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Zusammenfassung

Akkretionsscheiben sind die Geburtsstétte von Planeten, deren Eigenschaften und Entwicklung empfind-
lich von der der Thermo- und Hydrodynamik von der Gasscheibe beeinflusst werden, in der sie wach-
sen. Das Verstindnis der Prozesse, die die Gasstrukturen der Scheibe definieren, und der Mechanismen,
die die Akkretion verursachen, ist essenziell um Interaktionen zwischen Planet und Scheiben mit nu-
merischen Simulationen zu modellieren.

Uber den Verlauf dieser Arbeit betrachten wir vielfiltige Aspekte der protoplanetaren Scheiben-
dynamik. Wir untersuchen den Einfluss von unterschiedlichen Strahlungseffekten auf die Interaktion
von Planet und Scheibe, ergriinden das Verhalten von Wirbel in der Gasscheibe durch den Planet und
tiberpriifen unterschiedliche, physikalische Eigenschaften der vertikalen Scherinstabilitét (VSI) als einen
Akkretions treibenden Mechanismus in protoplanetaren Scheiben. Hierfiir fiihren wir numerischen Hy-
drodynamische Simulationen von Akkretionsscheiben mit und ohne eingebettete Planeten durch mit
einer grolen Bandbreite von physikalischen und numerischen Parametern und vielfiltigen Nachbear-
beitungstechniken um zu validieren, zu vergleichen und die Resultate unserer Modele zu verstehen.

Unsere Erkenntnis ist, dass die Zustandsgleichung eine zentrale Wichtigkeit hat fiir die Modellierung
der Entstehung von Ringen und Leerrdumen in der Gasscheibe durch Planeten. In diesem Rahmen
fiihren wir den Einfluss von verschiedenen Strahlungsmechanismen sowohl auf das Profil der Dichte
und Temperatur der Scheibe, als auch auf die Lebensdauer von Wirbel vor, die von solchen Planeten
erzeugt werden. Beziiglich der VSI demonstrieren wir, dass sie einen konkurrenzfahigen Kandidat zur
Erklarung der beobachteten Akkretion in protoplanetaren Scheiben darstellt. Und wir identifizieren
Bedingungen, unter denen der Planet die turbulenten Spannung durch die VSI unterdriickt oder mit
ihr koexistiert. SchlieBlich zeigt sich, dass die Spannung erzeugt durch Wirbel und Spiralarme -wenn
gleich hilfreich fiir die Akkretion- die VSI schwiéchen und abflachen kann und dadurch das vertikale
Mischvermdgen limitiert.

Unsere Resultate unterstreichen, dass der addquate Einsatz von Strahlungseffekten in numerischen
Modellen der Interaktion zwischen Planet und Scheibe entscheidend ist. Diese Arbeit legt aulerdem
nahe, dass es unwahrscheinlich ist Signaturen der VSI in der Gegenwart von schweren Planeten zu
beobachten, aber potentiell in der Zukunft wihrend der friihen Planetenentstehungsphasen.






Abstract

Accretion disks are the birthplace of planets, the properties and evolution of which are highly sensitive
to the thermo- and hydrodynamics of the gaseous disk that they are embedded in during their growth.
Understanding the processes that define the structure of gas in the disk and the mechanisms that drive
accretion is essential to modeling planet—disk interaction with numerical simulations.

Over the course of this project, we look into various aspects of protoplanetary disk dynamics. We
examine the impact of different radiative effects on planet—disk interaction, explore the behavior of
planet-generated vortices, and investigate the physical properties of the vertical shear instability (VSI)
as an accretion-driving mechanism in protoplanetary disks. To that end, we perform numerical hy-
drodynamics simulations of accretion disks with and without embedded planets, using a wide variety of
physical and numerical parameters and various post-processing techniques in order to validate, compare,
and understand the results of our models.

We find that the equation of state is of key importance to modeling the formation of rings and gaps
by planets, and highlight the impact of different radiative mechanisms on the density and temperature
profile of the disk as well as on the lifetime of vortices generated by such planets. Regarding the VSI,
we show that it is a competitive candidate in interpreting accretion in observations of protoplanetary
disks and identify conditions for which a planet can coexist with or suppress the turbulent stress that this
mechanism can generate. Finally, we find that the stress generated by vortices and spiral arms, while
conducive to accretion, can weaken or quench the VSI and therefore limit its vertical mixing capacity.

Our results outline that appropriate treatment of radiative effects is crucial in numerical models of
planet—disk interaction. Our work also suggests that observing VSI signatures in the presence of massive
planets is unlikely, but perhaps possible in the future and during earlier stages of planet formation.
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1 Introduction

From time immemorial, humanity has gazed at the countless lights in the night sky and has put great
effort in its attempts to rationalize its observations. Celestial bodies visible by the naked eye have
been observed by ancient civilizations that date back to the Babylonians in the second millennium BCE
(Sachs, 1974). The ancient Greeks interpreted the celestial bodies within our solar system as “wandering
stars”, as they would “drift” in the sky relative to the stationary, distant stars in the background. Since
then, the ancient Greek word for “wanderer” (“mAavijtng”, planétés) has been used to refer to these
celestial objects, known as planets.

The formation of stars and planets is thought to begin with the gravitational collapse of a massive
molecular cloud of primarily hydrogen gas. A young stellar core is formed at the center of the cloud,
while conservation of angular momentum flattens the remaining gas into a disk that continues to accrete
onto the forming protostar over a few Myr (Haisch et al., 2001). The remnants of the disk are finally
blown away via radiation pressure by the fully-formed star, and the latter continues to evolve by burning
its gas fuel via nuclear fusion until the end of its life. A sketch of this process is shown in Fig. 1.

During the early stages of the universe, this process would form massive stars with very short life-
spans that would convert hydrogen and helium into heavier elements such as carbon and silicon, before
ejecting them into space at the end of their lives and enriching future gas clouds with a relatively small
amount of tiny dust grains formed by complex chains containing these heavier elements. Later genera-
tions of molecular clouds and resulting accretion disks then contain approximately 1% of their mass in
um-sized dust particles (Mathis et al., 1977), which can aggregate into mm-sized grains and eventually
into up to meter-sized pebbles, km-sized planetesimals or even 100-km-sized planetary embryos during
the disk phase of stellar evolution. These embryos can then grow into young protoplanets by accreting
pebbles, planetesimals and/or gas during the disk phase, or through gravitational interaction with other
embryos once the disk has dispersed. Several Myr later, after the system has stabilized, what remains
is a planetary system that consists of at least one central, hydrogen-burning star and one or more plan-
ets. This theory, which was pioneered by Kant (1755) and later adjusted by Laplace (1796), forms the
Kant—Laplace nebular hypothesis and was confirmed much later by observations of forming star sys-
tems, thus constituting the basis of the most widely-accepted theory of planet formation with our current
knowledge.
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Figure 1. Sketch of the various stages of star and planet formation. Illustration by André Oliva, adapted from Casasola (2008).



Observations of protoplanetary disks (PPDs) date back to the measurement of the spectral distri-
bution of energy (SED, left panel of Fig. 2) of young stellar objects (YSOs). While stars mostly emit
in the UV and optical bands of the electromagnetic spectrum, the presence of dust grains within the
accretion disk emitting in the pum—mm range results in an observable excess in the emission spectrum
of YSOs in the infrared (IR). As a result, the first observations of PPDs were only indirect, through
spatially-unresolved SEDs alone.

As the angular resolution of telescopes improved, it was eventually possible to observe the structure
of YSOs in the optical spectrum as a system of a star and its accretion disk rather than as just a point
source, as the optically thick dust distribution would appear as a dark region around the star (middle
panel of Fig. 2). From the 1990s, observations of so-called proplyds (“protoplanetary disks”) would be-
come more common as detection techniques and detector technology evolved rapidly. This development
led up to the modern age of mm interferometry, with instruments such as the Very Large Array (VLA)
and the Atacama Large Millimeter Array (ALMA) providing high-resolution, high-fidelity observations
of PPDs and revealing features such as rings, gaps, and non-axisymmetries in their structure (right panel
of Fig. 2).
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Figure 2. Evolution of observations of protoplanetary disks over the years. Left: a sample spectral energy distribution (SED)
showing the contribution of the star (green) and the characteristic IR excess of the different regions of the disk (blue, cyan, red)
Image credit: slides by Cornelis P. Dullemond. Middle: edge-on direct observation of a protoplanetary disk around the YSO
473-245 in the Orion Nebula with the Hubble Space Telescope. Image Credit: NASA/ESA and L. Ricci (ESO). Right: the rich
radial structure of the system HL Tau, observed in the IR with the ALMA instrument (ALMA Partnership et al., 2015).

Planets, on the other hand, are incredibly faint compared to the luminosity of their central star. As
a result they are typically observed indirectly via techniques such as the radial velocity method (RV,
left panel of Fig. 3), where the planet’s gravitational pull on the star causes a Doppler shift in the star’s
emission spectrum, or the transit method (middle panel of Fig. 3), where the passage of a planet between
an observer and the star results in a minuscule but periodic drop in the star’s observed brightness. It was
in fact the RV method that led to the discovery of the first exoplanet by Mayor et al. (1995), earning
them a share of the Nobel Prize in Physics in 2019. At the moment of submission of this dissertation,
5009 exoplanets have been confirmed through various methods'.

Modern instruments such as the VLA and ALMA have revolutionized the field of planet formation
not only by constraining the properties of protoplanetary disks (e.g., the DSHARP survey, see Andrews
et al., 2018), but also by achieving the first observation of a planet embedded in an accretion disk
(Keppler et al., 2018; Haffert et al., 2019, right panel of Fig. 3). The datasets by these surveys have
provided constraints to theoretical models of the evolution of accretion disks and planet formation,
but at the same time highlighted the need for a better understanding of the underlying mechanisms of
accretion and radiation transport that these models hinge on.

The rapid advancement of technology has also enabled theorists to explore complex models of accre-
tion disks, planet—disk and planet—planet interaction using numerical simulations of nonlinear, coupled
systems of equations that cannot be approached analytically beyond a linear approximation. Turbulence

'NASA exoplanet archive, accessed on June 3, 2022. https://exoplanetarchive.ipac.caltech.edu/
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Figure 3. Different techniques used in observations of exoplanets. Left: transit photometry, which tracks the periodic dimming
of a source due to an occulting companion. Middle: the radial velocity method, which relies on a blue- or red-shift of the star’s
spectrum as the star—planet system orbit their common center of mass. Right: direct imaging of an embedded planet in the
system PDS 70 (Keppler et al., 2018). Image credit for left and center panels: ESO (2019).

as an accretion-driving mechanism, the random emission of thermalized dust grains as a means of ra-
diation transport, the nonlinear angular momentum exchange between a massive planet and the disk,
and the chaotic interaction among planets in a planetary system are very computationally expensive
problems that can nowadays be approximately solved for specific, well-defined initial conditions and
physical parameters. Motivating these models, understanding their limitations and interpreting their re-
sults appropriately is crucial to bridging the gap between our current theory and observations of planet
formation.

With this project, we aim to investigate the thermo- and hydrodynamics of planet—disk interaction
using analytical and numerical models of protoplanetary disks in the context of planet formation. We ap-
proach this by modeling various radiative effects using different degrees of approximating assumptions,
and studying their impact on the formation of rings, gaps, and vortices by embedded planets. Further-
more, we analyze the behavior of the vertical shear instability, a mechanism that could possibly explain
accretion in protoplanetary disks, and examine its interplay with an embedded planet. The key questions
we aim to answer are:

How important are radiative effects in the formation of planet-generated features?
and
Can the vertical shear instability coexist with a planet in an accretion disk?

We introduce our theoretical framework in Sect. 2 and our numerical setup in Sect. 3. We then
present an overview of our published results and a short discussion of their implications in Sects. 4-6.
We present our analysis of the VSI in Sects. 7 and 8, while also discussing our results. Finally, we
summarize the key points of our VSI analysis in Sect. 9, and discuss their implications.






2 Theory

In this section we outline the hydrodynamics of a protoplanetary disk and describe possible modifi-
cations to the energy equation and their impact on disk thermodynamics. In addition, we provide a
brief summary of the mechanism behind the vertical shear instability, and an introduction to planet—disk
interaction. For further details see Armitage (2009), Kley and Nelson (2012), and Nelson et al. (2013).

2.1 Protoplanetary disk hydrodynamics

We assume an ideal gas with mass density p, pressure P, specific internal energy € and a velocity field
v. The gas is orbiting around a star with mass M, and luminosity L,. The Navier—Stokes equations for
such a gas then read as follows:

dp
—+V. =0,
0 _
(gtv)+V-(pv®v):—VP—pVCD+V-0‘, @.1)
0 _
(gf) +v-V(pe) = —ypeV-v+ (G- V) v+,
where o is the viscous stress tensor (e.g., Tassoul, 1978), ® = ®, = —GM,/r is the gravitational

potential due to the star at distance r, and S encompasses any additional radiative source terms, which
we will discuss in Sect. 2.2. The gravitational constant is denoted with G. We have closed this set of
equations by defining the gas pressure as P = (y — 1)pe = RpT/u through the ideal gas assumption.
Here, T is the gas temperature, y is the adiabatic index, u the mean molecular weight, and R the gas
constant, respectively. Through the above we can also define the isothermal sound speed ¢s = \/P_ ,
which relates to the adiabatic sound speed ¢ such that ¢ = fyc;.

In a cylindrical coordinate system {R, ¢, z} where r = VRZ + 72 is the spherical radius, we can derive
a hydrodynamic equilibrium state for an axisymmetric (0/d¢ = 0), non-accreting disk (v = u,®). For
simplicity, we can assume that the disk is vertically isothermal (0T /dz = 0) and that the gas density at
the midplane ppniq as well as the temperature both follow a power law in the radial direction such that

R\ R\?
Pmid(R) = pz=0 = po (R_o) , T(R) =Ty (ITO) , (2.2)

where Ry is a reference radius. With that in mind, we can write (see for example Nelson et al., 2013)

el
2 \r RJI’
1+(p+q)(%)2+q(l—§)]/2.

In the above, Qg = \GM,/R3 is the Keplerian frequency at radius R and H = ¢,/ is the pressure
scale height. Since disks are generally geometrically thin (H < R), we also define the disk aspect ratio
h = H/R, which typically varies between 3—10%.

From the above relations, we can finally define the column or surface density X:

P(R,2) = pmid(R) exp

(2.3)
uy(R, z) = RQg

(R) = f PR, 2)dz ~ 2mpuiaH (2.4)
In the absence of radiative effects that can induce heating or cooling over long timescales, we can

simply assume that the temperature profile 7' oc R? is constant in time. This implies that the temperature
profile of the disk is decided on a timescale that is short enough that its evolution can be disregarded,
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or equivalently that the disk is always in thermal equilibrium. This approach, which neglects the en-
ergy equation in Eq. (2.1) by prescribing T(R), is commonly referred to as locally isothermal and is a
quite popular ansatz when modeling protoplanetary disks at ALMA-observed radii, where the cooling
timescale 7o) ~ €/€ is expected to be a small fraction of the local dynamical timescale 4y, = le (e.g.,
Zhang et al., 2018).

In general, however, constructing realistic temperature structures requires modeling heat sources
(e.g., viscous heating or stellar irradiation) as well as prescribing an appropriate cooling solution, be it
through thermally relaxing the gas to a predetermined “equilibrium” state or by solving the radiation
transport problem throughout the disk. These radiative effects will be discussed in the next section.

2.2 Radiative effects

The temperature profile of a protoplanetary disk is determined by the energy equation (see Eq. (2.1)).
For a steady state and in the absence of heating through compression (V - v = 0), thermal equilibrium
is given by a balance among radiative heating and cooling terms. In this section, we describe some
examples of mechanisms that motivate such terms.

The surface layers of the disk are typically exposed to heating from starlight by the young stellar
object at the center of the system (Chiang and Goldreich, 1997). Radiation energy is then absorbed
by dust grains, which re-emit in all directions similar to a black body. This isotropic thermal emission
provides a cooling solution as excess heat is radiated away from the disk, while also illuminating the disk
midplane as dust particles near the surface layers intercept photons from the central source and partially
re-emit radiation energy towards the midplane. At the same time, the disk can heat up internally via
turbulent dissipation. These mechanisms are sketched in Fig. 4.

thermal
turbulent ——_o _ - = re-emission

—

heating

Figure 4. A sketch of the main radiative mechanisms that set the temperature profile of a typical protoplanetary disk in thermal
equilibrium. In a passive disk, stellar irradiation deposits radiation energy at the surface layers of the disk (shown in pale
colors), which is then redistributed via thermal re-emission of dust grains. For an active disk model, internal heating via
turbulent dissipation can also take place.

In the next subsections, we will describe how radiation transport and stellar irradiation can be mod-
eled, as well as a simplified approach that aims to capture radiative effects by modeling them with a
single, “thermal relaxation” parameter.

2.2.1 Radiation transport

Depending on the dominant source of heating, protoplanetary disks are often characterized as passive
(heated by stellar irradiation) or active (heated by internal viscous/turbulent dissipation). In both cases—
as long as the gas and dust grains are thermally coupled such that the dust can carry thermal energy away
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from the gas and emit it away—radiation energy is transported by the thermal emission of dust grains,
the efficiency of which depends strongly on the emission optical depth of the gas:

(o9

Temit = fKdeZ ~ krpH 2.5
z=0

where kg is the Rosseland mean opacity. The higher this 7¢pit, the more difficult it is for radiation to
escape a given region of the disk. For a sufficiently optically thick gas, we can treat the radiation problem
as a diffusion of a radiative flux rather than the absorption and re-emission of individual photons. The
transition between the optically thick (Temic > 1) and optically thin (Temi; << 1) regimes is then handled
by a “flux limiter” A that is a function of the photon mean free path and the gradient of radiation energy.
In this flux-limited diffusion approximation (FLD, Levermore and Pomraning, 1981), we can incorporate
the radiative flux F;,q into the energy equation and add an equation to solve for the time-dependent
radiation energy E,q:

0 —
(ge) +v -V (pe) = —ypeV - v + (G- V) - v — kppc(ar T* = Eraq)
(?tE (2.6)
6;ad +V - Fraa = kppc(arT* = Exa).

Here, «p is the Planck mean opacity, ar is the radiation constant, and c is the speed of light. The radiative
flux is then given by

C
Ead = —A—VE. 2.7
KRpP

To define the flux limiter we follow the approach of Kley (1989):

2
=L NVEwdl gy =] Vo 10k ek=2 (2.8)
E A
RP Erad ToRsor visorss? 2SR <o

As a result, A — 1/3 for optically thick regions (diffusion limit) and Fi,q — cE;,q for optically thin
regions (free-streaming limit).

This approach does not account for radiation pressure (which would enter into the momentum equa-
tion in Eq. (2.1)), scattering effects, or the frequency-dependent nature of the opacities «p and kr. Nev-
ertheless, it provides a reasonable cooling mechanism that can release excess heat into the interstellar
medium through the disk surfaces, while also treating radiative diffusion in the radial and vertical direc-
tions.

2.2.2 Stellar irradiation

As the disk is illuminated by starlight at its surface layers, it intercepts a portion of stellar photons based
on its absorption optical depth T,,s. Assuming a point-source star at r = 0 with properties that would be
defined by its real radius R,, we can write

r

Tabs(T) = fkppdr', r=|r| (2.9)

Ry
The amount of energy 0E per unit time of that strikes a fluid element is then

5Ein(T)
ot

L
= Lin(’l") = AiF*e_TabS(r) = AZF‘:Ze_Tabs(T)’ (210)

where A’ is the surface normal to the direction of the ray at distance r. Considering a spherical geometry,
a fluid element with a solid angle §Q and radial extent 6r = |6r| would then have a volume V = r?6r6Q
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and an area A, = r>6Q. This element would then intercept part of this incoming energy, and the
remaining amount of energy would penetrate into the next element:

OE L
—O(;;(T) = Low(r) = Lin(r + 07) = A’f‘sr—‘m G _: 577 e T (0T, (2.11)
The absorbed energy density per unit time would then be:
_ Lin — Lout ~ Ly —Taps(T) —Kppor
Sima(r) = == & e (1= emorr). (2.12)

This equation defines a source term that can be added to the energy equation in Eq. (2.1) or (2.6) to
account for heating due to stellar irradiation.

It should be noted that most of the starlight is absorbed in the radial region between the star and
the disk surface where 1,5 = 1. This surface typically corresponds to a height of z ~ 4H (Chiang and
Goldreich, 1997), and is followed by a sharp drop in gas temperature (see Fig. 5). Radiation energy
then diffuses towards the midplane via thermal re-emission, even though the midplane is not directly
illuminated by starlight. As a result, the vertical temperature profile is essentially isothermal between
the midplane and the 74,5 = 1 surface, and then T rises dramatically near the top layers of the disk,
which are directly exposed to the radiation field of the star (see right panel of Fig. 5).
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Figure 5. An example model of an irradiated disk, showcasing the radial and vertical temperature profile. Left panel: T'(R, z).
The black-white dashed line marks the 7., = 1 surface. Right panel: 7'(z) at several radii, quoted in au. The transition
from a vertically isothermal interior to the hot disk surface can be seen at roughly 3—4 scale heights above the midplane,
with the 7, = 1 surfaces traced in dashed black lines. The temperature profile at the disk midplane follows a power law of
approximately T(R) o« R™"2, in agreement with the passive disk profile of Chiang and Goldreich (1997).

2.2.3 A simplified approach: S-cooling

While the treatment of various radiative effects (namely stellar irradiation and radiation transport) is an
attempt to model disks in more realistic conditions, it comes with several assumptions about the state of
the disk that are often very difficult to constrain. Modeling gas and dust opacities requires estimating
the abundances of hundreds of different species through observations and then constructing an opacity
model based on those estimates (e.g., Lin and Papaloizou, 1985; Bell and Lin, 1994; Semenov et al.,
2003; Birnstiel et al., 2018). In addition, estimating the midplane density and temperature of observed
disks relies on assumptions about the mass fraction of observed species such as CO (Molyarova et al.,
2017) and complex astrochemistry models (e.g., Rab et al., 2016).

We can instead parameterize radiative effects by defining a cooling timescale #.oo] and relaxing the
temperature profile of the disk to a predetermined state Ty over that timescale. For example, assuming
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that the gas cools through thermal emission, we can estimate the thermal relaxation timescale (Flock
etal., 2017):

i H*
Tcool = fthin + fthick & 3 Dir;d + Do’ (2.13)
Here, linin = 1/krp is the photon mean free path and D;,q is the radiation diffusion coefficient
160spT? R
Dug= o8 = —, (2.14)
3kRpCy uy —1)

with osg and ¢y being the Stefan—Boltzmann constant and the heat capacity at constant volume, respec-
tively. This cooling timescale is then often expressed in units of the orbital time Zqyy:

Tcool = ﬁtdyn = B(R,2) = Lol 2K (2.15)
See for example Gammie (2001). We can now define a relaxation source term for the energy equation

T-T, 6T T-T,
- = — =
Tcool ot ﬁ

This “B-cooling” approach greatly simplifies both theoretical and numerical modeling by combining all
uncertainties about the thermodynamics of the gas into a single parameter 5. In that sense, 8 is now a
proxy for the efficiency of radiative effects: a very short cooling timescale (8 — 0) would correspond to
a nearly locally isothermal disk, where the gas can readjust its temperature quickly enough to the point
that there is no apparent change in time. An example of this scenario would be the cool, optically thin
outskirts of protoplanetary disks (at R > 100au). Conversely, a very long cooling timescale (8 — o)
would refer to the hot, optically thick inner regions of such disks (R < 1au). An example of 5 as a
function of distance and height can be seen in Fig. 6.

Srelax = —PCy Qk. (2.16)
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Figure 6. The dimensionless cooling timescale 8 as a function of height and radius. Left: a sample model of a passive
protoplanetary disk with a typical density and temperature profile and an opacity model following Lin and Papaloizou (1985).
Contours mark several values of B often used in the literature. Right: radial slices of B at different elevations above the
midplane. Solid lines correspond to the cooling timescale given by Eq. (2.15), dashed lines only account for the optically thick
contribution, and a black dotted line only accounts for the optically thin term (see Eq. (2.13)). Here, the cooling timescale is
primarily dominated by the optically thick inner disk at R < 50 au, while the outer disk and surface layers are optically thin
and only contribute if we account for 7, in Eq. (2.13). It should be noted that this picture is very sensitive to the choices of
gas density, temperature, and opacity model.
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2.3 A 2D approximation

In previous sections we saw how we can make predictions for the vertical structure of a protoplanetary
disk with some reasonable assumptions. Specifically, the vertically isothermal assumption (see Fig. 5)
combined with vertical hydrostatic equilibrium (see Eq. (2.3)) suggest that we can integrate Eq. (2.1)
along the z axis to arrive at the vertically integrated Navier—Stokes equations:

)

= +V-Cv)=0

Fri (Zv) =0,
oz _
(B;’) +V-Cv®v)=-VP)p -V + V.0, (2.17)
A(Ze)

+v-V(Ee)=—yZeV-v+(0-V) v+,

where X is defined through Eq. (2.4) and Pop = (y — 1)Xe = RET /u is the vertically integrated pressure.

We can further calculate the contribution of individual radiative terms in this vertically-integrated
approach. By assuming that Ti,q = (Eraq/ ag)'* = Tyos = T, which is a reasonable assumption below
the T,ps = 1 surface, Eq. (2.6) simplifies greatly to

0(Ze)
ot

+v -V (Ze) = —yZeV - v + Oyisc + Oirrad + Ocool + OFLD, (2.18)

where Qyisc corresponds to the source term due to the vertically-integrated dissipation function
Ovisc = (U : V) v R ZVZQK’ (2.19)

Ocool and Qpp p result from integrating the radiative flux Fi,q vertically,

T4 3r V31 1
Ocool = —20sp—, Teff =5 +—+—, T=C KRX
Opip = —2HV - F™4, Fmd = 3 C _vaeT?,

KRPmid
and Qjrrag accounts for stellar irradiation following Menou and Goodman (2004):
Ly dlog H 1
irrad = 2 1- —-1|h—. 2.21
errad 47Z'R2( £) ( leg R ) Teft ( )

In the above, the effective optical depth at the midplane 7.g is defined following Hubeny (1990), and for
simplicity we assume that 7,,5 = Temit = 7. The factor ¢; = 1/2 is chosen as it provides a good agreement
between 2D and 3D radiative simulations (Kley et al., 2009). Since only half of the intercepted irradiated
flux is re-emitted towards the midplane, we define the disk albedo € = 1/2.

Similarly to the 3D picture, a cooling timescale can be defined as

Zemid N ZoyTeff
- ~ K>
Ocool 20sB T3

(2.22)

Tcool ®

and included using a 5-cooling approach similar to Eq. (2.16). The optically thick and optically thin
contributions to the cooling timescale shown in Eq. (2.13) are encoded in the effective optical depth 7.
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2.4 Accretion in protoplanetary disks

2.4 Accretion in protoplanetary disks

The Navier—Stokes equations incorporate the viscous stress tensor o, which in general has the form

1 (8ua up + (V- 0) S, a,be{1,2,3} (2.23)

=2n|= +
b 77[ oxp  Ox,

1
> )—g(V-v)%b

where 17 and ¢ denote the shear and bulk viscosity coefficients respectively, and d,p, is the Kronecker delta
(see for example Tassoul, 1978). For a shear flow such as a protoplanetary disk, where 7 is expected to
dominate, we can write that { = 0 and n = vp, where v is the kinematic viscosity coefficient.

The viscous stress tensor appears in both the momentum and energy equations, and its implications
include angular momentum transport and dissipation of kinetic energy into heat. The former can result
in an effective accretion (inflow) rate throughout the disk, while the latter is a source of heating.

Classical viscous disk theory predicts that, for a vertically integrated axisymmetric flow in steady
state, the angular momentum j = XRu,, is transported radially outwards according to

% + %a% (Rjur - RPog,) = 0, (2.24)
over a typical viscous accretion timescale which can be defined as ... = R?/v. This formalism suggests
an explicitly defined viscosity v, or by extension an explicit viscous stress tensor. In that regard, the result
is a laminar accretion mechanism which provides a steady outward transport of angular momentum.

We can now estimate the lifetime of a disk by defining the mass accretion rate M := —27RXug.
Observations suggest typical accretion rates of 10™°~10~7 My/yr with a median of ~ 1078 Mg /yr for
T Tauri stars (Hartmann et al., 1998), such that the typical lifetime of a disk with Mg ~ 102-10"' M,
corresponds to approximately 1-10 Myr (Haisch et al., 2001; Ribas et al., 2014).

In principle, however, while accretion is observed in protoplanetary disks, the accretion rates ex-
pected by kinetic gas theory alone fail to explain the observations. More specifically, if driven by the
collision of particles at a molecular level, the estimated viscosity and therefore accretion timescales

would be approximately

1-10 au)?
Vonol ~ Attty = face ~ S0 108 Myr (2.25)

Vmol

where A¢ and uy, correspond to the mean free path and thermal velocity of the gas, respectively. As a re-
sult, mechanisms that can generate large-scale turbulence and therefore turbulent accretion are necessary
to explain the observed accretion rates and disk lifetimes.

Turbulent accretion can be driven by instabilities active at different regions of the disk, and the
generated turbulent stress does not require the prescription of an explicit viscous stress tensor. Instead, it
emerges from the dissipation of kinetic energy due to the redistribution of angular momentum of the gas
in a region that is subject to an instability. Following Balbus and Papaloizou (1999), we can replace the
“steady state” assumption in Eq. (2.24) with a “mean flow” approximation, where the gas is subject to
an instability that perturbs its velocity components u,, u, such that they fluctuate around a mean residual
(vr) = (ug) and (vy,) = (u, — RQk). We can then rewrite Eq. (2.24) as

AER*)Q) 10 ;4 2
— ot TR (R3QZ(vr) + RZ(vgvy)) = 0, (2.26)

where (X) denotes a density-weighted mean of a quantity X, smoothed radially over a length scale AR:

o R+AR/2 27

1
X) = 5y f f f 0X dgdRdz. (2.27)

-0 R-AR/2 0

Here, X is defined through Eq. (2.4) and then subsequently smoothed radially. A typical smoothing
length would be AR ~ H(R). The quantity (vgv,) then corresponds to the Ry component of the Reynolds

11



2.5 The vertical shear instability

stress tensor T, or Tg, for short. This term, which describes the density-weighted correlation between
vg and v, for this mean flow, is ultimately responsible for driving accretion in the absence of magnetic
fields.
Assuming a turbulent flow of gas with a nonzero Tg,, we can now calculate an effective viscosity
Vegt by combining Eqgs. (2.24) and (2.26):
> > do\™!
—R°0Rp = R°Z(VRVy) = Vet = —(VRVy) (Rﬁ) . (2.28)
This procedure, while requiring extensive temporal averaging and spatial smoothing, allows us to ex-
tract the turbulent stress levels from a hydrodynamical instability and model its impact on accretion
as a pseudo-laminar viscous stress tensor according to Eq. (2.23). We can further parameterize it by
employing the Shakura and Sunyaev (1973) “a-viscosity” prescription, where

v = acH. (2.29)

One interpretation of the above relation would be the modeling of large-scale turbulent motions (like
eddies) with a size H, and a turnover speed that is a small fraction of the local sound speed. The dimen-
sionless viscosity parameter « then encapsulates the properties of the turbulence-driving instability.

Several different candidates of (magneto-)hydrodynamical instabilities that can drive accretion have
been studied over the years. A major candidate has been the magneto-rotational instability (MRI, Balbus
and Hawley, 1991) which can generate effective a of up to 1073-1072 (Hawley et al., 1995) as long as the
gas is sufficiently ionized. For realistic, weakly-ionized disks however, the MRI can be either inactive
due to an insufficient ionization fraction (Gammie, 1996) or suppressed by non-ideal MHD effects (Cui
and Bai, 2020). An alternative that has been extensively studied for the last decade is the vertical shear
instability (VSI, Nelson et al., 2013), which is driven purely from the vertical gradient of u,(R, z) that
naturally exists for steady-state protoplanetary disks (see Eq. (2.3)) and produces strong vertical motion
that can generate « values of 107°-1073 (Nelson et al., 2013; Stoll and Kley, 2014; Flock et al., 2017).
While neither MRI nor VSI signatures have been directly observed, VSI-generated stress levels are
compatible with observational constraints on disk turbulence from ALMA observations (Dullemond
et al., 2018), and it might be possible to detect vertical motion induced by the VSI within the next few
years using ALMA CO kinematics (Barraza-Alfaro et al., 2021). For an overview of various instabilities
as accretion-driving mechanisms, see Lyra and Umurhan (2019).

The VSI is central to this work, and is explained in more detail in the next section.

2.5 The vertical shear instability

The vertical shear instability (VSI) was first investigated by Goldreich and Schubert (1967) and Fricke
(1968) in the context of stellar interiors, to test the stability of differential rotation in the radiative zones
of a star. It was fittingly dubbed the Goldreich—Schubert—Fricke (or GSF) instability, and the condition
for stability was given by the lack of a vertical shear (9€2/0z = 0) and an outwardly-growing angular
momentum profile (3j/0R > 0).

The GSF instability has since then been reanalyzed in the context of protoplanetary disks (e.g., Urpin
and Brandenburg, 1998; Nelson et al., 2013; Stoll and Kley, 2014; Flock et al., 2017), where a vertical
shear arises naturally in hydrodynamic equilibrium (see Eq. (2.3)). More importantly, since the VSI
“feeds” on rotational energy (the vertical shear), its turbulent dissipation generates angular momentum
transport and, therefore, accretion. This makes it a popular candidate for modeling accretion in very
weakly-ionized disks.

2.5.1 The mechanism behind the VSI

We can illustrate an example of a VSI-unstable configuration in its linear growth phase by looking at a
typical disk profile in hydrodynamic equilibrium (see Fig. 7), where p(R, z), T(R) and Q(R, z) are given

12



2.5 The vertical shear instability

through Eqgs. (2.2) and (2.3). We displace a fluid element upwards ((R,z) — (R’,7’)) along a line of
constant specific angular momentum j = j’ = QR?. Comparing the kinetic energy of the fluid element
Egn = Q2R? to that of its surroundings, Ele(?;’ = Q’R’?, we find that EEH > Eg‘g and therefore the
fluid element should experience an acceleration in the direction of the displacement, creating a positive
feedback cycle that allows the instability to grow. The configuration is unstable if the vertical shear
(oc 0€2/0z), which here encourages upward movement, is strong enough to overcome the buoyancy of the
gas, which acts as a restoring force. This is relatively easily achievable in the context of protoplanetary
disks, where cooling timescales are often short enough (see Fig. 6) such that the perturbed fluid element
can quickly attain the entropy of the surrounding fluid, effectively ignoring the effects of buoyancy.

The result is the development of unstable modes near the disk surface layers at z ~ 4H (where the
vertical shear rate is strongest), which then grow and saturate as they travel towards the midplane from
both sides of the disk before joining into vertical corrugation modes that span the full extent of the disk
(see Fig. 8). A more detailed derivation of the stability criterion for the VSI can be found in Nelson et al.
(2013).

Exin/ Ekin,0
1.3 1.2 1.1 1.0 0.9 0.8
T T
6—
4
.
I —Q(R.2)
z _f . )
S of—j=9R
r Eiin =198
_4:_
oy -2 0 2 4

(R—=Ro)/H

Figure 7. Illustration of specific angular momentum j and kinetic energy Ey;, for a disk in hydrodynamic equilibrium. Each
quantity is constant along a given contour, and increases in the direction from the thinner to the thicker curve.
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Figure 8. Development and saturation of VSI modes in a VSI-unstable disk. Left: VSI modes develop near the disk surface
(z ~ 4H) and travel towards the midplane from both directions. Since the vertical shear rate scales with Q, this happens first
for small radii. Middle: the development of VSI modes continues traveling outwards, while modes within R < R have joined
together vertically and saturated. Right: the VSI is saturated in the entire radial extent of the disk. The region R < 0.5 Ry is
damped according to Eq. (3.1) and therefore does not exhibit VSI activity.
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2.5 The vertical shear instability

2.5.2 Dependence on disk parameters

For a typical, axisymmetric accretion disk with a negative radial density and temperature gradient (see
e.g., Eq. (2.2)), the vertical shear rate can be derived through the equilibrium state given in Eq. (2.3):

0Q 1 QgR%:

1 Z
= g2~ __|glhQr [=]. 2.30
5. " 29q 5 ol K( ) (2.30)

H
The VSI therefore thrives in geometrically thick disks (h = H/R) with steep radial temperature gradients
(g = %), and first develops near the disk surfaces (|z] ¥ 4H). The observed turbulence similarly
saturates at different levels depending on those parameters. For protoplanetary disks at radii observable
with ALMA, we have h =~ 0.1, g = —0.5, and an effective turbulent @ ~ 1074 (Flock et al., 2017).

On the other hand, as mentioned in the previous section, if the perturbed fluid element cannot reach
thermal equilibrium with its environment quickly enough, buoyancy can overcome the vertical shear and
restore the fluid element to its starting position, stabilizing the flow. In a thin disk (2 < 1), we can write

the vertical buoyancy frequency N, as

y—1
Y

N, =

Qx (%) 2.31)

Based on the above, Lin and Youdin (2015) derived a critical cooling timescale S that allows the

instability to develop if 8 < B, with

RI6Q/dd Ml
N2 TR T y-1

Berit < (2.32)

which corresponds to Bt = 0.1 for typical disk parameters and agrees with estimates of the cooling
timescale at radii R > 30 au (e.g., Flock et al., 2017).

It should be noted that since NZ2 grows faster with height than the vertical shear rate, the VSI can be
quenched at a certain height above the midplane, leading to possible damping of the surface modes. In
addition, Pfeil and Klahr (2021) showed that accounting for dust—gas decoupling at the surface layers
of the disk leads to significantly longer effective cooling timescales, which can also “sandwich” the VSI
modes within a few scale heights above the midplane.

Finally, viscous dissipation can counteract/prevent the growth of VSI-unstable modes. Nelson et al.
(2013) found that a background kinematic viscosity v, of the order of the generated VSI-turbulent
viscosity vysy can significantly reduce VSI-induced motion, halting it completely when vy 2 vysi.
This hints at a possible damping of the VSI in the presence of other instabilities, such as the streaming
instability (Schifer et al., 2020).
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2.6 Planet—disk interaction

Protoplanetary disks are the birthplace of young planets, which interact with the surrounding gas and
dust as they orbit around the system’s central object. Through this interaction planets can grow by
amassing dusty or gaseous material from the disk in a process called accretion. The disk can also exert
a torque on the planet, causing it to migrate inwards or outwards within the disk.

Planet—disk interaction can be modeled by treating the planet as a point source with mass M, at
location 7, and considering the gravitational potential it subjects a disk element at position 7 to

GM,

O, = i d=r-m7, (2.33)
Of course, numerically, this expression can result in numerical pathogenities around the planet, where

d — 0. For that reason, the planet’s potential is typically replaced by a cubic interpolation very close to

the planet (Klahr and Kley, 2006)
GMy[(d\ (4} 2| My
(Dp = - (—) - 2(—) +2]ifd < Ysm>» FYsm = 0.5 Ruin, Ruin = Rp (2.34)
F'sm T'sm F'sm 3M,

In vertically integrated models, the vertical stratification of the disk must be taken into account as well
when computing the gravitational acceleration on a column of gas. In that case, the planet’s gravity can
be described well with a Plummer potential where

0= e (2.35)
Using € = 0.6H (Miiller et al., 2012) is typical in the literature. It is important to note that H is evaluated
locally instead of only at the planet’s location.

Planet—disk interaction creates features in the gas. Spiral arms are perhaps the most recognizable
planet-generated feature, which is in turn responsible for various observables attributed to or explainable
through planets (e.g., rings, gaps). The characteristic trajectory of a spiral arm launched by a planet
can be approximated through linear theory (Ogilvie and Lubow, 2002; Rafikov, 2002), by considering
hydrodynamical waves excited by the planet at Lindblad-resonant locations and their shearing as they
propagate radially through the disk. While this method works best for a planet with a vanishingly
small mass and far from said planet, it can provide useful information regarding the planet’s mass or
the disk’s background temperature profile when used to match spiral patterns seen in observations of
protoplanetary disks (e.g., Zhu et al., 2015; Huang et al., 2018b). An example of a planet-generated
wake and the related linear theory fit can be seen in the left panel of Fig. 9.

