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Abstract

In the context of this dissertation the nonrelativistic Limit of Quantum
Electrodynamics (QED) is derived by the help of the Wegner flow
equation. Thereby all constituents of the QED Quantum field can be
treated on equal footing, leading to the fundamental Hamiltonian of
light—matter interactions for a plurality of electrons and positrons as
classical point-like particles carrying mass, charge and spin.

The QED quantum field is a hybrid which is composed of the matter—
and antimatter quantum fields and the photon quantum field. Addi-
tionally, the coupling of the matter— and antimatter quantum fields
to classical external potentials is considered. The constituents of this
hybrid are initiallly inextricably interwoven with each other.

Starting from the hybrid QED field (represented in the
Coulomb gauge), firstly, it is shown that the physical problem
is that the respective QED Hamiltonian does not commute with
the QED particle number operator. The latter is defined via the
occupation number of the matter— and antimatter modes. This
lack of commutation is the reason why the QED Hamiltonian can
not be retranslated to first quantization, where one would sum over
individual point-like particles.

The fact that the QED Hamiltonian does not commute with the
particle number operator means that the particle number is not
a conserved quantity. This property fundamentally separates the
physics of QED from the nonrelativistic physics on the atomic
scale. Therefore a unitary transformation of the QED Hamiltonian
is performed such that a unitarily equivalent QED Hamiltonian arises
which conserves the particle number. Proceeding in this way, the
classical or quantum mechanical concept of a point particle with the
attributes mass, charge and spin is put in the center as the essential
property of the non-relativistic limit of QED.

The unitary transformation of the hybrid QED quantum field is per-
formed by the help of the Wegner flow equation. In general, the
flow equation is a differential equation that provides a method for
(block)diagonalizing an operator in a continuous manner by means of
a generator adapted to the problem.



In the context of the thesis problem, the generator of the flow equation
is constructed in such a way as to eliminate, the pair terms of the QED
Coulomb interaction and those of the coupling to external c-number
potentials, and the high-energy photons. High—energy photons in this
context are the X-ray photons and the gamma ray photons.

The flow equation which follows from this generator is given by
a nonlinear ordinary differential equation and can thus only be
solved perturbatively. For this the QED Hamiltonian is expanded
with respect to the (dimensionless) finestructure constant. This has
the consequence that the originally nonlinear differential equation
decomposes into a system of (still nonlinear) coupled differential
equations. Since the zeroth order differential equation of this system
can be solved exactly there follows for all higher orders coupled linear
differential equations for which a solution can be found.

The QED Hamiltonian transformed in this way is manifestly particle
number conserving, however, it cannot be translated back into the
first quantization yet. The reason for this is that in this QED
Hamilton operator preserving the particle number, still the matter
and antimatter degrees of freedom are coherently superposed. This
is due to the fact that the QED field operators are still given in the
so-called Dirac representation.

By the help of the Eriksen transformation it is possible to decouple
the matter— and antimatter degrees of freedom in the particle number
conserving QED quantum field. The FEriksen transformation is
a unitary transformation that transforms the single—particle Dirac
Hamiltonian in such a way that the resulting Hamiltonian — the
so—called Newton—-Wigner Hamiltonian — is of blockdiagonal shape.
Furthermore, the Eriksen transformation is defined by the property
that it is energy separating. This means that first, the eigenfunctions
of the single—particle Dirac Hamiltonian, the four-component Dirac
spinors, become the Newton—Wigner spinors. The latter have, for
the matter degrees of freedom, entries in the upper two components,
whereas the lower components are zero. For the antimatter degrees
of freedom it it vice versa: their Newton—Wigner spinors have entries
in the lower to components, whereas the upper components are zero.
Secondly, in the Newton—-Wigner representation, the energy eigenvalue
problem is separated in such a way that there is one for matter and
antimatter separately (with the respective minus sign for antimatter).



Therefore the Eriksen transformation guarantees that the matter—
and antimatter degrees of freedom are completely decoupled in the
Newton—Wigner representation. This enables to express the Newton—
Wigner spinors by the Pauli eigenfunctions of nonrelativistic atomic
physics (as solutions for the electrons as well as for the positrons),
which vary slowly on the length scale of the Bohr radius (with respect
to the Compton wavelength of the electron).

Going now, with respect to the unitarily equivalent QED quantum
field preserving the particle number, from the Dirac representation of
the field operators to the Newton-Wigner representation, the matrix
elements can be evaluated as gradient expansion with respect to the
slowly varying Newton-Wigner field operators. The solution is con-
structed up to the second order in the finestructure constant such
that the first relativistic corrections to the Pauli Hamiltonian of light—
matter interaction of atomic physics occur.

The Wegner flow equation also yields self energy terms
resulting first from the QED Coulomb interaction (longitudinal
interaction), and second from the interaction of the matter— and
antimatter quantum fields with high-energy photons (transversal
interaction). ~ These describe the renormalization of the bare
mass of the fermion.  Their evaluation leads then also to a
renormalization of the magnetic moment of the fermions which
is in agreement with the result of J. Schwinger. Moreover,
all effective one— and two—particle interactions known from the
light—matter interaction of atomic physics arise in this way. The
longitudinal QED Coulomb interaction leads, in addition to the
Coulomb interaction between two fermions, to the Darwin term
and the spin—orbit interaction in the field of another fermion. The
transversal QED interaction leads to the orbit—orbit interaction
between two fermions, to their magnetic dipole—dipole interaction,
and their spin—other—orbit interaction.

It is finally possible to express the unitarily equivalent, particle number
conserving QED Hamiltonian, represented in the Newton—-Wigner re-
presentation, in first quantization. Proceeding in this guise the goal
is achieved to find a nonrelativistic Hamiltonian of light-matter inter-
actions describing classical, point—like particles carrying mass, charge
and spin interacting with low-energy photons.






Zusammenfassung

Im Rahmen dieser Dissertation wird der nichtrelativistische Limes
der Quantenelektrodynamik (QED) mit Hilfe der Wegnerschen Fluss-
gleichung hergeleitet. Dabei konnen alle Konstituenten des QED
Quantenfeldes gleich behandelt werden, sodass es sich bei dem
Ergebnis um den echten, fundamentalen Hamiltonoperator der Licht—
Materie Wechselwirkung handelt, undzwar fiir eine Pluralitat von
Elektronen und Positronen als klassische Punktteilchen die Masse,
Ladung und Spin tragen.

Bei dem QED Quantenfeld handelt es sich um ein Hybrid
aus  Materiequantenfeldern, Antimateriequantenfeldern  und
Photonquantenfeldern, wobei zusatzlich die Kopplung der Materie—
und Antimateriequantenfelder an auflere klassische Potentiale
berticksichtigt wird. Die Konstituenten dieses Hybrids sind zunachst
untrennbar miteinander verwoben.

Ausgehend von diesem hybriden QED Quantenfeld (dargestellt in
der Coulomb-Eichung) wird zunéchst ausfiihrlich aufgezeigt, dass
das physikalische Problem dasjenige ist, dass der entsprechende
QED Hamiltonoperator nicht mit dem Teilchenzahloperator
vertauscht (letzterer ist, in der Modendarstellung, durch die
Besetzungszahl der Materie— und der Antimateriemoden definiert).
Dieses Nichtvertauschen ist die Ursache dafiir, dass der QED
Hamiltonoperator nicht in die erste Quantisierung zuriick iibersetzt
werden kann, in der man tber individuelle Punktteilchen summiert.
Das Nichtvertauschen des QED Hamiltonoperators mit dem
Teilchenzahloperator bedeutet, dass die Teilchenzahl keine Erhal-
tungsgrofle in der QED ist. Diese Eigenschaft trennt die Physik der
QED radikal von der nichtrelativistischen Physik auf atomarer Skala.

Daher wird eine unitare Transformation des QED Hamiltonoperators
dergestalt durchgefiihrt, dass ein unitar aquivalenter QED Hamilton-
operator zu Tage tritt, der die Teilchenzahl erhalt. Zugleich wird auf
diese Weise das klassische bzw. quantenmechanische Punktteilchen
mit den Attributen Masse, Ladung und Spin als zentrale Eigenschaft
des nichtrelativistischen Limes der QED in den Mittelpunkt gestellt.

Die unitare Transformation des hybriden QED Quantenfeldes wird
mit Hilfe der Wegnerschen Flussgleichung durchgefiihrt. Allgemein
handelt es sich bei dieser Flussgleichung um eine Differential-



gleichung, die mit Hilfe eines die Fragestellung angepassten Generators
einen gegebenen Operator unitar aquivalent transformiert bzw.
blockdiagonalisiert, undzwar auf kontinuierliche Art und Weise.

Im Rahmen des Problems dieser Dissertation wird der Generator
der Flussgleichung dergestalt konstruiert, dass erstens die Paarterme
der QED Coulomb-Wechselwirkung und diejenigen der Kopplung
an auflere c—Zahl Potentiale, und zweitens die hochenergetischen
Photonen eliminert werden. Bei den letzteren handelt es sich um
Rontgenphotonen und Gammaphotonen.

Die mit diesem Generator konstruierte Flussgleichung fithrt auf eine
nichtlineare, gewohnliche Differentialgleichung und kann daher
nur perturbativ gelost werden. Der QED Hamiltonoperator
wird dazu in eine Reihe beziiglich der (dimensionslosen)
Feinstrukturkonstante entwickelt. Dadurch zerfallt die urspriinglich
nichtlineare Differentialgleichung in ein System gekoppelter (zunéichst
nichtlinearer) Differentialgleichungen. Da jedoch die nullte Ordnung
dieses Systems gekoppelter Differentialgleichungen exakt losbar ist,
resultieren fiir alle hoheren Ordnungen nunmehr lineare gekoppelte
Differentialgleichungen, fiir die eine Losung gefunden werden kann.

Der auf diese Weise unitar transformierte QED Hamiltonoperator ist
manifest teilchenzahlerhaltend, allerdings lasst er sich noch nicht in
die erste Quantisierung zuriick tibersetzen. Die Ursache dafiir ist
dass in diesem die Teilchenzahl erhaltenden QED Hamiltonoperator
noch immer die Materie- und Antimateriefreiheitsgrade kohérent
iiberlagert sind. Dies liegt daran dass die QED Feldoperatoren in
der Dirac Darstellung vorliegen.

Mit Hilfe der Eriksen—Transformation gelingt es im unitar
equivalenten, die Teilchenzahl erhaltenden QED Quantenfeld die
Materie— und Antimateriefreiheitsgrade zu entkoppeln. Die
Eriksen—Transformation transformiert erstens den Einteilchen Dirac—
Hamiltonian unitar aquivalent auf einen blockdiagonalen Dirac—
Hamiltonoperator, den so genannten Newton-Wigner Hamilton-
operator. Zweitens wird die Eriksen Transformation dadurch definiert,
energieseparierend zu sein. Dies bedeutet, dass die Eigenfunktionen
des Einteilchen Dirac-Hamiltonians, die vierkomponentigen Dirac—
Spinoren, in der Newton—Wigner Darstellung in (nach wie vor
vierkomponentige) Spinoren iibergehen, die fiir die Materie Eintréage in



den beiden oberen Komponenten aufweisen, und fiir die Antimaterie
Eintrage in den beiden unteren Komponenten. Zudem wird
das Energieeigenwertproblem separiert, sodass es fiir Materie und
Antimaterie getrennt giiltig ist (mit dem entsprechenden Minus fiir
die Antimaterie). Auf diese Weise ist sichergestellt, dass Materie-
und Antimateriefreiheitsgrade in der Newton—Wigner Darstellung
vollstandig entkoppelt sind. Mit Hilfe der Eriksen Tranformation
ist es dann moglich, die Newton—-Wigner Spinoren durch die Pauli
Eigenfunktionen der nichtrelativistischen Atomphysik auszudriicken
(sowohl als Losungen fiir Elektronen, als auch fiir Positronen), die auf
der Skala des Bohrschen Radius langsam variierende Funktionen sind
(relativ zur Compton—Wellenlidnge des Elektrons).

Geht man nun bezliglich des die Teilchenzahl erhaltenden QED
Quantenfeldes von der Dirac—Darstellung der Feldoperatoren in die
Newton—-Wigner Darstellung, so lassen sich die Matrixelemente als
Gradiententwicklung beziiglich der langsam variierenden Newton—
Wigner Feldoperatoren auswerten. Die Losung wird bis zur zweiten
Ordnung in der Feinstrukturkonstanten konstruiert, sodass die ersten
relativistischen Korrekturen zum Pauli Hamiltonoperator der Licht—
Materie Atomphysik in Erscheinung treten.

Die durch die Wegnersche Flussgleichung erhaltenen
Selbstenergieterme, resultierend erstens aus der QED Coulomb-
Wechselwirkung  (longitudinale Wechselwirkung), und zweitens
aus der Wechselwirkung der Materie- und Antimateriefelder
mit hochenergetischen Photonen (transversale Wechselwirkung)
renormalisieren die nackte Masse des Elektrons. Deren Auswertung
fithrt daher auf eine Renormalisierung des magnetischen Moments
der Fermionen, die in Ubereinstimmung mit dem Resultat von J.
Schwinger ist.

Dariiber  hinaus entstehen samtliche effektive FEin—- und
Zweiteilchenwechselwirkungsterme wie sie aus der Licht—Materie
Wechselwirkung der Atomphysik bekannt sind. Die longitudinale
QED Coulomb—Wechselwirkung fiihrt, neben der Coulomb—Wech-
selwirkung zwischen zwei Fermionen, zum Darwin—Term und zur
Spin-Bahn Wechselwirkung im Feld eines anderen Fermions.
Die transversale QED Wechselwirkung fithrt auf die Orbit—Orbit
Wechselwirkung, die magnetische Dipol-Dipol Wechselwirkung und
die Spin—Other—Orbit Wechselwirkung.



Zusammenfassend ist es so moglich, den unitar aquivalenten,
die Teilchenzahl erhaltenden QED Hamiltonoperator in die erste
Quantisierung zuriick zu tbersetzen. Auf diese Weise wird das
Ziel erreicht, einen nichtrelativistischen Hamiltonoperator der Licht—
Materie Wechselwirkung zu erhalten, der Punktteilchen (Elektronen
und Positronen) mit Masse, Ladung und Spin in Wechselwirkung mit
niederenergetischen Photonen beschreibt.
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1 Introduction

Quantum Electrodynamics (QED) is a quantum field theory. It is the
theory of light—-matter interactions in second quantization. This means
that it is not only the electromagnetic field that is described by the
occupation number of its modes, or by the creation and annihilation
operators of the (massless) photons. In QED also the particles are
described by the excitation and deexcitation of modes, however, of
matter and antimatter modes. Thus, also the massive particles, the
fermions, are described by creation and annihilation operators.

QED has been born by Paul Dirac in 1928 [1], and it has been raised
by Julian Schwinger, Richard Feynman and Shin ichiro Tomonaga.
For sure, there were many other physicists who contributed to the
development of QED, or even laid the foundations of the theory, as
for example Pascual Jordan, its "unsung hero” [2].

Nevertheless, Paul Dirac is known to be "the founding father and
guiding spirit” of QED [2]. He laid the foundations of the theory by
trying to unite the principles of quantum mechanics with the special
theory of relativity. This led him to the discovery that relativistic
quantum mechanics must at least be four dimensional as it is described
by the Dirac-Hamiltonian, which has a representation as a 4 x4 matrix
operator. Up to then it was thought that it was sufficient to describe
the nonrelativistic electron interacting with electromagnetic fields by
the 2 x 2 Schrodinger—Pauli Hamiltonian. However, the additional
two dimensions in the Dirac-Hamiltonian held a problem ready: the
negative energy solutions. These are problematic because of the
interactions of the electron with electromagnetic fields. The electron
could in principle occupy these states of increasingly negative energy
by emitting photons, and in this way lower its energy further and
further. This is then an infinite process and therefore it is surely not
physical. Thus, Dirac applied the Pauli principle and postulated that
the ground state of relativistic quantum mechanics is of such nature
that all states of negative energies are occupied, whereas all states of
positive energies are empty. He then interpreted the excitations of this
ground state as holes in the Dirac—sea. In that way he discovered the
antiparticle of the electron, the hole. This is the famous hole theory
[3, 4, 5, 2]. Later on, the hole in the Dirac-sea became renowned as
the positron. Now with the introduction of the positron into QED
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the problem of negative energy solutions has finally been removed
[3, 4, 5, 2]. An in—depth introduction into the history of QED can be
found in [2].

So in textbook QED we are dealing with quantum fields for both,
matter, antimatter and light. This immediately brings a philosophical
or semantic trick box into play, and to say it right away, I believe
that this trick box is in a sense central to the problem posed in this
dissertation. Why is that?

Now, as is stated by Silvan Schweber [2], ”The history of elementary
particles can be analyzed in terms of oscillations between two
viewpoints: one which takes fields as fundamental, in which particles
are the quanta of the fields; and the other which takes particles as
fundamental, and in which fields are macroscopic coherent states.”
Obviously, Dirac favored the particle point of view! Nevertheless, in
the beginning it was mentioned that QED is a quantum field theory.
Now take a look at the following picture in figure 1:

Figure 1: Bubble chamber trajectories of an electron and a positron

Here you can see the trajectories of an electron and a positron
moving in a static magnetic induction field of a bubble chamber. The
(classical, Newtonian!) Lorentz force forces the particles onto spiral
paths, however, since the electron carries charge ¢ = —|e|, and the
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positron carries charge ¢ = +|e|, one of them goes around left, the
other goes around right. The intricate point is that one (reasonably)
presupposes that point particles are moving here which create the
tracks, not quantum fields!

Oh no!, you might think now, not the old, boring dispute regarding the
particle—wave dualism! Yes, obiously, the problem runs through to
quantum field theories! But I am not going to philosophize wildly, on
the contrary: the problem is approached very formally. It is therefore
important to point out how here the philosophical or semantic trick
box is related to an actual, formal “problem” of QED: the
lack of particle number conservation. Yes, in QED, the particle
number is not conserved!

Now, saying that in a quantum field theory the particle number is not
a conserved quantity might be confusing. How can the particle number
be not conserved in QED when there are no particles, only quantized
(anti—)matter fields? This mysterium can be solved at least formally:
it is possible to define a particle number operator N that counts the
number of occupied matter and antimatter modes. And this particle
number operator does not commute with the Hamiltonian 7:[Q ED

of QED, [N : ﬂQED} £ 0! For explaining this in more detail take a
look at the QED Hamiltonian in the Coulomb gauge [0]

ﬂQED — 7:[D + ﬁrad + f}eazt + ﬁj_ + )}C (1)

The first term Hp is the single—particle Dirac Hamiltonian in its
second quantized guise. The single-particle Dirac Hamiltonian
describes the Dirac—particle in a static external magnetic induction
field. It comprises the kinetic energy of the Dirac—particle, its
Zeeman energy and its rest energy. The second term 7:[md describes
the quantized electromagnetic field. The term V..t describes the
interaction of the quantized matter and antimatter fields with external
electrostatic sources. The term H | describes the interaction between
(anti-)matter fields and photons, and finally, the term Vo describes
the interaction between the (anti-)matter fields, namely the QED
Coulomb interaction.

At a first glance, the Hamiltonian (1) looks more or less like the
ordinary Hamiltonian of light-matter interactions. And if it would
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not be for the hats, one could really confuse them. Therefore, it
has to be mentioned again, that all of these contributions in (1)
are quantized operator valued fields. And this fact creates an (at
least until now) unbridgeable rift between the world of QED and
the nonrelativistic description of the interactions between light and
matter. For sure, in our classical, nonrelativistic world, the particle
number is a well defined, conserved quantity and we observe electrons
carrying a fixed mass m,, charge ¢ = —|e| and spin s, = i% (or
positrons with fixed mass m,, charge ¢ = +|e| and spin s, = :Fg)! The
nonrelativistic Hamiltonian ICI(LeJZ& of electrons interacting with light (or
the one of positrons Iil(Lp]?j) interacting with light) should really conserve
the particle number iff it describes the particles causing the trajectories
in figure 1.

Therefore we ask: what is the relation between the QED Hamiltonian
(8) and the nonrelativistic Hamiltonian Hp,; describing point-like
fermions interacting with light?

The answer will be given throughout this dissertation. The result
regarding the electrons assumes the following guise [7, &]

lf_\l(Lejl\Z[ = HE@]ID) I:I(low ) + VC ce T VJ_ ee + Hrad + V((gxt) (2)
where [7, 8]
(4) (7) 4
mec? + B _1ou (1)

e (e

2me

is the nonrelativistic Schrodinger—Pauli Hamiltonian. I1 b(j )
invariant velocity of the electrons, and O’l()PJ ) are the Pauli matrices.
(2 + %) is the Schwinger result of the anomalous magnetic moment
of the electron. Note that N is the total number of electrons, hence,

these can be counted!
Now [7, ]

is the gauge

T
F/‘\

low,el) _ mec2z‘7b ( > (r(j)) (4)



where Zjvzl }ée) (r(j )) is the nonrelativistic current density caused by a
plurality of point electrons interacting with low—energy photons. The
latter are described by the vector potential 2l (r(j)) :

The term [7, &]
q
( 47750‘ (’)_rm’ \
1 N 2 no\ 2
: 9 i ,
. S — L (m) 760 (r) — () (5)
J#

A S L S 11

\ —87250 e O Sbb/bu‘r(])_r(b,) 3 mLeC

describes the Coulomb interaction between the electrons, their Darwin
interaction and their spin—orbit interaction due to the presence of the
other electrons.

The following term [7, &]

1

N 47T|R—I‘(j)|
_1.n _h s50) (R— r(j))
E 8 meCc mec (6)
47T€0 1 1 h Rb*T(j) I, (P,j)
b b
Z_l Ebb/b// T O—b//
MeC 47T‘R I,(J)‘ MeC pgl!

describes the interaction of the electrons with external c—number
sources, the respective Darwin term, and the spin—orbit interaction
in the external electric field.

The effective interaction term [7, &]

. ! -/
) r& G (7)) N
(_ dc ) 1 da,b ¢ ngj ) )
4meg ) 2 |r(7) r(J )‘ ’r(j)ir(j/)|3 MoC Mmec

v livj : ) 5m0@® (x0 —x07)) 5,
L, — q> 1 I3 A ' - 5! N 1y |2
32| 4 N | ) ) s |
+ ’ru)_r(ﬁ")f
L n R et () _Pg) g ()
* 2 mee 47(3';50 ’r(b?) e’ )|3 Eb bb" Hb Oy _Hb T/

(7)

(P3") (P.g)




comprises the orbit—orbit interaction, the magnetic dipole—dipole
interaction, and the spin—other orbit interaction between the electrons.

Finally, H,.q is the radiation field of the photons.

The corresponding Hamiltonian I:I(Lpfj) thus describes point positrons

interacting with light.

Now for going from the QED Hamiltonian (8) to the nonrelativistic
Hamiltonian (2) it would be necessary to retranslate the QED
Hamiltonian to first quantization, e.g. as a discrete sum over
individual particles. However, that is not possible, because the particle
number is not conserved, as can be seen from the nonvanishing
commutator of the QED Hamiltonian (1) with the particle number
operator N. And the reason why the QED particle number operator
does not commute with the QED Hamiltonian is the interaction
terms H 1, f}c and f/m. Vividly spoken it is the interaction of the
(anti-)matter fields with the high energy photons which allows for
processes during which matter or antimatter or photons are created
and annihilated, and the pair terms in the QED Coulomb interaction
and in the coupling to external sources, such that there is no way to
fix the particle number in QED.

It seems like an irresolvable philosophical or semantic contradiction:
one has to talk about particles all the time although they are described
by quantum fields! For the time being, however, the following
conception seems to make sense: QED does not describe interacting
point particles. It also does not describe pure quantum fields. What
QED is is hard to say. The clearest picture to think of is that QED
describes a hybrid between matter, antimatter and light (somewhat
loosely expressed, I sometimes call it the QED soup!). This hybrid
has physical properties which stand for themselves, and which have
nothing to do with the physical properties of classical, nonrelativistic
point particles.

As is shown throughout this dissertation, the fact that the properties of
this light—(anti—)matter hybrid stand for themselves is reflected in the
necessity of renormalization of the attributes of its constituents, the
renormalization of the bare mass my and the g—factor of the fermions.
By deducing the nonrelativistic limit of QED, renormalization is really
required!

To briefly summarize what has been said so far: in QED, which is
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a field theory, the particle number is not a conserved quantity. This
fact harbors a philosophical or semantic contradiction connected to
the particle-wave dualism. Moreover, this fact absolutely separates
QED from our nonrelativistic world. So how can one understand the
trajectories in figure 1 when the particles which create them are being
described by Quantum Electrodynamics as a high—energy field theory?
The question can also be formulated differently: how can one
derive the nonrelativistic limit of Quantum Electrodynamics,
so that the hybrid is unwound and disintegrates into its components:
nonrelativistic particles and low—energy photons? How can one come

from the QED Hamiltonian 7:[Q gp with the property [N : ﬁQED} £ 0

to the nonrelativistic Hamiltonian of light—matter interactions Hon =
”HLe]lV[ +H %) for which {N,?—A[LM} = (7

As it becomes obvious from these questions, the ancient dispute
regarding the particle-wave dualism is not only a philosophical or
semantic one. In QED it gets a technical face in the form of a non-
vanishing commutator. Obviously, for answering the question above

one needs to address the non-vanishing commutator [N : 7:[Q ED} £ 0!

So in fact, the deduction of the nonrelativistic limit of QED is
obviously closely interwoven with the question of the relation between
classical point particles and quantum fields. It disposes of a formal

expression, [N ,7:[QED} + 0, and this has the consequence that
one can ask: is there a unitary transformation of the QED
Hamiltonian #; such that [N,?—A[U} = 07, hence, such that Hy

conserves the particle number? And if so, how is Hy related to 7:lLM,
and can one express this unitarily equivalent Hamiltonian H 1 in first
quantization, where one can sum over individual particles with
their attributes mass m., charge ¢ and spin s,?

Now this is a very formal question that can be attacked in a technically
and methodologically crystal clear manner. This is exactly what was
done in the context of this dissertation. And yes, finding a umtarﬂy
equivalent Hamiltonian H which conserves the particle number N
is indeed possible! However, it will turn out that it is not sufficient
to find such a Hamiltonian Hy which preserves the particle number
for the goal of describing point particles. This is because in Hy, the
matter and antimatter modes are still coherently superposed,



which means that one cannot reexpress Hy in first quantization.

However, one can also solve this problem technically in a clean
way. Now the reason for this coherent superposition of matter and
antimatter degrees of freedom lies in the properties of the single—
particle Dirac Hamiltonian and the reinterpretation of the Dirac—hole
as the positron. In the so—called Dirac representation, in which 7:lQ ED
must therefore naturally be, and in which its sister Hy still is, electrons
and positrons are still present as a matter-antimatter hybrid.

This means that one has yet to pass from the Dirac representation of
Hy to the so—called the Newton Wigner representation [9, 10, 7]. The
Newton—Wigner representation is closely related to the nonrelativistic
limit of the single—particle Dirac Hamiltonian, and it is only in
this representation in which a classical interpretation is possible,
hence, in which we find the nonrelativistic Hamiltonian H s of light—
matter interactions (for both electrons and positrons). Technically
the Newton—Wigner representation can be brought about by another
unitary transformation, the so—called Eriksen transformation [I1,

, 7].  Expressing the Hamiltonian Hy in the Newton—-Wigner
representation indeed makes it possible to derive the nonrelativistic
limit of QED as a many—fermion Hamiltonian Him describing the
interactions of fermions as point particles, their interactions with
each other, and their interactions with low—energy photons. The
Hamiltonian ;5 can then be retranslated to first quantization,
hence, from this Hamiltonian then follows A v and thus the
Hamiltonian (2)!

It has to be emphazised, however, that it is an interesting feature,
given the history of QED as ”oscillating between the two viewpoints”,
that one can answer the question of how one can derive the
nonrelativistic or classical limit from QED in a physically sensible
way by answering the question how can one regain the classical
point particle carrying mass, charge and spin from QED.

To give an answer to this question by defining the essential properties
of point—like nonrelativistic particles is the bridge between QED and
nonrelativistic light-matter interactions, and this bridge is nothing
but the nonrelativistic limit of QED.

Fritz Rohrlich [12] already regretted in 1980 that ”there does not
exist up to date a clean proof of this [nonrelativistic...] limit,
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[although]| this notion is logically very reasonable and my view
philosophically necessary because QED without [its nonrelativistic
limit] is incomplete.”

Now the inspiration to the question of how one can derive the
nonrelativistic limit of QED came from the pioneering work of Takashi
Itoh [I3]. He was the first who deduced from the Hamiltonian
of QED the nonrelativistic many—-body Hamiltonian of electrons
interacting with each other in case of a static external electromagnetic
field. Methodologically, the work unfortunately leaves something to
be desired, because the positrons are not treated properly. Itoh
often neglects terms in his derivation which violate particle number
conservation and provides unclear arguments for this (at least for me).
Itoh also eliminates all photons from the QED Hamiltonian, such that
he cannot implement the necessity of renormalization. With that it
is not possible to achieve the anomalous magnetic moment of the
electron.

Claude Cohen—Tannoudji et. al. have also faced this question in their
book Photons and Atoms. Introduction to Quantum FElectrodynamics
[6].  There they deduce the nonrelativistic limit from the QED
Hamiltonian starting by two-component formalism of the field
operators. This means that their field operators describe already
on the QED level particles and antiparticles separately. They argue
that the coupling between the matter and antimatter degrees of
freedom is small, but neglecting this coupling from the beginning is
not satisfactory because again, in that way it is not possible to treat
the positrons on equal footing. Obviously, the positrons are particles
equal to the electron, see again figure 1! However, with their method
of perturbation theory, they are able to derive the Schrodinger—Pauli
Hamiltonian of the electron in first order of their expansion. For
higher order calculations they refer to the work of Iwo Bialynicky—
Birula The Hamiltonian of Quantum FElectrodynamics [11]. There
Bialynicki-Birula unitarily transforms the QED Hamiltonian with a
Foldy—Wouthuysen transformation adapted to the formalism of field
theory. With that he gets as the most important representative
of the relativistic corrections to the Schrodinger—Pauli-Hamiltonian
the spin-orbit interaction of the fermions (electrons and positrons)
with the electromagnetic field. However, he also does not consider
(small) terms which violate the particle number conservation from the
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beginning by starting from Dirac field operators which describe matter
and antimatter separately. Furthermore, the relativistic correction to
the kinetic energy is missing.

In another work of Bialynicki-Birula [15], starting with the sentence
“The relationship between quantum and classical electrodynamics is
a complex subject, with many aspects, not all of which are at present
well understood.”, the focus has been laid on the classical limit of
the radiation or electromagnetic field interacting with a plurality of
charged particles. The approach taken in this dissertation shows,
however, that it is very important to consider the whole QED hybrid,
to take it radically serious as an object that has nothing to do with its
constituents arising from it in the nonrelativistic limit, e.g. that it is
not made of particles and the radiation field as distinguishable objects.
This makes it possible to focus on how to get back to the classical point
particle carrying mass, charge and spin, interacting with low—energy
photons, by attacking the problem of particle number conservation
violation (which is a problem insofar as it is not understable in classical
terms).

Therefore, in this dissertation, a different approach for deriving the
nonrelativistic limit from QED is taken. Thereby it is shown that
it is not necessary to put particle number conservation into it from
the beginning, or to drop small, however existent, particle number
violating terms . All constitutens of QED shall be treated on equal
footing. Therefore, for deriving the classical, nonrelativistic limit from
QED, use is made of the so—called Wegner flow equation [16]. The
Wegner flow equation (or the flow equation) is a tool for unitarily
transforming a given matrix or an operator in a continous manner.
It is a differential equation generated by a generator which has to be
chosen on the basis of physical considerations.

Hence, a unitary transformation of the QED Hamiltonian is to be
sought such that the resulting Hamiltonian H conserves the particle
number. It now turns out that one has to chose the generator of the
related flow equation such that the pair terms in the QED Coulomb
interaction as well as the high energy photons are eliminated from
the QED Hamiltonian! It will be shown that high—energy photons
are those whose wave number ¢ is larger than apgm.c?, where apg

Tt has to be emphasised that with such an intuitive approach, one can not be sure that terms,
which actually belong to the result in this order, are suppressed.
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is the finestructure constant. Thus, it is the hard X-ray photons
and the gamma rays which are being elimanted. Only then the
resulting Hamiltonian preserves the particle number. Unfortunately
this generator generates a nonlinear differential equation that one
cannot solve exactly. This reflects the fact that, as is generally known,
real interactions can only be treated in terms of perturbation theory.
This means that one has to expand the QED Hamiltonian in terms of
a dimensionless coupling constant, which is the fine structure constant
aps. The resulting system of coupled linear differential equations can
then be solved in principle in any order, and here it is solved up to
the order a%.

Now this has also the consequence that the bare mass m( occuring
as a parameter in the QED Hamiltonian will be changed during the
process of taking the nonrelativistic limit from it. This is also known
as renormalization. The g—factor of the fermions is also renormalized.
In that way one finds the Schwinger result of the anomalous g—factor

[17].

However, as has already been mentioned, the aspect of particle number
conservation this is not the only one of the story. The particle number
conserving Hamiltonian s is not yet expressable in first quantization.
Due to the fact that the QED Hamiltonian is build upon the properties
of the nondiagonal single—particle Dirac Hamiltonian, in QED, the
matter and antimatter degrees of freedom are superposed, and this
coherent superposition is independent of the aspect of particle number
conservation. Therefore, in a second step, one has to decouple the
matter and antimatter degrees of freedom in Hy. This can be done by
the help of the Erikson transformation [11, 10, 7], which is a unitary
transformation generalizing the Foldy-Whouthuysen transformation
[18]. It is a unitary transformation that blockdiagonalizes the
single-particle Dirac Hamiltonian in an external static magnetic
field, and with that it enables to express the Dirac operators in
the so—called Newton-Wigner representation. Now in the Newton—
Wigner representation the Dirac operators decompose into matter and
antimatter degrees of freedom separately, hence allowing for a classical
interpretation [19, 9, 10]. There are several works which are concerned
with this de—facto blockdiagonalization of the single—particle Dirac
Hamiltonian, see for example [20, 21, 22, 23 2425 11, 26, 27, 28, 29].
However, in none of them but in the one of Bylev and Pirner [20] use
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is made of a flow equation based approach. But Bylev and Pirner have
not solved the related flow equation exactly, only perturbatively. It
is, however, possible to solve this flow equation exactly.

All of this is explained in detail in the following sections. Finally it
should be said that with the path outlined here it is possible to derive
the nonrelativistic limit of QED for both electrons and positrons and
their interactions in a completely symmetric fashion. With that it is
possible to answer the urgent quesiton of T. Padmanabhan of ”What
happens to the antiparticles when you take the non-relativistic limit

of QFT?” [30].

It was Ettore Majorona who emphasised already in 1937 that “The
prescriptions to cast the [Dirac] theory into a symmetric form, in
conformity with its content, are however not entirely satisfactory,
because one always starts from an asymmetric form or because
symmetric results are obtained only after one applies appropriate
procedures such as the cancellation of divergent constants, that one
should possibly avoid.” [31]. In this work he then clarified that
four degrees of freedom are needed for both matter and antimatter,
so 4 + 4 = 8 degrees of freedom altogether.

However, in this dissertation, the final result for the many—body -
Schrodinger—Pauli Hamiltonian is only presented for the electrons.
Unfortunately, there was no time left for the (completeley) analog
evaluation of the positrons.

Furthermore, this dissertation was completed in July 2022. In the
meantime, the results have been extended by Nils Schopohl so that
the renormalization of the bare charge gy and the Lamb shift are now
also available as the result of a unitary transformation of the QED
Hamiltonian based on Wegner’s flow equation [3].

Now the structure of the work is as follows: in section 2 the reader
is introduced to the Hamiltonian of QED in the Coulomb gauge.
Then the relation between QED and the classical limit problem is
discussed, and the Newton—Wigner representation of single—particle
Dirac Hamiltonian is briefly sketched.

In section 3 the method of unitarily transforming matrices or operators
by the help of the Wegner flow equation is presented, and then the
method is discussed in the context of the question of how to deduce
the classical limit from QED.
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Next in the first part of the solution to the classical limit problem of
QED 4 the flow equation that generates particle number conservation
is set up and solved by the help of perturbation theory. In that way one
achieves a unitarily equivalent QED Hamiltonian H which conserves
the particle number, and in which all constituents, fermions, photons,
and their interactions, occur in a completely symmetric fashion.

Then in the section 5 the Eriksen transformation is introduced as
the unitary transformation which blockdiagonalizes the single—particle
Dirac Hamiltonian, and which decouples matter and antimatter
degrees of freedom. Then the single—particle Dirac Hamiltonian in
the Newton—Wigner representation, which follows from the Eriksen
transformation, is discussed.

In the second part of the solution to the classical limit problem of
QED 6 it is shown how one can retranslate the results achieved so far
to first quantization by applying the Eriksen transformation to Hy.
At this point the positrons are not further considered, the evaluation
is only done for the part describing the electrons. Thereby it is shown
how the renormalization of the electron properties come into play: one
part comes from the interaction with the high—energy photons. This is
referred to as transversal renormalization. The other contributions to
the renormalization, the longitudinal contribution, is due to the QED
Coulomb interaction. As will become clear, it stems from the necessity
of normal ordering the QED Coulomb interaction. Next the effective
Schrodinger—Pauli Hamiltonan is derived. Finally the nonrelativistic
Hamiltonian of light—-matter interaction in first quantization for a
plurality of electrons is presentend and the results are being discussed.

The appendix is intended as an auxiliary tool for those who wish to
follow long calculations in detail. There is, however, one appendix
section which stands alone. In section J it is shown how the Maxwell
Equations of the operator valued fields describing the photons as well
as their coupling to sources can be derived.

This dissertation was developed over a period of four years in close
collaboration with my supervisor Prof. Dr. Nils Schopohl. Most of the
calculations in this dissertation have been developed by my supervisor
while it was an indispensable part of mine to carefully check all these
calculations independently.

Furthermore it was an essential part of my mine to critically question
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the physical ideas which we have developed and discussed together,
and to insist on a physically coherent picture (or to be taught better,
i.e. tolearn). In that way I have made several important contributions
concerning the physical coherence of the overall work. This concerns,
first, referring strictly to graph 1, the insistence that all constituents of
the QED soup must be treated equally, which has led to the realization
that it is inconsistent to introduce two separate components for matter
and antimatter from the beginning for the QED field operators.

Second, it was my insistence that we live in a world where there are
always photons that laid the basis for finding a generator for the flow
equation that allows to eliminate only a certain part of the photons,
namely the high-energy photons, from the QED Hamiltonian.

Third, it was unclear for a long time how to get from the four—
dimensional Dirac Hamiltonian to the nonrelativistic two—dimensional
Schrodinger—Pauli Hamiltonian. By reading McKellar’s extremely
insightful paper [9] T was able to make it clear that also in the
nonrelativistic limit the formalism will be four—-dimensional, however,
it has somehow to be given by the diagonal Dirac § matrix. With
this insight it became possible to solve the flow equation for the
Eriksen transformation exactly and, indeed, the nonrelativistic limit
of the Dirac Hamiltonian was found to be given by [ times the
two—dimensional Schrodinger—Pauli Hamiltonian, hence, as a four—
dimensional, blockdiagonal Hamiltonian.

Fourth, in the long discussions on how to choose the cut—off of the
renormalization terms to get a physically consistent picture, I was
able to make a decisive contribution by insisting that it is inconsistent
to say on the one hand that the correct cut—off must be made Lorentz
invariant, but on the other hand it was clear that the anomalous g—
factor has nothing at all to do with Lorentz invariance. This led to the
idea, following Paul Dirac [32], to implement a physical cut-off which
consists in limiting both the photon energy and the kinetic energy of
the fermions. This in turn led to the correct renormaliziation of the
bare mass mg of the fermions and therefore to the Schwinger result
for the g—factor.

Finally, I realized that one does not have to do the evaluation for the
part with the positrons all over again, but that one can also obtain
the positron Hamiltonian using the charge conjugation operator, which
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makes sense since, of course, the fermions should be renormalized in
a symmetric way.

There have been many other contributions I could make during the
long and intensive discussions, here I have listed the most important
ones.
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2 Quantum Electrodynamics (QED) in the
Coulomb Gauge

2.1 Introduction to QED in the Coulomb Gauge

There are several highly recommendable books on QED [0, 32, 33, 4,

, 0, 35, 30, 37, 38], where each book has a different focus, making it
worthwhile to read each one in order to understand and learn about
quantum field theories and Quantum Electrodynamics. Since for the
derivation of the nonrelativitisic limit of the QED Hamiltonian its
representation in the Coulomb gauge is the most convient one, the
representation from [6] has been mostly adopted.

As already indicated in the introduction, the hybrid quantum field
of QED consits of a charged (anti—)matter quantum field, a radiation
field, and their interaction fields. It can be represented by the following
Hamiltonian in the Coulomb gauge %: [0]

/]:[QED — 7:[D + ﬁrad + ]A}ext + 7:[L + f/C' (8)

The interpretation of these terms goes as follows: the first term Hp
is the second quantized Dirac Hamiltonian. It comprises the rest
energy, the kinetic energy and the Zeeman energy of the charged (anti—
Jmatter quantum fields. The second term 7:[md is the radiation field
or the quantized electromagnetic field. The term f}wt is the potential
energy of the charged (anti—)matter quantum field in an external static
classical source () (r). The last two terms #, and Ve are the
essential terms of QED. Ve comprises the Coulomb interaction of
the charged (anti-)matter quantum fields, and H, describes the the
interaction of the charged matter quantum fields with the radiation
field or the photons.

One could think that the QED Hamiltonian (8) is not Lorentz
invariant, since the decomposition of the electromagnetic quantum

2The reason why the Hamiltonian (8) is referred to as ”in the Coulomb gauge” is that the
Coulomb interaction between the (anti—)matter fields appears explicitely. In a representation
withouth a choice of gauge the Hamiltonian of classical light-matter interactions consistens of the
kinetic energy of the electrons plus the energy of the electromagnetic field. Decomposing the
latter into longitudinal and transversal parts then the Coulomb interaction as the longitudinal
interaction of light—matter interactions, as well as the coupling to the light, the transversal part
of light-matter interactions, apperas. This is because light and matter are related by the Maxwell
equations, which also decompose into longitudinal and transversal parts [0].
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field into longitudinal and transversal parts is not. However, as has
already been shown by W. Heisenberg and W. Pauli in 1930 the total
Hamiltonian (8) is Lorentz invariant [39]. A nice summary of their
arguments can also be found in [1].

The various terms of (8) and their properties are discussed in more
detail in the following.

The Second Quantized Single—Particle Dirac Hamiltonian

The second quantized Dirac Hamiltonian Hp is given as

Hp = / dr Y 1_2€F (@; (r) H b, (r)) (9)

pop'€{1,2,3.4}

(D) which is the single—particle Dirac

s
Hamiltonian in a static external magnetic induction field Béext) —

rot A](DeXt)(r). It is given by

It contains the integral kernel H

HP —mpB+ ) cay (f)b — g Ay (r)> 10

be{z,y,z}

The four by four diagonal Dirac S matrix and the non—diagonal Dirac
ap matrix obey to the algebraic relations

Baa + Oéaﬁ - 04><4

2
=1
5 4x4 ' (11)
QaQp = 5a,b14><4 + 1€4pc0c
a,b € {z,y, 2}
These are diagonal or non-diagonal with respect to a chosen
representation [5]. In our case this is the so-—called Dirac
representation:
Qg = OC(UP) & ac(lp)
P) (12)
/8 = 02 ® 12X2
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where matrices a((lp) are the Pauli matrices in their standard

(P) _ 01
= (1)
0 —2
A= () (13)

10
(P) —
=(a7)

The first term in the single-particle Dirac Hamiltonian (10) describes
the rest energy of the Dirac fermion, whereas the second term describes
its kinetic energy and its Zeeman energy. (In the Heisenberg picture of
H®) one finds that the velocity v, of the Dirac particle is ca,.) Please
note the rest mass mg, which is the bare mass of the Dirac fermion!

representation, thus

In the appendix sections A, C and D the properties of the single
particle Dirac Hamiltonian H®) are discussed in more detail. An
extensive introduction to (the history of) the Dirac Hamiltonian can
be found in [3, 10, 5, 10, 41].

The (anti-)matter field operators ¥, and !@j (r), the so called Dirac
spinors, are given by

k
B () = 3 (U7 (k) el + Vi (k) by ) (14)
k
pe {1,2,3,4})

The operators 62, ¢, and bg, by are creation and annihilation operators

(k is a multi index counting the modes of the Dirac eigenvalue
problem). They operate on the matter sector of the Fock space of

. . . . 1
QED, and they obey to the anti-commutation relations for spin—;
particles [1, 5]:
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{ckc;} = Sl = {bkbz}
(ep, ) = 0 = {é;g, éL,}
{bpby} =0={o},01,} (15)
{bpaw} =0={bel.}
T T

U, (r; k) is the p—th component of a Dirac amplitude belonging to the
positive energy Ej > 0, whereas V,, (r; k) is the g~th component of a
Dirac amplitude belonging to the negative energy —FEj < 0.

D
HO U (x3k) = B, (3 k)
HO V., (e k) = —EyV, (r; k)

ot

(16)

The Dirac amplitudes comprise four components for both matter and
antimatter [31]!

Please notice that in case the Dirac Hamiltonian comprises an external
electric field E(¢*) the charge conjugation symmetry is broken. This
is because the matter is attracted by the electric field, the Lorentz
force being F©) = —|e|E™), whereas the antimatter is repulsed by
the electric field F(P) = +]e|E). In that case the set of modes k
and k are not necessarily of the same scope and one would have to
introduce a summation over the mode indices & in the part describing
the negative energy solutions in 16 [10].

From the requirement that the Dirac Hamiltonian (10) must be
hermitian, the amplitudes U} (r; k), U, (r; k') and Vi (r; k), V, (r; &)
obey to the following orthogonality relations:
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/ d*ry U (rik) U, (ri k') = S
n

g (17)
[N ACTIACIIET

/ d*r> V(v k) Uy (r; k) = 0

From which the completeness relation of the Dirac modes follows as

Z (U, (x5 k) U (Y5 k) + Vi, (k) V5 (25 K)) = 6,06 (r — 1) (18)

I I
k

And the anti commutation relations of the creation and annihilation
operators of the fermions imply

(19)

It can be shown that the relation (19) is a necessary consequence if
one requires that the momentum operator ¥, generates translations
in spacetime z [5].

The operation 1= in (9) ensures that the Dirac quantum field is

symmetric under charge conjugation [33]. It is explained in more detail
below, where the QED current density operator j’b (r) and the QED
charge density operator ¢ (r) are introduced, and also in the appendix
section F. It has to be mentioned that the operation % removes an
(infinite) constant being not observable [1].

The most important operators of QED, besides the Hamiltonian (8),
are the particle number operator N and the charge number operator

)
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N = Z é,ték (20)
2

N© ig given by the mode occupation number éLék. It counts the

occupied Dirac-modes of H®) with mode index k and positive energy
eigenvalue Ej, > 0. N® is given by the mode occupation number b%b,;.

It counts its occupied Dirac-modes with mode index k and negative
energy eigenvalue —FEj < 0.

Hence, the charge number operator Q is defined by

O=q. (N<e> _ N(p)) (21)

Now the most important properties of these two operators for the
question posed in this dissertation are [3]

Q. Harp| =0

o A (22)

N, Haup| #0
Like in our classical physical world, the charge number Q is a conserved
quantity in QED. What separates QED from our world is the lacking
of particle number conservation. The reason for the latter is the fact
that in QED the energy can be so high that there are processes which
allow to convert photons into fermz’on pairs and vice versa. Actually,
the particle number operator N does not commute with 7—[@ gD because
of the interaction terms H, and Vc

If one wishes to rebuild our classical world from QED or to regain
the nonrelativistic limit from it, one has to handle the lack of particle
number conservation. In subsection 2.2 a closer look is taken at the
properties (22).
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The Radiation Field

The quantized radiation field can be represented according to [0]

? 1 / n / n ! > ! 1 - !
R =y [ 50 (B 008" )+ BE)LE()) (23

Ho

In this representation it resembles its classical counterpart, the
classical electromagnetic field, the most. However, (23) is an operator
valued field. For understanding this better it is convenient to
represent the electromagnetic field by a linear superposition of creation
and anihilation operators d&)\ and aq ) describing the creation and
anihilation of the particle of the electromagnetic field, the photon,
with polarization A € {I, 1} and wavevector q

Ab (r) \/—Z Z A (a, A < Waq ) + e 970 jm)

a Ae{lII} (24)
h
Ay (g, A) = mub (q,A)
G 722&%<w¢mm
a \e{IIT} (25)
b (q7 ) 250 ( )
A T Z Z By, (q7 )‘) <€iq-rdq7 —e g 11,)\>
a \e{l,Il} (26)
By (q, ) = 202(50) 5bb’b”%ub” (q, A)

This mode expansion of the quantized electromagnetic field relates
to a Volume V with periodic boundary conditions. One has to keep
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in mind that in the end of all calculations one has to take the limit
V — o0o.

