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Summary

Micropollutants in the aquatic environment pose a risk to human and environmental health. Effect-
based tools have been applied in environmental monitoring for diverse toxicity endpoints but
testing method for neurotoxicity is still limited. The goal of this PhD thesis was to develop and
implement high-throughput methods for testing neurotoxicity of typical environmental organic
pollutants and mixtures of chemicals extracted from water samples. Neurite outgrowth inhibition
and acetylcholinesterase (AChE) inhibition were considered as key neurotoxicity endpoints and
human neuroblastoma SH-SYSY cells were used for both assays. The assays were set up in 384-
well plates for high-throughput and repeatable concentration-response assessment. The AChE
inhibition assay using purified enzyme has been applied widely, but there has been an issue that
natural organic matters such as dissolved organic carbon (DOC) contained in environmental
samples can suppress AChE inhibition in the assay. In the cellular assay, AChE inhibition by
paraoxon-ethyl was not impacted by DOC up to 68 mgc/L and binary mixtures of paraoxon-ethyl
and water extracts showed concentration-additive effects, which indicates no disturbance by
DOC and applicability of the cell-based AChE inhibition assay for testing of environmental
samples. Chemicals with potential developmental neurotoxicity (DNT) are often hydrophobic.
Hydrophobic chemicals can easily intercalate into the cell membrane and provoke effects via
nonspecific manner, i.e., baseline toxicity. To investigate whether DNT of chemicals is driven
via specific modes of action or merely via baseline toxicity, test chemicals were selected based
on their potential DNT from literature or a combination of occurrence data and effects detected in
water samples. The effects on neurite outgrowth and cytotoxicity were directly measured in SH-
SYS5Y cells and the observed effects were compared with predicted baseline cytotoxicity. Since
existing prediction models for baseline toxicity had limited application, a prediction model was
newly established using a mass balance model based on constant critical membrane
concentrations, which can be applied for chemicals of a wide range of hydrophobicity and
speciation. When comparing the measured effects in SH-SY5Y with the predicted baseline
toxicity, more hydrophobic chemicals tended to trigger toxicity on neurite outgrowth and cell
viability via baseline toxicity. The hydrophobic chemicals were still often highly potent while
some more hydrophilic chemicals exhibited high specificity but often lower potency.
Environmental pollutants with specific modes of action targeting neurite outgrowth were

identified by comparing the effects on neurite outgrowth and cytotoxicity. Highly specific effects
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were observed for two carbamate insecticides, the pharmaceutical mebendazole, the biocide 1,2-
benzisothiazolin-3-one, and many other chemicals that were detected in surface water and
wastewater treatment plant (WWTP) effluent samples. The two types of water samples were
tested in neurite outgrowth assay and the effects on neurite outgrowth were even observed when
the samples were diluted by a factor of 5. While overall cytotoxicity was similar between two
types of samples, higher toxicity on neurite outgrowth was observed for surface water than
WWTP effluent. This led to more specific inhibition of neurite outgrowth by surface water,
indicating that higher concentrations of chemicals and/or more potent chemicals acting on
neurite outgrowth were contained in the surface water samples. Subsequently, the measured
mixture effects were further explained by measured effects of single chemicals and overall,
chemicals with high effect potency and/or high occurrence were identified as major mixture
effect drivers. While main contributors were different between individual samples for surface
water, mebendazole was a dominant contributor for the effects observed in WWTP effluent. The
detected chemicals still explained only a small fraction of the measured mixture effects of
surface water (up to 4.4%) and WWTP effluent (up to 6.8%). When the two neurotoxicity
endpoints were assessed in identical samples, the effects appeared not to be related to each other
and both neurotoxicity endpoints were sensitive enough to capture toxicity even when the
samples were diluted. The experiments with single chemicals and the applications in case studies
demonstrated that both neurotoxicity assays are suitable for environmental monitoring of
neurotoxicants. Further testing of various chemicals and environmental mixtures can be useful to
identify more effect drivers in the environment. Consideration of more diverse neurotoxicity
endpoints would enable more comprehensive assessment of water quality. In the future, these
assays have also the potential to be used for human biomonitoring and can be applied to other

complex environmental matrices such sediments or biota.
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Zusammenfassung

Mikroverunreinigungen in der aquatischen Umwelt stellen ein Risiko fiir die Gesundheit von
Mensch und Umwelt dar. Bei der Umweltiiberwachung wurden wirkungsbasierte Instrumente fiir
verschiedene Toxizititsendpunkte eingesetzt, doch die Testmethoden fiir die Neurotoxizitit sind
noch begrenzt. Das Ziel dieser Doktorarbeit war die Entwicklung und Implementierung von
Hochdurchsatzmethoden zur Priifung der Neurotoxizitit von typischen organischen
Umweltschadstoffen und Chemikaliengemischen, die aus Wasserproben extrahiert wurden. Die
Hemmung des Neuritenwachstums und die Hemmung der Acetylcholinesterase (AChE) wurden
als zentrale Endpunkte der Neurotoxizitit betrachtet, und fiir beide Tests wurden menschliche
SH-SY5Y-Neuroblastomzellen verwendet. Die Biotestverfahren wurden in 384-Well-Platten
durchgefiihrt, um einen hohen Durchsatz und eine wiederholbare Konzentrations-Wirkungs-
Bewertung zu ermdglichen. Der AChE-Hemmtest unter Verwendung von gereinigtem Enzym ist
weit verbreitet, aber es besteht das Problem, dass natiirliche organische Stoffe wie geldster
organischer Kohlenstoff (DOC), die in Umweltproben enthalten sind, die eine falsch-positive
AChE-Hemmung im Test erzeugen konnen. Im zelluldren Biotestverfahren wurde die AChE-
Hemmung durch Paraoxon-Ethyl durch DOC bis zu 68 mgc/L nicht beeintrichtigt, und auch
bindre Mischungen von Paraoxon-Ethyl und Wasserextrakten zeigten konzentrationsadditive
Effekte, was darauf hindeutet, dass DOC nicht storend wirkt und der zellbasierte AChE-
Hemmtest fiir die Untersuchung von Umweltproben geeignet ist. Chemikalien mit potenzieller
Entwicklungsneurotoxizitdt (DNT) sind hdufig hydrophob. Hydrophobe Chemikalien kénnen
sich leicht in die Zellmembran einlagern und auf unspezifische Weise Wirkungen hervorrufen,
d.h. eine Grundlinientoxizitdt. Um zu untersuchen, ob die DNT von Chemikalien iiber
spezifische Wirkungsweisen oder lediglich iiber die Grundlinientoxizitit gesteuert wird, wurden
Testchemikalien auf der Grundlage ihrer potenziellen DNT aus der Literatur oder einer
Kombination von Daten iiber ihr Vorkommen und in Wasserproben festgestellten Wirkungen
ausgewahlt. Die Auswirkungen auf das Neuritenwachstum und die Zytotoxizitdt wurden direkt in
SH-SY5Y-Zellen gemessen, und die beobachteten Effekte wurden mit der vorhergesagten Basis-
Zytotoxizitét verglichen. Bestehende Prognosemodelle fiir die Basistoxizitdt waren jedoch nur
begrenzt anwendbar. Daher wurde ein neues Prognosemodell unter Verwendung eines
Massenbilanzmodells entwickelt, das fiir Chemikalien mit einem breiten Spektrum an

Hydrophobie und Speziierung angewendet werden kann. Beim Vergleich der gemessenen

A%



Wirkungen in SH-SYS5Y mit der vorhergesagten Basistoxizitét zeigte sich, dass hydrophobere
Chemikalien eher eine Toxizitit auf das Neuritenwachstum und die Lebensfahigkeit der Zellen
iiber die Basistoxizitét auslosen. Die hydrophoben Chemikalien waren oft noch hochwirksam,
wihrend einige hydrophilere Chemikalien eine hohe Spezifitit, aber oft eine geringere
Wirksamkeit aufwiesen. Umweltschadstoffe mit spezifischer Wirkungsweise auf das
Neuritenwachstum wurden durch den Vergleich der Auswirkungen auf das Neuritenwachstum
und die Zytotoxizitdt ermittelt. Hochspezifische Wirkungen wurden bei zwei Carbamat-
Insektiziden, dem Arzneimittel Mebendazol, dem Biozid 1,2-Benzisothiazolin-3-on und vielen
anderen Chemikalien beobachtet, die in Oberflichenwasser und Abwasserproben von
Kléranlagen nachgewiesen wurden. Die beiden Arten von Wasserproben wurden im
Neuritenwachstumstest getestet, und die Auswirkungen auf das Neuritenwachstum wurden sogar
dann beobachtet, wenn die Proben um den Faktor 5 verdiinnt wurden. Wahrend die allgemeine
Zytotoxizitit zwischen den beiden Probenarten dhnlich war, wurde bei Oberfldchenwasser eine
hohere Toxizitét fir das Neuritenwachstum festgestellt als bei Klaranlagenabwasser. Dies flihrte
zu einer spezifischeren Hemmung des Neuritenauswuchses durch Oberflachenwasser, was darauf
hindeutet, dass in den Oberflichenwasserproben hohere Konzentrationen von Chemikalien
und/oder stirkere Chemikalien mit Wirkung auf den Neuritenauswuchs enthalten waren.
AnschlieBend wurden die gemessenen Mischungseffekte durch die gemessenen Effekte einzelner
Chemikalien weiter erklért, und insgesamt wurden Chemikalien mit hoher Effektstarke und/oder
hohem Vorkommen als Hauptfaktoren fiir Mischungeffekte identifiziert. Wéhrend sich die
Hauptverursacher in den einzelnen Proben des Oberflichenwassers unterschieden, war
Mebendazol der Hauptverursacher der im Kldranlagenablauf beobachteten Effekte. Die
nachgewiesenen Chemikalien erkldrten jedoch nur einen kleinen Teil der gemessenen
Mischungseffekte von Oberflaichenwasser (bis zu 4,4 %) und Kliranlagenabwasser (bis zu

6,8 %). Bei der Bewertung der beiden Neurotoxizititsendpunkte in den identischen Proben
schienen die Wirkungen nicht miteinander verbunden zu sein, und beide
Neurotoxizititsendpunkte waren empfindlich genug, um die Toxizitit zu erfassen, selbst wenn
die Proben verdiinnt wurden. Die Experimente mit einzelnen Chemikalien und die Anwendungen
in Fallstudien haben gezeigt, dass beide Neurotoxizititstests fiir die Umweltiiberwachung von
neurotoxischen Stoffen geeignet sind. Weitere Tests mit verschiedenen Chemikalien und

Umweltgemischen konnen niitzlich sein, um weitere Wirkfaktoren in der Umwelt zu
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identifizieren. Die Beriicksichtigung vielféltigerer Neurotoxizitdtsendpunkte wiirde eine
umfassendere Bewertung der Wasserqualitit ermoglichen. In Zukunft konnten diese Tests auch
fiir das Biomonitoring beim Menschen eingesetzt und auf andere komplexe Umweltmatrices wie

Sedimente oder Umweltorganismen angewendet werden.
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1. Introduction

1.1 Micropollutants in the environment

Contamination of the aquatic environment poses a risk to human and environmental health.
Anthropogenic chemicals such as pharmaceuticals, industrial chemicals, and pesticides mainly
contribute to the contamination through various routes (Yang et al., 2022). Chemicals can be
released into the aquatic environment via effluent from wastewater treatment plants (WWTP)
(Loos et al., 2013; Alygizakis et al., 2019; Gago-Ferrero et al., 2020), or agricultural and road
runoff during rain events (Leu et al., 2004; Halbach et al., 2021; Crawford et al., 2022). The
released chemicals into the environment would constitute complex mixtures of individual
chemicals at very low concentrations, often below the limit of detection. These micropollutants
can cause toxicity via diverse modes of action (MOA), ranging from baseline toxicity to specific
toxicity (Verhaar et al., 1992; Escher and Hermens, 2002). Many bioassays have been already
applied for water quality assessment targeting diverse endpoints relevant for human and
environmental health (Escher et al., 2021). However, some toxicity endpoints such as
neurotoxicity are only covered to a limited extent despite a raising concern for associated adverse
effects (Legradi et al., 2018).

The bioassay results can be linked with chemical analysis via iceberg modelling (Escher,
2020). While individual chemicals contained in the environmental samples can be identified and
quantified based on chemical analysis, bioassays can be used to assess mixture effects by
covering detected chemicals as well as the chemicals that are below the detection limit or
transformation products. Hence, the iceberg modelling approach has been used to explain the
mixture effects from environmental samples using bioassays and chemical analysis in a
complementary way (Neale et al., 2020; Escher et al., 2021). The iceberg modelling can evaluate
how much of measured effects of environmental mixture can be explained by detected chemicals
with effect measurement as shown in Figure 1. Bioanalytical equivalent concentrations BEQbio
are derived by measuring mixture effects with bioanalysis and can capture entire mixture effects.
This can be partially explained by BEQchem, which predicts the mixture effects considering effect
concentrations and detected concentrations of individual chemicals. By comparing these two
BEQs, we can identify potential toxicity drivers and evaluate how much of the observed effects

are driven by unknown chemicals.



Iceberg modelling

Chemicals
e with measured effects of single chemicals
e detected in water samples

> BEQchem

Unknown
chemical
risks

t | chemicals
e below detection limits
e without analytical methods
: Transformation products
Mixture effects of
environmental samples

Figure 1: Iceberg modelling approach based on bioassays and chemical analysis (figure adapted
from Escher et al. (2021)). Bioanalytical equivalent concentrations BEQchem estimate risk driven
by detected chemicals with known effects, which is just the tip of iceberg. BEQuio can be derived
by testing environmental samples in bioassays and capture not only the known risk BEQchem but

also unknown chemical risks.



1.2 Baseline toxicity

Baseline toxicity (also called narcosis) is a nonspecific MOA of chemicals and caused by
membrane intercalation of chemicals. Baseline toxicity represents the minimal level of toxicity,
hence chemicals with specific MOAs would elicit toxic effects at lower exposure concentrations
compared to concentrations that cause baseline toxicity. Baseline toxicity can be measured based
on cytotoxicity caused by baseline toxicity. Since hydrophobic chemicals can intercalate the
membrane more easily, baseline cytotoxicity can occur at lower nominal concentration for more
hydrophobic chemicals. However, concentration of chemicals in the membrane leading to 10%
baseline cytotoxicity, i.e., critical membrane burden (CMB), was found to be constant
irrespectively of the test system used. For instance, a constant level of 69 mmolLii"! was found
in eight reporter gene cell lines (Escher et al., 2019).

Quantitative structure-activity relationships (QSAR) have been established to predict
nominal concentrations causing baseline cytotoxicity in human and mammalian cell lines but
also in aquatic organisms. The nominal concentrations for baseline toxicity can be described by
hydrophobicity of chemicals, e.g., liposome-water partition constants (Kiipw). QSAR equations
for baseline toxicity have been developed for eight reporter gene cell lines with Kiipw as a
hydrophobicity descriptor (Escher et al., 2019). Since the existing QSARs for in vitro assays
were established based on neutral and hydrophilic chemicals (0.5 < log Kiipw < 4.5), they could
not be applied to charged and more hydrophobic organic chemicals. This necessitates the
development of an improved prediction model for baseline toxicity which is applicable for wide
variety of chemicals.

By comparing predicted baseline toxicity level with observed toxicity level, we can
identify whether chemicals just act via baseline toxicity or more specific MOAs. Such approach
has been already applied based on toxic ratio (TR), the ratio between baseline toxicity and
experimental cytotoxicity. TR is a measure for involvement of specific MOAs in cytotoxicity of

chemicals (Verhaar et al., 1992; Maeder et al., 2004).



1.3 Neurotoxicity

Neurotoxicity represents adverse effects on nervous system of organisms. But in a narrow sense,
neurotoxicity only refers to so-called adult neurotoxicity, which is the adverse effects on already
differentiated nervous system. More sensitive neurotoxicity can occur from early life exposure.
Exposure to toxicants at early life stage can lead to irreversible and life-long damage in the
developing nervous system, which is called developmental neurotoxicity (DNT). Current testing
guidelines for neurotoxicity with regulatory purposes require assessment in in vivo system,
which is time- and resource-intensive. For example, OECD technical guideline 424 and 426
evaluates neurobehavioural and neuropathological effects of chemicals in adult rats or after in

utero exposure.

1.3.1 Neurite outgrowth: an endpoint for developmental neurotoxicity
Development of the nervous system is a complex process, and several fundamental
neurodevelopmental processes are essential for the development: proliferation, migration,
differentiation, apoptosis, network formation and function (Aschner et al., 2017; Bal-Price et al.,
2018). Many epidemiological studies reported the potential adverse effects of developmental
neurotoxicants, which may impair learning, memory, and cognitive functions and cause
neurodevelopmental disorders (Grandjean and Landrigan, 2014). Diverse environmental
chemicals such as pesticides and industrial chemicals have been reported to cause DNT
(Grandjean and Landrigan, 2006; Bjorling-Poulsen et al., 2008) and various MOAs involved in
DNT have been suggested. Due to the limited mechanistic information and diversity in molecular
initiating events (MIE) for DNT, the key neurodevelopmental processes that may capture various
MIEs have been considered as endpoints for testing DNT of chemicals (Lein et al., 2005;
Smirnova et al., 2014; Bal-Price et al., 2015). Especially, neurite outgrowth is crucial for
connectivity of neural network and its function and has been used as an endpoint in screening

research for potential DNT chemicals (Ryan et al., 2016; Delp et al., 2018).

1.3.2 Challenges in testing effects on neurite outgrowth
Since neurite outgrowth is an apical phenotype, its inhibition can be caused by secondary effects

of cytotoxicity. Therefore, specificity assessment is necessary to discriminate DNT-specific



effects from general cytotoxicity (Aschner et al., 2017; Bal-Price et al., 2018). In previous
studies using neurite outgrowth assays, specificity of the DNT effects has been quantified based
on the ratio between effect concentrations or benchmark concentrations for neurite outgrowth
inhibition and cytotoxicity (Ryan et al., 2016; Delp et al., 2018). Despite the raising concern,
DNT was assessed only for the limited number of chemicals, hence identification of specific
DNT among environmental pollutants is even more of a knowledge gap.

Another specificity measure exists, which quantifies specificity of DNT by comparing the
observed DNT effects with cytotoxicity in non-neuronal cells (Delp et al., 2021). This neuronal-
specificity can evaluate the degree of toxicity that occurs specifically in neuronal cells. However,
it is questionable, which cell model could be considered as non-neuronal cells since availability
of targets would differ between cell types, which may impact the degree of responses. In this
regard, baseline toxicity can be used to refine this approach since it is nonspecific toxicity
independent of cell type. Another possible advantage of this approach would be that it enables to
identify whether the observed effects are driven by specific MOAs of chemicals or merely
baseline toxicity arising from their hydrophobicity. For instance, certain pesticides have been
discussed to cause DNT but many of them are also highly hydrophobic. Hence the observed low
effect concentration may be mainly driven by baseline toxicity. Therefore, this additional
specificity measure can help to investigate further details of observed DNT effects.

While DNT in vitro testing battery was already well established for testing of single
chemicals (Masjosthusmann et al., 2020), high-throughput screening tools for environmental
monitoring are still lacking (Legradi et al., 2018). Since the neurite outgrowth assay showed
relatively sensitive responses among the key DNT endpoints and the assay duration is shorter
compared to other DNT endpoints (Masjosthusmann et al., 2020), it is suitable as a candidate

high-throughput tool for testing environmental samples.

1.3.3 Acetylcholinesterase inhibition: an endpoint for adult neurotoxicity
Neuronal cells play an important role in communication between cells and information-storage.
The communication involves two processes: nerve impulse and neurotransmission. Nerve
impulse is mediated by electrochemical potential generated along the membrane of a neuron.
When the nerve impulse reaches at the synapse, messenger chemicals, i.e., neurotransmitters, are

released into synaptic cleft and deliver the signal to postsynaptic neurons. These communication



processes can be hindered by diverse chemicals that target specific sites in nervous system
(Casida, 2009; Lushchak et al., 2018). Previously, 16 different neurotoxicity mechanisms were
identified from hundreds of chemicals detected in three European river catchments (Legradi et
al., 2018). Especially, the highest hazard quotient was observed for acetylcholinesterase (AChE)
inhibition considering both detected concentrations and effect concentrations for relevant
chemicals. AChE is an enzyme that breaks down the neurotransmitter acetylcholine (ACh) and
modulates the neurotransmission. Chemicals with affinity to the active site of AChE can reduce
its activity, which could disrupt the neurotransmission and lead to acute toxicity in organisms

(Pohanka, 2011; Colovié et al., 2013).

1.3.4 Challenges in AChE inhibition assays

Diverse AChE inhibition assays have been already well established and applied for screening the
inhibitory potency of chemicals and even environmental samples. Inhibition in AChE activity was
screened for chemicals in Tox21 program using purified enzyme, neural stem cells, and human
neuroblastoma SH-SY5Y cells (Li et al., 2021). This study revealed that approximately 2.25% of
8,312 chemicals can have inhibitory potency on AChE. For environmental monitoring, the purified
enzyme-based assay has been widely applied to assess inhibition of AChE activity by
micropollutants in water samples considering its simplicity (Hamers et al., 2000; Molica et al.,
2005; Escher et al., 2009; Macova et al., 2011).

A limitation of the purified enzyme-based AChE inhibition assay is the reduced sensitivity
due to natural organic matter contained in environmental sample extracts. During extraction of
environmental samples, a small fraction of natural organic matter such as dissolved organic carbon
(DOC) can be co-extracted with the micropollutants, and this might lead to interferences with the
ACHhE inhibition assay. Such matrix effects were observed for diverse water samples in the purified
enzyme-based AChE inhibition assay, which was supported by the observation of suppressed
ACHhE inhibition after co-exposure to DOC and an AChE inhibitor (Neale and Escher, 2013). This
disturbance by DOC was not observed in several cell-based bioassays, which could be explained
by intracellular localization of target sites (Neale 2014). Since AChE are anchored to outer side of
cell membrane or localized in the cytoplasm in neuronal cells (Thullbery et al., 2005; Hicks et al.,
2013), the direct interaction between DOC and AChE could potentially be avoided in a cell-based
ACHhE inhibition assay.



1.4 Aim and approach of this thesis

The goal of this thesis was to implement high-throughput screening tools for testing
neurotoxicity of environmental samples. Two neurotoxicity endpoints, inhibition of neurite
outgrowth and AChE, were mainly discussed as potential endpoints for environmental
monitoring of neurotoxicity. Baseline toxicity would be additionally investigated to measure
specificity of the observed toxic effects. Therefore, multiple endpoints will be covered in this
thesis: cytotoxicity (including baseline cytotoxicity), neurite outgrowth inhibition, and AChE

inhibition (Figure 2).
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Figure 2: Baseline toxicity, acetylcholinesterase (AChE) inhibition, and neurite outgrowth

inhibition.

The outline of the thesis and associated publications is shown in Figure 3. In order to
support assessment of specificity of DNT compared to baseline toxicity, baseline toxicity needs
to be predicted for individual chemicals. Existing prediction models for baseline toxicity are only
applicable for neutral chemicals with limited hydrophobicity (Escher et al., 2019), hence
Publication I aimed to develop an improved predictive model for baseline toxicity with wider
applicability.

The existing test method for neurite outgrowth was mainly designed for testing single
chemicals with low- or medium-throughput method, hence it is not proper to apply as a high-

throughput screening tool for testing environmental samples. Publication I and III aimed to



“Environmental monitoring”
Publication Il Publication IV

Publication Il

Neurite outgrowth ACHE inhibition

Publication |

Figure 3: Outline of this thesis.

develop or optimize the assays for testing neurotoxicity of not only single chemicals but also
environmental samples. In Publication I, diverse environmental chemicals with potential DNT
(e.g., pesticides) and high environmental relevance were to be assessed for their effects on
neurite outgrowth and cytotoxicity. Since hydrophobic chemicals can cause neurotoxicity in a
nonspecific manner via baseline toxicity, it was investigated whether the neurite outgrowth
inhibition and cytotoxicity in neuronal cells are driven by baseline toxicity or other specific
MOAs s using the proposed prediction tool for baseline toxicity from Publication I. Furthermore,
enhanced toxicity on neurite outgrowth and cytotoxicity compared to baseline toxicity was
explored using different specificity measures. The neurite outgrowth assays have not been
applied to environmental mixtures and thus its applicability should be investigated. Therefore,
Publication 11l aimed to compare the responses from different types of water samples in neurite
outgrowth assay. The observed mixture effects were investigated based on measured effects from
single chemicals to identify which chemicals contribute to the mixture effects in the environment
using the iceberg modelling approach.

Since the purified enzyme-based AChE inhibition assay is not suitable for testing
environmental samples due to disturbance by DOC (Neale and Escher, 2013), it should be
investigated whether AChE inhibition in the cell-based assay could avoid this impact by DOC.
AChE inhibition assay using SH-SYS5Y cells has been already used for testing single chemicals
(Lietal., 2021), but the used assay condition was not proper to evaluate AChE inhibition precisely

(e.g., short exposure duration) and needs to be optimized to improve assay quality and



performance. Therefore, Publication IV aimed to optimize the AChE inhibition assay to be
applicable for testing single chemicals as well as environmental samples. Additionally, volatility
of well-known AChE inhibitors was predicted to be high, hence the chemical loss of the AChE
inhibitors was further investigated in the AChE inhibition assay.



2. Baseline toxicity

2.1 Mass balance model to predict nominal baseline toxicity

Baseline toxicity is mediated by intercalation of chemicals with membranes and can be predicted
based on hydrophobicity of chemicals. Previous baseline toxicity QSARs were established for
neutral chemicals with limited hydrophobicity (Escher et al., 2019). To expand the applicability
of baseline QSAR in terms of speciation and hydrophobicity of chemicals, the concept of critical
membrane burden (CMB) was considered since the CMB is known to be constant independently
of speciation and hydrophobicity of chemicals (van Wezel and Opperhuizen, 1995; Escher et al.,
2002; Escher et al., 2017; Kliiver et al., 2019). The CMB is also similar across various cell types
(Escher et al., 2002; Escher et al., 2019) and various aquatic species (van Wezel and
Opperhuizen, 1995; Escher et al., 2011). The uniform CMB can be converted into chemical
concentration in the medium, i.e., nominal concentration causing 10% baseline cytotoxicity
(IC10.baseline) 1n a given cellular assay using a mass balance model (MBM) as outlined in Figure 4.
A MBM describes distribution of test chemicals between protein, lipid, and water compartment
of medium and cells in bioassays using partition constants (Fischer et al., 2017). Liposome and
bovine serum albumin (BSA) serve as surrogates for lipids and proteins in bioassays,
respectively. The baseline toxicity QSAR was proposed for differentiated human neuroblastoma
SH-SYSY cells for subsequent application to neurotoxicity in the following chapters and
additionally for three reporter gene cell lines (ARE, AhR, and PPARY), which can be found in
Publication 1.

Multiple input parameters from chemicals as well as cells and medium were required to
establish a MBM for baseline toxicity. In case of chemicals, two partition constants that describe
chemical distribution between liposome and water (Kiip/w) and between protein and water
(KBsamw) were needed, which can be either experimentally determined or predicted. To unify the
input parameters from chemicals, a linear relationship was derived to connect the two partition
constants Kiipw and Kssaw based on published QSARs (Endo et al., 2011; Endo and Goss, 2011).
This linear relationship was verified for neutral chemicals and further for ionizable chemicals
with experimental distribution ratios Desaw(pH 7.4) and Diipw(pH 7.4), which are the partition
constants that considered speciation of chemicals. The experimental values Dssam(pH 7.4) and

Diipw(pH 7.4) aligned well with the linear relationship derived from the published QSARs for
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neutral chemicals, bases, and multiprotic chemicals but those of anionic chemicals highly
deviated (Figure 2 in Publication I). For the chemicals, for which the linear relationship between
Kiipw and Kssaw holds, the MBM for baseline toxicity could only requires Dipw(pH 7.4) as an
input parameter from chemicals. In case of the input parameters from cells and media, the
protein, lipid, and water contents in cells and media were retrieved from literature or newly
determined for each bioassay (Table 1 in Publication I, Escher et al. (2019)) to derive bioassay-
specific models for the four mammalian cell lines (SH-SY5Y, ARE, AhR, and PPARY). This
resulted in the simulation in Figure 4 and ICio,paseline could be predicted merely from the log

Diipw(pH 7.4) of individual chemicals.

IC"Il].baseline
Constant Critical ! .
Membrane Burden =s 6 === generic model
(CMB) ém '
Proteins E’ E
IC10.cme * : % 83 41
Dggap \ K D S 8
1 28,
- 5 2 --+ ARE & AhR
# 52 © PPARy
- SH-SY5Y
k) Ok 0 ST
0 2 4 6 8

Mass Balance Model (MBM) IogD
lipw

Figure 4: Critical membrane burden (CMB) was used to derive the nominal concentration that
would lead to 10% baseline cytotoxicity (IC1o,baseline) using a mass balance model (MBM) as
described in Publication I. The MBM describes distribution of a chemical (%) between the
protein, lipid, and water compartment of medium and cells. The MBM for IC10baseline Was
simulated based on log Diipw(pH 7.4) for four bioassays and generic condition. Chemical
partitioning to plastic of well plates was considered as is negligible (Fischer et al., 2018). This

MBM is not suitable for chemicals that can highly partition into the air (Escher et al., 2019).
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2.2 Bioassay-specific baseline toxicity QSAR

The reverse of logarithmic effect concentrations represents the degree of toxicity and the log
(1/IC10,basetine) increased with increasing log Diipw(pH 7.4), i.e., hydrophobicity of chemicals.
This means hydrophobic chemicals can provoke baseline toxicity at lower exposure
concentration due to their high membrane affinity. The relationship started to level off at log
Diipw(pH 7.4) around 2 and the curve flattened the most for the assays whose medium had the
highest protein and lipid content (AREc32 and AhR-CALUX supplemented with 10% FBS).
IC10,basetine was lower for PPARy-BLA, whose medium is only supplemented with 2% FBS,
which was followed by SH-SYSY cells with low protein and negligible lipid content of their
medium. In the bioassays with medium containing less protein and lipid contents, bioavailable
portion of chemicals would be higher due to less sorption to the biomolecules in the medium,
hence the CMB can be reached with smaller amount of chemicals, which results in lower
IC10,baseline.

Despite the single input parameter, the original equation for baseline toxicity MBM was
rather complex (eq. 18 in Publication I). Therefore, an exponential fit equation was derived for
each bioassay for practical applications, which was visually identical with the original equation.
The baseline toxicity QSAR for SH-SYSY cells is given in eq. 1, and bioassay-specific models
for the other three cell lines can be found in Publication I (Table 2 and eq. 19 in Publication I).
Based on the similarity of the bioassay-specific models, a generic model for baseline toxicity can
be proposed by averaging medium and cell composition of the four cell lines, which can be used
to predict baseline toxicity of chemicals in any adherent cell lines even when protein and lipid
contents of the cells and the medium have not been quantified.

log(1/1C M)) = 1.26—1—5,63><(1_e'0'202 log Dlip/w) (1)

10,baseline

When the bioassay-specific models were compared with experimental cytotoxicity from
392 chemicals with diverse hydrophobicity and speciation, experimental cytotoxicity ICio
aligned well with the baseline toxicity QSAR (Figure 5A-C in Publication I). Also, known
baseline toxicants were classified as baseline toxicants in all four bioassays, having the ratio

between 1C1o,basetine and ICio , i.e., toxic ratio (TR) less than 10 (Verhaar et al., 1992; Maeder et
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al., 2004). The alignment of experimental cytotoxicity along the baseline toxicity QSARs and
verification using known baseline toxicants demonstrated the validity of the proposed baseline
toxicity QSAR. Even organic acids aligned well with the QSAR (Figure 5C in Publication I)
although the linear relationship between Kiipw and Kssaw was not satisfied for organic acids.
Therefore, the proposed baseline toxicity QSAR is applicable for chemicals with broad range of
hydrophobicity and speciation, but more reliable prediction model might be required for organic
acids. The derived models for baseline toxicity can be applied to investigate whether chemicals
act on target endpoints via specific MOAs or merely via baseline toxicity arising from
hydrophobicity. The baseline toxicity QSAR for SH-SYS5Y cells (eq. 1) will be used for this

specificity analysis of observed effects in neurotoxicity assays in the following chapters.
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3. Neurotoxicity

3.1 Neurite outgrowth inhibition and cytotoxicity

3.1.1 Method development

In vitro models and assay condition were optimized to develop an assay for evaluating effects on
neurite outgrowth and cytotoxicity of single chemicals and environmental samples. For routine
environmental monitoring, high-throughput method is required for testing many samples (Escher
et al., 2021), hence the cellular assay was established in 384-well plate format. Human
neuroblastoma SH-SYS5Y cells and Lund human mesencephalic (LUHMES) cells were
considered as candidate in vitro models for the assay. While LUHMES cells are mainly used in
neurite outgrowth assay in the current DNT in vitro battery (Masjosthusmann et al., 2020), poly-
L-ornithine/fibronectin-coated plates were required for LUHMES cells and the plates had to be
coated manually, which could result in inconsistent quality of test plates. SH-SYS5Y cells enabled
high-throughput screening due to their easier maintenance and availability of commercial 384-
well plates with appropriate coating for adherence of cells. Therefore, SH-SYSY cells were
selected for screening effects on neurite outgrowth in this thesis. SH-SYSY cells were
differentiated with retinoic acid for the assay since more mature neuron-like characteristics and
longer neurites can be achieved after differentiation (Biedler et al., 1973; Pahlman et al., 1984;
de Medeiros et al., 2019). Experimental procedure is outlined in Figure 5 and the detailed
protocol of the neurite outgrowth assay can be found in Publication I1. The effect concentrations
leading to 10% reduction in cell viability (ICi0) and neurite length (EC10) were experimentally

determined in differentiated SH-SYSY cells using image analysis.

