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Abstract

One of the most important goals of research in physics is to find the most basic and universal theories that

describe our universe. Many theories assume the presence of absolute space and time in which physical objects

are located, and physical processes occur. However, it is more fundamental to understand time as relative to the

motion of another object, such as the number of swings of a pendulum and the position of an object primarily

relative to other objects. The purpose of this thesis is to explain how classical mechanics can be formulated

using the principle of relationalism (introduced below) on a most elementary space which is freed from absolute

entities: shape space. In shape space, only the relative orientation and length of subsystems are considered. A

sufficient requirement for the validity of the principle of relationalism is that when the scale variable of a system

changes, all parameters of the theory that depend on the length change accordingly. In particular, the principle

of relationalism requires an appropriate transformation of the coupling constants of the interaction potentials in

classical physics. Consequently, this change leads to a transformation of Planck’s measuring units, which allows

us to derive a metric on shape space in a unique way. In particular, we explain in two different ways how to find

the unique metric of shape space, taking into account the crucial role of rulers in determining the geometry of

a space.

In order to find out the classical equations of motion on shape space, the method of ”symplectic reduction

of Hamiltonian systems” is extended to include scale transformations. In particular, we will give the derivation

of the reduced Hamiltonian and symplectic form on shape space, and in this way, the reduction of a classical

system with respect to the entire similarity group is achieved.

One can alternatively use the Lagrangian formalism of mechanics to derive the reduced equations of motion

on shape space. It will be explained how the Principle of Relationalism makes the Lagrangian of the classical

mechanics scale-invariant, which in turn ensures the existence of laws of motion on shape space. In order to

find out these laws of motion, the Boltzman-Hammel equations of motion in an anholonomic frame on tangent

space to system’s absolute configuration space T (Q), is adapted to the Sim(3)-fiber bundle structure of the

configuration space Q. The derived equations of motion on shape space enable us, among others, to predict the

evolution of the shape of a classical system without any reference to its absolute position, orientation, or size

in absolute space. Under the action of the group of scale transformations Sc, the internal configuration space

Qint := Q
E(3)

becomes a fiber-bundle whose base space is shape space. It has been explicitly shown that the

connection form of the Qint considered as the Sc-fiber-bundle is flat.

After treating the general N -body system, shape equations of motion of a three body system are derived explic-

itly as an illustration of the general method, after which some cosmological implications of the scale-invariant

classical mechanics are presented. In particular, we explain how the observed universe’s accelerated expansion

follows from the conservation of the dilational momentum in the modified Newtonian theory. Finally, we com-

pare the present work with two other approaches to relational physics and discuss their essential differences.

This thesis is based on the preprints [1]1 and [2] .

1“Reproduced with permission from Springer Nature Journal”
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Zusammenfassung

Eines der wichtigsten Ziele der physikalischen Forschung ist es, die grundlegendsten und universellsten Theorien

zu finden, die unser Universum beschreiben und dessen Verhalten erklären. Viele Theorien gehen von der Exis-

tenz eines absoluten Raums und einer absoluten Zeit aus, in denen sich die physikalischen Objekte befinden und

die physikalische Prozesse stattfinden. Es ist jedoch fundamentaler, die Zeit relativ zur Bewegung eines anderen

Objekts zu verstehen, z. B. die Anzahl der Schwingungen eines Pendels und die Position eines Objekts von vorn-

herein relativ zu anderen Objekten zu definieren. Diese Dissertation soll erklären, wie die klassische Mechanik

unter Verwendung des Prinzips des Relationalismus (das unten eingeführt wird) auf einem elementarsten Raum

formuliert werden kann, der von absoluten Grössen befreit ist: dem Shaperaum. Im Shaperaum werden nur

die relative Orientierung und Länge von Subsystemen berücksichtigt. Eine hinreichende Voraussetzung für die

Gültigkeit des Prinzips des Relationalismus ist, dass durch die Änderung der Skalenvariablen eines Systems (des

Universums) alle von der Länge abhängigen Parameter der Theorie entsprechend geändert werden. Insbeson-

dere das Prinzip des Relationalismus erfordert in der klassischen Physik eine bestimmte Transformation der

Kopplungskonstanten der Wechselwirkungspotentiale. Diese Änderung führt folglich zu einer Transformation

der Planckschen Maßeinheiten, die es uns ermöglicht, auf eindeutige Weise eine Metrik auf dem Shaperaum

herzuleiten.

Um die klassischen Bewegungsgleichungen auf dem Shaperaum zu finden, wird die Methode der ”Symplek-

tischen Reduktion Hamiltonscher Systeme” um die Skalierungtransformationen erweitert. Insbesondere werden

wir die Herleitung der reduzierten Hamiltonian und der symplektischen Form auf dem Shaperaum angeben.

Damit wird die Reduktion eines klassischen Systems bezüglich der gesamten Ähnlichkeitsgruppe erreicht.

Wir können alternativ den Lagrange-Formalismus der Mechanik verwenden, um die reduzierten Bewegungs-

gleichungen auf dem Shaperaum herzuleiten. Es wird erklärt, wie das Prinzip des Relationalismus die Lagrange-

Funktion der klassischen Mechanik skaleninvariant macht, was wiederum die Existenz den Bewegungsgeset-

zen im Shaperaum sicherstellt. Um diese Bewegungsgesetze herauszufinden, werden die Boltzman-Hammel-

Bewegungsgleichungen in einem nichtholonomen System im Tangentialraum zum absoluten Konfigurationsraum

T (Q) des Systems an die Sim(3)-Faserbündelstruktur des Konfigurationsraums Q angepasst. Die hergeleit-

eten Bewegungsgleichungen im Shaperaum ermöglichen es uns unter anderem, die Entwicklung der Form eines

klassischen Systems ohne Bezug auf seine absolute Position, Orientierung oder Größe im absoluten Raum

vorherzusagen. Dazu reichen die Angabe eines Punktes und eines Geschwindigkeitsvektors auf dem Shaper-

aum als Anfangsbedinugen aus, wenn wir die zwei Erhaltungsgrössen D und L als Teil des Bewegungsgesetzes

auf dem Shaperaum betrachten. Der Internalkonfigurationsraum Qint := Q
E(3)

wird unter der Wirkung der

Gruppe der Skalentransformationen Sc zu einem Faserbündel, dessen Basisraum der Shaperaum ist. Es wird

explizit gezeigt, dass die Connectionform des als Sc-Faserbündel betrachteten Qint flach ist.

Nach der Behandlung des N -Körpersystems werden zur Veranschaulichung der allgemeinen Methode explizit

Shapegleichungen der Bewegung eines Dreikörpersystems hergeleitet, wonach einige kosmologische Implikatio-

nen der modifizierten(skaleninvarianten) klassischen Mechanik vorgestellt werden. Insbesondere, erklären wir,

wie die beschleunigte Ausdehung des beobachteten Universums aus der Erhaltung des Dehnungsimpulses in der

modifizierten Newtonschen Theorie folgt. Abschließend, werden die Inhalte der vorliegenden Arbeit mit zwei

anderen Ansätzen der relationalen Physik verglichen und deren wesentliche Unterschiede diskutiert.

Diese Arbeit basiert auf den Aufsätzen [1]2 und [2] .

2“Reproduziert mit Genehmigung von Springer Nature Journal”
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Preface

This manuscript can be divided to six parts.

In the first part (Chapter 1), we review the foundations of classical mechan-

ics with an emphasis on the ideas of Gottfried Wilhelm Leibniz, and compare the

Leibnizian relational worldview with absolute worldview of Isaac Newton. One of

the most basic building blocks of Newtonian mechanics is the idea of an absolute

time and space, the existence of which were assumed by Newton when formu-

lating the laws of motion. We will take the absoluteness of space and time into

question and will review how Newton’s absolute time can be deduced from the

change in the positions of particles. By this approach, time loses its status as a

primitive notion in physics, and takes an emergent status instead. Our dynamics

will be defined on shape space3 S, for which, in contrast to the configuration

space used in Newtonian Mechanics, time and space are not absolute entities.

The central new concept in the discussion is the principle of relationalism, which

leads us to consider particular constants of nature as homogeneous functions of

proper degrees on the universe’s configuration space. The theory developed along

these lines in Sections (1.4.1) and (1.4.2) has the full similarity group Sim(3) as

its symmetry group.

In the second part (Chapters 2 and 3) of this dissertation we give a review of

the literature on symplectic reduction of classical systems with respect to the

Euclidean group E(3). Here we follow [3] and [4] to a big extend.

In the third part of the dissertation (in Chapter 4), we explain how these meth-

ods can be expanded to include scale transformations, and consequently how the

reduction of a classical system with respect to the full similarity group sim(3)

(considered throughout this manuscript to be the symmetry group), is achieved.

Here we explain among others, how the kinetic metric of configuration space leads

in a unique way to a metric on shape space, using the principle of relationalism.

3Quotient of the absolute configuration space Q ∼= R3N with respect to the similarity group
sim(3), which comprises all global spatial translations, rotations, and scalings.
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Given the known procedures for deriving the reduced equations of motion with

respect to the Euclidean group E(3) in the Hamiltonain formalism using a sym-

plectic structure on phase space, we derive the reduced symplectic form, and the

Hamiltonian of a N -particle system on its reduced phase space with respect to

the similarity group. This suffices to determine the evolution of a classical system

on shape space, given its initial shape and shape velocities, without any reference

to the system’s orientation, position, or scale in absolute space.

At Chapter 5, we revisit the principle of relationalism and present a more concrete

mathematical expression of it both in Newtonian and Leibnizian world-views. We

also state other principles in relational mechanics and compare them with ours.

In the remaining parts of this manuscript we aim at deriving equations of motion

of a classical system on shape space in the context of Lagrangian mechanics. In

particular, in the fourth part, following [5], [6], and [7] to a big extend, we first re-

view in Chapter 6 the geometric setting on the center of mass configuration space

Qcm as a SO(3)-fiber-bundle. We then explain in Chapter 7 how this setting can

be expanded to scale transformations, and the construction of the Sim(3)-fiber

bundle is discussed. Here we explain among others, how a metric N on shape

space can be derived in a unique way. Under the action of the group of scale

transformations Sc, the internal configuration space Qint :=
Q

E(3)
becomes a fiber

bundle, whose base space is shape space. It has been explicitly shown that the

connection form of the Qint considered as the Sc-fiber-bundle is flat. In Chap-

ter 8, we first review the Lagrangian formulation of mechanics in anholonoimic

frames, and their Boltzmann-Hamel equations of motion. Thereafter, we derive

the equations of motion on shape space.

In the fifth part (in Chapters 9 and 10) we derive explicitly the shape equa-

tions of motion of a three-body system, and at last we discuss some cosmological

consequences like accelerated expansion of the universe, and the total collision

singularity in the classical mechanics.

Research in relational physics has a rich and long history, and there are many
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important attempts at implementing relational ideas in physics. See for instance

[8],[9],[10] for more information. In the last part (in Chapter 11), we will give

a quick comparison of our work with two of the other approaches in relational

physics. The first alternative approach (denoted here by BKM) is based on the

mechanical similarities in Newtonian mechanics, as is developed and elaborated in

[11],[12],[13],[14]. The second approach(denoted here by BDGZ) is based on the

geodesic dynamics on shape space, as is developed and expanded in [15], [16], [17].

In particular, we will explain how the BKM-approach and the BDGZ-approach

differ from our work but still both satisfy the Principle of Relationalism.
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Symbols

x A point on Qcm = Q
R3

q A point on Qint =
Qcm

SO(3)

s A point on shape space S = Q
Sim(3)

rrri i’s Jacobi vector of an N -particle system

λ Scale variable of a system

λ̇ Scale velocity of a system

λ̇λλ Scale velocity of a system measured in internal units

A Moment of inertia tensor of a N -particle system

A Gauge fields on Qint

Ag Action of g ∈ Sim(3) on T (Q)

D Dilational momentum operator

D value of system’s dilational momentum measured in internal units

M Mass metric on Qcm or Q

M(m) The measured mass metric on Qcm or Q

B Metric on Qint

N Metric on shape space S

Ix The canonical isomorphism from tangent space to cotangent space of Q

α, β, γ Euler angles connecting a body frame and the space frame

{e1, e2, e3} Fixed laboratory frame, or space frame

{e′1, e′2, e′3} Body frame

g Rotation which brings the space frame to the body frame

J =
∑N

α=1mαxα × ∂
∂xα

Total angular momentum

Ωa Components of angular velocity in space frame

Ω′a Components of angular velocity in body frame

J =
∑3

a=1 eaJa =
∑3

a=1 e
′
aLa

Ja = (ea | J)
La = (e′a | J) Left invariant vector fields on SO(3)

Jari = ea × ri

Lari = e′a × ri = g
(
ea × σi(q)

)
ωa(Jb) = δab

ω′a(Lb) = θa(Lb) = δab

θa Left invariant one forms on SO(3)

g−1dg =
∑3

a=1 θ
aR(ea)

ψa Right invariant 1-forms on SO(3)

dgg−1 =
∑3

a=1 ψ
aR(ea)

kkk Curvature tensor of shape space

ccc Speed of light

c Letter used to characterize scale transformations by a factor c ∈ R+

Sc Group of spatial scale transformations(of matter)

Grs Group of spatial rotations and scale transformations
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Chapter 1

Relationalism

1.1 Shape Space as the Physical Configuration

Space

Physics aims to give a most accurate description, prediction, and understanding

of nature and its phenomena. Imagine an experimental physicist in a labora-

tory, watching a specific physical phenomenon unfolding itself in front of his eyes.

Imagine now an identical universe, which is translated by some amount, rotated

by some angle, and dilated by some scale factor with respect to this universe.

Would anything different from the first universe be observed by the physicist in

the lab watching the phenomenon he was interested in? In other words, can the

experimenter tell in which of these two possible universes he finds himself/herself?

In fact, the physicist is fully blind to all of these global operations. By moving all

the objects in the universe one meter to the left, the distances between the objects

would not change at all. That is why the physicist would never see (measure) any

difference concerning his state, the state of his environment, or even the universe.

Intuitively1, one expects neither any difference in how the phenomenon would

unfold in front of him. From an internal point of view, the universe seems exactly

1for a relationalist
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the same, whether it is located here or one meter to its left. It looks exactly

the same after a total rotation of the universe by some degree or scaling of the

universe (hence all the inter-particle distances) with some constant. One could

object that by scaling the universe, the distances between the objects would also

get scaled; hence, an internal observer would be able to observe this difference.

However, as length measurements require rulers, and the same factor scales up

the inter-particle distances of the rulers as it does all other distances, the internal

observer can not notice any difference. Thus, two configurations of the universe

that can be transformed into each other by a member of the similarity group

Sim(3) are kinematically indistinguishable from an internal point of view. There

might be a difference for an external observer, but any discussion on what an

external observer of the entire universe would see is purely academic; at best, it

has a philosophical meaning but is irrelevant to any physical descriptions.

To illustrate the core concepts of the subject matter and review the definition

of shape space, let us start with an example of a toy universe that consists of

only three particles located in absolute space R3. Three coordinates specify each

particle’s position; hence nine numbers are needed to specify the configuration of

this system. However, as we explained in the last paragraph, this is what an ex-

ternal observer watching these three particles in absolute space would say. From

an internal point of view, for example, from the point of view of one of the three

particles, not more than 2 degrees of freedom can be observed: the two angles

of the triangle formed by these three particles. As explained in the last para-

graph, this is because the absolute position (of, for instance, the center of mass),

orientation, and scale of the system of three particles are unobservable from an

internal point of view. One needs three numbers to specify the system’s center of

mass, three numbers to specify the system’s orientation (e.g., Euler angles w.r.t.

some frame of reference), and one number to specify the scale of the system. In

other words, the similarity group Sim(3) is seven-dimensional; hence its action

on the system’s configuration space would lead to a seven-dimensional orbit. As

the configuration space of a three-particle system was 3× 3 = 9 dimensional, two

dimensions remain, which are called the shape degrees of freedom. In general,

2



observations are always internal; thus, they always take place in shape space. Ob-

servations always give a quantity in terms of a pre-defined unit of that quantity.

Hence, the numbers we register as the result of measurements are always compar-

ative data, not absolute. Since from an internal point of view, just two angles are

observable, one concludes that there are just two physical degrees of freedom for

our toy universe. In other words, the physical configuration space(shape space)

is two-dimensional, in contrast to the absolute configuration space, which is nine-

dimensional.

This toy model can be generalized to N -particles, where N may be as big as the

number of elementary particles in the whole universe. In that case, the absolute

configuration space Q is a 3N -dimensional, homogeneous space with Sim(3) as

its structure group. The fibers F are the orbits (generically seven-dimensional)

generated by the action of Sim(3) on absolute configuration space. The base

space S = Q
Sim(3)

is then isomorphic to the shape space of the universe.

S can be understood as the equivalence classes of points on absolute configura-

tion space where two points are being set equivalent if and only if they can be

transformed into each other by a similarity transformation, i.e., for x,y being two

points in Q

x ∼ y if ∃g ∈ Sim(3) | x = gy

In the physics literature one frequently uses the terms “relational configuration

space” or shape space instead of “physical configuration space”. How the objects

are located with respect to each other, or, equivalently, which shape they form is

the only observable from an internal point of view. Thus formulating the dynam-

ics in this base manifold, S is more fundamental than any description in absolute

space. A curve in S corresponds to a unique evolution of the physical degrees

of freedom of the system under investigation. These so-called physical degrees of

freedom are the only quantities visible (or sensible) to internal observers. Adding

the gauge degrees of freedom(the global Sim(3) degrees of freedom), any curve

in S represents an infinite number of trajectories in absolute space2, all of which

describe the same phenomena (see discussion above).

2Note that a description on phase space, however, often simplifies the equations of motion.

3



Finally, we want to mention that by considering the shape space of dimension

3N − 7, we tacitly have assumed the existence of a 3-dimensional absolute space.

In a more general setting, one should rather start with a m-dimensional shape

space where m is not necessarily 3N − 7, and argue how and under which cir-

cumstances an apparent three-dimensional absolute space would emerge for sub-

systems. Given that the effective three-dimensionality of absolute space (at least

locally) is an empirical fact, we will consider the case m = 3N − 7 in the present

manuscript and postpone the more general setting to future works.

1.2 Time as an emergent concept

According to the worldview of Newton, there exists an absolute three-dimensional

space3, in which physical objects, e.g., particles, move. The positions of the parti-

cles then change as time passes, and Newton’s laws tell how the positions change.

Time is an ever-flowing external entity that exists independently of matter and

space. In that sense, time generates the dynamics. Without it, there is no con-

cept of motion. However, Newton acknowledged that only relative positions are

experimentally observable. In the scholium4 of his famous book Principia [18]

he announces to explain how the existence of these absolute structures can be

derived from the relative motions of the observable entities. He even claims that

this was the central motivation for writing the book [19]; however, he does not

return to this later in his book.

Leibniz, on the contrary, was unsatisfied with this way of describing nature. Ac-

cepting that the point-like particles of Newtonian Mechanics are the fundamental

constituents of the universe, one expects a physical theory to explain, among oth-

ers, the behavior (in this case, the motions) of these particles. In order to do this,

Newton added two extra invisible entities to his description of nature: absolute

space and absolute time. Those are essential entities of Newton’s laws of motion,

especially in his law of inertia. Leibniz, in contrast, thought of them as extra

3Whose existence is independent of matter.
4A scholium is an explanatory note in a book written by the author himself.

4



structures that are nonphysical and do not exist independently in nature. In his

own words [20]:

“As for my own opinion, I have said more than once, that I hold space to be

something merely relative, as time is, that I hold it to be an order of coexistences,

as time is an order of successions.”

Downgrading space to the order of coexistences seems to us a clear denial of

Newton’s notion of absolute space reviewed above. Also, Ernst Mach expressed

in the late 19th century his critique of absolute time [21]:

“we must not forget that all things in the world are connected with one another

and depend on one another, and that we ourselves and all our thoughts are also

a part of nature. It is utterly beyond our power to measure the changes of things

by time. Quite the contrary, time is an abstraction, at which we arrive by means

of the change of things; made because we are not restricted to any one definite

measure, all being interconnected. A motion is termed uniform in which equal

increments of space described correspond to equal increments of space described

by some motion with which we form a comparison, as the rotation of the earth.

A motion may, with respect to another motion, be uniform. But the question

whether a motion is in itself uniform, is senseless. With just as little justice,

also, may we speak of an absolute time — of a time independent of change. This

absolute time can be measured by comparison with no motion; it has therefore

neither a practical nor a scientific value; and no one is justified in saying that he

knows aught about it. It is an idle metaphysical conception.”

In a relational theory, time is an emergent concept, and it is most rational to

define time in such a way that a change in time always relates to a change in the

configuration of the system, for example, the change in positions of the atoms

forming a pendulum. Time is defined along the trajectories. It is not a concept

based on the configurations alone. Any monotonically increasing function f can

5



be used to define the increment of time via

δt = f(| δx1 |, ..., | δxN |)

for infinitesimally small increments of the particle’s positions | δxi |. Given an

arbitrary trajectory on configuration space, including (among others) the two

configurations A and B, any monotonous function of the arc length of that tra-

jectory going from configuration A to configuration B can serve, for instance, as

a definition of the duration of time passed between A and B. As we will review

below, the duration can be indeed defined as a function of the changes in po-

sitions in a unique way such that the Newtonian equations of motion are valid.

Of course, we are allowed to use any other suitable function as a definition of

time. However, any different choice would make the form of the equations of

motion different from the ones Newton wrote down. Among all possibilities, the

Newtonian time has the advantage of bringing the equations of motion to their

simplest form.

1.3 Emergence of time in Classical Mechanics

Originally the principle of least action was developed to justify the equations of

motion in different theories. Different brilliant thinkers expressed the idea be-

hind the principle in many different ways. Pierre Louis Maupertuis (1698-1759)

is usually credited as the first who gave a concrete formulation of the least action

principle (although it is suggested that Leibniz was even earlier). Maupertuis’

motivation was to rationalize the (by then known) laws of ray optics and me-

chanics with theological arguments based on design or purpose to explain natural

phenomena. Here is a quote from Maupertuis which sheds some light on his views

[22]:

“The laws of movement and of rest deduced from this principle being precisely

the same as those observed in nature, we can admire the application of it to all

phenomena. The movement of animals, the vegetative growth of plants ... are
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only its consequences; and the spectacle of the universe becomes so much the

grander, so much more beautiful, the worthier of its Author, when one knows that

a small number of laws, most wisely established, suffice for all movements.”

Given an initial point in the system’s configuration space under consideration

qA and a final point qB, the path chosen by nature minimizes a functional de-

pending on the trajectories connecting the two endpoints. This functional is

usually called “action”. In other words: the trajectory between qA and qB taken

by the system minimizes the value of the action functional. More precisely, the

chosen trajectory is a stationary point of the action, but in most cases, the only

stationary point is a minimum.

Maupertuis proposed to define action as the integral of the so-called Vis viva

(Latin for “living force”). The term Vis viva was introduced by Leibniz during

the 1680s by his observation that the sum of the products of the constituting

masses of a system (i.e., a multi-particle system) with the squares of their respec-

tive velocities is almost constant during (elastic) collisions, i.e.,
∑N

i=1miv
2
i = C.

This is, of course, what we now call the principle of energy conservation (in mod-

ern terms, Leibniz’s Vis viva becomes 2 times the kinetic energy). It seemed to

oppose the theory of conservation of momentum advocated by the rival camp (Sir

Isaac Newton and Rene Descartes).

Maupertuis’ suggestion, therefore, comes down to the following action functional

W =

∫ tB

tA

2Kdt =

∫ qB

qA

pdq (1.1)

which is the right formula for systems where the kinetic energy is quadratic in

the velocities. Here the letter t stands for the absolute time of Newton.

Maupertuis’ principle states that for the true trajectories (the ones chosen

by nature), Maupertius’ action W is stationary on all trial trajectories with fixed

initial and final positions qA and qB and fixed energy5 E = K + V .

(δW )E = 0 (1.2)

5For the most general mechanical systems, energy is E =
∑

i piq̇i − L which reduces to the
well-known expression T + V in cases where the Lagrangian can be written as L = T − V with
T being a quadratic form in the velocities, and V being independent of the velocities.
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where in variational calculus, the constraint of fixed endpoints is usually left im-

plicit, and every other constraint on the trial trajectories (thus, in this case, fixed

energy) is written down explicitly. Note that in (1.1) no constraint is imposed

on the value of tB, as for different paths, a different amount of absolute time is

needed to reach the endpoint qB. In other words: tb stands for the absolute time

(moment) at which the configuration qB is reached, and this varies as the path

taken between qA and qB changes.

However, in the modern physics literature, the most common action principle

is the minimization of Hamilton’s action denoted by S. It is defined as an inte-

gral along the spacetime trajectory q(t) connecting two configurations qA = q(tA)

and qB = q(tB)

S =

∫ tB

tA

L(q, q̇)dt (1.3)

The statement of Hamilton’s principle then becomes: among all possible tra-

jectories q(t) that can connect the two configurations qA and qB during the exact

given time interval tB − tA = T , the chosen trajectories are those making S

minimal (respectively stationary). Thus, Hamilton’s principle can be written as

(δS)T = 0 (1.4)

where, as before, the extra constraint of constant travel time is assumed and ex-

plicitly denoted as a subscript. Bear in mind that there may be more than one

trajectory satisfying these constraints of fixed endpoints and travel time, see [23].

As mentioned, contrary to Maupertuis’ principle, the allowable trial trajectories

of Hamilton’s principle do not need to satisfy the constant energy constraint a

priori : the conservation of energy is here a consequence of Hamilton’s principle

for time-invariant systems (i.e., the Lagrangian does not have an explicit time

dependence). Thus, Hamilton’s principle (1.4) is applicable to both conservative

(time-invariant) and non-conservative systems (i.e., systems that have an explic-

itly time-dependent Lagrangian due to, for instance, time-dependent potentials

V (q, t)), while Maupertuis’ principle (1.2) is restricted to conservative systems.

For conservative systems, one can show that Hamilton and Maupertuis’ principles

are equivalent and related to each other through the famous Legendre transfor-

mations. The results from the action principles are curves that stand for the
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system’s trajectory. It provides us with a manifestly covariant way of describing

its evolution. For nonholonomic systems, however, non of these action principles

are applicable.

So far, Hamilton’s action principle seems more general and powerful than Mau-

pertuis’. Carl Gustav Jacob Jacobi (1804 - 1851) thought so, too. However, he

wanted to take it one step further by taking Newton’s intuition of the existence

of an absolute time more seriously by treating time as a variable in the varia-

tional calculations. In Newton’s spirit, the value of time is as important as the

value of the x-component of a particle’s position, for example, or any generalized

coordinate. Both of them are absolute and have physical reality. So, suppose

one wants to apply Hamilton’s principle properly. In that case, one should not

use the absolute Newtonian time t as an independent variable, but in contrary,

all n + 1 variables q1,...,qn,t should be considered as functions of some arbitrary

independent variable τ . It enables one to include the variation of t in the varia-

tional principle.

Thus, we aim to write Hamilton’s action principle for a system containing n+ 1

degrees of freedom (see[24]). For consistency from now on in this chapter, we

denote the derivative with respect to the Newtonian(absolute) time ∂
∂t

by a dot

and with respect to the independent variable (used to parametrize the n+1 phys-

ical degrees of freedom) ∂
∂τ

by prime. Starting with Hamilton’s action functional

(1.3) for the well-known Lagrangian L(q, q̇) of classical mechanics, which is the

difference between the kinetic and potential energy of the system, and rewriting

it in terms of the independent variable τ we get

S =

∫ τB

τA

L(q,
q′

t′
)t′dτ (1.5)

from which the new Lagrangian (for this new system which has n+ 1 degrees of

freedom) can be read off, namely

Lnew = Lt′.

Although we arrived at this by a simple mathematical step (change of integration

variable in (1.3)), be aware of the important physical difference between (1.3) and
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(1.5). In the latter we are varying the space-time curves connecting space-time

events A = (qA, tA) and B = (qB, tB).

Now as no t appears in Lnew, t is then by definition a cyclic variable. Hence its

conjugate momentum

pt =
∂Lnew

∂t′
=
∂(Lt′)

∂t′
= L+ (

n∑
i=1

∂L

∂q̇i

∂q̇i
∂t′

)t′

= L− (
n∑

i=1

∂L

∂q̇i

q′i
t′2

)t′ = L−
n∑

i=1

piq̇i

is a constant of motion. In the third equation, the chain rule is used. In the

fourth equation, we used q̇ = q′

t′
, hence ∂q̇i

∂t′
= − q′i

t′2
.

But the expression derived for pt coincides (up to a minus sign) with the first in-

tegral of the Lagrangian equations of motion (for scleronomic systems6 see [25])

which is defined in the literature as the total energy E of the system.

In short, if t is a cyclic variable (which is the case when the corresponding La-

grangian L of the system we started with is conservative, i.e., L has no explicit

time dependence), then

pt = −E (1.6)

is a constant of motion. This may also be considered an alternative derivation of

the energy conservation theorem for conservative systems.

It is well known that nc cyclic variables can be eliminated from the variational

problem resulting in the reduction of the original variational problem by nc de-

grees of freedom using the general reduction procedure (see, e.g., [24]). For this

reason, cyclic variables are also called ignorable variables in Hamilton’s formu-

lation of mechanics. In the present case, the ignorable variable is t, and we are

interested in reduction with respect to the variable t. The modified Lagrangian

becomes

L̄new = Lnew − ptt
′ = Lt′ − ptt

′ = (L− pt)t
′ =

n∑
i=1

piq̇it
′

6where the equations of constraints do not have explicit time dependence.

10



Hence, the modified action functional is as follows

S̄ =

∫ τB

τA

L̄new =

∫ τB

τA

n∑
i=1

piq̇it
′dτ =

∫ τB

τA

2Kt′dτ (1.7)

where expression (B.4) is used for the kinetic energy K.

Note here that because t′dτ = dt, the modified action (1.7) can simply be rewrit-

ten as Maupertuis’ action (1.1) . However, Jacobi’s dissatisfaction with Mau-

pertuis’ principle was of the same fundamental kind as his dissatisfaction with

Hamilton’s principle – with which by the way he started his considerations in the

first place. In Maupertuis’ action, the absolute time t is used as an independent

variable for integration. However, in the Newtonian worldview, t itself must be

the subject of the variational calculation, just like any of the qi. It matters at

which absolute time t ∈ [tA, tB] a given configuration qC (which locates on the

true trajectory somewhere between qA and qB) is reached; as much as it matters at

which value of the generalized coordinate qi a specific value of some qj is reached

(i ̸= j). It is only to this end that one uses the variational principle. So Jacobi’s

concerns are quite justified for a convinced follower of Newtonian philosophy.