As photons are bosons, their related creation and anihilation operators
obey to commuation relations

[Gg,x; G ] = 0= [dg/\, 5‘2/ X]
- A (27)
{CLQM\, CLq,’/\,:| = 6)\7)\/5(1,(1/]_

The wavevector ¢, and the related polarization vectors u, (q, ) and
uq (q, IT) form a complete orthornomal basis in the Fock space of the
photons. For lineraly polarized photons there holds

Up (q7 >‘)
1

ACTRY
Zua(q,l)ua(q,l) :Zua(q,ll)ua(q,ll)
Zua(q,])ua(q,ll):O (28)

ZUG(CLI)qa:O:Zua(q?I])qa

The commutation relations (27) imply for the transversal vector
potential A% (r) and the transversal electrical field B (r)

(29)

The integral kernel (52? (r — 1), the so—called transversal delta
function [0], is given by

dab |t =7 =3 (r — 1)), (r — 1),

dr v — 1|

5((1? (r — r') = §5ab5(3) (r — I") — lim © ({r — r" — 17)

n—0+

i / d3q el (5 QaQb>
= lim _— —

e~0) @mPli+qee " |gP

Together with its complement, the longitudinal delta function

(30)
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2
W p_py o 1 1
o (r =) Orq0ry 4m |r — /|

bap lr — v = 3(r — 1), (r '),
5

1
(3) / . /
= *35ab5 (r—r)+nhr(1)1+®(’r—r‘ —77) \r r’\

—lim/ d3q ela=r) (5 B qaéjb)
&0/ @I+ " g

(31)
one finds
o) (e — 1)+ 8 (r = 1) = 6,6 (r — 1) (32)
With a,b € {x,y, 2z} there holds
Bu(r) = VoA (r) = (rot A" (1)) (33)
and
V, AD (r) = 0 = V,ED (r) (34)

With these relations one can represent the radiation field Hamiltonian
(23) by the occupation number operator &L’ \Gq,x for the photons
according to

. L 1.
Heaa =Y Y hw(q) (aL’Aaq,A + 51) (35)
a Me{IIT}
The photon number operator is thus given by
V= Y =Yl )
a Me{l,Il} q

In the appendix it is shown that the operator valued electormagnetic
field obeys to the Maxwell equations and that we can also deduce
the quantum analogue wave equation by the help of the Heisenberg
equations of motion for the fields Eéﬂ (r) and E,ET) (r), see section J.
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The Coupling of the Charged Matter and Antimatter Quantum Field to
an External Electric c-Number Field

The coupling to an external potential &) (r) is given by the
contribution

Vo — / @1 (x) B (r) (37)

Here, o (r) is the QED current density operator as introduced below
n (43). V.. describes, for example, the interaction of electrons and
positrons with the Coulomb field of an atomic nucleus with charge
number Z at the position R according to

Zlg| 1
47’(’80 ‘I‘ — R|

o (r) = (38)
The potential (38) breaks the charge conjugation symmetry because
it is attractive for the electrons but repulsiv for the positrons.

The Fourier representation of the potential @) (q) =
%eiiq'(riR) L
Ameo lal”

= [dPre 9" (r) will be very useful later on:

o _Z PBq R |
Veat = |Qe|/ q ‘ /d?’re_zq'r@(r)

and of the QED charge density operator

471'80 ’q’
. 39
= 3 5 P (CI)
4mo (2r)" laf

Matter—Antimatter—Photon Interaction and Coulomb Interaction

The coupling between the charged (anti—)matter quantum fields and
the radiation field is described by

~

Ho == [ i) A7 (40)

The charge symmetrized QED current density j,(r) can be represented
according to
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1-Cp

> F) (caw), U (x) (41)

pop'€{1,2,3,4}

jb (I‘) = (e

Whereas the vector potential AI()T) (r) of the photons is given by (24).

The Coulomb interaction can be represented by

. 1 o(r)o(r)
Vo=— [ & P! = 42
¢ 8#50/ T/ " Ir —1/| (42)
Where the symmetrized charge density operator g (r) is given by

1—-Cp

@(I‘) — Qe

> Y)Y (r) (43)

pne{1,2,3,4}

The representations of the charge density (43) and the current density
(41) are according to the one proposed by Wolfgang Pauli [33]. Cp
is the symbol for charge conjugation operation, see also appendix F.
Usually, in text books on QED or quantum field theory, the current
density (41) and the charge density (43) are introduced withouth the
charge symmetry operation Cp [, 5]. However, the hint is given that
the operators occuring in the respective scalars (QED charge density),
vectors (QED current density) or tensors should always be considered
as being normally ordered. This means that creation operators are
shifted to the left, whereas anihilation operators are shifted to the
right. Depending on the commutation relations these operators obey
to there can occur minus signs during the exchange, or even d,’s, where
k is a multi index.

Now for example

N(Ck/CL) = —C;rfck/
Neecdels) = N (ehe) = el

whereas without the operation N then, due to the anticommutation
relations (15)

(44)

Ck;/C;L = 5k,k’ — C};Ck;/

Ck/CLC-II;// — (5k’k’ - CLCk/)CJIL,/ (45)

= 51{:,1@’02// + 5]4’]{//0]{; + CLCJ/L,,C]C/
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The normal ordering operation N indeed has a true physical meaning.
In the appendix section F it is shown that the operation % related
to charge symmetry operation Cr corresponds exactly to the normal
ordering operation A [7]. Moreover, these operations guarantee that
in the (unfortunately unkown) QED ground state |G) the expectation

value of J, (r) and 6 (r) vanish, which should of course be the case [1].

It has to be mentioned that it depends on the purpose which
representation, the charge symmetry operation 1_2€F according to Pauli

or the normal ordering operation N, is more convenient [7].

2.2 QED and the Classical Limit Problem

In this subsection the reader shall be introduced in a more formal
way into the two aspects which separate Quantum Electrodynamics
as a field theory describing the interaction between quantized light—
and matter—-antimatter fields from classical light—-matter interaction
between fermions and photons.

The first, fundamental aspect is the lack of particle number
conservation which is indicated by the non—vanishing commutator
of the QED particle number operator (20) with the QED Hamiltonian
(8). The physical reason for this is the fact that in the QED soup high
energy photons buzz around, causing the creation and annihilation
of fermions and other photons! The QED field is a quantum field
consisting of matter and antimatter fields and light fields, and all
these fields are inextricably interwoven with each other.

The second aspect is the coherent superposition of matter and
antimatter degrees of freedom due to the definition of the Dirac
field operators (14).

These two aspects are independant of each other, as will be elaborated
in detail below.

Thus, in order to derive the nonrelativistic limit of QED there
are two steps necessary: one first has to unitarily transform the
QED Hamiltonian 7:[QED in such a way that it commutes with the
QED particle number operator N. This will essentially amount to
eliminating the pair terms in the QED Coulomb interaction, and to
eliminate the high energy photons. In chapter 4.1 it is specified what is
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meant by high energy photons (see (85) and the following discussion):
these are photons which are not important for the physics of classical
light-matter interaction processes, because their wavelength is below
the order of magnitude relevant for physics on the atomic or chemical
length scale.

The resulting unitarily equivalent many—body QED Hamiltonian is
a particle number conserving one for matter and antimatter fields
moving at arbitrary speed and interacting with low—energy photons,
the ones which are relevant for the classical light—-matter interactions.
However, this unitarily equivalent many-body Hamiltonian is still
not describing electrons and positrons separately. That means that
it is still not retranslateable to first quantization. Therefore, in a
second step, one has to decouple the matter and antimatter degrees
of freedom in this many—body QED Hamiltonian.

In the following the reader is introduced to the fundamental aspect,
the lack of particle number conservation. With this, it will be shown
why the QED Hamiltonian (8) is very difficult to interpret, although
the contributions look very similar to their classical analogues. This
is done by a discussion of the QED charge density operator (43) and
the QED current density operator (41).

Then the second aspect of decoupling the matter and antimatter
degrees of freedom is discussed in a more formal way, and it is
elaborted why there is a strict order of procedure for addressing the
two aspects.

The Lack of Particle Number Conservation in QED

One really has to emphasize that and actually put three exclamation
points on it: altough the wvarious contributions to the QED
Hamiltonian (8) are very similar to their classical counterparts, one
really has to be extremely careful, because these objects do not behave
classically, and what is going on in QED is absolutely non-trivial. As
is known, in our classical world, particle number conservation holds
strictly, and one can sum over the individual energies of the particles
(regarding their kinetic energy or their Zeeman energy), as well as
over the Coulomb energy of two particles. However, there is no way
to express the Hamiltonian (8) as one in which one can sum over
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individual particles. Formally, this means that there is no simple way
to reexpress the field theory QED Hamiltonian (8) in first quantization
[7]. This point can be more clarified by the simplest possible example,
by regarding the QED charge density (43).

In our classical world one could denote for the classical charge density
(cl)
o'V (r) [7]

N(©

_qu(S (r — rU) —qu(S (r — rUP) (46)

where one would sum over individual electrons and even, with the
respective minus sign, over individual positrons.

Writing out the QED charge density ¢(r) (using (14) and the
properties (17)) and applying the normal ordering operation AN or
charge conjugation operation =& (ckcz,) = —CJ,L,ck, see (44), one finds

7] 2

A A

20 = o )+@+(r>+@_<r>
M=¢>Y <U* Uy (x: k) s = Vit (k) Vi (3 K) 8L )

kk"

=q Y > Ui(r r; k) éf, bt
kk'

b-(r)=q Y Y Vi(r (r; K') bép
kK

(47)

Comparing (46) and (47) it becomes obvious that only gy could be a
candidate for a classical interpretation, since it is proportional to the
occupation number operator é,i,ék for matter and, with the respective
minus sign, the occupation number operator ZA)LZA),; for antimatter.
The contributions ¢, and ¢_ describe the creation and annihilation
of an electron—positron pair, as they comprise products of matter
and anti-matter creation and anihilation operators l;,;ék/ and é};,l%
These contributions to the QED charge density operator cannot be
interpreted classically, and there is no way to express the operator
0(r) as one in which one can count over individual point charges as

in the classical expression (46).

29



From the anticommutation relations (15) of the fermionic creation and
annihilation operators one finds [, 7]

N, 6o (x)] =0 (48)

and [3, 7]

N, 0x (1)) = %204 (1) (49)

The same holds true for the QED current density operator [7]

1-Cp .
(1) (can),,, B ()

— QeCZN (Z (U; (r; k') éL, + Vi (k) 5,;,) (), Z (Uu (r;k) e +V, (r; k) BD)
[TRY k

kl

51) (I‘) =de

= (geC Z Z (Oéb)u’l,

kK p.v

— i) + 5 )+ 57 ()

(50)
where again one finds [3, 7]
N3 )] =0 (1)
and [3, 7]
N )] = 225 (52

Now this has of course implications for the QED Hamiltonian 7:[QED.
The QED Coulomb interaction, for example, comprises nine terms,
of which six are non—particle number conserving! For example, the
contributions g (r) o 94 (r) or ¢, (r) o o4 (r) are not particle number
conserving. By far, written out, the QED Coulomb interaction seems
to have very little in common with the classical Coulomb interaction,
at least formally.

It is exactly these nonclassical properties (49) and (52) which should
be eliminated from the QED Hamiltonian. The aim is to find a
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physically equivalent representation of the QED Hamiltonian in which
these non—particle number conserving contributions are removed.
This can be achieved by eliminating the pair terms of the QED
Coulomb interaction and by simultaneously eliminating the high—
energy photons, which are the reason for the creation and annihilation
of fermion pairs and other photons.

However, as indicated, a particle number conserving QED
Hamiltonian is not the end of the story, since there is still the second
aspect, the coherent superposition of matter and antimatter degrees
of freedom.

The Coherent Superposition of Matter and Antimatter Degrees of
Freedom

Imagine that one has succeeded in finding a unitarily equivalent QED
Hamiltonian H; which preserves the particle number, hence

{N ,7:[(]} — 0. In this Hamiltonian 7:[(] all contributions with sub-—

or superscripts () have vanished, while those with (0) remain (plus
some corrections, as will be shown). Then, for example, the particle
number conserving contribution to the QED current density (50),
which couples to the low energy photons as _3£0) (r) -A,()T’low) (r), would

be given as follows:

W) = S"(Us (6K (o), Uy (5 k) Eén—Vir (1K) () ,,, Vi (5 K) BLbg,)
k. k'

Here, the occupation number operator éL,ék for the matter and I;Ll;k,
for the antimatter are separated. However, in the Dirac amplitudes
U, (r; k') and V, (r; k), which are the modes of the Dirac field operators
(14), the matter and antimatter degrees of freedom are not yet
separated.

The reason why there is no clear distinction between matter and
antimatter in QED as a field theory is that it is build upon
the properties of the single—particle Dirac Hamiltonian (10). The
amplitudes U, (r; k") and V, (r;k) both comprise four components,
hence eight degrees of freedom altogether, such that the Dirac
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particle itself is a hybrid of matter and antimatter degrees of freedom
[ ) ) Oy ]

In the introduction it has been mentioned that the relativistic
fermion, described by the Dirac Hamiltonian (10) is necessarily
a four—dimensional object [I, 31, 40], whereas the nonrelativistic
fermion, described by the 2 x 2 Schrodinger—Pauli Hamiltonian, is
two—dimensional. But one can still insist in the four-dimensional
theory that one wants an eigenvalue problem for the matter degrees of
freedom and the antimatter degrees of freedom separately, no matter
how many dimensions are necessary for describing the relativistic
fermion! This means that the Dirac amplitudes U (r; k") and V (r; k)
have to decompose into upper and lower components [10, 7]. Only
then it is assured that under a temporal evolution the matter and
antimatter degrees of freedom remain separated for all times [10, 7].

Hence, a unitary transformation T is searched for such that for the
eigenvalue problem (16) [10, 7]

ToHP) o T o TU (r; k) = E,TU (r; k)

53
ToHP o Tl o TV (r;k) = —E, TV (15 k) (53)

where the new amplitudes TU (r; k) describe matter only, and the
amplitudes TV (r; k) describe antimatter only, and the transformed
Dirac Hamiltonian T o H®) o TT is blockdiagonal. Only then is the
connection to the Schrodinger—Pauli Hamiltonian visible, because it
will not hurt the Schrédinger—Pauli theory if one adds two 707—
dimensions to it, meaning that the Schrodinger—Pauli Hamiltonian is
extended by two blocks ngg, and the Schrodinger—Pauli eigenfunctions

are extended by ( 8 )!

Now in case of the free Dirac Hamiltonian the decoupling of the
matter and antimatter degrees of freedom can be done by the so—
called Foldy—Whouthuysen transformation S [18, 9, 5, 3]. In case
of a Dirac particle in a static external magnetic field it is the so—
called Eriksen T transformation which succeeds in the decoupling
[23, 11, 20, 10]. As is shown in section 5, the Eriksen transformation
transforms the single-particle Dirac-Hamiltonian H”) into the so—
called Newton Wigner representation HYW) = T o H?) o TT, and the

correspoding Newton-Wigner eigenfunctions TU (r; k) and TV (r; k)
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indeed decompose into upper components for the matter, and lower
components for the anti-matter. This will be crucial for being able to
reexpress the field theory Hamiltonian Hy that conserves the particle
number in first quantization. For a recent in—depth discussion of the
Eriksen transformation see [10)].

As hopefully has become more clear: due to the coherent superposition
of matter and anti-matter degrees of freedom in the single—particle
Dirac theory, this superposition is carried into the field theory, because
for the Dirac field operators (14) the Dirac amplitudes U, (r; k") and
V, (r; k) serve as expansion modes. From this follows that in QED,
expressed in the Dirac representation, there is also no clear distinction
between electrons (matter) and positrons (antimatter). This aspect
does not have something to do with the particle number conservation,
as will be explained in more detail in the following subsection 2.3.

If one succeeds in resolving the first aspect, the lack of particle
number conservation, one will have a many-body QED Hamiltonian
Hy still given in the Dirac representation. This means that Hy is
still expressed by the Dirac spinors (14). Hence, this Hamiltonian still
couples matter and antimatter degrees of freedom.

However, one can in fact still apply the Eriksen transformation T, that
serves for decoupling the matter and antimatter degrees of freedom in
the single particle Dirac theory, to the particle number conserving
many-body Hamiltonian Hy

To give an impression of how this is done, for the particle number
conserving contribution to the QED current density, which remains
after eliminating the particle number violating terms, this would mean
that one inserts the Eriksen transformation according to TIT = 1:

TOEDY (U$ (r3 &) (TH) (mw (), <T*>W) (Tl (r k) &

kK’

— V7 (r k) (TN ((T)uu’ (@) (TT)M’”) (Do Vie () BE(SQ)

One can now reinterpret the amplitudes T,,U, (r; k) = Ui (r; k)
and (T),,V,(r;k) = y A (r; k) as Newton—Wigner amplitudes
") (r;k) and y ) (r;k) [10, 8, 7].  The Newton—Wigner
amplitudes can then be assumed to be proportional to the two-—
Schrodinger—Pauli amplitudes of atomic energy scales, because
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the Newton—Wigner representation of the Dirac amplitudes is the
representation for the classical interpretation of the Dirac electron [9].
They will therefore will serve as expansion coefficients for the Newton—
Wigner field operators @, (r). One can then therefore explicitely
calculate the matrix elements of the form T o o o TT as a gradient
expansion with respect to the gauge invariant moment operators
ﬂa(r), because the latter acts, in the nonrelativistic subspace of QED,
on the slowly varying Schrodinger—Pauli wave functions.

Unitarily transforming the QED Hamiltonian (8) in the manner
outlined here, namely first finding a unitarily equivalent QED
Hamiltonian that conserves the particle number and second applying
the Eriksen transformation T for decoupling matter and antimatter
degrees of freedom, necessarily implies the renormalization of the bare
mass my and the g—factor of the fermions [8, 7]. This is because
QED is a field theory with true interactions. Since it is not possible to
transfrom the QED Hamiltonian into a particle number conserving one
exactly, only perturbatively, the result is valid up to a certain order
in the coupling constant that one has to choose (the finestructure
constant). Therefore, as will be shown, the “true” electron mass
m. and therefore the “true” g—factor of the fermions, the anomalous
g—factor, only appear as classical attributes when one renormalizes
the bare mass mg. This means that one has to choose a cut-off for
otherwise divergent integrals in terms which add up to the one—particle
terms. In that guise the classical, the nonrelativistic Hamiltonian of
light—-matter interactions for electrons as well as for positrons and
their interactions emerges.

But how can all of this be achieved? What unites the two aspects
introduced above is the relation with a change of representation.
In quantum mechanics, such a change of representation is done by
a unitary transformation, hence, a transformation which maintains
the physical content of a given Hamiltonian as the generator of the
dynamics of the respective physical system. If this transformation can
be performed only perturbatively, it is clear that the physical content
can be maintained only up to a certain order in the pertubation
method chosen.

In this dissertation the method of choice is the so—called flow equation
[16]. Tt is a differential equation for unitarily transforming a given
(Hamilton) operator in a continous manner, and it is discussed in the
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section 3. With the flow equation one can find a particle number
conserving unitarily equivalent QED Hamiltonian Hy [3, 7].

Furthermore one can also deduce the Eriksen transformation T by the
help of the flow equation. The Eriksen transformation leads to the
very important Newton—-Wigner representation of the single—particle
Dirac Hamiltonian and the related eigenfunctions [7].

Therefore, before diving into the flow equation, the Newton—Wigner
representation is explained in a little more detail, because it is a very
convenient representation for a classical interpretation of the single—
particle Dirac Hamiltonian (and related obervables) [19, 18, 9, 10].
This will help to understand why the lack of particle number
conservation and the decoupling of matter and antimatter degrees
of freedom are independent aspects, and why one first has to find
a unitarily equivalent QED Hamiltonian that preserves the particle
number, and then decouple the matter and antimatter degrees of
freedom.

2.3 The Newton—Wigner Representation: A Short
Exposure

The so-called Newton Wigner representation HM) = ToHP) o TT, of
the Dirac Hamiltonian H?)| resulting from the Eriksen transformation
T that has been mentioned in the previous subsection, has much
to do with the problem of finding the nonrelativistic limit of the
QED Hamiltonian (8). As is presented in the appendix section
B, the Eriksen transformation T that allows the transition from
the Dirac representation described by H®) to the Newton-Wigner
representation HMW) can be found by solving the flow equation ezactly

[10, 7.

However, as has already been mentioned, the Eriksen transformation
can also be applied to QED as a field theory. In this subsection a
short insight into the consequences that the Eriksen transformation T
has for Quantum FElectrondynamics as a many—body theory shall be
given. For this the QED particle number operator N and the QED
charge density operator ¢ (r) will be presented in the Newton—Wigner
representation.
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At this point one has to make a clear distinction between the
single particle Dirac Hamiltonian (10) and its second quantized
complement (9) regarding the way of speaking: speaking of the
Dirac representation in the context of the single particle theory,
the observables are transformed into one another by the unitary
transformation T, for example for an arbitrary operator o®) (z,D)
in the Dirac picture then

O™ (2,p) = To OP) (2,p) o T! (54)

Speaking of the Dirac representation in the context of QED, however,
it is always referred to the second quantized observables which are
described by the Dirac field operators (14). Hence,

o) = / d*rif (r) <6<D> (@,ﬁ)) U (r) (55)

Accordingly, speaking of the Newton—Wigner representation in the
context of QED, it is referred to the second quantized observables
expressed by the so—called Newton—Wigner field operators &, (r)
introduced below (62). These indeed result from the Eriksen
transformation T:

As an example for switching from the Dirac representation to the
Newton—Wigner representation consider the QED particle number
operator N given in (20): in the Dirac representation, it is, expressed
in the position space r, a highly nonlocal operator [3, 7]:
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Here use has been made of the normal ordering rule N/ (13;8,{) = —6,;3%,
for an in—depth explanation again see appendix section F.

Furthermore, the projection operators P& have been used, which are
introduced in the appendix section A. Roughly spoken, P™) projects
onto eigenstates U, (r;k) of positive energy solutions of the single
particle Dirac Hamiltonian, and P(~) projects onto its eigenstates of
negative energy solutions V), (r; k).

The exact formal identity [7, 10]

D
o) (),
[hh! H(D) o H®D) gt

is also explained in detail in section A of the appendix.

As has already been mentioned, the QED particle number operator N
in the Dirac representation is nonlocal, meaning that the integrand in
(57) cannot be interpreted as a particle density in position space r.

However, in the Newton—Wigner representation, N becomes local. To
see this one needs the following identity [7, 10]

TofoT=pPH —p-) (59)

where (3 is nothing but the Dirac § matrix (12) refering to the existence
of matter (upper block, +1s42) and antimatter (lower block, —15x5)!
(The identity (59) is derived in section C of the appendix.)

Inserting (59) into (57) there follows [7, &]
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. H(D) .
N= [ &N Pl < ) 0,
[ [ Suo () e
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(60)

ot
= / drN

_ / N [ (1), 80 (8), (T, B (1)

/ /
VUV s 1

S @) (T, (8, (T, b (1)

’ ’
V7V ’H7u

In the last line it has been integrated partially with respect to \i/L (r),
such that T+ = TH(IT*).

If one reinterprets the "new” field operators [7, &]

(61)

as Dirac spinors in the Newton—Wigner representation then [7, §]

A

N = / #rN (S8 () (), by (1) (62)

becomes a local operator. As will be shown in section 5, the Newton—
Wigner field operators @, (r) are blockdiagonal meaning that the
Newton—Wigner expansion amplitudes U SL{VW) (r, k) to positive energy
eigenvalues have entries in the upper two components, while the lower
two components are zero, whereas for the Newton—Wigner expansion
: (NW) . ) .
amplitudes Vi (r, k) to negative energy eigenvalues, it is vice versa,
the upper components vanish while the lower do not. Hence, the

integrand can be interpreted as a true particle density
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The same holds true for the QED charge density operator (43) [7, &]:

Q = /dgrqe./\f (Z ‘IIL (r) ¥, (r))

= g N (Z /dgr\iJL (r) (TT)%V (T)V’u, \ilu/ (r))

Vsts !

(63)
— g N (Z / dr (T () (T),,, U, (r))
— / drgN <Z ] (r) &, (1‘)>
One can now make the ansatz [3, 7]
¢+ (r) TL (r) 0
. r r 0
P, (r)=(T),,Vu(r) = ii Er; = w_o( ) T X\ (x)
L)) o ) \iw)/
(64)

where 1 (r) and x4 (r) are the field operators of many—body physics
for electrons and positrons separately.

Therefore one finds [7]

( 1%+ (r)
_ o Jo(x)
Q= [draN | (0L ) ) ) |
\ AL ()
- / PraN (DO E) e (1) )Xo (1) XL (r)>
= / d*r q. (Z Ob (1) ¥o ZXU Xo )
_ /dST " (ﬁ(e) (r) — A (r))
(65)
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Where 72l (r) = Y, @EI, (r) 1y (r) is the electron particle density,
whereas 2 (r) = Y_ ! (r) ¥, (r) is the positron particle density.
Please notice the minus sign for the positrons.

Hence [7]
o) (r) = qen' (r) — g (r) (66)

and for the particle density operator [, 7]

AN (1) = Al (r) + A® (1) (67)

This means that in the Newton-Wigner representation the particle
density operator and the charge density operator become local
operators that can be interpreted as a true particle density and a
true charge density in position space. There are no oscillating, the
particle number violating terms like g4 (r) as is the case in the Dirac
representation of the QED charge density operator (47). There are

also no complicated operators like —HP_ Jike in the QED particle
VHD)6H(D)
number (57).

However, as has been mentioned in the last subsection, it is not
sufficient to know the Newton-Wigner representation of the field
operators for deducing the classical limit of QED. One might think,
after having seen the Newton—-Wigner representations of the QED
charge and current density operators, that the Eriksen transformation
T should make it possible to reexpress the QED Hamiltonian
Hoep by the Newton Wigner field operators @, (r) and @] (r) and
then the QED Hamiltonian in the Newton—Wigner representation is
retranslatable to first quantization yielding the classical light-matter
interaction Hamiltonian. However, this is not the case, and now it is
possible to understand a little more formally why that is not sufficient.
It is because the particle number violating terms stemming from the
interaction terms M, and Ve are removed too early by replacing
the Dirac field operators !ﬁu (r) by the Newton—Wigner field operators
®, (r) in (8)! Take a look, for example, at the unitary transformation
11,

of the operator 7L, occuring in 7, . Tt still has complicated form

in the Newton-Wigner representation [7]:

1
T (s ) T = — (Lot 55 HDE) (69)
\/14><4 + 2, HP)

mOC2 4x4
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This relation is derived in the appendix in section B. However, the
term with the non—diagonal Dirac a; matrix vanishes iff it is applied
to the Newton—Wigner field operators (see section 5). Hence, if one
applies the FEriksen transformation before eliminating the particle
number violating contributions of the transversal interaction H, given
in (40), and the QED Coulomb interaction Ve given in (42), this does
not yield the correct (e.g. experimentally very well verified) light-
matter interaction Hamiltonian I:IS—ZZ\ZI as presented in (2). It would
yield a Hamiltonian withouth effective interactions, and withouth self-

energy terms (e.g. without renormalization terms).

Therefore the aspect of particle number conservation and the
aspect of decoupling the degrees of freedom of the matter and
antimatter fields are independant aspects of the classical limit
problem of QED. Furthermore its is necessary that one first finds a
particle number conserving representation of the QED Hamiltonian
(8), and then decouples the matter and antimatter degrees of
freedom by reexpressing this particle-number conserving unitarily
equivalent QED Hamiltonian in Newton—Wigner representation!
QED described by the Hamiltonian 7:[Q gp is not a many—body
theory, but its particle number conserving sister Hy is, and
this makes it possible to apply the Eriksen transformation.

As has already been mentioned, the aspect of finding a unitarily
equivalent QED Hamiltonian which conserves the particle number can
be attacked by the help of the flow equation. The aspect of decoupling
the matter and antimatter degrees of freedom can be attacked by the
help of the Eriksen transformation. The matrix representation of the
Eriksen transformation can be found by the help of the flow equation.

In the following section the flow equation is introduced first on a
general level, then the Wegner flow equation is discussed briefly in
order to present the initial idea of its inventor Franz Wegner.

Then the Brockett flow equation is discussed briefly, because this type
of flow equation gives the Eriksen transformation T, which enables
one to decouple the matter and anti-matter degrees of freedom.

Since the Eriksen transformation is well discussed in the literature,
see for example [23, 24, 25 11, 27 28 29 10], its derivation is
not as fundamental as that of the particle number preserving QED
Hamiltonian. But it is a nice example of how the flow equation can be
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solved exactly, therefore, the solution of the flow equation which yields
the Eriksen transformation is presented in section B of the appendix.

As will be shown, the flow equation yielding the particle number
conserving QED Hamiltonian can only be solved perturbatively.
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3 The Flow Equation

The flow equation is a method for unitarily transforming a given
(Hamilton) operator in a continous manner. It has been introduced
into physics by Franz Wegner in 1994 [16]. In many cases applying
the flow equation in the sense envisioned by Wegner means that one
searches for a unitarily equivalent Hamiltonian that is diagonal or at
least blockdiagonal instead of being non—diagonal. In some sense it
is the operator analogon to diagonalizing a scalar matrix, however,
this (block—) diagonalization is achieved by solving a differential
equation. The requirement of unitary equivalence means that the
transformed Hamiltonian should describe the same physics as the
original Hamiltonian by leaving physical observables related to the
matrix elements of the Hamiltonian invariant.

The idea is the following. For a given Hamiltonian H an infinitesimal

shift that is guided by the flow parameter s can be expressed by [7]

A~ A~

H(s+ds) =exp[n(s)ds] H(s)exp[—17(s) ds] (69)

The generator 7 (s) of this shift must be skew—hermitian in order to
keep the shiftet Hamiltonian hermitean [7] :

7(5) = =7 (5)

(#(s +ds)) = (exp i () ds] H(s) exp [~ (s) ds])
— exp [’ (s)ds| f(s) exp
= exp 71 (s) ds] H exp [1) (s) ds
= H(s + ds)

A~

The inital value for s = 0 is given by H(s = 0) = H.

The flow parameter s does not have a specific physical meaning, it
serves as parameter for the unitary transformation.

By making use of the Baker—Campbell-Haussdorf formula, see (629),

exp(rA) o Boexp(—z4) = 3 g[A, BJ" (70)

n=0
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for operators A, B, one finds for (69) in the order ds [7]

H(s +ds) = H(s) + ds[i) (s) , H(s)] + O ((ds)?)
Thus [7],

A~ A~

H(s+ds) — H(s)
ds

=[i(s), H(s)| + O ((ds)?)
In the limit ds — 0 the flow equation follows as [7]

L (s) = [ (), () ()

Now there are two questions regarding the solution of the flow equation
(71). The first one is what is the suitable generator 7 (s) that lets the
initial Hamiltonian H(s = 0) flow, for all s, towards a diagonal or at
least block diagonal shape, so that finally H(oco) is completely (block)
diagonal.

The second question is what is the right ansatz for H(s) that fulfills the
left side of the flow equation (71). This question might be answered
only for a concrete problem at hand.

In the following two subsections we will discuss two possible choices of
the generator 7)(s) related to two types of flow equations: the Wegner
generator 7")(s) which generates a nonlinear differential equation,
and the Brockett generator #(%) (s) which generates a linear differential
equation.

3.1 The Wegner Flow Equation

The Wegner flow equation for an inital Hamiltonian H (s) assumes the
following guise [10]:

d -
—H
T H(s)

[ﬁw)(s), [:I(s)} , ﬁ(s)}

(72)
HO)=H
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Here, H (D)(s) refers to the diagonal part of the initial Hamiltonian
H(s), hence, the latter is decomposed into a diagonal part and a non—
diagonal part according to

A~ A~

H(s) = HP)(s) + HWD)(s) (73)

The generator ") (s) that leads to the Wegner flow equation (72) is
given by [10]

i) (5) = [AP)(s), A (5)] (74)

A hint that the unitarily transformed Hamiltonian H (00) assumes
a diagonal or at least a blockdiagonal form can be sketched by
considering the trace of the square of H (s), which is invariant under
a unitary transformation [7]:

Lix (A (5)) = ir (H(0)7 0))
_ itr (FI(D)(s)FI(D)(s)> I itr (g(ND)(S)g(ND)(S)>
(75)

This holds because tr (ﬂ(D)(s) o ﬂ(ND)(s)) = 0. Furthermore, since

H(0) is constant, there follows Lir (ﬁ(O)ﬁ (O)) = 0. From this one
finds [7]

(76)

An increase in the diagonal parts HP)(s) of H(s) is accompanied by
a decrease in its off-diagonal parts HVP)(s). In the limit s — oo
then hopefully we find HWD) 0, at least approximately. As
has been pointed out by Franz Wegner, it depends strongly on the
initial problem how far the diagonalization can be advanced, i.e.,
whether the non-diagonal elements actually disappear completely or
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whether small parts remains. It is also not possible to say in general
whether a generator leads to complete diagonalization, or only to block
diagonalization. Furthermore, there are no instructions for finding a
suitable generator [12, 43]. Hence, finding the right generator is the
fine art of this method of unitary transformation.

The Wegner generator 7(") of the flow equation allows great flexibility
in the unitary transformation, however, it leads to a nonlinear
differential equation that is cubic in the initial Hamiltonian H(s) so
that there does not necessarily have to be a simple solution to it.

Furthermore, it must also be noted that it depends on the choice of
the base which parts of the Hamiltonian are diagonal or nondiagonal.
An operator that is diagonal in one base is not necessarily diagonal
in another base. In this way, the flow equation itself becomes
dependent on the choice of base. This means that there could be
several generators that achieve the desired blockdiagonalization, and
one cannot say a priori which is the most convenient one. Now for
the solution of physical problems this means that it might be that a
unitarily equivalent, blockdiagonalized Hamiltonian is not physically
interpretable because the chosen base does not allow for a physical
interpretation. For example, the Dirac Hamiltonian describing the
Dirac electron can be interpreted classically only iff one changes the
representation by the help of the Foldy—Wouthuysen transformation
or the Eriksen transformation. This holds true also for observables
like velocity or angular moment and so on [9].

3.2 The Brockett Flow Equation

The Brockett flow equation for an inital Hamiltonian H (s) assumes
the following guise [14]:

d%ﬁ(s) = ||V ()| A (s) (77)

Here, N is some hermitian operator which does not depend on the
flow parameter s.

The generator 7P) (s) that leads to the Brockett flow equation (77) is
given by [14]
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i) (s) = | N, A (s)] (78)
Since N is constant, the Brockett flow equation is only quadratic in
the initial Hamiltonian. The price for a simpler differential equation
is that the unitarily transformed Hamiltonian H (co) is not necessarily
of diagonal or blockdiagonal shape. What one can show is that the
Brockett generator leads to a unitarily equivalent Hamiltonian hat
commutes with the operator N, which means that they share the
same base.

For this consider the following functional ®(s) [7]

B(s) = tr <(ﬁ1(s) - N)2> (79)

Since H(s) and N are both hermitian operators, the function (79) is
positive semidefinite, ®(s) > 0.

For the the derivative of the functional ®(s) with respect to s one
finds [7]

%@ (s) = %tr [(ﬁ@) - W) 2]

_ % [tr (H(s)H(s)> + tr (NN) — 2tr (NH(S))]

_ % [tr <ﬁ(0)]f[(0)) + tr (NN) — 2tr (Nlﬁ](s))}
~ o (o)

S

(80)

Here use has been made of the fact that the trace is cyclically invariant.
Using furthermore the Brockett flow equation (77) one finds [7]
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Since the functional is positive semidefinite, ®(s) > 0, and its
derivative is negative semidefinite, %QD (s) < 0, there follows in the
limit s — oo [7]

lim i@(s):0:tr(

s—o00 ds

=
=
~—~
g
/N
=
z
~
3
N—
SN—
~.
N——

And therefore [7]

0= 7P (c0) = [N, ﬁ(oo)]

As one can see, the Brockett generator achieves a unitary
transformation of H(s) such that for s — oo the transformed
Hamiltonian H(co) commutes with the operator N. Only if N is
itself diagonal or blockdiagonal one can infer that H (00) must be so!

In the following subsection the use of the Wegner flow equation in the
context the problem attacked in this dissertation is briefly sketched,
namely, the deduction of the nonrelativistic limit of QED.

3.3 Flow Equations and the Classical Limit Problem of QED

As has been elucidated in section 2.2, one has to attack two aspects
regarding the deduction of the nonrelativistic limit of Quantum
Electrodynamics, and there is a strict order in which to proceed:
one first has to find a unitary transformation that gives a QED

Hamiltonian Hy that is particle number conserving, thus, []\7 : 7:[U} =

0. It is possible to find this unitarily equivalent QED Hamiltonian by
the help of the Wegner flow equation.
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In part one of the deduction of the nonrelativistic limit of QED the
generator AHFM )(s), where LM stands for light-matter, which gives a
unitarily equivalent QED Hamiltonian Hy is presented. It generates
a nonlinear ordinary differential equation. This can then be solved
perturbatively by expanding the QED Hamiltonian in a series in the
(dimensionless) finestructure constant apg. This expansion will lead
to recursive linear differential equations, which will be solved up to
the order af.

The solution Hy is then given by [7, §]

lim Hy (s) = moc? (ﬁ@) + AW (00) + + [ <oo>...)
S§—00
(81)
Here, H (00) is the first order solution, and + H2D (00) is
the second order solution comprising an homogeneous part
and an inhomogeneous part /> (cc).  The particle number

conserving Hamiltonian lim,_, 7:[(](8) = 7:[U(oo) = H;, which will be
discussed in subsection 4.2, is a many—body Hamiltonian still beeing
expressed by the Dirac field operators @,,J (r) given in (14). As has
been indicated in section 2.2, these Dirac field operators superpose
matter and antimatter degrees of freedom due to the Dirac amplitudes
U, (r;k) and V), (r; k). For the decoupling one can then make use of
the Eriksen transformation T.
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4 Solution to the Classical Limit Problem of QED
Part I: Applying the Flow Equation

In subsection 4.1 the generator H*™) (s) for the flow equation that
provides in the limit s — oo a unitarily equivalent QED Hamiltonian
7:[U that preserves the particle number is introduced. LM in
7EM) (5) stands for light-matter, since this unitarily equivalent QED
Hamiltonian is a many-body Hamiltonian in second quantization
describing the interaction between charged fermions moving at
arbitrary speed and interacting with low—energy photons.

As will be shown, the generator 7“™) (s) depends quadratically on
the initial (QED) Hamiltonian. Therefore, the related flow equation
is a nonlinear differential equation.

It comprises the operator Ny counting the number of occupied Dirac
modes, and the operator Ny counting the number of occupied photon
modes of high energy. The latter means that the flow equation
for constructing a light—matter interaction QED Hamiltonian Hy
eliminates photons with wavenumbers larger than qp = O;\—f;g, where Ao
is the Compton wavelength of the electron, and apg the finestructure
constant. The related wavelength of the photons relevant for light—

matter interaction processes is then the Bohr wavelength A\p = (21—7; R~

3A. 1In the end one will therefore get a Hamiltonian Hy that
describes processes of atomic and molecular physics, and even solid
state physics.

The related flow equation decomposes into recursive differential
equations by expanding the QED Hamiltonian into a series in the
finestructure constant apg. For solving them one has to choose the
initial data, which will be done in a physically consistant manner.

The solution of the first order differential equation will be presented
in full, whereas the solution of the second order differential equation is
in larger parts shifted to the appendix, in order to keep the overview.

The homogeneous part of the second order differential equation is
related to the QED Coulomb interaction. For solving this equation
the latter should be decomposed into a normal ordered part and a
self-reaction part. The decomposition is presented in section G of the
appendix. The self-reaction part of the QED Coulomb interaction
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yields one part of the contribution to the renormalization of the bare
mass m of the fermions and their g—factor.

The other part of the renormalization of the fermionic attributes
is due to the QED interaction with photons beyond the energy
threshold hcqp = apgme.c®. These hard X-ray photons and the higher
energy ones are beeing eliminated from the QED Hamiltonian. This
takes place by solving the inhomogeneous part of the second order
differential equation.

Besides the renormalization contributions one will by that get
terms describing an effective Coulomb interaction and an effective
transversal interaction now with the low—energy photons.

4.1 Generating Particle Number Conservation

A unitary transformation is searched for such that in the low energy
sector of QED there holds particle number conservation for the
fermions, and all processes during which high energy photons that are
irrelevant for nonrelativistic light—-matter interactions are eliminated.
The flow equation for that aim is given by [8, 7]

d . ) )
A (s) = [0 () H(5)]
> 1 omn (82)
H(0) = Y(QED
(0)=

The generator HXM) (s) of the flow equation can be found by regarding
the following positive semidefinite functional ®FM)(s) >0 [3, 7]:

OUEM)(g) = %tr ([Nz,ﬁ(s)} o [ﬁ(S),NIDJr%tr ([Nu,ﬁ(s)} o [ﬁ(s),NH])
(83)
Where

o1



N; = N(e) _|_N(p) = Z (Cka+bT];b )

Nip=NP =3 Z N

la|>qp Ae{I, 11}

e (84)
- Z Fqg,x®a,\
q,A
- At
= Z Kyl
q
and
_ 1 for |q| > gp (85)
! 0 for |q| <g¢p

Hence, N; counts the occupied fermion modes, and Nj; counts the
occupied photon modes of photons with energies are larger than hcgp.
(85) ensures that all photons with wavelength A\p = 5—; 2 3A and
longer remain contained, whereas all photons with wavelength Ap <
2—2 are being eliminated. Hence X-ray photons and gamma photons
are eliminated. Note that the Compton wavelength of the electron
Ao =~ 2.4pm, indicating the range of wavelengths where pair creation
starts to take place, was mot chosen as upper limit for the photon
elimination. With the choice to eliminate photons with wavelengths
Ap and shorter one is of order A\gp ~ Cj—gs well away from the pair

creation threshold.

Now for the derivative with respect to s one finds for the functional

(83) 5, 7]




(LM)

Iff the generator 7 is choosen according to [3, 7]

Z0M(s) = tr (M) (5) 0P (s) )
: (89)
(e () <o

Altogether then for s — oo there holds lim, ., ®EM)(s) = 0 =
limg_e £ @M (s), implying [3, 7]

lim [N[,f[(s)] - [Nf,ﬁ(oo)] ~0

51;:5:0{%7?[(3)} = [Nn,ﬁ(oo)} — 0 (89)

The generator (87) therefore generates a flow equation which, if
solvable, provides in the limit s — oo a unitarily equivalent QED
Hamiltonian 7 that conserves the particle number and that does
not describe absorption and emission processes of photons with high
energies hw (q) > hegp.

4.1.1 Series Expansion

It has been proven that the generator 7(“M) allows to obtain a particle

number conserving QED Hamiltonian. The related flow equation
assumes the following guise [3, 7]

d
0 (85 [00])  [3 [p ]
(90)

For s = 0 the initial values are given by
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~ 1

H(0) = —Hoep
mgc ) ) A ) ) (91)
= Q(HD-i-Hmd-l-Vext—F'HL—l-Vc)
moc

Since the differential equation (90) is nonlinear, one can only solve

it perturbatively. As a parameter for a perturbation series of H (0)
|qe‘2 — 1 ~ L IS
4dmeghc kcagp — 137

the dimensionless finestructure constant apg =
chosen. This yields to [3, 7]

H(s)=Y HY(s) (92)

Inserting this series into the differential equation (90) one find the
following recursion equations [3, 7]

%ilfl(ﬂ') (s) = |: i JaiC) (s), (|:NI, |:]\AII7 i 76" (5):|:| + |:NH, |:NII7 i 76" (s):|:|):| , i A" (5):|

§"’=0 §''=0 §'"=0

D> fﬁ f)f)éj,mwm [[AG) ), ([Rr, [80, 867 ()] + [Kor, [N, 867 ()] )] O™ (5)]
= i i i 0 (i3 —3") [[AO) ), ([Fr, [Fr, B8O ()] + [Fur, [Nrr, 8O ()] ])], O3 (s)]
(93)

where

1 forz >0

O (z) = { (94)

0 forz<O

is the Heaviside step function.

Comparing the orders of j on both sides we finally find [8, 7]

LU (5) = > S eG-7 =) [[A0) . ([Fr. [0 50 )] + [Sor, [800. 86 0)]])] G (0)
j'=034""=0

(95)

These recursive linear differential equations will now be solved up to
the order j = 2. For that purpose one has to choose the initial data.
This is done in the following way [7]
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00 = L (1 + )
moc
. 1 .
aY(0) = H
( moc® (96)
X 1 /. .
H® (0) = — (Vm + Vc)
moc

HY (0)=0forj >3

Note that H(0) = micg’i:[QED. The justification of the choice (96)
is presented in the appendix in section E. There it is shown that
the transversal coupling is of the order apg, whereas the Coulomb

interaction is of the order a%g

It is very important to be clear that the energy of the radiation field
7-Almd must be put on zeroth order here. It would not be consistent to
assume that it is of the order a%¢mgc? of atomic physics (and hence
comparable with the Coulomb energy). The reason why is that the
number of occupied photon modes fiq x = 0,1, 2, 3, ... can be unlimited,
such that the radiation energy Houd = Z% \ hw (q) (ﬁ% \ + %) must be
put on the zeroth order next to the rest energy and the kinetic energy
of the fermions. Otherwise one would assume that there are only
low—energy photons in the QED soup from the beginning.

In the next step all quantities are normalized to the rest energy mgc?

of the fermions. Hence, the following abbreveations are introduced [7]

A 1
moc2

. 1.
H,..u= mgc2 Z hw (q ( qAaq,\ + 1) qu (a aq + 51)
Hp = Z By <ckck + by ) => E (cka + b%b,;) (97)
k

(ﬁD + ﬁrad) = [:]D + [:Irad

moc2
N o
E,. = 5
moc
_hw(a) _hclgl _ hlql _|q|
T mec mec mee ke

Now for the zeroth order differential equation of (95) one finds the
following nonlinear one [8, 7]
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L0 ()= [ (s), ([87, [80. 80 )] + [Fer, [800, 20 (5)]])] 5O (9)]

ds
(98)
Since [NI,I:I(O) (0)} =0 = [NH,}A[(O)(O)} the only phyiscal solution
that to the nonlinear zeroth order differential equation (98) with
respect to the initial value (96) is given by [3, 7]

Mo (ﬁD * Hd) (99)

= H (o)
Hence, it is constant for all s. This enables to find solutions for all

higher orders j, because they occur as linear differential equations.

For the first order j = 1 one finds from (95) the following linear,
homogeneous differential equation [3, 7]

A0 @) = = [, [0, ([0 [ 8O @] + [, [N, 5O @]
AW (0) = micﬂl

(100)

And for the second order differential equation one finds from (95) [3, 7]

[0, [aO, ([8r, [87, 80 (5)] | + [N, [Frr, B ()] ])]]
d -
a1 =9 A, ([A0 ), ([N, [N, 80 (9)]] + [N, [N, 8O (s)
— jf{(l) (s),([fl(o), jJ\AfI, Ny, HY (S)i + | Npp, [Ny, HO (s)
H® (0) = —" <f/ext + f)c)

Here, several contributions drop out because [N],ﬁ (0) (O)] =0 =
Ny, HO(0)]

The seeked unitarily equivalent QED Hamiltonian respecting particle
number conservation assumes the guise [3, 7]
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lim Hy(s) = moc? lim H(s) = moc? (ﬁ(o) + HW (00) + HY (00) + )
(102)

In the following subsections the equations (100) and (101) are being
solved.

4.1.2 First Order Solution

For solving the first order differential equation (100) one makes the
following ansatz [7]

AW () = MY 4 A8 (5) 4 A (5) + L) (s) (103)

H S’O) is the contribution that comprises interactions between fermions
and low energy photons (such one with wavenumber ¢ is smaller than
the Bohr wave number ¢p = S [T]:

(r; k) cT Crr €T Gy

( k) Uy

k) Vi (x; k)bTbe’q‘”
k)

k)

r;
n Vi (r;
H(<10) :_moc2 ZZ/CFTMZH: o) ot f Z +U*(

k,k' b q<qB
*
7‘/;/, (

U, (r; )c,ick et raT
Vi (x3 k') B by eﬂqraf

(104)
This contribution is independent of the flow parameter s and therefore,
these interactions are being conserved during the flow s — oo.

H (>1’O> (s) accordingly comprises interaction processes between
fermions and high energy photons, such one with wavenumber ¢ larger
than gp [7]:

MY (5) = — mCQ (cge ZZ/d TZ ),

kK
U (r; k:) Uy (v; k') e (BeBu—a) il e,
LS~ g, VRV ke (BB e eta,
X —= b 4
\/vq>q3 +U; (r; k) Uy (5 K) e~ (B Bt,). éLck/e quaT
V(33 k) Vo (3 ) e (BBt iy eiagf
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The dependence on the flow parameter s is chosen in such a way that
it reproduces the double commutator of the flow equation (100), as
will be shown a few lines below.

