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aus Tübingen
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Summary

Representation learning, the task of extracting meaningful representations

of high-dimensional data, lies at the very core of artificial intelligence re-

search. Be it via implicit training of features in a variety of computer vision

tasks [1, 2, 3], over more old-school, hand-crafted feature extraction mecha-

nisms for, e.g., eye-tracking [4, 5, 6] or other applications [7, 8, 9, 10], all the

way to explicit learning of semantically meaningful data representations [11,

12, 13, 14, 15, 16, 17, 18, 19]. Strictly speaking, any activation of a layer

within a neural network can be considered a representation of the input

data. This makes the research about achieving explicit control over prop-

erties of such representations a fundamentally attractive task. An often

desired property of learned representations is called disentanglement [11,

15, 19]. The idea of a disentangled representation stems from the goal

of separating sources of variance in the data and consolidates itself in the

concept of recovering generative factors. Assuming that every data has its

origin in a generative process that produces high-dimensional data given a

low-dimensional representation (e.g., rendering images of people given vi-

sual attributes, such as hairstyle, camera angle, age, ...), the goal of finding

a disentangled representation is to recover those attributes.

The Variational Autoencoder (VAE) is a famous architecture commonly

used for disentangled representation learning, and this work summarizes

an analysis of its inner workings. VAEs achieved a lot of attention due to

their, at the time, unparalleled performance as both generative models and

inference models for learning disentangled representations. However, note

that the disentanglement property of a representation is not invariant to
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rotations of the learned representation, i.e., rotating a learned representa-

tion can change and destroy its disentanglement quality. Given a rotation-

ally symmetric prior over the representations space, the idealized objective

function of VAEs is rotationally symmetric. Their success at producing

disentangled representations consequently comes as a particular surprise.

This thesis discusses why VAEs pursue a particular alignment for their rep-

resentations and how the chosen alignment is correlated with the generative

factors of existing representation learning datasets.

Chapter 3 tackles the first question and sheds light on the connection be-

tween VAEs and classic Principal Component Analysis (PCA). It shows the-

oretically and verified experimentally that the canonical choice of a normal

posterior with a diagonal covariance matrix breaks the rotational symmetry

of the idealized objective. This choice furthermore leads to a close relation

to PCA, as linearizations of the learned projection operations strive for or-

thogonality – just like the PCA projectors. We can experimentally confirm

this finding by introducing a measure for the distance to orthogonality. An

extension of the canonical implementation of a VAE to a full covariance

matrix posterior functions as an ablation study to this finding. Despite

the more general form of the posterior, the disentangling capability of the

VAE disappears, which provides additional evidence that the choice of the

posterior is crucial. Along the derivation of this behavior, a non-degeneracy

assumption on the singular values of the Jacobian of the projection opera-

tion arises. We can link violations of this assumption to certain deficiencies

of VAEs in practice.

Chapter 4 strengthens the connection between VAEs and PCA further in

the linear case and thereby reveals more intricacies of their inner workings.

We can show that linear VAEs have much more in common with PCA than

just the orthogonality of their projectors: The learned embeddings match

up to a signed permutation. This understanding extends to an intuition for

the nonlinear case, in which VAEs are typically deployed. By carefully de-

signing dataset perturbations that keep the generating factors intact, their
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local structure can be altered so that VAEs and variations thereof fail to

disentangle them. Although this is more of a destructive experiment, the

consequent insights carry a high value: (1) It was unclear which type of

bias (in the architectural choice or the data) is responsible for the success of

VAEs in producing disentangled representations. This experiment answers

how the local structure of datasets plays into this. (2) Various VAE-based

architectures have been proposed, claiming improved disentanglement ca-

pabilities. We show that all of them fail to disentangle the altered datasets,

indicating that they still rely on the same local structure in the data. (3)

Even methods proven to recover the generating factors via weak forms of

supervision cannot perform well on those datasets. This indicates that novel

architectures should be evaluated on the altered datasets in addition to the

originals to quantify their dependence on the local data structure.
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Zusammenfassung

Das Lernen aussagekräftiger Repräsentationen aus hochdimensionalen Da-

ten ist ein fundamentales Problem der Erforschung künstlicher Intelligenz.

Diverse Methoden beschäftigen sich mit dieser Herausforderung: angefan-

gen von implizit erlernten Repräsentationen [1, 2, 3], über manuell ent-

wickelte Features (beispielsweise für Eye-Tracking [4, 5, 6] oder andere An-

wendungen [7, 8, 9, 10]) bis hin zum expliziten Lernen von semantisch

sinnvollen Repräsentationen [11, 12, 13, 14, 15, 16, 17, 18, 19]. Streng

genommen kann jede Aktivierung innerhalb eines neuronalen Netzes als

Repräsentation der Eingabedaten betrachtet werden. Das macht die Erfor-

schung der Beschaffenheit solcher Repräsentationen ausgesprochen wichtig.

Eine häufig angestrebte Eigenschaft dieser Repräsentationen wird als Disen-

tanglement bezeichnet [11, 15, 19]. Die Idee einer disentangleten Repräsen-

tation besteht darin, die Varianzen in den Daten zu separieren, um so die

generativen Faktoren der Daten zu lernen. Davon ausgehend, dass alle

Daten ihren Ursprung in einem generativen Prozess haben, der die hochdi-

mensionalen Daten erzeugt (beispielsweise das Erstellen von Porträts über

visuelle Attribute wie Frisur, Kamerawinkel, Alter, ...), dann ist das Ziel

der Repräsentation, diese Attribute wiederherzustellen.

Der VAE ist eine bekannte Architektur, die häufig für das Lernen disen-

tangleter Repräsentationen verwendet wird. Diese Arbeit umfasst eine Ana-

lyse ihrer Funktionsweise. VAEs erlangten aufgrund ihrer anfänglich unver-

gleichlichen Leistung, sowohl als generative Modelle als auch als Inferenz-

modelle für das Lernen disentangleter Repräsentationen, große Aufmerk-

samkeit. Ob eine Repräsentation disentanglet ist, oder nicht, ist abhängig

v



von der Ausrichtung der gelernten Repräsentation. Das heißt, dass die Ro-

tation einer gelernten Repräsentation ihre Qualität verändern kann. Bei

einem rotationssymmetrischen Prior über die Repräsentationen ist die Ko-

stenfunktion von VAEs allerdings rotationssymmetrisch. Ihr Erfolg im Ler-

nen disentangleter Repräsentationen ist folglich überraschend. Diese Arbeit

beschäftigt sich mit der Frage, warum VAEs eine bestimmte Ausrichtung

ihrer Repräsentationen bevorzugen und wie die gewählte Ausrichtung mit

den generativen Faktoren zusammenhängt.

Kapitel 3 befasst sich mit der ersten Frage und beleuchtet den Zusam-

menhang zwischen VAEs und der klassischen Hauptkomponentenanalyse

(PCA). Sowohl in Form theoretischer, als auch experimenteller Ergebnisse

wird gezeigt, dass die übliche Wahl eines normalverteilten Posteriors mit

diagonaler Kovarianzmatrix die Rotationssymmetrie der Kostenfunktion

aufhebt. Diese Wahl führt darüber hinaus zu einer engen Verbindung zu

PCA: Die Jacobi-Matrizen des erlernten Modells sind orthogonal – genau

wie bei PCA. Durch die Einführung einer Größe für den Abstand zur Or-

thogonalität können wir dieses Ergebnis experimentell untermauern. Eine

Erweiterung der kanonischen Implementierung eines VAE zu einem poste-

rior mit vollständiger Kovarianzmatrix zeigt, dass der VAE trotz der allge-

meineren Form des Posteriors nicht mehr disentanglet, was einen weiteren

Hinweis dafür liefert, dass die Wahl des Posteriors entscheidend ist. Eine

formale Voraussetzung für die theoretischen Ergebnisse ist, dass die sin-

gulären Werte der Jacobi-Matrix nicht entartet sein dürfen. In Fällen, in

denen dies nicht zutrifft, disentanglen VAEs nicht mehr, was eine Erklärung

für manche, in der Praxis relevanten, Probleme liefert.

In Kapitel 4 wird die Verbindung zwischen VAEs und PCA im linearen Fall

vertieft und weitere Details ihrer Funktionsweise behandelt. Wir können

zeigen, dass lineare VAEs viel mehr mit PCA gemeinsam haben als nur

die Orthogonalität ihrer Projektoren. Tatsächlich entsprechen sich die er-

lernten Repräsentationen bis auf Permutationen und Vorzeichen. Diese

Ähnlichkeit erstreckt sich auch auf den nicht-linearen Fall, in dem VAEs
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üblicherweise eingesetzt werden. Durch sorgfältig entwickelte Störungen

existierender Datensätze, bei denen die generativen Faktoren erhalten blei-

ben, kann ihre lokale Struktur so weit verändert werden, dass VAEs (und

Abwandlungen derer) nicht mehr disentanglen können. Die daraus resul-

tierenden Erkenntnisse beantworten mehrere Fragen: (1) Welcher Teil der

Architekturen oder der Daten ist für den Erfolg von VAEs verantwortlich?

Durch dieses Experiment wird klar, wie die lokale Struktur der Datensätze

dabei eine Rolle spielt. (2) Es wurde eine Vielzahl verschiedener VAE-

basierter Architekturen entwickelt, die angeblich besser disentanglen. Es

zeigt sich, dass keine dieser getesteten Architekturen die veränderten Da-

tensätze disentanglen kann, was darauf hindeutet, dass sie sich immer noch

auf dieselbe lokale Struktur in den Daten stützen. (3) Selbst Methoden,

die durch zusätzliche Trainingssignale nachweislich die generativen Fakto-

ren wiederherstellen können sollten, scheitern an diesen Datensätzen. Neue

Architekturen könnten zukünftig also zusätzlich auf diesen Daten getestet

werden, um ihre Abhängigkeit von der lokalen Datenstruktur zu evaluieren.
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Chapter 1 Introduction

1.1 Motivation

Extracting condensed information from complex data, such as from visual

input, is, in most cases, trivial for human beings. Imagine walking through

the city center of Tübingen and meeting somebody; you would immediately

perceive more than just an image, but information such as their size, hair

color, clothing, if they carry anything in their hands, and more. We can

efficiently use this information to draw conclusions, make predictions, and

reason more generally. For example, suppose the person has just finished

eating a large ice cream cone. In that case, we can conclude the suggestion

of ordering another one is not likely going to elicit a positive response.

As simple as it is for humans to deduce information from visual data, it is an

intrinsically complex task for artificially intelligent systems. One approach

to this challenge is called unsupervised representation learning and deals

with various kinds of data, yet we will primarily focus on images in this

work. The goal is to learn a model that can reliably infer a representation

of an image that contains semantic and interpretable information. Notably,

the model has to be trained on only the images alone, i.e., no additional

training information is given.

A desired property of such a representation is called disentanglement. There

are many ways to motivate and define that term, and here we want to treat

it following the highest of its aspirations, namely as the ability to recover

the true generating factors of the data. The underlying concept is that
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1 Introduction

every data, such as a visually perceived image, has its origin in a generative

process. In terms of computer graphics, the generative process would be

some rendering, and in terms of the physical world we live in, it is defined by

how optics and human perception work. Either of the processes produces a

type of image given a scene, and the details of that scene are the generat-

ing factors. Think about what is necessary to specify the appearance of a

simple portrait photograph of a person: The camera angle, lighting condi-

tions, hairstyle, hair color, age, visual attributes of the person, and so on.

Although this list is incomplete, just a dozen variables suffice to render a rea-

sonably photo-realistic portrait. The goal of a disentangled representation

is to extract and separate the generating factors of a given image such that

every dimension of the representation corresponds to one of these factors.

One primary motivation for this research field is to use the learned in-

formation in various downstream tasks, such as image manipulation and

reinforcement learning. Due to their nature, e.g., being semantically mean-

ingful and disentangled, the representations can hopefully improve modern

computer systems’ reasoning and planning capabilities. In other words, the

hope is to enable artificially intelligent systems to perceive visual input and

draw conclusions in a more general, human form.

1.2 Technical introduction

The VAE [12, 29] is one of the foundational architectures in modern-day

deep learning. It serves as a generative model and a representation learning

technique. The generative model is predominantly exploited in computer

vision [30, 31, 32, 33] with notable exceptions such as generating combina-

torial graphs [34]. As for representation learning, there is a variety of appli-

cations, ranging over image interpolation [35], one-shot generalization [36],

language models [37], speech transformation [38], and more. Aside from di-

rect applications, VAEs embody the success of variational methods in deep

learning and have inspired a wide range of ongoing research [32, 39].
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1.2 Technical introduction

Figure 1.1: Latent traversals over a single latent coordinate on

two exemplary images from the CelebA dataset [40] for a

trained β Variational Autoencoder (β-VAE). The latent

coordinate isolates the azimuth angle.

This thesis wants to shed light on the inner workings of VAEs, focusing

on their disentanglement capabilities. Under a variety of disentanglement

metrics [13, 14, 41, 15], VAE-based architectures (β-VAE [13], Total Corre-

lation Variational Autoencoder (TC-VAE) [41], Factorized Variational Au-

toencoder (FactorVAE) [14], Disentangled Inferred Prior Variational Au-

toencoder (DIP-VAE) [16], Slow Variational Autoencoder (SlowVAE) [17])

dominate the benchmarks, leaving behind other approaches such as Infor-

mation Maximizing Generative Adversarial Network (InfoGAN) [18] and

Deep Convolution Inverse Graphics Network (DCIGN) [30]. An illustration

of their success is given in Figure 1.1, which shows an example of a latent

traversal for a β-VAE in which precisely one generative factor is isolated

(face-camera angle).

The success of VAE-based architectures on disentanglement tasks comes

as a particular surprise. One astonishing aspect is that VAEs have been

challenged on both of their own design functionalities, i.e., as generative

models [42, 43] and as log-likelihood optimizers [44, 45]. Yet, no such

claims are made in terms of disentanglement. Another surprise stems from

disentanglement requiring that the representative low-dimensional manifold

is aligned well with the coordinate axes. In other words, learning a repre-

sentation that recovers the true generating factors necessitates a specific
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1 Introduction

alignment of that representation, i.e., it is not invariant under arbitrary ro-

tations. However, the design of the VAE does not suggest any such mecha-

nism. On the contrary, the idealized log-likelihood objective is, for example,

invariant to rotational changes in the alignment.

Such observations have planted a suspicion that the inner workings of the

VAE are not sufficiently understood. Several recent works approached this

issue [46, 47, 48, 49, 43, 50, 41, 51]. However, a mechanistic explanation

for the VAE’s unexpected ability to disentangle was still missing.

The first half of this thesis focuses on similarities between VAEs and PCA.

We show that the canonical design choices made around VAEs have essen-

tial consequences for the representations learned. By choosing a zero mean

and unit variance normal prior for the latent space, combined with a diago-

nal covariance matrix normal posterior, the Jacobian of the decoder model

strives for orthogonality. This is a substantial similarity to PCA. We can

additionally show that these orthogonal axes align precisely in the case of

a linear VAE.

The central hypothesis of the second half of this thesis is that all unsuper-

vised, VAE-based disentanglement architectures are successful because they

exploit the same structural bias in the data. The ground truth generating

factors align well with the “nonlinear Principal Components (PCs)” that

VAEs strive for. This bias can be reduced by introducing a slight change in

the local correlation structure of the input data, which, however, perfectly

preserves the set of generative factors. We evaluate a set of approaches on

slightly modified versions of the two leading datasets in which each image

undergoes a modification inducing a small amount of variance. We report

drastic drops in disentanglement performance on the altered datasets.
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1.3 Related work

1.3 Related work

The related work can be categorized into three research questions: (i) defin-

ing disentanglement and metrics capturing the quality of latent representa-

tions; (ii) architecture development for unsupervised learning of disentan-

gled representations; and (iii) understanding the inner workings of existing

architectures, as of β-VAEs. This work is built upon results from all three

lines of research. After looking into these three branches, this section will

summarize published follow-up research built upon our work.

Defining disentanglement. Defining the term disentangled representation

is an open question [19]. The presence of learned representations in down-

stream tasks of machine learning, such as object recognition, natural lan-

guage processing, and others, created the need to “disentangle the factors

of variation” [11] early on. This vague interpretation of disentanglement is

inspired by the existence of a low-dimensional manifold that captures the

variance of higher-dimensional data. As such, finding a factorized, statisti-

cally independent representation became a core ingredient of disentangled

representation learning and dates back to classical Independent Component

Analysis (ICA) models [52, 53]. For some tasks, the desired feature of a

disentangled representation is that it is semantically meaningful. Promi-

nent examples can be found in computer vision [54, 55] and in research

addressing the interpretability of machine learning models [56, 57]. Based

on group theory and symmetry transformations, [19] provides the “first

principled definition of a disentangled representation”. Closely related to

this concept is also the field of causality in machine learning [58, 59], more

specifically, the search for causal generative models [60, 61]. In terms of im-

plementable metrics, a variety of quantities have been introduced, such as

the β-VAE score [13], Separated Attribute Predictability (SAP) score [16],

Disentanglement Completeness Informativeness (DCI) scores [62] and the

Mutual Information Gap (MIG) [41].
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Architecture development. The leading architectures for disentangled

representation learning are based on VAEs [12]. Although initially devel-

oped as a generative modeling architecture, its variants have proven to

excel at representation learning tasks. In particular, the β-VAE [13] per-

forms remarkably well, as it exposes the trade-off between reconstruction

and regularization via an additional hyperparameter. Other architectures

have been proposed that additionally encourage statistical independence

in the latent space, e.g., FactorVAE [14] and TC-VAE [41]. The DIP-

VAE [16] suggests using moment-matching to close the distribution gap

introduced in the original VAE paper. Using data with auxiliary labels,

e.g., time indices of time series data, for which the conditional prior la-

tent distribution is factorized, allowed [63] to circumvent the unidentifia-

bility of previous models. Similarly, [17] used a sparse temporal prior for

developing an identifiable model that also performs well on natural data.

In this work, we also compare to representations learned by Permutation

Contrastive Learning (PCL) [64]. This non-variational method conducts

nonlinear ICA, also assuming temporal dependencies between the sources

of variance. Contrastive methods have shown to be capable of inverting

generating processes as desired for representation learning [65]. Another

approach utilizes weak supervision on Generative Adversarial Networks

(GANs) [42] to achieve disentangled representations in their underlying la-

tent space [66].

