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Zusammenfassung 

Die fortschreitende Urbanisierung und der Klimawandel stellen Städte und Stadtplanung vor 

große Herausforderungen. Der Lebensraum für die Bewohner und die Infrastruktur müssen ent-

sprechend den Klimaschutzanforderungen angepasst werden, zudem muss die Resilienz urbaner 

Räume gegenüber Klimawandelwandelfolgen erhöht werden. Ziel der urbanen Planung und ur-

banen Infrastrukturplanung ist vor diesem Hintergrund im Auftrag der Gesellschaft Lösungen zu 

finden, um diesen Anforderungen der Zukunft gerecht zu werden und um lebenswerte Städte mit 

allen städtischen Funktionen zu gewährleisten. Zudem müssen durch Planer ökonomische und 

ökologisch geeignete Vorschläge für die Bereitstellung urbaner Infrastruktur gefunden werden, 

um Grundbedürfnisse zu erfüllen und Slums zurückzudrängen. Gute Planungspraxis erfordert da-

für die Entwicklung von Planungsszenarien für angemessene, erfolgreiche und integrierte Lösun-

gen, wobei eine Datenbasis als Entscheidungsgrundlage dienen muss, die durch Datenkonsistenz, 

-qualität und -aktualität als Evidenz für Szenarienentwicklung herangezogen werden kann.  

In dieser Dissertationsschrift wird durch drei Studien gezeigt, dass die Disziplin der Fernerkundung 

durch die Verwendung sehr hochaufgelöster Erdbeobachtungsdaten einen Beitrag für erfolgrei-

che urbane Planung und urbane Infrastrukturplanung leisten kann, indem der Informationsgehalt 

bisheriger Fernerkundungsansätze unter Verwendung anwendungsfreundlicher Ansätze erhöht 

werden kann und direkt planungsrelevante Informationen als Evidenz für die Entscheidungsfin-

dung bereitgestellt werden kann.  

In den hochdynamischen Städten Da Nang (VN) und Belmopan (BZ) konnte an dieser Thematik 

gearbeitet werden. Durch die Differenzierung photogrammetrisch abgeleiteter Höhenmodelle in 

sehr hoher Auflösung wurden in Da Nang anstatt flächenhafter Änderungen urbaner Gebiete Dy-

namiken innerhalb des Gebäudebestands bestimmt und evaluiert. Der Gebäudetyp kann, wie in 

Belmopan gezeigt, als geeignetes Mittel für Abschätzung sozioökonomischer Indikatoren dienen, 

die in Zusammenhang mit spezifischen Verbräuchen stehen. Mit der Verwendung von Drohnen-

daten wurde die Bestimmung der Gebäudetypen verbessert und zudem der Zusammenhang zwi-

schen Gebäudetyp und Stromverbrauch gezeigt, wodurch eine Photovoltaikenergie-Bilanzierung 

auf Einzelgebäudeebene durchgeführt werden konnte.  
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Abstract 

Ongoing urbanization and climate change pose major challenges for cities and urban planning. 

The living space for residents and the infrastructure must be adapted to meet climate protection 

requirements, and the resilience of urban areas to the effects of climate change must be increased. 

Against this background, the aim of urban planning and urban infrastructure planning is to find 

solutions on behalf of society to meet these future requirements and to ensure livable cities with 

all urban functions. In addition, planners must find economically and ecologically appropriate so-

lutions for the provision of urban infrastructure to meet basic needs and reduce slums. Good 

planning practice requires the development of planning scenarios for appropriate, successful and 

integrated solutions, using a database as a foundation for decision-making that can be used as 

evidence for scenario development through data consistency, quality and timeliness.  

In this dissertation paper, it is shown through three studies that the discipline of remote sensing 

can contribute to improve urban planning and urban infrastructure planning through the use of 

very high-resolution earth observation data by increasing the information content of previous 

remote sensing applications using application-friendly approaches and directly providing plan-

ning-relevant information as evidence for decision making.  

In the highly dynamic cities of Da Nang (VN) and Belmopan (BZ), work could be accomplished on 

this topic. By differentiating through photogrammetrically derived elevation models in very high 

spatial resolution, instead of areal changes of urban areas, dynamics within the building stock 

were determined and evaluated in Da Nang. Building-type, as shown in Belmopan, can serve as a 

suitable instrument for estimating socioeconomic indicators related to specific consumptions. 

With the use of drone data, the determination of the building-type was improved compared to 

satellite imagery and, in addition, the relationship between building-type and electricity consump-

tion was shown, making it possible to perform photovoltaic energy balancing at the individual 

building level. 
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way I want to give my thanks to Prof. Dr. Michael Peterek not only for his willingness to supervise 

and accompany this thesis, but as well the very good and pleasant cooperation in the research 

projects. Special thanks to Dr. Oliver Assmann, with whom I developed and discussed ideas for 
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tian Sommer always are always open to discuss ideas and to share their knowledge, for which I 

cannot give enough thanks. I extent these thanks to our complete work group to Christian B., Jörg, 

Lizzy, Zara, Silvia, Sandy and Tamara, but as well as the former colleagues Hans, Adel, Felix, Ger-

aldine, Janine, and Alice, who always a nice and motivating atmosphere. Special thanks to Hanna 
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and especially my wife Elisa and for their support and encouragement during the past time. 

Besides all lessons learnt on remote sensing techniques, spatial data analysis, integrated urban 

infrastructure planning and international collaboration I was very much impressed by the passion 

of our local partners in the project cities Kigali, Da Nang and Belmopan and their motivation to 
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contribute to progress and growing wealth in their home towns and countries. At the same time, 

on of the biggest problems in urban infrastructure planning and city administration became ap-

parent: Once administration employees get qualified through training, they often get poached or 

moved to other positions. Such processes prevent stability in the planning departments and 

knowledge concentration. Accordingly, planning procedures in such environments must be re-

duced in complexity and offer low obstacle subprocesses. In this context my personal motivation 

in the context of this doctoral thesis emerged to study comprehensible approaches that could be 

implemented in the local planning practice. 

In this thesis I present my research to address the challenge for the development of approaches 

to support urban infrastructure planning by providing data and information from very high-reso-

lution remote sensing data. In the first section, I give an introduction into the thematic context of 

urbanization, urban planning and infrastructure planning. Furthermore, by giving an overview on 

the recent literature on remote sensing research in the urban context, I present the state of the 

arts and derive the research deficit in the face of ongoing urbanization. After defining the objec-

tives of my work, the three research papers for this thesis are presented in the results section. The 

thesis concludes with the discussion section and the further outlook. 
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1. Introduction 

This doctoral thesis summarizes, concludes and discusses three research papers which adress im-

proving data provision approaches for urban planning, especially urban infrastructure planning in 

highly dynamic urban systems. In order to present the relevance of this thesis, the following chap-

ters provide the thematic frame. By introducing the topic of urbanization, urban planning, and 

presenting the state of the art of remote sensing applications to support urban planning, the 

relevance and necessity for urban planning is being underlined. Furthermore, deficits and chal-

lenges in urban planning, and the potential of remote sensing applications to support it are high-

lighted. 

1.1. The Urbanized Planet 

Urbanization as the process of increasing the share of the urban dwelling population, challenges 

cities and administrations to meet its residents demands on quality of life and to provide urban 

functions for all groups of the society. Although the largest urbanization rates have been observed 

in the second half of the 20th century (UNDESA, 2019), the process begins very early in history. It 

can be categorized into four major phases (Kraas et al., 2016). The first pre-historic and antique 

epoch of urbanization started in Mesopotamia, from where the process continued over the Fertile 

Crescent, the Nile Valley, and the Mediterranean region (Mumford, 1956). The second main phase 

of urbanization was during the high medieval phase, where cities in Europe evolved and city foun-

dations were intentionally supported by the rulers (Jöchner, 2011). The third phase of urbanization 

accompanied the period of industrialization starting in the middle of the 19th century. The need 

of labor forces and the specialization of the businesses caused migration from the rural areas to 

the industrial regions and resulted in massive growth in urban population (McNeill and Engelke, 

2013). The fourth and present phase of urbanization is a phase of global urbanization, in which 

urbanization processes occur on the global scale (Kraas et al., 2016). Developed countries entered 

this phase after World War II, when the agricultural sector went through an intensive transition 

into a highly mechanized and almost industrialized sector and progress in transportation systems 

enabled global distribution of goods. In the meantime, processes of urban shrinking can be ob-

served in some developed countries (UNDESA, 2015). In developing countries, especially in Asia 

and Africa, the growth of the urbanized population is very fast. The “urban turning point” in 2007 
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marked a very important date in this steady process of urbanization, with more than 50 % of the 

global population living in cities (UN-Habitat, 2006). In 2022, 57 % of the global population is 

expected be urbanized. According to UN data, 60.4 % of the global population will be living in 

cities and 68.4 % in 2050 (UNDESA, 2019).  

The main requirement for the formation of cities and urban structure is the food supply. Agricul-

ture therefore needs to have developed such a productivity, that the urban population, which is 

not part of the agricultural sector, can sufficiently be supplied with food. Additionally, food trans-

portation into the city must be ensured (Teuteberg, 1987). The growing agricultural productivity 

also resulted in labor efficiency and consequently, less need of labor forces, which enabled the 

rural population to leave the agricultural sector. Political, economic, and societal reasons were the 

drivers for urbanization through all epochs. Initially, cities offered security from external threats 

through fortification systems and stationed military. The gained security and consistency enabled 

urban development into economic centers through trade and proximity to political leaders. The 

following economic growth led to growing numbers of jobs for migrating population from rural 

areas (Kraas et al., 2016). To this day, economic reasons are one of the main factors for urbaniza-

tion. Cities and urban areas promise income and wealth. UN data from 2011 shows that more than 

90 % of the global GDP is earned in urban areas (Fragkias et al., 2013). The transformation in the 

social order lead to social innovation, such as production specialization, technological innovations, 

but as well social innovations like class-structured societies, law bases, and government in social 

structures which resulted in higher social complexity (Elmqvist et al., 2013). Besides economic rea-

sons, social factors are very import for urbanization, as well. Access to secondary schools and 

universities, hospitals and other health care institutions, public institutions, culture, architecturally 

inspiring ambience, creative urban milieus and liberal lifestyles are found in cities. Therefore, cities 

served as models for social development from the beginning. Besides these pulling factors that 

entail migration, demographic dynamics caused by birth surpluses or reclassification of adminis-

trative units play an important role in urbanization as well (Kraas et al., 2016).  

Megacities are characterized through either more than 10 million inhabitants (UNDESA, 2015) or 

5 million inhabitants and a population density of larger than 2,000 inhabitants/km² (Bronger, 

2004). Additionally, qualitative criteria have to be considered which confirm global relevance of 
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the city. In 2016, 28 cities worldwide were characterized as megacities, the number is expected to 

increase to 41 in 2030 Megacities will then be home to 14 % of the global urban population (Kraas 

et al., 2016). 9 % will live in 63 “Emerging megacities”, which are defined by a population of 5-10 

million inhabitants. The largest increase of population will have taken place in the medium-sized 

cities, defined through a population of 1-5 million inhabitants, from 128 million inhabitants in 

1950 to 1.13 billion inhabitants in 2030. The share of the global population living in cities between 

0.5 and 1 million inhabitants will remain almost stable between 1950 and 2030, the share is esti-

mated to slightly increase from 8.8 % to 10.1 %. Although the share of the population living in 

smaller settlements with less than 300,000 inhabitants, as categorized by the UN (UNDESA, 2019), 

is expected to decrease from 60 % in 1950 to 38 % in 2030, 1.9 billion people will live in this city 

category which implicates the largest absolute numbers of growth in urban population (Seto et 

al., 2013). The expected population distribution within the presented city categories make clear 

that not only megacities or emerging megacities have to be in focus of urban planning and polit-

ical decisions. Most of the urban population will live in small cities (Seto et al., 2013), which makes 

planning concepts for these cities essential increase living conditions for a large part of the global 

population. 

As mentioned before, the year 2007 marked the urban turning point, in 2018 the UN estimated 

55.3 % of the global population living in cities (UNDESA, 2019). The annual urbanization rate of 

1.9 % results in growth of urbanized population. As shown in Figure 1, the process of urbanization 

is predicted by the UN to be ongoing for the next decades, although the non-uniform process of 

urbanization shows significant differences when comparing statistics on the continents. While Eu-

rope and Northern America have below-average urbanization rates, Africa and Asia are well above 

average. These regions, unlike Europe and North America, are currently comparably low urban-

ized. According to UN DESA data, Africa is 43.5 % urbanized and Asia is 51.1 % urbanized. Even 

though the urbanization rates on the global scale appear to evolve at a low level, the absolute 

number of urbanized population will still be growing. Since the largest increase in population is 

predicted for Africa and Asia (UNDESA, 2019), the will be facing major challenges for the urban 

sphere. 
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Figure 1: Global and regional overview on urbanized population, urbanization rates and the global population according 

to individual city definitions by each country (United Nations, 2018). 

When interpreting UN DESA data, one must consider that no globally consistent definition of  ‘city’  

is applied for the statistics, but the definition of the respective country. Table 1 gives a comparison 

between the UN urbanization statistics and the percentage of the global population living in urban 

agglomerations with more than 300,000 inhabitants. This ensures a data comparability, albeit the 

threshold value of 300,000 is certainly not set ideally, because 85 of all capital cities do not even 

reach this population (UNDESA, 2019).  

Table 1: Comparison of percentage of urbanized population according to countries definitions and population living in 

urban agglomerations with more than 300,000 inhabitants (data: UN DESA 2019). 

 1950 1960 1970 1980 1990 2000 2010 2020 2030 2035 

Urbanized population 30 % 34 % 37 % 39 % 43 % 47 % 52 % 56 % 60 % 63 % 

Population in urban ag-

glomerations >300,000 

inhabitants 

17 % 19 % 21 % 22 % 24 % 27 % 30 % 33 % 36 % 37 % 
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For further detailed statistics on urbanization, refer to the Word Urbanization Prospects: The 2018 

revision (UNDESA, 2019). 

The term “city” itself is very heterogeneously defined with large regional differences. For the 233 

countries, UN-Habitat counted 104 different definitions for ‘city’ using a single criterion, such as 

administrative function, population size/density or urban characteristics (UN-Habitat, 2020c). Fur-

ther 337 definitions were found in which multiple criteria form the definition.  

In order to establish a uniform term and find a globally consistent measure to compare cities, UN-

Habitat took up the multi-criteria city definitions from the New York University and the European 

Commission (European Commission, 2020; UN-Habitat, 2020c) (see Table 2). Both definitions base 

on a 1 km² raster, through which the definition can be applied through earth observation tech-

niques on a global scale. Thus, independency from statistical information and census information 

is given and cities can be monitored transparently. 

Besides positive effects of urbanization and the described factors of cities on page 2 being nuclei 

of economic and social development, urbanization causes negative consequences, especially 

through expansion of urban land use and urban sprawl. Projections indicate an increase in global 

urban land cover over 200 % between 2000 and 2030, global urban population on the other hand 

will grow by 70 % (Seto et al., 2013) and 88 % of protected areas will be effected by urban expan-

sion through ecological and climatological effects (McDonald et al., 2008). Also, social challenges 

Table 2: City class definitions according to the New York University and the European Commission 

New York University: City as defined by its urban 

extent 

European Commission: Degree of urbanization 

Urban 

built-up 

1 km2 units with built-up density 

>50 % 

High density 

cluster 

cluster of contiguous 1 km² units 

with >1,500 inhabitants/km² and 

a minimum population of 50,000 

 

Suburban 

built-up 

1 km2 units with built-up densities 

between 25-50 % 

Urban cluster cluster of contiguous 1 km² units 

with >300 inh./km² and a min. 

population of 5,000 

 

Rural built-

up 

1 km² units with built-up densities 

<25 % 

Rural grid cell 1 km² cell outside of high-den-

sity and urban cluster 
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still remain dominant in the urban sphere. Even though the number of global urban population 

living in slum areas decreased significantly from 33 % in 2009 to 24 % in 2018 (Ritchie and Roser, 

2018), the absolute number of slum dwellers increased by 42.9 % in the same period (Kraas et al., 

2016). 

This condensed description of ecological and social challenges already makes the need for proper 

urban planning very evident, in order to establish a socially and ecologically fair city development 

while also considering the upcoming challenges due to climate change and economic competi-

tiveness. 

1.2. Urban Planning 

Urban planning is the endeavor to arrange urban areas to establish a spatial order considering 

the populations demands (Albers, 1988). Besides the needs of the population, economic, social, 

and environmental aspects have to be taken into account to ensure sustainable urban develop-

ment. A large variety of different approaches, planning practices and activities does not allow for 

a single and unique definition. This in turn prevents from defining conventions for the urban plan-

ning process (Levin-Keitel et al., 2019). Good practice in urban planning however requires the 

cognitive anticipation of future acting, conditions and environment  (Pahl-Weber and Schwartze, 

2018). As a consequence, data, knowledge or evidence must be the main foundation and basis for 

accurate scenario development to support decision making in the urban planning process (Streich, 

2011).  

Initially urban planners focused on creative and esthetic design, yet post-world war II urban plan-

ning was in need of addressing sociological problems. Towards the end of the 20th century, envi-

ronmental awareness in society had an impact in urban planning. Eventually participative and 

communicative methods achieved transparent planning as demanded by the society. This devel-

opment explains the interdisciplinary character of urban planning, where different needs are met 

in architecture or engineering, but also ecological, social and economic aspects are handled (Pahl-

Weber and Schwartze, 2018). Urban planning is an administrative task, which is set in between the 
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level of politics and the level of specialized disciplines (Pahl-Weber and Schwartze, 2018). There-

fore, urban planners are service providers, independent from single interests and committed to 

the community and common interest (Levin-Keitel et al., 2019). 

Though following interdisciplinary approaches, urban planning was strongly influenced by leading 

visions. The Athens Charter, mainly influenced by Le Corbusier and proclaimed by the Congrès 

Internationaux d’Architecture Moderne IV (CIAM IV) in 1933 (Mumford, 2002), was the guideline 

for planning cities as a ‘Functional City’. After it became clear that the motor vehicle would replace 

the previous modes of transportation for goods and passengers, urban planning had to be 

adapted to this new perspective. Transportation infrastructure and city design were now planned 

in a car-oriented approach to reduce inner-city chaos through separating the functions of living, 

recreation, working and transport, considering traffic integration (Knie and Marz, 1997). Thus, the 

concept of the city machine or machine-centered functionalism was created (Knie and Marz, 

1997). This charter dominated urban planning during the post-world-war-II era and enabled 

strong economic growth during this period, but also led to heavy land consumption at the ex-

pense of the natural environment. 

In context of the sustainability debate, the negative developments of the Charter's approach were 

recognized and taken up by the Leipzig Charter from 2007, at least in the European Union's (EU) 

sphere of influence to support the EU Sustainable Development Strategy (BMUB, 2007). The focus 

of the Leipzig Charter lies on the approach of integrated urban planning, the development of a 

European polycentric urban structure to relieve transportation, the modernization of infrastructure 

and energy efficiency improvements, as well as the involvement of public, administrative, com-

mercial and private stakeholders (BMUB, 2007). 

As cities are the habitat for majority of global population since 2007, urban spaces offer the op-

portunity to reach the majority of the population, but urban planning is as well challenged to 

provide suitable planning for the business sector, addressing ecological issues and for different 

groups of the society. When urban planning does not address the concerns and needs of all so-

cioeconomic groups, consequences are uncontrolled construction development, missing public 

infrastructure, congested road network, social fragmentation, poverty, unemployment, crime or 
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ecological degradation (Taubenböck and Dech, 2010a), which is often revealed through the for-

mation of slum areas. The socioeconomic status (SES) hereby is a combined measure of economic 

and social status which considers education, income and occupation (Baker, 2014). Initially re-

ferred to in medical studies to explain health in residential groups (Schell and Denham, 2003; 

Winkler and Stolzenberg, 1998), the SES has recently been brought in connection with household 

waste production (Khan et al., 2016; Oribe-Garcia et al., 2015) and electricity consumption (Jones 

et al., 2015). The slum topic will be addressed in detail in section 1.3. 

Subsequent to the Millennium Development Goals (MDG), which since 2000 defined the goals on 

the reduction of poverty and hunger, increase of education, health and environmental protection 

to be reached by 2015 (United Nations, 2015b), the 2030 Agenda for Sustainable Development 

extended the perspective through defining the 17 SDGs. These in part recall some MDGs but add 

topics like sustainability, climate action and specify social topics (United Nations, 2015a) in order 

to respond to the risks of climate change and environmental degradation as well as to reduce 

social and economic inequalities. As the majority of the global population since the global urban 

turning point in 2007 lives in cities, it can be reached through urban planning. Therefore, urban 

planning has the challenge and the opportunity to contribute strongly to the achievement of the 

SDGs. Figure 2 highlights goals, which can be addressed by urban planning. 

 

Figure 2: Sustainable Development Goals in the context of urban planning highlighted in color: SDG 3: Good health and 

well-being, SDG 4: Quality education, SDG 6: Clean water and sanitation, SDG 7: Affordable energy, SDG 9: 

Industry, innovation and infrastructure, SDG 10: Reduced inequalities, SDG 11: Sustainable cities and commu-

nities, SDG 13: Climate action and SDG 17: Partnerships for the goals (United Nations, 2015a). 
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Already during HABITAT III, the United Nations Conference on Housing and Sustainable Urban 

Development in Quito in October 2016, the New Urban Agenda (NUA) was adopted to illustrate 

a paradigm shift. Standards and principles were defined in the light of the SDGs for sustainable 

urban planning (UN-Habitat, 2020a), thus identifying and acknowledging the relevance of cities 

for the future challenges. Approved not only by HABITAT III but as well by the UN General Assem-

bly in December 2016, the NUA constitutes a guideline for “national urban policies, urban legis-

lation, urban planning and design, local economy and municipal finance and local implementa-

tion.”  (UN-Habitat, 2020a) 

1.3. Urban Infrastructure Planning 

Infrastructure planning can be the technical preparation of construction of infrastructural ele-

ments, the financial preparation for personnel and operating resources, and establishing the ad-

ministrative and legal framework for the utilization of the infrastructure service (Beckmann, 1988). 

Urban infrastructure planning aims at accessing areas for anthropogenic use, conducting spatial 

and functional differentiation, and directing anthropogenic use of natural and environmental re-

sources. It also pursues ensuring spatial, economic and social participation (Moss, 2011). In the 

context of this presented thesis, the term of urban infrastructure planning aims at planning the 

technical supply and disposal infrastructure, for example for water, electricity and waste manage-

ment. Further urban infrastructure, but not in direct focus of this thesis, are the transportation 

network, telecommunication and sanitation. Water and energy are an essential resource for urban 

population to ensure health and quality of life (Loske and Schaeffer, 2005). Accordingly, the access 

to water and energy is the precondition for the fight against poverty and economic progress (UN-

DESA, 2014). Providing supply and disposal services through urban infrastructure is a basic re-

quirement for economic development and in parallel is key to control the urban footprint on the 

ecosystem and for environmental protection (Loske and Schaeffer, 2005; Tietz, 2011). 

Decision-making within the planning practices is characterized traditionally by optimizing existing 

structures due to seemingly lower costs, rather than system revolution (Malekpour et al., 2015; 

Tietz, 2011). Climate change and demands on financial and environmental require sustainability 

more and more to step off these insufficient pathways and to profit from synergetic effects in 
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infrastructure planning and service provision (Peterek et al., 2019). Good practice in urban infra-

structure planning demands the development of a “genuinely compelling and clearly expressed 

place-based vision” (National Infrastructure Commission, 2020). Based on these visions, integrated 

strategies should be developed, including transport, energy, health, environment, and social is-

sues. Good vision is ambitious but has realistic long-term goals and can be developed through 

scenario development and evaluation based on best knowledge of the city (National Infrastructure 

Commission, 2020). Traditionally, urban infrastructure planning was performed sector specific, but 

in order to reduce financial and environmental impacts, concepts of integrated planning ap-

proaches gain growing attention: Service should not be provided by a singular system, but 

through multiple systems. Reversely, one system optimally contributes to multiple purposes to 

profit from synergetic effects, intended by integrated planning approaches (Moss, 2011). 

Considering the urban infrastructure as Urban Metabolism helps exemplifying the idea of inte-

grated planning. The perspective of a city with all its flows and processes as an Urban Metabolism 

underlines the key role of integrated planning for supply and disposal infrastructure. Just like the 

blood system in the human body supplies with oxygen, removes carbon dioxide from the cells, 

and circulates warmth, waste incinerator plants can provide electricity and heat besides disposing 

solid waste. Through the circularity of the system, inefficient inputs and outputs are intended to 

be minimized (Kraas et al., 2016). This very placative example illustrates the benefits of the syner-

getic effects, which allow reducing operating costs and constructional effort and thus increase 

economic and ecological sustainability. To achieve an efficient urban metabolic system, precise 

planning based on scenarios developed under consideration of recent scientific knowledge, is 

required. Consequences of inadequate scenario development can lead to the failure of the plan-

ning process (Furlong et al., 2017). 

Integrated urban infrastructure is key to increase resource productivity, which means economic 

growth with decreasing resource input. For developing countries, a factor 4 can be a realistic tar-

get to improve resource productivity through integrated urban infrastructure (Ness, 2008). Cen-

tralized and decentralized integrated urban infrastructure solutions can be established in order to 

increase sustainability especially of disposal solutions (Derrible, 2017). Examples for integrated 

water management (IWM) approaches can be approaches to relieve municipal water drainage 



   Introduction  

11 

 

systems and wastewater treatment plants for capacity limitations, as well as concepts for rain wa-

ter infiltration in urban green spaces and urban agriculture (Derrible, 2017; Furlong et al., 2017; 

Peterek et al., 2019). For example in case of flash flooding, Kuala Lumpur can close parts of the 

underground transport network in order to temporarily collect the rainwater (Derrible, 2017). 

These concepts are often referred to as the Sponge City Approach. 

Improper urban waste management can cause severe health issues and environmental harm, as 

waste is often handled in a one-way approach, where it accumulates untreated in landfills. 

Through municipal solid waste management (MSWM) approaches, integrated infrastructure solu-

tions can be circular systems of recycling, composting and reusing (Peterek et al., 2019; Seadon, 

2006). Integrated approaches based on waste separation allow to separate waste into recyclable 

components, compostable biomass and a fraction to be used to generate heat and electricity in 

incineration plants or biogas reactors (Sadef et al., 2016). Through implementing such approaches, 

the environmental impact of waste management can be reduced, furthermore revenues can be 

generated from trading recyclable raw materials (Sadef et al., 2016). Through composting, a major 

part of the solid waste can be recovered, recycled and reintegrated into the natural nutrient cycle 

(Zurbrügg et al., 2012) thus reducing the amount of waste which ends on landfills and valorizing 

reusable fractions. 

Besides keeping the urban metabolism running, providing urban infrastructure is key to reduce 

slum dwelling population. Differences in temporal and spatial access to urban infrastructure cause 

social disparities (Tietz, 2011). Urban infrastructure grants access to essential supply and disposal 

services for households, businesses and public institutions, with increasing demand to be area 

covering, consistent and affordable by the service recipients with increasing expectations on sus-

tainability (Moss, 2011).  

According to UN-Habitat, a slum building or household is not defined through the building con-

dition or building material, but through the lack of one of the following: Durable housing, suffi-

cient living space, easy access to safe water, access to adequate sanitation or security of tenure. If 

besides lacking one of these conditions the requirements on sufficient living areas are given, cri-

teria for informal settlements are fulfilled (UN-Habitat, 2019). Therefore, slum issues cannot be 

solved by clearing slum areas but through the provision of basic urban infrastructure to enable 
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access to basic services. The reduction of the slum dwelling population was considered under goal 

7 of the MDGs. Between 1990 and 2015, drinking water access was improved for 2.6 billion people 

and sanitation conditions were improved for 2.1 billion people. Moreover, living conditions of 

more than 300 million slum dwellers could be improved between 1990 and 2015 (United Nations, 

2015b). As shown in Table 3, the share of the population living in slums and informal settlements 

decreased from 43.3 % to 23.0 % in the same period. However, due to the growing global popu-

lation, the total number of slum dwellers increased by 42.9 % between 1990 and 2018. The per-

centage of urban population living in slum condition even increased from 23 % to 28 % between 

2000 and 2014 (UN-Habitat, 2019). 

As already indicated through the conditions for the slum definition, infrastructure is one key to 

improve life of slum dwellers and inhibit slum formation. In order to achieve this or upgrading 

slums – after recognizing the need to improve slum areas and lives of slum dwellers – a major task 

besides forming a legal framework is the provision of affordable urban infrastructure under con-

sideration of the population’s needs and integrated processes. 

Table 3: Global and regional overview on the development of the total number of population the slum-dwelling popu-

lation and the share of the population living in slums and informal settlements (UN-Habitat, 2020b). 

Region 
 

1990 1995 2000 2005 2010 2014 2018 

World 
total (thous.) 723,020 779,678 817,221 853,740 925,965 928,063 1,033,545 

% 43.3 40.4 28.0 25.9 24.4 23.0 24.0 

Australia & New 

Zealand 

total (thous.) 
     

7 8 

% 
     

0.03 0.01 

Europe & North-

ern America 

total (thous.) 
  

764 787 820 833 1,022 

% 
  

0.1 0.1 0.1 0.1 0.1 

Northern Africa & 

Western Asia 

total (thous.) 44,194 44,701 46,335 45,217 52,061 63,814 83,052 

% 28.4 25.0 23.0 19.8 19.4 22.0 25.6 

Latin America & 

the Caribbean 

total (thous.) 106,118 112,253 115,148 111,311 113,942 104,652 114,207 

% 33.7 31.5 29.0 23.9 23.9 21.0 20.9 

Eastern & South-

Eastern Asia 

total (thous.) 284,293 307,593 317,123 332,067 348,756 349,409 369967 

% 46.6 42.7 38.0 33.8 30.0 28.0 27.2 

Central & South-

ern Asia 

total (thous.) 193,216 201,838 205,661 206,888 212,024 206,704 226,780 

% 57.1 51.7 46.0 40.3 35.3 32.0 31.2 

Oceania (excl. 

Australia & New 

Zealand) 

total (thous.) 386 430 468 514 572 602 670 

% 24.1 24.1 24.0 24.1 24.1 24.0 23.7 
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1.4. Earth Observation Techniques to Support Urban Planning 

Remote sensing is defined as a technique to capture information of the earth’s surface contactless 

(Albertz, 2009), where sensors can exploit the complete electromagnetic spectrum and capture 

information from various distances to the considered objects. These opportunities of earth obser-

vation (EO) allow changing the spectator’s perspective of view: From a very personal, familiar and 

spatially limited angle of view to observing from above with a wider angle of view. This challenges 

the observer to leave the familiar sphere to interpret the new perspective in an objective and 

comprehensive way. In the urban context, EO offers the possibility to expand the horizon of ob-

servation from an area, that usually is limited through the streetscape due to the surrounding 

building structure, to see whole quarters and cities in one objective, constant and recurring view. 

Spatial relationships difficult to identify so far can thus be identified more effectively. 

In this section, a general overview is given on the recent scientific focus of remote sensing appli-

cations in the urban context. For more specific literature overviews in the contexts of the single 

studies of this thesis, please refer to the articles in section “Publication List for the Dissertation”, 

page vii, where detailed literature overviews are presented. 

Analyzing over 100 of the most relevant research articles related to “urban remote sensing” since 

2018, as suggested by the Google Scholar search engine, reveals interesting characteristics: Deep 

Learning (DL) and Artificial Intelligence (AI), which recently are one of the publicly most present 

scientific topics, do not dominate the research articles with remote sensing context. Only 14 % of 

the articles address DL/AI topics, mainly using very high-resolution (VHR) satellite and aerial im-

agery. Main application of these methods is the building extraction and building segmentation 

(Xu et al., 2018; Yi et al., 2019), where U-Net segmentation approaches enable the best results for 

semantic object segmentation (Dong et al., 2019). Especially data fusion of optical and laser scan 

data improves accuracy for urban object detection (Audebert et al., 2018). Besides single object 

detection, DL proves to be an alternative approach for urban land use mapping (Huang et al., 

2018; Yi et al., 2019).  

The most relevant urban EO topic addresses detecting and characterizing urban heat islands (UHI) 

with a share of around 22 % of the relevant research articles. The discussed studies mainly base 
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on evaluating information in the thermal infrared spectrum from Landsat and MODIS data in the 

face of urbanization and climate change. The main research focus lies on the long term descriptive 

UHI analysis using the satellite image archives for metropolitan areas to describe dynamics in 

intensity and spatial distribution (Faria Peres et al., 2018; Shirani-bidabadi et al., 2019; Zhou et al., 

2018). First applications are discussed to analyze the effect of urban 3D morphology on UHI 

(Huang and Wang, 2019). 

17.1 % of the articles address mapping land use and land-cover (LULC) change in the context of 

urban expansion. Most studies report approaches for urban expansion mapping through multi-

temporal change of the urbanized areas using Landsat data with 30 m spatial resolution (Magidi 

and Ahmed, 2019; Yang et al., 2019) or the land use mapping on the block level using VHR 

WorldView or Pléiades imagery (Grippa et al., 2018).  

Further 15.2 % of the research articles address the monitoring of urban green spaces (UGS), urban 

vegetation and green infrastructure (GI) as a quality of life indicator in the urban environment. 

Spectral information from the near infrared bands of Landsat, Sentinel-2 and MODIS allow evalu-

ating urban vegetation. Increase in population and built-up areas, cause a loss in UGS (Atasoy, 

2018). Gaofen-2 data with 4 m spatial resolution is used for improved level of detail (Chen, W. et 

al., 2018). (Frick and Tervooren, 2019) and to show that the volume of urban vegetation can be 

analyzed by adding laser scanning information. Health status of urban vegetation can be assessed 

by using multispectral aerial imagery (Näsi et al., 2018) 

Insights through EO techniques usually end at objects surface. Information on building use, func-

tional connections, qualitative and sensual information are hardly measurable. In order to over-

come this limitation, social media can deliver valuable reference. 7.6 % of the research article 

address the possibilities of social sensing data to increase functional information content of urban 

analyses. Points of interest from a web mapping platform to determine functional use of UGS 

(Chen, W. et al., 2018). Mobile phone data for residential land suitability analysis or land use map-

ping (Huang et al., 2019; Jia et al., 2018). 

Another often noted topic is urban hydrology. Chen et al. (2018) apply DL algorithms on high-

resolution on Gaofen-2, Ziyuan-3 data to assess urban water bodies. Shao et al. (2019) present 
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approaches to retrieve impervious surfaces in the urban environment. Landsat data is used to 

study cooling effects of water bodies on the UHI effect (Xue et al., 2019). Other research handles 

the topics of air pollution (Man Yuan et al., 2018; Zheng et al., 2018) and urban functional zoning 

(Song et al., 2018; Tu et al., 2018).  

Earth observation techniques in the context of urban planning and urban infrastructure planning 

mostly aim at providing city covering data and information on the city level. UGS and GI as quality 

of life factors in combination with temperature estimations are studied to deliver data for ap-

proaches to work UHI effects with Landsat. Cai et al. (2019) put changes in urban temperature in 

context with change in urban land use. The spatial resolution can be increased by combining 

Landsat thermal infrared information with crowd sourcing temperature information and Sentinel-

2 data in order to identify local UHI hotspots (Venter et al., 2020). Correlations between environ-

mental quality and socioeconomic conditions have been identified for Bogota by Musse et al. 

(Musse et al., 2018). Using satellite imagery as a database, urban hydrological modelling for water 

supply was studied (Rausch et al., 2018) and surface runoff was modelled as a result of land use 

change for surface water management (Kandissounon et al., 2018; Li et al., 2018).  

A special focus in urban remote sensing lies on the analysis of informal settlements and slums. 

The attention is therefore directed at mapping slum areas and generating an understanding of 

slums using VHR satellite imagery (Kuffer et al., 2016; Taubenböck, Kraff, Wurm, 2018; Wurm and 

Taubenböck, 2018). Besides the development of slum detection approaches, publications on qual-

itative slum studies based on EO techniques are discussed, i.e. to describe heat effects exposure 

in slums (Wang et al., 2019), to explain spatial separation of socioeconomic groups in cities with 

VHR remote sensing data and social media (Taubenböck, Staab et al., 2018) or to evaluate the 

potential of integrating EO techniques to map SDG indicators (Kuffer et al., 2018). 

As presented, optical remote sensing data dominate in urban remote sensing applications, be-

cause they offer very high spatial resolution and multispectral information. Although radar data 

analysis is reported for urban studies, the comparably low spatial resolution and complex 

backscatter mechanisms in urban environments limit the usability of these data. Table 4 gives an 

overview on the urban remote sensing applications and the used EO systems presented in this 

section.  
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Table 4: Operational earth observation platforms for urban remote sensing applications. Information based on literature 

overview in section 1.4. 

