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Abstract

Research on robotic table tennis is attractive for studying diverse algorithms in many
fields, such as object detection, robot learning, and sensor fusion, as table tennis is full of
challenges in terms of speed and spin. In this thesis, we focus on optimal stroke learning
with sensor fusion for a KUKA industrial manipulator. Four high-speed cameras and an
IMU are used for object pose detection. To learn an optimal stroke for the robot, a novel
policy gradient approach is proposed.

Firstly, we develop a multi-camera calibration approach for wide-baseline camera
pairs. The initial intrinsic and extrinsic transformations are computed using the clas-
sic calibration methods, resulting in a 3D position error of 15.0 mm for four cameras
(11.0 mm for each stereo pair) in our test dataset. A novel loss function is proposed to
post-optimize them with a new set of pattern images from each camera. The final accu-
racy is 3.2 mm for stereo cameras and 2.5 mm for four cameras. To efficiently use those
cameras, we divide them into two stereo-camera pairs for the ball and racket detection,
respectively. With the well-calibrated cameras, the 3D position of the ball can be tri-
angulated when the pixel positions of the ball center are determined with two different
approaches: color thresholding and two layers CNN.

Secondly, we propose an optimal stroke learning approach for teaching the robot to
play table tennis. A realistic simulation environment is built for the ball’s dynamics and
the robot’s kinematics. The learning strategy is decomposed into two stages: the ball
hitting state prediction and the optimal stroke learning. Based on the controllable and
applicable actions in our robot, a multi-dimensional reward function and Q-value model
are proposed. The comparison with other RL. methods is performed using an evaluation
dataset of 1000 balls in simulation. An efficient retraining approach is proposed to close
the sim-to-real gap. The testing experiments in reality show that the robot can success-
fully return the ball to the desired target with an error of around 24.9 cm and a success
rate of 98% in three different scenarios.

Instead of training the policy in simulation, another option is initializing it with the
actions of a human player and the corresponding state of the ball. To get the human
actions, we directly detect the racket from images and estimate its 6D pose using two
proposed approaches: traditional image processing with two cameras and deep learning
by fusing one camera and an IMU. The experiment shows the latter method outperforms
the former in terms of robustness for both the black and red sides of the racket. The
former method is 1.9 cm better in position (2.8 cm versus 4.7 cm), but much slower in
speed when the detection head is replaced with YOLOv4. Finally, a behavior cloning
experiment is performed to reveal the potential of this work.






Kurzfassung

Die Forschung am Roboter-Tischtennis ist attraktiv fiir die Untersuchung diverser Al-
gorithmen in vielen Bereichen, wie z. B. Objekterkennung, Roboterlernen und Sensor-
fusion, da Tischtennis voller Herausforderungen steckt, im Bezug auf Geschwindigkeit
und Spin. In dieser Arbeit konzentrieren wir uns auf das Lernen optimaler Schldge mit
Sensorfusion fiir einen KUKA Industriemanipulator. Vier Hochgeschwindigkeitskame-
ras und eine IMU werden zur Erkennung der Objektlage verwendet. Um einen optimalen
Schlag am Roboter zu lernen, wird ein neuartiger Policy-Gradient-Ansatz vorgeschlagen.

Zunichst entwickeln wir eine Multi-Kamera-Kalibrierung fiir Kamerapaare mit weiter
Basislinie. Erste intrinsische und extrinsische Transformationen werden mit den klassi-
schen Kalibrierungsmethoden berechnet, was zu einem 3D-Positionsfehler von 15,0 mm
fiir vier Kameras (11,0 mm fiir jedes Stereopaar) in unserem Testdatensatz fiihrt. Es wird
eine neuartige Loss-Funktion vorgeschlagen, um mit einem neuen Satz von Musterbil-
dern von jeder Kamera nachzuoptimieren. Die endgiiltige Genauigkeit betrigt 3,2 mm
fiir Stereokameras und 2,5 mm fiir vier Kameras. Um diese Kameras effizient zu nutzen,
teilen wir sie in zwei Stereokamera-Paare fiir die Ball- bzw. Schldgererkennung auf. Mit
den kalibrierten Kameras kann die 3D-Position des Balls trianguliert werden, nachdem
die Pixelpositionen der Balls mit zwei verschiedenen Ansitzen bestimmt wurden: durch
Farbschwellenwertverfahren oder mit einem zweischichtigen CNN.

Zweitens schlagen wir einen optimalen Schlag-Lernansatz vor, um dem Roboter das
Tischtennisspielen beizubringen. Es wird eine realistische Simulationsumgebung fiir die
Dynamik des Balls und die Kinematik des Roboters entwickel. Die Lernstrategie wird
in zwei Phasen unterteilt: die Vorhersage des Balltreffpunkts und das Lernen des opti-
malen Schlags. Basierend auf den steuerbaren und anwendbaren Aktionen in unserem
Roboter werden eine mehrdimensionale Belohnungsfunktion und ein Q-Value-Modell
vorgeschlagen. Der Vergleich mit anderen RL-Methoden wird anhand eines Evaluie-
rungsdatensatzes von 1000 Béllen in der Simulation durchgefiihrt. Es wird ein effizienter
Transfer-Learning-Ansatz vorgeschlagen, um die Liicke zwischen Simulation und Rea-
litdt zu schlieBen. Die Testexperimente in der Realitét zeigen, dass der Roboter den Ball
mit einem Fehler von etwa 24,9 cm und einer Erfolgsrate von 98% in drei verschiedenen
Szenarien erfolgreich zum gewiinschten Ziel zuriickschlagen kann.

Anstatt die Bewegungen in der Simulation zu trainieren, ist eine andere Option, sie
anhand von Aktionen eines menschlichen Spielers und dem entsprechenden Zustand
des Balls zu initialisieren. Um die menschlichen Aktionen zu erhalten, detektieren wir
den Schliger direkt aus Bildern und schitzen seine 6D-Pose mit zwei vorgeschlagenen
Ansitzen: traditionelle Bildverarbeitung mit zwei Kameras und Deep Learning durch
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Kurzfassung

Fusion einer Kamera und einer IMU. Das Experiment zeigt, dass die letztere Methode
die erstere in Bezug auf die Robustheit sowohl fiir die schwarze als auch fiir die rote Sei-
te des Schligers iibertrifft. Die erstere Methode ist um 1,9 cm besser in der Position (2,8
cm gegeniiber 4,7 cm), aber viel langsamer in der Geschwindigkeit, wenn der Erken-
nungskopf durch YOLOV4 ersetzt wird. Abschlieend wird ein Imitations-Experiment
durchgefiihrt, bei dem der Roboter die Bewegungen eines menschlichen Spielers nach-
ahmt, um das Potenzial dieser Arbeit aufzuzeigen.
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Chapter 1

Introduction

1.1 Motivation

Robotics has become an important research area in many applications. With the in-
creased capabilities of artificial intelligence (Al), robotic systems have brought signif-
icant changes to the world. For example, developing a robot that can play sports is a
highly appealing field, which promotes the integration between robotics and Al through
the human-machine or machine-machine interaction.

The Robot Soccer World Cup (RoboCup, Kitano et al. (1997)), an annual international
robotics competition, was convened for soccer sport and recently has developed into
four other major domains of competition that include Rescue League, Home, Logistics
League, and Junior. These are shown in Fig. With its advanced control system
and state-of-the-art hardware, the recent Atlas humanoid robot (BostonDynamics, 2013)
(see Fig. [I.Tf]), can not only perform jumps and spins, but also complete 360-degree
twist and backflip like a gymnast. In Fig[T.1g| a basketball robot, CUE3 (Toyota, 2019),
is shown, built by Toyota. It can achieve a 100 percent success rate with 2,020 suc-
cessful shots. A mobile robot called Robomintoner (UESTC, 2016)) is designed for the
badminton game by integrating a racket as its hand, shown in Fig. To capitalize on
the attention during the 2018 Winter Olympics, the host organization designed a robot
skiing tournament with the requirement that all competitors should have a human-like
body shape (see Fig. [T.1i).

Apart from the aforementioned sport robots, research on robotic table tennis is attrac-
tive for studying different algorithms in many fields, like object detection, robot learning,
or sensor fusion, as table tennis faces some challenges in terms of speed and spin. Var-
ious robots integrated with different sensors have been proposed in recent years. Based
on the concept of harmony between humans and machines, OMRON (Asai ef al., 2019)
developed a table tennis robot that can accurately return the ball to the opponent table. A
racket is mounted on a 6-axis industrial parallel link robot as its end-effector. Two servo
systems are equipped to drive the robot and the racket. A position controller is used to
update the racket position at 1 ms intervals. To measure the 3D ball position, they install
two Quad-VGA industrial cameras that can run at 80 fps. All the hardware systems are
synchronized by a machine automation controller. The future trajectory of the ball is
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Figure 1.1: Some advanced robots designed for competitions and sports. (a) The hu-
manoid robot NAO created by SoftBank Robotics. They are used in the RoboCup Stan-
dard Platform League. (b) The rescue robot that needs to autonomously find the simu-
lated victims hidden in unstructured environments. (c) A service robot that is capable
of autonomously accomplishing the required tasks. (d) Multi-robot collaborative assem-
bly for industrial. (e) Dressed mobile robots in the RoboCup Junior OnStage challenge.
They are designed by the junior students and can perform dance, storytelling, theatre,
or other innovative actions. (f) Atlas humanoid robot with 28 compact mobile hydraulic
joints from Boston Dynamics. (g)—(1) Sport robots created for basketball, badminton,
skiing, respectively. (j) and (k) Robots designed for table tennis.



1.1 Motivation

predicted based on an aerodynamic force model. In addition, three cameras are adopted
during their latest exhibition to detect the human player’s motion, as shown in Fig.
The resulting distance error between the desired and the predicted landing position is
22.5 cm. Xiong et al.|(2012) developed two identical humanoid robots named Wu &
Kong, which can rally with each other more than 100 rounds. Each humanoid robot has
30 DOF in total, which are composed of two 7-DOF arms, two 6-DOF legs, and 4-DOF
for head and waist (Fig.[I.Tk). The 3D ball position is estimated from two cameras. The
spin of the ball can be extracted from a pan-tilt camera, which has a telephoto lens to
detect the logo on the ball; see [Zhang et al.| (2014). All cameras can operate at 120fps
with a resolution of 640x480.

Instead of designing a dedicated robot, some other researchers directly employ a
robotic manipulator that facilitates the experimental environment setup. Miilling et al.
(2011)) mounted a 7-DOF Barrett WAM™ arm in a hanging position from the ceiling.
The racket can be driven at high speed and acceleration. Similar to it, a 7-DOF robot arm
is hung at the front of the table in |Li ef al.| (2012). A PID controller is used to operate
the racket in joint space. Considering the weight and the workspace of the robot, [Liu
et al. (2013) fix a 7-DOF Mitsubishi PA10 robot on the floor. Mahjourian et al.| (2018)
deploy a 5-DOF lightweight robot arm and a 1-DOF prismatic joint at the base of the
robot assembly to provide more flexible control for the racket. In this work, we employ
a 6-DOF KUKA industrial robot arm that is mounted on the floor and is aligned with the
centerline of the table, as shown in Fig. @

While each robot in the above systems is different from others, they are facing some
common challenges that are shown in Table “v"” means this subject will be studied
in this thesis. “®” means that it was implemented by an other member in our group and
will not be presented in details. “—" denotes that we have not successfully implemented
it yet. This thesis will mostly focus on three of those challenges that motivate our work
in the following chapters.

Camera calibration is the fundamental part that significantly influences the further
steps. Multiple cameras positioned in a particular way are employed to improve the cal-
ibration accuracy or to recognize different objects (Miilling et al., 2011} Xiong et al.,
2012 [Kawakami et al., 2021). Intuitively, a human player can estimate the ball’s hit-
ting state by analyzing the pose of the opponent and the flying ball. Therefore, object
pose estimation is necessary for understanding and predicting the state of each object,
especially for the table tennis ball. When interacting with the robot, the racket motion
of the human player provides more information that can estimate the ball spin and help
the robot learn from human demonstrations. As a result, we mainly focus on the 6D
pose detection for the racket instead of the human joints. The Reflexxes library (Kroger,
2011)) is integrated to control the robot in Cartesian Space. To play table tennis with
more intelligence, an end-to-end approach can be applied to the robot directly based on
the corresponding state of the incoming ball. However, the training process is also ex-
tremely expensive for a non-spinning ball (Biichler et all 2020). Instead, we separate
the learning into two stages: the hitting state prediction of the ball and the optimal stroke
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Figure 1.2: Our robotic table tennis system with a 6-DOF KUKA robot arm. The racket
is placed at the end effector in the penhold style. Four high-speed cameras and 12 LED
panel lights are fixed to the ceiling.

Table 1.1: Current challenges for robotic table tennis.

\ Subjects Ours

o Stereo Cameras v

Camera Calibration Multiple Cameras Y

Ball Position v

Object Pose Estimation Human Pose v

Racket Pose v

Ball Trajectory 3 b P051t10r.1 *

. Linear velocity °
Prediction .

Spin °

Robot Control JomF Space R

Cartesian Space °

Robot Learning Remff)rc?ment Lea}rnlng v

Imitation Learning -
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learning based on the prediction. This two-stage algorithm can substantially accelerate
the training process and is capable of dealing with different spin balls.

1.2 Contributions

The work in this thesis mainly addresses the development of robust and real-time ap-
proaches for ball and racket pose detection using various sensors and the learning of the
optimal stroke motion for the robot. The specific contributions included in each of the
four technical chapters are described as follows:

Chapter 3:

* A multi-camera calibration approach with a novel loss function is proposed, which
can be solved by the sparse bundle adjustment approach.

* Based on the traditional image processing technique and the prior knowledge of
the color and shape of the ball, an unsupervised method is developed to extract its
2D pixel position.

» Since a few other objects, such as the racket, the human hand and the KUKA
robot, have similar colors and influence the result of the ball detection, we propose
a CNN-based approach to segment the ball from the background.

* A dataset with the manually labeled annotations is presented. The experiment
shows that our calibration method achieves high accuracy in millimeters. The
CNN-based approach outperforms the unsupervised one in terms of accuracy.

Large parts of this work is based on the article published in:

1. Tebbe, J., Gao, Y., Sastre-Rienietz, M., & Zell, A. (2018). A table tennis robot
system using an industrial kuka robot arm. In German Conference on Pattern
Recognition (pp. 33-45). Springer.

Chapter 4:

* A simulation environment for robotic table tennis is designed to replicate the re-
ality as closely as possible and provide a suitable platform for various algorithms
comparison.

* Considering the physical and dynamic restriction of the real KUKA robot, we pro-
pose a novel approach to learn the optimal stroke based on reinforcement learning
(RL).

* 10,000 different simulated ball trajectories are generated with a wide range of spin
for training and a further 1000 balls for evaluation. Two new metrics are introduced
to give an accurate and clear comparison.
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* To apply the trained model in a new environment, we update the model with 10
new epochs subsequently, which is sufficient to bridge the cross-domain gap. The
experiment, in reality, shows that the proposed method can achieve high perfor-
mance.

Large parts of this work is based on the article submitted in:

2. Gao, Y., Tebbe, J., & Zell, A. (2021). Optimal Stroke Learning with Policy Gra-
dient Approach for Robotic Table Tennis. arXiv preprint arXiv:2109.03100.

Chapter 5:

* By applying an unsupervised method similar to the ball detection, the racket con-
tour in the red side can be extracted from two monocular cameras. The racket 3D
position can be triangulated from the contour centers.

* To estimate the racket orientation, an efficient feature extraction approach is de-
veloped using the detected contours. Then the racket surface can be reconstructed
from the feature pairs matched based on the racket size. The racket orientation is
the normal unit vector of this surface.

* With a discrete Kalman filter, the racket pose can be tracked smoothly. A dataset
is created by mounting a racket on the robot. The experiment shows the resulting
position error is less than 13 mm, and the orientation error is under 15° for the red
racket surface.

Large parts of this work is based on the articles published in:

3. Gao, Y., Tebbe, J., Krismer, J., & Zell, A. (2019). Markerless racket pose detection
and stroke classification based on stereo vision for table tennis robots. In 2019
Third IEEE International Conference on Robotic Computing (IRC) (pp. 189-196).
IEEE.

4. Gao, Y., Tebbe, J., Krismer, J., & Zell, A. (2019). Real-time 6D Racket Pose
Estimation and Classification for Table Tennis Robots. International Journal of
Robotic Computing. 23-39. 10.35708/RC1868-126249.

Chapter 6:

* To robustly detect the 6D racket pose, we mount an inertial measurement unit
(IMU) to the bottom of a racket handle. The orientation of the racket can be mea-
sured directly from the IMU at 100 HZ via Bluetooth.

* An object detector is utilized to extract the bounding box around the racket in
images. By fusing the cropped racket image with the IMU, we can estimate the 3D
racket position by the proposed position detector for both the red and black racket
side.

* Two datasets are generated for training and evaluation. Several existing methods
are compared with ours on the dataset. The resulting position error is around 4.7
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cm at a range of 6 m. To reveal the potential of this work, we conduct one behavior
cloning experiment in which the robot directly mimics the movements of a human
player.

Large parts of this work is based on the article published in:

5. Gao, Y., Tebbe, J., & Zell, A. (2021). Robust Stroke Recognition via Vision and
IMU in Robotic Table Tennis. In International Conference on Artificial Neural
Networks (ICANN) (pp. 189-196). Springer.






Chapter 2
Background

This chapter provides fundamentals that are helpful to understand this thesis. First, we
introduce our table tennis robot system that includes a KUKA Agilus R900 sixx robot,
two laser scanners, and four industrial cameras. The robot is operated by a KR C4 com-
pact controller via a data cable and a motor cable. One host PC is used to handle the data
from all the sensors and transmit the command to the controller. We then explain the
pinhole camera model that describes the camera intrinsic parameters and the extrinsic
transformation related to the world coordinate system. In this thesis, we define the world
coordinate system the same as the one in the robot. To estimate the object pose, we intro-
duce two kinds of approaches: a single stage (end-to-end) and a two-stage method, which
gives a faster detection process. Finally, deep reinforcement learning (DRL) algorithms
for robotic learning are presented.

2.1 Robotic Table Tennis System

2.1.1 The KUKA Robot

The whole hardware setup is illustrated in Fig. A six-axis industrial robot, the KUKA
Agilus KR 6 R900, is employed to play table tennis by mounting a racket at the end-
effector. It is firmly fixated to the floor with a square steel plate, about 0.5 m away
from the table. The KR C4 compact (Fig. 2.1@) can receive the motion commands
from a host PC and control the robot via the data cable and motor cable. With the
KUKA RobotSensorInterface (RSI) package, we can operate the robot at 250 Hz (4 ms
cycle). All the motion commands are generated in Cartesian space on the host PC and
subsequently transformed to joint space by the KR C4 controller. The world coordinate
system is illustrated in Fig. 2.T]left, which is identical to the robot’s.

