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Abstract

For robots to assist and support humans in their daily lives, they will have to
learn from - and adapt to our world. But, applying machine learning to real world
problems is still very challenging. The real world is full of uncertainties and always
changing, shifting the distribution of the observed data. This means: a static
dataset is not representative of the real world for long. Additionally, data-collection
is expensive and only small amounts of data can be collected for a task. In this
setting, the algorithms developed for the static domain using large datasets will not
transfer well, even if they have taken part in the machine learning success stories
of the recent past.

The work presented in this thesis is concerned with a specific type of real world
machine learning application: to endow robots with the capability to learn in the
real world. For this to happen the robot needs to gather the data necessary to
learn through interactions with the environment. In this thesis the question of how
representations can be learned that allow for quick generalization and adaptation
to new tasks is of interested. The work presented investigates how the robot can
build upon already learned representations to continue learning from experience
over its lifetime. This would give the robot a capability that we humans have: to
adapt quickly previously learned skills to new tasks. In this thesis we approach the
question of how to learn representations that generalize quickly from two different
but interconnected directions:

1. Model Based Learning in the real world, where a representation of the
environment is learned iteratively from data collected on the robot through
control.

The human brain cannot afford to learn every task from scratch, that is why
it builds models (Lake et al.}2017). Models come with the promise of flexi-
ble adaptation to new tasks without having to re-learn everything each time.
But, the learned models can be biased, wrong or old. In Chapter |2|(Bechtle
et al}|2020a) we showed how including the predictive uncertainty of learned
dynamic models during policy optimization, facilitates exploration by resolv-
ing uncertainty in the models, and thus improves task performance, model
predictions and generalization. Chapter (Bechtle et al.,|2020c) presents an
unbiased loss function for controller learning, that trades off predictive task
performance and forward model quality. We analyse how this loss facilitates
data collection that reduces model bias and as a consequence improves task
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learning. Chapter (Bechtle et al.;|2020b) tackles the problem of biased mod-
els from a different perspective: by leveraging prior analytical knowledge, and
combining it with a data driven approach, a visual dynamics model is learned
that generalizes well on manipulation tasks.

. Learning to Learn in the real world, where the robot learns how to learn a

task and thus a representation of the learning problem.

Humans have the remarkable capability to continuously learn and adapt to
new tasks - we are able to learn how to learn. Inspired by this, we propose
on a fully differentiable learning to learn framework (Bechtle et al.l|2019) in
Chapter [5] enabling robots to learn how to learn. In the learning to learn
phase a loss function for a task is learned from experience. Later, after the
robot learned how to learn, the loss can be used directly on new tasks. In (Das
et al.l|2020a)) we show how this learning to learn principle can also be used
on an object manipulation task where the robot learned from human demon-
strations. Learning to learn is a fundamental piece of human intelligence -
endowing robots with such ability is a fundamental research question.

These directions fundamentally are concerned with learning representations that
generalize quickly to new tasks and scenarios, which is a key capability that allows
us humans to continuously learn.
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Kurzfassung

Damit Roboter uns Menschen in unserem téglichen Leben unterstiitzen konnen,
miissen sie von unserer Welt lernen und sich ihr anpassen. Die Anwendung des ma-
schinellen Lernens auf reale Probleme stellt immer noch eine grofie Herausforderung
dar. Die reale Welt ist voller Ungewissheiten und veréndert sich sténdig, wodurch
sich die Verteilung der Beobachtungen stidndig verschiebt. Dies bedeutet, dass ein
statischer Datensatz die reale Welt nicht lange darstellt. Aulerdem ist die Daten-
erfassung schwieriger und meistens kann immer nur eine kleine Menge an Daten
fiir eine Aufgabe gesammelt werden. Aus diesem Grund lassen sich Algorithmen,
die fiir einen statischen Problembereich und mithilfe grofle Datensétze entwickelt
wurden, nicht gut auf diese Probleme iibertragen, auch wenn sie an den jiingsten
Erfolgsgeschichten des maschinellen Lernens beteiligt waren.

Diese Arbeit befasst sich mit einer speziellen Art von Anwendung des maschinel-
len Lernens in der realen Welt und zwar Roboter mit der Fahigkeit auszustatten,
in der realen Welt zu lernen. Dazu muss der Roboter durch Interaktionen mit der
Umgebung die zum Lernen notwendigen Daten sammeln. Diese Arbeit befasst sich
mit der Frage, wie Représentationen erlernt werden kénnen, die eine schnelle Gene-
ralisierung und Anpassung an neue Aufgaben erméglichen. Wie kann der Roboter
auf bereits Erlerntes aufbauen, um wahrend seiner gesamten Lebenszeit weiter aus
Erfahrungen zu lernen? Dies wiirde dem Roboter eine Fahigkeit verleihen, die auch
wir Menschen haben: schnell zuvor erlernte Fahigkeiten an neue Aufgaben anzu-
passen. Ich méchte verstehen, wie lebenslanges Lernen in diesem Rahmen moglich
ist: Der Roboter muss entscheiden, was er wann und wie lernen will.Insbesondere
beschéftigt sich die Arbeit mit der Frage, wie man Reprisentationen lernt, die zu
schneller Generalisierung fithren und dadurch ein schnelles Erlernen neuer Auf-
gaben ermoglichen. Ich stiitze meine Forschung auf Erkenntnisse aus den Neuro-
und Kognitionswissenschaften sowie der Entwicklungspsychologie und basiere mei-
ne Ansétze auf diesen Erkenntnissen, um Lernalgorithmen fiir Roboter zu entwi-
ckeln.

Der Inhalt dieser Arbeit ndhert sich dieser Frage aus zwei verschiedenen, aber
miteinander verbundenen Richtungen:

1. Modellbasiertes Lernen in der realen Welt: Eine Représentation der Um-
gebung wird iterativ aus den durch den Roboter gesammelten Daten erlernt.

Das menschliche Gehirn kann nicht jede Aufgabe von Grund auf neu zu er-
lernen, deshalb baut es Kognitive Modelle der Umgebung (Lake et al.,|2017).
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Modelle versprechen eine flexible Anpassung an neue Aufgaben, ohne dass je-
des Mal alles neu erlernt werden muss. Allerdings kénnen die erlernten Model-
le verzerrt, falsch oder alt sein. In Kapitel (Bechtle et al.}|2020a) zeigen wir,
wie die Einbeziehung der Unsicherheit von Vorhersagen der gelernter dynami-
schen Modelle wiahrend der Optimierung von Regelungsstrategien die Erkun-
dung der Umgebung erleichtert und dadurch relevante Daten erfasst werden
konnen. Das Ziel ist nun, nicht nur eine bestimmte Aufgabe zu erfiillen, aber
auch die Unsicherheit in den Modellen aufzulosen. Dadurch verbessert sich
nicht nur das Modell, welches dann fiir andere Aufgaben genutzt werden kann,
sondern auch die Leistung der Regelungsstrategie. Kapitel (3| (Bechtle et al.|
2020c)) stellt eine Verlustfunktion fiir das Lernen von Regelungsstrategien vor,
die auch die Qualitdt des Modells beriicksichtigt. In diesem Fall ist nicht nur
von Bedeutung wie gut die gegebene Aufgabe erfiillt wurde, sondern auch wie
genau das Modell Vorhersagen getroffen hat. Wir analysieren, wie diese Ver-
lustfunktion die Datenerfassung erleichtert, um ein besseres Modell zu lernen
und infolgedessen das Aufgabenlernen verbessert. Kapitel 4| (Bechtle et al.|
2020b)) betrachtet das Problem voreingenommener Modelle von einer anderen
Perspektive: Durch die Nutzung von analytischem Vorwissen und die Kombi-
nation mit einem datengesteuerten Ansatz wird ein visuelles Dynamikmodell
erlernt, das bei Manipulationsaufgaben gute Ergebnisse erzielt, auch fiir neue
Aufgaben.

2. Lernen wie man lernt in der realen Welt. Der Roboter lernt, wie er eine
Aufgabe und damit eine Darstellung des Lernproblems erlernen kann.

Menschen haben die bemerkenswerte Fahigkeit, kontinuierlich zu lernen und
sich an neue Aufgaben anzupassen. Wir sind in der Lage zu lernen, wie man
lernt. Davon inspiriert schlagen wir in Kapitel [5| ein vollsténdig differenzier-
bares Lernsystem vor, das Robotern ermdglicht, zu lernen, wie man lernt. In
der Lernphase wird eine Verlustfunktion fiir eine Aufgabe aus Erfahrungen
erlernt. Spéter, nachdem der Roboter gelernt hat, wie man lernt, kann diese
Funktion direkt auf neue Aufgaben angewendet werden. In (Das et al.|[2020a)
zeigen wir, wie dieses Lernprinzip auch bei einer Objektmanipulationsaufgabe
angewendet werden kann, bei der der Roboter von menschlichen Demonstra-
tionen gelernt hat. Lernen zu lernen ist ein grundlegender Bestandteil der
menschlichen Intelligenz. Roboter mit dieser Fahigkeit auszustatten ist eine
grundlegende Forschungsfrage.

Diese beiden Richtungen befassen sich im Wesentlichen mit dem Erlernen von Re-
prisentationen, die sich schnell fiir neue Aufgaben und Szenarien benutzen lassen.
Diese Form von Generalisierung ist eine Schliisselfahigkeit, die es uns Menschen
ermoglicht, kontinuierlich zu lernen.
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Chapter 1

Introduction

Humans continuously learn over their lifespan. We are able to acquire, extend and
transfer skills easily from one task and context to a different one. We might need to
adjust what we learned, re-learn parts or fully learn aspects of the new tasks, but
we rarely learn completely from scratch in our adult life. The ability to transfer and
re-use what was previously learned is a fundamental aspect of human intelligence.
To endow robots with the capability to learn continuously in the real world is still
an open research problem and of fundamental interest to this thesis.

In contrast to large scale neural network models that are trained on big datasets
for some specific domain, applying machine learning to real world problems com-
prises different challenges: the real world is full of uncertainties and changing over
time. Feedback systems, like robots, acting in the real world will be faced with an
ever shifting data distributions of the collected data. For example, a robot acting in
a kitchen environment will be faced with dishes placed always in a slightly different
way, that nevertheless need to be loaded into the dishwasher. Additionally, large
amounts of data might not always be available for learning. It is thus challenging
for algorithms that were developed for a more static domain to transfer well since
real world data is rarely static and a collected training set will not represent the
real world for long.

The work in this thesis is concerned with a specific type of real world machine
learning application: to endow robots with the capability to learn in the real world.
Specifically learning within the action-perception-learning loop, where the robot
gathers the data it needs to learn through interactions with - and perception of -
the environment. For lifelong learning to happen within this loop, the robot must
decide what to learn, when and how.

Being able to generalize quickly is a key capability that allows us humans to
continuously learn. In the context of this thesis the question of how to learn rep-
resentations that generalize quickly and enable fast learning of new tasks is of
particular importance. The work in this thesis is centered around this fundamental
research question and is organised around two interconnected directions: 1) Model
Based Learning in the Action Perception Loop, where a model of the environ-
ment and a policy are learned iteratively from data collected on the robot and 2)
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Learning to Learn in the Action Perception Loop, where the robot learns how
to learn a task, often also referred to as meta-learning. Both of these directions are
concerned with learning representations that generalize quickly to new tasks and
scenarios.

%Oﬁ

Figure 1.1: Lifelong learning in the real world. The robot acts in the world and
collects data. The data is then used to learn more about the world. How to decide
which actions to take and what to learn from the data? This is a key challenge in
lifelong learning.

1.1 Background

Interacting with and perceiving the environment are fundamental sources of infor-
mation that allow humans to learn and acquire a myriad of skills over a lifespan.
(Parisi et al.,|2019) note that, since their moment of birth, children are immersed
in a highly dynamical and multi-modal environment. This environment provides
children with the opportunity to shape their perception, cognition and motor be-
haviour. Also robots need to be able to learn from these dynamic and rich envi-
ronments if we want them to interact, assist and support humans in their daily
lives. Just like humans, robots will have to continuously specialize their skills in
an experience driven way: by building on top of the already existing, previously
learned, sensorimotor contingencies (Tani| [2016). Thus, the fundamental question
now is, how to learn from the real world?

Although there are many perspective on learning, in this thesis we align ourselves
with the perspective presented in (Lake et al.l|2017), where the authors see building
of representations, like models, as the hallmark of human level intelligence. Humans
build ’cognitive maps’ of the worlds that can be seen as models and use them to
plan action sequences for complex tasks (Dolan and Dayan||2013). Another key
ingredient of human intelligence is the ability to learn how to learn (Lake et al.|
2017), allowing humans to rapidly learn new models from a rather limited amount of
new experiences. This is possible because humans are able to learn a representation
of how to learn that can quickly be reused in a new context (Lake et al.||2017).
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Humans learn from experience they collect throughout their lives. But how to
make robots learn from the experience they gather throughout a lifetime? Lifelong
learning in the robotics literature has been looked at from various angles. The
most holistic view of trying to solve the question of how to continuously learn in
an environment with ever changing data distribution can be found in the literature
related to developmental robotics (Lungarella et al.l|2003). Developmental robotics
is the interdisciplinary approach that views the emergence of motor and cognitive
capabilities in the artificial agent as analogous to the developmental principles
observed in children. In this context lifelong learning means improving skills and
increasing the complexity of tasks to handle over time and experience starting from
scratch. Even if the developmental approach inherently deals with all aspects of
lifelong learning on robots, this endeavour extremely challenging. Breaking down
the challenges, more concrete aspects of lifelong learning that have been studied in
the literature and are relevant to the work in this thesis will be outlined next.

1.1.1 Intrinsic Motivation

Intrinsically motivated learning has been studied widely as a building block for au-
tonomous lifelong learning (Santucci et al., 2020). The main ambition of intrinsic
motivation or curiosity driven leaning, is for the artificial agent to generate au-
tonomously signals that lead to goal and skill discovery. Also in humans, curiosity
has repeatedly been recognized as a fundamental building block of behaviour. Influ-
encing our behaviour in both, positive and negative ways, curiosity is a driving force
for our mental development in all life stages (Loewenstein, |1994). Some authors
would go as far as to consider curiosity essential for the development of autonomous
behaviour in humans (Whitel |1959). Nevertheless, up until today, there has not
been a clear agreement on what curiosity exactly means and how it manifest itself
in humans or in artificial agents. Authors generally agree that curiosity is a super-
ficial affection - it can arise, diverge and end promptly and is therefore very easily
satisfied (Burke,|1958). The definition of curiosity that has motivated the work in
this thesis, was introduced by Kagan (Kagan||1972)) in a classic article on motiva-
tion. The authors identified four different basic human instincts among those the
motive to resolve uncertainty, which was then identified as being synonymous with
curiosity.

Thinking about a robotic setting, intrinsic motivation or curiosity should push
the robot to detect new scenarios and parts of the environment that it did not
experience before. When framing the goal of curiosity in this way, intrinsic motiva-
tion is tightly connected to the exploration-exploitation problem in Reinforcement
Learning. Consequently the concept of curiosity has been explored within the re-
inforcement learning literature from various angles. For example, a first attempt
towards intrinsically motivated agents consisted in rewarding agents to minimize
prediction errors of sensory events (Barto,|2004; Singh et al.| [2004,|2010). The in-
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trinsic rewards come from a novelty measurement. The agent has a built-in notion
of the salience of stimuli. The intrinsic reward for each salient event is proportional
to the error in the prediction of that salient event. This initial work was designed
for low-dimensional and discrete state-and-action spaces. Alternatively (Forestier
and Oudeyer| |2016|) define intrinsic reward as a measure of learning progress. The
sensorimotor space is subdivided into different sub-areas. The sub-area that ex-
pects the highest learning progress is chosen to be acted within. Recently, curiosity
as a means to better explore was also investigated for high-dimensional continuous
state spaces (Bellemare et al.,[2016; Pathak et al.l|2017). Most of this work, includ-
ing recent efforts towards curiosity driven robot learning (Tanneberg et al., (2019}
Laversanne-Finot et al., |2018)), has defined curiosity as a function of model pre-
diction error and within a model-free reinforcement learning framework. In Model
Based Reinforcement Learning, (Shyam et al., [2018)) proposed a measure of dis-
agreement as exploration signal. (Levine et al.| 2016) propose a maximum entropy
exploration behaviour. While (Deisenroth and Rasmussen;|2011} Chua et al.} 2018)
utilize model uncertainty to generate trajectory distributions, the uncertainty does
not play an explicit role in the cost. All of these approaches do not explicitly try
to resolve uncertainty in the current model of the dynamics or the environment,
which is in contrast to the approach presented in this thesis where the uncertainty
of the model is explicitly used to guide the selection of actions.

1.1.2 Model Based Approaches

Humans have impressive generalization capabilities when it comes to manipulating
objects and tools. These capabilities are, at least partially, a result of humans
having internal models of their bodies (Hoffmann et al.L[2010) which enables them to
predict the consequences of their actions. Endowing robots with similar capabilities
remains an important open research problem.

From a robotics perspective, forward and inverse models are representations of
the physical properties of the robot. The forward model represents the causal re-
lationship of the effect of an action, the inverse model represents a mapping from
the current state to an action, given a desired goal. In the neuroscience and cogni-
tive science literature (Miall and Wolpert| 1996 |Ito||1970), the presence of internal
models, as representation of the body in the human brain (Ishikawa et al., 2016)) are
believed to play an important role. Forward models are of potential use for more
than only representing the causal relationship of a movement in the sensory do-
main, but also for solving other fundamental cognitive problems: faster adaptation
through prediction ((Wolpert et al., [1995; Hoffmann et al.| 2010)), anticipation of
self caused movements, leading to a sense of agency (Blakemore and Frith) 2003|),
and enabling mental practice procedures through predictions, by only imagining
the sequence of actions without actually performing them (Jackson et al.l 2003).
All of these scenarios, involve a motor command as one of the inputs to the forward
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model. This motor command could be the output of an inverse model or a policy.

Data driven approaches to learn control have been introduced as an alternative
to overcome the limitations of imperfect analytical models of the robotic tasks
(Bristow et al.l 2006). One particular form of data driven approaches for control
is Model Based Reinforcement Learning (MBRL). The goal of MBRL is to solve a
task through learning a model f of the true dynamics fyea of the system that is
subsequently used to solve an optimal control problem. The dynamics are described
through x;11 = f(xs, ;) where x; and u; are the state and action of the current time
step, and x4 the state at the next time step. f represents the learned model of the
dynamics. MBRL seeks to find a policy u; = n(x;) that minimizes a cost J (x;, u;)
describing the desired behavior. Policy optimization can be performed in various
ways such as trajectory sampling approaches as summarized and evaluated in (Chua;
et al.;|2018), random shooting methods, where trajectories are randomly chosen and
evaluated with the learned model, or iterative LQG approaches, as in (Levine and
Koltun, [2013). Model learning also can be tackled with various methods. When
learning dynamics models from data the literature offers a variety of choices of
machine learning algorithms used for this learning task. From linear regression
(Schaal et al., 2002; [Haruno et al., |2001), to gaussian mixture (Khansari-Zadeh
and Billard| 2011} |Calinon et al.l|2010) or gaussian process regression (Deisenroth
and Rasmussen, 2011} |[Kocijan et al., |2004) as well as using feedfoward- or recur-
rent neural networks for fitting the models (Lenz et al. 2015, |Sanchez-Gonzalez
et al.;|2018} Rueckert et al., [2017). These approaches usually collect a dataset for
supervised learning, and fit the models in an end to end fashion from input to
output. Some other works however have considered more structured approaches
for model learning, including analytical priors during the learning process. For
example in (Calandra et al.. |2015) only the residual term of the external forces is
learned for inverse dynamics model. In (Lutter et al.;[2019) the authors learn deep
neural networks for each component of the equations of motion of a manipulator
whereas in (Ledezma and Haddadin, |2017) the authors learn the dynamics param-
eters directly via gradient descent. Similar (Sutanto et al.}|2020) proposes a fully
differentiable version of the recursive newton euler algorithm, allowing the inertial
parameters to be learned using gradient descent and automatic-differentiation for
gradient computation.

In model based learning for control, the learned model is used to simulate the
robot behaviour when optimizing or learning a trajectory or control policy. The
learned model and the optimizer are task independent; this independence promises
sample efficiency and generalization capabilities, as an already learned model can
be reused for new tasks. As a side effect, however, the learned models quality can
drastically affect the computed solution, as pointed out in (Schaal, |1997; |Atkeson
and Santamaria, [1997; |[Deisenroth) |2010)), since the policy is optimized given the
current learned model and not by interacting with the robot. This effect is called
model bias (Deisenroth) [2010) and can lead to a policy with drastically lower per-
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formance on the real robot. The work presented in this thesis shows how model-bias
could be alleviated in order to learn better models that generalize to new tasks.
Specifically we argue that exploration can encourage visiting states which resolve
ambiguities in the learned model and therefore lead to both better models and that
by considering the forward model’s quality during controller learning a less biased
model can be learned.

1.1.3 Learning to Learn

Learning to learn refers to the process of learning over multiple learning processes.
Usually in machine learning, the goal is to learn an input-output relationship, for
example a function, from data. In the case of learning to learn or meta learning,
the goal is to learn the process of learning (Hospedales et al.}|2020). In other words,
the goal is to learn representations of the underlying learning mechanisms, with the
hope of being able to re-use them later for similar but different tasks.

In humans learning to learn is an inherent part of our development. In machine
learning, historically (Schmidhuber| |1987} |Bengio and Bengio, [1990; [Thrun and
Pratt| 2012a)) have been the first works presenting approaches on implementing
learning to learn. (Schmidhuber} 1987) present in their work a framework for self-
referential learning where the neural network takes as an input its own weights,
and outputs the update for these respective weights. In (Bengio and Bengio, [1990)
biologically plausible learning rules, like synaptic updates, are learned and used to
update the neural network weights. And (Thrun and Pratt, 2012a) were the first
to more clearly formalized the meaning of learning to learn in artificial agents and
presented some theoretical and practical justifications.

More recently, as machine learning tools become more and more part of our daily
lifes, there has a been a wide interest in finding ways to improve learning speeds
and generalization to new tasks through meta-learning. The main directions of
the research in this area can be divided into learning representations that can be
easily adapted to new tasks (Finn et al.,|2017), learning unsupervised rules that
can be transferred between tasks (Metz et al.| 2019} Hsu et al.|, |2018), learning
optimizer policies that transform policy updates with respect to known loss or
reward functions (Maclaurin et al.| 2015;|Andrychowicz et al.||2016; |Li and Malik|
2016| |Franceschi et al.| |2017} [Meier et all 2018; [Duan et al.) |2016)), or learning
loss/reward landscapes (Sung et all |2017; 7). The work presented in this thesis
falls into the category of learning loss landscapes.

A range of recent works also demonstrate advantages of meta-learning for im-
proving exploration strategies in RL settings, especially in the presence of sparse
rewards. |Mendonca et al.|(2019) propose training an agent to mimic expert demon-
strations while only having access to a sparse reward signal during test time. In
the work of Hausman et al.| (2018)) and |Gupta et al.| (2018), a structured latent
exploration space is learned from prior experience, which enables fast exploration
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in novel tasks. |Zou et al| (2019) propose a method for automatically learning
potential-based reward shaping by learning the Q-function parameters during the
training phase, such that after training the Q-function can adapt quickly to new
tasks. In our work, we also demonstrate that we can significantly improve the RL
sample efficiency by training our meta-loss to optimize an actor policy, even when
providing only limited or no reward information to the learned loss function at test
time.

Similar to work by |Andrychowicz et al.| (2016); Duan et al.| (2016), we aim at
learning a loss function that can be applied to various optimizee models. An op-
timizee is the function that we are trying to optimize. However, our framework
does not require a specific recurrent architecture of the optimizer and can operate
without an explicit external loss or reward function during test time. Furthermore,
as our learned loss functions are independent of the models to be optimized, they
can be easily transferred to other optimizee models.

Closest to our method are the works on evolved policy gradients (?), teacher
networks (Wu et al., 2018), meta-critics (Sung et al. 2017) and meta-gradient
RL (Xu et al.} 2018). In contrast to using an evolutionary approach (e.g. 7), we
design a differentiable framework and describe a way to optimize the loss function
with gradient descent in both supervised and reinforcement learning settings. (Wu
et al., |2018)) propose that instead of learning a differentiable loss function directly,
a teacher network is trained to predict parameters of a manually designed loss
function, whereas each new loss function class requires a new teacher network design
and training. In (Xu et al.||2018), discount and bootstrapping parameters are
learned online to optimize a task-specific meta-objective. Our method does not
require manual design of the loss function parameterization or choosing particular
parameters that have to be optimized, as our loss functions are learned entirely from
data. Finally, in work by (Sung et al.| 2017) a meta-critic is learned to provide a
task-conditional value function, used to train an actor policy. Although training a
meta-critic in the supervised setting reduces to learning a loss function as in our
work, in the reinforcement learning setting we show that it is possible to use learned
loss functions to optimize policies directly with gradient descent.

The idea of learning loss landscapes or reward functions in the reinforcement
learning setting can be traced back to the field of inverse reinforcement learning (Ng
et al.,|2000; |Abbeel and Ng} 2004, IRL). However, in contrast to the original goal of
IRL of inferring reward functions from expert demonstrations, in our work we aim
at extending this idea and learning loss functions that can improve learning speeds
and generalization for a wider range of applications. Furthermore, we design our
framework to be fully differentiable, facilitating the training of both the learned
meta-loss and optimizee models. Moreover we also show, how including expert
demonstrations during meta-train time facilitiates loss learning for visual object
manipulation that outperforms state of the art IRL algorithms.