Understanding inner workings. With the rising success and development

of VAE-based architectures, the question of understanding their inner work-

ing principles became dominant in the community. One line of work tries

to answer why these models disentangle at all [46]. Another research direc-

tion revelead the tight connection between the vanilla β-VAE objective and

(probabilistic) PCA [67, 68]. The role of the regularization in β-VAEs was

explicitly investigated in [69]. They analyze models under a second-order

expansion, retrieving similar results regarding orthogonality for the case of

β-VAEs. A broad field study was presented in [15], where they conducted

6
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a set of experiments, questioning the relevance of the specific model archi-

tecture compared to the choice of hyperparameters and the variance over

restarts. They also formalized the necessity of inductive biases as a strict

requirement for unsupervised learning of disentangled representations via

an “impossibility result”. Their statement is closely linked to the general

unidentifiability theorem for nonlinear ICA [70]. The experiments presented

in Chapter 4 are built on their code-base.

Research built upon our work. Building on our findings, novel approaches

for model selection were proposed in [71]. They utilize that the local or-

thogonality of a model can be estimated without access to any labeled data.

Consequently, it is possible to perform completely unsupervised model selec-

tion based on which model appears to be most orthogonal, thereby reducing

the variance of disentanglement quality over restarts.

The work described in [72] makes explicit use of the observation that or-

thogonality is key to the success of β-VAEs. By restricting the model class

to locally orthogonal models, they allow for direct control over that feature

rather than promoting it indirectly through the VAE loss. This emphasizes

the value of thoroughly understanding the inner working of existing archi-

tectures.

The difference between the data’s local and global variance structures is

investigated in [73]. Unlike the classical linear directions of variance in a

dataset that PCA isolates, the local effects of a generating factor can be

manipulated without distorting the dataset much. Their work evaluates the

correlation between local structure, global structure, and different types of

embeddings. The work concludes with the observation that a discrepancy

in the local and global variance structure is detrimental to the disentangle-

ment quality, which is consistent with what is presented in this thesis.
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Chapter 2 Background

This chapter reviews the basics of PCA, Autoencoders (AEs), VAEs, Sin-

gular Value Decomposition (SVD) and disentanglement.

2.1 Principal component analysis

Let {x(i)}ni=1 be a dataset consisting of n i.i.d. samples x(i) ∈ X ⊂ Rm of a

random variable with zero mean. PCA solves the task of finding an orthog-

onal matrix that transforms a dataset such that the variance is maximized

along one axis, followed by another one, and so on. The solution to this

problem is strongly connected to the eigenvectors of the sample covariance

matrix CX , defined as

CX =
X>X

n− 1
(2.1)

where the data matrix X ∈ Rn×m is

X =


x(1)>

x(2)>

...

x(n)>

 . (2.2)

Assuming that CX has m linearly independent eigenvectors, it can be de-

composed into

CX = QΛQ−1

9



2 Background

where Q =
(
q(1),q(2), . . . ,q(m)

)>
contains the eigenvectors and Λ is a diag-

onal matrix containing the sorted corresponding eigenvalues (in descend-

ing order): Λ = diag
(
λ(1), λ(2), . . . , λ(m)

)
. The first principal direction

w(1) ∈ Rm, i.e., the direction which captures the highest variance in X,

is found by optimizing

w(1) = arg max
‖w‖=1

(
(Xw)>Xw

)
= arg max

‖w‖=1

(
w>X>Xw

)
.

Naturally the first principal direction is the normalized eigenvector w(1) =
q(1)

‖q(1)‖ . Similarly, the remaining principal directions are the normalized

eigenvectors in ascending order. The requirement on the orthogonality

is satisfied as CX is symmetric by design. When using PCA for dimen-

sionality reduction, one projects a datapoint only on a certain number of

principal directions, which gives a low dimensional representation that cov-

ers maximal variance. By forming a linear combination of the normalized

eigenvectors (weighted with the projections), the original data point can be

reconstructed up to an error induced by the dimensionality reduction. An

example of PCA is illustrated in Figure 2.1. For a more rigorous introduc-

tion into PCA, see [74].

2.2 Autoencoders

Similarly to PCA, an AE operates with two mappings: The encoder

Encϕ : X → Z (what is the projection operation in PCA) and the decoder

Decθ : Z → X (the reconstruction operation), where Z ⊂ Rd is called the

latent space. Typically, Encϕ and Decθ are modeled using deep neural net-

works with or without nonlinear activation functions. The parameters θ, ϕ

are optimized according to a reconstruction loss L : X×X → R, for example

the L2 distance between the reconstructed and the original datapoint

θ∗, ϕ∗ = arg min
θ,ϕ

Ex∈X [L (Decθ (Encϕ (x)) , x)] .

10
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Figure 2.1: Principal Component Analysis: PCA with two prin-

cipal components on the three-dimensional green point

cloud isolates the direction of the largest variance (blue

line) and the orthogonal direction of the second highest

variance (orange line). The resulting plane spanned by

PCA is illustrated in blue shades.

An example of a linear and a nonlinear AE is illustrated in Figure 2.2. For

a more rigorous introduction into AEs see [75].

2.3 Variational autoencoders

In case of the VAE, both AE mappings are probabilistic and a fixed prior

distribution p(z) is assumed. Since the distribution over x is also fixed

(actual data distribution q(x)), the mappings Encϕ and Decθ induce joint

distributions q(x, z) = qϕ(z|x)q(x) and p(x, z) = pθ(x|z)p(z), respectively

(omitting the dependencies on parameters θ and ϕ). The idealized VAE

objective is then the marginalized log-likelihood

n∑
i=1

log p(x(i)). (2.3)

This objective is, however, in most cases not tractable and therefore ap-

proximated by the Evidence Lower Bound (ELBO) [12]. For a fixed x(i),

11
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Figure 2.2: Autencoder: A linear AE with two latent dimensions

(left) spans the same space as PCA (see Figure 2.1), but

has a randomly aligned coordinate system (orange and

blue line). A nonlinear AE with the same dimension-

ality (right) finds a much better fitting representation.

The surfaces spanned by the AEs are illustrated in blue

shades. In either case, the two coordinate axes are not

necessarily orthogonal.

the log-likelihood log p(x(i)) is lower bounded by

E
z∼q(z|x(i))

[
log p(x(i) | z)−DKL(q(z | x(i)) ‖ p(z))

]
, (2.4)

where the first term corresponds to the reconstruction loss and the second

to the Kullback–Leibler (KL) divergence between the latent representation

q(z | x(i)) and the prior distribution p(z). A variant, the β-VAE [13],

introduces a weighting β on the KL term for regulating the trade-off between

reconstruction (first term) and the proximity to the prior.

Finally, the prior p(z) is set to N (0, I) and the encoder is assumed to have

the form

Encϕ(x) ∼ qϕ(z|x) = N
(
µϕ(x), diag σ2

ϕ(x)
)
, (2.5)

where µϕ and σϕ are deterministic mappings depending on parameters ϕ.

Note that the covariance matrix is enforced to be diagonal. This

12
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turns out to be highly significant for the main result of this work. The

KL-divergence in (2.4) can be computed in closed form as

LKL =
1

2

d∑
j=1

(
µ2
j(x

(i)) + σ2
j (x

(i))− log σ2
j (x

(i))− 1
)
. (2.6)

In practical implementations, the reconstruction term from (2.4) is approx-

imated with either a square loss or a cross-entropy loss.

Figure 2.3: Variational Autoencoder: A linear VAE with two

latent dimensions (left) aligns perfectly with PCA (see

Figure 2.1). A nonlinear VAE with the same dimension-

ality (right) finds a much better fitting representation

that is also locally orthogonal. The surfaces spanned by

the VAEs are illustrated in blue shades.

For a more rigorous introduction into VAEs, see [76].

2.4 Singular value decomposition

The SVD is a powerful tool to decompose any matrix M ∈ Rn×d into a

product of a unitary square matrix, a diagonal matrix, and another unitary

square matrix.

Theorem (SVD rephrased, [77]). Let M : Rn → Rd be a linear transfor-

mation (matrix). Then there exist

13
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• U : Rn → Rn, an orthogonal transformation (matrix) of the input

space,

• Σ: Rn → Rd a “scale-and-embed” transformation (induced by a diag-

onal matrix),

• V : Rd → Rd, an orthogonal transformation (matrix) of the output

space

such that M = V ΣU>.

Remark 1. For the sake of brevity, orthogonal transformations will be re-

ferred to as rotations (with a slight abuse of terminology).

As our results strongly depend on an analysis of the individual components

of SVD decompositions, please refer to Figure 2.4 for an intuitive under-

standing of the decomposition. Colloquially speaking, any linear operator’s

effect can be considered a unitary operation (e.g., rotations, sign flips, per-

mutations), followed by an axis-aligned scaling and embedding into the

possibly different dimensional space, finished with another unitary opera-

tion. The fact that the unitary matrices U and V act isometrically is key

to the arguments made in this work.

Figure 2.4: Geometric interpretation of the SVD: Sequential

illustration of the effects of applying the corresponding

SVD matrices V Σ†U> (left to right) and UΣV > (right

to left).
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2.5 Disentanglement

2.5 Disentanglement

In the context of learning interpretable representations [11, 13, 46, 47, 78]

it is useful to assume that the data originates from a process with some

generating factors. For instance, for images of faces, this could be face

azimuth, skin tone, hair length, etc.. Disentangled representations can

then be defined as ones in which individual latent variables are sensitive to

changes in individual generating factors while relatively insensitive to other

changes [11]. Although quantifying disentanglement is nontrivial, several

metrics have been proposed [14, 13, 41].

In an unsupervised setting, the generating factors are unknown, and the

learning has to resort to statistical properties. Linear dimensionality re-

duction techniques demonstrate the two basic statistical approaches. PCA

greedily isolates sources of variance in the data, while ICA recovers a fac-

torized representation, see [79] for a recent review.

One important point is that disentanglement is sensitive to rotations

of the latent embedding. Following the example above, let us denote by

a, s, and h continuous values corresponding to face azimuth, skin brightness,

and hair length. Then, if the ideal latent representation is changed as followsas
h

 7→
 0.75a+ 0.25s+ 0.61h

0.25a+ 0.75s− 0.61h

−0.61a+ 0.61s+ 0.50h

 , (2.7)

one obtains an equally expressive representation in terms of reconstruction

(in fact, it is only multiplied with an invertible 3D rotation matrix). Still,

individual latent variables entirely lost their interpretable meaning.

Quantifying disentanglement

Among the different viewpoints on disentanglement, this thesis follows the

recent literature and focuses on the connection between the discovered data

representation and a set of generative factors.
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Multiple metrics have been proposed to quantify this connection. Most of

them are based on the understanding that, ideally, each generative factor

is encoded in precisely one latent variable. This was captured concisely

by [41], who proposed the MIG – the mean difference (over the nw generative

factors) of the two highest mutual information between a latent coordinate

and the single generating factor, normalized by its entropy. For the entropy

H(wi) of a generating factor and the mutual information I(wi; zk) between

a generating factor and a latent coordinate, the MIG is defined as

1

nw

nw∑
i=1

1

H(wi)

(
max
k
I (wi; zk)−max

k 6=k′
I (wi; zk)

)
, (2.8)

where k′ = arg maxκ I (wi, zκ). More details about MIG, its implementa-

tion, and an extension to discrete variables can be found in [41, 20]. Multiple

other metrics were proposed such as SAP score [16], FactorVAE score [14]

and DCI score [62]. See the supplementary material of [17] for extensive

descriptions of each quantity.
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3 The connection between PCA and VAEs

3.1 Motivation

In this chapter, we isolate an internal mechanism of the VAE responsible

for choosing a particular latent representation and its alignment. We give

theoretical analysis covering both the linear and also the nonlinear case and

explain the discovered dynamics intuitively. We show that this mechanism

promotes local orthogonality of the embedding transformation and clarify

how this orthogonality corresponds to good disentanglement. Furthermore,

we uncover a strong resemblance between this mechanism and the classical

PCA algorithm. We confirm our theoretical findings in experiments.

Our theoretical approach is structured in the following way: (a) we base

the analysis on the implemented loss function in contrast to the typically

considered idealized loss, and (b) we identify a specific regime, prevalent in

practice, and utilize it for a vital simplification. This simplification, referred

to as polarized regime, is the crucial step at the base of our formalization.

The polarized regime describes a state in which the latent space is par-

tially suffering from posterior collapse [80, 68, 81]. However, the encoder

remains almost deterministic for the remaining non-collapsed dimensions.

This behavior is well known to practitioners.

Note that we do not explicitely discriminate between VAEs and β-VAEs,

however tuning β is crucial to arrive at the polarized regime.

Ambiguous solutions to the reconstruction objective

Before looking into the VAE, let us examine more closely how PCA chooses

the alignment of the latent embedding and why it matters. It is well

known [82] that for a linear autoencoder with encoder Y ′ ∈ Rd×n, decoder

Y ∈ Rn×d, and square error as reconstruction loss, the objective

min
Y,Y ′

∑
x(i)∈X

‖x(i) − Y Y ′x(i)‖2 (3.1)
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3.1 Motivation

is minimized by the PCA decomposition. Specifically, by setting Y ′ =

Pd, and Y = P>d , where Pd ∈ Rd×n is formed by the first d normalized

eigenvectors (ordered by the magnitudes of the corresponding eigenvalues)

of the sample covariance matrix of X.

However, there are many minimizers of (3.1) that do not induce the same

latent representation. It suffices to append Y ′ with some invertible transfor-

mations (e.g., rotations and scaling) and prefix Y with their inverses. This

geometrical intuition is well captured using the SVD (see also Figure 2.4).

Example 1 (Other minimizers of the PCA objective). Define Y and Y ′

with their SVDs as Y = P>ΣQ and its pseudoinverse Y ′ = Y † = Q>Σ†P

and see that

Y Y ′ = P>ΣQQ>Σ†P = P>Id×nIn×dP = P>d Pd (3.2)

so they are also minimizers of the objective (3.1) irrespective of our choice

of Q and Σ. It is also straightforward to check that the only choices of

Q, which respect the coordinate axes given by the PCA, are for |Q| to be a

permutation matrix.

The takeaway message (also in the nonlinear case) from this example is:

Different rotations of the same latent space are equally suitable

for reconstruction.

Following the PCA example, we formalize which linear mappings have the

desired property.

Proposition 1 (Axes-preserving linear mappings). Assume M ∈ Rn×d with

d < n has d distinct nonzero singular values. Then the following statements

are equivalent:

(a) The columns of M are (pairwise) orthogonal.

(b) In every SVD of M as M = UΣV >, |V | is a permutation matrix.
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We strongly suggest developing a geometrical understanding for both cases

(a) and (b) via Figure 2.4. For an intuitive understanding of the formal

requirement of distinct eigenvalues, we refer to Section 3.3.4.

Consider that once the encoder preserves the principal directions of the

data, this already ensures an axis-aligned embedding. The same is true if the

decoder is axes-preserving, provided the reconstruction of the autoencoder

is accurate.

3.2 Methods

3.2.1 The problem with log-likelihood

The message from Example 1 and from the discussion about disentangle-

ment is clear: latent space rotation matters. We now look at how the

idealized objectives (2.3) and (2.4) handle this.

For a fixed rotation matrix U we will be comparing a baseline encoder-

decoder pair (Encϕ,Decθ) with a pair (Encϕ,U ,Decθ,U) defined as

Encϕ,U(x) = U Encϕ(x), (3.3)

Decθ,U(z) = Decθ(U
>z). (3.4)

We summarize the shortcomings of the idealized objective and its lower

bound, the ELBO, in the following two propositions.

Proposition 2 (Log-likelihood rotation invariance). Let ϕ, θ be any choice

of parameters for encoder-decoder pair (Encϕ,U ,Decθ,U). Then, if the prior

p(z) is rotationally symmetric, the value of the log-likelihood objective (2.3)

does not depend on the choice of U .

Note that the standard prior N (0, I) is rotationally symmetric. This defi-

ciency is not resolved by the ELBO approximation.
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Proposition 3 (ELBO rotation invariance). Let ϕ, θ be any choice of

parameters for encoder-decoder pair (Encϕ,U ,Decθ,U). Then, if the prior

p(z) is rotationally symmetric, the value of the ELBO objective (2.4) does

not depend on the choice of U .

For better readability, the proofs can be found in Chapter 5. An important

point now follows:

Log-likelihood-based methods (with rotationally symmetric

priors) cannot claim to be designed to produce disentangled

representations.

However, enforcing a diagonal posterior of the VAE encoder (2.5) disrupts

the rotational symmetry and the invariance arguments do consequently not

hold for the resulting objective (2.6). The breaking of the rotational sym-

metry is visualized in Figure 3.1, where the rotationally symmetric prior

is depicted alongside the non-symmetric, axis-aligned posterior. Moreover,

as we are about to see, this diagonalization comes with beneficial effects

regarding disentanglement. We assume this diagonalization was primarily

introduced for different reasons (tractability, computational convenience).

3.2.2 Reformulating VAE loss

In order to understand which component of VAEs accounts for the orthogo-

nality properties, we follow a bottom-up approach. We consider the imple-

mented loss function and find the right simplifications that allow isolating

the effects in question while preserving the original training dynamics.

We start by formalizing the typical situation in which VAE architectures

shut down (fill with pure noise) a subset of latent variables and put high

precision on the others.
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z1

z 2

(Uz)1

(U
z)

2

Figure 3.1: Latent space prior and posterior: For a rotation-

ally symmetric distribution of the latent space (spher-

ical contour lines), any transformation thereof would

be invariant under rotations in latent space (and con-

sequently so the log-likelihood and the ELBO). The ro-

tational symmetry is instead broken by the diagonal-

ization of the normal posterior (illustrated by the local

heatmaps), which leads to axis-aligned representations.

Definition 1. We say that parameters ϕ, θ induce a polarized regime if the

latent coordinates {1, 2, . . . , d} can be partitioned as Va ∪ Vp (sets of active

and passive variables) such that

(a) µ2
j(x)� 1 and σ2

j (x) ≈ 1 for j ∈ Vp,

(b) σ2
j (x)� 1 for j ∈ Va,

(c) The decoder ignores the passive latent components, i.e.,

∂Decθ(z)

∂zj
= 0 ∀j ∈ Vp.

The polarized regime simplifies the loss LKL from (2.6); part (a) ensures zero

loss for passive variables and part (b) implies that σ2
j (x) � − log(σ2

j (x)).

