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Abstract
This thesis tackles multiple aspects of intelligent systems and especially researches their
interconnection through their vision system. We will specifically look into intrinsic im-
ages, the decomposition of images into their intrinsic layers such as reflectance and shad-
ing. This is an essential component to enable a robust intelligent system which is con-
tinuously running a loop of perceiving and acting. First, we examine the part of acting,
which is studied in the field of robotics and there we consider a practical application,
namely the decentralized exploration of multiple locations by a connected network of
robots. This is a relevant task for example in a disaster scenario like an earthquake to
search for survivors. We will see how dynamic priority scaling of traveling forces en-
ables the simultaneous and therefore efficient exploration without losing connectivity
and how effective visiting of all targets can be guaranteed. In extensive simulations and
experiments with real robots, we show its applicability.

Afterwards we continue with the part on perceiving the environment, which is stud-
ied in computer vision. We will compile the necessary prelimiaries for instance in ma-
chine learning to then be able to understand the later described Convolutional Neural
Network (CNN) approach with which we will predict intrinsic images in a generative
manner. The actual separation is mathematically ill-posed and data are hard to come
by, so we first tackle it by learning from existing sparse human relative reflectance judg-
ments and present a direct CNN prediction model exposing fast inference. Continuing
on, we look at a novel way of introducing the prior knowledge of sparse reflectance as
edge-aware filtering to improve on its results.

Another big goal of intelligent systems is Augmented Reality (AR). To enable telep-
resence when conferencing with another participant in AR, one needs to project the
sender’s face into the receiver’s augmented reality glasses and match their scene lighting.
This requires an understanding of arbitrarily (re-)lighting human faces. The separation
into reflectance and shading under the Lambertian assumption alone is not enough in
that case, because it leads to flat looking faces under strong directional light since all the
specularities and cast shadows are missing. Realizing this, we create a novel relighting
dataset which provides additional intrinsic layers that we then later on learn to predict.
We describe a structured approach that generates relit portraits through a mix of ren-
dering which utilizes the predicted intrinsic layers of albedo and normals and additional
non-Lambertian ingredients. This approach proves to be beneficial over a completely
unstructured model or a merely rigid Lambertian rendering.
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Abstract

In summary, the overall goal of the thesis is to research intelligent systems and to
provide one more innovative piece in the puzzle towards general artificial intelligence.
Because one quickly realizes the importance of computer vision for this endeavor, and in
there specifically the need to understand the 3D world through their 2D projections into
images, we thoroughly investigate the field of intrinsic images in this thesis and improve
the intrinsic decomposition of arbitrary images to enable smarter intelligent systems. We
demonstrate the utilization of such a decomposition in the task of relighting, where the
intrinsic structure is shown to improve results.
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Kurzfassung
Diese Arbeit befasst sich mit mehreren Aspekten intelligenter Systeme und erforscht
vor allem deren Zusammenspiel durch das Bildverarbeitungssystem. Wir werden uns
speziell mit intrinsischen Bildern beschäftigen, also der Zerlegung von Bildern in ihre
intrinsischen Schichten wie Reflexionsgrad und Schattierung. Dies ist eine wesentliche
Komponente, um ein robustes intelligentes System zu ermöglichen, das kontinuierlich
eine Schleife aus Wahrnehmen und Handeln durchläuft. Zunächst betrachten wir den
Teil des Handelns, der im Bereich der Robotik untersucht wird und betrachten dort ei-
ne praktische Anwendung, nämlich die dezentrale Erkundung mehrerer Orte durch ein
verbundenes Roboter-Netzwerk. Dies ist eine relevante Aufgabe zum Beispiel in einem
Katastrophenszenario wie einem Erdbeben, um nach Überlebenden zu suchen. Wir wer-
den sehen, wie eine dynamische Skalierung der Regelungskräfte basierend auf Priori-
tätenrollen die gleichzeitige und damit effiziente Exploration ohne Verlust der Konnek-
tivität ermöglicht und wie das effektive Aufsuchen aller Ziele garantiert werden kann.
In umfangreichen Simulationen und Experimenten mit realen Robotern belegen wir die
Anwendbarkeit unserer Methode.

Anschließend fahren wir mit dem Teil zur Wahrnehmung der Umgebung fort, der
im Bereich Computer Vision untersucht wird. Wir erarbeiten die notwendigen Voraus-
setzungen im maschinellen Lernen, um dann den später beschriebenen Convolutional
Neural Network (CNN)-Ansatz verstehen zu können, mit dem wir auf generative Weise
intrinsische Bilder vorhersagen. Die eigentliche Trennung ist mathematisch nicht lösbar
und Referenzdaten sind schwer aufzunehmen. Wir gehen das Problem also zuerst an,
indem wir von bestehenden spärlichen menschlichen relativen Reflexionsurteilen lernen
und ein direktes CNN-Vorhersagemodell präsentieren, das schnelle Inferenz liefert. Im
weiteren Verlauf betrachten wir eine neuartige Möglichkeit, das Vorwissen der spärlichen
Veränderung des Reflexionsgrads als Filterungsoperation einzuführen, um die Ergebnis-
se der Prädiktion zu verbessern.

Ein weiteres großes Ziel von intelligenten Systemen ist die Umsetzbarkeit erwei-
terter Realität (“Augmented Reality”, AR). Um glaubhafte Telepräsenz in einer AR-
Telekonferenz mit anderen Teilnehmern zu ermöglichen, muss man das Gesicht des Sen-
ders in die AR-Brille des Empfängers projizieren und dessen Beleuchtung der Szene an-
passen. Dies erfordert ein Verständnis für die (Um-)Beleuchtung beliebiger menschlicher
Gesichter. Die Trennung in Reflexionsgrad und Schattierung unter der Lambert’schen
Annahme allein reicht in diesem Fall nicht aus, denn sie führt bei stark gerichtetem Licht
zu flach wirkenden Gesichtern, da alle Lichtspiegelungen und Schlagschatten fehlen. Um
dies zu lösen, erstellen wir einen neuen Datensatz, der zusätzliche intrinsische Schichten
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Kurzfassung

liefert, die wir dann später lernen vorherzusagen. Wir beschreiben einen strukturierten
Ansatz zur Umbeleuchtung von Porträts durch eine Mischung aus Rendern, das die vor-
hergesagten intrinsischen Schichten von Albedo und Normalen nutzt, und zusätzliche
nicht-Lambert’sche Bestandteile betrachtet. Dieser Ansatz erweist sich als vorteilhaft
gegenüber einem völlig unstrukturierten Modell oder einem rein starren Lambert’schen
Rendern.

Zusammenfassend lässt sich sagen, dass das übergeordnete Ziel dieser Arbeit darin
besteht, intelligente Systeme zu erforschen und ein weiteres innovatives Puzzlestück auf
dem Weg zur allgemeinen künstlichen Intelligenz zu liefern. Da man schnell erkennt, wie
wichtig Computer Vision für dieses Vorhaben ist, und dort speziell die Notwendigkeit,
die 3D-Welt durch ihre 2D-Projektionen in Bilder zu verstehen, untersuchen wir in dieser
Arbeit gründlich das Gebiet der intrinsischen Bilder und verbessern die intrinsische De-
komposition beliebiger Bilder, um intelligentere Systeme zu ermöglichen. Wir demons-
trieren die Verwendung einer solchen Dekomposition am Beispiel der Umbeleuchtung,
wo die intrinsische Struktur nachweislich die Ergebnisse maßgeblich verbessert.
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Chapter 1

Introduction
One of the big research goals in recent years is to create intelligent autonomous sys-
tems that interact with our world. In this thesis, two different aspects of such intelligent
systems are explored, robotics and computer vision.

1.1 Intelligent Systems
In engineering and computer science, a system describes a collection of connected el-
ements or components that are organized for a common purpose. This can either be
emobied, in the form of one or multiple robot(s), which involve mechanical parts as con-
nected elements, but just as well an immobile device like a computer, which also consists
of multiple connected logical circuits, and where the application running defines the ra-
tionale of its internal components. Grasping a definition of an intelligent system, on the
other hand, is much harder. To quote from the Journal of Intelligence:

Intelligence is what the intelligence test measures. Seriously

Van der Maas et al. [2014]

While it is likely that tests designed by humans to measure intelligence will mostly be
geared towards measuring human intelligence, one such test for artificial intelligence
could be the Turing test to decide whether machines can think, which by Alan Turing
himself was named the imitation game:

‘Can machines think?’ This should begin with definitions of the meaning of
the terms ‘machine’ and ‘think’ . . . Instead of attempting such a definition,
I shall replace the question by another, which is closely related to it and is
expressed in relatively unambiguous words. The new form of the problem
can be described in terms of a game which we call the ‘imitation game’. It is
played with three people, a man (A), a woman (B), and an interrogator (C)
who may be of either sex. The interrogator stays in a room apart from the
other two. The object of the game for the interrogator is to determine which
of the other two is the man and which is the woman. . . . We now ask the
question, ‘What will happen when a machine takes the part of A in this
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game?’ Will the interrogator decide wrongly as often when the game is
played like this as he does when the game is played between a man and a
woman? These questions replace our original, ‘Can machines think?’

Turing [1950]

So to avoid the hard task of defining artificial intelligence, we could compare it to human
intelligence, as Turing suggests. On the other hand, one might ask if

The question of whether machines can think is about as relevant as the ques-
tion of whether submarines can swim.

Dijkstra [1984]

Meaning the problem arises more with the exact interpretation of the words themselves
than providing an actual definition for them. Therefore, to answer what (artificial) in-
telligence is, we might want to look at why it is desirable in the first place. Potentially,
a vague description of the outcome of intelligence could actually be its most accurate
definition:

Intelligence tries to maximise future freedom of action and keep options
open.

Wissner-Gross and Freer [2013]

This is inspired by realizing that many computer programs we deem ‘intelligent’ made
actions to maximize future options and not to be trapped. In order to do so, the intelligent
system actively needs to pass through local minima in order to eventually find globally
better opportunities. Recently, this desire for maximizing entropy can for example be
seen in the progress of artificial intelligence in the game ‘Go’ [Silver et al., 2016, 2017,
2018].

Despite such breakthroughs, artificial general intelligence, the ability to perform any
task a human can (and potentially more), will likely continue to be hard to achieve for a
long time. Nonetheless, the research community, with this work included, tries to create
intelligent systems for specific tasks in order to step by step piece the puzzle together
and to arrive there at some point when building on previous work and therefore standing
on the shoulders of giants, considering

We see more and farther than our predecessors, not because we have keener
vision or greater height, but because we are lifted up and borne aloft on their
gigantic stature.

Bernard of Chartres, quoted in of Salisbury [1159]
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1.2 Motivation and structure of the thesis
Extending the two examples from before, in this thesis we will investigate intelligent sys-
tems in Robotics (Part I) and Computer Vision (Part II) and how they are interconnected
through their vision system.

While in Robotics, we try to perceive the world and act accordingly, in our Computer
Vision example of Relighting, we will construct novel views of exisiting portrait captures
under arbitrary lighting. In order to do so, an appropriate representation as intrinsic
layers is described in the interconnecting chapters examining how such a separation into
intrinsic layers can effectively and efficiently be done.

Robotics. We first look at multi robot systems, where the swarm behavior of the robots
decides about the intelligence of the system. Success of multi-robot systems is based
on their ability of parallelizing the execution of several small tasks composing a larger
complex mission. Therefore, we discuss the problem of planning trajectories of a team
of multiple mobile robots to visit a list of targets in sequence under the constraint of
continuous connectivity in order to not lose the potential for communication between
the robots in Chapter 2. This is for example relevant in a disaster scenario, to find sur-
vivors after an earthquake in a damaged house with the danger of a collapse. Continuous
connectivity is required because a global network might not be available (anymore) and
therefore a local network needs to be created through multi hops.

We will realize, that a robotic system needs to perceive the world through sensors,
amongst which a camera system gives strong clues, therefore we will continue to look
into the side of visual inference.

Computer Vision. The world can be perceived through a multitude of sensors, e.g.,
cameras, radar, ultrasound, pressure, proximity, heat, position/velocity/acceleration and
commonly a fusion of the measured information of several sensors is used in order to
solve the task at hand. After all, humans rely heavily on the vision system. Roughly
90% of our sensory information comes from vision, why half of the neural tissue is
devoted to vision and about two-thirds of the electrical activity of the brain is consumed
by vision when the eyes are open [Sells and Fixott, 1957]. Since this enables us humans
to efficiently navigate in and interact with the world quite well, it suggests to let robots
rely heavily on cameras, too. Therefore we will spent the second part of this thesis
exploring the vast field of computer vision, which aims to invert the lossy projection
of our 3D world into a 2D image thereof. Our specific focus will be the inference of
physical properties from images.

In Chapter 3, we will first discuss the preliminaries of computer vision, machine learn-
ing and intrinsic images to serve as a technically sound basis for the rest of the thesis.
After setting the tone, we will continue by developing a way to predict reflectance in a
completely data-driven way, no priors needed, which leads to a very fast intrinsic im-
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age decomposition by design in Chapter 4. We will then improve reflectance prediction
results by adding a novel way to introduce a well-known prior of piecewise constant
reflectance based on filtering in Chapter 5.

This gives us the knowledge to understand the second example for an intelligent sys-
tem, an augmented reality (AR) setup for relighting. In AR, we use artificial intelli-
gence to, e.g., properly place virtual objects into a scene spotted by a person wearing
AR glasses. In the case of a tele-conference in AR for example, a person’s portrait is
captured in one illumination and needs to be projected into the receiver’s scene, which
normally exhibits a different illumination. Therefore we need to be able to relight that
sender’s face to make the scene believable. In order to be equipped with the essential
data to train and evaluate our relighting model, we will first discuss how to capture the
necessary layers in Chapter 6. Afterwards, tackling the problem of relighting in Chap-
ter 7, we will demonstrate that modeling non-diffuse effects like specularities and cast
shadows is important to achieve a lively relighting result. We therefore realize that the
separation under the Lambertian assumption from the early chapters is not enough in a
fully constrained rendering pipeline. An otherwise purely learned generative process in
the form of an unstructured decoder makes its own errors, why we will therefore go for a
structured generative approach augmenting the constrained Lambertian separation with
an unconstrained non-Lambertian correction term.

1.3 Research questions
This thesis’ chapters are therefore organized into answering the following research ques-
tions:

Chapter 1 What are intelligent systems?

Chapter 2 How to efficiently and autonmously steer multiple robots to solve a common
task in parallel without loosing communication among them?

Chapter 3 What is needed to understand the current progress in machine learning and
computer vision?

Chapter 4 Can intrinsic images be learnt from sparse human annotations in the form of
pairwise relative reflectance judgments only?

Chapter 5 Which alternative ways can be innovated to introduce the prior knowledge
of piecewise constant reflectance into general intrinsic image algorithms?

Chapter 6 How does a capture setup and resulting processing need to look like to pro-
vide the recovery of a multitude of intrinsic layers?

Chapter 7 What level of structure is beneficial when using intrinsic layers for relighting
under strong directional light?
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In summary, the overall goal of the thesis is to improve intrinsic image research to en-
able better perception and therefore action planning in intelligent systems. Furthermore,
we demonstrate the application of such an intrinsic decomposition explicitly by improv-
ing a neural network generator for relighting to be used in, e.g., augmented reality.

23





Part I

Robotics
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Chapter 2

Decentralized Simultaneous
Multi-target Exploration using a
Connected Network of Multiple Robots
In this chapter, we will introduce a novel decentralized control strategy for a multi-robot
system that enables parallel multi-target exploration while ensuring a time-varying con-
nected topology in cluttered 3D environments. Flexible continuous connectivity is guar-
anteed by building upon the connectivity maintenance method of Robuffo Giordano et al.
[2013], in which limited range, line-of-sight visibility, and collision avoidance are taken
into account at the same time. Its main points are summarized in Appendix A to be
self-contained. Completeness of the decentralized multi-target exploration algorithm is
guaranteed by dynamically assigning the robots with different motion behaviors during
the exploration task. One major group is subject to a suitable downscaling of the main
traveling force based on the traveling efficiency of the current leader and the direction
alignment between traveling and connectivity force. This supports the leader in always
reaching its current target and, on a larger time horizon, that the whole team realizes
the overall task in finite time. Extensive Monte Carlo simulations with a group of sev-
eral quadrotor UAVs show the scalability and effectiveness of the proposed method and
experiments validate its practicability.

Contributions Gradually building the work through Nestmeyer et al. [2013b,c] lead
to my diploma thesis [Nestmeyer, 2012]. The work presented in the following contin-
ues building thereon and extends it in several ways. The method is modified to achieve
a more streamlined presentation using a state machine. Extended details on the decen-
tralized election of the ‘prime traveler’ are given and a detailed completeness proof for
the autonomous exploration is provided. While implementation details were thoroughly
discussed in Nestmeyer [2012] already, results at that time were purely gathered from
simulations. These initial simulations are extended here to show large scale applicability
of the method. Furthermore, experiments with real robots are conducted and thoroughly
evaluated to proof the suitability of the proposed method in practice. The resulting work,
presented in the following, is published as Nestmeyer et al. [2017] in the journal “Au-
tonomous Robots”.
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2.1 Introduction

Success of multi-robot systems is based on their ability of parallelizing the execution
of several small tasks composing a larger complex mission such as, for instance, the
inspection of a certain number of locations either generated off- or online during the
robot motion (e.g., exploration, data collection, surveillance, large-scale medical supply
or search and rescue [Howard et al., 2006, Franchi et al., 2009, Pasqualetti et al., 2012,
Murphy et al., 2008, Faigl and Hollinger, 2014]). In all these cases, a fundamental dif-
ference between a group of many single robots and a multi-robot system is the ability
to communicate (either explicitly or implicitly) in order to then cooperate together to-
wards a common objective. Another distinctive characteristic in multi-robot systems is
the absence of central planning units, as well as all-to-all communication infrastructures,
leading to a decentralized approach for algorithmic design and implementations [Lynch,
1997]. While communication of a robot with every other robot in the group (via multiple
hops) would still be possible as long as the group stays connected, in a decentralized ap-
proach each robot is only assumed to be able to communicate with the robots in its 1-hop
neighborhood (i.e., typically the ones spatially close by). This brings the advantage of
scalability in communication and computation complexity when considering groups of
many robots.

The possibility for every robot to share information (via, possibly, multiple hops/iter-
ations) with any other robot in the group is a basic requirement for typical multi-robot
algorithms and, as well-known, it is directly related to the connectivity of the underlying
graph modeling inter-robot interactions. Graph connectivity is a prerequisite to prop-
erly fuse the information collected by each robot, e.g., for mapping, localization, and
for deciding the next actions to be taken. Additionally, many distributed algorithms like
consensus [Olfati-Saber and Murray, 2004] and flooding [Lim and Kim, 2001] require a
connected graph for their successful convergence. Preserving graph connectivity during
the robot motion is, thus, a fundamental requirement; however, connectivity mainte-
nance may not be a trivial task in many situations, e.g., because of limited capabilities
of onboard sensing/communication devices which can be hindered by constraints such
as occlusions or maximum range. Given the cardinal role of communication for the suc-
cessful operation of a multi-robot team, it is then not surprising that a substantial effort
has been spent over the last years for devising strategies able to preserve graph con-
nectivity despite constraints in the inter-robot sensing/communication possibilities, see,
e.g., Antonelli et al. [2005], Stump et al. [2008, 2011], Pei and Mutka [2012], Robuffo
Giordano et al. [2013]. In general, fixed topology methods represent conservative strate-
gies that achieve connectivity maintenance by restraining any pairwise link of the inter-
action graph to be broken during the task execution. A different possibility is to aim for
periodical connectivity strategies, where each robot can remain separated from the group
during some period of time for then rejoining when necessary. Continuous connectivity
methods instead try to obtain maximum flexibility (links can be continuously broken and
restored unlike in the fixed topology cases) while preserving at any time the fundamental
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ability for any two nodes in the group to share information via a (possibly multi-hop)
path (unlike in periodical connectivity methods).

With respect to this state-of-the-art, the problem tackled in this chapter is the design
of a multi-target exploration/visiting strategy for a team of mobile robots in a cluttered
environment able to

1. allow visiting multiple targets at once (for increasing the efficiency of the explo-
ration), while

2. always guaranteeing connectivity maintenance of the group despite some typical
sensing/communication constraints representative of real-world situations,

3. without requiring presence of central nodes or processing units (thus, developing
a fully decentralized architecture), and

4. without requiring that all the targets are known at the beginning of the task (thus,
considering online target generation).

