach in [200, 201]. (A) In a
conventional centric reordered TSE sequence, the T2 decay over the echo
train leads to significant image blurring. Using a variable FA train, i.e., a
different refocusing FA for each k-space line, this blurring can be reduced.
As a reference-free quality metric, image gradient entropy as in [190, 191]
was used here for the CMA-ES optimizer. The resulting final image and FA
evolution are shown in (B) and (D), respectively. (C) shows the evolution
of the cost function values when sorted descending. To reduce the number
of free parameters and thus make optimization feasible, the FA evolution
of the 128 refocusing pulses was parametrized by 16 quadratic B-splines as
shown in (D). Instead of a real scanner acquisition, a phase graph-based
MRI simulation [202] was used for this preliminary investigation.
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5. Conclusion and Outlook

based compensation of eddy current effects have been taken based on the original MRzero
framework [119], currently only by model-based simulations [203]. A future step envi-
sioned in this project is the possible translation to MR-double-zero-like optimization on
a real system with limited gradient performance.
In summary, several new and unconventional MRI methods have been investigated

in the course of this thesis. In Publications 1 to 3, a central goal was to explore ways
to reduce the inherently long acquisition times, which can be seen as one of the most
severe limitations of MRI. In Publications 1 and 2, this was attempted by combining
novel hardware, i.e., the reconfigurable coils, with an appropriate acquisition and recon-
struction scheme. This approach explicitly exploits the RF wavelength effects at UHF
MRI of 9.4T, which are generally considered to be rather a nuisance factor. Publication
3 proposed a data processing method for CEST MRI that has the potential to reduce
the number and thus the duration of acquisitions required to obtain the desired con-
trasts, for the investigated case by a factor of ∼ 3. Finally, and most experimentally,
Publication 4 demonstrated proof-of-principle for an automated sequence optimization
framework based on live acquisitions on a real scanner.
The different approaches taken in all these projects highlight the variety and interre-

lationship of aspects such as hardware components, sequences, reconstruction and data
processing algorithms, which should ideally work in synergy to get the best out of the
MRI methodology as a whole. This also suggests that there is plenty of room to ex-
plore and hopefully improve each of these aspects and their combinations. It should
be emphasized, however, that all of the presented methods are basic research and thus
have no immediate benefit, e.g., in clinical applications of MRI. The path from the basic
methodological research presented here to such practical utility is long and uncertain. In
this respect, as implied throughout this section, the work presented here may hopefully
provide a basis for future projects branching out in different directions of potentially
improving MRI methodology.
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Purpose: To investigate how electronically modulated time-varying receive
sensitivities can improve parallel imaging reconstruction at ultra-high field.
Methods: Receive sensitivity modulation was achieved by introducing PIN
diodes in the receive loops, which allow rapid switching of capacitances in
both arms of each loop coil and by that alter B1

− profiles, resulting in two dis-
tinct receive sensitivity configurations. A prototype 8-channel reconfigurable
receive coil for human head imaging at 9.4T was built, and MR measure-
ments were performed in both phantom and human subject. A modified SENSE
reconstruction for time-varying sensitivities was formulated, and g-factor cal-
culations were performed to investigate how modulation of receive sensitivity
profiles during image encoding can improve parallel imaging reconstruction.
The optimized modulation pattern was realized experimentally, and reconstruc-
tions with the time-varying sensitivities were compared with conventional static
SENSE reconstructions.
Results: The g-factor calculations showed that fast modulation of receive sen-
sitivities in the order of the ADC dwell time during k-space acquisition can
improve parallel imaging performance, as this effectively makes spatial informa-
tion of both configurations simultaneously available for image encoding. This
was confirmed by in vivo measurements, for which lower reconstruction errors
(SSIM = 0.81 for acceleration R = 4) and g-factors (max g = 2.4; R = 4) were
observed for the case of rapidly switched sensitivities compared to conventional
reconstruction with static sensitivities (SSIM = 0.74 and max g = 3.2; R = 4). As
the method relies on the short RF wavelength at ultra-high field, it does not yield
significant benefits at 3T and below.
Conclusions: Time-varying receive sensitivities can be achieved by inserting
PIN diodes in the receive loop coils, which allow modulation of B1

− patterns.
This offers an additional degree of freedom for image encoding, with the poten-
tial for improved parallel imaging performance at ultra-high field.
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1 INTRODUCTION

Parallel imaging (PI) is among the most successful tech-
niques for accelerating MRI acquisition. Based on the
phased array receiver coil,1 it uses spatial information pro-
vided by the different sensitivities of multiple local RF
receive coils to complement gradient-based Fourier encod-
ing. For this reason, less k-space samples than required by
the Nyquist criterion for a single receive channel need to be
acquired, which allows omitting sequence repetition steps
and thus results in accelerated acquisition. Currently, most
applications of PI rely on SENSE2 or GRAPPA3 reconstruc-
tion. However, since the invention of these techniques,
there has been extensive research on better understand-
ing and exploiting the spatial encoding capabilities of
receive arrays and their interaction with Fourier encod-
ing, resulting in a large variety of advanced methods and
algorithms.4–7

Common to all of these methods is that achiev-
able acceleration and reconstruction quality are linked
to the spatial patterns of receive sensitivity profiles. As
the sensitivities of different coils are never completely
spatially independent, their image-encoding capability is
fundamentally limited. In the case of linear reconstruc-
tion methods like SENSE, for higher acceleration factors,
the matrix inversions required for reconstruction become
increasingly ill-conditioned, which results in noise ampli-
fication and reconstruction artifacts.2 For this reason,
efforts have been made in hardware design to improve coil
arrays for optimized PI performance,8–12 particularly by
increasing the number of elements.13

Apart from this, applying fast field modulations during
image encoding has been proposed to improve acceler-
ated imaging, such as by additional sinusoidal gradients
in wave-CAIPI,14 oscillating second-order nonlinear shim
gradients in the case of fast rotary nonlinear spatial acqui-
sition (FRONSAC),15 or oscillating nonlinear local field
modulations in spread MRI.16 In all of these methods, the
additional field modulations lead to better k-space cover-
age by complementing conventional Fourier and sensitiv-
ity encoding, which improves the condition of the image
reconstruction problem. In the present work, we investi-
gated whether modulations of the receive coil sensitivities
(B1

−) during image encoding can be used in a similar way
to improve PI.

This idea is also inspired by the work on rotating RF
coils,17–20 for which it has been shown that the increased
number of distinct sensitivity profiles created by physi-
cally rotating coil arrays helps to improve PI reconstruc-
tions. Instead of physical rotation, in this work, receive
sensitivities are electronically modulated by adding fast
switchable PIN diodes to the receive circuitry, which allow

reconfiguring capacitances in the individual receive coils,
and by that alter B1

−. This results in two distinct receive
sensitivity configurations (RSC) that can be switched
during an MR sequence. The RSC switching during
k-space acquisition is a user-defined degree of freedom for
sequence design, additionally to conventional RF pulses,
gradients and ADC blocks, which will affect the acquired
signal and therefore reconstructed images. To demonstrate
this concept, a prototype 8-channel receiver array with
switchable RSCs was built, and measurements on a 9.4T
human MR scanner were performed both in phantom and
in vivo to assess sensitivity patterns and PI reconstructions.

Preliminary results of this idea have been presented
previously,21 in which varactor diodes were used for con-
tinuous modulation of capacitances and therefore B1

−. It
was found that fast switching between the two extreme
states of the varactors yielded highest potential for PI
improvement, whereas the intermediate states contributed
less to spatial encoding. Because the required switching
speed could not be experimentally realized with varactors,
the subsequent investigations presented here are focused
on fast-switching PIN diodes with only two distinct states.

2 THEORY

2.1 Image reconstruction
with time-varying sensitivities

In the presence of time-varying receive sensitivities, the
multichannel MR data acquisition process (neglecting
relaxation and field inhomogeneity–related effects) can be
described by a modified SENSE2 forward model as follows:

s𝛽(t) = ∫ c𝛽(r, t) m(r) exp(ik(t) ⋅ r)dr, (1)

which relates the measured signal time course s𝛽(t) in the
𝛽-th receive channel to the effective magnetization image
m(r) that is determined by tissue and sequence properties.
Here, c𝛽(r, t) denotes the complex-valued spatial receive
sensitivity of the 𝛽 -th channel with an explicit time depen-
dence, and k(t) = 𝛾∫ t

0 g
(

t′
)

dt′ is the k-space trajectory that
is determined by the linear gradient waveforms g(t). A sim-
ilar model has been proposed for image reconstruction
with rotating coil arrays.17,18

For practical application, the forward model (Eq. 1) can
be discretized to yield the linear equation s = Em, where
s ∈ CNc⋅Nk is the vector of acquired samples from all Nc
receive channels and Nk k-space sampling locations, and
m ∈ CNx ⋅Ny is the image on an Nx × Ny grid in image space
that is to be reconstructed. Image and acquired signal
are related via the encoding operator E ∈ C(Nc⋅Nk)×(Nx ⋅Ny),
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which has the form

E(𝛽,𝜅),𝜌 = c𝛽
(

r𝜌, t𝜅
)

exp
(
ik (t𝜅) ⋅ r𝜌

)
, (2)

with discrete voxel locations r𝜌 and time points t𝜅 . The
2D formulation presented here can be straightforwardly
extended to 3D.

A solution of the linear reconstruction problem can
be obtained by pseudo-inversion of the encoding oper-

ator as mreco =
(

EH𝚿̃
−1

E
)−1

EH𝚿̃
−1

s. Here, the sample

noise covariance matrix 𝚿̃ ∈ C(Nc⋅Nk)×(Nc⋅Nk) accounts for
noise correlations between different channels, and includ-
ing it in the reconstruction ensures an optimal SNR
reconstruction.2 In the case of time-varying RSCs, noise
correlation for each configuration needs to be mea-
sured separately to form the sample noise correlation
matrix.

For large matrix sizes or 3D reconstructions, how-
ever, storing and directly inverting the encoding oper-
ator E is computationally unfeasible. Depending on
the used k-space trajectory and sensitivity time course,
there are different possibilities for viable reconstruc-
tion algorithms. In the most general case of arbitrary
trajectories and/or sensitivity time courses, the encod-
ing operator can be expressed as E = PFS. Let Ns
denote the number of distinct RSCs, then the matrix
S ∈ C(Ns⋅Nc⋅Nx ⋅Ny)×(Nx ⋅Ny) performs point-wise multiplica-
tion with all possible sensitivity maps of each coil and
configuration in image space; F ∈ C(Ns⋅Nc⋅Nk)×(Ns⋅Nc⋅Nx ⋅Ny)
performs block-wise discrete Fourier transform of coil
and configuration images according to the chosen k-space
trajectory; and P ∈ C(Nc⋅Nk)×(Ns⋅Nc⋅Nk) selects only those
k-space samples of each RSC that are actually acquired.
The operator F can be efficiently implemented as fast
Fourier transform (FFT) in the case of Cartesian and
nonuniform FFT22 in the case of non-Cartesian trajec-
tories, and the linear reconstruction can be solved itera-
tively, such as with the conjugate-gradient algorithm as in
Pruessmann et al.23

In the special case of Cartesian trajectories and a small
number of distinct RSCs that are switched in a regular
pattern during k-space acquisition, the modified SENSE
reconstruction outlined previously can be decomposed
into small subproblems corresponding to unfolding of
aliased voxel groups in image space. In contrast to conven-
tional SENSE with static sensitivities, not only the k-space
undersampling pattern but also the RSC switching pattern
determines where in the coil images aliasing occurs and
which sensitivity weighting the superimposed voxels have.
A simple example for regular switching between two RSCs
is provided in the Supporting Information.

Parallel imaging performance with time-varying sensi-
tivities is assessed via the g-factor

g𝜌 =
√(

EH𝚿̃
−1

E
)−1

𝜌,𝜌

(
EH𝚿̃

−1
E
)

𝜌,𝜌
, (3)

which describes noise amplification in the voxel 𝜌 due
to suboptimal conditioning of the encoding operator.2
In cases in which direct analytical calculation of the
g-factor is infeasible, it can be approximated by the
pseudo–multiple replica method.24

3 METHODS

3.1 Geometry of the reconfigurable coil

Conventional receive head arrays consist of electrically
small loop coils.1,12 At ultrahigh field, the length of a typ-
ical loop coil becomes comparable to the wavelength, and
as a consequence, the current distribution along the loop
length becomes nonuniform.25 Commonly, to decrease the
electrical size of a coil, and thus make the current distribu-
tion more uniform, a set of equal capacitors is distributed
along the loop.25 In addition, these capacitors can be used
to dynamically alter the current distribution within the
loop and provide different RSCs.

To study the behavior of the proposed reconfigurable
loop coil, we used finite element method–based simu-
lations in CST Studio Suite 2021 (Dassault Systemes).
At first, we modeled a conventional single rectangular
coil of 120× 50 mm loaded by a homogeneous (εr = 58.3,
σ = 0.64 S/m) cylindrical phantom of 170 mm in diameter.
In this conventional loop, we distributed nine capacitors
of 6.2 pF and one capacitor of 5.1 pF to tune the coil to
about 400 MHz. As a result, we obtained a uniform current
distribution (Figure 1A). At ultrahigh field, however, the
B1

− pattern becomes asymmetrical within the transverse
plane26 (Figure 1B). Two states of the loop are created by
increasing the values of the distributed capacitors at one
arm of the loop and decreasing them at the other side,
while keeping the coil resonance frequency constant. This
creates two different current distributions and receive sen-
sitivity distributions shown in Figure 1B. Such alteration
of distributed capacitor values creates a so-called loopole
coil27 (i.e., a structure that supports both loop-like and
dipole-like currents). These two types of currents produce
substantially different field profiles, which in turn is ben-
eficial for improving PI. The required alteration of current
distribution can be done with PIN diodes.

To simulate the two states of the loop (with PIN
diodes), we conducted two independent full-wave
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F I G U R E 1 A, Surface
current distribution in a loop-like
coil for three configurations. Left:
uniform current of a conventional
loop coil; middle: loop with high
current (HC) in the left arm and
low current (LC) in the right arm;
right: loop coil with HC in the right
arm. The resonance frequency of
these three configurations remains
about identical at 400 MHz. B,
Corresponding simulated
sensitivity profiles (B1

− field) in a
central transverse plane (front
view)

simulations with two sets of capacitors mimicking the
states. In Figure 1A, high current occurs in the arm with
the high capacitance (21.8 pF), whereas low current
occurs in the arm containing low capacitance (2.3 pF).
This current distribution creates the asymmetries in the
H-field distribution, as the higher current leads to higher
H-field around the modified arm. This modified current
distribution provides modified sensitivity profiles (B1

−

field) compared with the conventional loop coils of the
same size (Figure 1B).

Note that, even though the uniform current distribu-
tion creates a symmetrical H-field distribution (Support-
ing Information Figure S3), B1

− becomes asymmetrical
at ultrahigh fields.26 For the case of high current in the
left arm, this asymmetry gets amplified, whereas for high
current in the right arm it gets counteracted. Therefore,
uniform current and high current in the left arm pro-
vide similarly looking sensitivity patterns, whereas high
current in the right arm provides a distinctly different
pattern.

Here we chose the capacitors to provide a ratio of
approximately 1.9:1 between the currents in the two arms
of the loop. It is important to note that further increase
of this ratio requires either an unrealistically small capac-
itance (below the parasitic capacitance of the coil itself),
or very high capacitance, which would decrease the reso-
nance frequency of the coil.

3.2 Prototype

The proposed reconfigurable receive-only array consists
of eight rectangular loops of 120 x 50 mm, each made
from copper tined wire of 1.5 mm diameter, arranged sym-
metrically on a fiberglass cylinder of 210 mm diameter
(Figure 2B). The loop width was chosen to minimize cou-
pling between the receive elements without spoiling the
sensitivity profile of the array. The crosstalk between adja-
cent elements measured on a vector network analyzer
(Keysight 5063A; Keysight Technologies) was at the level
of −10 dB. Each loop was connected to the receive inter-
face through a cable trap as shown in Figure 2A,B. The
receive interface contains eight low-noise preamplifiers
(WMA9RA; Wantcom). Each element is equipped with an
active detuning (AD) circuit, which detunes the receive
coil when applying DC current during transmission.

To reconfigure the loop, we designed a switchable unit
consisting of a PIN-diode (MA4P504-1072 T; MACOM),
series capacitor of 20 pF, and a small capacitor of 1.5 pF…
2.4 pF (“B size” capacitors; Dalian Dalicap Tech) con-
nected in parallel, as depicted in Figure 2A. When the
PIN diodes are negatively biased in one of the arms (Ca
or Cb), the effective capacitance of each switchable unit
becomes about 2.5 pF. At the same time, the PIN diodes
in the second arm of the loop are shorted. Consequently,
the effective capacitance of each switchable unit becomes
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F I G U R E 2 A, Circuit diagram of a
single receive loop of the experimental
receive array prototype, showing four
switchable units, which consist of a PIN
diode and two capacitors, on each arm of
the loop. Alternating between forward
and reverse bias of the PIN diodes yields
two distinct B1

− patterns that can be
rapidly switched. B,C, Photos of the
experimental setup

about 22 pF. To control the PIN diodes, we designed a
driver that can negatively bias or short the PIN diodes. To
change the state of this switchable unit, we applied a rect-
angular pulse with an offset of 1.5 V and a peak-to-peak
amplitude voltage of 3 V. To feed the PIN diodes, we used
DC voltage of 6 V delivered to each PIN diode using RF
choke inductors (330 nH, 9230 Series; Bourns) (not shown
in Figure 2A). It is important to note that when the switch-
able units in one arm are negatively biased, the PIN diodes
in the second arm are shorted to tune the coil at the
working frequency of 400 MHz. In addition, each loop con-
tains one capacitor Ct used for frequency adjustment if
the resonant frequency is unidirectionally below or beyond
400 MHz in both configurations of the switchable unit.
This capacitor is in the range of 10 to 15 pF depending on
the element.

As a transmit-only coil, we used an array of eight
conventional loops (130× 100 mm) uniformly distributed
around the circumference of 280 mm in diameter. The
adjacent loops were decoupled using transformer decou-
pling.28 The active detuning circuits were implemented in
each loop to detune the array coil in receive mode. Finally,
each element of the array was connected through a cable

trap to the power splitter to excite a circularly polarized
mode.

3.3 Magnetic resonance imaging

Measurements were performed on a 9.4T human
whole-body MR scanner (Siemens Healthineers) using
a 2D multislice RF and spoiled gradient-echo sequence
(TR = 20 ms, TE = 8 ms, flip angle = 20◦, matrix
size = 256× 256, FOV = 220× 220 mm, slice thick-
ness = 5 mm, in-plane resolution ∼ 0.86 mm isotropic, 10
slices, resulting in an acquisition time of 51.2 seconds).
Data were acquired in a homogeneous cylindrical phan-
tom of 170 mm diameter, which contained a solution
of 0.9698 g/mL Saccharose, 0.0307 g/mL NaCl and 0.1%
Dowicil, and had the material parameters εr = 58.3,
σ = 0.64 S/m. In vivo data were acquired in a healthy sub-
ject after written informed consent and under approval of
the local ethics committee.

Switching of RSCs during the sequence was controlled
by the trigger output of the scanner system. With that, dif-
ferent switching patterns could be implemented with the
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only restriction that trigger outputs had to be defined on
the gradient raster time (10 μs). Fully sampled reference
scans for both static RSCs of the PIN diode setup were
acquired. Noise calibration scans for both RSCs were per-
formed by repeating the reference scans with the flip angle
set to 0.

To capture the dynamic RSC switching during k-space
acquisition, 20/40-fold readout oversampling was applied
for an ADC dwell time of 20/40 μs, resulting in an
effective dwell time of 1 μs and a bandwidth of about
195/98 Hz/pixel. Starting at the beginning of each ADC
block, RSCs were switched every 10/20 μs. From that,
images of the RSC switching dynamics with a time
resolution of 1 μs could be obtained by the following
procedure: Let s[𝑗], 𝑗 = 1, … , 𝛼 ⋅ Nx denote the k-space
samples collected at ADC index 𝑗, where 𝛼 = 20, 40
is the oversampling factor and Nx the matrix size.
These data can be reordered to form 𝛼 sub-k-spaces
s(n)[r] = s [n ∶ 𝛼 ∶ n + (Nx − 1) ⋅ 𝛼] with n = 1, … , 𝛼 and
r = 1, … ,Nx, using MATLAB notation for indexing. In
words, the n -th sub-k-space is formed by retaining every
𝛼 th sample of each ADC block, starting with the n-th
sample. Every sub-k-space obtained in that way corre-
sponds to one time point in the repetitive switching
dynamics; thus, Fourier transform of s(n) yields a series
of time-resolved images m(n). The k-space locations cor-
responding to m(n) are shifted by (n − 1) ⋅ Δk∕𝛼 with n =
1, … , 𝛼 and Δk = 1∕FOV due to the readout gradient
being active during acquisition of the oversampled ADC
block. To compensate for the induced linear phase in
image space, m(n) is multiplied by a phase factor of the form
exp

(
−2𝜋i ⋅ (n−1)

𝛼
⋅ x

Nx

)
; x = −Nx

2
, … ,

Nx
2
− 1. By means of

this procedure, the oversampling allows multiplexing of
𝛼 different time steps of the switching dynamics during a
single k-space acquisition. A schematic of the procedure is
shown in Supporting Information Figure S1.

3.4 Data evaluation

To estimate the receive sensitivities of both configura-
tions, 8-channel k-space data from both reference scans
were prewhitened with the corresponding noise correla-
tion matrices and concatenated along the coil axis to form
a 16-channel data set. From that, coil sensitivity maps for
all coils and RSCs were estimated via ESPIRIT,6 using the
central 24 k-space lines.

