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Abstract

Magnetic Resonance Imaging (MRI) is a powerful modality that offers noninvasive imag-
ing of biological tissue without any harmful radiation, but is based on the spin properties
of hydrogen and other nuclei. Besides providing pure anatomical information, different
techniques have been developed that make MRI a versatile tool for imaging tissue prop-
erties such as flow, diffusion or relaxation times. As nuclei experience different shielding
of the external magnetic field dependent on their molecular environment, it is possible to
derive spectroscopic information with Magnetic Resonance (MR) as well. The appear-
ance of the spectra depends on factors such as spin-spin coupling, thus information about
molecular structure can also be inferred. This information is of great interest especially
when it comes to alterations of metabolism. Still, as all nuclei other than hydrogen have
a relatively low gyromagnetic ratio and hydrogen in molecules other than water has low
abundance in the human body, spectroscopic modalities require reduced spatiotemporal
resolution to compensate for the low intrinsic Signal to Noise Ratio (SNR). A relatively
new technique to retrieve metabolic information indirectly is Chemical Exchange Satura-
tion Transfer (CEST) MRI. With specific Radio Frequency (RF) preparation, hydrogen
protons that are not part of the bulk water pool are selectively labeled depending on their
resonance frequency shift relative to bulk water. The labeled protons will subsequently
exchange with protons in the bulk water pool and accumulate there. As the preparation
might be executed over a longer time course, the magnetization of the bulk water can
be continuously altered. The resulting signal changes in the bulk water pool are orders
of magnitude larger than the direct signal from off-resonant protons. While CEST is
advantageous compared to spectroscopic imaging in terms of SNR, it cannot provide the
same spectral resolution. Moreover it is significantly slower than pure anatomic imaging
due to repeated image acquisitions. Fast imaging is therefore crucial for applications
of CEST MRI. Additionally, the lower spectral resolution of CEST causes entangled
signal origins that require sophisticated data evaluation and design of the RF prepara-
tion schedules. While CEST MRI has high sensitivity, its specificity is low and false
conclusions regarding the signal origin hamper the application as a diagnostic tool.
In the first step of this PhD project the signal origin in model solutions that mimic
in vivo conditions is investigated in more detail. Experiments reveal that CEST MRI
not only at spectrometers but even at whole body MR scanners is more sensitive than
commonly assumed. Also, a novel background signal origin in model solutions is con-
firmed, which may help to avoid false interpretations during the transition from model
solutions to in vivo applications. In the second project, the feasibility of a fast imaging
method for CEST MRI at 3T is investigated. The optimized MR sequence provides de-
cent spatiotemporal resolution with high reproducibility for CEST MRI at clinical field
strength of 3T. To facilitate the reproducibility of CEST MRI across different sites and
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MR scanners, in the third project, an open source sequence definition standard is pro-
posed and implemented for both human and pre-clinical scanners. In the final project,
the entire acquisition and reconstruction of MRI data is formulated as a model-free,
supervised learning problem. This top-down approach autonomously optimizes both
data acquisition and evaluation on a real MR scanner. Exemplary mapping of creatine
concentration via CEST is learned without any analytical model. The proposed method
also enables investigating whether MRI can be exploited as a tool for mapping arbitrary
contrasts.
In the following sections, the main projects during the course of this PhD are briefly
summarized.
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Zusammenfassung

Magnetresonanztomographie ist ein leistungsfähiges Verfahren, das die nicht-invasive
Darstellung von biologischem Gewebe ohne schädliche Strahlung, sondern basierend auf
den Spineigenschaften von Wasserstoff und anderen Atomkernen ermöglicht. Neben dem
Zugang zu rein anatomischer Information wurden unterschiedliche Methoden entwickelt,
die MRT zu einem vielseitigen Instrument für die Darstellung von Gewebeeigenschaf-
ten wie etwa Fluss, Diffusion und Relaxationszeiten machen. Da Atomkerne abhängig
von ihrer molekularen Umgebung eine unterschiedliche Abschirmung des externen Ma-
gnetfeldes erfahren, ist es zudem möglich, spektroskopische Information durch Magne-
tresonanz zu gewinnen. Das Erscheinungsbild der Spektren hängt von Faktoren wie der
Spin-Spin Kopplung ab, weshalb auch Information über die Molekülstruktur abgeleitet
werden kann. Diese Informationen sind vor allem dann von großem Interesse, wenn es um
Veränderungen des Stoffwechsels geht. Da jedoch alle anderen Kerne als der von Wasser-
stoff ein vergleichsweise niedriges gyromagnetisches Verhältnis besitzen, und Wasserstoff
außer in Wassermolekülen im menschlichen Körper selten vorkommt, erfordern spektro-
skopische Methoden eine Reduktion der räumlichen und zeitlichen Auflösung, um das
intrinsisch niedrigere Signal-Rausch-Verhältnis (SNR) auszugleichen. Eine vergleichswei-
se neue Methode, um indirekt Informationen über den Stoffwechsel zu gewinnen, ist die
Chemical Exchange Saturation Transfer (CEST) MRT. Durch spezielle Hochfrequenz-
Präparation werden Wasserstoffprotonen, die nicht Teil des sogenannten freien Wassers
sind, abhängig von der Verschiebung ihrer Resonanzfrequenz gegenüber der des frei-
en Wassers selektiv markiert. Die so markierten Protonen tauschen anschließend mit
Protonen des freien Wassers aus und reichern sich dort an. Da die Präparation über
einen längeren Zeitraum hinweg ausgeführt werden kann, kann die Magnetisierung des
freien Wassers kontinuierlich verändert werden. Die sich daraus ergebende Veränderung
des Signals des freien Wassers ist um Größenordnungen größer als das direkt an den
nicht-resonanten Protonen gemessene Signal. Während CEST MRT in Bezug auf das
SNR im Vergleich zu spektroskopischer Bildgebung vorteilhaft ist, kann nicht dieselbe
spektrale Auflösung erreicht werden. Außerdem ist CEST, aufgrund sich wiederholender
Datenaufnahmen, signifikant langsamer als rein anatomische Bildgebung. Eine schnelle
Bildgebung ist daher für die Anwendung von CEST MRT entscheidend. Zudem führt die
geringere spektrale Auflösung von CEST zu einer Vermischung von Signalursprüngen,
was wiederum eine anspruchsvolle Datenauswertung und Gestaltung der Hochfrequenz-
Präparationen erfordert. Während die CEST MRT eine hohe Sensitivität besitzt, ist die
Spezifizität gering und falsche Rückschlüsse hinsichtlich des Signalursprungs erschweren
die Anwendung als diagnostisches Hilfsmittel.
Im ersten Schritt des Promotionsprojekts wird der Signalursprung in Modellösungen,
die in vivo Bedingungen nachahmen, genauer untersucht. Experimente zeigen, dass die
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CEST-MRT nicht nur an Spektrometern, sondern sogar an Ganzkörper-MR-Scannern
sensitiver ist, als gemeinhin angenommen. Außerdem wird ein neuartiger Ursprung des
Hintergrundsignals in Modellösungen bestätigt, was helfen kann, Fehlinterpretationen
während des Übergangs von Modellösungen hin zu in vivo Anwendungen zu vermei-
den. Im zweiten Projekt wird die Umsetzbarkeit eines schnellen Bildgebungsverfahrens
für CEST MRT bei 3T untersucht. Die optimierte MR-Sequenz bietet sowohl eine gute
räumliche als auch zeitliche Auflösung mit hoher Reproduzierbarkeit für CEST MRT bei
einer klinischen Feldstärke von 3T. Um die Reproduzierbarkeit von CEST MRT über
verschiedene Standorte und MR-Scanner hinweg zu erleichtern, wird im dritten Pro-
jekt ein open-source Standard zur Definition von Sequenzen sowohl an Human als auch
präklinischen Scannern vorgestellt und implementiert. Im letzten Projekt werden die
gesamte Datenakquisition und –rekonstruktion als ein modellfreies, überwachtes Lern-
problem formuliert. Dieser Top-down-Ansatz optimiert autonom sowohl die Datenakqui-
sition als auch die Datenauswertung an einem echten MR-Scanner. Exemplarisch wird
die Abbildung von Kreatinkonzentration mit CEST ohne irgendein analytisches Modell
gelernt. Die vorgeschlagene Methode ermöglicht es außerdem zu untersuchen, ob die
MRT als Werkzeug genutzt werden kann, um beliebige Kontraste abzubilden. In den
folgenden Kapiteln werden die wesentlichen Projekte im Rahmen dieser Doktorarbeit
kurz zusammengefasst.
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2. Introduction

In this chapter, a short introduction to the basic physics of MRI is given. It is not a gen-
eral introduction but will mainly focus on the mechanisms that are necessary to explain
the phenomena of CEST in the context of MRI. Comprehensive explanations of MR
physics can for instance be found in [1], original descriptions of the CEST phenomenon
are given in [2, 3] and reviews that focus on CEST MRI are for instance provided in
[4, 5].

2.1. Spin

Spin is a property that can be assigned to all particles of the standard model. Atoms
consist of an electron cloud and a nucleus that consists of protons (uud1) and neutrons
(udd) and therefore, for all atoms, a resulting spin S can be assigned. In an external
magnetic field (Static Magnetic Field Strength (B0)

2), different spin quantum states
result in shifted, discrete energy levels, known as Zeeman effect. For MRI, the Zeeman
effect due to the spin I of the atomic nucleus is important. The nuclear spin gives rise
to the magnetic moment

µ = γI (2.1)

for which the Hamiltonian H = µB⃗0 can be used to determine the potential energy in
the magnetic field as

Emag = γmIℏB0 (2.2)

if it is assumed that B⃗0 = B0 · e⃗z and considered that the projection of I onto e⃗z has
to be quantized with mI = −I,−I + 1, ..., I − 1, I. Here, mI is the magnetic quantum
number.
For spin-1/2 particles such as protons, the energy difference of the two possible spin
states up and down according to equation 2.2 is

∆E = γℏB0 = ℏωL (2.3)

and the Larmor Frequency (ωL)
ωL = γB0 (2.4)

can be assigned. Even though the frequency ωL associated with transitions between two
quantum states in equation 2.3 equals the Larmor frequency, it should be noted that for

1Characters u and d refer to up and down quarks.
2In this manuscript, the terms magnetic field strength and magnetic field actually refer to the magnetic
flux density and not to the H-field.
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2. Introduction

Larmor precession around e⃗z the potential energy remains constant.
The electron cloud of the atom shields the nucleus against the external magnetic field.
Because of this, the Larmor frequency differs when considering the same nucleus in
environments of different electron densities. In molecules, which consist of multiple
atoms, the same nuclei may experience different shielding at different locations within
the same molecule. This is known as chemical shielding and forms the basis for CEST
effects, for which pools3 of proton spins with same Larmor frequency are defined. Given
an arbitrarily chosen pool with Larmor frequency ωL,a, one can define a chemical shift
of another pool as

δ =
ωL,a − ωL,b

ωL,a

. (2.5)

The chemical shift is usually given in Parts Per Million (ppm).
In the above description a quantum mechanical property was described. This is not a
suitable description when it comes to MR experiments of complex systems such as the
human body. Instead, the expectation value ⟨·⟩ of µ (equation 2.1) is of interest and its
temporal evolution can be described by application of the Ehrenfest Theorem. For the
Hamiltonian H = −µB⃗ and spin operator I it writes

d⟨µ⟩
dt

∗
=

〈 [
−γIB⃗, I

] 〉
+
= γ⟨I × B⃗⟩ ++

= ⟨µ⟩ × B⃗ . (2.6)

In the above equation the first equality (∗) holds because of the Ehrenfest theorem4

when assuming ∂I/∂t = 0. The second equality (+) holds because of the general com-
mutator relation [I i, Ij] = iℏϵijkIk for any angular momentum I. In the last step (++),
it was assumed that ⟨A + B⟩ = ⟨A⟩ + ⟨B⟩ and for a constant c it holds ⟨cA⟩ = c⟨A⟩.
It can be seen from equation 2.6, that the expectation value of the magnetic moment
⟨µ⟩, caused by a spin, may be treated like a classical magnetic dipole. Therefore, in the
following the expectation value of the magnetic moment of the spin is considered to be
a classical magnetic dipole moment µ⃗.

2.1.1. Macroscopic Magnetization and Relaxation

In equation 2.6 the magnetic moment of a single spin was considered. For all MRI
applications, pools including a large number of spins are of interest. For these the so
called macroscopic magnetization M⃗ may be defined. It includes a total of N spins
within a certain volume V , such that

M⃗ =
1

V

N∑
n=1

µ⃗n . (2.7)

3Pools are defined as a group of nuclei of one type that have same spin properties. The nuclei do
not necessarily have to belong to the same molecule. In this view, nuclei of the same pool are
indiscernible.

4More generally, for any quantum mechanic operator A and Hamiltonian H it can be stated:
d⟨A⟩
dt = 1

iℏ ⟨[A,H]⟩+ ⟨∂A∂t ⟩.
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2.2. MR Image Formation

Only with slightly higher probability some of the N = N++N− spins in volume V align
parallel (N+) but not antiparallel (N−) with B⃗0. At room temperature T most of the

spins have random orientation relative to B⃗0. The small difference of N+ and N− gives
rise to the observed net magnetization, which can be shown (chapter 6.1 in [1]) to be

M0 ∝
N

V
· γ2ℏ2

4kBT
B0 (2.8)

It increases for higher B0
5, which is why high and Ultra-high Field (UHF)6 are beneficial

in terms of SNR for MRI. If during an MR experiment the macroscopic magnetization is
driven to saturation, this means the numbers N− and N+ become equal, thus resulting
in |M⃗ | = 0.
Combining equations 2.6 and 2.7 already yields a formulation for the temporal evolu-
tion of the macroscopic magnetization M⃗ . Still, in a real-world experiment interaction
between spins and of spins with their surrounding environment need to be taken into
account. The interaction results in relaxation, first described by F. Bloch with the
so-called phenomenological Bloch Equations [6]

dM⃗

dt
= γM⃗ × B⃗ +

1

T1

(M0 −Mz)e⃗z −
Mx

T2

e⃗x −
My

T2

e⃗y . (2.9)

The Longitudinal Relaxation Constant (T1) and Tranversal Relaxation Constant (T2)
are also the governing parameters for the appearance of CEST Z-spectra introduced in
section 2.3: T2 as it includes both, dephasing of the transversal magnetization due to
local inhomogeneity in B0 as well as spin-spin interactions, and T1, as for CEST the
prepared state of magnetization is investigated.

2.2. MR Image Formation

2.2.1. RF excitation, Gradients and k-space

The smallest temporally repeating unit of an MRI experiment typically starts with at
least one (Gradient Echo (GRE)) or two (Spin Echo (SE) [7]) RF excitation pulses. As-
suming the electromagnetic field is applied orthogonal (Magnetic Component of Trans-
mit Fields (B1) e.g. B1,y = B1,z = 0 and B1,x = B1) to the static magnetic field

B⃗0 = B0e⃗z, it tips the macroscopic magnetization M⃗ away from its equilibrium state
M⃗0 = M0e⃗z towards the x-y plane, as can for instance be seen from equations 2.6, 2.9.
The RF pulse may either be applied as an on-resonant (at ωRF = ωL) or with ωRF ̸= ωL

as off-resonant pulse. The resulting angle, around which M⃗ is tilted against B⃗0, is re-

5Here B0 =

√
B⃗0 · B⃗0 and M0 =

√
M⃗0 · M⃗0 with M⃗0 indicating the spin system being in thermal

equilibrium.
6Currently, a field strength of B0 > 1.5T is considered as high and B0 ≥ 7T as ultra-high field at
least for in vivo MRI of the human body.
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2. Introduction

ferred to as Flip Angle (FA). When M⃗7 is tipped fully into the x-y plane, one observes

|M⃗||| = 0 and |M⃗⊥| = M0. As M⃗ is tipped towards the x-y plane, the component M⃗⊥
may be seen as magnetic dipole that rotates with ωL around e⃗z. This causes a time-
varying magnetic flux density and induces a voltage in the nearby receiver coil. This
induced voltage is the detectable MR signal.
The induced MR signal of an object may be spatially resolved in MRI by the application
of additional magnetic fields, so-called gradients B⃗G that result in a spatially varying
z-component of the magnetic field8

Bz(r⃗, t) = B0 + r⃗ · G⃗(t) = B0 + r⃗ · ∇⃗BG
z and r⃗ = (x, y, z) (2.10)

The gradients therefore give rise to spatial and temporal changes of ωL

ω(r⃗, t) = ωL + ωG(r⃗, t) . (2.11)

When a gradient is applied during signal acquisition, this leads to a spatial frequency
encoding along the respective gradient’s axis. Given the gradient was applied for a
limited duration t, this is equivalent to a spatially varying accumulation of phase

ϕG(r⃗, t) = −
∫ t

0

dt′ωG(r⃗, t
′) . (2.12)

In the following, relaxation effects are neglected. Factors such as transmit and receive
sensitivity or other electronic gain factors can be absorbed in an effective spin density
ρ that may also include the relaxation effects [1]. With this abbreviation, assuming

perfectly homogeneous B⃗0 and after demodulation [8], the MR signal can be described
as

s(t) ∝
∫

d3rρ(r⃗)eiϕ(r⃗,t) . (2.13)

In principle, the signal as described in equation 2.13 decays governed by T2, which in a
real application would depend on r⃗ and causes blurring in the image domain, especially
for Echo Planar Imaging (EPI). Equations 2.11/2.12 and 2.13 can be combined when

defining the vector k⃗ such that

k⃗ =
γ

2π

∫ t

0

dt′G⃗(t′)
+
=

γ

2π
G⃗t . (2.14)

7Often, the macroscopic magnetization M⃗ is split into two components: M⃗∥ that is parallel to B⃗0, and

M⃗⊥ that is perpendicular to B⃗0.
8It is assumed that B⃗0 = B0e⃗z and that B0(r⃗) is constant. Also r⃗ · ∇⃗ should be read as r⃗ · ∇⃗ =
x ∂
∂x + y ∂

∂y + z ∂
∂z .
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2.2. MR Image Formation

where temporally constant gradient amplitude was assumed in the second step (+). This
finally yields

s(k⃗) ∝
∫

d3rρ(r⃗)e−i2πk⃗·r⃗ ∝ FT{ρ(r⃗)} (2.15)

From equation 2.15 it can be seen that the (effective) spin density that MRI tries to de-

pict, and the acquired signal s(k⃗) are connected by a Fourier Transform (FT). The signal

in MRI is therefore said to be acquired in k-space [9] referring to the definition of k⃗ in
equation 2.14. The signal in MRI always originates from a large number of spins within
a small spatially encoded three dimensional volume rather than from a two dimensional
pixel. Therefore, in MRI the smallest imaging unit is called a voxel. Even in a single
voxel of 1mm3, the number of 1H spins is around n ≈ 111mol

L
· 1mL ·NA ≈ 6.7 · 1022.

Besides their use for spatial encoding, gradients are also used for slice-selective excita-
tion if they are applied during an RF pulse with a certain finite frequency bandwidth
and off-resonance. For a pulse with sufficiently narrow bandwidth, only spins at certain
spatial locations will be on-resonant and therefore get excited.

2.2.2. Sampling Trajectories and Undersampling

As the MRI signal is acquired in k-space, it is necessary to design trajectories in k-space
that are both technically feasible and suitable for decent image reconstruction using the
gradients as described in section 2.2.
From equation 2.14 it can be seen that if a gradient e.g. along x-direction is switched on
during the data acquisition, one 1D projection in k-space along kx can be acquired within
the acquisition time interval tADC. This is considered one Readout (RO) or frequency
encoded line of k-space. The Analog Digital Converter (ADC) may only sample with a
limited temporal resolution tdwell that defines the number of samples nRO = tADC/tdwell.
For the Phase Encoding (PE) direction, the gradient amplitude GPE is modified prior
to the acquisition of the next RO line to subsequently sample all RO lines along this PE
direction.
In terms of k-space sampling, cartesian and non-cartesian sampling trajectories can be
distinguished. Only for cartesian sampling, the acquired signal can be reconstructed
directly by uniform Fourier Transform. Still, non-cartesian spiral sampling [9, 10] allows
for very fast acquisitions and radial sampling approaches [11, 12] are beneficial when it
comes to motion correction. For the scope of this thesis, only cartesian sampling is of
interest. In figure 2.1, very basic examples for different sampling trajectories are shown.
Recording an MR signal first of all requires an excitation RF pulse as mentioned in

section 2.2.1. In case of spoiled GRE sequences, a single RO line in k-space is acquired
following the RF pulse. Another possibility is to acquire multiple lines following a single
excitation pulse, as for example done in EPI [13]. Instead of a single echo, a series of
echos called echo train is generated and at each echo, one RO line can be acquired with
the read gradient switched on for frequency encoding while the ADC records the signal.
Even for 2D imaging, k-space is typically not entirely encoded following a single exci-
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2. Introduction

Figure 2.1.: Different 2D sampling trajectories in k-space. (A) shows multiple inde-
pendently excited 1D lines that fill k-space as for example used in spoiled
GRE sequences with RO along kx. (B) shows a simple EPI trajectory with
gradient blips along ky. (C) and (D) are examples of non-cartesian radial
and spiral trajectories. While (A) and (C) require multiple excitations, the
trajectories as shown in (B) and (D) could be acquired following a single
excitation. In all cases, the most simple version of the respective trajectory
is shown. Undersampling was assumed in all cases to increase visibility.

tation RF pulse, but segmented using intermediate excitations for the generation of a
certain number of echos. In the following, these repeated excitations are referred to as
segmentation of k-space. The echos may be realized as either pure SE or GRE or a
combination of both as first shown in [14].
For high-resolution 3D EPI, k-space cannot be fully sampled following a single excita-
tion but needs to be split into multiple segments. Also, EPI data suffer from phase
deviations between odd and even RO lines due to technical imperfections. These need
to be corrected, as otherwise strong ghosting artifacts occur [15, 16].
To reduce the acquisition duration it is possible to undersample k-space, which means
collecting less samples than required according to the Nyquist criterion, and reconstruct
it making use of multi-coil receive arrays [17]. This process of making use of mulitple
coils is termed parallel imaging. Undersampling is performed along the PE directions
and results in aliasing if the undersampled k-space is reconstructed from a single coil
purely with Fourier Transformation as shown in figure 2.2. For instance, in figure 2.1
A/B it can be seen that actually not for all points required by the Nyquist theorem
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2.2. MR Image Formation

along PE: ky, a RO line is acquired. The two major approaches for reconstruction of
such undersampled data are Sensitivity Encoding (SENSE) [18] and Generalized Au-
tocalibrating Partially Parallel Acquisitions (GRAPPA) [19]. In terms of the location
of aliasing artifacts in the image space, Controlled Aliasing in Parallel Imaging Results
in Higher Acceleration (CAIPIRINHA) [20] is beneficial, which can be applied in both
parallel multi-slice and 3D imaging with two PE directions ky and kz [21].

Figure 2.2.: Effect of different undersampling patterns on Fourier Transform of the re-
spective data. In all cases twofold undersampling was applied. First col-
umn (A,D) shows fully sampled k-space. Second column (B,E) shows
the effect of regular undersampling along kz and last column (C,F) the
effect of CAIPIRINHA with twofold undersampling and every other line
shifted by one position in k-space. First row shows exemplary sampling
pattern and second row the resulting image space data after application
of Fourier Transformation. Aliasing occurs for both regular undersampling
and CAIPIRINHA but at different locations in the image space. Simulated
(MATLAB, The Mathworks, Natick, USA) data of a Shepp–Logan phantom
[22] is shown.

For regular undersampling along either ky or kz or both directions, not all data but
only subsets are sampled as shown exemplary for twofold undersampling along kz in
figure 2.2B. If Fourier Transformation was performed on this data, aliasing along the
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undersampled kz direction occurs as shown in figure 2.2E. The same sampling pattern
in k-space can be seen as a starting point for CAIPIRINHA. In addition to the regular
undersampling pattern, every other point along ky is shifted by one position along kz
as depicted in figure 2.2C. The resulting aliasing (figure 2.2F) occurs not only along kz
but also along ky now, which is beneficial when it comes to actual multi-coil parallel
imaging. Intuitively, one may consider that comparing the presented undersampling
patterns, for CAIPIRINHA, the minimum distance to any neighboring sampled point in
k-space is larger compared to the minimum distance in case of regular undersampling
at the same undersampling factor. Therefore, k-space is covered more homogeneously.
This will result in low correlation of the acquired data and therefore can improve the
reconstruction.

2.3. Chemical Exchange Saturation Transfer

The use of Chemical Exchange Saturation Transfer (CEST) as a contrast mechanism
is relatively new in the field of MRI. It relies on the chemical exchange of protons
between the bulk water pool and additional smaller pools, which resonate at different
Larmor frequency ωL and by this can be investigated with MR [23]. First experiments
and theoretical descriptions of systems including the exchange of spins were made by
Slichter et al. [2, 3]. The exchange can be imaged spatially resolved with MRI [24], also
in biological tissue [25]. The exchanging protons are bound to groups such as hydroxyl,
amide, amine or guanidinium for example, which may have significantly different ex-
change rates (ki) ranging from a couple of Hz to several kHz [26–32]. The kinetics of
the exchange process will in general be governed by the temperature of the considered
system. Same holds true for the pH value. A schematic example of exchanging pools
is shown in figure 2.3. The exchange process is accessed by RF labeling of the smaller
pool at ∆ω ̸= 0, which due to the exchange alters the magnetization of the bulk water
pool. Subsequently, the MR image is acquired on-resonant on the bulk water pool and
by this making use of the larger pool size compared to the other pool. To acquire a full
Z-spectrum [33], multiple offsets ∆ωn=1...N are acquired, each with RF preparation and
potentially some relaxation time inbetween two consecutive offsets Msat,i and Msat,i+1.
Actually, not all CEST pools that are present in the spectrum will be equally well la-
beled. The labeling efficiency depends not only on T2 of the bulk water pool but for
instance also on the exchange rate of the CEST pool and the preparation B1 [34]. The
complete data typically consist of two or three spatial and one spectral dimension. In
contrast to Magnetic Resonance Spectroscopy (MRS), the spectral domain is defined by
the preparation offset and is therefore directly acquired and not linked to the measured
time domain data via a Fourier Transform. For intensity normalization, additional data
at one or multiple far off-resonant offsets (usually ∆ω ≥ 200 ppm; named unsaturated
M0 image) are acquired in addition to the other offsets Msat. The Z-spectrum is then
defined as voxel-wise ratio Z = Msat/M0.
Mathematically, the exchange process depicted in figure 2.3 can be described by an
extended version of the Bloch Equations [6], the so called Bloch-McConnell equations
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2.3. Chemical Exchange Saturation Transfer

Figure 2.3.: Schematic depiction of a two pool system coupled by chemical exchange.
Pool a was defined to resonate at 0 ppm while pool b is off-resonant. The
exchange rate for the exemplary R group is labeled ki (i=a,b).

[35]. This holds true for exchanging protons without spin-spin coupling and first order
reactions as for example described in chapter 2.4 of [36]. In case of two exchanging pools
a and b they may be written as:

dM⃗

dt
= A · M⃗ + C⃗ . (2.16)

In equation 2.16 the magnetization is described as

M⃗ =


Mxa

Mya

Mza

Mxb

Myb

Mzb

 (2.17)
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in the rotating frame of reference 9. The longitudinal relaxation constant T1i = 1/R1i is
contained in the temporally constant vector

C⃗ =


0
0

R1aM0a

0
0

R1bM0b

 (2.18)

The chemical exchange and relaxation are described by the block matrix [4]

A =

[
La −Ka +Kb

+Ka Lb −Kb

]
with Li =

−R2i −∆ωi 0
+∆ωi −R2i +ω1

0 −ω1 −R1i

 and Ki = 1 · ki (2.19)

The different CEST pools are coupled via the off-diagonal exchange terms in matrix A
(eq. 2.19), which are characterized by the chemical exchange rate ki. The off-resonance
∆ωi is defined with respect to ωL of pool i as ∆ωi = ωRF − ωL,i. By definition, the bulk
water pool (∆ωa) resonates at δ= 0 ppm, thus, for other pools one may write (see defini-
tion of δ in eq. 2.5) ∆ωb = ωRF −ωL,b = ∆ωa − δbωL,a. The RF amplitude is B1 = ω1/γ
and for the definition of matrix L in eq. 2.19 it was assumed that B1,y = 0. In case that
a semi-solid Magnetization Transfer (ssMT) pool (section 2.3.2) is added, one usually
considers only the Mz component in eq. 2.19 for that pool as due to extremely short T2

values the transversal components will decay rapidly.
For data evaluation, different approaches to solve (e.g. [37, 38]) or numerically simu-
late this set of coupled, first order, linear differential equations are applied. Numerical
simulations are time-consuming, especially in case of multiple exchanging pools. Still,
they are applied when trying fit CEST data for quantification of exchange parameters.
In addition to fitting the entire Bloch-McConnell equations, other, more simple metrics
exist for quantifying CEST MRI data. Probably the most famous and most discussed is
Magnetization Transfer Ratio Asymmetry (MTRasym) [25]. In this case, the Z-spectrum
is evaluated such that

MTRasym =
Msat (−∆ω)−Msat (+∆ω)

M0

(2.20)

One problem of this metric is that if, for example, not only CEST (often ∆ω > 0) but
also exchange-relayed NOE (rNOE) effects (often ∆ω < 0, section 2.3.1) are present,
these will be entangled and may no longer be separated in MTRasym. Also, if the data
were acquired with some inhomogeneity of B0, this will result in a Z-spectrum shifted
along ∆ω. A biased MTRasym analysis that may look like a CEST effect close to the
bulk water resonance is the result. Besides full Bloch-McConnell on the one hand and

9Instead of considering the laboratory frame of reference, the evolution of the magnetization is de-
scribed in a coordinate system that rotates around e⃗z at the frequency of the applied RF field.
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2.3. Chemical Exchange Saturation Transfer

MTRasym on the other hand, CEST data may be described by a sum of Lorentzian line
shapes [39]. In contrast to MTRasym, fitting either the full Bloch-McConnell equations or
Lorentzian line shapes allows to perform inverse Z-spectrum analysis, which is beneficial
when quantitatively isolating CEST effects [40]. Still, as this is not the main focus of
this thesis, the reader may refer to the literature for details on the different metrics and
analyses.

