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Abstract
Machine learning has seen many recent breakthroughs. Inspired by these, learning-
control systems emerged. In essence, the goal is to learn models and control policies
for dynamical systems. Dealing with learning-control systems is hard and there are
several key challenges that differ from classical machine learning tasks. Conceptu-
ally, excitation and exploration play a major role in learning-control systems. On
the one hand, we usually aim for controllers that stabilize a system with the goal of
avoiding deviations from a setpoint or reference. However, we also need informative
data for learning, which is often not the case when controllers work well. Therefore,
there is a problem due to the opposing objectives of many control theoretical tasks
and the requirements for successful learning outcomes.

Additionally, change of dynamics or other conditions is often encountered for
control systems in practice. For example, new tasks, changing load conditions, or
different external conditions have a substantial influence on the underlying distribu-
tion. Learning can provide the flexibility to adapt the behavior of learning-control
systems to these events.

Since learning has to be applied with sufficient excitation there are many practical
situations that hinge on the following problem:

When to trigger learning updates in learning-control systems?

This is the core question of this thesis and despite its relevance, there is no general
method that provides an answer. We propose and develop a new paradigm for
principled decision making on when to learn, which we call event-triggered learning
(ETL).

The first triggers that we discuss are designed for networked control systems. All
agents use model-based predictions to anticipate the other agents’ behavior which
makes communication only necessary when the predictions deviate too much. Es-
sentially, an accurate model can save communication, while a poor model leads to
poor predictions and thus frequent updates. The learning triggers are based on the
inter-communication times (the time between two communication instances). They
are independent and identically distributed random variables, which directly leads
to sound guarantees. The framework is validated in experiments and leads to 70%
communication savings for wireless sensor networks that monitor human walking.

In the second part, we consider optimal control algorithms and start with linear
quadratic regulators. A perfect model yields the best possible controller, while poor
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models result in poor controllers. Thus, by analyzing the control performance, we
can infer the model’s accuracy. From a technical point of view, we have to deal
with correlated data and work with more sophisticated tools to provide the desired
theoretical guarantees. While we obtain a powerful test that is tightly tailored to the
problem at hand, it does not generalize to different control architectures. Therefore,
we also consider a more general point of view, where we recast the learning of linear
systems as a filtering problem. We leverage Kalman filter-based techniques to derive
a sound test and utilize the point estimate of the parameters for targeted learning
experiments. The algorithm is independent of the underlying control architecture,
but demonstrated for model predictive control.

Most of the results in the first two parts critically depend on linearity assump-
tions in the dynamics and further problem-specific properties. In the third part, we
take a step back and ask the fundamental question of how to compare (nonlinear)
dynamical systems directly from state data. We propose a kernel two-sample test
that compares stationary distributions of dynamical systems. Additionally, we in-
troduce a new type of mixing that can directly be estimated from data to deal with
the autocorrelations.

In summary, this thesis introduces a new paradigm for deciding when to trigger
updates in learning-control systems. Additionally, we develop three instantiations
of this paradigm for different learning-control problems. Further, we present ap-
plications of the algorithms that yield substantial communication savings, effective
controller updates, and the detection of anomalies in human walking data.



Zusammenfassung
Das maschinelle Lernen hat in letzter Zeit viele Durchbrüche erlebt. Inspiriert von
diesen sind lernende Steuerungssysteme entstanden. Das Ziel besteht im Wesentlichen
darin, Modelle und Steuerungsstrategien für dynamische Systeme zu erlernen. Der
Umgang mit lernenden Steuerungssystemen ist schwierig, und es gibt mehrere zen-
trale Herausforderungen, die sich von klassischen maschinellen Lernaufgaben unter-
scheiden. Aus konzeptioneller Sicht spielen Anregung und Erkundung bei lernenden
Regelsystemen eine große Rolle. Einerseits streben wir in der Regel Regler an, die
ein System stabilisieren, mit dem Ziel, Abweichungen von einem Sollwert oder einer
Referenz zu vermeiden. Zum Lernen benötigen wir aber auch informative Daten,
was bei gut funktionierenden Reglern oft nicht der Fall ist. Ein Problem ergibt sich
also aus den gegensätzlichen Zielen vieler steuerungstheoretischer Aufgaben und den
Anforderungen an erfolgreiche Lernergebnisse.

Darüber hinaus gibt es auch eine natürliche Möglichkeit für Veränderungen. So
haben beispielsweise neue Aufgaben, veränderte Belastungszustände oder andere
äußere Einflüsse einen erheblichen Einfluss auf die zugrunde liegende Verteilung.
Lernen kann die Flexibilität bieten, das Verhalten von lernenden Steuerungssyste-
men an diese Ereignisse anzupassen.

Da das Lernen mit ausreichender Anregung erfolgen muss, gibt es viele praktische
Situationen, die von dem folgenden Problem abhängen:

Wann sollen Lernaktualisierungen in lernenden Kontrollsystemen aus-
gelöst werden?

Dies ist die Kernfrage dieser Arbeit und trotz ihrer Relevanz gibt es keine allge-
meine Methode, die eine Antwort liefert. Wir schlagen ein neues Paradigma für eine
prinzipiengeleitete Entscheidungsfindung über den Zeitpunkt des Lernens vor, das
wir ereignisgesteuertes Lernen (ETL) nennen.

Die ersten Auslöser, die wir diskutieren, sind für vernetzte Kontrollsysteme
konzipiert. Alle Agenten verwenden modellbasierte Vorhersagen, um das Verhal-
ten der anderen Agenten zu antizipieren, was eine Kommunikation nur dann er-
forderlich macht, wenn die Vorhersagen zu stark abweichen. Im Wesentlichen kann
ein genaues Modell Kommunikation einsparen, während ein schlechtes Modell zu
schlechten Vorhersagen und damit zu häufigen Aktualisierungen führt. Die Lernaus-
löser basieren auf den Inter-Kommunikationszeiten (die Zeit zwischen zwei Kommu-
nikationsinstanzen). Es handelt sich um unabhängige und identisch verteilte Zu-
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fallsvariablen, was direkt zu soliden Garantien führt. Der Ansatz wurde in Experi-
menten validiert und führt zu 70 Prozent Kommunikationseinsparungen für draht-
lose Sensornetzwerke, die das Gehen von Menschen überwachen.

Im zweiten Teil betrachten wir optimale Steuerungsalgorithmen und beginnen
mit linearen quadratischen Reglern. Ein perfektes Modell ergibt den bestmöglichen
Regler, während schlechte Modelle zu schlechten Reglern führen. Durch die Analyse
der Regelungsleistung können wir also auf die Genauigkeit des Modells schließen.
Aus theoretischer Sicht müssen wir uns mit korrelierten Daten befassen und mit
anspruchsvolleren Methoden arbeiten, um die gewünschten Garantien zu erhalten.
Wir erhalten zwar einen leistungsfähigen Test, der genau auf das vorliegende Prob-
lem zugeschnitten ist, aber er lässt sich nicht auf verschiedene Steuerungsarchitek-
turen verallgemeinern. Daher betrachten wir auch einen allgemeineren Ansatz, bei
dem wir das Lernen von linearen Systemen als ein Filterproblem behandeln. Wir
nutzen auf Kalman-Filtern basierende Techniken zur Herleitung eines fundierten
Tests und setzen die Punktschätzung der Parameter für gezielte Lernexperimente
ein. Der Algorithmus ist unabhängig von der zugrundeliegenden Steuerungsarchitek-
tur, wird aber für die modellprädiktive Steuerung demonstriert.

Die meisten der Ergebnisse in den ersten beiden Teilen hängen entscheidend
von Linearitätsannahmen in der Dynamik und weiteren problemspezifischen Eigen-
schaften ab. Im dritten Teil gehen wir einen Schritt zurück und stellen die grundle-
gende Frage, wie man (nichtlineare) dynamische Systeme direkt anhand von Zus-
tandsdaten vergleichen kann. Wir schlagen einen Kernel-Zwei-Stichproben-Test vor,
der stationäre Verteilungen dynamischer Systeme vergleicht. Außerdem führen wir
eine neue Art des Mischens ein, die direkt aus den Daten geschätzt werden kann,
um mit den Autokorrelationen umzugehen.

Zusammenfassend wird in dieser Arbeit ein neues Paradigma für die Entschei-
dung, wann Aktualisierungen in Lernkontrollsystemen ausgelöst werden sollen, vorgestellt.
Darüber hinaus entwickeln wir drei Instanziierungen dieses Paradigmas für ver-
schiedene Lernsteuerungsprobleme. Darüber hinaus stellen wir Anwendungen der
Algorithmen vor, die erhebliche Kommunikationseinsparungen, effektive Steuerungsak-
tualisierungen und die Erkennung von Anomalien in menschlichen Gehdaten er-
möglichen.
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«The brick walls are there for a reason. The brick walls are not there to keep us
out. The brick walls are there to give us a chance to show how badly we want

something. Because the brick walls are there to stop the people who don’t want it
badly enough. They’re there to stop the other people.»

The Last Lecture
Randy Pausch
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Chapter 1

Introduction

Learning-based algorithms have outperformed human experts in many environ-
ments. For example, in sophisticated games such as GO, chess, and StarCraft II.
Further, they dominate most fields that involve computer vision and pattern recog-
nition. Essentially, whenever it is possible to train complex learning algorithms in
an offline fashion with nearly unlimited data, learning has proven to be successful.
However, for many applications, this is not feasible.

Despite these recent success stories of learning algorithms, the substantial break-
throughs in applications that involve dynamical systems and optimal control tasks
are less common. Clearly, the problems can be very difficult when complicated dy-
namics meet sophisticated control objectives. However, the issues are also rooted
deeper and touch upon the very nature of dynamical systems. In contrast to games
in virtual environments, learning-control problems are usually expected to extend
to the real world, which is subject to constant change. Additionally, data is heavily
correlated and thus, not independent. Generating informative data can be tough
since it involves experiments on the system, which is costly, time consuming, and
might damage the system. As a result, these properties make the problem funda-
mentally different from classical machine learning tasks. In the following, we will
refer to the considered problem class as learning-control systems. Essentially, these
are dynamical systems with a potential control input that are amenable to learning
algorithms.

Learning-control systems are already challenging in an offline learning setting
with a static controlled environment. However, most of these systems are supposed
to work in the real world, which introduces a whole new dimension of problems. In
particular, real-world environments are changing and the system needs to adapt its
behavior to new and potentially unseen environments. However, there is an inherent
cost to learning that may materialize itself in terms of energy, time, data, or on an
abstract level – deviating from the control objective.
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2 Introduction

To this end, we propose a new paradigm for applying learning techniques to
learning-control systems, which we call event-triggered learning (ETL). In a nutshell,
learning updates are only triggered under the condition that there is a significant
deviation between expected and actual behavior. Further, we actively influence the
data properties by exciting the system to ensure well-behaved learning outcomes.

This thesis (including the following introduction sections), is partly based on
multiple publications during the author’s time as a PhD student. Details on the
contributions and corresponding parts in this thesis will be given in Sec. 1.5 and
throughout the thesis.

1.1 Motivation
“Never change a running system,” or in a similar spirit “if it ain’t broke, don’t fix
it,” are popular heuristics when dealing with engineering systems. In practice, any
type of update involves a risk of failure, i.e., the system starting to malfunction or
being damaged. Therefore, a smoothly operating system is preferably only modified
when necessary. When applying learning algorithms to learning-control systems, we
propose to follow the same intuition. Only trigger the learning of new models and
controllers, when the previous ones are insufficient.

The above arguments also extend to a deeper theoretical level and there are pro-
found reasons to only learn when actually necessary. One key issue when working
with learning-control systems are the opposing objectives of common control tasks
and the requirements for successful learning outcomes. Regulating a system around
a desired configuration with as little deviation or motion as possible or trajectory
tracking are prominent examples. However, if a system is well regulated and barely
moving, data is not informative and mainly dominated by noise. Hence, it is prob-
lematic to use it for learning and the outcomes can be unpredictable. Therefore, for
successful learning, we need to excite the system, i.e., introduce some movement,
which counteracts the control objective.

Besides not learning anything new due to the excitation problem, there are more
reasons to only learn when necessary when dealing with learning-control systems.
In particular, continuous learning can lead to a catastrophic forgetting of previously
learned control behaviors. Hence, after some time it might fail to deal with distur-
bances. In the adaptive control community, this phenomenon is often referred to
as bursting (Anderson, 2005). Theoretically, we could ensure informative data by
exciting the system. However, the price of doing so is not negligible. Moving the
system creates a physical cost and requires energy. Further, heavy computations
can be required to update the underlying models.
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Therefore, we should only learn if necessary. For this, we need to detect when
there are changes in the environment that make learning necessary. For many ma-
chine learning tasks, it is possible to detect and learn changes in the distribution of
test data, e.g., through sliding windows or related approaches.

Learning-control systems are substantially different from classical machine learn-
ing problems, which makes the above intuitive heuristics particularly relevant. Even
in the most benign setting, we need to deal with correlated data, which is a chal-
lenge for most learning algorithms. Linear systems are among the most popular and
tractable system classes. Even though it is possible to derive closed-form solutions to
many relevant tasks, such as the prediction of future states, the design of quadratic
regulators, or the filtering problem, most algorithms rely on precise knowledge of the
system dynamics. While we can learn those dynamics, deriving statistical properties
of estimators and learning outcomes is, due to the correlated data, far from trivial
and subject of extensive research, e.g., (Simchowitz et al., 2018). The nonlinear
problem is even worse and most problems become intractable.

We want to detect when learning is necessary, ensure informative data for a
limited only through targeted learning experiments, and then stop the learning to
exploit the improved models or controllers. Hence, the core question of ETL—when
to trigger learning updates in learning-control systems.

1.2 Event-triggered Learning
Next, we introduce the main ideas behind ETL on an abstract level and develop the
core arguments that lead to algorithms that can be applied to networked control
systems and optimal control problems. In Fig. 1.1, we illustrate in a block diagram
the interactions between the different components. Through the learning trigger,
we only learn when necessary and can then excite the system. Correlated data is
still an issue. We discuss how to derive statistical guarantees for various instances
of learning triggers throughout the thesis. Learning is triggered when something
unexpected happens, which is made tractable through the following technical key
aspects.

Event-triggered Learning. We define an ETL algorithm through the following
steps:

1) test signal: the first step is defining a test signal or test object, Ψ, which we
compare to a model of how the signal or object should behave, which we call
Ψ̂. It is important that the signal represents relevant system properties. One
natural option are the system parameters themselves Ψ = Θ and Ψ̂ = Θ̂, which



4 Introduction

Learning Trigger Model

Learning 

Algorithm

Learning-control 

System

Data

Use of Model

Figure 1.1: Proposed abstract event-triggered learning architecture. In the top left, we see
learning-control system that generates the test signal Ψ. On the right, there is the model.
The model-based quantity Ψ̂ is compared by the learning trigger against the measured Ψ.
Only when there is a significant deviation between the two objects, the learning trigger
γlearn gets activated. Then, the dashed lines become active and the learning algorithm
receives data from the systems and outputs an improved model Θ̂new. For example, the
model can be used to design the learning-control system (as is the case in LQR) or to
make predictions relevant for the control (as is the case for the NCS).

we consider in Chap. 5. Other choices are inter-communication times τ or the
stationary distribution P of a dynamical systems.

2) learning trigger: the learning trigger is essentially, a statistical test ψ ∈ R
that acts on the test signal. We need critical thresholds κ+ and κ− that reject the
null-hypothesis H0 : Ψ = Ψ̂ when ψ /∈ [κ−, κ+]. In particular, we want to control
the Type I error by bounding the false positives by some probability α. Whenever
the test detects a deviation, we set the binary learning trigger γlearn to γlearn = 1.
Controlling the Type II error is in most of the problems we are considering in-
tractable. Thus, we might not detect small differences between two similar sys-
tems.

3) learning algorithm: implements a learning algorithm to update the model or
controller and preferably leverage the statistical information from 2). Learning
is only activated if the trigger from 2) detects significant deviations, i.e., ψ /∈
[κ−, κ+]. In this thesis, we are relearning new models Θ̂, however, it is also pos-
sible to directly relearn control policies or communication strategies. By learning
a new model, we can ensure that Θ̂ and Θ coincide again. After we have reached
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sufficient accuracy, we stop learning. We set the learning trigger γlearn = 0
and continue to monitor the test statistic to detect further demand for learning.
Through event-triggered learning, we can directly integrate adaptive behavior into
many powerful algorithms as we will demonstrate in the next chapters.

The interaction between the learning trigger and the learning algorithm is what
makes ETL special. Learning updates are only activated when a significant differ-
ence between expected behavior and observed data is detected. Thus, learning can
be performed in a controlled environment. Afterward, the system stops learning
and returns to its designated task. Nonetheless, the trigger keeps monitoring the
behavior, and there are no more updates until the trigger again detects the change
and new learning experiments are triggered. Due to the ETL architecture, we can
always ensure a well-defined learning environment and avoid corrupted data that
may lead to arbitrary outcomes otherwise.

1.3 Preliminaries
Linear time-invariant (LTI) systems are the backbone of classical control and sys-
tems theory. Due to their linear structure, they yield analytically tractable closed-
form solutions to various relevant problems. Further, they can provide valid local
approximations for nonlinear systems, which makes them applicable to many real-
world problems. Our primary object of interest is the state xk ∈ Rdx , which is
usually related to physical quantities such as positions and velocities. In the follow-
ing, we introduce preliminaries for LTI systems, which will be the focus of Part I and
Part II. In Part III, we will extend those definitions to a broader class of nonlinear
systems

Definition 1 (LTI System). Let A ∈ Rdx×dx, B ∈ Rdu×dx, and Σx ∈ Rdx×dx.
Further, let Σ be positive definite. We call a system of the type

xk+1 = Axk +Buk + ϵk (1.1)

an LTI system. The control input uk ∈ Rdu can be chosen and we assume the process
noise ϵk ∼ N (0,Σx) is independent for all k.

To ensure well-defined control properties, we further assume that the pair (A,B)
is controllable. Essentially, this means that we can move the system to arbitrary
states by applying the corresponding control inputs.

We also consider the case where not all state variables are fully measured and
we have observations yk ∈ Rdy . This yields the additional measurement equation:

yk+1 = Cxk +Duk + νk, (1.2)
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where the matrices C and D are of appropriate dimensions, the pair (A,C) is ob-
servable and νk ∼ N (0,Σy) independent measurement noise. The observability
assumptions ensure well-defined estimates, for example, through Kalman filtering.
Throughout this thesis, we assume everywhere that D ≡ 0.

Since we are considering linear systems, we can parameterize the system dynam-
ics as Θ = (A,B,C,D,Σx,Σy). The true parameters Θ are usually unknown and
therefore, we will focus on learning a model Θ̂ from data.

We also consider the continuous-time problem that is usually more involved and
requires different types of mathematical tools. In particular, the process noise ϵk is
mathematically a problematic object in continuous time and leads to the domain of
stochastic calculus. Therefore, we need the following additional assumptions to en-
sure a well-defined problem setting. Let (Ω,F , (Ft)t∈R+ , P ) be a filtered probability
space, S ⊂ Rdx a compact set, which is the state space of the dynamical system,
and B the corresponding Borel σ-algebra.

In Chapter 2, the continuous-time framework is helpful to characterize inter-
communication times as stopping times of certain stochastic processes, which yields
well-behaved random variables for the learning trigger. All learning triggers are also
derived for the practically more relevant discrete-time setting.

Assume X(t) is a solution to the following stochastic differential equation (SDE)

dX(t) = AX(t)dt+ ΣX dW (t), X(0) = x0. (1.3)

Solutions to the SDE (1.3) are well investigated and known as Ornstein-Uhlenbeck
(OU) processes (Øksendal, 2003). Further, let A ∈ Rn×n be a matrix with negative
eigenvalues, which may in practice be obtained by applying local feedback control
and considering the stable closed-loop dynamics. Assume ΣX ∈ Rn×n is a positive
definite matrix, W (t) ∈ Rn a standard Wiener process that models process noise, and
the initial point x0 ∈ Rn is known. Since the Wiener process is almost everywhere
non-differentiable, the SDE is to be considered in an integral sense and the notation
dW (t) indicates an Itô integral.

Mathematically, we are dealing with (stochastic) differential equations and their
discretized equivalents. Thus, the states are clearly not independent, which is a
challenge for learning algorithms and statistical testing. Independent data is usu-
ally a core requirement to ensure that some underlying probability distribution is
sufficiently covered given a certain amount of data. For learning-control systems,
we need additional assumptions to obtain statistical tests with theoretical guaran-
tees. Instead of state data, we can also consider different properties or features
that depend on the system dynamics and are better suited for statistical tests. For
example, inter-communication times τ as in Part I, which characterize important
system properties.



1.4 Main Contributions 7

1.4 Main Contributions
Next, we present three instantiations of ETL algorithms that are core elements of
this thesis. In Part I, we make the choices for ETL precise for networked control
systems and in Part II for two different optimal control algorithms. In Part III, we
take a step back and consider the fundamental question of comparing dynamical
systems directly from states and designing statistical tests for certain classes of
nonlinear dynamical systems.

1.4.1 Networked Control Systems

Before going into the details of how ETL looks like in this context, we first provide a
brief background on networked control systems (NCSs). These are multiple systems
connected to each other over a usually wireless communication network (Hespanha
et al., 2007). A core aspect of networked control systems with many agents is to
save communication in order to avoid network overload. As we will detail below,
popular estimation and control methods use sporadic (or event-triggered) commu-
nication, where data is exchanged only when necessary (in some sense). Specifically,
we consider a case where systems use model-based predictions and only need to
communicate if those predictions deviate from the ground truth. Then, how much
data is exchanged depends on the quality of the model used for control and esti-
mation. We thus develop ETL for NCS where we trigger model learning based on
communication properties.

We extend the paradigm of event triggering to model learning, which leads to
event-triggered learning and is built on top of a typical event-triggered state esti-
mation architecture (see Fig. 2.1 on Page 24). The new architecture can cope with
changing dynamics and yields further communication savings in an NCS.

This instantiation of ETL is based on the time intervals between communica-
tion events, which we call inter-communication times τ . These inter-communication
times are independent and identically distributed random variables that are fully
parameterized through the system dynamics. Thus, by comparing expected commu-
nication (based on the model) and actual communication behavior (that depends on
the ground truth dynamics), we can identify inaccurate models and trigger learning
experiments to improve the models.

Next, we discuss the specific choices for the ETL algorithm that is designed
around the communication behavior in networked control systems. The proposed
architecture was introduced in in Solowjow and Trimpe (2020) and Solowjow et al.
(2018).
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Event-triggered Learning 1 (for Networked Control Systems). We obtain an
ETL algorithm for saving communication in networked control systems through the
following choices in the abstract formulation:
1) test signal: we consider inter-communication times τ since this is the key prop-

erty we ultimately care about for networked control systems. Further, they are
fully parameterized by the system dynamics and contain sufficient information
about system properties;

2) learning trigger: we design statistical tests around the inter-communication
times. Due to their advantageous statistical properties, i.e., independent and
identically distributed, we can directly leverage classical tests that compare the
expected value and the cumulative distribution function;

3) learning algorithm: we apply least squares estimators that identify the linear
system dynamics every time from scratch.

Here, we avoid many issues that are associated with learning-control systems.
In particular, inter-communication times are suitable features that represent the
quantity we ultimately care about and simultaneously, they are independent, which
is from a statistical point of view very advantageous.

Based on a human walking experiment, we show in Beuchert et al. (2020a,b)
actual communications savings for a practically relevant problem. Our method im-
proves classical event-triggered state estimation algorithms that rely on static mod-
els. As long as the specific environment is not changing, the static models work well.
However, once there is change, e.g., the subject changes the speed of walking or a
slope is introduced, then the models become inaccurate and are not suitable any-
more to predict future states. Detecting the change allows for the selective learning
of improved models. Without change, the ETL algorithm essentially coincides with
the classical framework.

1.4.2 Optimal Control

Further, we provide ETL algorithms for model-based optimal control methods. In
particular, we consider two classical and popular control architectures, the linear
quadratic regulator (LQR) and model-predictive control (MPC), which we both
augment with ETL.
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Linear Quadratic Regulators (LQR)

We assume system dynamics of the type (1.1) and the optimal control problem with
the quadratic cost function

J = lim
N→∞

1
N

E

N−1∑
j=0

x⊤
j QLQRxj + u⊤

j RLQRuj

 , (1.4)

where QLQR and RLQR are symmetric and positive definite matrices with compatible
dimensions. The optimal solution is a static feedback

uk = −Fxk, (1.5)

where F ∈ Rq×n is the feedback gain. We can use Riccati equations to find analytical
solutions for F .

These Riccati equations depend on the system dynamics. In practice, the exact
parameters are usually unknown and instead, models are used. Since poor models
usually lead to poor controllers, we want to detect these discrepancies. A conse-
quence of poor models is a difference between the expected cost and the actual
realization of the signal when the controller is applied to the system.

Since at the end of the day, we often only care about the control performance
and not the model accuracy, we propose to design an ETL algorithm around the
cost signal.

Event-triggered Learning 2 (for Linear Quadratic Regulators). We obtain the
ETL algorithm that was proposed in Schluter et al. (2020) through the following
design choices:
1) test signal: we consider the control cost J as a random variable.
2) learning trigger: the cost is heavily correlated since it is a quadratic transfor-

mation of consecutive states. By computing the full distribution of the cost signal
in form of the moment generating function, we can apply sophisticated Chernoff
bounds that yield the desired concentration results.

3) learning algorithm: learning is again realized with least-squares estimators
that identify the system from scratch.

Due to the strong assumptions on the system, i.e., linear dynamics, quadratic
cost, and Gaussian noise, we can compute the full distribution of the cost and thus,
explicitly deal with the correlations in the states. Next, we generalize the approach
by directly considering the model quality.

Model Predictive Control (MPC)

The following ETL algorithm is independent of the control architecture and appli-
cable to any linear learning-control system. However, we demonstrate it for MPC



10 Introduction

since it is popular and yields an efficient possibility to generate informative data
through dedicated learning experiments.

The MPC setting is very similar to the above LQR problem. However, we
consider a finite time horizon in (1.4) and optimal control inputs are computed in
a receding horizon fashion by unrolling the model instead of a static feedback gain
as in (1.5). A major difference between LQR and MPC is the consideration of state
and control constraints. The MPC framework can directly include these into the
optimization problem, while LQR has trouble coping with constraints. Further, in
the MPC formulation, it is straightforward to modify the cost objective. We leverage
this fact for active learning experiments that minimize uncertainty in addition to
the control task.

We utilize a Kalman filter as a parameter filter to track the system parame-
ters. Through the probabilistic nature of the filter, we directly obtain a posterior
distribution that we use for testing.

Event-triggered Learning 3 (for Model Predictive Control). The following ETL
algorithm was proposed in Schlor et al. (2022) and is based on a Kalman filter that
tracks the system parameters:
1) test signal: we consider the outcome of the parameter filter as the random

variables of interest—these are estimates of the system parameters;
2) learning trigger: based on the probabilistic formulation of the filter, we use

the posterior distribution for testing. Due to the construction, the estimates are
normal distributed and thus, we can apply a standard χ2-test. In particular, we
test the current model against the point estimate of the filter. The model is not
updated during testing.

3) learning algorithm: whenever there is a significant deviation between filter
and model, we start learning by using the recursive nature of the filter. However,
we first excite the system to ensure an accurate learning outcome. Learning is
realized by minimizing the uncertainty ellipsoid through the MPC formulation.
Once, the uncertainty is small enough, the new point estimate is used as the new
model.

An important aspect is that the filter outcomes are only used for testing outside
of the learning experiments. Only if there is a significant deviation, learning is
triggered and the model is updated. This specific ETL algorithm demonstrates
nicely how the learning algorithm can benefit from the trigger. Conversely, we can
also show how learning permanently can lead to issues since the parameter estimates
perform a random walk in a potentially large uncertainty ellipsoid when learning is
not terminated eventually.
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1.4.3 Comparing Dynamical Systems

In the last part, we consider the underlying core question of comparing dynamical
systems directly from data, which will eventually pave the way towards a general
nonlinear event-triggered learning framework. The general nonlinear problem with
the dynamics

xk+1 = f(xk) + ϵk (1.6)

is extremely challenging and requires more sophisticated tools. In particular, we
avoid putting more structure on the dynamics f . Instead, in Solowjow et al. (2020),
we propose to compare stationary distributions P of the states and design a kernel-
based statistical test for this task. In particular, we consider kernel mean embeddings
that lift the distributions into a reproducing kernel Hilbert space. Further, we
leverage the Hilbert-Schmidt independence criterion, to address correlations within
trajectories. Ultimately, we obtain the distance to an independent distribution in
terms of the maximum mean discrepancy. Together with the kernel two-sample test,
which compares the distributions of independent data in the same metric, we obtain
a test for dynamical systems.

Depending on the goal, unnecessary complexity might be introduced by estimat-
ing intermediate objects that could be avoided, which is also known as Vapnik’s
principle: “When solving a problem of interest, do not solve a more general problem
as an intermediate step.” Here, we strive for a widely applicable framework with few
assumptions that should serve as the basis for a general nonlinear event-triggered
learning algorithm. Essentially, we address the questions of a suitable test object
and statistical test by comparing the stationary distributions through a kernel two-
sample test for dynamical systems.

Natural choices for the learning part are Gaussian processes dynamics in an active
learning setting (Buisson-Fenet et al., 2020), conditional kernel mean embeddings,
or deep learning-based approaches. While there is work on this, it still remains to
combine these ideas with the developed statistical tests to efficiently relearn and
update dynamics models.

1.5 Overview over Publications
This doctoral thesis is divided into three parts. In the first two, we develop in-
stantiations of ETL algorithms for specific problems, i.e., saving communication in
NCSs and model-based optimal control. In Part III, we consider the core question
of comparing dynamical systems directly from state measurements. Eventually, the
proposed test will pave the way towards nonlinear ETL algorithms.



12 Introduction

Part I: Networked Control Systems

In Part I, we develop ETL for networked control systems with the goal of reducing
communication. This part is based on the following publications:
▶ Friedrich Solowjow and Sebastian Trimpe, “Event-triggered learning”, Auto-

matica 117, © Elsevier 2020.
▶ Friedrich Solowjow, Dominik Baumann, Jochen Garcke, and Sebastian Trimpe,

“Event-triggered learning for resource-efficient networked control”, American
Control Conference (ACC), © AACC 2018.

The second paper contains additional hardware experiments on an inverted pendu-
lum that are not presented here. Instead, we present more mature experimental
results that were developed in the following publications:
▶ Jonas Beuchert, Friedrich Solowjow, Sebastian Trimpe, and Thomas Seel,

“Overcoming bandwidth limitations in wireless sensor networks by exploitation
of cyclic signal patterns: An event-triggered learning approach”, Sensors 20.1
(2020).

▶ Jonas Beuchert, Friedrich Solowjow, Jörg Raisch, Sebastian Trimpe, and
Thomas Seel, “Hierarchical event-triggered learning for cyclically excited systems
with application to wireless sensor networks”, IEEE Control Systems Letters 4.1,
©IEEE 2020.

For the example of human walking, ETL was utilized to reduce communication
in sensor networks, where limited bandwidth and energy consumption are serious
problems. Through the new ETL algorithms, both issues could be addressed by
reducing the overall communication load by up to 70%.