3.1.2 Chemical selection criteria

Diverse chemicals were selected to assess their effects on neurite outgrowth and cytotoxicity.
Potential DNT chemicals based on literature were selected in Publication Il and chemicals that
occurred in water samples with possible DNT were tested in Publication II1. Endpoint-specific
controls are highly specific positive controls for neurite outgrowth (Krug et al., 2013; Aschner et
al., 2017). Four organic endpoint-specific controls were tested: including narciclasine,
colchicine, cycloheximide, and rotenone. Six established baseline toxicants (Vaes et al., 1998)

were applied as negative controls. Since pesticides have been reported to cause DNT (Grandjean
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and Landrigan, 2006), pesticides from diverse MOA classes were also investigated for their
effects on cell viability and neurite outgrowth: acetylcholinesterase (AChE) inhibitors, nicotinic
acetylcholine receptor (nAChR) agonists, y-aminobutyric acid (GABA)-gated chloride channel
blockers, voltage-gated sodium channel agonists, mitochondrial toxicants, and redox cyclers.
Furthermore, the U.S. National Toxicology Program (NTP) provided a proof-of-concept
chemical library (Behl et al., 2019) for testing neurotoxicity and DNT, and some chemicals from
this NTP library were additionally tested for comparison: polycyclic aromatic hydrocarbons
(PAH), polybrominated diphenyl ethers (PBDE), polychlorinated biphenyls (PCB), and
endocrine disrupting chemicals (EDC). Most importantly, environmental chemicals that were
detected in water samples and presumed to cause high neurotoxic effects were also included as

test chemicals (detailed selection strategy in method section and Figure S1 in Publication III).

SH-SY5Y cells

= s 72h - 24h 5 24h -
Differentiation > Seeding Dosing Detection
All-trans retinoic acid 384-well plates

Cell viability Neurite length

Image analysis
Figure 5: Experimental procedure of neurite outgrowth assay using differentiated SH-SY5Y
cells. Effects of single chemicals or environmental samples were tested in 384-well plates for 24
h and cytotoxicity (ICi0), and neurite outgrowth inhibition (ECi0) were measured using image

analysis.

3.1.3 Specificity of effects compared to baseline toxicity

Chemicals with potential DNT are often hydrophobic, such as some pesticides and PCBs
(Grandjean and Landrigan, 2006). Hydrophobic chemicals can elicit toxicity at low nominal
concentration, but the toxicity may occur from baseline toxicity due to their hydrophobicity

rather than from specific MOAs of the chemicals. Hence it was investigated whether toxicity of
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potential DNT chemicals was driven by specific MOAs or just by baseline toxicity. To compare
baseline toxicity level with observed effect level, cytotoxicity ICi0 and neurite outgrowth
inhibition ECi0 were measured for the test chemicals in neurite outgrowth assay using SH-SY5Y
cells. Baseline cytotoxicity (ICi0,paseline) Was predicted from Diipw(pH 7.4) using the baseline
QSAR developed for differentiated SH-SYSY cells as outlined in the previous chapter. By
comparing the effect concentrations, toxic ratio TR and specificity ratios SR were derived as
specificity measures of chemicals (Maeder et al., 2004; Escher et al., 2020) as visualized in

Figure 6.

SRbaseiiﬂe
Neurite outgrowth

inhibition (EC,)
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Figure 6: Baseline cytotoxicity (ICio,aseline), cytotoxicity (ICio), and neurite outgrowth inhibition
(EC10) were predicted or measured in SH-SYS5Y cells. The effect concentrations were used to
calculate toxic ratio (TR) and specificity ratio (SR), which quantify specificity of the observed
effects.

Since baseline toxicity is the minimal toxicity, any enhanced cytotoxicity observed above
the baseline toxicity would mean that the chemicals can act through specific MOAs (including
also reactive and uncoupling). To quantify the enhanced level, toxic ratios (TR; eq. 2) can be
calculated based on the ratio between experimental cytotoxicity ICio and predicted baseline
cytotoxicity ICiobasetine (Verhaar et al., 1992; Maeder et al., 2004). Typically, chemicals with 0.1
< TR < 10 are considered as baseline cytotoxicants while those with TR > 10 indicate that the

chemicals can cause cytotoxicity via specific MOAs.

IC i
TR: 10,baseline (2)
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Analogously, SRuascline (€q. 3) was calculated to quantify how specifically chemicals can
act on neurite outgrowth compared to predicted baseline toxicity. It enables to identify whether
specific MOAs other than baseline toxicity contribute to the observed effects on neurite
outgrowth. Since baseline toxicity is independent of cell type, SRbaseline can quantify any
enhanced toxicity in neuronal cells compared to the nonspecific toxicity (Delp et al., 2021). In
line with the definitions by Escher et al. (2020), the effects were considered as “neuronal-

specific” toxicity when SRbaseline > 10.

IC10 baseli
SRbaseline= — (3)
ECyo

Most of the hydrophobic chemicals (log Diipw > 4) were classified as baseline toxicants,
which means that the hydrophobic chemicals caused both cytotoxicity and neurite outgrowth
inhibition via baseline toxicity (Figure 7). Considering higher TR and SRbaseline that were
observed for more hydrophilic chemicals (log Diipw < 4), hydrophilic chemicals were more likely
to act through specific MOAs and show enhanced toxicity on both cell viability and neurite
outgrowth compared to baseline toxicity. The enhanced toxicity on cell viability and neurite
outgrowth was distinct for endpoint-specific controls. Excess toxicity was also observed for
some pesticides and pharmaceuticals, indicating and/or confirming the specificity of their
MOAs. In contrast, highly hydrophobic chemicals with log Diipw > 4 (e.g., 4 PAHs, 3 PBDEs, 5
PCBs, and some pesticides) did not show excess toxicity or even inactive up to ICio, baseline.
Although many hydrophobic chemicals triggered toxicity in a nonspecific manner, they were
highly potent considering their ICi0 and ECio, which were as low as those for some chemicals
with highly enhanced toxicity. Our results agree well with the previous observation that highly
hydrophobic chemicals elicit strong toxic effects but act through baseline toxicity (Escher and
Hermens, 2002). However, neurite outgrowth is only one of many DNT endpoints and may not
capture all potential DNT driven by a chemical. Thus, it is possible that DNT of pesticides is not
mediated by neurite outgrowth inhibition and hence, their effects on other DNT endpoints should

be further investigated.
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Figure 7: Effect concentrations for cytotoxicity and neurite outgrowth inhibition in
differentiated SH-SYSY cells against hydrophobicity of test chemicals as described in
Publication 1. (A) Visualization of the toxic ratio TR as well as the specificity ratios SReytotoxicity
and SRoasetine. (B) Cytotoxicity as a function of the hydrophobicity expressed as liposome-water
partition constants (Diipiw). The turquoise circles indicate the experimental inhibitory
concentration for cytotoxicity (ICio). (C) Neurite outgrowth inhibition as a function of Diipnw.
Magenta triangles indicate concentration leading to 10% reduction in neurite length (ECio). In
both plots (B) and (C), endpoint-specific controls were encircled in blue and known baseline
toxicants were encircled in black. Thick grey lines correspond to predicted baseline toxicity
causing 10% cytotoxicity (ICio.baseline) as a function of Diipw. The grey areas indicate when TR or

SRbaseline 18 between 0.1 and 10.

3.1.4 Neurite-specific environmental pollutants and their modes of action
While neuronal-specific chemicals can cause enhanced toxicity compared to baseline toxicity, it
is still questionable whether chemicals have specific MOAs that only target neurite outgrowth or
rather inhibit neurite outgrowth secondarily via cytotoxicity. Therefore, another specificity
measure SReyiotoxicity (€q. 4) can be used to quantify specific effects on neurite outgrowth
compared to measured cytotoxicity, which has been already applied for DNT assessment (Krug
et al., 2013; Delp et al., 2018). Chemicals with SReytotoxicity > 4 were considered as “neurite-
specific” according to Krug et al. (2013) and the validity of threshold was confirmed based on

independent calculation in our test system using SH-SYS5Y cells.
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SRcytotoxicity:

To verify the threshold based on experimental values, endpoint-specific controls and
baseline toxicants were considered. All four endpoint-specific controls (narciclasine, colchicine,
cycloheximide, and rotenone) showed neurite-specific effects, and narciclasine was selected as
an assay positive control considering its highest potency. In addition, all six confirmed baseline
toxicants did not show neurite-specific effects but an exception was provided by 4-chloro-3-
methylphenol whose SReytotoxicity Was 4.3, just above the threshold. This chemical can be
considered as nonspecific considering its standard error, hence the chemicals close to the
threshold must be regarded with caution.

Among all the tested chemicals, 20 neurite-specific chemicals were identified as neurite-
specific chemicals. The neurite-specific chemicals were highly diverse, ranging from pesticides
to industrial chemicals. More than half of the neurite-specific chemicals were pesticides such as
ACHhE inhibitors, redox cyclers, and mitochondrial toxicants. It was noteworthy that 9 neurite-
specific chemicals had known or potential AChE inhibitory potency and 3-hydroxycarbofuran
showed the highest SReytotoxicity among the AChE inhibitors. Reversible AChE inhibitors were
more likely to show more neurite-specific effects than irreversible AChE inhibitors, whose
SReytotoxicity were just above the threshold.

All tested chemicals were plotted together based on their SReytotoxicity and SRbaseline to
visualize neurite- and neuronal-specific toxicity (Figure 8). Highly neurite-specific effects were
more likely to be accompanied by the neuronal-specific effects and specificity of effects was
rather low for only neurite-specific chemicals. Only neuronal-specific effects were observed for
4 chemicals (clarithromycin, 2-naphthalene sulfonic acid, citalopram, and roxithromycin), which
indicates that there exist specific MOAs for these chemicals that are not specific for neurite
outgrowth and rather generally affect the cells. Since the mechanistic understanding is limited for
DNT, potential MOAs of the test chemicals leading to the neurite-specific effects were assigned.
The neurite-specific chemicals were marked in different colors according to their MOAs
potentially relevant to the effects on neurite outgrowth in SH-SYS5Y cells (Figure 8B). The

details of uses, MOAs, and SRecytotoxicity for neurite-specific chemicals are given in Table 1.
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Figure 8: Specificity ratios SReytotoxicity and SRuaseline for the tested chemicals as described in
Publication II. (A) Chemicals grouped based on neurite-specific effects (SReytotoxicity > 4) and
neuronal-specific effects (SRbaseline > 10). (B) Neurite-specific chemicals and their specific

modes of action (MOA) that can be linked to effects on neurite outgrowth.

Potential MOAs relevant to neurite-specific effects are relatively well known for the two
endpoint-specific controls, narciclasine and colchicine. Narciclasine is known to activate Rho
signaling pathway, which can lead to contraction of actomyosin. Colchicine could possibly act
on neurite outgrowth via binding to tubulin and inhibiting microtubule polymerization. Another
neurite-specific chemical mebendazole, which was detected in water samples, is known to bind
to the colchicine-binding site of tubulin and thus could provide additional evidence that
inhibition of microtubule polymerization can be related to neurite-specific effects.

Two neurite-specific chemicals had specific MOAs relevant to protein: cycloheximide
and 1,2-benzisothiazolin-3-one (BIT). Cycloheximide showed the highest SReytotoxicity among all
tested chemicals and is known to interfere with translocation leading to protein synthesis
inhibition. BIT is an electrophile and could react with enzymes or other proteins (Lindner, 2004;

Silva et al., 2020), which can be linked to one of the molecular initiating event (MIE) established
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for DNT, chemical reactivity to seleno proteins (Spinu et al., 2019). However, the MOAs
relevant to proteins appear to trigger rather general toxicity and hence, the direct relationship
between the MOAs and the observed DNT effects should be further investigated.

Two mitochondrial toxicants, rotenone and azoxystrobin, showed neurite-specific effects.
The degree of specificity differed considerably between rotenone and azoxystrobin, which can be
explained by difference in MIE (Delp et al., 2019). In LUHMES cells, it was observed that
inhibitors of mitochondrial complex I such as rotenone were more likely to show neurite-specific
effects compared to complex III inhibitors such as azoxystrobin, which agrees well with our
observation.

Two redox cyclers, which were also expected to affect cells rather in a general way,
showed neurite-specific effects with extremely neuronal-specific effects. This indicates that their
specific MOAs contributed to neurite-specific effects as well as strongly to cytotoxic effects.
Reactive oxygen species (ROS) generated by redox cycling can not only generally affect cell
health but also were reported to regulate cytoskeleton dynamics in neuronal cells, which might
cause the specific effects on neurite outgrowth (Wilson and Gonzalez-Billault, 2015).
Furthermore, there are other specific MOAs reported for diquat and paraquat, such as reversible
ACHhE inhibition (Seto and Shinohara, 1987; Ahmed et al., 2007), and hence it is possible that
their effects might be contributed by multiple MOAs.

Six of 21 neurite-specific chemicals are known to inhibit AChE reversibly and their
SReytotoxicity was higher than those from irreversible AChE inhibitors. The role of AChE in neurite
outgrowth can be explained by both enzymatic and non-enzymatic way (Grisaru et al., 1999;
Paraoanu and Layer, 2008). In enzymatic way, released ACh could bind to AChE of adjacent
cells for directing neurite outgrowth. In case of non-enzymatic way, AChE can support the
neurite outgrowth via structural interaction with extracellular matrix proteins. However, the
difference in specificity between reversible and irreversible AChE inhibitors should be further
elucidated and involvement of other specific MOAs should also be taken into account.

For the remaining of neurite-specific chemicals, their underlying MOAs were not clear or
the degree of specificity was not very high with low SRcytotoxicity. Considering that several
chemicals had SReytotoxicity just above the threshold of 4 including the known baseline toxicant 4-
chloro-3-methylphenol, an extended set of chemicals would need to be investigated to improve

reliability of the thresholds for SReytotoxicity.
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3.1.5 Application to environmental samples

The neurite outgrowth assay has not been applied for testing environmental samples. To confirm
the applicability of the assay for environmental monitoring and identify major effect drivers in
the environment, two types of water samples were investigated. Surface water from small
German streams was collected, which has diverse contamination source such as agricultural
runoff, street runoff, and combined sewer overflows. Wastewater treatment plant (WWTP)
effluents collected across Europe were also considered together. The collected water samples
were extracted and enriched to be tested in the bioassays and their effect concentrations were
expressed in the unit of relative enrichment factor (REF; Lwater/Lbicassay). Mixture effects were
measured in SH-SYS5Y cells for 85 surface water and 55 WWTP effluent samples. In parallel, the
environmental samples were used for chemical analysis to quantify concentrations of single
chemicals in individual samples. The detailed sampling, analytical method, and detected
concentrations for individual chemicals can be found in Publication III.

ICio for cytotoxicity was from REF 2.8 to 147, which means that the samples were
enriched 3 to 147 times to cause 10% cytotoxicity (Figure 9A). The ECio for neurite outgrowth
inhibition ranged from REF 0.2 to 80 and the effects on neurite outgrowth were observed even
when the samples were diluted by a factor of 5. For the samples with similar cytotoxicity, the
toxicity on neurite outgrowth tended to be stronger in surface water than in WWTP effluent. The
ratio between the two effect concentrations, i.e., SReytotoxicity, was calculated as done for single
chemicals but the specific effects observed in the environmental mixtures would be contributed
by many chemicals at low concentrations. Overall, surface water showed higher SRecytotoxicity
(from 1.8 to 49; median 5.8) than WWTP effluents (from 0.9 to 8.2; median 3.7) as shown in
Figure 9B.

While bioassays can capture entire mixture effects, chemical analysis can identify and
quantify individual chemicals. Hence, these two methods can complement each other in the
iceberg modelling approach to explain the mixture effects (Escher, 2020; Neale et al., 2020).
BEQbio and BEQchem were derived to explain neurite outgrowth inhibition and expressed in the
unit of a reference chemical, i.e., narciclasine, which resulted in narciclasine-EQbio and
narciclasine-EQchem. The measured mixture effects on neurite outgrowth were converted into

narciclasine-EQbio and compared with narciclasine-EQchem. Narciclasine-EQchem Was calculated
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Figure 9: Specificity of effects on neurite outgrowth compared to cytotoxicity for surface water
and WWTP effluent samples in SH-SYS5Y cells as described in Publication I11. (A) Comparison
of ICi0 and ECio and (B) their ratio SReytotoxicity as an indicator of specificity of effect. Empty
symbols in (A) stands for no effects on cell viability or neurite outgrowth. The bold line in (B)

indicates median values. The figure was taken from Publication III.

based on measured effect concentrations of single chemicals from previous chapter and detected
concentrations from chemical analysis. The details of calculation method can be found in
Publication I1I.

Overall, measured mixture effects for neurite outgrowth inhibition were explained by
detected chemicals to higher extent in WWTP than in surface water (Figure 4 in Publication III).
Up to 4.4% and 6.8% of the measured mixture effects on neurite outgrowth (narciclasine-EQbio)
were explained by the estimated effects from detected chemicals (narciclasine-EQchem) for
surface water and WWTP effluent, respectively. In the highly explained samples more than 1%,
there were dominant contributors such as BIT or 7-diethylamino-4-methylcoumarin, which were
highly detected at the micromolar level. Except for a few samples, less than 1% of measured
mixture effects were explained by single chemical effects for majority of samples. This can be
because the number of chemicals included for iceberg modelling was too small and/or substantial
amount of the mixture effects were driven by chemicals below detection limits or transformation

products.
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The contribution of individual chemicals to narciclasine-EQchem Was pronounced when
the chemicals were detected at high concentration and/or had high effect potency. The major
effect drivers are visualized in Figure 10 for surface water and WWTP effluent samples. In case
of surface water, the average contribution to narciclasine-EQchem Was the highest for
azoxystrobin, followed by N-methyl-2-pyrrolidone, benzothiazole, and propiconazole. The main
drivers were highly different between samples for surface water and this could be related to
diversity of source contributions for individual surface water samples, i.e., the different level of
contribution by agricultural runoff, street runoff, and combined sewer overflows. In case of
WWTP effluent, mebendazole dominantly contributed to the narciclasine-EQchem in half of the
WWTP effluent extracts, indicating mebendazole was one of the major effect drivers in WWTP
effluent. There were overlapping mixture effect contributors for both sample types such as
propiconazole and 7-diethylamino-4-methylcoumarine. While management in a broad scale
should be discussed to reduce level of these overlapping chemicals, site-specific identification of
effect drivers would be useful to investigate the contamination source and potential reduction of
emissions from these sources. More assessment information of single chemicals can facilitate

further identification of effect drivers in the environment.
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Figure 10: Iceberg modelling to explain mixture effects on neurite outgrowth of surface water
and WWTP effluent. Measured mixture effects in bioanalysis (narciclasine-EQvio) were
explained by detected chemicals with effect measurement (narciclasine-EQchem). Top 15
contributors (pie graph) were identified based on average contribution of individual chemicals to

narciclasine-EQchem.
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Toxic unit (TU) is an analogous concept that can be applied for cytotoxicity and can be
calculated without reference chemicals (Kuzmanovic et al., 2015; Beckers et al., 2018). The
detailed discussion on TU can be found in Publication III. In addition, the iceberg modelling was
performed for identical samples in three reporter gene assays (AhR-CALUX, PPARY-BLA, and
AREc32). Their sensitivity of responses and the major effect drivers were compared with those

observed in SH-SYS5Y cells, which also can be found in Publication II1.
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3.2 Acetylcholinesterase inhibition

3.2.1 Assay optimization
SH-SYS5Y cells were used to analyze AChE inhibition since they are known to express AChE,
mainly localized on neurites and partially distributed throughout the cytoplasm (Thullbery et al.,
2005). AChE inhibition assay using SH-SYSY cells has been already used for testing single
chemicals, which identified many potential AChE inhibitors from the Tox21 chemicals (Li et al.,
2021). However, in the original assay protocol, exposure duration was too short to capture
inhibitory effects and medium containing FBS, which can be another source of AChE, was used
for the assay, hence the assay condition needed to be optimized to improve assay quality and
performance. The condition of AChE inhibition assay was optimized based on well-known
ACHhE inhibitors. Three irreversible inhibitors organothiophosphates (OTP) and their metabolites
organophosphates (OP) as well as three reversible inhibitors carbamates were investigated for the
optimization process. SH-SYSY cells were differentiated to increase AChE activity and assay
performance (de Medeiros et al., 2019). The assessment of AChE in SH-SYSY cells will allow
comparison to other neurotoxicity endpoints such as neurite outgrowth that can be measured in
the same cell line. Since commonly used assay medium for AChE inhibition assays contains FBS
and showed AChE activity themselves, the optimized assay medium was not supplemented with
FBS to avoid any bias in AChE inhibition assessment. The assay was performed as outlined in
Figure 11 and the detailed experimental procedure can be found in Publication IV

Nine AChE inhibitors were tested from 1 to 6 h to assess the changes in ECso over time
and determine a suitable exposure duration (Figure 1 in Publication IV). ECsos, the effect
concentrations causing 50% of maximum AChE inhibition, decreased over time for all six
irreversible AChE inhibitors. ECso for AChE inhibition rapidly decreased at 1 to 2 h exposure
and leveled off after longer exposure for the irreversible inhibitors. In contrast, ECsos for AChE
inhibition reached the minimum level already after 1 h of exposure for two reversible inhibitors,
carbofuran and 3-hydroxycarbofuran. This faster reaction observed from carbamates can be
explained by their structural similarity to ACh, leading to good structural fitness and also due to
the high reactivity of carbamyl moiety at the AChE active sites (Fukuto, 1990). Unlike
carbofuran and 3-hydroxycarbofuran, the ECsos of another reversible inhibitor carbaryl increased
over time. This decrease in toxicity may be explained by degradation of carbaryl by hydrolysis

(Sogorb et al., 2004; Sogorb et al., 2007). Continuous degradation of carbaryl would occur when
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they are released from AChE by reverse reaction, leading to decrease in exposure concentration
over time. Given that the maximal AChE inhibition was achieved after a few hours for OPs and
decreasing AChE inhibition over time observed for carbaryl, 3 h was determined as the optimal

exposure duration.

SH-SY5Y cells

T o P 72h . 48h : i
All-trans retinoic acid 384-well plates

Absorbance measurement for 30 min Q
= pTy r time ( ) )
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Figure 11: Experimental procedure of AChE inhibition assay using differentiated SH-SY5Y
cells. Effects of single chemicals or environmental samples were tested in 384-well plates and
inhibitory effects on AChE activity (ECso) were measured based on absorbance using Ellman’s
assay (Ellman et al., 1961). Active AChE can react with detection mixture and the product with
color can be formed while inhibited AChE cannot react with the detection mixture and no change

in absorbance can be observed.

3.2.2 Loss of volatile AChE inhibitors from the test system

Chemical loss can occur during exposure due to partitioning of chemicals to the air space in
bioassays. According to Escher et al. (2019), volatility cutoff based on medium-air partition
constants (Kmedium/air) Was defined, which can be used to predict chemical loss due to
volatilization of chemicals in cellular bioassays. Chemicals with log Kmedium/ir < 4 were
considered as volatile chemicals in the assays with 24 h exposure duration. When Kmedium/air was
predicted for the 9 AChE inhibitors (Table 1 in Publication IV), three OPs (chlorpyrifos,
diazinon, and parathion) had log Kmedium/air from 3.6 to 5.1, which are below or just above the
previously defined cutoff (Figure 12). Therefore, the chemical loss of the three OPs was
investigated using solid-phase microextraction and chemical analysis. Assay medium was spiked

with the chemicals at the highest test concentration used in the previous chapter (maximum
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Figure 12: Medium-air partition constants (Kmedium/air, colored squares) of 9 AChE inhibitors were
estimated from air-water partition constants (Kaw) and octanol-water partition constants (Kow) as
described in Publication IV. The previously established volatility cutoff (24 h exposure) of
Kmedium/air of 10* is shown as solid red line, which is also applicable for the 3 h-AChE inhibition
assay. The white broken line (Kmedium/air of 10°) indicates there can be partial losses after exposure
duration of 24 h. CPF: chlorpyrifos; DZN: diazinon, PT: parathion; CPO: chlorpyrifos-oxon; DZO:
diazoxon; POE: paraoxon-ethyl; CF: carbofuran; 30H-CF: 3-hydroxycarbofuran; CB: carbaryl.

The figure was taken from Publication IV.

solubility level) and incubated in closed vials or 384-well plates for 3 h and 24 h. The incubation
was performed without cells to exclude possible loss from metabolism by cells.

The chemical amount after incubation was compared with the initial amount of chemicals
at 0 h (Figure 2 in Publication IV). When chemicals were incubated in closed vials, the amount
of chemicals stayed relatively stable over 24 h of incubation (> 85% of initial level). After
incubation of chemicals for the assay duration of 3 h in the 384-well plates, no cross-
contamination was observed, and the majority of chemicals stayed in the medium from spiked
wells for all three OPs (> 66 % of initial level). After 24 h of incubation, a higher loss was
observed in the spiked wells for the chemicals with lower Kmedium/ir. While parathion (log
Kmedium/air = 5.1) still had 71.5% of the initial level, chlorpyrifos (log Kmediunvair = 3.6.) only had
28.7% left in the spiked wells. In case of diazinon (log Kmedium/air = 4.4), 46.3% of the initial level
was found in the spiked wells and in addition, slight cross-contamination was observed in
neighboring wells (< 5%). This trend agrees well with the previous observation that chemicals

with Kmediunvair closer to the volatility cutoff were more likely to contaminate the neighboring

29



wells while chemicals with Kmedium/air well below the cutoff, i.e., highly volatile chemicals, were
just volatilized without cross-contamination (Escher et al., 2019).

Considering that more than 64% of chemicals were retained in the medium and no cross-
contamination was observed for our assay duration of 3 h, the previously defined volatility cutoff
appears also valid for the AChE inhibition assay. However, it should be noted that substantial
loss can occur for the three typically tested OPs in bioassays with longer exposure duration.
Therefore, it could be necessary to verify the exposure concentrations using chemical analysis

for testing of single chemicals with log Kmedium/air close to the cutoff of 4.

3.2.3 Evaluation of the influence of DOC on the cell-based AChE inhibition

assay

In purified enzyme-based AChE inhibition assay, DOC suppressed AChE inhibition by a chemical
and this can hinder precise toxicity assessment of environmental samples (Neale and Escher, 2013).
This disturbance by DOC was not observed in several other cell-based bioassays, which could be
explained by intracellular localization of target sites (Neale 2014). In SH-SY5Y cells, AChE are
anchored to outer side of cell membrane or localized in the cytoplasm (Thullbery et al., 2005;
Hicks et al., 2013), hence it was investigated whether disturbance by DOC can be avoided in a
cell-based AChE inhibition assay. A commercially available DOC, Aldrich humic acid, was used
to represent DOC according to Neale and Escher (2013) and paraoxon-ethyl was applied as a
reference chemical.

Constant level of paraoxon-ethyl was exposed together with different concentrations of
Aldrich humic acid, and the inhibition of AChE by paraoxon-ethyl was not influenced by
Aldrich humic acid up to 68 mgc/L (Figure 13A). This means no suppressive effects by humic
acid were observed, which is in contrast to what was observed previously in free enzyme-based
ACHhE inhibition assay where humic acid suppressed AChE inhibition already at 2 mgc/L (Neale
and Escher, 2013). In purified enzyme-based AChE assays, DOC is freely accessible to AChE,
hence freely interact to each other. However, in the cell-based assay, AChE location in the
cellular assay, i.e., on outer cell membrane or in cytoplasm, could sterically protect it from DOC
and potential nonspecific binding.

Binary mixtures of paraoxon-ethyl and two surface water extracts with different AChE

inhibitory potency were tested to confirm the applicability of cell-based assay to environmental
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samples. The mixtures were prepared in different combination ratio, leading to different levels of
DOC in each mixture. If DOC has an impact on AChE inhibition in the assay, unexpected mixture
effects, i.e., deviation from the predicted mixture effect, would be observed. Based on an
isobologram approach (Altenburger et al., 1990), paraoxon-ethyl and the water extracts were
mixed in different effect concentration fractions and tested in serial dilution as described in
Publication IV. Briefly, experimental toxic units (TU) were derived from the ECso of the individual
binary mixtures with diverse combination ratio. The sum of TUs would be ideally 1 (dotted line in
Figure 13B) when the chemicals or samples behave in a concentration-additive manner without
any synergistic or antagonistic effects. As a result, the experimentally derived TU aligned well
with the concentration addition prediction for binary mixtures of water extracts and paraoxon-ethyl
(Figure 13B), which indicates there was no interference with AChE inhibition by DOC. On the
contrary, in a previous isobologram study using purified AChE, the experimental TUs highly
deviated from the predictions for binary mixtures of oxidized parathion with water samples,
indicating disturbance by DOC (Neale and Escher, 2013). Therefore, SH-SY5Y cell-based AChE
inhibition assay can avoid the artefacts from DOC, and hence can be applied for screening of DOC-

rich environmental samples.
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Figure 13: (A) Relative inhibition of AChE after 3 h-exposure to constant level of paraoxon-ethyl
and variable concentrations of Aldrich humic acid (dissolved organic carbon, DOC) in SH-SY5Y
cells. (B) Isobolograms for binary mixtures of paraoxon-ethyl with two surface water extracts in
AChHE inhibition assay using SH-SYS5Y cells. The line indicates the concentration addition
prediction. Each data point represents the TU derived from ECso of individual binary mixtures as

described in Publication IV.
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3.3 Neurotoxicity in environmental samples

Thirteen surface water samples were selected based on detected concentrations of known AChE
inhibitors and analyzed for AChE inhibition potency. The samples were partially impacted by
agricultural runoff, hence several insecticides including AChE inhibitors (e.g. carbaryl, diazinon,
pirimicarb) were detected in the samples. The identical surface water samples were already
tested for the neurite outgrowth assay, hence the responses were compared together.

ECso for AChE inhibition by surface water samples ranged from REF 0.5 to 10 (Figure
14). This means that 50% of AChE inhibition was achieved by diluting samples by two to
enriching them up to ten times. The samples with higher detected concentrations of AChE
inhibitors did not necessarily show higher inhibitory potency on AChE. This may indicate the
presence of unknown AChE inhibitors and/or mixture effects from many chemicals below the
detection limit.

Since ICio for cytotoxicity and ECio for neurite outgrowth inhibition were available for
these samples, the responses were compared for the three endpoints: neurite outgrowth, AChE
inhibition, and neuronal cytotoxicity (Figure 14A). Among the 13 samples, the strongest effects
were observed for AChE inhibition in 6 samples despite the shorter exposure duration than the
other two endpoints. The responses of neurite outgrowth inhibition were the most sensitive in the
remaining 7 samples, and the lowest effect concentration among all endpoints and extracts was
observed for neurite outgrowth inhibition when the extract was diluted by a factor of 5.

When the two specific endpoints were compared with cytotoxicity (Figure 14B), ECso for
ACHhE inhibition was independent of cytotoxicity while samples with lower ECio for neurite
outgrowth inhibition were more likely to also exhibit lower ICio0. This could be because neurite
outgrowth represents a more apical endpoint than the AChE inhibition. Although AChE
inhibition was proposed as a specific MOA that can drive neurite-specific effects for single
chemicals in chapter 3.1.4, the effects on neurite outgrowth would be contributed by other
diverse mechanisms from many micropollutants in the mixtures. Hence, there was no clear
relationship observed between effect concentrations for AChE inhibition and neurite outgrowth

inhibition.
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Figure 14: Comparison of effect concentrations for three endpoints after exposure to surface
water extracts in SH-SYSY cells. REF: relative enrichment factor (REF; Lwater/Lbioassay). Samples

were sorted according to their effect concentrations for neurite outgrowth inhibition in (A).
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4. Implications

4.1 Key findings

In this thesis, applicability of baseline toxicity was expanded for chemicals with various
hydrophobicity and speciation (Publication I). This QSAR formed the basis to quantify
specificity of the effects on neurite outgrowth. A major observation was that the toxicity of
hydrophobic chemicals is likely to be triggered by baseline toxicity (Publication II). Neurite-
specific toxicants were identified, and their specific MOAs were compiled and linked to neurite-
specific effects (Publication II and III). The neurite outgrowth assay was applied for
environmental monitoring and identified major chemicals driving the effects on neurite
outgrowth in environmental mixtures (Publication III). Finally, it was demonstrated that AChE
inhibition of DOC-rich samples could be analyzed without any bias due to DOC when the cell-
based assay was used (Publication IV). Therefore, the two assays for testing effects on neurite
outgrowth and AChE could provide high-throughput tool for environmental monitoring of

neurotoxicants with the advantage of being measurable in the same cell line.

4.2 Testing strategy in bioassays for single chemicals

Typically, identical maximum dosing concentration is applied for testing of chemicals in
bioassays without considering different effect potency of various chemicals. In this approach,
often no toxic effects are observed until at the highest tested concentration, which can result in
false negative responses. Based on the proposed baseline toxicity QSAR, the minimal toxicity
level can be predicted for individual chemicals and it can be used for planning dosing
concentration. Dosing strategy for testing chemicals in cellular bioassays has been proposed
considering multiple factors (e.g., stability of chemicals, FBS content, and solubility of
chemicals), which could be considered together for the planning (Fischer et al., 2019).
Furthermore, the proposed generic baseline QSAR can be broadly applied to other bioassays
even when protein and lipid content of cells and medium are unavailable. Unlike the previous
QSAR which was only applicable for chemicals with certain ranges of hydrophobicity (0.5 < log
Kiipw < 4.5), the proposed baseline QSAR is suitable for any type of chemicals including
hydrophobic and ionizable chemicals. However, its application to organic acids needs to be

further investigated to develop more reliable prediction model. Given that the prediction of
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baseline toxicity entirely depends on Diipw(pH 7.4), more accurate, ideally experimental
Diipw(pH 7.4) would improve the confidence of the prediction.

Another limitation when testing chemicals in bioassays is that chemicals could be lost
during exposure, e.g., by volatilization, which can hinder precise quantification of their toxicity.
Volatile loss of chemicals can also lead to false negatives of the volatile chemicals or incorrect
effect concentration determination in the neighboring wells due to cross-contamination.
Therefore, a volatility cutoff should be also considered for experimental planning of testing
chemicals. The volatility cutoff at log Kmedium/air of 4 was previously defined based on cytotoxic
effects in multiple bioassays (Escher et al., 2019) and its validity was confirmed in the AChE
inhibition assay with 3 h of assay duration using chemical analysis. The volatility cutoff would
be valid for bioassays with exposure duration up to 24 h but chemicals with Kmedium/air close to the
cutoff need caution, especially when the bioassays have sensitive endpoints or the test chemical
can elicit the effects at low concentration. For volatile chemicals, alternative dosing strategy

could be used such as system with defined headspace (Birch et al., 2017).

