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Abstract

Offensive performances in football have always been of great
focus for fans and clubs alike as evidenced by the fact that nearly
all Ballon d’Or winners have been forwards or midfielders. With
the increase in availability of granular data, evaluating these per-
formances on a deeper level than just goals scored or gut instinct
has become possible. The domain of sports analytics has re-
cently emerged, exploring how applying data science techniques
or other statistical methods to sports data can improve decision
making within sporting organizations. This thesis follows the
footsteps of other sports like baseball or basketball where, at
first, offensive performances were analyzed. It consists of four
studies exploring various levels of offensive performance, rang-
ing from basic actions to team-level strategy. For that, it uses a
dataset part of larger research program that also explores the
automatic detection of tactical patterns. This dataset mainly
consists of positional and event data from eight seasons of the
German Bundesliga and German Bundesliga 2 between the sea-
sons 2013/2014 and 2020/2021. In total this amounts to 4, 896
matches, with highly accurate player and ball positions for ev-
ery moment of the match and detailed logs of every action that
occurred, thus making it one of the largest football datasets to
be analyzed at this level of granularity. In a first step, this thesis
shows how the two different data sources can be synchronized.
With this synchronized data it is possible to better quantify in-
dividual basic actions like shots or passes. For both actions new
metrics (Expected Goals and Expected Passes) were developed,
that use the contextual information to quantify the chance qual-
ity and passing difficulty. Using this improved quantification of
individual actions, the subsequent studies evaluate offensive per-
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formance on a tactical pattern level (how goals are scored) and
on a strategy level (what team formations are particular effective
offensively). Besides their usage on the performance side, these
metrics have also been adapted from broadcasters to enhance
their data story telling: Expected goals and expected passes are
shown during every Bundesliga match to a worldwide audience,
thus bringing the field of sports analytics to millions of fans.
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1 Introduction

Extracting insights from data has become an integral part of
everyday life in nearly all industries ranging from recommen-
dation systems to sports. However, even though football is by
far the most popular sport in the world, in other sports, namely
baseball and basketball, data analytics was able to change the
nature of the game much sooner (Lewis, 2003; Oliver, 2004). In
baseball and basketball, relatively simply collected play-by-play
data about offensive performances was used as a basis of anal-
ysis and gave indications of inefficiencies, such as over-valuing
home runs or two point attempts. Only about ten years later, the
first main-stream work describing advanced analytics in football
appeared (Anderson & Sally, 2013). While there were studies
exploring the use of data in football before that (Reep & Ben-
jamin, 1968; Gould & Gatrell, 1979; Borrie, Jonsson, & Magnus-
son, 2002), the quality and granularity of the available data is
largely to blame for the slow acceptance in the football industry.

In football, the initial available data only described what was
happening with or near the ball. This so-called event data (equiva-
lent to play-by-play data in basketball or American football) does
not capture what is happening off-the-ball, such as the positions
of the remaining players. At first, this data was manually col-
lected for individual studies, but due to the growing interest,
several companies started collecting this event data across multi-
ple professional leagues (Lucey, Oliver, Carr, Roth, & Matthews,
2013). In the past several years, a new data type, the so-called
tracking data, often also referred to as movement data, positional
data, or trajectory data has become increasingly available (Seidl,
2019). This tracking data captures the positions of all players
(and typically also of the ball) at any moment of the game. This is
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either done through local or global positioning systems (LPS/GPS),
or through computer vision algorithms (Manafifard, Ebadi, &
Moghaddam, 2017; Stein et al., 2017).1 While LPS/GPS-data is
often cheaper to collect and includes additional data like heart
rate, its practicality in the tactical sense is somewhat limited, be-
cause it would require the opponent to wear the same gear and
would still be missing the ball (Goes, Meerhoff, et al., 2020; Buch-
heit et al., 2014).

Similar to baseball and basketball, the majority of analytics
research in football is focused on the offensive side (Reep & Ben-
jamin, 1968; Gould & Gatrell, 1979; Borrie et al., 2002; Anderson
& Sally, 2013). This has several reasons: (1) For the longest time,
the only widely available data was event data, which consists
almost entirely of offensive actions. (2) Media and club inter-
est is biased towards offensive players, as evidenced by the fact
that the past 13 Ballon d’Or winners have been midfielders or
forwards,2 as well as the 20 most expensive players are offensive
players.3 (3) Defensive performance is simply harder to evalu-
ate conceptually: while positive offensive performance often cor-
responds to concrete actions or results, good defensive perfor-
mance leads to the absence of opposing ones. For these reasons,
this dissertation follows the footsteps of other sports and focuses
on measuring offensive performance.

There have been several attempts at categorizing performance
in football into different levels (Rein & Memmert, 2016; Gréhaigne,
Godbout, & Bouthier, 1999; Q. Wang, Zhu, Hu, Shen, & Yao,
2015). Rein and Memmert (2016) differentiates between individ-

1Most providers use a set of up high definition cameras installed on-site to deliver highly
accurate data, but recent developments, also allow for lower budget options, which work
purely based on broadcast videos.

2
https://www.francefootball.fr/ballon-d-or/palmares/

3
https://www.transfermarkt.com/marktwertetop/wertvollstespieler (accessed Ok-

tober 8, 2020)
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ual tactics (tactical actions conducted by a single player), group
tactics (collective tactical actions conducted by a subgroup of
players), team tactics (describing the formation of a team), and
game tactics (the team’s playing philosophy). Moreover, they
claim that a clear distinction between tactics and strategy is chal-
lenging, since any real-time interaction will be prone by the a
priori strategy. Gréhaigne et al. (1999) on the other hand sim-
ply differentiate between strategy, defined as the a priori plan
of a team, and tactics, defined as the decisions made during a
game. Since there is no universal categorization, for the pur-
pose of this thesis we burrow concepts from the literature and
define three different levels of offensive performance: basic of-
fensive actions, offensive tactical patterns, and offensive team strategy
(see Figure 1). On the highest level there is the overarching offen-
sive team strategy, which is typically set before each match, e.g.
in which formation a team plans to attack. This strategy influ-
ences a team’s offensive tactics or offensive tactical patterns defined
as a repeatable and coordinate set of basic offensive actions dur-
ing a match. This definition includes for example goal scoring
patterns or build-up play. And finally, the basic offensive actions
are single actions performed by an individual with the intent to
increase the likelihood of a team to score and mostly consist of
the event data (e.g. passes, shots), but can also include actions
not involving the ball like offensive off-ball runs. The proposed
definitions are not meant as a precise categorization, but should
rather serve as guideline to frame our work and to highlight at
which levels offensive performance can be measured.
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Early research in football focused especially on goals (Reep
& Benjamin, 1968; Pollard & Reep, 1997). Due to low-scoring
nature of football, the attention soon shifted towards more fre-
quently occurring events, such as shots or shots on target (Tenga,
Holme, Ronglan, & Bahr, 2010). One of the most established ad-
vanced metrics in football are the so-called expected goal val-
ues (xG’s) (Hedar, 2020; Rowlinson, 2020; Robberechts & Davis,
2020; Lucey, Bialkowski, Monfort, Carr, & Matthews, 2014). They
estimate the likelihood of a shot being converted to a goal and
thus allow for a more granular analysis of the chance quality.
Another highly investigated basic offensive action are passes,
as they are by far football’s most frequently occurring events.
Similar to shots, at first research looked at how the number of
passes or pass completion rates correlated to wins on a match
level (Bradley, Lago-Peñas, Rey, & Diaz, 2013; Król et al., 2017).
Later, event-level data was used to analyze passes in more detail
(Łukasz Szczepański & Mchale, 2016; McHale & Relton, 2018).
Brooks, Kerr, and Guttag (2016), Power, Ruiz, Wei, and Lucey
(2017) and Bransen and Haaren (2019) used event-level data to
estimate the difficulty of passes, whereas Steiner, Rauh, Rumo,
Sonderegger, and Seiler (2019) for example, tried to estimate the
reward of a pass. Moreover, several studies aimed to assign
value to individual offensive actions either based on event data
(Decroos, Haaren, Bransen, & Davis, 2019) or on tracking data
(Spearman, Basye, Dick, Hotovy, & Pop, 2017; Power et al., 2017;
Fernández, Bornn, & Cervone, 2020; Arbues-Sanguesa, Martin,
Fernandez, Ballester, & Haro, 2020; Alguacil, Fernandez, Arce, &
Sumpter, 2020; Stöckl, Seidl, Marley, & Power, 2021). One such
metric that found wide media coverage is the so called "packing"
metric (Steiner et al., 2019).

Because of the increased complexity, offensive tactical patterns
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are typically analyzed using tracking data, but there exists some
research purely using event data (Gudmundsson & Horton, 2017;
Decroos, Haaren, & Davis, 2018). For instance, Gudmundsson
and Horton (2017) used event-level data to analyze the effective-
ness of long-ball build ups. The studies based on tracking data
range from corner kick tactics (Shaw & Gopaladesikan, 2021;
Bauer, Anzer, & Smith, 2022) to pitch control patterns (Martens,
Dick, & Brefeld, 2021; Brefeld, Lasek, & Mair, 2019; Fernandez
& Bornn, 2018). The accompanying work in Bauer (2021) goes
into further details regarding the automatic detection of tactical
patterns (both offensive ones as well as defensive ones). It first
presents an overview of this research area across different sports,
then it specifies tactical patterns in football and finally applies
machine learning methods to identify them automatically.

Similar to tactical patterns, offensive team strategy has mostly
been investigated based on tracking data (Andrienko et al., 2019;
Carling, 2011; Müller-Budack, Theiner, Rein, & Ewerth, 2019;
Bialkowski et al., 2016; Lucey et al., 2013). Using this posi-
tional data Lucey et al. (2013) found that away teams play with
a more conservative strategy, in part leading to the home court
advantage. Müller-Budack et al. (2019) classified positional data
from four matches to predefined formation templates and found
that offensive formations are particularly hard to recognize. Be-
fore the increased availability of tracking data Pollard and Reep
(1997) used event-level data to compare the effectiveness of dif-
ferent offensive strategies.

The interest in this research area is not only of academic na-
ture, but also stems from clubs or federations. Nearly all pro-
fessional football organizations have incorporated data in some
form to their daily processes. This includes the scouting of tal-
ented players, opposition analysis, monitoring physical perfor-

6



mances, preventing injuries, or predicting youth player devel-
opments. As a consequence, clubs and federations hire data-
scientists and establish dedicated data analytics departments to
support decision-making on strategy, tactics, and player recruit-
ment (Andrienko et al., 2019). Additionally, media companies
are interested in using analytics to enhance their storytelling to
deliver more data-based facts to their customers (Link, 2018b).
The German Bundesliga in particular has bought in to this con-
cept. Since May 2020 its broadcast delivers some of the advanced
metrics developed within this dissertation to millions of fans
world wide.4 Furthermore, as Tuyls et al. (2021) noted, football
data can be considered as the ideal playing ground to develop
and test new machine learning methods.

For most of the above listed applications, the offensive per-
formance is especially relevant, as offensive players are gener-
ally more valuable than defensive players monetarily, fans tend
to celebrate goals more than defensive clearances, and from a
practical stand point almost all available event data describes of-
fensive ball actions. Even though we listed several studies evalu-
ating offensive performance on every level using either event or
positional data, the research field is missing ones that combine
the two sources.

The purpose of this thesis is to address this shortcoming by in-
troducing a novel synchronization algorithm of event and track-
ing data. It then follows the footsteps of other sports and devel-
ops frameworks to objectively measure offensive performances
on every level. The synchronization allows for the quantifica-
tion of the two most frequent basic offensive actions, shots and
passes. The thesis then shows how using these enhanced actions

4
https://www.bundesliga.com/en/bundesliga/news/new-real-time-match-analysis

-dfl-and-amazon-web-services-11246
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one can better investigate repeating tactical offensive scoring pat-
terns as well as macro level offensive strategies.

Building on this introductory section, which details the his-
tory and status quo of sport analytical research investigating of-
fensive performance, Section 2 introduces the two data sources
used throughout the thesis in detail with a focus on present-
ing our novel approach of how to synchronize them. It further
presents key concepts in machine learning and describes a few
supervised and unsupervised learning methods later used in the
empirical studies.

Section 3 builds the core of this thesis, summarizing four
empirical studies either establishing or applying novel offensive
metrics. The corresponding manuscripts were submitted or have
already been published by internationally well renown sport sci-
ence journals and consist of:

(I) Anzer, G., Bauer, P. (2021). A Goal Scoring Probability
Model based on Synchronized Positional and Event Data.
Frontiers in Sports and Active Learning (Special Issue: Using
Artificial Intelligence to Enhance Sport Performance), 3(0), 1–18.
https://doi.org/10.3389/fspor.2021.624475

(II) Anzer, G., Bauer, P. (2022). Expected Passes—Determining
the Difficulty of a Pass in Football (Soccer) Using Spatio-
Temporal Data. Data Mining and Knowledge Discovery, Springer
US. https://doi.org/10.1007/s10618-021-00810-3

(III) Anzer, G., Bauer, P., & Brefeld, U. (2021). The Origins of
Goals in the German Bundesliga. Journal of Sport Science.
https://doi.org/10.1080/02640414.2021.1943981

(IV) Bauer, P., Anzer, G., & Shaw, L. (2022). Putting Team For-
mations in Association Football into Context. Journal of
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Sports Analytics (submitted).

In Section 4, this dissertation critically assesses the results of
the empirical studies and their scientific merit, discusses their
limitations, and names potential future improvements or appli-
cations.

Of course, defense and group tactical elements are also very
relevant aspects of football. These were addressed in various
other studies conducted as part of this research program, but
not included in the core of this thesis.

(i) Andrienko, G., Andrienko, N., Anzer, G., Bauer, P., Budziak,
G., Fuchs, G., Hecker D., Weber H., Wrobel, S. (2019). Con-
structing Spaces and Times for Tactical Analysis in Foot-
ball. IEEE Transactions on Visualization and Computer Graph-
ics, 27(4), 2280–2297. https://doi.org/10.1109/TVCG.2019
.2952129

(ii) Bauer, P., Anzer, G., Smith, J. W. (2022). Individual role
classification for players defending corners in football (soc-
cer). Journal of Quantitative Analysis in Sports (submitted).

(iii) Bauer, P., Anzer, G. (2021). Data-Driven Detection of Coun-
terpressing in Professional Football—A Supervised Machine
Learning Task based on Synchronized Positional and Event
Data with Expert-Based Feature Extraction. Data Mining and
Knowledge Discovery, 35(5), 2009–2049.
https://doi.org/10.1007/s10618-021-00763-7

(iv) Fassmeyer, D., Anzer, G., Bauer, P., Brefeld, U. (2021). To-
ward Automatically Labeling Situations in Soccer. Frontiers
in Sports and Active Living, 3(November). https://doi.org/
10.3389/fspor.2021.725431
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(v) Link D., Anzer G. (2021). How the COVID-19 Pandemic has
Changed the Game of Soccer. International Journal of Sports
Medicine. https://doi.org/10.1055/a-1518-7778

(vi) Szymski D., Anzer, G., Alt V., Gärtner B., Krutsch W., We-
ber H., Meyer T. (2021). Contact times in professional foot-
ball before and during the SARS-CoV-2 pandemic: Tracking
data from the German Bundesliga. European Journal of Sport
Science. https://doi.org/10.1080/17461391.2022.2032837

(vii) Anzer, G., Bauer, P., Höner, O. (2021). The Identification of
Counterpressing in Football. In D. Memmert (Ed.), Match
Analysis—How to Use Data in Professional Sport (1st Edi-
tio, pp. 228–235). New York: Routledge. https://doi.org/
https://doi.org/10.4324/9781003160953

In an exploratory study i (Andrienko et al., 2019) we used
visual analytics to find repeating tactical patterns. Studies ii and
iii (Bauer, Anzer, & Smith, 2022; Bauer & Anzer, 2021) explore
how one can automatically identify the certain defensive tactical
patterns, namely corner marking and counterpressing. Study
iv (Fassmeyer, Anzer, Bauer, & Brefeld, 2021) uses variational
autoencoder to later automatically identify actions or patterns
with little labeled data. Studies v and vi (Link & Anzer, 2021;
Szymski et al., 2021) used tracking data to evaluate contact times
following the COVID-19 pandemic to estimate the risk associated
with a restart of a league and explored how much the game
has changed afterwards. Additionally, in a book contribution
vii (Anzer, Bauer, & Höner, 2021) a general overview of how
machine learning is used in football is given.

10
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2 Data and Methods

2.1 Combining Positional and Event Data in Football

Typically, the gathered data during football matches consists
of three raw data sources: meta data, event data, and tracking data.
Figure 2 shows the three data sources and their derived data
types.

Figure 2: Overview of the different types of raw data sources, their collection process, and
their potential for derived statistics. Further the figure lists some of the necessary steps to
combine the data sources.

2.1.1 Meta Data

Meta data contains a wide variety of information (mostly)
available before the match starts. It includes details about the
teams (team names, jersey colors, starting and bench players
etc.), the players (birth dates, nationalities, height, weight etc.),

11



the stadium (address, capacity, attendance etc.), the pitch (di-
mensions, pitch type etc.), the weather conditions (temperature,
precipitation, humidity), the referees (names, age etc.), and the
team staff (role, name, age etc.). All this information is gathered
manually, either once per season, or once per match. While this
data is more often used to give context to analysis of the other
two data sources, based on this meta data Link and Weber (2017)
analyzed the effect of weather conditions on match results and
Brander, Egan, and Yeung (2014) focused on how player age af-
fects their performance (in ice hockey). While not present in the
dataset used in this thesis, meta information could also include
various other attributes of interest, such as player value estima-
tions, player salaries, or contract lengths.5

2.1.2 Event Data

Event data consists of a log of actions happening during the
game, often including attributes describing each action in more
granularity. This set of actions, attributes, and their definitions
vary depending on the collecting company making comparisons
between datasets from different providers very difficult.6 Event
data can be divided into three distinct categories: player ac-
tions, team actions, and referee actions. Player actions contain
all on-ball actions where at least one player touches the ball (e.g.
passes, crosses, shots, tackles, ...) or rule violations (e.g. fouls,
offsides, ...). Team actions mostly refer to situations where a
team is granted a set-piece, e.g. corner kicks, free kicks, penal-
ties, throw-ins. Lastly, referee actions contain all actions where
the referee is the primary actor, e.g. cautions or referee balls.

For each event various sub-attributes are collected, some present
5
www.transfermarkt.de

6
https://dtai.cs.kuleuven.be/sports/blog/how-data-quality-affects-xg
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for all actions (e.g. time-stamps, x/y-location on the pitch, ...)
and most dependent on the event type. For example, for every
pass its receiver, the pass height (low or high), the direction, and
several more details are collected. The full catalogue including
the definitions of each event type and attribute are propitiatory
to the companies collecting the data, but simple versions are de-
scribed in the literature (Bialkowski et al., 2016; Pappalardo et
al., 2019; Stein et al., 2017). Figure 3 shows an excerpt from a for-
mer version the German Bundesliga used. This type of data is
also systematically collected in many other sports with different
catalogues nowadays (Vračar, Štrumbelj, & Kononenko, 2016).

13
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The Bundesliga requires its event data to arrive with a low
latency and high depth and accuracy. To achieve the low latency
the current provider uses a setup that consists of live speakers
onsite in the stadiums that communicate the most important
actions to live writers in a offsite collection center where they
record this data in the collection software.7 In this collection cen-
ter there are additional observers using a video stream to enrich
the data with further information (e.g. body part used during
a shot). Finally, after a match has concluded, further details are
added (e.g. the location of every pass) and quality control on the
live collected data is performed. But different methodologies and
tools exist for the annotation of event data across different com-
panies, i.e. other companies encode the match purely from video
footage into their own dedicated software systems (Pappalardo
et al., 2019).

Sequential events by the same team are often joined together
as one possession sequence, but there are varying definitions,
if a short touch by the opposing team (e.g. deflection) should
interrupt a possession sequence or not (Stein et al., 2017).

The most trivial use of this raw event data is the cumulative
aggregation, either on a team or a player level, often also re-
ferred to as frequency analysis (Chawla, Estephan, Gudmundsson,
& Horton, 2017; Borrie et al., 2002; Sarmento, Anguera, Cam-
paniço, & Leitão, 2010). This cumulative data simply shows the
frequency of certain events occurring over a given time frame,
e.g. how many shots a team had in the first half or how many
successful passes a player achieved in a match.

Further, various advanced metrics purely based on event data
were developed. Decroos, Bransen, van Haaren, and Davis (2020)

7The so-called speaker-writer method is explained here: https://www.dfl.de/en/

innovation/how-is-the-official-match-data-collected/.
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compute the value of each action, Roy, Robberechts, chi Yang,
Raedt, and Davis (2018) measure players’ decision-making skills,
and Bransen and van Haaren (2020) analyze team chemistry. A
limitation of the event data is, that it doesn’t capture the position
of the remaining players, so individually calculated values may
not always be very precise, but over large sample sizes (e.g. for
scouting players), these advanced metrics are a helpful source of
information (Decroos et al., 2019).

2.1.3 Tracking Data

Tracking data, contrary to event data, captures what is hap-
pening on the entire pitch throughout every moment of the match
automatically. The tracking data used throughout this thesis was
collected using the Chyhron Hego Gen 4/5 system.8 It computes
the center of gravity of all players, referees, and the ball and
transforms them into a two-dimensional Cartesian coordinates
system. The ball data includes a third dimension, the ball height
(in meters). The data is recorded at a frequency of 25 Hz. In
other words, one second worth of tracking data consists of 25
frames. Each frame also contains the derived values distance cov-
ered since the preceding frame, current speed, and acceleration values
for every object (ball or person). These are computed using a 5th-
order 1.0- Hz Butterworth filter to smooth the data and remove
outliers. The automatically gathered data is enhanced by two
manually collected attributes: ball possession and status of play for
every frame. Ball possession indicates which team is in posses-
sion of the ball. A team’s ball possession starts when one of its
players touches the ball for the first time after an opposing ball
possession phase and ends as soon as the ball is out of play or an
opposing player controls the ball. Status of play describes if the

8
https://tracab.com/products/tracab-technologies/
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ball is in play or not. The latter is case if the referee has halted
the game (e.g. due to a foul) or if the ball has left the pitch. This
manually gathered data is collected by a live observer within the
stadium, who is also responsible for initial player assignments
as well as resolving potential player swaps. After the match a
post-match observer manually corrects further issues with the
tracking data (e.g. unrealistic ball paths).

Based on this tracking data, one can easily compute aggre-
gated cumulative data. The most prominent aggregated statis-
tic being the total distance covered by a player (Andrzejewski,
Chmura, Pluta, & Konarski, 2015), but top speed, number of
sprints, non-interrupted playing time, or percentage of posses-
sion are further examples (Link, 2018a).

Several advanced statistics purely based on tracking data have
been developed in the literature (Martens et al., 2021; Fernandez
& Bornn, 2018; Andrienko et al., 2017; Link, Lang, & Seiden-
schwarz, 2016) as well as in media coverage, like average posi-
tions,9 pressure,10 or attacking directions.11

For more details regarding the history and studies validating
the positional data, see the accompanying work of Bauer (2021).

2.1.4 General Description of the Data

This thesis is built on data owned and collected by the Deutsche
Fußball Liga (DFL). For consistency purposes it has developed its
own catalogue of definitions12 and requires all data providers to
record data according to these definitions. Event and meta data
have been collected by Sportec Solutions AG13 and the tracking

9
https://www.bundesliga.com/en/bundesliga/news/match-facts-dfl-aws-revamp

-average-positions-trends-14706

10
https://aws.amazon.com/de/sports/bundesliga/most-pressed-player/

11
https://aws.amazon.com/de/sports/bundesliga/attacking-zones/

12
https://s.bundesliga.com/assets/doc/10000/2189_original.pdf

13
https://www.sportec-solutions.de/
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data stems from Chyron Hego’s TRACAB system.14 The dataset
used throughout the research program consists of all German
Bundesliga and German Bundesliga 2 matches, spanning across
eight seasons between the 2013/2014 and 2020/2021 seasons.
This totals to 4, 896 matches, making it one of the largest col-
lections of event and tracking data in the literature. The event
definitions catalogue of the DFL contains 34 different event types
with in total 123 unique attribute categories. On average, for each
event 20 attributes are gathered. Over the entire dataset there
were 2.85 goals, 26.19 shots, and 894.25 passes (78.46% of them
successful) per match. Even though this is one of the largest sets
of event data, a single game of tracking data contains more in-
formation than an entire season worth of event data. As noted
above, the tracking data of a single game consists of at least
135, 000 frames (90 minutes, recorded at a frequency of 25Hz)
plus a varying number of frames collected during added time,
typically with over 130 attributes per frame. This means that one
season of tracking data requires about 2.3 Terabyte of storage,
which also leads to computational challenges. Over the data set
the gross playing time is on average 94:39min, while the net play-
ing time (defined as the total time when the tracking data status
of play is set to in play) is only 55:10min. All this data is collected
live during the matches and underlies extensive quality control
loops to ensure a high data quality. In a standardized process
called observing, a human operator manually checks and corrects
suspicious sequences of player trajectories using a dedicated soft-
ware. The accuracy of the used tracking data has been evaluated
in the literature (Linke, Link, & Lames, 2020). While this pro-
prietary dataset cannot be shared, there exist small open-source
datasets containing either event (Pappalardo et al., 2019) or posi-

14
https://chyronhego.com/wp-content/uploads/2019/01/TRACAB-PI-sheet.pdf
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tional data (Pettersen et al., 2014) that can be used to reproduce
approaches presented throughout this thesis on a smaller scale.
Furthermore, there exist open-source sample datasets directly re-
leased by event15 or tracking16 data providers.

Apart from the sheer size, the dataset comes with a few no-
table other challenges. While the definitions of the events re-
mained mostly constant throughout the seasons, several new at-
tributes were added in between and not retroactively collected.
Moreover, as advances in computer vision and optical track-
ing system hardware led to constant improvements of the po-
sitional data quality, performing longitudinal analysis became
more complicated. Additionally, both data sources are suscepti-
ble to occasional quality issues: manually collected event data is
prone to human errors (even though the extensive quality con-
trol systems limit these) and the automatic optical tracking data
collection can be affected by occlusions or strong weather effects
(e.g. heavy snow, fog, ...). But the largest challenge when com-
bining both datasets is that the manual collected time-stamps
depend on human reaction time and therefore may deviate a lot
from when it actually happened in the tracking data.

2.2 Synchronization of Event and Positional Data

Reconstructing a match based on event data is like looking at
a completely dark pitch for 90 minutes, where a spotlight flashes
at the ball every four seconds. In tracking data, this pitch is al-
ways light up, but it doesn’t say when the relevant moments of
the games are, which should be looked at more closely. Com-
bining the two data sources is essential for unlocking the full

15Statsbomb (https://github.com/statsbomb/open-data)
16Skillcorner (https://github.com/SkillCorner/opendata) and Metrica Sports

(https://github.com/metrica-sports/sample-data)
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advantages of both datasets: when the relevant actions occurred
and what they were (recorded at a greater level of detail than
would be possible with tracking data alone), and spatio-temporal
context of what happened before, at, and after the action. This
information gain is shown in Figure 4a): Only using event data,
all one would know is, that there was a successful pass starting
in the middle of the pitch in the direction of the opposing goal.
However, when we add the positional data in Figure 4b) of all the
players at the time of the pass and the following ball trajectory,
we can see that this short pass played under pressure, by-passed
nearly the entire defending team and the receiving teammate
(#23) is in a position where there is only the goalkeeper to beat.
Contrast that to a different pass depicted in Figure 4c): in the
event data this pass would look almost identical to the previous
one based on starting and end location, but the combination with
tracking data shows that it was merely a pass into the half space
between the two defensive lines.
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a)

b)

c)

Figure 4: Visualization of two different passes: Sub-figures a) and b) show the same forward
pass, once purely based on information contained in the event data and once including all
the tracking data. Sub-figure c) depicts a different forward pass in a similar location, but the
tracking data information shows a very different context than in b).

The biggest challenge when combining the data sources is that
they are generally not aligned. This is mainly caused by the
following two factors:
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(a) The two data types are typically collected by different com-
panies each using their own internal clock causing a system-
atic offset.

(b) Manually collected event time stamps are affected by reac-
tion times, distractions, and decision times of the human
operators.

For these reasons, a "naive" synchronization—using the time
stamp from the event data—to identify player positions at the
time of an event leads to large inaccuracies. Figure 5 shows the
differences between time stamps included in the event data and
calculated ones.17 As can be seen, there are large differences (up
to 20 seconds) between the two time points and hence the need
for an accurate synchronization algorithm. To the author’s best
knowledge, this dissertation and the contained studies are the
first to introduce a methodology that reliably solves this prob-
lem.

The general idea of our synchronization algorithm is to take
all relevant information from the event data of an action and
find the moment in the tracking data that most closely resem-
bles it. Since there is no large set of ground truth data (with
highly accurate time stamps), we chose to approach this prob-
lem with a rule-based solution and optimized the parameters
used in an iterative process instead of using a machine learning
based approach. The algorithm uses a general framework and
adapts it slightly dependent on the event type. The exact de-
tails of the algorithm for shots and passes can be found in Anzer
and Bauer (2021) and Anzer and Bauer (2022). This algorithm is
slightly altered for other event types, e.g. when matching inter-
ceptions/ball receptions, the algorithm looks for the beginning

17As shown in the manual validation study within (Anzer & Bauer, 2022), the calculated
timestamps generally capture the ground truth very well.
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Figure 5: Time difference between event and tracking timestamps as presented in Anzer and
Bauer (2021) (p. 6).

of an individual ball possession phase instead of its end and for
duels, it also takes the distance between both involved players
and the ball into consideration. With this synchronization we
create a completely new dataset as shown in the bottom of Fig-
ure 2.

2.3 Machine Learning Basics

Due to the growing amount of data available in virtually any
domain paired with the increasing affordability of computing
power, the research area of machine learning experienced tremen-
dous advances in the past decades. Following the general objec-
tive of machine learning, early approaches aimed to teach algo-
rithms playing board games (Samuel, 1959). Nowadays, machine
learning applications are ubiquitous across various domains sup-
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porting human processes in image recognition, natural language
processing, recommendation systems, autonomous driving, and
many more.

The three major problems in machine learning are clustering,
classification, and (logistic) regression tasks (Goodfellow, Bengio,
& Courville, 2016). Classification and regression tasks aim to
predict a pre-defined label (dependent variable or set of classes)
based on input data. Clustering aims to group similar objects
into different clusters and thus to explore patterns in the data.
In Anzer, Bauer, and Höner (2021) we present an introduction
to supervised and unsupervised machine learning applications.
Within the scope of this thesis, we address logistic regression
tasks to predict the probability of a pass or shot success (Sections
3.1 and 3.2), clustering tasks in Sections 3.3 and 3.4, as well as a
classification task in Section 3.4.