The impact of different RSC switching patterns on
g-factors was evaluated using Eqs. 2 and 3, with sensitivity
maps of both RSCs obtained from the phantom measure-
ment. To enable direct computation of the matrix inverse
in Eq. 3, the sensitivity maps originally acquired with a
matrix size of 256× 256 were downsampled to 96× 96.

For the in vivo measurement, images of the switch-
ing dynamics with a time resolution of 1 μs were obtained
according to the procedure described previously. By aver-
aging over the time steps corresponding to one RSC,
coil images of both RSCs were generated to form a vir-
tual 16-channel data set. Retrospective undersampling and
SENSE reconstructions were performed for this data set
as well as for data sets obtained from the respective static
RSCs only, representing the conventional static SENSE
case. Parallel imaging reconstructions for all these cases
were compared to fully sampled reference reconstructions
by means of normalized RMS error (NRMSE), SSIM, and
peak SNR ratio (PSNR). g-Factors for both the switched
and the static data sets were calculated and compared
according to Eq. 3.

4 RESULTS

Switching the PIN diodes while the ADC is open (i.e.,
during acquisition of a k-space line) was found to cause
spurious signal fluctuations in a timespan of up to 8 μs
around the switching event, resulting in image artifacts,
as shown in Figure 3. An example of the fluctuations in
k-space is shown in Supporting Information Figure S4.
The artifact can be strongly reduced in postprocessing
by a low-rank+ sparse decomposition (robust PCA29,30)
of the time series in image space. Details on this correc-
tion are given in Supporting Information Figures S5 and
S6. Alternatively, the artifact can be removed by exclud-
ing corrupted samples from the reconstruction, which,
in contrast to the robust PCA correction, reduces overall
SNR (Supporting Information Figure S6). We are currently
investigating the nature of these fluctuations and possible
hardware modifications to solve this issue.

Fully sampled single coil images of each RSC are dis-
played in Figure 4A. It can be seen that the two recon-
figurable coil states lead to distinct spatial sensitivity pat-
terns, where configuration 1 shows a single localized
region of high sensitivity close to each coil, and config-
uration 2 exhibits two lobes of high sensitivity. For both
configurations, due to the wave behavior of RF at ultra-
high field, the sensitivities form different complex pat-
terns of constructive and destructive interference inside
the object. Figure 4B,C shows that the different RSCs also
lead to different noise correlations among the channels.
Both configurations yield different spatial SNR distribu-
tions in coil-combined images (Figure 4D–F), where con-
figuration 2 (Figure 4E) gives higher SNR in the center
due to the presence of the dipole-like currents, while the
average and peak SNR are similar for both configurations.
Figure 4 shows that channels 5 and 7 reveal reduced sig-
nal in configuration 2 compared with the other channels
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F I G U R E 3 Images of the receive sensitivity configuration (RSC) switching dynamics acquired with a time resolution of 1 μs. The RSCs
are switched every 10 μs, such that 1–10 μs corresponds to RSC 1 and 11–20 μs to RSC 2

in both configurations. This can be explained by inaccura-
cies of the self-built prototype regarding cross-talk among
elements, tuning and signal attenuation, as well as exact
positioning of the phantom inside the coil.

4.1 g-Factor simulations for different
switching patterns

Figure 5 demonstrates how RSC switching during k-space
acquisition affects PI properties by showing the effect
of different switching patterns on zero-filled inverse
FFT reconstruction of a single coil image. The forward
acquisition process according to Eq. 2 was simulated
with a numerical phantom, and the sensitivities esti-
mated from the phantom measurement that is shown in
Figure 4. As shown in Figure 5A, switching RSCs for
every phase-encoding (PE) step (“PE switching”) results
in two-fold aliasing. It is shown in the Supporting Infor-
mation that the central ghost is weighted by the sum
of the two individual sensitivities of each RSC, whereas

the peripheral ghost is weighted by their difference. For
two-fold acceleration and PE switching (Figure 5B), there
are four strongly overlapping ghosts in the PE direction,
which can be understood by noting that the respective
partial k-spaces that are weighted by the same RSC (only
orange or only blue points in the figure) are effectively
4-fold undersampled. In case of fast RSC switching during
acquisition of readout (RO) lines with two-fold oversam-
pling, such that every other ADC sample is weighted by the
same RSC (“full RO switching”), non-overlapping ghosts
appear in the oversampled RO direction. The correspond-
ing case for 2-fold acceleration and full RO switching is
shown in Figure 5D, yielding additional aliasing in the PE
direction. In contrast, switching after every second ADC
sample (Figure 5E, “half RO switching”), which is simi-
lar to applying no read oversampling, the ghosts caused
by switching also overlap in the RO direction. By alternat-
ing the switching for every other PE step in a CAIPI31-like
pattern (Figure 5F, “CAIPI switching”), the ghosts caused
by switching can be shifted along the PE direction to yield
different overlap than in the case of Figure 5E. Looking at
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F I G U R E 4 A, Fully sampled single coil images for both RSCs acquired in a homogeneous phantom. Note that in addition to the
intensity weighting by the receive sensitivities (B1

−), transmit inhomogeneity affects the spatial intensity patterns (B1
+ pattern of circularly

polarized mode). B,C, Noise covariance matrix for RSC 1 (B) and RSC 2 (C) obtained from two separate noise calibrations scans with flip
angle (FA) set to zero. D,E, The SNR for a sum-of-squares coil combination for RSC 1 (D) and RSC 2 (E), calculated via the pseudo-replica
method. F, Voxel-wise ratio of SNRs of RSC 2 and RSC 1

the partial k-spaces for each RSC, the last three switching
patterns (Figure 5D,E) resemble 2D acceleration patterns
along two PE directions in the case of 3D imaging.

Theoretical g-factor calculations for different RSC
switching patterns and acceleration factors were per-
formed according to Eqs. 2 and 3, with the sensitivi-
ties estimated from the phantom measurement shown
in Figure 4. In Figure 6, exemplary g-factor maps for
R = 4 are displayed. PE switching turns out to yield higher
average g-factors than the single static RSCs only, respec-
tively, meaning that there is no PI improvement expected
from such RSC switching patterns, regardless of whether
switching happens for every line (Figure 6D), every sec-
ond line, (Figure 6E) or once in the middle of k-space
(Figure 6F). This observation can be understood from the
aliasing pattern in Figure 5B, where it could be seen that
switching along the undersampled direction creates addi-
tional overlapping ghosts that need to be disentangled by
the SENSE reconstruction. This results in even stronger
ill-conditioning than in the case of no RSC switching
(Figure 6A,B). Consequently, instead of PE switching, it
is preferable to use the configuration that provides bet-
ter g-factor for all k-space lines. In contrast, RO switching
improves g-factors compared with the static RSCs: In case
of full RO switching (Figure 6F), g-factors are identical

to the hypothetical case of having all sensitivities of both
RSCs statically active at the same time (Figure 6C), thus,
in terms of relative PI-related SNR loss, acting like a virtual
16-channel array instead of the actual physical 8 channels.

This can be also explained from the aliasing pattern
in Figure 5C,D, where due to the non-overlapping ghosts
in RO direction, a single-channel image contains informa-
tion of both RSCs simultaneously (as sum and difference
for each ghost, respectively, which can be easily disen-
tangled). Full RO switching can therefore be seen as a
form of time-division multiplexing of RSCs, similar to the
results described in Trakic et al.18 Slower RO switching
(Figure 6H) and CAIPI switching patterns (Figure 6F)
result in similar, only slightly higher g-factors than full RO
switching (Figure 6G). This is because for these switch-
ing patterns, there is no strong overlap of the ghosts
caused by switching and the ones caused by undersam-
pling (Figure 5E,F), as opposed to the case of PE switching
(Figures 5B and 6D).

g-Factor results for different switching patterns and
multiple acceleration factors are summarized in Figure 7.
PE switching appears to bring no improved PI perfor-
mance compared with static coil sensitivities (except from
slight reduction of maximum g-factor for R= 4 and R = 5),
whereas RO switching can improve g-factors up to the level
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F I G U R E 5 Examples of the effect of different RSC switching patterns on plain FFT reconstruction, shown here exemplarily for a single
coil image of a numerical phantom. The first row shows the switching pattern schematically in k-space (i.e., which RSC is active at which
time point). Note that the readout direction is two-fold oversampled. The second row shows the corresponding FFT reconstructions and
overlaid colored markers representing the point-spread function (markers are enlarged for better visibility). Colors of the markers indicate
sensitivity weighting of the respective ghost: Red indicates weighted by the sum, and green indicates weighted by the difference of the RSC
profiles. A, Switching along the phase-encoding direction (“PE switching”) (i.e., alternating between RSCs for every readout line). Even
though a full k-space is acquired, 2-fold aliasing occurs. B, PE switching with 2-fold undersampling (R = 2), resulting in additional aliasing.
C, Switching along the readout direction (“RO switching”) (i.e., alternating between RSCs for every ADC sample). This causes ghosts along
the readout direction, which do not overlap due to the read oversampling, such that full sensitivity information of both RSCs is
simultaneously available. D, Readout switching with 2-fold acceleration, causing additional aliasing in the PE direction. E, RO switching for
every second ADC sample (equivalent to applying no read oversampling and alternating for every sample) causes overlapping ghosts in the
RO direction. F, Shifting the switching pattern in k-space for every other readout line in a CAIPI-like fashion shifts the ghosts caused by
switching along the PE direction, resulting in different overlaps compared with (E)

of having all RSCs active at the same time. Because of these
results, in vivo measurements were focused on realizing
full RO switching.

4.2 In vivo results

Fully sampled single coil images together with ESPIRIT
sensitivity maps are displayed in Supporting Information
Figure S2. To eliminate the switching artifact shown in
Figure 3 for the measurement with switched RSCs during
acquisition, corrupted data samples close to the switch-
ing events were removed from the reconstruction. The
PI reconstruction results from retrospectively undersam-
pled data sets of the switched and the static RSC mea-
surements together with corresponding inverse g-factor
maps are shown in Figure 8. Difference maps to fully
sampled reference reconstructions together with recon-
struction quality metrics are shown in Figure 9. Up
to an acceleration factor of R = 3, there is no visible

difference between switched and static reconstructions,
all showing low reconstruction errors with NRMSE below
1.5%, SSIM above 0.8, and PSNR above 36 (Figure 9B–D).
For R = 4, reconstructions from the static RSCs start to
show increased noise amplification and artifacts outside
of the brain, which is less pronounced in the switched
case (Figures 8A and 9A). For even higher accelerations
of R = 5 and R = 6, the difference between static and
switched reconstructions becomes more obvious, with the
static reconstructions being severely corrupted, whereas
the switched reconstructions are also affected by artifacts,
but to a smaller extent. This is also reflected in the quality
metrics in Figure 9B–D.

Similar observations can be made for g-factors
(Figure 8B). Overall, mean and maximum g-factors are
lower for the switched case compared with the static cases
(eg, for R = 4: max g = 2.4 for switched compared with
3.34 and 3.20 for static RSCs). The difference in g-factors
between switched and static becomes more pronounced
for higher acceleration factors here as well.
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F I G U R E 6 Theoretical g-factor maps according to Eq. 3 for different RSC switching patterns and 4-fold acceleration (R = 4) with
sensitivity maps of both RSCs estimated from the phantom measurement shown in Figure 4A. A,B, Only static RSC1 (A) and RSC2 (B). C,
Hypothetical case of combining all sensitivity maps from both RSCs to effectively form a 16-element instead of the physical 8-element receive
array. D,E, The PE switching for every (D) and every two (E) acquired lines. F, Switching only once in the center of k-space (similar to partial
Fourier imaging for each RSC) yields worse g-factors than the static configurations. G–I, In contrast, RO switching for every ADC sample (G),
for every second ADC sample (H), or for every second ADC sample with additional CAIPI-like shifting (I) of the switching pattern for every
second acquired line improves g-factors compared to the static configurations. In case (G), g-factors are identical to case (C), as fast RO
switching with oversampling acts as time-division multiplexing of both RSCs. Labels indicate mean± SD/max of g-factor values for the
respective maps. Color scales for all maps are identical

F I G U R E 7 Violin plots of
theoretical g-factor calculation results
for different acceleration factors R and
RSC switching patterns. Cross markers
indicate the respective mean values of
the g-factor maps. Shown results
correspond to the switching patterns in
Figure 6A–D,G–I

5 DISCUSSION

In this work, it was shown that time-varying receive sen-
sitivities can be realized by switchable PIN diodes in
the receive loops, which alter capacitances and thus B1

−.

The switching pattern of RSCs during k-space acquisi-
tion constitutes a novel degree of freedom for sequence
design, offering the potential of improved PI performance.
It was found that fast switching of RSCs during acqui-
sition of oversampled k-space readout lines yields the
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F I G U R E 8 A, In vivo reconstruction results for different retrospectively applied acceleration factors, shown for static RSCs 1 (“config
1”) and 2 (“config 2”) with eight sensitivity maps, respectively, as well as for the case of fast RSC switching during k-space acquisition (full
RO switching; see Figures 5D and 6G), which effectively yields 16 multiplexed sensitivity maps. B, Corresponding inverse g-factor maps (i.e.,
fraction of retained SNR compared with fully sampled, all on the same color scale) obtained according to Eq. 3 for the case of regular
Cartesian undersampling and RSC switching. Labels indicate mean± SD/max of g-factor values for the respective maps

same g-factors as a hypothetical receiver array with dou-
ble the number of coils, such that the sensitivities of all
RSCs are active at the same time. This observation cor-
responds to the time-division multiplexing SENSE recon-
struction proposed for a rotating receive coil,18 in which
oversampled acquisition with a single rotating receive ele-
ment could emulate multiple effective receive elements.
It should be emphasized that the apparent doubling of
receive channels observed here for full RO switching holds
only for g-factors, which are a relative quantity describing
PI-related SNR loss, and not for absolute SNR. In terms of
absolute SNR, a static 16-element array would give a factor
of

√
2 higher SNR compared with the dynamic 8-element

array with two time-division-multiplexed RSCs, because

the 16-element array could acquire double the number
of data samples at a time. Thus, the presented dynamic
8-element array exhibits hybrid receive characteristics of a
static 8-element and a static 16-element array. Regarding
absolute SNR, it acts like a static 8-element array, whereas
in terms of spatial encoding capability (i.e., regarding
g-factors, conditioning of the reconstruction problem, and
imaging artifacts), it acts like a static 16-element array.

Switching RSCs during an ADC block was found
to cause spurious signals visible in a time interval
of up to 8 μs around a switching event, which mani-
fested as a line-shaped artifact along the PE direction in
the reconstructed images. As shown in the Supporting
Information, this artifact can be strongly reduced in
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F I G U R E 9 Comparison of undersampled reconstructions shown in Figure 8 with the fully sampled reference (first column in Figure 8)
by means of difference maps (A) as well as normalized RMS error (NRMSE, lower is better) (B), SSIM (higher is better) (C), and peak SNR
(PSNR, higher is better) (D). Color scales are fixed for each acceleration factor

postprocessing by applying a low-rank + sparse decom-
position (robust PCA). Alternatively, removing the artifact
completely would require discarding 50% of the acquired
data samples, which would result in an SNR penalty of

√
2

compared with the ideal case of retaining all samples. In
contrast, the robust PCA correction does not cause an SNR
penalty (Supporting Information Figure S6). Although the
robust PCA correction appears to work reliably, addressing
this issue on the hardware level would be desirable, and
further investigations are required. One possibility might
be to reduce the Q-factor of the PIN-diode driver to mit-
igate ringing. In addition, we consider adding band-pass
filters to the receive coil chain that pass signal at 400 MHz.
Another potential solution would be to use extremely fast
PIN-diodes with a carrier lifetime below 1 μs. However,
faster PIN diodes provide higher series resistance in for-
ward bias, which finally would lead to further degrading
in SNR.

The demonstrated “full RO switching” (i.e., effectively
switching RSCs between every acquired k-space sample
of a two-fold oversampled ADC block) yields the best
g-factors of all possible switching patterns. Even faster
switching with stronger oversampling does not improve
g-factors, as this only increases the distance of the already
non-overlapping ghosts in Figure 5C along the extended
FOV, which does not yield additional image-encoding
information. Similarly, all other switching patterns that
involve slower switching necessarily lead to overlapping
ghosts, and thus result in a g-factor penalty.

Still, also for full RO switching, the observed improve-
ments of g-factors and reconstruction quality compared

with the static RSCs (i.e., conventional SENSE) are mod-
erate. The main limitation is here that sensitivity profiles
of both RSCs are still similar to a certain extent and thus
yield only partially independent spatial information. Con-
sequently, future work will focus on new ideas to modify
receive circuitry or geometry, to achieve stronger B1

− mod-
ulations.

As for all SENSE-based methods, the presented
approach requires explicit sensitivity estimation in image
space for all RSCs. This does not require additional scan
time compared with a conventional prescan as used for
static PI, as coil sensitivities of both RSCs can be simul-
taneously estimated from a prescan acquired with full
RO switching that yields unaliased low-resolution images
multiplexed from both RSCs.

In the present work, only Cartesian k-space trajecto-
ries were considered. As it is known that non-Cartesian
trajectories can have favorable PI properties due to inco-
herent aliasing and better exploitation of coil sensitivity
variations,32 combining RSC switching with trajectories
like radial or spiral might be an interesting next step.
First insights from combining the proposed RSC switch-
ing with a wave-like trajectory14 are given in Supporting
Information Figure S8. Furthermore, advanced nonlin-
ear reconstruction methods like compressed sensing33 or
deep learning34 might benefit from the additional degree
of freedom in signal encoding offered by RSC switching.
Combining such methods with time-varying sensitivities
is left to future research.

Ultimately, the maximum achievable PI acceleration
for conventional linear reconstruction, which still allows
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for acceptable g-factors and reconstruction quality, is fun-
damentally limited by electrodynamics, as the maximum
possible spatial variation of coil sensitivities is determined
by the RF wavelength at certain B0.

35,36 In general, our
approach benefits from the shorter RF wavelength at
higher B0 fields, which results in stronger spatial varia-
tion of sensitivity patterns both for single elements and
between RSCs. Electromagnetic simulation of the same
loop coil at 3T shows that there is only very small variation
between RSCs, such that no gain in PI performance can be
expected (Supporting Information Figure S7). Because 7T
MRI is increasingly gaining relevance for clinical imaging,
we expect our approach to be most suitable for improv-
ing image quality or accelerating high-resolution 7T
imaging.

In principle, the proposed method can be extended
to a higher number of receive channels (e.g., 32). This
would require optimization of a single element to obtain
the most efficient ratio in currents, and thus most benefi-
cial modulation of sensitivity profiles. However, PI perfor-
mance for high acceleration factors is expected to saturate
with increasing number of switchable receive elements
or distinct configurations per element, as the ultimate
intrinsic SNR limit is approached.35,36 Still, assuming a
limited number of available receive channels, the pro-
posed method of sensitivity multiplexing might be a way to
improve PI applications without expensive modifications
to the scanner’s receive chain.