When observing an incoming ball, we are going to find the desired position and the
linear velocity of the racket at the hitting time and drive the robot to reach this target.
The motion path is planned by the Reflexxes library (Kroger, [2011) that can control the
pose and velocity of the end effector within 1 ms cycles. When given an arbitrary initial
state of motion, kinematic motion constraints, and the desired target state, a new state of
motion can be calculated for the current control cycle, as shown in Fig. [2.2]
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Figure 2.1: The hardware setup for the table tennis robot in the home position. (I):
KUKA Agilus KR 6 R900 sixx manipulator. (2): data cable. (3): motor cable. @): KR C4
compact controller. (3): motion commands transmission via ethernet interface from the
host PC. @): two SICK laser scanner connecting cables. (7): Raspberry Pi 3 controller.
®: external safety interface cable. (9): power supply connection. ((): USB3.0 cables for
four cameras. The world coordinate system is identical to the robot’s, which is illustrated
on the left.

Selection of degrees of freedom S;

tar

Target position p;

Target velocity v,/

Target state of motion

Maximum velocity V; Position P+,

»
»

Maximum acceleration a,"** Velocity Vi, .

Kinematic motion constraints New state of motion

Position p;

Reflexxes Library |«

Velocity v;

Current state of motion

(- ] (- ]

Control cycle T; Control cycle 7,4,

Figure 2.2: Input and output values of the Reflexxes library within one control cycle. The
states of motion can be processed either in Cartesian space or in joint space. In this work

we adopt the former one. Source: (201T).
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2.1 Robotic Table Tennis System

To prevent the access and protect the area around the robot, we mount two SICK S300
Standard laser scanners on the floor as a security system in which each provides a 270°
scanning angle (see Fig.[2.3). Thus, the security system can perform a full 360°scan for
the protective fields. The response time is 80 ms and the protective field range is set to
2.5 m. To avoid the interference of a moving ball, we discard all small objects whose
diameter is less than 0.05 m. The stationary table legs and the walls in the room are
filtered out from the 3D point clouds when starting the scanners. For security reasons, an
additional computer, Raspberry Pi 3 (Fig.[2.1(D), runs independently of the host PC and
is responsible for processing the captured point clouds. If one object gets close to the
robot, the computer will send a STOP command to the KR C4 compact via the external
safety interface cable (Fig. [2.1[8)). Once the robot is stopped, we have to manually reset
the error in the Raspberry Pi 3 and then continue the robot program.

225°

Figure 2.3: The protective field of a SICK S300 Standard laser scanner. The first beam
of a scan begins at —45° in relation to the rear side at 225°. Source: SICK (2020).

2.1.2 Cameras

Four FLIR Chameleon®3 color cameras, which are mounted in the corners of the ceiling,
are used for object pose detection. These cameras are connected to the host PC via
USB3.0 cables (Fig. [2.IJ(0). One of them is configured as a primary camera which
can trigger the other three replica cameras asynchronously via GPIO pins. The image
resolution is 1280 x 1024 with a frame rate of 150 frames per second (FPS). Each camera
has a 16MB buffer where the images can be stored temporarily. Here we store the latest
four images into the buffer to be more robust against data loss. Then these images can be
transmitted to the host PC for object detection. In this thesis, we split the four cameras
into two pairs that can be used for different topics: ball position detection and racket
pose detection.

11
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2.2 Camera Calibration

A camera sensor can convert light photons to digital signals, which maps the 3D world
to a 2D image in pixels. In order to investigate the camera geometry, a pinhole camera
model has been developed to provide a geometric transformation between the realistic
world and the image plane (Potmesil and Chakravarty| (1982)). This will be discussed
in Section 2.2.1] However, the monocular camera can only indicate an ambiguous 3D
position when the 2D pixel is reprojected into 3D world. The usual way to handle it is to
use stereo cameras, as described in Section [2.2.2]

2.2.1 Monocular Camera Calibration

The pinhole model is illustrated in Fig. where an orange ball with coordinates
P, = (X,,,Y,,Z,)T is projected into the image plane, forming the corresponding pixel
p = (u,v). The distance between the camera coordinate origin ¢ and the image plane is
defined as the physical focal length f. In order to describe the model with rectangular
pixels, f is separated into two focal lengths f; and f,, which are introduced based on the
width and height of one pixel (Kaehler and Bradski| (2016)). The principal point (cy,cy)
is usually near the image center. The projection of the ball P,, in world coordinates to the
camera can be summarized as follows:

s-p=A[R|t|P, (2.1)

PPV = (le, YN/" ZW)T -'\

A \
0, R
YW o2 % : &
_ =7 principal OCa/[e
. point | "gflzf
w X (ex» ¢y)!

1
1

Rt

Figure 2.4: The pinhole camera model with an orange ping pong ball at position
(X, Y, Zyy)T in the world coordinate system. [R |¢] is the transformation matrix from
the world coordinate system w to the camera coordinate system c¢. The ball position P,
in camera coordinates is (X, Y., Z.).

12
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where
fx 0 ¢
A=10 f ¢ (2.2)
0 0 1
r o ori2 r3 i
Rlt)=| ra1 2 ™3 1y (2.3)
r31 ryp rj3 i
p=@wv1)", P,=XwY.Z, )" (2.4)

A denotes the camera intrinsic matrix (Heikkila and Silvén| (1997)). [R | 7] is the extrin-
sic matrix divided into a rotation R and a translation ¢ between world coordinates w and
camera coordinates c¢. p and P, are converted to homogeneous vectors. s is the arbi-
trary scaling of the projective transformation and not part of the camera model. The ball
position P. in camera coordinates is (X, YC7ZC)T which is the dot product of the trans-
formation matrix [R | ¢] and the P,. If Z. # 0, the Eq. then can be written as the

following:
u S x4y
= 2.5
l"} {fy‘yufcy} )
where x’ and y' are equal to X, /Z. and Y,./Z,, respectively.

However, it is difficult to manufacture an ideal parabolic lens without any distortions.
Therefore, Fryer and Brown! (1986) introduced two models to correct the P.. The radial
distortions occur because of the lens shape, which is parameterized as the radial parame-
ters [ky, ko, k3). The tangential distortions arise since the lens is not exactly parallel to the
image plane, which includes two parameters p; and p;. Therefore, the final model can
be corrected as:

u fx'xll+cx :|
= 2.6
[V] {fy'ylurcy (20)
where
x’ X (1 4k % + kor* + k3r®) +2p 1y + po (r2 +2x’2)
|l = 2 4 6 3 h2 1 (2.7)
y Y (1 +kir? +kar* +ksr®) + pi (2 +2y%) +2pax’y
with
r?=x"? 42 (2.8)

The aim of monocular camera calibration is to estimate the intrinsics [fy, fy, ¢x, ¢y] and
the distortions [ky,k,k3, p1, p2]. A chessboard (Zhang ef al.,|1999) is usually chosen to
compute the relative pose [R | ¢] with the solvePnP method. The Levenberg-Marquardt
(LM) optimization is used to minimize the reprojection error between the measured pix-
els and the projected ones in the image.

13



Chapter 2 Background

2.2.2 Stereo Camera Calibration

Once the intrinsics for monocular cameras are known, we can set up a pair of cameras
to reconstruct the 3D position of an object in the world space. Fig. shows the stereo
camera geometry for a ball with coordinates P, that is projected onto the left and right
cameras as p; and p,, respectively. The camera baseline (the line jointing the camera
coordinate origins) intersects each image plane at the epipoles. The epipolar line is
the straight line passing through the p; (p,) and the epipole on the image plane. Each
transformation matrix 7" is composed of a rotation R and a translation ¢. Then the point
P,, relative to the left and right cameras can be computed by the following equations:

Pl:lRw'Pw+ltW7 P ="Ry,- Py +'ty. (2.9

P, and P, are related by:
P.="R;-P+'1. (2.10)

When performing the stereo camera calibration with a chessboard, the transformations
'R, | t,] and ['R,, | "t,] can be solved by the PnP method. Therefore, the output of
the stereo calibration is the transformation ["R; | "t;| between two cameras, which can be
derived by:

'R, ="R,,-'RT (2.11)

" ="t,—"R;-t,. (2.12)

Similar to the monocular calibration, the LM optimization is also adopted to minimize
the reprojection error for all the points from both cameras. The OpenCV library (Bradski,
2000)) is utilized for both monocular and stereo calibrations.

Pw = (Xw7 Yw’ Zw)r

r
Ty, Ty
(&)
2 o,
o R
2 &
\é) &
NG a2
P /Zl Z\ Q’S/
* r 3 pr
Zy )
Yy ¢ . baseline /! - X,
. N A r
X epipole . rT, ,” epipole
w Xw 1 \ ///
YI (’ Yr

Figure 2.5: The stereo camera geometry with a ball. The transformation matrix "7; from
the left camera ¢; to right camera ¢, can be computed by the stereo calibration with
a chessboard. With the calibrated stereo camera, we can reconstruct the 3D point in
camera coordinates from pixels (p; and p, in this case) by triangulation.
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2.3 Deep Learning for Visual Object Recognition

Recognizing an object and estimating its pose in the real world is a challenging task
in robotics, such as object grasping (Tremblay et al.| 2018), industrial parts assembly

(Kyrarini et all, 2019), and bin picking (Kalra et all 2020). In this section, we will

review recent vision-based work on 2D object recognition and 6D pose estimation.

2.3.1 2D Object Recognition

Object recognition is usually used to describe a collection of related computer vision
topics in digital images and videos. Based on the different application fields, object
recognition can be distinguished into two topics: object detection and image segmenta-
tion, as shown in Fig.[2.6]

(a) Object detection (b) Image segmentation

Figure 2.6: An annotated sample from the COCO dataset (Lin et al., 2014), illustrating
the difference between object detection and image segmentation. Three objects (dog,
ball, and cat) are marked with different colors.

Object Detection

Object detection takes an image as input and outputs one or more bounding boxes with
the corresponding class labels, which means it is a combination of object localization
and image classification. Fig. 2.6a] shows an example where three bounding boxes are
tinted with different colors for multiple object detection. To accomplish the object de-
tection, |Girshick ef al.|(2014) developed an R-CNN (Regions with CNN features) neural
network architecture. 2,000 region proposals were first generated using the selective
search algorithm (Uijlings et al, 2013) for the input image. For each region proposal,
a convolutional neural network (CNN) was employed to produce a deep feature vector
that was then fed into a support vector machine (SVM) to classify the presence of the
object. The minimal bounding box with its label was finally decided by the greedy non-
maximum suppression (NMS) technique. To accelerate the detection speed, they fed the
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input image into a CNN module to first generate a deep feature map that was then di-
vided into 2,000 regions. Each region proposal was reshaped into a fixed size using an
Rol pooling layer. Instead of the SVM, a softmax layer was used to predict the class of
the proposed region. This improved version was named Fast R-CNN (Girshick, 2015).
However, the selective search algorithm was very slow and could generate some wrong
candidate region proposals. Therefore, Ren ef al|(2015) employed a separate region
proposals network (RPN) to learn to produce the region proposals, which is called Faster
R-CNN. An experiment showed it was ~25x and ~250x faster than Fast R-CNN and
R-CNN, respectively.

Instead of splitting the process into two stages, one-stage detectors discard the region
proposal stage and directly map the original image to the output over a dense sampling of
possible locations. This makes detection potentially much faster but might decrease the
performance slightly. YOLO (You Only Look Once,|Redmon ez al.| (2016)) was the first
unified detector model. The input image was divided into an S x § grid. Each grid cell
predicted B bounding boxes, confidence score p for each box, and C class probabilities.
Each bounding box consisted of 4 parameters: the center (x,y), the height %, and the
width w. 24 convolutional layers followed by 2 fully connected layers were designed
to process the input. The output was a S x S X (B* 54 C) tensor in which the minimal
bounding boxes and labels were chosen by thresholding the confidence scores. The SSD
(Single Shot MultiBox Detector) model (Liu et al., 2016) improved YOLO in speed for
high-accuracy detection. The core of SSD was to extract feature maps from different
scaled convolutional layers and then predict offsets of predefined anchor boxes on each
map. However, Lin et al|(2017) found that the extreme foreground-background class
imbalance affected the detection accuracy tremendously. To address this problem, the
novel Focal Loss function was introduced by reshaping the standard cross entropy-loss
such that it down-weighted the loss assigned to well-classified examples. To evaluate the
effectiveness of the Focal Loss, they designed and trained a simple dense detector called
RetinaNet.

The comparison of the aforementioned methods on speed and AP50 performance is il-
lustrated in Fig. left. Instead YOLOV1, three YOLO variants, YOLOvV2 (Redmon and
Farhadi, 2017)), YOLOv3 (Redmon and Farhadi, 2018)), YOLOv4 (Bochkovskiy et al.,
2020)) are tested on the COCO dataset. VGG-16 (Simonyan and Zisserman, [2014) and
ResNet-50 (He e al.| [2016) are used in SSD and RetinaNet as their backbones, respec-
tively. The comparison table within different input sizes is shown in Fig. [2.7|right, which
is sourced from|Lin et al.|(2017) and Bochkovskiy et al.|(2020). All models are evaluated
on an NVIDIA Titan X GPU.

Image Segmentation

Object detection builds a bounding box corresponding to each class in images, which
is rather vague for object shapes. For example, an autonomous driving system needs
to identify the road and building in order to understand the scene better. Therefore,
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66T

Method Size FPS APS0

62k [A] Faster R-CNN 448 70 453
[B] YOLOv2 544 400 440

= sgl B ssb 300 43.0 43.1
e 512 220 485
< 400 156  47.8
Ssal @ RetinaNet 600 102 532
S 800 65 550
sol 320 455 515
¢ yoLovs 416 345 553

608 19.6 57.9

46} 416 540 6238
¥ YoLOv4 512 430 649

; ; ; : . 608 33.0 657

0 10 20 30 40 50 60 70
FPS (Titan X)

Figure 2.7: The comparison of different object detection models on an NVIDIA Titan X.

image segmentation is used to label every pixel in an image such that a collection of
regions of pixels shares certain features (i.e., color and shape). Fig.[2.8] shows a pixel-
level semantic segmentation example from the Cityscapes dataset (Cordts ef al.l, 2016).
It includes 8 semantic groups, such as human, vehicle, construction, and sky. When
considering higher-level object instance information, different classes in one group will
be classified. For example, multiple person classes in the human group will be identified
as different instances individually.

The first deep learning model for semantic image segmentation was proposed by
(2015). They designed a fully convolutional network (FCN) based on VGG-16 by

Figure 2.8: A pixel-level semantic segmentation example which shows an urban street
scene in Tiibingen, which is from the Cityscapes dataset (Cordts et al., [2016). Overlayed
colors encode different semantic groups. For example, a human group including the
person and rider, is labeled as the red color in this case.
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Figure 2.9: The encoder-decoder structure used in DeconvNet (Noh et al., 2015) and
SegNet (Badrinarayanan et al., 2017). (a) An encoder to form the high-to-low convolu-
tions in series. (b) A decoder to recover low-to-high representations in series.

replacing all dense layers with an upsampling layer. As a result, the output was a spa-
tial segmentation map related to the designed classes. However, this model ignored the
global context information, which caused failure for large or small objects. To address
it, Noh et al. (2015) developed a deconvolution network (DeconvNet) in order to learn to
construct the segmentation map. A deep feature vector was extracted by an encoder (here
VGG-16) and then was fed into the deconvolution network. This encoder-decoder model
(shown in Fig. significantly outperformed FCN on the PASCAL VOC 2012 dataset
(Everingham et al., 2012) with an accuracy of 72.5%. |Badrinarayanan et al.| (2017)
proposed a SegNet model by removing all the dense layers in DeconvNet. This improve-
ment accelerated the segmentation speed and made the model easier to train because it
was fully convolutional and involved fewer parameters. For object instance segmenta-
tion, He et al.| (2017) extended the Faster R-CNN and presented a Mask R-CNN that
detected objects efficiently in an image while simultaneously generating a high-quality
segmentation mask for each instance. They also designed a joint loss function that com-
bined the losses of the bounding box, class, and instance mask together.

The experiment shown their model outperformed other recent approaches, such as
OpenPose (Cao et al.,|2019), DANet (Fu et al., 2019), and CenterNet (Duan et al., 2019)
for human pose estimation, semantic segmentation, and object detection, respectively.
Recently, Wang et al.| (2020) developed a high-resolution network (HRNet) that main-
tained high-resolution representations during the whole process. Instead of connect-
ing high-to-low (encoder) and low-to-high (decoder) convolutions in series, they used
four scaled-resolution convolutions to generate the semantic masks in parallel, shown in

Fig.

2.3.2 6D Pose Estimation

Object recognition provides only 2D information in an image, which can not describe the
real 3D world. Pose estimation is a task that can represent the 6D object pose, namely
3D translation and 3D rotation, in the camera coordinates or world coordinates. It is
crucial for real-world applications, like autonomous navigation, robotic grasping, and
augmented reality. Fig. [2.11]illustrates the pipeline for 6D object pose estimation given
an input RGB/RGB-D image.

One of the first CNN models, BB8 (Rad and Lepetit, 2017), was developed to predict
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Figure 2.10: The main architecture used in the high-resolution network (HRNet). The
outputs are merged depending on different tasks, such as human pose estimation, seman-
tic segmentation, and object detection.
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Figure 2.11: The pipeline for 6D object pose estimation given an input RGB/RGB-D
image, which is from Hodan ef al| (2018). Generally, the training dataset is created
based on the 3D CAD models. The designed method can predict the 6D pose of any
instance in the camera coordinates.
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the 6D object pose. The 2D object centers were first identified based on the VGG net.
Then the crops around the centers were fed into another VGG net in order to regress the
2D projections of 8 corners of the object 3D bounding boxes. With the prior information
about the 3D sizes of the objects, the 6D pose can be obtained from the 2D-3D correspon-
dences using a PnP algorithm. An additional step was required to refine the estimated
pose. To simplify and accelerate the estimation steps, [Tekin et al. (2018) proposed a
single-shot approach that directly detected the 2D projections of the 3D bounding box
vertices without any posterior refinement. Another holistic model, PoseCNN, was pro-
posed in |Xiang et al.| (2017). It decoupled the pose estimation problem into three tasks:
semantic labeling, 3D translation estimation, and 3D rotation regression. A new training
loss function, ShapeMatch-Loss, was introduced for symmetric objects. However, these
methods are prone to fail in the case of occluded and truncated objects. To address this
problem, Peng et al.| (2019) designed a pixel-wise voting network (PVNet) to produce
a prediction for each pixel densely. Instead of using 8 corners of the 3D bounding box
as keypoints, they robustly extracted K keypoints on the object surface with the farthest
point sampling (FPS) algorithm. For each pixel, an object label and a set of direction
vectors from this pixel to keypoints were predicted by PVNet. A RANSAC-based voting
method was then used to generate hypotheses of 2D locations for each keypoint. The
6D pose could finally be driven by an uncertainty-driven PnP algorithm. Inspired from
it, Song et al. (2020) introduced a HybridPose model, which utilized a hybrid intermedi-
ate representation to combine different geometric information, including keypoints, edge
vectors, and symmetry correspondences. The experiment showed it outperformed PVNet
on LineMOD (Hinterstoisser et al., [2012]) and Occlusion LineMOD (Brachmann et al.,
2014 datasets.