2.2 Related Work
Designing a decentralized strategy that combines multi-target exploration and continu-
ous connectivity maintenance is not trivial as these two goals impose often antithetical
constraints. Several attempts have indeed been presented in the previous literature: a
fixed-topology and centralized method is presented in Antonelli et al. [2005], which,
using a virtual chain of mobile antennas, is able to maintain the communication link
between a ground station and a single mobile robot visiting a given sequence of target
points. The method is further refined in Antonelli et al. [2006]. A similar problem is
addressed in Stump et al. [2008] by resorting to a partially centralized method where
a linear programming problem is solved at every step of motion in order to mix the
derivative of the second smallest eigenvalue of a weighted Laplacian (also known as
algebraic connectivity, or Fiedler eigenvalue) and the k-connectivity of the system. A
line-of-sight communication model is considered in Stump et al. [2011], where a cen-
tralized approach, based on polygonal decomposition of the known environment, is used
to address the problem of deploying a group of roving robots while achieving periodical
connectivity. The case of periodical connectivity is also considered in Pasqualetti et al.
[2012] and Hollinger and Singh [2012]. The first paper optimally solves the problem of
patrolling a set of points to be visited as often as possible. The second presents a heuristic
algorithm exploiting the concept of implicit coordination. Continuous connectivity be-
tween a group of robots exploring an unknown 2D environment and a single base station
is considered in Pei et al. [2010]. The proposed exploration methodology, similar to the
one presented in Franchi et al. [2009], is integrated with a centralized algorithm running
on the base station and solving a variant of the Steiner Minimum Tree Problem. An ex-
tension of this approach to heterogeneous teams is presented in Pei and Mutka [2012].
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Zavlanos and Pappas [2007] exploit a potential field approach to keep the second small-
est eigenvalue of the Laplacian positive. The method is tested with ground robots in
an empty environment and assumes that each robot has access to the whole formation
for computing the connectivity eigenvalue and the associated potential field. It is there-
fore not scalable, because the strength of all links has to be broadcasted to all robots in
the group. Continuous connectivity achieved by suitable mission planning is described
in Mosteo et al. [2008], although this work does not allow for parallel exploration. An-
other method providing flexible connectivity based on a spring-damper system, but not
able to handle significant obstacles, is reported in Tardioli et al. [2010].

A decentralized strategy addressing the problem of continuous connectivity mainte-
nance for a multi-robot team is considered in Robuffo Giordano et al. [2013]. In this
latter work, the introduction of a sensor-based weighted Laplacian allows to distribu-
tively and analytically compute the anti-gradient of a generalized Fiedler eigenvalue.
The connectivity maintenance action is further embedded with additional constraints and
requirements such as inter-robot and obstacle collision avoidance, and a stability guar-
antee of the whole system, when perturbed by external control inputs for steering the
whole formation, is also provided. Finally, apart for Robuffo Giordano et al. [2013],
all the previously mentioned continuous connectivity methods have only been applied to
2D-environment models.

In this work, we leverage upon the general decentralized strategy for connectivity
maintenance of Robuffo Giordano et al. [2013] for proposing a solution to the aforemen-
tioned problem of decentralized multi-target exploration while coping with the (possibly
opposing) constraints of continuous connectivity maintenance in a cluttered 3D environ-
ment. The main contributions of this work and features of the proposed algorithm can
then be summarized as follows:

i) decentralized and continuous maintenance of connectivity,

ii) guarantee of collision avoidance with obstacles and among robots,

iii) possibility to take into account non-trivial sensing/communication models, includ-
ing maximum range and line-of-sight visibility in 3D,

iv) stability of the overall multi-robot dynamical system,

v) decentralized exploration capability,

vi) possibility for more than one robot to visit different targets at the same time,

vii) online path planning without the need for any (centralized) pre-planning phase,

viii) applicability to both 2D and 3D cluttered environments, and finally

ix) completeness of the multi-target exploration (i.e., all robots are guaranteed to reach
all their targets in a finite time).
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The items i) - iv) have already been tackled in Robuffo Giordano et al. [2013] and are
here taken as a basis for our work. On the other hand, the combination of i) - iv) with the
items v) - ix) is a novel contribution: to the best of our knowledge, our work is the first
attempt to propose a decentralized multi-target exploration algorithm possessing all the
mentioned features altogether.

The rest of the chapter is organized as follows: Sec. 2.3 provides a formal description
of the problem under consideration. The proposed algorithm is then thoroughly illus-
trated in Sec. 2.4. In Sec. 2.5, we report the results of extensive Monte Carlo simulations
and experiments with real quadrotors, and Sec. 2.6 concludes the chapter.

2.3 System Model and Problem Setting
We consider a group of N robots operating in a 3D obstacle-populated environment and
denote with qi ∈ R3 the position of a reference point of the i-th robot, i = 1, . . . ,N, in
an inertial world frame. We also let O be the set of obstacle points in the environment.
Each robot i is assumed to be endowed with an omnidirectional sensor able to measure
the relative position q j−qi of another robot j provided that:

1. ‖q j−qi‖< Rs, where Rs > 0 is the maximum sensing range of the sensor, and

2. minς∈[0,1],o∈O ‖qi +ς(q j−qi)−o‖ ≥ Ro, i.e., the line segment connecting qi to q j
is at least at distance Ro > 0 away from any obstacle point.

These two conditions account for two common characteristics of exteroceptive sensors,
namely, presence of a limited sensing range Rs, and the need for a non-occluded line-
of-sight visibility1. We further assume that if the i-th robot can measure q j− qi then it
can also communicate with the j-th robot with negligible delays, that is, the sensing and
communication graphs are taken coincident. This assumption is justified by the fact that
communication typically relies on wireless technology, thus with a broader range than
sensing and without the need for direct visibility to operate. The neighbors of the i-th
robot are denoted withNi(t), i.e., the (time-varying) set of robots whose relative position
can be measured by the i-th robot at time t.

Each robot i is also endowed with a sensor that measures the relative position o− qi
of every obstacle point o ∈ O such that ‖o− qi‖ < Rm, where Rm > 0 is the maximum
sensing range of this sensor.

Consider the time-varying (undirected) interaction graph defined as G(t) = (V,E(t)),
where V = {1, . . . ,N} and E(t) = {(i, j) | j ∈Ni(t)}. Preserving connectivity of G(t) for
all t allows every robot to communicate at any time with any other robot in the network by
means of a suitable multi-hop routing strategy, although due to efficiency and scalability
reasons, it is always preferred to use one-hop communication when possible.

1More complex sensing models could also be taken into account, see Robuffo Giordano et al. [2013] for
a discussion in this sense.
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As previously stated, decentralized continuous connectivity maintenance is guaranteed
by exploiting the method described in Robuffo Giordano et al. [2013], which is based on
a gradient-descent action that keeps positive the second smallest eigenvalue λ2 of the
sensor-based weighted graph Laplacian [Fiedler, 1973] (see Appendix A for a formal
definition).

Each i-th robot is finally endowed with a local motion controller able to let qi track
any arbitrary desired C̄2 trajectory qi(t) with a sufficiently small tracking error. This is
again a well-justified assumption for almost all mobile robotic platforms of interest, and
its validity will also be supported by the experimental results of Sec. 2.5.2. Following
the control framework introduced in Robuffo Giordano et al. [2013], the dynamics of qi
is then modeled as the following second order system

Σ :

{
Miv̇i− f B

i − f λ
i = fi

q̇i = vi
i = 1, . . . ,N (2.1)

where vi ∈ R3 is the robot velocity, Mi ∈ R3×3 is its positive definite inertia matrix, and:

1. f B
i = −Bivi ∈ R3 is the damping force (with Bi ∈ R3×3 being a positive definite

damping matrix) meant to represent both typical friction phenomena (e.g., wind/at-
mosphere drag in the case of aerial robots) and/or a stabilizing control action;

2. f λ
i ∈ R3 is the generalized connectivity force whose decentralized computation

and properties are thoroughly described in Robuffo Giordano et al. [2013] (a short
recap is provided in Appendix A);

3. fi ∈ R3 is the traveling force used to actually steer the robot motion in order to
execute the given task. An appropriate design of fi is the main goal of this work.
As will be clear in the following, special care must be taken in the design of fi to
avoid, for instance, deadlock situations in which the robot group ‘gets stuck’.

The following fact, shown in Robuffo Giordano et al. [2013] and recalled in Appendix A,
holds:

Fact 1. As long as fi keeps bounded, the action of the generalized connectivity force f λ
i

will always ensure obstacle and inter-robot collision avoidance and continuous connec-
tivity maintenance for the graph G(t) despite the various sensing/communication con-
straints (in the worst case, by completely dominating the bounded fi).

To summarize, each robot has

1. an accurate enough measurement of its own location,

2. an omnidirectional sensor which is able to measure relative positions of other
robots and obstacles in its close proximity,
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3. negligible (compared to the time scale of the robot motion) communication delays
with all robots that it can sense/communicate with,

4. the ability to accurately track a smooth path with a force controller.

2.3.1 Multi-target Exploration Problem

We consider the broad class of problems in which each robot runs a black-boxed algo-
rithm that produces online2 a continually adjustable list of targets that have to be visited
by the robot in the presented order. We refer to this algorithm as the target genera-
tor of the i-th robot, and we also assume that the portion of the map needed to reach
the next location from the current position qi is known to robot i. The target genera-
tor may represent a large variety of algorithms, such as pursuit-evasion [Durham et al.,
2012], patrolling [Pasqualetti et al., 2012], exploration/mapping [Franchi et al., 2009,
Burgard et al., 2005], mobile-ad-hoc-networking [Antonelli et al., 2005], and active lo-
calization [Jensfelt and Kristensen, 2001]. It might be a cooperative algorithm, or each
robot could have a target generator with objectives that are independent from the other
target generators. Another possibilty is to appoint a human supervisor as the target gen-
erator.

Depending on the particular application, the locations in the lists provided online by
the target generators may, e.g., represent:

1. view-points from where to perform the sensorial acquisitions,

2. coordinates of objects that have to be picked up or dropped down,

3. positions of some base stations located in the environment.

We formally denote with (z1
i , . . . ,z

mi
i ) ∈ R3×mi the list of mi locations provided by the

i-th target generator. Additionally, we consider the possibility, for the target generator, to
specify a time duration ∆tk

i < ∞ for which the i-th robot is required to stay close to the
point zk

i , with k = 1, . . . ,mi. This quantity may represent, with reference to the previous
examples, the time

1. needed to perform a full sensorial acquisition,

2. necessary to pick up/drop down an object,

3. required to upload/download some information from a base station,

2By online, we mean that the targets are generated at runtime, thus precluding the presence of a prelimi-
nary phase in which the robots may plan in advance the multi-target exploration action. Indeed, if all
the targets are known beforehand, one could still apply our method but other planning strategies might
potentially lead to better solutions.
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and can also possibly be adjusted at runtime during the execution of the respective task.
Finally, we also introduce the concept of a cruise speed vcruise

i > 0 that should be
maintained by the i-th robot during the transfer phase from a point to the next one.

Given these modeling assumptions, the addressed problem can be formulated as fol-
lows:

Problem 1. Given a sequence of targets z1
i , . . . ,z

mi
i (presented online) for every robot

i = 1, . . . ,N, together with the corresponding sequence of time durations ∆t1
i , . . . ,∆tmi

i
and a radius Rz, design, for every i = 1, . . . ,N, a decentralized feedback control law fi
(i.e., a function using only information locally and 1-hop available to the i-th robot) for
the system described in Eq. (2.1) which is bounded and such that, for the closed-loop
trajectory qi

(
t, fi,[0,t)

)
, there exists a time sequence 0 < t1

i < .. . < tmi
i < ∞ such that for

all k = 1 . . .mi, robot i remains for the duration ∆tk
i within a ball of radius Rz centered

at zk
i , formally ∀t ∈ [tk

i , t
k
i +∆tk

i ] : ‖qi(t)− zk
i ‖< Rz.

2.4 Decentralized Algorithm
In this section, we describe the proposed distributed algorithm aimed at generating a
traveling force fi that solves Problem 1. We note that the design of such an autonomous
distributed algorithm requires special care: When added to the generalized connectivity
force in Eq. (2.1), the traveling force fi should fully exploit the group capabilities to
concurrently visit the targets of all robots whenever possible and, at the same time, should
not lead to ‘local minima’, where the robots get stuck, due to the simultaneous presence
of the hard connectivity constraint. While Robuffo Giordano et al. [2013] already gave
an exact description of f B

i and f λ
i , an application of fi was kept open. The main focus of

this work is to define fi in such a way that the above mentioned challenges are properly
addressed.

In order to provide an overview of the several variables used in Secs. 2.3 and 2.4, we
included Table 2.1 for the reader’s convenience.

2.4.1 Notation and Algorithm Overview
As in any distributed design, several instances of the proposed algorithms run separately
on each robot and locally exchange information with the ‘neighboring’ instances via
communication. Each instance is split into two concurrent routines: a planning algorithm
and a motion control algorithm whose pseudocodes are given in Algorithm 1 and Algo-
rithm 2, respectively. The planning algorithm acts at a higher level and performs the
following actions:

• it processes the targets provided by the target generator,

• it generates the desired path to the current target, and
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Table 2.1: Meaning of the variable names.

variable meaning

N number of robots
qi position of i-th robot
vi velocity of i-th robot
O set of obstacle points
Rs maximum sensing range
Ro minimum distance to obstacle
Rc minimum inter-robot distance
Ni neighbors of i-th robot
G interaction graph
λ2 second smallest eigenvalue of the sensor-based weighted graph Laplacian
f λ
i generalized connectivity force

f B
i damping force
fi traveling force
zk

i k-th target of i-th robot
∆tk

i amount of time to stay close to target zk
i

Rz maximum distance to target when anchored
vcruise

i maximum cruise speed
γi path to current target, starting from position of robot at time of computation
qγ

i closest point of path from current position
dγ

i length of remaining path
Rγ distance to path at which it should be re-planned
αΛ weighting of position vs. velocity error
ei absolute tracking error of i-th robot along path

(xc,xM) tracking error bounds for the traveling efficiency
Λi traveling efficiency of i-th robot (i.e., tracking error nonlinearly scaled to

[0,1] based on xc, xM)
Λ̂i

p estimation of the traveling efficiency of the ‘prime traveler’ by the i-th robot
Θi force direction alignment between connectivity and traveling force of i-th

robot
σ weighting between the force direction alignment and the ‘prime traveler’

traveling efficiency
ρi downscaling factor of a ‘secondary traveler’, dependent on Λ̂i

p, Θi and σ
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obstacle

obstacle
q�i

zi

qi �i

q0
i

d�i

qj

vcruise
i

v�i (vcruise
i , q�i )

Figure 2.1: Position qi and path γi followed by a traveler from the point q0
i to the current target zi. The

solid part of the path represents the remaining path which starts at the closest point on the path
qγ

i and whose length is denoted by dγ

i .

• it selects an appropriate motion control behavior (see later).

The motion control algorithm acts at a lower level by specifying the traveling force fi as
a function of the behavior and the planned path selected by the planning algorithm3.

The two algorithms have access to the same variables which are formally introduced
as follows (see Fig. 2.1 for a graphical representation of some of these variables): the
variable targetQueuei is filled online by the target generator and contains a list of future
targets to be visited by the i-th robot. During the overall running time of the algorithms,
the target generator of robot i has access to the whole list targetQueuei (which can also
be changed online if needed). The current target for the i-th robot (i.e., the last target
extracted from the first entry in targetQueuei) is denoted with zi. Variable γi is a C̄2

geometric path that leads from the current position qi of the i-th robot to the target zi. In
our implementation, we used B-splines [Biagiotti and Melchiorri, 2008] in order to get a
parameterized smooth path, but any other C̄2 path would be appropriate. If the robot is
not traveling towards any target, then γi is set to null.

With reference to Fig. 2.1, we also denote with qγ

i the closest point of the path γi to qi,
i.e., the solution of argminp∈γi ‖p−qi‖. In case of multiple solutions, we choose the one
with the largest arc-length, i.e., the one nearest to the target along the path. Therefore,
the closest point qγ

i can be considered as unique in the following. The portion of the path
γi from qγ

i to zi is referred to as the remaining path, and its length is denoted with dγ

i .
The motion behavior of the i-th robot is determined by the variable statei that can take

four possible values:

• connector,

• prime-traveler,

• secondary-traveler,

3The two routines can run at two different frequencies, typically slower for the planning loop and faster
for the motion control loop.
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• anchor.

The following provides a qualitative illustration of these motion behaviors, while a func-
tional description is given in the next sections:

• ‘connector’: a robot in this state is not assigned any target by the target generator and
therefore, its only goal is to help keeping the graph G connected. For this reason fi
is set to zero and hence the robot is subject solely to the damping and generalized
connectivity force f λ

i in (2.1);

• ‘prime traveler’: a robot in this state travels towards its current target zi along the path
γi thanks to the force fi. At the same time, the robot distributively broadcasts to every
other robot a non-negative real number, denoted with Λi, that represents its traveling
efficiency, i.e., a measure of how well it is able to follow its desired path while being
influenced by the other robots in the group via the generalized connectivity force f λ

i
(which is described in more detail later). It is essential for the algorithm that only one
‘prime traveler’ exists in the group at any time. Every other robot with an assigned
target needs to be a ‘secondary traveler’ or ‘anchor’. This feature will allow one robot
(the ‘prime traveler’) to reach its target with a high priority, while the other robots will
only be allowed to reach their own targets as long as this action does not hinder the
‘prime traveler’ goal.

• ‘secondary traveler’: a robot in this state travels towards its current target zi along
the path γi thanks to the force fi. The robot keeps an internal estimation Λ̂i

p of the
traveling efficiency of the current ‘prime traveler’, and it scales down the intensity of
its traveling force fi by an adaptive gain ρi whenever the action of fi is ‘too conflicting’
w.r.t. that of f λ

i , or the ‘prime traveler’ Λ̂i
p drops lower than a given threshold.

• ‘anchor’: a robot in this state has reached the proximity of the target zi. The force fi
is then exploited in order to keep qi within a circle of radius Rz centered at zi (i.e., the
robot is ‘anchored’ to the target), while waiting for the associated time ∆ti to elapse.

In order to obtain a better intuition of the roles of the robots, we suggest the reader
to watch the “Empty Space” video available at https://homepages.laas.fr/
afranchi/robotics/?q=node/144.

To summarize this qualitative description, these behaviors are designed in such a way
that the single ‘prime traveler’ approaches its target with the highest priority, the ‘sec-
ondary travelers’ approach their targets as long as they have enough spatial freedom by
the generalized connectivity force, the ‘anchors’ stay close to the target until their task
is completed, and the ‘connectors’ help the ‘secondary travelers’ in providing as much
spatial freedom as possible while preserving the connectivity of the graph.

Whenever a robot moves, it may indirectly exert a certain generalized connectivity
force on all its neighbors because of the properties of f λ

i (i.e., for retaining generalized
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connectivity of the graph G (see Robuffo Giordano et al. [2013] and Appendix A). This
connectivity action can possibly conflict with the traveling force fi, and also prevent, in
the worst case, fulfilment of the multi-target exploration task (e.g., the group falls in a
local minimum because two robots start traveling in opposite directions over too large
distances, thus threatening connectivity maintenance).

Since the ‘connectors’ implement fi = 0 by definition, they cannot directly hinder
the ‘prime traveler’ motion. In other words, a group made by all ‘connectors’ and one
‘prime traveler’ would always allow the ‘prime traveler’ to reach its target. Presence of
‘anchors’ can instead block the ‘prime traveler’ because of the anchoring force which
prevents them to move away from their targets. Nevertheless the anchoring phase can
only last for a finite time ∆tk

i after which the ‘anchor’ changes state and is again free to
move.

No such mechanism is instead present for the ‘secondary travelers’ which would con-
stantly attempt to move along their paths with a ρi set to 1. As explained, if many robots
are simultaneously traveling in arbitrary directions inside a cluttered environment, while
also maintaining connectivity of G, the overall group motion can potentially (and quite
easily) fall into a local minimum. The idea behind the gain ρi is to then adaptively scale
down the traveling force fi of the ‘secondary travelers’ whenever either

1. the direction fi deviates too much from the connectivity force f λ
i , or

2. the ‘prime traveler’ motion is nevertheless too obstructed by the actions of the
other ‘secondary travelers’ in the group.

Consequently, this gain ρi ∈ [0,1] is chosen so that the current ‘prime traveler’ can always
reach its target, no matter the motion planned by the ‘secondary travelers’ in the group.
A formal description of this concept will be given in Sec. 2.4.7.

2.4.2 Start-up phase
The Procedure ‘Start-up for Robot i’ performs the distributed initialization of the plan-
ning and motion control algorithms. Its pseudocode is quickly commented in the follow-
ing.

At the beginning, if targetQueuei is empty, the path γi is set to null and statei
is initialized to connector (line 3). Otherwise the first target from targetQueuei is
extracted and saved in zi. Then, the robot i computes a C̄2 shortest and obstacle-free
path γi that connects its current position qi with zi (line 6). This path is generated with
a two-step optimization method: first, the known portion of the map is discretized into
an equally spaced grid in 3D with a cell size of Rgrid. A cell is marked as occupied
whenever an obstacle lies inside a radius of Rgrid around the cell. On this grid, a shortest
path is found via A∗. Then, the waypoints obtained from A∗ are approximated with a
B-spline [Biagiotti and Melchiorri, 2008] in order to remove corners from the path. We
note that, depending on the smoothing parameter, this approximation is not guaranteed to
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2.4 Decentralized Algorithm

Procedure Start-up for Robot i

1 if targetQueuei is empty then
2 γi ← null
3 statei ← connector
4 else
5 Extract first target from targetQueuei and save it as zi
6 γi ← Shortest obstacle-free path from qi to zi
7 Enroll in the list of Candidates to take part in the first distributed ‘prime traveler’ election
8 if i = argmin j∈Candidates dγ

j then
9 statei ← prime-traveler

10 else
11 statei ← secondary-traveler

12 Λ̂i
p ← 0

13 Run Algorithm 1 and Algorithm 2 in parallel

leave enough clearance from surrounding obstacles. Obstacle avoidance is nevertheless
ensured thanks to the presence of the generalized connectivity force that prevents any
possible collisions by (possibly) locally adjusting the planned path when needed. As
an alternative, one could also rely on the method proposed in Masone et al. [2012] for
directly generating a smooth path with enough clearance from obstacles.