6 CONCLUSIONS

The reconfigurable receive coil array with fast switch-
ing PIN diodes offers an additional degree of freedom for
image encoding by enabling time-varying receive sensitiv-
ities. This can improve PI performance (i.e., yield lower
g-factors and smaller reconstruction artifacts compared
with static receive elements). Possible improvements
depend crucially on how configurations are switched dur-
ing k-space acquisition and on spatial independence of the
different receive profiles.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Figure S1. Schematic of the procedure to obtain multi-
plexed coil images of two receive sensitivity configurations
(RSCs) by rapid switching during k-space acquisition, as
described in the Methods section. The top row shows a
schematic ADC block, corresponding to a readout line in
k-space. Strong readout oversampling (oversampling fac-
tor α) is applied such that every effective k-space sample
(black boxes) is subdivided into α samples with a dwell
time of 1 μs. The switchable receive array is controlled by a
sequence-defined trigger to toggle RSCs every α/2 samples.
The acquired signal can be reordered into sub-k-spaces s(n)
by retaining every αth sample, starting at the n-th sam-
ple (second row). Fast Fourier transform (FFT) of these
sub-k-spaces yields images of the RSC switching dynam-
ics with a time resolution of 1 μs (third row). To obtain
correct phase information for these images, the linear
phase induced by the readout gradient during oversam-
pling must be compensated (fourth row). Averaging over
the time steps corresponding to one RSC yields multi-
plexed high-SNR coil images of both RSCs (fifth row). The
ADC samples close to the switching events (indicated by
gray crosses in the first row) are affected by signal fluctu-
ations and can be removed from the averaging to remove
the artifact that is observed otherwise
Figure S2. Individual coil images and sensitivity maps
obtained via ESPIRIT (magnitude and phase) from an in
vivo measurement using the prototype receive array with
two fast switchable RSCs. For the shown images, fully
sampled datasets were acquired for both RSCs separately
Figure S3. Simulated H-field distributions (first row) cor-
responding to different surface current distributions (sec-
ond row) as in Figure 1
Figure S4. Demonstration of the signal fluctuations
caused by fast PIN diode switching in k-space (top) and
image space (bottom). Displayed are the central k-space
lines (real parts only) corresponding to the first five images
of the time-resolved switching dynamics shown in Figure
3. The acquired data show a strong sinusoidal corruption
close to the switching (at t = 1 μs) that decays over time,
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which corresponds to a localized spike in the frequency
spectrum (i.e., image space). Note that the shown k-space
data have been interpolated by zero-padding for better
visibility of sinusoidal time courses
Figure S5. Correction of switching artifact by robust prin-
cipal component analysis (robust PCA). A, Images of the
RSC switching dynamics acquired with a time resolution
of 1 μs. The RSCs are switched every 10 μs, such that
1–10 μs corresponds to RSC1 and 11–20 μs corresponds
to RSC 2 (time steps in microseconds, indicated by white
numbers). B, Low-rank component L of the image series
obtained by robust PCA. C, Sparse component S obtained
by robust PCA. Regularization weights for robust PCA
were chosen such that rank(L) = 2
Figure S6. Comparison of two methods (discarding sam-
ples and robust PCA) to reduce the image artifact caused
by fast PIN diode switching. A, The SNR for the case
of including all acquired data. B, The SNR after discard-
ing corrupted data samples close to the switching events
(50% of the total number of samples). C, The SNR after
reconstruction with robust PCA correction as shown in
Figure 3. D,E, The corresponding relative decrease in SNR
with respect to (A). F,G, Corresponding histograms. All
SNR maps were obtained by generating N = 200 pseudo
replica

Figure S7. Simulation of the proposed reconfigurable loop
coil at 3T. Shown are B1 fields for the case of a conventional
loop (top), high capacitance in the left and low capacitance
in the right arm (bottom left) and vice versa (bottom right)
Figure S8. Theoretical g-factor maps for a four-fold accel-
erated (R=4) 2D wave trajectory (8 cycles, amplitude R∕2 ⋅
𝛥ky, 2-fold oversampling) and with sensitivity maps of both
RSCs estimated from the phantom measurement, as in
Figure 6 in the main text. Results are given for (A) static
RSC1, (B) static RSC 2, (C) the case of switching RSCs for
every ADC sample and (D) every second ADC sample. Sec-
ond row shows exemplary three lines of the trajectory in
k-space, where color of the markers indicates applied RSC.
Numbers below the g-factor maps indicate mean ± std /
max of g-factor values across the images.
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Purpose: To extend the concept of 3D dynamic parallel imaging, we devel-
oped a prototype of an electronically reconfigurable dipole array that provides
sensitivity alteration along the dipole length.
Methods: We developed a radiofrequency array coil consisting of eight
reconfigurable elevated-end dipole antennas. The receive sensitivity
profile of each dipole can be electronically shifted toward one or the
other end by electrical shortening or lengthening the dipole arms using
positive-intrinsic-negative-diode lump-element switching units. Based on the
results of electromagnetic simulations, we built the prototype and tested it at
9.4 T on phantom and healthy volunteer. A modified 3D SENSE reconstruction
was used, and geometry factor (g-factor) calculations were performed to assess
the new array coil.
Results: Electromagnetic simulations showed that the new array coil was capa-
ble of alteration of its receive sensitivity profile along the dipole length. Elec-
tromagnetic and g-factor simulations showed closely agreeing predictions when
compared to the measurements. The new dynamically reconfigurable dipole
array provided significant improvement in geometry factor compared to static
dipoles. We obtained up to 220% improvement for 3 × 2 (Ry × Rz) acceleration
compared to the static configuration case in terms of maximum g-factor and up
to 54% in terms of mean g-factor for the same acceleration.
Conclusion: We presented an 8-element prototype of a novel electronically
reconfigurable dipole receive array that permits rapid sensitivity modulations
along the dipole axes. Applying dynamic sensitivity modulation during image
acquisition emulates two virtual rows of receive elements along the z-direction,
and therefore improves parallel imaging performance for 3D acquisitions.
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1 INTRODUCTION

Acceleration of imaging speed has been one of the most
important and challenging aims in MRI within the last
three decades.1–3 Approximately two decades ago, the
landscape for rapid MRI changed dramatically with the
invention of parallel imaging techniques such as SENSE,
Simultaneous acquisition of spatial harmonics, GRAPPA,
and others.2–4 Faster scanning is of utmost importance
for all clinical MRI applications to guarantee feasibility
and patient comfort, as well as to avoid potential subject
motion and allow dynamic imaging of contrast changes
(e.g., in angiography or functional MRI).

Fundamental problem of all acceleration techniques
is the decrease in image SNR with increasing imaging
speed.5 SNR of accelerated parallel imaging is inevitably
decreased by

√
R, where R is the acceleration factor, com-

pared to fully sampled non-accelerated scanning.2 An
additional SNR penalty, characterized by the so-called
geometry factor (g-factor), is caused by partially dependent
or overlapping receive sensitivity profiles.2 A common way
of minimizing the g-factor is increasing the number of ele-
ments in the RF array. Receive (Rx) array coils with an
element count of 646 and higher, that is, 967 and 128,8
have been shown to substantially minimize g-factor val-
ues. However, the number of elements in the Rx-array
is limited by the number of available Rx-channels of an
MRI scanner. An additional limit of parallel imaging is the
number of array elements that can be arranged around
the object. Increasing the number of elements whereas
keeping the same size of the array housing is associated
with a corresponding decrease of the element’s size, and,
therefore, a decrease in the magnetic field penetration
depth. The latter leads to an increase of the relative con-
tribution of the noise produced by the array element itself
(e.g., losses in conductor, electronic components, and radi-
ation) in comparison to the sample noise, and hence, can
compromise SNR.9

Recently, we proposed a novel type of parallel imag-
ing acquisition based on the dynamic modulation of the
sensitivity profiles of local RF receive coils at ultra-high
field strength.10 Conventional parallel imaging relies on
static sensitivity patterns of local receive coils, which is
then used to accelerate image acquisition. This principle
can be fundamentally expanded if these static sensitivity
profiles are rapidly modulated during signal acquisition.
Dynamic modulation virtually increases the number of
array elements without decreasing their size, and there-
fore, improves parallel imaging and preserves elements’
SNR. In previous works,10 we presented a novel approach
based on dynamically altering the receive sensitivity
profile of surface loop elements using fast-switching
positive-intrinsic-negative (PIN)-diodes or varactor diodes

during acquisition. This shifts the current distribution
along the loop length and leads to two distinct receive
sensitivity patterns within a single receive element dur-
ing signal reception.10 The spatial difference between the
two distinct configurations within a single coil element
decreases the g-factor compared to a single and static
receive sensitivity profile. However, our previous design
allows to alter the receive sensitivity profile only in the
transverse plane, but not along the z-axis, which is allowed
in the new design based on reconfigurable dipoles.

In this work, we proposed a novel elevated-end recon-
figurable RF Rx array coil design based on short folded-end
dipole elements.11,12 The key idea of the folded-end dipole
is moving the ends of the antenna, which generate the
highest electrical field and lowest current, away from the
tissue. As a result, the RF coil resonant frequency is much
less sensitive to change of loading produced by variation
of the human head size. In addition, using the folded-end
dipole design, we load only the central part of the antenna
where the current distribution is more uniform. This
extends the distribution of the RF magnetic field in the
longitudinal direction. The previously described shape
of the folded-end dipole11,12 is just one of the possible
ways of making the folded-end dipole antenna more com-
pact. In this work, to make the adjustment of the RF coil
more convenient, we elevated the dipoles ends and bent
them in the opposite direction compared to the original
design.11 By switching between inductive and capaci-
tive impedance inserted in both dipole’s arms, we could
increase or shorten the electrical lengths of each arm, and
thereby, alter the receive sensitivity pattern of the dipole
element by shifting the maximum of the current along the
dipole length toward one or the other end of the dipole.
Therefore, one physical element supports two asymmet-
rical RF field patterns, which can be switched within
∼1 μs using fast PIN-diodes. By dynamically switching
the sensitivity profiles during acquisition, a single dipole
element produces two virtual elements and significantly
improves performance of parallel imaging for acceleration
in planes, which include the head-to-feet (along the mag-
net axis) dimension. As a proof of concept, we developed
and tested both using phantom and in vivo a novel recon-
figurable 8-element receive RF dipole array coil for brain
imaging at 9.4 T.

2 METHODS

2.1 The basic principle and design
of the reconfigurable dipole antenna

Figure 1A shows the principle of the reconfigurable dipole
antenna element, which is based on manipulation of the
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F I G U R E 1 Principle of the reconfigurable dipole antenna. (A) Schematic of the single conventional dipole, its magnetic field, H,
distribution and equivalent schematics of the reconfigurable dipole with modified field distribution. (B) Schematic of the reconfigurable
dipole based on fast switching positive-intrinsic-negative (PIN)-diodes. PIN-diodes allow switching between inductive and capacitive
impedances (properties) in two opposite arms as shown by the arrows.

current distribution along the dipole length. For that pur-
pose, we inserted a home-made electronically controlled
switchable unit (SU) shown in Figure 1B (dashed line).
This SU can change its impedance between capacitive and
inductive, in each arm of the dipole depending on the
applied DC voltage. During acquisition SUs are activated
in such a way that one arm of the dipole has an inserted
inductor while the other arm has a capacitor (Figure 1A).
Because electrical lengths of the dipole arms become dif-
ferent, the electrical center (maximum of the current)
moves toward the inductive impedance. This effect was
shown previously in fractionated dipoles.13 The effect was
used to adjust the electrical length of the dipole while
keeping the physical length unchanged. As a result, the
maximum of the RF magnetic field generated by the dipole
also moves from the center of the dipole to the middle
of the left or the right arm. By dynamically altering the
dipole’s sensitivity profile during the MRI acquisition, one
can reduce the g-factors and therefore, improve acceler-
ated 3D imaging.

Figure 1B shows the proposed design of the recon-
figurable dipole element. In this design, electronically

controlled SUs based on PIN-diodes are inserted in each
arm of the dipole. If the PIN diode is shorted (positively
biased), the impedance of SU becomes inductive, which
effectively increases the dipole electrical length. When the
PIN diode is negatively biased, the impedance of the capac-
itors compensates the inductive impedance and the whole
impedance of SU becomes capacitive, which corresponds
to a decrease in the electrical length.

2.2 Electromagnetic simulations

In simulations, we considered an array of 8 elevated-end
dipole11 elements equally distributed around a cylin-
drical surface with diameter of 210 mm as shown in
Figure 2A. Each dipole had a “loaded” (closest to the
sample part of the dipole) straight part of 130 mm and
10-mm elevated-ends placed at the height of 22 mm from
the flat part of the dipole. The total length of the dipole
antenna measured 150 mm. In the middle of each dipole,
we placed the 50Ω feeding port and the matching circuit
as shown in Figure 1A. The flat parts of the dipoles were
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F I G U R E 2 Details of the reconfigurable dipole array. (A) Geometry of the 8-element receive dipole array loaded by the homogeneous
phantom. (B) Two different scenarios of dipole driving. Here, “+” shows the maximum of the current, whereas “−” shows its minimum as
shown in Figure 1A.

modeled as planar copper (lossy copper: σ= 5.8 × 107)
strips of 0.035 mm in thickness and 5 mm in width. The
elevated-ends of each dipole were modeled using lossy
copper wire with 1.5-mm radius. In the middle of one
arm in each dipole we placed an inductor of 120 nH,
whereas a capacitor of 0.5 pF was placed in the opposite
arm (Figure 2A). Each capacitor also included a series
inductor of 1 nH and resistor of 0.08Ω. The dipoles were
equally distributed around the FR4 (CST Studio Suite 2021
material library: εr = 4.3; tg δ= 0.025) holder of 210 mm in
diameter, 2 mm in thickness, and 265 mm in length.

To simulate the RF coil, we used the frequency domain
solver of the commercial software CST Studio Suite 2021
(Dassault Systèmes). The mesh optimization was per-
formed at 400 MHz with 15 to 20 optimization passes. The
convergence threshold was set to 0.02 as all s-parameters
criteria. The simulations of the 8-elements array were per-
formed in the frequency range of 380 to 420 MHz with 15
frequency points. The number of mesh cells was in the
range of 378 to 640 thousand tetrahedrons. The coil was
simulated in the presence of a homogeneous cylindrical
phantom (εr = 58.3, σ= 0.64 S/m at 400 MHz) of 170 mm
in diameter and 200 mm in length. In addition, we tested
two different driving scenarios of the dipoles (Figure 2B).
These scenarios are called “direct” and “alternating” order.
In the “direct” driving scenario, all dipoles are switched in
the same manner (i.e., all inductive impedances are active
at the bottom or top part of the dipoles) whereas capacitive

impedances are active at the opposite part. In the “alter-
nating” scenario, all dipoles are switched in the way that
when the first dipole has the inductive impedance at the
top part and capacitive at the bottom, the next dipole has
the opposite configuration.

To tune and match each dipole to 400 MHz (1H fre-
quency at 9.4 T), we used co-simulations (CST Schematic).
Depending on the design (alternating or direct order)
as shown in Figure 1B, each dipole was tuned in
co-simulations by a series inductor Ltune in the range of 15
to 52 nH and matched by a parallel capacitor Cmatch in the
range of 7.5 to 12 pF depending on the setup. The final cir-
cuit is shown in Figure 2A,B. After that, field combine task
was performed to obtain the receive fields from all inde-
pendent channels. The simulated B−1 maps were obtained
from H-field monitors using an embedded CST macro. All
field maps were obtained for 1 W of stimulated power at
the coil input.

2.3 G-factor simulations

Parallel imaging in MRI leads to an inevitable SNR loss
by a factor of

√
R compared to a full Nyquist-sampled

acquisition, where R denotes the acceleration factor. The
receive coil sensitivities, which are used to complement
Fourier encoding, are not completely spatially indepen-
dent. This leads to local noise amplification in the parallel
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imaging reconstruction, depending on the spatial patterns
of sensitivity profiles, which is quantified by the so-called
g-factor.2

In case of SENSE reconstruction, the g-factor in a voxel
ρ can be calculated analytically as

g𝜌 =
√
(EHE)−1

𝜌,𝜌 (EHE)𝜌,𝜌′, (1)

where
E(𝛾,k),𝜌 = S𝛾

(
r𝜌
)
⋅ exp

(
ik (tk) ⋅ r𝜌

)
, (2)

is the encoding operator consisting of the coil sensitivi-
ties Sγ of the γ-th coil at spatial location r𝜌 and a discrete
Fourier operator according to the applied k-space trajec-
tory k at time point tk.2 As shown previously,10 this encod-
ing operator can be extended to allow for time-varying
receive sensitivities as E(𝛾 ,k),𝜌 = S𝛾 (r𝜌, tk) ⋅ exp(ik(tk) ⋅ r𝜌).
Note that Eq. (1) is derived from the general image noise
matrix (equation [17] in Pruessmann et al.),2 assum-
ing decorrelated multi-channel data such that the noise
covariance matrixΨ is the identity.14 For regular Cartesian
undersampling patterns, Eq. (1) decomposes into multiple
small sub-blocks, such that the full encoding operator E
can be replaced by sensitivity matrices S containing only
the coil sensitivity values of aliased voxel groups from all
channels.2,10

We found previously10 that time-varying sensitivities
bring the largest g-factor improvement if sensitivities
are switched rapidly for every analog-to-digital converter
(ADC) sample of a two-fold oversampled acquisition (i.e.,
during a k-space readout line). In this case, g-factors are
identical to the hypothetical case of having all sensitivities
of the dynamic configurations statically active as “virtual
receive channels” at the same time. This can be seen as a
form of time-division multiplexing.15–17

For assessing g-factors from electromagnetic (EM)
simulations, in the present work, receive sensitivities
were calculated from the simulated RF magnetic field
as B−1 = (B1,x – iB1,y)*/218,19 and used to form the encod-
ing operator and calculate g-factors according to Eqs. (2)
and (3).

2.4 Coil assembly

The dipoles were made of printed circuit board (PCB)
and wires (Figure 3). In contrast to the original design,11

the dipole design did not include a closely located RF
shield. As shown in the original work, the shield reduces
SNR.11 The dipole PCBs were manufactured in our insti-
tutional workshop using FR4 printed circuit board (PCB:
020103E11, Bungard) of 0.5 mm in thickness. These PCBs
were glued on a fiberglass holder made by Klaus Hoppe

Werbetechnik Design. In the ends of each PCB we soldered
elevated-ends held by 3D printed polyethylene terephtha-
late glycol (PETg with Ultimaker S5 from Ultimaker B.V.)
standoffs. The final length of each fold was adjusted to
tune the coil to 400 MHz. The surface-mount device (SMD)
capacitors (SH-series, Exxelia SAS) were used. All induc-
tors were self-made using 1-mm copper wire, 4 turns of
3.5 mm in inner diameter for the tuning circuit, and 8
turns of 3.5 mm in inner diameter for the switchable unit
(Figure 3A,C). For the switchable unit we used PIN-diodes
(MA4P504–1072; MACOM) with a carrier lifetime of 1 μs
and capacitance of 0.5 pF. The PIN-diodes were driven by
a home-build complementary metal-oxide semiconductor
(CMOS) driver, generating voltage of −5 V and+5 V, con-
nected via a 7.5Ω resistor. The CMOS driver was installed
to the control unit, which was connected to the coil as
shown in Figure 3B. An optical-electrical converter was
used to convert the optical triggering signal to the electri-
cal signal supported by the CMOS driver. Optical converter
and the control unit were powered using 6 V non-magnetic
batteries (NP7-6S, GS YUASA Battery Germany). We used
330-nH RF chokes inductors (9230 Series; Bourns) and
a 330-pF capacitor for RF-blocking (Figure 3A). The DC
block capacitors of 330 pF were inserted after the matching
circuit to avoid the DC in the low noise amplifier (LNA)
path. Each dipole was connected through the cable trap to
the receive interface with 8 LNAs (WMA9RD; Wantcom)
as shown in Figure 3A.

Active detuning was implemented similarly as previ-
ously described20 using the matching capacitor, PIN-diode
(MA4P7461–1072, MACOM), and inductance of the short
piece (∼50 mm) of the coaxial cable (K_02252_D-60,
Huber+Suhner AG) as shown in Figure 3A. When the
PIN diode was shorted, the short (the cable length less
than quarter of the wave length) coaxial cable formed an
inductor, which was adjusted by changing the length of
the cable. The inductor placed across the matching capac-
itor formed a high-impedance parallel resonance circuit
inserted between the halves of the dipole, and the coil was
detuned.

As a transmit-only coil, we used a surface loop array of
8 elements (Figure 3D), wherein all closest elements were
transformer decoupled.21 The array also included a cylin-
drical RF shield. The loops had a length of 130 mm, width
of 100 mm, and were uniformly distributed around a cylin-
drical housing of 280 mm in diameter. The transmit coil
was driven (Figure 3B) using a home-built 8 way-splitter
with 45◦ between adjacent elements, which produced a
circularly polarized mode. Specific absorption rate safety
evaluations of the experimental setup for in vivo experi-
ments were conducted in agreement with regulations of
the local ethics committee.22 A photo of the entire setup of
transmit-only coil and receive coil is shown in Figure S1.
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F I G U R E 3 Prototype of the reconfigurable dipole array coil. (A) Detailed schematic of the dipole and positive-intrinsic-negative
(PIN)-diode feeding circuit. (B) Block-diagram of the experimental setup. Here, the receive (Rx) coil is connected to the scanner’s Rx chain
via an interface of 8 low-noise-amplifiers (LNA). PIN diodes are powered by two batteries and controlled via the trigger output of the scanner,
which is transmitted via an optical fiber to a dedicated control circuit of the coil. (C) Photograph of the Rx dipole array coil. (D) Photograph of
the experimental setup.

2.5 MR imaging

Data were acquired on a 9.4 T human whole-body
MR scanner (Siemens Healthineers) using a 3D RF
and gradient echo sequence (TR= 20 ms, TE= 8 ms,
flip angle= 10◦, slab-selective excitation, matrix size
200× 200× 60, FOV= 220 mm× 220 mm× 120 mm, reso-
lution 1.1 mm× 1.1 mm× 2 mm, 20% slice oversampling,
resulting in an acquisition time of 4 min 48 s).

A B+1 map of the transmit array was recorded using
a centric-reordered 3D saturated single-shot turboFlash
(3DsatTFL) sequence23 (Figure S2).

Phantom measurements were performed in a homo-
geneous cylindrical phantom of 170-mm diameter,
which contained a solution of 0.9698 g/mL Saccharose,
0.0307 g/mL NaCl, and 0.1% Dowicil, resulting in the
same material parameters (σ= 0.64 S/m and εr = 58.3) as
assumed in the simulations. In vivo data were acquired

in a healthy subject after written informed consent and
under approval of the local ethics committee.

The PIN diodes of the reconfigurable dipoles were
controlled via the trigger output of the scanner system,
which makes switching of the sensitivity configurations
a user-programmable degree of freedom during MR data
acquisition. As a reference, fully sampled k-spaces were
acquired for both configurations without switching. Noise
calibration scans for both configurations were performed
by acquiring 200 repetitions of the same sequence as used
for imaging, but with the transmitter voltage set to 0.

For imaging with dynamically switched configura-
tions, 20-fold readout oversampling was applied for an
ADC dwell time of 20 μs, which results in an effec-
tive dwell time of 1 μs and a bandwidth of 250 Hz/pixel.
During the ADC blocks, configurations were repeat-
edly switched every 10 μs. Using this procedure, multi-
ple Nyquist-sampled k-space datasets can be obtained by
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reordering the oversampled data. Each of these reordered
datasets corresponds to a different time step in the repet-
itive switching dynamics, so that ideally half of them are
weighted by one state of the receive array and half by the
other. By averaging the respective images, multiplexed coil
images of both receive array states are finally obtained. A
detailed description of this method can be found in Glang
et al.,10 where a graphical representation of the process is
also given (Figure S1 of reference Glang et al.)10

2.6 Parallel imaging reconstruction
and analysis

Noise decorrelation was applied to all datasets according
to the noise covariance matrices as obtained from the
noise calibration scans.14 Receive sensitivities from both
configurations were obtained from the acquired fully sam-
pled data via ESPIRIT,24 using the central 48 × 48 (PE1 ×
PE2) k-space lines. This algorithm captures the intensity
variations among coil images because of B−1 and there-
fore, intrinsically compensates for B+1 and object signal
dependences, which are the same in all channels. Par-
allel imaging performance was assessed by retrospective
undersampling of the fully sampled k-spaces and subse-
quent SENSE reconstruction with the obtained sensitivity
maps for both the two static cases and the dynamically
switched case.