Hence [7],

A () = AU + B (s) (105)

With the definition of the step function k, according to (85) one
furthermore defines [7]

) (s) = _m$02 (cqe) Z Z/d?’rz (O‘b)u,u’ UZ (r; k) Vi (r; k/)
Hopt!

kK b

x > Ay(g)efbl, (e’(‘”“q)s(’;k+ By=q)" giarg 4 o= (4+ ”q)S(EHEk/*‘Dq)Qe‘iq'rdi;)

VvV

= (cqe) Z/dsr/ Z (e )y Vi (s K') Uy (v K)
’ b/

v,v’

_ X—ZA N7 7(4+Hq/)s(EK+EK/7¢Dq,)2 gl At 7(4+nq/)5(E~K+EK/+qu,)2 i
= b (q ) birix | e e g +e e g

In order to show that the ansatz (103) solves the first order equation
(100) it is convenient express the matrix elements in the compact Dirac
braket notation (see section A of the appendix)

Z/d?’frU; (r,k) e "0, (v, k') = (Ug| e "% |Uy)
I

Z/dgTU/f (r, k) €79V, (x, k') = (Ug| e Vi)
g | | (106)

Z/d%VJ (r,k) e "0, (v, k') = (Vi e %% |Up)
I

S [V ) Y, (1) = (e V)
W

Note that x is an operator.
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With that there holds [7]

<Uk| abeiqaxa |Uk/> ézék'&q

YIS D ID DENC it v
VV DA\ 4 Wl ayeminxe U el e
k. k'

q<gp b — (Vi| ape ™15 Vi) b b a

[:I(I,O) _ [ _ de
< moc

. ~ ~ ~ 2

(U] apesome [Uy) e~ (P =Pr=2a) oy,

L —s E /7~ - 2ot 2 ~

f{(>1’0) (s) = <_ Qe > 1 Z Ay (@) — (Vi| apei®eXa |V} e (Elj Efc a) ?Lb,}aq
— + <Uk| abe—iqaxa ‘Uk’> e_s(Ek_Ek’+Wq) ézék’dg

. ~, =, ~ 2 A ~
— (Va| apei% [V o= (B —Brtay,) b;b,;dg
(107)

i — kg)s(EptEo—0g)° AT31 A
I“{(l,Jr) (S) _ (_ de ) Z L ZZ‘Ab (q) <Uk| apeidoXa |Vk-/> e (44k4q) (Ek:i—E;c~ (1) c}b;[c,aq
moc Vv b + (Ug| ape™a%a | V) e~ (tra)s( B+ By +@q) é,tl;;&z

(108)

iq’ - kg Vs(—Egr—Ex+@,)5 A 4
A0 (5) = (_ Ge ) > LZZAU @) (Vier| e % |Ue) e~ (4F50)s( EK E~K+ a) SR,CKQZTI/
moc K.K' \%4 Y —+ <VK" ab/€+’iq;xa ‘UK> 67(4+Hq,)s(7EK7EK' 7‘2211’) l;[_(léqu/
T
- (H(1,+) (S)>

This ansatz is consistent with the chosen initial value (96) as can be
seen by setting s = 0.

With the given operator N7, see (84) one finds [7]

{NI, A0 =0
[NI, (HSO) + (s))_ =0 (109)

[0, 509 (5)] = 42609 (5

Hence [7],

[0, [N, B0 (]| = [, [, (09 () 4 09 (5) 4 5207 ()]

= 4FW) () + 4HY) (s)
(110)
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Since the operator Nj; counts, according to (84) only high energy
photons, there holds [7]

(111)

Therefore [7],

[NH, [Nn,ﬁﬂl) (S)H — A () + A () + BE ) () (112)

Inserting the ansatz (103) into the inner double commutators on the
right hand sight of the differential equation (100) one can see by the
help of (110) and (112) [7]

[NI, [NI;]A{(D (S)H + [NIL [foaﬁ(l) (S)H
= AV (s) + 4B (5) + 5HST (s) + 4B () + 5007 (s)
(113)

Now for the outer double commutator of (100) one finds, with H©) =
Hp + f[md, [ﬁp,ﬁmd} — 0, the definitions in (97) and the (anti-
) commutator properties of the fermionic and bosonic creation and
annihilation operators (15) and (27)

from [7]

3 T
] -

= ZEk ([Ckckack' k} {bgb’“’ck’b’z"b

= Z B, (cT b]z,,ék,k’ - b£5£/5k,k~) (114)
k

— Ele./ (Ck/bj;// — bj;//ck’>

— ENIk/ (Ck’b;i;// + C]L b;i:”>

= 2Eklck,b;/
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A A - . ~ 2 A
{ (0) [H(O), o~ (4trg)s( Bt By~ éLb;qu
A A - ~ ~ 2 A
— [(HD + Hrad) [(HD + Hrad) ) 6_(4+ﬁq)s(Ek+Ek/_wq) élj[cb%&CI]}
A ~ ~ — = ~ 2 A

. 2 ..
b (Ek + Ek’ — wq) e—(4+lﬁq)3(Ek+Ek/—wq)2&q

) A]LbJ[ 7(4+I€q) (Ek+Ek/7(:Jq)2&q

oyt
Ck
( 4+ Kkyds
(115)

,_|
—

or

|: { ( k/ wq) Ckck/&Q:H
[(HD + Hra > [(HD + Hrad) (Ek_Ek/_wq) ézék’&Q]}
[(HD + Hrad) <Ek — Ek/ — wq) 6_S(Ek_Ek/_wq) é;gék/&q} (116)

- Ey—FE—&,) At A~
k—Ek —wq) e s(Ex—Ey— q) C1.Cl g

Hence, there holds [7]

R PR . 1d -
[H(O), [H(0)7 i (8)|] = —ZEH(;’i) ()
N A N 17 1d -~
a0, a0, 5 ()] | = —= AU () (117)
44 S

N A N d ~

jaQ [Hm) 00 _ 4 500

AL A AN ()] | = A0 (s)

and altogether [7]
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- [0 (s[5 59 0]  [ [s ]
. [H“’) [H<0>, (ﬁgm( )+ 485 (5) + 5A8Y) (5) + 48D (5) + 580 (s))”

d ~ A (1— A (1—

=g (A “°+HS’><>+H< )<>+ 107 () + HET) () + AL (5))

_ 4 (g 704 (5

£ (o0

d -

Bl 400)

= SHY ()

(118)

With that it is shown that the ansatz (103) solves the differential
equation (100) for the initial value H™" (0) = —L15H | .

moc?

Now regarding the flow s — oo for the ansatz H®(s) one finds [7]

o : 1 R (Ur| awes=xe |Vie) x eLb},
lim H® (s :H(l’o)—|—< ) 5(E —|—E/—w)./4 q ; YL
P ( ) < moc o V Xq: Xb: k k 4 b ( ) + <Vk’| O[b/e_“laxa |Uk> b}}/ék&g

(119)

The first term }YS’O) describes the interactions of the fermions
(electrons and positrons) with low energy photons, see (104).

The second term appears here because in the summation over the
mode indices k, k', ¢ there are still high energy photons obeying to the
condition w, = Ei.+ E}s (being of the order 1 since the energies of the
fermions still contain the rest energy). This term is in fact a particle

number violating term (since it is proportional to the products cT bT

and by, ép).

It has to be noticed, however, that if one takes the limit V' — oo,
the summation over the dense modes ¢ = (q, \) is converted into the
integral over the wave number q (with periodic boundary conditions),
and the summation A € {I,I/} = 2. Hence, these remaing terms
violating particle number are of zero measure.

Iff one agrees here and in the following to first take the limit V' — oo
and then the limit s — oco. In that case the second term in (119)
vanishes and one finds [7]

lim lim {NI,FI(” (s)} —0 (120)

s—o00 V—o00
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4.1.3 Second Order Solution

The differential equation (101) is a linear differential equation with
an inhomogeneous term. Hence, the solution H® (s) is given by the
superposition of the solution A" (s) to the homogeneous differential
equation [7]

d

5 = 10,9, [ 50059 0] [ 59 ] )

(121)
(f/ext + fic) , and

a special solution H (2 (s) to the inhomogeneous differential equation

with the inhomogeneous inital value H®" (0) = e

— :g(())’ [FI(O), ([N[, :Nz,ﬁ(Q’i) (S)H + :N]b [Nllaﬁ(Q’i) (3)”>”
ey
1= 70, ([0 (s), ([, [8r, B8O )] | + [N, [Kg, BO (5)
N igu) (3)7<[ﬁ<0), iNI, Ny, BD (s) + |Nir, | Ny, HO (s)

i i (. . 0]
+1(s)

{

with the inital value 0.

Hence, the solution is of the form H® (s) = H®M (s) 4+ H2 (s).

(122)

In the following two subsections the solutions to these differential
equations are sketched. They rely on closed formes that are quite
analagous to the ones given in (109) and (111). However, since the
calculations are longish, some parts of the solution for the second order
differential equation are shifted to the appendix.

Homogeneous Differential Equation

For the solution of the homogeneous part of the second order
differential equation it is convenient to decompose the the QED
Coulomb interaction V¢ into a sum of a part that is normally ordered,

N (f/c), and a self-interaction term Mc. This decomposition can be

found in the appendix chapter G.
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The result is given by Vo = M (s) +U (s).

Having said that the ansatz for the solution to the homogeneous
differential equation (121) is presented as [7]

~

HCM (5) = O@m@)+ﬂhcw)+uwg) (123)

moc?
which will be verified in the following.

Now, in the appendix G it is also shown how to decompose the coupling
to an external Coulomb potential ]}em into particle number conserving
and nonconserving terms. For the QED Coulomb interaction this
yields an extra one—particle contribution which contributes to the
renormalization of the bare mass my and the g—factor of the fermions
as we will see in section 6.1.2.

The result of the decomposition of the QED Coulomb interaction I (s)
is given by [7]

( (++)

U s) =" + e () 117 () + U (5) 1 e T (s) (124)
Here and in the following the superscripts (+) and (—) indicate that
the terms concerned raise or lower the fermion occupation number
by 1, whereas the superscript (0) indicates that this term is particle
number conserving. Since the Coulomb interaction is the product of
two scalars \iJL (r) ¥, (r) and \ilL, (r') ¥,/ (r') there occur terms that
raise or lower the the fermion occupation number by 2. These terms

are indicated by the superscripts (+,+) and (—, —) [7]

~ (0 ~
U = N (V&)
. . ’ 2
+ <Uk:‘ e la%a |Uk’> <UK| eidaXa |VK’> é};cklékb}{,e—éls(Ek—Ek/+EK+EK)
. . ’ 2
=L | A | Ul e Vi) U] e Uer) bl elcgere™t(Prot Pt i)
220 ) (2m)* |a® S + (Vi| e790%a |V3)) (Ugc| €% |Vir) B,;b%é}(bk,e“‘s(_EﬁEk'+EK+E§<)

) _ ! o
+ (Ug| e |Viw) (Ve | €¥9e%e [Vigr) élbg,bkb%,e—‘*S(’fHEk/—EK+EK)

e () = (e (s)’

R , 2 d3 1 ) ) ;N2
Ue' ™ (5) = / S S N (Wl e Vi) (Ui €195 [Vigr) el el ) e 100 (Brt Burs B )
€o (271—) |Q| k! KK’

e () = (U )
(125)
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Accordingly, the contributions caused by the self energy Me (s) are
given as [7]

Mo (s) = ME + M (s) + M (s)

) A
M = TS (WM [ e — (VMO Vi) ;)

¢ 260
" (126)
2 L~ N2
M(C'+) (S) _ 2q€eo Z <Uk‘ M(C) |Vk:’> éLb%e—ﬁls(Ek—FEk/)
kK

MG (3) = (M (5))

And finally the decompositon of the interaction of the fermions with
the external potential V., (s) according to [7]

Veat (5) = Vi) + Vi (5) + V5, (5)
" d3q T —1Q,X
6(21 = / 5Pest () Z <<Uk‘ A

U elews — (Ve Vi) 8Ly )

(27) ke k!
. dBq - Ciox . _4s(BtEy)
P () = / (%‘;3@@” (@3 (Uil 0% Vi) ot e~ )
ke

(127)
First of all, this solution (123) fulfills the inital value condition
D (0) = A (0) = Ly (Ve + Mo + N (Ve) ).

moc2
Now one has to look at the properties of the commutators (121).
Starting with the inner double commutator {NI, {N], H@W (5)” +

{N 1, []\7 11, H2H) (s)” one finds, with the anti-commutator algebra

of the fermions (see also appendix section G and the commutator
relations (491) ff. in section H) [7]

e =0
[fv[,zjc(i> (s)] = 20" (s) (128)
o () L ~ (44)
[Nf,ucf (s)] = £42dic ()




And, of course [7],

[NH, [fv”,zjz (S)H — 0 (129)

since fermions and photons share no commutation relations.

Hence, for the inner double commutator in (123) regarding the
Coulomb interaction contribution U (s) there holds [7]

[N], [N],a(s)” v [NH, {Nﬂ,z)(s)ﬂ
)
_ [NI, [NI, (zJC(O) (s) + U (s))”

— 0o (s) + 4007 () 16U (5) + 16U T (s)

i ) e (s)

(130)

Furthermore, for the interaction with the external potential ]A/ext (s)
and for the self energy contribution Mg (s) there holds (see also
appendix section G) [7]

(5,99 =0

ext

[, (5)] = 229 (9

R (131)
N, M| =0

[NI,M§> (s)] = 2 (s)

and again, since fermions and photons share no commutation relations,
there holds [7]

[NH, [NH, (f}m (s) + Mc (3))” — 0 (132)

So altogether one finds for the contributions V.. (s) and M (s) of
the solution (123) for the inner double commutator [7]
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[N], [NI, (f/m (s) + M¢ (s)>H + {NH, [NH, (f/ext (s) + M¢ (s))”
_ [NI, [NI, (fzm (s) + Mc (s))ﬂ

= [ [0, (vm + V) () + V) 9+ MO + M 9+ M5 ()]

= V) (5) + VL) (5) + AML () + aME ) (s)
(133)
The ansatz (123) for the homogeneous differential equation (121) can

now be readily confirmed by differentiating it with respect to s. On
the one hand there holds [7]

(Veat () + Mo (5))

= (05 (5) 495 () + MG () + MG ()

= = [, [fip, (4957 () + 05 (5) + M) () + 4ME) (s)) ]|
+

&l

= | (0 + Hyaa) [ (Hp + Hyaa) (995 (5) + 405 (9) + 41 (5) +4ME (9)) ]|
(134)

The differentiation of the terms in the ansatz (123) with respect to
s produces a factor of 4 and a factor (Ej, + Ejs)?. The latter can be
represented as a double commutator with Hp. This principle will be
verified by the help of the example f/e(;rt) (s) which can be transfered
to all other contributions [7]:

. 0.2 (5]
:;}; <ckck+bTb>

Z Ey (chk + b%b,;) ,f]é;? (s)”

k

I
M

E}, (ckck + b%b )

k (271')3 kK’

3

3
) kK

d3q ~ iqaX ATt *4S(E~’k+E /)2
7(271_)3@6%3 (q) Z <Uk’ eanae ’Vk’> Ckb’;,€ k
k,k!

= 4(Ek + E~k/)21>(+) (s)

ext

= 4B+ Be)? |

(135)
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= Z <Cka +b b; ) (Ek =+ Ekl) / (27I_quecct (q)z <Uk‘ eldaXa ‘Vk’> CLb£l€ 4 (Ek-f—Ek) ]
k

]



and, of course [7]

d D (+) d d3q 5 1QaXa Attt —ds(Ex+E, ?
E ext (S) - % /Wﬁbeﬂf (q) Z <Uk;| e'd V}C/> Ckb];/e ( BTk )

ke k'

—A(Ey, + Ep)?VH (s)

ext

(136)

As one can see from this example, one can indeed represent the
differentiation with respect to s by the double commutator (multiplied
by a minus sign)! This holds true for each contribution and can be
traced back to the fundamental anti-commutator relations for the
fermions (19).

Furthermore, in (134), use has been made of {f]md, (f/ext + fic)} =

0 such that it is possible to insert f[md into the outer double
commtutator.

Now looking at the intermediate result (133) there holds furthermore

[7]

= (Vewt () + Mo (5))
= (o4 Faa) | (o Fraa) ([0, [ 81, (e )+ 0 9))] |+ [N, W11, (Ve 4)+ 10 )] )]

{H(O) [H<0> ({ [Nz (Vm (s) + Mc (‘9))” + {N”’ [N”’ (Vm (0)+ M <S))H)H(137)

|| NIEY

For the contribution of the Coulomb interaction U (s) there holds, in
a very analagous way [7],

d d
Z/{(S)—£

- [, [#1m, (4@[0(“ (s) + 41" (s) + 16U
[t 15 ]|
., [0 )] s s ]

(++)

(U™ (5)+ 2" () + 1™ () + T (9))

0 () + 1608, (s))”

(138)

Putting the results (137) and (138) together one can verify the ansatz
(123) as [7]
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. 1 d ~ d -~ d
7H(27h) (s) = W <d8vemt (8) + gMc (S) + gu (8))

1

[ o s [ 2 0 st 4009
[t o i A ]

= — [, [0, ([8, [K, 720 (5)]] + [Nar, [Nr, B ()] ])]]
- (139)

End of the proof.
Now one has to take a look at the limit s — oo for the solution (123).

All contributions with superscripts (£) and (4, +) vanish in the limit
s — oo iff one first take the limit V' — oo such that the mode indices
k. k', K, K’ q,q can be converted to an integral (see discussion for the
solution (119)) [7]:

e R
i g, Vest () =0

lim lim J\;l(ci) (s) =0

S—>.OO V*)OO - ) (140)
g e (5 =0

lim lim YS%) (s) =0

s—o0 V—o00

Therefore, the solution of the homogeneous part of the second order
differential equation is given by [7]

lim lim H®M (s) = —
s—o0 V—o00 moc

(f}éﬁi + MY+ uéf))) (141)

R (i) : : ~(0) : : » (0) :
with V,,/ as given in (127), M’ as given in (126), and Uc ~ as given
in (125).

In the appendix section G it is shown that the normal ordered QED
Coulomb interaction part which conserves the particle number is given

by [7]
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(Uk | et [Uy) (Uger| €' [Upy) C%C%ckck
+ (Vi| e70%e | Vi) (Vi | €907 |V ) BLDT br,bs
" 2 Be 1 (Vile Vi) (Vie| €42 [Vier) b2 b2, b by,
N<VC ) = 20 (27_‘,)3| |2 Z Z . ) t oo
q KJ{I K’,]{j/ —2 <UK‘ e_ZQaXa |Uk> <Vk/| elqaxa ’VK!) éKéka/bl;‘/
+2 (Ukc| 71 [Vi) (Vi | /0% [Uer) bl b

(142)

There, also the deductions of the expressions (126) and (127) can be
found.

Inhomogeneous Differential Equation

The construction of the special solution H®(s) to the
inhomogeneous differential equation (122) is long, but is based
on the same approach as before: the multiple commutators of
quadratic forms on one side of the differential equation can be
represented by derivatives of exponential functions on the other side
of the differential equation. Hence, for the sake of readability, the
construction is placed in the appendix, see section H. Here, only the
solution lim, ., H®?) (s) is presented.

The result is given as follows [7]

moc® lim lim H®Y (s)
s—00 V—o0

= Cj_i + MJ_,B + MJ_,p + 1A}J_,ee + ]A}J_,pp + f)J_,ep + ﬂe,ph + 7:[p,ph + QL,ph
(143)

All contributions are caused by the normal ordering rule in the particle
number conserving parts of the solution H?? (c0), see also section H
of the appendix.

The first term C, 1 is a constant spectral shift [7]

2
- e 1 h Wy
Cil=— 2 (4 — - e —
s (m00> qu 2sow(q>z(b”’ \q\Q)

b,

(Ex+Egr+@g)+(Ex+Egr+@,) ;
(EK+EK,+@q)2+(EK+E~K/+@(,)2

(144)

x Y (Ul age™ "% |Vier) (Vio| aye ™% |Ug)
KK’
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The second term M(f) = /\;l(f) + /\;l(f) describes the renormalization
of the fermion attributes mass my and g—factor due to the interaction
with the high energy photons [7]:

2
1 h < %%/)
= mgc - Obpr —
ZI; <m06> 4 Zq: 2e0w (q) %; lal?
(Bu=Fi—ay)~(Byr—Eic )

i1QaX —1q X,/
Kq X ZK’ <Uk’abe o |UK’> <UK’| Qe “ata |UK> (Ek*EK/chq) +(EK/*EK+JJQ)2

X
—i ; Ep+Er+aq)+(Ex+Er+@
i Wlowe e Wie) (Voo ) G e e ey
(145)
2
PP = g Zau;,( g > L . <5 b,_qbqb/>
1 WK K \moe )V . 20w (q) —
} B, E Er+
fig X N (V| ape’@a™e |Vi) (Vigr | e a%a | V) (J(Ekk EKK wq;2+EEK EZJ:Z;
X
—igaX iQaX Ex+E i +0)+(Ex+E i+
+ZK <UK‘ ape” e |Vk/> <VK’| O‘b’e—an “ |UK> (%KiEkf—qu;g EEi+EZ1+;:§2
(146)

The apperance of x, in all effective terms indicates that the respective
term originates from the intercation with high energy photons and/or
high energy (anti-)matter modes.

The following three terms decompose into three normal ordered,
effective two—particle interactions: an effective electron—electron
interaction V | ee, an effective positron-positron interaction 1% L pp, and
an effective electron-positron interaction V Lep |7]:

VJ_,ee:mOC2< ) E E cch,cch/
mgpcC

k.k KK’

Vv Zq q250w Zb % <5b v q|ilq|l§/) X
" ' (E’“_Ek’_a’Q)_(EK/—EK+LDq)
1qXq —iGaXa .
X <Uk“ ape ‘Ukj/> <UK/‘ oy e ‘UK> (Ek—Ek/—@q)2+(E~‘K/—E~’K+@q)2

(147)
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2
A~ o 2 qe /\_i_ /\_i_ ~ ~

b asomig Do (oo — 1) »
(Ey—Ex—@g)—(Ex—Egr+@,)
2

% <‘/k| Oébelqaxa |‘/}€/> <VK" O(b/e_iqlzxa ‘VK> (Ek/ Ek wq) (E'K EK/—|—wq)2

(148)

X

e () S5 i 3 (- o)

e KK b lal”
(—f—/iq <Uk| abelqaxa |Uk’> <VK" ab/e_ZQQXa ‘VK> é;rgék/b ZA)R/X

y (((EKEK/+wq)(EkEk/wq) N (Ex—Ej+6,)- (EKEK/%))

Ek—Ek/—&)q)Z—F(EK—EK/—i-(:}q)Q (EK—EK/—@q)2+(Ek—Ek/—|—&)q)2

X 4

+ <Uk| &be_iana ‘Vk/> <VK/’ ()fb/e'i_ZQaXa ’UK> AT éKEIE,BK/ X
" (BxtBy—00)+(Ex+Ex—0,)  (EntBy+@q)+(Ex+Egr+3,)
L (Ek+Ek/qu)2+(EK+EK/fazq)Q (EkJrEk/Jra;q)2+(EK+EK/+wq)2

(149)

The term V | ep describes positronium. It would be very interesting to
retranslate it to first quantization and check wether it concides with
the term found for example by Landau et. al [37]. A similar term,
indeed decribing the positronium system, is derived and evaluated in

5]
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The terms ﬂe,ph + 7—Alp7ph describe interactions between Dirac fermions
and photons. Their explicit form is given as [7]

Heph = +m002 < > Z Z hm — ZZAb _Ab,

kk’KK’ qq’bb’

'Kuq/ﬁq/ (Uk’ abeiqaxa |Uk/> <UK/‘ ab/efzqaxa |UK> X

% ( Ek’ wq) (EK’_EK'H:)q’)
(Ek Ek’ wq)Q—‘r(EK/—EK—HI)q/)

5 (51:’ K/c};cK O KCK/Ck/) T,aq

+ (1= k) (1= rgr) + Katiqr) (Ur| ape™ee [Vis) (Vigr| ae™ "% |Upgc) x

(Ek+Ek/—@q)+(EK+EK/ UJ/) 5 -|- -I-
(Bt ) + (Bt Brr—,)7 ¥ hC g

+ ((1 — lﬁ;q) (1 — Hq/) + :‘quiq/) <Uk’ abe_i(Iaxa ‘Vk/> <VK/’ ab,e—i-iqua ‘UK> X (150)

y (Ex+Ep+aq)+(Ex+Egi+@,)
2

_ Sr el excaday
(Byt By +0q) +(Bx+Egr+,)" 00 kR4

+ (1= k) (1= rg) (Ur| ape’®e [Vir) (Vigr| aeTidexe |Uc) x

% (EK+EK/+ )+(E~'k+E~'k/ftI}q)
2

! '\T N R R
(Ex+Exr+, ,) (Bt By ) Ok k' CL.CK Qg Qg

+ (1 — Hq) (1 — qu/) (VK/‘ Ozb/e_iq‘,lxa |UK> <Uk| abe—iqaxa |Vk/> X

% (E~K+EK/ )+(Ek+E~'k,/+LDq)
2

% X
\ (EK+EK/ ) /) (Ek'f‘Ek/"l“:}q)

] 5K/,k/éLéKdL,aq
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and [7]

A~

Hpph = +moc? <moc> Z Z Vlgnoo — Z ZAb .Ab/

kK KK’ a,q b

f-f—fiqlﬁq/ (Vk‘ abeiqaxa ‘V]y) <VK/| ab,e—iqflxa ’VK> X

% (Ek/fékqu) ( EK/+£:)q/)
(Ek/—Ek—d)q)Q-f—(EK EK’+‘bq’)2

(6101, b — O bl by ) g

(Ext By —aq)+(Ex+Egi—@,) AN
(Bt By —50) 4 (Bt By )° OB KOy

+ (1= kg) (1 = Ky) + Kqkg) (Ur| ape%a Vi) (Vi | oy € ida%a x

V) (ExtE+aq)+(Ex+Ew+@,)
K Byt Bty ) +(Bx+ Bty )
+ (1 — Kq) (1 — Hq/) <Uk| abeiqaxa |Vk/> <VK/| Ozb/e'Hq;X“ |UK> X

(EK+EK/+ /) (Ek-i-Ek/—(:Iq)
(EK+EK/+UJ /)2 (Ek+Ek/7L:)q)

6[( kb bK,aq/aq

+ (1= k) (1 = kg) (Vigr| ae ™% U ) (Uy| ape ™% | V) x

(EK+EK/ /)+(E~'k+E~‘k/+(:Jq) fal t
(Ex+Egri—0y)° +(En+Ep+q) q

+ ((1 — Kq) (1 — /-iq/) + quﬁq/) (Ug| apeidaXa |Vier) (V| able_iq’IIXa |Uk) x

(151)

These terms describe effects stimulated by the electromagnetic field

).

[
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Finally, the term that seems like renormalizing the dispersion relation
of the photons is given by [7]

QL ph = —moc (m C) 72D A (9) Ay (g
0 qq’ b,b’
<UK| abeiqaxfl |VK/> (VK/‘ able—iq(’lxa |UK> X
(Ex+Egi—0q)+(Ex+E—0,)
(Ex+Ewr—iq) +(Bx+Egi—6,)"

p

""q’iq’&;&q DK K
+ <VK/‘ abe“qaxa ’UK> <UK’ ab/e’iqﬁlxﬂ ’VK/> X
% (EK+E‘K/+JJQ/)+(EK+EK/+L:}Q)

(EK-i-EK/-H:Jq/)2+(EK+EK/+U:Jq)2

+ (1 — /iq) (1 — Rq/) dq/dq ZK,K’ <UK| abeiq"'x"' |VK’> <VK" ()[b/€+iqua |UK> X

(EK+EK/+UJ /)+(E~'K+EK/7¢:)L1)
(EK+EK/+UJ /)2 (EK-i-EK/—(:)q)Q

+ (1= 1) (1= rg) bl 3 jor (Vier| ae ™05 [Ure) (Ui | e ™% |Vigr) x
(EK+EK/ @ />+(EK+EK/+LUq)
(E~'K+EK/7@q/)2+(E~'K+EK/+(IJq)2

(152)

If true, this term would be very interesting, because it points out
that for very high energies hq > hgp the dispersion relation of the
photons is altered which can be seen from the operator valued wave
equation derived in section J of the appendix. It adds to the vacuum
velocity of light ¢ which can be seen from the homogeneous wave
equation (656). However, the dealing with this term is a project that
stands for its own. Dirac counted the modification of the photon’s
properties among the last fundamental problems of QED [10], but
requiring to treat all constituents of QED on equal footing, it does
not seem unreasonable that there arises a term which describes the
modification of the photons properties. This would then mean that
the photons being part of the QED soup have different properties than
the photons acting in our nonrelativistic world, just as it is the case
for the fermions.

It has to be emphasized that in the solution H% (c0) all denominaters
containing the energies of the particles are manifestly positive (due
to the square). Hence, it comprises no further singularities. This
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shows that applying the flow equation as a tool for unitarily
transforming Hamiltonians once again leads to a non-singular result
like in the case of Peter Lenz and Franz Wegner who also achieved

a manifestly positive denominator by applying the flow equation to
BCS Hamiltonian [17].

4.2 Interim Summary

The flow equation for generating particle number conservation yields
a field theory Hamiltonian H; which is unitarily equivalent to the
order a%g to the Hamiltonian of QED (8) by the help of the generator
7 (s).

The Hamiltonian Hy assumes the following guise [7, &]

Hy = moc® lim lim (lﬁ](o) + HY (s) + + H®) (5) + )

5—00 V—00
(moc2 (f[p + ﬁmd) + mgczf[(;’o)
+

+MJ_,6 + MJ_,p + ]A}J_,ee + fjJ.,pp =+ ]A}J_,e,p
\+7:[6.])h + ?_A[p,ph + QAL,ph, + CLi

(Hp + + M9 P
g lo0)

= {4+

+C 1+ Ve + Vi + Vi
\+,7L2p,;1)h + ;l:[(zﬁph + QAL,ph

(153)

Here the zeroth order solution (99), the first order solution (119) (the
berry colored term) and the second order solution (143) (the orange
colored term of the homogeneous solution and the emarald colored
term of the inhomogeneous solution) have been inserted.

Hy has the utmost important property of conserving the particle
number, hence [7]
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[HU,NI] )
A . (154)
[HU, NH] =0

This Hamiltonian Hy is given in the Dirac representation, which
means that it is expressed by the Dirac field operators (14).
Therefore it is a many—body Hamiltonian of superposed matter and
antimatter modes interacting with low—energy photons. It can now
be transformed by the help of the Eriksen transformation T to the
Newton—Wigner representation in which it decomposes into subspaces
for electrons and positrons separately. This is done in the second part
of the solution to the nonrelativistic limit problem of QED.

As will be shown, the parts Jr/\;li6> + M(f) of the solution
generated by the flow equation aiming at particle number conservation
are those that renormalize the bare mass mg of the fermions and
their g-factor. The orange ones with the subscript C' are attributable
to the (longitudinal) high—energy QED Coulomb interaction between
the matter fields, whereas the emerald ones with the subscript 1 are
attributable to the (transversal) interactions of the (anti—)matter fields
with the high energy photons. These terms represent integrals over
the wavenumber ¢ of the photons. For these divergent integrals one
has to choose a physical cut—off which can be done by truncating not
only the energy of the photons, but also the kinetic energy of the
fermions.

By retranslating these terms to first quantization it becomes obvious
that they add to the terms of the effective single—particle Schrodinger—
Pauli Hamiltonian. In that way one gets a consistent renormalization
of the bare mass mg the anomalous magnetic moment.

Hence, in the following section the Eriksen transformation T
is introduced which allows to express the single-particle Dirac
Hamiltonian in the Newton-Wigner representation, and in which
matter and antimatter degrees of freedom are described separately.
Thereby the Newton-Wigner representation of the single—particle
Dirac Hamiltonian is discussed.
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5 The Eriksen Transformation and the Newton—
Wigner Representation of the Single—Particle
Dirac Hamiltonian

The Eriksen transformation T [20, 21, 22,23 24 25 11,26, 27, 28, 29]
makes it possible to transform the single-particle Dirac Hamiltonian
HD) to the Newton—-Wigner representation HNW) For a recent
discussion of the Eriksen transformation see [I0]. It is in this
representation where the Hamiltonian, as well as other observables
like the velocity and the angular momentum, resemble their classical
expressions the most [9].

The Eriksen transformation T is given by [10, 7]

- ﬁ (1 22) + Wg (1 22 s

or [10, 7]
1 MeC? 1 MeC?
T =,/=(1 ¢ — BDuy )= [ 140y — —2 156
\/2<4X4+E(oo)> &} A\/2(4x4 E(oo)) (156)
where [10, 7]
: 2 L(Po)
E (OO) = mocy/ 1yxa + WH4X4 (157)
and [10, 7]
1,11 q h t
H(P,O): b b1 G B(ex)
BT g T 2y 0 7 (158)

Op =0, X O'ZEP)
This transformation is defined by two properties: first it enables to
blockdiagonalize the single particle Dirac Hamilton AP ), and second,
it decouples the matter and antimatter degrees of freedom in the
amplitudes U l(/D) (r,k) and VM(,D ) (r,k). It is important to emphasize
that both requirements must be met, it is not sufficient to only
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blockdiagonalize the Dirac Hamiltonian. The latter required property
of the Eriksen transformation is also called energy—separating.

In the appendix B it is shown how the Eriksen transformation T can
be derived by a Brockett type of flow equation which can indeed be
solved exactly.

The Newton—Wigner representation of the Dirac Hamiltonian follows
as [10, &]

H(NW):TOH(D)OTJf

= pBoVH D) o H(D)
— BoE (00 ) (159)

2
— 2 (P,0)
moc” B o \/14><4 + moc2H4X4

Please recognize the operator § = Jép) ® 1oxs! The Newton—Wigner
Hamiltonian is, indeed, blockdiagonal.

Furthermore [10, 7],

HYLY = \/12x2 ® Hy (160)

is the relativistic Schrodinger—Pauli Hamiltonian being related to the

nonrelativistic Schrodinger—Pauli Hamiltonian Hg‘ff;’o) given by [10, 7]

(spoy Iyl qeh (eat) (P)
Hyo ' = 2mg 12x2_—2m0Bb oy (161)

With that one finds [10, 7]

2
HOW) = mygc? (agp) ® 12><2) o (12><2 ® \/12><2 + W"'éi];’()))
0

2 (SPO
= myc’ ng) 02 \/12><2 + " HéxQ :

(162)
The property of being energy separating can formally be expressed by

[10]
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HNW) — g VHWNW)HNEW)

(O4x1), = <|.|(NW) _ ﬁ\/H(NW)H(NW)>M’M/ TN (¢, k)
= B (Lixa = 5),,, U™ (@) (163)

(O4x1), = (H(NW) N B\/H(NW)H(NW)> ) <r’ ]~€>

'
s

= (—£p) (i4><4 + ﬁ)u,u’ VH(/NW> (I'; 72?)

These relations are only fulfilled iff the eigenfunctions U /(L{VW) (r,k) are
of the form [10), &]
Uy (I‘, k)
0 :
I
and VM(,NW) (r, l%) are of the form [10, §]
0
0
Vs I‘,,I~C (165)
Vi r,l~€
%
because
00 0 O 2000
5 00 0 O - 0200
00 0 =2 0000
(166)

The solution to a flow equation which blockdiagonalizes the single—
particle Dirac Hamiltonian does not automatically fulfill the condition
(163). In case of an additional external electric field the derivation
of the Newton—Wigner Hamiltonian is much more intricate because

HOW) o HIVW) £ H(P) o H(P) | For a recent in-depth discussion see
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[10]. However, since here, only a static magnetic induction field is
considered, there holds HVW) o HVW) = H(P) o H(P)  and therefore the
energy separation condition (163) is valid.

Now since indeed

B HEY] = 01 (167)

the Eriksen transformation T transforms eigenfunctions U, (r, k) of
the Dirac Hamiltonian H(P) belonging to positive energy eigenvalues
Ex > 0 to the eigenfunctions U,SNW) (r, k) of the bare relativistic Pauli
Hamiltonian Hi]:’g), see equation (160), which are simultanouesly the

eigenfunctions of the Dirac § matrix belonging to the eigenvalue +1!

Therefore [10, &]

Uy (r,k) = (TToT) Uy (r, k)
_ i (W)
=T'U,"™ (r, k) (168)
U™ (x,k) = +UN™) (x, k)

In addition, the eigenfunctions V), (r,k) of the Dirac Hamiltonian
H(P) belonging to the negative energy eigenvalue E; < 0 are
transformed to the eigenfunctions VM(NW) (r, k) of the bare relativistic
Pauli Hamiltonian Hﬁﬁ’fj’ which are simultanouesly the eigenfunctions

of the Dirac  matrix belonging to the eigenvalue —1 [10, &]:

Vi (r.k) = (THoT) Ve (r.k)

— Ty W) <r, /%) (169)
BV;,NW) (r, /;) = —VM(,NW) (r,fc)

The related eigenvalue problem assumes the following guise [10]:

D <H(NW)) U™ (x k) = BN (x, k)

v pt ( )
170
S (HOWY) VI k) = — B (e
I ’
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Since(!) Hg(’g) = Lo ® H;i];’o) the eigenvalues and eigenfunctions
of HM) can now be related to the well-known -eigenvalues

and eigenfunctions of the Schrodinger—Pauli Hamiltonian Héig’o)!

Therefore, the Newton—-Wigner eigenfunctions U,SNW) (r,k) and

VM(NW) (r,k) are four—spinors with two empty arguments, while the
other two arguments can be related to the eigenfunctions of the

Schrodinger—Pauli Hamiltonian Héi];’o)!

For the bare nonrelativistic Schrodinger—Pauli Hamiltonian the
following eigenvalue problem is valid [10]:

S (HEEY) ) (e k) = EEPWE) (r, k)

Y
0-/

ey (1)
k= (k.,n,()
The eigenfunctions uP) (r, k) build a complete orthonormal basis of
(SP0)

the hermitean operator Hs. "~ such that [7]

/ Pr 3 P (k) ulSP) (1K) = Gy
oe{+,—} (172)
Sl (e, k)l (k) = 6,069 (x — 1)
k

g

Hence, the Newton—Wigner eigenfunctions of the relativistic Pauli
Hamiltonian have the following structure [10]:

u(f” (r, k)

(sp)
UMW) (p k) = | 45 (0F) (173)

and [10]

(174)
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and the relativistic energy is given by E; = myc \/ lowo +

ch k

_2_pP)

NW NW
From (8),,, UM (r,k) = +US™" (v,k) and (8),,, V™) (k) =
NW
_Vu(’ ) (r, k) one readily confirms [7]
(SP) r k)
2 <SP>
HVW) NW) \/1 H(SPO) (r, k)
%:( >u,u’ Zmoc az ox2 + —— moc? | 2x2 o 0
0 v
p <\/12><2 + HESS O)> w5 (x, k)
+,0’
—moct | S (Vi M)l e
. :
0 .
(SP) (r,k
2 (sp (SP) 1
= m0c2 \/12><2 + m062 E,(C ) O(r7 )
0 w
= B UMY (x, k)
(175)
and [7]
0
2 0
Z (H(NW)) , (NW) Zmoc (UgP) & \/12><2 + ) Héil;())) U(SP) (I‘ k)
w Fott moc Hot! tspy .
w0 k) ),
0
0
= m002 U’ (\/12X2 + mocz 2€<§ 0)> uffp) (I‘, k)
+,07
o (Vieat 257 Wl )
—,0’ u
0
2 0
- _ 2 (SP)
= —mgc \/12x2 + e E, US_SP) (r, k
u(,SP)( K
N
_ NW
= —E,VI) (r, k) -

Hence, the relations [10]
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Z (T) o Uy (r, k) = UI(LNW) (r,k)= 0for p=3,4

2 . (177)
Z (T)M“u’ V,U/ (r7 k) = V’u( ) (r7 k) =0 fOI‘ n = 1, 2
o

between the Dirac amplitudes Uy (r,k) and V) (r,k), and the
(NW)

Newton-Wigner amplitudes U, "’ (r, k) and VM(NW) (r, k) are valid.

With the transformation T there is a unitary transformation which has
two important properties: it blockdiagonalizes the Dirac Hamiltonian
according to (159), and it separates the modes of positive energy and
negative energy states according to (177). This will be the key to the
aim of reexpressing the particle number conserving QED Hamiltonian
Hy in first quantization. As will be shown in the next section 6, from T
indeed follows the nonrelativistic light—matter interaction Hamiltonian

H(Lejl\} of electrons interacting with low—energy photons.

An important aspect of the Newton—Wigner amplitudes (173) and
(174) is that matrix elements of the form [3, 7]

/ @ S U (k) (00), 0 UMY (0 k) = 00y (178)
k.k!

vanish identically, because the Dirac o, matrix is nondiagonal while
the Newton-Wigner amplitudes are “diagonal”.

As an example the Dirac «, assumes the following guise in the
Newton—Wigner representation (see section B of the appendix) [7]:

Ta,TM =T (I0) o, TT (IT)

_ 11, 1 II, Iy
= Qat 00 B— 3 Toc Toc Oy Qg + | QpQq + iy | Oy

2(5(171,
(179)

It is well known that in the Heisenberg picture the velocity of the
Dirac particle is v, = cay, see for example [18, 9]. Intererstingly, in
the Newton—Wigner representation the nondiagonality of the Newton—
Wigner particles velocity associated with (179) is still there, however,
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by evaluation matrix elements, for which one has to make use of the
Newton-Wigner eigenfunctions (173) and (174), the contribution due
to the nondiagonal a, matrices in (179) vanish exactly. Hence, on the
operator level the velocity of the Newton—Wigner particle comprises
also nondiagonal parts, but these are not visible by evaluating matrix
elements (see also the discussion in the beginning of section 6.4).

It should be mentioned that one can show that in the Newton-Wigner
representation of the Dirac Hamiltonian there does not exist any
paradox like the so—called Zitterbewegung [10, 7].
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6 Solution to the Classical Limit Problem of QED
Part II: Applying the Eriksen Transformation

In section 4 the particle number conserving Hamiltonian Hy has been
derived up to the order a%g of the finestructure constant apg by
solving the flow equation perturbatively. The result was given by

7, 9]

lim Hyr(s) = moc? ([:I(0> + HY (00) + + HED (oo)>
$—00

:7:[D+ +./\>l(f) +/\;l<f)

+ ﬂrad + ﬁ(j()w?[)) + ﬁp,ph + ﬁe,ph + QL,ph

=+ + C)J_i + ]A}J_,(%(e + pj_,pp + fjJ_,ep

(180)

This unitarily equivalent QED Hamiltonian describes the interaction
between matter and antimatter fields moving at arbitrary speed, and
low energy photons.

Then in section 5 the Eriksen transformation T has been introduced
which makes it possible to decouple the matter and antimatter degrees
of freedom.

This part is dedicated to the goal of now putting the results together
in such a way that one gets a Hamiltonian AT from Hy by applying
the Eriksen transformation . HM) then describes the interaction of
nonrelativistic electrons as point particles with low—energy photons. It
is thus a nonrelativistic, classical light-matter interaction Hamiltonian
for the electrons. Several steps are necessary for doing this.

First of all, in the following, the interaction terms
7:[])1[,;1,+7—A[(g,]);l,+)>L,(,7[,, and the terms QALP;»,qLCﬁan/H,p in the
Hamiltonian (180) will not be considered further. The study of
these would be very interesting, but for the time being they do not
play a role in the derivation of the nonrelativistic many—electron
Hamiltonian of light-matter interaction.

The remaining contributions in (180) decompose into matter and
antimatter parts once the Eriksen transformation has been applied.
However, the parts describing interactions of positrons with photons
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will also not be evaluated. The evaluation is analogous as for the
electrons and as I have outlined in (238) there is a shorter way for
receiving the nonrelativistic positron Hamiltonian. 7:1%7]\';) principally
results from the charge conjugation symmetry operation Cp.

Hence, first, the Hamiltonian [7, §]

7‘2%}\2[ = 7:[(51) + +M(j) +7:[7"ad _{_ﬁ(jow,el)

) (181)
+ + VL,cie

is derived from the the respective parts of the Hamiltonian (180) by
applying the Eriksen transformation. Here, is the matter part of

the particle number conserving Coulomb interaction, and 7:[%01“’61) is
the matter part of the coupling of the matter fields to the low energy
photons.

The reexpression of the Hamiltonian 7:[(;]1\)4 in the Newton-Wigner
representation is in large parts a discussion about orders of magnitude
that must be considered or can be neglected (regarding the
finestructure constant). Here, one must be guided by the physics.
For that it is very important to know that the Newton—Wigner field
operators are proportional to the nonrelativistic Schrodinger—Pauli
amplitudes (for electrons and positrons separately). The latter are
slowly varying functions on the Bohr length scale (compared to the
length scale of pair creation defined by the Compton wavelength
Ac). Therefore, the operators occuring between the Newton—Wigner
amplitudes, or the respective matrix elements, can be evaluated as
a gradient expansion with respect to the gauge invariant momentum
operator I, T hereby all contributions higher than the order o3¢ will
be neglected, which is consistent with the solution of the perturbation
expansion applied in section 4.

First the renormalization terms for the electrons + /\;lt) are
evaluated. These calculations are extensive and have therefore been
shifted in large parts to the appendix.

Then the matter part ?:l%l) of the Dirac quantum field is evaluated,

~

such that one can find from ﬂgl) + + /\;l(f) = H(Se]lg) the effective
Schrodinger—Pauli Hamilton. In this context the physical cut—off
is introduced and the renormalization integrals are evaluated. It
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will then become obvious how the bare mass mg of the electrons is
renormalized and with that, accordingly, the g—factor.

Finally, the effective interaction terms are evaluated. For this one has
to calculate matrix elements in the Newton—-Wigner representation,
which give the corrections to the Dirac representation. In this context
the first order effective transversal interaction ﬁﬁow‘o) and the second
order transversal interaction V |.cc are evaluated, then the second order

longitudinal interactions and are evaluated.

Then, when one has succeeded in deriving the Hamiltonian 7:[(5][\)4 from
Hy, it will be possible to express it in first quantization. In that

guise the light-matter Hamiltonian for electrons I:|(Le]l\)4 arises from 7—1(5]1\)4,

derived by full QED.
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6.1 Evaluation of the Renormalization Terms

The terms that renormalize the bare mass mgy and the g—factor of
the fermions have been deduced in section 4.1.3. They are given
by MO = M(c?) + M(f), where M(CO) renormalizes the fermionic
attributes due to the high—energy Coulomb-interaction between the
(anti-)matter fields, and /\;l(f) renormalizes the fermionic attributes
due to the interaction of the (anti—)matter fields with the high—energy
photons.

These terms decompose into renormalization terms for matter (e) and
antimatter (p) separately according to [7, &]

MY = A + 1
O )y gy
L 1 L

In the following it will be concentrated on the evaluation matter parts
/\/l(c(f) and /\/l(f) of the renormalization. These are given by [7]

2 3
~(e) S qe d’q 1 —igata (P _ p()) 4 idaRa At 5
MC’ == <280> / (277)3 |q‘2 <Uk‘ e (P P ) oe ‘UK> CkCK

Kk

2
~ (e At A e 1 h Qbe’
/\/l():m 025 ele <q > —E 75 <5 )
L 0 KK moc) V 2e0w (q) by lq |

kK b,/

(Ex—Egr—@q)+(Ex—Egi—q)
2

1QaXa 1qg Ryt
kg X Yogr Ukl awe™® |Upr) (Ugr| oye™ Uk >(Ek Erer—0q) +(Br—Eger—ag)

2

(~Ek+~E~'K/+(:«'q2+(E:‘K+E:'KI+@q)2
(ButEgr+ig) +(Ex+Eg+ig)

+ 3k Ukl ape™ 8% [Vier) (Vigr | ey et 9% U )

(182)
With the abbreveations [7]
C - Z MkK k CK
J_ _ZMkK k:K (183)
there holds [7]
MO = M+ M =37 (MG + W) e (184)

kK
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In section 6.3 it will become clear how the terms (184) add up to the
bare rest energy, the bare kinetic energy and the bare Zeeman energy
of the single—particle Dirac Hamiltonian: they numerically alter the
bare mass mg and the g—factor of the electron.

6.1.1 Evaluation of the Transversal Contribution
to the Renormalization

For the following it is convenient to introduce [7]

. _ld
q_kC

m C2 e ? h _ C]g h 2i
0 moc) 2eqw (q) 20 moc) @,

From that follows for the transversal matrix element in (182) [7]

(185)

2
a(Le) _ Qe qQvqy
i = (55) <moc) vig, > (- 1)

q bl
(~Ek ~EK, wq2+(EK Erer wq)
(EkaK/ftbq) +( EK/ (I)q)

kg g (Uk| apeie®e 2 |Ukr) (Uke | ae™ %" U

(~Ek+~E~K,+@q2+(ﬁ?K+LETK,+:Z;q)
(BetEgr+aq) +(Ex+Eg+i,)

2 [Vier) (Vir| o e 0%t U

(186)

+ ZK’ <Uk‘ abe—iQaka

Obviously, due to the summation over all photon wavenumbers q, this
expression is divergent. Hence, one has to introduce a cut—off. At this
point there are several possibilities for choosing such a cut-off [32]: one
could truncate the photon energy only, or one could truncate both the
photon energy and the kinetic energy of the fermions. One could also
consider the potential energy of the photons in the cut-off. However,
it turns out that the correct physical cut-off is the one where one
truncates the energy @, of the photons and the kinetic energy Ey of
the fermions. From a general point of view there is no reason to assume
that the photon energy should be limited, whereas the fermions can
move at any speed. It will be shown in subsection 6.3 that such a
choice of the cut-off leads to a consistent renormalization of the bare
electron mass m.

For now it will be assumed that the cut-off 2,4, is given by [7]
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2+ B < 2000z
fzmaa: > 1

(187)

The setting that Qmax > 1 will be justified in subsection 6.3, where it
is shown that the sum or the integral in (186) is of logarithmic nature,
such that O‘ﬂﬂ In (NZmax is a small number leading to the fact that there
is no big difference between the bare mass m( and the true electron

mass M.

The fact that it is possible to choose the cutoff f)max > 1

in this way implies, moreover, that one is able to account for a wide

range of photon modes.