In addition, a low-cost RGB-D sensor can provide an extra depth channel for the RGB
image, which is helpful for indoor applications. |Wang et al.| (2019a)) presented an end-
to-end model, DenseFusion, to estimate the object pose directly from RGB-D images.
Based on an object segmentation model, two masks could be cropped from the RGB
image and the corresponding depth map. Then they fed them into an encoder-decoder
net and a PointNet (Q1 ez al., 2017), respectively, to get a color feature embedding and a
geometric feature embedding. After fusing them pixel-wisely, the final 6D pose could be
generated by a pose predictor. A robotic grasping experiment showed 73% of the grasps
were successfully completed. He et al.| (2020) extended PVNet to a PVN3D model that
was able to handle an input RGB-D image. Instead of extracting 2D keypoints, they
designed a deep 3D keypoints Hough voting network to regress the keypoints offsets.
PVN3D achieved state-of-the-art performance on the LineMOD and YCB-Video (Xiang
et al.l,2017) datasets.
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2.4 Deep Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning that involves sequential
decision making by trial and error. In contrast to supervised learning and unsupervised
learning, the RL algorithm helps an agent learn an optimal policy that is capable of decid-
ing which action can maximize the cumulative rewards by interacting with an environ-
ment incrementally. Thus, RL does not need supervised labels or predefined categories.
Deep RL incorporates deep learning into RL, which allows agents to make decisions
directly from high-dimensional inputs (i.e., images) without any manual engineered fea-
tures.

A significant advance in deep RL is the AlphaGo program (Silver ef al., 2016) devel-
oped by Google DeepMind. AlphaGo was the first computer program to defeat Go world
champions in different global arenas and was arguably the greatest Go player in 2016. It
used two deep neural networks: a policy network that outputs move probabilities and a
value network that estimates the winning probability from the current position. AlphaGo
learned the game by playing with professional human players, which was restricted by
the limits of human knowledge. Therefore, DeepMind revealed AlphaGo Zero (Silver
et al.,|2017) that can be trained by playing against itself without any human knowledge.
Fig.[2.12]illustrates the DNN Architecture for AlphaGo Zero. The inputisa 19 x 19 x 17
image stack that consists of 8 binary feature planes for black stones in the previous 8
turns, further 8 planes for white stones, and 1 plane representing the color to play. 40
residual blocks (CNNs) are used to encode the inputs as deep features. Then they are
passed into two separate heads for predicting the move probabilities and estimating the
probability of the winning from the current position, simultaneously. Finally, a Monte
Carlo tree search (MCTS) technique is used to select more substantial moves than the
original move probabilities. AlphaGo Zero achieved superhuman performance and won
100 : 0 against AlphaGo.
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Figure 2.12: The AlphaGo Zero DNN Architecture for
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2.4.1 Markov Decision Processes

The typical RL problem can be formalized as a discrete-time control process where the
agent and environment continually interact to achieve a goal (Sutton and Barto, 2018)).
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As illustrated in Fig.[2.13] at each time step 7, the agent
(a) observes the environment’s state s, € S.
(b) selects an action a; € A based on a policy 7.

(c) receives a scalar reward r; € R and transitions to next state s, |, according to the
environment model.

In addition to the policy 7, each state and action is passed into a value function Q(s,a)
to predict the expected amount of future rewards. 7 and Q(s,a) are known as the actor
and critic, which are what we want to learn in RL.

By assuming that the subsequent states and rewards only depend on the current state
and action (Markov property), not the history, the RL problem is then reframed as
Markov decision processes (MDPs). This assumption can be formalized as:

P(St+1 | Staat) :P(Sz+1 | S07a07"'77st7at) (2.13)
P(r | se,ar) =P (11 | 80,00, y,8,a4) (2.14)

The MDPs and agent thereby give rise to a T-step trajectory:
T = (50,00,70,51,01,71,52,02,72;- - -,ST—1,aT—1,IT—1)- (2.15)

This trajectory will terminate when the goal is reached, or the limited number of steps
is exceeded, which is called one episode in RL. The return R; starting from time ¢ is
computed as the infinite-horizon discounted accumulated rewards:

Ri=rn+Yrna+7rra+...=Y Yru (2.16)
k=0

where ¥ is in the range of (0, 1]. It is a discount factor to penalize future rewards. Then
the value function in the state s for a state-action pair can be defined as:

Q" (s,a) =Eyon R | st = s,a, = a] . (2.17)
@ state s, | next state s,
/ \ < i reward 7;
=)
L I I L
== action q,
Agent Environment

Figure 2.13: The agent—environment interaction in a Markov decision process.
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The action a can be computed either from a stochastic policy 7(- | s) or a deterministic
one 7(s). Based on Bellman’s expectation equations, the above equation can be rewritten
into:

0" (s,a) =By p [r+ VEyz [O7 (5',d")] | st = 5,0, = ] (2.18)
where s’ and a’ are the next state and action sampled from the environment’s transitions

and 7, respectively. The idea behind Bellman’s equations is decomposing the value
function into the immediate reward plus the discounted values in the next step.

The optimal value function Q*(s,a) that gives the expected return if always acting
according to the optimal policy, can be expressed by:

Q*(s,a) = max Q" (s,a). (2.19)

Then the optimal action a*(s) can be obtained from it via:
a*(s) = argmax Q*(s,a) (2.20)
a

which means the optimal policy will choose the action a that maximizes the expected
return (or Q-value) in state s. We finally summarize the MDP as a 5-tuple:

M=(S,A,P,R,y) (2.21)

where P is the probability of transitioning the state from s to s” under action a. In this
thesis, we will only discuss model-free RL algorithms that do not use the P, since the
environment model in most cases is unknown. The rest are states S, actions A, rewards
‘R, and discount factor 7.

2.4.2 Deep Q-Network
Q-learning (Watkins and Dayan, |1992) is a classic RL algorithm to learn the optimal

policy m* with the value function Q" (s,a). According to Eq. and [2.19] the optimal
value function Q*(s,a) can be rewritten as:

Q*(s,a) =Eg.p [r+ ymax Q" (s/,a’)] (2.22)

which means the maximum return starting from state s and action a, is the sum of the
immediate reward r and the discounted maximum return from the next states s’. A basic
idea behind RL is considering the Bellman equation as a value iteration update:

Qi+1 (S7 Cl) = ]ES'N'P

r+ymaxQ; (s’,a’)} : (2.23)
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Sutton and Barto (1998) have shown that this converges to the optimal value func-
tion, Q; — Q" as i — oo. The original Q-learning algorithm is depicted in Algorithm
where Q(s,a) is typically approximated by a linear function or a non-linear function, the
epsilon-greedy exploration strategy follows the greedy strategy with probability 1 — €,
and selects a random action with probability € from all possible desecrate actions. Q-
learning is an off-policy RL algorithm, since the current policy is different from the one
used to generate the next action. This gives Q-learning the ability to reuse the past sam-
ples.

Algorithm 1: Q-learning for updating Q-value
Input: initial Q(s,a), learning tate o, and discount factor y
Output: Optimal value function Q*(s,a)
1 for each episode do
Initilize state s
for each step of episode do
if s is not terminal then
Choose action a < argmax, Q(s,a), using epsilon-greedy strategy
Apply action a, observe the reward r and new state s’
O(s,a) < O(s,a) + a[r+ ymax,y Q(s',a') — O(s,a)]
s s
else
| 0(s.0) ¢ Q(s.a)
end
12 end
13 end

o X N A R W
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A neural network was first used with Q-learning in Mnih ef al.|(2013). They proposed
a deep Q-network (DQN) with weights ¢ to estimate Q(s,a), i.e. Q(s,a;¢) =~ Q*(s,a),
and trained it by minimizing the following loss function at each iteration step i:

Li(90) = B p() | 1= Qs.a:00))?] (224

where
yi=r+ymaxQ(s',d’; ;1) (2.25)
a

is known as the temporal difference (TD) target and y; — Q as the TD error. p(-) donates
the behavior distribution over transitions s, a, r,s’.

However, the non-linear function approximator will make RL unstable and prone to
diverging during training. DQN addressed this problem by using two techniques:

 Experience Replay: At each step of the episode, the transitions s,a, r,s’ are stored
into a replay buffer. Then instead of using the newest transitions to update Q-
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network, DQN used a batch of transitions that were randomly sampled from the
replay buffer. This technique can reuse each transition and avoid the strong corre-
lations between consecutive samples.

* Target Network: The Q-network is periodically copied and kept frozen as the
optimization target Q(s’,a’; ¢;_1). This technique removes short-term oscillations
and makes training more stable.

The full algorithm is presented in Algorithm [2] An experiment has shown that DQN
achieved better performance than an expert human player on 3 computer games in Atari
2600, which provides various RL agents with RGB images as inputs. Fig. to
show these 3 games including Pong, Breakout, and Enduro. DQN achieved close to
human performance on Beam Rider (Fig. [2.14d). The average total rewards for vari-
ous games are included in Table [2.1) where Random means all the actions are sampled
randomly from a Gaussian distribution, and DQN Best is the best performance in all
episodes.

Algorithm 2: Deep Q-network with Experience Replay
Input: random weights ¢, discount factor 7, replay buffer D
Output: Optimal value function Q*(s,a;¢)
1 for episode=0, M do
Initilize state s
forr=0,T do
Choose action a; <— argmax, Q(s;,a; ¢), using epsilon-greedy strategy
Apply action a;, observe the reward r; and new state s; |
Store transition (s;,a;,r;,8;+1) in buffer D
Sample a random minibatch of transitions (s;,a;,7;,s;4+1) from D
ift <T —1 then
\ yj=rj+ymaxyQ(sji1,d:9)
else
| yi=T
end
Update ¢ by minimizing the loss function:

2
Lj(9)=E [(yj —0(sj.a39)) }
15 Reset target network Q < Q periodically

16 end
17 end
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Figure 2.14: Screen shots from four Atari 2600 Games. DQN surpassed expert human
players on (a), (b), and (c). It achieved close to human performance on (d).

Table 2.1: The average reward comparison between DQN and human performance.

| Pong | Breakout | Enduro | Beam Rider

Random -20.4 1.2 0 354

Human -3 31 368 7456
DQN 20 168 470 4092
DQN Best | 21 225 661 5184

2.4.3 Policy Gradient Theorem

By computing the Q-value (critic) for each discrete action, DQN can find the optimal
action with the best value, which belongs to the value-based RL methods. In contrast,
policy-based methods directly build a policy function (actor), mapping states to actions,
and have better convergence properties. They can be used for environments with either
discrete or continuous actions. There are two common kinds of policy gradient methods
(Sutton and Barto, 2018) to compute the actions:

Stochastic Policy Gradient

A stochastic policy can be denoted by 7g:
a; ~ Ty ( | St) (226)

which is the probability distribution for action g, to take from state ;.
For a T-step trajectory 7 in Eq. 2.15] the first state s¢ is randomly sampled from a
distribution pg:

S0 ~ p()() (2.27)
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2.4 Deep Reinforcement Learning

The probability for this trajectory is:

T—-1
P(t]6)=po(s0) [ ] P (s | se,a0) mo (ar | s1). (2.28)
t=0
The expected return in 7 is then:
J@%i/HHGMWﬁ:E[MQ] (2.29)
T T~Ty
where
T-1
R(t)=) ¥r. (2.30)
t=0

According to OpenAl| (2018)), the policy gradient VgJ (7g) can be derived by the follow-
ing steps:

—Vo [ Pe| OR(2)

T
= /TVeP(T | 0)R(7) (2.31)
:/Pm|mVM%P@|MRﬁ)
T
= E [VglogP(t|0)R(7)].

T~Tlg
Since
T-1
VglogP(t|6) = Vglogpo(so)+ Y, (VologP (sis1 | si,a)+Velogmg (a | 51))
=0
T-1
= ) Vylogmy (a;|s:),
t=0
(2.32)
thus the stochastic policy gradient (SPG) is finalized as:
T—1
Vol (0) = _ EEHB Y Vologmg (a | 5:) P (2.33)
=0

27



Chapter 2 Background

where ®; is equal to R(7), or can be one of the following variants:

T—1
¢t — Z R(St/,a[/,st/+1) or

t'=t

T

D, = Z R (sy,a,,5741) —b(s;) (with a baseline D) or

1=t (2.34)
®; =V, (s) (V-value function with weights ¢) or
®;, = Qy (s1,a;)  (Q-value function) or

D, = Ay (s1,ar) = Q¢ (s1,a:) =V (s5;)  (Advantage function).

If a value function, such as Vj (s;), Q¢ (s:,a:),A¢ (s1,a;), is used, the policy gradient
method is then represented as an actor-critic model.

Deterministic Policy Gradient

A deterministic action can be calculated by:
a; = Ty (St) . (235)

Supposing the expectation from state s is approximated to a Q-value, J(6) over a trajec-
tory T can be written as:

J(0) = S;E:S [0 (5,70(s))] , (2.36)

because each action is deterministic and thereby the action probability is equal to 1,

according to [Silver et al.| (2014)). The deterministic policy gradient (DPG) can be given
as:

Vol (8)= E V004 (5], o] 2.37)

or
Vol (0) = E_| Voo(s): Va0 (5:a)| gy s (2.38)

by expanding the gradient of the Q-value.

According to Eq. the optimal action a*(s) can be found by computing the Q-
value for each possible action, individually, for the discrete action spaces. However, if
the actions are in continuous spaces, the problem will become highly non-trivial. It is
unacceptable to perform infinite actions in the environment. Therefore, Lillicrap et al.
(2015) proposed a Deep Deterministic Policy Gradient (DDPG) algorithm to concur-
rently learn a Q function and a policy in continuous action spaces. Instead of calculating
the maxima over actions in the target (Eq. [2.25]), DDPG approximates it by using a target
policy network Qg /arg:

n'if}x o (Slva/§ (P) ~ Q(I)targ(sla nGtarg(S/))- (2.39)
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2.4 Deep Reinforcement Learning

Then Eq. becomes:
yi=r+Y(1—d)Qptarg (s, Torarg (s')) (2.40)

where d = 1 when s is a terminal state, otherwise d = 0. The loss function for updating
the O-value is defined as:

L (¢,D> = Es,a,r,s’,d,wD |:(Q¢ (S7a> _yi)2:| (241)

where D is the experience buffer. The whole process for DDPG is detailed in Algo-
rithm [31

Algorithm 3: DDPG algorith with Experience Replay
Input: random weights 6, ¢, discount factor 7, replay buffer D, target network
weights B < 0, Prare < ¢, factor p
Output: Optimal action function 7 (s)
1 for episode=0, M do

2 fortr=0, T do
3 Choose action a = clip (7r9 (8) + €, ai0w , Ahigh ) where € ~ N
4 Apply action a, observe the reward r and new state s’
5 Store transition (s,a,r,s’,d) in buffer D
6 If d = 1, reset the environment
7 if it is time to update then
8 Sample a random minibatch of transitions (sj,a;,r},sj+1,d;) from D
9 Compute targets:
10 yj =1+ V(1 —d;)Qprarg(sj+1, Torarg(Sj+1))
11 Update ¢ by minimizing the Q loss function:
12 L(9)=E |(Qo (57:0;) =,)’]
13 Update 7w by minimizing the policy loss:
14 L;(0)=-E [Q¢ (s,ng(s))}
15 Update target networks:
16 ¢targ <_p(ptarg +(1—P)¢
17 etarg <_petarg +<1_p)9
18 end
19 end
20 end

However, DDPG sometimes tends to overestimate the Q-value because it exploits the
errors in the Q-function. Twin Delayed DDPG (TD3) (Fujimoto et al., 2018)), a variant
of DDPG, addresses this problem by using two Q-functions and updating the policy with
delay. It is used as the backbone for robot stroke learning in Chapter 4}
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Chapter 3

Multi-camera Calibration and 3D Ball
Position Detection

In this chapter, we develop a calibration approach for multiple stationary cameras in
Section [3.1] The evaluation dataset is generated by using the KUKA Agilus R900 sixx
robot. To extract the ball pixel positions from images, we propose two approaches: the
traditional image processing that makes use of the color thresholding technique and deep
learning that segments the ball contours based on a manually labeled dataset in Section
Finally, we briefly introduce the ball trajectory prediction work by Tebbe et al.
(2018},2020)) in Section[3.3]
Large parts of this work have been pre-published in Tebbe et al.| (2018).

3.1 Calibration Approaches

To achieve high accuracy for the object pose detection, stepwise calibration is needed,
which includes the following three steps:

Monocular camera calibration

The goal is to estimate the intrinsics:

[fes fys Cx, 6y (3.1)

and the distortion vector:
[k17k27k37p17p2] (32)

for each monocular camera, according to Section|2.2.1

In general, asymmetric circle-grids give better performance than the classic black-
white chessboard, both in terms of the quality of final results as well as the stability of
those results between multiple runs (Kaehler and Bradski, 2016). For these reasons, an
asymmetrical circle pattern (Fig[3.Ta) is printed on A0 paper and is glued to a rigid board
for camera calibrations. It has a size of 4 x 11, and the spacing between two circles is 8.0
cm. As shown in Fig. a hand-designed coordinate system is located on the board
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Chapter 3 Multi-camera Calibration and 3D Ball Position Detection

where the top-left circle center is the origin, and the X and Y are along the directions of
the pattern rows and columns. The Z value for each circle is equal to zero. Given each
circle’s position in both image coordinates and the 3D world, we can then compute the
intrinsics with Eq. [2.6]

(a) Circle grid pattern (b) Monocular calibration example

Figure 3.1: Monocular camera calibration. (a) an asymmetrical circle pattern with the
size of 4 x 11. It is printed on AO paper and is glued to a rigid board. The spacing
between two circles is 8.0 cm. (b) a calibration example where each circle center is
extracted and displayed in colors by OpenCV 2000). The top-left and bottom-
right centers are the origin and the end of this pattern, respectively.

Stereo Camera Calibration

Since there are four (one primary and three replica) cameras at each ceiling corner (see
Section [2.1.2)), we need to compute three sets of transformations between primary and
replica cameras. Fig.[3.2]shows two snapshots from the left (primary) and right (replica)
cameras. After collecting a number of snapshots, we can get the relative rotation matrix

"R; and translation vector "#; by Eq. and

Multi-camera Calibration

To post-optimize these extrinsic matrices simultaneously, we place the pattern at differ-
ent locations and orientations in overlapping fields of view of all cameras in order to
extract the same centers of circular blobs for every camera (Fig.[3.3)). Then, we employ a
modified sparse bundle adjustment approach (Triggs et al.,[1999), which minimizes the
following error function:
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3.1 Calibration Approaches

Figure 3.2: Stereo calibration example with the goal to compute the transformation ma-
trix for a pair of monocular cameras. Left image is from the primary camera, right one
from a replica camera.

m n m
E(PX) =Y Y IIPXi—xijl|>+A Y [I|Xir1 —Xi|| - D] (3.3)
i=1j=1 i=1

where the first term is normally used in the standard multi-view calibration algorithm.
Pj is the estimated projection transformation composed of the camera intrinsics and ex-
trinsics. X; is the center’s position in the 3D scene, which is reprojected to the image
plane by P;. x;; is the observed 2D image coordinate. The second error term accounts for
the 3D distance D between two circular blobs, which is not used in the normal bundle
adjustment. A factor A is added to account for the different units (pixels, mm). This
equation is solved by the Ceres Solver library (Agarwal et al.,[2012).