2.3.1. Nuclear Overhauser Effect

Besides direct transfer of magnetization between pools a and b due to chemical exchange
of saturated protons, indirect transfer of magnetization because of dipolar coupling
(homo-nuclear Nuclear Overhauser Effect (NOE) [41]) may be observed between the
pools [42]. Two different mechanism are distinguished: intra- and intermolecular NOE.
Intermolecular NOE requires that two different molecules are located next to each other
for a sufficiently long time, the so-called correlation time. Intra-molecular NOE occurs
for example between different atoms within a larger molecule. The intra-molecular NOE
saturation transfer subsequently may result in a saturation transfer to another pool by
chemical exchange. This may be termed rNOE, as both chemical exchange and NOE
are involved in the magnetization transfer 10. CEST effects originating from NOE may
be observed on both sides of the Z-spectrum, that is downfield (∆ω > 0) and upfield
(∆ω < 0) as shown in [44]. A more detailed description of NOE in CEST MRI can for
instance be found in [45, 46].

2.3.2. Semi-Solid Magnetization Transfer

The ssMT effect describes the magnetization transfer between free bulk water molecules
and a semi-solid matrix such as cell membranes or surface proteins [47] and may be
exploited as a contrast mechanism in MRI [48]. Within the semi-solid matrix, magneti-
zation can be efficiently transferred by intra-molecular NOE as described in section 2.3.1.
The transfer to the bulk water pool can occur through inter-molecular NOE, as the wa-
ter molecules are temporarily bound to the semi-solid matrix providing sufficiently long
correlation time for dipolar-coupling. It is also possible that magnetization is transferred
by chemical exchange from the semi-solid matrix to the bulk water pool. Quantitative
investigations of ssMT have first been performed in agar gels [49]. Still, it is challenging
to determine if the magnetization transfer to the bulk water is predominately due to
molecular binding and inter-molecuar NOE [50] or because of chemical exchange as may
be expected from the pH dependence of the observed effects [51]. More recent studies
conclude that there might be a CEST contribution to the ssMT, but the dominant mag-
netization transfer to bulk water is expected to originate from intermolecular NOE that
is enabled by molecular binding of water molecules to the semi-solid matrix [43, 52].

10According to [43], exchange relayed NOE describes the process of intra-molecular NOE following a
previous chemical exchange magnetization transfer. In contrast, it is termed NOE-relayed exchange
(rNOE) if chemical exchange saturation transfer to the bulk water follows a previous intra-molecular
NOE within another molecule.
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2.3.3. Basic RF Prepared Sequence

CEST effects can be accessed by extending an MRI readout sequence by an RF prepara-
tion module. While in pre-clinical imaging continuous wave RF preparation is applied,
for human in vivo examinations stricter Specific Absorption Rate (SAR) limitations typ-
ically only allow a pulsed RF preparation. In this case, the RF preparation is split into
several pulses of duration tp with inter-pulse delay td and the duty cycle (DC) is defined
as

DC :=
tp

tp + td
(2.21)

Several different approaches for the actual image acquisition are possible. Two main
techniques can be distinguished: either the entire k-space is acquired following a single
RF preparation at off-resonance ∆ωi or only certain segments of the k-space are acquired.

Figure 2.4.: Exemplary Z-spectrum (bottom) averaged over the voxels within a WM
ROI in the human brain at B0=9.4T. Sampled RF preparation offsets are
indicated by dots. For the red colored offsets, the corresponding CEST MRI
images (normalized to Msat/M0) are shown above the Z-spectrum.

Typically, for each RF preparation offset the resulting k-space gets reconstructed
independently. Still, in principle it is possible to perform a joint k-∆ω reconstruction of
the data [53]. The resulting data are then normalized voxel-wise to Z = Msat/M0 in the
image space and yield an entire Z-spectrum (see figure 2.4) for each voxel as described in
section 2.3. It should be noticed that for an increased spectral resolution in CEST MRI,
it is necessary to increase the number of acquired images. This automatically requires
repeated RF preparation and optional recovery periods and significantly increases the
acquisition duration.
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3. Research Objectives

The goal of this thesis is to investigate and optimize CEST MRI at clinical field strength
(3T) and UHF (9.4T). In a first step, a closer look on the creation of well defined model
solutions is taken. These model solutions are commonly used in the initial step of param-
eter optimization for CEST RF preparation schedules. It is shown that adding agar for
setting realistic T2 values might not be entirely unproblematic, as a bias is introduced.
Investigations on the concomitant CEST effects are performed at different temperatures
and field strengths to provide a detailed characterization of the bias. With these find-
ings, it becomes possible to create precisely described model solutions that may be used
as a baseline during the optimization of CEST experiments.
The second project targets the imaging of CEST effects at clinical field strength. Of-
ten CEST MRI acquisitions are infeasibly time consuming, or, at a trade-off against
scan time, the data suffer from poor spatial resolution. It is shown that with optimized
3D EPI, both imaging speed and resolution requirements could be met with high re-
producibility. The proposed readout is short enough to acquire the entire 3D k-space
following a certain RF preparation and thus enables various different applications. This
hopefully facilitates the application of CEST MRI further.
Not only are the observable CEST effects manifold especially in vivo, but also the num-
ber of adjustable parameters for a CEST examination is comparatively large. The third
project therefore targets the widespread limitation of low reproducibility in CEST MRI.
An open source CEST parameter definition standard was proposed, tested and agreed
on within larger parts of the CEST community. Implementations for both human and
pre-clinical applications are presented, which in parts make use of the findings of the
first two projects.
Instead of describing the observed CEST effects numerically or analytically, the idea of
model-free mapping to a target contrast is considered in the final project. It is shown
that without any knowledge on the underlying mechanism, it is possible to formulate
MRI as a target-driven, model-free problem that can be solved by an optimization that
is based on automatized data acquisition on a real MR scanner. For proof-of-concept,
it is assumed that CEST MRI was unknown. Absolute concentration of the metabolite
creatine, which can be linked to the MR signal via CEST, is provided as a target and is
mapped directly from MR data acquired in model solutions. Beyond this, the framework
could be applied for optimizing CEST sequences, correcting for technical imperfections
in MRI or maybe even to test hypotheses as to whether certain target contrasts could
be accessed by MRI.
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4. Publication Summaries

This thesis is written as an integrated accumulation of publications. In this chapter, the
publications on which the thesis is based are briefly summarized. All figures shown here
are reprinted with permission of John Wiley & Sons Ltd (Publication 1) and Wiley
Periodicals LLC (Publication 2, 3), respectively. Publication 4 was submitted to the
Journal of Magnetic Resonance (Elsevier Inc.) and permission to reprint figures was
obtained, too.
The first publication describes the formation of a CEST signal in detail, while the second
publication focuses on the data acquisition. The main topic of Publication 3 is the
problem of missing reproducibility in CEST MRI. In Publication 4, CEST is exploited
as a known effect to be discovered by and to benchmark the proposed model-free problem
formulation of MRI experiments.

4.1. Publication 1

The appearance of a Z-spectrum is governed by the T1 and T2 values of the bulk water
pool as mentioned in section 2.1.1. Typically, before applying CEST MRI in vivo, it
is necessary to optimize the RF preparation in model solutions to get insights into the
expected effect size. Also, in model solutions it is possible to investigate and modify
the effect of external factors such as pH and temperature more easily than in vivo. To
provide realistic model solutions, the adjustment of T1 and T2 is required before any
CEST effect may be considered at all. Due to its convenient handling and availability,
agar is often used to shorten T2 in model solutions. It has also been shown that besides
altering T2, agar introduces magnetization transfer effects [40, 49, 54]. Still, as the op-
timal RF preparation for an isolated CEST effect of a specific compound is of interest
in the model solutions, it was previously assumed that agar does not provide any CEST
contribution itself. When the presented publication was prepared, only [55] mentioned
a potential interference of agar during the optimization of their CEST experiment. On
the other hand Chávez and Halle [56] had already reported an exchange rate of 4 kHz
at pH = 3.5 for agar before.
The goal of this study is to investigate the potential effect of agar on the optimiza-
tion process of CEST RF preparation in model solutions in more detail. It is shown
exemplarily for the CEST effect of L-glutamic acid that agar biases the optimization
process significantly. The results of this study should hopefully provide a useful basis
for interpreting the results of optimization processes for specific CEST effects in future
applications.
To characterize the hypothesized CEST effect of agar, samples are created not only at
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different concentrations of agar but also at different pH values. If there is a CEST effect
this should depend on pH due to altered exchange rates at different pH levels. Addi-
tionally, the temperature of the samples is modified for different experiments to globally
modify the exchange rates as discussed in section 2.1, 2.2 and 3.1 of the publication.

Figure 4.1.: (A), Z-spectra for different model solutions: orange – 2% (w/w) of agar,
1 X PBS, 0.1mmol/L gadoteric acid at pH = 7.01; yellow – 1 X PBS at
pH = 7.00; purple – deionized water at pH = 6.90; blue – deionized water,
0.1mmol/L gadoteric acid at pH = 6.90; black – deionized water, hydrochlo-
ric acid, sodium hydroxide at pH = 6.91. Measured at B0 = 9.4T and T =
25 ◦C using 5 x 100ms matched adiabatic spinlock pulses (see [57]) with DC
= 50%, B+

1 = 4 µT. (B), the associated MTRasym of the same samples. In
(C) and (D), the same samples were measured under the same conditions
upon presaturation using a train of Gaussian-shaped pulses. All data were
measured with three interleaved M0 scans and corrected both for ∆B0 (r, t)
and ∆B1 (r).
Modified and reprinted with permission of John Wiley & Sons Ltd.

To ensure that indeed agar causes the hypothesized CEST effect, control samples are
included as well. In figure 4.1 it can be seen that for the applied MTRasym metric only
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in the agar sample an effect is detectable. This is the first proof that with CEST MRI
a significant effect due to agar can be observed. With further experiments, the CEST
effect is characterized in more detail. In figures 3 and 4 of the publication, the observed
effect at both different pH values and concentrations is shown for two different tempera-
tures each. For the applied RF preparation as described in section 2.2 of the publication,
MTRasym values between 1 and 4% are observed.
It is demonstrated that the effect due to agar can bias the optimization of RF parame-
ters for CEST preparation by considering a model solution that contained an additional
10mmol/L of L-glutamic acid. The RF preparation is adjusted such that it comes close
to what was reported in [29] but stays withing the SAR restrictions of the 9.4T human
MR scanner. The continuous wave power equivalent therefore has to be reduced from
3.6 µT to 2.8 µT. Still, as shown in the Supporting Information of the publication, the
observed effect due to agar is expected to even increase for higher preparation RF powers.
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Figure 4.2.: (A), Z-spectra with (orange line) 10mmol/L L-glutamic acid or without
(yellow line). Both samples contained 2% (w/w) agar and 1 X PBS as
buffer and 0.1mmol/L gadoteric acid. pH was adjusted to pH = 7.00 in
both samples. The blue line shows a sample with the same amount of L-
glutamic and gadoteric acid but without agar (pH = 6.99). T2 for this
sample was (525± 131)ms and decreased to (60± 15)ms after adding agar.
(B), the corresponding MTRasym values of the samples and in addition the
isolated MTRasym of L-glutamic acid with the agar contribution removed
by subtraction (green line). Presaturation: 5 x 100ms matched adiabatic
spinlock pulses (see [57]) at DC = 50%, B+

1 = 4 µT. Measurement at 9.4T
at 25 ◦C with full postprocessing as described in the Experimental section
of the publication.
Modified and reprinted with permission of John Wiley & Sons Ltd.

It can be seen in figure 4.2 that the observed effect of L-glutamic acid decreases by
≈ 50% when correcting for the effect of agar. This means that if one would have trans-
ferred the applied RF preparation to in vivo, one could have falsely expected a CEST
effect twice as large as it would actually be correct at the given pH and concentration
of L-glutamic acid. In this case, the origin of potentially observed CEST effects in vivo
could have been incorrectly assigned to L-glutamic acid, but may now be correctly in-
terpreted considering the presented findings regarding the expected effect size.
To partly compensate for the bias due to agar, it is shown that agar might be replaced
by pure agarose. It is shown in figure 6 of the publication that within the considered
ranges of concentration, temperature and pH values, the CEST effect of pure agarose
is significantly smaller compared to agar. The data acquired at different temperatures
and pH values also allow conclusions on the exchange reaction itself. In section 3.1 of
the publication it is discussed why the exchange reaction is likely to be base-catalyzed.
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This information might be of interest when setting up other CEST experiments. In
some cases, the data of a pH and concentration matched control sample can be used to
correct the acquired data for the CEST effect of agar. This is shown in the Supporting
Information of Publication 1.
The final conclusion of this project is that especially for high power RF preparation,
agar can no longer be considered a neutral baseline for parameter optimization. Instead,
pure agarose can be used for model solutions and control samples should be considered
for quantitative data evaluation.
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S. Mueller Study design, prepared the model solutions, performed the mea-
surements and simulations and evaluated the data. Most of the
manuscript was written by him.
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ation. Parts of the manuscript were written by him.
all authors Proofreading of the manuscript.
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4.2. Publication 2

As mentioned in section 2.3, the acquisition of multiple MR images with different off-
resonant RF preparations results in an inherently long acquisition time of CEST MRI.
One approach to tackle this issue is to reduce the number of frequency offsets as for
example shown in [58–60]. Still, this is a target-driven approach, which means reduc-
tion of scan time is only possible given that knowledge on a specific target contrast is
provided. If the number of frequency offsets must not be reduced as the full spectral
information is required or a specific target is not known, a snapshot approach [61] is
appropriate. For this method, a fast MR image readout with large volume coverage is
beneficial. The goal of this project is to optimize a segmented 3D EPI readout [62] for
fast and reproducible CEST MRI of the whole brain at 3T.
For the aforementioned snapshot approach, the readout needs to be fast compared to T1

relaxation, therefore, for whole brain coverage, undersampling is required. If the read-
out duration is too long compared to T1, the RF induced magnetization preparation will
decay. When a sufficiently short readout duration is not possible, steady-state CEST
segmented readouts [63] might be feasible. Still, in these cases, the RF preparation is
not very flexible. In contrast, with the snapshot approach, more flexible preparation,
e.g. a different number of preparation pulses for different offsets is possible. This is
beneficial when it comes to CEST fingerprinting [64] for instance.
In the presented work, both the optimized 3D EPI readout and a 3D spoiled GRE read-
out with sequence parameters as described in section 2.2 of the publication are applied.
In a first step it is shown that EPI provides significantly higher temporal Signal to Noise
Ratio (tSNR) than achieved by the GRE readout11. With the desired matrix sizes, single
shot EPI becomes infeasible. The optimized readout of 1201 k-space lines is therefore
performed in a segmented fashion with 45 binomial-11 excitation pulses. At a readout
bandwidth of 1930Hz/pixel this yields a maximum echo train length of 24.3ms.

11Both readouts use gradient echos, still in the following GRE refers to the spoiled GRE readout only
but not to the EPI readout.

23



4. Publication Summaries

Figure 4.3.: (A) tSNR of EPI for different spatial resolutions. (B) tSNR maps of EPI for
different FAs at (1.8mm)3 nominal isotropic resolution. Higher FAs provide
higher average tSNR but at the cost of increased spatial heterogeneity (see
also (C)), with very low tSNR in the center and lower regions of the brain.
Additionally, a single image of the time series is shown for both FAs. (C)
Closer look at FAs around 15 degrees with mean and SD in different axial
slices. (D) Comparison to the GRE readout at (2.34mm)3. EPI at 1.8mm
isotropic resolution outperforms the 2.34mm GRE in terms of tSNR. In
the cerebellum, the tSNR is around 80. FA, flip angle; GRE, gradient echo;
tSNR, temporal SNR.
Reprinted with permission of Wiley Periodicals LLC

The duration of the optimized readout is reduced by application of non-blipped
CAIPIRINHA = 1× 6shift=2 [20]. Still, the images are not visibly biased by any under-
sampling artifacts as shown in figure 4.3 (B) or figure 7 in the paper. For optimizing
tSNR, the matrix size, undersampling factor and FA are taken into account.
In addition to tSNR, the influence of B1 is investigated. It is found that even at 3T, a
correction for spatial inhomogeneity of B1 including data acquisition at three different,
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nominal B1 values is necessary as discussed in section 3.2 of the publication.
To retrospectively increase the SNR before fitting, the CEST data are denoised by ap-
plying Principal Component Analysis (PCA) to the data as proposed by [65].
Besides the acquisition of CEST data, their evaluation may be of similar importance.
In the presented study, fitting of multiple Lorentzian lines is performed as for instance
demonstrated in [66] previously. While the volume coverage of other approaches was
limited to a certain area within in the brain, the optimized readout provides whole brain
coverage with homogeneous CEST contrast maps across the entire brain. Exemplary
contrast maps are shown in figure 4.4.

Figure 4.4.: CEST contrast (Lorentzian amplitude) of 1.8mm isotropic EPI readout.
Postprocessing included motion, ∆B0 and ∆B1 correction, and PCA de-
noising prior to B1 correction. Maps show amplitudes derived from 4-pool
Lorentzian fits: upper row is APT; middle is rNOE; and lower row is
ssMT. Contrasts are homogeneous within a certain tissue type across the
whole volume. Spatial resolution is high enough to, for example, recognize
structures like caudate nucleus within the basal ganglia and at the same
time distinguish GM and WM sections in the cerebellum. APT, amide pro-
ton transfer; GM, gray matter; PCA, principal component analysis; rNOE,
relayed nuclear Overhauser enhancement; ssMT, semisolid magnetization
transfer; WM, white matter.
Reprinted with permission of Wiley Periodicals LLC
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Finally, the intra- and inter-subject reproducibility is considered. It is found that with
the proposed data acquisition and postprocessing a significant (P< 0.005, Welch’s t-test)
contrast between GM and WM is achieved. More importantly, the largest Coefficient
Of Variation (c.o.v.) is below 9% in case of two of the data sets for determining intra-
subject reproducibility. For inter-subject reproducibility, the largest c.o.v. is below 4%.
An overview over c.o.v. of the different CEST contrasts is shown in figure 4.5.

Figure 4.5.: Comparison of fitted CEST contrasts in GM and WM of healthy subjects.
Within same session and volunteer (A) and across different sessions (B).
Across n = 3 sessions and volunteers (C); variations in fitted CEST con-
trasts calculated as (SD/mean over tissue type) are comparable within the
same volunteer and across volunteers. Fitted CEST contrasts are stable
with coefficient of variation (SD/mean) less than 9%. APT, amide proton
transfer; GM, gray matter; rNOE, relayed nuclear Overhauser enhancement;
ssMT, semisolid magnetization transfer; WM, white matter.
Reprinted with permission of Wiley Periodicals LLC

In the presented publication it is shown that the optimized 3D EPI readout allows for
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fast and reproducible CEST MRI at 3T with whole brain coverage. While in general the
spectral resolution of CEST benefits from higher field strength, at lower field of 3T, the
increased T2 values are beneficial for EPI readouts that rely on longer echo trains as for
instance spoiled GRE readouts. Compared to the spoiled GRE readout, the number of
excitation pulses could be reduced from 487 to 45, maintaining 6% of the initially pre-
pared magnetization at the end of the readout. For the spoiled GRE approach at lower
resolution of (2.34mm)3, only 0.55% are left as discussed in section 4 of the publication.
Maintaining the prepared magnetization is crucial for getting CEST contrast and shows
that EPI may be a suitable choice for CEST MRI at 3T. The readout duration could
be reduced to 1.2 s at a nominal isotropic resolution of (1.8mm)3. Including the applied
RF preparation (described in section 1 of the publication), this allows the acquisition
of one RF prepared image within 12 s, yielding a total duration of the examination at
3 different B1 levels of around 15min. In combination with the large volume coverage,
this should hopefully bring CEST MRI closer to clinical applications.
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The CEST effect that can be accessed with MRI strongly depends on the applied RF
preparation. As discussed in section 2.3, the labeling efficiency of a CEST-active proton
pool depends both on the exchange rate and the RF amplitude. Also, the spillover dilu-
tion is affected by the applied RF power [67]. This shows that the RF preparation is one
of the key features for CEST MRI and needs to be precisely defined. Unfortunately, in
many cases it is not possible to reproduce preparation schemes based on the information
provided by the publications themselves. One example is the phase of consecutive RF
pulses in pulsed-CEST applications, which is rarely stated in any publication but has a
significant effect on the acquired data as discussed below.
Why might sharing information on the parameters of CEST MRI sequences be impor-
tant? Currently, there are two branches in the evolution of CEST MRI: on the one hand
basic research is still going on, on the other hand studies with larger cohorts across dif-
ferent sites are emerging. In both cases sequence parameters need to be shared across
sites and vendors. Especially in basic research a second issue may occur: often the very
first optimization steps are performed in numeric simulations but at some later point
the designed RF preparation module needs to be transferred to a real scanner. This is
not straightforward, as either an entire new MR sequence needs to be implemented or
one has to rely on the flexibility of existing implementations. As a result, discrepancies
between measurements and simulation may origin from translation errors rather than
actually being based on differences between real-world and simulated data.
To increase reproducibility, a common, comprehensive sequence definition standard
needs to be defined. The Pulseq project [68] offers an open-source standard for defining
entire MR sequences and is proposed in the presented publication for sharing informa-
tion on CEST RF preparation modules. Pulseq files may also be used independently of
the vendor on different MR scanners given a suitable interpreter sequence is installed
on the scanner. With the proposed open-source Bloch-McConnell simulations it also
becomes possible to directly simulate the RF preparation modules based on the Pulseq
files.
As mentioned, subtle modifications of the RF preparation module may alter the acquired
data significantly. One example is shown in figure 4.6 for a pulsed CEST experiment. In
one case the phase of the previously applied RF pulse (n-1) was taken into account when
setting the phase for the nth pulse, whereas in the second case the phase of each pulse
was set to zero. In subplot 4.6E the effect on the resulting bulk water magnetization
(Z-spectrum) can be seen.
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A) B)

C) D)

E)

Figure 4.6.: Single magnetization vector trajectory during the CEST preparation period
at 3.5 ppm with phase accumulation transfer during the saturation pulses
(A, B) and without (C, D). The 8 different colors indicate the trajectory
during the 8 different pulses. Due to the phase difference between magne-
tization vector and RF pulse in C and D, large oscillations can occur. (E)
Z-spectra of a single magnetization vector for the sequences shown in A,B
(blue) and C,D (red). Depending on the frequency offset ∆ω, the artifacts
are more or less severe, since the accumulated phase and therefore the phase
difference between magnetization vector and RF pulse is dependent on the
frequency offset and the duration of the pulse.
Figure was adapted. Reprinted with permission of Wiley Periodicals LLC.
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Another parameter that is obviously of importance for the RF preparation is the B1

amplitude. Still, as discussed in section 2.1 of the publication, there are several com-
monly used ways to define the amplitude e.g. pulse averaged power, average amplitude
over the pulse train and average quadratic amplitude over the pulse train. Again, such
differences might become problematic when sharing information on the MR sequence.
While it may in principle be possible to avoid errors that originate from unclear defi-
nitions, there are deviations that are hard to avoid when comparing measurement and
simulation. Typically, MR sequence source code is only partly written in a human read-
able way. In contrast, the proposed Pulseq files describe the MR experiment with as
little as 8 parameters for each discrete time point. As can be seen in figure 4.7, the
possible parameters for each time step are: an index, a delay, an RF event, an X, Y or Z
gradient event, an ADC event and the extension table entry. This representation of the
MR sequence parameters is close to a classical sequence diagram and might therefore
be more easy to read. Different pulse shapes can be defined including information on
both phase and amplitude for each custom shaped pulse within the file itself. The file
therefore contains all information that is necessary to define and perform the experiment
at the MR scanner. The files do not have to be compiled or processed but can directly
be run using the interpreter sequence at the scanner. To make the proposed standard
available for different vendors, a side project along with this publication was realized:
an interpreter that reads both Pulseq files and Bruker source code and compiles it into
a hybrid sequence [69].
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#block 36 37 38 39 40

41 42
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Figure 4.7.: Schematic sketch of the Pulseq-CEST hybrid sequence playing out
the preparation period of protocol APTw 3T 002 (see: https://pulseq-
cest.github.io/). (A), Format of the pulseq-file with channels for time delay,
RF pulse, gradient, ADC, and trigger events. The numbers link to entries
in a lookup table, where the actual event parameters are defined. Note that
the RF pulses have the same amplitude and frequency offset, but a different
ID due to different phase offsets. (B), Example gradient-echo readout se-
quence. (C), Proposed combination of Pulseq events and the readout block
using Pulseq as a sequence-building block (SBB). The RF events appear at
blocks number 36, 38, and 40, spoiler gradients at block number 41, and
delay events at blocks number 37 and 39. All Pulseq-CEST RF events are
spatially nonselective. Blue crosses on the RF phase plots mark the RF
phase at the moment of time when the peak RF magnitude is reached. For
simplicity, GY and GZ gradient axes are not shown here. At every ADC
event in the pulseq-file (block 42), the gradient-echo readout is played out.
Modified and reprinted with permission of Wiley Periodicals LLC.
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As mentioned previously, another challenge during the optimization or design of a
sequence may be the comparison between measured and simulated data. This may not
only be of interest for optimization but also for quantitative data evaluation. If an un-
expected deviation between the assumed and actually executed RF preparation occurs,
it may be impossible to correctly describe the observed data or false conclusions may be
drawn based on fitting an analytical model to the data. Therefore, it is important to
have both measurement and simulation in best possible agreement. With the provided

A) B)

C) D)

Figure 4.8.: (A) The MTRasym(∆ω = 2ppm) in slice 6. (B) Simulated and measured
Z-spectra for ROI 1, 2 and 3, respectively. Error bars in the measured Z-
spectra show the SD of Z-spectra across voxels. (C) Difference between the
measured and simulated Z-spectra for each ROI. (D) The MTRasym curves
of simulated and measured Z-spectra for the three ROIs.
Reprinted with permission of Wiley Periodicals LLC.

open-source Bloch-McConnell simulation (https://pulse q-cest.github.io/) it is possible
to directly simulate the exact same Pulseq files that were also executed at the MR
scanner. By this it is made sure that the RF preparation is exactly the same for both
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measurement and simulation and can therefore no longer be the source of any deviations.
In figure 4.8 simulated and measured data of model solutions are shown. Both are in
very good agreement as can be seen by the noise-like residuals shown in subplot 4.8C.
Besides facilitating sequence development and assuring realistic simulations, the pro-
posed sequence definition standard can easily be shared across sites without having to
worry about any license issues, as the Pulseq files are open-source. In the presented
publication CEST MRI examinations were performed at three different sites. In figure
5 of the publication the resulting CEST contrasts in three different healthy subjects
are shown. Due to the proposed sequence standard it was possible to examine all of
them with the exact same protocol. To facilitate this, the original Pulseq interpreter
was modified such that it can be used as a sequence building block for Siemens (Siemens
Healthineers, Erlangen, Germany). This allows combining the Pulseq interpreter with
existing readouts without requiring extensive manual sequence programming. In prin-
ciple, it would also be possible to define both CEST RF preparation module and the
readout in Pulseq files. Still, in many cases sophisticated, optimized readouts have al-
ready been developed and may be used by adding Pulseq as a sequence building block.
Admittedly, at the moment the sequence building block is only available for Siemens MR
scanners. Still, a workaround for Bruker is presented [69] and transfer to GE devices is
also possible [68]. For other providers such as Canon, United Imaging or Philips there
is not yet an interpreter sequence available.
With the framework presented in this publication a complete solution for CEST MRI is
presented. The Pulseq files for defining sequences allow sharing information in a stan-
dardized way. This should facilitate the transfer from development to clinical application
and increase reproducibility. As all code is open-source, a widespread application of the
framework should be possible with nearly no limitations across vendors and sites.
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MRI sequence development is usually performed in a trial-and-error manner based on
the knowledge on the underlying physics. In a first step, an analytical model is derived
to describe the effects that are of interest. Next, based on this model the parameters
of the MR experiment are adapted such that for instance an increased T2 weighting is
expected. This obviously requires time consuming manual modifications of sequence
parameters. Also, models that describe the measurement process in detail often become
large in the number of potentially unknown parameters. One example of such a manual
optimization process could be the design of the RF preparation module for CEST MRI
of a specific metabolite. This requires knowledge on the chemical properties such as
exchange rate, the properties of the bulk water pool such as T1 and T2, estimates on
effects such as ssMT and so on. For fast, simulation based optimization, in principle it
is possible to describe such a system by the Bloch-McConnell equations. Still, in most
cases the exact properties (e.g. exchange rate, T1, T2, CEST pool size) that would fully
describe the system are unknown. Most likely one would need to have an educated guess
for the parameters based on the known properties and the Bloch-McConnell equations.
Anyways, finally one needs to go to the MR scanner, modify some of the parameters
and see if a correlation of the MR signal with for instance the concentration of the
metabolite in a model solution can be derived. This also requires to chose and apply a
metric to quantify and extract the CEST effect based on the acquired data for each set
of parameters as mentioned in section 2.3.
From a more general point of view, there might be cases in which it is not even known
if a target may be accessed by MRI at all. It could be hypothesized that certain prop-
erties are somehow represented in the MR data but the underlying physics is unknown.
One example where correlations in data are used to map to targets without necessarily
knowing why this mapping should work is radiomics [70]. The question that arises is if it
can be possible to automatize MR sequence design as a model-free optimization process.
With this, it should be possible to perform the aforementioned hypothesis testing and
instead of being limited to predefined acquisitions, one could also adapt the acquisition
process and generate data that suits the respective hypothesis. Recently, Loktyushin
et al. [71] demonstrated that optimization of MRI sequences may be performed auto-
matically based on simulations. Still, this requires suitable models and is not based on
measured data. In this work, MRI sequence design is formulated as a model free, target
driven, supervised learning process based on measured data. The proposed framework
should be applicable to any target of interest or for hypothesis testing, and as a proof-
of-concept the discovery of CEST effects in MRI data was demonstrated as described
below.
Instead of manual sequence parameter adjustments an automatized workflow is used.
Pulseq [68] files are sent to the scanner by the optimizer (CMA-ES optimizer [72] imple-
mented in [73]; called nevergrad in the following) for each iteration of the optimization
process. Subsequently, the acquired data flow back, are evaluated by the optimizer and
the parameterized sequence gets updated. The human interaction reduces to providing
the target contrast and a suitably parameterized MRI sequence. The workflow for up-
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dating the sequence is depicted in figure 4.9.