Formally, the cut—off (187) can be introduced by the Heaviside

stepfunction Oy (z):

1 T 1 firx >0
O =—(1+
i () 2 < \x!) {O fir z <0

according to [7]

@H (Q-Qmaa: -

) 1 fir 2 < 205
o fiir 2 > 202,

With this one can express (186) as [7]

1 < %%)
2z 2\
a 9w

- 2 1
mLe) — [ e =
kK (250 moc %

o (Br

—Eper—@q)+(Ex —Err—g) ~ -
igaX K/ —Wq K/ ~Wq _
Kq ZK/ <Uk|ab6 ( B —wq) +(EK Brr —wq> zOH (2-Qmaac w,
X
—igaka (Brt Brer40q)+(Brc+ By 46,) ( 5 5
+ZK’ <Uk| O[b@ (Ek"rEK +wq)2 (EK—‘,-EK/-‘,-:DQ)Q @H 2'Qm(LT

Using the Dirac eigenvalue relation

APy = By |U)
AP) Vi) = — B Vi)

implying for any analytical function F' (z) [7]
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(189)

EK/) |UK/> <UK/| O[b/efiqa’)za’ |UK>

EK') [Vier) (Vier | et ar%ar U )

(190)

(191)



F (F|<D>> U = F <Ek> Uy F <F|<D>) Vo) =F (—Ek) Vi)

(192)
for introducing the Operator C, [7]
Cq = @H |:(2.(~2max — (Ijq) 14><4 — FI(D)FI(D)
C, |Ux") = Op (2(2W G, - EK,) U (193)

Cq |VK/> = Og (2(~2mcwc - a)q - EK’) |VK'>

Inserting this into the transversal matrix element (190) one finds [7]

ML) < ) qbqb
kK &N m()C Z wq ;b:
—AP) o V+(Ex—AP) —g g%,
(Usl apeianse o <(Ek wq)QQEj,H(D),@:; 0 Cy o (Lo Uke) (Uicr]) 0 =% s [Uc)
X
Ey—AP) 15 )+ (Ex—AP) 45 0%,
(Url ape™te% 0 ((E: A+ ;2+E T q§2 0 Cqo (X [Vier) (Vir]) o e e’ ayy |Ukk)
_ qbqb
- ( () P2 (-2
b,b’
(D) _ (D)
i1qaXa ( —H ‘1) (EK H 7‘”‘1) Lo~ 0 R
CALTE o(~ —AD) 5, )P4 (B —AD) - w)QOC o PMaye Uk)
X

+ (U] ape~a%a o (Bi—HP 4o, 2I(EK*F|(D)+@1)

(=) 6 eti0arRar oy,
( H(D)'H'Jq) (EK—I:'(D)-‘FLDCI)Z OCqOP oe ’ ’O{b ‘UK>

(194)

Here, use has been made of the definition (307) of the projection
operators P(H) and P).

The expression (194) can be further transformed by using that the
sum is not altered if one substitutes ¢, — —¢q, in the first line [7]:

(B A 3) 4 (B2 3) o)
(Ex—A®) —5,) +(Ex —AD) —0,)°
(Ug| ape™a%a 0 Cy 0 o et %a’ o |Ugc)
(Be A 43) 4 (B2 43) o)
(Er—A®) 15,) +(Ex —AD) +2,)°

+
+

a0y (B )
— (1= Rrq) (Uklape "% 0 Cyo (Br—AD) G,

(EK A )—wq)

( A —5 )2 o P(‘H le) eiqazia/ oy |UK>

(195)

+
+
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The contribution of the first line is independent of the photon, since
the sum runs over all wavenumbers q. It describes the renormalization
due to the presence of the high energy photons in the QED soup. This
contribution is always present, even if one would eliminate all photons.
Eliminating all photons, including the high energy photons, formally
means that x, = 1 (see (85)), and the contribution of the second line
vanishes.

The following identity will be useful [7]:

F(2)PY) £ F(—2)PC) =F [z (PW — P(‘))] (196)

This is valid for a power series F(w) = > F, - w" with matrix
coefficents F,,. The identity (196) is proven in the appendix I.

It leads to [7]

<Ekg<D>@qﬁ@{>+<EKg<D>@qﬁ<D>
B

- . _ (D ~ o) ~ (D
(B0, 0N (i, O

and with that one finds [7]

2 2
M(L,e) _ de qub
kK (260 moc Z Wq ;;

D
Ey— H(D)—wq (F[')() )H(D)>+ Ex— H(D)—wq
P

(D)
VA(D) of(D) 1 L
H oH ) e+zqa/xa/ oy IUK>

(Eka(D)qu i(P) i(P)

<Uk| Ozbe_iq“'f(“ o Cq o (E o
VA(D) oR(D) ) +( x—HP =& \/H<D>og<D>>
2

X

o (B =5, )+ (B =D —a,)

_ _ iqaXa a
(1= #g) (Uk|awe™% 0 Cq o e ST B R 5,

5 O P(Jr) o eiqa”za’ab/ |UK>

(197)

The fractions are of the form R (x) %

be transformed with the help of elementary algebra to R (x) =

v
2 _p)2
(z+eg?) +le

which can
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Together with the abbrevation Z = HD) o ( 140y + —22— | one can
\/ H(D)oH(D)
rewrite (197) according to [7]
2 2

g(Le) _ [ e h ) 1 1 Qb
ML) — — ) =Y = Sy — A

kK (260) (moc qu:wqbb ob | |2

_ Ek+ K 44 ;
(Uk| ™% oCq 0 = (113“ka;<)2 o eTata ay |Uk)

—H(D)+(@q+%)l4x4

—(1—& Uk abefiqaf(a oC, o — — — —
( q) < ‘ q (7H<D)+(®4+Ek2EK)14X4>2+M14X4

o P(J") o eiqa'ﬁa’ Qpy |UK>

(198)

One now has to think about the orders of magnitude. The goal is to
limit oneself to the nonrelativistic sector of QED, and therefore, for
being consistent with the perturbative solution of the flow equation
(102), this means that one has to keep corrections up to order o’
regarding the energies Ej, and Ef.

In the appendix section E there is a discussion about the orders of
magnitude relevant for atomic and molecular physics. There one can
see that the kinetic energy E);n and the Zeeman energy FEg.. are
already of second order in the finestructure constant apg compared to
the rest energy of the electron.

From this follows that (dimensionless) differences like E,f — 1 are

(P,0)
4x4

H 2 . . r— .
comparable to e ™~ Qg This is because the rest energy FEj is

of order ozFS — 1. Substracting the 1 = E, from the total energy

Ek EO + Erin + E 7ee then there remains the kinetic energy and the

Zeeman energy. Hence, such contributions in (198) are of the order
(P0)

2 4x4

a3 like the Pauli term v

N ~ N2
It follows immediately that differences like <E;€ - EK) are of the
order afg. These can thus be neglected in (198).

Having said that there follows for (198) [7]

_Z+ k_; K14><4 Z‘f‘wlbd

= — e+ + O(afyg)
- . 2 B2 72_ ( ExtEk 21 § FS
(2 + Btfen,,,) L BB) (F57) Lons

4 (199)
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and [7]

—H(D)+(@q+Ek+2EK)14><4 F|<D>+(wq+EkZEK)14X4

- s F 2 A B \2 — — N = - 2
( H(D)+< +EkJ;EK>14x4> _’_7(1% 4EK) 1gxa H(D)H(D)—(@q-FEszK) laxa

yielding [7]

2
1 1 gy
k, K 2€O mOC % Wq bb! 7 |q|2

— (Ug| a (6fiqa9<a 0Cyo0 6iqaxa) 0 e Ma%a o

EL+E
w 1QqrRar U
72 (Ek+EK)214 . ce ab" K>

—(EntEx «
H(D’+(@q+E’“§EK )14><4

~ ~ I = 2
H(D)H(D),<a]q+%) laxa

+ (1 —ky) (Ul ape”a%a o Cyo o P(H) o ¢lar%ar oy, |Uk)

(201)

Yet another simplification is possible. In the second line being
proportional to (1 — k,) the corrections are of the order O(ad.).
This is because the term with 1 — k, describes the renormalization
contribution due to the low energy photons. It is therefore small.
Additionally, for the low energy photons one can make use of the
dipole approximation, meaning that we one set e’*: ~ 1 and C, =1,
because this is far below the cut—off regime (189). The remaining
corrections are then of the order O (a}g).

Altogether one can set [7]

2
1 (L.e hzgh) de qvqy
i = () () 723,20 ()

q b,b
. (202)
Z+ kK0,

~ -~ 2
Ep+E
ZL(%> Taxa

% <Uk| ap <€7Z(Iaxa o Cq o ezqaxa) 0 e %a%a o o 6zqa/xm/ Qy |UK>

which provides corrections up to the order a%g .

7_ Ek""'EK’ lara

. s A 2 X . A~

The evaluation of the operators e %o 2 ( B+ EK’>2 o "%« and
4x4

e 1a%a o Cqo0 e'4e% ig shifted to the appendix section I. The final result
is given by [7]
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1 (L,e,high aFs
M;g I’;’ 9 )zfmoc2 X

(U | ffma= de ¢

(203)

where the abbreveations { = @, = % and w = /14 &2 have been

introduced for convenience.

The small correction term in the last line is very important. As will be
shown in section 6.3, a consistent renormalization of the bare electron
mg can only be achieved with this term.

Furthermore, in the derivation of (203), regarding the radial
integration variable &, all terms which yield corrections of the order
O (Q;ﬁlm) have been neglected. This will become clear when the
integrals are finally evaluated, see (248).

The representation (203) is the final result which can be evaluated as
a gradient expansion. For this purpose one first has to replace the
Dirac amplitudes |Ug) by the Newton—Wigner amplitudes ‘U [((NW) >
according to (173).

Now first there holds <U,§NW)‘ vy ‘UI({NW)> = Ogx4, see (178).

Next, for a constant magnetic induction field there holds
—g‘:ﬁ“ 7|:|z(11:’2)] = 04x4. Therefore one finds [7]

T( L )T = B 140 (o) (201)

Furthemore there holds [7]
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T(G2HEY )T = 52 oY (205)

moc? moc?

2 H(P,O)ﬂ
T (ap o ) TH= —ee—— 206)
X Toc - \/14X4_|_ ng;g) (
and [7]
T
TAT! = =50 (207)
14><4 + mo Cz 4><4

The relations (205), (206) and (207) are derived in the end of section
B of the appendix.

Putting this together one finally finds for (203) after dropping
contributions of the order O (o), [7]

moc® (§—w+ 1)

<UéNW))f09maz de | ( gw_g _ %Jrﬁ) Hg’g)ﬁ )UI(<NW)>
“n(L,ehigh a
M;K 9):% +(%§—§w+i—%)ﬂaﬂaﬁ

3w 2myg

_<UéNW)’ 1H5§25 ’U}{NW)>

+0 (atg) (208)

In the following subsection the longitudinal part of the renormalization
is evaluated.

6.1.2 Evaluation of the Longitudinal Contribution
to the Renormalization

Recall the form of the longitudinal contribution to the renormalization
of the bare mass mg and the g—factor of the fermions (182).

With the definition of the projection operators (307) and the relation
Pt — p) = NH# derived in section A of the appendix, the

AMD)oRI(D)
definition (193) for the operator valued step function C, one finds [7]
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2 3 .
A (Ce) [ e d’q 1 e _ AP s,
Mis™ = (2€o>/(27r)3|Q|2 (Uil e ° L0 VADofm € Uk)

2 3

q d’q 1

= 2 29 " (UK. oR,|U
<250) / e WK, o R U
(209)

L Z'Qa'§<a —
e e NETXT oe and K, =
e "% o Cjoe'l as defined in (594) and (601) have been used. If one
symmetrizes (209) with respect to the substitution ¢, — —¢; one finds

[7]

Here; the abbreveations Rq = e_ZQa'Xa o

~ 2 a3 1
vce _ (4 / ¢ 1 < K, +K_y Ry+R_, KoKy RyRey > o
kK (250 (27'()3 |q|2 < k‘ 2 2 + 2 ‘ K>

(210)

Introducing spheric coordinates according to

qz d3 1 B aps d {2
<250>/@| ‘Qf( > m002— df/ qf fq

(211)

one can rewrite (210) as [7]

2
7 (C, afps . - B ) )
M) = moc? 7L de (U] [ 42 ( KotKog RitRog | KoKy RoR )!UK>

(212)

Here the integral measure does not depend on the variable £ because
the introduction of spheric coordinates cancels it. (This is in
distinction to the transversal renormalization term, where there is the
transversal projector carrying @, see (617))

In the appendix section I it is explained in great detail that the
: Ky +K_y Ry+R_,
symmetric part 3 5

yields the main contribution to the
K,—K_,R,—R_,

integral, whereas the antisymmetric part yields a tiny
Ko+K_4 R,+R_,

5 3 one can set

correction. Therefore, for the symmetric
Ctfos — Oy (Qar — ), see (605).
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With the expansion (599) of R,, and with % = £, one finds [7]

f/B l
w
11, 1 2 A
+Qa m_olC ( E(Sa’a’ - % Qaqw>
R,+R_, __ 3¢2 ~ ~ g1, 11,
= 5 L =4q+3 % qaqa’ m—ocm—o/c (213)
1 g HEY
_ 1 5 4x4
w3 moc?
3
\+O (aFS)

Evaluating the angle integrals then [7]

w
m, (1 18
+aq moc < w 3 w3 )
df2g Rg+R-g  _ 1 €2 11,11,
47 2 o < + moc2  wd 2mg 6 (214)
_ 1 opg HEY
w3 moc?
3
\+O (aFS)

Now since - — %5}—23 = 3—1{]3 + % and w = /1 4 &2 one can finally
express (212) as [7]

0 W B
— 5 e Hild B
+0 (ajy)

(215)

This result can now be evaluated as a gradient expansion once
the Dirac amplitudes have been replaced for the Newton—Wigner
amplitudes according to (173). Then, by again using the relations

(205), (206) and (207), and by dropping corrections of the order
O (atg), one finally finds [7]

m002 %
Pmaz 11,
G = s [ e (0f™) L e | JOE)
< SR SR
+0 a%s
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Collecting the results for the longitudinal contribution /\;lg) and the

transversal contribution M(f) (mainly given by M%e) high) see (208))
one finds for (184) [7]

M = M+ M =3 (MG + M) e
kK
’ _ _ , (217)
= 30 (MG + M) el
kK
where, by using (208) and (216) [7]
moczi 153
i el
(= g g — ge) HIXYB
| Do e
M(C e) l\”/l(L e,high) ars U(NW) fO
ki Mk Tr < k mge® (€ —w+ 1) 3
+( Fw— 36 — o+ o) HEYS
b (B~ Bt o - o) T
(U™ WD [UR™) 40 (o)

(218)

Elementary algebra and the eigenvalue relation [ ‘U I((NW)> = ‘U [({NW) >
yields [7]

\1(C.e,high) | yp(L,e high)
Mk,K + Mk:,K

Prmax
moc? [y dE (£ + (E—w+ 1))
2 2 2 1 1
1 Dmas % "1(554— gw;%:m) O,I1
Sl B R S v Ty TR T W B
= oz () T O T
~ 1 4 2 1
1 Pmax _E‘i‘@—‘rm—ﬁ ( _ geh plext) )
(e (LR L)) (et
+0 (O‘%S)

Recalling w = /1 + &2 one can reexpress (219) as [7]
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moc? [ 4Ry (€)

1 Dmas [, 11
— (34 Jre ey (&) ) ke,
~(Ce) . r(Lehigh) OQFS NW <3 0 2mo NW
MI(C,K)"‘Mé,K ! ):T<Uli )’ i ’UI(< )>
b (B fies dgFy (©)) 2t By
+0 (aky)
(220)

Where the functions Fi (£), F; (£) and Fj (), expressed by the variable
¢ only, are given by [7]

) 2

19 +
B = - VITEF s - (ne) + (Voe)  (221)

. 2

2 7
) + 3y/14€2 3(\/@)3

o
~~
78
N——
Il
Wt
VR
Iy
|
-
_|_
722"

As will been shown in the following subsection, if one transforms the

Dirac (anti-)matter field Hp to the Newton-Wigner representation,

the bare relativistic Pauli Hamiltonian Hg’g) = 2‘;ng Ly — Qqeh éem)ab
0 mo

arises.

It will then become obvious how the renormalization terms M,(CCI’;) +

|\~/|,(€LK6 M9h) match the bare Pauli-Hamiltonian: the first line in (220)
matches the rest energy, the second line matches the kinetic energy and
the third line matches the Zeeman energy. However, all these terms
are weighted by the numerical integrals defined by the functions (221).

In that way the "true” electron mass m. and the “true”, the anomalous
g—factor, arise.

6.2 The Dirac (Anti—)Matter Field in the Newton—Wigner
Representation

The Dirac (anti-)matter field operator has been introduced in (8)
according to
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o= [#r X N(HEHDL @) o

wou'e{1,2,3.4}

where the Dirac field operators are given by

B () = > (U5 (e k) e+ V7 (s k) by )

i ' ) (223)
B, (r) =Y (UM (r; k) & + V, (3 k) b;)
k

Now in section 5 it has been shown that in the Newton-Wigner
representation of the Dirac Hamiltonian the amplitudes U, (r;k)
and V, (r; k) can be related to the Schrédinger—Pauli eigenfunctions

ufp) (r, k) describing physics on the atomic length scale [10, &, 7]

U (5 4) = TP (138 21
V. (r;k) = TV (r; k)
with
w1, ) )
[7NW) (r; k) = u"(r, k)
0
0
/s (225)
0 )
0
(NW) (1. 1) —
R
ur) (r, k)/

1%

For the goal of deducing the nonrelativistic Hamiltonian of light—
matter interaction from the QED Hamiltonian this is absolutely
essential, because one can now express the Dirac amplitudes in (222)
in the Newton-Wigner representation according to (224).

Therefore, the Newton-Wigner field operators ®,, (r) can be defined
with the help of the Eriksen transformation T according to [10, 8, 7]
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(226)

ol ()= (¢l ) WL, k) % @) (227)

I

Now the relation between the Schrodinger—Pauli amplitudes

ufp) (r,k) and the field operator ¥, (r) and % (r) of many-body

physics for electrons and positrons separately is as follows:

@ (r) = Z u:(SP) (r, k) éL (228)
k

K ) = >l (v k) b
: 229

) = (v )b 0
;

Using the properties (172) of the VONS uf P) (r,k) there readily
follows

As well as for the positron field operators x; (r).

With the Eriksen transformation T, the Newton—-Wigner amplitudes

(226) and (227), and the properties (230) one can readily write for
(222)
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™ [atr Y0 (8@ (M) My, HE (D) (M) 8 0)

pop'e{1,2,3,4}
= [ (o 0 (00,2 () )
_ / Br N <1>T,, ) HO @, (r))

n
2
d37’N q)T” <m002 ﬁ o \/]_4><4 + 2H4(11>D<74(1))> (I’l,/ (I‘)
mopc ,u",l//

Since 8 and Hg’g) commute there follows for electrons and positrons
separately

(231)

7:[D:m002/d37“/\/ 50 ’
—Xs (1) (\/14x4 + #HM) L (r)

Partial integration in the second line yields

(\/14X4 + m202 HEli?) 1;8/ (I‘)

- (Wl b2 (WD) ) % <r>) i ()

(233)

Hp = moc2/d3r/\/

And using the normal ordering rule then

104



o) = (dL@ ), 0, 0

X5 (r)

o (235)

|
7 N\
\'O
\'O
><>
W
—
L]
N—
<>
| =
/~
ﬁ
SN—
~—

Furthermore, there holds

;= — GLV,, + g Ay (r)> (236)

And for the positron contribution please recognize (o3),, =
— (O'biUy)S,’S

However, in the following, only the electron part is discussed.

) = [ o (010 (ocat ) dete) ) o

)

The positron Hamiltonian 7:[%);\);) principally results from the charge
conjugation symmetry operation Cr introduced in F.

~

1Y) = Cp o (H(Lj}) o Ch, (238)

For gaining all the finestructure corrections one has to expand the
square root a according to

11 (P,0)\ 2
EW(H4X4) + ...
(239)

The third term in (239) contains the first relativistic correction to the

kinetigl energy of the electron, the famous finesctructure correction
. . 2

—%(22#)2 The other terms contained in (HE&“) can be neglected

since the one being proportional to ﬂaBéewt) is a (small) gradient term,

and the square of the Zeeman—Term is even smaller than this gradient

term.

2 (PO PO
mOCQ\/14X4 + WHQM) = m06214><4 + Hz(1><4) —

Hence, the nonrelativistic second quantized Hamiltonian ﬁgl) for the
electrons (matter) is given by
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BE () moch, () + 0 (0) (HEY) oo (o)
(€D _ ) (240)
D A ~ A
010 (ke (1)) 9

(P,0)

The relativistic bare Pauli Hamiltonian H 4><’2 is given by

11,11, - q h t
HPO — iy w4 — 2 26, B 241
x4 2my % 2my 97t (241)

(see (158)). From this one finally finds

L) moc?b () + 016) (2~ bk (1)) )

) ($2BIy) o (x)
’ (242)

This is a 4 x 4 matrix operator with only one entry in the upper
block, whereas all other blocks are empty. The total Hamiltonian
Hp = 7—1%1) + 7:[%)), see (234), comprises 7:[%[) in the first component,
and 7—1%908) in the fourth component, hence Hp is blockdiagonal.

In the following subsection the effective Schrodinger—Pauli
Hamiltonian for a plurality of electrons is derived by putting
the results for the renormalization terms (220) and the bare electron
Hamiltonian (242) together.

6.3 The Effective Schrodinger—Pauli Hamiltonian and the
Justification of the Physical Cut—Off

T. Welton estimated in 1948 the anomalous g—factor by considerations
regarding the nonrelativistic equation of motion of the angular
momentum operator. He calculated the expectation value of its
dynamics with respect to the electromagnetic vacuum. The latter is
well-known to fluctuate, meaning that the square of the electric field
component £ and the magnetic field component B of the radiation
field do not vanish in the vacuum state, (0]E?|0) # 0. Associating
these “fluctuation corrections” to the intrinsic magnetic moment of
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the electron he found that their order of magnitude is “nearly correct”
with respect to the Schwinger result g — 2 = “£= (the anomalous
magnetic moment). Unfortunately, however, proceeding in this way,
Welton received the wrong sign, he found that ¢ — 2 < 0 is negative

[45].

As will be shown in this subsection, the derivation of the anomalous
magnetic moment ¢g on the basis of the flow equation unitarily
transforming the QED Hamiltonian makes it clear that it is the mass
renormalization which causes the anomalous magnetic moment of the
fermions. The mass renormalization, on the other side, is caused
by elimination of the transversal QED interaction (the interaction
of matter and antimatter fields with high energy photons) and
additionally by the elimination of the pair terms in the longitudinal
interaction (the QED Coulomb interaction).

In the sections 6.1.1 and 6.1.2 the renormalization terms |\~/|](j[’(e) and

I\N/llicl’f) were evaluated in such a way that only terms in agreement

with the order of the solution of the flow equation were considered or
retained. Therefore, the results for the renormalization terms include
terms up to order a%g, see (220).

The resulting renormalization contributions (220) comprise the
functions

Fy (&), Fy (&), F5 (&) defined in (221). These functions, once the radial
integral d¢ has been evaluated, give numerical weights to the rest
energy, the kinetic energy and the Zeeman energy.

For the evaluation of the renormalization terms the assumption has
been made that the cut-off Qq, is large, 2ye > 1 (see (187)),
implying that one can consider a wide range of photon modes. As will
be justified in this subsection, assuming 2., > 1 is only possible
because the integrals of the functions F (§), F» (§), F5 (§) give
logarithmic results for the renormalization. This means that
In 2,4, is a small number, especially if it is again multiplied by the
finestructure constant apg. From equation (244) one can thus see that
the difference between the bare mass mg and the ”true” electron mass
m, is small, of the order apg ~ %, and also the difference between
the bare g—factor and the “true”, anomalous g—factor.

Now, as has been shown in subsection 6.2, the bare Schrodinger—
Pauli Hamiltonian 7:[%” for a many—electron system interacting with
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an external magnetic induction field is given by

G () moc, (x) + i (x) (% - iz (ﬁb>4> s 1)

I A
0t () (2B ) i (1)
’ (243)

Adding the renormalization terms (220) to (243) one finds the effective
Schrodinger—Pauli Hamiltonian in second quantization as

A~

(el el i (Cle T (L,e
Hep = Hpy + MG+ M

<1 + aﬂ.LS foﬁmam d§Fy (5)) 5s,s'm002

+(1- 2= (34 S deFa () ) b (o)

- [t | (1 (e e aem0) (B0 e

A\ 4
e <Hb> 55,3’

— 832
Smoc

+0 (agg)

First, for the Zeeman term in the third line there has to hold [7, &]

me aps (1 s _9
— (1 i (g +/0 d§F (f))) =35 (245)

such that the mass renormalization corrects the result g = 2 following
from the Dirac theory of the electron.

Second, for a physically coherent picture it is required that the bare
rest mass term and the bare kinetic mass term are renormalized
consistently. This means that the constant C; belonging to the integral
of the function F} (§) and the constant Cy belonging to the integral of
the function F; (£) are equal. The physical cut-off (187) indeed yields
such a consistent renormalization: for the renormalization of the bare
rest mass mg term one finds [7]

Qmax

Mmec® = moc? (1 4 ars déFy (§)> (246)

™ Jo
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And for the kinetic mass term [7]

11 1 [
;Zm0<1—9§5<§+14 c%EﬂO)) (247)

Evaluating the integrals yields [7]

ez 3. - 1
AEF, (€) = 510 2+ C1 4+ 0 ( 5
0 max
l+/ﬂmﬂﬁ7@y—3lﬁ +Cy+ 0 (248)
3 . 2 - 9 N Y omax 2 Q?n -
1+/%M@F@yfﬂf? GGy
3 . 3 — 9 N dlmax 3 Q%n -

where the constants are given by [ ]

1,3
C1=—Z+ n (2)
1 7 3 1 3
02 3 12+2 () 4+2n Cl ( )
1 13 3 3 3
_ - In(2) = -2 4+ 2102
Gs=g-ptyh@=—;+5h

Now using (246) and (247) one finds for the anomalous g—factor [7]

o Me aps [ 1 Pmaa
9—2% (1—T<§+/O dfF:s(f)))

— s (1 [ depy ()
- oz (L i gy (6)) (250)

rnas «
2<1+— a€ (F (§) = F3 (€)) + O ( FS))

T 0 T

—2+—+O<&Fs>

(0

This is the Schwinger result [17, 419] (“trumpets please” [35]).
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Similar calculations of Cohen—Tannoudji et al. [50] also yield the
Schwinger result of g. In their work they evaluate matrix elements
considering effectively a one—electron problem. They derive the
following numerical values for the constants (249)

3 1
= _—In(2) — -
C 2n() 1
3 7
*— Z1ln(2) — — 251
C;=Sm(2) - - (251)
3 13
— Z1n(2) —
Cy 21’1() T

As can be seen, C # (5. However, since the anomalous magnetic
moment is given by the difference C5 — C5 from the difference of the
integrals [ d¢ (F> (€(q)) — F5(£(q))), they also derive the Schwinger
result for g:

1
C3—Ci=5=Co—Cy (252)

The constants Cj and Cs, and Cj and Cj differ by the factor ;.
It is this small correction which yields ¢} = (5! Regarding the
calculations presented here, the constants Cy and (5 contain the factor
% because of a different choice for the cut-off. Here, both the photon
energy and the fermion energy have been truncated, which leads to

the small correction term — <U1§NW)‘ 1H 4Z 2 6] ‘U > in the high—

energy photon renormalization contrlbutlon (208)! This is in sharp
contradistinction the the cut-off chosen by Cohent-Tannoudji et. al.
who truncate the photons energy only. This also yields the correct
Schwinger result, however, the renormalization of the bare electron
mass my is not consistent because C} # C5.

Cohen—Tannoudji et. al argue that such a consistent renormalization
of the bare electron mass mg can only be achieved by a covariant cut-
off procedure. Here it has been shown that the physical cut-off (187)
which truncates both the photons energy and the fermions kinetic
energy gives both the renormalization of the g—factor (250) and a
consistent renormalization of the rest mass term and the kinetic energy
mass term. It has to be emphazized that, if one only truncates the
photon energy w, and lets the fermions move arbitrarily fast, such
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that their kinetic energy Ej is arbitrarily high, this is physically
inconsistent. It is imporant to treat all constituents of the QED
soup on equal footing. This inconsistency is reflected by the fact that
with such a calculation the mass occuring in the rest energy term and
the mass occuring in the kinetic energy term are being renormalized
differently, meaning that the constants C} and C5 are different. The

physical (not covariant) cut-off (253) provides a small correction

3
such that C7 = Cs holds true!

From graph 2 one can see that it is the photons beneath the Compton
wavelength Ao which contribute to the renormalization of the ¢g—
factor: the main contribution comes from photons with wave numbers
between qAC ~ 0.05 and ch ~ 1. Hence, it is not the ultrarelativistic
photons Wthh cause the correct sign of the anomalous magnetic
moment [50]. Please reckognize that only the photons with wave
numbers ¢ > g = 2—7; have been eliminated, but all photons from
g ¢ = 0 to gA\c >> 1 contribute to the renormalization of g. However,
the photons relevant for light-matter interactions, those with ¢ ~ ¢
and lower provide a relatively small weight in the integral shown in 2
(the red arrow and below). Please reckognize that the contribution to
the renormalization from photons with wave numbers ¢ 2 % is even
negative, hence, UV photons and X-ray photons reduce the g—factor.

g5 o o

1.0

0.5

O'DT 1 2 3 4 i

Figure 2: Photons contributing to 97_2 = %£2. The red arrow indicates the starting
point of the wave number range ¢ > qp = ﬁ of the photons which have been

eliminated by the generator ﬁ(LM )( ). This corresponds to a numerical value —qgj‘rc =

2233 = 27%;31?0121? ~ 0.01. Adapted from [7].
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Having discussed these aspects the choice of the cut—off (187)
according to [7]

Qg + By < 20man
Dnaw > 1 (253)
1 < Qpae < X7

is now justified. The choice w, + Ek < 2(~2me gives a consistent
renormalization of the bare mass myg, and the choice f)max > 1, which
guarantees that the main contribution to the renormalization in 2 is
included, is possible because of the logarithmic nature of the integrals.

For example, the cut-off 2, = €% is “a huge number” [50]

which sets up a large range for photon wave numbers for which the
renormalization procedure is still physically sensible, because in that
case % In Qmax < 1. On the other hand, for meax = 1 corresponding
to q = i—z in figure 2 the renormalization of the bare fermion mass is
still mostly included.

Altogether, the effective Schrédinger—Pauli Hamiltonian 7:[;?113) in (244)
is given by inserting the numerical results (248) and (249) for the
integrals. This yields [7]

( m602+gb71?’ 1_1 <ﬁb>4 \

8 m3c?

~ (el 2 ~
ng) = /d?”)“zpl (I‘) . (2 + %) <%Bl§ext)o_b> / ¢s’ (I‘) (254)

)

\ +0 (ags) )

Here, in the term of the relativistic correction to the kinetic energy,
mo has been replaced by m., because a correction to this term occurs
only in higher order perturbation theory. However, the error is of
order a’.g, as can be seen from equation (247).
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6.4 The Effective Interaction Terms

In this section the effective interactions are evaluated. For doing
this one has to calculate matrix elements as a gradient expansion
once the Dirac amplitudes have been replaced by the Netwon—
Wigner amplitudes. This is possible because the Newton-Wigner
amplitudes are slowly varying functions on the length scale of
the Bohr radius. For the evaluation of the first order effective
interaction ﬁﬁow’o), the coupling of the matter fields to the low-—
energy photons, as well as for the second order effective transversal
interaction V e 1t 1s necessary to evaluate matrix elements of the

form <U,§NW) T o ap o etidexaTl ‘U,g{vw) . For the second order
effective longitudinal interactions, the effective Coulomb interaction

~ (0
Z/lc( : between the matter fields and the coupling of the matter fields
© it is necessary to evaluate matrix elements

an external source V,,;,
<U]§NW)‘ Tetitaxa Tt ‘U(,NW)>. Proceeding in this way one has to be
careful to keep all orders a%¢ and neglect higher order corrections.

The matrix elements of a functional F, , (x,p) depending on the
abstract operators x, and p, with the commutator [py,x, = %%,bl
are given by

(U™ Faa o) [ U1

=Y / ar (U™ (r, K))* (Fp,/u (r’ §V> U k)> (255)

see [7, O1]. In the last line the agreement has been made that the

gradient V shall operator on the function U l(fvw) (r, k) to the right. A
deeper justification can be found in the appendix C.

As has been shown in section 5, the Eriksen transformation T is a
functional of the operator II, hence T = T (II), see (155). Therefore
there holds for the operator T o eFa%e o TT [7]

To et Th = bt o (T o T (M) 0 %) o T (M)

o 256
= eFa%a o T (M4 hq) o TT (M) (256)
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Since the operators TT (M) and T (M 4 Aq) act on the slowly varying
functions U,SNW) (r,k) of Hf(’g), see (173) and (174), one can evaluate
(256) by expanding it with respect to the gauge invariant momentum

operator II,. Up to the order a%¢ there follows [7]

T, 11,

eh exr
q Blg t)O'b

lyxg— II 3
T = Los = 32 Mo o B0 4 Gy e +0 ()
II, 10, _ gh (emt)o_
T (IT) = 1yna — i Zmg L4x4 m?:;o B o g vy mH_;c +0 (OZ%S)
T(H:l:hq) = lyes— 1 b Qbmob 2 Lyxa— 2mg By oy + g a (ILy+hgs)
4 o2 moc
(257)
Hence, for the operator (256) there holds [7]
T o e o TT = 0% o T (I1 & hq) o T (1)
1 hgy R
(((1-dmle)1,, )
+ 8 hay
= eiz’qa/.ka/ o 2 “ Mmo¢ (258)
L, .
%% m_gc Z&fbb/b//O'b//

\ +0 (afg) )
Such that for the matrix element <U,§NW)‘ TetitaXa Tt ‘U (,NW)> in the

Newton-Wigner representation one finds [7]

(U™ Tt U™

1 hqgy hgy
(1 8 mgc moc 14><4

d3q etaR ' N
= 3 d? W) (k) AT | 1 hg Ty (NW) (1
/(271')3 ‘q|2 / T§UM (I'7 )6 :I:Zm%bc mgc LEPY b Oyt UN (I'; )
3
+O (aFS) %
(259)

Here it has been used that the nondiagonal terms in (258) do
not contribute, as has been explained in section 5, see (178).
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Furthermore it has been switched to the position representation
U;(NW) (r, k) according to (106) so that one can more easily identify

the contributions (e.g. the first line in (259) will yield the Coulomb
interaction, the second line will yield the spin—orbit coupling in the
presence of the other electrons).

The operator T o aye™%*« o TT can be rearranged according to [7]

To &aeizqa/xa/ o TT —To eizqa/xa/&a o TT

. 260
— (T o e:l:zqa/xa/ o TT) o (T o, O TT) ( )

The evaluation of the part (T oe* o TT) is given in (258). The
evaluation of the part (T oy O TT) is given in the appendix section
B, see (350). Therefore, one finds up to the order al.g [7]

To aaeizqa/xa/ o TT

lhqa/ ﬁqa/ 1 1II Hb/
( T 8mgc moc) Qp — 4 moc moc Qpy Otg + \abaa + OéaOéb/ Q

204a,p

hQQ’ 11, 1 hqa/ 11,
moc  Mmoc Qq/ + 4 mge moc

1€a/aa Ta Op

DN —

:F
— e:l:iqa-ia o
a2 (5(1/7[) —+ iEa’,b,a”Ua”)

(261)
Inserting (261) into the matrix elements <U,£NW)’T o qpetitara o

TT ’U (,NW)>, and using that nondiagonal parts do again not contribute

in the Newton-Wigner representation then [7]

<U]£NW)‘ To abeiiqa/xa/ o TT ‘U(/NW)>

/ (:I:l% + 1 ) Lixa \

2 moc moc
_ 3,.7Tx(NW) +iqr . (NW) /
— /d rU; (r,k)e 4+ % z?_(%zga’,a,a”aa” U, (r, k)

\ +0 (O‘%S> )
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6.4.1 The First Order Effective Interaction

Here, the coupling of the matter fields to the photons described by

?—A[(Llow’o) in the Hamiltonian ;s of (181) is expressed in the Newton—

Wigner representation. This is quite analogue to the procedure above.

The coupling term is given by [7]

" (low 1 ~ ow
A =L [0 AT )

Or, explicitely, [7]

(Url ape’® [Ups) & ey
+ (U] age™ 0% |Uy) éf el

,}:[Sfow,o) _ ( moc) Z Z ZA[)

k.k' q<qB b - <Vk‘ Oébeiqaxa ‘Vk’> ET/BAIQ&Q
— (Vi| ape™%% |V}r) b;bmé
(264)

It is again the matrix elements (Uy| ape®*e |Up) or (Vi | apet®eXe [V4,)
which yield the corrections in the nonrelativistic limit. Using (262)

one can interpret the nonrelativistic current density ﬁb(o) (r) [7]

Y (low,0)
H —( moC);;\FZZAb(Q)

q<gB b

(+1 fay 4 D )14><4

2 moc mocC

f Bri *(NW) r, k) etiar UL{VW) (r, k") ézék/dq
ha,
1 1T
( Sk )14><4
) 2m moc
© ) () i U™ (e, k) & el
h
_ % ngczga/ ba”aa” !
X
(% L n%c ) Lyxa
“«(NW) (7 _tigr (NW) (¢, &) b1 bra
+ [ d*rV, (1’, k) et Vi (r’ g ) it
i
1 hqy 1T
(—f + ) Laxa
B ) 2 moc moc ~ AL A
n f dBTV;(NW) (I‘, k) o—iar V;L(’NW) (I', k’) b%/b%&g
i
-} v ),
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Neglecting the antimatter part and using the transversality condition
> Ap (¢) @ = 0 there follows [7]

"~ (low,0,e 1
it = ()3 X S

q<gB b

3 *(NW) +iq-r 1T 1 hgy (NW) N aTa ~
( Jd rUu (r,k:)e a ( e laxa+ 5 %0 barTar " Uy (r, k') ¢pepag )

—iq- hg NW AT A A
+fd371Ulj( )(r,k)e qu< 1, Lyxa — % moczga’ba”aa” ) U/E’ )(I‘, k/) CLCk’a‘E

moc ’

Hobt

“ (o) o ST A0

y Z fd?)mﬂ( >€+qu ( TI’ILY(fC loyo + % :nocléfa/ ba//O'(f) )575/ (N (I‘) CAlq
+ f dger ) AT ( moc laxa — % %gczga/ b a//O'({/J) )s s’ 1[}8, (r) dg
(266)
where the Schrodinger-Pauli field operators (228) have now been
inserted.

Once the matrix elements have been evaluated one can separate the
current density from the vector potential [7]:

" (low,0,el) _qie
et = ()
J @74 (o Sacan A (0) (770 + e=57a0) ) (55,01 0) 25 (1))
+ f d3T Zb %Msa,’b7all% (ﬁ ZQ<QB Ab (Q) (ejLiqudq + e*iQ'!‘&g)) (Zs,s’ ,(/A};[ (I‘) (%U((f;))s o 1/;3/ (I‘))
(267)

The following definitions for the operator of the vector potential 2, (x)
of the low energy photons, and paramagnetic current density of the
matter ]C(l para) (r), the diamagnetic current density jc(f’dm) (r) and the

magnetization current density ji“*" (r) [7],
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(268)

where ¢ is a multiindex meaning > .= >, D 1.1y, and where
A counts the polarizations, finally lead to [7]

L (I (G507 ) = Gy < >) % (x)
moc? fd?’fr meb ( Eba 0" 5 r))

= - 62 ( fd?’?“ Zb( e,para) ( )_|_](e dza)( )_|_]l§e,spin) (r)) Q(b (r) >
(269)

Y (low,0,el)
HJ_

The Hamiltonian (269) can now be retranslated to first quantization.

6.4.2 The Second Order Effective Interactions

~ (0 A
In the following the effective interaction terms Z/{C( ) and V| ., and
the term th are expressed in the Newton-Wigner representation.

The beginning is made with Z/{C( : and then the term describing the
coupling to external sources Ve(gi is expressed in the Newton—-Wigner

~ (0
representation, because the procedure is similar to L{C( ). Finally,
the term V| .. is evaluated. Having done that everything can be put
together to go back to first quantization.

The Effective Longitudinal Interaction LZC(O)

The effective QED Coulomb interaction term Z/ic(o) =N (]A/(CO )) is part

of the solution of the homogeneous differential equation in the ansatz
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for the second order solution of the flow equation. It is derived in
section 4.1.3 and the result is given by (142).

Making use of the Eriksen transformation T or by using (168) it
decomposes into the following three contributions [7, &]

(0)) _
N (VC ) o 250 f (27r)3 Iql2
<U(NW) T 0 e %a%a o TT ’U(NW)> <U<NW)‘ T o ¢lda*a o TT ’U(NW) CKCK/Ck’Ck

+< NW)‘ T o e tda¥a o Tt ‘V ><V( )’To gidaxa o TH ‘V(NW >b]L bl ,bfgrbfc

DI

Kk KOk |2 (U Toemigaxa o THUNW) ) (VW T o gitara o THIVITY & b1 by,
+2 (U™ | T o emigoxa o THYIVY (VYW T o eitexa o THUL™) ) elebibp iz,

= f?c,ee + f/c,pp + ]}C,ep

(270)
1}0,@6 describes the effective Coulomb interaction between electrons,
f/c,pp describes the effective Coulomb interaction between positrons,
and Ve, describe an effective Coulomb interaction between pairs of
electrons and positrons.

In the following the effective Coulomb interaction 1>C’,ee between the
electrons is evaluted.

Using the identity (256) for the matrix elements T o e % o TT and
neglecting contributions of the order al.¢ one finds [7, ]

lal
(1 = bt ) g ™Y (e, k) UMY (e ) UZY) (0, K) USNY (o )

moc moc

s g 3 3,/ At oAt A A d3q ciaa(ra—ra)
Veee = o / L B D B D B e e L e v i

moc 1%

4Ebb/b” moc Uﬂ( ) (I‘, K) (O-b//)lhu’ ( Hb/ U({VW) (I‘, k)) U:(NW) (I‘/,K,) UzENW) (I‘l, k'/)

+UEN) (2, KYUSN™) (2, k) deggrar 202 U3 (o K7 <aa,,)u7y,( 1L,y (NW) (r’,k’))

0C

+0 (akg)

With [3, 7]
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d3q eiqa-(r:l—ra) . ;
27)° g 4r(r’—r|

/ d3q3 eiqa-(rfz;m) qy = A d3q3 gtelara) Vi 1 _ 1 mn
27)"  al ' (27)

7

lq/? C i dnlt'—r| T idgpfr—r)?

/ (;ljrc)]?, eiQa'((;r;Ta) vy = 5(3)) (I' — I'/)
(272)

there follows [3, 7]

P [ AP S e S e CheChertn X

U;(NW) (r, K) U;SNW) (r, k) ;U;(NW) (r', K" UIENW) (r', k)

47|r’ —r|

2
~1 (55) o™ e ) U™ (00 6 (0 - ) R (o KD TS (0 )

_%Ebb’b h ry—T} U *(NW) (I‘ K) (Ub//)ﬂnu/ (

moc  Ag|r/—r|>

e U™ (e k) U @ K UMY (oK)

moc

+0 (aky) 213)

Inserting the Schrédinger—Pauli amplitudes (172) finally gives [3, 7]

A~

1&;[ (r) 1&; (r’) mlﬁf (r’) Ys (r)

3 () B @) O ()6 (2 —x) iy () s (1)

Y}C,ee = % /dBT’/d?’r’ "
n P 11y

_wl (I‘) 1&1 ( )Ebb/b” miz)c 87:|I;’ Tb|3¢8”( )(Ub” >s ,  moc Qﬁs ( )

+0 (ahog)
(274)
]A}C’,ee is the nonrelativistic Coulomb interaction between electrons
expressed in second quantization. It can now be reexpressed in first
quantization, which is done in section 6.5.

The Coupling to External Sources Vo

ext

The contribution of the coupling of the matter fields to an external
potential @.,; (r) remaining in second order perturbation theory (see
(127) in section 4.1.3) is given by
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N Bg - . . -
0 q —1GaXa A —14aXa
V0= [ st ta) 3 (Ul U) e — Vil [Ve) )
kK

(275)

The Fourier representation of an external Coulomb potential of an

atomic nucleus is given by @, (q) = Z—Zeiq'Rﬁ, see also (39).

By again using the relations (168) for switching to the Newton—Wigner
representation of V there follows [7]

(0 d3q T —1QaXa I —iGaXa 7
Ve(a:gf = / Wée:ﬂt (q) % ((Uk‘ e q ‘Uk’> C-I];Ck/ — <Vk| [& q ‘Vk’> b}é,bk)

- / (dgqg@m (@) (<U,§NW)‘ TeidaxaTt ’U(fVW)> elep — <VI€(NW)’ Te—itaxa Tt ‘Vk(INW)> 512,5@)

2 ) k'
=V + Vi
(276)
Now for the electron part V¢ ,It one finds with [7]
~(el —iqr (el
pf) )(q) = /d37’6 oy (x)
277
ZU*NW \Te zqaxaTT|U (NW) ( ,k/) é;LCk/ ( )
Kok

and with the result (258) [7]

~ (el d3q (el ~(el
V) = / (27T)345§xt) (a) 55" (a)

Pq (Z]ge| iqr 1 NW) |+ —igax NW)\ 4
= [ oy o) [ S (™ rem e[
k,k!
(1 dte ) L

VA . d3 iq-R )
= ’q ‘ / q € /dSTZ U;(NW) (I‘, k) e_lq.r ilhi & ié‘bb/buo'b/l UfL{VW) (r7 k/)

4dmeg T 4 moc moe
+0 (ags) !
f d3q eia(R-)
2 ) @n)? TaP
’CIe‘ /d3 ZU*(NW *f d . eta( r)%ﬂﬂ U(NW) (I_ k‘/)
471'60 kk, s iq‘(R%:)) ‘;ﬂ 0 moc mocC " ’
B f q3 € 2 (% o o Z‘<€bb’b”(7b”)
(2m) lal moc. moc Loy t!
(278)
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Again inserting the integral relations (272) gives the result which can
be reexpressed in first quantization [7]:

Zlq L hsE)
3 ~
R / rl (r ~gmgeincd ) (R T) e (r)
47'(-80 _|_li€ e Ry—ryp T, O_(P)
4 moc bbb 47T|R—I‘|3 moc b’ fpt!

The first line is the Coulomb interaction with the atomic nucleus at
the position R. The second line is the Darwin—term, and the third
line is the spin—orbit interaction of an electron in the Coulomb field
of the nucleus.

The Effective Transversal Interaction V | e

The effective transversal interaction V Lee as a result of the solution of
the inhomogeneous differential equation of second order perturbation
expansion as deduced in section 4.1.3 follows as

]A}J_,ee = moc (moc) Z Z Z q250w Z <5b’b/ N C‘]zlq‘g> :

ke k' KK’ b,b’
X <U,§N NTo apeldeXe o TT ’U, > <UK, ‘To e % o TT ’UI((NW)>

(Br—Bp—,)—(Bx—Ex+®,) 1 4
(Ek—Ek/—d)q)z_F(EK/_EK+LDQ)2 CkCK/CKCk/

(280)

For the effective interaction V Lec one has to consider that in the
nonrelativistic subspace of QED the difference in the fermionic
energies is always very small compared to the rest energy [7]:

|Ek — Ekfl < m062

281
|Exr — Ex| < moc® 250
Hence there holds [7]
(Ek*Ek/*a’q)f(EKleKJra)q) ~ _ L (282)
(Ek_Ek’_(’Dq)2+(EK’_EK+(Dq)2 B “
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The factor k, in (280) means that it is the high-energy photons, those
with wave number |q| > ¢p, which cause the effective transversal
interaction V Lee- Oince these have been eliminated in favor for V. e
one can set K, = 1.

Switiching to the Newton—-Wigner representation according to (168)
this yields the following approximation [7]

N q? /
Viee= ~ 25 (moc) Dok KKV g hw(Q) Db <5b by~ q|:q|3 ) X
X <UI£NW ‘T o apeideXa o TT ‘U({VW)> <U ]YW)‘ T o aye eXa o T1 ’UI(<NW)> <— a;iq ) éLé}(’éKék’

_ & A o ISl 1 , — by
= 2q60 (moc) ZR k/ ZK K’ cch/CKCk/ V Z ( a}g ) Z ( 51)7[) |q|2 > X
q

b,/

x (U] T o apettene o TH UM (UM T 0 agyeime o THURN™)

(283)
With the matrix elements (262) then [7]
A _ 9%
VJ_@@ - 250 Zk’ k! ZK K’ CkCK’CKCk/ Z |q| Z ( a,b |q|2 ) X
b,b/
<é:&“c R ,ggc ) 14x4
3, 7 (NW iqr — (NW)
X /d TUH( )(I‘, k)e 4 + % Zggcga/ﬂ,auaa// UM’ (I‘, k/)
284
+0(ats) /o 250
(—%%”C + miél’c ) 14x4
X / BrurN) (¢ K') e Cihay v (v K)
3 mecEb bbTb v
+0 (afs) /

v,V

After several steps, and with the definition of the interaction potentials

[7]
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1 iq-(r—r’ a
ar € (G i)

q
(S ’S) _ 3 1 L iq-(r—r’ h 2 _QaQb
Ve -r) = (“£) & D o e 4 (fa) (Gur— 1)
q
q

(285)

one finds, by inserting the Newton—Wigner amplitudes related to the
Schrédinger—Pauli amplitudes (173) [7],

moc

B @)L )V = r) (e e () (e (1)
(r )

: , i (r wi W =) (7)o () (37) e
Vi ee :% /d3r/d3r +1/)T( ) (I‘/) b(ospo (I‘*I‘)Eb by ( mo,,c 1/)9 (r )) (015/1/3)5575 1[’7
+¢T (r') ( V(OSPO (r—r )Eb',b,b ( Z(J,I,D))Sl75/ e (r')( nz)bc b
(

The meaning of the interaction potentials (285) is given as follows:
the first line in (286) describes the orbit—orbit interaction between
two electrons, the second line describes the magnetic dipole-dipole
interaction, and the third and fourth lines describe the spin—other
orbit interaction between the electrons.