Subsequently, the robot takes part in the distributed election of the first ‘prime trav-
eler’ (see Sec. 2.4.3). Depending on the outcome of this election, statei is set either to
prime-traveler or secondary-traveler.

At the end of the initialization procedure, the estimate Λ̂i
p of the traveling efficiency of

the current ‘prime traveler’ is initialized to zero (line 12) for all robots, and the planning
and motion control algorithms are both started (line 13).

2.4.3 Election of the ‘prime traveler’

In a general election of a new ‘prime traveler’, the current ‘prime traveler’ triggers the
election process (line 14 of Algorithm 1), to which every ‘secondary traveler’ replies
with its index and remaining path length, in order to be taken into the list of candidates
(line 23). Since this election is a low-frequency event, we chose to implement it via
a simple flooding algorithm [Lim and Kim, 2001]. Although this solution complies
with the requirement of being decentralized, one could also resort to‘smarter’ distributed
techniques such as [Lynch, 1997]. The ‘prime traveler’ then waits for 2(N−1) steps to
collect these replies, being 2(N−1) the maximum number of steps needed to reach every
robot with flooding and obtain a reply. The winner of this election is then the robot with
the shortest remaining path length dγ

i , i.e., the robot solving argmin j∈Candidates dγ

j . In the
unlikely event of two (or more) robots having exactly the same remaining path length,
the one with the lower index is elected. During the whole election process, the ‘prime
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Figure 2.2: State machine of the Algorithm 1.

traveler’ keeps its role and only upon decision it abdicates by switching into the ‘anchor’
state. After announcing the winner, no ‘prime traveler’ exists in the short time interval
(at most N− 1 steps) until the announcement reaches the winning ‘secondary traveler’.
This winning robot then switches into the ‘prime traveler’ behavior. This mechanism
makes sure that at most one ‘prime traveler’ exists at any given time.

The first election in the Start-up phase (see Sec. 2.4.2 and line 7 in Procedure ‘Start-
up for Robot i’) is handled slightly differently. Instead of the current ‘prime traveler’
organizing the election, robot 1 is always assigned the role of host and, instead of the
only ‘secondary travelers’ replying, every robot with an assigned target replies with its
index and remaining path length (including robot 1 if it has an assigned target).

2.4.4 Planning Algorithm
In this section, we describe in detail the execution of Algorithm 1 running on the i-th
robot, whose logical flow is provided in Figure 2.2 as a graphical representation. The
algorithm consists of a continuous loop where different decisions are taken according to
the value of statei and according to the following different behaviors:

case connector. If statei is set to connector then targetQueuei is checked. In
case of an empty queue, statei remains connector, otherwise the next target is ex-
tracted from the queue and saved in zi (line 5). Then the i-th robot computes a C̄2 shortest
and obstacle-free path γi connecting the current robot position qi with zi (line 6) imple-
menting what was previously described in the start-up procedure. Finally, the robot
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Algorithm 1: Planning for Robot i

1 while true do
2 switch statei do
3 case connector do
4 if targetQueuei is not empty then
5 Extract the next target from targetQueuei and save it as zi
6 γi← Shortest obstacle-free path from qi to zi
7 if There is no ‘prime traveler’ in the group then
8 statei←prime-traveler
9 else

10 statei←secondary-traveler

11 case prime-traveler do
12 if ‖qi− zi‖< Rz then
13 γi← null
14 Permit ‘prime traveler’ candidacy within timeout
15 statei← anchor

16 case secondary-traveler do
17 if ‖qi−qγ

i ‖> Rγ then
18 γi← Shortest obstacle-free path from qi to zi

19 if ‖qi− zi‖< Rz then
20 γi← null
21 statei← anchor
22 else if ‘prime traveler’ candidacy is allowed then
23 Enroll in the list of Candidates to take part in the distributed ‘prime

traveler’ election
24 if i = argmin j∈Candidates dγ

j then
25 statei← prime-traveler

26 case anchor do
27 if task at target zi is completed then
28 statei← connector

41



Chapter 2 Decentralized Exploration Using Connected Robots

changes the value of statei in order to track γi. In particular, if no ‘prime traveler’ is
present in the group, then statei is set to prime-traveler (line 8). Otherwise, statei
is set to secondary-traveler (line 10)4.

case prime-traveler. When statei is set to prime-traveler (line 11) and the
current position qi is closer than Rz to the target zi (line 12), the following actions are
performed:

• the path γi is reset to null (line 13),

• a new distributed ‘prime traveler’ election as described in Sec. 2.4.3 is announced
(line 14),

• the robot abdicates the role of ‘prime traveler’ and statei is set to anchor (line 15).

If, otherwise, zi is still far from the current robot position qi, then statei remains un-
changed and the robot continues to travel towards its target.

case secondary-traveler. When statei is secondary-traveler (line 16)
the distance ‖qγ

i − qi‖ to the (closest point on the) path is checked (line 17). If this
distance is larger than the threshold Rγ , the robot replans a path from its current posi-
tion qi (line 18). This re-planning phase is necessary since a ‘secondary traveler’ could
be arbitrarily far from the previously planned γi because of the ‘dragging action’ of
the current ‘prime traveler’. Section 2.4.6 will elaborate more on this point. Subse-
quently, if qi is closer than Rz to the target zi (line 19), the path γi is reset to null
(line 20) and statei is set to anchor (line 21). Otherwise, if the target is still far away,
the robot checks whether the ‘prime traveler’ abdicated and announced an election of a
new ‘prime traveler’ (line 22). If this was the case, the robot takes part in the election
(line 23) as described in Sec. 2.4.3. If the robot wins the election (line 24), statei is set
to prime-traveler (line 25) otherwise it remains set to secondary-traveler.

case anchor. The last case of Algorithm 1 is when statei is anchor (line 26). The
robot remains in this state until the task at target zi is completed (line 27), after which
statei is set to connector.

2.4.5 Completeness of the Planning Algorithm
Before illustrating the motion control algorithm, we state some important properties that
hold during the whole execution of the planning algorithm.

4Presence of a ‘prime traveler’ can be easily assessed in a distributed way by, e.g., flooding [Lim and
Kim, 2001] on a low frequency.
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Propositon 1. If there exists at least one target in one of the targetQueuei, then exactly
one ‘prime traveler’ will be elected at the beginning of the operation. Furthermore, this
‘prime traveler’ will keep its state until being closer than Rz to its assigned target. In the
meantime no other robot can become ‘prime traveler’.

Proof. The start-up procedure guarantees that, if there exists at least one target in at
least one of the targetQueuei, the group of robots includes exactly one ‘prime traveler’
and no ‘anchor’ at the beginning of the task. Any other robot is either a ‘connector’
or ‘secondary traveler’ depending on the corresponding availability of targets. During
the execution of Algorithm 1, a robot can only switch into ‘prime traveler’ when being
a ‘connector’ or a ‘secondary traveler’. As long as there exists a ‘prime traveler’ in
the group, a ‘connector’ cannot become a ‘prime traveler’. Furthermore, a ‘secondary
traveler’ becomes a ‘prime traveler’ only if it wins the election announced by the ‘prime
traveler’. Since the ‘prime traveler’ allows for this election only when in the vicinity of
its target (within the radius Rz), the claim directly follows.

Using this result, the following proposition shows that Algorithm 1 is actually guar-
anteed to complete the multi-target exploration in the following sense: when presented
with a finite amount of targets, all targets of all robots are guaranteed to be visited in a
finite amount of time. In order to show this result, an assumption on the robot motion
controller is needed.

Assumption 1. In a group of robots with exactly one ‘prime traveler’, the adopted mo-
tion controller is such that the ‘prime traveler’ is able to arrive closer than Rz to its
target in a finite amount of time regardless of the location of the targets assigned to the
other robots.

In Sec. 2.4.7 we discuss in detail how the motion controller introduced in the next
section 2.4.6 meets Assumption 1.

Propositon 2. Given a finite number of targets and a motion controller fulfilling Assump-
tion 1, the whole multi-target exploration task is completed in a finite amount of time as
long as the local tasks at every target can be completed in finite time.

Proof. In the trivial case of no targets, the multi-target exploration task is immediately
completed. Let us then assume presence of at least one target. Proposition 1 guarantees
existence of exactly one ‘prime traveler’ at the beginning of the planning algorithm, and
that such a ‘prime traveler’ will keep its role until reaching its target, an event that, by
virtue of Assumption 1, happens in finite time. At this point, assuming as a worst case
that no ‘secondary traveler’ has reached and cleared its own target in the meantime, one
of the following situations may arise:

1. There is at least one ‘secondary traveler’. The ‘secondary traveler’ closest to its
target becomes the new ‘prime traveler’ in the triggered election, and it then starts
traveling towards its newly assigned target until reaching it in finite time (Proposi-
tion 1 and Assumption 1)
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2. There is no ‘secondary traveler’ and no other ‘anchor’ besides the former ‘prime
traveler’. In this case, no other robot has targets in its queue as, otherwise, at least
one ‘secondary traveler’ would exist. Therefore, after completing its task at the
target location (a finite duration), the former ‘prime traveler’ and now ‘anchor’
becomes ‘connector’ and, in case of additional targets present for this robot, it
switches back into being a ‘prime traveler’ and travels towards the new targets in
a finite amount of time as in case 1.

3. There is no ‘secondary traveler’, but at least one other ‘anchor’. This situation can
be split again into two sub-cases:

a) there exists at least one ‘anchor’ with a future target in its queue. Then, after
a finite time, this ‘anchor’ becomes ‘secondary traveler’ and case 1 holds;

b) there is no ‘anchor’ with a future target in its queue. Then, after a finite time,
all ‘anchors’ have completed their local tasks and case 2 holds.

In all cases, therefore, one target is visited in finite time by the current ‘prime traveler’.
Repeating this loop finitely many times, for all the (finite number of) targets, allows
to conclude that all targets will be visited in a finite amount of time, thus showing the
completeness of the planning algorithm.

If a ‘secondary traveler’ already reaches its target while the ‘prime traveler’ is active,
the aforementioned worst case assumption is not valid anymore. But since, in this case,
the target of the ‘secondary traveler’ is already cleared, the total number of iterations is
even smaller than in the previous worst case, thus still resulting in a finite completion
time.

2.4.6 Motion Control Algorithm

With reference to Algorithm 2, we now describe the motion control algorithm that runs
in parallel to the planning algorithm on the i-th robot, and whose goal is to determine a
traveling force fi that can meet Assumption 1. The algorithm consists of a continuous
loop, as before, in which the force fi is computed according to the behavior encoded in
the variable statei determined by Algorithm 1:

case connector. If statei is set to connector, the estimate Λ̂i
p of the traveling ef-

ficiency of the current ‘prime traveler’ is updated with a consensus-like algorithm (line 4)
that will be described in the next Sec. 2.4.7. The traveling force fi is in this case simply
set to 0 (line 5). It is worth mentioning that fi = 0 does not mean the i-th robot will
not move, since a ‘connector’ is still dragged by the other travelers via the generalized
connectivity force (according to Eq. (2.1), the ‘connectors’ are still subject to f λ

i and
f B
i ).
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Algorithm 2: Motion Control for Robot i

1 while true do
2 switch statei do
3 case connector do
4 Update Λ̂i

p using ˙̂
Λi

p = kΛ ∑ j∈Ni(Λ̂
j
p− Λ̂i

p)

5 fi← 0

6 case prime-traveler do
7 Λ̂i

p← Λi using Eq. (2.9)
8 fi← ftravel(qi,γi,vcruise

i ), using Eq. (2.3)

9 case secondary-traveler do
10 Update Λ̂i

p using ˙̂
Λi

p = kΛ ∑ j∈Ni(Λ̂
j
p− Λ̂i

p)

11 fi← ρi ftravel(qi,γi,vcruise
i ), using Eqs. (2.3) and (2.15)

12 case anchor do
13 Update Λ̂i

p using ˙̂
Λi

p = kΛ ∑ j∈Ni(Λ̂
j
p− Λ̂i

p)

14 fi← fanchor(qi,zi,Rz), as per Eq. (2.5)

case prime-traveler. If statei is set to prime-traveler, the estimate Λ̂i
p is

set to the true traveling efficiency Λi, defined by Eq. (2.9) (line 7). Afterwards (line 8)
the robot sets

fi = ftravel(qi,γi,vcruise
i ) , (2.2)

where ftravel(qi,γi,vcruise
i ) ∈ R3 is a proportional, derivative and feedforward controller

meant to travel along γi at a given cruise speed vcruise
i :

ftravel(qi,γi,vcruise
i ) = aγ

i (v
cruise
i ,qγ

i )

+ kv(v
γ

i (v
cruise
i ,qγ

i )− q̇i) (2.3)

+ kp(q
γ

i −qi).

Here, kp and kv are positive gains, qγ

i is the point on γi closest to qi (see Fig. 2.1),
vγ

i (v
cruise
i ,qγ

i ) is the velocity vector of a virtual point traveling along γi and passing at
qγ

i with tangential speed vcruise
i , and aγ

i (v
cruise
i ,qγ

i ) is the acceleration vector of the same
point. It is straightforward to analytically compute both the velocity and the acceleration
from vcruise

i , given the spline representation of the curve [Biagiotti and Melchiorri, 2008].

case secondary-traveler. If statei is set to secondary-traveler, the es-
timate Λ̂i

p is updated with a consensus-like protocol (line 10). Then (line 11) the robot
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Figure 2.3: Shape of the function V Rz
anchor(`i) defined in Eq. (2.6) that is 0 on the target zi itself (`i = 0) and

grows unbounded at the border of a sphere with radius Rz.

sets
fi = ρi ftravel(qi,γi,vcruise

i ), (2.4)

where ftravel is defined as in Eq. (2.3) and ρi ∈ [0,1] is an adaptive gain meant to scale
down the intensity of the action of ftravel(qi,γi,vcruise

i ) whenever

1. its alignment is too conflicting with the generalized connectivity force f λ
i or

2. the ‘prime traveler’ is not able to efficiently travel along its path because its reached
speed is too low compared to its desired cruise speed.

Section 2.4.7 is dedicated to provide details on choosing an effective ρi.

case anchor. If statei is set to anchor, the estimate Λ̂i
p is again updated using a

consensus-like protocol (line 13). Then (line 14) the force fi is set as

fi = fanchor(qi,zi,Rz) =−
∂V Rz

anchor(‖qi− zi‖)
∂qi

(2.5)

where V Rz
anchor : [0,Rz)→ [0,∞) is a monotonically increasing potential function of the

distance `i = ‖qi− zi‖ between the robot position qi and the target zi, and such that
V Rz

anchor(0) = 0 and lim`i↗Rz V Rz
anchor(`i) = ∞. Under the action of fanchor(qi,zi,Rz) the po-

sition qi is then guaranteed to remain confined within a sphere of radius Rz centered at zi
until the local task at the target location is completed. In our simulations and experiments
we employed

V Rz
anchor(`i) =−kz

2Rz

π
ln
(

cos
(
`iπ

2Rz

))
(2.6)

where kz is an arbitrary positive constant. The shape of this function is shown in Fig. 2.3
and the associated fanchor is

fanchor(qi,zi,Rz) =−kz tan
(
`iπ

2Rz

)
qi− zi

`i
. (2.7)
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2.4.7 Traveling Efficiency, Force Alignment and Adaptive Gain
We now describe how the estimation of the traveling efficiency Λi of all robots and the
adaptive gain ρi of a ‘secondary traveler’, used in Algorithm 2, are actually computed.
Remember that the idea behind the gain ρi is to adaptively scale down the traveling force
fi of a ‘secondary traveler’ whenever

1. the alignment of fi and the generalized connectivity force f λ
i is too different, or

2. the traveling efficiency of the ‘prime traveler’ is too low.

Therefore the design of ρi aims at guaranteeing that the current ‘prime traveler’ can
always reach its target, whatever the motion planned by the other robots in the group are,
and thus in fact enforces Assumption 1.

We recall that we provide a compendium of all important variables in Table 2.1.
In order to implement the desired behavior we introduce two functions:

Θ : R3×R3→ [0,1]

Λ : R+
0 ×K∗→ [0,1]

where K∗ = {(xc,xM) ∈ R2 |0≤ xc < xM}, defined as:

Θ(x,y) =

{
1
2

(
1+ xT y

‖x‖‖y‖

)
x 6= 0,y 6= 0

1 otherwise
(2.8)

Λ(x,xc,xM) =





1 x ∈ [0,xc]

1
2 +

cos
(

x−xc
xM−xc π

)

2 x ∈ (xc,xM)

0 x ∈ [xM,∞).

(2.9)

Function Θ(x,y) represents a ‘measure’ of the direction alignment of the two non-zero
3D vectors x and y. In particular, Θ(x,y) is 1 if x and y are parallel with the same
direction, 1

2 if they are orthogonal, and 0 if they are parallel with opposite direction.
Note that Θ(x,y) is equivalent to 1

2(1+ cosθ) with θ being the angle between vectors x
and y.

Function Λ(x,xc,xM) ‘measures’ how small x is. If x ≤ xc then x is considered ‘small
enough’ and, therefore, Λ = 1. If x ∈ (xc,xM) then Λ strictly monotonically varies from
1 to 0. If x≥ xM, then Λ = 0. The shape of Λ is depicted in Fig. 2.4.

Having introduced these functions, we now define the force direction alignment of the
i-th robot as

Θi = Θ( f λ
i , ftravel(qi,γi,vcruise

i )), (2.10)

and note that Θi can be locally computed by the i-th robot. The quantity Θi thus rep-
resents an index in [0,1] measuring the degree of conflict among the directions of the
generalized connectivity force and the traveling force.
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xc xM

0

1

Figure 2.4: Sketch of the function Λ(x,xc,xM) for fixed xc and xM .

When γi 6= null, we also define the absolute tracking error as

ei = (1−αΛ)‖vγ

i (v
cruise
i ,qγ

i )− vi‖+αΛ‖qγ

i −qi‖, (2.11)

with αΛ ∈ [0,1] being a constant parameter modulating the importance of the velocity
tracking error w.r.t. the position tracking error. The traveling efficiency is then defined as

Λi = Λ(ei,xc,xM) , (2.12)

where 0 ≤ xc < xM < ∞ are two user-defined thresholds representing the point at which
the traveling efficiency Λi starts to decrease and the maximum tolerated error after which
the traveling efficiency vanishes. In this way it is possible to evaluate how well a trav-
eler can follow its desired planned path according to a suitable combination of velocity
and position accuracy. It is important to note that the value Λi = 1 does not imply an
exact tracking of the path, but it still allows a small tracking tolerance (dependent on the
parameter xc). Similarly, the value Λi = 0 does not imply a complete loss of path track-
ing, but it represents the possibility of a tracking error higher than a maximum threshold
(dependent on xM).

In order to meet Assumption 1, we are only interested in the traveling efficiency of
the current ‘prime traveler’ for monitoring whether (and how much) its exploration task
is held back by the presence/motion of the ‘secondary travelers’. From now on we then
denote this value as Λp, where

p = i s.t. statei = prime-traveler.

This quantity is not in general locally available to every robot in the group, and there-
fore a simple decentralized algorithm is used for its propagation to avoid a flooding step.
Among many possible choices we opted for using the following well-known consensus-
based propagation [Olfati-Saber and Murray, 2003]:

˙̂
Λ

i
p = kΛ ∑

j∈Ni

(Λ̂ j
p− Λ̂

i
p) if i 6= p

Λ̂
i
p = Λi if i = p.

(2.13)

48



2.4 Decentralized Algorithm

This distributed estimator lets Λ̂i
p track Λp for all i that hold statei 6=prime-traveler

with an accuracy depending on the chosen gain kΛ. Notice that, for a constant Λp, the
convergence of this estimation scheme is exact. Furthermore, since Λp ∈ [0,1], Λ̂i

p is then
saturated so as to remain in the allowed interval despite the possible transient oscillations
of the estimator. Instead of this simple consensus, one could also resort to a PI average
consensus estimator [Freeman et al., 2006] to cope with presence of a time-varying sig-
nal. However, for simplicity we relied on a simple consensus law with less parameters
to be tuned, and with, nevertheless, a satisfying performance as extensively shown in our
simulation and experimental results.

Hence, every ‘secondary traveler’ can locally compute Θi and build an estimation Λ̂i
p

of Λp. In order to consolidate these two quantities into a single value, we define the
function ρ : [0,1]× [0,1]× [1,∞)→ [0,1] as:

ρ(x,y,σ) = (1− x)yσ + x(1− (1− y)σ ) , (2.14)

where 1≤ σ < ∞ is a constant parameter. Gain ρi is then obtained from Θi and Λ̂i
p as

ρi = ρ(Θi, Λ̂
i
p,σ) (2.15)

with 1≤ σ < ∞ being a tunable parameter.
The reasons motivating this design of gain ρi are as follows: ρi is a smooth function

of Θi and Λ̂i
p possessing the following desired properties (see also Fig. 2.5)

1. Λ̂i
p = 1⇒ ρi = 1: if the traveling efficiency of the ‘prime traveler’ is 1 then every

‘secondary traveler’ sets fi = ftravel(qi,γi,vcruise
i );

2. Λ̂i
p = 0⇒ ρi = 0: if the traveling efficiency of the ‘prime traveler’ is 0 then every

‘secondary traveler’ sets fi = 0;

3. ρi monotonically increases w.r.t. Λ̂i
p for any Θi and σ in their domains;

4. ρi constantly increases w.r.t. Θi for any Λ̂i
p ∈ (0,1) and σ > 1;

5. if σ = 1 then ρi = Λ̂i
p for any Θi ∈ [0,1]

6. if σ → ∞ then ρi→Θi for any Λ̂i
p ∈ (0,1).