For large enough planet masses, nonlinear effects come into play (e.g., Lin and Papaloizou, 1993;
Rafikov, 2002). A single, massive enough planet can launch secondary or even tertiary spiral arms that
steepen into shocks, depositing angular momentum and heat into the disk. This angular momentum
exchange can result in the “siphoning” of material away from the point of launch of a spiral arm, which
effectively translates to a local depression in gas density. This is typically observed as a gap at the
planet’s radius, but can also result in the formation of multiple gaps by a single planet in the right
conditions (e.g., Zhang et al., 2018; Miranda and Rafikov, 2020b; Ziampras et al., 2020b). At the same
time, the heat deposited near the shock front can, depending on disk thermodynamics, strongly affect
the global temperature profile and consequently the hydrodynamics of the disk (e.g., Rafikov, 2016;
Ziampras et al., 2020a). An example of gap opening and the temperature increase caused by spirals
launched by a massive planet can be seen in the right panel of Fig. 9.

The gap opening process also creates the conditions for the development of other interesting features.
The local clearing of material from within gap regions effectively results in the buildup of pressure bumps
at the edges of said gaps, forming “traps” that can accumulate dust particles. The thermal emission
of such collections of dust is then visible as bright rings in mm wavelengths with instruments such as
ALMA (e.g., Huang et al., 2018a). Moreover, the steep density gradient at a gap edge satisfies the criteria
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Figure 9. Planet—disk interaction in the low-mass, linear and high-mass, nonlinear regimes. Left: a low-mass planet excites
an inner and outer spiral which permeate the disk in both radial directions without affecting the overall disk structure. Linear
theory provides a very good prediction of the position of such spirals (dashed black curves). Right: a massive planet drives
several nonlinear effects, namely the excitation of secondary spirals (marked by the index of the annotations in the figure), a
deep gap around its orbit, and a massive vortex that orbits at the outer gap edge. Linear theory fails to predict the position of
spirals, which also shock and can heat up the disk substantially. The models shown here simulate an inviscid, S-cooled disk
with 8 =1 and 2 = 0.05 for 100 planetary orbits.

for the Rossby-wave instability (RWI, Lovelace et al., 1999), resulting in the formation of vortices—non-
axisymmetric anticyclonic features that orbit at Keplerian velocities and can decay over hundreds to tens
of thousands of orbits (Hammer et al., 2019; Fung and Ono, 2021; Rometsch et al., 2021). Due to their
anticyclonic (pressure maximum) nature, vortices can also act as dust traps and are therefore invoked to
explain non-axisymmetric observables that can result from the planet formation scenario (Rodenkirch
et al., 2021). Fig. 10 shows an ALMA observation of the system HD 163296, which contains both
rings and a non-axisymmetric, vortex-like feature, as well as the result of a numerical simulation of this
system that models these features as the result of planet—disk interaction.
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Figure 10. Left: an ALMA observation of HD 163296 (Andrews et al., 2018; Isella et al., 2018). Right: a numerical model of
this system by Rodenkirch et al. (2021), aiming to reproduce the non-axisymmetric feature as the result of dust trapping inside
a planet’s gap region. Image credit: Rodenkirch et al. (2021) (see Fig. 13 therein).
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3 Numerics

In this section we introduce the code and numerical methods employed in our study. This project in-
volved both two- and three-dimensional simulations of protoplanetary disks, parts of which have already
been published. To avoid repetition, we describe the common aspects of both families of simulations
here, and direct the reader to related references for additional information. To disambiguate between
different kinds of models, we will refer to simulations of the vertically-integrated equations using a
cylindrical setup on the Ry plane (see Eq. (2.17) and Sect. 2.3) as “R¢”, models of axisymmetric, ver-
tical slices on the r8 plane in spherical coordinates using Eq. (2.1) as “r8-2D”, and models of the fully
three-dimensional equations as “rfp-3D”. We will collectively refer to the 76-2D and rfp-3D models as
“r¢” models.

Our Ry models primarily focus on planet—disk interaction through the formation of rings and gaps
for disks with different equations of state (mainly discussed in Ziampras et al., 2020b, and summarized in
Sect. 5) as well as the formation and lifetime of planet-generated vortices (mainly discussed in Rometsch
et al., 2021, and summarized in Sect. 6). On the other hand, our 78 models focus on the hydrodynamics
of VSI-active disks. We present our results on these models in Sects. 7 and 8, and discuss them in Sect. 9.

3.1 PLUTO setup

We use the numerical hydrodynamics package PLUTO (Mignone et al., 2007), using version 4.2 for Ry
models and 4. 3 for r6 ones. PLUTO utilizes a finite-volume, shock-capturing approach with access to a
variety of Riemann solvers in order to integrate the equations of hydrodynamics (Egs. (2.1) and (2.17))
in conservative form. The methods used are the same between versions.

Unless otherwise stated, our configuration is second-order accurate in both space and time, using an
RK2 timestepping scheme and a 3-point-wide, piecewise-TVD? linear reconstruction stencil combined
with the van Leer flux limiter (Van Leer, 1974). We chose the HLLC Riemann solver (Toro et al., 1994)
for most of our models, since comparisons with the more accurate (but computationally more expensive)
Roe solver yielded very similar results.

Whenever possible, the FARGO method is applied (Masset, 2000, implemented into PLUTO by
Mignone et al. (2012)). This numerical scheme greatly relaxes the timestep limitation that the oth-
erwise supersonic disk background would impose, by solving for the residual motion after this mean
background speed has been subtracted. We typically use the IDEAL equation of state, which evolves all
quantities in Egs. (2.1) and (2.17), and the ISOTHERMAL EOS for locally isothermal models.

Viscous diffusion and dissipation are handled with PLUTO’s VISCOSITY module using the Super-
Time-Stepping scheme (Alexiades et al., 1996), which provides a reasonable balance between speed
and stability for the otherwise strict timestep limitation due to the parabolic nature of viscous terms.
Cooling, when applicable, is typically prescribed using PLUTO’s TABULATED cooling module, unless
stated otherwise.

The gravitational potential of the star and planet are included using the Nbody module of Thun and
Kley (2018), which we ported to PLUTO 4.3. The entire star—planet—disk system orbits around the star’s
reference frame. Neither the planet nor the star feel feedback from the disk, unless stated otherwise. In
Ry simulations with embedded planets we use a Plummer potential with a smoothing length of € = 0.6H
as shown in Eq. (2.35), while in rfp-3D simulations we opt for the cubic spline curve by Klahr and Kley
(2006) (see Eq. (2.34)).

For more information on the modeling behind our Ry simulations see Ziampras et al. (2020a), Zi-
ampras et al. (2020b), or Rometsch et al. (2021). Additional physics such as radiation transport will be
mentioned when used, and are described in detail in the Appendix.

2total variation diminishing (Harten, 1983)
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3.2 Grid setup

For Ry models, the computational grid typically extends between 0.2 < R/Ry < 5. We adopted a
resolution of at least 8 cells per scale height (cps), a number which is commonly agreed upon as a
sufficiently high numerical resolution in 2D planet—disk interaction for our purposes. Some models ran
at a higher resolution to test for convergence. The grid is logarithmically spaced radially in order to
maintain the cell aspect ratio, and the azimuthal cell count is chosen such that the grid consists of square
cells.

For 70 runs, we use a grid with 0.4 < r/Ry < 2.5. The resolution is at least 16 cps in the radial
direction, as we found that this is necessary to adequately resolve the VSI after a resolution study which
we will discuss in Sect. 7.2.1. The polar direction covers 4 scale heights in both directions about the
midplane (for a total of 8 from end to end) with a resolution of 16 cps. We found this extent to yield
the same results as a model with a domain covering the full polar extent 6 € [0, 7r]. Our r8¢p-3D runs have
an azimuthal resolution of 5 cps, which should be enough for our purposes, but we also tested against a
run at 8 cps and found very similar results.

A sketch of our grid setup is shown in Fig. 11. In models where a planet is present, Ry in that figure
represents R,,. Otherwise, Ry simply corresponds to a reference distance from the star.

cylindrical polar R¢ grid spherical polar ré grid
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Figure 11. Illustration of our grid setups for Ry models (left) and »8 models (right). Our rfp-3D simulations extend vertically
as shown in the right panel and azimuthally similar to the left, for a full-3D spherical grid. To preserve cell aspect ratio, grid
cells are spaced logarithmically radially and uniformly in other directions. The color represents a typical, radially dropping
2(R) profile (left) and its corresponding p(r, 8) profile (right).

3.3 Initial and boundary conditions

All models are initialized in equilibrium, which translates to radial power law profiles for X(R) and T'(R)
for Ry models (see Egs. (2.2) and (2.4)), while the vertical density stratification p(r, 8) in r6 models
follows Eq. (2.3). The gas velocity components are also initialized through these equilibrium profiles,
with ug(R) adjusted to account for viscous accretion and u,(R) corrected for radial (and vertical) pressure
support through Eq. (2.3). In 76 models, a small amount of numerical noise with a maximum amplitude
of 1% of the local sound speed is added to all velocity components. We refer the reader to Ziampras
et al. (2020b) or Rometsch et al. (2021) for more information on the initialization of Ry models, and to
Nelson et al. (2013) for @ models.

Boundaries are always periodic in the azimuthal direction. The boundary wall in our simulations
is closed in the radial direction for Ry models, and left open for 6 models such that gas is allowed to
exit but not reenter the grid. The same “strict outflow” boundary is applied in the polar direction of ré
models, with the density and pressure extrapolated into the boundary zone to account for hydrostatic
equilibrium. In all models, we utilize wave damping in a radial zone that extends from the inner/outer
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3.4 Computing turbulent stress in 76 models

boundary walls up to a small portion of the active domain, following the prescription of de Val-Borro

et al. (2006):
Ox X X=0

ot fdamp

Rdamp7 X € {'U, Z’p7 P} (31)

with a damping timescale fgamp = 0.3 and 10 for Ry and rf models respectively, in units of the orbital
period in each radial boundary wall. The choice of this relatively long damping timescale for our r8
models relates to an unusual parasitic instability we observed near the inner boundary in those simula-
tions for shorter 74,mp (discussed in Sect. 7.2.2). Nevertheless, the open inner boundary helps minimize
reflections back into the grid in those simulations.

Since our r8¢-3D models are meant to exhibit VSI activity, we initialized most of them by evolving
an axisymmetric r6-2D disk until the VSI was fully saturated, and then expanded all fields in 3D with
the addition of a small amount of noise (1% cs) similar to Flock et al. (2020). We nevertheless checked
whether this assumption is reasonable by allowing the VSI to develop from a quiet disk in 3D, and found
the same results.

3.4 Computing turbulent stress in 76 models

As we discussed in Sect. 2.5, the VSI “feeds” on the angular momentum budget of the disk via the
vertical shear and can therefore drive accretion. In fact, a VSI-active disk has been shown to exhibit a
mean radial drift inwards near the disk midplane and outwards near its surfaces, resulting in accretion
when accounting for the net, mass-weighted difference between the two (Stoll et al., 2017). We can
now apply the averaging technique of Eq. (2.27) to our r6 models and consider the mean radial velocity
field of a VSI-active, turbulent disk as the result of a mean Reynolds stress tensor following the strategy
discussed in Sect. 2.4. From this analysis we can finally derive the effective turbulent viscosity parameter
a and compare to values found in the literature (e.g., Stoll and Kley, 2014; Stoll et al., 2017; Flock et al.,
2017).

We implement this in four stages: since the quasi-steady state of a saturated VSI-active disk still
contains stochastic motion, we first extract the time-averaged state of the disk starting at a suitable
timestamp where the VSI has fully developed and saturated (typically after 100 orbits at R = Ry) and
spanning Nges = 200-400 snapshots taken at intervals of one orbit at Ry. The result corresponds to a
3D, averaged disk state which we consider our “mean flow” and will denote with a bar (e.g., p, V).

In the second stage, we compute the Ry and z¢ components of the Reynolds stress tensor T at every
point in 3D space for every snapshot with index i

Ty, (r) = p' - (U = ) - (uy, = ilp) = PV, x €{R,z} 3.2)
we then average over Ngjes snapshots to compute the mean stress tensor

Niiles

Top(r) = —— > Ti,(r) (3.3)

N; files

In the third stage, we compute the mean surface density X using p and Eq. (2.4), take its azimuthal
average, and apply a radial smoothing over a window of a local scale height H(R) according to Eq. (2.27).
We apply the same radial smoothing (but not azimuthal averaging) to T, as well:

R+AR/2
1 T 4 4
Wio(R, ¢,2) = R f T, (R, p,2)dR’, AR = H(R)
R-AR/2

R+AR/2 27 Zmax (34)

1
S(R) = —— H(R /
(R) AR f ffp(R,QO,Z)dZdtde
R-AR/2 0 Zmin
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3.4 Computing turbulent stress in 76 models

The result is a 3D map in {R, ¢, z} for each of the two components Tk, and T, which are relevant for
radial accretion and vertical mixing respectively.

In the fourth and final stage, we extract the vertically integrated profile of the effective turbulent
accretion parameter a,cc(R) by summing over all contributions of Wy, as a function of height and then
averaging in the azimuthal direction if necessary:

27 Zmax

_ 1 _ dQ B

WR<p(R) = ﬂ f f WR<p(R, ©,2)dzdy = @acc(R) = _WRt,D : (Rd_RZCsH) > (3.5)
0 —Zmax

where Q, ¢; and H are similarly calculated using the mean fields computed during the first stage. We
note that, since the mean azimuthal velocity and disk temperature do not change significantly due to the
VSI (Auy[uy, ~ 1072, AT /Ty ~ 1079), one can also instead use the initial, analytical profiles of Q, ¢
and H in these calculations. However, since the disk is constantly accreting (i.e., losing mass in our
models), the mean density p is more appropriate than the initial profile pg that Eq. (2.3) suggests when
calculating X.

The method described in Eq. (3.5) is not typically followed in the literature, where variants of Wg,/P
are used (e.g., Nelson et al., 2013; Flock et al., 2017; Manger et al., 2020). In fact, approximating
Q ~ Qg o R~2 in Eq. (3.5) yields

do dQg H)‘l _ 2 Wy

-1
Waec(R) = —V_VR‘/J . (R—ZCSH) ~ —V_VRL/J . (R—ch 3P

dR dR (36)

As a result, the methods typically used in literature overestimate the turbulent a,.. by a factor of 1.5
compared to the method of Balbus and Papaloizou (1999).

We also extract the vertical profile of an “effective turbulent vertical mixing” parameter apix(z) at a
reference radius Ry through W_,. Following Stoll et al. (2017), we can approximate the z¢ component
of the viscous stress tensor o and write:

Qkz _lql z S
SZ‘P ~ |CI|,0VZ_— ~ _Pa/zl’lﬁ = a; = Tfso

h -1
. (2

and, by replacing the viscous stress tensor with Reynolds stress

3.8)

W.o(Ro, -
Umix(2) = 90( 0 Z) : (@ i)

P(Ro, 2) 2 H

We note that our method differs slightly from that of Balbus and Papaloizou (1999) and Stoll et al.
(2017), in that we compare the velocity field against the time-averaged mean field instead of the initial
equilibrium solution. While this does not affect the vy and v, components (since the VSI only excites
vertical and azimuthal oscillations about the initial equilibrium states), accounting for the now-nonzero
mean radial velocity correctly subtracts the disk background which is now accreting with the VSI in
effect.

Fig. 12 showcases the difference between using iig = 0 and iig = (ug); as the disk background
velocity field when computing the turbulent stress tensor. While the result is practically the same near
the disk midplane (where the bulk of the gas is located), using the time-averaged mean field provides
higher-quality results at higher altitudes.

In the following sections, turbulent stress tensor components and the resulting turbulent o parameters
are calculated using the method described here, unless otherwise stated.
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3.4 Computing turbulent stress in r6 models

log(Tre/P) using by = (0,0, RQ2) log(Try/P) using time-averaged g
-50 —-45 —-40 -35 -30 -25 =20 -50 —-45 —-40 -35 -30 -25 =20

Figure 12. A comparison between two different methods used to extract turbulent motion from the disk background. Left:
using the equilibrium state from Eq. (2.3) as the background. Right: using the time-averaged velocity field as the background.
White regions denote negative values, which would be unphysical as a result of numerical noise. Using a time-averaged disk
background yields better profiles, even though the result of a density-weighted vertical integration (which is needed to compute

a) is practically the same.
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4 Results I: Impact of planet shock heating on the location and shape of
the water iceline (overview)

Here we present our results in Ziampras et al. (2020a), a study that was motivated by a previous project
(an MSc thesis) but was considerably enriched during the course of this project, as our understanding
of planet—disk dynamics developed. This work was inspired by the possibility of planetesimal growth
being affected by the heating induced by planets. For the full publication, see Sect. C.1.

Specifically, we investigated scenarios where shock heating by planetary wakes can raise temper-
atures high enough to evaporate the icy coating of dust grains, effectively “moving” or deforming the
water iceline in the disk and, in doing so, possibly impeding dust growth around it. To that end, we car-
ried out a series of radiative hydrodynamics simulations with planets of different masses in disks with
vastly different thermodynamics and investigated the effect of planet shock heating on the location and
shape of the water iceline. The latter is defined as the location where ice sublimates into water vapor, or
equivalently where gas temperature crosses 7 > Ti.. = 170K (Lin and Papaloizou, 1985; Bell and Lin,
1994).

Regarding the efficiency of shock heating, we showed that planetary wakes can efficiently heat up
the dense and optically thick inner disk (R < 5au), in agreement with Rafikov (2016). This typically
results in less tightly wound spiral arms and a radial outward displacement of the water iceline, as the
gas temperature increases practically in an axisymmetric manner in such an optically thick medium.
More massive planets certainly accentuate this behavior, with Jupiter-sized planets being able to “push”
the iceline radially outwards by a few au (left panel of Fig. 13).
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Figure 13. Three examples of how the planet’s spiral arms can affect the location and shape of the water iceline (marked
with green contours). Left: in an optically thick disk, the iceline is “pushed” radially outwards as the planet’s spiral heating
heats up the disk uniformly in azimuth. Right: spiral arms cannot heat up the planet’s neighborhood efficiently, but the higher
temperatures around their crests slightly deform the otherwise axisymmetric iceline as they propagate inwards. Middle: in an
intermediate case, hot zones of dry grains and vapor form along the trajectory of the spirals.

The opposite is typically the case for optically thin disk regions, where shock heating is orders of
magnitude weaker than the heating by stellar irradiation. In that case, the iceline might show very
slight deformation along the azimuthal direction due to the non-axisymmetric nature of the inwardly
propagating spiral arms by the planet, but no radial displacement (right panel of Fig. 13).

For certain combinations of intermediate planet masses and disk optical depth, where the iceline
would originally lie near the planet’s orbit, it is possible for spiral arms to deform the iceline in such
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a way that the latter traces the trajectory of these spirals. This could result in the formation of regions
containing a mixture of rocky and icy grains, which we dubbed “slush islands” (middle panel of Fig. 13).

Our results highlighted the ability of a planet to effectively heat up optically thick disks via spiral
shock heating and quantified this effect in terms of the planet’s capacity to move or reshape the water ice
line. The latter can have implications on the water content of growing planets, migration torques, and
the growth of planetesimals. In particular, the hot zones within “slush islands” could impede the growth
of icy aggregates through repeated sublimation and recondensation of ice near the boundaries of such
Zones.
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S Results II: Impact of radiative effects on gap opening (overview)

Here we summarize the results of Ziampras et al. (2020b), a study which used Ry simulations to model
the gap opening process for different equations of state. The motivation for this project came from
the multitude of ALMA observations of protoplanetary disks by the DSHARP project (Andrews et al.,
2018) and the subsequent numerical modeling of those sources in an attempt to explain the rich annular
structure observed in those systems with the planet-formation scenario, where a single planet was in
some cases capable of explaining the location and contrast of multiple observed rings and gaps (Zhang
et al., 2018). For the full publication, see Sect. C.2.

The focal point of our work in Ziampras et al. (2020b) was the equation of state. Specifically, we
extended the locally isothermal models of Zhang et al. (2018), where the temperature profile is kept fixed
as a function of radius, using a simplified modeling of radiative effects based on Ziampras et al. (2020a).
Our aim was to investigate whether the however small but finite cooling timescale introduced in this
way could have an effect on the gap opening capabilities of a planet, even though the global temperature
profile of the disk would remain unaffected.

Our comparison between locally isothermal and radiative models showed a substantially different
radial structure for these two equations of state. Locally isothermal models showed multiple gaps and
in general more pronounced planet-generated features (higher-contrast gaps, sharper spiral arms) when
compared to the smoother, less rich-in-structure radiative models. These main results are shown in
Fig. 14.
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Figure 14. Numerical modeling of the system AS 209 using a locally isothermal or a radiative equation of state at t =
5000 orbits at R = 99 au. The two models show quite different structure, with the locally isothermal model having a sharper
spiral arm contrast and multiple gaps, and the radiative model containing a single, deep gap around the planet.

Our results questioned the scenario where a singular planet is capable of opening multiple observable
gaps in realistic protoplanetary disks, where a short but finite cooling timescale regulates disk thermo-
dynamics even at large distances from the host star. This subject was further illuminated by Miranda and
Rafikov (2019) and then Miranda and Rafikov (2020a) and Miranda and Rafikov (2020b), who analyzed
the effects of cooling on gap opening and showed that, in addition to the above, the consideration of in-
plane radiation transport (see Qprp in Eq. (2.20)) can significantly impact gap opening. Zhang and Zhu
(2020) also showed that, even though these disks can be considered stable against the gravitational in-
stability (Toomre, 1964), the inclusion of self-gravity can strongly affect the results of numerical models
of planet—disk interaction.

Building on our results and motivated by the kinematic detection of planets at 83 and 137 au in the
system HD 163296 (Teague et al., 2018), we constructed a model that could potentially explain the ring
structure of the outer disk (R > 60 au) in that system using three planets, each of which could be present
inside the gaps observed at 48, 86 and 145 au (Huang et al., 2018a), using the mass estimates of Zhang
et al. (2018). We found that the two different equations of state agree very well at those distances, which
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is to be expected given the short cooling timescale at R > 60 au for this system. We also showed that
the structure of the inner disk (R < 50 au) remains unchanged compared to a model with a single planet
at 48 au, due to the innermost planet “shielding” the inner disk with its own gap and spiral arms. An
overview plot is shown in Fig. 15.
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Figure 15. Numerical modeling of the system HD 163296 using three planets at 48, 86 and 145 au and two different equations
of state. Left: a surface density heatmap of the disk at # = 2 Myr using a locally isothermal (left half) and a radiative (right
half) equation of state. Right: a comparison of the azimuthally averaged surface density profiles at the same timestamp for the
two different equations of state.

The effect of different physics on planet—disk dynamics has received significant attention over the
last few years, and is an ongoing topic of research as the endeavor of theorists and observers to bridge
the gap between the two ends of the spectrum continues.
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6 Results III: Lifetime of planet-generated vortices (overview)

Here we present a summary of our work in Rometsch et al. (2021). This study was motivated by the ob-
servability of non-axisymmetric features in protoplanetary disks around young stellar objects (Andrews
et al., 2018) and the possibility that they can be explained via the planet—disk interaction scenario as
vortices generated at the planet’s gap edge. For the full publication, see Sect. C.3.

The goal of this study was to explore the conditions for the formation of planet-generated vortices
and the identification of trends in their lifetime as a function of different physical parameters—primarily
the cooling timescale and to secondary importance the effects of viscosity and self-gravity. We con-
tributed with a wide variety of Ry numerical simulations using PLUTO alongside similar models exe-
cuted by Thomas Rometsch with the FARGO code (Masset, 2000). The two codes were used in order
to verify the integrity of our results using two fundamentally different numerical integration techniques
(a finite-volume, shock-capturing Riemann solver with PLUTO versus a finite-difference upwind scheme
with FARGO).

Our numerical models showed that planet-generated vortices follow a typical lifetrack similar to that
found by previous studies (see Fig. 16), where multiple small-scale vortices form due to the RWI at
the planet’s outer gap edge and then merge together over a timescale of a few tens of planetary orbits
into a massive vortex that decays over 200-2000 orbits, a number that strongly depends on the cooling
timescale. We found that for cooling timescales similar to the orbital timescale (see Eq. (2.15), 8 ~ 1),
cooling-induced vortex decay is strongest and vortices decay much faster compared to shorter or longer
cooling timescales (see Fig. 17). We also reported several cases where vortices survived for abnormally
long amounts of time (> 10* orbits), or experienced outward migration far into the outer disk, forming
multiple density bumps outside of the planet’s orbit.

t =200 orb t = 1000 orb.
1 i I

0.0

Figure 16. Maps of the gas vortensity as a function of time for a model with @ = 10~ and 8 = 1. Each bright spot constitutes
a vortex at a given stage of its lifetime. Initially, the planet’s gap edge grows Rossby-wave unstable and multiple small-scale
vortices form on it (a). They quickly merge into bigger vortices (b) and finally into one massive vortex (c) that will decay over
1500-2000 orbits (d), before finally disappearing (e).

Our results suggest that the cooling timescale can influence the formation and lifetime of planet-
generated vortices, which sometimes exhibit disproportionately long lifetimes for very short 5 and decay
the fastest for intermediate 8 ~ 1. In conjunction with the short cooling timescales at large distances
from the star and the relatively small expected turbulence levels at those radii, our results imply that
planet-generated vortices should be observable and, inversely, that young planets are a viable candidate
for the generation of observed vortices at ALMA-observable distances.
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Figure 17. Vortex lifetime as a function of different parameters. Left: results at a resolution of 8 cells per scale height (cps).
Vortices live longest for low viscosity, with FARGO exhibiting a “V”-shape centered around 8 ~ 1 for very low @. PLUTO does
not share this behavior, with vortex lifetimes monotonically dropping with higher g instead. Right: results at 16 cps. Both
codes show a minimum in vortex lifetime for 8 = 1, but we also observe significantly longer vortex lifetimes for 8 = 1072.
These special cases are discussed in detail in the related paper. Image credit: Rometsch et al. (2021) (see Fig. 4 therein).
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7 Results I'V: Physical properties of the VSI

In this section we discuss our results on the characterization of the VSI. We begin with profiling the be-
havior of the instability by carrying out a fiducial test using configurations from the literature and mea-
suring the growth rates and saturated turbulent stress levels that the VSI can develop in Sect. 7.1. We con-
tinue with an exploration of the effects of different numerical and physical parameters in Sects. 7.2 and 7.3,
respectively.

7.1 Characterizing the VSI — Fiducial model

Our fiducial model uses an r6-2D setup that is similar to Stoll et al. (2017) and described in Sect. 3.2.
For quick reference, our setup is summarized in Table I. The grid resolution corresponds to 16 cells
per scale height (cps) in the radial and polar directions. The disk is initialized in an equilibrium state,
where all velocity components are perturbed by 1% of the local sound speed to break any symmetries
and excite VSI modes more easily.

Parameter

value

comment

Radial extent

Vertical extent

Radial grid size
Meridional grid size
Inner radial boundary
Outer radial boundary
Meridional boundaries
Aspect ratio h

Density exponent p
Temperature exponent g
Midplane density pmiq at Ry
Surface density Z at R,
Equation of state

Relaxation parameter 3

r € [0.4-2.5] Ry
7+ 4H

N, =600

Ny = 128

outflow, damping
reflective, damping
outflow

0.05

-1.5

-1

2.2 x 107! g/cm?
213 g/em? x(#)
ideal

1072

Ry = 5.2 au, but scale-free

constant aspect ratio

log-spaced, 16 cps

16 cps, square cells

Tdamp = 10 Ppoundary

taamp = 10 Ppoundary

extrapolated for hydrostatic equilibrium
constant throughout disk

S oc R05

non-flared disk

does not affect results (scale-free)
does not affect results (scale-free)
using B-cooling to relax to initial 7' (R)

very similar to locally isothermal EOS

Table I. Physical and numerical parameters used in our fiducial VSI model.

In terms of physics, we use typical disk parameters with p = —-1.5, ¢ = —1 and & = 0.05 (see
Eq. (2.3)), and an ideal equation of state where we allow the temperature profile to relax to its initial
equilibrium state over a constant cooling timescale 8 = 1072. We chose to use a 8 model over a more
conventional locally isothermal one (i.e., where one would not evolve the thermal energy over time)
for numerical reasons—namely to combat the parasitic instability discussed in Sect. 7.2.2—and for
consistency with our planet—disk models in Sect. 8. The two equations of state (locally isothermal and
B = 107%) otherwise produce functionally identical results in our area of interest within the disk, as
will be discussed in Sect. 7.3.2. Our setup allows us to construct a scale-free problem and measure the
properties of the VSI regardless of the reference distance from the star.

Our choice of surface density, while not relevant for our investigation of the VSI, allows us to ignore
the effects of disk self-gravity. Namely, the Toomre parameter (Toomre, 1964) is estimated at Q =
25(R/Ro)™", falling below 9 at R = 2 Ry. Understandably, this surface density would correspond to a
relatively low mass reservoir at 100 au, which might be problematic from a planet formation perspective.
We discuss this further in Sect. 8.4.
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7.1 Characterizing the VSI — Fiducial model

7.1.1 Growth phase and saturated state

We first measure the growth of the VSI by monitoring the total kinetic energy of the active domain in all
three directions as a function of time:
Ex

1
Kin — f Epu)zg dv, x € {r,0, ¢} (7.1

Vaisk

As individual VSI modes grow during the linear phase of the instability’s development, we expect an
exponential rise of Eyj, as a function of time. Following this, modes start interacting, merging, and
saturating as they enter the nonlinear phase of development. Eventually the VSI is saturated throughout
the disk, and its kinetic energy budget stabilizes. This behavior is shown in Fig. 18. Our measurement
of the growth rate at ~ 0.4/orbit is consistent with the estimate of 0.38/orbit by Stoll and Kley (2014)
(see Fig. 1 therein), and reasonably close to that of Nelson et al. (2013), who reported a growth rate of
0.25/orbit during the linear phase (see Fig. 1 therein). We note, however, that the latter used a grid with a
narrower radial extent (r € [1, 2]) and therefore a slightly different result was to be expected. The kinetic
energy budget stabilizes at similar levels in our model when compared to Nelson et al. (2013) and Stoll
and Kley (2014) as well.
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Figure 18. An example of the growth phase and subsequent saturation of the VSI, monitored via the measurement of the global
kinetic energy budget of the disk in the radial and polar directions. The initial, linear growth phase can be approximated well
with a growth rate of 0.4/orbit. Horizontal dashed lines mark the mean kinetic energy after the VSI has fully saturated. Pale
curves denote our raw measurements, which are smoothed into the saturated curves using a rolling average in time.

Once fully saturated, VSI modes cover the entire disk while perturbing all velocity components
of the gas. This results in both vertical and (to a lesser extent) radial mixing of the gas as it moves
along elongated ““sheets” that span the disk from end to end in the vertical direction (see Fig. 19). As a
result, the observation of alternating vertical motion near the disk midplane is a typical signature of VSI
activity. On the other hand, radial velocity perturbations are strongest at the surfaces of the disk, where
the gas that travels towards the surface “turns over” along the radial direction and moves towards the
midplane once again. Presumably, this radial rearrangement of gas near the disk surface is the reason
why the azimuthal velocity is also affected more strongly at those regions, as u,, is sensitive to the radial
pressure (and therefore density) gradient.

7.1.2 Mean velocity field

In Sects. 2.4 and 2.5 we discussed how the VSI is driven by the vertical shear and, since it feeds on the
angular momentum budget of the disk, can drive accretion. While typical a-disks (where a is constant
and isotropic) show a radial velocity profile that is positive near the midplane and negative above a
certain height, a VSI-active disk shows the exact opposite behavior (Stoll et al., 2017). An example
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7.1 Characterizing the VSI — Fiducial model
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Figure 19. Depiction of a fully VSI-active disk after the instability has saturated. The top left panel shows density deviations,
highlighting the movement of gas near the disk surfaces. The remaining three panels show deviations in all three velocity
components. The “sheet”-like image in u, is a characteristic signature of VSI activity, while deviations of uz and u, grow with
height as gas “turns over” radially near the disk surface.

of the radial velocity structure of such a disk can be seen in Fig. 20, where the mean profile of iig is
computed by time-averaging ug over a few hundred snapshots once the VSI was fully saturated. A clear
accretion channel is visible between +H about the midplane, while gas moves radially outwards outside
of this zone. We highlight that, since accretion is weighted by mass and the density profile decays
exponentially with height, this configuration results in a net infall and therefore accretion. For our disk
parameters, the resulting accretion rate is of the order M ~ 1078-10"7 My /yr.
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Figure 20. An example of the mean radial velocity field iig in a VSI-active disk. The black contour on the left panel marks the
ilg = O surface. An accretion channel can be seen contained within a region +H about the midplane. For the physical parameters
used in this model (constant &), the ratio of iig/cs should be constant regardless of radius. The right panel highlights this ratio
at several different radii quoted in Ry, showing that this holds true far from the inner boundary.
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7.1 Characterizing the VSI — Fiducial model

7.1.3 Turbulent stress

Next, we compute the turbulent viscosity parameter a,..(R) and the turbulent mixing parameter apix(z),
which drive radial accretion and vertical mixing respectively. This is achieved via the method described
in Sect. 3.4, where the Ry and z¢ components of the Reynolds stress tensor are averaged in time, inte-
grated vertically, and smoothed radially accordingly. An example of typical stress levels for our fiducial
model can be seen in Fig. 21, and the corresponding « are presented in Fig. 22. We find a turbulent
@aee of the order of 1.5x107#, consistent with estimates of « for these physical and numerical param-
eters (Stoll and Kley, 2014; Manger et al., 2020). Similar to Stoll et al. (2017), we compute a vertical
mixing parameter anix that is roughly three orders of magnitude higher that @,., but with a ratio of
Umix/@acc ~ 1700 as opposed to their reported value of 650 (which, after accounting for the factor of 3/2
in Eq. (3.6), can be corrected to 975).
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Figure 21. The Ry and z¢ components of the Reynolds stress tensor T as a function of height and radius, normalized to the
mean background pressure P. Left: the quantity shown can be used as a proxy for the accretion parameter .., which relates to
the net radial accretion when integrated vertically. A “V”-shape of @,..(z) about the midplane can be seen. Right: the quantity
T,/ P roughly translates to a vertical mixing parameter @y,x. We note that T, > Tg,, typically by 2-3 orders of magnitude
(Stoll et al., 2017).

We note that, due to the relatively narrow radial extent of our grid, the active domain is vulnerable
to boundary effects that can damp or interfere with the VSI modes. This can be inferred by the relatively
stable levels of a in the region 1-2 Ry, and the decaying levels of turbulence outside of that zone (as
shown in Fig. 22). While a wider computational domain helps with alleviating this issue, our area of
interest coincides with the region where the VSI has developed properly. For that reason, we chose not
to extend the radial extent of our domain.
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Figure 22. Turbulent stress in our example VSl-active disk. Left: the turbulent accretion parameter «@,. as a function of
distance. The damping zones are marked in dark gray, and zones likely affected by the damping region are marked in light
gray. The horizontal dashed line corresponds to 1.5 x 107*. Right: normalized z¢ stress as a function of height at different
radii. The slope of this curve corresponds to the turbulent mixing parameter, estimated at roughly @pix ~ 1700 X @, (dashed
black line).
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7.1 Characterizing the VSI — Fiducial model

7.1.4 Turbulent heating

As we discussed in Sect. 2.4, the turbulent stress generated by the VSI is responsible for accretion
(compare Egs. (2.24) and (2.26)). In addition to this, when translated to an effective “viscous” stress
tensor Oyyb, Reynolds stress can contribute as a heating source with Qneat = (O - V) - v. Assuming a
steady laminar disk heated by uniform, isotropic @-viscosity as in Eq. (2.29) and cooled with a constant
B (Eq. (2.16)), we can write that Qpear ~ %vpﬂﬁ (e.g., Tassoul, 1978), and the temperature balance is
given by

or ajor=0 9

pcva = Oheat + S relax == ZVPQZK = pCy

With the relations for ¢s and H from Sect. 2.1 we can now solve for the equilibrium temperature Teq

Too—T
i Lo W (7.2)

Ty

9
Teq = =5 ko= Vy(y = 1) = 1.06. (7.3)

In other words, the equilibrium temperature profile will be hotter than the relaxation profile 7 by a
constant factor that becomes larger for higher viscosity or slower cooling. We can now apply this
approach to measure the turbulent heating rate in our VSlI-active disks by comparing the time-averaged
midplane temperature 7pm;q(R) to the relaxation temperature T, assuming that heating is instead powered
by the VSI and equivalent to that of a viscous stress tensor with vy, = aaccci‘dH . Specifically for the
VSI, which can only operate for § < 0.1 (Lin and Youdin, 2015) and produces relatively small effective
turbulence @y ~ 1074, we expect very weak—but nevertheless noticeable—heating with AT /Ty <
1073
Solving Eq. (7.3) for @, we obtain that

1 Teq - TO

= _— 7.4
(heat KB Teq (7.4)

we then compute this parameter for our fiducial model (8 = 1072) and present our results on Fig. 23.
The left panel shows temperature deviations, magnified to highlight the slightly hotter midplane. The
right panel shows the computed apey ~ 2.5 X 1074, which is very close to the accretion parameter
Qace ¥ 1.5 X 1074,
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Figure 23. Left: deviations of the time-averaged mean temperature field as a function of radius and height. Right: comparison
of the turbulent accretion parameter a,.. to the estimated turbulent heating parameter aye, through the method described in
Sect. 7.1.4 and Eq. (7.4). The horizontal blue and orange lines correspond to & = 2.5 x 10~ and 1.5 x 107, respectively.

In the following sections we perform a resolution study with our fiducial model as the baseline, and

then continue by exploring different physics as we progress towards a full-3D model with planet—disk
interaction in a VSI-active disk.
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7.2 Establishing convergence and numerical robustness

Having verified that our setup can produce a fully-saturated, VSI-active disk with turbulence levels
consistent with the literature, we now carry out a series of tests at different resolution configurations and
using different numerical parameters. In doing so, we can quantify the accuracy of our estimates of the
turbulent @ and test the robustness of our numerical setup.

7.2.1 Resolution study

The development and saturation of the VSI is the result of the growth of modes of different sizes, with
the smallest-scale modes typically growing the fastest. After a local linear stability analysis, we found
that the fastest-growing VSI mode has a wavelength of approximately 0.1H, or would equivalently be
resolved over at least 2 cells (the bare minimum to resolve it) at a resolution of 20 cps. Resolving the
fastest-growing mode over 4 cells, which might be a reasonable requirement, demands a resolution of
40 cps instead. While we expect the growth rate to change slightly at higher resolution due to that, global
turbulence levels do not necessarily depend on the fastest-growing mode but instead on the dominant
modes after the VSI has saturated. Since we are interested in the latter, we carry out a resolution study
by varying the radial and meridional resolution from 8 up to 48 cells per scale height (cps), with 16 cps
being our reference point as discussed in Sect. 7.1.

Regarding the growth rate of the VSI, our results are shown in Fig. 24. We found that resolving
smaller-scale radial modes does indeed affect the point in time when the instability begins to develop,
and our results converge after doubling the radial resolution to 32 cps (left panel of Fig. 24). However,
the measured growth rates are practically the same regardless of resolution at 16 cps or higher. We also
found that a resolution of 8 cps in the radial direction (blue curves) is inadequate to correctly resolve the
growth phase of the instability.
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Figure 24. Growth rates and saturation levels of the VSI at different resolutions. The fiducial resolution is N, X Ny = 600 x 128.
Left: increasing the radial resolution results in slightly more accurate measurements of the growth rate, converging at double
resolution. The drop in radial kinetic energy for double or triple radial resolution is the result of a parasitic instability developing
near the inner boundary (see Sect. 7.2.2). Right: increasing or decreasing the meridional resolution by a factor of 2 does not
have a noticeable effect.

On the other hand, changing the resolution in the polar direction yields the same results even when
running at 8 cps (right panel of Fig. 24). This is to be expected when one considers the geometry of
the instability: the vertically-elongated eddies of gas will correspond to radial wavenumbers kg that are
much larger than their vertical counterparts k. (according to Nelson et al., 2013, who estimate kg/k, >
1/h = 20 for our setup). As a result, resolution requirements are significantly more demanding in the
radial direction. Since our results seem to converge at double resolution in R, it makes sense that we can
safely halve or even quarter the resolution in the 6 direction and still resolve the saturated VSI modes.
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7.2 Establishing convergence and numerical robustness

However, a resolution of only 4 cps is relatively low when it comes to resolving gas dynamics (e.g.,
Rometsch et al., 2021), and therefore we do not run such a test.