It is worth emphasizing that Jacobi’s point (of putting time variable and position

variables of a mechanical system on equal footing) is a novel formal difference

from the works of his predecessors and truly finds its fundamental motivation in

the Newtonian worldview. However, his point does not make a practical differ-

ence to Maupertuis’ principle if the system subject of variational calculations is

conservative and the initial value of the absolute time is additionally provided
7. It is because, for conservative systems, the motion in time is constrained by

(1.6). So the velocity by which the configuration point of the system moves on

its trajectory can be calculated throughout the whole trajectory, and hence we

can calculate exactly at which absolute time any intermediate configuration qC

has been reached. In this way, no need for variation of t remains. A simple cal-

culation can elaborate on this point and leads to a formula for the exact value of

7which is indeed the case in Jacobi’s principle, as you choose a spacetime point as your lower
boundary of integration 1.7.
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the absolute time at an intermediate configuration.

tC = tA +

∫ τC

τA

t′dτ = tA +

∫ qC

qA

dl√
2K

= tA +

∫ qC

qA

dl√
2(E − V )

= tA +

∫ τC

τA

√
< q′ | q′ >√
2(E − V )

dτ

Here q(τ) stands for the true trajectory of the conservative system in configura-

tion space (in this case also a solution of Maupertuis’ principle), V = V
(
q(τ)

)
,

and the norm < . | . > on configuration space is defined with respect to the mass

tensor (see appendix B). In the second equality, the expression of the kinetic

energy in Newtonian theory (i.e., (1.8)) is used to substitute the increment of

absolute time dt with the line element of configuration space dl. therefore, the

use of absolute time as an independent variable in Maupertuis’ principle is a pos-

teriori satisfied. From Jacobi’s analysis, it becomes clear that the circumstances

under which Maupertuis’ principle is applied (constancy of the total energy) leave

no room for a variation of absolute time (its value is fixed for any intermediate

configuration as we have just calculated).

Let us now move on with the last step of the reduction of a cyclic variable, which

is the elimination of its velocity using the equation of motion of its conjugate

momentum, in this case eliminating t′ using (1.6). We equip the configuration

space with a Riemannian metric and set this metric equal to the mass tensor M.

Then the kinetic energy can be expressed as

K =
1

2

(dl
dt

)2
(1.8)

in which dl denotes the line element (with respect to M as metric)8 of configu-

ration space. So, in Newtonian theory, the velocity with which the configuration

point of a system moves in configuration space is
√
2K. Again, in the present

case, since we use τ as our independent variable, (1.8) needs to be rewritten as

K =
1

2

( dl
dτ

)2
/t′2. (1.9)

8dl2 = Mijdx
idxj
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Now, using this and the momentum equation (which is equivalent to the energy

theorem(1.6)), the cyclic variable (i.e., the remaining t′ in the modified action

(1.7)) can eventually be eliminated by inserting

t′ =
1√

2(E − V )

dl

dτ
(1.10)

into (1.7)

S̄ =

∫ τB

τA

2Kt′dτ =

∫ τB

τA

2K
1√

2(E − V )

dl

dτ
dτ

=

∫ τB

τA

2(E − V )
1√

2(E − V )

dl

dτ
dτ

=

∫ τB

τA

√
2(E − V )

dl

dτ
dτ

=

∫ B

A

√
2(E − V )dl

It finally leads to the reduced action functional

S̄ =

∫ τB

τA

√
2(E − V )

dl

dτ
dτ =

∫ B

A

√
2(E − V )dl (1.11)

where the last equation shows the invariance of this expression with respect to

re-parametrizations. As usual, the minimizing paths of the action satisfy

(δS̄) = 0 (1.12)

and we have arrived at what is called Jacobi’s principle. Note that constancy

of the total energy E here is not a constraint imposed manually in the vari-

ational calculation (as in (1.2)) but a consequence of Hamilton’s principle for

time-invariant systems; hence we did not write a letter E explicitly in (1.12). As

is evident from (1.11), absolute time t does not appear in its formulation. The

solution of this principle is a path in configuration space without any reference to

the motion in absolute time. However, the motion in absolute time (which was,

of course, the question of Jacobi in the first place) can quickly be recovered from

(1.10), the integration of which gives us the physical time t as a function of the

independent parameter τ (which now parametrizes all n + 1 degrees of freedom

as Jacobi wanted).
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More recently [15], Julian Barbour preferred to rewrite Jacobi’s action (1.11)

as

S̄ = 2

∫ τB

τA

√
E − V

√
K̃dτ (1.13)

where K̃ := 1
2
dq
dτ
. dq
dτ

with the inner product defined with respect to the mass

tensor, again. It can be rewritten as K̃ = 1
2

∑N
i=1

dri
dτ
.dri
dτ

where dot denotes the

standard Euclidean metric on R3, and the index i runs over the number of parti-

cles. Note that K̃ has nothing to do with the kinetic energy, which is a Newtonian

term. When one uses the physical time to express the velocities, K̃ becomes, by

definition, the kinetic energy we are all familiar with.

The Lagrangian L read off from (1.13) is used to define the canonical momenta

pi :=
∂L

∂(dqi
dτ
)
= mi

√
E − V

K̃

dqi
dτ

(1.14)

and the corresponding Euler-Lagrange equation becomes

dpi

dτ
=
∂L

∂qi
= −

√
K̃

E − V

∂V

∂qi
. (1.15)

Remember that we had the total freedom to choose any independent variable

τ since the action (1.13) is reparametrization invariant. One possibility is to

choose a parametrization that is such that K̃ = E − V . We already know that

this specific option for τ mimics the absolute time of Newton for two reasons.

First, inside Newtonian Mechanics for a conservative system, the kinetic energy

is, of course, E − V , and as τ here has been chosen such that K̃ becomes equal

to E − V , we can conclude that this specific choice for τ marches in steps with

absolute time. Another reason even more convincing is that for this specific τ ,

equation (1.15) takes its familiar form, namely Newton’s second law.

Now from K̃ = 1
2

∑N
i=1

dri
dτ
.dri
dτ

= E − V one easily deduces

dt =

√∑N
i=1midri.dri√
2(E − V )

=
dl√

2(E − V )
, (1.16)

where dl is again the line element of the configuration space with respect to

the mass tensor. As Barbour said, from this, one can see how change creates
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time. See also [26] for a beautiful presentation of the notion of relational time

from a physical and historical point of view. The sentence of Mach we quoted

at the beginning of this chapter ”It is utterly beyond our power to measure the

changes of things by time. Quite the contrary, time is an abstraction, at which

we arrive by means of the change of things”, is fully reflected in (1.16). Equation

(1.16) illustrates another fully holistic feature of the Newtonian theory, which was

invisible to us in the way Newton was advocating it. A change in the position

of the farthest objects causes the time we are experiencing to move forward!

However, this idea is not far from how astronomers defined and used the so-

called ephemeris time in practice. The motion of planet earth with respect to

the farthest stars was used historically to keep track of the time passing, which

is a similar concept. Time is a derived notion, not a primitive one, as Leibniz

emphasized.

1.4 Principle of Relationalism

In the first part of this section, we have already mentioned the difference between

the two alternative worldviews of Newtonian absolutism and Leibnizian relation-

alism. Given, that:

1. Most of our current physical theories (like Classical Mechanics, Quantum

Mechanics, ...) are based on the Newtonian worldview;

2. Predictions of our current physical theories are compatible with the empirical

data to an astonishingly high degree of accuracy and give a pretty clear explana-

tion for the occurrence of numerous natural phenomena;

3. We think the relational worldview should be adopted in physics,

it is at first sight unclear whether a realistic relational theory can be formu-

lated at all because it is not clear whether statements 2 and 3 are compatible

with each other. In the following, we will explain how statements 2 and 3 can

15



both be true. To this end, we introduce the Principle of Relationalism as

follows:

Two possible universes, differing from each other just by the action of

a global similarity transformation Sim(3), are observationally9

indistinguishable.

If a theory based on the Newtonian worldview satisfies the Principle of Rela-

tionalism, it can be recast into an empirically equivalent theory based on the

Leibnizian worldview.

1.4.1 Scale invariant Classical Gravity

A natural question to ask now is whether Classical Mechanics satisfies the Princi-

ple of Relationalism or not. As the interaction potential functions like Newton’s

gravitational potential V = Gm1m2

r12
, or Coulomb potential V = 1

4πϵ0

q1q2
r12

defined

on the absolute space, though being manifestly rotational and translational in-

variant, are clearly not scale-invariant, the answer of the above question seems

to be negative, and as a result of it, the hope for a relational understanding

of Newtonian Mechanics seems to be vanished10. However, prior to the above

question, we should have asked another more primitive question. Do we already

know everything about Newtonian theory of classical Mechanics? The answer to

this question may be “Yes” if we had a derivation of the value of, for instance,

the gravitational coupling constant G from Newtonian theory. In other words,

we have the opinion that in a complete physical theory based on the Newtonian

worldview, there exists a theoretical derivation of the value of the gravitational

constant G, which must, of course, coincide with the value observed in our uni-

verse. So even if the Newtonian worldview is the correct view, the Newtonian

9With observationally indistinguishable we mean kinematically and dynamically
indistinguishable.

10See however Chapter (11) for a way of understanding Newtonian mechanics as a relational
theory, utilizing mechanical similarities. We call this alternative way the BKM-approach.
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theory of gravitation may very well contain a foundational incompleteness (or

gap) in it, as will be explained in more detail below in Section 1.4.2 11. In the

following, we propose a way to partially fill this gap in a manner compatible with

the Principle of Relationalism.

We can always render an arbitrary potential function defined on Qcm or absolute

space, scale-invariant, by postulating a special scale-dependent transformation

law for its coupling. This law should be precisely the inverse of the transforma-

tion law of the potential function without its coupling. In this way, the scale-

invariance of the total potential function we started with on the absolute space

is established. Take any potential function

V (r1, ..., rN) = Y f(r1, ..., rN)

with Y being its coupling constant. Now apply a scale transformation

ri → cri

with c ∈ R+. Under this transformation, the function f and its coupling constant

Y will transform as the following{
f(r1, ..., rN) → f ′(r1, ..., rN) := f(cr1, ..., crN)

Y → Y ′.

Then clearly the potential V transforms as

V → V ′ = Y ′f ′

Now by requiring V to be scale invariant i.e. V ′ = V , we can deduce the required

transformation law of Y , namely

Y ′ = Y
f

f ′ .

In other words, if f is a homogeneous function of degree k on absolute con-

figuration space (as is the case for gravitational potential), Y must also be a

homogeneous function of degree −k.
11Specifically a quotation there, from Albert Einstein would be illuminating in this matter.
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This way the potential V (x) on absolute space uniquely projects down to a po-

tential function Vs(q) on the reduced configuration space R3N

R
∼= R3N−1 w.r.t. the

scale transformations. Denote this projection by π : R3N → R3N−1. Then for

each q ∈ R3N

R
∼= R3N−1 and x ∈ π−1(q) we have

Vs(q) = V (x) (1.17)

This assignment is indeed independent of x (as long as it lies on that fiber above

q) because V (x) is a scale-invariant function on absolute configuration space.

In other words, one unique value of the potential is given to each equivalence

class of configurations under scale transformations 12. But, of course, to find

out the unique value for a given shape, one has to choose a representative 13

of the equivalence class, and this representative may as well be our good old

representation14 in which G = 6.67408 × 10−11m3kg−1s−2. This way, we can

make the classical gravity scale-invariant and compatible with the Principle of

Relationalism. Equivalently one can say that in the gauge where the length of

the international prototype meter bar is chosen to be the length unit (i.e., 1

meter), the measured value of G in our universe15 in its current state becomes

the above value.

1.4.2 Constants of Nature

In the last subsection, we have introduced a transformation law for the value of

the gravitational coupling G. This transformation is obviously in conflict with

the general belief that G is a constant. Hence we found it necessary to clarify

this point and clear up possible confusions which may arise in this regard. To

be more precise, we argue which constants of nature (numbers appearing in laws

of nature of the respective theories) have to remain unchanged, given that the

universe has to look and work the same way after a global scale transformation.

We will see that G is not among those unchanging “constants of nature”, neither

12Or similarity transformation
13By choosing a unit for length and time
14The SI units
15strictly speaking near Earth
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is Planck’s constant ℏ, nor the vacuum permittivity ϵ0.

Observationally, we experience a vast number of regularities and fascinating pat-

terns in nature, and our quest to understand the reason for their occurrence leads

us to the discovery of the laws of nature in which a collection of dimensionless

numbers appear whose exact values are not derived in any way inside the theory,

but rather determined experimentally. In the words of John D. Barrow [27] these

dimensionless numbers capture at the same time our greatest knowledge and our

greatest ignorance about the universe.

To make it clear to the reader which numbers we are referring to, the nice corre-

spondence of Albert Einstein with Ilse Rosenthal-Schneider [28] on this topic is

very helpful. Einstein writes:

“Now let there be a complete theory of physics in whose fundamental equations

the ”universal” constants c1,c2,...,cn occur. The quantities may somehow be re-

duced g,cm,sec. The choice of these three units are obviously quite conventional.

Each of these c1,...,cn has a dimension in these units. We now will choose con-

ditions in such a way that c1,c2,c3 have such dimensions that it is not possible

to construct from them a dimensionless product cα1 c
β
2c

γ
3 . Then one can multiply

c4, c5, etc., in such a way by factors built from powers of c1,c2,c3 that these new

symbols c∗4, c
∗
5, c

∗
6 are pure numbers. These are the genuine universal constants

of the theoretical system which have nothing to do with conventional units. My

expectation now is that these constants c∗4 etc., must be basic numbers whose val-

ues are established through the logical foundation of the whole theory. Or could

put it like this: In a reasonable theory there are no dimensionless numbers whose

values are only empirically determinable. Dimensionless constants in the laws of

nature, which from the purely logical point of view can just as well have different

values, should not exist. To me, with my ”trust in god” this appears to be evident,

but there will be few who are of the same opinion.”

To Max Planck, it seemed natural that the three dimensional constants G, ℏ,
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ccc which appear in physical theories, determine the three basic measuring units.

The units derived from them retain their natural significance as long as the law

of gravitation and that of propagation of light in a vacuum remain valid. There-

fore, they must always be the same when measured by the most widely differing

intelligent beings according to the most widely differing methods. He defined the

Planck mass and length and time units as

LP =

√
Gℏ
ccc3

= 1.616× 10−35m

MP =

√
ℏccc
G

= 2.177× 10−5g

Tp =

√
Gℏ
ccc5

= 5.390× 10−44s

These can be considered as Einstein’s dimensional constants c1, c2, c3.

So far, we are aware of four distinct forces of nature, i.e., gravity, electromag-

netism, and weak and strong forces. The strength of the former three of these

forces (compared to the strong force) can be considered dimensionless (or Ein-

stein’s pure) numbers that define our world. The value of these dimensionless

numbers are

αEM :=
e2

4πϵ0ℏccc
≈ 1

137.036

αG :=
Gm2

p

ℏccc
≈ 5× 10−39

αW :=
GFm

2
pccc

ℏ3 ∼ 1.03× 10−5
≈ 10−15

Universes for which the value of any of these three dimensionless numbers are dif-

ferent from the above values are observationally different (because the balances

of the forces differ).

Coming back to the proposed transformation law

G→ cG

of the gravitational constant under a scale transformation by the factor c ∈ R+

r → cr
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one can immediately see from αG that it changes the balance of Forces in Nature

and leads to observable differences, which violates the Principle of Relationalism.

However, if this transformation of G is accompanied by a transformation ℏ → cℏ
of the Planck’s constant, the strength of gravity would remain unchanged. It is

well known from Quantum mechanics that even the slightest change of the value

of ℏ would lead to a sudden release or absorption of an enormous amount of en-

ergy due to the dependence of the atomic orbital energy levels on the value of ℏ,
i.e., for the hydrogen atom En = − me4

8h2ϵ20

1
n2 , and this again violates the Principle of

Relationalism. However, if a transformation ϵ0 → ϵ0
c
of the vacuum permittivity

is also taking place along the mentioned transformations of G and ℏ, the value of
energy levels remain unchanged so that the mentioned principle is respected.

To summarize, after performing a scale transformation by a factor c ∈ R+

r → cr

on the whole universe, the Principle of Relationalism requires the following trans-

formation of (Einstein’s dimensionful) constants

G→ cG (1.18)

ℏ → cℏ (1.19)

ϵ0 →
ϵ0
c

(1.20)

To appreciate the consistency of these transformation laws more, notice that they

automatically induce the expected transformation of the Bohr radius a0 =
4πϵ0ℏ2
mee2

,

classical electron’s radius re = 1
4πϵ0

e2

meccc2
, and the fine structure constant αEM ,

namely a0 → ca0, re → cre and αEM → αEM . So all atoms in the universe get

bigger by exactly the same scaling factor for the universe itself, and the relative

strength of the electromagnetic force remains unchanged. They also automati-

cally result in a scale-invariant electrical force (Coulomb’s potential).

Imagine an experiment by which one wants to figure out the velocity of an object.

We argue that after performing a global scale transformation, the velocity of the

same object during the same experiment remains unchanged. One can see this
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in the following way: From the formulas of Planck’s system of units mentioned

above, one can easily see that a scale transformation

r → cr

reshuffles the values of these units expressed in SI16 as

Lp → cLp

Mp →Mp

Tp → cTp

As expected, the natural unit of length gets bigger by the same factor c ∈ R+.

The time (measured in Planck’s unit) also gets dilated and runs faster by the

same factor.

Hence the measured speed v of an object transforms under a global scale trans-

formation as follows

v =
∆x

∆t
→ v′ =

∆x′

∆t′
=
c∆x

c∆t
= v

where ∆x stands, for instance, for the distance between two other objects (which

are needed to define the start and end point of any interval in space), and ∆t

for the time (measured in Plank unit) the object takes to travel between those

two reference objects. The primed versions have the same quantities; however,

after scale transforming the universe and measuring everything in new Planck

units. The same can be said about the velocity of light17 c, where one measures

the time needed for light to path the distance between two objects. Note that

in the relation ∆t′ = c∆t, the Principle of Relationalism is tacitly invoked in

equating the number of ticks(or steps) of our new clock in the scaled universe for

the duration of a physical phenomenon (in this example the passage of light of

an object between the two reference objects), and the number of ticks of the old

16Here SI is being thought of as some measures of hypothetical absolute space and time, in
the sense that they are exempted from the global transformation we perform on the universe.
So we scale everything in the universe except the SI standard meter stick and the SI standard
clock as resembling the absolute distance and absolute time duration, and a hypothetical mean
to compare the new Plank’s units after expansion to the old ones inside the absolute framework
that classical theories and quantum mechanics are presented.

17To be more precise, the average two-way light’s velocity is meant here. No experimental way
exists to measure the light’s direct one-way velocity due to the conventionality of simultaneity.
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clock in the old (smaller) universe while the same phenomenon is taking place.

So the measured speed of any object in universes before and after global scale

transformations comes out the same. The Principle of Relationalism, and the

characteristics of Plank units together are responsible for this result.

As a consequence of the constancy of the speed of light (measured in Planck

units), c = 1√
ϵ0µ0

under scale transformations, one can deduce the corresponding

transformation law of vacuum Permeability, namely

µ0 → cµ0

The dilation of time under scale transformation in the presented way is also com-

patible with the operational SI definition of the time unit, i.e., the second is

defined as the duration of 9192631770 cycles of the radiation corresponding to

the transition between two energy levels of the ground state of the cesium-133

atom at rest at a temperature of absolute zero. By performing a scale transfor-

mation r → cr, the wavelength of the emitted photon transforms correspondingly

(λphoton → cλphoton), and hence the time required for one cycle , i.e. T =
λphoton

c
,

transforms as T → cT . Therefore, the SI second will also get dilated by the same

factor c ∈ R+. This shows the expected coherence between Planck and SI units

of time under global scalings.

It is worth mentioning that the above feature of the modified Newtonian theory

is not keen on using the Planck units. The true homogeneous function of the

first degree on Q which must lead to the value 6.6743× 10−11 m3

kg.s2
for the current

state of the universe also allows the existence of Kepler pairs now18. The unit of

length and time defined as the semi-major axis, and the orbital period of a Ke-

pler pair, change under a global scale transformation Sc exactly as their Planck

counterparts in the modified Newtonian theory. It is because of the mechanical

similarities in the modified Newtonian theory. The homogeneity of the poten-

tial function of zero’s degree in modified Newtonian theory guarantees that the

Kepler pair’s orbital period becomes longer by a factor c ∈ R+ after a mechani-

cal similarity transformation of the universe (by the factor c) has been performed.

Another point worth emphasizing is that even though the value of G depends

18Whether or not these Kepler pairs form in a typical universe governed by the modified
Newtonian theory is a separate question to be addressed in future work.
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directly on the units chosen for the measurement of distance and duration, once

a set of units is chosen (e.g., SI units), there is no justification in Newton’s theory

as why the value of G should be what it turns out to be (in the chosen set of units).

We have called this issue a foundational gap in Newton’s theory and proposed a

way to partially fill this gap so that the principle of relationalism can be directly

implemented in modern physics (which includes undoubtedly more than just the

gravitational interaction alone). Completion of the absolute physical theories in

line with the idea of G, ℏ, ϵ0 being homogeneous functions of the mentioned

degrees on the universe’s configuration space not only partially fills19 the founda-

tional gap in Newtonian mechanics, but also directly address Einstein’s justified

concern about dimensionless constants of nature in his correspondence with Isle

Rosenthal-Schneider. Namely, if in the ultimate (absolute) physical theory G, ℏ,
ϵ0 emerge as homogeneous functions on the configuration space (as anticipated

by the direct implementation of the principle of relationalism), an immediate

justification of the (otherwise surprisingly fine-tuned) value of the dimensionless

constants of the ultimate theory characteristic of our universe, is provided, as the

latter are specific ratios of the former.

Remember that Jacobi’s principle stated that the path taken by a classical system

minimizes the Jacobi action S̄ =
∫ x2

x1

√
E − V ds with x1 and x2 standing for the

initial and final configuration of the system. For the path x(t) that minimizes

this action one has the energy conservation equation E = 1
2
M(dx

dt
, dx
dt
)+V . Hence

along this path (which is the only physical path in the sense that only this path is

realized by nature) one has K := 1
2
M(dx

dt
, dx
dt
) = E − V . Now Jacobi action along

this path can be rewritten as S̄ =
∫ x2

x1

√
Kds. If one now performs a scale trans-

formation r → cr, with c ∈ R+, the system naturally gets bigger. However, the

velocity of the constituting particles of the system measured in the new Planck

units of time and length remain unchanged. Moreover, the length of the path

between cx1 and cx2 measured in the new Planck length also remains unchanged.

So in this way, one sees now that the action of classical mechanics is invariant

under scale transformations.

19We use the word partially cause the exact expression of these functions are not determined
and are yet to be discovered in a future complete physical theory. Only then is one allowed to
drop the word “partially”.
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Chapter 2

Symplectic reduction of phase

space with respect to a symmetry

group

In this section, we will review how the collective motion of a multi-particle system

(in particular, the rotations and translations of the system) is gotten rid of in the

Hamiltonian formalism using the reduction procedure of Mardsen/Weinstein. We

follow [3],[4] to a big extend. First, we review the expression of the laws of classical

mechanics using a symplectic structure on phase space. This level of abstraction

for formulating Classical Mechanics seems at first sight to be an unnecessary

complication. However, its power lies in its generality and is beneficial, compared

to less abstract formulations, when dealing with curved spaces. It is the case

in many mechanical systems with constraints, as well as in reduced spaces like

internal configuration space Qint =
Q

E(3)
= R3N

E(3)
or shape space S = Q

sim(3)
of a

N -particle system.
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2.1 Definition of a Hamiltonian System in Sym-

plectic Phase Space

Denote the configuration space of a N -particle system with Q ∼= R3N . A symplec-

tic form σ on Q is a closed non-degenerate differential two-form. Closed means

that the exterior derivative of σ vanishes, i.e. dσ = 0, and non-degenerate means

that if there exists some u ∈ Tx(Q) such that σ(u, v) = 0 for all v ∈ Tx(Q), then

u = 0. The Hamiltonian H is a function on T ∗(Q) to which one can associate the

respective Hamiltonian flow, which is a vector field XH on Q defined by the equa-

tion σ(XH , Y ) = dH for all Y ∈ T (Q). Symplectic geometry is well suited for

investigating mechanical systems. Starting with a system’s configuration space

Q, its phase space T ∗(Q) is canonically symplectic. Denoting the configuration

coordinates by qi, and the remaining coordinates needed on T ∗(Q) by pi, the

canonical symplectic form becomes σ =
∑N

i=1 dqi ∧ dpi. The Hamiltonian flow

associated to a physical Hamiltonian H =
∑N

i=1
p2i
2
+ V leads to an evolution of

the system’s initial state (qi(0), pi(0)) ∈ T ∗(Q), which is compatible with New-

ton’s laws of motion. In the following, we explain this construction more precisely.

The cotangent space T ∗
x (Q) at x ∈ Q is isomorphic to the tangent space Tx(Q)

by the induced isomorphism defined through the following equation

Ix : Tx(Q) → T ∗
x (Q) (2.1)

Ix(v).u = Kx(u, v)

for u, v ∈ Tx(Q). Here . stands for the pairing of vectors T (Q) and covectors

T ∗(Q).

Setting p := Ix(v) and writing p = (p1, p2, ..., pN) as a tuple, we get from the

definition of Kx

pk = mkvk (2.2a)

p.u =
N∑
k=1

(pk, uk). (2.2b)

Thus, we have obtained the induced variables x and p, constituting a coordinate

system of the cotangent space T ∗(Q) ∼= Q × R3N . x and p are often called the
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coordinate and momentum variables.

Now we define the canonical one-form θ on the cotangent bundle T ∗(Q). For

(u,w) ∈ T (T ∗(Q))

being a tangent vector at

(x, p) ∈ T ∗(Q) ∼= Q× RdN

we define

θ(x,p)(u,w) := p.u . (2.3)

If u is a vector field on Q, then dxik(u) = uik in Cartesian coordinates, so that the

canonical one-form θ can be expressed in the following form

θ = p.dx =
∑

(pk, dxk). (2.4)

The exterior derivative of θ reads

dθ = dp ∧ dx =
∑

(dpk ∧ dxk).

A scalar product K∗
x on the cotangent space T ∗

x (Q) can be defined as

K∗
x(q, p) := Kx(I

−1
x (q), I1x(p)) =

∑ (qk | pk)
mk

(2.5)

for q, p ∈ T ∗
x (Q).

The Hamiltonian of a system is a function on T ∗(Q) of the following form

H = K∗(p, p) + U, (2.6)

where U is a potential function invariant under translations (Rn) and rotations

(SO(3)).

The triple

(T ∗(Q), dθ,H)

constitutes a Hamiltonian system.

Hamilton’s equations of motion are given by the Hamiltonian vector field XH ,

which is defined through

dθ(XH ,Y) = dH(Y)
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∀Y ∈ T (Q).

Before moving to the next section, we briefly discuss how a symplectic form

can be used to express electromagnetic laws of motion for a charged particle [29]

for the purpose of illustration. Using the isomorphism (2.1), the magnetic vector

potential A can be considered as a 1-form. Then the magnetic field B becomes

a 2-form dA on configuration space Q. Gauss’s law for magnetism ∇.B = 0 is

in this formalism expressed as dB = 0. Then one defines a new phase space

(T ∗(Q), σB) which differs from the previous phase space (T ∗(Q), σ) in that the

canonical symplectic from σ on T ∗(Q) is replaced with

σB = σ + π∗B,

where π : T ∗(Q) → Q. Denoting the electric potential function by ϕ, and de-

noting the velocity or momentum of the charged particle (which are identified to

each other by the metric) by v, the Hamiltonian becomes H = 1
2
|| v ||2 +ϕ. The

Hamiltonian vector field which defines the dynamics in the presence of Electro-

magnetic field, can then be derived from σB(XH ,Y) = dH(Y) for all Y ∈ T (Q).

2.2 Momentum mappings

The symplectic structure on T ∗(Q) enables us to express Noether’s theorem more

naturally. The action of a Lie-group G on T ∗(Q) can be generated by a vector

field ax on T ∗(Q), known as the infinitesimal generator of the action. Integral

curves of ax are the G-orbits on T ∗(Q). Noether’s theorem then ensures the

existence of a function µ on T (Q), preserved by the action and conjugated to

ax by the symplectic form, i.e. σ(ax, Y ) = dµ(Y ) for all vector fields Y . This

function is called the momentum map, and it is preserved by the Hamiltonian

flow. Here we review the important concept of momentum mapping, which will

be used frequently in the process of reduction.

If a group G acts on the manifold Q and (., .) is a G-invariant Riemannian metric,

we define for

a ∈ G
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vx ∈ TxQ

the momentum map µ as follows

µ : T (Q) ≡ T ∗(Q) → G∗ (2.7a)

µ(vx).a := (ax, vx) (2.7b)

ax =
d(etax)

dt
|t=0∈ T ∗

x (Q). (2.7c)

T (Q) and T ∗(Q) are identified with the metric.

There is an intrinsic formulation of the connection form in terms of the momentum

map. Remember the definition of the inertia tensor(or operator) A. It was a linear

operator in ∧2(3), and there existed an isomorphism R between ∧2(3) and so(3)

(see appendix D), and since the tangent space and the cotangent space of Q are

identified through the Riemannian metric on Q, we are able to redefine the inertia

operator as follows

A : G → G∗ (2.8a)

Ax(a).b = (ax,bx). (2.8b)

The connection form is then

ω(vx) = A−1
x (µ(vx)). (2.9)

The horizontal distribution is the kernel of the momentum map µ.

Alternatively, one can also think of G as the group of symplectic transformations

(preserving dθ) andG as the Lie-algebra of G (which is identified with the tangent

space to G at the identity). For every a ∈ G we get a one-parameter subgroup

of G by exp(ta).

If for any a ∈ G there exists a function Fa on T ∗(Q) satisfying dθax = −dFa,

then the action of G is called strongly symplectic. The function Fa depending

linearly on a, can be expressed in the form Fa(x, p) = µ(x, p).a which is the

defining property of the momentum map µ of T ∗(Q) to G∗.

If the action of G is moreover exactly symplectic, G leaves θ invariant – then

there is a simple equation that gives us the momentum map

µ(x, p).a = θ(ax). (2.10)
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As we see below, momentum mappings cover linear and angular momentum.

It is well-known and intuitively clear that the expression of the connection form

(2.9) for the SO(3) fiber bundle, in Jacobi coordinates rrri becomes

ω = R

(
A−1

x (
N−1∑
j=1

rrrj × drrrj)

)
(2.11)

where drrrj is the 3 dimensional vector valued one form, which, if applied to a

vector on configuration space Q, gives the velocity vector of just the j′s particle.

2.3 Marsden-Weinstein method of Reduction of

dynamical systems

Consider a symplectic manifold P = T ∗(Q), the symplectic form σ on this man-

ifold, and a σ-preserving symplectic group G acting on P . The adjoint Adg and

coadjoint Ad∗g representations of G on the Lie-algebra space G and its dual space

G∗ respectively, are defined in appendix C (see C.1).