Part II: Optimal Control

In Part II, we first develop a learning trigger for the linear quadratic regulator
problem. The learning trigger is at its heart based on the distribution of the cost
functional. The derivation of the moment generating function itself is new and
a contribution. Designing learning triggers based on Chernoff bounds goes even
further and yields a test that is tailored to the distribution of the control cost.
The learning trigger is validated in simulations and experiments on an inverted
pendulum.
▶ Henning Schlüter1, Friedrich Solowjow1, and Sebastian Trimpe, “Event-triggered

learning for linear quadratic control”, IEEE Transactions on Automatic Control,
66(10), ©IEEE 2020.
Next, we consider model predictive control and derive a different type of learning
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trigger that directly considers the estimates of the model parameters. Most contri-
butions here are of a conceptual nature by tightly integrating and synergizing the
learning trigger and learning algorithm.
▶ Sebastian Schlor1, Friedrich Solowjow1, and Sebastian Trimpe, “Parameter

filter-based event-triggered learning”, IEEE Transactions on Control Systems
Technology (under review), 2022.

The presented framework is independent of the control architecture and can be
applied to a wide range of linear learning-control systems. Model predictive control
serves as a well-suited example since we can efficiently deal with relearning the
dynamics. In addition to the control objective, we trigger a dual control objective
when detecting change and minimize the uncertainty of the parameter estimates as
well.

Part III: Comparing Dynamical Systems

The last part of this thesis, Part III, is focused on the core question of comparing the
stationary distributions of dynamical systems. The proposed statistical test extends
well-established kernel two-sample tests to dynamical systems. In particular, we
generalize critical independence assumptions of the test to a new type of mixing
that can be estimated from data. The proposed type of mixing has rich theoretical
properties and we show relations to other standard notions of mixing. In particular,
it is applicable to deterministic and stochastic systems. Further, we validate the
test in extensive simulations and on experimental human walking data.
▶ Friedrich Solowjow, Dominik Baumann, Christian Fiedler, Andreas Jocham,

Thomas Seel, and Sebastian Trimpe, “A kernel two-sample test for dynamical
systems”, Transactions on Machine Learning Research (under review), 2022.

Additional Publications by the Author

In addition to the publications listed above, the author has also contributed to the
following publications:
▶ Friedrich Solowjow, Arash Mehrjou, Bernhard Schölkopf, and Sebastian Trimpe,

“Efficient Encoding of Dynamical Systems through Local Approximations”, IEEE
Conference on Decision and Control (CDC), ©IEEE 2018.

▶ Dominik Baumann, Friedrich Solowjow, Karl Henrik Johansson , and Sebas-
tian Trimpe, “Event-triggered pulse control with model learning (if necessary)”,
American Control Conference (ACC), © AACC 2019.

1Equally contributing
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▶ Ravi N. Haksar, Friedrich Solowjow, Sebastian Trimpe, and Mac Schwager,
“Controlling heterogeneous stochastic growth processes on lattices with limited
resources”, IEEE Conference on Decision and Control (CDC), ©IEEE 2019.

▶ Mona Buisson-Fenet, Friedrich Solowjow, and Sebastian Trimpe, “Actively
learning Gaussian process dynamics”, Learning for Dynamics and Control, 2020.

▶ Dominik Baumann, Friedrich Solowjow, Karl Henrik Johansson , and Sebas-
tian Trimpe, “Identifying causal structure in dynamical systems”, Transactions
on Machine Learning Research, 2022.

▶ Pierre-François Massiani, Steve Heim, Friedrich Solowjow, and Sebastian Trimpe,
“Safe value functions”, IEEE Transactions on Automatic Control (in press),
©IEEE 2022.

▶ Katharina Ensinger, Friedrich Solowjow, Sebastian Ziesche, Michael Tiemann,
and Sebastian Trimpe, “Structure-preserving Gaussian Process Dynamics”, Joint
European Conference on Machine Learning and Knowledge Discovery in Databases
(accepted), 2022.

These publications are not part of this thesis but the author contributed to all of
them during his time as a PhD student.

1.6 Contributions by the Author
This thesis is based on several publications that are the basis for Chap. 2—6. The
authors’ contribution is reflected by the order of names in the publications. The first
author has contributed the most, however, all authors were involved in formulating
the problems, discussing solutions, evaluating the results, and writing the paper.
For some papers, the first and second author are equally contributing.

The publications and experimental results that are presented in Chap. 3 are the
results of a collaboration with Jonas Beuchert and Thomas Seel, who have picked up
the idea of event-triggered learning. In particular, the algorithm that was presented
in Solowjow and Trimpe (2020) was implemented for sensor networks and parts of
the algorithms were improved. The author contributed to formulating the problems,
discussing solutions, evaluating the results, and writing the paper.

The publications presented in Chap. 4 and Chap. 5 have emerged from mas-
ters’ thesis projects that were supervised by the author, which resulted in an equal
contribution between the first and second authors.
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1.7 Literature Overview
Next, we connect the contributions of this thesis to related work. In Sec. 1.7.1, we
discuss conceptually similar ideas to event-triggered learning. We focus on concepts
from cognitive science, to show that ETL shows similarities to learning in humans,
and selected concepts from machine learning although they lack many properties
that are a consequence of learning-control systems. Afterward, we focus on the
domain-specific details of the instantiations of ETL. In Sec. 1.7.2, we discuss how
ETL is conceptually similar to the idea of communicating information in multi-agent
systems only when necessary. There are several methods in control theory that are
closely related to ETL. For example, dual, robust, and adaptive control. We discuss
the difference and similarities in Sec. 1.7.3. Sec. 1.7.4 discusses different possibilities
for comparing dynamical systems.

The discussions are based on the corresponding publications (Solowjow and
Trimpe, 2020; Schluter et al., 2020; Schlor et al., 2022; Solowjow et al., 2020).

1.7.1 Event-triggered Learning

The objective of detecting change has been around for a long time and has been
developed in several communities. First, we discuss general similarities to methods
from cognitive science and machine learning and afterward, move on to more domain-
specific related work from networked control systems, optimal control, and systems
theory.

Comparing expected behavior with observed realizations is also common in cog-
nitive science to model human learning (Butz et al., 2003a). This effect is often
quantified with the aid of internal models and anticipation along surprisal bound-
aries (Butz et al., 2003b). Interestingly, from an abstract point of view, the idea of
comparing expected with observed behavior is similar to ETL. Yet, the approaches
differ in the considered systems, applied methods, and concrete implementations.
Nonetheless, there are also additional ideas that could greatly benefit future research
in ETL such as hierarchical models and inductive learning biases as discussed in Butz
(2021).

In machine learning, concept and distributional drifts are problems, where the
underlying probability distribution that generates the data can change (Lu et al.,
2018; Gama et al., 2014). While the general frame is similar to ETL, the applications
and goals differ. Concept drift is usually closely related to big data problems and
prediction systems, which is very different from the herein considered ETL applica-
tions that are focused on dynamical systems. Many techniques are window-based,
such as the method presented in Klinkenberg and Joachims (2000) and discussed
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in Gama et al. (2014). However, there are also ideas based on hypothesis testing
(Lu et al., 2018) that are conceptually closely related to ETL and could lead to new
beneficial developments.

1.7.2 Part I: Networked Control Systems

Various event-triggered control (Lemmon, 2010; Heemels et al., 2012; Miskowicz,
2015) and state estimation (Lemmon, 2010; Shi et al., 2015; Trimpe and Campi,
2015; Trimpe, 2017) algorithms have been proposed for improving resource usage
in NCSs. Approaches differ, among others, in the type of models that are used for
predictions. The send-on-delta protocol (Miskowicz, 2006) triggers data transmis-
sion when the difference between the current and last communicated value passes
a threshold. This protocol is extended to linear predictions in Suh (2007), which
are obtained by approximating the signal derivative from data. More elaborate
protocols use dynamics models of the observed process, which typically leads to
more effective triggering (Trimpe and D’Andrea, 2011; Sijs et al., 2014; Trimpe and
D’Andrea, 2014; Trimpe and Baumann, 2019; Sijs and Lazar, 2012; Wu et al., 2013;
Battistelli et al., 2018; Han et al., 2015).

Recent articles proposed to improve and augment typical event-triggered state
estimation (Shi et al., 2014; Battistelli et al., 2018; Huang et al., 2017) and control
algorithms (Vamvoudakis and Ferraz, 2018; Vamvoudakis et al., 2019; Baumann
et al., 2018; Funk et al., 2021; Narayanan and Jagannathan, 2017) with data-based
techniques. In these works, learning is used to approximate intractable conditional
probability densities that arise in distributed problems or to obtain tractable so-
lutions to Hamilton-Jacobi-Bellman equations that yield optimal control policies,
e.g., with model-free methods such as Q-learning, or based on neural networks.
However, none of these works considers principled decision making on model learn-
ing to improve prediction accuracy, as we do with ETL.

In order to obtain effective learning triggers, we take a probabilistic view on
inter-communication times (i.e., the time between two communication events) and
trigger learning experiments whenever the expected communication differs from the
empirical. A similar probabilistic interpretation of inter-communication times is
considered in Xu and Hespanha (2004) and Rabi et al. (2008), where NCSs are
modeled as jump-diffusion processes, and the expected value of inter-communication
times is considered. We analyze the statistical properties in a more general context
and propose the design of learning triggers based on inter-communication times and
concentration inequalities.
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1.7.3 Part II: Optimal Control

The LQR framework is a popular control method with many recent applications (see
for instance (Marco et al., 2016; Trimpe and D’Andrea, 2012; Mason et al., 2014;
Borrelli and Keviczky, 2008)). Usually, the expected value of the cost function is
minimized, however, there are also approaches that consider its variance such as
minimum variance control (see (Åström, 2012) for details). Closed-form solutions
for the variance of the cost were derived in Bijl et al. (2016). Taking this approach
one step further, we consider the full distribution of the cost functional. In partic-
ular, we characterize the distribution in terms of the moment generating function.
To our knowledge, this is the first such characterization of the LQR cost. Further,
we develop learning triggers that perform goodness of fit tests that are closely de-
signed to the problem at hand: model-based statistical properties of the cost are
compared to observed empirical data. In particular, we leverage Chernoff bounds
to derive confidence intervals that contain a predefined portion of the probability
mass. Learning experiments are triggered whenever the empirical cost is not con-
tained within these bounds. Further, we show that it is not sufficient to analyze
the mean and higher moments, since there are many inherent challenges, such as
auto-correlations and unbounded control costs.

Adaptive control (see (Åström and Wittenmark, 2013; Ioannou and Sun, 2012;
Bradtke et al., 1994) and references therein) seeks to continuously update system
parameters or controllers in order to cope with changing environments. Updating
the parameters permanently makes adaptive control algorithm potentially fast and
flexible, however, the convergence of such algorithms is usually tightly connected to
persistently excited signal vectors (Bradtke et al., 1994), which is not necessarily
satisfied. It is well known that some adaptive control schemes suffer from tem-
porary instability, so-called bursting (Anderson, 2005). It can occur if the system
converged to a steady state, and the measured signals are not persistently exciting.
Then, divergence may become a dangerous problem. Further, there are results from
statistical literature that simultaneous parameter estimation and testing might lead
to distorted test statistics and different asymptotic distributions (Kac et al., 1955) of
statistical tests. There exist statistical tests that explicitly take the distribution of
the estimator into account (Babu and Rao, 2004), however, the dependency is often
highly non-trivial. In our approach, we propose to separate control from learning.
Furthermore, learning is only triggered when there is a significant difference to the
expected behavior and hence, a difference in the signal we ultimately care about.
Thus, we only update models and controllers when needed, which is conceptually
very different from adaptive control.

Dual control circumvents divergence issues by using a twofold objective: opti-
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mizing control performance and minimizing model uncertainty. A survey on dual
control can be found in Unbehauen (2000), and a general textbook on adaptive dual
control is given in Filatov and Unbehauen (2004). Heirung et al. (2012) proposed a
dual MPC scheme that takes the error covariance of the estimated model parame-
ters into account in the cost function to be minimized. A similar control objective
has already been introduced in Wittenmark (1975). In these approaches, however,
model uncertainty is artificially increased over time to enforce excitation of the sys-
tem. Intuitively, the controller permanently forces the system to move in order to
continuously update the model parameters. Our approach for the MPC problem is
similar, however, we rely on statistical tests that quantify the model accuracy and
detect significant deviations. In situations, where permanent updates are undesir-
able, our ETL approach avoids unnecessary excitation of the system while providing
theoretical guarantees.

Robust control (cf. (Zhou and Doyle, 1998) and references therein) is also related
to the proposed method, but has a different objective. The goal of robust control is
designing control policies, which work decently for a variety of system parameters
without changing the controller. In the event-triggered learning approach, we keep
the controller fixed as long as the system parameters are not changing significantly.
However, when there is a significant change in the system, we propose to update the
model automatically. Thus, the proposed method possess enough flexibility to adapt
to new environments, while still being efficient and robust, in particular during times
with no changes in the system.

Change and fault detection (Isermann, 1984, 2006; Looze et al., 1985; Zhan and
Jiang, 1999) have been addressed in the control theory literature, and there are
many methods that can be applied to the considered problem. This also involves
closed-loop performance assessment and monitoring (Qin, 1998; Huang et al., 1997;
Swanda and Seborg, 1999; Dong and Qin, 2018), which is conceptually related to our
work, however, usually analyzes minimum variance control and does not consider
more complex statistical objects such as moment generating functions or parameter
filters. Instead, closed-loop data is used to evaluate the control performance in terms
of minimizing the output variance (Qin, 1998; Harris, 1989). The outcome of this
analysis of variance (ANOVA) is then compared to a benchmark performance. Of-
ten, minimum variance control serves as this benchmark; however, also user-specific
criteria can define the desired performance if minimum variance control is not achiev-
able nor desired (Jelali, 2006). In Julien et al. (2004), a performance benchmark
for MPC is derived. Also, the benefit of updating the controller model is estimated.
Further, model-plant mismatches are purely deduced on variance assessment. All
of the above methods still struggle in industrial applications due to difficulties in
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interpreting the results and a lack of guidance for corrective action (Bauer et al.,
2016). We address these shortcomings by leveraging the inherent parameter filter
uncertainty ellipsoid to derive optimal excitation signals. These signals produce the
required insights into the system’s behavior for appropriate model updates.

There are many system identification techniques for estimating models of linear
systems from data. A broad overview is given in Ljung (2009). For the LQR part, we
use a standard least squares technique, however, for the MPC problem, we consider
a more sophisticated Kalman filter that estimates the model parameters. In Garcia
and Antsaklis (2016), a Kalman filter for state-space system identification is used in
an iterative adaptive control scheme. We consider a similar Kalman filter. However,
here, the Kalman filter is used not only to estimate the system’s parameters but also
to derive trigger conditions and guiding the subsequent learning. There has been a
lot of research in designing optimal excitation signals to minimize the error covari-
ance (Ljung, 2009; Bombois et al., 2011). We leverage the shape of the estimated
uncertainty ellipsoid to design control inputs that minimize said ellipsoid. The gen-
eral idea of parameter filters is standard and has been investigated, e.g., in Goodwin
and Payne (1977); Ljung and Söderström (1983). However, combining these filters
with statistical tests and utilizing the beneficial posterior properties for learning on
necessity is new in ETL and one of the key contributions here.

Augmenting control architectures with machine learning techniques is a popu-
lar research direction. There are many advances such as in reinforcement learn-
ing (Recht, 2019; Lee and Hu, 2018), networked control (Yoo and Johansson, 2019;
Eisen et al., 2018; Gatsis and Pappas, 2018), or model predictive control Chen et al.
(2018); Nubert et al. (2020). There is also recent work from a statistical point of
view on LQR and sample complexity (Dean et al., 2019; Krauth et al., 2019; Mania
et al., 2019) that analyzes the convergence speed of popular methods. However, most
work revolves around learning dynamics models and data-driven improvements of
controllers. In contrast to this, our work investigates the question of when to learn,
derives learning triggers, and provides theoretical guarantees for these triggers.

1.7.4 Part III: Comparing Dynamical Systems

There is only limited literature that explicitly investigates the question of how to
compare dynamical systems from data. One possibility is the embedding of dynam-
ical systems as infinite-dimensional objects into reproducing kernel Hilbert spaces
(RKHS) with specifically designed kernels such as Binet-Cauchy kernels (Vish-
wanathan et al., 2007) or generalizations thereof as proposed in Ishikawa et al.
(2018) and Ishikawa et al. (2019). A similar function-analytical approach is consid-
ered in Mezic (2016) and Klus et al. (2020), where the authors consider Koopman
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and Perron-Frobenius operators to obtain linear dynamics in an infinite-dimensional
space. These articles leverage specifically designed kernels and linear operators as-
sociated with dynamical systems to obtain an embedding. However, none of the
above articles proposes a statistical test that compares dynamical systems. This
would require further finite sample and error bounds on the approximations of the
infinite dimensional operators, which is far from trivial.

The critical technical issue for dealing with dynamical systems is non-i.i.d. data.
There are several extensions of kernel two-sample tests that have been developed
(Zaremba et al., 2013; Gretton et al., 2012b; Doran et al., 2014; Lloyd and Ghahra-
mani, 2015; Chwialkowski et al., 2014; Chwialkowski and Gretton, 2014) to make
them applicable to a broader range of problems, where non-i.i.d. data is also an
issue. However, the strong mixing properties that are typically postulated limit the
applicability of the results to dynamical systems. Surprisingly, there is only very
limited work that addresses the estimation of mixing coefficients from data, as also
acknowledged and emphasized in (McDonald et al., 2011). The approach proposed
in (McDonald et al., 2011) is different from our work, as mixing is considered with
respect to the total variation norm, which requires the estimation of complex inter-
mediate objects while we estimate mixing properties directly from data. We propose
a novel mixing notion that ideally fits the kernel two-sample test and that can also
be estimated from data (in contrast to most other mixing notions).

Also in the systems and control community, approaches for comparing more
general, nonlinear systems have been considered. For example, in (Umlauft and
Hirche, 2019) the authors consider the question of when to trigger model updates.
In robust control, there is the notion of the gap metric (Zhou and Doyle, 1998),
which compares the closed-loop behavior of dynamical systems. These approaches
are particularly promising to quantify the similarities between dynamical systems
when trying to achieve effective transfer learning, as shown in (Sorocky et al., 2020).
However, they usually rely on a given model and a certain linear structure in the
system. Depending on the prior system information, there exist more model-based
approaches that compare dynamical systems. But estimating such models of non-
linear systems can be difficult in practice (Schoukens and Ljung, 2019; Schön et al.,
2011; Brunton et al., 2017; Ljung, 2009). Similarly, estimating the stationary mea-
sure of a dynamical system is also a highly nontrivial problem (Hang et al., 2018;
Luzzatto et al., 2005). In our approach, we do not require any intermediate objects.
Instead, we compare stationary distributions of dynamical systems directly from
data.



Part I

Networked Control Systems
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Chapter 2

Networked Control Systems

In this chapter, we present ideas from the conference publication (Solowjow et al.,
2018) and the journal publication (Solowjow and Trimpe, 2020). We construct the
first types of learning triggers to detect deviations between a model Θ̂ and the ground
truth parameters Θ. Due to the specific problem setting, we can leverage standard
statistical i.i.d. results that directly synergize with well-known objects such as the
expected value, higher moments, and the cumulative distribution function (CDF).

In the end, we summarize experimental applications to sensor networks that are
presented in the journal publications (Beuchert et al., 2020a,b)

2.1 Introduction to NCSs
Networked control systems are an active field of research and there are many de-
tails to focus on. Here, we consider a special case of estimation problems, where
measurements are communicated over a wireless network with a limited bandwidth.
Ideally, every agent should be able to communicate continuously. However, this is
wasteful in terms of energy and also, overloads the network. In order to be more
resource efficient, there are model-based algorithms that predict the states of all
agents. Clearly, the effectiveness of these model-based algorithms heavily depends
on the accuracy of the model Θ̂. At the same time, it can also be problematic
and potentially wasteful to constantly learn models and communicate them over the
network, which leads us back to the idea of event-triggered learning.

Next, we introduce a typical event-based state estimation (EBSE) algorithm, as
used in, e.g., (Lemmon, 2010; Trimpe and D’Andrea, 2014), and afterward, augment
it with ETL. In Fig. 2.1, an abstraction of such an EBSE algorithm is depicted in
blue and in green, we see the new ETL part that sits on top of the EBSE framework.
On the right side, there is a receiving agent that needs the state information X(t)
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Figure 2.1: Proposed event-triggered learning architecture for a networked control prob-
lem between two agents. Based on a typical event-triggered state estimation architecture
(in blue), we propose event-triggered learning (in green) to improve predictions and lower
communication between Sending and Receiving agents. Learning experiments are them-
selves triggered as necessary by comparing empirical with expected inter-communication
times.

of a sending agent, which is on the left side. Both agents are connected through a
network and can communicate. Instead of communicating the state constantly, the
receiving agent utilizes model-based predictions of the state X̂(t). Simultaneously,
the sending agent also runs the same predictions and additionally, keeps track of
the error ∥X(t)− X̂(t)∥2. Whenever the error exceeds a predefined threshold δ, the
sending agent communicates the true state X(τ) to the receiving agent and both
update the prediction X̂(τ) to the ground truth. The time of communication is
denoted with τ .

The quality of the predictions heavily depends on the accuracy of the model
Θ̂. Even if models are initialized close to the ground truth Θ̂ ≈ Θ there might be
unexpected changes in the systems and the system might change, which results in
a poor model and thus, poor predictions. With the aid of learning techniques it is
possible to update the model again. This exemplary problem leads to the driving
question of this thesis: when should we learn?

Analogously as in Fig. 2.1, where it is bad idea to constantly communicate states,
it is also intractable to transmit models all the time over a network. This lead
to the first event-triggered learning algorithms that only learn and update models
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when there is a significant error between model and ground truth. Here, however,
the ground truth parameters are unknown and thus, we design statistical tests on a
different target signal – the intercommunication times τ . We will show later that it is
possible to characterize the intercommunication times as random variables (stopping
times). The distribution of these stopping times is fully characterized by the system
parameters Θ and the threshold δ. Therefore, it is possible to infer system changes
by analyzing the distribution of τ . As indicated in Fig. 2.1, we compare model-
induced statistical properties (i.e., expected value, variance, higher moments, or the
CDF).

There are also deeper and more fundamental problems with learning all the time,
which we will discuss in the later chapters. In the context of NCSs, the limited
bandwidth is already reason enough to limit learning to the necessary instances
since the updated model parameters need to be transmitted as well.

2.2 Problem Formulation
In this section, we make the problem of event-triggered learning precise for linear
Gaussian time-invariant systems. The framework is developed in the context of
NCSs and primarily focuses on limited bandwidth. Information exchange over net-
works is abstracted to be ideal in the sense that there are no packet drops or delays.
First, we state the problem formulation for continuous time systems. We then ad-
dress the discrete time case separately since the technical details differ slightly. In
Sec. 2.7.1, the problem is extended to output measurements and, in particular, the
Kalman filter setting.

2.2.1 Continuous Time Formulation

As introduced in Sec. 1.3, let (S,F , (Ft)t∈R+ ,P) be a filtered probability space and
X(t) ∈ Rn a stochastic process, indexed by time t ≥ 0. Furthermore, assume
X(t) (cf. ‘Process’ block in Fig. 2.1) is a solution to the following linear stochastic
differential equation (SDE): dX(t) = AX(t)dt + ΣX dW (t) with X(0) = x0. We
denote the system parameters as Θ = (A,ΣX) and models as Θ̂ = (Â, Σ̂X).

For the model-based predictions (‘Model-based Predictions’ in Fig. 2.1), we use
the expected value of system (1.3), which coincides with the open-loop predictions
of the deterministic system dX̌(t) = ÂX̌(t)dt, with X̌(0) = x0. Due to the stochas-
ticity of the system, the prediction error will almost surely leave any predefined
domain after sufficient time. Event-triggered communication (‘State Trigger’ in
Fig. 2.1) bounds the prediction error by resetting the open-loop predictions X̌(t) to
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the current state X(t). Further, the binary event trigger

γstate = 1 ⇐⇒ ∥X(t)− X̌(t)∥2 ≥ δ, (2.1)

is only activated when the error threshold δ > 0 is crossed and hence, limits com-
munication to necessary instances. The corresponding inter-communication time is
defined as

τ := inf{t ∈ R : ∥X(t)− X̌(t)∥2 ≥ δ}, (2.2)

and realizations of this random variable are denoted as τ 1, . . . , τn and can be directly
measured as the time between communication instances.

Assumption 2. We assume τ ≤ τmax <∞.

Bounded communication times are usually implemented in real-world applica-
tions to detect defect agents, which never communicate. Hence, communication is
enforced after τmax. For the design of the final learning trigger to be derived in
this article, the assumption can be omitted. However, it is useful for intermediate
results, such as the expectation-based learning trigger.

We address the problem of designing learning triggers (‘Learning Trigger’ in
Fig. 2.1) based on inter-communication time analysis. Since the probability distri-
bution of τ can be fully parameterized by Θ, we can derive an expected distribution
based on the model Θ̂ and test if empirical inter-communication times are drawn
from that distribution. Further, this statistical analysis yields theoretical guaran-
tees, which are obtained from concentration inequalities and ensure that the derived
learning triggers are effective. Therefore, we design a method to perform dedicated
learning experiments on necessity and update models Θ̂ in an event-triggered fash-
ion.

2.2.2 Discrete Time Formulation

Since processing on microcontrollers or sensors mostly happens on synchronously
sampled data, we provide an alternative discrete time formulation of the considered
problem. In principle, the problem formulation does not change. However, some
essential details differ; for example, the inter-communication times from (2.2) need
to be treated differently due to discontinuities in the states.

As introduced in Chap. 1, the discrete time analogue to (1.3) is

xk+1 = Axk + ϵk, x(0) = x0, (2.3)

with discrete time index k ∈ N and state xk ∈ Rn. Furthermore, we assume A ∈
Rn×n has all eigenvalues strictly within the unit sphere since we do not consider
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any control here to stabilize the system. The model-based predictions are obtained
through the equation x̌k+1 = Âx̌k, which yields the trigger

γstate = 1 ⇐⇒ ∥xk − x̌k∥2 ≥ δ. (2.4)

We define the system parameters and model as Θ = (A,Σx) and Θ̂ = (Â, Σ̂x).
Hence, we obtain the inter-communication times

τd := min{k ∈ N : ∥xk − x̌k∥2 ≥ δ}. (2.5)

2.3 Communication as Stopping Times
In this section, we characterize inter-communication times (Eq. (2.2)) as stopping
times of the prediction error process. The inter-communication time τ is a random
variable and depends on the stochastic system (1.3). We seek to compare model-
based expectations to observed data in order to detect significant inconsistencies
between Θ and Θ̂. The core idea of the learning triggers comes down to deriving
expected stopping time distributions based on the model Θ̂ and then analyzing how
likely it is that observed stopping times τ1, . . . , τn are drawn from this distribution.

Assuming Θ̂ = Θ, we derive model-based statistical properties of τ . Later on, we
will test the hypothesis that empirical inter-communication times are indeed drawn
from the derived distribution of τ—if not, this will indicate Θ̂ ̸= Θ; that is, the
model does not match reality.

2.3.1 Theoretical Properties

We define the error process as Z(t) := X(t) − X̌(t). Due to linearity, it follows
immediately that Z(t) is an OU process as well and that Z(0) = 0. Next, we
introduce inter-communication times with respect to the stochastic process Z(t).
Assume Ft = σ(Zs : s ≤ t) is the natural filtration on the given probability space
and τ a stopping time with respect to Ft. In particular, we consider the first exit
time of the stochastic process Z(t) from a sphere with radius δ, i.e., τ := inf{t ∈
R : ∥Z(t)∥2 > δ}, which precisely coincides with (2.2). Hence, we use the terms
stopping times and inter-communication times synonymously in this article.

After each communication instance, we reset the process Z(t) and set it to zero
again by correcting X̌(t) to X(t). The sample paths of the process Z(t) are (almost
surely) continuous between two inter-communication times, which follows from the
existence and uniqueness theorem of solutions to SDEs (cf. (Øksendal, 2003)).
Therefore, we can precisely quantify the moment when the error threshold (2.1) is
crossed. Further, it is possible to quantify statistical properties of τ such as the
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expected value (Pavliotis, 2014, Sec. 7.2) or the distribution (Patie and Winter,
2008) with the aid of certain boundary value problems. In particular, there are
existence and uniqueness theorems (Patie and Winter, 2008) that imply that τ is
mathematically well behaved.

2.3.2 Monte Carlo Approximations

Next, we describe how we obtain statistical properties of τ such as expected value
E[τ ], variance, and cumulative distribution function (CDF) F (t) with the aid of
sample-based methods and hence, without solving nonlinear boundary value prob-
lems. Given the system parameters Θ, we can simulate trajectories of the stochastic
process (1.3) with the aid of numerical sample methods such as the Euler-Maruyama
scheme (cf. (Kloeden and Platen, 2011, Sec. 10.2) for an introduction to numerical
solutions of SDEs).

In order to obtain independent and identically distributed (i.i.d.) samples τ1, . . . , τn,
we sample the process Z(t) and restart from zero after reaching the threshold δ. Al-
ternatively, we could also simulate X(t) and X̌(t) and set the predictions X̌(τ)
to the true value X(τ) when communication is triggered. The statistical proper-
ties of the corresponding stopping times do not differ because the processes Z(t)
and X(t)− X̌(t) are indistinguishable. Further, stable OU processes are stationary
and satisfy the strong Markov property, which generalizes the Markov property to
stopping times.

For given i.i.d. random variables, we can approximate the expected value with
1
n

∑n
i=1 τi and the CDF with Fn(t) := 1

n

∑n
i=1 1τi≤t, where 1 is the indicator func-

tion. Quantifying the convergence speed of the above approximation will be vital in
designing learning triggers.

2.4 Learning Trigger Design for Continuous Time
In this section, we design the learning trigger γlearn (cf. Fig. 2.1) to detect a mismatch
between model and true dynamics based on the inter-communication time τ .

2.4.1 Concentration Inequalities

The following results will form the backbone of the later derived learning triggers.
Concentration inequalities quantify the convergence speed of empirical distributions
to their analytical counterparts. In particular, Hoeffding’s inequality bounds the
expected deviation between mean and expected value. Further, we also consider the
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Dvoretzky-Kiefer-Wolfowitz (DKW) inequality, which compares empirical and ana-
lytical CDF functions, and bounds the error between them uniformly. Essentially,
we test if observed data fits the distribution, which is induced by the model Θ̂; that
is, which was derived with Θ̂ = Θ (cf. Sec. 2.3). If the distributions do not match,
we conclude an unfit model and update Θ̂ through model learning.

Lemma 3 (Hoeffding (1963)). Let τ1, . . . , τn be i.i.d. bounded random variables, s. t.
τi ∈ [0, τmax]. Then

P
[∣∣∣∣∣ 1n

n∑
i=1

τi − E[τ ]
∣∣∣∣∣ > κ

]
≤ 2 exp

(
−2nκ2

τ 2
max

)
. (2.6)

We will first design learning triggers around the Hoeffding’s inequality and later
move on to richer statistical information. Therefore, we also want to analyze the
convergence speed of the empirical CDF function.