In the following sections the two main research directions of the work presented
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in this thesis are presented in more detail alongside with the main contributions
and the key publications.

1.2 Model Based Learning in the Action
Perception Loop

The human brain cannot afford the time and the resources to learn every task
from scratch, for this reason it builds models that it can reuse (Lake et all 2017).
Also in robotics, models come with the promise of flexible adaptation to new tasks
without having to re-learn everything from scratch each time. Sample efficiency
and fast generalization are key benefits of model based learning and essential for
lifelong learning. But, the learned models can be biased, wrong or old and thus
significantly hinder lifelong learning.

1.2.1 Thesis Contributions
Learning better Models

In model-based learning, the policy is learned given the model. When the policy is
used on the robot, it affects the data distribution the robot experiences (see Fig.
. The data is then used to learn and update the model. In this scenario a
biased model will lead to a sub-optimal policy (and thus sub-optimal data collec-
tion) that might enforce the bias. However, even an unbiased model that is only
covering some parts of the state space, will not allow a policy to explore unseen
parts of the environment (since it does not know about them) and to discover new
skills and goals. In (Bechtle et al.||2020a) we show how including the predictive
uncertainty of learned probabilistic dynamic models during policy optimization, fa-
cilitates exploration by resolving uncertainty in the models, and thus improves task
performance, model predictions and generalization. The presented model-based re-
inforcement learning framework leverages results from stochastic optimal control to
include, in a principled way, the predictive uncertainty of the learned model when
optimizing a feedback policy. The resulting policy not only tries to optimize a task
specific cost, but will also explore uncertainties in the states around the currently
optimal trajectory. This leads to improved task performance and model quality. In
Chapter [2| the approach and benefits of our work are explained in further detail.
We also study model quality and its implications in (Bechtle et al.,|2020c), where
we present an unbiased loss function for controller and policy learning, that trades
off predictive task performance and forward model quality. We present an analysis
of how this loss results in a controller that shifts the observed data distribution
such that the collected data reduces model bias, improves model quality and, as
a consequence, improves task learning. We present empirical and theoretical anal-
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ysis. In particular, we also show how this unbiased loss can be successfully used
on contact rich tasks on a quadruped dynamic walking task. Making and breaking
contact is fundamental for acting in the real world and still a major challenge in
robotics. Chapter[3|will explain in further detail this work.

Leveraging Structure for Model Learning

Another promising direction to allow for fast generalization and adaptation of mod-
els, is to leverage structured prior analytical knowledge, for example the analytical
models of the robot kinematics and dynamics. Combining this structured infor-
mation with data driven approaches will allow to leverage the generality of the
analytical models while staying flexible to changes and unmodeled components.
In (Bechtle et al.,|2020b) and Chapterwe present a self-supervised learning ap-
proach, that combines multi-modal sensory information to learn a visual predictive
model used for object manipulation tasks. During learning we encode the struc-
tured information of the robot kinematics as a strong physical inductive bias to
guide the visual detection of the manipulated object. We show how combining
high dimensional sensory input, like images, with low dimensional structured pro-
prioceptive information, allows for model learning that generalizes robustly to new
and out of distribution tasks. In Chapter |3} we also show how combining structure
and data driven learning accelerates learning of the robot- and contact-dynamics.
This allows for self-supervised model-based policy learning of complex tasks, like
walking, purely from observed data.

The work presented in this thesis on model based learning, investigates the ques-
tion of how to learn better models from different perspectives. In (Bechtle et al.l
2020a)) we show how using exploration allows for better model learning. The key
distinction of our work is that we include the exploration signal already during
policy optimization, considering the uncertainty of the model to when optimizing a
policy. This is in contrast to existing work on exploration in Reinforcement Learn-
ing, where the exploration usually happens in the acting phase by adding noise
to the policy output (Levine and Koltun| 2013 Deisenroth and Rasmussen} [2011).
In general exploration in model based learning has not been studies extensively in
the literature so far, even if learning a better model benefits the overall learning
task. We also investigated how to formulate an objective function where the pol-
icy is incentivized to accomplish a task but also to learn a good forward model.
Existing work (Jordan and Rumelhart) |1992) did not consider an objective func-
tion that trades off task and model learning, and thus struggles with generalizing
the task learning to higher dimensional systems. Adding structure to the learning
problem is a different avenue taken in the work presented in this thesis to learn
better models that generalize beyond the training task. In (Bechtle et al.||2020b)
we show that fusing vision and structured proprioceptive information allows for
better model learning. The learned models generalize well beyond training data,
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this is in contrast to learning approaches that do not leverage the structure, that
have difficulties generalizing to new tasks as we show in (Bechtle et al.||2020b) and

Chapter

1.3 Learning to Learn in the Action Perception
Loop

Humans have the remarkable capability to continuously learn and adapt to new
tasks, in other words: we are able to learn how to learn. To endow robots with the
capability of learning to learn, will allow them to make inference that goes beyond
the training data and thus enable fast learning and adaptation of skills.

When humans learn a new skill, trial and error plays an important role. Each
trial gives us more information about the task and we are able to learn from the
collected experiences through interactions.

1.3.1 Thesis Contributions

Inspired by this, we proposed on a fully differentiable learning to learn framework
(Bechtle et all|2019) presented in Chapter This framework enables robots to
learn how to learn. In the learning to learn phase a loss function for a task is
learned from experience: The robot tries to accomplish a task, collects data-points
by interacting with the environment, and thereby learns a loss function to increase
learning progress. Later, after the robot learned to learn, the loss can be used
directly on new tasks.

Another way for humans to learn how to learn, is by having a teacher, an ex-
ample or some other form of extra information, like a manual. The learning to
learn framework of (Bechtle et al.|[2019) can be extended to include this notion of
learning to learn, namely learning from expert knowledge. In (Bechtle et al.}2019)
we show how this extra information can be used to encode exploratory behaviour
in the learned policies, or how analytical structure can be used to shape the learned
loss. In (Das et al.l|2020a) we show how this learning to learn principle can also be
used on tasks where the robot learned to learn from human demonstrations. The
human demonstrates how to accomplish a task. The robot observes the demon-
stration through its camera and learns how to learn from them. In (Davchev et al.|
2021), we show how our learning to learn framework can encode different speeds of
demonstrations. A time invariant loss is learned from misaligned demonstrations
and can be used for task execution at different speeds. This allows for example
for slower manipulation of fragile objects and faster manipulation of sturdy ones -
another axis of generalisation that is crucial for lifelong learning.

Our work distinguished itself from the related learning to learn literature pre-
sented in Sectionin two key aspects. Firstly, in our framework, we learn a loss

10
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function. Learning a loss function is fundamentally different from learning a rep-
resentation of the policy parameters as in (Finn et al.| [2017) or a gradient update
rule as in (Meier et al.||2018). It is different since a loss is a more general repre-
sentation of the learning task, that has potential to generalize to new, also out of
distribution, tasks. The same loss function, for example the mean squared error
loss, is widely used in machine learning for fitting data that follows very different
distributions. Thus, the key idea behind this framework is to learn a representation
of the learning mechanisms that can be reused in a lifelong learning setting. Sec-
ondly, the way we learn the loss function is different from what has been presented
so far. In (Houthooft et al.l|2018)a loss function is also learned, but the optimal
parameters of the loss are found with evolutionary learning strategies. This takes
a lot of time and is very sample inefficient. In contrast to this, our framework
is fully differentiable and can be learned completely with gradient-based methods.
How the loss function is learned, distinguishes itself from the inverse reinforcement
learning literature (Ng et al., |2000; |Abbeel and Ng| 2004): Besides of not needing
demonstrations, and thus being able to learn in a self-supervised way, our frame-
work given its differentiability, learns a loss that is optimized to increase learning
progress in the optimizee. It can evaluate the learning progress of the optimizee
and thus it can evaluate how well the current loss was at optimizing the optimizee.

11
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Chapter 2

Curious iLQR: Resolving
Uncertainty in Model-based RL

2.1 Introduction

Model-based reinforcement learning holds promise for sample-efficient learning on
real robots (Atkeson and Santamarial [1997)). The hope is that a model learned on
a set of tasks can be used to learn to achieve new tasks faster. A challenge is then
to ensure that the learned model generalizes beyond the specific tasks used to learn
it. We believe that curiosity, as means of exploration, can help with this challenge.
Though curiosity has been defined in various ways, it is generally considered a
fundamental building block of human behaviour (Loewensteinl |1994) and essential
for the development of autonomous behaviour (White, 1959).

In this work, we take inspiration from (Kagan, 1972)), which defines curiosity
as motivation to resolve uncertainty in the environment. Following this definition,
we postulate that by seeking out uncertainties, a robot is able to learn a model
faster and therefore achieve lower costs more quickly compared to a non-curious
robot. Keeping real robot experiments in mind, our goal is to develop a model-
based reinforcement learning (MBRL) algorithm that optimizes action sequences
to not only minimize a task cost but also to reduce model uncertaintv.

Specifically, our MBRL algorithm it-
erates between learning a probabilistic  mitiat motwor /

. babbling data
model of the robot dynamics and us- 0.8

I
N

ing that model to optimize local control / \
policies (i.e. desired joint trajectories — .-=s-wrmsmoszoreoccseesessosioieoioieiiooions .
and feedback gains) via a curious ver- | Leamaprobabilistic Optimize a curious | 4

iLQR policy using
the dynamics model
up = Ki(Taesived.t — ¢) + ke

dynamics model —_—

sion of the iterative Linear Quadratic
Regulator (iLQR) (Tassa et al.| 2014).
These policies are executed on the robot
to gather new data to improve the dy- Figure 2.1: Approach overview: motor bab-
namics model, closing the loop, as sum- bling data initializes the dynamic model, the

marized in Figure main loop then alternates between model
learning and policy updates.

tep1 ~ N(@ei|(@e, up), Segr)
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In a nutshell, our curious iLQR aims
at optimizing local policies that minimize the cost and explore parts of the model
with high uncertainty. In order to encourage actions that explore states for which
the dynamics model is uncertain, we incorporate the variance of the model pre-
dictions into the cost function evaluation. We propose a computationally efficient
approach to incorporate this uncertainty by leveraging results on risk-sensitive op-
timal control (Jacobson| 1973 |Farshidian and Buchli, 2015). (Jacobson} [1973)
showed that optimizing actions with respect to the expected exponentiated cost
directly takes into account higher order moments of the cost distribution while
affording the explicit computation of the optimal control through Riccati equa-
tions. A risk-sensitive version of iLQR was recently proposed in (Farshidian and
Buchli}|2015). While in these approaches the dynamic model is typically considered
known and uncertainty comes from external disturbances, we propose to instead
explicitly incorporate model uncertainty in the algorithm to favor the exploration
of uncertain parts of the model. The proposed coupling between model learning
and risk-sensitive control explicitly favours actions that resolve the uncertainty in
the model while minimizing a task-related cost.

The contributions of this work are as follows: 1) We present a MBRL algorithm
that learns a global probabilistic model of the dynamics of the robot from data
and show how to utilize the uncertainty of the model for exploration through our
curious iLQR optimization. 2) We demonstrate that our MBRL algorithm can scale
to seven degree of freedom (DoF) manipulation platform in the real world without
requiring demonstrations to initialize the MBRL loop. 3) The results show that
using curiosity not only learns a better model faster on the initial task, but also
that this model generalizes to new tasks more reliably. We perform an extensive
evaluation in both simulation and on hardware.

2.2 Background

The goal of MBRL is to solve a task through learning a model f of the true
dynamics frea Of the system that is subsequently used to solve an optimal control
problem. The dynamics are described through x;41 = f(x;,u;) where x; and u,
are the state and action of the current time step, and x,4; the state at the next
time step. f represents the learned model of the dynamics. MBRL seeks to find
a policy u; = m(x;) that minimizes a cost J (x;, u;) describing the desired behavior.
Policy optimization can be performed in various ways such as trajectory sampling
approaches as summarized and evaluated in (Chua et al.,|2018), random shooting
methods, where trajectories are randomly chosen and evaluated with the learned
model, or iterative LQG approaches, as in (Levine and Koltun, [2013). Model
learning also can be tackled with various methods. (Levine and Abbeel, [2014)
proposes learning linear models of the forward dynamics. In (Chua et al.| 2018)
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the dynamics are learned with an ensemble of neural networks. In general, the
learned model of dynamics can be deterministic as in (]Levine and Abbeel|7 |2014[) or
probabilistic as in (Deisenroth and Rasmussen, 2011} |Chua et al., 2018).

In MBRL, the learned model is used to simulate the robot behaviour when op-
timizing a trajectory or control policy. The learned model and the optimizer are
task independent; this independence promises sample efficiency and generalization
capabilities, as an already learned model can be reused for new tasks. As a side
effect, however, the learned models quality can drastically affect the computed so-
lution, as pointed out in (]SchaalL |1997L|Atkeson and Santamarial|1997t |DeisenrothL
, since the policy is optimized given the current learned model and not by
interacting with the robot. This effect is called model bias (]DeisenrothL |2010D and
can lead to a policy with drastically lower performance on the real robot. We argue
that exploration can alleviate this model-bias. Resolving model uncertainty while
optimizing for a task can encourage visiting states which resolve ambiguities in the
learned model and therefore lead to both better models and control policies.

2.2.1 Intrinsic motivation for RL

The concept of curiosity has also been explored within the reinforcement learning
literature from various angles. For example, a first attempt towards intrinsically
motivated agents consisted in rewarding agents to minimize prediction errors of
sensory events (Barto| 2004} Singh et al., |2004| 2010). This initial work was de-
signed for low-dimensional and discrete state-and-action spaces. Recently, curiosity
as a means to better explore was also investigated for high-dimensional continu-
ous state spaces (Bellemare et al.| 2016} [Pathak et al., |2017). Most of this work,
including recent efforts towards curiosity driven robot learning (]Tanneberg et al.L
2019; [Laversanne-Finot et al.| [2018), has defined curiosity as a function of model
prediction error and within a model-free reinforcement learning framework. In
MBRL, (]Shyam et al.|, |2018[) recently proposed a measure of disagreement as ex-
ploration signal. dLevine et al.|, |2016D propose a maximum entropy exploration be-
haviour. Other algorithms which take uncertainty into account have been presented
as well (Deisenroth and Rasmussen| 2011} Williams et al., [2017}|Chua et al.| 2018}
|Boedecker et al.|, |2014[). They differ in their choice of policy optimization, dynamics
model representation and how they incorporate uncertainty. While (Deisenroth and|
Rasmussen| 2011} |Chua et al., 2018) utilize model uncertainty to generate trajec-
tory distributions, the uncertainty does not play an explicit role in the cost. Thus,
these approaches do not explicitly optimize actions that resolve uncertainty in the
current model of the dynamics, which is in contrast to the approach we propose in
this paper.
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2.2.2 Risk Sensitive stochastic optimal control

Risk-sensitive optimal control has a long history (Jacobson| 1973; Whittle, |1981).
The central idea is to not only minimize the expectation of the performance ob-
jective under the stochastic dynamics but to also take into account higher-order
moments of the cost distribution. The objective function takes the form of an
exponential transformation of the performance criteria J = min, E {exp[oJ (7)]}
(Jacobson), [1973). Here, J(x) is the performance index, which is a random vari-
able, and a functional of the policy n. E is the expected value of J over stochastic
trajectories induced by the policy m. o € R accounts for the sensitivity of the cost
to higher order moments (variance, skewness, etc.). Notably, from (Farshidian and
Buchlil[2015), the cost is %log(]) =E(J") + Svar(J") + %sk(J*) +---, where var
and sk stand for variance and skewness and J* is the optimal task cost. When
o > 0 the optimal control will be risk-averse, favoring low costs with low variance
but when o < 0 the optimal control will be risk-seeking, favoring low costs with high
variance. o = 0, reduces to the standard, risk-neutral, optimal control problem.
Jacobson (Jacobson) [1973) originally demonstrated that for linear dynamics and
quadratic costs the optimal control could be computed as the solution of a Riccati
equation. Leveraging this result, (Farshidian and Buchli, |2015) recently proposed
a risk-sensitive extension of iLQR and (Ponton et al.,[2016) further extended the
approach to explicitly incorporate measurement noise.

2.3 MBRL via Curious iLQR

We present our approach to incorporate curious behaviour into a robot’s learning
control loop. We are interested in minimizing a performance objective [J to achieve
a desired robot behavior and approximate the true dynamics of the system with a
discrete-time dynamical system

X+l = Xp + f (X;, ut) At (21)

where x; denotes the state of the system at time step ¢ and f represents the unknown
model of the dynamics of the system and needs to be learned to achieve the desired
task. The hypothesis we seek to confirm is that, by trying to explore uncertain parts
of the model, our MBRL algorithm can learn a good dynamics model more quickly
and find behaviors with higher performance. Our algorithm learns a probabilistic
model of the system dynamics while concurrently optimizing a desired cost objective
(Figure [2.1). It combines i) a risk-secking iLQR algorithm and ii) a probabilistic
model of the dynamics. We describe the algorithm in the following. In particular,
we show how to incorporate model uncertainty in risk-sensitive optimal control.
Algorithm (1| shows the complete algorithm.
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Algorithm 1 MBRL Algorithm

1: D « motor babbling data

2: train model fon D

3: while i < iter do

4: ;< optimize policy via Alg 3
5:  Dpew < rollout m on system

6: D =DU Dpeyw

7:  train model fon D

8: end while

Algorithm 2 simulate-policy(x, 7, k, K, @)

. new
X
: whilet < T do

TPV — 1 + aks + K (xp — x7°V)

1 “«— X0

2

3:

4: xnew «— f(xneVV,Tt)
5

6

t+1 t
: end while

: return TRV, XMW

Algorithm 3 curious-iLQR

1: 7 « Initial random torque trajectory

2: x* « unroll 7 using f

3: A « Line search parameters, [0,...,1]

4: J* « Optimal iLQR cost so far

5: while i < opt iter do

6:  k,K < backward pass, see(2.3.2

7. for a€eAdo

8: Thew x"eW « simulate-policy(x, 7, k, K, @)
9: Jnew — Compute cost of T7¢W, x™eV
10: if Jyew < J* then
11: T,X" « x"eV, hew
12: end if

13: if converged then

14: return 7(x) = 7+ K(x — x%)
15: end if
16:  end for

17: end while

2.3.1 Risk-sensitive iLQR

Consider the following general nonlinear stochastic difference equation

X1 =%+ (x,0) A+ g (%, 0) Aw (2.2)
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where g maps a Brownian motion Aw, with 0 mean and covariance (X - At), to
system states. Aw and the nonlinear map g, typically model an unknown physical
disturbance, while assuming a known model f of the dynamics. When considering
the exponentiated performance criteria J = min, E {exp[oJ (7)]} (see for more
details), it has been shown that iLQR (Tassa et al.||2014) can be extended to risk-
sensitive stochastic nonlinear optimal control problems (Farshidian and Buchli|
2015). The algorithm begins with a nominal state and control input trajectory
x" and u®. The dynamics and cost are approximated to first and second order
respectively along the nominal trajectories uy', x{' in terms of state and control
deviations 0x¢ = x¢ — xi', ouy = ug —ug'. Given a quadratic control cost, the locally
optimal control law will be of the form duy = ki + K¢6x;. The underlying optimal
control problem can be solved by using Bellman equation

¥, (6x¢,t) = muin{l(x, u,t) + B[P, (0x¢41,t +1)]} (2.3)

where [ is the quadratic cost, and by making the following quadratic approximation
of the value function W(dx¢,t) = %6XESt6x + 6x;rst + s, where S; = VgV and
st = Vsx W — St0x¢ are functions of the partial derivatives of the value function.

Using the (time-varying) linear dynamics, the quadratic cost and the quadratic
approximation of ¥, and solving for the optimal control, we get

oW = kt + Ktéxt, kt = —Ht_lgt, and Kt = _Ht_th (24)

where Hg, gi, G¢ are given by

Ht = Rt + B;I‘St+1Bt + O'BtTS;I_"_ICW;_llCTSHlBt
gi = r¢ + Bls1 + oBLSL, CW, L CTsyyy (2.5)

Gi =P + B[S 1AL+ oBISL,CW, L CTS, Ay

where Wiy = X7 1. O'CtTSt+1 C; represents how the uncertainty is propagated through
the trajectory, Ay = Ataa—}ft, B; = Ataa—lft and q¢, r¢, Q¢, Ry and Py are the coefficients
of the Taylor expansion of the cost function around the nominal trajectory. The
corresponding backward recursions are

St =qt + AtTSt+1 + GtTkt + KtTHtkt + O'AtTSt’I_"_ICWt__&lCTSt.'.l (26)

St = Q¢ + Al St A + KIH K + GT K¢ + KI Gy + o ATST  CW L CTS, Ay (2.7)

We note that this Riccati recursion is different from usual iLQR ((Tassa et al.|
2014)) due to the presence of the covariance X: the locally optimal control law

explicitly depends on the noise uncertainty. The derivation of the algorithm is
presented in detail in Appendix
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2.3 MBRL via Curious iLQR

2.3.2 Curious iLQR: seeking out uncertainties

We use Gaussian Process (GP) regression to learn a probabilistic model of the
dynamics in order to include the predictive variance from the model into the risk-
sensitive iLQR algorithm. This predictive variance will then capture both model
as well as measurement uncertainty. Specifically, we set x; = [0y, ;] where 6y, 6;
are joint position and velocity vectors respectively. We let uy denote the vector of
commanded torques. After each system rollout, we get a new set of tuples of states
and actions (x¢,u;) as inputs and 6.1, joint accelerations at the next time step,
as outputs which we add to our dataset D on which we re-train the probabilistic
dynamics model (see Algorithm . Once trained, the model produces a one step
prediction of the joint accelerations of the robot as a probability distribution of the
form

P(Opia|xe, ug) = N (O |h (x¢, u5) A1, Ziq) (2.8)

where h is the mean vector and Xi4; the covariance matrix of the predictive dis-
tribution evaluated at (xt,u¢). The outputs is the acceleration at the next time
step O¢+1 which is numerically integrated to velocity @41 Af + 0y = O¢,1 and position
Oi1A1 + 0 = O¢4q. This results in a Gaussian predictive distribution of the system
dynamics f

X1 ~ N (X1 X + D (Xg, ug) Af, Zpa) (2.9)

It is the covariance matrix X;41 of this distribution that is incorporated into the
Riccati equations from above. Specifically, during each MBRL iteration we optimize
a new local feedback policy under the current dynamics model f, via Algorithm
Each outer loop of the optimization, re-linearizes f with respect to the current
nominal trajectories uy, xi! in the backward-pass:

O0Xip1 = Atéxt + Bioug + th, (210)

with A¢ = At%, B; = At%{n and w; ~ N (w;]0, X¢41), where Ay and By are the
analytical gradients of the probabilistic model prediction at each time step and Cy
weights how the uncertainty is propagated trough the system. We utilize the Riccati
equations from Section Equations and , to optimize a new local
feedback policy that utilizes the models predictive covariance X,;. During the
shooting phase of the algorithm, we integrate the nonlinear model from the GP
and, to guarantee convergence to lower costs, we use a line search approach during
the optimization. We leverage the risk-seeking capabilities of the optimization by
setting o < 0. The algorithm then favors costs with higher variance which is related
to exploring regions of the state space with higher uncertainty in the dynamics. As
a result, the agent is encouraged to select actions that explore uncertain regions
of the dynamic model while still trying to reduce the task specific error. With
o = 0 the agent will ignore any uncertainty in the environment and therefore not
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Chapter 2 Curious iLQR: Resolving Uncertainty in Model-based RL

explore. This is equivalent to standard iLQR optimization which ignores higher
order statistics of the cost function. An overview of curious iLQR is given in

Algorithm

2.4 Illustration: Curious iLQR

In this section, we want to illustrate the advantages of using the motivation to
resolve model uncertainty as an exploration tool. The objectives of this section is
to give an intuitive example of the effect of our MBRL loop. In the following, and
throughout the paper, we will refer to the agent that tries to resolve the uncertainty
in its environment as curious and the one that is not following the uncertainty but
only optimizes for the task related cost as normal.
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Figure 2.2: End-effector position of curious and normal agent for 4 learning iter-
ations on 2 different targets. The targets are represented by the black dots, the
starting position by the black squares.