Concerning turbulent stress levels, a higher resolution in the radial direction results in a slightly lower
@. With a measured a,.c ~ 6-7 x 107 at triple resolution, we find that the overall stress levels drop
by a factor of 1.5-2 depending on resolution (left panel of Fig. 25). This result is once again consistent
with Stoll and Kley (2014) and Manger et al. (2020). On the other hand, ayix behaves similarly (W,,/ P
increases linearly with height, see also Eq. (3.8)) regardless of resolution near the midplane, with the
linear behavior extending to higher altitudes z/H at higher cps. Once again, results practically converge
at double resolution in R.
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Figure 25. VSI stress parameters a,.. and anx at different resolutions. The fiducial model is shown in thicker blue curves.
Dotted curves correspond to models with a resolution lower than the fiducial. Stress levels are lower by a factor of up to 2 for
higher resolution. The turbulent mixing parameter a,ix as a function of height on the right panel has been normalized by the
factor 1700 we found in Fig. 22 and the limits of the y axis have been adjusted to highlight the consistency of our results for
standard or higher resolution.

We note that as the resolution increases, so does the number of VSI eddies that are visible in the
domain. This has been reported in the past (see for example Stoll and Kley, 2014) and is expected to not
converge as the resolution continues to rise. Nevertheless, turbulent stress levels seem to not depend on
the absolute number of VSI eddies and therefore resolving as many as possible is not a requirement.

With all of the above in mind, we run all following r6-2D models in Sects. 7.3.1 and 7.3.2 at a
resolution of N, X Ny = 1200 x 128 cells, which corresponds to 32 x 16 cps in the radial and polar
directions respectively. We opt for such a high resolution such that we can confidently quantify the
effect of different physics on our disk model, since r8-2D runs are reasonably computationally cheap
even at such a high resolution. However, for our rfp-3D models we stick to our fiducial resolution of
600 x 128 x N, cells, due to the very high computational cost of such models and given the acceptable
results of our fiducial resolution.

7.2.2 Numerics, boundary conditions, parasitic instability

In addition to our resolution study, we tried several different combinations of numerical parameters while
profiling the VSI. Below follows a list of parameters that we tested:

e We compared the results of our default solver, HLLC, against the more accurate but also more
computationally expensive and slightly less stable Roe solver. We found the same results in terms
of growth rates and stress levels regardless of solver, with the only difference being the starting
point for the development of the VSI.

o The less-diffusive monotonized central difference limiter (MC_LIM) yields the same results as our
default Van Leer limiter.
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7.2 Establishing convergence and numerical robustness

e A parabolic (3rd-order) reconstruction of the Riemann fluxes yielded the same results as our de-
fault, linear (2nd-order) scheme.

e For physical reasons we chose an outflow boundary condition in the polar direction, but a reflective
(closed) boundary yields functionally the same results.

Our choice of radial boundary conditions (strict outflow with a damping zone that slowly restores
the disk profile to its initial state over a damping timescale of 10 boundary orbits) was the outcome of
multiple tests where the disk would eventually destabilize well after the VSI was fully saturated. This
was the result of a physical or numerical instability that originates at the inner damping zone of the disk
and develops in the form of body modes, or vortices in the vertical direction. These modes start from
the midplane (one on each side) and grow in both the radial and polar directions, destabilizing the disk
as they propagate outwards.

An example of this behavior can be seen in Fig. 26, and a typical signature of this happening is
shown on the left panel of Fig. 28 for # > 0.07 and the right panel of that figure for # = 0.1 and
R < 0.6. As it can be seen in these figures, a large aspect ratio strongly encourages the growth of these
formations. They also are more likely to grow early for higher resolution, and slightly more so for a
locally isothermal equation of state.
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Figure 26. Example of a simulation where the parasitic instability at the inner boundary was left unchecked. The instability
develops in the form of two vortices symmetric about the midplane and expands outwards, destabilizing the entire disk. The
resulting dataset is unfortunately unusable, as all VSI modes are destroyed in the process.

We found that these unstable modes grow the fastest when using a reflective inner radial boundary
and thus opted to open the inner boundary edge. Due to how a rapidly-damping boundary zone can
similarly act as a “reflective wall”, a damping timescale faster than ~1-10 boundary orbits was pro-
hibitive. Following Stoll and Kley (2014), we tried adding a small amount of artificial viscosity in the
inner damping zone to no effect. Finally, we highlight the importance of damping all velocity compo-
nents (with u, being the most important one) to the initial profile in order to limit the development of
this instability.

We currently do not know whether this instability has numerical or physical origins. Its strong de-
pendence on resolution and the aspect ratio suggests that there might be a physical mechanism driving
it, but its dependence on boundary conditions implies that its growth might be exacerbated due to nu-
merical reasons and should otherwise not be as fast or large. Unfortunately, studying this phenomenon
is beyond the scope of this project, and we allow it to exist as long as it doesn’t affect our results.
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7.3 Exploring different physical parameters

In this section, we test the effect of different physical parameters on the VSI. Namely, since our end
goal is the modeling of planet—disk interaction for at least two different reference radii (and therefore
reference temperatures), we are interested in the effect of the temperature profile on the VSI. Secondly,
we would like to measure the growth and saturation levels of the VSI for different equations of state,
and test whether a simplified cooling approach that is compatible with the disk regions of our interest is
viable. Finally, it is worth measuring the effect of accounting for the azimuthal extent of the disk and
comparing it to our fiducial model, which assumes axisymmetry.

7.3.1 Temperature profiles

We can control the background temperature of the disk by adjusting its aspect ratio profile A(R). Our
reference model with 2 = 0.05 translates to Tyjq = 121 K at 5.2 au or 13 K at 50 au, but in the outer disk
a higher aspect ratio is typically expected due to disk flaring (e.g., Chiang and Goldreich, 1997; Flock
et al., 2020). In that case, & = 0.1 might be a suitable upper limit (Tmig = S0K at 50 au, 25 K at 100 au).
We nevertheless consider the choice 2 = 0.1 to be an upper limit, since /& hovers around 0.06—0.08 in the
radial range 50-100 au for typical disk parameters (e.g., Ziampras et al., 2020b).

An example of VSI activity for two disks with different radial temperature profiles can be seen in
Fig. 27. A cooler disk (h = 0.05) shows more, narrower VSI modes when compared to a hotter disk
(h = 0.1). The hotter disk also shows much stronger radial and vertical motion, especially near the disk
surface where the vertical shear rate is strongest.
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Figure 27. Two VSl-active disks with different reference temperatures, using the aspect ratio / as a proxy. The left and right
panels depict the radial and vertical velocity components, respectively. The number of VSI modes depends on #, as can be
seen by counting the number of “sheets” on either panel. A hotter disk (higher /) shows more and stronger VSI modes.

Fig. 28 shows a comparison between models of non-flared disks (g = —1) with a different aspect
ratio. The VSI develops earlier and faster for hotter disks (higher /), consistent with both our theoretical
expectations and previous results (Nelson et al., 2013). The corresponding « is also larger for higher 4,
in agreement with Manger et al. (2020).

Curiously, our computed scaling of @ as a function of & yields a power law relation « oc h'*!, contrary
to the exponent of 2.6 +0.3 that Manger et al. (2020) found. There might be multiple reasons responsible
for this contrast:

o Our grid setup uses a radial resolution of 32 cps compared to the 18 cps in that study. Based on our

results from the resolution study in Sect. 7.2.1, we are inclined to believe that our models might
resolve the VSI more appropriately.
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Figure 28. Growth rates and related turbulent stress for disks with different reference aspect ratios. The inner disk is often
destabilized for large &, as can be seen by the upward-trending Ey;, on the left panel shortly after the VSI has saturated. The
right panel includes a model of a flared disk where ¢ = —0.5 and hy = 0.035, highlighting the radial dependence of @, on A.

o We estimate a(R) through a series of time-averaging and radial smoothing, which should yield
better results than their estimate of a single (@) = (Tr,)/(P), averaged over the entire active
domain. Specifically, the latter is subject to pollution from the boundaries (where the VSI might
not be active) or disk surfaces (where P drops very low).

e We have already established that a radial range of 0.4-2.5 Ry is likely not enough to properly
compute a robust @(R) as the latter is subject to boundary effects (see Fig. 22).

The combination of the above suggests that the true exponent in the relation between « and # likely lies
somewhere between our result and that of Manger et al. (2020).

While our fiducial model does not consider disk flaring (¢ = —1), we discussed previously in
Sect. 2.5.1 that the vertical shear rate scales linearly with |g| and thus a flared disk should exhibit weaker
VSI activity (Nelson et al., 2013). While we do not focus on flared disks in this project, we provide a
comparison with a model with ¢ = —0.5 in the right panel of Fig. 28. We note that, since the aspect
ratio is a function of R for ¢ # —1, the normalized shear rate R%%QI‘(I is no longer constant with radius
(see Eq. (2.30)) and as a result @ grows with distance from the star. Nevertheless, the accretion channel
is still contained in the region |z| < H even for the flared model, as can be inferred by the mean radial
velocity profile in Fig. 29.
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Figure 29. Time-averaged radial velocity field @iz similar to Fig. 20, but for a flared disk with ¢ = —0.5 and /, = 0.035. We
highlight the accretion channel contained about the midplane within |z| < H, even for this flared model. Since now 4 increases
with R so does the vertical shear rate, and as a result ii/c increases in absolute value with radius. This can be inferred by the
deeper shades of blue and red with increasing distance on the left panel, or the higher velocities on the right panel.
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7.3.2 Equation of state

So far, we have assumed an ideal equation of state with a constant cooling timescale 8 = 1072. For all
practical reasons, this is indistinguishable from a locally isothermal equation of state, or equivalently that
the cooling timescale of the disk is infinitely short, maintaining 7'(R) constant with time. This creates
optimal conditions for the development of the VSI, as the effects of buoyancy are practically ignored
during the linear phase of the development of the instability (see Sect. 2.5.1). Realistically, however,
protoplanetary disks have a longer cooling timescale (8 ~ 10~! even at 50 au) that can also be a function
of height and distance (see Sect. 2.2.3 and Fig. 6).

We first verify that our fiducial model with 8 = 1072 is consistent with a locally isothermal model,
before setting up models with various g values. For simplicity, similar to the fiducial model, we choose
a constant 8 throughout the entire domain and relax the temperature profile to the initial conditions,
where T'(R) corresponds to a disk with a constant aspect ratio 2 = 0.05. Then, according to Eq. (2.32)
and our choice of parameters for our fiducial model, the VSI should function for 8 < Bt = 0.125, or
B < £|%2 ~ 0.09. To test this hypothesis, we run a grid of models for 8 € {10-3,1072,107!,10°, 10"}
and then additional models based on our results until we converge on Si.

We consolidate our results on Fig. 30 for selected values of 8 that highlight the transition of the VSI
from fully saturated for 8 < 0.05 to inactive for 8 > 0.1. This transition seems to be centered around
Berit & 0.08-0.09, with the 8 = 0.08 model generating stress levels weaker by an order of magnitude
(@ ~ 8 x 107%) compared to the typical @ ~ 9 x 107> for the fully saturated cases. Curiously, the VSI
seems to operate to some extent in the 5 = 0.09 model as well, as seen on the left panel of that figure
(brown line), but the turbulence generated dies down over time. Finally we note that stress levels, while
roughly the same for R > Ry, are noticeably weaker for 8 = 0.05 at R < Ry. This is consistent with the
results of Manger et al. (2020), who suggested a sigmoidal dependence of @ on g8 instead of a sharp VSI
activity cutoff at SB.
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Figure 30. Growth rates and turbulent stress for disks with different equations of state. The computed «,. remains consistent
between our locally isothermal setup (“iso””) and our S-cooled models as long as 8 < B.ic = 0.1. The cutoff around Sy is
not sharp, however, as can be seen by the slightly weaker stress at R < R, for 8 = 0.05 and the existent but much weaker
VSI activity for 8 = 0.09. Our radiative model (“rad”) agrees very well with our fiducial model. We used a radial smoothing
window of +2H on the right panel to make it easier to distinguish different curves.

In addition to these models, we tried starting from the fully VSI-active state of our fiducial model
and continuing its evolution using different values of 8. We found that our results remain consistent, with
models with 8 < B sustaining the initial turbulence levels. On the other hand, the VSI is completely
quenched over 100-200 orbits in models with higher .

Finally, we would like to test whether a (R, z) profile could affect our results, provided that the
conditions for the development of the VSI are met (i.e., 8 remains sufficiently short). To that end, we

3Models at double resolution, see Fig. 25.
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ran a model where cooling was treated with the FLD approach discussed in Sect. 2.2.1 and implemented
following Appendix A. Since there is no source of heating until the VSI can develop, we make the
assumption that the temperature profile is vertically isothermal and that the radiation temperature Tyq =
(Eraa/ar)'* at the vertical boundaries of our disk is equal to the local gas temperature T'gys(R) o R
This is a very good approximation as long as our boundary wall is below the 7,,s = 1 surface and
therefore shielded from direct starlight.

We can verify this assumption by solving Eq. (2.6) for an equilibrium state (9/dt = 0, ug = u, = 0),
from which we find that 7 = T,q and 0T /0z = 0. We confirmed this by modeling a disk using our
irradiation module (discussed in Sect. 2.2.1, implemented following Appendix B) and comparing Tgas
to Trag, finding the expected result below the T, = 1 surface. We highlight that, while an irradiated
disk model implies a flared radial temperature profile (¢ ~ —1/2), we are only interested in comparing
against non-flared models while allowing 3 to be a function of height and radius. Since Ty,q is equal to
Ty, regardless of the gas temperature profile, we prescribe Trg = To R~ where Ty corresponds to an
aspect ratio of 4 = 0.05 at the vertical boundary walls.

For the FLD model, we used the dust opacity model of Lin and Papaloizou (1985) assuming a dust-
to-gas ratio of 1%, and a reference radius of Ry = 5.2au. The choice of reference surface density
Yo = 20g/cm?, while definitely unrealistic, is necessary to allow the VSI to develop as a test with
a more realistic Xg = 200 g/cm? did not allow the VSI to grow due to its prohibitively long cooling
timescale. We note that for typical protoplanetary disks, the VSI can develop at radii R > 30 au (Flock
et al., 2020). For our choice of parameters, our low-density model is similar to one for typical ALMA
disks at Ry ~ 50 au.

Our results for the radiative model are incorporated into Fig. 30 with the tag “rad”, and show that
the VSI is fully active even though g varies with height, as expected. Based on these results, we chose
to perform our rf¢p-3D runs using the simplified S-cooling approach. This keeps our models as scale-
free as possible (since proper radiation transport requires knowledge of the opacities, which are heavily
dependent on the local temperature and density), and is far cheaper in terms of computational cost.

7.3.3 3D effects

The VSI is an inherently axisymmetric instability as it drives radial and vertical motion. Nevertheless,
the azimuthal component of gas velocity u,, is still perturbed as a result of this instability (see Fig. 19).
It is therefore interesting to measure the impact of 3D effects onto the turbulent stress levels of a VSI-
active disk, as well as the geometry of the instability in such a disk. For example, Flock et al. (2020)
showed that if only part of the disk is VSI-unstable, it is possible for vortices to spawn on the inter-
face between the stable and unstable zone due to the Rossby-wave instability. Additionally, Manger
and Klahr (2018) showed that at a high enough resolution, large-scale vortices can still develop in the
midplane even in fully VSI-active disks. Nevertheless, vertical modes remain dominant and the vertical
velocity component u, remains essentially axisymmetric (Barraza-Alfaro et al., 2021).

Fig. 31 shows a model where we extended the fiducial setup in the azimuthal direction using 600
cells (5 cps) in the full range ¢ € [0,27) and ran for an additional 200 orbits, similar to Flock et al.
(2020). Due to the parasitic instability that develops at R < 0.5 Ry (discussed in Sect. 7.2.2), several
non-axisymmetric modes form in the inner radial boundary and launch spirals that permeate the disk,
disrupting VSI modes at R < 0.7 Ry but not affecting them outside of that zone. On the same figure
a small vortex is visible, marked with a green contour. Fig 32 shows a close-up on the vortex and the
planar velocity field around it.

A comparison between our 2D fiducial model and a 3D model is shown in Fig. 33. To calculate the
mean field and stress tensor components, we used 150 snapshots between 50-200 Py from the start of the
3D run. We find that accounting for 3D effects slightly increases the turbulent stress and by extension «
to approximately 2 x 107, This is consistent with the literature (e.g., Stoll and Kley, 2014).
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Figure 31. Midplane structure of a VSI-active disk. The top left panel shows density deviations from the azimuthal mean to
highlight the non-axisymmetries in the form of spirals and the presence of a small vortex, marked with a green contour. The
remaining panels show different velocity components at the midplane. Notable features include the inward drift of gas (ug
shows primarily shades of blue), the rather unperturbed, axisymmetric VSI signatures in u,, and the swirling velocity field
around the vortex. A close-up view on the vortex can be seen on Fig. 32. The inner boundary exhibits the parasitic instability
discussed in Sect. 7.2.2, which is likely responsible for most of the spirals throughout the disk and the weaker VSI activity for
R 5 0.7R,.
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Figure 32. A close-up on the gas density and velocity field of the vortex highlighted in Fig. 31. The arrows denote the direction
of streamlines of the planar velocity (ug, u, — RQ). The vertical velocity field, which is largely dominated by VSI motion, is
not noticeably affected.
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We note, however, that the spiral arms launched by the instability near the inner boundary as well as
small-scale vortices contribute to the overall stress by affecting the radial velocity field. Larson (1990)
showed that trailing spiral shocks such as those present in our simulations can produce an effective

accretion parameter
aee ~ 0.013 VA3 + 0.0872, (7.5)

or ~ 2 x 10~ for & = 0.05. This estimate agrees very well with our findings and hints at the parasitic
instability possibly overshadowing VSI activity in terms of accretion efficiency. To isolate the contri-
bution of VSI eddies, we eliminate spiral arms throughout the domain by instead computing @,¢. using
the azimuthally averaged velocity field. We find that, even though the overall stress is higher in 3D, the
turbulence produced by VSI modes alone is weakened, with arys; ~ 8 X 107 (green curve on the right
panel of Fig. 33).
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Figure 33. Comparison of the saturation and stress levels of the VSI between our 2D fiducial model and a 3D model. The
turbulent accretion parameter @, is slightly larger in the 3D model, due to the effect of spirals on the velocity field. Isolating
the contribution of the VSI yields the green curve on the right panel instead.

Spiral arms launched by vortices act on the Ry plane, in contrast with the VSI which generates
vertical motion. While these spirals can induce very efficient accretion—often overshadowing the VSI—
as discussed above, it is the VSI that is ultimately the primary driver of vertical mixing in the gas.
This implies that as spirals and other non-axisymmetric features along the midplane perturb or even
destabilize VSI modes, they also inhibit the ability of the VSI to lift material off the midplane even
though the radial accretion profile is otherwise unaffected or even enhanced. In other words, while the
effective viscosity generated through spiral shocks results in a higher @, compared to that by the VSI
alone, the turbulent mixing parameter anix is lower in regions where spirals and vortices interfere with
VSI activity. To highlight this behavior, we compare anix(z) computed through Eq. (3.8) at two different
radii for the models shown on the right panel of Fig. 33 in Fig. 34. We will revisit this argument in
Sect. 8.3, where we will show how an embedded planet changes this picture.
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Figure 34. Vertical profiles of @y at two different reference radii for the fiducial r6-2D model compared against an rfp-3D
model with the same parameters. The corresponding «,.. is shown on the right panel of Fig. 33. Left: the contribution of the
VSI to @, drops significantly near the inner boundary for the 3D model, and as a result so does vertical turbulence. Since the
VSI is the primary mechanism that drives vertical motion, @ is very low when compared to the 2D model even if the stress
by spiral arms is considered. Right: at R = 2 Ry, VSI activity produces a total @, that is higher than its 2D counterpart. This
is reflected in the higher @y for |z < 2H. Once again, the orange and green curves agree very well because spiral arms only
contribute to a very small fraction of a;x, which is primarily supplied by VSI turbulence.
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8 Results V: Planet—disk interaction in VSI-active disks

In this section we analyze planet—disk interaction in VSI-active disks. We investigate the impact of the
planet’s presence on VSI activity via the launching of spiral arms and the generation of vortices, and the
opposite via planet migration in a VSI-active disk.

Our setup is similar to the 2D fiducial model in Sect. 7.1 in terms of physical parameters (p = —1.5,
g = —1) and resolution (N;ps ><N;ps xN;p * = 16x16x5). We use an ideal equation of state, and allow the
disk to relax to its initial temperature profile with a constant 8 = 1072 to counteract the planet’s shock
heating while still allowing the VSI to fully develop.

To speed up calculations, we start from the quasi-equilibrium state of the VSI-active disk from a 2D
model that has evolved for 1000 orbits. We expand the model into 3D by copying all fields N,, times
in the azimuthal direction, and then perturbing all velocity components by 1% of the local sound speed,
similar to the method of Flock et al. (2020). We then run the model for an additional 200 orbits (total
time: 1200 orbits) to reach a new quasi-steady state. Next, we insert the planet and allow it to grow to
its final mass over a timescale of 100 orbits (total time: 1300 orbits) according to the formula of de Val-
Borro et al. (2006) while keeping it fixed at R, = Ry, z, = 0. After 500 orbits (total time: 1700 orbits)
we confirm that the disk has reached a new quasi-equilibrium state, and allow the planet to feel the disk
feedback and possibly migrate. During this time period, the star feels the disk’s gravitational pull as
well. This continues for 300 orbits (total time: 2000 orbits). This procedure is summarized in Fig. 35.
For simplicity, we refer to the time when the planet begins growing (¢ = 1200 Py) as fy.
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Figure 35. Timeline of 3D models involving planets. The planet is inserted at 7, = 1200 Py and grows over 100 orbits. It then
starts migrating at #,"® = fy + 500 Py = 1700 Po.

To explore the behavior of both VSI activity and planet—disk interaction, we choose to vary the
planet mass M, € {0.3, 1} M; = {3 X 1074, 1073} M, and the reference aspect ratio & € {0.05,0.1} for a
total of 4 models. Our choices result in a grid of simulations that explore the full range from the linear,
low-mass regime to the highly nonlinear, high-mass regime of planet—disk interaction.

We begin our analysis by identifying and monitoring the development of planet-generated features
such as spiral arms, gaps and vortices in Sect. 8.1. We then continue by investigating the extent to which
the VSI can function alongside a planet in protoplanetary disks in Sect. 8.2. Finally, we take a look at
the planet migration scenario in a VSI-active disk in Sect. 8.4.
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8.1 Planet—disk interaction: spiral arms, gaps, rings, and vortices

As we discussed in Sect. 2.6, planets interact with the disk around them by launching spiral arms that
transport angular momentum radially, restructuring the gas distribution in the disk. In the case of high-
mass planets, it is also possible for one or more gaps to open near the planet’s orbit. To differentiate
between the low- and high-mass regimes we can define the thermal mass My, (Zhu et al., 2015)

h\> M
~ 1My | =] == 8.1
R, J(0.1) Mo ®.1)

¢

GQk

My, =

We expect to see nonlinear effects such as gap opening for M, > My, (Lin and Papaloizou, 1993),
and no such effects otherwise. Since the development of vortices through the RWI is largely tied to
the formation of steep surface density gradients (e.g., Hammer et al., 2019; Rometsch et al., 2021), we
expect to only see vortices in models with planets in the high-mass regime as well. A summary of our
planet—disk models in the context of the thermal mass is provided in Table II.

h M, M, Mol M, [My] regime
0.10 100Mg 3x107* 0.3 linear
0.10 1My 1x1073 1.0 moderately nonlinear
0.05 100Mg 3x107* 2.4 nonlinear
0.05 1 M; 1x1073 8.0 strongly nonlinear

Table II. Physical and numerical parameters used in our 3D models of planet—disk interaction.

Fig. 36 showcases a typical image of planet—disk interaction in the high-mass regime (M;, = 100 Mg =
2.4 My, at h = 0.05). The two panels show a Cartesian (xy) and polar (Ry) view of the surface density
structure of the disk after 500 planetary orbits. Various planet-generated features such as the deep gap
around R = R),, the shallower secondary gap at R = 0.6 R, and multiple vortices are annotated.
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Figure 36. An example of planet—disk interaction in the high-mass regime (M), = 2.4 My,), similar to Fig. 9 but with a full-
3D model. Left: a Cartesian (xy) view of the surface density structure, showing a clear gap around the planet’s orbit and a
prominent vortex orbiting at its outer edge. Spiral arms permeate the disk. Right: a polar (Ry) view with a breakdown of
most relevant planet-generated features, with annotations that highlight their location and origin. The secondary vortex at
R ~ 0.65 R, is more easily visible here, and the elliptical shape of vortices in the Ry plane becomes clear.

Vortices, in particular, can launch their own spiral arms and interact with the disk as they decay or
migrate from the gap edge that they formed at (Paardekooper et al., 2010; Rometsch et al., 2021). As a
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result, it is often difficult to isolate the contribution of vortices to the overall disk profile while one or
more vortices are present. Examples of such behavior can be found at the outer disk on the right panel of
Fig. 36, where planet- and vortex-generated spirals begin overlapping, and near the outer density bump
at R ~ 1.3 R, on the bottom right panel of Fig. 38, which is in part exaggerated due to the presence of
the vortex. Nevertheless, vortices follow their own life cycle and eventually dissipate over time, as can
be seen on Fig. 37 for the vortex in the inner disk, whose lifetime of ~ 10° local orbits is consistent with
the findings of Rometsch et al. (2021) for a disk with @ ~ 107, 8 = 1072 and & = 0.05.
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Figure 37. Time evolution of the vortensity @w = % (V x ) - Z in the inner disk, normalized to the Keplerian vortensity
wy = ﬁQK This quantity is a good tracer of vortex formation, as can be seen by the development of dark spots that form
near the planet’s inner gap edge (a). As time advances from left to right, the gap edge becomes steeper and the multiple small
vortices that form on it (b) eventually merge into a large vortex (c) that migrates inwards as the gap continues to widen. The
vortex then dissipates over time (d) as turbulent diffusion and angular momentum transport along its spiral arms drain its mass
reservoir, restoring the local vorticity to its Keplerian background @(Z (). The vertical dashed white line helps guide the eye.

Regarding the ring and gap structure of the disk in the high-mass regime (see Fig. 38), the Saturn-
sized planet exceeds the thermal mass for 2 = 0.05 and therefore opens a deep gap around its orbit with
2/Zo < 0.1 (using the definition of a gap by Crida et al., 2006). The pressure bump formed by the
accumulation of gas on the outer gap edge also forms a ring at R = 1.3 R,. The combination of a very
low viscosity (@ ~ 1075-107*) due to the VSI and a functionally locally isothermal equation of state for
B < 1 allow the planet to open a secondary gap at R = 0.6 R, (Miranda and Rafikov, 2020b). The radial
position of the secondary gap is consistent with the fit of Zhang et al. (2018) for @ ~ 107°-107*. The
carving of this secondary gap also results in the formation of a secondary ring, peaking at R ~ 0.75 R,,.

On the other hand, the same Saturn-sized planet only amounts to M}, = 0.3 My, in a disk with 2 = 0.1.
As a result, planet—disk interaction falls in the linear regime, as can be seen by the lack of a gap around
the planet’s orbit and the good agreement between the expected and simulated position of spiral arms on
the left panel of Fig. 39. The disk simply continues exhibiting strong VSI activity, and accretes steadily
onto the star over time as can be seen on the bottom right panel of that figure.

In both cases, a cross section through ¢, reveals the vertical density stratification of the disk. Planet-
and vortex-generated spirals appear as red (overdense) sheets in the top right panel of Figs. 38 and 39
and can be seen covering the full vertical extent. The gas trapped within the planet’s Hill sphere can also
be seen in those panels.
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Figure 38. Gas structure in the high-mass regime (h = 0.05, M, = 100 Mg = 2.4 My,) after 500 planetary orbits. Left: X across
the disk, similar to Fig. 36. Dashed black curves mark the position of spiral arms using linear theory (Ogilvie and Lubow,
2002). Top right: vertical density stratification at ¢, highlighting the vertical structure of spiral arms and the gas accumulation
around the planet’s Hill radius. Bottom right: the azimuthally averaged disk surface density £ with and without a planet (green
and orange curves respectively), showing the development of radial structures like gaps and rings. We note that the use of an
azimuthal average shows a ring with seemingly high contrast at R = 1.3 R;,, but most of the gas is instead accumulated around
the vortex at that radius. Using the azimuthal median (dashed black line) corrects for this bias.

log(X/Ly,) at t = to + 500 Py log(p/Pt,)
-0.3 —-0.2 -0.1 0.0 0.1 -0.2 —-0.1 0.0 0.1 0.2 0.3
BT T T T T T T ] T T o ST T T T T T T r—
2.0 T |‘ WY M "\_ - ]
- 1 F ‘ R, . J25
L ‘\\‘u i1 F ] S
i ® "1E Joo ®
1.5F Y 1 - ] °
C Y 1t ] N
L e :" 725
& ‘ 1 , i B
3 1.0 _— | __ S T T T T T T ]
; ‘.‘\ : - —t=0 —t=t0__6OONE
- e s —t =ty +500F ] L
0.5 Vb ] =)
\ Sy —1400 g
[ S
0.0 A L i L L L M| L 200
5 1 2 5 1 2
R [Rp] R [Rp]

Figure 39. Similar to Fig. 38 for the low-mass regime (h = 0.1, M, = 100Mg = 0.3 My,). In contrast to the previous figure,
the planet is unable to open a gap and the disk continues to accrete in an axisymmetric fashion due to the VSI (left and bottom
right panels). The planet’s Hill sphere is more massive in part due to the lack of a gap (top right panel). Here, the lack of a gap
results in the RWI being unable to drive vortex formation.
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8.2 VSI activity in the presence of a planet

Planet-generated features excite non-axisymmetric motion in the disk midplane in the form of spiral
arms and—in the high-mass regime—vortices. In addition, the gap opening process induces steep radial
density gradients. In this section, we examine the extent to which these features can affect the activity
of the VSI. We note that the planet’s presence quenches the parasitic instability near the inner radial
boundary (see Sect. 7.2.2), so the development of VSI modes at R < 0.7 R, might now be possible.

We first carry out our analysis qualitatively, using the vertical velocity at the midplane u,(z = 0) as
a proxy for VSI activity similar to Figs. 19 and 31, where we highlighted that axisymmetric, rapidly-
alternating vertical motion as a function of radius is a typical signature of the VSI. We break down our
results into four paragraphs, one for each model, and comment on their behavior and notable patterns
individually in Sects. 8.2.1 through 8.2.4. These four paragraphs are sorted by the planet’s mass in My,,
in ascending order.

8.2.1 Linear regime: 1 = 0.1, M = 100 Mg = 0.3 My,

In the linear regime, the planet’s impact on the overall disk structure is minuscule. The lack of any
notable features such as gaps or vortices, coupled with the strong VSI turbulent stress for 7 = 0.1, ef-
fectively results in the VSI being largely uninhibited by the planet’s presence. The top panels of Fig. 40
show the disk surface density structure at three timestamps during the planet’s growth and interaction
with the disk. Excluding the planet’s weak spirals and the vortex that develops due to the parasitic
instability discussed in Sect. 7.2.2, the vertical velocity component of the gas remains practically ax-
isymmetric. The bottom panels on the same figure show that VSI modes are partially perturbed near
R, and otherwise remain axisymmetric, albeit slightly weaker due to the presence of the planet’s spiral
arms.
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Figure 40. Time evolution of the disk midplane in the linear planet—disk interaction regime, with 4 = 0.1 and M, = 100 M, =
0.3 My,. The three pairs of panels, from left to right, show the disk during the planet’s growth phase, at the end of the growth
phase, and in a quasi-equilibrium state. Top: surface density normalized to its profile at #,, when the planet is introduced.
Bottom: the vertical component of gas velocity at the disk midplane, normalized to the local sound speed. VSI signatures
appear as vertical red and blue stripes.
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Fig. 41 compares the azimuthally averaged vertical profile of u, for VSI-active disks in a saturated
state between our fiducial r6-2D model, an r8¢-3D model without a planet, and the model where the
planet is embedded. The two 3D models—with and without a planet—agree very well qualitatively,
with the model including a planet showing slightly weaker vertical activity.
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Figure 41. Comparison of a saturated state of the VSI for three different models with identical physical parameters (h = 0.1),
using u, as a proxy for VSI activity. Left: an axisymmetric r6-2D model. Middle: a disk-only rf¢-3D simulation. Right: a
3D model with planet—disk interaction in the linear regime (M, = 100 Mg = 0.3M;,). The two right panels show qualitatively
similar results, due to the planet’s inability to develop strong radial or azimuthal features in the disk.

8.2.2 Moderately nonlinear regime: 7 = 0.1, M, = 1 Mj = 1 My,

With a planet massive enough to equal the disk’s thermal mass, the development of nonlinear effects
such as gap opening is to be expected. In this model, the position and shape of spiral arms launched
by the Jupiter-sized planet agree very well with the linear regime estimates in Sect. 2.6. However, the
planet carves a wide gap around its orbit and, as a result, a vortex forms at the gap’s outer edge. We note
that the weaker, secondary bump that seemingly forms in the inner disk exists in part due to the outflow
condition through our inner radial boundary, as the secondary gap should be centered at R = 0.4 R, for
this combination of parameters (Zhang et al., 2018) and is therefore subject to our boundary conditions.
Our observations are consolidated in the top panels of Fig. 42.

The massive planet has a considerable impact on VSI activity in this regime. As can be seen in
the lower panels of Fig. 42, the VSI is weakened significantly in most regions of the disk, for different
reasons:

o In the inner disk, the formation of a secondary density bump seems to inhibit VSI activity to the
point that the latter vanishes as the secondary gap continues deepening.

e Around the planet’s orbit, the horseshoe-like motion of gas disturbs the ¢p-component of the gas
velocity, ultimately destabilizing and destroying VSI modes.

¢ In the outer disk, the presence of a massive vortex has a similar effect. the combination of a radial
density gradient around the outer pressure bump at R = 1.5R,, and the vortex’s strongly non-
axisymmetric perturbations of ug and u, result in a VSl-inactive disk exterior, up to R ~ 1.8 R,,.

The right panel of Fig 43 shows the azimuthally averaged vertical velocity of the disk in a saturated,
quasi-equilibrium state after the planet has completed 500 orbits. As shown on that panel, VSI activity
is significantly damped near the inner density bump (purple band), the planet’s gap region (gray band)
and the outer vortex (green band). Outside those regions, which span the majority of the radial extent of
the disk, VSI modes continue to exist in a weaker state similar to the linear regime.

50



8.2 VSl activity in the presence of a planet

t—to+5OP0 t—t0+100P0 t—t0+500P0

18- 1 B 1 B 1 Bo2

r 1 BN 1L 1 (300
141 4 F 4 F \ - _
e I 1t \ |: 7 ] —ozg
S 10F . ] k J F . 3
S \ 1°C 1t ] 4043
0.6~ 1F 1F 18 06

02 | 1 F . 1 F 4 |l -os

- — .WT‘T]. .. 7 03

18F - - ‘ -

C C : C ) ] 0.2
L r J L . (]
L4 - 1 - \/ 1 (401 £
r r C 1 R
S 10F L g L d [doo E
B C g \\\ B \ ] ®
0.6 I 0 ¢ 7 _0‘1§

02: E \ C 1 ] 0.2

’ L 1 1 L 1 1 l L\ I*‘ 1 1 | L 1 1 1 1 II 1 1 F _03

5 5 N 1 15 2 5 N 1 15 2 ’

R [Ry] [Ro]

Figure 42. Time evolution of ¥ and u, at the disk midplane similar to Fig. 40, but for M, = 1M; = 1 My, In this regime,
nonlinear features such as gaps and vortices develop. As a result, VSI activity is significantly weaker than for the linear regime.
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Figure 43. Comparison of the vertical component of the gas velocity in different saturated states similar to Fig. 41, but for
h =0.01 and M, = 1M; = 1 My,. VSI modes are significantly weaker near the planet’s gap region (gray band) and the two
bumps in the inner and outer disk (purple and green band, respectively). VSI activity in the outer region is especially damped
due to the massive vortex forming on the planet’s gap edge.

8.2.3 Nonlinear regime: i = 0.05, M, = 100 Mg = 2.4 My,

In this model, which functions as an extension of our fiducial 76-2D model presented in Sect. 7.1 and
analyzed in 3D in Sect. 7.3.3, the mass of the Saturn-sized planet with M, = 100 Mg amounts to 2.4 My,
placing the planet well within the nonlinear, high-mass regime. As a result, the VSI is affected in a
similar manner to the previous model in Sect. 8.2.2 in the sense that the formation of pressure bumps
and large-scale vortices inhibits its activity.

However, the lower aspect ratio of 0.05 instead of 0.1 affects not only the thermal mass, but disk
hydrodynamics as well. The primary and secondary gaps carved by the planet are narrower, resulting
in radially smaller VSI-inactive zones, but at the same time they are deeper, creating steeper density
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gradients and allowing vortices to form even in the inner disk, which can ultimately suppress the VSI
locally. In addition, the lower aspect ratio implies a weaker vertical shear rate, but at the same time
individual VSI modes are radially thinner (see Fig. 27). This could potentially allow them to develop
in-between VSl-inactive zones, where the radially wider modes for 2 = 0.1 would get partially eroded
and therefore destroyed.

Fig. 44 shows three snapshots similar to previous models, with an interesting development of events:
at the early stage of planet—disk interaction (left panel), the initial launching of planetary spiral arms
seems to affect the inner disk more strongly, destabilizing VSI modes momentarily. Since the growth
rate of the instability—which is proportional to Qx—is much faster in the inner disk, VSI activity
resumes over the next 50 orbits (middle panel). However, at the same time, vortex formation around
the planet’s gap opening region interferes with its development. As can be seen on the same panel, the
combination of planet- and vortex-generated spiral arms traveling through the inner disk disturbs the
otherwise-axisymmetric nature of the VSI, even though the latter can grow fast enough to survive. In
the later stages of planet—disk interaction, once a deep gap has opened and a massive vortex has formed
in the outer disk (right panel), VSI turbulence in the outer disk has weakened significantly. On the
other hand, vortex activity in the inner disk has subsided and given way to a radially narrow ring at
R = 0.7-0.8 R, allowing the VSI to saturate at levels similar to the 2D setup at R < 0.7 R),.
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Figure 44. Time evolution of ¥ and u. similar to Fig. 40, with h = 0.05 and M, = 2.4 My,. VSI activity is directly linked to the
presence of rings, gaps, and vortices.

Similar to previous sections, the azimuthally averaged profile of u,(R, z) in a quasi-equilibrium state
is shown in Fig. 45. In this saturated state, VSI modes are mainly active in the region R < 0.7 R;,, where
they are not disturbed by planet or vortex activity.
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Figure 45. Comparison of the azimuthally averaged u.(R, z) similar to Fig. 41, for 2 = 0.05 and M, = 100Mg = 2.4 My,. The
secondary pressure bump in the inner disk (purple band) is narrower compared to Fig. 41, and the parasitic instability in the
inner boundary has been quenched due to the massive planet’s presence, allowing the VSI to develop again for R < 0.7 R,,.

8.2.4 Strongly nonlinear regime: 7 = 0.05, M, = 1 Mj = 8 My,

For our last model, we increase the planet’s mass to 1 My compared to our fiducial run with #,
100 Mg. The planet now has a mass of 8 times the disk thermal mass, and the disk is dominated by
nonlinear effects. This can be seen in Fig. 46 in the form of deep gaps and strong vortices that form earlier
than in previous models, and violent perturbations of u, especially within the planet’s corotating region.
The picture is similar to the fiducial case, with the difference that the Jupiter-sized planet influences a
larger radial extent of the disk, interfering with VSI activity on a larger scale. This becomes clear when
looking at the vertical profile of u, in Fig. 47, with the majority of VSI modes having disappeared in the
radial range 0.7 < R/R;, < L.5.
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Figure 46. Time evolution of X and u. at the disk midplane similar to Fig. 44, but for M, = 1M; = 8 My, In this strongly
nonlinear regime, non-axisymmetric planet-generated features dominate the flow, disrupting VSI activity globally.
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Figure 47. Saturated u, profiles between different disk models similar to Fig. 45, for M, = 1 My = 8 My, instead. The planet’s
presence completely shuts down the VSIin the region 0.7 < R/R;, < 1.5, and weakens it significantly outside of that zone.