4.3 Use of baseline toxicity to estimate the specificity of responses

The degree of toxicity of chemicals is usually estimated based on nominal concentrations that
cause certain level of effects, i.e., effect concentrations. Lower effect concentrations indicate
higher degree of toxicity, however, the degree of specificity is often not discussed properly. For
example, hydrophobic chemicals can often trigger effects at low effect concentrations for any
toxicity endpoints, but it is questionable whether the observed effects are induced by specific
MOAs of the chemicals or just by baseline toxicity arising from their high hydrophobicity.
Baseline toxicity can be the trigger of neurotoxicity particularly for hydrophobic chemicals since
they have high tendency to accumulate in the membrane (Escher and Hermens, 2002). Based on
the newly established baseline toxicity QSAR, it was observed that hydrophobic chemicals were
more likely to act on neurite outgrowth in a nonspecific manner via baseline toxicity. Similar
observation was already made for reactive but also hydrophobic chemicals (Freidig et al., 1999).
Although baseline toxicity is the minimal toxicity of chemicals, cytotoxicity can be
induced at as low as a few micromolar level via baseline toxicity for hydrophobic chemicals.
This can secondarily cause toxicity on other endpoints such as neurite outgrowth and the effect

concentration would be determined at lower level. This would indicate strong toxicity although it
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is not specific on neurite outgrowth. Likewise, neuronal-specific chemicals might not cause
neurite-specific effects but nevertheless can elicit high degree of toxicity on neurite outgrowth
due to enhanced cytotoxicity caused by specific MOAs occurred in neuronal cells.

The current DNT in vitro testing strategy use SReytotoxicity as the specificity measure and I
proposed assessment of neuronal-specific effects based on SRbaseline to complement the current
approach. While SReytotoxicity can be used identify chemicals that specifically affect neurite
outgrowth, SRuaseline €nables to identify chemicals affecting the entire neuronal cell and induce
neurite degeneration via enhanced level of toxicity compared to baseline toxicity. Since multiple
in vitro models are used to cover diverse endpoints in the current DNT testing battery, SRuaseline
enables comparison of effect potency for a given chemical between cell models and can quantify
cell-specific toxicity since baseline toxicity is independent of cell types. Furthermore, when no
cytotoxicity was observed, SRbaseline could provide a surrogate to estimate specificity and replace
the use of the highest tested concentration as reference level in specificity analysis (Delp et al.,

2018).

4.4 Modes of action for neurite-specific effects

Current DNT testing strategy recommends use of key event-based approach using in vitro cell
models (Masjosthusmann et al., 2020). Evaluation of toxicity for chemicals based on key event
level provide an efficient way to cover multiple MOAs that can provoke DNT and facilitate
assessment of toxicity for single chemicals. A wide variety of neurite-specific chemicals with
also high environmental relevance were identified in this thesis. Highly neurite-specific effects
were commonly observed for inhibitors of microtubule polymerization (e.g., mebendazole,
colchicine) and reversible AChE inhibitors (e.g. carbaryl, 3-hydroxycarbofuran). This could
provide an evidence to reveal MOAs relevant to neurite-specific effects. However, the known or
primary MOAs of the chemicals are not necessarily the only specific MOA involved in their
specific inhibition of neurite outgrowth. For example, insecticides are known to be less potent in
mammals due to species specificity and metabolic detoxification and they can induce toxic
effects in non-target organisms possibly via secondary targets (Lushchak et al., 2018). Therefore,
direct relationship between the potential MIEs and neurite outgrowth should be further
elucidated. Such efforts have already been made for mitochondrial toxicants (Delp et al., 2019;

Delp et al., 2021), which can provide evidence for establishment of AOPs for DNT. It is also
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possible that multiple MOAs arise from a single chemical and contribute to the observed
cytotoxic or neurite-specific effects. Hence, key event-based approaches and mechanistic
research should be performed complementarily.

One limitation can occur when connecting the MOAs to the observed effects in SH-
SYS5Y. SH-SYSY cells have been commonly applied as an in vitro model to test effects on
neurite outgrowth and SH-SYSY cells were selected in this study considering practical aspects to
develop high-throughput method. However, there can be an abnormal physiology due to their
tumor origin (Do et al., 2007), which could result in misinterpretation of the observed effects.
Therefore, the current DNT testing strategy recommends use of non-oncogenic cells such as
LUHMES cells. The effects observed in SH-SY5Y should be compared with those from non-

oncogenic cell models to improve reliability of the model.

4.5 Neurotoxicity observed in the environmental samples

The neurite outgrowth inhibition assay using SH-SY5Y cells was successfully applied for the
first time to water samples including WWTP effluent and diverse surface water, which
demonstrated its wide applicability. It was revealed that the mixture effects were contributed not
only by the effect potency of chemicals but also by their occurrence in the environment. Since
the assessment for single chemicals and MOA information relevant to DNT are highly limited,
testing of mixture in the bioassays would provide efficient monitoring tool to evaluate DNT
effects in the environment. Different chemicals dominated or contributed to the mixture effects
in each sample and therefore site-specific identification of effect drivers would be useful to
identify the contamination source.

The AChE inhibition assays were also successfully established for environmental sample
assessment. AChE inhibition has been widely applied as an endpoint for environmental
monitoring already but the previously measured toxicity using purified enzyme-based assays
might have been underestimated due to the suppressive effects of DOC on AChE inhibition. SH-
SYSY cell-based AChE inhibition assay was provided, which can evaluate inhibition of AChE
more precisely without disturbance by DOC. I also confirmed its applicability in environmental
samples and the inhibitory effects on AChE were observed even when the water extracts were
diluted by a factor of two. This bioassay-based monitoring would complement chemical

analysis-based approach very well considering that mixture effects of environmental samples are
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driven by many chemicals at low concentrations. Especially, there are highly specific AChE
inhibitors such as OPs and carbamates and they would contribute to mixture effects even at very
low concentrations.

Based on the complementary approach using bioassays and chemical analysis, neurite-
specific chemicals or known AChE inhibitors were detected in the environmental samples.
Considering low concentration of chemicals in the environment, chemicals with common MOA
need to reach certain level to cause effects. Hence, detection by chemical analysis does not
necessarily mean that the mixtures could elicit observable effects in the mixture. In this regard,
bioassays can complement chemical analysis since bioassay-based approach can even cover the

effects driven by chemicals below the detection limit or chemicals with unknown MOAs.
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5. Recommendations for Future Work

5.1 Diverse sources of chemical loss

Chemical loss in bioassays can occur not only from volatilization of chemicals but also from
other degradation processes. Physicochemical properties differ a lot for individual chemicals and
thus the loss can arise from diverse processes, e.g., hydrolysis, protein reactivity, and
photodegradation (Proenca et al., 2021; Huchthausen et al., 2022). Therefore, the degradation
processes in bioassays for highly degradable chemicals should be investigated to evaluate their
toxicity more precisely. In addition, in cell-based assays, uptake and metabolism by cells can
affect the effect of chemicals. In case of AChE inhibition assay, cellular metabolism of
chemicals can play an important role by increasing or decreasing their inhibitory potency on
AChE. For example, OTPs can be oxidized by cells into OPs with extremely high inhibitory
potency, hence the metabolic activity of cells and their contribution to toxicity of chemicals

should be clarified.

5.2 Diverse neurotoxicity endpoints

Neurite outgrowth inhibition and AChE inhibition were suggested as potent neurotoxicity
endpoints for environmental monitoring, but other neurotoxicity endpoints may be considered for
DNT assessment of individual chemicals and future monitoring studies. The effects on neurite
outgrowth indicate potential DNT but it may only partially explain DNT that can be induced by a
chemical and fail to detect DNT related to other key events. Therefore, consideration of diverse
DNT endpoints such as migration and synaptogenesis may allow to capture wider range of
chemicals causing DNT and make the water quality monitoring more comprehensive (Harrill et
al., 2018; Behl et al., 2019; Masjosthusmann et al., 2020). Given that the current in vitro DNT
battery is established in the context of human toxicology, the test system can be rather complex
and less high-throughput to be considered as environmental monitoring tool. Therefore, the
relevance to DNT as well as practical aspects such as high-throughput applicability should be
considered in the context of environmental monitoring. In case of adult neurotoxicity, high
environmental risk would be posed not only by AChE inhibition but also by several receptor-
mediated toxicity endpoints such as nicotinic acetylcholine receptor (nAChR) agonism and

voltage-gated sodium channel antagonism (Legradi et al., 2018). Therefore, these
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environmentally relevant endpoints can be also considered to monitor neurotoxicity in the

environment more comprehensively.

5.3 Strategies for environmental monitoring

At present, chemicals with measured effects on neurite outgrowth are limited, which makes it
difficult to identify major effect drivers effectively. Therefore, more chemicals need to be
assessed for their neurotoxicity to evaluate their contributions to mixture effects. It is not realistic
to test all detected chemicals in the environment and thus priority can be given to chemicals that
occur more frequently in the environment. Hence, chemical analysis can be applied to prioritize
chemicals for further testing. Assessment information of many chemicals can also be utilized for
derivation of so-called effect-based trigger values that may allow one to differentiate between
acceptable and poor water quality (Escher et al., 2018). If effect-based trigger values were
implemented, it can be evaluated whether the toxicity observed in surface water and WWTP
effluent would be acceptable or strict regulation is necessary to manage the water quality.
Considering that specific effects on neurite outgrowth were more pronounced for surface water
than WWTP effluent, future monitoring can be performed with more focus on surface water. In
case of the AChE inhibition assay, insecticides can be potent effect drivers for AChE inhibition,
hence the monitoring can be focused on agricultural sites. Additionally, the neurotoxicity assays
could be applied for comparative assessment of treatment option or buffer strip to manage

release of chemicals into the environment.
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ABSTRACT: All chemicals can interfere with cellular membranes

and this leads to baseline toxicity, which is the minimal toxicity any

chemical elicits. The critical membrane burden is constant for all _“Constant”

chemicals; that is, the dosing concentrations to trigger baseline CI‘ItICEt; membrane — EECERE
.. 1 : . . . urden Model

toxicity decrease with increasing hydrophobicity of the chemicals.

Quantitative structure—activity relationships, based on hydro-

phobicity of chemicals, have been established to predict nominal

concentrations causing baseline toxicity in human and mammalian m m

cell lines. However, their applicability is limited to hydrophilic i

neutral compounds. To develop a prediction model that includes

more hydrophobic and charged organic chemicals, a mass balance model was applied for mammalian cells (AREc32, AhR-CALUX,

PPARy-BLA, and SH-SYSY) considering different bioassay conditions. The critical membrane burden for baseline toxicity was

converted into nominal concentration causing 10% cytotoxicity by baseline toxicity (ICgpaseiine) Using a mass balance model whose

main chemical input parameter was the liposome-water partition constants (th /w) for neutral chemicals or the speciation-corrected

Dy, (pH 7.4) for ionizable chemicals plus the bioassay-specific protein, lipid, and water contents of cells and media. In these

bioassay-specific models, log(1/IC g peiine) increased with increasing hydrophobicity, and the relationship started to level off at log

Dyjpjy around 2. The bioassay-specific models were applied to 392 chemicals covering a broad range of hydrophobicity and

speciation. Comparing the predicted IC,qp,qlin and experimental cytotoxicity IC,,, known baseline toxicants and many additional

chemicals were identified as baseline toxicants, while the others were classified based on specificity of their modes of action in the

four cell lines, confirming excess toxicity of some fungicides, antibiotics, and uncouplers. Given the similarity of the bioassay-specific

models, we propose a generalized baseline-model for adherent human cell lines: log[1/1C g pseine (M)] = 1.23 + 497 X (1 —

e 0236 1og Diviw) The derived models for baseline toxicity may serve for specificity analysis in reporter gene and neurotoxicity assays as

well as for planning the dosing for cell-based assays.

by baseline toxicity

B INTRODUCTION toxicity depend on hydrophobicity of chemicals. Hydrophobic
chemicals can exhibit baseline toxicity at lower nominal

Modes of action (MOA) describe how toxic chemicals act on
concentrations than hydrophilic chemicals as they will

their target and can be classified into baseline, reactive, and

specific toxicity."” Principally, all chemicals cause baseline accumulate better in cell membranes than hydrophilic
toxicity because it is their minimal toxicity caused by the chemicals. The QSARs have been established experimentally
interference of the chemicals with the membrane. Chemicals from effect concentrations of confirmed baseline toxicants in
with more specific MOAs exhibit toxic effects before the aquatic animals*™® and even extended to ionizable organic
baseline toxicity occurs. Therefore, we can identify whether compounds (10Cs).”® QSAR equations for baseline toxicity

chemicals act through baseline toxicity or more specific MOA
by comparing expected baseline toxicity level and the observed
toxicity, and the ratio between these two toxicity levels is

defined as toxic ratio (TR), which is an indicator for specifici
of MOA."? (TR P g Received: May 13, 2021 i

Published: August 6, 2021
-

have also been developed for eight reporter gene cell lines
derived from human and animal cells.” The existing QSARs for

Quantitative structure—activity relationships (QSARs) for
baseline toxicity describe the relationship between nominal
effect concentrations for baseline toxicity and liposome-water
partition constants (th/w), a proxy for biomembrane-water
partition constants. Nominal effect concentrations for baseline

© 2021 American Chemical Society https://doi.org/10.1021/acs.chemrestox.1c00182
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in vitro assays were based on hydrophilic and neutral
compounds (0.5 < logKy,,, < 4.5), which limits their
application to more hydrophobic and charged organic
chemicals.

Mass balance models (MBM) can convert nominal
concentration (C,,,) into membrane concentration (C,py)
or freely dissolved concentration (Cg,.) at equilibrium, or vice
versa, by considering chemical partitioning between different
compartments of the bioassay system. C,,,,, is widely used as a
dose metric in in vitro assays, but the bioavailable portion even
from the same C,,,, may vary for a given chemical depending
on the bioassay system. This variability is believed to result
mainly from sorption of the chemicals to the biomolecules in
the medium such as proteins and lipids, which reduces
bioavailability and uptake into cells. Alternatively, C,,.,, and
Ct.. have been suggested as more accurate dose metrics than
C.om because they better reflect bioavailable concentration and
interaction at the target sites, respectively.'”"" C o leading to
baseline toxicity in cell lines, that is, critical membrane burden
(CMB) for 10% reduced cell viability, was found to be
constant at 69 mmol th_l (95% CI: 49—89) in 8 reporter
gene cell lines.” The CMB is independent of the type and
hydrophobicity of the chemicals,'"” including neutral and
charged chemicals,”®"® and is very similar across different
cell types”"’ and various aquatic species.'”"*

The mass balance models published by Armitage et al.'"* and
Fischer et al.'” described in vitro exposure based on chemical
partitioning in medium and cells. Each compartment was
composed of proteins, lipids, and water, and bovine serum
albumin (BSA) and phospholipids represented proteins and
lipids in the system, respectively. This model is applicable for
both neutral and ionizable compounds; however, the complex
behavior of anionic compounds such as specific binding to
BSA cannot be modeled simply based on this partitioning
process.'®'” This particularly matters for organic acids that are
predominantly negatively charged at the pH 7.4 of the
medium.

The aim of this study was to develop a model to predict
baseline toxicity, which has a broad applicability in terms of
hydrophobicity and speciation (Figure 1). Instead of trying to
expand the existing baseline QSAR developed based on
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Mass Balance Model (MBM)

Figure 1. Outline of the study. Chemical distribution between
medium, water, and cells was described by K, .4iym/w and Ky, in a
mass balance model (MBM). Nominal concentration causing 10%
cytotoxicity by baseline toxicity (ICgpyseine) Was predicted from
critical membrane burden (CMB) for 10% reduced cell viability
(ICyo,cmp) through MBM, and the predicted IC ;e Was compared
with nominal concentration for 10% cytotoxicity from the experiment

(ICIO,nom)'

hydrophilic known baseline toxicants, we propose a bioassay-
specific MBM to predict the nominal inhibitory concentration
for cytotoxicity (IC,,) from the constant CMB (Figure 1). The
predicted nominal baseline toxicity ICgpageline can then be
compared with experimental IC,, to identify chemicals that act
as baseline cytotoxicants in mammalian cell lines. Our
workflow includes evaluation, simplification, and application
of the model as outlined in Figure S1. Neutral (253) and
ionizable (139) compounds were included, which cover broad
ranges of hydrophobicity, speciation, and MOA. Four
mammalian cell lines were applied to simulate diverse
scenarios with different composition of cells and medium.
First, the predicted relationship between partition constants,
which is the premise of our model, was verified by
experimental partition constants. The MBM was then used
to predict IC;gpgeiine Solely based on Ky, and was applied
initially to compounds with experimental partition constants.
Lastly, the developed model was simplified for ease of
application, and TR was derived from IC;j},epne and
experimental IC, to identify baseline toxicants in the test set
of chemicals with experimental data.

B THEORY

Mass Balance Model for Baseline Toxicity. The mass
balance model outlined in Figure 1 is a nested model with just
two boxes, one for medium and one for cells.'” Each box is
made up of water, proteins, and lipids, albeit with a different
composition. Water from the medium connects cells and the
other components of the medium and mediates the
partitioning processes between the two boxes. The partitioning
between the medium and cells (K, egium/cen) can be broken up
into two partitioning processes, the partitioning between
medium and water described by the medium-water partition
constant (K,egiumw) and the partitioning between cells and
water described by the cell-water partition constant (K,)-

Within medium and cells, the chemicals can partition
between three compartments, i.e., proteins, lipids, and water,
and therefore, the K .4iym/w can be described by the partition
constants between proteins and water (Kpmtein/w) and the
volume fraction of proteins (Vi oeinmedium = Vproteinmedium/
Vinedium), the partition constants between lipids and water
(th /), and the volume fraction of lipids (thp’medium =
Viip,medium/ Vinedium), as well as the volume fraction of water
(Vfw,medium = Vw,medium/Vmedium) (e 1)'10 The analogous
equation is defined for K g/, (eq 2). 0

Kmedium/w = prrotein,medium X Kprotein/w + Vflip,medium
X Klip/w + Vfw,medium (1)
Kcell/w =prrotein,cell X I<protein/w + Vflip,cell X I<lip/w + Vfw,cell

@)
Applying a mass balance, we can then calculate the fraction of
chemicals in the medium (£ eqium €q 3) and cells (f.o, eq 4)."°

1
fmedium = 1+ Keenpw Ve
Kot Vot 3)
_ 1
Joar = 1 4 Koncdum/v Vinegim
Keapw Vet Q)

The mass balance model inside the cell” connects the

membrane concentration in the cell (Cpembrne in general or

https://doi.org/10.1021/acs.chemrestox.1c00182
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Table 1. Reporter Gene Cell Lines Evaluated and Descriptors for the Mass Balance Models Taken from Our Previous Study’

and Determined Newly for SH-SYSY”

derived number of plated cells/  mean cell number
cell lines from well” assay”
AREc32 MCEF7 2500 4300 + 290
AhR- H4lle 3000—3250 5360 + 750
CALUX
PPARy-BLA  HEK293H 4500—-5500 5940 + 760
SH-SYSY SH-SYSY 3000 3280 + 20

in

i

total volume of cells

VL ater,cell Vi roteincell Viiip,cell

Ve (nL) mL/L) (mL/L) (mL/L)
43.0 944 519 59
189 9397 559 67
17.1 887¢ 80° 34
643 942/ 47 10"

“Adapted with permission from ref 9 Baseline Toxicity and Volatility Cutoff in Reporter Gene Assays Used for High-Throughput Screening.
Copyright 2019 American Chemical Society. ®The total volume of the medium was 40 yL medium per well in 384-well plates. “Cell number is an
average between plated cells and final cell number after 24 h of exposure. dHenneberger et al.'® “Fischer et al."’ *This study.

specifically for the concentration causing 10% cytotoxicity
IC g membrane) to the total cellular concentration (C.y or
ICypcar) by eq 5 with fi, . (eq 6) being the fraction of
chemical in the lipids of the cell. The IC,y .y can then be
converted to nominal concentrations that lead to 10%

cytotoxicity, IC,, by eq 7.

_ Vflip,cell
IClO,ce]J - ICIO,membrane' f
lip, cell (5)
f 1
lip,cell — 1+ 1 Ve Kprotein/w Vprotein,cell
Kiip /v Viip,cell Kip/w  Viipcell (6)
1C V.
10, cell 1
IC,, = X =<
fcell Vinedium 1 Vee (7)

The critical membrane concentration for baseline toxicity
(CMB) corresponds to an ICjgnemprane Of 69 mM.” The
associated nominal IC;gp,cne for baseline toxicity can be
calculated by combining eqs 4, S, and 7.

Vfl 11 \74
IClO,baseline(M) = 0.69 X psce X cell
lip,cell Vmedium + ‘/cell
X [1 + Kmedium/w Vmedium
Kt Vear (8)

Since Vi egium > Vey we can simplify eq 8 to yield eq 9.
Vflip,cell x [ + I<medium/w]
fiip,cell

)

Kcell/w

Kiipiw as a Sole Descriptor of the Mass Balance Model.
In cells, the K qein/o Of neutral chemicals can be approximated
with BSA as protein surrogate (Kgga,,). The liposome-water
partition constant (K1iP /) uses liposomes as surrogate for the
cell lipids, which are mainly membrane lipids.

Kgsasw and Ky, of neutral organic chemicals can be
predicted by simple QSARs from the octanol—water partition
constant (log K,,,).">"”

V.

cell

+ ‘/cell

ICIO,baseline(M) = 0.69 X -

medium

log Kgga s = 0.71 X log K, + 0.42

(n =76, R* = 0.76, SD = 0.43) (10)
log K,y = 1.01 X log K, + 0.12
(n = 156, R* = 0.948, SD = 0.426) (11)

2102

The QSAR for Kggp/,, was linear for 1 < log K, < 7," which
agreed with the earlier observation that there was approx-
imately a factor of 20 between Kggy,,, and Kj,),, for neutral
chemicals down to log K,,, of 2, below which the Kgg,,, was
leveling off to 1.31 + 0.62.7°

The QSAR for Kj;,/,, was linear for —1 < log K,,,, < 8'% and
stayzeld virtually constant at a log K, of —1 for log K, <
-1

If eqs 10 and 11 were combined, a direct linear relationship
between Kj;,,, and Kggy ,, was obtained (K, QSAR, eq 12).

log Kygp /y = 0.72 X log Kip /oy +0.34 (12)
This means that the IC g ,saine can be predicted for chemicals,
for which eq 12 holds, merely from the log Kj;,,, and lipid and
protein content of cells and medium. Therefore, this model is
theoretically valid only for neutral chemicals. After implement-
ing the model with experimental data for neutral chemicals, we
attempted to extend it also to charged chemicals. There are
more sophisticated models based on linear solvation energy
relationships (LSER), which have been used to retrieve
physicochemical properties for the model evaluation, but the
baseline toxicity prediction model was meant to be as simple as
possible and based on as few input parameters as possible. The
log Ky, can even be substituted by the readily available log
K, (eq 11).

B MATERIALS AND METHODS

Chemicals and Partition Constants. We included 392
chemicals in the present analysis (Table SI). All chemicals are listed
together with their name, DTXSID, CAS number, and physicochem-
ical properties in Table S2. Experimental octanol—water partition
constant log K, stemmed mainly from PhysPropNCCT or were
predicted with using the OPERA model and both were retrieved from
the US EPA Comptox Chemistry Dashboard.”> The acidity constant
pK, and the fraction of neutral and charged species were predicted
with ACD/ Percepta.23

For liposome-water partitioning of the neutral species Ky,
experimental values”'®**™3! were preferred over predictions by linear
solvation energy relationships (LSER).*> If no experimental LSER
descriptors were available, the Ky, was predicted from K,,, with eq
11 (Table S2). If log K,, < —1, K, was fixed at —1.>" For IOCs
with one charged species, the distribution ratio Dy, w(pH 7.4)
considered their speciation, and experimental values were used, if
available, %107 1824262733735 o1 calculated from experimental data of
the pure species (a few predicted by COSMOmic**?) and the fraction
of neutral species (@eura) With eq 13. For the chemicals with multiple
charged species, Dy, /w(pPH 7.4) was measured directly at pH
7.4.10173% 1f only the Ky, of the neutral species was available, the
Kjp sy of the charged species was assumed to be 10 times lower (Amw
=1) and Dlip/w(pH 7.4) was calculated with eq 14.%

https://doi.org/10.1021/acs.chemrestox.1c00182
Chem. Res. Toxicol. 2021, 34, 2100-2109
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Figure 2. Relationship between liposome-water partitioning (Kj,/,) and protein (BSA)-water partitioning (Kgsa ) of (A) 18 neutral chemicals and
(B) ionizable organic chemicals (IOCs; 12 acids, S bases, and 3 multiprotic compounds). The data are from Table S2. The red line in both plots is
the Kpgay — Ky QSAR (eq 12) and does not constitute a regression of the experimental data. The black line is the 1:20 line reported to be the
approximate relationship by DeBruyn and Gobas,”® which levels off to a constant value of average log Kyss ., of 1.31 at low log K. (C)
Comparison of Dy, (pH 7.4) (L,/Ly,) with various distribution ratios D, including binding to BSA [Dyga,,(pH 7.4) (L,/Lgsa)],>" structural
proteins [Dgp(pH 7.4) (L,/kgsp)],""” and distribution between cells and water [Dey(pH 7.4) (L,/Ley)] and medium and water
[Dinedium/w(PH 7.4) (Ly/Linedium)]- The ranges (blue lines) are given for Dyeqiumyw because of nonlinear binding isotherms.”> The dotted lines

represent the mean of the depicted log Dgp,y, 10g Doy and log D
Table S3.

‘medium/’

w and the lower value at saturated binding for the medium. Data from

Dyjp /o (PH 74) = Qeyrar X Ky, (neutral species)

+ (1 -«

n

cutral) X Ky, /w(charged species)

(13)

Dy (pH 74) = Ky, /, (neutral species)

X [aneutml + lo_Amw(l - aneutral)] (14)
The binding to proteins was approximated by Kgga,,, and only
experimental values directly measured at pH 7.4'57'%"~* were used
for evaluation of the model. For organic acids, BSA is not a suitable
model for cellular proteins and therefore experimental distribution
ratios to structural proteins (Dgp.,) as well as experimental
distribution ratios between medium and water (D,,egium/,) 2nd cells
and water (D) Were also retrieved from the literature ** and are
listed in Table S3.

Experimental partition constants for, both, lipids and proteins, were
available for less than 10% of the chemicals (Table S1) and, therefore,
the mass balance model was initially applied only for these chemicals
that had both types of experimental data to judge its applicability.
After it was established that the model produced reasonable
predictions, it was applied to all chemicals that had experimental
(23% of the neutral chemicals and 29% of the IOCs) or predicted
partition constant for lipids (Table S1).

Cell Lines. Three reporter gene cell lines (AREc32, AhR-CALUX,
and PPARy-BLA) and a human neuroblastoma cell line SH-SYSY
were applied in this study (Table 1). The cell lines were obtained
from different sources: AREc32 by courtesy of C. Roland Wolf
(Cancer research UK), AhR-CALUX (H4L7.5c2) by courtesy of
Michael Denison (UC Davis, USA), PPARy-BLA from Thermo
Fisher Scientific (Schwerte, Germany), and SH-SYSY from Sigma-
Aldrich. SH-SYSY were differentiated with 10 M of all-trans retinoic
acid (Sigma-Aldrich, R2625) for 72 h before plating. The focus of the
study was cytotoxicity and only cytotoxicity was discussed for these
four cell lines. For the newly measured hydrophobic compounds
(Table S4), the reporter gene activation was additionally reported for
the sake of completion. The total volume of the cells (V) and their
V£ of water, proteins, and lipids were previously quantified or newly
calculated for the reporter gene cell lines” and measured for
differentiated SH-SYSY cells using the reported methods'® (Table 1).

Assay Medium. The medium for AREc32 and AhR-CALUX is
DMEM GlutaMAX supplemented with 10% FBS and has a protein
content VL, o ein medium Of 8:93 mL/L and a lipid content Vi, eqium Of
0.14 mL/L."® PPARy-BLA is grown in OptiMEM supplemented with
2% cs-FBS with Vi medium Of 4.84 mL/L and a lipid content
Vi medium Of 0.02 mL/L."® The Neurobasal medium (w/o phenol-
red) for SH-SYSY was composed of 2% B-27 Supplement, 2%

2103

GlutaMAX Supplement, and was newly characterized with the
methods published previously10 resulting in a Vi ycinmedium Of 2-58
mL/L and a negligible Vfj, . qim- All medium contained 100 U/mL
Penicillin and 100 ug/mL Streptomycin, and all medium constituents
were purchased from Thermo Fisher Scientific.

Plating. The cells were plated using a MultiFlo Dispenser (Biotek,
Vermont, USA) in 384-well plates and incubated for 24 h at 37 °C
and 5% CO,. The number of cells plated is shown in Table 1. The
plates were TC-treated for AREc32, poly-p-lysine-coated for AhR-
CALUX and PPARy-BLA, and collagen I-coated plates for SH-SYSY,
and all plates were purchased from Corning (Maine, USA).

Dosing and Cytotoxicity Measurements. For the reporter gene
cell lines, chemical stocks dissolved in DMSO were dosed using a
Tecan D300e Digital Dispenser (Tecan, Crailsheim, Germany) as
described previously, and cell confluency was quantified before dosing
and after 24 h of exposure using an IncuCyte S3 live cell imaging
system (Essen BioScience, Ann Arbor, Michigan, USA). For SH-
SYSY, chemical stocks were prepared in MeOH due to their high
sensitivity to DMSO. The stocks were added into the assay medium,
and the dosing medium was diluted and dosed using a pipetting robot
(Hamilton Star, Bonaduz, Switzerland). After 24 h exposure, Nuclear
Green LCS1 (Abcam, ab138904) and propidium iodide (Sigma-
Aldrich, 81845) were added to stain total and dead cells at final
concentrations in the well plates of 10 uM and 1 uM, respectively.
The cells were stained for 1 h in an incubator, and cell viability was
derived by image analysis with the IncuCyte S3.

Cytotoxicity was expressed as % inhibition of cell viability (%
cytotoxicity) relative to unexposed cells from measurements of
confluency for reporter gene cell lines as described in detail
previously.” For SH-SYSY cells, cell viability was calculated based
on the ratio of live cell count to total cell count and its relative
inhibition to unexposed cells was determined as % cytotoxicity. The
concentration causing 10% cytotoxicity (IC,, eq 16) was derived
from the slope of the linear portion of the concentration response
curve (eq 15), which was typically linear up to a 30 to 40% effect.*!

% cytotoxicity = slope X concentration (15)
10%

IC,, =
slope

(16)

The majority of IC,, values listed in Table S2 was already published
carlier,”**™* but to expand the MBM also to more hydrophobic
chemicals, we measured 75 additional hydrophobic neutral chemicals
in AREc32, AhR-CALUX, and PPARy-BLA; the resulting IC,, values
are given in Table S4. For SH-SYSY, cytotoxicity was determined
within this study and the resulting IC,, values are listed in Table S2.
Of the total of 392 chemicals included, 271 of 381 tested chemicals
had experimental IC,, values in AREc32, 271 of 379 tested chemicals

https://doi.org/10.1021/acs.chemrestox.1c00182
Chem. Res. Toxicol. 2021, 34, 2100-2109
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in AhR-CALUX, 216 of 370 tested in PPARy-BLA, and 22 of 48 in
SH-SYSY. The ones tested but without reported IC,, values were
either tested at concentrations that were too low (Tox21 data were
dosed only up to 100 #M and were reevaluated in our previous study
with stricter quality control**) or precipitated in the assay and thus
could not be used. If precipitation occurred in the newly measured
chemicals, which was the case for 17 experiments for reporter gene
cell lines, this observation was noted in Table S4. In the case of SH-
SYSY, hydrophobic chemicals had limited solubility from low content
of proteins and lipids in the medium and, therefore, precipitates were
allowed up to the level where turbidity started to appear. This
observation was reported also in Table S4, and these chemicals with a
precipitate issue can have uncertainty in the determined IC,, values.

Toxic Ratio. The ratio between the predicted IC, for baseline
toxicity (IC,gpyceiine) and the experimental IC ), is called the toxic ratio
(TR, eq 17)." Chemicals with TR < 10 are baseline toxicants, and TR
> 10 points to an enhanced toxicity due to a specific mode of action
or reactive toxicit'y.3

_ IC]O,baseline

TR =
ICyy

(17)

B RESULTS AND DISCUSSION

Distribution Ratios. The mass balance model for baseline
toxicity relies on a predictable relationship between liposome-
water partitioning and protein—water partitioning. This
relationship was derived from published QSARs and resulted
in a linear QSAR equation between Ky, and Kgga sy (eq 12,
red line in Figure 2A). For 18 neutral chemicals with
cytotoxicity data, both experimental Kggss, and K, were
available and corresponded remarkably well with the QSAR
[Figure 2A; mean absolute percentage error (MAPE): 12.7%].
For very hydrophobic neutral chemicals, the Ky, was
approximately 20 times higher than the Kggy),, as already
reported by DeBruyn and Gobas,”® but at lower hydro-
phobicity the values came closer to each other. At low
hydrophobicity (log K,,, < 2), the Kgga ., was reported to be
1.31 on average and independent of the hydrophobicity.*’

For IOCs, their speciation at pH 7.4 should be considered to
derive distribution ratios between BSA and water (Dgg, 4,) and
between liposomes and water (Dy,,). Both experimental
distribution ratios Dggp ., (pH 7.4) and th/w(pH 7.4) were
available for 12 acids, S bases, and 3 multiprotic compounds.
Bases and multiprotic chemicals fell well into the prediction
range of the QSAR (Figure 2B; MAPE for bases: 25.1%;
MAPE for multiprotic chemicals: 26.1%), which is consistent
with earlier observations that simple mass balance models can
be applied for these types of IOCs.