Tree-based algorithms present a substantial part of machine
learning algorithms solving classification, as well as regression
tasks. Following the basic idea of Friedman (2002), who intro-
duced gradient boosting as an additive regression model, Chen
and Guestrin (2016) presented a sophisticated optimization of
the method, called extreme gradient boosting or short XGBoost
gaining significant results in many classification or regression
tasks. A major advantage of the XGBoost algorithms is, that
they can handle imbalanced data. Whereas the basic idea of
supervised machine learning methods (e.g. regressions) is to
optimize a set of free parameters in an algorithm (e.g. XG-
Boost) in order to minimize the prediction error on the train-
ing data, another crucial design choice is the hyperparameter
space. Hyperparameters describe a set of variables in an algo-
rithm that are not optimized during the training process, but
rather must be chosen before the training. With XGBoost (just as
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with many other algorithms), this step can be performed auto-
matically using Bayesian optimization (Bergstra, Bardenet, Ben-
gio, & Kégl, 2011; Dewancker, McCourt, & Clark, 2016). By
using a game theoretical approach to visually interpret trained
XGBoost models, Thomson and Roth (1991), Rodríguez-Pérez
and Bajorath (2020), and Lundberg and Lee (2017) addressed
one of the biggest limitations of XGBoost, namely the difficult
interpretability. As demonstrated in other domains (Antipov
& Pokryshevskaya, 2020; Meng, Yang, Qian, & Zhang, 2020;
Ibrahim, Mesinovic, Yang, & Eid, 2020) we show that SHAP val-
ues18 can help to understand predictions of our expected goals
model (Anzer & Bauer, 2021). In Anzer and Bauer (2021) as well
as in Anzer and Bauer (2022) we compared XGBoost to various
other algorithms (e.g. logistic regression, ADA boost, random
forest or gradient boosting) and found that XGBoost yielded the
best results.

A shortcoming of XGBoost models is that they require feature
crafting to be effective. In contrast, artificial neural networks,
another family of machine learning algorithms that can be used
inter alia for classification tasks, are able to better handle less
structured raw data. The basic concept of artificial neural net-
works was introduced in 1958 (Rosenblatt, 1958), however, only
improvements by Werbos (1994) as well as advancements of the
back-propagation algorithm in 2006 (Hinton, Osindero, & Teh,
2006) paired with available data and computing power enabled
its recent success. Especially for image and video processing,
the introduction of convolutional neural networks—a group of
neural networks that are optimized to handle data structured as
images using convolutional layers (Zhang et al., 2019)—helped

18SHAP is the abbreviation for SHapley Additive exPlanation. SHAP values originate from
game theoretical concepts and describe the impact certain features have on machine learning
predictions (Lundberg & Lee, 2017).
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to outperform humans in various image classification tasks. By
taking the typically 105⇥68 m seized pitch as the frame of an
image and setting the trajectories of the player of each team as
well as of the ball as shaded pixels in a different colours, con-
volutional neural networks have been used to perform classifi-
cation tasks on spatio-temporal positional data in many sports
(Mehrasa, Zhong, Tung, Bornn, & Mori, 2018). We use this ap-
proach applying convolutional neural networks to tracking data
in Bauer, Anzer, and Shaw (2022).

For the clustering of goal origins (Anzer, Bauer, & Brefeld,
2021) and team formations (Bauer, Anzer, & Shaw, 2022), we
rely on the most traditional method of agglomerative hierarchi-
cal clustering. It works bottoms up, in the sense that it starts
with every observation as a single cluster and keeps merging
two clusters until there is only one left. The structure describ-
ing at what stage two clusters were merged is generally referred
to as a dendrogram (Murtagh & Contreras, 2012). There exist
several ways to decide which two clusters to merge, ranging
from single-linkage (Sibson, 1973) to max-linkage (Defays, 1977).
While these describe the two extremes, we use more balanced
approaches. In Anzer, Bauer, and Brefeld (2021) we opted for
average-linkage (Sokal, 1958) and in Bauer, Anzer, and Shaw
(2022) we used Ward’s method (Ward & Joe, 1963). They all also
require a distance metric to compute the similarity between ob-
servations. Again, there is a variety of different metrics to choose
from, the most common one being the Euclidean distance. We
selected ones better suited for our problems: the cosine distance
(Qian, Sural, Gu, & Pramanik, 2004) and the Wasserstein distance
(Olkin & Pukelsheim, 1982). Finally, while objective metrics like
Silhouette values exist to decide on a number of clusters, this
choice portrays an ill-posed problem (Rousseeuw, 1987). We use
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these objective metrics in combination with a substantial amount
of expert knowledge to both align on this number, but also to
contextualize the results.
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3 Empirical Studies

The main research question of this thesis is how one can use
synchronized tracking data to quantify offensive performances
on the three levels Figure 1 introduced. The goal of this work is
neither to find one overarching statistic that summarizes all of-
fensive performance to one number, nor to analyze every single
aspect of offensive play. Instead, it aims to show how one can
quantify some of the most important aspects of offensive per-
formance on each level using the synchronized data (see Section
2.2). Studies I and II (Sections 3.1 and 3.2) analyze the offensive
actions shots and passes in detail. These are then also used in
study III (Section 3.3) to quantify offensive tactical patterns lead-
ing to goals using an unsupervised clustering technique. Lastly,
study IV (Section 3.4) focuses on the offensive team strategy
level, namely the question which build-up formation is most ef-
fective against various opposing formations.

Studies I, II, and III (Sections 3.1, 3.2, and 3.3) were published
as a first author and the work done for study IV (Section 3.4) was
done as a co-author. The following sections merely summarize,
discuss and put the studies into the context of this thesis, while
their full manuscripts can be found in the Appendix.

3.1 Study I: A Goal Scoring Probability Model for Shots based

on Synchronized Positional and Event Data in Football

(Soccer) (Anzer & Bauer 2021)

Goals are always the deciding factor of a football match, yet
they occur very rarely—only about 1% of all possessions and
about 10% of all shots end up as a goal (Pollard & Reep, 1997;
Tenga et al., 2010; Lucey et al., 2014). Hence, measuring the of-
fensive performance of a player or team purely based on goals
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is subject to large variations and noise, especially when consid-
ering short time windows. Therefore, shots are often used as
a proxy instead, even though the quality of shooting situations
can vary considerably. The aim of this study (Anzer & Bauer,
2021) is to quantify the basic offensive action shot by computing
the expected goals (xG) metric that estimates its quality. This is
done by computing the probability of a shot being converted to
a goal using a machine learning model. It follows the footsteps
of other sports, like baseball or basketball, where more process-
based metrics were established to measure on-base percentage
(James, 1988) and shot locations (Chang et al., 2014) rather than
home runs or points. While there already existed work on shot
probabilities in football in the "grey literature" like master the-
ses (Hedar, 2020; Rowlinson, 2020) and conference proceedings
(Lucey et al., 2014), this study is the first to introduce a positional
data-driven xG model in a peer-reviewed journal. Previously,
only in a conference proceeding Lucey et al. (2014) used event
and positional data from 10, 000 shots from the English Premier
League to develop an xG model.

For our approach we extracted nine hand-crafted features from
the synchronized positional and event data of 105, 627 shots and
fed them into various supervised machine learning models. The
best performing model consists of the XGBoost method (see Sec-
tion 2.3). It achieves a ranked probability score (RPS) of 0.197,
making it more accurate than any previously published expected
goals model. This increased accuracy is largely due to important
features only contained in the synchronized data (see Section
2.2), like the position of the goalkeeper, that would otherwise be
missing.

The model enables various applications to analyze the under-
lying performance of teams and players. One can aggregate the
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expected goal values on a team level per match to get an estimate
of how many goals a team would have been expected to score,
given their chance qualities during a match. We showed that
these aggregated expected goal values pick up more informa-
tion about the underlying performance than shots and are less
susceptible to noise than goals, especially on short- to mid-term
and thus are ideally suited to measure a team’s current form.
By nature, over longer periods xG’s and goals should converge
eventually, baring some systematic reasons for over/under per-
formance (e.g. a really gifted striker). Figure 6 shows how one
can measure a team’s current performance level, by computing
a rolling average of the aggregated match results over the last
four matches (both offensively, and defensively, i.e. xG allowed
to the opponents). It indicates that RB Leipzig had a weak spell

Figure 6: Rolling average of team aggregated xG values The figure shows for each matchday
a rolling average of the team aggregated xG values (green xG created and red xG against)
over the past four matches.

towards the end of their 2019/2020 campaign, where they on av-
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erage allowed higher quality chances than they created. Another
useful set of applications exists on a player level: with a player’s
aggregated xG values one can better measure how often a player
finds himself in a promising scoring situation than would be pos-
sible by looking at his goals or shots tally. Further, over a large
sample size, when comparing xG values to actual goals scored,
one can get an indication of a player’s finishing skill. It also al-
lows us to address a shortcoming of a popular metric: Assists.
The number of assists a player achieves depends to a high de-
gree on their teammates’ efficiency. By assigning the resulting
xG value to the player that assisted the shot, we can measure
chance creation capabilities more accurately and independent of
the shooter’s ability to score. This value is typically referred to
as expected assists (xA).

A limitation of xG values in general is that they do not assign
any value to dangerous situations where no shot was attempted.
While these situations are rare (occurring only 0.93 times per
match across our dataset), there exists ample research to extend
this approach to all situations and not just shots (Link et al.,
2016; Spearman, 2018; Fernández, Bornn, & Cervone, 2019; De-
croos et al., 2019). Moreover, as present throughout this thesis,
data quality and the results of the synchronization play a vital
role in this model. If in actuality the goalkeeper was between
the shooter and the goal, but in the synchronized data (for ex-
ample due to erroneous tracking data), he is not, the xG model
will substantially overestimate the chance of scoring. Even for
purely event based xG models, the importance of accurate input
data was highlighted in Robberechts and Davis (2020). Another
limitation is that some potentially very relevant features are not
recorded in current event and tracking datasets. For instance,
future work could evaluate if adding the body orientation or the
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level of ball control could improve the accuracy of the model.

3.2 Study II: Expected Passes: Determining the Difficulty of

a Pass in Football (Soccer) Using Spatio-Temporal Data

(Anzer & Bauer 2022)

Unlike goals or shots, the basic offensive action of a pass hap-
pens far more frequently during a match, but only few lead to
shots and even fewer lead to goals directly (Goes, Kempe, Meer-
hoff, & Lemmink, 2019). Hence, there is a need to quantify
them and a player’s passing ability independent of the follow-
ing action. Often a player’s passing skill is measured by his pass
completion rate (Król et al., 2017), i.e. the percentage of passes
played, that successfully arrive at a team mate. This approach
neglects that passes are of varying difficulty: a pass between two
central defenders in open space is a lot simpler to complete than
a chip pass played under high spatio-temporal pressure behind
the last defending line.

Thus, study II (Anzer & Bauer, 2022) presents a model to
quantify this basic action by measuring the pass difficulty. Sim-
ilar as described in study I (Section 3.1), this is done using a
supervised machine learning approach that in this case calcu-
lates the probability of any given pass being completed and is
aptly named expected pass (xPass) (Spearman et al., 2017; Power
et al., 2017; Fernández et al., 2020; Arbues-Sanguesa et al., 2020;
Alguacil et al., 2020; Stöckl et al., 2021). Spearman et al. (2017)
were the first to use tracking data from 10, 875 passes to pre-
dict the probability of a pass being completed using ball and
player trajectories. While it is possible to construct such a model
purely on event data (Łukasz Szczepański & Mchale, 2016), we
showed that synchronized positional data (see Section 2.2) is es-
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sential to achieve a high accuracy. But even within this data, one
quintessential attribute is missing: who the intended receiver
was is not recorded in the event data for unsuccessful passes.
Since this is crucially important information to any supervised
machine learning model classifying the pass results, a major part
of this study shows how one can determine the targeted player
for unsuccessful passes. For that purpose, we use a state-of-the-
art movement model (Brefeld et al., 2019; Fernandez & Bornn,
2018) to derive the potential positions of all players within a cer-
tain time window and combine this with physics-based ballistic
ball trajectory model (Spearman et al., 2017). From this combi-
nation we can determine the teammate most likely to reach the
ball first.
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Figure 7 depicts a pass where the estimated ball trajectory is
shown in orange and the movement areas of players in vicin-
ity of the pass destination are shown in circles. The accuracy
of the intended receiver estimation of 93% surpasses the best
previously published work of 81% (Spearman et al., 2017). The
intended target estimation has the added benefit, that it yields
some useful features (e.g. possible angle or exit velocity) for
the machine learning models estimating the pass success prob-
ability. These physics based features are combined with a wide
set of hand-crafted ones that were developed in close collabo-
ration with practitioners. Various subsets of these features are
then fed into an XGBoost algorithm (see Section 2.3). The model
on the full feature set achieves an area under the curve (AUC) of
93.4%, and significantly outperforms traditional models using ei-
ther only event data or tracking data without information about
the intended receiver. Since we can only estimate the target, if
the ball trajectory is available (at least for the first 10 frames),
the success probabilities can only be calculated for non-blocked
passes. To remove this bias from the results, we additionally
trained a model to compute the likelihood that a pass is blocked.
This novel blocking model is used to discount the xPass values.
Apart from the high accuracy, a strength of this study are the
three exhaustive manual validation studies of its sub-elements.
We evaluated:

(1) the synchronization algorithm for passes,

(2) the accuracy of the intended target identification,

(3) and the final xPass values.

With this metric, we can quantify a very important offensive
skill a player’s passing ability, by comparing his actual comple-
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tion rate to his expected rate. The more he outperforms his ex-
pectation, the better his passing performance. Furthermore, by
computing xPass values for alternative hypothetical passes, we
can also assess a player’s risk profile.

But this application also highlights a limitation of our ap-
proach: we can only evaluate the risk of pass but not its re-
ward. In the future, this risk model could be combined with a
reward model (Steiner et al., 2019; Goes et al., 2019; Fernandez
& Bornn, 2018) to also give a full picture of the value of the ac-
tion and to evaluate a player’s decision-making skill. As in study
I, data quality has a strong impact on the resulting probability
estimations. In this case the target estimations (only using 10
frames) is susceptible to occasional errors in the ball data. More-
over, as stated above with this approach we cannot reasonably
estimate the success probability of blocked passes, since we are
unable to identify the target. This could be addressed in the fu-
ture by using a different method for identifying intended targets
for blocked passes (e.g. simply the closest team mate).

3.3 Study III: The Origins of Goals in the German Bundesliga

(Anzer, Bauer, & Brefeld 2021)

Similar to study I, study III (Anzer, Bauer, & Brefeld, 2021)
investigates goal scoring. But instead of focusing on the basic fi-
nal action (i.e. the shot), this study analyzes the tactical patterns
leading to the goal. Although every goal in football is sui generis
due to the complexity of the game, most of them do not occur
randomly, but originate from certain underlying patterns. Due
to their rareness, finding these goal patterns is a difficult task
that has motivated researchers for decades (Reep & Benjamin,
1968; Szwarc, 2007; Mitrotasios & Armatas, 2012; Plummer, 2013;
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González-Ródenas et al., 2019). For instance, González-Ródenas
et al. (2019) manually classified 380 goals into two categories and
found that 75.9% goals originate from open-play and only 24.1%
from set-pieces. Study III explores how we can identify distinct
offensive tactical patterns leading up to goals, by using an unsu-
pervised approach. For that purpose we use our synchronized
positional data (see Section 2.2) enriched with several features
developed in studies I and II, that either describe the finishing
action (e.g. xG values), or the actions leading up to the goal (e.g.
passes played during the possession phase) and feed it into an
agglomerative clustering approach. The next steps of choosing
the number of clusters and contextualizing them based on video
footage were done in close collaboration with football practition-
ers. The final clustering consists of 50 interpretable clusters, each
describing a unique offensive pattern leading to a goal and, due
to the hierarchical nature, one can see related patterns by looking
at the dendrogram depicted in Figure 8.

This clustering also allows for cutoffs at higher levels, where
it finds more general categories (e.g. set-piece goals). In the end,
football experts evaluated each cluster and were able to identify
and name clear patterns the contained goals had in common.
Figure 9 shows exemplary goals for the 12 open-play goal clus-
ters they identified. These categories include goals following a
long build-up phase finished with the foot or with the head (i.e.
typically set up by a cross), as well as goals following counter-
pressing (motivating more defensive oriented follow-up research
in Bauer and Anzer (2021)).

What separates this study from others exploring goal-scoring
patterns (Reep & Benjamin, 1968; Szwarc, 2007; Mitrotasios &
Armatas, 2012; Plummer, 2013; González-Ródenas et al., 2019),
is its large dataset (3, 417 goals), the handcrafted features de-
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scribing the underlying offensive actions in greater detail, and
the direct involvement of football practitioners throughout the
process. Currently, most match analysis departments routinely
analyze and categorize the goals they scored/conceded during a
season. This manual process can be automated using our clus-
tering methodology, with the added benefit that it not only saves
time, but also creates reproducible categories. Furthermore, the
large sample size allows for the identification of rare categories
(e.g. corner-trick plays). Comparing individual players with av-
erages over all players on the same position reveals characteristic
traits that may be exploited when scouting replacements for de-
parting players.

A limitation of this study, as is typical for most unsupervised
machine learning approaches, is that the resulting clustering may
not be identical to categories a practitioner may demand. While
this exploratory approach delivers satisfying categories, some
practitioners may prefer predefined categories. For such cases,
a supervised approach can be built upon our results as future
work. A further common problem, as touched upon in Section
2.3, is that determining the right cluster number is somewhat
subjective.
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3.4 Study IV: Putting Team Formations in Association Foot-

ball into Context (Bauer, Anzer, & Shaw 2022)

After quantifying individual offensive actions in studies I and
II (Sections 3.1 and 3.2), and identifying offensive scoring pat-
terns in study III (Section 3.3), one of the goals of study IV (Bauer,
Anzer, & Shaw, 2022) is to analyze offensive performance on a
team strategy level (see Figure 1). This done by measuring the
effectiveness of offensive formations against different opposing
defensive set-ups on a team level. Which formation to choose,
is one of the coach’s most important strategic decisions (Wilson,
2009; Wei, Sha, Lucey, Morgan, & Sridharan, 2013; Bialkowski et
al., 2014; Müller-Budack et al., 2019), as it affects a team’s ability
to create scoring opportunities as well as the opponent’s. How-
ever, a team does not play in the exact same formation through-
out the match, but its shape rather depends on the tactical situa-
tion (Andrienko et al., 2019; Shaw & Glickman, 2019). Shaw and
Glickman (2019) introduced a method to classify team forma-
tions depending on the game-state (offensive and defensive), but
concluded that further granularity of these game-states would
lead to more accurate representations of formations. Therefore,
to estimate a team’s formation during a certain tactical phase,
one must first determine each time when said phase occurred
during the match. Typically, a football match can be separated in
four distinct match-phases, as illustrated in Figure 10. These four
phases can additionally be split into subcategories, for instance
the offensive phase can be further differentiated in build-up play
and attacking play. The exact definitions of the phases and their
subcategories can be found in Bauer (2021). To complicate things,
unlike American football or basketball, football cannot easily be
separated into distinct possession phases. Therefore, one needs
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Figure 10: Four main tactical phases, in which open-play is generally divided. This figure
and a more thorough explanation of the tactical phases can be found in Bauer (2021).

to not only identify the phases, but also their starting and end
points.

The first part of this study aims to determine the active tac-
tical phase for each moment of the game. In order to have a
ground truth, 97 Bundesliga matches from the 2018/2019 sea-
son were annotated describing for every moment of the game
the current tactical main- and sub-phases (in sum 59 hours and
50 minutes). These labels are used to train convolutional neu-
ral networks (CNN), taking positional data mapped to 2-D im-
ages as input (as in Dick and Brefeld (2019), Zheng, Yue, and
Lucey (2016) and K.-C. Wang and Zemel (2016)). With these (pre-
dicted) phases now available for all Bundesliga matches from the
2013/2014 to the 2019/2020 season, we can determine what for-
mations teams used within these phases (as in Shaw and Glick-
man (2019)) and use a hierarchical clustering to determine the
ones most frequently used. Again, the choice of the right num-
ber of clusters is non-trivial and addressed in close collaboration
with football experts evaluating and contextualizing the result-
ing clusters.

The above steps enable us to answer the strategic question of
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Figure 11: Effectiveness, measured by expected goals, of different formations as introduced
in Bauer, Anzer, and Shaw (2022) (p.11).

which formation is the most efficient against an opposing one
during a certain phase. Figure 11 shows how well two different
build-up formations perform against various mid-block forma-
tions employed by the opposing team. The performance is mea-
sured by the accumulated xG values (because they, as shown in
study I (Section 3.1), can pick up underlying information about
offensive performance more quickly than goals) when both for-
mations were used and scaled to full match lengths. As can be
seen on the left, against a 4-2-3-1 defensive mid-block formation
a 2-4-3-1 build-up is more effective than a 3-1-4-2 (the two most
frequently used build-up formations).

Obviously, this rather simple approach of measuring effective-
ness of offensive formations comes with several limitations, most
notably we did not control for confounding factors like if there
is a preference for stronger (or weaker) teams to use a particu-
lar formation. Moreover, we kept the definitions of the tactical
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phases used for labeling rather general. However, in reality each
team may have their own style, so in future work one could ex-
plore if team specific models could improve the tactical phase
identification. Lastly, as in study III, selecting the right num-
ber of clusters of different formations, is non-trivial and greatly
affects the results.
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4 Discussion

The aim of this thesis is to show how one can objectively an-
alyze offensive performances using synchronized positional and
event data. In a first step (see Section 2.2), it introduced a novel
methodology to combine the two separate datasets. This repro-
ducible methodology can be applied to any tracking and event
data—vendor- and sport-agnostic—and enables researchers to
combine the information of both datasets instead of choosing just
one. Throughout this thesis, offensive performances were inves-
tigated from a very granular action-based level all the way to a
higher team based strategy level (see Figure 1). Studies I and II
(Sections 3.1 and 3.2) objectively quantified two of the most com-
mon offensive actions, passes, and shots. Study III (Section 3.3)
also showed how one can measure offensive performance on a
tactical pattern level. And finally, study IV (Section 3.4) explored
the effectiveness of different offensive formations on a team strat-
egy level. Especially the inclusion of an improved quantification
of basic actions (like expected goals), proved to be a vital com-
ponent in the analysis of tactical patterns and team strategy: in
study III, it played an important role in separating goals based
on their chance quality and in study IV, it allowed to measure
the efficiency of a formation more reliably than would have been
possible with basic events like shots or goals. Table 1 gives an
overview of the studies included in this thesis. It describes the
level on which each study operates (i.e. action, pattern, or strat-
egy), it lists the amount of data used (and from which league)19

and what machine learning methods were utilized. Moreover, it
names some of the key results or applications, as well as some of
the limitations of each study.

19BL denotes the German Bundesliga and BL2 the German Bundesliga 2.
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4.1 Data and Synchronization

The quality of any data-driven analysis depends for the largest
part on the underlying data. While both data sources used in this
thesis are recorded in detail and oblige strict quality control pro-
cesses, they are still prone to errors. Human errors can occur in
the manual process of collecting event data (e.g. identifying the
wrong player as the one who took the shot), as well as in the
human supported part of the tracking data collection (e.g. anno-
tating when the play is halted by the referee). Furthermore, even
the automated parts of tracking data collection (i.e. the computer
vision algorithms) are not infallible for a variety of reasons (e.g.
players getting mixed up in huddle situations). An interesting
yet untouched area of research could investigate how to auto-
matically identify erroneous data. A general limitation of the
current tracking data is, that it simplifies players’ movement to
two-dimensional positions missing two very important aspects:
player orientation and tracking their limbs. Both areas have
been addressed in research (Arbués-Sangüesa, Haro, Ballester, &
Martín, 2019; Arbues-Sanguesa et al., 2020; Cust, Sweeting, Ball,
& Robertson, 2018) and have the potential to unlock completely
new avenues of more granular analysis, once this additional data
is collected systematically. However, the question remains, if the
marginal gain of adding more complexity to the data will be
worth the effort given, that the current data sources have not
been fully explored yet. Furthermore, the current tracking data
technologies require extensive on-premise camera set-ups mak-
ing it prohibitively expensive for lower leagues with limited fi-
nancial power (Manafifard et al., 2017). In an attempt to lower
the entry barrier and to democratize this data, research (Johnson,
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2021) and companies20 have explored possibilities to extract po-
sitional data (at a lower quality) purely from broadcast videos.

Besides the input data, the ground truth labeled data is also
essential for any supervised machine learning model. Depend-
ing how well-defined the target variable is (often measured by
the inter-labeler reliability), the better a model can perform. Ob-
viously, more objective labels like whether a shot ended as a
goal, or whether a pass reached a teammate, achieve a higher
inter-labeler reliability than more subjective definitions, as what
tactical phase is currently active (see Section 3.4) or which pass
was more difficult (see Section 3.2). Nevertheless, it should be a
goal during the ground truth gathering process to maximize this
measure by developing clear and concise definitions, training the
labelers, and monitoring their pair-wise accuracy. It is also im-
portant not to introduce any biases into the process (e.g. when
estimating the difficulty of a pass, humans can be influenced by
the result, i.e. whether it was successful).

The most susceptible step to data quality issues is the event
synchronization. Being at the intersection of both datasets, if ei-
ther contains errors, the synchronization may fail. For instance, if
in the event data the wrong player was recorded as having taken
a shot, the algorithm will most likely fail looking for a situation
where this player could have taken a shot in the tracking data.
Similarly, if within the tracking data the ball position is stuck at
the corner flag for a certain period of time, the algorithm will
fail to synchronize any event that happened in the meantime. As
shown in Anzer and Bauer (2022), with the high-quality data in
the Bundesliga these issues preventing a successful synchroniza-
tion happen fairly rarely, but the lower the data quality of either

20e.g. Skillcorner (https://www.skillcorner.com), or Metrica Sports (https://metrica
-sports.com/#)
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source, the more often they will occur. Since our rule-based ap-
proach to solve the issue of synchronization performed with such
a high accuracy, we refrained from using a machine learning
based one (see Section 2.3). Nevertheless, it could be interesting
future research, if after collecting frame accurate timestamps of
the events in the tracking data, one could train a machine learn-
ing model to perform this task at a even higher quality level.
There has also been ample research on completely automating
the manual process of event data collection by either using video
footage as input (Ekin, Tekalp, & Mehrotra, 2003; Kolekar, Pala-
niappan, Sengupta, & Seetharaman, 2009; Pouyanfar & Chen,
2017) or tracking data (Stein et al., 2019; Richly, Bothe, Rohloff,
& Schwarz, 2016; Motoi et al., 2012; Gudmundsson & Wolle,
2010). If these automated approaches would reach a satisfying
accuracy, they could eventually replace the cost/time intensive
process of manual event data collection with the added benefit
of removing subjectivity from the process. Throughout this the-
sis, we have shown the importance of using synchronized data
for complex tasks of measuring offensive performances. But the
synchronization alone already provides significantly more con-
text to individual actions (see Figure 4) than would be reason-
ably possible to collect manually. For instance, we can easily
obtain a popular currently hand collected metric "Packing",21 i.e.
how many opposing players were bypassed with a single action
(e.g. dribble or pass) (Steiner et al., 2019), or we can derive who
the closest opponent was for every event, exactly how long a
player was in possession of the ball before each action, or sev-
eral more. In a similar vein, the synchronized data could also
be used not only to extend context around recorded events, but
rather to create completely new off-ball events. For example, in

21
https://www.impect.com/en/
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Bauer and Anzer (2021), we identify situations when a team is
counterpressing and in Fassmeyer et al. (2021), we detect coun-
terattacking situations. This enhanced data could also include
several other events, e.g. offensive off-ball runs (Gregory, 2019;
Fernandez & Bornn, 2018).

4.2 Machine Learning

Machine learning on football data comes with its own chal-
lenges. A general one is that for supervised tasks one typically
needs large amounts of labelled data. In Sections 3.1 and 3.2, this
was not an issue, since for all the considered shots and passes we
already have access to the label whether they were successful or
not, but in other studies we conducted (Bauer, Anzer, & Smith,
2022; Fassmeyer et al., 2021; Bauer, Anzer, & Shaw, 2022; Bauer
& Anzer, 2021) gathering enough ground truth data was an ex-
haustive prerequisite to apply supervised machine learning al-
gorithms. We addressed this problem in several ways during the
research program: in Bauer, Anzer, and Smith (2022) we used
data augmentation to increase our training dataset by a factor
of ten, through slightly altering the input data while keeping
the labels unchanged. In Fassmeyer et al. (2021), we show that
using a semi-supervised approach, where we first learn a mean-
ingful feature representation using variational autoencoders, we
can then greatly reduce the amount of annotated data needed
for a classifier working in this feature space. Further methods to
reduce the required amount of labeled data, such as transfer or
active learning (Panigrahi, Nanda, & Swarnkar, 2021; Druck, Set-
tles, & McCallum, 2009), could also be applied to football data.

A problem very specific to the tracking data is determining an
appropriate ordering of players to train models in a permutation-
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invariant space (Wei et al., 2013). One cannot simply use the
raw positional data as input to a machine learning algorithm,
because the order in which players appear is not always identical
and simple rule-based attempts to order them (e.g. from left to
right, or based on jersey number) are neither stable nor scalable.
To address this obstacle, in Sections 3.1 and 3.2 we used hand-
crafted features and in Section 3.4 we transformed the data to
images. Recently graph neural networks were shown to be a
very effective approach to solve this problem (Stöckl et al., 2021;
Dick, Tavakol, & Brefeld, 2021; Sun, Karlsson, Wu, Tenenbaum,
& Murphy, 2019).

On a higher level, a limitation of machine learning is that it
uses events from the past, to predict unseen (often future) events.
This can cause complications if the underlying process one is in-
terested in, does not remain constant, but changes over time. In
football this is clearly the case, as strategies, tactics, and physi-
cal capabilities change over time (Wallace & Norton, 2014). Not
only that, but as we have shown in Link and Anzer (2021) and
Szymski et al. (2021), also an external force as the COVID-19 pan-
demic and the absence of crowds has changed the nature of the
game. As coach turnover is quite common in football, the new
coach’s requirements and definitions of actions, tactical patterns,
and strategies may change. Hence, it increases the importance
of having a streamlined and flexible approach in place to deal
with those changing needs. Moreover, football players are act-
ing individuals, so a purely external data-based view neglects
the complexities determining human decision making processes.
Therefore, future work could take sport psychological principals
in consideration.
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4.3 Interplay between Sport Science and Data Science

Throughout this research program, we placed a high impor-
tance on the close collaboration between football and machine
learning experts. The benefit of this interplay is shown in this
thesis, where rule-based approaches were often outperformed
by machine learning methods that use hand-crafted features (as
suggested by the domain experts). This finding is confirmed
by Goes, Brink, Elferink-Gemser, Kempe, and Lemmink (2020),
Herold et al. (2019) and Rein and Memmert (2016) who argue,
that this interdisciplinary cooperation is essential for success in
the sports analytics domain. The collaboration helped with the
unsupervised tasks by contextualizing results, but also with the
supervised ones by developing definitions, annotating manual
labels, and creating relevant features. Involving the domain ex-
perts in the process has also enabled them to gain a basic under-
standing of the underlying data and what is possible to achieve
with it. This transparency created an atmosphere that encour-
aged back and forth communication and ultimately led to an
increase in the usage of data-driven recommendations. The do-
main of machine learning can also profit from this cooperation:
Tuyls et al. (2021) concluded that football data provides an un-
paralleled data environment for developing and testing new ma-
chine learning methods.