8.3 VSI stress levels

Spiral arms launched by a planet can be a very efficient source of viscosity. Building on Eq. (7.5) by
Larson (1990), Goodman and Rafikov (2001) showed that the effective a,.. by planet-generated wakes
that are launched by a planet and are damped over a distance smaller than R, can be estimated as

wu = 32 (2L RAHE (BOKGME s () (M ) (8.2)
=2 N75+1) oMM\ 28 ‘ 005/ \100Mg/ ‘

for our choice of parameters. As a result, in order to isolate the effects of the VSI we follow the same
strategy as in Sect. 7.3.3, by using the azimuthally averaged velocity field when computing the Reynolds
stress tensor T. Nevertheless, for comparison, we also compute and plot the total stress, including the
planet’s contribution. We choose to smooth over 300 orbits using 300 snapshots between ¢ = 79 + 200 Py
and #9 + 500 Py, to ensure that the planet has fully grown and the disk has reached a quasi-equilibrium
state by the time we begin searching for VSI activity.

Our results are consolidated in Fig. 48 for our grid of 4 models. On each panel we overlay shaded ar-
eas that correspond to vortex activity (purple and green bands) or gap regions (gray bands), as discussed
in Sect. 8.2. The panels are ordered such that the planet mass in units of the disk thermal mass increases
along a “Z” shape from top left to bottom right, and the vertical shear rate decreases from top to bottom.
Solid lines account for stress due to VSI activity alone, while dashed lines include all turbulent stress
that can drive accretion in the disk, which is dominated by spirals throughout the domain. A thick black
line on the top right of each panel denotes the radial smoothing length during our averaging process, as
a proxy for a resolution limit on visible radial structures due to convolution.

Our results agree with the qualitative analysis in Sect. 8.2 and quantify the impact of the planet’s
presence on VSI activity. In the linear regime (top left panel of Fig. 48), the planet’s spiral arms perturb
VSI modes weakly, reducing the effective accretion parameter from @y ~ 2.5 X 10* to 1.5 x 107%.
Of course, if we were to take into account the effective viscosity due to the planet’s wakes following
Eq. (8.2), we would find a total aeg ~ 8 x 107 that is constant in the inner disk but drops in the outer
disk, as the planet’s trailing spiral arms damp over distances wider than R, (Goodman and Rafikov,
2001). For the rest of our analysis, we will focus on VSI stress (solid lines) only.

As the planet’s mass increases compared to the disk thermal mass, we find that VSI activity is re-
stricted to very narrow regions that are not directly affected by planet-generated features such as vortices
or gap opening. We find an example of this behavior for M, = 1 My, on the top right panel of Fig. 48,
where we observe visibly weaker VSI stress (6 X 107 down from 2.5 x 107#) in the few white regions
of the panel, and significantly lower within the colored bands. We note that, since the planet opens a
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Figure 48. Comparison of the turbulent accretion parameter «,..(R) for four different 3D models with varying aspect ratios A
and planet masses M,,. The ratio M,/M,, increases along a *“Z” shape from the top left to the bottom right, with the first panel
falling in the linear regime (M, = 0.3My;,) and the rest in the nonlinear regime (M, = {1,2.4, 8} My, respectively). Dashed lines
indicate the total turbulent stress following the method in Sect. 3.4, while solid lines attempt to isolate the contribution of the
VSI by computing Tk, on azimuthally averaged datasets. A solid black line at @ = 107* helps to guide the eye. Thick black
lines denote our radial smoothing length of AR = H(R).

gap, the gray-shaded region is strongly affected by the gap profile while also being extremely sensitive
to numerical noise, and should therefore not be taken into account on all panels.

The lower panels of Fig. 48 correspond to 2 = 0.05 and build on our fiducial model. As shown in
Fig. 27 and discussed in Sect. 8.2.3, while the lower aspect ratio results in a weaker vertical shear rate,
the individual VSI modes generated are narrower in the radial direction. This allows the VSI to develop
in the narrow, vortex-free region between 0.5 < R/R, < 0.8, which should contain approximately 3
times more VSI modes for 4 = 0.05 than for 4 = 0.1 according to Fig. 27. Interestingly enough, the
higher vertical shear rate in the inner disk, combined with the fact that the planet’s presence eliminates
the parasitic instability in the inner boundary, allow the VSI to develop in the zone 0.5 < R/R, < 0.7,
which was not possible for the 3D model without a planet (see also Fig. 31). On the other hand, the
combination of radially wider VSI modes and a weaker shear rate in the outer disk result in the instability
being perturbed and ultimately weakened significantly by the planet, with @, being reduced by an order
of magnitude or more for R > 1.5 R,,.

In Sect. 7.3.3 we discussed how the VSI is the primary driver of vertical motion and concluded that
spiral arms on the Ry plane, while conducive to accretion, perturb the VSI modes in a way that results in
weaker turbulent vertical mixing. The picture is different in the presence of an embedded planet, which
can drive significant vertical motion via its spiral waves and especially so in the inner disk (Zhu et al.,
2015). In this scenario, vertical motion is primarily excited by the VSI in regions where it is active, and
by the planet in the other regions. In Fig. 49 we extend the comparison of apix(z) that was shown in
Fig. 34, using the model on the bottom left panel of Fig. 48 and plotting anix(z) at three representative
radii. We find that in the outer disk VSI activity dominates the vertical flow of gas, whereas the inner disk
shows strong vertical motion both due to the planet’s wakes and the VSI, with the planet contributing
more as we approach the inner radial boundary.
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Figure 49. Vertical profiles of a,x at three reference radii similar to Fig. 34, but also including the model with an embedded
planet in green. The blue and orange curves refer to the 76-2D and rfp-3D models without a planet, respectively. Dashed
lines denote the total Reynolds stress T, including all sources in the disk (VSI, vortices, spiral arms), while the solid lines
isolate the contribution of the VSI. Right: in the inner disk, VSI activity recovers in the presence of the planet as the latter
eliminates the parasitic instability at the inner rim of the domain. The planet’s spiral arms excite additional vertical motion,
which adds to the total vertical mixing parameter. Middle: VSI turbulence drops by a factor of 2 near the planet’s gap edge,
but the instability remains active nevertheless. Right: the VSI has been quenched in the outer disk as the result of the planet’s
spirals, the presence of a massive vortex at the outer gap edge, and the weak vertical shear rate in the outer disk. The vertical
motion excited by the planet’s spiral arms is also considerably weaker in the inner disk, and as a result the overall a,,;x is quite
small.

8.4 Planet migration in VSI-active disks

Having investigated the effect of the planet on the development and saturation levels of the VSI, we now
allow the disk to exert a torque on the planet and let the latter migrate over 300 orbits measured at Ry.
We note that the computational domain is quite restricted, implying that the planet will be subject to
boundary effects once it approaches either end of the zone 0.5 < R/R,, < 2.1. For that reason, and given
that the planet can interact with VSI turbulence over a timeframe of 50-100 orbits as shown on Fig. 44,
we believe that modeling the migrating planet for 300 orbits is sufficient to offer some insight into the
extent to which VSI activity can affect planet migration.

We use pmid as an input quantity rather than Z, such that the latter increases by a factor of 2 for
our models with 2 = 0.1. While this might result in a less fair comparison of migration tracks between
equally-sized planets in disks with different 4, it provides a more reasonable surface density estimate
for regions of importance to planet formation and is therefore a good choice in terms of interpreting our
results from an observational point of view. Namely, in the outer disk where & would be of the order of
0.1 (Flock et al., 2020), our choice of parameters results in a surface density of 4.61 (%/0.1) (M+/M,) and
1.15 (%0.1) (M+/M,) at 50 and 100 au, respectively. Table III lists several ALMA targets and compares the
estimated surface density at several radii where the VSI could be active against our estimated X, rescaled
appropriately to those distances.

Our results are consolidated in Fig. 50 for all models, showing the time evolution of the semimajor
axis a, the eccentricity e and the inclination i of planets from the moment when we allow the planets to
migrate (tz)nlg =19 + 500 Py = 1700 Py). The top panel of Fig. 50 shows that the 100-Earth-mass planet
migrates inwards in the model with 2 = 0.1 and all other models show outward migration, with quite
different migration timescales between models. The migration tracks of planets in all models are shown
separately in Fig. 51 to better distinguish their individual behavior.
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System | M, [Mo] | Rolau] | hy | 2" [g/em?] |

suggested model

| = [gfem?]

HD 163296
HD 163296
HD 163296
HD 163296
AS 209
HD 143006
Elias 24
GW Lup

2.04
2.04
2.04
2.04
0.83
2.04
0.78
0.46

48
48
86
86
99
51
57
74

0.056
0.056
0.066
0.066
0.082
0.051
0.090
0.086

10-30
10-30
3-30
3-30
3-30
3-30
10-100
3-10

h=0.05; M, = 1 Mj
h=0.1; My = 1M;
h=0.05; My = 1 Mj
h=0.1; M, = 1M
h=0.1; M, = 1M;
h = 0.05; M, = 100 Mg
h=0.1
h=0.1; M, = 100 Mg

5.21
10.42
291
5.82
0.97
3.94
2.5
0.96

Table III. Comparison of the surface density of several target sources of the DSHARP study (Andrews et al., 2018) at different
reference radii Ry against our estimated Z§* for our choice of parameters after appropriate rescaling. The aspect ratio g is
calculated assuming a simple irradiation model using Eq. (2.18), and £* denotes the estimates of Zhang et al. (2018) (Table 3

therein).
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Figure 50. Time evolution of the orbital elements of migrating planets in our simulations. Top: the semimajor axis a increases
for models with & = 0.05, indicating outward migration, while the planets migrate inward for 2 = 0.1. Middle: the eccentricity
of all planets remains relatively low, with oscillations excited by planet—vortex interaction. The planet in the linear regime
(blue curve) shows little to no eccentricity excitation. Bottom: inclination of the orbits of all planets with respect to the disk
midplane. It is likely that these oscillations, while vanishingly small in amplitude, are caused by a combination of vortex and
VSI activity. Here, t(')mg =ty + 500 P, denotes the moment when planets begin to migrate.
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Figure 51. Time evolution of the semimajor axis of migrating planets for our four models. The dashed, dotted, and dashed-
dotted black lines mark linear fits to each leg of the planets’ migration tracks, and the slope of each fit is translated into a
migration timescale 7, = a/a and added to the legend.

The low-mass planet in the model with 4 = 0.1 and M, = 100 Mg (blue curve) does not open a
gap, and follows classic type-I migration (Kley and Nelson, 2012) until it reaches R = 0.87 Ry, where it
slows down but continues migrating inwards. The reason why it slows down is that an artificial “gap”
is formed near R = 0.7 Ry, due to the combination of two effects. For one, the radial gradient of @y
imposed by the VSl-inactive inner disk (R < 0.65 Ry, see solid green curve on top left panel of Fig 48)
causes an artificial accumulation of material near the inner boundary as the accretion rate decreases close
to it. Our wave damping boundary condition then enhances this effect by slowly replenishing the gas
mass near R =~ 0.5 Ry. As a result, the planet reaches a high-density zone which strengthens the positive
torque contribution of the inner disk and therefore slows the planet’s migration speed by a factor of 2, as
can be seen on the top left panel of Fig. 51.

The top panels of Fig. 52 show the surface density distribution in the disk for the model with # = 0.1
and M, = 100 Mg at three timestamps: soon after the planet begins migrating (left panel), while it
travels down the edge of the artificial gap (middle), and after it reaches the center (trough) of the gap.
The bottom panels, using u, as a proxy for VSI activity, show that the VSI remains active during the
entire process due to the lack of strong perturbations in the form of vortices in the disk.

In the remaining three cases, for planets equal to or exceeding the disk thermal mass, migration is
substantially more unpredictable due to the presence of massive vortices at the outer gap edge at the time
when migration starts and the nearly-inviscid disk background (Lega et al., 2021). Here, due to the gap
carved by the planet, migration typically falls in the type-II regime (Kley and Nelson, 2012). In all three
cases, the planets initially migrate outwards with migration timescales T = a/a ~ 0.5-1 X 10* Py. The
Jupiter-sized planets then continue drifting outwards slowly, always remaining within their gap region,
with the planet in the model with & = 0.1 stalling its migration at z = #;* + 220 Py.

Contrary to the type-II migration observed for M}, = 1Mj, the planet in the model with 2 = 0.05

and M, = 100 Mg transitions to rapid type-III migration at 7 ~ t(r)nig + 50 Py. This is the result of the
planet migrating to its gap edge while interacting with the vortices present in the disk, where it receives
a strongly positive torque that triggers rapid outward migration (Peplifiski et al., 2008). We speculate
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Figure 52. The surface density distribution of the gas and its vertical velocity component at the midplane for the model with
h = 0.1 and M, = 100 M at three snapshots after the planet has started migrating. As we progress from left to right, the planet
migrates inwards towards the artificial gap caused by the inactivity of the VSI and our wave damping boundary condition near
the inner rim of our domain. Eventually the planet reaches the center of the gap, and its migration speed slows down by a
factor of 2.

that the subsequent halt at R ~ 2.2 Ry is in part artificial, due to our wave-damping boundary conditions
at R > 2.1 Ry.

Regarding eccentricity excitations (middle panel of Fig. 50), we find that all models with gap-
opening planets (M, > My,) generate massive vortices at their outer gap edge, causing periodic fluc-
tuations in each planet’s eccentricity as the planet interacts gravitationally with the vortex. Conversely,
the lack of a gap for the model where M, = 0.3 My, (blue curve) results in a vortex-free disk, and
the planet’s orbit remains circular. In all cases, the—axisymmetric by nature—VSI does not affect the
planet’s eccentricity. We highlight the eccentricity spike at approximately tg"g + 60 Py for the rapidly-
outward-migrating planet (green curve), which corresponds to the time when the planet begins interact-
ing with the outer gap edge and type-III migration is triggered.

Finally, the inclinations of all planets remain very close to their initial value of zero, with very slight
fluctuations of the order of 0.1° about the midplane (bottom panel of Fig. 50). Once again, it is unlikely
that the VSI can drive inclination excitation in models with massive planets, as planet—vortex interaction
has significantly more noticeable effects. In the case of the low-mass planet (blue curve), where vortices
are not present, it appears that the planet’s inclination fluctuations might be slightly stronger due to the
VSI during its first 100 orbits of migration, but this effect subsides soon after.
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9 Conclusions and discussion

In the broader scope of this project, we carried out two- and three-dimensional hydrodynamics simu-
lations of accretion disks with and without embedded planets. We highlighted the importance of the
equation of state and radiative effects in planet—disk interaction in Sects. 4 and 5, and explored the
behavior of planet-generated vortices in disks with different physical parameters in Sect. 6. Then, we
quantified the effects of turbulence excited by the vertical shear instability (VSI) in protoplanetary disks
and its properties as a function of various physical and numerical parameters in Sect. 7. In the context of
planet—disk interaction, we measured the impact of the planet’s presence on the development of the VSI
and vice versa in Sect. 8 using high-resolution 3D models with a simplified but appropriately motivated
treatment of radiative effects.

In this section we outline our results on the VSI and planet—disk interaction in VSI-active disks. We
highlight the main takeaway messages of this project, and discuss their implications individually.

9.1 Physical properties of the VSI

We explored the behavior of the VSI by monitoring its growth and saturation phase, analyzing its impact
on the disk once the latter reaches a quasi-equilibrium state, and measuring its potential to drive turbulent
accretion, mixing, and heating. We then investigated the impact of different physical parameters and
frameworks on our observations.

Our results are consistent with and enrich previous studies, providing a comprehensive overview of
the physical and numerical parameters considered in the literature. Our estimates for the growth phase
and turbulent stress levels of the VSI agree both qualitatively and quantitatively with most studies on
the subject (e.g., Nelson et al., 2013; Stoll and Kley, 2014; Stoll et al., 2017; Flock et al., 2017; Manger
et al., 2020), and our preliminary resolution study ensures the robustness of our results.

VSI-driven turbulence is compatible with observed accretion rates and turbulent diffusion

We showed that VSI-active disks develop an accretion channel with a width of +H about the midplane,
regardless of the radial temperature profile of the disk. This implies gas accretion within this channel
and outward movement outside of it, with a vertically-integrated turbulent stress that corresponds to
an accretion parameter @uec =~ 1.5 X 10~* for a non-flared disk with 2 = 0.05, and an accretion rate
M ~ 107°-1077 Mg/yr depending on disk parameters. While we used a non-flared disk model (g = —1)
to keep our models scale-free, our results are applicable in the ALMA-observable regions of the disk
(R > 50 au) where the combination of & ~ 0.1 and g = —0.5 produces similar levels of @, = 1074 (e.g.,
Flock et al., 2020).

We found that VSI motion also drives turbulent heating that translates to an effective apey = 2.5 X
1074, a value very similar to our estimate of a,... This finding is in line with the passive, irradiated disk
model of Chiang and Goldreich (1997), ruling out the VSI as a primary source of heating in the regions
where it is active (R = 30 au, Flock et al., 2020).

Based on our estimates of a,. and @pey, it is not unlikely that the VSI can drive radial mixing
with an effective turbulent diffusion parameter of similar magnitude @, ~ 1-2 X 10~*, which would be
consistent with the inferred lower limit of @, = 10~ through the analysis of turbulent spreading of dust
rings in observed systems (Dullemond et al., 2018). In addition, this relatively weak level of turbulence
is necessary to model the ring structures of ALMA-observed systems via the planet formation scenario,
which require & < 107 (e.g., Zhang et al., 2018).

The above statements suggest that the VSI is a competitive candidate in interpreting observed accre-
tion rates and turbulent diffusion in protoplanetary disks.
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9.1 Physical properties of the VSI

The equation of state does not affect stress levels in a fully saturated VSI-active disk

While a locally isothermal equation of state creates optimal conditions for the development of the VSI
by essentially allowing the vertical shear to ignore the restoring effects of buoyancy, a reasonably short
cooling timescale yields the same results. We found that, as long as the cooling timescale S is shorter
by at least a factor of 10 than the 8. given by Lin and Youdin (2015) (= 0.1 for our models), the VSI
can function uninhibited and produces turbulent stress comparable to that of a locally isothermal model.
In other words, as long as § < B, the cooling timescale only determines whether the instability will
be active, and not the stress it can generate. For 8 < B a sigmoid-like correlation between a and S is
expected, as highlighted in Manger et al. (2020) and confirmed qualitatively by our results.

It should be noted, however, that in principle 8 can vary with distance and height. It is therefore
crucial to calculate S self-consistently in realistic models by treating radiation transport, if one would
like to examine the onset radius of the instability (e.g., Flock et al., 2020). Taking into consideration
the decoupling of dust and gas at the surface layers of the disk can also translate to a cooling timescale
B(z) that increases with z, constraining VSI activity to a few scale heights about the midplane (Pfeil and
Klahr, 2021). Nevertheless, for disk parameters chosen such that 8 < B throughout the domain, we
found that a fully radiative model behaves no differently from a locally isothermal model in terms of
VSI activity.

Concerning the assumption of a vertically isothermal relaxation temperature profile, we showed that
as long as we restrict the vertical extent of our domain to within a few pressure scale heights (below the
Taps = 1 surface, or +4H), the disk can be approximated as vertically isothermal very well. As a result,
a complex model of an irradiated disk was not necessary in our domain of interest.

As we executed most models using a constant 8 = 1072, our results are relevant in the region where
the cooling timescale is short enough to allow the VSI to fully develop, or R > 50 au for typical stellar
and disk parameters. This region can be resolved very well using ALMA instruments (Andrews et al.,
2018), and is relevant in modeling the radial structure of observed systems via the planet formation
scenario (e.g., Zhang et al., 2018; Ziampras et al., 2020b).

VSI-generated turbulence can excite vortices, which might inhibit vertical mixing

While it is primarily an axisymmetric instability that operates on the Rz plane, the perturbations induced
on the azimuthal velocity by the VSI can break the axisymmetry of the disk and facilitate the formation
of vortices (Stoll and Kley, 2016; Manger and Klahr, 2018). These vortices, while small enough to not
affect the activity of the instability on a large scale significantly, generate spiral arms that can slightly
increase the turbulent @,.. In addition, the interface between the VSI-stable and -unstable regions of the
disk—at R ~ 30 au for typical disk parameters—eftectively creates a steep gradient in @,¢. and therefore
the accretion rate, resulting in a radial surface density gradient that can be subject to the Rossby-wave
instability and forming large-scale vortices (Flock et al., 2020). Such non-axisymmetric features can
help facilitate mechanisms such as the streaming instability (Youdin and Goodman, 2005), supporting
the formation of planetesimals (Schifer et al., 2020).

It should be noted that the increase in @, is a result of the damping of these vortex-generated spiral
shocks (Larson, 1990), while the subsequent perturbation of VSI modes reduces the contribution of the
VSl itself to the total stress in absolute value. As a result, vertical mixing can be weaker in the presence
of vortices and spiral arms if predominantly driven by the VSI, as the latter is subject to perturbations
by such non-axisymmetric features on the Ry plane.

Resolving the VSI appropriately is important, but also sensitive to parasitic instabilities

During our resolution study, we noted the necessity of a resolution of roughly 20 cps to capture the
fastest-growing VSI mode. While failing to capture this mode can affect the development of the insta-
bility during its growth phase, it does not necessarily imply that the VSI will saturate at different stress
levels. Our physically motivated resolution study is consistent with the numerical models of (Manger
etal., 2020). We found, however, that increasing the resolution further results in slightly lower stress lev-
els. This has been observed for the MRI as well (Fromang and Papaloizou, 2007), but we are uncertain
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whether stress levels converge at higher resolution.

In addition, high-resolution models are subject to a parasitic instability in the inner radial boundary
of the domain. This instability develops in the form of two vertically-rotating vortices that are symmetric
about the disk midplane and grow radially and vertically outwards, destabilizing and destroying VSI
modes in the process. The origin of this instability is likely physical, as it grows faster at a higher
resolution and aspect ratio 4, but we expect its development to be sensitive to numerical parameters such
as the radial boundary condition. A three-dimensional domain, a finite cooling timescale, an outflow
boundary condition, and weaker wave damping near the inner radial boundary inhibit the development
of the instability and limit it to weaker saturation levels, containing it within the innermost 0.2 R of the
domain.

9.2 Planet—disk interaction in VSI-active disks

We simulated models with planets that are growing while embedded in VSI-active disks, for planet
masses that corresponded from a small fraction up to a significant multiple of the disk thermal mass
My,. We identified key planet-generated features in the form of spiral arms, gaps and rings, and analyzed
qualitatively and then quantitatively the impact of such features on VSI turbulence while letting the
planet—disk system reach a quasi-equilibrium state. We then allowed the planet to migrate through the
disk and examined its migration track to gain insight into the extent to which VSI activity can affect
planet migration.

Low-mass planets can weaken VSI activity to an extent

The continuous perturbations of the velocity field by an embedded planet in the linear regime (M, =
0.3 My,) result in slightly weaker VSI-driven accretion by a factor of 1.5-2 in our model, similar to the
effect of vortices and spiral arms on the Ry plane. This can result in weaker vertical mixing, as planetary
spiral wakes damp VSI activity and therefore a/pix.

Wakes by massive planets dominate accretion and can stir vertical motion in the inner disk

The effective viscosity by planet-launched spiral wakes far exceeds the capability of the VSI to drive
accretion, by approximately an order of magnitude for 2 = 0.05 and a factor of order 3-6 for & = 0.1
in our models. This is especially relevant for the leading spirals of a massive planet in the inner disk,
which damp over very short distances compared to the planet’s semimajor axis (Goodman and Rafikov,
2001) while also exciting significant vertical motion in the gas (Zhu et al., 2015). This combination
of phenomena can compete with or coexist alongside the VSI depending on disk parameters. For our
models, a lower aspect ratio 4 = 0.05 allowed the radially thinner VSI modes to sustain themselves more
easily in the inner disk once vortex activity had subsided. In contrast to that, the VSI was only weakly
active in our model with & = 0.1, presumably because of the sensitivity of its radially wider modes to
planet-generated features as both compete for “space” in the disk.

Planet-generated vortices often weaken VSI activity significantly in the outer disk

In contrast to the inner disk, the vertical shear rate is considerably weaker in the outer disk as it scales
with Qg o R™7?. Combined with the tendency of massive planets to form long-living, large-scale
vortices on their outer gap edge (Paardekooper et al., 2010; Lega et al., 2021; Rometsch et al., 2021),
this renders the outer disk unsuitable for the development of the VSI, possibly until these vortices have
dissipated. Given that vortex lifetime could be of the order of 10°~10* planetary orbits (Rometsch et al.,
2021) for our disk parameters, it is unlikely that the VSI can coexist with a massive planet in the 50—
100 au range. It is nevertheless a possibility for VSI activity to precede the planet and coexist with it
during its growth phase, driving accretion from the outer disk as well as facilitating planetesimal-forming
instabilities to support its growth (e.g., the streaming instability, Schifer et al., 2020).
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VSI signatures in disks with low-mass planets could be faintly observable in the future
Barraza-Alfaro et al. (2021) showed that VSI signatures could be detectable for typical disk parameters
in the radial range that is observable by ALMA, for reasonably close-by systems and with a favorable
viewing angle. At that range, however, the shallower temperature profile with ¢ = —1/2 would weaken
VSI activity, while the larger aspect ratio of the order of 2 = 0.1 would give rise to radially wide
VSI modes, which are susceptible to planetary features based on the result of our analysis. Given that
massive planets can generate an abundance of such features and especially so in low-viscosity flared
disks (Zhang et al., 2018), we believe that it is unlikely to detect the combination of a massive planet
and VSI signatures at ALMA ranges. Nevertheless, it remains possible to observe VSI signatures in
systems with low-mass planets during their early, “coexistence” stage.

The VSI does not affect the migration track of a planet noticeably

In the nonlinear regime, gap-opening planets generate massive vortices at their outer gap edge. As it has
been shown before, the interplay between planet and vortex plays a key role in the planet’s migration
track (Lega et al., 2021). Compared to the effects of planet—vortex interaction, we found that the VSI
has no noticeable effect on planet migration. In the linear regime, however, the low-density zone outside
of our high-density inner boundary—due to a radial gradient of @,c.—resulted in the formation of an
artificial partial gap, which slowed the migration speed of the low-mass planet that would otherwise
migrate in the type-I regime by factor of 2. We speculate that this effect can slow down or even stall
migration at the interface of VSI activity (R ~ 30 au) in a realistic disk for low-mass planets, while also
promoting the growth of said planets near that zone.
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A Implementation of FLD in 3D

In collaboration with Dr. William Béthune (henceforth referred to as WB), we implemented radiation
transport into PLUTO using the flux-limited diffusion approach (FLD) similar to Kolb et al. (2013). We
integrate Eq. (2.6) by first solving for the radiation energy Ey,qg in the next timestep (denoted E7 ;) using
an implicit scheme:

8Erad
ot

E | — Ena
%t” ~ kppc(ar T — E! )~V - F! | (A1)

+V .- Fq = KPPC(GRT4 — Erg) = r

’
rad

matrix and E;a d is a vector of size N5 that contains the solution after a timestep Az. Since Mrad consists
of mostly zeroes (the number of nonzero elements is approximately (1+2D)/Nceiis where D is the number
of dimensions), it can be inverted reasonably cheaply using sparse matrix inversion techniques. To that
end, we mainly use the PetSc library (Balay et al., 2018) but have also implemented a Successive Over-
Relaxation (SOR) scheme that produces the same results.

After obtaining E’ ,, we update the gas specific internal energy € following (Kolb et al., 2013):

This can be represented as a linear equation of the form Mrad .E’ . = E;.q, Where Mrad is the radiation

KpC (3aRT4 + E;ad) At + ¢ T

cy + 4kpcar T3 At

(A2)

€ =cy

A.1 Motivation

Our FLD module offers several upgrades compared to Kolb et al. (2013), even though the numerical
methods are the same. Namely:

e it supports all PLUTO geometry options (Cartesian, cylindrical, spherical) instead of only spherical,
making it usable for physical problems in non-spherical geometries;

e it supports 1-3 dimensions instead of only 3D, alleviating the need for full-3D, “pseudo-1-2D”
setups and gaining a significant speedup in the process;

e discretization has been rewritten to closely follow PLUTO’s grid structures, resulting in more ac-
curate and faster calculations;

e boundary conditions have been corrected such that the required boundary condition (Dirichlet,
von Neumann, custom) is applied precisely on the boundary wall instead of in the first ghost cell;

e it has been written for PLUTO 4. 3, making it compatible with the latest versions of the code (also
4.4 and higher).

Overall, our implementation was much more robust when comparing against the module by Kolb et al.
(2013), with the latter often crashing at very high grid resolutions. When using our new model, we
also observed a typical speedup factor of up to 4-5 in r6-2D models depending on grid resolution and
parallelization level. Due to the option to use a “true” 2D setup as opposed to a “pseudo-2D” one (which
would require 2—4 cells with periodic boundaries in the azimuthal direction), this speedup factor can
increase to 20-30 depending on the setup.
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A.2 Testing

A.2 Testing

We tested our module by carrying out two sets of tests, namely static and dynamic. For our static tests,
we verified the implementation of our physics for all geometry—dimension combinations by running
models that converge to an analytical steady state. Then, with our dynamic tests we verified the temporal
accuracy of our solver by exciting sound waves, simulating their radiative damping, and comparing to
theoretical estimates. All quantities are quoted in code units unless otherwise specified.

A.2.1 Static tests

Our static tests aim to reach an equilibrium state by solving Eq. (2.6) repeatedly until convergence, with-
out evolving the gas according to the hydrodynamics equations in Eq. (2.1). This is achieved by using
a fixed gas density profile, setting the gas velocity to zero during the initialization step, and disabling
PLUTO’s hydro update step.

Our first static test setup aims to verify the implementation of our equations and boundary conditions.
The setup is as follows:

e Physics: FLD only, no hydro evolution.
e Grid: 2D Cartesian, x,y € [0, 1] with 100 cells each, uniformly spaced.
e Boundary conditions: Eyul,—¢g = Eo, Eradl,=1 = 2E0, periodic in y.
e p, kR are constant, 4 = 1/3.
We are therefore effectively solving the equation

0 2 Erad
0x?

=0 = Em(x,y) = Eo(1 + x/x0). (A.3)

The results of our test are shown in Fig. 53. The relative error levels combined with the model being
symmetric in the y direction support the validity of our implementation of boundary conditions and grid
discretization.
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Figure 53. Results of our 2D Cartesian static test. Left: the equilibrium solution. Right: relative error between our solution
and the analytical prediction.

For our second test, we verified our implementation in different geometries and grid combinations.
As an example, we design a 1D setup as follows:

e Physics: FLD only, with a constant heating source term Q. = 7%1 No hydro evolution.

e Grid: 1D spherical, r € [1, 5], composite grid.
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A.2 Testing

e Boundary conditions: Eyuql|,—; = Eo, 6?—;‘” s = 0.
r=

e p, kR are constant, 4 = 1/3.

We use a composite grid in r that is “stretched” between 1-2 with 80 cells, logarithmic between 2—4
with 50 cells, and uniform between 4-5 with 70 cells, for a total of 200 cells. This is done in order to
test whether our discretization is compatible with PLUTO’s different grid options. A schematic of our
grid is shown in Fig. 54.

stretched logarithmic uniform
gIg ; ; Ig I §I 1 gI 1 1 1 ; 1 I Ig 1 1 1 I§ 1 1 1 1 gI 1 1 1 1 Ig 1 gI Ig I §I Ig 1 gI
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
r/ro

Figure 54. A schematic of the radial grid used in the 1D spherical static test. The crosses and dotted lines denote cell centers
and interfaces respectively.

This time, the analytical solution is given by:

2
arc ¢ K
V2Erad =0, =>En=—-—% - 4 + C2, a = %Lp, (A.4)
3 r 2 Ac
where ¢; = %a and ¢, = Ey + %a. The addition of a heating term forces the solution to depend

on physical quantities through a, which also lets us test whether unit conversions within the code are
handled correctly. The results of our test, which show a very good agreement between model and
prediction down to our tolerance levels, are shown in Fig. 55.
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Figure 55. Results of our 1D spherical static test. Left: the equilibrium solution. Right: relative error between our solution and
the analytical prediction. The error behaves difterently at different grid patches, but remains very small overall.

A.2.2 Dynamic tests

Having verified that our module’s physics are implemented correctly, we now test the temporal accuracy
of our solver. This is done by exciting an eigenmode of the 1D radiative hydrodynamics equations
in a periodic domain. Essentially, this corresponds to a standing acoustic wave that oscillates with a
frequency wr,q and decays over a timescale 74amp as it interacts with the radiation field. An example of
such a configuration and its time evolution is shown in Fig. 56. We carry out a series of tests for two
different densities p = 10712,10°13 g/cm3 and a wide range of opacities k = 1072103 cm?/ 8gas tO cover
both the optically thin and thick regimes. We then log the amplitude of the pressure P(¢) at the crest of
each wave as a function of time and fit it with an exponentially-decaying sine curve:

Pic = Pg sin(wraqt + @g) e~/ Toam (A.5)
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Figure 56. A sample configuration of our dynamic test. Left: our initial conditions for all quantities, the amplitudes and phases
of which were provided by WB. Right: time evolution of the pressure P(z) at the crest of the wave, fit with a decaying sine
function.

Finally, we compare the results of our fit with theoretical estimates of wag and Tgamp, provided by WB.
Fig. 57 shows that we recover the predicted eigenvalues to better than 1072 accuracy overall in both the
optically thin and thick limits.
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Figure 57. The oscillation frequency and damping timescale of the eigenmodes excited in our dynamic tests for both optically
thin and thick configurations. Frequencies are normalized to the isothermal w;s, = 27 for our setup. The horizontal dotted line
corresponds 0 wydp = /Y Wiso-
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B Ray-traced stellar irradiation

Our implementation of ray-traced irradiation, again in collaboration with WB, follows the methods of
Kolb et al. (2013) but was motivated by reasons similar to those presented in Sect. A.1. While this
module has only been implemented for a spherical geometry due to the ease of ray-tracing for such
a configuration, our version supports 1-3 dimensions, follows PLUTO’s grid discretization, and can be
used as a standalone module (i.e., it is not necessarily coupled to the FLD module). In this section we
describe the discretization process in detail, present a simple verification test for the module, and note
possible caveats related to its implementation.

B.1 Discretization

Similar to our approach in Sect. 2.2.2, we consider a cell at radius » from the star. This cell has a radial
width or such that its left (inner) and right (outer) interfaces are at r, = r — or/2 and rg = r + 6r/2
respectively. The incoming and outgoing irradiation fluxes on the left and right interfaces of the cell L;,
and L, are then given by Eqgs. (2.10) and (2.11) such that the absorbed energy density is

Lin - Lout

L L
Sirad = — o Liy = A —= ¢ Tans(0) Lout = AR *2 e Tabs(TR) (B.1)

2
\% drrg nrg

where T,ps 1S given by Eq. (2.9). The cell volume V and cell surface at both interfaces Ar, Ar are
provided by PLUTO’s grid structures, so it is not necessary to recompute them during each timestep.
Computation of the radially-integrated 7,5 is done by first evaluating the optical depth contribution of

each cell
R

OTaps(r) = f kppdr’ = kppdr, (B.2)

o
and then summing over all contributions radially outwards. This summation, which was implemented by
WAB, is handled by a radial MPI communicator that only communicates with cells along the same “ray”
(i.e., for a constant 8 and ¢ index). This method provides a fast and clean implementation of ray-tracing
and is generally the most computationally expensive substep within the irradiation module.

We note that, in principle, the inner radial boundary rj, of our domain does not correspond to the
physical inner rim of the disk. As a result, an additional contribution to the absorption optical depth
from the “inner disk” between the stellar surface and r;, has to be considered. Therefore we introduce
an optical depth offset 7 such that

Tin

Tabs(r)=fl<ppdr’ =fl<ppdr’+f/<ppdr’ =T0+prpdr’ (B.3)

* * Tin Tin

Following Flock et al. (2017), we define 79(6, ¢) = kp p(¥in) (Rin — 3R4). This results in the disk being
heated primarily through its surface layers with a thin, hot buffer zone near the inner radial boundary for
Trad-

After Tops(7) and Siaq have been computed, the gas is heated with a simple Euler step

d(pe)
ot

=Sirad = P~ P+ (y — 1) Siraq At (B.4)
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B.2 Testing

Our test consists of a simple 1D model aiming to verify our implementation of the physics, similar to
our 1D static test in Sect. A.2.1. The setup is as follows:

e Physics: FLD and irradiation, no hydro evolution.
e Grid: 1D spherical, r € [1, 5] with 200 cells, uniformly spaced.

e Boundary conditions: Eyul,—; = Eo, ag—;“d S\ = 0.
r=

® p,KR = kp = K are constant, 1 = 1/3, 79 = 5.

To calculate an analytical solution we start from Eq. (2.6), adding the irradiation flux of Eq. (2.12) on
the RHS:
V- Frag = Sirad- (BS)

To compute S jraqg We start from Eq. (B.1), and using that A = r2AQ and V =~ r25rAQ we write

Ly
Anriér

S irrad & (e_Tabs(rL) _ e—Tabs(rR)) , (B.6)

where Taps(rL) = To + ko(r — 97/2 — rip) and Taps(7R) = Taps(7L) + k07. Since Or is constant, we finally
have

Ly romkplratort2) —KpSr\ —Kpr e _
Siraa ¥ 7= ¢ (1-¢™) e = Sigag x A——, A=const.  (B.])
We can now integrate Eq. (B.5) to obtain the analytical solution for E\,q
Ac1 0 OE —Ker —Ker
el P e ) LN Eraq = axp Ei(—kpr) — al 9y c2, (B.8)
ko r* or or r? r

where Ei is the exponential integral, a = 4/ac, and ¢y, ¢, are integration constants that satisfy our bound-
ary conditions.

Fig. 58 shows a comparison between our numerical model and the analytical solution calculated
above. We note that, due to the approximation used in calculating the analytical solution (V ~ r26rAQ),
the two curves will not agree exactly but the agreement will improve for larger r as or/r decreases.
Nevertheless, our prediction follows the model very well.
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Figure 58. Results of our irradiation test. Left: the equilibrium solution. Right: relative error between our solution and the
analytical prediction.
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B.3 Caveats

In the previous section we verified that the irradiation module produces accurate results by comparing
the numerical output of a 1D model with its analytical solution. Nevertheless, we found that the Euler
scheme which we use during the pressure update step is extremely sensitive to the timestep At, and as
a result so is the equilibrium temperature we obtain in the regions of the disk that are directly exposed
to starlight (Taps < 1). Fortunately, the temperature profile remains consistent regardless of timestep
beneath the disk surface layers (7,55 > 1).

To showcase this behavior, we ran an r6-2D model of a protoplanetary disk in hydrodynamic equi-
librium (see Eq. (2.3)) and with typical disk parameters: p = -2.25, ¢ = -0.5, h = 5% at 5.2 au).
We do not evolve the disk hydrodynamically, but instead allow it to reach thermal equilibrium between
stellar irradiation and radiation transport with a given timestep. Our results are shown in Fig. 59. The
midplane temperature Tyig follows a typical radial profile for an irradiated disk and remains consistent
for all timesteps. We highlight the very large differences in Tsyf,ce for different timesteps, but also note
that a typical timestep for our problem would be in the range 10~*~10~3 Py, which should alleviate this
problem.
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Figure 59. Radial and vertical temperature profiles as a function of timestep (quoted in orbital periods at R = 1 au) for a test
with irradiation and radiation transport using our ray-tracing and FLD modules. The temperature at the disk surface depends
strongly on the timestep, but the midplane temperature remains consistent and in agreement with an expected profile for an
irradiated disk (Tpg o< R™).

In their module, Kolb et al. (2013) instead opt to update the gas internal energy by incorporating
Sirrad into the FLD update step (see Eq. (A.2)). We tried this method, but found that the results did not
agree with the analytical solution of the 1D model in the previous section. As a result, we chose to keep
using the Euler update step. While this will likely result in inaccurate temperatures at the disk corona as
discussed above, our area of interest (the vertically isothermal disk interior below the 7,,s = 1 surface)
is completely unaffected.
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Here we list our papers that were published over the course of this project, and describe our contribution
to each work. The papers listed here are appended below.