Urban Application Spatial resolution EO systems 

Urban land use/ land cover 15 - 30m Landsat, Sentinel-2, MODIS 

UHI 30 - 100m Landsat, MODIS 

Urban Green Spaces 0.5 - 30m Landsat, Sentinel-2, MODIS, Planet, WV-1-4, Pléiades 

Object detection 0.3 - 0.5m WorldView-1-4, Pléiades, aerial imagery 

Urban Elevation  0.3 - 1m Pléiades, WorldView, LiDAR 

Urban Hydrology 1 - 20m Gaofen-2, Ziyuan-3 

Object identification 0.01 - 0.1m UAV 

 

1.5. Research Deficit 

As presented in the previous section, applications in urban remote sensing are manifold, where 

“earth observation for urban planning” is a recurring term. Remote sensing, especially in combi-

nation with AI algorithms is presented as a technique to deliver the answers for most spatial issues. 

Numerous studies are designed to describe urban environments such as urban heat or green 

infrastructure: using these approaches, an understanding of the urban system can be generated. 

However, despite the long-known deficiency of sufficient data and information for appropriate 

urban planning (Taubenböck and Dech, 2010b), the availability of data generation to support local 

urban planning or urban infrastructure planning is lacking (Musse et al., 2018). 

Successful urban planning requires a deep understanding of the system city (Taubenböck and 

Dech, 2010a) and the “analysis of numerous spatial scenarios is inevitable” for urban infrastructure 

planning, considering a variety of different scenarios (Mikovits et al., 2018). “Spatially explicit in-

dicators [are required] to support urban planners and policy makers” (Artmann et al., 2019). 

Through this first approaches were presented for waste management supported by remote sens-

ing techniques (Singh, 2019; Vetter-Gindele et al., 2019).  

Still, “urban planning” and “urban infrastructure planning” are often used as buzzwords to attract 

attention in the scientific EO community. However, ways to integrate remote sensing-based infor-

mation into the process of urban infrastructure planning are usually not presented. Instead, 

phrases such as “may assist […] urban planners”, “provide better decision making capabilities” or 
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“can provide important guidance” are widely used (Anees et al., 2019; Li et al., 2018; Venter et al., 

2020). Wellmann in this context underlines in his review article that the integration of remote 

sensing methods for urban planning is rarely developed and reported (Wellmann et al., 2020).  

“To achieve [successful urban infrastructure planning], precise planning based on scenarios, de-

veloped under consideration of recent scientific knowledge, is required. Consequences of inade-

quate scenario development can be failure of the planning” (Furlong et al., 2017). On the way to 

prepare cities for their future challenges, the presented research and studies in this thesis aim to 

close the gap between the claims of remote sensing to provide planning-ready data and the pre-

sent situation of lacking approaches for EO data integration into the process of urban infrastruc-

ture planning, in order to follow the call and demand from UN Secretary General Guterres “to-

wards evidence-based planning” for sustainable cities (Furlong et al., 2017; Guterres, 2018b). 
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2. Objectives 

Due to the increasing availability of earth observation (EO) information which results from growing 

orbital satellite systems and reduced revisit times, a main focus in urban remote sensing lies on 

the development of algorithms and applications to automatically process global data products 

from satellite data. Such products offer the advantage of consistent data availability on a global 

scale. Using the keyword “urban planning”, numerous studies were published during the recent 

years, explaining approaches to describe the physical character of urban areas by means of im-

pervious surfaces, urban greenness, road network, UHI and so forth. 

For urban planning, such information is a valuable input to get an understanding on cities, but 

the success of urban planning and urban infrastructure planning is particularly dependent on the 

availability of precise a database for decision making. Scenario development under the premise 

of increased transparency in order to implement masterplans and planning goals for example, 

require high precision and high-quality data. Studies in this context hardly appear in the relevant 

publications. Therefore, deeper efforts have to be made to develop and to propose approaches 

to deliver planning relevant specific data and to meet the demands on evidence planning. 

In order to encourage evidence-based planning (Guterres, 2018a) and a culture of evidence-based 

political decisions (Falk, 2021), reliable and precise data are essential for the planning process. So 

far high-quality material and energy flow data, especially on household level, is missing or difficult 

to access (Klopp and Petretta, 2017). 

The motivation for the studies, presented in this work, is to improve existing EO approaches and 

to develop and to present approaches to meet demands on data for the process of urban planning 

and urban infrastructure planning. To avoid mistakes and misconceptions in the process of urban 

supply and disposal infrastructure planning, scenario development requires high-resolution infor-

mation on the urban metabolism. Under consideration of empirical data integration, VHR remote 

sensing techniques can be expected to provide data on the single building level to support deci-

sion making and scenario development. Additionally, the developed approaches need to be ob-

stacle-low to be process-implementable by local administration and planners with limited EO ex-

pertise. 
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In this context, the study designs were guided by the following research hypotheses:  

1. The quality of planning relevant data products highly depends on the spatial resolution of 

remote sensing data. 

2. Planning relevant data products profit from height data or building height information 

respectively. 

3. Building-types (BT) information as a basis information increases data content and data 

quality for urban infrastructure planning. 

4. Socioeconomic status and electricity consumption can be predicted on the base of BT. 

5. VHR EO data processing can provide data for scenario development. 

6. Globally generated EO products to describe urban processes cannot provide sufficient in-

formation for urban planning, therefore re-focusing from the global to the local scale is 

highly beneficial for urban planning. 

7. Planning-ready information can be generated from remote sensing data by means of non-

complex approaches and therefore, can be carried out by non-scientific users in adminis-

trative and private planners. 
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3. Results 

3.1. Study Overview 

The research was conducted in Da Nang, Vietnam (Figure 3) and Belmopan, the capital city of 

Belize. As shown in the following paragraphs in detail, both of the cities are facing rapid growth 

of population. Vietnam and Belize are classified as lower-middle income economies, for which 

continuously high urbanization rates are predicted (see section 1.1 and Figure 1). The World Bank 

states a gross national income (GNI) per capita for Belize of 4,700 US-Dollars (2019) and for Vi-

etnam an GNI per capita of 2,590 US-Dollars (World Bank, 2021).  

Da Nang is the 5th largest city in Vietnam and the largest and most important city in central Vi-

etnam (Ostojic et al., 2013; UNESCAP, 2020). The central part of Da Nang around the Hàn River is 

historically grown, whereas the newer parts of city experienced a stronger planning influence. For 

2019, the General Statistics Office of Vietnam reports a population of 1,141,100 inhabitants in Da 

 

Figure 3: Overview map of Danang (Warth et al., 2019) 
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Nang (GSO, 2021). Da Nang is therefore categorized as medium-sized city, as defined by the UN 

in section 1.1. Own calculations show that according to the city definition of the New York Uni-

versity, 70.8 km² of the administrative of Da Nang are to be classified as ‘Urban built-up’, 60.0 km² 

as ‘Suburban built-up’, 362.8 km² as ‘Rural built-up’, and 484.5 km² are undeveloped (Figure 4). 

88 % of the population lives in the urban regions and 12 % live in rural environments (UNESCAP, 

2020). 

 

Figure 4: City characterizations for Belmopan and Da Nang after the city definitions by the New York University (see 

section 1.1). Data reference: (UNOCHA, 2022) 

In Vietnam, the share of the urbanized population grew from 30.4 % to 36.6 % between 2010 and 

2019, which is an increase of 17.0 % (UNdata, 2021). For Da Nang itself, the General Statistics 

Office of Vietnam reports a population increase from 946,000 inhabitants in 2011 to 1,141,100 

inhabitants in 2019, which implies an increase of 20.6 % or 2.5 % per annum (GSO, 2021). This 

caused an increase of built-up areas and impervious surface of 17.7 % between 2010 and 2015 

(Rau, 2016). Due to its location, international sea- and airport and economic incentives, Da Nang 

attracted very large sums of foreign investments (UNESCAP, 2020) and therefore, is very attractive 
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to population in search of economic prosperity and mobility. Urban planning in Vietnam is con-

ducted municipally but managed by the central government (Bùi et al., 2021). The overall goal of 

the Da Nang masterplan by 2020 is the development towards an environment-friendly city by 

means of preventing pollution and soil degradation and awareness creation amongst all urban 

stakeholders (Bùi et al., 2021). In 2030, Da Nang expects 2.5 million inhabitants which made an 

adaption of the masterplan necessary. Accordingly, Da Nang plans to be developed to a modern 

national-level city with positive sustainable and socioeconomic synergies for the adjacent central 

and highland region. The spatial development is planned through residential areas in the central 

city, whereas touristic infrastructure, villas and recreation areas will be located at the eastern and 

northeastern beach-line (Bùi et al., 2021). As the western areas are already being characterized by 

industrial zones, high-tech and information industry is planned to be concentrated in these areas. 

The conservation of cultural and historical heritage is planned to be focused in the southern areas 

of Da Nang (Bùi et al., 2021). 

Belmopan is the capital city of Belize, inaugurated in 1970 after hurricanes repeatedly hit the for-

mer capital Belize City as a planned city (Friesner, 1993; Kearns, 1973). In order to ensure govern-

ance, the capital was moved to the center of Belize and newly established (Kearns, 1973). As shown 

in Figure 5, the administrative area of Belmopan covers 32.25 km2 (Warth et al., 2020).  

After being constructed and administrated through a semi-public corporation, the first city council 

was elected in 2000. Belmopan with 25,583 residents in 2021 (Belmopan City Council, 2021) is 

categorized as small settlement (see section 1.1) and thus the second largest city in Belize after 

Belize City. 26.4 km² of Belmopan’s administrative area are classified as rural built-up and 5.8 km² 

are undeveloped following the city definition by the New York University (Figure 4). Belmopan 

experienced a population growth rate of 6.4 % between 2014 and 2018 (Statistical Institute of 

Belize, 2020), which exceeds the urban growth rates of Belize (2.1 %), Central America (1.3 %) and 

worldwide (1.1 %) (United Nations, 2018). These numbers highlight the need for proper and pre-

cise urban planning and urban infrastructure planning, to conduct the urban development in sus-

tainable paths. 
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Figure 5: Overview map of Belmopan/Belize (Warth et al., 2020) 

The urban area of Belmopan is dominated by sparsely built-up residential areas, where the initial 

development was concentrated within the central Ring Road (rectangle shaped in the map). The 

eastern wards of Belmopan are influenced by migrant groups and characterized by rudimentary 

building, whereas high class building expansion occurs in the north-western and south-eastern 

part. Industry and commerce are concentrated in the western areas.  

In 2014, the Belmopan Municipal Development Plan (MDP) was published by the Belmopan City 

Council in a participative approach.  The MDP formulates the following main planning goals: Cre-

ating a new down town, leveraging the University of Belize to attract the private sector, improving 

transportation infrastructure under consideration of appropriate solution for bike paths and pe-

destrian paths, and to develop Belmopan as the “Garden City” in order to preserve and expand 

green spaces for increased quality of life (Belmopan City Council, 2014). However, the MDP does 

not propose suggestions for spatial implementation. Thus, in a subsequent planning approach in 

collaboration with UN-HABITAT a city-wide spatial urban planning approach on green and blue 
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infrastructure was developed in 2017 to increase climate resilience and quality of life (Mayr et al., 

2017; UN-Habitat, 2017). 

Both selected cities Da Nang and Belmopan show high rates of urban population growth and 

therefore are challenged by urban dynamics and constant change in the urban environment and 

accordingly are suitable study sites to conduct and evaluate research to describe urban dynamics 

in more detail and to develop approaches in order to support urban supply and disposal infra-

structure planning. 

3.2. Da Nang: DSM Differencing for Change Monitoring using Pléiades Im-

agery 

Research demand 

Present studies on urban dynamic description with EO data are mostly based on post-classification 

approaches, which evaluate temporal pixel dynamics to determine constancy or change in classi-

fied land use or land cover (LULC) based on satellite imagery. Because LULC approaches build on 

a very non-complex structure, they can be implemented in fully automated and globally scaled 

applications. Therefore, the post-classification approach can convince through high grade of au-

tomatization and consistent quality and data content. However, the results basing on post-classi-

fication approaches only enable the description of areal changes of the building stock or urban 

class, as the change in LULC is being detected - but cannot help to describe dynamics within the 

building stock or urban classes. Areal changes of urban classes express only one facet of urban 

dynamics, internal change and dynamics through construction, demolition or upgrading activities 

however, cannot be described through post-classification approaches. 

Therefore, we make up the hypothesis that adding the third dimension into urban analysis through 

differencing photogrammetrically derived digital surface models (DSM) enables detecting dynam-

ics within the building stock to characterize areas of intra-urban change and transition. These 

areas are characterized through demolition, new construction and addition of storeys and there-

fore, can be detected through change of surface elevation. Thus, this approach contributes to gain 

a deeper understanding of dynamic processes within urban areas that not detected by conven-

tional LULC methods. 
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Data 

Table 5: Data overview for the Da Nang study on urban dynamics 

Data Information Date 

Two stereoscopic Pléi-

ades imagery triplets 

Panchromatic bands, spatial resolution: 

0.5m 

2015/10/20, 2017/08/13 

Building mask Classified from Pléiades imagery 2015/10/20 

Ground truthing data Reference point dataset on 975 buildings: 

GPS position, building height, number of 

floors 

March 2015, March 2016, 

December 2017 

 

Methodology 

This section gives a brief overview on the methodology, for detailed information please refer to 

Warth et al. (2019) (Appendix A-1). The approach implies four steps to detect urban dynamics: 

1. DSMs generation from two points in time (2015 and 2017) using photogrammetric meth-

ods on tri-stereoscopic Pléiades imagery (see Table 5). 

2. DSM matching to remove vertical shifts and DSM differencing to detect surface elevation 

changes. 

3. Threshold-based removal of false detections. 

4. Context adding for change categorization and change assessment. 

Figure 6 provides a schematic overview of the approach, the four steps are presented in the fol-

lowing paragraphs. 
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Figure 6: Schematic description of the approach to detect urban dynamics by means of DSM differencing (Warth et al., 

2019) 

1. DSM generation from stereoscopic Pléiades triplets (2015 and 2017)  

Same as the human eye allows three-dimensional perception, EO data can be a means to three-

dimensionally reconstruct the Earth’s surface. Because the photogrammetric approach is imple-

mented in all three presented studies, it is briefly presented in the following paragraphs. 

Given at least two images covering the same area of interest from different positions, object par-

allaxes can be determined from panoramic distortions (see Figure 7). In relation to the camera 

height above the datum and the distance between the camera positions, object heights are cal-

culated using the following formula (Hadjitheodorou, 1963): 
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 𝑃𝛼 =  𝑋𝛼 − 𝑋𝛼′ (1) 

 ℎ =  𝐻 −
𝐵

𝑃
 (2) 

Where X is the object positions in the line of flight, P is the absolute parallax of the object, h is the 

height of the object above the datum, B is the distance above ground of the camera positions.
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Pbuilding
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Xbuilding Xbuilding‘Xstatue‘Xstatue

B

hbuilding

hstatue

 

Figure 7: Schematic illustration of the photogrammetric parallax formula. P is the photogrammetric parallax, h is the 

object height, H is the camera height above the datum, X is the object position in the line flight. For methodology 

details see section 3.2 

This approach is used to generate DSMs on the basis tri-stereoscopic Pléiades images from 2015 

and 2017.  

2. DSM matching and DSM differencing 

Absolute vertical accuracies of the elevation data are not relevant for the DSM differencing pro-

cess. Instead, the relative accuracy of both DSM to each other is rather important to detect eleva-

tion change. Therefore, in order of precise vertical matching of both DSMs to avoid vertical offsets 

due to temporal change, the initial vertical distance is detected in a 250m-grid on non-built and 

non-vegetated areas. Based on the detected differences, a spline interpolation approach is applied 

to generate an artificial rectification surface to correct the 2017 DSM. The matched DSMs can then 

be compared to obtain the changes in elevation.  
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3. Change identification and removal of false detections 

No difference in the DSM difference dataset indicate no change, whereas positive or negative 

differences display a change in the urban surface. Polygons are formed from pixel groups with 

homogeneous change, from which incorrectly detected change objects are subsequently re-

moved. Reasons of falsely detected change for these objects can be manifold: Error potential in 

photogrammetric approaches is given through movement in vegetation due to wind which causes 

misconception in height. Furthermore, too bright, too dark pixels or areas without contrast can 

cause mismatches during the photogrammetric processing. On the basis of the ground-truthing 

data, a mean floor height was estimated, which is used to serve as error threshold, below which 

detections in the DSM difference are interpreted as errors. The thresholds for DSM differences of 

4.5 m for built-up areas and 6 m for unbuilt areas are applied to eliminate false detections.  

4. Context adding for change categorization and change assessment 

The results are masked with built-up area information to increase the information content of the 

results. Thus, changes located within the built-up mask indicate a change in the existing building 

stock, such as building demolitions, new construction, or addition of storeys. Positive changes 

outside of the building stock mask indicate extension of the built-up areas through new construc-

tion of former unbuilt areas. 

Results 

The photogrammetric processing of the stereoscopic Pléiades triplets resulted in DSMs that cover 

the whole city area of Da Nang with a ground sampling distance of 0.5m representing status quo 

conditions in 2015 and 2017 with a temporal baseline of 22 months. 

After the DSM matching, a very small average vertical error of 0.044 m remained between both 

datasets. This vertical deviation is too low to have an effect on the detection of the building 

change, as the difference thresholds to exclude false detection is 4.5 or 6.0 m respectively. 

The DSM difference, shown in Figure 8, confirms the quality of the DSM matching and of the 

results. The yellow areas, which are dominating in the map, represent a difference of 0 m without 

any spatial trends in the difference. Only forest and mining areas in the marginal parts of the study 
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area show differences unrelated to urban processes. Single changed objects can visually be de-

tected, see Figure 8, such as industrial halls on formerly unbuilt area, touristic resorts next to 

cleared forest land, and changes within the building stock. 

The change analysis resulted in 10,080 detected building changes within the study area in 22 

months, of which 1,499 buildings show a decrease in height and therefore represent demolition, 

and 8,531 objects show an increase in height. Out of the 8,531 objects with increase in height, 

4,714 changes were detected within the existing building stock and 3,867 objects were detected 

in initially unbuilt areas. To estimate a detection accuracy, we randomly selected 200 detected 

changes and visually inspected the change in the Pléiades imagery, which resulted in a very satis-

fying detection rate of 82 %.  

According to the findings, the building stock increase about 1.5 %, 1.9 % of the building were 

under construction or extended and 0.6 % of the building stock has been demolished (see Table 

6) 

 

 

Figure 8: Result of differenced DSMs from 2017 and 2015. Blue colors indicate increase of the surface elevation and 

therefore show newly built structures. Red colors indicate decrease of the surface elevation or demolished areas 

resprectively. Detailed views on the right side show a development site for a tourisic resort (upper row), a former 

maritime area filled for industrial project (middle row) and a residential area with demolishions and newly built 

structures (lower row) (Warth et al., 2019) 
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Table 6: Table on detected change in the building stock in Da Nang between 2015 and 2017 (Warth et al., 2019) 

Number of buildings 2015: 244,180 Absolute change 2015-17 Relative change 2015-17 

New constructions 3,867 1.6 % 

demolitions 1,499 0.6 % 

Total change 10,080 4.1 % 

The heatmap in Figure 9 illustrates the regional density of changed objects in a 1 km radius. This 

display allows identifying spatial patterns of change on a regional scale. It is apparent that three 

areas in Da Nang are characterized by intensive change: The beach-front at the eastern shore-

line, where hotels and apartment buildings are concentrated and most touristic activities are lo-

cated. Secondly, the neighboring area to the west between the Hàn River and the airport, where 

the historic city center is located. Furthermore, the Cẩm Lệ peninsula, which was under intense 

urban development in the studied period, is located in this area as well. Thirdly, a residential area 

at the western border of the study area, where the Hòa Kánh industrial park is under development 

in close distance (Gruschwitz, 2020). 

 

Figure 9: Change heatmaps show spatial densities of detected changes in building stock in a 1-km radius. The detailed 

maps show changes in the heatmap symbology combined with demolishions as point information. The left 

detail map covers a newly established industrial area, the right detail map shows higher complexity at the 

beach front with detected building demolishions (Warth et al., 2019) 

When analyzing the results on a more local scale, Figure 10 gives an overview of accumulated 

detected changes in 250m hexagons. Here, the changes can be located more precisely. The figure 

indicates a few punctual areas, which stand out from the general trend in Da Nang (red hexagons), 

whereas the displayed detected demolitions seem to be spread more widely in the historic city 

center in Da Nang. 
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Figure 10: Local changes represented through accumulated change detections between 2015 and 2017 in a 250 m hex-

agonal structure. The left map shows detected changes, the right map shows detected demolishions (Warth et 

al., 2019) 

Summary 

• DSM differencing is a robust approach to detect change in dynamic urban environments. 

• High accuracy of detected change: 82 % 

• Evaluating 3rd dimension information reveals intra-urban change of namely new construc-

tions, upgrades/reconstructions and demolitions. Therefore, the results increase the infor-

mation content compared to post-classification results from LULC data sets. 

• Highly dynamic built-up urban areas can be distinguished from constant areas. 

• In comparison with findings from Braun et al. (2020) (see Figure 11), the presented ap-

proach is suitable to determine areas of urban dynamic. Due to difference in spatial ag-

gregation, slight differences numbers of single changes. 

• The approach is uncomplex and not limited to Pléiades imagery. Any kind of VHR DSM 

data be used. Other sources, such as WorldView imagery or LiDAR data can be combined 

with each other and therefore increase the flexibility of the DSM-based change detection 

approach. 
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Figure 11: Comparison of systematically and manually detected demolitions (left) and detected demolitions through DSM 

differencing (right) (Braun et al., 2020). Overall regional trends match in both studies, however slight differences 

in absolute numbers of change are noticeable, especially in the areas west of the airport. 

  



   Results  

33 

 

3.3. Belmopan: Prediction of Socioeconomic Information Using WordView-1 

Data 

Research demand 

The demands for evidence-based planning and an evidence-based decision culture in order to 

increase sustainability and transparency of planning get declared more distinctly and frequently 

(Falk, 2021; Guterres, 2018b). Therefore, a solid data base for scenario development is required 

for the planning process. 

In the recent research literature on remote sensing in the urban planning context, we usually come 

across approaches to describe the physical-morphological structure of the city: urban structure, 

UHI, greenness indicators, impervious surface analysis, and so forth. Such information can have 

relevance in urban planning for structural characterization of urban areas. However, urban infra-

structure planning requires specific planning data that allow conclusions about material and en-

ergy flows. In order to define and develop accurate planning scenarios. For this reason, area cov-

ering and consistent data in high spatial resolution and rich in information is required to close the 

gap for urban planning application. 

In order to provide specific data for the process of urban infrastructure planning, we hypothesize 

that VHR resolution EO data is suited to be a data source to close this gap and provide planning 

relevant data. Furthermore, we hypothesize that residential socioeconomic information is related 

to residential building-type (BT) and therefore, socioeconomic information can be predicted 

through BT classification for Belmopan based on EO data on a single building level. 

Information on socioeconomic parameters has high relevance in urban infrastructure planning, 

because socioeconomic groups have different lifestyle habits and therefore cause different mate-

rial flows are closely correlated to socioeconomic states of residents, such as consumption of 

electricity (Jones et al., 2015) and household solid waste production (Khan et al., 2016; Oribe-

Garcia et al., 2015). 
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Data 

Table 7: Data overview on the Belmopan building-type study 

Data Information Date 

Two WV-1 stereo pairs Panchromatic band, spatial resolution: 0.5m 2018/03/16, 2018/03/29 

PlanetLabs imagery Blue, green, red, red-edge bands, spatial reso-

lution: 0.5m 

2019/03/29 

Household survey 395 interviews: socioeconomic information March – April 2018 

Ground truthing data 405 samples: building-type, building height, 

number of floors 

January 2019 

March 2019 

OpenStreetmap Building footprints  

 

Methodology: 

The following section outlines the methodological approach for the estimation of socioeconomic 

indicators in Belmopan. For detailed information of the single steps and literature refer to Warth 

et al. (2020) in the appendix. The whole approach consists of six general steps, which are presented 

in following paragraphs. Figure 12 provides a graphical description of the methodology. 

1. Generation of a building footprint data set 

2. Establishment of a residential building typology for Belmopan 

3. BT classification 

4. Generation of a socioeconomic scale for Belmopan 

5. Adapting BT and socioeconomic scaling 

6. Regionalizing socioeconomic information on the city scale 
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Figure 12: Schematic methodology description to estimate socioeconomic indicators in Belmopan (Warth et al., 2020). 

1. Generation of a building footprint data set 

In order to estimate socioeconomic indicators on a city covering scale, a complete building da-

taset was generated. Two WorldView-1 (WV-1) satellite image pairs from March 2018 (see Table 

7) hereby served as spatial data basis for building delineation. For the reason of contributing the 

updated building footprint data set to the OpenStreetmap (OSM) database, we adapted the 1,500 

pre-existing building footprints from the OSM database to the ortho-rectified WV-1 imagery and 

replenished the missing building footprint. For a small number of buildings, as expected in Bel-

mopan, the manual approach to generate the building dataset is assumed to be more time effi-

cient compared to automatic classification approaches. With regard to the BT classification accu-

racy, we prioritized the precision of the building footprints over scientific excellency. Therefore, 

the building footprints were defined manually.  

2. Establishment of a residential building typology for Belmopan 

Based on experiences of a field trip to Belmopan and the exchange with the Belmopan City Coun-

cil, a building typology was defined for Belmopan, consisting of each four BT for single family 

buildings and multifamily buildings. The BT can be distinguished through the building footprint 

area, building footprint complexity, number of floors, roof complexity, construction materials and 

the number of dwelling units. Figure 13 illustrates the defined building typology for Belmopan. 
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Figure 13: Building typology adapted to Belmopan/Belize. Buildings in the upper row (BT11 - BT14) represent single family 

buildings, building-types in the lower row (BT21 - BT24) represent multifamily buildings (Warth et al., 2020) 

3. Building-type classification  

Random Forest (RF) classifiers, which are categorized as machine learning classifiers, convince 

through accurate results when providing a large number of classification attributes (Breiman, 

1999). In this regard, a set of 25 attributes was provided for each building, which contain infor-

mation on the building footprint geometry, building height derived from photogrammetric pro-

cessing of WV-1 stereo pairs, spectral information from PlanetScope imagery, spatial indices to 

describe Euclidean distances to places with urban functions, and quality of life indicators. From 

the reference dataset, collected in January and March 2019 in Belmopan, 363 samples were ran-

domly selected to train the classifier. The initial RF classification reached an overall accuracy of 

56.7 %, where especially BT 11/ BT 12 and BT 14/ BT 21 showed class overlaps. For this reason, a 

rule-based classification refinement was necessary. Hereby, we derived thresholds from the refer-

ence dataset for footprint area and building height to separate to better split overlapping BTs. 

Applying these thresholds increased overall classification accuracy to 86.3 %. 

4. Generation of a socioeconomic scale for Belmopan 

A household survey campaign was conducted in order to collect socioeconomic data in Belmopan 

in parallel to the building reference data collection campaign (see Table 7). Based on the “Social 

Class Index” applied in a German health survey (Winkler and Stolzenberg, 1998), a point scheme 

ranging from 3 to 18 was established to describe the socioeconomic status (SES) of the household, 
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considering information on household expenditures, educational level of the main household 

earner and household assets. For the establishment for the socioeconomic point (SEP) scheme, a 

sample size of 395 household interviews were available. 

5. Adapting building-types and socioeconomic scaling 

Predicting a 15-part SEP scheme spatially implies a level of data accuracy that cannot be provided 

by our methodology, which uses eight different BT for the spatial predictions. For this reason, five 

socioeconomic classes (SEC) were established, hereby statistics on the SEP scheme for the BT were 

the most relevant information to define class thresholds. The establishment of SECs based on the 

building typology allows assigning SECs to all residential buildings in Belmopan in accordance 

with its BT. 

6. Regionalizing socioeconomic information on the city scale 

After assigning SEC information to the respective BT, especially BT 12, BT 13 and BT 22 showed 

discrepancies between predicted SEC and the derived SEC data from the reference survey. In order 

to reduce this error and to compensate the prediction precision, BT subclasses were needed to be 

established. Considering land values in dependence of urban centrality (Bachofer et al., 2019; Kau 

and Sirmans, 1979; Rosengren et al., 2019), correlations between SEP and the distance to the 

market center, the distance to the US embassy (provides security patrols in the neighboring area) 

and the building density could be presented. These quality-of-life indicators were used to sub-

classify the BTs into BT 12a/b, BT 13a/b and BT22a/b and to reduce the discrepancy of predictions 

and reference in SEC. 

Results 

The building dataset generation resulted in 6,627 identified residential buildings. Buildings with 

public, commercial or industrial use were excluded from an initial dataset by using information 

from the Belmopan City Council and the Google database. The subsequent refined classification 

of the building footprints resulted in the statistical BT distribution displayed in Table 8. Accord-

ingly, single family BTs (SFBT) are dominating in Belmopan with a share of 84.6 % over multifamily 

BTs (MFBT), which have a share of around 4.0 %. Within the SFBTs, BT 12 and BT 13 dominate with  
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Table 8: Building-type distribution in Belmopan (Warth et al., 2020) 

Building-type Number of buildings Share of total number 

BT 11 – Single Family Basic 764 11.5 % 

BT 12—Single Family Standard 3,060 46.2 % 

BT 13—Single Family Advanced 1,211 18.3 % 

BT 14—Single Family Complex 566 8.6 % 

BT 21—Multi-Family Basic 33 0.5 % 

BT 22—Multi-Family Standard 138 2.0 % 

BT 23—Multi-Family Apartment 94 1.4 % 

BT 24—Multi-Family Modern Apartment 1 <0.1 % 

Public 166 2.5 % 

Commercial 219 3.3 % 

Industrial 6 <0.1 % 

Uninhabited 369 5.5 % 

Total 6,627 100 % 

 

a share of 46.2 % and 18.3 % respectively and thus almost make up two thirds of the Belmopan 

building stock. 

Figure 14 displays an overview map on all detected residential buildings in Belmopan including 

the respective BT. As the dominance of BT 12 and BT 13 indicates, these BTs are distributed all 

over the city area. For other BTs, local concentrations can be recognized. MFBTs are concentrated 

in the southern precincts of Belmopan, as indicated by the blue colors, BT 11 is concentrated in 

the eastern and south-western parts of the city. BT 14 is mainly concentrated in the northern-

central part of Belmopan around the US embassy. 
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Figure 14: Total view on Belmopan showing building-types on the single building level (Warth et al., 2020). BT 11 domi-

nates in the eastern areas of Belmopan, BT 14 is concentrated in northern central part of Belmopan. 

Based on the household survey information, the socioeconomic point (SEP) scheme between 3 

and 18 points was established. The SEPs describe a normal distribution, as shown in the histogram 

in Figure 15. The histogram breakdown into the BT confirms the hypothesis, that socioeconomi-

cally weaker groups inhabit BT with lower number and socioeconomically stronger groups inhabit 

BT with higher numbers. 
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Figure 15: Histogram on socioeconomic points distribution in Belmopan (Warth et al., 2020) 

This initial conclusion is supported by the statistical SEP analysis for the BTs, as shown in Figure 

16. Clearly recognizable from the boxplots are the different mean socioeconomic points for the 

BTs. BT 12 and BT 13 have a relatively large range and variation in SEP statistics, as the boxplots 

indicate. This is most probably related to the dominating share of these two BTs of almost 66 % 

on the total residential building stock in Belmopan. This also illustrates the necessity of subdivid-

ing BT 11, BT 12, and BT 13 into subclasses. Still in this initial BT classification scheme, the SEP 

characterization for the residents is well differentiated. 

Figure 16 as well shows the SEC characteristics for the subclassified building typology on the right 

part of the figure through the colored boxplot contours. The subclassified BTs are established 

based on the assumption of location dependent land value development. According to these, 

central urban areas have higher land values in comparison to peripheral locations. As a result, SEC 

I is assigned to both BT 11 and BT 12b, SEC II is assigned to BT 13b and BT 22a, SEC III is assigned 

to BT 12a and BT 21. 
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Figure 16: Boxplots on SEP statistics for initial building-types (left) and adapted building-types with assigned socioeco-

nomic class information (right) (Warth et al., 2020) 

SEC IV is only assigned to BT 13a and SEC V, which represents the highest socioeconomic indica-

tor, is assigned to BT 14. For more detailed information, Table 9 provides socioeconomic statistics 

for the BT based on the household survey data. 

Table 9: Detailed socioeconomic statistics for building-types in Belmopan (Warth et al., 2020). 

Initial BT n Mean SEP Standard dev. SEP SEC 

BT 12 – Single-family standard 108 10.4 2.79  

BT 13 – Single-family Advanced 172 11.6 2.94  

BT 22 – Multi-Family Standard 12 11.8 3.3  

Refined BT n Mean SEP Standard dev. SEP  

BT 11 – Single-family Basic 55 7.3 2.2 I 

BT 12a – Single-family Standard (close) 74 11.3 2.59 III 

BT 12b – Single-family Standard (far) 34 8.3 1.99 I 

BT 13a – Single-family Advanced (close) 69 12.8 2.6 IV 

BT 13b – Single-family Advanced (far) 103 10.9 2.9 II 

BT 14 – Single-family Complex 24 14.7 2.1 V 

BT 22a – Multifamily Advanced (open) 6 9.8 3.1 II 

BT 22b – Multifamily Advanced (close) 6 11.0 2.3 IV 

BT 23 – Multi-family Apartment 1 15   
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Thus, socioeconomic indicators can be predicted for all residential buildings in Belmopan by the 

availability of the SEC assignments to the refined BT. The maps in Figure 17 provide an overview 

on the BT information and SEC assignments for Belmopan. For reasons of resident’s privacy pro-

tection, we decided to not provide more details on building location and therefore, removed local 

context information. 

 

Figure 17: Refined building-types (left) and socioeconomic class (right) for a selected subset in Belmopan (Warth et al., 

2020) 

Additional analysis of the household survey data shows interesting patterns for residential water 

expenses for the building types presented in Figure 18. Residents in BT 11 with lowest SES, often 

ensure supply by water from informal wells in order to reduce water expenses. Fruits and vegeta-

bles are often cultivated on private properties, which could cause high water consumption in BT 

12. Groups with high SES in BT 13 and BT 14 are not dependent on self-grown food, therefore, 

water demands could be reduced. Additionally, the low number of interviews in BT 14 can distort 

the statistical interpretation. 
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Figure 18: Boxplots on residential water expenses for BTs in Belmopan. 

Summary 

• VHR satellite imagery, in this study WV-1, is well suited to provide building footprints for 

the RF BT classification process. 

• RF classification with subsequent rule-based classification provides very good overall clas-

sification accuracies. 

• Socioeconomic information on a single building level can be provided as planning evi-

dence 

• In order to prevent misleading impressions of accuracy in the 15-part SEP scheme, a five-

part socioeconomic classification is established. 

• BTs can contain large SEP variation and therefore, need to be subclassified. Hereby, qual-

ity-of-life indicators and building distance to central urban institutions with influence on 

land values, enable good subclassification results. 

• Local knowledge or expert knowledge is the key for successful BT classification in order to 

predict socioeconomic indicators. Without local understanding of the urban area, a repre-

sentative building typology cannot be established. Furthermore, socioeconomic infor-

mation in relation to BTs is difficult to be estimated without household survey information. 

The same applies for the parameters to subclassify the BTs. Without local expertise, the US 

embassy could hardly have been identified as relevant factor to influence land value. 
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3.4. Belmopan: PV Balancing on Single Building Level Using UAV Data 

Research demand 

Methodological research demands 

Proper urban infrastructure planning aims at preparing urban spaces, functions, and structures for 

future urban demands, conditions and environments. Changes in population, climate, society, pol-

icies, mobility, trends and so forth, can influence the transformation process. In order to meet the 

future demands of cities, urban planning processes need to develop scenarios that include the 

relevant processes to be expected in future. 

Poor planning can have severe economic and ecological consequences due to enormous financial 

expenses and mainly long-term investments in the sector of urban infrastructure planning. Plan-

ning processes and scenario development, therefore, require as detailed, large-scale, and con-

sistent data as possible. 

Local needs for attention 

Although hydropower accounted for the majority for the produced electrical energy in Belize, the 

combined share of fossil sources increased during the last years in Belize’s energy mix up to 62 % 

(Belize Energy Unit, 2020). Thus, Belize still relies on climate-harming energy sources on a large 

scale, even though Belize’s capital city was relocated due to climatic effects. Furthermore, Belize 

is highly energy-dependent on neighboring countries, as 36 % of its energy demand is imported 

from partner countries to provide electricity security (Belize Energy Unit, 2020). 