4.4 Future Work

The major contribution of this thesis to the research domain is
to show how the combination of tracking and event data can help
analysis of offensive performances in football. But this thesis is
far from a complete and exhaustive exploration of all offensive
related actions, tactics, or strategies, as they range from offensive
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corner kick analysis (Shaw & Gopaladesikan, 2021) to pitch con-
trol metrics (Fernandez & Bornn, 2018; Spearman, 2018). Most
previous studies in this area are either based on positional or
event data, but hardly any have combined the two. Consequently,
instead of covering all offensive related football problems, we
used the synchronization and selected some areas of high inter-
est, like shots and passes. Nevertheless, the general concept in-
troduced in Sections 3.1 and 3.2 could be extended to other basic
offensive events like dribbles or throw-ins in future work. One of
the overarching questions in this space is, if there exists a metric
that can precisely measure the value or threat created with each
action or movement. While there have been several attempts of
measuring it with event data (Decroos et al., 2019; Rudd, 2011)
or with tracking data (Fernández et al., 2019; Link et al., 2016)
using the synchronization proposed here, could improve these
models even further. Such a derived model could even include
our xG and xPass approaches as sub models.

Just like in other sports, the development of advanced ana-
lytics in football primarily started with analyzing offensive per-
formances. One of the reasons that there is less research on the
defensive side is that initially hardly any defensive actions were
recorded and to this day in the event data offensive actions typ-
ically outnumber defensive ones by a magnitude of ten. Obvi-
ously, this does not mean that teams spend less time defending
than attacking, but rather that defensive actions are harder to
record. Often a sign of good defending are the lack of actions, as
the former Italian international Paolo Maldini stated: "If I have to
tackle then I have already made a mistake".22 This quote shows
how much harder of a challenge it is to measure defensive perfor-

22
https://www.thesun.co.uk/sport/football/1197148/paolo-maldini-the-defender

-so-good-he-didnt-even-need-to-make-a-tackle/
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mances in football. Nevertheless, during this research program
we have conducted several studies that also analyze defensive
performances: In Bauer and Anzer (2021) we detect the defen-
sive tactical pattern of counterpressing and in Bauer, Anzer, and
Smith (2022) we measure defensive marking schemes during op-
posing corner kicks. Study IV (Section 3.4) can also be used to
identify defensive tactical phases (like the height of the block)
or to measure the effectiveness of defensive strategies. More-
over, with the synchronization described in Section 2.2 one could
evaluate opposing defensive positioning at key moments of the
game.
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5 Conclusion

In conclusion, this dissertation uses the largest collection of
event and tracking in the world to introduce a novel and repro-
ducible approach of combining the two data sources. It showed,
how this data can unlock new possibilities to better quantify the
two most common offensive actions (passes and shots). These
improved actions also allowed to measure and identify offensive
tactical patterns and team strategies. Due to the close coopera-
tion with practitioners, every study included details on how the
results can be applied in sporting organizations to improve pro-
cesses, as well as in the media to enrich data story telling. There,
the two enhanced offensive metrics were developed into statistics
that are now shown to a global audience during all German Bun-
desliga matches, introducing sports analytics to the mainstream
fan. Due to the sheer complexity of football this dissertation
is not meant to quantify every aspect of offensive performance.
Therefore, future work could build on the concepts introduced
here to answer one of the still open questions of how to accu-
rately value offensive actions in football. Furthermore, as defen-
sive performance was mostly left untouched by this dissertation,
one could analogously to this work focus on the defensive side
of football.
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Due to the low scoring nature of football (soccer), shots are often used as a proxy to

evaluate team and player performances. However, not all shots are created equally and

their quality differs significantly depending on the situation. The aim of this study is to

objectively quantify the quality of any given shot by introducing a so-called expected goals

(xG) model. This model is validated statistically and with professional match analysts.

The best performing model uses an extreme gradient boosting algorithm and is based

on hand-crafted features from synchronized positional and event data of 105, 627 shots

in the German Bundesliga. With a ranked probability score (RPS) of 0.197, it is more

accurate than any previously published expected goals model. This approach allows

us to assess team and player performances far more accurately than is possible with

traditional metrics by focusing on process rather than results.

Keywords: expected goals, XG, positional data, event data, applied machine learning, football, soccer, sports

analytics

1. INTRODUCTION

In professional football (soccer), only 1% of all attacking plays and only around 10% of all shots
taken end up in a goal (Pollard and Reep, 1997; Tenga et al., 2010; Lucey et al., 2014). However,
goals alone decide the outcome of a game and are the most common metric to judge both a
team’s and individual player’s performance. For example, both the best goal scorers1 and the players
with the most assists2 receive a lot of attention from experts and the media. Nevertheless, judging
performances solely based on this binary metric (goal or no goal) loses a lot of information and
places results over process. For example, the performance from an outstanding creative player could
be made void by strikers missing all their chances.

For this reason, in football as well as in other sports, it has become typical to consider more
granular process-basedmetrics. In baseball, scouts and experts focused their attention on homeruns
or hits for decades until more complex evaluation metrics changed the assessment procedure of
hitters’ performance significantly (James, 1985). Another famous example is basketball: By

1https://www.goal.com/en-us/lists/cristiano-ronaldo-lionel-messi-pele-who-are-the-top-goal-scorers-/
ynctx2o9fa371vi1x0dsgr0np (accessed July 10, 2020).
2https://www.givemesport.com/1534019-the-top-10-players-with-the-most-assists-in-europes-top-five-leagues-this-
decade (accessed July 8, 2020).
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calculating scoring probabilities of different shot locations
(Reich et al., 2006; Chang et al., 2014; Harmon et al., 2016;
Jagacinski et al., 2019), the NBA’s shooting behavior changed
significantly3. The high scoring nature of basketball enables clubs
to go even further and to apply individual shooting efficiency
models (Beshai, 2014). Similar shot prediction models were also
developed for ice hockey (Macdonald, 2012) as well as for return
plays in tennis (Wei et al., 2016) and table tennis (Draschkowitz
et al., 2015).

The fact that football is the lowest scoring game of the above-
mentioned sports, makes it harder to develop such models,
because of the scarcity of data. Consequently, the rareness
and therefore importance of goals makes such a metric even
more relevant when assessing teams and players. As another
consequence of this low-scoring nature, the role of shots as
a success proxy within several studies in football is fortified
(Spearman et al., 2017). However, assessing shots just by being
successful or not is a too rough abstraction that warps reality. An
expected goals model (hereafter xG model) tries to estimate the
probability of any given shot being converted to a goal based on
various different factors describing the shot. These probabilities
can then be added up per team and yield a “result-agnostic”
description of the teams’ performance. The xG metric is well-
established in the football analytics community (see Davis and
Robberechts, 2020)4,5,6,7. Although to the best of our knowledge,
no peer-reviewed journal publication has introduced a positional
data-driven xG model, valuable work has been done in “gray
literature” like master theses (Hedar, 2020; Rowlinson, 2020)
and conference proceedings (Lucey et al., 2014). Rathke (2017)
analyzed in total around 18, 000 shots from one season of
Bundesliga and Premier League based on manually acquired
shot annotations. Differentiating between four different shooting
types (open play footed shot, header, freekick, or penalty shot),
Ruiz et al. (2017) built a multi-layer perceptron to predict
shot outcomes based on roughly 10, 000 shots. Using a similar
approach, Fairchild et al. (2018) tried to predict the goal scoring
probabilities of 1, 115 non-penalty shots from 99 Major League
Soccer matches, again solely based on event data.

Recent developments in technology allows us not only tomake
use of manually annotated event data (shots, passes, goals with a
manually assigned location) but also accurate positions of all 22
players and the ball at up to 25 times a second. It is quite intuitive
that the positioning of the defensive team, especially of the
goalkeeper, has a crucial influence on the shot outcome (Lucey
et al., 2014; Schulze et al., 2018). Figure 1 displays the positioning
of relevant players during two shots occurring at similar spots. In
the left figure, both a defender and the goalkeeper are in good

3https://fivethirtyeight.com/features/how-mapping-shots-in-the-nba-changed-
it-forever/ (accessed July 10, 2020).
4https://www.americansocceranalysis.com/home/2017/3/6/validating-the-asa-
xgoals-model (accessed October 24, 2020).
5http://www.northyardanalytics.com/blog/2015/08/22/pitfalls-of-measuring-
shooting-and-saving-skill/ (accessed October 24, 2020).
6https://www.optasports.com/services/analytics/advanced-metrics/ (accessed
October 24, 2020).
7https://differentgame.wordpress.com/2014/05/19/a-shooting-model-an-
expglanation-and-application/ (accessed October 24, 2020).

position to block the shot, while in the right figure the attacker
has already dribbled past the goalkeeper (#38) and defenders,
and faces an easy tap-in into an empty goal8. However, this
information is not covered in event data and thus not taken into
consideration in the previously listed xG models. Lucey et al.
(2014) were the first to estimate goal probabilities using event
and positional data in their model. They used 10, 000 shots of the
English Premier League.

In this paper, we will introduce a shot prediction model,
utilizing event and positional data. The accuracy of this model
is evaluated both statistically and based on the discussion with
professional match analysts. We also incorporate their expertise
both when defining the model’s features and when interpreting
their influence on the prediction. Additionally, we show how our
model can support coaching staffs by introducing various use
cases and applying them on one season worth of Bundesliga data.

The remainder of this paper is structured as follows. In
section 2, we introduce the data and definitions. How event and
tracking data are synchronized is described in section 3. Section
4 describes how the supervised prediction model is build, and
finally, section 5 consists of two parts: practical applications (5.1)
of our approach based on a season of German Bundesliga and a
critical discussion of the results (5.2).

2. DATA AND DEFINITIONS

Like in most other professional football competitions, the
German Bundesliga systematically collects positional and event
data on a league-wide level in a pre-defined and thus consistent
format. Positional data—often also referred to as tracking or
movement data (Stein et al., 2015)—provides the positions of
all players, referees, and the ball related to the pitch boundaries
with a frequency of 25Hz. These data are gathered by an optical
tracking system, which captures high-resolution video footage
from different camera perspectives. On the other hand, event
data are manually acquired by trained operators live during the
match. Among other things, this event data contain many details
about basic events, such as passes, shots, fouls, saves, and so on
including the involved players or special characteristics.

Since shots are an important statistic in football, the event data
in the Bundesliga describe them with more than 20 attributes.
For example, the collector differentiates between three basic shot
types (leg, header, other) or six different scenarios how a player
controlled the ball before taking a shot (direct, volley, two touches,
dribbling > 10m, dribbling < 10m, set-piece).

In this investigation, we make use of 105, 627 shots from
German Bundesliga and 2nd Bundesliga of the seasons 2013/2014
until 2019/2020. The event data were collected according to the
official Bundesliga match-data catalog9, and the optical tracking
data were provided by Chyronhego’s TRACAB system10.

8The situation in the right plot is also displayed in Figure 2. The respective video
can be found here: https://www.youtube.com/watch?v=UdvrKfsJISY&feature=
onebox&t=1m08s (accessed October 24, 2020).
9https://s.bundesliga.com/assets/doc/10000/2189_original.pdf (accessed
September 10, 2020).
10https://chyronhego.com/wp-content/uploads/2019/01/TRACAB-PI-sheet.pdf
(accessed September 10, 2020).
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FIGURE 1 | Player positions of two shots from roughly the same location, but different surrounding environments. In both cases, the blue team is playing from left to

right.

Due to a growing availability of optical tracking systems
in football, several studies have been conducted to evaluate
their accuracy (Redwood-Brown et al., 2012; Linke et al.,
2018, 2020; Linke, 2019; Taberner et al., 2019). In Linke
et al. (2020), the two versions of the TRACAB system
(Gen 4/Gen 5)11 were compared to an accurate ground
truth measurement12. Both systems achieved a diversion
of < 10 cm from the ground truth system (RMSE Gen
4: 0.09 cm, Gen 5: 0.08 cm). A non-peer reviewed study
confirmed these results13. All above-mentioned evaluation
studies focused on player detection, whereas the detection of
the ball—probably the hardest challenge for optical tracking
systems—is not covered.

To the best of our knowledge, no scientific study
evaluated the quality of event data. However, in the
German Bundesliga the acquisition follows an elaborate
quality assurance process. Critical information is double-
checked manually live (e.g., goals and red cards). Finally, an
independent person inspects and adds additional information
(e.g., event locations) to all acquired event data after
the match.

11Note that the Gen 5 system has been in use since season 2019/2020, while all
prior Bundesliga seasons were tracked using the Gen 4 TRACAB version.
12The ground truth was measured by a VICON system, using an optoelectronic
motion capture system based on markers placed on the tracked objects. Further
details about this system can be found here: https://www.vicon.com/. An
evaluation study of that system can be found in Merriaux et al. (2017).
13The study was conducted by the Fédération Internationale de Football Association
(FIFA) in close cooperation with the Victoria University (Melbourne, Australia).
An overview of the study can be found here: https://football-technology.fifa.com/
en/media-tiles/fifa-quality-performance-reports-for-epts/, the report of the Gen
5 system can be found here: https://football-technology.fifa.com/media/172171/
chyronhegoopt-fifa-epts-report-nov2018.pdf (accessed December 26, 2020).

3. MAKING USE OF BOTH POSITIONAL
AND EVENT DATA

3.1. Synchronizing Shots With Tracking
Data
A major challenge when attempting to use both tracking and
event data is that they are generally not aligned. This is due
to the fact that they come from different data providers and/or
acquisition methods, one specialized in logging events manually
according to catalog of set definitions (i.e., what is considered a
shot or a tackling) and the other focusing on extracting player
positions through, for example, computer vision algorithms. This
leads to two potential issues when synchronizing the data:

(a) The manual collected event time stamps are prone to human
errors, e.g., reaction time, distractions, and decision time,
leading to time offsets of up to 20 s based on our investigations.

(b) The two systems use their own clock, causing systematic
offsets between the two sources.

For these reasons, a “naive” synchronization—using the time
stamp from the event data—to identify player positions at the
time of an event leads to large inaccuracies. The upper plots
in Figure 2 display the coordinates of the players and the ball
at the different moments of the scenario from Figure 1 (right
plot). The scene describes Kevin Volland’s (Bayer Leverkusen)
1:0 against Borussia Dortmund (BVB) at the 14th matchday in
the 2017/2018 season:14 The upper right plot in Figure 2 displays
the shot time stamp tagged in the event data, which is roughly 2
s after the time stamp our synchronization suggests the shot took
place (upper middle plot). The upper left plot in Figure 2 shows
the positioning of the players 2 s prior to that. As one can see, the

14https://www.youtube.com/watch?v=UdvrKfsJISY&feature=onebox&t=1m08s
(accessed September 10, 2020).
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situations are drastically different ranging from a distant dribble
to a player celebrating his goal. The figure underpins that a shift of
a few seconds in the synchronization can have a massive impact
on the features used for the xG calculation, like the shot location
or the goalkeeper position.

Therefore, we developed a synchronization algorithm tackling
both issues. As a first step, we shift all tracking time stamps by
the time difference between the kick-offs in both data sets. This
resolves issue (b) and furthermore reduces a potential systematic
delay in the manual event collection. In order to tackle issue
(a), we compute several features that help to determine when a
particular shot could have happened in the tracking data. First, we
determine when the shooting player was in ball possession. We
define potential individual ball possession sequences as the time
interval when the player is in close proximity to the ball—our
subject experts suggested 2 m as a cut-off, which is in line
with Linke et al. (2018). Next, within each possession window,
we identify the frame with the maximum acceleration of the
Euclidean distance between player and ball. This aims to identify
the exact moment where a shot occurred. Lastly, since there
are potentially many situations that fulfill the above-mentioned
criteria, we identify which best matches the event description.
For that we compute Euclidean distances between the player
and ball, the player and the manual collected event location
as well as between the ball and the manual collected event
location. Additionally, we compute the time difference between
the (shifted) tracking time stamps and the manual collected
event time stamp. We compute a weighted sum of these features,
and the one frame out of the solution space that minimizes
this weighted sum is chosen. The weights were obtained by
performing a grid-based search that aimed to optimize accuracy
of the synchronization on a manual labeled test set. The lower
part of Figure 2 shows how these features behave in the 20 s
before and after the exemplary shot described above. When we
applied this synchronization algorithm on the full data set of
six seasons, the event shot times had an average absolute offset
of 2.3 s (≈57 frames) from the synchronized frame. Figure 3
displays histograms of the differences in timing (left) and
locations (right) of each shot.

3.2. Evaluation of the Synchronization
In order to evaluate the accuracy of the synchronization, we
manually annotated the timing of total 219 shots of the nine
matches from matchday one of Bundesliga season 2018/2019.
First, a full 90min video animation of the 2D tracking data
was created for each match. As a ground truth, we used a
tactical video feed, which is filmed manually with an angle to
capture all outfield player (and the most relevant goalkeeper).
Additionally, for each match a xml-file15 containing all shot-
events, and the kick-off was produced. Next, we used the kick-
offs in all three data sources to synchronize them manually
as accurately as possible using Hudl Sportscode16—a dedicated
tool for football video analysis with functionalities to combine

15Xml stands for eXtensible Markup Language and is an established format to
transfer complex data files.
16https://www.hudl.com/products/sportscode (accessed June 20, 2020).

different video sources and data sources (i.e., event data can
be imported via xml-files). For each shot, we stop the video at
the exact moment the shot occurred—defined as the first frame
when the ball left the shooter—and extract this time point using
Sportscode functionalities.

We now use these labeled shot timestamps as the ground
truth and compare them with both, the results from our
synchronization, and the event timestamps. Our synchronization
displays an average absolute offset of 0.23 (±0.49) s, while the
event timestamps differ by 1.82 (±4.06) s. Out of the 219 shots,
we were able to synchronize 218, and 210 (95.9%) of these shots
were < 0.3 s apart from the ground truth17. In contrast, only
63 (28.8%) of the event timestamps were within 0.3 s of the
ground truth. It is evident that generally this synchronization is
far superior to event timestamps. Two exemplary situations for a
successful and an unsuccessful shot synchronization can be found
here18,19.

When a shot cannot be synchronized, it is typically due
to either tracking data quality issues (e.g., the ball is poorly
tracked, and never gets close to the player taking the shot, or
two players were swapped in the tracking data) or event data
quality issues (e.g., the wrong shooter is identified). To ensure
that the quality of the input data is as high as possible, all shots
that could not be synchronized at all were excluded from further
analysis. Over the entire data set, this was the case in 3.4%
of the shots.

All together, the synchronization of positional and event data
presents a tremendous improvement for the analysis of shots,
and could potentially be extended, using a similar algorithm,
to other event types, like passes or tacklings. As we have seen
above, misidentifying the shot time just slightly can cause a
stark misrepresentation of its surrounding circumstances, and
consequently affect the xG value significantly.

4. EXPECTED GOALS MODELING

4.1. Hand-Crafted Feature Extraction
To feed the supervised machine learning model, features
influencing the goal scoring opportunity were defined together
with professional match analysts from Bundesliga clubs and the
German national team. A description of all features can be found
in Table 1. In order to make full use of the synchronization
of our two data sources, the features are based on both event
and tracking data. The goalkeeper positioning is included in two
features: We check whether they are in the line of shot, defined as
the triangle between the shot location and the two posts, which
is also the baseline for our shot angle calculation. Second, the
distance between the goalkeeper and the goal is used as features

17We use a range here, because both, harmonizing the different video and data
sources and the manual selection of the shot timestamp, may cause slight time
discrepancies.
18In the first sequence, actual match-footage of a scene is shown. The second
shows a 2D animation of the same scene, with a frame-counter on top. This
frame counter counts down till 0 where the shot happened and increases
afterwards again. The third sequence combines both video sources together (see
Supplementary Video 1).
19See Supplementary Video 2.
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FIGURE 2 | Relevant metrics for the synchronization over time. The green points highlight the time interval where we detect a potential individual ball possession

sequence. The orange point indicates where the shot event was finally detected.

in ourmodel. The defending players’ positions, either threatening
to block the shot or applying pressure on the shooter, are also
taken into consideration. Similarly to the goalkeeper feature, we
count the number of defenders in the line of shot. Based on the
logic from Andrienko et al. (2017), we calculate the total amount
of pressure on the shooter aggregated over all defending players,
as well as the maximum individual pressure on the shot-taking
player. For both pressure metrics, we additionally compute the
differences to the expected pressures given the shot location.
Furthermore, the speed of the shooter, while taking the shot, is
integrated in our model.

4.2. Predict the Scoring Probability as a
Supervised Machine Learning Task
For a total of 105, 627 shots, all features from Table 1 were
calculated based on the synchronized positional and event data.
Since the features shot type and freekick significantly influence the
contribution of all other features, we split our problem into three
subtasks: the prediction of goal scoring probabilities of open play
leg-shots, headers, and direct freekicks. Per subtask, the optimal
set of features was explored. Consequently, for all three subtasks

we trained several supervised machine learning models based
on 81, 462 open play leg-shots, 18, 748 headers and 5, 417 direct
freekicks, respectively, labeled by the information whether the
shot ended up in a goal (1) or not (0). For each subtask, the shots
were randomly split into 60% training, 20% validation, and 20%
test data sets. To avoid over representing teams or scores, this
split was conducted for every match separately. The final model,
shown in Table 1 (row 5), describes the combination of our three
submodels. To investigate the efficiency of the division into the
three subgroups, another model is trained based on all 105, 627
shots taking all features from Table 2 including the information
whether the shot was a header, a leg-shot from open play or a
direct freekick.

Various standard supervised machine learning models were
trained on the training data set, hyperparameters were optimized
on the validation data set and the models’ accuracy’s were
evaluated on the test data set. Naturally, the necessary
hyperparameters depend on the machine learning algorithm.
In the case of the extreme gradient boosting model (hereafter
referred to as XGBoost), the parameters we optimized are as
follows: Learning rate: controls the step size used per update;Max
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FIGURE 3 | Time stamp (left) and shot location (right) differences between event and synchronized time stamps.

TABLE 1 | Features derived from synchronized positional and event data used to train our model.

Feature Value Description

Shot location Numeric The x, y and the z-coordinate of the ball at the time of the shot are used for several features,

such as angle and distance to goal center.

Speed of player taking

the shot

Numeric The speed of the player attempting the shot, at the time of the shot (in km/h).

Defenders in the line of

the shot

Numeric The number of defenders in the line of the shot.

Goalkeeper position Numeric The position of the goalkeeper is used for two different features, describing whether they are in

the line of shot and their distance to the goal.

Pressure on the player

taking the shot

Numeric Various metrics describing the pressure that the player was under while attempting the shot, at

the time of the shot Andrienko et al., 2017.

Type of shot Categorical Describing the body part used for the shot (Head, leg or other).

Taker ball-control Categorical Describes how the player taking the shot gained control of the ball before/when taking the shot

(volley, controlShot, dribblingLess10m, dribblingMore10m, setPiece).

After freekick Categorical Indicates whether the shot followed a freekick.

Freekick Categorical Describes whether the shot is a direct freekick or not.

depth: limits the depth of the tree; Subsample: controls number
samples applied to the tree; Min child weight: controls instance
weight of a node. For the optimization, we applied Bayesian
tree-structured Parzen Estimator hyperparameter optimization
approaches for the gradient boosting model (Bergstra et al., 2011;
Dewnacker et al., 2016; Wang, 2019).

For several models in Table 2, we calculated SHAP values
per feature (Roth and Thomson, 1988; Lundberg and Lee, 2017;
Rodríguez-Pérez and Bajorath, 2020). In several applications,
using SHAP values20 instead of standard gain values has proven

20The abbreviation SHAP stands for SHapley Additive exPlanation.

to be beneficial (Antipov and Pokryshevskaya, 2020; Ibrahim
et al., 2020; Meng et al., 2020).

In order to get a better understanding of the resulting model’s
accuracy, we implemented two simple models as a baseline
models. The first one uses an attribute that is collected for
every shot (chance quality). This manually collected attribute
can contain one of the following two values: sitter or chance.
The very simple model now assigns each shot the average
conversion rate of the corresponding class. So all shots labeled
as chances are assigned a value of 0.063, while the remaining
shots labeled as sitters receive a value of 0.548. The second
baseline model uses all the event data based features from
Table 1 (namely Shot location, Type of shot, Taker ball-control,

Frontiers in Sports and Active Living | www.frontiersin.org 6 March 2021 | Volume 3 | Article 624475



Anzer and Bauer Goal Scoring Probability for Shots

TABLE 2 | Statistical evaluation of the expected goal model outcome.

Model Precision Recall AUC RPS

1 Gradient boosting (all situations) 0.646 0.181 0.822 0.196

2 Logistic regression 0.611 0.108 0.807 0.160

3 ADA boost 0.548 0.201 0.816 0.076

4 Random forest 0.611 0.163 0.794 0.165

5 Gradient boosting combined 0.665 0.164 0.823 0.197

Leg-shot model 0.668 0.171 0.825 0.201

Header model 0.655 0.161 0.813 0.187

Direct freekick model – 0 0.830 0.099

6 Chance evaluation model 0.516 0.420 0.688 0.170

7 Event data based model 0.587 0.098 0.772 0.118

After freekick, and Freekick), and train a XGBoost model using
these features.

4.3. Statistical Evaluation of the Shot
Prediction Model
The first two validation metrics (precision and recall) presented
in Table 2 evaluate the outcome of a classification problem. A
goal classified with an xG above 50% is classified as a true positive,
whereas an unsuccessful shot with an xG below that threshold is
defined as a true negative. Thereafter, a recall of 1 could simply
be achieved by assigning each shot an xG value above 50%. To
incorporate both the true positive and the false positive rate
depending on the threshold into our evaluation, we also use
the area under the receiving operator curve (AUC) as an error
function (Daskivich et al., 2018). However, it is our objective to
assess the accuracy of the underlying goal scoring probabilities
and not just of a binary classification (goal or no goal). While
this is possible with the AUC, using the ranked probability score
(RPS), as presented in Murphy (1970), fulfills this purpose better,
especially for imbalanced data sets.

By splitting up the shots into two groups (chances and sitters),
the chance evaluation model (Table 2, row 6) achieves a good
balance between precision and recall. While this relatively simple
model already achieves a somewhat satisfactory RPS of 0.170,
the human-made classifications are possibly biased by the shot
outcomes. This label is therefore not used as a feature for the
remaining prediction models. For the event data based model,
the extremely low recall can be interpreted as follows: The
model predicts xG value below 50% for most of the shots that
actually end up as goals. However, the AUC shows that the
event-based model yields more granular predictions than the
chance evaluation model. In the direct freekick submodel, no xG
prediction exceeds 50%, and therefore its precision is undefined.

Shots are non-deterministic, at the time of the shot, meaning
that no model can have a 100% accuracy predicting whether
any given shot will score. But what we can expect from our
model predictions is that they converge over a large sample.
To verify this, we looked at the first 54 matches (matchday one
through three) of the 2020/2021 season in Bundesliga and 2nd
Bundesliga. Out of the 1, 357 shots, 150 found the back of the net
and our model predicted an aggregated xG value of 151.6.

FIGURE 4 | Correlation between a team’s future goal ratio after a certain

matchday and an aggregated metric before said matchday (average of all

seasons 2013/2014–2019/2020).

Estimating a team’s true strength or its future performances
is a crucial unsolved problem in football with many potential
use cases (Goes et al., 2019). Both shots on target, two well-
established metrics in the literature, have been used for this
context (Lamas et al., 2014). Figure 4 displays in which scenarios
our xG values fulfills this task better than traditional approaches.
It looks at how well you can predict a team’s future rest of
the season goal ratio (defined as the difference between goals
scored and goals conceded) after a certain matchday, by only
taking into account one aggregated metric before said matchday.
On the y-axis, the correlation between the future goal ratio
and the respective metrics (see legend) before that matchday
(x-axis) is shown. Consistently, over all considered seasons a
team’s historic xG values are able to predict future results better
than traditional metrics, especially between matchday 10 and 20.
Additionally, we found that in 73.3% of all matches (excluding
draws), the winner had a higher xG value21, while only in
56.2% of these games, the winning team had more shots, than
its opponent.

Next, we analyze the features’ influence on the predicted
goal scoring probability. In the following, we discuss the overall
feature importance of our gradient-boosting model trained on
all shots with the subcategories as features (Table 2, row 1).
Figure 5 displays the overall influence according the respective
SHAP values per feature on the right, which can be interpreted as
an aggregated quantification of the feature’s influence. The SHAP
values show that the most crucial factors are the shot location

21On a match and team level the overall xG balance between the two teams is
considered here. For both teams, we sum up the xG values per team of all their
shots.
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(Goal Distance, Angle) and the goalkeeper position (Distance
Goalkeeper to Goal). Maximum Individual Pressure Diff, defined
as the difference between the actual pressure and the average
pressure given the shot location, has the third highest influence
on the predicted values. In Figure 5 (left plot), the x-value of
each colored dot displays how a feature influences the model,
whereas the color scaling describes the value of the respective
feature. Both a flat line and a smooth change of colors (from
left to right or vice versa) indicates a roughly linear correlation
between the feature value and the model outcome. In Figure 6,
this relationship between the feature values (x-axis) and influence
on the model (y-axis) is shown more granularly. Although the
red line shows a regression, the dispersion of the blue dots
provide a deeper insight. Both the left plot in Figure 5 (smooth
decrease of the colored dots from left to right) and Figure 6
(red line) shows that the goal distance has an almost linear
impact on the predicted values. However, if the distance to the
goal is very high, influence relies more on other features, as
can be seen by the growing dispersion of the blue dots. The
importance of the number defenders in the line of the shot
(here Defenders) underpins the relevance of using positional
data, including all opposing players’ positions. Looking deeper
into the SHAP distributions of this feature, Figure 6 shows
an almost linear decrease of the average SHAP value over all
shots from zero to four defenders in the line of shot. For more
defenders in the line of shot, the average SHAP value—describing
a proxy for the features influence—remains mostly constant.
In Figure 6, the feature Goalkeeper in the goal underpins our
practitioners’ intuitive assumption and can be interpreted as
follows: If the goalkeeper is not in the line of shot, it increases
the xG value significantly.

Again, most of this information would not be available in
event data, which highlights the benefit of using both event and
positional data once more.

