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Abstract

One of the most important goals of research in physics is to find the most basic and universal theories that
describe our universe. Many theories assume the presence of absolute space and time in which physical objects
are located, and physical processes occur. However, it is more fundamental to understand time as relative to the
motion of another object, such as the number of swings of a pendulum and the position of an object primarily
relative to other objects. The purpose of this thesis is to explain how classical mechanics can be formulated
using the principle of relationalism (introduced below) on a most elementary space which is freed from absolute
entities: shape space. In shape space, only the relative orientation and length of subsystems are considered. A
sufficient requirement for the validity of the principle of relationalism is that when the scale variable of a system
changes, all parameters of the theory that depend on the length change accordingly. In particular, the principle
of relationalism requires an appropriate transformation of the coupling constants of the interaction potentials in
classical physics. Consequently, this change leads to a transformation of Planck’s measuring units, which allows
us to derive a metric on shape space in a unique way. In particular, we explain in two different ways how to find
the unique metric of shape space, taking into account the crucial role of rulers in determining the geometry of

a space.

In order to find out the classical equations of motion on shape space, the method of ”symplectic reduction
of Hamiltonian systems” is extended to include scale transformations. In particular, we will give the derivation
of the reduced Hamiltonian and symplectic form on shape space, and in this way, the reduction of a classical

system with respect to the entire similarity group is achieved.

One can alternatively use the Lagrangian formalism of mechanics to derive the reduced equations of motion
on shape space. It will be explained how the Principle of Relationalism makes the Lagrangian of the classical
mechanics scale-invariant, which in turn ensures the existence of laws of motion on shape space. In order to
find out these laws of motion, the Boltzman-Hammel equations of motion in an anholonomic frame on tangent
space to system’s absolute configuration space T'(Q), is adapted to the Sim(3)-fiber bundle structure of the
configuration space @. The derived equations of motion on shape space enable us, among others, to predict the
evolution of the shape of a classical system without any reference to its absolute position, orientation, or size
in absolute space. Under the action of the group of scale transformations Sc, the internal configuration space
Qint = % becomes a fiber-bundle whose base space is shape space. It has been explicitly shown that the
connection form of the @;,+ considered as the Sc-fiber-bundle is flat.

After treating the general N-body system, shape equations of motion of a three body system are derived explic-
itly as an illustration of the general method, after which some cosmological implications of the scale-invariant
classical mechanics are presented. In particular, we explain how the observed universe’s accelerated expansion
follows from the conservation of the dilational momentum in the modified Newtonian theory. Finally, we com-

pare the present work with two other approaches to relational physics and discuss their essential differences.

This thesis is based on the preprints [1]* and [2] .

L “Reproduced with permission from Springer Nature Journal”
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Zusammenfassung

Eines der wichtigsten Ziele der physikalischen Forschung ist es, die grundlegendsten und universellsten Theorien
zu finden, die unser Universum beschreiben und dessen Verhalten erkléren. Viele Theorien gehen von der Exis-
tenz eines absoluten Raums und einer absoluten Zeit aus, in denen sich die physikalischen Objekte befinden und
die physikalische Prozesse stattfinden. Es ist jedoch fundamentaler, die Zeit relativ zur Bewegung eines anderen
Objekts zu verstehen, z. B. die Anzahl der Schwingungen eines Pendels und die Position eines Objekts von vorn-
herein relativ zu anderen Objekten zu definieren. Diese Dissertation soll erklaren, wie die klassische Mechanik
unter Verwendung des Prinzips des Relationalismus (das unten eingefithrt wird) auf einem elementarsten Raum
formuliert werden kann, der von absoluten Grossen befreit ist: dem Shaperaum. Im Shaperaum werden nur
die relative Orientierung und Lange von Subsystemen beriicksichtigt. Eine hinreichende Voraussetzung fiir die
Giiltigkeit des Prinzips des Relationalismus ist, dass durch die Anderung der Skalenvariablen eines Systems (des
Universums) alle von der Lange abhéngigen Parameter der Theorie entsprechend gedndert werden. Insbeson-
dere das Prinzip des Relationalismus erfordert in der klassischen Physik eine bestimmte Transformation der
Kopplungskonstanten der Wechselwirkungspotentiale. Diese Anderung fihrt folglich zu einer Transformation
der Planckschen Mafleinheiten, die es uns ermdglicht, auf eindeutige Weise eine Metrik auf dem Shaperaum

herzuleiten.

Um die klassischen Bewegungsgleichungen auf dem Shaperaum zu finden, wird die Methode der ”Symplek-
tischen Reduktion Hamiltonscher Systeme” um die Skalierungtransformationen erweitert. Insbesondere werden
wir die Herleitung der reduzierten Hamiltonian und der symplektischen Form auf dem Shaperaum angeben.

Damit wird die Reduktion eines klassischen Systems beziiglich der gesamten Ahnlichkeitsgruppc erreicht.

Wir konnen alternativ den Lagrange-Formalismus der Mechanik verwenden, um die reduzierten Bewegungs-
gleichungen auf dem Shaperaum herzuleiten. Es wird erklart, wie das Prinzip des Relationalismus die Lagrange-
Funktion der klassischen Mechanik skaleninvariant macht, was wiederum die Existenz den Bewegungsgeset-
zen im Shaperaum sicherstellt. Um diese Bewegungsgesetze herauszufinden, werden die Boltzman-Hammel-
Bewegungsgleichungen in einem nichtholonomen System im Tangentialraum zum absoluten Konfigurationsraum
T(Q) des Systems an die Sim(3)-Faserbiindelstruktur des Konfigurationsraums @ angepasst. Die hergeleit-
eten Bewegungsgleichungen im Shaperaum ermoglichen es uns unter anderem, die Entwicklung der Form eines
klassischen Systems ohne Bezug auf seine absolute Position, Orientierung oder Gréfie im absoluten Raum
vorherzusagen. Dazu reichen die Angabe eines Punktes und eines Geschwindigkeitsvektors auf dem Shaper-
aum als Anfangsbedinugen aus, wenn wir die zwei Erhaltungsgréssen D und L als Teil des Bewegungsgesetzes

auf dem Shaperaum betrachten. Der Internalkonfigurationsraum Q;n¢ := wird unter der Wirkung der

Q
E(3)
Gruppe der Skalentransformationen Sc zu einem Faserbiindel, dessen Basisraum der Shaperaum ist. Es wird

explizit gezeigt, dass die Connectionform des als Sc-Faserbiindel betrachteten Q;y,: flach ist.

Nach der Behandlung des N-Korpersystems werden zur Veranschaulichung der allgemeinen Methode explizit
Shapegleichungen der Bewegung eines Dreikérpersystems hergeleitet, wonach einige kosmologische Implikatio-
nen der modifizierten(skaleninvarianten) klassischen Mechanik vorgestellt werden. Insbesondere, erklaren wir,
wie die beschleunigte Ausdehung des beobachteten Universums aus der Erhaltung des Dehnungsimpulses in der
modifizierten Newtonschen Theorie folgt. Abschlielend, werden die Inhalte der vorliegenden Arbeit mit zwei

anderen Ansédtzen der relationalen Physik verglichen und deren wesentliche Unterschiede diskutiert.

Diese Arbeit basiert auf den Aufsitzen [1]2 und [2] .

2“Reproduziert mit Genehmigung von Springer Nature Journal”
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Preface

This manuscript can be divided to six parts.

In the first part (Chapter 1), we review the foundations of classical mechan-
ics with an emphasis on the ideas of Gottfried Wilhelm Leibniz, and compare the
Leibnizian relational worldview with absolute worldview of Isaac Newton. One of
the most basic building blocks of Newtonian mechanics is the idea of an absolute
time and space, the existence of which were assumed by Newton when formu-
lating the laws of motion. We will take the absoluteness of space and time into
question and will review how Newton’s absolute time can be deduced from the
change in the positions of particles. By this approach, time loses its status as a
primitive notion in physics, and takes an emergent status instead. Our dynamics
will be defined on shape space® S, for which, in contrast to the configuration
space used in Newtonian Mechanics, time and space are not absolute entities.
The central new concept in the discussion is the principle of relationalism, which
leads us to consider particular constants of nature as homogeneous functions of
proper degrees on the universe’s configuration space. The theory developed along
these lines in Sections (1.4.1) and (1.4.2) has the full similarity group Sim(3) as

its symmetry group.

In the second part (Chapters 2 and 3) of this dissertation we give a review of
the literature on symplectic reduction of classical systems with respect to the

Euclidean group E(3). Here we follow [3] and [4] to a big extend.

In the third part of the dissertation (in Chapter 4), we explain how these meth-
ods can be expanded to include scale transformations, and consequently how the
reduction of a classical system with respect to the full similarity group sim(3)
(considered throughout this manuscript to be the symmetry group), is achieved.
Here we explain among others, how the kinetic metric of configuration space leads

in a unique way to a metric on shape space, using the principle of relationalism.

3Quotient of the absolute configuration space Q = R3*N with respect to the similarity group

sim(3), which comprises all global spatial translations, rotations, and scalings.
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Given the known procedures for deriving the reduced equations of motion with
respect to the Euclidean group E(3) in the Hamiltonain formalism using a sym-
plectic structure on phase space, we derive the reduced symplectic form, and the
Hamiltonian of a N-particle system on its reduced phase space with respect to
the similarity group. This suffices to determine the evolution of a classical system
on shape space, given its initial shape and shape velocities, without any reference

to the system’s orientation, position, or scale in absolute space.

At Chapter 5, we revisit the principle of relationalism and present a more concrete
mathematical expression of it both in Newtonian and Leibnizian world-views. We

also state other principles in relational mechanics and compare them with ours.

In the remaining parts of this manuscript we aim at deriving equations of motion
of a classical system on shape space in the context of Lagrangian mechanics. In
particular, in the fourth part, following [5], [6], and [7] to a big extend, we first re-
view in Chapter 6 the geometric setting on the center of mass configuration space
Qem as a SO(3)-fiber-bundle. We then explain in Chapter 7 how this setting can
be expanded to scale transformations, and the construction of the Sim(3)-fiber
bundle is discussed. Here we explain among others, how a metric N on shape
space can be derived in a unique way. Under the action of the group of scale
transformations Sc, the internal configuration space Q;n; := % becomes a fiber
bundle, whose base space is shape space. It has been explicitly shown that the
connection form of the @);,; considered as the Sc-fiber-bundle is flat. In Chap-
ter 8, we first review the Lagrangian formulation of mechanics in anholonoimic
frames, and their Boltzmann-Hamel equations of motion. Thereafter, we derive

the equations of motion on shape space.

In the fifth part (in Chapters 9 and 10) we derive explicitly the shape equa-
tions of motion of a three-body system, and at last we discuss some cosmological
consequences like accelerated expansion of the universe, and the total collision

singularity in the classical mechanics.

Research in relational physics has a rich and long history, and there are many



important attempts at implementing relational ideas in physics. See for instance
[8],[9],[10] for more information. In the last part (in Chapter 11), we will give
a quick comparison of our work with two of the other approaches in relational
physics. The first alternative approach (denoted here by BKM) is based on the
mechanical similarities in Newtonian mechanics, as is developed and elaborated in
[11],[12],[13],[14]. The second approach(denoted here by BDGZ) is based on the
geodesic dynamics on shape space, as is developed and expanded in [15], [16], [17].
In particular, we will explain how the BKM-approach and the BDGZ-approach

differ from our work but still both satisfy the Principle of Relationalism.
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Symbols

x A point on Q¢ = %

A point on Qjn: = s%c(g)

A point on shape space S =

V)

Q
Sim(3)
1’s Jacobi vector of an N-particle system

<
!