The following metrics were used to compare under-
sampled reconstructions to fully sampled reference
reconstructions: normalized root-mean-squared-error
(NRMSE) defined as,

NRMSE(x, y) =
||x − y||2
||x||2

, (3)

with the magnitude images x (reference) and y (both flat-
tened as column vectors) of n voxels and L2 norm ||x||2 =√∑n

i=1|xi|2, structural similarity index (SSIM) defined
according to25 as,

SSIM(x, y) =
(
2𝜇x𝜇y + c1

) (
2𝜎x𝜎y + c2

)

(
𝜇

2
x + 𝜇2

y + c1
) (
𝜎

2
x + 𝜎2

y + c2
) , (4)

where 𝜇x, 𝜇y and 𝜎x, 𝜎y are the means and SDs of the fully
sampled and undersampled reconstructions, respectively,
c1 = (k1L)2, c2 = (k2L)2, L being the dynamic range of the
images, and k1 = 0.01, k2 = 0.03; and peak SNR (PSNR)
defined as

PSNR(x, y) = 10 ⋅ log10

(
max (x)2

MSE(x, y)

)
, (5)

with MSE(x, y) = 1
n
||x − y||22.

For all reconstructions, g-factors were calculated from
the sensitivity maps according to Eqs. (1) and (2).

3 RESULTS

3.1 Electromagnetic simulation

We simulated two scenarios of dipole driving. In both sce-
narios, the resonant frequency of the array was adjusted to
400 MHz. In the first “direct” driving scenario, all dipoles
are switched as shown in Figure 1B. In this case, we have
obtained a mean reflection coefficient Sii of −29.49 dB and
the worst isolation between closest adjacent elements of
−14.9 dB (Figure 2B). In this scenario, because of symme-
try, there is no receive field variation among the dipoles
along the z-axis near the center of the cylinder, there-
fore, 3D acceleration is possible only in the switched con-
figuration. As an alternative, we proposed to flip every
second dipole to drive them in so-called “alternating”
order (Figure 2B). This way of driving improved the iso-
lation between the nearest neighbors. As a result, the
average transmission coefficient between two adjacent ele-
ments was −16.9 dB, whereas impedance matching was
−36.33 dB (Figure 2B).

Because electrical lengths of the dipole arms become
different, the electrical center (maximum of the current)
is moved toward the inductive impedance. As a result, the
maximum of the current moves from the center of the
dipole to the middle of the left or the right arm. Figure 4
shows the simulated |H|-field distribution of a dipole
(130 mm in length) at a depth of 5 mm from the phantom
surface. As seen in Figure 4, the field maximum follows
the changes in the current distribution. Using this method,
we can achieve a ratio of 1:0.4 between |H|-field picked in
the opposite quarters (−31 mm and 31 mm from the dipole
center) of the dipole arms. This current (H-field) difference
leads to a corresponding change in B−1 (sensitivity pattern)
field. The simulated B−1 maps in a.u. for each configura-
tion are shown in Figure 4. Here, we normalized each B−1
map to its maximum. As seen in the figure, the B−1 field
maximum moves from the center of the dipole (as in con-
ventional dipole) toward the middle of each arm. Accord-
ingly, measurements in a homogeneous phantom with a
single dipole receive element (Figure 4) show two distinct
spatial receive sensitivity patterns. By dynamically chang-
ing the receive field during the MRI acquisition, one can
reduce the g-factors and therefore, improve accelerated
3D imaging.

In addition, we simulated case with lossy PIN
diodes. In Figure S3 we showed B−1 maps for both
cases, and as seen, the effect of losses is almost
negligible.
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F I G U R E 4 Qualitative comparison of simulated B−1 field (receive sensitivity), and single-channel SNR maps obtained from a fully
sampled gradient echo scan for both configurations. All maps are normalized to its maximum. The phantom borders are marked by the white
line. Dashed line shows the dipole’s geometrical center.

3.2 G-factor simulations

Figure 5 shows simulated transversal and sagittal g-factor
maps calculated for an array of conventional dipoles and
a reconfigurable dipole array (Figure 5A) dynamically
switched in the direct order for acceleration factor Rz of 2.
Both arrays consisted of 8 elements uniformly surrounding
the cylindrical phantom. Depending on the slice number
along the z-direction, the improvement in g-factors varies
(Figure 5B). Finally, the dynamic switching provided an
overall improvement in maximum g-factor up to 263.1-fold
and mean g-factor up to 9.81-fold for the acceleration fac-
tor Rz of 2. The array of conventional dipoles demonstrated
unfeasibly high values of mean and maximum g-factors
(Figure 5B) for acceleration in the z-direction because
there is no B−1 field variation among dipole antennas along
the z-direction in the center of the phantom. The same is
true for the static direct driving. Therefore, we do not con-
sider these two scenarios in further comparison. For the
alternating order scenario, the z-acceleration can be used
even without switching because the B−1 field varies among
the coil elements in the z-direction.

Hence, we compare g-factors for three scenarios
including direct order dynamically switched dipoles, alter-
nating order static and dynamically switched dipoles. In all
three cases, we used 8-element dipole arrays loaded with
the cylindrical phantom (Figure 2A). Figure 5C shows
the maximum and mean g-factors for all three cases. An
overall improvement of the switched over the static sce-
nario can clearly be seen in Figure 5C. Among the studied
designs, the design with switched dipoles placed in the
alternating order shows the best results. Namely, it demon-
strated 2.01-fold improvement for acceleration of 1 × 2
(Ry × Rz), 2.5-fold improvement for 2 × 2, and 4.02-fold
improvement in case of 3 × 2 in maximum g-factor com-
pared to the alternating order, but without switching. An

improvement of 5% for 1 × 2, 12.4% for 2 × 2, and 54%
for 3 × 2 is reported for the mean g-factors compared
to the alternating order coil, but without switching. For
in-plane acceleration (2 × 1 and 3 × 1), all coils show com-
parable values of g-factors. Comparison of two switched
cases shows a small (3%) improvement in the case of the
alternating scenario. Although this difference in g-factors
is minor, because of improvement in isolations between
the channels, the design of alternating order was consid-
ered for prototype assembling. Figure 5 presents only an
example of imaging accelerated in the y-z plain. Because
of the cylindrical symmetry of the simulated geometry,
acceleration in x-z plain produces the same results.

3.3 Coil testing and image
reconstruction

The final coil design is depicted in Figure 3. After assem-
bling and fine-tuning on the bench, we tested the coil in
the 9.4 T scanner on the phantom and in vivo.

To verify that the multiplexing procedure does not
distort the obtained sensitivity patterns of the receive ele-
ments, in Figure S4 a comparison of non-switched and
switched magnitude and phase maps is shown. It can be
seen that the magnitude and phase patterns match for both
switched and non-switched acquisitions.

Because the observation time per configuration is
halved for the switched acquisitions compared to a
non-switched acquisition of same duration, the SNR of
the multiplexed configuration images is reduced by a fac-
tor of

√
2. However, by including all available data from

the switched acquisition (i.e., averaging over both con-
figuration images), a similar mean SNR as in the static
cases is restored (Figure S5). This case is most relevant
for parallel imaging reconstructions, where information
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F I G U R E 5 Simulated geometry-factor (g-factor) improvement. (A) Simulated transversal and sagittal g-factors maps obtained for the
conventional dipole and reconfigurable dipole 8-element arrays dynamically switched in the direct order for acceleration factor Rz of 2. (B)
Plot shows the distribution of the inverse maximum g-factor (higher is better) calculated for corresponding transversal slices along the dipole
length. (C) Maximum and mean g-factors (lower is better) for several studied coil geometries: direct order switched dipoles, alternating order
static, and switched dipoles.

from both configurations of a switched sequence is used
simultaneously.

Figure 6 shows a comparison of simulated and mea-
sured g-factors all obtained using the developed 8-element
array loaded by the cylindrical phantom. We evaluated
two static configurations 1 and 2, and the dynamically
switched configuration. In all three cases dipoles were
arranged in the alternating order. The difference between
configurations 1 and 2 is that inductors and capacitors
at the ends of dipoles are swapped with each other. For
example, if in configuration 1, dipole 1 (Figure 2A) has
an inductor at the right side and capacitor at the left

side, in configuration 2, it has an inductor at the left
side and capacitor at the right side. In addition, sin-
gle channel images of each element for configurations
1 and 2 (Figure 1A) are shown in Figure S6. Figure 6A
shows an evaluation of maximum g-factors. This evalu-
ation demonstrates that the switched scenario yields fol-
lowing improvements in the maximum g-factor: 2.46-fold
for acceleration of 1 × 2 (Ry × Rz), 3.32-fold for 2 × 2,
and 4.41-fold for 3 × 2 compared to the static scenario.
Figure 6B shows improvement in mean g-factors of 8% for
acceleration of 1 × 2 (Ry × Rz), 15.7% for 2 × 2, and 33%
for 3 × 2 compared to the static scenario. We report this
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F I G U R E 6 Comparison of the measured and simulated geometry-factors (g-factors) (phantom). (A) Maximum g-factors (lower is
better) obtained for three simulated and measured configurations (i.e. two static configurations 1 and 2) and the dynamically switched
configuration. For all three configurations dipoles were arranged in the alternating order. (B) Mean g-factors for three simulated and
measured configurations (static 1, static 2, and dynamically switched). In addition, Figure 6A,B show ratios of the maximum and mean
g-factors measured for the dynamically switched dipole to that of both static configurations.

improvement compared to the worst case among static 1
or 2 configurations (Figure 6).

3.4 In vivo imaging

In Figure 7, in vivo parallel imaging results are compared
for the cases of two static configurations and the case
of rapidly switched alternating configuration for different
acceleration patterns. As seen in the figure, higher accel-
eration leads to increased g-factors (Figure 6B). Switch-
ing sensitivities yielded an improvement of maximum
g-factors of 1.66-fold for 1 × 2 (Ry × Rz), 1.65-fold for 2
× 2, and 2.2-fold for 3 × 2 acceleration compared to the
worst static configuration case (Figure 8). In terms of mean
g-factor, the developed coil demonstrated an improvement
of 7% for 1 × 2 (Ry × Rz), 11.8% for 2 × 2, and 21.5% for
3 × 2 acceleration compared to the static worst configu-
ration case (Figure 8). Similar observations can be made
when choosing the first accelerated direction as left–right
instead of anterior–posterior, this is, Rx × Rz acceleration
(Figures S7 and S8).

Figure 9A shows the g-factor obtained in vivo as a
“violin” plot, where the peak value shows the maximum
g-factor, and the width of each bar indicates the number
of voxels of the corresponding g-factor across the entire
acquired brain volume. Finally, the mean value for each
case is shown by the black cross.

Figure 9B further compares the accelerated 3D SENSE
reconstructions with the fully sampled ground truth.
Here, the benefit of sensitivity switching is especially
pronounced for high acceleration factors. For instance,
in case of 2 × 3-fold (Ry × Rz) acceleration, switching
reduces NRMSE by a factor of 4 (75% improvement),
increases SSIM by a factor of 1.43 (43% improve-
ment), and increases PSNR by a factor of 1.44 (44%
improvement) compared to the better of the static cases,
respectively.

4 DISCUSSION

In this work, we developed and evaluated a novel con-
cept of a dynamic Rx RF array coil based on reconfigurable
elevated-end dipoles11 for accelerated 3D parallel imag-
ing of the human brain at 9.4 T. An array of conventional
static dipoles arranged in a single row does not support
3D acceleration because there is no sensitivity variation
among the dipoles along the z-direction (the axis of the
magnet). In contrast, because of switching between the
inductive and capacitive impedance placed in each arm of
the reconfigurable dipoles, the receive sensitivity profile
can be dynamically shifted along the z-direction during the
acquisition phase, which provides two virtual dipoles. As
a result, the developed one-row array coil has two effective
(virtual) rows and is, therefore, capable of 3D acceleration.
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F I G U R E 7 In vivo results obtained
with the proposed coil array. Top left box:
Fully sampled images. Other boxes:
Retrospectively undersampled 3D SENSE
reconstructions. In each box, transversal,
coronal, and sagittal views are shown for the
static configurations 1 and 2 (first two rows
in each box) as well as for the dynamically
switched case (bottom row in each box).
Labels indicate the applied acceleration
pattern in the two-phase encoding directions
as Ry ×Rz.

We suggested two scenarios of dipole arrangement,
namely “direct” and “alternating.” Despite having com-
parable parallel imaging improvement in both scenarios,
the alternating order showed an improvement in isolation
compared to the direct-order. This improvement in isola-
tion can be important for further increasing the number
of elements in a row. Finally, the dynamically switched
alternating order dipoles demonstrated the best improve-
ment of g-factors in vivo, that is, up to 2.2-fold for 3 × 2
(Ry × Rz) acceleration, compared to the static alternating
order configuration. This improvement in g-factor allows
using higher acceleration factors with the reconfigurable
RF coil without additional g-factor penalty compared
to the non-reconfigurable RF coil. For example, in case
of 3 × 2 (Ry × Rz) acceleration, g-factor for the reconfig-
urable coil was comparable to the non-reconfigurable
coil with a lower acceleration factor of 1 × 2 (Ry × Rz).
Because of this improvement of g-factors, one could
obtain comparable overall SNR for the static configuration
(non-reconfigurable) accelerated by 1 × 2 (Ry × Rz) and

switched configuration (reconfigurable) accelerated by 2
× 2 (Ry × Rz). As a result, when switching the sensitivities
of the proposed RF coil one can shorten the acquisition
time by a factor of 2 without additional SNR penalty. Such
an improvement in scanning time can be particularly ben-
eficial in high-resolution 3D anatomical brain imaging
sequences like the popular MPRAGE26 or MP2RAGE.27

The proposed concept of reconfigurable receive dipoles
can be also very useful for accelerated MRI at 7 T. This
fact is of great importance taking into account recent clear-
ances of two commercial 7 T MRI scanners for diagnostic
imaging and a growing number of 7 T MRI machines over
the world (more than 100). According to recent findings of
the ultimate intrinsic SNR theory, maximum SNR deeper
in the human body or near the brain center at 7 T and
above can be obtained only by combining complementary
conductive structures carrying different current patterns,
for example, loops and dipole antennas.28,29 Following
these theoretical findings, we recently developed two novel
32-element dipole/loop combined array designs,20,30 and
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F I G U R E 8 In vivo geometry-factor (g-factor) maps obtained with the proposed coil array. Columns correspond to different Ry ×Rz

acceleration patterns and rows show the results for static configurations 1, 2, and the dynamically switched case, respectively. As in Figure 7,
for all cases a transversal, coronal and sagittal slice are shown. Labels indicate mean± SD/max of g-factor values across the entire acquired
brain volume (FOV= 220 mm× 220 mm× 120 mm).

F I G U R E 9 Comparison of the in vivo reconstruction results. (A) Geometry-factors (g-factors) across the entire acquired brain volume
(FOV= 220 mm× 220 mm× 120 mm). (B) Normalized root-mean-squared error (NRMSE, lower is better), structural similarity index (SSIM,
higher is better) and peak SNR (PSNR, higher is better) of the accelerated 3D SENSE reconstructions with respect to the fully sampled ground
truth reconstructions.

wherein our new findings can be potentially applied to
improve parallel imaging. For both dipole/loop designs,
the 3D parallel imaging can be further improved by using
reconfigurable dipoles that can effectively increase the
number of virtual rows of dipoles to 2 (first design) or 4
(second design). Use of dipole antennas was also demon-
strated for imaging of the human body at 3 T.31 Therefore,
the developed technique of dynamic Rx dipoles can be also
applied for 3 T human body imaging.

Comparing g-factors between simulation and phan-
tom measurement (Figure 6), for the measured maximum
g-factor value we have observed underestimation of our
simulation by 18.3% to 40.4% depending on the accelera-
tion factor. In contrast, we have observed good agreement
between measured and simulated results in terms of mean
g-factors. This can be explained by the fact that g-factor
hot spots appear at the edges of the imaged object, and
therefore, maximum g-factor values are very sensitive to
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the choice of image mask. For the mean value this problem
is mitigated.

The ability to undersample a 3D k-space in the two
phase encoding directions (e.g., acceleration patterns like
2 × 2) is favorable for parallel imaging compared to accel-
erating along a single direction (e.g., 4 × 1), as the former
makes use of the spatial coil sensitivity information in two
instead of only one direction.32

As a drawback, the presented setup requires additional
electronics for controlling the PIN diodes and wires deliv-
ering the DC to the dipoles. These wires can interact
with the dipoles and therefore, have to be mounted with
care. However, this can be improved, for example, if the
DC is guided through the same coaxial cable connected
to the dipoles. This might reduce the number of extra
wires and minimize residual interactions with electronics.
EM simulations suggest that the proposed reconfigurable
dipoles are applicable also at 7 T and higher fields such
as 10.5 T and 11.7 T, but become less efficient at lower
fields.

The proposed approach of dynamically switched
Rx-elements is applicable to all types of MRI sequences,
as the switching provides an additional degree of freedom
during image encoding. In the present case, coil sensi-
tivity variation along the z-axis is achieved by the two
reconfigurable states of the dipoles, whereas in-plane (x/y)
there is almost no sensitivity variation between the con-
figurations. Consequently, for the in-plane acceleration,
dynamic switching provides no significant benefit over
static configurations. However, more advanced reconfig-
urable receive dipole element geometries can allow mod-
ulation of B−1 both in-plane and along the z-axis to further
improve parallel imaging performance.

5 CONCLUSIONS

We presented an 8-element prototype of a novel electroni-
cally reconfigurable dipole receive array that permits rapid
sensitivity modulations along the dipole’s axes. Applying
dynamic sensitivity modulation during image acquisition
emulates two virtual rows of receive elements along the
z-direction, and therefore, improves parallel imaging per-
formance for 3D acquisitions. As a result, the dynamically
switched dipoles demonstrated a significant improvement
of g-factors in vivo, that is, up to 2.2-fold for 3 × 2 (Ry × Rz)
acceleration, compared to the static configuration.
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FIGURE S1. Photo of the experimental setup, showing
the shielded outer transmit-only coil (8 surface loop ele-
ments), the inner receive coil (8 reconfigurable dipole ele-
ments), and the phantom. The receive insert was partially
pulled out for better visibility.
FIGURE S2. B+1 map of the 8-element transmit loop
array in the homogeneous phantom, acquired using
a centric-reordered 3D saturated single-shot turboFlash
(3DsatTFL) sequence.20

FIGURE S3. Simulation results for a single dipole. (A)
Simulated setup. (B) B1- field profiles in μT. (C) B1- field
in μT in the central sagittal plane (lossless case R= 0).
(D) B1- field in μT in the central sagittal plane (lossy case
R= 1.2Ω).
FIGURE S4. Comparison of static and multiplexed acqui-
sitions of the two configurations of the reconfigurable
dipole coil. First row: magnitude and phase maps for
the two configurations from respective static acquisitions
without any switching during the sequence (dwell time
20 μs). Second row: A single “time frame” of a multiplexed
(i.e., rapidly switched acquisition) obtained according to
the procedure described in Glang et al.10 (effective dwell
time 1 μs). Third row: Multiplexed configuration images
obtained by averaging over all time frames corresponding
to the respective configuration (effective dwell time 10 μs).
Results are shown exemplarily for a single channel.
FIGURE S5. Comparison of single channel SNR for the
cases of non-switched and switched configurations of the
reconfigurable dipole array. SNR was evaluated by vox-
elwise division of image intensity by the noise standard
deviation measured in the no-signal regions in the cor-
ners of the image. First row: SNR maps for a non-switched
sequence in (A) static configuration 1 only and (B) static
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configuration 2 only. Second row: SNR maps obtained
from a switched (i.e., multiplexed) sequence, enabling
simultaneous reconstruction of both (C) configuration 1
and (D) configuration 2, however, at half the observation
time compared to (A,B), respectively. (E) SNR map for
the case of averaging over all 20 individual “time frames”
obtained from the switched sequence shown in (C,D),
therefore, effectively mixing the configurations. Numbers
below the images correspond to mean | max of the respec-
tive maps. In addition, below the images, the correspond-
ing effective dwell times and configuration weightings in
time are graphically indicated, where each colored box
represents a 1 μs sample.
FIGURE S6. Single coil GRE images for both configura-
tions and all channels of the reconfigurable dipole array,
shown in transversal (first two rows), sagittal (third and
fourth row) and coronal (fifth and sixth row) slices. Image
intensity has been normalized to the range [0,1]. Note
that image intensity varies for different views, because the
respective dipole elements have various distances from the
imaging planes.
FIGURE S7. In vivo results obtained with the proposed
coil array for retrospective acceleration along x (left–right)
and z (head–foot). Results correspond to Figure 7 in the

main text, but with the first phase encoding direction
assumed to be left–right instead of anterior–posterior.
Fully sampled images (leftmost column) and retrospec-
tively undersampled 3D SENSE reconstructions for the
cases of only static configurations (first two rows) as well
as the rapidly switched case (third row) are shown. Labels
indicate the applied acceleration pattern in two phase
encoding directions as Rx × Rz.
FIGURE S8. G-factor maps corresponding to the
reconstruction results shown in Figure S2. Labels
indicate mean± SD/max of g-factor values across the
entire acquired brain volume (FOV 220 mm × 220 mm
× 120 mm). Results correspond to Figure 8 in the main
text, but with the first phase encoding direction assumed
to be left–right instead of anterior–posterior.
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Isolated evaluation of multiparametric in vivo chemical exchange saturation transfer

(CEST) MRI often requires complex computational processing for both correction of

B0 and B1 inhomogeneity and contrast generation. For that, sufficiently densely sam-

pled Z-spectra need to be acquired. The list of acquired frequency offsets largely

determines the total CEST acquisition time, while potentially representing redundant

information. In this work, a linear projection-based multiparametric CEST evaluation

method is introduced that offers fast B0 and B1 inhomogeneity correction, contrast

generation and feature selection for CEST data, enabling reduction of the overall

measurement time. To that end, CEST data acquired at 7 T in six healthy subjects and

in one brain tumor patient were conventionally evaluated by interpolation-based

inhomogeneity correction and Lorentzian curve fitting. Linear regression was used to

obtain coefficient vectors that directly map uncorrected data to corrected Lorentzian

target parameters. L1-regularization was applied to find subsets of the originally

acquired CEST measurements that still allow for such a linear projection mapping.