Figure 4.9.: Diagram of the proposed sequence development workflow termed MR-
double-zero. The optimizer sends the parametrized sequence (seq) to a real
MR scanner. The acquired data (in the depicted case for R = 2 images:
Img1 and Img2) get flattened into the matrix MRI(seq) which is used to
determine coefficients β from linear regression of MRI(seq) to the target.
With these coefficients, the prediction (P) is determined and the deviation
from the target (T) flows back to the optimizer. Our pipeline implements
this using so called .seq-files of the Pulseq standard [68] that are played out
at the scanner by a Pulseq interpreter sequence.
Reprinted with permission of Elsevier Inc.

The automatized learning process can be formulated model-free, as it directly acquires
data instead of simulating it. There are two separate optimization processes involved:
the outer optimizer updates the sequence parameters (nervergrad), whereas in the in-
ner optimization the acquired data get mapped to the desired target contrast by linear
regression. Let T denote the provided target contrast and MRI(seq) denote the ac-
quired data for the parameter set seq after reshaping it into a 2D matrix as described
in section 2.3 of the publication. The predicted target contrast (P ) is then determined
by applying the coefficients β̂ = MRI(ŝeq)+ · T such that P = MRI(ŝeq) · β̂ with

X+ denoting the Moore-Penrose pseudo-inverse X+ =
(
XTX

)−1
XT . The data matrix

MRI(seq) may in principle be created from any MR data. In this work, it consists
of n = 1, 2, .., N (Nmax = 3) RF prepared 2D images (Img1, ..., ImgN) and optionally
higher order polynomials Imgkn (with k = 1, 2, ...) of the data. It should be noted that
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even when including the higher order polynomials the inner optimization remains linear
in the coefficients β.
For a first proof-of-concept, it is assumed that T1 and T2 relaxation are known but it is
claimed that CEST itself is not known. Given this knowledge is provided, the idea of
preparing a certain state of the magnetization with RF pulses before the MRI readout is
no too far away. Consequently, the optimizer starts from an RF prepared sequence that
is parameterized such that n = 1, ..., N images are acquired, each with npn Gaussian-
shaped RF pulses with amplitude B1,n and off-resonance ∆ωn. As it is assumed T1

and T2 relaxation are known, the model solutions are prepared in a way that they are
indiscernible with respect to T1 and T2 as shown in figure 4.10. The target contrast is
the absolute concentration of creatine contained in the seven different vials. By this, a
target that is not obviously linked to MR data is provided, assuming CEST effects are
yet to be discovered by the proposed framework.

Figure 4.10.: Quantitative T1 and T2 maps of samples with different creatine concentra-
tion cCr. Upper row: different concentrations cannot be distinguished
directly from T1 (A) and/or T2 (B) maps. Center row: evaluation of
(C) T1 and (D) T2 values in different ROIs of data shown in (A)/(B) with
mean (MV) and standard deviation (SD) for each vial. Bottom row:
True creatine concentrations (E) cannot be predicted by linear regression
f ([T1, T2, 1]) = cCr from T1 and T2 (F).
Reprinted with permission of Elsevier Inc.
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Before considering the creatine concentration mapping the framework is tested on 1D
problems. That is, out of the three parameters Θ = (B1,1,∆ω1, np1) two are fixed, one
at a time is varied and the Root Mean Squared Error (RMSE) between MRI(Θ) and

MRI(Θ̂) is determined within a certain parameter range as described in section 3 of

the publication. Here MRI(Θ̂) denotes the data acquired with varying parameter Θ̂
given the other two parameters are fixed. It is proved that minima exist for all three
1D problems, which, if it was not observed, would have been a contraindication for the
optimization process.
One exemplary optimization targeting the creatine concentration and therefore resulting
in a novel RF preparation module is shown in figure 4.11. In this case N = 2 images
and the pixel-wise images squared and cubed are used to extend the design matrix
(MRI(seq)) as described in section 2.3 of the publication. As discussed in section 3 of
the publication, this extension of the design matrix yields 50% smaller Mean Squared
Error (MSE) loss. In contrast, extending the design matrix to N = 3 images but keeping
the polynomial order at k = 1 does not reduce the MSE loss this much as shown in the
Supplementary Material of the publication. This is potentially due to the additional
non-linearity introduced for k > 1 as especially the mapping for different samples to the
same concentration of 0mmol/L improved.
Figure 4.11 proves that the goal of formulating MRI as a target driven, model-free learn-
ing process was reached by exploiting supposedly unknown CEST effects for mapping
creatine concentration with MRI applied as an imaging tool. The whole framework is
based on real and therefore noisy data used to solve a high-dimensional and potentially
ill-conditioned problem. Still, it is shown that within 300 iterations on a smaller subset
of maximum nine free parameters the optimizer could come up with a sufficiently good
mapping to the given target contrast. A grid search with as little as 100 evaluations
per parameter would have required an infeasible 105 measurements. This is infeasible as
the estimated MRI scan time would be on the order of around three weeks. Also, when
increasing the number of free parameters from six to nine, the MSE loss still decreased
significantly within the limit of 300 iterations. This may be a hint that even more com-
plicatedly parameterized MRI sequences could be feasible with the proposed framework.
The inner optimization as described in section 2.3 of the publication was chosen to be
a linear mapping for this proof-of-concept but could be extended as well to allow more
complex mapping. Still, this may come at the cost of increased time demand and the
potential risk of overfitting. The discovered RF preparation module and weighting pa-
rameters in the inner optimization closely reassemble a MTRasym in case of a design
matrix that contains only N = 2 images and no higher order polynomials (k = 1). This
shows that in principle also known contrast mechanisms can be found. In case of N = 2
but k = 3, another set of parameters Θ is chosen. This may have the following reason:
a stochastic optimizer is used and there might be several almost equivalent near-global
minima. Consequently, the optimizer may also come up with solutions that are not
trivial to find, in addition to solutions that are already expected from classical model
driven approaches.
In the field of MRI there has already been an approach to jointly optimize acquisition
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and reconstruction of data shown in [74] and [75]. Still, optimization of k-space sampling
was performed retrospectively on previously fully sampled data, whereas the proposed
approach allows full optimization of the data acquisition without being bound to exist-
ing data. This should hopefully facilitate to discover whole new strategies for MRI data
acquisition. In the field of robotics real-world optimization is known to be beneficial, as
it includes all potential sources of imperfections and noise that may be hard to model
(e.g. see [76–78]). Modeling all imperfections may be tough in MRI as well. Therefore,
the proposed framework could also be used not to discover completely new strategies,
but for example to map directly to a fat-suppressed image instead of having to apply
time and SAR intensive fat saturation pulses explicitly.
As a first proof-of-concept it was claimed that CEST effects are unknown. The pro-
posed framework was then successfully applied to map creatine concentration with MRI
by exploiting chemical exchange without providing any model or explanation of the un-
derlying physics. The ultimate goal of the proposed approach would be to map to any
target contrast of interest or at least test hypotheses as to whether or not the informa-
tion contained in the target may be accessed by MRI. One potential future application
for the proposed framework might be to approach radiomics [70] in a top-down manner:
instead of evaluating existing data one could try to design the data in a way that the
desired target information may directly be mapped. Still, the current approach with
an MRI scan time of around three hours may not be suitable for in vivo applications.
One way to tackle this issue might be to think about a hybrid approach that is partly
based on simulations. In principle, it is also possible to split the learning process across
multiple sessions. Still, similar as for traditional sequence design, it is always possible
to stick to model solutions first and then directly translate to in vivo application. In
any case, with the proposed framework, MRI sequence design is reduced to providing
a suitable target while the entire optimization process is performed fully automatically
and does not require any modeling of the underlying physics. The hope is that this
facilitates and accelerates the process of sequence optimization and may at best even
come up with completely novel sequence designs.
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Figure 4.11.: Exemplary optimization process of a MR-double-zero sequence with 300
iterations (MRI scan time 3 h). The final parameter set here was seq =
(0.75µT, 2.06 ppm, 33 | 1.10µT, 4.03 ppm, 139). The design matrix con-
tains in addition to the images (Img1, Img2) also the pixel-wise images
squared (Img21, Img22) and cubed (Img31, Img32). The first row shows: (A)
the target, (B) the experimentally derived and (C) the difference in con-
centrations. Second row shows the two images (C,D) with respective se-
quence parameters given below. In (F) the predicted and target data are
scattered for ROIs within the different vials. The test vial (50mmol/L)
that was not included in the optimization process is highlighted in (C) and
(F). Subplots (G-J) were retrospectively sorted by loss instead of the actual
time course of acquisition. (G) shows the loss for the sequence parameters
shown in (H)-(J) . Subscripts 1 and 2 refer to the image number for all
parameters.
Adapted. Reprinted with permission of Elsevier Inc.
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In Publication 1 (section 4.1), the bias due to the CEST effect of agar in model solutions
for MRI parameter optimization was analyzed in detail. The dependence on temperature
and pH values was considered, too, as these factors govern CEST effects in general. The
introduced bias becomes larger for high power RF preparation modules and must in
this case be taken into account. It was shown that it is possible to correct the bias
in post-processing, given a sample for reference was provided, as demonstrated in the
Supporting Information of [79]. Unfortunately, no other compound was found that
could replace agar but does not introduce an undesired CEST effect. At least it could
be shown that the use of pure agarose reduces the bias. It was challenging to observe
the CEST effect of agar at lower field strength of 3T. Still, this does not mean that
it is of minor importance there but rather emphasizes that CEST MRI benefits from
UHF. The detailed description of the CEST effect both shows that it is necessary to
precisely consider all possible contributions to CEST MRI and it hopefully provides
useful information for future parameter optimizations.
The acquisition of CEST MRI data in vivo at a clinically relevant field strength of 3T
was considered in Publication 2 (section 4.2). A readout that is fast compared to T1

relaxation is crucial for CEST MRI and makes 3D EPI a suitable sequence as shown.
As the CEST effects are on the order of some percent of the bulk water signal, a high
tSNR is required. The optimized 3D EPI could provide a tSNR of at least 75 over the
entire brain. By this, it outperformed established readouts that are currently applied
for CEST MRI. A decent nominal resolution of (1.8mm)3 with whole brain coverage
should further facilitate clinical application. The scan time could be reduced to 4.3 s per
RF preparation frequency offset. This can be considered fast compared to state of the
art approaches as for instance described in [66, 80–82]. Still, in most cases the readout
itself has a similar or even shorter duration than the RF preparation. For Magnetic
Resonance Spectroscopic Imaging (MRSI) there are approaches to jointly reconstruct
data from two undersampled data sets [83, 84] and by this reduce the overall scan time.
This is based on the idea of trading spatial against spectral resolution at fixed scan
time and vice versa. For CEST MRI, this approach is not beneficial as even data with
low spatial resolution requires the acquisition of multiple images each with lengthy RF
preparation. If a certain target contrast is aimed for, there are chances to adapt the
acquisition of CEST data accordingly as shown by Glang et al. [60]. With this, it is
possible to reduce the number of RF prepared images and significantly decrease the
scan time. Still, this comes at the loss of generality, as the target contrast is predefined.
Other approaches apply compressed sensing [85] to reduce the acquisition duration, e.g.
[53]. This reduces artifacts in the image reconstruction as it exploits redundancies of
the acquired data across off-resonances, but cannot reduce the number of RF prepared
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images. In principle, it is possible to acquire several RF preparation offsets at the same
time but at different spatial locations by applying an additional gradient during the RF
preparation. This technique can be applied for both CEST MRS [86] and MRI [87] but
it requires that the imaged object is homogeneous along the direction of the gradient
applied during the RF preparation. This limits the application to model solutions. One
possibility to actually reduce the scan time of CEST MRI could be to generalize the
approach presented by Glang et al. [60]. Instead of mapping from a fully sampled
Z-spectrum to a contrast, one could map from the undersampled (ZUS) to the fully
sampled Z-spectra (Zfull)

13. This could for instance be done by simple linear regression
such that Ztraining

full = A · β. The coefficients β may in the simplest case be determined

by the Moore-Penrose pseudo inverse A+ = (AT · A)−1 · AT as β = A+ · Ztraining
full .
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Figure 5.1.: (A) coefficients β for mapping the design matrix A =

[Ztraining
US , (Ztraining

US )2, (Ztraining
US )3] containing undersampled spectral

data to fully sampled data (Zfull) by linear regression Ztraining
full = A · β.

Undersampling of off-resonances: for around half of the off-resonances every
second was removed. Additionally, in some intervals, multiple neighboring
off-resonance were either kept or removed. (B) original fully sampled and
reconstructed data. For comparison, not only linear regression but also
linear interpolation is shown. The vertical dashed lines in (B) indicate the
interval in which no data was provided in the undersampled data set. Data
acquired at B0 = 9.4T in egg white.

13Here, Zfull/US denotes a single fully sampled or undersampled Z-spectrum, whereas Ztraining
full/US is an

entire set of different spectra to learn the coefficients β from. This might for instance be a 2D matrix
that contains spectra of all voxels of a measurement.
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The design matrix A contains the undersampled data (ZUS) and optionally nonlin-
ear transformations of these, such as Z2

US or 1/ZUS. Instead of simply interpolating
the spectral dimension of the undersampled data, the coefficients β can be learned on
training data. By this, prior knowledge is included when β are applied to new data
Znew

full = Anew · β. One example for such a learned set of coefficients β is shown in figure
5.1. Interpolation along the offset direction is possible for any undersampled data. Still,
in contrast to the linear regression based approach, no prior knowledge is included. This
causes severe deviations in the reconstructed data as can be seen in figure 5.1B. On
the other hand, any approach based on supervised learning is based on prior knowledge
and therefore requires the acquisition of training data. Even more sophisticated ways
for mapping from undersampled to fully sampled data such as neural networks might
be considered. Zaiss et al. [88] demonstrated that CEST data acquired at lower field
strength of 3T can be mapped to 9.4T CEST contrast maps (Lorentzian amplitudes)
with neural networks applied purely in the spectral but not in the spatial domain. In
addition, for this approach different field strength, RF preparation modules (number of
pulses, B1 amplitude, offset frequencies) and bulk water T1 and T2 relaxation constants
had to be implicitly interpolated by the neural network. Regarding this, increasing only
the spectral resolution at same field strength and RF preparation should be possible.
With this, one may significantly reduce the acquisition duration of CEST MRI compared
to only decreasing the duration of the readout, but having the full Z-spectrum available.
The readout proposed in Publication 2 (section 4.2) is flexible enough to acquire data
with modified offset list and high reproducibility was proved as well, which would be
important for comparing fully sampled and reconstructed spectra. Also, whole brain
coverage is beneficial as this results in a larger set of voxels for the learning process.
On the other hand, the question arises if the full Z-spectrum is of interest at all. In
many cases, it is potentially sufficient to directly map to fitted CEST contrasts. For
proof-of-principle, potentially model solutions are used and scan time is not a limiting
factor. Still, it could be of interest to think about including prior knowledge, as there are
quite some similarities that are observed in CEST data across different measurements.
Approaches based on learning processes require that training and test data are acquired
with the same acquisition parameters. This requirement would be a perfect applica-
tion for the framework proposed in Publication 3 (section 4.3). As CEST MRI depends
strongly on the RF preparation module, it was proposed to define these preparations
in Pulseq files. This sequence definition standard is open-source and does not depend
on the vendor of the MR hardware used to acquire data. In the presented publication
a hybrid MRI sequence for Siemens scanners was described that is based either on the
readout presented in Publication 2 or an established spoiled GRE sequence [61, 66]. The
interpreter for the Pulseq files was modified and used as a sequence building block within
the existing readouts. This allows combining the sophisticated readouts including their
full flexibility of k-space sampling with the CEST RF preparation modules precisely
defined in Pulseq. This overcomes the limitation of native Pulseq, which does not allow
modifications of sequence parameters directly on the MR scanner. Given such a hybrid
sequence is available, researchers may simply read Pulseq files provided by other research
groups or define the Pulseq files themselves. In the publication, data were exemplarily
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acquired both for three different preparation modules in the same subject and with the
same preparation module but in three different subjects at three different sites. The
data acquired in three different subjects were evaluated with a CEST MR fingerprinting
approach. In this case, data for the learning process had to be simulated. For this
purpose, open-source Bloch-McConnell simulations are provided alongside the publica-
tion. They are implemented such that the same Pulseq files can be executed both at the
scanner and in the simulations. While the potential of the proposed sequence definition
standard was described in detail, one bottleneck of the entire workflow is the Pulseq
interpreter sequence on the MR scanner itself. For Siemens and GE, such interpreter
sequences were already presented [68]. For Bruker systems, a very basic implementation
solely for CEST MRI was presented in the context of this publication as well [69]. For
other vendors such as e.g. Philips, United Imaging or Canon, such interpreter or hybrid
sequences are not yet available.
Besides the aforementioned limitations, Pulseq provides a great framework especially
for sequence development, where usually the vendor provided framework requires time
consuming programming in C++ and often does not offer full flexibility but is based on
compiled libraries. The work presented in Publication 4 (section 4.4) therefore makes use
of Pulseq files for sending updated sequence designs to the MR scanner automatically,
too. This would not be possible within the vendor provided framework as the updated
sequence would have to be compiled offline of the MR system and be installed on the
scanner manually. For the proof-of-concept a hybrid approach similar to Publication 3
was chosen such that the readout itself remained untouched but only the RF prepara-
tion was modified. Still, both readout and RF preparation were entirely defined within a
single Pulseq file in this case. The proposed framework formulates MRI sequence design
as a model-free and fully automatized supervised learning process, which in contrast to
other approaches works on real-world data instead of simulations. On the other hand,
this requires suitably created model solutions. At this point, knowledge and experience
from Publication 1 (section 4.1) was exploited when setting up the experiment. While
in the first step it was only pretended that CEST effects were unknown, for future ap-
plications of the proposed framework it may indeed not be necessary anymore to have
any knowledge on the underlying physics. A potential issue may be the number of free
parameters required to describe any arbitrary MRI sequence. In the publication up to
nine free parameters were used to parameterize the RF preparation module only. If for
instance a FA array needs to be parameterized for an entire 3D GRE readout, this may
soon approach orders of magnitude higher number of free parameters. Even though it
was discussed in section 4.1 of the publication that increasing the number of free param-
eters from six to nine did not cause significantly different behavior of the MSE loss, this
needs to be verified for much larger numbers of free parameters as well. For potential in
vivo applications it may also be necessary to split the learning process across different
MR examinations to reduce the scan time. In the presented study, linear regression was
used to map to the target contrast but in principle other approaches would be possible
as well. For example in figure 5.2, the proposed framework was modified such that the
inner optimization - in contrast to the description in section 2.3 of the publication -
was set up as multinomial logistic regression, which is a simple multi-class classification
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Figure 5.2.: Modified learning process for the real-world scanner optimization similar
to what is proposed in Publication 4. Data are again resulting from an
parametrized RF-prepared sequence with 2D spoiled GRE image readout.
In contrast to the settings in Publication 4 an individual class label for each
sample vial with different creatine concentration was provided as target.
In (A) the summed residuals are shown. (B) shows the relative number
of correctly predicted categories and in (C) a confusion chart for the last
iteration is shown. Data was sorted by loss and not temporally as acquired
at the scanner. Multinomial logistic regression was performed in MATLAB
(The Mathworks, Natick, USA) for this figure but was executed in Python
[89, 90] during the actual learning process.
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algorithm [91]. For that, instead of creatine concentration values, the target was set to
be voxel-wise class labels, where each sample vial containing one concentration level was
defined as one class. The loss is depicted sorted in descending order in figure 5.2A. The
resulting predictions for each iteration are shown in figure 5.2B and a confusion chart
for the iteration with lowest loss is shown in figure 5.2C. Multinomial linear regression
does not require the targets to be sorted by for instance an unknown chemical exchange
rate when mapping data. This may be beneficial if only classification is required, but
obviously comes at the drawback that no interpolation or generalization to unknown la-
bels is possible. Multinomial logistic regression is discussed at this point as it shows that
for the inner optimization different mapping approaches up to neural networks might be
applied.
During the course of thesis it was shown in another project that neural networks can
map from classically acquired Z-spectra to absolute pH values in realistic model solu-
tions made from pig brain [92]. Still, for in vivo applications, no ground truth pH maps
are available as targets for the training. In principle, MRSI could provide absolute pH
values [93] but the modality only provides significantly lower spatial resolution than
CEST MRI, thus, no voxel-wise training would be possible. It is possible to apply the
network that was only trained on model solutions directly to in vivo data, as shown in
figure 5.3. Still, these results should be seen critically and may be misleading. The pre-
dicted pH values seem to be in a realistic range compared to values derived from MRSI
(e.g. [94]). On the other hand, if the same neural network was trained with different
random initializations, the predicted pH values based on the in vivo data differed, as
shown in figure 5.3. This is a first hint that the mapping from the input data to pH
values is not very reliable. The fact that the predicted pH values are not too unrealistic
is potentially due to the range of pH values that the network was trained on. While the
neural network was successfully applied in model solutions to predict absolute pH values
[92], neither the training nor even the application to in vivo data are straightforward.
The results derived at this point may rather be considered as an example for a drawback
in the application of neural networks: some prediction is always returned but it may be
difficult to tell if this is trustworthy. For data acquisition both in model solutions and in
vivo, a low power RF preparation was applied [95], but in principle, the data acquisition
was not specifically designed for the aim of mapping to absolute pH values.
At this point the approach presented in Publication 4 could be applied to experimentally
figure out where most information on pH sensitivity can be encoded in the Z-spectra of
these particular samples.
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Figure 5.3.: pH values predicted by a neural network [92] based on CEST MRI data
acquired at 9.4T in a healthy subject. The network was trained only on
samples made from pig brain homogenate for which the pH value could be
determined exactly with a pH sensitive electrode (inoLab pH 720, WTW,
Weilheim, Germany). Subplots (A-C) show the average prediction of four
neural networks with different initializations during training. (D-F) show
three of the four predictions which are averaged in (A-C).

As discussed in Publication 4, the presented work was a very first proof-of-concept
study that provides no immediate benefits for MRI sequence design or application. On
the other hand, at least it was shown for the first time that MRI sequence design does
not necessarily have to be performed manually but could be fully automatized. With
this, parameter optimization for existing sequences could potentially be facilitated and
accelerated, too, for instance in projects such as the above mentioned pH mapping where
the underlying system cannot be fully described.
To sum it up, we have started with a comprehensive description and analysis of model
solutions for CEST MRI parameter optimization at different field strengths. This may
hopefully be valuable information for the work of others as well. In the second pub-
lication, the benefits of an optimized, fast and stable readout at clinical relevant field
strength was presented. On the other hand, to some extent it became clear once more
that solely reducing the number of RF preparation offsets can effectively reduce the scan
time for CEST examinations. Still, the readout meanwhile was successfully applied not
only for CEST but also for other applications such as functional Magnetic Resonance
Imaging (fMRI) at 9.4T and the experience that was gained while working on the read-
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out for CEST was for sure helpful here as well. Insights gained in both the first and
second publication also made their way into the third publication, where suitable model
solutions and the optimized 3D EPI were used. In this work, an open source sequence
definition standard for RF preparation based on Pulseq is presented. The proposed
framework should facilitate reproducibility and proved to be handy when sharing pre-
cise information with other MR research sites already. Also in the final project Pulseq
files turned out to be an elegant interface for communicating with the MR scanner dur-
ing the automatized sequence design process. Admittedly, there is no immediate benefit
for MRI from the presented proof-of-concept. As usual, all the results presented in here
may have allowed considering further questions and gaining knowledge and experience
rather than finally solving existing issues.
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Chemical exchange saturation transfer (CEST) MRI is currently set to become part of

clinical routine as it enables indirect detection of low concentrated molecules and

proteins. Recently, intermediate to fast exchanging functional groups of glucose and

its derivatives, glutamate and dextran, have gained attention as promising CEST con-

trast agents. To increase the specificity of CEST MRI for certain functional groups,

the presaturation module is commonly optimized. At an early stage, this is performed

in well-defined model solutions, in which, for instance, the relaxation times are

adjusted to mimic in vivo conditions. This often involves agar, assuming the sub-

stance would not yield significant CEST effects by itself, which the current study

proves to be an invalid assumption. Model solutions at different pH values and con-

centrations of agar were investigated at different temperatures at a 9.4 T human

whole body MR scanner. High power presaturation of around 4 μT, optimal for inves-

tigating intermediate to fast exchanging groups, was applied. Postprocessing included

spatiotemporal corrections for B0 and spatial corrections for B1
+. CEST effects of up

to 3 % of the bulk water signal were observed. From pH, concentration and tempera-

ture dependency, it was concluded that the observed behavior reflects a CEST effect

of agar. It was also shown how to remove this undesirable contribution from CEST

MRI data. It was concluded that if agar is involved in the CEST MRI parameter optimi-

zation process, its contribution to the observed effects has to be taken into account.

CEST agent concentration must be sufficiently high to be able to neglect the contri-

bution of agar, or a control sample at matched pH is necessary for correction. Experi-

ments on pure agarose showed reduced CEST effects compared with agar but did

not provide a neutral baseline either.
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1 | INTRODUCTION

Chemical exchange saturation transfer (CEST) MRI enables noninvasive imaging of molecules and proteins at millimolar concentration in vivo.

CEST effects occur after repeatedly applying off-resonant presaturation at the frequency offset of a proton pool that is in exchange with the

bulk water protons.1,2 The resulting alteration of the bulk water signal through magnetization transfer can be detected by subsequent water

proton MR image acquisition. In vivo, many different CEST active groups are apparent (e.g., see3–8). To increase the specificity for a certain

CEST active proton pool, the presaturation module can be optimized. This is due to the fact that the CEST labeling efficiency depends on

both the exchange rate of specific CEST pools and presaturation power.9,10 Recently glucose,11 its derivatives,12,13 glucosamine,14 dextran15

and glutamate5, have gained attention as promising CEST MRI contrast agents. All of these five contrast agents have fairly high exchange

rates of the order of a few kilohertz. This study will exemplarily investigate L-glutamic acid. Since the transfer of magnetization is governed

by the exchange rates between the bulk water and the CEST pools, the CEST MRI signal is also sensitive to external parameters such as

pH16 or temperature. Moreover, as CEST effects are measured indirectly via the bulk water signal, longitudinal and transversal relaxation time

(T1, T2) of the water pool also affect the CEST signal directly.17–22 Therefore, when in vivo optimization is not possible, it is necessary to per-

form the optimization of presaturation parameters in precisely defined model solutions that closely mimic in vivo conditions. At least T1, T2,

pH, temperature and semisolid magnetization transfer have to be adjusted to ensure the optimized parameters transfer to in vivo application.