The per-sample-loss reduces to

L≈KL(x(i)) =
1

2

∑
j∈Va

(
µ2
j(x

(i))− log(σ2
j (x

(i)))− 1
)
. (3.5)
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We will assume the VAE operates in the polarized regime. In

Section 3.3.2, we show on multiple tasks and datasets that the two objectives

align very early in the training. This behavior is well-known to practitioners.

Also, we approximate the reconstruction term in (2.4), as it is most com-

mon, with a square loss

Lrec(x
(i)) = E ‖Decθ(Encϕ(x(i)))− x(i)‖2 (3.6)

where the expectation is over the stochasticity of the encoder. The loss we

analyze has the form ∑
x(i)∈X

Lrec(x
(i)) + L≈KL(x(i)). (3.7)

Moreover, the reconstruction loss can be further decomposed into two parts;

deterministic and stochastic. The former is defined by

Lrec(x
(i)) = ‖Decθ(µ(x(i)))− x(i)‖2 (3.8)

and captures the square loss of the mean encoder. The stochastic loss

L̂rec(x
(i)) = E ‖Decθ(µ(x(i)))−Decθ(Encϕ(x(i)))‖2 (3.9)

is purely induced by the noise injected into the encoder.

Proposition 4. If the stochastic estimate Decθ(Encϕ(x(i))) is unbiased

around Decθ(µ(x(i))), then

Lrec(x
(i)) = Lrec(x

(i)) + L̂rec(x
(i)). (3.10)

This decomposition resembles the classical bias-variance decomposition of

the square error [83].
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3.2.3 VAEs strive for orthogonality

Now, we finally give theoretical evidence for a central claim of this thesis:

Optimizing the stochastic part of the reconstruction loss

promotes local orthogonality of the decoder.

On that account, we set up an optimization problem that allows us to

optimize the stochastic loss (3.9) independently of the other two. This will

isolate its effects on the training dynamics.

In order to make statements about local orthogonality, we introduce for

each x(i) the Jacobian (linear approximation) Ji of the decoder at point

µ(x(i)), i.e.,

Ji =
∂Decθ(µ(x(i)))

∂µ(x(i))
.

According to (2.5), the encoder can be written as

Encϕ(x(i)) = µ(x(i)) + ε(x(i)) (3.11)

with

ε(x(i)) ∼ N
(
0, diag σ2(x(i))

)
. (3.12)

Therefore, we can approximate the stochastic loss (3.9) with

E
ε(x(i))

∥∥Decθ(µ(x(i)))−
(
Decθ(µ(x(i))) + Jiε(x

(i))
)∥∥2

= E
ε(x(i))

‖Jiε(x(i))‖2, (3.13)

Although we aim to fix the deterministic loss (3.8), we do not need to

freeze the mean encoder and the decoder entirely. Following Example 1, for

each Ji and its SVD Ji = UiΣiV
>
i , we are free to modify Vi as long as we

correspondingly (locally) modify the mean encoder.
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Then we state the optimization problem as follows:

min
Vi,σi

j>0

∑
x(i)∈X

log E
ε(x(i))

‖Jiε(x(i))‖2 (3.14)

s. t.
∑

x(i)∈X

L≈KL(x(i)) = C, (3.15)

where ε(x(i)) are sampled as in (3.12).

A few remarks are now in place.

• This optimization is not over network parameters but rather directly

over the values of all Vi, σ
i
j (only constrained by (3.15)).

• Both the objective and the constraint concern global losses, not per

sample losses.

• None of Vi, σ
i
j interfere with the rest of the VAE objective (3.7).

The presence of the (monotone) log function has one main advantage; we

can describe all global minima of (3.14) in closed form. This is captured

in the following theorem, the technical core of this work.

Theorem 1 (Main result). The following holds for optimization problem

(3.14, 3.15):

(a) Every local minimum is a global minimum.

(b) In every global minimum, the columns of every Ji are orthogonal.

The full proof and an explicit description of the minima are given in Sec-

tion 5.1. However, an outline of the main steps is provided in the next

section on the example of a linear decoder.

The presence of the log term in (3.14) admittedly makes our argument

indirect. There are, however, a couple of points to make. First, as was

mentioned earlier, encouraging orthogonality was not a design feature of the

VAE. In this sense, it is unsurprising that our results are also mildly indirect.

Additionally, and more importantly, the global optimality of Theorem 1 also
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3 The connection between PCA and VAEs

implies that local orthogonality is encouraged even for the pure (without

the logarithm) stochastic loss.

Corollary 1. For fixed x(i) ∈ X consider a subproblem of (3.14) defined as

min
Vi,σi

j>0
E

ε(x(i))
‖Jiε(x(i))‖2 (3.16)

s. t. L≈KL(x(i)) = Ci. (3.17)

Also then, the result on the structure of local (global) minima holds:

(a) Every local minimum is a global minimum.

(b) In every global minimum, the columns of every Ji are orthogonal.

All in all, Theorem 1 justifies the central message of this chapter. The

analogy with PCA is now also clearer. Locally, VAEs optimize a tradeoff

between reconstruction and orthogonality. This result is unaffected by the

potential β term in Equation (2.4), although an appropriate β might be

required to ensure the polarized regime.

3.2.4 Proof outline: A hands-on example

In this section, we sketch the key steps in the proof of Theorem 1 and, more

notably, the intuition behind them. The proof can be found in Section 5.1.

We will restrict ourselves to a simplified setting. Consider a linear decoder

M with SVD M = UΣV T , which removes the necessity of local lineariza-

tion. This reduces the objective (3.14) from a “global” problem over all

examples x(i) to an objective where we have the same subproblem for each

x(i). As in optimization problem (3.14, 3.15), we resort to fixing the mean

encoder (imagine a well performing one). In the following paragraphs, we

separately perform the optimization over the parameters σ and the opti-

mization over the matrix V .
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Weighting precision

For this part, we fix the decoder matrix M and optimize over values σ2 =

(σ2
1, . . . , σ

2
d). The simplified objective is

min
σ

E
ε∼N (0,diag(σ2))

‖Mε‖2 (3.18)

s. t.
∑
j

− log σ2
j = C, (3.19)

where the ‖µ‖2 terms from (3.5) disappear since the mean encoder is fixed.

The values − log(σj) can now be thought of as precisions allowed for dif-

ferent latent coordinates. The log function even suggests thinking of the

number of significant digits. Problem (3.18) then asks to distribute the “to-

tal precision budget“ so that the deviation from decoding “uncorrupted”

values is minimal.

We will now solve this problem on an example linear decoder M1 : R2 → R3

given by

M1 :

(
x

y

)
7→

 4x+ y

−3x+ y

5x− y

 . (3.20)

Already here we see, that the latent variable x seems more influential for the

reconstruction. We would expect that x receives higher precision than y.

Now, for ε = (εx, εy), we compute

‖M1ε‖2 = ‖4εx + εy‖2 + ‖−3εx + εy‖2 + ‖5εx − εy‖2

and after taking the expectation, we can use the fact that ε has zero mean

and write

E ‖M1ε‖2 =

var[4εx + εy] + var[−3εx + εy] + var[5εx − εy].
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3 The connection between PCA and VAEs

Finally, for uncorrelated random variables A and B we have that var[A +

cB] = var[A] + c2 var[B]. After rearranging we obtain

E ‖M1ε‖2 = σ2
x(4

2+ (−3)2 + 52)+σ2
y(1

2 + 12+ (−1)2)

= 50σ2
x + 3σ2

y,

where σ = (σ2
x, σ

2
y). Note that the coefficients are the squared norms of

the column vectors of M1.

This turns the optimization problem (3.18) into a simple exercise, particu-

larly after realizing that (3.19) fixes the value of the product σxσy. Indeed,

we can even set a2 = 50σx and b2 = 3σy in the trivial inequality a2+b2 ≥ 2ab

and find that

E ‖M1ε‖2 = 50σ2
x + 3σ2

y ≥ 2 ·
√

50 · 3 · e−C ≈ 24.5e−C , (3.21)

with equality achieved when σ2
x/σ

2
y = 3/50. This also implies that the

precision − log σ2
x on variable x will be considerably higher than for y, just

as expected.

Two remarks regarding the general case follow.

• The full version of inequality (3.21) relies on the concavity of the log

function; in particular, on (a version of) Jensen’s inequality.

• The minimum value of the objective depends on the product of the

column norms. This also carries over to the un-simplified setting.

Isolating sources of variance

Now that we can find optimal values of precision, the focus changes on opti-

mally rotating the latent space. In order to understand how such rotations

influence the minimum of objective (3.18), let us consider the following

example in which we again resort to decoder matrix M2 : R2 → R3.

Imagine, the encoder alters the latent representation by a 45◦ rotation.

Then we can adjust the decoder M1 by first undoing this rotation. In
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particular, we set M2 = M1R
>
45◦ , where Rθ is a 2D rotation matrix, rotating

by angle θ. We have

M2 :

(
x′

y′

)
7→


1
2

√
2(3x′ + 5y′)

√
2(−2x′ − y′)
√

2(3x′ + 2y′)


and performing analogous optimization as before gives

E ‖M2ε‖2 =
61

2
σ2
x+

45

2
σ2
y ≥ 2

√
61 · 45

4
e−C≈52.4e−C . (3.22)

We see that the minimal value of the objective is more than twice as high,

a substantial difference. On a high level, the reason M1 was a better choice

of a decoder is that the variables x and y had a very different impact on

the reconstruction. This allowed to save some precision on variable y, as it

had a smaller effect, and use it on x, where it is more beneficial.

For a higher number of latent variables, one way to achieve a “maximum

stretch” among the impacts of latent variables, is to pick them greedily,

always picking the next one so that its impact is maximized. This is, at

heart, the greedy algorithm for PCA.

Let us consider a slightly more technical statement. We saw in (3.21) and

(3.22) that after finding optimal values of σ the remaining objective is the

product of the column norms of matrix M . Let us denote such quantity by

colΠ(M) =
∏

j ‖M·j‖. Then for a fixed matrix M , we optimize

min
V

colΠ(MV >) (3.23)

over orthogonal matrices V . This problem can be interpreted geometrically.

The column vectors of MV > are the images of base vectors ej. Conse-

quently, the product gives an upper bound on the volume (the image of the

unit cube) ∏
j

‖MV >ej‖ ≥ Vol({MV >x : x ∈ [0, 1]d}) . (3.24)
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Product Vol

Figure 3.2: Orthogonality in MV >: The vectors w1, w2 are the

columns of MV >. Minimizing the product ‖w1‖‖w2‖
while maintaining the volume ‖w1‖‖w2‖ cos(α) results

in w1 ⊥ w2.

However, as orthogonal matrices V are isometries, they do not change this

volume. Also, the bound (3.24) is tight precisely when the vectors MV >ej

are orthogonal. Hence, the only way to optimize colΠ(MV >) is by tight-

ening the bound by finding V for which the column vectors of MV > are

orthogonal, see Figure 3.2 for an illustration. In this regard, it is important

that M performs a different scaling along each of the axis (using Σ), which

allows for changing the angles among the vectors MV >ej (c.f. Figure 2.4).

3.2.5 Intuitive picture: KL loss as “precision budget”

In this subsection we want to provide an intuitive picture for interpreting

the optimization problem (Equations (3.18) and (3.19)) as well as Theo-

rem 1. The optimization objective 3.18 comprises the reconstruction error

induced by the stochastic nature of the encoding. For the reconstruction

objective, the effects of the non-zero log σ2
j are detrimental, i.e., the recon-

struction loss increases with increasing σ2
j . Consequently, an intuitive way

of thinking about the remainder of the KL loss in constraint 3.19 is to in-

terpret them as causing noise-contamination of the latent space or inversely

as a “precision budget”.
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Stepping back from the simplified optimization problem in the polarized

regime and looking at the vanilla VAE objective, we plot the KL loss 2.6

for one latent dimension (the index is omitted) in Figure 3.3.

2

0
1

2
3 0

1
2

3

KL
 L

os
s

1 2

Figure 3.3: KL loss landscape for the vanilla VAE implementation

with the canonical prior and posterior. The loss is zero

for µi = 0 and σi = 1, which corresponds to data-point

independent noise.

The KL loss is minimal for µ = 0 and σ2 = 1, values for which reconstruc-

tion beyond the mean of the data is intrinsically impossible as the latent

representation does not contain information about the encoded image. To

encode information about the input data in the latent representation, the

mean has to deviate from zero, and the values of σ2 have to decrease, for

example, along the green line in Figure 3.3. This increase in the KL loss

has to be balanced by a decrease in reconstruction loss – the well-known

classical trade-off that initially inspired the β-VAE.

The constraint 3.19 tells us how much the model can deviate from σ2
j = 1

on a logarithmic scale, summed over all latent dimensions. As it turns

out, the β-VAE distributes the values of σj according to the variance in
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3 The connection between PCA and VAEs

the data. Like in the linear example of Section 3.2.4 where the variable x

induces a much larger variance as y, the best way to distribute the noise

on the two variables is by making the representation of x more informative,

i.e., have lower noise. Consequently, higher noise on y has to be accepted.

The logarithmic scale even allows thinking of the KL loss as a “price per

signal-carrying decimal place”.

3.2.6 DtO via integer programming

For measuring the effects of Theorem 1, we introduce a measure of non-

orthogonality. As argued in Proposition 1 and Figure 2.4, for a good de-

coder M and its SVD M = UΣV >, the matrix V should be trivial (a

signed permutation matrix). We measure the deviation with the Distance

to Orthogonality (DtO), defined as follows. For each x(i), i = 1, . . . , N , the

Jacobian Ji of the decoder at x(i) and its SVD Ji = UiΣiV
>
i , we define

DtO =
1

N

N∑
i=1

‖Vi − P (Vi)‖F , (3.25)

where ‖·‖F is the Frobenius norm and P (Vi) is a signed permutation matrix

that is closest to V (in L1 sense).

Using Mixed-Integer Linear Programming (MILP) formulation, we find the

closest permutation matrix as the optimum P ∗ of the following optimization

problem

min
P

∑
i,j

|Vi,j − Pi,j| (3.26)

s.t. Pi,j ∈ {−1, 0, 1} ∀ (i, j)∑
i

|Pi,j| = 1 ∀ j∑
j

|Pi,j| = 1 ∀ i.

Producing a clean MILP formulation with a purely linear objective and

binary integer values can be achieved with a standard technique:
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By introducing new variables. In particular, we set

Pi,j = P+
i,j − P−i,j (3.27)

for P+
i,j, P

−
i,j ∈ {0, 1} ∀ (i, j)

and introduce (continuous) variables for the differences Vi,j − Pi,j

Vi,j − Pi,j ≤ Di,j ∀ (i, j) (3.28)

Pi,j − Vi,j ≤ Di,j ∀ (i, j).

The final formulation then is

min
P

∑
i,j

Di,j (3.29)

s.t. (P+
i,j − P−i,j)− Vi,j ≤ Di,j ∀ (i, j)

Vi,j − (P+
i,j − P−i,j) ≤ Di,j ∀ (i, j)∑

i

(
P+
i,j + P−i,j

)
= 1 ∀ j∑

j

(
P+
i,j + P−i,j

)
= 1 ∀ i.

3.2.7 β-VAE with full covariance matrix

In the derivation of the VAE loss function, the approximate posterior is set

to be a multivariate normal distribution with a diagonal covariance matrix.

We claim that this diagonalization is responsible for the orthogonalization.

As one of the control experiments in Section 3.3 we also implemented VAE

with a full covariance matrix.

Two issues now need to be addressed; computing KL divergence in closed

form and adapting the reparameterization trick. Regarding the former, the

sought identity is

DKL(N (µ,Σ) ‖ N (0, Ik)) (3.30)

=
1

2

(
‖µ‖2 + tr (Σ)− log (det (Σ))− k

)
.
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As for the reparameterization trick, if ε ∼ N (0, Ik), it is easy to check that

µ+ Σ1/2ε ∼ N (µ,Σ), (3.31)

where Σ = Σ1/2 ·
(
Σ1/2

)>
is the unique Cholesky decomposition of the

positive definite matrix Σ.
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3.3 Experiments

3.3 Experiments

We performed several experiments with different architectures and datasets

to validate our results empirically. We show the prevalence of the polarized

regime, the strong thrive towards orthogonality in the β-VAE, and the links

to disentanglement.

3.3.1 Setup

Architectures: We evaluate the classical VAE, β-VAE, a plain AE, and β-

VAEΣ, where the latter removes the critical diagonal approximation (Equa-

tion (2.5)) and produces a full covariance matrix Σ(x(i)) for every sample.

The resulting KL term of the loss is changed accordingly (see Section 3.2.7

for details).

Datasets: We evaluate on the well-known datasets dSprites [84], MNIST [85]

and FashionMNIST [86], as well as on two synthetic ones. For both syn-

thetic tasks, the input data X is generated by embedding a unit square

V = [0, 1]2 into a higher dimension. The latent representation is then ex-

pected to be disentangled with respect to axes of V . In one case (Synth.

Lin.) we used a linear transformation flin : R2 → R3 and in the other one a

nonlinear (Synth. Non-Lin.) embedding fnon−lin : R2 → R6.

Disentanglement metric: For quantifying the disentanglement of a rep-

resentation, the so-called MIG was introduced in [41] (see Section 2.5). As

MIG is not well defined for continuous variables, we use an adjusted def-

inition comprising both continuous and discrete variables, referred to as

Disentanglement Score (DS). As in the case of MIG, the DS is a number

between 0 and 1, where a higher value means stronger disentanglement.
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Table 3.1: Experimental details: Overview of the used datasets

and network architectures. The nonlinearities are only

applied in the hidden layers. Biases are used for all

datasets.

Optimizer

(LR)

Architecture Latent

Dim.

Epochs β

dSprites AdaGrad Enc: 1200− 1200 (ReLu) 5 50 4

(10−2) Dec: 1200− 1200− 1200 (tanh)

Synth. Lin. Adam Enc: No hidden Layers (none) 2 600 10−4

(10−3) Dec: No hidden Layers (none)

Synth. Non-Lin. Adam Enc: 60− 40− 20 (tanh) 2 600 10−3

(10−3) Dec: 60− 40− 20 (tanh)

MNIST AdaGrad Enc: 400 (ReLu) 6 400 1

(10−2) Dec: 500− 500 (tanh)

fMNIST AdaGrad Enc: 400 (ReLu) 6 500 1

(10−2) Dec: 500− 500 (tanh)

CelebA Adam Conv/Deconv: [# kernels, kernel size, stride] 32 50 4

(10−4) Enc: [[32, 4, 2], [32, 4, 2], [64, 4, 2], [64, 4, 2]]

(ReLu)

Dec: [[64], [64, 4, 2], [32, 4, 2], [32, 4, 2], [3, 4, 2]]

(ReLu), first layer fully connected

Network details and training

Table 3.1 contains the training parameters used for the different architec-

tures. If applicable, the listed latent dimension is chosen to be the number

of independent generating factors and otherwise chosen large enough to

ensure decent reconstruction loss on all architectures.