The experimental platform is the OpenAl
Gym Reacher environment (Brockman et al.,
, a two degrees of freedom arm attached
at the center of the scene. The goal of the
task is to reach a target placed in the environ-
ment. In the experiments presented here, ac-
tions were optimized as described in section 2.3
The probabilistic model was learned with Gaus-

035

o
g
e

End effector error

0.10

0.05

0.00

S~

~— Normal
Curious
~— Pilco
~—— Gaussian
~— Max Ent

1 2
Real System Rollouts

sian Process (GP) regression using the GPy li-
brary . The intuition behind this
experiment is that, if an agent is driven to re-
solve uncertainty in its model, a better model of the system dynamics can be learned
and therefore used to optimize a control sequence more reliably. Our hypothesis is
that, the model learned by the curious agent is better by the end of learning and
therefore we expect it to perform better when using it to solve new reaching tasks.
In Figure 2.2]we show the resulting end-effector trajectories of 8 consecutive MBRL
iterations when optimizing to reach 2 different targets in sequence. We compare
the behavior of the curious and normal agent in orange and blue, respectively. The
targets are represented by the black dot. The curious agent tries to resolve the
uncertainty within the model; the normal agent optimizes only for the task related

Figure 2.3: Reacher performance
/10 trials.
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2.5 Experiments on high-dimensional problems
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Figure 2.4: The uncertainty and the prediction error in end-effector space after training,
for the normal and curious agent. The cross is the initial position. Regions that are not
by the arm reachable are shown in blue.

cost. The normal agent seemingly reaches the first target after the second learning
iteration; the curious agent only manages to reach the target during the third iter-
ation. Interestingly, the exploration of the curious agent leverages the arm to reach
the second target immediately and continues to reach it consistently thereafter.
Figureconﬁrms the intuition that the curious agent has learned a better model
than the normal agent. The figure shows the uncertainty and the prediction error
(in end-effector space) of the model learned by the normal and the curious agent
respectively. With curiosity, the learned model has overall lower uncertainty and
prediction error values over the whole state space. We also compare our MBRL loop
via curious iLQR optimization to: normal iLQR, a random exploration controller
that adds Gaussian noise to the actions with mean 0 and variance 0.2, a maximum
entropy exploration behaviour following the approach proposed in F
and PILCO (Deisenroth and Rasmussen| 2011), in Figure For these
experiments, we initialize the model with only two data points collected randomly
during motor babbling. We report the mean and the standard deviation across 10
trials, where each trial starts from a different initial joint configuration and is ini-
tialized with a different initial torque trajectory for optimization. In this scenario,
with a very poor initial model quality, PILCO could not perform comparably to
our MBRL loop. MBRL via curious iLQR outperforms all the other approaches.
Furthermore it converges to solutions more reliably, as the variance between trials
is lowest.

2.5 Experiments on high-dimensional problems

Finally, the goal of this work is to learn motor skills on a torque-controlled ma-
nipulator. Our experimental platform is the Sawyer robot from Rethink Robotics
, a 7 degrees of freedom manipulator. We start with experiments
performed in the PyBullet physics simulator (Pybullet, 2012). In the next Sec-
tion, we present results on the Sawyer robot arm hardware. Previous work such as
(Farshidian and Buchlil [2015) and (Ponton et al.| |2016), which use risk-sensitive
control variations of iLQR, primarily deal with simplified, low dimensional prob-
lems. Our experiments are conducted on a 7 degree of freedom robot, and the
higher dimensional system adds some complexities to the approach: the gradients
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Chapter 2 Curious iLQR: Resolving Uncertainty in Model-based RL

in Section of the value function (Equations ((2.6)), ((2.7))) tend to suffer

from numerical ill-conditioning in high-dimensions. We account for this issue with
Tikhonov regularization: before inversion for calculating the optimal control we
add a diagonal matrix to Hy from Equation . The regularization parameter
and the line search parameter a are adapted following the Levenberg Marquardt
heuristic (Tassa et al.;[2014).

The goal of these experiments is to reach a desired target joint configuration 6.
We show results for dynamics learned with GP regression (GPR), as well as initial
results on ensemble of probabilistic neural networks (EPNN) following the approach
presented in (Lakshminarayanan et al., 2017). When using GPs, a separate GP is
trained for each output dimension.

We perform two sets of experiments, both in simulation and on hardware, to
analyze the effect of using curiosity. Specifically, we believe that curiosity helps to
find better solutions faster, because it guides exploration within the MBRL loop.
Intuitively, curiosity helps to observe more diverse data samples during each rollout
such that the model learns more about the dynamics.

We start with evaluation in simulation. Throughout all of the simulation ex-
periments the optimization horizon was 150 time steps long at a sampling rate of
240 Hz. Motor babbling was performed at the beginning for 0.5s by commanding
random torques in each joint.

2.5.1 Reaching task from scratch

During the first set of experiments, we compare the performance when learning to
reach a given target configuration from scratch. We compare our MBRL loop, as
before, when using our curious iLQR optimization, regular iLQR, a random ex-
ploration controller and a maximum entropy exploration behaviour as described
previously. PILCO was not able to learn the reaching movement on the 7-DoF
manipulator, so we exclude the results from the analysis. We perform this exper-
iments for each kind of controller 5 times. Each run slightly perturbs the initial
joint positions, and uses a random initial torque trajectories for the optimizer. For
a given target joint configuration, 5 iterations of optimizing the trajectory, running
the trajectory on the system and updating the dynamics model, were performed.
We perform this experiment for 3 different target joint configurations. The follow-
ing results are averaged across the 5x3 runs (5 runs per target). The left most plot
in Figure compares performance of curious iLQR when using EPNN vs GPR
for dynamics model learning, with and without curiosity. Our analysis shows that
MBRL via curious iLQR improves performance over regular iLQR, for both model
architectures. While the EPNN is more promising in scaling our approach, it cur-
rently requires more data to train. For this reason we will focus on the GP model for
the remainder of our experimental section. In the 2nd to 4th plot of Figure we
compare the performance of curious iLQR against the above mentioned baselines
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Figure 2.5: Distance in end effector space for EPNN vs. GP in m (1). Distance in end
effector space in m (2), iLQR rollout cost (3) and model prediction error (4) with the GP
model, compared to our baselines.

for exploration during policy optimization, when using GPR for model learning.
We compare the methods with respect to 3 metrics: final Euclidean end-effector
distance (plot 2), iLQR cost (plot 3) and the predictive performance of the model on
each rollout (plot 4). We can consistently see that, on average, MBRL via curious
iLQR outperforms the other approaches: the error/cost is smaller and the solutions
are more consistent across trials as the standard deviation is lower. This shows that
curiosity can lead to faster learning of a new task, when learning from scratch. The
results on the predictive performance of the model suggest that the quality of the
model learned via curious iLQR might be better in terms of generalization. In the
next section we present results that investigate this assumption.

2.5.2 Optimizing towards new targets after model learning
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Figure 2.6: Optimizing to reach new targets with regular iLQR after models were learned.
4 different targets (one per row) are evaluated and the final end-effector trajectories
presented. Constant lines are targets for x/y/z.

To confirm the hypothesis that the models learned by MBRL with curious iLQR
generalize better, because they have explored the state space better, we decided to
evaluate the learned dynamics models on a second set of experiments in which the
robot tries to reach new, unseen targets. In this experiment we take the GP models
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Chapter 2 Curious iLQR: Resolving Uncertainty in Model-based RL

learned during experiment 1 in Section[2.5.1] and use them to optimize trajectories
to reach new targets that were not seen during training of the model. The results are
shown in Figure where four randomly chosen targets were set and the trajectory
was optimized with regular iLQR. Note, that here we use regular iLQR to optimize
for the trajectory so that we can better compare the models learned with/without
curiosity in the previous set of experiments. Figure[2.6]shows the trajectory in end
effector space for each coordinate dimension, together with the target end effector
position as a solid horizontal line. The results are averaged across 5 trials. The trials
correspond to using one of the 5 dynamics models at the end of Experiment 1 in
Section For each trial, the initial torque trajectory was initialized randomly,
and the initial joint configuration slightly perturbed. The mean and the standard
deviation of the optimized trajectories are computed across the 5 models learned via
MBRL with curious iLQR (first col), MBRL with normal iLQR. (second col), iLQR
with random exploration (third col) and iLQR with maximum entropy exploration
bonus (fourth col.). We see that MBRL with curious iLQR results in a model that
performs better when presented with a new target. The new targets are reached
more reliably and precisely.

2.6 Real hardware experiments

Target Distance to Target in m (Learning Iteration)
Curious Normal
1 0.05 (6) | 0.09 (2) | 0.09 (3) | 0.07 (3.67) | 0.37 (8) | 0.08 (2) | 0.18 (8) | 0.21 (7.0)
2 0.05 (3) | 0.09 (4) | 0.09 (4) | 0.07 (3.67) | 0.20 (8) | 0.08 (3) | 0.09 (5) | 0.12 (5.3)
3 0.09 (6) | 0.09 (4) | 0.09 (3) | 0.09 (4.33) | 0.17 (8) | 0.16 (8) | 0.11 (8) | 0.15 (8.0)
4 0.04 (2) | 0.07 (2) | 0.07 (2) | 0.06 (2.33) | 0.04 (3) | 0.08 (3) | 0.05 (3) | 0.06 (3.0)
0.07 (3.5) 0.14 (5.9)

Table 2.1: Results on a reaching task. Each task (target) was repeated three times. The
mean values are reported in bold font.
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2.6 Real hardware experiments

Reaching Precision (m)
Target | Curious | Normal
1 0.20 0.67
2 0.26 0.61
3 0.25 1.06
4 0.24 0.67
5 0.37 0.49
0.26 0.7

Table 2.2: Reaching a new target not seen during training.

The experimental platform for our hardware experiments is the Sawyer Robot
. The purpose of the experiments was to demonstrate the appli-
cability and the benefits of our algorithm on real hardware. We perform reaching
experiments for 4 different target locations. Each experiment is started from scratch
with no prior data, and the number of hardware experiments needed to reach the
target are compared. The results are summarized in Table and show the number
of learning iterations needed in order to reach the target together with the precision
in end-effector space. If the target was reached with a precision of below 10 cm,
we would consider the task as achieved; if the target was not reached after the 8th
learning iteration we would stop the experiment and consider the last end-effector
position. We decided to terminate our experiments after the eight iteration as run-
ning the experiment on hardware was a lengthy process, as the GP training and
the rollout would happen iteratively and GP training time increases with grow-
ing amount of data. Also, the reaching precision that we were able to achieve
on hardware was significantly lower, compared to the simulation experiments.
We believe this is
due to the data
collected from the
Sawyer robot, as
we could only con-
trol the robot at
100Hz which in-
troduces inaccura-
cies when reading
the effects of the
sent torque com-
mand. We re-
peated each exper-
iment three times to demonstrate the repeatability of our method as we expected
measurement noise to affect solutions. From the table we can see that MBRL with
curious iLQR would reach a target on average after 3.5 iterations with an average

(a) start configuration (b) target configuration

Figure 2.7: Joint configuration of Sawyer.
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Chapter 2 Curious iLQR: Resolving Uncertainty in Model-based RL

precision of 7 cm, compared to MBRL with regular iLQR that needed 5.9 iterations
(often not ever reaching the target after eight iterations with the desired precision),
with a precision of 14cm on average. As in simulation, similar to Experiment[2.5.2]
we wanted to evaluate the quality of the learned models on new target positions.
The results are summarized in Table[2.2] and are similar to what we observe in sim-
ulation: the models learned with curiosity, when used to optimize for new targets,
can achieve higher precision than when using the models learned without curiosity.

2.7 Conclusion and future work

In this work, we presented a model-based reinforcement learning algorithm that
uses an optimal control framework to trade-off between optimizing for a task spe-
cific cost and exploring around a locally optimal trajectory. Our algorithm explicitly
encourages actions that seek out uncertainties in our model by incorporating them
into the cost. By doing so, we are able to learn a model of the dynamics that
achieves the task faster than MBRL with standard iLQR, and also transfers well
to other tasks. We present experiments on a Sawyer robot in simulation and on
hardware. In both sets of experiments, MBRL with curious iLQR (our approach)
not only learns to achieve the specified task faster, but also generalizes to new
tasks and initial conditions. All this points towards the conclusion that resolving
dynamics uncertainty during model-based reinforcement learning is indeed a pow-
erful tool. As (Loewenstein| |1994) states, curiosity is a superficial affection: it can
arise, diverge and end promptly. We were able to observe similar behaviour in our
experiments as well, as can be seen in Figure[2.5} towards the end of learning, the
exploration signal around the trajectory decreases and the robot would explore, de-
viate from the task slightly, before going back to exploiting once it is fairly certain
about the dynamics. In the future, we would like to explore this direction by con-
sidering how to maintain exploration strategies. This could be helpful if the robot
is still certain about a task, even though the environment or task has changed.
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Chapter 3

Tackling Model Bias: Leveraging
Forward Model Prediction Error
for Learning Control

3.1 Introduction

Data driven approaches to learn control have been introduced as an alternative to
overcome the limitations of imperfect analytical models of the robotic tasks (Bris-
tow et al.;|2006). In this work, we consider iterative model based learning, where we
iterate between learning a forward dynamics model of the robot, using the forward
model to learn a controller and using the controller to collect data on the robot.
The controller essentially inverts the forward model, computing an action given a
current and desired next or goal state. Two challenges arise here: first the quality
of the learned forward model is decisive for the success of learning the controller
and second, the learned controller is used to collect data on the robot used for
learning the forward model. Both models thus influence each other and need to
converge to a solution that is good in practice in order to perform a task success-
fully. We present an approach that couples forward model and controller learning
and connects them by leveraging forward model prediction error during controller
learning. The controller predicts the motor command required to achieve a desired
state. The forward model predicts the next state, from the current measured state
and motor command predicted by the controller, thus representing the causal rela-
tionship of the movement (Wolpert et al.l|1995). This couples the models, as the
predicted action is used as input to the forward model.

From a robotics perspective, forward and inverse models are representations of
the physical properties of the robot. In the neuroscience and cognitive science
literature (Miall and Wolpert| |1996; [Itol [1970), the presence of internal models, as
representation of the body in the human brain (Ishikawa et al.l|2016) are believed
to play an important role. Forward models are of potential use for more than
only representing the causal relationship of a movement in the sensory domain, but
also for solving other fundamental cognitive problems: faster adaptation through
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Figure 3.1: Overview of connecting inverse and forward models: the motor com-
mand, that is the output of the controller, is fed to the forward model used to
predict the next state. The motor command is also run on the robot in order to
observer the real next state. The learned controller is then updated by taking the
gradient of either ((3.2))) or ((3.4)).

prediction (QWolpert et al.l|1995|;|Hoffmann et al.HZOlOD), anticipation of self caused
movements, leading to a sense of agency (Blakemore and Frith||2003), and enabling
mental practice procedures through predictions, by only imagining the sequence
of actions without actually performing them (]Jackson et al.l |2003[). All of these
scenarios, involve a motor command as one of the inputs to the forward model.
This motor command could be the output of an inverse model. In the cognitive
literature there is believe for a combined workflow between forward and inverse
models in the brain for motor learning and control (]Wolpert et al.l |1998k |Wolpert|
and Kawatol [1998). In (Wolpert et al.,|1998) the authors explain the necessity for
a connection between forward and inverse models in the cerebellum by pointing out
that acquiring an inverse model purely from motor learning is difficult, since the
optimal motor command is not available during learning (otherwise the learning
would not be necessary). From a robotics perspective, this argument holds as well,
since a desired trajectory is usually defined in the state space and not in the action
space.

Following this observation, and unlike the more common approach in the robotics
literature, where the forward or the inverse model are trained separately using su-
pervised learning from data (as for example in (Nguyen-Tuong et al.||2008; Camo-|
riano et al., 2016; | Atkeson and Reinkensmeyer| [1988; Miller} |1987)), we show how
connecting the models, and formulating a loss in the state space, improves the per-
formance when learning control. In contrast to other work (Jordan and Rumelhart|
that considers learning these models together, we show how including the pre-
diction error of the forward model during controller learning creates an unbiased
loss signal, that leads to a significant improvement in performance.

In a nutshell, the primary contributions of this work are:

1 We propose a method for connecting controller and forward model learn-
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3.2 Related Work

ing during learning control in an iterative fashion on a manipulator and a
quadruped.

2 We show, with theoretical and empirical results, how including forward model
prediction error during controller learning significantly improves learning a
motor control task on a robot by creating an unbiased learning objective.

3 We present manipulation and locomotion experiments in simulation, specifi-
cally we also show learning of a walking controller that can inherently handle
contact switching.

This work is an extension of our previously published conference paper (Bechtle
et al.}|2020c). In this work we extend our previous work:

4 We present experiments where we learn more general form of controllers like
a policy, that does not have access to a desired full body trajectory.

5 we present a structured way of learning the forward model, that speeds up
learning by including analytical knowledge of the robot’s forward model.

6 we further extend our theoretical analysis of the proposed loss functions.

7 and we present hardware experiments evaluating our approach on a real
quadruped.

3.2 Related Work

3.2.1 Coupling forward and inverse models

Wolpert et al. present in (Wolpert and Kawatol [1998) an architecture for multiple
paired inverse and forward models, the pairs are coupled and trained jointly. The
predictions of the forward models determine which inverse model to use. (Koert
et al.}|2018) extends this for a manipulator. (Schillaci et al.,|2012) present results
on coupled learning of kinematic models for tool use. In (Lutter et al.||2019) the
authors present a deep neural network that structures the learning of a manipula-
tor’s dynamics model following Lagrangian mechanics. The trained model can be
used for forward as well as inverse dynamics computation, but does not directly
connect the models. Most similar to our work is (Jordan and Rumelhart} 1992),
where the authors show the benefits of using a ‘distal teacher’ for training the in-
verse model on a 2 link 2D arm. Their approach is based on a stochastic gradient,
computed by comparing the observed states with the desired state. In contrast to
these approaches, we present an iterative method to train the models jointly. Our
experiments are conducted on two different robots, in 3D, and present a loss func-
tion that considers the forward model prediction error during controller learning.
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We show in Section how our approach mathematically differs from (Jordan and
Rumelhart; [1992), and in Section that it achieves significantly better results on
higher dimensional systems. In particular, our approach can easily include contact
interactions.

3.2.2 Using model prediction error for learning

The idea of using model prediction error during learning has been explored within
the reinforcement learning literature mostly form the perspective of intrinsically
motivated agents. For example, (Bartol 2004} Singh et al.,|2004, |2010) propose
rewarding agents to minimize prediction errors of sensory events to explore the
state space. This work is limited to low-dimensional and discrete state-and-action
spaces. More recently (Bellemare et al.,|2016; Pathak et al.}2017; Tanneberg et al.|
2019} |Laversanne-Finot et al.||2018)) present results on higher dimensional systems,
however this work focuses on model free reinforcement learning where the learned
models are purely used to provide an additional learning signal to train a policy.
In contrast to this work, our approach uses forward model prediction error during
learning in a setting where the learned model is actually used to learn a motor
control task.

3.2.3 Improving model learning in model based approaches

Fewer works have included additional learning signals during model based learning.
(Shyam et al.||2018) proposes a measure of disagreement in an ensemble of forward
models as an exploration signal. (Bechtle et al.||2020a) shows that including the
predictive uncertainty of the forward model during controller optimization could
improve forward model learning. In (Lopes et al.,|2012), an empirical measure of
learning progress in included on a low dimensional discrete MDP. Similarly, self
correcting forward models were proposed in (Talvitie, 2014, |2016) but the con-
sidered problem remains low dimensional. While it is widely acknowledged that
model quality is of crucial importance in model based approaches, to the best of
our knowledge this problem is seldom tackled for high dimensional systems.

3.2.4 Learning models including force measurements

Learning models that include non-trivial contact interactions is especially challeng-
ing as contacts create discontinuous force measurements and control actions. In
(Zhang et al.| [2019) the authors use force measurements as an additional input
to their model for a manipulator. However, the measurements are not used for
controller learning but only to discriminate between different tasks. In (Lee et al.|
2019) multimodal input signals, including forces, are used to train an embedding for
a downstream model free reinforcement learning task that takes as input the learned
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embedding but does not use the learned model during policy learning. Even with
accurate physical models, the conception of inverse dynamics controllers is chal-
lenging with changing contacts (Herzog et al.l|2016) as special care is necessary at
each contact transitions, i.e. typically involving manual design of switching events
or advanced constraint switching strategies (Jarquin et al.l|2013). We show in Sec-
tion how our approach enables to learn a walking controller for a quadruped
by including measured contact forces not only as inputs, but also as predictions
during controller learning. Importantly, the learned controller seamlessly handles
contact switches without any additional assumptions as it learns to predict contact
switches using the forward model.

3.2.5 Learning models with structure

When learning forward or inverse dynamics models from data the literature offers a
variety of choices of machine learning algorithms used for this learning task. From
linear regression (Schaal et al.| [2002; |[Haruno et al.l |2001), to gaussian mixture
(Khansari-Zadeh and Billard} 2011} |Calinon et al.l |2010) or gaussian process re-
gression (Deisenroth and Rasmussen} 2011; Kocijan et al.| 2004)) as well as using
feedfoward- or recurrent neural networks for fitting the models (Lenz et al., |2015;
Sanchez-Gonzalez et al.,|2018; Rueckert et al.||2017)). These approaches usually col-
lect a dataset for supervised learning, and fit the models in an end to end fashion
from input to output. Some other works however have considered more structured
approaches for model learning, including analytical priors during the learning pro-
cess. For example in (Calandra et al.,|2015) the authors learn only the residual
term of the external forces, with for inverse dynamics. In (Lutter et al) 2019) the
authors learn deep neural networks for each component of the equations of mo-
tion of a manipulator whereas in (Ledezma and Haddadin} |2017) the authors learn
the dynamics parameters directly via gradient descent. Similar in (Sutanto et al.l
2020) the authors propose a fully differentiable version of the recursive newton eu-
ler algorithm, allowing the inertial parameters to be learned using gradient descent
and automatic-differentiation for gradient computation. In this work we propose a
way to include structure for one step prediction of the forward model, by using the
analytical dynamics parameters and only learning the contact dynamics from data
with a neural network.

3.3 Problem Formulation and Approach
The goal of model based learning control is to learn a forward model f of the dynam-
ics of the robot and a controller, or inverse model, g. In general, g can be learned

from data but can also be optimized using trajectory optimization algorithms. See
(Levine and Koltun||2013}|Deisenroth and Rasmussen| |[2011}|Bechtle et al.| |2020a)
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for a variety of approaches of iteratively learning a model and a controller.

In this work, we propose an algorithm inspired by the concept of connected
forward and inverse models, while still being able to iteratively collect data and
update the models. We learn a forward model fy that performs one step prediction
of the form s,,1 = fy(s;, 1), where 0 are the parameters of the forward model, s, and
7; the state and action at time 7. We also learn a controller gg that predicts 7, =
gp(ss, ™), given the current state s, and the desired state s*. 8 are the parameters
of the controller and s* can be the immediate desired next state s7,,, or a final
goal state s7., where # = 0...T and T is the time horizon of the task. We learn both
models from data collected on the robot,while alternating between model learning
and data collection. Algorithm [4]shows the training procedure. We create a direct
connection between fy and gg by using the action predicted by g as an input to
f. Since si105 = fo(s,88(ss,5¥)), the next state is a function not only of the
parameters of f but also of g. We can then use the prediction of the forward
model to compute an error signal for inverse model training by creating a direct
connection from the prediction of the forward model to the output of the inverse
model. This means that, using s;4198 we can formulate a loss that enables us to
compute a gradient to update the parameters g of g.

In Figure the coupling of the forward and the inverse model is illustrated.
Using s;+16,5 has the advantage of representing the actual effect that the action,
that was predicted by g has. In contrast to learning g in a supervised fashion from
collected data, this approach is conceptually more sound as the correct or desired
supervision signal for the action itself is usually not available. However the goal of
the task, s*, is available in the state space, since it defines the task.

In model based approaches, forward models and controllers are inherently inter-
twined: during the training phase, the forward model predicts the possible next
state, and the controller is learned based on this prediction. The controller is the
acting component of the loop, facilitating data collection on the robot. The data is
then used to update the models. It becomes clear here, that if the forward model
prediction is inaccurate, controller training will fail and converge to a solution that,
when used on the robot, collects data that might not be meaningful for the current
task and eventually bias the models. This brings us back to one of the major chal-
lenges of model based learning, which is to learn models that are accurate enough
to use for motor control on a robot.

In the next section, we introduce a new loss function as well as other, more
standard, losses used as comparison. We propose a loss function for controller
learning that ultimately reduces model bias, by including forward model prediction
error for learning control. As a result, this improves model prediction and as a
consequence task performance.

34



3.3 Problem Formulation and Approach

3.3.1 Learning control via coupled models with joint loss

Our approach (Algorithm alternates between model learning and data collection.
g and f are randomly initialized at the beginning of the learning loop. FEach
iteration collects data using the controller g for the duration of a predefined horizon
T. After the roll-out, the collected data is used to update both the forward model
f and the controller g.

Algorithm 4 Learning control with Coupled Models

1: D <« motor babbling data(s;, 77, S+1)

2: fg « initialize forward model

3: gg < initialize inverse model

4: train model fy on D

5: train model gg on D

6: while i < iter do

7 Dyew < rollout gg on system(sy, 7y, S41), t = 0...T
8 D=DUDpey

9:  train model fy on D with Loss from ((3.1)
10:  train model gg on D with Loss from (3.2)) or
11: end while

To update the forward model, we use a regular supervised learning objective
representing the model prediction error

Esup(g) = (fo(se, 1) — st+1)2 (31)

where s;41 is the next state observed on the robot and fy(s;, ;) is the next state
predicted by f.

To learn gg, we propose a loss function joint loss that trades-off actual robot
behavior and control performance prediction using the forward model. We compare
it with two other, simpler, approaches: one, task loss that only improves control
performance prediction using the forward model and a supervised approach that
does not use the forward model.

Comparison - updating g with task loss

The task loss computes a learning objective by comparing the prediction of the
forward model (that was coupled with the output of gg): sir16.8 = fo(ss, 88(s1, 57,1))
with the desired next state s,

ﬁtask loss (ﬁ) = (fH(St’ g,B(Sz, S;k+1)) - Sf+1)2 (32)

This loss evaluates how well the action of g will be able to achieve the desired state
by using f to predict the next state. Intuitively, this will lead to the desired

t+1
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behaviour only if the prediction of the forward model is accurate enough, making
the learned controller susceptible to model-bias and inaccuracies.