From a social point of view, the COVID pandemic had strong impacts. During the lockdown peri-

ods that came as a consequence of high infection incidences, residential energy consumption 

increased, which is very challenging economically especially for socioeconomically weaker house-

holds (Belmopan City Council) 

We hypothesize that: 

1. Belmopan is highly suited located for PV energy production. 

2. Photovoltaic (PV) roof systems can be a central pillar in the energy mix for Belmopan. 
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3. Following the approach from Warth et al. (2020), a residential building typology can indi-

cate electricity consumption. 

4. EO data at highest spatial resolution from UAV imagery can deliver information valuable 

for urban planning and increase BT determination. 

5. Using electricity consumption information and elevation data from UAV campaigns ena-

bles estimating PV energy balances on a single building level. 

6. Therefore, this information can be used to plan future urban energy supply and to develop 

strategies to decarbonize future energy mix, to plan decentral energy grids, and to pro-

pose policies for socially-just approaches to promote PV as energy source to cover the 

basic baseload energy. 

Data 

Table 10: Data overview on the Belmopan PV study 

Data Information Date 

UAV aerial imagery Total covered area: 201.2 ha 

6 study areas, 15 flights, 2,866 images 

2019/11 

Building footprints Warth et al. (2020)  

Household survey 190 interviews on annual electricity consumption and an-

nual electricity expenses 

2019/11 

National Solar Radia-

tion Database 

Modeled solar radiation data (temporal resolution: 0.5h)  

 

Methodology 

The approach for the PV balancing study bases on the ideas and findings Warth et al. (2020), 

which show the relation between the residential BT and socioeconomic indices. In order to balance 

roof-based PV energy generation on residential buildings and the electric energy consumption, 

two methodological processing paths have to be carried out. Firstly, an estimation of potential PV 

energy production on residential building roofs and secondly, a prediction of household electricity 

consumption based on BTs and household surveys. Thus, the approach consists of the following 
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steps, which are presented schematically in Figure 19 and described in more detail in the following 

paragraphs. For detailed information, refer to Warth et al. (2021) in the appendix. 

1. Residential household survey on electricity consumption 

2. UAV aerial image campaign and Structure-from-Motion data processing 

3. BT classification 

4. Electricity consumption analysis based on household survey 

5. PV potential analysis 

6. PV energy balance analysis 

The methodology is presented in the subsections M-1 – M-6, results accordingly, are presented 

in subsection R-1 – R-6. 

 

Figure 19: Schematic description of the approach for PV energy balancing in Belmopan 

M-1 Residential household survey on electricity consumption 

To estimate the residential electricity consumption, a household survey was conducted to collect 

empirical data in November and December 2019. Based on the outcomes of the socioeconomic 

study by Warth et al. (2020), a spatial interview sampling was designed in order consider all rele-

vant BTs in Belmopan. Therefore, we defined six areas with dominance of specific BTs (see Figure 

20). The questionnaire itself includes questions on habits in regards of electricity consumption 

that are relevant for this study. A total number of 190 household interviews could be achieved, 

from which 63 interviewees could provide bills to verify the statements. 
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Figure 20: Overview on research areas, covered by the UAV imaging campaign (Warth et al., 2021) 

M-2. UAV aerial image campaign and Structure-from-Motion data processing 

For precise estimation of PV energy potential, elevation data in very high spatial resolution are 

required to determine information on roof orientation and slope. These demands can be met 

through Structure-from-Motion (SfM) processing of overlapping VHR imagery. In order to fulfil 

these data requirements, an aerial campaign was conducted in November and December 2019, 

using an unmanned aerial vehicle (UAV) in the defined research areas in Belmopan. The payload 

for the custom UAV is a S110 Canon compact camera (CameraDecision, 2021), mounted in a nadir 

orientation. The UAV was navigated via auto pilot on pre-defined tracks. 

The SfM methodology bases on photogrammetric principles (see section 3.2), however imagery 

can be provided from unstructured surveys and the amount of input imagery determines the im-

age quality of the results (Ullman and Brenner, 1979). The SfM processing provides a digital sur-

face model (DSM), which includes height information on the surface and objects, and an ortho-

mosaic of the aerial imagery. The flight altitude in the 15 single flights was defined at 65m, which 

in combination with the image overlapping factor of 70 % resulted in spatial resolutions between 
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1.9 and 2.4 cm. All datasets were resampled to a ground sampling distance of 2.5 cm so as to 

define a consistent spatial resolution. 

In order to derive building height statistics, a normalized DSM (nDSM) is produced based on the 

SfM processing results, in which the ground elevation is subtracted from the DSM. Thus, only 

object heights remain in the nDSM. 

M-3. BT classification 

For reasons of methodical comparability to the SEC study and to evaluate the effect of integrating 

UAV orthomosaics in highest spatial resolution, the RF classifier was selected for the BT classifica-

tion again. Furthermore, the building footprint dataset from Warth et al. (2020) was used for the 

RF classification but was adapted to the higher level of detail in the UAV orthomosaic to increase 

the footprint precision. As mentioned in section 3.3, the roof complexity is a BT defining criterion, 

which in theory should improve BT classification accuracy. However, the WV-1 imagery could not 

serve as an information source to determine roof complexity due to insufficient spatial resolution. 

The UAV data, with a spatial resolution of 2.5 cm offer a 400-fold increase in the level of detail 

compared to WV-1 data. This enables capturing parameters to describe roof complexity. For this, 

a set of roof ridge parameters were derived for each building, namely the sum of roof ridge 

lengths, the roof ridge densities per roof or area and the variation of roof ridge orientation. Other 

attributes to train the classifier from the previous study were not changed, only updated to the 

increased spatial resolution of the UAV data products. 213 samples from ground-truthing data 

collection campaigns (Table 10) were used as reference data to train the RF BT classifier, which is 

65 % of the complete ground-truthing dataset. Identically to the socioeconomic study, 35 % of 

data are used to validate the classification. 

M-4. Electricity consumption analysis based on household survey 

The household survey provided insights in residential electricity consumption based on 190 inter-

views. Both electric consumption (kWh/month) and electric expenses (Belize Dollar/month) were 

queried, though the data analysis revealed that the residents seem to have a better comprehen-

sibility of electricity expenses than electric energy consumption. Due to this, BT-specific electric 
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energy consumption statistics were determined on the basis of electric expenses and an average 

electricity price. 

M-5. PV potential analysis 

A local PV potential can be estimated based on three main factors: Firstly, the local surface orien-

tation and inclination. Secondly, the global horizontal irradiation, which defines the average avail-

able solar energy. And thirdly, the PV system performance, which describes the PV module effi-

ciency and power losses within the system, and due to module pollution.  

The National Solar Radiation Database (NSRDB) by the US National Renewable Energy Laboratory 

(NREL) provides data on GHI for the northern hemispheres of North and Latin America in a 0.5h 

temporal resolution and a 4 km spatial resolution with a mean error between 5 % and 10 % 

(Sengupta et al., 2018). This dataset allows the determination of the annual GHI. A local PV suita-

bility factor for each pixel in the spatial raster dataset is calculated by performing a solar radiation 

model (Hofierka and Suri, 2002) on SfM DSM. This factor describes the expectable amount of solar 

irradiation in comparison to flat terrain (COF). To estimate the PV module performance in tropical 

regions, literature reports performance ratios between 0.7 and 0.89 (Kim et al., 2014; Romero-

Fiances et al., 2019). Therefore, we decided to use a performance ratio value of 0.78 for our study. 

Recent analyses show that PV panel’s efficiency can reach 23 % (pv magazine, 2021). We decided 

to apply standard sizes of 1,650 x 992mm (Doelling, 2017) as PV module area. The roof area avail-

able for PV panel installation, is the most important factor for the analysis of the PV potential. 

Based on calculated roof area orientations from the SfM DSM, the roof pixels are classified in eight 

roof orientation classes. When spatially aggregated, these eight classes result in single fields of 

roofs (FOR). Considering space for PV panel installation, a spatial buffer of 0.3 m is removed from 

each FOR. Because the number of possible PV panels on irregular FOR geometries can only be 

approximated with GIS techniques, we chose a conservative method to determine the maximum 

number of PV panels per FOR by calculating iteratively the maximum inner circle for each FOR. 

The maximum number of installable PV panels for each radius can be adopted from a lookup 

table. Further maximum inner circles are determined for the remaining areas not covered by the 



   Results  

50 

 

initial maximum inner circle. Following this iterative approach allows to estimate a number of 

possible PV modules for each FOR, as shown in Figure 21. 

The study aims at providing an approach that can be used to test different PV strategy scenarios. 

Therefore, two out of many possible scenarios are to be tested in this work. In scenario 1, the 

“optimal scenario”, the best suited FOR per building is to be fully covered with PV panels. In sce-

nario 2, the “realistic scenario”, two PV panels are installed on the best suited FOR on each build-

ing. In this regard, for each FOR the PV suitability is determined by generating the product of the 

number of possible PV panels, the COF factor and the GHI. The FOR with the highest suitability 

product is selected for PV installation for each studied building. For the best suited FOR, the PV 

energy potential can thus be determined by multiplying the possible number of PV panels, the PV 

panel area, the GHI, the COF factor, the PV module efficiency, and the performance ratio. 

M-6. PV energy balance analysis 

By assigning BT-specific statistics on annual electricity consumption to the BT classified building 

footprints, the statistical electricity consumption is available for each. By differencing the PV en-

ergy potential of both scenarios and the statistical electricity consumption, the PV energy balance 

is determined. Positive differences indicate an PV energy surplus, negative differences indicate a 

PV energy deficit. 

 

Figure 21: Detailed view on roof ridges and maximum inner circles for the estimation of maximum number of possible PV 

panels 
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Results 

R-1. UAV aerial campaign 

During 15 flights, a number of 2,866 aerial images were acquired. The covered research area is 

201.2 ha, thus 14.2 images per ha were available for SfM processing. 

R-2. SfM processing: VHR DSM and orthomosaic 

The SfM processing of the UAV images resulted in each a DSM and an orthomosaic for the six 

study areas in Belmopan. All datasets resulting from the SfM processing were horizontally adapted 

to the WorldView-1 acquisition using a spline interpolation in order to maintain data integrity 

from the previous study. Figure 22 shows a detailed view on the SfM results in the 2.5 cm spatial 

resolution. 

 

Figure 22: Animated presentation of the SfM products showing level of details of the UAV data: Orthomosaic (left), DSM 

(center) and hillshade (right). All datasets are defined by a spatial resolution of 2.5 cm. 

R-3. Manual building footprint adaption 

The defined study areas enabled covering residential 1,619 buildings with UAV data. In compari-

son to the previous study, 24.4 % of the residential buildings in Belmopan could be covered. All 

building footprints were adapted according to the higher level of detail from the orthomosaics. 

Using the DSM and the orthomosaic, roof ridges were manually detected for all buildings. Addi-

tionally, building height statistics were recalculated based on the UAV nDSM. 

R-4. BT classification 

The identical building typology as presented in section 3.3 was applied with the identical RF clas-

sification parametrization (see Warth et al. 2020 in appendix A-2) to classify the BTs.  
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The classification attributes were complemented by roof ridge characteristics in order to consider 

the roof complexity of the buildings for classification improvement. 

The ranking of the building attributes for the RF classification in Table 11 shows very clearly, that 

the shape parameters of the building footprints and the roof ridge characteristics have the main 

importance for the classification. The first 16 ranked attributes are all assigned to the shape pa-

rameter category. Spatial parameters, which describe distances to central places or building den-

sities, have a minor role in the classification process, as they are ranked between 20 and 33. 

Table 11: Ranking of RF classification attributes for the building-type classification in Belmopan using UAV imagery. The 

higher the Gini inequality index, the more relevant the attribute for the RF building-type classification. 

Shape parameters 
Gini ineq. 

index/ Rank 

Three-dimensional pa-

rameters 

Gini ineq. in-

dex/ Rank 

spatial/distance 

parameters 

Gini ineq. in-

dex/ Rank 

Building footprint 

area (A) 
0.152 #1 Building height (mean) 0.055 #14 Distance to bus line 0.031 #20 

Roof ridge length 

[sum] 
0.142 #2 

Building height (me-

dian) 
0.04 #17 

Distance to paved 

roads 
0.031 #21 

Building footprint 

perimeter (P) 
0.136 #3 

Building height (stand-

ard dev.) 
0.033 #18 Distance to industry 0.027 #23 

Building D/A 0.134 #4 
Building height (vari-

ance) 
0.032 #19 

Distance to ring 

road 
0.024 #24 

Building maximum 

distance (D) 
0.124 #5 Roof slope (mean) 0.019 #26 

Distance to educa-

tion 
0.022 #25 

Roof ridge number 0.109 #6    Building density 

100m 
0.018 #27 

Building P/A 0.102 #7    Distance to com-

mercial center 
0.014 #28 

Roof ridge density 

[RR number/ A] 
0.092 #8    Building density 

250m 
0.013 #29 

Roof ridge length 

[standard devia-

tion] 

0.092 #9    Distance to public 

institution 
0.012 #30 

Building footprint 

corners 
0.087 #10    Building density 

150m 
0.011 #31 

rr_angle_stdev 0.081 #11    Building density 

200m 
0.011 #32 

Roof ridge density 

[sum length/ A] 
0.063 #12    Building density 

50m 
0.01 #33 

Roof ridge length 

[mean] 
0.058 #13       

Building shape in-

dex 
0.044 #15       

shape_P/sqrt(A) 0.044 #16       
shape_D/sqrt(A) 0.03 #22             
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This is in contrast to the findings of the previous study in section 3.3, where we assumed that they 

can improve the classification result. 

Table 12 shows building characteristics on footprint area, building height and roof ridge numbers 

for the BT in Belmopan. Between the BTs, differences can be recognized. BT 11 shows lowest 

values in building footprint area, height and roof ridge numbers, whereas BT 14 shows highest 

numbers in all categories. 

Table 12: Building-type characteristics for buildings in Belmopan: Mean values on building footprint area, building height 

and number of roof ridges. 

building-type Area [m²] Height [m] rr_number 

11 [204] 59.4  2.9  1.2 

12 [767] 102.8  3.1  1.5 

13 [481] 177.5  3.4  3.4 

14 [129] 250.2  4.7  8.4 

21 [22] 104.1  2.8  1.3 

22 [12] 141.9  5.9  2.9 

23 [3] 135.0  4.4  3.7 

 

R-5. Electricity consumption analysis based on household survey 

Although information on electric energy consumption (kWh/month) and monthly expenses for 

electric energy (BZD/month) was collected in the household survey, the monthly expenses were 

used to estimate electric energy consumption. Statistics on monthly energy consumption showed 

large variation, which could be caused by missing knowledge on this relatively abstract unit. Ex-

penses for electricity, on the other hand, are a very concrete unit, which are very present in mind, 

especially in regions with high electricity prices. Provided bills during the household interviews 

and statistic evaluations indicate an electricity price of 0.42 BZD/kWh and confirm accuracy in 

statements on monthly electricity expenses. Statistical reports confirm the price for electricity (Be-

lize Electricity Limited, 2021). 

By multiplying the monthly expenses for electric energy by 12, the annual electricity expenses are 

determined, which are converted to annual electricity consumption by multiplying the price for 

the kWh of electric energy. As shown in Warth et al. (2021), the BT distribution in the household 

survey corresponds to the BT distribution of the entire city of Belmopan. Therefore, the statistical 
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analysis of the electricity consumption can be considered valid. Thus, the average annual electric 

consumption in Belmopan can be assumed 3,435.6 kWh/year, with a standard deviation of 2,011.8.  

R-6. Linking electricity consumption to BT 

In parallel to the distribution of socioeconomic indicators, electric consumption differs between 

the BT, as shown in Figure 23. Due to insufficient sample numbers for multifamily buildings, only 

SFBTs, which make up 95% of the successful interviews, are presented. BT 11 has the lowest mean 

annual electricity consumptions of 2,458.5 kWh/year with a standard deviation of 1,152.8. BT 12 

has a mean annual electricity consumption of 3,220.7 kWh/year with a standard deviation of 

1,765.2. BT 13 has the second-largest annual electricity consumption of 4,042.1 kWh/year with a 

standard deviation of 2,240.2. The annual electricity consumption BT 14 has the highest electricity 

consumption with clearly higher values of 6,276.2 kWh/year with a standard deviation of 2,766.6. 

 

Figure 23: Boxplots displaying annual energy consumption (kWh) for residential buildings in Belmopan.  

R-6.1. PV potential analysis based on DSM 

On the 1,619 studied buildings in Belmopan, 4,546 FOR are suitable for PV panel installation 

through meeting the requirements of the required installation area and insolation free from veg-

etation cover. Figure 24 shows histograms on PV panels per FOR in Belmopan on the best suited 

FOR per building. 50.9 % of the FOR are suitable to install 1-4 PV panels, another 26.9 % of the 

FOR can take 5-9 PV panels. 
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Figure 24: Histogram on FOR capacity for PV panels in logarithmic scaling in Belmopan. 

To calculate the PV potential for each building, we assume the PV panel efficiency of 23 % and a 

performance ratio of 0.78 from the literature. The number of installable PV panels is calculated 

from maximum inner circles for the FOR, GHI is given from the NSRDB and ranges in Belmopan 

between 1,852 and 1,859 kWh/m²/year. The PV suitability for the FOR is determined from the SfM 

DSM. One thousand five hundred eighty-five buildings are suitable for PV production, the others 

were excluded due to high vegetation foliage coverage or too small FOR areas. In scenario 1, the 

building with minimum PV energy yield can generate 979 kWh/year, the building with maximum 

PV energy yield can generate 127,780 kWh/year. The buildings with the best FOR can generate an 

average of 22,965 kWh/year with a standard deviation of 17,949.  

The BT is not decisive for the PV energy generation, but rather the area of the FOR or roof frag-

mentation. Therefore, buildings with complex roofs have disadvantages, like for BT 14 buildings. 

BT 14 has very large building footprint areas, but the high number of roof ridges leads to a high 

roof fragmentation with smaller FOR. 

R-6.2. PV energy balancing 

In order to show the feasibility to calculate different scenarios for PV energy balancing, two sce-

narios were presented: 

1. Optimal scenario: Best FOR per building fully equipped with PV panels 

2. Realistic scenario: Best FOR per building equipped with two PV panels 
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The histograms in Figure 25 show the distribution of the potential PV energy yield for both sce-

narios and display wide range of potential PV yield for scenario 1. The histograms indicate as well 

that by considering a third or fourth PV panel for scenario 2, the peak in PV yield in the left histo-

gram between 3,000 and 5,999 kWh/year can be approached in scenario 2, and more PV energy 

potential could be accessed. 

 

Figure 25: Potential PV power yield on residential buildings in Belmopan for both tested scenarios. 

Extreme values for the PV energy yields in scenario 1 can be 2,500 % above the PV energy yields 

in scenario 2, which indicate the discrepancy of the PV energy balances for both scenarios, pre-

sented in the next paragraphs. 

For detailed numbers for the PV energy balancing please see Table 13. Furthermore, only the 

major findings are discussed in this text, please refer to Warth et al. (2021) in the appendix for 

more details. In scenario 1, all BT except BT 11 have a positive energy balance and show an average 

PV energy balance of 1,847 kWh/year or a PV energy coverage ratio of 148 %. BT 11 has an energy 

balance of -337 kWh/year. Small roof areas inhibit higher PV energy yields. Despite the deficit, still 

86 % of the energy demand can be covered by PV installations. Surprisingly, BT 13 and not BT 14 

has the highest positive PV energy balance of 3,489 kWh/year or an energy coverage ratio of 186 

%. The PV energy surplus for BT 14 is comparably low due to the very high energy consumption 

and the high roof fragmentation (see Table 12), which results in smaller FOR. BT 21 has large area 
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FOR due to its rectangular building footprint and simple roof structure and, therefore, achieves 

very high PV energy surpluses as well. 

For scenario 2, the PV energy balance for all buildings in Belmopan in average is -2,607 kWh/year 

which enebles a PV energy coverage of 29.5 %. In detail, the results show almost inverted charac-

teristics compared to scenario 1: As the numbers of PV panels are limited to maximum two panels, 

the electricity consumption mainly determines the PV energy balancing results. Therefore, BT 11 

with the lowest electric energy consumption, can profit most from the scenario, as 36.0 % of its 

energy consumption can be covered with PV energy. BT 14, on the other hand, shows very high 

electric energy consumption patterns and thus, can only cover 17.1 % of its energy demand from 

PV energy. Socioeconomically weak groups therefore, can profit most from scenario 2, as large 

shares of energy can be provided by PV energy and therefore can financially relieve these groups 

from high energy expenses (financial investments are not considered but could be covered in 

federal programs).  

Table 13: PV energy balances for residential building-types in Belmopan. 

  Scenario 1: 

 maximum number of PV panels on best FOR 

Scenario 2:  

maximum two PV panels on best FOR 

 PV balance [kWh/year] PV energy coverage [%] PV balance [kWh/year] PV energy coverage [%] 

Total 1,847 (+/- 4,049) 148 % (+/- 108) -2,607 (+/- 903)  29.5 % (+/- 6.5) 

     

BT 11 -337 (+/- 1,930) 86 % (+/- 78) -1,573 (+/- 227) 36.0 % (+/- 9.9) 

BT 12 1,318 (+/- 3,420) 141 % (+/- 106) -2,191 (+/- 118) 32.0 % (+/- 3.7) 

BT 13 3,489 (+/- 4,443) 186 % (+/- 110) -2,971 (+/- 74) 26.5 % (+/- 1.8) 

BT 14 1,670 (+/- 5,528) 127 % (+/- 88) -5,203 (+/- 63) 17.1 % (+/- 1.0) 

BT 21 3,189 (+/- 2,625) 202 % (+/- 84) -2,120 (+/- 104) 32.1 % (+/- 3.3) 

BT 22 925 (+/- 2,779) 122 % (+/- 65) -3,230 (+/- 87) 24.1 % (+/- 2.0) 

BT 23 8,662 352 % -2,324 33.0 % 

Precinct I 2,353 (+/- 3,442) 161 % (+/- 84) -3,006 (+/- 1,072) 27.8 % (+/- 6.3)  

Precinct II 2,814 (+/- 4,443) 174 % (+/- 117) -2,601 (+/- 685) 29.5 % (+/- 4.5) 

Precinct III 2,125 (+/- 4,537) 158 % (+/- 128) -2,664 (+/- 1,011) 29.0 % (+/- 6.9) 

Precinct IV 837 (+/- 3,385) 117 % (+/- 85) -2,326 (+/- 807) 31.5 % (+/- 7.1) 

Precinct V 734 (+/- 2,624) 117 % (+/- 83) -2,171 (+/- 863) 32.3 % (+/- 9.1) 

Precinct VI 1,676 (+/- 3,926) 146 % (+/- 99) -2,712 (+/- 726) 28.9 % (+/- 4.7) 
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R-6.3. BT specific analysis and spatial analysis 

Table 13 as well presents spatial characteristics for PV energy balances. For scenario 1, areas with 

the highest frequencies of BT 12 and BT 13 (Precinct I and Precinct II) show the highest averages 

for the PV energy balances. In the contrast, the areas with highest frequencies of BT 11 (Precinct 

IV and Precinct V) have the lowest PV energy balances. In scenario 2, the areas with highest fre-

quencies of BT 11 have the highest PV energy coverage ratios, whereas areas with high frequen-

cies of BT 12 and BT 13 have the lowest PV energy coverage ratios. Figure 26 illustrates these 

findings: On the overview maps on the right side, the colors represent the PV energy coverage 

ratios or the PV energy balance, respectively. As the PV energy analysis in consideration of the BT 

can characterize whole precincts and thus, indicate the efficiency or expected effect of planning 

measures, these scenarios can be used for spatial urban infrastructure planning. 

Additional analysis, visualized in the diagrams in Figure 27, reveal that information on residential 

electricity expenses and water expenses cannot be directly put into discernible relation with the 

 

Figure 26: PV energy balance on single building level for Belmopan. The upper views display the results of the "maximum 

two panels" scenario, whereas the lower row displays the results of the "optimum" scenario. Single buildings 

are displayed on the left column, the right column gives an overview on the city scale. For scenario 2, highest 

energy coverage rates are located in the eastern areas of Belmopan as indicated by blue colors, where low SES 

households dominate. Highest energy balances for scenario 1 are located in central areas of Belmopan where 

BT 12 and BT 13 dominate, as indicated by purple and blue colors as well. 
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Figure 27: Diagrams on water and electricity expenses in dependency with building footprint area and building volume 

for Belmopan. Missing dependencies underline the necessity of the building type classification in order to predict 

electricity and water consumption. 

physical attributes building footprint and building. Therefore, the classified BT cannot be substi-

tuted by simple morphological building attributes. 

The statistical analysis of the household surveys shows distinct consumption patterns for electric-

ity and water in relation to SEC, as shown by the boxplots in Figure 28. Whereas a trend of in-

creasing electricity expenses with increasing SEC can be identified, highest water expenses are 

seen for SEC III. Because habits on water consumption were not focused on in the household 

surveys. Reasons for highest water consumption could be the water use for irrigation purposes in 

self-sufficient food supply. This is usually not necessary for socioeconomically higher groups. Mi-

grants in the eastern parts of Belmopan often ensure supply through wells (Belmopan City Council, 

2021).  
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Figure 28: Boxplot illustrating statistical characteristics of electricity expenses and water expenses in relation to SEC in 

Belmopan. 

 

Summary 

• UAV aerial data enables SfM processing for very high spatial resolution orthomosaics and 

DSM data. 

• UAV aerial imagery is a valuable data source to analyze smaller urban areas. 

• UAV SfM data products increase RF BT classification, as building footprints area and build-

ing height can be estimated more precisely in comparison to estimations based on VHR 

satellite imagery, such as Pléiades or WorldView-1. 

• Based on UAV data, most important building attributes for RF BT classification are building 

footprint characteristics, building height information and information on roof complexity. 

• Unlike from VHR satellite imagery, UAV aerial imagery can provide roof complexity infor-

mation for RF BT classification, which is essential for classification accuracy. Based on UAV 

orthomosaics and DSM information, roof ridges can be captured. 

• Residential household energy consumption is in relation to the defined BTs for Belmopan. 

• Estimations on roof-based PV energy yields based on UAV DSMs in combination with BT 

specific energy consumption enables PV energy balancing on a single building level. 

• For the optimal scenario with the best fitted roof per building fully covered with PV panels, 

148 % of the residential energy can be covered, whereas BT 12 and BT 13 have the highest 

coverage ratios. 
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• For the realistic scenario with two PV panels on the best suited roof, 29.5 % of the residen-

tial energy demand can be covered in average. Due to the low energy consumption, BT 11 

can cover 36 % of its energy demand from PV energy. 

• Residential buildings in Belmopan can cover significant shares of the energy consumption 

from roof-based PV energy. 

• The presented approach allows scenario development for urban infrastructure planning 

and building PV strategies and policies.  

• Socially weak groups, dwelling in BT 11, can be relieved from high energy prices through 

adapted solar policies and funding strategies. 

• Local knowledge, for example through household interviews, is essential for precise esti-

mations of energy consumption. 

3.5. Summary 

In both studied cities, Da Nang and Belmopan, the presented studied revealed their benefits and 

contribution to the process of urban planning and urban infrastructure planning. Both earth ob-

servation techniques showed their opportunities to provide data for planning decision making. 

For Da Nang, the Pléiades imagery allowed covering the whole city, but through photogrammetric 

processing, the ground sampling distance of 0.5m gets slightly blurred, so that the full level of 

detail is not available in the elevation data sets. In Belmopan, the UAV aerial imagery products 

prove their capabilities in regard of the extreme high spatial resolution of around 2 cm, which 

allows capturing building details in the highest precision. However, the spatial coverage is very 

limited with this technique. 

The Da Nang study (section 3.2) proves to provide information on urban dynamics using satellite 

imagery going beyond areal changes of LULC classes in order to provide data on building stock 

dynamics. Elevation or DSM data, respectively, from photogrammetrically processed Pléiades im-

agery built the data base for change detection in the building stock. Through differencing DSM 

of two points in time, change within this time interval is being delineated. The 0.5m GSD of the 

Pléiades imagery is sufficient to detect changes on a single building level, although determining 

single building footprints from the spectral imagery in Da Nang would be very challenging due to 

the high building density. By adding local and spatial context information, in this study a built-up 
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mask and a change threshold, change was classified in new built, upgraded or into demolished 

buildings. The high accuracies of the detected changes of 82 % confirm the potential of the meth-

odology to characterize city parts through building stock internal dynamics into highly dynamic 

or constant areas. 

With the main finding of the initial Belmopan study (section 3.3), the representation of a socioec-

onomic indicator through the residential BT could be demonstrated. Socioeconomic measures 

cannot directly be implemented into the process of urban planning or urban infrastructure plan-

ning, but consumption of electricity and water or production of solid waste and waste-water are 

correlated to socioeconomic states of residents. For Belmopan a building typology was defined, 

containing four SFBT and four MFBT. A residential five-part socioeconomic classification was es-

tablished on the basis of a SEP scale, which covers information on educational degree, monthly 

household expenses and household assets. The reference information hereby was collected 

through extensive household surveys. WV-1 imagery enabled the capture of all building footprints 

in Belmopan. On this basis, the residential buildings were classified using a RF classification. After 

threshold-based classification refinement, using quality of life indicators, such as the distance of 

the building to the US embassy, a classification accuracy of 86.3 % could be achieved. The statis-

tical analysis of the socioeconomic scaling in relation to the BTs showed distinct socioeconomic 

differences between the BT. With this approach, the described socioeconomic indicator was pre-

dicted for all 6,627 residential buildings in Belmopan. 

Building on the findings of the initial Belmopan study, the motivation arose to analyze residential 

PV energy balances in Belmopan using BT, presented in section 3.4. A UAV campaign was carried 

out, thus meeting necessary data demands for precise solar potential estimation with aerial im-

agery and elevation information in the highest spatial resolution. Thus, 1,619 buildings or 24.4 % 

of the Belmopan building stock could be covered. In order to highlight the relevance of spatial 

resolution for the BT classification process, the RF classifier was used as well to determine BTs in 

Belmopan. The analysis of the classifying process showed that building features, describing the 

shape of the building footprints, building height and the roof complexity are ranked highest for a 

successful classification result. Data from a household survey in Belmopan revealed BT specific 

electricity consumption patterns. Using SfM techniques, DSM can be processed on the basis of 
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overlapping aerial imagery. These DSM data are used to estimate PV yields on residential building 

roofs. Differencing BT specific electricity consumption and roof-based PV energy generation, re-

sults in the PV energy balance. In the presented study, two scenarios were shown: Firstly, the best 

suited roof per building fully covered with PV panels (“optimal scenario”) and secondly, two PV 

panels installed on the best suited roof per building (“realistic scenario”). In Belmopan, an optimal 

energy coverage ratio of 148 % can be achieved through PV energy, ranging between 86 % for 

BT 11 and 202 % for BT 21. The realistic scenario showed contrary results: BT 11 could achieve the 

highest coverage rates with 36 %, whereas BT 14 could only cover 17.1% of its energy demand 

through PV. The study’s main outcomes underline the enormous potential of PV being a main 

pillar in the energy mix of Belmopan or Belize. Furthermore, the study showed the capability of 

the methodology to model scenarios for urban infrastructure planning and energy policy devel-

opment, in order to establish a decentral energy source or to support financially weak groups to 

reduce energy expenses. 
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4. Discussion 

Improvement of EO based approaches for urban planning 

Remote sensing techniques are unrivaled in their ability to monitor highly dynamic areas, espe-

cially urban areas (Taubenböck and Dech, 2010b). When he stated his observations, Taubenböck 

surely expected progress in the EO sector, but can only have guessed the massive developments 

in growing number operational satellites and the revolutions in data handling and data processing 

during the last decade. Methods such as machine learning and deep learning evolved and were 

established, innovations in processor and graphic unit hardware and cloud architecture enabled 

processing of inconceivable data quantities. However, urban dynamics, of course on smaller 

scales, are still determined through post-classification approaches by multi-temporal comparison 

of urban areas. Single building detection is a persistent challenge that causes most attraction - 

only that nowadays deep learning methods are applied instead of object-based image analysis 

(OBIA) approaches. The literature overview in section 1.4 very well underlines these developments.  

The studies presented in this thesis illustrate how remote sensing applications provide information 

in the urban context that allows a deeper understanding of urban dynamics than the area change 

of urban land use classes or the number of buildings in a certain area can indicate. 

The Da Nang study proves that adding a third dimension increases the information content in the 

detection of urban dynamics. Within the urban areas of Da Nang, conventional approaches would 

only detect change of urban land use class. As shown in section 3.2, the change in urban surface 

heights detected from 3D EO data products helps to increase the information content on intra-

urban change dynamics and indicates very heterogenous structural dynamics within the building 

stock. Both of these cannot be derived from conventional EO approaches.  

Solely knowing the number of buildings or their physical structure in cities is not sufficient to 

describe urban material flows and to build an understanding on the urban metabolism. Urban 

infrastructure planning demands directly integrable data on to develop planning scenarios. Both 

Belmopan studies showed that remote sensing techniques and data classification approaches can 

provide important part in valuable or otherwise unattainable data contribution to such planning 

procedures by generating information on locally adapted BT on a single building level. The BT as 
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proxy for socioeconomic indicators or lifestyle classes on a and electricity demand can therefore 

deliver planning-ready data for scenario development and substantiated decision making.  

In order to classify building footprints in BT, choosing the RF classifier has proven to provide 

convincing results. Figure 29 shows that BTs cannot be distinguished by applying thresholds on 

morphological building attributes, because class boundaries for the BTs are seemingly fuzzy and 

non-linear. Classifying BTs, therefore, increase the data content for the buildings in comparison 

to characterize buildings through a morphological description.  

 

Figure 29: Upper row: Histograms on building footprint, building corners and building height statistics. Lower row: relative 

share of the building-types in the statistical distributions. Multi-criteria approaches are required to classify 

building-types. 

Benefits from the high spatial resolution of EO data 

The comparison of the BT classification accuracies in both Belmopan studies presented in sections 

3.3 and 3.4 reveals the benefit and advantage from using UAV data over WV-1 imagery and ele-

vation information. The initial OA for BT through the UAV-based approach is 70 % compared to 

56.7 % from the WV-1-based approach. This accuracy divergence can be directly explained 

through the difference in spatial resolution. With a spatial resolution of 2 cm, the UAV imagery 

can illustrate 625-times more information than the 50 cm spatial resolution of the WV-1 data. 
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Consequently, UAV data better approximate the actual shape of spatial entities and can reproduce 

buildings information in more detail, for example height gradients in roofs or the number of build-

ing corners. The histograms in Figure 30 illustrate the difference in key building attributes as de-

tected from both WV-1 and UAV imagery for the same buildings and underline the advantages 

of UAV data in the urban context. 

 

Figure 30: Histograms displaying differences of selected building attributes derived from WV1 and UAV data. 

All three histograms presented in Figure 30 show a certain left skew which indicates an underes-

timation of the building attributes with WV-1 data in comparison to UAV data, represented by 

negative differences. The measured differences in shape area or building footprint corners respec-

tively are very distinct: The majority of the buildings show a footprint area difference between -

100 m² and -41 m². Similarly, the number of building corners to describe building complexities 

are also underestimated through the use of WV-1 imagery, though not as distinct as the footprint 

area. The interpretation of differences in building height confirms that UAV data deliver different 

estimations in comparison with the satellite imagery. As the BT shown in the histograms are 

equally distributed over all histogram bins, these findings do not apply to specific BT and are 

therefore, most probably caused by differences in the spatial resolution of the used imagery. Other 

very relevant building attributes, such as the roof ridge statistics to describe roof complexity (pre-

sented in section 3.4), cannot be detected in WV-1 imagery or elevation data due to insufficient 

spatial resolution and therefore, require increased ground sample distances, such as for example 

from UAV imagery. Figure 31 displays the difference in information content in WV-1 and UAV 

data. 

Histograms on attribute differences WV1 – UAV
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Figure 31: Comparison of details in WorldView-1 and UAV DSMs as displayed by hillshade. 

The shown gain in spatial resolution from using UAV data accordingly results in more accurate 

information and opens the opportunity to deliver additional information to improve the accuracy 

of the BT classification. The study in section 3.3 proved that quality of life indicators can be esti-

mated through EO techniques, thus increasing the accuracy of BT classification without the avail-

ability of UAV data. For Belmopan, the proximity of the residential building to the US embassy, 

which conducts security patrols, and the proximity to the central ring road are relevant indicators 

in this context and lead to increased BT classification accuracies. 

