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Abstract

Creating relightable objects from images or collections is a fundamental challenge in
computer vision and graphics. This problem is also known as inverse rendering. One
of the main challenges in this task is the high ambiguity. The creation of images from
3D objects is well defined as rendering. However, multiple properties such as shape,
illumination, and surface reflectiveness influence each other. Additionally, an integration
of these influences is performed to form the final image. Reversing these integrated
dependencies is highly ill-posed and ambiguous. However, solving the task is essential,
as automated creation of relightable objects has various applications in online shopping,
Augmented Reality (AR), Virtual Reality (VR), games, or movies.

In this thesis, we propose two approaches to solve this task. First, a network architec-
ture is discussed, which generalizes the decomposition of a two-shot capture of an object
from large training datasets. The degree of novel view synthesis is limited as only a sin-
gular perspective is used in the decomposition. Therefore, the second set of approaches
is proposed, which decomposes a set of 360-degree images. These multi-view images are
optimized per object, and the result can be directly used in standard rendering software
or games. We achieve this by extending recent research on Neural Fields, which can
store information in a 3D neural volume. Leveraging volume rendering techniques, we
can optimize a reflectance field from in-the-wild image collections without any Ground
Truth (GT) supervision.

Our proposed methods achieve state-of-the-art decomposition quality and enable novel
capture setups where objects can be under varying illumination or in different locations,
which is typical for online image collections.






Kurzfassung

Die Erstellung von fotorealistischen Modellen von Objekten aus Bildern oder Bilder-
sammlungen ist eine grundlegende Herausforderung in der Computer Vision und Grafik.
Dieses Problem wird auch als inverses Rendering bezeichnet. Eine der grofiten Heraus-
forderungen bei dieser Aufgabe ist die vielfdltige Ambiguitit. Der Prozess Bilder aus
3D-Objekten zu erzeugen wird Rendering genannt. Allerdings beeinflussen sich mehrere
Eigenschaften wie Form, Beleuchtung und die Reflektivitit der Oberfliche gegenseitig.
Zusitzlich wird eine Integration dieser Einfliisse durchgefiihrt, um das endgiiltige Bild zu
erzeugen. Die Umkehrung dieser integrierten Abhingigkeiten ist eine duBerst schwierige
und mehrdeutige Aufgabenstellung. Die Losung dieser Aufgabe ist jedoch von entschei-
dender Bedeutung, da die automatisierte Erstellung solcher wieder beleuchtbaren Ob-
jekte verschiedene Anwendungen in den Bereichen Online-Shopping, Augmented Rea-
lity (AR), Virtual Reality (VR), Spiele oder Filme hat.

In dieser Arbeit werden zwei Ansitze zur Losung dieser Aufgabe beschrieben. Erstens
wird eine Netzwerkarchitektur vorgestellt, die die Erfassung eines Objekts und dessen
Materialien von zwei Aufnahmen ermdglicht. Der Grad der Blicksynthese von diesen
Objekten ist jedoch begrenzt, da bei der Dekomposition nur eine einzige Perspektive
verwendet wird. Daher wird eine zweite Reihe von Ansitzen vorgeschlagen, bei denen
eine Sammlung von 360 Grad verteilten Bildern in die Form, Reflektanz und Beleuch-
tung gespalten werden. Diese Multi-View-Bilder werden pro Objekt optimiert. Das re-
sultierende Objekt kann direkt in handelsiiblicher Rendering-Software oder in Spielen
verwendet werden. Wir erreichen dies, indem wir die aktuelle Forschung zu neuronalen
Feldern erweitern Reflektanz zu speichern. Durch den Einsatz von Volumen-Rendering-
Techniken konnen wir ein Reflektanzfeld aus natiirlichen Bildsammlungen ohne jegliche
Ground Truth (GT) Uberwachung optimieren.

Die von uns vorgeschlagenen Methoden erreichen eine erstklassige Qualitédt der De-
komposition und ermoglichen neuartige Aufnahmesituationen, in denen sich Objekte
unter verschiedenen Beleuchtungsbedingungen oder an verschiedenen Orten befinden
konnen, was iiblich fiir Online-Bildsammlungen ist.
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Chapter 1

Introduction

Inverse rendering is the task of decomposing a scene or object into its underlying physical
properties, such as geometry, illumination, and materials. Recovering these properties is
useful for several vision and graphics applications such as view synthesis [25, 26, 28,
29, 150, 185], relighting [25, 26, 28, 29, 94, 150, 186], object insertion [22, 58, 94] or
automated asset creation for games or movies [7, 25, 26, 29, 121].

Digitizing real-world objects into 3D models gained a large following due to trends
such as Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR) or in gen-
eral the Metaverse. For example, Microsoft created a digital version of the entire planet
for the recent Flight Simulator [152]. Providing automatic methods for digitizing objects,
rooms, or larger environments is a significant challenge in these fields. Furthermore,
capturing these images of potential assets is also a time-consuming task, and extensive
collections of online images exist that capture nearly every object. However, these col-
lections are captured in varying illuminations or even locations. Converting these image
collections into useful assets for games or other applications is challenging. Ideally, the
assets need to be relightable as they have to integrate into various environments. This
requirement is highly beneficial in AR applications.

The main challenge in converting images into relightable assets is the high ambiguity
of the decomposition. A scene needs to be split into geometry, appearance, and illumi-
nation. The appearance is often described as the Bidirectional Reflectance Distribution
Function (BRDF), defined in Sec. 2.1. As each of these elements influences the others,
this problem is highly ill-posed. For example, a visible dark spot on an object can ei-
ther appear due to a hole (shape), a darker texture (appearance), or no light being cast
towards that spot (illumination). This challenging problem is explained in Sec. 2.3. Due
to the high ambiguity, only partial decompositions are often addressed. For example, the
shape [88, 89] or the illumination [27, 150] are expected to be Ground Truth (GT) and
provided by a dedicated measurement processes. For example, the shape can be scanned
using Light Detection And Ranging (LiDAR). In this thesis, all properties are estimated
jointly without GT information.

Often the illumination is also controlled [27, 30, 88, 89, 122] by requiring a flash light
source or fixed illumination patterns from a light stage [42]. Instead of these constrained
setups, the highly casual capture setup is tackled in this thesis. Our objects are not in
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a controlled environment but outside or in rooms under natural illuminations. These
illuminations can also vary for each image. Combining the full decomposition with
simple capture setups enables object reconstruction from online image collections.

This thesis presents two types of approaches for the decomposition of objects from
images or image collections. Here, the distinction between a generalized and a per-object
method is applied.

For a generalized method, a neural network is trained once on a large corpus of la-
beled data [27, 29, 30, 44, 45, 98]. For novel objects, the trained network weights are
then evaluated. This enables a fast estimation of the physical properties of an object.
Furthermore, only a single perspective is required. The resulting decompositions can be
used for a small degree of novel view synthesis and easily relit. However, as existing
weights are only evaluated after the training, no optimization for the specific instance is
performed. When the object is not easily related to the corpus of the training data, the
reconstruction quality is reduced significantly.

Additionally, as only a single perspective is optimized, no complete 3D object is cre-
ated. The object cannot be visualized in 360 degrees, and fusing multiple estimations
from a single perspective is challenging [50, 83, 178]. Furthermore, no actual global
minimum is easily reached after the estimation, as each estimation is performed inde-
pendently.

In the second case, a network is optimized for each object. However, no supervision is
required in this case. We only require posed image collection for the optimization. For
our contribution in Sec. 4.4, we even enable a reconstruction from a coarse posed image
based on quadrants. Additionally, the optimization is performed from a larger set of
images, which can be distributed 360 degrees around the object. Therefore, a complete
3D decomposition is performed. The resulting assets can be directly used in AR or VR
applications and achieve higher quality due to the optimization for each dataset. The
reconstructed object reaches a global minimum more easily as the decomposition has to
explain all input images.

Overall, both approaches learn to decompose the input into geometry, Spatially-varying
Bidirectional Reflectance Distribution Function (SVBRDF) (see Sec. 2.1.2), and the il-
lumination. Due to the decomposition, the assets can be easily relit. We achieve this
by optimizing the BRDF alongside the geometry and illumination. Our methods enable
the automatic creation of 3D assets from arbitrary image collections or images from a
singular perspective. The assets can be used in e-commerce, AR or VR applications,
games, and movies. Enabling this from existing image collections instead of specifically
captured ones can democratize the creation of 3D assets and even automate the creation
of a large number of objects.
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1.1 Main Contributions and Research Questions

The main objective of this thesis is to reconstruct an object model and decompose im-
ages or image collections into an explicit BRDF, shape, and illumination. Achieving
this is essential for consistently relightable reconstructions. This problem is highly am-
biguous and ill-posed. Therefore, a recurring theme is to steer the decomposition and
constrain it to arrive at or strive toward a global optimum instead of getting stuck in lo-
cal minima. Another key challenge is differentiable rendering and easily incorporating
environment illumination to allow realistic real-world and unconstrained capture setups.
Lastly, another goal is to enable the reconstruction of highly challenging in-the-wild im-
age collections without any GT knowledge of pose, shape, illumination, or material.
Our main research question and contributions are as follows:

Research Question 1: Can we leverage shading cues from flash and no-flash image
pairs?

Capturing images with a co-located camera flash reduces the ambiguity, as the pre-
dominant light source has nearly the same origin as the view. We define a co-located
light source as a light close to the camera. The ray direction for the view is approx-
imately the same as the light source. Moreover, we assume that the flash provides a
powerful light source that predominantly lights the scene.

However, due to the flash, images have overexposed regions at the highlight, or the
influence of the environment illumination is not easily visible. Providing information by
taking a secondary image without a flash can unlock this information for the evaluation.
By capturing this two-shot approach, additional information is available. For example,
light decreases in strength over distance with the inverse square root. With both images,
the visible illumination from the flash image can be leveraged to estimate the shape from
the shading [99]. In our generalized decomposition method [29] in Sec. 3.2 we lever-
age this capture scenario with a hand-held burst capture setup. We devise a specialized
network architecture to process the two-shot image in separate streams. We call these
MergeConvolutions. We further show that capturing images in this two-shot approach
improves the reconstruction quality drastically compared to a single shot under flash
illumination.

Research Question 2: Is a cascaded decomposition process beneficial with highly spe-
cialized networks for each task?

In our work on generalized decomposition [29] in Sec. 3.2 we also compared the
influence of creating a joint large network vs. several smaller networks for specific tasks.
Both network architectures use a similar amount of weights to store a comparable amount
of information. We found that creating highly specialized architectures for each task to
be beneficial. Here, we split the decomposition into individual tasks. A network for
shape estimation is followed by illumination estimation, and finally, the SVBRDF is
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estimated. We then leverage the re-render of our initial estimation under the same setting
as the flash image and use the difference to guide a final refinement stage. In this stage,
the shape and BRDF are jointly optimized, which helps escape the local minima from
the separate estimations. One side-advantage is that each network is smaller than a joint
one, and each can be efficiently run on mobile hardware.

Research Question 3: Can we reconstruct relightable 3D assets from image collec-
tions under varying environment illumination?

Creating 3D assets from image collections is an inherently challenging problem. This
problem is exacerbated considerably when each image has a different illumination. Each
illumination needs to be optimized alongside the global shape and material model. We
tackle this challenging task in three works: NeRD [25] in Sec. 4.2, Neural-PIL [28] in
Sec. 4.3, and SAMURALI [26] in Sec. 4.4. In NeRD and SAMURALI, we propose an
automated textured mesh extraction scheme. The resulting assets are easily useable in
any game engine or rendering software. SAMURALI can create these assets from a highly
challenging dataset based on online image collections.

Research Question 4:  What is an efficient way to render environment illumination in
a differentiable renderer?

During the per-object decomposition or the generalized training of networks, the cur-
rent estimate is often rendered to compare it directly to the input image. This process
has to be executed millions of times during the training. Having a fast rendering pro-
cess is, therefore, a key challenge. The entire hemisphere of incoming light has to be
integrated, which requires many evaluations and is therefore too expensive to perform
during the optimization. Moreover, the entire process must be differentiable as described
in Sec. 2.3.5. With classical Monte-Carlo integration, described in Sec. 2.1, the gradient
is extremely noisy due to its stochastic nature, and providing a stable gradient requires
many samples per pixel. We, therefore, apply methods to perform the integration of en-
vironment illumination more easily. We leverage Spherical Gaussian (SG) illumination
models as described in Sec. 2.2.1 in our generalized decomposition method of Sec. 3.2
and NeRD of Sec. 4.2. As SG illuminations are mostly low-frequent we convert the
pre-integration method of real-time rendering described in Sec. 2.2.2 into a neural net-
work. This achieves higher quality and faster rendering. We leverage this approach in
Neural-PIL of Sec. 4.3 and SAMURALI of Sec. 4.4.

Research Question 5:  How can we introduce priors in a per-object optimization pro-
cess?

Our generalized decomposition method of Sec. 3.2 is capable of learning from the sta-
tistical properties of the training dataset. The decomposition is mostly performed using
data-driven priors. Is it possible to leverage similar priors in our per-object optimiza-
tion methods? We introduced a sparse auto-encoder in NeRD and SAMURALI, which



1.2 Outline

enforces that similar BRDF materials are mapped to the same latent space. Then sur-
face points of similar materials optimize the same underlying BRDF. This can aid in the
decomposition, as the BRDF reconstruction is improved drastically.

Furthermore, we explore creating a general network trained on large quantities of
synthetic data with specialized losses. The resulting Smooth Manifold Autoencoder
(SMAE), is described in Sec. 4.3. The latent space from this network can then be used
with frozen weights, as the gradient in the latent space is also smooth, and a valid mani-
fold is defined. We employ this technique for the BRDF and illumination, which are then
constrained to natural illumination and materials.

Research Question 6: Is it possible to jointly recover poses and perform a decompo-
sition in challenging datasets?

Traditional 3D reconstruction and camera pose estimation methods often leverage cor-
respondences. A popular example of this is COLMAP [145, 146]. Correspondences
work well in scenes under single illumination and at a single location, where the back-
ground can also be leveraged for the pose recovery. This is especially critical when
reconstructing objects, as often, objects are relatively homogeneous. When an object is
under different illumination and in various locations, COLMAP often fails to recover
the pose and shape. This is primarily due to inconsistent features from the varying il-
lumination on the object. In Sec. 4.4 we tackle this problem using a combination of a
Camera Multiplex inspired by Goel et al. [60] and a flexible camera parametrization and
volume definition, which allows non-equidistant cameras. We even found that leverag-
ing an explicit BRDF is beneficial compared to learning the plenoptic function defined
in Sec. 2.3.3.

Research Question 7:  Can we reduce the influence of difficult-to-align images in highly
challenging datasets?

Even with the introduction of the novel contributions of Research Question 6, some
poses are difficult to align. We also want to reduce the impact of poorly aligned poses
on the global shape and BRDF reconstruction. This is achieved with posterior scaling
as introduced in SAMURALI in Sec. 4.4. Here, we reweigh the losses for the network
based on the current estimate. A poorly aligned pose has reduced influence compared to
a well-aligned one. This improves the recovered shape and stability during training.

1.2 Outline

The thesis is structured as follows: Several fundamental areas useful for the thesis are
discussed in Chapter 2. Here, the concept of rendering a 3D scene using Monte Carlo
Integration is introduced in Sec. 2.1, and the BRDF is introduced in Sec. 2.1.2. Effi-
cient environment illumination rendering used in the proposed methods is explained in
Sec. 2.2. The process of inverse rendering, the challenges, and techniques are discussed
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in Sec. 2.3. Lastly, the recent topic of Neural Fields is introduced in Sec. 2.4. Neural
Fields and rendering of such fields are used in our per-object decomposition methods.

In Chapter 3, we introduce our generalized decomposition method, which given a pair
of flash and no-flash images, estimates the shape, illumination, and BRDF. This is done
using a novel dataset and a cascaded network architecture. These highly specialized
networks of the cascaded structures are introduced in Sec. 3.2.3. As this method also
leverages environment illumination, the SG rendering of Sec. 2.2.1 efficiently integrates
the illumination. As no large-scale, GT labeled dataset exist to form our training corpus,
we create a dataset in Sec. 3.2.4 using domain randomization. The dataset is gener-
ated from random objects, and the network must learn the concept of shape and shading
without relying on semantic information. We show that our network can transfer the
decomposition capabilities acquired from this random dataset to real-world objects.

The second part of our method covers the per-object decomposition methods in Chap-
ter 4. Here, three methods are discussed. The first method, NeRD, extends on the recent
NeRF [117] method and their use of Neural Fields (Sec. 2.4) with explicit BRDF decom-
position and a SG illumination model (Sec. 2.2.1). An important distinguishing element
is that we allow each image to be in a different illumination. This is especially rele-
vant when in-the-wild online image collections are to be used. We achieve this using
a specialized architecture for the decomposition described in Sec. 4.2.2.2 and a sparse
auto-encoder for enforcing similar materials to occupy the same latent space. Further-
more, we aim to model the real-world camera processing in Sec. 4.2.2.5 to reduce the
ambiguity due to white balance, tone mapping, and auto-exposure.

While NeRD achieved significant strides in decomposing in-the-wild image collec-
tions, several issues remain. While SG illumination models are fast to integrate, the
resulting illumination is mostly low-frequency, and artifacts from the isotropic spheri-
cal lobes remain. This issue is also known in real-time rendering, and a pre-integrated
illumination model described in Sec. 2.2.2 aims to solve this. However, an expensive
pre-integration step is still required. Furthermore, in Chapter 3 we have shown that pri-
ors from datasets are effective in decomposing scenes. Therefore, we extend NeRD in
Sec. 4.3 and propose Neural-PIL, which tackles both issues. We devise a way to learn
smooth manifolds of BRDFs and natural illuminations using our proposed Smooth Mani-
fold Autoencoder (SMAE) losses and architecture definition. With the smooth manifold,
we can easily leverage the networks with frozen weights and only optimize the BRDF
using the latent codes in the neural field or per-image for the illumination. Furthermore,
we replace the expensive offline pre-integration with a network. This network is not only
capable of performing the pre-integration but at the same time limiting our predictions to
plausible natural illumination patterns. This significantly speeds up the rendering com-
pared to SG and improves the quality.

Both previous methods require known camera poses from COLMAP [145, 146]. How-
ever, due to varying illumination and locations in online image collections, COLMAP
fails in these cases. In our method, SAMURAI, we jointly decompose the scene and
optimize the camera poses as described in Sec. 4.4. As the decomposition into shape,
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material, and illumination is already difficult, introducing the added ambiguity from cam-
era pose optimization requires several novel additions. Our method now only requires a
rough quadrant-based initialization where each camera is placed in direction quadrants
such as Front vs. Back, Left vs. Right, and Top vs. Bottom and the combinations of those.
As the offset to the actual camera position is still large with these quadrant initializations,
we employ a Camera Multiplex: Multiple random camera estimates around the quadrant
are created and jointly optimized during the training. Unlikely camera estimates are
phased out during the optimization. We reduce the influence of poorly aligned images
with a posterior scaling, which reduces the influence of these poses on our shape, BRDF,
and illumination estimation. Lastly, the camera is at varying distances from the object
in real-world image collections. We solve this using a flexible camera parametrization
alongside a Neural Field volume-bound definition. Given these novel additions, SAMU-
RALI can run on highly challenging, in-the-wild image collections.






Chapter 2

Foundations

This chapter introduces general concepts from forward rendering used throughout the
thesis. Additionally, it introduces the challenges and problems with inverse rendering.

2.1 Rendering

The rendering process generates a photorealistic 2D image from a 3D scene description.
For this, the underlying physical process of light propagation must be followed. If this
process is followed, the rendering is physically based, and the resulting image should
be indistinguishable from a real image. Often this is achieved by ray tracing, where
infinitesimally small rays are cast into a scene and reflected at surfaces. This surface
reflection is performed based on the surface property and can follow a mirror direction,
or it can be distributed in many possible directions. The rays can also intersect many
objects along the paths and transport energy to and from each surface. Multiple jittered
rays are often cast into the scene for each pixel in the image. Each ray then follows a
separate path, and the result is aggregated. This mimics the physical behavior of light
rays discretely.

In this section, the process of ray tracing (Sec. 2.1.1) and the behavior of surfaces
(BRDF in Sec. 2.1.2) is explained, and the concepts of methods introduced will be used
throughout the thesis.

2.1.1 Rendering Equation

The rendering equation [75] describes the image formation and light propagation of a 3D
scene. It is defined as:

L(,(x, (0(,) = Le(xa (0(,) + /er(x, ;, (D(,)L,’(x, wi)(wi : n)dmi (21)

Here, the outgoing light L, for a location in space x is dependent on all incoming
light L; and the BRDF f, (see Sec. 2.1.2), the cosine shading term (®; - n) and the self-
emission L., where @, describes the outgoing light direction, @; the incoming one, and
n the surface normal. The light direction and normal vectors are visualized in Fig. 2.1a.
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(a) Vector definitions (b) Direct and Indirect Illumination
Light Indirect Direct Light
n _
a, @; {
X

Figure 2.1: Rendering definitions. The definition of the surface normal, incoming, and
outgoing light direction vector is shown in (a). In (b), the concept of direct and indirect
illumination is visualized. In indirect illumination, the light ray bounces through the
scene.

It is worth noting that the outgoing light L, of a surface point x also influences the
incoming light of another point ;. This recursive definition enables light to be reflected
through the scene and enables indirect illumination effects. E.g. in Fig. 2.1b an example
is shown where the light source can directly illuminate one wall but is also blocked by
the same wall and indirectly lights everything behind the wall.

Additionally, the equation contains an integral over the hemisphere [, which evalu-
ates all the incoming light. Monte-Carlo integration is often applied to render a scene,
where individual rays are cast into the scene. The rays can reflect off various surfaces in
the scene. A ray can either start at the camera or a light source. Both approaches have
benefits and disadvantages, and hybrid methods exist, where rays from the light source
and camera are traced and connected [73, 167]. For each method, energy is carried from
and to each surface position. This way, indirect lighting is enabled. For example, a white
surface next to a colored wall will be tinted in that color. As near-infinite directions are
possible at every surface location, a single ray per pixel is not likely to produce the ex-
pected color, and the resulting image will be noisy. Therefore, often multiple rays are
cast toward each pixel.

The Monte-Carlo integration then defines the expected output as the sum of random
samples divided by the probability of each sample:

[ G f)
0= /a f(x)dx = v ;3 odf0) (2.2)

where pdf(x) describing the PDF of f(x). If a sample is improbable, the PDF will be
small. If the function f(x) is at the same time unexpectedly large the influence of that
sample will be large and result in artifacts called Fireflies. These fireflies are visible as
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2.1 Rendering

(a) BRDF (b) Illumination (c) Multiple Importance

Light Light Light

Figure 2.2: Importance sampling. Here, a visual representation of the different sam-
pling methods alongside the rendered image is shown. In (a), the distribution of rays
is shown if only the BRDF is considered when deciding the sampling direction. In (b),
only the illumination is considered. Both methods cast a large portion of rays into im-
probable directions. Therefore, in (c), both distributions are sampled based on multiple
importance sampling where the weighting is performed based on their Probability Den-
sity Functions (PDFs). The unlikely samples in either PDF are weighted down, and the
resulting image has significantly less noise. Rendered images (bottom row) taken from
Veach [167].

bright single pixels and are shown in Fig. 2.2a and Fig. 2.2b. In general the division by
the PDF should account for the fewer samples placed in unlikely directions.

Sampling in more likely directions is therefore critical in rendering, and it is possible to
consider the scene illumination and/or the surface properties to sample more efficiently.
For example, in Fig. 2.2a the BRDF’s PDF is mostly followed to distribute the ray direc-
tions. However, the light is not located in the mirror location. Most samples then never
reach the light source. If instead only the illumination PDF is followed as in Fig. 2.2b,
and the BRDF is nearly mirror-like most directions are unlikely. Both sampling strate-
gies produce fireflies. An ideal solution is to consider both terms as in Fig. 2.2c and
weight the individual distributions. This technique is called importance sampling or, in
the joint case, multiple importance sampling [167]. Still, even with multiple importance
sampling, multiple rays per pixel, and accurate knowledge about the location of light
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sources and the BRDF, are required to render a non-noisy result.

2.1.1.1 Approximations for inverse rendering.

In this work, rendering is used primarily in an inverse manner. E.g. estimating the shape,
reflective properties, and illumination from images. This limits the scope of advanced
rendering methods drastically, as these methods require accurate knowledge about the
scene, but the scene needs to be optimized in inverse rendering. Additionally, the prob-
lem is challenging and highly ambiguous. As discussed in Sec. 2.3, simplifications of the
rendering equation are often taken. One approach is to consider the illumination of the
scene to be infinitely far away [24, 119]. Then the incoming light does not vary between
different surface locations x and only depends on the direction ®;. Additionally, one can
ignore the light bounces and only consider the direct illumination from the infinitely far
illumination. Then the incoming light is defined as L;(®;) and the rendering equation is
not recursive anymore. Lastly, the self-emission term L, can be removed, resulting in the
simplified rendering equation:

Lo(x,®,) = /Q £.(x, @1, 00)Li( @;)(0; - n)d@; 2.3)

These assumptions are taken throughout the entire thesis.

2.1.1.2 Radiometry

Radiometry defines quantities, units, and techniques for measuring electromagnetic radi-
ation. In the context of this thesis, the range will be limited to the visible light spectrum.
It is closely related to photometry which is also limited to the visible light spectrum
but factors in the human visual perception. In the context of this work, the following
quantities can be easily linked to the rendering equation:

Radiant energy describes the energy of electromagnetic radiation with the unit: J (joule)
Radiant flux describes the energy received per unit time s with the unit: W = % (watt)

Radiance describes the emitted, reflected, or transmitted radiant flux per unit solid angle
(sr) per unit projected area m? with the unit: Wsr~!m =2

Irradiance describes the radiant flux received by a unit area with the unit: %
Reflectance describes the ratio of incoming to reflected radiant flux

In the context of the rendering equation, these quantities can then be linked as follows:

Irradiance
L(x,0,) = / o) L(o) (0n)do 2.4)
——— ON—r——— ~——
Radiance (Outgoing) Reflectance  Radiance (Incoming)
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2.1 Rendering

2.1.2 Bidirectional Reflectance Distribution Function (BRDF)

(a) Diffuse (b) Glossy (c) Near-Perfect Specular

n n n

a,

(d) Retro-Reflection (e) Combined

a,

: Diffuse

- Specular

/_ + Retro-Reflection

: Fresnel Rim

,,,,,,,,,,,,,,,,

Figure 2.3: Bidirectional Reflectance Distribution Function components. A simple
BRDF consists of multiple components. For example, in (a), a diffuse component is
shown, where the scattering behavior is view direction independent. The incoming light
is scattered in all directions equally. In (b) and (c), a glossy and specular BRDF is shown
where the reflection mostly appears in the mirror direction (dashed line). In (d), retro-
reflective behavior is visualized. In (e), a combination of all components is shown. Here,
a large portion of reflected rays are cast into the mirror direction, but also some rays
can be scattered in all directions. Lastly, in (f), a rendered example annotated with the
components is shown.

The BRDF describes how light is reflected on a surface. This can be visualized in
lobes, such as in Fig. 2.3. These lobes visualize the distribution of how light rays are
reflected. For example, in Fig. 2.3a light is reflected in all directions, whereas in Fig. 2.3c
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most rays are reflected in the mirror direction. In general a BRDF can be decomposed
into diffuse (Fig. 2.3a), glossy (Fig. 2.3b), near-perfect specular (Fig. 2.3c) and retro-
reflective (Fig. 2.3d) reflections. Additionally, most surfaces become more reflective at
grazing angles due to the Fresnel reflection, as visible in Fig. 2.3f.

The BRDF is a function of the incoming @; and outgoing @, light angle and defined
as: f,(®;,®,). One can define the incoming and outgoing light in spherical coordinates
based on the surface normal n. Then the BRDF is a 4-dimensional function, but it can
be simplified to 3-dimensional by only assuming isotropic material. In isotropic mate-
rials, the reflective behavior remains the same while rotating around the surface normal
n, which results in a perfectly circular highlight. As the materials are changing over
nearly every surface, the BRDF can be extended to be an SVBRDF, which extends the
function f, by the surface location x. As SVBRDFs can be encoded in 2D textures, the
corresponding texture coordinate can be used, which adds two dimensions: f,(x, @;, ®,).

For physical correctness, the BRDF also has to follow certain properties [52]. The
BRDF is always positive: f(®;,®,) > 0. It needs to follow the Helmholtz reciprocity,
which means the behavior remains the same if the incoming and outgoing light directions
are reversed: f(®;,®,) = f(®,,®;). And lastly it has to be energy conserving, as a
surface can not reflect more light than it has received: V@;, [, f+(@i, ®,)(®, -n)d®, <
I.

There are two approaches to representing the BRDF. One is to measure the surface
behavior under known light and view directions [51, 112, 180]. This measurement needs
to be taken for every point. Due to the dense sampling required per point, most datasets
only capture homogeneous materials. However, there also exists spatially-varying mea-
sured materials [180]. This measured BRDF can then be used as a lookup of the specific
response for the given light and view direction during rendering. The other approach is
to approximate the surface response using a parametric function. These models are then
called analytical BRDF.

2.1.2.1 Measured BRDF

The most accurate method to capture this reflective behavior is by measuring a surface
for every incoming @; and outgoing @, light direction. In general, two approaches are
used for measurements [51, 112, 113, 181]. One with a Gonioreflectometer such as in
Fig. 2.4a and the other one being image-based such as in Fig. 2.4b. The main difference
between the methods is a trade-off between speed and accuracy. In comparison, a Go-
nioreflectometer provides the highest level of accuracy but requires a long capture time,
as multiple moving parts need to capture all incoming and outgoing angles. On the other
hand, in the Merl Dataset of Matusik et al. [112], a spherical sample is used as shown in
Fig. 2.4b. When a single image is taken, multiple viewing angles are captured. There-
fore, the light source only rotates around the sample on a single axis to capture isotropic
materials. Samples from this capture process are shown in Fig. 2.5.

Still, these methods only capture homogeneous materials. If a spatially-varying ma-
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2.1 Rendering

(a) White et al. [181] (b) Matusik et al. [112] (c) McAllister [113]

Figure 2.4: BRDF measurement setups. The setup in (a) shows a Gonioreflectometer
setup, where a moveable, high-quality light source can be placed in all positions on the
upper hemisphere. The detector can pivot on a single axis; therefore, three dimensions
are captured, which is enough for isotropic BRDFs. In (b), the image acquisition setup
from the Merl Database [112] is shown, which is image-based. The capture is sped up
by applying the material to a sphere. Therefore, multiple light directions are captured
in each image, and the light source only needs to rotate around one axis. Lastly, in (c),
a setup for capturing spatially-varying, near-planar samples is shown, where the sample
tray can also be moved. Images taken from respective works.

(a) Bronze Aluminium (b) Dark Red Paint (c) Aluminium

Figure 2.5: Merl BRDF examples. Examples of measured BRDFs from the Merl
Dataset [112].

terial is captured, the sample tray itself needs to be moved, and for every point, the
behavior of incoming and outgoing light must be recorded. Each material now requires
storing multiple incoming and outgoing light directions per pixel. This results in quite
large file sizes.
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2.1.2.2 Analytical BRDFs

As mentioned in Sec. 2.1.2.1, measured BRDFs are quite large in size and are therefore
seldom used in actual productions. Instead, analytical models are used. These models
are parametric functions that recreate the behavior of the captured materials. Usually,
they consist of a color for the diffuse reflections, a scalar that models how reflective
the material is — often called the roughness or glossiness —, and a potential specular
reflection color, which expresses the tinting of highlights as often seen in metals. I.e. gold
tints the specular highlight in a yellow to amber color. Compared to gold-colored plastics,
the highlight will have the same color as the light source. Several of these models exist,
which vary in accuracy and materials that can be expressed. In the following, some of
these models are discussed.

Lambertian Diffuse Model is one of the simplest BRDF models and can only express
materials that scatter light in all directions equally [85]. This is a strong assumption,
and only a few materials roughly behave this way. lLe. wall paints often are roughly
Lambertian. The BRDF is then defines as:

b
fLambert(wh wo;bd) = Fd (2.5)

Where b, € R? is the diffuse color, and the division by 7 is done to ensure energy
conservation as the outgoing radiance is integrated over the hemisphere.

Cook-Torrance Model is a physically-based, specular BRDF model [41]. It is mod-
ular by design, and most often, it models specular reflections realistically using micro-
facets. In this concept, a surface consists of microscopic irregularities, where each point
behaves like a perfect mirror, as shown in Fig. 2.6a. Therefore, a secondary normal, the
microfacet normal m is introduced. This normal does only exists conceptually and is
instead modeled by a roughness parameter b, and then defines the ratio of microfacet
normals m being aligned with the surface normal n. For a smooth surface, the roughness
b, is close to 0, and the majority of the microfacet normals m are aligned with the sur-
face normal n. The result is a sharp reflection. If the surface is rough, the roughness b, is
close to 1, and the microfacet normals m are scattered around the surface normal n. The
light is then reflected in random directions, which results in a blurry reflection.