4.4. Evaluation by Subject Matter Expertise
In several workshops with match analysts from Bundesliga clubs
and the German national team, the features were defined and
ranked according to the estimated influence. These estimations
were compared with the above calculated feature importance.
Additionally, the SHAP value dispersions and interpretations
were discussed in detail. Besides a lot of agreement from
practitioners, some statistical results—, e.g., the influence of
4–10 players in the line of shot—were discussed intensively
among experts. To evaluate the plausibility of our model from
a practitioners perspective, a workshop with selected (assistant)
coaches of Bundesliga and 2nd Bundesliga clubs was conducted.
For the recently concluded season, the coaches were asked
to classify their matches into four categories: deserved or
undeserved victories, draws, or losses as in Figure 8. Afterwards,
we compared their labels to the ones produced from our xG
model. With a category-accordance of more than 85% (in total
102 matches with 293 goals), practitioners characterized our
approach as a helpful tool to assess individual shot qualities and
the overall performance of a team.

5. APPLICATION AND DISCUSSION

5.1. Applications
For the following section, we consider the 2019/2020 season of
the German Bundesliga, with in total 306 matches, 954 goals, and
5, 450 shots. We describe how the goal scoring probability xG(S)
model for a given shot S is aggregated over a season to evaluate
teams and players further:

xGagg(Team/Player) =
∑

Si∈Shots

xG(Si)

Own goals are not a subtype of a shot event, but rather a separate
event type with different attributes. Therefore, they are excluded
from our xG calculation. Penalties are assigned an xG value of
0.766, which is the average conversion rate in the Bundesliga
history. In the case of so-called double-chance, situations in
which a first shot is blocked, but is immediately followed up by
a rebound shot, we calculate xG values for each shot. But when
we aggregate the team level xG values, we do not want to simply
add them up, because it could lead to situations where a teams
xG value for small time-window could exceed 1. Therefore, given
a double-chance S, defined as two shots within 5 s, we compute
the overall probability as:

xG(S) = xG(S1)+
(

xG(S2) ∗ xG(S̄1)
)

5.1.1. Teams
Figure 7 displays how many goals each team scored and
conceded in comparison to the aggregated xG values our model
computed. Consequently, for the 2019/2020 season, BVB (sixth
place in the left ranking of Figure 7) scored roughly 30 more
goals than the sum of all the respective shots’ xG values
would suggest. Figure 8 provides a closer look at BVB efficiency
on a match level. Comparing actual goal differences to the
xG differences, the upper right quadrant could be interpreted
as deserved wins, where BVB created more promising shot
opportunities than their opponents. Matches on the lower right
could be interpreted as lucky wins, e.g., the return match22

against Borussia Mönchengladbach (black and white hatched
diamond logo in the bottom right of the left figure).

Another match, where our model would have predicted a
different result is displayed in Figure 923. The graph shows the
aggregated xG values per team over the course of a match.
Although SC Freiburg displayed an extraordinary shooting
efficiency, by scoring three goals out of three difficult situations,
Eintracht Frankfurt created several high quality chances but only
converted three of them.

Furthermore, our model can help match analysts examine a
teams’ shooting behavior. Figure 10 presents the number of shots
taken vs. the average xG-value per team (left) and for the most
scoring strikers (right). Although Fortuna Düsseldorf (red/white
logo furthest left in Figure 10) had an average xG value (?(xG))
of 0.08 in the 2019/2020 season, Borussia Mnchengladbach

22https://www.youtube.com/watch?v=RUaORAinaoc&feature=onebox (accessed
October 2, 2020).
23https://www.youtube.com/watch?v=jl1C0KsIqaQ (accessed October 2, 2020).
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FIGURE 5 | Feature importance according to Shapley values displayed as a SHAP summary plot (left) and global feature contributions by the mean SHAP value

across all samples (right).

seems to take their shots only in cases of a clear scoring
opportunity (?(xG) = 0.14). FC BayernMunich (red/blue/white
logo top right in Figure 10), takes by far the most shots per
game. However, with around four less shots per match, Borussia
Mönchengladbach has a higher quality of attempts according to
our xG model. Comparing FC Augsburg (red/white/green logo
with FCA inscription) to Werder Bremen (green diamond logo
with a white W as an inscription) shows two distinct patterns.
While both teams had a similar number of aggregated xGs over
the whole season (see Figure 7), Bremen tends to take more shots
in less promising situations, while FCAugsburg emphasizesmore
on taking their shots in situations with a higher goal scoring
probability. Having this information for the next opponent prior
to each match can help teams to adapt their defending strategy
depending on the opponent’s shooting preferences.

5.1.2. Players
Additionally, we can use player aggregated xG values, both
for individual player performance analysis as well as scouting.
Comparing Jadon Sancho to Serge Gnabry shows that both
players—playing in similar positions and both with very
successful teams—have strongly differing shooting patterns.
Although Serge Gnabry (top left in Figure 10) takes the second
most shots per match, Jadon Sancho (lowest in Figure 10)
takes the fewest shots out of the top 10 scorers, but often in
more promising situations according to the xG-values. Besides
an overview of strikers shooting behavior in Figure 10, xG
provides a lot more applications to quantify a player’s offensive
contribution more granularly than traditional metrics.

Since our xG model can be seen as an average across all
Bundesliga players’ shot efficiency, it can also be used to find
players that convert shots at an above average rate. Using this
approach, we see that Robert Lewandowski (upper right in
Figure 10) outscored his aggregated xG value (29.6) by about
four goals, scoring a total of 34 in the season out of his 140 shots
(Table 3, row 12). While this is already an impressive feat, there
were in total 11 players, outscoring their xG totals by a larger
margin. Jadon Sancho (17 goals/53 shots/8.49 xGagg) and Erling
Haaland (13 goals/34 shots/7.59 xGagg) lead this category and
showed an extraordinary scoring efficiency.

5.2. Discussion
We present an xG model that performs better than any of the
approaches discussed in the introduction. Rathke (2017) split
the pitch into eight zones and trained a logistic regression on
each, indirectly taking shot location and angle into consideration.
However, their analysis was neither tested on unseen data
nor took the positions of defenders and goalkeepers into
consideration. By contrast, Lucey et al. (2014) did not only make
use of positional data, but also displayed the improvements of
the model accuracy. They split all shots into six different game-
context situations (open play, counterattack, corner, penalties,
freekicks, set pieces) and also learned a regressor for each. Their
average error across all shots and scenes is 0.1439. In our final
combined model (Table 2, row 5), this average error is 0.0928.
As a combination of the larger data set (more than 100, 000
shots), our novel synchronization approach (see section 3) and
the expert crafted features (see section 4.1) are possible reasons
for this improvement.
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FIGURE 6 | SHAP dependence Plot. For each shot, the respective feature value is plotted on the x-axis vs. the corresponding Shapley values on the y-axis (distance

is displayed in meter, and speed is shown in meter per hour).

However, xG models in football are not without flaws. An
often criticized point is that they are not evaluating dangerous
situations where no shot took place. While this criticism certainly
has merits, most offensive actions end up in shots. The official
Bundesliga event data include an event type chance without a
resulting shot, describing situations, where a teamwas in a scoring
position, but failed to attempt a shot. In our data set, this event
occurs on average only 0.93 times per match, underlining that
the impact non-shot opportunities have for measuring team
performance is rather small. Additionally, as seen in section 5.1,
evaluating team strength is not the only application of xG. Shot
conversion on team/player level, average shot quality or even on
a goalkeeper analysis are insightful use cases that only depend
on actual shots taken. Nevertheless, several studies aim to tackle

this problem, of noteworthy goal-scoring opportunities without
shots, by computing so-called expected possession values (Link
et al., 2016; Spearman, 2018; Fernández et al., 2019), but even
these concepts are often build upon a well-calibrated xG model.

Following the logic of expected possession values, it is
definitely a potential next step to break the contribution to a
goal scored further down to the participating players and their
actions. For instance, in the situation described in Figure 2
by assuming shots at several time-points, a simple rule-based
approach using our xG model can quantify how much xG
Volland added through his dribbling. Another popular extension
of xG are expected assists (xA), which measure the likelihood
that a pass leading to a shot becomes an assist, by assigning
it the resulting xG value. This allows to quantify a player’s
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FIGURE 7 | Bundesliga 2019/2020 season ranking with aggregated xG and the actual number of goals (xG red, actual goals gray).

shot assisting qualities independent of the final shooter’s ability
to score.

Both the synchronization and the inputs for the xG model
heavily rely on the quality of the underlying data. Even for purely
event data based xG models, Robberechts (2019) showed that
their usefulness strongly depends on the event data quality. One
of the parameters causing the biggest inaccuracy in the current
model is the ball height. Small objects—like a ball—are hard
to track based on video footage, especially due to confusion
with replacement balls or other small white objects occurring
in the stadium. For header shots, little differences in the ball
height have a large impact on the ability of a player to control
the placement of a shot causing inaccuracies for our current
header model (Table 2, row 7). With a steady increase of video
camera resolutions and object detection algorithms, we expect
a significant improvement for ball tracking. This increase in
data quality would likely improve shot synchronization results
even further (see section 3.2) and consequently result in even

more accurate xG models. Nevertheless, both for tracking
data (including ball tracking) and for event data additional
evaluation studies to ensure a high data quality for similar
projects is essential. Although latest positional and event data
provide accurate and detailed information about players, their
body orientation and limb tracking could further improve the
model’s accuracy. For the header model in particular, heights
and jumping altitude capacities could be taken into consideration
as well.

The harmonization of tracking and event data is not a
problem unique to football, which has been barely explored in
the literature. In basketball, for instance, the two data sources24

are mainly used independently of one another (Tian et al., 2020),
but as Manisera et al. (2019) noted the combination of both data
sources is a crucial future issue. While our algorithm is optimized

24In basketball, event level data are often referred to as play-by-play data.
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FIGURE 8 | Season report of BVB in season 2019/2020 showing efficiency of BVB matches according to the underlying xG values.

FIGURE 9 | xG match report of a Bundesliga match between SC Freiburg and Eintracht Frankfurt in season 2019/2020.

for football events, it could be adapted and applied to several
other sports where both data sources are available.

An accurate expected goals model provides tremendous
decision-making support for clubs: Creating many high-quality
shooting situations is a crucial indicator of a good performance.
To which extent these situations actually end up in goals often
depend on random factors or luck. Consequently, a single final
match result may not represent the actual team performance
accurately. By quantifying a team’s conversion rate (goals vs. xG)
separately from their aggregated offensive contribution (created
xG), clubs can evaluate the performance of their players, teams,
and coaches objectively. Future research could even go one step
further and explore how this work could affect the way the game

is played. One could use our goal probabilities to determine
numerically in which situations it is beneficial to shoot, and when
one is better of risking an additional dribble or pass. Another
area where the use of xG could be explored further are media
applications: Recently, media and broadcasting have included
xG values in their match coverage. For each goal occurring
in German Bundesliga, different broadcasters have chosen to
display our xG value seconds after the goal occurred25.

25https://www.dfl.de/en/news/bundesliga-and-amazon-web-services-to-
develop-next-generation-football-viewing-experience/ (accessed September
10, 2020).
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FIGURE 10 | Quality vs. quantity of shots taken per team (left) and player (right). The total number of goals scored over the whole season per team and player is

displayed in black.

TABLE 3 | Players with the highest scoring efficiency in the German Bundesliga

2019/2020 season.

Name Club Minutes xG Goals Shots CR

1 J. Sancho Dortmund 2,386 8.49 17 53 2.002

2 E. Haaland Dortmund 1,117 7.59 13 34 1.712

3 J. Cordoba Köln 2,107 8.41 13 60 1.545

4 R. Hennings Düsseldorf 2,598 9.92 15 71 1.512

5 A. Kramaric Hoffenheim 1,496 8.61 12 42 1.393

6 T. Werner Leipzig 2,934 20.79 28 122 1.346

7 R. Quaison Mainz 2,727 10.72 13 69 1.212

8 A. Silva Frankfurt 1,671 9.91 12 55 1.210

9 K. Havertz Leverkusen 2,570 10.13 12 56 1.184

10 M. Reus Dortmund 1,568 9.31 11 47 1.181

11 N. Petersen Freiburg 2,588 9.44 11 54 1.165

12 R. Lewandowski Bayern 2,888 29.57 34 140 1.149

13 S. Andersson Union Berlin 2,821 11.68 12 64 1.027

14 S. Gnabry Bayern 2,288 12.74 12 100 0.941

15 W. Weghorst Wolfsburg 2,898 17.59 16 88 0.909

16 F. Niederlechner Augsburg 2,858 14.93 13 82 0.870

CR describes the conversion rate from xG to goals.

Now that the amount of data-driven approaches to support
tactical analysis in football is increasing (Goes et al., 2020),
more qualitative studies might help to underpin the statistical
evaluation of models like xG. Although we present a first
attempt toward an expert-based evaluation of our approaches
(see sections 3.2 and 4.4), there is a lot of potential for further

investigations, which could also serve to establish data-driven
methods in the sport science and football community.

6. CONCLUSION

We present a meaningful proxy for goals scored in football,
which helps to evaluate players’ and teams’ performance
more accurately and objectively. Our xG model is based on
a huge data set of cutting-edge and consistently acquired
positional and event data that we combined using our own
synchronization algorithm.

It exceeds traditional metrics significantly when evaluating
strikers’ (Table 3) and teams’ (Figure 7) scoring efficiency,
when evaluating single match performances (i.e., teams
with higher xG win 73.3% of all not-drawn matches) and
even when predicting future match results (Figure 3). It
also allows us to evaluate assist performances of players
independent of the striker’s final touch. Additionally,
several future potentials are shown for sport and data
science research.
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Abstract
Passes are by far football’s (soccer) most frequent event, yet surprisingly little mean-
ingful research has been devoted to quantify them. With the increase in availability
of so-called positional data, describing the positioning of players and ball at every
moment of the game, our work aims to determine the difficulty of every pass by calcu-
lating its success probability based on its surrounding circumstances. As most experts
will agree, not all passes are of equal difficulty, however, most traditionalmetrics count
them as such. With our work we can quantify how well players can execute passes,
assess their risk profile, and even compute completion probabilities for hypothetical
passes by combining physical and machine learning models. Our model uses the first
0.4 seconds of a ball trajectory and the movement vectors of all players to predict
the intended target of a pass with an accuracy of 93.0% for successful and 72.0% for
unsuccessful passes much higher than any previously published work. Our extreme
gradient boosting model can then quantify the likelihood of a successful pass com-
pletion towards the identified target with an area under the curve (AUC) of 93.4%.
Finally, we discuss several potential applications, like player scouting or evaluating
pass decisions.
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1 Introduction

Passes are a crucial part of modern football (soccer) matches. However, traditionally
player’s passing performance is quantified using a binary pass completion metric.
This means that— regardless of the quality or difficulty of a pass— completed passes
are rewarded a “1/+”, and incomplete passes rewarded a “0/−”. A player’s pass
completion rate is thus calculated as the ratio of completed passes to total passes played.
This ratio neglects to take the complexity or the reward of a pass into consideration.
Nevertheless, pass completion rates are regularly used as performance indicators on
team and player levels in literature (Bradley et al. 2013; Król et al. 2017) and in the
daily business of professional football teams.Whenever a player is in possession of the
ball, they may choose to pass to any of their teammates— and each option comes with
a unique set of risks and rewards. This decision can only be evaluated by considering
both the risk and the reward of each option.

The relevance of passes in football was investigated with annotational analysis
of passing patterns (Reep and Benjamin 1968) and through experimental studies
analyzing influencing factors for passes (Williams 2000). The increasing availabil-
ity of granular football data unlocked new avenues for the analysis of passes. Event
data, following the idea of Reep and Benjamin (1968), describes a log of all on-
the-ball-actions (e.g. shots, passes, tackles) and are systematically acquired in most
professional football leagues. Several studies used this event data to analyze passes
on a much larger scale than previous experimental studies would allow. For example,
Szczepański et al. (2016) used 253, 090 open-play passes and McHale and Relton
(2018) analyzed 960, 000 events including passes. While manually collected event
data provides relevant information about one or two players involved in the current
ball action, recent improvements in computer vision allow to accurately track the
positions of all 22 players and the ball at any time of the match. This type of data
is typically referred to as tracking, positional or movement data (Stein et al. 2017;
Andrienko et al. 2019; Bauer and Anzer 2021; Anzer et al. 2021).

While some studies quantified the reward of a pass using event data only (Brooks
et al. 2016; Power et al. 2017; Bransen et al. 2019), combining the manually tagged
event data with the automatically acquired positional data allows for a more granular
analysis of the reward of a pass. Several studies addressed this reward-quantification
of passes in different ways (Rein et al. 2017; Chawla et al. 2017; Goes et al. 2019;
Gómez-Jordana et al. 2019; Steiner et al. 2019; Anzer and Bauer 2021), but they
typically measure howmuch a pass would increase the chance of scoring if successful.

As highlighted in Power et al. (2017) and Goes et al. (2021) the quantification of
pass decisions has two dimensions: The reward of a pass, as discussed above, and the
difficulty of the pass, usually measured in the completion probability. This risk of a
pass is often referred to as expected pass (xPass) values in literature (Spearman et al.
2017; Power et al. 2017; Fernández et al. 2020; Arbués-Sangüesa et al. 2020; Alguacil
et al. 2020; Stöckl et al. 2021). An xPass model tries to estimate the probability of
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a given pass being successfully completed to a teammate, based on various factors
describing the pass— usually derived from positional and/or event data. Furthermore,
Li et al. (2019) and Vercruyssen et al. (2016) have explored the target identification of
passes as a standalone problem. To quantify the risk, Power et al. (2017) built a logistic
regressor for 571, 278 passes, whereas Spearman et al. (2017)modelled 10, 875 passes
as Bernoulli trials. In order to retrieve the missing information regarding the intended
receiver of a pass (at the moment the pass was played), they modelled both ball and
player trajectory based on physical simulations first. This allows them to calculate an
xPass value, as the predicted probability of a pass being completed, at the moment
when the pass is played. The physics-basedmodelswere slightly improved byAlguacil
et al. (2020) through taking friction for ground-passes into consideration.

Stöckl et al. (2021) later slightly improved the accuracy of the xPassmodel by using
Graph Neural Networks (Battaglia et al. 2018) to overcome both the feature extraction
and the ordering-problem of using spatio-temporal tracking data in a dynamic sport
like football. Arbués-Sangüesa et al. (2020) showed that a player’s body orientation
(typically not included in off-the-shelf tracking data) has a significant influence on
pass completion probabilities as well. Several further extensions, built on top of xPass
models, exist in the literature: Fernandez et al. (2018) and Spearman et al. (2017)
include xPass models as central ingredients for computing their expected possession
values, and Hubáček et al. (2018) use it to try to predict which pass will be played
next in any given situation.

But overall the literature is lacking a thoroughly describedmethod of synchronizing
pass events with tracking data, a highly accurate intended receiver estimation and a
properly (manually) evaluated xPass model. Our work fills this gap, while keeping the
individual modules completely separated and introduces novel concepts, like blocking
probabilities.

Our goal is to train amachine learningmodel on the binary classification, ofwhether
a pass will be successful or not using all the information available at the time of the
pass. While the data set (described in Sect. 2) is extremely detailed, it is missing one
piece of essential information, namely the targeted recipient of unsuccessful passes.
Our work consists of the following four steps:

(1) Synchronization of pass events:We synchronize both the location and the exact
timing of pass events from manually annotated event data with automatically
acquired tracking data (similar to the method introduced for shot events in Anzer
and Bauer (2021)). Details of the approach can be found in the Appendix A.

(2) Estimate the intended receiver: First, we use a state-of-the-art movement model
to derive the potential positions of all players within a certain time window
according Brefeld et al. (2019) (see Sect. 3.2), and second, combine this with
a physics-based ballistic ball trajectory model as described in Spearman et al.
(2017) (see Sect. 3.1). Given the ball positions within the first 0.4 seconds of
a pass, this model uses the results from aerodynamic investigations (Asai et al.
2007; Oggiano and Satran 2010) to predict the trajectory of the ball. The combi-
nation of both steps provides us an accurate prediction of the intended receiver for
unsuccessful passes (see Sect. 3.3).
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(3) Pass probability: In Sect. 4, we train a machine learning model to estimate the
probability of a pass (that was not blocked immediately) based on the information
derived from (2) and from expert-based features describing the pass.

(4) Blocking model: In order to get unbiased estimates for the probabilities of all
passes, we further calculate the likelihood that a pass is blocked (see Sect. 5). This
is also approached using a supervised machine learning model with hand-crafted
features.

Finally,we can compute the probability of anypotential pass being completed.By com-
bining and slightly improving previor work, we exceed the accuracy of all previously
presented results for the prediction of the pass receiver as well as the classification of
played passes being successful or not.

2 Data and definitions

In the official match-data catalog of the German Bundesliga,1 a pass is defined the
attempt to switch ball control from one player to a teammate. For each pass detected,
trained operators annotate a variety of sub-attributes describing the pass in detail.
Among others, they annotate who played and (in case of a successful pass) received
the ball, whether it was a high or a low played pass, as well as, whether the pass
was played over a short, medium, or long distance. Of course, all of the sub-attributes
underlay detailed definitions, defining high passes as passes played above knee height
and setting thresholds to differentiate short passes (< 10m), passes of medium length
(10− 30m) and long passes (> 30m). All attributes are collected for both successful
and intercepted passes, meaning that the intended height and the intended length is
estimated by the human operator in case of intercepted passes. While this manually
acquired event data underlays strict quality checks, especially for incomplete passes
it can be quite subjective.

More objective and more granular information can be found in the positional data,
capturing the positions of all 22 players and the ball at 25Hz. In each Bundesliga-
stadium, up to 20 installed HD-cameras record any action on the pitch and serve
as input for computer vision algorithms estimating the 2D-positions of all players as
well as the 3D positions of the ball. In the Bundesliga, data from Chyronhego’s optical
Tracab system is collected.2 Several studies evaluated the accuracy of this data (Linke
et al. 2020, 2018).

We excluded fair-play passes, in which a player voluntarily relinquishes his team’s
ball-control, passes that accidentally end upwith a teammate whowas not the intended
target, as well as throw-ins from our analysis. This information is captured within the
event data and can thus be simply filtered out for our investigation. We end up with
positional and event data of 840, 386 passes from 918 Bundesliga games from the
2017/2018, 2018/2019 and 2019/2020 seasons, with an average completion rate of
85.2%.

1 https://s.bundesliga.com/assets/doc/10000/2189_original.pdf (accessed March 27, 2021).
2 https://tracab.com/products/tracab-technologies/tracab-optical/ (accessed April 14, 2021).
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The necessity to synchronize the two independently acquired data-sources, is
detailed in the literature (Anzer and Bauer 2021; Spearman et al. 2017). We apply
a slightly modified methodology to synchronize pass events as described for shots in
Anzer and Bauer (2021). The outcome of the synchronization is manually evaluated
in Sect. 6 as a part of the xPass evaluation, finding that 99.1% of all pass events are
identified correctly. Further details on the synchronization methodology as well as a
more thorough validation study are provided in the Appendix A.

For reproduction, Pettersen et al. (2014) present a publicly available set of positional
data, and open source event data can be found in Pappalardo et al. (2019).3

3 Estimating the target

While the receivers of successful passes are included in the event data, the intended
target of unsuccessful passes is missing. This is a crucial point of information nec-
essary for determining the difficulty of a pass, since otherwise only the surrounding
circumstances of the passer could be taken into consideration. Therefore, we need to
determine who the intended receiver was, to later extract features for both successful
and unsuccessful passes. For that purpose we first use a physics-based approach to
estimate the ball trajectory based on the first couple of frames after the pass is played
(Sect. 3.1). Second, we compute a movement model, to estimate the area on the pitch,
players could potentially reach in the next n frames, based on their movement direction
and velocity (Sect. 3.2). Third, by combining both the estimated ball trajectory and
the reachable area, we identify the teammate most likely to reach the ball first as the
intended recipient of the pass (Sect. 3.3). Furthermore, we discuss (Sect. 3.4) how this
can be used to derive physics-based features describing the difficulty of a pass.

3.1 Modelling the ball trajectory

Knowing that a football adheres to physical laws, we can use these laws to determine
the path a ball will travel on (until it is touched again) based on its initial direction and
velocity. As suggested in Spearman et al. (2017), we use the first 10 frames (equivalent
to 0.4 seconds) after a passwas played, to receive a stable estimate of its initial direction
(x, y, z) and exit velocity. Therefore, we exclude all passes blocked within the first
0.4 seconds, since we are unable to determine the necessary starting values for them
reliably. Using a physical trajectory model, including gravity, air drag and rolling drag
(with the simplification that as soon as a ball lands, it is grounded), we can estimate
for every following frame, where the ball will be. As presented in Spearman et al.
(2017), the trajectory of the ball is consequently modelled as:

r̈ = −gẑ − 1
2m

ρCDAṙṙ

3 Other (non-scientific) open-source data sets can be accessed from Skillcorner (https://github.com/
SkillCorner/opendata), Metrica sports (https://github.com/metrica-sports/sample-data) or Statsbomb
(https://github.com/statsbomb/open-data).
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Fig. 1 Estimated ball trajectory (yellow dots) compared to the measured data-points from the tracking
data. The video footage of the pass can be found here: https://dfb-my.sharepoint.com/:v:/g/personal/
pascal_bauer_dfb_de/EUJra9f8i6BCl2-mzpuHtacBvgHNx7cnCH9P8y5taozDnQ?e=nIhgkC (Color fig-
ure online)

All physical values are set to the respective standard.4 TheBundesliga-ball has aweight
of 0.4 kg (m) and a cross-sectional area of 0.038m2 Further background information
regarding the aerodynamics of balls in football can be found in Asai et al. (2007);
Oggiano and Satran (2010).

Figure 1 shows both the observed ball path from the tracking data (black dots)
and the estimated ball trajectory from our physics-based model (yellow dots) for a
played pass. The physics-basedmodel yields a smooth and realistic ball path, while the
observed ball path shows some jumps (e.g. around the highest point of the trajectory),
frequently present when tracking small fast moving objects from large distances.
Furthermore, it can be used to model where a ball might have ended up, had it not
been deflected or intercepted.

3.2 Movementmodel

Themovementmodel predictswhat area of the pitch a player can reachwithin a defined
time-window. Again, Spearman et al. (2017) presented a physics-based approach for
this. Additionally, they gave a first outlook towards data-driven movement models
which were later built upon by several studies. The positions a player can reach within
a certain time frame depend on his current speed and direction (Brefeld et al. 2019;
Fernandez et al. 2018). With these assumptions we use movement data from three

4 Gravitational force g = 9.8 m
s2
; air density ρ = 1.22 kg

m3 ; drag coefficient CD = 0.25.
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seasons of Bundesliga data. First, we transform the data, so that all players are traveling
in the same direction. Next we compute the convex hull of all observed locations
players traveling in a certain speed interval were able to reach after n-frames. Due to
our large data set of tracking data, we are able to use much smaller speed intervals (of
0.5km/h) compared toBrefeld et al. (2019).With this informationwefit ourmovement
model to estimate the center of the circle and its diameter, based on speed and time.

Now we can calculate for any player on the pitch what area they could theoretically
cover in the next seconds based on their movement vector. This is displayed for some
players (#18/#22 red team; #7 blue team) in Fig. 3. Each circle represents the area the
respective player can reach within 0.5, 1, 1.5 and 2 seconds.

3.3 Target estimation

To estimate the intended target of a given pass, we combine the physics-based ball
trajectory model with the data-driven player movement model. To incorporate the ball
height, we additionally assume that a ball is only reachable below a height of 1.5m.
This threshold was obtained by optimizing for the accuracy of the intended receiver
prediction for successful passes on the training data set introduced in Sect. 4. Thus,
we can calculate which team member of the passer could theoretically be the first to
reach the pass, and declare them as the intended receiver.

We are able to predict the correct player for successfully completed passes with
an accuracy of 93.1%. For unsuccessful passes, we conducted an evaluation study,
described in Sect. 6, showing that we are able to predict the estimated target with an
accuracy of 72.0%.

3.4 Physics-based passing features

We can quantify what direction and how fast a pass would need to be played to arrive
at the target receiver. For that purpose we compute hypothetical passes by varying the
initial starting parameters of a pass, i.e. initial velocity and initial direction of a pass.
Combined with the movement model, we can determine if the target player is still the
most likely player to receive each hypothetical pass. This step is done by performing
a grid based search varying the velocity and the direction of the pass noting for every
(reasonable) combination5 if the intended target is likely the first player to potentially
reach the pass. From this we can compute the direction window, defined as the width
of the reachable angles. The speed window is defined as the difference between the
maximal relative increase and decrease of a baseline exit velocity, with which hypo-
thetical passes would still be reachable by the intended receiver. An example of a
direction window is indicated in Fig. 2. Hypothetical passes, with slightly modified
x-/y-directions (assuming an ideal speed and launch-angle) that could be received by
Emre Can (#3 of the blue team) according to our model are displayed as grey lines.
The total width of theses potential pass angles amounts to 21 degrees in this example.

5 The velocity range is between [−100%, 100%] of the average pass speed, and the direction window range
is between [−25◦, 25◦] of the direct connection line between the passer and the intended target.
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Fig. 2 Visualization of potential pass angles reaching the intended target. Players’ movement vectors
are displayed as arrows. The passing player (Robin Koch, #2 of the blue team) as well as the receiving
player (Emre Can, #3 of the blue team) are highlighted in yellow. The same pass is displayed as in Fig.
1 and in this video: https://dfb-my.sharepoint.com/:v:/g/personal/pascal_bauer_dfb_de/EUJra9f8i6BCl2-
mzpuHtacBvgHNx7cnCH9P8y5taozDnQ?e=nIhgkC (Color figure online)

Table 1 Speed scalar window width (as percentage) and direction window (in degrees) of passes

Passe Outcome Speed window Direction window Number of Passes

Successful 0.99 (±0.48) 32.7 (±16.3) 291, 700

Unsuccessful 0.26 (±0.36) 11.6 (±12.6) 56, 570

The observed standard deviation is denoted in parentheses

Table 1 shows that unsuccessful passes have both a much narrower window of
potential directions (in degrees) as well as in speed values (in percentage difference
compared to a baseline speed value). This aligns with expert opinions that the less
accurate a pass needs to be played, the easier it is and the higher chance that it will be
completed.

The interplay of the target prediction using the physics-based ball trajectory model
and the data-driven movement model is displayed in Fig. 3. In this situation Robin
Koch (#2 of the blue team) plays a diagonal ball to his teammate Julian Draxler (#7 of
the blue team). The curvature of the ball trajectory (yellow dots) shows the trajectory
of the played diagonal pass from the mid-point (player #2) to the left attacker of the
blue team (player #7).6 Due to its height, the ball can only be reached towards the
end of the projected trajectory. Matching possible intersections of the trajectory after
n frames with each teammate’s reachable area after the same time period, reveals, that
the first player to possibly reach the ball is the attacker on the left wing after 2.48

6 The video of the pass can be found here: https://dfb-my.sharepoint.com/:v:/g/personal/
pascal_bauer_dfb_de/EWIWkaF8Gp5CjPCdQRs5KXsB6Rt0LKHoKomXUFogNsR2Wg?e=u6EziX..