To control the temperature of the sample is a rather technical task. The pH value may be adjusted using suitable base and acid combinations

along with a buffer such as phosphate buffered saline (PBS). T1 can be modified using paramagnetic MRI contrast agents. For modifications

of T2, agar made its way into CEST MRI parameter optimization and is frequently used in model solutions. Besides altering T2, agar also

introduces relaxation due to magnetization transfer effects.21,23,24 Adjustment of T2 is of major importance for the optimization process, since

T2 directly influences spillover effects,19 which will finally be reflected in the presaturation module optimized for a specific CEST pool. All

substances used to adjust the external parameters of the model solutions share one prerequisite: they should not introduce significant,

specific CEST effects themselves. For agar this was implicitly—in some cases even explicitly—assumed to be generally fulfilled. To date, only

Li et al. have explicitly mentioned a significant proton exchange-related contribution of agar to the CEST MRI signal, but they did not provide

any further discussion on this issue.25 Besides that study, an exchange rate of 4 kHz in agarose samples at an acid pH of 3.5 was reported

by Chávez and Halle26 when characterizing the exchange-mediated orientational randomization (EMOR) 27 model on MR spectrometers. In

the current study, the contribution of agar to the observed CEST MRI signal was investigated in detail. This was carried out at a 9.4 T human

whole body MR system at in vivo-like pH, T1 and T2 values using an established gradient echo-based CEST MRI sequence28 as it is also

applied in vivo. With this setup it was shown that agar does not provide a neutral baseline for CEST MRI parameter optimization prior to

translating the latter to in vivo. It was exemplarily demonstrated that optimizing the presaturation of CEST MRI for the CEST effect of

L-glutamic acid was significantly biased by agar and provided misleading optimization results. So although agar was successfully used in model

solutions for CEST MRI in the past, its CEST effect has to be taken into account again when faster exchanging agents are studied. Especially

at a higher field, these have become increasingly important over the last few years. The detailed characterization of the observed CEST

effects of agar help to interpret and correct the results of L-glutamic acid obtained in agar gels.

2 | EXPERIMENTAL

2.1 | Preparation of model solutions

Model solutions were prepared using agar (Agar-Agar, Kobe I, powdered, for microbiology, art. no. 5210.1, Carl Roth, Germany) that was

dissolved in 1X PBS (prepared according to29 but containing only KCl, Na2HPO4, KH2PO4 and 140 mmol/L NaCl). After boiling, the pH value

was adjusted while the mixture cooled down to �44�C under constant stirring. To minimize dilution, hydrochloric acid (HCl) and sodium

hydroxide solution (NaOH) were both applied at 1 mol/L concentration (Sigma-Aldrich Laborchemikalien, Germany, and Fisher Scientific, UK).

The pH value was monitored along with temperature using a pH electrode with an integrated temperature sensor (inoLab pH 720, WTW,

Germany). To set T1 to in vivo-like values, 0.105 mmol/L gadoteric acid (gadoterate meglumine [dotarem 500 mmol/L], Guerbet, Germany)

was added. If the model solution contained 10 mmol/L L-glutamic acid (Fluka Chemie, Switzerland), the latter was added at a temperature

below 44�C to avoid damaging the molecule. Afterwards, the mixture was cooled further and solidified on an orbital shaker (Titramax

100, Heidolph Instruments, Germany) or was centrifuged for around 4 seconds at 3490 rpm (Multifuge 1 S-R, Heraeus, Germany) to remove

residual air bubbles.

In addition, model solutions were made from pure agarose (Agarose NEEO ultra-quality, art. no. 2267.2, Carl Roth, Germany) in the same

manner as described for agar. Agarose is a polysaccharide and together with agaropectin forms agar. These samples also contained 0.105 mmol/L

gadoteric acid to reduceT1 values.
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2.2 | CEST MRI parameters

Measurements were performed at a 9.4 T ultra-high field, human whole body MR scanner (Magnetom 9.4 T, Siemens Healthineers, Erlangen,

Germany) using a custom-built 18/32 Tx/Rx head coil.30 To maintain stable temperatures (ΔTmax �1 K) during the measurements, a thermos

jug was used, in which the model solutions were placed on a custom-built, circular-shaped rack surrounded by water that contained

�50 mmol/L sodium chloride.

MRI was performed using a 3D gradient echo–based sequence (centric reordered, rectangular-spiral readout) realized in a snapshot man-

ner.28 The basic sequence parameters were: flip angle (FA) = 5�, TE/TR = 1.91/3.76 ms, nominal matrix size 96 x 78 x 8 (RO = AP x PE = LR

x 3D = HF; GRAPPA = 2) with FOV = 147 x 119 x 40 mm3. The presaturation module consisted of five Gaussian-shaped tp = 100 ms pulses

at a duty cycle (DC = tp/(tp + td); td: delay after single pulse) of 50% or matched adiabatic spinlock pulses31 with the same duration and

DC. The adiabatic tipping pulses swept over a bandwidth of 3 kHz and took 8 ms both for tip-up/-down and only the locking time is consid-

ered as tp. The spinlock pulses were chosen because they provide reduced direct water saturation and are beneficial in terms of specific

absorption rate (SAR) compared with Gaussian pulses. This is because the rectangular locking pulse requires a lower peak B1 compared with a

Gaussian-shaped pulse. The resulting Fourier width of both the spinlock and Gaussian-shaped pulses was 1/tp = 10 Hz (Figure S1). For the

widths of the resonances in the Z-spectrum, it is the continuous wave power equivalent which is important and not the pulse duration

(e.g., see32). The continuous wave power equivalent was found to be 20% smaller for the spinlock pulses (see the supporting information for

more details). The transmit B1 (B1
+) values stated in this study are the average B1

+ values of a single presaturation pulse, such that FA = tpB1
+γ

independent of the pulse shape. The presaturation offset list can be found in the supporting information. For both pulse types the recovery

times for un-/saturated images were 12/5 seconds. All measurements were performed for three different nominal B1
+ values to enable

interpolation-based B1
+-correction.33 Interleaved WASABI34 scans (single rectangular pulse of duration tp = 3.7 ms at B1

+ = 5 μT; recovery

times [un-/saturated]: 12/5 ms) before and after each CEST acquisition were performed to track spatiotemporal changes of the static

magnetic field. Image readout parameters for WASABI were the same as for the CEST acquisitions and data were acquired with the same 3D

gradient echo-based sequence.

2.3 | Data evaluation

Unless stated otherwise, data were normalized, including multiple unsaturated images (M0). These were acquired before the first, after half of all,

and after the last saturated image. During postprocessing the intensities of the different M0 images were interpolated (linear) to match the

acquisition times of the saturated images. This yielded an individual M0,i for each presaturation offset i. So each saturated image was normalized

to Zi = Msat,i/M0,i. Afterwards, data were corrected for spatiotemporal changes in ΔB0(r,t)
35 combining the different ΔB0(r) maps derived from the

interleaved WASABI scans. Next, data were corrected for spatial inhomogeneity in transmit B1
+(r) using averaged relative B1

+ maps derived from

WASABI scans by a two-point Z-B1 correction33 including data acquired at three different nominal B1
+. Since the observed CEST effects were

located close to the water resonance (δω < 2 ppm) and no discrete peaks could be resolved, a simple and therefore meaningful asymmetry

analysis2 was performed on the corrected Z-spectra36

MTRasym =
Msat −Δωð Þ−Msat +Δωð Þ

M0

This is justified if (a) inhomogeneity of B0 was completely corrected, (b) measurement was stable over time and (c) the Z-spectrum does not

contain multiple pools both up- and downfield of the bulk water resonance.

2.3.1 | Bloch-McConnell simulations

To determine the approximate CEST effect of agar at a clinically more popular field strength of 7 T, the Bloch-McConnell equations were simu-

lated numerically.37 To determine suitable parameters, both measurements at 3 and 9.4 T were modeled with the same CEST and ssMT pool

parameters but different longitudinal and transversal relaxation rates for the water pool. Afterwards, these values were interpolated to 7 T and

the simulations were performed again. Additionally, the data measured at 3 and 9.4 T were directly interpolated to 7 T for comparison. Detailed

model parameters can be found in the supporting information.
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3 | RESULTS

3.1 | Agar

Figure 1 shows the effect of the suggested postprocessing on Z-spectra. It was found that normalization including multiple M0 scans (yellow line)

reduced MTRasym for larger offsets compared with normalization including only a single M0 image (orange line). The effect of both spatial

ΔB0(r) and spatiotemporal ΔB0(r,t) correction (blue and purple lines) was most prominent directly around 0 ppm, where it shifted MTRasym from

negative to positive values. Comparing both methods, the spatiotemporal correction gave reduced MTRasym values (Figure 1C). The applied

ΔB1
+(r) correction (black line) did not substantially alter either the Z-spectra or MTRasym in addition to the ΔB0(r,t) correction in this

particular case.

To make sure the observed MTRasym effects were not caused by contributions of PBS, NaOH, HCl or gadoteric acid, measurements of sam-

ples that contained solely these compounds were performed (Figure 2). For these samples pH was adjusted to comparable values between 6.90

and 7.00 and the measurement was performed at 25�C. Figure 2B shows that neither PBS, NaOH, HCl nor gadoteric acid yielded a maximum

MTRasym of more than 0.4%, but 2% (w/w) agar caused an almost 10-fold larger maximum MTRasym of 3.3%. In Figure 2C,D the same samples are

shown for Gaussian-shaped instead of matched adiabatic spinlock pulses but with identical nominal B1
+ = 4 μT, tp and number of pulses. The aver-

age of absolute values of MTRasym in the range of 0.5 to 10.0 ppm over samples that contained no agar was (0.08 ± 0.02) % for Gaussian and

(0.18 ± 0.04) % for matched adiabatic spinlock pulses. For the sample that contained agar the same metric revealed 1.05% and 1.43% of average

MTRasym. In all cases, data were processed according to the suggested full postprocessing as described above and evaluated at a corrected B1
+ of

4 μT. From Figure 2A,C it can be observed that for some of the samples the Z-values do not approach Z = 1, even for offsets farther away from

F IGURE 1 A, effect of different postprocessing methods on Z-spectra of agar. B, the Z-spectra in an 0.72 ppm presaturation offset interval to
emphasize differences between the postprocessing stages. C, the resulting MTRasym for different postprocessing and the red dashed line
highlights MTRasym = 0. Key: “single M0 scan”/orange – no ΔB0 or ΔB1

+ correction and single M0 scan for normalization; “multiple M0 scans”/
yellow – no ΔB0 or ΔB1

+ correction but using three interleaved M0 scans for normalization; “correction method 1”/blue – additionally including
ΔB0(r) correction; “correction method 2”/purple – not only ΔB0(r) but spatiotemporal ΔB0(r,t) correction included; “full correction”/black –ΔB0(r,t)
and ΔB1

+(r) correction included. Data acquired at B0 = 9.4 T and T = 37�C using 5 x 100 ms matched adiabatic spinlock pulses with DC = 50%. All
samples contained 2.0% (w/w) of agar, 1 X PBS and �0.1 mmol/L gadoteric acid with adjusted pH = 7.00 at 43.5�C
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water of around ±10 ppm. This is a known relaxation effect, because some samples (the ones without gadoteric acid) had long T1 of �3.2 seconds

but the recovery times were 5.5 seconds, which prevented full relaxation in these cases. More data on this observation can be found in Figure S4.

Figure 3 shows Z-spectra of agar samples acquired at 9.4 T including the described postprocessing along with the determined MTRasym for

different temperatures (25�C in A and B and 37�C in C and D) and pH values. Twice as high maximum MTRasym was observed for lower tempera-

ture at nominal pH = 7.40 (Figure 3E). The maximum value of MTRasym constantly increased with decreasing pH at 37�C (Figure 3E). Compared

with this, MTRasym was found to be rather stable across pH at 25�C with overall higher maximal values (Figure 3E). This temperature dependency

of MTRasym at different pH values reveals more details of the underlying exchange reaction, as explained below.

First, MTRasym, as a function of the exchange rate (kex), increases with kex if kex < γB1 (correlation), but decreases with kex if kex > γB1 (antic-

orrelation).32 Second, in the majority of cases, exchange rates correlate with temperature38 (Arrhenius equation), which is also assumed here.

Additionally, in3 increasing kex was confirmed experimentally for various exchangeable groups. As decreasing MTRasym was observed with higher

temperature and therefore higher exchange rate (anticorrelation), it can be concluded that the exchange reaction was in the regime kex > γB1. The

fact that MTRasym values at 25�C were almost unaffected by pH indicates that the exchange reaction was close to the regime of maximum possi-

ble MTRasym, where kex = γB1 (B1 = 4 μT in this study).

At 37�C, MTRasym values showed highest signal for lowest pH. As MTRasym was still anticorrelated with kex, this means that the exchange

rates correlate with pH. This makes the exchange reaction base-catalyzed.

The average observed shift in offset position of maximum MTRasym (Figure 3F) was 0.1 ppm, which was around four times smaller than the

average shift introduced by altered concentrations (Figure 4F).

F IGURE 2 A, Z-spectra for different model solutions: orange – 2% (w/w) of agar, 1 X PBS, 0.1 mmol/L gadoteric acid at pH = 7.01; yellow –
1 X PBS at pH = 7.00; purple – deionized water at pH = 6.90; blue – deionized water, 0.1 mmol/L gadoteric acid at pH = 6.90; black – deionized
water, hydrochloric acid, sodium hydroxide at pH = 6.91. Measured at B0 = 9.4 T and T = 25�C using 5 x 100 ms matched adiabatic spinlock
pulses with DC = 50%, B1

+ = 4 μT. B, the associated MTRasym of the same samples. In C and D, the same samples were measured under the same
conditions upon presaturation using a train of Gaussian-shaped pulses. All data were measured with three interleaved M0 scans and corrected
both for ΔB0(r,t) and ΔB1(r)
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Z-spectra and MTRasym values for different concentrations and temperatures at constant pH are shown in Figure 4A,B, again for 25�C (A and

B) and 37�C (C and D). All the samples were measured at the same time but over two different sessions for the different temperatures. The maxi-

mum MTRasym value, in general, increased with agar concentration (Figure 4E), on average by 18%, increasing from 1.0% to 2.5% (w/w) of agar.

Whereas for low concentrations (increasing from 1.0% to 1.5% of agar) it did not change significantly (P > 0.9), it increased by �13%, increasing

from 1.5% to 2.0% (w/w) agar. The observed changes in maximum MTRasym were significant at a global α = 0.003 (Holm-Bonferroni method) for

pairwise comparison of concentrations except for the comparison of 1.0% and 1.5% (w/w). MTRasym was evaluated in single voxels at the

presaturation frequency of maximum MTRasym of the ROI-averaged Z-spectrum. The frequency offset of maximum MTRasym shifted away from

the bulk water resonance at 0 ppm for both temperatures as the agar concentration increased (Figure 4F). Shifts were 0.4 and 0.6 ppm for 25 and

37�C, respectively. More linear shift dependence on concentration was observed for higher temperatures.

The conclusions derived from maximum MTRasym could also be confirmed analyzing the area under the curve (AUC) of MTRasym within 0.5 to

4.0 ppm. This metric should be more stable against noise, though maximum MTRasym already represented a ROI average. The associtated results

are shown in Figure S10.

To determine the undesired contribution of agar to the observed CEST effect of L-glutamic acid, model solutions with matched pH values

both with and without agar were investigated. As can be seen from Figure 5, the position of maximum MTRasym value shifted 0.7 ppm away from

water when T2 was reduced from (525 ± 131) ms to more in vivo-like values of (60 ± 15) ms using agar (T2 values determined from repeated 2D

spin echo sequences with different TE). Still, the absolute maximum value was reduced by less than 2% due to adjusted T2. For the sample in

which T2 was not adjusted, two peaks can be seen in MTRasym. This is due to chemical shift averaging, as described by Cai et al.5 and can be

understood by T1ρ theory (see equation 23 in Zaiss et al.19). To isolate the contribution of agar in these data, a control sample without L-glutamic

F IGURE 3 Model solutions of agar with different pH values measured at B0 = 9.4 T and T = 25/37 �C. Upper row shows A, Z-spectra and B,
MTRasym at T = 25�C. A temperature of T = 37�C is shown in C and D. The last row shows E, the maximum observed MTRasym value and F, its
offset position. The axis limits of B and D are similar to those in Figure 4B,D for better comparability. Presaturation module: 5 x 100 ms matched
adiabatic spinlock pulses (DC = 50%). Data were acquired including three interleaved M0 scans and corrected both for ΔB0(r,t) and ΔB1(r) with
linear Z-B1 correction to B1

+ = 4 μT
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acid was created and Z-values were subtracted from the referring Z-spectrum of the sample that contained agar and L-glutamic acid. It was found

that the maximum MTRasym decreased by 50% when the contribution of agar was removed (Figure 5B, green curve). This leads to two important

conclusions. First, it was shown that (as expected from theory) T2 does significantly affect the observable CEST effect of L-glutamic acid. And sec-

ond, without taking into account the CEST effect of agar, one could have falsely concluded that the applied presaturation would yield nearly iden-

tical MTRasym independent of T2.

From the Bloch-McConnell simulations (Figures S2 and S3) it was estimated that 2.0% (w/w) of agar should result in maximum MTRasym of

the order of 2% at B0 = 7 T given a saturation with 5 x 100 ms matched adiabatic spinlock pulses at B1 = 4 μT, DC = 50%. It was found that both

simulations and straightforward interpolation of 3 and 9.4 T data yielded comparable results even although the experimentally applied saturation

differed in terms of number of pulses (n = 4 at 3 T vs. n = 5 at 9.4 T).

3.2 | Pure agarose

The agarose samples were measured with the same matched adiabatic spinlock pulses used for the agar samples: DC = 50%, tp = 100 ms, B1
+ = 4

μT. Again, all samples were measured at both 25�C and 37�C. A detailed presentation of the Z-spectra and MTRasym for different concentrations

and pH values of pure agarose is shown in Figures S5 and S6. It was found that the agarose samples yielded on average 61% /56% lower maxi-

mum MTRasym for the same concentrations measured at 25�C/37�C (Figure 6A,B) compared with agar. The maximum MTRasym observed in pure

agarose was between 0.9% and 1.4%.

F IGURE 4 Different concentrations of agar measured at B0 = 9.4 T and T = 25/37�C. Upper row shows A, Z-spectra and B, MTRasym at
T = 25�C. A temperature of T = 37�C is shown in C andD. The last row shows E, maximum observed MTRasym value and F, its offset position. The
axis limits of B and D are similar to those in Figure 3B,D for better comparability. Presaturation module: 5 x 100 ms matched adiabatic spinlock
pulses (DC = 50%). Data were acquired including three interleaved M0 scans and corrected both for ΔB0(r,t) and ΔB1

+(r) with linear Z-B1
correction to B1

+ = 4 μT
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At different pH values, the maximum MTRasym was reduced on average by 60% for T = 25�C in pure agarose compared with agar (Figure 6C).

For higher temperatures, MTRasym showed a stronger dependency on pH for agar compared with the dependency observed for agarose

(Figure 6D). MTRasym showed a slight increase of ΔMTRasym = 0.25% when going towards more alkaline pH in agarose. For agar it decreased by

ΔMTRasym = 1.26% over the same range of pH (Figure 6D).

As both agar and agarose may be used to adjust T2 in model solutions, their influence onT2 was compared (Figure S7A). It was found that at

the same pH and concentration, both compounds yielded the sameT2 values. While theT2 values did depend on the concentration, they were not

significantly different within the investigated pH range (Figure S7B). The latter remark holds true for both pure agarose and agar, each at a global

significance level of α = 0.05.

4 | DISCUSSION

The observed MTRasym did not vanish even after application of multiple corrections during postprocessing (Figure 1). This proved that there is

indeed a significant CEST contribution from agar that can be detected even with CEST MRI at a human whole body scanner. At the same time,

control experiments did not yield significant MTRasym (Figure 2B,D) for samples that did not contain agar. This assured that no contribution from

substances other than agar, which were used to adjust T1 and pH, could be detected. The employed gadoterate meglumine had five potentially

exchangeable hydroxyl groups per molecule, but still no significant MTRasym was observed. This could be attributed to the fact that the concentra-

tion necessary to decreaseT1 to in vivo-like values is very low (�0.1 mmol/L) and that exchange rates could potentially be very high. Therefore, a

possible contribution could be expected to be not significant. This would be tolerable for optimization of CEST MRI parameters. Regarding the

pulse shape, it was first shown that both Gaussian-shaped and matched adiabatic spinlock pulses yielded consistent results (Figure 2). Still, the

matched adiabatic spinlock pulses provided 45% higher maximum MTRasym, which is related to a reduced spillover contribution, which made it

easier to investigate the CEST effects of agar.

The influence of pH, concentration and temperature further supported the hypothesis that agar shows a specific, significant CEST effect

under in vivo-like conditions. The observed MTRasym increased for more acid pH values at 37�C but was more stable at 25�C (Figure 3). This is

F IGURE 5 A, Z-spectra with (orange line) 10 mmol/L L-glutamic acid or without (yellow line). Both samples contained 2% (w/w) agar and 1 X
PBS as buffer and 0.1 mmol/L gadoteric acid. pH was adjusted to pH = 7.00 in both samples. The blue line shows a sample with the same amount
of L-glutamic and gadoteric acid but without agar (pH = 6.99). T2 for this sample was (525 ± 131) ms and decreased to (60 ± 15) ms after adding
agar. B, the corresponding MTRasym values of the samples and in addition the isolated MTRasym of L-glutamic acid with the agar contribution

removed by subtraction (green line). Presaturation: 5 x 100 ms matched adiabatic spinlock pulses at DC = 50%, B1
+ = 4 μT. Measurement at 9.4 T

at 25�C with full postprocessing as described in the Experimental section
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because both temperature and pH are able to alter exchange rates and may balance with each other. For increasing agar/agarose concentrations

T2 was decreased (Figure S7A), which pronounced spillover effects. The latter is why adjusting T2 properly in model solutions is of major impor-

tance for presaturation parameter optimization. As the concentration of agar increased, the contribution of semi-solid magnetization transfer also

increased, to a factor of 2.8 (Figure S8).

It was observed that both MTRasym and the frequency offset of maximum MTRasym depended on the agar concentration (Figure 4). The shift

of maximum observed MTRasym is expected as the spectrum becomes broader for shorter T2. In particular, this interplay of both scaled CEST pool

size, and because of this the modified T2-related spillover effects for different agar concentrations, might cause problems if one is actually opti-

mizing parameters for another CEST pool. For instance, for concentrations of 1.0% and 1.5% (w/w), the maximum MTRasym value was stable but

increased by 13% for an additional 0.5% (w/w) of agar. This was most likely due to the fact that increased spillover effects at lower concentrations

still counterbalanced the effects of increased pool size. The AUC (Figure S10) at 25�C already showed a significant (P < 0.05) increase for a con-

centration of 1.5% compared with one of 1.0% (w/w). This demonstrates that it is not trivial to predict the expected behavior of the agar CEST

contribution in model solutions, especially if different presaturation schemes are to be compared. At least it could be concluded that for the pH

(6.8 to 7.4) and concentration (1.0%-2.5% w/w) ranges studied, the underlying exchange rates are base-catalyzed, which might be of interest

depending on the behavior of the other CEST pools for which parameters should actually be optimized.

The contribution of agar at lower powers (B1
+ < 1 μT) may be negligible (Figure S9). On the other hand, recently published studies that deal

with glucose or its chemical derivatives rely on high power presaturation for CEST MRI. Also, other compounds, such as glutamate5,39 need a high

presaturation power of �3 μT. In the current study, continuous wave power equivalents of 2.8 and 3.4 μT for spinlock and Gaussian-shaped

pulses were applied for a total saturation duration of 1 second. Given the SAR restrictions at 9.4 T, this was comparable with the continuous wave

saturation (B1,rms = 3.6 μT, optimal tsat = 1 second) that Cai et al.5 reported for in vivo GluCEST imaging at B0 = 7 T.

As an alternative to agar one may use pure agarose, which has also been used in previous CEST MRI studies. We found that the use of pure

agarose instead of agar can be beneficial as it showed less than half of the MTRasym observed for agar. Still, with maximum MTRasym of up to 1.4%

F IGURE 6 Comparison of data acquired in both agar and agarose at different pH values and concentrations for T = 25�C and 37�C. CEST
presaturation consisted of 5 x 100 ms matched adiabatic spinlock pulses at DC = 50%, B1

+ = 4 μT. Full Z-spectra are shown in Figures 3 and 4, S5
and S6
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for certain concentrations and pH values, it does not yet provide a fully neutral baseline for CEST parameter optimization. In terms of adjusting T2

it was found that both agar and agarose performed equally well. Therefore, pure agarose should be preferably chosen when performing parameter

optimization for CEST MRI in model solutions.

Regarding the origin of the CEST effect, hydroxyl groups may be responsible for the observed saturation transfer. These are known for rather

high exchange rates and resonate close to the bulk water (e.g., Jin et al.40), which is what was observed in the current study. Furthermore, agarose,

which makes up the main part of agar, has five exchangeable hydroxyl groups (e.g., see Gamini et al.41) that could contribute. The observed effects

in pure agarose were smaller in terms of both AUC and maximum MTRasym compared with agar. This shows that agarose by itself probably does

not provide all the exchanging sites observed in agar. Agar is derived from a natural product and also contains agaropectine. It is therefore likely

that additional exchanging sites are available. Still, the exact composition of agaropectine is unknown and the spectral resolution of CEST MRI

does not enable any further insights. Therefore, it is not possible to exactly assign a particular exchanging group to the observed effects.

It should also be emphasized that the applied postprocessing is crucial, especially when MTRasym is evaluated. For instance, even spatial

ΔB0(r) or spatiotemporal ΔB0(r,t) correction
35 yielded a 10% difference in MTRasym (Figure 1C).

This study benefited from the availability of an ultra-high field 9.4 T whole body MR scanner that is not typically used in clinical CEST MRI

studies. However, also at 3 T (Prismafit, Siemens Healthineers, Erlangen, Germany), MTRasym of up to 0.5%, most likely originating from agar, was

observed (Figure S11). Due to reduced absolute frequency separation at lower field strength, CEST pools resonating close to the bulk water are

strongly affected by spillover, making quantification challenging. From the 3 T data alone it would not have been possible to characterize the

CEST contribution of agar and agarose. Still, it was at least shown that the AUC of MTRasym differed significantly from zero (P < 0.001) in the case

of agar, but not for the control sample without agar (P > 0.5). Small effect sizes will occur for all CEST effects, but not only for agar or agarose at

lower field strength. Although it will not be obvious to see, it is even more important to be aware that there is a possible contribution from agar

and/or agarose, even at 3 T. As an estimate for the effect size at more commonly used 7 T scanners, numerical simulations of the Bloch-

McConnell equations showed that the expected effect (maximum observed MTRasym) size for an identical saturation scheme was reduced by

�30% compared with 9.4 T.

To show that neglecting the CEST effect of agar can lead to errors when optimizing CEST MRI parameters in model solutions, samples con-

taining 10 mmol/L glutamic acid were prepared exemplarily. As shown, the effect of agar contributed 50% to the observed maximum MTRasym

(Figure 5B). Considering MTRasym at 3 ppm, it was found that the observed MTRasym (3 ppm) value originated from agar by one-third and from glu-

tamic acid by two-thirds. This means that even although larger contributions from agar were found closer to water, for offsets farther away, the

contribution also remains significant. It is also shown (see the supporting information) that for the discussed setup the relaxation-compensated

MTRex and MTRasym provide the same results with regard to the relative contribution of agar. The contribution of agar to CEST MRI depended on

B1
+, pH, concentration and temperature in a nonlinear manner (Figures 3 and 4, Figure S9). To remove its contribution, a baseline sample which

contained no glutamic acid was suggested for correction. Another way to bypass the bias introduced by agar would be to find another suitable

way to modify T2 in CEST model solutions. On the other hand, there are many practical reasons which encourage the continued use of agar for

the creation of CEST MRI model solutions. Therefore, we suggest creating control samples with corresponding pH, T1 and T2 values to correct for

the bias attributable to agar in CEST MRI parameter optimization by simply subtracting the corresponding Z-values. As agarose displayed �50%

smaller CEST effects, instead of using agar, pure agarose should be chosen as the first step in model solutions.

5 | CONCLUSION

The presented findings proved that agar shows a significant CEST effect for in vivo-like pH and temperature at a human MR scanner. Therefore,

it does not a priori provide a neutral baseline for CEST MRI parameter optimization in the case of strong presaturation. CEST effects of agar

showed a complex dependency on the interplay of concentration, pH, temperature and B1
+, which made the creation of control samples

necessary. Otherwise, misleading results in presaturation parameter optimization may be derived, as well as incorrectly assigned CEST effect

strengths. It was exemplarily shown—and corrected using the control sample—that for 10 mmol/L glutamic acid, 50% of the observed MTRasym

was due to agar. It was also found that pure agarose yields 50% reduced CEST effects compared with agar and is therefore preferable when

creating model solutions.
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70



Magn Reson Med. 2020;84:2469–2483.	﻿	     |  2469wileyonlinelibrary.com/journal/mrm

Received: 25 October 2019  |  Revised: 16 March 2020  |  Accepted: 2 April 2020

DOI: 10.1002/mrm.28298  

F U L L  P A P E R

Whole brain snapshot CEST at 3T using 3D-EPI: Aiming for 
speed, volume, and homogeneity

Sebastian Mueller1   |   Rüdiger Stirnberg2   |   Suzan Akbey2  |   Philipp Ehses2  |   
Klaus Scheffler1,3   |   Tony Stöcker2,4   |   Moritz Zaiss1,5

1High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
2German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
3Department of Biomedical Magnetic Resonance, Eberhard Karls University Tuebingen, Tuebingen, Germany
4Department of Physics and Astronomy, University of Bonn, Bonn, Germany
5Department of Neuroradiology, University Hospital Erlangen, Erlangen, Germany

© 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.