In the given thematic and spatial context, UAV based approaches offer major advantages to pro-

vide data relevant for planning: First, UAV based data capturing campaigns can be planned and 

conducted flexibly, as opposed to satellite-based approaches which are limited by the defined 

orbit for each satellite. In addition, data generation intervals for building detection and BT classi-

fication can be defined flexibly according to the urban dynamics in the respective periods. Fur-

thermore, UAVs operate independently from atmospheric conditions. While cloud coverage pre-

vents the usability of satellite and aerial imagery, UAV are operated below the cloud line. Cloud 

coverage is even beneficial for SfM processing quality, as indirect insolation prevents high con-

trasts in images, direct reflections on smooth surfaces and large shaded areas. Last but not least, 

operating UAV is a low-obstacle technique because it only requires extensive practical training 
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and legal introduction. Meanwhile, all processes can be fully automated, including vessel launch, 

navigation according to defined tracks, image acquisition and landing. 

From the local to the global scale? 

Remote sensing techniques, especially satellite imagery, allows data acquisition of almost every 

place on our planet in short temporal intervals. Commercial satellite corporations usually operate 

VHR imaging satellite systems, whereas federal space agencies such as the National Aeronautics 

and Space Administration (NASA) and the European Space Agency (ESA) operate spatially high-

resolution imaging satellite systems. This seeming disadvantage is compensated through large 

area image coverage and reliable continuation of the satellite missions, backed by federal institu-

tions. 

This spatial and temporal data abundance allows developing algorithms and approaches to auto-

matically process satellite imagery and to provide global data products, as for example the Global 

Urban Footprint (GUF dataset ) (Esch et al., 2017), a global water mask (Pekel et al., 2016) or a 

global forest masks (Hansen et al., 2013). Such datasets and approaches deliver information in 

unprecedented temporal intervals, spatial resolution and data consistency on the global scale. 

Initiatives such as the International Panel on Climate Change (IPCC) to monitor and model climate 

change scenarios or the UNDESA particularly rely on information derived from consistent data 

and methodologies in order to monitor SDGs, as well as target achievement, and to ensure com-

parability of information. Thus, federal programs like the Landsat and Copernicus are essential for 

global mapping and monitoring tasks. 

However, urban planning or urban infrastructure planning requires different levels of information 

and data for the planning processes. The planning success depends on the understanding of the 

urban metabolism which is affected through urban material flows and inputs as well as output of 

the urban system. Too many factors that cannot be estimated from remote sensing data influence 

patterns of consumption and production of waste materials. Accordingly, as both of the Belmopan 

studies demonstrated, auxiliary information through empirical data collection and processing is 

needed to gain a deep understanding of processes in the respective planning area that take place 

in spheres hidden from EO sensors. 
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The BT approach, which includes four BT each for single and multi-family buildings, should be 

transferable to most places on the global scale. To provide precise and reliable results, the building 

typology needs to be adapted to specific countries and regions according to in situ knowledge. 

The same applies to the specification of socioeconomic scales and classes, as well as the interpre-

tation of quality of life in different urban environments. Last but not least, planning processes are 

not standardized and differ from region to region. Consequently, data needs to be provided ac-

cording to the local needs. Therefore, information capture on the local urban metabolism from 

household survey or census data are essential to ensure the success of planning efforts despite 

all the expectations to VHR satellite imagery, high return intervals of the satellites and deep learn-

ing capabilities. 

Benefits for urban (infrastructure) planning from presented approaches 

As underlined in sections 1.2 and 1.3, the success of urban planning and urban infrastructure 

planning heavily depends on evidence-based decision making, for which good planning practice 

demands scenario simulation on the basis of accurate and valid data.  

Both presented studies in Belmopan (sections 3.3 and 3.4) showed that data analysis based on 

remote sensing data is capable of providing relevant data for the process of urban infrastructure 

planning. Satellite images are snapshots which cover events and conditions at particular moments. 

In addition, data capturing capabilities of commercial satellite systems end at the roof top and 

everything beneath this shielding layer remains private and covert. As the work in Da Nang during 

the RapidPlanning project has proven, urban morphological structure can be mapped with ap-

propriate methods. Remote sensing approaches, however, are limited in mapping and detecting 

functional information in the urban context. EO approaches to overcome this limitation therefore 

need to find and identify entities which can be related to relevant information, such as socioeco-

nomic status, electricity consumption, or water consumption. We were able to show that the BT 

for this need can be a suitable measure. 

As presented in section 1.3, the term “urban metabolism” describes the arteries that keep the 

urban system running through providing transportation capabilities, necessary supply and dis-

posal of waste products, but it can also comprise descriptions of quality of life indicators and 
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characterizations of urban dynamics. Monitoring urban dynamics, as presented in section 1.4 

‘Earth Observation Techniques to Support Urban Planning’ mainly analyzes areal change of urban 

land use classes through high resolution Landsat or Sentinel-2 data. The Da Nang study proves 

that intra-urban dynamics of the building stock can be detected by using stereoscopic VHR im-

agery. Through very sophisticated and user-friendly photogrammetric data processing implemen-

tations and simple arithmetic raster processing, dynamics within the building stock can deter-

mined as changes in surface elevation (see section 3.2). Especially in large cities with lacking ca-

pabilities in city administrations, this approach can help identifying and monitoring areas in tran-

sition and therefore can provide valuable information to generate deeper knowledge and under-

standing of the urban metabolism. With presently available satellite systems, stereoscopic EO im-

agery can be provided for any city in this globe annually and thus, high interval monitoring can 

be provided. 3D data processing is and will be dependent on commercial satellite data and com-

mercial software. However, data processing is very user-friendly and prices are reasonable, espe-

cially as the advantages of area-efficiency EO data processing are obvious. 

According to the general consensus amongst the stakeholders in urban infrastructure planning 

and the demands of the scientific sector, as shown in the introduction section, integrated scenario 

development must be a standard component in the planning process. A reliable and consistent 

data basis is critical for the success of the planning process. Both studies performed in Belmopan 

proved the ability of RS-based methods to provide relevant information and data for the devel-

opment of planning scenarios. Furthermore, demands on low obstacle methods for the integra-

tion of remote sensing techniques in the planning process can be met. The three studies contain 

in part commercial data or software, but data processing is very user-friendly and relevant 

The BT can serve as valuable proxy, as it is shown to be able to represent socioeconomic measures, 

electric energy consumption, and water consumption. Moreover, using the BT as a proxy for the 

named information makes it possible to increase the spatial level of information up to the single 

building level, which in turn allows drawing a very precise picture of the urban metabolism. A 

major requirement for using the BT as a proxy is the integration of VHR EO imagery, but the 

approach itself is independent from specific sensors. Using UAV data optimizes the accuracy of 

the BT classification, whereas VHR satellite can cover even megacities such as Lagos or Lima to 
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over 90 % with one satellite acquisition, since the satellite captures swath widths of 13.1 km as for 

WorldView-3 and WorldView-4 at a GSD of 0.31 m (Satellite Imaging Corporation, n.d.) and even 

a swath width of 20 km for Pléiades satellites at a GSD of 0.5 m (Airbus Defence and Space, n.d.). 

With the planned launch of the next generation of VHR optical satellite systems, such as the 4 

identical Pléiades Neo satellites (Airbus Defence and Space, n.d.) and the six satellites of the 

WorldView Legion (Maxar, 2020), image availability will be improved significantly, making EO 

based data products operationally integrable in the planning process. Additionally, with large 

number of satellites, the system of optical VHR resolution is resilient to the failure of single satel-

lites. With largest shares of urbanization being expected in smaller urban settlements (see section 

1.1), coverage issues through limited satellite imagery footprint should not be relevant in these 

cities. 

Especially through the PV study in Belmopan (see section 3.4, p. 44) we were able to show the 

potential of the EO based BT approach for urban infrastructure planning in multiple aspects. First, 

and most importantly, the BT can be used to estimate residential electricity consumption as stud-

ied with empirical data from 190 household interviews. This relation between BT and electricity 

consumption alone is very valuable, as the BT, which can be derived from EO data and therefore, 

allows estimating electricity consumption on a city-wide scale. As this approach provides infor-

mation on electricity consumption in the physical unit of kWh/year, the generated information is 

planning-ready data that can directly be used to develop scenarios for urban infrastructure plan-

ning. Secondly, the BT in combination with the PV energy potential, determined from UAV eleva-

tion data, enables generating PV energy balances on a single building level. Such information on 

PV energy balances is important to evaluate the energy potential of rooftop PV solutions and to 

make decisions towards the development of solar energy strategies. Thirdly, balancing PV energy 

production and energy consumption on a single building level allows PV energy balancing on 

multiple spatial levels. Thus, the approach is suitable to test bottom-up scenarios on different 

scales, starting from analyzing a single building, then proceeding to local neighborhoods and city 

district to the city level. As a result, spatially adapted strategies can be developed to achieve ideal 

results in accordance with the local preconditions. Fourthly, with the presented approach, devel-

oped planning scenarios can be tested, as the methodology allows to flexibly vary and evaluate 
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the number of PV panels. In our study, this was shown in two scenarios: the realistic scenario, in 

which a maximum of two PV panels per building were used, and the optimal scenario with the 

best suited field of roof fully equipped with PV panels. The chosen number of two PV panels for 

the realistic scenario hereby can be adapted, as histograms indicate that the optimum PV energy 

yield for all buildings in Belmopan can be approaches with few more than two PV panels. Last but 

not least, approach can be a decision base for policy development and thus can be used to de-

velop PV policies on both the local planning level, as well as the national level. The optimal sce-

nario predicts an energy coverage ratio through PV energy of 148 %, which allows generating 

large energy surpluses with the possibility to be fed into the national energy grid, thus massively 

reducing the national carbon dioxide emissions from electricity generation. Financial aspects and 

benefits for the residents are not evaluated within this study, but positive effects on the private 

households can be assumed. The evaluation of the realistic scenario opened the view on social 

effects of policy development. As socioeconomically weaker groups with 36 % can cover the larg-

est share of consumed electricity from PV energy, strategies to relieve the socioeconomically 

weakest groups from high energy expenses, especially in times of the Covid-19 pandemic in which 

the residential electricity consumption is reported to be strongly increased during lock down pe-

riods (Belmopan City Council). 

Integrated planning demands not only the planning and establishment of power line networks 

and power plants, but also requires the development of a political framework according through 

the approach “governing through enabling and/or provision” (Bulkeley and Kern, 2006), i.e. 

through a national or local solar energy policy or strategies to establish grant and loan programs 

for PV energy upgrades on residential buildings. Adapted legal framework can significantly in-

crease the share of renewable energies (Peters and Schweiger, 2011). The presented BT based 

approaches can provide a basis of information to develop grant and loan programs for the decar-

bonization of the energy supply of the residential sector, as the effects of PV implementation on 

carbon dioxide reduction, the deficit of national electricity balance, and economic effects for so-

cioeconomically weaker groups can be estimated and evaluated. Tools within a PV policy can be 

feed-in-tariffs or tax free and interest free loans. 
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A main criticism, formulated as research deficit, is the missing presentation of approaches to in-

clude EO data in urban planning. Instead the buzzword “urban planning” to gain attraction. As 

shown by our studies, the approaches are a progress in this context, because our derived and 

provided data are possible to be integrated into multiple direct applications in planning of urban 

supply and disposal infrastructure. 
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5. Outlook 

The visual inspection of the UAV orthomosaics revealed the existence of only one installed PV 

module on the rooftops of 1,619 buildings in the six studies areas in Belmopan. This, on the one 

hand, underlines the necessity to consider PV energy but, on the other hand, prevents from vali-

dating the estimations on potential PV energy generation. A next effort should concentrate on 

the realization of a pilot study to evaluate the predicted PV yield. 

The research ideas and approaches were developed within the context of the RapidPlanning pro-

ject. Therefore, a major focus was put on the implementation of the results within an interdiscipli-

nary approach, in which the best quality of results needed to be achieve within a limited time 

frame. Accordingly, building footprints in Belmopan were manually adapted and complemented 

on the basis of pre-existing building footprints from the city council for reasons of time efficiency. 

In this regard, deep learning approaches to detect and outline buildings should be considered in 

the methodological approach of the work, as studies prove the very high building detection rates. 

Besides their special suitability to detect single objects or buildings respectively, DL algorithms 

prove their abilities in object classification. Therefore, DL classifiers should as well be evaluated to 

classify BT in subsequent studies. In order to improve the separability between BT11 and BT12, 

the roof condition could be a building attribute that can be described by the share of rusty areas 

on the roof. In this context, multi- or hyperspectral cameras for UAV can deliver relevant insights 

through the ability to characterize materials and material composition. 

The results of the BT classification in Belmopan (section 3.3) showed the dominance single-family 

buildings with a share of 84.6 % of the complete building stock which leads to a very good un-

derstanding of these BT. However, the very little portion of MFBT in contrast caused a suboptimal 

characterization of these BTs. This situation is aggravated by the difficult access to the buildings 

for household interviews, because entrances are often locked and inaccessible, and residents did 

not react to the doorbells as in the single-family buildings. Still an increase of knowledge on 

MFBTs is necessary to understand the typical number of dwelling units in these buildings, the 

number of dwellers per unit/building and to relate MFBTs with socioeconomic information and 

specific consumption information. For Belmopan, the lack of knowledge may not be decisive for 

overall the results, however in larger cities in Belmopan, MFBT can have a more dominant share.  
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In the presented stage, the research is limited to the residential sector. Extending the approach to 

business and industrial building use holds new challenges, because the determination of the func-

tional use of buildings at this point requires additional information and non-EO data. Evaluating 

possibilities to integrate census data and data from statistics departments in the process of esti-

mating SEP and electricity consumption as alternative data source to household interview data 

needs special attention. The process planning integration should as well focus on the considera-

tion of collecting, processing and provision of planning relevant information by the bureaus of 

statistic.  

For two reasons, the study designs were not designed based on the latest techniques. Firstly, the 

work was conducted within the RapidPlanning project, for which the development of time-effi-

cient and low-obstacle approaches were preferred, and secondly, the studies were performed us-

ing robust and sophisticated methods to prove the value of the BT for urban (infrastructure) plan-

ning capabilities and the capabilities of EO derived three-dimensional information to generate 

insight into urban dynamics.  

An important topic which needs further investigation is the spatial resolution of the EO data. UAV 

imagery and elevation or height data respectively was proven to be very beneficial for the purpose 

of providing planning-ready data, whereas the limitations of the 0.5 m spatial resolution of the 

WV-1 data could be shown. But which spatial resolution is really necessary for the purpose? In 

between both of the presented modes, several options exist which should be evaluated. Many 

satellites with spatial resolutions of 0.3 m are already operational (WorldView-3, WorldView-4), 

just recently were launched (Pléiades Neo) or will be launched in near future (WorldView Legion, 

expected in 2022) (Erwin, 2021). Additionally, aerial image collection approaches by airplane can 

generate data with 10 cm to 20 cm spatial resolution. These options should be evaluated in the 

context of demands on spatial resolution under consideration of aspects of financial efforts and 

of data availability and accessibility. 

Last but not least, the process of integrating planning-ready data from EO approaches into pro-

cesses of urban infrastructure planning and scenario development needs to be evaluated. Insights 

gained therefrom, have to be considered and EO data processing has to be adjusted accordingly 

so that such approaches won’t remain scientific studies but become usable in urban planning. 
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ABSTRACT
Rapidly urbanizing areas are challenged by a lack of information on urban growth in many
parts of the earth. As the speed of building construction often exceeds traditional surveying
methods, remote sensing can serve as a valuable input for the monitoring of urbanization
processes. This study investigates changes in DaNang, Vietnam, between 2015 and 2017
identified based on photogrammetric analysis of surface elevations retrieved from Pléiades
very high-resolution imagery. In contrast to traditional post-classification change detection
approaches, we propose a time-efficient method solely based on digital surface model
differencing to identify newly constructed buildings as well as demolitions. It is therefore
easy to apply and suitable for the continuation of outdated base data available to local
authorities. High importance is addressed to the vertical matching of both surface models to
avoid misdetections. After differencing these surface elevations, thresholds based on field
measurements are applied to identify areas of change. A total of 10,800 changes were
detected between 2015 and 2017, of which 8,531 were to newly constructed buildings. The
study proves that changes in rapidly urbanizing agglomerations can be reliably identified by
a simple and transparent approach by using elevation changes and expert-based knowledge
on floor numbers and building heights.
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Introduction

Urban agglomerations are facing several serious chal-
lenges, especially in countries of the Global South
(Cohen, 2006). Driven by a rapid growth of the
urban population, environmental and socio-
economic problems arise, amongst others pollution
of the air and urban environment (Schell & Denham,
2003), poverty and crime (Satterthwaite & Mitlin,
2012) supply and mobility of the population
(Vasconcellos, 2014), leading to uncontrolled growth
and limited regulation measures by local authorities
(Bhatta, 2010; Goodfellow, 2013).

Municipalities require reliable and up-to-date
information for land-use and infrastructure planning,
for creation and continuation of development plans
and overall monitoring of changes. Remote sensing
can serve as a valuable input for the characterization
of urban structures and the identification of dynamics
(Jensen & Cowen, 1999; Patino & Duque, 2013;
Rashed & Jürgens, 2010; Weng, Quattrochi, &
Gamba, 2018).

However, the application of geospatial techniques
in authorities is constrained in many countries of the
global south, especially in many developing and
newly industrializing countries due to several reasons:
Lack of technical support for a sustainable establish-
ment and continuation of public geospatial

infrastructures (Hastings & Clark, 1991; Leiser,
2011), inefficient collaboration between authorities
of different sectors and levels (de Vries & Lance,
2011), budgetary constraints (George, 2000) or tech-
nical and educational impediments (Jha & Chowdary,
2007). Consequently, applications for the use in
urban agglomerations of non-industrial nations
must be efficient, affordable, user-friendly, indepen-
dent of ancillary base data and of appropriate
complexity.

Our study focuses on the development of the city
of Da Nang, Vietnam, for which Linh, Erasmi, and
Kappas (2009) used Landsat and ASTER satellite
images to identify the land use and land cover
changes between 1979 and 2009 and found
a significant decrease in forest and shrub land while
urban areas increased by over 10,000 ha. Like in
various other studies using high resolution (HR)
satellites, such as Landsat or Sentinel-2, their results
are based on post-classification change detection
methods, requiring two or more classified image
pairs, which together form a difference layer that is
interpreted quantitatively and qualitatively (Alphan &
Güvensoy, 2016; Hegazy & Kaloop, 2015; Mundia &
Aniya, 2005; Shalaby & Tateishi, 2007; Yuan, Sawaya,
Loeffelholz, & Bauer, 2005). However, images from
very high resolution (VHR) satellites, such as
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Quickbird, Pléiades or WorldView, need other tech-
niques to cope with the degree of information. One of
the most popular methods is object-based image ana-
lysis (OBIA), which aggregates several pixels into
objects that can be characterized by several features,
such as mean spectral values, but also texture or
neighbourhood characteristics (Blaschke, 2010;
Blaschke, Lang, & Hay, 2008). OBIA is applied in
particular in various studies focusing on urban envir-
onments (De Pinho, Fonseca, Korting, de Almeida, &
Kux, 2012; Moskal, Styers, & Halabisky, 2011; Zhou
& Troy, 2008), monitoring of construction activities
(Durieux, Lagabrielle, & Nelson, 2008; Im, Jensen, &
Tullis, 2008; Wickramasinghe, Vu, & Maul, 2018) or
building recognition and classification (Belgiu &
Drǎguţ, 2014; Salehi, Zhang, Zhong, & Dey, 2012;
Tsai, Stow, & Weeks, 2011).

While change detection in VHR imagery is widely
used for damage assessments (Dell’Acqua & Gamba,
2012; Lu, Guo, & Corbane, 2013; Olsen, Chen,
Hutchinson, & Kuester, 2013), only a few approaches
exist to identify gradual changes in large cities
through uncontrolled building activities, urbanization
and densification (Kopecká & Rosina, 2014;
Shahtahmassebi, Song, Zheng et al., 2016).

We regard the information of surface elevation
change in urban areas as an indicator for change in
building stock, which in very high resolution
describes change on the single building level.
Therefore, in this paper, we present a method applic-
able for rapidly growing cities to assess changes in
building infrastructure based on measures of eleva-
tion change. Because of its robust approach, it brings
several advantages to local authorities: a) it can be
adapted by non-experts, b) it can be used for the
continuation of already existing data, and c) it is,
compared to most urban studies using VHR imagery,
cost-effective regarding input data and software
packages.

The retrieval of height information of buildings can be
achieved with various datasets and methods: The pre-
sumably most reliable approach is the use of airborne
LiDARmeasurements (Rottensteiner & Briese, 2002; Yu,
Liu, Wu, Hu, & Zhang, 2010), due to its high vertical
accuracy and high point density. However, due to the
individual mission conception for each flight campaign,
these campaigns are comparably expensive and require
extensive preparation and post-processing. Studies based
on Synthetic Aperture Radar (SAR) are presented by
Brunner, Lemoine, Bruzzone, and Greidanus (2010),
Soergel, Michaelsen, Thiele, Cadario, and Thoennessen
(2009) or Colin-Koeniguer and Trouve (2014). The
advantage of interferometric SAR approaches is the rela-
tive independency from atmospheric conditions, which
offers high flexibility regarding the time and date of
acquisition. Yet, many of the SAR-related approaches
struggle with very dense build-up patterns because of

the side-looking geometry of the system, which causes
shadow and overlay effects in urban areas (Hill, Moate, &
Blacknell, 2006). Photogrammetric methods provide an
ideal trade-off between applicability and quality in urban
areas (Baltsavias, 1999). Their use was demonstrated in
numerous studies (Haala & Kada, 2010; Kadhim &
Mourshed, 2018; Liu, Huang, Wen et al., 2017; Peng,
Gong, Le Wang, & Yang, 2016; Poli & Caravaggi, 2012).
The Pléiades mission is of special value because of its tri-
stereoscopic acquisition mode. It is composed of three
nearly simultaneously acquired images, one backward
looking, one forward looking, plus a third near-nadir
image (Gleyzes, Perret, & Kubik, 2012; Perko, Raggam,
Gutjahr, & Schardt, 2014). Pléiades image triplets have
proven their ability in deriving submeter scale elevation
and elevation changes (Bagnardi, González, & Hooper,
2016; Zhou, Parsons, Elliott et al., 2015). The tri-stereo-
scopic configuration allows to retrieve more detailed
Digital Surface Models (DSM) in rough terrain or
urban areas (Panagiotakis, Chrysoulakis,
Charalampopoulou, & Poursanidis, 2018). Poli,
Remondino, Angiuli, and Agugiaro (2015) and Perko
et al. (2014) evaluated the DSM processing of Pléidades
imagery in the urban context of Trento and Innsbruck.
The two studies achieved RMSEz of 0.75 and 2.4 m,
respectively. Panagiotakis et al. (2018) achieved an
RMSEz of 1.17m compared to differential GPSmeasure-
ments in Athens. Bachofer (2017) used the height infor-
mation derived from a Pléiades triplet to extract building
volume information for the Central Business district of
Kigali, Rwanda. Lefebvre, Nabucet, Corpetti, Courty, and
Hubert-Moy (2016) used a Pléiades derived DSM to
extract urban vegetation.

Recent developments include the use of unmanned
aerial vehicles (UAVs) for building height estimation
(Gal & Doytsher, 2014; Kelbe, White, Hardin, Moehl,
& Phillips, 2016; Rebelo, Rodrigues, Tenedório,
Goncalves, & Marnoto, 2015; Unger, Reich, &
Heipke, 2014), or multi-sensor approaches (Geiß
et al., 2015; Sportouche, Tupin, & Denise, 2011; Xu,
Ma, Ng, & Lin, 2015). UAV data provide obviously
higher spatial resolutions, yet can usually cover only
small study areas and need enormous processing
capabilities.

Data and methods

Study area and data

Extent of the study
The study area is located in Da Nang province in
Central Vietnam and covers large parts of Da Nang
city. Due to constraints regarding the acquired area,
an area of interest (AOI) has been defined for the
tasked VHR imagery (Figure 1, red outline). It covers
approximately 225 km2 of the urban area and
includes the districts Cẩm Lệ, Hải Châu, Liên
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Chiểu, Ngũ Hành Sơn, Sơn Trà and Thanh Khê.
Since its classification as a Class I city in 1997, Da
Nang underwent rapid socio-economic and environ-
mental changes (JICA, 2010). As a consequence, large
shrubland and forest areas were logged down for
urban extension areas in many parts of the city
(Linh et al., 2009).

Satellite imagery
The two satellites of the Pléiades constellation (1A
and 1B) for VHR earth surface observation were
launched in 2011 and 2012 respectively. The pan-
chromatic sensor provides images with a resolution
of 70 cm and 2.8 m for the 4 multispectral bands. The
physical resolution is resampled to 50 cm, respec-
tively, 2 m, ground sampling distance, and the stereo
angle can vary from ~6° to ~28° (GSD) (De Lussy
et al., 2012; Gleyzes et al., 2012). Compared to other
VHR stereo satellite missions, such as the
WorldViews, Pléiades tri-stereo mode offers a third
stereoscopic image acquired at an off-nadir angle of
1.6°. Through that, ground areas between high-rise
buildings can be captured with a higher probability.
Pléiades stereoscopic triplets were acquired of the
urban region of Da Nang at 20.10.2015 and
13.08.2017 (Tables 1 and 2).

Field reference data
To validate the results, reference information of build-
ings and the buildings structure was collected for 975
buildings in March 2015, March 2016 and
December 2017. Amongst other things, the reference
data includes information on the location (retrieved by

GPS), building type, height and number of floors. For
405 of these reference buildings, the building height was
measured with a handheld laser measure device and the
floor number was collected additionally.

Administrative data
Land-use information of the General Construction
Plan of Da Nang City 2030 was used to differentiate
between building blocks and other land-use such as
natural areas, agriculture, transport infrastructure. By
using the geometries of the building plots, the results
of this study can be integrated into the planning and
development processes of the local administration
(Urban Planning Institute (UPI); Department of
Construction (DoC)). Additional cadastral data

Figure 1. Study area and extent of Pléiades acquisition.

Table 1. Characteristics of Pléiades-1B panchromatic triplet –
20.10.2015.

Image 1 Image 2 Image 3

Global incidence 13.69 7.08 13.00
Along-track (°) −10.19 2.36 12.21
Across-track (°) 9.34 6.68 4.59
Acquisition time 03:24:32 03:24:52 03:25:09
Solar Azimuth (°) 146.09 146.09 146.50
Solar Elevation (°) 58.89 58.89 59.02

Table 2. Characteristics of Pléiades-1B panchromatic triplet –
13.08.2017.

Image 1 Image 2 Image 3

Global incidence 16.12 11.62 7.76
Along-track (°) −12.26 −7.64 −1.65
Across-track (°) 10.78 8.85 7.59
Acquisition time 03:24:36 03:24:44 03:24:54
Solar Azimuth (°) 90.69 90.58 90.58
Solar Elevation (°) 68.67 68.73 68.73
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delineating building parcels was provided for large
parts of the districts of Cẩm Lệ, Hải Châu, Liên
Chiểu, Ngũ Hành Sơn, Sơn Trà and Thanh Khê, as
well as a selection of LIDAR ground elevation points.
In some cases, the building blocks were incomplete
and had to be extended and attributed manually.

Administrative boundaries of the city districts and
wards were retrieved from the GADM database of
Global Administrative Areas (GADM, 2012).

Derivation of surface heights and built-up areas

Based on the 2015 and 2017 Pléiades acquisitions, the
two DSMs were photogrammetrically processed by
means of the panchromatic band (0.5-m resolution)
in Erdas IMAGINE© using the Rational Polynomial
Coefficients (RPCs) to describe the exterior and inter-
ior orientation of each panchromatic image of the
Pléiades triplets (Hu, Gao, Li & Li, 2016; Topan,
Taskanat, & Cam, 2013). Tie points were automatically
generated and visually checked for their consistency.
The total image RMSE of the triangulation was 0.211
for 2015 and 0.017 for 2017. Enhanced Automatic
Terrain Extraction (eATE) was applied, using dense
point matching and Normalized Cross-Correlation
(NCC) to match images and extract elevation
(Mikhail, Bethel, & McGlone, 2001; Straub, Stepper,
Seitz, & Waser, 2013). The resulting point cloud was
interpolated to a raster surface in CloudCompare
(Girardeau-Montaut, 2015). The resulting DSM repre-
sents surface elevation information for the displayed
areas including all anthropogenic structures and vege-
tation. To assess the accuracy of the DSM, the point
cloud of 2015 was clipped with a ground mask and
a digital elevation model (DEM) was derived from the
extracted ground surface point information. The DEM
contains ground elevation information, artificial struc-
tures and vegetation are excluded. A normalized sur-
face model (nDSM) was differentiated from DSM and
DEM. Positive differences in the nDSM represent vege-
tation and artificial structures, such as buildings. To
validate the nDSM, its values were compared to the
reference information on building heights. Figure 2
shows the elevations of the nDSM related to the avail-
able LIDAR points (see chapter “administrative data”),
resulting in an R2 of 0.87.

For the initial delineation of build-up structures, the
panchromatic and multispectral bands of the 2015
Pléiades scene were pansharpened and an object-based
image analysis (OBIA) approach was chosen (Blaschke,
2010; Blaschke et al., 2014). The OBIA approach groups
neighbouring pixels with similar spectral or thematic
values into image segments with spectral, geometric and
thematic properties (Benz, Hofmann, Willhauck,
Lingenfelder, & Heynen, 2004). To improve the seg-
mentation result for build-up structures, a Canny edge
operator was applied to the Pléiades scene and included

in the segmentation process (Bachofer, Quénéhervé,
Zwiener et al., 2016; Canny, 1986). For the resulting
segments, a complex ruleset was developed, which is
based on spectral and height values, geometrical fea-
tures, as well as spatial relationships between image
objects. The properties of the object features were
enriched by computing additional raster layers, such
as the first three components of a Principal
Component Analysis (PCA), the Normalized
Differential Vegetation Index (NDVI) (Rouse, Haas,
Schell, & Deering, 1973) and the Topographic
Position Index (TPI) (Bachofer, 2017; De Reu et al.,
2013; Guisan, Weiss, & Weiss, 1999; Weiss, 2001). The
latter index was computed with the DSM to support the
differentiation between elevated objects and ground
surface. Remaining artefacts were edited manually.
Due to the dense building structure of the city, identi-
fication of single buildings was not automatable. Build-
up areas were then intersected with parcel boundaries,
where available (see section “administrative data”), and
centroids representing single buildings were derived.
For areas without parcel data, visual identification of
buildings was conducted by digitizing single points.

Identification of changes

As shown in Figure 3, the identification of changes in
built-up structures between 2015 and 2017 was con-
ducted in a two-step approach. In order to overcome
the need for absolute building heights, both DSMs
were horizontally adjusted in a first step and
a difference image describing the absolute height
change between both dates was generated. In
the second step, the derived changes were classified
on a threshold-based approach to delineate building
or demolition activities. This is described at more
detail in the following.

Figure 2. Relationship between DSM and LIDAR reference
point data.
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Vertical adjustment of both images
In order to differentiate the DSMs, both of the surface
models have to be finely registered at the vertical
dimension. Inaccuracies in vertical registration lead
to misclassifications and therefore cause over- or
underestimation of change.

To derive a surface that represents regional adapted
differences between both DSMs, a first stratified random
point sampling was implemented to generate 76,085
points representing ground elevation. For that, classified
built-up areas were used to exclude buildings from the
point sampling. To exclude vegetation-caused elevation
deviations, areas with NDVI values greater 0.1 were
excluded from the sampling as well. The masked-out
areas were buffered with a 2.5-m distance to eliminate
the influence of buildings and vegetation on the ground
elevation. The heights from 2015 and 2017 were
extracted at the 76,085 points and differenced in order

to get information about regional differences of both
models. To minimize the influence of potential outliers
and to avoid overfitting of the differential surface, the
points were averaged at a regular 250-m sampling grid
(see Figure 4). Based on this regular point grid a spline
interpolation was implemented to generate a smooth and
steady differential rectification surface (Franke, 1981).

As systematically induced errors are expected to
occur in the difference between the 2015 and 2017
models, an approach based on 49 points in a 7 × 7
neighbourhood is chosen to conduct the interpola-
tion. Thereby the influence of single values can be
reduced to enable a steady interpolation result. To
apply the vertical correction, the interpolated differ-
ential rectification surface was applied to the 2017
DSM by subtracting its values. After the vertical
adjustment, both elevation models show a very good
correlation (R2 = 0.99, see Figure 5).

Figure 3. Workflow to identify building changes.

Figure 4. Hillshade of 2015 DSM (left) and differences at ground points for vertical fine registration of DSMs (right).
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Changes of existing buildings and in newly
constructed areas
On the base of two finely registered DSMs, the differ-
encing can be conducted with simple subtraction of
the corresponding elevation values.

Change surface ¼ DSM2017� DSM2015 (1)

The result shows positive differences representing an
increase of elevation, whereas negative differences
represent a decrease of elevation during the 2-year
period. A 5 × 5 majority filter reduces outliers in the
DSM difference to avoid misclassifications in the
following procedure.

In a first approach, the change surface is masked
by built-up areas to retrieve a raster representing only
changes in 2015 built-up areas. To derive changes in
build-up areas, each house is considered based on
building centroids (see chapter “Derivation of surface
heights and built-up areas”). A 2-m buffer is applied
on the building centroid to construct a representative
building area without knowledge of its exact orienta-
tion. Based on the coverage of the building buffers,
the change surface is averaged to derive a statistical
and filtered change value for each building. Our field
measurements show that the majority of the buildings
in DaNang have two or more floors (Table 3) and
consist of narrow local-type houses (67% of our
reference data). As demonstrated by Downes,
Storch, Schmidt, van Nguyen, and Tran (2016),
these local-type buildings make up the majority of
the building stock (approximately 90% of all build-
ings in DaNang), are typically constructed with two
or more floors and are preferably used in construc-
tion areas. Based on these observations, we defined
thresholds given in Table 3 to classify changes.

To determine the changes on 2015 unbuilt-areas,
previously mentioned building footprints are used to
remove buildings from the change surface,

additionally, areas with NDVI values greater than
0.1 are excluded to avoid vegetation related changes.
In this second approach, only positive changes are
considered representing the increased building.
Negative changes are not expected to be caused by
building dynamics. Applying the thresholds given in
Table 4, the area representing the change surface on
the unbuilt ground is classified to moderate and
severe change. Polygonising the classified patches
allows for the application geometrically based refine-
ment. Classified change patches below 35 m2 are
removed from the polygon areas.

Small area water bodies, mining areas (in the Liên
Chiểu and Cẩm Lệ districts), filling zones, container
yards close to ports (in Sơn Trà) and planes at the
prefield of the airport which show constant elevation
changes are hard to be identified by means of auto-
matic classification. For this reason, the mentioned
areas were visually identified and manually removed
from the classified result. Remaining detections
represent recent building activities between 2015
and 2017.

Results

Accuracy of the DSM

The DSMs were generated with a 0.5-m resolution.
Since there is no focus on absolute heights in this
approach, but on correct heights, the quality of
the derived heights was estimated by comparing
the 405 building height measurements with the
described nDSM. The coefficient of determination
shows with r2 = 0.6 a good conformity of the
derived heights with true building heights (see
Figure 6).

Accuracy of the DSM difference

The vertical referencing, which is crucial for correct
interpretation of detected changes, resulted in very
high accuracies. The validation was performed on the
76,085 ground points, on which the differencing values

Figure 5. Fine vertical registration of DSMs 2015 and 2017.

Table 3. Thresholds for the identification of changes.
Positive changes Negative changes

moderate severe moderate severe

Built-up areas 4.5 to 10 m > 10 m −6.5 to −10 m > −10 m
Unbuilt areas 6 to 10 m > 10 m - -

Table 4. Building change detection 2015–2017.
Number of detected

change Newly built Demolished

Category n % n % n %

Built-up 6,213 61.6 4,714 54.9 1,499 100
Unbuilt 3,867 38.4 3,867 45.1 - -
Overall detections 10,080 100 8,581 100 1,499 100
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were extracted. Statistical analysis on the points pro-
duced an average discrepancy of 0.044 m for the 2015
and the 2017 DSM with a standard deviation of 2.02 m.
The low standard deviation symbolizes a very fine ver-
tical registration, especially as it lies below the classifica-
tion threshold to detect building and demolition
activities (Table 4). Consequently, the differences can
be used with the given thresholds as indicators to detect
building changes.