The evaluation of the interaction potentials (285) can be found in the
appendix section H. The result is given by [7]

(sp,sp) _ 2\N1( &n 2 8. (3 3rar,—3|r|*da,
Vi @) = (=) 4 () (5700 () 8, + Ll )
1
2

(287)

Inserting the transversal interaction potentials (287) yields the final
result for the effective transversal interaction contribution [7, 3]
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Catedt () 1 (e oD (L G ) (e e
bl (r)ws/ (r) ineg ) 2 [r—r7] + \r—r’\3 moe 7/)s’ (r) mgce "8 r
863 (r—r’)&
. . 2 2 3" a:b P . (P) .
X —9f () D1, () (43{;))% ) +3(m_r;l)(Tb_T;))_s\r_r/‘z,;ayb ) (of >)S/ e () (of )Sygwg (r)
v = — /dg’l‘/dST/ |r7r/|5
Liee =3
N N 2 [ N P N
B I T - ) [C AN RS
. . ' 2 — P - o, -
—3I () B, () < T i %@J )sbf,b,w (o37) o 0 bsr () (s s ()
(288)

Now everything is put together for retranslating the Hamiltonian (181)
to first quantization. This is done in the following subsection.
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6.5 From Second Quantization to First Quantization:
The Many—Electron Hamiltonian of Light—Matter
Interactions

The nonrelativistic many-body Hamiltonian 7:[%]3 of a plurality of
electrons has been introduced in section 6 according to [7, &]

D =) 4 + MY 4 g + A

) (289)
+ + VL,(?(?

In the last subsection these contributions have been evaluated
as a gradient expansion by switching to the Newton—Wigner
representation. This is the only representation in which a classical
interpretation is possible, and at the same time it is the representation
in which one can now quite simply reexpress the Hamiltonian (289)
in first quantization, hence, as sum over individual particles. The
switching to the Newton-Wigner representation is possible because
the Eriksen transformation of a Dirac—particle in an external static
magnetic induction field is known ezxactly, and because in the
nonrelativistic subspace of QED it is reasonable to assume that the
Newton—-Wigner amplitudes vary slowly on the length scale of the
Bohr radius ap (atomic physics). These are given by the Schrodinger—
Pauli amplitudes solving the Schrodinger—Pauli eigenvalue problem of
a nonrelativistic spin % particle in an external magnetic induction field.

The results have been achieved as follows. The first three terms 7:[%1) +

-I-/\;lf) in (289) yield the effective Schrodinger—Pauli Hamiltonian

7—15962 for an electron with mass m., charge g, and spin o, = i2><2 ®UZSP)

This has been evaluated in subsection 6.3 [7, &

( MeC —i—ﬂbnb—l L (f[b)4 \

8 m3c?

2m

H = [ il @) | 4 (o nss) (225000) |90 @) (200

)

\ +0 (O‘?fvs) /

(low,0,el)

The coupling of electrons to the low—energy photons ’H has been
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deduced in subsection 6.4, see equation 269. The result is given by

[7, 8]

Flom0e) _ /ﬁ}j i () 4 G () G (1)) 2 (1) )

MeC?
(291)

The effective Coulomb interaction )A/c,ee has been deduced in
subsection 6.4.2 [7, 8]

O () 0L () g (1) s (1)

1 () @) L 6 (= 1) () (1)

Vece = % /d3r/d3r’

—0L )DL () ewr s it () (o)) B (x)

s,s

+0 (Oé?z’fs)
(292)

The interaction V' xt ) of the electrons with an external source is found
to be (see section 6.4.2) [7, &]

R
v = 28 it ke (R~ ) o (1)

4dme 1 h ( Ry—7y, ) ( I, (P)>
+4m cEb'y” Amr|R— r\ MeC O !
(293)

And finally, the effective transversal interaction ]A/L?ee between the
electrons is found to be [7, &]

. 1 .

Ve = 5/d3r/d3r’
i T (e 1_nh a2 (Tz/—ré/) LI ’ (P) J

LD, () smee e |5 ey ot |l b (1) (Ub// )S)S. s (r)

N N o —r! ~ ~
Sitwil @) (bt ks i) e (), e ) (B deo)

See (286).

Please note that the bare mass mg has been replaced by the “true”
electron mass m, in the relativistic correction to the kinetic energy,
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the relativistic corrections to the QED Coulomb interaction, and the
relativistic corrections to the QED transversal interaction. It is in
the nature of the perturbation theory that one gains in the order a4
contributions which are not renormalized in this order but in higher
orders of the perturbation expansion. However, the error one makes
in the replacement mgo — m, is small of the order apg, and it does
not exceed the order of the particular term. Consider for example the
coupling term ’H Uowel) "By construction this term of the order apg.
In section 6.3 it has been shown that the first order renormalization
of the bare mass itself is of order apg, hence, the error by replacing
mo — M. is not larger than apg, e.g. the order of the term 7—[ low,el)
In this sense the renormalization is closed.

Having said that we now go to the first quantization. For a general
one-particle operator O in second quantization there holds

0 [a >0 0w o) (295)
And for a general two—particle operator O in second quantization
— /d?’?“/d?’r/Zzﬂ (r) @21, (') O(r, )b, (r') by (¥)  (296)
There readily follows for (295) in the first quantization

N
-0 (rm) (297)

and for (296) accordingly

Ry T

With that we one can reexpress the terms (290), (291), (292), (293)
and (294) in first quantization as [7, &]
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( Mmec? + (ng;)ngngj)) — i (Héj)>4 \
N

y(el) ex ]

Hop =D | +(2+ o) <qeh B “agp’”) | (299)

2me

\ +0 (abs) )

N
"~ (low,el 1 ~(e,para ] ~(e,dia i .(e,spin i -y
- G ) 03 () 7 )
e~ 50
(300)
where
j-(e,para) I‘(j) _ ﬁA(])
b Me
~(e,dia d. ext i
i) rm) _ _HAf() ) (rm) (301)
e,spin ] 0 - e e
jls i) (r(j>> = q_gb a’,a” () C(w) (I‘) = (q_rOtS(e) (I‘(]))>
e or Me b
47750|r(33;)7r(9‘>‘
1 N 2 2 ) )
\A/C,ee = 5 Z _47(1660 (WLEC) 71—5(3) (I‘(J) — I'(j )> (302)
i#i
¢ n (P =)
T 87eg Mec Oprr Ebb’b”‘r(j)_r(J,)‘s mbec
1
N 471"R—r(j)‘
~ 1 A h (3 '
e — Z |qe| Z —Loh i 5®) (R —rl)
4reg = R A _Ry-ry)) < 1, a(P,j))
mee=bUb 47T|R—r(j)‘3 mee “U" )
(303)
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(304)

Note that N is the number of electrons! Hence, one can now

count the particles! Furthermore, aép) was used instead of its

relativistic sister o, = 1®0§P) because now the (empty) positron block

can be ignored (altough it is actually always there! Only hidden!)

Hence, the nonrelativistic Hamiltonian of many—electron light matter
interactions expressed in first quantization, deduced from full QED,
assumes the following guise [7, &]:

A — A L Al D N+ Ve + Hygg + V) (305)
The nonrelativistic Hamiltonian |C|(ijf\)j) of many-positron light matter
interactions in first quantization can be derived in a fully complete
consideration from the second quantized Hamiltonian H%ﬁ) as has

been done for the electron Hamiltonian I:I(Lejl\} from 7:1(;]1\)4

It should also be possible, as indicated in (238), to start from the
second quantized Hamiltonian 7:[(5]2, of the electrons and apply the
charge conjugation operation Cr given in (408), and introduced in the

appendix F.

The second quantized Hamiltonian 7:1(5\';) of the positrons can then be
readily reexpressed in first quantization with the prescriptions (297)
and (298). This makes it manifest that the renormalization of the
positron attributes is equal to the renormalization of the electron,
such that the positron is equal to the electron.

Now the Hamiltonian (305) of the electrons does not coincide with the
solution of T. Itoh [13]. The main difference is that Itoh eliminates all
photons from the QED Hamiltonian, such that it is not comprehensible
how Itoh comes from the bare mass in the QED Hamiltonian to the
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renormalized true electron mass, and therefore, how he achives the
anomalous g—factor of the electrons.

Furthermore, Itoh drops terms which violate the particle number
conservation. Proceeding in this way one can first never be sure that
one misses contributions that belong to the result in the respective
order. And second, it is impossible to obtain a Hamiltonian describing
the positrons and therefore one cannot treat electrons and positrons
on equal footing.

The same is true for the derivation of Bialynicki-Birula [14], who also
does not take into account terms which violate the particle number
conservation by starting from Dirac field operators which describe
particles and antiparticles separately. The mass renormalization of the
electron is then explained by the normal ordering of the nonrelativistic
Coulomb—interaction.

As has been shown here, the renormalization comprises two
contributions: one part stems from the QED Coulomb interaction,
the longitudinal interaction, and the other part stems from the QED
transversal interaction, the one between the (anti—)matter fields and
the high—energy photons. Eliminating this particle number violating
contributions of the QED Hamiltonian by applying the flow equation
yields mass renormalization and the renormalization of the g-factor
(which coincides with the Schwinger result), and additionally the
well-known effective longitudinal interactions (Coulomb interaction,
Darwin term in the external field, spin—orbit interaction in the electric
field of the other electrons) and the effective transversal interactions
(dipole—dipole interaction, spin—other orbit interaction and orbit—orbit
interaction) [37]. Here one has to emphasize that it is not the ultra—
high energy photon modes which renormalize the bare mass mg and the
g—factor. From the graph 2 it can be seen which photons contribute
to the renormalization: it is the photons between the energy scale
apsmec? and the pair creation threshold hcgc !

With the derivation of the nonrelativistic limit of the QED
Hamiltonian (8) presented here one can treat each constituent on equal
footing, hence, the positrons are particles equal to the electrons.

The result (305) is crystal clear in its derivation, where each step
can be understood. One does not have to omit terms which violate
the particle number conservation, and all contributions important for
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the respective order of the perturbation expansion in the finestructure
constant apg have been kept.

The result (305) also makes one thing clear: it would be wrong to
start from the classical Hamilton function of light-matter interaction
and quantize it by making use of the correspondence principle,
because in progressing so, one would implement all photons into this
Hamiltonian. It is, however, obvious, that the true Hamiltonian
of light—matter interactions comprises only the low—energy photons,
hence, all photons whose wave number ¢ is smaller then the Bohr wave
number ¢p definded by hcgp = apgm.c’.

For N = 2, A/ (r) = 0, A (rV) = 0 and without the radiation
contribution H,,; the Hamiltonian (305) coincides with the so—
called Breit-Dirac-Pauli Hamiltonian®, see for example [37]. For the
derivation of the Breit—Dirac—Pauli Hamiltonian, the photons have to
be eliminated completely. However, since we are living in a world
where there are always photons present, the Hamiltonian (305) is
physically more sensible, since it describes the interaction of the
electrons with the low—energy photons and includes the radiation field.

3 The Breit-Dirac-Pauli Hamiltonian can also be contructed by starting from relativistic
classical mechanics. One constructs a Lagrange function (the so—called Darwin Lagrange function)
of two interacting electrons. These interact via the electromagnetic fields they produce due to
their motion, hence, due to the Lorentz force felt of by electron due to the electromagnetic field
of the respective other electron and vice versa. From this Lagrange function then the Breit
Hamiltonian is derived in analogy to the derivation of the Dirac Hamiltonian of one electron.
The Breit Hamiltonian subsequently is a 16 x 16 matrix operator and thus acts on 16—component
spinors. This gives then a system of sixteen coupled equations which can be decoupled by replacing
the “large” components by the “small” components, just as in case of the free Dirac Hamiltonian.
Proceeding in this guise finally yields the Breit—Pauli-Dirac Hamiltonian [52, 53]. However, starting
from classical mechanics for two interacting particles leads to serious problems, e.g. an unphyiscal
le|* term in the Breit-Dirac-Pauli Hamiltonian. This is also discussed in section 7. The flow

equation method does not provide such an unphysical contribution to the nonrelativistic limit of
QED.
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7 Summary and Discussion

This dissertation was dedicated to the goal of deducing the
nonrelativistic limit from Quantum Electrodynamics as a high energy
field theory.

The central problem breaks thereby down into two subproblems of
which, thinking in classical physical terms, one would assume to be
related to each other: the first, fundamental subproblem is that in
QED, the particle number conservation is violated. Whatever one
wants to understand by a particle in the context of QED — be it
an occupied (anti—)matter mode or the (anti—)matter field itself — the
particle number operator N counting occupied (anti—)matter modes is
well defined, and it does not commute with the Hamiltonian of QED.
Hence, the particle number is not conserved, which is a profoundly
unclassical property.

The second subproblem is the coherent superposition of matter and
antimatter modes in the Dirac field operators describing the creation
and annihilation of matter and antimatter in the QED Hamiltonian.
Assuming that there are particles and antiparticles, one would also
assume that there is a clear distinction between matter and antimatter.
However, it is (unfortunately deeply) hidden in the formalism of QED
that there is no clear distinction. This is due to the fact that the Dirac
field operators comprise four components matter and antimatter are at
first indissolubly interwoven with each other which on the other hand
goes back to the structure and the properties of the Dirac Hamiltonian.

It was now possible to achieve the goal of deducing the nonrelativistic
limit of QED by taking two separate steps: first the QED Hamiltonian
has been unitarily transformed in such a way that an equivalent Hamil-
tonian that conserves the particle number emerged. This Hamiltonian
is a many—body Hamiltonian describing the interaction with (possibly
fast moving) matter and antimatter fields, and low energy photons
(such with wave numbers ¢ < gp). But in this Hamiltonian the matter
and antimatter degrees of freedom are still coherently superposed.

Therefore, in a second step, the matter and antimatter degrees of
freedom in the particle number conserving unitary equivalent QED
Hamiltonian have been decoupled.

In this guise then the nonrelativistic Hamiltonian of light—-matter inter-
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actions emerged as a many—body field theory Hamiltonian for electrons
and positrons separately. The resulting many-body field theory
Hamiltonian for electrons has been retranslated to first quantization,
hence, it has been expressed as a sum over indiwidual point-like
particles carrying mass, charge and spin.

It was possible to achieve a unitarily equivalent QED Hamiltonian
which conserves the particle number by the help of the Wegner flow
equation, which is a differential equation for unitarily transforming a
matrix or an operator.

The generator of this flow equation made it possible to remove the
pair terms of the QED Coulomb interaction and the high energy
photons. With high energy photons hard X-ray photons and gamma
ray photons are meant. However, this flow equation is initially
a nonlinear ordinary differential equation, such that it could only
be solved perturbatively. For this the QED Hamiltonian has been
expanded into a series in the finestructure constant, and the inital
data has been choosen accordingly. The latter means that it has been
assumed that the radiation field energy is of the same strength as the
contribution of the rest energy and the kinetic energy of the matter
and antimatter fields (else one would ignore the high energy photons
from the beginning, which would thus be inconsistent).

Now this expansion led to a system of recursively coupled differential
equations still being nonlinear. Since the zeroth order differential
equation could be solved exactly, all higher order differential equations
occured as linear ones. It was possible to solve these linear ordinary
differential equations up to the second order in the finestructure
constant by the help of an ansatz which reproduced the eigenvalue
character of multiple interacted commutators.

Indeed, in this guise, all pair terms and high energy photons have
been removed from the QED Hamiltonian and a unitarily equivalent
Hamiltonian emerged which conserves the particle number.

This elimination of the pair terms of the QED Coulomb interaction
and the high energy photons yielded effective interactions in a
completely symmetric fashion for both matter and antimatter, as
well as for the photons. Next to that a term has been gained which
describes the interaction of electrons with positrons (positronium).

Moreover, terms have been gained which renormalize the bare
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attributes mass mg and with that the g—factor of the fermions. These
so-called self-energy terms are present due to the requirement that
one has to normally order the creation and annihilation operators for
the fermions and the photons. This, on the other hand, is necessary
because only in the normally ordered form it is possible to reexpress
the field operators in first quantization.

One such renormalization contribution is due to the elimination
of the interaction between the (anti-)matter fields and the high-
energy photons, the transversal coupling. The second renormalization
contribution is due to the elimination of the high—energy interaction
between the matter and antimatter fields, the QED Coulomb
interaction.

Altogether, the unitarily equivalent QED Hamiltonian which
conserves the particle number then comprises the effective Pauli
Hamiltonian, the effective Coulomb interaction, the effective
transversal interaction, the coupling of the matter and antimatter
fields to the low energy photons, and the radiation field.

Besides one gets an effective fermion—photon interaction describing
stimulated emisson, a constant spectral shift and an effective electron—
positron interaction. The evaluation of these contributions has been
postponed.

The focus has been set on evaluating the part of the Hamiltonian
that describes matter only, the many—electron QED Hamiltonian.
Analogous considerations regarding positrons have also been
postponed.

The many—fermion QED Hamiltonian in second quantization can
be found by expressing the contributions of the particle number
conserving unitarily equivalent QED Hamiltonian in the Newton-—
Wigner representation. This is the representation in which matter
and antimatter degrees of freedom fall apart.

The Newton—Wigner representation follows from the FEriksen
transformation,  which is a unitary transformation that
blockdiagonalizes the single—particle Dirac Hamiltonian, leading
to a decomposition of the field operators into upper and lower
components for matter and antimatter respectively.

The renormalization terms together with the Dirac quantum field
which, in the Newton—Wigner representation, is nothing but the
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relativistic, second quantized Schrodinger—Pauli Hamiltonian, then
renormalize the bare mass m( and the g—factor of the fermions. For
the latter the Schwinger result has been found.

The evaluation of the renormalization terms showed that the
anomalous g—factor is due to the renormalization of the fermionic
bare mass. The renormalization of the bare mass could be achieved
in a physically consistent manner by introducing the physical cut—off.
This cut—off truncates both the kinetic energy of the fermions and
the photon energy and led to the important numerical factor % due to
which the bare rest mass is renormalized equally as the bare kinetic
mass.

Since the single—particle Dirac Hamiltonian in the Newton—Wigner
representation is blockdiagonal, where the blocks are given by the
relativistic Schrodinger—Pauli Hamiltonian, it is possible to set the
Newton-Wigner amplitudes in relation to the Schrodinger—Pauli
amplitudes describing the nonrelativistic electron in an external
magnetic induction field.  The related Schrodinger—Pauli wave
functions vary slowly on the atomic length scale, compared to the
Compton wavelength. It was therefore possible to evaluate the matrix
elements which give the corrections to the Dirac representation as a
gradient expansion.

Finally, the low—energy QED Hamiltonian in the Newton—Wigner
representation describes a plurality of electrons interacting with each
other and with low—energy photons. With that the many—electron
Hamiltonian of nonrelativistic light—-matter interactions in its second
quantized guise has been derived, which could then be reexpressed in
first quantization, hence, as a sum over individual point particles.

The result extends that of Cohen—Tannoudji et al. presented in their
textbook on QED [6] by one order (though the technical procedure
was different there, e.g. perturbation theory has been applied by
starting from a particle picture from the beginning). This means that
the first relativistic corrections to the Schrodinger—Pauli Hamiltonian
have been derived. However, it has to be emphasized that with the
method presented here, one has at no point assumed particle number
conservation, it has been demanded by unitarily transforming the
QED Hamiltonian. By solving the flow equation, using the generator
which demands particle number conservation, one can proceed in a
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technically clean manner and treat all constituents involved on equal
footing. This sharply distinguishes the method presented here from
all previous derivations of the nonrelativistic limit from the QED
Hamiltonian like the work of I. Bialynicky—Birula [14], by T. Itoh
[13], and by Cohen—Tannoudji et al. [0, 15].

The derivation of the nonrelativistic limit of full QED has the great
advantage that one does not have to start from the single—particle
theory of classical mechanics or relativistic quantum mechanics and
try to extend it to multiple interacting particles, in order to derive
from it its nonrelativistic limit. Such a Hamiltonian exisits, it
is the Breit—Dirac-Pauli Hamiltonian. It has been derived the
early 1929 work of Gregory Breit [52]. Breit worked out this
Hamiltonian by proceeding similarily as Dirac with this single-
electron approach. Breit imagined that two electrons interact with
with each other due to the electromagnetic field generated by the
respective other, moving electron (see also footnote 3). With that
he suggested for the description of two interacting electrons an
effective Hamiltonian operating on a sixteen-component two—particle
wavefunction. From Breit’s wave equation for that wavefunction
emerged in the nonrelativistic limit the well known Schrodinger-Pauli
Hamiltonian for two interacting electrons carrying mass, charge and
spin. However, the lowest order relativistic corrections to the particles
Coulomb interaction yielded not only the physical interaction terms
(e.g. the magnetic dipole-dipole interaction), but also an interaction
term proportional to |e|* that contradicts experiment [53)].

The result derived here coincides with the Breit—Dirac—Pauli
Hamiltonian (however, without the unphysical term) iff one sets
N = 2, puts the radiation field to zero, as well as the external magnetic
induction field and the photon vector field (the correct version of the
Breit—Dirac—Pauli Hamiltonian is also known as the Bethe—Salpeter
Hamiltonian, see below). Conversely, it would probably not be
immediately obvious how to integrate the photons into the Breit—
Dirac Pauli Hamiltonian or into the Bethe-Salpeter Hamiltonian in
order to get a nonrelativistic light-matter interaction Hamiltonian;
especially would it not be clear that these photons are then limited
in their energy, e.g. that X-ray photons and gamma photons must
be excluded from the Breit—Dirac—Pauli Hamiltonian or the Bethe—
Salpeter Hamiltonian.
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Hence, proceeding the opposite way, namely starting from the classical
quantum mechanics and the special theory of relativity, or from the
relativistic quantum mechanics of Paul Dirac, and trying to extend
it to a plurality of interacting particles yields numerous and serious
problems, see also [15] and the references therein.

It is also not necessary to start from a two—particle Bethe—Salpeter
equation describing bound states of a two—particle field theoretical
system in terms of propagators. This might be a useful equation,
however, as has hopefully become clear, it is questionable how the
field theory formalism and the particle picture come together here.
The covariant derivation of the results of Breit was established by
Bethe and Salpeter on the basis of QED, thus obtaining (in a frame of
reference with the total center of mass momentum being zero) a correct
version of the nonrelativistic Hamiltonian derived by G. Breit without
the unphysical |e|* term [71]. An extension of the fully relativistic
Bethe-Salpeter equation to more than two interacting fermions seems
to be a hard problem, one aspect being the normalization of the
many—body wave function. Any Hamiltonian which involves a sum of
Dirac Hamiltonians for three or more particles plus local interactions
suffers from the so called continuum desease, that is normalizable
eigenfunctions don’t exist because of the coherent superposition of
positive- and negative-energy states [55]. To get from there via the
Bethe—Salpeter approach back to the Schrodinger-Pauli Hamiltonian
for a plurality of electrons, together with the lowest order relativistic
corrections, requires to intruduce in an ad hoc manenr positive-energy
projection operators collecting the interaction terms of the electrons
[54], for a recent summary see [50].

Altogehter, applying the flow equation method to the nonrelativistic
limit problem of QED is the most general method for attacking this
problem. With it it is possible to always stay on the level of the
Hamiltonian as the generator of the dynamics of the system. Here one
does not have to evaluate matrix elements of operators with the help of
the S—matrix as time ordered products in the interaction picture of the
QED interactions. For the S—matrix method it is necessary to choose
initial and final states, which is not necessary iff one remains on the
level of the Hamiltonian. The flow equation method also differs from
the “method 2”7 of Dirac who starts from the Heisenberg equation of
motion of a field operator describing the emission of one electron with
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respect to the QED Hamiltonian and solves it perturbatively [32].

In this dissertation it has been started from the full QED Hamiltonian
as a second quantized field theory including all interactions, and it has
been asked how one can retrieve the classical point particle carrying
mass, charge and spin from it. By appyling the flow equation to
the problem it was possible, always treating the constituents of the
QED soup on equal footing, to derive a many—fermion Hamiltonian
of nonrelativistic light matter interactions, including the Schwinger
result of the magnetic moment of the fermions.
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Appendix
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A Spectral Representation of the Dirac
Hamiltonian

With the Dirac Amplitudes U, (r; k) and V), (r; k) in the compact Dirac
braket notation [7],

Uy (r; k) = ((r, 1) |Us)

U (k) = (U] (&, )

Vi (rik) = ((r, 1) Vi)

VA (s k) = (V] () ) (306)
/ S ) ()] = 1

and the completeness relations (18) it is possible to define projection
operators [7]

P = " |Uw) (U]

PO =) " Vi) (Vi 0

k/

that project onto the subspaces of positive energy or negative energy of
H®) according to (16). These projection operators have the following
properites [7]

(p(+)>T _ph)

N\ _
(P) =Pt (308)
P(+) + P(_) = 14><4

PH o P =04y = PO o PO
The projection operators (307) commute furthermore with the Dirac
Hamiltonian, [H(D), P(i)] =0

From these one finds the spectra representation of the Dirac
Hamiltonian H®) as follows [7]
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HD) — 4D o (p<+> I p(—))

:Z ‘Ek/| (‘Uk/> <Uk" - |‘/I€’> <‘/k")

(309)
And for the square of the Dirac Hamiltonian [7]

H®) o HP Z\Ek' (1Ui) (Ui = Vi) (Viel) © D | Eir| (|Usr) (Ui | = [Vir) {Vir])
k//

= Z Bl (U} (U] + Vi) (Vi)
(310)

Note that (310) is always positive. Thus, one can take the square root

[7]:
VH®D) o HO) = " | Ey| ([Up) (U] + [Vie) (Vie) (311)

Since [7]

VHD) 0 HD) 0 vVHD)
=D |Ewl* (|Uk) (U] + Vi) (Viel) (312)

k/
— H®) o HD)

VHDY o HO |U) = " | Ep| (|Up) (Up| + [Vie) (Viel) [Ux) = Ex |Up)

k.l

VH®) o HO) Vi) = | Ey| (|Uw) (U] + [Vie) (Viel) [Vie) = E Vi)

k/

(|Uk) (Ugr

HP) =) | By = Vi) (Vi)
k/
= VHD) o HD) 0 > ([Ui) (U | = [Vir) (Vir]) (313)
k/

= VHD) o HD) o <P(+) — P(_)>
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This relation between the projection operators (307) and the Dirac
Hamiltonian can be also found in [50].

The identity (313) is important, since there follows a formal

. H(DP)
representation of the nonlocal operator ——F——= as [7]
H(D)
P —pH) = (314)
H(D) o H(D)
and for the projection operators [7]
1 HD)
p) _ 1 (1 + ) 315
2\ T VHD o D) (315)

Note that in the nonrelativistic limit mgc? — oo there follows
By, 2500 PE) = % (14x4 = ). Remark the § matrix as the operator
indiacting particles 149 in its first argument and antiparticles —1sy9
in its last argument.
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B The Derivation of the Eriksen Transformation

A unitary transformation is searched for which blockdiagonalizes the
single—particle Dirac Hamiltonian, and which separates the matter
degrees of freedom and the antimatter degrees of freedom in the Dirac
modes.

Now since the operator [ is blockdiagonal in the Dirac representation
it is reasonable to assume that a unitarily equivalent Dirac
Hamiltonian commutes with 3, because in that case, this new
Hamiltonian must also be blockdiagonal. However, there might be
several unitary transformations which lead to a blockdiagonal Dirac
Hamiltonian, but for which matter and antimatter degrees of freedom
are still coupled [38]. Therefore, the unitary transformation must
also yield new amplitudes which are energy—separated in the sense as
indicated in (163). Both requirements, the blockdiagonalization of the
Dirac Hamiltonian and the energy separation of the Dirac amplitudes
define the Eriksen transformation [10, 7].

In the following it will be shown that the generator of a flow equation
which yields the Eriksen transformation T in the limit s — oo is given

by [7]

) (s) = [B,H (s)] (316)

Since the generator ™) (s) depends only linearly on the Hamiltonian
H(s), it induces a Brockett type of flow equation for the gauge
invariant Dirac Hamiltonian [7]:

)
n™) (s) = [8,H (s)] (317)

And, as a reminder,
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I, = pp — ¢4y (%)
[ﬁb; i'a] — ;51),@1
rotA (r) = B (r)
50% + Oébﬁ = 044

It will now now be proven that the ansatz [7]

H(s) = BE(s) + DaF (s)
D, = elb (318)
(O‘aHa)Q

solves the differential equation (317) exactly. Here, E (s) and F (s) are
four—dimensional blockdiagonal (!) operators that have to be specified.
The operator D4 might be non—local.

The properties of the involved operators 8 and «;lI;, are the following

[7]

DyDy = 1444
Bﬁ — 14><4
BDa+ Daf = 04x4 (319)

[@ (Oébe)Q} = 04x4

Now one assumes that the operators E (s) and F (s) are only dependent
on the square (e I1,)* which will be verified once their explicit shape
has been constructed.

Iff the assumption holds true then [7]

B, E(s)] = 0axa = [, F ()]
[D4,E(5)] = O4us = [Da,F(s)] (320)
[E(s), F(5)] = Oaxa

And the generator (316) assumes the following guise [7]

n'") (s) = 2BD4F (s) (321)
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One can now explicitely write for the flow equation (317)

d d d

2.1 (8) = BB (s) + Daz-F(s)
= |0 (s) . H (5)} (322)
= [26D4F (s), BE (s) + D4F (s)]

— —4D4F (s)E (s) + 48F (s) F (s)

where the relations (320) have been used.

Rewriting this one finds [7]

3 (d%E (s) — 4F (s)F (s)> + Dy (%F (s) + 4F (s)E (s)> = O4q
(323)

This equation (323) decomposes into two coupled nonlinear differential
equations for determining the operators E (s) and F (s) [7]

di;E (s) =4F (s)F (s)
; (324)
EF (s) = —4E(s) F (s)

One can show this by applying the lemma X3 + YDy, = 0404 =
(X' = 04x4) A (Y = 04x4) for two 4 x 4 matrix operators X and Y with

the property [X, 5] = 0454 = [Y, 5] [7]-

From the chosen initial values for s = 0 one finds [7]

H(0) = BE (0) + D4F (0)
L Ho) (325)

= moc? B + coplly

which implies for the initial values for E (s) and F (s) [7]
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The coupled equations (324) can now be solved by observing that the
square H(s)H (s) = E(s)E(s) + F(s)F(s) = Q(s) is a constant of

motion [7]:

%Q(s) =E(s) <(ZSE(8)> + <CZ?E(S)> E(s)+F(s) <§9F(8)) + <;iF(s)> F(s)
YE(s)F(s)+4F (s)F(s)E(s) —4F (s)E(s)F(s) —4E (s)F (s) F (s)

= O4xa
(327)
Hence [7],
Q(s) = 2(0)
=E(0)E(0) + F (0) F(0)
2
— (m002)2 Lo + & (aIl,)? (328)
— HD) (0) H(®D) (0)
The formal solution for F (s) for the differential equation (324) [7]
F(s) =exp [—4 /S ds'E (s’)] F (0) (329)
0

which is true iff [E(s1),E(s2)] = O4xq for s1,s2 € €[0,00]. This
condition holds true once one has found the explicit solution of E (s).

Since E (s) is positive and increases as a function of s, F (s) necessarily
vanishes for s — oo [7]:

lim F (S) = 04><4 =F (OO) (330)

§—00

So, altogheter for E (00) [7]
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E (00) = VHD) 0 HP)

= (m0e)? Lia + @ (1, (332)
= E (IT)

E (00) only depends on (a,/1,)” as has been assumed above.

Inserting the result (332) into the differential equation (324) for E (s)
then gives [7]

L E (5) = 4F (5) F (s)

ds (333)
— 4[E (o) —4[E(s)

This holds because F(s)F(s) = E(oco)E(c0) — E(s)E(s), which
follows from (331).

The differential equation (333) can be solved exactly by the function

[7]

meC

(9 ot (1E ol oo (229)) 3

This can be seen by calculating [7]

d £ 4 [E (00))?

a5t 8= cosh? (4E (00) 5 + artanh <g“)))

2

) cosh? <4E (00) s 4+ artanh (mec )) — sinh? <4E (00) s + artanh <mFCQ)>

= 4 [E (c0)] E(c) E(c0)

cosh? <4E (00) s + artanh (gl(f)))

= 4[E (c0)? <1 — tanh? <4E (00) s + artanh <§;2)>)>
= 4[E (co)] — 4[E(s))?

Since s is only a number one can see immediately that the condition
[E (s1),E(s2)] = 04x4 indeed holds true! Furthermore, the solution
(334) for E (s) is, too, a function depending on the square (a,IL,)%, as
has been assumed above.

Now an explicit solution for the function F (s) can be given, too [7]:
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d
EE(S)

N | —

E (o0
- o) : (335)
cosh (4E (00) s + artanh (Qé)))

—/[E())? - [E(s))

The explicit and exact solution to the differential equations
(324) is very lucky, because now one can explicitely find the
unitary transformation U (s) yielding the blockdiagonalized Dirac
Hamiltonian. Why is that? For that one has to understand the notion
"generator” in a more formal way.

VR

For each step s the unitarily transformed Hamiltonian H (s) is given
by [7]

H(s) = U (s) o HP) o UT (s) (336)

(336) is a formal solution to the flow equation (317) for (318) with
the generator nF) (s) = 28D 4F (s). You can see this by regarding the
equation of motion for the unitary transformation U (s):

LU ()= (5) U s) (337

with the initial value U (0) = 14,4 guaranteering H (s = 0) = H (0).
With that then [7]

(338)
The equation of motion (337) can be solved formally by [7]

149



v e | [ asi ()]

= exp [BD s¢ux4 (5)] (339)
Guxq (8) = 2/0 ds'F (')

because in here [ (s1),7 (s2)] = 0 for s1 # s.

In the limit s — oo of U(s) this will give the Newton-Wigner
representation HN") of the Dirac Hamiltonian (10) according to
HAW) — T o HP) o Tt where the T = lim,_,o, U (s). This is done
in the following.

Hence, one has to calculate the matrix valued phase ¢4x4 (s). Since
it is a function SDy4 of there holds [¢4x4 (S), D 4] = O4x4. From that
follows for U (s) [7]

(¢4><4 ( ))

U(s) =) i (BD.4)
J=0 '
Z (¢4>(<;l7§,))) 2n + Z ¢4;2 +) (6DA)2H+1

3
|
o

:

(¢4><4 ( )) (
(2n)!

08 [Paxa (5)] Laxa + BD 4 sin [Paxa ( )]

Mg

ﬁ
o

(340)

where (8D 4)™" = (=1)" 1404 and (8D4)*"™" = BD4(—1)" 14,4 has
been used.

The matrix valued phase ¢4x4(s) is the solution of the integral
equation (339). Hence, its derivative with respect to s is given by

[7]

d%%le (s) = 2F (s)
¢4><4 (0):04><4

Now using the solution (335) for F(s) there holds [7]

(341)
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2E (00)
cosh <4E (00) s 4 artanh ("Eﬁ))

exp (—4E( s — artanh ( )) (342)

1+<exp< 4E (00) s — artanh E( 2)>>
_ _d% arctan (eXp (—4E( ) s — artanh (E (i)co)>>>

Comparing the last line in (342) with (341) we find the solution for
the matrix valued phase [7]

Pax4 (s) = arctan <exp <artanh (g;i))) — arctan (exp <4E (00) s — artanh (;i))))

with @44 (0) = 044 as it should be!

2F (s) =

= 4E (00)

The solution (343) can be reexpressed by the help of the identity
artanhz = In y /12, such that we can write exp (—artanh (2)) = /172

Hence [7],

Lyseq — 2 Lyoy — mec®
Pax4 (s) = arctan —i@:ﬁ —arctan —;@’26—4&@)5
Loa + g5 Lixa + B

(344)

(,2

lax
Note that ¢4x4 (00) = arctan < L <63 e

4><4+ E(oo)
[7]

) From this follows readily

[l En(_og _ sin [Pyx4 (00)]
tan (P4 (00)] = T % = s e (00) (345)

One can thus conclude [7]
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sin (44 (00)] = \/% <14X4 - %)

cos [Pyx4 (00)] = \/% (14X4 * g?“i)

The factor \/g assures that the Pythagorean theorem sin? [, 4 (00)]+

c08? [gx4 (00)] = 1454 holds true.

(346)

Finally, for s — oo of the unitary transformation U (s) one harvests
the unitary transformation yielding the blockdiagonalized Dirac
Hamiltonian, the so—called Newton-Wigner Hamiltonian, according
to [7]

T = lim U(s) = exp [BDAa¢sx4 (00)]

§—00

= €08 [P4x4 (00)] Lusca + BD 4 sin [Paxq (00)]

3 (0 5 oo (10 E5)

and [7]

(347)

T' = c08 g1 (00)] Lixa — BDasin [fara (00)]

(e gS) - (-gi) ™

Wlth E(oo) e H(D) fe) H(D) e mOC2\/14X4+ #Hiﬁ’g) and HZ(LZ’Z(L)) —
G Lica — g By on,

(NW)

From these results the Newton-Wigner Hamiltonian H arises as

[7]

152



HA™) = lim H (s)

§—00

= lim (U (s) o HP) o UT (s)>
S§—00

:TOH(D)OTT

_Bo\/ D) 5 H(D)

= BoE(c0 )

2
2 PO
= mgC ﬁ o) \/14><4 —+ WHELXZL)

(349)

In the following the Newton—ngner representation of the Dirac
operators &g, ap .o, J and - HEWL) will be deduced, as this is
useful.

Now for the Dirac a, operator we can evaluate [7]

T, TH =T (1) o, TT (11)

350)
— 11, 1 I, II (
=0t 55— 1k mg’c (abab/aa + (abaa + aaab> ab/)

20q,p

For transforming the other Dirac operators into the Newton—Wigner
representation the following abbreveations are useful [7]

C = cos [P1x4 (0)] = \/ 3 (14><4 + E%f;)
S = sin [Pyx4 (00)] = \/ 5 (14X4 — %) (351)

2
E (00) = VHP) o HID) = m002\/14><4 + WHE&E)

because for (347) and (348) then [7]

T=C+ 8D4S

352
T = C— BD4S (352)

Now the properties [7]
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{B,Da} = 0454
DDy =144 = 8 (353)
(D4, paxa (00)] = 04xa = [B, Paxa (00)]

readily give [7]

Tl)AT]L = (C + 5DAS) Dy (C — 5DAS)
= Dy (C* —S?) + B(2CS)

1 e
=D o0+ moe? 1
A 4x4 5 Lixat—25 Hgg)

1y,

(354)

abm C 2
Since Dy = \/(ab—irolb)? and (Oéb mH—(fc ) = _micg HELJ;Q) there follows for
moc
the unitary transformation of the operator ozbmﬂ—(fc [7]

2
T(ozbm—w)TTT( (e ) DA>TT

— /(o 2 ) TD,T!

(355)

1
_ Hb 2 (P,O)
o \/14><4+ Hi’;ff) < moc Qp + moc2 H4><4 5

For the unitary transformation of the Dirac § matrix then [7]

TAT =3 (c2 — S%) — D4 (2CS)

=585 - ouy (1= 85) (b 88)

1
— o o
=p \/14><4+ SHEY X e \/14><4—|- SHY

77L ('

And finally, the unitary transformation of the operator —2; Hg? [7]
T( 2aH0 )T =T (o >2TT
=T (ab moc ) TTT ( mgc ) TT (357)

- moc2

H4(1><4)
As expacted, since the relativistic Pauli Hamiltonian is blockdiagonal.
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C Properties of the Dirac Operators
in the Newton—Wigner Representation

As has been shown in section 5, the Newton—-Wigner representation
of the Dirac-Hamiltonian has very nice properties regarding the
possibility to interprete the Dirac—particle. It can be achieved by
the help of the Eriksen transformation T.

Here some useful identities between the Dirac—operators and their
analogues in the Newton—Wigner representation are given.

Now the relation between the Dirac Hamiltonian and the Newton—
Wigner Hamiltonian is given by [10, 7]

HO™) = 36 vVHD) o HD) (358)

The reverse is then true [7]

HD _ Tt (5 o VAD o H(D)) oT (359)
Now since [T, VHD) o H(D)} = 044 one can write for (359) [7]

HP) = VHO) o HD) 6 TT0 B0 T (360)

From the spectral representation of the Dirac Hamiltonian follows on
the other hand [7]

H®) = VHD) o HD) o <P<+> - P<—>> (361)

which has been shown in section A of the appendix, see (313)!

Hence [7],

H(D) (362)
H(®D) o HD)

The validity of the last line has been also shown in section A of the
appendix, see (314).
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Justification of the Identity (255)

The following considerations were inspired by [51]. There holds [7]

<rl7 ,LL/|I‘, M> - 5H'>H53 (I‘/ o I‘) (363)

From the eigenvalue relation (r',p'|x, = (r’, /| 7/, there follows for
the matrix element of the positon operator x, with respect to a fixed
position state |r, ) then [7]

<I‘/, :u/| Xa ’I', ,LL> = <I'/, :u/| ré@ |I', :u>
=1, (v, f|r, 1) (364)
=71 8,0,0° (f — 1)

And accordingly [7]

<I‘l, N’/‘ XbXa ‘I‘, H’> = <I‘l, :u/| TI/)XG |I', :U’>
=7y (t', /| xp [, g2 (365)
= 7yt 8 ,0° (f — 1)

Hence, for a general function V' (x) there holds [7]

<I‘/, :u/| V(X) |I', :u> =V (I'/) <I‘/, ,u/]r, :u>

V() 50,8 (1 — 1) (366)

Using the completeness relation [7]

S / B ) () = A (367)
W

The matrix element of the function V' (x) with respect to the Newton—

Wigner eigenfunctions ‘U,S,NW)> is therefore given by [7]
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NW NW
(| ve o)
— (X [ ity | Vi) (Z [l <r,u|> vy
W H

d37"//d37“ <UI(<NW)|1°’, //> (', |V (x)|r, ) <I'7M|UI£NW)>

=3 [ [t (U0 @ 50) W V) ) U
W

=> [ d / d*r (U,fé W) (r',K))*v (t') 8,6 (¢ = 1) UNT) (1, k)
W

(368)

For the analogue relations of the momentum operator p, one starts
with the fundamental commutation relation

h
[Py, Xa] = ~ 0,01 (369)

where X, is the position operator.

The matrix element of the momentum operator in the position
representation, with respect to the fixed position eigenstate |r,pu),
assumes the following guise [7]

h 0
Wl = (@1 0 ) b

h 1

= tim oo (el e| = (= e ) I

h 1
— 6,&’ I hm - <53 (I‘/ + Te(b) — I') — 53 (I‘/ — Te(b) _ r))
Tr—=019 27
(370)

Therefore [7]
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(r ,u\pbpalr

SR

h
—PL%;%« rel | = (&' = 7e®, 4| ) palr. )
hl
= lim =~ (<r’ +7e® 1/ py — <r’ — el 1/ pa) Ir, 1)
Chl
= lim =~ (<r’ +7e® 1 pa v, p) — <r’ — e, 1| pq !r,m)

= 0, lim lim
Hr507750

E 2 118+ rel) 4+ r'el@ —1) — § (r + re®) — 7e(@) — 1)
21 27" \ =% (v' — 7e® + 7'e® —1) + 53 (r — 7el®) — 7'el@) — 1)
(371)

Now, in the Newton Wigner representation then [7]

<U_§(NW)‘ PvPa
U}(NW)‘ Z/d3r’!r’,u’> (', 1] | Popa (Z/dBrr,p&} <r,u) ’UIENW)>
1 H
- Z/d3r’/d3r <U§(NW)|r’,u’> (', 1| popa [T, 1) <r,M|U;§NW)>
- z:/d3 ’/d3 (!

) e
—Z dr’ d3 (r' K)) v, lim lim 7—;L Qiix
/ W HE50 =0 \ 7 27 271!
)

3 (0) (a) _ ¢ 3 (¢! () _ +ela) _
(53(1' /+7'e (b)+7'(/e() 3(r /+7'e i 7’(/3() r) UOW) (3 k)
—0 (r—Te —|—Te“—r)—|—5 (r—Te —Te“—r)

* A1 1
_§ :/d3’ ARRNEY K)> lim lim (-) —
T—=07'—=0 \ 7 27 27!

" U,SNW) ( + rel®) + T’e<“), k) — UASNW) ( + rel® — T’e(a), k:)
U(NW) (r — el 4+ T’e(a),k) -+ U,S W) (r — rel) ‘ela), k:)

3/ (NW) *(h O RO w
_Z/d U (o, K)) <@'aq~;mrgUM’ (', k)

UIENW) >

1 [ popa v, ) UMY (1, )

(372)

Hence, for a general polynomia Y (p), applying the superpositon
principle [7],
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(U™ y @ |u™)

RS2 [ o) ¥ o (Z [l <r,u|> )
W I
— Z/d3r//d3r <UI(<NW)|1“’,M’> (', /1Y (p) |r, i) <r,,u]U,£NW)>
-3 [ (U8 @ 0) @Y ) e U

_ Z / @ (o) (r',K))* (Y GV/) o' (r’,k)>

(373)

So that finally for a function F,, (x,p) the matrix element with
respect to a Newton—Wigner eigenstate [7]

(U Faa o, m) |
_ <UI((NW)’ (Z/dgrl v ) <r/7ﬂl) Faxa (x,p) <Z/d3r\r, i) <I‘,ILL‘> ‘U]gNW)>
_Z/ds [t (OO ) (| P ) ) (el U)
- Z / 43 Ufjvw) (r ,K)) (Fw (ﬂ,?v’) U (ﬂ,k;))
w

(374)
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D Relation between the Dirac Hamiltonian and
the Schrodinger Pauli Hamiltonian in a static
external magnetic field

For the square of the Dirac Hamiltonian we find explicitely [7]

H o HP) = (moc® B + caplly) o (moc 5 + cay )

375
= ((moc2)2 + CQHbe> 14><4 — qehCQBé/e/xt)O'bu ( )

where we have used the anticommutation relation {ay, 8} = 04x4,
be {x,y,z}. o, is the relativistic spin operator given in (158).

The square of the Dirac Hamiltonian, representated by a matrix,
assumes the following guise [7]

((m062)2 + C2Hbﬂb> 14 — qehCZBIE,e,xt)abu

B ((m062)2 + CQUbe) laxo — qeﬁC2B§€xt)0’£P) ; 022
O2x2 , ((m062)2 + C2Hbﬂb> loxo — qeﬁc2B£€xt)0'I§P)
2 2 PO
(376)
Where the 4 x 4 Pauli Hamiltonian is given by
P,0 SP,0
Hé(Lx4) =150 ® H;XQ : (377)

and the 2 x 2 Schrodinger Pauli Hamiltonian describing the

nonrelativistic electron in an external magnet induction field is given
by

(spoy  ILII qel (ext) (P)
Hyxo " = Sy 22~ 5By (378)
Hence, the square root of the Dirac Hamiltonian is related to the
Schrodinger Pauli Hamiltonian according to

2
HP) o HP) = moc” X 1gxs @ \/12><2 + mHgf;O) (379)
0
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It is now possible to expand the square root \/ 1oy + #Héﬁ?o) as a

Taylor series:

2 SP0 1 spoy 1 1 SPO
\/12><2 + WHéXQ ) = loyo + WHgXQ )2 ( Héx2 ) + ...
(380)

With the expansion (380) one finds a nonlocal, gauge invariant
represenation of VH®) o H(P) according to

VH®) 6 HD) — \/<(moc2>2 + CQHbe> Lica — qche* B oy, (381)

With the ansatz VH®) o HP) = Wylyy + Wyoy [7] it is possible to
find the coefficients W, and W, for a linear representation of (381).

Squaring the ansatz then [7]

((m0€2)2 + C2Hbe) lasg — qehC2Béext)0'b = (W014><4 + WbO'b)2

(382)
= (Wo2 + WbWb) Lysg + (WoWy, + WWy) oy,

Hence, by comparing the linearily independent matrices 1444 and of
o [7],

W2+ WyWy = (moc?)” + AL,

2 o (ect) (383)
W()Wb + WbWO = —qehc Bb

If the external magnetic induction field Béext) is constant then II,II,
commutes with Bl()emt) and there holds WyW; + W,Wy = 2Wy W,
In that case then [7]

qehc2B£€xt)

Wy = —2= b 384
b oW, (384)

and [7]
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1 q.hc?
2 2 e ex
Wy + WyWy, = Wy + e <— 5 ’B( 2
|

= (moc2)2 + CQHbe

)

This leads then to [7]

_ qehc2 ‘ B(eiEt)

) =0

1 2 1 2
(1o ) - o s )

Wél — WO2 ((m002)2 + 621_,[be> + <

386
B 0

4

Since W is real one can ignore the solution with the minus sign and

find [7]

(gche? [Ble])”

1 2
We = 5 (m002)2 + T IT, + \/((m002)2 + C2H6Hb> - 1

(387)

which can be represented as a square according to [7]

2 2 2

(388)

2 (ext) 2 (ext)
Wi = (1\/ ((moc2)? + 1my1m,) + ahe? [BED] 1\/ ((moe)? + 2, ) — gehe? [Blest)|

Altogether then [7]

w+—|-w_

Wy = 5

ehc2 Bext)
Wy = \/((m002)2 + CQHbe) + 1 ’2 | (389)

W qucQBéem) B qGHCQBémt)
b 2W() N Wy + w-

This means that for a homogenenous static magnetic induction field
B!*" we find exactl [7]
b y
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2 (ext)
HD) o) — Wt Wy 4heBy (390)

2 wy + w_

which is not the Dirac Hamiltonian H®).