Scale variable of a system

Scale velocity of a system

Scale velocity of a system measured in internal units
Moment of inertia tensor of a N-particle system
Gauge fields on Q;n¢

Action of g € Sim(3) on T(Q)

Dilational momentum operator

value of system’s dilational momentum measured in internal units
Mass metric on Q. or Q@

The measured mass metric on @y, or Q

Metric on Q¢

Metric on shape space S

2b:%§bd§>>a>>-y-y

I, The canonical isomorphism from tangent space to cotangent space of @
a, B,y Euler angles connecting a body frame and the space frame
{e1,e9,e3} Fixed laboratory frame, or space frame
{e], e}, e5} Body frame
g Rotation which brings the space frame to the body frame
J= ij:l ML X % Total angular momentum
Qe Components of angular velocity in space frame
Qe Components of angular velocity in body frame
; 3 euda = 5 €L
J, ~ (] )
L, = (e}, | J) Left invariant vector fields on SO(3)
Jor; =€, XTI;
L,r; =€), xr;=g(e, x 0,(q))
w?(Jp) = 6f
w'(Ly) = 6*(Ly) = 0y
0° Left invariant one forms on SO(3)
g~ 'dg =301 0" R(eq)
e Right invariant 1-forms on SO(3)
dgg™! =Y o Y R(eq)
k Curvature tensor of shape space
Speed of light
c Letter used to characterize scale transformations by a factor ¢ € Rt
Sc Group of spatial scale transformations(of matter)

Grs Group of spatial rotations and scale transformations



Contents

1 Relationalism 1
1.1 Shape Space as the Physical Configuration Space . . . . ... .. 1
1.2 Time as an emergent concept . . . . . . . . .. ... ... .. 4
1.3  Emergence of time in Classical Mechanics . . . . . ... ... .. 6
1.4 Principle of Relationalism . . . . . . . ... ... ... ... ... 15

1.4.1  Scale invariant Classical Gravity . . . . . . .. .. ... .. 16
1.4.2  Constants of Nature . . . .. ... ... ... ... .... 18

2 Symplectic reduction of phase space with respect to a symmetry

group 25
2.1 Definition of a Hamiltonian System in Symplectic Phase Space . . 26
2.2 Momentum mappings . . . . . . . ... 28
2.3 Marsden-Weinstein method of Reduction of dynamical systems . . 30

3 Example: Reduction with respect to the Euclidean group F(3) 32

viil



CONTENTS ix

3.1 Reduction with respect to the translation group G =R3 . . . . . 32
3.2 Reduction with respect to the Rotation group G = SO(3) . . . . . 35
4 Reduction with respect to the similarity group Sim(3) 43
4.1 Metrics on the internal and shape space . . . . . ... ... ... 43
4.2 Reduction of the theory . . . . . ... ... ... ... ... ... 50
4.3 Symplectic reduction of phase space . . . . . . .. ... ... ... 52
5 Principle Of Relationalism Revisited 59
6 Geometry of Q.,, as SO(3)-fiber bundle 70
6.1 Fiber bundle structure and definition of connection form . . . . . 70

6.2 Local expression of the Connection form and the metric in orien-

tational and internal coordinates . . . . . . . . . . ... ... .. 75

7 Ingredients for the Lagrangian reduction with respect to the sim-

ilarity group 83
7.1 Metric on the internal space . . . . . . . .. ... ... ... .. 84
7.2 Metric on the Sim(3)-reduced tangent bundle . . . . .. ... .. 87
7.3 Connection form for Sim(3) fiber bundle . . . . . . ... ... .. 90

8 Reduced Lagrangian equations of motion in shape coordinates 97

8.1 Equations of motion in quasi-coordinates . . . . . . . . ... ... 98



CONTENTS X

8.2 Lagrangian in quasi-coordinates . . . . . . . .. .. .. ... ... 101
8.3 Reduced Euler-Lagrange equations of motion . . . . . . ... ... 104
9 3 body system 108
10 Cosmological consequence of the scale invariant mechanics 116
10.1 Accelerated expansion of the universe . . . . . . . . ... .. ... 116

10.2 Increase in strength of gravity in regions far from matter concen-

tration . . . ..o L 121

11 Comparison with two other approaches in relational physics 125

12 Summary 136
A Geodesics as true evolution on shape space? 139
B Mass tensor 143
C Adjoint and Coadjoint actions of a Lie-group 145

D Isomorphism R 146



Chapter 1

Relationalism

1.1 Shape Space as the Physical Configuration
Space

Physics aims to give a most accurate description, prediction, and understanding
of nature and its phenomena. Imagine an experimental physicist in a labora-
tory, watching a specific physical phenomenon unfolding itself in front of his eyes.
Imagine now an identical universe, which is translated by some amount, rotated
by some angle, and dilated by some scale factor with respect to this universe.
Would anything different from the first universe be observed by the physicist in
the lab watching the phenomenon he was interested in? In other words, can the
experimenter tell in which of these two possible universes he finds himself/herself?
In fact, the physicist is fully blind to all of these global operations. By moving all
the objects in the universe one meter to the left, the distances between the objects
would not change at all. That is why the physicist would never see (measure) any
difference concerning his state, the state of his environment, or even the universe.
Intuitively!, one expects neither any difference in how the phenomenon would

unfold in front of him. From an internal point of view, the universe seems exactly

Ifor a relationalist



the same, whether it is located here or one meter to its left. It looks exactly
the same after a total rotation of the universe by some degree or scaling of the
universe (hence all the inter-particle distances) with some constant. One could
object that by scaling the universe, the distances between the objects would also
get scaled; hence, an internal observer would be able to observe this difference.
However, as length measurements require rulers, and the same factor scales up
the inter-particle distances of the rulers as it does all other distances, the internal
observer can not notice any difference. Thus, two configurations of the universe
that can be transformed into each other by a member of the similarity group
Sim(3) are kinematically indistinguishable from an internal point of view. There
might be a difference for an external observer, but any discussion on what an
external observer of the entire universe would see is purely academic; at best, it

has a philosophical meaning but is irrelevant to any physical descriptions.

To illustrate the core concepts of the subject matter and review the definition
of shape space, let us start with an example of a toy universe that consists of
only three particles located in absolute space R3. Three coordinates specify each
particle’s position; hence nine numbers are needed to specify the configuration of
this system. However, as we explained in the last paragraph, this is what an ez-
ternal observer watching these three particles in absolute space would say. From
an internal point of view, for example, from the point of view of one of the three
particles, not more than 2 degrees of freedom can be observed: the two angles
of the triangle formed by these three particles. As explained in the last para-
graph, this is because the absolute position (of, for instance, the center of mass),
orientation, and scale of the system of three particles are unobservable from an
internal point of view. One needs three numbers to specify the system’s center of
mass, three numbers to specify the system’s orientation (e.g., Euler angles w.r.t.
some frame of reference), and one number to specify the scale of the system. In
other words, the similarity group Sim(3) is seven-dimensional; hence its action
on the system’s configuration space would lead to a seven-dimensional orbit. As
the configuration space of a three-particle system was 3 x 3 = 9 dimensional, two

dimensions remain, which are called the shape degrees of freedom. In general,



observations are always internal; thus, they always take place in shape space. Ob-
servations always give a quantity in terms of a pre-defined unit of that quantity.
Hence, the numbers we register as the result of measurements are always compar-
ative data, not absolute. Since from an internal point of view, just two angles are
observable, one concludes that there are just two physical degrees of freedom for
our toy universe. In other words, the physical configuration space(shape space)
is two-dimensional, in contrast to the absolute configuration space, which is nine-

dimensional.

This toy model can be generalized to N-particles, where N may be as big as the
number of elementary particles in the whole universe. In that case, the absolute
configuration space @ is a 3N-dimensional, homogeneous space with Sim(3) as
its structure group. The fibers F' are the orbits (generically seven-dimensional)

generated by the action of Sim(3) on absolute configuration space. The base

_Q
Sim(3)

S can be understood as the equivalence classes of points on absolute configura-

space S = is then isomorphic to the shape space of the universe.
tion space where two points are being set equivalent if and only if they can be
transformed into each other by a similarity transformation, i.e., for x,y being two
points in @)

r~yif 3g € Sim(3) | x = gy

In the physics literature one frequently uses the terms “relational configuration
space” or shape space instead of “physical configuration space”. How the objects
are located with respect to each other, or, equivalently, which shape they form is
the only observable from an internal point of view. Thus formulating the dynam-
ics in this base manifold, S is more fundamental than any description in absolute
space. A curve in S corresponds to a unique evolution of the physical degrees
of freedom of the system under investigation. These so-called physical degrees of
freedom are the only quantities visible (or sensible) to internal observers. Adding
the gauge degrees of freedom(the global Sim(3) degrees of freedom), any curve
in S represents an infinite number of trajectories in absolute space?, all of which

describe the same phenomena (see discussion above).

2Note that a description on phase space, however, often simplifies the equations of motion.
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Finally, we want to mention that by considering the shape space of dimension
3N — 7, we tacitly have assumed the existence of a 3-dimensional absolute space.
In a more general setting, one should rather start with a m-dimensional shape
space where m is not necessarily 3N — 7, and argue how and under which cir-
cumstances an apparent three-dimensional absolute space would emerge for sub-
systems. Given that the effective three-dimensionality of absolute space (at least
locally) is an empirical fact, we will consider the case m = 3N — 7 in the present

manuscript and postpone the more general setting to future works.

1.2 Time as an emergent concept

According to the worldview of Newton, there exists an absolute three-dimensional
space®, in which physical objects, e.g., particles, move. The positions of the parti-
cles then change as time passes, and Newton’s laws tell how the positions change.
Time is an ever-flowing external entity that exists independently of matter and
space. In that sense, time generates the dynamics. Without it, there is no con-
cept of motion. However, Newton acknowledged that only relative positions are

4 of his famous book Principia [18]

experimentally observable. In the scholium
he announces to explain how the existence of these absolute structures can be
derived from the relative motions of the observable entities. He even claims that
this was the central motivation for writing the book [19]; however, he does not

return to this later in his book.

Leibniz, on the contrary, was unsatisfied with this way of describing nature. Ac-
cepting that the point-like particles of Newtonian Mechanics are the fundamental
constituents of the universe, one expects a physical theory to explain, among oth-
ers, the behavior (in this case, the motions) of these particles. In order to do this,
Newton added two extra invisible entities to his description of nature: absolute
space and absolute time. Those are essential entities of Newton’s laws of motion,

especially in his law of inertia. Leibniz, in contrast, thought of them as extra

3Whose existence is independent of matter.
4A scholium is an explanatory note in a book written by the author himself.
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structures that are nonphysical and do not exist independently in nature. In his

own words [20]:

“As for my own opinion, I have said more than once, that I hold space to be
something merely relative, as time is, that I hold it to be an order of coexistences,

as time is an order of successions.”

Downgrading space to the order of coexistences seems to us a clear denial of
Newton’s notion of absolute space reviewed above. Also, Ernst Mach expressed

in the late 19th century his critique of absolute time [21]:

“we must not forget that all things in the world are connected with one another
and depend on one another, and that we ourselves and all our thoughts are also
a part of nature. It is utterly beyond our power to measure the changes of things
by time. Quite the contrary, time is an abstraction, at which we arrive by means
of the change of things; made because we are not restricted to any one definite
measure, all being interconnected. A motion is termed uniform in which equal
increments of space described correspond to equal increments of space described
by some motion with which we form a comparison, as the rotation of the earth.
A motion may, with respect to another motion, be uniform. But the question
whether a motion s in itself uniform, is senseless. With just as little justice,
also, may we speak of an absolute time — of a time independent of change. This
absolute time can be measured by comparison with no motion; it has therefore
neither a practical nor a scientific value; and no one is justified in saying that he

knows aught about it. It is an idle metaphysical conception.”