All reported numbers are calculated using a previously unseen test dataset.

To facilitate this, we split the whole datasets randomly into three parts for

training, evaluation, and test (containing 80 %, 10 % and 10 % of all samples,

respectively). During development, we used the evaluation dataset; for the

reported numbers, we used the test dataset.
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Disentanglement score

For disentangled representations, single latent variables should be sensitive

to individual generating factors and insensitive to all others. To quantify

this behavior, for each generating factor wi, all latent variables are evalu-

ated for their sensitivity to wi. The sensitivity difference between the two

most responsive variables then reflects both desired properties; the sensi-

tivity of the associated best matching latent variable and the insensitivity

of all others. A set of quantities capturing disentanglement can therefore

be described as

DS =
1

Nlabels

N∑
i=1

(
Ai,m(i) − Ai,s(i)

Mi

)
(3.32)

for m(i) = arg max
l

(Ai,l) (3.33)

for s(i) = arg max
k 6=m(i)

(Ai,k) , (3.34)

where Ai,j is some sensitivity measure of latent variable zj concerning the

generating factor wi and Mi is a normalization constant, ensuring the sum-

mands fall into the interval (0, 1).

The MIG uses mutual information to measure how the latent variables

depend on the generating factors. For the normalization, the entropy of the

generating factor is used.

Ai,j = MI(wi, zj) (3.35)

Mi = H(wi) (3.36)

For discrete generating factors {wi}, the normalization with the entropy

H(wi), binds the MIG to the (0, 1) interval, as expected. On the other side,

this does not hold for continuous generating factors. Differential entropy

can be zero or even negative, and no suitable normalization is possible.

To treat this shortcoming, we report the slightly modified DS such that it

comprises continuous and discrete variables alike. Rather than using mutual

information measurements, we employ powerful nonlinear regressors and
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classifiers for the two different classes of latent variables. The predictability

of a generating factor from a given latent coordinate indirectly reflects how

much information the two share.

Accordingly, we define the DS as in Equation (3.32) by defining Ai,j as the

prediction performance of the regressor/classifier for predicting generating

factor wi from the latent coordinate zj. The normalization factor is then

the performance of the best constant classifier/regressor. In the case of

regression with mean square error, this is the standard deviation of the

generative factor.

More precisely,

Ai,j =


√

var(wi)−
√

msezj→wi
, for regression

accuracyzj→wi
, for classification

(3.37)

and

Mi =


√

var(wi), for regression.

accuracyconst
zj→wi

, for classification.

We used the SciPy [87] implementation of a k-nearest-neighbors classifier

and regressor with default settings (k = 5) to measure the DS. The re-

gressor/classifier was trained on 80 % of the test data and evaluated on the

remaining 20 %.

Synthetic datasets

The linear synthetic dataset is generated with a transformation flin : R2 →
R3, mapping a unit square V = [0, 1]2 to a 3-dimensional space. The

transformation can be decomposed into:

• stretching along one axis by a fixed factor of 2,

• trivial embedding into R3,

• rotation of 45◦ along the line containing the vector (1,−1, 1).
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For the nonlinear dataset, the transformation fnon−lin : R2 → R6 is realized

by a random initialization of a Multilayer Perceptron (MLP) with one hid-

den layer (width 10), biases and tanh nonlinearities. Both datasets consist

of 50000 samples.

3.3.2 Polarized regime

In Section 3.2.2, we assumed VAEs operate in a polarized regime and ap-

proximated LKL, the KL term of the implemented objective (2.6), with

L≈KL (3.5). In Table 3.2 we show that the polarized regime dominates the

training in all examples after a short initial phase. We report the fraction

of the training time in which the relative error

∆KL =
|LKL − L≈KL|

LKL

(3.38)

stays below 3 % continuously until the end (evaluated every 500 batches).

Active variables can be selected by
√

var (µj (x(i))) > 0.5.

Table 3.2: Validity of polarized regime: Percentage of training

time where ∆KL < 3 % (Equation (3.38)) continuously

until the end. Reported for β-VAE with exact (dataset

dependent) and high (10) latent dimension.

β-VAE (dep.) β-VAE (10)

dSprites 97.8 % 90.6 %

fMNIST 99.8 % 97.7 %

MNIST 99.8 % 99.5 %

Synth. Lin. 99.8 % 96.7 %

Synth. Non-Lin. 99.9 % 98.5 %
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Table 3.3: Orthogonality and disentanglement: Results for the

distance to orthogonality DtO of the decoder (Equa-

tion (3.25)) and DS for different architectures and

datasets. Lower DtO values are better and higher DS

values are better. Random decoders provide a simple

baseline for the numbers.

β-VAE VAE AE β-VAEΣ Random Decoder

dSprites DS ↑ 0.33± 0.15 0.21± 0.10 0.09± 0.04 0.12± 0.06

DtO ↓ 0.76± 0.08 1.08± 0.15 1.62± 0.03 1.73± 0.14 1.86± 0.11

Synth. Lin. DS ↑ 0.99± 0.01 – 0.71± 0.19 0.71± 0.31

DtO ↓ 0.00± 0.00 – 0.33± 0.18 0.34± 0.35 0.79± 0.21

Synth. Non-Lin. DS ↑ 0.73± 0.16 – 0.59± 0.30 0.42± 0.24

DtO ↓ 0.18± 0.02 – 0.54± 0.13 0.55± 0.02 0.89± 0.16

MNIST DtO ↓ – 1.59± 0.08 1.83± 0.05 1.93± 0.08 2.11± 0.11

fMNIST DtO ↓ – 1.36± 0.05 1.87± 0.03 2.02± 0.08 2.11± 0.11

3.3.3 Orthogonality and disentanglement

Now, we provide evidence for Theorem 1 by investigating the DtO (Equa-

tion (3.25)) for a variety of architectures and datasets, see Table 3.3. The

results support the claim that the VAE-based architectures indeed strive for

local orthogonality. By generalizing the β-VAE architecture, such that the

approximate posterior is any multivariate Gaussian (β-VAEΣ), the objective

becomes rotationally symmetric (just as the idealized objective). As such,

no specific alignment is prioritized. The AE also does not favor particular

orientations of the latent space.

Some dataset-architecture combinations listed in Table 3.3 are omitted for

the following reasons. On the one hand, calculating the DS for MNIST and

fMNIST does not make sense, as the generating factors are not given (the

categorical label cannot serve as a replacement). Consequently, as the values

of β are chosen according to this score, we do not report β-VAE numbers

for these datasets. On the other hand, for either synthetic task, the regular

VAE vastly over-prunes, see Figure 3.7, and the values become meaningless.
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Another important observation is the clear correlation between DtO and

DS. We show this in Figure 3.4 where we plot results from different restarts

of the same β-VAE architecture on the dSprites dataset. We used the

literature value β = 4 [13].
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Figure 3.4: Orthogonality vs. Disentanglement: Axis align-

ment of the latent representation (low DtO) results in

better disentanglement (higher score). Each data point

corresponds to an independent run with 10, 30, or 50

epochs.

3.3.4 Degenerate case

Proposition 1 insists that the locally linearized decoder have distinct sin-

gular values. Otherwise, the orthogonality of the column vectors does not

translate into preserving axes. Here, we design an experiment showing that

this condition is relevant in practice.

The dataset in question will be a version of the linear synthetic task where

the generating factors have the same scaling, as visualized in the upper plot

of Figure 3.5. Note that any linear encoder applying a simple rotation has

both orthogonal columns and equal singular values. But it does not respect

the alignment of the original square, as it does not meet the assumptions

of Proposition 1.
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The behavior of the β-VAE with a linear encoder/decoder network is con-

sistent with this. The bottom part of Figure 3.5 shows β-VAE latent rep-

resentations of four random restarts; they expose random alignments. The

same effect results in high variances for both DS and DtO, as shown in Ta-

ble 3.4. This degeneracy also occurs for PCA. It is easy to check that any

Figure 3.5: Degenerate singular values: For strong degeneracy,

e.g., in the synthetic dataset with the two generating fac-

tors w1 and w2 on equal, uniform scale (top), the linear

β-VAE generates arbitrarily rotated latent representa-

tions (bottom) here for the linear synthetic dataset.

projection of a unit square on a line has equal variance. Hence the greedy

PCA algorithm has no preference over which alignment to choose, and the

practical choice of alignment is implementation dependent.

This insight reinforces our point that β-VAE (just like PCA) looks for

sources of variance rather than for statistical independence. We can also

see in Table 3.4 that the degeneracy disappears even for small rescaling of

the ground truth factors. Since β-VAE promotes normalized latent repre-

sentations (zero mean, unit variance), the singular values will no longer be

equal, and the correct alignment is found. The same is true for PCA.
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Table 3.4: Degenerate singular values: Overview of DS and DtO

for different ratios of importance between the generating

factors for the Synth. Lin. task. A ratio of 1.2 means one

generating factor is scaled by 1.2.

Ratio 1.0 1.2 1.5

DS 0.51± 0.28 0.76± 0.25 0.98± 0.06

DtO 0.49± 0.32 0.20± 0.24 0.01± 0.06

3.3.5 Nonlinear VAE eigenfaces

In order to highlight the connection with PCA, we use β-VAE to produce

a nonlinear version similar to the classical Eigenfaces [88] on the CelebA

dataset [40]. Figure 3.6 shows a discrete latent traversal. Starting from the

latent representation zmean of the mean face (over 300 randomly selected

datapoints) we feed {zmean ± αei} through the decoder, where ei are the

canonical base vectors. Particularly, we chose i covering the first 5 latent

coordinates, sorted by the mean σj. The parameter α = 2.5 was empirically

chosen to be on near the tails of the distribution over zk.

We can see that, unlike classical eigenfaces that mostly reflect photomet-

ric properties, the “nonlinear eigenfaces” capture semantic features of the

data. Note also that the ordering of the “PCs” by the mean values of σj

is naturally justified by our work. As was illustrated in Section 3.2.4, the

first β-VAE “PCs” also focus on characteristics with high impact on the

reconstruction loss (i.e., capture the most variance),
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Mean

Background Hair color

(long)

Perspective Hair color

(short)

Skin tone

Figure 3.6: Nonlinear Eigenfaces: Similarly to the work about

Eigenfaces [88], β-VAEs allow for learning their nonlin-

ear counterpart.

3.3.6 Dependence of MIG and DtO on β

The choice of β depends on the achievable DS. Figure 3.7 shows a more

thorough analysis of the dependence of both the DS and the DtO.

For too small values of β, the effect of the KL term (and thus the or-

thogonalization) is negligible. In the other extreme case, too large values

of β result in over-pruning, such that the number of active latent coordi-

nates drops below the number of generating factors. This behavior becomes

particularly visible for the linear synthetic dataset: By increasing β, the dis-

entanglement score reaches almost 1.0 and forms a plateau. In this region,

the latent space is regularized correctly, and the decoder matches the gen-

erating function. However, if the regularization strength increases further,

the latent space collapses in discrete stages. The optimal hyperparameter

should therefore be the one that maximizes the DS (or minimizes the DtO).

The range of interest for β depends on the dataset. As it acts as a regu-

larization to the reconstruction objective, the optimal value of β depends

on the gradients of the reconstruction loss. Their magnitude, however, de-

pends, amongst other things, on the data’s variance, potentially the data’s
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Figure 3.7: Linesearch over β: The hyper-parameter in the β-

VAE allows to trade off reconstruction error and the KL

loss. The plots show the DS (top) and the DtO (bot-

tom) for dSprites (left) and synthetic datasets (right).

The dashed lines indicate the parameter chosen for the

experiments.

dimensionality, the latent space size, the model capacity, etc.. As a tip

for practitioners: It makes sense to keep track of the expectation of the

posterior variances over the dataset Ex

[
σ2
j (x)

]
and keep increasing β until

the mean collapses to approximately 1 for at least one latent coordinate.

This is the value at which the model enters the polarized regime, and the

optimal value of β is likely in that order of magnitude, depending on the

latent space dimensionality.
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3.4 Conclusion

This chapter presented Theorem 1, stating that the columns of the decoder

Jacobian strive towards orthogonality. The experimental Section 3.3 pro-

vided supporting evidence for the statement, the validity of the assumptions

made in its derivation, as well as an ablation study pointing out the rel-

evance of the canonical latent posterior choice. The models were trained

using a standard experimental setup and were evaluated using a simple ex-

tension of MIG to continuous variables. Aside from the classical datasets

dSprites and MNIST, we also tested low-dimensional synthetic datasets.

Starting in Section 3.3.2, we measured the validity of the assumption of

the polarized regime. The polarized regime is specified as the situation in

which, in the case of a sizeable latent space, some coordinates experience

a posterior collapse. At the same time, the encoder is almost deterministic

(has a small variance) for the others. The normalized difference between the

actual KL loss and the KL loss on only the active variables was below 3 % for

the vast majority of the training time (> 90.6 %). It took longer to prune a

larger latent space to the correct number of active latent space dimensions

than starting with the ground truth number of generating factors. Yet, in

both cases, the assumption of the polarized regime was wholly justified,

given the correctly tuned hyperparameters.

With this basic requirement fulfilled, we analyzed the orthogonality of the

models using the proposed DtO in Section 3.3.3. We could conclusively

show that the β-VAE reliably produces more orthogonal models than other

models. In line with the presented theory, a β-VAE with a full covariance

matrix latent posterior does not inherit the same strive for orthogonality.

It is interesting to note that the DtO was still comparatively large for the

dSprites dataset. We believe that this is linked to the degeneracy of the

ground truth generating factors position x and position y, similar to the low

dimensional degenerate example in Section 3.3.4.
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The applicability of the disentangling abilities of β-VAEs on datasets with-

out a known underlying generative process is equally important. In Sec-

tion 3.3.5, we tested them on the CelebA dataset and visualized the model

similar to the well-known eigenfaces [88]. Due to the orthogonality, the

model can retrieve semantically meaningful latent variables, such as hair

color, perspective, gender, and more.

The local orthogonality of VAEs is a similarity to classical PCA, a well-

known and frequently used tool for dimensionality reduction and factor

analysis. The fact that VAE-based architectures behave according to the

same variance-isolating mechanism not only shines a light on their inner

workings but also advertises them as a nonlinear alternative for data anal-

ysis. Particularly if the data structure is assumed to have nonlinear direc-

tions of variance that need to be isolated, VAE-based methods can be key

architectures. However, it is essential to ensure that the models work in

the intended way, which requires decent hyper-parameter choices as shown

in Section 3.3.6. In the case of β-VAE, the hyper-parameter β has to be

tuned with care to ensure that the polarized regime is reached without

over-pruning the latent space. This can be done empirically by increasing

β while monitoring the mean standard deviations of the latent space pos-

terior per coordinate. In the next chapter, the connection to PCA and its

implications on the nonlinear model are discussed in further detail.
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4 The inductive bias of VAEs and datasets

4.1 Motivation

The performance of VAEs and their variants on learning semantically mean-

ingful, disentangled representations is unparalleled. However, there are the-

oretical arguments suggesting the impossibility of unsupervised disentangle-

ment [15]. In the previous chapter, we sparked an explanation for this ap-

parent contradiction by elucidating that VAEs share crucial characteristics

with PCA, namely the local orthogonality of the decoder. This chapter ex-

tends this by shedding light on the inductive bias responsible for the success

of VAE-based architectures. We show that the structure of variance induced

by the generating factors in classical datasets is conveniently aligned with

the directions fostered by the VAE objective. This builds the pivotal bias

on which the disentangling abilities of VAEs rely. By small, elaborate per-

turbations of existing datasets, we hide the convenient correlation structure

that is easily exploited by a variety of architectures. To demonstrate this,

we construct modified versions of standard datasets in which

(i) the generative factors are perfectly preserved, e.g., the same generat-

ing factors are fully expressive for the modified datasets;

(ii) each image undergoes only a mild and local transformation causing a

small change of variance;

(iii) the leading VAE-based disentanglement architectures fail to produce

disentangled representations while the performance of non-variational

methods remains unchanged.

As before, we treat the term disentanglement as the ability to recover the

true generating factors of data. It was explained by [15] that the concept

of generative factors is already compromised from a statistical perspective:

Two (in fact, infinitely many) sets of generative factors can generate statis-

tically indistinguishable datasets. Yet, the scores on the disentanglement

benchmarks are high and continue to rise. This apparent contradiction

stems from biases in used datasets, metrics, and architectures. It was con-

cluded in [89] that
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[...] future work on disentanglement learning should be explicit

about the role of inductive biases and (implicit) supervision [...].

which did not happen for the majority of existing unsupervised approaches.

We close this gap for VAE-based architectures on the two most common

datasets, namely dSprites [84] and Shapes3d [90].

The central hypothesis we want to prove in this chapter is that all unsuper-

vised, VAE-based disentanglement architectures are successful because they

exploit the same structural bias in the data. The ground truth generating

factors are well aligned with “to-be” PCs that VAEs strive for. This bias can

be reduced by introducing a slight change in the local correlation structure

of the input data, which, however, perfectly preserves the set of generative

factors. We evaluate a set of models on slightly modified versions of the

two leading datasets in which each image undergoes a modification inducing

slight variance. We report drastic drops in disentanglement performance on

the altered datasets.

On a technical level, we build on the findings of Chapter 3, where we argued

that VAEs share a similarity with PCA. We extend this argument by an ad-

ditional finding that further strengthens this connection and yields in equiv-

alence between the two methods in the linear setting. In other words, VAEs

recover a set of scalars that embody the sources of variance in the data. We

propose minor modifications of the datasets that aim to change the lead-

ing principal components by adding modest variance to a set of alternative

candidates. The “to-be” leading principal components are specific to each

dataset, but they are automatically determined in a consistent fashion.