Comparison - updating g with supervised loss

Alternatively, a general supervised learning loss can be used, of the form

Linverse sup (ﬁ) = (gﬁ(st, Ste1) — szn)Z (33)

where 5,41 is the observed next state when executing 7/*" on the robot, and 7/*"
is the output of gg(s;, s7,;). This loss is the most common in the literature, espe-
cially for inverse dynamics learning (Camoriano et al.} 2016} |Pathak et al., 2017).
Linverse sup(B) uses the observed data to update the controller. In contrast to the
task loss and also our joint loss , this loss is not goal oriented, but purely tries to
learn the state-control relationship by fitting observed data.

Updating g with joint loss

Our proposed joint loss accounts for the quality of the dynamics model, by adding
a term that compares the predicted next state with the actual next state.

£joint loss (ﬂ) = (f@(sta g;a(Sz, s;k+1)) - s;k+1)2

3.4
+(fo (s, 88(s1,87,1)) — 5z+1)2 (3.4)

where s;41 is the next state observed on the robot. The joint loss thus evaluates
not only how well 73 was able to achieve the desired next state (as predicted by
the forward model), but also how good the predictive performance of the forward
model actually is. This essentially creates a trade-off between controller and forward
model performance, shifting the data distribution seen during roll-out towards a
solution that is desirable in reality. In all cases, the parameters of gg are then
optimized with gradient descent by taking the gradient VgL(5).

In the next section, we analyse in details the task loss and the joint loss . We
show why adding the forward model prediction error benefits the controller, and as
a consequence, also forward model learning. We then experimentally compare in
Sectionthese losses with the supervised loss, and show the benefits of our joint
loss .

3.3.2 Theoretical analysis of loss functions

To show the benefit of including the forward model prediction error during inverse
model learning let’s consider a simplified 1D example: .11, , = fo(s1, 8(s1, 57,1))-
Where s,41 0p 18 the prediction of the forward model fy, s, is the current state, s.4+1
is the actual next state observed on the robot and sy, is the desired next state. gg
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3.3 Problem Formulation and Approach

computes the action for given s, and s7,,. In order to update parameters g of g the
gradients that have to be computed are

0o 088 .
V,Bﬁtask loss = @E(SHM,B - S;+1) (35)
and 556
8 *
V,Bﬁjoim‘ loss = Qﬁé_ﬁﬂ(zﬁwlgﬁ — 81T st+1) (36)

When looking at it becomes clear, that VgLyug 10ss = 0 when s, = St+lgp
which means, when the predicted next state is equal to the desired next state.
This is a desirable equilibrium, if the forward model prediction is accurate enough,
meaning that the predictions of f are not biased. However, if this is not the case, g
reaches its equilibrium given a biased model and converges to the wrong solution.
We are going to show in section how this model bias can affect negatively the
learning performance, even if the forward model keeps being improved.

s;+1 FSi41

In the case of ((3.6)), the general solution for equilibrium is s/41,, = 25—,
which is the average between the desired next state and the measured next state.

The special solution s+1,, = s;,; = s+1 would be desired. However, since we

1+1 .
.. . . . . S 1S+l . e ..
optimize in an iterative way, if s;41, 8= 1" and we continue optimizing, we can

plug the general solution back into Ljoint 10ss and we get

Sta1 + 55, — 287

1
,Cjoint loss = ( 9 2 )é,g (3 7)
Stel + S — 281 5 1 . 9 '
5 )ﬁ,g = §(St+1 - S;+1)ﬁ,g

*

This means, the loss will reach its global minimum when s7,, = s;41 which becomes
an unbiased loss function. It is worthwhile noting that this loss still carries gradient
information for 8 to further improve the inverse model, and is directly affected,
through th*e forward model, by changes of the inverse model. The general solution,
St+lgs = w, is a local minimum, that the optimization could get stuck in.
However we observe that, because our approach alternates between learning the
models and collecting new data, the joint loss and its trade-off between controller
performance and forward model prediction error, facilitates data collection that
allows to reach the global minimum sy , = s;+1. We show empirical evidence for
this hypothesis in section In addition to being an unbiased loss, this loss also
now reflects a kind of feedback controller loss, trying to push the inverse model to
match the observed data with the desired data. Once s;4+1 = 57, then also the special
solution st41,, = 5., = S+1 holds and in particular also s;1,, = Sr41- Another
observation is that, if we only train the inverse model on £ = (s,+19,ﬁ — 5¢41)2, the
equilibrium of the inverse model is reached when s41,;, = s/+1 which means when
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the forward model is predicting the actual next state. Potentially this could also
help to learn forward models from scratch: instead of random motor babbling as
initial data collection, this loss could provide a self supervised way to collect data.

3.3.3 Comparison distal teacher loss proposed by (Jordan
and Rumelhart, [1992)

In (Jordan and Rumelhart} 1992) the authors propose a stochastic gradient of the

form 55 8
0988 «
VﬁE(Jordan and Rumelhart||1992) = @E(SH{ - St+1) (38)

Here the current gradient of the forward model w.r.t. B is used, but the loss does
not carry gradient information, as it is purely specified in terms of the observed
and desired data. This is equivalent of formulating a loss of the form

2 2
‘C(Jordan and Rumelhart||1992) = (St+19,ﬁ - S;k+1) - (st+19,ﬁ - St+1) (39)

which effectively subtracts the forward model prediction error from the task loss
error and eventually does not care about the quality of the forward model, as long
as the loss between actual and desired next state is decreasing. In simpler scenarios
this can have the effect that goal oriented behaviour is achieved even if the forward
model is not perfect, as stated in (Jordan and Rumelhart| [1992)). On the other
hand, this loss does not account for wrong gradients taken through the forward
model, that way biasing the solution because of an inaccurate forward model. In
practice this seems to be a significant drawback for higher dimensional systems as

we show in Sec.

3.3.4 Illustration of model bias problem with point mass

To further illustrate the effect of model bias when optimizing g, and how our joint
loss can help with this problem, we use a simple linear point mass example with
linear forward dynamics s;+1, = 5,61 + 7,62 and inverse dynamics 7; = 5,81 + 57, Bo.
Coupling the two models, as described earlier gives a prediction of the next state
of the form St+lg s = 5:01 + 5:8162 + s;lﬁgeg. In this simple scenario it is possible to

G i)

3 1aa — ¥ . :
enforce an extreme case of model bias when St+les = Sp,p> Dy setting 61 = S

— (57,1 =5:61)
and 02 = S v

This simple example allows for gradient analysis by plotting the gradient fields of
task loss and joint loss . In Fig. [3.2]the gradient field is shown for the parameters
B of g. The figure shows how the gradients behave as a function of the values of 8;
and B2. In the case of the task loss (right), the gradients are zero everywhere, since
when s741, , = 57, also VgLiasi = 0, thus g converged even if the desired valued of B

In this case Ligsk 10ss = 0 and thus the task loss converged.
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3.3 Problem Formulation and Approach

have not been recovered. In the case of the joint loss (left), it is possible to see that
even if model bias was introduced, still the gradients will facilitate convergence to
the desired values of 8. This shows how our joint loss is superior to the task loss
in this case.
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(a) Gradient field for 8 when using (b) Gradient field for 8 when using
joint loss with model bias. task loss with model bias.

Figure 3.2: Gradient fields of controller parameters g with introduced model bias.
The line represents the desired values of B. Using the joint loss still allows for
gradients that converge to the optimal values for S.

Another, more intuitive way of comparing these the losses and they gradient
behaviour, is by looking at Fig. The figure shows the resulting gradient
field in state space, showing how changes in parameters 8 will affect the resulting
trajectory. Concretely this means computing Vg, 5141, 5 and V= 141, 5, where B has
been updated using either VgLioint or VgLliask. From Fig. it is possible to see
that when using the joint loss the trajectory will converge to the desired trajectory
even if model bias is present. Which is not the case when using task loss where the
gradients will not facilitate the convergence to the desired solution.

3.3.5 Forward Model learning including contacts with
Structured Priors

In this work we also learn a forward dynamics model f that includes contact in-
teractions in its prediction. This means s;1 = f(s;, ;) where s; = [q,4, fix,y.7],
where g and ¢ are joint positions and velocities and f,, ] are the contact forces
at the end effector. Besides of learning the forward model f end to end with a
highly parametrized function approximator like a neural network, we now present
an alternative avenue using prior structured information for forward model learn-
ing. For this we consider the following general formulation of a robot’s dynamics
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Figure 3.3: Gradient fields of the system states, when using optimized parameters
B with introduced model bias. The line represents the desired trajectory in state
space. Using the joint loss still allows for gradients that converge to the optimal
desired trajectory, which is not the case when using task loss .

following the lagrangian formulation of rigid body dynamics (Siciliano et al., 2010).
T=M(q)§j+G(q.4)+J'F (3.10)

Where M is the inertia matrix, G are the gravitational, centripedal and coriolis
forces, J is the Jacobian F are the contact forces and ¢, ¢, § are the joint positions,
velocities and accelerations. The forward dynamics relationship, to recover § is
given by

G=M"(q)(r-G(q.4)-JF) (3.11)

For a rigid body M(q) and G(q, §) can be computed accurately analytically. We
want to leverage this prior analytical knowledge when learning the full forward
dynamics including the contact dynamics. To this end we divide equation |(3.11)
into a learnable and a non learnable part. The learnable part being the part of
the equation involving contact interaction, since modelling contacts is still very
challenging and the analytical models often not accurate when compared to the
real measurements.

Gi1 =M (g)(r - G(g,,40) - M (q,)JTF) (3.12)

not learned learned

z}'t +1 18 thus composed of a learned part and a part that is computed analytically.
We model M~1(q,)(JTF) as a neural network and learn this part from data by

40



3.4 Experiments on inverse dynamics learning

computing a supervised learning loss between the prediction i}'t +1 and the observed
G,.; acceleration.

L= (G — 1)’ (3.13)

3.4 Experiments on inverse dynamics learning

In this section, we present experiments to show empirically the benefits of learning
control with coupled models and our joint loss . We show how our method of in-
cluding the forward model prediction error during inverse dynamics model learning
outperforms all the other methods. We show evidence that including the forward
model prediction error leads to a robot behaviour that favours data collection to
improve forward model learning and ultimately less biased models.In this section
we present experiments in simulation with a 7DoF iiwa Kuka arm (AG,|2020) and
the 12 DoF quadruped robot Solo (Grimminger et al.| [2020) (Fig. All robots
are simulated with PyBullet (Pybullet|[2012).

3.4.1 Experiments with Kuka iiwa

In these experiments, we learn the forward model with an ensemble of probabilistic
neural networks, similar to (Chua et al.l|2018). For the forward model we use
three hidden layers with 400 neurons each and ReLU activation functions and an
ensemble size of 3. The controller is a neural network with three hidden layers, with
300, 200 and 100 neurons each and ReLU activation function. In the experiments
we learn the inverse dynamics model of the Kuka arm and we compare performance
for reaching tasks for five different target positions. Each time, the controller needs
to track a desired reaching trajectory in joint space that is computed in advance,
i.e. we learn a tracking controller.

The inverse dynamics model 7, = gg(x;,§7,;) takes as an input the state s, =
[g:, G:], where g; are the joint angles and ¢; the joint velocities at time t, and the
desired joint acceleration at the next time step §;,; and outputs the torque 7;. The
forward model takes as an input the current state s; and action 7, coming from
the inverse model. In Fig[3.4a]we can see that training the inverse model with the
joint loss leads to faster and more stable convergence when compared to the other
methods. Notably, it can consistently learn a very good tracking controller in less
than 10 iterations.

Is the joint loss improving data collection?

In model based learning the controller g significantly influences the data seen during
learning, since it is the acting component which enables the robot to move and
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Figure 3.4: (a) Experiments on 7 DoF Kuka arm, the MSE tracking errors (mean
and standard deviation over all learning experiments) are reported over learning
iterations. (b) We compare the performance of the joint loss and task loss when
used on a pre-collected dataset. We pre-collect two datasets, one when using joint
loss for learning control, and the other when using task loss . We see here that joint
loss and task loss performs similiar when deployed on the same dataset. We also see
that both perform well on the dataset pre-collected with the joint loss suggesting
that joint loss leads to better data distrubutions in the learning problem.

collect more data. Therefore, it is natural to ask whether the performance observed
with the joint loss is only due to the quality of the data collected during learning.
To test this hypothesis, we collect two dataset while running our learning loop with
task loss and joint loss for inverse dynamics learning. After collecting the two
datasets, we re-train the inverse and forward models from scratch with both losses
on the datasets collected. The results of this experiment are shown in Fig[3.4b]
where we can see that the task loss and joint loss perform similarly when they are
deployed on the exact same data. In particular, both losses perform better when
trained with the data collected using the controller optimized using the joint loss
. This suggests that the data collected while learning with the joint loss contains
more useful information to accomplish a given motor control task and confirms our
hypothesis of less biased model learning with joint loss .

3.4.2 Experiments on Solo

Figure 3.5: Image sequence of solo successfully walking

In this section we present experiments performed on the Solo quadruped robot
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QGrimminger et al.L |2020D. The forward model is learned with a neural network with
three hidden layers of 1000, 500, 500 neurons each and Relu activation function.
The input to the forward model is the current torque 7, and the current state
st = [Xbb,» q1> fix.y.z,» Xob,» 4:] where xpp, is the current base pose (position and
orientation), xpp, the current base velocity and fiy ;) are measured contact forces
at the four end effectors. The forward model predicts As = [Xpp,,, AL, fix.y.2,,,» GiA],
which is the change in acceleration for the base and joints together with the expected
contact forces at ¢t + 1 when applying 7; in s;. The inverse model’s architecture is
of three hidden layers with 300 neurons each, the input is s, and s7,; which is the
desired accelerations of the joints and base together with the desired contact forces
at the next time step. We compute the desired trajectories (walking and jumping)
using the kino-dynamic planner presented in (Ponton et al.| |[2018). The goal of
these experiments is to show that our approach can also use force measurements
and handle hard contact switching for unstable underactuated systems. This is a
significantly more challenging task compared to inverse model learning of a fixed
base manipulator.
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Figure 3.6: Comparing forward model prediction error and predicted task error
during inverse model optimization for walking and jumping
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Figure 3.7: Inverse model learning on the quadruped, the tracking error in base
position and orientation is reported over iterations. Only the joint loss is successful
at the task.

Learning to walk

In this set of experiments we show how we can learn to control walking. We average
our results over 5 different walking horizons of different length and report the mean
and the standard deviation of the experiments. When walking, the robot has to
make and break contact with the floor multiple times during the trajectory. Making
and breaking contact, and transitioning between these two states, is a challenging
task that requires careful control at the moment of contact to avoid slipping and
preventing the robot from falling. Contact forces are explicitly included in the state
as well during model learning and controller optimization. Thus, the joint loss also
includes the error on the contact forces, between predicted, desired and observed
contact forces.

In Fig. we show the tracking error of the base over learning iterations.
We can see clearly here that our joint loss outperforms all the other approaches.
Qualitatively the controller trained with joint loss is the only one that was able
to generate stable walking (cf. Fig. This also becomes evident when looking
at Table where we report the tracking error of the ground reaction forces,
together with the tracking performance visualized in Fig[3.8] where we show the
predicted (by the forward model), desired and observed ground reaction forces at
the front right foot. The controller trained with the joint loss (left), tracks the
desired forces more accurately than the one trained with task loss (right). Also the
forward model’s prediction of the contact forces, is more accurate in the joint loss
case. Importantly, the controller is again learned in less than 10 iterations, which
makes it amenable to real robot applications.
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Figure 3.8: Tracking of ground reaction forces for joint loss (left) and task loss
(right)

MSE Tracking Error: mean(std) in N
Joint Loss | Task Loss |Distal Teacher |Supervised
forces
(walking) 0.09 (0.1) |0.16 (0.18) {0.34 (0.35) 0.16 (0.26)
forces
. . 0.02 (0.01) (0.3 (0.28) |0.38 (0.4 0.28 (4.3
Gmning) (0:02 (0.01) 0.3 (028) 1038 (0.4 (4.3

Table 3.1: Tracking error in ground reaction forces

Learning to jump

This experiment shows how Solo can learn to control a jump, which is a task with
high impact dynamics and requires precise control especially during take-off (to
create the right amount of momentum) and landing (to dissipate the impact). We
show the results over 5 different jumping heights in Fig where we can again
see that the joint loss learns how to successfully accomplish the task. We show
again, in Table [3.1]the tracking error for the ground reaction forces.

3.4.3 Model bias and its effect on performance

When looking at Fig. [3.6]we can see how the optimization with task loss is prone to
find sub-optimal solutions due to a biased forward model. In Fig[3.6a]and[3.6c|the
prediction error of the forward model during learning is shown for both experiments.
We see that the prediction error of the forward model trained while running the
experiment using the joint loss is lower than the prediction error of the forward
model when using the task loss . On the other side in Fig[3.6b|and [3.6d]the predicted
task error ( (sp41,, 5= s;‘+1)2 ) is shown. For the experiment trained with the task loss
, the predicted task error is the lowest, however the prediction error of the forward
model is high. This means that the model trained with task loss is predicting s,
but the prediction is not correct. This leads to a biased solution, which explains the
higher tracking error. Training with the joint loss does not result in this scenario,
since the prediction of the forward model is accurate, in turn, leading to a better
performing controller.
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3.5 Experiments on general controller learning

So far we have only considered inverse dynamics model learning for motor control.
In this section we are going to present experiments that learn a motor control task
without having information about the desired trajectory for each joint, but only
more general goal information regarding the given task, like a desired final state
or a desired trajectory in task space. Again we present experiments on the 7 DoF
kuka iiwa 7 and solo in simulation.
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Figure 3.9: Results for general controller learning on Kuka arm, our joint loss
outperforms all other approaches.

3.5.1 Learning operational space controller with kuka iiwa
7: the forward model as a disambiguator

In this set of experiments we show how the coupled learning with joint loss can
also be used to learn a task-space controller (Khatibl [1987). gg takes as an input
the current state s; = [¢;, ¢;] and a desired acceleration in end-effector space %7, .
The forward model learns a combination of forward dynamics and kinematics, it
takes as an input s; and 7; and outputs §; and X,.,,,. The problem of learning an
operational space controller is more challenging than learning an inverse dynamics
model, since joint redundancy implies that an infinite number of controllers can
lead to &, . The non-uniqueness of a perfect tracking controller renders learning
difficult when done in a supervised way from collected data, since the same input
to g can have different output values. In this scenario, using the coupled models
approach, we can disambiguate the problem since the forward model’s mapping
is unique. In Fig[3.9b] we can see experimentally how our approach outperforms
others enabling to consistently learn an operational space controller in a few iter-
ations. It becomes evident here that learning an operational space controller from
data in a supervised learning fashion does not perform satisfactory because of the

redundancy in mapping torques to end-effector accelerations. Previous approaches
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to learn operational space controllers have been proposed (Peters and Schaall [2006),
however they only consider learning in the vicinity of a local model, to force the
selection of only one of the many redundancy resolution strategy.
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Figure 3.10: Results for operational space controller learning for a walking con-
troller on solo. The joint loss is the only loss that will lead to desired controller
convergence. The task loss does not converge since the predictions of the forward
model are biased.

3.5.2 Learning a policy with kuka iiwa 7

So far we have only considered learning controllers gg that had access to a desired
acceleration trajectory, either in joint space or in task space. Now we are going
to present results of learning a controller that only takes as an input the current
state s; = [q, 4] and a desired last state g7 in joint space. This is equivalent to
learning a goal conditioned policy, which is a more challenging task since the goal
information is not available at every time step but only for the final state at the
end of the trajectory. During optimization we compute a loss by comparing every
predicted next state to the final goal state (s;+15, — s7)2. When using the joint
loss we also add the forward model prediction error at each time step, as described
before. In Figl3.9a] we can see the results. As expected, learning a policy in a
supervised way from data performs poorly, since mapping the current state and the
desired last state to an action, is a non unique mapping making it impossible to
train it in a supervised way. On the other hand clearly the joint loss performs the
best in this more challenging task, learning a policy that achieves the desired goal
position. Using the task loss leads to a very high variance in performance and bad
mean behaviour, since controller learning converges to a biased local minima.
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3.5.3 Learning a operational space controller with solo for
walking

We now show how it is possible to use our approach to learn an operational space
controller for walking on solo. In this experiments the forward model was learned
with structured priors as presented in section . In this experiment we do
not have a desired trajectory in joint space as previously, but have only a desired
trajectory of the forward movement of the base and desired foot displacement of
solo. We show how our approach with joint loss is able to learn a controller for
full-body control for 5 different walking horizons. We model the contact dynamics
with a feed-forward neural network with three layers with 1000, 500, 500 neurons
each and ReLU activation functions. The input to the forward model is the current
torque 7, and the current state s; = [xpp,, 1, fix,y.z],» Xbb,» G:] Where xpp, is the
current base pose (position and orientation), Xpp, the current base velocity and
fixy.z), are measured contact forces at the four end effectors. The forward model
predicts As = [Xpp,,, A, Xee,,, > §:At], which is the change in acceleration for the base
and joints together with the expected foot displacement X,,,,, at t+1 when applying
7; in s;. We compute Xe,,, = JTG,41, where ¢;41 is the predicted joint velocity and
JT is computed analytically. The controller model’s neural network architecture
is of three hidden layers with 300 neurons each, the input is the current states;

and X} x5 which are the desired accelerations of the base and desired foot

) Neess
displa[élgﬂllent relspectively. The controller then outputs a torque .

In Fig. [3.10a] we compare again our joint loss with task loss , distal teacher loss
and the supervised learning loss. Also here only controller learning with joint loss
converges to the desired solution and the quadruped walks. In Fig. [3.10b]and Fig.
the forward model prediction error and the predicted task error are shown.
Even if the predicted task error is similar between joint loss and task loss the
forward model prediction error is significantly higher when training with task loss
, signalizing that the forward model is biased to predict states that are favourable
to the task but not accurate to the real world observations.

3.6 Experiments on comparing structured and
unstructured forward models

Finally in this last set of simulation experiments we want to show how learning for-
ward models with structured analytical priors compares to learning forward models
end to end on a contact rich task like walking. We show the results of inverse dy-
namics and operational space controller learning on solo. In Fig. it becomes
evident that adding structured priors improves learning the motor control task for
both kinds of controller. In Fig. the results for inverse dynamics learning for
the walking task are shown. Here we can see that using a structured prior improves
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Figure 3.11: Tracking error on base, comparing learning performance when learning
the forward model with structured analytical priors and without priors using joint
loss and task loss .

Figure 3.12: solo robot walking for inverse dynamics learning experiments on hard-
ware

convergence speed compared to learning the forward model without structure. It
becomes also evident however, that even with a structured prior the task loss does
not perform well. Meaning that also when only learning the contact dynamics and
using the analytical solution for the rest, learning with task loss leads to biased
solutions. In Fig. [3.11b]we show the same comparison but when learning an opera-
tional space controller on solo. Here we see that learning with a structured model is
essential for successful task performance. We think this is due to the complexity of
the task: the structured model alleviates the complexity of forward model learning,
significantly allowing for faster convergence.

3.7 Experiments on Hardware

Finally we evaluate our method in the real world on the solo robot. We learn an
inverse dynamics controller as presented in section and an operational space
controller as presented in section for walking. The parametrisation of the con-
trollers and the forward model is the same as in simulation. On the hardware we
control the robot at a frequency of 1000Hz, however we learn our models at only
250Hz, since in practice learning from the data collected in the real-time loop is
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difficult. This means that we only predict, with our learned controller, at 250Hz.
To hold the 1000Hz we hold the predicted torque for 4 time steps and compute
a feedback PD torque on the desired trajectory for the intermediate steps. The
desired trajectories we recover from our simulation experiments and describe the
desired joint positions and velocities of the 12 leg joints. We pre-train the controller
and forward model in simulation and keep learning them on the hardware.
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Figure 3.13: Joint position tracking. The first three images show the tracking of the
base positions, followed by the 12 leg joints. Overall our learned inverse dynamics
controller achieved good tracking performance on hardware.

3.7.1 Results for inverse dynamics model learning on
hardware

In this section we present our results for inverse dynamics model learning on hard-
ware. On hardware we only use our joint loss since it was the only one that
performed well in simulation. In Fig. we show the tracking behaviour when
running the inverse dynamics controller learned on hardware on the robot. This
behaviour is achieved after 4 learning iterations when the model was pre-trained in
simulation. Similarly in Fig. [3.14] we show the desired and observed force profiles
for each leg of the ground reaction forces. In Table we show the errors after 4
iterations for three different walking experiments. Overall we see good results and
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Figure 3.14: Tracking of the forces for learned inverse dynamics controller on the
solo robot. The desired and the actual forces are shown.

Tracking Error Base (m) | Tracking Error Forces (IN)
Walk 1 | 0.02 0.07
Walk 2 | 0.05 0.09
Walk 3 | 0.03 0.10

Table 3.2: Base tracking error and force tracking error for inverse dynamics learning
on hardware.

transferability of our model based learning framework on hardware. A visualization
of the walking behaviour of the robot can be seen in Fig.