In a relational theory, time is an emergent concept, and it is most rational to
define time in such a way that a change in time always relates to a change in the
configuration of the system, for example, the change in positions of the atoms
forming a pendulum. Time is defined along the trajectories. It is not a concept

based on the configurations alone. Any monotonically increasing function f can



be used to define the increment of time via
5t = f(| 5X1 ‘, ceey | (SXN D

for infinitesimally small increments of the particle’s positions | 0x; |. Given an
arbitrary trajectory on configuration space, including (among others) the two
configurations A and B, any monotonous function of the arc length of that tra-
jectory going from configuration A to configuration B can serve, for instance, as
a definition of the duration of time passed between A and B. As we will review
below, the duration can be indeed defined as a function of the changes in po-
sitions in a unique way such that the Newtonian equations of motion are valid.
Of course, we are allowed to use any other suitable function as a definition of
time. However, any different choice would make the form of the equations of
motion different from the ones Newton wrote down. Among all possibilities, the
Newtonian time has the advantage of bringing the equations of motion to their

simplest form.

1.3 Emergence of time in Classical Mechanics

Originally the principle of least action was developed to justify the equations of
motion in different theories. Different brilliant thinkers expressed the idea be-
hind the principle in many different ways. Pierre Louis Maupertuis (1698-1759)
is usually credited as the first who gave a concrete formulation of the least action
principle (although it is suggested that Leibniz was even earlier). Maupertuis’
motivation was to rationalize the (by then known) laws of ray optics and me-
chanics with theological arguments based on design or purpose to explain natural

phenomena. Here is a quote from Maupertuis which sheds some light on his views
[22]:

“The laws of movement and of rest deduced from this principle being precisely
the same as those observed in nature, we can admire the application of it to all

phenomena. The movement of animals, the vegetative growth of plants ... are
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only its consequences; and the spectacle of the universe becomes so much the
grander, so much more beautiful, the worthier of its Author, when one knows that

a small number of laws, most wisely established, suffice for all movements.”

Given an initial point in the system’s configuration space under consideration
g4 and a final point ¢p, the path chosen by nature minimizes a functional de-
pending on the trajectories connecting the two endpoints. This functional is
usually called “action”. In other words: the trajectory between ¢4 and ¢p taken
by the system minimizes the value of the action functional. More precisely, the
chosen trajectory is a stationary point of the action, but in most cases, the only

stationary point is a minimum.

Maupertuis proposed to define action as the integral of the so-called Vis wviva
(Latin for “living force”). The term Vis viva was introduced by Leibniz during
the 1680s by his observation that the sum of the products of the constituting
masses of a system (i.e., a multi-particle system) with the squares of their respec-
tive velocities is almost constant during (elastic) collisions, i.e., 32, mv? = C.
This is, of course, what we now call the principle of energy conservation (in mod-
ern terms, Leibniz’s Vis viva becomes 2 times the kinetic energy). It seemed to
oppose the theory of conservation of momentum advocated by the rival camp (Sir
Isaac Newton and Rene Descartes).

Maupertuis’ suggestion, therefore, comes down to the following action functional

tp 9B
W:/ 2Kdt:/ pdq (1.1)
ta gA

which is the right formula for systems where the kinetic energy is quadratic in

the velocities. Here the letter ¢ stands for the absolute time of Newton.

Maupertuis’ principle states that for the true trajectories (the ones chosen
by nature), Maupertius’ action W is stationary on all trial trajectories with fixed

initial and final positions ¢4 and ¢z and fixed energy® £ = K + V.
(W)p =0 (1.2)

5For the most general mechanical systems, energy is E = >, piGi — L which reduces to the
well-known expression T' 4 V in cases where the Lagrangian can be written as L =T — V with
T being a quadratic form in the velocities, and V' being independent of the velocities.
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where in variational calculus, the constraint of fixed endpoints is usually left im-
plicit, and every other constraint on the trial trajectories (thus, in this case, fixed
energy) is written down explicitly. Note that in (1.1) no constraint is imposed
on the value of tg, as for different paths, a different amount of absolute time is
needed to reach the endpoint ¢g. In other words: ¢, stands for the absolute time
(moment) at which the configuration gp is reached, and this varies as the path

taken between g4 and ¢p changes.

However, in the modern physics literature, the most common action principle
is the minimization of Hamilton’s action denoted by S. It is defined as an inte-
gral along the spacetime trajectory ¢(t) connecting two configurations g4 = q(ta)

and g5 = q(tp)

5= /tB L(g, d)dt (1.3)

ta
The statement of Hamilton’s principle then becomes: among all possible tra-

jectories ¢(t) that can connect the two configurations g4 and gp during the exact
given time interval t5 — t4 = T, the chosen trajectories are those making S

minimal (respectively stationary). Thus, Hamilton’s principle can be written as
(6S)r =20 (1.4)

where, as before, the extra constraint of constant travel time is assumed and ex-
plicitly denoted as a subscript. Bear in mind that there may be more than one
trajectory satisfying these constraints of fixed endpoints and travel time, see [23].
As mentioned, contrary to Maupertuis’ principle, the allowable trial trajectories
of Hamilton’s principle do not need to satisfy the constant energy constraint a
priori: the conservation of energy is here a consequence of Hamilton’s principle
for time-invariant systems (i.e., the Lagrangian does not have an explicit time
dependence). Thus, Hamilton’s principle (1.4) is applicable to both conservative
(time-invariant) and non-conservative systems (i.e., systems that have an explic-
itly time-dependent Lagrangian due to, for instance, time-dependent potentials
V(g,t)), while Maupertuis’ principle (1.2) is restricted to conservative systems.
For conservative systems, one can show that Hamilton and Maupertuis’ principles
are equivalent and related to each other through the famous Legendre transfor-

mations. The results from the action principles are curves that stand for the
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system’s trajectory. It provides us with a manifestly covariant way of describing
its evolution. For nonholonomic systems, however, non of these action principles

are applicable.

So far, Hamilton’s action principle seems more general and powerful than Mau-
pertuis’. Carl Gustav Jacob Jacobi (1804 - 1851) thought so, too. However, he
wanted to take it one step further by taking Newton’s intuition of the existence
of an absolute time more seriously by treating time as a variable in the varia-
tional calculations. In Newton’s spirit, the value of time is as important as the
value of the x-component of a particle’s position, for example, or any generalized
coordinate. Both of them are absolute and have physical reality. So, suppose
one wants to apply Hamilton’s principle properly. In that case, one should not
use the absolute Newtonian time ¢ as an independent variable, but in contrary,
all n + 1 variables ¢,...,q,,t should be considered as functions of some arbitrary
independent variable 7. It enables one to include the variation of ¢ in the varia-

tional principle.

Thus, we aim to write Hamilton’s action principle for a system containing n + 1
degrees of freedom (see[24]). For consistency from now on in this chapter, we
denote the derivative with respect to the Newtonian(absolute) time % by a dot
and with respect to the independent variable (used to parametrize the n+1 phys-
ical degrees of freedom) 8% by prime. Starting with Hamilton’s action functional
(1.3) for the well-known Lagrangian L(q, ) of classical mechanics, which is the
difference between the kinetic and potential energy of the system, and rewriting

it in terms of the independent variable 7 we get

S:/ L(g, Lytdr (1.5)
TA t

from which the new Lagrangian (for this new system which has n + 1 degrees of

freedom) can be read off, namely
Lpew = Lt

Although we arrived at this by a simple mathematical step (change of integration

variable in (1.3)), be aware of the important physical difference between (1.3) and

9



(1.5). In the latter we are varying the space-time curves connecting space-time
events A = (qa,ta) and B = (¢p,tp).
Now as no t appears in L., t is then by definition a cyclic variable. Hence its

conjugate momentum

~ OLpew 8( oL é?qZ
b= - Z T

ot
oL ¢
Z aql 2?/2 L Z pz(h

is a constant of motion. In the third equation, the chain rule is used. In the

!
hence g‘i} =7

But the expression derived for p, coincides (up to a minus sign) with the first in-

fourth equation, we used ¢ = %,
tegral of the Lagrangian equations of motion (for scleronomic systems® see [25])
which is defined in the literature as the total energy E of the system.
In short, if ¢ is a cyclic variable (which is the case when the corresponding La-
grangian L of the system we started with is conservative, i.e., L has no explicit
time dependence), then

p=—F (1.6)

is a constant of motion. This may also be considered an alternative derivation of

the energy conservation theorem for conservative systems.

It is well known that n. cyclic variables can be eliminated from the variational
problem resulting in the reduction of the original variational problem by n. de-
grees of freedom using the general reduction procedure (see, e.g., [24]). For this
reason, cyclic variables are also called ignorable variables in Hamilton’s formu-
lation of mechanics. In the present case, the ignorable variable is ¢, and we are
interested in reduction with respect to the variable t. The modified Lagrangian

becomes

Lnew = Lnew - ptt, - Lt/ - ptt/ - (L - pt)t/ - sz%t/
=1

Swhere the equations of constraints do not have explicit time dependence.
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Hence, the modified action functional is as follows

_ B T3 1 B
S = / Lnew - / szQZt/dT - / 2Kt,d7— (17)
TA TA

=1 TA

where expression (B.4) is used for the kinetic energy K.

Note here that because t'dr = dt, the modified action (1.7) can simply be rewrit-
ten as Maupertuis’ action (1.1) . However, Jacobi’s dissatisfaction with Mau-
pertuis’ principle was of the same fundamental kind as his dissatisfaction with
Hamilton’s principle — with which by the way he started his considerations in the
first place. In Maupertuis’ action, the absolute time ¢ is used as an independent
variable for integration. However, in the Newtonian worldview, ¢ itself must be
the subject of the variational calculation, just like any of the g;. It matters at
which absolute time ¢ € [t4,tp5] a given configuration g (which locates on the
true trajectory somewhere between g4 and ¢p) is reached; as much as it matters at
which value of the generalized coordinate g; a specific value of some g; is reached
(1 # j). It is only to this end that one uses the variational principle. So Jacobi’s

concerns are quite justified for a convinced follower of Newtonian philosophy.

It is worth emphasizing that Jacobi’s point (of putting time variable and position
variables of a mechanical system on equal footing) is a novel formal difference
from the works of his predecessors and truly finds its fundamental motivation in
the Newtonian worldview. However, his point does not make a practical differ-
ence to Maupertuis’ principle if the system subject of variational calculations is
conservative and the initial value of the absolute time is additionally provided
7. Tt is because, for conservative systems, the motion in time is constrained by
(1.6). So the velocity by which the configuration point of the system moves on
its trajectory can be calculated throughout the whole trajectory, and hence we
can calculate exactly at which absolute time any intermediate configuration q¢

has been reached. In this way, no need for variation of ¢ remains. A simple cal-

culation can elaborate on this point and leads to a formula for the exact value of

"which is indeed the case in Jacobi’s principle, as you choose a spacetime point as your lower
boundary of integration 1.7.
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the absolute time at an intermediate configuration.

el o g
tC:tA-i-/ tdr =t +

TA qA \/ﬁ

qc dl
=yt S
4 / V2(E - V)

_tA—i-/ <q|qj

Here ¢(7) stands for the true trajectory of the conservative system in configura-
tion space (in this case also a solution of Maupertuis’ principle), V = V(q(T)),
and the norm < . | . > on configuration space is defined with respect to the mass
tensor (see appendix B). In the second equality, the expression of the kinetic
energy in Newtonian theory (i.e., (1.8)) is used to substitute the increment of
absolute time dt with the line element of configuration space dl. therefore, the
use of absolute time as an independent variable in Maupertuis’ principle is a pos-
tertori satisfied. From Jacobi’s analysis, it becomes clear that the circumstances
under which Maupertuis’ principle is applied (constancy of the total energy) leave
no room for a variation of absolute time (its value is fixed for any intermediate

configuration as we have just calculated).

Let us now move on with the last step of the reduction of a cyclic variable, which
is the elimination of its velocity using the equation of motion of its conjugate
momentum, in this case eliminating ¢ using (1.6). We equip the configuration
space with a Riemannian metric and set this metric equal to the mass tensor M.