Considering a small scale, the difference image
shows a generally very homogenous distribution of
values around the zero value, which represents no
change in elevation between both acquisition dates. At
the north eastern part of the study area, slight deviations
are identifiable (varying between +6.5 m and −11 m)
and are to be interpreted as effects of misregistration, as
these patches cover steep and densely wooded terrain.
Again, no ground points for vertical referencing could
be generated in these areas. As a consequence of the
locally concentrated mining activities at the western
part of the study area and the transition of the terrain
into wooded and mountainous terrain, the area is
under-represented by valid ground points for the ver-
tical registration process as well. The strong differences
in the eastern part of the Da Nang bay are caused by
land filling activities to expand development ground.

Regarding the difference raster in more detail reveals
spatially high resoluted changes over the given period.
On unbuilt areas in 2015, the changes appear very
explicitly. In these cases, the shape of the changed
building is very accentuated. Especially large-area com-
mercially and industrially used buildings are distin-
guishable due to the shapes of the changes. Also,
apartment and hotel complexes close to the shoreline,
which were constructed in the investigated period, are
identifiable by the shape of the single detected changes
and moreover by their mutual spatial arrangements.

The change raster allows identifying a change in
the city centre, where the city initially was already
densely built-up in 2015. Changes are characterized
by homogeneous values over an entire building foot-
print. High-rise buildings can cause false change
marks because photogrammetric approaches can
struggle with exactly modelling surface and shape
characteristics at the same time. This can cause
a “bagel effect” in the difference raster when the
shape of buildings is estimated slightly different in
both DSMs. Homogeneous surfaces such as streets,
lawns, water bodies and runways at the airports
induce high positive or high negative values in the
difference raster, due to the disability of photogram-
metric processing to set valid cross-correlations
between image sections without sufficient contrast.

Figure 7 gives an overview of the changes in the
study area and some selected examples at higher detail.

Changes in the city

Overall changes
The classification of building stock changes resulted
in 10,080 detected building changes between 2015
and 2017 in the area covered by both Pléiades acqui-
sitions (see Tables 1 and 2). This total number is split
into 8,531 buildings showing an increase in heights
above given thresholds and 1,499 buildings have been
demolished at the acquisition time in 2017 compared
to 2015. In formerly unbuilt areas, building change
detections represent newly built houses. Spatial inter-
section of detected changes and unbuilt areas shows
3,867 newly constructed buildings in the two-year
period. The spatial intersection of detected height
increase and built-up areas reveal 4,714 changes in
the existing building stock. The numbers can not
indicate rebuilding or upgrading of buildings. Based
on an assumed total building number of 244,180
buildings in 2015 (based on spectral based building
detection – see chapter “Derivation of surface heights
and built-up areas”) and 7,082 differenced newly
buildings, the building stock in the image covered
agglomeration area increased about 1.5% in two
years through buildings on the newly built ground.
1.9% of the buildings in the existing building stock in
2015 were extended or rebuilt in the two-year period
and 0.6% of the existing building stock has been
demolished at the time of the second acquisition
compared to the 2015 acquisition.

Regional examination of building changes
The heatmap (see Figure 8) shows the density of
changed buildings in a 1 km radius. It visualizes
a general regional trend in the building stock
dynamics. It reveals two major areas with high
change dynamics. The areas east of the airport,
which include parts of the districts of Hải Châu,

Figure 6. Relationship between measured building height
and nDSM.
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Sơn Trà and Ngũ Hành Sơn, show the highest change
densities. These areas contain the traditional city
centre of Da Nang, which undergoes a steady process
of change and renewal. In densely built-up areas,
building renovation generally involves demolition of
building stock, which is detected by the applied
thresholds on the change surface as well. Overlaying
detections of demolition verifies the active process of
ongoing renewal in the building stock.

In the western part of the Da Nang agglomeration,
west of Liên Chiểu, changes are detected in spatially
high concentrations. Considering missing detections
of building demolitions, these peripheral areas are
recently developed areas to extend the Da Nang set-
tlement area. These areas were formerly agriculturally
used land converted from cropland to development
areas. The Cẩm Lệ peninsula shows comparably high
change activities, though the change densities do not
reach the values of the Liên Chiểu development area.
The tip of the peninsula likewise is a transformation
area from cropland to development area; however,
the development was initialized prior to the first
acquisition in 2015, which is why the change densities

do not stand out compared to similar areas. As well,
building activities on the Cẩm Lệ peninsula seem to
be spread more extensively over the development
area, which causes a comparatively lighter change
density.

Local examination of building changes
The spatial aggregation of changes by means of reg-
ular hexagons with 500-m diameter supplements the
change heatmap by enabling assignments of change
to smaller scale units. Red colours symbolize highest
change dynamics with 100 detected changes or more,
whereas blue hexagons are assigned the lowest
changes with 1 to 10 detected changes (Figure 9,
left). Hexagons without detected changes remain
transparent. Hexagons with highest change rate exist
3 times in the city centre, one according to hexagon is
located at the western development area near Liên
Chiểu. The highest concentration of orange coloured
(20–50 changes) and yellow coloured hexagons (10
−20 changes) lies between the airport and the east
shoreline. With increasing distance to the city centre
the existence of blue coloured hexagons grow,

Figure 7. Change maps of Da Nang. Overview (left) and detailed view on building complexes (upper right), industrial areas
(middle right) and city centre (lower right).

Figure 8. Heatmap shows regional trends of building changes over the Da Nang area. Subsets showing dynamic zones without
detected demolitions and with detected demolitions.
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indicating the lowest numbers of detection. Except
from the western development areas near Liên Chiểu,
the blue hexagons form a ring structure, which sur-
rounds the city centre and forms a transition to the
outskirts of Da Nang.

Regarding the hexagons representing demolitions,
a value range between 1 and 31 demolitions per
polygon is displayed (Figure 9, right). Similar to the
total detected changes, the concentration of demoli-
tions is located in the city centre, where red, violet
and black colours are plotted, representing demoli-
tion ranges between 11 and 31 changes. Especially
along the western riverbank, the highest demolition
numbers are located. These findings indicate starting
and ongoing renewal processes in these areas. In
peripheral areas environing the city centre, detected
demolitions range on a comparably low level.

Accuracy assessment

We tested 200 randomly selected change points in
regards to correct detection. As the results consist of
detected changes only, we had no possibility to cal-
culate a true-negative accuracy. 162 out of 200 test
points were detected correctly, which is a true-
positive rate of 81%.

Discussions

The validation results of the DSM generation, on
information content regarding building heights and
vertical DSM registration, approve the usage of rela-
tive elevation information. Knowledge of existing
buildings is the main prerequisite for this approach,
as detecting change in initially present building stock
is based on the spatial information of single build-
ings. The examination of the change raster revealed
slight misregistrations on mountainous and wooded
terrain because valid ground points to enhance the
surface for precise DSM registration cannot be set on
the covered ground. This limitation can occur in very

densely built-up areas, wherein addition only very
narrow streets and tracks separate building block.
Given such cases, it is hardly possible to define valid
ground points for ground elevation sampling.
Therefore, in such areas, the vertical referencing sur-
face can possibly contain raised uncertainties. In our
study, the fine registration surface showed a mean
difference of 0.04 m and a standard deviation of
2.02 m.

Photogrammetry derived elevation information
must be interpreted differently compared spectral
remote sensing approaches, as photogrammetric pro-
cesses do not exactly reproduce sharp edges or ridges
as they occur between houses and streets or between
houses with large height differences. This character-
istic of photogrammetric processing can cause
a “bagel effect”, when building extends got derived
more extensive in one DSM, which must not be
interpreted as detected change.

By using thresholds on elevation information and
on horizontal changed areas, the approach is though
very robust and comparably incomplex to implement,
as a simple reclassification of elevation difference is
applied instead of spectral building classification. Bi-
and tri stereoscopic Pléiades data are beneficial in
pricing compared to other sources and, after the
photogrammetric processing, the differencing has to
be referred to present information.

In the case study, the results show a concentration
of change at the city centre. Highest rates of change
and demolition are detected between the airport and
the eastern coastline. Comparing to studies, reporting
a strong expansion of the Da Nang urban area (Linh
et al. (2009)), our results show the concentration of
building changes on the city centre of Da Nang,
which are caused by redensification tendencies and
renewal of existing building stock. Nevertheless, near
Liên Chiểu and on the Cẩm Lệ peninsula, developing
areas are under construction. Detected patterns on
the southern regions of the eastern shoreline show
building activities with complexes of buildings or

Figure 9. Locally detected changes (left) and detected demolitions (right).
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hotel areas. These detections confirm perceptions
from field campaigns in the study area, where upmar-
ket building projects are realized close to the shore
line.

To distinguish between redensification areas and
building development areas, demolitions can be used
as a valuable indicator. The detected demolitions can
only show demolitions in 2017 respectively at
the second acquisition time and therefore must not
be interpreted as a total demolition number of the
period under consideration.

Conclusion and outlook

The presented results show that the approach on
differencing relative DSMs provides a practical tool
to monitor change in building stock of urban areas.
A true positive rate of 81% of our findings confirms
our assumptions.

VHR remote sensing imagery has proven to be
a benefit of this study, as not only the dynamic of city
growth was detected, but also the type of change in
already built-up areas. To detect change at the building
level, imagery with spatial resolution below the smallest
objects to be detected is necessary. So besides the advan-
tages of medium resolution remote sensing imagery,
which allow monitoring areal urban changes (Wei,
Blaschke, Kazakopoulos, Taubenböck, and Tiede
(2017)), our results show that VHR remote sensing
imagery enables the identification of local and small-
scale urban processes, such as building construction,
upgrading and demolition on single building level.

The 2017 image has been acquired in a very active
phase with construction in progress, as many areas
show spectral characteristics of open ground.
A continuous implementation of this approach can
reconstruct the steady change of activities. Besides the
spatially high-resolution change information, the
implementation of satellite imagery in the approach
offers the advantage of the availability of imagery and
thus can provide temporally high-resolution change
information as well for long-term change monitoring.
In the continuation, the approach can be adapted
more precisely to the local building characteristics,
by implementing local knowledge to improve thresh-
old definition for height changes and building foot-
print area. The improvement of detecting ground
areas, so far implemented by NDVI thresholding
and buffering of building structures, would benefit
in increasing the accuracy of the vertical registration
of both input DSMs. This leads to more precise
change detection in densely built-up areas.

Disclosure statement

No potential conflict of interest was reported by the
authors.

Funding

This study was funded by the German Federal Ministry of
Education and Research (BMBF) under the project
“RapidPlanning” (grant identifier 01LG1301K).

ORCID

Andreas Braun http://orcid.org/0000-0001-8630-1389
Felix Bachofer http://orcid.org/0000-0001-6181-0187

References

Alphan, H., & Güvensoy, L. (2016). Detecting coastal urbani-
zation and land use change in Southern Turkey. Journal of
Environmental Engineering and Landscape Management,
24(2), 97–107. doi:10.3846/16486897.2015.1113976

Bachofer, F. (2017). Assessment of building heights from
pléiades satellite imagery for the Nyarugenge sector,
Kigali, Rwanda. Rwanda Journal, 1(DI). doi:10.4314/rj.
v1i2s.6d

Bachofer, F., Quénéhervé, G., Zwiener, T., Maerker, M., &
Hochschild, V. (2016). Comparative analysis of edge
detection techniques for SAR images. European Journal
of Remote Sensing, 49(1), 205–224. doi:10.5721/
EuJRS20164912

Bagnardi, M., González, P.J., & Hooper, A. (2016). High-
resolution digital elevation model from tri-stereo
Pleiades-1 satellite imagery for lava flow volume esti-
mates at Fogo Volcano. Geophysical Research Letters,
43(12), 6267–6275. doi:10.1002/2016GL069457

Baltsavias, E.P. (1999). A comparison between photogram-
metry and laser scanning. ISPRS Journal of
Photogrammetry and Remote Sensing, 54(2–3), 83–94.
doi:10.1016/S0924-2716(99)00014-3

Belgiu, M., & Drǎguţ, L. (2014). Comparing supervised
and unsupervised multiresolution segmentation
approaches for extracting buildings from very high
resolution imagery. ISPRS Journal of Photogrammetry
and Remote Sensing, 96, 67–75. doi:10.1016/j.
isprsjprs.2014.07.002

Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I., &
Heynen,M. (2004).Multi-resolution, object-oriented fuzzy
analysis of remote sensing data for GIS-ready information.
ISPRS Journal of Photogrammetry and Remote Sensing, 58
(3–4), 239–258. doi:10.1016/j.isprsjprs.2003.10.002

Bhatta, B. (2010). Causes and consequences of urban
growth and sprawl. In Analysis of urban growth and
sprawl from remote sensing data (pp. 17–36). Springer.
Berlin, Heidelberg.

Blaschke, T. (2010). Object based image analysis for remote
sensing. ISPRS Journal of Photogrammetry and Remote
Sensing, 65(1), 2–16. doi:10.1016/j.isprsjprs.2009.06.004

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P.,
Addink, E., . . . van Coillie, F. (2014). Geographic object-
based image analysis–Towards a new paradigm. ISPRS
Journal of Photogrammetry and Remote Sensing, 87,
180–191. doi:10.1016/j.isprsjprs.2013.09.014

Blaschke, T., Lang, S., & Hay, G. (2008). Object-based
image analysis: Spatial concepts for knowledge-driven
remote sensing applications. Springer Science &
Business Media. Berlin, Heidelberg.

Brunner, D., Lemoine, G., Bruzzone, L., & Greidanus, H.
(2010). Building height retrieval from VHR SAR imagery
based on an iterative simulation and matching technique.

EUROPEAN JOURNAL OF REMOTE SENSING 331

https://doi.org/10.3846/16486897.2015.1113976
https://doi.org/10.4314/rj.v1i2s.6d
https://doi.org/10.4314/rj.v1i2s.6d
https://doi.org/10.5721/EuJRS20164912
https://doi.org/10.5721/EuJRS20164912
https://doi.org/10.1002/2016GL069457
https://doi.org/10.1016/S0924-2716(99)00014-3
https://doi.org/10.1016/j.isprsjprs.2014.07.002
https://doi.org/10.1016/j.isprsjprs.2014.07.002
https://doi.org/10.1016/j.isprsjprs.2003.10.002
https://doi.org/10.1016/j.isprsjprs.2009.06.004
https://doi.org/10.1016/j.isprsjprs.2013.09.014


IEEE Transactions on Geoscience and Remote Sensing, 48
(3), 1487–1504. doi:10.1109/TGRS.2009.2031910

Canny, J. (1986). A computational approach to edge
detection. IEEE Transactions on Pattern Analysis &
Machine Intelligence, (6), 679–698. doi:10.1109/
TPAMI.1986.4767851

Cohen, B. (2006). Urbanization in developing countries:
Current trends, future projections, and key challenges
for sustainability. Technology in Society, 28(1–2), 63–80.
doi:10.1016/j.techsoc.2005.10.005

Colin-Koeniguer, E., & Trouve, N. (2014). Performance of
building height estimation using high-resolution
PolInSAR images. IEEE Transactions on Geoscience and
Remote Sensing, 52(9), 5870–5879. doi:10.1109/
TGRS.2013.2293605

De Lussy, F., Greslou, D., Dechoz, C., Amberg, V., Delvit, J.
M., Lebegue, L., . . . Fourest, S. (2012). Pleiades HR in
flight geometrical calibration: Location and mapping of
the focal plane. Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci, 39, 519–523. doi:10.5194/isprsarchives-
XXXIX-B1-519-2012

De Pinho, C.M.D., Fonseca, L.M.G., Korting, T.S., de
Almeida, C.M., & Kux, H.J.H. (2012). Land-cover classi-
fication of an intra-urban environment using
high-resolution images and object-based image
analysis. International Journal of Remote Sensing, 33
(19), 5973–5995. doi:10.1080/01431161.2012.675451

De Reu, J., Bourgeois, J., Bats, M., Zwertvaegher, A.,
Gelorini, V., de Smed, P., . . . Finke, P. (2013).
Application of the topographic position index to hetero-
geneous landscapes. Geomorphology, 186, 39–49.
doi:10.1016/j.geomorph.2012.12.015

de Vries, W., & Lance, K. (2011). SDI reality in Uganda:
Coordinating between redundancy and efficiency. In
Z. Nedovic-Budic, J. Crompvoets, & Y. Georgiadou
(Eds.), Spatial data infrastructures in context: North
and South (pp. 103–119). CRC press. Boca Raton.

Dell‘Acqua, F., & Gamba, P.E. (2012). Remote sensing and
earthquake damage assessment: Experiences, limits, and
perspectives. Proceedings of the IEEE, 100(10),
2876–2890. doi:10.1109/JPROC.2012.2196404

Downes, N.K., Storch, H., Schmidt, M., van Nguyen, T.C.,
& Tran, T.N. (2016). Understanding Ho Chi Minh City’s
urban structures for urban land-use monitoring and
risk-adapted land-use planning. In Sustainable Ho Chi
Minh City: Climate policies for emerging mega cities (pp.
89–116). Springer. Berlin, Heidelberg.

Durieux, L., Lagabrielle, E., & Nelson, A. (2008). A method
for monitoring building construction in urban sprawl
areas using object-based analysis of Spot 5 images and
existing GIS data. ISPRS Journal of Photogrammetry and
Remote Sensing, 63(4), 399–408. doi:10.1016/j.
isprsjprs.2008.01.005

Franke, R. (1981). Smooth interpolation of scattered data
by local thin plate splines. Computers & Mathematics
with Applications, 8(4), 273-281. doi:10.1016/0898-1221
(82)90009-8

GADM. (2012). GADM database of global administrative
areas: Version 2.0. University of California Berkeley.
Retrieved from https://gadm.org

Gal, O., & Doytsher, Y. (2014). Fast and efficient visible
trajectories planning for the Dubins UAV model in 3D
built-up environments. Robotica, 32(1), 143–163.
doi:10.1017/S0263574713000787

Geiß, C., Pelizari, P.A., Marconcini, M., Sengara, W.,
Edwards, M., Lakes, T., & Taubenböck, H. (2015).
Estimation of seismic building structural types using

multi-sensor remote sensing and machine learning
techniques. ISPRS Journal of Photogrammetry and
Remote Sensing, 104, 175–188. doi:10.1016/j.
isprsjprs.2014.07.016

George, H. (2000). Developing countries and remote sen-
sing: How intergovernmental factors impede progress.
Space Policy, 16(4), 267–273. doi:10.1016/S0265-
9646(00)00042-4

Girardeau-Montaut, D. (2015). CloudCompare version 2.6.
1 user manual. Grenoble

Gleyzes, M.A., Perret, L., & Kubik, P. (2012). Pleiades
system architecture and main performances.
International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 39(1),
537–542. doi:10.5194/isprsarchives-XXXIX-B1-537-2012

Goodfellow, T. (2013). Planning and development regula-
tion amid rapid urban growth: Explaining divergent
trajectories in Africa. Geoforum, 48, 83–93. doi:10.1016/
j.geoforum.2013.04.007

Guisan, A., Weiss, S.B., & Weiss, A.D. (1999). GLM versus
CCA spatial modeling of plant species distribution. Plant
Ecology, 143(1), 107–122. doi:10.1023/A:1009841519580

Haala, N., & Kada, M. (2010). An update on automatic 3D
building reconstruction. ISPRS Journal of
Photogrammetry and Remote Sensing, 65(6), 570–580.
doi:10.1016/j.isprsjprs.2010.09.006

Hastings, D.A., & Clark, D.M. (1991). GIS in Africa:
Problems, challenges and opportunities for
co-operation. International Journal of Geographical
Information System, 5(1), 29–39. doi:10.1080/
02693799108927829

Hegazy, I.R., & Kaloop, M.R. (2015). Monitoring urban
growth and land use change detection with GIS and
remote sensing techniques in Daqahlia governorate
Egypt. International Journal of Sustainable Built
Environment, 4(1), 117–124. doi:10.1016/j.
ijsbe.2015.02.005

Hill, R.D., Moate, C.P., & Blacknell, D. (2006). Urban scene
analysis from SAR image sequences. In E.G. Zelnio & F.
D. Garber (Eds..), SPIE proceedings, algorithms for syn-
thetic aperture radar imagery XIII, Orlando (Vol. 6237,
pp. 623702). SPIE. doi:10.1117/12.664418

Hu, F., Gao, X.M., Li, G.Y., & Li, M. (2016). DEM extrac-
tion from WorldView-3 stereo images and accuracy
evaluation. International Archives of Photogrammetry
Remote Sensing and Spatial Information Sciences, 41.
327-332.

Im, J., Jensen, J.R., & Tullis, J.A. (2008). Object-based change
detection using correlation image analysis and image seg-
mentation. International Journal of Remote Sensing, 29(2),
399–423. doi:10.1080/01431160601075582

Jensen, J.R., & Cowen, D.C. (1999). Remote sensing of
urban/suburban infrastructure and socio-economic
attributes. Photogrammetric Engineering and Remote
Sensing, 65, 611–622.

Jha, M.K., & Chowdary, V.M. (2007). Challenges of using
remote sensing and GIS in developing nations.
Hydrogeology Journal, 15(1), 197–200. doi:10.1007/
s10040-006-0117-1

JICA. (2010). The study on integrated development strategy
for da nang city and its neighboring area in the socialist
republic of vietnam (DaCRISS): Final Report. December
2010. Tokyo. Retrieved from http://open_jicareport.jica.
go.jp/pdf/12014924.pdf

Kadhim, N., & Mourshed, M. (2018). A
shadow-overlapping algorithm for estimating building
heights from VHR satellite images. IEEE Geoscience

332 G. WARTH ET AL.

https://doi.org/10.1109/TGRS.2009.2031910
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1016/j.techsoc.2005.10.005
https://doi.org/10.1109/TGRS.2013.2293605
https://doi.org/10.1109/TGRS.2013.2293605
https://doi.org/10.5194/isprsarchives-XXXIX-B1-519-2012
https://doi.org/10.5194/isprsarchives-XXXIX-B1-519-2012
https://doi.org/10.1080/01431161.2012.675451
https://doi.org/10.1016/j.geomorph.2012.12.015
https://doi.org/10.1109/JPROC.2012.2196404
https://doi.org/10.1016/j.isprsjprs.2008.01.005
https://doi.org/10.1016/j.isprsjprs.2008.01.005
https://gadm.org
https://doi.org/10.1017/S0263574713000787
https://doi.org/10.1016/j.isprsjprs.2014.07.016
https://doi.org/10.1016/j.isprsjprs.2014.07.016
https://doi.org/10.1016/S0265-9646(00)00042-4
https://doi.org/10.1016/S0265-9646(00)00042-4
https://doi.org/10.5194/isprsarchives-XXXIX-B1-537-2012
https://doi.org/10.1016/j.geoforum.2013.04.007
https://doi.org/10.1016/j.geoforum.2013.04.007
https://doi.org/10.1023/A:1009841519580
https://doi.org/10.1016/j.isprsjprs.2010.09.006
https://doi.org/10.1080/02693799108927829
https://doi.org/10.1080/02693799108927829
https://doi.org/10.1016/j.ijsbe.2015.02.005
https://doi.org/10.1016/j.ijsbe.2015.02.005
https://doi.org/10.1117/12.664418
https://doi.org/10.1080/01431160601075582
https://doi.org/10.1007/s10040-006-0117-1
https://doi.org/10.1007/s10040-006-0117-1
http://open_jicareport.jica.go.jp/pdf/12014924.pdf
http://open_jicareport.jica.go.jp/pdf/12014924.pdf


and Remote Sensing Letters, 15(1), 8–12. doi:10.1109/
LGRS.2017.2762424

Kelbe, D., White, D., Hardin, A., Moehl, J., & Phillips, M.
(2016). Sensor-agnostic photogrammetric image regis-
tration with applications to population modeling. In
2016 IEEE International Geoscience & Remote Sensing
Symposium: Proceedings: July 10-15, 2016, Beijing, China
(pp. 1831–1834). Piscataway, NJ: IEEE. doi:10.1109/
IGARSS.2016.7729470

Kopecká, M., & Rosina, K. (2014). Identification of changes
in urbanized landscape based on VHR satellite data:
Study area of Trnava. Geografický Časopis. 66. 247-267.

Lefebvre, A., Nabucet, J., Corpetti, T., Courty, N., &
Hubert-Moy, L. (2016). Extraction of urban vegetation
with Pleiades multiangular images. In T. Erbertseder,
T. Esch, & N. Chrysoulakis (Eds.), SPIE proceedings,
remote sensing technologies and applications in urban
environments. Vol. 10008, pp. 100080H-1. SPIE Remote
Sensing, Edinburgh. doi:10.1117/12.2241162

Leiser, S. (2011). Institutionalization does not occur by
decree: Institutional obstacles in implementing a land
administration system in a developing country. In
Z. Nedovic-Budic, J. Crompvoets, & Y. Georgiadou
(Eds.), Spatial data infrastructures in context: North
and South (pp. 21–48). CRC press. Boca Raton.

Linh, N.H.K., Erasmi, S., & Kappas, M. (2009). Quantifying
land use/cover change and landscape fragmentation in
Danang City, Vietnam: 1979-2009. Aster, 2, 4.

Liu, C., Huang, X., Wen, D., Chen, H., & Gong, J. (2017).
Assessing the quality of building height extraction from
ZiYuan-3 multi-view imagery. Remote Sensing Letters, 8
(9), 907–916. doi:10.1080/2150704X.2017.1335904

Lu, L., Guo, H., & Corbane, C. (2013). Building damage
assessment with VHR images and comparative analysis
for Yushu Earthquake, China. Disaster Adv, 6, 37–44.

Mikhail, E.M., Bethel, J.S., & McGlone, J.C. (2001).
Introduction to modern photogrammetry. New York.

Moskal, L.M., Styers, D.M., & Halabisky, M. (2011).
Monitoring urban tree cover using object-based image
analysis and public domain remotely sensed data.
Remote Sensing, 3(10), 2243–2262. doi:10.3390/
rs3102243

Mundia, C.N., & Aniya, M. (2005). Analysis of land use/cover
changes and urban expansion of Nairobi city using remote
sensing and GIS. International Journal of Remote Sensing,
26(13), 2831–2849. doi:10.1080/01431160500117865

Olsen, M.J., Chen, Z., Hutchinson, T., & Kuester, F. (2013).
Optical techniques for multiscale damage assessment.
Geomatics, Natural Hazards and Risk, 4(1), 49–70.
doi:10.1080/19475705.2012.670668

Panagiotakis, E., Chrysoulakis, N., Charalampopoulou, V.,
& Poursanidis, D. (2018). Validation of Pleiades
Tri-Stereo DSM in urban areas. ISPRS International
Journal of Geo-Information, 7(3), 118. doi:10.3390/
ijgi7030118

Patino, J.E., & Duque, J.C. (2013). A review of regional
science applications of satellite remote sensing in urban
settings. Computers, Environment and Urban Systems,
37, 1–17. doi:10.1016/j.compenvurbsys.2012.06.003

Peng, F., Gong, J., Le Wang, W.H., & Yang, J. (2016).
Impact of building heights on 3D urban density estima-
tion from spaceborne stereo imagery. International
Archives of Photogrammetry Remote Sensing and Spatial
Information Sciences, 41, 677. doi:10.5194/isprsarchives-
XLI-B3-677-2016

Perko, R., Raggam, H., Gutjahr, K., & Schardt, M. (2014).
Assessment of the mapping potential of Pléiades stereo

and triplet data. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 2(3),
103. doi:10.5194/isprsannals-II-3-103-2014

Poli, D., & Caravaggi, I. (2012). Digital surface modelling and
3D information extraction from spaceborne very high
resolution stereo pairs. JRC Scientific and Technical
Reports, Ispra. doi:10.1094/PDIS-11-11-0999-PDN

Poli, D., Remondino, F., Angiuli, E., & Agugiaro, G. (2015).
Radiometric and geometric evaluation of GeoEye-1,
WorldView-2 and Pléiades-1A stereo images for 3D
information extraction. ISPRS Journal of
Photogrammetry and Remote Sensing, 100, 35–47.
doi:10.1016/j.isprsjprs.2014.04.007

Rashed, T., & Jürgens, C. (2010). Remote sensing of urban
and suburban areas. Springer Science & Business Media.
Berlin, Heidelberg.

Rebelo, C., Rodrigues, A.M., Tenedório, J.A., Goncalves, J.
A., & Marnoto, J. (2015). Building 3D city models:
Testing and comparing Laser scanning and low-cost
UAV data using FOSS technologies. In International
Conference on Computational Science and Its
Applications, Girona (pp. 367–379).

Rottensteiner, F., & Briese, C. (2002). International
archives of photogrammetry remote sensing and spatial
information sciences. A New Method for Building
Extraction in Urban Areas from High-Resolution LIDAR
Data, 34(3/A), 295–301.

Rouse, J.W., Haas, R.H., Schell, J.A., & Deering, D.W.
(1973). Monitoring the vernal advancement and retro-
gradation (green wave effect) of natural vegetation.

Salehi, B., Zhang, Y., Zhong, M., & Dey, V. (2012). Object-
based classification of urban areas using VHR imagery
and height points ancillary data. Remote Sensing, 4(8),
2256–2276. doi:10.3390/rs4082256

Satterthwaite, D., & Mitlin, D. (2012). Urban poverty in the
global south: Scale and nature. Routledge. London.

Schell, L.M., & Denham, M. (2003). Environmental pollu-
tion in urban environments and human biology. Annual
Review of Anthropology, 32(1), 111–134. doi:10.1146/
annurev.anthro.32.061002.093218

Shahtahmassebi, A.R., Song, J., Zheng, Q., Blackburn, G.A.,
Wang, K., Huang, L.Y., . . . Haghighi, R.S. (2016).
Remote sensing of impervious surface growth:
A framework for quantifying urban expansion and
re-densification mechanisms. International Journal of
Applied Earth Observation and Geoinformation, 46,
94–112. doi:10.1016/j.jag.2015.11.007

Shalaby, A., & Tateishi, R. (2007). Remote sensing and GIS
for mapping and monitoring land cover and land-use
changes in the Northwestern coastal zone of Egypt.
Applied Geography, 27(1), 28–41. doi:10.1016/j.
apgeog.2006.09.004

Soergel, U., Michaelsen, E., Thiele, A., Cadario, E., &
Thoennessen, U. (2009). Stereo analysis of
high-resolution SAR images for building height estima-
tion in cases of orthogonal aspect directions. ISPRS
Journal of Photogrammetry and Remote Sensing, 64(5),
490–500. doi:10.1016/j.isprsjprs.2008.10.007

Sportouche, H., Tupin, F., & Denise, L. (2011). Extraction
and three-dimensional reconstruction of isolated build-
ings in urban scenes from high-resolution optical and
SAR spaceborne images. IEEE Transactions on
Geoscience and Remote Sensing, 49(10), 3932–3946.
doi:10.1109/TGRS.2011.2132727

Straub, C., Stepper, C., Seitz, R., & Waser, L.T. (2013).
Potential of UltraCamX stereo images for estimating
timber volume and basal area at the plot level in mixed

EUROPEAN JOURNAL OF REMOTE SENSING 333

https://doi.org/10.1109/LGRS.2017.2762424
https://doi.org/10.1109/LGRS.2017.2762424
https://doi.org/10.1109/IGARSS.2016.7729470
https://doi.org/10.1109/IGARSS.2016.7729470
https://doi.org/10.1117/12.2241162
https://doi.org/10.1080/2150704X.2017.1335904
https://doi.org/10.3390/rs3102243
https://doi.org/10.3390/rs3102243
https://doi.org/10.1080/01431160500117865
https://doi.org/10.1080/19475705.2012.670668
https://doi.org/10.3390/ijgi7030118
https://doi.org/10.3390/ijgi7030118
https://doi.org/10.1016/j.compenvurbsys.2012.06.003
https://doi.org/10.5194/isprsarchives-XLI-B3-677-2016
https://doi.org/10.5194/isprsarchives-XLI-B3-677-2016
https://doi.org/10.5194/isprsannals-II-3-103-2014
https://doi.org/10.1094/PDIS-11-11-0999-PDN
https://doi.org/10.1016/j.isprsjprs.2014.04.007
https://doi.org/10.3390/rs4082256
https://doi.org/10.1146/annurev.anthro.32.061002.093218
https://doi.org/10.1146/annurev.anthro.32.061002.093218
https://doi.org/10.1016/j.jag.2015.11.007
https://doi.org/10.1016/j.apgeog.2006.09.004
https://doi.org/10.1016/j.apgeog.2006.09.004
https://doi.org/10.1016/j.isprsjprs.2008.10.007
https://doi.org/10.1109/TGRS.2011.2132727


European forests. Canadian Journal of Forest Research,
43(8), 731–741. doi:10.1139/cjfr-2013-0125

Topan, H., Taskanat, T., & Cam, A. (2013). Georeferencing
accuracy assessment of Pléiades 1A images using
rational function model. International Archives of the
Photogrammetry, Remote Sensing and Spatial
Information Sciences, 7, W2.

Tsai, Y.H., Stow, D., & Weeks, J. (2011). Comparison of
object-based image analysis approaches to mapping new
buildings in Accra, Ghana using multi-temporal
QuickBird satellite imagery. Remote Sensing, 3(12),
2707–2726. doi:10.3390/rs3122707

Unger, J., Reich, M., & Heipke, C. (2014). UAV-based
photogrammetry: Monitoring of a building zone.
International Archives of Photogrammetry Remote
Sensing and Spatial Information Sciences, 40(5), 601.
doi:10.5194/isprsarchives-XL-5-601-2014

Vasconcellos, E.A. (2014). Urban transport environment
and equity: The case for developing countries.
Routledge. London.

Wei, C., Blaschke, T., Kazakopoulos, P., Taubenböck, H., &
Tiede, D. (2017). Is spatial resolution critical in urbani-
zation velocity analysis? Investigations in the pearl river
delta. Remote Sensing, 9(1), 80. doi:10.3390/rs9010080

Weiss, A.D. (2001). Topographic position and landforms
analysis: Poster presentation. ESRI User Converence,
San Diego, CA.

Weng, Q., Quattrochi, D., & Gamba, P.E. (2018). Urban
remote sensing. CRC press. Boca Raton.

Wickramasinghe, D.C., Vu, T.T., & Maul, T. (2018).
Satellite remote-sensing monitoring of a railway

construction project. International Journal of Remote
Sensing, 39(6), 1754–1769. doi:10.1080/01431161.201
7.1415481

Xu, Y., Ma, P., Ng, E., & Lin, H. (2015). Fusion of worldView-2
stereo and multitemporal TerraSAR-X images for building
height extraction in urban areas. IEEE Geoscience and
Remote Sensing Letters, 12(8), 1795–1799. doi:10.1109/
LGRS.2015.2427738

Yu, B., Liu, H., Wu, J., Hu, Y., & Zhang, L. (2010).
Automated derivation of urban building density
information using airborne LiDAR data and
object-based method. Landscape and Urban
Planning, 98(3–4), 210–219. doi:10.1016/j.
landurbplan.2010.08.004

Yuan, F., Sawaya, K.E., Loeffelholz, B.C., & Bauer, M.E.
(2005). Land cover classification and change analysis of
the twin cities (Minnesota) metropolitan area by multi-
temporal Landsat remote sensing. Remote Sensing of
Environment, 98(2–3), 317–328. doi:10.1016/j.
rse.2005.08.006

Zhou, W., & Troy, A. (2008). An object-oriented
approach for analysing and characterizing urban land-
scape at the parcel level. International Journal of
Remote Sensing, 29(11), 3119–3135. doi:10.1080/
01431160701469065

Zhou, Y., Parsons, B., Elliott, J.R., Barisin, I., & Walker, R.
T. (2015). Assessing the ability of Pleiades stereo ima-
gery to determine height changes in earthquakes:
A case study for the El Mayor-Cucapah epicentral
area. Journal of Geophysical Research: Solid Earth, 120
(12), 8793–8808.

334 G. WARTH ET AL.

https://doi.org/10.1139/cjfr-2013-0125
https://doi.org/10.3390/rs3122707
https://doi.org/10.5194/isprsarchives-XL-5-601-2014
https://doi.org/10.3390/rs9010080
https://doi.org/10.1080/01431161.2017.1415481
https://doi.org/10.1080/01431161.2017.1415481
https://doi.org/10.1109/LGRS.2015.2427738
https://doi.org/10.1109/LGRS.2015.2427738
https://doi.org/10.1016/j.landurbplan.2010.08.004
https://doi.org/10.1016/j.landurbplan.2010.08.004
https://doi.org/10.1016/j.rse.2005.08.006
https://doi.org/10.1016/j.rse.2005.08.006
https://doi.org/10.1080/01431160701469065
https://doi.org/10.1080/01431160701469065


remote sensing  

Article

Prediction of Socio-Economic Indicators for Urban
Planning Using VHR Satellite Imagery and
Spatial Analysis

Gebhard Warth 1,* , Andreas Braun 1 , Oliver Assmann 2, Kevin Fleckenstein 2 and
Volker Hochschild 1

1 Institute of Geography, University of Tübingen, Ruemelinstrasse 19-23, 72070 Tübingen, Germany;
an.braun@uni-tuebingen.de (A.B.); volker.hochschild@uni-tuebingen.de (V.H.)