123



Expected passes

Fig. 3 Estimated target of a pass with ball-trajectory and movement models. The combina-
tion of the estimated ball trajectory (yellow dots) and the player movement model (blue and
red circles) predict Julian Draxler (#7 of the blue team) reaching the ball first, with the
arrow indicating the first point where he could potentially intercept the pass. The respective
video sequence can be viewed here: https://dfb-my.sharepoint.com/:v:/g/personal/pascal_bauer_dfb_de/
EWIWkaF8Gp5CjPCdQRs5KXsB6Rt0LKHoKomXUFogNsR2Wg?e=u6EziX (Color figure online)

seconds. The point where he could first reach the ball is indicated by the black arrow,
but this does not mean that it is always the optimal strategy to do so.

4 Pass probability estimation

For successful passes we know the recipient of a pass from the event data. With the
approach described in Sect. 3, we can identify the intended target of unsuccessful
passes (as long as it is not blocked). This allows us to compute tailored features
influencing the pass difficulty and train supervisedmachine learningmodels estimating
pass completion probabilities. We build on the features describing passes presented
recently (Power et al. 2017; Spearman et al. 2017; Mchale and Lukasz 2014; Hubáček
et al. 2018). Table 2 shows an overview of all features we compute for every pass.
As in Spearman et al. (2017), we are interested to train a predictive model, i.e. all
features must be available at the time of a pass. This will allow us later to compute
hypothetical pass probabilities, or evaluate if a player is over-/under-performing. The
first eight features describe the pass origin and the situation around the passer, e.g.
where on the pitch the passer is located, how far the next opponent is away from them
and how much pressure they are receiving according the pressure-model introduced
in Andrienko et al. (2017). The next set of features (rows 9−14, Table 2) describe the
receiver and their surrounding environment. The third block of features (rows 15−21)
describe further context information around the pass itself taking full advantage of the
positional data. The manual collected features height and distance (rows 22 and 23)
are described in Sect. 2. The last two features in Table 2 (rows 24 and 25) are calculated
based on the logic described in Sect. 3.
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Table 2 Hand-crafted features used to train the xPass-model

Feature Description B

1 Location pass x- and y- coordinate of the pass. x

2 Distance sideline Distance between the location of the pass and the
closest sideline.

x

3 Distance goal Distance between the location of the pass and the
opposing goal.

x

4 Distance opponent Distance between the location of the pass and the
nearest opposing player at the time of the pass.

x

5 Speed passer Speed of the passing player at the time of the pass. x

6 Ball height Ball height at the time of the pass.

7 Opponents closer to goal Number of opponents closer to their own goal than
the passer at the time of the pass.

x

8 Pressure on passer Pressure exerted on the passer according
Andrienko et al. (2017).

9 Location receiver x- and y-coordinate of pass receiver at the time of
the pass.

10 Distance receiver sideline Distance between the receiving player and the clos-
est sideline at the time of the pass.

11 Distance receiver goal Distance between the receiving player and the
opposing goal at the time of the pass.

12 Distance receiver opponent Distance between the receiving player and the near-
est opposing player at the time of the pass.

13 Opponents closer to goal receiver Number of opponents closer to their own goal than
the receiver at the time of the pass.

14 Speed receiver Speed of the receiving player at the time of the pass.

15 Possession phase The time the passer was in ball possession before
attempting the pass.

x

16 Bypassed opponents Opposing players that would be bypassed with the
pass (Steiner et al. 2019).

17 Angle Directional angle of the pass compared to the play-
ing direction (i.e. 0 is directly towards the opposing
goal line, and 180 would be backwards towards the
own goal line).

18 Opponents in path Number of opposing players in the passing path.
The path being defined as a corridor between the
pass location and the receiver location with a width
of 10 meters.

19 Nearest defender pass line Nearest defender to a straight line connecting the
pass location and the receiver location.

20 Distance pass Distance between passer and receiver when the
pass is played.

21 Dead ball Binary information whether the pass originated
from a set-piece (e.g. freekick, goalkick, ...) or not.

22 Height Manually annotated binary feature describing the
intended ball height included in the event data.

x
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Table 2 continued

Feature Description B

23 Distance Manually annotated intended pass length (short,
medium, long) included in the event data.

x

24 Speed window Mean speed window as defined in Sect. 3.4.

25 Direction window Mean direction window as defined in Sect. 3.4.

Column ”B” notes all features that are also used for the blocking model described in Sect. 5

For our model training we use 840, 386 passes from 918 Bundesliga games. We
split the data into training (504, 232 passes), validation (168, 077 passes) and test
set (168, 077 passes) and use different subsets of features from Table 2 to train
various supervised machine learning models (logistic regression, extreme gradient
boosting, random forest). For each feature set the best performing models on the test
set were extreme gradient boosting (XGBoost) models (Chen et al. 2016). For all
XGBoost models we applied Bayesian hyperparameter optimization on the validation
set (Nazareth 2004). The accuracy metrics of the XGBoost models for the different
feature sets are displayed in Table 3. Since precision, recall and F1-score are not ideally
suited to evaluate probabilities in an imbalanced data set, we focus on the metric area
under the receiving operator curve (AUC), mean square error (MSE) and the Brier
skill score (BSS, Brier (1950)). All relevant metrics indicate that the model using the
full set of features (line 1, Table 3) provides the best results.

We implemented three simple baseline models for comparison: First, we trained a
model using only the features that can be derived from event data (row 4, Table 3).
In order to evaluate the necessity of identifying the intended receiver, we trained a
receiver-agnostic model (row 5, Table 3). Lastly, row 6 in Table 3 presents a trivial
baseline model, that assumes a constant pass success probability of 85.2% (the com-
pletion rate in the training data set). Table 3 shows, that both using positional data and
the estimation of the targeted receiver (see Sect. 3) significantly improve the prediction
accuracy.

The final hyper-parameter configuration for the model using all features is provided
in the Appendix B (Table 8). In the complete model, according to the overall SHAP-
values (Lundberg et al. 2017), the possible speed window in which the pass could
be completed has by far the highest influence on the success prediction followed by
the distance of the closest opponent to the receiver. Purely absolute position related
features like the x-/y-coordinates of the pass origin and the receiver position, as well as
the distance to the sideline/goal exhibited the lowest influence on the prediction. More
details regarding the feature importance and SHAP-values can be found in Appendix
B.

5 Blockingmodel

In order to get a reasonably reliable target identification in the previous sections we
focused on passes that were not blocked immediately. However, this inflates the likeli-
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Table 4 Accuracy metrics for the blocking model on the test set

Model Precision Recall F1-score AUC MSE BSS

1 Gradient Boosting 0.643 0.031 0.060 0.753 0.059 0.084

2 Naive Blocking Model – 0.000 – 0.500 0.065 0.000

hood of a pass being completed, since it ignores that about 3.12% of the passes in our
data set are blocked. Therefore, we need to adjust our conditional passing probabilities
by the likelihood that it is not blocked: For all successful passes A and all blocked
passes B, the probability of any non-blocked pass being completed, P(A ∩ B̄), can
be computed as follows:

P(A ∩ B̄) = P(A|B̄) ∗ P(B̄)

The probability of a pass success — provided that it is not blocked — P(A ∩ B̄), is
calculated in Sect. 4. However, at the time of the pass we do not knowwhether it will be
blocked or not. Consequently, to get an unbiased pass completion probability, we need
to calculate the probability that it is blocked, P(B). Rather then simply discounting all
passes with the average rate in which passes passes are blocked (3.12%), we determine
the likelihood of each pass being blocked individually, based on some of the features
described earlier.We define a blocked pass, as a passwhere an opposing player touches
it within the first 0.4 seconds. A problem is that the exact initial direction of blocked
passes cannot be accurately derived from tracking data. Therefore, we simply assume
that if a pass was blocked the intended direction was towards the point where the
opponent touched it.

Consequently, a pass canonlybeblocked (according to our definition) if anopposing
player is located in the passing direction and could reach a pass within 0.4 seconds —
assuming the average speed of a pass this roughly translates to a 5 meter radius of the
passing origin. In all cases where this criteria is not fulfilled, we set the probability of
the pass being blocked to zero. For the remaining passes (6% of them were blocked)
we trained a XGBoost model to estimate the likelihood that a pass will be blocked. We
used several features introduced in Table 2 (marked in column B) like the proximity
of the nearest opposing player within the passing direction (+/− 90 degrees), the
location on the pitch (i.e. x/y-coordinates), the time of possession and the intended
distance. The final blocking model was trained on 312, 413 passes (9, 372 blocked)
with a split into 60% training, 20% validation and 20% test data. The outcome of the
prediction is presented in Table 4. For comparison it includes a naive model using the
average block probability (6.5%) as a baseline (row 2). The final hyperparameters of
the blocking model can be found in Appendix B (Table 8).
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6 Manual validation

We described statistical evaluations for each component of the entire approach in
the respective chapters (i.e. Tables 3, 4). However, to further validate our results, we
performed three separate expert-based validation studies of the following components:
(1) Synchronization of passing events with positional data
(2) Detection of the intended receiver for unsuccessful passes
(3) Outcome of the final xPass model
For each of the validation studies three different football experts looked at 3, 600
passes from 10 different games, with one game shared amongst all three, to gather the
inter-rater reliability.

In order to evaluate (1) in the context of passes, the football experts were presented
with identified time stamps, and they were tasked to annotate, whether the timestamps
are correct. Overall they identified 99.1% of the timestamps as correct and had a
pairwise inter-rater reliability of 99.3% However, since this approach is very binary
(and potentially biased), we conducted a separate thorough evaluation study of the
pass synchronization, described in Appendix A.

Since we can only systematically assess the accuracy of the intended receiver iden-
tification for successful passes (see Sect. 2), in (2) the subjects were tasked to identify
the intended recipient of unsuccessful passes. Of the 1, 307 unsuccessful passes, our
prediction agrees with the human labels in 72.0% of the cases and the inter-rater
reliability is 96.2%.

The third and most relevant validation study evaluates, how well we can judge
the difficulty of a pass (3). This is especially relevant because our final xPass values
result from a combination of different machine learning models, each with their own
inaccuracies. Therefore, the final outcomewas evaluatedmanually by football experts.
Estimating pass probabilities is a very challenging task for humans (even for football
experts). To circumvent this issue, we provide experts with sets of two passes and let
them assess which of the two is more difficult. Comparing passes with very similar
xPass values is likely not a very reliable ground truth, and comparing passes with large
xPass differences should be a trivial task with a high accordance between experts and
our model. Therefore, in order to minimize the human-labeling effort, we group pairs
of passes in three different categories based on their absolute xPass differences:
– Small difficulty difference (< 10%),
– Medium difficulty difference (10 — 30%),
– Large difficulty difference (> 30%).

Per match we select 300 pass comparisons and the majority of them (90%) in the
second category, 7% in the first category and 3% in the last category.7

Limited by the inter-labeler accordance, especially in critical situations, Table 5
shows that our model achieves satisfactory results. To investigate how much the addi-
tion of the blocking model helps the predictions, we further compute the accuracy of
the model without a superimposed blocking model. This simpler model has a lower
accuracy of 71.1% over the entire data set.

7 The pass comparisons were randomly selected with the above described distribution, so the final numbers
are subject to randomness and slightly deviate from the target distribution.
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Table 5 The average pairwise accuracy are depicted and the number of pairs in a given subset are in the
brackets

Evaluation Labeler accordance xPass Model

1 Small difficulty difference 0.786 (70) 0.640 (286)

2 Medium difficulty difference 0.812 (787) 0.715 (3175)

3 Large difficulty difference 1.000 (30) 0.983 (118)

4 All 0.786 (887) 0.718 (3,579)

7 Discussion

Ageneral limitation of our approach is its sensitivity to positional data accuracy.While
the quality of tracking data has been increasing continuously over the past decade, the
accuracy of ball tracking has not been properly validated in the literature yet (Anzer
and Bauer 2021). The spatio-temporal synchronization of positional and event data—
typically acquired through independent systems — presents crucial improvement for
the analysis of passes. By training various models on different feature sets, we show
how much each additional set increases the model’s quality. Spearman et al. (2017)
also pointed out the necessity of this synchronization step, but did not provide any
details, nor an evaluation of their implemented approach.By adopting themethodology
from Anzer and Bauer (2021) (synchronization of shot events) to passes, we use a
reproducible approach (independent of the event-/tracking-data provider) and evaluate
its accuracy manually in two independent experiments (Sect. 6 (1) and Appendix A).

Both, the player-movement model (Sect. 3.2) and the ball trajectory model (Sect.
3.1) draw heavily from previously published work (Brefeld et al. 2019; Spearman
et al. 2017). We combine both to estimate the target of a pass and made only minor
adjustments in order to improve the prediction accuracy on our data set. One thing we
found regarding the movement model, is that the tighter the speed interval, the more
the shape of the resulting hull is circular instead of elliptical, contrasting the findings
of Brefeld et al. (2019), that finds oval shapes while using broader speed ranges. This
could imply that movement ranges for particular initial speeds are circular, but when
using a wide range of initial speeds, the total observed range is a combination of the
movement circles along the movement direction, thus taking an elliptical shape.

Similar, as in Spearman et al. (2017) we ignore wind, rotation of the ball, and the
Magnus force in the ball trajectory estimation. Our approach struggles to identify the
intended receiver, when the underlying pass attempt fails completely. Fortunately, this
case happens very rarely in the highest professional environments.

Implementing a separate blocking model guarantees that we have an unbiased
estimation of pass probabilities. Furthermore, the manual validation (Sect. 6) shows,
that it also more accurately coincides with expert assessments regarding the pass
difficulty. The relatively low predictive power of the blocking model is likely caused
by the nature and quality of the tracking data. The players’ x/y-coordinates merely
describe their center of gravity and, especially at the moment of the pass, centimeters
may decide whether a pass is blocked or not. Therefore, as long as so-called limb-

123



G. Anzer, P. Bauer

tracking (recordings of players’ entire bodies) does not becomemore widely available,
it will remain hard to estimate if an opponent can extend their leg to block a pass.

Probabilistic metrics (e.g. expected goals, xPass) are hard to manually evaluate,
since even experts cannot estimate a ground truth percentage reliably. For this reason
we developed an evaluation study design delivering a useful ground truth while main-
taining a high inter-labeler reliability. In previous research the quality of pass difficulty
models was purely measured by the accuracy of the binary pass success classifica-
tion. Our work goes one step further through a manual validation study with football
experts, allowing us to also evaluate (1) the synchronisation of positional and event
data, (2) the receiver estimation for unsuccessful passes, and (3) the pass difficulty.
While in (2) we achieved, a reasonable accuracy of 72.0%, the experts showed a very
high inter-rater reliability of 96.2%. This can in part be explained, by the fact that they
were given video sequences of the passes extending far further than the 0.4 seconds
our estimation uses. When examining the cases with the differences, we found that
this is mostly caused by long balls (e.g. goal kicks, half-field crosses) where multiple
players could be the target, but only one of them gets involved in an aerial duel. The
human observers then chose the teammate that lost the aerial duel. But for the purpose
of our work, in these cases the possible target players are very close to each other,
meaning that the feature calculation and, therefore, their xPass values are very similar.
Apart from that erroneous ball tracking data can lead to wrong target predictions (e.g.
when the ball has a sharp cut, often called “elbow”, in its trajectory after 0.4 seconds,
without being touched). The much lower accuracy of the intended target identification
achieved by Li et al. (2019) (for successful passes: 27.87%) and Vercruyssen et al.
(2016) (for successful passes: 50.00%; for all passes: 41.00%) shows how difficult of
a problem this generally is. However, this comparison is not completely fair, since they
only consider information at the time of the pass, while we use the first 0.4 seconds
after the pass as well.

We are able to increase the accuracy of successful pass estimation on a team level
( Spearman et al. (2017): 80.5%, our approach: 91.5%) as well as for the task of
predicting the receiving player ( Spearman et al. (2017): 67.9%, our approach 89.9%).
Power et al. (2017) presents a pass prediction with a root mean square error (RMSE)
of 0.2483 which is slightly improved by our approach (RMSE: 0.2428). While our
approach uses hand-crafted features, Stöckl et al. (2021) show in their work that using
Graph Neural Networks one can forgo extensive feature crafting and achieve similar
accuracy results for a variety of football related machine learning tasks. As one of
their applications they compare how well they can predict if a pass will be completed
using a GNN, without (hardly) any feature crafting, to a simple xPass model based
on standard features and find both models to achieve a similar accuracy of 0.86 and
0.85. While their accuracy is below the one our model achieves (0.92), their work still
shows, that GNN’s are capable of quickly working with unstructured football data,
and yet achieve a relatively high accuracy.

Overall, themajor benefit of an expected passmodel, is that it enablesmore granular
analysis of passing behaviour than would be possible with simple pass completion rate
metrics. It can be used to quantify players’ and teams’ performances (Spearman et al.
2017; Power et al. 2017), by looking at their risk profiles or their efficiency. For
example, the players over-performing their expected completion percentages in the
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Table 6 Top 10 xPass over-performers in Bundesliga Season 2020/2021 from matchday 1–15 (at least 200
passes)

Player Passing Performance Average xPass

1 Kingsley Coman 5,3 % 85,44%

2 Raphaël Guerreiro 4,9 % 86,92%

3 Max Kruse 4,7 % 82,32%

4 Christopher Nkunku 4,5 % 83,49%

5 Sebastian Rudy 4,4 % 80,69%

6 Ritsu Doan 4,3 % 76,48%

7 Daniel Caligiuri 4,1 % 77,64%

8 Josip Brekalo 4,1 % 81,33%

9 Rafael Czichos 4,1 % 84,40%

10 Joshua Kimmich 4,1 % 88,84%

Performance is defined as the difference between completion rate and average xPass values

Bundesliga season 2020/2021 (up to matchday 15) the most are shown in Table 6. The
column ”Passing Performance” indicates how much a player’s actual completion rate
exceeds his average xPass values.

Another application is to evaluate possible pass options, and with that a player’s
decision making skills. At any given time while a player is in possession we can
calculate success probabilities for hypothetical passes to teammates as shown in
Fig. 4.8 This is done by using a combination of the full model (Table 3, row 1)
and the blocking model (Table 4, row 1). To find the ideal exit angle and velocity
we perform a grid based search over "sensible" combinations and maximise for the
xPass values. The resulting probabilities are shown for each teammate. We can see
that Robin Koch (#2 of the blue team) chose one of the hardest pass options with
a completion probability of 52.7%. The additional hypothetical passes — shown as
lines with the respective success probabilities — come with some limitations: First,
the probabilities are based on a data set, where players actively opted for a pass and
since we can assume a certain amount of rationality in the decision making, values
for hypothetical passes might be skewed as a consequence. Second, we assume that
passes can be played at any time in any direction, without the need to properly set
up before, which obviously warps reality. For instance, in the displayed situation the
passing player decides to play a diagonal ball across the pitch to #7. The pass option
of another long diagonal ball to number #3 — on the right side of the pitch — would
require some preparation allowing opponents, especially #3 and #19 (of the red team),
to get into a better defending positions. Furthermore, and this holds true in general
for our xPass model, we simply compute the probability that a pass is successful, i.e.
arrives at the intended target. It does not tell us if after the first touch, the teammate
can hold the ball or looses it immediately thereafter.

8 The video footage of the situation can be found here https://dfb-my.sharepoint.com/:v:/g/personal/
pascal_bauer_dfb_de/EWIWkaF8Gp5CjPCdQRs5KXsB6Rt0LKHoKomXUFogNsR2Wg?e=u6EziX.
The ball trajectory of the chosen pass is displayed in Fig. 1.
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Fig. 4 Pass probabilities of hypothetical passes. This is the same situation as displayed and described
in Fig. 3. The video sequence can be found here: https://dfb-my.sharepoint.com/:v:/g/personal/
pascal_bauer_dfb_de/EWIWkaF8Gp5CjPCdQRs5KXsB6Rt0LKHoKomXUFogNsR2Wg?e=u6EziX

All together, we present a novel methodology for quantifying football’s most rele-
vant actions while addressing some of the shortcomings of previously published work
and compare the results with existing literature. Our metric can be used to scout play-
ers outperforming their expected completion rates, identify and target weak spots in
opposing teams, or show players alternative passing options they may have missed.
To even better evaluate the decision making of a player, one would need to combine
our risk model with a reward model (e.g. Steiner et al. (2019); Goes et al. (2019);
Fernandez et al. (2018)) to not only assess a player’s risk profile, but also whether they
are making the best possible decision.
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Table 7 Time shift of data synchronisation against manual label

Time Shift 00.00 00.04 00.08 00.12 − 00.48 00.52 − 02.00

Dispersion 41.6% 38.3% 8.6% 15.6% 4.1%

With our frequency of 25Hz one frame equals 00.04 seconds

vendors and systems, peers working in the football industry can reproduce the results by using any kind of
professional football data.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A The synchronization of pass events

Our algorithm to synchronize passes is based on the work introduced by Anzer and
Bauer (2021) to synchronize shots. Since passes occur much more frequently (915 per
game) than shots (23 per game), we need to adjust the algorithm to ensure we identify
the right one. For that we add one additional rule: if the algorithm finds multiple pass
moments in the considered time window by the passing player, we require that the
actual receiver of the pass (if there is one), must be within a 2m distance of the ball
within 5 s after the pass moment.

For one Bundesliga match (FC Bayern München vs Borussia Dortmund, matchday
24 of the 2020/2021 season) football experts gathered frame-accurate timestamps from
watching the video footage for every pass (1, 088 in total). We then compared these
timestamps to the ones our synchronization algorithm produced. Overall only twelve
passes showed a deviation ofmore than two seconds. After further inspectionwe found
that seven of them were wrongly annotated in the manual collection process, and in
the other five our algorithm identified a wrong timestamp, due to either faulty tracking
data (1), blocked passes (2) or identifying the wrong of two options (2). Table 7 shows
how much the time stamps differ for the remaining 1, 076 passes. As we can see in
about 80% of the passes the synchronization finds either the same frame or the one
next to it as the human.

B Details on XGBoost expected pass and blockingmodel

Table 8 shows the selected hyperparameters of our final xPass model (Table 3, row 1)
and the hyperparameters of the blockingmodel (Table 4, row 1). Additionally, Figure 5
shows the feature importance of the xPass model using SHAP-values9 (Lundberg et al.

9 The abbreviation SHAP stands for SHapley Additive exPlanation.

123



G. Anzer, P. Bauer

Ta
bl
e
8

Fi
na
lc
ho
ic
e
of

hy
pe
rp
ar
am

et
er
s
fo
rt
he

xP
as
s
m
od
el
(T
ab
le
3,
ro
w
1)

an
d
th
e
bl
oc
ki
ng

m
od

el
(T
ab
le
4,

ro
w
1)

H
yp
er
pa
ra
m
et
er

D
es
cr
ip
tio

n
R
an
ge

X
Pa
ss

B
lo
ck
in
g

1
L
ea
rn
in
g
ra
te

C
on
tr
ol
s
th
e
st
ep

si
ze

us
ed

pe
ru

pd
at
e

[0
,
1]

0.
09

8
0.
04

9

2
M
ax

de
pt
h

L
im

its
th
e
de
pt
h
of

th
e
tr
ee

[0
,
10

]
8

6

3
Su

bs
am

pl
e

C
on

tr
ol
s
nu

m
be
rs
am

pl
es

ap
pl
ie
d
to

th
e
tr
ee

(0
,
1]

0.
59

3
0.
69

5

4
M
in

ch
ild

w
ei
gh

t
C
on

tr
ol
s
in
st
an
ce

w
ei
gh

to
fa

no
de

[0
,
10

]
1.
64

1
9.
45

5
C
la
ss

ba
la
nc
er

C
on
tr
ol
s
th
e
ba
la
nc
e
of

ne
ga
tiv

e
an
d
po
si
tiv

e
w
ei
gh
ts

(0
,
∞

)
1

1

(N
um

be
ro

fn
eg
at
iv
e
ca
se
s
/N

um
be
ro

fp
os
iti
ve

ca
se
s)

123



Expected passes

PossessionTime

medium

PassAngle

DefendersBehindBall

flat

short

AngleWindow

ReceiverDefenderDist

SpeedWindow

0.0 0.3 0.6 0.9
importance

Fig. 5 Feature influence to the xPass model (Table 3, row 1) based on SHAP-values

2017). The left plot shows the absolute, overall influence of the respective features on
our prediction. As discussed in Sect. 4, the speed window (SpeedWindow) in which
the pass can be received by the intended target has the highest influence. The right plot
in Fig. 5, where each colored dot (from yellow to violet) indicates the contribution of
the feature to the model, shows that this relation is almost linear. The larger the speed
window (i.e. violet plots), the higher the xPass value. This illustration also shows the
influence of the binary features like flat, medium or short. The continuous feature,
time of possession shows a dispersion of the dots similar to the binary features. This is
caused by the fact, that direct played passes (i.e. ’one touch’) are implicitly separated
from all other passes by the model.
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Abstract
We propose to analyze the origin of goals in professional football (soccer) in a purely data-
driven approach. Based on positional and event data of 3, 457 goals from two seasons German
Bundesliga and 2nd Bundesliga (2018/20219 and 2019/2020), we devise a rich set of 37 features
that can be extracted automatically and propose a hierarchical clustering approach to identify
group structures. The results consist of 50 interpretable clusters revealing insights into scoring
patterns. The hierarchical clustering found 8 alone standing clusters (penalties, direct free
kicks, kick and rush, one-two’s, assisted by header, assisted by throw-in) and 9 categories (e.g.
corners) combining more granular patterns (e.g. 5 subcategories of corner-goals). We provide
a thorough discussion of the clustering and show its relevance for practical applications in
opponent analysis, player scouting and for long-term investigations. All stages of this work
have been supported by professional analysts from clubs and federation.

Keywords Sports analytics • Professional football (soccer) • Hierarchical clustering • Tactical analysis

1 Introduction
In the 1960s, Charles Reep began to manually annotate games of Swinden Town FC (Reep et al., 1968).
Though, some of his data-driven conclusions were later questioned (Witts, 2019) , his primitive collection of
detailed game data constituted the birth of football analytics: Today, most international leagues not only
collect manually annotated events from their matches systematically, but also use device- or camera-based
tracking systems in addition. Compared to event logs focusing on ball-actions (e.g. passes, shots, fouls;
often referred to as event data), tracking systems allow to record the positions of all 22 players and the
ball for an entire match (often referred to as positional or tracking data).

Several studies aim to group goals—the most important quantified metric in football—into predefined
categories. For example, González-Ródenas et al. (2019) differentiate between open-play and set-pieces to
categorize 380 goals from of the UEFA Champions League 2016/2017 season. They observe that 75.9% of
all goals occur from open-play, and only 24.1% are scored from set-pieces. A similar study confirms these
numbers on 101 goals taken from the World Cup in 2010 (Njororai, 2013). However, the expressiveness of
manually crafted categories is naturally limited as only a relatively small amount of data can be processed
by hand. Focusing on more detailed features of the goal origin, rather than high-level groups (e.g. whether
the shooter was under pressure), Mitrotasios et al. (2012) investigated factors associated with goal scoring
in 76 matches of the European Championship in 2012. Besides finding a similar dispersion of goal origins
(27.6% after set-pieces; 72.4% from open-play), they show that in more than 50% of the cases the goal-
scorer took his shot without any pressure. Plummer (2013) analyze goal scoring patterns of a lower English
league, pointing out stark differences in the origin of goals between non-professional leagues. In general,
set-pieces are often a decisive factor for winning a game, particularly when teams are equally strong
(Szwarc, 2007; Göral, 2019). Especially for corner-kicks, there exist several studies examining how they
lead to goals: (Taylor et al., 2005; Carling et al., 2006; Armatas et al., 2007; Schmicker, 2013; Pulling
et al., 2013; Pulling, 2015; Casal et al., 2015; Fernández-Hermógenes et al., 2017; Casal et al., 2017).
While these papers are based on manually annotated data, Power et al. (2017) offer an approach using
tracking data. They report a scoring efficiency of 2.1% after corner kicks for the English Premiere League
2016/2017 season. They also found that scoring with the second ball touch after a corner, is even more
likely than converting with the first touch.
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Whereas the usage of manually recorded data, acquired for the sole purpose of a single investigation,
is a common practice in sport sciences, the potential of automatically acquired positional data, as well as
off-the-shelf available event data, has not been fully exploited—particularly when it comes to clustering
goals. Hobbs et al. (2018) aim to detect counterattack situations automatically, based on positional and
event data, and derive that it is the most efficient strategy for scoring goals. Sarmento et al. (2014)
propose mixed methods to analyze attacking patterns of 36 games of different European top teams. They
also focused on counterattacks and combined quantitative analyses with expert knowledge to discover team
philosophies, showing that the combination proved to be very beneficial. Several studies highlighted the
relevance of this interplay between sports and computer science (Rein et al., 2016; Herold et al., 2019;
Andrienko et al., 2019; Goes et al., 2020; Marcelino et al., 2020)

Note that a similar approach has been successfully deployed in basketball. Reich et al. (2006) investigate
so-called shot charts, that visualize the location and outcome of every shot, in professional basketball
matches. Similar visualizations are enriched by spatial clustering techniques in (López et al., 2013).
An approach taking different shot characteristics into consideration is presented in Erčulj et al. (2015).
Although these analyses often focus on the location of shots, it led to significant changes in team strategies
and player’s shooting decisions (López et al., 2013; Reich et al., 2006). Simply focusing on shot locations
of goals does of course not translate to football with its complex attacking plays, its low scoring nature,
different shot types (e.g. header, volley) and the additional role of a goalkeeper.

Since only about 1% of all ball possession phases are completed with a goal (Pollard et al., 1997; Tenga
et al., 2010), many studies thus extend the focus to all shots (Fernando et al., 2015) or on proxies such as
carrying the ball into dangerous zones (Njororai, 2013; Merlin et al., 2020) in order to quantify offensive
success on larger sample sizes. Although these approaches may be biased towards successful teams that use
their chances more effectively (Castellano et al., 2012; Delgado-Bordonau et al., 2013; Dufour et al., 2017),
they allowed studies to evaluate processes (i.e. an attacking-play) more granular than just by considering
pure results. Ruiz et al. (2015) analyze the efficiency of shots taken based on the distance and angle to
the goal, Schulze et al. (2018) consider also the set-up of the opposing team during the shot to improve
the expressiveness of the investigation. On the basis of these ideas, a lot of expected goal models exist
that aim to quantify scoring probabilities (Lucey et al., 2014; Rathke, 2017; Ruiz et al., 2017; Robberechts
et al., 2020; Anzer et al., 2021).