The system’s accuracy is evaluated by mounting a table tennis ball on the end-effector
of the robot and comparing it against the robot’s end-effector localization, including the
difference vector from end-effector to fixed ball. In this fashion, we capture 40 static
locations of the ball with both systems resulting in two 3D point sets. An example is
illustrated in Fig.[3.4]

The two systems operate in different coordinate systems, and a coordinate transforma-
tion is estimated using the two 3D point sets according to/Arun ef al|(1987). The camera
calibration errors are shown in Table [3.1] which includes three tests using both two and
four cameras. Adopting our proposed multi-camera calibration we achieve an error of
2.5 mm for four cameras, 3.2 mm for two cameras. To efficiently use the cameras, we
divide them into two stereo-camera pairs for the ball and racket detection, respectively.
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Chapter 3 Multi-camera Calibration and 3D Ball Position Detection

Table 3.1: Calibration errors comparison in mm.

\ Stereo Calibration \ Multi-View Calibration \ Ours

Two Cameras 11.0 4.9 3.2
Four Cameras 15.0 4.7 2.5

Figure 3.3: Multi-camera calibration example with the goal to refine the transformation
matrices. Four images are simultaneously recorded as one set from every camera. 10
sets are finally utilized in the multi-camera calibration part.
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3.1 Calibration Approaches

Figure 3.4: An evaluation sample recorded using our KUKA robot. A ping pong ball
is attached at the end effector. The ball’s positions in image coordinate systems are
manually labeled. The 3D ball positions can be read from the robot controller.
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Chapter 3 Multi-camera Calibration and 3D Ball Position Detection

3.2 Ball 2D Pixel Position Extraction

It is difficult to estimate the ball position directly from one monocular camera because of
its tiny size and texture-less appearance. Therefore, we decouple it into two steps: ball
2D pixel position extraction and 3D position triangulation from two cameras. In order to
efficiently detect the ball from images, we first introduce the traditional image processing
approaches by fusing the ball’s features. Then an alternative approach, deep learning, is
used to segment the ball contours based on the deep features.

3.2.1 Traditional Image Processing

The method adopted in this subsection is fusing multiple features including motion,
color, area and shape, which are used in Zhang et al.| (2009); [L1 et al.| (2012). To im-
prove the robustness of image segmentation, we transfer the raw images read from the
cameras into HSV color space. Multiple CPU threads are generated for each camera to
accelerate the processing. Figure shows the ball detection process using motion and
color features for three examples cropped to the regions of interest. The top row depicts
a position close to the racket and the player’s hand. The middle row details a state on the

table and in the last row the ball is crossing the net.
()
th

Figure 3.5: Ball detection process using motion and color features: (a): the (n—7)
frame. (b): the n'" frame. (c): subtracting frame (a) from (b). (d): color thresholding of
(c). (e): color thresholding of (b). (f): bitwise AND operation between (d) and (e).

We want to avoid the crescent shaped ball shown in Zhang et al.| (2010) when using
adjacent frame difference because of a slow ball and high frame rate. Therefore we store
the images in a queue and compare the current (n-th) to the n — 7th image, which is shown
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3.2 Ball 2D Pixel Position Extraction

in Figure [3.5(a)-(c). The binary shown in Figure [3.5(d) uses thresholding according to
the following equation:

255 if L< HSVy(u,v) —HSVyq7(u,v) <U

0 otherwise

Binary,(u,v) = { (3.4)

HSV,(u,v) is the vector of HSV values of the pixel (&,v) in the n'h image and comparison
is done component-wise. L and U are the lower and upper HSV boundary values, which
are selected manually.

Restricting the setup to orange table tennis balls we are able to get the benefit of color
thresholding the n”* frame, which results in Figure e). By means of computing the
bitwise conjunction of (d) and (e) in Figure [3.5(f), we can extract the orange moving
objects including balls and possibly skin regions, the moving racket and the robot. To
extract the correct blob belonging to the ball, we exploit size and shape features to filter
out non-ball objects described as follows:

10px < Area < 800px
0.5 < AreaExtent < 1 3.5)
1/1.4 < AspectRatio < 1.4

where Area is the contour area extracted from the Figure [3.5(f) in pixels. AreaExtent is
the ratio of Area to the area of the minimal containing up-right bounding box. AspectRa-
tio is the aspect ratio of the bounding box. In rare cases this process results in multiple
candidates because of other moving objects with similar properties existing. Therefore
we select the one with the largest area as the detected ball.

Once a ball is recognized in the current frame, a region of interest (ROI) with the size
of 160 x 160, will be computed around the ball’s center. Then we can track the next ball
in this ROI to accelerate the detection speed.

3.2.2 Deep Learning

Although the traditional approach shows some success, it is very tedious to find the ap-
propriate thresholds. And the orange KUKA robot could influence the detected contours,
as shown in Fig. [3.6] In recent years, Deep Learning has shown remarkable results in
various applications. Therefore, instead of using color thresholding in Fig. [3.5(d) and
(e), we try to segment the ball contours based on a CNN model. The following three
steps are introduced for collecting datasets, creating CNNs, and training.

Dataset

In order to achieve some diversity in color values, 4036 consecutive images are collected
from the two cameras under different lightness conditions, 80% of which is for training
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Chapter 3 Multi-camera Calibration and 3D Ball Position Detection

Figure 3.6: An example when the ball is going to hit the racket. Left: the cropped RGB
image. Middle: the final contour by the traditional approach. Right: the result segmented
by deep learning.

and the rest for testing. Additionally, a testing dataset including 1114 consecutive im-
ages is recorded for comparing different algorithms. A free online tool, called Computer
Vision Annotation Tool (CVAT, Manovich| (2018))), is adopted to mask the round con-
tours of the balls semi-automatically based on a pre-trained DNN model (here we used
YOLOV3). Each label is a binary image where 0 means background and 1 means ball.
Then we randomly crop each image and its mask into a small size of 160 x 160 around
the ball’s position, which actually generates a dataset of ROIs. If there is no ball in an
image, a random crop is created.

Model

Because of this simple and binary segmentation problem, it is possible to extract the ball
contours only using a shallow network. The developed model is detailed in Table [3.2]
including one hidden layer conv2d_1 and one output layer conv2d_2. Both of them are
2D convolution layers with so ftmax activation and a kernel size of 11 x 11. The output
width w and height 4 are varied depending on different input sizes. Here it is 160 x 160.
The total number of trainable parameters is 728 +486 = 1,214.

Table 3.2: CNN model summary for ball segmentation.

Layer (type) | Output Shape | # Parameters
input (InputLayer) | [(None, w, h, 3)] 0
conv2d_1 (Conv2D) | (None, w, h, 2) 728
comv2d_2 (Conv2D) | (None, w, h, 2) 486

Trainig

The binary cross-entropy loss function provided by TensorFlow (Abadi et all 2015)
is used for training together with the Adam (Kingma and Ba, 2014) optimizer. The
inputs are normalized from [0,255] to [0, 1]. The batch size and epochs are set to 2 and
100. Other hyperparameters are the default values. The training process is illustrated in

Fig.[3.94
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3.2 Ball 2D Pixel Position Extraction

Diffienrent model study

To investigate the number and architecture of layers, we develop three other models for
comparison:

* Five-layer model: The inputs are successively fed into a convolutional layer with
16 filters, one block including two convolutional layers and a batch normalization
layer, and the output layer, as shown in Fig. [3.7|left.

* Encoder-Decoder: It is built based on a block system. After the first block, one
MaxPooling layer is performed to downscale the feature resolution, followed by
the second block. An UpSampling layer gets the resolution back up to the original
size. Finally, the third block and the output layer stay unchanged as same as the
ones in the five-layer model. The schematic is illustrated in Fig. [3.7]right.

» SegNet: Four blocks are used in both encoder and decoder. An additional residual
is held in each block right before MaxPolling, which is then added back after the
corresponding UpSampling step. This operation can preserve the details lost in the
down- and upsampling process. The whole structure is shown in Fig.[3.§]

All the hidden layers in these three models are activated by the ReLU function. A smaller
kernel size of 3 x 3 is applied in each hidden convolutional layer. Other hyperparameters
are the same as in the two-layer model. The training loss and test loss are plotted in
Fig. Overfitting occurs in Fig. and[3.9d

In addition, all models are evaluated on the testing dataset for the inference speed.
The results are shown in Table [3.3] Considering the speed-accuracy trade-off, we decide
to segment the ball using the two-layer model since it is the fastest one with acceptable
accuracy.

Table 3.3: Comparison of each model with the parameter numbers, the lowest test loss,
and the inference speed per image. The input size is 160 x 160.

Model Total Parameters | Test Loss | Speed (ms)
Two-layer 1,214 0.0034 1.67
Five-layer 14,530 0.0029 2.24
Encoder-Decoder 98,050 0.0020 2.77
SegNet 2,942,082 0.0023 4.48
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(a) Five layers model (b) Encoder-Decoder

Figure 3.7: Schematic visualization of the five layers model (left) and the Encoder-
Decoder model (right). The five layers model consists of a convolutional layer with
16 filters, one block including two convolutional layers and a batch normalization layer,
and an output layer. The Encoder-Decoder model is built based on the three blocks.
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Figure 3.8: Schematic visualization of SegNet. An additional residual is held in each
block right before MaxPolling, which is then added back after the corresponding Up-
Sampling step. This operation can preserve the details lost in the down- and upsampling
process.
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Figure 3.9: Training loss and test loss curves for different models. (a)-(d) consist of two-
layer, five-layer, an encoder-decoder, and a SegNet architecture, respectively. (a) and (b)
illustrate the very similar performance on test loss. Overfitting occurs in (c) and (d).
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3.2.3 Comparison

With the ball contours found, the color thresholding and deep learning algorithms can be
evaluated in terms of accuracy and speed using the following metrics:

* IoU: the Intersection over Union (IoU) metric is used to quantify the percent over-
lap between the predicted contour and the ground truth:

_ ground truth N prediction

ToU (3.6)

~ ground truth U prediction

* Center Error: average pixel distance error for the contour centers.
* Speed: the inference speed per image measured with the testing dataset.

Since our whole project is written in C++, we then convert the deep learning model from
TensorFlow to OpenCV DNN module for better compatibility. Table[3.4shows that deep
learning can achieve more accurate ball contours, which results in a higher IoU score than
the color thresholding algorithm. The reason is the color threshold values are not adaptive
to the lighting in some cases (see Fig.[3.10). However, they have similar center errors that
are around 1 pixel, since Eq. can post-process the contour candidates and filter out
false blobs or lines. For speed testing, it is unsurprising that color thresholding is faster
than deep learning. The OpenCV DNN module can slightly accelerate the TensorFlow
model in speed (1.67 ms to 1.51 ms per image).

Table 3.4: Comparison of color thresholding and deep learning algorithms in testing
dataset. Both of them are written in OpenCV and C++. The input size is 160 x 160.

Algorithm IoU Center Error (pixels) | Speed (ms)
Color Thresholding | 69.42% 1.33 0.67
Two-layer CNNs 85.93% 0.77 1.51

Figure 3.10: An example when the ball is close to the table edge. Left: the cropped RGB
image. Middle: the final contour by the traditional approach. Right: the result segmented
by deep learning.
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If there is no ball in the previous image, we shrink the current image (1280 x 1024) to
half (640 x 512) so that the segmentation is fast enough at 150 Hz. A ball trajectory is
illustrated in Fig. [3.T1] When ball pixel positions are known from two or more cameras,
we can reconstruct the ball 3D position using triangulation (see Fig. [3.12).

Figure 3.11: A ball trajectory shown in the image.
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Figure 3.12: A ball 3D trajectory in the KUKA robot coordinates. The red marker is the
position where the robot hits the ball.
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3.3 Ball Prediction

In this section, we will briefly introduce the ideas for predicting the ball position and spin
that are studied in Tebbe et al.| (2018, [2020). Note that this part only provides guidance
for the following chapters and is not the focus of this thesis. When observing the ball’s
3D positions in the robot coordinates, we can predict the future trajectory of the ball
and the hitting time based on the flying ball model, as shown in Fig.[3.13] An extended
Kalman filter (EKF) is adopted to estimate the ball’s 3D position p and 3D linear velocity
v. A spin detector is used to predict the 3D angular velocity @. The hitting time is when
the ball reaches the desired position along the X axis. Here we set the desired X position
to 676 mm in robot coordinates. The evaluation on different spins is shown in Table
The metric is the distance error between the predicted and the desired bounce positions.

rotation axis

Magnus force F,

air resistence Fy

flight direction

gravitation Fy

Figure 3.13: Ball flying model: gravitation, air resistance, and Magnus force.

3.4 Conclusions

In this chapter, we developed a calibration approach for multiple stationary cameras in
Section[3.1] The evaluation dataset was generated by using the KUKA Agilus R900 sixx
robot. To extract the ball pixel positions from images, we proposed two approaches: the
traditional image processing that makes use of the color thresholding technique, and deep
learning that segments the ball contours based on a manually labeled dataset in Section
Finally, we briefly introduced the ball trajectory prediction work by [Tebbe et al.
(2018},/2020)) in Section[3.3]
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Table 3.5: Results on bounce point prediction for balls served from a ball throwing ma-
chine with different settings. For each setting we recorded 10 trajectories, thus there are
90 trajectories in total. With fitted spin, the prediction performance is much better than
without spin.

With fitted spin  Without spin value
1n mm Error Stddev ‘ Error Stddev

Backspin Low 10.28 5.09 | 36.78 6.57
Medium | 27.02  11.22 | 125.76 17.08
High 43.37  32.14 | 170.75 25.15
Sidespin  Low 9.68 5.56 | 43.15 7.99
Medium | 16.35  10.47 | 82.74 13.82
High 27.99 9.80 | 108.24 11.23
Topspin  Low 19.01 5.62 | 90.10 16.96
Medium | 23.36  11.24 | 167.17 14.76
High 86.84  52.70 | 338.28 31.00
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Chapter 4

Optimal Stroke Learning with Policy
Gradient Approach for Robotic Table
Tennis

Learning to play table tennis is a challenging task for robots, due to the variety of the
strokes required. Current advances in deep Reinforcement Learning (RL) have shown
potential in learning the optimal strokes. However, the large amount of exploration still
limits the applicability when utilizing RL in real scenarios. In this chapter, we first
propose a realistic simulation environment where several models are built for the ball’s
dynamics and the robot’s kinematics. Instead of training an end-to-end RL model, we
decompose it into two stages: the ball’s hitting state prediction and consequently learning
the racket strokes from it. A novel policy gradient approach with TD3 backbone is
proposed for the second stage. In the experiments, we show that the proposed approach
significantly outperforms the existing RL methods in simulation. To cross the domain
from simulation to reality, we develop an efficient retraining method and test in three real
scenarios with a successful return rate of 98%.
Large parts of this work have been submitted in Gao et al. (2021a).

4.1 Introduction

Reinforcement Learning (RL) has recently achieved a variety of successes, especially
in autonomous driving (Kendall et al., 2019), gaming (Silver et al., 201°7; Berner et al.,
2019) and robotics manipulation (Gu et al., 2017; Kalashnikov et al.,|2018). In RL one
studies an agent in its surroundings. Based on the observed state, the agent can take
actions in the environment and subsequently perceive a reward that indicates whether
these actions were performed well or not. This is defined as a Markov Decision Process
(MDP). The goal of RL is to maximize the expected value of the cumulative reward in
one episode. However, a large amount of exploration is usually required to formulate a
near-optimal policy of actions. For example, OpenAl (Berner et al., |2019) trained the
Dota2 game from raw images over 10,000 years (in-game time) against itself on 256
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GPUs and 128,000 CPU cores. Therefore, it is particularly hard to train RL models
directly for vehicles or robots in the real world.

To address this problem, one common way is creating a simulation environment to
train a model and then transfer it to reality. |Peng et al.| (2018)) randomly simulated dy-
namics parameters (link mass, joint damping, puck friction, etc.) for a 7-DOF fetch robot
arm and considered them as a part of the current state. Meanwhile, Gaussian noise was
applied on each joint position, velocity, and the gripper position. Based on DDPG (Lil-
licrap et al., 2015)), this dynamics randomization method can cross the reality gap and
perform equally well on a real robot. With a similar idea, Andrychowicz et al.| (2020)
trained dexterous in-hand manipulation policies entirely in simulation, by randomizing
many of the physical properties, such as the friction coefficients and the object’s ap-
pearance. A scaled PPO (Schulman et al., [2017) algorithm was developed for training.
However, dynamic randomization is only meaningful for the case where multiple inter-
actions with the environment arise in an episode, since the proper dynamics, such as
mass, friction, damping of each robot joint, need to be revealed in the early interaction
steps in each episode. For robotic table tennis there is only one-time interaction with
the racket during one stroke, which means there is no way to reveal the proper dynam-
ics in one episode for our robot. (Gao et al.l, 2020; Mahjourian et al., 2018; Zhu et al.,
2018) demonstrated the potential of RL only in simulation. [Biichler ef al.|(2020) de-
veloped a hybrid RL system that could run in reality, but it was unable to handle balls
with various speeds and spins. Another problem caused by the existing RL methods,
like TRPO (Schulman et al., [2015), PPO, DDPG, TD3 (Fujimoto et al., 2018), or SAC
(Haarnoja et al., 2018) is the fuzzy one-dimensional reward that cannot precisely express
the interaction with the environment for multi-dimensional actions.

Inspired by the aforementioned methods, in this chapter we propose a novel approach
for optimal stroke learning in robotic table tennis. Two learning steps, including the
training in simulation and the retraining in reality, can be completed in around 1.5 hours
for various spin balls. The main contributions of this chapter are as follows:

* We design a realistic simulation in combination with the Gazebo simulator, Robot
Operating System (ROS), OpenAI Gym (Brockman ez al.,2016) and the RL library
Spinning Up. The robot and table tennis ball are controlled by the Gazebo plugin.
Different parts can communicate with each other via ROS topics.

* We decompose the learning strategy into two stages: the ball hitting state predic-
tion and the optimal stroke learning, on which we mainly focus in this work. Based
on the controllable and applicable actions in our robot, a multi-dimensional reward
function and Q-value model are proposed.

* A comparison with other RL methods is performed using an evaluation dataset
of 1000 balls in simulation. An efficient retraining approach is proposed to close
the sim-to-real gap. The testing experiments in reality show that the robot can
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successfully return the ball to the desired target with the error of around 24.9 cm
and a successful return rate of 98% in three different scenarios.

4.2 Related Work

4.2.1 Simulation for Robotic Table Tennis

In simulated environments, the robot can freely explore various actions and alleviate the
safety concerns during the training steps. Meanwhile, simulation can provide a fair and
deterministic environment for comparing the performance of different approaches. In
Mahjourian et al.| (2018), PyBullet was used to create the physical entities. In order to
learn from demonstrations, they connected a virtual reality (VR) setup with the simulator
and captured the human actions with a instrumented racket. In Kog et al. (2018)), a sim-
ple simulation was built on top of MATLAB. To make use of robotic drivers and devices,
Silva et al.| (2015) implemented a quadrotor model in the Gazebo simulator, which can
be easily combined with ROS. Biichler ef al.| (2020) developed a hybrid simulation and
real training for muscular robots. They duplicated the incoming ball’s state from reality
to simulation and then simulated the impact with the racket to estimate the ball’s landing
position. The real robot was copied to the simulation by overwriting the simulated with
the real robot action at every time step. In this way, the simulation and the real sce-
nario can remain partially identical. However, these simulations are not realistic enough,
which results in more effort on transferring from simulation to reality. In addition, some
of them are not compatible with the existing RL libraries that include some advanced
RL algorithms. Therefore, we designed a realistic simulation in combination with the
Gazebo, ROS, OpenAl Gym and Spinning Up. The ball’s dynamics is determined based
on Blank et al.| (2017) and Tebbe et al.| (2020). The simulated robot is controlled in
Cartesian space.