Lemma 4 (DKW Inequality (Massart, 1990)). Assume τ1, . . . , τn are i.i.d. random
variables with CDF F (t) and empirical CDF Fn(t). Then

P
[
sup
t∈R
|Fn(t)− F (t)| > κ

]
≤ 2 exp(−2nκ2). (2.7)

2.4.2 Expectation-based Learning Trigger

We propose a first learning trigger γlearn based on the expected value E[τ ].

Exact Learning Trigger

Based on the foregoing discussion, we propose the following learning trigger:

γlearn = 1 ⇐⇒
∣∣∣∣∣ 1n

n∑
i=1

τi − E[τ ]
∣∣∣∣∣ ≥ κexact, (2.8)

where γlearn = 1 indicates that a new model shall be learned; E[τ ] is the analytical
expected value, which is based on the model Θ̂; and τ1, τ2, . . . , τn are the last n
empirically observed inter-communication times (τi the duration between two state
triggers (2.1)). The horizon n is chosen to yield robust triggers in the sense that a
larger time horizon allows the detection of smaller changes. However, it also increases
the delay until the n samples are actually observed. The threshold parameter κexact

quantifies the error we are willing to tolerate. There are some examples where it is
possible to compute E[τ ] analytically. In general, however, it is intractable. Hence,
we also propose the approximated learning trigger, which takes the approximations
for the statistical analysis into account. We denote (2.8) as the exact learning trigger
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because it involves the exact expected value E[τ ], as opposed to the trigger derived in
the next subsection, which is based on a Monte Carlo approximation of the expected
value.

Even though the trigger (2.8) is meant to detect inaccurate models, there is
always a chance that the trigger fires not due to an inaccurate model, but instead
due to the randomness of the process (and thus randomness of inter-communication
times τi). Such false positives are inevitable due to the stochastic nature of the
problem. However, we obtain a confidence interval, which contains the empirical
mean with high confidence. If observations violate the derived confidence interval,
we conclude that distributions do not match, and learning is beneficial. Therefore,
we propose to choose κexact to yield effective triggering with a user-defined confidence
level. We then have the following result for the trigger (2.8):

Theorem 5 (Exact learning trigger). Assume τ and τ1, . . . , τn are i.i.d. random
variables and the parameters α, n, and τmax are given. If the trigger (2.8) gets
activated (γlearn = 1) with

κexact = τmax

√
1

2n ln 2
α
, (2.9)

then
P
[∣∣∣∣∣ 1n

n∑
i=1

τi − E[τ ]
∣∣∣∣∣ ≥ κexact

]
≤ α. (2.10)

Proof. Substituting κexact into the right-hand side of Hoeffding’s inequality yields
the desired result.

The theorem quantifies the expected convergence rate of the empirical mean to
the expected value for a perfect model. This result can be used as follows: the user
specifies the desired confidence level α, the number n of inter-communication times
considered in the empirical average, and the maximum inter-communication time
τmax. By choosing κexact as discussed, the exact learning trigger (2.8) is guaranteed
to make incorrect triggering decisions (false positives) with a probability of less than
α.

Approximated Learning Trigger

As discussed in Sec. 2.3, obtaining E[τ ] can be difficult and computationally expen-
sive. Instead, we propose to approximate E[τ ] by sampling τ . For this, we simulate
the process Z(t) and average the obtained stopping times τ̂1, . . . , τ̂m. This yields the
approximated learning trigger

γlearn = 1 ⇐⇒
∣∣∣∣∣ 1n

n∑
i=1

τi −
1
m

m∑
i=1

τ̂i

∣∣∣∣∣ ≥ κapprox. (2.11)
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The Monte Carlo approximation leads to a choice of κapprox, which is different
from κexact for small m. For m→∞ we see that κapprox converges to κexact.

Theorem 6 (Approximated Learning Trigger). Assume τ1, . . . , τn, and τ̂1, . . . , τ̂m

are i.i.d. random variables. If the trigger (2.11) gets activated (γlearn = 1) with

κapprox = τmax

√
n+m

2nm ln 2
α
, (2.12)

then
P
[∣∣∣∣∣ 1n

n∑
i=1

τi −
1
m

m∑
i=1

τ̂i

∣∣∣∣∣ ≥ κapprox

]
≤ α. (2.13)

Proof. First, we introduce an alternative formulation of Hoeffding’s inequality (2.6)

P
[∣∣∣∣∣ 1n

n∑
i=1

τi −
1
m

m∑
i=1

τ̂i − (E[τ ]− E[τ̂ ])
∣∣∣∣∣ > κapprox

]
≤ 2 exp

(
−

2κ2
approx

(m−1 + n−1)τ 2
max

)
,

which was already stated in the original article by Hoeffding (Hoeffding, 1963) as a
corollary (Eq. 2.6). Here, we assume that τ and τ̂ are identically distributed and,
therefore, the analytical expected values cancel out. Rearranging for κapprox yields
the desired result.

2.4.3 Density-based Learning Trigger

Analyzing the expected values is, in general, not enough to distinguish random
variables since higher moments such as variance can differ. Therefore, we propose
to look at the CDF, build learning triggers around the DKW inequality (2.7), and
thus use richer statistical information. We propose the following learning trigger:

γlearn = 1 ⇐⇒ sup
t∈R
|F (t)− Fn(t)| > κexact. (2.14)

The density-based learning trigger has the following property:

Theorem 7 (Exact Density Learning Trigger). Assume τ1, . . . , τn are i.i.d. random
variables with CDF F (t) and empirical CDF Fn(t). If the learning trigger (2.14)
gets activated (γlearn = 1) with

κexact =
√

1
2n ln 2

α
, (2.15)

then
P
[
sup
t∈R
|F (t)− Fn(t)| > κexact

]
≤ α. (2.16)

Proof. Follows directly from the DKW Inequality.
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Finally, we can follow the reasoning as before and obtain the sample-based ver-
sion of the trigger (2.14)

γlearn = 1 ⇐⇒ sup
t∈R
|F̂m(t)− Fn(t)| > κapprox, (2.17)

where F̂m(t) = 1
m

∑m
i=1 1τ̂i≤t and τ̂i are obtained by creating samples based on the

model Θ̂. This trigger is essentially the well established two-sample Kolmogorov-
Smirnov (KS) test (Hodges, 1958).

Theorem 8 (Two-sample KS Learning Trigger). Assume τ1, . . . , τnand τ̂1, . . . , τ̂m

are i.i.d. random variables with empirical CDFs Fn(t) and F̂m(t). If the trigger
(2.17) gets activated with

κapprox =
√
n+m

2nm ln
( 2
α

)
, (2.18)

then
P
[
sup
t∈R
|F̂m(t)− Fn(t)| > κapprox

]
≤ α. (2.19)

Proof. Follows from the two-sample KS test.

The density-based learning triggers do not depend on τmax and consider richer
statistical information, which can be an advantage and will be discussed in detail in
the experimental sections.

2.5 Learning Trigger Design for Discrete Time
Based on the previous discussion, we will now highlight how to apply the de-
rived learning triggers to discrete time systems (2.3). The random variables τ

(cf. Eq. (2.2)) and τd (cf. Eq. (2.5)) can differ significantly due to discretization
effects. Intuitively, this effect can be thought of as the continuous time process
crossing the δ-threshold and returning within the discretization time. Therefore,
the discrete-time process has no possibility of observing the crossing, and hence,
stopping times tend to be larger for discrete time systems. For small time steps, the
difference tends to be negligible, and τd converges to τ in the limit.

In this section, we show that the approximated learning triggers transfer without
any modification to the discrete time system. It is important to adjust the system
parameters Θ = (A,Σx) and the model Θ̂ = (Â, Σ̂x) to discrete time (cf. Sec. 2.2.2)
in order to sample from the correct distribution (i.e., sampling from the continuous
time model, while the true dynamics are discrete, or vice versa). Only based on
statistical tests, irrelevant of the actual shape, we decide if they coincide.
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Theorem 9 (Discrete Time Learning Trigger). Assume Θ and Θ̂ correspond to
the discrete time system (2.3). Then, the previously derived approximated learning
triggers (2.11) and (2.17) are applicable without any further modification.

Proof. The derived learning triggers test if given observations of inter-communication
times τ1, . . . , τn are drawn from the same distribution as τ̂1, . . . , τ̂m and therefore, if
Θ = Θ̂. The concrete shape of the distribution is irrelevant for the test.

Remark 10. It is also possible to consider more complex noise models such as
colored noise. The main challenge lies in identifying the system and, in particular,
the noise model from data.

2.6 Numerical Example – Reduced Communica-
tion

The learning triggers derived in the previous two sections are the core element in
the proposed ETL architecture (Fig. 2.1, block ‘Learning Trigger’). For ‘Model
Learning’ in the context of linear Gaussian systems considered herein, one can use
standard techniques for linear systems identification (Ljung, 2009), which we do not
elaborate further. Thus, all components of the proposed ETL method in Fig. 2.1
are complete, and we present a first numerical example to illustrate the main ideas
of the developed learning triggers.

2.6.1 Setup

Next, we introduce the system, and afterward, we apply the learning trigger in order
to demonstrate how to detect an inaccurate model. We consider the first-order
dynamical system xk+1 = 0.9xk + ϵk, with noise ϵk ∼ N (0, 1). Further, we assume
the disturbed model Θ̂ = (0.8, 1) and hence, we obtain the predictions with the
equation x̌k+1 = 0.8x̌k. To bound the prediction error, we deploy the state trigger
(2.4) with δ = 3. In Fig. 2.2, we can see in the first graph a trajectory of states
xk as a black dashed line and the model-based predictions x̌k in blue. Whenever
γstate = 1, we set x̌τ to xτ . The error signal never crosses the δ-threshold and is
depicted in the second graph. The communication instances are shown in the third
graph. The distances between two consecutive communication instances corresponds
to the inter-communication times. Further, we set α = 0.05, τmax = 100, n = 300,
and m = 100 000.
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2.6.2 Expectation-based Learning Trigger

The proposed learning triggers analyze the statistical properties of the observed
inter-communication times and compare them to model-induced quantities. For in-
stance, in Fig. 2.3, the corresponding average inter-communication rate is shown
(yellow line). The first n inter-communication times are stored in a buffer, and the
empirical mean is computed. Based on the model Θ̂ and with the aid of m Monte
Carlo simulations, we derive E[τ̂ ] ≈ 28.6 (dashed blue line). The model-based confi-
dence interval is obtained with the aid of Theorem 6. After the buffer is successfully
filled (at k = 4961), the learning trigger (2.11) compares if the buffered average
inter-communication rate (yellow line) lies outside the expected confidence interval,
which is the case here. Therefore, the learning trigger discovers an inaccurate model
and triggers a learning experiment. Here, we abstract learning and set model Θ̂ to
the true parameters Θ. A more detailed discussion on the learning aspect of ETL
can be found in (Solowjow et al., 2018), where we demonstrated the effectiveness of
ETL in hardware experiments on a cart-pole system.

After updating the model (at k = 4961), we empty the buffer, start collecting
new stopping times, and reset the average inter-communication time accordingly.
This causes the initial fluctuation of the signal. However, we see fast convergence to
the model-based expectation. Further, the average inter-communication time was
increased after updating the model (yellow line converges to a larger value), which
results in less communication.

The test statistic is also depicted in Fig. 2.4 for the initial inaccurate model and
in Fig. 2.5 for the exact model. The dashed blue line again represents the model-
based expected value, while the dashed red line depicts the empirical mean at the
moment of triggering.

2.6.3 Density-based Learning Triggers

Next, we will discuss the density-based learning trigger (2.17), which is also illus-
trated in Fig. 2.4 and Fig. 2.5. The solid blue line represents the model-based CDF
function F̂m(t), and the solid red line is the empirical CDF Fn(t) based on ob-
served inter-communication times. Here, both triggers detect the inaccurate model
(cf. Fig. 2.4) and have high confidence in the true model since the model-based and
empirical quantities coincide, which is depicted in Fig. 2.5. The confidence interval is
derived with Theorem 8 and tighter than the expectation-based. Hence, inaccurate
models can be detected faster.
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2.6.4 Expected Value is not Enough

Here, we assume the model Θ̂ = (0.5, 1.7) with n = m = 10 000. Intuitively,
process noise and stability have opposite effects on the communication behavior. We
construct the counterexamples by creating a hypersurface of models Θ̂, where the
noise and stability effects cancel out. Figure 2.6 shows the expected and empirical
expected values of inter-communication times, which are almost identical – bad
performance is expected and also realized due to the bad prediction model. The
CDF-based trigger is still able to detect the inaccuracy, which is a big advantage over
the expectation-based learning triggers. Clearly, the highest inter-communication
time is realized when Θ̂ = Θ, which can be observed when comparing Fig. 2.5 with
Fig. 2.6, where the inter-communication time is twice as high.

Clearly, the model has also to be communicated at some point. However, this
happens very rarely and, in particular, when there is a significant change in the
system. We conclude that both learning triggers are effective in detecting a mismatch
between model and true dynamics. Also, average communication was successfully
reduced after updating the model.

2.7 Extensions and Insights
So far, we assumed that perfect measures of the full state xk are available at the
sending agent. In the following, we will drop this assumption and consider systems
where only part of the state can be measured.

2.7.1 Output Measurements

Assume the following system

xk+1 = Axk + ϵk, yk = Cxk + νk, (2.20)

with output measurements yk ∈ Rm. Further, let A ∈ Rn×n and C ∈ Rn×m. The
system is again assumed to be stochastic with process noise ϵk ∼ N (0,Σx) and
observation noise νk ∼ N (0, R), which are independent of each other. We also
assume that A is stable, and the pair (A,C) is observable. Hence, the system
is parameterized by Θ = (A,C,Σx, R) and modeled by Θ̂ = (Â, Ĉ, Σ̂x, R̂). To
reconstruct the full state, we use a Kalman filter (KF), which is the optimal filter
for linear Gaussian systems with exact models (Anderson and Moore, 2012). Here,
we consider the steady-state KF and obtain

x̂k+1 = Âx̂k +K
(
yk+1 − ĈÂx̂k

)
, (2.21)
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where K ∈ Rm×n is the corresponding gain. Further, assume the process has already
converged to stationarity.

Ideally, we want to use the KF states x̂k on the receiving agent’s site. How-
ever, this would require periodic communication of the estimates x̂k, or the mea-
surements yk, which we try to avoid. Exactly as in Sec. 2.2, we run a model-
based prediction step in the absence of data, obtain x̌k+1 = Âx̌k, and employ the
state trigger ∥x̂k − x̌k∥2 ≥ δ. Hence, the inter-communication time is defined as
τ o := min{k ∈ N : ∥x̂k − x̌k∥2 ≥ δ}. Extending ETL to output measurements
is based on treating the KF sequence as a stochastic process in its own right and
investigating the distribution of x̂k. With the aid of the innovation sequence, we
can derive an auto-regressive structure. The innovation of the KF is defined as
Ik = yk − Cx̂k. Furthermore, it is well known that I1, . . . , In are independent nor-
mal distributed random variables with Ik ∼ N (0, S) (Anderson and Moore, 2012).
The covariance is given by S = CPC⊺ + R, where P is the stationary error covari-
ance matrix of the KF and can be obtained by solving the corresponding Riccati
equation (Anderson and Moore, 2012, Equation (4.4)). Hence, we reformulate the
KF as

x̂k+1 = Ax̂k +KIk, (2.22)

and regard Ik ∼ N (0, S) as a random variable. By regarding KIk as process noise,
we are back to the previously discussed problem (cf. (2.3)) and can apply the derived
tools and learning triggers. Hence, we can effectively analyze the distribution of the
corresponding stopping time with the previously derived tools – sampling (2.22) to
obtain model-based stopping times τ̂ o.

2.7.2 Better Models may Result in more Communication

More accurate models result in better predictions. Thus, one may expect that
improved models also lead to reduced communication of state information from
sender to receiver (cf. Fig. 2.1). While this is indeed the case for perfect state
measurements (as has been observed in the example of Sec. 2.6), it may actually be
the opposite for the KF setting. Here, we present an example that demonstrates
this rather unexpected effect – better models may lead to more communication.
The reason is as follows: better models increase the KF performance, and thus, it is
possible to track the unobserved states better. Therefore, it is possible to construct
examples where communication increases, which is desirable for performance, though
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counterintuitive. Consider system (2.20) with the matrices

A =


1.000 0.010 −0.005 0.000
0.017 1.027 −0.301 −0.061
0.000 0.000 0.997 0.009
0.046 0.067 −0.507 0.850

, C⊺ =


1 0
0 0
0 1
0 0

 (2.23)

which is obtained by linearizing the closed-loop dynamics of a stabilized inverted
pendulum. We assume process noise ϵk ∼ N (0, 0.1I4) and observation νk ∼ N (0, 0.1I2),
where In is the identity matrix of dimension n. Further, we assume that ν̂k ∼
N (0, 0.5I2) and that the model otherwise coincides with the true system parame-
ters. We consider the KF states x̂k (cf. (2.21)), the predictions x̌k, and the state
trigger

γstate = 1 ⇐⇒ ∥x̂k − x̌k∥2 ≥ 1. (2.24)

We initialize x(0) = x̂(0) = x̌(0) = 0 and obtain the distribution over stopping
times depicted in Fig. 2.7. The expected model-based communication is derived via
Monte Carlo simulation of the innovation process (2.22), where we set τmax = 100
and m = n = 5000.

In the first graph in Fig. 2.7, we can see that the empirical inter-communication
times are higher than the model-based. Updating the model actually reduces the
average inter-communication time (more communication), which is because the KF
improves and tracks the states xk better, which is illustrated in Fig. 2.8. The first
plot shows the tracking performance when a perfect model is used Θ̂ = Θ (KF states
in yellow). For the second plot, we changed the covariance of νk to N (0, 0.5I2),
as discussed above. In the third plot, we exaggerated this effect even further by
assuming νk ∼ N (0, 10I2) in the model. In all three plots, we consider the first
k = 150 time steps and stop afterward. In the third graph, we can see that the KF
states deviate a lot from the true underlying states. However, they are still close to
the open-loop predictions, and hence, there is very little communication. Despite
the counterintuitive link between model accuracy and average communication, the
example shows that the derived learning triggers are effective in detecting model
mismatch.
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Figure 2.2: Example of model-based state predictions, which are reset to the exact state
whenever the error would exceed the predefined threshold δ = 3. States, error signals, and
the first ten communication instances τi are depicted in the three graphs (top to bottom).
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Figure 2.3: Average inter-communication times. The dashed blue line illustrates the
model-based expected value and the yellow line the empirical mean. The shaded blue
area around the dashed blue line indicates the confidence interval that should contain
the empirical mean with 95% probability. Every new communication instant is added to
a buffer of size n = 300. Afterward, the learning trigger compares the expected value
with empirical mean and updates the model if the yellow line is outside the blue area.
A new model-based expected value is computed, and the empirical mean coincides with
it. Further, the inter-communication times increase, which corresponds to a decrease in
communication.
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Figure 2.4: Statistical properties of expected communication τ̂ (blue) and observed inter-
communication times τ (red). The dashed lines capture the expected values, and the
shaded blue region is a confidence interval that should contain the dashed red line with a
95% probability (cf. (2.11)). As there is a significant deviation between observation and
expectation, the learning trigger initiates to relearn the model. The solid lines represent
the CDF functions, and also here, the empirical distribution is not contained within the
confidence bounds, which triggers learning (cf. (2.17)).
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Figure 2.5: After updating the model Θ̂ to the true system parameters Θ, the estimated
stopping times τ̂ coincide with empirical stopping times τ . As a direct consequence,
communication behavior is improved as the stopping times increase.
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Figure 2.6: Counterexample showing that the expected value of inter-communication times
(learning trigger (2.11)) may not be sufficient to detect an inaccurate model. Furthermore,
the CDF-based trigger (2.17) detects the mismatch reliably.
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Figure 2.7: Communication behavior of a system with output measurements. In the first
graph, we see the test statistic for an inaccurate model and in the second for Θ̂ = Θ.
Both learning triggers ((2.11) and (2.17)) are effective in detecting the model mismatch.
Interestingly, updating the model results in more communication, as can be seen by a
decrease in the actual average inter-communication time E[τ ] (dashed red) between top
and bottom. With the improved model, the KF tracks the true states better, and thus,
we obtain more communication.
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Figure 2.8: State trajectories of the first dimension of the four-dimensional system with
output measurements (2.23). The state trigger (2.24) is applied and therefore, communi-
cation triggered when x̂k and x̌k deviate by δ. Communication instances are depicted with
dotted vertical lines. In the first graph, we can see how well the KF x̂k (yellow) tracks
the true states xk (dashed blue). The red line depicts the open-loop predictions x̌k. By
worsening the model from the first to the second graph, the KF performance gets worse,
which results in less communication. From the second to the third graph, we worsen the
model even more, which results in even less communication, because the KF is not able
to track the states.
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Chapter 3

Experimental Application to Gait Data

The following part is based on the journal publications (Beuchert et al., 2020a,b),
where event-triggered learning was applied for the first time to real-world sensor
networks. In particular, these networks monitor human gait data and through event-
triggered learning, the communication was effectively reduced. The publications
contain additional conceptual contributions by Jonas Beuchert such as different
levels of model learning, i.e., small and full model updates, which will not be covered
here.

3.1 Application Example
Many applications require real-time transmission of signals over communication
channels with bandwidth limitations. A typical example is given by wireless sen-
sor networks in feedback-controlled systems. The number of agents (i.e., network
nodes) and their communication rate is limited by the amount of information the
wireless network can transmit in real-time. It is, therefore, desirable to reduce the
communication load without compromising the accuracy of the transmitted signals.

When a signal is approximately constant or linear in time, it seems straight-
forward to accurately estimate the current sample from previously measured ones.
However, if the signal varies in a less easily predictable manner, it is more difficult
to find signal properties that can be exploited. In the present contribution, we con-
sider signals that are approximately locally periodic. Approximately means that the
signal can be well approximated by repetitions of a periodic pattern. Locally means
that this pattern might change slowly or even suddenly, and for some time periods,
there might be no periodic pattern at all. Many physiological signals exhibit this
approximate local periodicity, for example respiratory, cardiopulmonary, and EMG
data, as well as inertial measurement data from periodic motions such as walking,
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cycling, and swimming. Even though the shape of an ECG curve or the motion of
the leg during swimming might change slowly or even suddenly, a very large portion
of the signals is typically well described by cyclic patterns, and completely irregular
episodes are rare. We will aim at exploiting this approximate local periodicity by
identifying the patterns in real-time and transmitting only the data samples that
cannot be adequately estimated from that pattern and previously transmitted data.
To this end, we will use the proposed ETL methods.

3.2 Results
In summary, the communication load was reduced by 70% while maintaining small
prediction errors, i.e., the foot angle was smaller than 2°. Thus, the predictions are
sufficiently accurate for potential down stream applications such as control tasks.
The measurement sampling rate was conservatively set to 50 Hz. For many applica-
tions, the sampling rates are substantially higher, which would result in even greater
savings. Through the reduced communication load, it would be possible to triple
the amount of sensors with the same bandwidth.

The papers (Beuchert et al., 2020a,b) contain in depth descriptions of the exper-
iments and different settings. In Beuchert et al. (2020a), the focus was on a single
foot during running, while Beuchert et al. (2020b) considers multiple sensors in a
full body sensor network.

Further, ETL enables state-of-the-art prediction methods to adapt to changing
running styles and speeds. While this is already a satisfying result, there is still the
potential to improve the algorithms further and tailor them to the task at hand. One
step in this direction was achieved through small updates that only update certain
parameters, while full updates relearn the whole model. Extending the model class
from linear models to Gaussian process regression was also considered in Beuchert
et al. (2020b) and shown to be effective. A different extension would be to save the
models and reuse them in a smart way and potentially with the model class that
yields the lowest communication load.
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Optimal Control
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Chapter 4

Linear Quadratic Control

Next, we consider a different application for event-triggered learning – model-based
control. The results presented in this chapter are based on the journal publications
(Schluter et al., 2020) for the Linear quadratic regulator (LQR) and (Schlor et al.,
2022) for the Model-predictive control (MPC) part.

4.1 Introduction
Linear quadratic regulator problems are well understood in literature and yield
tractable and well-behaved solutions (see, for example, (Åström, 2012; Anderson
and Moore, 2007) and references therein). Because of this, they are frequently used
in practice, and even applications to nonlinear problems are possible with the aid of
iterative methods that linearize the system dynamics (Todorov and Li, 2005). While
LQR has favorable robustness properties (Lee et al., 2012), the performance of the
controller naturally depends on the accuracy of the underlying model. Thus, just
like any other model-based design, LQR will generally benefit from a precise model,
both in terms of performance and robustness.

We propose to improve the model during operation from data when needed.
Clearly, the idea of data-driven model updates is not new (Hou and Wang, 2013),
however, principled decision making on when to learn is a novel approach. Learning
permanently can be wasteful from a resource point of view and may suffer from di-
vergence issues when the system is standing still, and there is no persistent excitation
in the data (Åström and Wittenmark, 2013; Anderson, 2005). Hence, we propose
to separate the process of learning from the nominal behavior of the system and
investigate the question of when to learn. By automatically detecting the instances
where learning is beneficial, we maintain the advantages of both data-driven and
optimal control approaches by performing learning in a controlled environment and
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Figure 4.1: Proposed event-trigger learning architecture. The classic model-based con-
troller architecture is extended by introducing the triggering of model learning when
needed (blue) in order to improve performance. Learning experiments are triggered when-
ever there is a significant difference between the empirical cost, which is observed from
data, and the theoretically expected cost, which is analytically derived from the model.
After identifying an improved model, a new controller and trigger are derived based on
said updated model. Thus, the model-based controller is closer to the underlying dynam-
ics and, therefore, yields a reduced cost.

afterward, applying the rich optimal control framework to learned models. However,
the crucial difficulty lies in deciding when to learn, which we address herein with the
aid of an event-triggered learning (ETL) approach, whose architecture is depicted
in Fig. 4.1.

The key contribution of this part lies in designing dedicated learning triggers that
compare empirical costs to a model-induced distribution. Our presented approach
is specifically designed for linear Gaussian systems and the signal we care about,
which is the control cost. Thus, we obtain an efficient algorithm with tight confidence
bounds that are based on the herein derived expression for the moment generating
function of the cost.

Contributions

To summarize, this chapter makes the following contributions:
▶ introducing the concept of control performance-based event-triggered learning

for linear Gaussian systems – the model and therefrom derived quantities are
only updated when there are significant changes in the online performance;
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▶ characterization of the full distribution of the LQR cost functional via moment
generating functions (Thm. 13);

▶ design of an effective learning trigger based on the full distribution (Sec. 4.3) of
the LQR cost with additional theoretical guarantees, which are derived with the
aid of concentration inequalities and demonstration that considering moments
(i.e., the expected value) is not sufficient; and

▶ validation and comparison of the derived triggers in simulation and hardware
experiments, in which we demonstrate fast, reliable, and robust detection.

4.2 Event-Triggered Learning for LQR control
In this section, we formulate the problem of event-triggered learning for linear
quadratic control and present the main ideas.

4.2.1 Problem setup

We assume again the linear dynamics

xk+1 = Aoxk +Buk + ϵk, (4.1)

with discrete-time index k ∈ N, state xk ∈ Rn, control input uk ∈ Rq, system
matrix Ao ∈ Rn×n, input matrix B ∈ Rn×q and independent identically distributed
(i.i.d.) Gaussian noise ϵk ∼ N (0,Σx) with E

[
ϵiϵ

⊤
j

]
= Σxδij. Further, the system

is assumed to be (Ao, B)-stabilizable. Hence, stable closed-loop dynamics can be
achieved through state feedback

uk = −Fxk + uref,k, (4.2)

where F ∈ Rq×n is the feedback gain and uref,k is a known reference, which can be
used to track a trajectory or excite the system in order to generate informative data.

A stabilizing feedback gain can be obtained, for instance, via LQR design (Ander-
son and Moore, 2007). In particular, we can use Riccati equations to find analytical
solutions to the optimal control problem with the quadratic cost function

J = lim
N→∞

1
N

E

N−1∑
j=0

x⊤
j QLQRxj + u⊤

j RLQRuj

 , (4.3)

where QLQR and RLQR are symmetric and positive definite matrices with compatible
dimensions. In the following, we consider the empirical cost over a finite horizon N ,
which we will denote at time step k by

ĴN(k) =
k∑

j=k−N+1
x⊤

j QLQRxj + u⊤
j RLQRuj . (4.4)
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A normalization is not needed here since the cost will remain finite when considering
a finite horizon. Thus, we will drop the normalization for notational convenience
since it has no theoretical influence on the later obtained results.

To further ease the notation, we write

xk+1 = Axk + ϵk, (4.5)

with A = (Ao −BF ) and obtain

ĴN(k) =
k∑

j=k−N+1
x⊤

j Qxj, (4.6)

where Q =
(
QLQR + F⊤RLQRF

)
.

It is well-known that the states of a stable system (such as (4.5)) converge
to a stationary Gaussian distribution. In particular, the steady-state covariance
XV := limk→∞ E[xkx

⊤
k ] can be computed as the solution to the Lyapunov equation

(e.g., (Kuvaritakis and Cannon, 2014, Lemma 2.1))

AXVA⊤ −XV + Σx = 0. (4.7)

The stationary state covariance XV is a key object for the following technical
development, and thus, we want to explicitly point out the technical assumptions
that are necessary.

Assumption 11. The closed-loop model (4.5) is stable in the sense that |λmax(A)| <
1.

This assumption is not very restrictive, as we only require the feedback law (4.2)
to stabilize the open-loop model (4.1).

Assumption 12. The system has converged to a steady state, in the sense that
E[xk] = 0 and the covariance E[xkx

⊤
k ] = XV are time-invariant.

Given Assumption 11, it follows directly that the system converges exponentially
to a steady-state Gaussian distribution (Kumar and Varaiya, 1986, Sec. 3.1). The
problem can easily be generalized to E[xk] = µ by subtracting the constant mean
from given data. Thus, the assumptions made here are not very strong.

In the following, we distinguish between the model-induced cost JN , which is a
random variable, and the empirical cost ĴN(k), which is sampled from the system.
For the random variable JN , we can drop the dependency on k. This follows di-
rectly from assuming stationary states in Assumption 12. Since we are considering
quadratic transformations of stationary random variables (the states) and the sum-
mation over a fixed window of length N , the random variable JN is itself stationary.
Thus, we can omit the index k.
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4.2.2 Problem and Main Idea

In this work, we systematically analyze the question of when to learn a new model
of the dynamical system (4.1), which is later on utilized to synthesize a controller.
Due to the structure of the problem, we are able to quantify how well the controller
should perform in terms of expected value, variance, or a distributional sense. The
statistical testing is carried out under the null hypothesis that model and ground
truth coincide. Thus, by checking if theoretically derived properties actually coincide
with empirically observed cost values, we are able to detect significant mismatches
between the current model and the ground truth dynamics.

This idea leads to the proposed ETL architecture shown in Fig. 4.1. The core
piece of the proposed method is the binary event trigger γlearn for learning a new
model and the corresponding test statistic ψ that quantifies how likely it is that em-
pirical samples ĴN(k) coincide with the model-induced random variable JN . Given a
level of confidence α, we are able to compute critical thresholds κ and, thus, trigger
learning experiments on necessity. Since we are considering linear systems here, the
main emphasis is on the design of the test statistic ψ. Identifying linear systems is
not the focus here and has been extensively discussed in previous work (see (Ljung,
2009) for an overview). After a new model is identified, we propose to compute
a new controller and derive new trigger thresholds. We thus summarize the core
problem addressed here.