Consequently, compared to other team sports, goals in football are rare events and there is a trivial
probability of observing the same goal twice as every goal is sui generis due to the complexity of the game
(Siegle et al., 2013; Salmon et al., 2020). Nonetheless, teams come up with dedicated match plans to
increase the probability of scoring and winning the game. Coaches and video-analysts devise attacking
patterns that ought to exploit weaknesses of the opposing team and result in the creation of chances.
Since these patterns are not random, there must be structure in the creation of goals. In that respect, the
categorization of goals plays an important role in the daily business of professional football clubs. Clubs
typically employ several match-analysts whose role includes to regularly examine scored and conceded
goals, particularly before facing an opponent. Since viewing the video footage is a tedious task and even
experts may disagree on categories (Chawla et al., 2017), it is the objective of this paper to both automatize
and objectify the categorization of goals and support the respective match-analysis departments: Being
able to cluster goals by their origin allows for an unbiased analysis that provides unseen patterns and
discloses trends.

In this paper, we follow a data-driven approach to leverage such data to identify the underlying structure
of the origin of goals in professional football. The contribution of this paper is as follows: First, we propose
a rich set of expert features that can be computed from aligned positional and event data to formally
represent goals as instances in a vector space. Second, we deploy a hierarchical clustering (Murtagh et al.,
2017) to group 3, 457 goals from two seasons of the German Bundesliga and 2nd Bundesliga into meaningful
and interpretable clusters and provide a thorough analysis of the results. Compared to the literature, our
analysis is on a much larger scale, provides rich feature representations, and follows a purely data-driven
approach that renders manual categorization or the definition of rules unnecessary. All quantitative results
have been evaluated qualitatively by professional match-analysts.

2 Methods
2.1 Data

The German Bundesliga and 2nd Bundesliga collects tracking and event data for all their league matches.
The former is captured by optical tracking systems while the latter consists of manual annotations. Tracking
data is recorded automatically using camera-based systems. Optical tracking systems are installed in every
stadium and capture the positions of players, referees and the ball at 25 frames per second. The quality of

2



the tracking data acquired by Chyronhego’s TRACAB system1 is evaluated on a regular basis and presents
sufficient accuracy (Taberner et al., 2020; Linke et al., 2020). However, there remain many events on the
pitch that currently cannot be captured automatically. The event data is therefore collected manually.
Trained operators annotate about 3, 000 basic events per match categorized into different event classes.
There are 30 top-level event classes including passes, crosses, fouls, etc. as well as about another 100
sub-attributes describing the events even in greater detail. The definition of each event follows the official
match data-catalogue designed by German Bundesliga.2 For further processing, the tracking and event
data are synchronized so that the timestamps of the events are aligned to the right frames in the tracking
data as described in Anzer et al. (2021).

We focus in our analysis on 3, 457 goals scored in the Bundesliga and 2nd Bundesliga in the 2017/2018
and 2018/2019 seasons and excluded the 85 own goals due to their often random nature. Every goal is
described by the raw data of all 22 players and the ball in 25Hz as well as all annotated events during
the ball possession phase leading to the goal. We also extracted 8.167 shots of the season 2018/2019
(containing 953 goals). The shots are used for an efficiency analysis of each cluster as described later.

2.2 Mapping goals into feature space

We extract a rich feature set from the synchronized data to turn goals into machine-readable quantities
encoding episodes that end with a successful shot at goal. We mirror the pitch in both dimensions, so that
all goals are scored on the same side of the field. Later on, this transformation remedies the clustering
from having to differentiate between left or right wings.

Besides the location and set-up of the shot itself, football experts (i.e. coaches, match-analysts, . . . ) are
explicitly interested in the complete ball possession phase prior to the goal. However, the fluent invasive
character of football implicates a lot of vagueness in terms of a consistent definition of an attacking play
(Merlin et al., 2020). Particularly very short ball possession phases of defending players during an attacking
play should not be considered as a separate ball possession phase. To establish an appropriate definition,
we reviewed video footage of critical scenes together with experts. Finally, we define the start of such an
episode as either a dead-ball situation (e.g. throw-in, goal-kick, etc.) or a turnover by the opposing team
lasting at least six seconds.

Together with experts—match-analysts with a minimum of five years experience in professional football
teams3—we define in total 37 features describing the evolution of a goal, from the origin to its finish. The
features are described in detail in the Appendix A. To provide an accurate representation of what leads to
a goal, the features make full use of the synchronization of the positional data with the manual collected
event data. In total we settled on features describing the shot itself (location, type, goalkeeper positioning,
pressure on the goal scorer, . . . ), its assist (location, assist type, . . . ) and features describing the entire ball
possession phase leading up to the goal The latter features include the location and type of the initial gain
of the ball, the number of passes, meters dribbled and bypassed opponents. As a measure of chaos, the
number of opponent touches during the ball possession phase is also counted. Next to prominent scores like
expected goals (xG)4, describing the probability of a shot being converted, we include several categorical
expert features, such as whether a chance is a sitter, originates from a counterattack, etc. Categorical
features are one-hot encoded in the final representation.

More sophisticated metrics describing the ball possession phase, the assist or the shot itself, present in
the literature were also used. To quantify the average pressure, for instance, we implemented the approach
taken by Andrienko et al. (2017). Additionally, the compactness of both teams is a decisive factor to
differentiate transition situations and counterattacks from other open-play situations. We therefore added
the stretch-index based on the definition in Santos et al. (2018) at the beginning and at the end of
the ball possession phase. Finally, the number of successfully played passes within an attacking play is
complemented with a packing value—describing the number of outplayed opponents per pass as in Steiner
et al. (2019)—to include a notion of the degree of ball control the offensive team had prior to scoring
the goal. All features were discussed, consolidated and steadily improved during workshops and based on
several steps of evaluation.5

1https://chyronhego.com/products/sports-tracking/tracab-optical-tracking/, accessed 06/20/2020
2https://www.bundesliga.com/en/news/Bundesliga/noblmd-dfl-subsidiary-sportcast-setting-up-

company-for-official-match-data.jsp, accessed 02/02/2020
3We provide more information on the experts in the acknowledgements.
4The xG-value used is calculated as defined in Anzer et al. (2021).
5A video showing some of the features is available at https://bit.ly/3sa3phw.
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2.3 Clustering the goals

To accomplish practical needs, it is our primary objective to automatically assign goals to interpretable
categories. We refrained from collecting labeled data from match-analysts for two reasons: On one hand,
categories of goals differ per club, coach and the respective match philosophy, and we prefer to compute
an objective structure that can be augmented in the daily practice irrespectively of the club, analyst or
philosophy. On the other hand, time constraints do allow match-analysts to review only a small amount
of data and the categorization of goals is naturally on a rather high level. Manual inspection of only
a few goals per opponent does not allow for detecting the variety of clusters that a purely data-driven
approach is able to produce at large-scales. A data-driven clustering allows us to reveal and discuss the
hidden structure of goals with our experts. To the best of our knowledge this is the first purely data-driven
approach to clustering goals on synchronized positional and event data and clearly unmatched in terms of
scale.

Agglomerative hierarchical clustering (HCA) provides a conceptually simple framework to compute
interpretable clusterings. HCA works bottom-up by (i) initializing every instance as a singleton cluster,
and (ii) iteratively combining the two most similar clusters, (iii) until only one cluster remains that contains
all instances. The resulting structure is a cluster tree called dendrogram (Murtagh et al., 2017). Different
instantiations of HCA arise by different ways to merge clusters in step (ii). For instance, single-link merges
the two clusters containing the two most similar elements (Sibson, 1973). Hence, single-link often leads to
chain-like structures as only one element of the cluster needs to be similar to one of the other while all other
instances may be very dissimilar. The other extreme is called max- or complete-link and focuses on the
most different elements when merging clusters (Defays, 2015). Max-link leads therefore to more balanced
clusters (Brian, 2011). We do not want to put such a strong prior on the solution and instead leverage a
compromise called average-link that merges clusters that are closest on average (Sokal, 1958). Average-link
is often used in bio- and health-related domains, for instance to infer phylogenetic tress (Felsenstein, 1996),
and serves our needs very well. However, instead of commonly used Euclidean distances, we deploy cosine
distance to meet the characteristics of the data. Recall that numeric elements of the feature representation
encode variables like packing or pass distance. Consider two similar goals, where one has almost twice the
packing score and almost twice the pass distance than the other. Using Euclidean distance, the two goals
would turn out very different. However, the angle between the two vectors in feature space is small and,
hence, the cosine implements the intuition that longer passes may also result in higher packing scores. In
sum, similarity of cluster X 0 and X is computed by

sim(X,X 0) =
1

| X || X 0 |
X

x2X

X

x02X0

xTx0

kxkkx0k (1)

An extensive model selection optimizes the pre-processing pipeline as well as additional parameters like the
number of clusters. The final solution maximized the silhouette measure (Rousseeuw, 1987) and consists
of a z-transformation and a subsequent mapping onto the 20 most informative dimensions corresponding
to the largest eigenvalues identified in a principal component analysis (PCA) (Wold et al., 1987) before
the data is fed into the hierarchical clustering using 50 clusters.

The resulting dendrogram is shown in Figure 1. Starting at the root, the hierarchy differentiates
primarily between the assist type before splitting further into goals arising individualized features per
branch. The tree is evaluated together with professional match-analysts of national teams and a Bundesliga
club to analyze its possible use for practice. Together with the experts, we went through 2D visualizations
of the goals and corresponding video footage, in order to derive a better grasp of the clustering. To reduce
workload, primarily the 2D visualizations were used by the experts to assign names and descriptions to
all nodes in the dendrogram. These characterizations were evaluated on random samples of video footage
manually to verify the solution; in total more than 800 goals were viewed.

After finalizing the contextual description of the clustering, the experts agreed on a simplified version
of the tree they would use in their match-analysis. This simpler version essentially merges small clusters
with close neighbours. We indicate merged clusters by the same colors in Figure 1 and provide a thorough
discussion in the remainder.

3 Results
In this section, we discuss the induced grouping by the dendrogram in Figure 1 and highlight interesting
features of the data-driven solution. In the remainder, we differentiate between goals from open-play, set-
pieces, type of assist, type of shot, and dedicated special goals. Representative goals for each cluster can be
found in the Appendix D. To assess conversion rates per cluster, we classified 8,167 shots from 2018/2019
season into the clustering by assigning every goal to the most similar cluster using the distance metrics
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Figure 1: The resulting dendrogram with contextual annotations. Numbers show the amount of goals in
the respective branches.

suggested in the previous chapter. Table 5 in the Appendix C provides additional details on conversion
rates per cluster.

3.1 Open-play

A straight forward classification of goals is to differentiate between goals that originate from open-play
and from set-pieces. With in total 2, 231 goals, in-play goals constitute the most frequent type of goals
in our data, with 64.0% of all goals being placed in one of the corresponding clusters. Focusing on the
former, open-play ball possession phases leading to a goal contain 3.6 passes and last 12.8 seconds on
average. Clusters containing goals from open-play are spread throughout the clustering; Figure 2 shows
two-dimensional visualizations of exemplary goals for the largest clusters.

The majority of all in-play goals are contained in the light green and dark green clusters and add up to
a total of 1, 424 goals. The goals can be distinguished by an intended assist from a teammate, without an
opponent touching the ball between assist and shot. The individual clusters further differentiate nuances
of the goal’s origin. For example, LP1 and LP2 in the light green cluster represent prototypical goals
from build-up to a finish. Goals in LP2 however, are typically the greater chances as 98.0% are labeled as
sitters and their goals per shot ratio is 42.0% LP2 compared to LP1’s of 20.0%.

The clustering allows to further dive into the resulting groups and show fine granular differences that
are usually only identified by manual expert inspections. As an example, Figure 3 shows that the clustering
differentiates between different strategies to regain the ball during an opponent’s possession. Coaches and
teams develop complex patterns that involve coordinated actions by many players and we easily identify
goals after successful counterpressing (SP1), midfield-block pressing (SP2) and high-block pressing (SP5).
Figure 3 shows heat maps of the shot location (top), the assist location (center), and the start of the ball
possession phase (bottom). SP1, for example, contains 128 goals scored after regaining the ball in the
opponents half, preferably close to the sideline.

Interestingly, about 40.0% of all shots in SP5 lead to a goal compared to only 5.0% for SP1 and 2.0%
for SP2. The numbers support that excellent goal opportunities are created by a very high pressing. By
contrast, SP2 turns out the most inefficient cluster in terms of goal conversion rate.

In-game crosses that are directly converted into goals are contained in HV3 and HC. Both clusters
encode crucial goal-scoring patterns. In HV3, for example, the ball is gained in the own half and after a
save build-up phase crossed from just inside the box and converted directly with a header (typically labeled
as a sitter). HC distinguishes itself by broader areas where the ball has been won, particularly including
the wings in the opponent’s half and crosses in this cluster are predominantly played from outside the box.
Figure 4 visualizes the differences using heat maps. Note that HC contains more than 10% of all goals
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Figure 2: Exemplary in-play goals and their clusters. Arrows show the path of the ball leading up to
the successful shot, positions of players at the time of shot are indicated in blue and red,
respectively.

and is by far the largest cluster in the tree.

3.2 Set-Pieces

Roughly a third (in total 1, 227) of all converted ball possession phases in our data begin with a set-piece
in the opponent’s half. Hence, match-analysts dedicate a significant amount of their time to identify
opponent’s strategies and tricks for all sorts of set-pieces. Figure 5 shows exemplary goals from clusters
representing corners and crosses. A total of 7.1% of all goals originate in corners and contained in the cyan
clusters C1–C5. Cluster C1 contains all goals where the ball is touched by at least one opponent before
it is received by the scorer; these situations often end-up in rather uncontrolled ping-pong situations in
the box. Cluster C2 encodes flick-ons, where a target player is positioned at the closest post who slightly
deflects the ball before it can be converted. This cluster is complemented with HA1 that contains header
flick-ons. Goals in C2 show very high xG values with an average of 60.0% and all were rated as sitters by
the experts.

Set-pieces played as crosses into the box follow a similar idea as corner kicks but turn out to be less
effective. In total we count 330 freekick-crosses in cluster S1 and S2 in the data but only 4.7% of them
were converted to goals. The clustering distinguishes between three scenarios: Taking the freekick-cross
directly (FC1, 97 goals), scoring after a resulting ping-pong-situation (FC2, 30 goals), and scoring the
rebound of a freekick-cross in a spectacular way (SO2, 12 goals).

The most straight-forward way of turning set-pieces into goals is through penalties (272 goals, S1) and
direct freekicks (94 goals, S2). Together, the two clusters account for 13.1% of all scored goals in the two
seasons. Unsurprisingly, penalties are the most efficient way of scoring. Even without taking deflected
penalties into consideration, 91 penalties in Bundesliga season 2018/2019 lead to 74 direct goals which
corresponds to a conversion rate of 81.3%. If the goalkeeper initially parries a penalty, but the rebound is
then converted, the goal is not considered as a penalty goal and therefore part of a different cluster SO3
and described in the remainder.

In total 7.2% of all direct attempted freekicks from Bundesliga 18/19 season lead to a goal. Figure 6
shows the shot locations of all directly scored freekicks in S2. Throw-in crosses very rarely lead to goals
(20 goals in total), which are contained in TI.

3.3 Assists

The dendrogram in Figure 1 differentiates between types of assists. Clusters S1 and S2 as described in the
previous section, stem from directly scored set-pieces and trivially do not contain assists. Similarly, BE
represents goals where a pass of the defending team was intercepted and converted by the scorer. Figure 7
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Figure 3: Goals originating from strategic ball gains in SP1, SP2, and SP5. The figure shows heat maps
for shot (top row), assist location (center row) and start of the ball possession phase (bottom
row). In total 270 goals (7.8% of all) were scored this way.

(top left) shows a heat map of shot locations in BE. While the majority of goals in that cluster are scored
from within the box, there are clearly visible outliers indicating long-ranged shots at goal. On average,
cluster BE is characterized by fatal build-up errors that allow shots from large distances to be converted
due to mispositioning by the goalkeeper.

The clustering further differentiates between types of assists such as an intentionally played final pass
that clearly aims to assist the scorer. This very large group containing 1, 949 goals is further divided
by the clustering into goals from open-play with an intended assist (dendrogram LP1–LP5, SP1–SP6,
HV1–HV3 and OT) and assists in form of crosses. The latter contains directly converted goals by
corners (C3), freekick-crosses (FC1), and open-play crosses (HC) as well as goals arising only after several
opposing ball touches; these ping-pong situations are again separated into corners (C1), freekick-crosses
(FC2), and open-play crosses (LO3 and LO5). Moreover, there are spectacular rebound-volleys where
unsuccessful clearances are scored at large distances (C1 and SO2, see below). Cluster HA1 contains
header assists by flick-ons after crosses and long balls from the own half.

Unintentional assists may arise from regular passes that are completed with outstanding maneuvers
of the scorer and can be found in SA2 and SA1. The contextual analysis of these clusters showed two
different kinds of situations: Either the scorer takes a surprise shot, often at large distance or from difficult
angles (two plots on the right side), or dribbles past several opponents before taking a shot.

Many unintentional assists are simply random and contained in the clusters UA1–UA4. In contrast
to assists by opponents (LO1–SO7), these random assists come in fact from a teammate but without the
direct intention to create a shot. The experts consider goals in this group to be lucky events. Nevertheless,
fortune picks its favorites: in our data, the luckiest teams in every league and season scored about twice as
many random goals as the unluckiest ones. Cluster SA contains shot attempts that are deflected by team
members. Positioning players in the line of shot turns out to be very efficient: almost half of the situations
are converted into goals

The last group in this section constitutes indirect assists from opponents. We already discussed in-
tercepted build-ups in BE, however, compared to BE, indirect assists in LO1–SO7 primarily stem from
uncontrolled and random opponent actions. Additional indirect assists are also contained in the ping-pong
clusters C1 (corners) and FC2 (freekick-crosses). Figure 8 visualizes exemplary goals induced by indirect
assists. For example, Cluster SO3 contains all goals where the opponent’s goalkeeper failed to save a shot
and accidentally assisted the scorer. With 197 goals this cluster contains surprisingly many goals, albeit,
our experts do not consider all these situations as mistakes by the goalkeeper. Although ’flaws’ of the
goalkeepers are often a decisive factor in top leagues, a characteristic trait of excellent strikers is their
sixth sense for these poacher goals.
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Figure 4: Visualizations of goals scored by headers: example goal (top row), scorer position (2nd row),
assist location (3nd row), begin attacking phase (bottom row).

3.4 Shots

Possibly the most important part of a goal is the shot itself. We differentiate between leg-shots, volleys,
and headers. From our 3, 457 goals, 83.0% are scored by a non-volley leg-shot. The remaining 17.0%
are either headers or volleys and exemplified in Figure 4. Surprisingly, more than the half of these goals
originate from open-play phases (HV3 and HC). For instance, Clusters SO2 and SO1, displayed in Figure
8, contain lovely volley rebounds.

Headers are the predominant way to score after freekicks (74.0%) and corners (87.0%) but play only a
minor role in ping-pong situations (C1 and FC2). Cluster HV2 for example contains spectacular headers,
some of which are also highlighted as triangles in Figure 6.

Cluster HV1 and HV3 are efficient ways of scoring with conversion rates of 26.7% and 31.0%, re-
spectively. As mentioned above, HV3 encapsulates a blueprint worth striving for. Cluster HV1 shows
another constellation: Either a freekick or a corner is cleared by the opponent followed by a second cross
into the box that is then converted in a goal. From the overall 32, 406 shots, 5, 612 headers and volleys led
to 616 goals (11.0%) which is slightly more efficient than leg-shots (10.7%).

3.5 Patterns

Many clusters encode strategic patterns or tricks and by discovering the next opponent’s strategies one
can increase the likelihood of winning. Some of these strategies can be seen in Cluster SA where strikers
cross the line of the shot (likely) on purpose as well as in HA1 with header flick-ons. From the perspective
of a goalkeeper it is crucial to know the locations of freekicks, direct shots as well as crosses into the box.
Figure 6 thus shows the locations of successful long-distance shots depending on the cluster.

The most basic tactical pattern in football is a one-two and encoded by cluster OT. Figure 6 visualizes
a nice example of this pattern.

Cluster K&R represents the kick-and-rush strategy. Goals in this cluster are characterized by a long-
distance pass to the scorer. These passes bridge on average 48.47m, and are often difficult to control.

Finally, a cluster containing special corner-tricks is C5. Clearly, knowing whether the next opponents
have some corner-tricks in their portfolio is an important piece of information for every coaching staff.

4 Discussion
Analyzing the origin of goals is often limited to small sample sizes due to manual annotation, nevertheless,
studies breaking down scoring patterns are common in sport-science literature (Reep et al., 1968; Njororai,
2013; Mitrotasios et al., 2012). Exploiting the availability of positional and event data can present a change
in paradigm for pattern analysis in football. The automated analysis based on 3, 457 goals, allows us to
put results from recent literature on a sound base: With 64.0% goals scored from open-play, we present
a lower number than previous literature (e.g. Njororai (2013) 75.86% of 145 from several competitions;
Mitrotasios et al. (2012) 72.4% of 76 goals European championship). Njororai (2013) claimed that history

8



Figure 5: Exemplary visualizations of all goals occurring by corners and crosses. Both goals from set-
pieces and from open-play are included representing a total amount of 490 goals (14.17%).

showed a trend towards more open-play goals, which cannot be confirmed by our data-set. Goals occurring
from open-play follow and attacking phase with 3.6 passes on average and the average conversion rate of
shots is 11.67% roughly in line with the original findings from Reep et al., 1968, and later confirmed by
Collet (2013); Sarmento et al. (2014); Vogelbein et al. (2014); González-Ródenas et al. (2019). Another
insight regarding set-pieces, is the lower header-rate of freekicks (74.0%) compared to corners (87.0%),
which can be explained by the additional space behind the offside line, increasing the likelihood of creating
enough separation to finish the cross with the foot. However, the definition which goal still counts as a
converted set piece or when a possession phase starts, varies across the literature, making a comparison
between the results difficult—data-driven studies like the one presented here could overcome this issue by
using consistent definitions, without the need for manual annotations.

Nevertheless, the key benefit of our approach is not the ability to conduct a large-scale descriptive
analysis, but rather to use a hierarchical clustering in order to identify patterns in the origin of goals au-
tomatically and, consequently, to derive meaningful insights for football practitioners from these patterns.
The efficiency of fast ball regains followed by a successful offensive action has been investigated in several
studies (Reep et al., 1968; Hobbs et al., 2018; Vogelbein et al., 2014). Our clustering detects that strategy
as a pattern represented in its own cluster in SP1 (3.7% of all goals). Another useful insight are partic-
ularly high conversion rates of ball-gains after high-blocks (SP5, 40.0%), especially in comparison with
ball gains after counterpressing (SP1, 5.0%) and after mid-blocks (SP2, 2.0%). This finding regarding
the efficiency of counterpressing is in line with Bauer et al. (2021). In the latter case when the ball is won,
the defense is typically quite well organized with many players behind the ball, often leading to long-range
shots. Compared to the usual categorization into corners, direct freekicks, freekick-crosses and penalties,
our approach allows for a much granular view of set-pieces and discloses hidden insights. Cluster HA1
and C2, contain several flick-on goals after corner kicks and confirm the relevance of this sub-category of
corner goals presented in Power et al., 2017. After set-pieces (SO2) and after open-play SO1 a significant
amount of goals were scored through volley rebounds. The high total amount of 2% of all goals, even
surprised the experts. Training shot techniques is a crucial part in professional football, and our analysis
can help to identify the right shooting situations to focus on.

In the following we describe four exemplary use cases of how the insights can support analysts and
coaches in their everyday business:

Use case 1—Automatize and objectify the match-analysts weekly processes: Nowadays, spend-
ing vast amounts of time and resources to perform pre-match-analyses of the next opponents and on the
post-match-analyses of the own performance has become an integral part of professional football. In a
well established process, match-analysts spend hours observing video footage of their upcoming opponent
to figure out what to expect. One of the most crucial questions they need to answer is: how does the
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Figure 6: Selected special goals. Top left: shot chart for S2. Bottom right: aggregation of extraordinary
shots (circles), volleys (squares), and headers (triangles) from different clusters: shots are
plotted as circles, volleys as quarters and headers as triangles - all in the respective cluster-
color.

opponent score and concede goals? Typically, time constraints allow only to examine the last few goals
from the opponent which are then classified into one of few categories. These categories vary from club
to club, but due to the sample size, the analysis is coarse and expressivity is limited. By contrast, our
fully automated and purely data-driven approach processes arbitrarily long periods and as many goals as
desired and provides detailed clusters that allow for fine-grained analyses. Throw-in crosses, for example,
are rare events and thereafter hard to scout for each upcoming opponent. But some teams actively practice
throw-in crosses6,7 and our clustering automatically discloses whether an opponent uses them effectively.
Our analysis shows that almost half of the goals after long throw-ins are scored by only three teams in
our data-set (Union Berlin, Dynamo Dresden, MSV Duisburg). Our clustering also reveals teams with a
distinct counterpressing strategy (RB Leipzig scored twice as often with SP1 as the runner-up), teams
with dedicated cornertricks (Arminia Bielefeld with several goals in C5), and especially successful teams
after kick and rush plays K&R (TSG Hoffenheim, Bayer 04 Leverkusen and Fortuna Düsseldorf).

Use case 2—Scouting players: Scouting prospective players who will quickly adapt to a teams’ playing-
style or identifying a (near) equal substitute for a leaving or injured player is key to running a professional
club (Radicchi2016a; Pappalardo, 2019). While there already exist many different approaches using
event and/or tracking data, aiming to objectively evaluate players for scouting purposes like expected
goals (Anzer et al., 2021), space-control (Fernandez et al., 2018) or expected possession values (Spearman,
2018; Fernández et al., 2019), these typically only quantify a player’s output. By looking at patterns
instead of the pure outcome, our approach presents a possibility to identify players that not only produce
a high output, but do it in a way that fits a team stylistically.. Figure 9 shows the footprints of the two
famous strikers (Robert Lewandowski and Timo Werner) where line widths are proportional to the number
of scored goals in the respective branch of the tree. To evaluate whether one could substitute another,
we let the data speak and compare their scoring footprints. Since both are strikers, their performance is
measured to a high degree by the number of goals scored per match and the data-driven footprints reveal
whether they score their goals in similar fashions. Another non-trivial aspect in scouting players is to
identify promising talents. If, for instance, a technically skilled talent is needed, an aggregated view on
clusters SA1, SA2 and BE is helpful as they solely contain goals that require technically skilled players
to score. Another data-driven approach to quantify fingerprints of players is presented in Marcelino et al.
(2020). They analyze the directional correlations between players’ movements and find that players whose
movement correlates more strongly with their teammates’ tend to have higher market values. Following
Marcelino et al., 2020 in future studies one could evaluate the connection between players’ footprints and
their market value.

Use case 3—Long term team analysis: Analyzing the dendrogram allows to join clusters that encode
semantically similar goals. As an example consider clusters SP1 and LO2. The former contains classical
counterattacks where the ball is gained and quickly carried forward with determined passes. The latter,
located at a very different branch of the dendrogram, contains similar situations but the (unintentional)

6https://www.bbc.com/sport/football/46312234, accessed 06/28/2020
7https://trainingground.guru/articles/leeds-hire-set-piece-specialist-gianni-vio, accessed

06/28/2020
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Figure 7: The largest 14 in-play clusters shown by three heatmaps each: start of the ball possession phase
(bottom), the assist location (middle) such as the shot location (top).

assist comes from the opponent. Merging the clusters allows to reason about counterattacks in general.
A very traditional category found by our clustering are one-two’s OT. While this pattern is a basic ele-
ment of football, its scarcity leading up to goals (0.8% of all goals) meant, it has not been investigated
by any scientific study. While one-two’s are very effective against men-oriented defensive structures, their
relevance in today’s top leagues seems to shrink significantly. However, are able to detect teams or players
using this strategy more frequently.

Use case 4—Scouting coaches: Moreover, the clustering allows to shed light on many very different
aspects of teams such as the effects of replacing head coaches. While selecting the right coach is a crucial
decision for any club, doing so while making use of positional or event data to support this decision has
not been addressed in literature. Just like players, coaches leave their own footprint in the dendrogram.
Analyzing this footprint can be a massive support when identifying head-coaches with a playing style
suiting their potential new team. Several studies investigated the effect coaching changes had on team
results (Kattuman et al., 2019; Besters et al., 2016), but our method aims to show before a possible change
how a coach would fit stylistically.

Professional football is highly affected by competitional pressure and emotions. Having an objective
and unbiased view on a team’s performance is indispensable for long-term success. By following a purely
data-driven approach, our contribution allows for such an unbiased view on the origin of goals. In order
to overcome biases towards established patterns, we present an exploratory way of analyzing goal scoring
patterns. In future research, the gained insights can be build upon to train supervised machine learning
models that automatically classify goals into pre-defined classes depending on individual club philosophies.
The possibility of (partially) automating regular tasks (e.g. weekly opponent analysis) not only allows to
save time but also to put the human focus on more sophisticated analyses and leave the easy tasks to number
crunching machines. Compared to human analyses, the proposed clustering offers a finer granularity and,
hence, provides a deeper understanding of the origin of goals.

The resulting clustering tree was analyzed and sanity checked by professional match-analysts from
national teams and Bundesliga clubs. The interdisciplinary cooperation with domain experts was of utmost
importance to the project to bridge the gap between computer and sports science and practice (see also
Goes et al., 2020; Herold et al., 2019; Rein et al., 2016). Combining expert opinions with statistical
evaluations (i.e. the Silhouette value of the clustering) turned out to be very beneficial for determining
the number of clusters.

When naming the clusters and discussing the ideal cluster number, in most cases the experts imme-
diately agreed and in the few remaining cases after a brief discussion a conses was found. Nevertheless, a
more systematic evaluation would be desirable for future studies. Since many of the categorical features are

11



Figure 8: Visualizations of goals assisted by the opponent. The 278 goals in this category present 7.8%
of all goals.

derived from manually annotated event data, further studies could also analyze the inter-labeler reliability
of the features. Furthermore, a general limitation of an unsupervised learning task is, that the resulting
clusters are not guaranteed to to make the distinctions a human would make. While, we used experts
opinions to guide us to find the right clustering, and the results satisfied their expectations, it could be of
future interest, to investigate how closely this unsupervised clustering matches an experts clustering.

Besides the reliability of the event data, an improvement of the tracking data quality (e.g. through
limb tracking), could open avenues for even more granular analysis of goals. And, while the data set used
for this study is already one of the largest in the literature, increasing the number of considered goals
would certainly further increase the usefulness of this work (e.g. by identifying very rare types of goals,
like direct corner kick goals). As mentioned earlier, we are excluding own-goals from this analysis, but
investigating how they originate, and what they have in common with "typical" goals could be another
area to explore further in the future.

Figure 9: Footprints of Robert Lewandowski (left) and Timo Werner (right) in the dendrogram.