Let µ be the Ad∗-equivariant momentum mapping associated with the action of

G. That is

µ : P → G∗ (2.12a)

µ(gx) = Ad∗g−1µ(x),∀x ∈ P. (2.12b)

For r ∈ G∗, µ−1(r) is a submanifold of P . The isotropy subgroup Gr of G at

r ∈ G∗ is defined as the following

Gr = {∀g ∈ G | Ad∗g−1r = r}. (2.13)

Define then the manifold

Pr :=
µ−1(r)

Gr

(2.14)

with its canonical projection

πr : µ
−1(r) → Pr. (2.15)
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Pr is called the reduced phase space.

With the help of the inclusion map

ir : µ
−1(r) → P

we can get a unique symplectic form σr on Pr

π∗
rσr = i∗rσ. (2.16)

And at last, if the Hamiltonian H on P is invariant under the action of G, the

Hamiltonian vector field XH projects to a vector field XHr on Pr, namely

πr∗XH = XHr . (2.17)

with

π∗
rHr = i∗rH. (2.18)

Hence one obtains the reduced system

(Pr, σr, Hr).
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Chapter 3

Example: Reduction with respect

to the Euclidean group E(3)

As an illustration of the general framework of symplectic reduction discussed in

the previous section, we review the reduction of phase space of a classical system

with respect to the Euclidean group, following [3] to a considerable extent.

3.1 Reduction with respect to the translation

group G = R3

The translation group R3 forms an exact symplectic group on T ∗(Q). Any mem-

ber of this group a ∈ R3 acts on T ∗(Q) as follows, which leaves the one-form θ

invariant

(x1, ..., xN , p1, ..., pN) → (x1 + a, ..., xN + a, p1, ..., pN).

For a ∈ R3, where R3 now stands for the Lie-algebra of the translation group,

the infinitesimal generator of the subgroup a(t) = exp(ta) has the form

ax(x, p) = (a, ...a, 0, ..., 0) ∈ T ∗
x (Q)
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so that the momentum map µt : T
∗(Q) → R3 is given by:

µt(x, p).a = θ(ax) =
∑

(pk, a) = (
∑
pk | a) ⇒

µt(x, p) =
∑

pk. (3.1)

This way, we obtain the usual linear momentum.

Now in order to perform the reduction of the phase space T ∗(Q) with respect to

the translation group R3 we apply the Marsden-Weinstein method. For λ ∈ R3,

µ−1
t (λ) is a submanifold of T ∗(Q) determined by

∑
pk = λ. This submanifold is

isomorphic with Q× R(N−1)3 for any λ. It is clear that the isotropy subgroup at

λ, denoted by Gλ, is the whole group of translations R3. So the reduced phase

space

Pλ =
µ−1
t (λ)

R3

can be identified with Q
R3 × R3(N−1), and therefore with

Pλ
∼= Qcm × R3(N−1).

This reduced space can, in turn, be thought of as a submanifold of T ∗(Q) deter-

mined by the following conditions∑
mkxk = 0 (3.2a)∑
pk = λ. (3.2b)

What we are interested in is the case λ = 0. The submanifold
µ−1
t (0)

R3 can then be

identified with the cotangent bundle T ∗(Qcm)

Pλ=0
∼= T ∗(Qcm).

The reduced symplectic form on T ∗(Qcm) is then the restriction of dθ (which was

the form on T ∗(Q)) on T ∗(Qcm). For notational convenience, both of them are de-

noted by the same letter. So one arrives at the reduced Hamiltonian system with

respect to the group of 3-dimensional spatial translations, i.e., (T ∗(Qcm), dθ,H).

Note that the identification between the reduced phase space with respect to

the group of translations Pλ =
µ−1
t (λ)

R3 , and the cotangent bundle of the center

of mass system T ∗(Qcm) holds only for λ = 0. In the remaining part of this
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subsection, we explain one way to see this point more clearly.

Theorem: Pλ =
µ−1
t (λ)

R3 , and T ∗(Qcm) cannot be identified to each other if λ ̸= 0.

Proof : Consider a generic point y ∈ T ∗(Q). This point can symbolically be

denoted as y =


−→p 1

...
−→p N

 (x) where −→p i stands for the momentum of i’th par-

ticle (here the isomorphism between 1-forms and vectors is invoked too), and

x ∈ Q ∼= R3N stands for a point in the configuration space of the multiparticle

system. One can view T ∗(Q) simply as a 2N · 3 dimensional space, which is

coordinatized by −→x 1, ...,
−→x N ,

−→p 1, ...,
−→p N . As each of these vectors consists of 3

numbers, they are indeed a collection of 6N numbers. As explained in the last

paragraph,
µ−1
t (0)

R3 can be considered as a 2(N − 1).3 dimensional submanifold of

T ∗(Q) given by the constraints (3.2). So far, so good. One can alternatively

view T ∗(Q) as follows: take the configuration space Q of the system, and at-

tach to each point x ∈ Q a (3N)-dimensional vector-space. This vector space is

thought to be the collection of all possible elements


−→p 1

...
−→p N

 and denote this

vector space by VQ. Now comes the tricky point. The condition (3.2.a) gives

us a fixed 3(N − 1) dimensional surface in the absolute configuration space Q.

By definition, this solid surface can be identified by Qcm (one can even call this

surface Qcm no matter whether it is embedded into some bigger space or not).

For the moment, we denote this surface by Qp
cm, where p reminds us that this

surface is part of a bigger configuration space Q. Now condition (3.2.b) selects

a subspace of the vector-space which was attached to each point on Q, hence

also to each point on the surface Qp
cm. Clearly this subvector-space consists of

special elements


−→p 1

...
−→p N

; namely the ones with
∑−→p k = λ. We denote this

subvectorspace by Vλ ⊂ VQ. In this way
µ−1
t (λ)

R3 (which again was a submanifold

of T ∗(Q) realized by constraints (3.2)) can be viewed as Qp
cm × V (λ).
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On the other hand, the cotangent space over the center of the mass system, i.e.,

T ∗(Qcm) is on its own an independently existing 2(N − 1)d dimensional space,

without any need of ambient space. Similarly this space T ∗(Qcm) can be viewed

as Qcm × Vcm, where Vcm is just the 3(N − 1) dimensional vector space attached

to each point of the center of mass configuration space Qcm.

Now if one tries to embed T ∗(Qcm) into T
∗(Q) one can indeed perfectly fit Qcm

on Qp
cm, but one can never fit Vcm on Vλ unless λ = 0. The reason is that

Vλ
⋂
V p
cm = ⊘. Here V p

cm denotes the embedding of Vcm in VQ. Any element

v ∈ Vcm will assign a set of velocities to the particles. Pulled up to the abso-

lute space in the center of mass system (so condition (3.2).a being valid), these

velocities add up to zero (so they have to be elements of Vλ=0); otherwise we

would immediately move out of the surface Qp
cm and that results does not fit with

T ∗(Qcm) on Q
p
cm × Vλ for λ ̸= 0.

3.2 Reduction with respect to the Rotation

group G = SO(3)

We now proceed to the angular momentum defined on T ∗(Q). The rotation

group SO(3) plays here the role of an exact symplectic group (preserving dθ)

whose action on T ∗(Q) is defined for (x, p) and g ∈ SO(3) by

(x, p) → (gx, gp). (3.3)

For the case of vanishing linear momentum, i.e. λ = 0, we note that SO(3) acts

actually on T ∗(Qcm) as the conditions (3.2) are invariant under SO(3). If λ is

non-vanishing, only a subgroup of SO(3) acts on
µ−1
t (λ)

R3 .

Consider some a = Rξ ∈ so(3), where ξ ∈ ∧2(3) is the two-vector corresponding

to the Lie-algebra element a, and the correspondence is given by the isomorphism

R : ∧2(3) → so(d) defined in appendix D, see (D.4). The infinitesimal generator

of the subgroup exp(ta), is given by

ax(x, p) =
(
Rξ(x), Rξ(p)

)
=
(
Rξ(x1), ..., Rξ(xN), Rξ(p1), ..., Rξ(pN)

)
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where (D.6) is used. Therefor, the momentum mapping

µr : T
∗(Qcm) → so∗(3)

can be calculated as follows:

µr(x, p).a = θ(x,p)(ax) =
N∑
k=1

(pk | Rξ(xk)) = (
N∑
k=1

pk ∧ xk | ξ) = (R∑N
k=1 pk∧xk

| Rξ)

where (D.7).e has been used, and in the last equality, the fact that the mapping

R is isometric is invoked. Hence one ends up with

µr(x, p) = R−
∑N

k=1 xk∧pk (3.4)

Here we have identified so(d) and so∗(d) through the scalar product on so(d),

namely (ααα,βββ) = 1
2
tr(αβαβαβT ).

One can prove that for an exact symplectic group (transformations that leave the

1-form θ invariant), the associated momentum mapping is Ad∗ -equivariant.

Now we use the Marsden-Weinstein reduction procedure for the rotation group

SO(3).

Let a ∈ so(3) ∼= so∗(d). Then µ−1
r (a) is a submanifold of T ∗(Qcm). Factoring out

the orbits of the isotropy subgroup Ga of SO(3) at a, we obtain a reduced phase

space µ−1
r (a)
Ga

. This process is merely an elimination of the angular momentum.

An important question now pops up: is the reduced phase space µ−1
r (a)
Ga

diffeo-

morphic to the cotangent bundle T ∗(Qint) of the internal space Qint =
Q

R3◦SO(d)

as it was the case for the translations group?

The answer is NO, for a ̸= 0.

For the N-body problem in R3 the dimension of the phase space reduces by 4

when eliminating the angular momentum. This is because the Lie-algebra so(3)

is 3 dimensional, and the isotropy subgroup Ga for a ̸= 0 turns out to be SO(2).

So the condition µr = a in phase space diminishes the dimension by 3, and fac-

toring out the SO(2) orbits does by 1. Intuitively, once a single member of the

3-dimensional space so(3) has been chosen for the total angular momentum a

of the Hamiltonian system, we end up on a sub-manifold with three dimensions
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less. Now, in the original space, start rotating the whole system about an axis

parallel to the total angular momentum vector and passes through the system’s

center of mass. It is indeed an SO(2) rotation. It is clear that the value of the

momentum map µr does not change at all by applying this SO(2) rotation. So

this constitutes the isotropy subgroup.

On the other hand dim
(
T ∗(Qint)

)
is by 6 smaller than dim

(
T ∗(Qcm)

)
. Thus

dim
(µ−1

r (a)

Ga

)
= dim

(
T ∗(Qint)

)
+ 2. (3.5)

So, in general, the reduced phase space with respect to rotations SO(3) is dif-

feomorphic to the cotangent bundle of the internal space T ∗(Qint). From the

discussion above, it is clear that the total group SO(3) becomes an isotropy

subgroup Ga if and only if a = 0, and in this case one has

µ−1
r (0)

SO(3)
∼= T ∗(Qint). (3.6)

Generally speaking, the reduced phase space is diffeomorphic to the fiber product

T ∗(Q
G
)×f (

Q
Ga

) over the quotient Q
G
, keeping in mind that Q

Ga
is naturally identified

with the coadjoint orbit bundle Q×G ( G
Ga

) over Q
G
(see [30],[31]).

Now we want to study the symplectic form σa on the reduced phase space

Pa = µ−1
r (a)
Ga

. Since σa is defined by

π∗
µσµ = i∗µσ

and σ = dθ. we have furthermore i∗µdθ = d(i∗µθ) in our case. Remember that the

maps used are πr : µ
−1(r) → Pr and ir : µ

−1(r) → T ∗(Qcm).

For notational convenience, we work in the following on the tangent bundle over

configuration space which is isomorphic to the cotangent bundle. Through this

isomorphism, the tangent bundle can be endowed with a canonical symplectic

form, which we denote by the same letter we used for the cotangent bundle, i.e.

θ(x,v) =
∑

mk < vk, dxk >= K(v, dx) (3.7)

where each tangent space is equipped with a scalar product given by

Kx(u, v) =
∑

mk(uk | vk) (3.8)
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for u = (u1, ..., un) and v = (v1, ..., vN) of Tx(Q).

Define

ωD
x : so(3) → Tx(Q)

dual to ωx : Tx → so(3) where the following isomorphisms has been taken into

account so(3) ∼= so∗(3) and Tx(Q) ∼= T ∗
x (Q). For a ∈ so(3) and v ∈ Tx(Q), ω

D
x is

defined by

(ωx(v) | a) =: Kx(v, ω
D
x (a)). (3.9)

One can prove that for any v ∈ Tx(Q) the vector v − ωD
x µr(x, p) with I

−1
x (p) = v

is vibrational (horizontal). To this end, it suffices to show that v − ωD
x µr(x, p)

and Rξ(x) are orthogonal for any ξ ∈ ∧2Rd, in other words showing Kx(Rξ, v −
ωD
x µr(x, p)) = 0, for ∀ξ ∈ ∧2R3 (see [3]).

Taking

(x, v)

as a coordinate system on T (Q), the submanifold µ−1
r (a) is determined in T (Q)

by the condition R−
∑

mkxk∧vk = a. Let now

w = v − ωD
x µr(x, p)

with I−1
x (p) = v, then the pair

(x,w)

meets the condition R−
∑

mkxk∧wk
= 0, so that it serves as coordinate system in

µ−1
r (0) under that condition. A coordinate system on µ−1

r (a) can then be given

by the pair (x,w+ωD
x a). With this in mind we rewrite the canonical one-form θ

at point (x, v) ∈ T (Qcm), which obviously has T(x,v)(T (Qcm)) as its domain

θ(x,v) = K(v, dx) = Kx(w, dx)+Kx

(
ωD
x µr(x, p), dx

)
= Kx(w, dx)+

(
µr(x, p) | ωx◦dx

)
In the last step, we have used (3.9). Consequently on µ−1

r (a) we have

i∗aθ(x,v) = Kx(w, dx) + (a | ωx ◦ dx) (3.10)

where v = w+ωD
x a. Thus the canonical two-form dθ restricts to d(i∗aθ) on µ

−1
r (a);

d(i∗aθ) = d
(
Kx(w, dx)

)
+ d(a | ω ◦ dx) (3.11)
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In all these equations dx should be viewed as a vector [dx1, dx2, ..., dxN−1]. So

one can formally act on it by the connection form ω and then take the exterior

derivative and so on.

Since w is horizontal i.e. w ∈ Tx,hor ∼= Tπ(x)(Qint) the first term on the right hand

side of (3.11) is invariant under the action of SO(3), and hence in one-to-one

correspondence with the canonical two-form on T (Qint) ∼= T ∗(Qint). In contrast,

the second term of the same side, depending on x, cannot project to a two-form

on Qint. In fact, (a | dω) is not horizontal (its value changes if we act with the

group on it, or to be more precise, acting by any member of G/Ga). We recall

that the horizontal part of dω is defined as the curvature form.

Last but not least, we discuss how an invariant metric1 on the total space of

fiber-bundles induces metrics on horizontal and vertical subspaces. In the con-

text of molecular physics, this is known as splitting of energy into vibrational and

rotational parts [3], as the total space T (Qcm) is the tangent bundle over the

center of mass configuration space of a molecule, and the group of 3-dimensonal

rotations being the structure group.

Recall the decomposition

Tx(Qcm) = Tx,rot ⊕ Tx,hor

and the orthogonal projections

Px : Tx → Tx,rot

and

Hx := (1x − Px) : Tx → Tx,hor

where 1x denotes the identity element in Tx(Qcm). With the help of the connection

form ωx : Tx(Qcm) → so(d), one has the following orthogonal decomposition for

any v ∈ Tx(Qcm)

ωx(v) = Px(v) ⇒ v = Px(v) +Hx(v)

Hence for any v and u ∈ Tx(Qcm) one has

Kx(v, u) = Kx

(
Px(v), Px(u)

)
+Kx

(
Hx(v), Hx(u)

)
(3.12)

1Invariant under the action of the structure group.
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Now, if we set v = u, we obtain the kinetic energy expressed as the sum of

rotational and vibrational energies. However, this does not mean there is no

coupling between the rotational and vibrational motions. The coupling rather

manifests itself into the dynamics through the connection form ω.

We now focus on the second term on the r.h.s of (3.12). Let π be the natural

projection of Qcm onto Qint. Differentiation of that map π∗ : T (Qcm) → T (Qint)

restricted on Tx,hor gives an isomorphism of Tx,hor with Tπ(x)(Qint). Let X,Y ∈
Tm(Qint) for some m ∈ Qcm. Then, at every point x with π(x) = m, one has

unique horizontal vectors v and u satisfying π∗(v) = X and π∗(u) = Y . If the

metric Kx is SO(3)-invariant, i.e., Kgx(gv, gu) = Kx(v, u) then the vibrational

energy (second term of (3.12)) induces a Riemannian metric B on Qint by

Bm(X, Y ) := Kx(v, u) (3.13)

One can easily verify that this definition is independent of the choice of x with

π(x) = m.

We now look at the restriction of the vibrational energy to the submanifold µ−1
a .

Using the coordinate

w = v − ωD
x µa(x, p)

(with I−1
x (p) = v, paring the vectors and covectors (2.1)) the vibrational energy

is written as kx(w,w) with R−
∑

mkxk∧wk
= 0, and is in one-to-one correspondence

with the kinetic energy of the internal motion.

Now we turn to the first term on the r.h.s. of (3.12), the rotational energy.

Considering the definition of the inertia operator Ax of the configuration x, as a

linear operator in ∧2R3, one can calculate (see [3])

Kx(Px(v), Px(v)) = Kx

(
ωx(v), ωx(v)

)
= (RA−1

x R−1µr(x, p) | µr(x, p))

If the system’s Hamiltonian is rotation invariant, the angular momentum is con-

served, i.e., µ = a, and the last expression becomes a function of just the space

variables x, namely (RA−1
x R−1µ | µ). This function is, in fact, invariant under

Ga (easily verifiable by using (D.7d)) and thus projects down to a function on

the reduced phase space, which can be seen as centrifugal potential.
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Now all the necessary ingredients are available for the reduction of the Hamil-

tonian system with respect to SO(3). Remembering the inclusion map and the

projection map

ia : µ−1(a) → P = T (Qcm) (3.14a)

πa : µ−1(a) → Pa =
µ−1(a)

Ga

. (3.14b)

The reduced phase space µ−1(a)
Ga

carries the symplectic form σa which, as discussed

before, is related to the canonical form dθ through

i∗adθ = π∗
aσa.

On µ−1(a)
Ga

the reduced Hamiltonian Hµ is defined by

Ha ◦ πa = H ◦ ia.

Note that in the above equations defining the reduced symplectic form σa and

the reduced Hamiltonian Ha, the use of π−1
a is avoided because the projection

map πa is not invertible (it sends an entire fiber to a point in the reduced space).

This form and the Hamiltonian are expressed in coordinates (x, v) on µ−1
r (a) with

v = w + ωD
x a as follows

π∗
aσa = i∗adθ = d

(
K(w, dx)

)
+ d(a | ω) (3.15a)

Ha ◦ πa = H ◦ ia =
1

2
K(w,w) +

1

2

(
RA−1

x R−1µr(x, p) | µr(x, p)
)
+ U (3.15b)

where R−
∑

mkxk∧wk
= 0.

The r.h.s. of these equations are invariant under Ga, and hence can be thought

of as quantities on the reduced phase space. The first expressions on the r.h.s.

of (3.15a) and (3.15b) are in one-to-one correspondence with the canonical two-

from, and the kinetic energy on T ∗(Qint) ∼= T (Qint) respectively. The second

expressions on the r.h.s. of (3.15a) and (3.15b) can be seen as the source of the

Coriolis force and the centrifugal potential of the system’s projected motion on

the internal space (so the internal motion) respectively.

Note, that if a = 0, the reduced phase space is diffeomorphic to the cotangent

bundle T ∗(Qint) of the internal space Qint, and the symplectic form σa becomes
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the canonical two form on T ∗(Qint). The reduced Hamiltonian Ha is then a sum

of the kinetic energy of internal (horizontal) motions and the potential on Qint

(which is exactly the same potential as the one up on Qcm). If the system’s

motion on absolute space is planar (so Q ∼= R2N), and a ̸= 0 the reduced phase

space is still diffeomorphic to T ∗(Qint), but the symplectic from σa is the canon-

ical one plus a two-form which can be seen as a “magnetic field” on Qint. The

reduced Hamiltonian Ha also becomes the sum of kinetic and potential energies

plus centrifugal potential. In both these cases, the system’s motion is internal

(horizontal). That means that it can be described on T ∗(Qint) or in terms of

internal coordinates and their conjugate momenta.
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Chapter 4

Reduction with respect to the

similarity group Sim(3)

4.1 Metrics on the internal and shape space

Following [7] we next review how the kinetic metric on absolute configuration

space induces a metric on the internal configuration space Qint =
Qcm

SO(3)
. After

that, we explain a new way to derive a metric N on the Sim(3)-reduced tangent

bundle ( T (Q)
Sim(3)

) from the mass metric M on absolute configuration space in a

unique way. Moreover, we also explain how the unique metric N on shape space

S can be derived.

Metric on the internal space:

Let us recall how the metric on the internal space Qint = Qcm

SO(3)
was derived

from the SO(3)-invariant mass metric (3.8) on the center of mass system

Mx(u, v) =
∑

mk < uk | vk > (4.1a)

Mx(u, v) = Mgx(gu, gv) (4.1b)
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where u = (u1, ..., un) and v = (v1, ..., vN) ∈ Tx(Qcm) being any two tangent

vectors of Qcm at the point x ∈ Qcm.

Given two internal vectors v′, u′ ∈ Tq(Qint), there are unique vectors u, v ∈
Tx(Qcm)

1 so that 
π(x) = q

π∗(u) = u′

π∗(v) = v′.

Now the metric B on Qint can be defined in the following way

Bq(v
′, u′) := Mx(v, u). (4.2)

Since the metric M is SO(3)-invariant, it does not make any difference to which

x ∈ π−1(q) the internal vectors v, u had been lifted for the value assigned by Bq.

This is, in fact, crucial for the well-definedness of the reduced metric.

The kinetic energy of a N -particle system in the center of mass frame is

K = 1
2

∑N−1
α=1 | ṙrrα |2. Using ṙrrbα = ωωω × rrrbα + ∂rrrbα

∂qµ
q̇µ, and the expression

AAAµ(q) = I−1aaaµ

for the gauge potentials, where

aaaµ = aaaµ(q) :=
N−1∑
α=1

rrrbα × ∂rrrbα
∂qµ

(4.3)

and A being the moment of inertia tensor with components

Aij = Aij(q) :=
N−1∑
α=1

(| rrrbα |2 δij − rbαirbαj)

one can write down the kinetic energy as

K =
1

2
< ωωω | A | ωωω > + < ωωω | A | AAAµ > q̇µ +

1

2
hµν q̇

µq̇v (4.4)

with

hµν = hµν(q) =
N−1∑
α=1

∂ρρρα
∂qµ

.
∂ρρρα
∂qν

. (4.5)

1namely their horizontal lifts (4.7).
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The velocity of a system’s configuration in Jacobi coordinates is given by a vector

| v >= [ṙrrs1, ..., ṙrrs,n−1]

and in orientational and internal coordinates by the vector

| v >= [θ̇i, q̇µ]

where θi are the Euler angles which turn the space frame to the body frame

of a configuration. If one decides to use the components of the body angular

velocity ωωω instead of the time derivatives of the Euler angles for denoting vectors

in T (SO(3)) the configuration’s velocity can alternatively be expressed as

| v >= [ωωω, q̇µ]

in angular velocity and internal basis. This last combination forms an anholo-

nomic frame or vielbein on T (Qcm). Remember the relation between the body

components of angular velocity and derivatives of Euler angles, i.e.,
ω1

ω2

ω3

 =


−sinβcosγ sinγ 0

sinβsinγ cosγ 0

cosβ 0 1



α̇

β̇

γ̇

 .
So, the (kinetic)metric tensor mQcm in angular and internal basis vectors {ωi, q̇µ},
where i = 1, 2, 3, and q = 1, ..., 3N − 6 becomes as follows

< v | v >=
[
ωωωT q̇µ

] [ A AAAAν

AAAT
µA hµν

][
ωωω

q̇ν

]
= (mQcm)abv

avb

So, the metric on Qcm in angular and internal basis vectors [ωωω, q̇µ] is given by

Mab =

[
A AAAAν

AAAT
µA hµν

]
. (4.6)

Decomposition of an arbitrary system’s velocity in horizontal and vertical parts

gives

| v >=| vv > + | vh >

[ωωω, q̇µ] = [ωωω +AAAv q̇
v, 0] + [−AAAν q̇

ν , q̇µ]
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Correspondingly, the kinetic energy of the system can also be thought of as the

addition of two separate vertical and horizontal kinetic energies, i.e.

K = Kv +Kh =
1

2
(ωωω +AAAµq̇

µ)A(ωωω +AAAν q̇
ν) +

1

2
Bµν q̇

µq̇v

where Bµν is the metric on internal space

Bµν = hµν −AAAµAAAAν .

So, in summary, to a vector

| v′ >= q̇µ

on internal space Qint we associate a vector | vh > on Qcm which is called its

horizontal lift, connecting the two fibers. In the basis made of angular and shape

velocities, the horizontal lift of v′ takes the from

| vh >= [−AAAµq̇
µ, q̇µ] (4.7)

Then, the metric Bµν on the internal space can be found by the following defining

equation

< v′1 | v′2 >= Bµν q̇
µ
1 q̇

ν
2 :=< v1h | v2h >= Mabv

a
1hv

b
2h

which leads to

Bµν = hµν −AAAµAAAAν (4.8)

For more information about the derivation of the metric on internal space

Qint =
Q

E(3)
, we highly recommend [7].

Metrics on shape space:

Now we are ready to derive a metric N on shape space S = Q
Sim(3)

. Since the

mass metric M is not scale invariant, i.e.,

Mcx(Sc∗u, Sc∗v) = Mcx(cu, cv) = c2Mcx(v, u) = c2Mx(v, u) ̸= Mx(v, u) (4.9)

it is generally believed that, contrary to Qint, it does not uniquely induce a met-

ric on shape space S. However, once one uses measuring units built from matter

instead of absolute measuring units, one sees that the mass metric uniquely in-

duces a metric on Shape space. We first review how a metric on shape space is
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derived with the introduction of a conformal factor and then give our derivation

of the unique metric on shape space, and explain the metric’s uniqueness, and

the relationship between realistic units of length and conformal factors.

As is explained in [16] one can introduce a new Sim(3)-invariant metric on Q,

which subsequently induces a metric on shape space in a natural way. As the

mass metric M is already rotation- and translation-invariant, the easiest way to

arrive at a similarity-invariant metric is to multiply the mass metric by a function

f(x) (the so-called conformal factor) so that the whole expression

M′
x := f(x)Mx

becomes scale invariant, i.e.,

∀c ∈ R+,∀u, v ∈ Tx(Q) : f(cx)Mcx(Sc∗u, Sc∗v) = f(x)Mx(u, v).

Note that the function f must be translation- and rotation-invariant so that it

does not spoil the Euclidean invariance of the mass metric. As M′
x = f(x)Mx

is now a metric invariant under the whole similarity group we are ready to write

down the metric N on shape space:

Ns(v
′, u′) := M′

x(v, u) = f(x)Mx(v, u), (4.10)

where 
π(x) = s

π∗(u) = u′

π∗(v) = v′

with the projection map π : Qcm → S = Q
sim(3)

.

When the action of scale transformation on T (Q) is defined by the differential of

the scale transformations, i.e., Sc∗, from the behavior of the mass metricM under

scale transformation (4.9) one sees that any rotation- and translation-invariant

homogeneous function2 of degree −2 perfectly meets all the requirements of a

conformal factor. For instance

f(x) =
∑
i<j

|| xxxi − xxxj ||−2 (4.11)

2A function of r variables x1, ..., xr is being called homogeneous of degree n if f(cx1, ..., cxr) =
cnf(x1, ..., xr),∀c
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or

f(x) = I−1
cm (4.12)

where

Icm(x) =
∑
j

mj || xxxj − xxxcm ||2= 1∑
imi

∑
i<j

mimj || xxxj − xxxi ||2

are two legitimate examples of conformal factors (as suggested in [16]). However,

as the introduction of arbitrary conformal factors leads to arbitrary metrics on

shape space and leads to the appearance of unphysical forces (see appendix A

for clarification), this treatment seems unsatisfactory to us. By paying more at-

tention to the important role of the measurement units in determination of the

geometry of space, below we propose another way to derive the metric on shape

space which does not have the problem(arbitrariness) just mentioned.

Bearing in mind that measurements of the velocity are, in essence, an experi-

mental task, the transformation law of the velocities under scale transformations

of the system (or any other transformation of the system) must also include ex-

perimental reasoning. Based on the principle of relationalism, we showed that the

behavior of rods and clocks under scale transformations of the system is such that

the measured velocities of objects (or parts of the system) are invariant. It is a

natural consequence of the simultaneous expansion of the measuring rod and the

corresponding dilation of the unit of time (See Section (1.4) for an explanation

of this fact). Hence, a velocity vector

vx = (v1, ..., vN) ∈ Tx(Qcm)

of an N-particle system transforms under scale transformations of the system as

follows

x→ cx

vx = (v1, ..., vN) ∈ Tx(Qcm) → vcx = (v1, ..., vN) ∈ Tcx(Qcm)

Given the above action Ac of c ∈ Sc ⊂ Sim(3) on velocities(or on T (Q)); the

mass metric is a ASc-invariant metric on Q, as can be seen by a short calculation:

Mx(vx, ux) → Mcx(Acvx,Acux) = Mx(vx, ux) (4.13)
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where the equalities Mx = Mcx = M and Acvx = vx has been used. Considering

T (Qint) = T ( Q
E(3)

) as a ASc-fiber-bundle, the mass metric B on Qint = Q
E(3)

(defined previously by expression (4.2)) induces a unique metric

Ns : T (Qint)/ASc × T (Qint)/ASc → R

We arrive in this way at the metric N as follows

Ns(v
′, u′) := Bq(v, u) (4.14)

where 
π(q) = s

π′(u) = u′

π′(v) = v′

with the projection map defined as follows

π : Qint → S

π′ : T (Qint) → T (Qint)/ASc

Because the above construction is ASc-invariant, to which q ∈ π−1(s) the pair

of shape vectors v′, u′ ⊂ Tq(Qint)/ASc are lifted, does not make any difference

for the value assigned by Ns to them. Hence, the metric N is also well defined.

This method brings one uniquely to the shape (kinetic)metric 1
2
N on T (Qint)/ASc

without the need of introducing a conformal factor and the mentioned ambiguity

involved with it.