The linear projection method allows fast and interpretable mapping from acquired

raw data to contrast parameters of interest, generalizing from healthy subject training

data to unseen healthy test data and to the tumor patient dataset. The

L1-regularization method shows that a fraction of the acquired CEST measurements

Abbreviations used: APT, amide proton transfer; CEST, chemical exchange saturation transfer; CP, circularly polarized; LASSO, least absolute shrinkage and selection operator; MIMOSA, multiple

interleaved mode saturation; NOE, nuclear Overhauser effect; (N)RMSE, (normalized) root mean square error; PCA, principal component analysis; (ss)MT, (semisolid) magnetization transfer; Δω,
frequency offset of CEST saturation.
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is sufficient to preserve tissue contrasts, offering up to a 2.8-fold reduction of scan

time. Similar observations as for the 7-T data can be made for data from a clinical 3-T

scanner. Being a fast and interpretable computation step, the proposed method is

complementary to neural networks that have recently been employed for similar pur-

poses. The scan time acceleration offered by the L1-regularization (“CEST-LASSO”)
constitutes a step towards better applicability of multiparametric CEST protocols in a

clinical context.

K E YWORD S

APT, CEST, feature selection, LASSO, linear projection, NOE

1 | INTRODUCTION

Chemical exchange saturation transfer (CEST) MRI provides interesting image contrasts based on indirect detection of low concentrated solutes

through the water signal attenuation caused by chemical exchange of labile protons, which have been selectively saturated by RF irradiation. Most

studies focus on the CEST effects of amide, amine, and guanidine protons related to peptides and proteins.1 Furthermore, CEST was shown to

give insights into pH2 and the metabolite content of creatine3 or glutamate.4 Additionally, multiparametric CEST protocols yield contrasts related

to the semisolid compartment provided by the semisolid magnetization transfer (ssMT) effect, as well as relayed nuclear Overhauser (NOE) effects

that are known to correlate with protein content and conformation.5,6 In the context of brain cancer, CEST is of clinical interest; for example,

amide CEST has been shown to correlate with gadolinium enhancement,7 and changes in NOE have been reported to correlate with histology8

and also to be a measure for tumor therapy response.9

However, extraction of the CEST contrast parameters of interest often requires complex mathematical modeling, for example, by nonlinear

curve fitting of Bloch–McConnell10 or Lorentzian models.11–14 These are time-consuming, depend on initial and boundary conditions, and thus

remain difficult. Presumably, this is why simple metrics like asymmetry,15 ratios or linear interpolations of certain points in the Z-spectra16,17 are

often preferred for CEST contrast generation. Common to all of these metrics is that they describe the target contrasts as linear expressions of

acquired CEST measurements at certain offset frequencies.

Linear transforms play a tremendous role in all branches of science, and MRI is no exception. Most prominently, the Fourier transform

describes the decomposition of an image into spatial frequencies, which can be acquired as gradient-encoded MR signals and reconstructed using

the inverse Fourier transform. In the case of a 1D Fourier transform, the contribution of a certain harmonic frequency to a signal is expressed as

linear projection of the signal onto the respective harmonic signal. The harmonic signals of different frequencies thus act as basis vectors spanning

a linear space of representable signals. An example of this situation is displayed in the left column of Figure 1. Such linear transforms have the

advantage of being stable, fast to calculate, and insightful for theoretical analysis.

To utilize the full potential of linear transforms for CEST data evaluation, in this work we aim to find the best linear combination of acquired

points in the Z-spectrum to generate a contrast as close as possible to a desired target. Such optimal linear combination weights can be found by

linear regression applied to conventionally evaluated training data, in the present case using a Lorentzian fit model. Contrast generation can then

be expressed analogously to the discrete Fourier transform (Figure 1, left column) as linear projection of the raw acquired data onto the respective

weight vectors (Figure 1, right column). In the context of current exploration of neural networks for such tasks,18–21 the linear transform forms

the simplest learning-based approach and by its linearity allows for direct interpretation and thus also guidance for more sophisticated

approaches.

Furthermore, the linear projection approach can be extended to address the scan time issue of multiparametric CEST protocols. Isolated eval-

uation of in vivo CEST effects usually requires sufficiently densely sampled Z-spectra, to allow for separation of concomitant exchange effects as

well as correction of field inhomogeneity. Correction of B1 inhomogeneity, which is increasingly severe at high and ultrahigh field scanners, even

requires acquisition of spectral data at multiple saturation amplitude levels.14 The number of acquired offsets and saturation amplitudes largely

determines the total CEST acquisition time, as the entire sequence needs to be repeated for each amplitude and frequency offset. However, the

acquired CEST data are known to be partially redundant, which can be exploited for denoising.22 In view of such redundancies, the question arises

if the desired target contrasts could be generated from only a subset of the originally acquired data. To find such subsets, we extend the linear

projection approach by automatic feature selection using the well-established least absolute shrinkage and selection operator (LASSO) tech-

nique.23 This type of L1-regularization is known from compressed sensing MRI,24 where it is used to enforce sparsity of reconstructed MR images

in certain transform domains. In the present work, the proposed “CEST-LASSO” is set up to promote sparsity of required frequency offsets and

B1 amplitude levels simultaneously, and by doing so offers a direct reduction of acquisition time.
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2 | THEORY

2.1 | Linear projection

Target CEST parameters in each voxel are expressed as linear projections, that is, dot product of the acquired raw data x
!
with N measurements,

onto a vector of regression coefficients β
!
, as

y¼ x
!� β!¼

XN

k¼1
xkβk ð1Þ

In the case of multiple target parameters, the vectors of regression coefficients for each of these M targets can be assembled into the coefficient

matrix B (N�M), such that a vector of target parameters y
!

can be obtained from the vector of input data x
!

in a given voxel as a matrix–vector

product

y
!¼ x

!
B: ð2Þ

Evaluating this expression for K different input vectors, for example, from multiple voxels, assembled to an input data matrix X (K�NÞ, leads to
the formulation as a general linear model

F IGURE 1 Analogy of discrete Fourier transform and the proposed linear projection approach for chemical exchange saturation transfer
(CEST) evaluation. For the Fourier transform, a signal vector S tð Þ is projected onto basis vectors β1,…,βn consisting of the respective harmonics to
yield the Fourier coefficients A1,…,An for different frequencies. In the case of linear CEST evaluation, acquired raw data are projected onto
coefficient vectors to yield desired target contrasts like amide proton transfer (APT), nuclear Overhauser effect (NOE), and semisolid
magnetization transfer (ssMT) amplitudes. The optimal coefficients can be found by linear regression from conventionally evaluated training data

GLANG ET AL. 3 of 17



Y¼XB ð3Þ

with the target data matrix Y K�Mð Þ: Due to the structure of rows and columns in the defined matrices and the right-hand side multiplication of

X by, the forward model Equation (3) only mixes spectral but no spatial information, such that the linear projections operate on each voxel inde-

pendently. For a collection of known input-target pairs X and Y, referred to as training data from now on, the matrix of optimal regression coeffi-

cients can be obtained by solving the ordinary least squares problem, which has the global analytical solution

bB¼ argmin
B

Y�XBj jj j2F ¼ XTX
� ��1

XTY¼XþY ð4Þ

with the Frobenius norm �j jj jF and the Moore–Penrose pseudoinverse Xþ ¼ XTX
� ��1

XT :25

2.2 | LASSO

The LASSO regression objective for a single scalar target parameter y can be formulated as the L1-regularized linear least squares problem,23

b
β
!

LASSO ¼ argmin
β
!

y
!�Xβ

!��� ������ ���2
2
þλ β

!��� ������ ���
1

� �
with β

!��� ������ ���
1
¼
XN

i¼1
j βi j : ð5Þ

In general, there is no analytical solution for
b
β
!

LASSO. However, the optimization problem is still convex, which means that there are globally

optimal solutions that can be found iteratively.26

Depending on the choice of the regularization parameter λ, the L1-regularization leads to a sparse solution, where a certain number of coeffi-

cients are zero. As the corresponding input components do not contribute to the linear projection (Equation (1)), they can be removed entirely

from the model. In the case of CEST data, this means that the corresponding measurements (at particular frequency offsets and saturation ampli-

tudes) do not need to be acquired at all to generate the desired target contrast parameter y by linear projection, once the regression coefficients

β
!
are obtained.

In the case of multiple target parameters, solutions to the standard LASSO problem (Equation (5) can be calculated for each target parameter

y individually. In this case, the inputs that can be removed from the model will be different for each target parameter. Consequently, the result will

be differently subsampled sets of the original inputs that are all suited for just one particular target parameter, but not a common reduction

scheme that simultaneously optimizes the linear prediction of multiple target parameters. To overcome this limitation, the LASSO regularization

can be modified to an instance of the multivariate group LASSO,27 namely, the row-sparsity–enforcing L2-L1 LASSO (rowLASSO).28

bBrowLASSO ¼ arg min
B

Y�XBj jj j2F þλ Bj jj j2,1
� �

with Bj jj j2,1 ¼
XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

j¼1
Bij

�� ��2r
: ð6Þ

A row of the coefficient matrix B corresponds to the contribution of a particular input component to all target parameters in Equation (3). The

L2-L1 norm used as regularization for the rowLASSO forces entire rows of B to become zero, which means that the corresponding input compo-

nents do not contribute to any of the included target parameters and can therefore be removed. Solving the rowLASSO for CEST data thus pro-

vides a single reduced list of measurements that still allows for simultaneous generation of multiple target parameters. Denoting the number of

retained inputs by Nred and the original number of inputs by K, the reduction factor R¼K=Nred can be defined.

The regularization term added to the ordinary least squares objective (Equation (4)) in the case of LASSO (Equation (5)) and rowLASSO

(Equation (6)) is known to introduce a bias to the obtained nonzero regression coefficients in bBrowLASSO,
29 which can deteriorate the performance

of the obtained linear model when applied to new data. This bias can be removed by refitting: a reduced input data matrix Xred is formed by

removing all columns from X, for which the corresponding row in bBrowLASSO is zero. With that, the unregularized ordinary least squares regression

on the remaining inputs bB0
rowLASSO ¼ XT

redXred

� ��1
XT
redY is calculated. According to this procedure, the regularized problem is used only for variable

selection, whereas the unregularized regression provides the final coefficient estimates. Having only a reduced input vector x
!

red at hand—for

example, from an accelerated scan, for which the measurements rendered irrelevant by LASSO have been omitted—the contrast parameters can

then be obtained as

y
!¼ x

!
red

bB0
rowLASSO ð7Þ

It was found throughout the present work that the refitted coefficients bB0
rowLASSO provided better results than the original bBrowLASSO.
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3 | METHODS

3.1 | Data acquisition

Data were acquired from six healthy subjects and one patient with a brain tumor (glioblastoma WHO grade IV) after written informed consent at

a MAGNETOM Terra 7T scanner (Siemens Healthineers AG, Erlangen, Germany) with a 32Rx/8Tx-channel head coil (Nova Medical, Wilmington,

MA). All in vivo examinations were approved by the local ethics committee.

Homogeneous saturation was realized as in30 using the MIMOSA scheme (120 Gaussian pulses, pulse duration tp = 15 ms, interpulse delay

td = 10 ms, duty cycle DCsat = 60.56%, recovery time between previous readout and start of saturation block trec = 1 s). Two B1 maps were

acquired for circularly polarized (CP) and 90� mode, which were combined according to31 to form the effective MIMOSA B1 map. Two different

saturation amplitude levels of B1 = 0.72 μT and B1 = 1.00 μT were applied. The CEST image readout was a centric reordered 3D snapshot gradi-

ent echo32 (TE = 1.77 ms, TR = 3.70 ms, FA = 6�, FOV: 230 mm x 186.875 mm x 21 mm, matrix size: 128 x 104 x 18, GRAPPA33 factor 2 in the

first phase-encoding direction). 56 frequency offsets were acquired according to the sampling schedule given in the Appendix. With that, the total

saturation time was Tsat = 2.99 s. The total acquisition time for Z-spectra of both B1 values was 13 min 24 s.

3.2 | Conventional evaluation

A schematic of the employed postprocessing pipeline is shown in Figure 2. All acquired 3D volumes were coregistered onto the chosen reference

volume at Δω = 3.5 ppm and B1 = 0.72 μT, to correct for subject motion, using the SPM toolbox.34 B0 inhomogeneity correction was applied by

fitting the water peak of the Z-spectra with a smoothing spline and shifting the spectra according to the spline's minimum on the frequency axis.

The obtained frequency shift in each voxel provides a relative B0 inhomogeneity map. During postprocessing, an interpolated baseline correc-

tion35 with the offsets acquired at ±100 ppm turned out to yield more stable results than M0 normalization with –300 ppm, which is why the two

–300 ppm scans were not considered for further evaluations. Spectra were denoised using principal component analysis (PCA),22 retaining the

first 11 principal components. After that, two-point Z-B1-correction
14 was applied using the acquired spectra at both B1 amplitudes and the rela-

tive MIMOSA B1 map.

F IGURE 2 Schematic of the conventional multiparametric chemical exchange saturation transfer (CEST) data evaluation pipeline (bottom), for
which the proposed linear projection-based evaluation (top) forms a shortcut. In both cases, acquired CEST data are corrected for subject motion
and spectrally normalized. Conventional evaluation consists of interpolation-based B0 and B1 inhomogeneity correction, followed by spectral
principal component analysis (PCA) denoising and nonlinear least-squares fitting of a five-pool Lorentzian model. In the case of the proposed
linear approach, all of these steps are accomplished by projection onto regression coefficients previously obtained from conventionally
evaluated data
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Based on the models,11–14,35 the resulting spectra were fitted using a five-pool Lorentzian model (water, amide, rNOE, amine, and ssMT,

resulting in 16 free fit parameters), using the same initial and boundary conditions for all datasets. The output of the complete conventional evalu-

ation including B0 and B1 correction and Lorentzian fitting was used to generate the training datasets for linear regression. All computations were

carried out in MATLAB (MathWorks, Natick, MA).

3.3 | Linear regression and LASSO

Uncorrected but normalized Z-spectra of both B1 levels were assembled to form the input data matrix X. Additionally, the B1-MIMOSA and B1-

CP field map values in each voxel were provided as additional inputs by concatenating them to the columns of X, resulting in a total of 110 (54

+54+ 2) input features. Lorentzian parameters from each voxel obtained by conventional fitting of B0-corrected data and the B0 inhomogeneity

in each voxel calculated from the non-B0–corrected data were likewise assembled in the target data matrix Y, resulting in 17 (16+ 1) target

parameters.

The introduced formulation of the general linear model (Equation (3)) and LASSO methods (Equations (5) and (6)) assumes that both input

data matrix X and target data matrix Y are centered, meaning they have column-wise mean zero. With that, there is no need for an additional con-

stant intercept term.29 Because of that, and to avoid any scaling issues, input and target matrices were standardized to column-wise mean zero

and variance one before performing the least-squares and LASSO fits.

Data and code for demonstration of the method can be found at https://github.com/fglang/linearCEST/. For the linear projection method, all

the necessary steps (i.e., data standardization, pseudoinverse calculation, and application to test data) can be performed in less than 50 lines of

MATLAB code. Solving the linear least-squares problem by MATLAB's “pinv” function took 0.8 s on a computer with an Intel Xeon W-2145

3.7 GHz CPU, 8 cores and 32 GB RAM, and application of the regression coefficients took 0.03 s. Lorentzian fitting for all voxels of one subject

dataset took 4 min 36 s. The standard LASSO (Equation (5)) and rowLASSO (Equation (6)) problems were solved using the FISTA algorithm.26,36

For the typical data matrix sizes occurring in this work (number of inputs N¼110, number of targets M¼17, number of training voxels

K ≈300 000), calculation of a solution takes approximately 0.25 s. This allows calculating many solutions for increasing values of the regularization

parameter λ, such that any possible number of retained inputs, meaning arbitrary acceleration factors, can be found within minutes.

The approach of generating CEST contrast maps by linear projections from the unprocessed raw Z-spectra was first validated in a healthy

subject test dataset. The data of five healthy subjects were used as training set to obtain regression coefficients bB according to Equation (4), which

were then applied to a sixth healthy test dataset according to Equation (3).

Predictions of the linear and LASSO method for amplitude parameters were assessed in terms of the normalized root-mean-squared error

NRMSE¼ 1
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
j¼1 byj�yj

� 	2
K

s

between predicted values by and the reference parameters y with mean value y. For ΔB0 as a target parameter, non-normalized RMSE was used,

because of the mean value being close to 0.

4 | RESULTS

The resulting maps in Figure 3 show that for APT, NOE, and ssMT contrasts, as well as field inhomogeneity ΔB0, the linear projection results

(Figure 3B) preserve the general contrast of the reference maps (Figure 3A) obtained by conventional evaluation, with NRMSE of 11%, 4.8%,

and 3.9% (for APT, NOE, and ssMT amplitudes, respectively), and RMSE of 0.035 ppm for ΔB0. The NRMSE between the reference and pro-

jection result for the individual CEST contrasts coincides with the observed effect strengths: the strongly pronounced ssMT effect, manifested

as the highest of the Lorentzian peak amplitudes, can be best predicted by the linear projection, followed by the smaller NOE and APT

effects. For the amine contrast, which is the least pronounced CEST effect in the acquired data, the linear projection result is the least accu-

rate (NRMSE = 15%). The difference maps in Figure 3C exhibit localized deviations: in the case of the NOE and amine amplitudes, deviations

occur within the anterior left region, where the MIMOSA map (Figure 3E) assumes the highest values. For the ssMT amplitude, slightly too

low predictions occur in the posterior left region, where the MIMOSA map assumes the lowest values, as well as in the CSF. The projection-

based maps show similar low noise as the conventionally evaluated data, for which an explicit denoising step is included. This shows that the

projection approach denoises implicitly.

Results for the remaining parameters of the five-pool Lorentzian model are displayed in Figure S1. From the figure it can be seen that the lin-

ear projection works better for amplitude parameters than for peak widths and positions.
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The linear regression coefficients B obtained by Equation (4) allow a directly interpretable insight into how the target contrast parameters

emerge from the raw input data by linear projection. In Figure 4, the regression coefficients used to generate the contrast maps in Figure 3 are

shown together with example input spectra at both B1 amplitude levels, demonstrating how each point in the input spectra is weighted by the

coefficients to produce the respective target value. In general, the coefficients for all target parameters show complex patterns with differently

weighted contributions from all input points at both amplitude levels.

Still, some physically plausible patterns can be identified. For all CEST effects, there are clear weightings around the resonance frequency of

the respective pool. For NOE, there are strong contributions around �3.5 ppm for both amplitude levels. For amines, the highest absolute

weighting at the high amplitude level is at 2 ppm, whereas the amine weighting at the low amplitude level shows a less clear structure. For APT,

there are contributions at the high amplitude level around +3.5 ppm, but also on the opposite side of the spectrum around �3.5 ppm. In the case

of ssMT, the strongest contributions are located far-off-resonant at ±100 ppm for both amplitude levels, at 8 ppm and �5.5 ppm for the low

amplitude level, and at +6 ppm and –9 ppm for the high amplitude level. The coefficients for ΔB0 show complex oscillatory behavior in the spec-

tral range between 0 ppm and ±8 ppm, with the highest values close to 0 ppm.

F IGURE 3 Results of linear projection in a healthy test dataset. (A) Reference Lorentzian fit results for a healthy subject dataset. (B) Contrast
maps obtained by linear projection in the same subject. (C) Difference maps between reference and linear projection. For the amplitude
parameters, relative differences to the reference are given in %. (D) Voxel-wise scatter plots of linear prediction results versus reference with
legends indicating the normalized root mean square error (NRMSE) between prediction and reference. (E) Multiple interleaved mode saturation
(MIMOSA) transmit field map (corresponding to CEST saturation RF pulses). (F) Circularly polarized (CP)-mode transmit field map (corresponding
to readout RF pulses)
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More insight into the regression coefficient patterns can be gained by simulations with artificial data, which are shown in Figures S2-S7. From

those figures, it can be seen that the oscillatory sign switches of the regression coefficients effectively form weighted sums of Z-spectral points

around each CEST resonance that are suitable for isolating the respective amplitude parameters from concomitant effects.

As a next step, the LASSO procedure was applied to reduce the number of inputs to the linear model. As described in the Methods section,

values of the regularization parameter λ were found such that the number of retained inputs (i.e., the number of nonzero rows in B) decreases

gradually from 110 (all original inputs) to one. The models were trained again on the same five healthy subject datasets and tested on the sixth

healthy subject dataset, as shown in Figure 3. The rowLASSO objective was set up here to fit the targets APT, NOE, ssMT, and amine amplitudes,

and ΔB0 simultaneously, which means that the obtained reduced input lists are a compromise to yield predictions of all of these targets at the

same time. A comparison of alternative rowLASSO objectives, including one reduction set for all Lorentzian parameters (amplitudes, peak widths,

and positions), as well as individual reduction sets for all parameters separately (standard LASSO), is provided in Figure S8. As a general observa-

tion, including more target parameters to be predicted simultaneously by a single reduced input list yields less accurate results than individual

reduced input lists for each target parameter separately in most of the cases.

An overview of the input frequency offsets that were removed by the LASSO procedure in each step is given in Figure S9.