Correspondence
Sebastian Mueller, Max Planck Institute 
for Biological Cybernetics, High-field 
Magnetic Resonance Center, Max-Planck-
Ring 11, 72076 Tuebingen, Germany.
Email: sebastian.mueller@tuebingen.mpg.de

Funding information
This work received support from the 
Max Planck Society, German Research 
Foundation (DFG), grant ZA 814/2-1; and 
European Union’s Horizon 2020 research 
and innovation program, grant agreement 
No. 667510

Purpose: CEST MRI enables imaging of distributions of low-concentrated me-
tabolites as well as proteins and peptides and their alterations in diseases. CEST 
examinations often suffer from low spatial resolution, long acquisition times, and 
concomitant motion artifacts. This work aims to maximize both resolution and vol-
ume coverage with a 3D-EPI snapshot CEST approach at 3T, allowing for fast and 
robust whole-brain CEST MRI.
Methods: Resolution and temporal SNR of 3D-EPI examinations with nonselective exci-
tation were optimized at a clinical 3T MR scanner in five healthy subjects using a clinical 
head/neck coil. A CEST presaturation module for low power relayed nuclear Overhauser 
enhancement and amide proton transfer contrast was applied as an example. The sug-
gested postprocessing included motion correction, dynamic B0 correction, denoising, and 
B1 correction and was compared to an established 3D-gradient echo-based sequence.
Results: CEST examinations were performed at 1.8 mm nominal isotropic resolution in 
4.3 s per presaturation offset. In contrast to slab-selective 3D or multislice approaches, the 
whole brain was covered. Repeated examinations at three different B1 values took 13 min-
utes for 58 presaturation offsets with temporal SNR around 75. The resulting CEST ef-
fects revealed significant gray and white matter contrast and were of similar quality across 
the whole brain. Coefficient of variation across three healthy subjects was below 9%.
Conclusion: The suggested protocol enables whole brain coverage at 1.8 mm iso-
tropic resolution and fast acquisition of 4.3 s per presaturation offset. For the fitted 
CEST amplitudes, high reproducibility was proven, increasing the opportunities of 
quantitative CEST investigations at 3T significantly.

K E Y W O R D S

3D CEST MRI, chemical exchange saturation transfer MRI 3T, chemical exchange saturation transfer 
MRI EPI, high resolution CEST MRI, whole-brain CEST MRI
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1  |   INTRODUCTION

CEST MRI allows indirect detection of low concentrated 
solutes. CEST uses two properties of these low concentrated 
solutes: their chemical exchange with the bulk water proton 
pool, and their chemical shift relative to water by a certain 
frequency offset δω. In contrast to purely anatomical MRI, 
a frequency selective presaturation module with RF irradia-
tion at δω precedes each image readout. Given presaturation 
at different frequencies, the resulting bulk water signals may 
be combined to a Z-spectrum,1 which contains information 
on all interacting metabolites resonating in the covered fre-
quency range. To extract all information, the Z-spectrum 
should be sampled densely, and the presaturation and readout 
block are thus repeated 10 to 100 times. The major problem 
of the combination of CEST presaturation and classic line-by-
line MRI readout is that the repeated excitations will succes-
sively destroy the prepared magnetization state. The number 
of excitations can be reduced by k-space segmentation or by a 
small matrix size (small FOV or low resolution). Recently, a 
snapshot CEST approach with centric reordered 3D-gradient 
echo (GRE) readout scheme was proposed that was optimized 
for maximized number of k-space lines being acquired fol-
lowing a single presaturation.2 Still, this GRE-based method 
was limited to 16 slices and a resolution of 1.7 × 1.7 × 5 mm3. 
When extending the volume coverage to whole brain, even 
at 3T CEST effects become sensitive to the inhomogeneity 
of B1 RF irradiation. To correct for spatial inhomogeneity 
in B1, repeated measurements at different nominal B1 values 
are needed.3 In this work, encouraged by recent findings at 
7T,4 we extended a 3D-EPI readout to allow semielliptical 
scanning along with CAIPIRINHA5 undersampling. It was 
then optimized with centric reordering and nonselective ex-
citation for whole-brain snapshot CEST MRI at 3T. This in-
creased temporal SNR  (tSNR) by 20% compared to the 7T 
protocol applied at 3T. In addition, a novel saturation scheme 
at low power B1 was applied to minimize side bands in the 
Z-spectrum. Together with the proposed postprocessing, this 
enables multipool CEST MRI with whole brain coverage and 
isotropic resolution of 1.8 mm in less than 4:30 minutes for a 
fully sampled Z-spectrum at a clinical MR system.

2  |   METHODS

2.1  |  MR examinations

All examinations were performed at a clinical whole-body 
MR system (3T Magnetom Prismafit, Siemens Healthineers, 
Germany). The vendor-provided 1Tx/64Rx-channel head/
neck coil was used for MR image acquisition on six healthy 
subjects with written informed consent and approval by the 
local ethics committee.

The CEST presaturation module was optimized for relayed 
nuclear Overhauser enhancement (rNOE) and amide proton 
transfer (APT) contrast by modifying a scheme suggested by 
Deshmane et al.6 To reduce sidebands and increase selectiv-
ity, rather long Gaussian pulses of 16 × 100 ms were applied 
in the present study at a duty cycle of 50% and B1 = 0.65 µT.  
The offset distribution can be found in the Supporting 
Information. To correct for B1 inhomogeneity, data were ac-
quired at [0.75, 1.00, 1.25] times the nominal B1 by adjusting 
the reference voltage. This covered 95% of all measured rela-
tive B1 values in vivo using the body coil as transmit coil. For 
imaging, both a 3D-GRE2 and the 3D-EPI7 sequence were in-
vestigated with nonselective excitation applied in both cases.

2.2  |  MR readout parameters

The 3D-EPI readout was accelerated using parallel acquisi-
tion with CAIPIRINHA acceleration 1 × 6 (shift = 2, 36 × 36  
reference lines) along both phase-encoding directions (PE, 
3D) and 6/8 partial Fourier along the first PE direction. 
Semielliptical k-space sampling,7 along with centric reorder-
ing of the 3D phase-encoding steps, were used. A non-blipped 
CAIPIRINHA sampling strategy for high spatiotemporal 
resolution8 was chosen for which each CAIPIRINHA offset 
was realized with a separate excitation instead of 3D gradi-
ent blips. This resulted in a maximum EPI-factor of 32 and 
45 excitations for the readout of 1201 k-space lines per 3D 
volume at a nominal matrix size of 144 × 126 × 88 (RO × 
PE × 3D: head–foot × anteroposterior × left–right). A read-
out bandwidth of 1930 Hz/pixel with TE/echo train length = 
11.0/24.3 ms lead to a total readout duration of 1.2 s for an 
isotropic nominal resolution of 1.8 mm at a FOV of 256 × 
224 × 156 mm3. The nominal excitation flip angle (FA) was 
set to 15 degrees. Nonselective binomial-11 water excitation 
was applied instead of fat saturation to minimize chemical 
shift artifacts and maximize readout efficiency.9 The acquisi-
tion duration was 4.3 s per presaturation offset, plus an ad-
ditional 12 s recovery time for the unsaturated M0 image. 
Fifty-seven offsets and one M0 image could be measured in 
4:22 min, including the CAIPIRINHA reference lines.

The 3D-GRE readout was accelerated using GRAPPA10 
3 × 2 in both phase-encoding directions. Further undersam-
pling was achieved by applying partial Fourier (6/8 along 
both phase-encoding directions) and omitting the corners of 
k-space (elliptical sampling). The number of acquired k-space 
lines for a nominal matrix size of 96 × 78 × 72 (RO × PE × 
3D: head–foot × anteroposterior × left–right) was therefore 
487, and thus only 15% above the maximum of 424 lines de-
rived according to the work of Zaiss et al2 (T1,WM = 950 ms11; 
FA = 5°; TR = 3.1 ms). The whole readout duration was  
1.7 s. These optimized settings of the 3D-GRE (TE = 1.3 
ms; TR = 3.1 ms; bandwidth = 660  Hz/pixel; FA = 5°)12 
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allowed to acquire one presaturation offset in 5.1 s (additional  
relaxation in case of M0 image) with a nominal spatial  
resolution of 2.34 mm isotropic.

Field mapping was performed applying the simulta-
neous  water shift and B1 mapping  (WASABI) approach of 
Schuenke et al13 (tp = 5000 µs, B1 = 3.7 µT, recovery time 
(saturated/M0): 3 s/12 s, 31 equally spaced presaturation 
offsets from −1.8 to +1.8 ppm). This was executed with the 
same imaging parameters as the CEST MRI sequences. To 
enable correction for spatiotemporal changes in B0,

14 inter-
leaved WASABI acquisitions were performed before and 
after each CEST examination.

For quantification of tSNR, 16 repeated measurements 
were performed without any presaturation module and a 
pause of 3 seconds in between consecutive image acquisi-
tions. Different voxel sizes, acceleration factors, and nominal 
excitation FAs with otherwise identical parameters, unless 
stated differently, were investigated in preparation of the final 
3D-EPI CEST protocol.

2.3  |  CEST data evaluation

Data processing was performed using in-house written 
MatLab R2018a (The MathWorks, Inc., Natick, MA, USA) 
code, if not stated differently.

For both imaging methods, 3D-EPI and 3D-GRE, the post-
processing was identical. All images of the same examination 
were registered to the unsaturated image of the first WASABI 
to correct for subject movement during the acquisition. This 
was done automatically using the AFNI toolbox of Cox et al.15 
Afterward, the brain data were segmented automatically using 
SPM1216 in case of the EPI and manually in case of the GRE 
readout to extract only the brain volume (including CSF, gray 
[GM], and white matter [WM]). The segmentation was of im-
portance for the subsequently performed principal component 
analysis (PCA) based denoising. The CEST data sets were then 
corrected for dynamic changes in B0

14 using ΔB0(r,t) maps de-
rived from the interleaved WASABI measurements. To reduce 
noise in the images, PCA denoising17 was applied next. Median 
criterion with correction factor β = 1.2918 was used to deter-
mine the cutoff eigenvalue in the reconstruction. Malinowski 
indicator function was exemplarily applied to one data set as 
well. With the so-called real error RE,19 the cutoff eigenvalue 
kind can be derived as the minimum of RE(k)/(c-k)2, where c 
is the number of columns (rows are observations in Casorati 
notation; columns are reshaped 3D volumes at a single offset 
frequency) in the considered matrix.20 The denoised data were 
then corrected for spatial B1 inhomogeneity, including three 
different nominal B1 values for Z-B1 correction.3

To quantify the CEST effects, a 4-pool Lorentzian 
model21 was fitted to the postprocessed data voxel by voxel 
using a nonlinear least squares algorithm. The peak posi-
tions of APT, rNOE, and semisolid magentization transfer 

(ssMT) were fixed with respect to the frequency offset of di-
rect water saturation (Supporting Information Table S1). To 
evaluate CEST effects within a certain tissue type, the tissue 
probability maps as derived with SPM12 were cut at a cer-
tain threshold (50% for GM and WM; 25% in case of CSF). 
Lower threshold for CSF was chosen to ensure contributions 
by CSF were separated from GM and WM.

For estimations on the point spread functions (PSF) of 
different readouts, numeric simulations had been performed 
for which a description can be found in the Supporting 
Information. These simulations were also used to investigate 
the effect of different FAs.

To evaluate the reproducibility of the derived results the 
Lorentzian amplitudes of APT, rNOE and ssMT pools were 
compared for different acquisitions. Within the tissue masks of 
GM and WM, the median amplitudes were determined. These 
were in the next step compared to the results of the other acquisi-
tions in terms of mean value and SD, combined as a coefficient 
of variation (COV), which is the ratio of SD over mean value.

3  |   RESULTS

3.1  |  tSNR evaluation

tSNR was determined in each voxel as the ratio of mean value 
over SD for repeated measurements. As shown in Figure 1A, 
the tSNR decreased on average by approximately 30% going 
from (2.0 mm)3 to (1.8 mm)3 isotropic resolution. The in-
creased average tSNR for higher FAs went along with a less ho-
mogeneous spatial distribution (Figure 1B,C and Supporting 
Information Figure S1). For FA > 20° a significant decrease 
of tSNR in the center and in lower regions of the brain was 
observed. For the final protocol, a FA of 15° was chosen. The 
PSF simulations (Figure 2) revealed a relative FWHM2 of on 
average 1.33 for FA = 15°. The maximum relative magnitude 
was found to be 4.4% for FA = 17.5° (Supporting informa-
tion Figure S4A). These numbers also prove a FA of 15° to 
be suitable. Increasing the total acceleration factor from 4 to 6  
decreased tSNR by around 17% (Supporting Information 
Figure S2), which approximately corresponds to the expected 
thermal noise increase, that is, the expected additional g-fac-
tor penalty seems to be compensated for by reduced physi-
ological noise (ratio of square root of undersampling factors: 
18%). The non-blipped sixfold CAIPIRINHA acceleration 
nearly preserved signal with similar echo train length (24.3 vs.  
23.9 ms, same EPI factor of 32) and allowed fewer excitations 
for the complete readout (45 vs. 66). The latter likely reduced 
physiological contributions to the tSNR.22 For the final pro-
tocol (FA = 15°, non-blipped CAIPIRINHA = 1 × 6(shift = 2), 
partial Fourier = 6/8, 1.8 mm isotropic resolution), the tSNR 
of the EPI readout was ≈ 75 even in the cerebellum. In con-
trast to the previously published protocol for 7T4, we worked 
out and optimized a modified 3D-EPI readout, for example, 
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in terms of undersampling (GRAPPA vs. CAIPIRINHA), full 
versus elliptical sampling, and segmentation of one versus 
three. This yielded ≈20% higher tSNR for the novel 3T pro-
tocol (Supporting Information Figure S3). The PSF analysis 
revealed that the referring FWHM increased by 8.7% in the 
first and 9.5% in the second phase-encoding direction (com-
pared to the 7T protocol) with maximum 1.75 pixels in the 
first PE direction (Figure 2E,F). Compared to the unfiltered 
PSF, the two protocols yielded a relative FWHM of 132 and 
143%, respectively, in the first phase-encoding direction and 
112 and 123% in the second.

3.2  |  Inhomogeneity of B+

1

As shown in Figure 3A to C, the B1 amplitude varied by 
approximately 50% across the whole brain volume. The 

deviation along the head–foot direction was larger than the 
deviation along the other two (left–right and anteroposterior) 
directions (Figure 3A).

If the data were not corrected for B1 inhomogeneity, 
fitted CEST contrasts were significantly altered as shown 
for rNOE in Figure 3D,E. For comparison of B1 correc-
tion methods, the FWHM of Z-value distribution in GM 
and WM was determined by fitting a Gaussian distribu-
tion at each presaturation offset. In Supporting Information 
Figure S5A, it is shown that using as little as n = 2 B1 
values for correction already yielded 40/48% narrower 
FWHM in Z-value distributions in GM and WM than with-
out B1 correction. The FWHM decreased by 44.0/49.8% 
when including n = 3 B1 values, but only by an additional 
0.4/1.0 and 1.3/2.4% for n = 4 and n = 5 included B1 values 
(spline interpolation; average over all offsets in GM/WM 
segments. Data not shown.). However, a 2-point correction 

F I G U R E  1   (A) tSNR of EPI for different spatial resolutions. (B) tSNR maps of EPI for different FAs at (1.8 mm)3 nominal isotropic 
resolution. Higher FAs provide higher average tSNR but at the cost of increased spatial heterogeneity (see also (C)), with very low tSNR in the 
center and lower regions of the brain. Additionally, a single image of the time series is shown for both FAs. (C) Closer look at FAs around 15 
degrees with mean and SD in different axial slices. (D) Comparison to the GRE readout at 2.34 mm. EPI at 1.8 mm isotropic resolution outperforms 
the 2.34 mm GRE in terms of tSNR. In the cerebellum, the tSNR is around 80. FA, flip angle; GRE, gradient echo; tSNR, temporal SNR
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assumes linear behavior of Z-spectra over a 50% change in 
B1. If only n = 2 B1 values were included, the fitted ampli-
tudes were altered (Supporting Information Figure S5B). 
Supporting information Figure S5B to E also show that in-
cluding an increasing number of B1 values in the correction 
reduced noise in the fitted contrast maps. This held true 
for spline but not necessarily for linear interpolation. We 
therefore suggest to measure at three different B1 ampli-
tudes and to use spline interpolated Z-B1 correction.

3.3  |  CEST contrast

With the Z-B1 corrected whole brain 3D-EPI approach, CEST 
contrast maps (fitted amplitudes) with high homogeneity 
over the whole FOV were generated. As shown in Figure 4, 

the contrast maps covered the whole brain volume with high 
spatial resolution. Fine anatomical structures, such as GM 
and WM regions in the cerebellum, could be distinguished 
in all fitted contrasts (APT, ssMT, and rNOE). In agreement 
with previous studies,6,23,24 higher rNOE (×1.17) and ssMT 
(x1.61) amplitudes in WM compared to GM were found 
(Table 1), as well as the inverse relationship (x0.88) for APT 
(see also Figure 5). On average (n = 3 healthy subjects ex-
amined with final protocol) the median fitted Lorentzian am-
plitudes in GM and WM were (mean ± SD): {(5.9 ± 0.1)%/
(5.21 ± 0.02)%} for APT, {(9.2 ± 0.3)%/(10.8 ± 0.1)%} for 
rNOE, and {(5.21 ± 0.09)%/(8.4 ± 0.1)%} for ssMT.

As shown in Figure 6, fitted CEST pool amplitudes revealed 
reproducible GM/WM contrast for different healthy subjects. 
Reproducibility was investigated both across the same subject 
at different sessions and for direct repetition within the same 

F I G U R E  2   Comparing the PSFs of the established 7T protocol (A,B) and the novel 3T readout (C,D). (A,C) show the sampling trajectories, 
with CAIPIRINHA sampling in (C); and in (B,D) the resulting relative signal intensity is shown. PSFs (E,F) were determined from Fourier 
transformation of a 2D delta function that was convoluted with the signal evolution (B,D) determined from k space sampling taking into account 
both T1 and T2 (nominal matrix size (RO × PE × 3D): 144 × 126 × 88, FA = 15°, T1 = 1300 ms, T∗

2
 = 45 ms and initial magnetization M0 = 1 

for both protocols. Variable TR for different excitations in 3T protocol with semielliptical sampling). Gamma is the FWHM of the PSF in both 
subplots. For the 3T protocol, like regular centric-out sampling, each 3D phase encoding slice starts with a new excitation; however, the first 
phase encoding is offset by ±1 line according to the CAIPIRINHA pattern. CAIPIRINHA, controlled aliasing in parallel imaging results in higher 
acceleration; PE, phase-encoding directions; PSF, point spread function; RO, readout; T, tesla
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session (intrasubject) as well as across different subjects (in-
tersubject). The intrasubject coefficients of variation (COV) in 
fitted amplitudes were below 8.5% for examinations in the same 
session and below 7% for examinations in different sessions for 
APT, ssMT, and rNOE both in GM and WM (Figure 7A,B).  
It was found that ssMT showed four times higher COV than 
the other fitted amplitudes when evaluated for examinations 
within same session. The intersubject COV was below 4% for 
n = 3 subjects (Figure 6C) for all tissues and CEST pool am-
plitudes. In this case, none of the fitted amplitudes showed 
a manifold increased COV as compared to the others within 
both tissue types at the same time.

3.4  |  Comparison with 3D-GRE protocol

Both GRE and EPI readout were compared at an isotropic 
resolution of 2.34 mm with same CEST presaturation mod-
ule. Still, even at a higher resolution of 1.8 mm, the EPI 
(black dash-dotted line, Figure 1A) outperformed the GRE at 
2.34 mm isotropic resolution (red dashed line, Figure 1D) in 

terms of tSNR. At (2.34 mm)3, the tSNR of EPI was approx-
imately two times higher than that of the GRE (Figure 1D).  
CEST measurements were acquired in the same volunteer 
but in different sessions. EPI was applied with matrix size 
110 × 96 × 72 (RO × PE × 3D: head–foot × anteroposte-
rior × left–right) and had a total acquisition time of 4:09 
minutes for 58 offsets including the unsaturated M0 image. 
On the contrary, the GRE was executed with matrix size  
96 × 78 × 72 (RO × PE × 3D: head–foot × anteroposterior 
× left–right) and took 4:59 minutes. Readout durations were 
1.7 seconds for GRE and 0.8 seconds for EPI, which also 
showed less blurring in the raw images (Figure 7, last row).

Considering the fitted CEST amplitude maps (Figure 7),  
it was found that the EPI readout allowed to detect finer 
anatomical structures in the brain. Especially the fitted am-
plitudes of rNOE were more blurry using the GRE readout. 
Still, both readouts yielded fitted CEST amplitudes in GM 
and WM segments that deviated by less than 10% (Table 1). 
The contrast ratios between GM/WM were found to be com-
parable with {0.9, 1.2, 1.6} (EPI) and {0.9, 1.1, 1.4} (GRE) 
for APT, rNOE and ssMT.

F I G U R E  3   (A) Spatial distribution of relative B1 along different directions at B0 = 3T. (B) Labels BI

1
, …, BV

1
 indicate the different nominal 

B1 values that were measured for B1 correction in this case. (C) B1 distribution in slices of different orientation. Fitted rNOE CEST amplitudes 
without (D) B1 correction and with Z-B1 correction including three B1 values (E). rNOE, relayed nuclear Overhauser enhancement 
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3.5  |  Influence of denoising

To estimate systematic effects of PCA denoising on the ap-
pearance of the Z-spectrum, the average spectrum in a homo-
geneous WM region of interest was considered. Supporting 

information Figure S6 shows that the residual Z-values due to 
PCA denoising according to Median criterion17,18 are noise-
like across different presaturation offsets. The maximum 
difference with and without denoising was 0.4% at 0.1 ppm. 
The average value of residual Z-value across all offsets was 

F I G U R E  4   CEST contrast 
(Lorentzian amplitude) of 1.8 mm isotropic 
EPI readout. Postprocessing included 
motion, B0 and B1 correction, and PCA 
denoising prior to B1 correction. Maps 
show amplitudes derived from 4-pool 
Lorentzian fits: upper row is APT; middle 
is rNOE; and lower row is ssMT. Contrasts 
are homogenous within a certain tissue 
type across the whole volume. Spatial 
resolution is high enough to, for example, 
recognize structures like caudate nucleus 
within the basal ganglia and at the same 
time distinguish GM and WM sections 
in the cerebellum. APT, amide proton 
transfer; GM, gray matter; PCA, principal 
component analysis; rNOE, relayed nuclear 
Overhauser enhancement; ssMT, semisolid 
magnetization transfer; WM, white matter

T A B L E  1   Comparison of derived CEST contrast to other study

 

APT rNOE ssMT

GM WM GM WM GM WM

Deshmane et al6 (2.92 ± 0.24) (2.44 ± 0.24) (6.08 ± 0.47) (6.44 ± 0.44) (7.52 ± 0.04) (10.96 ± 0.43)

GM/WM ratio 1.20 0.94 0.69

This study EPI RO (5.9 ± 0.1) (5.21 ± 0.02) (9.2 ± 0.3) (10.8 ± 0.1) (5.21 ± 0.09) (8.4 ± 0.1)

GM/WM ratio 1.13 0.85 0.62

Deshmane et al/this study 0.49 0.47 0.66 0.60 1.44 1.30

This study GRE RO 5.58 5.26 8.97 10.03 5.42 7.64

GM/WM ratio 1.06 0.89 0.71

APT, amide proton transfer; GM, gray matter; GRE, gradient echo; rNOE, relayed nuclear Overhauser enhancement; RO, readout; ssMT, semisolid magnetization 
transfer WN, white matter.
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−5.6 × 10−6, and the average spatial SD in the non-denoised 
Z-spectrum was 1.0 × 10−3. The resulting fitted amplitudes 
did not reveal anatomical structures depending on the de-
noising, as shown in Supporting Information Figure S7 and 
S8. In addition to the suggested postprocessing that includes 
PCA denoising using the Median criterion, stronger denois-
ing with application of Malinowski’s indicator function20 was 
investigated. This had previously been applied in the studies of 
Goerke et al24 and Deshmane et al.6 In our study, Malinowski’s 
indicator function suggested to include roughly 40% of the 
number of components suggested by the Median criterion. 
It was observed that this made, for example, the structures in 
the striatum-especially the putamen-more clearly visible in 

the fitted amplitude maps (Figure 8). The differences in fit-
ted amplitudes between the two cutoff criteria did not show 
obvious anatomical structure besides some areas in the CSF 
(Supporting Information Figure S9B,C,D). The coefficients of 
variation of the medians of fitted amplitudes in GM and WM 
for both cutoff criteria were less than 1.4% for APT, rNOE, 
and ssMT (Supporting Information Figure S9A).

4  |   DISCUSSION

It was shown that with the worked-out 3D-EPI readout, a 
tSNR of 75 could be achieved in all regions of the brain, 

F I G U R E  5   Exemplary distribution of fitted CEST contrasts (Lorentzian amplitude) in GM and WM regions: APT, rNOE, and ssMT. GM 
and WM regions show significant differences in distribution of all three CEST contrasts (P < .005). APT, amide proton transfer; GM, gray matter; 
rNOE, relayed nuclear Overhauser enhancement; ssMT, semisolid magnetization transfer; WM, white matter
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even at 1.8 mm isotropic resolution at sixfold acceleration. 
Compared to higher field strengths (for example: Ref. 4), 
the approach at B0 = 3T benefits from more homogeneous 
saturation and excitation, especially in lower regions of the 
brain. In addition, the 3D-EPI readout benefits from lower 
field strength such that T2 is increased by about 65% com-
pared to 7T.11 Assuming T∗

2
 scales similar as T2 with field 

strength, at the given  echo train length of ≈ 25 ms this is 
30% higher residual transversal magnetization at the end of 
the readout (assuming monoexponential decay and linear 
scaling of magnetization with field strength), compensating 
partly for lower SNR as compared to ultrahigh field. The 
final protocol  based on 3D-EPI allowed to perform CEST 
MRI at 1.8 mm isotropic resolution within 4.3 s per presatu-
ration offset (1.2 s readout duration) with 256 × 224 × 156 
mm3 whole brain coverage. A previous approach of Zhu 
et al25 at 3T enabled a FOV = 212 × 212 × 132 mm3 at (2.2 
mm)2 in-plane resolution in 20 s per presaturation offset. A 
more recent 2D-EPI–based study of Ellingson et al26 reported  
(2 mm)2 in-plane resolution with FOV = 256 × 256 × 100 
mm3 in approximately 14 s per presaturation offset, also at  
B0 = 3T. Krishnamoorthy et al27 had chosen a FLASH ap-
proach with two shots per readout volume at B0 = 7T. This 
enabled high in-plane resolution of (0.6 mm)2 with a FOV of 

140 × 140 × 48 mm3 for 16 slices but took 16 s per saturation 
offset and did not provide whole brain coverage. Deshmane 
et al6 worked with a 3D-GRE based snapshot approach, yield-
ing (1.7 mm)2 in-plane resolution for 18 slices with FOV = 
220 × 180 × 54 mm3 and 2.9 s readout. In general, snapshot-
based approaches benefit from additional freedom in the pre-
saturation such that no specific magnetization preparation 
has to be achieved for the image readout. It can be seen that 
our suggested protocol offers one of the highest spatial reso-
lutions combined with a large FOV, it is significantly faster 
than most of the reported approaches and is flexible due to its 
snapshot realization.

One remaining drawback that all whole brain approaches 
share is the increased B1 inhomogeneity within the large 
FOV even at clinical field strength. It has been shown 
previously3,28 that an effective B1 correction strategy is a 
necessary prerequisite for reliable CEST quantification at 
ultra-high field. However, if homogeneity over the whole 
brain volume is aimed at, then B1 correction becomes nec-
essary even at 3T, as shown in this study. This prolongs 
the scan time significantly because it demands repeated 
CEST acquisitions with different B1 scaling. Similar to the 
ultra-high field study,4 in the present study measurements 
at [0.75, 1.00, 1.25] times the nominal B1 were shown to 

F I G U R E  6   Comparison of fitted CEST contrasts in GM and WM of healthy subjects. Within same session and volunteer (A) and in different 
sessions (B). Across n = 3 sessions and volunteers (C); variations in fitted CEST contrasts calculated as (SD/mean over tissue type) are comparable 
within the same volunteer and across volunteers. Fitted CEST contrasts are stable with coefficient of variation (SD/mean) less than 9%. APT, amide 
proton transfer; GM, gray matter; rNOE, relayed nuclear Overhauser enhancement; ssMT, semisolid magnetization transfer; WM, white matter
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be sufficient for spline interpolated Z-B1 correction. The 
range of nominal B1 values covered 95% of all occurring 
B1 values and avoided extrapolation of the Z-spectra when 
correcting for B1 inhomogeneity. The FWHM of the dis-
tributions of Z-values for all offsets were investigated in 
GM and WM separately after Z-B1 correction. Including 
the three different B1 values mentioned above and perform-
ing spline interpolation gave smaller FWHM than linear in-
terpolation from five different B1 values. On the contrary, 
including up to five B1 values for spline interpolation only 
marginally decreased the FWHM further, indicating that 
the width of the natural distribution within the region of in-
terest was already reached. Correction using two B1 values 
yielded 44% smaller FWHM of Z-values than without cor-
rection. Still, in this case the fitted Lorentzian amplitudes 
were visibly altered. If parallel transmit systems are avail-
able, B1 inhomogeneity might be further mitigated using 
B1 shimming29 or the MIMOSA approach,30 which could 
directly be combined with our protocol.