1. Ziampras et al. (2020a)

Title: The impact of planet wakes on the location and shape of the water ice line in a protoplanetary disk
Authors: Alexandros Ziampras, Sareh Ataiee, Wilhelm Kley, Cornelis P. Dullemond, Clément Baruteau
Journal: Astronomy & Astrophysics

Status: published

DOI: 10.1051/0004-6361/201936495

Contribution: Implementation of numerical setups; execution of simulations; analysis of results; con-
struction of Figs. 4-10 as well as figures in the Appendix, adaptation of remaining figures; authorship of
Sects. 4-7 and Appendix, partial authorship of abstract and Sects. 1, 2, 6; development of FLD module;
correspondence with referee.

The publication can be found in Sect. C.1, and an overview is provided in Sect. 4.

2. Ziampras et al. (2020b)

Title: Importance of radiative effects in gap opening by planets in protoplanetary disks

Authors: Alexandros Ziampras, Wilhelm Kley, Cornelis P. Dullemond

Journal: Astronomy & Astrophysics

Status: published

DOI: 10.1051/0004-6361/201937048
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ABSTRACT

Context. Planets in accretion disks can excite spiral shocks and if these planets are massive enough, they can even open gaps in their
vicinity. Both of these effects can influence the overall thermal structure of the disk.

Aims. We model planets of different masses and semimajor axes in disks of various viscosities and accretion rates to examine their
impact on disk thermodynamics and to highlight the mutable, non-axisymmetric nature of ice lines in systems with massive planets.
Methods. We conducted a parameter study using numerical hydrodynamics simulations where we treated viscous heating, thermal
cooling, and stellar irradiation as additional source terms in the energy equation, with some runs including radiative diffusion. Our
parameter space consists of a grid containing different combinations of planet and disk parameters.

Results. Both gap opening and shock heating can displace the ice line, with the effects amplified for massive planets in optically thick
disks. The gap region can split an initially hot (7' > 170 K) disk into a hot inner disk and a hot ring just outside of the planet’s location,
while shock heating can reshape the originally axisymmetric ice line into water-poor islands along spirals. We also find that radiative
diffusion does not alter the picture significantly in this context.

Conclusions. Shock heating and gap opening by a planet can effectively heat up optically thick disks and, in general, they can move
or reshape the water ice line. This can affect the gap structure and migration torques. It can also produce azimuthal features that follow
the trajectory of spiral arms, creating hot zones which lead to “islands” of vapor and ice around spirals that could affect the accretion

or growth of icy aggregates.

Key words. protoplanetary disks — planet-disk interactions — planets and satellites: formation — hydrodynamics

1. Introduction

Protostellar disks are the birth sites of all sorts of planets. Sev-
eral observations, such as the discovery of PDS 70b (Keppler
et al. 2018) and the recent DSHARP survey (Andrews et al. 2018)
have spatially resolved such disks, providing valuable constraints
on their composition, structure, and the possible planets they
might harbor. Dust continuum observations reveal annular struc-
tures and non-axisymmetric features, such as spirals, crescents,
or blobs, all of which are consistent with the planet formation
scenario (Zhang et al. 2018). According to this scenario, a suffi-
ciently massive planet can trap dust particles by forming pressure
maxima (e.g., Ataiee et al. 2018) at radii close to its semimajor
axis as it launches density waves in the form of spiral arms that
permeate the disk (Ogilvie & Lubow 2002). These pressure traps
can allow dust particles to become concentrated enough for their
emission to be observable, and also provide an environment for
them to collide and grow.

Dust growth is expected to be further facilitated around opac-
ity transition regions (Drazkowska & Alibert 2017; Zhang et al.
2015). Common dust opacity models are, in principle, density-,
and temperature-dependent, with boundaries defined at condi-
tions where aggregates of certain composition change phase to
the extent that crossing between two opacity regimes can change
the absorption and emission properties of the disk. For example,

Article published by EDP Sciences

the water content of ice-coated particles sublimates at the
so-called water ice line around Ti,. = 170 K (Lin & Papaloizou
1985), with small variations depending on model assumptions.
This temperature marks the first opacity transition threshold that
particles will cross as they drift inwards according to several
opacity models (e.g., Bell & Lin 1994; Semenov et al. 2003).
Since water can only be found on particles outside of this ice
line, its location can provide insight and constraints on the ori-
gin of water content for planetesimals and young planets in an
evolving protostellar disk, depending on the disk’s temperature
profile (Bitsch et al. 2019).

The disk’s thermal structure depends on the balance between
heating and cooling terms. Kley & Crida (2008) show that
accounting for radiation transport, instead of treating the disk as
locally isothermal, can have significant effects on the migration
of super-Earths by slowing down or even reversing the migration
rate. Additionally, Rafikov (2016) shows that shock heating due
to planet-induced spirals can be a significant heat source in the
inner few au of the disk. Evidently, the optically thick region near
the star can reach high densities and temperatures, which could
lead to an important contribution by shock heating to the energy
content of the disk.

In this study, we investigate the conditions under which
planet shock heating can significantly raise temperatures and the
degree to which spirals can affect the location and shape of the
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water ice line. Based on our findings, we speculate about the
possible implications for dust and planetesimal growth around
the ice line.

In Sect. 2, we calculate an estimate for the amount of heat a
planet can pump into the disk through shock heating. Our phys-
ical framework, as well as the numerical setup, is described in
Sect. 3. In Sects. 4 and 5, we present our results regarding the
disk structure and ice line shape, respectively. In Sect. 6, we com-
ment on our findings and discuss their potential implications,
while Sect. 7 contains a summary of our work, along with our
conclusions.

2. Shock heating

Planet-induced spiral arms form as a result of density waves
shearing in the Keplerian disk flow as they propagate away from
the planet (Kley & Nelson 2012). They are overdensities with
respect to the disk “background” (azimuthally-averaged) pro-
file that can steepen into shocks as they travel through the disk
(Goodman & Rafikov 2001). In an adiabatic framework, we can
expect a pressure jump at the location of the shock, which can
lie close to the planet (Zhu et al. 2015). This pressure jump
can generate heat near the planet, potentially affecting the tem-
perature profile near the corotating region. Thus, the question is
how important this shock heating can be when compared to other
heat sources in the disk (e.g., viscosity and stellar irradiation).

In order to get an idea of the prominence of spiral shocks as
a heat-generating mechanism, it is worthwhile to first estimate
their contribution theoretically and compare it to other sources
of heat in the disk. We follow a line of thought similar to that of
Rafikov (2016) and calculate the heating by an adiabatic spiral
shock for an assumed density jump at the shock.

Heating by a spiral shock can be considered as a three-
phase process: (1) heating by the shocks; (2) decompression; and
(3) settling to the pre-shock density. In this subsection, we refer
to the pre-shock quantities (before phase 1) by the subscript 1,
to the decompression phase by subscript 2, and to the post-shock
state by subscript 3. The following calculation is performed in
the shock’s comoving frame. The shock heating rate can be
estimated by calculating the specific internal energy difference
between phase 1 and phase 3 for each passage of the shock and
then dividing it by the time between two passages. Knowing the
pressure p and surface density X in each of the three phases, we
can calculate the specific internal energy via e = p/(Z(y — 1)).
The classical jump condition and equation of state can give us
the values for all necessary quantities. In our calculations, we
use the surface density X = f_ :‘:’ pdz instead of the density p.
Note that the jump conditions are also valid if p is replaced by X
because during the shock, the disk does not have enough time to
expand vertically and change the local density. This allows us to
use two-dimensional (2D) hydrodynamic simulations to test the
predictions of this analytical model.

When the shock hits the pre-shock gas between phase 1 and
phase 2, the density and pressure at the second phase can be
given by the Rankine—Hugoniot jump condition that reads

L+ DM
I (y-DME+2]
P 2Mi-(y-D
D1 y+1

1

@)
where v is the adiabatic index and M denotes the Mach number.
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The decompression between phase 2 and phase 3 can be
either adiabatic or isothermal depending on disk cooling. If the
shocks are in the optically thin part of the disk, the inserted
energy can be easily radiated away, the post-shock temperature
returns to its pre-shock value rapidly (except in a very narrow
region of the shock itself), and the decompression would be
isothermal. Conversely, in the optically thick part of the disk
where the energy cannot quickly escape, the decompression is
adiabatic. Because we are interested in the cases where shocks
heat the disk up and change its temperature structure, we choose
the adiabatic decompression. Therefore, the pressure and den-
sity before and after decompression can be given by an adiabatic
equation of state as

ps (ZY
ps _(Z) 3
P2 (22) )

Because the gas density will return to its pre-shock value, we can
replace 3 with Z; so that:

IAY
= =l 4
P3 Pz(zz) “)
Let us assume that the time between two passages of a shock
through a specific location of radius r in the disk is #pus =

27/1Qk(r) — Qi(rp)l, where Qg = JG(M. + My)/r is the

Keplerian frequency, G the gravitational constant, M, and M,
the masses of the star and planet respectively, and r, the planet’s
semimajor axis. The amount of heat per unit time (averaged over
many passages) is then:

A(Ee) e3 — e 1 [ (21 )7 ]
= 3 = = —-p|- O
At Tpass : tpass(7 -1 P2 pY) P

Qsh =

Expressing M; from Eq. (1) we obtain:
) _ 2(%2/%1)
L+ D= (- D&/

Inserting this into Eq. (2), we can remove p, from the above
equation and obtain:

o [(l)w _
tpass(y_]) a (7+l)_(7_l)0-

©)

On Ly, @)

where o := Z,/%; is the “shock strength”. This equation is iden-
tical to Eq. (16) of Rafikov (2016) assuming a one-armed spiral.
In the literature, there is no straightforward way to find the
strength of planetary spirals. Following Rafikov (2016), we take
o as a free parameter and compare the shock heating rate with
the viscous and the irradiation heating rates. This comparison
is shown in Fig. 1, where we artificially damp o exponentially
with distance from the planet’s gap opening region to avoid
overestimating shock heating far from the planet:

|}’ — I | < 2.5 RHill,
’ ®)

ag,
o(r) =
) {1 + (o — 1)e~¥r=nl=25Rm)/n  otherwise,

where Ryin = /M, /3M., 1.

For M12 — oo, Eq. (1) gives an upper limit to shock strength

for adiabatic shocks as o — z—f: = 6 for y = 7/5. We should note

that this upper limit is not strict if additional thermal mechanisms
(such as cooling) are included in the models.
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Fig. 1. Shock heating rate by planet’s spirals estimated by method
in Sect. 2 and damped using Eq. (8) for different shock strengths
(0 = %,/%, vy =7/5) compared to viscous and irradiative heating rates
(dashed and solid black lines; see Sect. 3.1). Lilac band indicates the
corotating region, in which the estimates are not valid due to poten-
tial gap opening. The model used for this plot assumes M, = 100 M,
M =108 Myyr™', @ = 1073, r, = 4au (see Sects. 3.1 and 3.2).
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Fig. 2. First four opacity regimes according to Lin & Papaloizou (1985).
Dotted teal line marks the water ice line (Ti.. = 170K). Different
branches are patched together by interpolation.

This estimate shows that shock heating by a planet can over-
come the other two heating sources if the planet is massive
enough to produce strong shocks, and the disk opacity is large
enough to prevent heat from quickly escaping from the mid-
plane. This extra heating raises the temperature in the disk up
to the location where the shocks damp greatly. Because the disk
opacity also depends on temperature (see Fig. 2), spiral heating
by a planet in the vicinity of an ice line (either via migration
or in-situ formation) might displace the latter. In the following
sections, we study this problem for a more realistic model with
shocks that are not necessarily adiabatic and examine how much
and under what conditions the location and shape of an ice line
can change.

3. Model setup

In this section, we present the physical framework that we utilize
in our planet—disk modeling. We describe the relevant equations
and the assumptions behind them, along with our numeri-
cal setup as far as our parameter space, initial and boundary
conditions, and grid structures are concerned.

3.1. Physics

We solve the vertically integrated Navier—Stokes equations for
a disk with surface density X, velocity vector v and vertically
integrated specific internal energy e on a polar coordinate system
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{r, ¢} centered around the star. For a perfect gas, the equations
read

dz
= - V.,
dr v
z@ =-Vp-3Vd+V.I,
dr
dx
d—l‘e = —yZeV - v + Qvise + Qirr — Ocool» )]

where y = 7/5 is the adiabatic index, p = (y — 1)XZe is the
vertically integrated pressure and X denotes the viscous stress
tensor.

The adiabatic and isothermal sound speeds cs, cgjo are
related as:

Csiso = Cs/\y = HOx = hog = \RT/u,

where H is the pressure scale height, # = H/r is the aspect
ratio and vg = Qgr = YVGM/r is the Keplerian azimuthal veloc-
ity. The universal gas constant and mean molecular weight are
denoted by R and u = 2.353, respectively.

Source terms Qyisc, Qirr, and Qcool in the energy equation
correspond to viscous heating, stellar irradiation, and thermal
cooling, respectively:

(10)

1 > 2 ) 2y 2
Qvisc = ﬁ(o-rr+20-r¢+0-¢¢)+ T(Vv) R
L. dlog H 1
e = 2 1- -1h—,
Q 47rr2( €) ( dlog r ) Teft
4
Qcool = 2058 —, (1)
Teft

where v = acyH is the kinematic viscosity according to the
a-viscosity model of Shakura & Sunyaev (1973), osp is the
Stefan—Boltzmann constant, and 7. is an effective optical depth
following Hubeny (1990):

V3

4

37
Teff = 5

8

1

4t (12

, T =f kpdz = c1kpmiaH,
0

with the Rosseland mean opacity «(p, T) defined according to
Lin & Papaloizou (1985), shown in Fig. 2. The correction fac-
tor ¢; = 1/2 is added following Miiller & Kley (2012) to account
for the drop in opacity with height. We assume a Gaussian
vertical density profile so that ¥ = \/ﬂpmidH .

As far as irradiation is concerned, we assume a star of
solar luminosity L, = Ly and a disk albedo of € = !/2. Fol-

lowing Menou & Goodman (2004), the factor ‘gﬁé’: is assumed

to be constant and equal to 9/7 (i.e., disk self-shadowing is not
considered).

3.2. Numerics

We utilized the numerical MHD code PLUTO (Mignone et al.
2007) for our simulations, along with the FARGO algorithm
described by Masset (2000) and implemented as a library into
PLUTO by Mignone et al. (2012). To enable radiative diffusion,
we implemented a separate module that is briefly described in
Appendix D. Simulations with an embedded planet were run on
a polar {r, ¢} grid, logarithmically spaced in the radial direction.

Our parameter space is shown in Table 1. It contains the
planet mass M, the planet’s semimajor axis r, (fixed, circular
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Table 1. Parameter space: 7, is quoted in au and M in M yr™".

Parameter Values
M, 10 Mg, 100 Mg, 1 My, 3 My
Tp 1,4,10
M 1072, 1078, 1077
@ 1074, 1073, 1072
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Fig. 3. Initial profiles for five disk models with different M and @ used
throughout this study. Dotted pink line refers to an inviscid disk where
Qcool = Oir (i.€., the irradiation temperature) and functions as our effec-
tive temperature floor. It becomes clear that viscous heating is strongest
in the inner disk, while irradiation dominates its outer parts.

orbits), the viscosity parameter a and the initial disk mass accre-
tion rate M, which is constant throughout the disk in viscous
equilibrium such that M = 37vE (Lodato 2007). By selecting
an « value and a constant accretion rate we can then construct
well-defined equilibrium states.

To generate our initial conditions, we prepared 1D models
that satisfy viscous and thermal equilibrium conditions:

M =3mvE
Ocool = Ovise + Qirr

and ruled out very cold disks or gravitationally unstable ones, for
which the Toomre parameter Qr (Toomre 1964), defined as:

(viscous equilibrium),

(thermal equilibrium), (13)

CSQK
= R 14
Or ~Gx (14)
is less than unity. The initial profiles we used are plotted in
Fig. 3.

We then embedded planets in each configuration and ran
each model until the disk reached, roughly, its viscous and
thermal equilibrium or a maximum simulated time of fy.x =
10° years elapses. To ensure a constant M through the bound-
aries, X, v were damped to the initial profiles according to
de Val-Borro et al. (2006) over a timescale of 0.3 boundary
orbital periods.
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Table 2. Grid setup.

log(%/yr) loga  rp[au] Mgk [{‘{—,0] N, N

-7 -2 1 258 435 849
-7 2 4 257 383 748

-7 2 10 812 441 861

-8 -2 1 0.08 699 1364
-8 2 4 038 651 1271
-8 2 10 094 527 1029
-8 -3 049 579 1130
-8 -3 4 340 531 1037
-8 310 9.10 515 1005
-9 -3 1 0.10 813 1587
-9 -3 4 040 685 1337
-9 310 096 529 1033
-9 —4 1 077 699 1364
-9 -4 4 384 655 1279
-9 -4 10 951 529 1033

Notes. Our fiducial model is shown in bold, and the same setup was
used for runs with radiative diffusion.

The gravitational forces read

GJorav = G+ T gp + Gin = -Vo
GM, GM, GM,

e o (15)
r R+t g

=- Ty, Te=T—Tp,

where g., gp, gin refer to the gravitational acceleration by the star,
the planet, and the indirect term that arises due to the star—planet
system orbiting around their mutual barycenter. The planet is on
a fixed orbit and we neglected the backreaction of the disk onto
star and planet. For the softening length, we used € = 0.6H to
prevent singularities around the planet’s location. The value 0.6
was selected according to Miiller et al. (2012) as it provides very
similar results to 3D models. We note that € was evaluated using
the local H at each cell.

4. Disk profiles

Having described our physics and numerical methods, we pro-
ceeded to execute our simulations. The grid setup for each model
is shown in Table 2. A cross-code comparison as well as a reso-
lution test for the verification of our numerical setup is provided
in Appendix A. We constructed the numerical grid such that the
pressure scale height H is resolved by at least six grid cells at the
planet’s location (see Appendix B for more details).

We first investigated the thermal input of a planet onto the
disk and the structure of the gap that planet might possibly carve.
In order to do so, we first presented some comparisons of the
gap width and depth across different models for both surface
density and temperature. We then highlighted the influence of
disk aspect ratio and viscosity on the planet’s ability to open a
gap. We then determined to show temperature profiles for vari-
ous disks with identical initial temperatures so that the planet’s
impact would become more apparent.

Afterwards, we took a closer look at the structure of spiral
arms by tracking the same quantities along their crests and com-
pared them against the azimuthally averaged disk profiles. This
would give us an estimation for both the temperature contrast
between the spirals and the disk, as well as the shock strength
along those spirals.
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Fig. 4. Azimuthally-averaged profiles of surface density (left) and temperature (right) across planet masses and locations for our models. More
massive planets open deeper and wider gaps but the temperature inside the gap region is not necessarily lower in the outer, irradiation-dominated
disk due to stellar irradiation. The dotted pink line marks the disk irradiation temperature (Qcool = Qirr)-
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Fig. 5. Azimuthally-averaged profiles of surface density (left) and temperature (right) around planet’s location across different disk models for
M, = 100 Mg. These snapshots are taken once each model has reached a quasi-equilibrium state, meaning that the gap depth is not well-defined
for very low viscosities. However, it only takes a few hundred orbits for the overall disk structure to equilibrate.

4.1. Gap opening capabilities of a planet

In Fig. 4, we compare the gap-opening capabilities of planets of
different masses for our fiducial model (M = 1078, o = 1073).
While the least massive planet in these models (10 Mg) does not
open a gap, the rest are sufficiently massive to show a clear trend
between planet mass and gap width, with more massive planets
opening deeper and wider gaps.

However, we also find that there is a lower limit to the tem-
peratures inside the gap. This arises due to stellar irradiation,
which provides enough heat to form an effective temperature
floor where Qi = Qcoo1- This term overpowers other heating
effects with increasing radii and, as a result, a temperature gap is
not visible in the outer disk regardless of planet mass.

Then, for a given planet mass of M, = 100 Mg, we car-
ried out the same comparison across models with different disk
parameters. The results are shown on Fig. 5, where a similar
behavior is visible for temperatures inside the gap.

A key point in these findings is that we observed shallower
gaps for higher values of a (for a given M) or M (for a given ).
This can be understood by looking at the two main mecha-
nisms determining the gap edge, as shown by Crida et al. (2006):
viscosity and pressure gradients. Before adding a planet to a disk

of a given M and @, one can show that M o vX o apr’/?, such
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that pressure gradients are stronger in disks with a higher M or
lower «. This, combined with the fact that viscous dissipation is
scaled with a, allows for easier gap opening in disks with either a
higher M or lower a. This is nothing new, as it has been pointed
out by Crida et al. (2006), Zhang et al. (2018) as well as in pre-
vious studies, that disks with a lower viscosity or aspect ratio
support the gap opening process.

4.2. Spiral shock heating by a planet

On the right panels of Figs. 4 and 5, apart from the depth (or lack
thereof) of a gap, we noted a temperature increase on both sides
of the planet’s vicinity, sometimes by a factor of 1.5-2 compared
to the initial profiles. This heat excess is scaled with planet mass
and it can lead to quite high temperatures in the inner disk. This
pattern is in agreement with our theoretical estimates, given in
Sect. 2, based on which we should expect that the optically thick
inner disk is more susceptible to heating by spiral shocks.

In the attempt to compare the individual effect of each of
our four parameters — planet mass, accretion rate, viscosity
parameter, and planet radius — we plotted pairs of models where
three out of four parameters are the same, allowing us to quantify
the influence of the fourth. The trends we find with this method
are clear enough that a comparison between our fiducial model
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Fig. 6. Azimuthally-averaged temperature profiles for four pairs of models, showcasing influence of each of four variables in our parameter space
(M,, M, , r,) on spiral shock heating. Our fiducial model (M, = 100 Mg, M = 1078, = 1073, rp, = 4) is shown in blue on every panel, while
dashed lines depict initial profiles of the model of corresponding color. In all cases, we noted stronger shock heating in optically thicker regions of

the disks. This behavior can also be seen in the rest of our suite of models.

and four other models suffices to convey the general picture. This
comparison is shown in Fig. 6.

The common denominator for these four panels is the cooling
timescale of different disks and the regions within them. We can
get a rough estimate of this timescale by focusing on the cooling
term in Eq. (11) and writing
0%e e T4 N TefRE

ot Teool Qeool = s Teff = Teool u(y — DosgT? ’
which further backs the assumption that the deciding factor in
determining the contribution of shock heating to the thermal
budget of the disk is the optical depth. Finally, we compared two
models where {M = 1078,@ = 1072} and {M = 107°,a = 1074},
respectively. These two models happen to have identical initial
temperature profiles but they show the lowest and highest optical
depths in our suite of simulations, respectively. This compari-
son is plotted in Fig. 7 and clearly shows the effect of optical
depth on the contribution of shock heating. It should be noted
that even though the optically thinnest model in that figure shows
only small traces of excess heat due to shocks, the cooling
timescale is still more than 10% of the orbital period at 10 au
and, therefore, radiative effects of the disk should still be treated
self-consistently to get a correct picture of its evolution.

From our results, we can conclude that shock heating is, in
principle, important for all of our models and that it sometimes
dominates when the cooling timescale of the disk is sufficiently
long. This implies that planets with semimajor axes in the range
of 1-10au can noticeably heat up their environment through
spiral shocks and, as a result, an adiabatic equation of state is
necessary when modeling planet—disk interaction in this regime.

(16)

4.3. Spiral arm structure and shock strength

In the previous section, we discuss the effect of shock heating
by comparing azimuthally-averaged profiles in simulations with
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Fig. 7. Azimuthally-averaged temperature and cooling timescale for two
models that share the same initial temperature profile but have very dif-
ferent optical depth profiles. We see that shock heating is significantly
stronger for the optically thicker model, while the optically thinner one
looks almost unchanged.

and without planets. While this is a useful approximation to form
a general image of planet—disk interaction, it cannot isolate the
contribution of individual spirals or their properties. Inspired by
the approach of Zhu et al. (2015) we wrote a script that can trace
spiral arms as they propagate away from the planet and logged
their coordinates, as well as ., and Ty, along their crests. We
then used this data to estimate a proxy for the shock strength
along those spirals as Z,m /Z (shown in Sect. 2), as well as their
pitch angles S defined as tan 8 = d10g rym/d@arm-

As in the previous section, trends among models are clear
enough such that we do not need to present results for our
entire library of simulations. Instead, we take into account that
the contribution of shock heating is scaled with the optical
depth and show results for three regimes: the optically thinnest
model (M = 1078, a = 1072, rp = 10), the optically thickest
one (M =107, @ = 1074, rp = 1), as well as our fiducial
model (M = 1078, a = 107, r, = 4), which also happens to
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Fig. 8. Shock strength, pitch angles, and azimuthally-averaged aspect ratios for three representative models. Optical depth and cooling timescale
increase from left to right. Top: shocks are stronger for more massive planets but their dependence on disk parameters is not clear. To filter out
unphysical results, we mask points that lie within the gap region (|r — r,| < 2.5 Ry or the corotating region (see Eq. (17)). Middle: pitch angles
are roughly the same regardless of planet mass for the optically thin case but deviate with increasing optical depth. Black lines denote the expected
values using Eq. (19) for i = h, (dashed) or Eq. (20) for i = h,r*" (dotted). Bottom: a power law fit of aspect ratio is only possible for optically
thin case or low mass planets but fidelity for such a fit breaks down even for 10-Earth-mass planets in an optically thick disk. Black dashed lines

refer to initial aspect ratio profiles.

lie somewhere in the middle. For each model, we calculate the
shock strength and pitch angles of primary spirals (i.e., those
that connect to the planet). Since the pitch angle is scaled with &
far from the launching point according to linear theory, we also
plotted the azimuthally-averaged aspect ratio .

In an attempt to filter out unphysical shock strength values
inside the low-density ring around the planet, we calculated the
half-width of the horseshoe region as shown in Paardekooper
et al. (2010):

Ly (| Mo (—0'4H")]/4 (17)
Xp = 1.1, —_ N
P hy M, \ ve
as well as the shock length following Dong et al. (2011):
-2/5 3
Y+ 1 MP Cs
=082l M= 18
" ( 12/5 Mm) "= Go, (18)

3
where My, =~ IMJ(%) (%@) is the disk thermal mass. If

My, > My, then x; = 0 (spirals shock immediately upon launch).
For more massive planets, where a gap opens, we set a cut-off
where |r — rp| < 2.5Rpj. We then excluded data from within
any of those three regions.

Our results are summarized in Fig. 8. We see that the shock
strength of spirals typically lies between 1.5-3 for massive plan-
ets but rarely exceeds 1.5 for 10 Mg models. Looking at Fig. 1,
we can see that such shocks produce competitive heating when
compared to either viscosity or stellar irradiation for r, < 4. In
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the r, = 10 case (see the left panels of Fig. 8), however, the
planet is embedded in an optically thin, irradiation-dominated
region and, as a result, shock heating is overcome by stellar
irradiation, which eventually sets the overall profile.

As far as pitch angles are concerned, we attempted to fit their
curves with analytical formulas that assume an aspect ratio pro-
file. In the inner disk, due to the temperature being defined by
different power laws depending on the opacity regime, it is eas-
ier to assume that the aspect ratio is roughly constant and use the
formula by Ogilvie & Lubow (2002) to calculate the location of

(2]

= —sgn( )2 r\"
Gam = =S =) 3|

On the other hand, for the irradiation-dominated outer disk
(where Qir = Qcool), We can utilize the formula by Muto et al.
r I+
X — —_— —
Tp 1+n 1-¢+n

]
(v =)

1+7n T 1- {+7
where Qg o ¢ and h o 137", For h o r*/7 (see Eq. (11)), we
have ¢ =3/2 and 5 = 3/14.

3
—Eln

r

p

(19)
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1 1 r

p

(20)

s
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Even when utilizing both formulas, we find that it is diffi-
cult to get a good fit and that we always underestimate the pitch
angles. This shows that the heating generated by the planets’
spirals can change the disk aspect ratio such that it cannot be
accurately approximated with a power law. The fit completely
breaks down for massive planets or optically thick disks, where
we find that pitch angles are inflated around the location of
planets. This makes sense since shock heating peaks at these
locations (e.g., see Figs. 1 and 5).

5. Location and shape of the water ice line

Using the analytical estimates in Sect. 2, we show that if a mas-
sive planet is located in the optically thick part of the disk, the
shocks are adiabatic and spiral heating can increase the tem-
perature of the disk. In Sect. 4, we present our results on the
heating potential of these shocks through our numerical simu-
lations, confirming our estimates. In this section, we investigate
how much a planet can displace ice lines (e.g., the water ice line)
in a disk. Our motivation to do so lies in quantifying the possi-
bility that a planet can starve itself or the inner disk of water as
it forms, as well as the possibility that it can impact the environ-
ment in which planetesimals could grow (Drazkowska & Alibert
2017).

From Fig. 2 it becomes clear that the Rosseland mean opac-
ity is independent of density up to T ~ 10°K such that the
water ice line effectively represents the temperature where ice
sublimates. This implies that the location of the ice line does
not explicitly depend on the density jump across shocks but
instead on the temperature they can reach. In this study, we fol-
low Lin & Papaloizou (1985) and define the water ice line rice
as the point where the temperature reaches Ti.e = 170K (see
opacity transition at this point in Fig. 2).

5.1. Location of the azimuthally-averaged water ice line

In the absence of a planet and assuming an axisymmetric disk,
the equation r = rj. defines a circle with radius 7. from the star,
within which water can only be found in the form of vapor. For
now, let us assume that the presence of the planet does not signif-
icantly perturb the ice line in the azimuthal direction but instead
moves it uniformly towards or away from the star, such that the
new location of the ice line is Fice = (rice)y ONce equilibrium is
reached.

Depending on its initial location, the ice line is susceptible
to two planet-induced phenomena: the closer it lies next to the
planet, the more it is exposed to shock heating from the latter,
leading to a larger outward displacement as the planet heats up
its surroundings. In the extreme case that the ice line initially lies
directly next to the planet, it can be pushed away by a factor of
1.5 or even more (see Fig. 9a). The impact on the location of the
ice line is scaled with the mass of the planet, with Jupiter-sized
planets increasing 7ice by a factor of 2.

However, in the case that the planet is massive enough to
open a gap, embedding it too close to the ice line such that
the latter overlaps with the optically thin gap region results in a
recession of the ice line towards the inner gap edge (see Fig. 9b).
In this case, the final location of the ice line depends on the width
of the gap, which is also scaled with planet mass. Of course,
for planets of sufficiently low mass, a gap will not open and,
therefore, the ice line location will essentially remain intact.

Finally, it is possible that gap opening and shock heating can
compete for the determination of the location of the ice line. This
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behavior is shown on Fig. 9c: shock heating initially moves the
ice line outwards, “pulling” it closer to the planet. However, the
slower gap opening process eventually “catches up” and the steep
temperature gradient near the inner gap edge extends the region
affected by the gap down to around 2.5 au (0.6 r;,), returning the
ice line to a location similar to its initial one once the gap has
fully opened.

5.2. Azimuthal structure of the ice line

In the previous section, we consider the ice line as an axisymmet-
ric line — a circle with radius 7jc. around the star — by tracking its
location using azimuthally-averaged temperature profiles. How-
ever, shock heating is a strongly non-axisymmetric process as it
follows the trajectories of spiral arms. Therefore, its influence
on the location of the ice line should introduce azimuthal fea-
tures on the latter. In other words, the full picture is 2D — at least
within the scope of this project.

To examine the azimuthal structure of the ice line, we plot
temperature maps of our models at equilibrium and draw con-
tours at 7'(r, ¢) = Tic.. We summarize the results for some of our
representative models in Fig. 10.

In general, a few key behaviors can be observed in our sim-
ulation results. The ice line tends to move outwards in optically
thick disks (as shown above) and deform it in such a way that it
follows the trajectories of spirals when strong shocks are present.
Therefore, we can distinguish a few distinct “extremes.” For a
low-mass planet in an optically thin disk, the location or shape
of the ice line do not change. In an optically thick disk, the same
planet might slightly move the ice line outwards or perturb it
along the azimuthal axis.

In both of these cases, the analysis in Sect. 5.1 still applies
with good accuracy. However, a massive planet launches strong
shocks and opens a gap which can halt the outward movement
of the ice line or even cause it to recede to the inner gap edge.
Therefore, for a high-mass planet in an optically thin disk (where
typically ri’;o <rp), we see hot spirals form in the inner disk
(such that T, > Tice) but we see little to no radial displacement
of the ice line (see Fig. 10b). If initially ri’:eo ~ Tp, the ice line will
recede to the inner gap edge, in addition to forming hot spirals in
the outer disk (see Fig. 10c).

On the other hand, for a massive planet in an optically thick
disk, shock heating is strong enough to displace the ice line to
the outer disk to the point where spiral pitch angles are small and
the spirals are very tightly wound, heating the disk uniformly in
azimuth. In this case, the domain is split into a hot inner disk,
a cold gap, and a hot ring in the outer disk (see Fig. 10a). If
initially ri’:eo ~ 1p, the ice line will again recede to the inner gap
edge while possibly forming hot spirals or a hot ring in the outer
disk, depending on the optical depth.

Of course, if /=0 > r,, far out at the irradiation-dominated
outer disk, the ice line will not change in shape or location but a
cold ring can still form inside the gap region. However, the opti-
cal depth rapidly increases at small distances from the star and,
as such, the pile-up of inner spiral arms by a Jupiter-sized planet
can still cause substantial heating, moving the ice line outwards
even in optically thinner models (as shown in Fig. 9d).

6. Discussion

In this section we discuss our findings with respect to their pos-
sible impact on the growth and change of orbital elements of the
planets, and on the structure of the disk.
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Fig. 9. Azimuthally-averaged ice line location for three sample models, showcasing three possible evolution scenarios, panel a: spiral heating
pushes ice line outwards; panel b: ice line recedes to the inner gap edge; panel c: shock heating initially pushes ice line outwards but eventually a
gap is carved and ice line recedes inwards. These effects are amplified for more massive planets. It should be noted that in the case of a cold gap,

ice can recondense within the gap region (panel a).

6.1. A shift of the ice line

Under certain conditions (low M, low @), a planet located at 1 au
could push the ice line outwards by a few au. This leads to a
reduction of icy solid material present in the disk in terms of
size and number. This lowers the accretion of solid material onto
the planet as more matter is in gaseous form, which has a lower
(viscous) drift than embedded particles. On the other hand, when
the snow line moves just a little beyond the planet, icy aggregates
that may fall apart can release tiny silicate grains (Schoonenberg
et al. 2018) and tiny dust may be less well trapped in the outer
edge of the planet gap, possibly affecting the accretion of dust
onto the planet. The net effect will be an enhancement of dry
over wet particle accretion onto the planet and a reduction of the
water content in the inner regions of the disk.

6.2. Slush islands

In our simulations, we locate regions where the conditions within
the disk are such that the temperature along the spirals is above
the ice sublimation threshold and drops below it between spi-
ral crests (see Fig. 10). Ice sublimates around the peak of the
shock but condenses again further away from it, such that along
the boundary of the spiral (as defined by the ice line) one might
find a mixture of ice and water vapor with a “slushy” consis-
tency, hence, we call them “slush islands.” These may occur
inside as well as outside of the planet’s location. The repetitive
sublimation and condensation will slow down dust growth as
growing particles will periodically be reduced in size.

6.3. Migration torques

The disk heating of an embedded planet will change the torques
acting on it and, hence, affect its migration rate. As the
torques are scaled inversely to the disk’s scale height (Kley &
Nelson 2012), it is expected that the planets slow down due
to the heating they produce. This possibility has already been
explored and discussed by Hallam & Paardekooper (2018), who
show that even a simplistic prescription of gap edge illumi-
nation can result in the slowing down or even reversing of
the migration rate of planets. In light of our results concern-
ing the planets’ ability to heat up their vicinity through spiral
shocks, our modeling supports the findings of that study in that
regard.

6.4. Temperature within the gap

In our simulations the temperature within the gap is lower that
the environment because of the reduced optical depth. For deep
gaps, the irradiation temperature was reached. Previous works
look at the gas temperature in a planet’s gap (via radiative trans-
fer calculations) while considering the three dimensional vertical
extent of the disk (Jang-Condell & Turner 2012). In that particu-
lar study, the gap’s temperature is determined by shadowing and
illumination effects, which are not included in our 2D treatment
of irradiation. It was also found that the outer gap edge, which
is directly exposed to starlight, can heat the interior of the gap
to the extent that the temperature can rise even higher than the
ambient temperature.
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Fig. 10. Temperature maps for four models, showcasing azimuthal structure of ice line. Two colormaps denote the blue “cold” (T < T ) and orange
“hot” (T > Tj..) disk, respectively, with a yellow line separating the two regions (7" = T)c.). The initial location of the ice line (before a planet is
embedded) is marked with a dotted white line, while its azimuthally-averaged location in equilibrium is shown with a dashed white line.

6.5. Simplifications and assumptions

Throughout our study, we have made several assumptions about
the various physical processes at play. Therefore, we find that it
is important for us to draw attention to the potential impact they
can have on our results.

First and foremost, there is our two-dimensional approxi-
mation in simulating global, adiabatic disks. Lyra et al. (2016)
point out that the additional degree of freedom in the vertical
expansion of an adiabatic shock results in overall weaker shocks,
suggesting that our results overestimate shock heating. This can
be amended by “scaling” our results to refer to more massive
planets.

Secondly, regarding the smoothing length chosen for the
planet’s gravitational potential, we chose to evaluate the scale
height locally (H(r, ¢)) instead of using that at the planet’s loca-
tion (H,). The reason behind this choice is that it corrects for
the disk’s finite thickness, as shown by Miiller et al. (2012).
However, this assumption might be problematic in radiative
simulations. For example, the planet’s accretion luminosity can
result in a “hot bubble” around the planet (Klahr & Kley 2006),
where the scale height can increase sharply with respect to
its initial value. Nevertheless, this smoothing length becomes
important at a scale far smaller than the planet’s Hill radius
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and, therefore, it should have a minuscule effect on the latter’s
gravitational potential.

Additionally, our model of stellar irradiation contains a sim-
plification in that disk self-shadowing is ignored. Specifically,
we assume that the star illuminates a disk where the scale height

does not significantly change (such that ‘gﬁ)ggt’ is constant and
refers to a power-law profile for H) but then we point out that
shock heating can, in fact, strongly affect said disk property.
While this assumption leads to a very straightforward and stable

numerical implementation of stellar irradiation, it occasionally

results in a disparity between our assumption of 9/7 for ‘gfogg?
and the actual value. This disparity is greater for optically thick
disks and diminishes with the increasing distance from the star.
We can, therefore, justify our choice by remembering that stellar
irradiation is indeed a dominant heat source at large radii, where
the approximation holds best, and gives way to viscous and shock
heating near the star, rendering it insignificant regardless of how
well the approximation holds.

7. Conclusions

In our study, we examined the thermodynamical impact of
planets on the ambient protoplanetary disk in which they are
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embedded. In order to do so, we first calculated an estimate for
the amount of heat a planet can deliver into the disk through spi-
ral shocks and we showed that such heating can be significant.
We noted that this process is strongest in the immediate vicinity
of the planet but it also has the potential to influence a larger
area depending on disk optical depth. We then carried out a
grid of 2D numerical hydrodynamics simulations with included
radiative effects in order to find out if and how much this planet-
generated heating can influence the disk and displace or deform
the otherwise axisymmetric water ice line, defined as the radius
Fice, Where T (rice) = Tice = 170K

We find that spiral shock heating is most important in
optically thick, viscosity-dominated disks. Both of these require-
ments suggest a long cooling timescale, and they are fulfilled in
the inner few au of a protoplanetary disk. On the other hand,
the irradiation-dominated outer disk suppresses shock heating by
raising the aspect ratio. However, even when a planet is embed-
ded in the outer disk, its inner spirals can heat up the disk as they
propagate inwards.

We also show that both a high viscosity or aspect ratio inhibit
the gap opening process, a result which is consistent with pre-
vious studies. On top of that, treating radiative effects allows
us to probe the gas temperature inside the gap region. We find
that in the inner disk, where viscous heating determines the gas
temperature, a cold gap can be seen around massive planets.
This is not visible in the outer disk, where the temperature both
inside and out of the gap region is determined by the irradiation
temperature.