4.2 Methods

We firstly show that linear VAEs indeed fully recover the principal direc-

tions of PCA, secondly introduce the general data generation scheme of

commonly used disentanglement datasets, and lastly turn this understand-
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ing into an experimental setup that allows for empirical confirmation that

the success of VAE-based architectures mostly relies on the local struc-

ture of the data. By locally perturbing existing datasets, we observe that

the “nonlinear PCs” can be tempered without much shifting the dataset’s

variance. The resulting dataset can not be disentangled using VAE based

architectures. We thereby provide a precise answer to the question of what

the inductive biases on the model- and data-side are that allow for VAEs

disentanglement properties. Interestingly, the discovered drop in disentan-

glement performance extends beyond fully unsupervised methods to pre-

sumably identifiable models.

4.2.1 Theoretical support of the connection to PCA

We analyze a linear VAE with models µ(i) = MEx(i), Decθ(z
(i)) = MDz(i)

and denote the SVD decomposition of MD as MD = UΣV >. We can

now state a constrained optimization problem similar to (Equations (3.14)

and (3.15)) as

min
Σ,U,V

Ei
(
‖UΣV >ε(i)‖2

)
(4.1)

s.t. Ei
(
L(i)
≈KL

)
= c≈KL. (4.2)

where only the stochastic part of the reconstruction loss is minimized and

c≈KL is a constant. The term L≈KL again is the KL loss in the polarized

regime, defined in Equation (3.5).

As described in Section 2.1, the “decoder matrix” of the classical PCA

contains the eigenvectors of the covariance matrix C. By SVD decomposing

the zero-mean data matrix X = UXΣXV
>
X , we find

C = X>X = VXΣ2
XV

>
X . (4.3)

For encoding data with PCA, the eigenvectors of VX are typically sorted

according to their eigenvalue by a permutation matrix P , which leads to

the PCA decoder as
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MPCA = V >X Σ2
XP. (4.4)

To tighten the connection between VAEs and PCA, we compare MD =

UΣV > to MPCA = V >X Σ2
XP .

Theorem 2 (Linear VAEs perform PCA). In a setting that precisely iso-

lates the freedom in choosing U , Σ, and V , and under mild non-degeneracy

assumptions (full description is available in Chapter 5), the following holds:

For any X ∈ Rn×m, the solution to (Equations (4.1) and (4.2))

Σ?, U?, V ? = arg min
Σ,U,V

Ei
(
‖UΣV >ε(i)‖2

)
, (4.5)

satisfies (in a “PCA-like” way)

V ? is a signed permutation matrix,

U? = V >X .

It was known for long that linear autoencoders, trained on L2 reconstruction

loss, span the same space as PCA [91, 92]. The additional similarity that

VAEs produce orthogonal mappings, like PCA, was presented in Chapter 3.

With the final connection presented here, even the embedding alignment is

shown to be identical. For the sake of better readability, the proofs of the

statements can be found in Chapter 5.

Although this does not directly translate to a universal statement about the

linearization of a nonlinear model, it also provides an intuition for that case.

An important observation is that the alignment of the latent space is

mostly driven by the distribution of the latent noise. When general-

izing this statement to the linearization of a nonlinear decoder, the effect of

the noise stays local. Consequently, local changes in the data distribution

can potentially lead to a disruptive change in the latent alignments without

inducing large global variance. This idea is depicted in Figure 4.1.
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(i) (ii) (iii) (iv)

→

Figure 4.1: Linear and nonlinear embeddings: From left to

right: (i) a 3-D point cloud and the corresponding 2-D

PCA manifold (blue surface) with the canonical princi-

pal components (red/blue curves), (ii) a nonlinear 2-D

manifold with its principal components, (iii) a locally

perturbed 2-D manifold with its principal components

which are rotated with respect to (ii), (iv) the goal of

our modifications is to move each datapoint closer to

this entangled manifold.

4.2.2 The generative process

The standard datasets for evaluating disentanglement all have an explicit

generation procedure. Each data point x(i) ∈ X is an outcome of a gen-

erative process g applied to input w(i) ∈ W . Imagine that g is a function

rendering a simple scene from its specification w containing as its coordi-

nates the background color, foreground color, object shape, object size, etc.

By design, the individual generative factors are statistically independent in

W . All in all, the dataset X =
(
x(1),x(2), . . . ,x(n)

)
is constructed with

x(i) = g(w(i)), where g is a mapping from the generative factors to the

corresponding data points.

In this chapter, we design a modification g̃ of the generative procedure g

that changes the local structure of the dataset X while barely distorting

each individual data point. In particular, for each x(i) ∈ X , we have under

some distance measure d(·, ·), that
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d
(
x(i), g̃(w(i))

)
≤ ε. (4.6)

How to design g̃ such that despite an ε-small modification, VAE-based ar-

chitectures will create an entangled representation? Following the intuition

from Chapter 3, Figure 2.3 and Figure 4.1, we misalign the local variance

with respect to the generating factors in order to promote an alternative

(entangled) latent embedding. This is precisely the step from (iii) to (iv)

in Figure 4.1.

To avoid hand-crafting this process, we can exploit the following observa-

tion. VAE-based architectures suffer from significant performance variance

over different random initializations. This hints at an existing ambiguity:

Two or more candidates for the latent coordinate system are competing

minima of the optimization problem. Some of these solutions perform well,

others are “bad” in terms of disentanglement – they correspond to (ii) and

(iii) in Figure 4.1 respectively. Below, we elaborate on how to foster the

entangling and diminish the disentangling solutions.

Our modifications are not an implementation of [15, Theorem 1]. We do

not modify the set of generative factors, but slightly alter the gen-

erating process to target a specific subtlety in the inner working of VAEs.

Given any dataset, our modification process has three steps:

(i) Find the most disentangled and the most entangled latent space align-

ment that a β-VAE produces over multiple restarts.

(ii) Optimize a generator that manipulates images to foster and diminish

their suitability for the entangled and disentangled model respectively.

(iii) Apply the manipulation to the whole dataset and compare the per-

formance of models trained on the original and the modified dataset.
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4.2.3 Choice of fostered latent coordinate system

Over multiple restarts of β-VAE, we pick the model with the lowest MIG

score. This gives us an entangled alignment that is expressible by the

architecture. Although any choice of metric is valid for this model selection

(e.g., Unsupervised Disentanglement Ranking [71]), we chose MIG for the

sake of simplicity. The latent variables of each model capture the data’s

nonlinear PCs. Similarly to PCA, we can order them according to the

variance they induce. The order is inversely reflected by the magnitude of

the latent noise values. We find the j’th principal components s
(i)
j as

s
(i)
j

(
x(i)
)

= enc
(
x(i)
)
k(j)

(4.7)

k(j) = arg min
l 6∈{k(0),k(1),...,k(j−1)}

〈
σ2
l

〉
. (4.8)

This procedure of sorting the most important latent coordinates is consis-

tent with [13] and [20]. The analogy to PCA is that the mapping s(j)(x(i))

gives the j’th coordinate of x(i) in the new (nonlinear) coordinate system.

4.2.4 Dataset manipulations

We will now describe the modification procedure assuming the data points

are r × r images. The manipulated data-point x′(i) is of the form x′(i) =

x(i) + εm
(
w(i)

)
where the mapping m : R → Rr × Rr is constrained by

‖m(w(i))‖∞ ≤ 1 for every w(i). Then inequality 4.6 is naturally satisfied

for the maximum norm.

The abstract idea of achieving a change of the latent embedding coordinate

systems can be visualized using the intuition following from Equation (4.8).

We can think of two VAE latent spaces where one is considered disentangled

({µ(i)
dis, σ

(i)
dis}) and the other is entangled ({µ(i)

ent, σ
(i)
ent}), as two sets of nonlinear

principal directions, and the variance each of the dimensions capture is

reflected in the magnitude of σ(i). We aim to alter the dataset such that

its entangled representation is superior to the disentangled representation,

58



4.2 Methods

in the sense of being cheaper to decode with respect to the reconstruction

loss. In other words, projecting the dataset to the manifold supported by

z
(i)
ent should result in a lower reconstruction loss than projecting it to the

manifold supported by z
(i)
dis. A naive way of doing so is by moving each

image closer to its projections on the first principal components of the

entangled representation and further away from those of the disentangled

representation. Instead of hand-crafting this operation, we can optimize for

it directly.

w1

w2

w3

w4

w5

x

mψ(w)

x′

eϕdis dθdis

eϕent dθent

x̃dis

x̃ent

ψ? = arg min
ψ
Lm

Lm = Lent − Ldis

θ?dis = arg min
θdis

Ldis

Ldis =‖x̃dis − x′‖2

θ?ent = arg min
θent

Lent

Lent =‖x̃ent − x′‖2

zdis ∼
N (µdis, σ

2
dis)

zent ∼
N (µent, σ

2
ent)

+
ε

=

Figure 4.2: Image perturbation process: Starting from ground

truth generating factors w, two β-VAE encoder-decoder

pairs are initialized such that one (top) produces en-

tangled and the other (bottom) disentangled represen-

tations. Another decoder-like network m is trained to

produce additive manipulations to the original images

x. The encoders are frozen and fed with the original

images. The set of ground truth generating factors w

stays untouched by the modification.
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This idea can be turned into an end-to-end trainable architecture as de-

picted in Figure 4.2. We want to change the dataset such that it is more

convenient to encode it in an entangled way. Starting with two pre-trained

models, we fix their encoders and keep feeding them the original images.

This ensures that the latent encoding stays unchanged, as we want to com-

pare their suitability for reconstruction. The decoders are trained to mini-

mize the reconstruction loss given the entangled representation:

θ?ent = arg min
θent

Lent
rec

(
x′

(i)
, z(i)

)
,

θ?dis = arg min
θdis

Ldis
rec

(
x′

(i)
, z(i)

)
.

We initialize this network with the parameters of the disentangled model

θdis, ϕdis and the entangled model θent, ϕent respectively. We introduce a

network to learn the additive manipulation, mψ with parameters ψ. The

parameters are trained to minimize the reconstruction loss of the entangled

VAE and to increase the loss of the disentangled VAE via its effect on the

dataset:

ψ? = arg min
ψ

(
Lent

rec

(
x′

(i)
, z(i)

)
− Ldis

rec

(
x′

(i)
, z(i)

))
.

It is worth noting that both latent spaces were suitable for reconstructing

the images of the original dataset. The major play that the network

mψ has is to utilize the different ways the noise was distributed

across the latent space.
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4.3 Experiments

To experimentally validate the soundness of the manipulations, we need to

demonstrate the following:

1. Effectiveness of manipulations. Disentanglement metrics should

drop on the altered datasets across VAE-based architectures. We do

not expect changes in non-variational methods, as the magnitude of the

perturbations is fairly small.

2. Comparison to a trivial modification. Instead of the proposed

method, we modify the data with uniform noise of the same magni-

tude. The disentanglement scores for the algorithms on the resulting

datasets should not drop significantly, as this change does not alleviate

the existing bias.

3. Robustness. The new datasets should be hard to disentangle even after

re-tuning hyperparameters of the original architectures.

+ ε =

+ ε =

Figure 4.3: Example perturbations: From left to right: Origi-

nal images, manipulations and altered images. Top row

shows an example of dSprites, the bottom for Shapes3D.

The primary hyperparameter of each of the models is listed in Table 4.1

and we used the implementations of the Disentanglement Library [15].
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Architecture dSprites Shapes3D

β-VAE (β) 8 32

TC-VAE (β) 6 32

FactorVAE (γ) 35 7

SlowVAE (β) 1 1

Table 4.1: Primary hyperparameters, we used the defaults in

the Disentanglement Library or literature values for any

other parameter.

4.3.1 Architecture for perturbation network

The model implemented for m(w) has almost the same architecture as the

convolutional decoder as it is implemented in the Disentanglement Library.

The only difference lies in the input MLP, which was extended by a single

neuron hidden layer. This enforces a compression of the generating factors

w(i) to some scalar value based on which the modifications are rendered.

Both m and the decoders were trained with Adam (β1 = 0.9, β2 = 0.999,

ε = 10−7) and 10−4 learning rate. To ensure training stability, we train

the decoders on three times more batches as the manipulation network and

reconstruct five latent samples per image to better estimate the stochastic

losses. We achieved a better result on Shapes3D when using an ensemble

of four disentangling and four entangling encoder-decoder pairs instead of

single models. In order to stay in the same value range as the original

images, we ensured normalization of the manipulated images x′(i) = x(i) +

m(w(i)) by x′(i)norm = x(i) − 2ReLu(x(i) − 1) + 2ReLu(−x(i)).
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4.3.2 Effectiveness of manipulations

We deploy the suggested training for the manipulations on two datasets:

Shapes3D and dSprites, leading to manipulations as depicted in Figure 4.3.

In terms of models, we trained four VAE-based architectures [13, 14, 41,

17], a regular autoencoder [93], and (as non-variational methods) PCL [64]

as well as the weakly supervised GAN from [66] in the full sharing setting.

We evaluate on both the original and manipulated datasets. Regularization

strengths are used as reported in the literature (or better-tuned values), and

other hyperparameters are taken from the Disentanglement Library [15].

For simplicity and clarity, we restricted the latent space dimension to equal

the number of ground truth generative factors. Most of the architectures

are capable of pruning the latent space as a consequence of their intrinsic

regularization [94]. While being a perk in real-world application scenarios,

this behavior can lead to over- or under-pruning and thereby cloak the

actual difference in the alignment of the latent space.

The resulting MIG scores are listed in Table 4.2, other disentanglement met-

rics are listed in Tables 4.3 to 4.5. We report the performance on the original

dataset, the modified dataset, and a dataset corrupted with noise of equal

magnitude as the structured perturbation. Across all variational models,

the disentanglement quality is significantly reduced when trained on the per-

turbed datasets (c.f. left two columns). Interestingly, the disentanglement

reduces even for SlowVAE, an architecture that supposedly circumvents the

non-identifiability problem by deploying a sparse temporal prior. This in-

dicates that the architecture still builds upon the local data structure more

than on the weak supervision induced by temporal sparsity. PCL and the

weakly supervised GAN, as non-variational methods, perform similarly well

on the original and the modified architecture, which is a strong indicator

that due to the constraint (4.6), the primary sources of global variance

remain unaltered. The modifications only attack the bias VAEs exploit.
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4.3.3 Noisy datasets

In this section, we provide an ablation confirming the necessity of the struc-

ture in the dataset perturbations. We replace the proposed manipulation by

contaminating each image with uniform pixel-wise noise [−ε, ε]. The value

of ε is fixed to the level of the presented manipulations (0.1 for dSprites and

0.175 for Shapes3D). The results are also listed in Table 4.2. The lack of

structure in the contamination does not affect the performance in a guided

way and leads to minimal effect on Shapes3D. This shows that the induced

drop in disentanglement performance does not stem from a shift in the over-

all variance. The impact on dSprites is, however, noticeable. Due to the

comparatively slight variance among dSprites images, the noise conceals the

variance from the less important generating factors (such as orientation).

Table 4.2: MIG scores for unmodified, modified, and noisy

datasets. We report the mean and standard deviation

over ten distinct random seeds for each setting. The regu-

lar autoencoder serves as a baseline (random alignment).

PCL and the weakly supervised GAN from [66] are the

only disentangling non-variational model. The modifica-

tion leads to a significant drop in all variational methods.

dSprites Shapes3d

orig. mod. noise orig. mod. noise

AE 0.09± 0.06 0.05± 0.02 0.06± 0.03 0.06± 0.03 0.05± 0.03 0.07± 0.03

β-VAE 0.23± 0.08 0.07± 0.09 0.14± 0.07 0.60± 0.31 0.09± 0.14 0.66± 0.05

FactorVAE 0.27± 0.11 0.20± 0.12 0.16± 0.08 0.27± 0.18 0.07± 0.05 0.33± 0.20

TC-VAE 0.25± 0.08 0.14± 0.10 0.20± 0.04 0.58± 0.20 0.24± 0.16 0.60± 0.11

SlowVAE 0.39± 0.08 0.27± 0.08 0.37± 0.09 0.53± 0.19 0.13± 0.08 0.60± 0.10

PCL 0.21± 0.03 0.24± 0.07 0.24± 0.07 0.44± 0.06 0.47± 0.08 0.40± 0.07

Weak sup. GAN 0.45± 0.05 0.36± 0.02 0.36± 0.01 0.69± 0.12 0.66± 0.12 0.77± 0.13
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Table 4.3: DCI scores for unmodified, modified and noisy datasets.

We report the mean and standard deviation over ten dif-

ferent random seeds for each setting. PCL is the only

disentangling non-variational model. The modification

leads to a significant drop in all variational methods.

dSprites Shapes3d

orig. mod. noise orig. mod. noise

β-VAE 0.11± 0.03 0.08± 0.11 0.14± 0.07 0.73± 0.14 0.43± 0.06 0.56± 0.06

FactorVAE 0.37± 0.10 0.27± 0.11 0.24± 0.09 0.39± 0.18 0.25± 0.08 0.57± 0.20

TC-VAE 0.34± 0.06 0.19± 0.10 0.27± 0.03 0.67± 0.08 0.41± 0.05 0.59± 0.09

SlowVAE 0.47± 0.07 0.40± 0.07 0.47± 0.08 0.65± 0.10 0.33± 0.08 0.73± 0.09

PCL 0.28± 0.03 0.30± 0.03 0.29± 0.06 0.70± 0.06 0.67± 0.09 0.71± 0.07

Table 4.4: FactorVAE scores for unmodified, modified and noisy

datasets. We report the mean and standard deviation

over ten distinct random seeds for each setting. PCL is

the only disentangling non-variational model. The modi-

fication leads to a significant drop in all variational meth-

ods.

dSprites Shapes3d

orig. mod. noise orig. mod. noise

β-VAE 0.47± 0.07 0.38± 0.13 0.50± 0.10 0.80± 0.17 0.54± 0.10 0.71± 0.06

FactorVAE 0.67± 0.11 0.62± 0.14 0.60± 0.11 0.63± 0.15 0.48± 0.05 0.71± 0.15

TC-VAE 0.68± 0.09 0.53± 0.15 0.60± 0.12 0.76± 0.07 0.57± 0.07 0.71± 0.06

SlowVAE 0.77± 0.03 0.77± 0.04 0.76± 0.07 0.87± 0.10 0.62± 0.06 0.85± 0.08

PCL 0.77± 0.09 0.82± 0.05 0.77± 0.08 0.80± 0.06 0.77± 0.07 0.80± 0.06
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Table 4.5: SAP scores for unmodified, modified and noisy datasets.