2 AT-Association, Waldburgstrasse 96, 70563 Stuttgart, Germany; oliver.assmann@at-verband.de (O.A.);
k.fleckenstein@stud.uni-heidelberg.de (K.F.)

* Correspondence: gebhard.warth@uni-tuebingen.de

Received: 22 April 2020; Accepted: 25 May 2020; Published: 28 May 2020
����������
�������

Abstract: Ongoing urbanization leads to steady growth of urban areas. In the case of highly dynamic
change of municipalities, due to the rates of change, responsible administrations often are challenged or
struggle with capturing present states of urban sites or accurately planning future urban development.
An interest for urban planning lies on socio-economic conditions, as consumption and production
of disposable goods are related to economic possibilities. Therefore, we developed an approach to
generate relevant parameters for infrastructure planning by means of remote sensing and spatial
analysis. In this study, the single building defines the spatial unit for the parameters. In the case city
Belmopan (Belize), based on WorldView-1 data we manually define a city covering building dataset.
Residential buildings are classified to eight building types which are locally adapted to Belmopan.
A random forest (RF) classifier is trained with locally collected training data. Through household
interviews focusing on household assets, income and educational level, a socio-economic point (SEP)
scaling is defined, which correlates very well with the defined building typology. In order to assign
socio-economic parameters to the single building, five socio-economic classes (SEC) are established
based on SEP statistics for the building types. The RF building type classification resulted in high
accuracies. Focusing on the three categories to describe residential socio-economic states allowed
high correlations between the defined building and socio-economic points. Based on the SEP we
projected a citywide residential socio-economic building classification to support supply and disposal
infrastructure planning.

Keywords: VHR imagery; WorldView-1; PlanetScope; urban remote sensing; socio-economic
information; urban planning indicators; Belmopan/Belize; spatial analysis

1. Introduction

During the present century urbanization will be one of the major challenges for society,
politicians, and planners. Urbanization as a complex socio-economic process that transforms the
built environment, converting formerly rural into urban settlements [1], has—besides all well-known
challenging tasks—positive effects for society, such as economic growth, poverty reduction, and human
development of urbanization [2]. “Urban areas also serve as hubs for development, where the
proximity of commerce, government and transportation provide the infrastructure necessary for
sharing knowledge and information. Urban dwellers are often younger, more literate and more highly
educated, are more likely to have access to decent work, adequate housing and social services, and can
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enjoy enhanced opportunities for cultural and political participation as well as gender equality” [2].
When urbanization progresses unguided, effects of inadequate planning are evident: unsustainable
production and consumption patterns and impaired sustainability resulting from urban sprawl,
pollution, and environmental degradation [1].

A basic challenge is the lack of capacity within public institutions to manage urbanization [1].
To guide and direct urbanization in order to achieve its potential positive effects and to enable
implementing the sustainable development goals (SDG) proclaimed by the United Nations [3],
paradigms for urban planning, therefore, need to be shifted towards transparent approaches of
evidence-based planning [4]. Infrastructure planning should be considered as a core element in
strategic spatial planning, based on the understanding of the underlying forces, which includes
knowledge of the economic base amongst other things [5].

Socio-economic parameters can serve as indicators for both urban supply and disposal
infrastructure planning. Knowledge of education and economic situations have importance relevant to
household waste production in various regions [6–8], more precisely household income and household
expenditures correlate accurately with household solid waste generation [9]. Jones (2015) shows in a
review article [10] the influence of socio-economic criteria on the consumption of electricity with the
household income as the main factor.

We see a growing potential regarding the use of remote sensing techniques to supply
socio-economic information for planning urban supply and disposal infrastructure—a potential
which has not been considered in present research as the following paragraphs show.

To characterize urbanization, first global datasets of urban expansion were established based on
Landsat data [11] and optical nighttime imagery data [12]. The global urban footprint dataset was fully
generated automatically based on TanDEM-X synthetic aperture radar (SAR) data [13,14]. Most recently,
the world settlement footprint for the years 2012 and 2015 were generated by combining Sentinel-1
radar data and optical Landsat-8 data [15]. To increase the spatial resolution of the information and to
retrieve qualitative information on the change that occurred between different acquisitions, Warth et al.
proposed a method to retrieve information on dynamics in building stock on a single building scale by
differencing urban digital surface models (DSM) [16]. Braun et al. [17] refined these results publishing
a refined urban change dataset on single building scale for Da Nang, VN.

With the increasing availability of VHR remote sensing imagery, there is a need for techniques to
detect objects as a spatial and radiometric product of multiple pixels. Object based image analysis
(OBIA) techniques [18] have been used to detect single buildings [19,20]. Recent studies show the
implementation of OBIA techniques for measuring urban ecosystem functionality [21,22] and indication
of quality of life factors [23,24]. Foci on approaches for image-based object detection approaches
have been shifted most recently towards machine learning (ML) methods [25]. The approaches were
successfully implemented using VHR remote sensing imagery [25,26]. Regarding context based VHR
image analysis in the urban context, a focus lies on mapping slums and informal settlements using ML
techniques [27–29]. Zhu [30] gives an overview on the key developments regarding ML approaches in
urban remote sensing. As a recent example, morphological descriptions of neighborhoods retrieved by
VHR images and spatial distance measures have been successfully applied to predict property values
in other cases [31].

Three-dimensional data derived by photogrammetric approaches [32] supports the physical
description of building stock analysis and detecting changes in building stock [16,33]. Light Detection
and Ranging (LiDAR) approaches using the propagation of light [34] in the urban context have
advantages in vegetation related studies and therefore are applied for tree species detection [35], urban
forest mapping [36], volume estimation [37], and urban ecosystem service (ESs) modelling [38].

Besides the application of SAR data for generating global settlement data and mapping of
impervious surfaces [39], radar technology the ability to detect changes in elevation offered by
processing of the phase information [40]. The increased availability of Sentinel-1 time series data [41]
enables implementing Persistent Scatterer Interferometry (PSI) to precisely monitor surface deformation
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processes [42]. Besides analyzing subsidence as an effect of ground water extraction [43–45], subsidence
could be correlated to construction projects [46–48] by PSI technique. SAR tomography approaches [49]
are performed in the urban context with Sentinel-1 [50,51] and TanDEM-X data [52]. Interferometric
SAR products have been proven to enable the detection of urban flood extension [53].

To support urban planning on a city level, information related to function and context is required.
In this regard, Kuffer worked on the mapping of slum areas [54,55], ML based approaches have been
performed as well [27–29]. Socio-economic parameters as planning relevant indicators have been
derived by Jensen [56], where population and quality-of-life-indices were estimated by means of VHR
imagery. Approaches using Landsat-5 TM data were described by Lo [57]. Urban vegetation is an
indicator for socio-economic rating [58]. In this context, urban mapping and planning can benefit from
ESs mapping that helps indicating urban quality factors and urban climate [59,60].

Socio-economic data gathering and analyzing methods that use socio-economic indices to
determine the relative socio-economic status of individuals or households in a sample group have
been applied with different purposes in various scientific fields. Important areas of research include
medical and epidemiological studies [61,62], educational studies [63], or the measuring of inequality in
living standards [64] or health [65]. The research focus in these studies lies in the evaluation of the
correlation between the socio-economic status and health conditions [66–68]. With the help of criteria
like educational level, occupation, and income the influence of the socio-economic status on health and
life expectancy of an individual is examined [69].

The goals of urban planning must be to guide and to manage the dynamics of municipalities
which are caused by many factors, such as persistent urbanization amongst other things. Successfully
implemented urban planning enables citizens to obtain benefit from the advantages of urbanization,
like “access to education, health care and housing, to increase their productivity and to expand
opportunity” [70] and enables the realization of the SDGs [3]. Therefore, decision makers need to adopt
strategies towards planning future urban growth [70]. Knowledge on present states and dynamics of
the urban complex is decisive to plan the future development of a city and its surroundings. In the
case of rapidly growing urban agglomerations, it is challenging to capture current dynamics because
of the rate of change and the inertia of many data gathering methods.

With this study we follow up previous work of designing a development plan for green and blue
infrastructure for Belmopan [71]. Belmopan is a small capital city with 23,038 inhabitants [72] and
can be used as a practical example considering, as Cohen and Barney predict, a majority of urban
dwellers will be living in small cities (<100,000 inhabitants) [2]. Special focus needs to be applied on
such cities, because these municipalities often lack basic services such as piped water, flush toilets,
and electricity [2]. In Latin America and Caribbean region, where the study area of this research is
located, waste production is expected to increase by one third by 2050 as compared to 2016 and 58% of
waste ends up in landfills and open dump sites [73], which causes negative environmental effects.

To establish methods of evidence-based planning and therefore to reduce the gap of data
and knowledge, we propose an approach to support planning of residential supply and disposal
infrastructure by predicting socio-economic information at the scale of residential buildings using
very high-resolution (VHR) remote sensing imagery. VHR optical remote sensing systems, such as the
WorldView or Pléiades satellites, deliver imagery at sub-meter resolution, which allows the precise
detection of buildings with high temporal flexibility. The access to VHR imagery is improved and the
constant data availability is being established [74,75]. A lot of research has been carried out to describe
and prove the relationships between consumption of energy and waste production via socio-economic
indicators. The influence of the socio-economic status (SES) on the urban metabolism—in terms of
material and energy flows generated by households—at the level of individual buildings has not yet
been researched in this way. As a new scientific issue, the correlation of different socio-economic
states—along with potentially differing consumption and generation patterns—to varying building
types is researched within this study. The purpose being to derive relevant values for a well-founded
planning of supply and disposal infrastructure. In the context of planning appropriate supply and
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disposal infrastructure in dynamic environments this correlation might be very important and should
be considered with respect to the building of a reliable database.

To put these findings in effect when planning, remote sensing data sources should be implemented
to support planning processes, in addition to reasons of objectivity and time efficiency, qualitative and
quantitative information relevant for planning can be gathered region-wide.

2. Materials and Methods

2.1. Study Area and Data

2.1.1. Study Area

While still a British Colony known as British Honduras, the study city of Belmopan was
inaugurated in 1970 as the new capital city [76]. The maps in Figure 1 give an overview on Belmopan’s
location. Due to its geographical location, the former capital Belize City was repeatedly threatened
by hurricanes, the last major hurricane named Hattie hit Belize city and the Belize district in 1961
destroying approximately 80% of the city [76,77].
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Besides causing human losses and physical damage, the hurricanes interrupted governmental
work and destroyed governmental documents, as well [76]. In addition to reduction of risk of natural
hazards, which was the main reason for the relocation of the capital, the dominant and authoritative
position of Belize City in the country was reduced by the inauguration of the new capital city of
Belmopan [76]. The decision on the location for the new capital was based on the following main criteria:
(1) a potable water supply, (2) safety from flooding, (3) its location at the hub of national transportation
network and (4) equidistance from the two largest coastal centers of Belize City and Stann Creek [76].
The city name of Belmopan was inspired by the confluence of the Belize river and Mopan river.
Administrative data indicate an area of 32.25 km2 covered by the Belmopan administrative boundaries.

In 2018 Belize had a population of 398,050 inhabitants, whereas 23,038 people lived in Belmopan [72].
In comparison to global and regional urbanization rate, Belize is estimated to be experiencing
above-average urbanization [1], as it is shown in a global and regional comparison in Figure 2.
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The Belmopan annual population growth rate is estimated at 5.7% [78]. These dynamics underline the
necessity for standardized urban mapping at regular intervals.Remote Sens. 2020, 12, 1730 5 of 27 
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2.1.2. VHR Imagery

The WorldView-1 (WV-1) satellite, launched in 2007, offers stereo imagery, which is achieved by a
single pass bi-directional acquisition mode. At nadir, the panchromatic band has a ground sampling
distance of 0.5 m [79]. In this research two stereo image scenes were used acquired on 2018/03/16 and
on 2018/03/29, respectively, as shown in Table 1, in order to achieve high quality results the datasets
cover 28.04 km2 of the Belmopan administrative area. A total of 13.1% of the administrative area not
covered by the WV-1 imagery is undeveloped. For the imagery data radial polynomial coefficients
(RPC) are delivered by the imagery provider. The first scene has a share of cloud-covered areas of 6.3%,
affected areas lie partly above built-up zones. For details on WV-1 imagery and acquisition please refer
to Table 1.

Table 1. Overview on WorldView-1 acquisitions used.

WorldView-1 Stereo
Pair 1

WorldView-1 Stereo
Pair 2

PlanetScope
Two Frames

Acquisition date 2018/03/16 2018/03/29 2018/03/29
Ground sampling distance 0.5 m 0.5 m 3.0 m

In track view angles −24.3◦, 15.3◦ −9.4◦, 29.9◦ 0.1◦, 0.12◦

Cloud coverage 6.3% 0.2% 0%

2.1.3. HR Imagery

PlanetScope data were chosen to get access to multispectral imagery [80]. Images acquired
on 2018/03/29 were selected to achieve minimum cloud coverage and identical image contents
in comparison with the WV-1 imagery described in Section 2.1.1. PlanetScope operates in a sun
synchronous orbit with a four-band frame imager. The visual spectrum is captured by the blue
(455–515 nm), green (500–590 nm), and red (590–670 nm) channels at a ground sampling distance
of 3 m. The near infrared spectrum is captured at 780–860 nm [81]. The PlanetScope imagery is
delivered radiometrically preprocessed in surface reflectance values. In the imaging mode as used,
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a PlanetScope scene covers 180 km2, but the entire urban area of Belmopan was not covered in a single
scene. Therefore, two scenes were used for the analyses. Figure 3 gives an overview on the used
satellite imagery.
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2.1.4. Ground Truthing Data

A questionnaire-based survey using the mobile KoboCollect tool [82] was performed to collect
ground truthing data for the building type classification. During two field campaigns in January and
March 2019 datasets with a total sample size of 405 building were collected. Each building was assigned
to the building types defined in Section 2.2.4. Additionally, information on the number of stories,
mean roof height, roof type, and parcel-related information describing accessibility and vegetation
share were collected. Building height information was measured with a Bosch GLM 50C handheld laser
measurement device. Locations of the buildings surveyed were recorded with handheld GPS devices
and manually location corrected-based on the WorldView-1 imagery in a geographical information
system (GIS) (see Section 2.1.2.).

2.1.5. Auxiliary Data

Auxiliary data on non-residential building use was collected during the field campaigns.
Non-residential building use was sub-classified into business, public sector, and industry.
The non-residential buildings were collected by GPS measurements as point information and position
corrected based on the WorldView-1 image. The collected building-use information was added with
information on business, public sector (administration, education, health institutions), and industry
based on OpenStreetmap (OSM) [83] and Google registrations. Data on the official plan of land use,
administrative boundaries (sectors, precincts, and parcels), as well as on the road network and public
transportation infrastructure were provided by the city council of Belmopan as vector geometries.

2.1.6. Socio-Economic Interviews

For gathering socio-economic data and information on household level in Belmopan an
interview-based survey was designed and carried out in March and April 2019. KoboCollect
was used as described in Section 2.1.4. According to the six main representative building types
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determined for Belmopan and their detected shares/spatial concentration in the city (Section 2.2.5),
test areas were defined for the implementation of the socio-economic survey. Building types 23 and 24
(see Section 2.2.4) do not occur in statistically sufficient numbers in Belmopan. Within the test areas a
total of 425 households were surveyed by means of digital questionnaires with about 210 questions on
the main subject areas:

• housing and infrastructure (type and devices of the house);
• specific information on the household (size, age structure, occupation, education, etc.);
• items, features and devices (assets) owned by the household;
• expenditures (on housing, food, health, etc.) of the household;
• food and buying habits of the household;
• income (amount, sources) of the household.

2.2. Methods

Our proposed methodology predicts socio-economic measures on a single building scale, Figure 4
schematically shows the single steps of the approach. Basing on VHR remote sensing imagery,
single buildings are detected. Supported by local ground truthing information, building types are
classified. Through statistical analysis of resident’s interviews, a relationship between building types
and socio-economic groups can be established. Detailed information on the methodology is given in
the following sections.
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Figure 4. Schematic overview of the approach. Socio-economic analysis leads to the “socio-economic
points” (SEP) ranking (see Section 2.2.6. and Section 3.3.). The prediction of socio-economic status
bases on building types via socio-economic classes (SEC) (see Section 2.2.7. and Section 3.4.).

2.2.1. VHR Image Processing

In order to orthorectify WV-1 imagery for generating the building dataset and to derive building
heights, the WV-1 data described in Section 2.1.1, were processed photogrammetrically. To increase
the quality in urban areas, two stereo pairs were chosen to achieve a fourfold coverage. The off-nadir
angles are clearly differentiated, as shown in Table 1, and therefore the usage of four input images
increase the quality of the resulting elevation dataset.

For the photogrammetric processing, the EATE approach in ERDAS Imagine [84] was chosen,
as already implemented by Bachofer and Warth [16,33].

The main elevation dataset was calculated with all four WV-1 images. To replace cloud
affected pixels, a substitute elevation dataset was calculated based on the cloud free image pair.
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For cloud-covered pixels, elevation information of the main dataset was substituted with elevation
data from the alternative elevation dataset. In addition to this, the fourfold coverage reduces the
impact of the cloud coverage on small parts.

In order to determine building heights from WV-1 height information, a normalized DSM
(nDSM) was calculated. A digital terrain model (DTM) was generated based on the WV-1 DSM.
Therefore, building heights were removed by means of building footprints (see Section 2.2.2) and
heights affected by tree or forest were removed as well via threshold based NDVI (see Section 2.2.3)
masking using PlanetScope imagery. The resulting gaps in the DSM were closed by applying spline
interpolation. Differencing DSM and DTM gives the nDSM, which contains height information on
buildings, trees, and other non-ground objects.

2.2.2. Delineation of Building Footprints

On the base of the orthorectified WV-1 scene from 2019/03/29, the building dataset was generated.
With an HPF multi-resolution approach the orthorectified PlanetScope scene was pansharpened using
the panchromatic WV-1 scene to combine the very high spatial resolution of the panchromatic channel
with the multispectral information delivered in the PlanetScope scene. The orthorectified scene is the
correctly positioned main basis for the manually observed building detection. In cases of indistinct
building outline, the unrectified WV-1 scene without distortions caused by the orthorectification was
used as reference. To digitize building footprints the Java-OpenStreetMap-Editor (JOSM) [85] was
used for reasons of simple digitization and attributization routines and the intended publishing of the
building dataset on the OpenStreetmap server.

2.2.3. HR Image Processing

As two acquisitions are necessary for full coverage of the Belmopan city, both PlanetScope scenes
were mosaicked. No preprocessing before the mosaicking was necessary due to the data delivery
already being surface reflectance. The orthorectification process for multispectral PlanetScope imagery
was performed by an RPC based approach implemented in ERDAS Imagine. Data on RPC for the
PlanetScope imagery was delivered by the data provider. The WV-1 DSM, described in Section 2.2.1,
was used as very high-resolution elevation data input.

Based on the orthorectified multispectral imagery, the normalized difference vegetation index
(NDVI) was calculated to delineate vegetated areas. Studies [60,86] have proven that NDVI based
tree detection approaches deliver practicable results in urban environments. Applied to PlanetScope
imagery, the NDVI is derived as follows:

NDVIPlanetScope =
PlanetScope Band 4− PlanetScope Band 3
PlanetScope Band 4 + PlanetScope Band 3

, (1)

For the generation of the normalized DSM which represents object heights, a tree mask must
be calculated to distinguish between trees and ground level areas. Observations during the field
campaigns have shown, that grass is very low in Belmopan and therefore can be interpreted as
ground elevation in the DSM. To separate between ground and tree covered areas, a histogram-based
threshold-based approach was chosen. In the histogram a local minimum value between the NDVI
values of tree covered areas and non-tree covered areas represents the threshold to create the tree mask.
Based on the PlanetScope scene acquired on 2018/03/29, the NDVI threshold is 0.21.

2.2.4. Definition of Building Typology

The prediction of socio-economic status bases on building type information. Therefore, the method
aims to propose a global definition for residential building types. This study focusses on the prediction
of socio-economic indicators on residential buildings, as other building functions cannot be derived
solely based on remote sensing information. In this regard, we defined eight residential building types
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(BT), which are denominated by numbers and neutral designations, in order to avoid preconceptions of
its residents and surrounding neighborhoods. Buildings types 11–14 represent single family buildings,
whereas building types 21–24 represent multifamily buildings. We define the term “Multi-Family
Building” as a building with two or more residential units, as already suggested by Vetter-Gindele
et al. [87]. The proposed building types are defined by construction materials used and the physical
structure of the buildings and have no significance over the building condition or building maintenance.
For building type nominations see Table 2.

Table 2. Building types with respective nomination.

Building Type Nomination Building Type Nomination

BT 11 Single Family Basic BT 21 Multi-Family
Basic

BT 12 Single Family Standard BT 22 Multi-Family Standard
BT 13 Single Family Advanced BT 23 Multi-Family Apartment
BT 14 Single Family Complex BT 24 Multi-Family Modern Apartment

Due to cultural and historical influence, building types differ worldwide and therefore must be
adapted to local building structures. For Belmopan we assigned the buildings to the building typology
as follows.

Buildings with one dwelling unit were assigned from BT 11 to BT 14. The main criteria for
the assignment of BT 11 is the use of natural construction materials. BT 12 is characterized by four
corners, rectangular building footprint and gabled or shed roof types. BT 13 can be similar to BT 12,
but shows deviations from the rectangular footprint. Additional stories can also exist, but not full
stories. Buildings with multiple full stories are assigned to BT 14, as well as buildings with complex
footprints and complex roof structures.

BT 21 is the only Multi-Family Building type with two dwelling units at a single floor building
structure. It is usually characterized by gabled or shed roofs and, therefore, can only be structurally
differentiated from BT 12/13 by increased footprint area. In Belmopan, BT 22 is characterized by
a simple rectangular footprint. Usually these buildings enclose two dwelling units on two stories.
BT 23 contains multiple apartments; the increased footprint area allows multiple apartments per story.
The number of stories can exceed two. BT 24 is a modern multifamily apartment, which is constructed
by modern materials and highly equipped with modern technical devices. It shows complex footprints
and roof structures. Table 3 and Figure 5 give an overview on the building typology for Belmopan.

Table 3. Building typology for Belmopan, criteria to visual on-site differentiation.

Criteria BT 11 BT 12 BT 13 BT 14

Denomination Single Family Basic Single Family
Standard

Single Family
Advanced

Single Family
Complex

Building footprint characteristics Any Rectangular Rectangular with
extensions Complex

Roof characteristics Any Rectangular/gabled
roof Cross gabled roof Complex roof

Construction material Natural Concrete Concrete Concrete
Number of stories 1 1 >1 >1.5

Criteria BT 21 BT 22 BT 23 BT 24

Denomination Multi-Family Basic Multi-Family
Standard

Multi-Family
Apartment

Multi-Family
Modern

Building footprint complexity Rectangular Rectangular Rectangular Complex

Roof complexity Rectangular,
gabled/shed roof Flat, rectangular Flat, rectangular Complex

Construction material Concrete Concrete Concrete Concrete
Number of stories 1 2 >2 >2
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2.2.5. Classification of Building Types

The classification of building types was conducted in two steps. First a supervised classification
was conducted based on the reference classes collected during the field survey (Section 2.1.4.). Of the
405 collected buildings, 363 were identified as residential and used for the training. A variety of
attributes were computed per building polygon that served as explanatory features for the prediction:

• Geometry features (n = 6): area; perimeter; number of corners; shape ratio (area/perimeter);
shape index [89]; average height (Section 2.2.1.).

• Distance features (Euclidean, n = 8): roads; paved roads; bus lines; parcels of land use commercial;
parcels of land use education; parcels of land use green spaces; parcels of land use industry;
parcels of land use public.

• Density features (n = 5): average building density within a radius of 150 and 250 m; absolute
number of buildings within 50, 100, and 200 m.

• Land use features (according to the official plan provided by the city council, n = 2).
10 parcel classes: agriculture, commercial, education, green space, industrial, mixed use,
public/institutional, residential, utilities, vacant. Four sector classes: built-up, developing,
vacant/agriculture/forest, university.

• Spectral features (average per polygon, n = 4): HR red; HR green; HR blue; HR infrared.

These 25 features were used for the training of a random forest classifier, an algorithm originating
from machine learning, which repeatedly uses subsets of the training data and explanatory features
to calculate classification trees based on variable thresholding [90]. In our case, 1500 trees were
computed based on five randomly selected features and 236 randomly selected building types for
training (subset of 65%). In the end, a final classification is retrieved for each building based on the
majority class of all 1500 iterations.

This resulted in a classification of all buildings in the city. Of course, buildings which were
attributed as public, commercial, industrial, or uninhabited based on the field survey or data from
OpenStreetMap and Google Maps were not assigned a residential building type.

2.2.6. Processing of Socio-Economic Data

The key assumption underlying our approach of gathering relevant data for supply and disposal
infrastructure planning is that different socio-economic groups of households living in different
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building types have different habits and lifestyles, which in turn result in different material and energy
flows. In order to prove this correlation, the different socio-economic states of the households in
Belmopan had to be determined and classified before assigning them to different building types.

All 425 interviews were checked for plausibility. In the case of unrealistic replies and insufficient
numbers of replies for statistical categorization, such related questionnaires were not considered. A total
of 395 out of the 425 socio-economic datasets surveyed in Belmopan proved to be statistically reliable
after initial analyses. In order to determine the socio-economic status of the surveyed households
as relative position in the sample groups, a multidimensional approach was developed. Similar to
the “Social Class Index” applied in a German health survey [91], the socio-economic index developed
within this current study is based on three categories of questions and their respective answers. On the
basis of the socio-economic data gathered in Belmopan the categories which proved to be appropriate
for creating the relevant index were:

1. Expenditures.
2. Educational level.
3. Household assets (owned items).

Expenditures was chosen as the first category because answers involving questions on expenditures
in an interview-based survey are usually more reliable than those on income [92]. The OECD equivalence
square root scale was used to take differences in household sizes and nonlinearities with respect
to growing household sizes and related expenditures into account [93]. The educational level was
integrated in the index with six different characteristics. Following the “Udai Pareek Scale” developed
to examine the socio-economic status of rural population in India by Singh (2017) [92], the third
category focusses on the different assets (owned items) of the household. This allows contemplating
the financial situation of a household in a long-term perspective.

The six different educational levels ascertained for Belmopan, ranging between “no graduation
(category 1)” and “Master/or higher (category 6)”, determined the main structure of the six classes
in each category of the socio-economic index which was developed via this context. Following this
structure, the total expenditures of the households were grouped into six classes of equal size. Likewise,
the household assets (owned items) queried with binary questions were divided into six classes to fit
into this structure.

In order to determine the socio-economic status of a surveyed household, and so to make it
comparable, points were assigned to the six classes in the three primary categories, thus forming a point
scheme ranging from 3 to 18 socio-economic points. As a result, a generated proxy variable within this
scheme with a value of 3 determines the lowest and with a value of 18 the highest socio-economic
status (SES) of a household.

2.2.7. Classification and Prediction of Socio-Economic Data

Related to the building types, socio-economic projections can be assigned to the single buildings,
as described in the previous section. To avoid the impression of precision of the 15-point scale (3–18),
and a source of errors in the prediction of socio-economy, socio-economic points are aggregated into
socio-economic classes (SEC). Besides reducing errors in predicting socio-economic information, it can
be critical to publish detailed sensitive information regarding resident’s socio-economic status at a
single building level. Creating classes helps avoid the possibility of instrumentalizing the results so to
marginalize and expose residents of single buildings. Therefore, because different building types can
host dwellers of similar socio-economic status, there is no reason to define an identical number of SEC
as building types. The determining criterion for the number of SEC must be the statistical similarity
of SEP.

Furthermore, as land value varies depending on the location and distance from places of urban
activity, the necessity to subdivide building types based on spatial and location-based information
may be identified. Studies have shown that the highest land values are to be expected in the city
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centers and central business districts [31,94]. Without local expertise it is hardly possible to define a
city center, to which the land value development is related and to access the key influences on value
generation. Therefore, for this purpose, besides interviewing local experts [95] we created a set of
quality of life indicators [56,57] by means of geo-spatial attributes to test the process of building types
subdivision. The distance US Embassy located in Belmopan hereby was considered as quality of life
indicator because the security service regularly patrols the surrounding neighborhood, which leads to
higher security and due to this causes higher land values. Our selection results in the following quality
of life indicators:

• distance to main roads (ring road)
• distance to administrative center (city administration);
• distance to places of education;
• distance to market center (market square);
• distance to US Embassy;
• building density;
• vegetation density.

Correlating the above geo-spatial attributes to building types with high variation in
socio-economical description enables determining a threshold to divide a building type in the
subclasses “near” and “far”, e.g., building type “12 near” and building type “12 far”. The subdivision
“near” represents spatial proximity to city center, “far” represents buildings relatively distant to the
city center.

3. Results

3.1. Building Detection

Following the goal to give free access to the building footprints via the OSM database, the already
existing buildings had to be adjusted to the 2018/03/29 WV-1 acquisition. The standard base image on
OSM was acquired between 2008 and 2010. This could be verified via the water treatment plant being
under construction in the base image, which was under construction in the stated period. Therefore
approximately 1500 pre-existing buildings were adjusted to their correct location by means of the
orthorectified WV-1 scene and their building footprints updated accordingly. Buildings which were
generated on the previous scene, which are no longer present in the recent acquisition, were removed
for the present state of the database.

Based on this initial building footprint adaption the remaining buildings were digitized. At the
time the WV-1 image was acquired on 2019/03/29 we detected a total number of 6627 buildings.

3.2. Building Type Classification

The initial trainings accuracy of the random forest classifier was comparably low: 56.7%. This is
because there was considerable class overlap between the building types Single Family Basic, Standard,
and advanced, as well as between Single Family Standard and Multi-Family Standard as shown in
Table 4. Accordingly, user’s and producer’s accuracies are largely below 60%. To reduce this overlap,
the created building type classifications were refined through logical expressions based on the criteria
presented in Table 3 and statistical evaluation of critical thresholds. For instance, any building which
was classified as Single Family (BT1x) but has a size below 30 m2 will be reclassified to “uninhabited”.
Hereby to reclassify building types, the building height is an important building attribute. A set of 249
building measurements was measured in situ to verify the building heights derived by the WV-1 nDSM.
The accuracy analysis revealed a root mean square error (RSME) of 1.23 (measurement unit: meters),
which indicates good quality of the determined building heights. A chart containing information in
this respect is shown in Appendix A. The full list of the applied rules is shown in Appendix B.
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Table 4. Error matrix of building types after the random forest classification.

Classified
∑

PA

BT11 BT12 BT13 BT14 BT21 BT22 BT23 BT24

real

BT11 18 20 1 0 0 0 0 0 39 46.2
BT12 4 105 21 0 2 1 0 0 133 78.9
BT13 0 33 48 3 1 1 1 0 87 55.2
BT14 1 2 15 18 2 3 2 0 43 41.9
BT21 1 6 6 2 4 1 0 0 20 20.0
BT22 0 9 3 7 0 5 2 0 26 19.2
BT23 0 0 2 3 0 1 8 0 15 57.1
BT24 0 1 0 0 0 0 0 0 1 0.0∑

24 176 96 33 9 12 13 0 363
UA 75.0 59.7 50.0 54.5 44.4 41.7 61.5 0.0 56.7

BT = building type (Figure 2), PA = producer’s accuracy in %, UA = user’s accuracy in %.

After the application of the refinement rules, the overall classification accuracy increased to 86.8%
with user’s and producer’s accuracies over 75% for most of the classes (Table 5). However, even with a
manual refinement of the classes, a small class overlap could not be eliminated, especially between
Single Family Standard (BT12) and Multi-Family Basic (BT21), as they are both characterized by one
story and small to medium size. The table also shows that the Multi-Family Standard (BT22) has
the lowest of all accuracies and is therefore probably underestimated in the prediction (only 43.8%
producer’s accuracy). However, based on its comparably low occurrence in Belmopan, this error is
tolerable at the cost of high accuracies in the single family buildings. The same applies for Multi-Family
Modern Apartment (BT24) which was not predicted by the classifier at all because of its low frequency
in the training data (n = 1).

Table 5. Classification matrix of building types after the random forest classification.

Classified
∑

PA

BT11 BT12 BT13 BT14 BT21 BT22 BT23 BT24

real

BT11 32 20 1 0 0 0 0 0 35 91.4
BT12 4 147 3 0 0 1 0 0 155 94.8
BT13 0 2 84 3 0 1 1 0 91 92.3
BT14 1 2 2 25 1 1 0 0 32 78.1
BT21 1 4 1 2 10 1 0 0 19 52.6
BT22 0 2 3 2 0 7 2 0 16 43.8
BT23 0 0 2 2 0 1 10 0 14 71.4
BT24 0 1 0 0 0 0 0 0 1 0.0∑

38 160 96 33 9 12 13 0 363
UA 84.2 91.9 87.5 75.8 88.9 58.3 76.9 0.0 86.8

BT = building type (Figure 2), PA = producer’s accuracy in %, UA = user’s accuracy in %.

After the assignment of new classes all 6627 building footprints were classified as demonstrated
in Table 6, with Single Family Standard as the most frequent class (46%). A total of 760 buildings
were assigned to a primary non-residential use (public, commercial, industrial, uninhabited) based on
the field survey and data from OpenStreetMap and Google Maps. It is however likely that there are
even more non-residential buildings within the city which can be excluded from the socio-economic
analyses. Building type 24 is present in Belmopan with minimal numbers. Therefore, it is challenging
to characterize this building type in the training dataset with one sample. During data collection
campaigns, the focus has solely been laid on residential building information. This leads especially to
an underrepresentation of industrial used buildings, but as well other uses such as commerce, as a
complete database for non-residential building use is not publicly available. Generally, single family
buildings are classified more accurately than multi-family buildings. As dwelling numbers cannot be
determined by remote sensing imagery, proxies such as building height must be applied. Even with a
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very high spatial resolution of 0.5 m, the building heights derived by WV-1 can contain variations due
to roof-covering vegetation, and other influences and therefore can lead to misclassification. The map
in Figure 6 gives an overview on the building type classification in Belmopan.

Table 6. Building type information in Belmopan.

Building Type Number of Buildings Share of Total Number

11—Single Family Basic 764 11.5%
12—Single Family Standard 3060 46.2%

13—Single Family Advanced 1211 18.3%
14—Single Family Complex 566 8.6%

21—Multi-Family Basic 33 0.5%
22—Multi-Family Standard 138 2.0%

23—Multi-Family Apartment 94 1.4%
24—Multi-Family Modern Apartment 1 <0.1%

Public 166 2.5%
Commercial 219 3.3%

Industrial 6 <0.1%
Uninhabited 369 5.5%

Total 6627 100%
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Figure 6. Map of detected buildings and classified building types in Belmopan (date: 2019/03/18).
Total number of detected buildings: 6627. Manual assignment “Public”, “Commerce”, “Industry” on
best knowledge. Background: PlanetLabs, 2018/03/18.; Stamen Design, Data by OpenStreetMap.

3.3. Socio-Economic Points Determination

The mean expenditures—normalized by the square root of the household size (corresponding
to OECD recommendation [93])—of the investigated households amount to 1320 BZD per month
ranging from less than 600 BZD for the lower 25% of households to more than 1450 BZD per month
for the upper 25%. The median expenditures were 930 BZD per month. As can be seen in Figure 5,
roughly half of the monthly expenditures are on food (27%) and housing including additional costs
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(22%). Other major spending factors are medical care (16%) which include medicine, doctor’s visits
and health insurance, and mobility (15%).

As a second category of the socio-economic index, items owned by the households (assets) were
considered. Within this category various items and features were queried, of which 24 selected assets
were determined to be included into the index. Figure 7b shows these 24 main assets and the percentage
of households that own them. As one can see, there are some assets that the majority of the surveyed
households own like a stove (98%) or an electric fan (95%) but also assets that are relatively rare like a
dishwasher (13%) or a generator (5%).
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Figure 7. Percentage share of household expenditures (a) and household assets (b) in Belmopan
(n = 395 interviews).

The third category considers educational degrees. With the “associate’s degree” as the first
university degree in Belize, six different educational levels were identified for Belmopan ranging
from no school graduation (educational class 1) to master’s degree or higher (educational class 6).
Figure 8 shows the shares of the educational levels of the main income earners of the households in the
surveyed areas. About a quarter of the main income earners in the interviewed households have only
primary school graduation (17%) or no school graduation at all (10%), in contrast to the 45% that hold
a university degree (associate’s degree 17%, 18% bachelor’s degree, 10% master’s degree or higher).
Figure 8 gives an overview on the educational degrees of the main income earners in Belmopan.
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Figure 8. Educational degree for main income earner in Belmopan (n = 395 interviews).