Then the kinetic energy can be expressed as

1 ,dl\2
=5(5) (1.8)
in which dl denotes the line element (with respect to M as metric)® of configu-
ration space. So, in Newtonian theory, the velocity with which the configuration
point of a system moves in configuration space is vV2K. Again, in the present

case, since we use 7 as our independent variable, (1.8) needs to be rewritten as

K= (e (1.9)

Sdl2 = Mijd.%‘id.’lﬁj
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Now, using this and the momentum equation (which is equivalent to the energy
theorem(1.6)), the cyclic variable (i.e., the remaining ¢’ in the modified action

(1.7)) can eventually be eliminated by inserting

1 dl

CVAE-V)dr

¢ (1.10)

into (1.7)
dl

_ ™8 B 1
S = / oKt dr = / OK————— —dr
. . V2(E —-V)dr

TB 1
[y z
TA

ReCEt
- [ vaE= g

= /B V2(E = V)di
A

It finally leads to the reduced action functional

B B
S = 2(E—V)%d¢= : V2(E —V)dl (1.11)

TA
where the last equation shows the invariance of this expression with respect to

re-parametrizations. As usual, the minimizing paths of the action satisfy
(05) =0 (1.12)

and we have arrived at what is called Jacobi’s principle. Note that constancy
of the total energy E here is not a constraint imposed manually in the vari-
ational calculation (as in (1.2)) but a consequence of Hamilton’s principle for
time-invariant systems; hence we did not write a letter £ explicitly in (1.12). As
is evident from (1.11), absolute time ¢ does not appear in its formulation. The
solution of this principle is a path in configuration space without any reference to
the motion in absolute time. However, the motion in absolute time (which was,
of course, the question of Jacobi in the first place) can quickly be recovered from
(1.10), the integration of which gives us the physical time ¢ as a function of the
independent parameter 7 (which now parametrizes all n + 1 degrees of freedom

as Jacobi wanted).
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More recently [15], Julian Barbour preferred to rewrite Jacobi’s action (1.11)

as . o _
522/ VE -VV Kdr (1.13)
TA
where K := %j—z.g—f_ with the inner product defined with respect to the mass
tensor, again. It can be rewritten as K = % 1111 %.% where dot denotes the

standard Euclidean metric on R3, and the index 4 runs over the number of parti-
cles. Note that K has nothing to do with the kinetic energy, which is a Newtonian
term. When one uses the physical time to express the velocities, K becomes, by

definition, the kinetic energy we are all familiar with.

The Lagrangian L read off from (1.13) is used to define the canonical momenta

OL E — V dg
p a(in) m K dr ( )

dr

and the corresponding Euler-Lagrange equation becomes

dpt 0L K oV
dr 9 \E-Vag (1.15)

Remember that we had the total freedom to choose any independent variable

7 since the action (1.13) is reparametrization invariant. One possibility is to
choose a parametrization that is such that K = F — V. We already know that
this specific option for 7 mimics the absolute time of Newton for two reasons.
First, inside Newtonian Mechanics for a conservative system, the kinetic energy
is, of course, E — V, and as 7 here has been chosen such that K becomes equal
to E — V., we can conclude that this specific choice for 7 marches in steps with
absolute time. Another reason even more convincing is that for this specific 7,
equation (1.15) takes its familiar form, namely Newton’s second law.

 — LNV dry dr i
Now from K = 5% .", Tt.5% = E — V one easily deduces

SO | mydry.dr dl
dt = \/ - = (1.16)

2E—-V) V2(0E -V

where dl is again the line element of the configuration space with respect to

the mass tensor. As Barbour said, from this, one can see how change creates
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time. See also [26] for a beautiful presentation of the notion of relational time
from a physical and historical point of view. The sentence of Mach we quoted
at the beginning of this chapter ” It is utterly beyond our power to measure the
changes of things by time. Quite the contrary, time is an abstraction, at which
we arrive by means of the change of things”, is fully reflected in (1.16). Equation
(1.16) illustrates another fully holistic feature of the Newtonian theory, which was
invisible to us in the way Newton was advocating it. A change in the position
of the farthest objects causes the time we are experiencing to move forward!
However, this idea is not far from how astronomers defined and used the so-
called ephemeris time in practice. The motion of planet earth with respect to
the farthest stars was used historically to keep track of the time passing, which
is a similar concept. Time is a derived notion, not a primitive one, as Leibniz

emphasized.

1.4 Principle of Relationalism

In the first part of this section, we have already mentioned the difference between
the two alternative worldviews of Newtonian absolutism and Leibnizian relation-

alism. Given, that:

1. Most of our current physical theories (like Classical Mechanics, Quantum

Mechanics, ...) are based on the Newtonian worldview;

2. Predictions of our current physical theories are compatible with the empirical
data to an astonishingly high degree of accuracy and give a pretty clear explana-

tion for the occurrence of numerous natural phenomena;
3. We think the relational worldview should be adopted in physics,

it is at first sight unclear whether a realistic relational theory can be formu-
lated at all because it is not clear whether statements 2 and 3 are compatible

with each other. In the following, we will explain how statements 2 and 3 can
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both be true. To this end, we introduce the Principle of Relationalism as

follows:

Two possible universes, differing from each other just by the action of
a global similarity transformation Sim(3), are observationally®

indistinguishable.

If a theory based on the Newtonian worldview satisfies the Principle of Rela-
tionalism, it can be recast into an empirically equivalent theory based on the

Leibnizian worldview.

1.4.1 Scale invariant Classical Gravity

A natural question to ask now is whether Classical Mechanics satisfies the Princi-
ple of Relationalism or not. As the interaction potential functions like Newton’s
gravitational potential V = %, or Coulomb potential V' = ﬁ% defined
on the absolute space, though being manifestly rotational and translational in-
variant, are clearly not scale-invariant, the answer of the above question seems
to be megative, and as a result of it, the hope for a relational understanding
of Newtonian Mechanics seems to be vanished'®. However, prior to the above
question, we should have asked another more primitive question. Do we already
know everything about Newtonian theory of classical Mechanics? The answer to
this question may be “Yes” if we had a derivation of the value of, for instance,
the gravitational coupling constant G from Newtonian theory. In other words,
we have the opinion that in a complete physical theory based on the Newtonian
worldview, there exists a theoretical derivation of the value of the gravitational
constant GG, which must, of course, coincide with the value observed in our uni-

verse. So even if the Newtonian worldview is the correct view, the Newtonian

9With observationally indistinguishable we mean kinematically and dynamically
indistinguishable.

10See however Chapter (11) for a way of understanding Newtonian mechanics as a relational
theory, utilizing mechanical similarities. We call this alternative way the BKM-approach.
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theory of gravitation may very well contain a foundational incompleteness (or
gap) in it, as will be explained in more detail below in Section 1.4.2 1. In the
following, we propose a way to partially fill this gap in a manner compatible with

the Principle of Relationalism.

We can always render an arbitrary potential function defined on @).,, or absolute
space, scale-invariant, by postulating a special scale-dependent transformation
law for its coupling. This law should be precisely the inverse of the transforma-
tion law of the potential function without its coupling. In this way, the scale-
invariance of the total potential function we started with on the absolute space

is established. Take any potential function
V(ry,ory) =Y f(r1, .., 7n)
with Y being its coupling constant. Now apply a scale transformation
Ty = CTy

with ¢ € R*. Under this transformation, the function f and its coupling constant

Y will transform as the following

f(Tl, ...,TN) — f’(rl, ...,TN) = f(CTl, ...,CT’N)
Y =Y.

Then clearly the potential V' transforms as
VsV =Yf

Now by requiring V' to be scale invariant i.e. V' =V, we can deduce the required

transformation law of Y, namely

Y' = Y%.
In other words, if f is a homogeneous function of degree k£ on absolute con-
figuration space (as is the case for gravitational potential), ¥ must also be a

homogeneous function of degree —k.

1 Qpecifically a quotation there, from Albert Einstein would be illuminating in this matter.
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This way the potential V' (z) on absolute space uniquely projects down to a po-
tential function V;(gq) on the reduced configuration space % =~ R3V-1 wrt. the
scale transformations. Denote this projection by 7 : R3V — R3¥~=1 Then for

each g € BX 2 R3N-1 and z € 77(¢) we have
Vilg) = V() (1.17)

This assignment is indeed independent of z (as long as it lies on that fiber above
q) because V(x) is a scale-invariant function on absolute configuration space.

In other words, one unique value of the potential is given to each equivalence

12 But, of course, to find

13

class of configurations under scale transformations
out the unique value for a given shape, one has to choose a representative
of the equivalence class, and this representative may as well be our good old
representation!* in which G = 6.67408 x 10 "m3kg='s~2. This way, we can
make the classical gravity scale-invariant and compatible with the Principle of
Relationalism. Equivalently one can say that in the gauge where the length of
the international prototype meter bar is chosen to be the length unit (i.e., 1

5

meter), the measured value of G in our universe'® in its current state becomes

the above value.

1.4.2 Constants of Nature

In the last subsection, we have introduced a transformation law for the value of
the gravitational coupling G. This transformation is obviously in conflict with
the general belief that G is a constant. Hence we found it necessary to clarify
this point and clear up possible confusions which may arise in this regard. To
be more precise, we argue which constants of nature (numbers appearing in laws
of nature of the respective theories) have to remain unchanged, given that the
universe has to look and work the same way after a global scale transformation.

We will see that GG is not among those unchanging “constants of nature”, neither

120r similarity transformation

3By choosing a unit for length and time
14The SI units

Bgtrictly speaking near Earth
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is Planck’s constant A, nor the vacuum permittivity eq.

Observationally, we experience a vast number of regularities and fascinating pat-
terns in nature, and our quest to understand the reason for their occurrence leads
us to the discovery of the laws of nature in which a collection of dimensionless
numbers appear whose exact values are not derived in any way inside the theory,
but rather determined experimentally. In the words of John D. Barrow [27] these
dimensionless numbers capture at the same time our greatest knowledge and our

greatest ignorance about the universe.

To make it clear to the reader which numbers we are referring to, the nice corre-
spondence of Albert Einstein with Ilse Rosenthal-Schneider [28] on this topic is

very helpful. Einstein writes:

“Now let there be a complete theory of physics in whose fundamental equations
the "universal” constants cy,ca,...,c, occur. The quantities may somehow be re-
duced g,cm,sec. The choice of these three units are obviously quite conventional.
Each of these cy,...,c,, has a dimension in these units. We now will choose con-
ditions in such a way that ci,ce,c3 have such dimensions that it is not possible
to construct from them a dimensionless product c‘f‘cgcg. Then one can multiply
Cy4, Cs, €tc., in such a way by factors built from powers of ci,co,c3 that these new
symbols ¢}, ci, cg are pure numbers. These are the genuine universal constants
of the theoretical system which have nothing to do with conventional units. My
expectation now is that these constants cj etc., must be basic numbers whose val-
ues are established through the logical foundation of the whole theory. Or could
put it like this: In a reasonable theory there are no dimensionless numbers whose
values are only empirically determinable. Dimensionless constants in the laws of
nature, which from the purely logical point of view can just as well have different
values, should not exist. To me, with my "trust in god” this appears to be evident,

but there will be few who are of the same opinion.”

To Max Planck, it seemed natural that the three dimensional constants G, h,
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¢ which appear in physical theories, determine the three basic measuring units.
The units derived from them retain their natural significance as long as the law
of gravitation and that of propagation of light in a vacuum remain valid. There-
fore, they must always be the same when measured by the most widely differing
intelligent beings according to the most widely differing methods. He defined the

Planck mass and length and time units as

—— =1.616 x 107*m

I
ﬁ‘
“l ¢

=2.177 x 10 %

G

cd

Bf‘

= 5.390 x 10~*s

These can be considered as Einstein’s dimensional constants ¢q, s, 3.