Learning Trigger (LQR). Detect, when the model has changed, by comparing the
deviation of model-induced cost properties to empirical costs, thus, yielding the learn-
ing trigger

ψ
(
ĴN , JN

)
> κ⇔ γlearn = 1, (4.8)

where ψ is an appropriate test statistic, κ is the computed critical threshold and
γlearn is a binary indicator for whether a model update is required (γlearn = 1) or not
(γlearn = 0).

Due to the Gaussian process noise, the proposed trigger will also exhibit an
expected probabilistic behavior. In particular, it is impossible to entirely avoid false
positive learning decisions. Therefore, we take this explicitly into account when
designing the learning trigger by choosing κ such that

P
[
ψ
(
ĴN , JN

)
> κ

]
< α , (4.9)

i.e., the probability of the trigger misfiring is less then desired confidence level α.
First, we develop a learning trigger incorporating the entire distribution in the

form of a moment generating function in Sec. 4.3, which allows for an efficient imple-
mentation to detect system changes. Then, we demonstrate that the straightforward
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approaches using single moments of the cost (Sec. 4.4) pose theoretical challenges.
For the case of the expected value, we show that the trigger based on moment gen-
erating function with its superior theoretical properties also yields better empirical
performance and reliability.

4.3 Distribution-based Trigger
In this section, we derive a learning trigger, which is directly based on confidence
bounds of the empirical cost. The idea is to apply the Chernoff bound to the
empirical cost in order to obtain a likely range of values. Then, the trigger can easily
detect values outside of this interval. Before we can apply the Chernoff bound, we
first need to derive the moment-generating function (MGF) of the cost function.

4.3.1 Moment Generating Functions

The moment-generating function (MGF) MX(ξ) := E[eξX ] of a random variable X –
if it exists – is a powerful tool to characterize the distribution (see, e.g., (Gut, 2013,
Chapter 4) for more details on MGFs). It is moment-generating in the sense that
for all n ∈ N, the n-th moment E[Xn] can be obtained by computing d

dξ
MJN

(ξ)|ξ=0.
Next, we will compute the MGF of the cost JN and afterward, combine it with

Chernoff bounds to obtain a powerful trigger.

Theorem 13 (Moment Generating Function of the Cost). Assuming the state se-
quence z = (x0, x1, . . . , xN−1)⊤ is a jointly normally distributed random variable
with mean µ and covariance matrix Σ. The moment generating function of the cost
JN = z⊤Ωz = ∑N−1

k=0 x
⊤
k Qxk is given by

MJN
(ξ;µ,Σ,Ω) =

exp
(

1
2µ

⊤
(
(I−2ξΩΣ)−1 − I

)
Σ−1µ

)
√

det(I−2ξΩΣ)
, (4.10)

where ξ ∈
[
−∞, 1

2λmax(ΩΣ)

)
and Ω = diag(Q, . . . , Q) with weight matrix Q.

Proof. It is a known fact that there exits an m×m matrix T such that detT ̸= 0,
T⊤Σ−1T = I, T⊤ΩT = Λ, and ΣΩ = T−⊤ΛT⊤, where Λ has the eigenvalues λi of
ΣΩ on the diagonal, given that Σ and Ω are symmetric and Σ is positive definite.
As both Σ and Ω fulfill this requirement by definition, we can use this to obtain a
transformation matrix T . Let Fz denote the cumulative distribution function of z,
i.e., of a normal distribution. It then follows by definition that

MJN
(ξ) = E

[
eξz⊤Ωz

]
=
∫
RNn

exp
(
ξx⊤Ωx

)
dFz(x)
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= det (2πΣ)− 1
2

∫
exp

(
ξx⊤Ωx− 1

2 (x−µ)⊤Σ−1(x−µ)
)
dx,

where
∫

dx is an m-fold integral over the domain of z, i.e., RNn. Applying the
transformation x = Ty + µ with c = T−1µ = (c1, . . . , cm), we rewrite as

MJN
(ξ) =

m∏
i=1

1√
2π

∫ ∞

−∞
exp

(
ξλi(yi + ci)2 − 1

2y
2
i

)
dyi

=
[

m∏
i=1

1
1− 2ξλi

]
·
[
exp

m∑
i=1

1
2c

2
i

2ξλi

1− 2ξλi

]

=
exp

(
1
2µ

⊤
(
(I−2ξΩΣ)−1 − I

)
Σ−1µ

)
√

det(I−2ξΩΣ)

By Assumption 11 and 12, we have µ = 0 and Σ = const. This yields the
simplified form

MJN
(ξ; Σ,Ω) = det(I−2ξΩΣ)− 1

2 , (4.11)

which is time-invariant as it only depends on constant model parameters. Thus, it
is also well suited for the design of a learning trigger.

Based on the MGF, it is straightforward to compute the moments.

Lemma 14. For E[x] = 0, the expected value and variance for the cost JN of a
trajectory x, as derived from the moment-generating function MJN

(ξ), are given by

E
[
JN

]
= d

dξMJN
(ξ)
∣∣∣∣∣
ξ=0
= trace ΩΣ (4.12a)

E
[
J2

N

]
= d2

dξ2MJN
(ξ)
∣∣∣∣∣
ξ=0
= 2 trace(ΩΣ)2 + trace2 ΩΣ . (4.12b)

Proof. The result follows from using Jacobi’s formula (Magnus and Neudecker, 1999,
Sec. 8.3)

d
dt

detA(t) = detA(t) trace
(
A−1 d

dt
A(t)

)
to compute the derivatives of the moment-generating function.

4.3.2 Chernoff Trigger

In order to obtain an effective trigger with theoretical guarantees, we need sophisti-
cated concentration results, which make use of the whole distribution.

Next, we introduce the Chernoff bound and utilize it to derive the trigger thresh-
old κ.
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Theorem 15 (Chernoff Bound (Chernoff, 1952, Thm. 1)). Given the moment-generating
function E

[
eξX

]
of the random variable X, for any real number ξ > 0, it holds that

P[X ≥ κ]≤ MX(ξ)
eξκ

P[X ≤ κ]≤ MX(−ξ)
e−ξκ

. (4.13)
In particular, it holds that

P[X ≥ κ]≤ inf
ξ>0

MX(ξ)
eξκ

P[X ≤ κ]≤ inf
ξ<0

MX(ξ)
eξκ

. (4.14)

Proof. Follows from Markov’s inequality applied to eξX .

Remark 16. These bounds are often specialized to sums of independent random
variables. We avoid this independence requirement, by considering the MGF of the
entire sum as a random variable. This enables us to tailor the Chenoff trigger to the
full distribution of JN taking any dependence over the horizon into account. This is
in contrast to the moment-based trigger designed in the next section.

Thus, we can state the main theorem of this part, which is the full distributional
analog to Thm. 26.

Theorem 17 (Chernoff Trigger). Let the parameter N ∈ N be given and Assump-
tions 11 and 12 hold. Then, we can obtain for any time-index k an upper bound
α ∈ (0, 1) for the probability

P
[
JN(k) /∈

(
κ−, κ+

)]
≤ α, (4.15)

where the thresholds are chosen in the following

κ+ = inf
ξ∈(0, 1

2λmax)
χ(ξ) κ− = sup

ξ∈(−∞,0)
χ(ξ) (4.16)

χ(ξ) = −1
ξ

ln α
2 −

1
2ξ

ln det(I−2ξΩΣ) (4.17a)

= −1
ξ

ln α2 −
1
2ξ

Nn∑
j=0

ln(1− 2ξλj) . (4.17b)

Further, λj are the eigenvalues of ΩΣ, the state covariance matrix is denoted as Σ
(as introduced in Lemma 24), and the weight matrix Ω = diag(Q, . . . , Q).

Proof. We distribute the tail probability α symmetrically to both sides of the inter-
val. Thus,

inf
ξ>0

MX(ξ)
eξκ+ = inf

ξ<0

MX(ξ)
eξκ− = α

2 ,

which has to be solved for κ±. For κ+, we get

α

2 = inf
ξ>0

MX(ξ)
eξκ+
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0←
1

2λmax

κ−

κ+

ξ0

χ

Figure 4.2: Illustration of the shape of the function χ(ξ), which has to be optimized for
the Chernoff trigger. The scales of the left- and right-hand side of the graph differ and
have been adjusted for better visualization. The bounds of the Chernoff trigger, κ− and
κ+, are found through straightforward maximization (over ξ < 0) and minimization (ξ >
0), respectively.

⇔ 0 = inf
ξ>0

lnMX(ξ)− ξκ+ − ln α
2

∣∣∣∣∣÷ ξ
⇔ κ+ = inf

ξ>0
1
ξ

lnMX(ξ)− 1
ξ

ln α
2

We can proceed similarly for κ−, just that the infimum turns into a supremum,
when we divide by ξ as ξ < 0. By inserting the simplified MGF from (4.11) into the
equation, we obtain the statement.

Next, we introduce the trigger design, discuss the main advantages, and, finally,
elaborate on how to obtain the thresholds κ±.

The Chernoff trigger is defined as follows:

ĴN(j) /∈
(
κ−, κ+

)
⇔ γlearn = 1, (4.18)

with κ± as introduced in Thm. 17.
In order to obtain the thresholds κ±, we need to solve the two optimization prob-

lems (4.16). However, this is easily tractable online due to the following properties
of the objective function χ. Intuitively this can also be seen in Fig. 4.2, where the
general shape of the objective function is illustrated.

Theorem 18. The function χ(ξ) is strictly convex in the range for κ+ and thus has
only one minimum on the interval.
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Proof. We first consider the strict convexity on the interval 0 < ξ < 1
2λmax

. For all
ξ from that interval, 1

ξ
is convex, thus also −1

ξ
ln α

2 is convex as α ∈ (0, 1) implies
that the logarithm is negative. The second derivative of the second part is

d2

dξ2

[
− ln(1− 2ξλj)

2ξ

]
= − ln(1− 2ξλj)

ξ3 + 2λj

ξ2 (1− 2ξλj)
+

4λ2
j

2ξ (1− 2ξλj)2 .

In the considered interval, we have ξ > 0, 0 < 1 − 2ξλj < 1 and ln(1 − 2ξλj) < 0,
therefore, the second derivative is positive in this range. Hence, all summands of χ(ξ)
are strictly convex. Thus, χ(ξ) is strictly convex on the interval. This immediately
implies that there is only one minimum on the interval.

Remark 19. Even if the optimization does not yield the optimal value, any sub-
optimal value will still fulfill the Chernoff bound. Thus the trigger remains valid,
just with a more conservative threshold.

4.4 Mean-based Learning Trigger
The previous design considers only a single sample of the cost function. Intuitively
one may want to use moving averages and higher moments of the cost since it is
a stochastic process. Similar ideas, which are based on the expected values and
Hoeffding’s inequality were presented in Solowjow and Trimpe (2020); Gatsis and
Pappas (2018); Baumann et al. (2019). While conceptually simpler, we illustrate
that moment-based triggers involve theoretical obstacles and limitations arising from
this concept.

The idea for this trigger is to derive a threshold κ on the deviation from the
expected value E[JN ], leading to∣∣∣∣∑j∈L(k) ĴN(j)− LE[JN ]

∣∣∣∣ ≥ κ⇔ γlearn = 1 , (4.19)

where L(k) is a summation set of cardinality L that achieves approximately un-
correlated samples and will be discussed later (cf. (4.23)). We will first provide a
derivation of the expected value, then discuss how to design the threshold κ in order
to obtain a confidence interval corresponding to a given probability.

4.4.1 Expected Value

Analogously to the continuous-time solution provided in Bijl et al. (2016), we will
next derive the expected value of the cost E[JN ] for the discrete-time case.
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Lemma 20 (Expected Cost). Under Assumption 11 and 12, the expected value for
the cost JN with respect to the system (4.5) is given by

E[JN ] = E
[

N−1∑
k=0

x⊤
k Qxk

]
= trace

(
N−1∑
k=0

SkQ

)

= trace
(
(S0 − SN +NΣx) X̄Q

)
= trace

(
NΣxX̄

Q
)
, (4.20)

with Sk = E
[
xkx

⊤
k

]
, and X̄Q the solution to the Lyapunov equation A⊤X̄QA− X̄Q +

Q = 0.

Proof. We first note that E[JN ] = E
[∑N−1

k=0 x
⊤
k Qxk

]
= E

[∑N−1
k=0 trace

(
xkx

⊤
k Q

)]
=

trace
(∑N−1

k=0 E
[
xkx

⊤
k

]
Q
)

= trace
(∑N−1

k=0 SkQ
)
. Then, let Y (N) := ∑N−1

k=0 Sk. Next,
we can find Y (N) as the solution to a discrete Lyapunov equation by reordering the
difference of initial and final second moment

SN − S0 =
N−1∑
k=0

(Sk+1 − Sk) =
N−1∑
k=0

(
ASkA

⊤ − Sk + Σx

)

= A

(
N−1∑
k=0

Sk

)
A⊤ −

(
N−1∑
k=0

Sk

)
+

N−1∑
k=0

Σx

= AY (N)A⊤ − Y (N) +NΣx.

One can show by substituting the Lyapunov equations, that E[JN ] = trace(Y (N)Q) =
trace

(
(S0 − SN +NΣx) X̄Q

)
with Y (N) and X̄Q being the solution to 0 = AY (N)A⊤−

Y (N) + S0 − SN +NΣx and 0 = A⊤X̄QA− X̄Q +Q. With Assumption 12 the co-
variance is time-invariant, thus the result simplifies to E[JN ] = trace

(
NΣxX̄

Q
)
.

This result is equivalent to the previous result from Lemma 14 for the first
moment. However, here we avoid explicitly computing Σ, which is more computa-
tionally efficient for individual moments than the previous direct solution, where Σ
is explicit.

Next, we will consider how to design the threshold κ.

4.4.2 Statistical Guarantees

The trigger (4.19) leverages the fact that the empirical mean converges to the ex-
pected value. Even for finite sample sizes, it is possible to quantify the expected
deviation, which can be done with the well-known Hoeffding inequality. The trig-
ger threshold κ can be regarded as a confidence bound, i.e., it is chosen such that
with confidence level α, the deviation term does not exceed κ. Therefore, observ-
ing deviations larger than κ can not be sufficiently explained by noise and random
fluctuations. Thus, we trigger model learning whenever this happens.
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Theorem 21 (Hoeffding’s Inequality (Hoeffding, 1963, Thm. 2)). Assume X1, X2,

. . . , Xn are independent random variables and ai ≤ Xi ≤ bi (i = 1, 2, . . . , n), then
we obtain for all κ > 0

P
[

n∑
i=1

Xi − nµ ≥ κ

]
≤ exp

(
−2κ2∑n

i=1 (bi − ai)2

)
. (4.21)

Comparing with (4.19), the cost samples ĴN corresponds to the random variables
Xi and E[JN ] to the mean µ. However, there are two challenges when applying
Hoeffding directly in this way. First, JN is unbounded, as it is directly influenced by
Gaussian noise. Second, the cost samples are not independent, as they are part of
the same state trajectory. In the following, we introduce two modifications to cope
with these issues and make Hoeffding’s inequality applicable.

In order to obtain an upper bound on JN , we will assume state constraints and,
for the sake of simplicity, we shall assume linear constraints.

Lemma 22. Assume the states are constrained by ∥W−1xk∥ < ρ for all k, where
W ∈ Rn×n is invertible. Then, the cost function JN is bounded by

0 ≤ JN ≤ sup
∥W −1xk∥2<ρ

JN = ρ2Nλmax
(
W⊤QW

)
. (4.22)

Proof. The lower bound follows immediately from the positive definiteness of Q, as
x⊤Qx ≥ 0 for all x. For the upper bound we use the convexity of the cost function.
The supremum of a convex function on an open set is attained at the maximum on
the boundary. Hence,

JN ≤ sup
∥W −1xk∥2<ρ

JN = max
∥W −1xk∥2=ρ

[
N−1∑
k=0

x⊤
k Qxk

]

= N max
∥y∥2=ρ

∥∥∥∥√Q Wy

∥∥∥∥2

2
= ρ2N

∥∥∥∥√Q W

∥∥∥∥2

2

= ρ2Nλmax
(
W⊤QW

)
.

Remark 23. Even for naturally unconstrained system, considering Assumptions 11
and 12, it is reasonable to assume that the state stays within some sufficiently large,
but finite, region around the origin.

Next, we investigate how to cope with the dependence in the cost samples. First,
we note that consecutive samples JN(k − 1) and JN(k) are dependent, as they
overlap in the states they sum over. Also, adjacent sample JN(k − N) and JN(k)
are dependent, since the first state in JN(k) just follow the last state in JN(k−N).
In order to find approximately independent samples JN(j), we first need to consider
the correlation between states in a trajectory.
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Figure 4.3: Sampling intervals for Hoeffding (Sec. 4.4) and Chernoff trigger (Sec. 4.3). Over
each red interval, the quadratic cost (4.6) is computed yielding the sampled ĴN (j), while
the data in-between remains unused. Hence, the Hoeffding discards a significant part of
the collected data, in order to ensure approximate independence between samples of JN .
In contrast to this, the Chernoff trigger uses all data points by taking a single cost sample
over a longer horizon.

Lemma 24. By Assumption 12 we have x0 ∼ N
(
0, XV

)
. Then, the joint distribu-

tion of a sequence of states (x0, x1, . . . , xN) is a multivariate Gaussian distribution
with mean µ = 0 and symmetric block-Toeplitz covariance matrix

Σ =



XV XVA⊤ XV(A2)⊤ · · · XV(AN)⊤

AXV XV XVA⊤ . . . XV(AN−1)⊤

A2XV AXV . . . . . . ...
... . . . . . . XV XVA⊤

ANXV · · · A2XV AXV XV


.

Proof. The covariance XV is invariant under the system equation, thus E[xix
⊤
i ] =

XV for all i = 0, . . . , N . Computing the cross-covariance for two states xi and xj,
for i < j yields E[xix

⊤
j ] = Ai−jXV . As the joint distribution over multivariate

Gaussians, i.e., the states, is also multivariate Gaussian, the statement follows.

Lemma 25. Under Assumptions 11 and 12, and with arbitrarily small ε > 0, there
exist an r0 such that

∣∣∣[Ar0XV
]

i,j

∣∣∣ < ε for all matrix-entries (i, j). Hence, for any
large enough r > r0 the state xk is approximately independent from the state xk−r.

Proof. Using Lemma 24, we obtain E
[
xkx

⊤
k−r0

]
= Ar0XV as the cross-covariance for

the jointly multivariate normal distributed states. For multivariate normal distribu-
tions, we have that zero cross-covariance is equivalent to independence. Since, as A
is Schur-stable by Assumption 11, i.e., λmax(A) < 1, the term Ar0 approaches zeros
as r0 → ∞ (Oldenburger, 1940). Hence, by definition of the limit, there exists an
r0 such that the absolute value of the cross-covariance is elementwise smaller than
ε. Furthermore, the same holds trivially true for any r > r0. Therefore, the states
from the same trajectory with distance r are approximately independent.
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Thus, we ensure approximately independent samples by waiting for r data points
between each N data points long cost sample (cf. Fig. 4.3). The horizon of the last
cost-sample ends at the current time step, which allows the trigger to take the most
recent data into account. Therefore, we obtain the summation set

L(k) := {k − (N + r)i|i ∈ 0, . . . , L− 1} (4.23)

for the sample average in (4.19), which by construction has cardinality L. Consid-
ering the definition of the cost (4.6), the indices in L(k) mark the end of each red
interval in Fig. 4.3. In total, the trigger needs the last L(N + r)− r states as data,
of which it only uses LN for approximating the mean.

Strictly speaking, approximate independence still does not allow us to apply
Hoeffding (Thm. 21). Therefore, for the time being, we assume the approximation
is exact and then apply Hoeffding to obtain the thresholds. The previously intro-
duced Chernoff trigger (Sec. 4.3) solved this issue in an elegant and clean way by
incorporating the correlations directly into the trigger via the MGF.

Theorem 26 (Hoeffding Trigger). Let Assumptions 11 and 12 hold, assume the
conditions of Lemma 22 are satisfied, and the samples JN(k−(N+r)i), i = 0, . . . , L−
1 are mutually independent. Further, let α denote the desired confidence level and
κ is chosen as

κ = sup
j
{JN(j)}

√
−L2 ln α2 = ρ2Nλmax

(
W⊤QW

)√
−L2 ln α2 . (4.24)

Then, the probability of triggering with (4.19), while the model coincides with the
ground truth, is bounded by

P
[∣∣∣∣∣

L−1∑
i=0

JN(k − (N + r)i)− LE[JN ]
∣∣∣∣∣ ≥ κ

]
≤ α. (4.25)

Proof. By construction, we can apply Hoeffding’s inequality (Thm. 21) to JN at
the sampling instances L(k). The bound is given by Lemma 22 as bi ≡ 0 and
ai ≡ sup JN . As the same inequality can also be applied to −JN , we get the
combined inequality

P
[∣∣∣∣∣

L−1∑
i=0

JN(k − (N + r)i)− Lµ
∣∣∣∣∣ ≥ κ

]
≤ 2 exp

(
−2κ2

L (sup JN)2

)
= α.

We set α to coincide with the upper bound and rearrange for κ. Thus, we obtain

α = 2 exp
(

−2κ2

L (sup JN)2

)
κ2 = − (sup JN)2 L

2 ln α
2 .

Then, the result is obtained by taking the square root and inserting the value for
sup JN from the Lemma 22.
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In practice, r0 is chosen large enough so that Lemma 25 ensures approximate
independence of the samples JN(k−(N+r)i). Thus, we analyze if the empirical mean
actually converges to the analytically derived expected value, while the technical
details ensure that we avoid distorting the cost with random short term effects.

Remark 27. Following the same principles, it is possible to derive alternative trig-
gers that consider different error terms or higher moments. However, we did not
observe any improved performance of such triggers compared to the mean-based Ho-
effding trigger. Considering relative instead of absolute errors is also possible, how-
ever, it does not improve the triggering behavior. We confirmed this in numerical
investigations (analogous to Sec. 4.5) for a variance-based Hoeffding trigger, with
similar theoretical guarantees, and showed that it yields no significant advantage
over the mean trigger. The Chernoff trigger does not suffer from the same limita-
tions as the Hoeffding-based design.

4.5 Numerical Simulation
Next, we will numerically study the trigger architecture, as shown in Fig. 4.1. We
will illustrate the triggering behavior and, in particular, investigate how well model
change is detected with each trigger.

4.5.1 Setup

Initially, a 5 dimensional system (Ao, B,Σx) is randomly generated, by sampling
the matrices Ao − I ∈ R5×5, B ∈ R5×1, and

√
Σx ∈ R5×5 elementwise from a

uniform distribution between ±1. The initial state is sampled from the asymptotic
distribution of the closed-loop system, in order to fulfill Assumption 12.

Next, we introduce the model (Ão, B̃, Σ̃x), which is used to compute the feedback
controller and to derive the triggering thresholds. Initially, we set the model to the
exact system parameters in order to demonstrate that the cost behaves as expected.
Later on, we will distort the system dynamics (Ao, B,Σx) to create a gap between
model and true system parameters. For the model-based controller, we use LQR
state feedback with unity weight matrices.

The system is simulated for 50 000 time steps. At each time step, the cost and
trigger value is computed as described below for each trigger. If the trigger detects
a system change, then the model is set to the true parameters, i.e., (Ão, B̃, Σ̃x) ←
(Ao, B,Σx). Thus, we abstract for the time being the actual model learning to setting
the model parameters to the true values. While this, of course, is not possible in
reality, for the simulation we are for now mainly interested in the behavior of the
trigger. The learning part will be considered later in Sec. 4.6.
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In order to simulate system changes, which the trigger should detect, we alter the
system every 10 000 time steps without adjusting the model, trigger, nor controller.
First, we tried sampling the new system dynamics (A′

o, B
′,Σ′

x) exactly the same
way as for the initial system. However, these changes are usually quite significant
and easy to detect. Thus, we bound the change with the aid of an additive model
increment

∆ = β
(A′

o, B
′,Σ′

x)− (Ao, B,Σx)
∥(A′

o, B
′,Σ′

x)− (Ao, B,Σx)∥2
, (4.26)

where β ∈ (−0.1, 0.1) is also sampled from an uniform distribution. Thus, the
new system is obtained by adding ∆ to the old system. If the resulting system is
uncontrollable, a different increment is generated by sampling again. We do not
enforce stability after altering the system since any threshold κ+ will be reached
eventually, and thus, triggering is trivial when the system is unstable.

The Chernoff trigger is computed from the model as described in (4.18) with
a horizon of N = 200 and α = 1%. A system change is detected, when the trigger
value ψ = JN(·) leaves the interval (κ−, κ+). With the resulting model update, we
have to recompute the trigger thresholds κ±.

The Hoeffding trigger uses the simpler design (4.19) with the increased misfire
probability α = 25%. For the moving average sampling we use N = r = 60 and
L = 20 (cf. Fig. 4.3). The adjustment of N and α compared to the Chernoff trigger
are required for detection with this trigger due to the significant conservatism and
theoretical shortcomings of the design. The required state-bound W is set to the
covariance of the state and ρ = 18. These bounds are constant throughout the
simulation. Thus, the threshold κ remains constant as well, while the mean E[JN ]
is the only part of the trigger that changes with model updates.

For both triggers, we use the same random seed allowing for direct comparison
of the result as shown in Fig. 4.5 and Fig. 4.4.

4.5.2 Results

Next, we look at the numerical performance for both triggers. The shown roll-out
was pick as it displays many interesting effects observed throughout various roll-outs
and is a good representation of the observed behavior. In this run neither instability,
significant violation of the upper bound on the cost for the Hoeffding trigger, nor
the issues that arise from the inactive trigger after a detection are shown. Their
effects are obvious and observed in other roll-outs.
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Figure 4.4: Numerical simulation of the Hoeffding trigger on a randomly generated 5-
dimensional system. In the lower graph the trigger statistic ψ is shown (blue line). Every
10 000 time steps (green lines), the system is randomly altered in order to simulate change.
Leaving the confidence bounds (−κ, κ) triggers learning (red line). Then, the model is set
to the true system parameters, a new feedback gain computed, and a new value for E[JN ]
derived. In the upper graph, the normalized cost is shown (in blue) and the model-based
expected value E

[
JN

]
(orange line).
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Figure 4.5: Numerical simulation of the Chernoff trigger on a 5-dimensional system with
random Ao and B matrices. At the indicated time step (green), the entries of the A and
B-matrices are randomly altered in order to simulate a change in the dynamics. This
change is detected at the red lines, at which point the model, the feedback controller, and
the thresholds κ± are updated.
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In the upper plot of Fig. 4.4, we see the normalized cost, and in the lower one,
the trigger statistic ψ for the Hoeffding trigger. The Chernoff trigger requires only
a single plot in Fig. 4.5, since it utilizes the cost ĴN directly as trigger statistic ψ.
The system is distorted every 10 000 time steps (green dashed line). A detection
(red line) occurs when the trigger value ψ (in blue) hits either threshold κ, which
can be seen in the (lower) plot for trigger statistic. Recall that each trigger uses
a different horizon for the cost, hence due to the longer horizon, the cost for the
Chernoff trigger looks smoother.

Foremost, this example illustrates the shortcomings of the mean-based design
in contrast to the normal operation of the Chernoff trigger. In the following, we
consider the individual system changes and their detection in detail.

At k = 10 000, the first system change occurs, which is detected after 2 480 steps
with the Hoeffding trigger. This is a significant delay between changing the dynamics
and detecting said change. However, these transient effects are not surprising due to
the large amount of data required by the trigger with its window of length L(N+r) =
2400. Thus, it might take some time (cf. Fig. 4.3) until the new dynamics affect the
entire horizon of the moving average. This effect can also be observed at k = 40 000,
where the detection takes 1 838 steps. The Chernoff trigger, in contrast, does not
suffer from this issue. While the achieved detection times of between 50 and 280
steps in this simulation are only possible due to the better bounds, of course, the
short window of states considered also expedites the detection.

The Hoeffding trigger does not detect the change at k = 20 000, which demon-
strates the downsides of this trigger design. The upper bound is too conservative,
and thus, the change cannot be detected with the given amount of data. Consid-
ering more data would be possible, however, it would also increase the delays even
further. Smaller upper bounds are not possible since these were designed for the
initial system by hand. In principle, it would be possible to change the bounds
during triggering, however, it is not trivial to do so automatically. The Chernoff is
designed to deal with possible unbounded cost, insofar the order of magnitude of
the cost has no impact on the triggering performance.

At k = 30 000, there is a fast increase of the cost and a lot of deviation within
the signal. This allows even the Hoeffding trigger a fast detection after only 435
steps. Yet, the Chernoff trigger is still significantly faster in detecting the change
within 50 steps.

Secondly, for the Chernoff trigger, we can see that the bounds are tight in the
sense that the cost stays within the confidence interval, but also comes close to
the edges. Thus, the probability mass is distributed as intended. Even though the
trigger uses little data, it rarely misfires – not once in this run. In the next section,
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we will present a large scale experiment to further investigate false positives and
trigger delays. We obtain a misfire rate of less than 0.01% over the simulated four
billion time steps, which is, as designed, less than α = 1%.

4.5.3 Discussion

Hoeffding Trigger

First of all, the Hoeffding trigger does a decent job at detecting change. However,
there are some downsides and limitations.

The large amount of data required by the trigger affects detection. Clearly, there
is a significant delay in the detection, which corresponds to the magnitude of the
time window. Further, it prevents the detection of quick changes since new data has
to be gathered after each model update.

Furthermore, bounding the cost derived from Lemma 22 is an issue. In order
to apply Hoeffding’s inequality rigorously, we need the bound to hold everywhere.
However, this has a significant impact on the detection rate since the possibility
of high costs increases the possible confidence interval. Additionally, Hoeffding’s
inequality is per se based upon the worst-case distribution and, thus, not very tight.

Nonetheless, there is sufficient information in the cost signal to detect changes
in the system dynamics reliably. Yet, this trigger only exploits a small part of the
available data and, hence, it only achieves sub-optimal detection times and misses
some changes.

Chernoff Trigger

Since the trigger thresholds are tailored to the actual distribution, we can see a
superior performance. In particular, the adaptivity of the thresholds to different
magnitudes of process noise can be clearly seen in Fig. 4.5. For instance, at k =
40 000, and afterward, there is little deviation in the cost, and this is also captured
in the bounds. However, between k = 0 and k = 10 000 there are strong oscillations
in the signal. Nonetheless, the interval fits nicely.

Furthermore, the shorter time-window of only 200 instead of 2 400 steps results
in faster and more reactive triggering. However, therein lies a trade-off with ran-
dom fluctuations and unmodelled disturbances. These can have large impacts on
the trigger value ψ, as they are not averaged out. Therefore, we will discuss fur-
ther possibilities to robustify the trigger in Sec. 4.6, where we consider a hardware
experiment.
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4.5.4 Detection Delay

To study the detection delays of this trigger (i.e., the time between changing the
system and the trigger detecting the change), we ran large scale Monte Carlo simu-
lations using the same setup as before. However, we ignored unstable changes and
resampled when this happened. Each roll-out was simulated an hour of wall-time
before a new roll-out with a different random seed was started. The restarts are
required as the used pseudo-random number generator for the noise and system
changes has only limited entropy. Eight roll-outs were computed in parallel on an
Intel® Xeon® W-2123 3.6 GHz 8-core processor, for a total of two weeks accumulating
a total of 3 976 360 000 simulated time steps with 397 636 system changes.