3.8 Conclusions

In this work, we show how to leverage forward model prediction error for learn-
ing control in an iterative way. Our approach connects controller and forward
model learning by using the predicted control signal as an input to the learned
forward model. We show how using forward model prediction error during con-
troller learning results in a learned controller that enables the robot to successfully
accomplish non-trivial motor control tasks. We present theoretical and empirical
evidence that the improved performance is due to an unbiased loss function, that
reduces bias in the learning problem. We also show empirical evidence that when
using the controller trained with our joint loss on the robot, the collected data is
more meaningful for the current task and thus improves model learning. This could
explain the reduced model bias of the forward model for the learning task. In sim-
ulation, our approach systematically outperforms other approaches also for contact
rich tasks on underactuated, unstable systems and enables learning controllers in
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a few iterations. We also show the applicability of our approach on hardware.
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Chapter 4

Multi-Modal Learning of
Keypoint Predictive Models for
Visual Object Manipulation

4.1 Introduction

In this work, we consider the problem of learning predictive models for visual control
of grasped objects. Specifically, we consider the setting of visual model-predictive
control for object manipulation as visualized in Figure In such settings, a low-
dimensional representation of the object is extracted and then a predictive model
is learned in that low-dimensional state-representation. This model is then used to
optimize action sequences that accomplish a desired (visual) goal state. We built
on the recent success of learned keypoint representations which have been shown
to capture task-independent visual landmarks for various applications (Minderer
et all 2019; Kulkarni et al.||2019). Benefits of such learned representations over
more traditional object representations (such as 6D pose), are the ability to rep-
resent non-rigid objects, and not requiring object models. In contrast to other
learned latent-state representations, keypoints are interpretable, and are less prone
to become task-dependent. Given this learned state representation, current state-of-
the-art then learns action-conditioned predictive models over keypoints (Minderer
et al.}|12019; [Das et al.,|2020b; Manuelli et al.|[2020). Once such a dynamics model
is trained, the robot can optimize actions to move observed keypoints into a desired
goal keypoint configuration.

While this overall framework is very promising, in the context of object ma-
nipulation at least two major challenges remain: 1) The self-supervised training
of visual keypoints does not necessarily lead to keypoints that capture the object
of interest. And even if it does, those keypoints may not consistently track the
same part of the object throughout motion sequences; 2) In current state of the
art methods (Minderer et al.||2019; |Das et al.,|2020b; | Manuelli et al.||2020), key-
point predictive models are represented by unstructured neural networks, which
tend to not extrapolate well to observations outside of the training distribution.
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Visual MPC Overview
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Figure 4.1: Overview of visual MPC via keypoints. Our work improves this framework
in two places. (1) we present a multimodal version of the keypoint detector that merges
vision and proprioceptive information, and (2) we show how we can use the visual key-
points to learn an extended kinematic chain that serves as reliable visual dynamics model
for model based control.

As a result, such predictive models often do not perform well when used for object
manipulation tasks.

We address these challenges as follows: First, during keypoint training, we en-
courage keypoint learning around the end-effector location, which leads to more
consistent on-object keypoint detection. We achieve this by merging propriocep-
tive information, in form of joint positions, with visual information gathered from
the camera. Then, instead of learning unstructured predictive models, we extend
an existing kinematic model of the robots arm with virtual links and estimate
the translation parameters of the links from visual keypoint predictions (see Fig-
ure . This leaves us with an extended kinematic chain or body schema that
includes the object in the hand. Once the parameters of the virtual joints have
been learned, we have a fully differentiable forward kinematics model that can be
utilized for model-based control. A key-feature of this approach is that we can
estimate parameters to adapt to various grasp variations of the object. We will
show experimental evaluation of these benefits in section

To summarize, in this work we propose a fully self-supervised framework to au-
tomatically learn extended body schemas from multi-modal data to successfully
perform object manipulation tasks. Towards this our contributions are as follows:

1. We propose a multi-modal keypoint learning approach that merges propri-
oceptive state, RGB and depth measurements to spatially bias the visual
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keypoints towards the end-effector. This leads to better on-object keypoint
predictions as compared to keypoint methods (Minderer et al. |2019) that
only take RGB measurements into account.

2. We use a fully differentiable kinematic representation of the manipulator that
we extended with a priori unknown virtual links and joints representing the
object. To recover the virtual joints parameters, we propose a gradient based
learning approach that learns the parameters given the visual keypoint pre-
dictions as targets.

3. We evaluate the learned extended kinematic chain on a downstream object
manipulation task and show that our self-supervised approach achieves good
performance in simulation and on hardware.

4. We evaluate our multimodal keypoint detector and extended kinematic chain
on a 7DoF iiwa Kuka arm that has various objects in hand, in simulation and
on hardware.

Our results show that when trained with proprioceptive information, the learned
keypoints represent the manipulated objects more reliably. After regressing the
virtual joints from the visual keypoint information, we compare the resulting ex-
tended kinematic model to dynamics models learned with neural networks, on a
model-based control task: placing a grasped object. Our method outperforms the
learned dynamics models by an order of magnitude on the downstream task.

4.2 Related Work

4.2.1 Internal Representations of Body in the Brain

It has been well established that distinct representations of the body are created,
adapted and utilized by the brain while performing sensorimotor tasks and through-
out one’s lifetime (See (Hoffmann et al.,|2010) for a review). Research in the domain
of cognition (Limanowski and Friston, 2020} Van Beers et al.;|{1999; Sober and Sabes,
2005) has additionally inferred that the ”internal state” of a limb is informed by
both vision and proprioception, and that both signals are combined in a weighted
fashion to update this internal representation, with the weights attributed to each
signal depending on their reliability. Several works ((Cardinali et al.| 2009, 2012;
Baccarini et al.l 2014} Martel et al.l 2021))) also consider the plasticity or extension
of body schemas during (or in anticipation of) tool use in human and primate sub-
jects. (Martel et al.l 2021) shows for instance that the use of a 40 cm long tool in
a study causes the participants to move as though their arm is longer, indicating a
change in their body schema. Taking inspiration from biological cognition, we com-
bine the above notions in our approach. We extend the existing kinematic chain
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(analogous to body schema in humans) of our robotic arm to include a grasped
object. Furthermore, we fuse signals from proprioception and vision for estimating
the state of the extended parts of the chain more accurately. We expand more on
related works in robotics in these contexts in sections [4.2.3| and [4.2.4]
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Phase 1: visual keypoints via proprioception Phase 2: Extended body schema

Problem Setting

joint state  RGB Image
Kinematic chain

a) goal image b) robot executes

Figure 4.2: Overview of self-supervised learning of extended body schemas. Our approach
comprises two phases, (1) in the first phase we learn an autoencoder architecture to
detect visual keypoints on the object in the manipulator’s hand by merging proprioceptive
and visual information. The forward kinematic model of the robot is used, to create a
kinematic features map. The visual and the kinematic feature maps are then combined
to train the keypoint detector. In the (2) second phase we use the predicted visual
keypoints, that ideally are detected on the object, to learn an extended kinematic chain
of the manipulator that inherently includes the object in the robot’s hand. The extended
kinematic chain is then used to accomplish a manipulation task. Learning happens fully
from visual and proprioceptive information and can adapt to different rigid bodies and
grasps.

4.2.2 Learning Visual Representations for Model
Predictive Control (MPC)

Since the core emphasis of the article is learning representations for robotic object
manipulation, we contrast our framework to other relevant approaches with respect
to latent space representation, dynamics model learning and action optimization.
Approaches that employ model-predictive control in visual space can be distin-
guished by how much, and what kind of structure is infused into the predictive
model. Approaches such as (]Ebert et al.L |2018b, utilize no structure and learn a
predictive model f directly in pixel space. Both, (]Watter et al.l |2015D and dByra—|
van et al.,|2018) learn a latent representations z and a predictive model f in the
latent-space. While (]Watter et al.L |2015D assumes no structure for learning z, they
assume locally linear dynamics for learning the latent space transition model f.
(Byravan et al.| 2018) on the other hands learns a structured SE3 latent represen-
tation that is more interpretable, and learns unstructured predictive models f. Our
method builds upon an self-supervised keypoint representation learning approach
in (Minderer et al.||2019; Kulkarni et al.,|2019), which (Das et al.||2020b; Lambeta)
et al.L M utilize for object manipulation tasks. It relies on an auto-encoding
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scheme with a structural bottleneck that can extract 2D keypoints representing the
object(s) of interest. However, as observed by (Das et al.||2020b} Lambeta et al.,
. the keypoints encoded by this method are not always consistently on the
object of interest. We illustrate this further in our experiments that compare this
keypoint detector (Minderer et al.| 2019) with our multimodal keypoint detector.

(Manuelli et al.l [2020) is another recent work that takes a structured approach
towards learning keypoints and utilizes them for model-predictive control. The
keypoints learned are, by design, always located on the object and are consistent
across frames. This is achieved by first learning a dense visual object descriptor
(Florence et all [2020) for the object of interest. which has two requirements:
(a) pixel to pixel correspondences between image sets, and (b) an object mask
learned by utilizing results from (Finman et al., 2013). Following the training of a
dense visual descriptor, k descriptors are sampled as keypoints. An unstructured
predictive model f is then learned in keypoint space (Manuelli et al.| [2020). In
contrast to this approach for keypoint detection, our multimodal detector does not
need pixel-wise corresponding images for supervision or an object mask, while still
being able to produce keypoints that are reliably present on an object .

The above mentioned approaches, also differ in how action sequences u are op-
timized: via the cross-entropy method CEM (Rubinstein and Kroese| 2004} Ebert|
et al.l[2018] |[Lambeta et al.| 2020] Manuelli et al.||2020), gradient based optimiza-
tion (Byravan et al, 2018| |Das et al., [2020b), Model Predictive Path Integrals
QManuelli et al.|, |2020[) or by using optimal control methods dWatter et al.l |2015D.
Our framework is agnostic to the specific action optimization method. We present
results using gradient based action optimization.

4.2.3 Multi-Modal Learning: Fusing Vision and
Proprioception

In the previous subsection we discussed model-predictive control that utilize visual
data only. However, there is more and more evidence that utilizing multi-modal
sensor streams improves perception and manipulation qBohg et al.HQOl?t |Edelman|,
|1987|; |Lacey and Sathianl |2016b. This has been explored in various robotics ap-
plications. For instance, fusing vision and proprioception dGarcia Cifuentes et al.L
|2017|;|Kappler et al.L|2018t |Mart1’n—Mart1’n and Brockl |2017[) or combining visual and
tactile information dMartl'n—Martin and Brockl |2017|; |Lambert et al.L |2019k |Yu and|
Rodriguez| 2018) has been explored for better state-estimation in applications such
as object-tracking. These approaches are mostly concerned with understanding
state-estimation from multi-modal sensor data and assume expert-designed low-
dimensional features are extracted from each modality. Manually designing fea-
tures for heterogeneous data is extremely challenging, time-consuming and thus
not scalable. Because of this reason, there has been a recent push towards learning
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state representations from multi-modal data for a wide range of applications. For
example, there have been many works that have explored the correlation between
auditory and visual data for tasks such as speech or material recognition or for
sound source localization (]Ngiam et al.HQOllt |Owens and Efrosl|2018t|0wens et al.
2016| |Yang et al.| 2017). Several work (Bekiroglu et al., 2011} |Calandra et al.
2018 |Gao et al.l, |2016|; |Sinapov et al.L |2014[) fuse visual and haptic data for various
applications such as grasp stability assessment, manipulation, material recognition,
or object categorization.

As discussed above, fusing multiple sensor modalities for better state-estimation
is common in the rigid-body tracking literature, and recently it has also been shown
by (Lee et al.}|2019) that it leads to better learned state representations for robotic
manipulation tasks. In this work we show how fusing proprioception and vision (rgh
images and depth) significantly improves the learning of keypoint representations.
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Figure 4.3: Phase 1: Multimodal keypoint detector, fusing vision and prorioception to
predict visual keypoints. The forward kinematic model of the robot is used, to create a
kinematic features map. The visual and the kinematic feature maps are then combined
to train the keypoint detector.

4.2.4 Learning body schemas

A promising alternative to learning unstructured predictive models are approaches
that use structure for body schema learning. A body schema (Hoffmann et al.|2010)
is a representation of a robot’s body and its extensions such as grasped objects or
tools, which can then be used for control. Body schema approaches can be classified
into approaches that estimate parameters of structured representations of a body
and tool (i.e kinematic representation) (Sturm et al.||2009; Martinez-Cantin et al.|
2010} |Ulbrich et al.||2009; [Hersch et al., 2008 Gothoskar et al.| 2020; Stepanova,
et all[2019), or of unstructured models, such as neural network representations
(Boots et al., 2014} Hikita et al.}|2008; [Rolf et al.}|2010; Nabeshima et al.l |2006]
'Yoshikawa et al.| 2003 Schillaci et al.l|2012). To address the challenge of learning
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models that generalize to differet parts of the state space, we follow approaches that
learn parametrized kinematic models. Prior work in this category typically utilizes
markers or ground truth knowledge about the end-effector or tool-tip location in
the robots workspace (Sturm et all 2009; |[Martinez-Cantin et al., 2010} [Ulbrich
et al.;|2009;|Gothoskar et al.}|2020) or simplified visual signals (Hersch et al.;|2008),
and instead focus on learning kinematic parameters. In contrast to this, our work
extends an existing kinematic chain to include a grasped object purely from learned
visual latent representations in a self supervised way.

4.3 Problem Setting and Method Overview

In this work, we address deterministic, fixed-horizon and discrete-time control prob-
lems with continuous states s = (s1,...,s7) and continuous actions u = (uq, ..., ur).
Each state s; = [0, z;] is the concatenation of the measured joint angles 8, and
a learned visual latent state z; at time step t. To solve the control problem we
use a learned visual predictive dynamics model §;41 = f (s, u;) and a cost function
C(2s, Zgoal) that measures the distance between current and desired goal state in
the visual latent space.

The learned predictive model f predicts the change in object state, as perceived
from the camera, given the current joint displacements. f is learned in a self
supervised fashion by merging proprioceptive and visual information and we do
not assume any additional model knowledge of the external object.

Learning f involves two phases. In the first phase a keypoint detector is trained
to detect keypoints z on the object in the manipulator’s hand from the visual
data. The keypoint detector follows an autoencoder architecture and we present
a novel approach to merge visual and proprioceptive information for keypoint de-
tector training, when encoding the visual information. In the second phase of our
approach, we use the learned keypoint detector to learn the parameters of an ex-
tended kinematic chain of the robot. The extended kinematic chain, extends the
standard kinematics of the robot arm to include also the object in the manipula-
tor’s hand. The extended kinematic chain can then be used to optimize a control
policy for a manipulation task. The control tasks are characterized by a desired
goal state for an object in the manipulators hand. The goal state is provided in
the visual latent space i.e. the visual keypoits. An overview of our self-supervised
learning approach can be seen in Fig. |4.2
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4.4 Phase 1: Fusing Proprioception and Vision
for Multi-Modal Keypoint Learning

In this section we introduce a novel multimodal keypoint learning framework that
leverages RGB, depth and proprioceptive measurements for improved keypoint
training and prediction. Intuitively, proprioception is the sense of self movement
and body position. In the context of this work we use robot joint positions and
forward kinematics as proprioceptive information during learning.

4.4.1 Learning Visual Keypoints for Object Manipulation

We base our multi-modal keypoint learning framework on the visual keypoint de-
tector presented in (Minderer et all |2019). To learn keypoints (Minderer et al.|
2019) uses an autoencoder with a structural bottleneck to detect 2D visual key-
points that correspond to pixel positions with maximum variability in the input
data. For keypoint prediction (Minderer et al.} 2019) extract K 2-D visual feature
maps ozisual through a mini-RESNET 18, where K is the number of keypoints.
The autoencoder architecture is trained with RGB image sequences collected from
videos. The maximum variability can intuitively be thought of as areas of biggest
movement in the image. The autoencoder architecture is then trained with a com-
bination of losses. The loss is composed of a reconstruction error (L), a keypoint
sparsity error (Lgpa), and a keypoint separation loss (Lgep), that encourages the
separation of keypoints in pixel-space.

L (inderer ef al) 2019) = Lrec + Aspa * Lspa + Asep * Lsep (4.1)

where Agpa and Agep, represent the scale parameters for various losses.

In the next sections we are going to present how we extend the keypoint detector
by (Minderer et al., [2019) to a multimodal keypoint detector that merges vision
and proprioception.

4.4.2 Fusing visual and kinematic feature maps

We now present how we include proprioceptive information when training our mul-
timodal keypoint detector. Our method extends the one presented by (Minderer
et al.;2019) in two places. We (1) create, additionally to the visual feature map, a
kinematic feature map, representing the end effector position of the robot in image
space and (2) we extend the training loss with a kinematic consistency loss. In the
following we are going to explain both extensions in detail.

To create the kinematic feature map we specify s, © = h"(6) as a forward kine-
matic function, that directly projects the 3D position of link n into image space
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when the robot is in configuration 6. To retrieve s,"®, first, the robot’s forward kine-
matic model is used to deliver x,, the 3D location of link n in the robot’s coordinate
frame. Then x, is projected into image and depth space. The full transformation
is given by

n
s At — i (9) = Ty i TeamXn Where x, = 1_[ T:(0;; ¢1)
i=1

where T; is the transformation matrix from the coordinate frame of link i to link i—1
and ¢; are the parameters (rotation and translation) of link i; Tiay transforms x,
from robot to camera coordinate frame, and Tj,o; performs the projection to image
and depth space. In the following, we will use s,i;ng’ depth ) denote the use of both
image and depth value, and s,,"® when we only use image pixel predictions. In the
following, we assume that the parameters ¢; up to the end-effector index n = ee are
known, and we will use 4°®(6) to combine visual and proprioceptive information to
train the keypoint detector.

In order to spatially bias keypoint learning to be close to end-effector location, we
propose to include proprioceptive information during keypoint detector training in
the encoding phase. We do this by computing a second feature map, which we call
the kinematic feature-map o¥™, visible in Fig The kinematic feature-map is
generated by first computing the end-effector position in image space, seo® = h®®(6),
as described in section followed by placing a Gaussian blob g™ over the
location of the projected end-effector position in image space:

Okin — gkin(s;lalélg
where ghkin converts the pixel coordinates of Sea® into a heatmap with a Gaussian
shaped blob N (seet,2) centered at x, y pixel locations of sge®°.

We then combine the kinematic with the visual feature map, creating a joint
feature-map 0ot = pVisualy pkin which fuses visual and proprioceptive information.
Given 0/ keypoints are trained through a reconstruction objective, similar to
the method presented in (Minderer et al.l 2019). Figureprovides an overview
of our adapted encoder-decoder architecture.

=0

4.4.3 Utilizing proprioception and depth to augment loss

We extend the loss proposed in (Minderer et al.} 2019) L@finderer et all[2019) PY
including a term that penalizes the distance between keypoints and end-eftector.
This kinematic consistency loss, together with the kinematic information during
feature map creation, spatially biases the keypoint learning towards the end-effector
location to incentivize the detector to place keypoints on the object. The kinematic

61



Chapter 4 Multi-Modal Learning of Keypoint Predictive Models for Visual Object Manipulation

consistency loss, is given by

ﬁkin — Z(Zl[jc,y,depth] _ Sierélg,depth)2 (42)
k
where z,Ex’y depthl i the x, y pixel locations and depth value of the predicted keypoint

Zx. The depth value of z; is retrieved, by querying the depth image at pixel locations

X, y.
The complete loss that is minimized during Phase I is thus given by:

L = L \inderer et a) [2019) T Akin * Lkin (4.3)

where Ay again is a scaling parameter for kinematic consistency loss.
To train our keypoint detector we collect visual and proprioceptive data Dyey-train
for self-supervised keypoint training. After this training phase, we have a keypoint

detector that predicts keypoints z of dimensionality K X 3. Here K is the number
of keypoints, and each keypoint is given by zx = (2}, 2}, 24 *'"), where zf,z) are
pixel locations of the k —th keypoint, and Z‘;epth

: x Y
location Zps Ty

is the value of the depth image at

4.4.4 Inference at test time

It is important to note that the proprioceptive information is only added during
keypoint detector training. Also during training, we do not need to necessarily in-
clude proprioceptive information for each datapoint, but can also train from mixed
datasets that contain only visual information and visual and proprioceptive in-
formation. After training, the proprioceptive information is no longer needed for
keypoint prediction at test time since the proprioceptive information is now inher-
ently part of the leared keypoint detector. The keypoint detector can be used with
purely visual input. This allows extraction of keypoints from a goal image that is
produced, for instance, by recording human demonstrations. At inference time, the
keypoint detector predicts the x, y locations of the keypoint zi, the depth value is
then retrieved by querying the depth image at pixel location x, y.

4.5 Phase 2: Learning Body Schema Extension

from Visual Keypoints
The multimodal keypoint detector presented in section[4.4] merges visual and pro-
prioceptive information during training, facilitating better on-object keypoint pre-

dictions during test time. Since the keypoints predicted by the detector are more
likely placed on the object in the manipulator’s hand, they will enable us to learn
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ﬂ S0
P 4
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Figure 4.4: Phase 2: The translation parameters of the virtual joints representing the
object in the manipulator’s hand (red dots) are estimated from the x,y pixel location of
the visual keypoints together with the depth information of the pixels. The virtual joints
extend the kinematic chain of the robot to also include the object, as is illustrated in the
figure.

an extended kinematic chain of the robot arm that includes the object in the ma-
nipulator’s hand. The extended kinematic chain can then be used for model-based
control on a downstream manipulation task. In this section we are going to ex-
plain how we learn the extended kinematic chain and how it can be used for a
downstream manipulation task.

As already pointed out in section an object or a tool in the gripper of a
manipulator can be seen as an extension of the kinematic chain of the robot. In
Fig. we visually show how the extension of the kinematic chain looks like for
the kuka manipulator: additional virtual links and joints are added, representing
the object in the manipulator’s hand, to create a full chain that includes the object.
The extended kinematics of the robot can then be controlled.

In order to learn this extended body schema from vision we use the keypoint
predictions of the multimodal keypoint detector presented in section The
predicted keypoints on the object are then used to regress the kinematic parameters
of the extended body schema.

4.5.1 Estimating virtual joints from visual keypoints

During the second phase of our approach, the extended kinematic chain of the
manipulator should be learned to include the object in the manipulator’s hand.
The self-supervised nature of our approach allows the kinematic chain to adapt
when the object changes or the grasp around the object shifts, making the learning
of the extended kinematic chain flexible to changes in the experimental setup. Once
the keypoint detector has been trained, we use its predictions to learn an extension
of the kinematic chain to include the object into the body schema. We extend
the kinematics model from Section[4.4.2] to include virtual joints, one per visual
keypoint, such that si{mg’demh = h’;(@) is the projection of the virtual joint in image
space. Here, ¢ are the learnable translation parameters of the virtual joints, that we
aim to learn such that they represent the object (see Fig. and Fig. where
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the red circles represent the virtual joints with the virtual links connecting them
to the robot end effector, we assume the extension of the kinematic chain starts
at the end effector). To regress ¢, a dataset D = {(x; = 0,y = z)}_, is collected
where the trained keypoint detector is used to predict visual keypoints z*--derth]
on images of the object in the robot’s hand while being in joint configuration 6.
The goal of this learning problem is to regress the translations ¢, such that the
output of h(’;(e) matches the keypoints detected by the detector. In other words,
to optimize ¢ we want to minimize the loss Lirans via gradient descent.

img,depth ,y,depth
Lirans = (SLm& P Z}Ex yert ])2 (4'4)
where Si{mg’depth = hlg,(Q). This loss is a function of the learnable kinematic pa-

rameters ¢, making it possible to update ¢ via gradient descent. Learning the
translation parameters of the virtual joints, results in a new extended kinematic
model, which includes the object. This new kinematic chain does not require visual
information anymore and can be used for action optimization. As will be presented
in section using our version of the keypoint detector, that merges visual and
proprioceptive information provides more accurate on-object keypoint predictions
and thus makes learning the extended kinematic chain possible.

4.6 Gradient-Based Control for Object
Manipulation

The goal is to successfully perform a manipulation task in the visual domain. This
means that the desired goal position of the object in the manipulator’s hand is
given in image space instead of in joint space. Specifying a desired goal position
in image space is more intuitive compared to specifying it in joint positions, where
the relationship between joint position and real world object position is not readily
available. In contrast to other visual MPC work (Ebert et al.||2018}|Byravan et al.|
2018| |Das et al., 2020b)), that utilize learned visual dynamics models to optimize
actions u, we make use of our learned extended kinematic chain. Specifically, we
define a visual predictive model s;41 = f(ss, u;) where s;41 = [0141, 2141], and

9t+1 = 9; + Uy (45)
i+l = hg(gml)
where actions ug are desired changes in joint positions and 4 is, as defined in section
the forward kinematic call of the learned extended kinematic model projected in

image space. To optimize actions, we follow the gradient based action optimization
presented in (Byravan et al. 2018} Das et al., 2020b) and minimize a task specific
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cost function C. Specifically, to optimize a sequence of action parameters u =

(uo,u1,...,ur) for a horizon of T time steps, we first predict the trajectory 7,
that is created using an initial u from starting configuration so: §1 = f(sg, ug), $2 =
f(s1,u1)s... S7 = f(s-1,u,-1), which generates a predicted (or planned) trajectory
T.

Practically, this step uses the extended kinematics model h’;(@) to simulate for-
ward what would happen if we applied action sequence u to the initial state sq.
We then measure the cost achieved C(7, zgoal), Where zgoa1 is a goal location in the
visual domain. Since h is differentiable, the cost of the planned trajectory can be
minimized via gradient descent by taking the gradient of the cost with respect to
the action sequence and performing a gradient update step.