Summarizing, gain ρi mixes the information of both the force direction alignment and
the traveling efficiency of the ‘prime traveler’, with more emphasis on the first or the
second term depending on the value of the parameter σ . Nevertheless, the traveling effi-
ciency Λ̂i

p is always predominant at its boundary values (0 and 1) regardless of the value
of σ . This means that, whenever the estimated travel efficiency of the ‘prime traveler’
is Λ̂i

p = 0 and robot i is a ‘secondary traveler’, its traveling force is scaled to zero and,
therefore, robot i only becomes subject to the connectivity and damping force. Therefore,
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Figure 2.5: Function ρ for σ = 2 (left side) and σ = 6 (right side). The motion controller exploits this
function by plugging the force direction alignment in the x argument, and the estimate of the
traveling efficiency of the current ‘prime traveler’ in the y argument.
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in this situation the motion of all ‘secondary travelers’ results dominated by the ‘prime
traveler’, which is then able to execute its planned path towards its target location. On the
other hand, when Λ̂i

p = 1, the ‘prime traveler’ has a sufficiently high traveling efficiency
despite the ‘secondary traveler’ motions. Therefore, every ‘secondary traveler’ is free to
travel along its own planned path regardless of the direction alignment between traveling
and connectivity force.

We conclude noting that the main goal of the machinery defined in Secs. 2.4.6 and 2.4.7
is to ensure that the motion controller meets the requirements defined in Assumption 1.
Although some of the steps involved in the design of the traveling force fi have a ‘heuris-
tic’ nature, the proposed algorithm is quite effective in solving the multi-target explo-
ration task (in a decentralized way) under the constraint of connectivity maintenance, as
proven by the several simulation and experimental results reported in the next section.

2.5 Simulations and experiments
In this section, we report the results of an extensive simulative and experimental cam-
paign meant to illustrate and validate the proposed method. The videos of the simulations
and experiments can be watched on https://homepages.laas.fr/afranchi/
robotics/?q=node/144.

All the simulation (and experimental) results were run in 3D environments, although
only a 2D perspective is reported in the videos for the simulated cases (therefore, robots
that may look as ‘colliding’ are actually flying at different heights, since their generalized
connectivity force prevents any possible inter-robot collision).

As robotic platform in both simulations and experiments we used small quadrotor
UAVs (Unmanned Aerial Vehicles) with a diameter of 0.5 m. This choice is motivated
by the versatility and construction simplicity of these platforms, and also because of the
good match with our assumption of being able to track any sufficiently smooth linear
trajectory in 3D space.

We further made use of the SwarmSimX environment [Lächele et al., 2012], a physi-
cally realistic simulation software. The simulated quadrotors are highly detailed models
of the real quadrotors later employed in the experiments. The physical behavior of the
robots itself and their interaction with the environment is simulated in real-time using
PhysX5.

For the experiments, we opted for a highly customized version of the MK-Quadro6.
We implemented a software on the onboard microcontroller able to control the orienta-
tion of the robot by relying on the integrated inertial measurement unit. The desired ori-
entation is provided via a serial connection by a position controller implemented within
the ROS framework7 that can run on any generic GNU-Linux machine. The machine can

5http://www.geforce.com/hardware/technology/physx
6http://www.mikrokopter.com
7http://www.ros.org
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(a) (b) (c)

Figure 2.6: Snapshots of a simulation with 20 UAVs in empty space in three different consecutive time
instants. The dotted black curves represent the planned path γi to the current target for each
robot i (if it has a current target). Blue dots are the robots, the turquoise dot is the current
‘prime traveler’. Line segments represent the presence of a connection link between a pair of
robots with the following color coding: green – well connected, red – close to disconnection.
The robots are able to concurrently explore the given targets and continuously maintain the
connectivity of the interaction graph.

be either mounted onboard or acting as a base-station. In the latter case a wireless serial
connection with XBees8 is used. We opted for the separate base station in order to extend
the flight time thanks to the reduction of the onboard weight. The current UAV position
used by the controller is retrieved from a motion capturing system9, while obstacles are
defined statically before the task execution.

To abstract from simulations and experiments, we used the TeleKyb software frame-
work, which is thoroughly described in Grabe et al. [2013]. Finally, the desired trajectory
(consisting of position, velocity and acceleration) is generated by our decentralized con-
trol algorithm implemented using Simulink10 running in real-time at 1 kHz.

2.5.1 Monte Carlo Simulations

The proposed method has been extensively evaluated through randomized experiments in
three significantly different scenarios. The first scenario is an obstacle free 3D space and
three snapshots of the evolution of the proposed algorithm are presented in Fig. 2.6. The
second, a more complex, scenario includes a part of a town and is reported in Fig. 2.7.

8http://www.digi.com/lp/xbee
9http://www.vicon.com

10http://www.mathworks.com/products/simulink/
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2.5 Simulations and experiments

Figure 2.7: Three snapshots of consecutive time instants of a simulation in the town environment. Graphi-
cal notation similar to Fig. 2.6

Figure 2.8: Snapshots of a simulation in the office-like environment in three consecutive time instants.
Graphical notation similar to Fig. 2.6

The third is an office-like environment shown in Fig. 2.8. The size of the environments is
50 m×70 m for both the empty space and the town, and about 10 m×15 m for the office.
Since the first two environments are outdoor scenarios and the office-like environment is
indoor, two different sets of parameters were employed in the simulations. The values of
the main parameters are listed in Table 2.2.

The number of robots varied from 10 to 35. In every trial 3 targets are sequentially
assigned to 5 robots and 2 targets are sequentially assigned to other 5 robots, for a total
of 25 targets per trial. The remaining robots are given no targets (i.e., they act always as
‘connectors’).

The configuration of the given targets is randomized across the different trials. The
same random configurations are repeated for every different number of robots in order
to allow for a fair comparison among the results. In the following we refer to the robots
with at least one target assigned during a trial as ‘explorers’.

To summarize, we simulated a total number of 1800 trials arranged in the following
way: in each of the 3 scenes, and for each of the 100 target configurations in each scene,
we ran a simulation with 6 different numbers of robots, namely 10, 15, 20, 25, 30, 35.
We encourage the reader to also watch the video11 where some representative simulative
trials are shown.

In Fig. 2.9 we show the evolutions of the statistical percentiles of:

• the overall completion time,

11available at https://homepages.laas.fr/afranchi/robotics/?q=node/144
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Figure 2.9: Statistics of the completion times (first row), mean traveled distance of the traveling robots
(second row), the maximum Euclidian distance between two traveling robots (third row) and
mean λ2 (forth row) versus the number of robots in the environments empty space (left col-
umn), town (middle column) and office (right column).
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Table 2.2: Main parameters of the algorithm used in the 1800 randomized simulative trials in the different
scenarios.

parameter empty space and town office

(R′s,Rs) (2.5 m, 6 m) (1.1 m, 2.5 m)
(Ro,R′o) (0.75 m, 1.75 m) (0.25 m, 0.6 m)
(Rc,R′c) (1 m, 2.5 m) (0.8 m, 1.1 m)

(λ min
2 ,λ null

2 ) (0,1) (0,1)

Rgrid 0.75 m 0.25 m
σ 3 3

vcruise
i 3 m/s 1 m/s for all i

(xc,xM) (0.1,0.6)vcruise
i (0.1,0.6)vcruise

i
∆tk

i 3 s for all i and k 3 s for all i and k
Rz 1.8 m 1 m

• the mean traveled distance of the 10 ‘explorers’,

• the maximum Euclidean distance between two ‘explorers’

• the average of λ2(t) over time along the whole trial (we recall that the larger the
λ2 the more connected is the group of robots, refer to Appendix A),

when the number of robots varies from 10 (i.e., no ‘connectors’) to 35 (i.e., 25 ‘connec-
tors’). Each column refers to one of the 3 different scenarios.

An improvement with the increasing number of ‘connectors’ in all scenarios is obvi-
ous. The mean completion time (first row) roughly halves when comparing 0 to 25 ‘con-
nectors’. Adding more than 25 connectors will likely produce only minor improvement
compared to the higher cost of having more robots, since the trend becomes basically
flat. For this reason we did not perform simulations with a larger number of robots.

In the second row (mean traveled distance) one can see how, by already adding a
few robots, a reduced mean traveled distance is obtained. This can be explained by the
fact that the ‘connectors’ make the ‘explorers’ less disturbed by other ‘explorers’ with,
therefore, more freedom to avoid unnecessary detours in reaching their targets.

Another measure of the reduced task completion time is the maximum stretch among
the ‘explorers’ (i.e., the maximum Euclidean distance between any two ‘explorers’, see
third row). The more connectors, the more stretch is allowed: ‘connectors’ in fact provide
the support needed by the ‘explorers’ for keeping graph G connected while freely moving
towards their targets. Only the office-like environment does not show this trend in the
maximum stretch. This is due to the fact that the scene is relatively small and therefore
the targets are not enough spread apart, so no bigger stretch is needed.

The increased freedom of the ‘explorers’ is also evident in the plots of the average
λ2(t) (fourth row). These plots show how the ‘connectors’ are also useful to let the
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Table 2.3: Main parameters used in the experiments.

parameter value

(R′s,Rs) (1.4 m, 2.5 m)
(Ro,R′o) (0.5 m, 0.75 m)
(Rc,R′c) (1.0 m, 1.4 m)

(λ min
2 ,λ null

2 ) (0,1)

Rgrid 0.2 m
σ 3

vcruise
i 0.5 m/s

(xc,xM) (0.2,0.7)vcruise
i

∆tk
i 3 s for all i and k

Rz 0.75 m

‘explorers’ move more freely even in small environments. In fact, the larger the amount
of ‘connectors’, the lower the mean λ2: with more connectors the ‘explorers’ are more
able to simultaneously travel towards their targets, thus bringing the topology of the
group closer to less connected topologies (i.e., closer to tree-like topologies where the
explorers would be the leaves of the tree). Clearly, this effect is independent of the
maximum stretch, in fact the average λ2 follows this decreasing trend also in the third
office-like environment (third column).

2.5.2 Experiments
The experiments involved 6 real quadrotors and were meant to test the applicability of
the algorithm in a real scenario. The parameters of the algorithm used in the experiments
are reported in Table 2.3.

In order to obtain a C̄4 trajectory smoother than qi(t) and, thus, better matching the
dynamics capabilities of a quadrotor UAV [Mistler et al., 2001], we made use of a fourth
order linear filter for each quadrotor:

....q f
i (t) =−k1

...q f
i (t)− k2q̈ f

i (t)− k3q̇ f
i (t)+ k4(qi(t)−q f

i (t)) (2.16)

that tracks the position of the original trajectory qi(t), while keeping the velocity, accel-
eration, and jerk low in the filtered trajectory. The tunable gains were chosen as k1 = 44,
k2 = 707, k3 = 5090, k4 = 13692 for placing the (real negative) poles at approximately
−12, −13, −14, −15, then resulting in a settling time of about 0.3 s within a band of
5%.

The resulting trajectory q f
i (t) is then provided in place of qi(t) as input trajectory for

the robot i as defined in Eq. (2.1), since it results very close to qi(t) as shown in Fig. 2.10a.
However, at the same time, it provides a much smoother reference position signal to the
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Figure 2.10: Position, velocity and acceleration of ‘explorer’ 1 during a representative period of the exper-
iment, where qi(t), q̇i(t), q̈i(t) are plotted in dash and q f

i (t), q̇
f
i (t), q̈

f
i (t) as solid curves. The

x, y and z component is plotted in red, green and blue respectively.

quadrotor by filtering off occasional abrupt motions, as can be seen in the velocity and
acceleration reported in Figs. 2.10b and 2.10c. Figure 2.11 shows the norms of the UAV
errors while tracking the desired trajectory q f

i (t). The average norm of all the quadrotors
tracking errors during the whole experiment is 0.021 m, a few short peaks are above
0.06 m, and the highest peak is about 0.098 m.

For these experiments, we reproduced a scene similar to the office-like environment
used in simulation, see Fig. 2.12. The UAVs with IDs ‘2’ and ‘4’ (called ‘explorers’)
were given some targets, while the UAVs with IDs ‘1’, ‘3’, ‘5’, and ‘6’ (‘connectors’)
had no target, for then a total of 6 quadrotors.

The ‘explorer’ 1 (with ID ‘4’) carries an onboard camera and has two targets in total.
Whenever it reaches one of its targets it gives a human operator direct control of the
vehicle in the surrounding area of the target. With the help of the onboard camera, the
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Figure 2.11: Plots of the 6 norms of the position error between qi(t) and the corresponding real quadrotor
trajectory, for i = 1, . . . ,6. The average error norm is 0.021 m.

human operator has the task of searching for an object in the environment. This could
potentially be handled remotely as in Nestmeyer et al. [2013a], where rapid haptic feed-
back of the current swarm configuration improves awareness of the tele-operator. When
the object is found by the human operator, the task at the target is considered completed,
and the UAV switches back to autonomous control. In order to allow full human control
of ‘explorer’ 1 in the anchoring behavior, the UAV is temporarily decoupled from the
point q4, which is instead kept close to the target by the action of fanchor (as desired).
The ‘explorer’ 2 (with ID ‘2’) is instead fully autonomous and is assigned with a total of
4 targets. At the first target location, the task is to pick up an object to then be released
at the second target location. The same task is subsequently repeated with targets 3 and
4. We note, however, that the pick and place action is only virtually performed since
the employed quadrotors are not equipped with an onboard gripper. We also stress that
all these operations are performed concurrently while keeping the topology of the group
connected at all times.

A video of the experiment can be found on https://homepages.laas.fr/
afranchi/robotics/?q=node/144.

Table 2.4 reports and describes all the relevant events taking place during an experi-
ment in a chronological order.

Figure 2.12 shows the top-view of the ‘explorer’ paths for five representative time peri-
ods: T1 = [0,25] s in Fig. 2.12a, T2 = [25,60] s in Fig. 2.12b, T3 = [60,80] s in Fig. 2.12c,
T4 = [80,120] s in Fig. 2.12d, and finally T5 = [120,129] s in Fig. 2.12e. Every plot shows
the (connected) graph topology of the group at the beginning of the time interval (dashed
black lines) and the paths of the 2 ‘explorers’ (solid lines, blue for the ‘explorer’ 1 and
red for the ‘explorer’ 2). The initial positions of the robots are shown with colored circles
and are labeled with the IDs of the corresponding robots. The two small blue squares
represent the two desired target locations of the ‘explorer’ 1. The two green squares
and the two red squares represent the two pick positions and release positions of ‘ex-
plorer’ 2, respectively. Finally, the vertical walls of the environment are shown in gray.
Figure 2.12f on the other hand shows the z-coordinate of all the six quadrotors in order
to understand the 3D motion in the 2D projections of Figs. 2.12a to 2.12e.
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Table 2.4: Chronological list of important events in the experiment.

Fig. 2.12 Time Events

(a)

0 s The experiment starts. Both ‘explorers’ are assigned a target and
since ‘explorer’ 2 is closer to its goal, it becomes ‘prime traveler’,
while ‘explorer’ 1 is ‘secondary traveler’.

22 s ‘Explorer’ 2 arrives at its first target, where it should pick up an
object. Therefore ‘explorer’ 2 goes into ‘anchor’ and ‘explorer’ 1
becomes ‘prime traveler’.

(b)

29 s ‘Explorer’ 2 has completed the pick-up action and receives the
point to release the object as a new target. Since ‘explorer’ 1 is
still ‘prime traveler’, ‘explorer’ 2 becomes ‘secondary traveler’.

35 s ‘Explorer’ 1 arrives at its target, where the human operator takes
control of the UAV and use its camera to find a yellow picture on
the wall. ‘Explorer’ 2 then becomes ‘prime traveler’.

56 s ‘Explorer’ 2 arrives at the target where it needs to release the ob-
ject.

(c)

63 s ‘Explorer’ 2 has completed the releasing action and receives the
next pick-up location. ‘Explorer’ 1 is still under the control of the
human operator and therefore in an ‘anchor’ state, so ‘explorer’ 2
directly becomes ‘prime traveler’.

65 s The human operator finds the picture on the wall, ‘explorer’ 1 be-
comes autonomous again and starts to move towards its next target
as ‘secondary traveler’, since ‘explorer’ 2 is ‘prime traveler’.

78 s ‘Explorer’ 2 arrives at the location where to pick up the second
object and goes to the ‘anchor’ state. Hence ‘explorer’ 1 becomes
‘prime traveler’.

(d)

85 s ‘Explorer’ 2 has completed the pick-up action and starts moving
towards the releasing location as ‘secondary traveler’.

100 s ‘explorer’ 1 arrives at its target, goes to ‘anchor’ state and is thus
under control of the human operator, therefore ‘explorer’ 2 be-
comes ‘prime traveler’.

119 s ‘Explorer’ 2 arrives at its final target and switches into ‘anchor’.

(e)

123 s The human operator finds the searched object and ‘explorer’ 1 be-
comes ‘connector’ since it has no new target location.

126 s ‘Explorer’ 2 has completed the releasing action and becomes a
‘connector’ since it has also no new target.

129 s No UAV has a next target and the experiment ends.
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Figure 2.12: (a)-(e) Top view of the 3D paths of the ‘explorers’ (solid blue and red curves) during the
experiment in five representative time intervals. The interaction graph at the beginning of each
interval is shown with black dashed lines. The ID of each robot is shown besides the circle
representing the starting position of each robot at the beginning of the corresponding interval.
Targets are represented with colored squares and walls are gray. The specific time intervals
are: (a) T1 = [0,25] s, (b) T2 = [25,60] s, (c) T3 = [60,80] s, (d) T4 = [80,120] s and (e) T5 =
[120,129] s. (f) z-coordinate of the positions of all six quadrotors to help interpreting the 2D
projection reported in the plots (and videos). The large vertical motion of ‘explorer’ 1 (blue)
is due to the human operator flying this robot, while the subsequent descent is autonomously
performed thanks to the proposed algorithm.
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(a) (b) (c)

Figure 2.13: Three simultaneous screenshots of the experiment described in the text: (a) shows the side
view of the scene from a fixed camera. Connections between UAVs (brightened areas) are
overlayed as green lines. (b) shows the view taken from the onboard camera of the ‘explorer’ 1
using the same highlighting. (c) shows a 3D synthetic reconstruction of the robot positions
and connections are shown with a line given in green when the weight is high, red shortly
before a connection breaks and as a gradient in between. The robot that is marked with the
red sphere is currently decoupled and controlled by the human operator.

Figure 2.13 shows three screenshots of the experiment: the lines between two quadro-
tors represent the corresponding connecting link as per graph G.

Finally, Fig. 2.14 reports nine plots that capture the behavior of several quantities of
interest throughout the whole experiment. As can be seen in Fig. 2.14a, the generalized
algebraic connectivity eigenvalue λ2(t) (see Appendix A) remains positive for any t >
0, thus implying continuous connectivity of the graph G as desired. The time-varying
number of edges in Fig. 2.14b shows the dynamic reconfiguration of the group topology
which ranges between topologies with 5 edges (the minimum for having G connected)
and topologies with up to 10 edges. This plot clearly shows how the adopted connectivity
maintenance approach can cope with time-varying graphs. In Fig. 2.14c, we report the
stretch of the group, defined as the maximum Euclidean distance between any two robots
at a given time t. One can then appreciate how this stretch varies among 3.5 and 7.5
meters thus exploiting at most the allowable ranges of the experimental arena. Notice
also how the stretch is in general larger when the number of links (and consequently
λ2(t)) is smaller. In fact the two peaks at about 60 s and 103 s occur when the robots are
forced into a sparsely connected topology because the two ‘explorers’ have concurrently
reached their farthest target pairs, i.e., (A1, B2) and (B1, D2).

Figure 2.14d shows the ‘explorer’ states state2 and state4 over time, with a dashed
blue line and solid red line, respectively. In the plot, the following code is used: 1 =
‘prime traveler’, 2 = ‘secondary traveler’, 3 = ‘anchor’ and 4 = ‘connector’. For i =
1,3,5,6 it is statei = 4 for all t ∈ [0,129]. Notice that, because of the algorithm design,
at most one ‘explorer’ has statei = 1 at any given time.

The temporary decoupling of the ‘explorers’ from the points q2 and q4 during their
anchoring behavior can be appreciated in Fig. 2.14e, where the Euclidian distance be-
tween the real robot position in the trajectory and the corresponding qi(t) is shown, for
i = 2,4. ‘Explorer’ 1 (solid red line) decouples four times in total, in correspondence
of the 2 pick-and-place operations, which gives rise to 4 short peaks in the plot. ‘Ex-
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Figure 2.14: Behavior of different measurements during an experiment: (a) λ2 always stays greater than
zero, thus showing how the group remains connected at all times, (b) the number of links
|E(t)| of the interaction graph G(t), (c) the stretch of the formation given by the maximum
Euclidean distance between any two quadrotors over time, (d) the exploration states with the
following meaning: 1: ‘prime traveler’, 2: ‘secondary traveler’, 3: ‘anchor’, 4: ‘connector’,
(e) the position difference between the virtual point of the connectivity maintenance and the
commanded position to the quadrotors showing the decoupling as an ‘anchor’, (f) the traveling
efficiency of the current ‘prime traveler’ (see Eq. (2.12)), (g) the estimation of the traveling ef-
ficiency by the ‘secondary travelers’ (see Eq. (2.13)), (h) the force direction alignment for the
‘secondary travelers’ (see Eq. (2.10)), (i) the adaptive gain used by the ‘secondary travelers’
to scale down their traveling force (see Eq. (2.15)).

plorer’ 2 (dashed blue line) decouples two times in total, in correspondence of the 2
human-in-the-loop operations, causing 2 long peaks in the plot.