So far, we are aware of four distinct forces of nature, i.e., gravity, electromag-
netism, and weak and strong forces. The strength of the former three of these
forces (compared to the strong force) can be considered dimensionless (or Ein-
stein’s pure) numbers that define our world. The value of these dimensionless

numbers are

e? 1
[0 = ~
EM = greohe  137.036
2
m,
ag = hc” ~5x107%

G F’ITLI%C
aw ‘=
h3 ~ 1.03 x 10—°
Universes for which the value of any of these three dimensionless numbers are dif-

~ 1071

ferent from the above values are observationally different (because the balances

of the forces differ).

Coming back to the proposed transformation law
G — cG
of the gravitational constant under a scale transformation by the factor ¢ € Rt

r—cr
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one can immediately see from a that it changes the balance of Forces in Nature
and leads to observable differences, which violates the Principle of Relationalism.
However, if this transformation of G is accompanied by a transformation A — ch
of the Planck’s constant, the strength of gravity would remain unchanged. It is
well known from Quantum mechanics that even the slightest change of the value
of h would lead to a sudden release or absorption of an enormous amount of en-
ergy due to the dependence of the atomic orbital energy levels on the value of A,
i.e., for the hydrogen atom FE,, = —%%, and this again violates the Principle of
Relationalism. However, if a transformation ¢y — < of the vacuum permittivity

is also taking place along the mentioned transformations of G and A, the value of

energy levels remain unchanged so that the mentioned principle is respected.

To summarize, after performing a scale transformation by a factor ¢ € Rt
r—cr

on the whole universe, the Principle of Relationalism requires the following trans-

formation of (Einstein’s dimensionful) constants

G — cG (1.18)
h — ch (1.19)
€
c
To appreciate the consistency of these transformation laws more, notice that they
automatically induce the expected transformation of the Bohr radius ag = 4;606’22,

1 e2
4dmeg mec?’

classical electron’s radius r, = and the fine structure constant agy,
namely ay — cag, 7. — cre and agy — agy. So all atoms in the universe get
bigger by exactly the same scaling factor for the universe itself, and the relative
strength of the electromagnetic force remains unchanged. They also automati-

cally result in a scale-invariant electrical force (Coulomb’s potential).

Imagine an experiment by which one wants to figure out the velocity of an object.
We argue that after performing a global scale transformation, the velocity of the

same object during the same experiment remains unchanged. One can see this
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in the following way: From the formulas of Planck’s system of units mentioned

above, one can easily see that a scale transformation
r—cr
reshuffles the values of these units expressed in SI'® as
L, — cL,

M, — M,
T, — 1,

As expected, the natural unit of length gets bigger by the same factor ¢ € R™.
The time (measured in Planck’s unit) also gets dilated and runs faster by the
same factor.

Hence the measured speed v of an object transforms under a global scale trans-
formation as follows

_Aar;_> , A" cAx
At U T A T ear !

(Y

where Az stands, for instance, for the distance between two other objects (which
are needed to define the start and end point of any interval in space), and At
for the time (measured in Plank unit) the object takes to travel between those
two reference objects. The primed versions have the same quantities; however,
after scale transforming the universe and measuring everything in new Planck
units. The same can be said about the velocity of light!” ¢, where one measures
the time needed for light to path the distance between two objects. Note that
in the relation At = cAt, the Principle of Relationalism is tacitly invoked in
equating the number of ticks(or steps) of our new clock in the scaled universe for
the duration of a physical phenomenon (in this example the passage of light of

an object between the two reference objects), and the number of ticks of the old

16Here SI is being thought of as some measures of hypothetical absolute space and time, in
the sense that they are exempted from the global transformation we perform on the universe.
So we scale everything in the universe except the SI standard meter stick and the SI standard
clock as resembling the absolute distance and absolute time duration, and a hypothetical mean
to compare the new Plank’s units after expansion to the old ones inside the absolute framework
that classical theories and quantum mechanics are presented.

17To be more precise, the average two-way light’s velocity is meant here. No experimental way
exists to measure the light’s direct one-way velocity due to the conventionality of simultaneity.
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clock in the old (smaller) universe while the same phenomenon is taking place.
So the measured speed of any object in universes before and after global scale
transformations comes out the same. The Principle of Relationalism, and the
characteristics of Plank units together are responsible for this result.

As a consequence of the constancy of the speed of light (measured in Planck

1
Veoro
transformation law of vacuum Permeability, namely

units), ¢ = under scale transformations, one can deduce the corresponding

Mo — Clo

The dilation of time under scale transformation in the presented way is also com-
patible with the operational SI definition of the time unit, i.e., the second is
defined as the duration of 9192631770 cycles of the radiation corresponding to
the transition between two energy levels of the ground state of the cesium-133
atom at rest at a temperature of absolute zero. By performing a scale transfor-
mation r — cr, the wavelength of the emitted photon transforms correspondingly
(Aphoton = CAphoton), and hence the time required for one cycle , i.e. T = A”h%,
transforms as T" — ¢T'. Therefore, the SI second will also get dilated by the same
factor ¢ € R™. This shows the expected coherence between Planck and SI units
of time under global scalings.

It is worth mentioning that the above feature of the modified Newtonian theory
is not keen on using the Planck units. The true homogeneous function of the
first degree on () which must lead to the value 6.6743 x 10~!* k’;; for the current
state of the universe also allows the existence of Kepler pairs now'®. The unit of

length and time defined as the semi-major axis, and the orbital period of a Ke-
pler pair, change under a global scale transformation Sc exactly as their Planck
counterparts in the modified Newtonian theory. It is because of the mechanical
similarities in the modified Newtonian theory. The homogeneity of the poten-
tial function of zero’s degree in modified Newtonian theory guarantees that the
Kepler pair’s orbital period becomes longer by a factor ¢ € RT after a mechani-

cal similarity transformation of the universe (by the factor ¢) has been performed.

Another point worth emphasizing is that even though the value of G depends

18Whether or not these Kepler pairs form in a typical universe governed by the modified
Newtonian theory is a separate question to be addressed in future work.
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directly on the units chosen for the measurement of distance and duration, once
a set of units is chosen (e.g., SI units), there is no justification in Newton’s theory
as why the value of G should be what it turns out to be (in the chosen set of units).
We have called this issue a foundational gap in Newton’s theory and proposed a
way to partially fill this gap so that the principle of relationalism can be directly
implemented in modern physics (which includes undoubtedly more than just the
gravitational interaction alone). Completion of the absolute physical theories in
line with the idea of G, h, ¢ being homogeneous functions of the mentioned
degrees on the universe’s configuration space not only partially fills'® the founda-
tional gap in Newtonian mechanics, but also directly address Einstein’s justified
concern about dimensionless constants of nature in his correspondence with Isle
Rosenthal-Schneider. Namely, if in the ultimate (absolute) physical theory G, h,
€0 emerge as homogeneous functions on the configuration space (as anticipated
by the direct implementation of the principle of relationalism), an immediate
justification of the (otherwise surprisingly fine-tuned) value of the dimensionless
constants of the ultimate theory characteristic of our universe, is provided, as the

latter are specific ratios of the former.

Remember that Jacobi’s principle stated that the path taken by a classical system
minimizes the Jacobi action S = f;f VvV E —Vds with z; and x5 standing for the

initial and final configuration of the system. For the path x(¢) that minimizes

this action one has the energy conservation equation £ = %M (‘Zl—’;, ‘fi—;‘) + V. Hence

along this path (which is the only physical path in the sense that only this path is

dx dx
dt’ dt

this path can be rewritten as S = f;f Vv Kds. If one now performs a scale trans-

realized by nature) one has K := 3 M ( ) = E — V. Now Jacobi action along
formation r — cr, with ¢ € R, the system naturally gets bigger. However, the
velocity of the constituting particles of the system measured in the new Planck
units of time and length remain unchanged. Moreover, the length of the path
between cx, and cxry measured in the new Planck length also remains unchanged.
So in this way, one sees now that the action of classical mechanics is invariant

under scale transformations.

19We use the word partially cause the exact expression of these functions are not determined
and are yet to be discovered in a future complete physical theory. Only then is one allowed to
drop the word “partially”.
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Chapter 2

Symplectic reduction of phase

space with respect to a symmetry

group

In this section, we will review how the collective motion of a multi-particle system
(in particular, the rotations and translations of the system) is gotten rid of in the
Hamiltonian formalism using the reduction procedure of Mardsen/Weinstein. We
follow [3],[4] to a big extend. First, we review the expression of the laws of classical
mechanics using a symplectic structure on phase space. This level of abstraction
for formulating Classical Mechanics seems at first sight to be an unnecessary
complication. However, its power lies in its generality and is beneficial, compared
to less abstract formulations, when dealing with curved spaces. It is the case
in many mechanical systems with constraints, as well as in reduced spaces like

Q RSN

internal configuration space Q;,; = 53 — B@ O shape space S = of a

sim(3)

N-particle system.
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2.1 Definition of a Hamiltonian System in Sym-

plectic Phase Space

Denote the configuration space of a N-particle system with Q = R3*V. A symplec-
tic form o on @ is a closed non-degenerate differential two-form. Closed means
that the exterior derivative of o vanishes, i.e. do = 0, and non-degenerate means
that if there exists some u € T,(Q) such that o(u,v) =0 for all v € T,(Q), then
u = 0. The Hamiltonian H is a function on 7*(Q) to which one can associate the
respective Hamiltonian flow, which is a vector field Xz on @) defined by the equa-
tion o(Xpy,Y) = dH for all Y € T(Q). Symplectic geometry is well suited for
investigating mechanical systems. Starting with a system’s configuration space
@, its phase space T*(Q) is canonically symplectic. Denoting the configuration
coordinates by ¢;, and the remaining coordinates needed on 7%(Q) by p;, the
canonical symplectic form becomes o = ZfV:1 dg; N\ dp;. The Hamiltonian flow
associated to a physical Hamiltonian H = Zf\il %2

the system’s initial state (¢;(0),p;(0)) € T*(Q), which is compatible with New-

+ V leads to an evolution of

ton’s laws of motion. In the following, we explain this construction more precisely.

The cotangent space T (Q) at z € @ is isomorphic to the tangent space T,(Q)
by the induced isomorphism defined through the following equation

L T(Q) = TH(Q) 2.1)
I,(v)u = K, (u,v)

for u,v € T,(Q). Here . stands for the pairing of vectors T(Q)) and covectors

(Q).

Setting p := I,(v) and writing p = (p1,p2,...,pn) as a tuple, we get from the

definition of K,

Dk = MiU (2.2a)
N

pu = Z(pk, Up)- (2.2b)
k=1

Thus, we have obtained the induced variables x and p, constituting a coordinate

system of the cotangent space T*(Q) = Q x R3V. z and p are often called the
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coordinate and momentum variables.

Now we define the canonical one-form 6 on the cotangent bundle 7%(Q). For

(u, w) € T(T™(Q))

being a tangent vector at

(z,p) € TH(Q) = Q x R™
we define
Oz p)(u, W) == p.u . (2.3)

If w is a vector field on @, then dxi(u) = u} in Cartesian coordinates, so that the

canonical one-form 6 can be expressed in the following form

0 =p.dr = Z(pk, dxy). (2.4)

The exterior derivative of 6 reads

do = dp Adx = (dpi A day).

A scalar product K on the cotangent space 7.7 (Q)) can be defined as

K2 (q.p) = Ko(I7(0), Ip)) = 3 41 20) (2.5)

m

for q,p € TX(Q).

The Hamiltonian of a system is a function on 7*(Q) of the following form
H=K"(p,p)+U, (2.6)

where U is a potential function invariant under translations (R") and rotations
(50(3)).
The triple

(T*(Q),do, H)

constitutes a Hamiltonian system.
Hamilton’s equations of motion are given by the Hamiltonian vector field X,
which is defined through

dd( Xy, Y)=dH(Y)
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VY € T(Q).