Explicitly altering the geometry to accurately represent these micro structures is not
feasible and, therefore this concept is approximated by a normal distribution function
D(b,,®;,®,,n). As the Cook-Torrance model is modular, varying normal distribution
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(a) Microfacet definition (b) Microfacet shadowing

mee, MmO

M >\A\l>\y

Figure 2.6: Microfacets. In (a), the microscopic surface irregularities are shown. In a
microfacet model, a surface consists of tiny mirror-like patches defined by the microfacet
normal m. Furthermore, light can get absorbed due to the surface structure, as shown in
(b). This is either due to self-occlusions or self-shadowing, where the structures block
the reflected light or the incoming light casts a shadow.

functions can approximate this function. Often the GGX distribution [170] is used:

(04

D(brvwi7w07n): ﬂ((a—l)(nh)2+l)2 (26)
a=b’ 2.7)
o+ 0,
_ @it ® 2.8
[+, (28)

Due to the surface irregularities, light can also be blocked, and the surface should
darken accordingly. An example is shown in Fig. 2.6b. It is again not feasible to model
these irregularities and, therefore, this behavior is modelled by a geometric attenuation
function A(b,, ®;, ®,,n). As light can get blocked in the view or light directions by these
irregularities, it is defined as:

A(by,@;,@,,n) =a(n-®;)a(n-0,) (2.9)
2d

d++/b,"(1—b,)d?

Lastly, as this is a specular model, the Fresnel effect must be accounted for. This term
is defined as F(@®,,h). The common Schlick approximation [144] can be used to model
this:

a(d) =

F(®,,h;Ro) = Ro+ (1 —Ro) (1 — @, - h)’ (2.10)

Here, Ry describes the reflection coefficient for light incoming parallel to the surface
normal n. This Ry coefficient is modelled by the indices of refraction of the two media

ni-—m
ni+m2
artistic control it can also be defined by an RGB value by, where the first medium 1; is

always assumed to be air, which has an index of refraction of close to 1.

2
11 and 1, at the intersection point x. It is then defined as: Ry = < ) . For easier
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The final specular formulation is then composed by the three functions D, F, and A
and normalized to ensure energy conservation:

D(br7 ;, wo,”)F(G)O’h;bs)A(bra @;, wmn)
4(@,-n)(®;-n)

fCOOk—TOl’I’anCG(mi7 wo;bS7br:n) = (2.11)

As this model by default does only model glossy reflection, it can be combined with
the Lambertian reflection to model two lobes of the BRDF.

fr(wh wo;bd7bs,br7n) = fLamben(a)ia wo;bd) +fCook-T0rrance(mi7 wo;bs; br;n) (2.12)

Instead of storing the specular and diffuse color as two individual values an alternative
formulation from Burley [32] stores both colors in a single base-color b;, and interpolates
the specular and diffuse color based on a metallic scalar b,, as followed:

by = (1—by)b, (2.13)
by = (1—by,)0.04+ bby,

A by, value near 1 results in a fully metallic material and near O in non-metal. The
0.04 is an often-used value to explain most specular behaviors of non-metals.

Diffuse/Specular
bds

Diffuse

I\I\I\I\/\I\I\I\I\/\I\I\/
TR Y R YR T R T

NNV
/1////‘1‘//§//‘/

NCOWAN A N NN NN
\I\I\I-
VRN
AR R TR
\
LSS AMAS S A
NN NN VN Render

bbm

Base-color/Metallic

Base-color

Figure 2.7: Material Maps. The material maps for a metal plate are shown for the
Diffuse/Specular and Base-color/Metallic parametrization. The roughness parameter is
shared for both formulations.

When the RGB and scalar coefficients b,, b,, and b, or the equivalent by, b,,, and
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b, are used the parameters can be stored easily in image file formats as material maps
to build a SVBRDF. Sample material maps are shown in Fig. 2.7. We further define
all parameters for the diffuse/specular and base-color/metallic model as bys and by,
respectively.

2.2 Illumination Models

The rendering equation defined in Eq. (2.1) models the outgoing light of a singular point
based on all incoming illumination. This problem is trivial to solve for a singular, known
point light source without any indirect light, as the only light direction is known, and
only a visibility check is required. However, casting a ray in every direction is infeasible
for more complex illuminations where a point is illuminated from the entire environ-
ment. Here, the Monte-Carlo integration is often used to approximate the integration.
This process is often too costly in real-time applications or differentiable optimization,
and approximations are used. In Eq. (2.3), a simplified model is proposed, where the
illumination is infinitely far away [24, 119]. With this simplified model, the illumination
approximation of this section is used to speed up the rendering process drastically.

2.2.1 Spherical Gaussian Illumination

—(x—b)?
A regular 1D Gaussian is defined as: ae 2> . Where a € R defines the height or the

amplitude, b € R the central position of the peak, and ¢ € R~ ( the width of the bell shape.
An exemplary Gaussian is shown in Fig. 2.8a. This Gaussian is defined in a Cartesian
coordinate system. However, the Gaussians can also be defined in a polar coordinate
system, as shown in Fig. 2.8b. It is then defined as ae“(©*(®—2)=1) where 6 is now the
coordinate to evaluate. It is worth noting that the lobe in Fig. 2.8b roughly resembles a
glossy BRDF lobe as shown in Fig. 2.3b. This observation is the central concept behind
this illumination model proposed by Wang et al. [171], where SG are used to express
both the BRDF and the illumination.

A SG can express the three-dimensional BRDF and illumination. It is defined as:

G(x;p, A a) = ae* =1 (2.14)

The parameter g € R3 describes the direction of the peak of the lobe, the A € R+
describes the sharpness or standard deviation of the lobe and a € R the amplitude, which
can also be extended to a € R3 to express even RGB colors. SG possesses several bene-
ficial properties to express illuminations.
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(a) Cartesian 1D Gaussian (b) Polar 1D Gaussian
7| 0
315 45

1.5 ¢
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-1 —-05 0 0.5 1 180

Figure 2.8: One-dimensional Gaussians. In (a), a Gaussian in a Cartesian coordinate
system is shown. In (b), a Gaussian is shown in a polar coordinate system.

The product of two SGs is an SG. The product is defined as [171]:

G1(x)Ga(x) = G(x; uﬁ—mu’lmlrumll,alazelm““m“‘”> (2.15)
A=A+ 1
. A+ MMy
m M+A

The integral of a Gaussian has a closed-form solution. This function is known as
the error function. This also holds for SGs where the integral is taken over the entire
sphere [161]:

/ Glx)dx =222 (1—e ) (2.16)
Q A
This property can also be used to normalize an SG, as this can ensure that the SG inte-
grates to 1. A normalized SG is equivalent to a von Mises-Fisher distribution in 3D.

Lastly, the inner product of two SGs is the integral of the product of two SGs. The

operation is defined as [161]:

Gi(x)-Gy(x) = / G1(x)Ga(x)dx =/, (ZEalazedm*lm(l-o _ efzdm)>
Q
A =1 =4 (2.17)
dm = [| 2111 + 2245 |

Especially the property that the inner product is the integral of two SGs is helpful if
the illumination is approximated as an SG or a set of SGs and the reflective behavior of
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the BRDF is also represented as an SG. The illumination can be naturally expressed as
an SG, as the amplitude covers the illumination strength, the sharpness defines the size of
the specific light source, and the direction describes the position of the infinitely far light
source. On the other hand, a BRDF consists of multiple lobes, which are parametrized
by diffuse, specular, and roughness.

(a) Cosine Lobe (b) Evaluated SG illumiantion
1.5% 1.5%
—— Clamped Cosine —— GT Integration
——  SG Cosine —— SG Diffuse
1 1
0.5 0.5
0 ‘ ‘ 0 1 1 ‘
0 50 100 0 50 100 150
Angle between n and @; Angle between n and ®;

Figure 2.9: Simple SG diffuse illumination fit. In (a), the ground truth clamped cosine
lobe is compared with the corresponding SG lobe. In (b), the effect of this approximation
is shown. Here, a SG light is evaluated with the cosine lobe and compared to the ground
truth numerical integration.

Diffuse Illumination The diffuse illumination is only parametrized by the diffuse color
b,, and the Lambertian reflection model is defined in Eq. (2.5). Here, it is worth noting
that the BRDF is a scalar. Therefore, the diffuse SG lobe mainly needs to approximate the
cosine shading term. Wang et al. proposes a SG parametrized with amplitude a = 1.17
and sharpness A = 2.133 [171]:

Gcosine(n,2.133,1.17) (2.18)

This lobe is shown in Fig. 2.9a. It is worth noting that the lobe mostly follows the
actual clamped cosine curve nicely, but the amplitude extends beyond 1 and also never
reaches 0. This approximation affects the final rendered result, especially visible in areas
facing away from the light source. Due to the cosine lobe never reaching 0O, these areas
are still dimly lit, and the error compared to ground-truth numerical integration can be
seen in Fig. 2.9b. The final outgoing light per SG light source G; is then calculated as:

b
Kpifruse (Gi) = ;"max (Gi - Gosine; 0) (2.19)
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Specular Illumination For the specular part of the BRDF, the SG can also be fitted
to the Cook-Torrance BRDF. This model consists of 3 parts: The normal distribution
function D, the geometric self-attenuation A, and the Fresnel term F.

(a) Roughness 0.25 (b) Roughness 0.5
51 66X | —GGX
— SG — SG
4+ - 1+
3 1
2] 0.5
1 1
0 0

-50 0 50 -50 0 50
Angle between n and h Angle between n and h
Figure 2.10: Normal Distribution Function SG fit. In (a), a relatively smooth surface
is shown. The approximation follows the ground truth GGX function closely. In (b), a

rougher surface is shown. Here, the approximation has a reduced accuracy if the half-
vector h is not aligned with the normal n direction.

The normal distribution function has a close fit proposed by Wang et al. [171] with a
Gaussian defined as:
2 1

D(bn @;, C!){,,n) = Gndf(h;na b_rz, ﬂ'brz

) (2.20)

with h being defined in Eq. (2.8). The resulting fit for two roughness values is shown
in Fig. 2.10. As seen, the SG amplitude also scales appropriately with the GGX function
due to the scaling term #ﬂ’ which always ensures an amplitude of 1 over the integral.

However, the SG is now defined in the domain of the half vector A with the axis or
direction of the SG pointing towards the normal n. As the viewing angle shifts, so does
the half vector h. This view dependency must be introduced by warping the fitted normal
distribution function to the light source domain. Wang et al. [171] propose the following
warping operator applied to the normal distribution function fitted SG Gpg¢:
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Gy =G(l,,, hy,ay) (2.21)
K, =2(0, M) Kogr — Do
Andf
Ay =—"—
4| 1,45 @, ||
Ay = Angdf

The remaining terms of the Cook-Torrance model, the geometric attenuation A and the
Fresnel term F, are not easily fitted to a SG. Here, Wang et al. [171] apply an assumption
that these terms are constant over the entire lobe and can, therefore, be removed from the
integration over the lobe. This assumption works well for smoother surfaces with a low
roughness value but has reduced accuracy for rougher surfaces.

(GW . Gi)F(0)07uw;bs)A(brauw7 wm")

K; Gi) = 2.22
Specular( ) 4(#w ) n) (600 ] n) ( )
Joint Illumination As light is additive, the final evaluation is then defined as:
Lo (Gl) - KDiffuse (Gl) + KSpecular(Gi) (223)

Similarly, if multiple SG light sources are present, each light source is independently
evaluated and then added:

L,= Z Kbpiffuse (Gi) + KSpecular(Gi) (2.24)
Gi

2.2.2 Pre-integrated Illumination

While SG illumination models can be used to model ground truth illuminations and al-
low easy integration of all incoming light, the final rendering quality might be far off
compared to ground truth Monte-Carlo integration. This is especially visible in high-
frequency illumination patterns or highly specular materials. This problem is also well-
known in real-time rendering. In Sec. 2.1.2.2, the Cook-Torrance model and the Lam-
bertian BRDF are shown. These BRDFs split the rendering equation in a diffuse and
specular formulation:

Ly(x, w0>:%/£2Li(xa mi)(wi'n)dmi+/£2fr(xa ®;,0,;b,b,)L;(x,®;)(®;-n)do,;

g

diffuse specular

(2.25)

23



Chapter 2 Foundations

The central concept of pre-integrated rendering is to pre-compute some of these integrals
for a given environment illumination and only perform minimal calculations during ren-
dering [78]. The environment maps are often convolved or blurred, corresponding to the
BRDF. For the diffuse materials, the entire hemisphere of incoming light needs to be
integrated, as shown in Fig. 2.3a.

(a) Environment Map (b) Diffuse Pre-Integration

Figure 2.11: Diffuse Pre-Integration. In (a), the regular environment map is shown.
Whereas (b) visualizes the pre-integrated diffuse illumination. The general structures of
the environment still appear but are heavily blurred.

Each pixel corresponds to a latitude and longitude direction in an environment map
such as Fig. 2.11a. This direction can also be thought of as the normal n of a surface.
The hemisphere for this direction needs to be numerically integrated while considering
the cosine term @; - n. The result is a severely blurred version of the environment illumi-
nation, such as in Fig. 2.11b. The final evaluation is then defined as follows:

b, .
kpitfuse = ;dLDiffuse (n) (2.26)
Lbifruse(n) = /Q Li(w;)(®; n)do, (2.27)

For the specular portion of the rendering equation, the dependence on roughness and
the view direction needs to be minded. A mirror-like object achieves a sharp reflection,
whereas a highly brushed metal object nearly behaves like a diffuse surface. Compared
to the diffuse of Eq. (2.27), the specular pre-integration is now also dependent on the
view direction and the roughness. However, similarly integrating the environment map
for every roughness value, view, and normal direction is not feasible.

Here, Karis et al. [77] provide a reasonable approximation for the Cook-Torrance
model defined in Eq. (2.11) of Sec. 2.1.2.2. The environment map lookup should only
depend on the incoming illumination direction and the roughness value. However, due
to the Fresnel effect, specular reflections are also view-dependent. Karis et al. propose a
strong assumption that the view direction @, is the same as the surface normal n: ®, = n.
The effect of this approximation is visible primarily at grazing angles and is visualized
in Fig. 2.12.
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(a) ”Correct” view direction (b) w, = ®; = n view direction

Figure 2.12: View direction approximation. In (a), the ground truth behavior of a
specular reflection at a grazing angle is shown. In (b), the assumption of a similar view,
light, and normal direction is shown. Notice the lack of stretched highlights. Image is
taken from the Filament Documentation [63].

With this assumption, the environment map can be pre-integrated for varying levels
of surface roughness. As shown in Eq. (2.2), some samples contribute less if they are
highly unlikely. Therefore, the samples of the environment map should be distributed
according to the distribution. Here, the GGX distribution D(b,, ®;, @,,n) defined in
Eq. (2.7) is used, as it defines the scattering behavior of the individual reflected rays.
Given two random variables from a uniform distribution u; and u», the half-vector h is
then sampled with [77]:

s(uy,up,n,b,) = [trx—l—bry—l—an]T (2.28)
_0,1,0)" xn
(10, 1,0] x n]|
_ nxt
[n 1]
r = [cos(8)sin(¢),sin(6) sin(¢),cos(¢)]”

0= 27Uy

1—u
COS(¢) = \/1 + (br2 _ 1)1/!2

sin(¢) = 1/1—cos(¢)?

where (60, ¢) define the spherical coordinates of h. Here, 6 € [0,27) defines the az-
imuth and ¢ € [0, 7] defines the elevation.

The environment map is then integrated for / different levels, and the final roughness
value is then linearly interpolated between two adjacent levels. Furthermore, an image
pyramid can be leveraged as the environment map will be increasingly blurred with each
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consecutive level. The environment is then down-scaled by half in each level to ease
the computation requirements for the increased integration area. Often [ =5 is used
to distribute the roughness as 0,0.25,0.5,0.75,1. The integrated illumination is now
referred to as I:specular(a), b,). Here, @ defines the sampling direction.

The specular incoming illumination is now pre-integrated. The specular term of the
split equation in Eq. (2.25) can now be separated further [77]:

LSvecular (g ) / F1(%, 01, @0 by, by)Li(x, @) (0; - n) d (2.29)
Q

_ / Li(x,:)D(b,, ®;, @y, n)(®; -n) d@;+
Q

J

~
Incoming Illumination

| . 0.0,:b.b,) (@i 1) do, (230)
Q

BRDF and Cosine Term

The incoming illumination L;(x, @;) is now approximated by the pre-integrated envi-
ronment map ﬁspecular(a), b,). Here, the illumination is convolved with the GGX normal
distribution function to account for the most likely sampling areas. Notice that the im-
plementation of this does not integrate over the entire hemisphere but only performs a
Monte Carlo integration based on the GGX importance sampling. Due to the view di-
rection approximation, the normal n is expressed by @,. The specular portion is now
expressed as:

L5 (3, 0,) % Lspecun(@.5,) | (%, @, 00:b,b) (@ m)d@ 231)

The left part of the equation is pre-integrated based on the different roughness levels,
and the correct incoming light can be gathered via a lookup. The right side still requires
a complex integration. Karis [77] proposes to perform the pre-integration and store the
integrals as a lookup table indexed by (@, - n) and b,. As the right-hand side is depen-
dent on more parameters, Karis performs a reordering of the equation alongside further
approximations. The first step is to extract the Fresnel term from the BRDF:

/fs X,0;,0,;b;, b, )((D, d(D, N/fs a mh(oo,l), ) (w()ah;b8)<mi'n)dmi (2.32)

F(®,,h;b;

The term is then substituted with the Schlick approximation from Eq. (2.10):

/fs X, 0, 0,b,)

—b)(1— @, b)) (o .
F(@,.h: by) (bs+(1—by)(1 -, -h)°)(®; - n)do, (2.33)

26



2.2 Illumination Models

The equation is then split over two integrals [77]:

/fs xac;:,’fl’ (b1 (11— @, 1)) (@1 m) dy -

/Qfs(x, ®;,0,;b,)(1— 0, -h)’(@;-n)do; (2.34)

As the specular color by is constant over the integral, it can be taken out of the integral.
The two different terms highlighted as By and B; now act as a scale and bias for the
specular color b;. These can be seen as the integration of the BRDF for a constant
environment illumination of 1:

bs/f;‘(x,a),-,a)(,;br)(l—(l—m(,-h)S)(a)i-n)da)iJr
Q

7

-~

By

/Q fi(x,0;,@0:b,)(1 — @, -h)’(®;-n)de; (2.35)

J/

-~

By

Here, it is worth noting that f; regularly contains a Fresnel term as seen in Sec. 2.1.2.2.
This term is left out as it would be canceled out, resulting in the modified specular BRDF
fi. The specular term also includes the normal distribution function, and in the imple-
mentation, we perform a Monte Carlo integration with the GGX importance sampling.

Both parts can also be pre-integrated with the importance sampling defined in Eq. (2.29)
and stored in a lookup table, parametrized by (@, -n) and b,. The resulting values can be
stored as an image in the red and green channels, respectively. The pre-integrated BRDF
lookup table is shown in Fig. 2.13.

The joined diffuse and specular pre-integration is then defined as:

b,. . .
Lo(x7 mo)%(;dﬂJDiffuse(n) + (F(a)mn;bs)BO(wr : nabr) +Bl (a)r : n7br))LSpecular(wra br)

[

S—— ~~
Diffuse Specular
(2.36)
The incoming illumination is then queried with the reflected ray of @,:
O =—0 —2(—@,-n)n (2.37)

The specular pre-integrated environment ispecular(ah b,) and the pre-integrated BRDF
lookup table is then queried in the reflected view direction @, .

The entire evaluation is now expressed as a simple set of additions and multiplications.
Also, notice that h can be replaced with n, as the incoming light direction is always a
perfectly reflected outgoing direction @,.
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0
0 (@, -n) 1

Figure 2.13: Pre-Integrated BRDF. The lookup table containing the integrated BRDF
terms is indexed by (@, - n) and b, and the scale and bias By and B is stored in the red
and green channels, respectively.

2.3 Inverse Rendering

In rendering, a 2D image is generated from a 3D scene description. Path tracing performs
this by tracing rays through the scene. Each ray can also reflect on surfaces. Each part of
the scene can influence another part. An overview of this process is explained in Sec. 2.1.

In inverse rendering, the opposite task is performed — given a collection of images
or even a single image of a scene, the shape, appearance, and illumination are estimated.
The inverse rendering can be performed for all, or a select set of components can be
considered. The remaining ones can be expected as GT. For example, the shape and
illumination are given, and the appearance is optimized as in Lensch et al. [88, 89].
Solving all tasks jointly is highly ill-posed as each component affects the final output.
However, only partially solving the tasks can result in local, inescapable minima. A
metaphor for this highly ambiguous task is described in Sec. 2.3.1.

The decomposition can also be performed to different extents. The ambiguity is in-
creased significantly when the decomposition is performed in finer granularity.

A common research area is to only estimate the shape. These methods and strategies
are discussed in Sec. 2.3.2. Here, the shape can only entail depth information, which is a
valid surface representation for the specific view of the 3D object. The number of images
required for the approach can also contain either a single image, two images with rigidly
defined and placed cameras, a multi-view approach, or even videos, where the temporal
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information is leveraged.

Another group of research handles view interpolation between a set of sparse cap-
tures. Here, the methods disentangle the visible color from the shape with a light field
in Sec. 2.3.3. The visible color is only interpolated between the multiple views. In other
words, it remains the product of reflectance and incoming radiance. Intrinsic imaging
described in Sec. 2.3.4 aims to split the color into shading and reflectance. However, the
split is not physically motivated, and relighting the objects is limited.

A full decomposition of the rendering equation is required for a physically plausible
split, as explained in Sec. 2.3.5. Recently, neural fields of Sec. 2.4 are often employed
in the decomposition of either light fields or a full decomposition due to their simple
volumetric shape representations.

2.3.1 Workshop Metaphor

Adelson and Pentland [4] introduce the workshop metaphor to explain the challenges of
inverse rendering. A theatre workshop department is asked to replicate a given image in
this metaphor. Each department branch starts to create the image given their respective
specialization. The painter of the department paints on a flat surface to replicate the
image in Fig. 2.14c. The lighting department, the gaffer, projects the image on a white
surface by carefully shaping and blocking light sources in Fig. 2.14d. Lastly, the sculptor
of the department bends metal to conform to a shape that replicates the image under a
specific illumination direction in Fig. 2.14e. In other words, a given image can be either
solved by altering the texture or appearance (painter), the illumination (gaffer), or the
shape (sculptor). When a supervisor is present who distributes work in an ideal manner,
all departments can work together. The sculptor creates an upright standing folded sheet,
the painter adds a gray stripe running through its center, and the gaffer sets up a simple
light source in front of the sheet. This solution is shown in Fig. 2.14b and is the solution
where each department invests the least amount of work. It is also a plausible solution
for the input image.

In Sec. 2.1 the process of generating images from a 3D scene description is described.
For the inverse, this process is not known. So the aim is to model the supervisor of the
metaphor. In other words, we decide the most likely explanation of the given image.
This problem can be solved with multiple images from multiple views and even multiple
illuminations or with priors that use hand-crafted expert priors or statistical distributions
over large datasets. These priors can be learned with machine learning.

2.3.2 Shape Estimation

Traditionally, shape estimation is performed with two cameras, where the cameras are
placed on a rigid setup and calibrated for the extrinsic and intrinsic camera parameters.
Features [18, 105] are then extracted and matched between the images. From this, the
ray geometry can be reconstructed, which can define the 3D position in relation to the

29



Chapter 2 Foundations

(a) Image (b) Possible Explanation (c) Painter

*

(d) Gaffer (e) Sculptor

Figure 2.14: Workshop metaphor. This visualizes the workshop metaphor, where a
theatre workshop supervisor is asked to recreate the image in (a). A possible explanation
of how the image was taken is shown in (b). The different departments of the workshop
then create the solution (c), (d), and (e) given their specializations. Image inspiration
taken from Adelson and Pentland [4] and Barron [13].

cameras [143]. Extensions to this method have been created where wide baselines [151]
or sparse correspondences [106, 159] are enabled.

By controlling the illumination, several improvements to the method can be made.
One method is structured light, where a projector creates spatialy [72, 196] or tempo-
ral [142] patterns on the object’s surface and correspondences between the projector and
camera are found. Another way of leveraging controlled illumination is active stereo,
where random patterns are projected on the objects [76, 165, 169]. These patterns can
help to find camera-camera correspondences more easily. A combination of both ap-
proaches, i.e. finding camera-camera and camera-projector correspondences, is struc-
tured light stereo [71].

Another area of research to estimate a shape is photometric stereo [182]. The general
task is to estimate the shape from multiple images of different illumination. In Sec. 2.1.2,
the BRDF is defined, which defines the amount of reflected light for a direction based

30



2.3 Inverse Rendering

on the incoming and outgoing light direction. When different light directions are mea-
sured, the surface orientation can be constrained, as only a few directions can explain
the current shading. This can be constrained to a single possible surface orientation with
enough light directions. However, highly reflective surfaces are not straightforward to
optimize. This can be solved by additionally providing the light directions and optimiz-
ing the BRDF [67].

(a) Ambigious shading (b) Clear shading

Figure 2.15: Ambiguity for shape from shading. When the light position is not known,
the shading can become ambiguous. This is visible in (a), where it is not clear whether the
shapes are convex or concave. In (b), the shape can be more easily inferred. Illustration
inspired by Ramachandran [133].

A specialized case of photometric stereo is estimating the shape using shape-from-X.
Here, X can express shading [68], silhouettes [17, 111, 153], etc. For the case of shape-
from-shading, a single image is used under a Lambertian assumption (Sec. 2.1.2.2) [68,
197]. With the visible gradients, the shape can be recreated. Ideally, the position of the
light source should be known, as otherwise, ambiguities exist. These ambiguities are
visualized in Fig. 2.15.

Another case is shape-from-silhouettes, where a segmentation mask for each image is
provided. This binary mask clearly defines which of the image belong to the object or
the background. With sufficiently many of these masks, the 3D shape of convex objects
can be reconstructed [17, 111, 153].

This can be extended to multi-view stereo, where the photometric reconstruction is
also performed for multiple cameras. One of the main challenges is finding and matching
the dense correspondences between images [146, 179]. If the images are also taken in
an ordered manner with temporal information, i.e. videos, structure from motion can
also be employed [134, 145]. Here, the information from motion parallax is especially
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useful in the reconstruction. However, highly specular surfaces, varying illumination,
and locations are challenging even with these techniques. With SAMURALI of Sec. 4.4,
we provide a method to deal with these highly challenging cases.

With the advancements of neural networks in recent years, monocular depth estima-
tion from general scenes became feasible [55, 86, 92, 101, 139, 175]. Here, statistical
knowledge gained from large datasets is used to predict relative depth from single im-
ages. It is worth emphasizing that only a relative depth up to a scale and shift can be
predicted from a single image. Furthermore, these networks are also trained on specific
datasets, either indoor, outdoor, or for objects, and the trained network then also only
estimate the depths correctly in these specific scenarios.

2.3.3 Light Fields

Figure 2.16: Light Fields. Traditionally, light fields are captured with an array of cam-
eras. Each surface point is seen by different cameras and, with that, also different angles.
This can be used to model view-dependent behavior (Not visualized here).

Michael Faraday first proposed to interpret light as a field [53] — similar to a magnetic
field. The term light field was then coined by Arun Gershun in a work about radiometry
(see Sec. 2.1.1.2) in the three dimensional room [59]. Here, the light field is defined as
a five-dimensional function of the three-dimensional coordinate (x,y, z) and the spherical
orientation of the ray (0, ¢) [3, 59]. This function is also known as the plenoptic function.
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Capturing a light field is usually done with dense capture setups of either an array of
cameras or a precisely controlled moving camera. In Fig. 2.16 a dense capture setup is
shown. Here, the rays of two points from two objects are shown. Each camera can see
the points with slightly different ray orientations, and the radiance for each direction can
be optimized. Therefore, view-dependent effects can be captured with a light field.

The resulting captured light field can allow for several applications. For example, the
rays can be refocused, and a synthetic aperture can either be used to increase a shallow
depth of field or extend it drastically. Additionally, a degree of Novel View Synthe-
sis (NVS) is possible as a virtual camera can be moved between the camera array in
Fig. 2.16. The surface of the scene or object can also be reconstructed based on the
parallax (see Sec. 2.3.2).

Recent techniques also allow for sparsely captured light fields. Here, only a collection
of images is taken, and the light field is extracted from those [15, 117, 118, 189]. Often
traditional cameras are used to capture the light fields, and here the method now learns
from the pixel values of the images. These color values correspond to the tone mapped
and compressed radiance.

Compared to full decomposition (see Sec. 2.3.5), this partial decomposition only dis-
entangles the shape from the shading and illumination. The appearance of the surface (re-
flectance) is still entangled with the illumination (incoming radiance). With this decom-
position technique relighting a scene is not trivial as only the shape is disentangled from
the rendering equation. Often techniques such as Generative Latent Optimization (GLO)
embeddings are used to interpolate between multiple seen illuminations [110]. How-
ever, it is unlikely to be reconstructable when a specific illumination is not present in the
dataset.

2.3.4 Intrinsic Imaging

The task of intrinsic imaging was first introduced by Barrow and Tenebaum [16]. The
goal is to decompose a given image into separate layers of shape, reflectance, and illu-
mination (irradiance). An exemplary decomposition from Rother ez al. [137] is shown in
Fig. 2.17. There is no physical mechanism underlying this decomposition. Instead, the
layers are only multiplied together. Thus, they do not adhere to any physical mechanism
that could be used for accurate relighting. For example, the reflectance might be off by a
scale and bias.

Inverse rendering with a full decomposition (Sec. 2.3.5) on the other hand tries to solve
the underlying physical effects defined in Sec. 2.1 with estimating the BRDF (Sec. 2.1.2)
and the incoming illumination (Sec. 2.2). The result can be easily relighted under any
illumination and used in computer games, moves, augmented reality, or virtual reality
applications.

As an example of the difference in these approaches, the reflectance in intrinsic imag-
ing is comparable to the diffuse albedo color of the BRDF. However, the diffuse albedo
scales the BRDF per channel, which has a different meaning and effect than the intrinsic
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(a) Input

(b) Reflectance (c) Shading

Figure 2.17: Intrinsic imaging. Exemplary decomposition of (a) into reflectance (b) and
shading (c). The reflectance (b) contains the texture with the illumination and shading
removed and extracted to the shading (c). Decomposition result is taken from Rother et
al. [137].

color, which might also contain color from lighting. Therefore the colors differ both by
a scale and bias. The recovered illumination is also accurate up to a scale and bias. It is
possible to reconstruct the input image with both terms, but relighting is not easily pos-
sible. The result may be too bright or dark. An example of an intrinsic vs. explicit BRDF
decomposition is shown in Fig. 2.18. In inverse rendering, the albedo is an absolute unit,
and any illumination can be applied, and the recovered material behaves accordingly.

2.3.5 Full Decomposition

During a full decomposition, not only the BRDF and shape are estimated, but also the
incoming illumination. Here, the rendering equation is actually split into all parts. Opti-
mizing for the components of the recursively defined integral in the rendering equation
is ambiguous, as shown in Sec. 2.3.1 and therefore prone to getting stuck in local min-
ima. Often simplifications and approximations of the rendering equation are taken as
described in Sec. 2.1.1.1. Additionally, the incoming illumination from environments is
highly costly to evaluate, as the entire hemisphere of incoming light needs to be inte-
grated. During optimization, the image or parts are rendered in each of the thousands of
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Input Ours (Chapter 3) Barron ef al. Ground Truth

Figure 2.18: Intrinsic imaging vs. BRDF decomposition. Comparison of reflectance
and diffuse composition our method of Chapter 3 and Barron et al. [14]. Here, our
method performs a BRDF and illumination decomposition. Barron et al. perform an
intrinsic imaging decomposition. The intrinsic decomposition exhibits a scale and shift in
color, which is attributed here to the shading. A novel relighting with this decomposition
would show an incorrectly colored object.

optimization steps. Often approximate illumination models from Sec. 2.2 are employed
to reduce the computational cost during the optimization.

With these modifications a differentiable renderer is often implemented [25, 28, 29,
30, 45, 192]. Here, the rendering equation is either implemented in an automated differ-
entiation framework, e.g. Tensorflow, Pytorch, Jax, or the gradients to each specific input
are manually derived. Given these differentiable renderers, the decomposition task can
be formulated as a gradient-based optimization, where the objective function compares a
real image (GT) is compared to a rendered image. The loss can then be backpropagated
through the rendering operation. This even allows for unsupervised decompositions of
image collections. However, due to the ambiguity discussed in Sec. 2.3.1, the optimiza-
tion often only reaches a local minimum. Priors or regularization are often employed to
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guide the optimization to a more plausible solution.

Despite the significant ambiguities and the inherent challenge, this approach has sev-
eral advantages. As everything is jointly optimized, it is possible to avoid local minima
arising when each task is solved separately (see Sec. 2.3.1).

As discussed in Sec. 2.3.2, highly specular materials cannot be optimized easily with
traditional shape estimation techniques. This challenging task can be solved when ev-
erything is jointly optimized, as shown in Chapter 4.

Additionally, a full decomposition allows relighting compared to the light fields of
Sec. 2.3.3. Here, only novel views can be synthesized. Compared to intrinsic imaging
from Sec. 2.3.4, the different properties of a BRDF model (see Sec. 2.1.2.2) are fully
disentangled and allow for flexible relighting under any illumination.

Given the advantages and potential applications of the decompositions, we tackle the
task of full reflectance, shape, and lighting decomposition in the thesis and provide tech-
niques to reduce the ambiguities inherent to this task.

2.4 Neural Fields

A recent field in machine learning is the usage of neural networks to encode values
associated with corresponding coordinates. For example, storing all RGB values ¢ € R?
of an image for all corresponding coordinates x € R?. This can be extended to a volume
where next to a color ¢ a density ¢ € R or signed distance to the encoded surface d € R
can also be stored.