Figure 2.14f shows the traveling efficiency Λp of the current ‘prime traveler’ with a
dashed blue line when ‘explorer’ 1 is the ‘prime traveler’ and with a solid red line when
‘explorer’ 2 is the ‘prime traveler’. The estimation Λ̂i

p of this value (see Eq. (2.13)) by
all robots that are currently not ‘prime traveler’ is given in Fig. 2.15. We chose kΛ = 1
resulting in a relatively slow propagation to show the additional robustness of our algo-
rithm against this parameter (and the simple adopted consensus propagation), but clearly
one could easily employ higher gains. To make it easier for the reader to understand
the following discussion, we show again in Fig. 2.14g the essential information of this
last plot whenever a robot is a ‘secondary traveler’. In Figs. 2.14h and 2.14i the force
direction alignment Θi (see Eq. (2.10)) and the adaptive gain ρi (see Eq. (2.15)) of the
current ‘secondary traveler’ are shown. In the latter three plots a dashed blue line indi-
cates when ‘explorer’ 1 is the ‘secondary traveler’, and a solid red line when ‘explorer’ 2
is the ‘secondary traveler’.
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Figure 2.15: Estimation of the ‘prime traveler’ traveling efficiency of all the six robots, whenever they
are currently not a ‘prime traveler’ (see Eq. (2.13)). The color scheme for the robots is as
in Fig. 2.12.

To fully understand the important features of our method, we now give a detailed de-
scription of the time interval [0,22] in the Figs. 2.14f to 2.14i. A similar pattern can then
be found in the rest of the experiment. In this time interval, the ‘explorer’ 2 is the ‘prime
traveler’, while ‘explorer’ 1 is a ‘secondary traveler’ (and the rest are ‘connectors’). Due
to the initial transient of its motion controller, the ‘prime traveler’ starts with Λp = 0 and
quickly reaches Λp = 0.6. Shortly after, the traveling efficiency decreases again since
‘explorer’ 2 reaches the end of the area where it can freely move and, thus, needs to
‘pull’ the other robots for preserving connectivity of G. This effect is propagated to the
‘explorer’ 1 as shown in Fig. 2.14g. The force direction alignment between the traveling
force and the generalized connectivity force is shown in Fig. 2.14h. Combining these
two plots with Eq. (2.15) allows to understand the effect of Fig. 2.14i. As can be seen,
the ‘secondary traveler’ slows down its motion to around 10% for roughly 5 seconds.
This enables the ‘prime traveler’ to travel faster again (see Fig. 2.14f). However, since
the ‘explorer’ 2 needs to move around the wall (see Fig. 2.12a) to reach its target, it needs
to ‘pull’ the other robots even more for preserving connectivity. Therefore, the traveling
efficiency becomes zero and, although the direction alignment of the ‘secondary trav-
eler’ becomes higher, the overall gain ρi stays very low: this makes it possible for the
‘prime traveler’ to eventually reach its target. We recall here that, according to Table 2.3
and Eq. (2.9), Λp = 1 as soon as the ‘prime traveler’ achieves a speed of at least 80% of
its desired cruise speed (so the error is less than 20%), while Λp = 0 means a speed of
less than 30% (an error of more than 70%), and not necessarily a zero velocity.

2.6 Conclusions
In this chapter, we presented a novel distributed and decentralized control strategy that
enables simultaneous multi-target exploration while ensuring a time-varying connected
topology in a 3D cluttered environment. We provided a detailed description of our al-
gorithm which effectively exploits presence of four dynamic roles for the robots in the
group. In particular, a ‘connector’ is a robot with no active target, an ‘anchor’ a robot
close to its desired location, and all other robots are instead moving towards their targets.
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Presence of at most one ‘prime traveler’, holding a leader virtue, is always guaranteed.
All other robots (‘secondary travelers’) are bound to adapt their motion plan so as to
facilitate the ‘prime traveler’ visiting task. This feature ensures that the ‘prime traveler’
is always able to reach its target, and thus ultimately allows to conclude completeness of
the exploration strategy. The scalability and effectiveness of the proposed method was
shown by presenting a complete and extensive set of simulative results, as well as an ex-
perimental validation with real robots for further demonstrating the practical feasibility
of our approach.

2.6.1 Future work
As future development, the control of the ‘connectors’ could be modified to actively
help improving the connectivity (e.g., moving towards the center of the group or towards
the closest ‘explorer’) and therefore decrease the overall completion time even more.
Another extension could include imposing temporal targets that expire before any robot
can possibly reach them. In our framework this could be easily achieved by letting
the corresponding ‘prime traveler’ or ‘secondary traveler’ switching into a ‘connector’
whenever a target expires, for then automatically starting to explore the next target (if
any).

An important direction worth of investigation would also be the possibility to (explic-
itly) deal with errors or uncertainties in the relative position measurements (w.r.t. robots
and obstacles) needed by the algorithm. Indeed, the presented results rely on an accurate
measurement of relative robot and obstacle positions obtained by means of an external
motion capture system.

Another improvement could address the distributed election of the ‘prime traveler’ as
was already discussed in Sec. 2.4.3. Indeed, while the adopted flooding approach does
not require presence of a centralized planning unit, it still needs to take into account in-
formation from all robots. It would obviously be preferable to only exploit information
available to the robot itself and its 1-hop neighbors. This could be achieved by leveraging
some (suitable variant of the) consensus algorithm as done for the decentralized propa-
gation of the traveling efficiency of the current ‘prime traveler’. More generally, it might
also be beneficial to improve the election of the ‘prime traveler’ by considering other
criteria than the Euclidean distance w.r.t. a target which may not always result in an ‘op-
timal’ group motion (e.g., when obstacles, such as a wall, are present between the next
‘prime traveler’ and the target). The election could for instance choose the robot with
the highest chance of reducing even further the completion time, e.g., based on the cur-
rent motion of the group or direction of the majority of current targets of all ‘secondary
travelers’.

Finally, it would be interesting to obtain an analytical upper bound of the total explo-
ration time for our approach, although, in our opinion, deriving such a bound is unfortu-
nately not so straightforward. Clearly, the considered multi-target exploration scenario
has some analogies with the multiple traveling salesman problem [Bektas, 2006], where
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a certain number N of agents are asked to find a set of N shortest routes through a set
of m cities and return back to the start. Nevertheless, an analysis based on the multiple
traveling salesman problem would not easily extend to our case because of the constraint
of continuous connectivity maintenance.

2.6.2 Autonomous Vision System
The ‘explorer’ 1 in Sec. 2.5.2, which carries an onboard camera, was operated by a
human while being an ‘anchor’. It would certainly be desirable to achieve a fully inde-
pendent setup, without having a human as intermediary. Hence, the robot in our example
would need to fully autonomously find the desired object through perceiving its camera
stream, to achieve a truely intelligent system.

A major benefit of the human visual system is that we perceive the world mostly in-
variant to illumination [Marr, 1982]. Inspired by this light independent description of
the scene, many artificial intelligence systems infer intrinsic images in their pipeline,
like shadow removal [Kumar, 2011], object recoloring [Beigpour and Van de Weijer,
2011], interactive image and video editing [Bonneel et al., 2014] and autonomous driv-
ing [Maddern et al., 2014]. This motivates us to look deeper into the area of computer
vision and especially the inference of light-invariant intrinsic images in the next part of
my thesis.
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Computer Vision
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Chapter 3

Preliminaries
In this chapter, we introduce the fundamental concept of computer vision. Then, we
look into the formation of an image through light transport and how humans perceive
the world. Afterwards, we clarify what (convolutional) neural networks, currently the
strongest contender of machine learning in computer vision, are. This gives us the ap-
propriate preliminaries to fully grasp the ideas of the coming chapters.

3.1 Computer Vision as Inverse Computer Graphics
One of the big goals in computer vision is to invert the image formation process in order
to infer properties of the real 3D world from the 2D projection in the image. On the
one hand, Computer Graphics tries to simulate the real world through images or video,
by taking a 3D model with material definitions and asking the question how to realis-
tically render the scene into a 2D projection. In Computer Vision on the other hand,
one tries to inverse the graphics approach by taking a 2D image and accurately recover
information about the 3D model. Intrinsic Images as subfield describes the problem of
recovering the latent space of range, orientation, reflectance, and incident illumination,
according to Barrow and Tenenbaum [1978]. We want to focus first on the recovery
of the intrinsic layers reflectance (describing the objects’ material properties) and shad-
ing (a combination of surface orientation and illumination) in Chapters 4 and 5 and how
this decomposition can be used for relighting in Chapter 7. Therefore, we first need to
understand how light interacts with objects in our world.

3.2 Light Transport

3.2.1 Physical properties of light
We first define some notation to have a solid knowledge about the physical concept of
light transport as defined by Horn [1986]:

Irradiance The amount of light falling on a surface. It is the power per unit area (Wm−2

– watts per square meter) incident on the surface.
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Radiance The amount of light radiated from a surface. It is the power per unit area per
unit solid angle (Wm−2 sr−1 – watts per square meter per steradian) emitted from
the surface.

Luminance The intensity of light emitted from a surface per unit area in a given direc-
tion. Therefore, it is one specific angle of radiance, while the angle of interest is
most commonly the angle subtended by the eye or camera.

3.2.2 Physical Measurements and Perceived Sensations
We have to distinguish between the physical properties of light and the color perceived
by the brain. While, from a physical perspective, color can be described exactly by
measuring the spectral power distribution (the intensity of the visible electro-magnetic
radiation), most of the signal gets lost when perceived through the eye. The retina sam-
ples color in three broad bands only, roughly corresponding to red, green and blue light.
The brain combines the signals from the cones (cells sensitive to those colors) and the
rods (cells sensitive to intensity only). Therefore, so-called metamers exist, colors which
through the eye appear to be the same, although in fact they have a different spectral com-
position [Horn, 1986]. This leads to different sensations of perceived color, dependent
on the viewer/imaging system.

3.2.3 Human Perception
The ‘International Commission of Illumination’ (CIE, from French: ‘Commission inter-
nationale de l’éclairage’) defined the following sensations of human perception [Hunt
and Pointer, 1987]:

Brightness the human sensation by which an area exhibits more or less light.

Hue the human sensation according to which an area appears to be similar to one, or to
proportions of two, of the perceived colors red, yellow, green and blue.

Colourfulness the human sensation according to which an area appears to exhibit more
or less of its hue.

Lightness the sensation of an area’s brightness relative to a reference white in the scene.

Chroma the colourfulness of an area relative to the brightness of a reference white.

Saturation the colourfulness of an area relative to its brightness.

Object color depends upon the ratios of light reflected from the various parts of the
visual field rather than on the absolute amount of light reflected. Still, humans can intu-
itively figure out the separation of reflectance of objects from the shading of the scene:
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We are never in doubt whether we have before us a white or gray paper
even under quite different conditions of illumination: in bright sunshine,
overcast sky, in twilight, or by candle light, we have always almost the same
sensation.

Mach [1865]

3.2.4 The (General) Rendering Equation
To understand how an image is formed, we first look at how light interacts with a scene
before it reaches the eye/camera.

An easy derivation shows that image irradiance is proportional to scene radiance [Horn,
1986]. Furthermore, the radiance of a surface will generally depend on the direction from
which it is viewed as well as on the direction from which it is illuminated. It can be de-
scribed by the rendering equation [Immel et al., 1986, Kajiya, 1986] that determines the
color and brightness of a surface point x at time t:

Lo(x,ωo,λ , t) = Le(x,ωo,λ , t)+
∫

ωi∈Ω

fr(x,ωi,ωo,λ , t)Li(x,ωi,λ , t)〈n,ωi〉dωi (3.1)

It depends on the incoming angle ωi of light with intensity Li at wavelength λ , reflected
towards the angle ωo of outgoing light Lo and emitted light Le, the surface normal n
and the amount of reflected light fr. The dot product in the integral models Lambert’s
(cosine) law:

Dependence on the cosine of the incident angle comes directly from the
dependence of the irradiance on that factor and so can be traced to the fore-
shortening of the surface as seen from the light source.

Lambert [1760]

This general model allows us to describe even complex effects like subsurface scatter-
ing by letting the point x emit light, when it actually exits the material from a subsurface
reflection which was transmitted at another surface location of the object.

3.2.5 Simplified Rendering Equation
Most objects do not emit light themselves or exhibit the phenomenon of subsurface scat-
tering. It is the amount of light at a given wavelength λ in the (visible) spectrum that is
reflected at a specific point x on the object in which we are then interested in. We can
then describe the equation with a bidirectional reflectance distribution function (BRDF)
and simplify to:

Lo(ωo) =
∫

ωi∈Ω

f (ωi,ωo)Li(ωi)〈n,ωi〉dωi (3.2)
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For the BRDF, the Helmholtz reciprocity condition holds:

f (ωi,ωo) = f (ωo,ωi) (3.3)

Many everyday surfaces have a reflectance function that combines two components,
one matte and one specular [Marr, 1982]. In more detail, an ordinary BRDF has the
following shape:

The surface orientation that maximizes the diffuse reflection component is
typically one for which the surface normal points at the light source. The
surface orientation that maximizes the glossy component, on the other hand,
is usually one for which the surface normal points about halfway between
the light source and the viewer. Correspondingly, the reflectance map can
have two maxima. Typically, the global maximum is at the glossy peak.

Horn [1986]

3.2.6 Material Properties
In 3D, any direction ω can be described with two-dimensional spherical coordinates, i.e.,
their polar angle θ and azimuth φ , so the BRDF is a four-dimensional function dependent
on ωi = (θi,φi) and ωo = (θo,φo). Materials are then classified by the dimensionality of
the subspace they can be reduced to.

Lambertian In the simplest case of Lambertian materials, the BRDF equates to a con-
stant and the apparent brightness of a Lambertian surface to an observer is the
same regardless of the observer’s angle of view [Ikeuchi, 2014]. This is the case
for Spectralon [Goldstein et al., 1999], which is designed specifically for its prop-
erties. At least mostly, this also holds for paper, unfinished wood, snow and char-
coal.

Isotropic Isotropic materials behave invariant to rotation and the BRDF is reduced to the
three dimensions θi,θo,φdiff = φo− φi. For example plastic is a typical isotropic
material.

Anisotropic The most complex class are anisotropic materials, like brushed metal, vel-
vet and satin. They need the full potential of the 4D BRDF to describe its re-
flectance properties.

3.3 (Convolutional) Neural Networks
For a long time, computer vision systems were created by using prior knowledge to
directly model the desired task. But, as Polanyi [1966] stated, the problem with this
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approach is that “we can know more than we can tell”. This fact, often called Polanyi’s
Paradox, means that many of the tasks we perform rely on tacit, intuitive knowledge that
is difficult to codify and automate. Facial recognition is only one out of many examples
where tacit knowledge is obvious:

We know a person’s face, and can recognize it among a thousand, indeed
a million. Yet we usually cannot tell how we recognize a face we know,
so most of this cannot be put into words. When you see a face, you are
not conscious about your knowledge of the individual features (eye, nose,
mouth), but you see and recognize the face as a whole.

Lam [2000]

Polanyi’s Paradox shows the desire to establish machine learning systems that directly
learn from examples of a particular problem with their correct answers that stem from
expert human judgment. This approach is called supervised learning.

The year 2012, with the work of Krizhevsky et al. [2012], marked a change in the
usability of supervised learning systems in computer vision heavily relying on Convo-
lutional Neural Networks (CNNs), made possible by the combination of software and
computational power through the use of GPUs for the paramount matrix multiplications.
From this point on, many areas in the field of computer vision saw big improvements in
performance. The benefit of using CNNs and applying the holy grail of ‘deep learning’
is that they can make better use of much larger datasets compared to other supervised
learning methods.

In order to understand this approach, we will now summarize the definition of a (con-
volutional) neural network. For a more thorough introduction, refer to Goodfellow et al.
[2016], amongst many others.

3.3.1 Multi layer perceptron

A neuron in an artificial neural network is loosely inspired by a neuron in the brain. It
computes the mathematically simple

o j = ϕ

(
n

∑
i=1

xiwi j +b j

)
,

a linear reweighting with wi j of all the input signals xi and a bias b j, followed by a
non-linear activation function ϕ (see Fig. 3.1) in a purely feedforward fashion. A small
network consisting of a collection of several of those neurons connecting an input to an
output layer, is called a perceptron [Rosenblatt, 1958].

The dilemma with such a simple network is that it can only compute linearly separable
problems and therefore not even a very basic predicate function such as XOR [Minsky
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x3 w3 j Σ ϕ

(non-linear)
activation
function

o j

Output

x1 w1 j

x2 w2 j

...
...

xn wn j

Weights

Bias b j

Inputs

Figure 3.1: Artificial neuron. Model of the j-th artificial neuron in a perceptron.

et al., 1969]. This is why multilayer perceptrons (MLPs) were introduced, which consist
of several hidden layers (see Fig. 3.2 for an example) of that same concept.

In fact, according to the universal approximation theorem [Hornik, 1991], a MLP can
theoretically approximate any function arbitrarily well provided that the number of units
is sufficiently large.

This is the foundation of neural networks, but there are three things to take into account
to lead to the break through of neural networks in computer vision: the backpropagation
algorithm to learn the weights, an appropriate activation function and the use of convo-
lutions. We will discuss those topics in the next sections.

3.3.2 Backpropagation and Stochastic Gradient Descent
In the previous section, we defined the structure of the neural network, now we need to
determine appropriate weights so that the overall net solves the desired task best, which
in turn is measured by a loss/error/cost function E. We find the network parameters wi j
that result in the lowest loss by gradient descent on the loss function.

As in Fig. 3.1, we have

net j =
n

∑
i=1

xiwi j (3.4)

o j = ϕ
(
net j

)
, (3.5)

therefore, to update the weights, we can use the chain rule to determine the gradient

∂E
∂wi j

=
∂E
∂o j

∂o j

∂net j

net j

∂wi j
. (3.6)

For performance reasons, gradient descent is applied to mini-batches, which is referred
to as stochastic gradient descent (SGD) [Robbins and Monro, 1951]. The high dimen-
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Figure 3.2: Multilayer perceptron. One example of a multilayer perceptron with three hidden layers. The
bias terms are omitted for clarity.

sional error surface generally has many local minima, hence finding the right step size in
SGD that leads to a global minimum is an active research topic. AdaDelta [Zeiler, 2012]
and Adam [Kingma and Ba, 2015] are two popular recent approaches to automatically
adapt the learning rate.

3.3.3 Choice of activation function

In the original definition of the perceptron, the activation function is determined by a
step function, to give a binary output, which is supposed to resemble the firing of a
neuron [Rosenblatt, 1958]. An obvious extension is to use functions with continuous
range in order to also solve regression problems. Their shape, as shown in Fig. 3.3, is
often motivated by the step function, so in earlier years, the most used ones were the
sigmoid/logistic function

S(x) =
1

1− exp(−x)
(3.7)

and hyperbolic tangent

tanh(x) =
exp(x)− exp(−x)
exp(x)+ exp(−x)

(3.8)
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(see Figs. 3.3a and 3.3b for their visualization). Recent works deviated from that concept,
after the Rectified Linear Unit [Nair and Hinton, 2010]

ReLU(x) = max(0,x) (3.9)

was suggested (see Fig. 3.3c), which was one of the main ingredients that helped in the
breakthrough of neural networks in computer vision [Krizhevsky et al., 2012]. It is a
common belief that the introduced sparsity by a ReLU is key to good performance, but
there is evidence that incorporating a non-zero slope for the negative part in rectified
activation units could consistently improve results [Xu et al., 2015]. Therefore, many
derived functions inspired by the ReLU exist nowadays:

• Parametric ReLU [He et al., 2015]:

PReLU(x) =

{
x if x > 0
α · x if x≤ 0

(3.10)

• Concatenated ReLU [Shang et al., 2016]:

CReLU(x) = (max(0,x),max(0,−x)) (3.11)

• Exponential Linear Unit [Clevert et al., 2015]:

ELU(x) =

{
x if x > 0
α · (exp(x)−1) if x≤ 0

(3.12)

• Scaled ELU [Klambauer et al., 2017]:

SELU(x) = λ ·ELU(x) (3.13)

Many of those activation functions prove to be beneficial for the specific task they
were suggested for. Nonetheless, the simple ReLU is the predominantly employed non-
linearity [Rawat and Wang, 2017, Gu et al., 2018] that generally works well.

3.3.4 Convolutions

In images, each pixel can be represented with one neuron. While a multi layer percep-
tron, as described above, connects all neurons between two adjacent layers with learnable
weights, in images the spatial structure of pixels can be exploited. Pixels are normally
related to those in their proximity and less with pixels far apart in the image. In addition,
objects have the same appearance in images, no matter where they are located in the
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Figure 3.3: Activation functions. Three commonly employed non-linear activation functions.

image. This translational invariance and sparsity in connections leads to using convolu-
tions [Fukushima, 1980, LeCun et al., 1999], where the same filter is applied in a sliding
window fashion over the whole neural network layer. This greatly reduces the amount of
parameters in the network, which leads to faster training and execution.