However, organic acids showed much stronger binding to
BSA than predicted from partitioning to lipids (Figure 2B;
MAPE: 43.6%). To explore the relationship between
Dgsap(pH 7.4) and DHP/w(pH 7.4) for organic acids more
clearly, we evaluated more organic acids, for which no
cytotoxicity data were available, but no clearer pattern emerged
(Figure S2), the perfluoroalkyl substances having a ratio of
Dgsaw(pH 7.4) /Dy (pPH 7.4) of 10 to 1, the carboxylic acids
even higher, and the two substituted phenols divergent (10 and
1000). These divergent ratios confirm that binding of anions to
BSA cannot be described as a partitioning process. In addition,
one needs to consider specific binding to high-affinity sites on
BSA that depends on the three-dimensional structure of the
molecule and the location of the charge.” This specific binding
is saturable, which makes binding of anions to BSA
concentration-dependent.16 Therefore, there does not exist a
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simple relationship between Dygs/ (pH 7.4) and Dy, (pH
74) for organic anions. The distribution ratios between
structural proteins (SP) and water Dgp (pH 7.4) described
the binding to cell proteins much better than BSA for organic
acids,'® and their experimental Dy, (pH 7.4) were much
smaller than D, ., (pH 7.4) (Figure 2C, Table S3).

Instead of considering specific types of proteins and lipids as
surrogates for proteins and lipids in the medium and cells, the
experimental distribution ratios between cells and water
(Deerw) and medium and water (Dpegium/w) Were explored as
alternative descriptors for organic acids (Figure 2C, Table S3).
Text S1 discusses some options for how to develop models for
anions (Figure S3), but more experimental data would be
required for developing a reliable prediction model for organic
anions.

Mass Balance Model to Predict Nominal Baseline
Toxicity. As we concluded in the theoretical section,
IC gpaseline €an be predicted merely from the log Ky, and
lipid and protein content of cells and medium for chemicals,
for which eq 12 holds. For each cell line, the lipid and protein
content of cells (Table 1) and medium (M&M) is known.
Therefore, we simulated ICgp,cine (€q 9) with the MBM by
assuming that eq 12 is satisfied. In this case, the predicted
IC g paseline (€q 9) only depends on logKji, e (Figure 3A).

A. Simulated MBM with  B. MBM for neutral chemi-  C. MBM for IOCs with

CMB of 69 mM cals with experimental K experimental D
=s SH-SY5Y | SH-SY5Y |- sH-sYsY
228 prary [ 1+ PPaRry e ]+ PPARy
£ . 13 e
3= s = 1 PO
334 .}'Fau = _._".’__..,‘
a8 g
=352 { /ad
T8 v ARE L * ARE
o | + AR P + ANR
1 T T T Lol T 1
8 0 2 4 6 8 0 2 4 6 8
10gKipi logKipn 10gD; (PH 7.4)

Figure 3. (A) Simulation of IC ypme (€q 9) as a function of log
Kip/, using the mass balance model (MBM) with a CMB of 69 mM
and Kysasw — Kippw QSAR (eq 12) to obtain log Kpgay, (B)
Evaluation of the simulated MBM (A) with predicted IC;paeline
(symbols) using experimental K/ and Kgga s, with the MBM for
neutral chemicals. (C) Evaluation of the simulated MBM (A) with
predicted IC;gpqqeiine (Symbols) using experimental Dy, (pH 7.4) and
Dgsa/w(pH 7.4) with the MBM for I0Cs.

Log(1/IC g paseline) initially increased linearly with an
increase of hydrophobicity with a slope of 1, and there was
no difference in the ICgp,epn for the different cell lines
(Figure 3A). The relationship started to level off at log Ky =
2, and the flattening of the curve was most pronounced for the
assays with highest protein content in the medium (AREc32
and AhR-CALUX supplemented with 10% FBS). PPARy-BLA,
whose medium is only supplemented with 1% FBS, shows
lower ICigpgelines and the SH-SYSY have the highest sensitivity
due to the low protein content and negligible lipid content of
their medium (Figure 3A). The difference in predicted
IC o paseline Was largest between AREc32 and SH-SYSY leading
to 9-fold difference at log Kj,,, of 8.

The previously published baseline toxicity QSARs’ were
linear but can be interpolated only for 0.5 < log Ky, < 4.5.
The previous QSAR with their slopes of 0.56—0.73 overlays
the MBM in this range rather well (Figure S4), confirming the
validity of the earlier QSAR. The comparison in Figure S4
demonstrates that the QSAR cannot be linearly extended in

https://doi.org/10.1021/acs.chemrestox.1c00182
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either direction because the slope of the linear range of the
MBM at log Ky, < 2 is higher than that of the QSAR
equation, and there is further flattening at log Kj;,,, > 4.5.

The simulated MBM built on the linear relationship of
Kgsapw and Ky, (eq 12) was then compared with IC)g.eline
predicted from experimental Kggs/, and Ky, For neutral
compounds, the predictions from experimental values were
consistent with the simulated MBM (Figure 3B; MAPE ranges
in 4 cell lines between 5.8 and 7.1%), apart from the three very
hydrophobic polycyclic aromatic hydrocarbons (PAHs; benzo-
[a]pyrene, benzo[k]fluoranthene, and benzo[ghi]perylene)
that had log Kj;,/,, between 7.0 and 7.6 but log Kgg,,, only
around 4.7. The equally hydrophobic flame retardants BDE-99,
BDE-100, and BDE-153 fell much better on the MBM
prediction due to the higher log Kggy , (5.9—6.5; Table S2).
The deviation was larger for the protein-dominated SH-SYSY
medium, which confirms that most likely the cellular protein
binding of the PAHs was underestimated by log Kggy /.-

IOCs, that is, partially or fully charged organic acids and
bases, showed an inconsistent picture (Figure 3C). After
applying the speciation-corrected Dy, (pH 7.4) and
Dgga(pH 7.4) (Table S2), agreement between the MBM
with predicted and experimental distribution ratios was
excellent (ratio 0.3—1.2) for the bases (diphenhydramine,
propranolol, metoprolol, verapamil, and venlafaxine; all
positively charged at pH 7.4; the range of MAPE in 4 cell
lines: 3.1—4.2%) and the multiprotic substances (the range of
MAPE in 4 cell lines: 5.3—7.0%) including labetalol (53%
cationic, 42% zwitterionic). However, in the case of organic
acids, the predicted ICgpqciine Values were 7 to 1100 times
higher for the experimental D values (Figure 3C; the range of
MAPE in 4 cell lines: 109—105678%). The reason for this
discrepancy is the high and specific binding aflinity of organic
acids to BSA that is much higher than predicted by eq 12 as
discussed above. We tentatively developed a simplified MBM
model for organic acids based on experimental D),
D edium/w and Dgp),, values, which is preliminarily due to the
lack of a sufficient number of data and described in Text S1
and Figure S3.

Simplifying the Baseline MBM to an Empirical QSAR.
On the basis of the four bioassays, a generic model for baseline

93

IC M) =69x107*x |1+

6 % 10(0.72 log Dyjp /,,+0.34)

10,baseline

lip/w Dip /e

Despite having only one input parameter, eq 18 remains
rather complex and can be simplified into an exponential fit
equation (eq 19) for practical applications.

1Og[l/IClO,baseline(M)] =a+bX (1 - e—C logD“P/W(pH 7-4))
(19)

This model (eq 19) with the fit parameters in Table 2 is
visually indistinguishable from eq 18 and can be used for
predictions for cell lines, where no protein and lipid contents
are available, and the medium has not been characterized
under the condition given above. In the same way, the
bioassay-specific MBM was also simplified into exponential fit
equations using best-fit values (Table 2).

Despite partitioning processes being rather complex and
different between neutral chemicals and IOCs, there appears to
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Figure 4. Simulation of hydrophobicity dependence of the MBM with
CMB of 69 mM. Comparison of the bioassay-specific models (eq 9
with eq 12 as input) by specific cells and medium and a generic model
(thick red line, eqs 18 or 19; mammalian cells, FBS content of
medium up to 10%, 24 h exposure in 384-well plate format).

toxicity was established for the following assay condition:
mammalian cells, FBS content of medium up to 10%, and 24 h
exposure in 384-well plate format (Figure 4). The generic assay
condition was determined by averaging the volume fraction of
proteins and lipids of the four cell lines (Vf,ein,cen of 6% and
Vi of 1%) and assigning typical medium composition

proteinmedium Of 0-3% and Vi oqum of 0.001%) and total
volume of cells V_y; of 30 nL in 40 yL medium (V,,.4ium)- The
determined volume fraction for the typical assay conditions
was substituted into eq 9 and expanded to IOCs by exchanging
Ky With Dy, yielding an equation with only one input
parameter, th/w(pH 74) (eq 18, “(pH 7.4)” omitted for
simplicity).Figure 4 compares the bioassay-specific simulations
from Figure 3A with the simulations for a generic cell and a
generic media (eq 18). The lipid and protein content of the
medium had a larger influence on the curve shape for more
hydrophobic chemicals (Figure 4). The cell composition seems
not to have a large influence on the model (simulation not
shown).

0.003 x 10007218 Pip/v+03%) 4 107D 4 0.99

0.06 x 107 8P t03 4 107D, 4+ 0,93

(18)

be a common relationship between log Dy, (pH 7.4) and
log(1/IC g paseline) independent of the type of chemical and
specific for each bioassay combination of cells and medium.
Therefore, our simplified model could be applied pragmatically
as an “empirical QSAR” for anchoring the measured effects in
baseline toxicity. Although the relationship between Dy, (pH
7.4) and Dggy (pH 7.4) was not satisfied for organic acids
(Figure 2B), even organic acids aligned with the predictions of
the empirical QSAR (eq 19).

Deriving TR for Classification. IC,y,,in Was predicted
using the bioassay-specific empirical QSAR for neutral and
ionizable compounds and was compared with experimentally
determined IC,, to calculate TR (Figure 5). As our empirical
QSAR entirely depends on Dy, w(PH 7.4), more reliable
Dy, (pH 7.4) would improve the confidence of our

https://doi.org/10.1021/acs.chemrestox.1c00182
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Table 2. Empirical QSAR for Baseline Toxicity: Best-Fit Values from Exponential Fit Equation of Mass Balance Model (MBM)

for Baseline Toxicity with Eq 19

best-fit values (eq 19)

bioassay cells medium a b c
generic” generic cell generic medium 123 4.97 0.236
AREc32 MCEF7 DMEM glutamax + 10% FBS 1.25 4.01 0.281
AhR-CALUX H4lle DMEM glutamax + 10% FBS 1.25 4.02 0.280
PPARy-BLA HEK293H optiMEM + 2% FBS 1.27 4.71 0.241
SH-SYSY SH-SYSY (differentiated) neurobasal medium 1.26 5.63 0.202

“Mammalian cells, FBS content of medium up to 10%, 24 h exposure in 384-well plate format.
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(empty symbols) Dy, (pH 7.4) overlying the plot of the MBM prediction. Comparison of experimental IC,, with IC g pgeiine for (D) neutral, (E)

cationic and multispecies, and (F) anionic chemicals.

prediction. Due to the limited availability of experimental
th/w(pH 7.4), we took a weight-of-evidence approach to
derive th/w(pH 7.4), which means that experimental values
were preferably used over predicted values (LSERD or K,
QSAR) (Table S2). A challenge in our approach is that we
cannot decide a priori if these chemicals act only as baseline
toxicants. Therefore, we also had to take an iterative weight-of-
evidence approach and calculate the toxic ratio for all
chemicals and evaluate how many classify as baseline toxicants
and if that would align with absence of a known specific mode
of action. Likewise for those with a TR > 10 it was checked if
they have a known specific mode of action.

A general observation can be made from Figure 5 that the
more hydrophobic a chemical is, the more likely it is classified
as baseline toxicant. Such an observation has been made even
for reactive chemicals that are also hydrophobic,” suggesting
that they might mainly act in the membrane, where they
accumulate, rather than on their specific target site.

Classification of Neutral Compounds. Among 59
neutral chemicals with experimental th/w(pH 7.4), exper-
imental IC,, of 51 chemicals fell within a factor of 10 of the
ICgpaseline prediction of the MBM and followed the bent
baseline toxicity-hydrophobicity curve very well (Figure SA).
These S1 chemicals could be classified as baseline toxicants
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(TR < 10), while the remaining 8 chemicals indicated specific
MOA with TR > 10 in one or more cell lines (Table S5). For
further 194 chemicals with predicted Ky, the majority also
aligned well with the prediction of the MBM (Figure SA).
Eighty-eight percent (110/125) were baseline toxicants in
AREc32, 79% (99/125) in AhR-CALUX, 80% (80/99) in
PPARy-BLA, and 83% (10/12) in SH-SYSY (Figure SD, Table
S5). All 7 confirmed baseline toxicants by Vaes et al.” fell in the
range of 0.1 < TR < 10 either with predicted or experimental
Dy (pH 7.4) and, therefore, were successfully classified as
baseline toxicants in all cell lines (experimental IC,, was only
available for 6 baseline toxicants in PPARy and SH-SYSY)
(Figure SA).

Nineteen neutral chemicals (4 chemicals with experimental
and 15 with predicted Kj;, ) had a TR > 10 in AREc32, 32 (6
chemicals with experimental and 26 with predicted Kj;,,) in
AhR-CALUX, 22 (3 chemicals with experimental and 19 with
predicted th/w) in PPARy-BLA, and 2 (all with predicted
th/w) in SH-SYSY (Figure SD, Table S5). Many of those were
just around 10, so the TR are quite uncertain given that the
partition constant had been predicted. Therefore, we only had
a closer look at 21 chemicals whose TR exceeded 50 at least in
one cell line. Interestingly, fungicides including diverse
strobilurins, dithianon, and isopyrazam were mainly affecting

https://doi.org/10.1021/acs.chemrestox.1c00182
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the AhR-CALUX, which could be potentially explained by
differences in metabolic capacity of the three cell lines.
Especially, strobilurin fungicides showed high TR in AhR-
CALUX ranging from 562 to 9176, and they are inhibitors of
the electron transport chain in mitochondria and are therefore
potent general toxicants."”*® In all three reporter gene cell
lines, a cancer medicine etoposide showed high TRs between
230 and 271. The antimicrobial agent 1,2-benzisothiazolin-3-
one had TRs between 25 and 95 and the fungicide octhilinone
had TRs between 19 and 142 in all reporter gene cell lines.
Some insecticides had rather high TRs in the reporter gene cell
lines, but Dy, sw(PH 7.4) was predicted, leading to uncertainty
of the TR prediction. 3-Hydroxycarbofuran, a metabolite of the
acetylcholinesterase inhibitor carbofuran, had a TR of 84 in
SH-SYSY, and the fungicide azoxystrobin also had a TR
around 20 for SH-SYSY. The observed specific toxicity of these
chemicals could be aligned with their known mode of action.

Classification of 10Cs. The IC,, of cationic and
multispecies IOCs with experimental th/w(pH 7.4) generally
followed the trend of the empirical QSAR (Figure SB, Table
S6), but the TRs exceeded 10 for many bases and even 50 for a
few bases, namely pindolol, irbesartan, and metoprolol (Figure
SE, Table S6). A very large TR was predicted for some
medicines, including antibiotics and didecyldimethylammo-
nium, but the th/w(pH 7.4) for those were predicted and
hence uncertain.

A similar picture was seen for the organic anions (Figure SC,
Table S6) with the majority following the empirical QSAR
with the exception of highly hydrophilic anionic chemicals,
whose Dy, (pH 7.4) were predicted. Among the 25 organic
acids with experimental th/w(pH 7.4), 19 chemicals were
baseline toxicants with TR < 10 and only 6 chemicals showed
TR > 10 in one or more cell lines. Especially the substituted
phenols (2,4-dinitrophenol, bromoxynil, and dinoterb) had TR
> 10 (Figure SF), which is consistent with their specific mode
of action of uncoupling. Many of the highly hydrophilic
charged chemicals had TRs exceeding 100, but these results are
uncertain because in all cases the th/w(pH 7.4) values were
merely predicted and the empirical QSAR uncertain at low
th/w(pH 7.4) values.

Two anionic compounds, hexachlorophene and 3,3’,5,5'-
tetrabromobisphenol A, were tested in SH-SYSY, and both
showed TR even lower than 0.1 (Figure SC, Table S6). This
could be due to sorption of compounds to the plates, which
was not considered in our prediction model. Larger sorption
capacity to the well plastic can be observed especially in the
medium with low content of lipids and proteins,”" which is the
case for SH-SYSY. Furthermore, a positively charged surface of
collagen-coated plates could serve as a sink for anionic
compounds in SH-SYSY. The interaction with coating
materials especially matters for SH-SYSY as a large area was
uncovered with cells due to a low number of cells used in the
assay (Table 1), and collagen has gositively charged amino
acids at a pH value lower than 9.0.°> Also, chemicals can be
metabolized to less bioactive products, and IC;, of these
chemicals will also be higher than IC;g},sejine and hence may
result in TR < 0.1.

H CONCLUSION

The developed empirical QSAR would help to predict baseline
toxicity of chemicals simply based on their hydrophobicity and
is applicable even for chemicals without experimentally

determined partition constants simply based on the K, but
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precision and accuracy increase when experimental partition
ratios to cell lipids and proteins were used. This empirical
QSAR is suitable for any type of chemicals including
hydrophobic and ionizable chemicals but needs to be applied
for organic acids with caution. The generic model derived from
average of our assay condition provides a prediction tool that
can be applied broadly to other bioassays with conditions
comparable to our assays.

Specificity of MOA can be quantified by comparing the
actual toxicity of chemicals with predicted baseline toxicity
from the empirical QSAR. The prediction of baseline toxicity
also can provide the evidence to determine reasonable dosing
concentration considering an expected minimal toxicity level,
not merely testing the same concentration over diverse
compounds with different toxicity levels.
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Abstract

Early life exposure to environmental chemicals can cause developmental neurotoxicity (DNT). The impairment of key neu-
rodevelopmental processes such as neurite outgrowth inhibition can be used as endpoints for screening of DNT effects. We
quantified neurite-specific effects using the ratio of effect concentrations for cytotoxicity and neurite outgrowth inhibition
(SR yrotoxicity)- Baseline cytotoxicity, the minimal toxicity of any chemical, was used to quantify enhanced cytotoxicity (toxic
ratio, TR) and neuronal-specific toxicity (SRy,.ine) By comparing baseline cytotoxicity with the effects on cell viability and
neurite outgrowth, respectively. The effects on cell viability and neurite length were measured based on image analysis in
human neuroblastoma SH-SY5Y cells. Baseline cytotoxicity was predicted from hydrophobicity descriptors using a previ-
ously published model for SH-SYSY cells. Enhanced cytotoxicity and neuronal-specific toxicity were more often observed
for hydrophilic chemicals, which indicates that they are more likely to act through specific modes of action (MOA) on cell
viability and neurite outgrowth. Hydrophobic chemicals showed a tendency to act through baseline toxicity without showing
specific or enhanced toxicity, but were highly potent considering their low effect concentrations for both cytotoxicity and
neurite outgrowth inhibition. The endpoint-specific controls (narciclasine, colchicine, cycloheximide, and rotenone), two
carbamates (3-hydroxycarbofuran and carbaryl), and two redox cyclers (diquat and paraquat) showed distinct neurite-specific
effects (SR yooxicity > 4)- By comparing neurite-specific effects with enhanced cytotoxicity, one can explain whether the
observed effects involve specific inhibition of neurite outgrowth, other specific MOAs, or merely baseline toxicity arising
from hydrophobicity.

Keywords Developmental neurotoxicity - Neurite outgrowth - Specificity - Enhanced toxicity - Pesticides

Introduction

The developing nervous system is vulnerable to exposure
to environmental chemicals (Giordano and Costa 2012).
Despite the high relevance for human health, developmen-
tal neurotoxicity (DNT) is only conditionally considered in
chemical safety assessment by current OECD test guideline
(OECD TG 426). These test guidelines represent in vivo test
with developing rats and are very demanding in terms of
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animal numbers and labor. Therefore, in vitro bioassays may
serve as animal-protective and time- and resource-efficient
alternatives to animal testing and enable high-throughput
screening of environmental chemicals for routine assessment
of DNT. Due to the diversity in molecular initiating events
(MIE) leading to DNT and limited mechanistic information
of the cellular toxicity pathways leading to DNT, the key
neurodevelopmental processes are considered as endpoints
for testing DNT in vitro rather than the assessment of MIEs
(Bal-Price et al. 2015; Lein et al. 2005; Smirnova et al.
2014). Neurite outgrowth, in particular, is an important step
in the differentiation of the nervous system as the basis for
connectivity and function of neural network in the nervous
system, and diverse in vitro models are available to assess
effects on neurite outgrowth (Masjosthusmann et al. 2020;
Radio and Mundy 2008).

DNT has been reported for many environmental chemi-
cals, in particular, pesticides (Bjorling-Poulsen et al. 2008;
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Grandjean and Landrigan 2006). Pesticides control pests
through diverse mechanisms and many insecticides target
specific sites in nervous system such as acetylcholinester-
ase (AChE), acetylcholine receptor (AChR), voltage-gated
sodium channel, and y-aminobutyric acid (GABA) receptor
(Casida 2009; Lushchak et al. 2018). DNT of pesticides in
non-target organisms is supported by experimental and epi-
demiological evidence (Bjorling-Poulsen et al. 2008), and
commonly used pesticides were confirmed to inhibit neurite
outgrowth in PC-12 cells (Christen et al. 2017). Especially,
many pesticides of concern for DNT in humans or animals
provoked effects in multiple DNT-related endpoints in DNT
in vitro testing battery (Masjosthusmann et al. 2020).

In vitro tools have been applied to screen toxicants caus-
ing DNT and capture the specific effects on neurite outgrowth.
The U.S. National Toxicology Program (NTP) provided a
proof-of-concept chemical library (Behl et al. 2019) for test-
ing neurotoxicity and DNT, and high-throughput screening for
neurite outgrowth inhibition has been performed on these NTP
library compounds (Delp et al. 2018; Ryan et al. 2016). These
screening studies quantified specificity of the DNT effects by
comparing the ratio between effect concentrations or bench-
mark concentrations derived for neurite outgrowth inhibition
and cytotoxicity, and demonstrated that specific effects on
neurite outgrowth inhibition can be distinguished from gen-
eral cytotoxic effects. Masjosthusmann et al. (2020) applied
multiple DNT assays to chemicals presumed to be develop-
mental neurotoxicants and negative controls, and the endpoints
related to neurite morphology were the most sensitive in 11%
of 119 chemicals if the neuronal network formation assay was
excluded and 7% of 60 chemicals if it was included (Masjos-
thusmann et al. 2020). While specificity of DNT was evaluated
by comparing the effect concentrations to levels of cytotoxicity
in these studies, the distance to levels of baseline toxicity, which
is the minimal toxicity of any chemical, can provide further
understanding of the observed DNT effects.

Baseline toxicity represents a nonspecific mode of action
(MOA) and results from membrane interference of chemi-
cals. Baseline toxicity is driven by hydrophobicity of chemi-
cals, and can be assessed and predicted easily in experimen-
tal systems with a partition-based exposure, but is applicable
to any organism and cell type. The interference of chemi-
cals with membranes leads to a critical membrane burden
causing 10% cytotoxicity that was reported to stay constant
(69 mmol'Llip‘l) over diverse mammalian cells (Escher et al.
2019). Accordingly, a quantitative structure—activity rela-
tionship (QSAR) was developed to predict nominal concen-
tration of baseline cytotoxicity for multiple in vitro assays
including also human neuroblastoma SH-SYSY cells (Lee
et al. 2021). Hydrophobicity—described by partition con-
stants between liposomes (membrane bilayer vesicles) and
water (K, )—serves as a single descriptor of the baseline
cytotoxicity QSAR (Lee et al. 2021).

@ Springer

The predicted baseline cytotoxicity has been applied to
estimate how potent the observed toxicity is for the target
endpoint compared to the minimal toxicity, and the enhanced
toxicity over baseline cytotoxicity indicates the involvement
of specific MOA (Escher et al. 2020). The current approach
using cytotoxicity as a reference for DNT is useful to quan-
tify how important neurite outgrowth is compared to general
cytotoxic effects on neuronal cells that integrate all modes of
action leading to cytotoxicity. In contrast, baseline toxicity
is independent of cell type (or organism), and, therefore, can
provide additional metrics to quantify any elevated toxicity
that occurs in neuronal cells compared to nonspecific effects
from baseline toxicity. Many pesticides are highly hydropho-
bic, and hence, they already provoke strong toxic effects via
baseline toxicity. However, it has not been explored yet if
pesticides exert specific MOA leading to enhanced cytotox-
icity or toxicity to the target endpoint compared to baseline
cytotoxicity in the neuronal cells. Therefore, these addi-
tional measures considering baseline toxicity can provide
further details to the current approach considering the ratio
of effects on neurite outgrowth to cytotoxicity.

We aim to identify the degree of specificity and elevated
cytotoxicity of effects for pesticides and environmental chemi-
cals on neurite outgrowth. Differentiated SH-SYS5Y cells were
used to test the effects of chemicals on cell viability and neu-
rite outgrowth. Effect concentrations were then compared to
predicted baseline cytotoxicity using QSAR developed for
differentiated SH-SYSY cells (Lee et al. 2021). SH-SY5Y
cells can be differentiated into more mature neuron-like cells,
and retinoic acid is commonly applied for differentiation
(Agholme et al. 2010; Biedler et al. 1973; Kovalevich and
Langford 2013; Pahlman et al. 1984). The cell viability and
neurite length were measured by image analysis. The focus
was set on pesticides that target nervous system or energy
metabolism. For comparison, we included the assessment of
endpoint-specific controls, i.e., highly specific positive con-
trols for neurite outgrowth (Aschner et al. 2017; Krug et al.
2013), including narciclasine, colchicine, cycloheximide, and
rotenone, all of which are natural plant-derived chemicals.
Confirmed baseline toxicants (Vaes et al. 1998) were applied
as negative controls. Additional chemicals from the NTP (US
National Toxicology Program) library such as endocrine dis-
rupting chemicals were also tested for comparison. The test
chemicals were then classified based on their specific effects
on neurite outgrowth.

Materials and methods
Chemicals

Endpoint-specific positive controls for neurite outgrowth
(Aschner et al. 2017), known baseline toxicants (Vaes et al.
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1998), and pesticides with diverse MOAs (Casida 2009) and
some endocrine disrupting chemicals (EDCs) were tested
in this study (Table S1). Additionally, polycyclic aromatic
hydrocarbons (PAHs), polybrominated diphenyl ethers
(PBDEs), and polychlorinated biphenyls (PCBs) from the
NTP library were tested for comparison (Table S2). The
chemical stocks were prepared in methanol. For chemicals
with higher water solubility, methanol was evaporated under
a stream of nitrogen gas prior to adding the appropriate
amount of assay medium. For chemicals with low solubil-
ity, the stock solution was directly added to dosing medium
and the final concentration of methanol in assay plates was
limited to a maximum of 1% which was found to not cause
any effects on cell viability and neurite outgrowth inhibition.

Selection of cell model and cell culture

SH-SYSY cells and Lund human mesencephalic (LUHMES)
cells were considered as candidates for developing high-
throughput screening assay detecting effects on neurite out-
growth. LUHMES cells are currently used to test effects
of chemicals on neurite outgrowth in DNT in vitro battery
mainly and they have the advantage of a non-oncogenic ori-
gin (Masjosthusmann et al. 2020). In the present study, we
selected SH-SYSY cells for screening effects on neurite out-
growth because of their easier maintenance and availability
of commercial 384-well plates with appropriate coating for
adherence of cell monolayers.

SH-SYS5Y cells (Sigma-Aldrich, 94,030,304) were cul-
tured at 37 °C in 5% CO2 in incubator. Growth medium con-
sisted of 90% of DMEM/F12 (Gibco, 11,320,074) and 10%
of heat-inactivated fetal bovine serum (Gibco, 10,500,064)
with 100 U/mL penicillin and 100 pg/mL streptomycin
(Gibco, 15,140,122). Cells were used from passage 5 only
up to passage 15 to avoid senescence.

Plating cells and dosing

Before the assay, SH-SYSY cells were differentiated in flasks
for 72 h using 10 uM all-trans retinoic acid (Sigma-Aldrich,
R2625). The differentiation medium was composed of Neu-
robasal™ medium with phenol-red (Gibco, 21,103,049)
supplemented with 2% B-27™ Supplement (Gibco,
17,504,044), 2 mM GlutaMAX™ (Gibco, 35,050,061),
and 100 U/mL penicillin and 100 pg/mL streptomycin. For
seeding and dosing, phenol-red free Neurobasal™ medium
(Gibco, 12,348,017) was used as differentiation medium.
The differentiated cells were plated at density of 3,000
cells/well in Collagen I-coated 384-well plates (Corning,
354,667). 30 uL medium containing differentiated cells
and 10 uM all-trans retinoic acid were added into each well
using a MultiFlo™ Dispenser (Biotek, Vermont, USA). The
last two columns of each plate were used as control with or

without cells. The seeded cells were incubated for further
24 h in the incubator.

Dosing medium was prepared either by directly adding
chemical stocks or blowing down stock solution with nitro-
gen gas. The dosing medium was then diluted in serial or
linear dilution, and 10 pL of diluted dosing medium was
transferred to the plates using a pipetting robot (Hamilton
Star, Bonaduz, Switzerland). Eleven concentrations were
tested with two technical replicates for each chemical, and
exposure concentrations were selected based on predicted
baseline toxicity and adjusted in case limited solubility was
observed. We allowed turbidity only up to the level it started
to be observed by eyes and these chemicals with turbid-
ity issue are flagged. In each assay plate, narciclasine and
MeOH were included as positive control (Aschner et al.
2017; Delp et al. 2019) and solvent control, respectively.
The tests were repeated at least in three independent experi-
mental runs for the chemicals which showed effects on the
first test set. The inactive chemicals were not tested further,
but the predicted baseline cytotoxicity values are noted in
Table S2. After dosing, the cells were kept in the incubator
for 24 h.

Neurite outgrowth measurement

Neurite length was measured and analyzed in phase-con-
trast image by an IncuCyte® S3 live cell imaging system
(Essen BioScience, Ann Arbor, Michigan, USA). After
24 h exposure, phase-contrast images were recorded in each
well with a 10X objective lens, which imaged 36% of the
well area. The total neurite length per image was quantified
by IncuCyte® NeuroTrack software module (Fig. S1), and
the neurite length relative to control was used to express
the effects on neurite outgrowth. The cells got clustered or
partially detached in the wells where most cells were dead;
therefore, the neurite length was not normalized by the cell
numbers to avoid possible artifacts. In case significant stimu-
lating effects were observed in neurite outgrowth, total neur-
ite length divided by total cell counts was also evaluated for
comparison to exclude artifacts from different cell numbers
and verify the stimulating effects observed in original data
analysis.

For quality assurance, phase-contrast images were taken
from each well at 30 min after seeding to quantify artifacts
caused by scratches on the plate bottom or fine dust fluff.
When this background signal was higher than three times the
standard deviation of the mean background signal, the image
was flagged and checked if any artifacts were observed.

Viability test

After capturing phase-contrast images, Nuclear Green™
LCS1 (Abcam, ab138904) and propidium iodide
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(Sigma-Aldrich, 81,845) were used to stain total and dead
cells, respectively. The stains were diluted in phosphate-
buffered saline (PBS) to make the final concentration of
10 uM Nuclear Green™ LCS1 and 1 uM propidium iodide.
10 uL of the mixture was added into each well with a multi-
channel pipette and the plates were incubated for 1 h in the
incubator. Fluorescence images were derived with a 10X
objective lens in green (excitation wavelength: 460 nm;
emission wavelength: 524 nm; acquisition time: 300 ms) and
red (585 nm; 635 nm; 400 ms) fluorescence channel. The
stained cell objects were counted with Basic analyzer mode
in IncuCyte® S3 software (Fig. S1), and cell viability was
calculated by dividing the number of live cells (total-dead
cells) by those of total cells. The decrease in cell viability
compared to unexposed cells was defined as cytotoxicity.

Data evaluation

The analysis model for the concentration—-response curves
(CRC) was selected among three models: a linear regression
model, a log-logistic model, and the Brain—Cousens model
(Brain and Cousens 1989; Ritz et al. 2015).

CRC typically shows linearity up to 30% effect level and
the effect concentration can be derived from the slope of
interpolation line as described previously by Escher et al.
(2018) using Eq. (1).

% cell viability or neurite length

= 100% — slope X concentration (M), (1)

Data up to 30% eftect level were included in linear CRC
analysis when no plateau was observed. The concentration
leading to 10% cytotoxicity (IC,,) and 10% neurite out-
growth inhibition (EC,,) was determined using Eqs. 1 and 2

_ 10% )
107 Slope” @
10%
EC,, = .
10 slope 3)

For the log-logistic model (Eq. 4), data of all effect levels
were included for analysis and the IC,, or EC,, were derived
with the following equations:

100

% cell viability or neurite length = 100% —

calculated with error propagation according to Escher et al.
(2018).

The Brain—Cousens model is for hormetic U-shaped
curves and was also applied to whole data using the drc
package in R studio version 4.0.4 (Brain and Cousens 1989;
Ritz et al. 2015). The equation that used for Brain—Cousens
model is

d — ¢ +f X concentration(uM)
1 + exp(b(log(concentration(uM)/e))’
(6)
where the concentration is given in micromolar units (uM),
and b, c, d, f, and e are adjustable parameters. The param-
eter f quantifies the degree of hormesis, that is, stimulating
effects and a higher f implies stronger hormetic effect. The
derived best-fit values of model parameters were used as
input parameters to calculate EC for stimulating effects
(i.e., 110% of controls) and inhibiting effects (90% of con-
trols). EC,,, for inhibiting effects were calculated using the
ED command in R
The CRC models used to estimate effect concentrations
for cell viability and neurite length were selected based on a
decision tree as indicated in Fig. S2. Among the three mod-
els mentioned above, the linear regression model (Eq. 1) was
applied preferentially to fit CRCs of both endpoints. When the
IC,; and EC,, could not be derived with 95% confidence inter-
val from the interpolation line of linear regression or when the
data did not follow linearity (e.g., reached a plateau), a log-
logistic model (Eq. 4) was applied instead. In case of neurite
length, the Brain—Cousens model was applied for chemicals
that stimulated neurite outgrowth. When neurite length over
110% was observed in more than two independent experimental
sets, the significance of the hormesis parameter f was checked
in Brain—Cousens model and the model was applied only when
the parameter was significant (p value <0.05).