2.4.1 Coordinate-based Multilayer Perceptrons

The values of images, volumes, or even temporally changing volumes can be encoded
based on the coordinates in an Multilayer Perceptron (MLP). The MLP [136] then acts
as compressed storage for the values and can perform an interpolated lookup of these
values. The earliest works performing this are: [39, 116, 127]. Here, existing point
clouds are encoded in the network architectures. The network can then be defined as
f(x;0) — r, with 0 being the weights and biases of the MLP. Here, r can encode
the occupancy o € 0,1, which decides in binary fashion if a coordinate is occupied or
not [39, 116] or the Signed Distance Field (SDF) d € R. The distance d is 0 on the
surface. Outside the object, the SDF defines a positive value indicating the distance to
the closest surface and a negative value for the closest distance to a surface inside an
object. MLPs such as these provide an inductive bias for smooth surfaces and can fill in
holes or gaps in the point cloud.
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2.4.2 Neural Volume Rendering

Lombardi et al. [104] introduce volume rendering for a neural volume. This volume
is created from features extracted from images using Convolutional Neural Networkss
(CNNs). The main goal of synthesizing novel views can then be achieved by aggregating
these features along a camera ray 7(¢) = o +td, with ray origin 0 € R3 and view direction
d as well as the distance along the ray r € R. Due to the volumetric nature, the samples
need to be integrated. This can be approximated using numerical quadrature:

; ' &
c(r):/t T(t)o ~ Y Ti(1-exp(—06;8))ci (2.38)

i=1

T(t) = exp (— /t "o (t) d;) (239)
= exp < Z ;6 ) (2.40)

8 =tis1—1; (2.41)

where the output feature or color & € R3 for the camera ray r is aggregated using the
volumetric density ¢ € R, and the specific feature or color at the location ¢ € R. The
variables 7, € R and 7 € R express the near and far bounds of the ray, respectively.

2.4.3 Neural Radiance Fields

Mildenhall et al. propose the now seminal method NeRF [117]. The method spawned a
large thread of follow-up work and extensions [15, 25, 37, 65, 81, 102, 102, 120, 120,
126, 141, 168, 172, 173, 189]. NeRF is a method that achieves photorealistic results for
the task of novel view synthesis.

In NeRF, every new scene requires full training from scratch. No information is shared
between different objects. However, specialized extensions exist that leverage Meta-
learning to generate a specialized set of starting weights for a specific instance [154].
In NeRF the a neural field is created with a coordinate-based MLP and neural volume
rendering. Each training step selects a stochastic batch of pixels and the corresponding
camera rays. Samples are then placed along the rays. The sample positions are evaluated
in the current field and aggregated with volume rendering. The resulting color for each
ray can be compared with the input. This process is repeated over several hundred thou-
sand steps, and the neural field starts to replicate the input scene slowly. This process is
similar to the volumetric reconstruction of computer tomography.

More specifically, the method optimizes the plenoptic function from Sec. 2.3.3 from a
set of posed images. No further supervision is required, and photorealistic novel views
can be synthesized.
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Figure 2.19: Architecture. The NeRF architecture shown is used in both networks. The
main outputs include the Density ¢, view dependent output color €.

The method combines coordinate-based MLP with the positional encoding of trans-
formers [166]. This positional encoding is also known as the Fourier Encoding due to
sinusoidal activation of the input coordinates. The Fourier Encoding 7 : R? - R3+6L
used in NeRF [117] encodes a 3D coordinate x into L frequency basis:

y(x) = (x,I'y,.... T 1) (2.42)

where each frequency is encoded as:

[ (x) = [sin(2¥x), cos(2¥x) (2.43)

Even though this encoding is low-frequent, the network can learn high-frequency in-
formation more easily. Tancik et al. investigate this property using methods from the
neural tangent kernel (NTK) literature [155]. Here, it is shown that the spectral bias of
the coordinate-based MLP is overcome with this simple encoding.

NeRF then leverages neural volume rendering to define the specific output color for the
novel view. On a camera ray, multiple samples are evaluated and aggregated. Sampling a
regular distance would introduce a bias for these fixed locations. Instead N evenly spaced
are sampled in uniform stratified strategy:

i—1 i
ti~U tn‘f‘T(tf—tn),tn—i—ﬁ(tf—tn) (2.44)

Resolving fine detail requires more samples. However, increasing the number of the
N sampling bins is highly inefficient, as most areas in a typical scene are empty. To
overcome this, NeRF proposes a hierarchical sampling strategy, with two separate net-

works which are trained in conjunction. The first network is the coarse network and is
sampled in the stratified strategy. With the knowledge about which areas are more likely
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(a) Synthetic (b) Real-World

Ground Truth NeRF Ground Truth NeRF

Figure 2.20: NeRF results. Shows results on synthetic and real-world scenes from
NeRF [117].

to be occupied, more samples are placed closer to the occupied areas. This is achieved
by rewriting the numerical quadrature of Eq. (2.38) as:

N

Z'(r) = ZW,‘C,‘ (2-45)
i=1

wi =T; (1 — exp(—0;8;)) (2.46)

The weights can be normalized as:

Wi

N

Yi—1Wj

A piecewise-constant PDF is created along the ray with the normalized weights. The
second set of sampling locations is then drawn from this distribution using inverse trans-
form sampling combined with the stratified samples of the coarse network. All samples
are then passed to the second network for a finer rendering. The final synthesized novel

view is only generated from the fine network. The coarse network’s only role is to gen-
erate a more efficient sampling pattern.

A

wi =

(2.47)
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Both networks leverage the same architecture. The structure is shown in Fig. 2.19.
Here, the main network is trained only on the Fourier encoded positions. The result
is a static encoding for each point, from which the density ¢ is extracted. A simple
bottleneck is introduced, which is then conditioned on the view direction. This direction
is encoded with the same Fourier encoding but often of a lower frequency to enforce
smoothness in the interpolation. The final output color per point is produced from the
bottleneck encoding and the encoded directions.

Results of their method are shown in Fig. 2.20, where the close reproduction of the
scene is visible. However, while the result shows a photorealistic reproduction, the
method is not capable of relighting the scene. Only novel views can be estimated, as
the shape of the scene is consistently stored in the neural field, and the view-dependent
color can smoothly interpolate between the colors observed in the training views.
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Generalized Few-Shot Decomposition

In the context of this work, generalized methods are defined as methods that are trained
once with direct supervision on large datasets, where GT information is available. For
example, in this chapter, we have GT information about the BRDF, the illumination, and
the shape — in the form of the depth and surface normal — for each image. The pre-trained
weights are evaluated for novel scenes without any specialized re-training for the scene.

This enables fast inference times as no optimization is performed and specialized
inference-only modes exist [2]. Here, no backpropagation has to be performed, dras-
tically reducing memory consumption and computation times.

Often these pre-trained architectures are especially useful for decomposing a few im-
ages, where the training provides the statistical knowledge about the behavior of surfaces
from the large-scale dataset. Without this knowledge from a dataset, decompositions
into shape, BRDF, and illumination are nigh impossible from a few images. As shown
in Sec. 2.1.2.1 a BRDF measurement alone requires a large number of various viewing
angles.

However, as the decomposition from a few images is still highly ill-posed, the decom-
position quality is more limited than optimization from a larger set of images. Methods
that optimize the decomposition of each object are discussed in Chapter 4.

This following sections are based on the publication:
Two-shot Spatially-varying BRDF and Shape Estimation

Mark Boss, Varun Jampani, Kihwan Kim, Hendrik P. A. Lensch, Jan Kautz
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - 2020

3.1 Related Work

The literature on object SVBRDF and/or shape estimation is vast. Here, we only discuss
the representative works that are related to ours.

BRDF Estimation. An exhaustive sampling of each BRDF dimension demands long
acquisition times. Several proposed methods focus on reducing acquisition time [6, 11,
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27,49, 87, 88]. These methods introduce capture setups and optimization techniques that
reduce the number of images required to reconstruct high-quality SVBRDEF. Recently,
several attempts reconstruct the SVBRDF on flat surfaces with single-shot [44, 66, 97,
140], few-shot [5, 7] or multi-shot [9, 27, 45, 46, 56] estimation. These approaches
leverage neural networks trained on large amounts of data and resolve the problem of
ambiguity to some extent by learning the statistical properties of BRDF parameters.

For a joint estimation of shape and shading, separate optimization steps for shape and
shading are common [14, 61, 89, 122]. Lensch et al. [89] introduce Lumitexels, which
stack previously acquired shape information with the luminance information from the in-
put images, to guide the BRDF estimation and to reduce ambiguities in the optimization.
Compared to a joint estimation, fewer local minima are found, and the optimization is
more robust. Recently, the task of predicting the shape and BRDF of objects or scenes is
also addressed using deep learning models [98, 147]. Li et al. [98] predict the shape and
BRDF of objects from a single flash image using an initial estimation network followed
by several cascaded refinement networks. Here, the BRDF consists of diffuse albedo and
specular roughness but lacks the specular albedo. Specularity is, however, essential in
re-rendering metallic objects, for example.

Compared to Li et al. [98], our method described in Sec. 3.2 additionally estimates the
SVBRDF with specular albedo. In comparison to flat surface SVBRDF estimation [5,
7, 44, 45, 97], our method handles full objects with shapes from any view position.
Additionally, due to our unaligned two-shot setup, saturated flash highlights are better
compensated while still providing the same one-button press capture experience for the
user due to our mobile capture scenario.

Intrinsic Imaging. As described in Sec. 2.3.4, intrinsic imaging is the task of decom-
posing an image of a scene into reflectance (diffuse albedo), and shading [14, 16, 108,
156]. With the advance in deep learning, the problem of separating shape, reflectance,
and shading is tackled from labeled data [90, 123, 148], unlabeled [96] and partially
labeled data [19, 95, 124, 201]. Due to the simplistic rendering model, the use cases
are limited compared to our SVBRDF estimation setup, which can be used for general
re-rendering in new light scenarios.

Shape Estimation. One can obtain high-quality depth from stereo images, but the
problem of monocular depth estimation is quite challenging. Monocular depth estima-
tion is predominantly tackled with deep learning [55, 86, 92, 101, 139, 175] in recent
years. This problem is challenging as no absolute scale is known from single images,
and the depth cues need to be resolved by shading information such as the quadratic
light fall-off [99].

Placement in the literature. Our technique of Sec. 3.2 can be seen in relation to other
current literature in Tab. 3.1. The techniques enable the decomposition of objects instead
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of flat surfaces as in previous research [44, 45].

Our method outperforms other methods aimed at object reconstruction, such as Li
et al. [98] while enabling a more challenging decomposition with a spatially-varying
specular color. This spatially varying property is essential when metals and non-metals
are combined on a single object.

It also enables more casual capture setups [47] or has no constrained shape prior such
as in Wu et al. [183], which only works on rotationally symmetric objects.

Our method also estimates environment illumination, which increases the accuracy
in simple capture setups by enabling methods to explain illumination from environment
light sources.

Method Number of Images Target BRDF-Model Estimate Environment Illumination
Deschaintre[44] 1 Flash Flat Surface Cook-Torrance Not handled
Deschaintre[45] 1-c0 Flash Flat Surface Cook-Torrance Not handled
Deschaintre [47] 3 Flash+Varying Polarization Objects Cook-Torrance Not handled

Li[98] 1 Flash Objects Cook-Torrance (No Specular) Estimated

Wu [183] 1 Rotationally Symmetric Objects Phong Estimated

Ours [29] 2 Objects Cook-Torrance Estimated

Table 3.1: Literature overview. Our work either enables a more challenging decomposi-
tion with a full Cook-Torrance model including spatially-varying specular albedo, solves
the highly ambiguous decomposition of objects, and achieves a convenient, hand-held
capture setup under environment illumination.

3.2 Two-shot Spatially-varying BRDF and Shape
Estimation

In this work, we are interested in the automatic estimation of the shape and appearance
of the object in a scene from only two images. In particular, we represent the shape of the
object with a depth map and the appearance as a BRDF (Sec. 2.1.2). A BRDF describes
the low-level material properties of an object that defines how light is reflected at any
given point on an object’s surface. One of the most popular parametric models [41]
represents the diffuse and specular properties and the roughness of the surfaces. Since
the material properties can vary across the surface, one has to estimate the BRDF at each
image pixel for a more realistic appearance (i.e., spatially-varying BRDF (SVBRDF)).
As the BRDF is dependent on view and light directions and estimating depth from a
single 2D image is an ambiguous task, multi-view setups improve the estimation accu-
racy of both shape [145] and BRDF [114]. Predicting shape and BRDF from only a few
images is still very challenging. For shape estimation, the advances in deep learning-
based depth estimation allow us to estimate the depth of a single [55, 86] or a pair of
images [164] efficiently. As monocular depth estimation is not as accurate as multi-
view approaches, we exploit shading cues on the surface to disambiguate the geometric
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shape [10, 197] in our approach.

We propose a neural network-based approach to estimate the SVBRDF and shape of
an object along with the illumination from given two-shot images: flash and no-flash
pairs. Some recent deep learning approaches [44, 97, 98] for BRDF estimation use only
a single flash image as input. Flash images often have harsh reflective highlights where
the input pixel information is saturated in non-HDR images.

Li et al. [98] uses a single input image and estimates the shape and parts of the BRDF,
such as diffuse albedo and the roughness, while ignoring the specular color. In this
work, we use flash and no-flash image pairs as input allowing the network to access
pixel information from the no-flash image when the corresponding pixels are saturated
in the flash image. We focus on practical utility: Our input capture setup follows a real-
world scenario where the two-shot images are consecutively taken using a mobile phone
camera in burst capture. The system is designed to tackle the misalignment between the
two-shot images due to camera shake.

A pivotal challenge for any learning approach is the need for training data. We tackle
this issue by creating a large-scale synthetic dataset. Flash and no-flash images are ren-
dered using high-quality, human-authored SVBRDF textures that are applied to syn-
thetic geometry generated by domain randomization [158] of geometric shapes and back-
grounds. Our networks trained on this synthetic data generalize well to real-world object
images.

As briefly discussed in the Workshop Metaphor in Sec. 2.3.1, another key challenge
in shape and SVBRDF estimation is the problem of ambiguity. We tackle this ambigu-
ity by using a cascaded approach, where separate neural networks are used to estimate
shape (depth), illumination, and SVBRDF. Fig. 3.1 shows an overview of our cascaded
network. Specifically, we first estimate depth and normals using a geometry estimation
network. Then the illumination is approximated, followed by SVBRDF reconstruction.
The estimates of the previous networks guide each following step. Finally, shape and
SVBRDF are optimized jointly using a refinement network. Specialized network archi-
tectures perform each task. Empirically, this cascaded regression approach works better
than a single-step joint estimation. As a favorable side-effect of this cascaded approach,
the size of each network is small compared to a large joint estimation network. This al-
lows the inference networks to even operate on a mobile device. Coupled with two-shot
mobile capturing, this presents a highly practical application.

Quantitative analysis based on a synthetic dataset comprising realistic object shapes
and SVBRDFs demonstrates that our approach produces more accurate estimates of
shape and SVBRDF than baseline approaches. We also qualitatively demonstrate the
applicability of our approach on a real-world two-shot dataset [8].

3.2.1 Problem Setup

Our network takes two-shot object images (flash and no-flash) with the corresponding
foreground object mask and estimates shape and SVBRDF. We also estimate illumina-
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Figure 3.1: Cascaded network. Overview of the inference pipeline for shape, illumina-
tion, and SVBRDF estimation.

tion as a side-prediction to help shape and SVBRDF prediction. The two-shot images
might be slightly misaligned to support practical image capture with a handheld camera.
The object mask allows us to evaluate only the pixels of the object in the flash image and
is easily generated with GrabCut [138]. The object shape is represented as depth and nor-
mal at each pixel. The depth map provides a rough shape of the object, while the normal
map models local changes more precisely. This shape representation is commonly used
in various BRDF estimation methods [98, 122]. We use the Cook-Torrence model [41]
to represent the BRDF at each pixel with diffuse albedo (3 parameters), specular albedo
(3), and roughness (1). The model is defined in Sec. 2.1.2.2. Similar to [91, 174], we
estimate the environment illumination with 24 SGs, as described in Sec. 2.2.1.

3.2.2 Network Overview and Motivation

In order to tackle the shape/SVBRDF ambiguity, we take inspiration from traditional
optimization techniques [89, 122], which iteratively minimize a residual and alternate
between optimizing for shape and/or reflectance. Thus, separate networks are used for
shape, illumination, and SVBRDF estimation in a cascaded as well as an iterative man-
ner. Predictions from earlier stages of the networks in the cascade are used as inputs to
later networks to guide network predictions to better solutions. In addition, the scene is
re-rendered with the current estimates and refined further using the residual image.

Since flash and no-flash images are slightly misaligned, shape estimation is less chal-
lenging than the estimation of the SVBRDF. Mis-alignment in pixels and pixel differ-
ences between two-shot images [99] are good indicators of object depth. Thus, we first
predict depth and normals using a specialized merge convolutional network followed by
a shape-guided illumination estimation. Then, the SVBRDF is predicted with the current
estimates of shape and illumination as additional input. Finally, we refine both shape and
SVBRDF using a joint refinement network after computing a residual image. Refer to
the appendix Sec. A.1 for network architecture details.
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3.2.3 Network Architecture

Our proposed network architecture contains multiple specialized networks for each task.
In Sec. 3.2.3.1 the shape prediction is explained. With the initial shape estimation, an
illumination estimation is performed with the architecture described in Sec. 3.2.3.2. The
next step in the pipeline is the SVBRDF estimation in Sec. 3.2.3.3, followed by a re-
rendering with the initial prediction. This re-rendering allows for capturing an image for
loss guidance for the joint refinement in Sec. 3.2.3.4.

3.2.3.1 Shape Estimation with Merge Convolutions

Since the camera parameters are unknown and the two-shot images have a minimal base-
line, traditional structure-from-motion or stereo solutions are not useful for dense depth
estimation. The shape estimation needs to rely on the unstructured perspective shift and
pixel differences between flash and no-flash images. In order to tightly integrate in-
formation from both images, we design a specialized convolutional network for shape
estimation.

For depth and normal map prediction, we use a U-net-like encoder-decoder archi-
tecture [135]. Instead of standard convolution blocks, we propose to use novel merge
convolution blocks (MergeConv). We concatenate the object mask with each of the two-
shot input images as input to the network. Fig. 3.2 illustrates the MergeConv block.
The input images and their intermediate features are separately processed by 2D convo-
lutions (Conv2D). The outputs of each Conv2D operation are concatenated in channels
with the merged output from the previous MergeConv layer and is processed with an-
other Conv2D operation. Inspired by residual connections in ResNet [64], we add the
Conv2D outputs as indicated in Fig. 3.2. We use 4 MergeConv blocks for the encoder
and 4 for the decoder. During encoding, max pooling for 2x spatial downsampling is
used. For each MergeConv in the decoder, we use 2x nearest neighbor upsampling.
The final depth and normal map estimates are produced using a separate 2D convolution,
followed by a sigmoid activation. The rationale behind this MergeConv architecture is
to keep separating the process of pathways for both the input images while exchanging
(merging) the information between them using a third pathway in the middle. We believe
that information in both input images is essential for shape reasoning, and this architec-
ture helps keep the features from each image intact throughout the network. Empirically,
we observe reliably better shape predictions with this architecture than a standard U-net
with a similar number of network parameters.

Training losses are based on the £, distance between GT and predicted depths, £,9Pth,
as well as the angular distance between GT and predicted normals 7:

arccos (n- )
T

normals __
‘Cangular -

(3.1)

Besides, we use a new consistency loss between the predicted normal 7 and a normal n*
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derived from the depth information d, which enforces that the predicted normals follow
the curvature of the shape:

ﬁnormals/depth o n n* 39
comsistency HﬁH - Hn*H; 3.2)
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The normal n* is derived from the depth map using gradients from the horizontal (x)
and vertical (y) directions. The z component can be considered a scalar factor that is
derived from the image width. The total loss is a weighted combination of the three
losses: Ldepth | pnormals | () 5 pnormals/depth,

angular consistency
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Figure 3.2: Merge convolutions. The merge convolution provides separate pathways for
the two-shot inputs and merges the information in a third path.

3.2.3.2 Shape Guided Illumination Estimation

We also estimate the environment illumination to guide SVBRDF predictions. Now,
the BRDF prediction can consider environment light, reduce additional highlights, and
improve the albedo colors and intensities. The illumination is represented with 24 SGs,
where each SG is defined by amplitude, axis, and sharpness. However, we only estimate
the amplitude and set the axis and sharpness to cover a unit sphere. The estimation thus
only estimates the amplitudes of the SG resulting in 24 RGB values. As the environment
illumination can reach very high values and the flash and no-flash input images are in
Low Dynamic Range (LDR), SG amplitudes are constrained to values between O and
2. An overview of the visual quality of the SG illumination approximation is shown
in Fig. 3.3. Here, the 24 SGs provides a balance between the number of parameters to
optimize and the visual quality.

We use a small convolutional encoder network followed by an MLP for illumination
estimation. The network receives input from the two-shot images, the object mask, and
the previously predicted depth and normals. As illumination is reflected on the surface
towards the viewer, the previously estimated shape information helps in the illumination
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Figure 3.3: SG illumination fits. A varying number of SGs fitted to an environment
illumination. Here, two spheres with different materials are lighted by the fitted SGs.
The left sphere is highly reflective, and the right sphere uses a diffuse material. In this
work, we use 24 SGs, as increasing the SGs further does not improve the lighting quality
drastically.

estimations. To train the illumination network, we use the £, distance between predicted
and GT SGs as the loss function.

3.2.3.3 Guided SVBRDF Estimation

SVBRDF estimation becomes a less ambiguous task when conditioned on known object
shape and environment illumination. Thus, together with two-shot images, the previously
estimated depth, normals, and illumination are used as input to the SVBRDF network to
predict diffuse albedo and specular color as well as surface roughness at each pixel.
Following recent work on BRDF estimation [44, 93, 97], the U-net architecture [135] is
used in our SVBRDF network.

Differentiable Rendering. We develop a differentiable rendering module to re-render
the object flash image from the estimated depth, normals, illumination, and SVBRDF.
The renderer evaluates the direct light from the flash-light source and the estimated en-
vironment illumination at each surface point. It integrates it with the BRDF to compute
the reflected light [75]. Fast evaluation of the environment illumination is achieved by
representing the illumination as well as the BRDF model as SG [171]. Refer to Sec. 2.2.1
for a detailed description of the rendering approximation using SGs.

Loss Functions for SVBRDF Network. The SVBRDF network is trained using a
combination of different loss terms: the Mean Absolute Error (MAE) between GT and
the predicted SVBRDF parameters, as well as a loss between a synthetic direct illumina-
tion only flash GT image and re-rendered direct illumination flash image. The rendering
loss is back-propagated through the differentiable renderer to update the SVBRDF net-
work. As rendering can result in large values from specular highlights, the MAE loss is
calculated on log(1 + x), where x refers to the direct light only synthetic input and the
re-rendered image.
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3.2.3.4 Joint Shape and SVBRDF Refinement

In our cascaded network, we use the estimated depth to guide the SVBRDF prediction.
Likewise, one can obtain better depth prediction with known SVBRDF. We jointly opti-
mize depth, normals, and SVBRDF using a separate refinement network. All the earlier
predictions and the residual loss image between the re-rendered previous result and the
input flash image are used for this refinement. The network architecture is a small CNN
encoder and decoder of 3 steps, each with 4 ResNet blocks [64] in-between. The loss
function is an MAE loss between the predicted parameter maps and ground truth ones.

3.2.3.5 Implementation

The cascaded networks and the differentiable renderer are implemented in Tensorflow [2].
The overall pipeline consists of 4 networks, as illustrated in Fig. 3.1.

Runtime. Each network is relatively small, and the inference pipeline takes 700ms
on a 256x256 image on an NVIDIA 1080 TI, including the required rendering step.
On a Google Pixel 4, the evaluation takes roughly 6 seconds. The rendering step is
implemented in software and takes 220ms on a single-threaded desktop CPU (AMD
Ryzen 7 1700) and similar speeds on a Google Pixel 4.

Training. All the networks are trained for 200 epochs with 1500 steps per epoch using
the ADAM optimizer [82]. Here we use a learning rate of 2e—4 at the beginning, which is
reduced by half after 100 epochs. The networks are trained sequentially as each network
in the cascade uses the result of earlier networks as input.

Mobile Application for Scene Capture and Inference. In addition to producing bet-
ter results, another significant advantage of the cascaded network design compared to a
single joint network is that each sub-network is small, and the overall network can fit on
mobile hardware. We convert the network models to Tensorflow Lite, which runs on mo-
bile hardware, and develop an efficient android application that can successively capture
two-shot flash and no-flash images and runs the cascaded network to estimate SVBRDF
and shape. We do not run the computations using quantization as the results degraded
too harshly. A quantization-aware training could remedy this effect. A quantized out-
put and model increases the prediction speed even further, but it is already reasonably
fast. The mobile android application is written in kotlin and handles capturing objects,
segmentation, and prediction. The capturing automatically takes the two-shot input pair.
The segmentation is done using OpenCV’s GrabCut [ 138] implementation on the device.
In Fig. 3.10 a prediction from the mobile application is shown.
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Figure 3.4: Large-scale synthetic dataset. (Left) Samples of primitive shapes and mate-
rials used for the dataset creation, (Right) The visualization of two examples with various
properties.

3.2.4 Large-scale SVBRDF & Shape Dataset

It is time-consuming and expensive to scan SVBRDF of real-world objects. Since we
rely on deep learning techniques for SVBRDF and shape estimation, vast amounts of
data are needed for network supervision. We create a large-scale synthetic dataset with
realistic SVBRDF materials.

High-quality Material Collection. We gather a collection of publicly available human-
authored, high-quality SVBRDF maps from various online sources [31, 43, 129, 157,
163, 191]. The parameterization of these collected SVBRDF maps is for the Cook-
Torrence model [41], as described in Sec. 2.1.2.2. In total, the collection consists of 1125
high-resolution SVBRDF maps. To further increase the material pool, we randomly re-
size and take 768 x 768 crops of these material maps. We apply random overlays and
perform simple contrast, hue, and brightness changes. The final material pool contains
11,250 material maps. Sample material maps are shown in Fig. 3.4.

Domain Randomized Object Shapes. One option for generating 3D objects is to
gather realistic object meshes and apply materials to those. However, collecting large-
scale object mesh data covering a wide range of object categories is challenging. More-
over, mapping the object meshes to the related materials (e.g., using ceramic materials
for teapots) would result in a small dataset. Thus, applying random materials to ob-
ject meshes is a reasonable strategy. We notice that applying random material maps to
complex-shaped object meshes would result in distorted texture or tiling artifacts. Be-
cause of these numerous challenges, we choose to randomize object shapes to synthesize
large-scale data. Following Xu et al. [186], a randomly chosen material is applied to
9 different shape primitives such as spheres, cones, cylinders, tori, efc. We randomly
choose 6 to 7 material-mapped primitive shapes and place them randomly to assemble
a scene. Sample object shape primitives are shown in Fig. 3.4. This strategy is similar
to Domain Randomization (DR) [158] that is shown to be useful in high-level semantic

50



3.2 Two-shot Spatially-varying BRDF and Shape Estimation

tasks such as object detection [160]. Here, we demonstrate the use of DR for the low-
level yet complex task of SVBRDF and shape estimation. For simplicity, we refer to
our material-mapped and geometry randomized object shapes as DR objects. Fig. 3.4
shows sample primitive shapes, materials and resulting DR objects with GT shape and
SVBRDF parameters.

High Dynamic Range (HDR) Illumination. For environment illumination, we collect
285 HDR illumination maps from [190]. These maps are images in latitude-longitude
format wrapped on the inside of a sphere, which acts as a light source for the DR object.

Rendering. We use the Mitsuba [70] renderer to create two-shot flash and no-flash
images of a DR object illuminated with a randomly chosen illumination. In total, the DR
dataset contains 100K generated scenes. Note that each DR object consists of differently
sampled primitive shapes, and the distance of the closest surface from the camera varies
across different DR objects.

Rendering these domain randomized shapes in a realistic setup for real-world usage is
crucial for a successful domain transfer. We achieve this by closely following the real-
world scenarios in our rendering setup. The camera is positioned randomly on a sphere
with a radius of 70cm from the origin. The objects are constructed at the origin, and due
to the random translation, rotation and scaling can grow up to 17cm distance from the
camera. For real-world capture, this is a reasonable distance between an object and a
mobile phone. The camera view is rotated towards the origin always to have the object
in focus.

The flash-light is approximated as a point light source and positioned in a 2cm ra-
dius around the camera with a flash strength of 45 Lumen, which are typical settings of
smartphone cameras and flashes.

We separately rendered two HDR images with only flash and only environment illu-
mination for the flash image and linearly combined these two HDR renderings to obtain
the final flash image. This strategy allows us to randomly vary the flash strength by using
randomly sampled weights for a linear combination of the ambient and flash rendering.
As the network receives LDR input images, we perform a Saturation Based Sensitivity
auto exposure calculation [1].

In addition to the two-shot flash and no-flash images, we also render another flash
image with only direct illumination. This direct illumination flash image is used to ad-
ditionally supervise the SVBRDF network after differentiable rendering (Sec. 3.2.3.3).
This direct illumination-only image is solely used for training supervision and is not re-
quired for inference. Besides, we render GT depth, normals, diffuse albedo, specular
albedo, and roughness maps using Mitsuba [70]. The maps are used for direct network
supervision. Fig. 3.4 shows samples from this dataset.
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3.2.5 Results

We evaluate our approach on synthetic and real-world datasets and compare it with sev-
eral baseline techniques. In this section, we present quantitative and qualitative results
and refer to the appendix A.2 for further visual results and comparisons.

Test datasets. We quantitatively validate the proposed method on synthetic data with
realistic object shapes and SVBRDF and qualitatively on a real-world two-shot image
dataset [8]. Images of both of these datasets are unseen during network training. For
synthetic test data, we collected 20 freely available, fully textured 3D objects with realis-
tic shapes and materials [35]. These objects are rendered using the Mitsuba renderer [70]
with unseen HDR illumination maps. Fig. 3.5 and Fig. 3.6 show samples of two-shot in-
put images of our synthetic test dataset.

For real-world evaluation, we use two-shot images from the recent *flash and ambient
illuminations dataset’ from [8]. We have created foreground object masks on several
samples from the *Objects’ and "Toys’ categories, as these fit the single object assump-
tion. This dataset does not contain ground truth BRDF parameters. However, the visual
quality can be inspected on the estimations and re-renderings with different camera views
and illuminations.

Metrics. To evaluate the quality of the shape and SVBRDF predictions, we mainly use
metrics that directly compare the GT and predictions. A Mean Squared Error (MSE) is a
fitting candidate for the depth and normal estimations. For methods that produce relative
depth or depth in a different scale, we enable fair comparisons with a Scale-Shift Invari-
ant Metric as in [86]. The exact loss is also applied for intrinsic image decomposition
methods, as the predicted diffuse color is not subject to an absolute scale as the diffuse
albedo parameter is. To achieve the scale and shift in-variance we define it as:

1 D
gty __ o . _ 82
L(x,x8) = argaflr;nn D i;(ax, +B—x) (3.4)
where o accounts for the scale and 8 for the shift, D for the image dimension, x for
the predicted result and x2' for the corresponding ground truth. For the scale-invariant
loss, only the o is optimized.
For SVBRDFs, no clear metric aligns with the human perception of materials. Fol-
lowing previous works, we also use the MSE metric on SVBRDF prediction maps.

3.2.5.1 Ablation Study

Within our framework, we empirically evaluate different choices we make in our network
design.
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Method Diffuse Specular Roughness Normal Depth

MiDasS [86] NA NA NA NA [0.006]
SIRFES [14] [0.033] NA NA 0.089  [0.021]
RAFII [124] [0.018] NA NA NA NA
Lietal [98] 0.160/[0.019] NA 0.072 0.034 [0.024]
Ours-JN  0.065/[0.022]  0.053 0.064 0.025 [0.005]

Ours-CN  0.060/[0.018]  0.047 0.061 0.021  [0.004]

Table 3.2: State-of-the-art comparison. The MSE on a sample dataset of 20 unseen
objects. Scale and shift-invariant metrics are shown in [ ] brackets where it applies. For
the diffuse color, this metric is only scale-invariant.

Cascade vs. Joint Network. We compare our cascaded network with a single large
joint network that estimates all the shape and SVBRDF parameters. For a fair compar-
ison, we design a joint (JN) that has a comparable number of network parameters as
our cascaded network (CN) (‘Ours-CN’ vs. ‘Ours-JN’). The JN follows the U-Net [135]
architecture. Tab. 3.2 shows the quantitative comparisons between them. Results indi-
cate that the CN consistently outperforms JN on a significant margin of both SVBRDF
and shape estimations. This empirically underlines the usefulness of our guided stage-
wise estimation and joint refinement compared to using a single large network for joint
SVBRDF and shape estimation.

Merge vs. Standard Convolutions for Shape Estimation. Another technical inno-
vation in this work is using MergeConv blocks (Sec. 3.2.3.1) in the shape estimation
network instead of standard convolution. Overall the depth estimation error decreased
from a MSE of 0.021 to 0.016 and the normal MSE from 0.026 to 0.021.