Several other approaches exist to learn the dependency structure across pixels, e.g.,
through learned bilateral filtering to achieve sparse high dimensional filters [Jampani
et al., 2016, Gadde et al., 2016], in the form of non-parametric structured output net-
works [Lehrmann and Sigal, 2017] or in video data by utilizing temporal correspon-
dences [He et al., 2018], nonetheless, convolutions keep being used as the standard solu-
tion in computer vision [Rawat and Wang, 2017, Gu et al., 2018].

Now, we have the prerequisites to dive deeper into learning to predict intrinsic images
which we will talk about in the coming chapters.
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Chapter 4

Direct CNN Prediction of Reflectance

In this chapter we want to focus on the recovery of the intrinsic layers reflectance and
shading, under the Lambertian assumption.

Separating an image into reflectance and shading layers poses a challenge for learning
approaches because no large corpus of precise and realistic ground truth decompositions
exists. The Intrinsic Images in the Wild (IIW) dataset [Bell et al., 2014] provides a
sparse set of relative human reflectance judgments, which serves as a standard benchmark
for intrinsic images. A number of methods use IIW to learn statistical dependencies
between the images and their reflectance layer. Although learning plays an important
role for high performance, we show that a standard signal processing technique achieves
performance on par with state-of-the-art. We propose a loss function for CNN learning
of dense reflectance predictions. Our results show a simple pixel-wise decision, without
any context or prior knowledge, is sufficient to provide a strong baseline on IIW. This
sets a competitive baseline which only two other approaches surpass.

Contributions This chapter is partially published as [Nestmeyer and Gehler, 2017,
Sec. 1 – 4] with additional material to provide a more thorough treatment.

4.1 Introduction
Almost 40 years ago, the seminal paper of Barrow and Tenenbaum conjectured that

A robust visual system should be organized around a noncognitive, nonpur-
posive level of processing that attempts to recover an intrinsic description of
the scene.

Barrow and Tenenbaum [1978]

Their work motivates the task of decomposing an image into constituent layers such as
surface reflectance, surface orientation, distance and incident illumination. Ever since,
significant progress has been made on this problem, but the recovery of these physical
properties of visual scenes or videos remains an open challenge.
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The central problem in recovering intrinsic scene characteristics is that the
information is confounded in the original light-intensity image: a single in-
tensity value encodes all the characteristics of the corresponding scene point.

Barrow and Tenenbaum [1978]

A successful model needs to resolve the ill-posedness of the problem and cope with the
variety of image appearances.

A possible line of attack are supervised learning methods which have been used with
great success for a wide range of computer vision applications. Standing out for superior
performance combined with favorable runtimes is the class of Convolutional Neural Net-
work (CNNs), a dominant contender for many vision problems. CNNs are mostly falling
into the category of purposive models, guided by task specific goals such as image clas-
sification or recognition. The obvious question is whether CNNs will fare equally well
on the problem of intrinsic image decompositions.

Several works have included CNN methods in systems that recover reflectance and
shading layers Narihira et al. [2015a,b], Zhou et al. [2015], Zoran et al. [2015]. How-
ever, prior work uses CNNs mostly in combination with additional methods, such as
Conditional Random Fields (CRFs), to achieve a dense image decomposition. An ad-
vantage of CRF models is their ability to encode prior information about the problem.
In the pre-CNN time, intrinsic image methods were dominated by CRF models with
carefully designed priors on reflectance, shading, and their combination. In this and the
next chapter, we attempt to answer the question whether prior terms are necessary when
human annotation in the form of weak labels is available.

Acquiring accurate training data for intrinsic images is a challenge. The MIT in-
trinsic dataset [Grosse et al., 2009] with 20 images and 10 (single color) light configu-
rations was a first attempt to empirically validate intrinsic estimation techniques. It has
served this purpose well, but lacks realism and diversity. Recently, Beigpour et al. [2015]
proposed an extension to multi illuminants, but without overcoming the limitations on
extent. Another possible route to generate datasets is the use of computer graphics ren-
dering engines. This has been explored by Beigpour et al. [2013] who created a dataset
of synthetic scenes rendered using the Blender open source rendering engine [Blender,
2021]. This led to a dataset of 32 single objects and 36 scene compositions which is still
limited in terms of detail and diversity. The MPI-Sintel dataset has been created using
the open source movie Sintel [Butler et al., 2012] to serve as a benchmark for several
problems such as optical flow estimation. While MPI-Sintel is more varied and complex,
the type of scenes and visual appearance is still very different from real world data.

A significant attempt to overcome the lack of empirical data is the dataset of “Intrin-
sic Images in the Wild” (IIW) [Bell et al., 2014]. This dataset contains 5230 photos of
mostly indoor scenes which have been annotated with a sparse set of relative reflectance
judgments. From a small set of image locations, human judgments on pairs of neigh-
boring locations have been collected, which provide whether one point is of darker or
similar material reflectance. Although humans can be fooled with artificial setups [Adel-
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son, 2000], the perception of relative material reflectance is sufficient to provide mostly
consistent label information for this large corpus of images (see Bell et al. [2014] for an
analysis). Along with the dataset, Bell et al. also formulate the weighted human disagree-
ment rate (WHDR), a performance metric that we will discuss in detail in Sec. 4.3.1. The
IIW dataset allows to empirically validate intrinsic image estimation and the judgments
have also been used to train models for intrinsic image decompositions [Narihira et al.,
2015b, Zhou et al., 2015, Zoran et al., 2015].

In this and the next chapter, we develop two intrinsic image models: a CNN approach
with appropriate loss function and a filtering technique to include strong prior knowledge
about reflectance properties. We first design a CNN method that, in contrast to previous
work, does not include prior information on shading smoothness [Land and McCann,
1971], reflectance [Omer and Werman, 2004, Gehler et al., 2011, Shen and Yeo, 2011,
Bi et al., 2015], or combinations [Barron and Malik, 2015]. We design a loss function
that enables end-to-end learning from the pairwise judgments. This leads to an inter-
esting result: a simple multi-layer perceptron with no image context, just based on the
pixels alone provides competitive performance, better or on par with current learning
and non-learning models. We then develop a method from the other extreme, a dense
filtering operation based on joint bilateral and guided filtering. This technique simpli-
fies the processing pipeline of Bi et al. [2015] and makes it possible to apply to any
reflectance prediction. Our experiments show drastically improved state-of-the-art per-
formance on IIW. Besides presenting the empirically best performing algorithm, our re-
sults reveal interesting observations about the current state of intrinsic image estimation.
In summary, we believe that for intrinsic image estimation, it is the inclusion of prior
knowledge through regularization, CRFs, or filtering that still drives the performance.
To rely solely on learning approaches, the amount of available annotation may still be
insufficient.

4.2 Related Work
Until recently there was a lack of empirical data to validate intrinsic images algorithms.
Therefore, most of the literature revolved around the design of suitable priors. The re-
cent work of Barron and Malik [2015] is a prominent example of a method that care-
fully trades the use of prior information with interesting representations that enable a
detailed decomposition into several layers. Priors in Barron and Malik [2015] include
terms on smoothness, parsimony and absolute values of reflectance, smoothness, sur-
face isotropy and occluding contour priors on shape and a multivariate Gaussian fit to a
spherical-harmonic illumination model. This lead to impressive results on the MIT in-
trinsic dataset [Grosse et al., 2009], but the method is limited to single masked objects in
a scene, and problems with complex illumination remain.

The work of Bi et al. [2015] approaches the problem from a filtering perspective. Af-
ter a filtering step followed by clustering, the pixels are grouped into regions of same
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reflectance, such that a simple shading term suffices to recover the full intrinsic decom-
position. This method produces the best results on the IIW dataset but takes several
minutes of processing time. In Chapter 5 we build on this work and propose a filtering
technique that can be applied to any other intrinsic image estimation as well. This imple-
ments the idea of grouping pixels into sets of constant reflectance. Other works consider
additional knowledge in order to recover reflectance and shading, as, e.g., multiple im-
ages of the same scene with different lighting [Weiss, 2001, Laffont and Bazin, 2015],
an interactive setting with user annotations [Bousseau et al., 2009, Bonneel et al., 2014],
or an additional depth layer as input [Chen and Koltun, 2013].

The paper of Bell et al. [2014] introduced the Intrinsic Images in the Wild dataset with
human annotations giving relative reflectance judgments that served as the training and
test set for different learning based methods. Using this data, the work of Bell et al.
[2014] was the first to compare different algorithms on a large corpus of real world
scenes.

A first attempt to learn using the data from IIW was made by Narihira et al. [2015b].
The authors used the relative judgment information in a multi-class setup and fine-tune an
AlexNet CNN trained on ImageNet. Only the sparse annotation points that are required
to compute the WHDR loss are predicted with this network and there is no step that turns
them into a dense decomposition. The works of Zhou et al. [2015] and Zoran et al. [2015]
are similar, both use a CNN to obtain pairwise judgment predictions, then followed by
a step to turn the sparse information into a dense decomposition. Both methods achieve
good results on IIW and take several seconds to process an image.

Similar to our work, in the sense that a dense intrinsic decomposition is predicted, is
the work of Narihira et al. [2015a]. A CNN is used to directly predict reflectance and
shading with the objective function being the difference to ground truth decompositions.
Since those are only available for the rendered dataset of MPI-Sintel, the authors report
that the learned model does not generalize well to the real world images of IIW. An addi-
tional data term in the gradient domain is used by Lettry et al. [2016]. They also propose
to use an adversary in order to remove typical generative CNN artifacts by discriminat-
ing between generated and ground truth decompositions. Therefore, this approach has
the same limitation requiring dense ground truth decompositions and no results on IIW
are available. To our knowledge, there is no CNN based method that predicts a dense
intrinsic decomposition and works well for images from IIW.

In Table 4.1 we organize the related work along the dimensions that are relevant for
the proposed method, whereas in Table 4.2 we compile an overview on which of the
related work presents qualitative or quantitative results on which dataset.

Similar in style, the work of Chen et al. [2016] also trains a CNN from relative judg-
ments with a ranking loss to predict pixel-wise labels, but for the application of recov-
ering dense depth estimates. This involved the creation of a dataset with relative depth
judgments in the spirit of IIW. However, in contrast to intrinsic images, it is possible
to capture accurate ground truth depth for training and testing, making reflectance and
shading estimation a more relevant target of learning from sparse pairwise comparisons.
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Table 4.1: Overview of different intrinsic image estimation methods. For every method we note
whether or not it uses a CNN method, predicts a dense decomposition into intrinsic layers with-
out an additional globalization step (Narihira et al. [2015b] only reports relative estimates for a
sparse set of points), requires no prior terms based on man-made models and is trained on IIW.

Method CNN
dense de-

composition
no prior
terms

trained on
IIW

Shen and Yeo [2011] 8 4 8 n/a
Garces et al. [2012] 8 4 8 n/a
Zhao et al. [2012] 8 4 8 n/a
Bonneel et al. [2014] 8 4 8 n/a
Bell et al. [2014] 8 4 8 n/a
Barron and Malik [2015] 8 4 8 n/a
Bi et al. [2015] 8 4 8 n/a
Narihira et al. [2015b] 4 8 4 4

Zhou et al. [2015] 4 4 8 4

Zoran et al. [2015] 4 4 8 4

Narihira et al. [2015a] 4 4 4 8

Lettry et al. [2016] 4 4 4 8

Our method 4 4 4 4

[IIW: Intrinsic Images in the Wild [Bell et al., 2014]]

Table 4.2: Overview of evaluated datasets for qualitative and quantitative results by recent related
work. For each related work, we document if it provides qualitative and quantitative results on
the relevant datasets.

Paper
qualitative quantitative
results on results on

IIW MIT MPI IIW MIT MPI

Bell et al. [2014] 4 8 8 4 4 8

Barron and Malik [2015] 8 4 8 8 4 8

Bi et al. [2015] 4 8 8 4 8 8

Narihira et al. [2015b] 8 8 8 4 8 8

Zhou et al. [2015] 4 8 8 4 8 8

Zoran et al. [2015] 4 8 8 4 8 8

Narihira et al. [2015a] 8 4 4 4 4 4

Lettry et al. [2016] 8 4 4 8 8 4

[IIW: Intrinsic Images in the Wild [Bell et al., 2014]; MIT: MIT
intrinsic dataset [Grosse et al., 2009]; MPI: MPI-Sintel [Butler
et al., 2012]]
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4.3 Preliminaries

We work with linear RGB and the Lambertian reflectance assumption, which allows to
separate every pixel in image I ∈ [0,1]3×h×w into a product of reflectance R and shad-
ing S, that is the pixel and channel-wise product I = RS. Further, we assume achromatic
light which reduces the decomposition problem to a per-pixel scalar estimation problem.
Namely, given a scalar rp ∈ [0,1] for each pixel p, we recover reflectance and shading as

Rp =
rp

1
3 ∑c Ic

p
· Ip, Sp =

1
3 ∑c Ic

p

rp
·




1
1
1


 , (4.1)

where c ∈ {R,G,B} denotes the color channel. Under these assumptions, the problem
boils down to estimation of a single scalar per pixel r ∈ Rh×w.

The same assumptions are commonplace in the literature and have been used, e.g.,
in Gehler et al. [2011]. We note that achromatic light is often violated in the IIW
dataset, especially in the presence of multiple light sources. As the proposed loss func-
tion WHDR only compares relative lightness and no color information, it is invariant to
this choice.

4.3.1 A quantitative measure for intrinsic images

Accurate ground truth information in the form of image decompositions in reflectance
and shading layers does not exist at scale. To empirically validate the quality of intrin-
sic image algorithms using the pairs of relative reflectance judgments alone, Bell et al.
[2014] introduced the WHDR metric (weighted human disagreement rate). We refer to
their work for all details on the data annotation process, but will review the ingredients
that we need for our development.

For every image, annotation is given in the form of pairs of image locations (i1, i2)
for which a human reflectance judgment Ji ∈ {1,2,E} is provided. The judgment indi-
cates whether point i1 is darker than i2 (Ji = 1), lighter (Ji = 2), or of equal reflectance
(Ji = E). The confidence wi of a judgment is defined via the CUBAM score of the
two-decision model “points have the same reflectance” and if not “does the darker point
have darker reflectance” (see Bell et al. [2014] for further details). The annotation set
{(i1, i2,Ji,wi)}i=1,...,NI varies in size NI for every image I in the range from 1 to 1181
with a median of 113.

Given a reflectance prediction R, first a relative classification for the set of annotated
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points is computed as

Ĵδ (R, i) =





1 if Ri2/Ri1 > 1+δ

2 if Ri1/Ri2 > 1+δ

E else,
(4.2)

where δ ≥ 0 controls when two points are considered different. For large values of δ ,
two points would need to be farther apart to be judged as darker (resp. lighter).

Given these relative estimates, the WHDR loss is computed as the weighted average
of how often the annotation and prediction disagree

WHDRδ (J,R) =
∑i wi ·1

(
Ji 6= Ĵδ (R, i)

)

∑i wi
, (4.3)

and is regularly given in per cent. Note that this loss does not evaluate the reflectance
at all points in the image, but only at those for which labels are available. Therefore, it
could also be evaluated on these points alone for an algorithm that does not provide a
dense decomposition of the image.

The works of Narihira et al. [2015b], Zhou et al. [2015], Zoran et al. [2015] use these
relative annotations to train multi-class classifiers, predicting for every pair of patches
its relative reflectance judgment {1,2,E} directly. Since this approach does not provide
the actual values R of the reflectance layer, further post-processing steps are required to
produce a dense prediction. These post-processing steps are separate from the classifiers
and motivated by common intrinsic prior terms. We will circumvent any post-processing
by directly predicting a dense reflectance map R.

4.4 Direct Reflectance Prediction with a CNN

We propose an objective function that makes direct use of the relative reflectance judg-
ments by humans that the IIW dataset provides. This weak label information has been
used in Zhou et al. [2015], Zoran et al. [2015] for CNN training already, treating it
however as a multi-class classification problem. While a multi-class loss achieves good
performance on pairs of points, this strategy requires an additional globalization step to
propagate information to all pixels. Our aim is to directly decompose the entire image
with a single forward pass of a CNN, avoiding any need for post-processing.

We will first discuss the loss function that we use and then describe the network archi-
tecture and training method.
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Figure 4.1: Visualization of the WHDR-Hinge loss. We visualize the WHDR-Hinge loss dependent on
the ratio Ri1/Ri2 for δ = 0.1 and ξ = 0.05. The value of δ controls where the decision boundary
for darker/lighter or equal reflectance lightness is made. With the value ξ , a margin from this
boundary is encouraged. For values ξ > δ the E class will always have a non-zero loss.

4.4.1 WHDR-Hinge loss

We construct a proxy loss for the WHDR that can be used for supervised training. The
formulation is an adaption of the ε-insensitive loss for regression Vapnik [1993] for this
problem setup. We define

`δ ,ξ (J,R, i) =





max
(

0,
Ri1
Ri2
− 1

1+δ+ξ

)
if Ji = 1

max
(

0, 1
1+δ−ξ

− Ri1
Ri2

,
Ri1
Ri2
− (1+δ −ξ )

)
if Ji = E

max
(

0, 1+δ +ξ − Ri1
Ri2

)
if Ji = 2,

(4.4)

which is visualized in Fig. 4.1. The scalar δ is the threshold of the WDHRδ and we
introduce the hyper-parameter ξ , which is the margin between the neighbouring classes
1,E and 2,E.

The pipeline of supervised training is simple. A network produces a dense decompo-
sition R, which is then used to arrive at relative judgments for two pixel locations based
on the ratio of the predicted R values. The loss in Eq. (4.4) is then weighted and summed
over all annotated pixel pairs, similar to Eq. (4.3), and the error is propagated backwards
to compute the gradients of the network parameters.

As with the standard hinge-loss commonly used for binary SVM training, the sub-
gradients of the WHDR-hinge loss can be easily computed. For completeness, the deriva-
tion is provided in Appendix B.1.

4.4.2 Train and test data set

The IIW dataset does not come with a pre-defined train, validation and test split. We
adopt the split suggested by Narihira et al. [2015b] into 80% training and 20% test im-
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ages, putting the first of every five images sorted by file name in the test set. In order to
properly evaluate different models, we additionally split the data into a separate valida-
tion set, with the ratios of 70% training, 10% validation and 20% test. We keep the test
set of Narihira et al. [2015b], and, inspired from its selection, use from every series of
10 images the seventh in the validation set to keep it disjoint from the test set.

4.4.3 Network architecture of the CNN

As, input, we take the linearized RGB images in the range [0,1], evaluate a series of n
convolutional layers with f filters each, acting on a kernel of size k, with a ReLU as non-
linear activation function in between. The padding in the convolutions is chosen based on
k, so as to not change the resolution. The output of all nonlinearities is concatenated and
convolved with a 1×1 filter to fuse the information of skipped layers. A last sigmoidal
activation function bounds the single channel output r, on which the WHDR-Hinge loss,
as given in Sec. 4.4.1, operates during training.

One final layer recovers RGB reflectance R and shading S from the scalar reflectance
intensity r, as given in Eq. (4.1), to output the final dense intrinsic image decomposition.

Resolving light intensity. The last nonlinearity in the network acting on r is included
since ambiguity about the light intensity in an image cannot be solved. It is only pos-
sible to determine reflectance and shading up to a constant α ∈ (0,∞), since I = RS =
(αR)

( 1
α

S
)
. Therefore, to keep the reflectance values bounded, we employ a sigmoidal

activation function to limit the scalar reflectance intensity to be in the range [0,1].

4.5 Experiments
For all experiments in this chapter, we use the open source deep learning framework
caffe [Jia et al., 2014] utilizing the ADAM solver Kingma and Ba [2015] with a learning
rate of 0.001, momentum of β1 = 0.9 and momentum-2 of β2 = 0.999. All training
images are resized to a fixed 256× 256 pixel resolution to be able to process them in
batches.

Data Augmentation. As proposed in Zhou et al. [2015], we tried to augment the com-
parisons by computing the transitive closure of all comparisons. Instead of pruning the
comparisons with low confidence, as done in Zhou et al. [2015], we used all available
annotations and set the weight wi for the augmented comparisons to be the minimum of
the confidence of the pair of relations from which it was generated. In case two relations
for the same pair of points are generated, we keep the one with higher confidence. In
the end we do a consistency check and keep only consistent relations by throwing out
the contradicting relation with lower confidence. Despite the much bigger amount of
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(e) k = 9

Figure 4.2: WHDR for different network depths, numbers of filters and kernel sizes in the network.
Mean WHDR on the validation set for different network depths n and number of filters f for
the kernel sizes (a) k = 1, (b) k = 3, (c) k = 5, (d) k = 7, (e) k = 9. Missing data is the result of
memory limit on our graphics card.

data (> 20M, a factor of 23.6 times as many comparisons), training on this augmented
data did not improve on the resulting WHDR (computed on the original comparisons).

Network Hyper-Parameters. For the network layout described above, we performed
an extensive parameter sweep over a varying number of kernel widths k ∈ {1,3,5,7,9},
layers n ∈ {1, . . . ,9}, and filters f ∈ {21, . . . ,29}. The results on the validation set are
shown in Fig. 4.2. The number of layers n has only small influence on the performance
above n ≥ 2, similar with f ≥ 24. While performance does not differ much for for
the kernel sizes k = 1 and k = 3, it seems that bigger kernel sizes overfit more heavily
on the training set and therefore have higher mean WHDR on the validation set. An
unexpected finding was that 1× 1 convolutions work just as well as those with bigger
kernels. This means that the network only learns a pixel-wise lookup table, but at the
same time, the network performs already better in WHDR than most state-of-the-art
methods in the literature. This amounts to a re-scaling of the reflectance intensity at
every pixel separately, no context needed. We will discuss this further in Sec. 4.5.1.
From this analysis we chose a network of n = 5, f = 25, and k = 1 as the basis for all
future experiments.