4.2.2 Reinforcement Learning in Robotic Table Tennis

Recently, deep RL has attracted a lot of interest by researchers in robotic table tennis.
Gao et al.| (2020) developed an end-to-end algorithm to directly learn to control a simu-
lated table tennis robot in joint space. They took the joint position trajectories and ball
locations as input and trained a multi-modal model-free policy to learn the velocities for
each joint. In |Blchler et al.|(2020), a hybrid simulation and reality system was intro-
duced to train a muscular table tennis robot in joint space. They leveraged PPO (Schul-
man et al., 2017) as the backbone. To return and smash the ball with a high successful
return rate, they developed a dense reward function that depends on the ball position and
the robot state. However, these end-to-end approaches are not efficient for training, they
needed about 14 hours to train for a set of similar ball trajectories. Mahjourian et al.
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Figure 4.1: The whole framework for training and testing. The first stage is used for
predicting the ball’s state s at the hitting point at a frequency of 150 Hz. In this chapter
we focus on the second stage where a optimal stoke can be learnt based on a novel RL
algorithm. The upper part is performed in simulation. A proposed RL model is trained
within 10,000 episodes. To cross the “reality gap”, we retrain the model in an efficient
way. The world coordinate system is identical to the robot’s, which is shown in the
simulation image.
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(2018) incorporated the stroke learning into a hierarchical control system that includes
the inverse landing model, analytic racket controller, forward racket mode and forward
landing model. Each model was trained separately to make the learning process easier
and more efficient. [Zhu et al.| (2018) adopted a two-stage approach for stroke learning.
In the first stage, the ball’s hitting states (position and velocity) were determined by an
extended Kalman filter (EKF) based predictor. Then, these states were fed into DDPG
(Lillicrap et al., 2015) as inputs, the outputs were the racket’s velocity.

4.3 Methodology

To learn the optimal stroke efficiently and hit the ball to the desired target on the table
successfully, we propose a novel framework, as shown in Fig.[4.1] A realistic simulation
environment is developed for robot learning and for comparison with other advanced
RL algorithms. The ball’s hitting state (position, velocity, spin) can be predicted by the
approaches in Section[3.3] In the second stage, a novel approach is employed to learn the
optimal stroke in simulation, which is conjugated with ROS and OpenAl libraries (see

Fig.@.2).

#:ROS 4 ©cazeso 4+ Gopenar + i

Robot Operating System

|
msg/srv plugins environment algorithms

ContactsState gazebo_collision reset DDPG

ModelStates ID3
gazebo_racket_control| | step SAC

SetModelState | |gazebo_ball_dynamics| | render TRPO

SetLinkState PPO

GetModelState

GetLinkState

Figure 4.2: The learning architecture, by combining the Gazebo simulator with ROS,
Gym, and Spinning Up. We can subscribe and publish the states (pose and velocity) of
the ball and the robot from Gazebo with the Gazebo_msgs in ROS. These states should
be fed into the Gym toolkit that allows us to use the RL algorithms in Spinning Up.

4.3.1 Simulation

A challenge for deep RL is how to safely interact with the environment. In robotic ta-
ble tennis, it is difficult to explore every possibility since unexpected collisions would
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destroy the mechanical robot parts. In addition, the robot has to interact with the en-
vironment for a large number of steps to learn a high level policy. To address these
problems, we develop a realistic simulation that can provide a convenient scenario for
optimal stroke learning as well as a comparison of different algorithms. The pose and
velocity of the racket is controlled by the simulator. The dynamics models of the ball are
as follows:

Flying Ball Model

Except for the gravitational force Fy, a flying ball is usually influenced by the Magnus
force F,, and the air drag F; (Zhang et al., [2014). As shown in Fig. F,, is perpen-
dicular to the spin axis and the flight direction. Fy is opposite to the flight direction.

) spin axis
air drag Fg &

Magnus force Fm

G

fligi;t direction

gravitation Fg

Figure 4.3: Force analysis in a flying ball. A sphere shell of radius r; and mass m, with
centered spherical cavity of radius r,, is created as the simulated ball in Gazebo.

These forces can be computed by the following formulas:

F,=(0,0,—mg)" (4.1)
1
Fy == CopaA|vv (4.2)
1
Fn = ECMPaArl(CO X V) 4.3)

where the constants are determined in this work (Tebbe et al., 2018)), including the ball’s
mass m = 2.7g, the gravitational constant g = 9.81m/s?, the drag coefficient Cp = 0.4,
the air’s density p, = 1.29kg/m?, the lift coefficient Cj; = 0.6, the ball’s radius r; =
20mm, the cavity radius r, = 19.6mm, and the ball’s cross-section A = r%?t. o and v
are the linear and angular velocity. Given the ball’s trajectory in reality, @ and v can be

derived for the hitting state prediction by the approaches stated in Section
To simulate the accurate dynamics of the ball, we also need the inertia value / calcu-
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lated by

2 n—r
1:§m(; g). (44)

Bounce Model

In reality, the physical contact between two objects is a very complex thing. To approxi-
mate the contact forces between the ball and the table (or the racket), we adopt the Open
Dynamics Engine (ODE) which is a popular rigid body dynamics library for robotics. It
is already built in the Gazebo simulator. To represent the elastic and frictional impacts on
the ball, we compute the restitution coefficient kg and the friction coefficient pt similar
toBlank et al|(2017).

The restitution coefficient xx is defined as the ratio of the energy before and after a
collision, for example, when the ball bounces off the table. Approximately, it can be
solved by a free fall of the ball as follows:

, vtz—vlz’_—vlz7 —2-gh / )

b t b
vi—V| V] 2gh

4.5)

where v’f and v} are the velocity of the ball and table before impact, vg and v}, are after.
and h, are the corresponding heights when the ball is not moving. Here the table velocity
vl =0.

The friction coefficient u is obtained by the setup in Fig. .4 Three balls are arranged
together in form of a triangle frame. We first put them on the table, and lift the table until
they begin to slide. According to the horizontal angle change 6 of the table, we can get
the friction coefficient i’ between the table and the ball by

(_ 3mg-sind e (4.6)

~ 3mg-cos 6

Figure 4.4: Setup for measuring the friction coefficient u.

We use the same methods to compute the racket’s restitution coefficient Ky, and friction
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coefficient u”. The resulting parameter values are in the Table Additional required
parameters U and slip are defined as the friction coefficient in second ODE friction
pyramid direction and the coefficients of force-dependent-slip (FDS), respectively. They
are manually adjusted to fit the reality.

Table 4.1: Collision parameter values when the ball impacts on the table and racket.

KR M o slip
Table [ 0.97 0.05 0.025 0.0l
Racket | 0.9 1.0 0.025 0.01

To roughly test the accuracy of the simulation, we utilize a ball throwing machine to
launch a topspin ball towards the stationary racket mounted on the robot. The whole tra-
jectory can be recorded as the ground truth with stereo cameras at 150Hz. The starting
spin and velocity of the ball are computed by a spin detector tool and a curve fitting ap-
proach. Then, we re-serve this ball in our simulation and generate a simulated trajectory
shown in Fig. .5] The difference between the returned landing positions on the table is
about 6.2 cm.

real-trajectory  +
simulation trajectory = X

10300 250 200

Unit: cm

Figure 4.5: Trajectory Comparison between reality and simulation when serving a top-
spin ball. The difference between the returned landing positions on the table is about 6.2
cm. In this case the racket is stationary since it is difficult to understand and simulate
the entire dynamics parameters of a moving racket in simulation. Therefore, the racket’s
actions applied in simulation are always the true actions without any noise and time la-
tency. This “reality gap” will be closed in the retraining chapter@
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4.3.2 Algorithm

With regard to the different types of inputs, there are usually two ways available when
using deep RL algorithms in robotic table tennis. The first are one-stage algorithms,
which take the ball’s state of every step as inputs and learn the racket’s pose in an end-
to-end way. Others are two-stage algorithms, which first predict the ball’s hitting state
and then consider it as inputs. The latter one can significantly accelerate the training step
and can handle different spin balls. In this thesis we adopt the second way to learn the
optimal stroke of the racket based on the state prediction of the ball at the hitting point.

Since there is only a single state vector as input in the second stage, we then param-
eterize the stroke learning as a bandit problem, where actions have no influence on next
states and consequently there are not any delayed rewards in one episode. It is a simple
version of an Markov Decision Process (MDP), with

M = (S,A,R) “4.7)

where S is the set of the observed 11-D states s including the ball 3D position p”, 3D
linear velocity v*, 3D angular velocity @ at the hitting time, and the desired 2D landing
target p"®" on the table. A is the set of 3D actions a that can be performed on the robot.
Due to the restriction of the current mechanical structure and the control system, we
can not operate the robot as flexibly as a human can move. Therefore, we only learn to
change the robot’s linear velocity v/ along the x-axis and the orientation angles (3", v")
around the y and z axes. The racket’s target position is the same as the predicted hitting
position of the ball. This makes the robot easy to control in the real world. r donates the
reward function for computing the immediate reward in each episode.

We utilize a policy pg(s) as the actor network, which can output the actions a with
respect to the current state s as shown in Fig. [4.6|left. To evaluate the actions, a critic
network Q4 (s,a) is used, which takes as input both the states and actions and outputs a
Q-value, as shown in Fig. [4.6|right. 6 and ¢ are the neural network weights. The goal is
to lean a deterministic policy g (s), which provides an action that maximizes Qg (s,a).
According to the DDPG algorithm, the critic and the actor can be updated, respectively,
by minimizing the losses:

2
L(§,D) = E [(Q¢ (s,a)—7) } (4.8)
£(6,D) = —E[Qy (s, o (s))] (4.9)

where D is the experience replay buffer for storing s,a,r. The reward r is the feedback
from the environment, which we will discuss in more detail later.
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Figure 4.6: Classic Actor-Critic algorithms. Instead of a 1D Q-value, we propose a 3D
Q-value to train the corresponding 3D actions.

To accelerate the training step and boost the resulting performance, we apply the fol-
lowing changes to the classic actor-critic algorithms during training:

Exploration

For continuous action spaces several exploration policies are used in deterministic envi-
ronments. The random strategy selects the actions randomly from a Gaussian distribu-
tion, the epsilon — greedy strategy takes the random actions occasionally with probability
€ and uses the output from the current actor ug(s) with probability 1 — €. In|Xu et al.
(2018) an additional stochastic policy is deployed to learn how to explore. We noticed
that the actor ug(s) did not give the action with the maximum Q-value in the earlier
training step because of the large loss error. Therefore, we generate the actions a by

a = argmax | Qg (5, o (5) + NV)| @.10)
Lo (s)+N

where N is a Gaussian noise.

Reward shaping

In Zhu et al.| (2018), they develop a reward function that depends on the ball’s height /4”
across the net and the real landing position p"% on the table when the ball is returned. A
coefficient value is used to balance the 4” and p"®*. Then a tricky part is how to select this
value. To address this problem, we separate the reward into three vector components: r,
for the height, r, and ry for the landing position. Each reward function then is normalized
to [0,1] by the following equations:

real tar

o= ol @4.11)

ry = e—\l)§eal—l7§f’"\ 4.12)

r, = ef\hb70.173| (4.13)
. —

r=[re,ry,ry) if success else 0 4.14)
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where p, and p, are the landing position in meters along the x and y axes, 0.173 is the
net height in meters, e is the natural exponential operation. When a ball is successfully
returned to the opposing table, success is set to true.

3D O-value

Normally, the Q-value is a scalar which is expected to be maximized. To make use of the
above rewards, we replace the last layer in the critic network from 1D to 3D. This results
in a 3D Q-value [Qy, Qy, Op], which can precisely indicate the quality of the actions.

In addition, for the actor-critic model we adopt the Twin Delayed DDPG (TD3) algo-
rithm as the backbone. The critic is changed to:

_ Q¢1 (Sva)v if HQ¢1 (S’a)” < HQ(Pz(Sva)H
Qg(5,4) = { Qy, (s,a), otherwise ' (4.15)

The whole training process is depicted in Algorithm 4} where the loss functions £(¢;, B)
and £(0,85) are used to update the critic and actor, respectively.

4.4 Experiments

4.4.1 Training and Testing

With random balls in simulation, we can obtain a number of unique states s for each
episode. To generalize the trained model, these serves are sampled from a wide range of
values. 1,000 serves are collected for a fair evaluation. To bridge the “reality gap”, we
first apply some Gaussian noise to each ball’s 3D position in simulation. Instead of using
the true states of the ball in simulation, we then predict the states at the hitting point with
the methods in Section[3.3] The predicted hitting position is actually where the simulated
racket should move to. This can replicate the real situation and make the trained model
more realistic for the real world. The final state range is shown in Table 4.2] which in-

tar tar

cludes the desired landing target (pi"", py*'), the ball position ( pf, p]; , pé’ ), linear velocity
(vfi, vly7 , vf ), and angular velocity (a)}c’ , a)f , a)Zb ) at the hitting point. These states are subse-
quently normalized as inputs for training. The p? is fixed to form a virtual hitting plane
in the first stage.

By considering the robot’s mechanical setup, we restrict the robot’s linear velocity v},
to a range from Om/s to 2m/s. The orientation angles B, y" are from —50° to 50°. The

third angle a” around the x-axis is calculated by

Py

o =k ———
0.5-wt

(4.16)

57



Chapter 4 Optimal Stroke Learning with Policy Gradient Approach for Robotic Table Tennis

Algorithm 4: Policy Gradient Training with TD3 backbone

Input: Initial actor weights 6, two critic weights ¢y, ¢,, empty replay buffer D,

number of episodes 7', Gaussian noise \/

Output: Optimal policy f1;(s)

1 for episode=0, T do

e e N A Bt A W N

—
e

12
13
14
15

16
17

Observe the state s and generate the action a by
argmaxug(s)+NHQ¢ (S7 Ho (S) +N”)

Apply a in the environment and get the reward r

Store (s, a,r) in the replay buffer D

Reset the environment

if it is time to update then

Sample a random minibatch B from D

for i=0,1 do

Update the critic by minimizing the loss:

LB = E_ [10n(s.a)

end
if it is time to update actor then
Update the actor by minimizing the loss:

£(6,8) = —B[|Qy (5. Ho(s))]|

end
end

18 end
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Table 4.2: state range at the hitting point for training and evaluation.

\ training evaluation

per 2.55m
n 0.0m

o 0.675m

Py [-0.60m, 0.63m] [-0.68m, 0.68m]

p? [-0.01m, 0.34m] [-0.01m, 0.34m]

Vv [-6.00m/s, -1.35m/s] [-5.94m/s, -2.52m/s]

vi’ [-1.95m/s, 2.16m/s] [-1.29m/s, 2.02m/s]

vé’ [-3.47m/s, 3.15m/s] [-3.40m/s, 2.60m/s]

a)fc’ [-127.67rad/s, 110.88rad/s] [-95.08rad/s, 111.53rad/s]
a)f [-299.99rad/s, 299.81rad/s] [-299.62rad/s, 299.73rad/s]
wf [-193.81rad/s, 189.65rad/s] [-189.05rad/s, 189.47rad/s]

Episodes T | 10000 \ 1000

where w' is the table width, k is a coefficient. In this way, the robot will generate a
human-like stroke. In principle, the angle ¢ will not influence the impact with the ball.

In Equation The added action noise A for exploration is a mean-zero Gaussian
distribution with a standard deviation of 0.1. The replay buffer D has a size of 5,000. The
number of training episodes 7" is 10,000. Other hyperparameters used for actor-critic are
given in Table 4.3] The output actions from the actor are scaled to the valid range and
then applied to the simulation. These hyperparameters are tuned manually in order to
achieve the best performance.

Compared to other environments that require millions of interactions in OpenAl Gym,
our model is able to converge after 30 epochs, which took about 1 hour of training. In
addition, 1000 episodes were run for evaluation after each epoch. The resulting rewards
and the corresponding 3D Q-value are plotted in Fig. It is observed that the testing
rewards reach a stable level starting from the 20" epoch, although the Q-values have not
yet converged to the maximum values.
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Figure 4.7: The testing rewards [ry, ry, 7| and the 3D Q-value [Qy, Oy, Q] in simulation
for the ball’s landing position x, y, and the height 2 when crossing the net.

Table 4.3: hyperparameters for training in simulation and retraining in reality.

Actor/Critic
Training \ Retraining

batch size 512 50
epochs 100 -
episodes per epoch 100 20
learning rate le-4 Se-5
optimizer Adam
layers [256,256,3]
activation ReLU
output activation tanh/linear
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4.4.2 Evaluation

A usual metric for the evaluation is the distance error between the real and the desired
landing position (Biichler et al.l 2020; Mahjourian et al., 2018} Zhu et al.,|2018). How-
ever, this metric can not reflect a failed return, for example, if the landing position is not
on the table, it will be difficult to calculate the distance error. Therefore, in this thesis,
we introduce a new metric: distance error €; computed by:

|| ateal _ tar .
rg = e I =Pl if success else 0 4.17)

1 &,
g=—1In (7;15,) (4.18)

where the 7} is the reward for the landing distance error of the n'" ball. It is equal to
0 when the ball fails to land on the opposite table. The number of episodes T is equal
to 1000 for evaluation. The second metric g, for the ball flying height error across the
net, is calculated in the same way. The third metric is the success rate of returning to the
opposite table. To give a fair comparison and evaluation, we adopt 1000 balls resulting
in a large range for the states shown in Table 4.2{right.

Since the existing RL algorithms are only allowed to use a 1D Q-value, we then create
a 1D reward function similar to|Zhu et al.|(2018) by

Foval = o KUllp ! =p'"[|+|n"~0.173]) (4.19)

where k is a scalar coefficient, which is set to 0.5 in this thesis. This new reward function
is only adopted to train the existing RL algorithms including TRPO, PPO, SAC, DDPG,
and TD3. As a result of the different reward functions used for evaluation, we compute
the distance error €p, the height error &, and the successful return rate, respectively,
which are shown in Table The unit of these errors is converted from meters to
centimeters for better visualization. The proposed approach, argmax exploration plus
3D Q-value together with TD3 backbone, achieves better performance than the DDPG
backbone. Other three approaches, TRPO, PPO, and SAC, learn the optimal stroke using
a stochastic policy, which leads to much higher errors and lower return rate.

4.4.3 Retraining in Reality

Although we have built a high-fidelity simulation by manually measuring the coefficients
and applying random noise to the ball, the real robot has higher dynamics and compli-
cated factors that can not be accurately measured and included. For example, the robot
can not always reach the exact goal at the desired velocity in time, and the performance
of the racket will decrease over time with regular use. Therefore, it is necessary to re-
train the model in reality. Unlike the methods (Peng et al.| |2018; Andrychowicz et al.,
2020) that randomize the dynamics parameters in simulation, we adopt an efficient way
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Table 4.4: Evaluation for different Algorithms.

Algorithms | &y &, return rate
TRPO 47.0cm 31.0cm 84.8%
PPO 442cm 30.8cm 87.1%
SAC 43.5cm  29.0cm 89.2%
DDPG 25.6cm 22.lcm  95.6%
DDPG+argmax 23.0cm 22.3cm 97.4%
DDPG+argmax+3D Q-value | 21.3cm  21.7cm  97.9%
TD3 252cm  22.3cm 97.2%
TD3+argmax 222cm  21.2cm  97.7%
TD3+argmax+3D Q-value 20.3cm 21.2ecm 98.5%

to directly retrain the whole model in our real robot.