3.2.5.2 Comparisons with state-of-the-art

As per our knowledge, we are the first work that uses two-shot images as input and
does complete SVBRDF estimation, including specular color and shape estimation for
objects. Most existing closely related techniques usually use a single flash image as
input and either work only on flat surfaces [44, 45, 93, 97] or do not estimate the specular
color [98]. Although our approach features a unique setting, we perform the comparisons
with SIRFS [14], Li et al. [98], and RAFII [124] on SVBRDF and shape estimation.
SIRFS [14] uses a no-flash single image as input and predicts diffuse albedo, shading,
and shape using an optimization-based approach. RAFII [124] uses a single non-flash
image to perform the intrinsic decomposition. Based on a single flash image Li et al. [98]
is a recent deep learning approach that predicts diffuse albedo, roughness, normal, and
depth maps.
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Figure 3.5: Comparison with Li et al. [98]. Ours estimates the diffuse, depth and normal
more accurately in particular.
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3.2 Two-shot Spatially-varying BRDF and Shape Estimation

Quantitative results on the 20 objects synthetic test dataset shown in Tab. 3.2 demon-
strate the superior performance of our approach (Ours-CascadeNet) compared to both
SIRFS [14] and Li et al. [98]. Since SIRFS predicts diffuse albedo only up to a scale fac-
tor, we also report scale-invariant MSE scores on diffuse albedo. Fig. 3.5 shows a visual
comparison with Li et al. [98]. Our estimations are also visually closer to GT. Primarily,
we can observe apparent visual differences in predicted diffuse albedos where the light
information is separated much better in our result. Furthermore, the general shape of the
object in the normal map of our method follows the contour of the croissant, while the
method of Li ef al. predicts a mostly flat shape. The details in the roughness and normal
map, on the other hand, are not perfectly predicted by either method.
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Figure 3.6: Comparison with Barron et al. [14] (SIRFS). Barron et al. does not estimate
specular and roughness parameters.
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Fig. 3.6 shows a visual comparison with SIRFS, where we again observe our method
predictions to be closer to GT. Here, the improvements in the diffuse and normal maps
are apparent. The SIRFS method fails in this example to separate shape from shading.

Comparisons with Nestmeyer et al. [124] are shown in Fig. 3.7. Here, we want to
highlight that our method tackles a complex BRDF model, which is more difficult to
disentangle than the intrinsic imaging model of Nestmeyer et al. Due to this, we only
compare, similar to Barron et al., with the scale-invariant diffuse color. Our method can
reconstruct the diffuse color either with equal quality or surpass the prediction quality of
Nestmeyer et al. Especially texture details are preserved better in our method.
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Figure 3.7: Comparison with Nestmeyer ef al. [124] (RAFII). Nestmeyer et al. only
estimate the diffuse albedo. Our prediction estimate the diffuse component more accu-
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Figure 3.8: Real-world comparison. Comparison with Li e al. [98] on a real-world
sample from [8].
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Figure 3.9: Comparison with Lasinger ef al. [86] (MiDaS). Lasinger et al. only esti-
mate the depth from a single monocular image. Our method captures the general shape
in greater detail and more accurately.

For evaluating depth prediction, we compare our depth estimates against those from
a new state-of-the-art monocular depth network of MiDaS [86]. MiDaS is trained with
several existing depth datasets and is quite robust to different scene types. As described
in Sec. 2.3.2, monocular depth estimation can only predict a relative depth. For compar-
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3.3 Future Work

isons, a scale-shift invariant MSE metric is used. Tab. 3.2 shows the results indicating
better depth estimations using our approach and a visual comparison is shown in Fig. 3.9.

A visual comparison between Li et al. [98] on a real-world example from Yagiz et
al. [8] is shown in Fig. 3.8. Our method seems to capture the object’s color and shape
better. The shape from Li et al. is predicted as a nearly flat surface. This is apparent in
the novel re-rendering. Our predicted normal map is smoother with fewer artifacts and
closely follows the bottle shape.

Further visual comparisons are available in the appendix A.2.

v il R A ORIT
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Capturing Flash Flash Diffuse Specular Roughness Normal Depth Re-Render
Mask
Figure 3.10: Mobile capture and inference. A result of our mobile application that
performs two-shot image capture followed by SVBRDF and shape estimation.

3.2.5.3 Mobile capture and inference

To further showcase our real-world performance, Fig. 3.10 presents an example captured
with our mobile application. As seen, most parameters are plausible. However, the lid
on top of the electric kettle is estimated slightly too far away in the depth map. This can
be attributed to the ’deep is dark’ ambiguity. Here, we want to point out an additional
challenge from an unknown mobile camera capture pipeline. A RAW image capture
would avoid most unknown image pre-processing in modern cameras.

3.3 Future Work

In the future, we would like to tackle the SVBRDF estimation of more complex mirror-
like objects by incorporating reflection removal techniques. Another interesting research
topic is accounting for the effect of inter-reflections or shadowing. If these effects are
handled accurately, an increase in the decomposition quality is highly likely. While our
BRDF can reproduce a wide range of natural objects, anisotropic or subsurface scattering
BRDF models can enable even more objects such as brushed metals, human skin, marble,
wax, or leaves. These extensions to the BRDF model introduce several new research
challenges, and especially for subsurface scattering, a 3D representation is required as
the volume has to be known besides the depth. This creation of a 3D representation
is also a crucial topic, as it enables a higher degree of novel view synthesis than the
depth-based shape of this chapter. We propose a potential method to create this 3D
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reconstruction in the Chapter 4. However, the method does not leverage statistical priors
from large datasets as in this chapter. An interesting approach would be fusing multiple
views from a video similar to Luo et al. [107]. They propose to use a pre-trained network
as a starting point and further optimize it per scene to be consistent with other views.
A similar process for our two-shot method would increase the decomposition quality.
This increase is due to more measurements from different viewing angles, and the depth
information can be fused to a single object representation.
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Chapter 4
Per-Object Multi-Shot Decomposition

Compared to methods discussed in Chapter 3, this chapter introduces methods trained
for each scene or object. Here, the setup is more akin to traditional optimization meth-
ods than deep learning, where statistical priors are extracted from large datasets and
condensed into network weights.

One advantage of these optimization-based methods is that no ground truth supervi-
sion is required. The previous chapter leveraged large datasets with known BRDF, shape,
and illumination. Creating these datasets is challenging, even for synthetic datasets.
As discussed in Sec. 2.1.2.1, BRDF measurements are incredibly complex and time-
consuming to create for real-world objects.

The input of the methods in this chapter is multiple images of objects. These images
can even be under varying illuminations. The result is a 3D reconstruction of the object
with BRDF texture maps. As this problem is highly ill-posed and underconstrained, we
solve this by requiring around 50-100 images, and the optimization has to create a shape,
BRDF, and per-image illumination to fulfill all observations as close as possible. This
also means that each method is trained for every new scene in this chapter.

Novel views and illuminations can be generated by rendering the optimized volume or
leveraging the extracted mesh. With the extracted meshes, real-time rendering is easily
possible without losing quality.

4.1 Related Work

This chapter is based and linked to several fields such as Neural Fields, camera pose
optimization or estimation, and BRDF and illumination estimation. As these fields are
extensive, we discussed the related works in this chapter.

Neural Fields allow spatial information to be stored within the weights of a neu-
ral network, thereby allowing the retrieval of information solely by querying coordi-
nates [39, 116, 127, 155]. The general concept of these networks is described in detail
in Sec. 2.4.1. These methods have been combined with neural volume rendering [104]
from Sec. 2.4.2 to enable photorealistic results on novel view synthesis, well-exemplified
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by NeRF [117]. In NeRF, a coordinate-based model is used to model a field of volumet-
ric density and color, and renderings are produced by ray-marching through that neural
volume. A detailed explanation of this method is given in Sec. 2.4.3. Recent works
leverage this neural volume rendering to achieve photorealistic view synthesis results
with view-dependent appearance variations. Rapid research in neural fields followed,
which alternated the surface representations [126, 172], provided general improvements
to the method [15, 168], reduced the long training times [37, 102, 120, 141, 173] and in-
ference times [25, 65, 81, 102, 120, 189], enabled extraction of 3D geometry and materi-
als [25, 121, 193], added generalization capabilities [36, 173, 199] or enabled relighting
of scenes [21, 84, 110, 121, 150, 193, 194, 198].

Bi et al. [21] enable a decomposition from images with a co-located camera flash in a
perfectly dark environment. While the results are convincing, the capture setup is highly
limiting. More practical capture setups exists such as PhySG [194], NvDiffRec [121],
NeRS [193], NeRFactor [198], NeRV [150]. However, they only allow a decomposition
under a single illumination or even require known illumination (NeRV). On the other
hand, our methods also allow varying illuminations besides the fixed illumination cap-
ture setup. Enabling varying illumination is critical for online image collections, as each
image is under different illumination. In SAMURALI of Sec. 4.4, we even extend the
decomposition quality to datasets in various locations. This is highly challenging, as all
previous techniques — except NeRS [193] — require near-perfect camera poses. Often
COLMAP [145, 146] is leveraged to estimate the poses, but we found that it is not capa-
ble of estimating the poses in these challenging conditions. SAMURALI can decompose
these datasets due to a joint camera optimization from quadrant-based coarse poses.

Joint camera and shape estimation is a complex task. An accurate shape recon-
struction is only possible with accurate poses and vice versa. Often techniques rely
on correspondences across images to estimate camera poses [145, 146]. Recently, sev-
eral methods combined camera calibration with a joint neural volume training. Jeong
et al. [74] (SCNeRF) rely on correspondences. BARF [100] proposes a coarse to fine
optimization using a varying number of Fourier frequencies during the NeRF rendering
of Sec. 2.4.3. Additionally, the optimization requires rough camera poses, which are not
too far from the actual position. NeRF-- [176] requires training the neural volume twice
while keeping the previous camera parameter optimization. GNeRF [115] proposes us-
ing a discriminator on randomly sampled views to learn a pose estimation network on
synthesized views jointly. Over time the pose estimation network can estimate the real
camera poses, which can then be used for the full neural volume training. NeRS [193]
deforms a sphere to a specific shape using coordinate-based MLPs and converts the de-
formation field to a mesh; while also optimizing camera poses and single illumination.

BRDF estimation is a challenging research problem that aims to estimate the appear-
ance of a material. A general overview of techniques in this field is given in Sec. 3.1.
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The presented methods do not estimate the shape or only estimate the depth for the spe-
cific perspective. This is limiting, as only a small degree of novel view synthesis can be
performed.

These capture setups can be extended to estimating the BRDF and shape of objects [21,
22,23, 29, 79, 122, 140, 192] or scenes [94, 147]. Most of the methods are based on
known active illumination. A limited number of light sources — often a single — are as-
sumed to be responsible for the majority of illumination in a scene. Relying on only
natural and uncontrolled illumination adds additional challenges due to the drastically
increased ambiguity across the shape, illumination, and BRDFs. Often these challenges
are reduced by keeping the specular albedo non-spatially-varying or by removing it en-
tirely [93, 188, 194]. Other approaches require temporal traces and limit the casual
capture setup [48, 184].

In comparison, our works estimate the full shape from 360-degree images under vary-
ing illuminations with a full SVBRDF model. The results of our works can be directly
leveraged in traditional rendering methods and accurately capture the objects.

Illumination estimation from a single image is an inherently challenging problem.
The task is inherently linked to BRDF estimation, as illumination affects the appearance
and is only indirectly observable from its interactions with surface materials.

We propose to solve the two tasks in conjunction in this chapter. In NeRD of Sec. 4.2,
we decompose a single object into shape, reflectance, and a global set of SGs. NeRD is
similar to PhySG [194], which performs this under a single illumination.

Chen et al. [38] leverage a deep prior of environment maps with homogeneous materi-
als, using an invertible neural BRDF model. Li et al. [94] decompose an entire scene
into a simplified BRDF model with hemispherical SGs per point in the scene. The
image of the environment in the background may be incorporated into the prediction,
shifting the problem to completion of the HDR environment map from sparse observa-
tions [58, 149, 177]. In Sec. 4.3, we not only learn a deep prior but a rendering-aware
network capable of integrating the environment illumination for a specific surface rough-
ness enabling rendering the entire hemisphere of incoming light with a single evaluation.

Placement in literature. The area of neural fields, BRDF estimation, and camera
pose optimization is extensive. We compare our approaches with the recent literature
in Tab. 4.1.

Here, we specifically compare in the context of relighting, training on in-the-wild
datasets with various illumination, camera pose initialization, optimization capabilities,
and mesh and texture extraction for fast real-time rendering. We propose one of the few
methods capable of working with in-the-wild datasets under varying illumination and
enabling textured mesh extraction. Furthermore, SAMURALI even allows camera pose
optimization.

Our methods also enable relighting under any illumination compared to NeRF-w [110],
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Method Relightable Varying illumination Initial Poses Pose optimization Mesh Textures Note

NeRF [117] X X COLMAP X v X

Instant-NGP [120] X X COLMAP X v X Fast training & Inference
TensoRF [37] X X COLMAP X s X Fast training & Inference
NeRF-w [110] v/ (within datasets) v COLMAP X v X

BaRF [100] X X Quadrant/Origin v v* X Mostly for forward facing scenes
GNEeRF [115] X X Random v v X

NeRF-- [176] X X Origin v v X Mostly for forward facing scenes
SCNeRF [74] X X Origin 4 v X Requires correspondences
NeRV [150] v X COLMAP X v X Handles shadowing

NeRS [193] v X Quadrant-based v v v

PhySG [194] v X COLMAP X v v

NeRFFactor [198] v X COLMAP X v X Requires NeRF training
NVDiffRec [121] v X COLMAP X v v

NeRD [25] (Sec. 4.2) v/ v COLMAP X v v

Neural-PIL [28] (Sec. 4.3) v v COLMAP X v v

SAMURALI [26] (Sec. 4.4) v v Quadrant-based v v v

Table 4.1: Literature overview. Compared with recent literature, our proposed meth-
ods enable easy relighting under any illumination and training on varying illumination
datasets. SAMURALI can even decompose an object with coarse initialized camera poses.
We also enable the extraction of relightable meshes, which can be rendered in real-time.
If a method does not propose an extraction, we mark it with * to indicate if it is potentially
possible.

which only can interpolate illuminations based on the seen lighting conditions in the
dataset. Our explicit BRDF decomposition can be placed in any illumination and be-
haves plausibly.
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4.2 NeRD: Neural Reflectance Decomposition

4.2 NeRD: Neural Reflectance Decomposition

This section is based on the publications:

NeRD: Neural Reflectance Decomposition from Image Collections
Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Barron, Ce Liu, Hendrik P. A. Lensch
IEEE International Conference on Computer Vision (ICCV) - 2021
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Figure 4.1: Neural reflectance decomposition for relighting. We encode multiple
views of an object under varying or fixed illumination into the NeRD volume. We de-
compose each given image into geometry, spatially-varying BRDF parameters, and a
rough approximation of the incident illumination in a globally consistent manner. We
then extract a relightable textured mesh that can be re-rendered under novel illumination
conditions in real-time.

Traditional SVBRDF estimation techniques involve capturing images using a light-
stage setup where the light direction and camera view settings are controlled [11, 27,
87, 88, 89]. In Chapter 3 a method for reconstruction objects under environment illu-
mination is introduced. This approaches and several other recent ones enable SVBRDF
estimation from more practical capture setups [21, 22, 23, 56, 122]. However, often the
illumination is limited to a single dominant source (e.g., a flash attached to a camera),
or they assume that the flash predominantly lights the scene. In Sec. 3 this assumption
is true to a lesser extent due to our two-shot capture scenario. When the illumination
is either known or severely constrained, the ambiguity of shape and material estimation
is reduced. However, the practical utility is also limited to laboratory settings or flash
photography in dark environments.

Additionally, in our previous work of Sec. 3, only a singular viewpoint is considered.
As only the shape for that particular perspective is estimated, only a small degree of
novel view synthesis is possible.

In contrast to standard SVBRDF and shape estimation techniques, recently intro-
duced coordinate-based scene representation networks [110, 117, 195], can directly per-
form high-quality view synthesis without explicitly estimating shape or SVBRDF. An
overview of these techniques is given in Sec. 2.4.
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They represent the radiance field of the scene using a neural network trained specif-
ically for a single scene, using as input multiple images of that scene. These neural
networks directly encode the geometry and appearance as volumetric density and color
functions parameterized by 3D coordinates of query points in the scene. Realistic novel
views can be generated by raymarching through the volume. Though these approaches
can reproduce view-dependent appearance effects, the radiance of a point in a direction
is “baked in” to these networks, making them unusable for relighting. Even if such
techniques could be extended to relighting, the rendering speed of these methods limits
their practicality — the time required by NeRF to generate a single view is about 30
seconds [117].

In this section, we combine the SG illumination of Sec. 3 with these recent Neural
Fields. This work presents a shape and SVBRDF estimation technique that allows for a
more flexible capture setting while enabling relighting under novel illuminations.

Our key technique is an explicit decomposition model for shape, reflectance, and il-
lumination within a NeRF-like coordinate-based neural representation framework [117].
Compared to NeRF, our volumetric geometry representation stores SVBRDF parameters
at each 3D point instead of radiance. Each image is then differentiably rendered with a
jointly optimized spherical Gaussian illumination model (see Figure 4.1). Shape, BRDF
parameters, and illumination are optimized simultaneously to minimize the photomet-
ric rendering loss w.r.t. each input image. We call our approach “Neural Reflectance
Decomposition” (NeRD).

NeRD not only enables simultaneous relighting and view synthesis but also allows
for a more flexible range of image acquisition settings: Input images of the object need
not be captured under the same illumination conditions. NeRD supports both camera
motion around an object as well as captures of rotating objects. All NeRD requires as
input is a set of images of an object with known camera pose (computed for e.g. using
COLMAP [145, 146]), where a foreground segmentation mask accompanies each image.
Besides the SVBRDF and shape parameters, we also explicitly optimize the illumination
corresponding to each image for varying illuminations or globally for static illumination.

As a post-processing step, we propose a way to extract a 3D surface mesh along with
SVBRDF parameters as textures from the learned coordinate-based representation net-
work. This allows for a highly flexible representation for downstream tasks such as
real-time rendering of novel views, relighting, 3D asset generation, etc.

Our method optimizes a model for shape, BRDF, and illumination by minimizing
the photometric error to the input image collection of an object captured under fixed or
different illuminations.

4.2.1 Problem Setup

Our input consists of a set of g images with s pixels each, /; € RS*3;j € 1,...,q poten-
tially captured under different illumination conditions. We aim to learn a 3D volume
V), where at each point x = (x,y,z) € R? in 3D space, we estimate BRDF parameters

64



4.2 NeRD: Neural Reflectance Decomposition

(a) Sampling network. The main
task of the coarse sampling net-
work is to generate a finer distri-
bution for sampling in the decom-
position network. The color pre-
diction needs to account for the il-
lumination to match the input dur-
ing training. We combine a com-
pacted TV from Ng, with the la-
tent color output of Ng, to generate
the illumination-dependent color in
Ny

-

Figure 4.2: NeRD architecture. The architecture consists of two networks.

(b) Decomposition network. With the sampling pattern
generated from the coarse network, we perform SVBRDF
decomposition at each point in the neural volume. The den-
sity, o, and direct RGB color d is queried from the Ny,.
Additionally, a vector is passed to Ngy,, which decodes it
to the point’s BRDF parameters by,. By compressing the
BRDF to a low-dimensional latent space, all surface points
contribute to training a joint space of plausible BRDFs for
the scene. Each point still interpolates its parameters in this
space. The gradient from the density forms the normal n
and is passed with the BRDF and SGs IV to the differen-
tiable renderer.

Here,

Ng,/Ny, denote instances of the main networks which encodes the neural volume. r(t)
defines a ray with sampling positions x;, y(x) is the Fourier Embedding [117], and I" J
denotes the SG parameters per image j. ¢ is the output color and o is the density in the
volume. The individual samples along the ray need to be alpha composed based on the
density o along the ray. This is denoted as “Comp.”.
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bym € R, surface normal n € R? and density 6 € R. The environment maps are rep-
resented by SG mixtures with parameters I' € R***7 (24 lobes). Here, we follow the
rendering formulation of Sec. 2.2.1 and leverage the volumetric rendering described in
Sec. 2.4.3.

4.2.2 Network Architecture

Compared to NeRF described in Sec. 2.4.3, the architecture of NeRD mainly differs
in the second fine network. NeRD uses the decomposition network as the fine net-
work, which stores the lighting-independent reflectance parameters instead of the direct
view-dependent color. Also, the sampling network in NeRD differs from NeRF’s coarse
network as we learn illumination-dependent colors as NeRD can work with differently
illuminated input images. An overview of both networks is shown in Fig. 4.2. The pa-
rameters of the networks and the SGs are optimized by backpropagation informed by
comparing the output of a differentiable rendering step to each input image I; for indi-
vidual rays across the 3D volume.

4.2.2.1 Sampling network

The sampling network directly estimates a view-independent but illumination dependent
color ¢/ at each point, which is optimized by a MSE: 1Y*(é/ —¢/)?. The sampling
network’s primary goal is to establish a useful sampling pattern for the decomposition
network. The sample network structure is visualized in Fig. 4.2a. Compared to NeRF,
our training images can have varying illuminations. Therefore, the network needs to
consider the illumination I'V to create the illumination-dependent color ¢/ that should
match image /;. The density o is not dependent on the illumination, which is why we
extract it directly as the side-output of Ng,. Here, we follow a concept from NeRF-
w [110] that combines an embedding of the estimated illumination with the latent color
vector produced by Np,. As the dimensionality of the SGs can be large, we add a com-
paction network (Ng,), which encodes the 24 x 7 dimensional SGs to 16 dimensions.
The compacted SG’s embedding is then appended to the output of the last layer of Ny,
and jointly passed to the final estimation network Ng, that outputs color values. Without
the illumination-dependent color prediction, several floaters would appear in the volume
estimate, introducing the wrong semi-transparent geometry to paint in highlights for in-
dividual views (see Fig. 4.3b). The resulting 3D volume is sparser and more consistent
by introducing the illumination-dependent branch.

4.2.2.2 Decomposition network

After a ray has sampled the sampling network, additional m samples are placed based
on the density o. This is visualized in Fig. 4.2b as the additional green points on the
ray. The decomposition network is trained with the same loss as the sampling network.
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4.2 NeRD: Neural Reflectance Decomposition

However, we introduce an explicit decomposition step and a rendering step in-between.
Our decomposition step estimates view and illumination independent BRDF parameters
by, and a surface normal n at each point. The popular Cook-Torrance analytical BRDF
model [41] is used for rendering. Here, we choose the Disney BRDF basecolor and
metallic parametrization [32] instead of independently predicting the diffuse and specular
color, as it enforces physical correctness. The illumination [/, in the form of SGs, is
jointly optimized. After rendering the decomposed parameters, the final output is a view
and illumination-dependent color ¢, .

By keeping the rendering differentiable, the loss from the input color &/ can be back-
propagated to the BRDF by, the normal n, and the illumination I'V. Our rendering step
approximates the general rendering equation:

Lo(x, @) = /Q £o(x, 05, 0,)Li(x, ©;)(@; - n)do; @1

using a sum of 24 SG evaluations. The ®; and @, define the incoming and outgoing
ray direction, respectively. The reflectance due to diffuse and specular lobes is separately
evaluated by functions p; and p;, respectively [171]. A detailed explanation of rendering
with SGs is shown in Sec. 2.2.1. Overall, our image formation is defined as:

24
L0<x7 wi) ~ Z pd(wmrimn;bbm) +ps(m07rman7bbm) (42)

m=1

Our differentiable rendering implementation follows Sec. 3.2.

The overall network architecture is shown in Fig. 4.2b. Especially in the early stages
of the estimation, joint optimization of BRDF and shape proved difficult. Therefore, we
estimate the density o and, in the beginning, a view-independent color d for each point
in Ny, . The direct color prediction d is compared with the input image, and the loss is
faded out over time when the rough shape is established.

The surface normal is required to compute the shading. One approach could be to
learn the normal as another output [21]. However, this typically leads to inconsistent nor-
mals that do not necessarily fit the object’s shape (Fig. 4.3c). Specific reflections can be
created by shifting the normal instead of altering the BRDF. As seen in Sec. 3.2.3.1, cou-
pling the surface normal to the actual shape can resolve some ambiguity. In coordinate-
based volume representations like NeRF [117], we can establish this link by defining the
normal as the normalized negative gradient of the density field:

V.o
n Vol (4.3)
While the density field defines the surface implicitly, the density in the 3D volume
changes drastically at the boundary between non-opaque air to the opaque object. Thus,
the gradient at a surface will be perpendicular to the implicitly represented surface. This

is a similar to the normal reconstruction from SDFs of Yariv et al. [187].
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Material Map Direct color predictiofConsidering illumination Directly Predicted Vo-based

Figure 4.3a: Compressed Figure 4.3b: SGs dependent Sam- Figure 4.3c: Surface
BRDF Space. Instead of pling Network. Np can to some Normal Estimation.
directly estimating the BRDF, extent model view-dependence by Instead of directly
we learn a 2D embedding per composition along the ray. However, predicting the normal
scene which clusters similar this is too weak to deal with varying as another output of the
materials.  As several points illumination. Apparent highlights in- Ng,, the normal in our
jointly estimate BRDFs, this troduce spurious geometry that mim- approach is calculated
stabilizes the decomposition ics the effect for individual views. from the gradient of
and improves quality. Notice We can obtain a better shape by es- the density Vo. Photo-
how similar materials are timating the illumination-dependent metric information thus
identified across the surface in radiance with SGs. influences both n and o
the resulting material map. during training.

Figure 4.3: Novel techniques. An overview of three selected novel additions.

By calculating the gradient inside the optimization and allowing the photometric loss
from the differentiable rendering to optimize the normal, we optimize the ¢ parameter
in the second order. Therefore, the neighborhood of surrounding points in the volume
is smoothed and made more coherent with the photometric observations. As a more
densely defined implicit volume allows for a smoother normal, we additionally jitter the
ray samples during training. Each ray is now cast in a subpixel direction, and the target
color is obtained by bilinear interpolation.

For the BRDF estimation, we use the property that often real-world objects consist of
a few highly similar BRDFs which might be spatially separated. To account for this we
introduce an additional network Ny, which receives the latent vector output of Ny, . This
autoencoder creates a severe bottleneck, a two-dimensional latent space, which encodes
all possible BRDFs in this scene. As the embedding space enforces a compression,
similar BRDFs will share the same embedding. This step couples the BRDF estimation
of multiple surface points, increasing the robustness. The assignment to various BRDFs
is visualized in Fig. 4.3a, which can be utilized for material-based segmentation.

The approach will converge to a globally consistent state, as the underlying shape and
BRDF is assumed to be the same for all input images. The SGs are estimated for each
input image, but we can force them to be the same or a rotated version of a single SG in
case of static illumination.
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4.2.2.3 Detailed Architecture

The main network Ng /Ny, uses 8 MLP layers with a feature dimension of 256 and
ReLU activation. The input coordinate x is transformed by the Fourier output y(x) with
10 bands to 63 features. For the sampling network, the output from the main network is
then transformed to the density o with a single dense layer without any activation. The
flattened 192 SGs parameters I'/ are compacted to 16 features using a fully connected
layer (Ng,) without any activation. As the value range can be extensive in real-world
illuminations, the amplitudes & are normalized to [0,1]. The main network output is
concatenated with the SGs embeddings and passed to the final prediction network. Here,
an MLP with RelLU activation first reduces the joined input to 128 features. The final
color prediction ¢/ is handled in the last layer without activation and an output dimension
of 3.

The decomposition network uses the output from Ny, and directly predicts the direct
color d and the density in a layer without activation and 4 output dimensions (RGB+0).
The main network output is then passed to several ReLU activated layers which handle
the BRDF compression Ng,. The feature outputs are as followed: 32, 16, 2 (no acti-
vation), 16, 16, 5 (no activation). The final five output dimensions correspond to the
number of parameters of the BRDF model. The compressed embedding with two feature
outputs is regularized with a £, norm with a scale of 0.1 and further clipped to a value
range of —40 to 40 to keep the value ranges in the beginning stable.

4.2.2.4 Environment representation and rendering.

We follow the rendering definition with SGs defined in Sec. 2.2.1. SGs are useful for
representing low-frequency approximations of the environment. Our differentiable ren-
dering step follows the rendering implementation of Sec. 3.2.

4.2.2.5 Dynamic range, tonemapping and whitebalancing

As most online image collections consist of LDR images with at least an sSRGB curve
and white balancing applied, we have to ensure that our rendering setup’s linear output
recreates these mapping steps before computing a loss. However, rendering can produce
an extensive value range depending on the incident light and the object’s specularity.
Real-world cameras also face this problem and tackle it by changes in aperture, shutter
speed, and ISO. Based on the meta-data information encoded in JPEG files, we can
reconstruct the input image’s exposure value and apply this to our re-rendering. NeRD
is then forced to always work with physically plausible ranges. For synthetic examples,
we calculate these exposure values based on Saturation Based Sensitivity auto exposure
calculation [1] and apply an sRGB curve.

Cameras also apply a white balancing based on the illumination, or it is set by hand
afterward. This can reduce some ambiguity between illumination and material color
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Figure 4.4: Mesh generation. Shows the stages of the mesh generation. In (a), the
cameras and view frustum are shown. From there, in (b) points are sampled where ¢
was high. The resulting point cloud with the basecolor is then shown in (c). Outliers
in the point cloud are then removed in (d). The mesh is then created in (e) where the
texture information is applied with vertex colors. Lastly, the final Low-resolution mesh
with material textures is shown in (f).

and, in particular, fix the illumination’s overall intensity. For synthetic data, we evaluate
a small spot of material with 80% gray value in the environment. We assume a perfect
white balancing and exposure on real-world data, at least for one of the input images. The
RGB color (w) of the white point is stored. After each training step a single-pixel with a
rough 80% gray material is rendered in the estimated illumination and a factor f = bﬁ is
calculated. This factor is then applied to the corresponding SG. As the training will adopt
the BRDF to the normalized SG, a single white-balanced input can implicitly update and
correct all other views. In practice, the calculated factor f could abruptly change the SGs
in one step, causing unstable training. Therefore, we clip the range of f to [0.99;1.01] to
spread the update over multiple training iterations.

4.2.2.6 Mesh extraction

The ability to extract a consistent textured mesh from NeRD after training is one of
the key advantages of the decomposition approach and enables real-time rendering and
relighting. This is impossible with NeRF-based approaches where the view-dependent
appearance is directly baked into the volume. We use the following four general steps to
extract textured meshes:

1. A very dense point cloud representation of the surface is extracted. This step uti-
lizes the same rendering functions used during training, ensuring that the resulting
3D coordinates are consistent with the training. To generate the rays for the ren-
dering step, we sample the decomposition network for ¢ in a regular grid within
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the view volume determined by the view frustums of the cameras. We construct
a discrete PDF from this grid, which is then sampled to generate about 10 million
points where o is high. The rays are constructed by following the normals at those
points to get the ray-origins. We use the slightly jittered inverted normals as ray
directions. See Fig. 4.4 (a) to (c¢) for visualizations of this step.

2. For meshing, we use the Open3D [200] implementation of the Poisson surface re-
construction algorithm [80] using the normals from NeRD. Before meshing, we
perform two cleanup steps: First, we reject all points where the accumulated opac-
ity along a ray is lower than 0.98. Secondly, we perform statistical outlier removal
from Open3D. Those steps are visualized in Fig. 4.4 (d) and (e).

3. We use Blender’s [40] Smart UV Project to get a simple UV-unwrapping for the
mesh. Reducing the mesh resolution beforehand is an optional step that reduces
the computational burden for using the mesh later. This is also done using Blender
via Decimate Geometry or the Voxel Remesher.

4. We bake the surface coordinates and geometry normals into a floating-point texture
of the desired resolution. The textures are generated by generating and rendering
one ray per texel to look up the BRDF parameters and shading normals with NeRD.
A result is show in Fig. 4.4 (f).

4.2.2.7 Training and losses

The estimation is driven by a MSE loss between the input image and the results of eval-
uating randomly generated rays. For the sampling network this loss is applied to the
RGB prediction and for the decomposition network to the re-rendered result ¢/ and the
direct color prediction d. The loss for the color prediction based on d is exponentially
faded out. Additionally, we leverage the foreground/background mask as a supervision
signal, where all values along the ray in background regions are forced to 0. This loss
is exponentially reduced throughout the training to reduce optimization instabilities. By
gradually increasing this loss, the network is forced to provide a more accurate silhou-
ette, which prevents the smearing of information at the end of the training. The net-
works are trained for 300K steps with the Adam optimizer [82] with a learning rate of
5e—4. Per batch, 1024 rays are cast into a single scene. For adjusting the losses and
learning rate during the training, we use exponential decay: p(i;v,r,s) = vrs. The learn-
ing rate then uses p(i;0.000375,0.1,250000), the direct color d loss is faded out using
p(i;1,0.75,1500) and the alpha loss is faded in using p(i;1,0.9,5000). During the first
1000 steps, we also do not optimize the SGs parameters and first use the white balanc-
ing only to adjust the mean environment strength. This step also sets the illumination
strength per image based on the exposure values. On 4 NVIDIA 2080 Ti, the training
takes about 1.5 days. The final mesh extraction takes approximately 90 minutes.
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4.2.3 Results

The proposed method recovers shape, appearance, and illumination for relighting in un-
constrained settings. Our reconstruction and relighting performance on synthetic sets is
measured against ground truth images and known BRDF parameters. We present novel
relit views and compare the renderings with validation images excluded from training
for real-world examples. If the environment map for the validation image is known,
we directly use this for relighting. Otherwise, we recover the unseen illumination by
optimizing the SGs through the frozen network in 1000 steps using stochastic gradient
descent with a learning rate of 0.1. One-to-one comparisons with previous methods are
challenging, as most use different capturing setups. We can, however, compare the out-
come of NeRF when trained on a similar scene. NeRF cannot relight the object under
novel illumination, and even NeRF-w and our simplified NeRF-A baseline can only in-
terpolate between seen illuminations.
We also perform an ablation study on the influence of our novel training techniques.