In addition to this basic setup we also played with different network layouts, e.g.,
without skip connections and with a U-net like architecture [Ronneberger et al., 2015],
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Figure 4.3: WHDR for different parameters of WHDR-Hinge. Mean WHDR on the validation set when
training with different thresholds δ and margins ξ of the WHDR-Hinge.

tried PReLU [He et al., 2015] nonlinearities in between and dilated convolutions [Yu
and Koltun, 2015] to widen the receptive field, but did not find better results. In general
we found that simpler networks perform better, what we believe is the outcome of the
amount of weakly labeled training data.

Hyperparameters of the WHDR-Hinge loss. To minimize the WHDR rate consistent
with δ = 0.1 from Bell et al. [2014] we optimized the loss hyper-parameter δ ,ξ on the
validation set. The influence is shown in Fig. 4.3 and the final parameters used for
training are δ = 0.12 and ξ = 0.08.

4.5.1 Discussion of the results

Many methods build on the Retinex assumption [Land and McCann, 1971], which states
that strong image gradients are reflectance edges and small gradients are explained by
shading. Under the assumption of smooth shading, local gradient estimation would only
require a small receptive field, but there is no possibility that a method can resolve shad-
ing from a single pixel alone, e.g., see the famous illusion of Adelson [2000] for a counter
example. Still, in terms of WHDR, this method performs better than most methods [Shen
and Yeo, 2011, Garces et al., 2012, Zhao et al., 2012, Bell et al., 2014, Zhou et al., 2015]
on IIW, see the table Table 4.3 for an empirical comparison to a few approaches. A full
comparison will be given later, after further improvements in the next chapter, in Fig. 5.2.

To assess the qualitative performance, we compiled a collection of results in Figs. 4.4
and 4.5, an extended comparison can be found in the Appendix in Figs. B.1 to B.3. The
images are randomly sampled from the Narihira et al. [2015b] test split. In the spirit of
the project page for Bell et al. [2014] we also show grayscale reflectance, especially to
highlight the difference between the baseline (const R) and our direct CNN reflectance
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Figure 4.4: Qualitative comparison on sample image 101684 of IIW. The first row gives the input image
and the evaluated comparisons on it. Comparisons are given as in Bell et al. [2014], where blue
is a judgment with high confidence and orange low. The narrow part of the connecting lines is
the point which is labeled as darker or they are given as “about the same” when the annotation
is a straight line. In the following rows the decompositions into color reflectance in the first
column, grayscale reflectance in the second and shading in the third of a subset of methods is
shown. All outputs are mapped to sRGB for display.
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Figure 4.5: Qualitative comparison on sample image 102147 of IIW. Extends Fig. 4.4 on IIW ID
102147. All outputs are mapped to sRGB for display.
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Table 4.3: Comparison of intrinsic image approaches on IIW. We compare the mean WHDR results
of relevant intrinsic image approaches on the test set of IIW. An extended comparison will be
presented in Fig. 5.2.

Method Mean WHDR

Retinex [Land and McCann, 1971] 26.9
Bell et al. [2014] 20.6
Zhou et al. [2015] 19.9
Our Direct CNN prediction 19.5
Zoran et al. [2015] 17.9
Bi et al. [2015] 17.7

(a) input image (b) predicted reflectance

Figure 4.6: Lookup table for reflectance values generated by the Direct CNN. Lookup table in HSV
space, generated by our direct prediction network, for varying hue and saturation and a constant
value/brightness of 255. (a): The input image I, (b): The single channel reflectance intensity r
predicted by our Direct CNN.

prediction, which appears to be subtle in the color reflectance, but is not to be overlooked
in the grayscale reflectance.

Since there is a direct pixel-to-reflectance relationship, we can visualize a “lookup-
table” mapping RGB pixels to reflectance, see Fig. 4.6. A big portion of colors is judged
to have more or less the same reflectance intensity as white. Blue is mostly judged being
darker than green, which is biologically plausible: Green light contributes the most to
the intensity perceived by humans, and blue light the least [Poynton, 2012]. There is a
portion of very light reflectance for fully saturated green, even brighter than from white
pixels. This might be a result of the Helmholtz-Kohlrausch effect [Corney et al., 2009],
according to which humans perceive colored light brighter than white light. This may
lead to wrong human reflectance judgments under the circumstances of bright saturated
colors.
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Figure 4.7: WHDR performance when training with fewer training annotations. Using a reduced
set of human reflectance judgments during the training reduces the mean WHDR validation
performance, although it is possible to remove about 50% of the annotation pairs before the
WHDR loss starts to decrease. When removing the images with dense judgments from the
training set, the performance degrades (see blue line)

4.5.2 Weak label analysis
We analyzed how much labeled information is needed to obtain good WHDR results. To
test this, we reduced the amount of available training data and retrained a fixed network
with the parameters n = 5, f = 25, k = 1, δ = 0.12, ξ = 0.08 from scratch. First we
reduce the amount of annotated pairs per image. The result is the green line in Fig. 4.7.
We observe that it is possible to remove about 50% of the annotation pairs until the
WHDR loss starts to decrease.

Out of the 5230 images in IIW in total, roughly 400 images contain more “dense”
annotations. This means they are evaluated at 303 to 1181 pairs (with a median of 916),
instead of evaluating 1 to 216 (with a median of 108) comparisons. When removing
these images from the training set, the performance degrades (see blue line in Fig. 4.7),
as expected.

4.5.3 Rescaling of lower bound
Bell et al. [2014] suggested using the input image directly as a baseline for the re-
flectance prediction, without any change. Instead, we propose to re-scale the input image
from [0,1] into [a,1] for a more elaborate baseline, so that the lower bound of the re-
flectance prediction has the constant value a ∈ [0,1]. Since WHDR measures reflectance
ratios, the upper bound can be kept fixed to 1 without loss of generality. On the other
hand, linearly scaling the lower bound induces a non-linear change in the reflectance
ratios, which influences the WHDR results. For a = 0 we have what Bell et al. [2014]
named ‘baseline (const S)’, while a = 1 is ‘baseline (const R)’. Interestingly, using the
parameter a = 0.55, which gives the lowest WHDR on the training and validation set
as shown in Fig. 4.8, already outperforms Retinex, with a WHDR of 25.7 on the test
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Figure 4.8: WHDR performance for rescaling approach. We evaluate the WHDR when rescaling the
lower bound of the image and instead of using [0,1], to transform into [a,1] for the reflectance
prediction. (a) Mean WHDR (in %) on training and validation set. As reflectance image we
take the input image after rescaling it into the range [a,1]. (b) An example input image. (c)
The same image scaled to have a lower bound of a = 0.55, where the mean WHDR is minimal.

set. This low score is due to an in-balance of relative judgments, 2/3 of which are equal
judgments. Reducing the dynamic range and re-scaling to [0.55,1] makes most equal
judgments correct and compromises the unequal judgments.

4.6 Conclusion
Until this point, the CNN implements no explicit prior knowledge and it predicts a dense
reflectance map on the test set, unaware of the point pairs, where performance will be
evaluated on. The output of our CNN is on average in the range [0.48,0.96] and therefore
exploits the just described effect of scaling the lower bound. Still, it often leaves small
variations in the reflectance image that should be explained via shading gradients, since
they fall below the δ threshold for the ‘equal’ class. It is this fact, that motivates to
smooth reflectance values by an additional filtering step to encourage piecewise constant
reflectance in the next chapter, where we will see that implementing this prior will lead
to generally improved reflectance predictions, not only for our method, but also other
state-of-the-art works.
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Chapter 5

Reflectance Adaptive Filtering
Improves Intrinsic Image Estimation
In the following chapter we concentrate on introducing the prior of piecewise constant
reflectance in a novel way through filtering, to improve on our results of the previous
chapter and in reflectance predictions in general.

A common prior of intrinsic image estimation is to have only a sparse set of re-
flectances present in a scene [Omer and Werman, 2004, Gehler et al., 2011, Shen and
Yeo, 2011]. We will now describe a new technique based on image filtering that im-
plements this strong prior knowledge about reflectance constancy. This filtering opera-
tion can be applied to any intrinsic image algorithm and allows an easy integration into
any existing techniques. We found that filtering reflectance estimates improves several
previous results achieving a new state-of-the-art on IIW. Our findings suggest that the
effect of learning-based approaches may have been over-estimated so far. Explicit prior
knowledge is still at least as important to obtain high performance in intrinsic image
decompositions.

Contributions This chapter is partially published as [Nestmeyer and Gehler, 2017,
Sec. 5 – 6] with some supplemental material and an extended section discussing recent
developments of related work since the time of publication.

5.1 Image-aware filtering
A general linear translation-variant filtering process is defined as

qi = ∑
j

Wi j(I)p j, (5.1)

where the input image p is smoothed under the guidance of an image I to the filtered
output image q. Here i, j denote pixels and the sum runs over the entire image. Two
examples are the joint bilateral filter and the guided filter, whose weights for Eq. (5.1)
we summarize next.
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5.1.1 The (joint) bilateral filter

The joint bilateral filter [Petschnigg et al., 2004] is an extension to the bilateral fil-
ter [Tomasi and Manduchi, 1998] which uses feature difference in a (potentially differ-
ent) guidance image to spatially smooth pixels in the input image. It defines the weights
as

Wi j(I) =
1
Ki

exp
(
−|xi− x j|2

σ2
s
− |Ii− I j|2

σ2
r

)
, (5.2)

with xi being pixel coordinates. This means that pixels that are both close spatially and in
intensity in the guidance image will be smoothed more. The normalization Ki is chosen
to ensure ∑ j Wi j = 1.

5.1.2 The guided filter

The guided filter [He et al., 2010] is a fast alternative to the joint bilateral filter. It is also
edge-preserving, and has better behavior near edges. It is based on a locally linear model
∀i ∈ ωk : qi = akIi+bk, where ak, bk are linear coefficients assumed to be constant in the
square window ωk centered at pixel k of size r. The linearity guarantees that q has an
edge only if I has an edge, since ∇q = a∇I. Solving for the coefficients that minimize
the difference between q and p leads to the weights

Wi j(I) =
1
|ω|2 ∑

k:(i, j)∈ωk

(
1+

(Ii−µk)(I j−µk)

σ2
k + ε

)
(5.3)

where µk and σ2
k are the mean and variance of I in ωk, |ωk| is the number of pixels

in ωk and ε a constant parameter similar to the range variance σ2
r in the bilateral filter.

Especially for larger spatial scales, the guided filter benefits from not having the quadratic
dependency on the filtering kernel size. We refer to He et al. [2010] for a more thorough
discussion.

5.2 Filtering for piecewise constancy

We need to define a guidance image to fully specify the filtering operation. An ideal guid-
ance image would group pixels into regions of constant reflectance. We will refer the fil-
tered image with BF(method, guidance) for the bilateral filter and GF(method, guidance)
for the guided filter, respectively.

Using a flattened image as guidance. The method of Bi et al. [2015] formulates an
optimization problem to group pixels into regions of similar reflectance. This provides

96



5.3 Experiments

a good candidate for a suitable guidance image. The piecewise flattened image is found
by minimizing E = El +αEg +βEa, with the local flattening energy

El = ∑
i

∑
j∈Nh(i)

exp
(
−‖ fi− f j‖2

2
2σ2

)

︸ ︷︷ ︸
wi j

‖qi−q j‖1, (5.4)

where Nh(i) is the h× h neighborhood of the i-th pixel, qi is the output RGB vector,
fi = [κ · li,ai,bi], with [li,ai,bi] being the input vector in CIELab color space and κ,σ
are hyper-parameters. A global sparsity energy is defined as

Eg = ∑
i∈Sr

∑
j∈Sr

wi j‖qi−q j‖1, (5.5)

with the same affinity weights wi j as in Eq. (5.4) and Sr being the set of representative
pixels which are closest to the average color in their superpixels. To avoid the trivial
solution, a data term for image approximation is added:

Ea = ‖q− p‖2
2. (5.6)

See Bi et al. [2015] for how to solve the resulting optimization problem. We will refer to
the result of this L1-flattening optimization from now on simply as flat.

5.3 Experiments
Filtering with the image itself. The conceptually easier choice is to filter using the
input image itself as guidance. We applied this to the Direct CNN predictions (referred to
as CNN) and searched for the spatial- and color scale hyper-parameters of the respective
filter on the training and validation set in Fig. 5.1a to find σs = 22, σr = 20 having
the lowest mean WHDR. On the test set, this improved the performance from 19.5% to
18.9%.

Guided filtering also improved a bit to 19.2% with r = 7 and ε = 52, chosen with the
help of Fig. 5.1b.

Filtering using ‘flat’ as guidance. Using ‘flat’ as a more elaborate guidance image,
we again found the best hyper-parameters on the validation set (σr = 15, σs = 28 for the
joint bilateral and r = 45, ε = 3 for the guided filter, chosen from Fig. 5.1c). Using the
CNN predictions as input,we find the result of BF(CNN, flat) to improve to 18.1% and
GF(CNN, flat) further to 17.7%. This is on par with the state-of-the-art (17.67%) at the
time of publication of Nestmeyer and Gehler [2017], which is the full pipeline of Bi et al.
[2015]: the flat image is clustered, followed by a CRF and another energy minimization
step. We note that using the L1 flattened result directly as reflectance image has only
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(a) BF(CNN, CNN)
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(b) GF(CNN, CNN)
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(c) GF(CNN, flat)

Figure 5.1: WHDR after filtering with varying color and spatial scale. Mean WHDR on the training
and validation set for filtering (a) BF(CNN, CNN), (b) GF(CNN, CNN), and (c) GF(CNN,
flat), with a varying color and spatial scale.

Table 5.1: Comparison of filtering performance for intrinsic image estimation. We compare the per-
formance when filtering the intrinsic image estimation methods under varying guidance images.
We report the improvement in mean WHDR (in %) over the images in the test split from Nar-
ihira et al. [2015b], and for Zoran et al. [2015] results on their respective test set (marked with
an asterisk) before and relatively to it after one filtering operation.

Method F(CNN, CNN) F(CNN, flat) F(Zoran et al. [2015], flat)*

unfiltered 19.49 19.49 17.85

bilateral filter (BF) -0.6 -1.38 -1.47
guided filter (GF) -0.25 -1.8 -1.98

20.9% WHDR, which shows that there is complementary information in the CNN output
and the guidance image.

This use of the flattened image as a guidance in a filter, extends Bi et al. [2015] and
allows application to other intrinsic image decompositions. We apply filtering to the
second best method Zoran et al. [2015] on IIW. Their work proposes to create a sparse
representation of the image by using the centers of a superpixelization. Patches around
those centers are extracted and a CNN is used to provide an ordinal relationship via the
three-way classification into “darker”, “equal”, and “lighter”. This sparse result is then
again densified by solving a constrained quadratic optimization problem to produce a
full reflectance image.

The filtering step is mostly dependent on the feature space, therefore we used the
same filtering hyper-parameters from above, when smoothing the method of Zoran et al.
[2015], since we only had access to their test set and hence could not optimize for the
best parameters. Nonetheless, the application of GF(Zoran et al. [2015], flat) using these
parameters improves WHDR from 17.85% to 16.38%. Repeated application of the fil-
ter further improves the output down to 15.78% after three applications of the guided
filter. This result represented the new state-of-the-art by a large margin at the time of
publication.
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Figure 5.2: Comparison of performance to related intrinsic image estimation methods. We compare
the WHDR performance on IIW to related intrinsic image estimation methods. Over all images
in the test split from Narihira et al. [2015b], we report the statistics of the individual WHDRs
on the images. The red line represents the median, the black line the mean. Results of Zoran
et al. [2015], are based on reflectance predictions provided by the authors which are generated
on a different test split. All methods that are evaluated on this different test set are marked with
an asterisk as they are not directly comparable.

5.3.1 Discussion of the results

Quantitative results. We found throughout that guided filtering of reflectances im-
proves performance, see Table 5.1 for a collection of the results. There are some cases
where the joint bilateral filter outperforms the guided filter, but in general the latter leads
to better performance. Also the guided filter is magnitudes faster. We summarize a com-
parison with recent methods and state-of-the-art in Fig. 5.2. As mentioned in Sec. 4.5.1,
our direct CNN approach from Chapter 4 outperforms all but two state-of-the-art meth-
ods, and combined with the additional guided filter leaves one more contender behind.
Utilizing our novel filtering technique to improve reflectance predictions of related work
on the other hand improves state-of-the-art by a large margin, which shows its generality.
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(a) input image

(b) reflectance of Zoran et al.
[2015]

(c) shading of Zoran et al.
[2015]

(d) flat guidance

(e) filtered
reflectance

(f) respective
shading

(g) input image

(h) reflectance of Zoran et al.
[2015]

(i) shading of Zoran et al.
[2015]

(j) flat guidance

(k) filtered
reflectance

(l) respective
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Figure 5.3: Sample decompositions visualizing the components of the reflectance adaptive filtering
approach. Sample decompositions of the (a) input image with the IIW ID 71341 into (b)
reflectance and (c) shading by the method of Zoran et al. [2015]. Filtering this reflectance
prediction using the flat guidance image in (d) results in the intrinsic layers (e) and (f) of our
final model. (g)-(l) are the same as (a)-(f) for IIW ID 58346.

Qualitative results. The method of Zoran et al. [2015] has staircase effects due to the
superpixelization in reflectance. This is removed by our reflectance filtering step, when
filtering with the flat image, which not only leads to increased quantitative, but, as ex-
pected, also qualitative results. For an impression to assess the qualitative performance,
we refer to Fig. 5.3. Results on a larger number of sample images and in comparison to
more related work, as well as our Dircet CNN prediction with and without filtering, can
be found in Appendix B.2.

5.3.2 Runtime analysis
In Fig. 5.4 we show the runtime of different algorithms against their WHDR. All methods
of this and the previous chapter are colored in green. We collected the timing estimates
from the respective statements in the corresponding publications. By construction, our
direct prediction CNN with only a few filters is fast at test time (180 fps on GPU) but it
requires further filtering for better results. The bilateral filter adds around 2 s per image
on CPU and the guided filter less than 0.1 s. The bottleneck of the filtering approach is
the computation of the L1 flattened guidance image.
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Figure 5.4: WHDR against runtime for related work. Mean WHDR of competing methods is evaluated
on the Narihira test split [Narihira et al., 2015b] on the decompositions provided by Bell et al.
[2014] and the project pages of Bi et al. [2015], Zhou et al. [2015]. Methods with an appended
asterisk were evaluated on the test split given in Zoran et al. [2015]. For methods which are
evaluated in Bell et al. [2014], we used the reported runtimes on the corresponding project
page. Methods developed in this work are plotted in green, previous results are plotted in blue.

5.3.3 Quantitative comparison to related work after publication

The field of intrinsic image decomposition advanced further since the publication of Nest-
meyer and Gehler [2017] and we will summarize the main advancements now.

Kovacs et al. [2017] introduced the Shading Annotations in the Wild (SAW) dataset,
extending the reflectance judgments in IIW with three categories of annotations: 1. re-
gions of near-constant shading, 2. edges due to discontinuities in shape, and 3. edges
due to discontinuities in illumination. This gives an additional valuable measure to eval-
uate intrinsic image decompositions. Li and Snavely [2018] took the annotations from
SAW and introduced a gradient-weighted “challenging” benchmark in which a pixel is
weighted less if it is located in an easy region where the input image intensity and the
shading intensity are both smooth. Therefore, we will present new methods on both these
metrics, WHDR in IIW and average precision (AP) in SAW (if quantitative results were
published in any recent work) for the challenging benchmark and collect their results
in Table 5.2.

In the same work, Li and Snavely [2018] also created a new large-scale dataset called
CGIntrinsics of physically-based rendered images of scenes with full ground truth de-
compositions to train a U-Net with 2 decoders predicting reflectance and shading in
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log-domain, that set the new state-of-the-art on SAW. They also applied a filter for post-
processing to improve their performance on reflectance estimation, but this leads to a
slight deterioration on shading estimation.

In parallel, Fan et al. [2018] heavily built on our work. In a similar fashion, they use a
direct CNN prediction for reflectance, where core network structures reflect prior knowl-
edge about the image formation process, but instead of filtering as a post-processing
step, they integrate a domain filter guided by a learned edge map into their unified deep
architecture for end-to-end learning.

In GLoSH, Zhou et al. [2019b] predict reflectance and surface normals, which are
shaded through a spherical harmonics light model with a global and local component that
is constrained to non-negative lighting. They also realized that our loss in Eq. (4.4) is not
symmetric, therefore added a symmetry term as one of their ingredients and improved
their final WHDR by 0.14% in doing so.

Most recently, Luo et al. [2020] created a unified framework called NIID-Net, that
jointly estimates normals, reflectance and shading, which performs reasonably well on
reflectance estimation and sets the state-of-the-art in shading estimation.

An interesting alternative approach is given by the Fast Fourier Intrinsic Network (FFI-
Net) [Qian et al., 2021] which operates in the spectral domain, splitting the input into
several spectral bands. Its weights are directly optimized in the spectral domain based on
a spectral loss which measures global distance between network prediction and ground
truth and they implement multi-scale learning by spectral banding.