% neurite length = ¢ +

Prediction of IC,; 1,...;in. from a baseline cytotoxicity
QSAR for SH-SY5Y cells

Nominal concentrations for baseline cytotoxicity lead-
ing to 10% cytotoxicity (IC;j paseline) Were predicted with
a baseline toxicity prediction model based on a quantita-
tive structure—activity relationship (QSAR) derived spe-

ECs0 .
1 + IO(IOg < concentration(M) )X 510pe)

’ “

1 90
log ECy, = log EC,, — <slope> X log <F)> o)

Equations 1 and 4 were fitted with GraphPad prism (ver-
sion 9, San Diego, California, USA). Standard errors were

@ Springer

cifically for differentiated SH-SY5Y cells (Lee et al. 2021).
IC,, values reported here were already published and used
for application of this baseline cytotoxicity QSAR by Lee
et al. (2021). The baseline toxicity prediction model can
predict IC petine SOlely from the liposome-water partition
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constants (Kj;,,,) and more details of the baseline toxicity
prediction model are given in Text S1. The pH-corrected
liposome-water distribution ratios (D)) were used for
charged chemicals according to Lee et al. (2021).

Calculation of toxic ratio and specificity ratios

The toxic ratio (TR) is a measure to estimate if the cyto-
toxic effects of tested chemicals are caused by a specific
MOA (Maeder et al. 2004). TRs are obtained by comparing
the observed cytotoxic effects (experimental IC,,) and pre-
dicted cytotoxicity caused by baseline toxicity (IC; paseline)>
as shown in Table 1, using the equation

TR = IClO,baseline )
ICI()

@)

Chemicals with 0.1 <TR < 10 are typically classified as
baseline toxicants, and a specific MOA is suggested for cyto-
toxic effects when TR > 10 (Maeder et al. 2004)

A similar approach has been taken to calculate specific
effects on target endpoints compared to either baseline toxic-
ity or cytotoxicity for many different in vitro reporter gene
assays (Escher et al. 2020). The specificity ratio, SR o oxicity»
is the ratio between EC,, for a specific endpoint in a reporter
gene assay and the experimental IC;, for cytotoxicity
with Eq. 8

ICyy

SRcytotoxicily - FIO (8)

In case of neurotoxicity addressed in the present study, we
applied this equation using the EC, of inhibition of neurite
outgrowth and the IC,, for cytotoxicity toward differenti-
ated neuronal cell lines. An analogous equation (Table 1)
has been applied previously for the neurite outgrowth inhi-
bition assay to identify “DNT-specific” effects (Delp et al.
2018; Masjosthusmann et al. 2020) or for identification of

“neurite-specific” effects (Delp et al. 2021). Krug et al.
(2013) defined a threshold of 4 to discriminate chemicals
specifically acting on neurite outgrowth. We applied the
same threshold of 4 for identification of “neurite-specific”
effects using SR yotoxicity

The specificity ratio, SRy ,.jine- 15 the ratio of the effect
concentration (EC,) and the associated predicted IC peine
by Eq. 9

IC 10,baseline

SRbaseline = EC
10

©)

SRy ,eline €an quantify how specifically chemicals can act
on certain endpoints compared to minimal toxicity caused
by baseline toxicity and this helps identify if specific MOAs
contribute to the effects on the certain endpoints. Accord-
ing to Escher et al. (2020), SRy jine < 1 Was considered as
nonspecific, 1 <SR} .iine < 10 as moderately specific (with
high uncertainty), 10 <SRy, .jine < 100 as specific, and
100 < SRy celine @S highly specific. For the purpose of the
present study, we only used the threshold of SRy, i Of
10 to differentiate between nonspecific and specific effects.
SRy .scline Das not previously been applied for DNT. Delp
et al. (2021) had used cytotoxicity in the U20S osteosar-
coma cell line as an indicator of nonspecific toxicity to
identify “neuronal-specific” effects. We suggest that the
predicted baseline toxicity in the same cell line measured
under identical conditions (Lee et al. 2021) is an even bet-
ter descriptor of nonspecific effects. The specific effects
compared to baseline toxicity derived from SRy jine Will
be referred as “neuronal-specific” toxicity henceforth to
distinguish it from “neurite-specific” effects compared to
CytOtOXiCity (SRcytotoxici[y)

The terms “neurite-specific” SRy oxicity and “neuronal-
specific” SRy, ine allow one to differentiate between an
enhanced effect caused by direct interference with neurite

Table 1 Terminology for evaluation of effects in in vitro assays in general and for developmental neurotoxicity (DNT)

Description General definition

Reference

Definition for DNT Reference

Toxic ratio TR: specific
mode of action if TR > 10

TR=IC 10,baseline/ ICy

Specific effects relative to SR
cytotoxicity

=IC,/EC,,

cytotoxicity

Specific effects relative to
baseline toxicity

Maeder et al. (2004) Enhanced cytotoxicity of

Escher et al. (2020)

SRypaseline = IC 10 pasetine/EC10  Escher et al. (2020)

This study
neuronal cells relative to
baseline toxicity

Neurite-specific: effects of
neurite outgrowth inhibi-
tion relative to cytotoxicity

DNT-specific-
ity = ECs(viability)/
ECjsy(neurite area)

This study; Delp et al. (2021)

Krug et al. (2013); Delp et al.
(2018)

Neuronal-specific: effects of
neurite outgrowth inhibi-
tion relative to baseline
toxicity

This study; Delp et al. (2021)

@ Springer
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growth and those enhanced effects that are specific (such
as mitochondrial toxicity) but not specific to neurites but
affects the entire neuronal cell. Even chemicals that do not
show neurite-specific effects can still show enhanced neurite
degeneration compared to baseline toxicity due to neuronal-
specific effects if SRy qoxiciey <4 and SRy,geiine > 10. The
highest tested concentration was used to calculate the upper
limit of TR, TR, and lower limits of SR_yooxicity,min fOT
chemicals that only showed effects on neurite outgrowth and
no cytotoxicity. The connection between effect concentra-
tions and ratios is visualized in Fig. 1A, demonstrating that
log SRy celine =10g SR +logTR.

cytotoxicity

Results and discussion
Assay performance

Endpoint-specific controls, that is, positive control chemi-
cals for neurite outgrowth, showed high activity in the
micromolar-to-nanomolar concentration range and were
neurite-specific inhibitors of neurite outgrowth (Table 2).
Narciclasine, the assay’s positive control, inhibited neurite
outgrowth at the lowest EC,, showing the strongest effect
potency among all tested chemicals. The selection of the
endpoint-specific controls was originally based on specific
effects on neurite outgrowth observed in LUHMES cells
considering the ratio between ECs, and ICy, (Krug et al.
2013). The effect for all endpoint-specific controls (narci-
clasine, cycloheximide, colchicine, and rotenone) detected
with the present experimental setup in SH-SYSY cells

corresponded well with cytotoxicity and neurite outgrowth
inhibition observed in LUHMES cells by Krug et al. (2013),
which confirmed the performance of our assay. Although
ECs, values were derived for LUHMES cells and, therefore,
slightly higher effect concentrations were reported than the
corresponding IC,, or EC,,, in SH-SYS5Y cells, the effect
concentrations for neurite outgrowth endpoint align within
a factor of 10 (Fig. S3).

It is remarkable that neurite-specific inhibitors were also
highly neuronal-specific, that is, their TR and SR .}, Were
also very high. Only for cycloheximide neurite-specific
effects dominated over neuronal-specific effects. Narcicla-
sine, in contrast, had a TR of 6 million, which means that
it is highly toxic to neuronal cells, but the specific effect
on neurite outgrowth is moderate compared to this with a
SRcytotoxicity of 42.
Effects in relation to hydrophobicity
of the chemicals

IC,, for cytotoxicity and EC,, for neurite outgrowth inhi-
bition or stimulation were determined with best-fit model
parameters (Table S3) from the CRCs (Fig. S4). The effect
concentrations are given with the applied CRC model, cal-
culated ratios, classification, and experimental issues due
to turbidity/precipitation for all individual chemicals in
Table 2. The IC,, (Fig. 1B) and EC,, (Fig. 1C) were plot-
ted against the hydrophobicity expressed as logK;,,, and
compared with predictions for IC ,,ce1ine Calculated with the
baseline cytotoxicity QSAR (Eq. S1; Table 2).

C Neurite outgrowth inhibition

v vColchicine
8- Narciclasine
”{.. = v x SRiassline
10 — = Cycloheximide ~ Rotenone =10
1 % 6~ Diauat ias
N Q v v’ A\
® =0.1 w < Paraquat ¥ =01
e v
° 52 4 .
= R "
2

A Visualization of TR and SR B Cytotoxicity
log(1/EC1g) 8+ Colchicine
v - L
i — :.I ) Rotenone
H - arciclasine *
£ 10gSReyomiciy ;« 6
g T Diquat Cyclo-
81 Q heximid
o i® log(1/1C4q) = ;, i famy
@ i 52 A-quk &
9 i logTR 83 °
H
log(1/1C 1 paseine) 2+
I 1 I
0 2 4
logKiipaw

Fig. 1 Inhibitory and effect concentrations against hydrophobicity
of test chemicals. A Visualization of the toxic ratio TR (Eq. 7), the
specificity ratios SR yoxicity fOr neurite-specific effects (Eq. 8), and
SR} aseline for neuronal-specific effects (Eq. 9). B Cytotoxicity as a
function of the hydrophobicity expressed as liposome—water partition
constants (Kj;,,). The turquoise circles are the experimental inhibi-
tory concentration for cytotoxicity (IC,,; Table 2) with known base-
line toxicants encircled in black. (C) Neurite outgrowth inhibition as

@ Springer
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a function of Ky, Magenta triangles indicate concentration leading
to 10% reduction in neurite length (EC,,; Table 2) which were experi-
mentally determined in differentiated SH-SYS5Y cells with known
baseline toxicants encircled in black. Thick gray lines in both plots
B and C correspond to predicted baseline toxicity causing 10% cyto-
toxicity (ICgpasenine; Eq- S1) as a function of Ky, The gray areas
indicate when TR or SRy, in. is between 0.1 and 10



1045

Archives of Toxicology (2022) 96:1039-1053

b
50
g
Bt
sjstuoge &
1d € 60 T0 0 q - 0171 1 LOIT6 cOLT'T 40I8T 'L 69 1ad-+'t  pouueyo 4l
€ 90 (40 ¥'0 q - 0107 1 019  <OLTT  HO0I€Y s9 89 urrpuaytyg wnipog
1d € L0 z0 €0 g - L0ISS T 6 OL0E  OLTY Ol IS ¥§ uLpRIq
[c018¢
id € 80 S0 90 q - 01Ty T1 ‘0rTel  01G€E 01.CC 9v 8¢ UuBJ[nsopuy-o
[OTLT
1d € 01 6'S 6°¢ q - 01971 TI OLSTl 0191 O0I¥'6 e [ suoj|ns ruoid]
[01-€C SI9X20[q
d € 1l 'L 9 q - O0I€y TI “OI.T'Sl  c01TS +01.C¢ 94 (N4 [ruoxdry vdavD
- re< 61 90> 1 OI.T'T ¢ O0I€6 - (0181  ,0I8T 6C L0 urpraenqory
€ T (44 8’1 1 01.C9 4, 01.CT9 1 Ol T8 OIS 0197 €1 1l pridrurelooy
- LT< 6y 8C> 1 01T O0I.0L - G-01TDI 0Iv'E (4! €1 prdopoeryy,
- £C< Ly 1c> 1 OI-.LC ,O0I.1T - (0T8I 0101 L0 90 pudopoepruy sjstuog3e
- L'L< 1LC se> 1 0I-8¢ ,0I6¢ - 01191 -OL-T°T €0— 10— wrexoyjawery, Juovu
[,OI+1
[ (44 1'6 (¢ 1 o 0I8¢ 01€€ TI WOLETl 01T +01-0°¢€ ¢C e uoxo-sojtIkdIo[y)
I LYy 11 (¢ 1 OI.T'T 4 OLT'T 1 -016¢ 4 0I6F OL-T°T 8’1 [ [Apo-uoxorreq
I LY ¢ I's 1 0197 ,O0I.LT 1 OIS T OI€1 0169 60 I'c uoxozelq $10
I 61 1L 8¢ 1 0199 4 0I-67 1 o-0I.§9 - OIT6 +0I.6°¢ ¢C e [A1eqre) -1quyur
I LT £8¢¢C 78 1 0188 40109 1 -OI.TT 0191 OL¥'1 90 80 UBINJOQIEdAX0IPAH-¢ HUDV
[,018'T
€ T 70 20 T 40169 (010L TI 501911 ,0ILT c016C €r TP [ouaydfiuog-f
[, 01S€ [,OTT¥
€ Al €0 z0 11 0187 ,01TE¢ TI  L0I¥'€l  L0I8€ 0108 $€ e fousydiAusyd-g
z €Y Tl €0 T (0101 (0108 1 cOLOT  ,0I+4E  cO0I¥6 €e I'¢  rouaydikylow-¢-o10[y)-4
€ 91 €0 20 T  0ISY ,01Sy 1 cO019€  ,O0I€L 0L e 9¢ [ousydiA[Tv-¢
€ e 1C L0 1 -01.6°¢ 0197 1 01.¥ L OLI.I'8 +01.6°6 [ 14! SUIIUBONIN-€  gyueorxoy
€ 8’1 9C S'1 1 O0IT'T 0167 1 +016'S ¢ 0IL8 O0I-€1 90 80 [ouetakxoing-g aurpeseq
I LT1 8¥6 18 1 «Ol€Y ¢ O0I¥'E 1 ¢ OI.TY  ,0I0F 01.C¢ (44 I'v uouAoyYy
[ OTLY
Id I UL 01L8 LOLI'T T 0I0S 01Ty T1 401.TTl 4 01€€ +OLL'E v'C €1 QUIdIYII0D
[01-S6 S[oNUOod
Id [ 0LET  O16°T 9¢T1 T (O0ILL ¢019¢ TI 01291 (O01LL L0101 Lo 90 APIUIXAYOIIAD  Hyroads
I W OIST (0109 T o 019€ 4016€ 1 ¢ O19T  ,0ILT I - TI- oursepororeN  -jutodpug
ol W o S MMy My
PON  ID10FS  DF PO JIDI0FS (N D1 THETOIG) 8o -So
SpRW  UonROYIsseo
-oq dnor fAPRoOfge AUy o ML UonIqIUUI YIMoISINO 9ILINAN K101%010)KD) Krorxo} aurfeseq QWRU [BITWAYD) dnoin

Ab_o_xouo;o

AS) s10930 oyroads-aymau pue (MY Q) s100y0 oyoads-Teuoinau ‘(Y1) AI10TX0301K0 paoueyua Jo uonesynuenb Jof sonfea AI0TX0], 7 djqel



Archives of Toxicology (2022) 96:1039-1053

AJITIRIA [[90 10F SOAINO JSUOdSAI-UONEBIUIOUOD UI PIAIISQO NESJR[J :[d ‘PaAIssqo Aprqmyuone)doaid 1,

01> u::ognxm > AS T QﬁOhOo
[OpOW SUSSNO)—UTeI ¢ {[OPOW ONSISO[-50] T UOISSIIFAL Teaul| I,

K101X0101£0. K3101X0101K0. K3101%0101£0.

S € dnoig {1 > "I G p < AS 7 dnois o <Py S p <
1epow onsiSor-Soy ur ¥1g 10 OIH] 10§ (1)) [BAISIUT QOUIPYUOD %G6 ‘uoissarsar xeaur| ur Olyg 1o 01T 10§ (4S) J0110 prepue)s,
SIO3OBIq UT USALS SeM (JA) UOHEBIUIOUOD PAjsa) ISaySHy Andey] (I,

(1207) ‘T8 10 9977 UI PaQLIdSIP St paALIap d1om iy Sor pue “*ySoy,

(0141 (010
1d ¢ 80 z0 €0 T1 50188l OLI'T TI  90I1L9] 0158 o01€T pL gL owerenyd (Kxoykye-pia
v Jouayd $10)
¢ Lo 0 €00 g - L0191 T o010L ,O0LI'T ,016T 0L L9 -SIQoWoIq BIRI-SCLEE  -dnusip
¢ 0P A €0 T o01L9 (OLI'S T  OlL.LT 0107 cOI€9 e € V [oudydsig  sutopug
(019
1d I €5 OlFY 01€8 T L0197 ,01£€T TI 20106l (01TI I 1- 07— renbiq
[,-01:09 SI9[0Kd
1d 1 86 L0l4T  00bT 1 oO0L19 01Tt TI 50187 ,01Th I - 8- tenbereg xopoy
¢ e €0 o g - 0ITT T GO0ISE (O0ITH ,O0l¥€ 89 <L suoydoroyorxoH
- pe< 61 90> 1 o0IST ,01T6 - GOITOT 0181 8v  SF urqonsxoyu,
- pL< VLo 01> 1 0188 L0lLY - OISOT  (O0ISE 'y 0¥ uqonsoporIkg
- pe< vS 01> 1 L0146 40199 - 01991  019°¢€ Iy o uiqonsexonyg
- L'9< o S1> T oOLIT (OLI'T - OLEDT  ,OLT'1 e 9¢ urqonsAxootg ﬁéwﬂw
I I 16 81 T 0161 ,0l¥L T 01T c0I8€ ,010L 0T ST uIqonsAxozy  -UOYPONN
N W P w MMy Sy

PO LI0J0FS  YoF -PON LIDI0dS (OA) OTO1 ML 8o -So

JSYIeW  UOTEIYISSE[D
-y dnoin

A1101%0101K0

1046

b

&

NS Uy S ML UOnIqIYUI Y3MoISINO ALINON K1101%010)KD) Kirorxo} aurfeseq SWRU [BITWAYD) dnoin g,
w

4l

(ponunuod) z ajqer



Archives of Toxicology (2022) 96:1039-1053

1047

Many chemicals had TRs, a measure for enhanced cyto-
toxicity, between 0.1 and 10 and were classified as baseline
toxicants in SH-SYSY cells (Fig. 1B). Among 37 chemi-
cals, 70% were baseline toxicants (26 chemicals including
the 6 known baseline toxicants). The remaining 11 chemi-
cals included the 4 endpoint-specific controls and their TR
exceeding 10 indicated that specific MOAs rather than base-
line toxicity could be involved in cytotoxicity. The analysis
for diquat and paraquat is highly uncertain, because they
have double cationic charges, are very hydrophilic, and are
therefore outside the applicability domain of the baseline
cytotoxicity QSAR (Lee et al. 2021). Their logKj;,,, was
assumed to be -1 as for other very hydrophilic chemicals
(Gobas et al. 1988). This estimate still gave highly elevated
cytotoxicity with TR > 10, which is reasonable given
that they act as redox cyclers forming radicals and reac-
tive oxygen species (Bonneh-Barkay et al. 2005; Conning
et al. 1969). When we had a closer look at pesticides (24
pesticides except endpoint-specific controls), 71% of them
had TRs of baseline toxicants. The chemicals with TR > 10
were mostly observed for chemicals with logKj;,, <4, and
therefore, TR was more likely to be higher for hydrophilic
chemicals.

Similar trends with respect to hydrophobicity were
observed for neuronal-specific effects, i.e., the ratio of
IC/ paseline t0 the ECy, for neurite outgrowth inhibition
(Fig. 1C). Neuronal-specific effects were again mostly
observed for hydrophilic chemicals with logKj;,, <4.
SRy ,eine Tanged from 0.02 to 2.5 x10%, and 41% of the
tested chemicals exceeded SRy,¢jine Of 10, which is only 11%
more than those that exceeded TR of 10. When it comes to
neurite-specific effects, SRy ooxicity Fanged from 0.6 to 1370,
and high specificity was observed especially for endpoint-
specific controls, carbamates, and redox cyclers (Table 2).

Hydrophobic chemicals were mostly classified as base-
line cytotoxicants and, hence, appear more likely to trigger
both cytotoxicity and neurite outgrowth inhibition through
baseline toxicity (Fig. 1). However, they are still very potent
due to their high hydrophobicity and were with the lowest
EC,, and IC,, among the pesticides. Apart from the known
baseline toxicants, 63% of chemicals that did not act neu-
ronal-specific (SRy,gejine < 10) exceeded a logKj;,, of 4, and
IC,, and EC,, for these chemicals were close t0 IC paetine-

Enhanced effects over baseline cytotoxicity (TR
and SRbaseIine)

The tested chemicals were categorized into nine MOA
classes, and their IC) p,celines ICj9, and EC,, were grouped
in Fig. 2 by their MOA classes with an increasing K,
within each class.

The four endpoint-specific controls were extremely
neuronal-specific and showed highly enhanced cytotoxicity

(Fig. 2). Their effect potency considering nominal con-
centration was the highest among the MOA groups. TR
ranged from 81 to 6.0 X 10° and SRy i ranged from 948
to 2.5 x 10® for this group of chemicals. Narciclasine, a
toxic alkaloid found in Amaryllidaceae plants, showed the
most neuronal-specific effects (SRy, 1,0 =2-5 X 10%) and
its cytotoxicity also enhanced the most over baseline toxic-
ity (TR=6.0 x 10° among all tested chemicals. Cyclohex-
imide was also extremely neuronal-specific, which are more
contributed by specific effects on neurite outgrowth than by
cytotoxicity considering SRy oxicity > TR. In contrast, the
neuronal-specific effects were more contributed by enhanced
cytotoxicity than specific effects on neurite outgrowth for
plant-derived alkaloid colchicine and isoflavone rotenone.
The endpoint-specific controls are all naturally occur-
ring toxic substances but also have been synthesized, and
cycloheximide and rotenone were used as pesticides (Rich-
ardson et al. 2019).

All well-known baseline toxicants (2-butoxyethanol,
3-nitroaniline, 2-allylphenol, 4-chloro-3-methylphenol, 2-phe-
nylphenol, and 4-pentylphenol), which are industrial chemi-
cals, were confirmed as baseline toxicants with respect to
cytotoxicity as well as neurite outgrowth inhibition (Fig. 2).
They all showed no enhanced cytotoxicity compared to base-
line toxicity with TR from 0.2 to 1.5 and no neuronal-specific
effects SR, ,cjine from 0.3 to 2.6, which proved our assay qual-
ity as negative controls. Despite all of them lacking specific
MOAs, they differed in the effect potency by a factor of 50
for cytotoxicity (IC,,) and 70 for neurite outgrowth inhibition
(EC,,) due to the variation in hydrophobicity.

Neuronal-specific toxicity was mostly accompanied by
enhanced cytotoxicity, which led to highly elevated effect
potency for inhibition of neurite outgrowth compared to
baseline toxicity (Fig. 2). Among the pesticides, carbamates
(3-hydroxycarbofuran and carbaryl) and redox cyclers (para-
quat and diquat) showed high neuronal specificity, and high
TRs were also observed for these two groups except car-
baryl. This means that these pesticides are neurotoxic, but
that inhibition of neurite outgrowth is not the cause but a
consequence of their neurotoxic effect triggered by another
initiating event, such as potentially mitochondrial toxicity.

The hydrophobicity-dependent trends were maintained
within the same MOA group for the pesticides as TR and
SRy ,eline tended to increase with decreasing hydropho-
bicity within the group. However, except carbamates and
redox cyclers, the pesticides with determined IC,, were
mostly classified as baseline toxicants for the SH-SY5Y
cells. The two hydrophobic chemical groups (all with
logK;, >4), GABA receptor blockers (fipronil, fipronil
sulfone, a-endosulfan, and dieldrin), and sodium channel
agonists (bifenthrin, 4,4’-DDT) did not exceed TR nor SR
thresholds, and thus classified as baseline toxicants for the
tested endpoints. Highly hydrophobic chemicals such as
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Fig.2 Effect concentrations for baseline toxicity, cytotoxicity, and
neurite outgrowth inhibition or stimulation sorted by MOA class.
IC g pasetine fOr baseline toxicity (extrapolated for very hydrophilic
chemicals), ICy( ., for cytotoxicity, and EC,, for inhibiting or stimu-
lating effects on neurite outgrowth in different groups of chemicals
were shown in the order of increasing Kj;,, within each MOA class.
The test chemicals include endpoint-specific controls for neurite out-
growth inhibition (Aschner et al. 2017), known baseline toxicants

pyrethroids other than bifenthrin, PAHs, PCBs, and PBDEs
were inactive up to ICy ,qeine (Table S2). It has often been
observed that very hydrophobic chemicals are highly toxic,
but do not show any excess toxicity over baseline (Escher
and Hermens 2002). This implies that they do not bind to
specific receptors and/or that accumulation in membranes is
the dominant process.

EDCs were tested to evaluate DNT effects of typical envi-
ronmental chemicals that do not have any primary neurotoxic
MOAs. All three EDCs from the NTP library were classified
as baseline toxicants and did not show enhanced cytotoxic-
ity or neuronal-specific toxicity in SH-SYSY cells (Fig. 2).
The experimental effect concentrations for 3,3',5,5'-tetra-
bromobisphenol A were higher than the expected baseline
toxicity possibly due to uncertainty in predicted IC,g ,setine
for anionic chemicals (Lee et al. 2021).

Neuronal-specific effects can be caused not only by spe-
cific MOA affecting neurite outgrowth directly but also by
enhanced cytotoxicity. The latter case is not neurite-specific,
since their effects on neurite outgrowth just resulted from

@ Springer

(Vaes et al. 1998), pesticides with diverse mode of action grouped
into the MOA classes of acetylcholinesterase (AChE) inhibitors, nico-
tinic acetylcholine receptor (nAChR) agonists, y-aminobutyric acid
(GABA)-gated chloride channel blockers, voltage-gated sodium chan-
nel agonists, mitochondrial toxicants, redox cyclers, and endocrine
disruptors. The error bars represent the 95% confidence intervals; in
case of very small confidence intervals, error bars are hidden by the
symbol

adverse effects on overall cell health, which necessitates quan-
tification of neurite-specific effects in the following section.

Neurite-specific effects (SR yotoxicity)

For neurite-specific effects, a threshold of 4 was used to
define the specific effects on neurite outgrowth compared to
cytotoxicity (SReyoroxicity > 4)» Which was proposed by Krug
et al. (2013) and confirmed independently by our calcula-
tion (Text S2; Table S4). All chemicals with SRy oxicity > 4
had EC,,, which clearly distinguished from IC,, considering
the overlap of their average + 3 standard deviation or their
confidence interval given in Table 2.

All four endpoint-specific controls had neurite-specific
effects (Fig. 2). SR ygtoxiciy Tanged from 7.7 to 1370 for
these chemicals, which are all above the defined threshold.
Our assay control, narciclasine, inhibited neurite outgrowth
specifically (SR ooxicity =42) possibly by activation of Rho
signaling pathway which regulates actomyosin contractility.
Cycloheximide inhibits protein synthesis by interfering with
translocation step, and showed the most specific effects on
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neurite outgrowth inhibition among all the tested chemicals
with SR ooxicity OF 1370. Colchicine, a microtubule polym-
erization inhibitor, and rotenone, a mitochondrial toxicant,
showed relatively moderate specificity with SR of
7.7 and 11.7, respectively.

As expected, the six known baseline toxicants all showed
nonspecific effects on neurite outgrowth with SRy ooxicity
from 1.2 to 3.1, except for 4-chloro-3-methylphenol having
SR ytotoxicity Slightly over the threshold (4.3).

AChE inhibitors, which are used as insecticides, showed
different patterns depending on their interaction at the tar-
get site (Fig. 2). Carbamates bind reversibly to AChE to
disturb the enzymatic function, while organophosphates
(OP) bind irreversibly (Colovic et al. 2013), and both undif-
ferentiated and differentiated SH-SYSY cells are known to
express AChE (de Medeiros et al. 2019). The two revers-
ible AChE inhibitors, 3-hydroxycarbofuran and carbaryl,
showed SRy oxicity > 10 and their specificity and effect
potency for neurite outgrowth inhibition were the highest
among the tested pesticides. For the three irreversible AChE
inhibitors, SR, oxicity Stayed fairly constant at around 4.5,
close to the SRy oxicity threshold of 4. The role of AChE in
neurite outgrowth has been reviewed, and can be explained
by both enzymatic and non-enzymatic way (Paraoanu and
Layer 2008). It was described that secreted acetylcholine
could signal to AChE of adjacent cells to direct neurite
outgrowth, while AChE also could directly support neurite
outgrowth by structural interaction with extracellular matrix
protein such as laminin. However, it should be still eluci-
dated whether reversible and irreversible AChE inhibitors
could behave differently in these processes.

Other specific MOAs may exist for carbamates which
caused specific effects on neurite outgrowth with minor
effects on cell viability. While mechanistic understanding
remains limited for DNT, it has been reported that impair-
ment of signaling pathways can disturb neurodevelopmen-
tal processes including neurite outgrowth (Bal-Price et al.
2018; Masjosthusmann et al. 2020). The interaction with
signaling pathways may also be responsible for effects on
differentiation of cells and it has been reported that carbo-
furan impaired neuronal differentiation through transform-
ing growth factor beta (TGF-f) signaling, which mediates
neurogenesis, in rat hippocampus (Seth et al. 2017). This
observation can explain our results as we tested cells in early
differentiation stage with short-term differentiation com-
pared to the previous studies (Constantinescu et al. 2007;
Shipley et al. 2016).

The mitochondrial toxicants are all applied as fungicides
in agriculture and showed broad specificity of their effects
on neurite outgrowth, although these pesticides commonly
target mitochondrial respiration representing a basal func-
tion of all cells (Fig. 2). Rotenone, one of the endpoint-
specific controls, showed specific effects despite of its high

cytotoxicity

hydrophobicity, which suggests that specific toxicity can still
manifest if the MOA is highly specific. Other mitochondrial
toxicants, strobilurins and hexachlorophene, showed rela-
tively low specific effects. All strobilurins with exception
of trifloxystrobin had moderate SRy ooxicity abOVe 4, and
hexachlorophene was nonspecific. This variety in neurite-
specific effects could be explained by difference in their
MIEs (Delp et al. 2019). Delp et al. (2019) investigated the
specific effects of mitochondrial toxicants on neurite out-
growth inhibition and their link to MIEs in LUHMES cells.
They observed that rotenone showed highly neurite-specific
effects and targeted complex I in mitochondrial respiratory
chain, and the other complex I inhibitors commonly showed
relatively high neurite-specific effects. In contrast, they
found that the strobilurins acted as complex III inhibitors
and hexachlorophene was a phenolic uncoupler of oxida-
tive phosphorylation. Both strobilurins and hexachlorophene
showed less neurite-specific effects in the study of Delp et al.
(2019), which agrees well with our observation.

The redox cyclers diquat and paraquat showed moderate
neurite-specific effects, which were accompanied by highly
enhanced cytotoxicity (Fig. 2). This indicates that their
specific MOAs can contribute not only to neurite-specific
effects but also strongly to neuronal-specific and cytotoxic
effects. Diquat and paraquat are photosynthesis inhibitors,
and were historically applied as herbicides, but have been
phased out as plant protection products (Conning et al.
1969). Both were considered as endpoint-specific controls
by Aschner et al. (2017), and we not only confirmed their
neurite-specific effects in our assay but also brought more
details in that their effect is highly enhanced over baseline
toxicity. Redox cycling and the subsequent production of
reactive oxygen species can generally impair cell health, but
this can also possibly explain the specific effects on neurite
outgrowth as it has been reported that cytoskeleton dynamics
can be regulated by oxidative species in neuronal cells and
the redox imbalance can affect neurite outgrowth (Wilson
and Gonzalez-Billault 2015).

Stimulating effects

Two endpoint-specific controls for stimulating neurite out-
growth (Aschner et al. 2017) confirmed the capacity of our
assay to also capture stimulating effects (Text S3, Table S5,
Fig. S5). Stimulating effects over 150% were observed for
both HA-1077 and Y-27632 and their hormetic parameter f
was significant (p <0.05).

All GABA receptor blockers, all sodium channel agonists,
hexachlorophene, and 3,3',5,5'-tetrabromobisphenol A stim-
ulated neurite outgrowth and gave significant parameter f
with p <0.05 (Fig. 2, Table S6). Especially, hexachlorophene
showed the most distinct stimulating effects considering
its highest hormesis effect parameter f. However, EC,, for
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stimulating effects could only be derived for five chemicals
(fipronil sulfone, a-endosulfan, bifenthrin, 4,4’-DDT, and
hexachlorophene) and the EC,, values for stimulating effects
are given in Table S6. The best-fit curves in Brain—Cousens
model did not reach 110% level in neurite length for the
rest of chemicals (Fig. S4), and therefore, the stimulating
effects could not be quantified. To confirm that the stimu-
lating effects were not due to increased cell number, total
neurite length divided by total cell count was compared,
and the parameter f stayed significant and gave comparable
values to the original analysis (Table S6).

The stimulating effects were observed mostly for the
chemicals interacting with ion channels. The GABA receptor
and sodium channels can be involved in stimulating neurite
outgrowth as reported previously (Davis et al. 2004; Michler
1990), but the relevant literature to explain the stimulating
effects is still limited and the effects have been rarely quanti-
fied. Furthermore, it should be noted that the observed stim-
ulating effects could reflect general stress responses given
that they occurred close to concentrations causing cyto-
toxicity and the hormesis parameter f was not high, except
for hexachlorophene. Also, considering that the stimulat-
ing effects were followed by the inhibiting effects close to
cytotoxic level, the stimulating effects can be masked by
the cytotoxic effects and might be captured more sensitively
from long-term exposure at low concentration. For exam-
ple, clothianidin showed stimulating effects in differentiated
SH-SYS5Y cells after co-exposure to brain-derived neuro-
trophic factor for 3 days (Hirano et al. 2019), while we did
not observe any stimulating effects for this chemical in our
experimental set up.