If only certain brain areas are of interest, the number of 
scans at different presaturation B1 values may be reduced 
given by the B1 inhomogeneity in the considered slices. For 
example, for a single, more cranially located axial slice in 
which also B0 distortions due to the air cavity of the mouth are 
less dominant, the B1 deviation was below 20% (Figure 3A,  
Supporting Information Figure S10).

We also suggest to perform interleaved B0 measurements 
after each CEST scan. This might not be of major impor-
tance as long as peaks can be fitted to the Z-spectrum. But 
in case that high power presaturation modules are used or 
asymmetry analysis is performed for evaluation,31 alter-
ation of B0 inhomogeneity over time should be taken into 
account.14 Necessity of repeated acquisitions at different 
presaturation B1 also increased examination time, and there-
fore, the sensitivity to temporal variations in B0 inhomoge-
neity. With accelerated field mapping methods, for example, 
DREAM/3DREAM32,33 for B1 and dual-echo EPI for B0 
mapping instead of WASABI, the duration of field mapping 

F I G U R E  7   Fitted amplitudes of CEST pools: APT, rNOE, and ssMT. 2.34 mm isotropic resolution GRE (left) and EPI (right) both with 
same CEST presaturation module, same postprocessing, and in the same volunteer. Different segments were chosen for GRE and EPI readout, 
respectively, because data were not coregistered onto each other. Both readouts reveal similar GM and WM contrast in the fitted amplitudes of 
APT, rNOE, and ssMT. With the EPI readout, more detailed anatomical structures are visible. Additionally, in the last row unsaturated images are 
shown for both readouts. APT, amide proton transfer; GM, gray matter; GRE, gradient echo; rNOE, relayed nuclear Overhauser enhancement; 
ssMT, semisolid magnetization transfer; WM, white matter



      |  2479MUELLER et al.

could be strongly reduced. Assuming this enables field map-
ping within one minute, the total duration for the suggested 
procedure would be reduced by 25%. Although shorter scan 
durations may result in less intervolume head motion over 
time, retrospective motion correction before CEST analysis 
is still required (see Supporting Information Figure S12). 
Strong imaging acceleration is also an effective means to 
reduce intravolume motion sensitivity. Here, whole-brain 
k-space acquisition in only 1.2 s over 45 excitations resulted 
in no apparent motion artifacts. However, this may have to be 
reevaluated for motion-prone subject groups.

To quantify CEST effects, the amplitudes of the fitted 
4-pool Lorentzian model21 were considered. Comparable 
fit models had recently been applied by, for example, 
Deshmane et al,6 Goerke et al,24 and Akbey et al.4 Medians 
of fitted amplitudes in GM and WM were determined sep-
arately for each subject (Supporting Information Table S2).  
In Table 1, the mean values over different subjects are listed. 
In Figures 4, 5, and 8, as well as Supporting Information 
Figure S13, it can be observed that especially the APT 

maps show some areas of strongly increased amplitudes 
in all healthy subjects. These match the expected spatial 
distribution of vessels known to have different CEST prop-
erties compared to brain tissue,34,35 which might explain 
the observations in APT maps. More data on this issue can 
be found in Supporting Information Figure S13 to S15.  
Comparing the fitted CEST amplitudes to the results of 
Deshmane et al6 (B0 = 3T, 3D-GRE readout) showed sim-
ilar behavior in GM relative to WM for APT, rNOE, and 
ssMT (Table 1). Nonetheless, absolute values of fitted am-
plitudes differed. For APT and rNOE, we derived about 
twice as high amplitudes as reported by Deshmane et al.6 
For ssMT, we found 1.4 times smaller amplitudes. This can 
be explained by the use of inversion pulses in the other 
study, which are known to generate strong MT effects,36 
whereas we used longer pulses for the sake of spectral 
selectivity. Additionally, a different number of pools was 
fitted to the data in both studies. Recently, Akbey et al4 pre-
sented a CEST study at ultra-high field (B0 = 7T, 3D-EPI 
readout). The reported GM/WM ratios (MTRLD metric23; 

F I G U R E  8   Effect of denoising on the subsequently fitted CEST pool amplitudes. APT, rNOE, and ssMT amplitudes fitted after 
postprocessing that included denoising according to Median (left) and Malinowski (right) criterion. Arrows highlight areas were denoising causes 
substantial differences in the spatial distribution of fitted amplitudes. Especially in the striatum, structures that might be of similar shape as caudate 
nucleus or putamen become visible when denoising with the more aggressive Malinowski criterion. APT, amide proton transfer; rNOE, relayed 
nuclear Overhauser enhancement; ssMT, semisolid magnetization transfer
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data extracted from Figure 9 in Ref. 4) of APT, rNOE, and 
ssMT {1.1, 0.9, 0.8} were similar to what we observed at 
B0 = 3T. Nevertheless, it becomes obvious at this point 
that for all different presaturation and Lorentzian models 
used, standardization is missing. Most importantly, the 
compared EPI and GRE readouts yielded the same contrast 
for the same CEST presaturation and postprocessing used 
(Supporting Information Figure S14).

To investigate reproducibility of the suggested CEST 
pipeline, the median of the fitted amplitudes was considered. 
The COV across three subjects and sessions was below 4% 
for APT, rNOE, and ssMT. Still, it was up to 8.3% for ssMT 
in GM when comparing the results of repeated examinations 
of the same subject in the same session. On the contrary, for 
APT and rNOE amplitudes, it was below 2% for these two 
data sets. The increased deviation in the ssMT amplitudes 
may have several contributions. One explanation could be 
different GM and WM segmentation that was performed 
independently for different examinations. Segmentation 
tissue volume of both data sets differed by 0.45% for WM 
and 0.87% for GM. Because ssMT amplitudes show larger  
GM/WM contrast than those of APT and rNOE, a different 
segmentation should affect ssMT stronger. Still, segmenta-
tion could not exclusively be concluded to explain the ob-
served deviations in the ssMT amplitudes. The deviations 
rather indicate that with the suggested CEST pipeline fitted 
amplitudes can at worst be reproduced with a COV of less 
than 8.5%.

The determined Lorentzian peaks might be used to cal-
culate more sophisticated CEST contrasts such as the  ap-
parent exchange–dependent relaxation,37 which additionally 
considers differences in T1 relaxation times. One exemplary 
apparent exchange–dependent relaxation evaluation is shown 
in the Supporting Information Figure S11, with T1 estimated 
using the proposed 3D-EPI readout in a saturation recovery 
protocol.

We also directly compared the proposed 3D-EPI protocol 
to an established 3D-GRE–based whole brain protocol.12 EPI 
outperformed the GRE readout in terms of tSNR by a factor 
of two at the highest possible nominal resolution of the GRE, 
which was 2.34 mm isotropic. In addition, for the described 
settings the EPI readout was more than two times faster than 
the GRE. This gain in tSNR, along with the reduction in mea-
surement time, allowed increased spatiotemporal resolution 
in the CEST acquisition as presented in this work. Fitted 
CEST amplitudes revealed much more detailed anatomical 
structures of the brain in case of the EPI readout, as shown 
in Figure 7. Still, GM/WM ratios of fitted amplitudes derived 
with the established GRE readout {1.06, 0.89, 0.71} were 
comparable to that observed with EPI (Table 1). It seems that 
actually the 3D-GRE was at its limits in case of the presented 
whole brain settings, for example, leading to more blurry im-
ages compared to the 3D-EPI and an established slab-selective 

3D-GRE. The latter revealed contrast maps very similar to the 
nonselective 3D-EPI (Supporting Information Figure S14).

CEST spectra can be strongly affected by direct satu-
ration of fat signals.38,39 Thus, a water excitation enables 
mitigation of this artifact. However, binominal water exci-
tation pulses9 are rather long (additional ≈ 1.1 ms per ex-
citation for both GRE and EPI) and would prolong a GRE 
readout significantly. Fortunately, for the EPI much fewer 
excitations are needed compared to GRE (45 at 1.8 mm iso-
tropic resolution vs. 487 for the GRE at 2.34 mm), and these 
longer pulses can easily be afforded regarding scan time for 
EPI. Thus, artifacts in the Z-spectrum originating from fat 
signals are directly suppressed in snapshot EPI. In general, 
the faster readout of EPI is beneficial when comparing the 
PSF of GRE and EPI. Overall T1 signal decay during read-
out can be described by a Look–Locker decay2,40,41 in both 
cases. Assuming a T1 of 950 ms,11 this yields a decay to 
6.4% of the initial signal amplitude for EPI after acquisi-
tion of one 3D volume and 0.55% for GRE (EPI at 1.8 mm 
and GRE at 2.34 mm isotropic resolution). For EPI along 
the first PE direction (anteroposterior), signal decay is gov-
erned by T

∗

2
. Still, with T

∗

2
 = 30 ms, approximately 40% 

of the initial signal remains at the end of the considered 
PE-line (one PE-line containing up to 32 readout lines was 
encoded per excitation).

To improve SNR, PCA denoising17 was applied during the 
postprocessing for both GRE and EPI, with cutoff eigenvalue 
determined according to Median criterion. A more aggressive 
denoising as introduced by Malinowski20 was found to pro-
vide better visibility of anatomical structures in the striatum. 
We found that the COV due to different denoising was below 
1.4% for the fitted Lorentzian amplitudes. Difference maps of 
amplitudes revealed no anatomical structures, but contiguous 
areas with larger deviations that are not noise-like (Supporting 
Information Figure S9) were observed. Also, Breitling et al17 
reported that Malinowski indicator function can be problem-
atic if applied to determine the cutoff eigenvalue for CEST 
data. In accordance with their findings, we therefore suggest 
to apply the more conservative Median criterion. The cho-
sen denoising yielded noise-like residuals when considering 
a region of interest in WM with and without denosing and 
did not alter the fitted amplitudes (Supporting Information  
Figure S6 to S8), which provides strong evidence for the as-
sumption that the denoising did indeed only remove noise 
but did neither remove nor add systematic features to the 
Z-spectra.

5  |   CONCLUSION

It was demonstrated that it is possible to acquire reproduc-
ible (coefficient of variation of less than 9%) CEST contrasts 
with whole brain coverage at B0 = 3T in 4:22 minutes per 
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presaturation B1. In addition, with 1.8 mm isotropic resolu-
tion we were able to decrease the voxel size by 60% com-
pared to currently used multislice or 3D CEST protocols. 
The suggested protocol is adaptable and may be used for any 
CEST presaturation module and fit model of interest. It there-
fore increases the opportunities of CEST investigations at B0 
= 3T widely.
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Additional Supporting Information may be found online in 
the Supporting Information section.

FIGURE S1 tSNR evaluation at B0 = 3T for 63 images with 
3 s idle time between subsequent acquisitions. Final protocol 
as described in the paper was applied with different nomi-
nal flip angles ranging from 10 to 30 degree. All data were 
corrected for motion during post processing. Besides the 
flip angle all parameters remained unchanged: (1.78 mm)³ 
nominal resolution, CAIPIRINHA = 1 × 6shift=2, half ellipti-
cal scanning, BW = 1930 Hz/pix, phase partial Fourier and  
FOV = 256 × 224 × 156 mm³
FIGURE S2 tSNR determined for 63 images with 3 s idle 
time between subsequent acquisitions. Final protocol was used 
besides the deviations stated in the legend with the dark blue 
line being the final settings. Data were corrected for motion
FIGURE S3 Comparison of tSNR across 63 images with 
3 s idle time in between subsequent acquisitions. The novel 

3D-EPI protocol worked out for 3 T yields approximately 
20% higher tSNR as the published 7T protocol.1 Both pro-
tocols were executed at (1.78 mm)³ nominal resolution, FA 
= 15° and BW = 1930 Hz/pix and motion correction was 
performed
FIGURE S4 (A) shows the relative magnitude rMag for dif-
ferent FA with its maximum value of 4.4% for a FA = 17.5°. 
(B) shows the relative FWHM (rFWHM) for the 3T protocol 
with different flip angles (FA). It can be seen that for FA = 
15° the average rFWHM is increased to ≈1.34
FIGURE S5 (A) Effect of Z-B1 correction (3) on the dis-
tribution of Z-values in gray matter at presaturation offset  
−3.5 ppm. Effect of 2 (B) to 5 (E) B1 values included in Z-B1 
correction on fitted rNOE amplitudes. Including 2 (B) values 
(linear interpolation) shows deviations as compared to 5 val-
ues (spline interpolation) included. Difference between 3 and 
4 or 5 values included (all: spline interpolation) is only little
FIGURE S6 Influence of denoising according to the Median 
criterion on the mean Z-spectrum in a white matter region 
of interest in a healthy volunteer. The mean Z-spectrum did 
not significantly differ after denoising which is shown, for 
example, in the difference of the Z-spectra. The mean value 
of difference is −5.6 × 10−6, whereas the spatial standard 
deviations are on average 1.0 × 10−3max (without PCA) and  
9.4 × 10−4 (including PCA), respectively
FIGURE S7 Comparison of fit results in a healthy volunteer 
with respect to the effect of PCA denoising (cut off eigen-
value determined according to the Median criterion). Plots 
show correlation of fitted Lorentzian amplitudes with and 
without PCA denoising. Legends provide: Pearson r, P-value 
as well as slope and offset of a linear fit to the data. High cor-
relation of r > 0.92 for all contrasts (APT, rNOE, ssMT and 
(direct saturation) DS) indicates that PCA denoising does not 
intorduce any systematical bias to the fit results
FIGURE S8 Fitted Lorentzian amplitudes of APT, rNOE, 
SSMT and DS (direct saturation) are shown in the same axial 
slice separately with and without PCA denoising (cut off ei-
genvalue determined according to the Median criterion). Last 
row shows the difference between the two sets of fitted am-
plitudes. The difference maps do not reveal any significant 
anatomical structure that would have potentially been intro-
duced due to the PCA denosing
FIGURE S9 Effect of different cut off criteria during PCA 
denoising (17) on the fitted CEST amplitudes of one healthy 
subject (S0). (A): median of ssMT, rNOE and APT am-
plitudes in gray and white matter for cut off according to 
Malinowski’s indicator function (20) and Median criterion 
(18). The maps in (B), (C) and (D) show spatial distribution 
of the difference in fitted amplitudes of the same data shown 
in (A). Arrows indicate contiguous areas of deviations
FIGURE S10 Fitted amplitudes of APT (A), rNOE (B) and 
ssMT (C) for a different number of B1 values included in the B1 
correction (3). Maps show axial slice in more cranially situated 
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region of the brain that had more homogeneous B1 distribution 
than other areas of the brain. B1 correction including only two 
different B1 values (linear interpolation) might, therefore, be 
sufficient. Still including five B1 values and applying spline 
interpolation yields smoother maps due to averaging
FIGURE S11 CEST MRI acquired according to the final 
protocol combined with a saturation recovery sequence to 
determine T1 and from this calculate the T1 corrected AREX 
(37) contrast
FIGURE S12 Same data and post processing but once with 
and once without motion correction. Arrows highlight areas 
were substantial differences in the fitted Lorentzian ampli-
tudes can be seen if motion correction is not applied. Even 
though the optimized protocol allows relatively fast CEST 
MRI acquisition motion would significantly corrupt the re-
sults if not corrected
FIGURE S13 Fitted Lorentzian amplitudes (rNOE, APT, 
ssMT and (DS) direct saturation) of four healthy volunteers. 
For all volunteers only in the APT maps voxels with much 
larger amplitudes are visible
FIGURE S14 Fitted Lorentzian amplitudes and maximum 
intensity projections for an established slab selective 3D-
GRE (2,6) and the novel non-selective 3D-EPI readout. In 
both cases only in the APT maps similarly shaped and located 
areas show higher amplitudes (see arrows). Both readouts 
were acquired in different volunteers, and therefore, have dif-
ferent slice orientations. Data includes slices 2 to 11 (GRE) 
and 87 to 100 (EPI), respectively

FIGURE S15 Same 3D-EPI measurement as shown in 
Supporting Information Figure S15. Residual sum of saqures 
(RSS) was determined in slice 87 to 100. It is found that RSS 
does not increase with increasing APT amplitudes (A) and 
that highest RSS is observed in the ventricles
TABLE S1 Fit parameters for all i = 0, …, 3 amplitudes (Ai), 
peak widths (Gi), initial magnetization (Zi) and position of 
the bulk water pool (dwi). Positions for i = 1, …, 3 were fixed 
at 3.1, −1.25 and −3.1 ppm relative to dwi. Other param-
eters fitted with lower bond (lb), upper bond (ub) and start  
values (p0)
TABLE S2 Resulting amplitudes of 4-pool Lorentz fit for 
n = 5 different examinations in 3 different subjects (S0, 
S1 and S2). All values are given in percent to increase 
visibility. For each examination and subject median and 
standard deviation (std) were determined in gray (GM) 
and white matter (WM) for APT, rNOE and ssMT. In the 
3 bottom lines mean, standard deviation and coefficient 
of variation (c.o.v.) across the five different examinations 
are shown
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Purpose: As the field of CEST grows, various novel preparation periods using dif-
ferent parameters are being introduced. At the same time, large, multisite clinical 
studies require clearly defined protocols, especially across different vendors. Here, 
we propose a CEST definition standard using the open Pulseq format for a shareable, 
simple, and exact definition of CEST protocols.
Methods: We present the benefits of such a standard in three ways: (1) an open 
database on GitHub, where fully defined, human-readable CEST protocols can be 
shared; (2) an open-source Bloch-McConnell simulation to test and optimize CEST 
preparation periods in silico; and (3) a hybrid MR sequence that plays out the CEST 
preparation period and can be combined with any existing readout module.
Results: The exact definition of the CEST preparation period, in combination with 
the flexible simulation, leads to a good match between simulations and measure-
ments. The standard allowed finding consensus on three amide proton transfer–
weighted protocols that could be compared in healthy subjects and a tumor patient. In 
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1  |   INTRODUCTION

Chemical exchange saturation transfer MRI uses the ex-
change transfer of magnetization from solutes to water to in-
crease the sensitivity of detection through a saturation effect 
on the water signal.1-3 The CEST method uses a molecular 
amplification mechanism that accumulates its effect on the 
spin system during a saturation period (Tsat), consisting of 
one or more RF pulses with or without interpulse delays, 
followed by an imaging sequence. Detectable CEST effects 
in vivo have been reported for instance for proteins,4,5 glu-
tamate,6 and different sugars.7-9 The choice of a specific sat-
uration period is crucial for an optimal CEST experiment, 
as the maximum effect depends not only on the tissue and 
solute pool of interest, but also on the efficiency of the satu-
ration imposed by the RF pulse scheme10 and of its transfer 
during Tsat

11,12 as well as on concomitant saturation effects, 
such as direct saturation and magnetization-transfer contrast 
associated with the semisolid pool.13,14 Moreover, differences 
in approaches for data analysis in terms of normalization or 
spectral regions considered can further affect the final image 
contrast calculated from Z-spectra.15

Thus, the saturation period has to be precisely defined 
by such parameters as RF pulse shape (both magnitude and 
phase), pulse duration (tp), saturation duty cycle (DCsat), 
total saturation time (Tsat), saturation field strength (B1), and 
offset from the water resonance frequency (Δω). However, 
these parameters vary significantly in the current literature,16 
and are not always provided in sufficient detail. In addi-
tion, the literature uses different definitions or terminology 
to describe saturation “power,” such as the flip angle of the 
pulse,17 pulse peak B1 amplitude,18 B1 root mean square 
(B1,rms) amplitude,19 or continuous wave power equivalent 
(B1cwpe),

20 potentially leading to confusion when implement-
ing a comparable CEST MRI experiment. Therefore, it is not 
always possible to faithfully reproduce a CEST experiment 
without corresponding with the authors, and even then, the 
method could still be prone to errors. Thus, a common, easy-
to-use format for researchers to provide and share the precise 
saturation parameters is desirable, especially regarding the 
current focus on reproducibility in MR research.21 Moreover, 

a growing number of deep learning–based evaluation ap-
proaches for large multi-site, multi-vendor data sets make a 
proper definition of input data even more important.22

A vendor-independent, human-readable, and sharable file 
format for MR sequences has been introduced with the Pulseq 
framework.23 In Pulseq, all sequence parameters are defined 
in a text file (hereafter called pulseq-file), which can be cre-
ated with various popular programming applications such as 
MATLAB (The MathWorks, Natick, MA) or Python.24 This 
pulseq-file is then read and played out on the scanner using 
a vendor-specific interpreter sequence. Although Pulseq is a 
great tool that enables a flexible implementation of complex 
sequence patterns,25 it is complicated to incorporate vendor-
provided image reconstruction functions, which are generally 
proprietary. However, having the source code of a full inter-
preter sequence at hand, a capsulated interpreter can be in-
cluded into other existing sequences for imaging readout. For 
example, a 3D snapshot gradient echo26,27 can be equipped 
with an encapsulated Pulseq interpreter that solely plays out a 
CEST preparation block defined in a pulseq-file. This makes 
the Pulseq file format a perfect candidate for sharing CEST 
preparation periods. The established MRI readout following 
the saturation period can be used with the familiar user in-
terface and all possibilities of adjustments and image recon-
struction. This procedure enables four major advantages:

1.	 The CEST preparation period definition in Pulseq is 
complete. It is defined in a human-readable text file 
that is easy to interpret and allows direct comparison 
of different protocols. Thus, exchanging and comparing 
such files allows total reproducibility;

2.	 The definition of the RF pulses can be done in MATLAB or 
Python instead of implementing it in the sequence using a 
vendor-specific language (often C++), which, depending 
on the vendor, can be time-consuming and can require the 
compilation of a new sequence library;

3.	 The CEST preparation period can be used directly in sim-
ulations in the same framework (eg, MATLAB or Python), 
eliminating possible sources of error from transferring 
simulation results to the sequence source code and vice 
versa; and

addition, we could show coherent multisite results for a sophisticated CEST method, 
highlighting the benefits regarding protocol sharing and reproducibility.
Conclusion: With Pulseq-CEST, we provide a straightforward approach to standard-
ize, share, simulate, and measure different CEST preparation schemes, which are 
inherently completely defined.

K E Y W O R D S

CEST, open-source, Pulseq, standardization
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4.	 The CEST preparation period can be used directly at the 
scanner with different state-of-the-art readouts, bridging 
the gap from first publication to reproducible multi-site 
application not only for research, but also for clinical ap-
plications. In addition, novel developments and work-in-
progress approaches can be compared much faster and 
more reliably than with existing approaches.

Using Pulseq for the CEST preparation part in the se-
quence theoretically enables a vendor-independent approach, 
provided that a Pulseq interpreter sequence is available for 
each vendor. In this work, we implemented such a hybrid 
Pulseq-CEST sequence for the Siemens IDEA (Integrated 
Development Environment for Applications; Siemens 
Healthineers, Erlangen, Germany) framework and tested it 
on three Siemens scanners at three sites, with two scanner 
models running very different software baselines. In addi-
tion, we present a fast and flexible open-source simulation 
for the same pulseq-files that are played out on the MR 
scanner. Moreover, we provide a platform for researchers to 
share and test their saturation protocols in the Pulseq format. 
As a first illustration of these steps, we show applications 
at clinically available MR scanners including adiabatic spin 
lock–prepared imaging, well-defined and original-author-
approved amide proton transfer–weighted (APTw) imaging, 
and a CEST MR fingerprinting (MRF) protocol measured at 
three different MR sites in Europe and the United States.

2  |   METHODS

2.1  |  Pulseq to standardize CEST 
preparation periods

Originally intended as a hardware-independent MRI se-
quence prototyping framework, Pulseq allows for rapid and 
simple sequence definitions from within MATLAB, Python, 
and other software programming packages, which are usually 
open source.23,24,28 Within these programs, RF pulse, gradi-
ent, ADC, and trigger events can easily be defined and are 
written to a pulseq-file, which is then read and played out by 
a native interpreter sequence on the scanner. Because Pulseq 
includes built-in functions to generate block, Gaussian, apo-
dized sinc, and arbitrary user-defined pulse shapes, theo-
retically, every excitation or saturation CEST preparation 
scheme can be defined with only a few lines of code. Thus, 
defining saturation periods in Pulseq is a general and easy ap-
proach. Example codes to create different CEST preparation 
periods in MATLAB and Python are provided at the projects’ 
website (https://pulse​q-cest.github.io).

The pulseq-file contains the full definition of all sequence 
objects, which makes it a perfectly suitable candidate for 

sharing protocol parameters of preparation periods for gen-
erating different types of contrast before readout, such as a 
CEST contrast here. Moreover, these pulseq-files are human-
readable, and the aforementioned MATLAB and Python pack-
ages include plot functions to compare preparation schemes 
directly. The benefit of such a direct comparison becomes 
obvious in Figure 1. Here, RF magnitude and phase of differ-
ent CEST preparation periods used in this study are shown. 
For instance, Figure 1A,B shows the shape of an off-resonant 
adiabatic spin-lock pulse scheme previously used for in vivo 
DGEρ studies29 and phantom measurements herein. While 
such a pulse shape would be rather complex to describe in a 
publication, it is completely defined in the pulseq-file. Figure 
1C-H shows three different saturation preparation protocols 
(APTw_3T_001,30 APTw_3T_002,31 and APTw_3T_00332) 
that were recently recommended for APT-weighted tumor 
applications.33 For comparison of the CEST preparation 
pulses, we use the following definitions for the B1 pulse av-
erage (B1,pa), B1 average amplitude over pulse train (B1,cwae), 
and B1 average quadratic amplitude over pulse train (B1,rms or 
B1,cwpe)

34,35: 

 

 

where tp is the pulse duration, and td is the delay between prepa-
ration pulses. For the three different APTw protocols in Figure 
1C-H, B1,rms was set to 2 µT. The different peak amplitudes of 
the saturation pulses due to the different shapes and duty cycles 
are directly observable. For instance, in Figure 1C,E, sinc-Gauss 
pulses with the same shape are shown, but in Figure 1E, the peak 
amplitude of the pulse is higher, as this protocol uses a saturation 
duty cycle (DCsat) of 0.5 compared with 0.9 for the protocol in C.

Figure 1I,J shows the RF magnitude and phase over mul-
tiple repetitions of the CEST-MRF schedule.36-38 Here, the 
amplitude of the spin-lock saturation pulses changes over the 
different repetitions.

Full details about the protocols can be found in the pulseq-
files in the Supporting Information. In addition, the RF phase 
evolution during saturation pulses is available, a parameter 
that is rarely provided in CEST literature, although it can 
have an influence on the experiment, as shown in more detail 
in Supporting Information Figures S1 and S2.
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2.2  |  Bloch-McConnell simulations

To be able to not only compare protocol parameters, but 
also simulate them, an application was written in C++ that 
loops through the pulseq-files, performs Bloch-McConnell 

simulations for the respective sequence events,37 and returns 
the current magnetization vector after preparation. The com-
piled code is callable as a mex function for an easy integration 
into a MATLAB-based pipeline. The Python implementation 
wraps the C++ code with SWIG (Simplified Wrapper and 

F I G U R E  1   A,B, The RF magnitude and phase of the HSExp spin-lock saturation at 0.6 ppm. Adiabatic tip-down (blue) and tip-up (yellow) 
pulses surround the locking pulse (red). The frequency modulation can be seen in the zoomed plot (black box) from the changing phase. The red 
dot marks the beginning of the readout period, which can be an FID or a full 3D gradient echo for instance; spoiler gradients are not shown for 
simplicity. The RF magnitude (C,E,G) and phase (D,F,H) during three different amide proton transfer–weighted (APTw) protocols: APTw_3T_001 
(C,D), APTw_3T_002 (E,F), and APTw_3T_003 (G,H)—all with B1,rms = 2 µT and recovery time (Trec) = 3.5 seconds. Due to the different pulse 
shapes and DCsat during the preparation periods, the peak amplitudes of the pulses differ. In (C) and (D), a zoomed graph for two RF pulses is 
shown in the black rectangles. The phase accumulation due to the off-resonance character of the pulses is taken into account, as shown between 
the blue and red phase curve. The blue “x” marks the phase at the center of the RF pulse. I,J, The RF magnitude and phase of multiple repetitions 
during an amide–MR fingerprinting spin-lock saturation at 3.5 ppm
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Interface Generator) and is simplified by a Python parser. 
This setup ensures input and output compatibility between 
the MATLAB and Python implementation. Where not speci-
fied explicitly, the mex function was used for the simula-
tions in this study. Due to the flexible design, it is possible 
to simulate an arbitrary number of CEST pools and an ad-
ditional semisolid magnetization-transfer contrast pool with 
either a Lorentzian or super-Lorentzian line shape. In combi-
nation with the flexible Pulseq saturation period definition, 
any number of CEST pools can be simulated for any kind 
of preparation period in a relatively short amount of time, 
thanks to the native C++ implementation. For this study, 
the simulation program was compiled for a 64-bit Microsoft 
Windows 10 OS, using the Microsoft Visual C++ 2017 com-
piler. Simulations were performed on a PC with an Intel i7-
7700K Kaby Lake CPU. The source code is available on the 
project’s website (https://pulse​q-cest.github.io/).