4.2.3.1 Datasets

We use three synthetic scenes to showcase the quality of the estimated BRDF param-
eters. We use three textured models (Globe [162], Wreck [33], Chair [34]) and render
each model with a varying environment illumination per image. For a fixed illumination
synthetic dataset, we use the Lego, Chair, and Ship scenes from NeRF [117].

We also evaluate using two real-world scenes from the British Museum’s photogram-
metry dataset: an Ethiopian Head [130] and a Gold Cape [131]. These scenes feature
an object in a fixed environment with either a rotating object or a camera. Additionally,
we captured our own scenes under varying illumination at various times of day (Gnome,
MotherChild). An overview of all datasets and visual examples are shown in the ap-
pendix Sec. B.1.

4.2.3.2 BRDF decomposition results

Fig. 4.5 shows exemplary views and decomposition results of the synthetic Car Wreck
and Chair scenes. In all cases, the estimated re-renderings are similar to GT. The esti-
mated BRDF parameters may not match perfectly in some places compared to the GT,
but given the purely passive unknown illumination setup, they still reproduce the GT
images. Causes for deviations are the inherent ambiguity of the decomposition problem
and the differences in shading based on SG vs. the high-resolution GT environment map.

4.2.3.3 Relighting and novel view synthesis

In Fig. 4.6, novel views and plausible relighting in unseen environments are shown for
our real-world data sets. The relighted images are visually close to the held-out validation
images. Furthermore, a novel view can be relighted with the lighting from a different
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Basecolor  Metallic Roughness  Normal Environment Image Relight 1 &2 Point Light 1 &2
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Figure 4.5: Decomposition on synthetic examples. Two scenes are highlighted to show
the decomposition performance of our method. Notice the accurate performance in re-
lighting with unseen illuminations.

Fixed Illumination Varying Illumination
Method PSNRT SSIM{T PSNRT  SSIM?T
. NeRF 34.24 0.97 21.05 0.89
S NeRF-A 3244 097 2853 092
Ours 30.07 0.95 27.96 0.95
NeRF 23.34 0.85 20.11 0.87
NeRF-A  22.87 0.83 26.36 0.94
Ours 23.86 0.88 25.81 0.95

Real

Table 4.2: Novel view synthesis. Comparison with NeRF and NeRF-A on novel view
synthesis (with relighting in varying illumination). Notice NeRF and NeRF-A cannot
relight in unseen illuminations, nor is an extraction of a textured mesh from the network
easily possible.

view. Note that some fine details are missing in the reconstructions of the Gold Cape,
which is caused by minor inaccuracies in the camera registration. Also, the MotherChild
model is missing some highlights, especially at grazing angles, which can be attributed
to the limitations of the SG based rendering model.

While no ground truth BRDF exists, the estimated parameters for the Gnome (Fig. 4.6)
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Figure 4.6: Real world BRDF decomposition and relighting. The decomposition pro-
duces plausible BRDFs, and re-rendered images are close to the ground truth input im-
ages. Note that the estimated parameters are hardly affected by the shadows visible in
the input of the gnome scene. The appearance is well reproduced when relit with the esti-
mated SG of a validation view. Even in a different perspective or under completely novel,
artificial illumination, the recovered BRDF parameters result in compelling renderings.

seems plausible. The material is correctly classified as non-metallic (black metalness
map), has a higher roughness, and the normal also aligns well with the shape. In the cen-
tral valley, where dirt is collected, the BRDF parameters increase in roughness compared
to the clean, smooth concrete pillow surface. The color is also captured well, and the
similarity to the GT is evident in re-rendering.

Another evaluation focuses on using our method purely for novel view synthesis, with
implicit relighting. In this setting, our method can be compared with NeRF [117] and
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(a) Influence of varying illumination. (b) Novel view comparison.

Figure 4.7: Comparison with NeRF and NeRF-A. We show the quality of NeRF, NeRF-
A, and NeRD on scenes under varying and fixed illumination in (a). Here, it is evident
that NeRF fails as expected in scenes with varying illumination (Chair, Gnome). In (b),
we highlight the improved consistency in our method. NeRF introduces highlights as
floaters in the radiance volume that inconsistently occlude the scene geometry in other
views. Additionally, we showcase the quality of relighting the Head with our method.

an extension to NeRF, called NeRF-A, which is inspired from [110]. NeRF-A models
the appearance change per image in a 48-dimensional latent vector. It is worth noting
that NeRF-A is a strong baseline as the task is simpler compared to NeRD, and it is only
capable of relighting within known scenes. On fixed illumination scenes, NeRF-A is not
capable of relighting. Tab. 4.2 shows the quantitative results over multiple datasets, real-
world (Real) and synthetic (Syn.), on the test views wherein the “Fixed Illumination”
case only novel view synthesis is performed, and in the “Varying Illumination” case,
novel view synthesis and relighting. Here, “Varying [llumination” also refers to the
case where the object is rotating w.r.t the camera, and therefore the relative illumination
varies. The corresponding datasets for the fixed and synthetic cases are from NeRF (Ship,
Lego, Chair), and for varying, we use ours (Globe, Wreck, Chair). For the real-world
comparison, Cape provides fixed illumination, and the Gnome, Head, and MotherChild
scenes are recorded in varying environments. Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM) results show that NeRF performs relatively
poorly in varying illumination cases. NeRF-A, on the other hand, is a strong baseline in
the varying illumination case, which we mostly match or surpass while solving a more
challenging problem which allows for more flexible relighting use cases.
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Figure 4.8: Geometry reconstruction. Comparison of a COLMAP reconstruction in our
globe scene with varying illuminations.

Fig. 4.7b shows the novel view synthesis results of NeRF, NeRF-A, and NeRD (Ours)
on the Ethiopian Head real-world scene. The object rotates in front of the camera. We,
therefore, compose the Head on a white background in Fig. 4.7b as NeRF cannot handle
a static background with a fixed camera. During training, both models recreate the input
quite closely. However, in the test views, NeRF added spurious geometry to mimic
highlights for specific camera locations, which are not seen by other cameras in the
training set. NeRF-A can express the relative illumination change in the appearance
embedding and improve the reconstruction quality compared to NeRF. However, as only
a single illumination type is seen, NeRF-A is still not capable of relighting under arbitrary
illumination. Due to our physically motivated setup with the explicit decomposition of
shape, reflectance, and illumination, these issues are almost completely removed. Our
method creates convincing object shapes and reflection properties, which also allow for
relighting in novel settings.

Overall, it is evident that NeRF will not work with varying illuminations, clearly
demonstrating the advantage of our more flexible decomposition. This is shown in
Fig. 4.7a. Here, especially in the scenes with varying illumination (Chair and Gnome),
NeREF fails as expected. After rendering the view, our method decomposes the informa-
tion, and the synthesis is close to GT. In the scenes with fixed illumination (Head and
Cape), the performance between NeRF and our method is on par in most parts. The main
difference in MSE is due to the baked-in highlights of NeRF. Our physically grounded
design using rendering reduces these artifacts drastically. We also want to point out that
relighting a scene is not possible in NeRF. It is also worth noting that even if an ap-
pearance embedding as in NeRF-w [110] is used in our simplified NeRF-A baseline, the
method can only interpolate between seen illuminations. Still, in a dataset, NeRF-A can
capture the illumination conditions as shown in Fig. 4.7a and provides similar quality
to ours. Our model can also relight even if the scene is only captured in a single fixed
illumination.
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4.2.3.4 Results from partial estimation techniques

Several sub-tasks of the unconstrained shape and BRDF decomposition problem have
been addressed by earlier works. Unfortunately, trying to recover parameters separately
or sequentially, e.g. geometry, BRDF, or illumination, often fails in challenging scenes.
We show that COLMAP fails to reconstruct a plausible geometry for some of our data
sets in Fig. 4.8. If the following stages rely on accurate geometry, the pipeline cannot
recover meaningful material properties from the inaccurate shape.

Method [PSNR7] Diffuse Specular Roughness

Liet al. 1.06 — 17.18
Lietal. + NeRF 1.15 — 17.28
Ours 18.24 25.70 15.00

Table 4.3: BRDF estimation. Comparison with a recent state-of-the-art method in
BRDF decomposition under environment illumination [98]. Li ef al.: directly on test
images, Li et al. + NeRF: NeRF trained on BRDFs from [98].

We also tried recovering the BRDF parameters (diffuse and roughness) for each image
separately using the work of Li er al. [98]. Li et al. [98] is a method that decomposes
objects illuminated by environment illumination only into diffuse and specular rough-
ness. However, no novel views cannot be synthesized, and single image decomposition
is highly ill-posed. In Fig. 4.9 results are shown. The diffuse parameter in our method
is more consistent compared to Li ef al., and it is apparent that Li et al. failed to factor
out the illumination from the diffuse. However, the roughness is slightly better for Li et
al. but is not as consistent, and the roughness is highly correlated with the texture of the
globe, which is incorrect. Our method is biased towards the extreme roughness value
range but is more consistent. It is also worth noting that the roughness parameter plays a
minor role compared to the diffuse color during re-rendering. If the color of an object is
wrong, the error is more visible than slight alterations in how reflective it is. Addition-
ally, our method can estimate the specular color, which is a challenging task and allows
our method to render metals correctly.

Li et al. [98] is a method that decomposes objects illuminated by environment illu-
mination only into diffuse and specular roughness. However, no novel views cannot be
synthesized, and single image decomposition is highly ill-posed.

As Li et al. do not allow for a significant degree of novel view synthesis — except
slightly based on the estimated depth map — one approach to solve this is to use NeRF
on top. By running Li ef al. on the train set and then constraining NeRF not to use
view-dependent effects and extending the RGB space to RGB + roughness, we can try
to join the distinct images in a volumetric model. In Fig. 4.9 it is visible that this method
fails, as each image is quite different from the other, and NeRF cannot place the varying
information at the correct locations.
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Figure 4.9: Partial estimation techniques. Comparison with partial estimation methods.
Here, we compare our method with Li ef al. [98] and Li et al. + NeRF. Li et al. is a method
that decomposes a single image of an object illuminated by environment light into diffuse
and roughness parameters. For the Li ef al. + NeRF baseline, we first decomposed the
training dataset with Li et al. and then trained a NeRF with disabled view conditioning
on top. We then generate the novel test set views. For Li ef al., no view synthesis takes
place, and the method is run on the test set directly. Notice how our method generates
consistent results on all test views.
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We, therefore, conclude that joint optimization of shape and SVBRDF is essential for
this highly ambiguous problem. Quantitative comparisons with Li et al. are shown in
Tab. 4.3. These are average PSNR results over our synthetic datasets (Globe, Wreck,
and Chair). We decompose our basecolor into diffuse and specular to enable comparison
with Li et al., which uses a diffuse and roughness parameterization. It is worth noting
that Li et al. is a weak baseline but the closest available, as their method expects a flash
in conjunction with the environment illumination. However, as most scenes are captured
with an outside environment illumination, the flash will be barely noticeable due to the
strong sunlight.

Method Base Color Metalness Roughness Normal Re-Render

w/o Grad. Normal 0.1264 0.1203 0.3192 0.1664 0.0893
w/o Com. BRDF 0.1828 0.2496 0.2827 0.0089 0.0759
w/o WB 0.1059 0.0870 0.2754 0.0087 0.0655

Full Model 0.0796 0.0784 0.2724 0.0084 0.0592

Table 4.4: Ablation study. The MSE loss on 10 test views with ablation of gradient
(grad.) normals, compressed (Com.) BRDF and white balancing (WB) on the globe
dataset.

4.2.3.5 Ablation study

In Tab. 4.4, we ablate the gradient-based normal estimation, the BRDF interpolation
in a compressed space, and incorporating the white balancing in the optimization. We
perform this study on the Globe scene as it contains reflective, metallic, and diffuse ma-
terials and fine geometry. One of the largest improvements stems from the addition of
gradient-based normals. The coupling of shape and normals improves the BRDF and
illumination separation. Normals cannot be rotated freely to mimic specific reflections.
The compressed BRDF space also improves the result, especially in the metalness pa-
rameter estimation. This indicates that the joint optimization of the encoder/decoder
network Ny, optimizes similar materials across different surface samples. The white
balancing fixes the absolute intensity and color of the SGs, which indirectly forces the
BRDF parameters into the correct range.
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4.3 Neural-PIL: Neural Pre-integrated Lighting for
Reflectance Decomposition

This section is based on the publications:

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition
Mark Boss, Varun Jampani, Raphael Braun, Ce Liu, Jonathan T. Barron, Hendrik P. A. Lensch

Advances in Neural Information Processing Systems (NeurIPS) - 2021
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Figure 4.10: Problem setting. Our Neural-PIL-based technique decomposes images
observed under unknown illumination into high-quality BRDF, shape, and illuminations.
This allows us to synthesize novel views (targets shown in insets) and perform relighting
or illumination transfer.

We introduced reflectance fields in the previous Sec. 4.2. A collection of posed images
is used to perform a complete inverse rendering by creating a reflectance field. It decom-
poses the images into an object’s 3D shape and SVBRDF under different illumination
conditions. The illumination is also jointly recovered for each image or globally if only a
single illumination is present. This approach offers easy relighting and is often tackled in
recent literature [25, 150, 193, 194]. A key component in learning these neural SVBRDF
decomposition networks is the differentiable rendering [25, 29, 194] that generates im-
ages and gradients for the estimated lighting and SVBRDF parameters. These methods
leverage traditional rendering techniques within modern deep learning frameworks to en-
able backpropagation. This is often expensive, as rendering requires computing integrals
over the incoming light at each 3D location in the scene. In our previous work NeRD
of Sec. 4.2, we leverage SG illumination as described in Sec. 2.2.1 to accelerate the illu-
mination integration. Concurrently Zhang et al. propose to leverage SGs to approximate
illumination. However, they only tackle objects under a fixed illumination. However,
these SG representations lack the capacity required to model or recover the shape and
material properties of highly reflective objects or images in complex natural environ-
ments. One downside of SG illumination is that the illumination created by those SGs is
mostly of low frequency, and even if the number of SGs is increased, the individual SG
would still produce visible spherical artifacts due to their spherical definition.
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This work aims to replace the costly illumination integration step within these ren-
dering approaches with a learned network. Inspired by the real-time graphics literature
on image-based lighting [77], we propose a novel pre-integrated lighting (PIL) network
that converts the illumination integration process used in rendering into a simple network
query. Our Neural-PIL takes as input a latent vector representation for the environment
map, the surface roughness, and an incident ray direction, and from them predicts an
integrated illumination estimate. This query-based approach for light integration results
in efficient rendering and simplifies and accelerates rendering and optimization. This
neural light representation is also significantly more expressive than the more commonly
used SG representation, thereby enabling higher-fidelity renderings. The architecture of
our Neural-PIL uses a conditional MLP with FiLM layers [36]. Fig. 4.11 illustrates this
illumination pre-integration for different surface roughness levels.

Additionally, our previous work NeRD of Sec. 4.2 is unconstrained in the BRDF
and illumination reconstruction. However, a manifold of physically plausible illumi-
nations and BRDF appearing in the real world exists. We present a smooth manifold
auto-encoder (SMAE), based on interpolating auto-encoders [20], that can learn these
effective low-dimensional manifolds. This learned low-dimensional space serves as a
strong regularizer or prior for constraining the solution space of BRDFs and illumina-
tion. These constraints are critical due to the ill-posedness of our problem setting. The
smoothness of this manifold enables stable and effective gradient-based optimization of
BRDF and light parameters. The Neural-PIL, light-SMAE, and BRDF-SMAE networks
are pre-trained on a dataset with high-quality environment maps (illumination) and ma-
terials (BRDFs). We integrate these component networks into our decomposition frame-
work, optimizing a 3D neural volume with shape and SVBRDF while also optimizing
per-image illuminations.

We perform an empirical analysis on synthetic datasets and qualitative and quantitative
visual results on real-world datasets. We demonstrate that using our Neural-PIL decom-
position network, the shape and material properties estimation is more accurate than the
prior art. The 3D assets with material properties produced by our model can be used to
generate high-quality relighting and view-synthesis results with finer details compared
to existing approaches.

4.3.1 Problem Setup

Given an image collection of an object captured under varying illumination conditions
and camera viewpoints, we aim to jointly estimate the object’s 3D shape and spatially-
varying BRDF, as well as the illumination conditions of each image. Our input consists
of a set of g images with s pixels each: C; € RS3;j € {1,...,q} along with per-pixel
masks M; € {0,1}* *1 indicating which pixels belong to the object. Our goal is to learn
a neural 3D volume V where, at each point x € R3, we estimate the BRDF parameters
for the Cook-Torrance model [41] b € R7 (diffuse b, € R3, specular by € R3, roughness
b, € R), unit-length surface normal n € R? and optical density ¢ € R. In addition, we

81



Chapter 4 Per-Object Multi-Shot Decomposition

Roughness 0.5

Roughness 1.0

Figure 4.11: Pre-integrated lighting. As the roughness of the material increases, the
reflected radiance depends on a larger region of the environment map. Brute-force in-
tegrals over the environment map are expensive. Hence we propose a coordinate-based
MLP that is trained to directly output the integrated illumination values conditioned on
the surface roughness and view direction.

also estimate latent vectors representing per-image illumination z/ € R!?8. This problem
statement corresponds to the practical application of recovering a 3D model of some
real-world object (e.g., a statue or landmark) that different people have photographed at
different times.

4.3.2 Image formation and image-based lighting

NeRF directly models view-dependent color ¢ at each 3D location. Thus, a simple image
formation process that integrates the color information along camera rays is sufficient to
render images. In contrast, we want to explicitly estimate an object’s material decompo-
sition at each 3D location. We, therefore, must use a more explicit rendering formulation
that relates image formation to BRDFs and illumination. The rendering equation [75] es-
timates the radiance L, € R? at x along the outgoing view direction @, € R> (@, = —d),
where d is the ray direction: L,(x, ®,) = [q fr(x, @i, ®,;b)L;(x, ®;)(®; - n) d®;, where
f, is the BRDF evaluation, L; € R? is incoming light, and @; € R? is the incoming light
direction. Using this single bounce rendering formulation and ignoring exposure varia-
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tion and tone-mapping, L, is equivalent to NeRF’s color ¢.

We follow the concept of pre-integrated illumination as discussed in Sec. 2.2.2. The
formulation for rendering is then defined in Eq. (2.36). However, we further simplify it
as follows:

Lo(x,@,)~ (by/m)Li(n,1) +bs(Fo(@,,n)Bo(®, - n,br) + Bi (@, -1, b,))Li(®,,b,)

. 7 7

TV TV
diffuse specular

(4.4)

The illumination is now pre-integrated as: L;(@,,b,) = [oD(b,, ®;, @,)L;(x, ®;)d®;
which only depends on the mirrored view direction @, (which subsumes the surface
normal n) and the roughness b,, where D describes the microfacet distribution [170].
This light pre-integration is illustrated in Fig. 4.11. Note that compared to Eq. (2.36),
the same pre-integrated L;(®,,b,) is queried twice: the diffuse part captures the entire
hemisphere and therefore is parameterized by the surface normal n € R3 and a diffuse
roughness of 1. The specular part looks up L;(@,,b,) for the reflected view direction
®, € R3 and the specular roughness b,.

This pre-integration approach replaces the complex integration during shading with a
set of simple additions and multiplications. We have integrated the core idea of this ap-
proach into an efficient differentiable neural rendering framework, which allows for the
optimization of geometry, BRDF, and illumination simultaneously via standard back-
propagation. We further reduce the computational complexity by mimicking the pre-
integration of L;(@,,b,) with a simple query through our Neural-PIL that operates di-
rectly on a neural representation of the illumination, as we will now explain.

4.3.3 Network Architecture

Fig. 4.12 shows the neural decomposition architecture which closely follows the archi-
tectures of NeRF [117] and NeRD as explained in Sec. 4.2.2, but with some key differ-
ences. The coarse network learns a view and illumination-dependent color, whereas the
fine network decomposes the scene into BRDF parameters.

4.3.3.1 Coarse network

Like in NeRF [117], the coarse network aims to obtain a rough point density that helps in
finer sampling for the following decomposition network. As illustrated in Figure 4.12a,
the coarse network takes 3D location x, view direction @, and illumination embedding
Z' as input and predicts point density ¢ and color ¢ at x. In contrast to NeRF, which
estimates view-conditioned colors, we estimate both view and illumination-conditioned
colors, as our input images can be captured under varying illumination.
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(a) Coarse network. (b) Decomposition network.

Figure 4.12: Decomposition with the Neural-PIL architecture. A architecture similar
to NeRD (Sec. 4.2) and NeRF-w [110] is used for our coarse network in (a), where a la-
tent illumination code is estimated to predict a view-dependent color and density. In (b),
pre-trained networks restrict the possible BRDF representation (BRDF-SMAE) and the
incident lighting (PIL) to lower-dimensional spaces. A single evaluation of Neural-PIL
returns a pre-filtered illumination cone according to surface roughness. Using that, the
BRDF estimate, and a surface normal (the unit-norm gradient of our density estimate),
we render the shaded color c.

4.3.3.2 Decomposition network

The decomposition network estimates density ¢ and BRDF embedding z” € R* at each
3D location x in the implicit volume. As illustrated in Figure 4.12b, the conditional
network in the coarse network is replaced by explicit rendering in the decomposition
network. There are two key innovations in the decomposition network: 1) Use a novel
pre-integrated light (PIL) network that results in efficient rendering while also represent-
ing the illumination with high fidelity. 2) We learn smooth low-dimensional manifolds
to represent illumination and BRDF parameters, which serve as strong priors. We will
explain our rendering process, the Neural-PIL, and the smooth manifold auto-encoders
(SMAE).

4.3.3.3 Rendering process

For rendering, we use the rendering formulation in Eq. (4.4). We estimate normal n at x
by computing the gradient Vo, of the density w.r.t. the input position (by passing gradi-
ents through the decomposition network). We also convert the BRDF embedding z” into
BRDF parameters b with our BRDF-SMAE. Unlike NeRF [117] of Sec. 2.4.3, which
integrates sample colors along the camera ray, we first compute the expected termination
of each ray (similar to a depth map) with the sample densities along the camera ray and
then do the rendering only at that point along each camera ray. At the ray termination po-
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sitions, we compute the integrated illumination Z;(®,, b,) and use Eq. (4.4) for rendering
with the estimated BRDF b and normal n.

4.3.3.4 Neural-PIL

The integration of the incoming light is traditionally approximated by Monte Carlo sam-
pling, in which illumination contributions from many directions are numerically inte-
grated. The computation of the pre-integrated L;(®@,,b,) also involves either this costly
numerical accumulation or a convolution performed on the complete environment map
— though neither approach is practical within a differential rendering engine. We, there-
fore, learn a network that performs this light pre-integration, thereby converting the
costly integral computation into a simple network query. The architecture of the Neural-
PIL is visualized in Fig. 4.13. The Neural-PIL takes as input the illumination embedding
2/, the incoming light direction @, and the roughness b, at a point, and directly pre-
dicts the pre-integrated light L;(®,,b,). The aim of the Neural-PIL is to first decode the
illumination along the incoming mirror direction @, from the given embedding z' and
then mimic the light pre-integration process for the surface roughness b,. Following this
general intuition, the Neural-PIL takes @, as input, and we condition the first few layers
of the network with illumination z/, and condition a later layer with roughness b,. The
first few layers are intended to decode all required illumination information for the given
direction. The later layers are intended to perform light integration conditioned on the
material roughness.

We leverage a pi-GAN-like [36] architecture for the Neural-PIL design with FiLM-
SIREN layers. Each FILM-SIREN layer [36] takes the modulating parameters (a scalar
Ao and two vectors B and ¥) to modulate the output y of the earlier linear layer followed
by sine computation as follows:

¢(y) = sin(Aoy©y+B) (4.5)

where © denotes a Hadamard product. In our Neural-PIL, we employ two mapping
networks to predict modulating parameters(y, B) for the FILM-SIREN layers. The first
mapping network generates the modulating parameters for the first layers from the illu-
mination embedding z'. The second performs the same for the penultimate layer with
the roughness b, .

In addition to converting a costly light integration process in the rendering into a sim-
ple network query, our Neural-PIL has another key advantage. State-of-the-art differen-
tiable rendering frameworks [25, 57, 94, 194] that work with BRDFs use either SG — as
seen in our previous approach NeRD of Sec. 4.2 — or spherical harmonic (SH) light rep-
resentations, which both suffer from lack of fine details. Although one could represent
fine illumination details with a large number of SG or SH bands, this parameter increase
would also slow the rendering with high memory costs. In contrast, our Neural-PIL is an
MLP that directly produces the pre-integrated light required for the rendering. Our ex-
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Figure 4.14: Smooth manifold auto-
encoder. By imposing specific losses on
interpolations between input samples, our
Smooth Manifold Autoencoder encourages
a smooth embedding space.

Figure 4.13: Neural-PIL. A coordinate-
based MLP returns the pre-integrated radi-
ance for the query direction, where rough-
ness determines the integration footprint.

periments also demonstrate that our Neural-PIL can represent finer details in illumination
compared to SG representation (Sec. 4.3.4 - Fig. 4.15).

4.3.3.5 Smooth manifold auto-encoder (SMAE)

Joint estimating 3D shapes, materials, and lighting is a highly underconstrained problem.
Therefore, we must regularize optimization towards likely illuminations and BRDFs to
converge to plausible solutions. For this, we learn low-dimensional smooth manifolds
that capture the data distribution of BRDFs and illuminations. In addition to acting as
strong priors, optimizing on smooth manifolds (as opposed to directly optimizing on
standard BRDF space, which need not be smooth) allows for more effective gradient-
based optimization of reflectance decomposition for a given scene. Fig. 4.14 illustrates
our SMAE that we use to learn separate low-dimensional manifolds to represent BRDF
and illumination embeddings. Specifically, we use Interpolating Autoencoders [20] with
several additional loss functions. The encoder network E takes input p (either BRDF
or light environment map) and generates the latent embedding z, which is then passed
onto the decoder network G that generates an input reconstruction p’. We then ran-
domly sample two latent vectors from the mini-batch: z, and z;; followed by sam-
pling m € N linearly interpolated embeddings that are uniformly spaced between z, and
zp: {Z,}n=1,2,...,m. We pass each of these interpolated latents z,, through the de-
coder G and the encoder E to obtain p/, and 2/, respectively. Using the four losses
depicted in Fig. 4.14 the encoder and decoder networks are trained jointly. One is the
standard reconstruction loss £, between input p and reconstruction p’. In addition, we
add a discriminator network on p/, and use the standard adversarial loss £, used in LS-
GAN [109], which ensures that the interpolated latent vectors can generate plausible
data. We enforce a bijective mapping of the encoder and the decoder with a cyclic loss

86



4.3 Neural-PIL: Neural Pre-integrated Lighting for Reflectance Decomposition

L. which is the L,-loss between the interpolated latents {z),} and their re-estimated coun-
terparts {2, }. Lastly, to ensure that the learned embedding space is smooth, we impose a
smoothness loss £ on the gradient of decoder G w.r.t. the interpolating scalar value o:
Ly =1/mY,(VqG(Z,))?. The total loss to train SMAE is a combination of the 4 losses:

L=L,+ML,+ML +A3L (4.6)

Despite being only 7-dimensional, the space of the Cook-Torrence BRDF representa-
tion [41] that we use is too unconstrained for our task and imposes strong correlations
between the diffuse and specular terms of real-world materials. We therefore train a
BRDF-SMAE with an MLP encoder and decoder that maps these 7D parameters into 4D
latent embeddings z” € R* using our dataset of real-world BRDF material collections
from Sec. 3.2.4. Similarly, real-world illuminations exhibit significant statistical regular-
ities: lights are more likely to be tinted blue or yellow, and a brighter light is more likely
to come from above than below. To capture this regularity, we train a Light-SMAE with
CNN encoder and decoder on a dataset of 320 environment maps from [190]. We then

map the 128 x 256 2D environment maps onto a 128-dimensional smooth latent space,
! 128
Z eR*°.

4.3.3.6 Architecture and training details

For this method, several networks are trained separately and combined. The following
explains the training schedule for each sub-network, and the architectural details are
provided.

BRDF-SMAE. In our decomposition network, a specific BRDF embedding is stored
in a neural volume at each point. Our BRDF-SMAE should therefore be able to encode
a single BRDF. Each point in the neural volume can have a different embedding, so the
resulting decomposition has a spatially varying BRDF. To encode this singular BRDF
per point, we leverage a MLP network architecture. We use three MLP layers with 32
output features for the encoder, decoder, and discriminator. We train our SMAE to create
a smooth latent space on the material dataset from Sec. 3.2.4. We set the SMAE loss
weighting to A; = 0.01, A, = 0.01 and A3 = 0.001. We use 64 interpolation steps in the
latent space and a MAE on the BRDF parameters for the reconstruction loss. We perform
1.5 million training steps with a batch size of 256 for training on a single NVIDIA 1080
TI GPU. This roughly takes 3.5 hours to converge. We use the Adam optimizer with a
learning rate of le—4.

Light-SMAE. As our dataset only consists of 320 environment maps, we augment the
dataset by randomly rotating each environment map ten times, and during training, we
randomly blend two environment maps. Additionally, we downscale the environment
maps to 128 x 256. We set the SMAE loss weighting to A; = 0.01, A, = 0.0001 and

87



Chapter 4 Per-Object Multi-Shot Decomposition

A3z = 0.05 with 5 interpolation steps between each of the batch halves. Due to the high
dynamic range, we found that specific care is required to ensure smooth training. The
input to the encoder is transformed from HDR to LDR by log(1 + x) and the output from
LDR to HDR with exp(x — 1). We further calculate the loss on a logarithmic scale using
the MALE loss: [log(1+x*) —log(1+X£)]|.

Our networks are all based on CNNs, whereas the encoder and discriminator leverage
CoordConvs [103]. The encoder and discriminator do not use padding, whereas the
decoder uses the “same” padding. The overall architecture is shown in Tab. C.1 in the
appendix Sec. C. We run 4 million steps with a batch size of 24 to train on a single
NVIDIA 1080 TI GPU, which takes five days to train. The Adam optimizer with a
learning rate of 5e—4 is used for the training.

Neural-PIL. We train the Neural-PIL using the same environment maps dataset for
training the Light-SMAE. Here, the encoder of the Light-SMAE is used for defining
the smooth latent space. The network is comprised of MLPs with the FiLM-SIREN
conditioning [36]. The first portion of the network is comprised of three layers with 128
features. The B and y conditioning parameters are generators from a mapping network
with an MLP of two layers with 128 ELU activated features. An additional dense output
layer produces 768 features, corresponding to 128 8 and 128 y features per layer. The
penultimate layer is then conditioned on the roughness b,, which is parametrized by
a mapping network with the first ELU activated layer outputting 32 features and the
second 256 for the B and y mapping parameters of the respective layer. Finally, a final
MLP in the main network generates the final output color with three features output and
exp(x — 1) as the activation to generate HDR values.

For training, we first try to encode the full environment map with a roughness of 0. In
addition, we perform reconstruction with 8192 random directions and roughness levels.
Both perform both of these simultaneously with a batch size of 8. We perform 4 million
steps to train on a single NVIDIA 1080 TI GPU, which takes 4.5 days. We use the Adam
optimizer with a learning rate of 5e—4.

Decomposition. The coarse and fine networks consist of 8 MLP layers with 256 ReLU
activated features. We randomly sample 4096 ray directions per image for training. The
ray directions are also jittered as described in our previous work NeRD Sec. 4.2.2.2. We
sample the ray in disparity rather than linear in depth for real-world data. This places
more samples close to the camera. We train 400,000 steps on 4 NVIDIA 2080 TI GPU,
which takes about 22 hours. We use an Adam optimizer with a learning rate of 4e—4.
The pre-trained BRDF-SMAE’s decoder and the Neural-PIL remain with frozen weights
during the training. For stability, we only optimize the illumination embedding 7’ via the
decomposition network, and we do not backpropagate the loss signal onto illumination
in the coarse network.

We employ additional exponentially decaying losses over 10,000 steps. We use the
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background segmentation loss, similar to NeRD (Sec. 4.2.2.7), which ensures rays that
do not hit the object do not contribute and additionally add a BRDF priming loss. This
loss initially sets the diffuse color to the actual image color and the roughness to 0.3 us-
ing a MSE. The background segmentation loss fades in over the duration, and the BRDF
priming loss fades out. Our main reconstruction loss is an MSE between the rendered
color ¢ and the corresponding pixel in the input image. This loss is then exponentially
faded over 100,000 steps to a cosine weighted MSE: (x* @, -n—X @, - n)z. This weight-
ing tends to achieve better BRDF fitting results [54] as harsh grazing highlights from the
Fresnel effect is not factored as much as regular samples, as well as our approximated
rendering model is the least accurate in the grazing angles. The reason for this fading
loss scheme is that the normals n are unreliable in the early stages of the training.

4.3.4 Results

We evaluate our approach w.r.t. different baselines on the aspects of BRDF and light
estimation, view synthesis, and relighting.

4.3.4.1 Baselines

The closest work to ours is our previous method NeRD (Sec. 4.2), which forms our pri-
mary comparison across different evaluations. To our knowledge, no other published
work tackles the same problem of estimating shape, illumination, and BRDF from im-
ages of varying illumination. For view synthesis, we also compare with NeRF [117]. For
BRDF evaluations, we also compare with Li et al. [98] which does BRDF decomposition
from a single image. In addition, we combine Li ef al. [98] with NeRF [117] to create a
baseline that is closer to our problem setting.
For the evaluation, we leverage the same datasets described in Sec. 4.2.3.1.