A System Change Metric

Our hypothesis is that the detection delay depends on the size of the system change.
Thus, we require a metric to quantify this. For this purpose, we compare the system
norm before and after the change. Considering the stochastic nature of the problem,
using the H2-norm seemed suitable. This norm is closely linked to the steady-state
covariance of the system when driven by white noise input. In detail, the H2-norm
for an input-output system G with input w and output y is defined as∥∥∥G∥∥∥

H2
=
√

lim
k→∞

traceE
[
y⊤

k yk

]
,

E [wi] = 0 , E
[
wiw

⊤
j

]
= δij I .

(4.27)

Further, we decided to measure the system change as

δsys :=

∥∥∥∥∥∥
 Anew

√
Σx,new

I 0

∥∥∥∥∥∥
H2∥∥∥∥∥∥

 Aold
√

Σx,old

I 0

∥∥∥∥∥∥
H2

, (4.28)

with the old and new closed-loop system matrix A and the square root of process
noise covariance Σx. The [−−| ]-notation represents the system and is commonly used
in the robust control community (Zhou and Doyle, 1998, Sec. 3). We use the square
root of Σx as input since this will transform the white noise of the norm into the
actual Gaussian noise.

Estimating Probability Density P
(
TD

∣∣∣δsys

)
Additionally, we need to clarify how we measure the detection delay TD. We define
the delay as the number of time steps from the system change, which is instantaneous
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in the simulation, to the first time step, the trigger threshold is passed. In particular,
we do not consider detection only after the threshold is passed for some time, as
implemented on hardware (cf. Sec. 4.6).

The Monte Carlo simulation yields samples from the joint probability P
(
TD, δsys

)
of the detection delay TD and system change δsys. From these samples, we compute
an estimate for the probability density function using a Gaussian kernel smooth-
ing with the Matlab®-command1 ksdensity2 on

(
TD, log10 δsys

)
. Applying the

logarithm is beneficial from a numerical point of view.
Clearly, the system changes δsys are not uniformly distributed, and thus, the joint

probability density is difficult to interpret. Hence, we condition on δsys to obtain
the conditional probability P

(
TD

∣∣∣δsys
)
. In order to do that we need to compute the

density function for the marginal probability P
(
δsys

)
, for which we again apply a

Gaussian kernel smoothing with ksdensity on the logarithm of δsys. The conditional
probability is then computed by division.

Results

In Fig. 4.6, the obtained density function for P
(
TD

∣∣∣δsys
)

is shown. For the visual-
ization the graph renormalized such that ∀ϑ : maxτ

{
P
(
TD = τ

∣∣∣δsys = ϑ
)}

= 1.
We can see that a change is most likely detected after N time step, as we observed
earlier when considering just a single roll-out.

Since we are using a relative metric, a value of 1 implies that there was no
change in the system. We can clearly see in Fig. 4.6 that the probability mass is
rather concentrated for significant changes in the system (i.e., δsys ≪ 1 and δsys ≫ 1).
Moving towards δsys = 1, we can observe that the detection time increases and also
the variance. More and more probability mass is pushed towards large detection
times. Exactly at δsys = 1, the triggering should be purely due to false positives.
However, we did not record any data points exactly at δsys = 1 since this event has
probability zero. Further, there are some smoothing effects in Fig. 4.6, in particular,
around δsys = 1.

4.6 Hardware Experiment: Rotary Pendulum
While the previous numerical examples showed the effectiveness of the proposed
triggers, we now investigate their efficacy under real-world and, thus, non-ideal
conditions. We consider the pole-balancing performance of a rotary pendulum.

1Matlab®, Simulink® are registered trademarks of The MathWorks, Inc.
2https://www.mathworks.com/help/stats/ksdensity.html
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Figure 4.6: The probability density estimate P
(
TD
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)

of the detection delay TD of the
Chernoff trigger conditioned on the relative change δsys. The estimate is obtained with
a Gaussian smoothing kernel from a Monte Carlo simulation with 397 636 samples using
the setup described in Sec. 4.5.1. The maximal value of the density for any fixed δsys is
normalized to one, thus the most likely delay for a given system change δsys is colored in
yellow.
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Figure 4.7: The experiment setup consists of a Quanser QUBE Servo 2 rotary pendulum
that is mounted on top of a tripod. Here, the plant is shown just after swing-up.

We focus on the Chernoff trigger, which proved to be superior in the numerical
experiments and has better theoretical properties.

4.6.1 Experimental Setup

We implemented the proposed learning trigger on a modified Quanser rotary pen-
dulum (J. Apkarian, 2016), as shown in Fig. 4.7. We denote the axial rotation as
θ and the angle between the vertical position and the pendulum as α. The setup
allows us to directly measure both angles and the velocity in θ. For the velocity in
α, we use the provided high-pass filter to approximately differentiate the angle.

The pendulum has been modified in such a way that allows for changing the
dynamics in two distinct ways. First, the base of the platform is mounted on top
of a tripod. Using its ball joint, we can tilt the pendulum freely in any direction.
Additionally, a magnet is attached to the top end of the pendulum, which allows
us to change the inertia by adding magnetic weights. By varying these two, we can
change the system dynamics and validate if the trigger is able to detect these.

Using Simulink®1, we implemented a switched controller running at a sampled
rate of 500 Hz. An LQRI controller, i.e., an LQR with an additional integrator, is
used to stabilize the upright position. While outside the approximately linear region
(± 20°), a nonlinear swing-up controller is used to bring the inverted pendulum
back to the linear region. Including the artificial integrator on θ as an extra state
e :=

∫
θ dt in the plant model yields a five dimensional system with the state x⊤ =[

θ, α, θ̇, α̇, e
]
.
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4.6.2 Event-triggered Learning Design

On this linear controller, we apply the proposed event-triggered learning strategy
(i.e., the Chernoff trigger (4.18)) as shown in Fig. 4.1. The empirical cost ĴN(k)
is computed at every time step with a horizon of N = 200. In order to avoid
detecting an instantaneous disturbance, like for example, the jerk introduced by
enacting a system change via tilting or weights, we modify the trigger slightly. We
introduce the additional condition that the threshold has to stay surpassed for more
than 10 seconds. Thus, we achieve more robust detection against strong short term
disturbances.

When the trigger detects a change, a learning experiment is started. For this, the
trigger and integrator are disabled, as they would react to the learning excitation.
However, this introduces an initial disturbance, which we overcome by waiting a few
seconds until the system returns to steady-state.

For the learning experiment, an artificial excitation signal is added to the control
input. Choosing a signal that is both sufficiently exciting (Ljung, 2009) for possibly
changed dynamics of the pendulum and avoids the hardware constraints in θ turned
out to be a nontrivial problem on this experiment. In general, it is difficult to
design well-behaved excitation signals a priori. Here, we apply a carefully tuned
chirp signal, which first increasing and then decreasing frequency.

Learning itself is performed using prediction error minimization from the Mat-
lab® System Identification toolbox1,3, with an initial guess based on least square
estimation.

Due to the nonlinear, state-dependent, non-white noise of the actual pendu-
lum, we cannot use the data to estimate the process noise directly. Instead, we
record a few seconds of steady-state behavior with the new controller, including
the integrator, and estimate the covariance. Thereby, we obtain a linear Gaussian
approximation of the process noise around the steady-state.

With the linear model and process noise, we can compute new trigger thresholds
κ± (cf. Thm. 17 and Equation (4.16)), which completes the model update.

4.6.3 Results

In Fig. 4.8, we can see the (measured) cost of an exemplary run of the Chernoff
trigger on the hardware setup. The setup has been initialized with a sightly incorrect
model. That is, the parameters of the first-principle model, provided by Quanser,
have been changed slightly. Both the initial controller and the initial bounds of the
trigger have been computed based on this faulty model. The main goal is to show

3https://de.mathworks.com/help/ident/ref/pem.html
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Figure 4.8: Experimental run of the Chernoff trigger on the rotary pendulum (Fig. 4.7).
The black lines indicate κ+ and κ−, respectively. Additionally, the model-derived expected
value (cf. Lemma 14) of the cost is shown as a dashed line. At the red lines, a change is
detected, and thus, a learning experiment triggered. During this model update, the trigger
is offline, as indicated in grey. At the green dashed line, the physical system is changed
by adding a weight.

that we are able to detect change systematically and, thus, effectively reduce the
cost by updating the controller.

As we can see at the very beginning of Fig. 4.8, the measured cost does not
lie within the interval (κ−, κ+). Since we used an inaccurate model to design the
feedback controller, this is to be expected. The cost quickly rises above the threshold,
however, at 7.758 s, it has a down crossing caused by random effects. Hence, the
change is only detected after 17.758 s.

After the model has been updated (end of the learning experiment), we see that
the cost lies within the new trigger interval. Indeed, it oscillates nicely around the
computed expected value.

Most importantly, we effectively reduce the cost. Before we triggered learning,
the cost signal was significantly higher (roughly two times on average) than after
updating the model and controller. Further, we also obtain new thresholds to detect
an additional change in the dynamics.

After approximately six minutes, we add a weight to the pendulum, which is
indicated by the green line in Fig. 4.8. At 374.272 s, the trigger detects this change.
We want to emphasize again that this detection is not due to the initial disturbance.
Instead, it is due to the change in dynamics and, thus, a different cost distribution,
which we successfully detect.
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4.6.4 Hardware and Implementation

Around 80 s and 160 s, there are two chunks of missing data, which is an artifact
of our implementation. During these times, the updates of the system matrices
and trigger thresholds κ± were computed. During these computations, no data was
collected. However, this did not influence the controller and, thus, the presented
results.

The required connection wire between the rotating sensor for measuring α and
the base introduces a time-variant nonlinearity into the setup. As this wire ran-
domly twists during operation and swing-up, the equilibrium state may change in
θ. Additionally, the wire applies a force towards some θ, which may not be zero.
While these effects have little impact on the controller, they pose a problem for
linear system identification and especially the noise estimation. Thus, we can only
consider runs, where the wire remains close to its correct state.

Also, tilting the pendulum in any direction by at least one degree yields an
interesting problem. Detecting the change is straightforward with our approach.
However, the new system is at least affine and does not have an upper equilibrium
without input. Thus, it is challenging to identify new bounds for the trigger. Han-
dling such a system might be possible but requires some adjustment in our approach.

4.7 Conclusion
In this chapter, we propose a Chernoff type learning trigger to trigger model learning
when needed based on the distribution of LQR cost function. Thus, we obtain
a highly flexible control scheme that leverages well-known results from LQR and
combines them with tools from statistical learning theory. By explicitly computing
the moment generating function of the LQR cost function, we are able to tailor
learning triggers tightly to the problem at hand.

The derived learning triggers are extensively validated in numerical simulation
and yield the expected results. Furthermore, we show in a hardware experiment
that the approach can be applied to a real system, where it effectively detects the
change and reduces the incurred control cost and steady-state variance.



76 Linear Quadratic Control



Chapter 5
Model Predictive Control and Parameter

Filtering

This chapter presents the contents of the journal publication (Schlor et al., 2022).

5.1 Introduction
Never change a running system is a popular heuristic to ensure the dependable op-
eration of engineering systems. At the same time, learning-based techniques are
becoming increasingly popular in the control community, and learning usually re-
quires some form of exploration to the system; that is, change. Despite the pop-
ularity, success stories are still rare. One key issue are the opposing objectives of
many control tasks and the requirements for successful learning outcomes. On the
one hand, we usually aim for controllers that stabilize a system with the goal of
avoiding deviations from a setpoint or reference. But, if a system is well regulated
and barely moving, data is mainly dominated by noise. Using this data for learning
is a bad idea and leads to profound theoretical issues that might result in divergence
of parameters and damage to the system. Therefore, excitation is a critical require-
ment to learn something meaningful; however, often not desired as it deteriorates
the control performance. Hence, learning permanently can be problematic. Instead,
we want to detect the instances when updates are useful and – only then – effectively
execute learning over a limited period of time.

The main idea of our event-triggered learning (ETL) framework is depicted in
Figure 5.1. In the top left corner, we see the controlled system that, during normal
operation, will have little excitation and thus yield uninformative data in most cases.
The parameter filter (bottom left) estimates the system’s parameters to test if the
model utilized for control is still reliable. So far, there is no learning involved.

77
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Figure 5.1: The figure schematically depicts the event-triggered learning framework. A
model is used to synthesize a controller, which is applied to the system. The parameter
filter outputs current estimates of model parameters with its uncertainty, which is obtained
from the measured data. The learning trigger compares the current model belief with the
parameter filter estimate of the model. Updates are only triggered if there is a significant
discrepancy between them.

Changes in the dynamics or environment might occur naturally and deteriorate
the control performance or lead to constraint violations. When there is an actual
change in the system’s behavior, the learning trigger shall detect this and triggers
learning experiments. During this learning phase, the system is actively excited to
ensure accurate learning outcomes. After reaching sufficient accuracy, we stop the
excitation, and the learning phase terminates. We update the model including the
controller, and the parameter filter keeps monitoring the parameters. Unless there
is more change in the future, there is no more need for further learning.

The proposed ETL approach yields the following three main improvements: 1)
a statistical test that directly acts on the model quality; 2) point estimates that can
be used as a new model; and 3) uncertainty quantification of the new model. In
contrast to previous ETL, 2) allows for efficient online learning, and 3) gives us a
notion about whether the learned model is sufficient or further excitation is required.

The proposed design is flexible and can be combined with any model-based
downstream algorithm or control architecture. To demonstrate the flexibility of
the proposed method, we consider a model predictive control task. Due to the
optimization-based formulation of the controller architecture, we can readily incor-
porate learning objectives in the optimization, thus arriving at an active learning
framework. We show the benefits of the proposed method for a DC motor use case
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where we simulate and successfully detect changes in the dynamics.

5.1.1 Contributions

In summary, this chapter makes the following contributions:
▶ proposing a parameter filter-based ETL approach that yields point estimates and

uncertainty ellipsoids that can directly be combined into a powerful statistical
test;

▶ leveraging the induced uncertainty to decide if we need more data for suitable
model updates and designing optimal input signals based on the point estimate;
and

▶ incorporating robustness margins and prior knowledge into the statistical test to
target specific parameters.

5.2 Problem and Main Idea
Next, we introduce the considered system and control architecture. This is followed
by a precise problem formulation.

5.2.1 System Dynamics

We consider a linear, discrete-time system

xk+1 = Axk +Buk + wk (5.1)

with the state xk ∈ Rn, the control input uk ∈ Rm, the random disturbance wk ∈ Rn

at discrete-time k ∈ N, and the unknown system matrices A ∈ Rn×n and B ∈ Rn×m

for some n,m ∈ N. Furthermore, the disturbances {wk} are assumed to be inde-
pendent and identically distributed (i.i.d.) and drawn from a normal distribution
with mean 0 and known covariance Σw, which is denoted by wk ∼ N (0,Σw). Thus,
the unknown parameters of the system can be fully parameterized by the stacked
matrix Θ⊤ =

[
A B

]
∈ Rn×(n+m). Since the true system parameters Θ are unknown,

we consider a model of the system, which is denoted by Θ̂∗ =
[
Â∗ B̂∗

]
. Here, this

model will be used to design a controller (cf. controller synthesis block in Figure 5.1).
Further, assume that the states and inputs are subject to constraints xk ∈ X ⊆ Rn

and uk ∈ U ⊆ Rm for all k ∈ N.
To ensure a well-behaved control algorithm, we require the following mild as-

sumptions.

Assumption 28. 1) The pair (A,B) is stabilizable.
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2) The sets X and U are compact, convex and contain the origin.

The standard assumption of stabilizability ensures that the states of the system
remain bounded under suitable control. The second assumption states that the
equilibrium of the system is located in the admissible state space.

5.2.2 Objective: ETL with Recursive Learning

We assume that the parameters Θ for system (5.1) can change. Further, changes
are assumed to be rare and sudden. The main problem we consider here is detecting
these changes and subsequently updating the static model Θ̂∗ accordingly.

Clearly, we should leverage all of the available information to be as efficient as
possible. Despite a change in the dynamics, the old model still contains valuable
information that can be leveraged to relearn the model Θ̂∗ efficiently.

5.2.3 Main Idea: ETL Architecture

We propose to utilize a parameter filter (Sec. 5.3) that outputs a point estimate Θ̂k|k

of the unknown system parameters Θ and additionally yields a posterior variance
Pk|k. Usually, a Kalman filter is used to estimate unknown states from observations.
Here, we estimate unknown system parameters from data. Due to the underlying
normal distributions in the filter, it is possible to design the learning trigger (Sec. 5.4)
based on well-established statistical tests for the null hypothesis

H0 : Θ̂k|k = Θ̂∗. (5.2)

Whenever we reject the hypothesis, we trigger learning to adapt to the changes in
the dynamics.

The filter output Θ̂k|k is usually subject to a high variance Pk|k when there is
only little movement in the system. Therefore, it is problematic to use it for directly
updating the model Θ̂∗. Instead, we first shrink the ellipsoid through optimized
control inputs (Sec. 5.5). This allows us to ensure that we relearn accurate models
Θ̂∗. Due to the recursive nature of the filter, we also obtain an effective way to
incorporate prior knowledge. The interactions between the components are depicted
in Figure 5.1.

5.3 Recursive System Identification
Identifying linear systems is a classical problem that has been addressed in many
textbooks, e.g., Ljung (2009) and Ljung and Söderström (1983), specifically for
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recursive system identification. Nonetheless, the identification of linear systems is
still subject of recent research, e.g., Simchowitz et al. (2018, 2019). In our work, we
discuss the question of when to learn by leveraging a state-space formulation of the
parameter filter, which we have not found elsewhere.

We start by summarizing recursive system identification approaches that are
primarily based on Goodwin and Payne (1977). These estimators provide point
estimates and corresponding uncertainty ellipsoids. Further, depending on often
implicitly made assumptions, the estimators have different properties. At the same
time, these differences are critical when deciding what filter to use for an ETL
approach. Therefore, we first present the most common approaches to recursive
identification – i) least squares and ii) Kalman filter-type estimators. Afterward, we
show why the latter is most beneficial for the problem at hand.

For least squares-type approaches, we usually assume time-invariant dynamics
as introduced in (5.1). We show how to estimate the static model parameters with
standard techniques and afterward consider addressing potential changes through
forgetting. For example, we can reduce the influence of old data points through
appropriate scaling.

Alternatively, the change can explicitly be taken into account and directly en-
coded into the estimation procedure through appropriate assumptions. Mathemat-
ically, we obtain the structure

xk+1 = Akxk +Bkuk + wk (5.3)

and aim for time-varying estimates Âk and B̂k of the nominal parameters Ak and
Bk. This approach leads to a Kalman filter-style parameter filter.

Vectorized Process Model

To ease and unify notation, we introduce a vectorized system, i.e., the model pa-
rameters will be contained in a common vector. The general system (5.3) can be
rewritten as

x⊤
k+1 = d⊤

k Θk + w⊤
k , (5.4)

where Θ⊤
k =

[
Ak Bk

]
∈ Rn×(n+m) is the stacked matrix containing all the system

parameters and d⊤
k =

[
x⊤

k u⊤
k

]
∈ Rn+m contains the state and input at time k.

Further, we can vectorize the system matrix using the vectorization operator
vec(·), which stacks the columns of a matrix to one vector. We write zk = vec(Θk) ∈
Rn(n+m). The linear system (5.4) can now be written in vector form as

xk+1 = Ckzk + wk , (5.5)

with Ck = In ⊗ d⊤
k ∈ Rn×n(n+m), and ⊗ the Kronecker product.
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5.3.1 Least Squares Estimators

The objective of least squares parameter estimation is to find estimated model pa-
rameters ẑk, which minimize the squared prediction error at the current time as

ẑk = arg min
ẑ

E
[
(xk+1 − Ckẑ)⊤(xk+1 − Ckẑ)

]
. (5.6)

Clearly, the estimator highly depends on the available data Ck and, additionally, on
the (often implicitly made) assumptions on the parameters zk. Let

X =


x1
...
xk

 , C =


C0
...

Ck−1

 (5.7)

be the stacked data vectors and matrices generated by the system from time 0 to k.
First, let us consider the standard time-invariant problem, i.e.,

zk+1 = zk ∀k. (5.8)

Then, the analytic solution to (5.6) is given by

ẑk =
(
C⊤C

)−1
C⊤X . (5.9)

This batch least squares estimate can be reformulated recursively as

Kk = Pk−1C
⊤
k−1

(
I + Ck−1Pk−1C

⊤
k−1

)−1
(5.10)

ẑk = ẑk−1 +Kk(xk − Ck−1ẑk−1) (5.11)
Pk = (I−KkCk−1)Pk−1 (5.12)

with the starting values ẑ0 and P0 (see e.g., Goodwin and Payne (1977)).
In this estimator, the assumption of a constant model leads to a monotonically

decreasing error covariance matrix Pk. With increasing amounts of data, the esti-
mate converges, and the gain matrix Kk decreases with respect to a suitable norm.
Thus, new measurements only have a small impact on the estimated parameters.
The recursive least squares estimator eventually loses its adaptivity and stops up-
dating. It weights all samples equally and does not give preference to more recent
data. While this is desirable for constant model parameters, there will be issues if
the system changes over time.

As stated earlier, one approach to making recursive least squares adaptable to
changing parameters is the recursive least squares estimator with exponential for-
getting Goodwin and Payne (1977). Here, observations that are l time steps before
the current time k are weighted by λk−l, with the constant λ ∈ (0, 1) (typically
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λ = 0.9, . . . , 0.99). Thus, increasing the influence of recent samples on the estima-
tor. This is equivalent to adapting (5.5) and (5.8) with a weighted output equation

λk−lxl+1 = λk−lClzl + wl wl ∼ N (0,Σw) . (5.13)

The scaling with λk−l < 1 decreases the absolute value of the state. Hence, the
squared prediction error is directly effected, and the influence of the corresponding
point is lowered. This can be interpreted as artificially decreasing the signal-to-
noise ratio for old data since the additional disturbance wk is not weighted. Even
though we keep z constant, the influence of past data is reduced because data with
a lower signal-to-noise ratio is less informative. As a consequence, the underlying
model (5.13) is equivalent to an unweighted observation with disturbances wk whose
covariance matrix is time-varying. We can simply divide both sides of (5.13) by λk−l

and substitute
(

1
λ

)k−l
wl by wl. Then, we obtain for all times l ≤ k

zl+1 = zl

xl+1 = Clzl + wl wl ∼ N
(

0,
( 1
λ2

)k−l

Σw

) (5.14)

as the data generation model for which recursive least squares with exponential
forgetting yields the optimal estimate.

5.3.2 Kalman Filter Approach

In order to explicitly address potential change in the dynamics (cf. (5.5)), we assume
the additional structure for the changes

zk+1 = zk + ∆zk ∆zk ∼ N (0,Σz)
xk+1 = Ckzk + wk wk ∼ N (0,Σw) ,

(5.15)

where the random variable ∆zk induces the change in the system parameters. By Σz

we denote the covariance of the assumed model changes ∆zk, which can be used as
a tuning parameter. Here, one may also incorporate prior knowledge of the possible
system changes, e.g., which parameters can be affected in case of a load change, etc.
We further consider the following standard assumptions.

Assumption 29. 1) The disturbance sequences {∆zk} and {wk} are i.i.d. and
E
(
∆zkw

⊤
k

)
= 0.

2) The initial value z0 is independent of ∆zk and wk.

For such a system, the Kalman filter is the optimal state estimator Matisko and
Havlena (2012). In particular, it is the optimal Bayesian estimator that keeps track
of the full posterior distribution.
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Typically, the Kalman filter is used to estimate the state vector x̂k of a linear
state-space model when only the observations yk are available, and the state xk is
hidden. In our case, we assume access to the whole state of the system, but the
systems transition matrices Ak and Bk, respectively zk, are unknown and might
change over time. Our goal is a filter that yields the system parameters.

Essentially, we lift the standard estimation problem one level higher to estimate
the process model from given states instead of estimating the state from given mea-
surements. Thus, for this vectorized system, the Kalman filter is given by

ẑk+1|k = ẑk|k (5.16)
Pk+1|k = Pk|k + Σz (5.17)
ek+1 = xk+1 − Ckẑk+1|k (5.18)
Sk+1 = CkPk+1|kC

⊤
k + Σw (5.19)

Kk+1 = Pk+1|kC
⊤
k S

−1
k+1 (5.20)

ẑk+1|k+1 = ẑk+1|k +Kk+1ek+1 (5.21)
Pk+1|k+1 = Pk+1|k −Kk+1CkPk+1|k (5.22)

with initial values P0|0 and ẑ0|0. In this notation, a subscript l|k indicates the
estimate for time step l given the data up to time step k. If Σz is chosen large, the
Kalman filter does weigh more recent samples higher than older ones. The resulting
scheme is a recursive estimation method and allows for online learning.

Due to (5.15) and Assumptions 29, the Kalman filter estimate ẑk|k is normally
distributed with mean E(zk) and error covariance Pk|k = E((ẑk|k − zk)(ẑk|k − zk)⊤)
(cf. Spall (1984)).

5.4 Parameter Filter Learning Trigger
In this section, we design the learning trigger, which detects significant deviations
between models and dynamical systems (cf. Figure 5.1). We derive the distribution
of the parameter filter under the assumption that there is no change in dynamics
(∆zk = 0). Afterward, we propose a statistical test that validates if the data is
consistent with the assumption ∆zk = 0. This is exactly the same hypothesis as
(5.2) stated in Section 5.2.3. In the following, we use the notation ẑ instead of Θ̂
since we consider the equivalent vectorized formulation for the tests.

5.4.1 Main Idea of the Learning Trigger

First, we explain the main idea of the learning trigger. Essentially, there are three
critical parts: i) the current model believe ẑ∗, which is kept constant and utilized
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‖ẑ − zk|k‖2P−1
k|k

< χ2
1−α,n(n+m) and

‖zk|k − zk‖2P−1
k|k

< χ2
1−α,n(n+m) w.p. 1− α

Test region

KF confidence region

zk|k

ẑ

zk

Figure 5.2: Visualization of confidence regions of the Kalman filter (KF) parameter esti-
mation and model test regions. The estimated parameters ẑk|k, the true system parameters
zk, and the model parameters ẑ∗ are depicted as points in parameter space. The yellow
ellipsoid is the confidence region of the Kalman filter estimation in which the error between
zk and ẑk|k is contained with probability 1 − α. If the parameter estimate is inside the
test region around the current model, both, the model and the true system parameters,
are located inside the green ellipsoid with probability 1− α.

for potential down-stream tasks, ii) the point estimate of the parameter filter ẑk|k,
and iii) the covariance ellipsoid Pk|k. Of course, there is also the ground truth zk;
however, these parameters are unknown.

Therefore, we construct a statistical test around the objects i) - iii) to infer if the
model believe ẑ∗ is significantly different from the ground truth zk. In particular,
we can guarantee that the ground truth zk is with high probability contained inside
an ellipsoid around the current estimate ẑk|k. Hence, when the old model belief
ẑ∗ shows a large deviation from ẑk|k, we can also infer that the old model is not
consistent anymore with the ground truth. Next, we make the main idea of the
learning trigger mathematically precise and derive the corresponding distributions
and confidence ellipsoids.

5.4.2 Learning Trigger

We start with well-known connections between normal and χ2-distributions Corder
and Foreman (2014). In particular, due to the property

(
ẑk|k − zk

)
∼ N (0, Pk|k) of

the Kalman filter estimate, we know that
(
ẑk|k − zk

)
P−1

k|k

(
ẑk|k − zk

)⊤
< χ2

1−α,n(n+m)
with probability 1−α for some α ∈ (0, 1). By χ2

1−α,n(n+m) we denote the 1−α quantile
of the chi-square distribution with n(n + m) degrees of freedom. This corresponds
to the confidence region in Figure 5.2 depicted in yellow. The estimated parameters
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ẑk|k are located inside this ellipsoid around the true system zk with probability 1−α.
As a short notation for an expression zP−1z⊤ we use ∥z∥2

P −1 in the figure since P
as a covariance is positive definite. If the null-hypothesis (5.2) is true, we obtain(
ẑk|k − ẑ∗

)
P−1

k|k

(
ẑk|k − ẑ∗

)⊤
< χ2

1−α,n(n+m) with probability 1− α.
Based on these properties, we propose the learning trigger

γlearn = 1 ⇐⇒
(
ẑk|k − ẑ∗

)
P−1

k|k

(
ẑk|k − ẑ∗

)⊤
> χ2

1−α,n(n+m) (5.23)

as a statistical test of level α. Thus, a trigger event occurs when the data-based
estimate ẑk|k and the fixed model ẑ∗ are most likely to differ more than what is
expected by the uncertainty in the data. Further, by using this learning trigger, the
probability of false trigger events, i.e., triggering despite having an accurate model,
is bounded as stated in the following theorem.

Theorem 30. Consider the dynamical system (5.15) and let the Assumptions 29
hold. If the learning trigger (5.23) is used, then in case of a perfect model, i.e., ẑ∗ =
zk,

P [γlearn = 1] ≤ α . (5.24)

Proof. The theorem follows directly from the properties of the Kalman parameter
filter. By design, we ensure that the estimates are subject to a normal distribution.
Further, through direct access to the variance, we can normalize the distribution and
apply a standard χ2 test. The test then directly induces the confidence region.

Thus, the risk of false trigger events and at the same time the sensitivity of the
trigger can be adjusted by the probability α. If (5.23) is satisfied, the null hypothesis
is rejected, and a new model needs to be identified.

The test statistic is also known as squared Mahalanobis distance, which is a
generalization of the Euclidean distance to multivariate spaces with different scal-
ing De Maesschalck et al. (2000). If the covariance matrix is non-singular, the
Mahalanobis distance fulfills all properties of a metric. It scales the space according
to the covariance such that points lying on equal contour lines of the normal dis-
tribution have the same distance from the center point. It can also be viewed as a
distance of a point to a normal distribution. This is also how our test can be inter-
preted. The Kalman filter gives a conditional distribution of parameter values with
mean ẑk|k and error covariance Pk|k. Thus, if the assumptions are fulfilled, ẑk|k to
zk has squared Mahalanobis distance ∥ẑk|k − zk∥2

P −1
k|k
< χ2

1−α,n(n+m) with probability
1− α.
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If the test yields ∥ẑk|k − ẑ∗∥2
P −1

k|k
< χ2

1−α,n(n+m), we can conclude from the trian-
gle inequality that at least with probability 1 − α the model and the true system
parameters fulfill ∥ẑ∗ − zk∥2

P −1
k|k

<
√

2χ2
1−α,n(n+m). In Figure 5.2, this can be inter-

preted as we test if ẑk|k is inside the blue ellipsoid test region around the model
ẑ∗. From the Kalman filter, we get the yellow confidence region, which contains ẑk|k

with probability 1 − α. The boundary of the ellipsoids has squared Mahalanobis
distance χ2

1−α,n(n+m) from the corresponding center points. Since ẑk|k is contained
in both regions, the confidence region and the test region must intersect. Hence,
the squared distance between zk and ẑ∗ fulfills ∥ẑ∗ − zk∥2

P −1
k|k

<
√

2χ2
1−α,n(n+m) with

probability 1− α.