Before moving to the next section, we briefly discuss how a symplectic form
can be used to express electromagnetic laws of motion for a charged particle [29]
for the purpose of illustration. Using the isomorphism (2.1), the magnetic vector
potential A can be considered as a 1-form. Then the magnetic field B becomes
a 2-form dA on configuration space (). Gauss’s law for magnetism V.B = 0 is
in this formalism expressed as dB = 0. Then one defines a new phase space
(T*(Q), o) which differs from the previous phase space (T*(Q), o) in that the

canonical symplectic from o on T7*(Q) is replaced with
op =0 +71'B,

where 7 : T%(Q)) — Q. Denoting the electric potential function by ¢, and de-
noting the velocity or momentum of the charged particle (which are identified to
cach other by the metric) by v, the Hamiltonian becomes H = % || v [|* +¢. The
Hamiltonian vector field which defines the dynamics in the presence of Electro-
magnetic field, can then be derived from og(Xpy,Y) =dH(Y) forall Y € T(Q).

2.2 Momentum mappings

The symplectic structure on 7%(Q)) enables us to express Noether’s theorem more
naturally. The action of a Lie-group G on T%(Q) can be generated by a vector
field a, on T*(Q), known as the infinitesimal generator of the action. Integral
curves of a, are the G-orbits on T%((Q)). Noether’s theorem then ensures the
existence of a function p on T(Q), preserved by the action and conjugated to
a, by the symplectic form, i.e. o(a,,Y) = du(Y) for all vector fields Y. This
function is called the momentum map, and it is preserved by the Hamiltonian
flow. Here we review the important concept of momentum mapping, which will
be used frequently in the process of reduction.

If a group G acts on the manifold ) and (., .) is a G-invariant Riemannian metric,

we define for
acG
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vy € T,0Q

the momentum map p as follows

pw:TQ)=T(Q) —» G* (2.7a)

p(vg).a = (ag, v,) (2.7b)
_d(e™x) .

a = — li—0€ T2 (Q). (2.7¢c)

T(Q) and T*(Q) are identified with the metric.

There is an intrinsic formulation of the connection form in terms of the momentum
map. Remember the definition of the inertia tensor(or operator) A. It was a linear
operator in A?(3), and there existed an isomorphism R between A%(3) and so(3)
(see appendix D), and since the tangent space and the cotangent space of () are
identified through the Riemannian metric on (), we are able to redefine the inertia

operator as follows

A:G—-G” (2.8a)
Az(a).b = (az, b,). (2.8b)

The connection form is then
w(vg) = A (u(vg))- (2.9)

The horizontal distribution is the kernel of the momentum map pu.
Alternatively, one can also think of GG as the group of symplectic transformations
(preserving df) and G as the Lie-algebra of G (which is identified with the tangent
space to G at the identity). For every a € G we get a one-parameter subgroup
of G by exp(ta).

If for any a € G there exists a function F, on T*(Q) satisfying dfa, = —dF,,
then the action of G is called strongly symplectic. The function F, depending
linearly on a, can be expressed in the form Fu(x,p) = u(x,p).a which is the
defining property of the momentum map p of 7%(Q) to G*.

If the action of G is moreover exactly symplectic, G leaves 6 invariant — then

there is a simple equation that gives us the momentum map

w(x,p).a=>0(a,). (2.10)
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As we see below, momentum mappings cover linear and angular momentum.

It is well-known and intuitively clear that the expression of the connection form
(2.9) for the SO(3) fiber bundle, in Jacobi coordinates r; becomes

w=R[|A Nﬁlr'xdrl 2.11
((Z ) @2.11)

where dr; is the 3 dimensional vector valued one form, which, if applied to a

vector on configuration space ), gives the velocity vector of just the j's particle.

2.3 Marsden-Weinstein method of Reduction of

dynamical systems

Consider a symplectic manifold P = T%(Q), the symplectic form ¢ on this man-
ifold, and a o-preserving symplectic group G acting on P. The adjoint Ad, and
coadjoint Adj representations of GG on the Lie-algebra space G and its dual space
G* respectively, are defined in appendix C (see C.1).

Let p be the Ad*-equivariant momentum mapping associated with the action of
G. That is

p:P— G* (2.12a)
wlgx) = Ady—p(z), Vo € P. (2.12Db)

For r € G*, u~'(r) is a submanifold of P. The isotropy subgroup G, of G at
r € G* is defined as the following

G, ={Vge G| Ad,.r =1} (2.13)
Define then the manifold . i)
= z. (2.14)
with its canonical projection
7oy (r) = P (2.15)



P, is called the reduced phase space.
With the help of the inclusion map

i pu t(r) = P
we can get a unique symplectic form o, on P,
T 0y = 1,0. (2.16)

And at last, if the Hamiltonian H on P is invariant under the action of G, the

Hamiltonian vector field Xy projects to a vector field Xy on P,., namely
WT*XH == XH,«- (217)

with
7t H, = i*H. (2.18)

Hence one obtains the reduced system

(P, 00, Hy).
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Chapter 3

Example: Reduction with respect
to the Euclidean group E(3)

As an illustration of the general framework of symplectic reduction discussed in
the previous section, we review the reduction of phase space of a classical system

with respect to the Euclidean group, following [3] to a considerable extent.

3.1 Reduction with respect to the translation

group G = R?

The translation group R?® forms an exact symplectic group on 7*(Q). Any mem-
ber of this group a € R? acts on T*(Q) as follows, which leaves the one-form 6

invariant

(l‘b -y TN, P1, 7pN) — (I‘l + a,..., TN +a7p17 7pN)

For a € R?, where R? now stands for the Lie-algebra of the translation group,

the infinitesimal generator of the subgroup a(t) = exp(ta) has the form

a,(z,p) = (a,...a,0,...,0) € T:(Q)
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so that the momentum map p; : T*(Q) — R? is given by:
pu(z, p)-a=0(as) = > (pr,a) = Qope | @) =

(. p) = pi (3.1)

This way, we obtain the usual linear momentum.

Now in order to perform the reduction of the phase space T*((Q)) with respect to
the translation group R? we apply the Marsden-Weinstein method. For A € R3,
p; 1)) is a submanifold of 7%(Q) determined by 3" pr = A. This submanifold is
isomorphic with Q@ x RW¥=13 for any . It is clear that the isotropy subgroup at
A, denoted by Gy, is the whole group of translations R3. So the reduced phase
space

p ()

B="ge

can be identified with % x R3N=1 "and therefore with
P/\ = Qcm X Rs(N_l)'

This reduced space can, in turn, be thought of as a submanifold of 7*(Q) deter-

mined by the following conditions

What we are interested in is the case A = 0. The submanifold 1 (0) can then be

R3
identified with the cotangent bundle 7*(Q.,)
PAZO = T*<Qcm)

The reduced symplectic form on 7%(Q).y,) is then the restriction of df (which was
the form on 7*(Q)) on T*(Q.p). For notational convenience, both of them are de-
noted by the same letter. So one arrives at the reduced Hamiltonian system with

respect to the group of 3-dimensional spatial translations, i.e., (T*(Qun), d6, H).

Note that the identification between the reduced phase space with respect to

-1
the group of translations P, = MT?S/\)’ and the cotangent bundle of the center

of mass system 7*(Q.n) holds only for A = 0. In the remaining part of this
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subsection, we explain one way to see this point more clearly.

Theorem: P\ = %, and T*(Q.m) cannot be identified to each other if A # 0.

Proof: Consider a generic point y € T*(Q). This point can symbolically be
_>
P

denoted as y = (z) where 7, stands for the momentum of i’'th par-
L

ticle (here the isomorphism between 1-forms and vectors is invoked too), and

x € Q = R3N stands for a point in the configuration space of the multiparticle

system. One can view T*(Q) simply as a 2N - 3 dimensional space, which is

coordinatized by ?1, e 71\;, ?1, e ?N. As each of these vectors consists of 3

numbers, they are indeed a collection of 6/N numbers. As explained in the last

()
R3

paragraph, can be considered as a 2(N — 1).3 dimensional submanifold of
T*(Q) given by the constraints (3.2). So far, so good. One can alternatively
view T*(Q) as follows: take the configuration space @ of the system, and at-

tach to each point x € @ a (3N)-dimensional vector-space. This vector space is

7

thought to be the collection of all possible elements and denote this
i
vector space by V. Now comes the tricky point. The condition (3.2.a) gives
us a fixed 3(IV — 1) dimensional surface in the absolute configuration space Q.
By definition, this solid surface can be identified by Q.. (one can even call this
surface @., no matter whether it is embedded into some bigger space or not).
For the moment, we denote this surface by Q) . where p reminds us that this
surface is part of a bigger configuration space ). Now condition (3.2.b) selects
a subspace of the vector-space which was attached to each point on (), hence

also to each point on the surface ()?,. Clearly this subvector-space consists of

%
P1
special elements ; namely the ones with > ?k = A. We denote this
i
—1
subvectorspace by V) C Vp. In this way ’%Té” (which again was a submanifold

of T*(Q) realized by constraints (3.2)) can be viewed as Q% x V().
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On the other hand, the cotangent space over the center of the mass system, i.e.,
T*(Qem) is on its own an independently existing 2(N — 1)d dimensional space,
without any need of ambient space. Similarly this space T*(Q.y) can be viewed
as Qem X Vem, where V., is just the 3(N — 1) dimensional vector space attached
to each point of the center of mass configuration space Q..

Now if one tries to embed T*(Qy) into T*(Q) one can indeed perfectly fit Qe
on (), but one can never fit V., on V) unless A = 0. The reason is that
Vi VE, = ©. Here V2 denotes the embedding of V., in V. Any element
v € V,, will assign a set of velocities to the particles. Pulled up to the abso-
lute space in the center of mass system (so condition (3.2).a being valid), these
velocities add up to zero (so they have to be elements of V)_g); otherwise we

would immediately move out of the surface Q¥ = and that results does not fit with
T*(Qem) on Q2 x V), for X # 0.

3.2 Reduction with respect to the Rotation
group G = SO(3)

We now proceed to the angular momentum defined on 7%(Q). The rotation
group SO(3) plays here the role of an exact symplectic group (preserving df)
whose action on T*(Q) is defined for (x,p) and g € SO(3) by

(z,p) = (97, 9p). (3.3)

For the case of vanishing linear momentum, i.e. A = 0, we note that SO(3) acts
actually on T%(Q.mn) as the conditions (3.2) are invariant under SO(3). If X is
non-vanishing, only a subgroup of SO(3) acts on %.

Consider some a = R¢ € so(3), where £ € A?(3) is the two-vector corresponding
to the Lie-algebra element a, and the correspondence is given by the isomorphism
R : A%(3) — so(d) defined in appendix D, see (D.4). The infinitesimal generator

of the subgroup exp(ta), is given by

a,(z,p) = (Re(x), Re(p)) = (Re(21), ..., Re(xn), Re(p1), ..., Re(pw))
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where (D.6) is used. Therefor, the momentum mapping

2 T*(Qem) — s0™(3)

can be calculated as follows:

N

N
pr(,p)-a = Oy (an) = > (x| Re(wn)) = (O prAwi | € = (Ryox | Re)
k=1 k=1

where (D.7).e has been used, and in the last equality, the fact that the mapping

R is isometric is invoked. Hence one ends up with

,Ur(xap) = RfZivzl Tk APk (34)

Here we have identified so(d) and so*(d) through the scalar product on so(d),
namely (a,8) = tr(aB’).
One can prove that for an exact symplectic group (transformations that leave the

1-form 6 invariant), the associated momentum mapping is Ad* -equivariant.

Now we use the Marsden-Weinstein reduction procedure for the rotation group
SO(3).

Let a € so(3) & so*(d). Then p, !(a) is a submanifold of T*(Q.,). Factoring out
the orbits of the isotropy subgroup G, of SO(3) at a, we obtain a reduced phase

—1
space “TG—@) This process is merely an elimination of the angular momentum.
a

An important question now pops up: is the reduced phase space %f) diffeo-
morphic to the cotangent bundle T*(Q;n:) of the internal space Qi = ﬁ()(d)
as it was the case for the translations group?

The answer is NO, for a # 0.