Based on the developed socio-economic index (see Section 2.2.6.) the socio-economic points
(SEP) were derived by the results of the three categories. The average socio-economic points of the
395 investigated households is 10.5. The distribution of the SEPs is shown in Figure 9. Appendix C
provides a summary of the composition of SEP based on the three used components per building type.
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Figure 9. Histogram showing the statistical distribution of residential socio-economic points on
household level in Belmopan. Data based on interviews.

3.4. Class Generation and Extrapolation

As Figure 10a shows, building types can be described by SEP. However, building types 12,
13, and 22 show high variations of socio-economic points. This leads to imprecise socio-economic
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predictions. To reduce this variation, building types 12, 13, and 22 needed to be disaggregated in
subclasses 12a/12b, 13a/13b, and 22a/22b. A set of best fitting spatial indicators were tested to serve as
parameters for splitting the building types. Table A1 in Appendix D shows the relationships between
intra-building type socio-economic measures and spatial indicators. Distance to market center, distance
between the ring road and building, the share of buildings within a 250-m hexagon, delivered the best
results. For building type 13, the distance to the US Embassy showed with an r = −0.33 the highest
correlation coefficient to the decline of socio-economic measures compared to the other quality of life
indicators tested with a p = 0.00001 showing high significance (Figure 11b). The correlation analysis
between the SEP (BT22) and share of built-up area parameter revealed an r = 0.44, but a relatively high
p = 0.15. This is due to the small sample size, but the obvious trend can be seen. Figure 11 shows the
correlations between the spatial indicators and socio-economic measures within building types 12, 13,
and 22. An overview on thresholds for building type separation and socio-economic statistics for the
building types is given in Appendix E.
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Figure 10. Boxplot chart showing statistical distribution of SEPs over building types. (a) Initial building
typology with high SEP variation in building type classes 12, 13, and 22. (b) The statistical distribution
of SEP on refined building typology with effect of reduced variation of SEP for the building type classes
12a/b, 12a/b, and 22a/b. In (b), socio-economic class (SEC) assignment is indicated by colored contours
(SEC I: blue, SEC II: yellow, SEC III: pink, SEC IV turquoise, SEC V: green). For detailed statistics see
Appendix E.
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As described in Section 2.2.7, there is a necessity to create socio-economic classes for three reasons:

1. To predict socio-economic relevant planning values on a single building scale based on
building type;

2. To avoid a false impression of precision;
3. Not to publish detailed sensitive information on resident’s socio-economic status at a single

building level.

The classes were chosen considering the SEP statistics of the building types. On this basis,
the classes were assigned manually. We chose to establish five socio-economic classes, with the effect
that not every building type represents a single socio-economic class, for which there is no need. Main
decision criteria are the highest possible homogeneity in SEP. By comparing mean socio-economic
points and standard deviations of SEP within the building types, we set up the class assignment shown
in Table 7, which meets the stated criteria for homogeneity in SEPs.

Table 7. Table on assignment of socio-economic classes to building types and number of buildings to
corresponding building type classes and socio-economic classes.

Socio-Economic Class Building Types Number of Buildings

I
11 764

12 far 2573

II
13 far 792

22 dense 80

III
12 close 487

21 33

IV
13 close 419
22 open 58

V 14 566

Total number of residential buildings 5772

Based on these assignment rules, the socio-economic class was predicted for residential buildings.
Figure 12 gives an graphical example for building types and the referring SEC in Belmopan.
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4. Discussion

Basing on building footprints, building types can be classified with random forest in high accuracy.
Besides footprint area, a database of ancillary data for three-dimensional building description, spatial
information, and rule-based adaptions are essential for successful classification results, as shown in
Appendix B.

The intended and applied interview design based on a spatial sampling method that defines
areas for interviews using areas of major building type abundances enables the socio-economic
characterization for Belmopan. The establishment of the SEP as index to describe residential
socio-economic backgrounds delivers good results by combining information on expenditure,
educational level, assets, and household income. Correlations between building types and
socio-economic information could be proven in this study. For predicting socio-economic attributes, we
think it is necessary to create socio-economic classes. Predicting a socio-economic 15-part scale generates
too much room for decreased accuracy, therefore a socio-economic classification containing five classes
represents socio-economic information in relation to building types with sufficient information content.

The success of the work is directly linked to the collaboration with local authorities and in situ
interviews. Our study showed that the implementation of local knowledge is essential to the result for
multiple reasons:

1. The establishment of the building typology needs to be adapted for individual case cities.
High variations in building types can even exist within countries;

2. The generation of socio-economic information and a socio-economic scaling, SEP in our study,
must be based on local information and current surveys;

3. This work indirectly confirms findings of previous studies on location-dependent land value [31,94]
through high variation of SEP within single building types. By applying spatial measures, building
types can be disaggregated to achieve building types homogenous in SEPs. To identify reference
points of urban function, local knowledge is needed as well.

As the relation between building types and socio-economic categorization is shown, it is possible
to characterize municipalities for supply and infrastructure planning. Socio-economic information
is not directly utilizable as planning value, but the relation between consumption/waste production
and socio-economy has been shown [6–10]. Furthermore, the interview design allows conclusion on
household assets—on which energy demands can be estimated. Knowledge on building types can
support describing and predicting socio-economic attributes. As the socio-economic classification is an
a-posteriori measure, a focus should be put on validating the socio-economic measures.

The presented methodology is not limited to WV-1 data. Other VHR imaging satellites can be
implemented for building detection and building type classification, which offer a high flexibility
for data generation, especially for upcoming satellites missions such as Pléiades Neo [74] and the
WorldView Legion [75]. A higher number of VHR imaging satellites leads to increased data availability
and higher data reliability. As a result of this, our presented approach is able to continue in operation
for long-term urban mapping and planning.

Nonetheless, an awareness must be created that with using VHR imaging technology, data
producers and data users are moving on both sides of the borderline of personal privacy and space.
The presented methodology produces sensitive information, which can in incautious motivations help
expose certain groups of inhabitants or, respectively, induce or increase social conflicts. Discussions
must be conducted on how to handle this level of information in general.
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5. Conclusions

Our presented methodology proved to be able to provide valuable relevant socio-economic
indicators for planning. VHR remote sensing data and in-situ household interviews are essential for
high accuracy results. For larger municipalities, other building detection approaches must be used
to reduce processing time and manual corrections. Regarding this, techniques basing on machine
learning have shown their potential for fast processing of large amounts of satellite imagery [26,30].

Considering Zhu’s demand for future strategic directions in urban remote sensing to contribute to
the use remote sensing techniques for the “characterization of urban heterogeneity, characterization of
urban form and structure in two and three dimensions, and linking remote sensing with emerging
urban data” [96], this study works in this manner and shows a way to implement VHR remote sensing
data for urban infrastructure planning and delivers information to support evidence based planning [4].
As previously shown, the availability of satellite imagery will increase and therefore a constant data
availability will be established. Furthermore, the potential of unmanned aerial vehicles (UAVs) for
the quick and cost-effective mapping of urban areas can be exploited even more [97]. The findings of
this study, to predict socio-economic information by using VHR images, have shown the potential to
support urban planning. Subsequently, we see a necessity to do further investigation on the suitability
of such data to derive relevant information for direct planning from similar databases. With knowledge
regarding building parameters, such as building height and roof information, and having access to
building type and socio-economic information on residents, further attempts should be made to predict
specific consumption and production patterns, such as energy demands, waste water production,
and solid waste production as Vetter-Gindele [87] has shown for waste production.

Author Contributions: Conceptualization, G.W.; methodology, G.W., A.B., O.A.; validation, A.B., G.W., V.H., O.A.,
K.F.; formal analysis, G.W., A.B., O.A., K.F.; investigation, G.W.; data curation, G.W., A.B., K.F.; writing—original
draft preparation, G.W.; writing—review and editing, G.W., A.B., O.A.; visualization, G.W., A.B., K.F.; supervision,
V.H., O.A.; project administration, V.H., O.A.; funding acquisition, V.H., O.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the German Federal Ministry of Education and Research (BMBF)
under the project “RapidPlanning” (grant identifier 01LG1301K). We acknowledge support by Deutsche
Forschungsgemeinschaft and Open Access Publishing Fund of University of Tübingen.

Acknowledgments: We thank Dieter Steinbach and Andrea Schultheis from AT-Association for developing and
bringing up the idea of deriving planning relevant information with relevance of building types. Many thanks to
the Belmopan City Council for their hospitality, as well as for the fruitful and professional collaboration which
made this work possible, including the provision of data and the tireless support during our field work. Special
thanks to Paul Wehrle, who organized, supervised, and conducted the interview campaign in 2019. We are very
grateful for the language advising provided by Edward III Cahill. PlanetScope data was kindly provided by
Planet with the Education and Research program.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2020, 12, 1730 21 of 27

Appendix A. Building Heights Validation

Remote Sens. 2020, 12, 1730 20 of 27 

 

to do further investigation on the suitability of such data to derive relevant information for direct 

planning from similar databases. With knowledge regarding building parameters, such as building 

height and roof information, and having access to building type and socio-economic information on 

residents, further attempts should be made to predict specific consumption and production patterns, 

such as energy demands, waste water production, and solid waste production as Vetter-Gindele [87] 

has shown for waste production.  

Author Contributions: Conceptualization, G.W.; methodology, G.W., A.B., O.A.; validation, A.B., G.W., V.H. 

O.A., K.F.; formal analysis, G.W., A.B., O.A., K.F.; investigation, G.W.; data curation,G.W., A.B., K.F.; writing—

original draft preparation, G.W.; writing—review and editing, G.W., A.B., O.A.; visualization, G.W., A.B., K.F.; 

supervision, V.H., O.A.; project administration, V.H., O.A.; funding acquisition, V.H., O.A. All authors have read 

and agreed to the published version of the manuscript. 

Funding: This research was funded by the German Federal Ministry of Education and Research (BMBF) under 

the project “RapidPlanning” (grant identifier 01LG1301K). We acknowledge support by Deutsche 

Forschungsgemeinschaft and Open Access Publishing Fund of University of Tübingen. 

Acknowledgments: We thank Dieter Steinbach and Andrea Schultheis from AT-Association for developing and 

bringing up the idea of deriving planning relevant information with relevance of building types. Many thanks 

to the Belmopan City Council for their hospitality, as well as for the fruitful and professional collaboration which 

made this work possible, including the provision of data and the tireless support during our field work. Special 

thanks to Paul Wehrle, who organized, supervised, and conducted the interview campaign in 2019. We are very 

grateful for the language advising provided by Edward III Cahill. PlanetScope data was kindly provided by 

Planet with the Education and Research program. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A: Building Heights Validation 

 

Figure A1. Validation for determined building heights from WV-1 nDSM. The reference dataset was 

generated by 249 measured buildings. The mean building represents the mean height from wall 

height and rooftop height. 

  

Figure A1. Validation for determined building heights from WV-1 nDSM. The reference dataset was
generated by 249 measured buildings. The mean building represents the mean height from wall height
and rooftop height.

Appendix B. Manual Refinement of Building Type Classifications

IF BT12 AND area < 125 THEN BT11
IF BT13 AND corners > 7 THEN BT12
IF BT12 AND area > 150 AND height > 4 THEN BT13
IF BT13 AND area < 140 AND height < 3.15 THEN BT12
IF BT13 AND shape_ratio > 3.05 THEN BT14
IF BT21 AND corners > 4 AND area < 220 THEN BT13
IF BT22 AND corners < 6 AND height < 3.9 THEN BT12
IF BT22 AND corners > 6 AND area < 350 THEN BT14
IF BT23 AND height > 5.25 THEN BT14
IF BT1x AND area > 150 AND height > 3.05 THEN BT21
IF BT14 AND corners < 7 AND area > 145 THEN BT22
IF BT14 AND height > 5.15 ABD AREA > 190 THEN BT23
IF BT11 AND (’Elysium’ OR ’Florida’ OR ’Maya Ketchi’ OR ’Maya Mopan’ OR ’Maya Yucatec’ OR

’Utopian’ OR ’Salvapan’ OR ’North Salvapan’ OR ’San Martin’) THEN BT12
IF BT1x AND perimeter > 47 AND height > 3.7 AND corners > 7 AND shape_ratio > 3.4 AND

area > 230 THEN BT14
IF BT1x AND area < 30 THEN uninhabited
IF BT1x AND area > 510 AND corners ≤ 5 THEN uninhabited

uninhabited
“btype_complete” like ‘%Single%’ and “shp_area” > 510 and “shp_corners” <= 5
“shp_area” < 30

Single Family Advanced
“btype_complete” = ‘Single Family Standard’ and “hgt_building” > 4 and “shp_area” > 150
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Figure A2. SEPs per building type. As described in Section 2.2.6, total SEP are composed of household
expenditures, household assets, and educational level of household main earner.

Appendix D. Table Showing Correlation between SEP and Distances from Urban Points
of Centrality

Table A1. Relation between distance from buildings to point urban centrality to socio-economy on
building type level.

SEP (Building Type Level) r
Ringroad

r
Center

r
US Embassy

r
Built-Up 250 m

12—Single Family Standard −0.47
(p = 1.8 * 10−7)

−0.48
(p = 1.1 * 10−7)

−0.44
(p = 1.4 * 10−6)

0.29
(p = 0.002)

13—Single Family Advanced −0.19
(p = 0.01)

−0.27
(p = 0.0004)

−0.33
(p = 1.2 * 10−5)

0.05
(p = 0.5)

22—Multi-Family Standard −0.30
(p = 0.33)

−0.43
(p = 0.15)

−0.19
(p = 0.55)

0.44
(p = 0.15)

r = correlation coefficient, p = p-value.
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Appendix E. Overview on Parameters for Disaggregating Building Types 12, 13, and 22

Table A2. Overview on thresholds for building type disaggregation and socio-economic statistics on
refined building types. Thresholds for building type disaggregation apply to BT12: distance to market
center, BT13: distance to US embassy, BT22: share of built-up area within a 250 m hexagon.

Initial Building Types n Mean SEP Standard Deviation SEP Threshold

12—Single Family Standard 108 10.4 2.79 988 m
13—Single Family Advanced 172 11.6 2.94 1018 m
22—Multi-Family Standard 12 11.8 3.30 0.125

Refined Building types n Mean SEP Standard Deviation SEP

11—Single Family basic 55 7.3 2.2
12a—Single Family Standard close 74 11.3 2.59
12b—Single Family Standard far 34 8.3 1.99

13a—Single Family Advanced close 69 12.8 2.6
13b—Single Family Advanced far 103 10.9 2.9

14—Single Family complex 24 14.7 2.1
22a—Multi-Family Advanced open 6 13.8 1.47
22b—Multi-Family Advanced dense 6 9.8 3.48

23—Multi-Family Apartment 1 15 -

Thresholds applied to following parameters: Building type 12: “distance to ring road (in meters)”, building type 12:
“distance to market center (in meters)”, building type 22: “shared built-up area within a 250 m hexagon”.
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Abstract:  1 

Photovoltaic (PV) energy plays an important role in order to reduce the share of carbon 2 

fuels as energy source and increase energy independence due to its decentral potential 3 

as energy source. Therefore, PV electricity generation can serve as a piece of the puzzle 4 

in national energy strategies to reduce the carbon footprint but as well as an opportunity 5 

for households to reduce energy dependence and thus to reduce energy expenses. In this 6 

given context and to point out methods to support urban infrastructure planning, this 7 

study analyzes the feasibility of estimating electric consumption related to the building 8 

type and to perform PV energy balancing based on height information retrieved imagery 9 

from unmanned aerial vehicles (UAV). The overall approach bases on the determination 10 

of residential building types through a Random Forest classification, using spatially 11 

very high-resolution aerial imagery from UAV data collections. In this regard, the 12 

results show very satisfying overall accuracies of 0.73. Statistics on data from 13 

residential interviews show deviating energy consumption patterns within different 14 

building types, therefore, we show that building types can be indicators for electric 15 

consumption. Using Structure-from-Motion (SfM) based height information and recent 16 

PV panel characteristics, roof-based PV electricity generation can be predicted. 17 

Applying this approach, we can relate energy consumption with potential PV energy 18 

production to determine a PV energy balance. Out of 1,619 analyzed buildings in 19 

Belmopan, we found that 97.9% of the buildings are suitable for PV panel installation. 20 

We calculated two scenarios with firstly installing maximum number of PV panels on 21 

the best-suited field of roof of each building to show the overall PV potential in 22 

Belmopan and secondly, installing maximum two PV panels on the best-suited field of 23 

roof of each building to evaluate a more realistic and easier implementable scenario. 24 

For scenario 1, an average PV energy surplus per building of 148% can be achieved 25 

and for scenario 2, only one building shows a slightly negative energy PV energy 26 

balance. An average energy surplus per building of 29.5% can be achieved using only 27 

two PV panels. On the one hand the outcomes of this study in general show the 28 

enormous potential of PV electricity generation in Belmopan, but as well that this 29 

approach is able to deliver a data basis for decision making in urban planning and 30 

renewable energy policy development. 31 

Keywords: building types, photovoltaic energy balancing, unmanned aerial vehicles, 32 

structure-from-motion, household survey, urban planning  33 
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1. Introduction 34 

In 2018, 55.7% of the global city-dwelling population consumed 75% of global 35 

energy (United Nations, 2018; World Bank, 2018). This number elucidates the 36 

demand on energy supply and urban infrastructure, especially in the face of ongoing 37 

urbanization. The residential sector hereby has a significant share in electricity 38 

consumption, in the European Union the residential sector consumes 28.6% (Eurostat, 39 

2021) and in Belize the residential sector covers 39.5% of the national electric energy 40 

consumption (Belize Energy Unit, 2020b). Moreover, the relation between 41 

urbanization rate and energy consumption underlines the necessity of proper urban 42 

infrastructure planning to meet future energy demands and to ensure stable energy 43 

supply and consumption. To minimize the environmental impact of energy production 44 

and energy supply, approaches for sustainable infrastructure planning have to be 45 

developed and implemented (Malekpour et al., 2015). The sustainable development 46 

goals (SDG), proclaimed by the United Nations in 2015 (United Nations, 2015), 47 

hereby set targets that have distinct relevance for urban infrastructure planning: SDG 48 

7 affordable and clean energy and SDG 13 climate action (United Nations, 2015). 49 

Since the majority of the global population lives in urban areas, cities are a central 50 

place to implement SDGs, because municipal organizations can act as local 51 

coordinators to implement SDGs (Fenton and Gustafsson, 2017). To not increase 52 

inequalities in urban areas through climate change impacts, most vulnerable groups 53 

have to be kept in focus to develop adaptation and mitigation policies (Reckien et al., 54 

2017). Photovoltaic (PV) electric energy production strategies can significantly 55 

contribute to SDG 7: affordable and clean energy production, SDG 10: reduce 56 

inequality and SDG 13: climate action (United Nations, 2015). Proper PV policies and 57 

feed-in-tariff strategies have positive short- and long-term effects (Poruschi and 58 

Ambrey, 2019), from which economically weak groups could benefit, as in general 59 

PV implementation is correlated to economic variables such as gross domestic 60 

product and social variables such as highest academic grade (Lin et al., 2018). 61 
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So far, planning decisions and strategies tend to ad hoc problem-oriented approaches, 62 

SDGs can help break out of these habits and draw attention to wider approaches 63 

(Sanchez-Rodriguez et al., 2018), which is why a strategy change towards evidence-64 

based planning is demanded (Guterres, 2018). However, to meet the aims of SDGs 65 

through appropriate urban planning, high-quality data is missing for the planning 66 

processes, especially data based on household surveys (Klopp and Petretta, 2017) to 67 

gain an understanding of urban dynamics, especially as urban planning was criticized 68 

for only focusing physical adaptions and its lacking capacities to face economic, 69 

political and socio-cultural conflicts (Blair, 1973). Therefore, sustainable urban 70 

infrastructure planning requires social understanding of cities (Romero Rodríguez et 71 

al., 2017) going beyond highest classification accuracies of remote sensing (RS) 72 

analyses and a team effort of scientists and practitioners (Malekpour et al., 2015) to 73 

enable implementable planning on a solid data foundation, for which scientists have 74 

to develop appropriate approaches. 75 

Our study city Belmopan in Belize undergoes an annual urban population growth rate 76 

of 6.4% between 2014 and 2018 (Statistical Institute of Belize, 2019), which 77 

underlines the need for an urban planning strategy. As later shown in the following 78 

sections, although Belize has a geographically favorable location for PV electricity 79 

production, it only has a minor share in the national energy mix. Considering 80 

Belmopan’s location and relatively high prices for energy in Belize (see section 3.2), 81 

decentralized PV energy generation has the potential to be both a pillar in the national 82 

energy mix and to provide more affordable energy given an adequate solar policy, 83 

thus benefiting both the overall economy and minimizing economic disparities. 84 

In this context, we see a potential for approaches based on RS techniques to support 85 

urban infrastructure planning by providing relevant data on building-specific energy 86 

consumption and modelled PV energy production. Such information is needed to plan 87 

energy supply infrastructure on a communal, regional and national level, but 88 

additionally, to develop socially fair policies for PV implementation. 89 
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In urban RS, a recent research focus lies on the determination of socio-economic 90 

indicators which is very relevant, as energy consumption correlates with higher GDP 91 

and HDI values (Martínez, 2015) and as urban quality is in relation to socio-economic 92 

factors (Musse et al., 2018). Using medium resolution data, urban structure has 93 

recently been determined through Landsat nighttime light (NTL) data (Liu et al., 94 

2017), socio-economic information is explained by multi-temporal data analysis 95 

(Sapena et al., 2020). 96 

Very high-resolution (VHR) RS data is used for tree detection and green space 97 

classification by aerial optical and LiDAR data using neural networks (Chen et al., 98 

2021). 99 

A building type-based approach was chosen for change detection in the building stock 100 

bach (Bachofer et al., 2019) and socio-economic assumptions on a single building 101 

level (Warth et al., 2020), residential waste production on a city level was estimated 102 

using urban structure information (Vetter-Gindele et al., 2019). 103 

In order to estimate energy consumption, settlement classes were generated based on 104 

Landsat NTL data (Chowdhury et al., 2019) and energy consumption was correlated 105 

with thermal measurements through Landsat 8 (Jazizadeh and Taleghani, 2016). On a 106 

building-specific scale, approaches base on grouping buildings into similar thermo-107 

physical characteristics and assigning building age classes (Wan and Yik, 2004; 108 

Ballarini et al., 2014). Deep learning approaches in the urban context have a main 109 

focus, because these approaches promise to achieve very high detection accuracies (Li 110 

et al., 2019). Using VHR RS data, deep learning approaches are adapted for building 111 

detection (Audebert et al; Yi et al., 2019), slum mapping (Stark et al., 2020), object 112 

detection (Dong et al., 2019), and land-use mapping (Huang et al., 2018). 113 

Determination of functional urban zones is difficult using only RS data. Therefore, 114 

high-resolution imagery and mobile phone positioning data are combined (Tu et al., 115 

2018) and urban land use estimations are improved with social-media data (Liu et al., 116 

2017). 117 
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PV simulations have proven to provide high precision predictions for PV energy 118 

production (Compagnon, 2004; Brito et al., 2012; Romero Rodríguez et al., 2017). 119 

Therefore, to support cities in their transformation process towards a post-carbon city 120 

and to follow the hypothesis that knowledge on residential building type allows 121 

estimating electric energy consumption, we present an approach based on the single 122 

building level to determine electric energy demands and possible PV electric energy 123 

yield based on building types. This bottom-up approach allows energy balancing on 124 

different urban scales and provides valuable information for urban supply 125 

infrastructure planning and policy development. Cost effects are not considered in this 126 

study, but the results show the relevance of PV in this study to achieve SDG goals 7: 127 

affordable and clean energy and goal 13: climate action (United Nations, 2015). 128 

2. Materials and Methods 129 

This paper aims to present an approach for balancing photovoltaic energy production 130 

and residential energy consumption on a single building level to provide specific data 131 

for urban infrastructure planning purposes. The approach bases on building types, to 132 

which energy consumption can be related. UAV data enable predicting photovoltaic 133 

potential on a single building level. Through differencing energy consumption and 134 

energy production, an energy balance can be derived. The methodology consists of the 135 

following steps, which are presented in the following sections in detail: 136 

 UAV imaging campaign and Structure-from-Motion processing 137 

 Random Forest building type classification 138 

 Household survey to estimate electricity expenditures and building type specific 139 

residential energy consumption patterns 140 

 Scenario-based determination of roof-based photovoltaic energy production on 141 

single building level 142 

 Photovoltaic energy balancing on single building level 143 

2.1. Study area 144 

This study focuses on study areas in Belmopan (I-VI), hereafter referred to as districts 145 
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because they are oriented to precincts. Belmopan is the capital city of Belize with a 146 

population of 25,583 inhabitants in 2021 (Belmopan City Council, 2021a). After a 147 

series of hurricanes, the former capital function was moved from Belize City to 148 

Belmopan (Friesner, 1993), which was inaugurated for this purpose in 1970 (Kearns, 149 

1973) and was initially developed as a planned city (Everitt, 1984). The city is located 150 

in the center of Belize and covers an area of 32.25 km² (Warth et al., 2020). Despite 151 

its location in the tropical am climate zone after Köppen-Geiger (Kottek et al., 2006), 152 

Belmopan experiences in general very good conditions for photovoltaic energy 153 

generation, as will be shown in section 3.5. 154 

Due to limitations from battery capacities to cover the whole city of Belmopan with 155 

aerial campaigns, six city areas were defined to perform aerial imagery collection 156 

campaigns, as it is shown in figure 1. These areas were chosen on the basis of the 157 

preceding study by Warth et al. (2020), where building types were determined using 158 

WorldView-1 data, to cover as many different building types as possible. 159 

The total electric energy consumption in Belize in 2018 was 554,433 MWh, whereas 160 

39.5% are accounted for the residential sector and 52.3% are accounted for the 161 

commercial sector (Belize Energy Unit, 2020b). The commercial sector increased its 162 

share in electric energy consumption by 0.8%, whereas the residential sector increased 163 

its share by 2.6% (Belize Energy Unit, 2020a). Hydropower comprises a 45.0% share 164 

of the energy mix in Belize, followed by fossil fuels (29.9%) and biomass (16.9%). 165 

PV electricity production accounts for 0.1%. From 2016, the use of hydropower 166 

decreased by 7.8% and the use of fossil fuels increased by 29.8%, the amount of 167 

produced PV electricity increased by 1,443.6 % (Belize Energy Unit, 2020a). To meet 168 

the energy demand in Belize, import from Mexico amount to 235,100 MWh, which is 169 

an increase of 2.2% compared to 2016 (Belize Energy Unit, 2020b). This means that 170 

Belize imports 42.4% of its energy demand and therefore, depends greatly from 171 

imported electricity. 172 
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 173 

Fig. 1. Overview map of Belmopan and selected city districts as study areas. 174 

2.2. Structure-from-Motion analysis of Unmanned Aerial Vehicle campaign data 175 

To achieve a spatial overlap between aerial data and interview data, both data 176 

collection campaigns cover the same city districts. In order to cover all building types 177 

occurring in Belmopan, six areas within the city were defined based on the results of 178 

the previous study by Warth et al. (2020). 179 

Aerial image acquisition is performed by using an S110 Canon compact camera with 180 

a CMOS sensor, which can capture images up to a 4000x3000-pixel resolution 181 

(CameraDecision, 2021). The camera is mounted on a custom quad-copter in a nadir-182 

view installation. During operation, the flight controller records the image location in 183 

geographical coordinates by using the GPS signal. The Android app QGroundControl 184 

(Dronecode, 2019) is used on a tablet device to calculate flight paths based on desired 185 

spatial resolution, flying height, and image overlapping. An image overlapping factor 186 

in front and side direction of 70% is defined to enable Structure-from-Motion (SfM) 187 

processing.  188 

The aerial images are processed by applying SfM techniques (Ullman and Brenner, 189 

1979), which is a very user-friendly and robust approach (Westoby et al., 2012) to 190 
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generate very high-resolution ortho-imagery and Digital Elevation Models (DEM) 191 

based on overlapping imagery. For SfM processing, the Metashape software by 192 

Agisoft is used (Agisoft LLC, 2021). Metashape allows the generation of elevation-193 

related spatial raster products, such as the digital surface model (DSM), which 194 

describes surface heights, including all objects, and the normalized DSM (nDSM). It 195 

is normalized using the digital terrain model (DTM), which represents ground heights. 196 

The nDSM therefore only contains information on object heights. Additionally, 197 

optical orthomosaics are generated by using aerial imagery and height information. 198 

2.3. Electric energy consumption analysis through a resident survey 199 

To generate a data basis to estimate residential electricity consumption, a household 200 

survey in Belmopan was conducted in November 2019. The spatial sampling design 201 

for the interviews is generated based on the previous study on building types in 202 

Belmopan (Warth et al., 2020), for each residential building type, areas with 203 

dominating building type occurrence were identified and selected. After previous 204 

announcements using public communication channels, households were and asked to 205 

participate. The main focus of the household survey is on electricity consumption. 206 

Electric consumption is queried on the one hand by means of the yearly energy 207 

turnover (kWh) and on the other hand through the yearly paid electricity price. In both 208 

cases, residents were asked to provide bills in order to validate the resident’s 209 

statements on energy consumption. 210 

Based on the survey, specific energy consumption patterns are being determined for 211 

the residential building types, using standard statistical analyses such as mean annual 212 

energy consumption per building type. 213 

2.4. Building footprints adaption and parametrization 214 

For this study, the building footprints from a previous study conducted by Warth et al. 215 

(2020) are used in order to keep access to spatial, geometrical, and attribute 216 

information. Warth et al. (2020) integrated the building footprints into the 217 
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OpenStreetMap database (Haklay and Weber, 2008), where they can be downloaded. 218 

The building data are manually adapted to the orthomosaic to benefit from the very 219 

high spatial resolution. Therefore, horizontal displacement is compensated and the 220 

footprints are corrected by adapting polygon vertices in accordance with building 221 

corners. In case buildings are covered by vegetation, such as trees or rampant 222 

shrubbery, these areas are mapped and excluded for solar analysis. 223 

In order to provide building-describing parameters for training the building type 224 

classifier, several physical information is derived. Both building typology (see Fig. 2) 225 

and the attribute selection is strongly based on the previous study (Warth et al., 2020). 226 

To describe the geometry of the building footprints, the shape indices were found to 227 

be very useful (Lang and Blaschke, 2007). NDSM data provide information on 228 

building height and building volume. Classical DSM-based terrain describing 229 

products such as aspect and slope (Travis, 1975) provide information on roof slope 230 

and roof exposition. The information is processed using the SAGA GIS software 231 

(Conrad et al., 2015). Roof types can be described by the roof ridge occurrence, 232 

therefore roof ridges (RR) are manually captured using aspect and hillshade 233 

information. Besides the RR number and the total RR length per roof, RR densities 234 

related to total length and RR per area are calculated. Additionally, urban indices such 235 

as multi-scale building densities and distance parameters to places of urban functions 236 

are calculated: city center, places of education, central ring road, industry, US 237 

embassy, and distance to paved roads. 238 
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 239 

Fig. 2. Defined building types for Belmopan (Warth et al. 2020). 240 

2.5. Building type classification: Random Forest 241 

A Random Forest (RF) classifier (Breiman et al., 1984) was chosen to classify the 242 

building footprints. This machine learning approach generates a defined number of 243 

classification and regression trees (Breiman et al., 1984) with changing input 244 

attributes. Other than pixel-based RF approaches (Pal, 2005), spatial and geometric 245 

building footprint attributes serve as classification features. The RF classification 246 

parameters were adopted from Warth et al. (2020) in order to enable the comparison 247 

of classification results, namely to directly compare the influence of different spatial 248 

resolutions on classification accuracy (see Error! Reference source not found.). 249 

A set of 33 parameters is provided for the RF classifier containing shape information 250 

of the building footprint, three-dimensional building information basing on the nDSM 251 

and spatial information such as density and distance information. During the training 252 

process, the RF evaluates the relevance of the parameters for the best classification 253 

results. An overview of the RF classification parameters is given in section 3.4. 254 

For being able to evaluate and to compare the effect of the implementation of VHR 255 

UAV data instead of WorldView-1 imagery, the same parameters to train the RF 256 

classifier were chosen as in the previous study by Warth et al. (2020). Therefore, the 257 

Random Forest is defined by computing the majority building type classes of 1500 258 
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trees using five randomly selected features.  259 

During the data collection campaign in November and December 2019, an in-situ 260 

dataset, containing 328 building samples, was generated. Besides interview-based 261 

information on electric power consumption, the dataset contains information on 262 

building type and GPS-based location information. In order to train the classifier and 263 

to evaluate the classification results, for each building type class the data set 65% of 264 

the data are randomly selected to train the RF classifier (213 samples) and the 265 

remaining 35% of the data (115 samples) to be used for accuracy assessment. 266 

2.6. Single building photovoltaic potential approximation 267 

The photovoltaic (PV) potential approximation was performed by relating estimated 268 

roof-based PV power production and predicted household electric consumption by 269 

building type. 270 

2.6.1. Calculating annual PV electricity generation 271 

The annual total electricity from a PV system can be calculated the following 272 

formula:  273 

𝐸 =  𝑃𝑘 × 𝑃𝑅 × 𝐺 (Šúri et al., 2007) 274 

Where: 275 

E is the annually produced PV energy and  276 

Pk is the unit peak power, which is defined through the PV module efficiency and 277 

PV module area. Recent PV panel developer state realistic module efficiencies of 278 

23% (pv magazine, 2021). In our study, we assume a standard PV module area for 279 

a 60 cell module of 1,650 x 992 mm (Doelling, 2017).  280 

G is the annual global horizontal irradiation (GHI) (kWh/m2/year).  281 

Data from the National Solar Radiation Data Base (NSRDB), provided by the 282 
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National Renewable Energy Library (NREL) (Sengupta et al., 2019), is used to 283 

calculate the climatological average annual GHI. The NSRDB offers GHI data on a 284 

4x4km raster in a 0.5-hour spatial resolution with “mean percentage biases between 285 

5% and 10%” (Sengupta et al., 2018). To predict the local insolation that accounts for 286 

inclination, exposition and shading effects, a local adaptation factor is calculated 287 

based on the DSM derived through the SfM-processing (see section 2.1) using SAGA 288 

GIS (Hofierka and Suri, 2002). This pixel-specific value quantifies the expected 289 

irradiation compared to flat terrain (COF), which is defined by the GHI. PR is the 290 

performance ratio, which describes the remaining part of PV energy after technical 291 

losses in the technical system. In tropical regions, the PR can vary between 0.70 – 292 

0.85 in Peru (Romero-Fiances et al., 2019) and in Thailand between 0.89 for 293 

amorphous silicon modules and 0.815 for mono-crystalline silicon modules (Kim et 294 

al., 2014). Therefore, in this study, we decided to calculate with a conservative PR of 295 

0.78. 296 

2.6.2. Determination of maximum PV panel number per building 297 

One scenario in this study is that only one field of roof (FOR) is maximally equipped 298 

with PV panels. To determine the best FOR, we reclassified each roof into eight 299 

classes using the local roof orientation, derived by the 0.02m-DSM (see section 2.1). 300 

For Belmopan, eight classes were chosen to avoid fragmentation of FOR but to not 301 

loose FOR due to generalization effects. Through visual building inspection, only one 302 

building with a gazebo-like extension showed FOR with more than eight field 303 

orientations. Aspect/surface orientation is linearly defined in degrees from 0° (north) 304 

to 359° (north). In order to avoid errors in the eight-class reclassification for northern 305 

oriented parts caused by the linearity of the, in fact, circular orientation, a constant 306 

value of 22.5° is added to the orientation to push northern orientations (337.5° - 307 

22.5°) above 360°. The corrected orientation angles are then divided by 45 to achieve 308 

the eight-class reclassification with the orientation classes north, north-east, east, 309 

south-east, south, south-west, west, and north-west. Reclassified orientations larger 310 

than 8 due to larger values than 360° after adding the constants are then reclassified to 311 
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class north. 312 

The eight-class raster dataset is subsequently converted into polygons, which allows 313 

the application of topological measures. Incorrect island polygons representing false 314 

orientations within FOR, caused by inaccuracies in the DSM, can be improved by 315 

deleting island polygons followed by closing the holes by the neighboring polygon. 316 

Applying a negative spatial buffer of 0.3 meters, each FOR is reduced to consider the 317 

assembly area. To specify the maximum number of PV modules per area, GIS does 318 

not offer direct tools and approaches, as this is a geometrical issue and not a spatial 319 

issue. Therefore, to retrieve a maximum number of PV modules per roof, an iterative 320 

determination of the largest inner circles within is performed using the FME software 321 