Since {\/ HD) o H(D),Béemab} — ( there exists a common basis of

eigenfunctions of Bb(ext)ab and II,I1,.

For a weak magnetic indunction field there still holds [7]

eh 2 exr
VH®) o HD) = \/(m002)2 + I, X Lyy — de By,
2\/(m002)2 + LI,
)

Weak means here that the magnetic length Lp = ’/IQIJQB% is much
larger then the Bohr radius ap, hence L > ap.

+0 (‘B(ext)

(391)
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E Orders of Magnitude in the QED Hamiltonian

Here it is explained why the transversal coupling contribution . to
the QED Hamiltonian is of first order in the finestructure constant
whereas the Coulomb—interaction contribution )A/C is of second order.
The notation is taken from [7].

Now with the electron mass m,., the vacuum speed of light ¢ and
Plancks constant h the Compton wavelength of the electron is given
by

MmeC 2T
i
h ¢ (392)
Ao = ~ 2.4 x 1072 [m)]

MeC

Multiplying this with the Bohr radius ap of the hydrogen atom

471'60 h2

ap = ’€|2 — (393)

the product kcap is a dimensionless number

c4 h?  drmeoh 1

koap = =Tl = T = — — 137.036
m o
2\e| 0 €] FS (304)
el 1
aps = =

" Aweghe  keap
hence, nothing but the finestructure constant apg.

The Hamiltonian of the Schrodinger eigenvalue problem of one electron
in the Coulomb field of the (infinitely heavy, resting) proton is given
by

h? - e 1

- _ e (395)
2m. " Admeyr

H —

One can now rewrite the components r, of the positon operator, where
a € {z,y,z}, as a multiple of the Bohr radius according to r, = ap7,.
For the Hamiltonian (395) follows
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2 2
el” 1 4dme he 1 1
= 4| | — |- 20 B —2V§ — - (396)
TEY AR | 2m. ag r
Note that ¥ p L dmee k1 _ 1 Hence, the Hamiltonian can
le | 2me, a |g| Me 2aB 2
be rewritte according to H = EcH with E¢ 4|fr|6 al In atomic units
one readily finds
_ 1 1
H=—--V2-= 397
2 T 77 ( )

The Hamiltonian (397) is the dimensionless Hamiltonian of the
hydrogen atom. The constant E¢, the Hartree, is the double of the
expectation value of the electron in the ground state 1s :

oo e 1N e ef e 1Y,
= — s — — = = — = —_— mec
¢ ! dmeg \ T 1s 477'80 ap 47‘(’504‘7T|€07Z 4meg he
= a%g mec® =2 x 13.606[eV]
(398)

In atomic units the action is measured as a multiple of the Planck
constant A, charge as a multiple of the elementary charge |e|, mass
as a multiple of the electron mass m,, length as a multiple of the
Bohr radius ap, energy as a multiple of the Hartree E¢, velocity as
a multiple of the velocity vis of the hydrogen—electron in its ground
state 1s. It thus seems like h =1,lel=1,me=1,ap =1, Ec = 1.

The Bohr magneton up = 5-— in atomic units is given by up = 1

The electric field strength in atomic units is therefore given by

EC . ‘6‘ 1
lelap  4megad

& =

(399)

From the Lorentz equation of motion follows for the magnetic
induction field strength

By =2 (400)
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The virial theorem yields for the kinetic energy of the electron in the
groundstate 1s

me EC
5 Vi, = —FE), = - (401)
giving
| Ec [ a2 g mec? c
s =/ — = (| ——— = ~— 402
V1 m. e apsc 137 ( )
The speed of light ¢ in atomic units its thus given by ¢ = = = QLFS ~
137! (

Therefore one finds for magnetic induction field strength (400)

B_go_EC 1_04%57%021
0 vl;f le| ap v1s lelap  vis (403)
2 Po
- 95 T 3

Tap  Tag

This is magnetic induction field with one magnetic flux quantum ®, =
% per area of radius ap. In SI uints this is a very high field strength
By ~ 2.3 x 10°[T]! The values we can have in the laboratory are at
least four orders of magnitude smaller!

Finally one finds for gauge invariant velocity operator I, in atomic
units:

1, ( h 1)1 0 el (q AD (r) + Al (r,t))
=\ | = - BR0 | 7
C

moc mocag) i g (r_a) mo le] Boag
ap

— OCFS]_YCL
(404)

Here the identity %Bg — lden ( h > = @ = apg has been used.

moc \ |ela%

Furthermore, ¢ = %‘ = % is the coupling constant of the

electromagnetic fields in atomic units, and
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_ t
= —_
lp
ty = -2
C
_ AaT) (CLBT) + Aéewt) (CLBT, th) (405)
Aq (I‘, E) -
Boap
_ 1 0 _
Ha = = - 7Aa _7t
iar, (@0

Therefore, the contribution H | is smaller by a factor apg than 7:[D!
Using (405) there holds

1 4 ] 3.5 (1) AD)
—ars [ Y ) @), e ()04 ()

o' e{1,2,3,4}

(406)

The Coulomb interaction f/c is smaller by a factor 0412{75 than Hp or
the rest energy m.c?:

1 ? E
A _ e o, (407)

mec4dmegag  moc?

The term 7:[md has to be a zeroth order term in the perturbation
expansion, because if one would assume it to be of order 04%5 as is the
Coulomb-interaction one would assume that there are no high energy
photons in the QED soup! This would not be consistent. The energy
of one photon might be small, however, the occupation number of the
electromagnetic modes can take any value.
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F Charge Conjugation Symmetrie of QED,
Normal Ordering and QED Ground State

It is searched for the operator Cr that causes the exchange of the
matter annihilation operator ¢, with by, and of the antimatter creation
operator bz with éz

In textbooks, the so—called charge conjugation operator is introduced
according to

Cr = —ifa, (408)

see for example [5]. The operator (408) acts on the amplitudes U, (r; k)

and V, (r;k) and gives the charge conjugated amplitudes Ul(LO) (r; k)
©) (4.

and V,’ (r; k).

For understanding the relation between the normal ordering operation
N and the operation % for correctly defining the QED Hamiltonian
(8), the charge conjugation operation Cp acting on the creation an
annihilation operators is introduced as [7]

A K ~
Cr = exp [z§ %;Xk/]
Xy = (aL - BL) (C’f N g’“) (409)
51 T ~
Cp = exp [—z§ ;Xk,]
Clep =1 = CrCl

Applied to the fermion creation and annihilation operators it results
in their exchange according to [7]

CrérCl = Bk (410)
CrbiCl = ¢l

This can be proven by the help of the BCH expansion (see (629)).
With [7]
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R R o0 ¥ n ) (n)
Cranlh = e+ Y (Z;') [Xkck} (411)
n=1 ’

Now the n—th term is given recursively [7],
N RO N P )
[Xkack} = | Xk, [Xkack}
ey . .
and from {X}C, Ck} — [Xk, Ck] - — (Ck — bk)

one finds [7]

Such that [7]

n
n=1
ol (=)
=act g2 (b (112)
A 1 —ir A 7
:Ck+§(€ —1)<Ck—bk>
— by,

Now the question is what the charge conjugated Dirac field operator
WAL(LC) (r). In order to find it one has to apply the charge conjugation
operation (409). Denoting the conjugated amplitudes with the
superscript (C') then [7]

C
_ AR AR AR
— Cr Uu(r,k)ckJrVu(r,k)b];) al
k
=" (U s k) CrtaCl+ VIO iy Crbicy) (1)

U (1) b+ VO (1) ¢} )

169



For finding charge conjugated amplitudes UA(LC) (r; k) and VM(O) (r; k)
one can has to compare the expressing (413) with [7]

k
= ((_Zmy)u o Vi (e k) by + (—iBay), U (x5 k) éZ)
k
= 32 (=980, Vi (15F) b+ (=B, U (x:F) &)
k
L Z (U;SC) (r; k) b + Vﬂ(c) (r; k) 5,2)
k

(414)
In the third line it has been exchanged (k, E) — (l;;, k;)

Hence, by comparing the respective last lines in (413) and (414) there
has to hold [7]

UL (x:k) = (=iBay),, 0 Vi (r:F)

) (415)
VO (x;k) = (=iBay), . Ul <r; k)

Equipped with these relations one can show that the normal ordering
rule N, whose rule of application is explained in(44), is equal to the
operation % for defining the QED current density and the QED
charge density operator.

The following identities being a direct consequence of (415) are useful

[7]:
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S 0 1101 1 (1) 0 s )

W'

Z Vi(r w Vo (1t k) = Z U <r; k) (o), U (r; l%’)
W'

Z U (r WU k) =3V (r; k) (@) 0 Vi (r; k)
W

Z Uy (rK) (), Vo (r; k) = Z U (r; k (), 0 Vi (r; i
TR

Any QED vector is thus charge conjugated as [7]

er (W, (r) (@), ¥ (1)) = (Co¥], (1) ) D (¥ ()CF)

Z( r; k') bf, + Vi (v k) Ck’) WZ( bk+vy(r;k)a£)
54

U*(I' k/) b)'u,/U ( k)b bk

p (o it
_ +Us (v;K) (), Vi (3 k) b el
o | Vi (k) (), Uy (r; k) ébn
+Vlj (I’, k’) (ab);w (I', /{7) é,;,é%

(417)

This has to be compared with [7]

W (v) (an) 00 (1) = 3 (U; (r; k) el + V7 (r:k k) @ WZ( )& + Vi, (13 k) bZ)

k' k
U (55 K) () Uy (55 )
. . N
k' ab)lw V, (r; k) Ck’b];

_ +U (x5 K') (
B ;; +Vi (rk') (aw),,, U (1K) bka
(r; k) (

(418)

And according to Pauli [33] then for the QED current density
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A 1_GFA

Jb (I') = Ge 2 \IIL (I‘) (Cab),uy ‘ijV (I')
( AL A
U* (v K) U, (x; k) (czck - b;bk)
GeC 3 (), 4 +U* (v;K) V, (r; k) (Lbli + cLbL)
= — ap),, o S
2 kK v a +V; (r, k/) Ul/ (I‘, k) (biﬂ,Ck + bk‘C];/)
\-l—VM* (r; KV, (r; k) (gé/%/ — ZSLBk,
(419)

Applying the identites (416) one can rewrite (419) according to [7]

Uy (v K) U, (3 k) ééx — Vi (1K) Vi (r;k)l%l;];,
r) =gy > (), (420)
Rk pav +U (03 ) Vi, (v k) €Lt + Vi (vi k) U, (0 8) b
And applying the normal ordering rule N (IA),{,IA)};) = —IS%IS,;/ for
fermionic creation and annihilation operators one sees that [7]
. pE A
b (r) = ) (cap),, o (r)
—qecZ/\/<Z ; Ck,+V*(' ) abuVZ( k) ér + Vi, (r; k‘)l;%
K’ k
—qecZN(\I/L o r))
(421)

The representation of the current density operator jj (r) with the
charge conjugation related operatio QGF
the representation with the normal ordering operation N

The same is true for the QED current density operator ¢ (r).
According to W. Pauli [33] there holds

UZ (s k) Uy, (v; k) él, &, — VI (r; k) V,, (r; K) b b (422)



whereas for the charge density operator as defined in (43) [7]

o) = gt 5 83w (1) W (1)
m

=4 N (Z (U5 (k) el + Vi (k) by, ) S (U (e i + Vi (i) Bg))
K k

kl

=N (qe > Ul (), (r)>
12

(423)

Consequences of the Charge Conjugation Operation for the Ground State
of QED

The charge conjugation operation Cr applied to the QED current
density operator j; (r) gives [7]

1
= % (GF - GFGF) \IIL (I') (Cab)uy qu (I')
=L (ep - 1) ¥ (1) (c),,, By (1) (424)
_ _% (1—Cp) W), (r) (can),,, Uy (r)
= —J (r)

and applied to the QED charge density operator ¢ (r) accordingly [7]

Cro(r) = TCr (1= Cr) W), (r) T, (r)
e
G (425)
- —5)
Now the ground state |G) of QED is defined to be the eigenstate
of Hoep to the lowest possible (positive) energy eigenvalue Eg.
Demanding that |G) is invariant under charge conjugation [7],
Cr1G) = G) (426)
there follows necessarily [7]
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(Glo(x)G) = (G|Croo(r) o C|G) = (G| €ro (x) [G) = = (G| 2 () |G)
(Gl (1) |G) = (G| Cr oy (r) 0 CL1 |G) = (G| € (1) |G) = = <G‘(ib2 (7? G)

Hence, the expactation values for the charge density and the current
density with respect to the ground state |G) vanish [7].

(Glo(r)[G) =0

(G150 () |G) = 0 (428)

These are physical properties, because if there would drop a current
across QED we could make use of its energy, which is, of course, not
the case! Or?

Figure 3: Taken from https://www.explainxked.com/wiki/index.php/File:vacuum.png,
24.04.2022

Please be aware that the ground state of QED is not the vacuum
[46, 38].

These physical properties (428) are the true reason for the necessity
to symmetrize the QED Hamiltonian with respect to the charge, as
it has been introduced by W. Pauli. It now has become obvious that
this is fully equivalent to the normal ordering operation. With that
the normal ordering operation indeed has a physical meaning.
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G Complement to the Homogeneous Solution
HZM (s)

In this part of the appendix the Coulomb—interaction is decomposed
into a part which is normally ordered, and into a self energy part. This
is very convenient for solving the homogeneous part of the second order
differential equation.

The Fourier transform of the Coulomb interaction V¢, by using #Irl =

3 iq-r
f d 5 & P is given by

1 . 1 ,
Voo [dr /m D2 () .
_ 1 [ &% p(a@)p(-q) (429)
220 (20)* gl
with
pla) = [ dre N (0], 1) 0, () (430)
Now using
%@, (r) = 7,0, ()
A ho s
o] = 26,01 (431)
1T, = Py — qeAp (%)
there follows for (430)
pla) =o' [ o) ) e v, @) (432)

The following decomposition of the field operators ¥, (r) and \i/): (r)
is convenient [7]
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Loy () =Y Uy (rik) ey (433)
f‘;w (r) = Z V, (r; k) IA)E

The operators (433) obey to the anti commutation relations of
fermionic field operators [7]:

{f )

= 0= {1, (), [ ()] (434)
{ }
>

+)

Where Plgi), (r,r') are the projection operators P™) in position space

I

(+) N _ () 1o /!
P‘u,u’(r7r)_<r7M‘P |r7:u>
P = " |Uk) (U
k

PO =2 Vi) (Vi

(435)

However, the operators (433) are no field operators, because they
do not build a complete system. This can be seen from the
anticommutation relations yielding the projection operators in (434).

The completeness relation is only given by both pH) (r,r’) and

. 1Y
_ N
P, o (rr):
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P (e,0) 4+ P (ex') = (v, | PO+ PO, 1)
= <I', :u‘ ]-4><4 ’I‘l, :u/> (436)
= 5##’5(3) (r—1')

Inserting the gamma operators (433) into the Fourier transform of the
QED charge density operator (430) gives three contributions [7]:

p(q) = ge / dPre~'ar Z (fl,u (r) fe,u (r) — f;fw (r) fp,u (r) + f‘l,p (r) f‘;r),y (r) + fp,u (r) fe,u (r))

I

(437)
These are abbreviated further as [7]
p(a@) = po(a@)+ps(a) +p-(q)
(@) = . [ dre o (L, 0P, @)~ T, ()T, (1))
. iar (438)
pela) = [ dre L (9T, ()

and they share the following commutation relations with the particle
number operator N = 3, (ézék + BZ@,;) [7]:

N1, o (a)| =0

N1 (@)] = £20: (@) Y

With these relations one can now decompose the Coulomb—interaction
Ve and the coupling to an external source V,,; into particle number
conserving and nonconserving parts.

The coupling to an external source, taking as such the Coulomb field
of an atomic nucleus sitting at the point R in space as given in (38),
in its Fourier representation, is assumes the guise

AR 1
@(ext) 47I|-Z ‘ / —zq r— R) _2 (440)
0 ql



such that

D Z\qe!/ d3q e’qR

Veat = 441
' 47T€0 ) ( )
Inserting the identities (438) yields readily [7]
Verr = Vit + Viad + Vit
50 _ Z gl / d3q el R 3o ()
£ 4meg ¥l (442)
P _ 7 |qe| d3q e“lR
1 + (q)
TEN
The commutation relations (439) now imply [7]
|:NI7 f/e(gl} - 6
o . (443)
[NI, Vé;e)} = 421/

The decomposition of the QED Coulomb interaction is analogous
Here, one finds nine terms altogether [7]:

po(q) po (—a) + p+ (q) p- (—q) +
=\ Tho(q)

_|_
+p1(q) py (—q) + p— (q) p— (—q)

(444)
Implying for the Coulomb interaction [7]
1 d®q p 0 (— _ _
Ve = / 1 PP _ 0 ) L ) e )
2¢0 ) (2m)° g
(445)

Here [7]
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o _ 1 [ d¢ po(a)po(=a)+ps(a)p-(—a) + p-(a) p+ (—a)
UC - 3 2
2e0 ) (2m) ql
() _ 1 / d*q po(aq) oy (—=a) + p+ (@) po (—q)
© 2] () af”
oL / d*q po(q)p- (=) +p-(a) o (=)
¢ 2% 2n) af
(+,+) 1 d3q P+ (a) py (—q)
UC - 3 2
2¢0.) (2m) g
e _ 1 / d*q p-(@)p-(=q)
C - 3 2
2¢0J (2m) g
(446)
with the commutation relations [7]
{Nf,ué?)' =0
[Nl,u(ci)- = oy
: (447)

MUl =

US| =

Such a decomposition into particle number conserving and
nonconserving parts makes it possible express the Coulomb interaction
as the sum of a normally ordered part and a self-energy contribution.

Inserting the gamma operators (433) into po(q)po(—q) and
pr (@) p-(—q) + p_(q) ps (—q) there follows, together with the
anticommutation relations (434) of the gamma operators [7]

P (@) Ty (0T, () e (1

r
atee | AT @ T T )T, (

po (a) po (—q) :qg/dST’/dg’T'eﬂq'(r*”) D N D P
1 () Pp @) T, () Do (
I8, (r) Pe,pu (v) r;’u, ()T (

= qg / d3r/d3r/e_iq‘(“_rl) +P£L:L (r',r) f;,u (r) f‘p,p,' (")

AN (P () P () = 15,0 ) Ty ) (P, ) Ty ) = 1 () Ty ()
(448)
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and [7]

P+ (a) p—

]

(=a) +p- (a) p+ (—q)

—zq (r r/)

(P

FLu () Dby (0) Ty (F) Ty () )
— ! @) e @) (P) 60 =11, () Do (1)

)

iy (1) F; (T )Fp,u’ (") f‘e,M (r')

+0T @), () T (1) Teyp ()
7zq (r r)

q2/d3
—PC) (e ) T () Doy (0) = PO, (e, 0) BT (8) T ()

-

Altogether one gets [7]

+P}Ei}, (e,0) PG (', 0) 1
(449)

oL d*q po (q) po (—a) + p+ (q) p— (—aq) + p— (q) p+ (—q)
¢ 280 (271-)3 ‘q‘Q
_ qg/ /d3 /d3/—zq(r r)
280 )% af?
Pﬂ}, (e, ) T, (1) Do (1)
+PP§;}L (/1) T, () T (1)

(450)

In the second and sixth line we can substitute {qu,7q, 75, 1, '} —
{—qu,7}, e, /', n} without changing the integrals. Further
rearrangements finally give [7]

3 3.1 ,—iq-(r—r’ (+) n_ p(=) ’ all B, () — T N
q S [ ddrem i) (PO ey = PO (r,e)) (P (0) P () = BF Ly () Py (1)

(2m)?

1
lal®

2

(0) (0) e
Uy’ =N (vg') + /
( ) 20 3 3./ 7iq-(r7r') (+) ’ (=) (ot 3
+ [d3r [d3r'e PHH,(I',I')P‘L/M(I"yr)l

(451)

The evaluation of the contributions ué” + U(C_) + U((;F’Jr) + Z/{é—’_)

U+ uf

is similar.
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Here, one needs to normally order the contributions py (q) p+ (—q) +
p— () po (—q), because the other ones are already normally ordered.
Now [7]

Wl I al r all N o /
_ qs / d?’r / dSrle_iq'(r_r/) /\(Feyﬂ (rz FE;,U (I') A_ vaﬂ (r? Fpaﬂ (r)) Ile#ﬂ (I' ) F/\p,u’ (I' )
L0 (1) Doy (1) (1, (1) Do () = B () Dy (1)

N (o (a) p+ (—a) + p— (a) po (—a))

L, (r)Tl ( P(+ rr)

= | g FT f
it [ gapvciien | b O Fl e
_P/z#)(rr)r‘eu< )I;Pu(r)
\ _Pu Nz (I‘ I‘) FP 7 (I‘/) FeaH (I‘)

(452)

Therefore one finds [7]

U Ul
N (U +ul)
3 _ A N ~ N \
+& | oty [ dr [ dreiatr) (P[J} (r,x) = P (r, r')) (rz,u (1) T o () 4 T (1) Do ()
(453)
The contributions L{é+’+> and Z/[((;’_) are already normally ordered.

Summarizing these results yields [7]

Ve =UY + Uy +ul +ul Y +ul
(N (L{Q) U Ul rul ¢ ug"‘))

3 . / —
i [ itk [ P [ diren i) (B (e) - B ()
= 3 (P ) T (1) = B () iy (1) 4 T, (1) T (1) o D (1) T (1))

qe 3 3 —1iq (+) / S 2
d’r | d°r P, 1)l
260 / \q\ / / o (r.r) A (', r)

\ 7const
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Since A" (W] (1) W () = TL, (1) T () = T (1) Ty ) +
0t (o), (r') + Ty (1) Te e (x') ome can write for (454) [7]

Vo = const x 1+ N (f)c)

2
de E 3 3./ Jr e—ilaT (+) N _ p(=) / iar' g, (p
+ 20 \OI| ( /d /d W (P/W/ (r,x) =Py 0 (r,r)) e W (1) )

(455)

Defining, with position operator &, and the projection operators P*)

[7]

Z/d3 /d?’?“/ \DT eiar (PL(L,M)’ (r,r') — Pﬁi;} (r’r/)> eiq'r/\iluz (r')

= / d*r / d*r' U, (v) (r, p| e % (P<+> - P<—>) o et |y’ 1V, ()
ot
(456)
(455) decomposes into [7]
Ve =N (ffc> + Mec (457)

where the self energy contribution M¢ is given by [7]

Me=N |3 / dr / &, (1) M) (r,1) B (1)
st

2 3
(©) n_ e dg 1 _, o%a [ D) (-) iGa-%a I
MM,H’(r7r)_250<r7M‘ (/( ) ‘ ‘6 ! (P —P )Oeq \r,u}
(458)

One can now decompose the self energy (458) further into particle
number conserving and violating terms. For this one has to insert the
gamma operators (433) into (458) [7]:
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Mc = MO+ ) /\?1(‘)

MY = Z / &r / #rM©) (') (rg L) T () =T, ()T, (r))
Z/d3 /dgr’l\/l (r r)F (r)F]Tw (r')
Z/cﬁ /d3r’M (r,t") T (r) Do (1)

(459)

The eigenvalue or commutation relations are readily provided by [7]

R (460)
VMG = 2
Hence, one finally finds [7]
f)C =N <]>c> + Mc
U + MY +N(5{é+)> +J\/< >+M Ut 1 ul
(461)

For the Coulomb interaction contribution.

For solving the homogeneous part of the second order differential
equation it is convenient to reexpress the particle number conserving
contributions by the creation and annihilation operators of the Dirac
modes, because these survive remain in the limit s — oo

Using (433) one finds for the particle number conserving contribution
M(CO) of the Coulomb self energy [7]

=5

!

2 3 . - p
{sz Jd®r T, (Uklr, p) (v, pl (2 &) (‘21";13 mﬂze’ da%a (p<+> p<—>) Oebqa.xa) S e n ) (U e

TalZ®
(462)

Now with [ d’r )" |r, i) (v, | = laxs there follows [7]
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MY = M 4 P

R 2 d3 1 L A

o (q_e> /_Q_ [ | o itSa (p(+> _ p(—>> o gitnta |7} ot
c Z 2 (2%)3|Q|2< ‘! i

Kk
. 2 d3 1 o o S
M(p) — (_ de ) / q V| e ia%a (P(+) o P(_)> o ella%a |1/r, bT~/b*,
“= ) ) i ot
(463)

For the particle number conserving part of the coupling to the external
Coulomb potential V") . one finds by using (433) [7]

Z \q. d3q eZqR
= [ S a)

47T€()
zm f d‘* S Ul e ([ S, e ) (o) [U) ey

Zq?
T 47‘[‘50 d3 7qR < 3 A_I_ ~
~ Skea S o (Ve ([ dPr S, ) (el ) Vi) B
(464)
yielding [7]
19221 = Vo + Vit
Zq? / d3q eZqR .
- e~ |U,) eloe
ey Z U Uk Cxct (465)

R Zq2 d3q ezqR _ R
VO =+ 3 [ e Vi By
Amey ; (2m)” |q] r

Finally, by inserting (433) into the particle number conserving part of
the normally ordered QED Coulomb interaction between the fermions

N (V) 17

(U | e~ 4% [Uy) (U | €9 | U cch/cwck
+ (Vi e=%a |Vic) (Vi | €% |Vigr) bl b1 bz, by

O _ ¢ [ d%q 1 KK
N (VC ) T 20 f (27")3 ‘Q‘Q Z Z . . + o
K,k K’,k’ —2 <UK’ 6_1qaxa |Uk-> <Vk/| el(IaXa |VK/> éKékb[g/bk/
+2 (Uge| e |Vi) (Vi | €907 [Ukcr) bl bz

(466)
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H Complement to the Inhomogeneous Solution
H® (s)

Here, first, the special solution to the inhomogeneous differential
equation of the second order perturbation expansion.

Then it is shown by means of the example of the eigenvalue relation
of the kernel J&*%) (s, s) that the relations (485) being a part of the
solution are valid.

Then it is proven that in the limit s — oo all contributions that violate
the particle number in the inhomogeneous solution of the second order
differential equation solution (476) vanish exponentially.

Finally the evaluation of the effective transversal potentials is
presented.

Construction of the special solution

For the construction of the special solution H® (s) to the
inhomogeneous differential equation (122) with initial value
H2)(0) = 0 inhomogenity I (s) is decomposed into terms which
conserve the particle number, und such ones that do not. Then the
solution to the differential equationis presented, proven, and show by
the help of an example term why it is indeed a solution.

Rewriting the inhomogeneous differential equation (122) according to

[7]

= (- JE [0 (10 00 ] o 0 )]
ds O () + 1) () + 1) () + I () + 17 (s)

HZ) (0)=0

(467)

gives the inhomogenity according to [7]

I(s) =10 () 4+ 1) () + 1) () + 1) () + 1= (5)
-l G sl sl
+

2 [ﬁ[él) (s), ( HO), ([]\71, [Nz,ﬁ(l) (S)H + [NH, [Nn,ﬁ(l) (s) ])D}
(468)
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Here use has been made of the rule

XY 2]l = (X, Y], 2] + Y X 2] (469)
for any operators X, Y and Z.
This decomposition (468) follows from the solution HM (s) [7]

A~ ~

HY () = HY0) (s) + HH) (s) + H) (s) (470)
where H19 (s) is given in (105), H®1) (s) is given in (107) and
HU:7) (5) is given in (108)

Hence, 1 (s) is the part of all commutators with H® (s) in (468)
which altogether conserves the particle number [7]:

(000 0] (5, 519906 s s 0 o)
+92 :f{(l,O) (s), ( HO), ({N], [N],ﬁ(LO) (s)” + [NII, {NILH(LO) (5)>)}

~
=
o
=
—
Va
N
\
—

+[[a©, gas (3)} AN, [Ny, B (s)" + [Nyg, [Ny, B (3)" _
+2 | HH) (8)7{16[(0), Ny, |Np, HOD (s)| | + [Nir, | Npp, H59 (s)

—

+ [[aO, ga- (s)], N7, [N, 8O ()] + [Kpg, [Ny, B8O (5)]])]
+2 | A (s), [H(O), Ni, |Np, HOD) ()| | + | Nip, [Ny, HOH) (s) }
- - . ) o 4n)

Now () (s) is the part which contains all commutators describing the
creation of one matter—antimatter pair as [7]

[, 500 (5)] ([, [Kr, 80 ()] + [Ro, [Wr, 800 (5)]]
+2 {12[(1,0) (s), [ﬁ(o), ([NI, {Nz,fl(l’ﬁ (S)H + {NIL [NILFI(L-H (s) )H

{ HO, 704 (s } Nyp, H10) (5)
N[[,I;[(l’o) (8) :|
(472)

+9 | A ) (s), [H(O)
Finally, I(*) (s) is the part of the inhomogenity (468) which contains
all commutators describing the creation of two matter—antimatter
pairs [7]:

i (s) = —
+ NH,
+ Nlh

NI;
Ny,

Ny, HLO) (s)
Ny, H®0) (s)
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g [ FOD O] (80 [30,509 0]+ [ [0 ]
I (5) = - {+2 {g(l,Jr) (s), [I:I(o), ({Nz [Nl’gu,ﬂ (S)H 1 {Nn, []{;H’ﬁ(l,H (s) )H
(473)

The hermitian conjugates are then given by [7]

(474)

Note that with Ny given in (84) there holds [7]

I
(@)

N1 10 (s)]

[NI, 1@ (s)] = 221 (s) (475)
7(+

+
+4]EE) (5)

N1, 164 (s)
Now in the following it will be shown that the ansatz [7]
([ ds'JO) (s,9)

H®D (5) =S + [ds'TH) (s,8) + [i7ds' T (s, ) (476)

\_|_f05 ds' J++) (S, S/) + fos ds' J(=) (S,S/)

solves the inhomogeneous differential equation (122). First note that
H®) (s =0) =0 as it should be.

The integral kernels J© (s, s'), J&) (s,s') and J&EH) (s, ') are defined
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= jl(0,0) (s,8") + JQ(O’O) (s,5")

(5:5)
(5,5)

JOH) (s,8') = j1(0,+) (s,8') + JQ(O’H (s,s") (477)
(5,5)



with [7]

JO0 (5,) = (moc)zz 33 A (@) Ay () x

kK KK q.q bb
+ (Uk| apee |Upr) (Ugcr| a5 |Ue) e—rias (Be— B =) g=rys' (Bror—Erxc+y)" o
X (Ek — Ek’ — (I)q +2 (EKI — EK —|—(:}q/>) Kq' X
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— (U] ape’®= |Ups) (Vi | a e~ e [Vc) e rias (Bu=Bp =) g=nys' (B =B +oy)"
X (Ek — Ek/ — (:)q +2 (EK — EK/ +(Z)ql)> Kgq' X
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X (Ek’ — Ek — (:)q + 2 (EK/ — EK +(:)q/)) /iq/X

el ) g (BB B~ Bs5,)” [ Ga il x|

+ (Vil qwei®e | Vi) (Vigr| e =0%e [Vi) e (B =Bua)” g mrr o/ (Bre—Brert)"

@q)
X(Ek/ Ek—wq+2<EK—EK/+wq>>f<; X
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X (Ek’ — Ek -+ (:)q +2 (EK - EK/ — (Z)ql)) Kgq! X
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— (U] Qe ia%a U (Vi | ab/ez‘q;xa Vier) efnqs’(éklfﬁk+@q)2efn 18’ (Egr—Ex—& ,)2)(
X (Ek, By +a,+2(Ex — Ex _@q,)) kg X
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X (Ek — Ek/ + (Ilq +2 (EK — EK/ — (.:Jq/>> Kg' X

Xe—(s—sl)(fiq—l‘iq,)2(Ek_E~k/+U~Jq+E~K—EK/—JJq/)2 [IA)EIAJ,;/&} é}(éK’&q'}

+ <Vk’| O[be_iqax”’ |Vk> <VK| ozb/eiqr/lxa |VK/> e—nqs/(Ek Ek/-‘r
X (Ek—Ek/ +(:Jq+2<E~'K/ EK q
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j2(0,0) (S’

JO) (s,8') =

5 (

- (E) T EE T a0

kk KK qq bb
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+ <Uk‘ abezqaxa |Uk’> <UK| ab,ezqaxa |UK’> —Kq ( ) —KgrS (EKfE'Kszq/) %
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+ (Vi | ape ™% [V) (Vier| e ™% [Vig) e —rias' (Bu= By +84)" g=rgrs' (Brc =Byt )
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+ <Uk| abe—iqaxa |Vk:’> <VK,| Oéb/e+i‘1:zxa ‘UK> 6_(4+K")SI(E’“+E’“'+%)2e_(4+”q’)s/<_EK’_EK_‘:’q’)2 %
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(480)
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Ek + Ek/ —l—(:)q +2 (—EK/ — EK +(I}q/)) (4 + Hq/) X
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(481)
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J (5,5) = — (

and J() (s, s/

Finally [7],

)T Y LY T A0

kk' KK q.q bb
. . e 7 ~ \2 e I ~ 2
<Uk| abezqaxa |Uk/> <UK| Oéb/elan“ |VK1> e fas (Ekaszwq) 67(4+/{q/)s (EKJrEK/qu,) %
x ((Ek — By — a;q) (4+ kg — 26g) + (EK + Err — @q,) (8 + 2%y — /@q)) x

2\ /5 A U = - \2 .
we= (=) (44 (mramrg)") (B B —Gu+ Bt Brer =iy ) [ehenag, bl ay |

+ (U] o€ |Upr) (U | e ™% Vi) ¢—ras (Br—Bi—04)" o= (4ng0)s' (Bt Brertivg )" oo

X ((Ek — Ek/ — L:)q) (4 + Ky — 2/<Lq) + (EK + EK/ + wq/> (8 + 2I€q/ — Hq)) X
, 2\~ = o= = - \2 R
X€_<s_s )(4+<—Rq+l€q/> )(Ek—Ek/ —wq+EK+EK/+wq/) [éiék/dq,é}(b}(/&j‘],}
. . 1 £ ~ \2 1 7 £ ~ 2
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x ((Bu = Br = @q) (4+ rg = 260) + (Exc + Eer — 09 ) (84 264 — 1)) %

, 2\ /=~ = = = N2 L. R
we= (=) (44 (mramry) ") (B = Bt Bt Brer =iy ) (01, b Ll |

— (Vil aweitee (Vi) (Usc| anreexa [Viry e’ (Bur=Bim)” o= (1gr )3/ (Brct Brcr t8)"
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+ (U | e =1405%a |Uy) (U | cupre ™15 [Vir) e’ (B =Bita)” = (4tny ) (Bt By )” o
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+ (Ug| ape@ee |Vir) (U] Qe a¥a [Vi:)e
X (Ek + By — (:)q + 2 (EK + Egr +(Z)q/>) (4 + Hq/)
Xe—(s—s/)(16+(—/€q+5q,)2)(Ek+Ek/—£Jq+E~‘K+E~‘K/+JJq/) [ TbT aq,chT af ]
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<Uk| abe_iq“xa ‘Vk’> <UK| ab/eiqc@xa |VK/> e
x (Ek 4 By — g +2 (EK ¥ By — wq)) (4+ rg)

e N0t ) B v s s (15 a1 3t

+ (Ug| ape”i9a%a Vi) (Uk| Ozb/eiiqérx“ Vi) e
X (Ek + Ek/ +qu + 2 (EK + EK/ -l—(:)q/>) (4 + qu/) X
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xe_(

. t
and J(7) (s,5') = [J(+’+) (S,S/)} :

Now the relation between the kernels J() (s, s') and the terms 1) (s)
is given by [7]

lim JO (s,5) = 10 (s)

§'—s
lim J&) (s, 8') = I (s) (484)
s'—s

lim J&H) (s,8") = &5 (s)

s'—s

(for showing this one has to further decompose the inhomogeneous
terms /') (s) as has been done for the kernels .J(—7) (s, s) above).

For proving the ansatz (476) one needs the following eigenvalue

relations [7]

%j«» (s.) = = [0, [7O, ([Nr. [N, (5.8)]] + [Ner, [N2r. 5O (s.)]])]
a7 08) == [0, [ [0, 9 ] 0 [ )]
L (s, 5) = = [AO, [BO, ([Nr, N5, 752 (5,9)] ] + [Nor, [Ner, 52 (s,)]])]
) ] o (485)
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Below the validation of the third line in (485) is shown explicitely, as
an example.

Now differentiating the ansatz (476) with respect to s one finds [7]

—H®D (5) = i/ ds' (JO (s,5") +JF) (s,8) + T (s5,5") + JFH) (5,5") + T (s, s'))
0

e JO) (s,8") + J(+) (s,8") + %J(_) (s,8") + d%JH"H (s,8") + disJ(_’_) (s, s’))
s)

JO) (5,8) + JH) (s5,5) + J) (s,5) + JHT) (5,5) + T (s,5)
+fos ds/ %J(O) (8 8/) SJ("F) (S,S/) + %J(_) (S, Sl) + %J(+7+) (S,S/) + C%J(_v_) (878/))

B {J(O) (5,8) + JH) (s,8) + J) (5,8) + JFH) (5,5) + J7) (s, )
B (i i

)

(

7(0) (s) +_I(+) (‘?) +[(—)( )+I(+»+) (s) 4+ 7(=2) (s)
— [y ds' [HO |HO ([N, [N, JO (s,5")]] + [Nir, [N11, J© (s, SI)H)]
— Jiyds' [AO [HO, ([N, [N7, 7O (s, )] + [Nar, [N, 0 1)
T\ - fpds [HO[HO ([N, [N, IO (5,8)]] + [Niz, [N, JO (s, 8)]])
— Ji st [, [BO), ([N, [N, 7 +> (5] + [Nor, [Nip, 76 (s, 7))
— [zds' [HO, A ([Ng, [N7, T (s,8)]] + [Nir, [Ner, J&) (s,8)]])
) ) (486)
Using (485) there follows for (486) [7]
d%ﬁ@’i) (s)
IO (5) + 1) (8) 4+ 1) (8) 4+ TTHH) (5) + I(=7) (s)
Ngo {go [ NG ING f5ds (IO (s,87) + T3 (s,8) + T (5,8) + T8 (s,57) + T (5,8) ] +
’ ’ +[N”,[N”,fosds’ (J(O) (s,8) +JH) (5,8 + T (5,8") + J( 1) (s,s/)+J(_’_)(s,s’))H

+1O) (8) + I (8) + 1) (8) + IHH) (5) + I (s)
2 [, [, ([, [, B0 @] |+ [, [V 220 @] ]]

[0 [0, (o o 29 ] o, [ 0 ] + 76
(487)

As it should be!

In the following, after it has been shown by the example J&) (s,5")
how the eigenvalue relations (485) can be proven, the limit s — oo
of the solution H® (s) is evaluated. This is done below, where the
integrals are calculated. With that it will also be proven that all terms
that violate the particle number vanish exponentially, again provided
that one first takes the limit V' — oo such that the mode indices
kK K,K' q,¢ lie dense in the Volume V and that their discrete
summation can be converted into integral.
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Eigenvalue relation of the kernel J&%) (s, )

The third line in (485) is given by [7]

%j(i’i) (s,s') = — [I:[(O), [ﬁ(o), ([NI, [N[,j(i’i) (s,s')” + [NH, [Nn,j(i’i) (s,s}!l))”

For showing the equivalence one has to differentiate the kernel with
respect to s and on the oder hand evaluate the multiple commutator
on the right side of (488). For the latter the following considerations
are useful.

As a reminder note that [7]

f{(O) — ﬁD + ﬁrad

N B o 1~
H.wa = qu (aflaq + 51)
q

I:[D = Z E~'k (C}LC}C + b%b@)

k (489)
N[ = Z <C]T€//Ck” + b%,b~//>

kl/

_— i
Nir = g KqlyGqg
q

For the following the identity

[AB,CD] = A{B,C}D — B{D, A}YC — ACBD + CADB (490)

which can be found in [14], will be very useful.

Starting simply yields [7]
[]\7[, éz,ék] =0= [N[, ZA)J]&[A),;,} (491)

However, for pair creation terms holds [7]
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508 = [ (v + )
k//
5 ([ ] + e )
k//

5 (vl + e 1)

CL/ {Ck’/ ck} bT (492)

where (490) and the fundamental commutation algebra for the
fermions (15) has been used.

This implies at once [7]
[NI, [NI, c,tb};H — 4clb] (493)

On the other hand [7]

] <[5 e ) )
K
([Ckﬂck” k’ck} + [bg,b;;u,@;;/ék})

2

494
> (che feucl e st frf))
k"

= —2b,;,ck

[N], [N], Bk/ék}} = —4?),;,01f

Implying at once that [N I [ézl;ltlgk,é;(” = 0!
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Now what about pairs of pair creators? [7]

o [atit st it 11 2[R atit A g Goat it At
[NI, [CLbIE”Cbe{’]} = [Nj,ckbiq,chf{,} — [NI,chK,ckb%,}
PN O TP

{N I, c,tbu c}b}(,

A0t [ g
+elbl, [N, el |

- {NI, c}(bH el
AT 7T T ATt
e b, [NI, ckb%,}

( ~ ~
RO 495
202%@(@@ (495)
ATt oAt 7t

—2¢h bl bt
_ont ot atpt
\ 2 by, Cb;

— 4 |elbLelbl, — bl el
— 4 |efbL, elcbL
Therefore [7]
[NI, [NI, [égb;, c}(b;m — 16 [é,zb};,, a}b}(,} (496)
Now for the photonic commutators [7]

[NH,aH - [Z Kqlhag, ),
q .
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where the fundamental commutation algebra for the photons (27) has
been used.

Then readily [7]

Ny | = [Z ﬁ;qagaq,aq,]
. At oA 1A 498
= qu (T] [ag, Gy + [ag,aq/} i) (498)
= — Kyl

Note that x = k.

Based on these equations there follows for example, since fermionic
and photonic creators and annihilators always commute [7],

N1, NI,@EBE,&(E + | Nir, NH,cka AT — (4+/<:2) ézl;;[f,&j]
N[, N[,ézi)t d + N[[, N[],Ckb];,aq = (4—|—/-€3) é;;i);g/&q ( )
- A e -0 - A 499
Ny, NI bieral || + |Nir, | Nip,bpcral| | = (44 k7) by, cra)
NI, N],b,;,ckaq + NH, N[],B];,ék&q = (4—|— Iig) [A)];,ék&q
or [7]
{NI, {chT aq,chT ” { TbJr aq,cT bT }
(500)

N [N [elbl g, el ag] || = 16 el ag, el ay

The commutator with H© yields for example [7]

_le NI7 Cka

—~

ot
4-+-&q)ckbé,a2

NII) levé};i)};,&g k+Ek’+wq>

—

_NI, _Nb Ck;b,;,,aq _NH, 5252,% K+ By — wq) 4+ Kq) éy’;/&q

Nir, | Nipp, bycral Ep — By, + &) (4 + rq) b éral

+ 4+ o+ o+

L 5L |
L 1L 1L 5L |
L 1L 1L 1L ]

(
(£
(-2
(-

_H(O) ( Ny, [N b el ]

N— ———

Nr, | N1, by, Craq (44 Kq) by Criq

(501)

Nir, | Nir, by Craq By — B — @y
3

196



HO. (_NI, N],é};b}%,dg + | Ny, _NU,Ckb%&g") = ( K+ B +Wq) (4+ ’fq)élt:%&;
_ﬁ(o)’ (_NI, _Nl,ckf)%,aq + | Nyp, _Z\A/H,éki)g,&q") = ( w + B —wq> (4+ ”q)él%/dq
7O, ([, [N, bexal] | + [N, [Norbgenad] )] = (B — Be+@,) 4+ g) braéua
aO (_NI, Nip, by éxag|| + |Nir, Nlbékzck&q_ ) = ( Ey — Ej, — ‘:fq) (4 + Kg) by Crig

[N], [N], [éz,ékﬁt CL.,CKG,Z,:I:H + [N[[, []\711, [éT éde CL.,CKCLZ,:I:H = (qu +I€q/)2 {(A}L,ékﬁg,é;{,é;{dz,]
S [ i, ) [ [ b ] ] - o i)
. AT

H] + [NH7 [NH, [clbaaq,c}{bT H] (16+ (—kq + K /) ) [ TbJr ,Gq,C IAJ}(,&Z,]
(503)

[NI, [NI, Hz}gaq, b a

With these eigenvalue relations one is prepared for the multiple
commutator of the right hand side in (488).

For  the inner  commutator {NI, [N[,j(i’i) (S,S’)H +
{NH, {Nu,j(i’i) (3,3’)” take a look at the first line. The

commutator is of the form [7]

NN (el ag, el ag| ]+ [Nors [N, |elBLag, el ag |

= (16 (= = ") [eli . e
(504)

Therefore one finds as an interim solution [7]
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[Vr [N, JEE (s8] + [Nrr, [N, 55D (s,60)]] = - ( de )2 DS % Z S Ay () Ay (d)

moc

kok! KK/ 4 bb!
(16 4 (7'{{1 B Hq/)z) (UL | apeidara [Vir ) (Uk| ab/eiqt/lx"' |VK/>E*(4+Nq) /(EkJrE ) (4+mq/)5’(EK+EK/7&q,)2 y
x ((Ek+Ek, —wq)+2(EK+EK -Gy )) (4+n )
. o 2
Xef(b 3')(15+( Rg=rgr) )(Ek+Ek/ g+ B +Ep s — wq) [zbt,dq c}b*,aq/]

+ (16 —+ (—nq + qu)z) (Ug| apetdara |Vir) (UK ab/e—iqaxa ‘VK/>6_(4+KQ) /(Ek+Ek/ wq)ze (4+»cq/>s/(E'K+EK/+LDq/)2 %
x (B + By 7@q+2(EK+EK/+w ) (4+n /) x
- - 2 5
e ()0 oty ) (BB msor s Bertag) s ot
+ (16 + (nq - Kq/)Q) (Ug| abe—iqax{;, |Vk’> (Uk| ab/eiq‘,lxa |VK/> e*(4+"‘q)5/(Ek+Ek/+®q)26—(4+mq/>s/(EK+EK/—&qu)Q «
x (B + By —@q +2 (Bx + Bxr —@g0)) (44 541 x
(i B 2D\ (rm i E e B Em o 2
. (s s )(16+(~q "‘q’) )(Ek+Ek,+wq+EK+EK, wq,>- [a%é%,a;,é}i)}(,aq,] b . 2
+ (IGJF (“q + “q’)z) (Ug| ape™a%a |V, /) (U | ab/efiqz"x“ ‘VK/>67<4+K‘7) /(Ek+Ek'+&q) ef(4+nf1/)s (EK+EK'+®‘1/)
x (Ek+Ek +wq+2(EK+EK +a, )) (4+n )

,(573’)(16+(mq+m /) )(Ek+Ek/+wq+EK+EK/+w )? [TbT At elpt at
Qg CK I‘(/"‘q/]

X

xXe
(505)

Now the commutator with [7]

([0 [0 0] i, [, ) ]

is therefore of the form [7]

0, (5 [ i ] o o [0 )

— (Ek + By — @y + Exr + Exe — @q,) (16 + (=g + ) ) { ot aq,chT aq}
(506)

see for example (502).