To find the best hyper-parameters for retraining, we first change the racket’s restitution
coefficient kp and friction coefficient 4" in simulation. In this way, we can replicate
the situation between two different rackets in reality. Based on the pretrained actor-
critic model, we then fine-tune all model parameters in the new simulation with various
batch sizes, episodes per epoch, and learning rates. The best hyper-parameters found in
simulation are shown in Table right. The learning rate is one-half of the one in the
training step. The number of epochs is different for each new environment.

A ball throwing machine, TTmatic 404A, is utilized to provide a range of balls with
sidespin, topsin, and backspin. At the moment our robot can only handle sidespin and
topspin, as the backspin ball causes too high acceleration in a robot joint. This could
be solved in the future. The Reflexxes motion library (Kroger, 2010) is used for robot
trajectory planning in Cartesian space. Each epoch includes both sidespin and topspin
balls during retraining. The state range for retraining and testing at the hitting point is
shown in Table @ Here, the model is retrained with 20 epochs in 0.5 hours to ensure
that it achieves convergence. The hitting position p? along the x axis is fixed to 0.675m.
The resulting retraining process, including the landing distance error €; and the height
error €, is plotted in Fig. 4.8a] To investigate the probability for an unknown racket, we
also retrain a new model for a second racket whose dynamics are completely different
from the first one. The Fig. f.8b]illustrates the second retraining process, which requires
more epochs to converge and has similar performance as the first racket.
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Table 4.5: State range at the hitting point for retraining and testing.

\ retraining/testing in machine testing with human

Py [-0.55m, 0.64m] [-0.65m, 0.43m]

p’z’ [0.085m, 0.34m] [0.06m, 0.0.33m]

vﬁ [-5.20m/s, -3.5m/s] [-5.6m/s, -2.9m/s]

v’y’ [-1.05m/s, 2.35m/s] [-2.38m/s, 1.25m/s]

v’z’ [-0.78m/s, 3.92m/s] [-0.4m/s, 2.48m/s]

a)fc’ [-32.94rad/s, 52.68rad/s] [-33.00rad/s, 78.48rad/s]

a)f [-210.52rad/s, 5.33rad/s] [-182.72rad/s, -55.28rad/s]

a)zb [-157.65rad/s, 34.51rad/s] [-66.68rad/s, 52.62rad/s]
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Figure 4.8: Retraining process using the ball throwing machine for the original racket (a)
and another coefficient-unknown racket (b). €; and &, in the units of cm are the landing
distance error and the height error when ball crossing the net.
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4.4.4 Testing in Reality

Various research has shown the achievements of hitting performance on real robots
(Miilling et al., 2013} |Asai et al.l 2019; Biichler et al., 2020). However, they either
just attempted a few simple serves or provided unclear scenarios about the state range
of the incoming ball. To perform a complete test, we conduct the experiments in three
scenarios where the complexity rises gradually. First a human player (Playerl) serves
the ball with different starting positions at the front of the table. In this way, the hit-
ting position can be fully covered along the y-axis. The second player with senior skills
(Player2) then plays a long game rally to test the continuous performance of the robot.
The state range for these two scenarios is shown in the third column of the Table Fi-
nally, we use a ball throwing machine (Machine) to generate different balls with various
spins and speeds. It is difficult to fairly compare our performance with other work since
the scenarios, like the robot, racket, ball state, and human player, are totally different as
well as the evaluation metrics. We then give the Table 4.6 by directly using the data in
Miilling et al.| (2013)); |/Asa1 et al.| (2019) or by manually computing for Biichler et al.
(2020). The average €; and g, for our three scenarios are 24.9 cm and 22.0cm, with a
standard deviation of 9.0 cm and 4.6 cm, respectively. Playing performance, including
some failure cases, can be found in a Vide

Table 4.6: Testing in reality.

Scenarios \ episodes target distance error height error return rate
‘[Biichler et al.[(2020) | 107 76.9cm - 75%
Miilling et al.| (2013) 30 46.0cm - 97%
|Asai et al.[(2019) 100 22.5cm - -

Playerl 40 20.3cm 22.2cm

Player2 40 25.6cm 23.5cm 98%

Machine 40 28.8cm 20.2cm

4.5 Conclusions

In this chapter, we first designed a realistic simulation for a table tennis robot. To learn
the optimal stroke movement for the robot, we proposed a new policy gradient approach
with TD3 backbone. Different algorithms were fairly evaluated in simulation using 1000
balls with a large range of spins and speeds. To cross the domain from simulation to

Thttps://youtu.be/SNnqtGLmX4Y
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reality, a retraining approach was proposed for the original racket and another coefficient-
unknown racket. The testing results in three complicated scenarios outperform other
research with a return rate of 98%. However, the robot will fail if the incoming ball is
too high or too slow, since the target can not be reached at a fast enough speed. Also, the
robot will not have sufficient reaction time if the ball is too fast (e.g. 10m/s).
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Chapter 5

Racket Pose Detection and Stroke
Classification based on Stereo Vision

For table tennis robots, it is a significant challenge to understand the opponent’s move-
ments and return the ball accordingly with high performance. One has to cope with
various ball speeds and spins resulting from different stroke types. In this chapter, we
propose a real-time 3D racket pose detection method and classify racket movements into
five stroke categories with a neural network. By using two monocular cameras, we can
extract the racket’s contours and choose some special points as feature points in image
coordinates. With the 3D geometrical information of a racket, a wide baseline stereo
matching method is proposed to find the corresponding feature points and compute the
3D position and orientation of the racket by triangulation and plane fitting. Then, a
Kalman filter is adopted to track the racket pose, and a neural network with two hidden
layers is used to classify the pose movements. We conduct two experiments to evaluate
the accuracy of racket pose detection and classification, in which the average error in
position and orientation is around 7.8 mm and 7.2° by comparing with the ground truth
from a KUKA robot. The stroke classification accuracy is 98%, the same as the human
pose estimation method with Convolutional Pose Machines (CPMs).

Large parts of this work have been pre-published in |Gao et al.| (2019a)) and Gao et al.
(2019b).

5.1 Introduction

Racket sports such as tennis, table tennis and badminton are popular worldwide. From
a robotic point of view these sports pose several challenges, which should be addressed
in real-time, for example, human motion analysis (Miilling et al., [2011), racket 3D pose
detection (Zhang et al.,|2017)), flying ball position estimation (Lampert and Peters}, 2012)
and robot trajectory planning (Huang er al., 2015). With motion tracking technology
for players or rackets, the robots can achieve an anticipatory action predicted from the
human’s movements, so that there is more execution time left for hitting movements.
Tracking human motions or racket motions also allows robots to imitate the human mo-
tion to learn how to play human-like table tennis. When a ball flying towards the robot
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is recognized, a precise hitting position will be estimated by combing ball position and
spin together using a curve fitting algorithm (L1 e all 2012) or an extended Kalman
filter (Zhang et al., 2015). Finally, the robot will strike the ball back with an optimal
human-like action determined by large amounts of training data.

With various racket movements generating different spin categories, racket sports are
full of fun and challenges. To detect the 3D racket pose (position and orientation), much
research has been done with sensors and markers. Ohya and Saito| (2004) positioned
four stationary cameras in order to cover a large field-of-view. By assuming the tennis
racket to be modeled as ellipse shape, they estimated the 3D racket position with the
fundamental matrix, which had ten to forty percent more success rate than only using
one camera. Elliott ef al.| (2018) employed a markerless approach with a master camera
fixed and a slave camera dynamically located at 21 different positions to detect a set
of tennis racket silhouette views. With single view fitting techniques, the 3D racket
position was estimated with a spatial accuracy of 1.9 £+ 0.14 mm. |Chen et al.| (2013)
established a high-speed monocular vision system to track a table tennis racket labeled
with some special marker lines in the form of a black rectangle in the middle and a
white line parallel to one of the black lines. They can be extracted into several corners
as feature points and the pose is computed based on perspective-n-point and orthogonal
iteration algorithms. Blank et al.|(2015) attached inertial sensors into table tennis rackets
to detect and classify 8 different stroke types from 10 amateur players. The success rates
for detection and classification did reach 95.7% and 96.7%, respectively. Zhang et al.
(2017) fused inertial measurement unit (IMU) data with the method (Chen ef al., [2013)
based on an extended Kalman Filter for obtaining an accurate and robust racket pose.
The racket position was computed from cameras and its orientation was estimated from
both cameras and IMU resulting in an average angle error of 1.1°.

In this chapter, we present a novel approach for table tennis racket pose detection with-
out markers or IMU based on stereo vision in a table tennis robot system. The system is
shown in Figure As the black side of a table tennis racket is nearly invisible against
our very dark field enclosure, the current system is restricted to detect the red side only.
It can be extracted as a binary contour using a color thresholding method similar to the
table tennis ball detection in Section [3.2.1] To accelerate the detection process, we use
bucket fill to find a connected component starting from the estimated point with the spec-
ified color threshold that determines the amount of connectivity. By ellipse fitting this
contour, we can extract isolated point features located at the intersection area of ellipse
and contour. Combing the epipolar constraint with the 3D geometrical size of the racket,
we can match the corresponding feature points from two cameras. Triangulation results
in 3D points, which are used for fitting the orientation of the plane going through the
racket center. A Kalman filter is used to track the 3D pose and smooth the trajectories.
Next, we classify these trajectories into five categories using a neural network, in order
to determine with which kind of spin the ball is played back. In the experimental re-
sults, we evaluate the poses against ground truth from a KUKA robot and compare our
classification with a different method using human pose estimation.
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5.1 Introduction

Figure 5.1: Table tennis robot system with KUKA Agilus robot. There are four PointGrey
Chameleon3 cameras mounted on the ceiling corners far away from each other to have
a large field-of-view, where two cameras opposite to the human are used to detect the
racket and another pair is for table tennis ball detection. A table tennis racket is rigidly
fixed at the end effector of the robot in a type of penhold grip. The robot coordinate
system is set as the world coordinate system and the center of the racket is defined as the
tool coordinate center. Each full resolution image (1280 x 1024) is first cropped into the
size of 640 x 512 to accelerate the following detection process. One case from the left
camera is shown in the green rectangle.
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The subsequent part of this chapter has the following structure: Section |5.2|introduces
related work. The proposed method is presented in Section The evaluation and
comparison are examined in Section[5.4]

5.2 Related Work

5.2.1 Feature Extraction

Feature extraction involves a detector in the form of points, lines, blobs, or shapes, and a
descriptor to generate a unique vector representing these features. ORB (oriented FAST
and rotated BRIEF) is one such descriptor [12], which is currently popular. It incorpo-
rates the FAST key point detector with modified BRIEF descriptor to provide a fast and
efficient alternative for SIFT, SURF, KAZE and BRISK. However, there is an inherent
disadvantage in the point-based method in low-textured scenarios in that it will fail due to
the lack of reliable feature points. Consequently, line based methods are a possible solu-
tion, since there are many surfaces like desks, doors and walls in low-textured scenarios,
which are rich in line features. In Micusik and Wildenauer (2015), a proposed method
with line segments for indoor visual localization is employed to handle low-texture im-
ages with a wide baseline, which is far better than other point based methods. In our
case, the racket lacks both texture and lines, so that the above methods are not suitable
to extract features from the racket face.

5.2.2 Stereo Matching

Stereo matching defines the correspondence problem, in which we find the correspond-
ing points in two camera images. It is is divided into feature based stereo and area based
stereo (Lane and Thacker, [1998) . Following the feature extraction, feature based stereo
utilizes the L1 norm or L2 norm for string based descriptors (SIFT, SURF, KAZE etc.) or
Hamming distance for binary descriptors (ORB, BRISK etc.) to differentiate features in
corresponding pairs (Tareen and Saleem)|, [2018). Fig.[5.2]shows an example for the racket
stereo matching. Area based algorithms depend on the epipolar constraint for rectified
images to search the corresponding points in the same image rows including local (NCC,
SAD) and global methods (dynamic programming, graph cuts). A well known approach
for real-time stereo vision is Semi-Global Matching (SGM) (Hirschmuller, 2005), which
approximates a global 2D matching cost aggregation by minimizing the energy function
from 8 or 16 different directions through the image. It can obtain the same accuracy
as global matching but with lower runtime. Recently, end-to-end deep stereo gas be-
come very popular to solve the stereo matching problem with CNN models, consisting
of embedding, matching, regularization and refinement modules (Tulyakov et al.| 2018)).
However, they currently cannot yet fulfill real-time requirements.
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Figure 5.2: Stereo matching example using the ORB keypoint detector and a brute-
force descriptor. Almost every matching pair is wrong because the racket surface is
low-texture.

5.2.3 Pose Classification

Player motion analysis is beneficial because the motion of the player determines the mo-
tion of the racket, and consequently the speed and spin of the ball. Chu and Situmeang
(2017) extracted histogram of oriented gradient (HOG) features from badminton videos
and employed a support vector machine (SVM) to classify a player’s stroke into six types
(clear, drive, drop, lob, smash), which resulted in 83.33% average accuracy.
developed a sports analytics engine based on an IMU to detect the tennis shot
with a modified Pan-Tompkins algorithm, and proposed a time-warping based hierarchi-
cal shot classifier by using Dynamic Time Warping (DTW) at the first level (forehand,
backhand and serve) and Quaternion Dynamic Time Warping (QDTW) at the second
level (slice and non-slice). The accuracy at DTW and QDTW were 99.6% and 90.7%
for professional players, 99.3% and 86.2% for novice players. With CNNs, [Bearman|
land Dong| (2015) addressed the human joint location as a regression problem and used
weight initialization from a trained AlexNet to classify human activity into 20 categories
with an accuracy of 80.51%. In our work, a neural network including two hidden layers
is utilized to train the racket pose trajectories and classify them into five types to achieve
an accuracy of 98.7% on strokes of the same player.

5.3 Approach

5.3.1 Racket Detection

To lower the impact on lighting variations, we choose the HSV color space instead of
RGB and adopt the color thresholding algorithm similar to Section [3.2.1] with different
boundary values to detect the red side of the racket. Multiple features of the racket are
fused to extract the whole racket contour, like area and aspect ratio. Fig. [5.3]illustrates
the pipeline of racket detection in the right camera, which includes four steps.
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Motion Detection Color Threshold Racket Contour Refinement

-

Current Frame

Background

Frame Difference

Figure 5.3: Racket detection process with dynamic window, which is for the right im-
age in this case. Motion detection: subtract the background from current frame. Color
Threshold: compute the binary image from HSV space. Racket Contour: bitwise AND
operation from previous step. Refinement: bucket fill results.
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We primarily find the moving objects using a static frame difference method by sub-
tracting the background from the current frame. The lighting between current frame and
background is slightly different because we use the auto-exposure mode that dynamically
adjusts parameters including gain, shutter time and white balance. Performing threshold-
ing and morphology operations, we can get the binary images in the Color Threshold step
resulting in the racket contour processed by bitwise AND operation.

Considering the property of the racket contour, we can determine it based on the fol-
lowing conditions:

200px < Area < 3000px
0.3 < AreaExtent <1 5.1
0.3 < AspectRatio < 3

where Area is the contour area in pixels. AspectRatio is the contour aspect ratio of
the minimal containing up-right bounding box. AreaExtent is the ratio of Area to the
bounding box. The contour with the largest area satisfying the conditions is chosen. Its
center is used to triangulate the racket’s center 3D position.

Once the racket is recognized in both current and previous frames, we first predict the
position of the racket in the next frame by adding the current position with the position
difference of the last two frames. Then, we exploit a region of interest (ROI) around the
predicted position to crop the full image into a dynamic window in order to accelerate
the detection process. Secondly, a multithreading technique supplied by C++ is used to
execute image processing concurrently for the left and right camera images. The third
acceleration method called bucket fill is applied to find a connected component spreading
from the seed point until the color value is out of specified range computed as follows:

C(x,y)n —Lu <C'(x,y)n < C(x,y)u +Un (5.2)
C(X,y)s—LSSC,(X,y)SSC(X,y)S-l-US (53)
C(X7y)V _LV < Cl(xvy)V < C(X7y)V + UV (54)

where H,S,V are the components from the HSV model. C(x,y)y is the H component
value at the seed point (x,y). C'(x,y)q is the repainted H component domain presenting
the new racket contour. L or U is the maximal lower or upper color difference between
the seed point and one of its neighbors. Fig.|5.3[shows that bucket fill yields better results
than color thresholding.

5.3.2 Racket Matching

When the 2D pixel coordinates of the racket’s center are available from the two cam-
eras, we can reconstruct these points as the racket 3D position by triangulation. The
3D orientation can be defined as the unit normal vector of the racket plane. Matching
the left and right contours directly is difficult because of their random and uncertain
shapes.Therefore, we want to find some corresponding feature points on the edge of the
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racket to recover the 3D plane in point-normal form.

Feature Extraction

(a) Contour (b) Ellipse (c) Features

Figure 5.4: Feature (c) extraction from the intersection area between contour (a) and
ellipse (b).

Since the racket plane is low-textured and the two cameras are far away from each
other, feature detection and description is difficult. The strong edge around the racket
contour is used to extract the feature points in the undistorted images, which will not be
rectified due to wide baseline and large rotation angle.

We approximate the edge by three ellipse fitting methods supported by |Bradski| (2000)
including normal least squares (LS), Approximate Mean Square (AMS) and Direct least
square (Direct) aimed at finding the best one which has the largest degree of overlapping
D between the edge and ellipse formulated as following:

D— Novertapping (5.5)
Nedge

where Noyeriapping and Negge are the pixel numbers of the intersection area and the edge.
We calculate D for a sequence of images and show the comparison in Table The
direct method is adopted for ellipse fitting because of its performance. Then, we choose
the points on the intersection area as feature points, shown in Fig. [5.4]

Table 5.1: Comparison of ellipse fitting models.

Methods | LS~ AMS  Direct
Degree | 53.77% 56.60% 58.33
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Stereo Matching

Next, we do not intend to match the two sets of feature points to each other, but find the
corresponding points in another contour’s edge. Depending on the epipolar geometry,
we can narrow down the choice of candidates of corresponding points on the epipolar
line. The points lying on both edge and epiline are the potential corresponding points
of the feature points. Fig. gives an example where Pg and Py are the intersection of
edge and epiline related to the left point P;. By means of the racket size, we can find the
correct corresponding point from these two candidates described as:

Py = Triangulate(Py, PR)
P, = Triangulate(Py, Py) (5.6)
75 < |Pos — Center| <90 Pos € [P, P,]

where 75 mm and 90 mm are the length of the minor and major semi-axes. Center
is the 3D position of the racket. Therefore the inequality should be satisfied for a
correct edge point. The algorithm chooses the point having the shortest distance by (
| ||Pos — Center|| — 13490 ).

150mm

Figure 5.5: Finding the potential candidates Pg and Py in the right camera corresponding
to Pr. Or, and Og are the optical centers of the cameras lenses. The epipolar line in the
right camera passes through the epipole Eg, the image points Pg and Pj,.