Roughness MC  SGs Neural-PIL (Ours)

0.2 34.88 31.57 35.76
0.5 35.14 28.98 35.28

Table 4.5: Better illumination estimates with Neural-PIL. Average PSNR with 6 ren-
dered spheres shows that Neural-PIL achieves better PSNR over the SG and Monte-Carlo
integration (MC) baselines. More accurate illuminations enable improved BRDF decom-
position and relighting.

4.3.4.2 Fildelity of Neural-PIL

Since Neural-PIL forms the key component of our decomposition framework, we eval-
uate its learned light representation against a more commonly used SG representation.
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Figure 4.15: Neural-PIL vs. Spherical Gaussian (SG) vs. Monte-Carlo (MC) integra-
tion renderings. With known geometry and reflectance, we optimize using MC integra-
tion for the direct illumination, SGs as well as our latent illumination via Neural-PIL.
This figure shows final renderings with the optimized light parameters, while the recov-
ered illumination is shown in the insets. Despite Neural-PIL having fewer parameters, it
can recover more detailed environment maps and produce accurate renderings.
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Additionally, we add a baseline that directly optimizes an environment map using Monte-
Carlo (MC) integration. We render a simple metallic sphere using an unseen environ-
ment, as shown in Fig. 4.15, with two different roughness levels, 0.2 and 0.5. Assum-
ing known roughness and shape, we optimize for SG illumination using the SG-based
differentiable rendering used in NeRD. Similarly, we optimize the latent illumination
representation using our Neural-PIL-based renderer. For the MC baseline, we leverage
BRDF importance sampling, which describes how the rays would likely scatter based on
the surface roughness. Here, we cast 128 samples-per-pixel (spp) based on the BRDF
towards the environment map with a resolution of 128 x 256. Overall, 1000 optimiza-
tion steps are performed for each method. The resulting estimated MC, SG illumination
and Neural-PIL illuminations are shows in Fig. 4.15. Compared to the SG illumination
model with 24 lobes and 168 parameters, our recovered illumination vector z/ with only
128 dimensions captures more details, especially in the high-frequency areas. This leads
to a significantly reduced rendering error for both roughness values, even though the illu-
mination prediction is more ambiguous for rougher materials. While the MC integration
could easily recover detailed highlights, the remaining areas are not recovered well. Be-
sides the improved quality, Neural-PIL-based rendering is also much faster. Rendering
million samples with our Neural-PIL network takes just 1.86 ms compared to 210 ms
rendering with 24 SGs. Tab. 4.5 shows average PSNR on 6 rendered spheres with more
visual results similar to Fig. 4.15 in the supplements. Our method outperforms both
baselines in reconstruction quality.

Parameter w/o BRDF SMAE Ours

Diffuse 11.87 20.22
Specular 9.24 16.84
Roughness 16.51 24.82

Table 4.6: Ablation study. Average PSNR of BRDF estimation on 3 synthetic scens un-
der varying illumination demonstrates the positive influence of using the BRDF-SMAE
to constrain the BRDF parameter space.

4.3.4.3 Ablation study

To showcase the effectiveness of our novel additions, we perform an ablation of the
BRDF-SMAE. Tab. 4.6 shows the influence of the BRDF-SMAE on material estimation.
These are the PSNR values on the three synthetic scenes under varying illumination. It
is clear from the table that, especially in estimating the specular parameter, using BRDF-
SMAE improves the results drastically. As this parameter is also tied to the diffuse color,
degradation in performance is expected. Even though it is uncorrelated to diffuse and
specular, the roughness parameter is most likely improved due to improved color param-
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(a) BRDF and light estimation.

GT Re-Render View View + Relight GT NeRF NeRD Ours

(b) View synthesis and relighting. (c) View synthesis with NeRF, NeRD and
our approach.

Figure 4.16: Visual comparisons. In (a), our model produces more accurate BRDF and
illumination estimates, which results in more accurate rendering results. To evaluate
view synthesis and relighting, we show in (b) the influence of keeping the camera and
light fixed (col 2), then moving the camera (col 3), and then adjusting the lighting (col 4).
In (c), we show that even when using a single illumination (the problem setting used by
NeRF), our method produces shape estimates with fewer artifacts and more detail than
NeRF or NeRD.

eters. For the ablation of the Neural-PIL network, one can refer to NeRD as a baseline
that neither uses BRDF-SMAE nor Neural PIL. PSNR metrics in Tab. 4.7a shows that
our method can result in better decomposition compared to our previous method NeRD.

4.3.4.4 BRDF evaluations

Tab. 4.7a shows the BRDF estimation metrics for different techniques computed on the
scenes Globe, Car and Chair. Compared with NeRD, our approach resulted in better
diffuse and roughness parameters. Only the prediction of the specular parameter is worse
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Figure 4.17: Additional BRDF decomposition results. Comparison with NeRD and Li
et al. [98] on two synthetic scenes.

compared to NeRD. This may be due to NeRD’s basecolor-metallic parameterization,
which can reduce some ambiguity but also limits the space of expressible materials.
A visual comparison is shown in Fig. 4.16a demonstrating clear visual improvements
w.r.t. [98]. Further results are visible in Fig. 4.17. One can observe higher frequency
details in the environment map using our approach compared to NeRD, and the final
renderings also show that our result is closer to GT rendering (top-right). Refer to the
supplementary material for more visual results.

93



Chapter 4 Per-Object Multi-Shot Decomposition

4.3.4.5 View synthesis and relighting

On the datasets with fixed illumination (Cape, NeRF-Ship, NeRF-Chair, NeRF-Lego),
we can directly compare our renderings with existing novel view synthesis techniques
(both NeRF [117] and our previous work NeRD). Tab. 4.7b shows novel view evalu-
ation metrics on these datasets with fixed illumination. Results show that our results
are better than NeRD, showing the improved capture of view-dependent effects. NeRF
still outperforms NeRD and our method in the synthetic fixed illumination setting but is
outperformed in the real-world fixed illumination dataset. However, the fixed illumina-
tion might, in general, limit the decomposition capabilities, as shadows always appear at
the exact surface locations and, therefore, might not be correctly disentangled from the
BRDF.

On datasets with varying illumination across images (Gnome, MotherChild, Chair,
Car, Globe, Head), we need to do both view synthesis and relighting to generate novel
unseen test views. Tab. 4.7c displays the results on these datasets. NeRF [117] can not
do relighting and is included as a weak baseline. The results are significantly better than
NeRD and show that our method can more faithfully estimate the underlying parameters
resulting in better relighting under novel illumination conditions.

Fig. 4.16b shows a couple of results with view synthesis and relighting. The render-
ings demonstrate realistic view synthesis, including relighting. Fig. 4.16c shows a novel
view synthesis comparison with NeRF and NeRD on the Cape scene captured with fixed
illumination. A comparison for all datasets on an exemplary novel view is shown in
Fig. 4.18. Here, we highlight the detail recovered by our method. We further show the
relighting performance of our method in Fig. 4.19, which demonstrates that our method
can produce a convincing relight of the scenes. For the single illumination scene (Cape),
we show the effect of a rotating environment illumination. Despite NeRF being a strong
baseline, it could not recover the entire surface due to reflectiveness. On the other hand,
our view synthesis results are closer to the GT on unseen views than NeRF and NeRD.
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(a) BRDF decomposition

PSNR?1 [98] [98]+[117] [25] Ours
Diffuse 1.06 1.15 18.24

Specular — —
Roughness 17.18  17.28

16.84

15.00

(b) View synthesis

Synthetic Real-World
Method PSNR1 SSIMT PSNR7T SSIM 7
NeRF 23.34 0.85
NeRD 30.07 095 23.86 0.88

Ours  30.08 095 230500900

(c) View synthesis and relighting

Synthetic Real-World
Method PSNR1 SSIMT PSNR1 SSIM 7
NeRF 21.05 0.89 20.11 0.87

NeRD 27.96 0.95 25.81
Ours

Table 4.7: Comparisons with baselines. In (a), a comparison against methods for BRDF
decomposition under unknown illuminations, where we see that our model performs well
(consistent with our improved relighting performance). An evaluation of view-synthesis
(without relighting) under a single illumination is performed in (b), where our model
performs well despite this not being our primary task. In (c), input images are taken under
different illumination conditions, so joint relighting and view synthesis are required. Our
model outperforms both baselines by a significant margin: NeRF (which is not intended
to address this task) and NeRD (which targets this same problem statement).
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NeRD Ours GT

NeRF

Figure 4.18: Results from each scene. Comparison with NeRF, NeRD and Neural-PIL

for every scene.

96



4.3 Neural-PIL: Neural Pre-integrated Lighting for Reflectance Decomposition

Base Image Illumination 1 [llumination 2 [llumination 3

Car

Chair

Gnome

Mother-Child

Cape (Rotate)

Figure 4.19: Additional relighting results. Relighting of various scenes under the
source illumination is shown in the insets. For the last row, the illumination is rotated.
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Chapter 4 Per-Object Multi-Shot Decomposition

4.4 SAMURALI: Shape And Material from
Unconstrained Arbitrary Image collections

This section is based on the publications:

SAMURALI: Shape And Material from Unconstrained Arbitrary Image collections
Mark Boss, Andreas Engelhardt, Abhishek Kar, Yuanzhen Li, Deqing Sun,
Jonathan T. Barron, Hendrik P. A. Lensch, Varun Jampani
Advances in Neural Information Processing Systems (NeurIPS) - 2022

In the previous sections, we leverage COLMAP [145, 146] to reconstruct the camera
poses from image collections. However, in highly challenging datasets, COLMAP can
fail. COLMAP leverages correspondences to match the different images and drive the
reconstruction. If an object is captured in different locations and with highly varying il-
luminations, finding correspondences that can match is near impossible. Most traditional
camera reconstruction methods will fail in these conditions. We propose SAMURALI to
enable a reconstruction from these challenging image collections. We achieve this by
creating a Camera Multiplex. Here, we optimize several camera assumptions for each
image simultaneously.

In our previous works, we also used the assumption of NeRF [117] (Sec. 2.4.3) that all
images are captured at a similar distance to the object. We enable a non-equidistant cam-
era by introducing a volume-bound definition alongside a flexible camera parametriza-
tion. With these novel additions, we can reconstruct 3D relightable assets from arbitrary
online image collections.

Camera Poses Shape + BRDF AR Game Insertion

AT |
)z// .

B
|— = L

Per-Image Illumination

__" _
i Pl 3

In-the-wild Images Optimization Targets Applications

Material Editing

Figure 4.20: Sample SAMURALI outputs and applications. Sample input collection
and the outputs on a challenging real-world unconstrained image collection. We extract
meshes with material properties from the learned volumes enabling several applications
in AR/VR, material editing etc.
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4.4 SAMURALI: Shape And Material from Unconstrained Arbitrary Image collections

Capturing high-quality 3D shapes and materials of real-world objects is essential for
many graphics applications in AR, VR, games, movies, etc. Using active multi-view
object capture setups can provide high-quality 3D assets [22, 122] but cannot scale to a
large-scale set of objects present in the world. By contrast, image collections provided
by image search results or product review images exist for nearly every object. In this
work, we propose a category-agnostic technique to estimate the 3D shape and material
properties of objects from such Internet image collections. Estimating 3D shapes and
materials from Internet object image collections poses several challenges as the images
are highly unconstrained with varying backgrounds, illuminations, and camera intrinsics.
Fig. 4.20 (left) shows a sample image collection of an object which forms the input to
our technique.

Concretely, we estimate the 3D shape and BRDF material properties [41] while esti-
mating per-image illumination, camera poses, and intrinsics. Our previous works NeRD
(Sec. 4.2) and Neural-PIL (Sec. 4.3), alongside several contemporary works on shape
and material estimation [22, 150, 194] assume constant camera intrinsics, near-perfect
segmentation masks as well as almost-correct camera poses given by COLMAP. How-
ever, manually annotating object masks in the input images is tedious. We observe that
COLMAP can often fail on highly-challenging image collections, as COLMAP lever-
ages correspondences to match the different images and drive the reconstruction. If an
object is captured in different locations and with highly varying illuminations, finding
correspondences that match is near impossible. Most traditional camera reconstruc-
tion methods will also fail in these conditions. Instead of COLMAP, we use a rough
quadrant-based pose initialization, e.g. (Front, Above, Right), (Front, Below, Left), etc.,
as in NeRS [193], which usually takes only a few minutes of annotation time per image
collection.

We base our technique on our previous Neural-PIL method of Sec. 4.3 that proposes
to learn illumination priors along with a novel pre-integration illumination network for
estimating a neural volume with 3D shape, BRDEF, and per-image illumination. Neural-
PIL assumes perfect camera poses and the same camera intrinsics across images. Given
that traditional camera pose estimations like COLMAP may fail on in-the-wild images,
we propose SAMURALI to jointly optimize camera poses and intrinsics with a carefully
designed optimization protocol (Fig. 4.20). Furthermore, Neural-PIL requires perfect
object masks, whereas we leverage automatically estimated object masks and deal with
noisy masks using a posterior scaling loss.

Some key distinguishing features of SAMURALI include:

» Flexible camera parametrization for varying distances. Standard techniques such
as NeRF [117] assume fixed near/far clipping planes with equidistant cameras to
the object. In contrast, we define the neural volume in global coordinates and
propose to learn clipping planes per image.

* Camera multiplex optimization. Optimizing a single camera per image is prone
to getting stuck in local minima. We propose using a multiplex camera where we
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Chapter 4 Per-Object Multi-Shot Decomposition

optimize several cameras poses per image and then phase out the incorrect poses
throughout the optimization. Although camera multiplexes are previously used
in mesh optimization [60], optimizing camera multiplex with neural volumes is
challenging due to inefficient ray-based neural volume rendering.

* Posterior scaling of input images. As input images have different noise charac-
teristics (e.g., noisy masks), some images would be more beneficial for the opti-
mization. We propose to use posterior scaling of input images which weighs the
influence of different images on the optimization.

* Mesh extraction. We extract explicit meshes with BRDF texture from the learned
neural volume making the resulting 3D models readily usable in existing graphics
engines.

We observe that existing datasets such as the one gathered for NeRD (Sec. 4.2.3.1) do
not capture the variations present in in-the-wild image collections. For instance, NeRD-
dataset images have non-varying background making it easier for COLMAP to work. In
addition, the illumination variations are more drastic in internet images captured by dif-
ferent people/cameras and at different times. To evaluate the practical in-the-wild setting,
we collected image collections with eight objects in which each image is captured under
unique background and illumination conditions. In addition, we also vary the cameras
used for capturing the images. Experiments on our new and existing datasets demon-
strate better view synthesis and relighting results with SAMURAI compared to existing
works. In addition, explicit mesh extraction allows for seamless use of learned 3D assets
in graphics applications such as object insertion in AR or games and material editing efc.
Fig. 4.20 (right) shows some sample application results with 3D assets estimated using
SAMURAL

4.4.1 Problem setup

The input is a collection of g object images C; € R%>*3;j € {1,...,q} captured with
different backgrounds, cameras and illuminations; and can also have varying resolu-
tions. We denote the value of a specific pixel as C°. In addition, we roughly annotate
camera pose quadrants with three simple binary questions: Left vs. Right, Above vs.
Below, and Front vs. Back. We automatically estimate foreground segmentation masks
M; € {0, 139! using U2-Net [132], which can be imperfect. Given these, we jointly
optimize a 3D neural volume with shape and BRDF material information along with
per-image illumination, camera poses, and intrinsics. This practical capture setup al-
lows the conversion of most 2D image collections into a 3D representation with little
manual work. The rough pose quadrant annotation takes about a few (3-5) minutes for
a typical collection with 80 images. At each point x € R? in the 3D neural volume V),
we estimate the BRDF parameters for the Cook-Torrance model [41] b € R (basec-
olor b, € R3, metallic b,, € R!, roughness b, € R), unit-length surface normal n € R3
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4.4 SAMURALI: Shape And Material from Unconstrained Arbitrary Image collections

and volume density 6 € R. We also estimate the latent per-image illumination vectors
Zi- c R!?8;j € {1,...,¢} used in our previous work Neural-PIL of Sec. 4.3. We also
estimate per-image camera poses and intrinsics, which we represent using a ‘look-at’
parameterization that we explain later.

. Optimizable

* Prameters Illumination

Zj

Annealed Reflectance

Intrinsics fj Fourier Field g
S =
Extrinsics @H 2 E E BR;IDFS Cgior
Tj,lUjtj =
‘/ Densities

. o,
Direction Positions x;

d

Figure 4.21: Overview. We jointly optimize the intrinsic ( fj) and extrinsic camera
(rj,uj,t;) parameters alongside the shape (o) and BRDF (b) in a Reflectance Field and
per-image illumination (z;). The shape is encoded in the density ¢ and used to integrate
all BRDFs along a ray in the direction d. The composed BRDF is then rendered using
our previous work Neural-PIL (Sec. 4.3) in a deferred rendering style.

4.4.2 Network Architecture

The main limitations of Neural-PIL include the assumption of near-perfect camera poses
and the availability of perfect object segmentation masks. We observe that COLMAP
either produces incorrect poses or completely fails due to an insufficient number of cor-
respondences across images when the backgrounds and illuminations are highly varying
across the image collection. In addition, camera intrinsics could vary across image col-
lections, and the automatically estimated object masks could also be noisy. We propose
a technique (we refer to as ‘SAMURALI’) for joint optimization of 3D shape, BRDF,
per-image camera parameters, and illuminations for a given in-the-wild image collec-
tion. This is a highly under-constrained and challenging optimization problem when
only image collections and rough camera pose quadrants are given as input. We address
this highly challenging problem with carefully designed camera parameterization and
optimization schemes.

In this work, we follow the image formation as described in Sec. 4.3.2 for the render-
ing.

4.4.2.1 Architecture overview

A high-level overview of SAMURALI architecture is shown in Fig. 4.21, which mostly
follows the architecture of our previous sections: NeRD (Sec. 4.2) and Neural-PIL
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Volume

Bound v Camera Multiplex

Figure 4.22: Ray parametrization and Camera
Multiplex. (Left) A world space sphere defines our
ray bounds. The distance from the origin to the near
and far points of the sphere defines the sampling
range. Our cameras can be placed at arbitrary dis-
tances by defining a globally consistent sampling
range. (Right) When optimizing multiple camera
hypotheses, only the best camera should optimize
the shape and appearance, here visualized in a deep
green. Cameras that are not aligned well are vi-
sualized in off-white and cannot influence the re-
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Figure 4.23: Optimization
scheme. Our method performs
a smooth flow of optimization
parameters using three A variables
for loss scaling.  Additionally,
we perform a Fourier frequency
annealing in the first phase of the
training and delay the training of
the focal length for later stages.
The A, parameter mainly regulates
the BRDF estimation.

flectance field. When the non-aligned camera poses
improve during the training, they may become ap-
plicable for the network optimization.

(Sec. 4.3. However, we do not use a coarse network for efficiency reasons and only use
the fine or decomposition network with an MLP with eight layers of 128 features. Overall
we sample 128 points along the ray in fixed steps. A layer with one feature output follows
the base network for the density, and an MLP with a hidden layer for the view and appear-
ance conditioned radiance. We also leverage a BRDF decoder similar to the one of NeRD
in Sec. 4.2.2.2, which first compresses the feature output of the main network to 16 fea-
tures and expands them again to the BRDF (base color, metallic, roughness). We encour-
age sparsity in the embedding space using: Lpec sparsity = ! /NZ?’ |le;|, an L£1-Loss on the
BRDF embedding e and a smoothness 10ss Lpec Smooth = 1/NZ§V |f(0;e;) — f(0;e;+€)|,
where N denotes the number of random rays, f(0) the BRDF decoder with the weights
0 and € is normal distributed Gaussian noise with a standard deviation of 0.01. Similar
to NeRD, we also predict a regular direction-dependent radiance ¢ in the early stages of
the training. This is mainly used for stabilization in the early stages. As this direct color
prediction is only used in the early stages, we omitted it for clarity in Fig. 4.21. Inspired
by Tancik et al. [155] we add a Gaussian distributed noise to the Fourier embedding. The
Fourier Encoding y : R? — R37% used in NeRF [117] encodes a 3D coordinate x into L
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4.4 SAMURALI: Shape And Material from Unconstrained Arbitrary Image collections

frequency basis:

y(x) = (xT1,....,T-1) 4.7)
where each frequency is encoded as:
Ti(x) = [sin(zkx),cos(zkx)] 4.8)

BAREF [100] and Nerfies [128] introduced an annealing of the Fourier Frequencies
using a weighting:

T (x; @) = wi () [sin(zkx),cos(zkx)] 4.9)
wila) = l—cos(nclan;p(oc—k,o,l)) 4.10)

where o € [0,L]. This can be seen as a truncated Hann window. One downside of
this form of encoding is that all frequencies are axis-aligned. In Tancik et al. [155] the
benefits of adding random frequencies are demonstrated. However, combining this with
the sliding cosine window is not easily possible. Therefore, we propose to add random
Gaussian offsets R € R*3 to the frequencies. The offsets R are sampled from N(0,0.1).
This can be thought of randomly rotating each frequency band:

Li(x; ) = wi (@) [sin(2%x +25Ry), cos(2Fx + 25Ry) (4.11)

4.4.2.2 Rough camera pose quadrant initialization

We observe that camera pose optimization is a highly non-convex problem and tends
to get stuck in local minima quickly. To combat this, we propose to annotate camera
pose quadrants with three simple binary questions: Left vs. Right, Above vs. Below,
and Front vs. Back. This only takes about 4-5 minutes for a typical collection with 80
images. Note that our pose quadrant initialization is much noisier than adding some
noise around GT camera poses as in some related works such as NeRF-- [176]. This
rough pose initialization is in line with recent works such as NeRS [193] that also use
rough manual pose initialization.

4.4.2.3 Flexible object-centric camera parameterization for varying camera
distances

We define the trainable per-image camera parameters using a ‘look-at’ parameterization
with a 3D look-at vector r; € R; j € {1,...,q}, a scalar up rotation u; € R[—7, 7] and
a 3D camera position t; € R? as well as a focal length fj € R. Furthermore, these are
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stored as offsets to the initial parameters, enabling easier regularization. We addition-
ally store the offset vertical focal lengths f; in a compressed manner similar to NeRF--:
f = m [176], where & is the image height in pixels. The cameras are initialized based
on the given pose quadrants and an initial field of view of 53.13 degrees. We optimize
a perspective pinhole camera with a fixed principal point but per-image focal lengths.
The cameras are not always equidistant to the object for the in-the-wild image collec-
tions. To account for variable camera-object distances, we do not set fixed near and far
bounds for each ray which is a standard practice in neural volumetric optimizations such
as NeRF [117]. Instead, we define a sampling range based on the camera distance to
origin, e.g. the near bound is |o| — v and the far bound is |o| 4+ v, where v is defined as
our sampling radius with a diameter of 1. We illustrate this sphere with near and far
bounds in Fig. 4.22. This explicit computation of near and far bounds for each ray en-
ables placing the cameras at arbitrary distances from the object. This is not possible with
the existing neural volume optimization techniques that use fixed near and far bounds for
each camera ray. The cameras are then placed based on the quadrants and at a distance
to make the entire neural volume v visible. This look-at parameterization is more flexi-
ble for optimizing object-centric neural volumes than more commonly used 3D rotation
matrices.

4.4.2.4 Camera multiplexes

We observe that camera pose optimization gets stuck in local minima even with rough
quadrant pose initialization. To combat this, inspired by the mesh optimization works
of Goel et al. [60], we propose to optimize a camera multiplex with four randomly jit-
tered poses around the quadrant center direction for each image. Optimizing multiple
cameras per image would reduce the number of rays we can cast in a single optimiza-
tion step due to memory and computational limitations. This makes camera multiplex
optimization noisy and challenging in learning neural volumes. We propose techniques
to make camera multiplex learning more robust by dynamically re-weighing the loss
functions associated with different cameras in a multiplex during the optimization. This
process is visualized in Fig. 4.22. Specifically, we compute the mask reconstruction loss
EMaskj' € R associated with each camera i and image j. We then re-weigh each camera

loss in a multiplex with §; = so ftmax(—lSEMaSk;), where S; € R* and A, is a scalar
that is gradually increased during the optimization. That is, we re-weigh the loss with
LNetwork =X S;ENetworkj-. This dynamic re-weighing reduces the influence of bad cam-
era poses while learning the shape and materials. As we stochastically sample points for
each batch, a potential bad camera can have favorable samples and outperform a better
camera. We alleviate this issue by storing the weights for each of our optimization im-
ages in a memory bank W € R/*4, These can then be updated during the optimization
and reduce the impact of the sample distributions. Furthermore, we store a memory bank
of velocities V € R/*% to speed up the selection of the best camera pose. The weight
matrix is then updated with the new camera multiplex weights S; using:
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W = max(W;+mV’ +g,0) (4.12)
Vi—m«V+g (4.13)
g:s(Sj—Wj) (4.14)

Where the new weights Wj and velocities Vj replace the old ones, the parameters m
represent the momentum and s the learning rate. The values for these are 0.75 and 0.3,
respectively.

4.4.2.5 Posterior scaling of input images

Some images are blurrier than others (e.g., due to camera shake) or noisy object masks
M;. To be robust against such noisy data, we propose to re-weigh images in the given
collection. We keep a circular buffer of around 1000 elements with the recent mask
losses and rendered image losses with multiplex scaling applied. We use this buffer to
calculate the mean 1; and standard deviation o; of these losses. Given the recent loss
statistics we also create a loss scalar using:

(4.15)

(9]

My — (LMask j + Limage ;)
Sp; = max (tanh ( = M) 4+ 1, 1)

In a similar way to the camera poserior scaling, we employ it on a per-image basis
using: LNetwork Jj=5pj LNetwork Jj*

4.4.2.6 Mesh extraction

Similar to NeRD, we perform a mesh extraction from the learned reflectance neural vol-
ume. The process for NeRD is described in Sec. 4.2.2.6, but we alter the extraction
method. In NeRD, the object is placed depending on the poses. COLMAP can place the
actual objects at arbitrary positions in the volume. In SAMURALI, we have an explicitly
defined volume bound.

In the first step, we perform a marching cubes extraction step similar to the one pro-
posed in NeRF [117]. However, as the naive marching cube algorithm can have block ar-
tifacts, we sample 2 million points on the mesh surface and cast rays towards the surface.
The resulting point cloud is converted to a refined mesh using Poisson reconstruction.
This refined mesh provides more details and smoother surfaces. We then UV unwrap
the resulting mesh in Blender’s [40] automatic UV unwrapping tool and bake the world
space positions into the texture map. We can then query all surface locations in our fine
network and compute the BRDF texture maps. We then save the textured mesh in the
GLB format for easy deployment. The extraction of a mesh takes around 3-5 minutes.
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4.4.2.7 Losses and Optimization

Our loss formulation consists of several for the direct image and segmentation mask re-
construction, regularization, and BRDF regularization and initialization losses. Further-
more, we introduce a smooth optimization schedule to transition to different optimization
targets throughout the training.

Image reconstruction loss. The image reconstruction loss is a Chabonnier loss:

‘CImage(Eyé) = \/(5—6)24‘0.0012 (4.16)

between the input color from C for pixel s and the corresponding predicted color of
the networks ¢. We additionally calculate the loss with the rendered color ¢.

Mask losses. Mask losses consist of two terms. One is the binary cross-entropy loss
Lpcg between the volume-rendered mask and estimated foreground object mask. The
second one is the background loss Lackground from NeRD Sec. 4.2.2.7, which forces all
samples for rays cast towards the background to be 0. We combine these losses as the
mask 10ss: Lyask = LBCE + EBackground-

Regularization losses. We compute the gradient of the density to estimate the surface
normals. We use the normal direction loss L,4;; from Verbin et al. [168] to constrain
the normals to face the camera until the ray reaches the surface. This helps in providing
sharper surfaces without cloud-like artifacts.

BRDF losses. The joint estimation of BRDF and illumination is quite challenging. For
example, the illumination can fall into a local minimum. The object is then tinted in
a bluish color, and the illumination is an orange color to express a more neutral color
tone. As our image collections have multiple illuminations, we can force the base color
b, to replicate the pixel color from the images. This way, a mean color over the dataset
is learned and prevents falling into the local minima. We leverage the MSE for this:
Linit = Lmse(C%,b.). Additionally, we find that a smoothness 10ss Lgmoom for the nor-
mal, roughness and metallic parameters similar to the one used in UNISURF [126] fur-
ther regularizes the solution.

Overall network and camera losses. The final loss to optimize the decomposition
network is then defined as:
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ENetwork = A‘bﬁlmage (Cs’ E) + ( 1— A«b)ﬁlmage (CS7 &) +
['Mask + AaEInit + )lfndirﬁndir + ASmoothESmooth'i‘
;LDec SmoothﬁDec Smooth T lDec SparsityﬁDec Sparsity 4.17)

Here, the optimization scheduling variables are A;, and A,. Furthermore, the camera
posterior scaling is applied to these losses. For the camera optimization, we leverage
the same losses described in Lynetwork- HOWwever, as the camera should constantly be
optimized, we do not apply posterior scaling to the losses when optimizing cameras.
This enables cameras that are not aligned well to be optimized and allows each camera
to leave the local minima. Here, we only calculate the mean loss. Therefore, poorly
initialized camera poses can still recover over the training duration. Additionally, we
define an £ loss on the look-at vector r; to constrain the camera pose to look at the
object. The loss is defined as Ljookat- We also use a volume padding loss, which prevents
cameras from going too far into our volume bound v: Lgoyndgs = max((v — ’t j | )2,0).

4.4.2.8 Optimization scheduling

Fig. 4.23 shows the optimization schedule of different loss weights. We use three fading
A variables to transition the optimization schedule smoothly. The A, is mainly used to
increase image resolution and reduce the number of active multiplex cameras. The direct
color ¢ optimization is faded to the BRDF optimization using A;, and some losses are
scaled by A, as defined earlier. Furthermore, we perform the BARF [100] frequency
annealing in the early stages of the training and delay the focal length optimization to the
later stages.

The input images for our network are used without cropping. We sample the fore-
ground area thrice as often as the background regions to circumvent the potential large
background areas. As the resolution varies drastically and can be large, we further resize
the images so that the largest dimension is 400 pixels.

We use two different optimizers. ADAM [82] optimizes the networks with a learning
rate of le—4 and exponentially decayed by an order of magnitude every 300k steps.
The camera optimization is performed with a learning rate of 3e—3 and exponentially
decayed by an order of magnitude every 70k steps.

The detailed configuration of our network is shown in Fig. 4.24. We use 10 Random
Offset Annealed Fourier Frequencies for the positional encoding. These are annealed
over 50000 steps using Eq. (4.10). The directions are encoded using 4 non-annealed and
non-offset Fourier frequencies. The losses in Eq. (4.17) are weighted with the following
scalars besides the optimization schedule scalars A, A,:

)vndir A‘Smooth )vDec Sparsity )“Dec Smooth
0.005 0.01 0.01 0.1
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Figure 4.24: Architecture. The detailed architecture of our network. Note that the
conditional network and the direct color is only used in the early stages of the training for
stabilization. It does not contribute to the final decomposition result. Our main outputs
include the Density o, the normal n and the BRDF (b., b,,, b,), which are used for
rendering our actual output color ¢ with Neural-PIL of Sec. 4.3.3.6.

The coarse to fine optimization is further governed by A.. This parameter mainly
interpolates between the available resolution of the largest dimension from 100 to 400
pixels and the number of cameras from 4 to 1. The softmax scalar A; is also driven by A,
and fades from a scalar of 1 to 10.

Furthermore, we apply gradient scaling to the gradients for the network by the norm
of 0.1. The camera gradients are neither clipped nor scaled.

4.4.3 Results

We evaluate our approach w.r.t. different baselines on the aspects of BRDF, view synthe-
sis, relighting, and camera pose estimation.

4.4.3.1 Datasets

For evaluations, we created new datasets of 8 objects (each with 80 images) captured
under unique illuminations and locations and a few different cameras. We refer to
this dataset as the SAMURALI dataset. We tried to replicate the online collection set-
ting as much as possible by using different cameras (Pixel 4a, iPhone 7 Plus, Sony al-
pha 6000), capturing the objects in different unique environments, and replicating the
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Figure 4.25: Dataset overview. Notice the complex illumination conditions and the
drastically varying locations. Also, the distances vary quite severely.

hand-held capture setup with varying distances. Even with an extensive manual tun-
ing of parameters, we cannot estimate the camera poses in traditional methods such as
COLMAP [145, 146]. Fig. 4.25 shows an overview of the images in two image collec-
tions. Common methods such as COLMAP fail to estimate correspondences and cam-
era poses for this dataset. Therefore, we cannot run methods that require poses on this
dataset. Additionally, we evaluate 2 CC-licensed image collections from online sources
of the statue of liberty and a chair. We also use the three synthetic and two real-world
datasets of NeRD under varying illumination, where poses are available. Lastly, to show-
case the performance with other methods, we use the two real-world datasets from NeRD
(Sec. 4.2.3.1), which are taken under fixed illumination. In total, we evaluate SAMURAI
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on 17 scenes. A list of our datasets used in the evaluation is shown in Table 4.8.

Scene Multi-Illumination Known Poses Notes

Gold Cape X v From Sec. 4.2.3.1

Head X Ve From Sec. 4.2.3.1

Syn. CarWreck v 4 Synthetic from Sec. 4.2.3.1
Syn. Globe v 4 Synthetic from Sec. 4.2.3.1
Syn. Chair v v Synthetic from Sec. 4.2.3.1
Mother Child Ve v From Sec. 4.2.3.1

Gnome v v From Sec. 4.2.3.1

Statue of Liberty v X Online collection

Chair Ve X Online collection

Duck v X Self-collected

Fire Engine 4 X Self-collected

Garbage Truck v X Self-collected

Keywest v X Self-collected

Pumpkin v X Self-collected

RC Car v X Self-collected

Robot Ve X Self-collected

Shoe Ve X Self-collected

Table 4.8: List of datasets. List of all datasets and the classification into multi-
illumination and known poses.