We report the mean and standard deviation over ten dif-

ferent random seeds for each setting. PCL is the only

disentangling non-variational model. The modification

leads to a significant drop in all variational methods.

dSprites Shapes3d

orig. mod. noise orig. mod. noise

β-VAE 0.04± 0.01 0.02± 0.02 0.03± 0.03 0.16± 0.08 0.03± 0.03 0.09± 0.02

FactorVAE 0.07± 0.03 0.06± 0.03 0.08± 0.01 0.07± 0.04 0.04± 0.01 0.08± 0.03

TC-VAE 0.08± 0.01 0.06± 0.03 0.05± 0.02 0.08± 0.02 0.04± 0.02 0.06± 0.03

SlowVAE 0.08± 0.01 0.07± 0.01 0.07± 0.01 0.09± 0.04 0.04± 0.01 0.09± 0.05

PCL 0.07± 0.03 0.10± 0.03 0.10± 0.03 0.07± 0.01 0.07± 0.01 0.07± 0.01

4.3.4 Robustness over hyperparameters

We run a line search over the primary hyperparameter for each architec-

ture where we scale the optimal (on the original dataset, according to the

literature) parameter by 0.75 to 2.0 and evaluate different disentanglement

metrics. The models are trained on the modified datasets. Figure 4.4 shows

a violin plot over the MIG scores and Figures 4.5 to 4.7 show the other met-

rics for the sake of completeness. Assuming that our modifications are stable

against tuning the hyperparameter, one would expect the disentanglement

scores to not recover near the level achieved on the original datasets.

Overall our modifications seem mostly robust for adjusted hyperparame-

ters. A significant increase in the regularization strength allowed for some

recovery. A more thorough analysis revealed that this effect starts only once

the models reach a level of over-pruning, a behavior well known to practi-

tioners. We discard the runs that over-pruned the latent space (number of

active coordinates, i.e., for which E (σ2
i ) < 0.8, sinks below the dimension-

ality of the ground truth generating factors). This effect goes along with

decreased reconstruction quality and intrinsically prevents the models from

recovering all true generating factors and renders these cases uninteresting.
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Figure 4.4: MIG scores for scaled literature hyperparameters over

ten restarts for Shapes3D. Over-pruned models with

fewer active units than generating factors were dis-

carded.
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Figure 4.5: DCI scores for scaled literature hyperparameters over

ten restarts for Shapes3D. Over-pruned models with

fewer active units than generating factors were dis-

carded.
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Figure 4.6: FactorVAE scores for scaled literature hyperparame-

ters over ten restarts for Shapes3D. Over-pruned models

with fewer active units than generating factors were dis-

carded.
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Figure 4.7: SAP scores for scaled literature hyperparameters over

ten restarts for Shapes3D. Over-pruned models with

fewer active units than generating factors were dis-

carded.
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4.3.5 Restart statistics and per factor evaluation

Additional information about the distribution of MIG scores on the modified

datasets on Shapes3D is presented in the histograms of Figure 4.8. Despite

the mean MIG score dropping significantly when trained on the altered

dataset, some models still disentangle reasonably well. One explanation

could be that there are two or more nearby solutions for the optimization

problem. The manipulations foster the entangled but do not entirely ex-

clude the disentangled solution. We discuss this idea in Section 4.3.6.
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Figure 4.8: Histogram of MIG scores for the VAE-based meth-

ods on the altered Shapes3D dataset. Although the

mean MIG score is significantly reduced, some models

still disentangle reasonably well. We expect that there

are two or more nearby solutions for the optimization

problem, and the manipulations foster the entangled one

but do not fully exclude the disentangled solution.

The individual MIG scores per generating factor for the β-VAE on Shapes3D

are shown in Figure 4.9. We can see that the MIG drops for every generating

factor, leading to an overall entanglement.
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Figure 4.9: Individual MIG scores for β-VAEs trained on the

original and the altered Shapes3D dataset. The MIG

drops for every generating factor, which leads to entan-

glement across all of them.

4.3.6 Inspection of entangled and disentangled latent

embeddings

Over multiple restarts of β-VAE trainings on the unmodified dataset, we

inspect the four runs that achieved the highest and the four that reached

the lowest MIG scores. Figure 4.10 shows two dimensional latent traversals

for the disentangled β-VAE representations. The dimension of the latent

traversal was hand-picked to encode the wall hue and the orientation. Inter-

estingly, the models reliably encode the color in the same way (e.g., starting

from green to cyan). This is an intriguing finding, as the hue values are

uniformly sampled in the dataset, and the hue is by definition a cyclic quan-

tity (i.e., it is the angular component in the Hue, Saturation, and Lightness

(HSL) color space [95]). Each generative factor is embedded mostly in a

single coordinate in those embeddings where the disentanglement scores are

high. We refer to this type of embedding as cartesian.
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Figure 4.10: Latent traversals along two latent dimensions for dif-

ferent disentangled representations from independent

β-VAE trainings on the original dataset. They encode

the wall hue and orientation separately. We flipped

the latent coordinates to match the same alignment.

Figure 4.11, on the other hand, shows latent traversals for the entangled

models. Surprisingly, all those embeddings share a very similar structure.

They reliably mix the two generating factors in the same way: The color

is encoded as the angular component of the two latent dimensions and the

orientation as the radial component. This mixing leads to low disentan-

glement scores, although the representations are very interpretable. The

generative factors are captured in a polar coordinate system. We found

similar behaviors on other datasets, such as NORB [96].
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4 The inductive bias of VAEs and datasets

Figure 4.11: Latent traversals along two latent dimensions for dif-

ferent entangled representations from independent β-

VAE trainings on the original dataset. They encode a

mixture of wall hue and orientation.

The two types of encodings (cartesian and polar) seem to form distinct

minima of the β-VAE optimization objective. This also reflects in the bi-

modality of the histograms or violin plots over disentanglement measures

in other work [15].
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4.4 Conclusion

The experiments summarized in this chapter showcase the similarity be-

tween β-VAEs and PCA beyond the linear case. We designed perturbations

of existing datasets that only mildly changed the overall variance induced

by the same generating factors as the original datasets. The perturbation

only acted within an ε � 1 range per dimension on each individual data

point, thereby only locally changing the variance structure of the dataset

(Section 4.3.1). By optimizing the perturbations such that they minimize

the reconstruction error on a non-disentangled β-VAE model and maximize

it on a disentangled model, we derived at a dataset that can no longer be

disentangled by any tested VAE-based architecture (Section 4.3.2).

As an ablation study, we prepared another version of a perturbed dataset

where the perturbations lack any particular structure, i.e., we apply noise to

the dataset with the same variance as the local perturbations. The resulting

change in disentangling quality was significantly smaller than the optimized

manipulation (Section 4.3.3). This gives additional evidence that the effect

of the proposed perturbation relies on the explicit adversarial optimization

of the stochastic reconstruction losses.

Since the local structure was changed, one can expect the reconstruction

error of any trained model to be different between the original and the

perturbed dataset. We therefore conducted line-searches across the primary

hyper-parameter of each model (Section 4.3.4). Those conclusively showed

that the drop in disentangling capabilities does not stem from a shift in the

trade-off captured via the primary hyper-parameter of each model.

We evaluated where the drop in disentangling performance originates from,

i.e., which generating factor is the primary source of decreased performance

(Section 4.3.5). The analysis revealed that the MIG scores decrease for

all generating factors alike. Surprisingly, an analysis of multiple restarts

revealed that there are still some that perform well.
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A very intriguing observation, linked to the fragility of VAE-based methods,

was discussed in Section 4.3.6. Based on multiple selected best- and worst-

performing runs, it was shown that there are at least two ways in which a

β-VAE can encode generating factors. One is the traditional cartesian way,

where one generating factor is embedded in one latent dimension. The other

one can be described as a polar embedding, where two generating factors are

encoded as the radial and angular components of two latent representations

(it is unclear if there are more angular components). Whether the one or

the other embedding is more desirable depends on the task at hand, whereas

most disentanglement metrics favor the cartesian representation. This is an

example of a shortcoming of most existing disentanglement metrics and an

indicator of the human bias involved in disentangled representation learning

task description. The observation that there might be two or more nearby

solutions aligns well with the observation in Section 4.3.5, namely that

across multiple restarts, some models still perform well on the modified

dataset. The proposed perturbations favor the minimum corresponding to

entangled representations but do not exclusively prohibit the disentangled

minimum.
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Chapter 5 Proofs

5.1 Proof of Theorem 1

Proof strategy: For part (b), we aim to derive a lower bound on the

objective (3.14), that is independent from the optimization variables σ2
j (x

(i))

and Vi. Moreover, we show that this lower bound is tight for some specific

choices of σ2
j (x

(i)) and Vi, i.e., the global optima. For these choices, all Ji

will have orthogonal columns.

The strategy for part (a) is to show that whenever σ2
j (x

(i)) and Vi do not

induce a global optimum, we can find a small perturbation that decreases

the objective function. Thereby showing that local minima do not exist.

Technical lemmas: We begin with introducing a few useful statements.

First is the inequality between arithmetic and geometric mean; a conse-

quence of Jensen’s inequality.

Lemma 1 (AM-GM inequality). Let a1, . . . , aN be nonnegative real num-

bers. Then

1

N

N∑
i=1

ai ≥

(
N∏
i=1

ai

)1/N

(5.1)

with equality occurring if and only if a1 = a2 = · · · = an.

The second bound to be used is the classical Hadamard’s inequality.
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Lemma 2 (Hadamard’s inequality [97]). Let M ∈ Rk×k be non-singular

matrix with column vectors c1, . . . , ck. Then

k∏
i=1

‖ci‖ ≥ | detM | (5.2)

with equality if and only if the vectors c1, . . . , ck are pairwise orthogonal.

And finally a simple lemma for characterizing matrices with orthogonal

columns.

Lemma 3 (Column orthogonality). Let M ∈ Rn×d be a matrix and let M =

UΣV > be its singular value decomposition. Then the following statements

are equivalent:

(a) The columns of M are (pairwise) orthogonal.

(b) The matrix M>M is diagonal.

(c) The columns of ΣV > are (pairwise) orthogonal.

Proof. The equivalence of (a) and (b) is immediate. For equivalence of (a)

and (c) it suffices to notice that if we set M ′ = ΣV >, then

M ′>M ′ = V Σ>ΣV > = M>M. (5.3)

The equivalence of (a) and (b) now implies that M has orthogonal columns

if and only if M ′ does.

Initial considerations: First, without loss of generality, we will ignore

all passive latent variables (in the sense of definition 1). Formally speak-

ing, we will restrict to the case when the local decoder mappings Ji are

non-degenerate (i.e., have non-zero singular values). Now d denotes the

dimensionality of the latent space with d = |Va|.

Next, we simplify the loss L≈KL, Equation (3.5). Up to additive and mul-

tiplicative constants, this loss can be, for a fixed sample x(i) ∈ X, written
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as

‖µ(x(i))‖2 +
d∑
j=1

− log(σ2
j (x

(i))). (5.4)

In the optimization problem Equations (3.14) and (3.15) the values µ(x(i))

can only be affected via applying an orthogonal transformation Vi. But

such transformations are norm-preserving (isometric) and hence the values

‖µ(x(i))‖2 do not change in the optimization. As a result, we can restate

the constraint (3.15) as

∑
x(i)∈X

d∑
j=1

− log(σ2
j (x

(i))) = C1 (5.5)

for some constant C1.

Proof of theorem 1(b): Here, we explain how Theorem 1(b) follows from

the following two propositions.

Proposition 5. For a fixed sample x(i) ∈ X let us denote by c1, . . . , cd the

column vectors of Ji. Then

E
ε(x(i))

‖Jiε(x(i))‖2 ≥ d

(
d∏
j=1

‖cj‖2σ2
j (x

(i))

)1/d

(5.6)

with equality if and only if ‖cj‖2σ2
j (x

(i)) = ‖ck‖2σ2
k(x

(i)) for every j, k ∈
{1, . . . , d}.

Proposition 6. Let M ∈ Rn×d, where d < n, be a matrix with column

vectors c1, . . . , cd and nonzero singular values s1, . . . , sd. Then

d∏
j=1

‖cj‖ ≥ det†(M), (5.7)

where by det†(M) we denote the product of the singular values of M . Equal-

ity occurs if and only if c1, . . . , cd are pairwise orthogonal.
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First, Proposition 6 allows making further estimates in the inequality from

Proposition 5. Indeed, we get

E
ε(x(i))

‖Jiε(x(i))‖2 ≥ d

((
det†(Ji)

)2
d∏
j=1

σ2
j (x

(i))

)1/d

(5.8)

and after applying the (monotonous) log function we are left with

log E
ε(x(i))

‖Jiε(x(i))‖2 ≥ (5.9)

log(d) +
2

d
log(det†(Ji)) +

1

d

d∑
j=1

log(σ2
j (x

(i))). (5.10)

Finally, we sum over the samples x(i) ∈ X and simplify via (5.5) as∑
x(i)∈X

log E
ε(x(i))

‖Jiε(x(i))‖2 ≥

N log(d)− C1

d
+

2

d

∑
x(i)∈X

log(det†(Ji)). (5.11)

The right-hand side of this inequality is independent of the values of σ2
j (x

(i)),

as well as from the orthogonal matrices Vi, since these do not influence the

singular values of any Ji.

Moreover, it is possible to make inequality (5.11) tight (i.e., reach the global

minimum), by setting σ2
j (x

(i)) as hinted by Proposition 5 and by choosing

the matrices Vi such that every Ji has orthogonal columns (this is clearly

possible as seen in Proposition 1).

This yields the desired description of the global minima of (3.14).

Proof of proposition 5: We further denote by r1, . . . , rn the row vectors

of Ji, and by ar,c the element of Ji at r-th row and c-th column. With

sampling ε(x(i)) according to

ε(x(i)) ∼ N
(
0, diag σ2(x(i))

)
, (5.12)
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we begin simplifying the objective (3.14) with

E
ε(x(i))

‖Jiε(x(i))‖2 = E
ε(x(i))

n∑
k=1

‖r>k ε(x(i))‖2 (5.13)

=
n∑
k=1

E
ε(x(i))

‖r>k ε(x(i))‖2. (5.14)

Now, as the samples ε(x(i)) are zero mean, we can further write

n∑
k=1

E
ε(x(i))

‖r>k ε(x(i))‖2 =
n∑
k=1

var(r>k ε(x
(i))). (5.15)

Now we use the fact that for uncorrelated random variables A and B we

have var(A + cB) = varA + c2 varB. This allows expanding the variance

of the inner product as

var(r>k ε(x
(i))) = var

(
d∑
j=1

ak,jεj(x
(i))

)
(5.16)

=
d∑
j=1

a2
k,j var εj(x

(i)) =
d∑
j=1

a2
k,jσ

2
j (x

(i)).

Now, we can regroup the terms via

n∑
k=1

var(r>k ε(x
(i))) =

n∑
k=1

d∑
j=1

a2
k,jσ

2
j (x

(i))

=
d∑
j=1

n∑
k=1

a2
k,jσ

2
j (x

(i))

=
d∑
j=1

‖cj‖2σ2
j (x

(i)). (5.17)

All in all, we obtain

E
ε(x(i))

‖Jiε(x(i))‖2 =
d∑
j=1

‖cj‖2σ2
j (x

(i)). (5.18)
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from which the desired inequality follows via setting aj = ‖cj‖2σ2
j (x

(i)) for

j = 1, . . . , d in Lemma 1. Indeed, then we have

d∑
j=1

‖cj‖2σ2
j (x

(i)) ≥ d

(
d∏
j=1

‖cj‖2σ2
j (x

(i))

)1/d

(5.19)

as required.

Proof of proposition 6: As the first step, we show that both sides of the

desired inequality are invariant to multiplying the matrix M from the left

with an orthogonal matrix U ∈ Rn×n.

For the right-hand side, this is clear as the singular values of UM are

identical to those of M . As for the left-hand side, we first need to realize

that the vectors cj are the images of the canonical basis vectors ej, i.e.,

cj = Mej for j = 1, . . . , d. But since U is an isometry, we have ‖UMej‖ =

‖Mej‖ = ‖cj‖ for every j, and hence also the column norms are intact by

prepending U to M .

This allows us to restrict to matrices M for which the SVD has a simplified

form M = ΣV >. Next, let us denote by Σd×d the d× d top-left submatrix

of Σ. Note that Σd×d contains all nonzero elements of Σ. As a result, the

matrix M ′ = Σd×dV
> contains precisely the nonzero rows of the matrix M .

This implies

M>M = M ′>M ′. (5.20)

In particular, the column vectors c′j of M ′ have the same norms as those of

M . Now we can write

d∏
j=1

‖cj‖ =
d∏
j=1

‖c′j‖ ≥ | det(M ′)| = det†(M), (5.21)

where the inequality follows from Lemma 2 applied to nonsingular matrix

M ′. Equality in Lemma 2 occurs precisely if the columns of M ′ are orthog-

onal. However, according to Lemma 3 and (5.20), it also follows that the
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columns of M ′ are orthogonal if and only if the columns of M are. Note

that Lemma 3(c) is needed for covering the reduction performed in the first

two paragraphs.

Proof of Theorem 1(a): We show the nonexistence of local minima as

follows. For any values of σ2
j (x

(i)) and Vi that do not minimize the objective

function (3.14), we find a small perturbation that improves this objective.

All estimates involved in establishing inequality (5.11) rely on either Lemma 1

or Lemma 2, where in both cases, the right-hand side was kept fixed. We

show that both of these inequalities can be tightened in such fashion by

small perturbations in their parameters.

Lemma 4 (Locally improving AM-GM). For any non-negative values a1,

. . . , aN for which

1

N

N∑
i=1

ai >

(
N∏
i=1

ai

)1/N

(5.22)

there exists a small perturbation a′i of ai for i = 1, . . . , N such that

1

N

N∑
i=1

ai >
1

N

N∑
i=1

a′i ≥ (5.23)

(
N∏
i=1

a′i

)1/N

=

(
N∏
i=1

ai

)1/N

(5.24)

Proof. Since (5.22) is a sharp inequality, we have ai > aj for some i 6= j.

Then setting a′i = ai/(1 + δ), a′j = aj(1 + δ), and a′k = ak otherwise, will do

the trick. Indeed, we have aiaj = a′ia
′
j as well as ai + aj > a′i + a′j for small

enough δ. This ensures both 5.23 and 5.24.