By tracing the planet’s spiral arms we find that planet-
induced spiral shocks are scaled in strength with planet mass
to the extent that shock heating is strongest for massive planets.
This leads to a noticeable difference between spiral and back-
ground temperatures, with clear implications on the pitch angles
of said spirals. We also show that due to the fact that the aspect
ratio can increase dramatically by high-mass planets, fitting pitch
angles with a standard flaring-aspect-ratio prescription would
not, in principle, yield accurate results when shock heating is
important.

Subsequently, we investigated the planet’s ability to displace
the water ice line. We found that shock heating by the planet can
increase temperatures high enough to push the ice line away from
the star. This outward displacement of the ice line can happen to
various degrees depending on the optical depth of the disk. Opti-
cally thicker disks are unable to efficiently radiate away excess
heat and are prone to larger ice line displacements. Shock heat-
ing can then lead to either a uniform outward movement or a
non-axisymmetric deformation of the ice line.

In the inner few au of our disks, planets that are massive
enough to carve a gap can create a cold ring around their semi-
major axis. This gap cooling effect can easily overpower shock
heating in the immediate vicinity of the planet, pulling the ice
line inwards to the inner gap edge if it was initially near the soon-
to-be-opened gap region or creating a “hot ring” outside of the
planet’s location if the ice line maintains a radius greater than
that of the planet’s semimajor axis.

However, it is also possible that the ice line becomes
deformed due to the temperature contrast between spirals and
the disk background to the extent that it bends to follow spi-
ral trajectories. This deformation is clearest for strong shocks
in optically thin disks, where the ice line can trace the inner or
outer spirals depending on the initial disk temperature profile.
Such spirals will then be water-poor, with possible implications
on dust growth in their vicinity. These effects can impact the
accretion rate and composition of accreted particles on a planet.
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As far as the scale of this displacement and deformation is
concerned, we find that planet mass plays a leading role in deter-
mining both shock strength as well as gap width to the extent
that any effect related to the location or shape of the ice line is
amplified for higher planet masses.

Finally, we report that accounting for radiative diffusion in
the disk midplane leads to no significant differences in tem-
perature profiles or ice line deformation. In addition, it leads
to barely any observable differences in azimuthally-averaged
ice line locations and spiral arm opening angles. As a result,
radiative diffusion can be safely ignored in the context of this
study.
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Appendix A: Grid and code validation and physics
justification

— : . —r 400
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Fig. A.1. Comparison between PLUTO and FARGO, after restarting from identical disk state in quasi-equilibrium (#; = 6250 orbits) and running
independently until # = #; + 650 orbits. Both surface density and temperature profiles are in good agreement across codes in the outer disk, while
the different treatment of shock heating between the codes becomes evident only near to the planet.

In order to verify our setup, we ran a comparison test against
the numerical hydrodynamics code FARGO (Masset 2000). For
this test, we simulated the first 6250 orbits (50 kyr) for a fiducial
model (M, = 100 Mg, r, = 4au, M = 108 Myyr™!, @ = 1073)
using PLUTO, then transferred the current, quasi-equilibrium disk
state to FARGO and ran it for an additional 650 orbits using both
codes and using exactly the same physics. The final disk state
for surface density and temperature is plotted in Fig. A.1. We
find that the two codes produce similar results in the inner and
outer disk, differing only around the planet. We rationalize this
by pointing out the fundamentally different treatment of shocks
between the two codes: PLUTO utilizes a Godunov-type scheme
(a conservative, finite-volume approximation combined with a
Riemann solver) that captures and resolves shocks with very
good accuracy, in contrast to FARGO’s treatment of shocks.

Overall, the level of agreement between the two codes pro-
vides good grounds to assume that our setup is working as
intended and that we can proceed with simulating our suite of
models using PLUTO.

Next, we verified our grid size. We used enough cells in the
radial direction such that the pressure scale height H is resolved
by six or more cells at the planet’s location. We used an appropri-
ate grid size in the azimuthal direction to maintain square cells
(roughly twice the number of radial cells). To check whether this
grid size was large enough, we reran our fiducial model with
double the resolution on both the  and ¢ axes (using PLUTO) and
compared the azimuthally-averaged surface density and temper-
ature profiles (see Fig. A.2). The results turned out to be quite
similar (to roughly 90%) so for our qualitative study this resolu-
tion of six cells per scale height is justified. The grid size used
for our simulations is shown in Table 2.

Finally, we investigated the influence of radiative diffusion
on the phenomena we intended to study, namely the shock
strength of planetary spirals and the influence of the planet’s
shock heating on the water ice line. We find that accounting for
radiative diffusion within the disk midplane barely affected the
outcome of the two simulations. It was enabled in the fiducial
model for M, = 10 and 100 Mg so that a case where no gap
opens can also be studied. We report on the effect of radiative
diffusion for these two models in more detail in Appendix C.
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Fig. A.2. Two runs for our fiducial model, one of which (blue curves)
has double resolution on both r and ¢ axes (for total of four times
as many cells). The snapshots are taken at ¢+ = 100 kyr (12500 orbits)
where equilibrium has more or less been reached. The inset zooms in
on the pink-tinted region, showcasing the match between the two gap
profiles.

Appendix B: Grid structure

As described in Sect. 3.2, our first step was to generate 1D
models for various combinations of M and a. These models
were calculated for r € [0.2,100]au and then an appropriate
region was selected depending on planet semimajor axis r, by
constructing a grid that mimics the PLUTO grid structure and fit-
ting our initial profiles onto it through linear interpolation. That
grid typically extends from r;,/5-5r, except for simulations with
10 Mg planets, which were carried out earlier with a domain
always between 0.5-20 au regardless of planet location. A ver-
ification test was carried out to make sure that that setup did not
affect the quality of the simulations and produced results identi-
cal to those using the former setup, therefore these simulations
did not need to be rerun.
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As far as grid size is concerned, we measured the pres-
sure scale height H, at the planet’s location and constructed a
logarithmically-spaced array of N, cells in the r-direction that

satisfies:

H . RT,r

e Y A1 N el VR VA VAR %0
Ar, Ok lpizo uGM

while the number of cells in the azimuthal direction was chosen
so that cells are square, or:
)1/N,,

e

This typically results in grids of around 600 x 1200 cells (e.g.,
our fiducial model with M, = 100 Mg, M = 108 Mo yr!, a =
1073, rp = 4 au contains 531 x 1037 cells).

a+1
I
a-1

Tout

Fin

Ny

(B.2)

Appendix C: Effect of radiative diffusion

We repeated two simulations for our fiducial model (r, = 4 au,
M =108 My yr™!, @ = 1073) with flux-limited diffusion (FLD)
enabled in the disk midplane. This additional term should smear
out peaks in the temperature structure of the disk and could
become important along the trajectories of spirals. We choose
M, € {10,100} Mg to examine its overall impact on the disk
whether a gap is carved or not. However, we do not see a sig-
nificant difference in the low- nor in the high-mass simulations
except for the lower peak temperature of spirals in the FLD mod-
els and a slight inward movement of the ice line. This implies that
vertical cooling happens at a much faster rate than the planar
diffusion timescale. By comparing their timescales, we indeed
find that thermal cooling readjusts disk temperatures roughly
100 times faster than radiative diffusion does (except for inside
the gap region) to the extent that its effect on temperature profiles
and the ice line is negligible.

Disk profiles and spiral arms

A comparison is plotted in Fig. C.1 for the high-mass case.
Spiral arms show slightly lower temperature maxima and the
azimuthally-averaged temperature profile is smoother overall,
with lower highs and higher lows. This effect is strongest around
parts of the disk that might contain steep temperature gradients,
such as the region between 2.5-3.5 au for these models, but it still
barely makes a difference of more than 3% with respect to the
model where we did not account for radiative diffusion, leading
to identical aspect ratios in the two models and, therefore, prac-
tically indistinguishable pitch angles along spirals. We note that
for the 10-Earth-mass case, differences between the two models
are much smaller.

Location and shape of the ice line

Temperature gradients are slightly different when accounting for
radiative diffusion, and especially so around the gap edge. Since
the ice line is relatively close to said gap edge in the two models
where the module is enabled, we are more or less looking at the
effects of radiative diffusion at its maximum potential. However,
in the previous paragraph, we report that its effect barely changes
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Fig. C.1. Comparison between two variants of our fiducial model (M, =
100 M), with and without radiative diffusion enabled. The effect of dif-
fusion is visible near steep gradients along spiral crests or the gap edges
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Fig. C.2. Evolution of ice line location for two pairs of simulations with
and without treatment of radiative diffusion. Solid and dashed lines refer
to models where M, = 10 and 100 Mg, respectively.
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Fig. C.3. Shape of water ice line at equilibrium for two models with
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plot an extended range of our simulation for context. Solid, dashed,
and dotted black curves mark the location of primary, secondary, and
tertiary spirals, respectively.

A29, page 13 of 14



Publications

Ziampras et al. (2020a)

A&A 633, A29 (2020)

the picture with regard to shock strength, gap width, or spiral
location. Because of these three points, the ice line’s location
over time is expected to be slightly, but not significantly, different
when compared to that found in our standard simulations.

In Fig. C.2, we compare the location of 7., over time between
our standard models and their respective FLD-enabled models.
Indeed, the softer temperature profile in the inner disk allows the
ice line to recede slightly more inwards when radiative diffusion
is enabled. Nevertheless, the effect is still minuscule for the high-
mass case and negligible for the low-mass case.

A 2D analysis of the ice line’s shape offers similar results.
As shown in Fig. C.3, accounting for radiative diffusion does
not change the shape of the ice line with respect to the stan-
dard model, but, instead, it shifts it slightly inwards, as shown
in Fig. C.2. As with the 1D analysis, this difference is prac-
tically nonexistent for the low-mass case as the temperature
profile is softer overall: shocks by the 10-Earth-mass planet are
significantly weaker and a gap does not open.

Appendix D: Implementation of radiative diffusion

To examine the effect of radiative diffusion along the disk mid-
plane, we implemented an external module that is coupled with
PLUTO and solves the following equation after every timestep:

e ET
ot

40
Fradz_/lSB

=-V-(QHFy), VT4, .1
where F denotes the radiation flux across the disk midplane and

is defined as:

4
Frg = ——28 g4, (D.2)
AKPmid
where A is a flux limiter, following Kley (1989).
By defining a diffusion coefficient K as
32 2
K = 21288 473y _ 32058 VR o (D.3)
Apk AZk
we discretize Eq. (D.1) following Appendix A.1 in Miiller (2014)
or 10 orT 10 (_oT
—=——|rK—|+=—=|K—|. D.4
o rér(r ar) r26¢( a¢) ®4H
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on a grid where i and j denote cell indices along the r- and
¢-direction respectively, and obtain:

T — T
i, i,
v
| T, =T T T
= K). . - > K ’
r,-Ar,- ((r )H%’J i+1 — i (r )177 J Fi —ri—1
1 n+1 n+1 n+1 n+1
+r2A¢2 (Kr j+ (Tz Jj+1 le ) Kr j** (T Tz] ])) ’ (DS)
i

where n and n + 1 denote the states at time ¢ and ¢ + At,
respectively.

We now have to solve for 7*!. We can group up the right
hand side to form a linear system:

1 1
= AT 1+ Ci T[ﬂfl/ +D; T”+ L+ E,/Tl"ﬁrl + B,IT”+
= M . Tn+l — Tn
(D.6)
where
A= At 1 (VK)F%,]‘ C.o = Ar 1 (’K)H%,j
Y ovZij rilAr ri—ricy’ Y CyZij rilAr; rigy = 1
A P
TRy A VT eT Rag
Bij=1-Aj = Cij - Dij - Eij, (D.7)

are elements of the matrix M. We solve this system using suc-
cessive overrelaxation (SOR). Therefore, we calculate and fix M
before iterating over:

T = - w)T};

+C,,T

- _[AUT i+1,j

k=0
L + DTS, | + EyTl,, - T,

i,j+1 ij
(D.8)

with w = 1.5 until T; j converges. Boundary conditions during
this iterative process are closed in order to conserve total thermal
energy through the radiative diffusion substep.
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ABSTRACT

Recent ALMA observations revealed concentric annular structures in several young class-II objects. In an attempt to produce the
rings and gaps in some of these systems, they have been modeled numerically with a single embedded planet assuming a locally
isothermal equation of state. This is often justified by observations targeting the irradiation-dominated outer regions of disks (approxi-
mately 100 au). We test this assumption by conducting hydrodynamics simulations of embedded planets in thin locally isothermal and
radiative disks that mimic the systems HD 163296 and AS 209 in order to examine the effect of including the energy equation in a
seemingly locally isothermal environment as far as planet—disk interaction is concerned. We find that modeling such disks with an
ideal equation of state makes a difference in terms of the number of produced rings and the spiral arm contrast in the disk. Locally
isothermal disks produce sharper annular or azimuthal features and overestimate a single planet’s gap-opening capabilities by pro-
ducing multiple gaps. In contrast, planets in radiative disks carve a single gap for typical disk parameters. Consequently, for accurate
modeling of planets with semimajor axes up to about 100 au, radiative effects should be taken into account even in seemingly locally
isothermal disks. In addition, for the case of AS 209, we find that the primary gap is significantly different between locally isothermal

and radiative models. Our results suggest that multiple planets are required to explain the ring-rich structures in such systems.

Key words. protoplanetary disks — planet—disk interactions — methods: numerical

1. Introduction

Planets are born in protoplanetary disks. While they do not
always make their presence clear like in the case of PDS 70b
and ¢ (Keppler et al. 2018; Haffert et al. 2019), the ALMA
observations of the DSHARP survey (Andrews et al. 2018)
have provided theorists with high-fidelity datasets for testing the
planet—disk interaction theory. It is fascinating how well a single
planet can reproduce the annular substructures in some of the
observed systems, for instance, Zhang et al. (2018).

Most of the aforementioned systems show resolved features
at the 100 au scale, suggesting that the disk temperature profile is
set by a balance between heating by stellar irradiation and ther-
mal cooling. This makes modeling these systems with a locally
isothermal equation of state quite attractive because the cooling
timescale in the optically thin irradiation-dominated outer disk
is commonly sufficiently short (shorter than a hundredth of an
orbit) to render radiative effects negligible. At the same time,
the very low level of effective viscosity that is inferred for these
disks (Zhang et al. 2018) indicates minuscule contributions by
viscous heating to the thermal budget of the disk, such that the
locally isothermal assumption seems further justified.

However, an embedded planet also interacts with the disk
gravitationally, forming spiral arms (Ogilvie & Lubow 2002;
Rafikov 2002) that permeate the disk and can steepen into shocks
(Zhu et al. 2015). Several studies have shown that heating by
these spiral shocks is another significant heat source at distances
of several au for solar-type stars (Richert et al. 2015; Lyra et al.
2016; Rafikov 2016; Ziampras et al. 2020). While the planet’s

Article published by EDP Sciences

contribution to the energy budget decreases with increasing dis-
tances from the star, there is a gray area at a few tens of au
where shock heating could operate to some degree, even when
the cooling timescale is a small fraction of the local orbital
period.

In addition, Miranda & Rafikov (2019) showed that even in
seemingly locally isothermal scenarios, assuming an adiabatic
equation of state results in fundamentally different physics con-
cerning the angular momentum flux in protoplanetary disks, and
it therefore leads to noticeable changes in dust continuum pro-
files. They quoted distances of about 80au as the lower limit
beyond which a locally isothermal equation of state can indeed
be justified, and showed that deviations of about 1073 from y=1
can lead to noticeable differences (of about 10%) in simulated
outcomes and therefore observables such as continuum emission
intensity.

This subject is quickly gaining clarity as more effort is
made to understand planet-induced gap opening in order to inter-
pret observations and constrain the properties of protoplanetary
disks. During the reviewing process for this paper, two publica-
tions by Miranda & Rafikov (2020) and Zhang & Zhu (2020)
were made available, which discuss the effect of a finite cooling
timescale on the location and number of gaps that can be pro-
duced by a single planet. Our study does not reiterate these new
results, but rather enriches them by handling radiative effects
differently. It serves as an additional point of view in arriving
at a similar conclusion: radiative cooling is of key importance
in determining the radial structure of a disk with an embedded
planet.

AS50, page 1 of 10
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Fig. 1. ALMA continuum emission observations of the two systems we used as testbeds for our numerical models, as shown in Huang et al. (2018).
Solid and dotted white arcs mark the location of bright rings and dark gaps, respectively, along with their distance from the host star in au. It is
likely that a planet is responsible for one or more of the gaps observed in either system. Left: HD 163296, a 12.6 Myr old likely isolated system
that features at least two clearly visible gaps at 48 and 86 au. Our models focus on the 20-60 au range, with a planet carving a gap at 48 au. Right:
AS 209, a 1 Myr old system in the Ophiuchus region that is rich in annular structures, boasting five rings between 20 and 130 au. This source has
been modeled by Zhang et al. (2018), who found that a fit with a single planet at 99 au could reconstruct all five of these rings.

We use numerical simulations to address the importance of
proper treatment of radiative effects for two systems that mimic
the properties of HD 163296 and AS 209 (Andrews et al. 2018;
Zhang et al. 2018) and show that an adiabatic equation of state
can produce different results with respect to a locally isother-
mal model when the gap-opening capabilities of a planet are
modeled.

In Sect. 2 we present our physical and numerical setup in
modeling these two systems. We present our results in terms
of disk structures in Sect. 3, and discuss their implications in
Sect. 4. Finally, we summarize our results and conclude this
study in Sect. 5.

2. Sources, physics, and numerics

In this section we describe the physical and numerical modeling
of HD 163296 and AS 209. We first present the two systems that
we use as our reference. We then describe the source terms in
the vertically integrated hydrodynamics equations, our physical
assumptions in terms of star, planet, and disk properties, and the
initial and boundary conditions for our simulations.

2.1. Sources: HD 163296 and AS 209

Rather than carrying out a study on an arbitrary toy model of
a protoplanetary disk, we decided to model two of the sources
targeted by the DSHARP survey (Andrews et al. 2018), namely
HD 163296 and AS 209 (see Fig. 1). Both of these sources fea-
ture annular structures in the form of bright rings and dark gaps
in dust continuum emission images, with the former also show-
ing a crescent at roughly 50 au and the latter standing out with
its ring-rich emission profile. These systems have been modeled
in the past and their various features have been studied (Huang
et al. 2018; Dullemond et al. 2018; Fedele et al. 2018; Zhang
et al. 2018; Zhang & Zhu 2020), and using them as testbeds for
our study can provide a deeper insight on any planets they might
harbor.

2.2. Hydrodynamics, heating, and cooling

The two-dimensional (2D) vertically integrated Navier—Stokes
equations in cylindrical {r,¢,z} coordinates for a perfect gas
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with surface density %, velocity v and specific midplane internal
energy e read

dz

& sV, I
@ v (la)
dv

2L = -Vp+Ig+V oL, (1b)

dz

d—: = _yzev ‘vt Qvisc + Qirr - Qcooh (1o

where v is the adiabatic index and p = (y — 1)Ze is the vertically
integrated pressure. External source terms (in our case, gravita-
tional forces) are contained in g, and X denotes the viscous stress
tensor (Tassoul 1978).

For a thin disk of gas rotating on a Keplerian orbit with
orbital frequency Qg = /GM/r3, at distance r around a star of
mass M, the pressure scale height of the gas is H = c¢yj50/Qk-
Here, ¢, = +/p/X is the isothermal sound speed and relates to
the adiabatic sound speed ¢ as ¢s = 4/ycsiso- The aspect ratio of
the disk is then 4 = H/r. The gravitational constant and the mean
molecular weight of the gas are denoted by G and y, respectively.
We adopted a typical solar-composition disk of molecular H-He
gas, therefore y = 7/s and u = 2.35.

In a locally isothermal framework, the energy equation in
Eq. (1) is not solved. Instead, a fixed sound speed profile is
adopted. This in turn defines a (fixed) radial temperature pro-
file T, as cgiso = /RgasT /11, With R, being the gas constant. In
the locally isothermal scenario this temperature profile is con-
stant on cylinders and only dependent on radius, but we focus on
the midplane temperature in this 2D approximation.

More generally, however, the full system of equations is
solved. In this case, we include viscous heating, stellar irradi-
ation, and thermal cooling in the energy equation as follows:

— 1 2y _ 1 2 2 2 2
Ovise = ﬁTI’(E )= ﬁ (O’,r + 20’,05 + T4 + O—zz) (2a)
L. dlog H 1

ir = 2—— (1 - -1|h—, 2b

Q 47rr2( 6)( dlog r ) Teft (2b)
4

Ocool = 2053 —, (2¢)
Teff
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Table 1. Physical and numerical parameters used in our modeling of the sources HD 163296 and AS 209.

System HD 163296 AS 209
Parameter (1) Base 2)y=~1 @)Lowkx (4)xkbyLP85 (5)Lowa (6)Shallow X (7) Base
M, [Ms] 2.089 - - - - - 0.83
L, [Lo] 16.98 - - - - - 1.41
M, [M/] 0.5 - - - - - 0.083
M, [1073 M,] 0.29 - - - - - 0.1
Mgk [% M) 5.58 - - - - 7.37 68.1
Myisk [% M.,] 2.67 - - - - 3.53 82.0
rp [au] 48 - - - - - 99
Zi—o(r) oc 32 - — — — oc ! oc !
% (g cm™2] 9.61 - - - - - 10.0
hy [%] 5.601 - - - - - 8.175
T, [K] 345 - - - - - 14.2
1.4 1.01 - - - - 1.4
k[em?g™] 0.45 - 0.045 LP85 - - LP85
log @ -4 - - - -5 - -5
Tmin—"max [7p] 0.2-5 - - - - - 0.1-10
Fimin—"max [au] 9.6-240 - - - - - 9.9-990
N, X Ny 573 x 1118 - - - - - 673 x 1312
Ncells/Hp 10 - - - - - 12

Notes. The opacity model by Lin & Papaloizou (1985; here referred to as LP85) functionally translates to x = 5 X 107* 72 within our simulation
domain (7 < 170 K). Only the two models labeled “base” (Cols. 1 and 7) are discussed in the results section; the remaining models (Cols. 2-7) were
used to verify our results and are discussed in Appendix A. Dashes imply that a parameter is inherited from the base model (Col. 1 for HD 163296).
In our radiative models, the energy equation allows temperature-related quantities (i.e., hp, T}, « if defined by LP85) to evolve throughout the
simulation. These are otherwise kept fixed in the corresponding locally isothermal runs.

where v is the kinematic viscosity. For this we used the a-ansatz
(Shakura & Sunyaev 1973), which for thin disks reads v = acsH.
The Stefan-Boltzmann constant is denoted by osg, and 7. is an
effective optical depth following Hubeny (1990)

+ V3 + !
Teff = — + — + —
TRy T
where 7 is the vertical optical depth measured from the midplane
to the disk surface,

3t 3)

s

T :.fo kpdz = €1 KmidPmiaH. 4)

Here, p is the volume density and xig(p, T') is the Rosseland
mean opacity at the disk midplane, which we refer to as sim-
ply « and evaluate in Sect. 2.3 below, either using a constant
value or adopting the temperature-dependent opacity law. To
match the opacity drop with height, we included a correction fac-
tor ¢; = 1/2 (Miiller & Kley 2012). The midplane gas density ppmiq
is related to the surface density such that ¥ = \/ﬂpmidH (ie.,
corresponding to a Gaussian vertical stratification at hydrostatic
equilibrium).

Our cooling and irradiation prescription adapts the model by
Menou & Goodman (2004) for a disk with an albedo of € = 1/2

. L dlog H
around a star with luminosity L.. The factor dl(:) gg - was assumed

to be constant and equal to 9/7 (i.e., disk self-shadowing was not
considered). For more details, see the physical setup by Ziampras
et al. (2020).

2.3. Numerics

We used the PLUTO code (Mignone et al. 2007) along with the
FARGO method (Masset 2000; Mignone et al. 2012) for our
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simulations. Models with an embedded planet were run on a
polar {r, ¢} grid, logarithmically spaced in the radial direction.

In order to set our initial conditions, we constructed two
different disks that mimic the structure of HD 163296 and
AS 209. We therefore set M, and L. according to Andrews
et al. (2018), and decided to embed a single planet with mass
M, = 0.5M; at r, = 48 au for HD 163296 and M, = 0.083 M,
at r, = 99au for AS 209. We adopted a viscous « following
Zhang et al. (2018) (either 10~* or 1073, constant throughout the
disk). For the Rosseland mean opacity we chose either a constant
value k = 0.45cm? g”! (adapted from Birnstiel et al. 2018) or a
temperature-dependent opacity law by Lin & Papaloizou (1985).
The latter dictates that k = 5 x 10772 for temperatures under
170 K, which is true for the full extent of the simulated disk. A
list of the physical and numerical parameters used in our models
is given in Table 1.

The initial surface density needs to be prescribed, and the
temperature is simply given by Quisc + Qirr = Ocool (s€€ Eq. (1¢))
in the absence of a planet (we can ignore compression heating in
this scenario because its contribution is negligible). We adopted
values inferred in Table 3 by Zhang et al. (2018) for HD 163296
such that the surface density at rg,, = {10,48, 86} au is X(rgap) =
{100, 10,3} g cm~2, respectively. We then fit a power law to these
three points and find that a fit of

-3/2 -3/2
) = <3200 ()
cm

matches very well. For AS 209, we simply adopt a setup similar
to that by Zhang et al. (2018), such that

;

g

-
cm?

()P ~ 10 ( L (5)

p au

g

(™S % 10 ( po—e

,
p
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As far as temperature is concerned, the effect of viscous heat-
ing Qyisc 1s functionally negligible within our simulation range
for our @ value. In the absence of a planet, the temperature pro-
file is therefore set by a balance between irradiation heating and
thermal cooling. In Egs. (2b) and (2c), the optical depths for
absorption and emission in Qi and Q.o , respectively, can in
principle be different, but as a first approximation we assumed
that they are identical and can be factored out when we set
Qirr = Qcool- The temperature profile then only depends on stellar
properties so that

2

A\ 27
T(r)=T, (r_) K « = hr)=h (r_) (@)
p p

for our irradiation prescription. By replacing the geometri-

cal factor (‘31]1(; 2H 1) h with a constant irradiation angle ¢
gr

(e.g., Dullemond et al. 2018), we recover the familiar formula

where 7 o 1/ and h o r'/* instead (not used here).

After constructing our initial surface density and tempera-
ture profiles, we first ran a one-dimensional radiative simulation
without a planet and verified that the profiles indeed correspond
to an equilibrium state. We then embedded the planet, and using
the power-law profiles given in Eqgs. (5)—(7) as initial condi-
tions, executed various radiative as well as locally isothermal
simulations.

In all setups, X is damped to the initial profiles at the bound-
aries according to de Val-Borro et al. (2006) over a timescale
of 0.3 boundary orbital periods. The planet does not accrete
material or migrate through the disk, and traces circular orbits
around the star. The target simulation time was 1000 orbits for
HD 163296 — which at 48 au translates into roughly 230 kyr —
and 5000 orbits for AS 209 (5.4 Myr at 99 au) because these
models have a very low viscosity of 1075, We used a res-
olution of 573 x 1118 and 673 x 1312 cells for HD 163296
and AS 209, respectively, which results in square cells with
10-12 cells per scale height in the radial direction at the planet’s
location.

Similar to Ziampras et al. (2020), the planet’s presence is
described by an additional gravitational force. We accounted for
the shift of the system barycenter that is caused by the planet,
but neglected backreaction of the disk onto the star and planet.

To prevent singularities near the planet, we introduced a soft-
ening length € = 0.6H following Miiller et al. (2012), using the
local pressure scale height and a correction factor that accounts
for the disk thickness.

3. Results

In this section we present the results of our numerical sim-
ulations. As stated above, we tested several different models.
We focus in this section on the locally isothermal and radia-
tive models with parameters described in the previous section.
The remaining models are used for comparison purposes and are
discussed in Appendix A.

First, we present our results on HD 163296. We start with
focusing on overall disk profiles and differences between the
locally isothermal and radiative models in terms of the radial
distribution of gas in the disk. We then compare and contrast
the structure of spiral arms between the two models in terms
of surface density and temperature contrast with respect to the
disk background. This is then followed up by results on AS 209
regarding the first point only because this is the most crucial to
the discussion.
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Fig. 2. Azimuthally averaged surface density, midplane pressure, and
aspect ratio (used as a proxy for temperature, see Eq. (7)) of HD 163296
for a locally isothermal (in orange) and a radiative (in green) disk after
1000 orbits with an embedded planet with mass 0.5 M, at 48 au. Vertical
black lines mark the location of the planet. The dashed and dotted red
lines in the bottom panel denote the aspect ratio profiles used in the
simulations by Zhang et al. (2018), where / o« r'/* and , = 0.05 and
0.07, respectively. The fact that our aspect ratio profile is bounded by
these two curves allows us to validate our results by comparing them to
that study (see Sect. 4).

3.1. HD 163296

The first system we studied is HD 163296. This system features
several rings, as shown in Fig. 1.

3.1.1. Disk profiles and secondary gaps

Our main results are plotted in Fig. 2. By comparing our radiative
and isothermal runs and computing the aspect ratio as a proxy
for temperature (because /1 o VrT), we find that the azimuthally
averaged temperature profiles of the two are practically identi-
cal with each other (bottom panel in Fig. 2), and therefore with
the profile that an irradiation-dominated disk should have. How-
ever, the azimuthally averaged surface density profiles of the two
models differ in the inner disk and around the planet within
1000 orbits. The difference lies in the additional depression of
the gas surface density at around 28 au for the locally isother-
mal case, in contrast to the smoother profile in the radiative run.
This secondary gap, while shallow, can warrant the existence
of a pressure bump in the inner disk, creating a dust trap and
therefore a second and potentially visible dust ring. In contrast
to the isothermal run, this pressure minimum disappears in the
radiative simulation (middle panel in Fig. 2).

A rather small (compared to that at 28 au) but visible differ-
ence can also be seen within the gap region. This may be related
to nonlinear effects caused by the planet’s gap opening, and dis-
cuss this in Sect. 4. Finally, the azimuthally averaged surface
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Fig. 3. Surface density perturbation with respect to the initial profiles
for the two models of HD 163296. The locally isothermal run features
a secondary gap at roughly 28 au and slightly more prominent inner
spirals.

density in the outer disk is indistinguishable between the two
models.

In Fig. 3 we compare the surface density in the disk to its
initial profile. A gap and ring are clearly visible at 28 and 34 au,
respectively, in the locally isothermal model. Additionally, spi-
ral arms in the inner disk have slightly higher contrast with the
background for that model compared to its radiative counterpart.
We carry out a more detailed comparison in the next section.

3.1.2. Spiral arm contrast

As mentioned in the work of Miranda & Rafikov (2019), the
locally isothermal equation of state overestimates the contrast of
structures in protoplanetary disks. We already saw this behavior
in Fig. 2, where a secondary gap is visible at 28 au. However,
nonaxisymmetric features in the disk such as spiral arms are lost
when averaging along annuli. With this in mind, it is useful to
track the spiral arms that are excited by the planet and com-
pare the surface density along their crests with its azimuthally
averaged values. In doing so, we can estimate their contrast with
respect to the disk background.

This comparison was carried out by tracking the trajectory
of each individual spiral, logging the surface density X, along
their peaks and then plotting the ratio ./, where £ is the
azimuthally averaged surface density (see Ziampras et al. 2020
for details). Our results are summarized in Fig. 4 and show
that spirals in the locally isothermal model are indeed consis-
tently “stronger” (i.e., have a higher contrast with respect to the
disk), with the effect being more prominent in the inner disk (top
panel).

The pitch (or opening) angle 8 of these spirals can be defined
(e.g., Zhu et al. 2015) through

dr Cs h

@B = e S ) - - =i

(®)

Equation (8) suggests that the pitch angle of spirals should be a
function of the aspect ratio (again, a proxy for the temperature)
for a given distance r. With this in mind, and given that the two
models share an identical radial temperature profile, we expect
and observe that the pitch-angle profiles of both primary and
secondary spirals match very well for the locally isothermal and
radiative model (lower panel).
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Fig. 4. Comparison of spiral arm properties between our two models
for HD 163296. Top: primary and secondary spiral arm contrast with
respect to the disk background. We find that the locally isothermal
model shows consistently higher contrast. Bottom: pitch angle of spirals
as a function of radius. Because the two models have identical aspect
ratios, the overlap of the two curves is to be expected. The vertical black
line marks the planet location. The dotted black line corresponds to the
analytical formulae in Rafikov (2002), Eq. (44), and Muto et al. (2012),
Eq. (1).
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Fig. 5. Temperature contrast of spirals with respect to the disk back-
ground for the radiative run of HD 163296. The effect of spiral heating
on the global disk is negligible, and the temperature along spiral crests
can increase by up to 15%.

We also compared the temperature along spiral crests with
the initial axisymmetric profile for the radiative model. We found
that differences are about 10-15% or smaller, and that spiral
heating on the entire disk is negligible (see Fig. 5). This is to
be expected in the optically thin irradiation-dominated region of
the disk at » > 20 au (e.g., Rafikov 2016).

3.2. AS 209

The goal in modeling this additional source was to see how this
disparity between the locally isothermal and adiabatic equations
of state would affect the gas surface density profile of a sys-
tem with more gaps observable in continuum emission: five in
AS 209 (at r € {24,35,61,90, 105} au) compared to only one in

A50, page 5 of 10

100



Publications Ziampras et al. (2020b)
A&A 637, A50 (2020)
100 E T T T T T T 7T T _.: 50 100
E 3 —
& 50t . isothermal _|
= - i g —radiati
L 20r 4 3 radiative
=2 : 5 ]
1 10 f———isothermal E ~
5F radiative )m R \/\
10 20 50 100 200 e L

r [au]

Fig. 6. Surface density profile for our numerical model of AS 209 for
a locally isothermal and a radiative equation of state after 5000 orbits.
The differences in the inner disk as well as the gap region are clear
between the two models. Vertical dotted lines mark location candidates
for dust gaps based on the formula determined by Zhang et al. (2018),
and the dashed line marks the planet location.
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Fig. 7. Similar to Fig. 3, but for AS 209. The sharper annular and angular
structures in the locally isothermal model are clearly visible.

HD 163296 (at r = 48 au) for our simulation domain (Huang
et al. 2018). While reproducing all five gaps might be difficult
with an aspect ratio i, ~ 0.08, we see substantial differences
between the two setups not only in the number of producible
gaps, but also in the shape of the primary gap around the
planetary orbit.

Our results are plotted in Figs. 6 and 7 and match our findings
for HD 163296 in that the radiative model does not agree with
the locally isothermal one. A single planet at 99 au reproduces
at least three gaps at 47, 84 and 115 au in the locally isothermal
model (with a possible fourth gap at 22 au, which is however
subject to boundary effects), whereas the radiative model pro-
duces a very smooth monotonic profile with no gaps except for
one exactly at the planet location (Fig. 6). In addition, the pri-
mary gap structure is entirely different between the two models,
with the locally isothermal model showing a wider gap region
that contains more material at the orbital radius of the planet,
however. This can be seen in both figures, and is discussed in
detail in Sect. 4.

4. Discussion

In Sect. 3 we showed that modeling a protoplanetary disk with a
locally isothermal equation of state can under certain circum-
stances prove incorrect because this assumption might affect
the planet—disk interaction process even when the temperature
profile is largely unaffected by the choice of equation of state.
By comparing against a radiative simulation where viscous and
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Fig. 8. Azimuthally averaged cooling timescale in units of the local
orbital period of the disk after 1000 and 5000 planetary orbits for
HD 163296 and AS 209, respectively. Differences between locally
isothermal and radiative models become clear in the inner disk, where
the cooling timescale corresponds to a non-negligible fraction of the
orbital period (roughly 1-10% near the planet, and comparable to the
orbital period farther in). In the outer disk, cooling is sufficiently fast so
that the two models overlap as far as azimuthally averaged profiles are
concerned.

irradiation heating and thermal cooling are included, we showed
that radiative effects play an important role in the disk evolution
even at large distances from the source star.

Our testbeds aimed at reproducing the inner 50 au structure
of the system HD 163296 and the gap-rich structure of AS 209.
At distances of 48 au for HD 163296 and 99 au for AS 209 (which
is where planets are suspected to be), the disk is strongly dom-
inated by irradiation, whereas viscous and spiral heating effects
are negligible. Even so, the cooling timescale at the range of 20—
100 au in these systems is still significant enough to invalidate
the locally isothermal assumption.

We can estimate the cooling timescale as

Teffz
~ Qcool = Icool

0Ze Ze
Tcool T3 '

o

®

We then compare 7. to the local orbital period Py, = 27/Qk in
Fig. 8. We find that 7.0 corresponds to 2—20% of Py, in the 20—
50 au range in the absence of a planet for HD 163296, and 1-10%
in the 40-100 au range for AS 209. These fractions are clearly
significant in this context, implying that the angular momentum
flux driven by the spiral waves of a planet is described by an
adiabatic framework (Miranda & Rafikov 2019).

At the same time, we see that the cooling timescale drops
below 0.1% of the orbital period at distances of ~100au for
HD 163296, or ~200 au for AS 209 (see Fig. 8). At these dis-
tances we find that the locally isothermal model approaches the
radiative one both in terms of radial disk structure and spiral
arm contrast, suggesting that the locally isothermal assump-
tion can still be justified when the cooling timescale is short
enough. This is consistent with the latest results by Miranda &
Rafikov (2020), who suggested that a cooling timescale of about
1073-1072 orbital periods is sufficiently short to match locally
isothermal disks for low- and high-mass planets, respectively.
Regarding this last statement, the different gap structure between
equations of state around the planetary orbit in AS 209 can be
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explained by comparing the planet mass to the thermal mass of
the disk (Zhu et al. 2015)

a W\ (M
S =M, ~ I My *.
GQ, P ! (0.1) (MQ)

Using this formula, we find that a 0.5 M; planet in HD 163296
corresponds to 1.3 My,, and a 0.083 M; planet in AS 209 to
0.18 My,. This means that the former system is prone to nonlin-
ear effects due to gap opening, and therefore the surface density
profiles around the primary gap are largely the same between the
two different equations of state. On the other hand, our numeri-
cal model of AS 209 hosts a planet that falls in the linear regime,
and therefore a cooling time of about 1% of the orbital period
is not short enough to allow the radiative and locally isother-
mal models to agree with each other. Instead, the two profiles
show a substantially different structure in the region that coro-
tates with the planet, and they only overlap at the outskirts of
the disk (where planet-driven effects are weak and/or damped
anyway).

To verify that the locally isothermal profile can indeed be
recovered with a more efficient cooling prescription, we executed
several additional radiative simulations of HD 163296 where we
limited adiabatic effects (y = 1.01) or artificially reduced the
cooling timescale (using x = 0.045 cm? g™!), thereby limiting
radiative effects. These results are shown in Appendix A.

While this exercise shows that the inner disk is prone to
radiative effects in our simulations, this result should be taken
with a grain of salt when comparing to observations. Both the
optical depth and surface density (which depend on the opacity
and initial conditions) are uncertain and not set in stone. Addi-
tionally, if a substantial part of the dust grains has grown into
larger grains, the opacity (and in turn, the optical depth) could
be much lower, reducing the cooling timescale.

Our results on HD 163296 can also be compared to the
2D locally isothermal simulations by Zhang et al. (2018). In
Fig. 2 of their study, they show that a planet with M, = 0.3 M,
(g = 2.9 x 107, in our case ¢ = 2.3 x 107*) can open a sec-
ondary gap at roughly 0.6 r,, (28 au for our single-planet model
of HD 163296) when the aspect ratio A, is between 0.05 and
0.07 and scales with r!/4. Because our computed aspect ratio
lies within the profiles generated using those values (see Fig. 2),
we expect exactly (or at least) one secondary gap in our locally
isothermal simulation. The fact that we indeed observe it sug-
gests that our results agree with Zhang et al. (2018) in the locally
isothermal limit. In addition, we observe the secondary gap at the
location inferred by the fitting formula suggested in that study.
However, we used a steeper surface density profile than they did
(Zg o r3/2 as opposed to ). We carried out two more simula-
tions with a shallower surface density profile and found similar
results (see Appendix A).