For the N-body problem in R? the dimension of the phase space reduces by 4
when eliminating the angular momentum. This is because the Lie-algebra so(3)
is 3 dimensional, and the isotropy subgroup G, for a # 0 turns out to be SO(2).
So the condition p, = a in phase space diminishes the dimension by 3, and fac-
toring out the SO(2) orbits does by 1. Intuitively, once a single member of the
3-dimensional space so(3) has been chosen for the total angular momentum a

of the Hamiltonian system, we end up on a sub-manifold with three dimensions
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less. Now, in the original space, start rotating the whole system about an axis
parallel to the total angular momentum vector and passes through the system’s
center of mass. It is indeed an SO(2) rotation. It is clear that the value of the
momentum map g, does not change at all by applying this SO(2) rotation. So
this constitutes the isotropy subgroup.

On the other hand dim (T*(th)) is by 6 smaller than dim (T*(Qcm)) Thus

dim(%@) = dim(T*(Qint)) + 2. (3.5)

So, in general, the reduced phase space with respect to rotations SO(3) is dif-
feomorphic to the cotangent bundle of the internal space T*(Q;n). From the
discussion above, it is clear that the total group SO(3) becomes an isotropy
subgroup G, if and only if a = 0, and in this case one has
p(0)
SO(3)
Generally speaking, the reduced phase space is diffeomorphic to the fiber product

=T (Qint)- (3.6)

T*(%) X f (G%) over the quotient %, keeping in mind that G% is naturally identified

with the coadjoint orbit bundle @ x¢ (G%) over % (see [30],[31]).

Now we want to study the symplectic form o, on the reduced phase space
-1
P, = ’“‘G—f) Since o, is defined by
T,0u = 1,0

and ¢ = df. we have furthermore i;df = d(i30) in our case. Remember that the

maps used are 7, : p~ ' (r) = P and i, : p7H(r) = T*(Qem)-

For notational convenience, we work in the following on the tangent bundle over
configuration space which is isomorphic to the cotangent bundle. Through this
isomorphism, the tangent bundle can be endowed with a canonical symplectic

form, which we denote by the same letter we used for the cotangent bundle, i.e.
O(w) = ka < U, dxy >= K(v,dx) (3.7)
where each tangent space is equipped with a scalar product given by

K. (u,v) = ka(uk | vk) (3.8)
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for u = (uq, ...,u,) and v = (vy, ..., vy) of To(Q).
Define
w? :s0(3) = T(Q)

dual to w, : T, — so(3) where the following isomorphisms has been taken into
account so(3) = so*(3) and T,.(Q) = T*(Q). For a € so(3) and v € T,.(Q), w? is
defined by

(wo(v) | @) =t Ky(v,w;(a)). (3.9)

One can prove that for any v € T,(Q) the vector v — w?u, (z,p) with I 1(p) = v
is vibrational (horizontal). To this end, it suffices to show that v — w?pu,(z, p)
and Re¢(x) are orthogonal for any & € A’2R?, in other words showing K, (R¢,v —
w2, (z,p)) = 0, for V€ € AZR? (see [3]).

Taking
(z,v)
as a coordinate system on 7'(Q), the submanifold x,*(a) is determined in T(Q)
by the condition R_ sy, 2,10, = @. Let now
w = v —w; i, p)
with I7'(p) = v, then the pair
(z, w)

meets the condition R_yy,z0aw, = 0, s0 that it serves as coordinate system in
©-1(0) under that condition. A coordinate system on y-'(a) can then be given
by the pair (z, w + wa). With this in mind we rewrite the canonical one-form 6
at point (z,v) € T(Qem), which obviously has Ti, ) (T(Qer)) as its domain

Oy = K(v,dz) = K, (w, dz)+K, (wfur(x,p), dm) = K, (w, dx)—l—(ur(x,p) ] wmodx)
In the last step, we have used (3.9). Consequently on y'(a) we have

in0(z) = Ko(w, dr) + (a | wy o dx) (3.10)
where v = w+w?a. Thus the canonical two-form df restricts to d(i%6) on u, ' (a);

d(it0) = d(K,(w,dz)) + d(a | w o dz) (3.11)
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In all these equations dz should be viewed as a vector [dxy,dxs,...,dxy_1]. So
one can formally act on it by the connection form w and then take the exterior
derivative and so on.

Since w is horizontal i.e. w € Ty pop = Tr(z)(Qine) the first term on the right hand
side of (3.11) is invariant under the action of SO(3), and hence in one-to-one
correspondence with the canonical two-form on T'(Q;n¢) = T*(Qint). In contrast,
the second term of the same side, depending on x, cannot project to a two-form
on Qe In fact, (a | dw) is not horizontal (its value changes if we act with the
group on it, or to be more precise, acting by any member of G/G,). We recall

that the horizontal part of dw is defined as the curvature form.

Last but not least, we discuss how an invariant metric' on the total space of
fiber-bundles induces metrics on horizontal and vertical subspaces. In the con-
text of molecular physics, this is known as splitting of energy into vibrational and
rotational parts (3], as the total space T'(Q.mn) is the tangent bundle over the
center of mass configuration space of a molecule, and the group of 3-dimensonal
rotations being the structure group.

Recall the decomposition

T2(Qem) = Toot © T hor
and the orthogonal projections
P, Ty = Tyror
and
H, =1, —P,): T, = Ty por

where 1, denotes the identity element in T),(Qcy,). With the help of the connection

form w, : T,,(Qem) — so(d), one has the following orthogonal decomposition for

any v € To(Qem)
wz(v) = P(v) = v = P,(v) + H,(v)

Hence for any v and u € T,(Q.y,) one has

Ko(v,u) = K, (Pa(v), Pa(w) + Ko (Hu(0), Hy(u)) (3.12)

Invariant under the action of the structure group.
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Now, if we set v = wu, we obtain the kinetic energy expressed as the sum of
rotational and vibrational energies. However, this does not mean there is no
coupling between the rotational and vibrational motions. The coupling rather
manifests itself into the dynamics through the connection form w.

We now focus on the second term on the r.h.s of (3.12). Let 7 be the natural
projection of Q. onto Q. Differentiation of that map m, : T'(Qem) — T(Qint)
restricted on T} jpor gives an isomorphism of T} por With T7(5)(Qint). Let XY €
T (Qint) for some m € Q.. Then, at every point z with m(z) = m, one has
unique horizontal vectors v and u satisfying 7,(v) = X and m,(u) = Y. If the
metric K, is SO(3)-invariant, i.e., Ky, (gv, gu) = K,(v,u) then the vibrational

energy (second term of (3.12)) induces a Riemannian metric B on Q;,; by
B (X,Y) := K,(v,u) (3.13)

One can easily verify that this definition is independent of the choice of x with

m(x) = m.

We now look at the restriction of the vibrational energy to the submanifold u*.
Using the coordinate

w=0 —wfua(x,p)

(with I'(p) = v, paring the vectors and covectors (2.1)) the vibrational energy
is written as k,(w,w) with R_ S mpazprw, = 0, and is in one-to-one correspondence
with the kinetic energy of the internal motion.

Now we turn to the first term on the r.h.s. of (3.12), the rotational energy.
Considering the definition of the inertia operator A, of the configuration x, as a

linear operator in A*R?, one can calculate (see [3])

Kz(P$(U)7 Pz(”)) - K$(w$(v),ww(v)) = (RA;IR_INT(IJ?) | MT(J},])))

If the system’s Hamiltonian is rotation invariant, the angular momentum is con-
served, i.e., 4 = a, and the last expression becomes a function of just the space
variables z, namely (RA;'R™'y | p). This function is, in fact, invariant under
Ga (easily verifiable by using (D.7d)) and thus projects down to a function on

the reduced phase space, which can be seen as centrifugal potential.
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Now all the necessary ingredients are available for the reduction of the Hamil-
tonian system with respect to SO(3). Remembering the inclusion map and the

projection map

ia: (@) = P =T(Qem) (3.14a)
T i N(a) = Py = “Zf‘""). (3.14b)

The reduced phase space % carries the symplectic form o, which, as discussed

a

before, is related to the canonical form df through
indd = Ti0,.
On %ﬁa) the reduced Hamiltonian H, is defined by
Hyom,=Hoi,.

Note that in the above equations defining the reduced symplectic form o, and

!'is avoided because the projection

the reduced Hamiltonian H,, the use of m,
map 7, is not invertible (it sends an entire fiber to a point in the reduced space).
This form and the Hamiltonian are expressed in coordinates (z,v) on u !(a) with

v =w + wPa as follows
Taoa = igdf = d(K(w,dz)) + d(a|w) (3.15a)

1 1
Hyoma=Hoi, = iK(w,w) + §(RA;1R’1ur(x,p) | pe(z,p)) + U (3.15b)

where R_ s>, znw, = 0.

The r.h.s. of these equations are invariant under GG,, and hence can be thought
of as quantities on the reduced phase space. The first expressions on the r.h.s.
of (3.15a) and (3.15b) are in one-to-one correspondence with the canonical two-
from, and the kinetic energy on T*(Qint) = T(Qint) respectively. The second
expressions on the r.h.s. of (3.15a) and (3.15b) can be seen as the source of the
Coriolis force and the centrifugal potential of the system’s projected motion on

the internal space (so the internal motion) respectively.

Note, that if a = 0, the reduced phase space is diffeomorphic to the cotangent

bundle T*(Q;,:) of the internal space Qint, and the symplectic form o, becomes
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the canonical two form on T%(Q;,:). The reduced Hamiltonian H, is then a sum
of the kinetic energy of internal (horizontal) motions and the potential on @,
(which is exactly the same potential as the one up on Q). If the system’s
motion on absolute space is planar (so @ = R?*"), and a # 0 the reduced phase
space is still diffeomorphic to T*(Qint), but the symplectic from o, is the canon-
ical one plus a two-form which can be seen as a “magnetic field” on @Q;,;. The
reduced Hamiltonian H, also becomes the sum of kinetic and potential energies
plus centrifugal potential. In both these cases, the system’s motion is internal
(horizontal). That means that it can be described on T*(Q;,;) or in terms of

internal coordinates and their conjugate momenta.
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Chapter 4

Reduction with respect to the

similarity group Sim(3)

4.1 Metrics on the internal and shape space

Following [7] we next review how the kinetic metric on absolute configuration

space induces a metric on the internal configuration space Q;,; = SQO;&. After

that, we explain a new way to derive a metric N on the Sim(3)-reduced tangent

bundle (SCZS%)) from the mass metric M on absolute configuration space in a

unique way. Moreover, we also explain how the unique metric N on shape space

S can be derived.
Metric on the internal space:

Let us recall how the metric on the internal space Q;,; = SQO;ZS) was derived

from the SO(3)-invariant mass metric (3.8) on the center of mass system

M., (u,v) = ka < ug | vg > (4.1a)
M, (u,v) = My, (gu, gv) (4.1b)
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where v = (uy,...,u,) and v = (v1,...,05) € T,(Qem) being any two tangent
vectors of ()., at the point x € Q..

Given two internal vectors v',u’ € T,(Qint), there are unique vectors u,v €
T;p(Qcm) ! so that

m(z) = q
me(u) =
. (v) = 0.

Now the metric B on @);,; can be defined in the following way
B,(v",u') := M, (v, u). (4.2)

Since the metric M is SO(3)-invariant, it does not make any difference to which
x € 7 !(q) the internal vectors v,u had been lifted for the value assigned by B,

This is, in fact, crucial for the well-definedness of the reduced metric.