Classification based on SRy,;ejine aNd SR y¢otoxicity

The test chemicals were categorized into three groups
based on neurite- and neuronal-specific toxicity regarding
to neurite outgrowth inhibition in Fig. 3: neurite-specific
and neuronal-specific chemicals in group 1 (SR .y oxicity > 4>
SRy ,cetine > 10), exclusively neurite-specific chemicals
without enhanced cytotoxicity in group 2 (SR yoxicity > 4
SRy asetine < 10), and baseline toxicants in group 3
(SR yiotoxicity <4 SRpagetine < 10). Chemicals in group 1 are
likely to affect cell viability and neurite outgrowth through
specific MOAs other than baseline toxicity, while specific
MOAs can mainly contribute to neurite outgrowth inhibition
with lower effects on cell viability for group 2 chemicals.
No chemicals were found in a fourth group that would be
neuronal-specific but not neurite-specific.

The majority of chemicals fell into group 1 or 3 (Fig. 3)
and the highly neurite-specific effects of group 1 chemicals
are prone to accompany elevated cytotoxicity as described

@ Springer

4_..
Group 2 Group 1
3 i
Cycloheximide
=
k<]
g 2+ 3-Hydroxy-  Narciclasine
g carbofuran @
% Carbaryi. E,
e e
@
_8,) i ~ P Rotenone ®
.-:T‘u
0“. ® ¢
Group 3
-1 | — T U
) 0 2 4 68 9

l0g(SRpaseline)

@ Endpoint-specific controls
Mitochondrial toxicants

® Endocrine disruptors

® Baseline toxicants

® AChE inhibitors
nAChR agonists
® GABA blockers
@ Sodium channel agonists
@ Redox cyclers

Fig.3 Classification of test chemicals based on their specificity
ratios SR. Neuronal-specific effects were explained by SRy,jines
and neurite-specific effects were explained by SR o oxicicy- Based on
SRypasetine a1 SR yioroxicity the test chemicals were classified into three
groups: neurite-specific and neuronal-specific chemicals (group 1;
SR yiotoxicity > 4 and SRy, i > 10), chemicals with only neurite-spe-
cific effects (group 2; SRy g oxicity > 4 and SRy, jine < 10), and baseline
toxicants (SR <4 and SRy ,¢jine < 10)

cytotoxicity

above. Both neurite- and neuronal-specific effects were
mainly observed for endpoint-specific controls and AChE
inhibitors. Endpoint-specific controls were confirmed to
show specific effects on neurite outgrowth and our novel
analysis also showed that they have even more pronounced
enhanced cytotoxicity with SRy, cjine > SRyrotoxicity (Fig- 3).
The same applied for AChE inhibitors with rather distinct
SR values for the carbamates, while the OPs had much lower
SR values close to the threshold.

Only a few chemicals were classified into group 2, and
the group 2 chemicals can have high uncertainty in their
classification as their SRs laid closely to the threshold.
One of baseline toxicants, 4-chloro-3-methylphenol, was
included in group 2, but its SRy oxicity (4-3) is just above
the threshold and can be classified differently considering
its standard error. Therefore, the chemicals close to the
threshold must be regarded with caution as there can be
some uncertainty in the definition of the thresholds and
their classification can be improved by refining the thresh-
old based on a larger training set of chemicals without spe-
cific effects.
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Conclusions and outlook

The proposed approach considering both neurite-specific
and neuronal-specific effects in the neurite outgrowth assay
provides new information that complements the current
DNT in vitro testing strategies. On one hand, the specific-
ity ratio SRy oxicity €an identify chemicals with neurite-
specific DNT effects and, therefore, can be used to prioritize
test chemicals for further testing. Hereby, we identified two
carbamates, 3-hydroxycarbofuran and carbaryl, as highly
neurite-specific chemicals in SH-SYSY cells. On the other
hand, SRy jine €an be used to identify neurotoxic chemicals
whose neurotoxicity is not driven by specific inhibition of
neurite outgrowth. Furthermore, SRy, i, may serve as a
useful measure when comparing effect potency of a given
chemical between different cell models as the current DNT
in vitro testing strategies utilize multiple cell models with
diverse endpoints. It can also support estimation of specific-
ity in case that no cytotoxicity was observed by replacing
the use of the highest test concentration or a factor thereof
as reference level (Delp et al. 2018). These two specificity
ratios can clarify if the effects are triggered by their specific
MOAs or merely by baseline toxicity arising from their high
hydrophobicity and strong toxic effects can be observed at
low concentration for hydrophobic chemicals due to their
membrane affinity. Therefore, while cytotoxicity is consid-
ered as a reference to identify neurite-specific effects, base-
line toxicity provides an anchor to compare the observed
toxic effects for individual endpoints.

Mechanistic research underlying specific effects can help
build a clear connection between MIEs and adverse out-
comes in DNT and expand knowledge of MOAs (Carlson
et al. 2020). Other key neurodevelopmental processes such
as cell migration could potentially be more sensitive DNT
endpoints than neurite outgrowth, and therefore, a battery of
endpoints can capture DNT effects more comprehensively
(Behl et al. 2019; Harrill et al. 2018; Masjosthusmann et al.
2020). As for our observation on neurite outgrowth, primary
MOA:s of the pesticides are not necessarily the only specific
MOA involved in cytotoxicity and inhibition of neurite out-
growth. The insecticides are usually less potent in mammals
due to species specificity and they have secondary targets
which can possibly induce toxic effects in non-target organ-
isms (Lushchak et al. 2018). Therefore, multiple MOAs,
which can be primary MOA or other secondary MOAs,
might contribute to the observed inhibition of neurite out-
growth and cytotoxicity. In case of hydrophobic chemicals,
these specific MOAs even can compete with baseline toxic-
ity and baseline toxicity can prevail over the specific MOA
for more hydrophobic chemicals due to their high affinity to
membranes (Escher and Hermens 2002).

In terms of in vitro models for DNT, although SH-SY5Y
cells have been widely used as a model to study neurite out-
growth, their abnormal physiology (Do et al. 2007) origi-
nated from tumor origin could limit the interpretation of the
observed toxic effects in this model. Therefore, comparison
of the effects with those from different models can improve
the reliability of this model. LUHMES cells can be applied
for this purpose and also can serve as a proper tool to test
the effects on neurite outgrowth considering their non-onco-
genic human origin. Furthermore, more biologically relevant
exposure scenario can be achieved by testing potential DNT
chemicals in co-culture with astrocytes.
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assay that quantifies neurite outgrowth, which is one of the ///f/ Surf o
neurodevelopmental key events, and cell viability in human L S . &
neuroblastoma SH-SYSY cells using imaging techniques. We water =l o - ]
used this assay for testing of extracts of surface water collected g il ﬁf
in agricultural areas during rain events and effluents from %_‘ i /
wastewater treatment plants (WWTPs), where more than 200 Agricultural g 2| wLE _
chemicals had been quantified. Forty-one chemicals were tested area - :

individually that were suspected to contribute to the mixture effects Low »

among the detected chemicals in environmental samples. Sample

sensitivity distributions indicated higher neurotoxicity for surface water samples than for effluents, and the endpoint of neurite
outgrowth inhibition was six times more sensitive than cytotoxicity in the surface water samples and only three times more sensitive
in the effluent samples. Eight environmental pollutants showed high specificity, and those ranged from pharmaceuticals
(mebendazole and verapamil) to pesticides (methiocarb and clomazone), biocides (1,2-benzisothiazolin-3-one), and industrial
chemicals (N-methyl-2-pyrrolidone, 7-diethylamino-4-methylcoumarin, and 2-(4-morpholinyl)benzothiazole). Although neurotoxic
effects were newly detected for some of our test chemicals, less than 1% of the measured effects were explained by the detected and
toxicologically characterized chemicals. The neurotoxicity assay was benchmarked against other bioassays: activations of the aryl
hydrocarbon receptor and the peroxisome proliferator-activated receptor were similar in sensitivity, highly sensitive and did not differ
much between the two water types, with surface water having slightly higher effects than the WWTP effluent. Oxidative stress
response mirrored neurotoxicity quite well but was caused by different chemicals in the two water types. Overall, the new cell-based
neurotoxicity assay is a valuable complement to the existing battery of effect-based monitoring tools.

neurotoxicity, neurite outgrowth, water quality monitoring, mixture toxicity, SH-SYSY cells

complement chemical analysis, and provide information on

The aquatic environment is contaminated by diverse chemicals environmentally relevant toxicity endpoints.” For example, 103
of anthropogenic origin. Various sources such as agricultural cell-based bioassays were applied to assess water quality for the
and road runoff, and release from wastewater treatment plants
(WWTPs) contribute to this contamination. While chemicals
from road run-off occur almost ubiquitous,”” pesticides are a
major group of pollutants in agricultural areas and rain events to the peroxisome proliferator-activated receptor gamma
can increase the chemical load in the water streams.” In (PPARy), activation of the estrogen receptor (ER), and
contrast to agricultural or road runoff, WWTPs are point
sources of contamination with various chemicals such as
pharmaceuticals, personal care products, surfactants, and
pesticides.’™” Release of the chemicals into aquatic surface
waters results in complex mixtures of organic chemicals in low
concentrations, that is, micropollutants, which can pose a risk
to aquatic life but also drinking water sources. Environmental
monitoring using bioassays is able to capture toxicity of
micropollutants in an integrative and comprehensive manner,

comprehensive evaluation of toxicity pathways such as

activation of the aryl hydrocarbon receptor (AhR), binding

Jati 9
oxidative stress response.
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Developmental neurotoxicants represent a group of
chemicals of particular concern due to their potential impact
on human health,'”"" but high-throughput screening tools for
their detection via routine environmental monitoring by
testing a large number of samples are still lacking.'” An in
vitro test battery for developmental neurotoxicity (DNT) was
proposed for testing of single chemicals in the context of
human health risk assessment.'” The DNT testing battery
covers multiple key events involved in neurodevelopmental
processes, and one of the key events, neurite outgrowth, is
crucial for neuronal connectivity and function. Developing
neurons produce small processes extending from the cell body.
This process is termed neurite outgrowth and has been
commonly applied as the endpoint for DNT screening.'*™"¢ It
can serve as endpoint for high-throughput assays considering
the sensitive response and relatively short exposure duration
compared to the other DNT endpoints in the DNT testing
battery."> Environmental mixtures have not been tested for
their effects on neurite outgrowth, and thus, application of a
neurite outgrowth assay to environmental samples is the aim of
the present study.

A challenge for DNT assessment is the potential interference
of cytotoxicity with the specific endpoint. Therefore, an
assessment of specificity is important to discriminate DNT-
specific effects from general cytotoxicity.'”'® The minimal
cytotoxicity that would be expected for any chemical is
baseline toxicity. Baseline toxicity is caused by membrane
intercalation of chemicals and occurs independent of cell
types.”*’ Enhanced level of cytotoxicity relative to this
baseline cytotoxicity can arise from specific modes of action
(MOA) by chemicals.”' The specificity of effects on neurite
can therefore be quantified by comparing effect concentrations
for neurite outgrowth with those for observed cytotoxicity and
predicted baseline toxicity.>'®** Neurite-specific effects
indicate chemicals that act on neurite outgrowth specifically
and thus cause higher toxicity levels for neurite outgrowth
compared to the observed cytotoxicity in neuronal cells. The
neuronal-specific effect is a composite of the neurite-specific
effect and enhanced cytotoxicity over baseline toxicity. Non-
neurotoxicants and complex environmental mixtures with
diverse MOAs may also result in enhanced cytotoxicity or
even specific effects on neurite outgrowth; hence, we always
tested cytotoxicity for comparison.

We implemented the combined neurite outgrowth inhibition
and cytotoxicity assay as a high-throughput tool for testing
environmental samples and for identifying toxicity drivers. The
human neuroblastoma SH-SYSY cell line was used as an in
vitro model for the high-throughput screening,”” The assay was
applied on samples from small German streams sampled
during rain events and WWTP effluents collected across
Europe. The water samples were extracted with solid phase
extraction and enriched before dosing into bioassays. The
responses in SH-SYSY cells were also compared to responses
in bioassays targeting other endpoints, namely, binding to the
AhR, PPARy, ERa, and antioxidant response elements.
Therefore, sample sensitivity distributions were used for this
comparison to evaluate how sensitive the neurotoxic responses
from environmental samples are compared to other endpoints
typically used in environmental monitoring. Based on
analytical data, single chemicals that were identified in the
mixture were subsequently tested to explain the mixture effects
and identify potential drivers of the observed effect. Therefore,
a so-called iceberg modeling was applied to explain the
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contribution of detected chemicals to the measured effects of
the environmental mixtures.”>**

A total of 140 water samples were investigated in this study: 85
surface water samples were collected during rain events in small
streams that were impacted by agriculture and S5 WWTP effluent
samples. The surface water samples were collected from stream water
in agricultural areas of Germany from April to July in 2019 using
event-triggered auto-samplers that started sampling when the water
levels rose > 5 cm during rain events. The details of samples and
sampling method were already described by Liess et al.>® The samples
were extracted with solid phase extraction (SPE) using Chromabond
HR-X cartridges (6 mL, 200 mg sorbent) from Macherey-Nagel
(Diiren, Germany) with SPE process blanks run in parallel as
described for a similar sampling campaign a year earlier.”* The sample
ID consists of an anonymized site number and date of sampling.

The WWTP effluent samples were collected from European
WWTPs in 15 different countries over 18 months from August in
2017 to April in 2019. All WWTP samples were enriched with SPE as
described previously.”® The SPE extracts were blown down and re-
dissolved in MeOH with enrichment factors (EF; L,/ Lextrace) from
250 to 1000. The WWTP sample IDs were anonymized and can be
distinguished from surface water sample IDs by the prefix “EU”.

There were more samples included in the accompanying analytical
studies,”>”® but only a selection of the samples were used that had
sufficient volumes for subsequent testing with at least one
experimental run in SH-SYSY cells as well as four reporter gene
assays.

The water samples were analyzed by a target screening method using
liquid chromatography high-resolution mass spectrometry (LC—
HRMS) via direct injection and a quadrupole-Orbitrap MS
(QExactive Plus, Thermo Scientific). A total of 381 chemicals were
analyzed for surface water samples according to the analytical method
described by Neale et al.>> For the WWTP effluent, 499 chemicals
were analyzed, and the details of the analytical method and results of
chemical analysis were published by Finckh et al** As has been
previously shown, chemical analysis by direct injection of water
samples can be compared with bioassay results from SPE extracts due
to the high chemical recovery of the applied SPE method.”*

SH-SYSY cells were maintained and differentiated prior to the assay as
described by Lee et al.”> The methanol extracts of surface water and
WWTP effluent were blown down under a stream of nitrogen gas and
reconstituted with the assay medium. The cells were exposed with 11
different concentrations in serial dilution with a relative enrichment
factor (REF, Lwater/Lbioassay) of 100 as the maximum concentration.
Neurite length and cell viability were measured after 24 h exposure
using an IncuCyte S3 live cell imaging system (Essen BioScience, Ann
Arbor, Michigan, USA). For cell viability, total and dead cells were
stained with Nuclear Green LCS1 (Abcam, ab138904) and propidium
iodide (Sigma-Aldrich, 81845), respectively. The total neurite length
per image was quantified by the IncuCyte NeuroTrack software
module, and the effects on neurite outgrowth were expressed based on
the neurite length relative to control. An example of image analysis for
cell viability and neurite outgrowth is given in Figure S1. The
experiment was run once or twice depending on the availability of
samples and robustness of the concentration—response curves
(CRCs). Subsequent testing of single chemicals was done in the
identical procedure with 3 to 4 experimental runs after applying the
selection criteria described below.

To compare the sensitivity of responses between bioassays, three
mammalian reporter gene assays were conducted according to Neale
et al:>® AhR-CALUX (H4L7.5c2, based on H4lle), PPARy-BLA
(HEK293H), and AREc32 (MCF7). Unlike SH-SYSY cells whose
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viability was determined with live/dead cell staining, cell confluency
was quantified as a measure of cytotoxicity in reporter gene assays
using an IncuCyte S3 live cell imaging system (Essen BioScience, Ann
Arbor, Michigan, USA). For the surface water samples only, the ERa-
BLA (HEK293T) was performed according to Neale et al” to
estimate the contribution of untreated wastewater in the rain-event
impacted river samples.

Concentration—response relationships are typically linear up to a 30%
effect level.”” For single chemicals, the effect levels up to 30% were
included in CRC modeling to determine concentrations causing 10%
effect. IC,, represents the inhibitory concentration leading to 10%
reduction in cell viability, and EC,, indicates effect concentrations for
10% reduction in neurite length. In the case of environmental
samples, data up to 40% effect were used for CRC modeling due to
fewer data points up to 30% effect level. In the case of samples whose
CRC did not reach the 10% effect level even at the maximum tested
enrichment of REF 100, the CRC was linearly extrapolated to a REF
of 150 in order to extrapolate the EC,, This approach was only
applied for SH-SYSY cells to increase the number of samples for
specificity analysis. For chemicals or samples where a plateau was
observed in their CRC with poor linearity, a log-logistic model was
applied for CRC modeling. The details of image and data analysis and
the equations for CRC models including the linear regression and log-
logistic model were described by Lee et al.>> For the reporter gene
assays, data were analyzed as described by Neale et al,”> and a 30%
effect cutoff was applied for the linear CRC without extrapolation for
both chemicals and samples.

For sensitivity distribution, water samples were ranked based on
their IC,, and EC,, values, and their cumulative probability
distributions were derived. Samples without any effect up to an
REF of 150 were ranked but no IC,,/EC,, was assigned to them. The
rank of logarithmic IC,, and EC,, were converted into the probit
scale, and the 50th percentile IC;, and EC,, were derived from a
linear regression of log IC,, and EC,, against probit for probit = S. It
relies on testing if distribution of logarithms of effect concentration of
different samples were normally distributed and, if yes, if log—normal
distributions differed between sample groups and bioassay endpoints.

Individual chemicals were tested to explain the effects observed in
environmental samples. Tested chemicals were selected among
detected chemicals in environmental samples based on the flow
chart given in Figure S2. A correlation test was the main criterion for
the selection. The correlation test was performed between log
SRy yiotoxicity Of the surface water samples and the logarithm of the
detected concentration of a certain chemical i (C;) in the sample. The
detected concentrations C; were normalized by their IC,paeiine (eq 1)
to avoid overestimating the contribution by hydrophilic chemicals
prior to drawing the logarithm [log(C;/IC g paseline(i))]. The IC ;g paceine
is the concentration causing 10% cytotoxicity by baseline toxicity,
predicted with eq 1 using a quantitative structure—activity relation-
ship (QSAR) based on the liposome-water partition constants
(Klip /w).l‘),ZO The baseline toxicity QSAR (eq 1) uses a mass-balance
model to convert the critical membrane concentration of baseline
toxicity into nominal concentration. To facilitate the prediction of
baseline toxicity, an empirical QSAR was fitted to the mass-balance
model with Ky, as the sole descriptor and used to calculate baseline
toxici2 specific for differentiated SH-SYSY cells as described by Lee
et al.

10g(1/1C g paeine (M) = 126 + 5.63 X (1 — e *28Kip/)
(1)

The Pearson correlation coefficient r was used to select 40
chemicals with the highest positive correlation (r > 0) between log
SRyyiotoxicity ©f samples and log (Ci/IC g paseline(i))- Significance of the
correlation was not considered due to different number of data pairs
included in the correlation test for individual chemicals. In the case of
chemicals that were detected in less than three samples, the

correlation test could not be applied. Therefore, these chemicals
were only included for testing when they were detected at least once
in the samples with highly specific effects on neurite outgrowth

(SRcytotoxicity >1 0) ‘

The specificity of effects on neurite outgrowth was determined
compared to observed cytotoxicity and predicted baseline cytotox-
icity.m'zz’28 The specificity ratio SR ytoxicity (eq 2) compares the
effects on neurite outgrowth (EC,,) and cytotoxicity (IC,,), which
were experimentally determined in SH-SYSY. Chemicals with
SR yiotoxicity 2DOVe a previously defined threshold of 4 were considered
as neurite-specific effects.'>"'%*>

_IG,
cytotoxicity EC (2)
10

SR,

The specificity ratio SRy,eaine (€q 3) compares the effects on neurite
outgrowth (EC,,) with the predicted baseline cytotoxicity
(IC g paceiines €9 1) and quantifies how specific the toxicity on certain
endpoints is compared to minimal toxicity. A threshold of SRy e Of
10 was applied to identify neuronal-specific effects of chemicals.””*®

SR. _ ICIO,baseline
baseline —
EC,, (3)

Iceberg modeling compares the effects measured directly with
bioassays in the sample with the predicted effects in the mixture.
This is achieved by using effect concentrations of the detected
chemicals and application of mixture models.® Bioanalytical equivalent
concentrations (BEQy;,) derived from bioanalysis can capture the
entire mixture effects and express them in concentrations of an
appropriate potent reference chemical in each bioassay that would
trigger the same effect as the mixture. The BEQ,, can be compared to
mixture effects of individual chemicals that are detected from
chemical analysis (BEQ,p.,,). The analogous concept of toxic units
(TUs) was applied for cytotoxicity, which does not require reference
chemicals for calculation.””*® The iceberg modeling was performed
for SH-SYSY as well as AREc32, AhR-CALUX, and PPARy-BLA
reporter gene assays using a workflow developed in KNIME (version
4.4.1, Zurich, Switzerland). The details of KNIME workflow can be
found on GitHub.'

BEQ were expressed in concentrations of reference chemicals. EC,,
of environmental samples were converted into BEQy;, compared to
ECy, of the reference chemical (eq 4; Table S1).

EC,(ref)
ECyo(sample) (4)

For neurite outgrowth inhibition in differentiated SH-SYSY cells,
narciclasine was used as the reference chemical,'®** and BEQ_ were
expressed as narciclasine equivalent concentrations (narciclasine-EQ).
For the oxidative stress response detected with AREc32, BEQ were
expressed as dichlorvos-EQ, for AhR as benzo[a]pyrene-EQ_(B[a]P-
EQ), for PPARy-BLA as rosiglitazone-EQ.*”

For BEQ,p,, relative effect potencies for each chemical i (REP;; eq
5) were calculated based on the EC ratio of the reference chemical
and chemical i in molar units. The detected concentration (C;) of
chemical i was then multiplied by REP; to calculate BEQ; for
individual chemicals. The sum of BEQ; for all detected chemicals is
BEQ.pemy as shown in eq 6.

EC,(ref)
EC,,(i) )

BEQbio =

REP, =

n n
BEQchem = z BEQ] = Z REPlCJ
i=1 i=1 (6)
The IC,, for cytotoxicity of the sample was converted into TUy,
using eq 7. For cytotoxicity or baseline cytotoxicity, TU,,, was
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calculated for cytotoxicity (TUgpem(eytotoniciy)i €9 8) and baseline
cytotoxicity (TU gem(baseline)i €4 9) by summing up the ratio of the
detected concentration of chemical i and associated IC,, or
IC 1o paselines respectively.

1
TUbio =
IC,o(sample) 7)
n C

TI']chem cytotoxicity) — —l

(cytotoxicity) ; 1C, (i) (8)
TL]chem baseline)

( ;1 10 baselme( ) (9)

The effects from entire mixture can be explained by the detected
chemicals by comparing BEQy, with BEQ.,, and TU, with
TUgem: The individual detected chemical i explains BEQp, or
TU e with different percent contributions, which can be calculated
by eqs 10 and 11.

% contribution of i to BEQ_ X 100%

chem — B

(10)

chem

C
% contribution of i to TUg,,, = !
IC,o(i ) Ty,

] X 100%

chem
(11)

The input for chemical effect concentrations (IC;, and EC,,) were
retrieved from the literature for the four cell lines or newly
determined for SH-SYSY cells in this study, which is given in Table
S2. ICgpaseline Was predicted for all detected chemicals using K., in
Table S2.

Chemical composition was investigated for 85 surface water
samples (Table S3) and had been reported previously for SS
WWTP effluent samples (Table $4).”

For surface water, 243 chemicals were detected among 381
chemicals analyzed (Table S3). The herbicide sulcotrione was
detected at the highest concentration of 490 pg/L among all
surface water samples but only in one sample
(S17_20190610). The second highest detected chemical was
another herbicide, pethoxamid, which was detected in 22
samples with the highest concentration of 187 ug/L. Two
industrial chemicals, triphenylphosphine oxide and S-methyl-
1H-benzotriazole, were detected most frequently and found in
all 85 samples. For the rest of the chemicals, the detection
frequency varied a lot for individual chemicals, indicating the
diversity of chemical composition, which is typical for rain-
event impacted water as has been shown previously.”’

366 out of 499 analyzed chemicals were detected in WWTP
effluents (Table S4 reprinted from Finckh et al.*®). Twenty-
five chemicals were detected in all 5§ WWTP effluent extracts,
and 107 chemicals were detected frequently with more than
90% of detection frequency. The highest detected concen-
tration of 461 ug/L (EU009) was observed for hexa-
(methoxymethyl)melamine (HMMM), which was detected
in all 55 WWTP effluent extracts. HMMM is used for coatings
and plastics and has been reported as the emerging
contaminant in German rivers.”> A more thorough discussion
of detected chemicals in these WWTP effluent samples is given
by Finckh et al.*°
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IC,, and EC,, for surface water and WWTP effluent were
derived from the CRCs depicted in Figures S3 and S4. The
IC,, for cytotoxicity in SH-SYSY cells ranged from REF 2.8 to
147 (Table SS), which means that the samples had to be
enriched 3 to 147 times to cause 10% cytotoxicity. Fifteen
samples (6 surface water and 9 WWTP effluent extracts) were
not cytotoxic up to an enrichment of 150 times. The EC,, for
inhibitory effects on neurite outgrowth ranged from REF 0.2 to
80 (Table S5), and the EC,, was up to 49 times more sensitive
than the IC,,. The bioassay setup can also identify stimulating
effects on neurite outgrowth not just inhibition. However, no
stimulation was observed for the present set of samples.

To compare toxicity of surface water and WWTP effluent,
the IC,, and EC,, were ranked, and cumulative distributions
are visualized in Figure 1 with all details in Table S6. We

~. 100
S A ASurface water
E 8o WWTP effluent
%
.g 60+
SN CETTRREEIPORITPRY SO SEPRPRE
g
ke
=] .
g 20
0 [ T T
-1 0 1 2
log ICqg (a7 )or ECqq (AY)
(REF)

Figure 1. Sensitivity distribution of cytotoxic effects (IC,,) and
inhibition of neurite outgrowth (EC,,) for surface water and WWTP
effluent samples in SH-SYSY cells.

derived the sample sensitivity distributions at the population
level to evaluate the sensitivity of cellular response in many
different water samples to figure out which type of water
samples would respond more sensitively to neurite outgrowth
and how sensitive the effects were compared to other bioassays
typically applied in water quality monitoring.

For each data set, the IC), and EC,, were log-normally
distributed but differed in sensitivity. Surface water elicited
higher toxicity on both cell viability and neurite outgrowth
than the WWTP effluent (Figure 1). The difference in
sensitivity between surface water and WWTP effluent was
more obvious for neurite outgrowth inhibition than for
cytotoxicity. Hence, on average there were higher concen-
trations of chemicals and/or more potent chemicals acting on
neurite outgrowth in surface water samples than in WWTP
effluent. The higher sensitivity for neurite outgrowth in the
surface water sample could have been caused by pesticides
from agriculture or chemicals from road runoff released into
water bodies during rain events. Considering that the effluent
is further diluted when received by surface water, the
contribution of effect from treated wastewater to the surface
water appears to be smaller than from other sources during the
rain events. Untreated wastewater from combined sewer
overflows appears to also be another potential source of
micropollutants in surface water samples, given the occasional
high occurrence of caffeine, a typical marker of untreated
wastewater, and estrogenicity observed in several surface water
samples. Additionally, the artificial sweetener sucralose was

https://doi.org/10.1021/acsenvironau.2c00026
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also considered as a wastewater tracer’* and was either non-
detected or detected at high concentrations up to micromolar
level, which indicates possible influence by wastewater at
several sampling sites. Together, these measures indicated
impact of untreated or poorly treated wastewater.”*

The 50th percentiles of the distributions are marked with a
dotted line in Figure 1, and the descriptors of the probit
regressions are given in Table S6. For surface water, the SOth
percentile of the IC,, distribution was REF 27.8 and that of
ECyo was REF 4.5, with a corresponding SR, yooxicity Of 6.1. In
the case of WWTP effluent, the S0th percentiles of IC;; and
EC,, distributions were REF 35.1 and REF 9.4, respectively,
and a corresponding SR oxicity Of 3.7. The lower median IC,,
and EC, distributions of surface water samples demonstrated
their overall higher toxicity. Also, surface water samples were
more likely to affect neurite outgrowth specifically considering
higher SR ytoxicity derived from 50th percentile values.

The responses in SH-SYSY cells were compared with other
bioassays typically applied for water quality monitoring
including AhR-CALUX, PPARy-BLA, and AREc32 (IC,, and
ECy, in Table SS; distributions in Table S6 and Figure SS).
Since each of these reporter gene assays is based on a different
cell line, the cytotoxicity was assessed for each of them. For all
cell lines, the IC,, distributions of surface water (Figure SSa)
showed higher toxicity than the WWTP effluent (Figure SSb)
with H41Ile cells (AhR-CALUX) being most sensitive, followed
by HEK293H (PPARy-BLA) of equal sensitivity. SH-SYSY
and MCF7 (AREc32) exhibited the lowest sensitivity. The
cytotoxicity distributions were analyzed jointly for all sample
types and also followed a log—normal distribution (Figure SSc,
Table S6).

In the previous work on the baseline toxicity of single
chemicals, the difference in cytotoxicity between different cell
lines triggered by baseline toxicity was attributed to differences
in bioavailability with similar cell-internal effect concentrations,
and any differences were larger for more hydrophobic
chemicals than for hydrophilic chemicals.'"”** The mixture
effect of the water samples did not follow this ranking. AhR-
CALUX was equipotent with AREc32 for predicted baseline
toxicity but 5.4 times more potent at the median with respect
to measured cytotoxicity of water samples. PPARy-BLA was
three times more potent than AREc32 for the water samples,
which is very similar to the ratio for the predicted baseline
toxicity of hydrophobic chemicals. SH-SYSY was only 1.6
times more sensitive than AREc32 at the 50th percentile of the
distribution of the water samples but up to nine times more
sensitive toward baseline toxicants. Overall differences were
within an order of magnitude, which supports cytotoxicity as
an apical effect little influenced by specific MOAs.

The distributions of effects (EC;, and ECp,s) differed
much more between surface water (Figure SSd) and WWTP
effluent (Figure SSe) than cytotoxicity although the combined
distribution still exhibit a good log—normal distribution
(Figure SSf, * from 0.87 to 0.99 for the probit regression in
Table S6). The effects on neurite outgrowth in SH-SYSY cells
were the least sensitive in WWTP effluent compared to the
other endpoints, that is, activation of PPARy and AhR, as well
as oxidative stress response. However, SH-SYSY responded
more sensitively in surface water, and the sensitivity of neurite
outgrowth was similar to the two most sensitive endpoints,
AhR and PPARy, in surface water. Neurite outgrowth is a more
apical endpoint than the receptor-mediated effects from other
bioassays, which might contribute to a relatively low sensitivity
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of responses in SH-SYSY cells. However, it is striking that the
rank order was different between the event-triggered surface
water and effluent samples.

AREc32, which is an indicator of oxidative stress response,
showed overlapping distributions between surface water and
WWTP, although surface water had fewer activity detects due
to masking by cytotoxicity. In comparison with neurite
outgrowth in SH-SYSY, AREc32 was less sensitive for surface
water and more sensitive for WWTP effluent.

The responses in the surface water samples were expressed
as BEQ,;,, based on reference chemicals (Table S1) and
compared to the results from a similar sampling campaign a
year earlier,”® and the responses in effluent were compared
with various data from the literature®”* in Figure S6. Higher
effects were observed for surface water than for WWTP
effluent in AhR-CALUX and AREc32, while the distribution of
rosiglitazone-EQy;, was similar in PPARy-BLA, and this
corresponded to the differences and similarities in sample
types seen in the literature (Figure S6). This would indicate
that the samples used in this study can represent the
characteristics of each water types. Thus, the identified toxicity
on neurite outgrowth in surface water above is representative
of the risk for DNT in various surface water samples.

The estrogen receptor in ERa-BLA was only activated in
60% of the surface water extracts (Table SS). Estrogenicity was
not assessed in the WWTP effluent extracts, but we know that
BEQ for ERa-BLA expressed as 17f-estradiol-EQ (EEQ;
Table S1) ranged from the detection limit of 0.7 to 51.4 ngg,/
L from previous studies on WWTPs with diverse treatment
types.”” If estrogenicity was detected in surface water, the effect
levels were often rather high, up to an EEQ of 18 ngg,/L
(Figure S6d), many of them exceedin% the effect-based trigger
value for estrogenicity of 0.34 ngg,/L,” even if they remained
below the levels of WWTPs with primary treatment. Likewise,
the 2018 sampling campaign of rain events at the same sites
had revealed estrogenic effects ranging from 0.06 to 37 ngg,/L
and wastewater markers such as caffeine in several surface
water samples, indicating that urban runoff and combined
sewer overflow during rain events contributed to the chemical
load.”” Studies on pesticides in these surface water samples had
concluded that the rivers contained mainly agricultural
runoff,” which is not supported by the results on estrogenicity.