By taking into account the above points, we see that the
secondary-gap-opening capabilities of a single planet are exag-
gerated in a locally isothermal disk, such that a secondary gap
in gas surface density can form within that framework but not
always when radiative effects are properly treated. In the case
of HD 163296 this could constrain the time of planet forma-
tion because a ring at 34 au is indeed not visible (Huang et al.
2018). This assumes that our estimates of @ among other model
parameters are viable.

Our simulations do not include a dust component, meaning
that we cannot verify whether this secondary gap generated in
the locally isothermal simulation is visible. Nevertheless, we
expect that large grains can be trapped in the pressure bump
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Fig. 9. Azimuthal cut at r = r, = 48 au. The surface density trailing
behind the planet (left side, ¢ < 0) is slightly higher than that at the lead-
ing Lagrange point (¢ > 0). The dashed black lines mark the planet’s hill
radius and contain 20 cells. The dotted lines mark the location of the L4
(left) and LS (right) Lagrange points.

formed at 34 au, forming a ring and therefore increasing the con-
trast between the inner disk and the secondary gap region. A
similar argument can be used for the crescent structure within the
gap that can be seen in the ALMA observations of HD 163296.
We find that the perturbed gas surface density at the trailing
Lagrange point is higher than that at the leading one (see Fig. 9),
and we suggest that dust—gas interaction could collect grains at
the L4 point. This feature, however, should be transient as the
gap region continues to empty as the disk evolves.

The system HD 163296 shows more structure between 50
and 200 au, namely a clear second gap in continuum emission at
86 au and a third, slightly less visible gap at 145 au. Assuming
the existence of planets at all three locations, we can justify our
results as far as annular structures in the 10-50 au range are con-
cerned because the planet at 48 au will shield the inner disk by
opening a gap and therefore halt the propagation of spiral waves
by the outer planet(s).

Nevertheless, it would be interesting to include more plan-
ets and model the 10-200 au range of this system, assuming that
each gap in dust continuum stems from a single planet opening
a corresponding gap in gas density. This is further motivated by
the kinematic detection of Jupiter-sized planets at 83 and 137 au
by Teague et al. (2018). We therefore carried out a simulation
with three planets at 48, 86, and 145 au, respectively, and find
similar results in the 10-50 au range. These results are shown
and discussed in Appendix B.

There are several other sources for which ALMA has pro-
vided high-fidelity observational datasets. As far as ring struc-
tures are concerned, one system stands out: AS 209 (Andrews
et al. 2018) shows at least five rings with as many gaps in
dust continuum emission (Huang et al. 2018). Numerical mod-
els strongly suggest that one or more growing planets are
responsible for their formation (e.g., Fedele et al. 2018).

It has been suggested that a single planet at 99 au might be
able to carve most of these gaps (Zhang et al. 2018). We there-
fore found it useful to examine the importance of radiative effects
on a system with such a rich annular structure, and carried out
a comparison similar to that for HD 163296 against a locally
isothermal simulation, shown in Sect. 3.2. Strikingly, while our
locally isothermal model produces several rings throughout the
disk, we find that this is not the case in the radiative model,
which shows no ring structure except for the unavoidable pres-
sure bump in the outer disk that is caused by the clearing of
the planet’s corotating region. Our results suggest that we would
need multiple planets to explain the ring—gap structure in such
systems.
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5. Conclusions

Our goal was to examine the importance of radiative effects
in disk evolution with regard to the gap-opening capabilities
of a single planet. To this end, we carried out 2D numerical
simulations of planets embedded in disks that resemble two sys-
tems that have recently been imaged in high angular resolution:
HD 163296 and AS 209. We then compared locally isothermal
simulations, where a fixed radial sound speed profile is pre-
scribed, to setups where radiative effects are self-consistently
treated.

We found that locally isothermal models exaggerate the
contrast of planet-generated features with respect to radiative
models and therefore overestimate the planet’s ability to carve
a secondary gap in its disk. This is consistent with previous
results and implies that a single planet cannot always explain the
existence of multiple gaps.

We also found that the contrast of spiral arms launched
by a planet is artificially sharpened within a locally isothermal
framework. While this phenomenon is weak or negligible in the
optically thinner outer disk, it becomes more significant for inner
spirals. Regardless, spiral shock heating is negligible, with spi-
rals having a low temperature contrast with the background and
the disk being sufficiently optically thin.

Finally, by running a simulation of HD 163296 over an
extended range that contained three planets, we found that our
results in the limited range of 10-60 au (i.e., inside and around
the innermost planet) remain unchanged. We also showed that an
interplay between planet mass and the cooling timescale can lead
to slight differences between a locally isothermal and an adia-
batic equation of state even at 145 au, although viscous evolution
might render such differences negligible.

In conclusion, the locally isothermal assumption proves to
be dangerous even at the range of tens of au regarding planet—
disk interaction and should therefore be in general avoided in
favor of an adiabatic equation of state with a prescription for
radiative cooling in the disk. By estimating the cooling timescale
fcool, the usage of such an assumption in a regime where cooling
occurs very rapidly compared to the orbital period P, might
be justified. This corresponds to 7. at least shorter than 1% of
Py, for massive planets, or 0.1% for low-mass planets, in good
agreement with Miranda & Rafikov (2020).
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Appendix A: Approaching the locally isothermal
limit in HD 163296
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Fig. A.1. Azimuthally averaged surface density profiles after 1000 orbits
for several comparison tests, attempting to recover the locally isothermal
limit by constraining radiative effects. The orange and green curves cor-
respond to our fiducial locally isothermal and radiative models, and the
change being tested in each panel is plotted with a black dashed line. An
adiabatic equation of state with y = 1.01 or k = 0.045 cm?/g (instead of
1.4 and 0.45 cm?/g, respectively) roughly reconstructs the gap structure
of the locally isothermal model and could allow the formation of a shal-
lower secondary gap. A model with lower viscosity (@ = 10 instead
of 107#) also shows a secondary gap, but differences in the width of the
primary gap and in the outer disk are also visible. The opacity model by
Lin & Papaloizou (1985) yields no observable difference.

To verify whether the locally isothermal results for
HD 163296 concerning the primary and secondary gaps can be
recovered by appropriately tweaking radiative effects, we tested
several cases where we either restrained changes in internal
energy by setting y = 1.01, or amplified the contribution of irra-
diation and cooling by lowering the opacity to x = 0.045cm? g~'.
A detailed description of the model parameters used here is given
in Table 1, Cols. 2 and 3.

Our results, plotted in Fig. A.l, show that locally isother-
mal conditions can be emulated to an extent by manipulating
the contribution of the energy equation altogether through the
adiabatic index, or controlling the cooling timescale through
the opacity (Eq. (9) suggests that oo & 7 oc k). It might be
possible to completely recover the locally isothermal limit by
further constraining y — 1 or artificially lowering the opacity
even further.

In addition, to test the planet’s secondary-gap opening capa-
bilities under conditions that could potentially lead to the reemer-
gence of the secondary gap, as well as to verify our opacity
model of choice, we executed a few more pairs of locally isother-
mal and radiative simulations. We set @ = 107 in the first pair to

&
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Fig. A.2. Azimuthally averaged surface density and midplane pressure
profiles after 1000 orbits for two comparison tests where disks with dif-
ferent surface density profiles are simulated. Right panels: a shallower
surface density profile (Zy o #~! instead of oc r~%/?) is used.

facilitate the gap opening process. We find that this does lead to
the surface density contrast (and the pressure bump) reappearing
in the inner disk, but at the same time, it also results in a wider
gap and a different outer disk profile (see Fig. A.1). This value of
a is extremely low and gap opening is known to be easier when
the viscosity is low (e.g., Crida et al. 2006), therefore we argue
that this adds nothing new to our results.

In the second pair, we compared our constant-opacity mod-
els and the analytical opacity model by Lin & Papaloizou (1985),
which dictates a relation k o« T2 for 7 < 170K (i.e., within our
simulation domain). We find that the choice of opacity model
has little to no effect as far as the secondary-gap opening capa-
bilities of the planet are concerned (Fig. A.1). This makes sense
because irradiation heating and thermal cooling dominate the
energy equation, and equating these two together factors the
opacity out given our prescription in Eq. (2) while still yield-
ing a similar value for the cooling timescale at the 20—40 au
region.

Finally, in the third pair we prescribed a shallower initial sur-
face density profile X(r) ~ 10 (r/ rp)‘1 in an attempt to reduce the
cooling timescale in the inner disk while preserving the condi-
tions in the planet’s vicinity. In doing so, we can also compare
against the results from locally isothermal simulations by Zhang
et al. (2018). The results are summarized in Fig. A.2 and paint a
picture similar to that for the steeper, £(r) « r~3/2 profile. How-
ever, because the cooling timescale is shorter for the shallower
X profile (by a factor of 30 and 40% at the location of the sec-
ondary pressure bump and gap, respectively), the disk acts more
“locally isothermally” and the secondary density bump is still
visible after 1000 orbits but a pressure minimum does not form
in the midplane. At the same time, pressure torques near the
secondary gap edge are weaker for the shallower profile; this
effect assists the gap-opening process. A detailed description of
the model parameters used in these models is given in Table 1,
Cols. 4-6.
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Appendix B: Modeling HD 163296 with three
planets

Table B.1. Parameters used for the model of HD 163296 containing
three planets, compared to the base model of the same system.

Parameter Base Three planets

M. [Ms] 2.089 -

L, [Lo] 16.98 -

M, [M;] 0.5 0.5/0.5/0.5
M, [1073_x] 0.29 0.29/0.29/0.29
Misk [% Mo] 5.58 9.4
Misk [% M,] 2.67 4.5

rp [au] 48 48/86/145
Zi=0(r) o 302 -

T, [gem™?] 9.61 9.61/4.01/1.83
hy [%] 5.601 5.601/6.617/7.684
T, [K] 34.5 34.5/26.9/21.5

Y 1.4 -
k [em? g™!] 0.45 -
log @ -4 -
Fmin—"max [au] 9.6-240 9.6-576
N, X Ny 573 x 1118 800 x 1561
Neens/Hp 10 11/13/15

Notes. Dashes imply that a parameter is inherited from the base model.

As mentioned in Sect. 4, we conducted an additional sim-
ulation of HD 163296 with three planets at 48, 86, and 145 au
to examine the structure of the system on a larger scale, more
easily comparable to the DSHARP observation (see Fig. 1, left
panel). To do so, we employed a fourth-order Runge—Kutta N-
body integrator (Thun & Kley 2018) that allows the planets to
interact gravitationally and accounts for the noninertial term that
arises due to centering our system around r = 0 instead of the
barycenter of the system.

In our model, all three planets have the same mass of 0.5 M.
Because the thermal mass of the disk scales purely with the
aspect ratio at a planet’s location, we expect a damping of
nonlinear effects as we slowly transition to the linear regime
upon moving farther out in the disk. More specifically, the ratio
M, /My, is 1.3, 0.8, and 0.5 for the three planets in ascending
distance from the star. Because the cooling timescale at 86 and
145au is 0.33 and 0.06% of the local orbital period, respec-
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Fig. B.1. Azimuthally averaged surface density profile after 1000 orbits
at 48 au (417 at 86au, 190 at 145 au) for the three-planet model (see
Table B.1). The colored dashed lines refer to the base model with a
single planet at 48 au. Vertical black lines show the location of planets
in the disk.

tively, it is possible that we can still observe deviations between
the locally isothermal and radiative models around the planets’
corotating regions because we now study the low-mass regime.

The resulting surface density profile is plotted in Fig. B.1.
As expected, the two models show better overall overlap with
increasing distances from the star. Nevertheless, small deviations
are still visible within the corotating regions of the outer planets.
We rationalize this outcome both through the cooling timescale
argument and by considering how the interaction between a
planet and the disturbances caused by other planets (e.g., spirals)
could affect their corotating regions. It should be noted, how-
ever, that the viscous timescale at 145 au is roughly three times
longer than that at 48 au, so it is possible that differences between
equations of state can emerge on much longer timescales, which
might not be reasonable for such a young system.

Finally, by comparing the 10-60 au range of the three-planet
simulation against that of our base model with a single planet
(lower panel of Fig. B.1) we find that the multi-planet system
shows stronger perturbations in surface density around the sec-
ondary gap at 28 au, but still fails to form a pressure maximum at
34 au in the radiative model. This helps support the relevance of
our base model, which targeted a limited range of HD 163296.
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ABSTRACT

Context. Several observations of protoplanetary disks display non-axisymmetric features, often interpreted as vortices. Numerical
modeling has repeatedly shown that gap-opening planets are capable of producing large and long-lasting vortices at their outer gap
edge, making massive planets popular candidates as the source of such features.

Aims. We explore the lifetime of vortices generated by Jupiter-sized planets as a function of the thermal relaxation timescale, the level
of turbulence, and the effect of disk self-gravity.

Methods. We conduct 2D numerical simulations using the hydrodynamics codes PLUTO and FARGO, scanning through several physical
and numerical parameters. Vortex properties are automatically extracted from thousands of simulation snapshots.

Results. We find that vortices that spawn at the outer gap edge can survive for about 100-3000 planetary orbits for typical disk
parameters, where the shortest lifetimes occur for a moderate efficiency of dissipation and cooling. However, we also observe a
different regime of long-lasting vortices with lifetimes of at least 15 000 orbits for very low viscosity and very short thermal relaxation
timescales. Disk self-gravity significantly shortens the lifetime of regular vortices but still allows long-lived ones to survive.
Conclusions. Our results suggest that the cooling timescale plays an important role in vortex formation and lifetime and that planet-
generated vortices should be observable at large distances from the star for typical thermal relaxation timescales and turbulence

levels.

Key words. protoplanetary disks — planet—disk interaction — hydrodynamics — methods: numerical

1. Introduction

Planets are born and grow in accretion disks around young stars.
This is supported by observations of protoplanets embedded in
a disk of gas and dust captured during their growth phase (e.g.
Keppler et al. 2018). A protoplanet interacts with the disk around
it in every stage of its growth (Kley & Nelson 2012) for ex-
ample via exchange of angular momentum. This results in the
launching of spiral arms (Ogilvie & Lubow 2002) and, if the
planet is massive enough, the opening of a gap and, in some
cases, the formation of multiple rings around the planet’s orbit
(Rafikov 2002). The number of spirals, gaps, and rings as well
as their contrast scales with the planet’s mass, such that Jupiter-
sized planets can have a strong impact on their environment in
the right conditions, possibly resulting in multiple ring-like and
non-axisymmetric observable features (Zhang & Zhu 2020; Mi-
randa & Rafikov 2020a). This makes the planet—disk interaction
scenario a popular interpretation for the numerous high-fidelity
ALMA observations of such features.

One promising scenario to explain observational asymme-
tries is the existence of vortices because they naturally accumu-
late dust at the pressure maxima in their center (see for example
Marel et al. 2013; Bae et al. 2016; Pérez et al. 2018; Hammer
etal. 2019; Barge & Sommeria 1996).

Among the various ways to form vortices, the Rossby-wave
instability (RWI, Lovelace et al. 1999) is particularly relevant in
the vicinity of gaps. The RWI readily happens in 2D disks at the
outer and inner edge of planet-opened gaps (Li et al. 2005; Val-
Borro et al. 2007). Additional mechanisms that could be rele-
vant in this context are the subcritical baroclinic instability (SBI,
Klahr & Bodenheimer 2003; Lesur & Papaloizou 2010) and the

zombie-vortex instability (ZVI, Marcus et al. 2015, 2016). Vor-
tices are then susceptible to viscous spreading as well as sec-
ondary instabilities such as the elliptical instability (Lesur & Pa-
paloizou 2009), which cause vortex decay. The lifetime of vor-
tices is therefore determined by a competition between vortex-
forming and -decaying mechanisms.

Aside from possibly causing observable features in the disks,
vortices can also affect planet migration in a stochastic fashion
(McNally et al. 2019) and even cause temporary outward migra-
tion (Lega et al. 2021) for otherwise inwardly-migrating planets.
Understanding their formation pathways and lifetimes is there-
fore critical to the modeling of planet migration using global,
low-viscosity simulations.

In previous numerical studies, vortex properties have been
found to depend on various physical processes such as turbu-
lent viscosity and disk self-gravity. Lower viscosity allows vor-
tices to live longer (Val-Borro et al. 2007) whereas the inclusion
of self-gravity tends to weaken vortices, shortening their lifes-
pan (Lin & Papaloizou 2011; Zhu & Baruteau 2016; Regdly &
Vorobyov 2017).

In recent numerical studies, radiative effects have been dis-
covered to have a significant impact on the gap-opening capabil-
ities of planets and therefore the structure of said gaps (Ziampras
et al. 2020b; Miranda & Rafikov 2020b), possibly affecting the
development of the RWI and by extension vortices around their
edge. The present study aims to investigate the role of radiative
effects for properties of vortices created by planets. More pre-
cisely, we explore how the thermal relaxation timescale of the
gas affects the lifetime of vortices created during the growth of
Jupiter-sized planets.
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Recently, Fung & Ono (2021) ran 2D shearing box simula-
tions of RWI-induced vortices. As their simulations did not in-
clude a planet, the RWI was triggered by an artificial density
bump. They described a baroclinic effect that spins down vor-
tices where the decay is fastest for thermal relaxation times of
the order of a tenth of the vortex turnover time.

We ran a suite of global two-dimensional hydrodynamics
simulations with an embedded Jupiter-sized planet, which nat-
urally creates vortices in the disk, for different choices for the
turbulent viscosity and the thermal relaxation timescale, among
other physical parameters. The results of these simulations are
then post-processed with our newly-developed pipeline for the
detection and characterization of vortices.

In Sect. 2 we describe our physical model and numerical
setup. We present a typical life track of a vortex in our models in
Sect. 3, report the dependence of vortex properties on physical
parameters in Sect. 4, and present the case of long-lived vortices
in Sect. 5. We discuss and comment on our findings in Sect. 6.
Finally, Sect. 7 contains a summary of our main results and our
conclusions.

2. Physics and numerics

In this section, we describe the physical and numerical frame-
work that we used in our simulations. We justify the approxi-
mations in our model, explain in detail the initialization process,
and list technical parameters such as our grid setup and parame-
ter space.

2.1. Hydrodynamics

We consider a thin disk of neutral, ideal gas with adiabatic in-
dex ¥y = 7/5 and mean molecular weight ¢ = 2.353 that is or-
biting around a star with one solar mass M, = Mg. The two-
dimensional, vertically integrated Navier-Stokes equations in a
polar coordinate system {r, ¢} read

ox

EH"VZZ_EV'” (1a)
ou
EE+E(MV)M=—VP+Eg+VG (1b)
oz
(a:‘) +u-V(Ze) = —yZeV - u + Quisc + Orelax (Ic)

where u = (u,,uy) and & are the velocity and specific internal
energy of the gas evaluated at the midplane, and X is the surface
density. The vertically integrated pressure p is defined through
the ideal gas law p = (y—1)Ze = R ZT /u, with R, being the gas
constant and T the gas temperature. The isothermal sound speed
of the gas is then given by ¢ 50 = /p/Z = /R T/u and relates
to the adiabatic sound speed c; as ¢gjo = ¢s/ +fy. For a disk in
Keplerian motion and vertical hydrostatic equilibrium, we can

also write cg 50 = HQx, where Qg = 4/GM, /3 is the Keplerian
orbital frequency at radius r and H is the pressure scale height
of the gas.

The viscous stress tensor o (following Tassoul (1978)) ap-
pears in both the momentum equation (1b) as well as the dissi-
pation function:

1 2 1 2 2 2 2
ﬁTr(o‘ )= s (0',, + 205, + 0y + O'ZZ),
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Qvisc = 2)

where v = acsH is the kinematic viscosity parametrized ac-
cording to the a-viscosity model of Shakura & Sunyaev (1973).
Here, « is a parameter that captures both radial angular momen-
tum transport that leads to accretion onto the star and heating of
the disk due to viscous friction. Numerical simulations of (mag-
neto)hydrodynamical instabilities such as the vertical shear in-
stability (VSI, Nelson et al. 2013) or the magneto-rotational in-
stability (MRI, Balbus & Hawley 1991) have provided numeri-
cal estimates of @, while observations of young stellar objects
surrounded by disks have constrained these estimates (Dulle-
mond et al. 2018). To probe a wide range of diffusion regimes
from practically inviscid to moderately viscous, we choose a €
{107,107, 10~*, 1073} for our models.

Viscous dissipation leads to the heating of the disk. An em-
bedded planet can also deposit significant amounts of thermal
energy via the dissipation of spiral shocks (Rafikov 2016; Zi-
ampras et al. 2020a). As a cooling solution, we allow the disk to
relax to a prescribed temperature profile Ty (see Eq. (5)) over a
relaxation timescale Trejax = 8/Qk.

The thermal relaxation term appears as an additional source
term to the energy equation

T-T, ar T-T,

Orelax = —Zcy Q= — =- 3)
ot Trelax

where ¢, = % is the heat capacity of the gas at constant

volume. The parameter B8 controls the relaxation timescale, as
well as the overall planet—disk interaction process (Miranda &
Rafikov 2020b), we choose the values 8 € {0.01, 1, 100} which
correspond to very fast, moderate, and very slow relaxation.

The gravity of the star and planet are included as a source
term in g. We work in a star-centered coordinate system and
embed a planet with mass M,, at a position r,. Thus, the source
term reads

gzg*+gp+gind

GM, GM, GM,
- d-

r @+epr 3

@

ry, d=r-rp.

The terms gy, gp, and ging denote the acceleration due to the star,
the planet, and the indirect term which is a correction needed
because the star-centered frame is not an inertial frame. Disk
feedback on the star and planet is neglected. The planet’s gravi-
tational pull (2nd term in the RHS of Eq. (4)) is smoothed using
a Plummer potential with a smoothing length € = 0.6H(r) that
captures the effect of the vertical structure of a more realistic
3D disk (Miiller et al. 2012) and prevents singularities near the
planet’s location.

For simplicity, we do not allow the planet to migrate. We
chose to limit the degrees of freedom in our model to focus on
the dynamics of the vortex and avoid complex and potentially
chaotic interplay of the vortex with the planet (Lega et al. 2021).
For the same reason of simplicity, we neglect planetary accretion
in our models.

2.2. Numerics

We use two different codes for our numerical models: PLUTO
4.2 (Mignone et al. 2007), a finite-volume, energy-conserving,
shock-capturing code that treats transport by solving the Rie-
mann problem across the interfaces of adjacent cells in both
directions (7, ¢) in an unsplit fashion, and our custom FARGO
(Masset 2000) version, FargoCPT (Rometsch et al. 2020), which
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uses a finite-difference, dimensionally-split, second-order up-
wind method for gas advection. Both codes utilize the FARGO
method (implemented into PLUTO by Mignone et al. 2012), in
which orbital advection is essentially performed via the Keple-
rian rotation on top of which the code solves for the residual ve-
locity deviations, significantly relaxing timestep limitations and
reducing numerical dissipation in the process (Masset 2000).

The inherent differences between the two numerical schemes
make it worthwhile to carry out our simulations using both
codes, to verify the robustness of our results and test for nu-
merical convergence. Namely, the strictly energy-conserving na-
ture of PLUTO and the necessity for artificial viscosity to stabilize
FargoCPT are discussed in more detail in Sect. 6.7, among oth-
ers.

2.2.1. Grid setup

Our computational domain spans the full azimuthal extent and
a radial range of r € [0.2,5.0] r, = [1.04,26.0] au, with square
cells logarithmically spaced so that the cell aspect ratio is pre-
served. After carrying out a thorough investigation on the effects
of our numerical resolution of the recovery of both radial and
azimuthal features caused by the planet, we decide to execute
our simulations using a resolution of 8 and 16 cells per scale
height (hereafter “cps”) in both directions (r, ¢). At this resolu-
tion, the two codes reach good convergence in terms of the pres-
ence and contrast of features shaped by the planet and results
agree between the codes. This translates to a fiducial resolution
of (N, Ng) = (528, 1024) cells for 8 cps, or (1056, 2048) cells for
16 cps. In addition, using the same resolution in both directions
in terms of cps ensures that the effects of numerical viscosity are
isotropic (see Appendix A).

2.2.2. Initial and boundary conditions

Our disk is initially axisymmetric and in equilibrium in the ra-
dial direction, such that the initial radial velocity profile results a
constant accretion rate through the disk. The azimuthal velocity
is close to the Keplerian profile, with the correction due to the
radial pressure gradient. The initial surface density and temper-
ature profiles are simple power laws such that

-1/2 -1
To(r) = 222 g/em? (i) . To(r) = 1207K (i) .G
p "

with r, = 5.2au. This temperature profile translates to a disk
with a constant aspect ratio i(r) = H/r = 0.05. While the gen-
eral consensus is that protoplanetary disks are flared (i.e., the
aspect ratio increases with distance, see for example Dullemond
(2000)), we choose to use a constant aspect ratio since the be-
havior and lifetime of vortices depends on this quantity (Ham-
mer et al. 2021). Thus, we can isolate the dependence of vortices
on the physical and numerical parameters in our suite of simula-
tions.

The radial and azimuthal velocity components at t = 0 are
then

\4

u(r) = —%;’ ug(r) = rQx V1 = 152 ©

Near the boundaries, within the radial extent » € [0.2,0.25] U
[4.2,5.0] rp, the surface density and velocity are both damped
to their initial profiles (see Egs. (5), (6)) using the method of
De Val-Borro et al. (2006), over a damping timescale of 0.3 peri-
ods at the respective boundary. While the radial boundary edges

are closed, this minimizes the reflection of spiral waves back
into the computational domain. The boundaries are periodic in
the azimuthal direction.

We then embed a Jupiter-sized planet (M, = 1M = 1073M,)
in most models, with some simulations instead containing a less
massive planet of M, = 0.5 M;. To smoothly introduce the planet
into the disk, we typically allow the planet to grow over 100 or-
bits at 7, using the formula by De Val-Borro et al. (2006). The
importance of the growth timescale and planet mass will be dis-
cussed in Sect. 4.

2.3. Vortex Detection
We use the gas vortensity

o= (Vxu)-2
B z

as a proxy to detect and track the evolution of vortices over hun-
dreds of snapshots for every model. Since these vortices consist
of anticyclonic motion, the center of a vortex corresponds to a
local minimum in vorticity, w = (V X u) - Z. Because vortices
tend to accumulate mass towards their center and X is enhanced
inside the vortex, the transition from the background flow to the
vortex region is stronger and the vortex is more easily identified
in a map of @ than in the case of w alone.

More precisely, we use the gas vortensity normalized by
the background vortensity from the initial conditions, @y =
(VXug)-Z /[ Zo. This eliminates the radial dependence of the Ke-
plerian velocity and the disk’s surface density and ensures that
our vortex proxy quantity, @/wy, is of order unity everywhere
in the disk except for the gap region, due to its very low sur-
face density. The quantity @/@, usually varies between -1 for
strongly counter-rotating vortices to 1 for the background flow.

We use our new Python module, called Vortector, that ex-
tracts iso-vortensity contours using the computer vision library
OpenCV (Bradski 2000) to detect vortex candidates and then fits
a 2D Gaussian to the vortensity and surface density data. The
FWHM (or 2.3550) of this Gaussian is used to define the radial
and azimuthal extent of a vortex. Using this method, we also
extract information about the shape of the vortex, including its
radial and azimuthal extent and the mass it encloses. A more
detailed description can be found in Appendix B.

This automated process has the drawback of sometimes pro-
ducing detection artifacts, as can be seen for example on Fig. 6
below (top panel, dashed orange line), such that the vortex size
(and thus its mass) is overestimated near the end of its lifetime
as it blends into the disk background. While this effect is partly
counteracted by using a median filter in time, we do not man-
ually edit the output of the Vortector on a model-by-model
basis.

Q)

In the following three sections, we present the results of our
simulations. First, we present a typical example of vortex for-
mation and evolution (Sect. 3). We then go on to describe the
dependence of vortices on physical parameters for the group of
vortices with short and intermediate lifetime (Sect. 4). Finally,
long-lived and migrating vortices are presented (Sect. 5).

3. Typical life track of a vortex

The Jupiter-sized embedded planet opens a deep gap in all of our
simulations. Fig. 1 shows maps of X (left) and @ (right) normal-
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Fig. 1. Multiple snapshots of the @ = 107, 8 = 1, 8 cps model showcasing the vortex merging process during the early stage of gap opening,
the resulting vortex’s fully grown size and its subsequent decay. The surface density and vortensity contrast compared to their initial profiles is
shown on the left and right panels, respectively. Time is quoted in units of planetary orbits. The horizontal line at r = 1.45 r, serves to highlight
the outward radial movement of those structures as the gap around the planet grows wider. The planet is located at r = 17, and ¢ = 0.

ized by their initial values at five timestamps during the vortex
lifetime for a model with @ = 1073, B = 1, and a resolution
of 8 cps performed with the FargoCPT code. Horizontal dotted
lines at r = 1.45 r, are superimposed as a reference marking the
final location of the vortex center. Here, four small-scale vortices
(top row) first merge into two slightly larger vortices (second
row) and then finally into one massive vortex (middle) that will
last for a little over 1100 orbits. The vortex slowly decays over
time, maintaining a large size (fourth row). In the later stages,
the vortex is no longer present anymore (bottom row). The non-
axisymmetric structure still visible exists due to the planet’s spi-
ral arm and is corotating with the planet.

During the early gap opening process, the outer gap edge
grows Rossby-wave unstable (Lovelace et al. 1999) and several
small-scale vortices form around it (top two rows). Fig. 2 shows
radial profiles of the Lovelace parameter, £, (top) and X (bottom)
at different timestamps during the vortex formation up until # =
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180 orbits. The Lovelace parameter is defined as

2y
=37 ®)

@
with the entropy S = P/Z?. The development of a maximum in
L, which is one condition for the onset of the RWI, is visible.
Vertical lines at the center of the £ maxima (as determined by
eye) are added to both panels to guide the eye for a comparison
of the location of the maxima in £ and X at each timestamp. The
£ maxima are located on the slope of the gap edge slightly in-
ward of the ¥ maxima and coincide with the location of the small
vortex centers. The maximum in £ moves outward following the
maximum in X as the gap opens. This illustrates that the vortices
form due to the RWI at the slope of the outer gap edge.

In the absence of self-gravity, these small vortices then
quickly merge together (within ~100 planet orbits) into a sin-
gle large vortex that slowly moves outwards following the gap
edge as the gap deepens and widens (third and fourth row in
Fig. 1). The surviving vortex then typically decays over ~200—
2000 orbits. The evolution of three vortex properties is illustrated
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Fig. 2. Evolution of radial Lovelace parameter (see Eq. (8)) and X pro-
files during vortex formation over the first 200 orbits of the sample case
from Sect. 3. The vertical lines indicate the center of the maximum in £
(estimated by eye) to guide the eye to the corresponding location of the
¥ profile. £ is calculated as the azimuthal average at each radius. The
dotted horizontal line in the bottom panel marks 10% of X, which we
define as the location of the gap edge.

in Fig. 3. It shows, from top to bottom, the mass M, enclosed
within the FWHM ellipse of the 2D Gaussian fit to Z, the loca-
tion of the center of the vortex ryo¢ and the radial FWHM width
Ar as the shaded area, and the vortensity at the vortex center
normalized by the azimuthal median. The vertical dotted lines
indicate the time when the planet reached its full mass (typically
100 orbits). A short phase of vortex formation is followed by a
slow and steady decay process, as can be seen in the decrease
of mass and radial size. Because the vortensity contribution of
the anticyclonic vortex is negative, an increase in vortensity in-
dicates a decay as well. The line in the bottom panel of Fig. 3
is continued (in orange) for another 100 orbits after the vortex
decayed according to our criterion presented below in Sect. 4.1,
to illustrate the return of the curve to 1, which corresponds to an
azimuthally symmetric state.

During its lifetime, the vortex can become as large as Ar =
0.4r, (2au for r, = 5.2au) with a typical vortex aspect ratio
(rA¢/Ar) of 6-10. Its mass, Moy, is typically some tenths of M
but can be as large as one Mj, with a surface density enhanced
by a factor of up to 7 compared to the initial value.

The vortices form around the location where the radial X pro-
file reaches 10% of its initial value (see bottom panel of Fig. 2),
which we define as the gap edge similar to Crida et al. (2006).
During their lifetime, most vortices tend to stick to this gap edge
in the sense that their inner boundary, ryo — Ar/2, roughly coin-
cides with the gap edge location. For some models, we observe
that the vortex detaches from the outer gap edge after several
hundred orbits and starts migrating outward. These models will
be discussed later in Sect. 5.

4. Dependence of vortex properties on physical
parameters
Having described a typical lifetrack of a vortex in our simula-

tions, we now present the effects of different physics and numer-
ics on vortex lifetime, location, and impact on the overall disk
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Fig. 3. Evolution of vortex properties for the showcase simulations pre-
sented in Sect. 3. The panels show, from top to bottom, the mass en-
closed in the FWHM ellipse of the vortex fit, M, in Jupiter masses,
the radial location of the vortex, ryo and its FWHM, Ar, indicated by
the shaded area, and the ratio between minimum vortensity inside the
vortex and the azimuthal median of vortensity at the radial location of
the vortensity minimum. A dotted vertical line indicates the time when
the planet has reached its final mass. The curves are smoothed with a
median filter which spans over the next and last 5 datapoints (+50 or-
bits at r,). The orange parts of the line in the bottom panel show the
evolution of the vortensity prior to the “birth” and after the “death” of
the vortex.

structure. The model parameters are listed with the main results
in Table C.1.

4.1. Vortex lifetime

We define the vortex lifetime as the time difference between its
“birth” and “death” by analyzing the ratio of @ to the azimuthal
median value, @ as a function of time. The normalization with &
instead of @ is done to eliminate the z evolution of the back-
ground disk due to changes in X and radial pressure gradients,
which affect (V X u) - Z by changing the azimuthal velocity.

The “birth” is identified as the time when @ /@ drops from its
initial value of 1 (for an axisymmetric disk) down to lower values
(see bottom panel of Fig. 3). Because @/@ drops already for
small vortices, the lifetime also includes the stage where there
are multiple small vortices (see Sect. 3).

The “death” of the vortex, however, is less obvious to iden-
tify. At this stage, @ /@ usually slowly rises back to the back-
ground disk’s value. Usually, there is a “knee” visible in w /@ at
or slightly after the point in time where the vortex dies and where
@ approaches the background flow (see the orange part of the
line in the bottom panel of Fig. 3 where @ /@ is continued for an-
other 100 orbits after the vortex disappeared at r = 1250 orbits).
For some models, this “knee” is not visible, and we manually in-
spect the 2D contour plots of @ /@ and identify when no closed
iso-value lines (with spacing in @/@ of 0.05) are present any-
more. As an additional measure for less obvious cases, we ana-
lyze the gas streamlines at different timestamps.
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Fig. 4. Lifetime of vortices as a function of 8 for 8 cps (left) and 16 cps resolution (right). Colors encode «, and the different symbols denote
the code and the inclusion of self-gravity. The solid lines help guide the eye and connect the lifetime averages between the two codes (without
self-gravity) for each value of @, where the two codes agree sufficiently. For parameters where there is a difference between the codes, dashed and
dotted lines connect to the datapoints of the FargoCPT and PLUTO runs, respectively. A “” next to a symbol marks models that were terminated
due to runtime constraints but still contain an active vortex. The horizontal gray line in the right panel indicates the top of the y-axis of the left

panel. A list of all vortex lifetimes shown here is provided in Table C.1.

In our models, the drop in @/ happens in a matter of tens
of orbits. A conservative estimate for the uncertainty of this
“birth” time measurement is 50 planetary orbits. From apply-
ing the manual method to models where the “knee” exists in the
w /@ curve (implying the “death” of the vortex), we estimate a
conservative uncertainty to be 100 planetary orbits. This leaves
a total uncertainty of 150 planetary orbits for the lifetime of our
vortices.

The lifetime of vortices in our grid of simulations is shown
as an overview in Fig. 4. The left and right panels show vortex
lifetimes as a function of S for 8 and 16 cps, respectively. The
viscous « is encoded in color, and the symbol indicates the sim-
ulation code and the inclusion of self-gravity. For each value of
a and 3, we calculated the average (“avg(f,p)”) between the two
codes (not including the self-gravity models) when the results
are close together. The solid-colored lines connect the averages
to help visualize the trends. For parameters for which the two
codes showed different vortex lifetimes, we added separate lines
connecting the average to the FargoCPT and PLUTO results to
highlight the differences.

Lifetimes range from some hundred to 2000 orbits for the
shorter-lived vortex group up to at least 15000 orbits for the
long-lived vortices discussed later in Sect. 5. The most promi-
nent features of the distribution are the trend of decreasing life-
time with increasing @ and the minimum of vortex lifetime at
B =1 for low « and high resolution.

In the following sections, we address the influence of our
model parameters on vortex lifetime.

4.2. Influence of the thermal relaxation timescale

The dimensionless thermal relaxation timescale 8 has a strong
effect on vortex lifetime. For @ = 1074, lifetimes are of the or-
der of several hundred to 1000 orbits with a downward trend
as B increases. Vortex lifetimes are shortest for 8 = 1 (around
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1250 orbits) and increase towards both sides to around 2000 or-
bits for 8 = 100 and to values of the order of 10000 orbits for
B = 0.01, high-resolution runs. Exceptions to this trend are the 8-
cps PLUTO models for @ = 107°-10~% and 8 = 100. We could not
identify the reason why the two codes did not agree for these pa-
rameters, but we note that the two codes match well once again
for 16 cps in the same configurations. Models with very long
vortex lifetimes will be analyzed later in Sect. 5.

Fung & Ono (2021) reported a similar trend in vortex life-
time in two-dimensional shearing-box simulations without plan-
ets, in which the vortex was introduced by initializing the sim-
ulation with a radial density bump. They found that vortex de-
cay is fastest for intermediate 8 in the range 1-10, but their disk
model assumes a constant background disk, without gradients
in T and X which change baroclinic effects. Our results indicate
that a similar mechanism might be at play in the presence of an
embedded planet with strong spiral arm shocks. However, the
strong enhancement of vortex lifetime for 8 = 0.01 hints at the
presence of an additional mechanism which keeps the vortices
alive. We discuss these hypotheses further in Sect. 6.1.

For a comparison of vortex evolution at different 8 see Fig. 5,
where the evolution of vortex properties (analogous to Fig. 3)
of three FargoCPT simulations at 8 cps resolution with 8 =
0.01, 1,100 is shown. The absolute radial location of vortices
varies with S, as well. This is due to the tendency of the vor-
tices to form and subsequently stick to the outer planet gap edge
and the gap opening process being strongly influenced by 3. Mi-
randa & Rafikov (2020b) showed that “extreme” values of 8 (i.e.,
B — 0or 8 — oco) result in narrower planet-opened gaps but ad-
ditional gaps in the inner disk, whereas intermediate values of
B ~ 0.1-10 lead to a single, wide gap around the planet’s orbit.
In our simulations, models with 8 = 0.01 show the widest gaps,
narrower gaps are present for 8 = 1, and 8 = 100 models showed
an even slightly narrower gap. This is reflected in the vortex lo-
cations which are further in for higher S (see the center panel of
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Fig. 5. Evolution of vortex properties for varying values of the thermal
relaxation B parameter. The panels are as in Fig. 3. Shown are models
run with the FargoCPT code with @ = 107> and at 8 cps resolution
(orange “f8” dots in Fig. 4).

Fig. 5). The difference to Miranda & Rafikov (2020b) might be
due to the presence of the vortex.

4.3. Planet growth timescale

Hammer et al. (2017) observed that the lifetime of planet-
induced vortices can depend on the timescale over which the
planet mass is increased in order to introduce the planet into
the simulation. They found that vortex lifetime decreased with
a longer planet growth time. In our models, increasing the
planet growth timescale from 100 to 1000 orbits caused vor-
tices to live longer by 470 for 8 = 1 up to 1900 orbits for
B = 0.01. Fig. 6 shows the evolution of vortex quantities
comparing the FargoCPT runs with a Tramp = 100 orbits, al-
ready presented in Fig. 5, with their respective counterparts with
Tramp = 1000 orbits. The curves of runs with 7, = 100 orbits
are shifted to the right by a time Af from 470 to 1900 orbits. This
shift clearly illustrates that the decay of these vortices is almost
the same for both values of 7y, in terms of their mass, location
and vortensity curves. The only difference caused by the planet
injection timescale is how long it takes for the vortex to reach
the turnover point, after which it starts to decay.