An analogous statement for Lemma 2 has the following form.
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Lemma 5 (Locally improving Hadamard’s inequality). Let M ∈ Rk×k be

a non-singular matrix with SVD M = UΣV >, and column vectors c1, . . . ,

ck, for which

k∏
i=1

‖ci‖ > | detM |. (5.25)

Then there exists an orthogonal matrix V ′, a small perturbation of V , such

that if we denote by c′1, . . . , c′k the column vectors of M ′ = UΣV ′>, we have

k∏
i=1

‖ci‖ >
k∏
i=1

‖c′i‖. (5.26)

Proof. We proceed by induction on k. For k = 2, it can be verified directly

that for some small δ (in absolute value) setting V ′ = V Rδ, where Rδ is a

2D rotation matrix by angle δ, achieves what is required.

For the general case, the sharp inequality (5.25) implies that c>i cj 6= 0 for

some pair of i 6= j. Without loss of generality, let i = 1, j = 2. In such

case, we consider V ′ = V R2D
δ , where

R2D
δ =

(
Rδ

Ik−2

)
(5.27)

is a block diagonal matrix, in which Rδ is again a 2 × 2 rotation matrix.

By design, we have ci = c′i for i > 2. This, along with the fact that U can

be set to Ik (isometry does not influence either side of (5.25)), allows for a

full reduction to the discussed two-dimensional case.

It is easy to see that the performed perturbations continuously translate

into perturbations of the parameters σ2
j (x

(i)) and Vi in estimates (5.19) and

(5.21). Consequently, any non-optimal values of σ2
j (x

(i)) and Vi can be

locally improved. This concludes the proof.
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5.1 Proof of Theorem 1

Rotational invariances

Let us start by fleshing out the common elements of the proofs of Proposi-

tion 2 and Proposition 3. In both cases, the encoder and decoder mappings

Encϕ,U , Decθ,U induce joint distributions pU(x, z), qU(x, z) described as

pU(x, z) = p(z)p(x | U>z) (5.28)

qU(x, z) = q(x)q(U>z | x) (5.29)

Lemma 6. For every x(i) ∈ X we have p(x(i)) = pU(x(i)).

Proof. We simply compute

pU(x(i)) =

∫
pU(x(i), z) dz

=

∫
p(z)p(x(i) | U>z) dz

=

∫
p(Uz)p(x(i) | z) dz

=

∫
p(z)p(x(i) | z) dz = p(x(i)),

where in the third equality we used the Change of Variable Theorem to

substitute Uz for z (keep in mind that | det(U)| = 1 as U is an orthogonal

matrix). In the fourth equality, we used the rotational symmetry of the

prior p(z).

Proof of Proposition 2. This immediately follows from Lemma 6.

Proof of Proposition 3. We utilize the full identity from ELBO derivation.

For fixed x(i) ∈ X we have [12]

ELBO = DKL(qU(z | x(i)) ‖ pU(z | x(i))) + log pU(x(i)) (5.30)

In order to prove the invariance of ELBO to the choice of U , it suffices to

prove the invariance of the right-hand side of (5.30). Due to Proposition
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(3) we only need to focus on the KL term. Similarly, as in the proof of

Lemma 6, we calculate

DKL(qU(z | x(i)) ‖ pU(z | x(i)))

=

∫
qU(z | x(i)) log

qU(z | x(i))

pU(z | x(i))
dz

=

∫
qU(z | x(i)) log

qU(z | x(i)) · pU(x(i))

pU(z) · pU(x(i) | z)
dz

(3)
=

∫
q(U>z | x(i)) log

q(U>z | x(i)) · p(x(i))

p(z) · p(x(i) | U>z)
dz

(4)
=

∫
q(z | x(i)) log

q(z | x(i)) · p(x(i))

p(Uz) · p(x(i) | z)
dz

(5)
=

∫
q(z | x(i)) log

q(z | x(i)) · p(x(i))

p(z) · p(x(i) | z)
dz

=

∫
q(z | x(i)) log

q(z | x(i))

p(z | x(i))
dz

= DKL(q(z | x(i)) ‖ p(z | x(i))),

where we again used the change of variable theorem in Equality (4), ro-

tational symmetry of p(z) in Equality (5), and Lemma 6 in Equality (3).

Proof of auxiliary statements

Proof of Proposition 1. Recall from Lemma 3 that column orthogonality

of M is equivalent to M>M being a diagonal matrix.

(b) ⇒ (a): Let M = UΣV > where |V | is a permutation matrix. Then

M>M = V Σ>U>UΣV > = V Σ′V > (5.31)

where Σ′ = Σ>Σ is a diagonal matrix. But then V Σ′V > only permutes the

diagonal entries of Σ′ (and possibly flips their signs). In particular, V Σ′V >

is also diagonal.
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5.1 Proof of Theorem 1

(a)⇒ (b): Let again M = UΣV > be some SVD of M and assume M>M =

D for some diagonal matrix D. Since M has d distinct nonzero singu-

lar values, M>M has d distinct nonzero eigenvalues (diagonal elements).

Moreover, these eigenvalues are precisely the squares of the singular values

captured by Σ. Next, if we denote by P the permutation matrix for which

PDP−1 has decreasing diagonal elements, we can write

PDP−1 = Σ>Σ (5.32)

Then using (5.32) and the SVD of M similarly as in (5.31), we obtain

D = M>M = V Σ>ΣV > = V PDP−1V >. (5.33)

Further, the resulting identity (V P )D = D(V P ) implies that columns of

V P are eigenvectors of D, i.e., the canonical basis vectors. Since V P is

additionally orthogonal, these eigenvectors are normalized. It follows that

|V P | is a permutation matrix and the conclusion follows.

Proof of Proposition 4. First, note that for any random variable X ∈ Rk

with EX = µ and a constant b ∈ Rk, the following identity holds

E ‖X− b‖2 = E ‖X− µ‖2 + ‖µ− b‖2. (5.34)

In our case, we set X = Decθ(Encϕ(x(i))), the unbiasedness assumption

translates to EX = Decθ(µ(x(i))), and finally we set b = x(i).

The identity we obtain is exactly what was required to prove.
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5.2 Proof of Theorem 2

Proof strategy: We start with the optimization problem stated in (Equa-

tions (4.1) and (4.2)) and repeated here for improved readability:

min
Σ,U,V

Ei
(
‖UΣV >ε(i)‖2

)
(5.35)

s.t. Ei
(
L(i)
≈KL

)
= c≈KL. (5.36)

Based on Theorem 1 and Proposition 1 and without loss of generality, we

assume V = I and rearrange the elements of Σ in ascending order and those

of ε(i) in descending order with respect to σ(i)2
.

In the setting of Theorem 2, we consider the mean latent representation Z

to be constrained only by the condition diag
(
Z>Z

)
= 1, which reads as

“each active latent variable has unit variance”. Even though this statement

is unsurprising in the context of VAEs, we offer a quick proof of how this

follows directly from the KL loss in Lemma 7. Additionally, we fully fix the

matrix X̂, which contains the reconstruction of all data points. The remain-

ing freedom in U and Σ has the following nature: for each fixed U> (which

rotates X̂), the nonzero singular values of Σ (scaling factors along individ-

ual axes in the latent space) are fully determined by the diag
(
Z>Z

)
= 1

requirement. We minimize objective (5.35) under these constraints.

Remark Notice that fixing the reconstructed data points ensures that the

observed effect is entirely independent of the deterministic loss. The de-

terministic loss is known to have some PCA-like effects, as it is basically

an MSE loss of a deterministic autoencoder. The additional (and, in fact,

stronger) effects of the stochastic loss are precisely the novelty of the fol-

lowing theoretical derivations.

For technical reasons regarding the uniqueness of SVD, we additionally

inherit the assumption of Proposition 1 that the random variables ε(i) have

distinct variances.
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Finally, the orthonormal matrix U acts isometrically and can be removed

from the objective (Equation (5.35)), even though it still plays a vital role

in how the problem is constrained. The reduced objective is further conve-

niently rewritten as a trace as:

min
Σ

Ei‖Σε(i)‖2 = min
Σ

Ei tr
(
EΣ>ΣE

)
, (5.37)

where E is the diagonal matrix induced by the vector ε.

A visualization of the role of U , Σ, and V in the decoding process is illus-

trated in Figure 2.4.

Proof

We rewrite the objective in order to introduce U , X̂, and Z and make use

of the constraints diag(Z>Z) = 1 and X̂ = ZΣU . We have

EΣ>ΣE = EΣ>(Z>Z +M)ΣE, (5.38)

where M = I − Z>Z is a matrix with diag(M) = 0. Also, we can expand

Σ>Z>ZΣ = U
(
U>Σ>Z>

)
(ZΣU)U> = UX̂>X̂U> (5.39)

By combining Equation (5.38) and Equation (5.39), we learn that

EΣ>ΣE − EUX̂>X̂U>E = EΣ>MΣE. (5.40)

By repeating Lemma 8, we learn that diag(EΣ>MΣE) = 0, which allows

us to use Lemma 8 yet again, this time on the left-hand side of (5.40) and

obtain a key intermediate conclusion:

tr
(
EΣ>ΣE

)
= tr

(
EUX̂>X̂U>E

)
(5.41)

This has a lower bound according to a classical trace inequality (see Propo-

sition 7), as EUX̂>X̂U>E is positive semi-definite.

tr
(
EUX̂>X̂U>E

)
≥ n det

(
EUX̂>X̂U>E

)1/n

(5.42)

= n det
(
EX̂>X̂E

)1/n

(5.43)
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with equality if and only if

EUX̂>X̂U>E = λI. (5.44)

For the SVD X̂ = UXΣXV
>
X , we see that X̂>X̂ = VXΣ2

XV
>
X and with

U ′ = UVX we arrive at

U ′Σ2
XU

′> = λE−2. (5.45)

The left-hand side gives an SVD of the diagonal matrix E−2. The SVD

of a diagonal matrix is unique up to a signed permutation matrix. The

conclusion of Theorem 1 now follows.

Proof of auxiliary statements

In the following lemma, the vectors x and y correspond to the mean latent

µ and the noise standard deviation σ respectively. We allow for scaling the

latent space and find that the KL loss is minimal for unit standard deviation

of the means.

Lemma 7. For vectors x = (x0, . . . , xn) ∈ Rn, y = (y0, . . . , yn) ∈ Rn and

c = arg min
c∈R

∑
i

(
c2xi

2 − log
(
c2yi

2
))
,

it holds that

c =

√∑
i

(xi2) (5.46)

Proof. It is easy to inspect that the minimum of
∑

i (c
2xi

2 − log (c2yi
2))

with respect to c fulfils the statement.

Proposition 7 (Trace Inequality). For a positive semi-definite M ∈ Rn×n,

that is M < 0, it holds that

tr(M) ≥ n det(M)1/n (5.47)

with equality if and only if M = λ · I for some λ ≥ 0.
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Proof. Let λ1, . . . , λn denote the eigenvalues of M , then tr(M) =
∑

i λi

and det(M) =
∏

i λi. Since M < 0, we have λi ≥ 0 for every i = 1, . . . , n.

Then, due to the classical AM-GM inequality, we have

tr(M) =
∑
i

λi ≥ n ·

(∏
i

λi

)1/n

= n det(M)1/n, (5.48)

with equality precisely if all eigenvalues are equal to the same value λ ≥ 0.

Then by the definition of eigenvalues, the M −λI has zero rank and equals

zero as required.

Lemma 8 (“Empty diagonal absorbs”). Let D ∈ Rm×m be a diagonal

matrix and let M ∈ Rm×m be a matrix with zero elements on the diagonal,

that is diag(M) = 0. Then diag(MD) = diag(DM) = 0 and consequently

also tr(MD) = tr(DM) = 0.

Proof. Follows immediately from the definition of matrix multiplication.
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Chapter 6 Discussion and

conclusions

6.1 Discussion

This work summarized results that answer the question of why VAE-based

architectures disentangle. It was made evident in [15] that unsupervised

learning of disentangled representations can only be possible by choosing

the right type of inductive bias. We provided a retrospective answer to

which biases are responsible for the disentangling capabilities of β-VAEs,

both from the model and data perspectives.

In the first part, we isolated the effect of the particular choice of the prior

and posterior in the canonical implementation of VAEs. This leads to a

mechanism that fosters local orthogonalization of the learned models. Or-

thogonality itself is an inherent similarity between VAE-based models and

PCA. We provide a theoretical framework in which we can derive this be-

havior directly from the loss function of the canonical implementation of a

VAE. Furthermore, we demonstrated the functionality of this mechanism

in intuitive terms via a hands-on linear example and an intuitive picture.

The introduced measure for the distance to orthogonality allowed us to

provide extensive experimental evidence to support our findings. Orthogo-

nality, being an attractive geometric characteristic, however, distinguishes

the classical PCA from ICA. This results in a new question: How effective

are novel VAE-based architectures in terms of nonlinear ICA and why?
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In which cases can an orthogonal model act as a de-mixing operation in

terms of nonlinear ICA? This work does not answer this question which we

leave open for future work.

In the second part, we showed that β-VAEs use the differences in variance

in the data to form the representation in the latent space. This tightens the

connection further and concludes an equivalence between VAEs and PCA

for the linear case. We have also shown that the success of VAE-based archi-

tectures stems mainly from the structured nature of the datasets on which

they are being trained and evaluated. Small perturbations of the dataset

can reduce this structure and decrease the bias such architectures exploit.

Interestingly, even architectures that are proven to be identifiable, like the

SlowVAE, still owe their success to the same bias. PCL and the weakly

supervised GAN, however, as non-variational methods, were unaffected by

the small perturbation. This naturally leads to the question of whether

novel methods that combine β-VAEs with subtle supervision (e.g., sparse

transition priors or auxiliary observables) owe their success to the additional

supervision information or the existing biases. In conclusion, the success

of VAE-based architectures can largely be explained by two components:

(1) The choice of the prior and posterior results in PCA-like behavior, and

(2) In existing datasets, the ground truth generating factors seem to align

with the principal components. The second component, however, is still

insufficiently answered for the nonlinear setting.
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6.2 Limitations

There are three main technical limitations of this work: (i) We restrict our

statements to the so-called polarized regime, which is itself a not completely

understood but highly discussed phenomenon, (ii) Our analysis works with

the vanilla β-VAE loss and only generalizes to other VAE-based architec-

tures experimentally and (iii) We do not provide an extension of the VAE-

PCA equivalence for the nonlinear case.

Our analysis of the β-VAE loss is based on the simplification that arises

within the polarized regime, i.e., in the situation in which the latent dimen-

sions can be categorized into active (non-zero mean, smaller than one stan-

dard deviation) and inactive (zero mean, unit variance). This phenomenon

is well-known to practitioners and has been discussed under different terms,

such as the posterior collapse [68, 81]. We did not observe any shortcomings

of this simplification during our experiments (which are conducted optimiz-

ing the whole, un-simplified VAE loss). This type of behavior is another

hidden, practical perk of the β-VAE, as it allows for smooth pruning of the

latent space. However, this work misses out on analyzing the exact origin

of this almost discrete and intriguing behavior.

Although we evaluate our methods on various VAE-based architectures, the

theory is based only on the classical VAE loss. The fact that the empirical

evidence suggests that the primary mechanisms discovered translate across

derivates of the VAE is insightful. Every architecture was designed with

a certain innovative change in mind. Still, the underlying loss function

often mildly deviates from the original β-VAE or is extended by additional

regularization terms. However, providing equivalent statements to the ones

in this work would require a detailed analysis of each architecture.

We extended the statements about the orthogonality of β-VAEs to lineariza-

tions thereof (orthogonality of the Jacobians). However, we did not provide

a similar extension for the specific alignment in the nonlinear case, which is

attributed to the complexity of the question and left open for future work.

95



6 Discussion and conclusions

6.3 Future work

Many opportunities and questions arose while discovering the insights sum-

marized in this work. The most obvious and pressing question is to which

extent one could utilize the novel understanding to improve the disentan-

gling quality of β-VAE-based architectures. It is unsatisfying that β-VAEs

promote orthogonality somewhat indirectly, and being able to control this

feature explicitly through the architecture design would be beneficial. Along

with this almost accidental perk of β-VAEs, the choice of prior and posterior

might not come exclusively as an advantage but may hide more intricacies.

Perhaps achieving explicit control over orthogonality in other architectures

would allow for better overall representation quality.

One of the downsides that come along with the β-VAE inner workings are

the significant variances over restarts. They can be partially explained by

the degeneracy of the datasets (Section 3.3.4) and partially attributed to

ambiguous solutions to the optimization objective (Section 3.3.2). The lat-

ter problem is associated with the highly-debated question of how to mea-

sure disentanglement and whether there are better ways to define it in the

first place [19]. However, the example of the β-VAE choosing a Cartesian

or a polar coordinate system is fascinating. It is not immediately intuitive

why the polar representation is more suitable than any other (invertible) co-

ordinate transformation. One particular feature that comes to mind is the

cyclic behavior of the angular coordinates, which links to the cyclic nature

of generating factors that cover, e.g., hues of objects in an image. However,

the symmetry of the hues is typically broken to some extent, which leads

to the reproducible alignment of the color coordinates in the cartesian rep-

resentations of Figure 4.10. To sum it up, it comes as a certain surprise

that the polar representations form a distinct optimum to the optimization

problem, thereby fueling the discussion about a unified, general definition

of disentanglement.
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While we could showcase that small perturbations in the local structure of

the data alleviate the particular features of synthetic datasets that make

β-VAEs disentangle, it remains an open question whether the same local

structure can reliably be found in real-world data on which such architec-

tures could be deployed. If so, fostering the sensitivity of future architec-

tures towards the natural alignment of data could result in a transparent

advance of unsupervised representation learning. Similarly to the question

discussed in the previous paragraph, it would be interesting to follow the

leads of clearly distinct local minima of the optimization problem since their

suitability for downstream applications remains unexplored.

Last but not least, formalizing a theoretical identifiability statement for β-

VAEs could help to broaden the understanding of their peculiarities. The

problem that completely unsupervised recovery of the ground truth generat-

ing factors for arbitrary generative processes is an ill-posed task means that

any such claim can, if at all, only be made for a particular set of mappings.