The effects on cell viability and neurite outgrowth were
compared to quantify specificity of the effects on neurite
outgrowth for individual samples (Figure 2a). The IC,, and
EC,, were plotted together on an inverted logarithmic scale to
compare the degree of toxicity. Their ratio, that is, the
SRy iotoxicity Tepresents an indicator of the specificity of effects
(Figure 2a). Previously, this indicator SR yotoxicity has
exclusively been used to interpret effect data of single
chemicals but lends itself also to mixture effects if one keeps
in mind that the ratio is then a composite of many chemicals
and could be driven by a small number of chemicals with very
high individual SR yexicity ©r by many with moderate to low
SRcy‘totoxicity'

For the samples with similar cytotoxicity, the toxicity on
neurite outgrowth was more likely to be higher in surface water
than in WWTP effluent (Figure 2a). The higher toxicity on
neurite outgrowth led to higher SR joonicity in surface water
samples compared to WWTP effluent considering overall
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Figure 2. Specificity of effects on neurite outgrowth compared to
cytotoxicity for surface water and WWTP effluent samples in SH-
SYSY cells. (a) Comparison of IC;, and EC, and (b) their ratio
SR yiotoxicity 38 an indicator of specificity of effect. Empty symbols in
(a) stand for no effects on cell viability or neurite outgrowth. The
bold line in (b) indicates median values. All data are given in Table

SS.

distribution in Figure 2b. SR oty ranged from 1.8 to 49
(median $.8) for 79 surface water samples and from 0.9 to 8.2
(median 3.7) for 46 WWTP effluent samples (Figure 2b).

To identify chemicals that induced specific effects on neurite
outgrowth in surface water, single chemicals were selected
among the detected chemicals in surface water samples
according to the flow chart given in Figure S2 and tested in
the neurite outgrowth assay. The correlation coeflicient r in the
correlation test between SR yoxicity Of surface water samples
and detected level of chemicals in the samples was mainly
considered for selection of additional chemicals for neuro-
toxicity testing (Table S7). The CRCs of the tested chemicals
are given in Figure S7 with their IC); and EC,, in Table S8.
Effect concentrations for clothianidin and fipronil were already
available for SH-SYSY cells together with a number of other
chemicals that were tested in a previous study,” not all of
which were active and/or cytotoxic (Table S2, total number of
tested chemicals 97, active 59).

Among the newly prioritized 41 chemicals, the specificity
ratios, SRy toxicity a0d SRyygelines could be determined only for
21 chemicals. The other 20 chemicals showed either only
reduced neurite length (n = 3) or no effects on both neurite
outgrowth and cell viability up to maximum solubility (n = 17).

Based on the threshold for SR joxicity at 4,'%** 8 chemicals
acted on neurite outgrowth specifically compared to
cytotoxicity and were identified as neurite-specific chemicals
(Figure 3): mebendazole, 1,2-benzisothiazolin-3-one (BIT), N-
methyl-2-pyrrolidone, methiocarb, 7-diethylamino-4-methyl-
coumarin, clomazone, verapamil, and 2-(4-morpholinyl)-
benzothiazole. SR oxicity 2bove the threshold would indicate
that the chemicals have MOA involved in specific effects on
neurite outgrowth.

Mebendazole had the highest SR ¢oxicity of 49 and was also
the most potent neurotoxicant with the lowest EC,, (107 nM)
among all tested chemicals (Figure 3; Table S8). Mebendazole
is an antihelmintic human and veterinary drug that inhibits
polymerization of microtubule by binding to tubulin, which
corresponds to the MOA of a known neurite-specific toxicant,
colchicine.'”'>** Mebendazole was more frequently detected
in the WWTP effluent and at higher concentrations than in
surface water. The second most neurite-specific toxicant, BIT,
is used as antimicrobial and is an electrophile that can react
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Figure 3. Specific effects on neurite outgrowth compared to

cytotoxicity (SRyotonicity) and baseline cytotoxicity (SRygeine) for

detected chemicals in surface water. Chemicals with SRy oxicity above
4 were considered as neurite-specific, and those with SRy, above
10 were considered as neuronal-specific.

with functional groups in enzymes or other proteins.”**” This
MOA could be linked to a molecular initiatin§ event of
reactivity to seleno proteins established for DNT.’

Three of the neurite-specific chemicals were pesticides,
which have been considered as major toxicity drivers in surface
water.” Methiocarb reversibly inhibits acetylcholinesterase
(AChE) as an insecticide, and clomazone is a herbicide that
inhibits carotenoid bios‘?lnthesis but was also reported to act as
the AChE inhibitor.””** Highly neurite-specific effects were
previously observed for reversible AChE inhibitors (e.g,
carbaryl and 3-hydroxycarbofuran), while other neurotoxicants
did not specifically act on neurite out%rowth such as GABA
blockers and sodium channel agonists.”> Verapamil is also a
neurotoxicant blocking calcium channels and used as a
medication for high blood pressure. The primary MOA of
verapamil may also be relevant for DNT, since calcium channel
blockers have been reported to inhibit neurite outgrowth by
regulatin% calcium influx in neurons from chick embryos and
snails. "

The remaining three neurite-specific chemicals represented
industrial chemicals that lack information about their potential
MOAs. N-Methyl-2-pyrrolidone is widely applied as a solvent
in petrochemical and plastic industries and was not analyzed in
WWTP effluent but occurred frequently and at high
concentrations in surface water. 7-Diethylamino-4-methylcou-
marin is a fluorescent dye with various applications*’ and was
mainly found in WWTP effluent. 2-(4-Morpholinyl)-
benzothiazole is a vulcanization accelerator used in car tires
and is a marker of road runoff. It was mainly detected in
surface water and only in low concentrations in WWTP
effluent.

Neurite-specific effects were not restricted to agricultural
chemicals but were also observed for contaminants from the
urban environment. It is still possible that small amount of
many pesticides below the detection limit could contribute to
the mixture effects; however, agricultural chemicals such as
pesticides are not necessarily the only major contributors to
the neurite-specific effects in surface water. Testing of more
chemicals can help to figure out whether agricultural chemicals
induced neurite-specific effects or removal of micropollutants
reduced neurite-specific effects in WWTP effluent.
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ACS Environ. Au 2022, 2, 523-535



- -

o (=]
@ s
| 1

-
(=)
[

1014

0
% Surface water

1014 {X T T T T
10-% 10-2 10-* 10% 107 102 103

Narciclasine-EQyo (NGnarciciasine/L)

Narciclasine-EQgem (NGnarciclasine/L)

=]
5 102 -
E - Baseline cytotoxicity
> 1074 ** Cytotoxicity
2
@ 1004
o . 4 T
E 101 o2, akiR
day b 0
E o2 Nl
-3 & o
2 10 © " Sufface water
2 10+ 1 T T
107 10-¢ 10-% 10+ 10-* 10-2 10!

Predicted toxic unit TUem
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While highly neurite-specific effects were accompanied by
neuronal-specific effects, only neuronal-specific effects were
observed for four chemicals: clarithromycin, 2-naphthalene
sulfonic acid, citalopram, and roxithromycin. Their neurite-
specific effects would be minor, but they still inhibited neurite
outgrowth with enhanced toxicity compared to the minimal
toxicity.”” This indicates that there can exist specific MOAs
that may secondarily impact on neurite outgrowth for these
chemicals.

The remaining nine chemicals had both SR oicity and
SRyseline Delow the thresholds, indicating that they are likely to
act on both cell viability and neurite outgrowth via baseline
toxicity rather than specific MOAs. Nevertheless, such
chemicals will still contribute to the mixture effects.

Mixture effects were predicted from measured effects of
individual chemicals, which were detected in at least one of the
samples (IC,, for 25 and EC,, for 34 chemicals detected in
surface water; IC,, for 19 and EC,, for 28 chemicals detected
in WWTP effluent; Table S2). For neurite outgrowth
inhibition, the sample’s mixture effect corresponds to
narciclasine-EQy;,, which was compared to the predicted
mixture effect of the detected chemicals, narciclasine-EQ, ..,
(Figure 4a, Table S9).

With few exceptions, less than 1% of the experimental
mixture effects for neurite outgrowth inhibition were explained
by the predicted mixture effects of the detected chemicals
(Figure 4a). Overall, narciclasine-EQy;, were better explained
by narciclasine-EQy,,, in WWTP effluent than in surface
water. For samples whose measured mixture effects were
explained by the detected chemicals relatively well (around
5%), not only high chemical potency but also high detected
concentration contributed to the higher mixture effects. For
example, 4.4% of narciclasine-EQ,;, was explained by
narciclasine-EQ;,., in surface water sample S7 20190616
(Table S9). This was the only sample that contained the highly
neurite-specific chemical BIT. BIT was not only potent (REP
0.0212) but also detected at high concentration (1.8 ug/L)
and therefore explained nearly 100% of narciclasine-EQ ., in
this sample (Table S10). In the case of WWTP effluent, all
detected chemicals explained 6.8% of narciclasine-EQy, in the
WWTP effluent EU016 (Table S9), and 7-diethylamino-4-
methylcoumarin contributed to 95% of narciclasine-EQ_p,
due to its high detected concentration of 30.1 ug/L (Table
S11). The very potent neurotoxicant mebendazole (REP
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0.0367) explained 70% of narciclasine-EQyp, in the WWTP
effluent EU122, where 5.9% of narciclasine-EQy;, was
explained by narciclasine-EQy,,,, (Table S11).

It is difficult to relate the differences between surface water
and WWTP effluents to specific chemicals, given that only a
portion of the chemicals present in the samples might be
detected by analytical chemistry. This can be illustrated by
comparison of the percentages of narciclasine-EQy,;, explained
by narciclasine-EQ_,,. The higher the number of detected and
bioactive chemicals is, the higher will be the percentage of the
effect explained by the detected chemicals (Figure S8). If we
extrapolate the relationship depicted in Figure S8 linearly on a
log—log scale to “100% explained”, we would require at least
152 quantified bioactive chemicals. This is only a very rough
estimate given the high scatter in the data but illustrates that
many more chemicals than detected are present in the samples.
Hence, in order to relate the effect levels for neurite outgrowth
to the presence of certain chemicals, the analytical target list
would need to be expanded and the corresponding effect
concentration would be required for all detected chemicals.
Despite the large scatter, a trend is evident in Figure S8 that
the WWTP effluent has a higher number of bioactive
chemicals detected and accordingly also higher percentage of
effect explained. This might be by chance due to selection and
higher number of target chemicals in WWTP effluents (499 vs
381 in surface water) and effect data biased to those present in
WWTP eftluents.

The corresponding measures for cytotoxicity are TUy;, and
TUgem (Figure 4b, Table S9). TU, was explained by
TU hem(cytotoxicity) t0 @ higher extent in WWTP effluent than
in surface water despite the similar degree of toxicity (Figure
4b). The predicted baseline cytotoxicity TU pem(baseline) OF
detected chemicals explained the TU,, better than
TU them(cytotoxicity) from experimental single chemical cytotox-
icity (Figure 4b). This can be explained by the different
number of chemicals included for iceberg modeling since only
experimental cytotoxicity IC;, could be used for
TU hem(ctotoxicity)y DUt the baseline cytotoxicity IC;gpqseiine Of
all detected chemicals could be predicted for TU gem(baseline)-
Even if all chemicals were captured, baseline cytotoxicity
cannot explain 100% of the effects if there are any chemicals
with specific MOAs that induce enhanced cytotoxicity, which
can only be experimentally determined.

When we have a closer look at the effect drivers in SH-SYSY
over different samples, the chemicals contributing to
narciclasine-EQ,y,,, varied a lot in the surface water samples

https://doi.org/10.1021/acsenvironau.2c00026
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Figure S. (a) Average fraction of BEQy,, that was explained by BEQ,.,, (left, BEQ;/BEQy;,) and contribution to BEQ,.,, by top 15 chemicals
(right, BEQ,/BEQqpn) for (a) SH-SYSY, (b) AhR-CALUX, (c) PPARy-BLA, and (d) AREc32 in the surface water extracts and for (e) SH-SYSY,
(f) AhR-CALUX, (g) PPARy-BLA, and (h) AREc32 in the WWTP effluent extracts. The detailed data of the SH-SYSY assay for each sample are
given in Table S10 for surface water and S11 for WWTP effluent.

(Figure S9a, Table S10). The average contribution to Sa), which explained on average 19% of narciclasine-EQ_ep, of
narciclasine-EQ,y,e,, Was the highest for azoxystrobin (Figure surface water (between O and 100% explained). This high
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contribution by azoxystrobin could be due to its high detected
concentration in several surface water samples up to 1.3 ug/L,
but the contribution was highly variable between samples.
Diverse chemicals also contributed to more than 90% of
narciclasine-EQ,., in a few surface water samples, such as N-
methyl-2-pyrrolidone, benzothiazole, and carbaryl (Figure S9a,
Table S10).

Mebendazole was the dominant contributor to the
narciclasine-EQ,p,.,, in the WWTP effluent extracts (Figures
Se and S9b, Table S11). Although mebendazole was selected
from surface water samples for further testing, both detection
frequency and detected concentration were higher in the
WWTP effluent (Tables S3 and S4), which led to its high
contribution to the narciclasine-EQ,,,, (Table S11). The
contribution of mebendazole dominated in half of the WWTP
effluent extracts (Figure S9b), which indicates that mebenda-
zole would be one of the major toxicity drivers in WWTP
effluent.

Since mebendazole turned out to be the most neurite-
specific (SRcyfomxicity = 118; Table S2) among the chemicals
included for iceberg modeling, we checked if neurite-specific
effects were pronounced in the sample with high concentration
of mebendazole. This was not the case because the highest
detected concentration of mebendazole (88.4 ng/L; Tables S3
and S4) was observed in sample EU021 among all the tested
samples, and this sample showed relatively low specific effects
on neurite outgrowth with a SR ouoxiciy Of 4-8 (Table SS).
Therefore, detection of individual neurite-specific chemicals
does not necessarily mean the mixture would show specific
effects on neurite outgrowth, which necessitates evaluation of
entire mixture effects in bioassays in addition to chemical
analysis.

Iceberg modeling was also applied for the other three
bioassays AhR-CALUX, PPARy-BLA, and AREc32 using effect
concentrations of detected chemicals from the literature
(Tables S1 and S2) for derivation of BEQy,, and BEQ .
(Table S9). As observed for neurotoxicity, only a small part of
the BEQy;, could be explained by BEQ,y.,, (Figure S10a—c),
which is consistent with previous observations.””**** Since
cytotoxicity data of more chemicals were available for these
three bioassays, TUg,, was higher for cytotoxicity than
baseline cytotoxicity, and therefore, the mixture effects were
better explained (Figure S10d—f).

Contribution of individual chemicals to BEQ., were
derived for each surface water extract (Tables S12—S14) and
WWTP effluent extract (Tables S15—S17) in the three
bioassays, and the toxicity drivers are visualized in Figures
S11 and S12. Again there was a high diversity of the chemicals
contributing to the mixture effects but, in each sample, there
were only a few chemicals that explained most of the mixture
effect. Especially in PPARy-BLA, more than 50% of
rosiglitazone-EQ,y,.,, was explained by 2-benzothiazolesulfonic
acid, diclofenac, or telmisartan for most of the samples
(Figures S11b and S12b, Tables S13 and S16).

For comparison between sample types and bioassays, we
summarized the average BEQ_in all bioassays in Figure S. This
presentation neglects the diversity of mixtures within one
sample type but is still a way to visualize differences and
commonality. There were very different chemicals dominating
and contributing to the mixture effects in each bioassay, but
there was also little commonality between the sample types.

In the neurotoxicity assay with SH-SYSY cells, mebendazole,
the dominant mixture effect contributor in the WWTP
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effluents, was included but played a minor role in surface
water and the other way around for azoxystrobin (compare
Figure Sa with Se). Other overlapping mixture effect
contributors were propiconazole and 7-diethylamino-4-meth-
ylcoumarine. The agricultural pesticides thiacloprid and
carbaryl were only important for surface water, but another
pesticide imidacloprid appeared in both water types as the
mixture contributor. Pharmaceuticals such as antiandrogen
medication bicalutamide and the antidepressant sertraline were
not only found in both sample types but also were important
for the mixture effects.

The industrial chemical 2-benzothiazolesulfonic acid was not
characterized in the neurotoxicity assay but contributed to on
average a quarter of BEQy,, for surface water in the three
bioassays AhR-CALUX, PPARy-BLA, and AREc32 (Figure 5).
This corresponds to what has been observed in the 2018
sampling campaign.”’ The high contribution of 2-benzothia-
zolesulfonic acid could attribute its overall high detected
concentration in surface water (Table S3).

Unlike for surface water, the major toxicity drivers were
different between the four bioassays for WWTP effluent
(Figure S). While 2-benzothiazolesulfonic acid was still a
dominant contributor in AREc32, diverse chemicals such as
mebendazole, climbazole, and telmisartan contributed the
most to BEQ.., in the other three bioassays. The
concentration of 2-benzothiazolesulfonic acid was also high
in WWTP effluent, but climbazole and telmisartan, which were
only analyzed in WWTP effluent, were also highly detected
(Table S4) and showed higher effect potency than 2-
benzothiazolesulfonic acid (REP in Table S2), and therefore,
their contribution was pronounced in WWTP effluent.

The toxicity drivers and their rank of contribution were
consistent between sample types for AREc32 (Figure S).
However, diuron and diclofenac contributed to the substantial
amount of BEQ,,.,, commonly for both sample types in AhR-
CALUX and PPARy-BLA, respectively, which indicates those
two chemicals can be the potential toxicity drivers regardless of
water types.

A limitation of this analysis is that the list of target chemicals
(Tables S3 and S4) differed slightly between the two sample
types. We still did the analysis on all chemicals detected and
not only on the overlapping chemicals, but such an additional
analysis is possible. While a large database of single chemical’s
effect data has been collected over the last decade for
chemicals occurring in European waters, the neurotoxicity
assay with SH-SYSY cells has been applied for the first time for
water samples, and therefore, the number of individual
chemicals tested was much lower. As the selection of those
followed a prioritization, BEQ},.,, captured still a comparable
fraction of BEQy,, as in the other bioassays, but future work
could expand the number of individual chemicals tested,
especially for chemicals with high occurrence such as 2-
benzothiazolesulfonic acid.

Neurotoxicants pose a risk for both humans and environment.
Chemicals could play a role in observed vulnerability of
humans to adverse impacts on learning, memory, and cognitive
functions. A variety of bioassays are already available for testing
certain aspects of the so-called adult neurotoxicity, that is, the
toxicity on the function of the already differentiated nervous
system, such as acetylcholinesterase inhibition. However, more
sensitive and irreversible neurotoxicity may arise from early-life
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exposure to toxicants causing DNT. With the novel high-
throughput screening assay, we can not only screen single
chemicals but also environmental samples for evaluation of
water quality in terms of neurite outgrowth, one of the key
endpoints in DNT. The neurite outgrowth assay was used here
as a bioanalytical tool to identify the presence of chemicals and
mixtures with the potential to cause an effect on the nervous
system. For inferring a risk of individual chemicals or mixtures
to human, a full exposure assessment to estimate the exposure
level in the human body and the ability to cross the blood—
brain barrier would need to be combined with hazard
assessment. Risk assessment is beyond the goals of the present
study, but the proposed bioassay might find some application
in the future as a bioanalytical tool in human biomonitoring,

The neurite outgrowth assay was successfully implemented
and applied for environmental samples ranging from WWTP
effluent to diverse surface water samples, indicating the wide
applicability and responsiveness of this novel assay. Although a
relatively high number of chemicals (243 of 381 targeted in
surface water, and 366 of 499 targeted in WWTP effluent)
were analytically quantified to identify chemicals contributing
to mixture effects, the iceberg modeling indicated that the
number remains too limited to explain the observed mixture
effects in environmental waters and relate differences in effects
to certain type of chemicals. Testing of even more chemicals
might not be the solution as one would need to test hundreds
of chemicals. Even then, many chemicals below analytical
detection limits will contribute to mixture effects, and the
multitude of degradation products and unknown chemicals can
never be included comprehensively.*® Therefore, we recom-
mend using the BEQy,;, and BEQ,;,, approach always side by
side to understand the full magnitude of the mixture effects but
also the relative role of known environmental pollutants.

Effect-directed analysis (EDA) represents an alternative
approach to identify causative chemicals,”” but it is rather
suited to bioassays that quantify highly specific, receptor-
mediated effects. It has not been explored yet whether the
neurite outgrowth effect analysis provides enough specificity,
and EDA can be used to identify mixture effect drivers for this
bioassay. Furthermore, one may create artificial mixtures to
better understand what type of chemicals may drive the
observed effects.

Further research should aim at better interpretation of the
results in terms of risk of water-borne pollutants to human
health and whether it can be used to diagnose major source of
chemical contaminations such as agriculture. This also includes
the development of effect-based trigger values that can
differentiate between acceptable and poor water quality.
Considering higher toxic effects on neurite outgrowth observed
for surface water and the toxicity drivers identified in this
study, environmental monitoring should be focused in the case
of surface water or tire-wear and direct road runoff. Given the
paucity of DNT evaluation of single chemicals, the mixture-
driven approach for identification of DNT-specific chemicals
can help to prioritize potential DNT chemicals also
considering their environmental relevance. We applied an
assay that has been recommended for neurotoxicity assessment
because it is anticipated to capture multiple potential
molecular initiating event. Inclusion of additional key events
(e.g., migration and synaptogenesis) '3 or assessment of specific
targets such as inhibition of signal transduction (e.g., inhibition
of acetylcholinesterase)'>** would allow one to cover an even
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wider range of effects relevant for DNT in water quality
monitoring.
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Abstract: The acetylcholinesterase (AChE) inhibition assay has been frequently applied for environmental monitoring to
capture insecticides such as organothiophosphates (OTPs) and carbamates. However, natural organic matter such as dis-
solved organic carbon (DOC) co-extracted with solid-phase extraction from environmental samples can produce false-
negative AChE inhibition in free enzyme-based AChE assays. We evaluated whether disturbance by DOC can be alleviated in
a cell-based AChE assay using differentiated human neuroblastoma SH-SY5Y cells. The exposure duration was set at an
optimum of 3 h considering the effects of OTPs and carbamates. Because loss to the airspace was expected for the more
volatile OTPs (chlorpyrifos, diazinon, and parathion), the chemical loss in this bioassay setup was investigated using solid-
phase microextraction followed by chemical analysis. The three OTPs were relatively well retained (loss <34%) during 3 h of
exposure in the 384-well plate, but higher losses occurred on prolonged exposure, accompanied by slight cross-
contamination of adjacent wells. Inhibition of AChE by paraoxon-ethyl was not altered in the presence of up to 68 mg /L
Aldrich humic acid used as surrogate for DOC. Binary mixtures of paraoxon-ethyl and water extracts showed concentration-
additive effects. These experiments confirmed that the matrix in water extracts does not disturb the assay, unlike purified
enzyme-based AChE assays. The cell-based AChE assay proved to be suitable for testing water samples with effect con-
centrations causing 50% inhibition of AChE at relative enrichments of 0.5-10 in river water samples, which were distinctly
lower than corresponding cytotoxicity, confirming the high sensitivity of the cell-based AChE inhibition assay and its rele-
vance for water quality monitoring. Environ Toxicol Chem 2022;41:3046-3057. © 2022 The Authors. Environmental Tox-
icology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Keywords: Acetylcholinesterase inhibitors; dissolved organic matter; effects-based monitoring; neurotoxicity; SH-SY5Y cells;
volatility

motor neurons. Inhibition of AChE, therefore, can hinder
degradation of ACh and lead to overstimulation of the ACh
receptor, which could disrupt neurotransmission. Acetylcholi-
nesterase can be inhibited by diverse insecticides that have an
affinity to its active site (Colovi¢ et al., 2013; Pohanka, 2011).
Depending on the interaction of the AChE inhibitors with the
active sites, the insecticides bind either irreversibly or reversibly
to AChE. Inhibitors of AChE have been mainly used as in-
secticides (Fukuto, 1990), but some are also potentially used
for therapeutic purposes to treat neurological disorders such as
Alzheimer's disease (Sharma, 2019).

Insecticides that act as AChE inhibitors have raised concern
because of their presence in the environment and their adverse

INTRODUCTION

The enzyme acetylcholinesterase (AChE; acetylcholine [ACh]
acetylhydrolase, E.C. 3.1.1.7) modulates neurotransmission by
breaking down the neurotransmitter ACh. In cholinergic neu-
rons, depolarization of the presynaptic membrane triggers the
release of ACh into the synaptic cleft, enabling a time-resolved
transmission of excitation. Subsequent binding to the AChE
receptor at postsynaptic membranes activates cholinergic or

This article includes online-only Supporting Information.
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Attribution-NonCommercial License, which permits use, distribution and
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effects on nontarget organisms. Among the neurotoxic modes
of action, AChE inhibition had the highest hazard quotient in
environmental monitoring from three European river basins
considering the ratio of environmental concentration and effect
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concentration for the detected chemicals (Legradi et al., 2018).
In addition, AChE has already been employed as biomarker of
neurotoxicity, and organ homogenates collected from exposed
species were used for environmental monitoring (Lionetto
et al., 2011; Nunes, 2011). Alternatively, a simple enzyme-
based assay (using purified enzyme) can be used to assess in-
hibition of AChE activity by environmental pollutants in water
samples (Escher et al., 2009; Hamers et al., 2000; Macova
et al., 2011; Molica et al., 2005).

Diverse AChE inhibition assays have been applied for
screening the inhibitory potency of environmental chemicals or
samples. High-throughput screening of inhibition of AChE ac-
tivity was performed using purified enzyme, human neuro-
blastoma SH-SY5Y cells, and neural stem cells for chemicals in
the Tox21 program (Li et al., 2021). Approximately 2.25% of
the tested chemicals (187 of 8312) inhibited the AChE activity
in that study. Inhibition assays based on purified AChE have
been commonly applied because of low cost and simple
operation (Cao et al., 2020). Despite its wide application, the
enzyme-based AChE inhibition assay may be adversely im-
pacted by natural organic matter that is co-extracted with the
micropollutants during the extraction process of environmental
samples. For example, matrix effects from diverse water
samples were observed, and the co-extracted dissolved or-
ganic carbon (DOC) contributed to reduced sensitivity of
enzyme-based AChE inhibition assays (Neale & Escher, 2013).
Furthermore, cell-based AChE inhibition assays may better
reflect in vivo physiology considering cellular environment and
localization of AChE (Li et al., 2017, 2021). Given that local-
ization of AChE anchored to the cell membrane or in the cy-
toplasm can prevent the direct interaction between DOC and
AChE (Hicks et al., 2013; Thullbery et al., 2005), a cell-based
assay could provide an alternative screening tool for environ-
mental samples; but this has not been explored yet.

Loss of chemicals can occur because of partitioning of volatile
chemicals from the bioassay medium to the air. Previously, a
“volatility” cutoff was determined empirically. When this cutoff
was applied to Tox21 high-throughput screening data, approx-
imately 20% of the chemicals investigated in Tox21 were esti-
mated to be partially lost during testing (Escher et al., 2019). In
the typical setup of cellular assays, microplates have an air
headspace, which can cause chemical partitioning to the gas
phase. In bioassays, the partition constant between medium and
air (Kmediumai) Can serve as the best proxy to estimate loss of
chemicals because it considers not only their distribution be-
tween air and water but also the retaining capacity of medium
components such as proteins and lipids (Escher et al., 2019).
Volatile chemicals can hinder precise quantification of effect
concentrations and even can cause cross-contamination in the
bioassay (Birch et al., 2019; Proenca et al., 2021). Some AChE
inhibitors are likely to volatilize during incubation in bioassays,
and their volatility could represent a limitation in bioassays in-
cluding the assessment of AChE inhibition.

The aim of the present study was to optimize a cell-based
AChE inhibition assay for testing environmental samples. We
explored the experimental condition using human neuro-
blastoma SH-SY5Y cells, which express AChE with cholinergic

characteristics (de Medeiros et al., 2019). Irreversible and re-
versible inhibitors were considered to optimize the assay con-
dition. Four main challenges were evaluated: (1) interference by
assay medium with the assay, (2) proper exposure duration, (3)
loss processes during the assay due to volatility of certain
AChE inhibitors, and (4) disturbance by DOC. The assay was
then applied to water extracts to demonstrate its practical
applicability.

MATERIALS AND METHOD
Tested chemicals

Irreversible and reversible AChE inhibitors were tested in the
present study. The irreversible AChE inhibitors included three
organothiophosphates (OTPs; chlorpyrifos, diazinon, parathion)
and their active metabolite organophosphates (OPs; chlorpyrifos-
oxon, diazoxon, paraoxon-ethyl). Three carbamates (carbaryl,
carbofuran, 3-hydroxycarbofuran) were included as reversible
AChE inhibitors. Detailed information on test chemicals (Chem-
ical Abstracts Service number, abbreviation of name, source, and
purity) is given in Supporting Information, Table S1. Methanol
was used to prepare the stock solutions of the chemicals, and its
final concentration in assay plates was allowed up to 1%, which
did not cause any effects on cell viability and AChE activity in our
assay condition. Humic acid sodium salt (Sigma-Aldrich; H16752)
was used as a reference of DOC.

Cell culture and medium

Sigma-Aldrich SH-SY5Y cells (94030304) were maintained
in growth medium composed of 90% Dulbecco's modified
Eagle medium (DMEM)/F12 (Gibco; 11320074) and 10% heat-
inactivated fetal bovine serum (hiFBS; Gibco; 10500064)
with 100 U/ml penicillin and 100 pg/ml streptomycin (Gibco;
15140122). The cells were cultured in 5% CO5 in an incubator
at 37 °C, and the passage of cells for the assay was limited from
5 to 15 to avoid senescence.

The differentiation medium consisted of Neurobasal me-
dium with phenol red (Gibco; 21103049) and was supple-
mented with 2% B-27 Supplement (Gibco; 17504044), 2 mM
GlutaMAX (Gibco; 35050061), as well as 100 U/ml penicillin and
100 pg/ml streptomycin (Gibco; 15140122). For the assay, the
differentiated SH-SY5Y cells were seeded, and the test chem-
icals were diluted in phenol red-free Neurobasal medium
(Gibco; 12348017) containing the same supplement. To com-
pare assay media, not only this Neurobasal assay medium but
also other candidate assay media were considered and pre-
pared with 99% DMEM/F12 and 1% diverse types of FBS:
nontreated FBS (Gibco; 10099141), charcoal-stripped FBS
(csFBS; Gibco; 12676029), dialyzed FBS (dFBS; Gibco;
26400044), and hiFBS (details above).

Cell plating and dosing

The SH-SY5Y cells were differentiated for 72h in flasks con-
taining differentiation medium with 10 uM all-trans retinoic acid
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(Sigma-Aldrich; R2625). The differentiated cells were plated in
collagen |—coated 384-well plates (Corning; 354667) using a
MultiFlo™ Dispenser (Biotek). Each well contained 15 000 cells in
30 ul of assay medium. The cells were further differentiated in the
plates with 10 uM all-trans retinoic acid for 48 h. The last column
of the plates was used as a control without cells.

The chemical stocks in methanol were directly added into
the assay medium. The methanolic extracts of water samples
were blown down with nitrogen and subsequently diluted in
assay medium. The highest concentration tested was de-
termined based on the solubility of the respective chemical in
the medium and the effect level observed in a preliminary test
(data not shown). The chemicals in the assay medium were
diluted serially, and 10 pl of the final dilution was transferred
into the wells of the plates that contained cells using a
Hamilton Microlab STAR platform (Hamilton, Bonaduz, Swit-
zerland) except for the second to last column of the 384-well
plate, which was only treated with assay medium. Two in-
dependent experimental runs were repeated, and each run had
11 test concentrations with two technical replicates for each
chemical. The plates were then kept in the incubator at 37 °C
until measurement.

Viability test

For measurement of cell viability, the exposure duration was
24 h to clearly visualize cytotoxicity. The cells were prepared
and dosed according to the procedure above. After 24 h of
exposure, total and dead cells were stained with Nuclear
Green™ LCS1 (Abcam; ab138904) and propidium iodide
(Sigma-Aldrich; 81845), respectively. The stained cell objects
were counted in fluorescence images using an IncuCyte® S3
live cell imaging system (Essen BioScience). Cell viability was
derived as the ratio of live cells to total cells. The inhibitory
concentration causing 50% reduced cell viability (IC50) was
derived using a log-logistic concentration-response model.

In case of environmental samples, cytotoxicity was already
measured for the identical samples by Lee et al. (2022) with the
same assessment protocol as in the present study but at lower
cell density. The measured cytotoxicity (percentage) was taken
from Lee et al. (2022) and reanalyzed to derive the IC50 for the
present study.

AChE inhibition assay

For detection, change in AChE activity was measured based
on absorbance according to the method of Ellman et al. (1961).
Detection mixture was prepared using acetylthiocholine iodide
(ATCh iodide; Sigma-Aldrich; A5751) and 5,5'-dithiobis(2-
nitrobenzoic acid) (DTNB; Sigma-Aldrich; D8130). The assay
medium was removed by inverting the microplates and blotting
them on a paper towel to take out as much of the medium as
possible. Then, 20l of the detection mixture was added into
each well using a multichannel pipette. The absorbance at
410 nm was measured every min for 30 min using a Tecan Infinite
M1000 plate reader (Tecan). With the method of Ellman et al.

(1961), the absorbance of 2-nitro-5-thiobenzoate dianion can be
quantified from the reaction of DTNB and hydrolysates of ATCh.

The data were analyzed using two consecutive workflows set
up in KNIME (Ver 4.4.1), and the details of the KNIME work-
flows can be found on GitHub (CITE-KNIME, 2022). The slope
of change in absorbance over time is the enzyme velocity (v),
and AChE inhibition (percentage) was calculated using Equa-
tion 1, where Veonwol @and v; indicate the enzyme velocity of
control (nontreated cells) and test chemicals, respectively.
Derivation of enzyme velocity and AChE inhibition was
visualized for paraoxon-ethyl as an example in Supporting
Information, Figure S1. Inhibition of AChE from all ex-
perimental runs was plotted together against the concentration
using a log-logistic concentration-response model with fixed
minimum (0%) and maximum (100%) using the drc package in
R Studio, Ver 4.0.4, and the effect concentration for 50%
of maximum AChE inhibition (EC50) was calculated using the
ED command in the statistical computing language R ( 2020)
(Equation 2).