Upew = U — UVMC(f, Zgoal) (47)

Algorithm [5|shows the details of our visual MPC algorithm.

Algorithm 5 Gradient Based Control

1o f(se,ur) = [0 +uy, hl;(gtﬂ)]
2: initial state so = [6o, z0]
3: for each epoch do
u, =0,vVe=1,..., T
// rollout 7 from initial state s and actions u
7 « rollout(sg, u, f)
// Gradient descent on u
Upew — u—1V,C(7, Zgoal)
end for

© DG

4.7 Experiments: Self-Supervised Learning of
Body Schemas

In this section, we present the experimental evaluation of our approach. We train
two versions of the keypoint detector: our multimodal keypoint detector, merging
vision and proprioception, following the approach presented in section [5.3]and the
detector presented in (Manuelli et al.,|2019),(Minderer et al.}|2019), as a baseline
comparison. All of our experiments are performed on a 7 DoF iiwa Kuka arm (AG,
2020), with an object attached to the Kuka’s gripper. We present experiments in
simulation and on hardware. For our simulation experiments, we use the Habi-
tat simulator (Manolis Savva™ et al.;|[2019) with a pybullet integration (Pybullet,
2012). In simulation, we use three different objects to show the adaptability of our
approach. The experimental setup together with the objects used, is shown in Fig.
for simulation and hardware.
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4.7.1 Data Collection

Figure 4.5: The 3 objects used for simulation experiments, and one object on hard-
ware.

The keypoint architecture as presented in (Minderer et al| 2019) is built to
learn keypoints that capture motion in video-sequences. Because we aim to learn
keypoints on the object, we collect data that only has object motion, similar to
(]Das et al.l |2020bD. Specifically, we first move the manipulator to a random joint
configuration, then we keep the manipulator in its position and only move the
end-effector for 6 seconds. In total we move the robot to 60 initial random joint
configurations, and from there collect data at a frequency of 5Hz for a total of 5
seconds, for each object. We collect image data, which includes RGB and depth
data, alongside with proprioceptive information about the joint positions. Data
collection on hardware follows the same procedure as presented in
: we collect 50 sequences of motion data in which only the end-effector and
object move, starting from a random joint configuration. Each sequence is 3 seconds
long, and contains 10 data frames. In simulation we perform this data collection
for 3 objects and for 1 object on hardware, as shown in Figure [4.5]

Figure 4.6: (top) simulation results; (bottom) hardware results. (1st col) training
loss for detector training, both detectors converge during training. (2nd col) illustration
of evaluation metric. (3rd to 5th col) Results for training keypoint detectors with
K = 2,3,4 keypoints, respectively. The bar plots show the average distance from the
center line for each keypoint in pixel space. The multimodal keypoint detector (orange)
predicts keypoints that are closer to the center line, and the average pixel distance suggests
that they are placed on the object.
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4.7.2 Does proprioception help train better keypoints?

In this section we want to analyse how merging proprioceptive information and
visual information benefits on-object keypoint detection. For this purpose we train
two kinds of keypoint detectors, one that includes proprioceptive and visual in-
formation which we call the multimodal keypoint detector and one that only uses
visual information which is our baseline and equivalent to the keypoint detector
presented in (Minderer et al.||2019). After training, we compare the performance
of the multimodal and baseline keypoint detectors of achieving on-object keypoint
detection. For our simulation experiments, we present results averaged over five
seeds and 3 different objects, where we train a detector per object. On hardware,
the experiments are also averaged over five seeds and we present results for two to
four keypoints on a single object. First, we show the training loss curves in Fig-
ure left), averaged across seeds, objects and number of keypoints. In simulation,
the loss curves are very similar, we believe that this is due to the reconstruction
loss being the biggest component of the total training loss. Since only the gripper
and object moves, the reconstruction for most of the image works well, reducing
the loss and resulting in low training error even if the keypoints are not placed on
the object.

Next, we evaluate how well the learned keypoints capture moving objects. To this
end, we define an imaginary line, that cuts through the object in the middle and
connects its extremities. A visualization of it is visible in Fig. (2nd column).
Computing the shortest distance of a keypoint zx = (xx, yx) to this line, will give
us a good intuition of whether this keypoint lies on the object or not. We perform
this evaluation, for training detectors with K = 2, 3,4 number of keypoints. We
evaluate the detectors on a test dataset with 250 datapoints, that was held out
during training. The distance is computed in pixel space and we report the mean
and the standard deviation of that distance.

In Figure we show the averaged distance of each trained keypoint to the line,
with error bars, after training. Results for the simulation experiments (top row)
and hardware experiments (bottom row) are shown. The bar plots illustrate the
distance of the detected keypoints to the center line. We see that the multimodel
keypoint detector, that was trained with proprioceptive information, outperforms
the baseline detector. The low distance to the center line suggests that the mul-
timodal detector places the keypoints on the object. This is confirmed by the
qualitative analysis in Fig. where three examples are shown. The multimodal
detector detects keypoints that are on the object (top row). This is not true for
the baseline detector, which often fails at detecting keypoints that lie on the object
(bottom row).
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Figure 4.7: Qualitative performance of multimodal (top) and baseline (bottom)
keypoint detector on the hardware dataset. The multimodal keypoint detector,
always detect keypoints on the object, this is not the case for the baseline detector.

4.7.3 How much proprioception is needed?

In this experiment, we want to evaluate how combining multi-modal observations,
that contain both visual and proprioceptive measurements, with visual only obser-
vations affects results. This experiment will give us insights into whether a robot
could combine visual observations obtained in a passive way (watching humans in
action or videos) with observations gained in an active way (by moving the object
itself) to learn keypoint detectors. To perform this experiment, we pretend that for
a fraction of observations, the proprioceptive state measurement was not observed,
and evaluate how stable keypoint training is as a function of that fraction. As
can be seen in Fig. [4.8]while we can achieve already good performance when only
including 50% of the proprioceptive information during training, the consistency
of on-object keypoint detection significantly improves when we include all the pro-
prioceptive information, as can be seen from the smaller standard deviation in the
plot. In the plot we can also see that including or not including proprioceptive
information during test time has no effect on the performance of detecting key-
points on the object. During test time the keypoint detector can be used only from
visual information. This means that our multimodal keypoint detector learned to
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B w/o proprioception at test
| W with proprioception at test

Distance from center of object

100% 75% 50% 25% 0%
Percentage of multi-modal observations during training

Figure 4.8: Share of multimodel data (including proprioceptive information) in the
dataset used to train the keypoint detector, we compare the performance of the
keypoint detectors during test time when including or excluding proprioceptive
information. We see that using multimodal data during training shows a significant
performance improvement, however during test time the proprioceptive information
has no effect on on-object keypoint detection performance.
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incorporate the proprioceptive information and has inherently access to it when
predicting, even when the proprioceptive information is not available.

4.7.4 Virtual link/joint regression

In this section we present the experiments showing how we can learn an extended
body schema from vision. The purpose of these experiments is to show that we can
use our learned visual latent space to regress the translation parameters of some
virtual joints that extend the kinematic chain of the robot to also include an object
in the manipulator’s hand. For this to be successful it is a prerequisite that the
visual keypoints are detected on the object, since otherwise the extended kinematic
chain would not represent the object in the robot’s hand. As we already evaluated
in the previous section only our multimodal keypoint detector successfully detects
keypoints on the object, therefore we are using our multimodal keypoint detector
for these experiments.

We perform two set of experiments for the regression of virtual joint parameters:
1) to evaluate our virtual joint estimation procedure quantitatively, we test whether
we can identify ground truth parameters ¢, if we knew them; 2) We evaluate
regressing virtual links from visual keypoints detected on 4 set of grasps.

To collect data for the first experiment, we pick a set of three ground truth
virtual joint parameters ¢ such that their projections h];; lie on the object. We

collect a dataset D = {(6;, hg(@,)}}fl for 15 random joint configurations . Then,

we pretend to not know ¢, initialize ¢ to be zero, and aim to estimate ¢ from the
observations in D via gradient descent, as described in Section In Fig we
show the MSE error between ground truth and estimated parameters |[||¢ — ¢||||* as
a function of number of gradient steps, both from simulation and hardware data.
We observe that after approximately 50 gradient steps ¢ converges towards their
ground truth values, showing that the regression of virtual joint parameters from
projected image and depth values is successful.

For our second set of experiments, we use the trained keypoint detectors to
create a dataset D = {(9,,1,)}}5’1, where z; are the keypoints predicted by the
detector, and learn virtual joints from these visual keypoint observations. The first
image of Fig. shows the visual keypoints predicted by the multimodal detector
(in green), together with the projected virtual links h(’; (in red) after learning ¢.
The following two images show how the projection of the kinematic chain remains
consistent, also when the pose 8 of the manipulator changes. Results are presented
for simulation (top) and on hardware (bottom) experiments. The results show that
we can successfully learn ¢ from visual features.

Finally, we also evaluate our kinematic parameter regression when the robot
re-grasps the object. Re-grasping changes the kinematic chain, by for example
shifting it. In Fig. we show how our method can successfully learn kinematic
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Figure 4.9: Regression of kinematic parameters, MSE to ground truth virtual joint values
over gradient steps. Our method is able to regress the virtual joint parameters success-
fully, on simulation and on hardware. Simulation results are averaged over five seeds and
three object with manually chosen ground truth parameters for each object. Hardware
results are averaged over five seeds.

parameters ¢ that reflect this change. We show results for three new grasps. In the
next section we present results for a downstream placing task, where our learned
extended kinematic model is used, with different grasps, to place the object on a
table.

4.8 Down-stream Task Experiments:
Model-based Control for Object
Manipulation

Finally, we want to use our approach of learning extended body schemas from
multimodal data on a object manipulation task, specifically a placing task (see
Figure . With these experiments we want to show the practical applicability
of our approach on a robotic task, and present results in simulation as well as on
hardware. We compare our approach to various baselines.

During the placing task, the robot is required to manipulate the object in the
gripper such that it successfully places it on a table. The task is defined in the visual
domain, with a desired goal image and associated keypoint positions in pixel. The
optimization also takes place in keypoint-space.

Performing a motor control task, such as a placing task, in a model based fashion,
requires optimizing controls using a model of the robot and the task. In the case of
the placing task the model needs to capture information about the arm movement,
when an action is applied, and the corresponding movement of the object in the
manipulator’s hand. The actions are optimized for a time-horizon of T = 10 time
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Figure 4.10: Learned kinematic extension for three poses for simulation (top) and hard-
ware (bottom). The first images shows, in green, the keypoints detected by the keypoint
detector. The red dots are the projections in image given the learned virtual joints. Our
method is able to successfully learn parameters ¢, that generalize across poses.

steps, with the gradient based approach introduced in section We define a
cost function, which penalizes the distance between predicted and goal keypoint
locations. We compare our learned extended kinematic chain to various baselines
that have previously been presented in (Das et al., 2020b; Manuelli et al., 2020).
The baselines also use visual keypoint detectors for the latent visual representation
z but, instead of learning an extended kinematic chain, learn a neural network
black-box dynamics model gg, 541 = gg(ss, u;) that maps the current state s, and
action u, to the next state s;1. As previously s; = [6;, z;].

We show results for experiments in simulation and on hardware. Our approach
learns an extended kinematic chain from the multimodal visual keypoints detector,
that uses proprioceptive information during training (see section |5.3). The virtual
joints, that represent the object, are regressed from a few measurements, as we
described previously. Specifically we used three keypoints and thus, regress the
parameters of three virtual joints. We compare our approach to the following four
baselines that learn a neural network dynamics model in the keypoint latent space:
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Figure 4.11: Re-grasping for three different grasps. After each new grasp we regress
the kinematic parameters successfully.
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Figure 4.12: On the two plots on the left the long horizon prediction performance of our
approach compared with neural networks dynamics models is shown. The plot on the left
shows the error when using the action sequence that performs a placing task, the plot in
the middle shows the prediction error for a random action sequence. The prediction error
of the neural network increases exponentially over time or is high to begin with, while
the error for our method stays small. The plot on the right shows the training error of
the neural network models, to show that they were trained until convergence. We report
the mean and the standard deviation of the error.

m“

Figure 4.13: Placing task in simulation and hardware
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DynModel in 2D Keypoint space (DynModel42D) We train a keypoint
detector as described in (Minderer et al., |2019; |Das et al.||2020b)) without depth
information. This keypoint detector does not use any proprioceptive information
during training. We use the keypoint detector to train a dynamics model s;41 =

gp(ss, u;) from a collected dataset, this reimplements the approach presented in
(Das et al.|2020Db).

DynModel in 3D Keypoint space (DynModel4+3D) This baseline extends
the baseline presented in a) by including also depth information during keypoint
detector and dynamics model training. The latent space now is three dimensional
as it includes (x,y,d) - pixel locations and depth information. With this baseline
we want to test whether adding depth information improves task performance.

DynModel in 2D-multimodal keypoint space (DynModel42D+multi)
We train a structured keypoint detector as described in section[4.4.3] the structured
keypoint detector is trained using proprioceptive information. After keypoint detec-
tor t raining we train a black box neural network dynamics model s;41 = gg(ss, us),
instead of regressing virtual joint parameter. This baseline will allow us to see
whether using the structured keypoint detector also improves performance on the
manipulation task, even if the visual dynamics model is learned with a neural net-
work.

DynModel in 3D-multimodal keypoint space DynModel+3D-+multi) same
as above the baseline in ¢) but here again we include depth information for key-
point detector training and neural network dynamics model training. As in the
baseline before we want to test whether using proprioceptive information during
keypoint detector training improves performance on the task, but we also want to
test whether adding depth information, and thus a third dimension to our visual
latent space, improves performance.

For all our baselines we train a visual dynamics model in the keypoint space
represented by a neural network. We use dataset D = {(6;, us, z¢)) ?280 collected
on sine motions of the robot, where z are the keypoints predicted by the detectors,
to train a feedforward neural network. All the dynamics models are trained to
convergences on the training data, and achieve a normalized mean squared error
below 0.1 on the test data. Training a visual dynamics model in the latent space
has been a popular choice in the literature so far, (Das et al.l |2020b; [Manuelli
et al.l|2020). It has the advantage that neural networks have a lot of flexibility
to represent the problems at hand, however a downside of neural network based
approaches is the unreliable extrapolation behaviour for out of distribution data
and long horizon prediction performance, that degenerates fast and is detrimental
for model-based control. In Fig. we show the predictive behaviour of our
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Method Task 1 Task 2 Task 3
Mean (Std) Mean (Std)  Mean (Std)
Ours 4.85(2.91)  2.04(1.26)  2.06(1.18)
a 155.62(343.84)  60.78(73.67)  70.00(67.73)
b 135.16(119.7)  69.60(59.69)  85.32(83.27)
c 103.35(85.07)  20.37(48.09)  70.38(88.42)
d 120.21(107.39)  40.14(42.95) 96.58(258.14)
Hardware  4.06 (3.83) 2.12 (0.04) 5.60 (4.43)

Table 4.1: The performance of three placing tasks. We compare our method to the
baselines introduced before. We report the final distance of the object in the hand
from the desired target position of the object as root mean squared error. We average
our results over five seeds and four different re-grasps of the object in simulation. On
hardware we average over five seeds. The errors are reported in pixel space.

baseline neural network models. In the image on the right, the training error of the
models is shown and it is clearly possible to see that the models were trained until
convergence. Nevertheless the two plots on the left show the long horizon prediction
behaviour of the neural networks compared with out extended kinematic chain. On
the x axis the time horizon is shown and on the y axis the prediction error. From
the plots it becomes evident that predicting for longer horizons through the neural
network dynamics models, which is necessary when optimizing actions for a motor
control task like placing, leads to exponential prediction error. The plot on the left
shows long horizon prediction for the placing task action sequence, the plot in the
middle for a random action sequence. In all cases the predictive performance of
the neural networks deteriorates exponentially over time for all baselines which also
explains the poor results presented in Table [4.1] where we report the results for our
experiments. Only the neural network model that is trained using our multimodal
keypoint detector with depth information (baseline d), can achieve a satisfactory
predictive behaviour over 10 time steps, showing that improved on-object keypoint
detection can increase also the performance of neural network visual dynamics
models.

In Table[4.1] the simulation experiments are averaged over five seeds, the three
objects introduced earlier and four different grasp positions. The results show the
final distance of the object keypoints in the manipulators hand to the desired goal
keypoints on the table. We perform a total of three tasks that vary in start-goal
configurations. All the distances are reported in pixel space, and represents the
root mean squared error (RMSE). Between all the baselines, the baselines ¢) and
d) that use our proposed keypoint detector, perform best. This indicates, that the
keypoints trained with our detector are better suited for the object manipulation
task. Yet overall, compared to our extended kinematic chain, all of them perform
fairly poorly in the model-based control task. Our approach outperforms all baseline
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variations and is the only one to successfully place the object on the table. This
gap in performance can be explained by the fact that the extended kinematic is
able to generalize throughout the state-space, while the trained dynamics models
prediction quality deteriorates quickly outside of the training data distribution.

It is worthwhile highlighting, that our approach is successful also when used on
the real robot, where we achieve an average RMSE of 3.92 pixels on the placing task.
This is remarkable not only because on hardware noise and controller inaccuracies
often make the task harder, but also because we run our optimized action sequence
in a feedforward fashion, without having to replan at each time step.

4.9 Discussion and Future Work

We present a method for learning extended body schemas from vision. Our method
inherently incorporates an external object in the manipulator’s hand. To this end
we show how merging two sensor modalities, precisely proprioceptive information,
in form of joint positions, and vision, enables us to learn better visual latent rep-
resentation of the object. The latent representation is then used to successfully
learn an extension of a robot’s kinematics model. As a result the learned extended
kinematic chain incorporates the object into the kinematic model of the robot. We
show how we can use the learned kinematic model for object manipulation on a
placing task, where the task is defined in the visual domain. We also show how
we can adapt the kinematic chain for different grasps from only few datapoints.
Our experiments, on a 7 DoF iiwa Kuka arm in simulation and on hardware, show
the generality of our approach and the good performance to out of distribution
tasks and on the real system. In contrast to current state of the art, we leverage
structured analytical models, i.e the kinematic model, and combine this structure
with a data driven approach to learn visual latent keypoint representations for con-
sistent on-object keypoint placing. When learning the extended kinematic chain,
we again combine structure and learning to recover a representation on the robot’s
arm with the object that transfers easily to new tasks. We believe the combination
of data driven learning and structured models are an interesting avenue for further
research. A remaining challenge of our approach is how to decide when to add or
remove an object from the extended kinematic chain. This depends on the grasp
and release behaviour of the desired task. In the future we would also like to ex-
plore more complex, contact rich manipulation tasks, that use the learned extended
body schema to control the robot during contact rich manipulation. We also believe
that combining vision only data with robot experience in form of proprioception is
an interesting avenue for future work. This would allow to leverage larger visual
dataset, not collected directly on the robot, and combine this visual data with a
smaller but informative amount of robot experience.
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Chapter 5

Meta Learning via Learned Loss

5.1 Introduction

Inspired by the remarkable capability of humans to quickly learn and adapt to new
tasks, the concept of learning to learn, or meta-learning, recently became popular
within the machine learning community (Andrychowicz et al.||2016; |Duan et al.l
2016; [Finn et al., 2017). We can classify learning to learn methods into roughly
two categories: approaches that learn representations that can generalize and are
easily adaptable to new tasks (Finn et al.l 2017), and approaches that learn how
to optimize models (Andrychowicz et al.|[2016;|Duan et al.,|2016).

In this paper we investigate the second type of approach. We propose a learning
framework that is able to learn any parametric loss function—as long as its output
is differentiable with respect to its parameters. Such learned functions can be used
to efficiently optimize models for new tasks.

Specifically, the purpose of this work is to encode learning strategies into a para-
metric loss function, or a meta-loss, which generalizes across multiple training con-
texts or tasks. Inspired by inverse reinforcement learning (Ng et al.| [2000), our
work combines the learning to learn paradigm of meta-learning with the generality
of learning loss landscapes. We construct a unified, fully differentiable framework
that can learn optimizee-independent loss functions to provide a strong learning
signal for a variety of learning problems, such as classification, regression or rein-
forcement learning. Our framework involves an inner and an outer optimization
loops. In the inner loop, a model or an optimizee is trained with gradient de-
scent using the loss coming from our learned meta-loss function. fig. shows the
pipeline for updating the optimizee with the meta-loss. The outer loop optimizes
the meta-loss function by minimizing a task-loss, such as a standard regression or
reinforcement-learning loss, that is induced by the updated optimizee.

The contributions of this work are as follows: i) we present a framework for
learning adaptive, high-dimensional loss functions through back-propagation that
create the loss landscapes for efficient optimization with gradient descent. We show
that our learned meta-loss functions improve over directly learning via the task-
loss itself while maintaining the generality of the task-loss. ii) We present several
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Figure 5.1: Framework overview: The learned meta-loss is used as a learning signal to
optimize the optimizee fy, which can be a regressor, a classifier or a control policy.

ways our framework can incorporate extra information that helps shape the loss
landscapes at meta-train time. This extra information can take on various forms,
such as exploratory signals or expert demonstrations for RL tasks. After training
the meta-loss function, the task-specific losses are no longer required since the
training of optimizees can be performed entirely by using the meta-loss function
alone, without requiring the extra information given at meta-train time. In this
way, our meta-loss can find more efficient ways to optimize the original task loss.

We apply our meta-learning approach to a diverse set of problems demonstrat-
ing our framework’s flexibility and generality. The problems include regression
problems, image classification, behavior cloning, model-based and model-free rein-
forcement learning. Our experiments include empirical evaluation for each of the
aforementioned problems.

5.2 Related Work

Meta-learning originates from the concept of learning to learn (Schmidhuber} |1987]
Bengio and Bengio| 1990, Thrun and Pratt, [2012a). Recently, there has been a
wide interest in finding ways to improve learning speeds and generalization to new
tasks through meta-learning. Let us consider gradient based learning approaches,
that update the parameters of an optimizee fy(x), with model parameters 6 and
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inputs x as follows:

Onew = hw(g’ Vﬁﬁt]ﬁ(y’ fO(X)); (51)

where we take the gradient of a loss function £, parametrized by ¢, with respect to
the optimizee’s parameters 6 and use a gradient transform 4, parametrized by ¥, to
compute new model parameters QneWEI In this context, we can divide related work
on meta-learning into learning model parameters 6 that can be easily adapted to
new tasks (Finn et al.,|2017;|Mendonca et al.| 2019} |Gupta et al.| 2018} Yu et al.,
, learning optimizer policies & that transform parameters updates with respect
to known loss or reward functions (Maclaurin et al.}[2015{ Andrychowicz et al.}2016;
Li and Malik, 2016} |[Franceschi et al.| 2017} [Meier et al., 2018} Duan et al.||2016),
or learning loss/reward function representations ¢ (Sung et al., 2017; Houthooft|
et al., 2018 |Zou et all 2019). Alternatively, in unsupervised learning settings,
meta-learning has been used to learn unsupervised rules that can be transferred
between tasks (Metz et al.| 2019; Hsu et al.| 2018).

Our framework falls into the category of learning loss landscapes. Similar to
works by (Sung et al., 2017) and (Houthooft et al.||2018), we aim at learning loss
function parameters ¢ that can be applied to various optimizee models, e.g. re-
gressors, classifiers or agent policies. Our learned loss functions are independent of
the model parameters 6 that are to be optimized, thus they can be easily trans-
ferred to other optimizee models. This is in contrast to methods that meta-learn
model-parameters 6 directly (e.g. |Finn et al.|7|2017t |Mendonca et al,|,|2019[), which
are orthogonal and complementary to ours, where the learned representation 6
cannot be separated from the original model of the optimizee. The idea of learn-
ing loss landscapes or reward functions in the reinforcement learning (RL) setting
can be traced back to the field of inverse reinforcement learning (]Ng et al.L |2000|;
|Abbeel and Ng|7 |2004|, IRL). However, in contrast to IRL we do not require expert
demonstrations (however we can incorporate them). Instead we use task losses
as a measure of the effectiveness of our loss function when using it to update an
optimizee.

Closest to our method are the works on evolved policy gradients (Houthooft
, teacher networks (]Wu et al.L |2018I)7 meta-critics (]Sung et al.l |2017D
and meta-gradient RL (Xu et al) [2018). In contrast to using an evolutionary
approach (e.g. |Houthooft et al,L |2018D, we design a differentiable framework and
describe a way to optimize the loss function with gradient descent in both supervised
and reinforcement learning settings. (]Wu et al.l |2018[) propose that instead of
learning a differentiable loss function directly, a teacher network is trained to predict
parameters of a manually designed loss function, whereas each new loss function
class requires a new teacher network design and training. In (Xu et al||2018),

'For simple gradient descent: h(0,VoL(y, fo(x)) =0 -y VeLl(y, fo(x))
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discount and bootstrapping parameters are learned online to optimize a task-specific
meta-objective. Our method does not require manual design of the loss function
parameterization or choosing particular parameters that have to be optimized, as
our loss functions are learned entirely from data. Finally, in work by (Sung et al.|
2017) a meta-critic is learned to provide a task-conditional value function, used
to train an actor policy. Although training a meta-critic in the supervised setting
reduces to learning a loss function as in our work, in the reinforcement learning
setting we show that it is possible to use learned loss functions to optimize policies
directly with gradient descent.