5 Conclusions
We studied the origin of goals in the German Bundesliga and 2nd Bundesliga. We proposed a rich set of
features that can be extracted from synchronized tracking and event data. The feature representations of
the goals were then processed by an agglomerative clustering algorithm. Using two entire seasons of data,
we showed that the clustering allowed for fine grained differentiations and non-obvious insights that are
approved by professional match-analysts working for national teams and Bundesliga clubs. Our approach
can support professionals in their daily work and renders manual inspection of large amounts of video
footage unnecessary. Moreover, the proposed clustering can objectify pivotal decision making and offers
quantitative solutions to traditionally qualitative domains like scouting players or coaches or analyzing the
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next opponent.
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Appendix
Appendix A (Tables 1, 2) detail the features that are extracted from positional and event data for the
clustering in detail. Appendix B (Tables 3, 4) provide details on goal scoring and receiving patterns on
a club level and may be of interest to analysts of the respective teams. Similarly, Appendix C (Table 5)
shows the conversion rates of every cluster. Finally, Appendix D (Table 6) contains representative goals
for selected clusters. Interested analysts may use these goals to evaluate the clustering on their own.
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Table 1: Features describing the ball possession phase prior to a goal.

Feature Value Description
Start Action Categorical Describes the start of the ball possession phase in pre-defined abstraction

levels (Own Half, Offensive Ball Gain, Throw in, corner kick, Free kick,
Penalty).

Build-up Categorical Describing the build-upleading up to the goal (crossOpenPlay, pass open
play, free kick, Penalty, corner kick, throw in, loss Of Possession).

Location of ball
possession start

Numeric x- and y-coordinate of a shot. The synchronized location from positional
and event data as described in Anzer et al., 2021 is used.

Set-up Origin Categorical Describes where the build-up play for the shot at goal starts (inside, out-
side).

Duration ball pos-
session phase

Numeric Length of the ball possession phase measured in [s]. The start of a ball
possession phase is either a dead ball, or an open-play turnover. Interrup-
tions where the opposing team gains possession of the ball for less than
six consecutive seconds do not end an possession phase.

Number of passes Numeric Number of completed passes during ball possession phase.
Number of oppos-
ing touches

Numeric Number of opposing touches during ball possession phase.

Bypassed players Numeric Bypassed players is defined as the positive difference between the number
of players that are closer to their own goal than the ball at the time of the
shot and when the ball possession started.

Meters dribbled Numeric Meters dribbled during ball possession phase. This feature is calculated as
the sum of all the euclidean distances between starting and end location
of each player’s possessions.

Meters passed Numeric Meters passed during ball possession phase.
Average passing
pressure

Numeric Average amount of pressure passing players received during the ball pos-
session phase at the moment they played a pass according Andrienko et al.,
2017.

Average receiving
pressure

Numeric Average amount of pressure pass receiving players received during the ball
possession phase. at the moment they received a pass according Andrienko
et al., 2017.

Counterattack Categorical Describes whether the build-up was a counterattack. Counterattacks are
defined in the official manually collected event data as attacks during which
a team gains ball control in its own half, immediately starts a quick coun-
terattack and takes a shot within at maximum 14 seconds.

Number of oppos-
ing touches

Numerical Counts the amount of uncontrolled touches the opposing team had during
a possession.

Maximum vertical
pass length

Numeric The longest vertical distance of any pass within the possession.

Maximum horizon-
tal pass length

Numeric The longest horizontal distance of any pass within the possession.

Maximum pass
length

Numeric The distance of the longest pass within the possession.

Compactness Ball-
gain

Numeric Compactness of the attacking team (Santos et al., 2018) at the beginning
of the ball possession phase.

Compactness Shot Numeric Compactness of the attacking team (Santos et al., 2018) at the time of the
shot
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Table 2: Features describing the assist and shot setup.

Feature Value Description
Shot location Numeric X and Y coordinate of a shot
Type of shot Categorical Describing the body part used for the shot (head or leg)
Chance evaluation Categorical Classifying the quality of a chance (chance, sitter)
Taker Ball-control Categorical Ball-control type describes the type of control the shot taker had prior to

scoring. It includes the following categories:

• “Direct” a shot with the first touch, unless the shot is considered a
volley.

• “Volley” a shot with the first touch and the ball did not touch the
ground previously.

• “Control - shot” a shot followed after a single touch to control the
ball.

• “Distance covered < 10m” a shot following a short dribble (less than
10 meters).

• “Distance covered > 10m” a shot following a longer dribble (more
than 10 meters).

• “Set piece taker” a direct set-piece shot.

Setup Categorical Describes how the person taking the shot was set up (header, long pass
from open play, other pass from open play, one two, cross from open play,
shot, free kick; corner kick, throw in, teammate action, rebound wood-
work).

xG Numeric The “Expected Goal” (xG) value of a shot according to Anzer et al., 2021.
Distance to goal Numeric Distance in meters between the location of the shot and the center of the

opposing goal.
Goal angle Numeric Angle in radians between the location of the shot and the two posts of the

opposing goal.
Speed of player tak-
ing the shot

Numeric The speed in [km/h] the player attempting the shot was travelling at the
time of the shot.

Pressure on the
player taking the
shot

Numeric The amount of pressure the player attempting the shot was under at the
time of the shot according to Andrienko et al. (2017).

Defenders in the
line of the shot

Numeric The number of defenders in the line of the shot, defined as the triangle
between the shot location and the two goal posts.

Distance of the
goalkeeper to the
goal

Numeric The distance in meters the goalkeeper between the goalkeeper and the
center of the goal at the time of the shot.

Goalkeeper in the
line of the shot

Numeric Describes whether the goalkeeper is in the line of the shot or not.

Solo Categorical Solo indicates that a remarkable individual contribution (=solo) by the
goalscorer lead to the successful shot.

Assist location Numeric X and Y coordinate of the assist
After free kick Categorical Indicates whether the goal followed a freekick.
Assist type Categorical Describing whether it was a direct, indirect assist or not assisted
Assist action Categorical Describing the assist action (e.g. “long pass”)
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Table 3: Scored goals per team.
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Table 4: Received goals per team.
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C Appendix

Table 5: Conversion rate of goals per shot. Values above (> 20%) and below (< 5%) average are indicated
by green and red arrows, respectively.

D Appendix
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Table 6: Exemplary goals for selected clusters.

Cluster Season(League) Pairing Scoring Team Goal Scorer Assist Minute

S2 2018/2019(1) FC Augsburg:Hannover 96 Augsburg Schmid NaN 0
S2 2018/2019(2) SpVgg Greuther Fürth:FC Erzgebirge Aue Aue Hochscheidt Krüger 0
S2 2017/2018(2) Fortuna Düsseldorf:SpVgg Greuther Fürth Fürth Wittek Narey 0
S2 2018/2019(1) Sport-Club Freiburg:FC Augsburg Freiburg Grifo Grifo 0
BE 2018/2019(1) Sport-Club Freiburg:Borussia Mönchengladbach Freiburg Höler Sommer 90
BE 2018/2019(1) Eintracht Frankfurt:Sport-Club Freiburg Frankfurt Jovic Jovic 45
LP1 2017/2018(1) TSG 1899 Hoffenheim:Borussia Dortmund Dortmund Reus Guerreiro 58
LP1 2017/2018(1) FC Schalke 04:FC Bayern München Bayern Vidal Pardo Rodríguez Rubio 75
LP2 2017/2018(1) Borussia Mönchengladbach:Hamburger SV M’gladbach Hazard Caetano de Araújo 9
LP5 2018/2019(1) Sport-Club Freiburg:Borussia Mönchengladbach Freiburg Waldschmidt Haberer 57
LP5 2017/2018(1) TSG 1899 Hoffenheim:Bayer 04 Leverkusen Leverkusen Alario Bailey Butler 70
SP1 2017/2018(2) MSV Duisburg:Fortuna Düsseldorf Düsseldorf Hennings Fink 40
SP1 2018/2019(2) SpVgg Greuther Fürth:Holstein Kiel Fürth Green Dona Atanga 90
SP5 2017/2018(1) 1. FSV Mainz 05:Sport-Club Freiburg Mainz De Blasis Quaison 79
SP5 2017/2018(1) TSG 1899 Hoffenheim:Hannover 96 Hoffenheim Kramaric Gnabry 16
HV1 2018/2019(2) FC St. Pauli:SSV Jahn Regensburg St. Pauli Flum Carstens 52
HV1 2017/2018(1) RB Leipzig:Hannover 96 Leipzig Werner Forsberg 85
HV2 2017/2018(2) MSV Duisburg:SSV Jahn Regensburg Duisburg Nauber Tashchy 52
HV2 2018/2019(1) Fortuna Düsseldorf 1895 e.V.:FC Augsburg Augsburg Hahn Richter 76
HV2 2018/2019(2) 1. FC Union Berlin:1. FC Heidenheim 1846 Union Berlin Gikiewicz Andersson 90
HV2 2017/2018(1) FC Augsburg:TSG 1899 Hoffenheim Hoffenheim Kramaric Hübner 30
HV2 2018/2019(1) Borussia Mönchengladbach:SV Werder Bremen Bremen Klaassen Osako 79
HV2 2017/2018(1) Hertha BSC:FC Bayern München Bayern Hummels Boateng 10
HV2 2017/2018(2) FC Erzgebirge Aue:1. FC Nürnberg Aue Köpke Tiffert 77
HV2 2017/2018(2) Fortuna Düsseldorf:1. FC Heidenheim 1846 Heidenheim Verhoek Schnatterer 83
HV3 2017/2018(1) FC Bayern München:1. FSV Mainz 05 Bayern Lewandowski Kimmich 77
HV3 2018/2019(1) Borussia Dortmund:FC Bayern München Bayern Lewandowski Kimmich 52
HV3 2017/2018(1) RB Leipzig:FC Bayern München Bayern Wagner Rodríguez Rubio 12
SA1 2018/2019(1) FC Bayern München:Eintracht Frankfurt Bayern Ribéry Kimmich 72
SA1 2017/2018(1) TSG 1899 Hoffenheim:1. FC Köln Hoffenheim Gnabry Grillitsch 47
SA1 2017/2018(1) TSG 1899 Hoffenheim:RB Leipzig Hoffenheim Gnabry Amiri 62
K&R 2017/2018(2) 1. FC Nürnberg:FC St. Pauli St. Pauli Sobota Himmelmann 63
K&R 2017/2018(1) Sport-Club Freiburg:1. FSV Mainz 05 Mainz Berggreen Brosinski 90
OT 2018/2019(1) Eintracht Frankfurt:FC Bayern München Bayern Ribéry Kimmich 79
OT 2018/2019(1) 1. FC Nürnberg:Hertha BSC Berlin Ibisevic Selke 15
FC1 2017/2018(1) Borussia Dortmund:Eintracht Frankfurt Frankfurt Jovic de Guzmán 75
FC1 2017/2018(1) Eintracht Frankfurt:1. FC Köln Köln Terodde Risse 74
FC2 2017/2018(1) FC Augsburg:Eintracht Frankfurt Augsburg Koo Baier 19
FC2 2017/2018(1) TSG 1899 Hoffenheim:1. FSV Mainz 05 Hoffenheim Kramaric Uth 67
C1 2017/2018(2) SSV Jahn Regensburg:1. FC Heidenheim 1846 Regensburg George Lais 34
C1 2018/2019(1) FC Augsburg:Eintracht Frankfurt Augsburg Córdova Lezama da Silva 90
C3 2017/2018(1) Hamburger SV:Eintracht Frankfurt Hamburg Papadopoulos Hunt 9
C3 2018/2019(1) Hertha BSC:Eintracht Frankfurt Berlin Grujic Plattenhardt 40
C4 2017/2018(1) Bayer 04 Leverkusen:VfL Wolfsburg Leverkusen Bender Retsos 29
C4 2018/2019(1) FC Bayern München:Borussia Mönchengladbach M’gladbach Herrmann Kramer 88
C5 2017/2018(2) DSC Arminia Bielefeld:VfL Bochum 1848 Bielefeld Kerschbaumer Staude 35
C5 2018/2019(2) DSC Arminia Bielefeld:1. FC Heidenheim 1846 Bielefeld Schütz Hartherz 33
C5 2018/2019(1) Bayer 04 Leverkusen:TSG 1899 Hoffenheim Hoffenheim Nelson Grifo 19
SA 2018/2019(1) Bayer 04 Leverkusen:Eintracht Frankfurt Leverkusen Brandt Aránguiz Sandoval 13
HC 2018/2019(2) 1. FC Heidenheim 1846:SV Sandhausen Sandhausen Wooten Diekmeier 69
HC 2018/2019(1) Fortuna Düsseldorf 1895 e.V.:Eintracht Frankfurt Frankfurt Mendes Paciencia de Guzmán 48
TI 2017/2018(1) Hamburger SV:FC Schalke 04 Hamburg Kostic dos Santos Justino De Melo 17
TI 2017/2018(1) Bayer 04 Leverkusen:1. FC Köln Köln Guirassy Sørensen 23
TI 2018/2019(2) SG Dynamo Dresden:MSV Duisburg Dresden Röser Heise 39
UA1 2017/2018(2) SSV Jahn Regensburg:FC Erzgebirge Aue Aue Köpke Riese 57
UA1 2017/2018(1) Eintracht Frankfurt:SV Werder Bremen Frankfurt Rebic Willems 17
UA1 2017/2018(2) MSV Duisburg:Fortuna Düsseldorf Duisburg Tashchy Stoppelkamp 90
UA3 2018/2019(2) SSV Jahn Regensburg:SG Dynamo Dresden Dresden Dumic Koné 52
UA3 2017/2018(1) FC Bayern München:FC Augsburg Bayern Vidal Pardo Süle 31
LO1 2017/2018(1) VfB Stuttgart:Eintracht Frankfurt Stuttgart Thommy Ginczek 13
LO1 2018/2019(1) 1. FSV Mainz 05:Borussia Dortmund Mainz Quaison Hack 70
LO2 2017/2018(1) Borussia Dortmund:FC Augsburg Dortmund Reus Schürrle 16
LO2 2018/2019(2) FC Ingolstadt 04:Holstein Kiel Ingolstadt Lezcano Farina Kutschke 13
LO3 2017/2018(1) FC Bayern München:Eintracht Frankfurt Frankfurt Haller Vieira da Costa 78
LO3 2017/2018(1) FC Bayern München:Hannover 96 Bayern Coman Müller 67
LO4 2017/2018(2) 1. FC Kaiserslautern:SV Sandhausen Sandhausen Förster Linsmayer 78
LO4 2017/2018(1) Eintracht Frankfurt:FC Schalke 04 Schalke Aparecido Rodrigues Embolo 90
LO5 2017/2018(2) FC St. Pauli:FC Ingolstadt 04 Ingolstadt Träsch Pledl 33
LO5 2018/2019(2) Holstein Kiel:FC Erzgebirge Aue Aue Hochscheidt Iyoha 26
SO1 2017/2018(2) MSV Duisburg:VfL Bochum 1848 Duisburg Tashchy Bomheuer 7
SO1 2017/2018(1) VfL Wolfsburg:Borussia Mönchengladbach Wolfsburg Akoi Fara Guilavogui Gómez García 71
SO1 2017/2018(2) 1. FC Heidenheim 1846:FC St. Pauli Heidenheim Thiel Schnatterer 16
SO1 2018/2019(2) 1. FC Union Berlin:MSV Duisburg Duisburg Oliveira Souza Iljutcenko 77
SO2 2017/2018(2) SV Darmstadt 98:SG Dynamo Dresden Dresden Konrad Berko 80
SO2 2017/2018(2) MSV Duisburg:DSC Arminia Bielefeld Duisburg Wolze Stoppelkamp 72
SO2 2018/2019(2) MSV Duisburg:SC Paderborn 07 Duisburg Tashchy Wolze 63
SO2 2017/2018(2) Holstein Kiel:SV Sandhausen Sandhausen Klingmann Höler 35
SO2 2018/2019(1) Hertha BSC:TSG 1899 Hoffenheim Berlin Lazaro Plattenhardt 87
SO2 2017/2018(1) Hertha BSC:Borussia Mönchengladbach M’gladbach Caetano de Araújo Wendt 20
SO2 2017/2018(2) SG Dynamo Dresden:SV Sandhausen Sandhausen Paqarada Daghfous 25
SO2 2018/2019(2) SC Paderborn 07:1. FC Köln Paderborn Pröger Michel 86
SO2 2017/2018(2) FC Erzgebirge Aue:MSV Duisburg Aue Nazarov Tiffert 83
SO2 2017/2018(1) Hannover 96:FC Augsburg Hannover Sané Klaus 37
SO3 2018/2019(1) FC Augsburg:Bayer 04 Leverkusen Leverkusen Tah Brandt 60
SO3 2017/2018(1) FC Bayern München:Sport-Club Freiburg Bayern Coman Robben 42
SO5 2017/2018(2) Fortuna Düsseldorf:1. FC Heidenheim 1846 Düsseldorf Raman Hennings 90
SO5 2018/2019(1) FC Augsburg:Hannover 96 Hannover Weydandt Maina 8
SO5 2018/2019(1) Sport-Club Freiburg:1. FSV Mainz 05 Mainz Onisiwo Niakhaté 75
SO5 2017/2018(2) 1. FC Nürnberg:1. FC Heidenheim 1846 1. FC Nürnberg Stefaniak Ishak 38
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Abstract Choosing the right formation is one of the coach’s most important decisions in football. Teams
change formation dynamically throughout matches to achieve their immediate objective: to retain possession,
progress the ball up-field and create (or prevent) goal-scoring opportunities. In this work we identify the unique
formations used by teams in distinct phases of play in a large sample of tracking data. This we achieve in two
steps: first, we trained a convolutional neural network to decompose each game into non-overlapping segments
and classify these segments into phases with an average F1-score of 0.76. We then measure and contextualize
unique formations used in each distinct phase of play. While conventional discussion tends to reduce team
formations over an entire match to a single three-digit code (e.g. 4-4-2; 4 defender, 4 midfielder, 2 striker), we
provide an objective representation of teams formations per phase of play. Using the most frequently occurring
phases of play, mid-block, we identify and contextualise six unique formations. A long-term analysis in the
German Bundesliga allows us to quantify the efficiency of each formation, and also to present a helpful scouting
tool to identify how well a coach’s preferred playing style is suited to a potential club.

Keywords Football, sports analytics, human-in-the-loop machine learning.

1 Introduction

The great Dutch football player Johan Cruyff famously observed that, on average, each player is in possession
of the ball for only 3 of the 90 minutes during a football match.1 He expanded on this observation by stating “...
so, the most important thing is: what do you do during those 87 minutes when you do not have the ball? That
is what determines whether you are a good player or not.”2 The implication is that a player can significantly
influence the game through their positioning and movement on the field, even when they do not directly interact
with the ball (Brefeld et al. 2019; Fernandez et al. 2018).

The movement of players in a football match represent a high-dimensional spatio-temporal configuration.
Various approaches aimed to embed teams’ behavior in higher-level problems. Balague et al. (2013) focuses
on coordination of motion within a team by modelling a team’s movement as collective behavior in a complex
system. Indeed, synchronicity of movements is investigated in football in specific situations (Goes et al. 2020b;
Sarmento et al. 2018). Several studies described football matches more concrete as a multi-agent systems (Beetz
et al. 2006; Fujii 2021) highlighting the intelligence of interactions between the agents (players). Analysing
movement patterns in spatio-temporal data, especially the detection of repeating, collective patterns is not
only researched in invasion sports (Gudmundsson et al. 2017a), but also in traffic management, surveillance
and security or in the military and battlefield domain (Gudmundsson et al. 2017b). Key challenges in spatio-
temporal pattern detection are: (a) Using the interaction of movement for dimensional reduction (Balague et al.

P. Bauer
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E-mail: gabriel.anzer@herthabsc.de

1 Link et al. (2017) showed that it is even less with large differences between playing positions: central forwards (0:49 ± 0:43
min), central defenders (1:38 ± 1:09 min), central midfielders (1:27 ± 1:08 min) and, surprisingly, the longest for goalkeepers (1:38
± 0:58 min).

2 https://wheecorea.com/johan-cruyff-football-my-philosophy/25-johan-cruyff-quotes/, accessed 02/07/2021
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2013), (b) finding appropriate similarity metrics for related, but never identical trajectories of multiple entities
(Vilar et al. 2013), and (c) project multi-agents in a permutation-invariant space (Yeh et al. 2019).

The literature differentiates between tactics (decisions made during a match as a consequence of the dynamic
interaction in a match) and strategy (decisions made before the match) (Gréhaigne et al. 1999). However, these
concepts are often hard to distinguish (Rein et al. 2016). Coming from a more general understanding of team
formations (Wang et al. 2015), Budak et al. (2019) highlighted the problem of optimizing the team composition
(i.e. which players should be on the pitch) before the season, before the match and during the match stage as
a relevant problem in team sports. According to this definition, several approaches presented evidence-based
strategies to optimize this composition of players (Boon et al. 2003). However, this neglects the players actual
interaction on the pitch (i.e. tactics), what is in the focus of our investigation and will further be declared as
the (playing) formation.

One potential reason for this high-level consideration is the lack of available data quantifying what happens
on the pitch. For the longest time one could not objectively measure a team’s playing formation, since the only
available data describing football matches was so-called event data. Dating as far back as 1968 when Charles
Reep started manually collecting events such as shots or passes (Reep et al. 1968), this event data, which is
still being manually collected today, describes all ball actions and the players involved (Pappalardo et al. 2019a;
Stein et al. 2017). Although event data allowed for ground-breaking discoveries in football tactics (Xu 2021;
Pantzalis et al. 2020; Decroos et al. 2019; Danisik et al. 2018; Decroos et al. 2018; Pappalardo et al. 2019b;
Cintia et al. 2015; Haaren et al. 2013), it does not include any information about the positioning of all other
players. Now, with recent developments in computer vision technologies (Thinh et al. 2019; Baysal et al. 2016;
Teoldo et al. 2009) it has become possible to capture exactly that: optical tracking systems are able to record
centimeter-accurate positions of all players at every moment of a match (hereafter referred to as positional or
tracking data). This development unlocked huge potentials for professional football (Anzer et al. 2022; Anzer
et al. 2021a; Araújo et al. 2021; Wang et al. 2020; Goes et al. 2020a; Andrienko et al. 2019; Rein et al. 2016;
Herold et al. 2019).

The first approaches in football analysed formations assuming that teams play with a fixed formation across
the whole match, describing them simply as playing with a 4-4-2 (4 defenders, 4 midfielders and 2 forwards), 5-3-
2, 4-3-3, or one of approximately ten other formations that are commonly referenced (Wilson 2009). Differences
in physical requirements for similar player-roles in different formation (e.g. a central defender in a 4-4-2 versus a
5-4-1) were analysed (Vilamitjana et al. 2021; Tierney et al. 2016; Carling 2011; Bradley et al. 2011). However,
breaking a team’s formation down to three digits in a complex sport like football is a gross over-simplification
(Müller-Budack et al. 2019).

Driven by the increasing availability of tracking data, analysing team formations has been a research issue
in several sports (Gudmundsson et al. 2017b). Initiated by a pioneering work in 1999 (Intille et al. 1999), unique
formations were derived at the moment a play starts using positional data in American football (Atmosukarto
et al. 2013). Hochstedler et al. (2017) build on the static formation detection in American football by classifying
the routes of chosen player during the plays. In basketball, event data has been used to investigate established
player roles (Bianchi et al. 2017). Lucey et al. (2013) published a quantitative analyses of team formations in
field-hockey using tracking data, which was transferred to football (Wei et al. 2013) and incrementally extended
Bialkowski et al. (2014a), Bialkowski et al. (2015), and Bialkowski et al. (2016). They describe formations as
a "a coarse spatial structure which the players maintain over the course of the match" and which assigns each
player at every time of the match a unique role. Bialkowski et al. (2015) further define a role as a players
position relative to the other roles. They describe a role-identification methodology for measuring formations,
iteratively refining estimates of the average spatial positions (and deviations from those positions) of ten unique
outfield roles throughout a match. Applying a clustering algorithm on tracking data for a season of a 20-team
professional league, Bialkowski et al. (2014a) identified six unique formation types: 4-4-2, 3-4-3, 4-4-1-1 and
4-1-4-1 are all visible in their results. Variations in formations between game-states (i.e. offensive, defensive)
were first explored in Bialkowski et al. (2016). Using a more supervised approach, Müller-Budack et al. (2019).
annotated twelve typical formations (split between offense and defense) and addressed the formation problem as
a classification task. Narizuka et al. (2019) derived unique formations of 45 Japanese J1 league using a Delaunay
method combined with hierarchical clustering.

Ric et al. (2021) and Shaw et al. (2019) presented a data-driven technique for measuring and classifying team
formations as a function of game-state (offensive, defensive, transition), analysing the offensive and defensive
configurations of each team separately and dynamically detecting major tactical changes during the course of a
match. Defensive and offensive formations were measured separately by aggregating together consecutive periods
of possession of the ball for each team into two-minute windows of in-play data. Splitting up formations into
different game-states, i.e. excluding fuzzy transition situations, presented a major improvement of formation
analysis, however, they stated that further sub-game-states should be considered in future work to achieve even
more granularity (Ric et al. 2021).

While these pioneering studies have provided methods for measuring team formations and demonstrated
observations of the coherent structures formed by teams as they move around the field (and validated by football
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experts), they do not fully account for the changing objectives of a football team as a match evolves, influencing
team formations drastically (Andrienko et al. 2019; Gudmundsson et al. 2017b; Shaw et al. 2019; Lucey et al.
2013; Bialkowski et al. 2016). Several studies pointed out, that football consist of repetitive movement patterns,
that can be recognized by experts (Sampaio et al. 2012). We define a tactical pattern as a recurring, collective
behaviour conducted by a team or a sub-group of a team in a specific situation of a match, that can be clearly
identified by experts (Rein et al. 2016; Kempe et al. 2015; Wang et al. 2015; Grunz et al. 2012). Whereas the
detection of tactical patterns has been a relevant issue in basketball (Kempe et al. 2015; Chen et al. 2014; Perse
et al. 2006), handball (Pfeiffer et al. 2015), American football (Hochstedler et al. 2017; Stracuzzi et al. 2011;
Li et al. 2010; Siddiquie et al. 2009), and Australian rules football (Alexander et al. 2019), often only patterns
conducted by subgroups of players are analysed. The complexity of a football match requires so called team
tactics in which the whole team is involved (Rein et al. 2016). Some exemplary patterns like counterattacks
(Fassmeyer et al. 2021; Hobbs et al. 2018), ball regain strategies (Vogelbein et al. 2014), i.e. counterpressing
(Bauer et al. 2021) or general offensive strategies (Decroos et al. 2018; Kempe et al. 2014; Grunz et al. 2012;
Borrie et al. 2002; Montoliu et al. 2015; Fernando et al. 2015) have been addressed in literature and classified
as sub-categories of game-states (e.g. counterattacks and counterpressing as a subgroup of transitions in Bauer
et al. (2021) and Hobbs et al. (2018)). For such well established tactical patterns, which unavoidably occur
in every match, practitioners often use the term (tactical) phases of play3 (although no scientific definition
established) or (tactical) game-phases (Lucey et al. 2014).

The consequence of this is that the results are not observations of a single distinct formation of a team,
but a mixture (or ‘superposition’) of the different formations used in different phases of play (Shaw et al. 2019;
Müller-Budack et al. 2019). This paper resolves this problem by using a convolution neural network (CNN) to
classify a football match over time into distinct phases of play, before measuring the formations used by either
team in each distinct phase. There are therefore two parts to our approach:

(1) A phases of play detection CNN, with architecture specifically designed for the purpose, was trained using
labeled tracking data from 97 matches in the German Bundesliga based on phases of play classifications
provided by professional analysts. Our classification scheme is described in Section 3.

(2) Within each match, periods of play classified to the same phases of play (from the perspective of one team)
are then aggregated to obtain precise measurements of the formations used. This is described in Section 4.

We apply the phases of play classifier and formation measurement tools to tracking data obtained for 2, 142
matches in the German Bundesliga over seven seasons, identifying the unique formations used in each phase of
play across our sample. This combination of a phase of play detection and formation detection fully automates
the process of identifying the distinct formation configurations used by teams during a game, revealing the
specific instructions that managers gave their team. This research was conducted in close collaboration with
professional match analysts from German Bundesliga clubs and the German national teams, who have provided
human validation of our methodology and results. This project therefore combines machine learning and human
experience aiming to obtain results that are insightful, meaningful and of practical use to coaches, managers
and scouts.

As a side-product of a practical relevant process automatization for match analysis departments, we outline
two clear use-cases of our work in Sec. 5. We are the first to quantify the strengths and weaknesses of a specific
formation when pitted against another, providing the foundation for evidence-based advice for managers seeking
the most effective counter to an opponent’s strategy during specific phases of the game (Sec. 5.1). Second, we
assess the tactical preferences of individual managers, highlighting how our tools can be used to find managers
that would provide continuity to a team’s existing playing style (Sec. 5.2). Style-matching is a crucial element
of managerial recruitment, helping to prevent a large turnover of players as a manager seeks to impose a new
playing style on a new team.

2 Positional Data

The German Bundesliga collects consistent positional data on a league-wide level, making this data available
to every team. Positional data, often also referred to as tracking or movement data (Stein et al. 2017), contains
measurements of the positions of all players, referees and the ball, sampled at a frequency of 25 Hz. These data
are gathered by an optical tracking system that captures high resolution video footage from different camera
perspectives.

In this paper, we make use of positional data from seven seasons of the German Bundesliga, from 2013/2014
until 2019/2020: a total of 2,142 matches and nearly half a billion frames are acquired by Chryronhego’s
TRACAB system.4 Validating the quality of such tracking data presents somehow an ill-posed problem due to

3 An exemplary explanation of the definition can be found here: https://www.statsperform.com/resource/phases-of-play-a
n-introduction/.

4 https://chyronhego.com/wp-content/uploads/2019/01/TRACAB-PI-sheet.pdf (accessed 02/05/2021).
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missing ground truth positions. Even though, several studies evaluated the accuracy of the underlying data used
in this study (Redwood-Brown et al. 2012; Linke et al. 2018; Linke et al. 2020; Taberner et al. 2020), and found
an average diversion of less then 10 cm for player positioning compared to an accurate measurement system.
Pettersen et al. (2014) presents a publicly available set of positional data, which can be used for reproduction.5

3 Phases of Play Classification

3.1 Defining Phases of Play

The primary goal in football is to score more goals than the respective opponent. Consequently, the two major
objectives are scoring goals and preventing the opponent from doing so (Kempe et al. 2014). However, given
specific situations those goals are often only implicitly followed, while sub-tasks (e.g. (re)gaining possession of
the ball), are predominant in certain situations. The concept of phases of play derives from the idea that any
moment of a match can be categorized based on the immediate intentions of each team, e.g. in defense, teams
always have to balance between the two most relevant objectives of regaining the ball (preferably in a good
position to perform an attack) and purely prevent the opponent from scoring. At the simplest level, a match
can be divided into the phases of offense and defense for each team (António et al. 2014), i.e., periods in and
out of possession of the ball. At a more granular level, professional analysts involved in our project classified the
progressive stages of attacking and defense into distinct phases.6 Fig. 1 provides an example of the phases of
play classification scheme developed by German Bundesliga analysts (see Acknowledgements). In this scheme,
open-play during a match revolves between periods of offense, transition to defense, defense and transition to
offense, with set-pieces providing a separate category (which could also be broken further down into offensive
and defensive set-pieces as well as different categories like corner kicks, throw-ins, freekicks, etc.).