Remark 31. If the assumptions on the noise terms are not fulfilled, the normal dis-
tribution of the Kalman filter estimate does not follow immediately; however, there
are properties that can ensure asymptotic convergence to a normal distribution Spall
and Wall (1984). Noteworthy, the parameter estimate is still asymptotically nor-
mal distributed without the assumption of Gaussian disturbances if it holds that the
disturbances have zero mean, i.e., E(∆zk) = 0, E(wk) = 0, and the disturbance
covariance matrices and the initial error covariance are bounded.

Remark 32. In Theorem 30, we assume that the additive process disturbance wk

is independent of the state and has constant covariance Σw. In practice, however,
these assumptions could be violated if the controlled system is slightly nonlinear, for
example. One approach to increase the robustness of the algorithm against such
deviations is to assume worse disturbances in the model than those that are actu-
ally observed. Due to the over-approximation of the process noise, the test region
of the Kalman filter trigger increases. This leads to a much wider margin between
the test statistics and the threshold value compared to tests with ideal noise assump-
tions. This results in a lower sensitivity to small system changes but also in higher
robustness to violated model assumptions.

5.5 Experiment Design
The error covariance Pk|k is an essential object of the proposed learning trigger
and should be small for an effective test. At the same time, it is a measure of
the accuracy of the corresponding parameter estimate. Thus, after a trigger event
occurs, a learning experiment should be carried out to reduce the uncertainty of the
estimate. In general, the accuracy of a model estimate highly depends on the data
and, in particular, the excitation of the system. For example, consider the least
squares estimator (5.9) from Section 5.3. Here, the matrix C⊤C can be written as
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C⊤C = In⊗
(∑k−1

t=1 dtd
⊤
t

)
. The collected data must contain at least (n+m) linearly

independent vectors dt such that the inverse of the matrix C⊤C exists. The rank
condition on ∑k−1

t=1 dtd
⊤
t is closely related to persistency of excitation of the data

sequence {dt}.

5.5.1 Persistency of Excitation and Observability

Persistency of excitation has been introduced in several slightly different notations
(cf. Johnstone et al. (1982); Bai and Sastry (1985); Caines and Lafortune (1984);
Green and Moore (1986)). In a nutshell, if data has a sufficiently rich information
content and gives insight into the system dynamics, then it is possible to guarantee
convergence of statistical estimators.

For finite sequences, persistency of excitation over an interval is defined in Green
and Moore (1986).

Definition 33 (Persistency of excitation). A sequence of data {dt}k−1
t=0 , dt ∈ Rn+m

is persistently exciting over the time interval {0, . . . , k − 1}, if there exists ϵ > 0
such that

k−1∑
t=0

dtd
⊤
t ⪰ ϵIn+m. (5.25)

Here, we make use of the Loewner order for positive semi-definite matrices. For
two positive semi-definite matrices M1 and M2, we say that M1 ⪰M2 if M1−M2 is
positive semi-definite. Thus, if {dt}k−1

t=0 is persistently exciting, the matrix C⊤C is
positive definite and has an inverse.

For {dt}k−1
t=0 to be persistently exciting, both components {xt}k−1

t=0 and {ut}k−1
t=0

must be persistently exciting. Since the input sequence {ut}k−1
t=0 is a design variable,

one purpose of experiment design is to ensure persistency of excitation of {xt}k−1
t=0 .

This is contrary to the control objectives during normal operation, where deviations
from the setpoint are suppressed.

Persistency of excitation of {dt}k−1
t=0 induces observability of the lifted parameter

system (5.15). A linear discrete-time parameter varying system (5.15) is said to be
completely observable if the observability matrix

O0 =
[
C0 C1 . . . Cn(n+m)

]⊤
(5.26)

has rank(O0) = n(n + m) Witczak et al. (2017). This is the same condition as for
persistency of excitation. Thus, without disturbances, the parameter vector zk could
be determined from persistently exciting data.

While persistency of excitation ensures well-defined solutions to the estimation
problem, it is not sufficient to control the estimation error. Indeed, this means that
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the estimate may diverge under permanent updates. Next, we consider an active
learning problem to reduce the posterior variance of the estimator through optimized
excitation of the system.

5.5.2 Active Learning

The error covariance P of the estimator is a natural measure of the accuracy of the
estimate. Here, we aim at minimizing the trace of P , which corresponds to mini-
mizing the sum of the eigenvalues of the error covariance. If trace(P ) is minimized
by the data of the experiment, the data acquisition is called A-optimal Pronzato
(2008). By doing such an A-optimal experiment, the sum of squared lengths of
principal semi-axes of the confidence ellipsoid is minimized. For the Kalman filter,
the mean and covariance are usually obtained recursively. However, there exist also
closed forms as derived in Han (2010), where the influence of the experiment design
on the covariance can be investigated.

The excitation during the experiment could be provided by external reference
signals such as pseudo-random binary signals or chirp signals. However, then also in-
put and state constraints need to be considered. A different approach was presented
in Heirung et al. (2012). There, a dual MPC is proposed, which considers the ex-
pected trace of the error covariance matrix of a recursive least squares estimator with
exponential forgetting in the optimization problem. Here, this approach is adopted
and modified such that the MPC propagates a model of the Kalman filter instead
of the recursive least squares estimator. Its error covariance is jointly minimized in
the optimization problem. Thus, then we obtain the objective function:

min
Xtj ,Utj

N−1∑
k=0

x⊤
k|tj
Qxk|tj

+ u⊤
k|tj
Ruk|tj

+ x⊤
N |tj

QNxN |tj
+ ν trace(P̃k+1|k+1) (5.27)

s.t. x0|tj
= xtj

,

xk+1|tj
= Âxk|tj

+ B̂uk|tj
, k ∈ {0, . . . , N − 1}

xk|tj
∈ X , k ∈ {0, . . . , N − 1}

uk|tj
∈ U , k ∈ {0, . . . , N − 1}

xN |tj
∈ XN ,

P̃0|0 = Ptj |tj
,

C̃k = In ⊗
[
x⊤

k|tj
u⊤

k|tj

]
, k ∈ {0, . . . , N − 1}

S̃k+1 = C̃kP̃k+1|kC̃
⊤
k + Σw, k ∈ {0, . . . , N − 1}

K̃k+1 = P̃k+1|kC̃
⊤
k S̃

−1
k+1, k ∈ {0, . . . , N − 1}

P̃k+1|k+1 = P̃k+1|k − K̃k+1C̃kP̃k+1|k, k ∈ {0, . . . , N − 1}.
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Here, ν is a weighting parameter. Our proposed method is summarized and ab-
stracted in Algorithm 1.

Unfortunately, P̃k|k is a nonlinear function of the system’s states and inputs.
Therefore, the optimization problem becomes nonlinear and nonconvex. To make the
computation feasible, the standard MPC problem without the cost of the covariance
matrix can be computed and used as an initial guess for the harder optimization
problem. Then, even if no global optimum is found, a feasible solution can be
provided. In Heirung et al. (2012), no stability guarantees are given about the
considered approach. In the case of re-identification after a wrong model is detected,
this is a hard problem since the model used for control itself is not trustworthy.
In Anderson et al. (2018), a robust re-identification procedure for MPC is given.
However, there the considered system changes are bounded such that the controller
is stabilizing for all possible system changes.

5.6 Simulation Example
Next, we show the proposed ETL framework in a numerical simulation. In particu-
lar, we demonstrate the following properties:

• The ETL framework detects changes in the dynamics;
• we can adapt to change and make the uncertainty ellipsoid of the estimator

arbitrarily small during dedicated learning experiments; and
• due to the MPC-based nature of the proposed learning experiments, we can

simultaneously shrink the uncertainty and satisfy state and control constraints.
To contrast our approach to adaptive approaches, we compare our method to contin-
uously updating model parameters. We show that continuously updating methods
return after the learning experiment back to a steady-state, where the estimator
performs a random walk in an ellipsoid that can grow arbitrarily large. Our method
does not suffer from this issue.

5.6.1 Setup

The considered system describes the dynamics of a servomechanism consisting of
a DC-motor, a gear-box, an elastic shaft, and an uncertain load, which is adopted
from Bemporad and Mosca (1998) and Schwenkel et al. (2020). We chose this
example as it allows us to illustrate the efficacy of our approach to changes in the
dynamics, which will be represented by changes in the load. While there are also
other control approaches to deal with load changes, we want to demonstrate that
our method is flexible and can readily cope with a problem without any further
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adaptation.
The continuous-time state-space equations are given by

ẋ =


0 1 0 0
− kθ

JL
−βL

JL

kθ

ρJL
0

0 0 0 1
kθ

ρJM
0 − kθ

ρ2JM
−βMR+K2

T
JMR

x+


0
0
0

KT
RJM

u , (5.28)

where the state vector x ∈ R4 consists of the load angle, the motor angle and their
time-derivatives. The input u corresponds to the input DC voltage in Volt, which
is constrained by |u| ≤ 220. In addition, the state constraint

∣∣∣[kθ 0 −kθ

ρ
0
]
x
∣∣∣ ≤

78.5398 must be fulfilled. In the example, all model parameters are known (and
can be found in Bemporad and Mosca (1998)) except for the load inertia JL, which
has the uncertainty range 10 JM ≤ JL ≤ 30 JM. The continuous-time model is
converted into a discrete-time model with the sampling time Ts = 0.1 s using zero-
order hold on the input. For the sake of notational convenience, we omit the units
for the discretized system. On the discrete-time system, additive disturbances wk

are introduced, where wk is drawn from a normal distribution with zero mean and
covariance matrix Σw = diag

([
0.99 0.99 0.939 0.056

]
· 10−4

)
.

Simulations of 3000 time steps are performed. During the first 1000 steps, the
nominal system with JL = 20 JM is used. At time steps 1000 and 2000, the simulated
system changes its parameter to JL = 22 JM and JL = 19 JM, respectively. A
standard MPC with zero terminal constraint is introduced based on the nominal
model to control the system. The prediction horizon is set to 6 time steps. We
use the Kalman filter, as described in Section 5.3.2, for the parameter filter. The
assumed covariance of system changes Σz is designed using prior knowledge about
possible parameter variations. Thus, parameters that are unlikely to change are
estimated very precisely, while the estimation of possibly changing parameters is
adapting more rapidly.

To compare our ETL approach to nominal control without model adaption and
to permanently adapted models, three similar simulations are performed.

5.6.2 Event-triggered Learning

First, the ETL approach is applied to the system. The model and the controller is
kept constant if no change is detected. For change detection, the test statistic from
Theorem 30 is computed. The graph of the test statistic over time is depicted in
Figure 5.3. It is visible that the test statistic rises when the system parameters are
changed after time step 1000 and 2000. Eventually, the threshold is exceeded, which
means that a significant model error is detected. Then, a learning experiment using
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Figure 5.3: Test statistics of the learning trigger. The test condition (5.23) is evaluated in
every time-step. In the figure, the test statistics and the threshold are normalized, such
that a test statistic larger than one leads to a learning trigger event. This happens shortly
after the true system parameters change at time-steps 1000 and 2000, respectively. Thus,
changing system parameters are detected reliably without triggering when the parameters
stayed constant.

the experiment MPC (5.27) is performed. In this period of 200 time steps, a higher
excitation of the system is generated. This fact can also be noticed in Figure 5.7,
where the trajectory of angles is shown divided into nominal control and experiment
operation. After the experiment, the current parameter estimate is set as the new
model and used to update the controller and the test. Model updates only happen
directly after the learning experiments. For the remaining time, the model is kept
constant.

5.6.3 Permanent Model Updates

In the second simulation, in every time step, the current parameter estimate is used
to update the model and the controller. The estimation algorithm is capable of
tracking the true system parameters. However, without significant excitation, the
uncertainty stays large, and the estimated parameters perform a random walk inside
the uncertainty ellipsoid. This behavior is depicted in Figures 5.4 and 5.5, where
the estimation error of four exemplary parameters is shown for the ETL and the
permanent update approach. In Figure 5.5, the current estimate is always used as
the model (permanent updates), which is also used for control. Thus, the model
is always varying, which can be seen based on the fluctuating error (red line). In
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Figure 5.4: Evolution of four exemplary parameters and their estimate using ETL. In
red, we show the error between system and model parameters. The yellow line displays
the estimated model error using the current parameter point estimate. The gray region
depicts a projection of the confidence ellipsoid onto these parameters centered around the
estimated error. The model error stays close to zero, while the estimation error varies.
When the gray region does not include zero, a learning experiment is triggered that excites
the system to force the yellow line toward the red one. Thus, the uncertainty is reduced,
and after the experiment, the model is updated with a precise estimate.

contrast, as depicted in Figure 5.4, in the ETL approach, the model is kept constant
unless a trigger occurs. Before updating to a new model, the system is excited in
the experiment to obtain higher precision. If the estimation error after the update
grows, this does not affect the used model and the control algorithm.

5.6.4 No model updates

Third, the same kind of simulation is performed without adapting the model and
the controller. This corresponds to purely relying on the robustness of the control
system against small parameter deviations. In Figure 5.6, the actual model error for
four selected parameters is shown. As no update is carried out, the error will remain
large when the system changes its parameters. This can be disadvantageous as this
error deteriorates the control performance. In Figure 5.8, it is visible that the state
constraints are slightly violated in the experiments using permanent updates and
constant nominal models that are never adopted, respectively.
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Figure 5.5: Evolution of the same four exemplary parameters and their corresponding
estimates using permanent model updates. In contrast to Figure 5.4, the model error
oscillates heavily. It is not even possible to detect the introduced changes in the system
dynamics (at t = 1000 and t = 2000) within this random walk.

5.6.5 Results

Updating the model all the time or never are both problematic. Without any
updates (Section 5.6.4), the nominal model will never adapt to changes. Thus,
the model error will indefinitely cause problems. On the other hand, updating the
model in every time step (Section 5.6.3) with uninformative data also results in poor
models even when the true system remains unchanged. Both of these extremes are
problematic and lead to issues in terms of violating constraints (cf. Figure 5.8) and
performance.

Event-triggered learning addresses these issues and keeps the model constant as
long as no significant deviations are detected between the model and the current
estimate. Thus, a change of the model is only performed if the data indicates a
significant model error. Keeping the model fixed during nominal operation prevents
the illustrated divergence issues of permanent updates.

The effect of the learning experiment on the estimation error is shown by the
results in Table 5.1, where the average squared model parameter error is given for the
different simulations. If we neglect the periods of the simulation in which learning
experiments took place ("Excluding excitation" in Table 5.1), the model error is by
far the smallest for ETL. This once again highlights that the excitation during the
learning experiment yields an accurate model.
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Figure 5.6: Evolution of four exemplary parameters and their estimate using the nominal
model for control. Without model updates, the model contains errors when the system
changes its parameters.

If the whole duration of the simulation is taken into account, the permanently
updated model has a smaller average error than the simulation with ETL and learn-
ing experiments. This is a result of the immediate response of the estimate – and
hence also of the model and controller – after a system change. In ETL, we still
considered the old model belief, which we have detected as inaccurate, during the
learning experiment. However, obtaining a new, accurate model takes some time
and requires excitation, and thus, learning has its own price. Clearly, the longer
the model remains unchanged after learning, the higher the benefit of an accurate
model.

5.7 Conclusions
We propose a parameter filter-based learning trigger that generalizes previous work
on event-triggered learning. By considering the inherent notion of uncertainty pro-
vided by Kalman-type filters, we can combine point estimates with powerful sta-
tistical tests to trigger learning experiments on necessity. Further, we are able to
provide optimal excitation signals that specifically target parameters with high un-
certainty. We provide an ETL framework that joins i) learning trigger, ii) online
model learning, and iii) experiment design. The core assumption that makes this
possible is the linearity of the dynamics, which is rooted deep inside the parame-
ter filter. Extending this to nonlinear systems requires significant extensions of all
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aspects i)–iii).
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Algorithm 1: Event-triggered learning algorithm
Data: Initial model
Initial covariance parameters
Set up parameter filter
Set up nominal controller
Set mode = "control"
while true do

Measure state
Update parameter filter estimate and uncertainty
switch mode do

case "control" do
Evaluate trigger condition
if trigger condition = true then

Set mode = "experiment"
end
Apply nominal input

end
case "experiment" do

Check condition to stop experiment
if stopping condition = true then

Set mode = "control"
Update model and controller

end
Apply experiment input

end
end

end

Table 5.1: Average squared model parameter error [1× 10−3].

ETL Permanent updates No updates

Whole simulation 4.359 3.197 7.123
Excluding excitation 1.065 3.322 6.581
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Figure 5.7: Trajectory of the angles x1 and x3 partitioned by simulation section. During
the experiments (right column), the excitation is clearly larger. The gray area depicts the
state constraints.
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(a) Permanent model updates
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Figure 5.8: Trajectory of the angles x1 and x3 using (5.8a) permanent model updates
for control and (5.8b) the nominal model for control. The color-coding is the same as in
Figure 5.7. In contrast to the ETL approach in Figure 5.7, we can observe state constraint
violations here.
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Part III

Comparing Dynamical Systems
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Chapter 6
Kernel Two-sample Test for Dynamical

systems

This chapter is based on the journal paper (Solowjow et al., 2020).
After introducing the general idea of ETL and presenting concrete implementa-

tions, we now take a step back. We consider the general underlying core questions
of comparing dynamical systems directly from data. We compare the stationary dis-
tributions of the states by introducing a new type of mixing. Therefore, we use the
notation Xk here to emphasize the interpretation of the states as random variables
that are drawn from said stationary distribution.

6.1 Introduction
We consider the two-sample problem of determining whether two distributions are
different. In particular, we generalize the well-established kernel two-sample test (Gret-
ton et al., 2012a) to dynamical systems and stochastic processes with certain mixing
properties, which we make precise in this chapter.

The kernel two-sample test approximates a metric on the space of probability
distributions, the maximum mean discrepancy (MMD), through kernel-based tech-
niques. Due to its powerful theoretical properties and versatile applicability, kernel
two-sample testing is a prominent method in the machine learning community (Long
et al., 2017; Tolstikhin et al., 2018; Muandet et al., 2017; Schölkopf and Smola, 2001).
While we can exploit parts of existing kernel-based results, and especially their the-
oretical guarantees, the extension to comparing dynamical systems is not straight-
forward. This is mainly because kernel two-sample testing was initially developed
for independent and identically distributed (i.i.d.) random variables (Gretton et al.,
2012a). The i.i.d. assumption in the test is critical, but it is violated by the very

103



104 Kernel Two-sample Test for Dynamical Systems

nature of dynamical systems: through the dynamics, samples are coupled to past
samples. To address this issue, we introduce a novel notion of mixing that considers
the dependence of data through time with respect to the MMD. Intuitively, mix-
ing reveals how fast autocorrelations decay and, thus, how long we need to wait
in-between samples for data to be (approximately) independent. Our new mixing
notion can be efficiently estimated from data and is particularly synergistic with
kernel two-sample tests since both measure distances of probability distributions
with respect to the same metric – the MMD. By estimating the decay of depen-
dency and embedding it into well-established algorithms, we obtain a powerful test
for comparing dynamical systems.

Mathematical literature often distinguishes explicitly between deterministic dy-
namical systems and stochastic processes. In particular, establishing mixing prop-
erties for deterministic dynamical systems is an extremely challenging problem and
constructing examples that are provably mixing is hard. Further, common mixing
properties that are used for stochastic systems are too restrictive and not applicable
to deterministic systems (Hang et al., 2017). We propose mixing in MMD, which is
applicable to both classes of problems—stochastic and deterministic systems. Fur-
ther, we show that mixing in MMD is even less restrictive than certain deterministic
mixing types (C-mixing Hang et al. (2018)). For suitable choices of kernels and func-
tion spaces C, we can show that C-mixing implies MMD-mixing. Based on standard
examples with well-established C-mixing properties (the β-map, logistic map, and
Gauss map), we demonstrate empirically that they are indeed mixing in MMD. Ad-
ditionally, we also consider mixing properties of chaotic and stochastic systems and
further, also raw sensor data from human walking experiments.

Despite their practical relevance, there is no established data-driven way of com-
paring dynamical systems. For biomedical systems such as the human cardiovascular
system, central nervous system, or musculoskeletal system, implementing a princi-
pled comparison of systems based on their output sequences in different time inter-
vals can help to detect diseases or quantify their severity. For example, alterations
or unusual patterns in human gait can be indicators for early stages of Parkinson’s
disease (Pistacchi et al., 2017). An algorithm that automatically detects such al-
terations by comparing new data to labeled records could help physicians in their
decision-making. Current state-of-the-art solutions rely on manually engineered and
selected features and thus require expert knowledge (Nguyen et al., 2019). Similarly,
feature-based solutions have been proposed for electro- myography-based detection
of spasticity (Misgeld et al., 2015; Lueken et al., 2015). But clearly, the success of
such approaches critically depends on the expressiveness of these features and on
how well the problem is understood.
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Modern engineering applications are another prominent and relevant example.
They often leverage computer simulations instead of directly interacting with the
physical plant since real experiments are more expensive, time-consuming, and cause
wear on the hardware. Besides, being able to predict the response of a physical plant
based on a mathematical model enables powerful learning algorithms (Hwangbo
et al., 2019), model-predictive control (Qin and Badgwell, 2003), and digital twins in
future manufacturing (Jeschke et al., 2017). The success of these methods, however,
is critically intertwined with the model accuracy. Thus, it is essential to ensure
accurate models, for example, by comparing data generated from the simulation
model with data collected from the real system.

By combining mixing properties with kernel-based techniques, we obtain a pow-
erful statistical test for comparing dynamical systems. We demonstrate the effi-
ciency and robustness of the proposed test numerically and on experimental data.
In particular, we consider human walking experiments and analyze raw data from
an inertial measurement unit (IMU) to detect anomalies in the walking pattern.
Without the need for human expert knowledge or fitting model parameters, our test
outperforms standard baselines in deciding which of the trajectories were generated
with an attached knee orthosis, which restricts the movement of the joint.

6.2 Assumptions and Problem Formulation
In the following, we introduce the mathematical objects that we will consider in this
chapter. Afterward, we make the problem precise.

6.2.1 Stationary, Ergodic, and Mixing Systems

Let (Ω,A, P ) be a probability space, S ⊂ Rd a compact set, which is the state space
of the dynamical system, and B the corresponding Borel σ-algebra. We define a
stochastic dynamical system or stochastic process as a collection of random variables
{Xk} indexed in discrete time k ∈ N and Xk : Ω → S. Next, we introduce some
required properties of the process.

Definition 34 (Stationary). A system is stationary if the joint distribution of its
states is time-invariant.

In addition to stationary behavior, we also require ergodicity. While station-
arity ensures time-invariant distributions, ergodicity guarantees that the statistical
properties of the system do not differ over multiple realizations. We use a standard
definition that goes back to Birkhoff (1931).



106 Kernel Two-sample Test for Dynamical Systems

Definition 35 (Ergodic). Assume the system {Xk} is stationary with distribution
P. We call the system ergodic if for all f ∈ L1

P(S) and P-almost all initial states we
have

lim
N→∞

1
N

N−1∑
k=0

f(Xk) =
∫

S
f(y)dP(y) a.s.. (6.1)

Equation (6.1) is in some sense a realization of the law of large numbers, and
both sides of the equation yield the expected value EX∼P[f(X)]. In particular, it
allows us to estimate E[Xk] (the distribution is invariant for all k) from long enough
sample paths. Different types of convergence and test functions in Eq. (6.1) yield
more sophisticated ergodic theorems. Nonetheless, there can still be severe autocor-
relations and if Xk is known, this may have a drastic impact on the distribution of
Xk+1. Thus, we require additional mixing assumptions.

Classically, mixing is introduced in terms of dependencies between σ-algebras
and intuitively, deals with the autocorrelations in the system. Here, we consider a
covariance-based approach to mixing, which is more useful and convenient for us
since there is a natural connection to Hilbert-Schmidt theory in RKHSs. Both ap-
proaches are introduced in Bradley et al. (1987). We begin with a general definition
based on (Bradley et al., 1987, Eq. (1.2)) and tailor it to our problem afterward.

Definition 36 (Measure of Dependence). Assume F and G are suitable function
spaces. The measure of dependence is defined as

sup
f∈F , g∈G

|E[fg]− E[f ]E[g]|
∥f∥p∥g∥q

, (6.2)

where p and q are Hölder pairs.

A possible choice for the function spaces is F = G = L2, which is referred to as
strong mixing and naturally implies ergodicity in L2 when considering f = g. There
are various valid choices and many are discussed in (Bradley, 2005; Hang et al.,
2017).

Here, we propose to consider unit balls in reproducing kernel Hilbert spaces for
F and G, which has to the best of our knowledge not been done before.

Definition 37 (Mixing). Assume F and G are unit balls in an RKHS. We call a
system mixing if for all f ∈ F and g ∈ G

Cov(f(Xt), g(Xt+a))→ 0. (6.3)

Later, we will investigate this property in more detail and leverage powerful es-
timators in form of the Hilbert-Schmidt independence criterion to determine mixing
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properties. Estimators for the speed of mixing are usually a critical issue when work-
ing with mixing arguments. In related work, the speed and type of mixing is almost
exclusively postulated. In contrast, we test if a process is mixing and estimate the
actual speed.

An important special case that we will investigate in detail are state-space mod-
els or Markov chains with continuous state spaces of the type Xk+1 = ϕ(Xk) + ϵk,
where ϕ is an appropriate dynamics function and ϵk the process noise. This system
description is highly relevant in systems and control theory and more recently, re-
inforcement learning. Further, we will also consider chaotic systems, where ϵk ≡ 0.
These are deterministic and violate common probabilistic mixing assumptions.

6.2.2 Problem Formulation

Consider two stationary and mixing (cf. Def. 36) systems {Xk} and {Yk} with sta-
tionary distributions PX and PY . We want to decide whether {Xk} and {Yk} are
different based on the data streams X = {X0, X1, . . . , Xn} and Y = {Y0, Y1, . . . , Yn}.
We assume Xk, Yk ∈ S and, in general, X0 ̸= Y0. Further, we assume that the dy-
namical systems have converged to their stationary distribution.

We propose to compare dynamical systems by testing whether their stationary
probability measures coincide. Thus, we obtain the null hypothesis

H0 : PX = PY , (6.4)

which we try to reject with high confidence. For our method, it is not necessary to
estimate or construct any intermediate objects such as the dynamics function f , nor
the measures PX and PY .

The main challenge lies in coping with the autocorrelations within the data
streams. These autocorrelations are critical and void commonly used concentration
results, such as the famous Hoeffding’s or McDiarmid’s inequalities.

We consider a two-sample setting between two data streams X and Y . However,
this can easily be applied to settings where we want to investigate whether a given
model coincides with reality. Then, samples obtained through sensor measurements
can be compared with samples generated by simulating a given model.

6.3 Technical Preliminaries
The main idea of this chapter can be summarized as generalizing kernel two-sample
tests (Gretton et al., 2012a) to dynamical systems through a data-based mixing ap-
proach. Essentially, we propose to wait long enough between consecutive samples,
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which is made precise in Sec. 6.4.2 and thus, enforcing negligibly small autocorrela-
tions. We begin by summarizing key results from kernel two-sample tests and kernel
mean embeddings.

6.3.1 Kernel Two-sample Test

An elegant and efficient comparison of probability distributions can be achieved with
kernel two-sample tests (Gretton et al., 2012a). The distributions are embedded into
an RKHS, where it becomes tractable to compute certain metrics on the space of
probability distributions such as the MMD. The following definitions and theorems
are taken from Gretton et al. (2012a).

Definition 38 (MMD). Let (S, d) be a metric space and let PX ,PY be two Borel
probability measures defined on S. Further, let F be the unit ball in an RKHS on
S. We define the maximum mean discrepancy by

MMD2[PX ,PY ] = sup
g∈F

(EPX
[g]− EPY

[g])2. (6.5)

The MMD yields a semi-metric between probability distributions and can be ef-
ficiently estimated by embedding the distributions into an RKHS H with the aid of
kernel mean embeddings (Muandet et al., 2017). It is a challenging problem to com-
pute (6.5) directly since F is usually infinite-dimensional. However, by kernelizing
it, we can estimate (6.5) from data.

Theorem 39. Assume k is a kernel and F is again the unit ball in the corresponding
RKHS H. Further, assume (X1, . . . , Xn) and (Y1, . . . , Ym) are drawn i.i.d. from PX

and PY , respectively. Then, an unbiased estimate of (6.5) is given by

MMD2
b [X, Y ] = 1

n2

n∑
i,j=1

k(Xi, Xj) + 1
m2

m∑
i,j=1

k(Yi, Yj)−
2
mn

n∑
i=1

m∑
j=1

k(Xi, Yj). (6.6)

The additional requirement of a characteristic kernel ensures that the embedding
of the probability distribution is injective and, thus, a metric is obtained. The kernel
k can, for example, be chosen as a Gaussian kernel since it is well known to be
characteristic (Gretton et al., 2012a).

Theorem 40. Assume k is a characterstic kernel and F is the unit ball in the
corresponding RKHS H. Then MMD2[PX ,PY ] = 0 if, and only if, PX = PY .

Essentially, we do not require any prior knowledge or parameterization of PX

and PY . Access to i.i.d. samples from these distributions is sufficient. In practice,
however, we only have access to finitely many data points and, thus, receive an
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estimate of the MMD from (6.6). This estimate is expected to have some devia-
tion, i.e., even for identical distributions, the test statistic will be larger than zero.
Therefore, we need finite sample bounds that quantify the convergence speed of
the empirical MMD to obtain confidence bounds. Gretton et al. (2012a) introduce
several such bounds of the type

P [|MMDb[X, Y ]−MMD[PX ,PY ]| ≥ κ(α, n)] ≤ α. (6.7)

Under the nullhypothesis PX = PY , we can obtain the rejection region MMDb[X, Y ] ≥
κ(α, n) =

√
2K

n
(1 +

√
2 logα−1) for a test with level α, where K is the supremum

of the kernel (Gretton et al., 2012a, Corollary 9). However, these results rely on
the independence assumption and, hence, cannot be used for comparing dynamical
systems.

6.3.2 Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt independence criterion (HSIC) (Gretton et al., 2008) quantifies
dependence between random variables. Generally, two random variables X and Y

are independent if their joint distribution factorize, i.e., PX,Y = PX ⊗ PY , where ⊗
denotes the tensor product. Estimating the involved objects from data is usually
intractable. Instead, the difference in MMD can elegantly be expressed through the
HSIC.

Definition 41 (HSIC, Sejdinovic et al. (2013, Def. 11)). Let X ∼ PX and Y ∼ PY

be random variables with joint distribution PX,Y . The HSIC is defined as

HSIC(X, Y ) = ∥PX ⊗ PY − PX,Y ∥MMD. (6.8)

Similar to the kernel two-sample test, it is possible to express (6.8) in terms of
kernel evaluations. Further, it is also possible to provide high confidence bounds
and thus, obtain an efficient statistical test.

As the name suggests, the HSIC is closely related to Hilbert-Schmidt opera-
tors. These well-behaved operators are well investigated in functional analysis and
in general, are bounded operators between Hilbert spaces. Further, the space of
Hilbert-Schmidt operators between two reproducing kernel Hilbert spaces H and G
forms itself a Hilbert space, which is isomorphic to the product space H⊗ G given
by the product kernel (Muandet et al., 2017, Page 35).