5.3 Meta-Learning via Learned Loss

In this work, we aim to learn a loss function, which we call meta-loss, that is
subsequently used to train an optimizee, e.g. a classifier, a regressor or a control
policy. More concretely, we aim to learn a meta-loss function Mg with parameters
¢, that outputs the loss value Liearneq Which is used to train an optimizee fy with
parameters 6 via gradient descent:

Onew = 0 — @VoLicarned>
where ﬁlearned = M¢ (y, f@ (x))

where y can be ground truth target information in supervised learning settings or
goal and state information for reinforcement learning settings. In short, we aim to
learn a loss function that can be used as depicted in Algorithm Towards this
goal, we propose an algorithm to learn meta-loss function parameters ¢ via gradient
descent.

The key challenge is to derive a training signal for learning the loss parameters
¢. In the following, we describe our approach to addressing this challenge, which
we call Meta-Learning via Learned Loss (ML3).

5.3.1 ML3 for Supervised Learning

We start with supervised learning settings, in which our framework aims at learning
a meta-loss function My (y, fy(x)) that produces the loss value given the ground
truth target y and the predicted target fy(x). For clarity purposes we constrain the
following presentation to learning a meta-loss network that produces the loss value
for training a regressor fy via gradient descent, however the methodology trivially
generalizes to classification tasks.

Our meta-learning framework starts with randomly initialized model parameters
0 and loss parameters ¢. The current loss parameters are then used to produce
loss value Licarned = Mg(y, fo(x)). To optimize model parameters # we need to
compute the gradient of the loss value with respect to 6, VgL = VoMy(y, fo(x)).
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Using the chain rule, we can decompose the gradient computation into the gradient
of the loss network with respect to predictions of model fy(x) times the gradient of
model f with respect to model parameter

VoMy(y, fo(x)) = VMg (y, fo(x)) Ve fo(x). (5.4)

Once we have updated the model parameters 0w = 6 — @VgLicarned using the cur-
rent meta-loss network parameters ¢, we want to measure how much learning
progress has been made with loss-parameters ¢ and optimize ¢ via gradient de-
scent. Note, that the new model parameters 6, are implicitly a function of loss-
parameters ¢, because changing ¢ would lead to different 0yey. In order to evaluate
Onew, and through that loss-parameters ¢, we introduce the notion of a task-loss
during meta-train time. For instance, we use the mean-squared-error (MSE) loss,
which is typically used for regression tasks, as a task-loss £7 = (y — fg,.,, (x))%. We
now optimize loss parameters ¢ by taking the gradient of £7 with respect to ¢ as
follows?:

VLT = VLTV e fonen VgOnew (5.5)
= VLT V00 fonew Vo [0 = @V6E [My (v, fo(x))] (5.6)

where we first apply the chain rule and show that the gradient with respect to the
meta-loss parameters ¢ requires the new model parameters Gyew. We expand Opew
as one gradient step on # based on meta-loss My, making the dependence on ¢
explicit.

Optimization of the loss-parameters can either happen after each inner gradient
step (where inner refers to using the current loss parameters to update 6), or after
M inner gradient steps with the current meta-loss network Mg.

The latter option requires back-propagation through a chain of all optimizee
update steps. In practice we notice that updating the meta-parameters ¢ after
each inner gradient update step works better. We reset 0 after M inner gradient
steps. We summarize the meta-train phase in Algorithm@ with one inner gradient
step.

Algorithm 6 ML? at (meta-train)
1: ¢ « randomly initialize
2: while not done do
3: 6 « randomly initialize
x,y « Sample task samples from T~

4
o ['learned = M(y’ f9 ()C))

6: Onew <— 0 — G’V(-} Ex [ﬁlearned]
7

8:

¢ — ¢ =1V LT (Y, fore)
end while

2 Alternatively this gradient computation can be performed using automatic differentiation
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Algorithm 7 ML? at (meta-test)

M «— # of optimizee updates

0 «— randomly initialize

: for j €{0,...,M} do
x,y « Sample task samples from T
Licarned = M(y’ f9 (x))
0 — 0 — aVgEx [Licarned]

end for

AN S

5.3.2 ML? Reinforcement Learning

In this section, we introduce several modifications that allow us to apply the ML3
framework to reinforcement learning problems. Let M = (S,A, P, R, po,y,T) be
a finite-horizon Markov Decision Process (MDP), where S and A are state and
action spaces, P : § X A X S — R, is a state-transition probability function or
system dynamics, R : § X A — R a reward function, pg : § — R, an initial state
distribution, y a reward discount factor, and T a horizon. Let T = (sq, ag, . .., ST, ar)
be a trajectory of states and actions and R(7) = ,T:_Ol v'R(s;,a;) the trajectory
return. The goal of reinforcement learning is to find parameters 6 of a policy
mg(als) that maximizes the expected discounted reward over trajectories induced
by the policy: Eg,[R(7)] where so ~ po, si+1 ~ P(Si+1l8:,a;) and a; ~ mg(a;|s;). In
what follows, we show how to train a meta-loss network to perform effective policy
updates in a reinforcement learning scenario. To apply our ML? framework, we
replace the optimizee fy from the previous section with a stochastic policy mg(als).
We present two applications of ML? to RL.

ML3 for Model-Based Reinforcement Learning

Model-based RL (MBRL) attempts to learn a policy my by first learning a dynamic
model P. Intuitively, if the model P is accurate, we can use it to optimize the
policy parameters 8. As we typically do not know the dynamics model a-priori,
MBRL algorithms iterate between using the current approximate dynamics model
P, to optimize the policy my such that it maximizes the reward R under P, then
use the optimized policy mg to collect more data which is used to update the model
P. In this context, we aim to learn a loss function that is used to optimize policy
parameters through our meta-network M.

Similar to the supervised learning setting we use current meta-parameters ¢
to optimize policy parameters 8 under the current dynamics model P: Opew =
0 —aVy [ My(1,8)],

where 7 = (59, ag, . . ., ST, ar) is the sampled trajectory and the variable g captures
some task-specific information, such as the goal state of the agent. To optimize ¢
we again need to define a task loss, which in the MBRL setting can be defined as
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LT7(8, Tgyes,) = —Enry, ., .P[Rg(Tnew)], denoting the reward that is achieved under the
current dynamics model P. To update ¢, we compute the gradient of the task loss
L7 wrt. ¢, which involves differentiating all the way through the reward function,
dynamics model and the policy that was updated using the meta-loss My. The
pseudo-code in Algorithm|8| (Appendix illustrates the MBRL learning loop. In
Algorithm (Appendix , we show the policy optimization procedure during
meta-test time. Notably, we have found that in practice, the model of the dynamics
P is not needed anymore for policy optimization at meta-test time. The meta-
network learns to implicitly represent the gradients of the dynamics model and can
produce a loss to optimize the policy directly.

ML? for Model-Free Reinforcement Learning

Finally, we consider the model-free reinforcement learning (MFRL) case, where
we learn a policy without learning a dynamics model. In this case, we can define
a surrogate objective, which is independent of the dynamics model, as our task-
specific loss (Williams| |[1992] Sutton et al.,|2000; |[Schulman et al.l [2015):

L7(8, mo0,) = “Ergnen [Rg(TneW) log e, (Tnew)] (5.7)
T-1

= ~Ergpey | Re(Toew) D108 o, (arls;) (5.8)
t=0

Similar to the MBRL case, the task loss is indirectly a function of the meta-
parameters ¢ that are used to update the policy parameters. Although we are
evaluating the task loss on full trajectory rewards, we perform policy updates from
Eq. using stochastic gradient descent (SGD) on the meta-loss with mini-
batches of experience (s;,a;,r;) for i € {0,...,B — 1} with batch size B, similar
to (Houthooft et al.l|2018). The inputs of the meta-loss network are the sampled
states, sampled actions, task information g and policy probabilities of the sampled
actions: Mg (s,a,mg(als), g). In this way, we enable efficient optimization of very
high-dimensional policies with SGD provided only with trajectory-based rewards.
In contrast to the above MBRL setting, the rollouts used for task-loss evaluation
are real system rollouts, instead of simulated rollouts. At test time, we use the same
policy update procedure as in the MBRL setting, see Algorithm (Appendix.

5.3.3 Shaping ML? loss by adding extra loss information
during meta-train

So far, we have discussed using standard task losses, such as MSE-loss for regres-
sion or reward functions for RL settings. However, it is possible to provide more
information about the task at meta-train time, which can influence the learning of
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the loss-landscape. We can design our task-losses to incorporate extra penalties;
for instance we can extend the MSE-loss with Lextra and weight the terms with g
and vy:

L1 =B~ fg(X))Q + ¥ Lextra (5'9)

In our work, we experiment with 4 different types of extra loss information at meta-
train time: for supervised learning we show that adding extra information through
Lextra = (0 — 6%)2, where 6* are the optimal regression parameters, can help shape
a convex loss-landscape for otherwise non-convex optimization problems; we also
show how we can use Lexira to induce a physics prior in robot model learning. For
reinforcement learning tasks we demonstrate that by providing additional rewards
in the task loss during meta-train time, we can encourage the trained meta-loss to
learn exploratory behaviors; and finally also for reinforcement learning tasks, we
show how expert demonstrations can be incorporated to learn loss functions which
can generalize to new tasks. In all settings, the additional information shapes
the learned loss function such that the environment does not need to provide this
information during meta-test time.

5.4 Experiments

In this section we evaluate the applicability and the benefits of the learned meta-loss
from two different view points. First, we study the benefits of using standard task
losses, such as the mean-squared error loss for regression, to train the meta-loss in
Section We analyze how a learned meta-loss compares to using a standard
task-loss in terms of generalization properties and convergence speed. Second, we
study the benefit of adding extra information at meta-train time to shape the loss
landscape in Section[5.4.2]

5.4.1 Learning to mimic and improve over known task
losses

First, we analyze how well our meta-learning framework can learn to mimic and

improve over standard task losses for both supervised and reinforcement learning

settings. For these experiments, the meta-network is parameterized by a neural
network with two hidden layers of 40 neurons each.

Meta-Loss for Supervised Learning

In this set of experiments, we evaluate how well our meta-learning framework can
learn loss functions My for regression and classification tasks. In particular, we
perform experiments on sine function regression and binary classification of digits
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Figure 5.2: Meta-learning for regression (top) and binary classification (bottom) tasks.
(a) meta-train task, (b) meta-test tasks, (c) performance of the meta-network on the
meta-train task as a function of (outer) meta-train iterations in blue, as compared to
SGD using the task-loss directly in orange, (d) average performance of meta-loss on
meta-test tasks as a function of the number of gradient update steps

(see details in Appendix[A.6). At meta-train time, we randomly draw one task for
meta-training (see fig. )), and at meta-test time we randomly draw 10 test
tasks for regression, and 4 test tasks for classification (fig. b)). For the sine re-
gression, tasks are drawn according to details in Appendixand we initialize our
model fy to a simple feedforward NN with 2 hidden layers and 40 hidden units each,
for the binary classification task fy is initialized via the LeNet architecture (LeCun
et al.} 1998). For both experiments we use a fixed learning rate @ = n = 0.001
for both inner (@) and outer () gradient update steps. We average results across
5 random seeds, where each seed controls the initialization of both initial model
and meta-network parameters, as well as the the random choice of meta-train/test
task(s), and visualize them in fig. We compare the performance of using SGD
with the task-loss £ directly (in orange) to SGD using the learned meta-network
My (in blue), both using a learning rate @ = 0.001. In fig. (c) we show the
average performance of the meta-network My as it is being learned, as a function
of (outer) meta-train iterations in blue. In both regression and classification tasks,
the meta-loss eventually leads to a better performance on the meta-train task as
compared to the task loss. In fig. (d) we evaluate SGD using My vs SGD using
L on previously unseen (and out-of-distribution) meta-test tasks as a function of
the number of gradient steps. Even on these novel test tasks, our learned Mg leads
to improved performance as compared to the task-loss.

Learning Reward functions for Model-based Reinforcement Learning

In the MBRL example, the tasks consist of a free movement task of a point mass in a
2D space, we call this environment PointmassGoal, and a reaching task with a 2-link

87



Chapter 5 Meta Learning via Learned Loss

03 . 030 30 —— Meta Loss

2 —— Task Loss 5
So2s —— Meta Loss 525 —— Task Loss
02
§0.20 — 0@

z
5 o1

0.1

10 12 14 0 2 4 6 8

5 [ 2 4 6 8
0.2 -01 0.0 01 02 03 Ontimization iterations

x coordinate Optimization iterations

(a) train (blue), test (or- (b) Meta vs Task Loss (¢) Meta vs Task Loss
ange) tasks Pointmass Reacher

Figure 5.3: ML? for MBRL: results are averaged across 10 runs. We can see in
(a) that the ML? loss generalizes well, the loss was trained on the blue trajectories
and tested on the orange ones for the PointmassGoal task. ML? loss also signifi-
cantly speeds up learning when compared to the task loss at meta-test time on the
PointmassGoal (b) and the ReacherGoal (c¢) environments.

2D manipulator, which we call the ReacherGoal environment (see Appendix
for details). The task distribution p(7) consists of different target positions that
either the point mass or the arm should reach. During meta-train time, a model
of the system dynamics, represented by a neural network, is learned from samples
of the currently optimal policy. The task loss during meta-train time is £7(6) =
Er, p[R(7)], where R(7) is the final distance from the goal g, when rolling out
M6, 10 the dynamics model P. Taking the gradient V4Ez,  ,[R(7)] requires the
differentiation through the learned model P (see Appendix ED The input to the
meta-network is the state-action trajectory of the current roll-out and the desired
target position. The meta-network outputs a loss signal together with the learning
rate to optimize the policy. fig. shows the qualitative reaching performance
of a policy optimized with the meta loss during meta-test on PointmassGoal. The
meta-loss network was trained only on tasks in the right quadrant (blue trajectories)
and tested on the tasks in the left quadrant (orange trajectories) of the x, y plane,
showing the generalization capability of the meta loss. Figure and show
a comparison in terms of final distance to the target position at test time. The
performance of policies trained with the meta-loss is compared to policies trained
with the task loss, in this case final distance to the target. The curves show results
for 10 different goal positions (including goal positions where the meta-loss needs
to generalize). When optimizing with the task loss, we use the dynamics model
learned during the meta-train time, as in this case the differentiation through the
model is required during test time. As mentioned in Section this is not needed
when using the meta-loss.

88



5.4 Experiments

Learning Reward functions for Model-free Reinforcement Learning

In the following, we move to evaluating on model-free RL tasks. fig. shows
results when using two continuous control tasks based on OpenAl Gym MuJoCo
environments (OpenAl Gym}|2019): ReacherGoal and AntGoal (see Appendix
for detailsﬁ fig. and ﬁg.show the results of the meta-test time performance

(a) ReacherGoal (b) AntGoal (c) ReacherGoal (d) AntGoal

Figure 5.4: ML? for model-free RL: results are averaged across 10 tasks. (a-+b) Policy
learning on new task with ML? loss compared to PPO objective performance during
meta-test time. The learned loss leads to faster learning at meta-test time. (c4+d) Using
the same ML? loss, we can optimize policies of different architectures, showing that our
learned loss maintains generality.

for the ReacherGoal and the AntGoal environments respectively. We can see that
ML3 loss significantly improves optimization speed in both scenarios compared to
PPO. In our experiments, we observed that on average ML? requires 5 times fewer
samples to reach 80% of task performance in terms of our metrics for the model-free
tasks.

To test the capability of the meta-loss to generalize across different architectures,
we first meta-train My on an architecture with two layers and meta-test the same
meta-loss on architectures with varied number of layers. fig. (c+d) show meta-
test time comparison for the ReacherGoal and the AntGoal environments in a
model-free setting for four different model architectures. Each curve shows the
average and the standard deviation over ten different tasks in each environment.
Our comparison clearly indicates that the meta-loss can be effectively re-used across
multiple architectures with a mild variation in performance compare to the overall
variance of the corresponding task optimization.

5.4.2 Shaping loss landscapes by adding extra information
at meta-train time

This set of experiments shows that our meta-learner is able to learn loss functions
that incorporate extra information available only during meta-train time. The

30ur framework is implemented using open-source libraries Higher (Grefenstette et al.|[2019)
for convenient second-order derivative computations and Hydra (Yadan||2019)) for simplified
handling of experiment configurations.
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learned loss will be shaped such that optimization is faster when using the meta-
loss compared to using a standard loss.

Illustration: Shaping loss

We start by illustrating the loss shaping on an example of sine frequency regression
where we fit a single parameter for the purpose of visualization simplicity.

(a) Sine: learned vs (b) Sine: meta-test (¢) Reacher: inverse
task loss time dynamics

(d) Sawyer: inverse
dynamics

Figure 5.5: Meta-test time evaluation of the shaped meta-loss (ML3), i.e. trained with
shaping ground-truth (extra) information at meta-train time: a) Comparison of learned
ML3 loss (top) and MSE loss (bottom) landscapes for fitting the frequency of a sine
function. The red lines indicate the ground-truth values of the frequency. b) Comparing
optimization performance of: ML? loss trained with (green), and without (blue) ground-
truth frequency values; MSE loss (orange). The ML? loss learned with the ground-truth
values outperforms both the non-shaped ML3 loss and the MSE loss. c-d) Comparing
performance of inverse dynamics model learning for ReacherGoal (c) and Sawyer arm
(d). ML? loss trained with (green) and without (blue) ground-truth inertia matrix is
compared to MSE loss (orange). The shaped ML? loss outperforms the MSE loss in all
cases.

For this illustration we generate training data D = {x,, y,}", N = 1000, by draw-
ing data samples from the ground truth function y = sin(vx), for x = [-1,1]. We
create a model f,(x) = sin(wx), and aim to optimize parameter w on D, with the
goal of recovering value v. fig. (bottom) shows the loss landscape for optimiz-
ing w, when using the MSE loss. The target frequency v is indicated by a vertical
red line. As noted by |Parascandolo et al.|(2017), the landscape of this loss is highly
non-convex and difficult to optimize with conventional gradient descent.

Here, we show that by utilizing additional information about the ground truth
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value of the frequency at meta-train time, we can learn a better shaped loss. Specif-
ically, during meta-train time, our task-specific loss is the squared distance to the
ground truth frequency: (w — v)? that we later call the shaping loss. The inputs
of the meta-network Mgy(y,y) are the training targets y and predicted function
values y = f,,(x), similar to the inputs to the mean-squared loss. After meta-train
time commences our learned loss function Mg produces a convex loss landscapes
as depicted in fig. (top).

To analyze how the shaping loss impacts model optimization at meta-test time,
we compare 3 loss functions: 1) directly using standard MSE loss (orange), 2) ML3
loss that was trained via the MSE loss as task loss (blue), and 3) ML3? loss trained
via the shaping loss, fig. When comparing the performance of these 3 losses,
it becomes evident that without shaping the loss landscape, the optimization is
prone to getting stuck in a local optimum.

htof the il
- £z
~
%
-
N,

(a) Trajectory ML3 (b)  MountainCar: (c) Train and test (d) ML? vs. Task loss
vs. iLQR meta-test time targets at test

Figure 5.6: (a) MountainCar trajectory for policy optimized with iLQR compared
to ML3 loss with extra information. (b) optimization performance during meta-test
time for policies optimized with iLQR compared to ML? with and without extra
information. (c+d) ReacherGoal with expert demonstrations available during meta-
train time. (c) shows the targets in end-effector space. The four blue dots show
the training targets for which expert demonstrations are available, the orange dots
show the meta-test targets. In (d) we show the reaching performance of a policy
trained with the shaped ML3 loss at meta-test time, compared to the performance
of training simply on the behavioral cloning objective and testing on test targets.

Shaping loss via physics prior for inverse dynamics learning

Next, we show the benefits of shaping our ML? loss via ground truth parameter
information for a robotics application. Specifically, we aim to learn and shape a
meta-loss that improves sample efficiency for learning (inverse) dynamics models,
i.e. a mapping u = f(q,q,{qes), Where: g, ¢, {qes are vectors of joint angular
positions, velocities and desired accelerations; u is a vector of joint torques.

Rigid body dynamics (RBD) provides an analytical solution to computing the
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(inverse) dynamics and can generally be written as:

M(q)G+F(q,q) =u (5.10)

where the inertia matrix M(q), and F(q,q) are computed analytically (Feather-
stonel 2014). Learning an inverse dynamics model using neural networks can in-
crease the expressiveness compared to RBD but requires many data samples that
are expensive to collect. Here we follow the approach in (Lutter et al., |2019),
and attempt to learn the inverse dynamics via a neural network that predicts the
inertia matrix My(g). To improve upon sample efficiency we apply our method
by shaping the loss landscape during meta-train time using the ground truth in-
ertia matrix M(gq) provided by a simulator. Specifically, we use the task loss
L7 = (Mg(q)—M(q))? to optimize our meta-loss network. During meta-test time we
use our trained meta-loss shaped with the physics prior (the inertia matrix exposed
by the simulator) to optimize the inverse dynamics neural network. In fig. C
we show the prediction performance of the inverse dynamics model during meta-
test time on new trajectories of the ReacherGoal environment. We compare the
optimization performance during meta-test time when using the meta-loss trained
with physics prior, the meta loss trained without physics prior (i.e via MSE loss)
to the optimization with MSE loss. fig.[5.5}d shows a similar comparison for the
Sawyer environment - a simulator of the 7 degrees-of-freedom Sawyer anthropomor-
phic robot arm. Inverse dynamics learning using the meta loss with physics prior
achieves the best prediction performance on both robots. ML? without physics
prior performs worst on the ReacherGoal environment, in this case the task loss
formulated only in the action space did not provide enough information to learn a
Licarned useful for optimization. For the Sawyer training with MSE loss leads to a
slower optimization, however the asymptotic performance of MSE and ML? is the
same. Only ML? with shaped loss outperforms both.

Shaping Loss via intermediate goal states for RL

We analyze loss landscape shaping on the MountainCar environment (Moore| (1990)),
a classical control problem where an under-actuated car has to drive up a steep hill.
The propulsion force generated by the car does not allow steady climbing of the
hill, thus greedy minimization of the distance to the goal often results in a failure
to solve the task. The state space is two-dimensional consisting of the position and
velocity of the car, the action space consists of a one-dimensional torque. In our
experiments, we provide intermediate goal positions during meta-train time, which
are not available during the meta-test time. The meta-network incorporates this
behavior into its loss leading to an improved exploration during the meta-test time
as can be seen in fig. a, when compared to a classical iLQR-based trajectory
optimization (Tassa et al.||2014). fig. b shows the average distance between the
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car and the goal at last rollout time step over several iterations of policy updates
with ML3 with and without extra information and iLQR. As we observe, ML? with
extra information can successfully bring the car to the goal in a small amount of
updates, whereas iLQR and ML? without extra information is not able to solve this
task.

Shaping loss via expert information during meta-train time

Expert information, like demonstrations for a task, is another way of adding rele-
vant information during meta-train time, and thus shaping the loss landscape. In
learning from demonstration (LfD) (Pomerleau,|1991; Ng et al.,|2000; Billard et al.,
2008), expert demonstrations are used for initializing robotic policies. In our exper-
iments, we aim to mimic the availability of an expert at meta-test time by training
our meta-network to optimize a behavioral cloning objective at meta-train time.
We provide the meta-network with expert state-action trajectories during train
time, which could be human demonstrations or, as in our experiments, trajecto-
ries optimized using iLQR. During meta-train time, the task loss is the behavioral
cloning objective L7(6) = E [ZtT:_Ol (70,00 (arlsi) — ﬂexpert(a,|s,)]2]. Fig. shows

the results of our experiments in the ReacherGoal environment.

5.5 Conclusions

In this work we presented a framework to meta-learn a loss function entirely from
data. We showed how the meta-learned loss can become well-conditioned and suit-
able for an efficient optimization with gradient descent. When using the learned
meta-loss we observe significant speed improvements in regression, classification and
benchmark reinforcement learning tasks. Furthermore, we showed that by introduc-
ing additional guiding information during training time we can train our meta-loss
to develop exploratory strategies that can significantly improve performance during
the meta-test time.

We believe that the ML? framework is a powerful tool to incorporate prior ex-
perience and transfer learning strategies to new tasks. In future work, we plan to
look at combining multiple learned meta-loss functions in order to generalize over
different families of tasks. We also plan to further develop the idea of introduc-
ing additional curiosity rewards during training time to improve the exploration
strategies learned by the meta-loss.
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Chapter 6

Conclusion

The work in this thesis is centered around the fundamental research question of how
to learn in the action perception loop without having to re-learn everything from
scratch each time. One way of thinking about answering this research question,
and the perspective taken in this thesis, is to learn representations that generalize
quickly to new tasks and scenarios. A representation means an abstractions that
maintains an underlying structure of the learning problem for multiple tasks. For
example, learning a model of the environment or learning a loss for a family of tasks.
Both these things represent aspects of the world that can be learned to be shared,
an re-used later to enable fast learning in new situations that potentially share
aspects with the already learned experience. In this thesis we show approaches for
learning such representations and presents results that indeed improve learning in
the real world in terms of task performance and sample efficiency.