Veontrol

AChE inhibition (%) = (1 _ )x 100% ™
AChE inhibition (%)

B 100

T 1+ exp[slope x log(concentration/EC50)]

@)

Prediction of potential loss of chemicals
to the air

A mass balance model was applied to predict if chemicals
are likely to be lost to the air (Escher et al., 2019). The phys-
icochemical properties of the chemicals that serve as input to
this model were retrieved from the linear solvation energy re-
lationships database (Ulrich et al., 2017): protein—water parti-
tion constants (Kprotein,w), liposome-water partition constants
(Kiipa), and air-water partition constants (K,.). Bovine serum
albumin (BSA) served as a surrogate for protein to derive the
Koroteinnw (Fischer et al., 2017). The input parameters regarding
the composition of Neurobasal assay medium were taken from
Lee et al. (2021). The partition constants and volume fractions
were substituted into Equation 3 to calculate Kmediumsair- Pre-
viously, a so-called volatility cutoff, which is actually a log
Kinediumair cutoff, was proposed at a log Kiediumair of 4 based
on cytotoxic effects in AREc32 cells (Escher et al., 2019). The
predicted Kyediumair Of the nine AChE inhibitors were com-
pared with this volatility cutoff to select test chemicals for
further experimental volatility test.

Kmedium/air
Vﬁip,medium x Klip/w + prrotein,medium X KBSAW + fw,medium
Kaw

Q)

Test for loss and cross-contamination

Chemical stocks in methanol were used to prepare dilutions of
the three test chemicals chlorpyrifos, diazinon, and parathion.
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The final concentration of the chemicals in the plates corre-
sponded to the highest test concentration of the AChE inhibition
assay: 2.2 X 107°M for chlorpyrifos, 6.6x 10™>M for diazinon,
and 3.4x 107> M for parathion (concentration with the maximum
solubility in the assay medium).

In a collagen l-coated 384-well plate, 40 ul of spiked me-
dium per well was transferred into the plates with quad-
ruplicates as shown in Supporting Information, Figure S2. The
remaining wells were filled with 40 ul of nonspiked assay me-
dium. The plate was covered with a lid and incubated at 37 °C
and 5% CO, for 24 h in total. Two aliquots of 1 ml of spiked
medium were incubated in closed vials under the same
condition.

To quantify the initial level of chemicals, two aliquots of 30 ul
of the spiked medium were transferred into high-performance
liquid chromatography (HPLC) vials with insert and extracted
immediately after preparation. After 3 and 24 h of incubation,
30 ul of the spiked medium from two out of the four wells of the
quadruplicates and the nonspiked medium from four adjacent
wells in the plates, as well as two aliquots from closed vials
were collected and transferred into HPLC vials with insert for
extraction.

The samples were extracted using solid-phase micro-
extraction (SPME) for subsequent quantification of the chemical
amount. The SPME method was based on protocols from
previous studies of our group (Henneberger et al., 2019;
Huchthausen et al., 2020), and the method parameters were
adapted accordingly because of the small sample volume of
the 384-well plate. Customized SPME fibers were purchased
from Sigma-Aldrich and were made of nitinol wire with a
coating of C18 particles embedded in polyacrylonitrile. The
coating thickness was 45 pm, and the coating length was 2 mm,
leading to an approximate coating volume of 69 nL. The SPME
fibers were stored in methanol and conditioned in Milli-Q water
for 20 min before the experiment. The fibers were transferred
to the sample vials, and the vials were shaken at 37 °C and
1800 rpm (BioShake iQ; Quantifoil Instruments) for 2 h. For the
chemical desorption from the fibers, aliquots of 60 ul of 90/10
(v/iv) acetonitrile/Milli-Q water (chlorpyrifos) or 50/50 (v/v)
acetonitrile/Milli-Q water (diazinon and parathion) were pi-
petted into HPLC vials with inserts. All solvents used had a
purity >99%. The fibers were transferred to the vials containing
the desorption solvent and incubated at 37 °C and 1800 rom
for 2h. The fibers were removed from the vials, and the vials
were stored at 4 °C until instrumental analysis.

The chemical concentration in the desorption solvent after
SPME was quantified using liquid-chromatography mass-
spectrometry (LC-MS). An Agilent 1260 Infinity Il system was
equipped with a Kinetex 1.7pm C18, 100 A, LC column
(50 % 2.1 mm) and coupled to a triple-quadrupole MS (Agilent
6420 Triple Quad). The LC and MS parameters are given in
Supporting Information, Table S2.

Relative peak area (percentage) was calculated based on an
initial peak area of samples before incubation (at O h). Instead
of converting peak area to mass using standard curves, relative
peak area was used so that the data below the standard range
could be included for some samples with a low concentration

level, for example, samples from neighboring wells. At least
two experimental runs were conducted with additional repeats
in case the data from the first two runs were not comparable.

Environmental samples

Water samples were collected from diverse small streams in
Germany during rain events that were impacted by agriculture,
road runoff, and combined sewer overflow, leading to a highly
diverse pattern of organic pollutants. The detailed information
for sampling was already described by Liess et al. (2021), and
381 chemicals were analyzed by a target screening method
using LC high-resolution MS. Details of chemical analysis and
detected concentrations of chemicals were published by Lee
et al. (2022). Among these 85 river water samples, 13 were
selected for testing in the AChE inhibition assay based on
the sum of the detected concentrations of AChE inhibitors. The
availability of samples (enough volume for testing) represented
another selection criterion. Samples were only run once, al-
though in a proper monitoring study, duplicate experiments
would need to be performed; but the available extract volume
was limited.

To calculate the sum of detected concentrations, we only
considered chemicals that were classified as AChE inhibitors by
the Insecticide Resistance Action Committee (2021). Non-
insecticide OPs (e.g., triphenyl phosphate) typically have no or
very weak AChE-inhibiting potency and were therefore not
considered. The EC50 for AChE inhibition was derived as de-
scribed above in units of relative enrichment factor (REF; liters
of water per liters of bioassay).

Role of DOC in the AChE inhibition assay

Humic acid and paraoxon-ethyl were exposed together for
3h, followed by the AChE inhibition assay described above to
evaluate the effects of DOC on AChE inhibition. Humic acid
was serially diluted and tested up to 68 mg/L in the presence
of paraoxon-ethyl at its EC50 obtained in this assay. The rela-
tive AChE inhibition level by the co-exposure of humic acid and
paraoxon-ethyl was determined compared with the inhibition
level triggered by the constant paraoxon-ethyl concentration.

Mixture experiments

The toxicity of binary mixtures of chemicals or mixtures of a
chemical and an extract of environmental sample were eval-
uated based on an isobologram approach (Altenburger
etal., 1990). A fixed concentration ratio design was used, which
means that stock solutions containing 10 times the EC50 of
each component were mixed in ratios of 80:20, 60:40, 40:60,
and 20:80 (Supporting Information, Figure S3); and these
stocks with sum of concentrations in the mixture (Cyym)
were diluted as in a single-chemical experiment to derive
concentration—response curves (CRCs).

The concentration fraction of each component in the mix-
ture (p) was calculated by Equation 4, and EC50.,x was
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deduced from the CRCs of the mixture experiments that used
Ceum as the concentration.

G

pl - CSU m (4)

The toxic units of each mixture component i (TU) in
Equation 5 were calculated from the experimental EC50.,
multiplied by the p; and divided by the EC50 of the mixture
component i (EC50).

P,' X ECSOmiX

U= "cs0,

(5)

The binary mixture of paraoxon-ethyl and diazoxon was
tested as reference with four different fixed ratios plus the
components alone. While the EC50,,, was determined in-
dividually for each experimental run because of the diverse
combination of mixtures, EC50; was derived from all ex-
perimental runs together to improve the robustness of TU;. The
experiment was repeated two or three times.

Subsequent testing of paraoxon-ethyl and environmental
samples was performed to investigate the influence of DOC on
the mixture toxicity and to test if a water sample containing a
complex mixture behaves in a concentration-additive way with
respect to the target mode of action. Two river water samples
were tested in the same isobologram design using nine or 10
different fixed concentration ratios of binary mixtures with
paraoxon-ethyl. The two river water samples were selected
considering following criteria: (1) no cytotoxicity accompanied
by AChE inhibition, and (2) different degree of AChE inhibition
potency (high and moderate). For Cy,n in the mixture of
paraoxon-ethyl with environmental samples, the highest tested
concentration of paraoxon-ethyl (1.99 x 1078 M) was set at an
REF of 1 to unify their units.

RESULTS AND DISCUSSION
Type of FBS and cells used

Many cell-based AChE inhibition assays use assay medium
with FBS, which can result in additional AChE in the bioassay
with inconsistent composition from different species. Our
assay used SH-SY5Y cells, originated from human tissue, as
the source of AChE. Because FBS contains active AChE from
cow (Ralston et al., 1985), FBS-containing medium can pro-
vide another source of AChE in this SH-SY5Y cell-based
AChE inhibition assay. The enzymes in FBS could possibly be
filtered out or inactivated by heat via additional treatment of
FBS, but the type of FBS has often not been indicated clearly.
Although the amino acid sequence of AChE and the corre-
sponding enzyme structure are known to be relatively con-
served between species, the sensitivity of AChE to several
known AChE inhibitors was lower in cow than in horse or rat
(Cohen et al., 1985; Karanth & Pope, 2003). Therefore, we
compared background AChE levels from assay media containing
FBS, csFBS, dFBS, and hiFBS as well as the Neurobasal assay
medium to rule out the presence of external AChE and avoid any

bias in AChE inhibition determination (Supporting Information,
Figure S4).

The AChE activity of the medium itself (without cells) was
assessed by measuring the absorbance after incubation with
the known AChE inhibitor paraoxon-ethyl or methanol for 1 h.
Increased absorbance from methanol-treated wells was ob-
served for assay medium containing 1% FBS and dFBS, which
indicates the presence of active AChE in the medium. For the
rest of the media (DMEM/F12 with 1% csFBS or hiFBS and
Neurobasal assay medium), the absorbance was comparable
between paraoxon-ethyl- and methanol-treated wells and was
only slightly higher than that of phosphate-buffered saline,
which was used as a negative control. To prevent any possible
contamination by external AChE from FBS, Neurobasal assay
medium was selected as the assay medium in the present
study.

Differentiated SH-SY5Y cells were used for the AChE in-
hibition assay because the AChE activity of the undifferentiated
cells was too low and the change in absorbance too subtle to
be used for analysis (data not shown). Therefore, we applied
differentiated cells in our assay to increase AChE activity and
the assay performance. It was reported previously that AChE
activity increased 10-fold after differentiation of SH-SY5Y cells
(de Medeiros et al., 2019). In addition, it was observed that
AChE in undifferentiated SH-SY5Y cells was mainly localized on
the neurites and distributed throughout the cytoplasm, while
the majority of AChE is closely located to the nucleus for
nonneuronal cells (Thullbery et al., 2005). Considering that
expression of AChE along the neurites was achieved after dif-
ferentiation of rat adrenal chromaffin PC-12 cells in the same
study, more intense expression of AChE on the neurites
and plasma membrane could be expected for differentiated
SH-SY5Y cells.

To evaluate the assay quality for the optimized condition,
the Z-factor (Zhang et al., 1999) was determined by comparing
inhibition rate from paraoxon-ethyl-treated (100% inhibition
level, positive control) and methanol-treated (negative control)
measurements. The optimized condition using Neurobasal
assay medium and differentiated SH-SY5Y cells gave a Z-factor
of 0.81, which was above the threshold of 0.5 suggested by
Zhang et al. (1999).

Change in EC50 for AChE inhibition over time

Nine AchE inhibitors were tested in differentiated SH-SY5Y
cells under the optimized condition with an incubation period
of 1-6h to evaluate the changes in EC50 over time and de-
termine an optimal exposure duration. No cytotoxic effects
were observed for the dosed concentration ranges after 24-h
exposure (data not shown). The inverse of EC50 was plotted to
present the degree of toxicity in Figure 1, and the EC50s
were derived from the CRCs in Supporting Information,
Figure S5, and are given in Supporting Information, Table S3.

The EC50s of inhibitors with the same moiety (e.g., P=S
moiety for OTPs; P=0O for OPs) were similar to each other,
which indicates comparable inhibitory potency on AchE from
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FIGURE 1: Effect concentration for 50% of maximum acetylcholines-
terase inhibition for organothiophosphates and carbamates after 1-6-h
exposure in differentiated SH-SY5Y cells. EC50 = median effect con-
centration; AChE = acetylcholinesterase.

their structural similarity. The difference in EC50 between OTPs
and between OPs was within a factor of 10 after >3 h of ex-
posure. The ratios of EC50s of the corresponding OPs and
OTPs are in the range of 255-30 343, which means that OPs
showed much higher effect potency for AchE inhibition than
OTPs. It is well known that OTPs need metabolic activation by
oxidation for higher inhibitory potency (Colovi¢ et al., 2011;
Fukuto, 1990). There appears to be metabolic activation in
SH-SY5Y cells, but it appears not to be very efficient compared
with the activation by microsomes (Li et al., 2021). Therefore,
for future experiments, it might be necessary to metabolically
activate chemicals or environmental samples before testing to
reflect higher toxicity of the metabolites.

The already oxidized chlorpyrifos-oxon showed the highest
effect potency among all tested AchE inhibitors with the lowest
EC50, and carbofuran was the most potent among the rever-
sible AchE inhibitors. The potency of AchE inhibition is mainly
determined by reactivity to the serine hydroxyl moiety at the
active site of AchE and the structural fitness to the AchE (Co-
lovi¢ et al., 2013; Fukuto, 1990). Therefore, chlorpyrifos-oxon
and carbofuran are possibly highly reactive to the moiety of
AchE or might have strong structural fitness to the active site
of AchE.

The Inhibition of AChE Increased over time with decreasing
EC50 for the three OTPs and the three OPs (Figure 1). For OPs,
a rapid increase in AchE inhibition was observed at 1 to 2h of
exposure, which was followed by a leveling off of EC50 values
after longer exposure. In contrast, the maximum effects on
AchE inhibition of carbofuran and 3-hydroxycarbofuran were
already achieved after 1h of exposure. This different pattern
can be explained by different reaction rates involved in the
AchE inhibition (Colovi¢ et al., 2013; Fukuto, 1990). When
compared with OPs, carbamates fit relatively well to AchE ac-
tive sites because of their structural similarity to Ach; thus, the

TABLE 1: Effect concentration for 50% of maximum acetylcholines-
terase (AChE) inhibition after 3-h exposure to AChE inhibitors (detailed
information in Supporting Information, Table S3) and comparison with
literature using a similar cell-based assay and an enzyme-based assay
(Li et al., 2021)

EC50 (uM)
Present SH-SY5Y Enzyme-

Chemical study cell-based assay  based assay
3-Hydroxycarbofuran ~ 0.31 Not included Not included
Paraoxon-ethyl 0.0019 0.1 0.2
Carbaryl 5.8 30.7 243
Diazoxon 0.0085 0.2 1.8
Carbofuran 0.047 0.2 0.2
Chlorpyrifos-oxon 0.00076 0.01 0.02
Parathion 4.6 10.9 243
Diazinon 4.5 18.6 27.3
Chlorpyrifos 5.4 19.9 60.4

EC50 = median effect concentration.

intrinsic reactivity of the carbamyl moiety is generally high,
which could accelerate the reaction (Fukuto, 1990).

The time course of carbaryl EC50s differed from the other
carbamates, carbofuran and 3-hydroxycarbofuran (Figure 1).
Degradation of carbaryl could account for this decrease in
toxicity for carbaryl. It was reported that a considerable amount
of carbaryl was hydrolyzed already after 3 h of incubation at pH
7.4, and this hydrolysis was facilitated by serum albumin, which
is contained in our assay medium (Sogorb et al., 2004, 2007).
Therefore, when carbaryl was unbound from AchE by a reverse
reaction, the released carbaryl would continuously degrade,
leading to a continuous decrease in exposure concentration.

The change In EC50 observed for the tested chemicals was
used to ldentify an appropriate exposure duration. Considering
the lower sensitivity of OPs after a short time but also the fast
reverse reaction observed for carbaryl, we decided to apply 3 h
as our optimal assay duration.

The EC50 values of the present study ranged over four or-
ders of magnitude and had the same relative order of potency
but were overall more sensitive than data reported in the lit-
erature for an SH-SY5Y cell-based bioassay (Li et al., 2021,
Table 1; Supporting Information, Figure S6A). The new assay
was also more sensitive than an enzyme-based assay (Li
et al., 2021; Table 1; Supporting Information, Figure S6B). The
EC50s from the literature agreed well between cell- and
enzyme-based assays (Supporting Information, Figure S6C).

Loss due to partitioning of AchE inhibitors to the
airspace in 384-well plates

To evaluate loss of AchE inhibitors, we predicted Kiediumvair
of the nine tested AchE inhibitors based on the distribution
between medium and water (K ediuma) and the K, (Table 2).
The log Khediumsair ranged from 3.59 to 9.80 for our test
chemicals. The volatility cutoff in bioassays was initially
defined by Escher et al. (2019), and chemicals having a log
Kediumsair < 4 were considered as volatile chemicals in the as-
says with a 24-h exposure duration. Three OTPs, chlorpyrifos,
diazinon, and parathion, had log Kiediumsair below or just above
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TABLE 2: Partition coefficients to predict loss processes from volatility in the bioassay with Neurobasal assay medium for nine acetylcholinesterase

inhibitors
LOg Kasam |—09 Klip/w LOg Konediumm LOg Kaw LOg Kenediurmvair

Chemical (I-waterll-BSA)a (I-wrsﬂ:erll-\ip)a (Lwater/Lmedium) (l-waterll-air)a (Lair/Lmedium)
3-Hydroxycarbofuran 0.96 0.56 0.01 -9.79 .80
Paraoxon-ethyl 1.80 1.98 0.06 -6.70 76
Carbaryl 2.61 2.92 0.31 -6.26 57
Diazoxon 0.95 0.89 0.01 -6.42 43
Carbofuran 1.72 1.93 0.05 -5.94 .99
Chlorpyrifos-oxon 2.25 2.53 0.16 -5.64 5.80
Parathion 2.83 3.43 0.44 —4.65 5.09
Diazinon 2.85 3.25 0.45 -3.96 4.41
Chlorpyrifos 3.48 4.30 0.94 -2.65 3.59

2UFZ-LSER database (Ulrich et al., 2017); pH 7.4, 37 °C.
bPrediction using a mass balance model (Escher et al., 2019).

Kasamw = partition constants between proteins (bovine serum albumin; BSA) and water; Kjou = partition constants between lipids and water; Knediummw = partition
constants between medium and water; K,,, = partition constants between air and water; Kyediumair = partition constants between medium and air.

the defined cutoff. Therefore, we selected these three chem-
icals to verify the predicted loss under our test condition using
chemical analysis. We also quantified the chemical losses after
24 h because this is the typical exposure duration of bioassays.
For the remaining chemicals including OP metabolites and
carbamates, the log Knediumair Was clearly above the cutoff,
and thus they were considered as not prone to losses to the air
for the assay conditions applied.

The Initial levels (0 h) of chlorpyrifos, diazinon, and parathion
were compared with the final levels in closed vials as well as
with spiked and neighboring wells in 384-well plates after 3 and
24 h of incubation (Figure 2). The chemicals were incubated
without cells to exclude loss due to metabolism. The amount of
chemicals in closed vials was relatively stable for 24 h for all
three OPs (from 85% to 100% of initial level). The constant level

£
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Oh 3h Oh
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Relative peak area
(% compared to peak area at 0 h)

Diazinon

3h

of chemicals in the closed system over time would mean there
was minor contribution by additional loss from an abiotic
process other than volatility, such as photolysis and hydrolysis
(Proenca et al., 2021).

When we compared the level in the closed vials with those
from spiked wells, most of the test chemicals stayed in the
medium for our assay duration of 3 h: 66% of the initial level for
chlorpyrifos, 83% for diazinon, and 76% for parathion. The
maximum loss of 34% was observed for chlorpyrifos, which was
expected from the lowest predicted Ky edium/air among the test
chemicals. The loss due to partitioning to air may be consid-
ered acceptable within 3h of exposure, but one should be
cautious with more volatile chemicals whose EC50 values may
be affected strongly. It is noteworthy that the observed losses
in the spiked wells could also arise from sorption to the plastic

(c) Parathion
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FIGURE 2: Volatility test of three organophosphates in 384-well plates containing Neurobasal assay medium without cells. The chemicals at the
highest tested concentration used for testing acetylcholinesterase inhibition were incubated for 3 and 24 h. Relative peak area of (A) chlorpyrifos, (B)
diazinon, and (C) parathion in closed vials, spiked wells, and neighboring wells compared to the initial level at 0 h.
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of microplates, but this loss process is expected to be
negligible because of the high sorptive capacity of medium
components (Fischer et al., 2018).

More than 50% of chlorpyrifos and diazinon were lost from
the spiked wells after 24h, which can be rationalized by
their predicted Kiediumsair (Figure 3). The lower the predicted
Kinediumzair was for the chemicals, the higher was the loss in the
spiked wells observed after 24 h. Chlorpyrifos had the lowest
log Kmediumsair of 3.59 and the biggest loss from the spiked
wells among the three OPs after 3 and 24 h of incubation.
Although the spiked wells of chlorpyrifos and diazinon con-
tained chemicals at <50% of the initial level after 24 h of in-
cubation, parathion with a log Knedium/air of 5.09 had 71.5%
detected in the spiked wells. Loss to the airspace of chemicals
in the bioassay depends on K,,, and the octanol-water partition
coefficient K, as shown in Figure 3 (Escher et al., 2019). The
Kaw of individual chemicals mainly determines the loss in the
bioassay, and the higher the K, is, the more easily chemicals
partition into the headspace with some damping by the re-
taining capacity of the medium. Although the retaining ca-
pacity of medium was the highest for these three OPs among
the nine AchE inhibitors considering higher K ediummw (Table 2),
this had a minor contribution to alleviation of the loss to
the airspace, which was confirmed by only slightly elevated
Kinediumvair in simulation with the medium containing 10% FBS
(Supporting Information, Figure S7).

Cross-contamination in neighboring wells was observed to a
low extent for diazinon after 24 h, whose Kiediurmvair is slightly
above the volatility cutoff (Figure 2). The detection level in the
neighboring wells was 3.5% of the initial level for diazinon,

Log Kmediumair
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FIGURE 3: Distribution of partition constants between medium and air
(Kmediumvair. colored squares) of acetylcholinesterase (AChE) inhibitors
overlaying an x-y plot of partition constants between air and water and
between octanol and water (K,,,) to determine the cutoff for volatility in
bioassay. The previously established volatility cutoff for cytotoxicity (24-
h exposure) of Kyediumair Of 10* is shown as a solid red line and is
recommended also for the 3-h AChE inhibition assay. The white broken
line corresponds to a Kediumair Of 10°, where partial losses occurred
at longer exposure times as evidenced in Figure 3 by DZN and
CPF after 24-h exposure. K,,, = partition constants between air and
water; CPF =chlorpyrifos; DZN =diazinon, PT=parathion; CF=
carbofuran; CPO = chlorpyrifos-oxon; DZO = diazoxon; CB = carbaryl;
POE = paraoxon-ethyl; 30OH-CF = 3-hydroxycarbofuran; K, = partition
constant between octanol and water.

1.3% for chlorpyrifos, and 0.5% for parathion. This trend is
in line with the previous observation that chemicals with a
Knediumsair closer to volatility cutoff, that is, diazinon in the
present study, caused more severe cross-contamination,
whereas highly volatile chemicals were mainly lost without
cross-contamination (Escher et al., 2019). Considering that a
substantial amount (>60% of initial level) was retained and no
cross-contamination was observed during the 3-h exposure
duration of the AchE inhibition assay, the previously defined
volatility cutoff is still applicable for the AchE inhibition
assay; but we recommend analytically verifying the exposure
concentrations when testing single chemicals that have a
log Kediumsair Close to 4 and <5.

Evaluation of the influence of DOC on the AchE
inhibition assay

During sample preparation of surface water and wastewater
via solid-phase extraction (SPE), DOC is co-extracted with mi-
cropollutants from water samples (Pichon et al., 1996), while
metal and inorganic ions can be well removed. Depending on
the water type, 40%-70% of the DOC can be recovered in the
extract after SPE (Neale & Escher, 2013). It has been shown that
DOC interferes with the performance of the enzyme-based
AchE assay and suppresses the effect of added AchE inhibitors
(Neale & Escher, 2013). However, DOC did not disturb the
performance of cell-based bioassays where the receptors of
interest are at least partially inside the cells (Neale & Es-
cher, 2014). Given that the AchE is partially located on the
neurites of SH-SY5Y cells and therefore potentially in contact
with the medium, we explored if this interference by DOC is
also observed in the SH-SY5Y cell-based AchE inhibition assay.
The inhibition level of AchE from co-exposure to DOC and
paraoxon-ethyl as a reference chemical was compared with that
from single exposure to paraoxon-ethyl. Aldrich humic acid was
applied as representative of DOC according to Neale and
Escher (2013).

Inhibition of AchE by paraoxon-ethyl was not influenced by
humic acid up to 68 mg /L (Figure 4). Any experimental artifacts
were prevented by removing the assay medium before de-
tection. The inhibition level by exposure to only paraoxon-ethyl
was comparable to that by co-exposure to paraoxon-ethyl and
humic acid. This means that no suppressive effects were ob-
served with humic acid. This observation is in striking contrast
to what was observed in the enzyme-based AchE inhibition
assay, where AchE inhibition by oxidized parathion was sup-
pressed by humic acid at a final assay concentration as low as
2mgJL (Neale & Escher, 2013).

The Interference by DOC has been explained by three dif-
ferent causes: (1) nonspecific binding of DOC to the target site,
(2) experimental artifacts due to interference with measure-
ment, and (3) sorption of micropollutants to DOC leading to
low bioavailable concentration (Neale & Escher, 2014). Non-
specific binding of DOC to AchE possibly interfered with in-
hibition by chemicals in the assay using purified AchE (Neale &
Escher, 2013). However, in the cell-based assay, AchE is
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FIGURE 4: Relative inhibition of acetylcholinesterase (AChE) after 3-h
exposure to paraoxon-ethyl (POE) at the previously determined median
effect concentration of 2x10°M POE in the presence of variable
concentrations of Aldrich humic acid (dissolved organic carbon) in the
AChE inhibition assay with SH-SY5Y cells. EC50=median effect
concentration; DOC = dissolved organic carbon.

anchored to the outer cell membrane, and this might deter
accessibility of humic acid to AchE. It could be that DOC is too
bulky to effectively bind to anchored AchE. Charge repulsion
between cell membrane and DOC, because both are neg-
atively charged (Philippe & Schaumann, 2014), also can hinder
the access of DOC to the AchE. Another possible explanation
for the experimental observations arises from the tetramer
structure of anchored AchE. Although two catalytic subunits of
the tetramers are oriented outward, the other two subunits are
toward the cell membrane (Perrier et al., 2002), and hence
possibly less accessible by DOC. Some AchE is located inside
the cells, and DOC cannot enter into the cells. In addition, if
DOC would disturb the quantification of the enzyme activity by
measurement with ATCh, for example, if the bioavailability of
ATCh was reduced in the presence of DOC, one would also
detect lower activity. In the SH-SY5Y cell assay, the medium is
removed prior to running the enzyme inhibition test with ATCh,
which could protect against artifacts.

Applicability of the cell-based AchE inhibition
assay to environmental water samples

To investigate the applicability to environmental water
samples, 13 river water samples were tested in the AchE in-
hibition assay. Their EC50s ranged from REF 0.5 to 10; that is,
the samples had to be diluted by a factor of 2 or enriched
10-fold to achieve 50% AchE inhibition. The EC50s were at
least three times lower than the IC50, and cytotoxicity was
determined after 24 h of exposure. Therefore, the observed
AchE inhibition would be primarily caused by specific inhibition
rather than by unspecific reduction due to cytotoxicity. The
CRCs of the tested water samples are given for AchE inhibition
and cytotoxicity in Supporting Information, Figure S8. The
derived EC50s for AchE inhibition are given in Supporting
Information, Table S4, together with the 24-h cytotoxicity IC50.

All 13 river water samples inhibited AchE with different
effect potency (Figure 5). Higher detected concentrations of

®b
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FIGURE 5: Acetylcholinesterase inhibition (median effect concentration
for 3-h exposure) and cytotoxic effects (median inhibition concentration
for 24 h exposure) of 13 river water samples in differentiated SH-SY5Y
cells. Darker gray area indicates higher possibility of artifacts from
cytotoxicity. Samples a and b were chosen for the subsequent mixture
experiments. AChE = acetylcholinesterase; EC50=median effect con-
centration; REF =relative enrichment factor (liters of water per liter of
bioassay); IC50 = median inhibition concentration for cytotoxicity.

AchE inhibitors in the samples did not necessarily lead to higher
AchE inhibition. For example, pirimicarb and dimethoate were
detected in the sample with the highest AchE inhibition (sample
b in Figure 5), but their detected concentrations were lower than
the level in other samples with lower AchE inhibition potency
(Supporting Information, Table S4). This indicates that there
might be a contribution of AchE inhibitors below the detection
limit or unknown AchE inhibitors, which demonstrates the
sensitivity of our assay to capture those effects.

Two water extracts were selected for subsequent mixture
experiments. To evaluate samples with different degrees of
effect potency, we chose samples which showed moderate
(sample a in Figure 5; EC50 = REF 3.0) and high (sample b in
Figure 5; EC50 = REF 0.5) AchE inhibition.

Mixture experiments

We tested binary mixtures of reference chemicals and the
two selected water extracts to confirm the applicability of the
cell-based assay to environmental samples. Diverse mixtures
with different effect concentration fractions of paraoxon-ethyl
with diazoxon or water extract were tested, and their ex-
perimental toxic unit was compared with the prediction of the
concentration addition model (Figure 6). Parallel log-CRCs are
a prerequisite for derivation of the toxic unit (Villeneuve
et al., 2000), and the slopes of the CRCs were similar within a
factor of 1.4 (Supporting Information, Figure S? and Tables S5
and Sé6). Detailed information for the calculation of toxic unit is
given in Supporting Information, Tables S5 and Sé.

The experimentally derived toxic unit agreed well with the
concentration addition prediction for binary mixtures of the
known AchE inhibitors paraoxon-ethyl and diazoxon (Figure 6A).

© 2022 The Authors.
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FIGURE 6: Isobolograms for binary mixtures of paraoxon-ethyl with (A) diazoxon as well as water extracts with (B) moderate and (C) high inhibition
potency in an acetylcholinesterase inhibition assay using SH-SY5Y cells. The line indicates the concentration addition prediction. Different symbols

stand for the results from multiple experimental sets. TU = toxic unit.

Because these two chemicals act through the same mode of
action, no deviation is expected from the prediction. This was
already demonstrated in the isobologram for oxidized diazinon
and parathion in a purified AchE inhibition assay (Neale &
Escher, 2013).

The experimental toxic unit of water extracts mixed with
single chemicals also agreed well with the prediction for con-
centration addition (Figure 6B,C). In the isobologram study using
purified AchE, on the contrary, the experimental values highly
deviated from the predictions for binary mixtures of oxidized
parathion with diverse types of water samples (reverse osmosis
concentrate, treated effluent, and surface water; Neale & Es-
cher, 2013). This indicates that the AChE inhibition assay using
SH-SY5Y cells is not biased by binding to DOC, and hence can
be applied to screening of DOC-rich environmental samples.

CONCLUSIONS

Limitations of bioassays for testing chemicals could be loss
of chemicals during exposure, for example, by volatilization. To
consider volatile loss of chemicals for experimental planning, a
volatility cutoff at a log Knediumsair Of 4 was defined previously
considering cytotoxic effects in various cell lines (Escher
et al.,, 2019). While we confirmed that this cutoff is also appli-
cable to the AChE inhibition assay with SH-SY5Y cells after 3 h
of exposure, we observed substantial loss and slight cross-
contamination after 24h of incubation for some chemicals
whose K edium/air Was just around the cutoff. There can be other
processes that contribute to the loss of chemicals in bioassays,
such as abiotic degradation and sorption to the plastic micro-
plates. In the presence of cells, it must also be kept in mind that
SH-SY5Y cells are metabolically active and that a decrease in
exposure concentration could occur because of cellular uptake
and intracellular metabolism despite the large medium volume
to cell volume ratio that would normally assure that depletion
due to cell uptake and metabolism is negligible.

The OTPs were substantially less potent than OPs. Oxida-
tion of OTPs into OPs by the metabolic activity of SH-SY5Y cells
needs to be investigated further to understand the role of

metabolism in this cell-based AChE assay. Potentially, the
metabolic activation could be boosted by addition of an ex-
ternal metabolizing enzyme cocktail such as S9 isolated from
rat liver, as is common practice in other bioassays. In the
free enzyme-based assay, the OTPs are often oxidized with
N-bromosuccinimide to the corresponding OPs, but even mild
oxidation can degrade other mixture components in water
samples; therefore, we did not attempt chemical oxidation as
part of sample preparation.

Bioanalytical tools are useful to assess the toxicity of micro-
pollutants in environmental samples. Measurement of AChE in-
hibition has been considered a potential endpoint to detect
certain types of neuroactive pesticides such as OPs and carba-
mates in environmental samples (Legradi et al., 2018). However,
environmental matrices such as DOC can hinder precise assess-
ment in bicassays using isolated enzyme because the DOC can
bind chemicals and therefore reduce the bioavailability of the
chemicals for the receptor—in our case, AChE—or the DOC can
disturb the AChE nonspecifically (Neale & Escher, 2013). Con-
sidering that DOC can suppress AChE inhibition in assays using
purified enzyme, previous testing of water extracts with isolated
enzymes might have underestimated AChE inhibition in the en-
vironmental samples. Such a negative impact of co-extracted
DOC had not been observed for any other cell-based assay
(Neale & Escher, 2014). Consistent with these observations, our
SH-SY5Y cell-based assay was also unaffected by DOC and is
more sensitive toward known AChE inhibitors. Therefore, it ap-
pears more suitable for environmental monitoring than any
enzyme-based AChE inhibition assay.

Supporting information—The Supporting Information is avail-
able on the Wiley Online Library at https://doi.org/10.1002/
etc.5490.
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