Again commutating (506) with H® readily gives another factor

<Ek + Ek/ — Wy + EK/ + EK — d)q/>2 (16 + (—rq + mq/)2> [ bJr g, chJr aq}

Hence, for the multiple commtutator on the right hand side of (488)
there follows |[7]
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[, [70, ([N, [0, 7ED (s,8)]] + [Ner, [Nrr, 752 (5,8)]])]]

:7(%) sy L ZZAb(q)Ab/(q/)

moc/ Rk Y ga bbb

(16 + (—rq - f;q,)z) (Bi+ By — @q + Byer + Bre — 300)" (Ul apet@@®a [V, (Ugc| oy eia™a |V )
(atrg)s’ (EwEk/ 20)" = (g ) (BretBrer=30)” (B 4 By — 2 +2 (Brc + By — 30)) (14 500) x
o) (104 (-na=ng)”) (Bt By =G+ B+ Bres i) [efbl,aq, elcbl,a,]
+ (16 + (—rqg + Ry 2) Ey+ By —0q+Exr +Ex + 6 ,) (Ugl ape?@ae |V, ) (Uk| a,,/e‘”fz*a [Vicr)
o (4rq)s! (EkJrEk/ 9q)% ~(a4nry)s (Brc+Bgr+iy)” (B + By —0q+2 (Br + Brr +000)) (44 540) x

)
/)(16+ Nq+m/ )Ek+Ek, Oq+ER+E g +@ /) [aTbT
k

agq cj;(bT l}
X
T (16+ ( —k ,) ) ( o+ B+ @q+ Bpr + By — @ ,) (Ul ape™190%a |V, ) (U | ayyreia”a |V /)
2

e (tra)s! (Brt By taq)® = (14ny)s (B +Eper=5,,)° (Br+ By — g +2 (Bre + Brr —00)) (44 5g7) x

><e7(575 )(16«#(1{,17;1(1/) )(Ek+Ek,+mq+EK+EK, u.)q/) [ Tb; &;’ ‘LE}(,%/]
+ (16+ (rq + nq/)2) (Bx+ By +@q + Egr + Bxc + 6 ,) (Uil ape™190%a |V, ) (Ugc | ayr e~ 9a%a |V,
Xe*(4+~q)s’(Ek+Ek/+®q)ze—<4+Nq/)< /(EK-FE‘K/-F@ /)2 (Ek +Ek/ + Qg 42 (EK + EK’ +®q/)) (4+qu) X

,<575/)(16+(Nq+n /) )(Ek+Ek/+wq+EK+EK,+w N? [ 151 at el ot af }
k49 KUK’

Xe
(507)

On the other hand, for the derivative with respect to s of (488) there
follows with [7]

d 7(575/)<16+(7r€q7ﬁq/)2>(Ek+Ek/7@q+EK+EK/7(Dq/)2
—€
ds
- - - N 2——’<1e+——,2)E+E—"+E+E,—'2
:(16+(fannq/)2) (Ek+Ek/7&q+EK+EK/7&q,> = (104 (mra=ry)”) (Burt By 5o+ Bxc+ By =1
(508)

as an example then [7]
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&5 s,9) =*(m06) Y e AW A (@

k,k" K,K' qq’bb’

. N2
(Uk| apeida*a | V1) (UK|ab/eiqt/1X" |VK/>67(4+'W1) "(Ep+Ep — “’q) (4+K ’) (EK+EK'7W‘1’) X

X ((Ek-f—Ek/ —(ZJq) +2(EK+EK/ — /)) 4+l$ /
—(s—s")( 16+ (—rqg— )E+E, +Er+E o .
Ye (s—s )( ( Kq—H /) ( kB —0q+ER+Er =0 ) [ kb£,dtlvé}(b}</d‘1']
e _ N2
+ (Uk| ape@axa |Vir) (U | e~ 19a%a |[Vir)e —(4trq)s (Bt By —3q)° <4+qu)5 (EK+EK’+“’Q’) X
X (Ek =+ Ek/ —(:Jq +2 (EK + EK’ —i—wq/)) (4+ Hq/) X
Xe—(s—s/)(16+(—fiq+ﬂq/)2) (Ek+Ek/—®q+EK+EK/+@q/)2 |: Tb 4 B T :|
d Ck k' q’ q
% . i "(E £ " 4 E E 2
(U ape—90%a [Vi) (Ug | agy €i96%a ‘VK/>6—(4+»<,1)5 (Ek+Ek/+wq) e ( +r ,) ( K+Egr—© /) %
X (Ek =+ Ek’ —L:)q +2 (EK +EK/ — (:}q/)> (4+ Rq/) X
2\ /- - - ~
—(s—s") (164 (rg—ry Ex+Ey +og+Eg+Eg —w,/ R
e = (10 (sa=rr)”) ( ) (el el g
_ N2
+ (U | ape—9a%a |V3/) <UK|O£bI€_iq:lx“ [Vier) e—(4+ﬂq)6’(Ek+Ek/+5’q) e (4+n /) (EK+EK/+wq/) «
X (Ek =+ Ekl —‘r(:)q +2 (EK +E~K’ —‘r(:}q/)) (4+/<qu) X
2\ /- - _ _ 2
—(s—s")( 16+ (rq+ Ey+E, +@q+Ex+E o/ + N N
L e e A P T}
S G DD IS 3) SERVEIY
k,k' K, K/ q,q’ b,b’
~ ~ ~ ~ 2 . .
(16 + (—hq = Kyr) ) (Ek + Ep — Qg+ Ex + Egr — ‘:’q’) (Uk| apei@axa |Vyr) (Ukc| oy e?a®e [Vigr)
R - - N2
Xe—(4+f€q)s’(Ek+Ek/—@q)Qe*(4+Nq/)s/(EK+EK/*wq/) ((Ek +Ek’ _(:)q) 42 (EK +EK’ _@q,)) (4+I€ ,) %
7(575/)<16+(7Nq7}1q/)2) (Bt By —0q+ B+ Brr—0)° [ 4 o4
e [ b a,q,ch~ aq]
~ ~ ~ ~ 2 .
+ <16 + (—rq + nq/)Q) (Ek + By — g + B+ Bger + @q,) (Un| apeitara Vi) (Usc| ay e—i6%a | Vi)
- _ N _ 1 = = - 2 - - .
X67(4+mq)s’(Ek+Ek/7wq)2€ (4+n /)s (EK+EK/+W ’) (Ek + By 7(.:)(1 +2 (EK + Egr +L:)q/>) (4+ Hq/) X
7(575') 16+( Kqtk /) (Ek+Ek/ wq+EK+EK/+w /)2 RN
xe [clb;aq, et bT. aJr ]
X

~ ~ ~ ~ 2 . .
+ (16 + (Nq - qu/)2> <Ek + By +@q+ Ex + Egr — &zq/) (Ug| ape™"a*a |V, ) (U | ab/e“l(,lx«z [Vier)
~ - 2
X67(4+nq)s’(Ek+Ek/+@q) (4+K /) (EK+EK/ @ /) (Ek —+ Ek’ —Wq +2 (EK + EK/ — L:)q/>) (4+ Hq/) X
2

,(575)<16+(Nq7mq/)2>(Ek+Ek/+&q+E~K+EK/7LDq/) ot At oAb it
[ b ,Gq, ch- aq/]

xe
- - _ ~ 2 -
+ (16 + (nq + nq/)2) (Ek + Ey +wq+ Ex + Exr + &;ql) (Up| cpe™a%a |V ) (Ugc | e~ ¥a"a |Vigr)
- - -~ ~ ~ 2
e (o) (Bt By r60)? o= (g ) (Bt Brer )™ (4 By g 42 (B + Brer +8) ) (4 ) x

_(s—s/)(16+(nq+mq/)2> (Ek+Ek,+5;q+EK+EK,+&q/)2 [ Tb’r

Xe aq,ch q]

(509)

which is exactly the same in (507)!

Evaluation of lim,_,., H® (s)

The integrals [, ds'J™) (s, s') and [ ds'J) (s,s') occuring in the
solution (476) are of the following types [7]
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F (so2,y, mqs rgr)

’ 2 ’
= (:v (4 + Ry — QKq) +y (8 + 2Ky — f{q)) /s dsfe_(s_s )(4+ (K‘1+K‘1’) )(H_y)zeis (”qz2+(4+f€q’)y2)
0

2 s ’ 2
= (2 (44 Ry — 26g) + v (8 + 26y —nq))eﬂ(“(”q*”q/) )(Hy)z/ ds'e’ ((4+(“"+KQ’) )<”y> —rqu = (1ng ) 2)
0

oo (ran?+ (44ry)v?) _ 6—3(4+ (~q+”q’)2) (z+v)?

=(x(d+ Ky —26¢) +y(8+2Kry — K
( ( q ll) ( q Q)) (4+(l€q+l€q/)2> (x+y)2fnqzzf(4+nq/)y2

(510)
and [7]
f(+7+) (S,I:ZA K/q»“iq’)
= (z + 2v) /S ds,e*(sfs')(16+(Nq+'€q/)2)(z+y)26_s/((4_,_,1,1)124_(4_,_,@,)@,2)
0
2 5 s (164 (rqtr, 2 (x4y)2—(4+kq)z?— d+n,
_ (:c+2y) 6—3(16+(r@q+mq/) )(ac+y) e (< ( ) ) ¥)?=( ( )y > _1 (511)

<16+ (kg + Ky )(:L‘er (A+rg)z?— (4+ry)y?
73((4+Nq)x2+(4+n ) 2) e (16+(Hq+nq) )(I+y)2

(16+ (kq + Kqr) ) (z+9)? — (4+ rg) a2 — (44 Kky) Y2

=(z+2y)

For kg, ky € {0,1}, 2,y € R and x + y # 0 both integrals vanish in
the limit s — oo.

Contributions of the sums over the mode indices k, k', K, K’, q, ¢’ that
relate to the special case x +y = 0 do not vanish in the limit s — oo.
However, these contributions have zero measure, such that we can
proceed again such that one first has to take the limit V' — oo, and
then take the limit s — oo.

For sure this argument also holds for the hermitean conjugates.
Altogether then [7]

lim ‘}im ds' JE) (s,5) =0
lim lim [ ds'JEY (s,5) =0

§—00 V—o00 0

Hence, the only contribution of the solution that survives our limiting
procedure is given by limg_ ., limy_, . fos ds' J©) (s,s") given by [7]
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(+ fOS ds' <j1(0’0) (s,s") + JQ(O’O) (s, s’))

lim lim [ ds'J9 (s,5") = lim lim { + [ ds’ <j1(0’+) (s,8) + JO) (s,s’))

s—00 V—o00 0 s—00 V—o00 0

+ [y ds’ (JQ(O”L) (s,s") + JQ(O’_) (s, s’))
(513)

\

These integrals are now evaluated explicitely in order to show that
there do not remain terms that violate the particle number
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Integral 1

lim lim
s—00 V—00 0

-~ ()

+ fos ds'

+ f; ds'

— fos ds'

+ f; ds'

ds’jl(o’o) (s,8")

TS 35 38D 3 ATFAIEE

kk K,K'  qq bb

x (Ek — B — g+ 2 (EK, ~ Bx +@q,)) K X

X67(575/)(7Hq+ﬁq/)2(Ek7Ek/7‘:"q+EK/7E~K+L:}q/)2 [c,tckraq, c}(,CKaT :|

X (Ek —Ekl —(,:Jq + 2 (EK —EK/ +@q/>) Kq' X

xe ()t ) (B Bt BrcBrer i) (el 6, B bl |

X (Ek’ - Ek —(:)q + 2 (EK/ - EK +L:)q/>) Rg' X

e~ (o) ootV (BBt B~ Bctie) [5G, ol el

A Qpeidae Vi) (Vier| ab/efiq;xa Vi) e ™" 05’ (B —Ex—ayq )2e,nq/5'(EK7EK/+a;q,)2

X (EN'k, Ek—wq—l—Q(EK EK/—i—wq))mq X

et BB so BBt 3 By g

(U] ape=2% |U,,) (Uk | ab,eiq;xa Ug) e—ﬁqS'(Ek/—Ek'*“:’q)Ze—Hq'S'(EK—EK'—‘:’q/)z

X (Ek/ — Ek +(11q + 2 (EK —EK/ —@q/>) Kq' X

xe (9 s )( —K ,)Q(Ek/—E~‘k+®q+EK—E~K/—JJq/)2 [éz,ékdg’é}(ék.,dq/}

X (Ek’ — Ek —ﬁ-cbq + 2 (EK/ — EK —(:)q/>) Kq' X

o (575" (ma—ry N (B —Ext G+ Eyr—Ex—a,)° [CL/CkaT bL 5[(%,}

t J3 ds' (Uk] aneae [Uy) (U | =00 [Upe) a8 (B B —80)” o mnyro! (B = Eactr)

— [ ds! (Uk| apeite® |Uys) (Vi | e =5 | Vi) e o (BB =80)" g =riops! (Brc— i+, )7

— [ ds’ (Vi apeine [Viy) (Uger| a9 [Uc) e (Bur=Bi=0)” o =riors! (Bacr=Brc+ )

X

X

= [y ds' (Ui | ape™1>a |Uy) (Vic | ay elleXa |Vig) et (B —Ert)’ =y ' (B =B =)

(Vir| ape™ % [Vi) (U | €% [Uger) o8 (Bu=Brr4q) =y (Bx =By =) o

x (Ek — B+ @y +2 (EK — By _@q,)) Ky X

e (o= (BB BB’ [if57 at ol vy

(Vi | e 192%e V) (Vg | ab,eiq;xa Vicr) e—ﬁqs/(Ek_Ek""‘:’q)ze—ﬂq/s/(éx’—EK—‘:’q/)2

X (Ek —Ek/ +L:Jq + 2 (EK/ —EK —(I)q/>) Rg' X

X6—(3—5’)(/1(1—;@(1,)2(Ek—Ek/-‘rJ)q-‘rEK/—EK—JJq/)2 |:8£Z)E/a b bKaq:|

These integrals are of the type [7]
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’ 2 ’
fl(o,o) (I,y,ﬂmﬁq,) — (ot 20 g /5 ds'67(575 )(nq*nq/) (z+y)2€7s (qu2+mq/y2)
0

2
e e o Wl (CRORRT Rty
- q
0

2
2 2 2
anmq/) (z+y)*—rqx —Rgry ) 1

s (ra—rg ) (@to)? :(

(kg — nq/)Q (@ +y)? — kg2 — kyry?

= (z+2y) Kye

e—s(f»cqxz-!—mq/yz) _ e—s(nq—nq/)2(x+y)2

= (z+2y) Ky
(kg — nq/)Q (x+y)? — kg2 — kyry?
{0 fir kyy =0 (515)
= —s(nq12+y2)_ —s(mq—l)z(m-f—y)z .
[ e —
(z +2y) PP fir Ky =1
0 fir kgr =0
—sy? _ —s(zty)? ..

=< (r+2y) = ?z+;)2_y2 d fir kgr = 1,5 =0

—S(w2+yz)_1

(x+2y)671277y2 fir kg = 1,0 =1
0 fir K, =0
—sy? _ —s(zty)? !
) fiir kgr = 1,kg =0

742y (1 - 675(“”2+y2)> fiir K

z2+y2 = 17H,q =1

q

Hence, only the term k, = 1 and K, = 1 contribute to the limit s — oo
(besides a contribution of zero measure for x +y = 0).

Therefore [7],

S
lim lim ds' JO0 (s, )

s—o00 V—oo 0

S €I DI 3 3D IFACEALE

moc
0 kok! K K’ a>qB ¢'>qp bb’

Ey— By —0q+2(Egr —Ex+®,)

(Ek Ek/—&q)2+(EK/—EK+&q/)2

+ (Un| et |Uyr) (Urer| o e™ 0% U ) {élék’&qvé}«éKd

— (U] e (D) (Vi | a9 |Vie) 2B Su MO Brondn) fatp 6 b b a ]

(Ex—Ep—aq)" +(Ex—Eyi+ay)’

E, —Ej— wq+2(EK/ Ex+d,) {IA)T BkA oA At
2 q

_ i¢aXa 14, Xa
(Vi| ape’@e*e [Vir) (U | e ™0™ |Uc) (Brr—Bx—q) " +(Excr — Bxc+@y )

E/ E 2(F E ’ ’ 7 T 7 ~
Mok wﬁ( x By ty) {b,z b bg,a;,}

+ <Vk| abeiqaxa |V7€/> <‘/K/|Oéb/6 lan“ |VK> (Ek/ Ep— wq) +(EK EK/+w /)2
q

Ek’ Ek+wq+2(EK EK’ w/)
(Ek/ Ek+wq) +(EK EK’ wq/)

+ (U a5 [U3) (U] %% U : [ auit, ey ]

E— Ek+wq+2(EK/ Ex—@y) {C ckaT bT A~ ]
k/

_ —iqaXa 19, Xa
(Uk[ cwe [Uk) (Vic| o et [Vier) (B —Brt6g) +(Exer— B~y )

Ek—Ek/+®q+2(EK—EK/—@q/) ZA)T13~
kK’

. s
_ —%qaXa 144 %Xa
(Vir| cwe Vi) (Uk | €' |Ucr) (Br—Bpr+09) 4 (Bx B~y )

. . E—EN‘/+~+2E~‘/—E—~/ A AN ~
+ (Vi | awe ™" 4% [Vie) (Vi | €™ [Vier) (E:—E: +;q)2+((133}; —EI;—U:; ))2 [bgbfc’ajz’b;%/bf?aq’]
. v q ’ q/
(
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These terms can be sorted by creation and annihilation operators for
matter and antimatter according to [7]

lim lim ds'jl(o’o) (s,8")

s—00 V—o00 0

2

e C) DI IR D D D) DERCE T
moc Voo V
ok KK 4>a8 ¢’ >q5 b’
. L Ey—E—0q+2(Ex —Ex 4o ita A At oA A

+ (Uk| ape®@*e |Upr) (Ugr| iy e™"a% |Ukc) (E:—E:/faqq)ﬁ((éz7EI;+;;/))2 [Cz’ck'aq’ck’cK“H

, . By — Bt t2(Br— s —a o
+ (Ui | e ™% |Uy) (Uc| cur €% |Uer) (Ek E:::q)t-*-((E}; EK/, ?/,))2 H'CWT C}(CK’%'}

K q —Lgr—w,

. E E +2(E Epr+ ~
+ (Vi| apel®=e Vi) (Vier | agre™ 0% [Vig) (E:,, e ::) +((EI; E1:1+1/1))2 [b K
- ~ q
» -, Ep—Eyr40+2(E s —Ex—a fra L oar s
+ (Vi | awe™"0exe [Vi) (Vi | cuy et [Vier) (E:—E:/+;q)2+((ézfEI;:;/,)f [b by}, bl bic aq’]
d ¢ q

) o Ey—Ep—0q+2(Ex—Er+, R
— (Uk| e’ [Uys) (Vigr | oy e 9a% [V ) (@kf%’tlfaqq)ﬂ(({;;*EZ,WI;I)Y {czck’“q’bkbk’“;]
— (Vi | awpe™ 92 | Vi) (U | €9 |Upcr) BB +0,t2(Ex =B —8y) Tjtg

Catdtaa)]
(Ekak/+@q)2+(EK7EK/7&;(]/)2 _b bk/a CKCK(aq,_

_ iqax —iq;x Ek’ Ek wq+2(EK/ EK-‘,-UJ /)
<Vk| e |Vkl> <UK,‘ e ’ |UK> (Eu Ep—& ) +<EK/ Ex+a 1)2 L
E—E+o +2(E  —EBx—& /) [+ A At 2

zqaxa k k q K T 1
Uk> <VK‘ Qpre |VKf> (E T Ek+wq) +(EK’ Fre— wq,)2

— <Uk:/ | abefiana

Further rearrangements and renaming of the summation indices
according to [7]

(b K, K, K q,q,bV) — (K, K.k, k' ,q,q,V.,b) (518)
yield [7]
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S
lim lim / ds'jl(o’o) (s,s')
s—o0 V—o0
ZZ hm—z ZZA[, ) Ay (g
(moc> eV 7V ST i Sas b

. ) —E s —0q+2(Eg —Eg+6
+ <Uk| O(bezqax,,, |Uk’> <UK/‘Oéb/67’Lq:lXa |UK> ] ( K’ K Wq/)

By —Ex+0,+2(Br—Ep/ — wq)

k=B —0q) (B —Brc+og)

x [chkaqc;cKa:;]
) ) B, —Ep—awg+2(Ex—E o +a Ex—E 2(E, —E
+<Vk|abe7‘qaxfl |Vk’><VK’|ab’€_1q‘;x“ ‘VK> K/ K —Wgq ( K K/’ wq/) K— K/+w r+ ( P e P

(Bgr—EBxc+a ,) +(Ep—Bjy—oq)?

1 —0q) >+ (Bxc— Byt ).
L bpag bl bgial ]

k=B —0q+2(Br—Egr+@,)

Ex— EK/+W/+2(Ek Epr—@q)

(B~ By —5q)°+ (B —Brrtg)°

2
(Bx—Exrtay) +
X [czck/aq,b bK/a]L ]

Ek’ wq

) ) E, ) —Ep—0¢+2(E 1 —Ex+a
— (Vis] apeidaxa |V,/) <UK/|ocb/67’quX“ Uk) K —Er—oq ( k' —Fx wqf)

. w E
— (Ul ape*@@a |Upr) (Vigr| are ™ aa |Ve) (

Brr—Ex+&,+2(EBy —Ep—dq)

(Ek,—Ek—mq)2+(EK,—EK+mq,)2 B (Bxr—Ex+a /) (By/ —Ep—aq)?
x [IA)E,I;,;&q,é;(,éKdT ]

(519)
Finally, terms with the same denominater can be picked up such that
[7]

lim Vlim ds'jl(o’o) (s,8")
S5— 00 — 00

0

() T T i T E S A

k,k" K q9>q9B q'>qp b,b’

+ <Uk| abeiqaxa |Uk/> <UK/‘ ab/e’iqéxa |UK>

(EK/—EK+@q/)—(E~k—Ek/—@q) |: AT A At ~f
(Ek—Ekl—(:?q)2+(EKI—EK+‘:)q/)2 ijck,aq7 CK/CKG’

[

<Vk|abezqaxa |Vk’> <VK/|Oéb/€ g/ Xa |VK> (EK Epr+a@ /) (Ek/ Ey, @q)

i p .t g ot
(Ek:’ Ek wq)2+(E~K7E~'K/+th/)2 {bg,bkaq,b bK/aq/:|
X

(Ug| e’ |Up) (Vier | e ™10a% |V (~EK_EK/+®"/)_(EFEV @)

st s Btg o at
(b o (o B (60w o ol

<Vk| abezqaxa |Vk’> <UK" ab/e—iq;xa |UK> (~E~'K/—E~K+£;q/)—(Ek/—Ek Wq

) [ o AT]
(Ekle'kf&q)2+(E~'K/7EK+& /)2 b aq,cK/CKa !

Now the multiple commutators in (520) can be evaluated by the help
of the following identities:
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(EK EK/er ,)2 Ek,’ Ek wq)2>




3 (1l {F.cy+ 5 {Fa} [F.6] = 5 (7o af) (FG + 6F) + 5 (Fa +af) (PG - GF)
_ ( FobG— 4 féﬁ)
- ( FEGC — 4G fF)

(522)

From (521) follows for (520) [7]
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S

lim lim ds/jfo’o) (s,s') = - ( ) Z Z lim — Z Z Z-Ab .Ab’
s—00 V—o0 Jg moc ok KR VooV 0595 o a0
(Byr—Bx+@y ) —(Bx—Ep —@,)

. . !
+ (U | ape*@e*a |Ups) (Ugr | apre™"a*e | U ) — — - —
(Ul Uk} (U IUx) (Ekak/—&:q)2+(EK/7EK+&:q/)2

(Bx—Bgr+@,)— (B —Er—a,)

. . !
+ (Vi ape@ee [Viy) (Vi | e aa [Vig) ——— ———
(Ek/—Ek—@q)2+(EK—EK,+@q,)2

— (Ug| ape™@@xa [Upr) (Vigr | agre™ 0% [V

(Bx—Ey *QQ)QJF(EK*EK/JF@L;’)Z

(EK’ —EK+°3q') —(Byr—Ey—dq)

— (Vi ape?@a™a |Vis) (Uger | o e™a™a [Ug)

) (Brc—Bier+8y )~ (Br—By —a) ( %[

(Brr—Bi—0q)+ (B —Bxc+og)”

(m00> Z Z Vlgnoov Z Z ZAb ) Aw (g

k,k' K,K' 9>9B q’>qp b,b’

(Bxr B4, ) = (Br—By —aq)

+ (Up| ageiea [Ugs) (Uper | aupre™ e |Uge) —— A > X
(Ex—Epr—3q)°+(Exr—Exc+@,1)
o (6k’ K’éLéK — g Ké];(,ék/> (&T aq + %(5(1 q/i>
(519' K’CLCK + O KCJ;(,Ck/ —+ QCLCL.,CKC]C/) 16q q
. —-E 1 +@ q’ E, —E 0
+ (V| apei®a |V ) (Vir | agre™1a%a | Vi) ( sty ) (B B wQ)z
Ek’ Ej— wq) +(EK EK/+UJ /)
x (5“(17 s — o1 wbleby ) (ahag + 5,”,1)
X .
(G010l b + Oxcr i }(b + 261, 6bby ) 304,
_ <Uk|abeiqax,,, |Up) (Vigr | le—iqua Vi) (EK—EK/+J;Q/)—(Ek*E‘k/7LZ)q) éTé /BT hos
RIATHOTY (B By —0q) (B~ Bty )° & © KK
ianX _id x (E”Kle_Kﬁ’qu/)*(E_k/fEkf&)q) ot
— Vil apeitee Vi) (U | e 9% |Uc) 26l bpéle ety

(B —Br—aq)°+(Exr—Exc+3, ,)

In the last line of (523) use has been made of
{é};ék,, cch} = Sp ot r — O xChotp
o, ot a Vs ata s oot oo odal 4o
C.Ck'y CpriCK k'.K'CLCK =+ Ok, KCpiCly + 2C.Cpe/ CK Ciy
NI SN _ N AN
0L bbb | = Sacdl b — b pble by

{B]E,B/},[A)T bf(,} = 5k Kb bK’ —+ 5K’ k/bT b + 2bT bT bK/b~
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(524)

(525)

(526)
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and

L. . L/, . At | At AU AN
2 {aq, ajz,} =3 (aqa; + aj]/aq) =3 (2@2,(1(] + aqa; — a;aq> = ag,aq—%ééq’q/l
(528)

Several rearrangements lead to [7]

S
lim i ds' J(O0) (s,5') = X i
€i>ngo Vgnoo 0 e (S S) moc I%KZK’ Vgnoo

N , ) o, (By—Ep —q)— (B —Exc+@,)
5a RqgKg/ A Ay Ui | apeta*a |Upr) (Ugr | apre™"9a*a UK — — — =
V g Karigr 2 Ab (@) A (@) (U U ) (Uger| o IUk) (BB —0)+ (Brer—Br+)”

y < (5k,,K,éLaK —5,67;{&;,@,@/) af dq >

+6q7q/é£é}'{/éKék/ -+ 6q,q/5k/4K/éLéK

X

: il (E,/—Ek—& )— Ex—Epi+o,
P Y Fakigr S Ab (@) Ay (¢) (Vi apei®ee Vi) (Vier | agre~i90%a [Vi) 207 (Ex—Fr -Q)
, , (Byy =By —0q)*+(Ex —Eycr+igr )

ot t
x § (5ka bK,—6K/ whlby )a g
+84,q01, b1 b by +5qq,5ka by

7 X

1 idaXa —iguxa (Ex— EK/-‘rwq) (Ep—Ey —aq) e
+v 20g Ka 2oppr Ab (@) Ap (@) (Uil ape@a*a [Upr) (Vier | agre ™ a%a [Vie) (Br= By —2q)" +(Ex — By +@q )2Ckck’bf<bx/

1 idaXa —1iqaXa (E ’_EK+W ) (E ’ Ek @ ) X
+37 2g Ka 2oppr Ab (@) A (@) (Vie| ape®@@e [Vir) (Uper| apre ™ a%a Uk ) (Ekf(—Ek—&q)q-s-(E;, EK+wq)2 CK/CKb by
(529)

Here we have inserted the definitions of the electromagnetic
amplitudes (24), (25),(26), and the polarization vectors (28).

Now with [7]

—Z/iq.Ab Ab' Zﬁq Z «Ab q7 Ab’ (qa )

a  A{LII}

:éznq >

a  Ae{III}

1 h
et (3 e

Ae{I.IT}

1 h Qqy
— S
v%“wsow (a) ( )

h

mub (g, A)

[¢1
(530)

and  renaming  the  summation indices  according  to
(kK K KbV, g} — {K KK kV,b,—q} (minding &, = @)
then [7]
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s 2
lim lim [ ds'JO (s,8) = + (q—) S x lim

s—00 V—oo Jg

L , . L (B =By —0q)— (B —Exc+@,)
= Kqk A A Ui | apet@eXa |Up Y (Uper | apre™ "0 e | U ) ———— - -
\% quq/ qkq’ Zb,b’ b (@) Ay (¢") (Uk| o |Uk) (Ugcr| o ‘ ) (Ek*Ek/*@q)2+(EK/*EK+®q/)2

y < (5k,,K,eLaK - 5k,Ke}<,ak,) il ag )

+6q’q/é};é}'{,6}(ék/ + 6q,q’6k’.K’é£éK

(Bpr — B —q)— (B —Byr+0,)
(Bpr—Er—0q)°+ (B —Erer+,0)

5 Yg.q Karg Sy A () Ay (@) (Vie| apei@ea [Vir) (Vier | e e Vi) 7 X

X % ( <6k Kb bK’ 76[{’ k/bJr b )

+4,. q,bk,bT bigrby, + 04./0k, 1 bL, b

1 h _ 99y igaXa —igax (BEx—Exr+@q)—(BEx—Ep—0q) A1,
TV Xq F 3z (5“’ lal? ) (Uk| aetee [Upr) (Vier| e e ™05 [Vie) g 2 (B )T kR0

N'*

+¥ Y kagmateay (O — B ) (Vier | apre™ "9 |Vic) (Ug| ape™ |U)

— C;.CL’b~0,>,
lal® (_57 ~£/7Qq)2+(_ﬁfé'&/+wq)2 s KK
(531)
(531) can last be summarized to [7]
s 7 3(0,0) ’
lim i ds' J{* = li
s [0 ) =4 ()5 52 5
¥ g Kakg X Ab () Av () <Uk| abewﬂ Ui} (Ugcr | e~ 140%e U ) x
(By—Eyr — wq)f(EK/ Ex+d,) i G oa N\ At
(Bx—EBy—04)"+ (B —Exctay ) (6k"K,C’“CK_5k’KCK’Ck'> Gq%a
5 Batigr Y Ab () Ay (@) (Vie| apei@aXe [Vir) (Vigr| agyreia%a [Vic) x
By —By—aq)— (Ex—Egr oy i
( k k q) ( K~—Fg )2 (5k Kb.‘— K’ _6K' k'bT b )a;/aq
(Byr—E—0q)*+(Ex —Ecr+d,)
Z Rq gsow(q) Zb 1% (517 b q|bq|k2'/) (Uk| apei@exa |Ups) (Uger | cpre™"a%a [Uc) X
(Er—Epr— wq) (Egr—Ex+dq) .6 o A
(Br—Br—a) +(Brer—Brcring)? * K RK
(532)

h a4 i —1
¥ Samoamia o (30 - 5‘() (it Vi) il e~ 1)
By — B —6q)~(Bx By +@q) s 5t ¢
(Bj =B —0q)" +(Bx —Ber +34)° AN

+% Eq Hq#:)(q) Zb,b’ (6b,b’ — qlbqlg/ <Uk‘ O{beiqaxa |Uk’> <UK’ ‘ ab,e—iqaxa |UK> X
Ek*Ek/*Wq) (Eyr—Ex+@q) et sre
(Ek_Ek/_‘:’q) +(EK/ EK+0J )2 CrCrrCKCl!

+¥ 2q Fa Teguta) b (5"1“ - qlz;q‘g/) (Vi apetaera [Vir) (Vi aye™ e [Vic)
By —Ey—6q)—(Ex—Brit+6q) 5t 7 -
(Epr — B —q) 2b1 bbby
(B —Br—6q)° +(Bx —Ecr+q)°

¥ g Rty ngw(q) DY (5b p — 2 ) (Uk| apetdaxa |Ups) (Vigr | agre™e%a |Vie) x

\ql2 .
y (Ex—Epr4aq)—(Ex—Ep —aq) n (Ex—Ep4aq)—(Ex —E i —ag) IS i
= = ~\2 = = ~\2 = = 2. (P _F — Ckck K’
(Ex—Ep —0q) +(Ex —Egr+dq) (B —Egr—0q)* +(E— B +@q)°

where no particle number violating term occurs!

The terms in the first two lines contribute to the self-energy of the
photon Q ;5. The terms in the third and fourth line contribute to the
renormalization contributions M | of the fermions, whereas the other
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terms contribute to the transversal effective matter—-matter interaction
V| ce, the effective positron—positron interaction V| ,,, and the effective
electron—positron interaction V, .

Integral 2

The second integral is given by

s 2
. . 7 #(0,0) AN de . .
Slggovlgnoo/o ds' Js (s,8') = (moc) Slirr;o‘}flmz Z ZZAI; ) Ay (q') %
kK KK/ qq’bb/

_ ~ o \2
+f69 ds’ <Uk|abeiqa><a |Uk’> (UKlab/eiq;xa |UKI> _qul(Ek_Ek’_Qq)ze_ﬁq’sl(EK_EK’_wq') %
X(Ek—Ek/—wq-i-Q(EK EK/—(.U/)>K,q/><

2
Xei(sisl)( Fa— Kq/) (Ek By —Gq+Br By~ wa) [Clék/dq:é}(é}odq’]
E i iq’ —k e’(E‘ —EL—& )2 —K /S/(E 1 —Eg—@ /)2
+ J5 ds" (Vie| apet@aXa [Vir) (Vig| cgy €¥9aXa [Vier) e =R (B =BR=%a) ¢ a K ) X
X (Ek/ — Ek —(:)q +2 (EK’ — EK —ajq/)) K,q/><
2

=) () (B Busor BB ) 51 a6t ]

. o 2
+f05 ds (Uy/| ape—a%a |Uy) <UK/‘Oéb/e_iq;Xa |UK>e—nqs’(Ek/—Ek+uq) e fa'® (EK/ Ex+® /) «
X (Ek/ — Ek +(:)q + 2 (EK’ — EK +<.:Jq/)) Nq/X

20~ o -
xef(sfs/)(“ﬁ'%’) (B =BG+ B —Brc iy ) [CL/ckag: IK/CKGZ ]

. oy e i - —n,s(E E/+w)2
+fos ds’ (Vi | ape~19a%a [V} (Vigr | gy e~ 190%a |Vic) e~ "a® (Br—Ej+0q)° e Fa’ K—Ep 1) %
X (E'k — Ek’ +(:)q + 2 (EK — EK/ +£:Iq/>) Nq/X

~(s=5") (rqtng ) (Br-Ep+oq+Br B +3,)” [B

xe Lopal, bl bgal |
(533)
The integrals occuring here are of the type [7]
s ! 2 /
fQ(OVO) (x’ Y, Klq, Hq’) — (.’I) + 2y) Hq’ /0 dS 6_(3_5 )(HQ‘J"Hq/) ($+y)2e_s (l{ql'Q—I—Rq/yQ)
( ) —s(raw? i) _ g=s(natny) (@+y)®
= (z + 2y) Ky 3
kg + kg) (@ + Y)? — ka2 — Kgy?
0 fir Ky =0 (534)
= —S(“qz2+y2) —s(rg+1)%(a+y)? .
e —e —
(IL‘ + 2y) (Rqt 12 (@4y)? —rga?—y? fiir Kq = 1
0 fir Ky =0
—8 2 —s(x 2 ..
_ (o 2y) S fiir fy = 1,15 = 0
75(12+y2) —4s(:c+y)2 .
e —e i —
(x +2y) o) 2y fir kg =1,k =1

Hence, all terms for k4, ky € {0,1} yield the contribution zero in the
limit s — oo (besides a term of zero measure x +y = 0) [7]:

211



lim lim [ ds'J\ (s,8) =0 (535)

s—00 V—o00 0

Integral 3

The third integral is given by

S
lim lim ds'j(0’+) (s,s')

s§—00 V—oo Jo

= - lim_ lim_ (moc) > _ S A (@) Ay (@) X

k,k' K,K’ qq’bb’

_ - - o \2
f()s ds’ (U] abeiqaxa Vi) <VK/‘O£b/€_iq<lX”' |Ug) 67(4+KQ)S,(Ek+Ek/7®q)26—(4+nq/)sl(—EK/_EK+W(1/) «
X (Ek —+ Ek’ —L:)q + 2 (—EK — EK’ —‘r(::)q/)) (4+ Kq/) X
~(5=5") (~ratrgr ) (But By —0g—Brr—Br+09)° [ 47t - 1 A ot

xe ,b7,0q, b Crcay,
. 2
+f06 ds’ <Uk|abe—iqaxa A\ <VK/‘0éb/e+iq‘/1Xa’ |Uk) e—(4+nq) '(Ek+Ek/+<Dq)2 (4+n /) ( Epr—EBxg—& /) %
X(Ek-i-Ek/-i-L:)q-‘r?(—EK/ EK—UJ ))(4+f{/)

q
Xe*(sfsl)(mquq/)Q(Ek+Ek/+wq EK/ Ex— LU/)

[ Ck k/a"-ﬁ K/CKa ’:|
(536)

The occuring integrals are of the type [7]

A0 (@, kg ) = (@ +2) (4 + g / ds'e= (=) (ra=ry ) r)? o= (o) + (4 )?)
0

— ($ + 2y) (4 + qu,) s(mq K /) (x—l—y) /S dS/eS'((Hq—mq/)2($+y)2_(4+fiq)332—(4+nq1)yQ)
0

e—s((4+nq)m2+(4+fcq/>y2) —e S(K/q K /) (z4y)?

(kg — /@qr)2 (z4+y)? — 4+ Kq) 22 — (4 + Ky) y?

42y —s(4x?+4y2 - _ _
P <1—e ( ) fir Ky =0,k =0

= (z+2y) (4+ kq)

+2y)5 —s(4x24-5y2 — 2 .
(x+y()a;74i)275y2 (e s(42+5y%) _ ,—s(z+y) ) fiir ky = 1,k =0

+2y)4 —s(5a2+4y? - 2 - _ _
(x+y()ﬂg_5lg/c)2_4y2 (e s(e?+4y®) _ ,—s(z+y) ) fir Ky =0,k =1

f;fyyz (1 - e_s(5x2+5y2)) fir Ky =1,k =1

(537)
In the limit s — oo the term with k; = 1 and k;, = 0, as well as
the term with x, = 0 and x, = 1 do not contribute (besides the
zero measure contribution x 4+ y = 0). The contributions of the terms
kg = 1 and Kk, = 1, as well as ky = 0 and k, = 0 are the same.
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Therefore one finds for (536) [7]

lim lim / ds’jl(o’+> (8,8/)

s—00 V—oo 0

=t () Y 5N A0 (1)

k! K K/ q,q’ b,b’

) ) Ep+E,  —20)+2(—Ex—E o1 +@ . .
(Uel apef Vi) (Vigr| et ) Lt Er =202 BBty ) oy :
(Bt By —0g)*+(— By —Bxc+3,) k a

(Bt By +q)+2(—Err —Ex —,1)

+ (Us| ape=190%a |V} (Vier| ayreFidaxa |U - S [aTBi Vb éra ]
(Uk| o [Vier) (Vier | oy [Uk) (But By 100) 1 (B Bre ) LR w0 R O

Now with the relations (521) one can write [7]

S
lim lim ds'J{O’_H (s,s')

s—=00 V—oo Jg

= — lim lim_ (moc) 22 v LSS A (@) Ay (@) X

k,k' K,K’ qq’bb’

S e S 1
(Uk| ape?@axe |[Vir) (Vigr| oy e 0% [Uge) (Fk+f2kl7wq)+2(7f§K7E~K/+wq/)z 2 [
(But By —00)>+ (— Brer — e+ )

S - - - - 1{AT2T 7. 4 PR
) ) Ep+E,  +0)+2(—E 1 —Ex— 7[ ~),,b~cK] {a,a/}

+ (Uklabe,zqaxa |Vk’> (VK/|ab/e+'q(lzXa ‘UK> (~ k - k! wq)2 ( - K’ . K wq/)z 2 k7L K’ 9> %q
(Bx+Eys+aq) 7L(*EK/*EK*JJLI/) }

(539)
(539) can be evaluated according to [7]
dm i [ as 0 (o5
- ()Y m i T Y Y S0
moes kK a>4B q'>qp  4<dB q'<qp/) bV
) - Ep+E, —0g)+2(—E E,w/
(Ul anettnre 1Y) (Vi i [Uy) Aot B2 2P Pl )
(Ek+Ek/ wq) +( EK’ Eg+a /)
x ((=61cr prBacT + 01 k8L b + bxcr woé e ) aly g + 6, ol erch?, D) (540)

) . Ey+E, 4+0q)+2(—Ep/—Eg —&

+ <Uk‘ abefzqaxa ‘Vk’> <VK/‘OLb/6+7’qax“ |UK> (~ k - 1% Wq)rz ( _ K/ . K wq/)z X
(Ek+Ekl+5)q) +(_EK/—EK—LDQI)

( Opr k’(SK kl +5K £ by i +5K’,k’é£éK) &gdq/ 75q,q/éTéKi)£/lA)R,

k

+ (% + %) éq,q' (—5}(/7;@/6}(,]61 + 5K,ki7£/i)}'(/ + EK',k’éLéK)

where use has been made of

[ s %éK] = —Okwbril + Ok pblbg + 6o wiiéx  (541)

{é;i);, ZA?K—/éK} - 6[(/7]@/(5[(7]@1 - 5K,k8£/i7f}v - 5K’,k’éJ]£;éK —|— 2626[(8;61@
(542)
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and the identity (528).

Decomposing (540) into contributions with and without photons there
follows [7]

Singngnm/o ds' JOb) (s,8) = — (moc) Sy vlféov ( > Z + > Z )ZA,, ) Ay (g

k,k' K,K’' 9>49B q’>qp 49<4B q’<gp/ b,b’
(Ek+E‘k/—Qq)+2(—EK—E‘K/+Qq/)
(Br+Byr— ‘:’q)2+( Byer— EK+‘Z7q/)2

( 5}(/ k’6K kl +5K kb bK’ +5K/ k/CLCK) aT aq

<Uk‘ abeiqax“ ‘Vk/> (VK’ ‘ ab/e*iQ:,,Xa |U >

(B By +ig)+2(=Epr —Ex —a,) N
(Ek+Ek/+J’Q)2+( Epr— EK*JJQI)2

+ (U] ape™90%a [Vir) (Vier | oy eiaXe |U )
( 6K’ k’dK k1+5K kb bK’ + 0 k’CLCK) aza ’

X . ) Ep+E; ) —0g)+2(—Ex —E o1+ PR
+ (U] apeida®a [V, <VK,|ab,e—zqéxa |UK) (~ k ! & wq)2 ( . K ~K/ wq/)2 6q q/ézéKbT/bf(’
(Bx+Ep—iq) +(—EK,—EK+@q,) ’ k

(Ex+ By +iq)+2(—Epr —Bx —a,/)
(Ek+E~k/ +L:)q)2+(—EK/ —Ex—o /)

— (Un| ape4a%a Vi) (Vigr | agretidaXe |Uc) 2 Oqaéhérchl by
(Ex+Ey+3q)+2(- By —Bx—a,/)
(Bit B +0q)*+(~ By —Brc—og)”
X(Sq’q/ (_6K’,k’6K,ki + 5K7kl;£/l;f<, + 5}(/’;@/626[()

+ (Ug| ape™9a%e [Vir) (Vier | oy e i9a%a [Upc)

X

(543)

In the terms with ¢, , the definitions of the electromagnetic amplitudes
(24), (25),(26), and the polarization vectors (28) are inserted [7]:

U2 > A @A (@) F (a.)

>qB ¢'>qp  9<qB ¢'<qp

= % Z Ab (q, )\) Ab’ (q, )\) F(Qv Q)

e (544)
1 I
1 Nuy (g N | F
v zq: 250&) (q) )\e{zj;l} Up (qa ) Up (q7 ) (Q7 Q)
qvqy
_ = ,— F
2T (5“ \q\Q) (2.9)

which leads to [7]
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S
lim lim ds’j(o’+) s, s’ :7( ) hrn X
s—00 V—oo Jg ! ( ) moc ZI;’KZ}:(’
1
\%

(Zq>q3 2g>ap T 2g<an Zq’<QB> Yp oAb (9) Ay (@) (Ur| ape?@@*a [Vir) (Vigr| agre™ ae |U)
N (Bi+Ey—iq)+2(—Bx—Byr+a,

— — — — —O 5t 31O i+§ b b +6I /CTC )CLT&

(Ek+Ek/7(I)q)2+(*EK/7EK+qu/)2 ( K RIOK R SR e e

+v (Zq>q3 Yarsan T g<an oar<an ) b Ab (@) Ay (') (Uk| ape™ 9% [Vir) (Vigr| agretaxe Ug)
(Bi+Ey+@q)+2(— By —Ex —o

’

9) (S 165wl + Sk bl boy + Sper préle )aTa,
(Ek+Ek/+®q)2+(*EK/7E_K*qu/)2( LA KkPp K T OKK CRCK ) Gatq

1 h , _ b9y iqaXa , —igaXa (Ek""Ek’—W(J)“'z( Ex— EK/+“’Q) ATA pt
x +V Zq 2eow(q) (ab’b la |2 ) <Uk‘abe |Vk/> <VK |O£b/€ |UK> (Ek+Ekl U-’q) +( EK/—EK+W ) bl_e b
1 A
~V 2a Tgu@ (5b,b

- ‘ |2 ) (Un| ape™99% V) (Vigs | agr et ia%e [U)

1 h
TV 2a 255w(@ <5b»b’ -

(Bt By +0q)+2(= B — B — ‘*’q)
(Bt By +0q) +(—Egr —Brc —@q)°

) E,+E ” 2(—Ep/—Eg—&
‘ ‘2 ) <Uk|abe—zqaxa [Vier) <VK/|ch/e+“1:1Xa [UKk) (Br+E, +aq)+ ( k' —Erg—& /)

- — — X
(Ek+E~k’+LD’1)Z+(_EK/_EK_‘:’ /)2
( 5K/ k’aK kl +5K kb bK’ + dxs k/CLC}()

(545)

Adding the hermetian conjugate jl(o’_) (s,s") yields after some
rearrangements |[7]

.sli?;o Vlgnoo 0 dS < (0 " (S’S/) + jl(oyi) (5781))

S(E)T T
moe/ kR T
b (Zosan Tasan T Zacan Sar<an ) Lo A (@) Ay (@) (Uk] apeide®a [Vig) (Vier| ayre™ 467 |Uxc)
(Ek+Ek/—wq)+(EK+EK/—E;q/)
X

(Brt By —o )2+(E B 5 )2 ( Ot K Ok, K1+5k Kb bK, + 8y K/chK> ot ,Gq
k k! —Wq K K/ —Wq!

+v <Eq>q3 2> T Lg<an Zq’<qB) b Ab (@) Ay (') (Ur| ape™99%a [Vir) (Vigr | agreta”a [Upe) x
(Ek+Ek/+wq)+(EK+EK/+&: /)

- ’ ! i l;t B“ ’ /éTé )A a
( By q) ( , /)2 ( e k 5K,k +5K,k 7 VK’ +0x k' CLCK ) @qQq
X

+v Eq 250“’(‘1) <6b -
o ( (Bi+ By —g)+ 2
( )”

‘q|2 ) >y (Usl ape™ 0% [V ) (Vigr | crei9a%a |Upe) x
Ek+Ek/7wq +

(Bt By +0q) +(Exc+E s +@q)
(Ek+Ek/+@q)2+(EK+EK/+@q)2

ata 7t g
= — ¢ Crbl br
K+EK/*°:’q)2 LCK kUK

+v v 2a 2sow(Q) (6b - \QIz ) > b, Ukl ape”MaXa |V ) (Vigr | ayy e i9a%a Uy )
» (Ek+Ek,+wq)+(EK+EK/+wq

(En+By+0q) +(Ex+E g +@q

)2 (_ék’,K’ék,Kl + 6&1{1);81@ + 6k’,K’éLéK)

(546)

(546) can be finally rewritte according to [7]
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s—o00 V—o00o

lim lim ) ds’ (L]Al(O’H (s,8") + jl(o‘f) (s,s’))
0

1

v (Zq>q3 2g>ap T 2g<an z:q’<qB> > b0 A (@) Ay (¢') x

(Ex+Egr—0g)+(Ex+Exi—6,

. it ) AT A
X UK abezqaxa Vier) (Vier| apre™"9a*a UK — ~ — — a ,a
S (U Vier (Vie ook U)o B o Sl a,
1
3 (Cosan Tarsan + Zacan Sar<an) S A (@) Ay (@) x
. . Ex+Ep+0q)+(Ex+Epr+@
% ZK xr (Ure| apea%a |V, ) (Vi | ab/e+zq’axa [UKk) (Ex+E g/ +aq) ( KtEg Wq/)z &g&q,

(Bx+Ecr+q)* +(Ex+Egr+@,)

1
+v (Zq>qs ZQI>QB +Zq<qB Zq’<q3> Z:b,b’ Ap (@) Ay (¢') %
(Bt By —0q)+ (B + By —a,1)
— ~ - — X
(But By —0q)*+ (B + By~ )

X (5]“](?)%/1;[{, + ék’,K’é]téK) djl,&q

X3 w 2ox, i (Ukl apeidara | Vi) (Vie/| ab’efiq‘,lx“ Uk)

1
v <Zq>q3 2g>ap T 2g<an z:q’<qB) 2,0 Ab (@) Ay (') X
) ) Ep+E,  +0y)+(Ex+E o1 +@
e \? . X S S ser Ukl ape9%a (Vi) (Vi | e idea [U) KT Pa ) (BB f")z
= lim ’ ’ (Ek+Ek/+wq) Jr(EKJrEK/erq/)
moc V—o0 - s At
X (5K,kbg/bk/ + CSKI’k/CkCK) Qqlg

X hk LKK Y g Ti(q) DY (517,17/ - q‘:ﬁg/) (Uk| ape™"a%a Vi) (Vigr | e Tia%a [Uc) x

(Bt B )+ (B +Epr—80) _ (But Byt 4 (Bt Eyr430) \ ot 5 31 &
X = 7 N2 (% = 2 T A - \2.(F = 5 | €8x b, by
(Br+Ey —oq) +(Ex+Exr—0q) (Bp+Ep+@q)" +(Ex+E s +q) k

+Zk ZK,K/ % Zq #w(q) 2575/ <5b,b/ — qﬁﬁ%’) <Uk| abe_iQa,Xa, |VK’> <VK/‘Oéb/€+iq"'X“ |UK> X
(BrtEprt+6q) H(Ex+Exi+dq) i

(Br+Eyr+0q)° +(Ex+ B +@q)° RCK

+ 0 kK T g #ﬁ(q) b (5b,b/ - qﬂﬁ@) (Uk | ape™"a%a |Vir) (Vier| oy et iee Upe) x
(Ex+Ey+0q) +H(Ex + B +0q) A

(Bi+Ej+0q)° +(Bx +Eger+iq)° ¥ K’

_ 1 __h _ By
V 2.q Degu(q) bt/ (6"”" i )~

i ; Ex+EBpi+6q)+(Ex+Eg/+@q) =

X S Usclee 105 Vi) (Vi | oyt ) L EtBa M k) g
K q K aq

(547)

These integrals comprise the constant spectral shift C, 1, contributions
to the transversal renormalization M, to the effective electron—

positron interaction V; ., and to the photon renormalization term
QJ_,ph-

Integral 4

The fourth integral is given by
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s 2
S 170 (¢ oY — — lim Lim [ -2e- 1 (q
Jim i [ B0 o) = = i i () 55 5SS A0 A )

ko' K.K' ' q,q bb'
+ [ ds' (Uy| apei®e Vi) (Vier| ayetidia |Ug) o~ (4t (Brt By —aq)” = (44ky)s' (— B —Exc—a,)° o,
X (Ek + Ep — @y +2 (_EK — Egr — Qq/)) (44 Kg) X

wo—(5=5") (=ra=ro ) (Brt By —@—Eger —Bxc—a1 ) [éy)g&q’ l;[(/équ’}

+ [y ds’ (Uk| ape™ % [Vir) (Vier| ™00 U ) e~ () (But Bprty)" o= (g )3 (= Brer = Bictr)" o
x (Br+ B +@g+2 (~ B — B + 3y ) ) (4+ g) %

Xe_(“”_sl)(“fﬁ‘“q/)Z(Ek"'ék"*“:’q_ék’ ~Bxtd,)? [6252,&2, Z)f(,éK&;}

(548)

The occuring integrals are of the type [7]

f(o’"i')

2 (ZU,y, ’Liqa"fq’)
— (x + 2y) (4 + /iq/) / dsle_(s_s/)(Kq—i_ﬁq’)2(35""2/)26—8'((4+l€q)l‘2+(4+/€q/)y2)
0
(CU + 2y> (4 —|— /{q/) 675(5q+/€q/)2(1’+y)2 / dslesl((/ﬁq‘f‘/ﬁq/) <$+y)2—(4—|—/@q)x2—(4+ﬁq/)y2)
0
6_5((4+“q)$2+(4+5q/)y2) —s(mq+mq/)2(x+y)2

(v +2y) (4 + ry) —-

(kg + k)" (x +9)° = (4+ kg) 22 — (4 + ky) y?