This could perhaps be linked to [98], as their work deals with generative

processes that share the local orthogonality condition that β-VAEs strive

for. Connecting the lines of research on nonlinear ICA, causal mechanism

analysis, and β-VAEs will hopefully yield intriguing insights that could help

the field to make a large leap forward.
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Chapter 7 Related projects

7.1 Deep graph matching via blackbox

differentiation

Abstract

Building on recent progress at the intersection of combina-

torial optimization and deep learning, we propose an end-

to-end trainable architecture for deep graph matching that

contains unmodified combinatorial solvers. Using the pres-

ence of heavily optimized combinatorial solvers together with

some improvements in architecture design, we advance state-

of-the-art on deep graph matching benchmarks for keypoint

correspondence. In addition, we highlight the conceptual

advantages of incorporating solvers into deep learning ar-

chitectures, such as the possibility of post-processing with

a strong multi-graph matching solver or the indifference to

changes in the training setting. Finally, we propose two new

challenging experimental setups.

Michal Roĺınek, Paul Swoboda, Dominik Zietlow , Anselm Paulus,

Vit Musil, Georg Martius

ECCV 2020; https://arxiv.org/abs/2003.11657
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Summary and connection to this thesis

The task of semantic keypoint correspondence matching deals with a setting

in which two or more images with the locations of a set of key points are

provided. Every pair of matching key points has to be linked to each other

by the model. For example, the two images could show sheep with keypoint

annotations at a hoof, the ears, the eyes, the nose, and the mouth. The

model has to match key points accordingly, as illustrated in Figure 7.1.

Figure 7.1: Keypoint matching: The points in either image

are annotated solely by their position and have to be

matched according to their semantics.

We propose using BlackboxBackprop, a method developed to provide linear

gradient interpolations for piece-wise constant loss functions, to connect

state-of-the-art combinatorial solvers with deep feature extractors. The

combinatorial solver works on an instance specified by one graph per image

and resulting edge- as well as vertex-affinities. We use a deep neural network

to extract a representation for each keypoint (vertex in the graph) and

calculate the edge features as differences of the vertex features, as well

as the affinities as weighted inner products. The resulting matching loss

is a piece-wise constant function, in other words: Mildly perturbing the

affinities has likely no effect on the resulting keypoint matching. This is

where BlackboxBackprop comes into play, as it allows for computing a
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linearized gradient interpolation between areas of constant losses, thereby

allowing for backpropagating through the combinatorial solver.

The whole representation of an image as a graph and the combination of

multiple graphs as affinity matrices can be seen as representation learning.

Although the desired property is not clearly specified as it is in terms of

disentanglement, we use modern machine learning techniques to end-to-end

train deep models for finding the right representation that combinatorial

solvers can work on.
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7.2 Leveling down: Pareto inefficiencies in fair

deep classifiers

Abstract

Algorithmic fairness is frequently motivated in terms of a

trade-off in which overall performance is decreased so as

to improve performance on disadvantaged groups where

the algorithm would otherwise be less accurate. Contrary

to this, we find that applying existing fairness approaches

to computer vision improve fairness by degrading the

performance of classifiers across all groups (with increased

degradation on the best performing groups).

Extending the bias-variance decomposition for classification

to fairness, we theoretically explain why the majority of

fairness methods designed for low capacity models should

not be used in settings involving high-capacity models,

a scenario common to computer vision. We corroborate

this analysis with extensive experimental support that

shows that many of the fairness heuristics used in computer

vision also degrade performance on the most disadvantaged

groups. Building on these insights, we propose an adaptive

augmentation strategy that, uniquely of all methods tested,

improves performance for the disadvantaged groups.

Dominik Zietlow , Michael Lohaus, Matthaeus Kleindessner, Guha Bal-

akrishnan, Francesco Locatello, Bernhard Schölkopf, Christopher Russell

CVPR 2022; https://arxiv.org/abs/2203.04913
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Summary and connection to this thesis

We show that existing fairness methods on classification tasks typically re-

duce the accuracy across protected groups when deployed in a computer

vision setting. We propose an explanation that links to the classical bias-

variance loss decomposition and postulates that in the presence of high

dimensional data and high capacity models, fairness can be improved along-

side accuracy by fostering the generalization on the worse performing group.

Generalization in deep learning, however, is intrinsically hard to achieve.

There are two main approaches to improving the generalization of a model:

Via regularization mechanisms or data augmentation strategies. We deploy

a GAN based augmentation method to improve fairness and classification

accuracy across groups.

Without additional measures, the GAN latent space is not disentangled.

Although their latent spaces have shown to be structured and allow for

meaningful interpolations, they are, however, not axis aligned. In other

words, a latent traversal along a Cartesian axis would not lead to a change

in a single semantic quantity, such as ,e.g., hair color but change multiple

characteristics at once.

We address this shortcoming of GANs by extending the Synthetic Minority

Oversampling Strategy (SMOTE) [99] to GAN latent spaces and extend the

sampling strategy beyond simple linear interpolations (g-SMOTE). SMOTE

is an augmentation-like approach proposed to improve training on biased

datasets. The under-represented group is therein extended by generating

new data via linear interpolations in the feature space of a data point and

one of its nearest neighbors. By using the GAN latent space as a feature

space and extending the augmentation process to uniform sampling within

a simplex formed by more than one of the nearest neighbors, we can improve

the generalization performance of the trained models. Figure 7.2 shows two

examples of data augmentations for sampling within the simplex formed of

a datapoint (green) and two of its nearest neighbors (orange).
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Figure 7.2: g-SMOTE augmentations with k=3. Given a data-

point (green) and two neighbors (orange), linear interpo-

lations in GAN latent space yield diverse images. Near-

est neighbors are chosen to share the target attribute

(“eyeglasses”). We give all interpolated images the same

attribute label value.

The required property of the GAN latent space for this to work is not

as strict as the one for disentanglement. We assign target labels to the

augmented images by choosing consistent nearest neighbors, e.g., if the

datapoint corresponds to a person wearing glasses, we sample in the simplex

formed by some of its nearest neighbors who also wear glasses. For this to

work, the volume covered by the simplex must be semantically consistent:

Every image generated from that volume in latent space should correspond

to a picture of a person wearing glasses.
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7.3 Machine learning quantum dynamics

Machine learning generators of open quantum dynamics

Abstract

In the study of closed many-body quantum systems, one is

often interested in the evolution of a subset of degrees of

freedom. On many occasions it is possible to approach the

problem by performing an appropriate decomposition into a

bath and a system. In the simplest case the evolution of the

reduced state of the system is governed by a quantum master

equation with a time-independent, i.e., Markovian, genera-

tor. Such evolution is typically emerging under the assump-

tion of a weak coupling between the system and an infinitely

large bath. Here we are interested in understanding to which

extent a neural network function approximator can predict

open quantum dynamics—described by time-local genera-

tors—from an underlying unitary dynamics. We investigate

this question using a class of spin models, which is inspired

by recent experimental setups. We find that indeed time-

local generators can be learned. In certain situations they

are even time independent and allow to extrapolate the dy-

namics to unseen times. This might be useful for situations

in which experiments or numerical simulations do not allow

to capture long-time dynamics and for exploring thermaliza-

tion occurring in closed quantum systems.

Paolo Mazza, Dominik Zietlow , Frederico Carollo, Sabine Andergassen,

Georg Martius, Igor Lesanovsky

Physical Review Research; https://arxiv.org/abs/2101.08591
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Inferring Markovian quantum master equations of

few-body observables in interacting spin chains

Abstract

Full information about a many-body quantum system is usually out-

of-reach due to the exponential growth - with the size of the system

- of the number of parameters needed to encode its state. Nonethe-

less, in order to understand the complex phenomenology that can be

observed in these systems, it is often sufficient to consider dynamical

or stationary properties of local observables or, at most, of few-body

correlation functions. These quantities are typically studied by sin-

gling out a specific subsystem of interest and regarding the remainder

of the many-body system as an effective bath. In the simplest sce-

nario, the subsystem dynamics, which is in fact an open quantum

dynamics, can be approximated through Markovian quantum master

equations. Here, we show how the generator of such a dynamics can

be efficiently learned by means of a fully interpretable neural network

which provides the relevant dynamical parameters for the subsystem

of interest. Importantly, the neural network is constructed such that

the learned generator implements a physically consistent open quan-

tum time-evolution. We exploit our method to learn the generator

of the dynamics of a subsystem of a many-body system subject to a

unitary quantum dynamics. We explore the capability of the network

to predict the time-evolution of a two-body subsystem and exploit

the physical consistency of the generator to make predictions on the

stationary state of the subsystem dynamics.

Francesco Carnazza, Federico Carollo, Dominik Zietlow , Sabine

Andergassen, Georg Martius, Igor Lesanovsky

New Journal of Physics; https://arxiv.org/abs/2201.11599
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7.3 Machine learning quantum dynamics

Summary and connection to this thesis

The simulation of physical processes is often computationally complex, even

infeasible for large systems, and typically only possible in an iterative fash-

ion. In the first paper ([24]), we conducted two sets of experiments. We

analyzed how well a linear model generalizes as a time evolution generator

for a specific physical system, as depicted in Figure 7.3. This is particu-

larly interesting as the typical iterative simulation procedure conceals the

closed-form analytical solution, which could otherwise be analyzed directly.

In the second experiment, we deviate from the time-global linear model to

a time-local linear model (given by a hypermodel that predicts the linear

time generator at any point in time). We compute the time dependence

of the resulting generators, which yields insights into the dynamics of the

physical system under investigation.

Figure 7.3: Time-independent generator: We train a linear

model to obtain a time-independent generator. The

training data are the time-dependent expectation values

of the reduced system observables in a given time win-

dow (blue-shaded region). When the reduced dynam-

ics is Markovian, this learned generator allows the net-

work to make predictions for unseen times (red-shaded

region).
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In the second paper ([26]), we train a neural network to approximate a

parameterization of the so-called Lindblad operator. As the true physical

dynamic generators are positive and trace-preserving, we choose a param-

eterization that enforces those properties by design. The learned dynamics

are therefore constrained to be physically valid, which is not the case if the

generator is learned in a less- or unconstrained way.

Although there is no direct connection between these papers and the work

presented in this thesis, there are follow-up plans to investigate the curse of

dimensionality in physical systems through the lens of deep representation

learning. Quantum spin systems suffer from the same curse of dimension-

ality that is well known to deep learning practitioners. The state space of

such systems scales exponentially with the number of spins and becomes

impossible to model precisely (without approximations) for a comparatively

small system size already. We want to investigate if and how representation

learning can be used to predict the dynamics of high dimensional systems

in a lower dimensional space. The grand goal of this project is to generalize

beyond the system sizes used to train the representation learning models,

thereby extending the realm of investigable system sizes.
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7.4 InvGAN: Invertable GANs

Abstract

Generation of photo-realistic images, semantic editing and rep-

resentation learning are a few of many potential applications

of high resolution generative models. Recent progress in GANs

have established them as an excellent choice for such tasks. How-

ever, since they do not provide an inference model, image editing

or downstream tasks such as classification can not be done on

real images using the GAN latent space. Despite numerous ef-

forts to train an inference model or design an iterative method

to invert a pre-trained generator, previous methods are dataset

(e.g. human face images) and architecture (e.g. StyleGAN) spe-

cific. These methods are nontrivial to extend to novel datasets

or architectures. We propose a general framework that is ag-

nostic to architecture and datasets. Our key insight is that,

by training the inference and the generative model together, we

allow them to adapt to each other and to converge to a bet-

ter quality model. Our InvGAN, short for Invertable GAN,

successfully embeds real images to the latent space of a high

quality generative model. This allows us to perform image in-

painting, merging, interpolation and online data augmentation.

We demonstrate this with extensive qualitative and quantitative

experiments.

Partha Ghosh, Dominik Zietlow , Michael J. Black, Larry S. Davis,

Xiaochen Hu

GCPR 2022; https://arxiv.org/abs/2112.04598
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Summary and connection to this thesis

Despite their unparalleled performance in generating photo-realistic images,

GANs typically lack an inference module that allows embedding images

in their latent space. Existing approaches using GANs for ,e.g., image

editing, up-scaling, sharpening, and so on often rely on directly optimizing

the latent representation such that the generated image resembles the input.

This optimization is computationally inefficient and can not be used in

downstream tasks requiring high data throughput. Model-based inversion

typically deals with pre-trained generators: They train an inversion model

given a fixed generator. In this work, we propose an architecture that

jointly trains a GAN and an inversion module with basically any given

GAN backbone architecture. We achieve high-fidelity image reconstructions

and only a minor decrease in the overall image quality of random latent

samples. An example on the CelebA dataset is illustrated in Figure 7.4.

This project tackles the task of closing the gap between GANs and VAEs.

Figure 7.4: InvGAN reconstructions of CelebA. Alternating

(from left to right) original and reconstructed images.

The inversion of the decoder is inherently part of the VAE training, but

VAEs are vastly outperformed by GANs in terms of visual quality. By

combining the training of the inversion module with the GAN training, we

could combine the advantages of either architecture.
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7.5 Assaying out-of-distribution generalization

in transfer learning

Abstract

Since out-of-distribution generalization is a generally ill-

posed problem, various proxy targets (e.g., calibration,

adversarial robustness, algorithmic corruptions, invariance

across shifts) were studied across different research programs

resulting in different recommendations. While sharing the

same aspirational goal, these approaches have never been

tested under the same experimental conditions on real data.

In this paper, we take a unified view of previous work, high-

lighting message discrepancies that we address empirically,

and providing recommendations on how to measure the ro-

bustness of a model and how to improve it. To this end, we

collect 172 publicly available dataset pairs for training and

out-of-distribution evaluation of accuracy, calibration error,

adversarial attacks, environment invariance, and synthetic

corruptions. We fine-tune over 31k networks, from nine dif-

ferent architectures in the many- and few-shot setting. Our

findings confirm that in- and out-of-distribution accuracies

tend to increase jointly, but show that their relation is largely

dataset-dependent, and in general more nuanced and more

complex than posited by previous, smaller-scale studies.

Florian Wenzel, Andrea Dittadi, Peter Vincent Gehler, Carl-Johann Simon-

Gabriel, Max Horn, Dominik Zietlow , David Kernert, Chris Russell,

Thomas Brox, Bernt Schiele, Bernhard Schölkopf, Francesco Locatello

NeurIPS 2022; https://arxiv.org/abs/2207.09239
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Summary and connection to this thesis

Training models that are robust against distributional shifts is a core chal-

lenge in computer vision. The problem that models do not achieve general-

ization beyond the training dataset, limits their application to domains in

which either vast amounts of (labeled) data are available, or to applications

in which the target domain is particularly narrow. This paper analyzes

how out-of-distribution accuracy can be estimated based on various other

metrics (in- and out-of-distribution).

Figure 7.5 shows the results of a factor analysis with four factors on those

metrics. We observed that they aggregate different combinations of metrics,

indicated by the four differently colored bars. The blue factor captures

classification error, adversarial error, log-likelihood, and their corrupted

variants whereas the green factor contains almost only OOD metrics. The

yellow factor represents the expected calibration error and the red factor

the demographic disparity.

The desire for computer vision models that generalize beyond the train-

ing distribution also fuelled the research for disentangled representations.

If a representation learning model were to disentangle perfectly, i.e., it re-

covered the generating factors, it could foster the generalization of models

that ingest those representations. The reason is that the representation

would be consistent independently of the distribution shift, e.g., a coordi-

nate representing an object’s position. However, it is unclear if a model’s

disentangling ability would trivially generalize out-of-distribution [100].
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Figure 7.5: Factor analysis: Factor loadings (contributions) of dif-

ferent metrics based on a factor analysis with four or-

thogonal factors (color-coded), highlighting similarities

between the metrics. The factor Blue: captures classi-

fication error, adversarial error, log-likelihood, and their

corrupted variants. Green: only in OOD metrics. Yel-

low: expected calibration error. Red: demographic dis-

parity.
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7.6 Embrace the gap: VAEs perform

independent mechanism analysis

Abstract

VAEs are a popular framework for modeling complex data distri-

butions; they can be efficiently trained via variational inference by

maximizing the ELBO, at the expense of a gap to the exact (log-)

marginal likelihood. While VAEs are commonly used for represen-

tation learning, it is unclear why ELBO maximization would yield

useful representations, since unregularized maximum likelihood esti-

mation cannot invert the data-generating process. Yet, VAEs often

succeed at this task. We seek to elucidate this apparent paradox

by studying nonlinear VAEs in the limit of near-deterministic de-

coders. We first prove that, in this regime, the optimal encoder

approximately inverts the decoder—a commonly used but unproven

conjecture—which we refer to as self-consistency. Leveraging self-

consistency, we show that the ELBO converges to a regularized log-

likelihood. This allows VAEs to perform what has recently been

termed Independent Mechanism Analysis (IMA): it adds an induc-

tive bias towards decoders with column-orthogonal Jacobians, which

helps recover the true latent factors. The gap between ELBO and

log-likelihood is therefore welcome since it bears unanticipated ben-

efits for nonlinear representation learning. In experiments on syn-

thetic and image data, we show that VAEs uncover the true latent

factors when the data generating process satisfies the IMA assump-

tion.

Patrik Reizinger, Luigi Gresele, Jack Brady, Julius Von Kügelgen,

Dominik Zietlow , Bernhard Schölkopf, Georg Martius, Wieland

Brendel, Michel Besserve;

NeurIPS 2022; https://arxiv.org/abs/2206.02416
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7.6 Embrace the gap: VAEs perform independent mechanism analysis

Summary and connection to this thesis

This paper presents two major findings: Firstly, it proves that in the near-

deterministic regime, the so-called self-consistency of VAEs holds. That

means that the decoder inverts the encoder. Secondly, it shows that the

ELBO converges to a regularized log-likelihood and more precisely matches

the IMA objective. This result only holds in the case of a self-consistent

model. As shown in Figure 7.6, with increasing γ2 (the decoder’s precision),

the difference between the self-consistent ELBO and the IMA objective

vanishes. The remaining gap between the log-likelihood and the ELBO is

exactly the IMA regularizer.

Figure 7.6: ELBO gaps: Comparison of the ELBO∗, the IMA-

regularized and unregularized log-likelihoods over differ-

ent γ2.

Those findings are strongly related to this thesis, where we investigated

the effects of the implemented loss function of β-VAEs. In contrast, this

paper provides a theoretical analysis of VAEs from the variational infer-

ence perspective. The IMA objective was motivated by formalizing signal

independence via column orthogonality of the model’s Jacobian [98]. This

is at heart the key property of VAEs, as discussed in Chapter 3. The re-

quired self-consistency property of the model reflects in the assumption of

the polarized regime.
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