Alternatively, one can complement the DGZ-derivation of metric on shape space

(4.10), and remove the involved arbitrariness in it as follows. As seen before,

Mathematically, a metric G on a manifold Q is called scale-invariant if and only

if

∀v1, v2 ∈ Tq(Q) : Gq(v1, v2) = Gcq(Sc∗v1, Sc∗v2) (4.15)

where Sc∗ : T (Q) → T (Q) denotes the push forward of vectors along the scale

transformations Sc : q → cq on Q. Since Sc∗v = cv, we saw that the mass

metric M is not scale-invariant in this sense(4.9). However, what one physically

measures and is relevant is not M but

M(m)
q (v1, v2) =

Mq(v1, v2)

Mq(qqqi − qqqj, qqqi − qqqj)
(4.16)
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where 1 < i, j < N are two particles that are used to define the unit of length.

This is another way to realize how the arbitrariness of the metric on shape space

criticised before disappears by the usage of real measuring units instead of “in-

accessible absolute units”. The measured mass metric is on its own scale

invariant in the mathematical sense mentioned above. One could say that part of

the arbitrariness of the conformal factor is now in fact shifted to the arbitrariness

in the choice of a length unit, i.e., which particles i and j one chooses to define

the length unit. However, one should realize that all reasonable choices of length

unit will lead to the same metric N on shape space. A reasonable choice of length

unit would be such that leads to no fictitious forces.

It is worth noting that N is a metric on T (S) = T (Qint)/Sc∗, while N is a

metric on T (Q)/ASc. Thus, these are metrics on two different vector bundles.

Although we intuitively expect them to represent the same physical entity, their

mathematical equivalence is not obvious to us. Throughout the rest of this text

we will always work with T (Q)/ASc and use N. With some abuse of notation,

we denote both bundles by T (S), but it is clear from the context which bundle

is meant.

4.2 Reduction of the theory

For reduction of classical mechanics w.r.t. scale transformations, we now use the

methods explained in chapters two and three. One of the reasons that so far

nobody has gone after the extension of these formalisms to the similarity group

is that the potential function defined on absolute space, though manifestly rota-

tional and translational invariant, is clearly not scale invariant (take Newtonian

gravity as an example). However, as explained in Chapter (2), scale transfor-

mation becomes an additional symmetry of the (modified) classical physics (see

equation (1.17)), and this enables us to perform a symplectic reduction of the

system’s phase space with respect to the whole similarity group G = sim(3).
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Besides having a similarity invariant potential function on absolute configura-

tion space (see equation (1.17)), in order to reduce the classical systems with

respect to the similarity group (which was initially argued for and motivated in

Chapter 1) with the help of symplectic reduction methods explained in Chapter

(2), we have to change the connection form (2.11) to the following one

ω = ωr + ωs = R

(
A−1

x (
N−1∑
j=1

rj × drj)

)
+ I3D

−1
x

(N−1∑
j=1

rj.drj

)
(4.17)

in which I3 is the 3× 3 identity matrix, and we have defined the operator

Dx : R → R

λ̇λλ→ D

expansion velocity → dilatational momentum

as

Dx(λ̇λλ) :=
N−1∑
j=1

r2j λ̇λλ (4.18)

and we call it the dilatational tensor. Here λ̇λλ stands for the rate of change of scale

of the system (scale velocity so to speak)3

λ̇λλ :=
λ̇

λ
(4.19)

with

λ := max | xxxi − xxxj | (4.20)

for i, j = 1, ..., N being the system’s scale variable.

We constructed this operator in direct analogy to the inertia tensor Ax. The

inertia tensor sends an angular velocity (which can be represented as a vector

in R3) to another vector in R3 which represents the total angular momentum of

the whole system (object). In the same way, the dilatational tensor Dx takes an

expansion velocity, which can be represented by just a number in R to a measure

3Here of course we assume that all measurements are conducted with the use of special
Newtonian rods and clocks, which are isolated from the materialized universe and do not get
affected by them in any way or by transformations we perform on the materialized universe.
Practically of course such measuring instruments do not exist, but the existence of absolute
space and absolute time in Newtonian worldview justifies their hypothetical existence.
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of the total expansion of the system (dilatational momentum D) which again can

be represented by another number in R. As the Lie algebra of the group sim(3)
trans(3)

can be considered to be the addition of 3× 3 skew-symmetric matrices of so(3),

and real multiples of 3×3 identity matrix I3, one recognizes the correct structure

in this connection form. If one takes a random vector of Tx(M) and acts on it by

this connection form, the first term of (7.12) gives a member of so(3), and the

second term, a number multiplied by the identity matrix I3. So, it does what it

is expected to do.

4.3 Symplectic reduction of phase space

Now that the metric (7.8) on shape space, and the connection form (7.12) is given,

the way to get the reduced Hamiltonian equations of motion with respect to the

similarity group is paved.

The first step is to find the momentum mapping corresponding to the following

group

G = SO(3)× R+

To this end consider first the Lie-algebra of G. It can be written as

G = zI3 + so(3)

where z ∈ R and so(3) are as usual the skew-symmetric 3×3 matrices representing

the Lie-algebra of the rotations group.

The action of G on T ∗(Qcm) is as follows

(x1, ..., xN−1; p1, ..., pN−1) (4.21)

↓

(cgx1, ..., cgxN−1; gp1, ..., gpN−1)

where, as before, c ∈ R+ and g ∈ SO(3) (and all the lengths and time intervals
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are measured by the absolute Newtonian rods and clocks as seen before (??).).

The momentum mapping corresponding to scale transformations is

µscale =
N−1∑
j=1

rj.drj

Hence, the momentum mapping for the group 4 G becomes as follows

µsim = I3

N−1∑
j=1

rj.drj +
N−1∑
j=1

R−rj∧pj (4.22)

We call µsim the similarity momentum 5. Remember that mathematically the

similarity momentum is the following mapping

µsim : P = T ∗(Qcm) → RI3 + so(3) := G ∼= G∗ (4.23)

In fact G is the summation of a skewsymmeric matrix with a real multiple of the

identity matrix.

Let a ∈ G ∼= G∗. It can be rewritten as

a = DI3 + L

for some D ∈ R standing for dilatational momentum (diagonal part of a), and

some L ∈ so(3) standing for the angular momentum (the non-diagonal part of

a). As before, µ−1
G (a) is a submanifold of P = T ∗(Qcm). The reduced phase space

µ−1
G (a)

Ga
is then achieved by quotienting µ−1

G (a) with respect to the isotropy group

Ga.

The isotropy group corresponding to rotations was already discussed in Section

(4). Now it is time to discuss the same question for the group of scale transforma-

tions. For simplicity, consider a system that is purely expanding. The dilatational

momentum of this system is

D =
∑
i=1

ri.vi

Perform a scale transformation ri → cri. Having the corresponding transforma-

tion law of the velocities (4.21) in mind, the dilatational momentum transforms

4of both rotations and scale transformations
5with slight abuse of notation, since starting with the center of mass system translations are

not taken into account.
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as follows

D → D′ =
∑
i

(cri).vi = cD (4.24)

This should be compared to the system’s angular momentum, which is also in

general6 not invariant under rotations7. From (4.24), it becomes clear that any

scale transformation changes the value of the dilatational momentum, except if

D = 0. Hence the isotropy subgroup of the scale transformations is ⊘ when

D ̸= 0, and R+ when D = 0.

Now we are in a position to compare the reduced phase space
µ−1
G (a)

Ga
with respect

to G = R+ ◦ SO(3) with the cotangent bundle of shape space T ∗(S). Remember

that dim
(
T ∗(Qcm)

)
= 6N − 6 and dim

(
(T ∗(S)

)
= 6N − 14. Thus, when go-

ing from the cotangent bundle of the center of the mass system T ∗(Qcm) to the

cotangent bundle of the shape space T ∗(S), eight dimensions get eliminated.

Choosing a specific value a ∈ G for the similarity momentum of the system

reduces the dimension of T ∗(Qcm) by four. Consequently, taking the quotient

with respect to the corresponding isotropy group Ga, leads to the elimination of

one extra dimension when L ̸= 0 and D ̸= 0 (because in this case Ga = SO(2) )

and four extra dimensions when L = D = 0. For this latter case, eight dimensions

are eliminated in total, and hence the reduced phase space becomes isomorphic

to the cotangent bundle of shape space, i.e.,

µ−1
G (0)

G0

∼= T ∗(S).

For the generic case of L, D ̸= 0 we have

dim
(µ−1

G (a)

Ga

)
= dim

(
T ∗(S)

)
+ 3 (4.25)

We wish now to discuss the canonical form and its reduction with respect to

G = SO(3) × R+. In particular, we seek the reduced symplectic form σa on the

reduced phase space

Pa =
µ−1
r (a)

Ga

6whenever the system’s angular momentum is non-vanishing
7Note, however, using instead of absolute Newtonian rods and clocks internal rods and

clocks, dilatational momentum becomes invariant under scale transformations.
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starting as usual with the canonical one-form

θ =
∑

mk < vk, dxk >= K(v, dx)

as we saw in (3.7). Remember that σa was defined by π∗
µσµ = i∗µσ with σ = dθ

and the inclusion map iµ and the projection map πa were defined as follows

ia : µ
−1
sim(a) → P = T ∗(Qcm) (4.26a)

πa : µ
−1
sim(a) → Pa =

µ−1
sim(a)

Ga

(4.26b)

Define an operator dual to the connection form (7.12) as

ωD
x : G = RI3 + so(3) → Tx(Qcm)

For a ∈ G and v ∈ Tx(Qcm), ω
D
x was defined in (3.9). We mentioned in Section

(3.2) that for any v ∈ Tx(Q) the vector v − ωD
x µsim(x, p) with I−1

x (p) = v is

horizontal.

We choose (x, v) as coordinate system in T (Qcm). The submanifold µ−1
sim(a) is

determined in T (Qcm) by the condition

I3

N−1∑
j=1

xj.vj +
N−1∑
j=1

R−mjxj∧vj = a

Now, with the help of ωD decompose a vector v ∈ T (Qcm) ∼= T ∗(Qcm) into

horizontal and vertical parts, i.e., v = w + ωD
x µsim(x, p) where again I−1

x (p) = v.

Rewrite the canonical one-form θ as the following

θ(x,v) = M(v, dx) = M
(
w+ωD

x µsim(x, p), dx
)
= M(w, dx) +K

(
ωD
x µsim(x, p), dx

)
= M(w, dx) +

(
µsim(x, p) | ωx ◦ dx

)
Hence, on µ−1

sim(a) we get the following one-form

i∗aθ(x,v) = M(w, dx) + (a | ωx ◦ dx) (4.27)

where we again used the horizontal-vertical decomposition of vectors v = w+ωD
x a.

The canonical two-from on µ−1
sim(a) then becomes

d(i∗aθ) = d
(
M(w, dx)

)
+ d(a | ω ◦ dx) (4.28)
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Since w is horizontal, i.e., w ∈ Wx,hor
∼= Tπ(x)(S) the first term in the right hand

side of (4.28) is invariant under G = R+ × SO(3), and hence in one-to-one cor-

respondence with the canonical two-form on T (S) ∼= T ∗(S). Contrary to this,

the second term of the same side depends on x and hence does not project to

any two-form on T ∗(S). As a matter of fact, (a | dω) is not horizontal (its value
changes if we act with the group on it, or to be more precise, acting by any

member of G/Ga).

Having the following substitutions for the similarity momentum

a = DI3 + L

and for the connection form (7.12),

ω = ωr + ωs

where as before

ωr : T (Qcm) → so(3)

and

ωs : T (Qcm) → RI3

we rewrite the second term in (4.28) as follows

d(a | ω ◦ dx) = d
(
DI3 + L | (ωr + ωs) ◦ dx

)
= d(L | ωr ◦ dx) + d(DI3 | ωs ◦ dx)

Here, we also used the fact that a diagonal and a skew-symmetric matrix are

perpendicular to each other w.r.t. the matrix inner product (A | B) = 1
2
tr(ABT ).

Hence, the two-form on reduced phase space µ−1
sim(a) can be rewritten:

d(i∗aθ) = d
(
M(w, dx)

)
+ d(L | ωr ◦ dx) + d(DI3 | ωs ◦ dx) (4.29)

As mentioned before, in general (L ̸= 0 and D ̸= 0), neither the second term

nor the third term is in one-to-one correspondence with two-forms on T ∗(S). It

is because of the non-trivial transformation laws of L and D under the group
G
Ga

. However, as these terms are invariant under Ga, they can legitimately be

considered as differential forms on reduced phase space Pa. The second term is

the source of Coriolis force [3]. We call the last term dilatational force. Note
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that even when the overall angular momentum of the system under consideration

vanishes, i.e., L= 0, its overall expansion (or contraction) causes extra complica-

tion for the reduced motion on S so that it fails to be describable in T ∗(S). So

the dilatational force, like the Coriolis force, is a non-Hamiltonian force (cannot

be derived from a potential function on S).

A similar procedure to the one seen in the previous section leads to the split-

ting of the kinetic energy. Having the decomposition

Tx(Qcm) = Tx,sim ⊕ Tx,hor

and the orthogonal projections

Px = Tx → Tx,sim

and

Hx = 1x − Px

in mind, for any v and u ∈ Tx(Qcm) one has

Mx(v, u) = Mx

(
Px(v), Px(u)

)
+Mx

(
Hx(v), Hx(u)

)
Now, if we set v = u, we obtain the kinetic energy expressed as the sum of

similarity and shape energies. In particular, the similarity energy can be written

down as

Mx

(
Px(v), Px(v)

)
=
(
RA−1

x R−1L | L
)
+
(
I3D

−1D | I3D
)

(4.30)

where R and Ax were defined as follows

R : R3 → so(3)

R(a) =


0 −a3 a2

a3 0 −a1

−a2 a1 0


for any a ∈ R3, as is explained in more extend in appendix D, and

Ax : R3 → R3

57



Ax(vvv) =
N−1∑
j=1

rrrj × (vvv × rrrj), vvv ∈ R3, x ∈ Qcmns

The symplectic form σa on the reduced phase space Pa =
µ−1
sim(a)

Ga
can as before be

derived from the canonical 2-from dθ through

i∗adθ = π∗
aσa

and the reduced Hamiltonian Ha on Pa is defined through Ha ◦ πa = H ◦ ia.8

Choosing the coordinate system (x, v) on µ−1
sim(a), where v = ωD(a), one gets the

following expressions for the reduced two-form, and reduced Hamiltonian

π∗
aσa = i∗adθ = d

(
M(w, dx)

)
+ d(L | ωr) + d(DI3 | ωs) (4.31)

Ha◦πa = H◦ia =
1

2
M(w,w)+

1

2

(
RA−1

x R−1L | L
)
+
1

2

(
I3D

−1D | I3D
)
+U (4.32)

The last term at the right-hand side of (4.31) can be understood as a new kind

of fictitious force, which we called dilatational force. It has a similar nature as

the Coriolis force. The third term on the right-hand side of (4.32) can also be

understood as a new kind of potential, which we call scale potential. The scale

force, defined as the gradient of the scale potential, is in its nature similar to the

centrifugal force.

8We have defined the inclusion map as follows

ia : µ−1
sim(a) → P = T ∗(Qcm)
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Chapter 5

Principle Of Relationalism

Revisited

We have explained in Chapter (1), that the ideas of Gottfried Wilhelm Leibniz,

and Ernst Mach on the foundation of mechanics, and in particular, about the

absolute 3-dimensional space and the absolute time, as two of the building blocks

of the classical physics ([20],[21]), can partly be expressed, and made more concise

in terms of the Principle of Relationalism, which amounts to the following

statement

Two possible universes, differing from each other just by the action of a global

similarity transformation Sim(3), are observationally1 indistinguishable.

This statement includes, among others, the invariance of the laws of physics under

any Sim(3) transformation of the universe. The dynamical indistinguishably of

the two alternative universes mentioned above requires the introduction of a par-

ticular action of the group of scale transformations Sc on particles’ velocities(or

on phase space), as will be explained in more detail in this paper. Different

1with observationally indistinguishable we mean kinematically and dynamically
indistinguishable.
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absolute theories may require different actions. For some classes of absolute the-

ories, there may exist no action of Sc on the universe’s phase space for which the

considered theory could satisfy the mentioned principle. In this case, the nonex-

istence of a relational reformulation of the absolute theory under consideration

follows immediately. We explained that a direct implementation of this principle

requires the gravitational coupling G appearing in Newton’s theory of gravitation

to be a homogeneous function of degree one on the configuration space2, and not

a constant. Hence, in a given absolute frame of reference3, after a global scale

transformation of the universe by a factor c ∈ R+

(xxx1, ...,xxxN) → (cxxx1, ..., cxxxN)

the gravitational coupling must transform as

G→ G′ = cG

This makes the Newtonian gravitational potential V =
∑N

i,j=1
Gmimj

|xxxi−xxxj | scale-

invariant, and together, because of its rotation and translation invariance, V :

Q → R uniquely projects down to a function Vs : S → R on shape space. The

new theory, which promotes the gravitational coupling from a constant (as is the

case in the Newtonian theory) to a function with the mentioned properties, is

called the modified Newtonian Theory.

The above construction alone is, however, not sufficient for implementing the

Principle of Relationalism, as it would make the strength of the gravitational

force (measured, for instance, with respect to the strong nuclear force) scale-

dependent. This would cause a clear violation of the mentioned principle. In

order to avoid this and other violations, Planck’s constant ℏ, and the vacuum

permittivity ϵ0, have also been promoted to homogeneous functions on Q of de-

grees 1 and −1 respectively. These, in particular, ensure the scale independence

of the relative strength of the four known forces in nature [23].

It is also essential to take the transformations of the measuring units under the

2Whose exact form is yet unknown, but not needed for the aim of this paper.
3A hypothetical immaterial frame attached to the absolute space. One can call it god’s

frame of reference if one wishes so.
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global scale transformations into account. Max Planck has derived units of dura-

tion, length, and mass from G, ℏ, ϵ0, and light’s average velocity ccc by dimensional

analysis, i.e.

LP =

√
Gℏ
ccc3

MP =

√
ℏccc
G

(5.1)

Tp =

√
Gℏ
ccc5

One of the main advantages of this set of units is their accessibility in all regions

of the universe in which the same laws of physics as ours (i.e., the laws of quantum

mechanics, electromagnetism, and gravity) hold.

Seen from the absolute frame of reference and measured with some hypothetical

fixed absolute units of duration and length4, Planck’s units will change under a

global scale transformation of the universe as follows

Lp → L′
p = cLp

Mp →M ′
p =Mp (5.2)

Tp → T ′
p = cTp

These transformations follow immediately from the expressions (5.1) by taking

the mentioned degree of homogeneity of the functions G, ϵ0, ℏ into account. It

shows the expected behavior for Planck’s length unit. Additionally, it shows an

increase in Planck’s unit of time, mimicking a time dilation for internal observers

(which keep measuring with the new Planck’s units).

Given the above information, we want to discuss now how the velocity of dif-

ferent objects transform under a similarity transformation of the universe. In

other words, given the initial state of a classical N -body system(universe) by the

4God’s immaterial rods and clocks if you wish. They can also be called the absolute SI units,
coinciding with the real (experimental) SI units, just for a specific scale of the universe. For
instance, the absolute SI units and real SI units coincide for the universe now (at this moment
of time), and before performing any scale transformation of the universe. The performance of
such a transformation changes the internal units, but not the absolute ones. The existence of
these absolute units in Newtonian Mechanics can be inferred from the existence of absolute
space and time.
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3N position variables (xxx1, ...,xxxN) and the 3N velocity variables (v1, ...,vN), what

will the new velocities (v′
1, ...,v

′
N) become, after we have changed (jumped) the

system’s configuration to (xxx′1, ...,xxx
′
N) = (gxxx1, ..., gxxxN) for any g ∈ Sim(3)?

If the performed transformation belongs to the euclidean subgroup, i.e. g ∈
E(3) ⊂ Sim(3), the transformation of the velocities is already well-known5. So

we need just to discuss the transformation of the velocities under the group of

scale transformations Sc ⊂ Sim(3).

As the measurement of a velocity is basically an experimental task, the transfor-

mation law of the velocities under scale transformation of the system (or, in fact,

any other transformation of the system) must also include some experimental

reasoning. We will explain here that based on the Principle of Relationalism, the

behavior of rods and clocks of the modified Newtonian theory under a universe’s

scale transformation is such that the measured velocities of objects (or parts of

the system) remain invariant under such transformations. This invariance is a

natural consequence of the simultaneous expansion of the measuring rod and the

dilation of the unit of time we came across previously. To be more precise, we

have already argued above that a global scale transformation of the universe by

a factor c ∈ R+

x = (xxx1, ...,xxxN) → x′ = (cxxx1, ..., cxxxN)

causes the following transformation of the gravitational coupling G, Planck’s ℏ,
and the vacuum permittivity ϵ0

G→ cG

ℏ → cℏ

ϵ0 →
ϵ0
c

These transformations, in turn, changed the behavior of rods and clocks through

a change of their (Planck) units (5.1) as given in (5.2). The measured speed v of

an object, e.g., a particle, gets transformed under a global scale transformation

5Velocities are invariant under the action of the group of spatial translations T (3). Under
the action of the group of spatial rotations SO(3), the velocities transform to (v′

1, ...,v
′
N ) =

(gv1, ..., gvN ), where g is the rotation connecting the old configuration to the new one.
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as follows

v =
∆xxx

∆t
→ v′ =

∆xxx′

∆t′
=
c∆xxx

c∆t
= v (5.3)

where ∆x stands for instance for the distance between two other objects (which

are needed to define the start and end point of any interval in space), and ∆t

stands for the time duration (measured in Planck unit) that the object needs to

travel between those two reference objects. The primed versions are the same

quantities after scale transforming the universe and measuring everything in the

new Planck units. So, the measured velocities of the objects6 become invariant

under the scale transformations. In the relation, ∆t′ = c∆t, which is used in

(5.3), the Principle of Relationalism is silently invoked in equating the number

of ticks (or steps) of our new clock in the scaled universe for the duration of a

physical phenomenon (in this example the passage of an object between the two

reference objects), and the number of ticks of the old clock in the old (smaller)

universe while the same phenomenon is taking place. So the measured speed of

any object in universes before and after global scale transformations remains the

same. The Principle of Relationalism and the characteristics of the Plank units

together are responsible for this result. Analogously, the system’s configuration

velocity, which is the collection of all the velocities of its constituent particles, is

also invariant under a global scale transformation, i.e.

vx = (v1, ...,vN) ∈ TxQ

↓ (5.4)

vcx = (v1, ...,vN) ∈ TcxQ

This means that the group of scale transformations Sc ⊂ Sim(3) acts on the

6With the new measuring instruments
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phase space of a modified Newtonian N -body system as follows

xxx1

.

.

.

xxxN

ppp1

.

.

.

pppN



Sc−→



cxxx1

.

.

.

cxxxN

ppp1

.

.

.

pppN



(5.5)

where pppi := mivi. Note that the absolute velocities of the Newtonian world-view

are not related in any way to the observable relative motions we were dealing

with so far (e.g., in 5.3). Instead, they are derived from the unobservable mo-

tion in absolute space, i.e., the motion between two “space points” instead of

two reference objects. As the distance between space points is not affected by a

scale transformation of the matter in the universe, absolute velocities in modified

Newtonian theory change under scale transformation Sc : xxxi → cxxxi by a factor of
1
c
, contrary to the relative velocities. In other words, the group of scale transfor-

mations Sc ⊂ Sim(3) acts on the absolute phase space of a modified Newtonian

N -body systems as follows 

xxx1

.

.

.

xxxN

ppp1

.

.

.

pppN



Sc−→



cxxx1

.

.

.

cxxxN

c−1ppp1

.

.

.

c−1pppN



(5.6)

where pppi := mivi. In two of the other approaches to relational physics (BKM
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and BDGZ)7, the action of the group Sc on absolute phase space is taken to

be different from (5.6), i.e., being (11.12) and (11.18) respectively. We are led

to (5.5) or (5.6) directly by the Principle of Relationalism. However, one can

alternatively arrive at (5.6) by mechanical similarity transforamtions in the mod-

ified Newtonian theory. In Chapter (11) this is discussed in more detail. Using

(5.5), we have shown (in Section 7.2 or Section 4.1) that the mass metric M on

Q uniquely induces a metric N on shape space S in a straight forward way. In

particular, this has been done without the need for any conformal factor contrary

to the BDGZ-approach.

It is worth mentioning that the properties of the internal measuring units ac-

cording to the modified Newtonian theory (which also lead us to (5.5)) is not

keen on using the Planck units. The true homogeneous function of the first de-

gree on Q which must lead to the value 6.6743× 10−11 m3

kg.s2
for the current state

of the universe allows the existence of Kepler pairs now8. The unit of length

and time defined as the semi-major axis, and the orbital period of a Kepler pair,

change under a global scale transformation Sc exactly in the same way as their

Planck counterparts in the modified Newtonian theory do. It is because of (5.6).

The homogeneity of the potential function of zeroth degree in modified Newto-

nian theory guarantees that the Kepler pair’s orbital period becomes longer by a

factor c ∈ R+ (11.1) after performing a mechanical similarity transformation of

the universe (by the factor c).

For clarity, we give here a more mathematical formulation of the principle of re-

lationalism for particle-based mechanical theories and compare it with two other

principles (postulates) in relational mechanics.

Consider an absolute physical theory, built upon the notions of absolute space R3

and absolute time R of Newton. Denote the absolute time by the letter t(nnn). The

state space η of a system according to a theory can be specified by the systems

configuration9 x, and its time derivatives of sufficient order ẋ, ẍ,... depending on

7Considered in Chapter (11) for the purpose of comparison with our work
8Whether or not these Kepler pairs form in a typical universe governed by the modified

Newtonian theory is a separate question to be addressed in future.
9Or by the theory’s “beables”.
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the theory. The theory’s law of motion is usually given by a system of coupled

differential equations for the 3N configuration variables10 with the absolute time

t being the independent variable. A time-dependent isomorphism can express the

solutions of this system of equations (law of motion)

Ov,v̇,...

t(nnn) : Q→ Q

In other words, the (absolute time) parameterized curves Ov,v̇,...

t(nnn) (x0) with −∞ <

t(n) < ∞, all satisfy the system of differential equations constituting the (abso-

lute) theory’s law of motion. As the law of motion of the (modified or original)

Newtonian mechanics is a second-order differential equation, just the explicit

specification of the velocities suffices for the determination of the solution emerg-

ing from an arbitrary configuration x, and hence for the construction of the

time-dependent isomorphism Ov
t(nnn) .

The mathematical expression of the Principle of Relationalism is as follows:

∀x0 ∈ Q,∀g ∈ Sim(3) : O
Agv

t(nnn) (gx0) = gOv
t(nnn)x0 (5.7)

where Agv is the transformed velocity under the action of g ∈ Sim(3). As it is

well known that velocities in classical mechanics are invariant under group T 3 of

spatial translations11, and covariant under the group SO(3) of spatial rotations12,

it suffices to specify only the action of the group Sc of scale transformations.

As the Newtonian world-view is quite central to the above formulation of the

principle, some comments on its relation to the Leibnizian world-view are in or-

der. One can define the infinitesimal increment of a relational time variable as

a monotonically increasing positive function of the infinitesimal increment of the

system’s actual configuration xxx, i.e.,13

δt := f(| δxxx1 |, | δxxx2 |, ..., | δxxxN |)

where | . | denotes the Euclidean norm on the absolute space R3. For instance,

one may take f as the function for the arc length on the configuration space Q.

10For particle-based mechanical theories.
11∀g ∈ T 3 : Agvx = vx where Agv ∈ Tgx(Q) and vx ∈ Tx(Q)
12∀g ∈ SO(3) : Agvx = gvx where Agv ∈ Tgx(Q) and vx ∈ Tx(Q)
13See also [7], and [23] to better understand the concept of relational time.
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It is explained in [7] that the ephemeris time (11.13), which corresponds to a

specific choice fe for the function f , replaces perfectly the absolute time t(nnn) in

the Newtonian mechanics. As total speeding up or slowing down of all universe’s

particles by the same factor would not lead to any observable effect14, without loss

of generality one can set E = 0 in the denominator of fe. In this way, all possible

universes can be considered as having vanishing total energy. Identify Newton’s

absolute time t(nnn) with the ephemeris time of a universe with vanishing total

energy and pathing through a configuration x0. Call this universe the reference

universe. Its role is to provide a relational representation of Newton’s absolute

time. After performing any transformation on the universe, a relational time

variable may run differently compared to the absolute time t(nnn), i.e., compared

to the ephemeris time of the reference universe. An equivalent expression of the

Principle of Relationalism is as follows:

∀x0 ∈ Q, ∀g ∈ Sim(3) : Ou′

t′ (gx0) = gOu
t x0 (5.8)

where t and t′ denote the two alternative universe’s internal times, corresponding

to the same shape, which can be moreover assumed to be initially synchronized

t |x0= t′ |x′
0:=gx0

= 0

The specification of the initial velocity of the transformed universe

u′ :=
dx′

dt′
|x′=gx0

from the previous universe’s initial velocity

u :=
dx

dt
|x0

depends partly on the choice of the new internal time variable t′ (so the choice of

f for the new universe), and partly on the action of the group Sc on the absolute

phase space.

The mentioned principle moreover entails the nonexistence of any experiment

carried out by the subsystems of the two alternative universes (emerging from x0

and gx0 respectively), which could signify a difference between the two alterna-

tive universes, and hence be conclusive on the question: “In which one of the two

14For any internal observer, which by definition must be a subsystem of the universe.
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alternative universes am I finding myself?”. This point, among others, specifies

an action of the group of scale transformations Sc on the phase space as explained

before (see (5.3) or (5.4)).

A theory satisfying Barbour’s fundamental postulate of relational me-

chanics [32]:

“An initial point and an undirected line through it in shape space should

uniquely determine a solution.”

or satisfying the Barbour-Bertotti’s postulate of relational mechanics[33]:

“A point and a direction in shape space should uniquely determine a solution.”

known also as the Mach-Poincare’s criterion[34], certainly satisfies the above

principle of relationalism, but the other way around is not always true.

The somehow less appropriately chosen word “initial” in the expression of Bar-

bour’s fundamental postulate refers, in fact, to a special shape on the curve

achieved by projecting the solution of a Newtonian N -body problem to shape

space S. This special point is defined as the minimum of the complexity (11.7)

along the solution curve. Complexity is a Sim(3)-invariant function on Q; hence

it is also a function on S. At this special shape, the dilational momentum D 15

vanishes, and the system’s moment of inertia is at its absolute minimum along

the considered N -body’s solution curve on Q. It is just at this special shape

that the specification of a direction (or undirected line) on shape space would

uniquely determine a whole solution. These data would not be sufficient for a

generic shape, and the additional specification of D at a generic shape is needed

to determine a solution. Equivalently one can say16 that the resulting dynamics

on shape space do not deal with plain geometrical paths on S, but centered paths

(Paths with the extra structure of a “central point”); and a dynamics which de-

pends appropriately on the “distance” from the central point.

15Which is a dynamical variable in the Newtonian theory of gravitation but a constant of
motion of the modified Newtonian theory.

16As was pointed out to us by Sheldon Goldstein in private correspondence.
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In contrast, Barbour-Bertotti’s postulate is a statement about every point in

shape space and is, therefore, a stronger17 criterion than Barbour’s fundamental

postulate.