4.4.3.2 Baselines

Currently, no prior art can tackle varying illumination input images while jointly esti-
mating camera poses. So, we compare with a modified BARF [100] technique, which
can store per-image appearances in a latent vector. We call this baseline BARF-A. Ad-
ditionally, on scenes with fixed illumination, we can compare with GNeRF [115], the
regular BARF, and a modified version of NeRS [193] (details below). On the datasets
where poses are easily recovered or given, we can also compare with NeRD (Sec. 4.2)
and Neural-PIL (Sec. 4.3), which require known, near-perfect camera poses. We supply
BARF, BARF-A, and NeRS with the same pose initialization used in SAMURAL

NeRS modifications. The default implementation of NeRS [193] does not implement
mini-batching. This means all images are optimized simultaneously in a resolution of
256 x 256. This works well for a few images, but the GPU memory runs out with larger
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image collections. We have created a modified version that implements mini-batching
for a fair comparison. Still, NeRS is only capable of working on single illumination
datasets.

4.4.3.3 Evaluation

We perform novel view synthesis using learned volumes and use standard PSNR and
SSIM metrics w.r.t. ground-truth views. We held out every 16th image for testing. We
optimize the cameras and illuminations on the test images for evaluation purposes but do
not allow the test images to affect the main decomposition network or camera training.

We evaluate the quality of the reconstructed camera poses against a reference obtained
from COLMAP [145, 146]. References are only available for the scenes of the NeRD
dataset. First, we align the camera locations using Procrustes analysis [62] as in [100].
The rotation error is reported as a mean deviation in degrees, while the translation error
is computed as the mean difference in scene units of the reference scene. In contrast to
the evaluation of the view synthesis and rendering performance, we here use all cameras
from the training data for comparison like it has been done in concurrent works [100,
115].

. w/o
w/o Regu- w/o Random w/o Coarse w/o Posterior
GT L . . . Camera Full
larization Fourier Offsets 2 Fine Scaling .
Multiplex

o ¢ ¢ 9 ¢ @

Figure 4.26: Visual ablation. Each of our novel additions improves the reconstruction.
In this particular scene, the regularization is critical for the decomposition. The coarse
to fine optimization, posterior scaling, and camera multiplex ablations mainly have a
reduced sharpness in the sticker on the top. Without the random Fourier offset, striping
patterns are apparent in some areas, which are alleviated with our full model.

4.4.3.4 Ablation Study

We perform an ablation study where we ablate different aspects of the SAMURAI model
to analyze their importance. Table 4.9 shows the novel view synthesis average met-
rics on the Garbage Truck collection from the SAMURALI dataset and the synthetic car
dataset from Sec. 4.2.3.1. Metrics show that the regularization and the coarse to fine op-
timization are the most significant contributing factors to the final reconstruction quality.
The multiplex cameras and the posterior scaling also improve the reconstruction qual-
ity, stabilizing the training and preventing cameras from getting stuck in local minima.
In Fig. 4.26 the result of our ablation study is shown. The benefit of our regularization
is easily apparent in this scene. Furthermore, our coarse-to-fine, posterior scaling, and
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Method PSNRT SSIM7
w/o Camera Multiplex 23.01 0.87
w/o Posterior Scaling 23.51 0.88
w/o Coarse 2 Fine 22.73 0.83
w/o Random Fourier Offsets =~ 24.01 0.91
w/o Regularization 21.77 0.86

Ful 2431 092

Table 4.9: Ablation study. view synthesis and relighting results on two scenes (Garbage
Truck and NeRD car) show that ablating any of the proposed aspects of SAMURALI can
results in worse results demonstrating their importance. This can be seen in Fig. 4.26.

camera multiplex help recover slightly sharper details but significantly help stabilize the
optimization. The random Fourier offsets also alleviate some slight striping artifacts.

Poses Not Known (10) Poses Available (5)

Method PSNR?T SSIM?T PSNRT SSIM?T Translation| Rotation °|
BARF-A 16.9 0.79 19.7 0.73 23.38 2.99
SAMURAI  [2SHGRN000 2SN oSO NS e oS
NeRD [25] — — 26.88 0.95 — —
Neural-PIL [28] — — 27.73 0.96 — —

Table 4.10: Novel view synthesis on varying illumination datasets. We split our
datasets into those where we have poses, and highly challenging ones where the poses
were not recoverable with classical methods. SAMURALI achieves considerably better
performance compared to BARF-A. For reference, we also show the metrics from our
previous works (NeRD and Neural-PIL), which require GT poses and do not work on
images with unknown poses.

4.4.3.5 Results on varying illumination datasets

We divide the varying illumination datasets into those without GT poses, and those
with accurate camera poses (either via GT or COLMAP). However, we do not grant
our method access to the COLMAP, or GT poses. Since these datasets have varying
illumination, we need to perform both view synthesis and relight the objects to obtain
target views. Table 4.10 shows the metrics computed w.r.t. test views. Results show
that we considerably outperform BARF-A in both PSNR and SSIM metrics while at
the same time solving a more challenging BRDF decomposition task. Visual results
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BARF-A

Figure 4.27: Comparison with BARF-A. When comparing novel view synthesis and re-
lighting results of SAMURAI (top) with BARF-A (bottom), SAMURALI produces more
accurate camera poses and captures the object better. BARF-A is sometimes unable to
recover the shape and poses.

in Fig. 4.27 also clearly demonstrate better view synthesis and relighting results than
BARF-A. BARF-A fails to align the camera poses, whereas SAMURALI achieves more
accurate camera poses and drastically improved reconstruction quality. Only slightly
perturbed poses are leveraged as starting positions in the original BARF method. Our
coarse pose initialization is too noisy for the method to work accurately. SAMURAI
overcomes this issue with the camera multiplex and other optimization strategies.

Input Basecolor Metallic Roughness Normal Re-render

Figure 4.28: Comparison with the Neural-PIL decomposition. Notice SAMURAI’s

accurate pose alignment, plausible geometry, reduced floaters and accurate BRDF de-
composition, compared to Neural-PIL, even without relying on near perfect poses.

Ours

»

£

ey

Neural-PIL

Fig. 4.28 shows the visual comparison of BRDF decompositions on MotherChild
dataset from NeRD of Sec. 4.2 along with the corresponding results from Neural-PIL
of Sec. 4.3. Our method can generally decompose the scene even with unknown camera
poses. SAMURALI also produces fewer floating artifacts and creates a more coherent
surface. The roughness parameter is also more plausible in our result, as the object is
rough, whereas Neural-PIL estimated a near mirror-like surface.

Further results from the SAMURALI dataset are shown in Fig. 4.29. We show novel
views and relighting results w.r.t. the target test views. The visual comparisons clearly
show that SAMURALI can recover the pose and provide a consistent illumination w.r.t the
ground-truth target views. Even most fine details like the RC Car’s antenna are preserved
well. Only the legs of the chair object are not reproduced well. However, the legs are
also not detected well by our automatic segmentation with U2-Net.
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SAMURAI SAMURAI

Robot RC Car Pumpkin Keywest Garbage Truck Fire Engine Duck

Shoe

&

9

>

L

'l

Statue of Liberty

Chair

Figure 4.29: Novel view synthesis results. Renderings with camera poses and illumina-
tion from test views demonstrate plausible novel view synthesis and relighting on various
datasets.
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Method Pose Init PSNRT SSIM?T Translation| Rotation °|
BAREF [100] Directions  14.96 0.47 34.64 0.86
GNeRF [115] Random 20.3 0.61 81.22 2.39
NeRS [193] Directions  12.84 0.68 0.77
SAMURAI Directions 33.95
NeRD [25] GT 23.86 0.88 — —
Neural-PIL [28] GT 23.95 0.90 — —

Table 4.11: Novel view synthesis on single illumination datasets. For two scenes under
single illumination, the poses are easily recoverable. Furthermore, we can now compare
with GNeRF which does not require pose initialization. As seen our method achieves a
good performance. The view synthesis metrics with NeRD and Neural-PIL that use GT
known poses are also shown for reference.

4.4.3.6 Results on fixed illumination datasets

For image collections captured under fixed illumination, we can compare with more
techniques. We compare with GNeREF, the default BARF, and NeRS. We additionally can
compare with our previous work Neural-PIL and NeRD on the near-perfect camera poses
recovered from COLMAP. Results in Table 4.11 show that SAMURALI outperforms the
baselines BARF, GNeRF, and NeRS and is also close to Neural-PIL and NeRD that
uses GT camera poses. GNeRF does not require a rough pose initialization. Overall,
our method achieves a good pose recovery, where NeRS only slightly outperforms our
method in the translational error due to some outliers in our case. These outliers do not
degrade our reconstructions due to our image posterior loss.

Head 1

SAMURAI
BARF

SAMURAI
BARF

GNeRF
NeRS

GNeRF
NeRS

SAMURAI
BARF

GNeR!
NeRS

GNeRF
NeRS

SAMURAI
.. 8
BARF

Figure 4.30: Comparison with baselines. When comparing SAMURALI with the base-
lines (GNeRF, BARF, and NeRS), ours outperforms all methods in reconstruction quality
and pose estimation.
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Fig. 4.30 shows sample view synthesis results of SAMURAI, BARF, GNeRF, and
NeRS on single illumination datasets. Visuals indicate better results with SAMURAI
compared to GNeRF and BARF. NeRS seems to capture more apparent detail, but the
general decomposition quality is significantly better in our method, where the cape gold
material is represented more accurately. NeRS also introduces a misaligned face texture
in the Head scene, where two faces are visible. Furthermore, NeRS is not capable of
perfectly optimizing the poses. This is visible in Cape 1 and Head 1.

4.4.3.7 View direction Radiance Conditioning Entanglement in BARF

Based on the view direction, BARF conditions the output radiance similar to NeRF [117].
In Fig. 4.31 we show the effect of a fixed camera with varying directional conditioning
of the radiance. The texture starts to shift on the surface. BARF reduced the photometric
training error of unaligned poses by slightly shifting the texture for these views. This can
result in shifting textures in novel view synthesis. With the shifting textures, the shape
representation worsens, and the pose alignment quality is further limited.

We found that this is also true for our modified BARF-A baseline. The view direction
embedding is also shifting the texture on the surface, as seen in Fig. 4.31. However, in
BARF-A, the illumination is modeled as an appearance embedding. This results in an
even higher ambiguity in the representation of high-frequent surface details. The ambi-
guity is visible when we interpolate between two appearance embeddings in Fig. 4.32.
The texture is now also shifting based on the appearance embedding.

Our BRDF decomposition creates a view-independent texture representation, and our
illumination is global and does not influence the static texture information. With this
representation shifting the textures is impossible, and the texture can only remain static.
Especially in pose alignment, this is highly beneficial as each camera pose has to align
to a globally static model. This also explains our improvement in quality in novel view
synthesis in Table 4.10 and Table 4.11.

4.4.3.8 Applications

One of the contributions of this work is the extraction of explicit mesh with material
properties from the learned neural reflectance volume. The process is described in the
supplements. The resulting mesh can be realistically placed in an Augmented Reality
(AR) scene or a 3D game. In addition, one could edit the BRDF materials on the recov-
ered mesh. See Fig. 4.20 for sample results of these applications, where our recovered
3D assets blend well in a given 3D scene.

4.4.3.9 Limitations

SAMURALI achieves large strides in decomposing in-the-wild image collections com-
pared to the prior art. However, we still rely on rough pose initialization. GNeRF
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proposes a reconstruction technique without pose initialization, but it fails on the chal-
lenging in-the-wild datasets. Furthermore, SAMURAI produces slightly blurry textures.
This is especially noticeable in the cape scene in Fig. 4.30. Here, the cape has a re-
peating, high-frequent texture. Reconstruction of this high-frequency texture requires
near-perfect camera poses. Since this dataset is in a single location and illumination,
COLMAP-based pose estimation outperforms SAMURAI-based pose alignment. How-
ever, SAMURALI enables the reconstruction of highly challenging datasets of online im-
age collections where COLMAP completely fails. Our BRDF and illumination decom-
position are also incapable of modeling shadowing and inter-reflections. As we mainly
tackle object decomposition, the shadows and inter-reflections are not crucial. Remov-
ing the need for pose initialization and modeling shadows and inter-reflections form an
important future work.
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Direction 1 Direction 2 Direction 3

BARF

SAMURAI

BARF-A

SAMURAI

Figure 4.31: BARF directional conditioning entanglement. BARF’s radiance output
is conditioned based on the view direction. When we manipulate the view direction
while keeping the camera static, we can see that the embedding is still entangled with the
pose. Here, we provide magnifications on edges where this entanglement is noticeable.
In a good decomposition, only highlights should be moving, and the texture remains
static. However, by shifting the texture, BARF improves the photometric training error of
unaligned poses. We also show this for BARF-A, where the radiance is also conditioned
on a trainable appearance embedding. Due to different camera coordinate systems and
optimizations, we provide similar views from SAMURALI. Here, it is clear that the texture
remains static.
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[llumination O [Mlumintion 0.5 Tllumination 1

BARF-A

SAMURAI

Figure 4.32: BARF-A illumination conditioning entanglement. BARF-A’s radiance
output is also conditioned based on the appearance embedding. When we interpolate
between appearances while keeping the camera and view embedding static, we can see
that the embedding is also entangled with the pose. Here, we provide magnifications
on edges where this entanglement is noticeable. Only the model should be relit, and
the texture should remain static. However, by shifting the texture, BARF improves the
photometric training error of unaligned poses. The results from SAMURAI remain with
a static texture.

119



Chapter 4 Per-Object Multi-Shot Decomposition

4.5 Future Work

While significant strides towards automatic decompositions of online image collections
are achieved, several challenges remain for future work. Our methods still require a
large number of images. For several specific objects, only a few images exist. The
introduction of strong priors might be an interesting addition to enable few-shot object
decomposition. Furthermore, objects often have different colors, decals or prints, or
slight geometric changes, such as open doors for cars. Dealing with the variations is a
further highly relevant research direction.

Static objects capture many potential targets for our method, but many objects, even
humans and animals, can deform and are dynamic. Solving this task can enable many
applications such as AR-based telepresence, where the human avatars can be relit in a
way consistent with the environment.

Our methods currently also only consider global illuminations without inter-reflections
or shadowing. These challenging additions are also crucial for a successful and accurate
decomposition. This is essential when extending the proposed methods from objects to
rooms, buildings, or even cities.

While SAMURALI enables decomposition from coarse quadrant-based poses, an anno-
tation is still required. Removing these constraints is an interesting future work direction.

Lastly, our decomposition requires a significant amount of training time. Recent meth-
ods such as Instant-NGP [120] or TensoRF [37] achieve training times of radiance fields
in minutes or seconds. A combination of SAMURALI with these approaches would en-
able a decomposition in a time shorter than the pose estimation of COLMAP.
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Conclusion

Inverse rendering is a challenging but essential task and, combined with a flexible capture
setup, can enable automated 3D reconstructions from online image collections. In this
thesis, significant strides in solving this highly ill-posed problem are taken. We propose
two categories of approaches to solving this task.

In Chapter 3, we propose a novel cascaded network design coupled with guided pre-
diction networks for SVBRDF and shape estimation from two-shot images. Our key
insight is that separating tasks and leveraging a stage-wise prediction can lead to signifi-
cantly better results than joint estimation with a single large network. We use a two-shot
capture setting, which is practical and helps estimate higher quality SVBRDF and shape
compared to existing works. Our image capture, network inference, and rendering can be
easily implemented on mobile hardware. Another contribution is creating the large-scale
synthetic training dataset with domain-randomized geometry and carefully collected ma-
terials. We show that networks trained on this data can generalize well to real-world
objects.

In Chapter 4, we discuss three novel techniques on BRDEF, shape, and illumination
decomposition. In Sec. 3 we leveraged the SG illumination rendering from Sec. 2.2.1 to
model the incoming light. We extend this approach to handle 360-degree asset creation
in NeRD of Sec. 4.2. Here, we extend the recent Neural Fields of Sec. 2.4 to handle
reflectance fields and enable the decomposition of highly challenging scenes under mul-
tiple illuminations. NeRD achieved state-of-the-art decomposition quality. However, the
method showed limitations from the spherical nature of the SGs illumination model. Ad-
ditionally, in Sec. 3.2, we found that leveraging priors from datasets decomposes novel
scenes effectively. Therefore, we propose Neural-PIL in Sec. 4.3, which leverages priors
and uses an improved pre-integrated illumination rendering from Sec. 2.2.2. Here, we
replace the brute force pre-integration with a general neural network. While Neural-PIL
achieved state-of-the-art decomposition quality, it still required camera poses. These can
be hard to obtain in in-the-wild datasets where the objects are in varying locations and
under drastically different illumination conditions. We enable these image collections in
SAMURALI of Sec. 4.4. Here, we propose a posterior loss scaling, a Camera Multiplex,
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and a flexible camera and volume parametrization for non-equidistant cameras. With
these novel additions, SAMURALI is capable of decomposing online image collections.

Compared to the current methods in the field, our methods lean strongly into this in-
the-wild capture scenario. Our methods in the Chapter 4 build towards this goal. Even if
methods enable relighting, our methods are the only ones capable of processing varying
illumination datasets. This is crucial for processing online image collections, as most
objects are captured under various illuminations or even in various places. We found that
traditional pose estimation methods (e.g. COLMAP) fail in these conditions and propose
SAMURALI of Sec. 4.4 to enable these compositions. With this method, we achieved
the goal of decomposing online image collections with minimal user interactions. In our
work in Chapter 3, we also achieve highly practical capture setups with a complex BRDF
model. This is in contrast to more constrained capture setups or limited BRDF models in
other methods in the field. To showcase our unconstrained capture setup, we introduced
a mobile phone application, which captures the images and estimates the decomposition
on the device. Our method is the only method that achieves this convenient setup.

The task of full inverse rendering might also be beneficial to other research fields.
For example, in Sec. 4.4, we found that our decomposition into a global illumination
model and a static BRDF is beneficial for a camera pose estimation. Compared to other
methods based on radiance fields, the degree of freedom to express high-frequent details
is too large. The texture was capable of shifting on the surface to force a sharp texture
for misaligned cameras. However, these misaligned cameras then do not receive a strong
signal that they are misaligned, and the optimization stays in this local minimum. With
an explicit decomposition, this problem cannot occur, as the texture is defined only based
on the 3D location in the volume and not conditioned on anything else.

This explicit decomposition might also benefit other tasks such as scene understand-
ing, where removing illumination might provide more insides into the potential material.
Disentangling illumination from the appearance might be beneficial for detecting the
material class. E.g. detecting if the material is either wood, stone, or plastic might be
simpler if the influence of illumination is removed.

The performance of relighting is also improved drastically with a disentangled ap-
proach. In this thesis, we have shown that an explicit decomposition is indeed capable
of relighting under any illumination plausibly and consistently. For example, in NeRF-
W [110] the radiance is conditioned on the illumination embedding and the view direc-
tion. Even a separation with a neural BRDF might be beneficial for this task and enable
the method to escape the manifold created during the training.

While the proposed methods enable the decomposition of in-the-wild image collec-
tions, several topics remain for future research. In Chapter 3 we introduce a method that
leverages large datasets to generate an understanding of the interplay of shape, shading,
and illumination. Here, we demonstrate that this is possible even when the training set
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consists of random shapes and materials without semantic meaning. While Neural-PIL
of Sec. 4.3 includes some of these priors from datasets, the shape is still optimized per
scene, and the BRDF prior is only valid for singular points. The general texture in-
formation for patches is not included in the prior, and many materials, e.g. wood, have
distinctive patterns. Introducing patch and shape priors in the optimization can lead to
faster training and enable sparser image collections [69, 125]. In Neural-PIL, the per-
point prior of natural BRDFs also enables more accurate decompositions by building a
manifold of possible BRDFs. An extension to patches might also lead to reduced ambi-
guities and increased recovered details. For example, NeRF-Tex [12] leverages NeRFs
to generate highly detailed fur-like textures on flat surfaces. If this can be applied with
pre-trained networks, a smooth shape can be reconstructed, and apparent detail is added
on top.

Furthermore, the success of Transformers [166] can also be applied to volume ren-
dering similar to IBRNet [173]. Here, the explicit volume rendering is replaced by a
Transformer, which converts a sequence of image features from a CNN to the volume
density along the ray. This way, IBRNet can skip the training per scene and directly
perform novel view synthesis based on images alone.

While SAMURALI enables camera optimization from coarsely posed images, these
poses still need to be provided by the user to reduce the risk of falling into local minima
due to cameras being on the wrong side of an object. If a video is used for the decompo-
sition, this problem is alleviated. A camera pose is only offset by a small degree between
frames; therefore, the optimization can be constrained.

Lastly, several techniques such as TensoRF [37] or Instant-NGP [120] enable fast
training of NeRFs. This is due to explicit information storage in a grid and only rely-
ing on a small MLP for interpretation. This speed-up will be highly beneficial for our
proposed decomposition methods of Chapter 4.

Still, our proposed methods enable highly practical asset creation with minimal user
interaction. Each asset is directly usable in standard rendering software or games and can
be easily included in AR or VR applications. Our flexible, unconstrained capture setups
democratize the creation of these assets compared to traditional laboratory condition
acquisition methods. Even with these highly flexible capture setups, we achieve state-of-
the-art results in relightable asset creation, enabling real-time rendering even on mobile
devices.
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Appendix A

Two-shot spatially-varying BRDF and
Shape Estimation

A.1 Network Architecture

The proposed cascaded network architecture uses four distinct network architectures. In
the following we will denote a regular 2D convolution with a kernel size of 4, a stride
of 2, InstanceNorm, ReLLU activation and k filters as c-k. A transposed convolution is
called ct-k with the same kernel size, stride, and activations.

Shape Estimation with Merge Convolutions The input of the shape estimation net-
work is the two-shot input images and the segmentation mask. We use MergeConv blocks
in an encoder-decoder architecture. Refer to the paper for details about a MergeConv
block. We use four MergeConv blocks for encoding and decoding in a U-net-inspired
architecture [135]. The initial input of each of the pathways is one of the two-shot input
images channel stacked with the segmentation mask.

To denote the network architecture, we use the following naming scheme. A Merge-
Conv block with a kernel size of 4, a stride of 2, InstanceNorm, and ReLLU activation is
denoted as mo-k. Here, k defines the number of output filters for the merged and input
pathways. Upsampling or downsampling is denoted in o, where d is used for the down-
sampling operation and u for the upsampling. A regular convolution with a kernel size
of 5 and a stride of 1 is denoted as c-k. The k parameter also defines the number of
output features, and a sigmoid activation function is used. The network architecture is
described as:

md-32, md-64, md-128, md-256, mu-256, mu-128, mu-64, mu-32, c-4

Shape Guided Illumination Estimation The input for this network architecture now
consists of the two-shot input images, the segmentation mask, and the previous shape
estimation (Normals and Depth). Here, we do not employ the merge convolutions, and
all inputs are channel stacked. As the network output is 24 RGB values, we only employ
an encoder, followed by fully connected blocks. An additional convolution operation is
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denoted as cn-k, with a kernel size of 3, a stride of 2, and a ReLU activation. Lastly, a
fully connected layer is referred to as £-k. The architecture is then denoted as:

c-16, c-32, c-64, c-128, c-256, c-256, cn-256, cn-512, f-256, RelU,
f-72, Sigmoid

The last fully-connected layer consists of 72 outputs corresponding to 24 RGB values
for the spherical Gaussian amplitudes.

Guided SVBRDF Estimation For BRDF prediction, we stack the channels of the pre-
vious predictions and the two-shot input images. The illumination prediction is here
appended to each pixel of the input images. An additional output convolution is referred
to as co-k with a kernel size of 5, a stride of 1, and sigmoid activation. The network
architecture is defined as:

c-32, c-64, c-96, c-128, c-160, c-192, ct-192, ct-160, ct-128,
ct-96, ct-64, ct-32, co-7

Joint Shape and SVBRDF Refinement Similar to the BRDF estimation, we stack
each previous prediction in the channel dimensions. We also add the residual loss im-
age between the input flash image and the re-rendered initial predictions. A ResNet
block [64] here consists of two pre-activated 2D convolutions with a kernel size of 3, a
stride of 1, InstanceNorm, and ReLLU activation. The shortcut connection is added from
the input to the final block output. The block is denoted as r-k. A final output convo-
lution is denoted as cO-k with a kernel size of 5, a stride of 1, and a sigmoid activation.
The overall network is described as:

c-64, c-128, c-256, r-256, r-256, r-256, r-256, ct-256, ct-128,
ct-64, co-11

The final output consists of 11 channels corresponding to diffuse (3), specular (3),
roughness (1), depth (1), and normal (3).

A.2 Results

We provide additional visual comparisions with Li ez al. [98], Nestmeyer et al. [124], and
Lasinger et al. [86] in Fig. A.1, A.2, and A.3, respectively. In these additional examples,
our method’s general trend for more accurate decomposition remains.
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Figure A.1: Comparison with Li ef al. [98]. Further comparisons with Li et al. On all
scenes, our decomposition outperforms the state-of-the-art.
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Figure A.2: Comparison with Nestmeyer ef al. [124] (RAFII). Nestmeyer et al. only
estimate the diffuse albedo. Our prediction estimate the diffuse component more accu-
rately.
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Figure A.3: Comparison with Lasinger ef al. [86] (MiDaS). Lasinger et al. only esti-
mate the depth from a single monocular image. Our method captures the general shape
in greater detail and more accurately.
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NeRD: Neural Reflectance

Decomposition from Image Collections

B.1 Dataset details

In Tab. B.1, we list the trained resolution, the number of total images, and the test train
split for each dataset. Exemplary images of the real-world datasets are shown in Fig. B.1.

Dataset Resolution (WxH) #Images #Train #Test
Globe 400 x 400 210 200 10
Car Wreck 400 x 400 210 200 10
Chair 400 x 400 210 200 10
Ethiopian Head 500 x 500 66 62 4
Gold Cape 456 x 456 119 111 8
Gnome 752 % 502 103 96 7
MotherChild 864 x 648 104 97 7

Table B.1: Dataset overview. Overview of the resolution and number of images used for

training.
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Appendix B NeRD: Neural Reflectance Decomposition from Image Collections

Gnome
Varying [llumination

MotherChild
Varying [llumination

Cape
Static Illumination

EthiopianHead
Static Illumination

Na?” N’

Figure B.1: Datasets. Exemplary images of our real-world datasets. Notice the chal-
lenging environment illumination in the varying illumination scenes. The gnome dataset
even features shadows from the environment.
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Appendix C

Neural-PIL: Neural Pre-integrated
Lighting for Reflectance Decomposition

(a) Encoder

(b) Decoder

(¢) Discriminator

Type Size Stride Features Activation Type Size Stride Features Activation Type Size Stride Features Activation
CoordConv 3 1 8 elu ConvT (1,2) 1 64 elu CoordConv 3 1 8 relu
CoordConv 4 2 21 elu ConvT 4 2 58 elu CoordConv 4 2 32 relu
CoordConv 3 1 21  elu Conv 3 1 58 elu Conv 3 1 32 relu
CoordConv 4 2 42  elu ConvT 4 2 52  elu CoordConv 4 2 32 relu
CoordConv 3 1 42 elu Conv 3 1 52  elu Conv 3 1 32 relu
CoordConv 4 2 64 elu ConvT 4 2 45 elu CoordConv 4 2 32 relu
CoordConv 3 1 64 elu Conv 3 1 45 elu Conv 3 1 32 relu
Flatten ConvT 4 2 39 elu CoordConv 4 2 32 relu
MLP 128 Linear Conv 3 1 39  elu Conv 3 1 32 relu

ConvT 4 2 32 elu Flatten

Conv 3 1 32  elu Dense 1 Linear

ConvT 4 2 26 elu

Conv 3 1 26 elu

ConvT 4 2 20 elu

Conv 3 1 20 elu

Conv 1 1 3 exp(x—1)

Table C.1: Light-SMAE architecture. Details for the architecture used for each net-
work. Conv denotes a regular 2D conv, ConvT a transposed 2D convolution and Coord-

Conv uses a 2D convolution with the coordinates as described in [103].
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Notations

Symbol Styles

Style Description

X Scalars are defined as lower case non-bold symbols.

X Vector are defined as bold lower case symbols.

A Matrices are defined as bold upper case symbols.

fl..) Functions are defined as non-bold symbols with brackets and parameters.
Operators

Operator Description

|x] The absolute value of a scalar.

|||l The euclidean norm of vector x = \/ X2+ x3 4. X2

a-b The dot or inner product of two vectors a-b =Y | a;b; + axby +

...+a,b,.

axb The cross product of two vectors.

Jf(..)*[b(...) Convolve the function f with b.

V. f(x,y) Partial derivative of the function f to the parameter x.
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List of Symbols

Symbol Description €

x Position in space. R3

o, Outgoing light direction. R3

f-(x,®;,®@,) The Spatially-varying Bidirectional Reflectance  f(R*,R3 R3)
Distribution Function. R3

; Incoming light direction. R3

n The surface normal. R3

b, The diffuse color of the analytical BRDF. [0,1] CR?

m The microfacet normal. R?

b, The roughness scalar of the analytical BRDF. 0,1]CR

h The half-vector between ®; and ®,. h = R3

ai+0,

@i,

b, The specular color of the analytical BRDF. [0,1] CcR?

b, The basecolor of the analytical BRDF. [0,1]CcR?

b The metallic scalar of the analytical BRDF. 0,1]CcR

bys All BRDF parameters of the diffuse-specular [0,1] C R’
parametrization.

by All BRDF parameters of the basecolor-metallic [0,1] CR3
parametrization.

o, The reflected outgoing light direction. Now R3
pointing in the incoming light direction.

Lo The sum of squared vector elements with f(RY) =R
Lr(v) = Zld v?.

Ly(x, ®;) The amount of outgoing light in the specified f(R? R3)— R?

direction.
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List of Abbreviations

AR Augmented Reality

BRDF Bidirectional Reflectance Distribution Function
CNN Convolutional Neural Networks

DR Domain Randomization

GLO Generative Latent Optimization

GT Ground Truth

HDR High Dynamic Range

LDR Low Dynamic Range

LiDAR Light Detection And Ranging

MAE Mean Absolute Error

MLP Multilayer Perceptron

MR Mixed Reality

MSE Mean Squared Error

NVS Novel View Synthesis

PDF Probability Density Function

PSNR Peak Signal-to-Noise Ratio

SDF Signed Distance Field

SG Spherical Gaussian

SSIM Structural Similarity Index Measure

SVBRDF Spatially-varying Bidirectional Reflectance Distribution Function

VR Virtual Reality

137






Bibliography

[1]

[5]

[6]

[7]

[8]

[9]

T. C. 1. 42. Photography — Digital still cameras — Determination of exposure
index, ISO speed ratings, standard output sensitivity, and recommended exposure
index. Standard, International Organization for Standardization, 2019.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

E. Adelson and J. Bergen. The plenoptic function and the elements of early vision.
Computation Models of Visual Processing, 1991.

E. Adelson and A. Pentland. The perception of shading and reflectance. Cam-
bridge University Press, 1996.

M. Aittala, T. Aila, and J. Lehtinen. Reflectance modeling by neural texture syn-
thesis. In ACM Transactions on Graphics (ToG), 2018.

M. Aittala, T. Weyrich, and J. Lehtinen. Practical SVBRDF capture in the fre-
quency domain. In ACM Transactions on Graphics (SIGGRAPH), 2013.

M. Aittala, T. Weyrich, and J. Lehtinen. Two-shot SVBRDF capture for stationary
materials. In ACM Transactions on Graphics (ToG), 2015.

Y. Aksoy, C. Kim, P. Kellnhofer, S. Paris, M. Elgharib, M. Pollefeys, and W. Ma-
tusik. A dataset of flash and ambient illumination pairs from the crowd. In Euro-
pean Conference on Computer Vision (ECCV), 2018.

R. Albert, D. Y. Chan, D. B. Goldman, and J. F. O’Brian. Approximate svBRDF

estimation from mobile phone video. In Eurographics Symposium on Rendering,
2018.

139



Bibliography

[10] N. G. Alldrin, T. Zickler, and D. Kriegman. Photometric stereo with non-
parametric and spatially-varying reflectance. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2008.

[11] L.-P. Asselin, D. Laurendeau, and J.-F. Lalonde. Deep SVBRDF estimation on
real materials. In International Conference on 3D Vision (3DV), 2020.

[12] H. Baatz, J. Granskog, M. Papas, F. Rousselle, and J. Novdk. Nerf-tex: Neural
reflectance field textures. In Eurographics Symposium on Rendering, 2021.

[13] J. Barron. Shapes, Paint, and Light. PhD thesis, EECS Department, University of
California, Berkeley, Aug 2013.

[14] J. T. Barron and J. Malik. Shape, illumination, and reflectance from shading. In
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2015.

[15] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P.
Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. IEEE International Conference on Computer Vision (ICCV), 2021.

[16] H. Barrow and J. M. Tenenbaum. Recovering intrinsic scene characteristics from
images. Computer Vision Systems, 1978.

[17] B. G. Baumgart. Geometric Modeling for Computer Vision. PhD thesis, Stanford
University, 1974.

[18] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features.
Computer Vision and Image Understanding CVIU, 2008.

[19] S. Bell, K. Bala, and N. Snavely. Intrinsic images in the wild. In ACM Transac-
tions on Graphics (SIGGRAPH), 2014.