2.3  |  Pulseq sequence building block

By adapting the source code of the original Pulseq sequence 
for the Siemens IDEA framework, we were able to play 
out the pulseq-files, containing the definition of the CEST 
preparation period, directly on the scanner, followed by dif-
ferent readout sequences. Adaptions were implemented to 
use the code as a so-called sequence-building block (SBB). 
For example, (1) the FOV positioning options are removed, 
as this information is defined in the readout sequence; and 
(2) during the Pulseq building block, no data are acquired, 
as indicated by the ADC event; instead the ADC event is 
used internally as marker to interrupt the Pulseq sequence 
and switch to the readout sequence, which is then played out 
(Figure 2). Note that the Pulseq block containing an ADC 
event is skipped entirely, and therefore is not allowed to con-
tain any other events. With this design of the Pulseq SBB, it 
can be implemented in every MR sequence where the source 
code is available. Because timing and specific absorption 
rate calculations are handled by the interpreter sequence, the 
workload for such implementation is small. Only a few lines 
of code need to be implemented in the main sequence for 
initialization, preparation, and running of the Pulseq SBB. 
For instance, to implement the SBB to an established, native 
EPI sequence,39,40 only 30 lines of C++ code were neces-
sary, including code regarding communication with the user 
interface.

The Pulseq interpreter sequence for Siemens IDEA con-
tains vendor-specific code, and can therefore only be obtained 
through the customer-to-customer partnership program (co-
called C2P procedure). The interpreter sequence can be pro-
vided upon request to interested researchers. The current 
Pulseq C2P package supports multiple software and hard-
ware platforms of Siemens, including Numaris4 vb15, vb17, 

vb19(a,b), vd11d, ve11(a,b,c,e,k,u), ve12u, and NumarisX 
va11 and va20. For other vendors, different “interpreter” ap-
proaches need to be developed or already exist, such as the 
TOPPE interpreter for GE (GE Healthcare, Chicago, IL) 
systems.41

2.4  |  Phantom preparation

A phantom was prepared using multiple 6-mL tubes with 
either L-arginine or D-glucose. Five tubes were filled with 
50 mmol/L L-arginine (Fluka Chemie, Buchs, Switzerland) 
dissolved in phosphate-buffered saline (according to Cold 
Spring Harbor Protocols,42 but containing 2.7 mM KCl, 10 
mM Na2HPO4, 1.8 mM KH2PO4, and 140 mM NaCl). The 
pH of the L-arginine tubes was adjusted between 4 and 6 
using HCl (Sigma-Aldrich Laborchemikalien, Germany) and 
NaOH (Riedel-de Haën, Seelze, Germany). Two additional 
tubes were filled with a D-glucose solution (Glucosteril 20%; 
Fresenius Kabi Deutschland, Germany) and diluted to 33 
mmol/L or 66 mmol/L using phosphate-buffered saline. To 
shorten T1, gadoterate meglumine (Dotarem 500 mmol/L; 
Guerbet, Villepinte, France) was added to each tube in this 
phantom, yielding a final concentration of approximately 
0.054 mmol/L.

2.5  |  Magnetic resonance imaging 
measurements

The MRI measurements were performed on three clini-
cal 3T scanners: two 3T Prismas and one 3T Trio (Siemens 
Healthineers). For all Prisma measurements, the 64-channel 
head coil for signal reception and the body coil for transmis-
sion were used. All in vivo measurements were performed 
under approval by the local ethics committee. Each subject 
gave written, informed consent before the study. Where not 
specified explicitly, measurements were done on a Siemens 
3T Prisma scanner at the Max Planck Institute Tuebingen). 
Following the Pulseq SBB, a 3D gradient-echo readout,26,27 
was used. A table with relevant imaging parameters for the 
readout sequence can be found in Supporting Information 
Table S1. In addition, all pulseq-files used in this study are 
provided in the Supporting Information.

For the phantom experiment, a spin-lock (SL) Z-spectrum 
acquisition was performed using HSExp pulses43 with the 
pulse shape parameters recently optimized for 3 T29 (see 
Figure 1A,B and SLExp_3T_Phantom.seq in the Supporting 
Information). For each saturation, a single spin-lock pulse 
with a duration of 100 ms was played out after a recovery 
delay (Trec) of 5 seconds. For this protocol, 39 evenly dis-
tributed offsets between ±6 ppm were acquired, together 
with an unsaturated S0 scan. To enable realistic simulations, 
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a WASABI (simultaneous mapping of water shift and B1),
44 

saturation recovery, and T2 magnetization-preparation45 se-
quence were applied to determine B0, B1, T1, and T2 maps. 
The phantom was scanned at a room temperature of about 
25°C.

The three different APTw protocols shown in Figure 
1C-H (APTw_3T_001.seq, APTw_3T_002.seq, and 
APTw_3T_003.seq in the Supporting Information) were 
scanned for direct comparison in vivo in a healthy volunteer. 
In addition, a WASABI measurement was performed to cor-
rect the Z-spectra for B0 field inhomogeneity. To generate 
magnetization-transfer asymmetry (MTRasym) maps with 
higher SNR in vivo, all APTw protocols were acquired with 
repeated acquisitions (three repetitions) at the offsets of inter-
est and a dummy scan at the beginning (APTw_3T_001_AVG.

seq, APTw_3T_002_AVG.seq, and APTw_3T_003_AVG.
seq in the Supporting Information). This averaged protocol 
was additionally measured in a patient with a glioblastoma 
(World Health Organization grade IV, IDH mutation, and 
methylation of MGMT (O(6)-methylguanine-DNA methyl-
transferase) promoter) at the University Hospital Erlangen 
under approval of the local ethics committee.

Finally, we performed a whole-brain, in vivo CEST-MRF36 
measurement at three different sites. For this purpose, the 
Pulseq SBB was implemented into a 3D-EPI sequence.39,40 
All relevant readout parameters can be found in Supporting 
Information Table S1. The protocol consisted of the fol-
lowing measurements: (1) an APTw MRF protocol with 31 
scans, using spin-lock pulses with a B1 varying between 0 
µT and 4 µT at a constant offset of 3.5 ppm (Figure 1I,J); (2) 

F I G U R E  2   Schematic sketch of the Pulseq-CEST hybrid sequence playing out the preparation period of protocol APTw_3T_002. A, Format 
of the pulseq-file with channels for time delay, RF pulse, gradient, ADC, and trigger events. The numbers link to entries in a lookup table, where 
the actual event parameters are defined. Note that the RF pulses have the same amplitude and frequency offset, but a different ID due to different 
phase offsets. B, Example gradient-echo readout sequence. C, Proposed combination of Pulseq events and the readout block using Pulseq as a 
sequence-building block (SBB). The RF events appear at blocks number 36, 38, and 40, spoiler gradients at block number 41, and delay events 
at blocks number 37 and 39. All Pulseq-CEST RF events are spatially nonselective. Blue crosses on the RF phase plots mark the RF phase at the 
moment of time when the peak RF magnitude is reached. For simplicity, GY and GZ gradient axes are not shown here. At every ADC event in the 
pulseq-file (block 42), the gradient-echo readout is played out
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a semisolid magnetization-transfer contrast–weighted MRF 
protocol with 31 scans, using spin-lock pulses with B1 vary-
ing between 0.2 µT and 4 µT at offsets varying between 6 
ppm and 14 ppm; (3) a WASABI measurement for B0 and 
B1 field inhomogeneity maps; (4) a saturation-recovery 
measurement for T1 maps; and (5) a T2 preparation mea-
surement for T2 maps. All pulseq-files for this experiment 
can be found in the Supporting Information (MRF_Amide.
seq, MRF_MT.seq, T1prep.seq, T2prep.seq, and WASABI.
seq). The protocol was applied at three different sites for one 
healthy volunteer each (two Siemens 3T Prisma Scanners at 
MPI Tuebingen and Massachusetts General Hospital, and a 
Siemens 3T Trio scanner at University Hospital Erlangen). 
For the Trio system, a 32-channel coil was used for reception, 
whereas a 64-channel coil was used at both Prisma systems.

2.6  |  Postprocessing

For the phantom experiment, MTRasym maps were gener-
ated voxel-wise, with MTRasym(∆ω) = (S(−∆ω)− S(∆ω))/
S0, after a ΔB0 correction using a linear interpolation be-
tween acquired offsets. Additionally, three regions of in-
terest (ROIs) were drawn in the center slice in the tubes 
listed in Table 1. Z-spectra in these ROIs were simulated 
as described in section 2.2. All simulation parameters can 
be found in Supporting Information Tables S2-S4). Both 
simulated and measured Z-spectra were normalized by the 
measurement at −6 ppm.

For the in vivo APTw experiment, all measurements 
were motion-corrected using elastix.46 The applied elastix 
parameter file can be found in the Supporting Information 
(Rigid_MMI.txt). The MTRasym maps were generated in the 
same way as for the phantom but with applying an additional 
principal component analysis denoising approach47 using the 
Malinowski criterion and a spatial 2D in-plane Gaussian fil-
ter (σ = 0.6) to smooth the images. A white-matter ROI was 
generated automatically by segmenting the image at −4 ppm 
using SPM (statistical parameter mapping).48

For the CEST-MRF experiment, all images were again 
motion-corrected and registered to the T1 measurement 
using elastix. The T1 maps were generated by fitting a mono-
exponential function to the data of the saturation-recovery 
measurement. The T1 map was then used to generate a syn-
thetic T1-weighted image, which was subsequently used to 

generate gray-matter and white-matter segmentation masks 
using SPM. Dictionary generation and calculation of amide 
and semisolid magnetization transfer–contrast concentra-
tion and exchange-rate maps were performed according to 
Perlman et al.38 A major advantage in using the Pulseq SBB 
in this context is that for both measurement and dictionary 
generation, the same pulseq-file describing the saturation pe-
riod definition is used. This reduces possible error sources 
from transferring the measurement parameters to the simula-
tion or vice versa.

3  |   RESULTS

3.1  |  Simulation and phantom measurement

The first experiment demonstrates how the same pulseq-
file can be used for simulation and phantom measurements. 
Figure 3 shows the MTRasym map (Figure 3A) at 2 ppm, 
as well as the measured Z-spectra (Z(Δω) = S(Δω)/S(−6 
ppm)) and simulated Z-spectra Z(Δω) = Mz(Δω)/Mz(−6 
ppm) (Figure 3B) and the MTRasym (Figure 3D) curve for 
the three different ROIs. The residuals between these meas-
ured and simulated normalized intensities are displayed 
in Figure 3C. The maximum residuals were 0.009, 0.008, 
and 0.004 for ROIs 1, 2, and 3, respectively. Simulation of 
the pulseq-file, using 500 samples per pulse (60 000 pulse 
samples per Z-spectrum) took approximately 0.19 seconds 
for a single amide CEST pool Z-spectrum (ROIs 1 and 2) 
and 0.77 seconds for four different D-glucose CEST pools 
(ROI 3).

3.2  |  In vivo APT-weighted measurements

The second experiment demonstrates the value of well-
defined pulseq-files for comparison of different author-
approved APTw CEST implementations. The APTw 
(MTRasym(3.5 ppm)) results for the volunteer and the tumor 
patient can be found in Figure 4. The MTRasym maps for the 
three different protocols are shown in Figure 4A-C, and de-
spite different saturation, they show similar contrast in the 
healthy volunteer. The contrast in healthy brain is very low, 
which is expected, as the APTw-imaging parameters are 
designed to yield almost no contrast in healthy tissue.4,49-51 
Corresponding Z-spectra, with Z(Δω) = S(Δω)/S(−1560 
ppm), and MTRasym spectra can be found in Figure 4H,I, 
respectively. Comparison with simulation can be found in 
Supporting Information Figure S3. While the intensity in the 
MTRasym maps of the healthy volunteer is similar for all three 
protocols, a clear contrast can be seen in the tumor region 
(Figure 4D-F) of the glioblastoma patient. These protocols 
are all in use at clinical scanners, but were, to our knowledge, 

T A B L E  1   Region of interest and phantom information

ROI Solute
Concentration 
(mmol/L) pH

Voxels 
(N)

1 L-arginine 50 5.55 18

2 L-arginine 50 4.01 23

3 D-glucose 66 6.52 23
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never compared side by side. Such a comparison can now 
be performed in different pathologies, to validate different 
protocols and their relation to previous work.

3.3  |  In vivo CEST-MRF measurements

The final experiment demonstrates that with Pulseq-CEST, 
sophisticated CEST sequences can be shared between sites, 
for both simulation (and training of reconstruction networks 
in this CEST-MRF example) as well as for measurement of 
work-in-progress developments at different systems. The 
spin-lock based CEST-MRF scheme with whole-brain EPI 
readout was applied in three healthy volunteers and at three 
different MR sites. The resulting maps for the semisolid 
proton fraction (fMT), the semisolid proton to water proton 
exchange rate (kMT), the amide proton fraction (fAmide), and 
the amide proton to water proton exchange rate (kAmide) are 
shown in Figure 5. The mean values for gray matter and 
white matter across the entire brain are shown in Table 2. A 
visual as well as quantitative comparison indicates reproduc-
ibility of effects across multiple sites.

4  |   DISCUSSION

By adapting the source code of the Pulseq interpreter se-
quence to the SBB concept of the Siemens IDEA framework, 
we were able to use it as a sequence building block in es-
tablished MR sequences and subsequently run CEST experi-
ments at different clinical 3T scanners. Hence, we combined 
the full flexibility of Pulseq and the sophisticated readout 
methods from native sequences to generate an easy-to-use 
and flexible method for reproducible CEST measurements. 
For instance, it was directly possible to perform CEST-
MRF experiments at three different sites on scanners with 
distinctly different software versions using identical CEST 
preparation periods defined in Pulseq. Thus, a sophisticated 
and still work-in-progress protocol could be reliably shared 
between research sites using Pulseq-CEST, without being 
limited by hard-coded user interface interactions. The quan-
titative results of the applied CEST-MRF method are con-
sistent across sites, although the maps generated from the 
Trio system appear noisier. We attribute this primarily to the 
used 32-channel receive coil, leading to lower SNR com-
pared with the 64-channel coil used on the Prisma system. 

F I G U R E  3   A, The MTRasym(∆ω = 2ppm) in slice 6. B, Simulated and measured Z-spectra for regions of interest (ROIs) 1, 2 and 3, 
respectively. Error bars in the measured Z-spectra show the SD of Z-spectra across voxels. C, Difference between the measured and simulated Z-
spectra for each ROI. D, The MTRasym curves of simulated and measured Z-spectra for the three ROIs
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In addition, the actual amplitude of the RF pulses is not only 
determined by the defined pulse shape in the pulseq-file, but 
also by the reference voltage of the system. It is therefore 
possible that different reference voltages lead to different re-
sults. Such MRF differences can now be evaluated and han-
dled. While larger, further studies using this protocol should 
compare and discuss results with previous CEST-MRF stud-
ies,38,52 it is beyond the scope of the work presented here, 
as Bloch-McConnell-based quantification is extremely chal-
lenging in vivo. Results presented here represent a work-in-
progress state of a sophisticated method undergoing an active 
development. The Pulseq-CEST standard allows for efficient 
and active exchange between the research sites, even in such 

an early stage of development, accelerating generation and 
refinement of simulation databases and improving model 
training. The Pulseq SBB presented in this paper allows con-
venient though reliable multi-center collaboration to further 
investigate the method in detail in a larger cohort.

In addition, our software provides a Bloch-McConnell sim-
ulation tool for pulseq-files to simulate the exact same CEST 
preparation period that is played out by the interpreter on 
the scanner. The fast, native C++ implementation allows for 
pulsed CEST simulations, also with multiple isochromats, an 
application discussed in more detail in Supporting Information 
Figures S4 and S5. To ensure broad applicability, we provide 
implementations of the Bloch-McConnell simulation in both 

F I G U R E  4   A-C, The MTRasym maps at 3.5 ppm for the APTw_3T_001_AVG (A), APTw_3T_002_AVG (B), and APTw_3T_000_AVG3 
(C) protocols in a healthy volunteer. D-F, The MTRasym maps at 3.5 ppm for the APTw_3T_001_AVG (D), APTw_3T_002_AVG (E), and 
APTw_3T_003_AVG (F) protocols in a glioblastoma patient. G, Contrast-enhanced MPRAGE image for this patient. Z-spectra (H) and MTRasym 
curve (I) for a white-matter ROI in the volunteer. Due to the rectangular saturation, residual artifacts in the ventricle regions can be observed in (C). 
Error bars in (H) show the SD in the white-matter ROI
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MATLAB and Python, which are the most frequently used pro-
gramming languages in research. Confirmation that both im-
plementations yield identical results is provided in Supporting 
Information Table S5. We hope that with this work, we pro-
vide the first version of a valuable and needed tool for the 
CEST community, to exchange and test CEST preparation 
periods for the many different types of different CEST ex-
periments. For instance, a researcher publishing data could 
share a pulseq-file containing all RF pulse, gradient, and delay 
parameters through the Supporting Information, and it could 
subsequently be used by other researchers. Additionally, all 
pulseq-files can be made available on the project’s website 
(https://pulse​q-cest.github.io/).

Moreover, the Pulseq sequence building block can be 
used to test all of these CEST-preparation blocks with a 
minimum workload, even with different readout sequences, 
such as gradient echo, EPI or RARE, which have been opti-
mized with regard to their imaging performance beforehand. 
Although the SBB is so far only available for Siemens scan-
ners, it already demonstrated its multiplatform capabilities by 
executing the same CEST preparation periods on scanners 
built on different hardware components and running differ-
ent software versions. Furthermore, it is generally possible 

to transfer the approach to GE and Bruker (Bruker Biospin, 
Ettlingen, Germany) systems, where Pulseq implementations 
have been demonstrated.23 For Bruker systems, we recently 
proposed an initial approach to combine CEST preparation 
periods from pulseq-files with native Bruker readouts au-
tomatically with MATLAB.53 By doing so, we were able to 
measure the above-mentioned APTw protocols on a Bruker 
14.1T scanner with ParaVision 6. This will be useful for 
comparison between preclinical and clinical trials, especially 
for pulsed CEST approaches.

A design of the interpreter software for other manufac-
turers (eg, Philips, United Imaging, or Canon) is needed for 
a universal application. However, even without actually ap-
plying pulseq-files on the scanner, the possibility to share, 
edit, display, and simulate saturation periods can be very in-
sightful and beneficial for the design of CEST experiments. 
Because the pulseq-file guarantees a completely defined 
CEST preparation period inherently, which we believe is 
needed to improve the reproducibility of data in the CEST 
community, this will be a valuable tool especially when de-
signing multisite clinical trials of technology, such as APTw 
MRI of brain tumors, which is being performed currently at 
many sites but often with different protocols.

F I G U R E  5   Semisolid magnetization-transfer (MT) contrast water fraction (first column) and exchange rate (second column), amide water 
fraction (third column), and exchange rate (fourth column) for measurements at a 3T Prisma in Tuebingen (first row), 3T Prisma in Boston (second 
row), and 3T Trio in Erlangen (third row)



      |  1855HERZ et al.

The Pulseq interpreter sequence has been adapted and 
used as a sequence building block in native readout sequences 
herein, but it is also possible to use readouts implemented 
directly in Pulseq. The current version of the Pulseq inter-
preter allows for the images to be reconstructed directly on 
the scanner, which makes the development of novel imaging 
sequences even more convenient. As the presented approach 
is compatible with the “parent” Pulseq project, the previously 
published Pulseq-CEST preparation periods could be trivially 
integrated with these novel readout modules, implemented 
directly in Pulseq. This will allow full reproducibility, as the 
complete sequence (including preparation and readout) can 
be published in the pulseq-file format in the same database.

While native Pulseq readout modules can be considered 
for measurements in the future, it is already possible to com-
bine them with CEST preparation modules for more realis-
tic simulations. In that case, the pseudo ADC event needs to 
be replaced by a full readout sequence. Various examples of 
possible readout sequences implemented with Pulseq can be 
found on the project’s website (https://pulseq.github.io/). By 
explicitly including the readout, it becomes possible to sim-
ulate the influence of the RF pulses during the readout with 
the provided simulation (Supporting Information Figure S6). 
It is also possible to use a different Pulseq-compatible sim-
ulation software, such as JEMRIS,54 which supports Bloch-
McConnell simulations, and provides a full MRI simulation 
framework. In addition, if the readout module is included in 
the pulseq-file, it is possible to estimate the expected specific 
absorption rate value using sar4seq55 before the scanning 
session. In general, the open format of Pulseq allows for a 
broad development of useful applications.

With regard to the growing number of applications of 
neural networks to CEST data reconstruction,22,38,56-58 often 
trained on simulated data, a match of the sequences used in 
silico and in vivo becomes crucial. In fact, the CEST-MRF 
reconstruction network used to infer the quantitative maps of 
Figure 5 was trained using simulated data with exactly the 
same pulseq-file as used at the MR scanner. This is just one ex-
ample showing that Pulseq-CEST could be valuable for many 
emerging machine and deep learning–based approaches.

Finally, the method is obviously not limited to CEST 
applications. In principle, any magnetization-preparation 
sequence can be realized, as exemplified in Supporting 
Information Figure S7, for the WASABI field-mapping ap-
proach and a T1 saturation-recovery sequence.

5  |   CONCLUSIONS

We present a Pulseq-based sequence framework for CEST 
preparation pulse sequences and an accompanying simula-
tion tool, the use of which in combination with available MRI 
sequences allows for straightforward sharing, implementing, T
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testing, optimizing, and running of CEST MRI studies. 
Because the pulseq-files inherently include a complete CEST 
parameter definition, this fosters faster comparison and facil-
itates reproducibility—not only between different MR sites, 
but also between real and simulated environments.

Source code for the Siemens IDEA interpreter sequence 
is available on request. All code for creating and simulating 
pulseq-files is open source and can be obtained on the proj-
ect’s website (https://pulse​q-cest.github.io/).
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FIGURE S1 Single magnetization vector trajectory during 
the CEST preparation period at 3.5 ppm with phase accumu-
lation transfer during the saturation pulses (A,B) and with-
out (C,D). The eight different colors indicate the trajectory 
during the eight different pulses. Due to the phase difference 
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between magnetization vector and RF pulse in (C) and (D), 
large oscillations can occur
FIGURE S2 Z-spectra of a single magnetization vector for 
the sequences from Supporting Figure 1A,B (blue) and C,D 
(red). Depending on the frequency offset Δω, the artifacts are 
more or less severe, as the accumulated phase and therefore 
the phase difference between magnetization vector and RF 
pulse is dependent on the frequency offset and the duration 
of the pulse
FIGURE S3 Measured (A,B) and simulated (C,D) Z-spectra 
(A,C) and magnetization-transfer asymmetry (MTRasym) 
curves (B,D) for the three different amide proton transfer–
weighted (APTw) protocols from the main paper
FIGURE S4 Comparison of simulation results between a 
single (blue) and multiple isochromats (red) in different tis-
sue environments. The red curve shows the mean Z-spectrum 
of all 200 isochromats, and the error bars indicate the SD 
between isochromats
FIGURE S5 Trajectory during a rectangular saturation pulse 
of a single isochromat with short (left) and long T2 (right)
FIGURE S6 Evolution of the z-magnetization after different 
CEST-preparation periods at 3.5 ppm during a 2D gradient-
echo readout

FIGURE S7 Comparison of simulation results from the 
MATLAB implementation (solid blue) and the Python im-
plementation (dashed orange) for a WASABI (A) and a T1 
saturation-recovery (B) example
TABLE S1 Basic imaging parameters of readouts used for 
the presented Pulseq-hybrid sequence
TABLE S2 Simulation parameters for first region of interest 
(ROI)
TABLE S3 Simulation parameters for second ROI
TABLE S4 Simulation parameters for third ROI
TABLE S5 Currently available pulseq-files in the Pulseq-
CEST open database with the RMS error of the spectra sim-
ulated in MATLAB and Python
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a b s t r a c t

Purpose: A framework for supervised design of MR sequences for any given target contrast is proposed,
based on fully automatic acquisition and reconstruction of MR data on a real MR scanner. The proposed
method does not require any modeling of MR physics and thus allows even unknown contrast mecha-
nisms to be addressed.
Methods: A derivative-free optimization algorithm is set up to repeatedly update and execute a parame-
trized sequence on the MR scanner to acquire data. In each iteration, the acquired data are mapped to a
given target contrast by linear regression.
Results: It is shown that with the proposed framework it is possible to find an MR sequence that yields a
predefined target contrast. In the present case, as a proof-of principle, a sequence mapping absolute cre-
atine concentration, which cannot be extracted from T1 or T2-weighted scans directly, is discovered. The
sequence was designed in a comparatively short time and with no human interaction.
Conclusions: NewMR contrasts for mapping a given target can be discovered by derivative-free optimiza-
tion of parametrized sequences that are directly executed on a real MRI scanner. This is demonstrated by
‘re-discovery’ of a chemical exchange weighted sequence. The proposed method is considered to be a
paradigm shift towards autonomous, model-free and target-driven sequence design.
� 2022 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The discovery of new MRI contrasts often happened hitherto by
‘trial-and-error’ using educated guesses directly at the MR system.
We consider here whether such a trial-and-error approach can be
formulated as a machine learning or optimization approach, that
still makes use of the MRI system directly. Traditionally, the design
of an MR sequence yielding a certain target contrast is performed
manually, often by considering an analytical description of the
contrast mechanism (subsequently referred to as a ‘model’) and
adapting parameters such as the echo time (TE) or flip angle (FA)
at the scanner. This approach is inherently limited by having to
describe and understand the contrast mechanism before designing

a sequence for it. In addition, this workflow requires time-
consuming human interaction with the scanner.

Within this traditional approach, often a single potentially
specific target, e.g. quantitative relaxation, diffusion or magnetiza-
tion transfer parameters is aimed for during sequence optimiza-
tion. When considering one of these targets in isolation, there are
often very precise models available to describe the underlying phy-
sics, such as the Bloch, Bloch-Torrey or Bloch-McConnell equations.
However, in most cases, some assumptions do have to be made to
apply these models, such as ignoring concomitant effects. A more
general description requires the combination of different models,
which may result in models that are too large and complicated
to solve, and that anyway involve making many assumptions. Fur-
thermore, the choice of model explicitly defines the targets which
one may optimize, as the only possible targets are the ones
described by the model itself. This ultimately means that the entire
MR experiment, including the object of interest, the MR scanner
hardware and the data reconstruction need to be included into a
comprehensive, universal model that, to be practical, should be
evaluated within as little time as possible.
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We recently proposed a self-learning framework to discover
MRI sequences based on a differentiable MRI physics simulation,
which was dubbed MRzero, because zero sequence programming
experience, but only knowledge of the Bloch equations was
required [1]. Progressing further, the approach presented here
requires neither a model nor human interaction with the scanner;
thus, we call this approach MR-double-zero.

Instead of starting from a theoretical model and optimizing
for a certain contrast, here, the model-free learning process is
based solely on the desired target contrast, and performs auto-
mated, explorative real-scanner acquisitions. This allows opti-
mization for any given target, even if the physical contrast
mechanism in the MR signal might yet be unknown. With such
a target-driven approach, a pure ‘optimization’ can be extended
to become a ‘discovery’, as it may now be possible to test
hypotheses as to whether (and how) a certain target might
become visible by exploiting MRI as a tool. The proposed method
can therefore be considered as a paradigm shift towards auto-
matic target-driven sequence design. The ability to initially find
an MR sequence solely guided by a desired target is the novelty
of the presented work. In a first step, it is necessary to consider a
mechanism which is known to result in an alteration of the MR
signal and therefore may in principle be used to generate MR
contrast. To mimic the discovery of a novel MRI effect, we
assume that we know about water relaxation and have
relaxation-weighted sequences. We then pretend that another
specific contrast mechanism, namely the chemical exchange sat-
uration transfer effect (CEST) of creatine guanidine protons, is
unknown and needs to be discovered with MR-double-zero
autonomously. In contrast to classical sequence design, no signal
equation or analytical model are included. Instead, only the final
target, which is not even an MR signal anymore, but rather abso-
lute creatine concentration, is provided. The necessary human
interaction is reduced to creating the samples and providing a
suitable target, which in the present case is a manually generated
map of the known creatine concentrations. To the best of our
knowledge, this is the first realization of a MR sequence opti-
mization framework with direct and automatized data acquisi-
tion and feedback on a real MR scanner in a target-contrast-
driven manner; for pulse profile optimization a similar setup
was proposed by Scheffler [2].

2. Methods

2.1. Samples

Samples were prepared with varying concentration of creatine.
Seven samples with different creatine concentration values (0, 15,
25, 50, 75, 100, 125 mMol/L) were created from creatine monohy-
drate (Fisher Scientific GmbH, Schwerte, Germany). By adding T1
contrast agent (dotarem� 500 mMol/L, Guerbet, Germany) and
agarose (Carl Roth, Karlsruhe, Germany) [3] it was made sure that
in quantitative T1 and T2 maps obtained from conventional
sequences these samples were indiscernible as shown in Fig. 3A-D.