(24-2y —s(4x?+4y? - _ _
x2+y2(1—6 ( ) fir Ky =0,k =0

(z42y)5 (e—s(4x2+5y2) B es(z+y)2>

firky, =1,k, =0
(z+y)° —4a2—5y? 7 v

(z42y)4 (65(5x2+4y2) B e—s(x+y)2>

fir ky =0,k, =1
(z4y)° —ba2—dy? ¢ o

(r+2y)5 —bs(2?+y*) _ _—ds(a+ )2) .. L o
\ 4(z-+y) "~ 522 —5y> (6 ( ) € ! fir Ky =1, k¢ = 1(549)

Only the term ky = 0, K, = 0 contributes in the limit s — oco. The
other terms vanish besides one being of zero measure for x +y = 0.
Hence we get by applying (521) [7]

217




lim lim ds/jZ(O’Jr) (5,5')
s—00V—o0 Jg

() EE i T E P Awu

kK KK’ 9<9B ¢'<qp b

<U]€| abelQaXa |Vk/> <VK/| ab,6+zq(’lxa |UK> E‘k"!‘EN‘k/—an“FQ(—EK—Eh'K,_Q ,) [

(Brt By —oq )+ (—Bror—Brc—y ) b bK’CK} Gty

k7 g
Ek+E~'k/+JJq+2(7EK/7EK+LDq/) |:,;'- AT -~ oA :| AT ,\‘I'
(Ek-i-Ek/-l-GJq)z'i‘(_EK/—EK-H:!q/)2 Ckbfc”bK'cK aqlaq
(550)

+ <Uk‘ abefiqaxa ’Vk/> <VK/‘ ab/efiq(’lxa ‘UK>

By evaluating
[ Lb;, ZA)f(/éK} = —(5](/ k/(S]( kl + (5[{ kb bK’ + O k/CJ]LCK (551)

there follows for (550) [7]

lim lim [ ds'JSV (s, )
s—oo V—=oo J

<moc) Zth—ZZZAb ) A (¢) x

k! KK q<qB ¢'<qp b

[ (U] apei® [Vie) (V| a5 |U )

Ek"’Ek/ wq+2< EK—EK/—LZJ(I/) % \
(Ek-f—Ek/ wq)2 (—EK/—EK—@q/>2

< O s k1 + O, kb bK, + O k/cch> a0,

Byt Ej+0,+2(— B —Ex+@, )
(Ek+Ek/+azq)2 +(—Exr—Ex+0,)
K < Ot joOr il + Oxc bt bK/‘f’(sK’k’C]tCK) T/CLT )
(552)

+ <Uk‘ Ozbeiiq“X“ H/k"> <VK/‘ ab,e—iq;xa ‘UK> 5 X

Adding the hermetian conjugate jz(o’_) (s,s") then [7]
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lim lim ds’jéo’ﬂ (s,5)
s—o0 V=00 [

— < )ZZh ZZZAI) ) Ay (g
Mot/ T KK q<qu<qB bb/

[ (Uil ayei®e [Vio) (Vier| ot | U )

(Ek-f—Ek/—(;)q)2+(—EK/—EK—@q/>

X <_5K’,k’5K,k1 + 5K’kb£/bf(/ + 5K’,k’é};éK &qdq’

ozbe”qaxa Ek+Ek/+®q+2(—EK/—EK+JJq,)

Ek—FEk/—@q—i-Q(—EK—EK/—@q/) % \
2

+ <‘/]g’ Uk> <UK‘ Ozb/GH%X“ ‘VK/>

(Ek—‘rEk/—‘r(Ziq)Q—‘r(—E'K/—EK—HZJQ/)

( O w0kl + O, kb b+ O iy ) gy

Ek—l—Ek/ wq—l—Q( EK—EK/—(ZJ(J/>

7 X

+ <‘/}€/ ‘ Ozbe_iqaxa

anxtl
Uk> <UK‘ab/e ‘VK!> (Ek+Ek/ wq)2 ( EK/ EK—(:Jq/)

< Ok w0kl + O, kb bz, + O k/c}ck> a)af

Ek-i-Ek/-H:Jq-i-Q(—EK/ —EK—H:Jq/)

+ (Ug| ape™"a%e | Vi) (Vig/| Qe a%a \Uk)

7 X

(Ek+Ek/+LDq)2—‘r( EK’ EK—HIJQI)

\ X (_5[(’,19’5[(,1@1 + 5](7;@[; I;K’ + (5}(/ k;/CLC}() a ,aT

i
K’
(553)

Again  substituing the indices (k, k', K, K' q,q¢,b,V) —
(K, K", k, k', ¢, q.b/,b) we find [7]
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lim lim ds’jéo’ﬂ (s,5)
s—o0 V=00 [

- ( )ZZh S Ala) Ay () %
Mot/ T KK q<qu<qB bb/

[ (Uil ayei®e [Vio) (Vier| ot | U )

Ek+Ek/—@q+2(—EK—EK/—LDq/> % \
= - 2 ~ ~ 2
(Ek-f—Ek/—(Dq) -‘r(—EK/—EK—(:)q/)
: it RO
X <_5K’,k’5K,k1 + 5K’kbl~€/bf(/ + 5K’,k’cch CLqCLq/

Ex+ Bty +2(—Ey—Ep+,)
(EK‘FEK/‘HD(]/ 2+(_Ek’ —Ek—‘r(ﬂq)2

y (_5K,,k,5K,k1 + Ok kbl by + Ok wéhéx ) gy

+ <VK/| Oéble—H.q;Xu UK> <Uk‘ &be+iqaxa

Vir)

X
i EK—i-E r—Q /—|—2 Ek—E 1—@
- (Vie| aye i [U) (U] cpe 9% [V ) —oiEre oy t2(CBBun)
(Ex+Egi—@y) +(—Ep—Ex—@,)
X <_5K’,k’5K,k1 + 5K’kb£,bf<, + 5[(/’;{/0};0[( CL:ECLJ;
o i Ek-i-E 1+, +2(—E /—EK-HIJ/
+<Uk\ozbe taXa Vk/> <VK/‘Oéb/€ anx“‘UK> = Nk ~q2 ( ~K ~ ~q)2><
(Ek—‘rEk/—‘rwq) +(—EK/—EK+wq/)
\ X (_(5K’,k’5K,k1 + 5K,kb bK’ + (5}(/ k:’CLCK> a /CLT )
(554)
Since [ay, a4 =0 = [a /s aq further rearrangements can be done [7]
lim lim Sds'j(0’+) (s,s’)
s—00 V—oo Jg
lim — Ay (q .Ab/
() B D T S
; » Ey+Ey —wq+2(—Ex—Ey/—o,) BretBrer @, +2(— By —Ey+@q)
iQaXa , , setidg%a q
(Usl e Vi) (Vier | evre Uk ((Ek+Ek,wq)2+(EK/Equ,)2 (EK+EK/+®4/)2+(E,€,Ek+wq)2> *

X (_6K’,k’§K,ki +6K7k8£/5f{’ +6K’,k’é£éK &q/&q

B+ By~ +2(~ B — By —og) Ey+ By +q+2(-Egr —Ex+@y) y
(EK+EK’ 7&q/)2+(7E_‘k/7E~k —&q)? (Ek+E~k’+QQ)2+(7EK/ *EK+<DQ/)2

+

+ (Vier | agre™90%a U ) (Uy,| ape ™ 90%a | V) (
X (_6K’,k’6K,ki + §K,kl;£/1;k/ + 6K’,k’éLéK) (Alj;,&q

(555)

Which finally gives, by adding the conjugate JA2(0’7) (s,s") the
expression [7]
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lim lim ds/(jz(o’ﬂ (s,8") + JSO7) (s, s))

s—00 V—oo [

(moc) Z Z VIEHOOV YYD Al Av (g

9<gB q'<qp b,b’

(EK"FEK/JFW /)+(EK+EK/ wq) PO
(BEx+E+0y ) +(BEx+E Qq)2aqa
(Bx+Eg — w/) +(Ex+Err+@q) .

(Ex+Eyr—0y ) +(Ex+E i +@,

— <UK| abelqaxa ‘VK/> <VK/| Ozb/e-Hq‘/Lx" |UK>

— <VK’ | chlefiqtllx“ ‘UK> <UK| Oébeiiqax“ |VK >

) a :r]
(556)

)
+ <Uk| Ckbeiq“)(a |sz’> <VK’| ab,e+iq;xa |UK> (EK+EK/+&Jq/2+(Ek+Ek/ wqg

X (Ex+Eyi+oy ) +(ExtEy—aq)° x

x <5Kvk6£/8f(' + 5Kﬁk’éLéK aq g

g —igax (Bx+Er @y )+(Ex+E +a,)
* <VK,| e . |UK> <Uk| e . |V,> (EK"FEK/ wq/)z‘f‘(Ek-&-Ek/-ﬁ-@q)z

(5[{ kb bK' + 0k k’C;iCK) aT an

This 1ntegra1 contributes to the effective fermion—photon interactions
H. ph and Hp ph- 1t describes absorption and emission processes of two
photons. Since |q| < ¢p these are low—energy photons. Discussing
only one electromagnetic mode (meaning ' = q), Avan et al. argue
that these terms are of fourth order [15].

Evaluation of the Effective Potentials Va(;’o) (r), Va(fbp *P) (r) and V, P (r)

In this section the effective potentials potentials are evaluted [7].

= (5) [ 5 e (s-3)

) @) [ e (o) o
it = (£) [ ab e (s )

It is not possible to assume from the beginning that q is aligned along

the direction of r, and the scalar product q - r in spheric coordinates
gives an exhausting integral.

However, one lay the z—axis parallel to |r|, such that all other
components have to be rotated accordingly:

D[R W), = Il as (558)

b
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For that purpose one writes in spheric coordinates

r = |r| cos (¢) sin (9) e + |r| sin (¢) sin (9) e¥) + |r| cos (9) e
|r| cos () sin (V)
= | |r|sin (¢)sin (V)
|| cos (V)
(559)
where {e(‘r),e(y),e('z)} are the cartesian basic vectors, |r| is a fixed
distance as well as the angles ¢ and .

Likewise for the vector ' then

q = |q| cos (¢') sin () e®) + |¢| sin (') sin (9') e¥) + || cos () e?)
9| cos () sin (¥)
— | la]sin () sin (9)
o] cos ()
(560)
For the scalar product q - r one finds by inserting the transformation
(560)

q-r = |r||q'[cos (V) (561)

In this form the integral in spheric coordinates is simple because the
scalar product only depends on |r|, || and the angle ¢

The rotational matrix R (¢, ¢) is given by

cos (¢) ,—sin(p) ,0 cos (9) ,0 ,sin(9)

R=R{W,p)=| sin(¢) ,cos(p) ,0 |o 0 1 ,0
0 ,0 , 1 —sin (J) ,0 ,cos (V)

(562)

As a rotational matrix is has the following properties:

=1 (563)



For example

cos () ,0 ,—sin(¥) cos(p) ,sin(p) ,0 Ir| cos () sin (¥)
Rlr = 0 o1 ,0 o —sin(yp) ,cos(p) ,0 |r| sin (o) sin (9)
sin(9) ,0 ,cos(¥) 0 ,0 , 1 r| cos (V)

0
= 0 = |r|e(2)
r|

Such that RTﬁ — e(® On the other hand Rel® = L R, ., = =3

(564)

With that one can evaluate the integral for Va(fgo) (r) according to

V((I)),O) (I') = ( qg) / d3q/3 1 2ei(7€q’)-r (5a b — (Rq,)a (Z?'q/)b>
" 0/ (2m)" || ’ IQ’!

1 ood ! 12 Trdﬂ/ : 19/ o d zrq cos( R qénqil RT
(2m)® Jo ) sin (V) 0 ¢ 2 Z am \ Oman = q” b

— (_ e 1 / dq/ 2 /‘77 dﬂ/ sin (19/) iei’r‘q’ cos(¥) ZR i /271- dg@l <6 _ q;nq;l,> RT
o/ (2m)* Jo 0 q? L am o g b
(565)

The integral of the angle ¢ is given by

1 2 , q/ q/

1 —sin? (¢) 5= 027Td<p'0082 (") ,0 ,0
= 0 1 —sin® () " dy’ sin? (') ,0
0 ,0 1 — cos® (0')
m,n
1 sin22(19') 0 .0
= in2(9")
0 1 sm2 0
0 ,0 1 — cos? (¥') o
Lest0) g 0
= 0 , Lot () 0
0 ,0 1 — cos? (¢¥') .
1,0 ,0 0 ,0 ,0
1 2 Y ) ) 1—-3 2 9 ) )
:+CO2S<> 0 1 .0 +C20S<> 0 0 .0
0,0 ,1 0,0 ,1
m,n m,n
(566)

which can be brought to the form
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1 2 , oy .
;Ra,m%/o dSO (5m,n - qT ) Rn,b

1,0 ,0 0,0 .0
_ 1+c0;2(19’)R 0,1 ,0 RT_|_ MRO 0,0 ,0 oRY
0,0 ,1 0,0 ,1

Y Y

2 / T
_ 1+co2s (19)1 pg + 12 3cos W) R (e(z) 2 {e(z):| )RT

_ 1+co;2(19’)1 a3+ 1— 3cos (") (Re( 2) ® { ( )] )
1 + cos? (1) 1—3cos r®r
= 5 3x3 T

(567)
Altogether now

0,0 2 T . 1 irq’ cos(v¥’ c ol
Va(,l; )(r) _ (_Zz) (271r)2 /0 dq/qlz/o a9’ sin (19/) ﬁe q' cos(d') < 1+co;2(19 )5ab 418 os 2(8") alt )
(568)

Substituting ¢ = cos (¢) and rq’ = x then

‘/a(g,o) (I‘) _ / dx/ dtezxt 1+t 5 p + 1— 3t rarb )
(569)

The remaining integrals are

1 izt
/ dt € __ sin(z)
LT

1 ewjt _

22 T
1

(570)

Such that




Hence,

2
(0,0) _ de 1 6a7b T'aTp
v = (- ) 5 (e ) (572)

Here it has been used that

115/ deinT(x) =T
> (573)

> sin(x cos(x i
[25/_ do (20 entn ) 2

o

Following from the residue theorem.

For the integral of the dipole-dipole potential V;l(zp 5P) (r) follows by
observing that

sp,sp) . 2 2 d3 ig-r Qb
Vi ) = <_q_> i <mi> / € <5“”’ ol )
2 3 .
— 2\ 1 h d’q _iqr _ Ga®
N <_g_0> 1 <m_00> / (27 © <6a’b lal” )
2 3 . 3 o
— @2\ 1 h d’q _iqr d’q  elar
= <_5> 1 (m_oc> </ (2ﬂ)3 € 6a,b + VCLbe (277)3 ‘q|2
@2\ 1 h 2 5(3)( )5 LV V 1
- —— )1 \m= I)oq a T
< ) 1 (m) . Y47 |r|
(574)
and with 1
—V2 = =476 (r)
r]
1 rory—3|r|?
VoV = a0 (1) 5, s (575)
1 _ [ &g ear
4] (2m)" la”
then
5p,5 2 2 3rqry—3|r|* 0y
V0= (23 ()" (309 s s
2 2 3rare—3|r|* 0,
= (-ﬁ;) 1 mi> ( SO0 (x) 8 + Her Rl )
(576)
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Finally the potential of the spin—other orbit interaction Vb(OSp ) (r) is

evaluated. Here one can again make use of the transformation (558)
and find

(0sp,0) . 2 d3 1 i I
Wrte=(-8) [ wm e (doa)
i _h d*¢  (Rd), i(Rq')r
moc / (271_)3 |q/|2b e q
o) ™ 2 /
o 1 . 1 Re mm  irq' cos(9’
e @n)? / dq'q”? / d¥ sin (19) 271/0 dgoiql2 eird cos(?')

L (2 )2 / dq/ 12 / dl?l Sln Rb zq COS (19 ) e”,q/ COS(’(9/)

moc 2

j h ir
h Rp.» 1 ; / dr sm(:(;)
moc ) (271')2 712 oo
—_——

=7

|
\
Sk
N———
NI

m‘»m
o PN
N———
[\SIE

[VIES

N~ ~— —r
SIS

NO|—=

(577)
Applying Ry . = ** then
(0sp,0) @Z\1 h 1 -—r
‘/b ( )_ < 50) 2 mocdnm 7“3b (578)
_1h @ n
o 2m0€ 47T€() =
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I Complement to the Evaluation of Mie)

Proof of Idenity (196)

Consider a power series with matrix valued coefficients F,, according
to

F(w) = f: Fp - w" (579)

n=0

With the projection operators P*) follows [7]

= Z (z (P(+) - P(_))>2j + i Fojt1 - (z (P(+) - P(_)>>2j+1
j j=0

2j+1

E [Z (p(+> _ p(—))} _ f: F, - (z (p(+> _ p(—>>>”
=0
o0 -
j=0

=S Ry (p(+) _ p<—>>2j n i Fojur - 22971 (p(+) _ p(-))
7=0 7=0

(580)

Therefore one finds for (580) [7]

F [z (P(+> - PH)] - (i Fa; - z2j> (P<+) + PH) + (i Foji1- 223'“> <P<+> - PH)
j=0 Jj=0

(582)
On the other hand there holds [7]
SRy = S (F(2) 4 F(-2)
L (583)
Z Fojt1 2 = %(F (2) = F(=2))



Inserting (583) to (582) finally yields [7]

(584)

End of the proof.

Evaluation of M(f)

Here it is shown how one can come to the final result (203) for the

transversal renormalization contribution. For this the operator e~*4#*«o

B +E .
Z——E K1,

2 o e'*« and the operator e "%*« o C, o e'%*« have to
1a4xa

E, +E
72 )4 5 K’
be further evaluated.

Recalling

oC 2m0 2 0
~ 2 I, I, qeh (ext)
+ 2w, - \/14><4 + p— ( e Lyxa — 2moBb Tp

From the BCH expansion, see also below (629), one finds [7]

[—iqy - %a, 1))V = IT, + hgy (585)

— 1
e "% o Il o "™ = IT + Z il
=17

which is valid for any potency n according to [7]

e_iqa.)}ao(ﬂb)noeiqa-ia — (e—iqa&a o (Hb) o eiqa-f(a)n — (Hb + hqb)” (586)
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and for any function being representable as a power series F(z) =

> Fnz" (7]
e la%a o F (II}) o ella*a — Z F, - ¢ 1% g (IT,)" o glda*a
= Fy- (I, + hgy)" (587)

= F (11, + hgy)

From this readily follows for the Dirac Hamiltonian HP) [7]

efiqa'ka o) l:l(D) o eiqﬂ'f(a — Fl(D) _|_ a hqa
mocC
m, hg (588)
= [+ a, + a,
mopc moc

and for its square [7]

~ ~

etk o /D) o FD) o eiie = cmincio o [1,,,
_ \/ 2
mo
- \/<1+ ‘n’z—q :
(589)

Please recognize that in the nonrelativistic subspace of the QED
Hamiltonian the following inequality holds for any wavenumber |q|
of the photons [7]

2 y(Po) iGa-a
mo 02 H4><4 oer

% P,0) X
—1QqXa H( ’ 1qq Xq
c? (6 7 OFlyxqg ©F€ 4 )

hgy 1T, HYTY
‘4o 1lp X
Lixa + 2 emeclaxa + 302

ha |’ hgy 0 HYY
(1 + ‘—q > iy > 2 (ﬂ—u + 22 (590)
mocC mocmopc mocC

H(PO)
iff the operators H; and 4:42 are being applied to nonrelativistic wave

functions. This is because the latter vary slowley on the Compton
wavelength Ao compared to the Bohr lengthscale ap.

Therefore one may assume that the contributions generated by Z‘f}l’c 171;[50
(P0)

4><4

are of first order, and the contributions generated by —% are of second
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2
hlq]

order with respect to the leading term 1 + (m—oc) . This is important

where the renormalizing corrections are transformed to the Newton—
Wigner representation.

Introducing the abbreveations [7]

hq
moc

— (591)
1+‘—q — /142
moc

and using the Taylor expansions

:wq

1
\/1+2(X5+Y52):1+X5+(Y—§X2)52+O(53)

L :1—X5+(§X2—Y) €2+O(€3) (592)
V1+2(Xe+Ye?) 2

(1—|—X6—|—Y82)71:1—X8+(X2—Y)€2+O(83)

one can now evaluate the operator in (202) according to [7]
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zZ+ 1
e~ ita%a 2E E?XA +idaka
(]
E +E 11 @
£ L + (04 ca ) | daxa & oty a0,
14><4+72(714><4 By©" )
_ o—ida%a \/ moc? \ 2mo #g | etiaata
I, IT t - n =t EL+E
(1 +& )14X4 + mq 02 ( 217)"017 laxa = 2""()B(QJL ) ) + 20 \/14X4 + moa2 ( 2"" 14X4 - zq;”o B'(’EJ' )Ub> B ( - 2 K)
E +E g+h @
= Kl““(““ : %roiqa)) laxat (nb+hq1)(an+hqk) geh p(eot),,
_ 5 ] ] cx
= \/14><4+m002< 2mg laxa=3mg Be >
2
Iy +hay) (ITp+ha h t - Iy +haqyp) (ITp+ha t E +
N O WO e (2 T P e (W (T3

Ep+E g+h g
+ k2K14X4+(B+aa( aﬂj’?)a)) laxat
0 H(P 0)
hq }, 4
= 1 1 2 1
< +|moC axat moc mge XAt T T
H(P:0) (P,0) L= \2
2 2 H
= h hqp 11 Hix'a 5 h o Pap 1T 4x4 Ext+Er
‘JJ§14L><4‘*"MSIC 14><4+2(m(f’( 7n0b<‘ 4><4+‘7 +20q- || 14+ mgc lgxq+2 mobc mé’c 4><4‘*"7m0C e laxa

g
@ mgc

EL+E
TS R S VI (6+aa hda | o

mgc

)

lyxa +

w
q
n i (D
gy 1y 4x4
(1+w )14><4+2 moc m0614x4+ﬁm

(P,0)
Hix'a

] n
ap b 14><4+7

mgc mgc

2w214><4 +2 <

o FCH)

2G4

Here has been defined [7]

hqa

F(£)

q (i Ek;EK + B+ aay,

6+aﬂq@+

)+2QQ-J(1+W )14><4+2<

(P,0)
Hixa

hq
e moe laxa + 00

mqc 7n0r‘

) (0 (B )Y

(593)

-+ ag e ) Lyt + R,

Rq — amoc
(P,0)
Dy 1T, Hixs (594)
(1 + @ ) 14><4 +2 moc mo c14><4 + moc?
. (D) .
— e_zqa'xa o H e} elqa'xa
H®D) o H(D)
and [7]
hg, 11 ey hgqy II ey
c @314><4 + <m%bcnmbc]-4><4 + ,;LOX;z ) + (Dq : (1 + w ) ]-4><4 + 2 <7:L%bc m§cl4><4 + 725642 >
q . (Ek+EK)2
+ T\ 2z
— 5144
(595)

Further abbreveations for the purpose of clarity according to [7]
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Il
Ez

§
(596)

Il
—_
_|_
El\D
I
S
o

lead to the representation of the inverse of G, [7]

( <% . 1) Lisa )

\ 7

-~

=0(1)
hg, U, (w & 1
- - == Lyxa
mocmoe \ & w &2
:O?;FS)
1
G P Ty gy Ty ¢ 1
q (‘l—miocm—ocm—ocm—oc( §U£+ + 3+£3_5—2)14x4\
w £ 1 Hgg)
+ + <E T w §_2> moc?

(- () o)

\ +0 (afs)
(597)

Now the operators ng) are expanded. The expansion of the inverse of
the square root (592) is given by [7]

1

~9 hgy 1N, HEYY
(1+wQ) 14X4+2 moc mo c]' 4+ moc?

(598)
1 1 4n 3 [ hpm \2 1 o
= " e T g (e ) o Sk +0 (b

H{EO) : . .
Since o, and —2% do not commute for a given magnetic induction
a moc

field Bbeﬂ # 0 one has to symmetrize the operators R, and ng) [7]:
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R 1T,
B+ aa i + a4

i {(P,0) 5
3 ixd 4 o (aFS)
777,0(3

_ mgc moc
Ra = (P.0)
. hq, T Hix'a
2 b 1y Maxa”
(1+‘”0)14X4+2 moe mpo x4+ moe2
haq g 1 1 hqp IIp 3 hqp IIy 2
Bteaa mic taa e w T w3 mgcmge T ZwS moe moe -
—————— ——— N d ——
—o(1) =0(apg) =om =0(aps) —0(a2g)
1 FS
T2
(P,0)
1 1 hay Iy 3 hap Iy 2 H 3
+ w w3 mqgc mge 2w5 mgec mgc w3 % + O (arg
—— , oc
=0(1
om =0(afs) 70( 2 )
“Fs
hgq 1
(5+Qa, mqc w
=o(1)
g 1 haq nay, My 1
taa mgec w *(6+aa mgc ) mgec mopc w3
O(aps)
B+, o 3 nap My 2
a ‘mgc 2wd moc mgc
(P,0) (P,0) (P,0)
1 H 1 H haa haq H
- a3 X4 6- o3 Axd e, Faa e Axd
mge mge mge
_ A hqy, Iy e
w3 mpc moc a mqgc
_ 2
=0(o%s)

And altogether [7]
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B+ aa +oaa

—
=oMm =0(ars)
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1
P 2 4x4 0% + 1 1
i9a%a ————F——"<7 Ti%a% = 1 OF( )1 F(i)+F(i)
w Ek +EK h
(E - 1) 14x4<if14x4 + (6+aa ,,,LL%‘IC ) (1 + %)
N— ———
o) o)
w
£) 1 £ hg hay Iy £ hay Iy
+(Z - 1) Laxa ((1 + E) m(;lc - w3 moac mgc moc )a‘l I} moc mqc B
—_———
o(1) ~ _ Olers)
hq,r I,/ w £ 1 Er + Eg hda ¢
e (o @) (BT et (B ee Gl ) (14 5)
O(ars) o(1)
s ( hay TIp )2 _ e b s
2D mge mqgc w3 W
w 3¢ Hhaq hap I 2 ¢ hay Iy M,
+(g—1> laxa ( s wa ( o & Qe ) - w3 moe mpe mgpe ) @@
——— | _ e (WD s w4, he DY
o(1) 2w3 P mgc a mgc P
_ 2
*O<QFS)
1 hgyr Mg (w €1 £\ Mg £ hgq  hay 1y, 3 hay 1y,
2 mgc moc z Cw ? Laxa ((1 + “’) moce w3 moe moce mo¢ )aa T wd mo¢ moe A
O(apsg) O(arps)
hqq TIg Pagr T,/ 3 13 1
+m,0ac m,gc mgc 7n‘éc 7;)7& toon Tt 2w3 + 5% €2 laxa
(P,0) E, +E
1 . € _ 1) Haxa 2T EK figg £
+3 +(%757?)W <i T lat (Brea %) (1+5)
5 LB 2
EptER 1
(- (B5) ) (2 1 gl e o
:O(a%\s)
hgeq Mg Mg Ty £ £ 1
tmge moe moe mae \ 26 T 2w T 33 T3~ gz ) laxa
Ey,+E H(P:0)
1 kT EK hqq £ ¢ 1 ixa
+2<i 2 14X4+(B+a‘1 mgc ) (1+ w ) Jr(%*;* 22 o2
=L 2
Ep+Eg
o) +(1* ( 2 ) (%*1* 3¢7 ) laxa
=0(a}s)

+0 (D‘%‘S)
(600)

Next the ¢—shift of the operator C, evaluated [7]:
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— _iqa)lza iQa>A<a
Ki=e oCjoe
— ¢ 0 O | (2000 = @) Lixa = VAP 0 D) o ¢l

- @H _<2\(~2ma1- - @q) 14)(4 - e_iqaia O Fl(-D) e} I:I(D) o eiQas\(a]

~ (P,0)
= Oy (QQmax - qu) Ly \/(1 +w ) 1yyqg +2 (Zqz’cﬂ?bcl Axd + I:T‘lec‘*z

~ H(P0)
2h(2mcwc - f) ]-4><4 —Ww - \/14><4 + 1% <£Qbmbcl4><4 + 7r£LlXc42) ]
= Oy (QQmax —§— w) Lyxq __Qbm14><4 + O ( ) }

2Dma:17 _ 25 - w—|—§ ) 14><4 __Qb 14><4 + O <%> }

— Op :(2(~2me — 25) Lyxa —Qbm_cl4><4 +0 ( ) }

(601)
Since for the cut-off it has been assumed f?mw > 1 contributions of
the order O (%) and smaller do not contribute in the arguments of

K, for & > Qmax. Hence one can neglect them, their contribution is

smaller like O ( lem)

For the identity Oy (22) = Oy (x) one can write [7]

@H |:(Qmam 5) _iqA Wl;lobc i| GH(Qmazfg)

2

On [(Qmaz_g) +%quﬂ_ } GH(Qmaa:_g)

2 (602)

for the symmetric part of K,, and [7]

KoKy = On[(Bnae=€) —3bipls |-On[(Pma-§) 3t | (603)
2

for the antisymmetric part of K.
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As will be shown now, the symmetric part % yields the main

contribution to the integral, whereas the antisymmetric part %

yields a tiny, however important correction.

This can be seen by expanding the theta function for x < a according
to [7]

Opla+ 2] = Oy (a) + 20 (a)—l—%2 0% (a) +
O (x) =0 (2)
O (x) = ' (2)

Now for the symmetric part (602), in case that 2., > 1, the

(604)

main contribution to the integral is given by Opy (Qmax — 5) because

the first order contributions cancel due to the different signs in
the expansion (604). This contribution corresponds to the cut-off
procedure suggested by Cohen—Tannoudji et al. who only truncate
the photon energy and do not consinder the kinetic energy of the
fermions in the cut-off [50].

One can therefore set [7]

Kitfos = Oy (D — €) (605)

For the antisymmetric part (603) there survives for meaa, > 1 a small
correction term —(jbmn—(fc ) <(~2max — 5) because in that case the first
order contribution of the expansion (604) does not cancel due to to
sign! As is shown in subsection 6.3, this small correction will be crucial

for a consistent renormalization of the bare electron mass m,.

Ek-‘rEK

Z+ 14><4 ( ) . A
— — +qu,xa = = —1qaXq
72 _(Ek+EK)2 = 2G oFg” and e °Cyo
2

e'%* = K, in (201) one finds [7]

Inserting e~ "4a%e

- . 2 ho\2 1 / X

m(Lehigh) _ ( 9e } () 2N L PR (L e K £ 17
o 2e0 moc) V zq: Wq T bb |q|2 (Uklap | Kgo 2G, °Fq ap |Uk)
(606)

and the symmetrization yields, under the substitution ¢, — —q, [7],
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2G, 2G_, ' —q
X <Uk‘@b CW‘UK>
oo (L oF) — 5 o)
(607)
In the following evaluation of the term % o Féi) + <_j;) ) of

even parity With respect to g, as well as the evaluation of the term

<f o F( ) _ 2G_q o FU ) of odd parity with respect to g, is presented.

The goal is to only keep corrections of the order & L and in the final
result of the renormalization. Hence, all terms yielding corrections of
the order O(—) are neglected.

Starting with the contribution of even parity with respect to ¢, — —qu,
one finds, by inserting the shift identity (587) [7]
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_ 3¢
(¢-1) &

€ 1 £ hge, 11, hQa’ Ha’
— + o (% o E o £_2> F mocC mopc MmopcC mocﬁ

hq, 11, A o 1Ly £ 1
e mes mec mac (—5’—5 Tt te - «f_) Lixa
¢ 1\ Y B
: et e (o)
- - 2
(1 () ()
\ +0 (@?ﬁs)
(608)

Hence, under even parity, all contributions with a uneven number of
wavenumber ¢, drop.

With the abbreveations I%bl = Gy, GbGp = Gule + Gydy + G-4. = 1 and
%fc = WyGa = £, one yields, with further rearrangements 7],
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£

23

-

+(—2ﬂ£+%+ + 8

| (- ()
\ #e)
(1) (49 (1=
\ +0 (as)

For the terms with £ and w there holds [7]
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52

wo_ £ ,
. (1) (1+5) o0
(=50 000) () eua )
3 w £ w 3 w3 ala
(P.0)
H((-5-8) 0+8) - (1) )
w 3¢
(¥-1) 3%

5 A Ha Ha

el

Jada’ mopCmgocC

(iwlzxm)




¢ e _ 1, ¢& _ 5
() (8) ()8 = 445 = o)
(1+&)(-g+5+5+8-%)
3 2 . w 24-5¢2 5
t(e-1) 5 R o At Il )
1
_(%_E_?>W
(Bt tg-)e = 11255 = o)
1 _ 1 g _ 1
v-1-gh) (1+5) = - t# = O(-k)
(610)

These terms behave for large £ like O(:). However, there are two
reasons for not neglecting contributions smaller than the order glz at
this point: first, when combining the terms with the antisymmetric
part, the weights change further. Second, as will be shown a few
lines below, the integration measure of the transversal renormalization
contribution provides another £ of the radial integral component.

Inserting the identies (610) finally gives [7]
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3N\ 4 & 11,
+( (%_5) (5a,a’+ (_1+§T> QaQa’> m_gc %

_|_2+5£2 ~ o~ 1, Ha/ﬁ

/
2&wd 1010 myc myc

£ 5o Tl Ha/
= ( <_1 + % - ﬁ) qaqa/mocm_oc \

H(P:O)
+(E--8) e

\ +0 (ajg) )

(611)

For the contribution with odd parity with respect to ¢, — —q., by
again inserting the shift identity (587), there follows [7]
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)

hqq
mocC

1 +
—— o F#) — o F%
2G, 7 2G_, ¢
S higa
( (g=1) (1+5) (oo i)
£ hge 11,
H(E-1) (& o)
hg, 11, E,+E
VB (15 8) (St s (148) )
3¢ hga  (Mgqr Uor hgw Uy \ & Mgy Wy I,
w 2uw° mocC moC MmoC mopcC MocC w3 mopcC mopcC moc
et ¢ (WY D
~ Ws < ey Qa T Qg G >m—oc
B hQa// Ha/’ g 1 5 Ha f hQa h(Ia’ Ha/
+m—wm—w(%—a—g—2) ‘ ((1+a>m—00— Wmee  moc  moc
hqn on hg,r 11, £ 1 £
+nc moe moc moc <—%+%+z—w3+%—g2) ' <1+a)%
H(ivo) H(Z»O) h
ol r(Eesea) (e 8) b (M v o)
~ ~ 2
E +FE 1 £ hqq
b (1 (B)) (5 -1 gb) - (14 6) o 22

Hence, all contributions with an even number of wavenumbers ¢, drop!

Going on then [7]
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(f(><>f) ”
w o_ 3¢t _ (w_ & _ 1) & atta’ta”
+(5 1) 207~ \€ " w §2>w My Ty

moc mo

2 A
B A A P
() g ) Ji e
13 3 w q mo

() (8

(r18) (1)
(53(%+%+2%+5%5%> (1+£)

HE-1) 85 - (5-8-8)5 )

(50 (9 ()¢

() £ e(ri8) (4)
f(¥-5-2)
(-5-4) (+8)s - (-0) &

One finally finds [7]
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m

Hii’? Qq +aa Hfli’z(l)) )

0c? moc?
(613)

1
w
1(1_1
2 \w 13
o 3
2w3 2wd
11 (614)
w £ w3
i_1_ 1
w £ w3
1i_1
w £
1i_1_ 1
w £ w3




(e

\ +0 (ady)

(615)
From (615) one can see that only the contribution in the first line
being proportional to % contributes to the integral. This is because
together with the £ stemming from the integration measure this term
give a correction of the order O (1) in the cut-off, whereas the other

contributions are at least of the order O (f?‘3 )

max |

Hence, one can set [7]

i (o R - ofY) = 5 (S a0 (20)
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Before putting the results together one has to convert the sum over the
continously varying wavenumbers ¢, of the photons, which lie dense
in the large volume V', to an integral. For V' — oo the error vanishes.
Hence,

AVERANESE! Qi h
() (o) 725, (0= 1) 7 ()
gz i i d*q 1 Dy (i ) (617)
- <250> <m06> /(27T) Wq <5bb |Q|2> d mGC

« o0 df2g R .
= WOCQ%S d§§/4—7rq (Oor — @uqy) f (£Q)
0

Putting the results (602), (611) and (616) together, and replacing the
sum according to (617) one finds for the renormalization due to the
high energy photons [7]

(L,e,high) _ 2QFs [ " d2g P
VS = —moe® =T /0 dee [ =2 (84,00 — by )
O (Pmac=€) (1 L), 1 )
f(ﬁoﬁz +ﬁ°F—q)
X (Ugl ey ay |Uk)

QH[(ﬁmws> ~I I ) oy [(mas—e) +%

4 0 (g Qaaa)

N
aps [
= —WOCZT/ ds&/ (54,00 — vy )

(P,0)
b onltmeed (“3 4 5 )a WD o,
2 2w P
o ? _ 562 . . m, 618
+ OH(Q’;"” 5) "722-2\50 da g’ "1;[6‘ —mo apBay (618)
14w _ g dlg —a apa
£ 2w3 dadq mgc mq by
. H(P-0)
1 X _ _
X (Ug| i @H(Qmazfg) + (% “w ?2) Db g2 X0/ EkJ;EK [Uk)
2 EL+E
() (- ()
’

For the further evaluation one needs the following relations. From the
properties of the Dirac matrices
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ap = —PBay

apy = Oy plaxa + 4 E Epyb O = b0
b//

(619)
ApT Ay = Op0 0y
o3 = Boy,
a,b,b € {x,y, 2}
there follows [7]
Oy — Qo) vy = (Sppy — Qo) (O plaxa + i€ ow)
= | b — @b | Llaxa =2 144
v v
~ 1
(Obr — Qo) Tv0w = 2 - 1yx4
(Ovpr — Qo) vty = (Opr — Qo) (e + Ctay — QtqOwy) Cty = —2Go Gy Cuy
(Ovpr — Qo) a0y = (Spy — Qoly) TvTa0y = —2qaly oy
(Ob.r — Qo) Oy da = —2qaQy i da = —20 Gy
. (P,0) 1 o "
(Gbpr — Qo) v :;‘TX; W= (b — Qo) ( Hellad s — %Bém o, ) vy
2 (1,11, q.h
= Lisa + Gulyoy | —=— ) Blewt)
S ( 2o 4x4 T 4aqy Oy <2m0 a
(620)

With this there follows for (618) [7]
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For the correction term of the last line we use (604) such that [7]
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(623)

One has to first evaluate the term (d,y — ¢yGy) which yields G,ga

1. The occuring angle integrals are thus given by [ %1 = 1 and

A4 ~ ~

T2Gpqy = 50pp. This gives [7]

J
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Making use of the identities [7]
(Ur| Letlc |Ug) = (U AP |UK) (625)

il (1 (B58) ) siwi) =@l (1= - 4B - 2) 10
= (U] p—HZHZ 5

= (U] (= o ) 1)

AP BAP) — gADRD) 17y (626)

1
2

(627)

and inserting for %Bfﬁm Oq = %14%— Hi]:’g) there follows for (624)
[7]
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The representation (628) of the transversal renormalization
contribution is further evaluated in section 6.1.

The Baker—Campbell Hausdorff Formula

The BCH formula assumes the following guise [57]

o0

exp (zA) Bexp (—zA) = Z

n=0

A By (629)

where A, B are operators and z is a parameter. The symbol [A, B]"
means to operatate as

[A, ... [A, B]] (630)
n times.

The initial value for n = 0 is defined as [A, B]O = B.
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J Operator Valued Maxwell Equations

In this part of the appendix it is shown that the operator valued
electromagnetic fields obey to the Maxwell equations [0].

For this one has to make use of the Heisenberg equation of motion.

For an operator X (r) of QED in the Heisenberg picture (7:[Q gp being
time independant)

. t ~ . t -
X (r,t) = exp <i£HQED) X (r)exp <_i7_iHQED> (631)

the related Heisenberg equation of motion is given by

zhaX (r,t) 5

= [X (r, 1) ,ﬁQED] (632)

Hence, for the photon vector field A{" (r,t) as defined in (24) follows
for the Heisenberg equation of motion

AT (r,t)
ot
; t

o A .
= exp <zh’HQED> [AgT) (r) ﬂ-[md} exp (—zh’HQED>

oy P € - - t o~
= exp <zh’HQED> AT (r), 50 /d3r’ Z (EZET) (r') EIST) (r'))] exp <—zhHQED>

be{z,y,2}

ih = [A((IT) (r,t) ,'}ClQED}

t - h A t -
= exp <ih7-[QED> 7 /d37" Z 5((1? (r — r’) EéT) (ﬂ)) exp <—ihHQED>

be{z,y,z}

h t, ~ t -
=~ exp <ihHQED> E™ (r)exp <—ihHQED>

= —ihE™) (r,1)
(633)

Now since B (r,t) = rotAL") (r,t) the Faraday induction law is valid

for operator valued electromagnetic fields

oB" (r,1)

o + (rotE(T) (r, t)) =0 (634)

a
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On the other hand there follows for £’ (r,t) the Heisenberg equation
of motion according to

OB (n,t)  rs .
ZET = |:EC(LT) (I'7t) ,HQED:|

exp <i;ﬁQED> {E(T) ’H(QED exp (—z HQED

T
rtomn [ [ LB, A 6] ]
= 'R tQED d?' (T e ; QED
ok [B60 b(r/

210 (
4 hg (T) (

:ei%ﬁQED/dSTI €08 ab g r)j et HaeeD
+oe [ (1), By(x)B

. —ihL [ d®r 5 (r — v .
= exp <i;HQED) ( o T Ltz Say ( ot ) exp <i2HQED>

4o (rotB( ))

E0H0

a

(635)

In the last line use has been made of the commutation relations (29)
and the relation

a3 B @), B B

be{z,y,z}

= % /d3 ! Z E(T (rotA(T)(r’))b (rotA(T)(r’))J

be{z,y,z}

/d3 / é%é (I‘/ - I‘) <5bc 087‘ Bb( ))
» T
2#0 bcce{azyz} + (Ebc C%Bb(rl)) 510 }Z.(S( ) (r' —r)

1 h 0 -
= /d?’ ! Z 5&? (r—1') <5CC1bWBb(r’)>

S )
0o b,c,c’e{x,y,z} <

60#0/(13 ! Z 6 (r — v (rot]?i(r’))c

ce{z,y,z}

2Mo

(636)

__ih (rotB( ))

60#0 a

Here, 7, (r) is the relativistic current density operator and ‘p.I.
stands for partial integration. Decomposing it into longitudinal and
transversal parts according to

/d3/ > 5y (x =) iy (r')

be{x,y,z}

/d3, S 50 (r — v') 3y () (637)

be{x,y,z}
Ja (r) = JiF () + 357 (x)
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there follows for the Heisenberg equation of motion (635)

i (T)

(rotB(r, t)) = o0 (x,?) + poj{P) (r,t) (638)

a ot
which is the Maxwell equation of the displacement current.

Now, the decomposition of the current density into transversal and
longitudinal parts according to (637) is not invariant under Lorentz
transformations. However, one can complete equation (638) by adding
the equation of motion of the longitudinal current density operator
which is closely related to the QED continuity equation. The latter
follows from the Heisenberg equation of motion of the charge density
operator 0 (r,t):

5 00(r,1)

o [é (r,t) ﬁ%ED}

t

. ) ) (639)
= exp (iﬁHQED> [@ (r) 7HQED} exp (—iﬁHQED>

The commutator can be evaluated according to

[@ (r) 77:[QED] = Q (r),Hp + Hrga + Ha + f/c]
= [e@). 7|

(640)
Partial integration and inserting the single—particle Dirac Hamiltonian

H /(f?g,, given in (10) yields
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(641)

8@ (I‘,t) ~ A
ot 2 gyt =0 (642)

The longitudinal electric field is defined as

0 (x,1) = — 2
Ta

- H ’t)
@ t — d3 / Q(r7
) = [ 2 613
o(r,t)

€0

d (r,t)

divE® (r,t) =

Using the continuity equation (642) for the temporal derivative of the

electric field operator E”) (r,t) then
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Ora dmeg |r — /|

0 /dg'r‘, Zbe{x,y,z} %3[) (I'/, t)

" Org Admeg v — /|
3./ b (r',1) . i 1
8ra/d b{z ) <8rb (47rso|r—r’|> Jb (r,t) Ory 4meg [r — 1/
e{x,y,z

6 3 7 8 jb (I‘/,t) 6 1 A /
= —_— - - t
Ora/dr b{z }(07“{) (47r50|r—r’| + ory 4meg |r — 1| Jo (r, )
1T,Y,2

be{x,y,z}
(Oberflachenterm verschwindet )

be{x,y,z}
(644)

Using the representation of the longitudinal delta function (31) there
follows

OB (vt 1
(r;?) = ——/dgrlé(b) (r—1") g, (', 1)

ot 0 ’ (645)

_ X0 ¢

—Ja (r,?)

With that one finds
OEL) (vt . .

60#07(1") + 107 P (xr, 1) = 0 (646)

The divergence of (646) yields with > . a%EA((ZL) (r,t) =
(L 1 A . . .

divEW®) (r,t) = =0 (r,t) the continuity equation.

Adding (646) and (638) now gives the complete Maxwell equation of

the operator valued electromagntic fields as

. OF, (r,t -
<r0tB(r, t)) = Eouo# + f10Ja (1, 1) (647)

a

One can also derive wave equations by differentiating again with
respect to time.
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A

rot-—B(r.) B rotrotE(r, t)
82E(I‘, t) 0

= _ — t
Sy + Hom: (v, 1)
or
. 1 6%E(r, t) d
rot I'OtE(I', t) + gT = —/,L()a (I', t)
where ¢ = —

Veolo

(648)

(649)

The analogue of equation 649 for the photon field A(T)(r,t) follows

with 633 and B (r,t) = rotAL" (r,t) is thus given by

. 1 9?2 . .
T T _ AT
rotrot AT (r, ¢) + ?@A( Jr,t) = )™ (r,1)

Using

rotrot AT (r, t) = V (divA(T)(r,t)) — V2AD(r 1)
divAD(r, 1)

Il
o

there follows

1# o) am A(T)
—— — V| AY(r,t) = poj*’ (r,t)

(650)

(652)

whose derivative with respect to the time (in the Heisenberg picture)

is identical to the wave equation 649.

Assuming there is no matter to which the photons couple the

homogeneous wave equation arises.

In that case one can write for the time dependence of the vector

potential (24) and the electric field (25) [7]

10 (1) = entred A0 (p)e itHes
7 (T,0
a

)(I-’ t) — e%t?:L?'adEA’C(LT7O) (r)e_%t?:lrad
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where /Aléo)(r) and EAC(LT’O)(r) are the solutions to the homogenous wave
equation (the right hand side of 649 and 652 equals zero).

Now using the BCH formula (see section I) there follows [7]

Hrad s =i tHraa —iwgt ~
h ra h rad — q
(& ag \€ =e Qg \

b (654)

6%257—[ 4T d ezwqt At

rad [y
a
Qg

G

which gives for (654) [7]

2(T,0) r—uw r—w
A ) = 3 S o (g ) Y )

a e{IIT}

BT (r ¢ \/_ Z 3 ( lar—at) g | eilar—eat)gl ’A) up (, \)

a Ae{III} (655
655

The condition wq = ¢ |q| leads then to the vacuum wave equations or
homogeneous wave equations [7]

(656)

It has to be emphazised that the solutions AT (r, t) and ET0) (r, ¢) to
the homogeneous wave equations cannot be zero (in sharp contrast to
classical electromagnetic fields), because otherwise their fundamental
commutation relation [7]

N N 1 A
AT @), B ()] = 20 =) (o)
En?
would not be satisfied. This means that there is always a

electromagnetic vacuum quantum field leading to the so—called
vacuum fluctuations (Vac| Ec(lT’O)(r, t)EC(LT’O)(r, t)|[Vac) # 0.
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