Here, we want to emphasize the connection between the HSIC and the covariance
operator CXY in terms of the Hilbert-Schmidt norm (Muandet et al., 2017, Eq. 3.37)

∥CX,Y ∥HS = HSIC(X, Y ) (6.9)
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and the representation of CX,Y as the unique bounded operator that satisfies the
property

⟨g, CX,Y f⟩G = Cov[g(Y ), f(X)] (6.10)

for all g ∈ G and f ∈ H. Equivalently, the covariance operator can also be defined
in terms of tensor spaces (Muandet et al., 2017, Sec. 3.2), however, (6.10) connects
nicely to standard mixing expressions (cf. Eq. (6.3)). Further, the HSIC framework
provides rich results such as efficient estimators and concentration results.

The general framework is highly flexible and can deal with a variety of objects.
For our problem, we can use a simplified setting, where both systems belong to
the same space, which is consistent with the setup for the kernel two-sample test.
Estimations of (6.8) in terms of kernel evaluations can be found in (Gretton et al.,
2008, Equation (4)).

6.3.3 Joint Independence – dHSIC

Pfister et al. (2018) extended the HSIC to d-dimensional random vectors and thus,
investigate

dHSIC(X) = ∥PX1 ⊗ . . .⊗ PXd
− PX1,...,Xd

∥MMD. (6.11)

Similarly as for the kernel two-sample test and the classical HSIC independence
test, it is possible to quantify the convergence speed and thus, obtaining a threshold
κ(α, n) for statistical testing. Intuitively, this should be the independence notion
that we need for the kernel two-sample test. However, we use a slightly different
property, which we introduce in Def. 47.

6.4 MMD-Mixing
In this section, we will focus on data from one system {Xk} and investigate the tem-
poral dependencies. We assume access to multiple independent trajectories, which
we indicate through superscripts {X(i)

k }. Due to the ergodicity and stationarity as-
sumptions, we obtain a well-defined underlying distribution P for which we can test.
Next, we will introduce the new concept of MMD-mixing that quantifies the decay
of autocorrelations with respect to the MMD and connect back to the HSIC.

6.4.1 Time Shifts and MMD-mixing

Let the trajectory X0, X1, . . . , Xn be subject to a given sampling rate. Generally,
autocorrelations decay over time, and far apart samples are approximately indepen-
dent if the underlying system is mixing. Hence, we propose to increase the time
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between consecutive samples to reduce dependencies. The slower sampling rate is
denoted through the time shift a ∈ N and yields data X0, Xa, X2a, . . . , Xan. Es-
sentially, the question is how to determine and estimate a to ensure approximately
independent data points X0, Xa, X2a, . . . , Xan. We begin with a simplified setting
and assume a sample from the stationary measure X0 ∼ PX0 = P.

Definition 42 (MMD-mixing). We call a process MMD-mixing if

∥PX0 ⊗ PXa − PX0,Xa∥MMD → 0 for a→∞. (6.12)

This definition only considers the distributions at two points in time. Due to
the stationarity of the system, we can move the timeshift through time and also
consider different pairs in time. Due to the connection to Hilbert-Schmidt theory
and covariance operators, it is also possible to consider expressions similar to (6.10).

Proposition 43. Let {Xk} be an MMD-mixing process. Then,

HSIC(X0, Xa)→ 0 for a→∞. (6.13)

We assume that the underlying kernel k is characteristic and refer to it as the
base kernel. Further, we assume to have access to m independent trajectories. In
this setting, we can readily apply the HSIC (6.8) framework. In particular, we pick
two points in time from each trajectory, X(i)

0 and X(i)
a . Then, we divide the data

into X0 = {X(1)
0 , X

(2)
0 , . . . , X

(m)
0 } and Xa = {X(1)

a , X(2)
a , . . . , X(m)

a }. The sets are,
per construction, i.i.d. within themselves. Next, we can compute HSIC(X0, Xa) and
iteratively increase a. If we pick a large enough, the HSIC will eventually become
arbitrarily small. MMD-mixing ensures that HSIC(Xs, Xs+a) → 0 for a → ∞. For
practical algorithms, we will fix a small ϵ > 0 and enforce HSIC(Xs, Xs+a∗) < ϵ. In
our experiments, we pick ϵ as the standard test threshold of the HSIC (cf. Fig. 6.3).

6.4.2 Extended MMD-mixing

Next, we extend our arguments to subtrajectories instead of considering two single
points. Similarly as before, we use the notation PX0,...,Xs and PXs+a,...,X2s+a for the
distributions of the subtrajectories of length s and P(X0,...,Xs),(Xs+a,...,X2s+a) for the
joint distribution of the subtrajectories.

Definition 44 (Extended MMD-mixing). We call a process extended MMD-mixing
if

∥PX0,...,Xs ⊗ PXs+a,...,X2s+a − P(X0,...,Xs),(Xs+a,...,X2s+a)∥MMD → 0 for a→∞. (6.14)
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Clearly, we require an appropriate kernel to extend the MMD to joint distribu-
tions. In particular, tensor products of the base kernel need to be strong enough to
distinguish the joint distributions. Szabó and Sriperumbudur (2018) discuss various
tensor constructions, which we will leverage here.

Lemma 45 (Choice of Kernel I). Let k be a characteristic kernel. Then ks = ⊗s
i=1k

is also characteristic.

Proof. The statement follows directly from Szabó and Sriperumbudur (2018, Theo-
rem 4), which considers a more general problem setting.

Due to the tensor construction, we naturally obtain MMD-mixing with respect
to k as introduced in Definition 42, for a process that is extended MMD-mixing with
respect to ks.

6.4.3 Joint Independence

To apply the mixing results to kernel two-sample testing, we require one more step.
We need joint independence between all samples. Intuitively, this coincides with the
dHSIC framework (cf. (6.11)) and can be implemented through more sophisticated
tensor kernels that embed multiple data points or subtrajectories simultaneously.

Lemma 46 (Choice of Kernel II). Assume ks is a characteristic kernel. Then the
tensor kernel ks,n = ⊗n

i=1k
s is an I-characteristic kernel, which makes the kernel

suitable for joint independence testing.

Proof. Follows from (Szabó and Sriperumbudur, 2018, Theorem 4).

To combine mixing with kernel two-sample testing, we require the following
technical assumption.

Definition 47 (Approximately ϵ-independent). Let {Xk} be an MMD-mixing pro-
cess. We call data X = Xa∗ , X2a∗ , . . . , Xna∗ approximately ϵ-independent if there is
a time shift a∗ and threshold κ(ϵ, n) that yields

P[M̂MDb(X, X̄) ≥ κ] < ϵ, (6.15)

where X̄ is data that has been sampled independently from the stationary distribution
P.

An important technical detail here is the fact that we consider the MMD with
respect to the kernel k and not the tensor kernel ks,n. In practice, we apply a level
ϵ HSIC test to multiple independent trajectories in order to determine an a∗, which
satisfies (6.15).



6.4 MMD-Mixing 113

6.4.4 Connections to Other Mixing Notions

There are various types of mixing that essentially all describe the decay of autocor-
relations. An extensive discussion of the relationship between different measures of
dependencies can be found in Bradley (2005). The importance of covariance-based
expressions for mixing is utilized in Bradley et al. (1987) to investigate how they
can dominate each other.

Mixing properties are notoriously difficult or even impossible to estimate, and
many types of mixing do not apply to large classes of dynamical systems (Hang et al.,
2017). Our proposed type of mixing can be estimated from data and yields advanta-
geous theoretical properties. In McDonald et al. (2011), the β-mixing coefficient is
estimated through involved density estimations. While the authors emphasize that
they solve a more difficult problem to obtain a solution to a simpler one, this is still
one of the few existing approaches to estimate the speed of mixing.

We start with defining the β-mixing coefficient as in (McDonald et al., 2011):

β(a) = sup
s
∥Ps

−∞ ⊗ P∞
s+a − Ps,a∥TV, (6.16)

where Ps
−∞ is the joint distribution of the states {Xt}s

t=−∞ and P∞
s+a of {Xt}∞

t=s+a.
With Ps,a we denote the joint distribution of the objects around the tensor sign,
here
({Xt}s

t=−∞, {Xt}∞
t=s+a) and use ∥ · ∥TV for total variation. The process is β-mixing

if β(a)→ 0 for a→∞.
MMD-mixing is closely related with (6.16) and yields lower bounds.

Lemma 48. A β-mixing process is MMD-mixing for any bounded kernel.

Proof. This property follows by considering Hilbert space embeddings of probability
distributions. In particular, Sriperumbudur et al. (2010, Theorem 21 (iii)) shows
that

∥P−Q∥MMD ≤ C∥P−Q∥TV, (6.17)

where C is the supremum of the corresponding kernel.

The other direction does not always hold. For instance, deterministic dynamical
systems are, in general, not β-mixing (Hang et al., 2017).

Lemma 49. A C-mixing process with respect to the underlying function space C is
MMD-mixing with respect to the kernel k, if H ⊂ C, where H is the corresponding
RKHS.

Proof. Following Definition 2 in Hang et al. (2018), C-mixing is essentially defined
as (6.2), where F is chosen as the function space C and G as L1 on the natural
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filtration of the system. By considering smaller spaces for F and G, such as H, we
directly obtain the result.

In particular, if k is the squared exponential kernel then the corresponding RKHS
is well-investigated Steinwart and Christmann (2008). In particular, the RKHS is
contained in common choices for C, such as BV(S), Lip(S), and C1(S).

Further, recent results show that convergence in MMD metrizes weak conver-
gence in the space of probability distributions (Simon-Gabriel et al., 2020). Thus,
convergence in MMD is applicable to discrete data and Dirac distributions. This
may be particularly relevant when considering mixing properties of deterministic
dynamical systems even further.

In practice, mixing is usually exponentially fast in the gap a. In all of our
numerical experiments, it was sufficient to estimate a single time shift a∗ in the
MMD-mixing sense between two data points. The joint dHSIC estimation yields
stronger theoretical properties, however, might also induce some conservatism into
the estimation.

6.5 Two-sample Test for Dynamical Systems
Next, we utilize mixing to state our main result: a kernel two-sample test for dy-
namical systems. Due to MMD-mixing, we are able to enforce arbitrarily small
dependencies between consecutive samples. In particular, we use our notion of ap-
proximately ϵ-independent data (cf. (6.15)) to adjust the test threshold accordingly.
For a→∞, we actually recover the i.i.d. setting from Gretton et al. (2012a).

Proposition 50. Assume {Xk} and {Yk} are stationary, ergodic, and MMD-mixing
dynamical systems with distributions PX ,PY . Further, assume data Xa∗ , X2a∗ , . . . , Xna∗

and Ya∗ , Y2a∗ , . . . , Yna∗ are sampled i.i.d. from PX and PY , respectively. If we obtain
for the empirical estimate (6.6) that

MMD2
b [PX ,PY ] > κ(n, α), (6.18)

then we can conclude with probability 1− α that PX ̸= PY .

In practice, the autocorrelations will always be greater than zero. Also, it is
important that either both systems have the same mixing speed or a∗ is chosen with
respect to the system with the slower mixing rate.

We state the main result that, in contrast to prior work, foregoes the need for
independence assumptions.
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Theorem 51. Assume the same setting as above, however, instead of i.i.d. data,
we assume that a∗ is a time shift that yields approximately ϵ-independent (cf . 6.15)
data X = Xa∗ , X2a∗ , . . . , Xna∗ and Y = Ya∗ , Y2a∗ , . . . , Yna∗.

If we obtain for the empirical estimate (6.6) that

MMD2
b [PX ,PY ] > κ(n, α), (6.19)

then we can conclude with probability 1− α′ that PX ̸= PY , where α′ = 1
3(α + 2ϵ)

Proof. First, we will decompose the test statistic into the i.i.d. problem and a second
term that captures the dependency in the data. Assume X̄, Ȳ are i.i.d. data sets
(ghost samples) that are drawn from PX and PY , respectively. A similar argument is
frequently used for symmetrization and referred to in Gretton et al. (2012a, P. 736).

|MMD(PX ,PY )−MMDb(X, Y )| (6.20)
=|MMD(PX ,PY )−MMDb(X̄, Ȳ ) + MMDb(X̄, Ȳ )−MMDb(X, Y )| (6.21)
≤|MMD(PX ,PY )−MMDb(X̄, Ȳ )|+ |MMDb(X̄, Ȳ )−MMDb(X, Y )| (6.22)
=∥MMD(PX ,PY )−MMDb(X̄, Ȳ )|+ |∥µ̂X̄ − µ̂Ȳ ∥H − ∥µ̂X − µ̂Y ∥H| (6.23)
≤|MMD(PX ,PY )−MMDb(X̄, Ȳ )|+ ∥µ̂X̄ − µ̂Ȳ − µ̂X + µ̂Y ∥H (6.24)
≤|MMD(PX ,PY )−MMDb(X̄, Ȳ )|+ MMDb(X̄,X) + MMDb(Ȳ , Y ) (6.25)

We use the identity MMDb(X, Y ) = ∥µ̂X − µ̂Y )∥H (Muandet et al., 2017, Eq. 3.31)
and apply the inverse triangle inequality. The first term follows directly from Gretton
et al. (2012a) (cf. Eq. 6.7) and can be bounded by κ. By design, the time shift a∗

was chosen to induce the concentration

P
[
MMDb(X, X̄) > κ

]
≤ ϵ (6.26)

and respectively also for MMDb(Y, Ȳ ). Thus, we obtain in total

P [|MMD(PX ,PY )−MMDb(X, Y )| > κ] (6.27)
≤P

[
|MMD(PX ,PY )−MMDb(X̄, Ȳ )|+ MMDb(X̄,X) + MMDb(Ȳ , Y ) > κ

]
(6.28)

≤ 1
3P[|MMD(PX ,PY )−MMDb(X̄,Ȳ )|>κ]+ 1

3P[MMDb(X̄,X)>κ]+ 1
3P[MMDb(Ȳ ,Y )>κ] (6.29)

≤1
3(α + 2ϵ). (6.30)

Remark 52. By adapting the concentration results inside the kernel two-sample
test, i.e., McDiarmid’s inequality, we can directly embed significant autocorrelations
in the test statistic and potentially be more data-efficient and have tighter bounds.
These results, however, would require further technical assumptions (cf . Assumption
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3.1. in (Chérief-Abdellatif and Alquier, 2022)) and are left for future work. Here,
we focus on introducing an efficient, sound, and practically relevant statistical test
for dynamical systems.

In practice, we usually do not have access to the full state Xk. Instead we receive
measurements X ′

k = g(Xk) + ξk, where g is an observation function and ξk
iid∼ Pξ

measurement noise. Intuitively, the function g could be regarded as sensors that
measure some quantity that depends on the underlying system. Thus, we could
also infer different systems when, e.g., the measurement noise or the sensors are
different. Further, it is not always possible to reconstruct the state, and appropriate
observability assumptions would be required for this. However, this is not due
to our test but an issue of the problem itself since the true underlying state is
unknown. Nonetheless, we are able to apply the proposed test to measurements X ′

k

by considering the pushforward of the measure g(PX) together with Pξ.

Proposition 53. Assume the same setting as in Proposition 50, however, with
noisy measurements X ′

k = g(Xk)+ξk and Y ′
k = h(Yk)+νk and independent noise. If

MMD2
b [PX′ ,PY ′ ] > κ(n, α), then we conclude that PX′ ̸= PY ′ with high probability.

In general, it is not clear what states to choose for an appropriate representation
of a dynamical system, e.g., to accurately model human walking. If we obtain
rich information through sensor measurements then this can often be sufficient for
subsequent downstream tasks (cf. Section 6.7).

6.6 Illustrative Examples
In this section, we illustrate two critical properties of our method: i) respecting
the estimated time shift a∗ yields samples whose distribution is indistinguishable
from the stationary distribution, ii) violating the estimated time shift a∗ leads to
clustering effects that skew and bias the empirical distributions. More details on all
experiments are provided in the appendix.

In practice, it is usually sufficient to consider data from two points in time Ps

and Ps+a – in particular, when kernel two-sample testing is also based on points and
not subtrajectories. Thus, we estimate a∗ based on MMD-mixing (cf. Def. 42).

6.6.1 Linear Time-invariant System

Linear time-invariant (LTI) systems are prevalent in control and systems theory due
to many analytically tractable properties. In particular, we can explicitly determine
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Figure 6.1: Scatter plot of an illustrative 2-dimensional LTI system. The system was
designed to yield slow mixing times and initialized at X0 = 0. The red crosses represent
the first 100 states X0, X1, . . . , X100. The blue circles represent states with an enforced
time shift of a∗ = 75 between samples. The stationary distribution of the system is
illustrated as a contour plot.

the stationary distribution (cf. (A.2) in the appendix) and, thus, draw i.i.d. samples.
Consider the dynamics

Xk+1 = AXk + ϵk, (6.31)

where ϵk
iid∼ N (0,Σ). Further, assume all eigenvalues of A ∈ Rd×d are located

within the unit circle and x0 = 0 to avoid potential transient behavior. We can
now quantify the speed of mixing directly through the eigenvalues of A and Σ. If A
has eigenvalues close to the boundary of the unit sphere, then this results in slow
mixing. The same holds for small process noise. On the contrary, small eigenvalues
of A and large noise result in rapid mixing. An intuitive corner case is A = 0, which
yields perfectly independent samples.

In Fig. 6.1, we illustrate the behavior of a two-dimensional slowly mixing system
(6.31). In red, we plot the first 100 states of the system X1, X2, . . . , X100, and in
blue, states with an enforced time shift of a∗ = 75 between consecutive samples
Xa∗ , X2a∗ , . . . , X100a∗ . The estimated time shift a∗ = 75 is obtained in the MMD-
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Figure 6.2: Scatter plot of the classical Lorenz system in blue circles (Eq. (6.32) – (6.34))
and samples from a system with slightly perturbed parameters in red crosses. Both systems
are randomly initilized and sampled at time instances t1 = 20, t2 = 40, . . . , t100 = 2000.
To the human eye, the distributions look slightly different.

mixing sense as described in Sec. 6.4.2 and ensures that the HSIC is below the test
threshold (cf. Fig. A.1 in the appendix).

In Fig. 6.1, we further show a contour plot of the stationary distribution. Samples
that were drawn based on our method coincide with the stationary distribution. The
first 100 states, on the other hand, cluster in one region of the state space and are
subject to heavy auto-correlations. The red crosses are clearly not representative of
the stationary distribution. To investigate this further, we applied kernel two-sample
tests to distinguish samples that are directly drawn from the stationary distribution
and samples drawn based on our method with appropriate time shifts. As expected,
this turned out to be impossible, and we cannot distinguish between the two data
sets. Details are given in the appendix.

We want to emphasize that mixing can be arbitrarily slow. In particular, it is
possible that the system does not mix at all (Simchowitz et al., 2018). With the
proposed method, we would notice this since we would not be able to estimate an
a∗. Thus, we can decide whether the kernel two-sample test is applicable or not.
We have also constructed non-mixing examples and obtained a constant HSIC that
does not decrease over time (cf. appendix).



6.6 Illustrative Examples 119

6.6.2 Lorenz Attractor

To illustrate the usefulness of the new mixing notion we present the example of the
Lorenz system, which is illustrated in Fig. 6.2 and given by the following equations:

ẋ = 10(y − x) (6.32)
ẏ = 28x− y − xz (6.33)

ż = xy − 8
3z. (6.34)

The Lorenz attractor is a famous chaotic and deterministic dynamical system that is
known to mix in a topological sense (Luzzatto et al., 2005). Other notions, such as β-
mixing, are too strong and not suitable here. In the appendix, we provide empirical
evidence that the Lorenz system mixes with respect to the herein introduced notion
of MMD-mixing. Connecting topological mixing on a rigorous level with MMD-
mixing remains for future work.

Further, we show numerically that we can distinguish between two systems with
slightly different parameters and obtain the required properties of the kernel two-
sample test. For the estimated a∗, the test is well-behaved. When we chose the
estimated time shift too small, then the amount of false positives explodes.

6.6.3 C-mixing Systems

We also consider the three examples that are discussed in Hang et al. (2018) and
are provably C-mixing. Due to the Gaussian kernel that we use and the choices for
C (Lip(S) and BV(S), cf. Hang et al. (2018) for details), C-mixing directly implies
MMD-mixing. The empirical results confirm the MMD-mixing property.

We considered the following systems:
β-map: For β > 1 and x0 ∈ (0, 1), the dynamical system is defined by

xk+1 = βxk mod 1. (6.35)

Logistic map: For x0 ∈ (0, 1), the logistic map is defined by

xk+1 = 4xk(1− xk). (6.36)

Gauss map: For x0 ∈ (0, 1), the Gauss map is defined by

xk+1 = 1
xk

mod 1. (6.37)

For all examples, the speed of mixing is extremely fast and after a∗ = 10, the data
is close to independent. We initialized x0 uniformly on the interval (0, 1) and used
β = e.
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Interestingly, the Lebesgue densities of the stationary distributions are also
known and stated in Hang et al. (2018). This would allow for kernel two-sample
testing, exactly as done for the OU-process in App. A.1.1. Since the mixing is ex-
tremely fast here, we expect the same result—time shifted data that respects the
speed of mixing is indistinguishable from data that has been drawn directly from
the stationary distribution.

6.7 Experimental Example – Human Walking
We apply the developed kernel two-sample test to real-world experimental data
that will be made available. We consider gait data of human subjects walking on
a treadmill. Detecting characteristics and alterations in human gait is a highly
relevant problem in disease prediction, diagnosis and progress monitoring as well as
in biometrics (Nguyen et al., 2019; Gaßner et al., 2020; Muro-De-La-Herran et al.,
2014). An example data set with a known ground truth label is obtained by letting
subjects walk with and without a knee orthosis. Our goal is to classify each measured
trajectory correctly with the labels orthosis and no orthosis.

6.7.1 Data Collection

The inertial measurement unit (IMU) data of foot motion were collected from 38
healthy subjects without any restrictions in gait or illnesses that affect their walking
ability. The data collection was conducted in the movement analysis laboratory
of one of the authors’ universities on a Mercury Med treadmill. The IMU sensors
were attached to the test subjects’ shoes using velcro straps. The measurements
were taken for 90 seconds each trial under the following conditions: walking at very
slow (1.5 km h−1), slow (3 km h−1), slow with simulated gait pathology, and normal
walking speed (5 km h−1). For the simulated gait pathology, the mobility of the left
knee joint was restricted using a knee orthosis, which was fixed in a neutral position
to disable further extension or flexion of the joint. The subjects were asked to stand
still with both feet next to each other for 3 seconds at the beginning and the end
of each trial, Before the trials, the subjects were able to practice walking on the
treadmill. They were allowed to use the handrail of the treadmill if necessary. For
three subjects, the orthosis experiment could not be carried out. An approval from
the local ethics committee was obtained.
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Figure 6.3: Mixing properties of gait data. On the x-axis, we depict the time shift a
between consecutive samples. One time step corresponds to 0.01 seconds. The y-axis
shows the dependence between data points with respect to the corresponding time shift.
The initial point is randomized, and the estimation is repeated 50 times. Depicted is
the mean of the test statistic and the 95% upper confidence bound. We also show the
threshold κ of the independence test. When the blue line is below the red line, it is not
possible to infer statistical dependence between the data points.

6.7.2 Description of the Statistical Test

We consider the raw gyroscopic data of the left foot for 35 subjects. The gyroscopic
data is three-dimensional and consists of roughly 14 000 data points per trajectory.

Mixing Properties

First, we quantify the mixing properties of human walking. We estimate MMD-
mixing (cf. Sec. 6.4.2) by applying the HSIC to the 35 subjects. We consider the
trials with and without the orthosis simultaneously, which yields 70 independent
trajectories. We draw an initial point Xk from a uniform distribution between
k = 2000 and k = 4000 and fix that point for all trajectories. Afterward, we compute
HSIC(Xk, Xk+a) for various values of a. In Fig. 6.3, the results are illustrated and we
can see the decrease of dependencies. To exclude numerical artifacts, we repeat the
estimation of the mixing properties 50 times with randomly chosen initial points.

Classification

We compare MMD-based classification against standard baselines for the 70 trajec-
tories.
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MMD-based classification: We choose one trajectory of interest, for which
we forget the correct label, and separate it from all other trajectories, for which the
correct label is known. We pick a random initial point X0 uniformly distributed
between k = 2000 and k = 3000. After time shifting the data with respect to
a∗, we estimate the MMD (6.6) between the trajectory of interest and all other
trajectories. Then, we use the label of the trajectory with the smallest MMD to
label the unlabeled trajectory. Intuitively, unrestricted trajectories look more similar
among themselves than trajectories with a restricted knee, and vice versa.

Baseline: We compare the proposed approach to common baselines for classi-
fication of biomedical data (Bidabadi et al., 2019; Misgeld et al., 2015; Tien et al.,
2010). We consider the following features:

• Maximum and minimum value of each dimension;
• The 4 largest frequencies based on a Fourier transform;
• The 2-norm over time and the state dimensions.

In total, this results in 19 features for each trajectory that are used to train linear
classifiers – support vector machines (SVM) and logistic regression (LR). Further,
we use a 3-fold cross-validation technique. We repeat the training also 1000 times
and report the average accuracy and standard deviation in Table 6.1.

6.7.3 Results

Our empirical analysis reveals that human walking mixes with respect to MMD-
mixing (cf. Sec. 6.4.2). Further, as illustrated in Fig. 6.3, we can effectively estimate
the speed of mixing. After roughly five footsteps, the dependence of data to its past
is mostly gone, and we can treat data as independent.

For MMD-based classification, we use a time shift of a∗ = 400. This results in
25 points per trajectory. A larger choice of a∗ around 600 would be closer to our
theoretical results. However, due to the limited amount of data, this would reduce
the number of available samples even further.

We run all classification algorithms 1000 times and report the average accuracy
and standard deviation in Table 6.1. Our method achieves the best accuracy, and we
are able to classify 99.99% of the subjects with no orthosis correctly. Some very few
subjects are repeatedly misclassified when walking with the orthosis, which might
be explained using futher insights and data analysis. For the other methods, in
contrast, there is no apparent structure in the errors.
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Table 6.1: Classification accuracy for labeling the trajectories correctly into the labels
orthosis and no orthosis. Mean accuracy with standard deviation over 1000 repetitions.

Our method SVM LR

95.7%± 2.4% 86.9%± 4.4% 92.5%± 3.2%

6.7.4 Discussion

The above results show that the proposed method works well on a practically rele-
vant non-trivial problem and outperforms common baselines. We spent a reasonable
amount of time on designing good features in the comparison. While the accuracy
of the linear classifiers could potentially be improved by adding additional features,
designing such features requires more insight into the problem and system proper-
ties, which is unavailable in many applications. In order to improve the accuracy
of our method, it would suffice to add more data (i.e., consider longer trajectories).
Further, it can directly be applied to a range of similar problems.

Classification and clustering algorithms based on the MMD can be applied in
more general settings (Jegelka et al., 2009). Thus, our proposed nearest-neighbor
approach for dynamical systems should generalize to more sophisticated clustering
algorithms, which could yield unprecedented insights into the behavior of complex
dynamical systems.

6.8 Conclusion
We propose a kernel two-sample test for dynamical systems with deep connections
to a new type of mixing in MMD. The proposed method is straightforward to use,
has only a few parameters, and is model-free. In particular, we are able to estimate
the speed of mixing from data in a relevant norm, which was previously not possible.
The flexibility and relevance of the proposed method are demonstrated numerically
and experimentally on raw motion sensor data. The presented results show the
potential for biomedical and engineering applications, which we plan to explore in
future work.
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Chapter 7

Conclusions

In this thesis, we present event-triggered learning as a new paradigm for applying
learning-based techniques to learning-control systems. In particular, we address the
question of how to cope with potentially time varying dynamical systems. We show
that the very nature of learning-control systems makes the problem different from
common static machine learning and control problems. Therefore, we need to be
careful when developing methods that can deal with change to ensure meaningful
learning outcomes.

7.1 Summary
We introduce ETL on an abstract level as a new paradigm that addresses the issue of
applying learning-based techniques to potentially changing learning-control systems.
Statistical tests and learning triggers are at the heart of ETL and monitor suitable
signals to quantify the probability of change. Due to the challenging properties of
learning-control systems we had to develop new statistical tests. Learning models of
learning-control systems is also a difficult problem and we show in detail, how the
accuracy of the estimator critically depends on the data properties.

To demonstrate the relevance and potential of ETL, we consider three instan-
tiations of ETL algorithms, where we make all design choices precise and derive
theoretical guarantees for the algorithms. Further, the algorithms are applied to
experimental data and among others, show substantial communication savings for
sensor networks.

In detail, we show how ETL can be used to save communication in networked
control systems. Analyzing carefully chosen features such as inter-communication
times is one possible approach that we develop in Part I. In addition to theoretical
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results, the algorithms are also applied to real-world data, where they outperform
the considered baselines and reduce the communication load up to 70%.

The applications to optimal control tasks Part II show a similar potential. Here,
we leverage in-depth knowledge of the corresponding distributions and structure,
such as for the LQR cost signal. The theory is similarly rich and there are many
potential real-world applications. In particular, in combination with reinforcement
learning and other suitable optimal control strategies. As a first step, we have shown
the power of the algorithms for balancing an inverted pendulum.

Most of the above ETL results are developed for linear systems. To generalize
them to nonlinear dynamical systems, we introduce non-parametric testing tech-
niques and explicitly deal with the correlations in the data. In Part III, we consider
the core questions of comparing dynamical systems from state measurements. To
this end, we introduce a new notion of mixing, which synergizes well with kernel
two-sample tests and results in a statistical test for dynamical systems. In particu-
lar, the mixing properties can be estimated from data, which is a huge benefit over
other methods and notions of mixing. We expect that these results will pave the
way towards a general nonlinear event-triggered learning framework.

7.2 Future Work
We have developed the paradigm of event-triggered learning and derived concrete
algorithms that are tailored to certain problems and show improvements in practice.
Through this work, the fundamental question of “how to compare dynamical system”
came up, which has far reaching consequences and points to interesting directions
for future work.

As an answer to the fundamental question, we have developed a kernel two-
sample test for dynamical systems. However, we did not address the question
of relearning the dynamics. Combining the statistical information that the test
yields with techniques from active learning appears to be a fruitful direction for
future research. Particularly well suited approaches are deep learning and Gaus-
sian processes, for example, adapting the work from Buisson-Fenet et al. (2020) to
MMD-based arguments and integrating the kernel two-sample test into the learning
framework. Causality-based approaches, such as proposed in Baumann et al. (2022),
could also be fruitful.

It still remains to apply our kernel two-sample test to large scale problems and
validate how well it performs on sophisticated engineering systems and if it general-
izes to industrial applications. Detecting change for these systems is an important
task with a huge potential impact in industry.
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Simultaneously, the theoretical mixing results that emerged from the publica-
tion Solowjow et al. (2020) show promising connections to well-established theory.
Extending these results and establishing more sophisticated concentration results
is also a worthwhile endeavour. Especially, since our new notion of mixing can be
estimated from data, which is a huge advantage over other methods.

In reinforcement learning, the exploration-exploitation trade-off plays a crucial
role. This trade-off is also at the heart of ETL. Further, there is also the question
of utilizing models or relying on model-free methods. Addressing these questions
rigorously might lead to a similar principled decision making as we have explored in
event-triggered learning.

While we have demonstrated that all components of the linear ETL framework
work well in practice and theory, it would be exciting to push them to their limits
and apply them to more sophisticated real-world systems with challenging baselines.

Quantifying the speed of change and embedding this into the ETL algorithms
also remains an open question that should be addressed in the future. Most likely,
there will be a substantial increase in performance.