4.4. Planet mass

From our M, = 0.5 My models we can not draw any conclusions
regarding the dependence of vortex lifetime on planet mass,
because for the set of parameters, 8 = 0.01 and @ = 1079,
the vortices are long-lived outliers like the ones discussed in
Sect. 5. However, the location of the vortex is also influenced
by the planet’s mass. Lower-mass planets open narrower gaps
and cause the location of the vortex, given that this is linked to
the gap edge’s location, to be further in compared to more mas-
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Fig. 6. Influence of the planet introduction time on the evolution of
vortex properties. The panels are as in Fig. 3. Solid and dashed lines
show models with a 7y, = 100 orbits and 1000 orbits, respectively.
The Tramp = 100 orbits curves are shifted to the right (see the horizon-
tal lines) to illustrate that the curves have the same shape in the decay
phase, independent of 7,y,. Note that the final evolution of the vortex,
after it has reached its minimum in vortensity, is the same independent
of planet introduction time.

sive planets. In our models, the vortices in the M, = 0.5 My were
located ~ 0.15 r;, closer to the star.

4.5. Viscosity

The observed vortex lifetime typically increases with lower val-
ues of . Simulations with @ = 107 show only small vortices
forming. They disappear within 100 orbits, thus, they are already
gone by the time the planet has grown to its full mass. For mod-
els with @ = 1074, we observe vortex lifetimes of up to around
1000 orbits.

Simulations with a lower viscosity (@ = 107°-~107>) show
even longer lifetimes, usually in the range between 1000 and
2000 orbits, excluding the outliers that we discuss later in Sect. 5.
For this range of a, vortices usually have similar lifetimes for
simulations sharing the same $ value. For an example, see Fig. 7
which shows, from top to bottom, the evolution of the mass
enclosed in the vortex’s region (FWHM), the location and ra-
dial extent (in FWHM) of the vortex as determined by the sur-
face density fit, and the ratio of normalized vortensity to the az-
imuthal median of the latter at the location of the vortex.

The vortex location is not influenced by viscosity. Although

o \732

the gap opening time is gy ~ 2700( 155 Torb according
to the estimate in Kanagawa et al. (2017), the bulk of the gas
in the planet’s vicinity is cleared within the first few hundred
orbits. During this time, X is lowered by two orders of magnitude
within the gap region, and the radial gradient of X becomes steep
enough to facilitate vortex formation.
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Fig. 7. Evolution of vortex properties for varying values of a. Panels are
shown as in Fig. 3. Shown are models run with the FargoCPT code with
= 1and at 8 cps resolution. The @ = 1073 run is excluded because no
vortex forms. In addition, a run with disk self-gravity enabled is added
for the @ = 107 case. The similarity between simulations with @ = 1073
and 107 is apparent.

4.6. Self-gravity

Several studies showed that vortices in weakly or strongly self-
gravitating disks might not grow as large because small vortices
do not merge into one large vortex (Lin & Papaloizou 2011) and
dissipate more rapidly due to stretching in the azimuthal direc-
tion (Lovelace & Hohlfeld 2013; Regdly & Vorobyov 2017; Zhu
& Baruteau 2016). This can be the case even for low-mass disks
as long as the Toomre stability parameter Q is lower than 50 or
hQ < 3. For the choice of parameters in our models, the Toomre
parameter is Q = 25 (r/r,)>* (hQ ~ 1.25(r/r,)~3/?), dropping
under 5 at roughly r/r, = 2.8. To check the effect that disk self-
gravity has played in our models, we ran additional simulations
with FargoCPT with self-gravity activated for all three values of
B =0.01,1,100 and for @ = 107°.

The lifetimes of vortices in these simulations are shown
in Fig. 4 as the rightmost datapoint in each column (models
“f8sg”). An example evolution of their properties is shown in
Fig. 7.

Self-gravity inhibits the merging of the small initially formed
vortices in to one large vortex. Instead, two smaller vortices usu-
ally remain until they decay. This leads to a significantly shorter
lifetime compared to the analogous simulations without self-
gravity, consistent with the above studies. This, however, does
not apply to the long-lived, migrating vortices which are dis-
cussed in Sect. 5.

Fig. 7 shows that the center of the vortex in a model with
self-gravity and § = 1 is further in compared to its non-self-
gravitating counterpart. This is due to a smaller radial extent of
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Fig. 8. Selection of models with long-living and migrating vortices at
16 cps resolution for the two different codes. Both codes agree remark-
ably well for the blue and orange cases. The panels are as in Fig. 3. In
models shown here, § = 0.01. The values of «, resolution and code used
are indicated in the legend.

the vortex in the run with self-gravity and the tendency of the
inner edge of each vortex to coincide with the gap edge.

Because self-gravity does not noticeably change the radial
disk profile for the mass regime of our models, the inner edge
of the vortices is at the same location, independent of whether
self-gravity is included or not. The same effect is also observed
for 8 =0.01 and 8 = 100.

5. Long-lived and migrating vortices

In some of the cases, a much longer-lived vortex is observed. In
these models, vortices stay close to their peak mass for several
thousand orbits and, in some cases, migrate outwards after hav-
ing stayed at the planet gap edge. This happens only for very
low viscosities (@ < 107) and 8 = 0.01 or locally isothermal
simulations (8 — 0). For our standard M, = 1M; planets, the
long-lived outliers appear only at the highest resolution of 16 cps
but not at 8 cps. For the corresponding M, = 0.5 M; model, the
long-lived vortex also appeared at 8 cps. Spiral arms launched by
the vortex are clearly visible for these long-lived large vortices
(see Fig. B.2). They are more pronounced for lower values of a.

Figure 8 shows the evolution of vortex properties for a se-
lection of models to highlight the observed behavior. The most
prominent example is the model with @ = 107, 8 = 0.01 and a
16 cps resolution. The vortex in those runs lived for 15 100 orbits
before we terminated the two simulations due to their long run-
time. Both codes, PLUTO and FargoCPT, agree well for the long-
lived cases. Specifically, they are in exceptionally close agree-
ment for @ = 10~ and only differ at later stages for @ = 107°
(see orange and blue lines in Fig. 5).

We do not currently fully understand the mechanism that
allows these long-lived vortices to sustain themselves for such
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Fig. 9. Azimuthally averaged surface density profiles as a function of different physical (@, §) and numerical (cps) parameters at two different
timestamps. The peak around r/r, = 1.5-1.6 corresponds to the pressure bump formed by the planet as the latter pushes material away, forming
a gap around its orbit. The smaller, secondary peak at around r/r, = 2.1 is caused by the vortex that forms near the “primary”, planet-generated
bump. Top: radial profiles at # = 1000 orbits. At this stage, all models pictured feature a vortex near the primary bump. We note the absence of a
secondary bump for the models with 8 = 1. Bottom: the same profiles at # = 5000 orbits. Here, the primary bump has moved radially outwards
as the planet’s gap gets deeper and wider. We highlight the depletion of gas near the “primary” pressure bump for the second panel from the left
(8 = 0.01). This is caused by the combination of a vortex migrating outwards to the secondary bump, and the inability of the planet to resupply
that zone with material from its now-depleted gap region. Also note the difference between resolutions of 8 and 16 cps (dashed and solid lines),
especially for the 8 = 100 models and the 8 = 0.01, @ = 10> model (the evolution of this model is shown as the orange line in Fig. 8).

long timescales. We attempt to provide a speculative explanation
in Sect. 6.1.

5.1. Migration and secondary vortices

For 8 # 1, a secondary radial density and pressure bump is ob-
served in the outer disk. This is the result of the vortex gener-
ating spiral arms which transport angular momentum. Radially
outwards, this results in the accumulation of mass in a second
bump (see panels for 8 # 1 in Fig. 9). This does not happen for
B = 1 due to the less efficient angular momentum transport by
spiral arms for this intermediate value of 8 (Miranda & Rafikov
2020b).

For # = 0.01, some models show vortices migrating radially
outwards (e.g., the @ = 107® models in Fig. 8). This is likely
related to the formation of the secondary bump outside of the
vortex location (see Fig. 9) and the fact that vortices typically
migrate towards pressure bumps (Paardekooper et al. 2010).

For vortices that migrate far enough outside, which only hap-
pens for 8 = 0.01, a weaker secondary vortex appears between
them and the planet’s gap edge (see Fig. B.2). These secondary
vortices then decay over a few hundreds of orbits, already hav-
ing decayed by the time the “primary” vortex disappears. While
they are treated as independent entities, they are not included in
Fig. 4 or the discussion above.

Their occurrence is likely the result of a multistage process
which begins with the secondary bump forming and the “pri-

mary” vortex migrating radially outwards towards it and mean-
while supplying mass towards the planet-generated gap edge.
This then feeds the emerging “secondary” vortex.

6. Discussion

In this section, we address some ways in which our results could
be interpreted and their relevance in explaining observations. We
also underline some caveats of our models.

6.1. On the conditions to form and sustain a vortex

To form a vortex, one needs to create a local vortensity ex-
tremum. In the absence of non-conservative forces, the evolution
equation for the vortensity in a two-dimensional flow reads

ow VI xVP

—+u-Vo=———-2+V=8+YV 9
a u-Vo 3 4 9)
where 8 = w - Z is the baroclinic term and “V describes

viscous diffusion of vortensity which can lead to vortex decay.

As outlined in the introduction, several instabilities have
been discovered that provide a mechanism to form or destroy
large-scale vortices, but they all fundamentally rely on Eqn. 9
to change the vortensity of the flow. The mechanism responsible
for the formation of the vortex in our simulations is most likely
the RWI which is triggered during the gap opening process, as
we demonstrated in Sect. 3 and Fig. 2.
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To check whether vortices can only form during the gap
opening process and not in the quasi-steady state after the bulk
of the gas has been pushed out of the gap region, we removed the
long-lived vortex from the @ = 1073, 8 = 0.01, 16 cps model by
replacing the velocities and £ with their azimuthal median val-
ues for r > r, during the peak of its activity (r = 1880 orbits).
The fact that there is no vortex forming again is an indication
that the formation of vortices in our simulations depends on the
gap opening process to produce conditions that can trigger the
RWI. This is also backed by the observation that the peak in £
is strongest for an intermediate time, ¢ = 70 orbits, during the
gap opening process, after which the maximum disappears and a
plateau in £ forms.

Vortex decay happens due to at least two mechanisms. Vis-
cous spreading attacks the vortices for high @ = 1074-1073, as
illustrated by the trend of lower vortex lifetime for higher @, and
vortex stretching due to self-gravity effects additionally limits
vortex lifetime if it is considered (Lin & Papaloizou 2011; Zhu
& Baruteau 2016; Regdly & Vorobyov 2017).

For sufficiently low «, another process that depends on 8
starts to be dominant. We do not fully understand the mechanism
but we observed some similarities to the recent work by Fung &
Ono (2021). They found that, in their simulations, vortices decay
the fastest for 8 = 1-10 and decay slower for both smaller and
larger 8. Vortex lifetime in their simulations changed by up to an
order of magnitude depending on 5. We also find a minimum in
vortex lifetime for 8 = 1 with lifetimes increasing as 8 # 1.

Fung & Ono (2021) explained the decay mechanism by
asymmetries in the structure of $ around the vortex center,
which they found to be quadrupolar (see their Fig. 6) and to
change with 8. We also find asymmetries in the structure of 3,
however our simulations differ from theirs in some fundamental
aspects. Our simulations are global with radially varying £ and
T profiles and include a planet that continually perturbs the disk,
whereas their simulations consider a local shearing sheet with a
constant background X and 7', with only an initial perturbation
in the form of a density bump. As a consequence of the radi-
ally varying T in our simulations, the structure of B around the
vortex center is dipolar in the azimuthal direction, as can be ex-
pected for a Gaussian-like density maximum. Additionally, the
planetary spiral arms strongly influence 8. Figure 10 shows a
2D map of B for two simulations with & = 107> and 16 cps res-
olution. The left panels show a short-lived vortex with 8 = 1 at
t = 1000 orbits and the right panels show the long-lived vortex
model which exhibits the “secondary” vortex (see Sect. 5.1 for
a description and Fig. B.2 for @ and X maps at the same time).
The actual shape of the perturbation of $ inside and around the
vortex is time-dependent and depends on the phase w.r.t. to the
spiral arm. It is not clear to us, at the moment, how the changes
in structure of B lead to the change in vortex decay and how this
proposed mechanism depends on the various parameters in our
system.

The long-lived group of vortices for low g (see Sect. 5) in-
dicates that there might another vortex formation mechanism at
play. Given that the RWI already caused finite perturbations in
the disk and our disks exhibit a radial entropy gradient, the SBI
(Klahr & Bodenheimer 2003; Lesur & Papaloizou 2010) seems
to be a natural candidate. However, we verified that the SBI is
not active in our disks by analyzing the Richardson number, the
ratio of the buoyancy (also called Brunt-Viisild) frequency to
the shear rate, which needs to be negative in a radially extended
region over the full azimuth of the disk for the SBI to operate.
The Richardson number in our simulation is positive, except for
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Fig. 10. Baroclinic term (RHS of Eqn. (10)) in the outer disk for a
short-lived model (8 = 1 at + = 1000 orbits) and a long-lived vortex
(B = 0.01 at t = 7150 orbits, see also Fig. B.2) with @ = 10> and
16 cps resolution on the left and right side, respectively. The top row
shows maps of the baroclinic term with the detected vortices indicated
with green ellipses as obtained from the X fit. The bottom row shows
the radial X profile in orange, the azimuthally averaged baroclinic term
in blue and the region between its minimum and maximum shaded in

gray.

narrow stripes following the spiral arms, which rules out that the
SBI is active.

To rule out that the difference in lifetime is a result of the
initial vortex formation during gap opening, we took the long-
lived vortex out of the @ = 107>, 8 = 0.01, 16 cps model and
inserted it into the @ = 1075, 8 = 1, 16 cps model. Although this
artificial vortex has the same structure as in its original 8 = 0.01
model, it decays over nearly the same time as the standard 8 =
1 vortex. This is an additional indication that the difference in
lifetime is cause by the dependence of the decay process on 8 or
a possible additional vortex formation channel that sustains the
vortex at low £.

This leaves us with the hypothesis that the interaction of
the spiral arms with the vortices might play a major role in
either slowing down vortex decay or providing an additional
vortex formation channel. The hypothesis is motivated by the
strong impact of the spiral arms on B and the dependence of
spiral arm properties on S (Ziampras et al. 2020b; Miranda &
Rafikov 2020b). Another contribution might be the vortensity
jump across the spiral arm shock, which was recently illustrated
to be important for the evolution of vortensity in the case of sub-
thermal-mass planets (Cimerman & Rafikov 2021). Providing an
analysis of both mechanisms in our context is, unfortunately, out
of the scope of the present explorative study.

6.2. Effect of in-plane radiation transport

It has been shown that parametrizing radiative effects with
while omitting the effects of in-plane radiation transport can re-
sult in a potentially inaccurate radial surface density structure
mainly in the inner disk and around the gap, due to how S affects
the capability of a planet to open multiple “secondary” gaps at
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r < r, (Miranda & Rafikov 2020b). Here, we are not interested
in the annular structures of the inner disk, so we chose to ignore
in-plane radiation transport. Nevertheless, to check for possible
effects of in-plane radiation transport on the vortex dynamics,
we repeated the @ = 107, 8 = 1 model at 8 cps. This time
we included a flux-limited diffusion (FLD) approach (Levermore
& Pomraning 1981) similar to Ziampras et al. (2020a), but by
parametrizing the diffusion coefficient D,,q following Egs. (12)-
(14) of Flock et al. (2017):

2
lthin + H :
3D rad D, rad

-1 Qg llzhin 2
:ﬁQK ::’Drad:F T+H N (10)

Tcool *

where [, is the photon mean free path. We found that includ-
ing FLD slightly changes the radial surface density structure in
the inner disk as predicted by Miranda & Rafikov (2020b) and
reduces the vortex lifetime from 1200 to 900 orbits. Studying
the effect of in-plane radiation transport in more detail requires
further investigation.

6.3. About the assumption of a 2D disk

One of the main limitations of our models is the 2D assumption
which was done due to runtime constraints in our rather wide
exploration of the parameter space. It is entirely possible that
various 3D effects can result in quantitative differences in vor-
tex properties. 3D vortices can be susceptible to the elliptical
instability (Lesur & Papaloizou 2009) which would lower their
lifetime. On the other hand, the vertical modes of the SBI could
provide an additional channel to sustain the vortices, and vertical
gas circulation due to the VSI might interfere with vortex growth
and decay (Flock et al. 2020).

To estimate the impact of including full-3D effects, we ran
one 3D simulation with FARGO3D (Benitez-Llambay & Masset
2016) using a setup analogous to our 2D setup. We chose 8 = 2,
a = 0 and a resolution of 8 cps in all three directions. Similar
to our 2D models, a large vortex formed at the outer gap edge
and lived for 7000 orbits. This illustrates that while there are dif-
ferences, large vortices can survive in 3D disk simulations for a
long time, even longer than in 2D for our example. We limited
the 3D runs to this one test because its runtime at 8 cps resolu-
tion was close to 4 months with the simulation performed on 4
NVIDIA K80 GPUs.

6.4. On the observability of vortices at large radii

Sect. 4.2 illustrates that vortex lifetime is affected by the thermal
cooling timescale 5. The latter is expected to vary with radius
in a disk, with values of 1-10 at Sau, 0.1 at ~10 au, and below
0.1-0.01 at ~50 au (Ziampras et al. 2020b). Thus, we expect vor-
tices to be in the short-lived regime close to the star and in the
long-lived regime far from the star. From Fig. 4 we can estimate
the lifetime of vortices in disks with @ < 107 to be between
500 and 3000 orbits for 8 > 1 and between 1000 and 15 000 or-
bits for 8 < 1 for @ < 107*. Assuming a solar-mass star, this
yields estimated lifetimes for a planet-induced vortex between
6-30kyr at 5 au, 175-700 kyr at 50 au, and 1-15 Myr at 100 au.
On the basis of a simple lifetime-centered argument, our results,
therefore, suggest that planet-induced vortices are more likely to
be observed at larger radii.

It should be noted, that planet growth timescales of 100 and
1000 planetary orbits are at the very low end of the spectrum of
physically expected planet growth times. Hammer et al. (2017)

provided estimates for more realistic planet growth-times of sev-
eral thousand up to tens of thousands of orbits. It remains to be
seen, whether the effects observed in this study still appear for
longer, more realistic, planet growth timescales. However, sim-
ulating the disks at the required resolution of at least 16 cps for
longer planet growth times along with the additional vortex evo-
lution time is still computationally expensive.

6.5. On using the lifetime of vortices in simulations to explain
observations

In the suite of simulations we carried out, the lifetime of vortices
in models with identical physical parameters varies significantly
with resolution. This was the case for low values of the viscous
« parameter (@ = 107>, 107°). We argued that the numerical vis-
cosity of our simulation codes is comparable to @pu, < 107.
This suggests that simulations with a prescribed viscosity of the
order of the numerical viscosity cannot be used as a controlled
numerical experiment, at least as far as the occurrence and per-
sistence of vortices is concerned. For prescribed viscosities well
above the estimated numerical diffusion (@ = 107*, 1073 in our
case), the consistency of vortex lifetimes between the two codes
and numerical choices supports the idea that the numerical ex-
periment is indeed a controlled one.

In light of some recent observations of molecular line broad-
ening (e.g., Flaherty et al. 2018) and numerical studies of VSI
turbulence (e.g., Flock et al. 2017) and planet—disk interaction
(e.g., Zhang et al. 2018) hinting at low « values, this could pose
a challenge for simulations of protoplanetary disks.

6.6. Resolution and numerical viscosity

Vortex evolution in “inviscid” disks is often studied using very
high-resolution grids to minimize the effects of numerical vis-
cosity (Li et al. 2005; Paardekooper et al. 2010; Lin & Pa-
paloizou 2011; Zhu & Baruteau 2016; Hammer et al. 2017; Mc-
Nally et al. 2019; Hammer et al. 2021; Fung & Ono 2021). While
the resolution of 8 and 16 cells per scale height is likely enough
to resolve planet-generated features such as the gap shape and
spiral arms (see Appendix A), the numerical viscosity also needs
to be low enough not to interfere with vortex decay.

An estimation of the numerical viscosity, valid for first-order

schemes, iS Vpum ~ AA—‘:, with a representative cell size Ax and
the timestep At. For our choices of parameters and assuming
At ~ ﬁ—f this corresponds to ayum ~ 1072-107". Clearly, we see
substantial changes in dynamics down to much lower values of
the prescribed a. Because we employ a higher-order scheme, this
simple estimate is not applicable. To our knowledge, there exists
no formula to estimate the numerical viscosity for the higher-
order schemes employed in this study, so we attempt to estimate
it by comparing the results of our simulations at different values

of a.

In general, we observe a similar behavior between models
with @ = 1073 and 107°, both in terms of the behavior of vor-
tices during their lifetime (size, mass, migration patterns) as well
as the overall lifetime itself (see Fig. 4). This is also true across
both codes that we used in this study, with the exception of the
8 cps models for 8 = 100. We attribute the similarity to the nu-
merical diffusion inherent in the different advection schemes of
the two codes and expect that this translates to an effective ayym
between 1076 and 1073 for our given choices of grid resolution.
This implies that our experiments with & = 107 are most likely
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not controlled ones, and for this reason, we typically group mod-
els with @ < 107> together.

Nevertheless, we still observe a different behavior for some
models with @ = 10~ when comparing them to those with o =
1073, such as the migration of the long-lived models presented
in Sect. 5 (see the different tracks of ryo(f) in Fig. 8), most of
which have a 16 cps resolution. This hints at a lower numerical
diffusion for 16 cps of pum ~ 107°.

Because the numerical viscosity in the 8 cps models might
interferes with the prescribed @ < 107, our 8 cps simulations
might not be as trustworthy as our higher-resolution 16 cps, @ <
1073 runs.

6.7. On the different numerics of the two codes

We used two codes (PLUTO and FargoCPT) with fundamentally
different numerical properties. The fact that the two codes agree
in terms of results (see the orange lines in Fig. 8 for one strik-
ing example) is reassuring, but it is worth discussing their differ-
ences nonetheless.

FargoCPT requires an artificial viscosity prescription to sta-
bilize the upwind method near regions of strong compression
such as shocks. This provides additional dissipation which could
affect the evolution of vortices whenever they interact with the
spiral shocks induced by the planet. With the exception of the
8 cps models for 8 = 100, we found no significant differences in
vortex lifetimes between the two codes. The one case for which
the codes disagreed might be a result of insufficient resolution
because the differences disappear for 16 cps.

On the other hand, PLUTO’s strictly energy-conserving nature
means that the evolved quantity in the energy equation is the
sum of kinetic and thermal energy. Since kinetic energy dom-
inates over thermal in typical Keplerian flows (for our setup,
Evin/En ~ % = 80), numerical errors in the calculation of total
energy could affect the thermal energy budget of the disk due to
subtractive cancellation error. In order to check this effect, we
reran our fiducial model using the ENTROPY_SWITCH option of
PLUTO, which ensures entropy conservation outside of the vicin-
ity of shocks (which by definition do not conserve entropy, but
are captured accurately by the Riemann solver). We found that
this did not affect the life track of the generated vortex.

Finally, we also reran the fiducial model with PLUTO using
a 3rd-order solver and parabolic reconstruction instead of the
standard 2nd-order solver and linear reconstruction setup. We
found no differences in vortex evolution or lifetime.

On the basis of our tests and the agreement of the codes for
high resolution, we conclude that the vortex dynamics and ef-
fects we observed in our simulations are not numerical artifacts
but that they are indeed physical.

7. Summary

We studied vortices created by planets in protoplanetary disks
using two-dimensional viscous hydrodynamics simulations. The
equation of state was assumed to follow an ideal gas, turbu-
lence was included following the @ parametrization, and thermal
processes were considered by prescribing a thermal relaxation
timescale using the 8 formalism. A focus was brought to vor-
tices exterior to the gap opened by the planet. In order to verify
our results, the simulations were carried out with both the FARGO
and PLUTO codes which use different numerical schemes. The
planet was treated as a non-accreting point mass with a smoothed
gravitational potential and kept on a fixed circular orbit. Proper-
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ties of vortices were automatically extracted using our newly-
developed Vortector Python tool, which identifies and charac-
terizes vortices. Vortex identification was performed by looking
for elliptical shapes in iso-vortensity lines in the r-¢ plane, and
characterization was performed by fitting a 2D Gaussian to the
vortensity and surface density.

Vortices formed during the gap opening process as the em-
bedded Jupiter-mass planet was introduced into the simulation.
At the outer gap edge, multiple small vortices formed that usu-
ally merged into a single large vortex that lived, depending on
parameters, between 200 and several thousand orbits. These vor-
tices had a full width at half maximum (as determined by the
fitted 2D Gaussian) of up to 0.4 r, (several au for a planet at
rp = 5.2 au). The mass enclosed in this vortex area was up to one
planetary mass (one Jupiter-mass in our models) for our choice
of disk mass.

Vortex lifetime depended on the thermal relaxation timescale
such that vortices lived shortest for intermediate cooling times
(B = 1), a result also found by Fung & Ono (2021). We found
two regimes for the vortices’ lifetimes. A short-lived regime,
with vortex lifetimes of up to 3000 orbits, was observed for
slowly-cooling disks (8 > 1), in which the vortices decayed
faster than expected from viscous dissipation alone. In the long-
lived regime, which was observed for fast cooling (8 < 1) with
the isothermal assumption as an extreme, vortices lived for a
much longer time and did not decay rapidly. Vortex lifetimes
were considerably longer in this regime, with a lower bound on
the maximum lifetime being 15 000 orbits (the model was termi-
nated while the vortex was still alive due to runtime constraints).
From our analysis, we suspect that the long lifetime for small 8
is connected to the interaction of the vortex with the spiral arms,
which are a source of vorticity. Details are left to future studies.

Additionally, including the disk’s self-gravity in the models
usually shortened the lifetime of vortices and stopped the small
initial vortices from merging into one large vortex. Usually, two
smaller vortices remained after the initial gap opening process,
which then decayed faster compared to those in models where
disk self-gravity was not accounted for. This finding, that self-
gravity is detrimental to vortex survival, is in line with previous
studies (Lovelace & Hohlfeld 2013; Regdly & Vorobyov 2017,
Zhu & Baruteau 2016).

Outward migration of the vortex was observed in some of
the models with 8 < 1 and 8 > 1. In those cases, a second
density (and thus pressure) bump formed outside of the vortex
location, towards which the vortex then migrated (Paardekooper
etal. 2010). In some 8 = 0.01 models, a small, short-lived, “sec-
ondary” vortex formed between the planet gap and the “primary”’
vortex.

Concerning the dependence of vortex lifetime on viscosity,
we found the expected behavior that this lifetime was shorter for
higher viscosity. For the highest viscosity of @ = 1073, prac-
tically no vortices were observed. For @ = 107 and 1075 we
found nearly identical results, suggesting that the numerical vis-
cosity in our models with a resolution of 8 and 16 cells per scale
height was of the order of ageps < 107> and @geps ~ 1075

Allowing the planet to grow over a longer time, 1000 in-
stead of 100 orbits, led to longer vortex lifetimes in all the cases
we tested. This disagrees with the findings of Hammer et al.
(2017), who found reduced vortex lifetimes for longer planet-
growth times. In our models, vortices took longer to form in the
case of the slower-growing planet. During their decay, however,
their evolution was very similar, independent of planet introduc-
tion time (see Fig. 6), which in total increased their lifetime.
The fact that vortex lifetime increased for longer planet-growth
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timescales can be an indication that the effects presented in this
study, including the long-lived vortex regime, are also applicable
to longer, and arguably more realistic, planet-growth timescales
of around 10 000 orbits.

Estimating vortex lifetime from our results, vortices are ex-
pected to live much longer at larger distances away from their
host star. The increase in expected lifetime is firstly due to the
longer orbital period at large radii, but also because the expected
[ values — the thermal relaxation timescale compared to the or-
bital timescale — are much lower and vortices then likely belong
to the long-lived regime (see Sect. 5). From order-of-magnitude
calculations, we find that large planet-induced vortices exterior
to the planet at 50-100 au might live for several Myr. Consider-
ing the sensitivity of instruments like ALMA at these distances
from the star, this suggests that these vortices should be observ-
able more easily than planet-induced vortices at smaller radii.
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Appendix A: Grid resolution and numerical
convergence

A grid resolution of 8 cells per scale height (cps) is often
adopted in models of planet—disk interaction in literature. While
it is widely agreed upon as sufficient, we test this statement by
performing a series of test simulations with both PLUTO and
FargoCPT using the same physical parameters as our locally
isothermal models (@ = 107°), but using varying grid resolutions
with 1, 2, 4, 8 and 16 cps in both directions (always maintaining
square cells).

We found that we achieve numerical convergence on large-
scale features such as the gap width and pressure bumps for a
resolution of 4 cps. Convergence on more numerically-sensitive
features such as gap depth and vortex formation is reached for
a resolution of 8 cps, with 16 cps affecting the picture relatively
weakly. This was observed across both codes, with the two show-
ing very good agreement with each other both in terms of the
resolution at which different features converge and the physical
properties of said features across codes.
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Fig. A.1. Results for our resolution study using FargoCPT. The overall
shape of the gap is resolved with around 4 cps, while it takes 8 cps to
properly resolve the gap depth and the contrast of most pressure bumps
far from the gap. We are interested in the region between 0.5-2.0r,.
Extending the outer boundary to r = 107, in the “8-8-ext” model prac-
tically made no difference. It should be noted that the 16 X 16 cps model
develops some small-scale vortices in the inner disk, which causes these
differences around 0.7 r,. Interestingly, a model that resolves the radial
and azimuthal directions with 4 and 1 cps, respectively, captures these
radial features almost as well as one with 4 cps in both directions.

Appendix B: The Vortector

A major task in this study was the identification and characteri-
zation of vortices in simulation data. For this purpose, we devel-
oped a Python package, the Vortector, that automates the pro-
cess for relatively generic 2D hydrodynamics planet—disk simu-
lations.

The Vortector package lets one visualize the vortex de-
tection results (an example is shown in Fig. B.2), as well as
includes information about the location, extent, and mass of a
vortex along with various statistics related to the contour.
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The package is publicly available on GitHub'. We hope to
make the detection and characterization of vortices in simulation
data easier for other members of the community and facilitate
quantitative comparison of vortices between studies by provid-
ing a common detection pipeline.

To search for possible vortex candidates, a simple search
for the location of minimum vortensity is sometimes enough
to find the location of a vortex. Then, the value of the vortic-
ity w = (V X u) - Z can be used to learn how strongly the vortex
rotates and the local surface density can be used as an indication
for the mass enclosed in the vortex. This method, however, fails
for many simulations, e.g., when the vortensity in a tiny region
close to a spiral arm of the planet is lower than inside a vortex
candidate, or when the gap region intrudes into the outer disk,
which can induce strong anticyclonic motion at the outer gap
edge.

To get around these issues, the Vortector uses the geomet-
rical shape of vortices as they appear in a face-on image of the
disk. Looking down on the surface of a disk, vortices appear as
crescent-shaped objects. In the r-¢ plane, which is more suit-
able for this task, large vortices appear as elliptical objects (see
also Fig. 1 of Lesur & Papaloizou 2009). In fact, contour lines
of the vortensity closely resemble ellipses in the r-¢ plane. We
can therefore identify vortices in a disk by finding closed con-
tour lines that closely resemble ellipses. To solve this task pro-
grammatically, we can make use of the computer vision library
OpenCV (Bradski 2000).

Our strategy to extract vortex candidates from a simulation
snapshot can be then subdivided into three tasks:

1. Extract contour lines in the r-¢ map of the vortensity,
2. identify nearly elliptical contours as vortex candidates, and
3. fit 2D Gaussians to @ and X for characterization.

The algorithm step by step

This section describes the vortex detection process using the
model presented in Sect. 5.1 (FargoCPT, @ = 1073, 8 = 0.01,
16 cps) which shows the emergence of a secondary vortex. The
data used for this analysis corresponds to a time ¢ = 7150 orbits.

Before the analysis is performed on @, the map is periodi-
cally extended in the ¢ direction in order to be able to identify
vortices that intersect the periodic azimuthal boundary. The re-
sulting image is shown in the left panel of Fig. B.1. There, the
original domain is indicated by the thick solid rectangle which
spans the azimuthal range from O to N, where N is the image
size in pixels in the azimuthal direction. The top and bottom ar-
eas of the domain (orange and green) are repeated at the lower
and upper boundaries, respectively.

Task 1: contour lines

Contour lines are extracted for a range of @ values ranging from
0 to 1 in increments of 0.05. For each value w.;, a binary image
is produced by setting each cell with @ > @ to 1 and O other-
wise. The binary image is then analyzed using findContours
from OpenCV. Only closed contours are retained. This step usu-
ally results in up to a few thousand contours, depending on the
dynamical state of the disk and the choice of increments in @.

" https://github.com/rometsch/vortector
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Fig. B.1. Periodically continued iso-vortensity line image (left) used
for extracting contours for vortex candidates and an example contour
illustrating the ellipse fit (right). The snapshot shown is at time ¢ =
7150 orbits of the model with the “secondary” vortex that was discussed
in Sect. 5.1. The left panel shows how the data array is mirrored in
order to allow the detection of vortices that overlap with the periodic
boundary. Areas with the same color are copies of one another. The
red line indicates the outline of the grey area in the right panel. The
original size is marked by the black rectangle ranging from O to N on
the vertical axis. The area shaded in blue in the right panel illustrates
the definition of the deviation from the ellipse that is used to select the
vortex candidates from the closed contours. For the example shown, the
ratio of difference area (blue) to the total contour area is 0.122, which
is below the 0.15 threshold.

Task 2: Find closed contours resembling ellipses

Next, the fitE1llipse function from OpenCV is used to fit an el-
lipse to each closed contour. One example of this is shown in the
right panel of Fig. B.1, where the ellipse is visible as an orange
line in the zoom-in.

The difference in area between the contour and fit is used
as a measure of deviation. The deviation from an ellipse is then
defined as the ratio of this difference and the area enclosed by
the contour. We only keep contours for which the deviation is
smaller than 0.15. The example contour in Fig. B.1 has a devia-
tion of 0.122.

Finally, all the contours that are contained within the largest
contour that satisfies this criterion are discarded, which leaves
the example red contour in Fig. B.1 as the selected vortex candi-
date (see also the white contour line in Fig. B.2).

We only retain contours that enclose at least two other con-
tours. With this restriction, we make sure that @ /@, changes by
a value of 0.1 from the outside to the inside of the vortex candi-
date. This has proven to be useful to filter out small fluctuations
in the disk that otherwise appear as small transient vortices.

At this point, it becomes clear that the extent of the vortex
and derived quantities such as the mass contained within are in-
fluenced by the choice of the levels used to produce the contour
lines and the choice of the maximum relative ellipse deviation.
The properties of the contour give an order-of-magnitude esti-
mate nonetheless.

Task 3: Fit a 2D Gaussian

To remove the influence of the threshold parameters in the de-
tection of the contour, a process that does not depend on our
parameter choices but on the underlying data is needed.

Upon inspection of the curves of vortensity and surface den-
sity along a cut through the vortex, either radial or azimuthal, it
becomes clear that these lines resemble Gaussian functions (see
curves in Fig. B.2 around the 2D maps)

— 2 _ )
fr) = o+anp(—M)eXp[_M] .

B.1
202 207 @D
Here, o, and o provide a measure for the vortex size and
can even be used to give a definition of the vortex region that
does not depend on additional parameters. In combination with
the center coordinates ry and ¢y, o and oy can be used to define
the vortex as the disk material contained within the ellipse given
by

(r—ro)2 +(¢—¢0)2 .,
hy hg ’
where h, = V2In(2)o, and hy = V2In(2) oy denote the half
width at half maximum of the 2D Gaussian function defined in
Eq. (B.1). We usually use the values obtained from the surface
density fit because these are less time-sensitive compared to the

vortensity fit and because the shape of X curves more closely
resemble Gaussians (see Fig. B.2).

(B.2)

Appendix C: Data table

The lifetimes and parameters of all models mentioned in Sects. 4
and 5 are listed in Table C.1.
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Fig. B.2. Overview of the results produced by the Vortector package for a model showing a secondary vortex discussed in Sect. 5.1 at ¢t =
7150 orbits, with a 2D map of the vortensity on the left and surface density on the right. All detected vortex candidates are indicated in the 2D
plots. The extracted contour (shown in Fig. B.1) is marked with a white line, the ellipse of the vortensity fit is shown in blue and the ellipse of the
surface density fit is shown in green. Note that these ellipses are defined by o and o, from the fit of Eq. (B.2) and are different from the ellipse
used to fit the contour. The ellipses of the most massive vortex include a crosshair indicating the center of the fit. Each 2D plot is accompanied by
1D plots of slices through the main vortex. They also show the values of the respective Gaussian fit in blue for vortensity and green for surface
density. In this figure, the planet is located at = 1 and ¢ = 0.
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Table C.1. Lifetimes of vortices in the simulations. Models with a resolution of 8, 16, and 32 cps have 528 x 1024, 1056 x 2048, and 2112 x 4096
cells, respectively.

code B a CPS  Timo®  special®  inFig. 4 Tor© code B a CPS  Timro®  special’  inFig. 4  Tyoq©
fargo 0.01 107° 16 100 X >8784 fargo 1 1075 8 1000 1279
pluto  0.01 107° 16 X 9548 fargo 1 1073 8 X 1179
fargo 0.01 107¢ 8 X 1679 fargo 1 105 8 sg X 289
pluto 0.01 107 8 X 2013 fargo 1 1073 8 1000 sg 509
fargo 0.01 107 32 >739 pluto 1 1073 8 X 1136
fargo 0.01 107 16 X 8774 pluto 1 1073 8 1000 956
fargo  0.01 107 16 sg >4567 fargo 1 10 16 X 709
pluto 0.01 10° 16 X >15100 pluto 1 10* 16 X 757
pluto  0.01 107 16 5762 fargo 1 107+ 8 X 659
pluto  0.01 107 16 vort rem 1843 pluto 1 107* 8 X 607
fargo  0.01 1073 8 1000 3897 fargo 1 107° 16 X 0

fargo  0.01 1073 8 X 2288 pluto 1 1073 16 X 49

fargo  0.01 107 8 7845 fargo 1 1073 8 X 59

fargo  0.01 107 8 sg X 1299 pluto 1 103 8 X 0

fargo  0.01 1073 8 1000 sg 1269 fargo 100 10 16 X 1729
pluto  0.01 107 8 X 2611 pluto 100 10 16 X 2441
pluto  0.01 1073 8 1000 2691 fargo 100 107 8 X 3108
pluto 0.01 1073 8 10638 pluto 100 107 8 X 946
fargo 0.01 107 16 X 1129 fargo 100 107 16 X 1888
pluto  0.01 10 16 X 1335 pluto 100 1075 16 X 1943
fargo 0.01 107 8 X 979 fargo 100 1073 8 1000 3048
pluto  0.01 107* 8 X 887 fargo 100 1073 8 X 2708
fargo 0.01 1073 16 X 79 fargo 100 107 8 sg X 589
pluto  0.01 1073 16 X 0 fargo 100 107 8 1000 sg 499
fargo 0.01 1073 8 X 69 pluto 100 107 8 X 857
pluto  0.01 1073 8 X 29 pluto 100 1073 8 1000 0

fargo 1 10°% 16 X 1309 fargo 100 10™* 16 X 699
pluto 1 10°¢ 16 X 1694 pluto 100 10™* 16 X 797
fargo 1 107¢ 8 X 1189 fargo 100 107* 8 X 569
pluto 1 10 8 X 1106 pluto 100 10* 8 X 478
fargo 1 1075 16 X 1359 fargo 100 1073 16 X 0

fargo 1 1075 16 sg 649 pluto 100 1072 16 X 0

pluto 1 107° 16 X 1445 fargo 100 1073 8 X 0

pluto 1 1075 16 art vort 916 pluto 100 1073 8 X 0

Notes. @ Planet introduction time. 100 orbits if empty. ¢’ Special propertiy of the model. “sg” if self-gravity is included. “vort rem” and “art vort”
refer to the models discussed in Sect. 6.1 with the removed vortex and the artificial vortex, respectively. ) Lifetime of the vortex in planetary
orbits. “>" indicates that the vortex still exists at the end of the simulation.
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