(Safe Software Inc., 2021). For each circle radius, the number of installable PV 322 

modules can be determined. For the parts of the FOR not covered by the first 323 

maximum inner circle, the process of generating the maximum inner circle is repeated 324 

until four circles are generated. For this study, we chose a standard PV module size of 325 

1,650 x 992 mm, or 1,637 m2 respectively. Consequently, all maximum inner circles 326 

with a radius of r < 0.962 m, which is half of the module diameter, are removed. For 327 

the remaining circles, the maximum area covered by PV panels is calculated 328 

according to the number of installable PV modules dependent upon the radius (see 329 

table A.1 in the appendix). 330 

2.6.3. Annual PV energy yield for best FOR per building and PV energy balancing 331 

Although PV energy yield could be maximized by covering the complete roof with 332 

PV panels, this case is very unrealistic due to the monetary investment amount 333 

necessary. Therefore, for the optimum scenario 1, only the one FOR with the best 334 

energy potential was considered for PV module installation. Thus, the product of GHI, 335 

COF (section 2.5.1), and maximum PV module area (section 2.2.2) is generated to 336 

predict the annual PV energy yield per FOR, from which the FOR with the highest PV 337 

energy yield is selected for each building as the basis for the energy balance 338 

prediction. For balancing the PV energy potential, the difference between the average 339 
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energy consumption and the building-specific estimated PV electricity generation is 340 

formed. For a more realistic scenario 2, the PV energy balancing is performed 341 

analogously using only maximum of two PV panels on the best suited FOR. 342 

3. Results 343 

3.1. Structure-from-Motion processing 344 

To achieve the desired coverage of the six defined test areas within Belmopan, due to 345 

limited UAV battery capacities, we performed 15 single flights. During these 346 

campaigns, a total number of 2.866 images were acquired. One test area was covered 347 

by a single flight, for full image-coverage of the other areas, multiple flights were 348 

necessary. To prepare the images for SfM processing in Agisoft Metashape, all images 349 

were renamed to achieve a consecutive numbering, as well a reference file was 350 

compared to provide GPS information on X, Y, and Z position from the EXIF files. 351 

The defined image overlap ratio of 70% in along and across-track direction at a flying 352 

altitude of 65m above ground resulted in a spatial resolution of the SfM results of 2.0 353 

cm +/- 0.1. We resampled all results to a spatial resolution of 2.5 cm. Additionally, all 354 

SfM results were horizontally corrected to the orthorectified WorldView-1 scene from 355 

Warth et al. (2020) using a spline interpolation (Franke, 1982) and 50 control points 356 

for each test area to ensure the spatial integrity of the datasets. The SfM results cover 357 

a total area of 201.2 ha which leads to an image density of 14.2 images per ha at the 358 

given flight altitude. Table A.10 in the appendix provides an overview on the SfM 359 

processing details. 360 

Using the Agisoft Metashape software, we processed raster DSMs for each study area 361 

based on the dense point cloud, calculated from the overlapping aerial imagery using 362 

the highest precision settings. In order to generate an nDSM, the dense point cloud 363 

was classified into ground points and non-ground points using Agisoft Metashape 364 

processes and standard settings. Differencing the interpolated ground point cloud 365 

from the DSM in QGIS was done to obtain the nDSM which represents building 366 

height information in all six study areas. The spatial resolutions of the elevation-based 367 

datasets vary between 1.9 and 2.1 cm within the six datasets. 368 
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The orthomosaic datasets of the study areas resulted in a slightly lower spatial 369 

resolution 2.2 to 2.4 cm. Therefore, to adapt the spatial resolutions, the datasets were 370 

resampled to a 2.5 cm spatial resolution. Slope and aspect of the surfaces are 371 

calculated based on the DSM information. 372 

3.2. Electric energy consumption analysis 373 

In order to analyze the residential electric energy consumption, we achieved a dataset, 374 

which concludes a cleaned sample size of 190 household interviews. The spatial 375 

sampling approach for the interviews resulted in the following interview distribution 376 

on the city districts: I: 9.4%, II: 24.2%, III: 21.6%, IV: 17.4%, V: 12,1%, VI: 15,3%. 377 

This interview distribution corresponds with the distribution of the detected buildings, 378 

as shown in Table 2. 63 interviewees could show bills to validate statements, 379 

especially in order to estimate expenses for electric energy. For the statistical analysis, 380 

we removed outliers using the two-fold standard deviation as the threshold above and 381 

below the arithmetic mean. 382 

Using interview information on yearly electricity consumption and on yearly 383 

electricity expenses, the linear regression indicates an average electricity price of 0.42 384 

BZD (see fig. 3), the Pearson’s correlation coefficient (Havlicek and Peterson, 1976) 385 

of r = 0.89, and an r² = 0.81 show the correlation between the specifications on 386 

electricity consumption and electricity expenses and the robustness of the correlation. 387 

 388 
Fig. 3. Linear regression to determine electricity price in Belmopan. 389 

By dividing monthly expenses by 0.42, the monthly household electric energy 390 
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consumption is calculated. Multiplying the monthly consumption by 12 results in the 391 

annual electricity consumption. The average electric consumption per household in 392 

Belmopan is 3,435.6 kWh/year with a standard deviation of 2,011.8, average monthly 393 

electricity expenses amount to 124.5 BZD with a standard deviation of 74.4. 394 

Considering socioeconomic differences for households in different building types as 395 

suggested by Warth et al. (2020), the analysis of electricity consumption considering 396 

the building types clearly shows different patterns. Statistics indicate mean annual 397 

electricity consumptions of 2,458.5 kWh/year with a standard deviation of 1,152.8 for 398 

BT 11, for BT 12 mean annual electricity consumptions of 3,220.7 kWh/year with a 399 

standard deviation of 1,765.2. Statistics show mean annual electricity consumptions 400 

of 4,042.1 kWh/year with a standard deviation of 2,240.2 for BT 13 and for BT 14 401 

mean annual electricity consumptions of 6,276.2 kWh/year with a standard deviation 402 

of 2,766.6 (see Fig. 4). 403 

 404 

Fig. 4. Boxplots on building type specific electricity expenses. 405 

Due to an insufficient number of interviews for multifamily houses, the analysis is 406 

only reliable for single-family houses. BT 21 (multifamily basic) has mean annual 407 

electricity consumptions of 3,123.8 kWh/year, based on three interviews. BT 22 408 

(multifamily standard) has mean annual electricity consumptions of 4,257.1 kWh/year 409 

from four interviews, BT 23 (multifamily apartment) has one household interview, 410 
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which specified an annual electricity consumption of 1,428.6 kWh/year.  411 

Besides recognizing relations between building types and electricity expenses, there 412 

are spatial relations identifiable between city precincts and household electricity 413 

expenses. Precincts I and VI show the highest electricity consumption with averages 414 

of 4,076.2 kWh/year and 3,765.8 kWh/year respectively. The lowest electricity 415 

consumptions are identified in precinct V with mean values 3,072.2 kWh/year. 416 

Table 1 417 

Residential electricity statistics in Belmopan. General overview and statistics in relation with 418 

building types and city precincts. 419 

Category Average household  

electricity expenses 

(BZD/month) 

Median household 

electricity expenses 

(BZD/month) 

Average household energy 

consumption (kWh/year) 

(assuming 0.42 BZD/kWh) 

Belmopan average 124.5 (+/- 74.4) 100 3,435.6 

BT 11 98.7 (+/- 70.0) 88 2,458.5 

BT 12 115.9 (+/- 65.4) 95 3,220.7 

BT 13 141.5 (+/- 78.4) 128 4,042.1 

BT 14 219.7 (+/- 96.8) 225 6,276.2 

BT 21 109.3 (+/- 46.7) 96.0 3,123.8 

BT 22 149.0 (+/- 89.9) 112.5 4,257.1 

BT 23 50 50 1,428.6 

Precinct I 169.9 (+/- 95.5) 180 4,076.2 

Precinct II 107.4 (+/- 60.6) 99 3,648.4 

Precinct III 108.6 (+/- 55.6) 88 3,662.2 

Precinct IV 113.1 (+/- 58.1) 98 3,301.9 

Precinct V 107.4 (+/- 65.2) 80 3,072.2 

Precinct VI 147.5 (+/- 64.2) 139 3,765.8 

 420 

3.3. Building footprint adaption 421 

In a first step, the building footprints from Warth et al. (2020) were relocated to 422 

remove position inaccuracies. Secondly, each building polygon was manually adapted 423 

and reshaped by using the respective orthomosaic for the test area. In total, the UAV 424 

mission covers a number of 1,619 buildings, ignoring buildings classified as non-425 

residential use. Table 2 gives an overview of the building numbers in the test areas. In 426 

average, the buildings have a 139 m² footprint with a standard deviation of 81,5, 427 

which shows a relatively large variation in building footprint sizes. The smallest 428 

detected building footprint in Belmopan is 15 m² and the largest footprint is 719 m². 429 
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Table 2 430 

Building distribution in the UAV-covered test areas in Belmopan. 431 

I II III IV V VI  sum 

189 

(11.7%) 

295 

(18.2%) 

449 

(27.7%) 

304 

(18.8%) 

109 

(6.7%) 

273 

(16.9%) 

 1619 

 432 

3.4. Building type classification 433 

The RF building type classification for Belmopan resulted in a dominance of BT 12 434 

followed by BT 13. As shown in Fig. 5, the percentage distribution is as follows: BT 435 

11: 12.6%, BT 12: 47.4%, BT 13: 29.7%, BT 14: 7.9%, BT 21: 1.4%, BT 22: 0.8%, 436 

BT 23: 0.2%. The initial accuracy assessment rates the RF classification with a 437 

satisfying overall accuracy of 0.7. The complete confusion matrix is shown in Table 3. 438 

Considering the very low number of training and test samples for BT 22, the very low 439 

classification accuracy for this class is comprehensible. Ignoring BT 22 in the 440 

accuracy assessment, the overall accuracy increases to 0.73. As BT 11 mostly differs 441 

by construction materials from other building types, the low accuracies for BT 11 can 442 

also be understood. For BT 12, BT 13, and BT 14, which together represent 85.3% of 443 

all covered buildings in this study, user’s accuracies range between 0.67 and 0.79, and 444 

producer’s accuracies range between 0.67 and 0.77. 445 

 446 

Fig. 5. Resulting building type histogram for Belmopan from Random Forest 447 

classification. 448 
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Table 3 449 

Confusion matrix to determine the accuracy assessment for the building type classification in 450 

Belmopan. 451 

  predicted   

 Building 

type 

11 12 13 14 22 sum User’s 

Acc. 

a
ct

u
a

l 

11 6 6 1 0 0 13 0.46 

12 6 41 5 0 0 52 0.79 

13 0 6 24 2 0 32 0.75 

14 0 1 4 10 0 15 0.67 

22 0 1 2 1 0 4 0.00 

 sum 12 55 36 13 0 116  

 Producer’s 

Acc. 

0.50 0.75 0.67 0.77 0.00  OA 0.70 

 452 

Table 4 shows the ten most important ranked features for the RF classification related 453 

to the presented results. The most important classification criteria accordingly is the 454 

building footprint, followed by other building footprint related measures. The building 455 

height, derived from the nDSM, was ranked importantly as well as roof ridge 456 

information such as the number of roof ridges per building and the roof ridge density 457 

per building. Apparently, in this study building-specific attributes are sufficient to 458 

achieve satisfying classification accuracies. 459 

Table 4 460 

Feature list and ranking for Random Forest building type classification in Belmopan using the Gini 461 

inequality index (Menze et al., 2009). 462 

Shape 

parameters 

Gini ineq. 

index/ Rank 

Three-dimensional 

parameters 

Gini ineq. 

index/ Rank 

spatial/distance 

parameters 

Gini ineq. 

index/ Rank 

Building 

footprint area 

(A) 

0.152 #1 
Building height 

(mean) 
0.055 #14 

Distance to bus 

line 
0.031 #20 

Roof ridge 

length [sum] 
0.142 #2 

Building height 

(median) 
0.040 #17 

Distance to 

paved roads 
0.031 #21 

Building 

footprint 

perimeter (P) 

0.136 #3 
Building height 

(standard dev.) 
0.033 #18 

Distance to 

industry 
0.027 #23 

Building D/A 0.134 #4 
Building height 

(variance) 
0.032 #19 

Distance to 

ring road 
0.024 #24 

Building 

maximum 

distance (D) 

0.124 #5 Roof slope (mean) 0.019 #26 
Distance to 

education 
0.022 #25 
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Roof ridge 

number 
0.109 #6   

Building 

density 100m 
0.018 #27 

Building P/A 0.102 #7   

Distance to 

commercial 

center 

0.014 #28 

Roof ridge 

density [RR 

number/ A] 

0.092 #8   
Building 

density 250m 
0.013 #29 

Roof ridge 

length [standard 

deviation] 

0.092 #9   

Distance to 

public 

institution 

0.012 #30 

Building 

footprint corners 
0.087 #10   

Building 

density 150m 
0.011 #31 

rr_angle_stdev 0.081 #11   
Building 

density 200m 
0.011 #32 

Roof ridge 

density [sum 

length/ A] 

0.063 #12   
Building 

density 50m 
0.010 #33 

Roof ridge 

length [mean] 
0.058 #13     

Building shape 

index 
0.044 #15     

shape_P/sqrt(A) 0.044 #16     

shape_D/sqrt(A) 0.030 #22     

 463 

Table 5 shows some key characteristics to describe and distinguish building types 464 

according to the findings of the study. Accordingly, clear differences can be identified 465 

in the building footprint area, building height, and the number of roof ridges. 466 

Table 5 467 

Building type characteristics in Belmopan: Mean values on building footprint area, building height 468 

and number of roof ridges. 469 

building type Area [m²] Height [m] rr_number 

11 [204] 59.4  2.9  1.2 

12 [767] 102.8  3.1  1.5 

13 [481] 177.5  3.4  3.4 

14 [129] 250.2  4.7  8.4 

21 [22] 104.1  2.8  1.3 

22 [12] 141.9  5.9  2.9 

23 [3] 135.0  4.4  3.7 

 470 
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3.5. Single building photovoltaic potential approximation 471 

The NSRDB raster dataset at Belmopan has spatial resolution of 898 m by 899 m (X 472 

and Y direction). The GHI in Belmopan varies between 1,852 and 1,859 kWh/m²/year, 473 

spatial statistics on the building footprints show an average GHI of 1,856.4 474 

kWh/m²/year. 475 

The solar processing using SAGA GIS and the UAV-based DSM revealed an optimum 476 

roof inclination for PV generation of 17° facing southwards in Belmopan. Zonal 477 

statistics based on single fields of roof (FOR) show average FOR inclinations of 23.2° 478 

with a standard deviation of 7.19, which indicate a well-fitting roof construction 479 

geometry for PV purposes. 480 

3.5.1. Scenario 1: Most suitable field of roof fully fitted with PV panels 481 

The FOR evaluation on the 1,619 buildings, covered by the UAV campaigns, reveals a 482 

total number of 4,546 FOR with a radius larger than 0.963 m which meets the 483 

required dimensions for PV module installation. As shown in the histogram in Fig. 6, 484 

based on FOR area without consideration of insolation characteristics, 50.9% of all 485 

FOR are suitable for the installation of 1 – 4 PV panels, another 26.9% of the FOR are 486 

suitable to install up to 9 PV panels. Fig. 7 illustrates analysis of the number of PV 487 

panels per FOR. 488 

 489 

Fig. 6. Histogram of possible PV panels per field of roof in Belmopan. 490 
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 491 

Fig. 7. Results of the SfM processing showing the orthomosaic combined with roof 492 

ridges (left) and the hillshade of the DSM combined with information on maximum 493 

installable PV panels (right). 494 

The results of the PV energy production estimation, considering the best suited FOR 495 

by means of PV energy productivity, using the number of possible PV panels, the 496 

GHI, the local insolation factor, and the PR, show that 1,585 of all covered buildings 497 

are eligible for PV energy production. Twelve buildings have too large tree coverage 498 

to generate sufficient roof and height information, 22 buildings are too small or show 499 

too high roof fragmentation to host PV modules. The smallest PV power yield per 500 

building with optimal FOR usage is 979 kWh²/year and the building with maximum 501 

PV power yield with optimal FOR usage is 127,780 kWh/year. On average, the PV 502 

panels on the best-fitted roof can generate an estimated PV power yield per building 503 

of 22,965 kWh/year with a standard deviation of 17,949. Fig. 8 shows the histogram 504 

for the estimated PV power generation in Belmopan. 505 

 506 

Fig. 8. Histogram on potential PV power yield in Belmopan considering best suited 507 

FOR. 508 

The mean values of estimated PV power generation using the best-fitting roof per BT 509 

show clear differences in expected power yield (see Table 6). BT 11 assigned 510 

buildings are predicted to generate an average of 12,709 kWh/year from solar power, 511 
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BT 12 buildings show an increased average of 21,266 kWh/year. BT 13 and BT 14 512 

buildings show similar averages, but also the highest estimated power yields, with 513 

30,390 kWh/year and 30,633 kWh/year respectively. The average estimated PV power 514 

generation of the multifamily BT show similar values between 24,583 kWh/year and 515 

26,718 kWh/year, the low number of reference data have to be considered and 516 

therefore limit conclusiveness of the statistics. However, general characteristics of PV 517 

power generation for multi-family BT can be recognized by these values. Table 6 518 

displays the PV generation statistics for the building types. 519 

Table 6 520 

Average potential PV power generation per building type for the optimal scenario in dependence to 521 

building type using reference building type information from data collection campaign. 522 

Building 

Type 

mean estimated PV power generation 

[kWh/year] 

standard deviation estimated 

PV power generation 

11 (n = 38) 12,709 8,014 

12 (n = 149) 21,266 13,707 

13 (n = 78) 30,390 14,305 

14 (n = 41) 30,633 17,019 

21 (n = 7) 26,718 9,636 

22 (n = 13) 24,983 13,252 

23 (n = 2) 24,583 6,919 

Total 22,965 17,950 

 523 

In order to use the findings on PV power generation for urban planning purposes, the 524 

data is analyzed spatially. Therefore, the statistics of the estimated PV power 525 

generation per city is very insightful. In the individual city districts, there are major 526 

differences in average estimated PV power generation per building. The average PV 527 

electricity generated per building with 16,046 kWh/year is lowest in district V and 528 

highest in district II with 27,063 kWh/year and in district I with 26,949 kWh/year. For 529 

complete PV electricity generation characteristics see Table 7. 530 

Table 7 531 

Average potential PV power yield per building using best-fitted roof in dependence to the city 532 

district. 533 

City district mean estimated PV power 

generation [kWh/year] 

standard deviation estimated  

PV power generation 

I (n = 188) 26,949 14,752 

II (n = 287) 27,063 19,366 
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III (n = 440) 24,304 19,794 

IV (n = 288) 17,475 15,855 

V (n = 102) 16,046 12,004 

VI (n = 267) 22,801 17,027 

 534 

3.5.2. Scenario 2: Maximum two PV panels on the most suitable field of roof 535 

Applying scenario 2, where each roof is equipped with maximum of two PV panels, 536 

the 1,584 suitable buildings in average can generate 1,029.2 kWh/year photovoltaic 537 

energy with a standard deviation of 133.8. 538 

Building-type related statistics in Table 8 show a range in PV power generation 539 

between 885.9 kWh/year for BT 11 and 1,112.0 kWh/year for BT 23, whereby the 540 

average PV yield for BT 11 clearly differ from the other building type yields. The 541 

differences for the average PV yield related to the city districts is not as distinct, 542 

buildings located in district V have an average PV yield of 950.9 kWh/year, whereas 543 

buildings in district I have the highest average PV yield of 1,074.3 kWh/year. 544 

Table 8 545 

Average potential PV power yield for scenario 2 with maximum two PV panels on best fitted field 546 

of roof. 547 

Building 

type 

mean estimated 

PV power 

generation 

[kWh/year] 

standard 

deviation 

estimated  

PV power 

generation 

 City district mean estimated 

PV power 

generation 

[kWh/year] 

standard 

deviation 

estimated  

PV power 

generation 

11 885.9 226.5  I 1,074.3 100.2 

12 1,030.3 118.4  II 1,051.9 78.9 

13 1,071.2 73.8  III 1,007.9 147.5 

14 1,073.0 63.1  IV 1,014.0 163.4 

21 1,003.9 104.2  V 950.9 181.8 

22 1,027.1 87.4  VI 1,057.8 88.8 

23 1,112.0 11.5     

Total 1,029.2 133.8     

 548 

3.6. PV energy balancing 549 

According to the statistics on per building type, as presented in section 3.2 and in 550 

Table 1, we assume the following numbers on electric energy consumption for the PV 551 

energy balancing: BT 11: 2,458.6 kWh/year, BT 12: 3,220.7 kWh/year, BT 13: 552 
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4,042.1 kWh/year, BT 14: 6,276.2 kWh/year. Even though statistics on multifamily 553 

buildings base on very few sample sizes, these mean values are used for the PV 554 

energy balancing. For BT 23, the energy consumption is unrealistically low, therefore 555 

this value is replaced by the mean value for all buildings in Belmopan. This results in 556 

the following values for the multifamily types: BT 21: 3,123.8 kWh/year, BT 22: 557 

4,257.1 kWh/year, BT 23: 3,435.6 kWh/year. As these multifamily buildings together 558 

occur only 37 times and therefore have represented 2.3% of all studied buildings, the 559 

small sample sizes have to be considered but do not have a major impact on the 560 

results. 561 

Values on PV energy production are estimated individually for the single building, as 562 

described in section 2.5. 563 

3.6.1. Scenario 1: Most suitable field of roof fully fitted with PV panels 564 

In this optimal scenario, on each building, the most suitable FOR is fully fitted with 565 

PV panels to show the potential of PV energy production. 566 

Out of 1,619 buildings, 35 buildings or 2.2% of the studied buildings are not suitable 567 

for PV energy production. This is due to FOR areas smaller than PV panel sizes one 568 

the one hand and too much foliage coverage by trees on the other hand.  569 

The calculation of scenario 1 in average resulted in a positive PV energy balance of 570 

1,847.2 kWh/year, which is an average PV energy coverage of 148.0% for all 571 

residential building types. The PV energy balances range between a deficit of -5,459 572 

kWh/year for a BT14 building with high energy consumption and a low number of 573 

installable PV panels, caused by roof complexity, to a positive PV energy balance of 574 

24,546 kWh/year for BT 12 building with comparably low energy consumption and a 575 

large and unfragmented roof. 975 out of 1585 buildings, which are suitable for PV 576 

panel installation, show positive PV energy balances. 85.6% of all buildings can cover 577 

50% of their energy demand through the scenario 1 setting, 72.9% of the buildings 578 

can cover 75% of the energy demand with PV energy and even 60.2% of the studied 579 

buildings show a positive energy balance. 580 

Table 9 gives an overview of average PV energy balances per building type and in 581 
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spatial relation to city precincts. Even though the standard deviations appear to be 582 

large, the mean PV energy balances in part show obvious differences. Unlike the other 583 

building types, BT11 has a negative PV energy balance with a mean deficit of -337 584 

kWh/year. With a mean surplus of 1,318 kWh/year, BT 12 has a clearly positive PV 585 

energy balance. BT 13 with a mean PV energy balance of 3,489 kWh/year has the 586 

highest PV energy balance values. BT 14 with 1,670 kWh/year has distinctively lower 587 

PV energy balance, due to the high roof complexity, which prevents large undisturbed 588 

FOR. The multifamily building types BT 21, BT 22 and BT 23 in average show 589 

comparable surpluses in their PV energy balances of 2,353, 2,814 and 2,125 590 

kWh/year respectively. Even though BT 11 shows negative PV energy balances, PV 591 

energy production can cover 86% of the energy consumption of the building type. The 592 

coverage ratios for the other building types show similar characteristics as the energy 593 

balances. BT 13 with averagely 186% energy surplus can almost produce twice the 594 

amount of electric energy as consumed. Due to the high energy consumption statistics 595 

in BT 14, the energy surplus is only 127%.  596 

When comparing regional statistics, a characteristic stands out: The eastern city areas 597 

(IV and V) show positive PV energy balances, but clearly lower energy balances 598 

compared to the other study areas. BT 11 mainly is concentrated in these areas. The 599 

highest average PV energy balance has precinct II with 2,814 kWh/year. The standard 600 

deviations for the PV energy balances are very high, due to different FOR suitabilities 601 

for the single buildings, which are influences by FOR areas and FOR fragmentation. 602 

Fig. 9 provides an overview on the statistical distributions of the PV energy balances. 603 

Table 9 604 

PV energy balance statistics for scenario 1 (1st and 2nd column) and scenario 2 (3rd and 4th column) 605 

in Belmopan related to building types and spatially aggregated to city precincts. Standard deviations 606 

are noted in brackets. 607 

  
Scenario 1: maximum number of PV 

panels on best FOR 

Scenario 2: maximum two PV panels 

on best FOR 

 
PV balance 

 [kWh/year] 

PV energy 

coverage [%] 

PV balance  

[kWh/year] 

PV energy  

coverage [%] 

total 1,847 (+/- 4,049) 148% (+/- 108) -2,607 (+/- 903)  29.5 % (+/- 6.5) 

BT 11 -337 (+/- 1,930) 86% (+/- 78) -1,573 (+/- 227) 36.0% (+/- 9.9) 



Template of Geography and Sustainability 

 

BT 12 1,318 (+/- 3,420) 141% (+/- 106) -2,191 (+/- 118) 32.0% (+/- 3.7) 

BT 13 3,489 (+/- 4,443) 186% (+/- 110) -2,971 (+/- 74) 26.5% (+/- 1.8) 

BT 14 1,670 (+/- 5,528) 127% (+/- 88) -5,203 (+/- 63) 17.1% (+/- 1.0) 

BT 21 3,189 (+/- 2,625) 202% (+/- 84) -2,120 (+/- 104) 32.1% (+/- 3.3) 

BT 22 925 (+/- 2,779) 122% (+/- 65) -3,230 (+/- 87) 24.1% (+/- 2.0) 

BT 23 8,662 352% -2,324 33.0% 

Precinct I 2,353 (+/- 3,442)   161% (+/- 84) -3,006 (+/- 1,072) 27.8% (+/- 6.3)  

Precinct II 2,814 (+/- 4,443) 174% (+/- 117) -2,601 (+/- 685) 29.5% (+/- 4.5) 

Precinct III 2,125 (+/- 4,537) 158% (+/- 128) -2,664 (+/- 1,011) 29.0% (+/- 6.9) 

Precinct IV 837 (+/- 3,385) 117% (+/- 85) -2,326 (+/- 807) 31.5% (+/- 7.1) 

Precinct V 734 (+/- 2,624) 117% (+/- 83) -2,171 (+/- 863) 32.3% (+/- 9.1) 

Precinct VI 1,676 (+/- 3,926) 146% (+/- 99) -2,712 (+/- 726) 28.9% (+/- 4.7) 

 608 

Fig. 9. Histograms on annual PV energy balances and PV energy share on household 609 

consumption. The left column displays the scenario 1 results, the right column 610 

displays the scenario 2 results.  611 

3.6.2. Scenario 2: Maximum two PV panels on most suitable field of roof 612 

For scenario 2 with two installed PV panels, no building can cover its energy 613 
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consumption. Although resulting in an average energy deficit of -2,607.5 kWh, the 614 

two-panels scenario enables reaching an average energy coverage ratio of 29.5%. The 615 

smallest deficit after PV energy balancing is 1,317 kWh/year for BT 11 with 616 

comparably low energy consumption, the largest energy deficit is 5,490 kWh/year for 617 

a BT 14 building with high energy consumption. through PV mean PV energy balance 618 

is a surplus of 719.2 kWh/year with a standard deviation of 135.7 or 179.8% 619 

respectively (see Table 9).  620 

Due to differences in consumption patterns within the different building types, the PV 621 

energy balance statistics show quite large differences in the energy balances. BT 14 622 

has the lowest PV energy balance with an energy coverage deficit of -5,203 kWh/year 623 

or 17.1% coverage ratio respectively. For single-family building types in scenario 2, 624 

BT 11 has the lowest energy coverage deficit of -1,573 kWh/year and the highest PV 625 

energy coverage of 36.0%. When considering only two PV per building, the energy 626 

coverage ratio obviously is closely related to the energy consumption, as the roof area 627 

has no impact in generated PV energy. 628 

These described contrasts in comparison to scenario 1 appear as well, when regarding 629 

the regional statistics for Belmopan. The precincts with highest PV energy balances 630 

show the lowest PV energy balances with two PV panels and vice versa. The same 631 

characteristics occur for the energy coverage ratios, so that the highest energy 632 

coverage ratios are statistically achieved in precincts IV and V. 633 
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 634 

Fig. 10. Map showing PV energy balances on single building scale (left) and on city 635 

district scale (right). The upper row shows the two PV panel scenarios, the lower row 636 

shows the optimal scenario. 637 

4. Discussion 638 

Even though using an approach that underestimates the number of applicable PV 639 

panels per building, this study highlights two main findings. Firstly, the locally 640 

adapted building type is a very valuable proxy not only to estimate socio-economic 641 

parameters as presented by (Warth et al., 2020), but as well to spatialize electric 642 

energy consumption. Secondly, that the city of Belmopan is highly suited for 643 

increasing the share PV energy in the energy mix. 644 

Using UAV imagery and derivate information, such as height, enables an increased 645 

classification accuracy, in comparison to the approach by Warth et al, (2020) using 646 

WorldView-1 and Planet imagery. Many relevant building characteristics and 647 

classification parameters, such as the number of building corners or building height 648 

can be determined more precisely using UAV data. Other parameters that have strong 649 

weight in the RF classification, such as roof ridge information, even cannot be 650 

determined based on satellite imagery. Therefore, using UAV data for building type 651 

classification has proven to be highly beneficial. In this study, building shape 652 

information, building footprint and height information as well as roof ridge 653 
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information had the most weights in the RF classification process. This underlines 654 

assumptions that three-dimensional data increase the understandability of urban 655 

structure (Zhu et al., 2019). In order to operationalize this approach, attention has to 656 

be laid on building detection. Accurate building footprint information is the basis and 657 

key for the success of the analysis, deep learning approaches promise high suitability 658 

in this regard. The increase of the accuracy in order to characterize multi-family 659 

buildings needs to be focused in the future, as these building types are very much 660 

underrepresented in Belmopan, but are dominating in many other cities. 661 

The presented approach profits from the VHR UAV data. On this spatial scale, the 662 

data provide detailed information regarding roof structure which is essential to 663 

estimate possible numbers PV panels per field of roof. Although this study shows the 664 

potential of the approach, few details have to be considered in data collection and 665 

future research as well: Bright sunlight conditions during UAV data collection can 666 

cause negative effects in data quality due to high reflectivity on white and metallic 667 

roofs, and the estimation of possible number of PV panels is done here very 668 

conservatively and has room to be further improved. 669 

By showing the relation between building type and electric energy consumption, the 670 

study results highlight the relevance of knowledge on locally adapted building types 671 

for urban planning. Not only socio-economic characteristics can be linked to the 672 

building type, but specific urban planning relevant information, as shown for 673 

electricity consumption. The use of building types to estimate other material flows, 674 

such as waste production and water consumption must be further analyzed. 675 

Even though the main objective in planning sustainable energy supply is significantly 676 

increase the share renewable energies, in scenario 1 with maximum numbers of PV 677 

panels on the best suited FOR, 60.2% of all studied buildings have positive PV energy 678 

balances, the average PV energy balance per building is 1,847 kWh/year. This enables 679 

covering the annual household energy demand by 148%. In general, buildings with 680 

large and undisturbed roof areas achieve the highest PV energy yields. For this reason, 681 

BT 12 and BT 13 show the best energy balance statistics. BT 14 with high numbers 682 

roof ridges and BT 11 with smaller roof areas and often occurring foliage coverage 683 
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show lower energy balances. Based on the results of scenario 1, Belmopan could in 684 

theory achieve energy self-sufficiency for the residential sector through PV 685 

utilization. The two-panel setting in scenario 2 results in a mean PV energy coverage 686 

rate of 29.5% in Belmopan, which is an average deficit of -2,607 kWh/year. In 687 

contrast to scenario 1, BT 11 and BT 12 can cover the highest rates of electricity 688 

consumption with PV energy with 35.7% for BT 11 and 32.0% for BT 12. BT 14 can 689 

only cover 17.1% of its energy demands. These shares directly depend on the energy 690 

consumption in the building type. The NSRDB indicates a diurnal climate that leads 691 

to constant daily sunshine durations with incoming solar radiation between 6 a.m. and 692 

6 p.m. and between April and August even two hours more (Sengupta et al., 2018). 693 

This constant PV electric energy availability enables the coverage of the electrical 694 

baseload from fridges, computers, and air conditioning systems. The threshold for 695 

roof installed PV panels of 1000 kWh/m²/year (Compagnon, 2004) in Belmopan is far 696 

exceeded by 1,856.4 kWh/m²/year. In combination with increases in module 697 

efficiencies, large PV electric energy yields can be achieved. 698 

By only presenting the two scenarios, a constellation for complete energy coverage 699 

through PV energy can be shown and a constellation to relieve socio-economically 700 

weaker groups in BT 11 and BT 12 (compare Warth et al. (2020)) in terms of energy 701 

expenses, which suffer most from high energy prices due to lockdown-related 702 

increase of residential energy consumption during the COVID pandemic (Belmopan 703 

City Council, 2021b). Furthermore, from a planning and policy perspective, the high 704 

PV potential in Belmopan allows reducing the large share of energy imports by 705 

establishing a decentral and socially-fair PV technology. Therefore, we could show 706 

that a PV strategy in Belmopan can contribute to achieve SDG 7 “Affordable and 707 

clean energy”, SDG 10 “Reduce Inequalities” and SDG 11 “Sustainable Cities and 708 

communities”. Considering Belmopan as capital city, which relocation was caused by 709 

climatic effects, the establishment of a PV strategy can act as a beacon function for 710 

other cities or countries in the region. 711 

The presented approach is suitable to support urban infrastructure planning, because it 712 

enables scenario evaluation: Considering information on building type, FOR area, 713 
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FOR suitability and flexible number of PV panels allow testing different settings for 714 

urban infrastructure planning and policy development, where the scenarios are only 715 

two of many possibilities, as the number of PV panels or the number of FOR can be 716 

varied. Presenting two scenarios for Belmopan, on one hand, shows the flexibility of 717 

this bottom-up approach but on the other hand, can provide decision-makers different 718 

options to develop sustainable urban planning strategies. 719 

Therefore, urban planning can clearly benefit from the findings of this study: Not only 720 

enables this approach to assigning electric consumption and PV production values to 721 

single buildings, but the bottom-up approach allows to spatially aggregate information 722 

to gain information on precinct or city level. Hereby it is possible to characterize city 723 

areas in terms of electric energy consumption and PV potential. Knowledge of these 724 

parameters enables the implementation of appropriate planning measures and 725 

instruments to direct urban development on different scales. As demands for 726 

evidence-based planning are more frequently perceptible, this approach can deliver a 727 

database for urban planning but as well for PV energy policy development, as specific 728 

quantitative values are provided. The more relevant and reliable planning data are 729 

available, the better bridges can be built between scientists and practitioners to 730 

strengthen cooperation, as demanded by Sapena (2020). 731 

The presented study is an alternative approach to relate electric consumption with a 732 

residential building type, instead of grouping buildings by means of thermo-physical 733 

parameters. Especially in regions, where energy consumption has irrelevant shares for 734 

heating purposes. However, this approach demonstrates particularly clearly that 735 

estimation solely based on earth observation techniques, cannot deliver sufficient 736 

data. Expert knowledge and survey information is the key to provide accurate data. 737 
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Appendices  745 

Table A.1 746 

Amount of PV panels per circle in dependence of radius. 747 

Radius [cm] Number of PV panels 

(1.650 x 992 mm) 

Radius [cm] Number of PV panels (1.650 x 992 

mm) 

96.3 1 351.7 18 

129.6 2 388.9 22 

161.1 3 445.9 30 

192.9 4 481.0 36 

216.1 6 540.9 45 

277.6 10 574.5 52 

318.2 14   

 748 

Table A.10 749 

SfM processing details for the Belmopan UAV SfM processing. 750 

Test area Images Covered area [ha] Images/ha Total points (dense 

cloud) 

Points/m2 

(dense cloud) 

I 483 29.8 16.1 849,870,712 2,844 

II 539 32.6 16.5 978,717,386 2,999 

III 779 49.4 15.7 1,840,465,320 3,722 

IV 546 49.6 11.0 1,220,806,970 2,459 

V 112 9.4 11.9 302,720,407 3,226 

VI 407 30.4 13.4 874,278,662 2,873 

Total 2,866 201.2 14.2 6,066,859,457 3,012 
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