The first part of the thesis is concerned with how to learn better representations
of the world, specifically how to learn better models of the robot dynamics (Chapter
, contact dynamics (Chapter [3) and the dynamics of a grasped object for ma-
nipulation (Chapter . In Chapterwe show how including the learned dynamic
model’s uncertainty during policy optimization leads to exploratory behaviour of
the policy and thus to data collection that allows for better model learning and
as a consequence also improved model quality. In Chapter [3]we present a method
that improves data collection by specifically considering the forward model’s qual-
ity during policy learning. The presented learning objective trades off predictive
task performance with forward model quality and leads to a policy that facilitates
controller learning on a contact rich task. In Chapter structured proprioceptive
information is included when learning from images and we show how this results in
more accurate and stable predictions and thus also allows for better model learn-
ing. While these approaches were used to learn representations that could be used
for learning to control a robot, they are always focused on specific aspects, mostly
around the body of the robot. Also, the sensory inputs considered are limited since
at most two sensor modality are used. This limits how expressive the models are
and, as a consequence, how well they could generalize to new situations - commonal-
ities between different contexts might only become clear when considering multiple
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sensory inputs. For example when making contact with an object, only vision can
ultimately tell us (in absence of a model of the object) if we caused the contact or
the contact was caused by an external force. Using more sensor modalities would
allow to contextualized the observations and could help generalize learning to simi-
lar but unseen contexts. This would be a natural extension of the work presented in
this thesis and would allow learning properties of the environment that go beyond
the body of the robot.

In the second part of the thesis we present a framework for learning to learn,
or put differently: learn a representation of the learning problem. In the current
setting we can show generalization capabilities of the learned loss function. This
supports our assumption that a loss function is a more general representation of the
task, that can be learned from interaction with the environment and reused later for
generalization purposes. However in the current state, we add minimal structure
or prior knowledge to our learning problems. This allows for maximal flexibility
but also makes learning in the real world more difficult since we do not consider
information that we have readily available - like for example the analytical models of
the robots. This information, or prior knowledge, can be used as a form of inductive
bias to the learning problem, adding structure and helping with generalization
and learning in the real world. We did explore some form on additional expert
information in the current experimental evaluation, but we did not explore its full
potential yet.

In the next section specifically these two extensions to the current work are
present, alongside with further interests and future direction for research in the
lifelong learning on robots.

Future Directions

A key aspect of lifelong learning in humans is the ability to learn representa-
tions that generalize quickly to new tasks (Lake et al., |2017; Thrun and Pratt|
2012b). Leveraging inductive biases coming from structured prior knowledge and
using multi-modal sensory information are important next steps to extend the work
presented in this thesis.

Leveraging Structure as Inductive Priors:

I want to investigate how to combine structured and data driven approaches to
induce prior knowledge in the learning problem. Inductive priors are essential to
quickly learn and generalize (Silver, [2011)). The robot offers a unique possibility -
given its embodiment - to leverage strong structured priors that are shared across
tasks, for learning in the action perception loop. When learning dynamics models
from data the literature offers a variety of choices of machine learning algorithms
used for this learning task. From linear regression (Schaal et al.;|2002}[Haruno et al.|
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2001), to gaussian mixture (Khansari-Zadeh and Billard}|2011; Calinon et al.l|2010)
or gaussian process regression (Deisenroth and Rasmussen, [2011; |[Kocijan et al.l
2004) as well as using feedfoward- or recurrent neural networks for fitting the mod-
els (Lenz et all [2015; |Sanchez-Gonzalez et al.,|2018; [Rueckert et al.}|2017).Other
works, including my work (Bechtle et al.|[2020b)), have considered more structured
approaches for model learning, including analytical priors during the learning pro-
cess. For example in (Calandra et al.l|2015|) only the residual term of the external
forces is learned for inverse dynamics. In (Lutter et al.||2019) the authors learn
deep neural networks for each component of the equations of motion of a manip-
ulator whereas in (Ledezma and Haddadin, 2017) the authors learn the dynamics
parameters directly via gradient descent. Similar (Sutanto et al.| [2020) proposes
a fully differentiable version of the recursive newton euler algorithm, allowing the
inertial parameters to be learned using gradient descent.

In contrast to these approaches, I want to investigate how to use prior knowl-
edge when learning to learn (I121). In 121 the goal is to learn a representation of
the learning problem. Using structured prior knowledge during meta learning will
allow to leverage this additional physical information. As a result, the learned rep-
resentation will inherently incorporate those aspects of the structure that are most
necessary for successful learning. This is in contrast to directly using the structured
information for regression. When the input-output relationship changes, which is
always happening in the real world, the regressed models would need to be relearned
from scratch. If a representation of the learning problem was learned, this repre-
sentation might be general enough to be used in the new changed environment. For
example, once we learned how to lift an object, we can easily adapt to new, heavier
objects. If we cannot estimate the weight of the object, we will need a coupled
of trials to learn, but the underlying mechanisms of learning to lift an object will
transfer. This thinking is in contrast to my previous work, where the structure was
used directly to learn the models. This can potentially make the models less adapt-
able since the structure provides the framing for learning. Using structure while 121
allows to encode the structured information needed for learning a representation of
learning a task. Besides of speeding up the 121 process, the learning mechanisms
will transfer, or at least provide a good initial guess, also when the environment
changed. This is because the embodiment of the robot does not change or only
changes slowly over time and will always be a good initial guess of how to approach
the problem.

Multi-Modal Sensory Information:

Exploiting the multi-modality of sensory data will allow to identify, anticipate and
contextualize the experience and to build models that can be shared across tasks
(Lungarella et al.l 2003)). For example when colliding with an object, combining
vision proprioception and touch will allow us to understand whether we are re-
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sponsible for the interaction or the object was pushed towards us. With this in
mind, I want to continue my work on model based learning and move beyond low-
level sensorimotor learning, towards higher level representations of the real world:
where the states are not joint positions and velocities but higher level multi-modal
representations of the environment. Learning from multi-modal sensor streams al-
lows for a more consistent and robust representation of the world and the body
(Lungarella et al., 2003). Only when considering multiple sensory streams, cause
and effect can be clearly attributed to each other. In the current literature, there
is more evidence that utilizing multi-modal sensor streams improves perception
(Bohg et al., [2017} Edelman| |1987; Lacey and Sathian, |2016|). This has been ex-
plored in various robotics applications. For instance, fusing vision and propriocep-
tion (Garcia Cifuentes et al.,|2017}|Kappler et al.}||2018 [Martin-Martin and Brock|
2017) or combining visual and tactile information (Martin-Martin and Brock||2017]
Lambert et al., [2019;[Yu and Rodriguez| |2018)) has been explored for better state-
estimation in applications such as object-tracking. These approaches are mostly
concerned with understanding state-estimation from multi-modal sensor data and
assume expert-designed low-dimensional features are extracted from each modal-
ity. Recently, there has been a recent push towards learning state representations
from multi-modal data for a wide range of applications. For example, there have
been many works that have explored the correlation between auditory and visual
data for tasks such as speech or material recognition or for sound source localiza-
tion (Ngiam et all|2011} |Owens and Efros| 2018; |(Owens et al.;|2016; Yang et al.|
2017). Several work (Bekiroglu et al.;|2011; |Calandra et al.||2018} |Gao et al., 2016}
Sinapov et al.||2014)) fuse visual and haptic data for various applications such as
grasp stability assessment, manipulation, material recognition, or object catego-
rization. In essence, fusing multiple sensor modalities for better state-estimation is
common in the rigid-body tracking literature, and recently it has also been shown
by (Lee et al.;|2019) that it leads to better learned state representations for robotic
manipulation tasks. In summary, considering multi-modal data is important.

I want to work on investigating further the multi-modality of the environment
when learning representations of it. How to uncover the connection between sensor
streams and how to make sense of them in order to improve learning a robotic task.
For example how to decide which sensor stream to trust more in a multi-modal
setting, or which sensor stream should be favoured in a specific context. When
manipulating an object, vision can give us a good intuition of when contact will
happen. After contact with the environment happened, the tactile or force infor-
mation will be important to perform a manipulation tasks. But there is no need to
optimize for a force profile while the robot is not in contact. Learning representa-
tions of the environment from multi-modal data will allow to make such distinctions
in the learning problem. Additionally, learning multi modal representations of the
robotic task can help extrapolate similar sensory streams to different tasks. Al-
ready in my previous work (Bechtle et al.;|2020c|b) I showed how models learned
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from multi-modal data can generalize better, however these models were learned
for one specific family of tasks and from maximal two sensor streams. Generalizing
the learned models across tasks is another aspect of lifelong learning that I want
to investigate in the future.

Further Interests

There are many other opportunities and open questions when it comes to lifelong
learning in the real world that I am excited to work on in the future:
Reinforcement Learning and Goal Discovery: Exploration and Causal
Inference Reinforcement learning has shown great promise for task learning. I
want to complement the model-based reinforcement learning approaches I have
worked on so far, with model-free approaches for task learning and switch between
these strategies depending on the context. I believe that model based and model
free approaches should complement each other, and there is evidence for a com-
bined workflow in the human brain as well. For example a model can help *warm
start’ policies that are then fine-tuned from experience in a model-free fashion. The
other way around, the reactive and flexible learning approach of model-free algo-
rithms can help uncover parts of the state-space that are useful for model learning.
For this I want to formulate artificial intrinsic motivation and curious behaviour
for exploration and goal discovery, two important problems in reinforcement and
lifelong learning. To this end I want to leverage results from causality and decision
making research to guide policy and model learning. The robot acts in the real
world, following the laws of physics. Causal claims are an integral part of physics
and I believe that causality can be an enabler for curiosity driven and thus lifelong
learning.

Active Learning in Reinforcement Learning Lifelong learning also means to
decide when not to learn. If a task is sufficiently learned the experienced data might
not be interesting for learning. But, if a task is to difficult to learn, it might be best
to stop trying to learn and potentially revisit the task later on. How to detect these
moments of change in the learning problem is still an open important question. I
want to formulate active learning principles for lifelong learning. By considering
learning signals available to the robot, like prediction error and uncertainty, I want
trying to answer the question of what is useful to learn when and what data to
keep or discard.

Algorithmic Transfer to other Domains: The robot is a feedback system,
that acts in the environment and experiences the effect of its actions. There are
other feedback systems in our world, for example college admission or credit score
systems as well as recommender systems. In the case of college admissions, once
a year new data will be available to the system and update its believe given the
data. Modelling inaccuracies and biases will have a direct effect on the observed
data distribution of the next cycle which can enforce bias and wrong predictions.
These systems can be formulated as learning loops just like robots acting in the
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world, the difference being that they often receive data at a different time scale. In
the long term, I want to investigate these connections and contribute to algorithms

that have a positive impact on humans lives.
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Appendix A
Appendix

A.1 Background: Uncertainty in Optimal
Control

In this appendix we review the fundamentals on which our work is built on. An ap-
proach enabling the inclusion of higher order statistics in the performance measure
while keeping computations tractable, at least in the linear case, is to use expo-
nential costs, as introduced by Jacobson (Jacobson,|1973). (Farshidian and Buchli,
2015) extended this work by deriving an iterative algorithm for continuous-time
stochastic nonlinear optimal control problems called iterative Linear Exponential-
Quadratic Optimal Control under Gaussian Process Noise (iLEG). Ponton et al.
(Ponton et al., [2016) extended the work from (Farshidian and Buchli, [2015) to
cases where not only process noise is present but also measurement noise has to be
taken into consideration. Next, we briefly present the details of the risk-sensitive
iLQR algorithm, following (Farshidian and Buchli} 2015)), (Ponton et al.l|2016]) and
(Jacobson| [1973).

A.1.1 Risk-sensitive iLQR

To include stochastic processes when optimizing a trajectory, it is necessary to
consider a nonlinear optimal control problem where the system dynamics are defined
by the following stochastic differential equation

X1 = Xk + £ (X, ug) Af + g (%, ug) Aw (A1)

where f represents the dynamics of the system and g the stochasticity of the prob-
lem. Aw is a Brownian motion with zero mean and covariance (X - At). Following
the idea of (Jacobson, [1973) to include higher order momenta of the cost func-
tion, the objective function takes the form of an exponential transformation of the
performance criteria J:

J = mﬂinE{exp[O'J (m)]} (A.2)
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where J (7) is the performance index, which is a random variable, and a functional
of the policy 7. E is the expected value of J over stochastic trajectories induced by
the policy 7. o € R accounts for the sensitivity of the cost to higher order moments
(variance, skewness, etc). Notably from (Farshidian and Buchli}|2015), the cost is

L rog() = BT + Tvar(7) + ‘T—st(j*) b (A.3)
o 2 6

where var and sk stand for variance and skewness and J* is the optimal task cost.
When o > 0 the optimal control will be risk-averse, favoring low costs with low
variance but when o < 0 the optimal control will be risk-seeking, favoring low costs
with high variance. o = 0 reduces to the standard, risk-neutral, optimal control
problem. We will exploit this property to create policies that explore regions with
high uncertainty in the next sections.

A.1.2 Algorithm derivation

The algorithm begins with a nominal state and control input trajectory x® and
u". The dynamics are linearized and the cost is quadratized along u, xi! in terms
of state and control deviations 6x¢ = x¢ — xi', duy = ut — u' leading to the linear
dynamics approximation and cost function as:

5x,+1 = A;éx, + B,5ut + C[U)l» (A4)

J*=min E
Uur

T-1
exp (0' It (6x7) + Z I, (6x;, 6ut)‘ )] (A.5)
0

— of _ of
where At = Al’a—xt and Bt = Atﬂ_ut

C; represents how the uncertainty propagates through the system.
[ is approximated as a quadratic function

1 1
I; (6x;,6u;) = §5xtTQ,6x, +oxl g+ g, + §6utTR,6u, +oul r; + 7 + 6xI Pdu,  (A.6)

where q¢, ry, Q¢, Ry and Py are the coefficients of the Taylor expansion of the
cost function around the nominal trajectory

The value function is also approximated by a quadratic function, and following
(Jacobson, |1973) is defined by:

1
V (1,6x,) = oF, exp {0' (EéxtTS,cix, +0xls, + 5,) } (A7)
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By substituting ((A.4)) into ((A.7)) at the next time step

\% (l + 1, (S)CH.l) = O'Ft+1 exXp {% (A,éxt + B,(Su, + Ct(l)t)T St+1 (At5x, + B[(SM; + Ct(l)t)
+ 0 (Até.Xt + Bt(sl/l[ + Ct(l)t)T Si+1 0-§l+1}

We assume gaussian noise w; ~ N (0,%;) thus we can write the pdf as: (|X]
denotes the determinant).

1 1
pdf = eXp { -5 (wr = ,Ut)T 21_1 (w; — ) } (A.8)
|27 % 2

and the expectation can be computed as

E[f(w)] = / pdf (@).f(w).dw (A.9)

Since we assume a zero mean random variable, the pdf reduces to:

O, 1
gl expi{ — —w,TZ,_lwt
~o l27%] 2

+ % (A[éxt + Btéut + C[CU[)T SH—l (At(sxt + B[&M{ + tht)

E[V(t+1,6x141)] =

+ 0 (At5x, + B,(Su, + Ct(i)t)T St+1 + O—SH.l}dU)t

(Jacobson, [1973) provides a lemma on how to integrate this, start by inspecting
argument of the exponential

S0l T, + % (A6%; + Bty + Cow))T Seat (A6x, + Bibuy + Cyoy)
+ 0 (A,5xt + Btéu; + C[Q)[)T Ste1 + O Si41 (AlO)

keep in mind the value function hessian S; is symmetric positive definite, all the
terms that do not contain w; can be expanded as,
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N; :%(SxtTAtTSHlAzéxt + aé”tTBtTSHlAf(SX’

o
+ gdu,TBtTSHlB,(Su, + 0'6x,TAthH1 + o-éu,TBthHl + 0841

all the terms containing w;

1
Z[ = - iw[TZt_lw, + Uéx;A;S[+1tht + O'5MZTBITS;+1C¢LU,

1
T T T T
+ in’ C, StnCws +ow, C; 5141

Grouping the terms in Z;

1 _
Z=— 0] (zt Lot S,+1Ct) wr

+0 (63T AT S G+ 6ul BT S, G + 51,1

M

(A.11)

(A.12)

(A.13)

Now we want to create the perfect square in w; in the argument of the exponential.

For his we write ((A.12)) as the following

1

Z =— B (w; — @) W, (w; — @)
1 1
Zl‘ = — 5&)?W[(Ht - EJ)ZW[d)t + Q_)ZWIQ)I

by comparison we have

W, =31 — o CTS,,1C
o'W, = M
CL_)[ = Wt_lMt

and to complete the square

1 1

(A.14)

(A.15)

(A.16)
(A.17)
(A.18)

(A.19)

then we can go back to the terms of the exponential argument containing w; to
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get the overall expectation

+00
o b

ex
—oo \/|27th|

1
~3 (wr — @) W, (w, — @) }dwz

1

but we know that

/ exp{ - = ((,()[ Cl_)t)T W[ (Cl)t - (,(_)[) }dwt =1 (A20)
A/l 27rW
so we can multiply by
27w
a— (A.21)
27w

and then the expectation of the value function can be written as

O Fpa14/|127W] 1
_ L Ty-1
E[V (t+1,6x:41)] = exp s N; + =M/ WM, ;.
|27T2t| 2

-5 (a)z CDt)T Wi (w; — @) }dwt

(A.22)
and finally we arrive at
O_Ft+11”27TWt_1|
E[V (t+1,6x.41)] = exp { N, + MTW M, (A.23)
|27 Z,|

what remains now is matching terms. For this, the recursive value function then
becomes
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TFra14/127W,

1
V(t,6x;) = r?in { exp {O’lt (6x;, 6uy) + Ny + §M,TW,_1Mt}} (A.24)

127, |

clearly it is sufficient to minimize the argument of the exponential: expand,
group, and obtain the recursions.

Start by differentiating and setting derivative to equal zero. Two easy terms are:

oSul' R, + or, + o6x! P, (A.25)
o6x ATS, 1B, + 06ul BT'S,;11B, + o5’ B, (A.26)

t+1

36u,0'lt (5361, 5ut)
aéu,Nt

The third term needs some expansions before hand:

2
_ g —
051,” {0-26X;AITS[+]_C1‘WI 1C;TSH_]_B;6H; + 76”;B{S;+1C1Wt 1CITS[+]_B1‘6MZ‘
+o26u! BT S, W, T s,+1} (A.27)

then the partial derivative will look like

1 ) _ _
aﬁulﬁMf WM, = o26xT ATS,,  CWACT S 1By + 026ul B S, .1 C;W, 1 CT S, B,
+o%st W CT S, B, (A.28)

Set the derivatives to zero and after grouping things we get:
Ht = Rt + BtTSt.'_lBt + O'BESTnglCTStHBt

gi = r¢ + Blspsr + oBYSL, CW 1 C sy (A.29)
Gt =Pl + B[St 1A + oBISTCW,1CT S, Ay

Solving for the optimal control in

1
Osu, 01y (61, 61y) + sy, Ny + Os4, §M,T WM, =6ul H+6x'G + g (A.30)
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we get:

ou = kt + Kt(SXk
ko = -H gy (A.31)
K¢ = -H;'Gy

substitute du, back to the exponential argument and match, The three terms in
the exponential argument become

1
1(8x7, Suty) :§6x,TQ,6x; +0x! qi + g+

1
+ 5 (k[ + K[éXZ)T R[ (kl‘ + K[éxt)

+ (k; + K,éxt)T re+7;

+0x! Py (k; + K;6x;) (A.32)

N[ :%6XTAZSZ+1AI6XZ + 0 (kl‘ + Ktéx;)T B?S;HA,&X;
o
+ 5 (k[ + Ktéxl)T BZS[+1B; (kl + thxt)

+ aéxtTA,TsHl + 0 (k,+ K6x,)" B,Ts,+1 + 0541 (A.33)

we can rewrite M; as

M[ =0 ((CITSH.IA[ + CtTSH.lBth) 5x, + CITSH.lBtk[ + CtTSH_l) (A34)

then, regrouping and matching the terms to construct the value function approx-
imation, the corresponding backward recursions are

st = qt + Alser1 + Gl ke + KFHik + cATST CW1C sy (A.35)

Str1 = Q¢ + ATSt1 A + KTHK; + GTK¢ + KT Gy + o ATST ,C W 1CTSy, Ay
(A.36)

With o = 0 the recursions revert to the usual Ricatti recursions for iLQR (Tassa
et al.l 2014]).
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A.2 Details for Experiments

Throughout the experiments we chose o = —0.05 for the curious robot, and o = 0.0
for the normal robot. The iLQR position error weight Qs = 5.0 the velocity weight
Over = 0.1 and the torque error weight R = 1077, The regularization parameter A
was initialized with 1, the scaling factor for 4 was 10 and the maximum A value
allowed was 1000.

A.3 MFRL and MBRL algorithms details

Algorithm 8 ML? for MBRL (meta-

train) Algorithm 9 ML? for MFRL (meta-

1: ¢, « randomly initialize parame- train) .
1: I « # of inner steps

ters S
R . 2: ¢ « randomly initialize parameters
2: Randomly initialize dynamics 3. \while not done do

model P 4: @9 < randomly initialize policy
3: while not done do 5: T « sample training tasks
4 0 « randomly initialize pa- 0 7o.Ro < roll out policy 7,
7 for i €{0,...,I} do
rameters 8:
. . Y41 —
5. T « forward unroll 7y using P optimize(rg,, Mg, i, R)
9: Ti+1, Riv1 < roll out policy mg,,,
6: g « 10: Eg_ «— compute task-loss
. Ll (tis1, Ris1)
optimize(t, My, g, R T D Rikd
) P ( »8 ) 11: end for
T Tnew T2 LreE[c]

forward unroll 7, ., using P 13. ¢ ¢—pv oLT
8  Update ¢ to maximize reward undeedt while

9 ¢ ¢ = VoL (Tnew) Algorithm 10 ML? for RL (meta-
10: Treal T test)
roll out mg, ., on real system

11: P « update dynamics model

1: 6 « randomly initialize policy

2: for j €{0,...,M} do
with Tr.u 3: 7,R < roll out 7y
12: end while 4: mg < optimize(rg, My, T, R)
5: end for

We notice that in practice, including the policy’s distribution parameters directly
in the meta-loss inputs, e.g. mean u and standard deviation o of a Gaussian policy,
works better than including the probability estimate my(als), as it provides a direct
way to update the distribution parameters using back-propagation through the
meta-loss.

108



A.4 Experiments: MBRL

A.4 Experiments: MBRL

The forward model of the dynamics is represented in both cases by a neural network,
the input to the network is the current state and action, the output is the next state
of the environment.

The Pointmass state space is four-dimensional. For PointmassGoal (x, y, x, y) are
the 2D positions and velocities, and the actions are accelerations (%, ¥).

The ReacherGoal environment for the MBRL experiments is a lower-dimensional
variant of the MFRL environment. It has a four dimensional state, consisting of
position and angular velocity of the joints [61, 02, 61, 62] the torque is two dimen-
sional [71,T2] The dynamics model P is updated once every 100 outer iterations
with the samples collected by the policy from the last inner optimization step of
that outer optimization step, i.e. the latest policy.

A.5 Experiments: MFRL

The ReacherGoal environment is a 2-link 2D manipulator that has to reach a spec-
ified goal location with its end-effector. The task distribution (at meta-train and
meta-test time) consists of an initial link configuration and random goal locations
within the reach of the manipulator. The performance metric for this environ-
ment is the mean trajectory sum of negative distances to the goal, averaged over
10 tasks. As a trajectory reward R,(7) for the task-loss (see Eq. we use
Ry(1) = =d+1/(d+0.001) - |a,| , where d is the distance of the end-effector to the
goal g specified as a 2-d Cartesian position. The environment has eleven dimensions
specifying angles of each link, direction from the end-effector to the goal, Cartesian
coordinates of the target and Cartesian velocities of the end-effector.

The AntGoal environment requires a four-legged agent to run to a goal location.
The task distribution consists of random goals initialized on a circle around the
initial position. The performance metric for this environment is the mean trajectory
sum of differences between the initial and the current distances to the goal, averaged
over 10 tasks. Similar to the previous environment we use R,(7) = —d +5/(d +
0.25) — |a;| , where d is the distance from the center of the creature’s torso to the
goal g specified as a 2D Cartesian position. In contrast to the ReacherGoal this
environment has 33 EI dimensional state space that describes Cartesian position,
velocity and orientation of the torso as well as angles and angular velocities of all
eight joints. Note that in both environments, the meta-network receives the goal
information g as part of the state s in the corresponding environments. Also, in
practice, including the policy’s distribution parameters directly in the meta-loss
inputs, e.g. mean u and standard deviation o of a Gaussian policy, works better

'In contrast to the original Ant environment we remove external forces from the state.
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than including the probability estimate my(als), as it provides a more direct way
to update 8 using back-propagation through the meta-loss.

A.6 Experiments: Regression and Classification
Details

For the sine task at meta-train time, we draw 100 data points from function y =
sin (x — ), with x € [-2.0,2.0]. For meta-test time we draw 100 data points from
function y = Asin (x — w), with A ~ [0.2,5.0], w ~ [-«, pi] and x € [-2.0,2.0].
We initialize our model fy to a simple feedforward NN with 2 hidden layers and
40 hidden units each, for the binary classification task fy is initialized via the
LeNet architecture. For both regression and classification experiments we use a
fixed learning rate @ = n = 0.001 for both inner (@) and outer (n) gradient update
steps. We average results across 5 random seeds, where each seed controls the
initialization of both initial model and meta-network parameters, as well as the
the random choice of meta-train/test task(s), and visualize them in fig. Task
losses are ﬁRegression = (y - f@(x))Q and LBinClass = C’mssEntmpyLoss(y, f@(x)) for
regression and classification meta-learning respectively.
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