Figure 5 shows the influence of offset reduction on the NRMSE between the linear projection result from the rowLASSO-reduced inputs and

reference data (red curve). Retaining 39 of the originally 110 inputs (corresponding to a reduction factor R = 2.8) still allows linear projections

with NRMSE = 15%, 6.7%, 5.9%, and 21% for APT, NOE, ssMT, and amine amplitudes, respectively, and RMSE = 0.06 ppm for ΔB0 over the test

dataset.

For comparison, randomly subsampled lists of inputs were generated 100 times for each respective reduction factor, and linear regressions

(Equation (4)) were calculated and evaluated for the randomly retained inputs (Figure 5, blue curves). For most of the reduction factors, the

rowLASSO-reduced solution outperforms the average of the randomly subsampled input list solutions in terms of NRMSE. However, there are

F IGURE 4 Coefficient vectors β (columns of coefficient matrix B) used to generate the linear projection contrast maps shown in Figure 3B.
Coefficients are plotted for (A) Low- and (B) High-amplitude input data separately. The coefficients are obtained according to Equation (4) with
training data generated from five healthy subject measurements. In blue, an example of the corresponding voxel-wise input is given, consisting of
Z-spectra at two different saturation amplitudes and the values of the multiple interleaved mode saturation (MIMOSA) and circularly polarized
(CP) B1+ field maps (not plotted). Contrast parameters in each voxel are then obtained by a simple dot product between input and coefficient
vectors
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random reductions that yield better predictions than the rowLASSO solution. In these cases, the subsampled input lists may be incidentally well

suited for the prediction of just one single target, whereas the rowLASSO objective is always to find a compromise that works as best as possible

for all target parameters simultaneously. This can be confirmed by calculating the NRMSE for all standardized target parameters simultaneously

(Figure 5F), showing the superiority of the rowLASSO solution over the random reductions, especially for very high reduction factors (number of

retained offsets ≤ 20).

With regard to these results, the question arises if the conventional Lorentzian fit could be used directly to generate accurate contrast maps

from a reduced number of acquired frequency offsets. To investigate this, conventionally corrected Z-spectra were retrospectively undersampled

(acceleration factors: R = 3/2, i.e., removing every third offset; R = 2, i.e., removing every second offset; and R = 3, i.e., retaining every third off-

set) and processed by the nonlinear least squares fit. The fitted results from such reduced spectra were then compared with the linear projection

results from the original uncorrected spectra of both B1 values for the same acceleration factors. As regular undersampling in the case of the

Lorentzian fit permits different undersampling patterns for each acceleration factor (e.g., for R = 2 retaining offsets 1,3,5 … or 2,4,6 …), the

respective pattern that yielded the best results in terms of NRMSE was chosen to make the analysis less biased towards the optimized

rowLASSO.

The obtained results shown in Figure 6 illustrate that, for moderate acceleration up to R = 2, the equidistantly reduced Lorentzian fit provides

lower NRMSE with respect to the reference data compared with rowLASSO. However, for an acceleration of R = 3 in the case of APT, NOE, and

MT amplitudes, rowLASSO performs better, which is especially visible in the degraded NOE contrast in Figure 6E and the difference maps in

Figure 6F. For amine amplitudes, the reduced Lorentzian fit performs better than rowLASSO for all the considered accelerations. Overall, it is

noticeable that the reduced Lorentzian fit contrast maps fluctuate for different undersampling schemes, while rowLASSO contrasts appear stable

over different acceleration factors.

The maintained low NRMSE in the case of rowLASSO reduction (NRMSE ≤ 15% in APT, NOE, and MT amplitudes for R ≤ 2.8) indicates that

a linear projection reconstruction of these CEST contrast maps is still possible with only a fraction of the originally acquired frequency offsets at

both B1 amplitude levels. Indeed, the obtained parameter maps for acceleration factors R = 2 (Figure 7C) and R = 2.8 (Figure 7D) show no major

F IGURE 5 Dependence of least absolute shrinkage and selection operator (LASSO) prediction performance on offset reduction. Displayed
are the normalized root mean square errors (NRMSEs) between linear projection results from a LASSO-reduced offset list and the reference
Lorentzian fit results against the number of retained offsets for (A) Amide proton transfer (APT), (B) Nuclear Overhauser effect (NOE),
(C) Magnetization transfer (MT), and (D) Amine amplitudes, and (E) ΔB0. (F) NRMSE evaluated for all these target parameters simultaneously,
calculated on the standardized target values to compensate for the different target scales. Blue curves show the results of random offset list
reduction, evaluated 100 times, with the error bars indicating standard deviation over the random repetitions. The rowLASSO objective
(Equation (6)) was set up with the target parameters APT, NOE, MT, and amine amplitudes, and ΔB0 simultaneously
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deviation from the full projection result (R = 1, Figure 7B) and therefore are in agreement with the reference contrasts (Figure 7A) as well. Only in

the case of a very strong reduction (Figure 7E, R ≈ 37, only 3 inputs retained) were the obtained APT and amine contrasts severely corrupted.

Remarkably, even for such a strong reduction, the NOE and ssMT amplitudes and ΔB0 still correlate with the reference data to a certain extent,

and the coarse spatial structure and even some anatomical contrast between gray and white matter (in the case of NOE and ssMT amplitudes) are

roughly preserved. The rowLASSO-reduced regression coefficients used for generating the contrast maps in Figure 7B-E are displayed in

Figure S10.

Having established the linear projection and rowLASSO method in healthy subject training and test datasets, as a next step, generalization of

the method to pathology was investigated. Linear regression coefficients from the five healthy subject training datasets were obtained and

applied to the glioblastoma patient dataset. Figure 8 shows the CEST results next to clinical contrasts for this patient. Interestingly, this tumor did

not show typical gadolinium uptake (Figure 8A) as expected for glioblastoma, although amide CEST (Figure 8D, first row) showed the same

hyperintensity as reported previously.37 Despite the regression coefficients being obtained from only healthy subject data, the linear projection

approach appears to generalize to tumor data, and the resulting maps (Figure 8E) still match the general contrast of the reference Lorentzian fit

maps (Figure 8D), albeit with higher NRMSE (Figure 8I) than in the healthy test case (Figure 3D). In particular, the linear projections preserve the

amide hyperintensity in the tumor. The same holds for the rowLASSO result with a reduction factor of R = 2.8 (Figure 8F), although with slightly

reduced contrast.

Finally, the linear projection and rowLASSO approach was applied to 3T data to assess the applicability of the method in a broader clinical

context. For that, data from18 were retrospectively re-evaluated and compared with the recent deepCEST 3T approach introduced therein. Three

healthy subject datasets were used for training and a glioblastoma patient (WHO grade IV) dataset for testing. The linear projections from all

55 acquired frequency offsets (Figure 9E), as well as a rowLASSO-reduced projection from 18 retained offsets (reduction factor R ≈ 3, Figure 9F),

match the reference contrasts obtained by Lorentzian fitting (Figure 9C) with NRMSE = 14%, 8.1%, and 5.4%, and RMSE = 0.035 ppm in the case

of full linear projection, and NRMSE = 15%, 10%, and 9.9%, and RMSE = 0.04 ppm in the case of rowLASSO, for APT, NOE, and ssMT

F IGURE 6 Comparison of linear projection results from reduced offset lists obtained by rowLASSO and conventional Lorentzian fits on
equidistantly undersampled corrected Z-spectra. (A–D) Normalized root mean square error (NRMSE) between reference and rowLASSO linear
projection results (blue curves), as well as Lorentzian fitting applied to retrospectively undersampled corrected Z-spectra (orange curves) for
different acceleration factors. (E) Exemplary contrast maps from both methods (rowLASSO and conventional fit) for different acceleration factors
and (F) Corresponding difference maps to the reference (fully sampled Lorentzian fit)
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amplitudes, and ΔB0, respectively. In terms of NRMSE, the deepCEST 3T neural network (Figure 9D) performs best for all target parameters. Still,

the linear and rowLASSO predictions preserve the principal contrast in the tumor region, especially the ring-shaped APT hyperintensity, which

coincides with the gadolinium contrast-enhanced hyperintensity (Figure 9A).

5 | DISCUSSION

In this work, it was shown that CEST parameter maps, which would conventionally have been obtained by iterative nonlinear least squares fitting

of a multipool Lorentzian model, can be obtained as simple linear projections of the acquired raw Z-spectra onto regression coefficients generated

from conventionally corrected and evaluated training data. The linear projection thus integrates B0 correction, B1 correction, and contrast genera-

tion into a single computation step. Applying the coefficient vectors is fast (fractions of seconds) compared with conventional evaluation

(>10 minutes for all required steps). Compared with the training of neural networks (several hours), obtaining solutions for the supervised learning

problem (i.e., calculating the regression coefficients from a training set) is also faster by several orders of magnitude. The approach was shown to

translate from healthy subject training data to a tumor patient test dataset, which was also observed in recent works on neural networks for CEST

evaluation18,19 and appears plausible as long as tumor tissue spectra can be approximated by linear combinations of healthy tissue spectra.19

The introduced linear projection approach has similarities with PCA methods, which were recently introduced in the field of CEST for den-

oising22,38 and data-driven feature extraction.39 For the latter method, test Z-spectra were linearly projected onto principal component vectors

generated from a training dataset of healthy subject spectra. This was shown, similar to the finding in this work, to yield interesting tissue con-

trasts for a tumor patient dataset as well. The employed principal component basis vectors in the PCA method are independent of any target

parameters obtained by conventional evaluation and only describe statistical correlations of the input Z-spectra. By contrast, the basis vectors in

F IGURE 7 Least absolute shrinkage and selection operator (LASSO) results in a healthy test dataset. (A) Reference maps. (B) Linear projection
results from the full input data (110 inputs). (C–E) LASSO-reduced projection results from 55, 39, and 3 inputs, respectively, corresponding to an
acceleration of scan time by factors of 2, 2.8, and �37. (F–I) Difference maps between reference and projection results from the full 110 and
LASSO-reduced 55, 39, and 3 inputs, respectively. For the amplitude parameters, relative differences to the reference are given in %. (J) Voxel-
wise scatter plots of linear prediction results from the respective number of reduced inputs versus reference. Legends indicate the normalized
root mean square error (NRMSE) between prediction and reference

GLANG ET AL. 11 of 17



this work (i.e., the linear regression coefficients) describe the correlations between spectra and tailored target contrast parameters defined by the

conventional evaluation, making the present approach a more supervised one.

Extending the proposed linear projection method by LASSO regularization provided subsets of the original measured spectral offsets at

both saturation amplitude levels, which still allowed linear mapping to the target contrast parameters. By that, potential acceleration factors

for the CEST acquisition of up to R = 2.8 could be achieved with only minor impact on prediction quality compared with the full linear

solution (Figures 7 and 8). The LASSO reduction method is data-driven and thus specific to the chosen CEST protocol. Consequently, the

offset reduction scheme depends on B0, B1, and other sequence parameters, which is why new offset lists should be generated if the

acquisition protocol has changed.

As shown in Figure 6, conventional Lorentzian fitting on equidistantly undersampled spectra can also be used for acceleration. However, for

acceleration R = 3 in the case of APT, NOE, and MT, rowLASSO performed better than Lorentzian fitting. Even more conservatively, Goerke

et al.40 manually reduced offsets for Lorentzian fitting and reported a maximum reduction of 19% (corresponding to acceleration R ≈ 1.23) to still

yield acceptable results. Better performance of undersampled conventional Lorentzian fitting might be achievable by dedicated offset list optimi-

zation instead of equispaced undersampling, but in the case of nonlinear least squares Lorentzian fitting, the required combinatorial optimization

would suffer from computational complexity. The observed dependence on the sampling pattern (every first or every second removed, etc.) also

indicates that detailed analysis of B0 shifts is needed here, as these shifts have a similar influence on the effective sampling pattern.

The performance of CEST-LASSO for strong spectral undersampling is surprising, as to properly define the Lorentzian fit curve, many spectral

points are necessary. However, (i) several Lorentzian parameters (e.g., the peak width and height) are correlated and the reduced training data

effectively defines a subspace of the original data, so less information is needed than the full Lorentzian parameter space; and (ii) we also map

solely on amplitude parameters, which again is just a part of the Z-spectral information, thus redundant data can be removed. If all parameters are

reconstructed simultaneously, the performance decreases (Figure S8).

F IGURE 8 Results of linear projection in a tumor patient test dataset. Clinical contrasts: (A) T1-weighted contrast-enhanced, (B) MPRAGE,

and (C) FLAIR. (D) Reference Lorentzian fit results. The red arrow indicates the glioblastoma. (E) Contrast maps obtained by linear projection with
coefficients obtained from five healthy subject datasets. (F) Least absolute shrinkage and selection operator (LASSO) results for 39 retained
inputs, corresponding to a reduction factor of R = 2.8. (G and H) Difference maps to reference for linear projection and LASSO results,
respectively. For the amplitude parameters, relative differences to the reference are given in %. (G) Voxel-wise scatter plots of linear prediction
and LASSO results versus reference with legends indicating the normalized root mean square error (NRMSE) between prediction and reference
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LASSO methods for feature selection are well established across disciplines23,27 and known from compressed sensing MRI24 for enforcing

sparsity on the representation of MR images in certain transform domains, which allows accelerated acquisitions. The presented CEST-LASSO

approach, by contrast, does not apply sparsity constraints to the image encoding, as the k-spaces of each acquisition are conventionally sampled

and reconstructed, but to the number of CEST acquisitions. With that, the potential for CEST acceleration can be even greater than in the case of

methods that focus only on acceleration of image encoding, as the saturation block of a CEST sequence can account for more than 80% of the

total acquisition time,41 depending on the protocol.

Most in vivo CEST studies use evenly distributed or manually tailored frequency sampling schedules that are not necessarily optimal.

Addressing this issue, Tee et al.42 apply an optimal design approach that yields optimized sampling schedules for amine quantification. In contrast

to the present work, their objective is to find optimal sampling points for a predefined fixed number of acquisitions, whereas CEST-LASSO finds

subsets of arbitrary length from a fixed initial sampling schedule. Consequently, the optimal design approach optimizes parameter quantification

for fixed acquisition time, whereas CEST-LASSO finds compromises between parameter quantification and shorter acquisition time. The optimal

design method relies on differential sensitivity analysis performed on numerically simulated spectra. Consequently, transferring this approach

from phantom to in vivo CEST imaging would require an accurate Bloch–McConnell model for in vivo spectra, which is currently still not well

established, as reported quantification results vary strongly among research groups.10,43–45 By contrast, CEST-LASSO, as a more data-driven

approach operating directly on measured spectra and evaluation results, is readily applicable to in vivo data.

The initial example of Figure 1 employing the analogy to Fourier transform hints at previous work performed by Yadav et al.,46 where an

actual Fourier transformation on Z-spectra was performed. This should not be confused with our approach, which finds a new data-driven linear

basis, whereas Yadav et al. used the Fourier basis directly to remove low and high frequency components in the time domain.

The Lorentzian fitting method employed for generating reference data is only one of the many approaches for analyzing CEST data. Being a

nonlinear least squares fit with 16 free parameters, it suffers from typical drawbacks, such as depending on initial and boundary conditions and

being susceptible to noise and fluctuations. In particular, the amine contribution at +2 ppm can only be poorly extracted by both the Lorentzian

fit and the proposed linear method, which also manifests in a low correspondence between the amine signals from CEST-LASSO and the refer-

ence data. The reason is that the corresponding features in the spectra are only weakly pronounced due to the relatively low applied B1

F IGURE 9 Application of the linear projection and least absolute shrinkage and selection operator (LASSO) approach to a tumor patient
dataset acquired at a clinical 3T scanner and comparison with the deepCEST 3T approach. (A and B) Clinical contrasts: gadolinium-enhanced T1w
and T2-FLAIR. (C) Reference Lorentzian fit results. (D) Neural network contrast predictions generated with the deepCEST 3T approach. (E) Linear
projection results from all 55 acquired frequency offsets. (F) LASSO-reduced linear projection results from 18 retained frequency offsets,
corresponding to a possible scan time reduction by a factor of R = 3. (G–I) Difference maps between reference and deepCEST 3T prediction, full
linear projection, and LASSO-reduced linear projection, respectively. For the amplitude parameters, relative differences to the reference are given
in %. (J) Voxel-wise scatter plots of the different prediction methods against Lorentzian fit reference
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amplitudes (0.72 μT and 1.00 μT) compared with the relatively high reported exchange rates of 700 Hz–10 kHz.47 The resulting weak CEST

labeling,48 together with the low reported amine pool size,49 leads to an overall small effect strength. Furthermore, the amine resonance at

�2 ppm is close to the water peak where spillover dilution effects occur. The choice of five pools is of course an oversimplification of the complex

in vivo situation, which comprises many concomitant exchange effects (e.g., of –OH groups), which are not taken into account here. Nevertheless,

similar five-pool Lorentzian models have been successfully applied as estimators of in vivo CEST effects before.11,14 Similar to the observations

made for the tumor patient dataset in this work, hyperintensities in tumor areas have been observed before for APT and amine contrasts obtained

by Lorentzian fitting.11,50

Although in the present work the MIMOSA saturation scheme was employed for achieving more homogeneous saturation at 7 T, the

proposed linear projection and LASSO method does not rely on this scheme and can be used for other CEST saturation schemes as well, as dem-

onstrated for a 3T protocol without MIMOSA in Figure 3.

5.1 | Explainable AI

Recently, deep neural networks have been suggested for CEST data evaluation.18–21 Like most deep learning methods, these are ascribed to

be “black boxes” as their nested nonlinear structures do not allow interpretable insight into how inputs are mapped to targets. This makes

careful assessment of such methods difficult. Addressing this issue, the recent trend of “explainable AI” aims at making machine learning sys-

tems more accessible for human interpretation.51 In this sense, the presented linear projection approach could be considered as a simple step

towards “explainable AI” applied to CEST MRI, as linear models are intrinsically interpretable,51 which was demonstrated in Figure 4 and

Figures S2-S7.

In general, the relationship between CEST contrast parameters and measured Z-spectra is nonlinear and can be described by solutions of the

Bloch–McConnell differential equations or simplified Lorentzian models, as employed in this work. Given that, the proposed linear model can be

interpreted as a first order approximation in the sense of a Taylor expansion of the generally unknown nonlinear function solving the inverse

problem of inferring the parameters of interest from the measured data.

Resorting to a linear model instead of a nonlinear neural network thus enables interpretability (and much faster computation), however, at

the expense of lower prediction performance, as shown in comparison with the deepCEST method18 in Figure 9. This represents a general

trade-off between model complexity and capacity on the one hand and simplicity and interpretability on the other.51 Given the advantages of the

linear approach in terms of speed and insight, first applying a linear model before advancing to more complex nonlinear models like neural net-

works might be a reasonable choice and is recommended for other learning-based CEST evaluations.

Linear models are more robust to errors in the input data than nonlinear models like neural networks.52 Small fluctuations, which could be

caused, for example, by motion in the case of CEST acquisitions, can in the worst case translate to arbitrarily high errors in the parameters

predicted by a neural network. By contrast, the prediction error of a linear model in such cases is always bounded and can be estimated from the

“slope” of the model (i.e., the regression coefficients). Furthermore, as there are no cross terms between different spectral input points

(e.g., products like Z Δω1ð Þ �Z Δω2ð Þ), a single corrupted frequency offset can only have limited impact on the result, which is not the case for highly

entangled models like neural networks.

6 | CONCLUSION

Multiparametric CEST contrasts including field inhomogeneity correction can be well approximated by a simple linear projection of the acquired

uncorrected Z-spectra onto regression coefficients fitted from conventionally evaluated data. The method translates from healthy to tumor

patient datasets and is fast and interpretable, the latter being in contrast to neural networks employed for similar purposes.

Extending the approach by L1-regularization yields reduced frequency offset acquisition schedules offering a potential reduction of total scan

time by factors of up to 2.8 with only moderate quality losses, compared with directly fitting subsampled Z-spectra. This could help make multi-

parametric CEST protocols more viable for clinical application.
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APPENDIX A.

Frequency offset list of the CEST acquisitions

Δω ppmð Þ¼ –300.0, �100.0, �50.0, �20.0, �12.0, �9.0, �7.2, �6.2, �5.5, �4.7, �4.0, �3.3, �2.7, �2.0, �1.7, �1.5, �1.1, �0.9, �0.6, �0.4,

0.0, 0.4, 0.6, 0.9, 1.1, 1.2, 1.4, 1.5, 1.7, 1.8, 2.0, 2.1, 2.3, 2.4, 2.6, 2.7, 2.9, 3.0, 3.2, 3.3, 3.5, 3.6, 3.8, 3.9, 4.1, 4.2, 4.4, 4.7, 5.2, 6.2, 8.0, 12.0, 20.0,

50.0, 100.0, �300.0.
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a b s t r a c t

Purpose: A framework for supervised design of MR sequences for any given target contrast is proposed,
based on fully automatic acquisition and reconstruction of MR data on a real MR scanner. The proposed
method does not require any modeling of MR physics and thus allows even unknown contrast mecha-
nisms to be addressed.
Methods: A derivative-free optimization algorithm is set up to repeatedly update and execute a parame-
trized sequence on the MR scanner to acquire data. In each iteration, the acquired data are mapped to a
given target contrast by linear regression.
Results: It is shown that with the proposed framework it is possible to find an MR sequence that yields a
predefined target contrast. In the present case, as a proof-of principle, a sequence mapping absolute cre-
atine concentration, which cannot be extracted from T1 or T2-weighted scans directly, is discovered. The
sequence was designed in a comparatively short time and with no human interaction.
Conclusions: NewMR contrasts for mapping a given target can be discovered by derivative-free optimiza-
tion of parametrized sequences that are directly executed on a real MRI scanner. This is demonstrated by
‘re-discovery’ of a chemical exchange weighted sequence. The proposed method is considered to be a
paradigm shift towards autonomous, model-free and target-driven sequence design.
� 2022 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The discovery of new MRI contrasts often happened hitherto by
‘trial-and-error’ using educated guesses directly at the MR system.
We consider here whether such a trial-and-error approach can be
formulated as a machine learning or optimization approach, that
still makes use of the MRI system directly. Traditionally, the design
of an MR sequence yielding a certain target contrast is performed
manually, often by considering an analytical description of the
contrast mechanism (subsequently referred to as a ‘model’) and
adapting parameters such as the echo time (TE) or flip angle (FA)
at the scanner. This approach is inherently limited by having to
describe and understand the contrast mechanism before designing

a sequence for it. In addition, this workflow requires time-
consuming human interaction with the scanner.