[20] D. Berthelot, C. Raffel, A. Roy, and I. Goodfellow. Understanding and improving
interpolation in autoencoders via an adversarial regularizer. International Confer-
ence on Learning Representations (ICLR), 2019.

[21] S. Bi, Z. Xu, P. Srinivasan, B. Mildenhall, K. Sunkavalli, M. Hasan, Y. Hold-
Geoffroy, D. Kriegman, and R. Ramamoorthi. Neural reflectance fields for ap-
pearance acquisition. ArXiv e-prints, 2020.

[22] S.Bi,Z. Xu, K. Sunkavalli, M. Hasan, Y. Hold-Geoffroy, D. Kriegman, and R. Ra-
mamoorthi. Deep reflectance volumes: Relightable reconstructions from multi-
view photometric images. In European Conference on Computer Vision (ECCV),
2020.

140



Bibliography

[23] S. Bi, Z. Xu, K. Sunkavalli, D. Kriegman, and R. Ramamoorthi. Deep 3d capture:
Geometry and reflectance from sparse multi-view images. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[24] J. E. Blinn and M. E. Newell. Texture and reflection in computer generated images.
In Communications of ACM, 1976.

[25] M. Boss, R. Braun, V. Jampani, J. T. Barron, C. Liu, and H. P. Lensch. NeRD:
Neural reflectance decomposition from image collections. In IEEE International
Conference on Computer Vision (ICCV), 2021.

[26] M. Boss, A. Engelhardt, A. Kar, Y. Li, D. Sun, J. T. Barron, H. P. Lensch, and
V. Jampani. SAMURAI: Shape And Material from Unconstrained Real-world
Arbitrary Image collections. In ArXiv e-prints, 2022.

[27] M. Boss, F. Groh, S. Herholz, and H. P. A. Lensch. Deep Dual Loss BRDF
Parameter Estimation. In Workshop on Material Appearance Modeling, 2018.

[28] M. Boss, V. Jampani, R. Braun, C. Liu, J. T. Barron, and H. P. Lensch. Neural-
pil: Neural pre-integrated lighting for reflectance decomposition. In Advances in
Neural Information Processing Systems (NeurlPS), 2021.

[29] M. Boss, V. Jampani, K. Kim, H. P. Lensch, and J. Kautz. Two-shot spatially-
varying BRDF and shape estimation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[30] M. Boss and H. P. Lensch. Single image brdf parameter estimation with a condi-
tional adversarial network. In ArXiv e-prints, 2019.

[31] Brian. freepbr, 2019. https://freepbr.com.

[32] B. Burley. Physically based shading at disney. In ACM Transactions on Graphics
(SIGGRAPH), 2012.

[33] cgtrader. Carwreck. https://www.cgtrader.com/free-3d-models/
vehicle/other/car-wreck-pbr-game-asset.

[34] cgtrader. Chair. https://www.cgtrader.com/free-3d-models/furniture/
chair/freifrau-easy-chair-pbr.

[35] CgTrader. Free 3d models, 2019. www.cgtrader. com.

[36] E. Chan, M. Monteiro, P. Kellnhofer, J. Wu, and G. Wetzstein. pi-GAN: Periodic
implicit generative adversarial networks for 3D-aware image synthesis. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

141


https://freepbr.com
https://www.cgtrader.com/free-3d-models/vehicle/other/car-wreck-pbr-game-asset
https://www.cgtrader.com/free-3d-models/vehicle/other/car-wreck-pbr-game-asset
https://www.cgtrader.com/free-3d-models/furniture/chair/freifrau-easy-chair-pbr
https://www.cgtrader.com/free-3d-models/furniture/chair/freifrau-easy-chair-pbr
www.cgtrader.com

Bibliography

[37] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su. TensoRF: Tensorial radiance fields.
In ArXiv e-prints, 2022.

[38] Z. Chen, S. Nobuhara, and K. Nishino. Invertible neural BRDF for object inverse
rendering. In European Conference on Computer Vision (ECCV), 2020.

[39] Z. Chen and H. Zhang. Learning implicit fields for generative shape modeling.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[40] B. O. Community. Blender - a 3D modelling and rendering package. Blender
Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[41] R. L. Cook and K. E. Torrance. A reflectance model for computer graphics. ACM
Transactions on Graphics (ToG), 1982.

[42] P. Debevec, A. Wenger, C. Tchou, A. Gardner, J. Waese, and T. Hawkins. A
lighting reproduction approach to live-action compositing. ACM Transactions on
Graphics (ToG), 2002.

[43] L. Demes. CcO textures, 2019. https://ccOtextures.com/.

[44] V. Deschaintre, M. Aitalla, F. Durand, G. Drettakis, and A. Bousseau. Single-
image SVBRDF capture with a rendering-aware deep network. In ACM Transac-
tions on Graphics (ToG), 2018.

[45] V. Deschaintre, M. Aitalla, F. Durand, G. Drettakis, and A. Bousseau. Flexible
SVBRDF capture with a multi-image deep network. In Eurographics Symposium
on Rendering, 2019.

[46] V. Deschaintre, G. Drettakis, and A. Bousseau. Guided fine-tuning for large-scale
material transfer. In Eurographics Symposium on Rendering, 2020.

[47] V.Deschaintre, Y. Lin, and A. Ghosh. Deep polarization imaging for 3d shape and
svbrdf acquisition. 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15562-15571, 2021.

[48] Y. Dong, G. Chen, P. Peers, J. Zhang, and X. Tong. Appearance-from-motion:
Recovering spatially varying surface reflectance under unknown lighting. ACM
Transactions on Graphics (SIGGRAPH ASIA), 2014.

[49] Y. Dong, J. Wang, X. Tong, J. Snyder, Y. Lan, M. Ben-Ezra, and B. Guo. Mani-
fold bootstrapping for SVBRDF capture. In ACM Transactions on Graphics (SIG-
GRAPH), 2010.

[50] S. Donne and A. Geiger. Defusr: Learning non-volumetric depth fusion using
successive reprojections. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

142


https://cc0textures.com/

Bibliography

[51] J. Dupuy and W. Jakob. An adaptive parameterization for efficient material ac-
quisition and rendering. In ACM Transactions on Graphics (SIGGRAPH ASIA),
2018.

[52] B. Duvenhage, K. Bouatouch, and D. G. Kourie. Numerical verification of bidi-
rectional reflectance distribution functions for physical plausibility. In South
African Institute for Computer Scientists and Information Technologists Confer-
ence (SAICSIT), 2013.

[53] M. Faraday. Thoughts on ray vibrations. Philosophical Magazine, 1846.

[54] A. Fores, J. Ferwerda, and J. Gu. Toward a perceptually based metric for BRDF
modeling. In Color and Imaging Conference CIC, 2012.

[55] H.Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao. Deep ordinal regression
network for monocular depth estimation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

[56] D. Gao, X. Li, Y. Dong, P. Peers, and X. Tong. Deep inverse rendering for high-
resolution SVBRDF estimation from an arbitrary number of images. In ACM
Transactions on Graphics (SIGGRAPH), 2019.

[57] M.-A. Gardner, Y. Hold-Geoffroy, K. Sunkavalli, C. Gagne, and J.-F. Lalonde.
Deep parametric indoor lighting estimation. In /EEE International Conference on
Computer Vision (ICCV), 2019.

[58] M.-A. Gardner, K. Sunkavalli, E. Yumer, X. Shen, E. Gambaretto, C. Gagné, and
J.-F. Lalonde. Learning to predict indoor illumination from a single image. ACM
Transactions on Graphics (ToG), 2017.

[59] A. Gershun. The light field. Journal of Mathematics and Physics, 1936.

[60] S. Goel, A. Kanazawa, and J. Malik. Shape and viewpoint without keypoints. In
European Conference on Computer Vision (ECCV), 2020.

[61] D. B. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz. Shape and spatially-
varying BRDFs from photometric stereo. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 2009.

[62] J. C. Gower and G. B. Dijksterhuis. Procrustes problems. OUP Oxford, 2004.

[63] R. Guy and M. Agopian. Physically based rendering in filament, 2022. https:
//google.github.io/filament/Filament.md.html.

[64] K. He, X.Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks.
In European Conference on Computer Vision (ECCV), 2016.

143


https://google.github.io/filament/Filament.md.html
https://google.github.io/filament/Filament.md.html

Bibliography

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

144

P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and P. Debevec. Baking
neural radiance fields for real-time view synthesis. In IEEE International Confer-
ence on Computer Vision (ICCV), 2021.

P. Henzler, V. Deschaintre, N. J. Mitra, and T. Ritschel. Generative modelling of
BRDF textures from flash images. ACM Transactions on Graphics (SIGGRAPH
ASIA), 2021.

M. Holroyd, J. Lawrence, G. Humphreys, and T. Zickler. A photometric approach
for estimating normals and tangents. In ACM Transactions on Graphics (SIG-
GRAPH), 2008.

B. K. P. Horn. Obtaining Shape from Shading Information. MIT Press, 1989.

A. Jain, M. Tancik, and P. Abbeel. Putting nerf on a diet: Semantically consistent
few-shot view synthesis. In IEEE International Conference on Computer Vision
(ICCV), 2021.

W. Jakob. Mitsuba - physically based renderer, 2018. https://www.mitsuba-
renderer.org/.

W. Jang, C. Je, Y. Seo, and S. W. Lee. Structured-light stereo: Comparative anal-
ysis and integration of structured-light and active stereo for measuring dynamic
shape. Optics and Lasers in Engineering, 2013.

C. Je, S. W. Lee, and R.-H. Park. High-contrast color-stripe pattern for rapid
structured-light range imaging. In European Conference on Computer Vision
(ECCV), 2004.

H. W. Jensen. Global illumination using photon maps. Rendering Techniques,
1996.

Y. Jeong, S. Ahn, C. Choy, A. Anandkumar, M. Cho, and J. Park. Self-calibrating
neural radiance fields. In IEEE International Conference on Computer Vision
(ICCV), 2021.

J. T. Kajiya. The rendering equation. In ACM Transactions on Graphics (SIG-
GRAPH), 1986.

S. B. Kang, J. A. Webb, C. L. Zitnick, and T. Kanade. A multibaseline stereo
system with active illumination and real-time image acquisition. In /IEEE Interna-
tional Conference on Computer Vision (ICCV), 1995.

B. Karis. Real shading in unreal engine 4. Technical report, Epic Games, 2013.



Bibliography

[78]

[79]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

J. Kautz, P.-P. Vazquez Alcocer, W. Heidrich, and H.-P. Seidel. A unified approach
to prefiltered environment maps. Eurographics Symposium on Rendering, 2000.

B. Kaya, S. Kumar, C. Oliveira, V. Ferrari, and L. Van Gool. Uncalibrated neural
inverse rendering for photometric stereo of general surfaces. In IEEE Interna-
tional Conference on Computer Vision (ICCV), 2021.

M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In
Proceedings of the fourth Eurographics symposium on Geometry processing, vol-
ume 7, 2006.

P. Kellnhofer, L. Jebe, A. Jones, R. Spicer, K. Pulli, and G. Wetzstein. Neu-
ral lumigraph rendering. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. ArXiv
e-prints, 2014.

J. Kopf, X. Rong, and J.-B. Huang. Robust consistent video depth estimation. In
IEEE International Conference on Computer Vision (ICCV), 2021.

Z. Kuang, K. Olszewski, M. Chai, Z. Huang, P. Achlioptas, and S. Tulyakov.
NeROIC: Neural object capture and rendering from online image collections.
ArXiv e-prints, 2022.

J. H. Lambert and E. Anding. Lamberts Photometrie. (Photometria, sive De men-
sura et gradibus luminis, colorum et umbrae). Leipzig, W. Engelmann, 1760.

K. Lasinger, R. Ranftl, K. Schindler, and V. Koltun. Towards robust monocu-
lar depth estimation: Mixing datasets for zero-shot cross-dataset transfer. /EEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2020.

J. Lawrence, S. Rusinkiewicz, and R. Ramamoorthi. Efficient BRDF importance
sampling using a factored representation. ACM Transactions on Graphics (ToG),
2004.

H. P. Lensch, J. Lang, M. S. Asla, and H. Seidel. Planned sampling of spatially
varying BRDFs. In Computer Graphics Forum, 2003.

H. P. A. Lensch, J. Kautz, M. Gosele, and H.-P. Seidel. Image-based reconstruc-
tion of spatially varying materials. In Eurographics Conference on Rendering,
2001.

L. Lettry, K. Vanhoey, and L. Van Gool. DARN: a deep adversarial residual net-
work for intrinsic image decomposition. In IEEE International Conference on
Computer Vision (ICCV), 2018.

145



Bibliography

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

146

M. Li et al. Deep spherical Gaussian illumination estimation for indoor scene. In
ACM Multimedia Asia Conference (MM Asia), 2019.

R. Li, K. Xian, C. Shen, Z. Cao, H. Lu, and L. Hang. Deep attention-based clas-
sification network for robust depth prediction. In Asian Conference on Computer
Vision (ACCV), 2019.

X. Li, Y. Dong, P. Peers, and X. Tong. Modeling surface appearance from a
single photograph using self-augmented convolutional neural networks. In ACM
Transactions on Graphics (ToG), 2017.

Z. Li, M. Shafiei, R. Ramamoorthi, K. Sunkavalli, and M. Chandraker. In-
verse rendering for complex indoor scenes: Shape, spatially-varying lighting and

SVBRDF from a single image. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

Z. Li and N. Snavely. Cgintrinsics: Better intrinsic image decomposition
through physically-based rendering. In European Conference on Computer Vi-
sion (ECCV), 2018.

Z. Liand N. Snavely. Learning intrinsic image decomposition from watching the
world. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

Z. Li, K. Sunkavalli, and M. Chandraker. Materials for masses: SVBRDF acqui-
sition with a single mobile phone image. In European Conference on Computer
Vision (ECCV), 2018.

Z. Li, Z. Xu, R. Ramamoorthi, K. Sunkavalli, and M. Chandraker. Learning to
reconstruct shape and spatially-varying reflectance from a single image. In ACM
Transactions on Graphics (SIGGRAPH ASIA), 2018.

M. Liao, L. Wang, R. Yang, and M. Gong. Light fall-off stereo. In IEEE Interna-
tional Conference on Computer Vision (ICCV), 2007.

C.-H. Lin, W.-C. Ma, A. Torralba, and S. Lucey. Barf: Bundle-adjusting neural
radiance fields. In IEEE International Conference on Computer Vision (ICCV),
2021.

F. Liu, C. Shen, G. Lin, and I. D. Reid. Learning depth from single monocu-
lar images using deep convolutional neural fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 2016.

L. Liu, J. Gu, K. Z. Lin, T.-S. Chua, and C. Theobalt. Neural sparse voxel fields.
In Advances in Neural Information Processing Systems (NeurIPS), 2020.



Bibliography

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

R. Liu, J. Lehman, P. Molino, F. Petroski Such, E. Frank, A. Sergeev, and J. Yosin-
ski. An intriguing failing of convolutional neural networks and the coordconv so-
lution. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and Y. Sheikh.
Neural volumes: Learning dynamic renderable volumes from images. ACM
Transactions on Graphics (ToG), 2019.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision - IJCV, 2004.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision - IJCV, 2004.

X. Luo, J. Huang, R. Szeliski, K. Matzen, and J. Kopf. Consistent video depth
estimation. In ACM Transactions on Graphics (ToG), 2020.

R. Maier, K. Kim, D. Cremers, J. Kautz, and M. Nieiner. Intrinsic3D: High-
quality 3D reconstruction by joint appearance and geometry optimization with
spatially-varying lighting. In IEEE International Conference on Computer Vision
(ICCv), 2017.

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley. Least squares
generative adversarial networks. In IEEE International Conference on Computer
Vision (ICCV), 2017.

R. Martin-Brualla, N. Radwan, M. S. M. Sajjadi, J. T. Barron, A. Dosovitskiy,
and D. Duckworth. NeRF in the Wild: Neural Radiance Fields for Unconstrained

Photo Collections. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2021.

W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan. Image-based
visual hulls. In ACM Transactions on Graphics (SIGGRAPH), 2000.

W. Matusik, H. Pfister, M. Brand, and L. McMillan. A data-driven reflectance
model. ACM Transactions on Graphics (ToG), 2003.

D. McAllister. A Generalized Surface Appearance Representation for Computer
Graphics. PhD thesis, University of North Carolina, 2002.

A. Meka, M. Maximov, M. Zollhoefer, A. Chatterjee, H.-P. Seidel, C. Richardt,

and C. Theobalt. Lime: Live intrinsic material estimation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

147



Bibliography

[115] Q. Meng, A. Chen, H. Luo, M. Wu, H. Su, L. Xu, X. He, and J. Yu. GNeRF:
GAN-based Neural Radiance Field without Posed Camera. In IEEE International
Conference on Computer Vision (ICCV), 2021.

[116] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy
networks: Learning 3d reconstruction in function space. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[117] B. Mildenhall, P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng.
NeRF: Representing scenes as neural radiance fields for view synthesis. In Euro-
pean Conference on Computer Vision (ECCV), 2020.

[118] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ramamoor-
thi, R. Ng, and A. Kar. Local light field fusion: Practical view synthesis with
prescriptive sampling guidelines. ACM Transactions on Graphics (TOG), 2019.

[119] G. S. Miller and C. R. Hoffman. Illumination and reflection maps: Simulated ob-

jects in simulated and real environments gene. In ACM Transactions on Graphics
(SIGGRAPH), 1984.

[120] T. Miiller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives
with a multiresolution hash encoding. ACM Transactions on Graphics (ToG),
2022.

[121] J. Munkberg, J. Hasselgren, T. Shen, J. Gao, W. Chen, A. Evans, T. Mueller, and
S. Fidler. Extracting Triangular 3D Models, Materials, and Lighting From Images.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[122] G. Nam, D. Gutierrez, and M. H. Kim. Practical SVBRDF acquisition of 3d
objects with unstructured flash photography. In ACM Transactions on Graphics
(SIGGRAPH ASIA), 2018.

[123] T. Narihira, M. Maire, and S. X. Yu. Direct intrinsics: Learning albedo-shading
decomposition by convolutional regression. In IEEE International Conference on
Computer Vision (ICCV), 2015.

[124] T. Nestmeyer and P. V. Gehler. Reflectance adaptive filtering improves intrinsic
image estimation. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[125] M. Niemeyer, J. T. Barron, B. Mildenhall, M. S. M. Sajjadi, A. Geiger, and
N. Radwan. Regnerf: Regularizing neural radiance fields for view synthesis from
sparse inputs. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

148



Bibliography

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

M. Oechsle, S. Peng, and A. Geiger. Unisurf: Unifying neural implicit surfaces
and radiance fields for multi-view reconstruction. In IEEE International Confer-
ence on Computer Vision (ICCV), 2021.

J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In /EEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz, and
R. Martin-Brualla. Deformable neural radiance fields. In IEEE International
Conference on Computer Vision (ICCV), 2021.

J. Paulo. 3d textures, 2019. https://3dtextures.me/.

D. Pett. Ethiopian Head, 2016. https://github.com/BritishMuseumDH/
ethiopianHead.

D. Pett. Mold Gold Cape, 2017. https://github.com/BritishMuseumDH/
moldGoldCape.

X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. Zaiane, and M. Jagersand. U2-
net: Going deeper with nested u-structure for salient object detection. In Pattern
Recognition, volume 106, 2020.

V. S. Ramachandran. Perceiving shape from shading. Scientific American, 1988.

B. Resch, H. P. A. Lensch, O. Wang, M. Pollefeys, and A. Sorkine-Hornung.
Scalable structure from motion for densely sampled videos. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-
Assisted Intervention — MICCAI 2015, 2015.

F. Rosenblatt. The Perceptron, a Perceiving and Recognizing Automaton Project
Para. Report: Cornell Aeronautical Laboratory. Cornell Aeronautical Laboratory,
1957.

C. Rother, M. Kiefel, L. Zhang, B. Scholkopf, and P. Gehler. Recovering intrinsic
images with a global sparsity prior on reflectance. In Advances in Neural Infor-
mation Processing Systems (NeurlPS), 2011.

C. Rother, V. Kolmogorov, and A. Blake. Grabcut -interactive foreground ex-
traction using iterated graph cuts. ACM Transactions on Graphics (SIGGRAPH),
2004.

149


https://3dtextures.me/
https://github.com/BritishMuseumDH/ethiopianHead
https://github.com/BritishMuseumDH/ethiopianHead
https://github.com/BritishMuseumDH/moldGoldCape
https://github.com/BritishMuseumDH/moldGoldCape

Bibliography

[139] A. Roy and S. Todorovic. Monocular Depth Estimation Using Neural Regression
Forest. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[140] S. Sang and M. Chandraker. Single-shot neural relighting and SVBRDF estima-
tion. In European Conference on Computer Vision (ECCV), 2020.

[141] Sara Fridovich-Keil and Alex Yu, M. Tancik, Q. Chen, B. Recht, and
A. Kanazawa. Plenoxels: Radiance fields without neural networks. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2022.

[142] K. Sato and S. Inokuchi. Three-dimensional surface measurement by space en-
coding range imaging. Journal of Robotic Systems, 1985.

[143] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms. International Journal of Computer Vision -
1JCV, 2000.

[144] C. Schlick. An inexpensive BRDF model for physically-based rendering. In Com-
puter Graphics Forum, 1994.

[145] J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited. In /[EEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[146] J. L. Schonberger, E. Zheng, M. Pollefeys, and J.-M. Frahm. Pixelwise view se-
lection for unstructured multi-view stereo. In European Conference on Computer
Vision (ECCV), 2016.

[147] S. Sengupta, J. Gu, K. Kim, G. Liu, D. W. Jacobs, and J. Kautz. Neural inverse
rendering of an indoor scene from a single image. In IEEE International Confer-
ence on Computer Vision (ICCV), 2019.

[148] J. Shi, Y. Dong, H. Su, and S. X. Yu. Learning non-lambertian object intrinsics
across shapenet categories. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[149] S. Song and T. Funkhouser. Neural illumination: Lighting prediction for indoor
environments. [EEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[150] P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall, and J. T. Barron.

NeRV: Neural reflectance and visibility fields for relighting and view synthesis.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

150



Bibliography

[151]

[152]

[153]

[154]

[155]

[156]

[157]
[158]

[159]

[160]

[161]

[162]

C. Strecha, R. Fransens, and L. Van Gool. Wide-baseline stereo from multiple
views: A probabilistic account. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2004.

M. X. G. S. A. Studio. Microsoft flight simulator. https://www.
flightsimulator.com.

R. Szeliski. Rapid octree construction from image sequences. CVGIP: Image
Understanding, 1993.

M. Tancik, B. Mildenhall, T. Wang, D. Schmidt, P. P. Srinivasan, J. T. Barron, and
R. Ng. Learned initializations for optimizing coordinate-based neural representa-

tions. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan,
U. Singhal, R. Ramamoorthi, J. T. Barron, and R. Ng. Fourier features let net-
works learn high frequency functions in low dimensional domains. Advances in
Neural Information Processing Systems (NeurlPS), 2020.

M. F. Tappen, W. T. Freeman, and E. H. Adelson. Recovering intrinsic images
from a single image. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI), 2005.

S. Textures. Share textures, 2019. https://sharetextures.com.

J. Tobin, R. Fong, A. Ray, J. Schneider, Z. Wojciech, and P. Abeel. Domain
randomization for transferring deep neural networks from simulation to the real
world. In IEEE/RSJ International Conference on Intelligent RObots and Systems
IROS, 2017.

A. Toshev, J. Shi, and K. Daniilidis. Image matching via saliency region corre-
spondences. 2007.

J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To,
E. Cameracci, S. Boochoon, and S. Birchfield. Training deep networks with syn-
thetic data: Bridging the reality gap by domain randomization. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 969-977, 2018.

Y.-T. Tsai and Z.-C. Shih. All-frequency precomputed radiance transfer using
spherical radial basis functions and clustered tensor approximation. ACM Trans-
actions on Graphics (ToG), 2006.

TurboSquid. Standing Globe. https://www.turbosquid.com/3d-models/
3d-standing-globe-1421971.

151


https://www.flightsimulator.com
https://www.flightsimulator.com
https://sharetextures.com
https://www.turbosquid.com/3d-models/3d-standing-globe-1421971
https://www.turbosquid.com/3d-models/3d-standing-globe-1421971

Bibliography

[163] R. Tuytel. Texture haven, 2019. https://texturehaven. com.

[164] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy, and T. Brox.
DeMoN: depth and motion network for learning monocular stereo. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2017.

[165] C. W. Urquhart, J. P. Siebert, J. P. Mcdonald, R. J. Fryer, and G. House. Active
animate stereo vision. In British Machine Vision Conference (BMVC), 1993.

[166] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and 1. Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

[167] E. Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD
thesis, Stanford University, 1997.

[168] D. Verbin, P. Hedman, B. Mildenhall, T. Zickler, J. T. Barron, and P. P. Srinivasan.
Ref-neRF: Structured view-dependent appearance for neural radiance fields. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[169] D. Viejo, J. Saez, M. Cazorla, and F. Escolano. Active stereo based compact map-
ping. In IEEE/RSJ International Conference on Intelligent RObots and Systems
IROS, 2005.

[170] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. Microfacet models for
refraction through rough surfaces. In Eurographics Symposium on Rendering,
2007.

[171] J. Wang, P. Ren, M. Gong, J. Snyder, and B. Guo. All-frequency rendering of
dynamic, spatially-varying reflectance. In ACM Transactions on Graphics (SIG-
GRAPH ASIA), 2009.

[172] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang. NeuS: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. In
Advances in Neural Information Processing Systems (NeurlPS), 2021.

[173] Q. Wang, Z. Wang, K. Genova, P. Srinivasan, H. Zhou, J. T. Barron, R. Martin-
Brualla, N. Snavely, and T. Funkhouser. Ibrnet: Learning multi-view image-based
rendering. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[174] T.Y. Wang et al. Joint material and illumination estimation from photo sets in the
wild. In International Conference on 3D Vision (3DV), 2018.

[175] X. Wang, D. Fouhey, and A. Gupta. Designing deep networks for surface normal
estimation. In IEEE International Conference on Computer Vision (ICCV), 2015.

152


https://texturehaven.com

Bibliography

[176] Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu. NeRF——: Neural
radiance fields without known camera parameters. ArXiv e-prints, 2021.

[177] H. Weber, P. Donald, and J. Lalonde. Learning to estimate indoor lighting from
3d objects. In International Conference on 3D Vision (3DV), 2018.

[178] S. Weder, J. L. Schonberger, M. Pollefeys, and M. R. Oswald. Neuralfusion:
Online depth fusion in latent space. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

[179] J. Wei, B. Resch, and L. H. P. A. Multi-view depth map estimation with cross-view
consistency. In British Machine Vision Conference (BMVC), 2014.

[180] M. Weinmann, J. Gall, and R. Klein. Material classification based on training data
synthesized using a btf database. In European Conference on Computer Vision
(ECCV), 2014.

[181] D. White, P. Saunders, S. Bonsey, J. Ven, and H. Edgar. Reflectometer for mea-
suring the bidirectional reflectance of rough surfaces. Applied optics, 1998.

[182] R.J. Woodham. Photometric Method For Determining Surface Orientation From
Multiple Images. Optical Engineering, 1980.

[183] S. Wu, A. Makadia, J. Wu, N. Snavely, R. Tucker, and A. Kanazawa. De-rendering
the world’s revolutionary artefacts. 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6334-6343, 2021.

[184] R. Xia, Y. Dong, P. Peers, and X. Tong. Recovering shape and spatially-varying
surface reflectance under unknown illumination. In ACM Transactions on Graph-
ics (SIGGRAPH ASIA), 2016.

[185] Z. Xu, S. Bi, K. Sunkavalli, S. Hadap, H. Su, and R. Ramamoorthi. Deep view
synthesis from sparse photometric images. ACM Transactions on Graphics (ToG),
2019.

[186] Z. Xu et al. Deep image-based relighting from optimal sparse samples. ACM
Transactions on Graphics (ToG), 2018.

[187] L. Yariv, Y. Kasten, D. Moran, M. Galun, M. Atzmon, B. Ronen, and Y. Lipman.
Multiview neural surface reconstruction by disentangling geometry and appear-
ance. Advances in Neural Information Processing Systems (NeurIPS), 2020.

[188] W. Ye, X. Li, Y. Dong, P. Peers, and X. Tong. Single image surface appearance
modeling with self-augmented cnns and inexact supervision. Computer Graphics
Forum, 2018.

153



Bibliography

[189]

[190]
[191]
[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

154

A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa. PlenOctrees for real-
time rendering of neural radiance fields. In IEEE International Conference on
Computer Vision (ICCV), 2021.

G. Zaal. Hdri haven, 2019. https://hdrihaven.com/.
D. Zgraggen. cgbookcase, 2019. https://cgbookcase.com/.

J. Zhang, G. Chen, Y. Dong, J. Shi, B. Zhang, and E. Wu. Deep inverse rendering
for practical object appearance scan with uncalibrated illumination. In Advances
in Computer Graphics, 2020.

J. Zhang, G. Yang, S. Tulsiani, and D. Ramanan. NeRS: Neural reflectance sur-
faces for sparse-view 3d reconstruction in the wild. In Advances in Neural Infor-
mation Processing Systems (NeurlPS), 2021.

K. Zhang, F. Luan, Q. Wang, K. Bala, and N. Snavely. PhySG: Inverse rendering
with spherical Gaussians for physics-based material editing and relighting. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

K. Zhang, G. Riegler, N. Snavely, and V. Koltun. NeRF++: Analyzing and im-
proving neural radiance fields. ArXiv e-prints, 2020.

L. Zhang, B. Curless, and S. M. Seitz. Rapid shape acquisition using color struc-
tured light and multi-pass dynamic programming. In Symposium on 3D Data
Processing, Visualization, and Transmission.

R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah. Shape from shading: A survey.
IEEFE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 1999.

X. Zhang, P. P. Srinivasan, B. Deng, P. Debevec, W. T. Freeman, and J. T. Bar-
ron. NeRFactor: Neural factorization of shape and reflectance under an unknown
illumination. In ACM Transactions on Graphics (SIGGRAPH ASIA), 2021.

Y. Zhang, W. Chen, H. Ling, J. Gao, Y. Zhang, A. Torralba, and S. Fidler. Image
GANs meet differentiable rendering for inverse graphics and interpretable 3d neu-
ral rendering. In International Conference on Learning Representations (ICLR),

2021.

Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D data pro-
cessing. ArXiv e-prints, 2018.

T. Zhou, P. Krihenbiihl, and A. A. Efros. Learning data-driven reflectance priors
for intrinsic image decomposition. In IEEE International Conference on Com-
puter Vision (ICCV), 2015.


https://hdrihaven.com/
https://cgbookcase.com/

Contributions

Except otherwise stated, all mathematical formulations, algorithms, implementations,
and evaluations were performed by the author of this thesis. The experimental evalua-
tions of other methods were created by the implementations of the authors or modifica-
tions from the thesis author.

The Gnome dataset of NeRD in Sec. 4.2 was captured by Raphael Braun and the
MotherChild from Hendrik Lensch. The Cape and Head datasets were created by “The
British Museum’. Raphael Braun implemented and performed the mesh extraction for
NeRD.

Varun Jampani created the SAMURALI dataset, and Yuanzhen Li gathered the online
image collection for SAMURALI. Andreas Engelhardt performed the Procrustes analysis
and ran the evaluation with BaRF, GNeRF and BaRF-A. Andreas Engelhardt also created
the implementation of BaRF-A.

155



	1 Introduction
	1.1 Main Contributions and Research Questions
	1.2 Outline

	2 Foundations
	2.1 Rendering
	2.1.1 Rendering Equation
	2.1.2 Bidirectional Reflectance Distribution Function (BRDF)

	2.2 Illumination Models
	2.2.1 Spherical Gaussian Illumination
	2.2.2 Pre-integrated Illumination

	2.3 Inverse Rendering
	2.3.1 Workshop Metaphor
	2.3.2 Shape Estimation
	2.3.3 Light Fields
	2.3.4 Intrinsic Imaging
	2.3.5 Full Decomposition

	2.4 Neural Fields
	2.4.1 Coordinate-based Multilayer Perceptrons
	2.4.2 Neural Volume Rendering
	2.4.3 Neural Radiance Fields


	3 Generalized Few-Shot Decomposition
	3.1 Related Work
	3.2 Two-shot Spatially-varying BRDF and Shape Estimation
	3.2.1 Problem Setup
	3.2.2 Network Overview and Motivation
	3.2.3 Network Architecture
	3.2.4 Large-scale SVBRDF & Shape Dataset
	3.2.5 Results

	3.3 Future Work

	4 Per-Object Multi-Shot Decomposition
	4.1 Related Work
	4.2 NeRD: Neural Reflectance Decomposition
	4.2.1 Problem Setup
	4.2.2 Network Architecture
	4.2.3 Results

	4.3 Neural-PIL: Neural Pre-integrated Lighting for Reflectance Decomposition
	4.3.1 Problem Setup
	4.3.2 Image formation and image-based lighting
	4.3.3 Network Architecture
	4.3.4 Results

	4.4 SAMURAI: Shape And Material from Unconstrained Arbitrary Image collections
	4.4.1 Problem setup
	4.4.2 Network Architecture
	4.4.3 Results

	4.5 Future Work

	5 Conclusion
	A Two-shot spatially-varying BRDF and Shape Estimation
	A.1 Network Architecture
	A.2 Results

	B NeRD: Neural Reflectance Decomposition from Image Collections
	B.1 Dataset details

	C Neural-PIL: Neural Pre-integrated Lighting for Reflectance Decomposition
	Notations
	List of Symbols
	List of Abbreviations
	Bibliography