For the purpose of comparison, consider an absolute theory that contains some

interaction potentials depending on the particles’ relative velocities or relative

accelerations or ... . Such a theory (under some circumstances) can still perfectly

satisfy the principle of relationalism. However, the reformulation of its law of

motion on shape space would certainly neither satisfy the fundamental postulate

of Barbour nor Barbour-Bertotti’s postulate. Hence, the principle of relational-

ism is a broader statement and a less stringent requirement than the other two

postulates mentioned above.

The BKM-approach satisfies Barbour’s fundamental postulate but does not sat-

isfy Barbour-Bertotti’s postulate. This last criterion is, however, satisfied by the

BDGZ-approach. In fact, in the DGZ-approach [16], it has been shown that even

a similarity invariant interaction potential can be explained by a geodesic motion

on shape space; for a suitable choice of conformal factor18, and hence still satisfies

the Barbour-Bertotti’s postulate.

17More stringent.
18Namely multiplying the conformal factor used for the non-interacting theory on shape space

with the scale-invariant potential.
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Chapter 6

Geometry of Qcm as SO(3)-fiber

bundle

In this section, we review the geometry of Qcm as a principal fibre bundle, with

G = SO(3) being it’s structure group. We introduce coordinate systems on Qcm

which are adopted to the fiber bundle structure, introduce the connection form,

and discuss the decomposition of the mass metric M on Qcm. We do these as

preparation for describing a classical dynamical system in Lagrangian formalism,

and deriving the reduced equations of motion in coordinates on the respective

base space in the next section. As reference, one can find more information re-

garding these topics in [5],[6], [7].

6.1 Fiber bundle structure and definition of

connection form

The absolute configuration space of a N -particle system is the set

Q = {x = (x1, ...,xN) | xi ∈ R3} ∼= R3N
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The center of mass system

Qcm = {x = (x1, ...,xN) |
N∑
j=1

mjxj = 0} ∼= R3(N−1)

with xj ∈ R3, is stratified by the action of the symmetry group G (e.g. SO(3)).

A new coordinate system on Q adapted to the projection Q → Qcm is given by

the following linear transformation

x1

x2

.

.

.

xN


→



rrr1

rrr2

.

.

.

rrrN−1

Rcm


where RRRcm = 1∑n

i=1 mi

∑n
α=1mαrrrα is the center of mass of the system, and the

N − 1 vectors rrri are the mass weighted Jacobi vectors defined as

rj := (
1

µj

+
1

mj+1

)−
1
2 (xj+1 −

1

µj

j∑
i=1

mixi) (6.1)

With µj :=
∑j

i=1mi. Then, the center of mass configuration space Qcm can be

expressed in these coordinates by

Qcm
∼= {x = (r1, ..., rN−1) | rj ∈ R3, j = 1, ..., N − 1} (6.2)

By the introduction of the coordinate transformation (x1, ...,xN) →
(r1, ..., rN−1,Rcm) on the absolute configuration space Q, the center of mass ki-

netic energy and the center of mass angular momentum naturally separates off

from the system’s total kinetic energy and the total angular momentum. Specif-

ically system’s total kinetic energy

T =
1

2

N∑
α=1

mα | ẋxxα |2=
N∑

α,β=1

Kαβ(ẋxxsα.ẋxxsβ)

with Kαβ = mαδ
(3)
αβ being the 3N × 3N kinetic tensor (B.1), transforms to

T =
1

2

N−1∑
α=1

| ṙrrα |2 +
∑n

i=1mi

2
| Ṙcm |2 (6.3)
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One can view each element of Qcm as a 3× (N − 1) matrix. The stratification of

Qcm can then be suitably described by the rank of this matrix. Namely

Qcm = Qcm0 ∪Qcm1 ∪Qcm2 ∪Qcm3 (6.4a)

Qcmk := {x ∈ Qcm | rank(x) = k} (6.4b)

For instance, Qcm0 denotes the simultaneous total collision of all the particles,

Qcm1 denotes the linear configurations, Qcm2 the planar configurations (all the

particles are located on a single plane in R3). Members of Qcm0 and Qcm1 are

called singular configurations.

Action of the rotation group SO(3) on Qcm, is as follows

x→ gx = (gr1, ..., grN−1)

for all g ∈ SO(3). It is well known that the above SO(3) action can be used to

define an equivalence relation on Qcm, with help of which one defines a quotient

space Qint :=
Qcm

SO(3)
, as the space of the equivalence classes. We denote the corre-

sponding projection map by π : Qcm → Qcm

SO(3)
.

The isotropy group at x ∈ Qcm is defined as the following subgroup of the struc-

ture group SO(3)

Gx := {g ∈ SO(3) | gx = x} (6.5)

and the SO(3) orbit through x is defined as follows

Ox := {gx | g ∈ SO(3)} (6.6)

One can easily verify the following equalities

Gx =


e : x ∈ Qcm2 ∪Qcm3

SO(2) : x ∈ Qcm1

SO(3) : x ∈ Qcm0

and

Ox ∼=
SO(3)

Gx

∼=


SO(3) : x ∈ Qcm2 ∪Qcm3

S2 : x ∈ Qcm1

0 : x ∈ Qcm0

In this sense, Qcm is stratified into a union of strata, i.e. Qcm = Qcmns ∪Qcm1 ∪
Qcm0, Where ns stands for non-singular. So all x ∈ ∂Qcmns = Qcm\Qcmns are
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singular configurations. Qcmns contains all the two and three dimensional config-

urations in the absolute space.

Since each stratum is SO(3) invariant, we can consider Q as a stratified fiber

bundle where each stratum have it’s own projection
Qcmns → Qcmns

SO(3)

Qcm1 → Qcm1

SO(3)

Qcm0 → Qcm0

SO(3)

whose fibers are Ox
∼= SO(3)

Gx
. In particular Qcmns is a SO(3) principal fiber bun-

dle, as the structure group has a free action on Qcmns.

Associated with the group action of SO(3) on Qcm, a moving frame

{e′1, e′2, e′3}

of the absolute space R3, given by

e′1 = ge1, e
′
2 = ge2, e

′
3 = ge3

can be attached to the mechanical system, where {e1, e2, e3} stands for the (fixed)
space frame. The Euler angles ϕ1, ϕ2, ϕ3 = α, β, γ are used to specify the orien-

tation of the moving frame w.r.t. the space frame. Hence any point on Qcm can

be specified by 3N − 6 internal coordinates qi relative to the body frame, and

the three Euler angles ϕa. The components of a vector in R3 with respect to the

body frame will be denoted from now on by a subscript “b”. It is clear that the

relation between components of a vector in the space frame and the body frame

is as follows

vvvb = g−1vvvs

with g, as already mentioned, is the rotation which takes the space frame to the

body frame. For notational simplicity, from now on we drop the subscript s,

whenever we mean the expression of vectors w.r.t. the space frame.

The moment of inertia tensor expressed in Jacobi coordinates, is the following
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map Ax : R3 → R3

Ax(vvv) =
N−1∑
j=1

rrrj × (vvv × rrrj) (6.7)

for any vvv ∈ R3, x ∈ Qcmns. You can parallel transport the lab frame {e1, e2, e3} in

absolute space to the center of mass of the system under study. Denote the vectors

connecting the center of mass to the particle α by xxxα. In these coordinates, the

moment of inertia tensor takes the more familiar form

Ax(vvv) =
N∑

α=1

mαxxxα × (vvv × xxxα)

Note the operator A−1
x just exists for x ∈ Qcmns. The reason is that Ax sends all

vectors to zero if any x belongs to Qcm1 ∪Qcm0, hence can not be inverted.

For a velocity vector ẋ ∈ Tx(Qcm)

ẋ =



ẋ1

ẋ2

.

.

.

ẋ3N


=



ẋ̇ẋx1

ẋ̇ẋx2

.

.

.

ẋ̇ẋxN


denote dxxxi as the 1-form defined as follows

dxxxi(ẋ) := ẋ̇ẋxi

Similarly, the 1-forms drrri’s are defined for any 1 ≤ i ≤ N − 1.

For any x ∈ Qcmns, a connection form

ωx : Tx(Mns) → so(3)

is known to be defined with the help of A, as follows

ωx := R(A−1
x (

N−1∑
j=1

rrrj × drrrj)) (6.8)

Here R : R3 → so(3) is defined as

R(a) =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (6.9)
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for any a ∈ R3, as explained in more extend in appendix D, and the expression

of one form drrrj in orientational and internal coordinates is given by

drrrj =
3N−6∑
i=1

∂rrrj
∂qi

dqi +
3∑

a=1

∂rrrj
∂ϕa

dϕa

6.2 Local expression of the Connection form

and the metric in orientational and internal

coordinates

Now we want to review (based on [5], and [6]) the expression of the connection

form 6.8, and the kinetic metric in terms of some new coordinates, which shall

be introduced on the center of mass configuration space Qcmns.

Consider an open subset U ⊂ Qcmns

SO(3)
, and define a local section

σ : U → Qcmns

Then, any point x ∈ π−1(U) can be expressed as

x = gσ(q) =
(
gσσσ1(q), ..., gσσσN−1(q)

)
(6.10)

with g ∈ SO(3), and q ∈ U ⊂ Qcmns

SO(3)
a point on the internal configuration space

Qint.

Note that

σ(q) =


σσσ1(q)

...

σσσN−1(q)

 =


∑3

a=1C
a
1ea

...∑3
a=1C

a
N−1ea


determines a way to put the multi-particle system with internal configuration (or

shape in the next section) q ∈ U , in the absolute space R3. This is achieved by

choosing the point x ∈ Qcm on the fiber above q, to which the internal configu-

ration q is meant to be lifted as follows

rrr3(i−1)+a := Ca
i
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So specifying a section σ, comes down to the specification of a set of 3(N − 1)

real valued functions on Qint, i.e.

Ca
i : Qint → R

For another subset V ⊂ Qint with V ∩U ̸= ∅, one can define another local section

τ : V → Qcm

such that σ(q) = hτ(q) for (q, h) ∈ V × SO(3). The two local sections σ and τ

on V ∩U are then related by τ = kσ, where k is a SO(3)-valued function on U∩V .

The vertical and horizontal1 vectors (and one forms) can be expressed with re-

spect to a local trivialization of the center of mass configuration space2

Qcm
∼= R3N−3 ∼= U × SO(3)

To this end, rewrite the connection form

ω = R
(
A−1

x

N∑
α=1

mαxxxα × dxxxα
)

(6.11)

= R(A−1
x (

N−1∑
j=1

rrrj × drrrj))

and the total angular momentum operator

J =
N∑

α=1

mαxxxα × dxxxα =
N−1∑
α=1

rrrα × drrrα

with respect to the laboratory frame ea as follows

ω =
3∑

a=1

R(ea)ω
a =

3∑
a=1

R(e′a)ω
′a

where ωa := ω.R(ea), ω
′a := ω′.R(e′a), and the total angular momentum expressed

both in the fixed laboratory frame and the moving frame as

J =
3∑

a=1

eaJa =
3∑

a=1

e′aLa

1in this case they are known as rotational and vibrational vectors in the literature.
2technically speaking we mean the non-singular stratum of configuration space.
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where Ja = (ea | J), and La = (e′a | J).
Remember that

Jarj = ea × rj

Larj = e′a × rj = g
(
ea × σσσj(q)

)
The forms {ωa, dqi} with a = 1, 2, 3 and i = 1, ..., 3N − 6 constitute3 a local basis

of the space of 1-forms on T ∗(Qcm). Moreover, the vector fields La and

( ∂
∂qi
)∗

:=
∂

∂qi
−
∑
a

∧a
iLa (6.12)

form a local basis of the space of vector fields Tx(Qcm). Here
(

∂
∂qi

)∗
is called the

horizontal lift of ∂
∂qi

from internal configuration space Qint to Qcm. It is defined

by the conditions

ω
(
(
∂

∂qi
)∗
)
= 0

π∗(
∂

∂qi
)∗ =

∂

∂qi

which explain its name. These conditions lead to the following expression for the

functions ∧a
i in (6.12)

∧a
i =

〈
A−1

x (
N−1∑
α=1

rrrα × ∂rrrα
∂qi

) | ea
〉

(6.13)

Note also that ∂σ
∂qi

is a vector field (so a differential operator) on Qcm. So, we

have the following identities

ωa(Jb) = δab , ω
a
(
(
∂

∂qi
)∗
)
= 0

dqi(Jb) = 0, dqi
(
(
∂

∂qi
)∗
)
= δij

ω′a(Lb) = δab , ω
′a(( ∂

∂qi
)∗
)
= 0

dqi(Lb) = 0, dqi
(
(
∂

∂qi
)∗
)
= δij

3mathematically speaking one should write π∗dqi instead of dqi there.
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By writing out the connection form in the local coordinates (q, g), one can calcu-

late the local expression of ωa

ωa = ψa +
3N−6∑
i=1

∧a
i dq

i (6.14)

ω′a = θa +
3N−6∑
i=1

∧′a
i dq

i (6.15)

where ψa and θa are respectively the three right and left invariant one-forms on

SO(3) defined through

dgg−1 =:
3∑

a=1

ψaR(ea) (6.16)

g−1dg =:
3∑

a=1

θaR(ea) (6.17)

The ψa and Ja can be expressed in terms of Euler angles, and are dual to each

other i.e.

ψa(Jb) = δab

θa(Lb) = δab

It can be shown that the rotational vector fields Ja, and the vibrational vector

fields ( ∂
∂qi

)∗ satisfy the following commutation relations [6]

[Ja, Jb] = −
3∑

c=1

ϵabcJc (6.18a)

[(
∂

∂qi
)∗, (

∂

∂qj
)∗] = −

3∑
c=1

F c
ijJc (6.18b)

[(
∂

∂qi
)∗, Ja] = 0 (6.18c)

The second equation implies that two independent vibrational vectors are cou-

pled in a way to lead to an infinitesimal rotation, and exactly because of this,

vibrations and rotations are inseparable. Another fact is that the distribution

spanned by the vectors ( ∂
∂qi

)∗ is not completely integrable. If it was so, there

existed a submanifold to which ( ∂
∂qi

)∗ are tangential, and this surface could be

identified with the internal space Qint. The constraint of constancy of total an-

gular momentum is realized by selecting the distribution spanned by ( ∂
∂qi

)∗. This
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constraint is a non-holonomic one for the case of non-vanishing angular momen-

tum, and a holonomic one in the case of vanishing angular momentum.

According to the orthogonal decomposition Tx(Mns) = Vx ⊕ Hx, it is known

that the kinetic metric can be expressed in terms of the one-forms dqα, and ωa

as follows

ds2 =
3N−6∑
α,β=1

aαβdq
αdqβ +

∑
a,b

Aabω
aωb (6.19)

where {
aαβ := ds2(( ∂

∂qα
)∗, ( ∂

∂qβ
)∗)

Aab := ds2(Ja, Jb) = ea.Aσ(q)(eb)

Remember that ωa(Jb) = ψa(Jb) = δab , and notice that (aαβ) defines a Riemannian

metric on the internal space Qcmns

SO(3)
, and A is the inertia tensor. One way to see

why the coefficients Aab appearing in (6.19) coincide with the coefficients of inertia

tensor (6.7) is through the following calculation

ds2(Ja, Jb) =
N−1∑
α=1

(drrrαJa).(drrrαJb)

=
N−1∑
α=1

(ea × rrrα).(eb × rrrα) = ea.
N−1∑
α=1

rrrα × (eb × rrrα)

= Aab

To clarify the notation, we add here that drrrα is a 1-form which tells us how much

(infinitesimally) the position of the α’s particle, i.e. rrrα, would change, when we

let it act on an infinitesimal displacement (a tangent vector). In this particular

case, we have chosen the infinitesimal generator of rotation about the a’s axis,

i.e. Ja. So, from this it should be clear how the substitution drrrαJa = ea × rrrα

used above, is justified.

It is worth mentioning that we have so far seen two different kinds of vector

fields defined on SO(3). Namely La and Ja, for a = 1, 2, 3. The first set of vector

fields La, are duals to the one-forms θa defined by (6.15). La coincides with the

direction of movement along the fiber (which is itself part of T (Qcm)), if we rotate

the system in R3 around the a’th axis of body frame (e′a = gea), without changing
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it’s shape. The second set of vector fields Ja, are however dual to the one-forms

ψa defined by (6.14). They coincides with the direction of movement along the

fiber, if we rotate the system in R3 around the a’th axis of space frame ea, with-

out changing it’s shape. Because changing the shape causes extra total rotation,

and make the direction of the movement of the configuration point deviate from

La or Ja, depending on how fast and in which way system’s shape is changing,

one needs the second terms in (6.14) and (6.15).

A Local expression of the connection form can be given in terms of the left

invariant one forms on SO(3), and local section σ of the fiber bundle. Let’s take

the Euler angles (α, β, γ) as coordinates on SO(3), and qα with α = 1, ..., 3N −6,

as local coordinates on U ⊂ Qint. So, g and q can be expressed in terms of them

respectively. A point x on the center of mass system, can hence be expressed

by the coordinates x = x(q1, ..., q3N−6, ϕ, θ, ψ). The connection form at the point

gσ(q), can then be written as follows

ωgσ(q) = dgg−1 + gωσ(q)g
−1 = g(g−1dg + ωσ(q))g

−1 (6.20)

where

ωσ(q) := R

(
A−1

σ(q)

(N−1∑
j=1

σσσj(q)× dσσσj(q)
))

(6.21)

Now take the fixed laboratory basis ea of R3, with a = 1, 2, 3. We introduced

three left invariant one-forms θa on SO(3), and 3× (3N − 6) functions ∧a
α by the

following equations

g−1dg :=
3∑

a=1

θaR(ea) (6.22a)

ωσ(q)=x =:
3∑

a=1

3N−6∑
α=1

∧a
α(x)dq

αR(ea) (6.22b)

=
3N−6∑
α=1

∧αdqα =
3N−6∑
α=1

R(λα)dqα (6.22c)

in which the following is used

R(λα) = ∧α(q) =
3∑

a=1

∧a
α(q)R(ea)
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to express ω in a compacter form. The coefficients ∧a
α in the last equation were

given by (6.13), which are also known as gauge potentials.

Now we rewrite the connection form (6.20) in terms of θa and ∧a
α

ωgσ(q) = g(g−1dg + ωσ(q))g
−1

= g(
3∑

a=1

θaR(ea) +
3∑

a=1

3N−6∑
α=1

∧a
α(x)dq

αR(ea))g
−1

= g(
3∑

a=1

(θa +
3N−6∑
α=1

∧a
α(x)dq

α)R(ea)g
−1

=
3∑

a=1

(θa +
3N−6∑
α=1

∧a
α(x)dq

α)gR(ea)g
−1

=
3∑

a=1

(θa +
3N−6∑
α=1

∧a
α(x)dq

α)R(gea)

in the third line of the above calculation, we could move g from the behind of

the term
∑3

a=1(θ
a +

∑3N−6
α=1 ∧a

α(x)dq
α) to the front of it, cause the forms dqα

by definition commute with g, and the forms θa are left invariant. Thus, the

connection form (6.8) expressed in local coordinates (q1, ..., q3N−6, α, β, γ), takes

the following form

ωgσ(q) =
3∑

a=1

ω′aR(e′a) =
3∑

a=1

ω′aR(gea) (6.23a)

ω′a := θa +
3N−6∑
α=1

∧a
α(x)dq

α (6.23b)

As mentioned before, from the fixed space frame ea, a moving frame e′a can be

defined as e′a = gea. One can think of ω′a as components of ω in the moving

frame, cause ω.R(e′a) = ω′a.

The horizontal lift4 ( ∂
∂qα0

)∗, of a local vector field ∂
∂qα0

on U to a point x ∈ Qcm

4ωgσ(q)

(
( ∂
∂qα )

∗) = 0 and π∗
(
( ∂
∂qα )

∗) = ∂
∂qα are the defining criteria of horizontal lift of a

local vector field ∂
∂qα on U ⊂ Qint.
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can be shown to be given by (see [16])

(
∂

∂qα0
)∗ =

∂

∂qα0
−

3∑
a=1

∧a
α0
(x)La (6.24)

with

∧a
α0

=:=
〈
A−1

σ(s0)

(N−1∑
i=1

rrri ×
∂rrri
∂qα

)
| e′a
〉

In the above expression as usual La denote the left invariant vector fields on

SO(3), which are dual to θa, i.e. θa(Lb) = δab . So

dqα, ω′a

and

(
∂

∂qα
)∗, La

form local bases of the 1-forms, and of the vector fields on π−1(U) ∼= U × SO(3),

respectively. They are in accordance with the decomposition Tx(Qcm) = Vx⊕Hx.

As mentioned before, La can be identified with the infinitesimal rotation with

respect to axis e′a of the body frame. Technically speaking, we have to use π∗dqα,

the pull back of dqα under the bundle’s projection map, but for the sake of

notational simplicity we still used dqα.

Expression (6.24) can be derived by requiring ωx((
∂

∂qα0
)∗) = 0, which is of course

how a horizontal lift w.r.t. a connection should be.
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Chapter 7

Ingredients for the Lagrangian

reduction with respect to the

similarity group

Which equations of motion does the evolution of shape of a classical system sat-

isfy, is the central question to be answered in this paper. To this end, we explain

in this section how the necessary ingredients, i.e. the metric N on shape space,

and the connection form ω for the Sim(3) fiber bundle Qcm can be derived.

The mass metric M of the absolute configuration space Q ∼= R3N , induces met-

rics on the reduced configuration spaces, like the internal configuration space

Qint =
Q

E(3)
, or shape space S = Q

Sim(3)
in a natural fashion. We first review the

derivation of the metric on Qint, following [7]. Then, we explain how the principle

of relationalism can be used to derive a metrical structure N on T (Q)/ASim(3)

from the mass metric M on the absolute configuration space in a unique way.

This principle at the same time enforces the interaction potentials being scale

invariant, which is the key to the full decoupling of dynamics on shape space

from the gauge degrees of freedom, i.e., Sim(3) degrees of freedom.
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7.1 Metric on the internal space

Let us review how the metric B on the internal space Qint =
Qcm

SO(3)
can be derived

from the SO(3)-invariant mass metric M on the the center of mass configuration

space Qcm, i.e.,

Mx(u, v) =
∑

mk < uuuk | vvvk > (7.1a)

Mx(u, v) = Mgx(gu, gv) (7.1b)

where u = (uuu1, ...,uuuN) and v = (vvv1, ..., vvvN) are members of Tx(Qcm), so being any

two tangent vectors of Qcm at the point x ∈ Qcm.

Given two internal vectors

v′, u′ ∈ Tq(Qint)

there are unique vectors u, v ∈ Tx(Qcm)
1 so that

π(x) = q

π∗(u) = u′

π∗(v) = v′

where π∗ : Tq(Qcm) → Tπ(q)(Qint) denotes the differential of the projection map

π : Qcm → Qint. Now, the metric B on Qint can be defined by the following

equation:

Bq(v
′, u′) := Mx(v, u) (7.2)

As the metric M was SO(3)-invariant, to which x ∈ π−1(q) the internal vectors

v, u had been lifted, would not make any difference for the value assigned by Bq,

as it should be, to ensure the derived metric being well-defined.

The kinetic energy of a N -particle system in the center of mass frame, coor-

dinatized by the N − 1 Jacobi vectors rrrα is as follows

K =
1

2

N−1∑
α=1

| ṙrrα |2

1namely their horizontal lifts (6.24)

84



Now consider the Jacobi vectors rrrbα in body frame, and denote the system’s

angular velocity with respect to the body frame by ωωω. Using

ṙrrbα = ωωω × rrrbα +
∂rrrbα
∂qµ

q̇µ

and the expression for the so called gauge potentials2

AAAµ(q) := A−1aaaµ

with

aaaµ = aaaµ(q) :=
N−1∑
α=1

rrrbα × ∂rrrbα
∂qµ

(7.3)

and A being the moment of inertia tensor

Aij = Aij(q) :=
N−1∑
α=1

(| rrrbα |2 δij − rbαirbαj)

one can write down the kinetic energy as follows (see [7])

K =
1

2
< ωωω | A | ωωω > + < ωωω | A | AAAµ > q̇µ +

1

2
hµν q̇

µq̇v (7.4)

with

hµν = hµν(q) =
N−1∑
α=1

∂rrrα
∂qµ

.
∂rrrα
∂qν

(7.5)

The velocity of a systems configuration in Jacobi coordinates is given by a vector

| v >= [ṙrr1, ..., ṙrrN−1]

and in orientational and internal coordinates by the vector

| v >= [θ̇i, q̇µ]

with 1 ≤ i ≤ 3, and 1 ≤ θ ≤ 3N − 6. The θi’s are the Euler angles, which

turn the space frame to the body frame of a configuration. If one decides to

use the components of body angular velocity ωωω instead of the time derivatives

of Euler angles for denoting vectors in T (SO(3)) the configuration’s velocity can

alternatively be expressed as

| v >= [ωωω, q̇µ]

2In this context, the word gauge refers to the freedom which exists in the choice of a body
frame for a given system.
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in angular velocity and internal basis. This last combination form an anholonomic

frame or vielbein on T (Qcm).

Remember the relation between the body components of angular velocity and

derivatives of Euler angles
ω1

ω2

ω3

 =


−sinβcosγ sinγ 0

sinβsinγ cosγ 0

cosβ 0 1



α̇

β̇

γ̇


So, the expression for the mass metric M in angular and internal coordinates

{ωi, q̇µ} becomes as follows

< v | v >=
[
ωωωT q̇µ

] [ A AAAAν

AAAT
µA hµν

][
ωωω

q̇ν

]
= Mabv

avb

With 1 ≤ a, b ≤ 3N − 3. In other words, the metric on Qcm in angular and

internal basis vectors [ωωω, q̇µ] is given as follows

Mab =

[
A AAAAν

AAAT
µA hµν

]
(7.6)

hµν can be considered as the restriction of the mass metric metric M of Qcm, on

the section determined by the choice made for the body frame for each internal

configuration q = (q1, ..., q3N−6).

Decomposition of an arbitrary configuration velocity, in horizontal and vertical

parts, becomes as follows

| v >=| vv > + | vh >

[ωωω, q̇µ] = [ωωω +AAAv q̇
v, 0] + [−AAAν q̇

ν , q̇µ]

Correspondingly, the kinetic energy of the system can be also thought of as the

addition of two separate vertical and horizontal kinetic energies, i.e.

K = Kv +Kh =
1

2
(ωωω +AAAµq̇

µ)A(ωωω +AAAν q̇
ν) +

1

2
Bµν q̇

µq̇v

where Bµν is a new metric on internal space, which is in contrast to hµν , invariant

under changing the choice of the body frame [7]

Bµν = hµν −AAAµAAAAν
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So, in summary to a vector

| v′ >= q̇µ

on the internal space Qint, we associate a vector | vh > on Qcm, which is called it’s

horizontal lift, connecting the two SO(3)-fibers. In angular velocity and shape

basis, horizontal lift of v′ takes the from

| vh >= [−AAAµq̇
µ, q̇µ]

Then the metric Bµν on the internal space Qint, can be found by the following

defining equation

< v′1 | v′2 >= Bµν q̇
µ
1 q̇

ν
2 :=< v1h | v2h >= Mabv

a
1hv

b
2h

and this leads directly to

Bµν = hµν −AAAµAAAAν (7.7)

For more detailed explanations we suggest the reader to look at [7], where a clear

and complete presentation of this topic can be found. Later we will see in an

explicit example of three particle system how the metric B looks like.

7.2 Metric on the Sim(3)-reduced tangent bun-

dle

It is generally believed as the mass metric M is not scale invariant, it would not

directly induce a metric on the Sim(3)-reduced tangent bundle T (Q)/Sim(3), in

contrary to the E(3)-reduced tangent bundle T (Q)/E(3) ≡ T (Qint). However, as

we will explain below, once one takes the behaviour of real measuring units3 built

out of the matter under spatial scale transformation of the universe into account,

one sees how the metric N on T (Q)/Sim(3) is derived in a unique way.

As the measurement of the velocity is essentially an experimental task, the trans-

formation law of the velocities under scale transformation of the system (or any

3Contrary to the absolute measuring units which are unaffected by any transformation per-
formed on the universe.
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other transformation of the system), must also include experimental reasoning.

We will explain here, that based on the Principle of Relationalism, the behavior

of rods and clocks under system’s scale transformations is such that the measured

velocities of objects (or parts of the system), remain invariant. This is a natural

consequence of simultaneous expansion of measuring rod and dilation of unit of

time we came across in Chapter (1). To be more precise, we have argued in

Chapter (1) that a global scale transformation of the universe by a factor c ∈ R+

x = (x1, ...,xN) → x′ = (cx1, ..., cxN)

causes the following transformation of gravitational constant G, Planck’s constant

ℏ, and vacuum permittivity ϵ0

G→ cG

ℏ → cℏ

ϵ0 →
ϵ0
c

and this in turn changes the behavior of rods and clocks, through change of their

(Planck) units4

Lp → cLp

Mp →Mp

Tp → cTp

The measured speed v of an object, e.g. a particle, gets then transformed under

a global scale transformation as follows

v =
∆x

∆t
→ v′ =

∆x′

∆t′
=
c∆x

c∆t
= v

where ∆x stands for instance for the distance between two other objects (which

are needed to define the start and end point of any interval in space), and ∆t for

the time (measured in Plank unit) the object takes to travel between those two

reference objects. The primed versions are the same quantities, but after scale

transforming the universe and measuring everything in the new Plank units. So,

4Remember the following measuring units derived from constants of nature by Max Planck:

LP =
√

Gℏ
ccc3 , MP =

√
ℏccc
G , Tp =

√
Gℏ
ccc5 .
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the measured velocities of objects 5 become invariant under scale transforma-

tions. Analogously, the system’s configuration velocity, which is the collection

of velocities of it’s constituent particles, is also invariant under a global scale

transformation, i.e.

vx = (v1, ...,vN) ∈ TxQ

↓

vcx = (v1, ...,vN) ∈ TcxQ

Given the above action ASc of the group of scale transformations Sc on T (Q), the

mass metric M turns out to be scale invariant (or more precisely ASc-invariant),

in addition to being translation and rotation invariant.

In order to see more clearly how the metric on shape space can be derived, consider

a centre of mass configuration velocity

vx = (v1, ...,vN) ∈ Tx(Qcm)

of a N -particle system. This vector transforms under the dilatations of the system

as

x→ cx

vx = (v1, ...,v3N) ∈ Tx(Qcm) → Acvx = (v1, ...,v3N) ∈ Tcx(Qcm)

With this action of scale transformations on T (Qcm), the mass metric is indeed

scale invariant as can be seen by a short calculation

Mx(vx, ux) → Mcx(Acvx,Acux) = Mx(vx, ux)

In other words, the mass metric M expressed in special coordinates on T (Qcm)

built from internal units (e.g., Planck’s units), is scale invariant.