The kinetic energy of a N-particle system in the center of mass frame is

=3 Z ! o [2. USing fp0 = w X rpq + da”’ﬁ* g", and the expression
A, (q) =1 "a,

for the gauge potentials, where

ay = a,(q) = Zrba X Dgr (4.3)

and A being the moment of inertia tensor with components

Aij = Aij(CI) = (| Tba |2 0ij — Tbaz'?“baj)
1

ol
I

one can write down the kinetic energy as

1 1
K=g<wlAlw>+<w|A|A> "+ Shud'd’ (4.4)

with

By = Z ai iy (4.5)

namely their horizontal lifts (4.7).
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The velocity of a system’s configuration in Jacobi coordinates is given by a vector
| v >=[Fs1, s Tsn1]
and in orientational and internal coordinates by the vector
| v>=10"4"]

where 6 are the Euler angles which turn the space frame to the body frame
of a configuration. If one decides to use the components of the body angular
velocity w instead of the time derivatives of the Euler angles for denoting vectors

in T(SO(3)) the configuration’s velocity can alternatively be expressed as
| v>=[w,¢"]

in angular velocity and internal basis. This last combination forms an anholo-
nomic frame or vielbein on T(Q.y,). Remember the relation between the body

components of angular velocity and derivatives of Euler angles, i.e.,

w1 —sinfcosy siny 0| &
wy| = | sinfBsiny cosy 0| |8
w3 cosf3 0 1| |4

So, the (kinetic)metric tensor mg,,, in angular and internal basis vectors {w?, ¢*},

where 1 = 1,2,3, and ¢ = 1,...,3N — 6 becomes as follows

A AA,

<“|">:[“’T ‘ﬂ ATA h
u v

w
q‘l/] = (chm)abvavb

So, the metric on @, in angular and internal basis vectors |w, ¢*] is given by

(4.6)

ab —

A AA,,]
. .
A A hy
Decomposition of an arbitrary system’s velocity in horizontal and vertical parts
gives

| v >=|v, >+ | vy >

w, @] = lw+ A", 0] + [-Aug”, ¢"]
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Correspondingly, the kinetic energy of the system can also be thought of as the

addition of two separate vertical and horizontal kinetic energies, i.e.
1 L w 1 o
K=K,+ K, = §(w + A, ") Aw+ A4 + §Bw,q q
where B, is the metric on internal space
B, = hu —AAA,.
So, in summary, to a vector
| v >=¢*

on internal space @;,; we associate a vector | v, > on @, which is called its
horizontal lift, connecting the two fibers. In the basis made of angular and shape

velocities, the horizontal lift of v" takes the from
| v >= [-ALd", ¢"] (4.7)

Then, the metric B, on the internal space can be found by the following defining
equation
<) | vy >= B,di'd =< vip, | van, >= Myl v5,
which leads to
B, = hu, —A,AA, (4.8)

For more information about the derivation of the metric on internal space

Qint = %, we highly recommend [7].

Metrics on shape space:

Now we are ready to derive a metric N on shape space S = swg(:s)' Since the

mass metric M is not scale invariant, i.e.,
M, (Sc,u, Sc,v) = My (cu, cv) = M, (v, u) = M, (v,u) # My(v,u) (4.9)

it is generally believed that, contrary to Q;,:, it does not uniquely induce a met-
ric on shape space S. However, once one uses measuring units built from matter
instead of absolute measuring units, one sees that the mass metric uniquely in-

duces a metric on Shape space. We first review how a metric on shape space is

46



derived with the introduction of a conformal factor and then give our derivation
of the unique metric on shape space, and explain the metric’s uniqueness, and

the relationship between realistic units of length and conformal factors.

As is explained in [16] one can introduce a new Sim(3)-invariant metric on @,
which subsequently induces a metric on shape space in a natural way. As the
mass metric M is already rotation- and translation-invariant, the easiest way to
arrive at a similarity-invariant metric is to multiply the mass metric by a function

f(z) (the so-called conformal factor) so that the whole expression
M, = f(z)M,
becomes scale invariant, i.e.,
Ve € R Vu,v € T,(Q) : f(cx)Mep(Scau, Sev) = f(x)Mg(u,v).

Note that the function f must be translation- and rotation-invariant so that it
does not spoil the Euclidean invariance of the mass metric. As M, = f(z)M,
is now a metric invariant under the whole similarity group we are ready to write

down the metric N on shape space:

N,(v',u') := ML (v,u) = f(z)M,(v,u), (4.10)
where
w(x)=s
e (u) = o/
(V) =0
with the projection map 7 : Qe — S = %(3)

When the action of scale transformation on 7°(Q)) is defined by the differential of
the scale transformations, i.e., Sc,, from the behavior of the mass metric M under
scale transformation (4.9) one sees that any rotation- and translation-invariant

2

homogeneous function® of degree —2 perfectly meets all the requirements of a

conformal factor. For instance

fa)=) Il —z; |7 (4.11)

1<j

2 A function of r variables 21, ..., , is being called homogeneous of degree n if f(cxy, ..., cx,) =
" f(x1, ..y @), Ve
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or

f@) =1, (4.12)
where
1
Lone) =32 2 = mon 1= 5= s | 2 = |

are two legitimate examples of conformal factors (as suggested in [16]). However,
as the introduction of arbitrary conformal factors leads to arbitrary metrics on
shape space and leads to the appearance of unphysical forces (see appendix A
for clarification), this treatment seems unsatisfactory to us. By paying more at-
tention to the important role of the measurement units in determination of the
geometry of space, below we propose another way to derive the metric on shape

space which does not have the problem(arbitrariness) just mentioned.

Bearing in mind that measurements of the velocity are, in essence, an experi-
mental task, the transformation law of the velocities under scale transformations
of the system (or any other transformation of the system) must also include ex-
perimental reasoning. Based on the principle of relationalism, we showed that the
behavior of rods and clocks under scale transformations of the system is such that
the measured velocities of objects (or parts of the system) are invariant. It is a
natural consequence of the simultaneous expansion of the measuring rod and the
corresponding dilation of the unit of time (See Section (1.4) for an explanation

of this fact). Hence, a velocity vector

Uy = (v1, oo, ON) € To(Qem)

of an N-particle system transforms under scale transformations of the system as
follows

T —cr
Uy = (Uly --'aUN) € Tx(Qcm) — Ve = (Ula "'7UN) € Tcw(Qcm)
Given the above action A, of ¢ € Sc C Sim(3) on velocities(or on T(Q)); the
mass metric is a Ag.-invariant metric on (), as can be seen by a short calculation:
Mx(vx; uz) — Mcx(Acvxa Acux) = Mm(vmv ux) (413)
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where the equalities M, = M., = M and A_.v, = v, has been used. Considering

T(Qint) = T(%) as a Ag.-fiber-bundle, the mass metric B on @Q;,; = %
(defined previously by expression (4.2)) induces a unique metric
Ns . T(th)/ASc X T(ant)/ASc — R
We arrive in this way at the metric N as follows
N (v, u') := By(v,u) (4.14)

where

m(q) = s

' (u) =

m'(v) =0

with the projection map defined as follows
T Qing — S

7 T (Qint) = T(Qine)/ Ase
Because the above construction is Ag.-invariant, to which ¢ € 7 !(s) the pair
of shape vectors o', u' C Ty (Qint)/As. are lifted, does not make any difference
for the value assigned by N, to them. Hence, the metric N is also well defined.
This method brings one uniquely to the shape (kinetic)metric 3N on T(Qjnt) /Asc
without the need of introducing a conformal factor and the mentioned ambiguity

involved with it.

Alternatively, one can complement the DGZ-derivation of metric on shape space
(4.10), and remove the involved arbitrariness in it as follows. As seen before,
Mathematically, a metric G on a manifold @ is called scale-invariant if and only
if

Vg, v9 € T,(Q) : Gy(v1,v2) = Geg(Seavr, Scavs) (4.15)
where Se, 1 T(Q) — T(Q) denotes the push forward of vectors along the scale
transformations Sc : ¢ — ¢q on (). Since Sc,v = cv, we saw that the mass
metric M is not scale-invariant in this sense(4.9). However, what one physically
measures and is relevant is not M but

M, (01, v2)

M, (¢ — 45,9: — q5)
49
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where 1 < 7,7 < N are two particles that are used to define the unit of length.
This is another way to realize how the arbitrariness of the metric on shape space
criticised before disappears by the usage of real measuring units instead of “in-
accessible absolute units”. The measured mass metric is on its own scale
invariant in the mathematical sense mentioned above. One could say that part of
the arbitrariness of the conformal factor is now in fact shifted to the arbitrariness
in the choice of a length unit, i.e., which particles i and j one chooses to define
the length unit. However, one should realize that all reasonable choices of length
unit will lead to the same metric N on shape space. A reasonable choice of length

unit would be such that leads to no fictitious forces.

It is worth noting that N is a metric on T'(S) = T(Qnt)/Scx, while N is a
metric on T(Q)/As.. Thus, these are metrics on two different vector bundles.
Although we intuitively expect them to represent the same physical entity, their
mathematical equivalence is not obvious to us. Throughout the rest of this text
we will always work with 7'(Q))/As. and use N. With some abuse of notation,
we denote both bundles by T'(S), but it is clear from the context which bundle

1s meant.

4.2 Reduction of the theory

For reduction of classical mechanics w.r.t. scale transformations, we now use the
methods explained in chapters two and three. One of the reasons that so far
nobody has gone after the extension of these formalisms to the similarity group
is that the potential function defined on absolute space, though manifestly rota-
tional and translational invariant, is clearly not scale invariant (take Newtonian
gravity as an example). However, as explained in Chapter (2), scale transfor-
mation becomes an additional symmetry of the (modified) classical physics (see
equation (1.17)), and this enables us to perform a symplectic reduction of the

system’s phase space with respect to the whole similarity group G = sim(3).
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Besides having a similarity invariant potential function on absolute configura-
tion space (see equation (1.17)), in order to reduce the classical systems with
respect to the similarity group (which was initially argued for and motivated in
Chapter 1) with the help of symplectic reduction methods explained in Chapter

(2), we have to change the connection form (2.11) to the following one

N-1 N-1
W= W, +Wws = R(A;l(z i X drj)> + LD, ! < Z rj.drj> (4.17)

J=1 J=1

in which I3 is the 3 x 3 identity matrix, and we have defined the operator
D, :R—R
A—D
expansion velocity — dilatational momentum

as

D,(A) =) 2\ (4.18)

and we call it the dilatational tensor. Here X stands for the rate of change of scale

of the system (scale velocity so to speak)?

A
A=5 (4.19)

with
A =max | z; — ;| (4.20)

for i,7 = 1,..., N being the system’s scale variable.

We constructed this operator in direct analogy to the inertia tensor A,. The
inertia tensor sends an angular velocity (which can be represented as a vector
in R?) to another vector in R® which represents the total angular momentum of
the whole system (object). In the same way, the dilatational tensor D, takes an

expansion velocity, which can be represented by just a number in R to a measure

3Here of course we assume that all measurements are conducted with the use of special
Newtonian rods and clocks, which are isolated from the materialized universe and do not get
affected by them in any way or by transformations we perform on the materialized universe.
Practically of course such measuring instruments do not exist, but the existence of absolute
space and absolute time in Newtonian worldview justifies their hypothetical existence.

51



of the total expansion of the system (dilatational momentum D) which again can

sim(3)
trans(3)

can be considered to be the addition of 3 x 3 skew-symmetric matrices of so(3),

be represented by another number in R. As the Lie algebra of the group

and real multiples of 3 x 3 identity matrix I3, one recognizes the correct structure
in this connection form. If one takes a random vector of T, (M) and acts on it by
this connection form, the first term of (7.12) gives a member of so(3), and the
second term, a number multiplied by the identity matrix I3. So, it does what it

is expected to do.

4.3 Symplectic reduction of phase space

Now that the metric (7.8) on shape space, and the connection form (7.12) is given,
the way to get the reduced Hamiltonian equations of motion with respect to the
similarity group is paved.

The first step is to find the momentum mapping corresponding to the following

group
G =S50(3) x R*

To this end consider first the Lie-algebra of G. It can be written as
G = z[3 +s0(3)

where z € R and so(3) are as usual the skew-symmetric 33 matrices representing
the Lie-algebra of the rotations group.
The action of G on T*(Q.p) is as follows

(@1, s