Within this traditional approach, often a single potentially
specific target, e.g. quantitative relaxation, diffusion or magnetiza-
tion transfer parameters is aimed for during sequence optimiza-
tion. When considering one of these targets in isolation, there are
often very precise models available to describe the underlying phy-
sics, such as the Bloch, Bloch-Torrey or Bloch-McConnell equations.
However, in most cases, some assumptions do have to be made to
apply these models, such as ignoring concomitant effects. A more
general description requires the combination of different models,
which may result in models that are too large and complicated
to solve, and that anyway involve making many assumptions. Fur-
thermore, the choice of model explicitly defines the targets which
one may optimize, as the only possible targets are the ones
described by the model itself. This ultimately means that the entire
MR experiment, including the object of interest, the MR scanner
hardware and the data reconstruction need to be included into a
comprehensive, universal model that, to be practical, should be
evaluated within as little time as possible.
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We recently proposed a self-learning framework to discover
MRI sequences based on a differentiable MRI physics simulation,
which was dubbed MRzero, because zero sequence programming
experience, but only knowledge of the Bloch equations was
required [1]. Progressing further, the approach presented here
requires neither a model nor human interaction with the scanner;
thus, we call this approach MR-double-zero.

Instead of starting from a theoretical model and optimizing
for a certain contrast, here, the model-free learning process is
based solely on the desired target contrast, and performs auto-
mated, explorative real-scanner acquisitions. This allows opti-
mization for any given target, even if the physical contrast
mechanism in the MR signal might yet be unknown. With such
a target-driven approach, a pure ‘optimization’ can be extended
to become a ‘discovery’, as it may now be possible to test
hypotheses as to whether (and how) a certain target might
become visible by exploiting MRI as a tool. The proposed method
can therefore be considered as a paradigm shift towards auto-
matic target-driven sequence design. The ability to initially find
an MR sequence solely guided by a desired target is the novelty
of the presented work. In a first step, it is necessary to consider a
mechanism which is known to result in an alteration of the MR
signal and therefore may in principle be used to generate MR
contrast. To mimic the discovery of a novel MRI effect, we
assume that we know about water relaxation and have
relaxation-weighted sequences. We then pretend that another
specific contrast mechanism, namely the chemical exchange sat-
uration transfer effect (CEST) of creatine guanidine protons, is
unknown and needs to be discovered with MR-double-zero
autonomously. In contrast to classical sequence design, no signal
equation or analytical model are included. Instead, only the final
target, which is not even an MR signal anymore, but rather abso-
lute creatine concentration, is provided. The necessary human
interaction is reduced to creating the samples and providing a
suitable target, which in the present case is a manually generated
map of the known creatine concentrations. To the best of our
knowledge, this is the first realization of a MR sequence opti-
mization framework with direct and automatized data acquisi-
tion and feedback on a real MR scanner in a target-contrast-
driven manner; for pulse profile optimization a similar setup
was proposed by Scheffler [2].

2. Methods

2.1. Samples

Samples were prepared with varying concentration of creatine.
Seven samples with different creatine concentration values (0, 15,
25, 50, 75, 100, 125 mMol/L) were created from creatine monohy-
drate (Fisher Scientific GmbH, Schwerte, Germany). By adding T1
contrast agent (dotarem� 500 mMol/L, Guerbet, Germany) and
agarose (Carl Roth, Karlsruhe, Germany) [3] it was made sure that
in quantitative T1 and T2 maps obtained from conventional
sequences these samples were indiscernible as shown in Fig. 3A-D.

To add another test case, the sample at 100 mMol/L concentra-
tion was designed in a way that it actually had a significantly
longer T1 value then the other samples. This was achieved by not
adding any contrast agent at all to this sample. Still, agar was
added such that its T2 value approximately matches that of the
other samples. Quantitative T1 and T2 values can be found in
Fig. 3. Full Z-spectra acquired with low power preparation [4] are
shown in Supplementary Fig. 1 for the seven different samples.
For comparison of classical Z-spectra and Z-values explored with
the proposed framework, an overlay plot of those can be found
in Supplementary Fig. 5/6.

2.2. Scanner interface

To enable real measurements for the optimization process, the
MR scanner was remotely controlled by the optimizer. Pulseq [5]
files were used to automatically execute the sequence of each iter-
ation at the scanner. The actual optimization was run on a local
computer (Intel Xeon W-2145 3.7 GHz CPU, 8 cores and 128 GB
RAM) but not on the scanner host computer. This reduces the inter-
action with the scanner software to reading Pulseq files from a net-
work drive. The Pulseq files additionally facilitate numerical
simulations of the optimized sequence parameters [6]. Measure-
ments were performed on a 3 T PRISMA scanner (Siemens Health-
ineers, Erlangen, Germany) using the vendor’s 20Ch head coil for
receive and the body coil for transmit.

2.3. Optimization process

The actual optimization is based on an RF-prepared sequence
with fixed 2D gradient and RF spoiled GRE readout (TE = 3.3 ms,
TR = 6.6 ms, FA = 8�, BW = 300 Hz/pixel, RO � PE = 96 � 96,
FoV = 128 � 128 mm2, slice thickness: 10 mm). The CMA-ES opti-
mization algorithm [7] implemented in nevergrad [8] was
employed to explore the sequence parameter space including pos-
sible RF-preparation events such as number of pulses, amplitude,
duration, phase/frequency, and delay times. This type of stochastic
optimization algorithm is particularly designed for derivative-free,
non-convex, noisy optimization problems as posed by sequence
optimization at a real scanner. Every sequence generated by the
optimizer is executed directly at the scanner and the intermediate
images flow back to the algorithm influencing the next sequence
iteration.

For the present work, each sequence iteration consisted of sev-
eral (indexed by r ¼ 1;2; :::;R) RF-prepared readouts with the pulse
train parameters peak saturation amplitude B1;r , frequency offset
Dxr and number of pulses npr as optimized sequence parameters
(seq) with seq ¼ B1;1;Dx1;np1jB1;2;Dx2;np2j:::jB1;R;DxR; npRð Þ.

Initial and boundary conditions for the optimization algorithm
used with this parametrization are given in Table 1.

The duration of each Gaussian-shaped pulse was fixed to
tp ¼ 20 ms and the duty cycle to DC ¼ tp= tp þ td

� � ¼ 50%, i.e. a
td ¼ 20 ms gap between pulses. Still, with the number of pulses
as free parameter, a large range of different total saturation times
can be achieved. This choice of parametrization ensured that the
explored sequences stay within the specific absorption rate limits
throughout the optimization. The reconstructed images
Imgr B1;r ;Dxr ;nprð Þ at each iteration were assembled in a design
matrix.

MRI seqð Þ ¼
..
. ..

. ..
. ..

. ..
.

Img1 Img2 � � � ImgR 1

..

. ..
. ..

. ..
. ..

.

0
BBB@

1
CCCA

of shape #voxels-by-(R + 1). Only voxels within ROIs of the
sample vials were considered, to avoid bias by the larger number
of surrounding water-only voxels. Still, voxels within an ROI of
the same size in the surrounding water were included as well.

Linear regression onto the voxel-wise targets T (shape:
#voxels–by-1), was performed by pseudo-inversion of the relation

T ¼ MRI seqð Þ � b ) bb seqð Þ ¼ MRI seqð Þþ � T (with the Moore-

Penrose pseudo-inverse Xþ ¼ XTX
� ��1

XT). This mapping process

is referred to as ‘inner’ optimization in the following. The differ-
ence between the linear prediction and the true target determined
how the CMA-ES optimization algorithm updated the sequence
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parameters by solving the following non-linear minimization
problem:

dseq ¼ argminseq T �MRI seqð Þ � b̂ seqð Þ
��� ������ ���2

2

� �

¼ argminseq 1�MRI seqð Þ �MRI seqð Þþ� � � T�� ���� ��2
2

� �
With this problem formulation, the optimizer has to find

sequence parameters that yield images that allow the best possible
linear mapping to the target (Fig. 1). The optimization of sequence
parameters is referred to as ‘outer’ optimization in the following.

To enable a more flexible mapping function from acquired
images to targets, the design matrix MRI seqð Þ can be extended
by non-linear transforms of the acquired images as additional fea-
tures, i.e. columns. For example, by adding the squares and cubes
of the acquired pixel intensities, respectively, a third-order polyno-
mial representation is formed:

Note that, while being non-linear in the image intensities, such
a representation is still linear in the regression coefficients b, which
allows obtaining them by simple pseudo-inversion.

As exemplary targets, known creatine concentrations were cho-
sen with samples prepared as described in the above section.

3. Results

As a first feasibility check, simple experiments to investigate the
behavior of the MSE loss function evaluated directly at the scanner
were performed. To that end, a single target image with fixed sat-
uration parameters seq ¼ 1 lT; þ1:9 ppmð , 80) was acquired. Sub-
sequently, three series of presaturated images were acquired, for
which two of the parameters were fixed to their original values,
respectively, while the remaining parameter was linearly incre-
mented. This approach explores the loss landscape along each of
these three axes (B1, Dx, np) individually. For each of the acquired
images, MSE to the target was calculated to see if this loss function
actually exhibits a minimum at the respective target parameter
value. Fig. 2 shows the resulting 1D loss curves. For the saturation
amplitude B1, there is a clear global minimum at the target value
and the loss curve appears smooth and largely convex. In case of
the frequency offset Dx, there are several local minima and a more
complex oscillatory behavior of the loss curve. Still, the global min-
imum in the explored range is located at the target value of
Dx ¼ þ1:9 ppm. For the number of pulses np, the global minimum
is at a higher number (np � 100) than the actual target value
(np ¼ 80), and the loss curve exhibits small periodic oscillations.

From these experiments it can be concluded that the MSE loss
landscapes acquired at the real scanner with respect to a given

Table 1
Initial and boundary conditions for the creatine mapping experiments, corresponding
to seq ¼ B1;1;Dx1;np1jB1;2;Dx2;np2ð Þ in the case of R = 2 images per iteration and
seq ¼ B1;1 ;Dx1 ;np1 jB1;2 ;Dx2 ;np2jB1;3 ;Dx3 ;np3ð Þ in case of R = 3 images per iteration.

lower bound initial value upper bound

B1;1 0.1 lT 1 lT 3 lT
B1;2 0.1 lT 1 lT 3 lT
B1;3 0.1 lT 1 lT 3 lT
Dx1 �4.5 ppm +1 ppm +4.5 ppm
Dx2 �4.5 ppm �1 ppm +4.5 ppm
Dx3 �4.5 ppm 0 ppm +4.5 ppm
np1 1 80 200
np2 1 80 200
np3 1 80 200

Fig. 1. Diagram of the proposed sequence development workflow termed MR-double-zero. The optimizer sends the parametrized sequence (seq) to a real MR scanner. The
acquired data (in the depicted case for R = 2 images: Img1 and Img2) get flattened into the matrix MRI seqð Þ which is used to determine coefficients b from linear regression of
MRI seqð Þ to the target. With these coefficients, the prediction (P) is determined and the deviation from the target (T) flows back to the optimizer. Our pipeline implements
this using so called .seq-files of the Pulseq standard that are played out at the scanner by a Pulseq interpreter sequence.

MRI seqð Þ ¼
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target contrast may exhibit multiple local minima, but still show
somewhat smooth behavior and global minima that closely reflect
the ground truth parameters. This means that these target param-
eter values can also be found by an optimization algorithm, how-
ever, a gradient descent might get stuck in the observed local
minima.

To make sure that the MR-double-zero agent has to find a new
sequence concept, and that the creatine concentration cannot be
inferred only from T1- or T2-weighed contrasts, the samples were
built such that T1 and T2 is not governed by creatine proton
exchange. This invariance can already be seen in the T1 and T2
maps in Fig. 3, and was verified by the unsuccessful linear estima-
tion using only T1 and T2 as input (Fig. 3F). Interestingly, it was not
even possible to map the vial that had longer T1 values (see Fig. 3A/
C) to its target concentration.

An exemplary optimization process is depicted in Fig. 4. Due to
the stochastic behavior of the optimizer, the iterations were retro-
spectively sorted by loss instead of acquisition number. It can be
seen that with decreasing loss at some point the optimized param-

eters converge towards a specific value. Still, for different runs, dif-
ferent sets of parameters are found (Supplementary Figure 7),
which reflects that there are different strategies to generate the
same contrast. In this specific case, the optimized sequence con-
sists of two images at + 2.09 ppm and �2.11 ppm with similar sat-
uration strength (i.e., B1 and np), which approximately get
subtracted by the linear regression. This closely resembles the
asymmetry metric, which is a classical model-based description
of CEST effects [9]. If not stated differently, for all data shown in
the following, the iteration that yielded smallest loss was chosen.

Fig. 4B shows the creatine concentration map generated based
on the newly discovered sequence, which was formed by linear
regression from the two RF-prepared images (Fig. 4D/E) with opti-
mized sequence parameters. Remarkably, the method generalizes
to the vial with 50 mMol/L, which was excluded from the ‘training’
procedure, i.e. not considered in the loss function during optimiza-
tion (Fig. 4F).

Fig. 5 shows the optimization result for the concentration map-
ping experiment in which the design matrix was augmented by

Fig. 2. Preliminary sanity checks of the MSE loss function evaluated directly at the scanner. As a target, a CEST-weighted image with predefined parameters
seq ¼ 1 lT; þ1:9 ppmð , 80) was acquired. Subsequently, a set of weighted images was acquired with two of these three parameters fixed to their target values, respectively,
and the remaining parameter incremented with constant step size across a predefined range. For each of these images, MSE to the original target is shown (only evaluated
within the sample vials, not in the surrounding water).
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square and cube terms. It can be seen that the more flexible poly-
nomial mapping results in a more accurate mapping (�50% smaller
MSE loss, see Supplementary Fig. 4) to the target concentrations,
which is especially pronounced for the ROIs with no creatine (both
within the sample and in the surrounding water) and the two vials
with highest concentrations (for which one even had different T1).
The sequence parameters found by the optimization in this case
were substantially different from the ones found in the experiment
with simple non-augmented design matrix (Fig. 5 vs. Fig. 4). On the
one hand, the non-linear mapping function allows for different
contrast extraction schemes compared to the case of a simple lin-
ear mapping, which may lead to different sequence schemes gen-
erating the input for this specific extraction. On the other hand,
the stochastic optimization process itself will yield different seq-
vectors for different runs in a loss-landscape with potentially mul-
tiple, equivalent local minima. This is demonstrated in Supplemen-
tary Figure 7, from which it can be seen that the observed
fluctuations in the final parameters could be attributed to the
stochastic nature of the chosen optimizer rather than to the influ-
ence of non-linear extensions to the design matrix.

The accuracy of predicted concentrations can be further
increased by extending the sequence to three differently prepared
images (Supplementary Figs. 2, 3, 4), however, at the expense of
increased acquisition and thus optimization duration. Also, it was
found that extending the design matrix to a third image performs
similarly well as extending the design matrix by higher order
terms of only two images actually acquired at the scanner. How-
ever, extending the design matrix by higher order terms only
requires very little additional computation time compared to the
additional scan time required for a larger number of images. A

comparison of loss curves for all shown experiments (2 scans vs.
3 scans and linear vs. polynomial regression) is given in Supple-
mentary Fig. 4.

3.1. Samples including creatine plus glucose as confounding factor

The above experiments were conducted in samples that con-
tained only creatine as a unique compound of interest. However,
in a typical in vivo situation, multiple metabolites are present,
which raises the question if this might skew the optimization pro-
cess. To investigate this further, an additional set of samples was
created similar to the first set that only contained creatine, but
adding variable concentrations of glucose as a potential confound-
ing factor. Indeed, when applying optimized GlucoCEST RF prepa-
ration [10], some of the creatine concentrations can no longer be
distinguished by the conventional MTRasym approach (Supplemen-
tary Figure 8).

As demonstrated in Fig. 6, also for these samples, the proposed
optimization pipeline comes up with a solution that accurately
maps to creatine concentration with no apparent interference from
the different glucose concentration levels. Runs with R = 3 images
per iteration as well as non-linearly extended design matrix are
shown in Supplementary Figures 10–12. As can be seen in Supple-
mentary Figure 9, also for these samples, non-linear extension of
the design matrix leads to lower loss values even with R = 2 images
compared to only linear design matrix with R = 3 images. The con-
cept found by MR-double-zero is qualitatively different from con-
ventional MTRasym, and the chosen different B1 levels and offsets
seem to enable the robustness against glucose contamination.

Fig. 3. Quantitative T1 and T2 maps of samples with different creatine concentration (cCr). Upper row: different concentrations cannot be distinguished directly from T1 (A)
and/or T2 (B) maps. Center row: evaluation of (C) T1 and (D) T2 values in different ROIs of data shown in (A)/(B) with mean (MV) and standard deviation (SD) for each vial.
Bottom row: True creatine concentrations (E) cannot be predicted by linear regression f T1; T2;1½ �ð Þ ¼ cCr from T1 and T2 (F).
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4. Discussion

4.1. General comments on the proposed method

In the present work, we have shown a proof-of-principle for
MRI sequence parameter optimization with the goal to discover a
target contrast solely based on acquisitions at a real scanner sys-
tem, without any knowledge of a theoretical signal model. In gen-
eral, such an optimization problem is difficult, i.e. noisy, non-
convex, high-dimensional and potentially ill-conditioned. How-
ever, the very first feasibility checks of the MSE loss function for
a single parameter sweep showed that running an optimization
based on real data could in principle converge towards global min-
ima (Fig. 2). Additionally, stochastic gradient-free evolutionary
algorithms like the employed CMA-ES are known to be particularly
suited for this class of optimization problems [8].

MR-double-zero can be seen as advanced, sophisticated and
efficient search in the MR parameter space to figure out if a certain

contrast can be generated by MRI. A grid search with S = 100
entries in each of the N = 3 dimensions would lead to SN = 105 nec-
essary measurements, and the problem of defining suitable grid
boundaries. In contrast, the autonomous MR-double-zero learning
required only 300 iterations, which took around 3 h at the MRI
scanner. This is still long for an MRI scan, but fast for the discovery
of a novel MRI contrast.

In general, the search space grows with the power of the num-
ber of dimensions, thus, reduction of dimensions N is an important
step. The present optimization problem was reduced to the opti-
mization of as little as 3 � R parameters (with the number of scans
per iteration R ¼ 2;3), which defined the preparation phase before
R fixed 2D readouts. This is a significantly smaller subset of param-
eters as compared to the set of parameters required to define an
entire MR sequence. Doing so, we still gave some reasonable
boundaries by the definition of these few dimensions. Still, going
from N�R = 6 to N�R = 9 degrees of freedom, a similar decrease of
the MSE loss function was observed over the fixed number of

Fig. 4. Exemplary optimization process of a MR-double-zero sequence with 300 iterations (MRI scan time: 3 h). The final parameter set was here
seq ¼ 0:96 lT;þ2:09 ppm;86j1:04 lT;�2:11 ppm;97ð Þ. The design matrix contained two images acquired with different RF-preparations. The first row shows quantitative
concentration maps: (A) the target, (B) the experimentally derived and (C) the difference in concentrations. Second row shows the two images (D,E) with respective sequence
parameters given below. In (F) the predicted and target data are scattered for ROIs within the different vials. The test vial (50 mMol/L) that was not included in the
optimization process, is highlighted in (C) and (F). Subplots (G-J) were retrospectively sorted by loss instead of the actual time course of acquisition. (G) shows the loss for the
sequence parameters shown in (H)-(J) . Subscripts 1 and 2 refer to the image number for all parameters. An animated version of this figure can be found as Supplementary
Material.
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300 iterations for both cases (Supplementary Fig. 4). Thus, it is
conceivable that also higher-dimensional problems could be
addressed by a feasible number of iterations, such that they are
solvable with reasonable effort and scan time. However, this must
be investigated in detail, also with regard to the hyper-parameters
of the optimizer.

4.2. Contrast mapping function (inner optimization)

Note that a linear representation was assumed to map from
contrast-prepared images to the target map, such that the coeffi-
cients could be directly obtained by pseudo-inversion of acquired
and target data and do not need to be learned by the outer opti-
mizer. For more sophisticated tasks, however, also non-linear
representations like neural networks might be used instead. As
a first step towards such more sophisticated mapping functions,
it could be observed that augmenting the design matrix by

non-linear transforms of the acquired signal intensities (here by
power functions, thus forming a polynomial regression) increased
the accuracy of the predicted concentrations (Supplementary
Fig. 4). Potentially, the accuracy can be improved even more by
adding more of such transforms e.g. 1/x, as inverse metrics have
proven useful for CEST data evaluation [11]. This, however, would
mean to incorporate CEST-specific knowledge into the recon-
struction, which was intentionally avoided here by using polyno-
mials as a general choice known from Taylor series expansion.
Additionally, including more non-linear features comes at the
risk of overfitting, as more regression coefficients are added to
the representation. However, this can be avoided by monitoring
MSE in a hold-out test set, which was shown to be still low in
the present case (Figs. 4-6). These insights hint also to the bene-
fits of using neural network approaches for the inner optimiza-
tion that come with further challenges, and were not yet tested
herein.