The metric N : T (Qint)/ASc ×T (Qint)/ASc → R is subsequently given as follows

Ns(v
′, u′) := Mx(v, u) (7.8)

where 
π(x) = s

π(u) = u′

π′(v) = v′

5with the new measuring instruments
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with the projection map defined as follows π : Qint → S, π′ : T (Qint) →
T (Qint)/ASc. Because the above construction is ASc-invariant, to which q ∈
π−1(s) the pair of shape vectors v′, u′ ⊂ Tq(Qint)/ASc are lifted, does not make

any difference for the value assigned by Ns to them. Hence, the metric N is well

defined.

7.3 Connection form for Sim(3) fiber bundle

Beside having a similarity invariant potential function on absolute configuration

space (see Chapter 1), and a metric N on shape space S, in order to be able to

derive the Lagrangian equations of motion on S (which is the topic of the next

section), we need to have the suitable connection form ω on the absolute config-

uration space Q, compatible with the Sim(3) fiber bundle structure.

Here we first discuss some features of the similarity group, and we present two rep-

resentations of this group, and it’s Lie-algebra sim(3). These will be subsequently

used in the construction of the connection form of the Sim(3) fiber bundle. At

the end of this section, we will show by an explicit calculation that shape space

S has the same curvature as the internal configuration space Qint :=
Q

E(3)
.

Similarity group Sim(3) acts on any point x ∈ R3 of absolue space as follows

x → x′ = cRx+ t

where

c ∈ R+

stands for the spatial scale transformations,

R ∈ SO(3)

for the 3× 3 matrix representation of spatial rotations 6, and

t = (t1, t2, t3)
T ∈ R3

6which can be parametrized for instance by the three Euler angels.

90



for spatial translations.

As the group of rotations SO(3) does not form a normal subgroup of Sim(3),

while groups of translations T (3) ∼= R3 and scale transformations Sc ∼= R+ both

does, one recognises a semidirect product structure in Sim(3),7 i.e.

Sim(3) = Sc× T (3)⋊ SO(3)

If one thinks of absolute space as a section R3 × {1} ∈ R4 one can give a repre-

sentation of Sim(3) in terms of the 4× 4 matrices of the form
cR11 cR12 cR13 t1

cR21 cR22 cR23 t2

cR31 cR32 cR33 t3

0 0 0 1

 (7.9)

The Lie-algebra sim(3) of the similarity group is then given by the matrices
ċ ω3 −ω2 v1

−ω3 ċ ω1 v2

ω2 −ω1 ċ v3

0 0 0 0

 (7.10)

where ωωω = (ω1, ω2, ω3),v = (v1, v2, v3) ∈ R3 are possible angular and linear

velocity vectors. The so called similarity velocity can be characterized by the

triple

δδδ = (vvv,ωωω, ċ)

Alternatively, one can give a representation of the similarity group by expressing

the position of the particle in absolute space R3, on real projective space RP 4 as


x

y

z

→


x

y

z

1


7Applying a translation and then a rotation is equivalent to applying the rotation and then

a translation by the rotated translation vector. Hence E(3) is a semidirect product of T (3) and
O(3), i.e. E(3) = T (3)⋊O(3)
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Matrices representing Sim(3) on RP 4 are then of the following form
R11 R12 R13 t1

R21 R22 R23 t2

R31 R32 R33 t3

0 0 0 c−1


A simple calculation shows indeed[

R t

0 c−1

](
x

1

)
=

(
Rx+ t

c−1

)
∼=

(
c(Rx+ t)

1

)
In this representation, in contrary to the previous one, any g ∈ Sim(3) is thought

of as a translation and rotation followed by a dilatation. Correspondingly, the

matrix representation of the Lie-algebra sim(3) is given by
0 ω3 −ω2 v1

−ω3 0 ω1 v2

ω2 −ω1 0 v3

0 0 0 −ċ


The action of Sim(3) on the configuration space Q of a multiparticle system, can

consequently be given from the previous actions in a straight forward way.

We use the upper left 3 × 3 block of (7.9) to construct a representation of the

group

Grs :=
Sim(3)

trans(3)
= SO(3)× R+

comprising all the rotations and scale transformations, on the centre of mass

configuration space Qcm. This group has a direct product structure and acts on

R3 as follows 
cR11 cR12 cR13

cR21 cR22 cR23

cR31 cR32 cR33


This action makes Qcm into a SO(3) × R+ fiber bundle. The Lie-algebra grs of

Grs consists of the matrices of the following form

grs = so(3) + I3ċ =


ċ ω3 −ω2

−ω3 ċ ω1

ω2 −ω1 ċ

 (7.11)
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The letter I3 stands for the 3× 3 identity matrix, and ċ ∈ R being the generator

of scale transformations. One can arrive at the expression of the connection form

ω = T (Qcm) → grs

for the Grs fiber bundle, by modifying (6.8) in the following way

ω = ωr + ωs = R

(
A−1

x (
N−1∑
j=1

rrrj × drrrj)

)
+ I3D

−1
x

(N−1∑
j=1

rrrj.drrrj

)
(7.12)

Here, we have defined the operator

Dx : R → R

as

Dx(λ̇λλ) :=
N−1∑
j=1

rrr2jλ̇λλ (7.13)

and it can be called the dilational tensor. The letter λ̇λλ stands for the rate of

change of scale of the system (scale velocity so to speak)8

λ̇λλ :=
λ̇

λ
(7.14)

where

λ := max | xi − xj | (7.15)

for i, j varying between 1, 2, .., N ; being one choice for the system’s scale vari-

able.

We have constructed this operator in direct analogy to the moment of inertia

tensor Ax. The inertial tensor transfers an angular velocity (which can be rep-

resented as a vector in R3) to another vector in R3, which represents the total

angular momentum of the whole system. Similarly, the dilatational tensor Dx

takes an expansion velocity, which in turn can be represented by a number in R,
to a measure of the total expansion of the system (dilatational momentum D),

8Here of course we are assuming all measurements are being conducted with the use of
special Newtonian rods and clocks, which are isolated from the material universe and do not
get affected by them in any way, or by any transformations we perform on the material universe.
Practically, such measuring instruments of course do not exist, but existence of absolute space
and absolute time of Newtonian philosophy justifies hypothetical existence of them.
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which again can be represented by another number in R. Since the Lie-algebra of

Grs can be represented by the matrices (7.11), one recognizes the correct struc-

ture in the connection form (7.12), for the SO(3) × R+ fiber bundle. Taking a

random vector of Tx(Qcm) and acting on it with this connection form, the first

term yields a member of so(3), and the second term a number, which in turn

is multiplied by the identity matrix, yielding in sum a matrix of the above form

(hence a member of the Lie-algebra of the bundle’s structure group). Thus, it

does what it is expected to do.

Last but not least, let us investigate the curvature C of the connection form

ωs = D−1
x

(N−1∑
j=1

rrrj.drrrj

)
Theorem: The connection form ωs is flat.

ωs can equally well be expressed in the Cartesian coordinates x1,...,x3N on the

absolute configuration space Q as follows

ωs = D−1
x

( 3N∑
i=1

m⌊ i−1
3

⌋+1xidxi
)

(7.16)

where for every rational number p, the largest integer smaller than p is denoted

by ⌊p⌋. Given two arbitrary horizontal vectors v, v′ ∈ Tx(Q) as the input of the

curvature 2-form, it is known [24] that

C(v, v′) = −1

2
ωs([v, v

′]) (7.17)

where [., .] is the Lie-bracket of the extension of horizontal vectors v and v′ to

horizontal vector fields. Choosing a basis ∂
∂x1

,..., ∂
∂x3N

of the tangent space Tx(Q),

the Lie-bracket of two vector fields v =
∑3N

i=1 vi
∂
∂xi

and v′ =
∑3N

i=1 v
′
i

∂
∂xi

can be

computed by

[v, v′] =
∑
i

∑
j

(vj
∂v′i
∂xj

− v′j
∂vi
∂xj

)
∂

∂xi

As both vectors v, v′ ∈ Tx(Q) are horizontal, they satisfy the following conditions

ωs(v) = ωs(v
′) = 0
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Using (7.16) the above conditions can be translated into relations (or constraint

equations) in the variables x1,...,x3N ,v1,...,v3N , which after some rearrangement

of terms become as follows

v3N =
1

mNx3N

3N−1∑
i=1

m⌊ i−1
3

⌋+1xivi

v′3N =
1

mNx3N

3N−1∑
i=1

m⌊ i−1
3

⌋+1xiv
′
i

As all other 6N − 1 variables involved are independent, for all j = 1, ..., 3N , and

i = 1, ..., 3N − 1; all the following derivatives vanish

∂vi
∂xj

=
∂v′i
∂xj

= 0

which simplify the above expression for [v, v′] greatly

[v, v′] =
3N∑
j=1

(vj
∂v′3N
∂xj

− v′j
∂v3N
∂xj

)
∂

∂x3N
= 0

In the last equality ∂v3N
∂xj

=
m⌊ i−1

3 ⌋+1

mNx3N
vj is used. Hence from (7.17) it follows that

the connection form ωs has a vanishing curvature. This means that shape space

S = Q
sim(3)

is exactly as curved as the internal configuration space Qint =
Q

E(3)
.

That Qint is curved, or in other words, that the curvature of the connection form

ωr given by (6.8) is non-vanishing, has been shown in [35]. So, in the process

of quotienting out the flat configuration space Q by the action of the similarity

group Sim(3), the only stage which causes curvature in the final base space is

the quiotienting with respect to the group of rotations SO(3).

For the purpose of the reduction of the classical mechanics w.r.t. the scale trans-

formations, we will use the geometric setting explained in this section, and Chap-

ter (5). One of the reasons why reduction w.r.t. the similarity group has not

been studied as extensively as the euclidean group is obviously that the potential

function defined on the absolute space, though being manifestly rotational and

transnational invariant, is clearly not scale invariant (take Newtonian gravity po-

tential as an example). However, as explained in Chapter (1), as a consequence
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of the principle of relationalism, scale transformations become an additional sym-

metry of the classical physics. This enable the shape degrees of freedom to have

an autonomous evolution, fully decoupled from the system’s transnational, ori-

entational, and scale degrees of freedom.
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Chapter 8

Reduced Lagrangian equations of

motion in shape coordinates

In this section, we seek the equations of motion of a N -particle system in shape,

orientation, and scale coordinates, and their velocities. For this purpose, the La-

grangian of the system must first be expressed in terms of the new coordinates

and velocities, and then the equations of motion can be derived. Since the angu-

lar velocities used to quantify the rate of rotation of a system are not derivatives

of the three Euler angles (or other variables), the Lagrange, or Euler-Lagrange

equations of motion cannot be used. For such cases, the Boltzmann-Hammel

equations of motion must be used. In the first subsection, following [36], we give

a brief review of the formulation of mechanics in quasi-coordinates and quasi-

velocities, and then based on [5] and [6], we derive the equations of motion of

classical systems in shape, orientation, and scale coordinates, and shape, angular,

and scale velocities.
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8.1 Equations of motion in quasi-coordinates

The generalized coordinates are the set of coordinates defining the degrees of

freedom of a system. For instance for a rigid body moving in R3, there are 6 gen-

eralized coordinates (3 specifying the position of the body and 3 the orientation

of it), i.e.

q = [q1, ..., q6] := [x, y, z, α, β, γ]

The generalized speeds are obviously the derivatives of the generalized coordi-

nates q̇ = [ẋ, ẏ, ż, α̇, β̇, γ̇]. These coordinates qk can be called true coordinates,

in the sense that if the velocities q̇k are known functions of time, an integration

with respect to time determines the respective coordinates, and hence state of

the system.

On the other hand, one may define generalized speeds which cannot be written as

time derivative of any coordinates, for instance, they are defined as linear combi-

nations of the time derivatives of generalized coordinates. Such generalized speeds

are called quasi-velocities, and the generalized coordinates corresponding to the

these velocities are called quasi-coordinates. The word quasi in the last expression

“quasi-coordinates” should be understood as nonexistent. As the most famous

example of quasi-velocities, one can mention angular velocity components of a

rigid body, which are linear combinations of derivatives of Euler angles, but they

are themselves not time derivatives of any coordinates. Quasi-coordinates and

quasi-velocities were first introduced to derive the so called Bolzmann-Hammel

equations of motion, which will be shortly discussed below.

In the analysis of non-holonomic systems, quasi-velocity formulation cast the dy-

namical equations of motion in a form requiring fewer equations. For a system

possessing n degrees of freedom with m nonholonomic constraints, the usage of

fundamental nonholonomic lagrangian formalism leads to 2n + m equations of

motion (2n equations for the system state and m algebraic relations that must be

solved for the multipliers). If quasi-velocity formalism is used, the same problem

can be described by a system of 2n−m degrees of freedom (see [37],[38]).

Equations of motion for the classical mechanics in true coordinates are the known
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Lagrange equations
d

dt

∂K

∂q̇i
− ∂K

∂qi
= Fi (8.1)

with K being the system’s kinetic energy, and Fi being the generalized force as-

sociated to generalized coordinate qi, for i ∈ [1, n].

Consider now the usage of the quasi-velocities Yi, which are defined as N inde-

pendent linear combinations of the q̇k’s, i.e.

Yi := αi1q̇1 + αi2q̇2 + ...+ αinq̇n =
N∑
r=1

αirq̇r

with αir being known functions of the generalized coordinates qk. Constructing

a N ×N matrix α from αij’s, one can write the the definition of quasi-velocities

Yk’s more compactly 

Y1

Y2

.

.

.

YN


= α



q̇1

q̇2

.

.

.

q̇N


Having the above relations between the quasi-velocities Yi’s, and the generalized

(true) velocities q̇j’s in mind, one can define a set of differential forms dyk as

dyk :=
N∑
r=1

αrkdqr

The above equations cannot always be integrated to obtain the variable yk. In

such cases, the differential forms dyk are naturally called nonintegrable, and can-

not be thought of as differential of some configuration variable yk. The quantities

dyk are called differentials of quasi-coordinates, with some abuse of words, cause

they are not really differentials, and the variables yk are undefined.

If the quasi-velocities are known, the true velocities can be calculated using

q̇k = βklYl

where αskβkl = δsl. Here δsl is the Kronecker Delta. It is easy to check that

∂q̇k
∂Yl

=
∂qk
∂yl

= bkl
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For a function f(q1, ..., qN , t), with the partial derivative with respect to a quasi-

coordinate yl one means the following

∂f

∂yl
:=

∂f

∂qk

∂qk
∂yl

=
∂f

∂qk
bkl

The kinetic energy K(q1, ..., qN , q̇1, ..., q̇N) can be expressed in the new variables

i.e. K ′(q1, ..., qN , Y1, ..., YN), where the prime here indicates just the difference

in the variables of the function. It can be shown (see [29]) that the equations

of motion expressed in these new coordinates q1, ..., qN , Y1, ..., YN become of the

following form
d

dt

K ′

∂Yk
− ∂K ′

∂yk
+ γkij

∂K ′

∂Yi
Yj = F ′

k (8.2)

for k = 1, 2, ..., N , where

F ′
k =

n∑
s=1

Fibik

are the generalized forces corresponding to the virtual displacements δyk, and

γkij := bskblj
(aij
ql

− ∂ail
∂qs

)
These are known as the Boltzmann-Hammel equations of motion. As already

mentioned, the partial derivative with respect to the quasi-coordinate appearing

in second term of (8.2) should be understood as ∂K′

∂yk
:= ∂f

∂ql

∂ql
∂yk

= ∂f
∂ql
blk. The

N equations of (8.2) are equations of motion in quasi-coordinates. If y1,...,yN

are true coordinates the coefficients γkij all vanish, and the Boltzmann-Hammel

equations (8.2) take back the form of Lagrange equations (8.1).

Starting on the configuration space Qcm with n =dim(Qcm) = 3N − 3, and a

system with the lagrangian L : T (Q) → R, which usually is of the form

L(x, ẋ) =
1

2
Mijẋ

iẋj + V (x)

we impose m linear scleronomic (time independent) nonholonomic constraints,

i.e. constraints of the form

aσi (x)ẋ
i = 0 (8.3)

where 1 ≤ σ ≤ m. Define a vector space isomorphism Ψj
i on the tangent space

T (Qcm). The first m rows of Ψj
i is set to be identical with the constraint matrix,

i.e.

Ψσ
i (q) = aσi (q)
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and the remaining rows can be chosen freely as long as the resulting matrix Ψ is

invertible. This transformation Ψ can be viewed as change of basis of T (Qcm)

Ψ :
( ∂
∂xi
)n
i=1

→
( ∂
∂θi
)n
i=1

(8.4)

This new basis is called the quasi-basis. Hence a vector v ∈ T (Qcm) can be

expressed in either bases, i.e.

v = ẋi
∂

∂xi
= uj

∂

∂θj

where uj = Ψj
i ẋ

i are the components of the quasi-velocities.

As is well known, the basis vectors transform like ∂
∂xi = Ψj

i
∂

∂θj
and ∂

∂θi
= (Ψ−1)ji

∂
∂xj

and the set of n one-forms dual to the quasi basis (i.e. the quasi coordinate forms)

are dθi = Ψi
jdx

j. Bear in mind that the one-forms dθj are not exact.

8.2 Lagrangian in quasi-coordinates

Take the local coordinates

(s, g, λ, ṡ, ġ, λ̇λλ)

on

T
(
π−1(U)

)
⊂ T (Qcm)

with U ⊂ S, which are adopted coordinates to the bundles projection map

π : Qcm → S

So (s, g, λ) ∈ π−1(U), and (ṡ, ġ, λ̇λλ) ∈ Tσ(s)(π
−1(U)). Here s = (sα) for α ∈

[1, ..., 3N − 7], are for instance the 3N − 7 independent angles between the N − 1

Jacobi vectors ri, and λ̇λλ := λ̇
λ
being the scale velocity.

Having the connection form (6.23) in mind, one can introduce a so(3)-valued

variable ([5],[6])

Π = ϵ+
3N−6∑
α=1

∧α(x)q̇
α (8.5)

where

ϵ = g−1ġ
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and

∧α(x) =
3∑

a=1

∧a
α(x)R(ea)

The vectors associated with Π and ϵ will be denoted by Ω′ and Ω respectively i.e.

R(Ω′) = Π

and

R(Ω) = ϵ

Thus

(s, g, λ, ṡ,Ω′, λ̇λλ)

constitutes a local (quasi)coordinate system on T (π−1(U)). Bear in mind that Ω′

denotes the angular velocity of the system in body frame, and hence the angular

momentum of the system would become L = gAσ(s)Ω
′ in space frame. This

angular momentum vector expressed in body frame becomes of course Aσ(s)Ω
′.

As usual, g stands for the rotation which brings the space frame to the body

frame.

As discussed in Section (5.2), the moment of inertial tensor can be expressed as

follows

Aab = ds2(La, Lb)

with La being the left invariant vector fields on SO(3) (which were dual to θa).

The mass metric (6.19) on Qcm expressed in coordinates (s, λ, α, β, γ) becomes

subsequently as follows

ds2 =
3N−7∑
α,β=1

Nαβds
αdsβ +

N−1∑
i=1

| r
rri
λ

|2 (dλ)2 +
3∑

a,b=1

Aabω
′aω′b (8.6)

where rrri’s are as before the Jacobi vectors of system, and hence are unique func-

tions of the sα’s and λ. The ω′a’s are components of the connection form of ro-

tations (6.11) in body frame (6.15). By setting the instantaneous unit of length

equal to the system’s scale variable λ, one gets the following expression for the

metric

ds2 =
3N−7∑
α,β=1

Nαβds
αdsβ +

N−1∑
i=1

| rrri |2 (dλ)2 +
3∑

a,b=1

Aabω
′aω′b (8.7)
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where now all the rrri’s and A are expressed in the internal (expanding) length unit.

It is worth mentioning that the independent angles si, and the scale coordinate

are orthogonal coordinates on Qint =
Qcm

SO(3)
, as they bring the metric tensor in a

diagonal form.

Consider a system with a similarity invariant Lagrangian L(s, g, λ, ṡ,Ω′, λ̇λλ), i.e.

L(s, hg, cλ, ṡ,Ω′, λ̇) = L(s, g, λ, ṡ,Ω′, λ̇λλ) (8.8)

∀h ∈ SO(3), and ∀c ∈ R+. Note that Ω′ is left SO(3)-invariant. Such a function

L on T (Qcm) reduces naturally to a function L∗(s, ṡ,Π, λ̇) on T (Q)
Sim(3)

. The simi-

larity invariance of the Lagrangian in classical mechanics, is a consequence of the

similarity invariance of kinetic and potential energies, as already explained based

on the principle of relationalism. It is important to remember that the units (of

time and spatial distance) in which the Lagrangian has the property (8.8) are

internal units.

We write the similarity invariant Lagrangian of classical mechanics1 as follows

L =
1

2

3N−7∑
α,β=1

Nαβ ṡ
αṡβ +

1

2

N−1∑
i=1

(rrriλ̇λλ)
2 +

1

2

∑
a,b

AabΩ
′aΩ′b − V (s) (8.9)

where V is a similarity invariant potential function, hence depending only on

the 3N − 7 coordinates si. Notice that our previous expression for dilational

momentum (7.13) is derivable from the above Lagrangian:

D =
∂L

∂λ̇̇λ̇λ
=
∑

| rrrj |2 λ̇̇λ̇λ

As the Lagrangian (8.9) is scale independent, D is a constant of motion2.

1For the non-singular configurations
2Bear again in mind, that the units in which D is measured (and is constant), are all internal

units.
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8.3 Reduced Euler-Lagrange equations of mo-

tion

In this section finally we discuss the equations of motion in the anholonomic

frame (s, g, λ, ṡ,Ω′, λ̇λλ) on T (Qcm) introduced in the last section.

Let xλ, λ = 1, ..., 3N − 3 be a local coordinate system on W ⊂ Qcm. From

this coordinate system, one can derive a basis for the vector fields, i.e. ∂
∂xλ , and

a basis for the 1-forms, i.e. dxλ on Qcm. Let Zλ and Zλ be another local basis of

the vector fields and 1-forms (dual to each other) on W . The later vector fields

and one forms, are related to the former ones3 by

Zλ =
3N−3∑
µ=1

Bµ
λ

∂

∂xµ

Zλ =
3N−3∑
µ=1

Aλ
µdx

µ

where their duality requires
∑

λA
µ
λB

λ
ν = δµν . If the above relations for Zλ’s are

integrable, there exists true coordinates zλ on Qcm, for which Zλ = ∂
∂zλ

, and

Zλ = dzλ. Otherwise, the Zλ’s form an anholonomic basis of T (Qcm), and the

zλ’s become the corresponding quasi-coordinates on Qcm.

Differentiation of Zλ leads to [16]

dZλ =
∑
σ<κ

γλσκZ
κ ∧ Zσ

γλσκ :=
∑
µν

(
∂Aλ

µ

∂xν
− ∂Aλ

ν

∂xµ

)
Bµ

σB
ν
κ

In the expression of the Lagrangian function L(x, ẋ), one can replace the coordi-

nate velocities ẋλ with a new set of velocity coordinates4

żλ =
∑
µ

Aλ
µ(x)ẋ

µ

3Which were derived from the coordinate system xλ
4Which typically are quasi-velocities
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In these new variables the Lagrangian is denoted by L′, i.e.

L′(x, ż) = L(x, ẋ)

As explained in Section (7.1), The Euler-Lagrange equations in terms of (xλ, ẋλ)

d

dt

( ∂L
∂ẋλ

)
− ∂L

∂xλ
= 0

for λ = 1, ..., 3N − 3; takes the following form of Boltzmann-Hammel equations

of motion in terms of (xλ, żλ)

d

dt

(∂L′

∂żσ
)
− ZσL

′ +
∑
µ,κ

γµσκ
∂L′

∂żµ
żκ = 0 (8.10)

for σ = 1, ..., 3N − 3.

In [6], a derivation of the reduced Lagrangian equation of motion on Qint =
Qcm

SO(3)

is explained. In the rest of this section, we will present an extension of this work

to find the reduced Lagrangian equations of motion on shape space S = Qcm

SO(3)×Sc
.

So we consider Qcm as a SO(3)× Sc fiber bundle, and make a coordinate trans-

formation on Qcm from the Euler angles and Jacobi coordinates, to the Euler

angles, scale, and the shape coordinates, i.e.

(r1, r2, ..., rN−1, α, β, γ) → (s1, ..., s3N−7, λ, α, β, γ)

A basis of 1-forms on Qcm in the new coordinates is given as the following

Za := ωa

Z4 := ωs

Z4+i := dsi

where a = 1, 2, 3 and i = 1, 2, ..., 3N − 7. The ωa’s and ωs can be read from

the new connection form (7.12). In particular, the ωa’s are components of the

rotations connection form (6.14) form (w.r.t. the fixed space frame). Their dual

vector fields are as follows

Za = Ja

Z4 =
∂

∂λ
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Z4+i = ∂∗4+i = (
∂

∂si
)∗

Given a section (or lifting map) σ : S → Qcm, the horizontal lift of a vector
∂

∂sα
∈ Ts0(S) at the point s0 of shape space S, to the point σ(s0) ∈ Qcm is given

as follows

(
∂

∂sα
)∗ =

∂

∂sα
−D−1

r

(N−1∑
j=1

rrrj.
drrrj
dsα
) ∂
∂λ

−
3∑

a=1

βa
α(s0)La (8.11)

where analogous to (6.24) one has

βa
α :=

〈
A−1

σ(s0)

(N−1∑
i=1

rrri ×
∂rrri
∂sα

)
| e′a
〉

Taking the exterior derivatives of Zλ leads to the factors γλσκ. They become

γabc = −ϵbca

γa4+i,4+j = −kkkaij

with kkkaij

kkkcij =
∂βc

j

∂si
− ∂βv

i

∂sj
−

3∑
a,b=1

ϵabcβ
a
i β

b
j

and all other γλσκ vanishing. kkkcij are the components of the curvature tensor of

shape space

kkkc = dωc −
3∑

a<b

ϵabcω
a ∧ ωb =

3N−7∑
i<j

kkkcijds
i ∧ dsj

for the connection form ω of SO(3)× Sc fiber bundle given by (7.12). Note that

besides the well-known interconnection of changes in Euler angels, which manifest

themselves in the structure constants γabc = −ϵabc, the only non-vanishing cou-

plings are the coupling of shape variables si, to the orientational variables (Euler

angles). Intuitively, as the scale of a mechanical system can easily be changed,

without resulting any changes in either total orientation, or shape of the system,

one expects vanishing of corresponding γ factors. In other words, the connection

form ωs seen as a connection form on Qint =
Qcm

SO(3)
must have vanishing curvature.

At the end of Section (6.3) we have already shown by an explicit calculation, that

ωs is indeed a flat connection.
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Consider the coordinates

(α, β, γ, λ, si; Ω1,Ω2,Ω3, λ̇λλ, ṡi)

on TQcm, where the quasi-velocities Ωa’s are defined using (6.14), i.e.

Ωa := ωa(
d

dt
) = ψa

t +
∑
i

βa
i ṡ

i = ψa(
d

dt
) +

∑
i

βa
i ṡ

i

These are the components of angular velocity with respect to the fixed space

frame.

As seen before (8.9), the Lagrangian describing a mechanical N -particle system

expressed in the above coordinates becomes as follows

L =
1

2

3N−7∑
α,β=1

Nαβ ṡ
αṡβ +

1

2

N−1∑
i=1

(rrriλ̇λλ)
2 +

1

2

∑
a,b

AabΩ
aΩb − V (s)

The Boltzmann-Hammel equations of motion (8.10) in this new coordinate system

then becomes
d

dt

(∂L
∂ṡi
)
− (

∂

∂si
)∗L−

∑
a

∑
j

kkkaij
∂L

∂Ωa
ṡj = 0 (8.12)

d

dt

( ∂L
∂Ωa

)
− JaL−

∑
b,c

ϵacb
∂L

∂Ωb
Ωc = 0 (8.13)

d

dt

(∂L
∂λ̇̇λ̇λ

)
− ∂L

∂λ
= 0 (8.14)
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Chapter 9

3 body system

Take three particles located at the positions

x1 = (x1, y1, z1)

x2 = (x2, y2, z2)

x3 = (x3, y3, z3)

The configuration of this system in centre of mass frame can be characterized by

two Jacobi vectors

rrr1 = (
1

m1

+
1

m2

)−1/2(xxx2 − xxx1)

rrr2 = (
1

m1 +m2

+
1

m3

)−1/2(xxx3 −
m1xxx1 +m2xxx2
m1 +m2

)

As shape variables we introduce the two angles formed by the interparticle vectors,

i.e.

s1 := cos−1(
(xxx2 − xxx1).(xxx3 − xxx1)

| xxx2 − xxx1 || xxx3 − xxx1 |
)

s2 := cos−1(
(xxx3 − xxx2).(xxx1 − xxx2)

| xxx3 − xxx2 || xxx1 − xxx2 |
)

and the scale variable of the system is chosen like in (7.15) as follows

λ := max | xxxi − xxxj |
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As explained before, system’s rotational degrees of freedom can be taken care of

by three Euler angles α, β, γ which connects the space frame and the body frame1.

So we have the following coordinate transformation on absolute configuration

space Q of the 3 particle system

x1

y1

z1

x2

y2

z2

x3

y3

z3



→



xcm

ycm

zcm

α

β

γ

λ

s1

s2


From our previous discussions and some calculations, we can calculate the mass

metric M on Q in new coordinates. It becomes as follows

dl2 =
m3(m1 +m2)λ

2sin2(s2)

m1m2sin2(s1 + s2)
ds21 +

m3(m1 +m2)λ
2sin2(s1)

m1m2sin2(s1 + s2)
ds22 (9.1)

+
(
1 +

m2

m1

+
m3(m1 +m2)sin

2(s2)

m1m2sin2(s1 + s2)

)
dλ2

+
∑
a,b

Aabω
aωb + (m1 +m2 +m3)(dx

2
cm + dy2cm + dz2cm)

Using the above line element, one can express the infinitesimal increment of New-

ton’s absolute time dt in terms of system’s motion (infinitesimal increments of

particles spatial positions), i.e. (see [1],[26])

dt =
dl√
E − V

(9.2)

This is the increment of the ephemeris time for our 3 particle universe. Now

it becomes clear that for a spatially larger 3 particle system by a factor c > 1,

1Define the space frame simply equal to body frame at some specific time, for instance at
the initial time.

109



the same amount of relational motion (ds1, ds2) leads
2 to a longer increment of

ephemeris time3 dt, if distances are measured with the fixed (non-scalable) abso-

lute rod (unit of length) attached to Newton’s absolute space (w.r.t. which by

the way changes of λ can be measured and communicated). Considering ticks of

clocks as specific amount of relational motion of the system (where clock itself

is part of), the relation between the seconds of clocks after and before system’s

spatial scale transformation xxxi → cxxxi becomes T → T ′ = cT . Of course again

this difference in rate of clocks ticking can only have meaning if we use the ab-

solute Newtonian clock which is unaffected by what happens with the matter in

universe. This is also in complete agreement with our previous discussions (see

Chapter 1) about relation between behaviour of Plank’s time unit under systems

global spatial scale transformations xxxi → cxxxi, namely Tp → T ′
p = cTp. This was

there derived directly from the Principle of Relationalism.