Offensive play is divided into two phases: build-up, where the objective is to breach the opponent’s first
defensive line, and attacking-play, where the first line of defenders has been outplayed and the main objective is
to create a goal-scoring opportunity. In defense, professional analysts differentiate between aggressive attempts
to reclaim possession near the opponent’s goal (high-block), a default defensive stance as the opponent progresses
the ball up the field (midfield-block or mid-block) and a very compact defensive stance near to a team’s own
goal, where the sole objective is to prevent the opponent from scoring (low-block). These defensive phases were
also explored in Anzer et al. (2021b) and Power et al. (2017).

Fig. 1: Overview of tactical phases of play considered.

Fig. 2 shows the phases of play break-down of a two-minute sequence of play during the Nations League
match between the German men’s national team and Spain in September 2020. The central plot shows the
distance between the German team centroid (the average position of the outfield players) and their own goal
from the 36th to 38th minutes of the game. The highlighted regions indicate the phases of play classifications,

5 Other (non-scientific) open-source positional data sets can be accessed from Skillcorner (https://github.com/SkillCorner/o
pendata) or Metrica sports (https://github.com/metrica-sports/sample-data).

6 See also: https://www.statsperform.com/resource/phases-of-play-an-introduction/.
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from the perspective of the German team, as determined by professional German match analysts. Freeze frames
from the footage are shown at four different instants.

The passage of play starts with a Spanish goalkick. Germany confronted this situation by attempting to force
a turnover near to the Spanish goal with a high-block. Over the first 30 seconds of play, the Spanish team played
through the high-block, forcing Germany to retreat, first into a mid-block and then to a low-block to defend
their own goal. Germany regained possession after a shot saved by Manuel Neuer (Germany’s goalkeeper) and
immediately initiated a build-up phase of possession. A long pass towards Leroy Sané on the right side of the
field briefly brought Germany into the attacking-play phase. However, Spain rapidly won the ball back, after
which Germany transitioned into a defensive mid-block and then a low-block as Spain advanced again.

Fig. 2: Team behaviour per phase of play by the reference of Germany against Spain (3rd of September 2020, venue: Stuttgart,
result: 1:1). The highlighted areas (red) in the video-footage mark the current ball action.

Match analysts spend a substantial proportion of their time manually breaking down and classifying matches
into tactical phases by watching video footage. There are very few methods published in the literature that
attempt to automate this process. Those that do focus on finding a single specific transition phases, such as
counterattacking (Fassmeyer et al. 2021; Decroos et al. 2018; Hobbs et al. 2018) or counterpressing (Bauer et al.
2021), but none attempt to classifying entire games. We now describe our methodology for achieving this.

3.2 Automated detection of Phases of Play

The phases of play definitions shown in Fig. 1 were established in collaboration with professional match analysts
from Bundesliga teams (see Acknowledgements). These definitions were then adopted by professional match
analysts to annotate 97 Bundesliga matches from the 2018/2019 season. Using the expert-labelled matches as
a training set, we explored two different machine learning approaches for automated classification of phases of
play using optical tracking data.
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Table 1: Rules for baseline model formation detection.

Phase of Play Rule
Offensive The first 6 seconds after a team gains ball possession are classified as transition to offense. The

remaining time during a ball possession are classified as the offensive phase.
Build-up Any moment during the offensive phase, when the ball is within its own third or the mid third

of the pitch is classified as build-up.
Attacking-play Any moment during the offensive phase, when the ball is within the opponents third is classified

as attacking-play.
Defensive The first 6 seconds after a team looses ball possession are classified as transition to defense.

The remaining time during a ball possession are classified as the defensive phase.
Low-Block Any moment during the defensive phase, when the defending team’s center (of the outfield

players) is at most 20 meters from its own goal-line, is classified as low-block.
Mid-block Any moment during the defensive phase, when the defending team’s center (of the outfield

players) is between 20 meters and 60 meters from its own goal-line, is classified as mid-block.
High-block Any moment during the defensive phase, when the defending team’s center (of the outfield

players) is at further than 60 meters from its own goal-line, is classified as high-block.

Table 2: Outcome of the phases of play detection CNN.

Tactical Phase of Play Low-block Mid-block High-block Build-up Attacking-play
Labeled phases 1 h 57min 23 h 30min 1 h 53min 27 h 37min 4 h 53min

Average duration 9.1 s 19.0 s 13.3 s 18.6 s 8.1 s
F1-score 0.37 0.80 0.29 0.83 0.54

Baseline model F1-score 0.18 0.75 0.26 0.76 0.39
Inter-labeller reliability (avg. F1-score) 0.38 0.78 0.24 0.79 0.45

The first approach is a rule-based baseline model, as described in Table 1; the results of the prediction of
the rule-based approach (compared to the inter-labeller accordance) are shown in Table 2.

The second approach makes use of convolutional neural networks (CNN), which enables us to model spatio-
temporal football data in a high dimensional, permutation-invariant space (see also Dick et al. (2019), Zheng
et al. (2016), and Wang et al. (2016)), using the raw positional data as input instead of requiring a costly step
of feature engineering (as conducted in Bauer et al. (2021) to detect counterpressing as another example of a
tactical pattern). For the CNN’s the positional data is mapped to 2-D images. Further details regarding the
network architecture can be found in the Appendix A.

On a frame-by-frame level, the CNN predicts the phases of play in our test set with a weighted average F1

score of 0.76, which is basically limited by the pairwise inter-labeller reliability of 85% (weighted F1-score 0.72)
and exceeds the accuracy of the baseline model (0.69). On further examination, we found that the mis-classified
frames mainly occurred near the start and end points of each phase of play.

Table 2 shows some basic statistics for the training data, including the F1-score—the harmonic mean of
recall and precision (see also Goutte et al. (2005))—for each phase of play. By taking both false positives and
false negatives into consideration, the F1-score (calculated for each class individually) presents a very stable
evaluation metric for our purpose. Mid-block and build-up are clearly the dominant phases, making up 39%
and 47% of the phases shown in Table 2. They are also the phases with the longest duration, lasting an average
of 19.0 seconds (mid-block) and 18.6 seconds (build-up). As the mid-block is the standard opponent response
to the build-up phase, it is not surprising that the average durations are similar in length. These phases also
have the highest classification accuracy for our CNN, with both having F1-scores exceeding 0.8. The next most
regular phase is attacking-play, making up 7% of the training data. Low-block (3%) and high-block (3%) are
the least frequently occurring phases.

The trained model was applied on seven full seasons of German Bundesliga (2013/2014-2019/2020). Much
of the following analysis focuses on the two most frequent phases: build-up and mid-block.

4 Formation Detection

4.1 Phase-dependent formations

Although positional data has been used in recent literature to quantify team-formations (Shaw et al. 2019;
Müller-Budack et al. 2019; Bialkowski et al. 2016; Bialkowski et al. 2014b; Bialkowski et al. 2015; Wei et al.
2013), they aggregate player positions over the entire match ignoring tactical changes during the match. In the
following we motivate the relevance of a more granular contemplation.

Fig. 3 shows the different formations employed across each of the five phases of play for one team during a
Bundesliga match.The dots indicate the average position of each player in the formation; the ellipses provide
an estimate of how far players tend to move from their average positions (the team is playing from left to
right), visualized through their 80% confidence region. The lower three images show the formations in the three
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defensive phases: low-block (left), mid-block (center) and high-block (right); the top images show the formation
in the two offensive phases: build-up (left) and offense (right).

The figure clearly indicates that team formations do not only depend on which team is in possession of the
ball, it is also heavily influenced by the tactical patterns teams are applying in different situations on the pitch,
e.g. whether the team is currently building up in their own half or attacking in the last third of the pitch. Also,
in defensive phases of play, Fig 3 (lower row) shows significant differences depending on the teams defending
strategy (high-/mid-/low-block).

Fig. 3: Average player positions of a team per tactical phase of play during one match. The ellipses provide an estimate of how far
the player would tend to move from their average position during each phase of play. The considered team plays from left to right.
Player’s positions are collected by optical tracking systems at 25 Hz (positional data).

4.2 Measuring Formation in Distinct Phases of Play

A major objective of this work is to identify the distinct formations used by teams during different phases of play
during their matches. We focus specifically on the three defensive phases (high-block, mid-block and low-block)
and two offensive phases (build-up and attacking-play) shown in Fig. 1. Transitions and set-pieces are ignored:
by definition, teams do not have a clear spatial structure during transitions, while positioning during set-pieces
are extremely dependent on the position of the ball (Casal et al. 2015). Furthermore, as it takes some time for
a team to change from one formation to another—for example, they cannot instantly shift from a high-block to
a mid-block—we ignore the first three seconds of any continuous sequence of play that was classified to a single
phase of play; if the duration of the entire sequence is less than three seconds, we discard it from our sample.
In our case, the range of observations encompasses all frames classified to the same phase of play. At least 60
seconds of (aggregated) data are required to obtain a precise measure of a formation: if the total amount of
time spent by a team in any given phase does not meet this criterium, we do not measure a formation for that
phase.

Our method for measuring formations proceeds as follows. For each team, we aggregate together all the
tracking data frames classified to a particular phase during the match and use them to measure the formation
of the team in that phase. This is achieved using the methodology of Shaw et al. (2019), who introduced a
geometric approach to measuring formations, calculating the vectors between each pair of teammates at a given
instant during a match and averaging these over a range of observations (frames) to gain a clear measure of
the team formation: each player’s position is calculated relative to the position of his nearest teammate. This
process starts with the player in the centre of the team (specifically, the player with the lowest average distance
to their third-nearest neighbour), stepping from player to player until the entire team formation is mapped out.
This method is founded on the intuition that players orient themselves relative to their nearest teammates to
retain the relative positioning required by the team’s formation.

A coach may, of course, make a major tactical change during a match, changing their team’s formations
across all phases of play. To avoid mixing two different formation strategies within a match, we search for major
tactical changes in formation by looking at each player’s average position relative to their teammates over a
rolling time window. If the relative positions change for more then ten meters (based on a three minute rolling
average), we start a new set of formation observations; more details are given in appendix B. At least one major
change in formation of either team is found in 43% of matches—taking this factor into consideration presents
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Table 3: Included formation observations from seven years of the German Bundesliga (2013/2014 until 2018/2019)

Tactical Phase Low-block Mid-block High-block Build-up Attacking-play
Formation Observations 1,212 5,200 638 4,867 3,164

a major improvement compared to prior work. In these games there are therefore two (or more) formation
measures for each phase of play.

From the 2, 142 matches, we exclude 345 matches that did not end with 22 players on the pitch (e.g. due to
injuries or expulsions) resulting in a final sample of 1, 803 matches. The final number of formation observations
in each phase of play are given in Table 3. As discussed above, there was not always sufficient data to measure
a formation in all phases of play during a match for both teams. Therefore, there are fewer observations in the
least frequent phases, the low-block and high-block (furthermore, not all teams employ a high-block for tactical
reasons). There are observations of the mid-block, build-up and attacking-play for almost all teams in every
match in our sample (and, on occasion, more if a team made a major tactical change during the match).

4.3 Formation Classification

To study how a specific team plays over multiple matches, we must reduce the size of our formation dataset
by identifying the unique formations within each phase of play over our entire sample of matches and classi-
fying individual observations into these unique formations. The pioneering football coach, Marcelo Bielsa, has
previously claimed that there are not more than ten formations7 in common use in professional football—our
methods enable us to explore this claim directly. Classifying formations allows us to quantify the strengths and
weaknesses of a given formation when pitted against another (Section 5.1), and study the preferred formations
used by individual Bundesliga coaches (Section 5.2).

To identify unique formation types, we apply agglomerative hierarchical clustering to the formation ob-
servations within each phase of play, using the Wasserstein metric to quantify formation similarity and the
Ward metric (Ward et al. 1963) as the linkage criterion, as described in Shaw et al. (2019). The square of the
Wasserstein distance is calculated according Olkin et al. (1982):
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2 = km1 �m2k2
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whereby µi = N(mi, Ci) are bivariate normal distributions, m is the mean and Ci is the covariance matrix. To
solve the player-assignment problem of two formations the Hungarian algorithm is used (Kuhn 1955). Hierar-
chical clustering does not automatically identify the number of unique formations. Therefore, for each phase of
play, we varied the number of clusters from 3 to 15, creating a visual representation of the aggregated formations
within each cluster before consulting with professional match analysts to determine the true number of unique
formations within each phase of play. The final number of clusters was determined during several discussions
with expert video analysts, using quantitative metrics (i.e. Silhouette values) to achieve an alignment among
the involved experts. For different number of clusters, we plotted the cluster centroid formations (focusing on
regions with good Silhouette values). For clusters of interest, we inspected the full set of detected formations
to the analysts. Based on these observations, taking the Silhouette values into consideration, we decided on the
number of clusters for each playing phase liaising with the experts. Once the final number of unique formations
per phases of play was determined, the match analysts named each formation with a typical declaration (e.g.
4-4-2).

Fig. 4 shows the unique formations identified in the most frequently observed defensive phases of play: the
midfield-block. Results for all the most-frequently observed in-possession phases of play, build-up, are provided
in Appendix C. All the formations shown were familiar to the match analysts that inspected them. Indeed,
the analyst’s input was important in distinguishing the 4-2-3-1 formation from the 4-4-2: while the two appear
similar in the figure, inspection of the individual observations that comprised each cluster indicated that the
outside midfielders in the 4-2-3-1 (top-left plot) formed part of a triplet of attacking midfielders rather than two
conventional wingers, as in the case of the 4-4-2 (top-center).

Formations #1�#4 in Fig. 4 are all variants of a player configuration that uses four defenders as a foundation
and are distinguished by differences in the structure of the midfield and attacking players. Formation #3 sacrifices
a forward for a central defensive midfielder, while formation #4 is a narrow ‘Christmas tree’ formation8 (see

7 Marco Bielsa’s explanation of those ten formations can be found https://www.youtube.com/watch?v=qXt3rKnfbz8 (accessed
12/06/2020).

8 The term Christmas tree formation—associated with a 4-3-2-1—has established in the football community (see https://thef
alse9.com/2017/08/football-tactics-beginners-christmas-tree-formation.html, accessed 12/12/2020).



Putting Team Formations in Association Football into Context 9

Fig. 4: Outcome of the clustering for mid-block including the number of observations (obs.) of our sample.

also: Janetzko et al. (2015)) with three defensive midfielders, two attacking midfielders and a lone forward. The
remaining two formations show variants of player configurations with five defensive players.

5 Practical Applications

The primary aim of this paper is to describe our methodology for automating the process of formation detection
per phase of play. In this section we highlight two practical applications of our methods that are enabled by our
approach.

5.1 Formation versus Formation

A very common question in tactical discussion is: what is the most effective way to counter a particular formation
(Wilson 2009)? This is a challenging question as it requires a large sample of formation observations as well
as a contextualised formation detection per game-phase to attempt a quantitative answer. With over 13, 081
formation observations measured over a sample of 1, 803 Bundesliga games, we have a sufficient sample size to
attempt a comparison of the relative performance of different formation options.

The most frequently observed offensive phase of play is the build-up; the most frequently observed formation
in the build-up phase is the 2-4-3-1 (2 central defenders, 4 midfielders, 3 attacking midfielders and one forward),
hereafter referred to as a ‘two-defender’ build-up. As the most frequently observed defensive phase of play is
the mid-block, we attempt to quantify the performance of different mid-block formations in our data set when
defending against a team using a two-defender build-up. Since goals are rare events in football9 and not all shots
have an equal chances to score a goal, the concept of expected goals (xG) is often used as a more granular proxy
for the offensive contribution of a team (Anzer et al. 2021a).10 XG values are only taken into consideration in
periods of the match, where no formation change (see Appendix B) was detected. For such periods, xG values
created from all phases of play were taken into consideration, since our experts claim that the formation in the
basic phases of play (mid-block and build-up) has a latent influence on almost all situations.

The top row of Fig. 5 shows the strongest and weakest mid-block options. A 4-2-3-1 concedes, on average,
1.32 (SE: ±0.03; SD: ±0.81) xG11 per match against the two-defender build-up, while the 5-2-3 (a five-defender
formation) concedes 1.59±0.06 xG per match. The unconditional scoring rate of the two-defender build-up
formation is 1.41±0.02 xG per match; the 4-2-3-1 therefore appears to significantly reduce the attacking threat
of the two-defender build-up, while the 5-2-3 is the least effective counter-formation. The difference between the
two amounts to 0.27 xG per game, or nearly nine goals over a 34-game season.

9 For the given data set of seven seasons German Bundesliga, 3.1 goals were scored in average per match.
10 The xG value of a shot denotes the a priori probability of a shot being converted to a goal, hence its value ranges from [0, 1].

The probability is estimated using both tracking and event data and applying a machine learning model, that was trained on more
than 100.000 shots. A detailed description of the xG-model used can be found in Anzer et al. (2021a).
11 Errors quoted are the standard error on the mean.
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An ongoing discussion in the football tactics community is whether a build-up with two or three central
defenders is more effective (Wilson 2009).12 In the lower row of Fig. 5 we repeat the exercise for the 3-1-4-2
build-up formation, which utilizes three, rather than two, players at the back. The base scoring rate of the
three-defender build-up is 1.36±0.03 xG per game, slightly below the two-defender build-up formation. This
drops to just 1.17±0.08 xG per game when facing a 4-2-3-1 mid-block formation (lower-left)—the most effective
counter-formation—and increases to 1.45±0.08 xG per game against a 4-1-4-1 (lower-right, the weakest mid-
block formation against a 3-1-4-2). The conclusion is that the three-defender build-up formation appears to
be more easily countered than the two-defender formation while showing less of an up-side benefit against
other formations. Building up with two defenders is significantly more popular amongst Bundesliga teams than
building with three defenders; our results indicate that the latter does indeed appear to be a weaker option.

Fig. 5: Effectiveness of defensive formations (blue) against two (upper) and three (lower) player build-up (red).

Of course, even with a sample-size 1,803 matches, there are several potentially confounding factors, most
notable if there is a preference for stronger (or weaker) teams to use a particular formation, although an initial
inspection showed that every mid-block formation was used by at least 21 distinct teams once or more across
the seven seasons. Future work (as described in the discussion) should investigate these confounding factors in
significantly more detail.

5.2 Scouting the Tactical Preferences of Coaches

A major task that clubs must answer when seeking to fill a managerial vacancy is to ascertain the tactical
preferences of the candidates and determine whether each represents continuity in the team’s existing tactical
style or a significant departure. While some clubs may specifically seek a completely new style of play, there
are considerable risks associated with this. Most notably, a new tactical system will require different players,
creating turnover in the playing style as the new manager implements their preferred tactical systems and sells
the players that they do not require. Our methods allow a characterization of the types of formations that
coaches prefer to use, which is often a clear indication of their overall strategic preferences.

12 An exemplary blog-article can be found here https://thefalsefullback.de/2019/12/23/the-advantages-of-the-build-up-
with-a-back-three/.
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Individual teams demonstrate a preference for certain formations. Fig. 6 compares the frequency with which
a selection of Bundesliga clubs, have utilized different formation options in the mid-block phase (radar-charts).
Whereas Eintracht Frankfurt tends to play in a modern 5-3-2, Bayern Munich prefers the (somewhat similar)
4-2-3-1 or 4-1-4-1 systems. Another difference is that Bayern’s formation in the build-up phase is rather tradi-
tional, utilizing two central defenders, whereas Eintracht Frankfurt more regularly builds up with three central
defenders, which aligns with their significantly preferred 5-3-2 mid-block formation.

Fig. 6: Formations used by selected German Bundesliga clubs in the mid-block phase.

This visualization shows how different teams’ preferences can be over a long period of seven seasons. These
formation-profiles may often be determined by the key players of each team, some of whom may be particularly
suited to one formation type. Bayern Munich’s success in the past few seasons has been greatly influenced
by the central axis consisting of Jérôme Boateng, Robert Lewandowski and individually strong wingers like
Frank Ribéry, Arjen Robben, Kingsley Coman or Serge Gnabry. Our match analysts agreed the formations
most frequently utilized by Bayern’s coaches over the previous seven years—a 4-2-3-1 or a 4-1-4-1—are the most
suitable formations for the players that were at the club.

Fig. 7 demonstrates the tactical preferences of four Bayern-coaches in the mid-block phase over this period.
Guardiola, Heynckes and Flick all maintained a similar strategic approach, and all three had successful tenures.
Only Niko Kovac is generally perceived to have been a failure. One reason, often referenced in the media, is that
he was unwilling to part with the 5-3-2 build-up formation—with which he experienced success at his previous
club, Eintracht Frankfurt—instead of adapting his style of play to exploit the full potential of the players at
Bayern. The appointment of Niko Kovac did not represent continuity in Bayern’s playing style.

A valuable use-case of our methods is in the search for future managers with a similar playing style (at
least in terms of formations) to the existing approach at the hiring club. Fig. 8 shows a short-list of coaches
that could be touted as potential successors of Hansi Flick—head coach at FC Bayern from 2019 until 2021. By
comparing the coaches’ formation profiles (black)13 with that of FC Bayern (red) a similarity metric (top left
in Fig. 8) can be calculated. Although Julian Nagelsmann (currently head coach at FC Bayern Munich) is often
considered to be one of the biggest German coaching talents, his preferred formations diverge significantly from
Bayern’s existing style, resulting in a similarity score of only 44%. Jürgen Klopp and Thomas Tuchel represent
intermediate fits (72% and 73%), but Ralph Hasenhüttel, currently head coach of FC Southampton, is the best
fit for FC Bayern in our managerial database, with a similarity score of 81%. Again, the choice of a coach relies
on various factors, not solely on formations played in one or two phases of play (as displayed here). However,
our approach provides evidence for one key component, which can drastically help club’s management to take
informed decisions.

13 Note that only data from the respective coaches’ time in the German Bundesliga (2013/2014-2018/2019) are used for this
analysis.



12 G. Anzer, P. Bauer, L. Shaw

Fig. 7: FC Bayern Munich coaches by their formation (black) in comparison to the overall Bayern profile (red). The data from all
coaches and FC Bayern are aggregated over the seasons 2013/2014 to 2019/2020. The trophies (Bundesliga championship, DFB-Cup
and UEFA Champions-League) that each coach earned at his time at FC Bayern are displayed.

Fig. 8: Formation similarity. Who is the best fit for FC Bayern Munich? Top left the similarity of each coach compared to FC
Bayern is displayed.

6 Discussion

The availability of accurate and league-wide tracking data has motivated several research investigations into
team formations, the basis of team-tactics in football. The main objective of this paper was to detect phases of
play as a preliminary for contextualized formation analysis. Previous work has attempted to detect only single
specific phases of play, such as counterattacking (Fassmeyer et al. 2021; Hobbs et al. 2018) or counterpressing
(Bauer et al. 2021). For the first time, we present a method for classifying games into five distinct phases of
play. While the phases of plays used in our approach are well established among football experts, their exact
definitions may vary depending on a club’s playing philosophy. The definitions we used in the labeling process
were consolidated among professional match analysts of German Bundesliga clubs. In future work, a proper
qualitative study, that formalizes and extends the framework presented in Fig. 3 should be conducted in order
to have a proper scientific baseline for further investigations on phases of play—a well established theory in
professional football. In this context, our work shows, that (a) phases of play can be defined and identified by
experts with an appropriate accordance, and (b) that these phases of play influence the collective behavior of
teams (i.e. their formations) significantly.

We used this time-domain classification to measure team formations in distinct phases of play, achieving
a spatial classification. Phases of play measurement and classification of formations represents a major step
towards decrypting the complexities of strategy in football and provide a new insight into the tactical preferences
of individual managers and coaches. While the methodology for the formation classification is mostly similar
to the one introduced in Shaw et al. (2019), a crucial difference is not only that five different phases of play
are considered separately, but also how closely subject experts were involved throughout the whole project.
Selecting the final number of clusters purely on a statistical measure, would not lead to the same results
as when taking expert-knowledge into consideration as well. This interplay between data-science and domain
experts also turned out to be beneficial for the contextualisation of the clusters, as well as for the identification
of meaningful use-cases (see also Andrienko et al. (2019), Herold et al. (2019), Goes et al. (2020a), and Rein
et al. (2016)).

The benefit of our approach to practitioners is threefold: by automatically detecting phases of play of the next
opponent over an arbitrary number of their previous games we save the match analysis departments significant
amounts of time. An objective long-term analysis enables us to assess which formations are the most effective
counter to a particular reference formation, drastically supporting a coaches decision-making process of how to
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approach the next opponent. Last but not least, we show a unique use-case for club decision-makers on how
to quantify candidate coaches’ tactical style and identify those that represent continuity to the current playing
style of the club.

Besides these applications, the full potential of this approach is yet to be unlocked. Future studies could
analyse the interplay of different formations more thoroughly and control for confounding factors. On one hand,
quantitative tendencies should always be evaluated by qualitative analysis, i.e. by analysing video footage of
formation-pairings of interest to generate expert-based ad- and disadvantages when playing a specific formation
(against another). On the other hand, the most critical confounding factor (the strength of a team playing a
formation) should be modelled with a rating system of teams (see e.g., Baysal et al. (2016)) and used to validate
the hypothesis presented in Section 5.1 Additionally, when evaluating a coach’s tactical fingerprint, all phases
of play as well as other factors could be taken into consideration.
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Appendix

A Detecting Phases of Play with a CNN

A schematic visualization of the CNN-architecture is displayed in Fig. 9. The input images are of size 105x68

Fig. 9: Schematic architecture of the CNN predicting the phases of play.

pixels—corresponding to the typical dimensions of a football pitch in meters—and consist of up to nine layers
(e.g. home-team positions, away-team positions, ball) containing information from a half-second period of the
game. To feed time-related information to the CNN, player trajectories, weighted with a linearly decreasing
function of time, were added to each image. To differentiate home team, away team and the ball, each information
is imported as a separate layer. Additional layers contain smoothed speed values, which slightly improved the
accuracy of our prediction. Finally, the CNN predicts one out of 15 possible phases of play14 for each frame,
although in this work only the phases shown in Fig. 1 in white boxes are taken into consideration. We split the
labeled data into 75% training and 25% test data. On the training data we used a Bayesian hyper-parameter
optimization and a 5-fold cross-validation. The final model has a batch size of 32 and was trained over 10 epochs.
The imbalanced dispersion of the phases of play (see Table 2) was addressed by resampling and weighted inputs
for each batch. The best performing CNN yielding the highest F1-score on the test data consists of a base
model with three convolutional layers, one fully connected layer and one concatenation with one-dimensional
features. The additional features include for example a binary indicator whether the ball is in play or the game
is interrupted during the corresponding frame. Another feature, which is included in the positional data, is the
information which team is currently in possession of the ball. This base model is applied at 13 consecutive time
points (roughly half a second) and the outputs are combined using a 1-D convolution. It uses a drop-out of 50%
and a ReLu-activation function. To avoid noisy outcomes in the framewise prediction, the outcome is smoothed
afterwards by joining short sequences to its neighbouring sequences until each phase of play lasts at least one
second.

B Detecting Changes in Formation

As tactical changes in the team formation may occur at any point in the game, we need to identify the moment
when this may have happened. We use the following steps to approximate the moment when a change may
have occurred. Our approach is player specific; for example, if two wingers switch sides at half time, we want
to identify this as a change of formation. For simplicity we use the out of possession formations as a reference,
because they tend to be a bit more stable than while in possession. Therefore, we consider only the positional
data of a team (excluding the goalkeeper), while the ball is in play and the opposing team is in ball possession.

We define the current formation position of a player as his average centered position, i.e. his mean average
x and y coordinates relative to the team’s center (see also (Andrienko et al. 2017)), between the start of this
formation (e.g. the beginning of the match, or the latest identified formation change) and the current time, t.
His current formation position is then compared to his position during the last three minutes of eligible frames
up to time t. If the Euclidean distance between any player’s current formation position and his three-minute
rolling window position is greater than ten meters, we identify time t-minus-three minutes as the moment of
a formation change and start to compute the current team formations starting at this time. Both thresholds
were set by manually evaluating them on video footage with experts. Minor changes to these thresholds, do
not strongly affect the presented results. Substituted players are compared to the position of the players they
replaced. Using this algorithm over the past seven seasons of Bundesliga matches we identify on average 1.7
formation changes per match, which underpins the importance of this additional step to aggregating suitable
sequences in our clustering step.
14 These 15 phases of play contain further splits for the transition phases (e.g. counterattacking, counterpressing) and set-pieces.
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C Clustering for Build-up

Fig. 10 displays the clustering outcome of the second relevant phase—the build-up phase. As discussed in Section
5.1, a major decision that has to be made by a team is whether to build up with two central defenders (formations
#1, #2, #3, #4) or with three central defenders (formations #5 and #6).15 In Fig. 10, formation #1 displays a

Fig. 10: Outcome of the clustering for build-up including the number of observations (obs.) of our sample.

2-4-3-1 with two central defenders playing on the same line and the full-backs pushed into midfield. In formation
#4, one central midfielder clearly plays a more offensive role which allows the strikers not to participate in the
build-up and rather plays a more offensive part, which was declared as a 2-4-4 by our experts. The formations
shown in #2 (2-3-2-3) and #3 (2-1-4-3) also display similar patterns. The major difference is that the left and
right striker tend to support the wing-back moving forward in #2, whereas in formation #3 all three strikers
focus on playing in the center and leave the wings completely to the wing-backs. Formations #5 (3-4-3) and
#6 (3-1-4-2) shows what our experts expected: building up with three central defenders provides a distinct
flexibility during the build-up phase. A typical phenomenon when building up with three defenders is that the
wing-backs have to conquer the wing-territories on their own, which should lead to a superiority in the center
in both cases.

D Implementation Details

While the newly available positional data allows for novel insights, the sheer size poses a significant compu-
tational challenge for non-IT-focused organisations such as football clubs or federations. All implementations
were made in Python. We implemented the CNN (Section A) using Keras and Tensorflow and trained it on
a local GPU-Cluster. Additionally, we used sklearn to perform the training test data split. In order to enable
rapid feedback loops with match analysts, the tracking data is locally stored in Parquet files , compressing them
from 500mb to 20mb per match. This step not only saves storage in the analytics environment but also enables
us to read in an entire match in less than a second. For the computations necessary in this paper, the code is
parallelized whenever possible to speed up the analysis even further.

15 Note that for the formation versus formation contemplation in Section 5.1, the hierarchical clustering is further aggregated to
n=2, so that only three-defender versus two defender build-up is compared.
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