Outliers Removal

The feature matching method aforementioned can produce many corresponding pairs
consisting of inliers and outliers. Because these pairs lie on the same surface, a homog-
raphy matrix H for removing outliers can be derived as a 3x3 matrix but with 8 DoF
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estimated by:
xi Xi hir hia his| |xi
slyi | =H |yi| = |hat hxn has| |yi (5.7)
1 1 h31 hyp 1 1

where s is a scale factor. [x;,y;] and [x},y!] are the i’ pixel coordinates from left and
right cameras. According to this transformation, we can minimize the re-projection error
function after projecting points from one image into another given by:

;2 ;o ~\2
Y (¥ —%)"+ (- 5) (5.8)
i
o~ _ hixithipyithis o harxithyyithys : : _
Zv.here Xi = Tty T and y; = T hay T They are the reprojected image coor
inates.

However, using the whole pairs for matrix estimation will lead to a poor result. We uti-
lize the Random SAmple Consensus (RANSAC) (Fischler and Bolles, |1981) to estimate
the homography matrix by randomly selecting different subsets of the corresponding
pairs and select the subset with the minimal re-projection error. Here, the outliers will be
removed if the reprojection error is more than 3 pixels.

The final matching results are shown in Fig. [5.6|including 3 penhold and 3 shakehand
types. Each corresponding features pair in the left and right cameras is labeled with the
same color to be distinguished clearly.

Plane Fitting

Reconstructing the corresponding pairs by triangulation, we can get a series of 3D points
[xi,yi,zi]T that can be used to estimate the equation of the racket plane ax + by +c =
z. The centroid of these points is defined by the 3D racket center. The normal vector
[a,b,c]T is described as:

xo yo 1 20
1 a 21

Yo b| = . (5.9)
.
Xn Yn 1 Zn

This can be written in the form AX = B. A common method to solve for X is Singular
Value Decomposition (SVD), by which A is decomposed as:

Anxz = UpSpx3Vi 5 (5.10)

where U and V are orthogonal matrices, S is a diagonal matrix, and » is the number of
corresponding pairs. Then, the last column of V indicates the value of normal vector
[a,b,c]T. Normalizing this vector, we can get the unit norm vector representing the
racket’s orientation. We measure the processing time for racket detection and matching
shown in Fig. The stereo matching needs around 6.1 ms. The total time for racket
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(c) (d)

€9) (h)

Figure 5.6: Feature matching results including six examples in the left and right cameras.
The grip type in (a)-(f) is penhold grip. (g)-(h) use the shakehand grip. The correspond-
ing pairs are labeled with the same color in order to clearly distinguish the correct pairs.
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pose estimate needs about 7.0 ms, which means we can estimate the racket 6D pose at
150 FPS.

—— Detection
8 ~—— Matching
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Frame

Figure 5.7: Processing time for racket detection and matching. The matching speed is
impacted by the number of keypoints.

5.3.3 Tracking

Tracking the racket pose offers two advantages. We can use the estimated pose when
there is an occlusion or the racket is disappearing. Also it can provide a much smoother
estimation of the racket pose. In this thesis, we employ a discrete Kalman filter that is
very efficient and powerful for estimating the pose [x,y,z, ¢, 8,7]7 . We define the racket
state X; with 15 variables:

Xl‘ = [xtaylaztvxl7ytvz.t7jélayt7zt7 alaﬁla %7 (Xtaﬁta yl] (511)
A simple motion model is used to compute the next expected state X, :

Piv1 =D+ Py * Ar + %pt * Ar?
Pry1 :pz+l?t*At (5.12)
Bris = 0, + 6, % Ar

where p € [x,y,z] and 6 € [o,,7]. Then, we can project the next state and error co-
variance ahead from current time and update them with the current measurement. From
Fig. 5.8  and [5.9] we note that in 30 frames, the estimated pose appears considerably
smoother than the original one without Kalman filter.
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Figure 5.8: Kalman filter tracking in 30 frames for racket position (x,y,z).
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Figure 5.9: Kalman filter tracking in 30 frames for racket orientation («, f3,7).
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5.3.4 Classification

Realizing the exact pose trajectory is not possible for humans, but people can still play
table tennis really well, due to their ability to recognize different stroke types. For robots,
it is important to know not only what the exact pose is, but also which stroke type is
generated. There are many different types of stroke, but we can divide them into five
basic categories: 1) Counter Hit. It is used to stop an aggressive, attacking stroke from
your opponent by moving the racket and keeping it at the same angle. 2) Left Spin. It
will be imparted when the racket moves to the left, which makes the ball to bounce off
in the same direction. 3) Right Spin. It is the opposite of left spin. 4) Top Spin. It
is produced by starting the racket below the ball and hitting the ball in an upward and
forward direction, which causes the ball to jump forwards after bouncing off the table
and the opponent needs to return with the racket face closed. 5) Back Spin. It is the
opposite of top spin, with a downward stroke of the racket. If the opponent does not
reply with a back spin or a strong top spin himself, the ball will drop down and into the
net.

We stored the previous 30 frames to extract the trajectories of the racket pose once the
ball flying towards robot is detected. To distinguish which spin type these trajectories
belong to, we created a classifier based on a neural network containing two operations
and two hidden layers able to predict in the testing set:

Flatten operation

The input size is 30 x 6, which means each frame from the previous 30 frames includes
six values (x,y,z,a,b,c). This layer converts the 30 X 6 matrix into a 1D feature vector
1 x 180 used in the artificial neural network (ANN) classifier. To simplify the dataset
and make training more robust, we use the relative position to the last position in the 30"
frame instead of the absolute value, and normalize them into unit vectors.

Dense layer

It is also called fully connected layer and first performs a linear operation in which every
neuron from the previous layer is fully connected to this layer by a weight matrix kernel
as following equation:

output = ReLU (input - kernel + bias) (5.13)

where the shape of output adopted in this thesis is 128-dimensional. As activation func-
tion a ReLU (Rectified linear unit) is used to introduce non-linearity. bias is a bias vector
created by this layer.
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Dropout operation

By randomly setting a rate of input units to zero during the training phase of this set of
units, we can reduce the over-fitting of training data. Here, rate is assigned to 20%.

Dense layer

This layer performs classification on input units into five categories. We choose the
softmax function to activate the dropout layer.

For each spin type, we recorded 200 videos to generate the racket trajectories and hu-
man pose, respectively. Among them, 80% of the dataset are used to learn the classifica-
tion model, and the remaining 20% are used as test dataset. In training, we use the Adam
optimizer and a loss function with sparse categorical cross-entropy. Then we can train
the model for a specified number of epochs. To compare the classification difference of
pose, position and orientation, we experiment with them, respectively. From Table
we can find the best performing is the 6D pose. The accuracy with 3D orientation is
much better than the 3D position

Table 5.2: Classification accuracy comparison.

\ 6D Pose 3D Position 3D Orientation

Training Set | 98.7% 51.58% 94.8%
Testing Set 98.2% 50.63% 93.6%

5.4 Experiments

In this section, we conduct two experiments to evaluate the performance of our proposed
methods. We first use a pair of cameras facing the robot to detect the pose of the racket
mounted at the robot end effector shown in Fig. and compare it with the ground
truth data read from the robot controller. Then, we adopt an existing 2D human pose
estimation model, Convolutional Pose Machine (Wei et al.,|2016), to extract human joints
as feature points. We compare this deep neural network with the classified network
presented before. The comparison results are shown in the following subsections.

5.4.1 Evaluation on the KUKA Robot

We have already transferred the 3D coordinates from camera to robot by employing a
least-squares fitting method with two 3D point sets in our table tennis robot system. The
tool coordinate system in the robot was moved from the end effector to the racket center.
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In our work, the unit norm vector uy of the red side on the racket in tool coordinates is
always [—1,0,0]” by the negative direction of the x axis shown in Fig. Next, we
transform this vector to robot coordinates (namely, world coordinates).

I
Y

i T

Figure 5.10: The tool coordinate system.

The values [X,Y,Z, a, 3, 7] can be read from the KUKA controller, where X,Y,Z are
the racket’s 3D position and «, 3,7 are the Z-Y-X Euler angles. The 3 x 3 rotation
matrices about X,Y,Z axes are written as: Ry, Ry, Rz.

1 0 0
Rx = |0 cosy —siny (5.14)
0 siny cosy

cosfp 0 sinf
Ry = 0 1 0 (5.15)
—sinB 0 cosf

cosox —sinoe O
Ry = |sina cosa Of. (5.16)
0 0 1

Then, the norm vector uy in world coordinates is derived by:
uw :RzRny*uT. (5.17)

Now, the [X,Y,Z] and uy are the ground truth data from the robot. To know the
exact racket pose error, we manually control the robot to achieve 50 different poses with
various position or Euler angles, and compute the racket pose from robot and cameras.
Those angles between two norm vectors from the robot and cameras are defined as the
orientation error. As shown from Fig. @, the position error is below 13 mm with an
average of 7.8 mm and the orientation error is under 15.0° with 7.2° average value.

5.4.2 Comparison with Human Pose Estimation

We directly apply Convolutional Pose Machines (CPMs) (Wei et al., 2016)) to extract the
human body keypoints including ear, eye, nose, neck, shoulder, elbow, wrist and hip (14
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Figure 5.11: Racket pose evaluation in the robot coordinates.

keypoints in total) in the left camera. A Kalman filter is used to track these keypoints.
Human poses are calculated and stored as matrices to express which parts of the body
are connected to each other. The visualization is shown in Fig.

By means of the same dataset and classification approach with different input shape
30 frames x 14 keypoints, we can obtain the test accuracy of 98.4% , which is similar to
the proposed method 98.7%.

However, CPMs have a crucial issue of requiring high-level GPU hardwares. They
can not satisfy the real-time requirement in table tennis. Meanwhile, it just provides the
approximate pose information that can not be used to calculate the exact 3D position or
orientation. In contrast, our proposed method can be run in 7 ms (150 FPS) and give the
opportunities to train the robot having a human-like movement.
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Figure 5.12: Human pose estimation in image sequences, using Convolutional Pose Ma-
chines. Human body keypoints, including two ears, two eyes, one nose, one neck, two
shoulders, two elbows, two wrists and two hips (14 keypoints in total), are shown in
green circles.

5.5 Conclusions

In this chapter, we have presented a novel table tennis racket pose detection method
based on stereo vision. Through the color and motion segmentation, we can extract the
racket contours, then feed them into the proposed wide baseline stereo matching method
to generate the 6D pose. With a multilayer perceptron (MLP) neural network, the pose
trajectories can be classified into five kinds of spin types. Finally, two experiments were
performed to evaluate the accuracy of pose detection and classification.
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Chapter 6

Robust Stroke Recognition via Vision
and IMU

Stroke recognition in table tennis is a challenging task, due to the variety of movements.
Many different sensors have been adopted in robotic table tennis, with the goal of detect-
ing the players’ movements. In this chapter, we propose a two-stage approach to directly
recognize the table tennis racket’s movement. A bounding box around the racket can
be extracted from an RGB image in the first stage. An efficient and lightweight CNN
architecture is then developed to regress the racket 3D position by fusion of the cropped
image and the 3D rotation data from an IMU in the second stage. Together with the
rotation data, a robust 6D racket pose is available at a frame rate of 100 Hz. In the ex-
periments, two datasets are collected from our KUKA table tennis robot for evaluation
and comparisons, which show a position error of 4.7 cm at a range of 6 m. One behavior
cloning experiment is performed in order to reveal the potential of this work.
Large parts of this work have been pre-published in Gao et al.| (2021b)).

6.1 Introduction

Human activity detection has spawned a large amount of research in many applications,
such as gesture recognition, video surveillance, health care and sports performance anal-
ysis. Typically, it includes two steps: feature extraction and action classification. In
recent years, a variety of sensors have been applied to obtain the human pose, thereby
resulting in different kinds of techniques.

Vision-based methods extract the 2D human joints (Cao et al.,|2018), hand keypoints
(Simon et al., |2017) or 3D human pose (Pavllo ef al.l 2019) as features from RGB cam-
eras. To get more accurate information, the depth maps from RGB-D sensors are in-
cluded to derive the full 3D human pose (Zimmermann et al.l [2018). Motion sensor
based methods adopt low-cost accelerometers, gyroscopes, and sometimes magnetome-
ters to detect the human’s linear acceleration and angular velocity (Zhao et al., 2018)
as features. With the fusion of multiple inertial measurement units (IMUs) and a single
camera, one can recover accurate 3D human pose in the wild (von Marcard et al., 2018)).
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To understand the performance of the players and provide them with a guide to tactics
and skills, some systems with different sensors have been designed for sports. An Al
Coach system for athletic training (Wang et al., 2019b) is built with a single camera.
They design a binary player detector to extract a single player as bounding box in the first
frame. To accelerate the detection step, a tracking model based on the detected bounding
box is used from the second frame to the last frame. After knowing each player’s tubelet,
the player 2D pose can be regressed by a pose estimation model. In order to estimate and
track player’s 3D pose, |Bridgeman et al. (2019) calculate the correspondences between
2D poses in different camera views. The 2D pose associations can be used to generate
the player 3D skeletons.

In robotic table tennis we face many challenges, especially due to the movement of
the human opponent, also including some deceptive actions. Each movement creates
different types of spin and speed. Therefore, instead of recognizing the human 2D or
3D pose, the main focus in this chapter is the table tennis racket pose estimation. This
gives our table tennis robot (shown in Fig. the ability to recognize the human stroke
pose and consequently mimic the human motion with imitation learning. To achieve this
we use a single camera fused with an IMU and develop a novel approach for robustly
recognizing human strokes. The main contributions of this chapter are as follows:

* We propose a novel two-stage position estimation network for table tennis rackets
via vision and IMU. Together with the 3D rotation data retrieved from the IMU,
a robust 6D racket pose is available at a frame rate of 100Hz without any special
markers.

» The training dataset is created based on simulated views of a racket CAD model.
The evaluation dataset is collected from our KUKA robot, which can be annotated
automatically with the pre-calibrated transformation matrix between the robot and
the camera. Therefore, manually labeling is not needed in our work.

* The experiment shows that our approach achieves high performance with a posi-
tion error of 4.7 cm at a range of 6 m. To reveal the goal of this work, we perform
an experiment to operate the robot in a human-like way, which is a clone of the
human movements.

6.2 Related Work

Image-based 6D object pose estimation is one of the trendiest topics in computer vision.
Recent state-of-the-art methods have shown huge success in detecting the 6D pose of
objects in close range to the camera. PoseCNN (Xiang et al., 2017) directly estimates
the 6D object pose with an end-to-end network from a single image. Sundermeyer et al.
(2018)) present an implicit method for 3D orientation estimation based on Augmented
Autoencoders (AAEs), which is trained on synthetic images. The 3D translation is then
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Figure 6.1: Playing with our KUKA table tennis robot. A wearable IMU is mounted
at the bottom of the player’s racket handle. The quaternion value gyypy streamed from
it is defined as the racket orientation in the IMU frame. One of the stationary cameras
fixed at the ceiling is used to capture the human player movements from above (Fig.[6.2]
left). By fusing the images with IMU signals, we can take them as inputs and regress the
3D racket position robustly with the proposed approach. The camera and the IMU are
synchronized with a software trigger.
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computed according to the pinhole camera model. A pixel-wise voting network (PVNet)
(Peng et al., 2019) localizes 2D keypoints on the object using RANSAC and aligns them
with 3D keypoints to obtain the 6D pose. The Coordinates-based Disentangled Pose Net-
work (CDPN) (Li et al.l 2019) uses a Dynamic Zoom In (DZI) technique to compensate
the 2D object detection error, which achieves accurate and robust results. However, if the
object is too small in the camera or, like the racket, has a texture-less surface and very
thin paddle, it is prone to failure using these methods, because of insufficient features.

By labeling special markers on the racket, Zhang et al.| (2017) could use color thresh-
olding to extract them from two cameras, and the initial racket pose is then computed by
the perspective-n-point (PnP) method. To generate a robust pose, they employed an IMU
sensor and fused all of the data by means of an extended Kalman filter (EKF), which lead
to a 1.1° rotation error. They don’t test the position error since there is no any dataset
available. In Chapter [5| we employ a markerless method by segmenting the racket red
side contours from stereo cameras. A stereo matching method is used to align the points
on the contours. The final position error is 7.8 mm and the rotation error is 7.2°. Omron
Kawakami et al.|(2021) puts 9 small and round markers on each racket side for their For-
pheus robot, which can accurately predict the moving direction of the racket based on
a high-speed camera. However, these methods are neither convenient nor robust, since
they are sensitive to the color and brightness and need to be manually adjusted to find
the better color thresholding values.

Inspired by the aforementioned methods, we decompose the 6D pose into position
and rotation components. A wireless IMU mounted at the bottom of the racket handle
is continuously streaming rotation data. By deeply fusing the IMU information and the
camera images, a novel CNN-based method is proposed. The output is the racket 3D
position and it is trained fully based on a synthetic dataset.

6.3 Methodology

6.3.1 Overview

IMUs are widely used in wearable devices to measure human activity in real-time and
with high accuracy. In this thesis, we mount a MetaMotionR (MMR) IMU (MbientLab),
2013]) at the bottom of the racket handle, as shown in Fig. With Bosch sensor fusion
technology, the MMR sensor can provide robust linear accelerations and rotation angles
via Bluetooth 4.0 at 100 Hz. Beange| (2019) has assessed the MMR sensors, which
have a robust performance at 1° error in all axes when considering the absolute angle
orientation. They compare the IMU with an optical motion capture equipment (Vicon
Motion Systems) during controlled, repetitive sinusoidal motion at frequencies of 20
cpm and 40 cpm (i.e., 0.33Hz and 0.67 Hz, respectively). Therefore, we mainly focus on
the 3D racket position estimation by fusing the IMU and camera in this part.

To estimate the racket position of the human player, we propose a novel approach,
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Figure 6.2: CNN architecture for the racket position estimation during testing in our
scenario. The rotation gy is read from a wireless IMU as a 4D quaternion in the
IMU frame. It is transformed to the camera frame as g.q,. The images with 640 x
512 pixels are first fed into a pre-trained 2D object detector in order to find the racket
bounding box 0bjp,, and its position [x.,yc,h,w] in pixels. A new region of interest
bbro1, [X)ins Yinins 7' s W'], s computed to compensate the 2D object detection error by Eq.
6.2l Then quaternions and bbgo; together with the image crops are fed into different
network layers in order to extract the global and local features, respectively. The last
fully-connected layers output the racket depth Z and the 2D projection point [u, v] of the

racket 3D centroid. Finally, X and Y positions can be reconstructed with Eq. @
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as shown in Fig. Compared to the single-stage object pose estimation, two-stage
methods usually comprise one step for object detection and another for pose regression,
which leads to a very fast inference time and is well suited for the real-time operation
in sports. The first stage can be easily replaced with any state-of-art method along the
development of the 2D object detection in the future.

The outputs of our architecture are the depth component Z and the local 2D projection
point [u, v] of the racket 3D centroid. Then we can indirectly derive the entire 3D position
[X,Y,Z] with the equation below:

(X in FU—Cx)Z y— (VhinTV—Cx)Z

f X 7 f y
where x/, ..y, . are the left upper corner in bbgoy. fy. fy are the focal lengths in pixels,

[cx, ¢y] is a principal point. Here [u,v] is different from [x., y.] which is provided from the
object detector, since the latter one is not the exact centroid but the center of the detected
bounding box. This will affect the [X, Y] a lot when having a large depth Z (from 2.6 m
to 5.3 m in our case). Therefore, the position regression problem is decomposed into the
following two sub-tasks.