As can be seen from (8.9), the Lagrangian of the 3 particle system in the center

of mass frame is the following function on Qcm

L =
1

2

m3(m1 +m2)λ
2sin2(s2)

m1m2sin2(s1 + s2)
ṡ21 +

1

2

m3(m1 +m2)λ
2sin2(s1)

m1m2sin2(s1 + s2)
ṡ22 (9.3)

+
(
1 +

m2

m1

+
m3(m1 +m2)sin

2(s2)

m1m2sin2(s1 + s2)

)
λ̇λλ
2

+
1

2

∑
a,b

AabΩ
aΩb − V

where as before λ̇λλ = λ̇
λ
, and

V = G
( m1m2

| xxx2 − xxx1 |
+

m1m3

| xxx3 − xxx1 |
+

m2m3

| xxx3 − xxx2 |
)

(9.4)

Even though the actual scale (λ) of the system appears explicitly in the above la-

grangian, it is in fact a scale invariant lagrangian, if one takes the transformation

of time unit and gravitational constant after performance of a global scale trans-

formation 4 into account. Here we elaborate a bit more on this point. Regarding

2consider for simplicity the case where all collective momenta(linear, angular, and dilational)
are vanishing.

3longer by the same factor with which the spatial size of the system had been multiplied.
4As disscused before, in a larger universe, clocks tick slower, and G becomes larger.
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the units used in (9.3), one has measured the lengths w.r.t the absolute rod of

Newton (w.r.t. which the diameter of our system happens to be λ), and one uses

the ephemeris unit of time 5 for time measurements. Now one sees the quantity

λṡ = λ ds
dte

where subscript e stands for ephemeris, is an invariant quantity under

systems spatial scaling xxxi → xxx′i = cxxxi, as such a transformation leads to

λ→ λ′ = cλ

and

δte → δt′e = cδte

So one gets

λṡ = λ
ds

dte
→ λ′ṡ′ = λ′

ds

dt′e
= cλ

ds

c.dte
= λ

ds

dte
= λṡ

Now if one wants to be realistic about length measurements and include this

reality in the theory, one has to use a length unit built out of the matter. So, an

internal(or relational) length unit must be used, instead of the invisible absolute

Newton’s length unit which was coming from absolute space. Take for instance

the diameter of system as the internal length unit. That means λ = 1. For any

increment of system’s shape (ds1, ds2), calculate the increment of time by using

the formula for increment of ephemeris time (9.2) in which we also set λ = 1, i.e.

dt = dte |λ=1. Then the expression of Lagrangian (9.3) with usage of relational

units of time and length becomes as follows

L =
1

2

m3(m1 +m2)sin
2(s2)

m1m2sin2(s1 + s2)
ṡ21 +

1

2

m3(m1 +m2)sin
2(s1)

m1m2sin2(s1 + s2)
ṡ22 (9.5)

+
(
1 +

m2

m1

+
m3(m1 +m2)sin

2(s2)

m1m2sin2(s1 + s2)

)
λ̇λλ
2

+
1

2

∑
a,b

AabΩ
aΩb − V (s1, s2)

where now it’s scale invariance has become explicitly apparent.

One has to be careful with the interpretation of the third term here containing

the scale velocity λ̇λλ. It has the same origin as the forth term in the lagrangian.

5which is a kind of internal clock for the system, w.r.t. which the second law of Newton
remains valid.
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The forth term causes the coriolis and centrifugal forces in a rotating frame of

reference(like in a body frame of a rotating system), and similarly the third term

causes dilational forces in a spatially expanding frame of reference (like a body

frame of an expanding system with an internal unit of length). Note also that

the scale velocity λ̇λλ = λ̇
λ
has just the dimension of inverse of time, as it is the

ratio of change of system’s scale δλ during one second of internal time δte to the

system’s scale λ. At an instant of time t0, when one is viewing the expanding

system from some point of the absolute space, one can manually set the absolute

unit of length equal to the instantaneous scale of the system at that time and

express λ̇λλ in this new absolute length unit. It becomes simply λ̇λλ = λ̇ = δλ
δte|λ=1

,

where during the small observation time interval [t0, t0 + δte |λ=1] we have fixed

the absolute length unit to λ |t=t0 , and hence can measure the new scale of the

system at the end of the time interval λ |t=t0+δte|λ=1
= λ |t=t0 +δλ.

The equations of motion of the two shape degrees of freedom s1, and s2 for

the case of vanishing total angular velocity ωt = 0 6 can be given using (8.12)

d

dt

(∂L
∂ṡi
)
− (

∂

∂si
)∗L = 0

After some lengthy calculations we end up with the following coupled second

order nonhomogeneous non-linear differential equations for the shape degrees of

freedom of a nonrotating three body system

sin2(s2)sin(s1 + s2)s̈1 − 3sin2(s2)cos(s1 + s2)ṡ
2
1

+2sin(s2
(
cos(s2)sin(s1 + s2)− sin(s2)cos(s1 + s2)

)
ṡ2ṡ1

+2λ̇λλsin(s1 + s2)sin
2(s2)ṡ1

+sin(s1)
(
cos(s1)sin(s1 + s2)− sin(s1)cos(s1 + s2)

)
ṡ22

+2λ̇λλ
2
sin2(s2)cos(s1 + s2) +

m1m2

m3(m1 +m2)

∂V

∂s1
= 0 (9.6)

and

sin2(s2)sin(s1 + s2)s̈2

6This is always the only relevant physical situation if the system under consideration is
supposed to represent our universe. This follows from the fact that the frame build from the
background stars and galaxies is an inertial reference frame.
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+cos(s1 + s2)
(
sin2(s1 − 2sin2(s2)

)
ṡ22

+2sin(s2)
(
cos(s2)sin(s1 + s2)− sin(s2)cos(s1 + s2)

)
ṡ1ṡ2

+2λ̇λλsin2(s2)sin(s1 + s2)ṡ2

+sin(s2)
(
cos(s2)sin(s1 + s2)− sin(s2)cos(s1 + s2)

)
ṡ21

+2λ̇λλ
2
sin(s2)

(
cos(s2)sin(s1 + s2)− sin(s2)cos(s1 + s2)

)
− m1m2

m3(m1 +m2)

∂V

∂s2
= 0 (9.7)

If additionally the system is non-expanding, i.e., λ̇λλ = 0, the reduced equations of

motion on shape space become as follows

sin2(s2)sin(s1 + s2)s̈1 − 3sin2(s2)cos(s1 + s2)ṡ
2
1

+2sin(s2)

(
cos(s2)sin(s1 + s2)− sin(s2)cos(s1 + s2)

)
ṡ2ṡ1

+sin(s1)

(
cos(s1)sin(s1 + s2)− sin(s1)cos(s1 + s2)

)
ṡ22

+
m1m2

m3(m1 +m2)

∂V

∂s1
= 0 (9.8)

and

sin2(s2)sin(s1 + s2)s̈2

+cos(s1 + s2)
(
sin2(s1 − 2sin2(s2)

)
ṡ22

+2sin(s2)

(
cos(s2)sin(s1 + s2)− sin(s2)cos(s1 + s2)

)
ṡ1ṡ2

+sin(s2)

(
cos(s2)sin(s1 + s2)− sin(s2)cos(s1 + s2)

)
ṡ21

− m1m2

m3(m1 +m2)

∂V

∂s2
= 0 (9.9)

Now we have to discuss the structure of potential (9.4) in some more detail. As

discussed before, the potential function can be considered as the product of two

functions G and f on the absolute configuration space Q, i.e. V = Gf . The form

of the function f is known from the time of Isaac Newton, and in the special

case of our 3 body system, can be read off from (9.4). In contrary to f , the
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function G has remained unknown to this date. All we know about G is that, it

has now a value of about 6.67384(80)×10−11m3.kg−1.s−2 on and near earth, with

a relative uncertainty of 2×10−5, which makes it by far the least precisely known

natural constant. As different contradictory results has been achieved so far by

different methods of measurement of G at different times, there is no consensus

on it’s correct value, and the above mentioned value is just the average of results

achieved by different methods[39].

Following our discussion on Natural constants in Chapter 1, one candidate func-

tion for G is

G :=
√
Icm =

√√√√ N∑
i=1

mi | xxxi − xxxcm |2 (9.10)

which obviously satisfies the requirement of being homogeneous of degree 1 under

scale transformations7. For the region

0 ≤ sin(s1), sin(s2) < sin(s1 + s2)

on the 3-body shape space, one has

λ =| xxx2 − xxx1 |

and a lift of the shape s = (s1, s2) to the absolute configuration space can be

given as follows

xxx1 =


0

0

0

 ,xxx2 =

λ

0

0

 ,xxx3 =


sin(s2)cos(s1)
sin(s1+s2)

λ
sin(s2)sin(s1)
sin(s1+s2)

λ

0


and

xxxcm =


m2λ

m1+m2+m3
+ m3sin(s2)cos(s1)

(m1+m2+m3)sin(s1+s2)
λ

m3sin(s2)sin(s1)
(m1+m2+m3)sin(s1+s2)

λ

0


7This is however not a realistic candidate as a simple estimation of it’s value for our universe

would differ from the measured value of G by many orders of magnitude. One can ad hocly
divide the proposed function by some appropriate number to make sure it’s estimated value is
compatible with the measured value, and it’s degree of homogeneity remains unchanged.
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Now by putting all these back in (9.10), and after some calculations, one gets the

following expression for G

G = λ

(
sin2(s2)

sin2(s1 + s2)

(
m3+m

2
3(1−

2

M
)
)
−2

m2m3

M

sin(s2)cos(s1)

sin(s1 + s2)
+m2(1−

m2

M
)

)1/2

and for f

f = λ−1

(
m1m2 +m1m3

sin(s1 + s2)

sin(s2)
+

m2m3

sin2(s2)
sin2(s1+s2)

− 2 sin(s2)cos(s1)
sin(s1+s2)

+ 1

)
Finally one can write down the potential function V = Gf of our three body

system as follows

V =

(
m1m2 +m1m3

sin(s1 + s2)

sin(s2)
+

m2m3

sin2(s2)
sin2(s1+s2)

− 2 sin(s2)cos(s1)
sin(s1+s2)

+ 1

)

×
(

sin2(s2)

sin2(s1 + s2)

(
m3 +m2

3(1−
2

M
)
)
− 2

m2m3

M

sin(s2)cos(s1)

sin(s1 + s2)
+m2(1−

m2

M
)

)1/2

which manifests it’s scale invariance now explicitly.

By using this function in the two reduced Euler-Lagrange equations (9.8), (9.9)

we finally obtain the reduced equations of motion on shape space of the 3 body

system.

It is worth to mention in the general case, that even though the potential function

V is scale independent 8, it turns out from (9.6),(9.9) that the rate of change of

scale leaves it’s trace on the shape dynamics, just as the rate of change of system’s

orientation (angular velocity) does, but contrary to the rate of change of system’s

position (linear tranlational velocity).

For the most simple case where the system under consideration is neither ro-

tating nor expanding w.r.t. the absolute space, the Lagrangian function becomes

L =
1

2

m3(m1 +m2)sin
2(s2)

m1m2sin2(s1 + s2)
ṡ21 +

1

2

m3(m1 +m2)sin
2(s1)

m1m2sin2(s1 + s2)
ṡ22 + V (s1s2) (9.11)

8So scale transformations are among the symmetry transformation of our mechanical system
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Chapter 10

Cosmological consequence of the

scale invariant mechanics

In this chapter, we consider two situations that highlight the empirical difference

between the original and the modified Newtonian theory.

10.1 Accelerated expansion of the universe

In a N -particle system the following quantity

D =
N−1∑
j=1

| rrrj |2 λ̇λλ

has been called the dilatational momentum of the system. We have already seen

at the end of Section (7.3), that the dilatational momentum of the system in

internal units is a constant of motion of the scale invariant theory. This was a

consequence of the scale invariance of the kinetic energy of the MNT in internal

units, and the scale invariance of the potential energy. Without loss of generality,

we choose the absolute Newtonian units of time and length by setting them

identical to the internal units at some instant of time, i.e. t0, and set

t0 = tinternal = texternal
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so that both internal and external clocks are moreover synchronized at this in-

stant. One can prove the following statement

Dabsolute = cDrelational (10.1)

where c is the scale factor of the system at each instant of time

c :=
λ |now
λ |t0

(10.2)

With this notation ċ = λ̇λλ in external units.

In order to prove (10.1), one should remember that the scale velocity of the system

for an internal observer is understood as follows

λ̇λλinternal =
δλ |during 1 internal second in internal length unit(λ|now)

λ |now (measured in internal length unit)

As λ |now itself is the internal length unit, obviously the denominator of the

last fraction is simply 1. How the numerator of this fraction is to be under-

stood is explained in the discussion after equation (9.5). The dualism assumed(or

sought) in this work gives two ways of understating or interpreting λ̇λλinternal. The

Newtonian world view (as explained before), allows us to keep the length of

the internal length unit seen from absolute space just during the time interval

[now, now + 1internal second] constant, by setting it equal to λ |now during the

whole mentioned time interval. With respect to this momentary length unit,

the internal observer then measures δλ. Now as the internal observer cannot

communicate with the external observer to perform this measurement 1, a new

internal length unit built from a virialized subsystem (a stable non-expanding

non-contracting subsystems seen from absolute space)can be used by the internal

observer just for the purpose of measuring δλ. Both previous methods lead to

the same numerical value for λ̇λλinternal. Now if one insists on the Leibnizian world

view, one can view λ̇λλinternal just as a variable appearing in the law of motion on

shape space. There may (or may not) be some deeper reasoning behind it’s value

and dynamics from the shape space(Leibnizian) point of view, about which we

don’t speculate in this work.

1to have access to the momentary constant length unit
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Analogously, the scale velocity of the system for the external observer is un-

derstood as follows

λ̇λλexternal =
δλ |during 1 external second in external length unit(λ|t0 )

λ |now (measured in external length unit)

As at any moment of time2

external second =
1

c
× internal second

and

external length unit(λ |t0) =
1

c
× internal length unit(λ |now)

one immediately recognizes that the numerical value of the numerator of λ̇λλ for

both observers is equal, but the numerical value of the denominator for external

observer is c times bigger than the internal observer. Hence

λ̇λλexternal =
1

c
λ̇λλinternal (10.3)

which by using (10.2) can be rewritten as

λ̇ = λ |t0 λ̇λλinternal

Equation (10.3) together with rrrexternal = crrrinternal to calculate the dilatational

momentum Dexternal as follows

Dexternal =
N−1∑
j=1

| rrrj,external |2 .λ̇λλexternal

=
N−1∑
j=1

| crrrj,internal |2 .
1

c
λ̇λλinternal

= c

N−1∑
j=1

| rrrj,internal |2 .λ̇λλinternal

= cDinternal

and this completes the proof of the equation (10.1).

2for c > 1 internal clock is running slower than internal clock because Tp → T ′
p = cTp as

discussed in Chapter 1.
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Knowing the value of dilatational momentum in internal units Dinternal = D

is a constant of motion (as discussed at the end of Section 7.2), one can derive

the time evolution of scale variable in external units. To this end, remember

the following expression of dilatational momentum for external observer, which

is written down purely “in terms of external units of time and length” (which are

identical to the respective internal units at time t0)

Dexternal =
N−1∑
j=1

| rrrj |2 λ̇̇λ̇λexternal =
N−1∑
j=1

| rrrj |2
λ̇

λ

after solving for λ̇ one has

λ̇ =
λDexternal∑N−1
j=1 | rrrj |2

=
λcD∑N−1

j=1 | rrrj |2
=

λ λ
λ|t0

D∑N−1
j=1 | rrrj |2

=
λ2D

λ |t0
∑N−1

j=1 | rrrj |2

This expression would be greatly simplified if one defines the scale variable λ as

λ :=

√√√√N−1∑
j=1

| rrrj |2

which also has a clear intuitive justification. Putting this back in the previous

equation one ends up with

λ̇ =
D

λ |t0
= D (10.4)

as both D and λ |t0 are constants, this means that the external observer would

see the scale variable (roughly size of the system with the above choice for λ)

changing with a constant speed D (of course measured with respect to external

units of time and length). One subsequently has

λ̇λλexternal =
λ̇

λ
=

D

λλ |t0
=
D

λ
(10.5)

From (10.4) and (10.2) one sees that the scale factor c is a linear function of time

for the external observer

c =
λ |now
λ |t0

=
λ̇(texternal − t0) + λ |t0

λ |t0
=

D
λ|t0

(texternal − t0) + λ |t0
λ |t0

=
D

λ2 |t0
texternal −

D

λ2 |t0
t0 + 1 =

D

λ2 |t0
texternal + 1 = Dtexternal + 1

119



where in the last two equalities we have set t0 being the initial time i.e. t0 = 0,

and have chosen λ |t0 as the absolute unit of length respectively.

From (10.4) it also becomes evident that in a contracting universe (where D < 0)

the external observer would see after a finite amount of time λ|now

D
measured by

his external clock, the scale variable λ =
√∑N−1

j=1 | rrrj |2 becoming zero. How

would an internal observer experience this?

As internal second= c×external second for the case when c < 1 the internal clock

speeds up compared to the external clock. The duration λ|now

D
of external time,

which was needed for the scale variable (or the scale factor) to reach the value

zero from λ |now (or c |now), would be measured by the internal clock to be∫ λ=0

λ=λ|now

λ|now

D
sex

sin
dλ =

λ |now
D

∫ λ=0

λ=λ|now

sex
sin
dλ

=
λ |now
D

∫ c=0

c=c|now

sex
sin
dc =

λ |now
D

∫ c=0

c=c|now

1

c
dc = ∞

So for the internal observer it would take for ever to see what the external ob-

server would see in just λ|now

D
external seconds sex. This means, in a contracting

universe big crunch would never be seen in any finite time by the in-

habitants of that universe.

Now we wish to consider an expanding universe, i.e. D > 0. From (10.4) it be-

comes evident that the external observer sees the scale of the universe increases

for ever with a constant rate λ̇ = D. How would an internal observer experience

this?

Using (10.3) and (10.5) one can calculate the rate of change of scale variable for

internal observer 3

λ̇λλinternal = cλ̇λλexternal = c
D

λ
= D

As already discussed once, λ̇λλinternal means if the internal observer chooses mo-

mentarily a new unit of length, for instance let the size of a virialized subsystem

be the new internal length unit (e.g. astronomical unit: au), then the amount of

change of universe’s scale variable (measured in au) during one internal second,

3note that the bold and normal version of scale velocity are identical for internal observer if
the system’s scale variable λ is chosen as internal unit of length.

120



divided by length of the universes scale variable (measured again in au) is D. So

dλ(in au)

dtinternal
/λ(in au) = D ⇒ dλ(in au)

dtinternal
= D × λ(in au)

⇒ λ̇λλinternal(in
au

sinternal
) = D × λ(in au)

This means that the internal observer sees an accelerated expanding uni-

verse.

10.2 Increase in strength of gravity in regions

far from matter concentration

Consider a three body system with two heavy masses m1 = m2 =M located near

each other at positions xxx1 and xxx2, and the third body with a light mass m3 = m

located at position xxx3. Let the origin of the spatial coordinate system coincide

with the systems center of mass. As before (9.10) the so called gravitational

constant for this three body universe can be calculated as follows

G =
√
M(| xxx1 |2 + | xxx2 |2) +m | xxx3 |2 (10.6)

The gravitational potential of the third (light) body is given as usual by V3 = Gf3

V3 =
√
M(| xxx1 |2 + | xxx2 |2) +m | xxx3 |2 ×

(
m1m3

| xxx1 − xxx3 |
+

m2m3

| xxx2 − xxx3 |

)
Hence, the total gravitational force exerted on the third body becomes

FFF 3 = −∇3V3 = −∇3(Gf3) = −G∇3f3 − f3∇3G

= FFFNe + δFFF

where Ne stands for Newton, and ∇3 is gradient w.r.t. the coordinates of the

third particle. A short calculation then leads to the following results

FFFNe =
√
M(| xxx1 |2 + | xxx2 |2) +m | xxx3 |2 ×

(
m1m3

| xxx1 − xxx3 |2
x̂xx31 +

m2m3

| xxx2 − xxx3 |2
x̂xx32

)
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and

δFFF =
−mxxx3√

M(| xxx2 |2 + | xxx1 |2) +m | xxx3 |2
×
(

mM

| xxx1 − xxx3 |
+

mM

| xxx2 − xxx3 |

)
Now consider the case where m

M
<< 1, hence the systems center of mass is located

in the middle of bodies 1 and 2. Furthermore choose the axis of spatial frame

such that

xxx1 =


1

0

0

 ,xxx2 =


−1

0

0

 ,xxx3 =


0

y

0


with y >> 1. Then the exerted force on the third body approximately becomes

the sum of the following two terms

FFFNe ∼ −
√

2M +my2
2mM

y2
∼ 1

y

δFFF ∼ − my√
2M +my2

( 2mM√
1 + y2

)
which points out an increase in the strength of the gravitational pull felt by the

third particle compared to the Newtonian gravitational force4. This indicates

that the gravitational force experienced by a test particle positioned in regions

of space far from where most of the matter is concentrated, increases compared

with the Newtonian gravitational force.

Moreover one sees that the 1
y
decay of the gravitational force would make it

possible that the third particle orbits the other two heavy masses with a constant

velocity independent of y. This could at first sight mimic the flat rotation curves

observed in the galaxies. So there seems to be some indications which could liber-

ate us from invoking the existence of the (otherwise unobservable) dark matter, at

least when it comes to the explanation of the flat rotation curves of the galaxies.

There are however two caveats in the preceding argumentation, which seems to

prevent us explaining the flat rotation curves by the modified theory presented

in this paper.

First caveat is that in the above analysis we acted as there exists only one galaxy

in the universe (whose behavior we approximated by a 3-body system). In reality

4Which decays as 1
y2

122



however, the considered 3-body system is located in a homogeneous and isotropic

background distribution of galaxies. To account for this, we split G into a local

and a global part, i.e.

G = Glocal +Gglobal

where as before

Glocal =
√
M(| xxx1 |2 + | xxx2 |2) +m | xxx3 |2

and

Gglobal =

√√√√ N∑
i=4

mi | xxxi − xxxcm |2

Here the first three particles model, for instance, our milkyway galaxy, and the

rest of the particles model all the other galaxies which are located at far larger

distances compared to the interparticle distances of the first three particles. As

before xxxcm denotes the center of mass of the first three particles, which is located

almost in the middle of the particles 1 and 2, as we assumed M >> m. In a

more or less fixed homogeneous and isotropic background for this 3 body system,

the gravitational forces acted on the third particle originating from the global

(background) structure of the universe, averages out to zero, and as the value of

Gglobal is a constant number, it doesn’t change the functional form of the potential

(or the force) experienced by the particle 3 due to the local structure around it

(so due to particles 1 and 2). In other words, for the potential energy of the third

particle one can write

V3 = (Glocal +Gglobal)×
( m1m3

| xxx1 − xxx3 |
+

m2m3

| xxx2 − xxx3 |
+

N∑
i=4

mim3

| xxxi − xxxcm |
)

where as the location of all other galaxies are far greater than the inter-particle

distances of our galaxy, we have used the approximation

∀i > 3 :| xxxi − xxx3 |≈| xxxi − xxxcm |

Hence for the force on the third particle one gets

FFF 3 = −∇3V3 = −G∇3

( m1m3

| xxx1 − xxx3 |
+

m2m3

| xxx2 − xxx3 |
+

N∑
i=4

mim3

| xxxi − xxxcm |
)
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−
( m1m3

| xxx1 − xxx3 |
+

m2m3

| xxx2 − xxx3 |
+

N∑
i=4

mim3

| xxxi − xxxcm |
)
∇3(G)

= −G∇3

( m1m3

| xxx1 − xxx3 |
+

m2m3

| xxx2 − xxx3 |
)
−
( m1m3

| xxx1 − xxx3 |
+

m2m3

| xxx2 − xxx3 |
+

N∑
i=4

mim3

| xxxi − xxxcm |
)
∇3(Glocal)

= FFFNe + δFFF

As the dominant part of G comes from Gglobal which is more or less a constant

number for the scales of the 3-body system, one sees that FFFNe would not anymore

behave as 1
y
. Because of this the possibility of finding an explanation of the flat

rotation curves along these lines is less probable.

The second caveat lies behind the form of function (10.6), or (9.10) for G. In

fact all we know from the true function G is that, because of the principle of

relationalism it must be a homogeneous function of degree 1 in inter-particle

distances. For instance G =
∑N

i=1 | xxxi | is a simpler function that satisfies this

requirement as well. However as the current value of G measured on Earth is

of the order of 10−11 one should adhocly multiply the expression of G by a very

small factor to make the G-function compatible with the experiments. The true

function of G needs yet to be found and explained probably from some deeper

theoretical reasoning and mechanism.
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Chapter 11

Comparison with two other

approaches in relational physics

Last but not least, to clarify the physical aspects of our work, we give a short com-

parison with some of the other main approaches in the literature. The notations

in this section slightly differ from the rest of this paper and will be mentioned

every time.

One of the established approaches in relational physics (see, for instance, [11]

and the references in it) denoted here by the BKM-approach uses a property of

the Newtonian mechanics known as mechanical similarity. This property says

that if

x(t) =
(
xxx1(t), ...,xxxN(t)

)
is a solution to the Newtonian N -body problem with a homogeneous potential

function V of degree k, i.e. x(t) satisfies

d2x(t)

dt2
= ∇V |x(t)

then

x′(t′) =
(
cxxx1(t

′), ..., cxxxN(t
′)
)
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is also a solution of the theory with

t′ = tc1−
k
2 (11.1)

i.e., x′(t′) satisfies
d2x′(t′)

dt′2
= ∇V |x′(t′)

For a Newtonian N -body system, denote xxxa, ppp
a, and ma for the position, mo-

mentum, and the mass of the particle a. Systems with vanishing total energy are

considered, where the energy is the well-known expression

Etot =
N∑
a=1

pppa.pppa

2ma

+ VNew (11.2)

VNew = −
∑
a<b

mamb

rab
(11.3)

with rab :=|| xxxa − xxxb ||. So the Newton’s gravitational coupling G is considered

to be the constant 1 in the BKM-approach. It is then explained as the dilational

momentum D of a Newtonian gravitational system is a monotonic function (along

its solution curves); it can be used as the system’s time variable (instead of

the absolute Newtonian time). The transformed Hamiltonian of the Newtonian

system in the new coordinates and the new time variable is shown to be

H(D) = ln
( N∑

a=1

πππa.πππa +D2
)
− ln

(
I

1
2
cm | VNew |

)
(11.4)

where πππa denote here the shape momenta, defined as

πππa :=

√
Icm
ma

−Dσσσa (11.5)

and σσσa is the following choice for the pre-shape coordinates

σσσa :=

√
ma

Icm
rrrcma

coordinatizing pre-shape space PS, the quotient of configuration space by global

translations and scale transformations. By restricting themselves to systems with

vanishing angular momentum, the authors of [11] have left quotienting with re-

spect to the group of rotations out of consideration.

After defining some new shape momenta as follows

ωωωa :=
πππa

D
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from their previous expressions (11.5), and introducing a new time variable

λ := log(D)

the Hamiltonian (11.4) is cast into the following apparently time independent

form

H0 = log
( N∑

a=1

ωωωa.ωωωa + 1
)
− logCs (11.6)

with

Cs =

√
Icm
m3

tot

| VNew | (11.7)

called the complexity. The Hamiltonian H0 leads to the following equations of

motion for the (pre)shape coordinates and their momenta

dσσσ

dλ
=
∂H0

∂ωωωa
(11.8)

dωωωa

dλ
= −∂H0

∂σσσa

−ωωωa (11.9)

the second of which shows dissipative dynamics for the (pre)shape momenta ωωωa.

Here are some comments on this approach for the purpose of comparison.

First of all, as the starting theory for the description of the N -body system in

the absolute phase space T ∗(Q) given by the Hamiltonian (11.2),(11.3) is clearly

not scale invariant, one should at first glance not even hope to find some law of

motion on shape space of this system. In other words, two solutions, Ot |1⟩, and
Ot |2⟩ emerging from the following two initial absolute states of the system

|1⟩ = (xxx1, ...,xxxN , ppp1, ..., pppN)

and

|2⟩ = (cxxx1, ..., cxxxN , ppp1, ..., pppN)

project down to two different curves on shape space. At this point, Barbour et al.

(see [11],[12]) came up with a clever idea to transform the momenta pppa under the

spatial scale transformations in such a way to force the second orbit to describe

the same path on shape space as the first orbit, i.e.

∀t : π(Ot |1⟩) = π
(
Ot′ |2⟩

)
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where as usual π : Q → S = Q
Sim(3)

is the fiber-bundle’s projection map. To this

end, dynamical similarities in Newtonian mechanics have been invoked to find the

required transformation law for the momenta. As the potential function (11.3)

considered here is homogeneous of degree k = −1, the new time variable after

performance of a scale transformation by the factor c becomes

t′ = c3/2t (11.10)

So for c > 1, the initial velocities1 should slow down by a factor c−3/2. Hence,

the correct transformed state must be

|2⟩′ = (cxxx1, ..., cxxxN , c
−3/2ppp1, ..., c

−3/2pppN) (11.11)

Therefore, according to this approach, the group of scale transformations Sc acts

on the phase space as follows

xxx1

.

.

.

xxxN

ppp1

.

.

.

pppN



Sc−→



cxxx1

.

.

.

cxxxN

c−3/2ppp1

.

.

.

c−3/2pppN



(11.12)

This transformation means, by the way, that from the Newtonian absolute per-

spective2 a larger universe by a factor c runs slower by a factor c−3/2. Now the

orbits of the theory (11.2), (11.3) emerging out of the initial states |1⟩ and its

scale transformed version |2⟩′, indeed project down to the same curve on S as

sought. However, does this mean that the inhabitants(observers) of the two al-

ternative Newtonian N -body universes will not be able to tell whether they are

located along the orbit Ot |1⟩ or Ot |2⟩′?
1expressed with respect to the absolute units of duration and length.
2with the usage of the absolute immaterial rods and clocks.
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A first test that may lead us to the answer is the investigation of the observed

velocities(so in relational length and ephemeris time units) of particles or subsys-

tems under dynamical similarity transformations. The observers of these New-

tonian universes, which are basically some subsystems, have only access to some

internal rods and clocks. As the rods are built from matter, they will change

their size by a factor of c after the system undergoes a dynamical similarity

transformation. It is well-known [7] that the ephemeris time defined as

δte :=

√∑N
i=1miδxxxi.δxxxi√
2(E − V )

(11.13)

for a N -body universe with total energy E, mimics perfectly the flow of the ab-

solute time (provides the most accurate internal clock3) in Newtonian mechanics.