7.3 Closing the Loop
Control theory has developed powerful tools over the last decades to deal with
systems that have time dependencies. Feedback loops are at the heart of most of
these algorithms and essentially, outputs are used as future inputs. When applying
learning techniques to potentially changing environments similar techniques and
ways of thinking can be applied.

Event-triggered learning is one way of closing the loop with the aid of statistical
tests. We infer the accuracy of models and apply control inputs in form of learning
only when necessary. In control theory, there is a strong emphasis on analyzing the
whole system in addition to carefully designing the individual parts. This way, it is
possible to derive strong theoretical guarantees, e.g., show types of stability. Similar
concepts might be applicable for ETL systems in form of guaranteed adaptations to
certain changes and stable or respectively successful learning outcomes.
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J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey on
concept drift adaptation. ACM computing surveys (CSUR), 46(4):1–37, 2014.

E. Garcia and P. J. Antsaklis. Adaptive stabilization of uncertain systems with
model-based control and event-triggered feedback updates. In Control of Complex
Systems, pages 67–92. Elsevier, 2016.

H. Gaßner, D. Jensen, F. Marxreiter, A. Kletsch, S. Bohlen, R. Schubert, L. M.
Muratori, B. Eskofier, J. Klucken, J. Winkler, et al. Gait variability as digital
biomarker of disease severity in huntington’s disease. Journal of neurology, pages
1–8, 2020.

K. Gatsis and G. J. Pappas. Sample complexity of networked control systems over
unknown channels. In Proceedings of IEEE Conference on Decision and Control,
pages 6067–6072. IEEE, 2018.

G. C. Goodwin and R. L. Payne. Chapter 7 recursive algorithms. In Dynamic
System Identification, volume 136 of Mathematics in Science and Engineering,
pages 175 – 208. Elsevier, 1977.



M. Green and J. B. Moore. Persistence of excitation in linear systems. Systems &
Control Letters, 7(5):351 – 360, 1986.

A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. J. Smola.
A kernel statistical test of independence. In Advances in Neural Information
Processing Systems, pages 585–592, 2008.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel
two-sample test. Journal of Machine Learning Research, 13(Mar):723–773, 2012a.

A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan, M. Pontil, K. Fukumizu,
and B. K. Sriperumbudur. Optimal kernel choice for large-scale two-sample tests.
In Advances in Neural Information Processing Systems, pages 1205–1213, 2012b.

A. Gut. Probability: a graduate course, volume 75. Springer, 2013.

D. Han, Y. Mo, J. Wu, S. Weerakkody, B. Sinopoli, and L. Shi. Stochastic event-
triggered sensor schedule for remote state estimation. IEEE Transactions on
Automatic Control, 60(10):2661–2675, 2015.

S. Han. A closed-form solution to the discrete-time Kalman filter and its applica-
tions. Systems & Control Letters, 59(12):799–805, dec 2010.

H. Hang, I. Steinwart, et al. A bernstein-type inequality for some mixing processes
and dynamical systems with an application to learning. The Annals of Statistics,
45(2):708–743, 2017.

H. Hang, I. Steinwart, Y. Feng, and J. A. Suykens. Kernel density estimation for
dynamical systems. The Journal of Machine Learning Research, 19(1):1260–1308,
2018.

T. J. Harris. Assessment of control loop performance. The Canadian Journal of
Chemical Engineering, 67(5):856–861, 1989.

M. Heemels, K. H. Johansson, and P. Tabuada. An introduction to event-triggered
and self-triggered control. In Proceedings of the 51st IEEE International Confer-
ence on Decision and Control, pages 3270–3285. IEEE, 2012.

T. A. N. Heirung, B. E. Ydstie, and B. Foss. Towards dual MPC. IFAC Proceed-
ings Volumes, 45(17):502–507, 2012. 4th IFAC Conference on Nonlinear Model
Predictive Control.



J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of recent results in networked
control systems. Proc. of IEEE Special Issue on Technology of Networked Control
Systems, 95(1):138–162, Jan. 2007.

J. Hodges. The significance probability of the smirnov two-sample test. Arkiv för
Matematik, 3:469–486, 1958.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association, 58(301):13–30, Mar. 1963.

Z.-S. Hou and Z. Wang. From model-based control to data-driven control: Survey,
classification and perspective. Information Sciences, 235:3–35, June 2013.

B. Huang, S. Shah, and E. Kwok. Good, bad or optimal? Performance assessment
of multivariable processes. Automatica, 33(6):1175–1183, 1997.

J. Huang, D. Shi, and T. Chen. Energy-based event-triggered state estimation for
hidden markov models. Automatica, 79:256–264, 2017.

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hut-
ter. Learning agile and dynamic motor skills for legged robots. Science Robotics,
4(26):eaau5872, 2019.

P. A. Ioannou and J. Sun. Robust adaptive control. Courier Corporation, 2012.

R. Isermann. Process fault detection based on modeling and estimation methods—a
survey. Automatica, 20(4):387–404, 1984.

R. Isermann. Fault-diagnosis systems: an introduction from fault detection to fault
tolerance. Springer Science & Business Media, 2006.

I. Ishikawa, K. Fujii, M. Ikeda, Y. Hashimoto, and Y. Kawahara. Metric on nonlin-
ear dynamical systems with Perron-Frobenius operators. In Advances in Neural
Information Processing Systems, pages 2856–2866, 2018.

I. Ishikawa, A. Tanaka, M. Ikeda, and Y. Kawahara. Metric on random dynamical
systems with vector-valued reproducing kernel Hilbert spaces. arXiv preprint
arXiv:1906.06957, 2019.

P. M. J. Apkarian, M. Levis. QUBE-Servo 2 Experiment for Matlab/Simulink
Users: Instructor Workbook. Quanser Inc, 2016. URL https://www.quanser.
com/products/qube-servo-2/.

https://www.quanser.com/products/qube-servo-2/
https://www.quanser.com/products/qube-servo-2/


S. Jegelka, A. Gretton, B. Schölkopf, B. K. Sriperumbudur, and U. Von Luxburg.
Generalized clustering via kernel embeddings. In Annual Conference on Artificial
Intelligence, pages 144–152. Springer, 2009.

M. Jelali. An overview of control performance assessment technology and industrial
applications. Control engineering practice, 14(5):441–466, 2006.

S. Jeschke, C. Brecher, T. Meisen, D. Özdemir, and T. Eschert. Industrial Internet
of Things and cyber manufacturing systems. In Industrial Internet of Things,
pages 3–19. Springer, 2017.

R. M. Johnstone, C. Richard Johnson, R. R. Bitmead, and B. D. Anderson. Expo-
nential convergence of recursive least squares with exponential forgetting factor.
Systems & Control Letters, 2(2):77–82, 1982.

R. H. Julien, M. W. Foley, and W. R. Cluett. Performance assessment using a model
predictive control benchmark. Journal of Process Control, 14(4):441–456, 2004.

M. Kac, J. Kiefer, and J. Wolfowitz. On tests of normality and other tests of goodness
of fit based on distance methods. The Annals of Mathematical Statistics, pages
189–211, June 1955.

R. Klinkenberg and T. Joachims. Detecting concept drift with support vector ma-
chines. In International Conference on Machine Learning, pages 487–494, 2000.

P. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.
Stochastic Modelling and Applied Probability. Springer Berlin Heidelberg, 2011.

S. Klus, I. Schuster, and K. Muandet. Eigendecompositions of transfer operators in
reproducing kernel Hilbert spaces. Journal of Nonlinear Science, 30(1):283–315,
2020.

K. Krauth, S. Tu, and B. Recht. Finite-time analysis of approximate policy iteration
for the linear quadratic regulator. In Advances in Neural Information Processing
Systems, pages 8512–8522, 2019.

P. R. Kumar and P. Varaiya. Stochastic systems: Estimation, identification and
adaptive control. Prentice Hall, 1986.

B. Kuvaritakis and M. Cannon. Model Preditive Control: Classical, Robust and
Stochastic. Springer, 2014.

D. Lee and J. Hu. Primal-dual Q-learning framework for LQR design. IEEE Trans-
actions on Automatic Control, 64(9):3756–3763, 2018.



J. Lee, J.-S. Kim, and H. Shim. Disc margins of the discrete-time LQR and its
application to consensus problem. International Journal of Systems Science, 43
(10):1891–1900, Oct. 2012.

M. Lemmon. Event-triggered feedback in control, estimation, and optimization.
Networked Control Systems, 406:293–358, 2010.

L. Ljung. System Identification: Theory for the user. Information and System
Sciences Series. Prentice Hall, 2 edition, 2009.

L. Ljung and T. Söderström. Theory and practice of recursive identification. MIT
press, 1983.

J. R. Lloyd and Z. Ghahramani. Statistical model criticism using kernel two sample
tests. In Advances in Neural Information Processing Systems, pages 829–837,
2015.

M. Long, H. Zhu, J. Wang, and M. I. Jordan. Deep transfer learning with joint
adaptation networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 2208–2217. JMLR. org, 2017.

D. Looze, J. Weiss, J. Eterno, and N. Barrett. An automatic redesign approach for
restructurable control systems. IEEE Control systems magazine, 5(2):16–22, May
1985.

J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang. Learning under concept
drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12):
2346–2363, 2018.

M. J. Lueken, B. J. Misgeld, and S. Leonhardt. Classification of spasticity affected
emg-signals. In International Conference on Wearable and Implantable Body Sen-
sor Networks, pages 1–6. IEEE, 2015.

S. Luzzatto, I. Melbourne, and F. Paccaut. The Lorenz attractor is mixing. Com-
munications in Mathematical Physics, 260(2):393–401, 2005.

J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in
Statistics and Econometrics. Wiley, 1999.

H. Mania, S. Tu, and B. Recht. Certainty equivalence is efficient for linear quadratic
control. In Advances in Neural Information Processing Systems, pages 10154–
10164, 2019.



A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe. Automatic LQR tun-
ing based on Gaussian process global optimization. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 270–277, 2016.

S. Mason, L. Righetti, and S. Schaal. Full dynamics LQR control of a humanoid
robot: An experimental study on balancing and squatting. In Proceedings of the
IEEE-RAS International Conference on Humanoid Robots, pages 374–379, 2014.

P. Massart. The tight constant in the dvoretzky-kiefer-wolfowitz inequality. The
annals of Probability, pages 1269–1283, 1990.

P. Matisko and V. Havlena. Optimality tests and adaptive Kalman filter. IFAC
Proceedings Volumes, 45(16):1523–1528, jul 2012.

D. McDonald, C. Shalizi, and M. Schervish. Estimating beta-mixing coefficients. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, pages 516–524, 2011.

I. Mezic. On comparison of dynamics of dissipative and finite-time systems using
Koopman operator methods. IFAC-PapersOnLine, 49(18):454–461, 2016.

B. J. Misgeld, M. Lüken, D. Heitzmann, S. I. Wolf, and S. Leonhardt. Body-
sensor-network-based spasticity detection. IEEE journal of biomedical and health
informatics, 20(3):748–755, 2015.

M. Miskowicz. Send-on-delta concept: an event-based data reporting strategy. Sen-
sors, 6(1):49–63, 2006.

M. Miskowicz. Event-based control and signal processing. CRC Press, 2015.

K. Muandet, K. Fukumizu, B. Sriperumbudur, and B. Schölkopf. Kernel mean
embedding of distributions: A review and beyond. Foundations and Trends® in
Machine Learning, 10(1-2):1–141, 2017.

A. Muro-De-La-Herran, B. Garcia-Zapirain, and A. Mendez-Zorrilla. Gait analysis
methods: An overview of wearable and non-wearable systems, highlighting clinical
applications. Sensors, 14(2):3362–3394, 2014.

V. Narayanan and S. Jagannathan. Event-triggered distributed control of nonlin-
ear interconnected systems using online reinforcement learning with exploration.
IEEE transactions on cybernetics, 48:2510–2519, 2017.



A. Nguyen, N. Roth, N. Ghassemi, J. Hannink, T. Seel, J. Klucken, H. Gaßner,
and B. Eskofier. Development and clinical validation of inertial sensor-based gait-
clustering methods in Parkinson’s disease. Journal of NeuroEngineering and Re-
habilitation, 16(77):1–14, 2019.

J. Nubert, J. Koehler, V. Berenz, F. Allgower, and S. Trimpe. Safe and fast tracking
on a robot manipulator: Robust MPC and neural network control. IEEE Robotics
and Automation Letters, 2020.

B. Øksendal. Stochastic differential equations. In Stochastic differential equations.
Springer, 2003.

R. Oldenburger. Infinite powers of matrices and characteristic roots. Duke Mathe-
matical Journal, 6(2):357–361, Feb. 1940.

P. Patie and C. Winter. First exit time probability for multidimensional diffusions:
a pde-based approach. Journal of computational and applied mathematics, 222
(1):42–53, 2008.

G. Pavliotis. Stochastic Processes and Applications Diffusion Processes, the Fokker-
Planck and Langevin Equations. Springer, 2014.

N. Pfister, P. Bühlmann, B. Schölkopf, and J. Peters. Kernel-based tests for joint in-
dependence. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 80(1):5–31, 2018.

M. Pistacchi, M. Gioulis, F. Sanson, E. De Giovannini, G. Filippi, F. Rossetto, and
S. Z. Marsala. Gait analysis and clinical correlations in early Parkinson’s disease.
Functional neurology, 32(1):28, 2017.

L. Pronzato. Optimal experimental design and some related control problems. Au-
tomatica, 44(2):303–325, 2008.

S. J. Qin. Control performance monitoring – a review and assessment. Computers
& Chemical Engineering, 23(2):173–186, 1998.

S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control
technology. Control engineering practice, 11(7):733–764, 2003.

M. Rabi, K. H. Johansson, and M. Johansson. Optimal stopping for event-triggered
sensing and actuation. In 2008 47th IEEE Conference on Decision and Control,
pages 3607–3612, 2008.



B. Recht. A tour of reinforcement learning: The view from continuous control.
Annual Review of Control, Robotics, and Autonomous Systems, 2:253–279, 2019.

S. Schlor, F. Solowjow, and S. Trimpe. Parameter filter-based event-triggered learn-
ing. under review, 2022.

H. Schluter, F. Solowjow, and S. Trimpe. Event-triggered learning for linear
quadratic control. IEEE Transactions on Automatic Control, 2020.

B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2001.

T. B. Schön, A. Wills, and B. Ninness. System identification of nonlinear state-space
models. Automatica, 47(1):39–49, 2011.

J. Schoukens and L. Ljung. Nonlinear system identification: A user-oriented road
map. IEEE Control Systems Magazine, 39(6):28–99, 2019.

L. Schwenkel, M. Gharbi, S. Trimpe, and C. Ebenbauer. Online learning with sta-
bility guarantees: A memory-based warm starting for real-time mpc. Automatica,
122:109247, 2020.

D. Sejdinovic, B. Sriperumbudur, A. Gretton, and K. Fukumizu. Equivalence of
distance-based and rkhs-based statistics in hypothesis testing. The Annals of
Statistics, pages 2263–2291, 2013.

D. Shi, T. Chen, and L. Shi. Event-triggered maximum likelihood state estimation.
Automatica, 50(1):247–254, 2014.

D. Shi, L. Shi, and T. Chen. Event-Based State Estimation: A Stochastic Perspec-
tive. Springer, 2015.

J. Sijs and M. Lazar. Event based state estimation with time synchronous updates.
IEEE Transactions on Automatic Control, 57(10):2650–2655, 2012.

J. Sijs, L. Kester, and B. Noack. A study on event triggering criteria for estimation.
In 17th International Conference on Information Fusion, pages 1–8, July 2014.

M. Simchowitz, H. Mania, S. Tu, M. I. Jordan, and B. Recht. Learning without
mixing: Towards a sharp analysis of linear system identification. Conference on
Learning Theory, pages 439–473, 2018.

M. Simchowitz, R. Boczar, and B. Recht. Learning linear dynamical systems with
semi-parametric least squares. In Conference on Learning Theory, pages 2714–
2802. PMLR, 2019.



C.-J. Simon-Gabriel, A. Barp, and L. Mackey. Metrizing weak convergence with
maximum mean discrepancies. arXiv preprint arXiv:2006.09268, 2020.

F. Solowjow and S. Trimpe. Event-triggered learning. Automatica, 117:109009, 2020.

F. Solowjow, D. Baumann, J. Garcke, and S. Trimpe. Event-triggered learning for
resource-efficient networked control. In 2018 Annual American Control Conference
(ACC), pages 6506–6512. IEEE, 2018.

F. Solowjow, D. Baumann, C. Fiedler, A. Jocham, T. Seel, and S. Trimpe. A kernel
two-sample test for dynamical systems. arXiv preprint arXiv:2004.11098, 2020.

M. J. Sorocky, S. Zhou, and A. P. Schoellig. Experience selection using dynamics
similarity for efficient multi-source transfer learning between robots. In Proc. of
the IEEE International Conference on Robotics and Automation , 2020.

J. C. Spall. Validation of state space models in non-gaussian systems. In 1984
American Control Conference, jul 1984.

J. C. Spall and K. D. Wall. Asymptotic distribution theory for the Kalman filter
state estimator. Communications in Statistics - Theory and Methods, 13(16):
1981–2003, jan 1984.

B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schölkopf, and G. R. Lanckriet.
Hilbert space embeddings and metrics on probability measures. The Journal of
Machine Learning Research, 11:1517–1561, 2010.

I. Steinwart and A. Christmann. Support vector machines. Springer Science &
Business Media, 2008.

Y. S. Suh. Send-on-delta sensor data transmission with a linear predictor. Sensors,
7(4):537–547, 2007.

A. P. Swanda and D. E. Seborg. Controller performance assessment based on set-
point response data. In Proceedings of the American Control Conference, volume 6,
pages 3863–3867, 1999.

Z. Szabó and B. Sriperumbudur. Characteristic and universal tensor product kernels.
Journal of Machine Learning Research, 18:233, 2018.

I. Tien, S. D. Glaser, and M. J. Aminoff. Characterization of gait abnormalities
in Parkinson’s disease using a wireless inertial sensor system. In 2010 Annual
International Conference of the IEEE Engineering in Medicine and Biology, pages
3353–3356. IEEE, 2010.



E. Todorov and W. Li. A generalized iterative LQG method for locally-optimal
feedback control of constrained nonlinear stochastic systems. In Proceedings of
the American Control Conference, pages 300–306, 2005.

I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schölkopf. Wasserstein auto-encoders.
In International Conference on Learning Representations (ICLR 2018). OpenRe-
view. net, 2018.

S. Trimpe. Event-based state estimation: An emulation-based approach. IET Con-
trol Theory & Applications, 11(11):1684–1693, July 2017.

S. Trimpe and D. Baumann. Resource-aware IoT control: Saving communication
through predictive triggering. IEEE Internet of Things Journal, 2019.

S. Trimpe and M. C. Campi. On the choice of the event trigger in event-based
estimation. In Int. Conf. on Event-based Control, Communication, and Signal
Processing, pages 1–8, 2015.

S. Trimpe and R. D’Andrea. An experimental demonstration of a distributed and
event-based state estimation algorithm. IFAC Proceedings Volumes, 44(1):8811–
8818, 2011.

S. Trimpe and R. D’Andrea. The balancing cube: A dynamic sculpture as test bed
for distributed estimation and control. IEEE Control Systems Magazine, 32(6):
48–75, Dec. 2012.

S. Trimpe and R. D’Andrea. Event-based state estimation with variance-based
triggering. IEEE Transactions on Automatic Control, 59(12):3266–3281, 2014.

J. Umlauft and S. Hirche. Feedback linearization based on Gaussian processes with
event-triggered online learning. IEEE Transactions on Automatic Control, 2019.

H. Unbehauen. Adaptive dual control systems: a survey. In Adaptive Systems
for Signal Processing, Communications, and Control Symposium, pages 171–180.
IEEE, 2000.

K. G. Vamvoudakis and H. Ferraz. Model-free event-triggered control algorithm
for continuous-time linear systems with optimal performance. Automatica, 87:
412–420, 2018.

K. G. Vamvoudakis, F. R. Pour Safaei, and J. P. Hespanha. Robust event-triggered
output feedback learning algorithm for voltage source inverters with unknown
load and parameter variations. International Journal of Robust and Nonlinear
Control, 29(11):3502–3517, 2019.



S. Vishwanathan, A. J. Smola, and R. Vidal. Binet-Cauchy kernels on dynami-
cal systems and its application to the analysis of dynamic scenes. International
Journal of Computer Vision, 73(1):95–119, 2007.

M. Witczak, V. Puig, D. Rotondo, and P. Witczak. A necessary and sufficient con-
dition for total observability of discrete-time linear time-varying systems. IFAC-
PapersOnLine, 50(1):729–734, 2017.

B. Wittenmark. An active suboptimal dual controller for systems with stochastic
parameters. Automatic Control Theory and Application, 3:13–19, 1975.

J. Wu, Q.-S. Jia, K. H. Johansson, and L. Shi. Event-based sensor data scheduling:
Trade-off between communication rate and estimation quality. IEEE Transactions
on Automatic Control, 58(4):1041–1046, 2013.

Y. Xu and J. P. Hespanha. Communication logics for networked control systems.
In Proceedings of the American Control Conference, pages 572–577, 2004.

J. Yoo and K. H. Johansson. Event-triggered model predictive control with a statis-
tical learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
pages 1–11, 2019.

W. Zaremba, A. Gretton, and M. Blaschko. B-test: A non-parametric, low variance
kernel two-sample test. In Advances in Neural Information Processing Systems,
pages 755–763, 2013.

Y. Zhan and J. Jiang. An interacting multiple-model based fault detection, diag-
nosis and fault-tolerant control approach. In Proceedings of IEEE Conference on
Decision and Control, volume 4, pages 3593–3598, 1999.

K. Zhou and J. C. Doyle. Essentials of robust control. Prentice hall, 1998.



Appendix A

Details on the MMD-Experiments

In this appendix, we discuss further details about the experiments presented in
Part III.

A.1 LTI Systems
We consider the dynamics

Xk+1 = AXk + ϵk, (A.1)

where ϵk
iid∼ N (0,Σ). Further, assume all eigenvalues of A ∈ Rd×d are located within

the unit circle.
Stationary Distribution: The stationary distribution of an LTI system is

Gaussian with expected value zero. The Gaussian distribution follows from the
Gaussian noise and linear structure of the system. The expected value can be
computed by leveraging that all eigenvalues of A are located within the unit circle.
Obtaining the variance is more involved. It can be expressed as the solution to the
following Lyapunov equation in Z (Schluter et al., 2020, Eq. 7):

AZA⊺ − Z + Σ = 0, (A.2)

where A is the system matrix and Σ the covariance matrix of the process noise.

A.1.1 Comparison to Stationary

We investigate if we can, based on a kernel two-sample test, distinguish between time
shifted samples with respect to a∗ and i.i.d. samples from the stationary distribution.

Setup: We create 500 randomly generated LTI systems with a random dimen-
sionality between 1 and 100. For each system we create m = 250 independent
trajectories and sample n = 20 000 points for each trajectory. All systems are ini-
tialized in X0 = 0 to avoid transient effects. The decay of dependence is quantified
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Figure A.1: Mixing properties of the LTI system that is used to create Fig. 1 in the main
paper. On the x-axis, we depict the time shift a between consecutive samples. The y-axis
shows the dependence between data points with respect to the corresponding time shift.
At a∗ = 75 the test statistic is below the threshold.

in the MMD-sense for one gap (cf. Sec. 5 of main paper). We use data from the end
of the trajectory to avoid numerical artifacts due to the identical initial values.

Next, we describe how we generate the system matrices.
Sampling Σ: The entries for the covariance matrix are drawn from a standard

multivariate normal distribution. Since the matrix is supposed to yield a covariance
matrix, we require symmetry and positive definiteness. Thus, we denote Σ′ as the
matrix drawn from the normal distribution and define Σ = 0.5(Σ′+Σ′⊺)2. To control
the magnitude of noise, we scale the matrix with the largest eigenvalue of Σ.

Sampling A: The system matrix A is required to have eigenvalues within the
unit sphere. To achieve this, we draw the entries of A from a uniform distribution
and extend the system with a control input

Xk+1 = AXk +Buk + ϵk. (A.3)

The control matrix B is set to the identity matrix and the control input as a stan-
dard linear quadratic feedback controller uk = −Kxk. This yields the closed loop
dynamics

Xk+1 = (A−BK)Xk + ϵk. (A.4)

The feedback gain K can be computed to minimize a linear quadratic cost function.
By adjusting the weights of the cost function, we can indirectly adjust the eigenvalues
of the closed loop system matrix (A−BK). We set the weight matrix for the state
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cost Q to the identity matrix and the control cost to R = 107. This makes it
very expensive to apply large control inputs and magnitude of the eigenvalues of
(A − BK) stays close to 1. This implies slow mixing and further, by considering
R→∞, we can make this arbitrarily slow.

Results: First, we use the m = 250 trajectories to estimate the mixing speed
a∗. We choose a∗ as the first time instance at which the test statistic is below the
test threshold.

For the kernel two-sample test, we draw 100 points from the first trajectory that
respect the time shift a∗. We also draw 100 points directly from the stationary
distribution (N (0, Z), cf. (A.2)).

From the 500 systems we considered overall, we only obtained 4 false positives,
which shows the high precision of our proposed test. Due to the probabilistic nature
of these experiments, we could obtain systems with arbitrarily slow mixing times
and, subsequently, very long a∗. Thus, we decided to fix a maximum a∗ as amax =
200, and ignore all systems with larger a∗. We obtained 81 systems that mix too
slowly, i.e., a∗ > amax.

A.1.2 Details for Fig. 6.1

In Fig. A.1, we show the mixing properties of the system that yields a∗ = 75. We
used the same setup as in Sec. A.1.1 with some modifications. We chose R = 1010

and divided Σ by 10λ2
max, where λmax is the largest eigenvalue of Σ. Further, to be

able to better visualize the samples and the stationary distributions, we fixed the
dimension to two.

The randomly generated system matrices are

A =
0.2345 0.8609

0.7298 0.1316

 ,Σ =
0.0378 0.0135

0.0135 0.0971

 . (A.5)

A.2 Lorenz System
To perform kernel two-sample testing, we slightly change the parameters in the
Lorenz system by decreasing the coefficient in (6.32) from 10 to 6 to obtain a second
slightly different system. The mixing analysis is done for both systems. The attrac-
tors of both systems look optically very similar. The attractor can be interpreted
as the stationary probability distribution of the state in some sense.

A.2.1 Mixing properties

We estimate the mixing properties of the Lorenz system in the MMD-mixing sense
for one time shift a (cf. Sec.5).
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Initial points: We sample from an uniform distribution U([−0.5, 0.5]×[−0.5, 0.5]×
[20, 21]) to initialize the starting point X0.

Data: We use a standard ODE solver1 to obtain a solution to the Lorenz system.
Due to variable step sizes within the solver, we interpolate the solution to obtain
samples with a fixed discretization in time. We consider the time horizon t ∈ [0, 200]
and create 2001 samples (with a fixed time step of 0.1).

Repetitions: We create M = 100 independent trajectories to estimate the mix-
ing properties. The experiment is repeated N = 100 times to investigate deviations
in the decay of the dependence.

Estimating mixing: To avoid numerical artifacts due to the initial points and
potential transients, we consider data from the end of the trajectory. Thus, we
sample at tend = 200 and at t−a for various values of a = 0.1, 1.1, 2.1, . . . , 99.1 with
respect to the continuous time index t.

Results: We depict the decay of dependence in Fig. A.2. After waiting for
a∗ = 20, the dependence in the data is not detectable anymore. Since the decay is
not necessarily monotonic, we consider significantly higher time shifts up to a = 99.1.
The dependence does not increase again, which indicates that the system is mostly
mixing in the MMD-sense. Of course, this does not prove that the Lorenz system
mixes and it remains to be shown rigorously. Nonetheless, these results are promising
and provide empirical evidence.

A.2.2 Kernel Two-sample Test

We try to distinguish between the Lorenz system given in (6.32) – (6.34) and a
slightly disturbed system where we change the parameter in (6.32) from 10 to 6.
Based on the previous mixing analysis (cf. Fig. A.2) we set the time shift a∗ = 20.
This yields approximately independent samples for both systems.

We create two trajectories of length tmax and pick n points that respect the time
shift a∗ as illustrated in Fig. 6.2. We repeat all experiments 100 times. We start
the sampling after t = 20, which gives the system enough time to converge to the
stationary distribution.

Accuracy: We use tmax = 6000 and pick n = 300 points from both system. We
achieve 95% accuracy in detecting different systems.

False positives: We consider two trajectories that were generated by the clas-
sical Lorenz system ((6.32) – (6.34). The initial points for both trajectories were
random and different. This setup yields 2.67% false positives, which is less than the
α-level of 5% that we used.

1ode45 in Matlab
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Next, we investigate what happens if we violate a∗. We choose n = 100 and
tmax = 30. Thus, we sample 100 points in the time interval t ∈ [20, 30]. This clearly
violates the estimated a∗ and indeed, we obtain 51% false positives. Essentially, this
makes the test useless when a∗ is severely violated and thus, we want to emphasize
again that it is critical to estimate a∗. Further, through an appropriate choice of a∗

we inherit all the rich theoretical properties of kernel two-sample testing.

A.3 Non-mixing System
We construct a system that does not mix in the MMD sense and is also not ex-
pected to mix. However, the system is well known to be ergodic and stationary. In
particular, we consider a dynamical system that moves on a circle with a radius of
one and steps of length π

10 . We create m = 100 randomly initialized points θ0 and
iterate them for n = 100 timesteps with the dynamics following

θk+1 = θk + π

10 , (A.6)

and

Xk+1 =
cos(θk)

sin(θk)

 (A.7)

We show the mixing properties in Fig. A.3. The dependence between data points
stays constant and does not decrease and we detect this. Thus, we correctly identify
systems that are not mixing in the MMD sense.

We have also tried different increments instead of π
10 , such as e

10 and also 1
10 ,

which all resulted in the same outcome.

A.4 Implementations
Since our method is leveraging results from standard kernel two-sample testing and
the HSIC, we directly used existing implementations without modifying them.

Kernel Two-sample Test Implementation: We used the Matlab implemen-
tation: http://www.gatsby.ucl.ac.uk/~gretton/mmd/mmd.htm and the standard
hyperparameters without any tuning. We used the significance level α = 0.05 for
all experiments.

HSIC Implementation: We used the Matlab implementation: http://people.
kyb.tuebingen.mpg.de/arthur/indep.htm with standard hyperparameters and
α = 0.05 for all experiments.

http://www.gatsby.ucl.ac.uk/~gretton/mmd/mmd.htm
http://people.kyb.tuebingen.mpg.de/arthur/indep.htm
http://people.kyb.tuebingen.mpg.de/arthur/indep.htm
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Figure A.2: Mixing properties of the Lorenz system. In the top plot with parameters
as in (6.32)–(6.34) and in the bottom, we adapted the parameter in (6.32) to 6. On the
x-axis, we depict the time shift a between consecutive samples. The y-axis shows the
dependence between data points with respect to the corresponding time shift. The initial
point is randomized, and the estimation is repeated 100 times. Depicted is the mean of
the test statistic and the 95% upper confidence bound. We also show the threshold κ of
the independence test. When the blue line is below the red line, it is not possible to infer
statistical dependence between the data points.
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Figure A.3: Mixing properties of a dynamical system that moves on a circle. The depen-
dency between data points does not decrease and stays above the threshold.
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