X = (6.1)

6.3.2 Racket Centroid Extraction

In order to detect the racket in images, we employ a self-pretrained YOLOv4 (Bochkovskiy
et al., 2020) model, which is a very fast and accurate one-stage object detector. It can
generate a 4-D vector ob jj,, localizing the racket as a 2D bounding box. The ob jj,, 1s
composed of the rectangle center x., y., height 2 and width w in image coordinates. To
tolerate detection errors and make the subsequent estimation more robust and accurate,

we dynamically adjust the 0b jp,, to a new region of interest bbgros = (X}, Vs B, W']
during training. The bbgo; is computed by the following equations:
s = max(h,w)
N = randint(—os, as)
Ww) = (Bs+si) 62)

)
(x/cvylc) = (x¢,ye) +N
(x:nin’yllnin) = (xlcvy:j) - 05(1’1/, W/)

where s is the maximum value in 4 and w. @ and f are coefficients to control the center
noise N and corner offsets, which are equal to 0.2 and 1.5, respectively. N is a 2D vector
of integers, randomly chosen from —as to ous during training and evaluation, while is set
to zero during testing. The resulting ob jj,, has a square size and keeps the same aspect
ratio as before.

Finally, it is scaled to the size of 64x64 as the input for the ResNet (see Fig.[6.2)). This
DynamicResize technique is based on the Dynamic Zoom In (DZI) inLi ez al./(2019). In
contrast to the DZI that enlarges the crops, here we simply shrink them, since the texture-
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Figure 6.3: An example for DynamicResize during training. Left: The detected bounding
box (red) from YOLOv4 and the dynamically computed ROI candidates (cyan). The
bounding box center [x.,y.] and the racket centroid [u,v] are marked as blue and
circle, respectively Middle: the randomly selected bbgo; for training. Right: the final
resized crop.

less surfaces on the racket contain many similar features and it has little influence to the
centroid regression. An example with a synthetic image for training is shown in Fig.[6.3]
Then a ResNetl8 (He et al., 2016) is deployed to extract the deep features, followed
by two dense layers with 512 and 2 units [u, V], respectively as shown at the bottom of

Fig.

6.3.3 Depth Regression

Next, we propose a novel deep fusion approach for the depth Z regression. Intuitively,
if we know the bounding box positions in images, the racket 3D position could be esti-
mated by the given camera intrinsics [fy, fy,cx, cy]. However, these positions will change
with different orientations and especially if there are occlusions or truncations. To avoid
these problems, |Wu et al. (2019) run a RetinaNet (Lin et al., [2017) on the input im-
ages and concatenate the generated RolAlign features and bounding box information as
joint features, which are used for translation regression. RolAlign features are only for
predicting rotation. It is a one-stage vehicle pose method, and not sufficiently fast and
accurate for sports.

Inspired from it, we consider the combination of the rotation value g, and bbgo; as
the global features, which are fed into a 4-layer MLP network with 256, 1024, 1024,
128 units separately. The local features indicating the racket local pixel position, size
and occlusions, are concatenated with the global network (via @ in Fig.[6.2)). A Resnet-
FPN network (in Fig. is used for extracting local features, since it includes multi-
scale features and can recover the scale ratio information when resizing the ROI crops to
64x64. Finally, the depth Z is retrieved as output of a 128-D dense layer.

To train the whole networks, we design a joint position loss function L5 to optimize
the centroid detection and depth regression as follows:

Epos:% '|Z_Z’+YQ'HCPOS_C‘P05H1 (6.3)
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Figure 6.4: ResNet-FPN (Feature Pyramid Network).

where Z is representing the estimated and Z the ground-truth depth. C pos and ¢ pos are
the estimated and true centroid pixel positions. ¥; and }» are used to balance the different
eITors.

6.4 Experiments

6.4.1 Dataset
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Figure 6.5: A set of image examples for reconstructing the racket CAD model by the

Meshroom software (Wang and Li, 2016).
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To train the proposed model, we create a synthetic dataset which can be labeled au-
tomatically. A racket CAD model is first reconstructed from a set of real racket images
(see Fig. [6.5), with the free, open-source reconstruction software Meshroom (Wang and
2016), based on the structure from motion (SfM) technique. This results in a re-
constructed 3D mesh in Fig. [6.6]left. Then post-processing is used to remove the back-
ground, fill the holes, smooth the surface, blend vertex color, scale the model size, and
change the coordinates in Meshlab (Cignoni ez al|, [2008). The final high-quality 3D
model is shown in Fig. [6.6|right.

Figure 6.6: Left: Reconstructed mesh with background from multiple views using Mesh-
room software. Right: the final CAD model with its coordinates.

By using domain randomization (DR) (Tobin et al.| [2017), we can generate a set of
synthetic images as well as their 6D pose. The racket CAD model is placed in a simu-
lated scene at random positions and rotations. Then, each one is projected into the image
plane as the foreground, with a known bounding box. The images from the Pascal VOC
dataset are embedded as the background. Each synthetic image is rendered with a ran-
dom light source position and diffuse reflection. Other techniques, like Gaussian noise,
motion blur, ping pong ball and occlusions, are included to reduce the “reality gap”. A
few examples are presented in Fig. @a). Meanwhile, the annotations, including the
bounding box positions, racket centroids in pixels and the racket 6D pose, are collected
from the simulated 3D scene as the ground truth tags, which are then used to train the
object detector and the position regression model, respectively. 50,000 training patterns
are collected finally. The resulting range of the depth Z is [2.6m,5.3m].

For evaluation dataset collection, a usual way that we tried was mounting multiple
refection markers on the racket and then capturing the human player motions with an
OptiTrack system. However, the markers must be placed at the surface in a critical con-
figuration (see Fig. [6.7] left), which would result in many occlusions in images. There-
fore, we decided to make use of our KUKA robot that has a racket at the end-effector.
This racket differs slightly from the rendered CAD model such that this can also test the
robustness against multiple rackets. Another stationary camera opposite to the robot is
used to take the images. By moving the robot to given positions and orientations, we
collect an evaluation dataset of 208 images (Fig.[6.8|(b)). To obtain the correct pose with
respect to the camera coordinate frame, we first calculated the transformation matrix be-
tween the robot and the camera by the hand-eye calibration method. The resulting range
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of the depth Z is from 2.8 m to 5.2 m. To simulate a fast moving racket, we manually
apply motion blur (Fig.[6.8|(c)) with a 7 x 7 kernel on each image for the following com-
parisons. Due to the high frame rates and fast shutter speed of the cameras, motion blur
is actually imperceptible in our case.

Figure 6.7: Left: a racket mounted with four reflection balls. Right: the 3D position of
each ball and their pivot point in the OptiTrack system.

WP

(a) Training dataset from synthetic images

S aLE
h (™ | _ :

(b) Evaluation dataset using another racket in our KUKA robot

(c) Applying motion blur with a 7 x 7 kernel

Figure 6.8: Cropped examples for training and evaluation of the racket position estima-
tion.

6.4.2 Training and Inference

As shown in Fig.[6.2] we need to train two separate models one by one for the different
stages. To make the first stage (Yolov4) faster, we resize the network input to 512 x 512
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Figure 6.9: Losses for training and evaluation.

and change the trained model from darknet (Bochkovskiy et al., [2020) to the tkDNN
(Verucchi et al.l 2020) framework. The activation function used in the second stage is
ReLU (Agarapl [2018). The last two 128-D dense layers for depth Z regression are acti-
vated by leaky ReLU, with a negative slope 0.02. The outputs Z and [u,v] are activated
by the logistic sigmoid function. All the inputs are normalized for better performance.
To avoid overfitting, we freeze the parameters in the first 4 residual blocks of the ResNet
during the beginning 40 epochs. The other hyperparameters are given in the table below:

Table 6.1: Hyperparameters separately for different models.

\optimizer epochs batch size learning rate

2D object detector Adam 100 16 3e-3
Position regression | RAdam 100 4 le-4

The training is processed by a host computer with an NVIDIA RTX 2080Ti GPU, a
3.0GHz Intel i7-97000 CPU and 32GB RAM, which is plotted in Fig.[6.9 Each bounding
box is extracted by Yolov4 in 7.8 ms, then the depth Z and the centroid [u,v] can be
regressed in 1.7 ms. The overall inference rate is around 100 Hz.

6.4.3 Evaluation

The mAP (mean Average Precision) by Yolov4 is 86.9% for an IoU threshold of 0.5 in
the evaluation dataset. To evaluate the position estimation accuracy, we use two metrics:
position error Ej,q,s, and <5cm. In the <5cm metric, a pose is considered correct if the
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position error is within Scm. Due to some other approaches having large position errors,
we extend <5cm to a third metric: <10cm.

In Table [6.2] we compare our method with current research in which different sensors
are used. Zhang et al.| (2017) did not show the position error, since they did not have
a dataset for evaluation and their method is not compatible with our dataset. The re-
maining methods are trained and evaluated in our dataset. In order to use stereo cameras
in Chapter 5| we expand the evaluation dataset by the second well-calibrated camera.
Instead of using the color thresholding method to detect the red surface, we extract the
racket center either on the red side or on the black side by our centroid regression model.
The * indicates it is used with modifications. The resulting performance is the best one.
However, it will take twice as much time as ours’ and can not extract the rotation value
robustly and accurately. Moreover, it needs more effort to pre-calculate the transforma-
tion matrix between these two cameras. To get a fair comparison, we replace the rotation
head with the true value and only use the translation head in (Sundermeyer et al., 2018
L1 et al.,|2019; Staszak and Belter, 2019). Among them, Sundermeyer et al.| (2018) and
L1 et al.| (2019) obtain the 3D position under two assumptions: the bounding box size is
linearly affected only with respect to the depth Z, and is therefore never changed when
having the same Z. These assumptions lead to a large position error when the object is
far away from the camera (6m distance in our case). Although Staszak and Belter (2019)
have a bit better results, they still did not take the global pixel positions of the bounding
box into consideration. In comparison, our method achieves a more robust performance
with the second best accuracy.

Table 6.2: Evaluation for racket position estimation.

\ Sensors Eirans <5cm  <10cm

Zhang et al.|(2017) camera,JMU,marker - - -
“|Sundermeyer ez al.[(2018) single camera 39.1cm 6.7% 17.3%
" CDPNLI et al.| (2019) single camera 366cm  7.5% 21.8%
“|Staszak and Belter| (2019) single camera 23.5cm  10.6% 25.0%
Ours* (Chapter b - stereo cameras 28cm  91.8% 100.0%
Ours (no FPN) 6.8cm 48.6% 85.1%
Ours (with motion blur) single camera, IMU 52cm 60.1% 93.2%
Ours 4.7cm 65.0% 95.5%

Furthermore, two additional experiments, with motion blur (in Fig. [6.8(c)) and with-
out FPN layers, are performed to simulate a moving racket and do an ablation study,
respectively. Fig. [6.10}6.13] shows four examples with different movements. The CAD
model of the racket is reprojected into images with green contour to visualize the 6D
pose. To demonstrate this work, we apply the human movements to our KUKA robot
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with coordinate transformation. The robot uses the penhold grip while playing since it is
more flexible and controllable than the shakehand style in our scenario, as shown in the
video https://youtu.be/U2YPh_ZwQxQ

Figure 6.10: Counter Hit.

99


https://youtu.be/U2YPh_ZwQxQ

Chapter 6 Robust Stroke Recognition via Vision and IMU

Figure 6.11: Side Spin.
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Figure 6.12: Back Spin.
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Figure 6.13: Counter Hit with the black side.
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6.5 Conclusions

In this chapter, we proposed a novel approach for stroke recognition via a camera and
IMU. We generated several datasets for training and evaluation. The experiment has
shown that the proposed method gives a robust performance. With the main goal of im-
proving the capabilities of our table tennis robot in mind, we are planning to apply our
approaches to human stroke examples and make the table tennis robot hit the ball by
imitating the human movements. In addition, we could also predict the ball’s flying tra-
jectory by analyzing the racket pose, since our approach can be run at 100 Hz. However,
our approach is going to fail if the detected bounding box is wrong in the first stage. For
example, the player’s left hand could also be recognized as a racket if there are some
circle patterns in the background, as shown in the demo video. In this case, we could
utilize the tracking method to identify the coherent relations between frames.
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Chapter 7

Conclusions

7.1 Summary

This thesis focuses on sensor fusion and stroke learning for robotic table tennis. The
study is composed of ball 3D position estimation, robot stroke learning, and racket 6D
pose detection, as well as corresponding datasets for training and evaluation. Each part
could be run in real-time, which is necessary for robotic table tennis. Different sensors,
including an IMU and four cameras, were utilized for estimating the object pose.

In Chapter 3, we developed a calibration approach for multiple stationary cameras.
The initial intrinsic and extrinsic matrices for cameras were first calculated by classic
calibration methods with a circle grid pattern. The calibration error tested against balls
mounted on the KUKA robot were 11.0 mm for stereo cameras and 15.0 mm for four
cameras. To improve it, we developed a new loss function and post-optimized the extrin-
sic transformations simultaneously by capturing a new set of pattern images from each
camera. The final accuracy was 3.2 mm for stereo cameras and 2.5 mm for four cameras.
Two approaches, traditional image processing and deep learning, were proposed for ball
2D pixel position extraction. The former one achieved higher mean IoU scores and lower
ball center error in pixels than the latter one, but a slower inference speed (1.51 ms vs
0.67 ms) when testing in our manually labeled dataset.

In Chapter 4, we proposed an optimal stroke learning approach for teaching the robot
to play table tennis. A realistic Gazebo simulation environment was built for the ball’s
dynamics and the robot’s kinematics, which included three entities: ball, table, and robot.
We decomposed the learning strategy into two stages: ball hitting state prediction and
optimal stroke learning, on which we mainly focused in this thesis. Based on the con-
trollable and applicable actions of our robot, a multi-dimensional reward function and
Q-value model were proposed. The comparison with other RL methods was performed
using an evaluation dataset of 1000 balls in simulation. An efficient retraining approach
was proposed to close the sim-to-real gap. The testing experiments in reality showed that
the robot could successfully return the ball to the desired target with an error of around
24.9 cm and a success rate of 98% in three different scenarios: one using a ball throwing
machine and two with human players.

In Chapter [5] a stereo-vision based approach was proposed for the racket 6D pose
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detection, which could help the robot to imitate the movements of a human player and
recognize the ball trajectory better. By using two monocular cameras, we could extract
feature points from the racket’s contour in image coordinates. With the 3D geometrical
information of a racket, a wide baseline stereo matching method was proposed to find
the corresponding feature points and compute the 3D position and orientation of the
racket by triangulation and plane fitting. Then, a Kalman filter was adopted to track
the racket pose, and a neural network with two hidden layers was used to classify the
pose movements. We conducted two experiments to evaluate the accuracy of racket pose
detection and stroke classification. The average error in position and orientation was
around 7.8 mm and 7.2° compared with the ground truth from a KUKA robot. Using
our racket pose as features for an MLP, the classification accuracy for five stroke types is
98%, the same as the human pose features from Convolutional Pose Machines (CPMs).
In Chapter [0 we proposed a two-stage approach to directly recognize the table tennis
racket’s movement by sensor fusion of an IMU and a camera. A bounding box around
the racket could be extracted from an RGB image in the first stage. An efficient and
lightweight CNN architecture was then developed to regress the racket 3D position by
fusion of the cropped image and the 3D rotation data from an IMU in the second stage.
Together with the rotation data, a robust 6D racket pose was available at a frame rate of
100 Hz. In the experiments, two datasets were collected from our KUKA table tennis
robot for evaluation and comparisons, which show a position error of 4.7 cm at a range of
6 m. Finally, after transforming the racket trajectories from the human to the robot side,
we performed one behavior cloning experiment on the robot. This gave the potential to
directly mimic the human trajectory and avoid path planning with additional libraries.

7.2 Future Work

Although we have achieved some successes in robotic table tennis, there are still many
challenges and limitations, which are open and worth exploring.

One limitation is the fixed hitting position along the X axis (X = 676 cm in the robot
coordinates), which is not the usual way by which a human player hits the ball. A
dynamic hitting position is necessary to improve the robot’s performance, which can
be predicted or learnt using RL in simulation. In addition, the predicted velocity and
spin of the ball at the hitting position are not visible directly by the cameras, which
means the ball’s state (position, velocity, and spin) is only partially observable. This
could be modeled as a partially observable Markov decision process (POMDP). It is a
generalization of a Markov decision process (MDP). Therefore, instead of using MDPs
like in this work, we can also treat this RL problem as POMDPs which can make use of
the whole trajectory of the ball as states to improve the learning strategy.

Another limitation is that the proposed two-stage approach for racket detection is fail-
ing if the detected bounding box is wrong in the first stage. For example, the player’s left
hand could also be recognized as a racket if there are some circle patterns in the back-
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ground, as shown in the demo video. In this case, we could utilize tracking methods to
identify coherent relations between frames. After knowing the racket pose (action) and
the corresponding ball position (state), we could directly initialize the RL policy from
reality rather than simulation. Also, the racket pose can help to predict the ball’s future
state more precisely.

Futhermore, our robot has difficulties with back spin balls, since a wrist singularity
occurs when the axes of joints 4 and 6 become coincident. This can cause these joints to
try to rotate 180 degrees instantaneously. To solve this problem, we could manually add
some joint constraints in order to avoid the robot moving to the singularity position. This
means we should optimize the robot path in the joint space in an efficient way, rather
than directly use the Reflexxes library in the Cartesian space.
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N~Xm=Tige o= wa<*u*%;o§

mass of the table tennis ball

gravitational acceleration
air drag

gravitation

Magnus force

drag coefficient

lift coefficient

air density

State

reward

position

linear velocity

angular velocity

height

width

model weight

model weight

replay buffer

minibatch

Gaussian noise
homography matrix
axis or coordinate in 3D
axis or coordinate in 3D
axis or coordinate in 3D
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Abbreviations

2D

3D

6D
ADAM
CAD
CNN
COCO
DDPG
DNN
DoF
EKF
FCN
FPS
IMU
LM
MCTS
MDP
NMS
ODE
PnP
PPO
RANSAC
R-CNN
RelLU
RGB
RGBD
RL
ROI
ROS
SAC
SFM
SPG
SSD
SVM

Two dimensional

Three dimensional

Six dimensional

adaptive moment estimation
Computer-aided Design
Convolutional Neural Network
Common Objects in Context
Deep Deterministic Policy Gradient
Deep Neural Network

Degree of Freedom

Extended Kalman Filter

Fully Convolutional Network
Frame per Second

Inertial Measurement Unit
Levenberg Marquardt

Monte Carlo Tree Search
Markov Decision Process
Non-maximum Suppression
Open Dynamics Engine
Perspective-n-Point

Proximal Policy Optimization Depth
RANdom Sample Consensus

Region Based Convolutional Neural Networks

Rectified Linear Unit

Red Green Blue

Red Green Blue Depth
Reinforcement Learning
Region of Interest

Robot Operating System
Soft Actor Critic

Structure from Motion
Stochastic Policy Gradient
Single Shot MultiBox Detector
Support Vector Machine
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Abbreviations

TD3 Twin Delayed Deep Deterministic Policy Gradient

VGG Visual Geometry Group

VOC Visual Object Classes

YOLO You Only Look Once (a special CNN network architecture)
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