To add another test case, the sample at 100 mMol/L concentra-
tion was designed in a way that it actually had a significantly
longer T1 value then the other samples. This was achieved by not
adding any contrast agent at all to this sample. Still, agar was
added such that its T2 value approximately matches that of the
other samples. Quantitative T1 and T2 values can be found in
Fig. 3. Full Z-spectra acquired with low power preparation [4] are
shown in Supplementary Fig. 1 for the seven different samples.
For comparison of classical Z-spectra and Z-values explored with
the proposed framework, an overlay plot of those can be found
in Supplementary Fig. 5/6.

2.2. Scanner interface

To enable real measurements for the optimization process, the
MR scanner was remotely controlled by the optimizer. Pulseq [5]
files were used to automatically execute the sequence of each iter-
ation at the scanner. The actual optimization was run on a local
computer (Intel Xeon W-2145 3.7 GHz CPU, 8 cores and 128 GB
RAM) but not on the scanner host computer. This reduces the inter-
action with the scanner software to reading Pulseq files from a net-
work drive. The Pulseq files additionally facilitate numerical
simulations of the optimized sequence parameters [6]. Measure-
ments were performed on a 3 T PRISMA scanner (Siemens Health-
ineers, Erlangen, Germany) using the vendor’s 20Ch head coil for
receive and the body coil for transmit.

2.3. Optimization process

The actual optimization is based on an RF-prepared sequence
with fixed 2D gradient and RF spoiled GRE readout (TE = 3.3 ms,
TR = 6.6 ms, FA = 8�, BW = 300 Hz/pixel, RO � PE = 96 � 96,
FoV = 128 � 128 mm2, slice thickness: 10 mm). The CMA-ES opti-
mization algorithm [7] implemented in nevergrad [8] was
employed to explore the sequence parameter space including pos-
sible RF-preparation events such as number of pulses, amplitude,
duration, phase/frequency, and delay times. This type of stochastic
optimization algorithm is particularly designed for derivative-free,
non-convex, noisy optimization problems as posed by sequence
optimization at a real scanner. Every sequence generated by the
optimizer is executed directly at the scanner and the intermediate
images flow back to the algorithm influencing the next sequence
iteration.

For the present work, each sequence iteration consisted of sev-
eral (indexed by r ¼ 1;2; :::;R) RF-prepared readouts with the pulse
train parameters peak saturation amplitude B1;r , frequency offset
Dxr and number of pulses npr as optimized sequence parameters
(seq) with seq ¼ B1;1;Dx1;np1jB1;2;Dx2;np2j:::jB1;R;DxR; npRð Þ.

Initial and boundary conditions for the optimization algorithm
used with this parametrization are given in Table 1.

The duration of each Gaussian-shaped pulse was fixed to
tp ¼ 20 ms and the duty cycle to DC ¼ tp= tp þ td

� � ¼ 50%, i.e. a
td ¼ 20 ms gap between pulses. Still, with the number of pulses
as free parameter, a large range of different total saturation times
can be achieved. This choice of parametrization ensured that the
explored sequences stay within the specific absorption rate limits
throughout the optimization. The reconstructed images
Imgr B1;r ;Dxr ;nprð Þ at each iteration were assembled in a design
matrix.

MRI seqð Þ ¼
..
. ..

. ..
. ..

. ..
.

Img1 Img2 � � � ImgR 1
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. ..
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of shape #voxels-by-(R + 1). Only voxels within ROIs of the
sample vials were considered, to avoid bias by the larger number
of surrounding water-only voxels. Still, voxels within an ROI of
the same size in the surrounding water were included as well.

Linear regression onto the voxel-wise targets T (shape:
#voxels–by-1), was performed by pseudo-inversion of the relation

T ¼ MRI seqð Þ � b ) bb seqð Þ ¼ MRI seqð Þþ � T (with the Moore-

Penrose pseudo-inverse Xþ ¼ XTX
� ��1

XT). This mapping process

is referred to as ‘inner’ optimization in the following. The differ-
ence between the linear prediction and the true target determined
how the CMA-ES optimization algorithm updated the sequence

F. Glang, S. Mueller, K. Herz et al. Journal of Magnetic Resonance 341 (2022) 107237

2



parameters by solving the following non-linear minimization
problem:

dseq ¼ argminseq T �MRI seqð Þ � b̂ seqð Þ
��� ������ ���2

2

� �

¼ argminseq 1�MRI seqð Þ �MRI seqð Þþ� � � T�� ���� ��2
2

� �
With this problem formulation, the optimizer has to find

sequence parameters that yield images that allow the best possible
linear mapping to the target (Fig. 1). The optimization of sequence
parameters is referred to as ‘outer’ optimization in the following.

To enable a more flexible mapping function from acquired
images to targets, the design matrix MRI seqð Þ can be extended
by non-linear transforms of the acquired images as additional fea-
tures, i.e. columns. For example, by adding the squares and cubes
of the acquired pixel intensities, respectively, a third-order polyno-
mial representation is formed:

Note that, while being non-linear in the image intensities, such
a representation is still linear in the regression coefficients b, which
allows obtaining them by simple pseudo-inversion.

As exemplary targets, known creatine concentrations were cho-
sen with samples prepared as described in the above section.

3. Results

As a first feasibility check, simple experiments to investigate the
behavior of the MSE loss function evaluated directly at the scanner
were performed. To that end, a single target image with fixed sat-
uration parameters seq ¼ 1 lT; þ1:9 ppmð , 80) was acquired. Sub-
sequently, three series of presaturated images were acquired, for
which two of the parameters were fixed to their original values,
respectively, while the remaining parameter was linearly incre-
mented. This approach explores the loss landscape along each of
these three axes (B1, Dx, np) individually. For each of the acquired
images, MSE to the target was calculated to see if this loss function
actually exhibits a minimum at the respective target parameter
value. Fig. 2 shows the resulting 1D loss curves. For the saturation
amplitude B1, there is a clear global minimum at the target value
and the loss curve appears smooth and largely convex. In case of
the frequency offset Dx, there are several local minima and a more
complex oscillatory behavior of the loss curve. Still, the global min-
imum in the explored range is located at the target value of
Dx ¼ þ1:9 ppm. For the number of pulses np, the global minimum
is at a higher number (np � 100) than the actual target value
(np ¼ 80), and the loss curve exhibits small periodic oscillations.

From these experiments it can be concluded that the MSE loss
landscapes acquired at the real scanner with respect to a given

Table 1
Initial and boundary conditions for the creatine mapping experiments, corresponding
to seq ¼ B1;1;Dx1;np1jB1;2;Dx2;np2ð Þ in the case of R = 2 images per iteration and
seq ¼ B1;1 ;Dx1 ;np1 jB1;2 ;Dx2 ;np2jB1;3 ;Dx3 ;np3ð Þ in case of R = 3 images per iteration.

lower bound initial value upper bound

B1;1 0.1 lT 1 lT 3 lT
B1;2 0.1 lT 1 lT 3 lT
B1;3 0.1 lT 1 lT 3 lT
Dx1 �4.5 ppm +1 ppm +4.5 ppm
Dx2 �4.5 ppm �1 ppm +4.5 ppm
Dx3 �4.5 ppm 0 ppm +4.5 ppm
np1 1 80 200
np2 1 80 200
np3 1 80 200

Fig. 1. Diagram of the proposed sequence development workflow termed MR-double-zero. The optimizer sends the parametrized sequence (seq) to a real MR scanner. The
acquired data (in the depicted case for R = 2 images: Img1 and Img2) get flattened into the matrix MRI seqð Þ which is used to determine coefficients b from linear regression of
MRI seqð Þ to the target. With these coefficients, the prediction (P) is determined and the deviation from the target (T) flows back to the optimizer. Our pipeline implements
this using so called .seq-files of the Pulseq standard that are played out at the scanner by a Pulseq interpreter sequence.
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target contrast may exhibit multiple local minima, but still show
somewhat smooth behavior and global minima that closely reflect
the ground truth parameters. This means that these target param-
eter values can also be found by an optimization algorithm, how-
ever, a gradient descent might get stuck in the observed local
minima.

To make sure that the MR-double-zero agent has to find a new
sequence concept, and that the creatine concentration cannot be
inferred only from T1- or T2-weighed contrasts, the samples were
built such that T1 and T2 is not governed by creatine proton
exchange. This invariance can already be seen in the T1 and T2
maps in Fig. 3, and was verified by the unsuccessful linear estima-
tion using only T1 and T2 as input (Fig. 3F). Interestingly, it was not
even possible to map the vial that had longer T1 values (see Fig. 3A/
C) to its target concentration.

An exemplary optimization process is depicted in Fig. 4. Due to
the stochastic behavior of the optimizer, the iterations were retro-
spectively sorted by loss instead of acquisition number. It can be
seen that with decreasing loss at some point the optimized param-

eters converge towards a specific value. Still, for different runs, dif-
ferent sets of parameters are found (Supplementary Figure 7),
which reflects that there are different strategies to generate the
same contrast. In this specific case, the optimized sequence con-
sists of two images at + 2.09 ppm and �2.11 ppm with similar sat-
uration strength (i.e., B1 and np), which approximately get
subtracted by the linear regression. This closely resembles the
asymmetry metric, which is a classical model-based description
of CEST effects [9]. If not stated differently, for all data shown in
the following, the iteration that yielded smallest loss was chosen.

Fig. 4B shows the creatine concentration map generated based
on the newly discovered sequence, which was formed by linear
regression from the two RF-prepared images (Fig. 4D/E) with opti-
mized sequence parameters. Remarkably, the method generalizes
to the vial with 50 mMol/L, which was excluded from the ‘training’
procedure, i.e. not considered in the loss function during optimiza-
tion (Fig. 4F).

Fig. 5 shows the optimization result for the concentration map-
ping experiment in which the design matrix was augmented by

Fig. 2. Preliminary sanity checks of the MSE loss function evaluated directly at the scanner. As a target, a CEST-weighted image with predefined parameters
seq ¼ 1 lT; þ1:9 ppmð , 80) was acquired. Subsequently, a set of weighted images was acquired with two of these three parameters fixed to their target values, respectively,
and the remaining parameter incremented with constant step size across a predefined range. For each of these images, MSE to the original target is shown (only evaluated
within the sample vials, not in the surrounding water).
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square and cube terms. It can be seen that the more flexible poly-
nomial mapping results in a more accurate mapping (�50% smaller
MSE loss, see Supplementary Fig. 4) to the target concentrations,
which is especially pronounced for the ROIs with no creatine (both
within the sample and in the surrounding water) and the two vials
with highest concentrations (for which one even had different T1).
The sequence parameters found by the optimization in this case
were substantially different from the ones found in the experiment
with simple non-augmented design matrix (Fig. 5 vs. Fig. 4). On the
one hand, the non-linear mapping function allows for different
contrast extraction schemes compared to the case of a simple lin-
ear mapping, which may lead to different sequence schemes gen-
erating the input for this specific extraction. On the other hand,
the stochastic optimization process itself will yield different seq-
vectors for different runs in a loss-landscape with potentially mul-
tiple, equivalent local minima. This is demonstrated in Supplemen-
tary Figure 7, from which it can be seen that the observed
fluctuations in the final parameters could be attributed to the
stochastic nature of the chosen optimizer rather than to the influ-
ence of non-linear extensions to the design matrix.

The accuracy of predicted concentrations can be further
increased by extending the sequence to three differently prepared
images (Supplementary Figs. 2, 3, 4), however, at the expense of
increased acquisition and thus optimization duration. Also, it was
found that extending the design matrix to a third image performs
similarly well as extending the design matrix by higher order
terms of only two images actually acquired at the scanner. How-
ever, extending the design matrix by higher order terms only
requires very little additional computation time compared to the
additional scan time required for a larger number of images. A

comparison of loss curves for all shown experiments (2 scans vs.
3 scans and linear vs. polynomial regression) is given in Supple-
mentary Fig. 4.

3.1. Samples including creatine plus glucose as confounding factor

The above experiments were conducted in samples that con-
tained only creatine as a unique compound of interest. However,
in a typical in vivo situation, multiple metabolites are present,
which raises the question if this might skew the optimization pro-
cess. To investigate this further, an additional set of samples was
created similar to the first set that only contained creatine, but
adding variable concentrations of glucose as a potential confound-
ing factor. Indeed, when applying optimized GlucoCEST RF prepa-
ration [10], some of the creatine concentrations can no longer be
distinguished by the conventional MTRasym approach (Supplemen-
tary Figure 8).

As demonstrated in Fig. 6, also for these samples, the proposed
optimization pipeline comes up with a solution that accurately
maps to creatine concentration with no apparent interference from
the different glucose concentration levels. Runs with R = 3 images
per iteration as well as non-linearly extended design matrix are
shown in Supplementary Figures 10–12. As can be seen in Supple-
mentary Figure 9, also for these samples, non-linear extension of
the design matrix leads to lower loss values even with R = 2 images
compared to only linear design matrix with R = 3 images. The con-
cept found by MR-double-zero is qualitatively different from con-
ventional MTRasym, and the chosen different B1 levels and offsets
seem to enable the robustness against glucose contamination.

Fig. 3. Quantitative T1 and T2 maps of samples with different creatine concentration (cCr). Upper row: different concentrations cannot be distinguished directly from T1 (A)
and/or T2 (B) maps. Center row: evaluation of (C) T1 and (D) T2 values in different ROIs of data shown in (A)/(B) with mean (MV) and standard deviation (SD) for each vial.
Bottom row: True creatine concentrations (E) cannot be predicted by linear regression f T1; T2;1½ �ð Þ ¼ cCr from T1 and T2 (F).
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4. Discussion

4.1. General comments on the proposed method

In the present work, we have shown a proof-of-principle for
MRI sequence parameter optimization with the goal to discover a
target contrast solely based on acquisitions at a real scanner sys-
tem, without any knowledge of a theoretical signal model. In gen-
eral, such an optimization problem is difficult, i.e. noisy, non-
convex, high-dimensional and potentially ill-conditioned. How-
ever, the very first feasibility checks of the MSE loss function for
a single parameter sweep showed that running an optimization
based on real data could in principle converge towards global min-
ima (Fig. 2). Additionally, stochastic gradient-free evolutionary
algorithms like the employed CMA-ES are known to be particularly
suited for this class of optimization problems [8].

MR-double-zero can be seen as advanced, sophisticated and
efficient search in the MR parameter space to figure out if a certain

contrast can be generated by MRI. A grid search with S = 100
entries in each of the N = 3 dimensions would lead to SN = 105 nec-
essary measurements, and the problem of defining suitable grid
boundaries. In contrast, the autonomous MR-double-zero learning
required only 300 iterations, which took around 3 h at the MRI
scanner. This is still long for an MRI scan, but fast for the discovery
of a novel MRI contrast.

In general, the search space grows with the power of the num-
ber of dimensions, thus, reduction of dimensions N is an important
step. The present optimization problem was reduced to the opti-
mization of as little as 3 � R parameters (with the number of scans
per iteration R ¼ 2;3), which defined the preparation phase before
R fixed 2D readouts. This is a significantly smaller subset of param-
eters as compared to the set of parameters required to define an
entire MR sequence. Doing so, we still gave some reasonable
boundaries by the definition of these few dimensions. Still, going
from N�R = 6 to N�R = 9 degrees of freedom, a similar decrease of
the MSE loss function was observed over the fixed number of

Fig. 4. Exemplary optimization process of a MR-double-zero sequence with 300 iterations (MRI scan time: 3 h). The final parameter set was here
seq ¼ 0:96 lT;þ2:09 ppm;86j1:04 lT;�2:11 ppm;97ð Þ. The design matrix contained two images acquired with different RF-preparations. The first row shows quantitative
concentration maps: (A) the target, (B) the experimentally derived and (C) the difference in concentrations. Second row shows the two images (D,E) with respective sequence
parameters given below. In (F) the predicted and target data are scattered for ROIs within the different vials. The test vial (50 mMol/L) that was not included in the
optimization process, is highlighted in (C) and (F). Subplots (G-J) were retrospectively sorted by loss instead of the actual time course of acquisition. (G) shows the loss for the
sequence parameters shown in (H)-(J) . Subscripts 1 and 2 refer to the image number for all parameters. An animated version of this figure can be found as Supplementary
Material.
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300 iterations for both cases (Supplementary Fig. 4). Thus, it is
conceivable that also higher-dimensional problems could be
addressed by a feasible number of iterations, such that they are
solvable with reasonable effort and scan time. However, this must
be investigated in detail, also with regard to the hyper-parameters
of the optimizer.

4.2. Contrast mapping function (inner optimization)

Note that a linear representation was assumed to map from
contrast-prepared images to the target map, such that the coeffi-
cients could be directly obtained by pseudo-inversion of acquired
and target data and do not need to be learned by the outer opti-
mizer. For more sophisticated tasks, however, also non-linear
representations like neural networks might be used instead. As
a first step towards such more sophisticated mapping functions,
it could be observed that augmenting the design matrix by

non-linear transforms of the acquired signal intensities (here by
power functions, thus forming a polynomial regression) increased
the accuracy of the predicted concentrations (Supplementary
Fig. 4). Potentially, the accuracy can be improved even more by
adding more of such transforms e.g. 1/x, as inverse metrics have
proven useful for CEST data evaluation [11]. This, however, would
mean to incorporate CEST-specific knowledge into the recon-
struction, which was intentionally avoided here by using polyno-
mials as a general choice known from Taylor series expansion.
Additionally, including more non-linear features comes at the
risk of overfitting, as more regression coefficients are added to
the representation. However, this can be avoided by monitoring
MSE in a hold-out test set, which was shown to be still low in
the present case (Figs. 4-6). These insights hint also to the bene-
fits of using neural network approaches for the inner optimiza-
tion that come with further challenges, and were not yet tested
herein.

Fig. 5. Exemplary optimization process of a MR-double-zero sequence with 300 iterations (MRI scan time 3 h). The final parameter set was here
seq ¼ 0:75 lT;þ2:06 ppm;33j1:10 lT;þ4:03 ppm;139ð Þ. In contrast to Fig. 4, the design matrix contains in addition to the images (Img1, Img2) also the pixel-wise images
squared (Img2

1, Img2
2) and cubed (Img3

1, Img3
2). The first row shows: (A) the target, (B) the experimentally derived and (C) the difference in concentrations. Second row shows

the two images (C,D) with respective sequence parameters given below. In (F) the predicted and target data are scattered for ROIs within the different vials. The test vial (50
mMol/L) that was not included in the optimization process is highlighted in (C) and (F). Subplots (G-J) were retrospectively sorted by loss instead of the actual time course of
acquisition. (G) shows the loss for the sequence parameters shown in (H)-(J) . Subscripts 1 and 2 refer to the image number for all parameters. An animated version of this
figure can be found as Supplementary Material.
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4.3. Discovered strategies in the context of existing methods

A CEST pool can affect T1 and T2 relaxation times, thus add-
ing agar and contrast agent is crucial to make this direct influ-
ence negligible and the samples undiscernible in conventional
contrasts. By doing this, the actual contrast of interest can be
considered unknown. Still, not on-resonant preparation pulses,
which would lead to T1/T2-weighting, but off-resonant pulses
are chosen by MR-double-zero to encode the creatine concentra-
tion. In contrast to conventional CEST imaging, the optimized
sequence required as little as two RF preparation offsets. The
optimized sequence in case of the simple design matrix without
additional non-linear transforms (Fig. 4) yields the parameters
seq ¼ 0:96 lT;þ2:09 ppm;86j1:04 lT;�2:11 ppm;97ð Þ and clo-
sely resembles the traditional asymmetry metric at 2 ppm:
seq ¼ B1;þ2 ppm;npð jB1;�2 ppm;npÞ.

Interestingly, for the run with non-linear terms shown in Fig. 5,
the offsets are not chosen symmetrically around the water reso-

nance, where they are typically placed in a conventional CEST mea-
surement, but instead at seq ¼ 0:75 lT;þ2:06 ppm;33j1:10 lT;ð
þ4:03 ppm;139Þ, leading to improved prediction performance.
This is interesting, as asymmetric approaches are known to be
most prone to B0 inhomogeneity artefacts [12], while same side
approaches are more robust against B0 shifts [13]. Furthermore,
also different B1 levels and number of pulses are chosen, which
together can provide more insight into T1- and T2-dependent
direct saturation, that has to be eliminated to achieve absolute
concentration mapping [11]. Thus, MR-double-zero is not only able
to find ‘unknown’ contrast-generating concepts, but can also learn
better strategies for existing approaches and small but smart tricks
for more robust preparation/detection/sampling schemes.

The finding that different methods are discovered that yield
similar accuracy can be seen as a limitation that no global mini-
mum is found. However, it actually fits perfectly to the experience
that a plethora of chemical-exchange-weighted methods were
published that generate similar contrast correlation [14–18].

Fig. 6. Optimization process of a MR-double-zero sequence similar to the one shown in Fig. 4, but conducted on samples that contained different levels of glucose
concentration as a confounding factor to the targeted creatine mapping. The final parameter set was here seq ¼ 2:07 lT;þ4:25 ppm;200j 0:87 lT;þ1:94 ppm;174ð Þ. The first
row shows: (A) the target, (B) the experimentally derived and (C) the difference in concentrations. Second row shows the two images (C,D) with respective sequence
parameters given below. In (F) the predicted and target data are scattered for ROIs within the different vials. The test vial (50 mMol/L) that was not included in the
optimization process is highlighted in (C) and (F). Subplots (G-J) were retrospectively sorted by loss instead of the actual time course of acquisition. (G) shows the loss for the
sequence parameters shown in (H)-(J) . Subscripts 1 and 2 refer to the image number for all parameters.
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4.4. Related work in the context of MRI

The presented method has some similarity with MR fingerprint-
ing [19], which has also been demonstrated for CEST parameter
mapping [17,20]. For the latter, only saturation pulse amplitudes
(B1) were varied in a pseudo-random manner to obtain unique sig-
nal trajectories, from which e.g. CEST pool concentrations could be
inferred by means of dictionary matching. This, however, also
requires the use of Bloch equations or extended phase graph for-
malism as a numerical model. Thus, MR-double-zero can be seen
as model-free joint optimization of a fingerprinting schedule and
reconstruction based on real measurements.

The idea of optimizing both acquisition and reconstruction of
MRI data at the same time was already presented by others in
the context of ‘active acquisition’ [21–22]. Jin et al. [21] split the
optimization process into separately optimizing acquisition and
reconstruction of MRI data by training ‘‘two deep networks that
are tied together”. The so-called SampleNet predicts which k-
space points should be acquired next based on previous acquisi-
tions, and the ReconNet learns the reconstruction given the pro-
vided sampling strategy. To some extent, the present approach
behaves similarly, as the outer optimization (CMA-ES) optimizes
the data acquisition while in the inner optimization the coeffi-
cients for linear regression are determined. Although such active
acquisition policies could in principle be executed directly at a real
MR scanner, in these works they are evaluated purely retrospec-
tively on brain and knee MRI data sets. In contrast, the proposed
approach optimizes a real data acquisition with live optimization.
This might be beneficial as it enables full flexibility in terms of data
acquisition and is not limited to any existing data that gets re-
sampled.

4.5. Real-world optimization

Running optimization algorithms on real physical systems
instead of theoretical models or simulations is known from other
disciplines like robotics or autonomously driving cars. Particularly,
reinforcement learning [23] can be applied to learning robot poli-
cies in realistic environments, e.g. [24–25]. In fact, the model and
derivative-free optimization algorithm chosen in the present work
reminds of the popular Q-learning algorithm [26], which learns to
take appropriate actions (here: MR sequences) in a certain state
(previously tested sequences) and environment (scanner and sam-
ples). Learning in realistic environments brings the benefit of
including all possible real-world error sources like sensor noise,
complex mechanical interactions and friction. However, a common
disadvantage of all such real-world optimizations is that they are
expensive, hard to reproduce exactly and usually more time-
consuming (in terms of possible optimization iterations per time)
than pure simulations. Because of that, it appears promising to
combine simulation and real world based optimizations to hybrid
approaches, which, for example, might intermittently update and
improve a simulation-based optimization by real measurements.

However, also in the case of MRI, even simple systems may be
challenging to model as the model has to be extended by experi-
mental imperfections, e.g. eddy currents, gradient delays, and
amplifier heating [27] in case of MR image encoding. Consequently,
potential theoretical benefits of pure simulations - such as compu-
tational speed, reduced costs – are counterbalanced by the fact that
simulating the real world accurately is arbitrarily complicated. This
may not be an issue for some applications, but as the final goal of
MRI in most cases is the real experimental implementation, it may
actually be a severe bottleneck.

Moreover, instead of discovery of novel contrasts, one could
exactly take such imperfections as a task for an optimization. For
instance, the current off-resonant pulses could be optimized to

generate a fast/robust fat-saturation, using an expensively
acquired fat-artifact-free image as a target. In addition, B0 or B1

inhomogeneity-robust sequences optimized at the scanner are
conceivable to be found. In general, not only complete novel strate-
gies can be aimed for, but also small optimizations of existing
approaches can be performed elegantly with the MR-double-zero
approach. The optimization parameters are not limited to
seq ¼ B1;Dx;npð Þ as shown in this proof-of-concept, but could also
be parameters such as echo time, repetition time or flip angle
seq ¼ TE;TR; FAð Þ. For instance, variable flip angle approaches
could potentially be efficiently optimized with the proposed
framework.

4.6. Future ideas and outlook

For the described proof of principle, a well know contrast mech-
anism was investigated. The ultimate goal could be to provide any
target of interest. The proposed framework would then be used to
learn how to map from the object/sample to the target by exploit-
ing MRmethodology. Here it is important, that not only the feature
of interest is well-prepared in the used samples, but also to rule
out correlations by ‘randomizing’ other properties that are not tar-
geted, as shown in the present case for relaxation effects, as well as
for the glucose contamination. In general, all contaminations
against which the developed sequence should be robust, must be
part of the training data established by the samples. Well-
prepared samples are therefore a crucial step for the presented
approach. Until now, we only showed re-discovery of a CEST con-
trast mechanism, but novel discoveries are in principle possible for
samples already.

In contrast, for learning directly in vivo, the rather lengthy scan
time in the order of several hours might be challenging, but it is
still conceivable if the dimensionality can be reasonably reduced.
Furthermore, one could split the learning phase into several ses-
sions or run the optimization on multiple scanners with similar
targets in parallel.

As a speculative future application, MR-double-zero might be
used complementary to the radiomics approach that is of increas-
ing popularity in the medical context of MRI [28]. Radiomics relies
on using all available multi-modal imaging information to find cor-
relations with pathology, e.g. brain tumors. Instead of looking for
correlations in already existing data from conventional imaging
methodologies, real-world based optimization of MR sequences
and reconstructions that map to a known outcome, prognosis
etc., thus explicitly designing the data generation process to corre-
late with the desired target information, might be a promising step
towards novel, targeted MRI methods applied for medical
diagnosis.

However, also well-designed experiments in samples can lead
to novel concepts that can subsequently be translated for in vivo
application, similar to many previous MRI breakthroughs found
by ‘trial-and-error’ or grid search approaches in samples and
in vivo in the past. The found glucose-invariant creatine mapping
in the present work, by using different B1 and offsets, is such a con-
cept that could now be investigated in more detail using human
intuition, Bloch simulations, or more detailed grid-search
measurements.

5. Conclusion

MR-double-zero is able to discover completely new MRI con-
trasts without requiring an explicit description of the underlying
mechanism in form of a theoretical model. This was exemplarily
demonstrated for a specific chemical-exchange-weighting, but it
is conceivable that MR-double-zero could also discover yet
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unknownMRI contrast correlations given suitable samples and tar-
gets are provided.
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[56] Chávez FV, Halle B. Molecular basis of water proton relaxation in gels and tissue.
Magnetic Resonance in Medicine, 2006;56(1):73–81. doi:10.1002/mrm.20912

[57] Herz K, Gandhi C, Schuppert M, Deshmane A, Scheffler K, Zaiss M. CEST imag-
ing at 9.4 T using adjusted adiabatic spin-lock pulses for on- and off-resonant
T1ρ-dominated Z-spectrum acquisition. Magnetic Resonance in Medicine, 2019;
81(1):275–290. doi:10.1002/mrm.27380

[58] Glang F, Fabian M, German A, et al. Linear projection-based CEST reconstruction:
the simplest explainable AI. Proceedings of 2021 ISMRM & SMRT Annual Meeting
& Exhibition (ISMRM 2021), 2021;

[59] Fabian MS, Glang F, Khakzar KM, et al. Reduction of 7T CEST scan time and
evaluation by L1-regularised linear projections. Proceedings of 2021 ISMRM &

117



References

SMRT Annual Meeting & Exhibition (ISMRM 2021), 2021;

[60] Glang F, Fabian MS, German A, et al. Linear projection-based CEST parameter
estimation. NMR in Biomedicine, 2022;pages 1–17. doi:10.1002/nbm.4697

[61] Zaiss M, Ehses P, Scheffler K. Snapshot-CEST: Optimizing spiral-centric-reordered
gradient echo acquisition for fast and robust 3D CEST MRI at 9.4 T. NMR in
Biomedicine, 2018;31(4). doi:10.1002/nbm.3879

[62] Stirnberg R, Huijbers W, Brenner D, Poser BA, Breteler M, Stöcker T. Rapid
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