It makes the relation between the absolute motions in space and the increment

of Newton’s absolute time evident. In other words, it reveals how the seconds of

Newton’s absolute time is related to the absolute displacements(w.r.t. the imma-

terial absolute unit of length) of all the particles in the whole universe. However,

this perfect matching between the absolute time, and the ephemeris time of the

universe, gets destroyed (distorted) by a dynamical similarity transformation. It

is because the system’s(universe’s) total energy is not an invariant of the men-

tioned transformation. So, the ephemeris time of the new universe achieved by a

dynamical similarity transformation would no longer coincide with the absolute

time of Newton(which is, according to Newton, unaffected by whatever trans-

formation you are making on the material universe4). Because of this, one may

get an impression that a violation of the principle of relationalism is facing the

BKM-approach. In the following part, we explain why this is not the case.

If one wants to be realistic(relational) about spatial displacements δxxxi’s appear-

ing in (11.13) one has to choose the distance between the i’th and j’th particle

(for some 1 < i, j < N) as unit of length. However, not all choices of i and j

are good here. Careless choice of i and j would lead to a violation of energy

3The degree of accuracy of an internal time variable can be tested by the degree of accuracy
of Newton’s second law for the chosen internal time variable. In Newtonian mechanics, bad
choices of internal time will lead to the appearance of fictitious forces not originating from the
gradient of the interaction potential V considered in theory.

4“Absolute, true and mathematical time, of itself, and from its own nature flows equably
without regard to anything external”[40].
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conservation because of the appearance of fictitious forces. One careless choice,

for example, would be two particles that (in the absolute space) are moving ac-

celerated towards or away from each other. On the other hand, if the mass mi is

much larger than the mass mj, and the particle j is moving on a circular orbit

(in absolute space) around the particle i, then these i and j particles constitute

a good choice for the length unit. An example of such a good choice of length

unit for our universe is the well-known astronomical unit au. Analogously, if one

wants to be realistic about time durations, one has to choose also a good unit

of time. In the previous example, the period of the lighter particle j around the

much heavier particle i would constitute such a good time unit which we denote

by su 5. Note also, by changing the unit of length or time, the unit of energy will

also get changed, and with that, the denominator of (11.13) which is the square

root of the system’s kinetic energy.

Imagine we have a Newtonian N -particle universe located in absolute space and

changing its location with absolute time. Furthermore, imagine this universe

finds itself in the following absolute state

|1⟩ = (xxx1, ...,xxxN , ppp1, ..., pppN)

Also, imagine that the state is such that a good choice of length and time unit

(e.g., au, su) can be made. Define the absolute length unit (Alu) of the absolute

space and the absolute time unit (Atu) of the absolute time to be the au and su

of this universe at state | 1 >, i.e.,

Alu := au ||1⟩

Atu := su ||1⟩

The formula (11.13) then tells you how the absolute time is marching forward.

Performance of a dynamical similarity transformation brings the universe from

state |1⟩ to state |2⟩′ given in (11.11). It is important to remember that the units

in which |2⟩′ is expressed are the absolute units. Under a dynamical similarity

transformation, the ephemeris time (11.13) transforms as

δt′e = c3/2δte = c3/2δt(nnn) (11.14)

5abbreviation for the solar year unit
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It is because the kinetic energy

E − V =
N∑
a=1

ppp2a
2ma

changes by a factor of c−3 under the dynamical similarity transformations, as

can be seen, form (11.12). So the transformation of the ephemeris time of the

two systems related to each other by a dynamical similarity transformation is

compatible with the prescription (11.10). How would the new ephemeris time

behave if one uses the relational length and time units of the new universe, i.e.,

au ||2⟩′ , su ||2⟩′ instead of the old universe/absolute units (which we do not have

direct access to anymore)? As the new relational units are related to the old

relational units/absolute units by the following qualities

au ||2⟩′= c.au ||1⟩= c.Alu

su ||2⟩′= c
3
2 .su ||1⟩= c

3
2 .Atu

the new kinetic energy in new relational units becomes

K ′ = c−3K[
kg.Alu2

Atu2
] = c−3K[

kg.(c−1au ||2⟩′)2

(c−3/2su ||2⟩′)2
] = c−2K[

kg.au2 ||2⟩′
su2 ||2⟩′

]

So the denominator of (11.13) changes by a factor c−1. As the numerical value for

particle displacements δxxxi in absolute space measured w.r.t. the new length unit,

changes with the factor c−1, the numerator of (11.13) changes also with a factor

of c−1. All these together mean that the new ephemeris time (after performing a

dynamical similarity transformation of the universe) seen in new relational units

would coincide with the absolute time (the old ephemeris time variable). So there

is neither a kinematical nor a dynamical violation of the principle of relationalism

to be expected in the BKM-approach, and the orbits (Newtonian universes) em-

anating from |1⟩ and |2⟩′ are for internal observers fully indistinguishable. This

point is a very remarkable and unexpected feature of the original Newtonian Me-

chanics exploited by Barbour and his collaborators in [11],[12],[13],[14] and the

references in them.

Another approach is based on the simplest kind of dynamics on shape space,
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i.e., the geodesic evolution on S, considered first in [15] and further expanded

in [16]. In this approach, the gravitational potential function is replaced with a

homogeneous function of degree −2, e.g.

V = I
− 1

2
cm VNew (11.15)

This approach partly relies on the following (presumable) transformation of ve-

locities under scale transformations:

v′ = cv (11.16)

It leads in turn to the following behavior of the norm of a configuration’s velocity

v under the global scale transformations

∥v′∥2 = Mcx(v
′, v′) = Mcx(cv, cv) = c2Mcx(v, v) = c2Mx(v, v) = c2∥v∥2 (11.17)

where M as usual denotes the mass metric on the absolute configuration space

Q. Hence, the multiplication of ∥v′∥ with a homogeneous function of degree −2

on Q , e.g. (11.15) makes the integrand of the (Jacobi’s) action S̄ =
∫ √

−V dl
6 scale-invariant. Subsequently, reinterpreting the potential function (11.15) as

a conformal factor, a new (similarity invariant) metric M′ = VM on Q can be

defined, whose geodesics coincide with the evolution of Newtonian systems with

the potential (11.15) on (Q,M). It leads to a geodesic law of motion on shape

space.

We emphasize here that in (11.17), a specific transformation law for the velocities

is assumed. In other words, it is assumed that the group of scale transformations

6dl2 = Mijdx
idxj
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acts on the absolute phase space as follows

xxx1
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.

.

xxxN

ppp1

.

.

.

pppN



Sc−→



cxxx1

.

.

.

cxxxN

cppp1

.

.

.

cpppN



(11.18)

In other words, the action of Sc on T (Q) is considered to be by push forward Sc∗.

This transformation is both different from the BKM-approach mentioned above,

where the velocities(or momenta) w.r.t. the absolute Newtonian units of time

and length, get scaled by a factor c−
3
2 (see (11.11)), and also from our work(see

(5.6)). The fact that the DGZ velocity transformation (11.16), is mathemati-

cally compatible with (or follows from) the push forward of vectors under scale

transformations in configuration space, i.e.,

Sc : Q→ Q

Sc∗ : T (Q) → T (Q)

v′ = Sc∗v

does not give this transformation a physically natural or privileged place over

other possible transformations of velocities previously considered. We believe

that a lack of attention to the physical origin of the notion of velocity can lead to

confusion here. In physics, velocity is a derived notion7, and it immediately de-

pends on the way we measure space and time intervals, without which one cannot

talk about velocities. So, any physically serious statement about the transforma-

tion of velocities under some transformation of the universe’s configuration must

7Derived from the more primitive notions of space and time. Considering time itself is a
derived notion, as a relationalist would, velocity is merely a concept derived from space in a
non-empty universe.
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therefore include a discussion of the changes in the relevant measurement tools,

such as that presented in this thesis for the modified Newtonian theory. The

arbitrariness in the metric of the shape space in the DGZ-approach[16], caused

by the arbitrariness in the choice of a conformal factor, is in our opinion due to

the forgotten connection of length measures with real rulers. As explained at the

end of the Section (IV.ii), the measured mass metric (4.16) is on its own scale-

invariant. A conformal factor would be required if we had access to absolute

rulers and could thus measure absolute lengths. Since all rules are themselves

subsystems of the universe, they are also subject to the transformations applied

to the universe. Taking this physical fact into account resolves the mentioned

arbitrariness and provides us with the unique metric N in shape space.

Note also that (11.18) differs from the mechanical similarity transformations of an

absolute theory with a homogeneous potential function of degree −2, according

to which the momenta transform as pppi → c−2pppi. This discrepancy does not pose a

problem in the DGZ- approach, since in the relational world-view the rate (with

respect to the absolute time) at which the system’s actual shape moves along

a given path in shape space is a gauge freedom. This is because if the actual

shape of the universe traverses a given curve (a geodesic in the BDGZ-approach)

on shape space at different speeds (with respect to absolute time), no objective

(relational) change can be observed by the inhabitants of that universe. On the

other hand, if one takes an absolute physical theory (like the Newtonian or the

modified Newtonian theory) as the starting point for finding the the relational

laws of motion, a change in the absolute velocities (by some factor) generically has

dynamical effects on the shape space, i.e., leads to alternative universes moving

along different paths on shape space. As mentioned before, mechanical similar-

ities provide a way to prevent this problem, by introducing a suitable action of

Sim(3) on the theory’s absolute state space. It is worth emphasizing that the

action of scale transformations on phase space, as used in our work, is a direct

consequence of the way we implemented the Principle of Relationalism in (abso-

lute) modified Newtonian theory, which turns out also to be compatible with the

mechanical similarities of this theory. It is in particular, neither an additional

postulate nor a gauge fixing condition.

Another difference worth mentioning is the potential function (11.15) used in
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the BDGZ-approach, being a homogeneous function of degree −2, which clearly

differs both from the BKM-approach (11.3), and our work, where they are homo-

geneous functions of degree −1, and 0 (hence scale-invariant) respectively. Our

scale invariant potential function can be incorporated into the geodesic DGZ-

approach by choosing a new conformal factor f ′ := V f , which is the multiplica-

tion of the conformal factors introduced in [16] by our scale-invariant potential.

Nevertheless, the presence of a potential function of the type (11.15), which keeps

the system’s moment of inertia constant, is a characteristic of this approach and

is absent in the other two approaches. Whether a specific gauge can be found

in which the DGZ-approach coincides with the BKM-approach or with our work

remains an open question of the DGZ-approach.

We think that the mathematical definition of the notion of scale-invariance in

Riemannian geometry (see 4.16) is less relevant from the physical point of view.

This is due to the use of the differential of the scale transformation Sc as the

action of Sc on T (Q) and its decoupling from the physical theory. Here we define

a new notion that is more relevant to physics. A metric G on the configuration

space Q is called mechanical similarity invariant if and only if

∀v1, v2 ∈ Tq(Q),Gq(v1, v2) = Gcq(c
k
2 v1, c

k
2 v2) (11.19)

where k is the degree of homogeneity of the potential function of the physical

theory. The factor c
k
2 results from the combined effect of the time transformation

required by the theory’s mechanical similarity (11.1)8, and ruler’s expansion.

Thus, instead of defining the action of Sc on T (Q) by push forward Sc∗, we

define the action of Sc by the mechanical similarity transformation on T (Q).

The mass metric M is mechanical similarity invariant for the modified Newtonian

theory, but not for the original Newtonian theory. As explained in this section,

a mechanical similarity invariant metric such as M for the modified Newtonian

theory defines a unique metric on shape space. For the modified Newtonian

theory, this unique metric is the same as that arising from the scale-invariant

measured mass metric M(m)(see 4.16) at the end of Section (4.1).

8This type of time transformation was required for the dynamical equivalence of the two
alternative universes governed by the absolute theory under consideration.
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Chapter 12

Summary

In this thesis we have reviewed the method of symplectic reduction of a dynamical

system with respect to a symmetry group and its application in the reduction of

classical mechanics with respect to the Euclidean group E(3).

We introduced a new physical principle, namely the principle of relationalism, as

a guideline for the implementation of relational ideas in modern physics. This

principle enabled us to make classical physics scale invariant, which in turn en-

sured the existence of laws of motion on shape space. Thus, it enabled us to

achieve a complete relational reading of classical physics, which was hidden be-

hind some foundational incompletenesses of classical theories, e.g., the lack of any

derivation for the so-called constants of nature within the theory.

We then performed the symplectic reduction of the new scale-invariant theory

on the absolute configuration space with respect to the similarity group Sim(3)

and derived the reduced symplectic form, the metric and the Hamiltonian on the

system’s shape space S. More precisely, we gave the dynamics of an N -particle

system on its internal configuration space Qint = Q
E(3)

(as derived in [3] or re-

viewed in Section 3) and derived its reduced dynamics with respect to the group

of scale transformations using the principle of relationalism. The appearance of

two new forces on the reduced phase space was remarkable.
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In the remaining parts of the thesis we have worked with the Lagrangian for-

malism. We first reviewed the derivation of the Euler-Lagrange equations of mo-

tion in nonholonomic frames and the reduced equations of motion on the internal

configuration space Qint =
Q

E(3)
of classical mechanics. Then, using the Princi-

ple of Relationalism, we extended the discussed methods to the whole similarity

group Sim(3). In particular, we constructed representations of the group Sim(3)

and its Lie-algebra sim(3) on Q, discussed how a vector on shape space can be

lifted horizontally to the center of mass configuration space Qcm, constructed the

connection form ωs for the action of the group of scale transformations Sc, and

showed that this connection form is flat. As a consequence of the latter, quoti-

enting out the configuration space w.r.t. the scale transformations Sc would not

produce any additional curvature in the resulting base space. Thus, the curvature

in the shape space is caused solely by the quotienting w.r.t. the rotation group

SO(3). Using these new ingredients, we have derived the reduced equations of

motion for a N -particle system for its shape degrees of freedom.

As the simplest nontrivial example of the formalism, we have explicitly derived the

equations of motion for the shape degrees of freedom of a three-particle system.

We then discussed some cosmological consequences of the theory. In particular,

we have shown that an expanding universe must necessarily be an accelerating

expanding universe for internal observers, and that the total collision of all par-

ticles of a contracting system cannot occur in a finite amount of (internal) time.

At the end, we presented a comparison of our work with two other approaches

to relational physics. In particular, we compared the used action of the group Sc

on the absolute phase space in each approach. We explained how the principle of

relationalism (as formulated in Section 1.4 and Chapter 5) itself defines an action

of Sc on the absolute phase space of the modified Newtonian theory, which in

turn enabled us to find the metric N of shape space. Alternatively, we discussed

that by taking the role of rulers in determining the geometry of space into ac-

count, the measured mass metric is itself scale-invariant, so again no arbitrary

conformal factor needs to be introduced to find the metric of the shape space.

In particular, we explained the relationship between the choice of a length unit
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and the choice of a conformal factor, and elaborated that all reasonable choices

of length units lead to the same metric on shape space. We have also seen that

Barbour’s fundamental postulate of relational mechanics, as expressed in [32], and

Barbour-Bertotti’s postulate of relational mechanics [33], are special cases of the

(more general) principle of relationalism introduced in Chapter 1.
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Appendix A

Geodesics as true evolution on

shape space?

One can assume1 that the true evolution on shape space is exactly along the

geodesics corresponding to the metric (4.10) on shape space, as is the case in

[15] and [16]. Of course, horizontal lifting of any geodesic from shape space S

to absolute configuration space Q also results in a geodesic with respect to a

conformal metric M′ there. Consider now the Jacobi action on Q

S̄ =

∫ τB

τA

√
(E − V )

dl

dτ
dτ =

∫ τB

τA

√
(E − V )dl (A.1)

and take E = 0. To ensure that the corresponding action principle S̄ =∫ τB
τA

√
−V dl 2 always leads to a geodesics on absolute configuration space, V

must indeed take the role of a conformal factor, i.e. V = −f(x). Thus the ex-

pression
√
−V dl becomes the line element with respect to the new metric M′,

as is explained in [16]. So, using (4.11) for the conformal factor (as one choice

among many options), one gets V =
∑

i<j
1

||xxxi−xxxj ||2 , where the summation goes

over all particles. The characteristic feature of this potential is its homogene-

ity of degree −2, which is a necessary condition for a conformal factor. As the

1Arguments for this assumption are usually based on simplicity and beauty which are being
seen in reducing all of physics to geometry as strongly promoted by Descartes.

2dl2 = gijdx
idxj
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main classical interaction potentials between particles are known to be inversely

proportional to their distance from each other, the previous result seems at first

glance to be empirically inadequate. However, it may be the case that under

certain circumstances an effective potential function of degree −1 could emerge

for certain subsystems of the universe whose shape is evolving along a geodesic

on shape space. Julian Barbour probed this possibility (in [15]) by starting with

the following homogeneous function of degree −2

U = −W
2

2

as the potential on absolute space, where W =
∑

i<j
mimj

|xi−xj | . Then, in an inertial

frame of reference with the spacial Newtonian time parameter t (see (1.16)), the

equations of motion are
dpi

dt
= −W ∂W

∂xi
(A.2)

which is the Newton’s law if the W behind the differentiation is replaced with

G. He then goes on and argues that if the system is virialized,3 the value of W

remains effectively constant, and hence the motions of Newtonian type (hence

described by homogenous potentials of degree −1) emerge effectively. Note that

the vanishing of the dilatational momentum as a consequence of best matching

with respect to scale transformations, enforces the constancy of the moment of

inertia Icm. So one may think that the experimentally verified Hubble expansion

is clearly in contradiction with constancy of Icm. But as Julian Barbour argued,

constancy of Icm would not prevent the matter from clumping, which would in-

crease −W and hence the gravitational constant. Take for instance, a planet

orbiting a sun in a universe that in general is becoming clumpier. According to

Barbour’s theory, the gravitational force should then become stronger, and hence

distance between the planet and the sun should adiabatically decrease. However

if one insists that the strength of gravity in the distinguished inertial frame is

3Virialized means a system of gravitationally interacting particles that is stable. The smaller
structures can still interact with each other, but the clusters as a whole doesn’t expand or
collapse. When a cluster is virialized the merging process and the collapse of matter have
finished and the formation process of the galaxy is done. A system is virialized when the
potential energy is twice the negative kinetic energy. From this one can find the condition
Rvir

∼= Rmax

2 where Rvir is the radius when the cluster is virialized, and Rmax is the radius
(of the moment) at which the cluster starts to collapse. So by looking at the radius and the
density of a cluster one can deduce if a cluster is virialized or not.
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constant (as is the case in normal Newtonian theory) one is forced to have an

adiabatic increase of all scales in this frame. This would then mimic a Hubble-

type expansion in this frame. However, he does mention that he probably cannot

go around the Hubble red shift in this way... .

Barbour then tried another option to achieve a scale invariant geodesic theory

by using the unique conserved quantity Icm of his 2003 shape geodesic theory.

Newtonian potentials can be converted into homogeneous potentials of degree -2

if multiplied by an appropriate power of µ =
√
Icm =

√∑
i<j mimjr2ij.

Thus, starting with the general Newtonian potential

V =
∞∑

k=−∞

akVk

with Vk’s being homogeneous functions of degree k, one goes over to the homo-

geneous potential of degree -2 (which is required for geodesic dynamics on shape

space) as follows

Ṽ =
∞∑

k=−∞

bkVkµ
−(2+k)

and according to Newton’s law of motion, one ends up with the following equa-

tions of motion
dpi

dt
= −

∞∑
k=−∞

bkµ
−(2+k)∂Vk

∂xi
(A.3)

+
∞∑

k=−∞

(2 + k)bkµ
−(2+k)Vk

1

µ

∂µ

∂xi

In order to make the connection with the observations (hence also to V ), one

has to set bkµ
−(2+k) = ak. Then the equations of motion for the modified (scale-

invariant) potential (A.3) turns into the following

dpi

dt
= −

∞∑
k=−∞

ak
∂Vk
∂xi

+ C(t)
∑
j

mimj

∂r2ij
∂xi

(A.4)

with C(t) =
∑∞

k=−∞(2+k)akVk

2
∑

i<j mimjr2ij
.

So the real force acting on the i’th particle can be decomposed into the Newtonian-

type forces and a residue which is a cosmological force. However in [41] it is

claimed that also this attempt turns out to be empirically inadequate, since it

141



fails to show the formation of clusters for an expanding N-body solutions, and

therefore fails to explain the emergence of stars and galaxies.

In a recent publication [16], these ideas of emergence of interacting theories on

absolute space, from a free (non-interacting) theory on Shape space are being

elaborated, and carefully expanded to the quantum mechanics.

In this thesis we did not insist on geodesity of dynamics on shape space. We

rather sought the projected dynamical law of the modified Newtonian theory

from the absolute configuration space down to the shape space. The principle

of relationalism was used to make classical physics invariant under global scale

transformations.
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Appendix B

Mass tensor

Originally, the Kinetic energy K of a classical N -particle system is ex-

pressed(defined) in Cartesian coordinates as follows

K =
1

2

N∑
i=1

miẋ
2
i =

1

2
[ẋ1, ..., ẋN ]M


ẋ1

...

ẋN

 (B.1)

where ẋi :=
dxi

dt
with xi =


x3i−2

x3i−1

x3i

 and M is the so called mass matrix which

is in this case just a block diagonal 3N × 3N matrix with


mj 0 0

0 mj 0

0 0 mj

 as its

j’s block.

Here, as usual, configuration space is coordinatized by x1, x2, ..., x3N which are

in turn the collection of Cartesian coordinates x3i−2, x3i−1, x3i used to denote the

position(vector in R3) of the i’th particle xi.

Now, if the system suffers from a number of holonomic constraints, generalized

coordinates q1, q2, ..., qf (with f < 3N standing for total number of remaining

degrees of freedom), can be used to coordinatize the new (generalized) configura-

tion space. If one rewrites the kinetic energy K in terms of these new generalized
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coordinates qj and their velocities q̇j one ends up usually with a much more com-

plicated expression than (B.1) and, in fact, the metric looses independence of

the configuration, and its simple diagonal quadratic form in the velocities. In

generalized coordinates, it is quadratic but not necessarily homogeneous in the

velocities q̇j, and has in general a non-trivial dependence on the coordinates qj

(through M).

If the coordinate transformation between the set of Cartesian coordinates

x1, ..., x3N and the generalized coordinates q1, ..., qf is time-independent (see [7]),

the kinetic energy can be written as

K =
1

2

∑
k,l

Mklq̇kq̇l =
1

2
[q̇1, ..., q̇f ]M


q̇1

...

q̇f

 , (B.2)

where

Mkl =
N∑
j=1

mj
drj
dqk

.
drj
dql

=
N∑
j=1

2∑
i=0

mj
dx3j−i

dqk

dx3j−i

dql

are elements of the f × f matrix M.

The Lagrangian of classical mechanics is known to be L = K − V , where the

potential V is usually independent of the generalized velocities q̇i. The conjugate

momentum to qi is defined as

pi =
∂L

∂qi
=
∂K

∂q̇i
=

f∑
j=1

Mij q̇j (B.3)

Thus, the expression (B.2) for the kinetic energy which involved just the velocities

can be rewritten as

K =
1

2

f∑
i=1

piq̇i (B.4)

144



Appendix C

Adjoint and Coadjoint actions of

a Lie-group

Let G be a Lie group, and G its Lie algebra, and G∗ be the dual vector space of

G. The adjoint representation of g ∈ G on G is defined by

Adg(Y ) =
d

dt
|t=0 (ge

tY g−1) (C.1)

for Y ∈ G.

The coadjoint action of g ∈ G on G∗ is characterized by

< Ad∗g(ξ), Y >=< ξ,Adg−1(Y ) > (C.2)

for ξ ∈ G∗

Here, <,>: g∗ × g → R is the dual pairing.

In summary: adg(x) = gxg−1, Adg = (adg)∗ : G → G being called the adjoint

action , Ad∗g : G
∗ → G∗ being called the coadjoint action.
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Appendix D

Isomorphism R

There exists an isoporphism R between the Lie-algebra so(3) of the rotation

group, and the linear space ∧2R3 of all antisymmetric tensors of order 2, which

we want to explain shortly.

Take eee1, ...eee3 as an orthonormal basis of R3. Then eeei∧eeej with i < j constitutes an

orthonormal basis of ∧2R3. The inner product in ∧2R2 is defined as the following

(u ∧ v | x ∧ y) =

∣∣∣∣∣(u | x) (u | y)
(v | x) (v | y)

∣∣∣∣∣ . (D.1)

One can easily check that for two two-vectors (or tensors of order 2) ξ =∑
i<j ξijeeei ∧ eeej and ζ =

∑
k<l ζkleeek ∧ eeel, definition (D.1) leads to the following

(ξ | ζ) =
∑
i<j

ξijζij. (D.2)

Now we identify the Lie-algebra of the rotation group in 3 dimensions so(3)

with the space of two forms (anti-symmeric tensors) ∧2R3 by the isomorphism R

R : ∧2R3 ∼−→ so(3) (D.3)

ξ → Rξ.

So for u,v,x ∈ R3 we define the following

Ru∧v(x) := (v | x)u− (u | x)v. (D.4)
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Ru∧v is in fact a 3 dimensional square matrix and its multiplication by a 3 dimen-

sional vector x is given by the last equation. For ξ ∈ ∧2R3 and x =
∑
xjeeej ∈ R3

one can also write the above formula as

Rξ(x) =
∑
i

(
∑
j

ξijxj)eeei. (D.5)

That is, Rξ is an antisymmetric matrix with entries ξij.

Given the natural scalar product of the Lie algebra; (α | β) = 1
2
tr(αβT ) for

α,β ∈ so(3) one can show that the identification R is even an isometry from

∧2Rd to so(d).

As explained in [3], the space ∧2R3 can be identified with R3 by eee1 ∧ eee2 → eee3

and its cyclic permutations. Hence if one sets

ξ12 = ϕ3, ξ23 = ϕ1, ξ31 = ϕ2

the two vector

ξ =
∑
i<j

ξijeeei ∧ eeej

is identified with

ϕ =
∑

ϕieeei.

So in this case R becomes a linear isomorphism from R3 to so(3) i.e.

R : R3 → so(3)

Rξ(x) = Rϕ(x) = −ϕ× x (D.6)

for x ∈ R3.

Alternatively, Re1 is the matrix (ξij) with the only nonzero elements ξ23 = −ξ32 =
1.

One can also show([3]) that R is Ad-equivariant i.e. Rgϕ = AdgR(ϕ) = gR(ϕ)g−1.
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The map R, and the inertial tensor Ax have the following properties:

Rab = a× b (D.7a)

Rga = gRag
−1 (D.7b)

Ra.Rb =< a | b > (D.7c)

Agx(a) = gAx(g
−1a) := AdgAx(a) (D.7d)

(x | Rξy) = (x ∧ y | ξ) (D.7e)

(Rξx | Rηy) = (Rξx ∧ y | η) (D.7f)

where a, b ∈ R3 and g ∈ SO(3).
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[16] D. Dürr, S. Goldstein, and N. Zangh̀ı, “Quantum motion on shape space

and the gauge dependent emergence of dynamics and probability in absolute

space and time,” Journal of Statistical Physics, vol. 180, no. 1, pp. 92–134,

2020.

[17] S. Goldstein and N. Zanghi, “Remarks about the relationship between rela-

tional physics and a large kantian component of the laws of nature.,” arXiv

preprint arXiv:2111.09609 (2021).

[18] I. Newton, “The principia: mathematical principles of natural philosophy,”

Univ of California Press, 1999.

[19] I. Newton, “Scholium to the definitions in philosophiae naturalis principia

mathematica, bk. 1 (1689), trans. andrew motte (1729), rev. florian cajori,

berkeley: University of california press, 1934. pp. 6-12, paragraph xiv,”

[20] H. G. Alexander, “The leibniz-clarke correspondence,” Philosophy, vol. 32,

no. 123, 1956.

150



[21] E. Mach, “The science of mechanics: A critical and historical exposition of

its principles,” Open court publishing Company, 1893.

[22] P.-L. M. de Maupertuis, “Les loix du mouvement et du repos deduite d’un

principe metaphysique,” Histoire de l’Academie Royale des Sciences et des

Belles-Lettres da Berlin [. . . ] pour l’anncee 1746, vol. 286, 1748.

[23] C. G. Gray, “Principle of least action,” Scholarpedia, vol. 4, no. 12, p. 8291,

2009.

[24] C. Lanczos, “The variational principles of mechanics,” University of Toronto

press, 2020.

[25] H. Goldstein, “Classical mechanics (3rd ed.),” United States of America:

Addison Wesley, 1980.

[26] J. Barbour, “The nature of time,” arXiv preprint arXiv:0903.3489, 2009.

[27] J. D. Barrow, “The constants of nature: from alpha to omega-the num-

bers that encode the deepest secrets of the universe,” PANTHEON BOOKS,

NEW YORK, 2002.

[28] I. Rosenthal-Schneider, “Reality and scientific truth: Discussions with ein-

stein, von laue, and planck,” Wayne State University Press, 1980.

[29] B. Coquinot, P. M. Garcia, and E. M. Galcerán, “The b-geometry of mag-

netic fields,” 2020.

[30] A. Weinstein, “A universal phase space for particles in yang-mills fields,”

Letters in Mathematical Physics, vol. 2, no. 5, pp. 417–420, 1978.

[31] V. Guillemin and S. Sternberg, “Symplectic techniques in physics,” Cam-

bridge university press, 1990.

[32] J. Barbour, “Relationism in classical dynamics.,” The Routledge Companion

to Philosophy of Physics. Routledge, 2021. 46-57.

[33] J. Barbour and B. Bertotti., “Mach’s principle and the structure of dynami-

cal theories.,” Proceedings of the Royal Society of London. A. Mathematical

and Physical Sciences, 382(1783), 295-306.

151



[34] J. Barbour, “The definition of mach’s principle.,” Foundations of Physics

40.9 (2010): 1263-1284.

[35] A. Guichardet, “On rotation and vibration motions of molecules,” vol. 40,

no. 3, pp. 329–342, 1984.

[36] J. I. Neimark and N. A. Fufaev, “Dynamics of nonholonomic systems, trans-

lations of mathematical monographs, vol. 33,” American Mathematical So-

ciety, Providence, Rhode Island, vol. 518, pp. 65–70, 1972.

[37] E. Jarzebowska, “Quasi-coordinates based dynamics modeling and control

design for nonholonomic systems,” Nonlinear Analysis: Theory, Methods &

Applications, vol. 71, no. 12, pp. e118–e131, 2009.

[38] J. M. Maruskin and A. M. Bloch, “The boltzmann-hamel equations for op-

timal control,” pp. 554–559, 2007.

[39] C. Speake and T. Quinn, “The search for newton’s constant,” Physics Today,

vol. 67, no. 7, p. 27, 2014.

[40] I. B. C. Isaac Newton and A. Whitman, “The principia: Mathematical

principles of natural philosophy.,” Berkeley, Calif: University of California

Press., 1999.

[41] J. Barbour, T. Koslowski, and F. Mercati, “A gravitational origin of the

arrows of time,” arXiv preprint arXiv:1310.5167, 2013.

152