Fig. 5. Exemplary optimization process of a MR-double-zero sequence with 300 iterations (MRI scan time 3 h). The final parameter set was here
seq ¼ 0:75 lT;þ2:06 ppm;33j1:10 lT;þ4:03 ppm;139ð Þ. In contrast to Fig. 4, the design matrix contains in addition to the images (Img1, Img2) also the pixel-wise images
squared (Img2

1, Img2
2) and cubed (Img3

1, Img3
2). The first row shows: (A) the target, (B) the experimentally derived and (C) the difference in concentrations. Second row shows

the two images (C,D) with respective sequence parameters given below. In (F) the predicted and target data are scattered for ROIs within the different vials. The test vial (50
mMol/L) that was not included in the optimization process is highlighted in (C) and (F). Subplots (G-J) were retrospectively sorted by loss instead of the actual time course of
acquisition. (G) shows the loss for the sequence parameters shown in (H)-(J) . Subscripts 1 and 2 refer to the image number for all parameters. An animated version of this
figure can be found as Supplementary Material.
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4.3. Discovered strategies in the context of existing methods

A CEST pool can affect T1 and T2 relaxation times, thus add-
ing agar and contrast agent is crucial to make this direct influ-
ence negligible and the samples undiscernible in conventional
contrasts. By doing this, the actual contrast of interest can be
considered unknown. Still, not on-resonant preparation pulses,
which would lead to T1/T2-weighting, but off-resonant pulses
are chosen by MR-double-zero to encode the creatine concentra-
tion. In contrast to conventional CEST imaging, the optimized
sequence required as little as two RF preparation offsets. The
optimized sequence in case of the simple design matrix without
additional non-linear transforms (Fig. 4) yields the parameters
seq ¼ 0:96 lT;þ2:09 ppm;86j1:04 lT;�2:11 ppm;97ð Þ and clo-
sely resembles the traditional asymmetry metric at 2 ppm:
seq ¼ B1;þ2 ppm;npð jB1;�2 ppm;npÞ.

Interestingly, for the run with non-linear terms shown in Fig. 5,
the offsets are not chosen symmetrically around the water reso-

nance, where they are typically placed in a conventional CEST mea-
surement, but instead at seq ¼ 0:75 lT;þ2:06 ppm;33j1:10 lT;ð
þ4:03 ppm;139Þ, leading to improved prediction performance.
This is interesting, as asymmetric approaches are known to be
most prone to B0 inhomogeneity artefacts [12], while same side
approaches are more robust against B0 shifts [13]. Furthermore,
also different B1 levels and number of pulses are chosen, which
together can provide more insight into T1- and T2-dependent
direct saturation, that has to be eliminated to achieve absolute
concentration mapping [11]. Thus, MR-double-zero is not only able
to find ‘unknown’ contrast-generating concepts, but can also learn
better strategies for existing approaches and small but smart tricks
for more robust preparation/detection/sampling schemes.

The finding that different methods are discovered that yield
similar accuracy can be seen as a limitation that no global mini-
mum is found. However, it actually fits perfectly to the experience
that a plethora of chemical-exchange-weighted methods were
published that generate similar contrast correlation [14–18].

Fig. 6. Optimization process of a MR-double-zero sequence similar to the one shown in Fig. 4, but conducted on samples that contained different levels of glucose
concentration as a confounding factor to the targeted creatine mapping. The final parameter set was here seq ¼ 2:07 lT;þ4:25 ppm;200j 0:87 lT;þ1:94 ppm;174ð Þ. The first
row shows: (A) the target, (B) the experimentally derived and (C) the difference in concentrations. Second row shows the two images (C,D) with respective sequence
parameters given below. In (F) the predicted and target data are scattered for ROIs within the different vials. The test vial (50 mMol/L) that was not included in the
optimization process is highlighted in (C) and (F). Subplots (G-J) were retrospectively sorted by loss instead of the actual time course of acquisition. (G) shows the loss for the
sequence parameters shown in (H)-(J) . Subscripts 1 and 2 refer to the image number for all parameters.
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4.4. Related work in the context of MRI

The presented method has some similarity with MR fingerprint-
ing [19], which has also been demonstrated for CEST parameter
mapping [17,20]. For the latter, only saturation pulse amplitudes
(B1) were varied in a pseudo-random manner to obtain unique sig-
nal trajectories, from which e.g. CEST pool concentrations could be
inferred by means of dictionary matching. This, however, also
requires the use of Bloch equations or extended phase graph for-
malism as a numerical model. Thus, MR-double-zero can be seen
as model-free joint optimization of a fingerprinting schedule and
reconstruction based on real measurements.

The idea of optimizing both acquisition and reconstruction of
MRI data at the same time was already presented by others in
the context of ‘active acquisition’ [21–22]. Jin et al. [21] split the
optimization process into separately optimizing acquisition and
reconstruction of MRI data by training ‘‘two deep networks that
are tied together”. The so-called SampleNet predicts which k-
space points should be acquired next based on previous acquisi-
tions, and the ReconNet learns the reconstruction given the pro-
vided sampling strategy. To some extent, the present approach
behaves similarly, as the outer optimization (CMA-ES) optimizes
the data acquisition while in the inner optimization the coeffi-
cients for linear regression are determined. Although such active
acquisition policies could in principle be executed directly at a real
MR scanner, in these works they are evaluated purely retrospec-
tively on brain and knee MRI data sets. In contrast, the proposed
approach optimizes a real data acquisition with live optimization.
This might be beneficial as it enables full flexibility in terms of data
acquisition and is not limited to any existing data that gets re-
sampled.

4.5. Real-world optimization

Running optimization algorithms on real physical systems
instead of theoretical models or simulations is known from other
disciplines like robotics or autonomously driving cars. Particularly,
reinforcement learning [23] can be applied to learning robot poli-
cies in realistic environments, e.g. [24–25]. In fact, the model and
derivative-free optimization algorithm chosen in the present work
reminds of the popular Q-learning algorithm [26], which learns to
take appropriate actions (here: MR sequences) in a certain state
(previously tested sequences) and environment (scanner and sam-
ples). Learning in realistic environments brings the benefit of
including all possible real-world error sources like sensor noise,
complex mechanical interactions and friction. However, a common
disadvantage of all such real-world optimizations is that they are
expensive, hard to reproduce exactly and usually more time-
consuming (in terms of possible optimization iterations per time)
than pure simulations. Because of that, it appears promising to
combine simulation and real world based optimizations to hybrid
approaches, which, for example, might intermittently update and
improve a simulation-based optimization by real measurements.

However, also in the case of MRI, even simple systems may be
challenging to model as the model has to be extended by experi-
mental imperfections, e.g. eddy currents, gradient delays, and
amplifier heating [27] in case of MR image encoding. Consequently,
potential theoretical benefits of pure simulations - such as compu-
tational speed, reduced costs – are counterbalanced by the fact that
simulating the real world accurately is arbitrarily complicated. This
may not be an issue for some applications, but as the final goal of
MRI in most cases is the real experimental implementation, it may
actually be a severe bottleneck.

Moreover, instead of discovery of novel contrasts, one could
exactly take such imperfections as a task for an optimization. For
instance, the current off-resonant pulses could be optimized to

generate a fast/robust fat-saturation, using an expensively
acquired fat-artifact-free image as a target. In addition, B0 or B1

inhomogeneity-robust sequences optimized at the scanner are
conceivable to be found. In general, not only complete novel strate-
gies can be aimed for, but also small optimizations of existing
approaches can be performed elegantly with the MR-double-zero
approach. The optimization parameters are not limited to
seq ¼ B1;Dx;npð Þ as shown in this proof-of-concept, but could also
be parameters such as echo time, repetition time or flip angle
seq ¼ TE;TR; FAð Þ. For instance, variable flip angle approaches
could potentially be efficiently optimized with the proposed
framework.

4.6. Future ideas and outlook

For the described proof of principle, a well know contrast mech-
anism was investigated. The ultimate goal could be to provide any
target of interest. The proposed framework would then be used to
learn how to map from the object/sample to the target by exploit-
ing MRmethodology. Here it is important, that not only the feature
of interest is well-prepared in the used samples, but also to rule
out correlations by ‘randomizing’ other properties that are not tar-
geted, as shown in the present case for relaxation effects, as well as
for the glucose contamination. In general, all contaminations
against which the developed sequence should be robust, must be
part of the training data established by the samples. Well-
prepared samples are therefore a crucial step for the presented
approach. Until now, we only showed re-discovery of a CEST con-
trast mechanism, but novel discoveries are in principle possible for
samples already.

In contrast, for learning directly in vivo, the rather lengthy scan
time in the order of several hours might be challenging, but it is
still conceivable if the dimensionality can be reasonably reduced.
Furthermore, one could split the learning phase into several ses-
sions or run the optimization on multiple scanners with similar
targets in parallel.

As a speculative future application, MR-double-zero might be
used complementary to the radiomics approach that is of increas-
ing popularity in the medical context of MRI [28]. Radiomics relies
on using all available multi-modal imaging information to find cor-
relations with pathology, e.g. brain tumors. Instead of looking for
correlations in already existing data from conventional imaging
methodologies, real-world based optimization of MR sequences
and reconstructions that map to a known outcome, prognosis
etc., thus explicitly designing the data generation process to corre-
late with the desired target information, might be a promising step
towards novel, targeted MRI methods applied for medical
diagnosis.

However, also well-designed experiments in samples can lead
to novel concepts that can subsequently be translated for in vivo
application, similar to many previous MRI breakthroughs found
by ‘trial-and-error’ or grid search approaches in samples and
in vivo in the past. The found glucose-invariant creatine mapping
in the present work, by using different B1 and offsets, is such a con-
cept that could now be investigated in more detail using human
intuition, Bloch simulations, or more detailed grid-search
measurements.

5. Conclusion

MR-double-zero is able to discover completely new MRI con-
trasts without requiring an explicit description of the underlying
mechanism in form of a theoretical model. This was exemplarily
demonstrated for a specific chemical-exchange-weighting, but it
is conceivable that MR-double-zero could also discover yet
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unknownMRI contrast correlations given suitable samples and tar-
gets are provided.
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C. Appendix

C.1. Derivation of a General Analytical SENSE g-Factor
Formula

In the original SENSE paper [34], Pruessmann et al. give an expression for the g-factor
in the special case of regular Cartesian undersampling. Here, a general expression for
arbitrary encoding schemes is derived. The g-factor in the ρ-th voxel is defined in terms
of the SNR of a fully sampled reference reconstruction SNRref

ρ and the SNR of a PI

reconstruction SNRPI accelerated by factor R as ([34], equation [24])

g2ρ =
(SNRref

ρ )2

(SNRPI
ρ )2 ·R

=
(σPI

ρ )2

(σref
ρ )2 ·R

(C.1)

with the corresponding spatially-varying noise variances of PI and reference reconstruc-
tions (σPI

ρ ) and (σref
ρ ), assuming for the second equality that the signal is identical in both

images. The image noise matrix X, whose diagonal entries contain the noise variance in
each pixel, is given by ([34], equation [17]; see also section 2.2.5)

X = (EHE)−1 , (C.2)

where the sample noise matrix Ψ̃ is eliminated by previously performed noise decorre-
lation as described in [42], and the encoding matrix is given by ([34], equations [5] and
[19])

E(γ,κ),ρ = cγ(r⃗ρ) exp
(
i⃗kκ · r⃗ρ

)
. (C.3)

This yields

(EHE)ρ,ρ′ =
Nc∑
γ=1

NK−1∑
κ=0

c∗γ(r⃗ρ)cγ(r⃗ρ′) exp
(
i⃗kκ · (r⃗ρ′ − r⃗ρ)

)
(C.4)

with the number of coils Nc and number of k-space samples NK . The structure of this
matrix, which can be seen as the correlation matrix of encoding basis vectors, depends
strongly on the k-space trajectory k⃗κ.

139



C. Appendix

In case of a Nyquist-sampled Cartesian k-space grid, substituting the expressions from
[34], equations [D1] and [D2], for equispaced k⃗κ and r⃗ρ (using multi-indices κ = (κx, κy)
and ρ = (ρx, ρy), which read

k⃗κ = 2π

(
1

∆x

(
κx

NKx

− 1

2

)
,
1

∆y

(
κy

NKy

− 1

2

))
(C.5)

r⃗ρ =

(
∆x

(
ρx −

NVx

2

)
,∆y

(
ρy −

NVy

2

))
(C.6)

into equation (C.4) results in11

(EH
cart,fullEcart,full)ρ,ρ′ =∑

γ

c∗γ(r⃗ρ)cγ(r⃗ρ′)e
−2πi

(
ρ′x−ρx

2
+

ρ′y−ρy

2

) NKx−1∑
κx=0

e
2πi

κx(ρ′x−ρx)

NKx

NKy−1∑
κy=0

e
2πi

κy(ρ′y−ρy)

NKy (C.7)

Due to the orthogonality of the discrete Fourier basis (which follows from the geometric
summation formula), the last two sums yield the expressions NKxδρ′x,ρx and NKyδρ′y ,ρy
with the Kronecker delta δi,j, respectively. Consequently, for the Nyquist-sampled Carte-
sian case, one obtains the diagonal matrix

(EH
cart,fullEcart,full)ρ,ρ′ = Nkδρ′,ρ

∑
γ

|cγ(r⃗ρ)|2 (C.8)

with NK = NKx ·NKy and δρ′,ρ = δρ′x,ρxδρ′y ,ρy . The matrix inversion required to form the
diagonal entries of the image noise matrix (equation (C.2)) thus becomes a simple scalar
inversion of the diagonal elements:

(Xcart,full)ρ,ρ = (σref
ρ )2 =

(
(EH

cart,fullEcart,full)
−1
)
ρ,ρ

=
1

(EH
cart,fullEcart,full)ρ,ρ

. (C.9)

Note that evaluating the diagonal elements (ρ = ρ′) in equation (C.4) for general (not
necessarily regular Cartesian) sampling with number of samples NKred

yields

(EHE)ρ,ρ =
∑
γ

NKred
−1∑

κ=0

|cγ(r⃗ρ)|2 = NKred

∑
γ

|cγ(r⃗ρ)|2 =
NKred

NK

(EH
cart,fullEcart,full)ρ,ρ.

(C.10)

11Note that with the definitions in equation (C.5) and (C.6) one obtains for the phase term

kκx
rρx

= 2π
(

κxρx

NKx
− κx

NKx

NVx

2 − ρx

2 +
NVx

4

)
and analogously for y. This leads to kκx

(rρ′
x
− rρx

) =

2π
(

κx(ρ
′
x−ρx)

NKx
− ρ′

x−ρx

2

)
.
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The last equality follows from comparison with equation (C.8), leading to the factor
NKred

/NK = 1/R. Using these insights to insert the relevant image noise matrix terms
into equation (C.1) yields

g2ρ =
Xρ,ρ

R · (Xcart,full)ρ,ρ
=

(EHE)−1
ρ,ρ

R · 1
(EH

cart,fullEcart,full)ρ,ρ

= (EHE)−1
ρ,ρ(E

HE)ρ,ρ, (C.11)

where in the second and third equality equations (C.9) and (C.10) were used, respec-

tively. In summary, the expression gρ =
√
(EHE)−1

ρ,ρ(E
HE)ρ,ρ with an arbitrary encoding

matrix E yields the g-factor as ratio between the SNR of a reconstruction based on E
and a reference Nyquist-sampled Cartesian reconstruction based on Ecart,full with the
same coil sensitivities, intrinsically adjusted for the inevitable SNR loss of factor

√
R

due to lower total sample number.

C.2. Proof: Time-Division Multiplexing of Coil
Sensitivities

The purpose of this section is to prove that, in the context of time-varying receive
sensitivities, which are subject of Publications 1 and 2 of this thesis, two physically
different situations result in the same SENSE g-factors:

a) Dynamically switching between two receive sensitivity configurations c
(1)
γ (r⃗) and

c
(2)
γ (r⃗) of γ = 1, . . . , Nc coils during a two-fold oversampled k-space readout, such
that neighboring k-space samples are alternatingly weighted by the two configura-
tions (”switching along the readout direction”, see Figure 4.2(G)), while applying
arbitrary undersampling in the phase encoding directions

b) Using a hypothetical coil array with 2Nc receive channels that has all the sensitiv-

ities c
(1)
γ (r⃗) and c

(2)
γ (r⃗) statically active at the same time, while applying the same

undersampling as in a) in the phase encoding directions

For the g-factor as derived in section C.1, equation (C.11), only the matrix EHE that
is formed from the respective encoding matrix is relevant. For situation b), assum-
ing Cartesian Nyquist sampling in the kx direction as in equation (C.5) and arbitrary
sampling in ky, evaluating equation (C.4) yields

(EH
b Eb)ρ,ρ′ = NKxδρ′x,ρx

2∑
α=1

Nc∑
γ=1

c(α)γ (r⃗ρ)
∗ · c(α)γ (r⃗ρ′)

NKy−1∑
κy=0

e
ikκy (rρ′y

−rρy )

︸ ︷︷ ︸
=:Ψy

, (C.12)

where, analogously to section C.1, the orthogonality of the discrete Fourier basis that
arises from regular Cartesian sampling along kx was exploited. The term Ψy = Ψy(κy, ρy, ρ

′
y)

141



C. Appendix

captures the aliasing pattern due to undersampling in the PE direction. Note that in
this expression, the configurations enumerated by α and channels enumerated by γ play
equivalent roles, according to the hypothetical scenario of having both configurations
simultaneously active at the same time.

For situation a), the sensitivity terms in the encoding matrix have an explicit time

dependency as (Ea)(γ,κ),ρ = cγ(r⃗ρ, tκ) exp
(
i⃗kκ · r⃗ρ

)
. To model two-fold readout oversam-

pling, it is sufficient to use the Cartesian k-space coordinate definition from equation

(C.5) as kκx = 2π 1
∆x

(
κx

NKx
− 1

2

)
but with κx = 0, 1/2, 1, 3/2, . . . , NKx − 1/2 instead of in-

teger indices. The alternating sensitivity switching between consecutive samples along
the readout direction can then be formulated as

cγ(r⃗ρ, tκx,κy) =

{
c(1)γ (r⃗ρ) for κx = 0, 1, 2, . . . , NKx − 1

c(2)γ (r⃗ρ) for κx = 1/2, 3/2, 5/2, . . . , NKx − 1/2
. (C.13)

With that, one obtains

(EH
a Ea)ρ,ρ′ =

∑
γ

∑
κx

∑
κy

c∗γ(r⃗ρ, tκx,κy)cγ(r⃗ρ′ , tκx,κy) e
ikκx (rρ′x

−rρx )e
ikκy (rρ′y

−rρy )

=
∑
γ

e−2πi
ρ′x−ρx

2

{
c(1)γ (r⃗ρ)

∗ · c(1)γ (r⃗ρ′)

NKx−1∑
κx=0

e
2πi

(
κx

NKx
(ρ′x−ρx)

)
+ . . .

. . . c(2)γ (r⃗ρ)
∗ · c(2)γ (r⃗ρ′)

NKx−1∑
κx=0

e
2πi

(
κx+1/2
NKx

(ρ′x−ρx)

)}
Ψy

(C.14)

where in the large curly bracket, the summation over κx was split into integer and
non-integer terms, corresponding to the sensitivity switching defined in equation (C.13).
Again, orthogonality of the discrete Fourier basis can be exploited as

NKx−1∑
κx=0

e
2πi

(
κx

NKx
(ρ′x−ρx)

)
= NKxδρ′x,ρx (C.15)

and
NKx−1∑
κx=0

e
2πi

(
κx+1/2
NKx

(ρ′x−ρx)

)
= e

iπ
ρ′x−ρx
NKx NKxδρ′x,ρx = NKxδρ′x,ρx , (C.16)

which corresponds to the observation that the two intertwined sub-grids in k-space
formed by two-fold oversampling still satisfy the Nyquist criterion. Thus, one obtains

(EH
a Ea)ρ,ρ′ = NKxδρ′x,ρx

Nc∑
γ=1

NKx−1∑
κx=0

(
c(1)γ (r⃗ρ)

∗ · c(1)γ (r⃗ρ′) + c(2)γ (r⃗ρ)
∗ · c(2)γ (r⃗ρ′)

)
Ψy. (C.17)
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C.2. Proof: Time-Division Multiplexing of Coil Sensitivities

Comparing equations (C.12) and (C.17), one finds EH
a Ea = EH

b Eb, so according to
equation (C.11), the g-factors of scenario a) and b) are identical. □
Rapid configuration switching can thus be regarded as a form of time-division mul-

tiplexing of sensitivity profiles. It is important to note, that this result holds only for
g-factors, which are a relative quantity, and not for absolute SNR. Scenario b), by
acquiring twice the number of samples at the same time, would give

√
2 times higher

absolute SNR than scenario a).
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(Beschluss des Senats vom 25.5.2000) beachtet wurden. Ich versichere an Eides statt,
dass diese Angaben wahr sind und dass ich nichts verschwiegen habe. Mir ist bekannt,
dass die falsche Abgabe einer Versicherung an Eides statt mit Freiheitsstrafe bis zu
drei Jahren oder mit Geldstrafe bestraft wird.

I hereby declare that I have produced the work entitled:

Dynamic Parallel Imaging for Fast MRI, and Optimization of CEST Methods for
Metabolic MRI

submitted for the award of a doctorate, on my own (without external help), have used
only the sources and aids indicated and have marked passages included from other
works, whether verbatim or in content, as such. I declare that the guidelines for
ensuring good scientific practice at the University of Tübingen (resolution of the Senate
of 25.5.2000) have been observed. I swear upon oath that these statements are true
and that I have not concealed anything. I am aware that making a false declaration
under oath is punishable by a term of imprisonment of up to three years or by a fine.
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