The results of those methods along with our results are summarized in Table 5.2.
While the state-of-the-art in reflectance prediction in the year 2021 is reduced to a
WHDR under 15%, the influence of our work [Nestmeyer and Gehler, 2017] becomes
all the more apparent: Our contributions from the last Chapter 4 heavily inspired Fan
et al. [2018], setting the new state-of-the-art and the simple to apply filtering as post-
processing from this Chapter 5 boosts the performance of Li and Snavely [2018] to be
the follow-up.

5.4 Conclusion
In the last two chapters, we have proposed methods that are on opposing ends of em-
ployed prior knowledge. This led to both the best results on IIW and valuable insights
into the current state of intrinsic image estimation at the time of publication [Nest-
meyer and Gehler, 2017]. We presented the first end-to-end CNN method, trained on
the WHDR-Hinge loss, that predicts a dense result without any post-processing step.
Our finding is that a context-free per-pixel judgment is sufficient for competitive results.
We believe that this should set a new lower bar for learning methods on IIW. While this
observation may be attributed to an inherent bias in IIW, we have no qualified reason to
believe so. We still conjecture that good results correlate with low WHDR numbers, and
note that human performance sets a high bar with a median WHDR of only 7.5% [Bell
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Table 5.2: Extended quantitative results. We extend the quantitative results in Fig. 5.2 with results after
publication of Nestmeyer and Gehler [2017] (if results were published in any recent work).
‘WHDR’ is given as the mean WHDR0.1 in % on IIW. Average precision (AP) on SAW [Kovacs
et al., 2017] is given in % under the gradient-weighted challenging benchmark introduced in Li
and Snavely [2018]. Our contributions are given in bold, but our published best result as given
in Fig. 5.2 (3x GF(Zoran et al. [2015], flat)) is evaluated on a different test set and therefore
marked with an asterisk because it is not directly comparable. The filtered result GF(Li and
Snavely [2018], flat) was also provided in Li and Snavely [2018] and improves their unfiltered
CGIntrinsics result by 0.7 percentage points. The best results on WHDR and AP are marked in
bold each.

Method WHDR [%] AP [%]

GF(CNN, flat) from Chapters 4 and 5 17.7 88.64
NIID [Luo et al., 2020] 16.6 98.40
3x GF(Zoran et al. [2015], flat)∗ 15.8 -
FFI [Qian et al., 2021] 15.8 -
CGIntrinsics [Li and Snavely, 2018] 15.5 97.93
GLoSH [Zhou et al., 2019b] 15.2 95.01
GF(Li and Snavely [2018], flat) 14.8 96.57
Fan et al. [2018] 14.5 -

et al., 2014]. This has not been attained by any automatic method so far. We further de-
velop a filtering technique to implement the assumption of piecewise constant and sparse
reflectance. This extends the work of Bi et al. [2015] and makes it possible to apply their
reflectance grouping to other decompositions. We find that, in 2017, the filtered CNN
output was on par with the best published learning based methods and further improved
the initial result of Zoran et al. [2015] to 15.78% on its testset, which was the lowest
WHDR performance for a dense decomposition.

Time has passed since the publication of our work [Nestmeyer and Gehler, 2017], and
the leaderboard undoubtedly progressed. Nonetheless, we provide the main ingredients
for the two best performing methods of Li and Snavely [2018] who use our filtering to
boost their performance in post-processing and Fan et al. [2018] who generally took big
inspiration from our work.

In summary, the findings of the last two chapters suggest that it is still the use of strong
prior knowledge in intrinsic estimation algorithms that drives empirical performance.

All code, models, and results are available at https://ps.is.tue.mpg.de/
research_projects/reflectance-filtering.

As we have seen in Chapter 2, robotics is only one field, where intrinsic images play a
relevant role in an intelligent system. Another big topic of current research is Augmented
Reality (AR), and we will look into how intrinsic images can be used for relighting in
AR in the following. In order to posses the necessary data available for training, we will
examine in the next chapter, how capturing it in large scale can be accomplished.
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Chapter 6

Large scale acquisition of intrinsic
layers in a light stage

In Chapter 4 we already discussed the difficulty of getting large scale ground truth for
intrinsic images and how the community tries to tackle this by only annotating sparse
data or using synthetic data to avoid cumbersome manual labeling with the drawback of
reduced realism. Because we realized in Chapters 4 and 5 that the sparse labels from IIW
are insufficient for meaningful supervised learning alone, without additional priors, we
will now describe how we acquire high quality reconstructions of a much broader set of
intrinsic layers than only reflectance and shading for a diverse set of facial expressions
captured under various lighting conditions. Namely, these layers consist of albedo, nor-
mals, shading, depth, a light visibility mask, a non-diffuse residual and recovered light
calibration. We will use this data to advance research on relighting in the next Chapter 7.

This resonates well with the age-old theoretical decomposition of Barrow and Tenen-
baum [1978] into consituent layers such as surface reflectance (a combination of diffuse
albedo and the non-diffuse residual), surface orientation (normals), distance (depth) and
incident illumination (light calibration and light visibility).

Contributions This chapter is an extended version of [Nestmeyer et al., 2020, Sec. 4],
providing much more details on building and calibration of the light stage, as well as the
capturing process with subsequent intrinsic layer separation.

6.1 Building the light stage

We record our data in a calibrated multi-view light-stage (see Fig. 6.1) consisting of 6
stationary Sony PMW-F55 camcorders and a total of 32 white LED lights. The cameras
record linear HDR images at 2048×1080 / 60 fps and are synchronized with a Black-
magic sync generator that also serves as a signal wich is read by an Arduino that triggers
the LED lights in sync with the recorded frames. The LEDs are mounted on four differ-
ent horizontal bars, each offset with a 3D printed extension in varying lengths in order
to achieve a good coverage of light directions on the frontal half dome around the face.
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Figure 6.1: Light stage capturing setup. The capturing setup in the form of a light stage consists of 6 syn-
chronized Sony PMW-F55 camcorders and 32 white LED lights synchronized to the cameras.
The chair with a head rest lets the subjects sit still during capturing a sequence (∼ 0.53 s).

In order to not alter the extrinsic calibration of the cameras when touching the record-
ing button, we use a remote that lets all cameras to be triggered from one device. The
subjects take a seat on a chair with a head rest to facilitate sitting still when their had is
leaned against the head rest and to allow using a fixed focus on the cameras.

6.2 Calibrating the light stage
In order to make the recorded data from this capturing setup useful, we now describe the
multi-step procedure taken to calibrate the whole light stage.

For intrinsic and extrinsic calibration of the cameras (see Fig. 6.2a), we use a ChArUco
board [An et al., 2018] printed on an acrylic glass plate. ChArUco combines a regular
checkerboard pattern with an ArUco pattern [Garrido-Jurado et al., 2014]. ArUco mark-
ers provide fast detection and versatility, because the board does not need to be com-
pletely visible and occlusions are permitted. On the other hand, corners of a checker-
board pattern can be refined more accurately since each corner is surrounded by two
black squares, so ChArUco combines the advantages of both those patterns.

For light calibration [Goldman et al., 2010], we use a chrome sphere (see Fig. 6.2b),
positioned where later also our subjects will have their head positioned, to recover direc-
tions and intensities in 3D: We approximate the projection of the sphere into the image
by a circle in each of the 6 camera images. Using the camera calibration, we project the
center of these circles in each camera back into the world in order to recover a 3D ray
each, along which the sphere center has to lie. Finding the point of closest intersection of
those 6 rays then gives us an accurate reconstruction of the sphere center as a 3D point.
With the measured diameter of the sphere, we continue to find the points of reflection
of the individual lights by analytically intersecting the projected ray with the recovered
sphere. Consecutively, we reflect the ray on the chrome sphere [Eberly, 2008] in order to
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(a) In- and extrinsic calibration (b) The chrome sphere (c) Finding the light location (d) Lambertian sphere

Figure 6.2: Calibrating the light stage. We show the steps taken in order to achieve a calibrated light
stage. (a) Intrinsic and extrinsic calibration of all the 6 cameras using a ChArUco board.
(b) Identifying the points of reflection of the 32 lights in a chrome sphere. (c) Solving for the
light direction by finding the ray of reflection, here visualized for one camera and light in 2D.
(d) Lambertian sphere used for light intensity estimation.

reconstruct the direction of the LEDs with respect to the sphere (see Fig. 6.2c). We then
record a white Lambertian sphere (see Fig. 6.2d) to calibrate for the light intensities of
the LEDs.

In Fig. 6.3 we show the result of this calibration process. The recoverd 3D locations
of the sphere, the cameras and light are given in Fig. 6.3a. Subsequently, we express the
light configuration with respect to each of the 6 camera planes, such that we obtain a
total of 6 ·32 = 192 different light directions/intensities for each image (see Fig. 6.3b).

6.3 Recording data

For recording the data, we flash one LED per frame (see Fig. 6.4) and instruct our sub-
jects to hold a static expression for the full duration of an LED cycle (32 frames, amount-
ing to ∼ 0.53 s). We let the subjects trigger the recordings themselves through a remote,
connected to the Arduino to trigger the light sequence. Meanwhile leaning their heads
against a head rest makes it easier for the subject to hold a pose during the given dura-
tion. The order in which the LEDs are flashed is defined in a random but fixed pattern in
order to not let the subjects follow the path of the lights with their eyes, or even worse,
their pose, to further limit motion during the capture. In order to remove captures with
motion, we filter our data based on the difference of two fully lit shots before and after
each cycle.

We record a total of 482 sequences from 21 subjects (see Fig. 6.5), on average around
23 sequences per subject, resulting in 482 ·6 ·32 ·32 = 2,961,408 relighting pairs. Each
pair is formed using any one of the 32 lights as input, and any one taken from the same
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(a) 3D reconstruction of light stage
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(b) Reconstructed lights in image space

Figure 6.3: Result of light stage calibration. We show the calibration result of the light stage. (a) Full
3D reconstruction of cameras in blue (from extrinsic calibration), the chrome sphere in black
(from projecting circles in images), as to where subjects will have their heads and the location
of lights in green (from reflecting the lights on the chrome sphere) when assuming a fixed
distance from the sphere. This nicely aligns with Fig. 6.1 and Fig. 6.2b. (b) Distribution
of lights after interpreting them relative to the camera frame, represented with one color per
camera. The distance from the origin represents the recovered intensity.

Table 6.1: Dataset details. Distribution of salient characteristics in training, validation and test set.

female dark skin glasses

training 2 3 4
validation 1 1 1

test 1 1 1

total 4 5 6
ratio 19.0% 23.8% 28.6%

sequence and same camera as output. We manually split them into 81% (17 subjects)
for training, 9.5% (2 subjects) for validation and 9.5% (2 subjects) for testing according
to Table 6.1, where we tried to achieve a meaningful distribution of salient characteristics
in all of the subsets.

We did not ask the subjects to follow any specific protocol of facial expressions, be-
sides being diverse, such that our evaluation on validation and test data is on both unseen
expressions and unseen subjects. For some of the captures, we specifically asked the
participants to cover their face partially with their hand in order to achieve challenging
data which cannot be relit by any template-based model. Subjects that wear glasses were
asked to record some sequences with and some without their glasses.
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Chapter 6 Large scale acquisition of intrinsic layers in a light stage

Figure 6.5: All captured subjects in poses. Diversity in the data was achieved by capturing a breadth
of 21 subjects and letting them independently choose arbitrary expressions with only little
guidance to, e.g., cover the face with a hand, to capture interesting scenes. Subjects with glasses
were captured for part of the expressions with and partially without wearing their glasses.
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6.4 Processing the intrinsic layers

6.4 Processing the intrinsic layers
After extraction of the raw data from the video streams, we use photometric stereo (PMS)
reconstruction [Xiong et al., 2014] to separate the captures into one common albedo A
and corresponding normals for the whole light sequence, while for each individual input
image I, we recover shading S, and a non-diffuse residual image R = I−A� S. While
at the same time refining the light calibration numerically, in total this leads to the in-
ferred intrinsic layers albedo, normals, depth, shading, a non-diffuse residual, and a light
visibility mask. We visualize those intrinsic layers in Fig. 6.6 for three exemplary lights.

6.5 Conclusion
Getting ground truth intrinsic images is no easy endeavor. Nevertheless, to obtain the
required intrinsic layers for our neural network solving relighting in the next chapter, we
were in need for a decomposition into more than simple reflectance and shading from
the previous chapters. In this chapter, we saw that our light stage setup provides the
expected controlled environment, that combined with a relentless eye for the detail in
the calibration, provides high accuracy captures with according reconstructions. Succes-
sively running photometric stereo proved satisfactory in achieving the expected layers
of albedo (the diffuse portion of reflectance), high frequency normals, cast shadows as
visibility mask of the light source on the subject, and a non-diffuse residual term. These
intrinsic layers will be of paramount importance in the next chapter, where we will fo-
cus on how the task of relighting can utilize this separation into intrinsic layers in its
structured neural rendering model.
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(a) fully lit before (b) fully lit after (c) albedo (d) normals (e) depth

(f) input (g) shading (h) diffuse (i) non-diffuse residual (j) mask

Figure 6.6: Samples from the intrinsic layers. Each recording sequence (a) starts and (b) ends with
a fully lit capture (with all 32 lights on) to determine how much a subject moved during the
capture. In between, each LED is flashed individually. With photometric stereo [Xiong et al.,
2014] we then reconstruct common (c) albedo A, (d) normals, and (e) depth, each independent
of the 32 individual lights. Then, exemplarily for three of the individual lights, the (f) input
capture I, and the reconstructions of (g) shading S, (h) diffuse reconstruction A� S, (i) non-
diffuse residual R = I−A� S (scaled in intensity for better visibility), and (j) inferred light
mask used for reconstruction.
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Chapter 7

Learning Physics-guided Face
Relighting under Directional Light
Relighting is an essential step in realistically transferring objects from a captured image
into another environment. For example, authentic telepresence in Augmented Reality
requires faces to be displayed and relit consistent with the observer’s scene lighting. We
investigate end-to-end deep learning architectures that both de-light and relight an image
of a human face. Our model decomposes the input image into intrinsic components
according to a diffuse physics-based image formation model. We enable non-diffuse
effects including cast shadows and specular highlights by predicting a residual correction
to the diffuse render. To train and evaluate our model, we take our portrait database of
21 subjects with various expressions and poses from Chapter 6, where each sample is
captured in a controlled light stage setup with 32 individual light sources. Our method
creates precise and believable relighting results (see Fig. 7.1 for a teaser) and generalizes
to complex illumination conditions and challenging poses, including when the subject is
not looking straight at the camera.

Contributions This chapter was presented as an oral in CVPR 2020 [Nestmeyer et al.,
2020].

7.1 Introduction
In recent years Augmented Reality (AR) has seen widespread interest across a variety
of fields, including gaming, communication, and remote work. For an AR experience to
be immersive, the virtual objects inserted in the environment should match the lighting
conditions of their observed surroundings, even though they were originally captured
under different lighting. This task, known as relighting, has a long history in computer
vision with many seminal works paving the way for modern AR technologies [Land and
McCann, 1971, Barrow and Tenenbaum, 1978, Peers et al., 2007, Barron and Malik,
2015, Sengupta et al., 2018].

Relighting is often represented as a physics-based, two-stage process. First, de-light
the object in order to recover its intrinsic properties of reflectance, geometry, and light-
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(a) `src, input (b) `dst, prediction (c) `dst, ground truth

Figure 7.1: Overview. Given an unseen input image (a) from the test set that was lit by the according
directional light `src above it, we relight it towards the directional light `dst in (b). To judge the
performance, we provide the corresponding ground truth image in (c).

ing. Second, relight the object according to a desired target lighting. This implies an ex-
act instantiation of the rendering equation [Kajiya, 1986] operating on lighting and sur-
face reflectance representations capable of capturing the true nature of the light-material-
geometry interactions. In practice, errors occur due to imperfect parametric models or
assumptions. One common approximation is to assume diffuse materials [Barron and
Malik, 2015, Sengupta et al., 2018]. Another approximation is smooth lighting, e.g. mod-
eled as low-order spherical harmonics, which cannot produce hard shadows cast from
point light sources like the sun. We consider the hard problem of relighting human faces,
which are known for both their complex reflectance properties including subsurface scat-
tering, view-dependent and spatially-varying reflectance, but also for our perceptual sen-
sitivity to inaccurate rendering. Recent image-to-image translation approaches rely on
deep learning architectures (e.g. Isola et al. [2017]) that make no underlying structural
assumption about the (re)lighting problem. Given enough representational capacity, an
end-to-end system can describe any underlying process, but is prone to large variance
due to over-parameterization, and poor generalization due to physically implausible en-
codings. Test-time manipulation is also difficult with a semantically meaningless internal
state. While this could potentially be alleviated with more training data, acquiring suffi-
cient amounts is very time consuming.

114



7.2 Related work

Recent approaches have demonstrated that explicitly integrating physical processes
in neural architectures is beneficial in terms of both robust estimates from limited data
and increased generalization [Shu et al., 2017, Sengupta et al., 2018, Li et al., 2018].
However, these approaches have focused on the de-lighting process, and used simplified
physical models for relighting that do not model non-diffuse effects such as cast shadows
and specularities.

In this chapter, we bridge the gap between the expressiveness of a physically uncon-
strained end-to-end approach and the robustness of a physics-based approach. In partic-
ular, we consider relighting as an image-to-image translation problem and divide the re-
lighting task into two distinct stages: a physics-based parametric rendering of estimated
intrinsic components, and a physics-guided residual refinement. Our image formation
model makes the assumption of directional light and diffuse materials. The subsequent
refinement process is conditioned on the albedo, normals, and diffuse rendering, and
dynamically accounts for shadows and any remaining non-diffuse phenomena.

We describe a neural architecture that combines the strengths of a physics-guided re-
lighting process with the expressive representation of a deep neural network. Notably,
our approach is end-to-end trained to simultaneously learn to both de-light and relight.
With the novel dataset of human faces under varying lighting conditions and poses, in-
troduced in the last Chapter 6, we demonstrate that our approach can realistically relight
complex non-diffuse materials like human faces. Our directional lighting representation
does not require assumptions of smooth lighting environments and allows us to gen-
eralize to arbitrarily complex output lighting as a simple sum of point lights. To our
knowledge, this is the first work showing realistic relighting effects caused by strong
directional lighting, such as sharp cast shadows, from a single input image.

7.2 Related work
Intrinsic images. Intrinsic image decomposition [Barrow and Tenenbaum, 1978] and
the related problem of shape from shading [Zhang et al., 1999] have inspired countless
derived works. Of interest, Barron and Malik [2015] propose to simultaneously recover
shape, illumination, reflectance and shading from a single image and rely on extensive
priors to guide an inverse rendering optimization procedure. Other methods recover
richer lighting representations in the form of environment maps given the known geom-
etry [Lombardi and Nishino, 2016]. More recent approaches rely on deep learning for
the same task, for example using a combination of CNN and guided/bilateral filtering, as
we have seen in Chapters 4 and 5 or a pure end-to-end CNN approach [Fan et al., 2018]
with the common problem of hard to come by training data. Available datasets may in-
clude only sparse relative reflectance judgements [Bell et al., 2014], or sparse shading
annotations [Kovacs et al., 2017], which limits learning and quantitative evaluation.

While many previous works focus on lighting estimation from objects [Barron and
Malik, 2015, Lombardi and Nishino, 2016, Georgoulis et al., 2018, Meka et al., 2018] or
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even entire images [Karsch et al., 2014, Zhang et al., 2016, Gardner et al., 2017, Hold-
Geoffroy et al., 2017, Zhang et al., 2018a], few papers explicitly focus on the relighting
problem. Notably, Ren et al. [2015] use a small number of images as input, and, more
recently, Xu et al. [2018] learn to determine which set of five light directions is optimal
for relighting. Image-to-image translation [Isola et al., 2017] combined with novel multi-
illumination datasets [Murmann et al., 2019] has lately demonstrated promising results
in full scene relighting.

The explicit handling of moving hard shadows of Duchêne et al. [2015] and Philip
et al. [2019] is relevant. While both works use multi-view inputs to relight outdoor
scenes, our method works on a single input image to relight faces (our multi-view setup
is only used to capture training data). Similar to our work, Yu and Smith [2019] regress
to intrinsic components like albedo and normals, but their illumination model is spher-
ical harmonics and therefore does not handle shadows. Sengupta et al. [2019] recently
proposed a residual appearance renderer which bears similarities to our learned residual
in that it models non-Lambertian effects. Both of the latter works optimize for intrinsic
decomposition, whereas we learn end-to-end relighting. Our intrinsic components are
only used as a meaningful intermediate representation.

Face relighting. Lighting estimation from face images often focuses on normalization
for improving face recognition. For example, Wen et al. [2003] use spherical harmon-
ics (SH) to relight a face image, and Wang et al. [2007] use a Markov random field to
handle sharp shadows not modeled by low-frequency SH models. Other face modeling
methods have exploited approximate lighting estimates to reconstruct the geometry [Lee
et al., 2005, Suwajanakorn et al., 2014] or texture [Li et al., 2014]. In computer graph-
ics similar ideas have been proposed for face replacement [Bitouk et al., 2008, Dale
et al., 2011]. Low-frequency lighting estimation from a face has been explored in Shim
[2012], Knorr and Kurz [2014], Shahlaei and Blanz [2015]. In contrast, Nishino and
Nayar [2004] note that eyes reflect our surroundings and can be used to recover high
frequency lighting. More closely related to our work, Calian et al. [2018] learn the space
of outdoor lighting using a deep autoencoder and combine this latent space with an in-
verse optimization framework to estimate lighting from a face. However, their work is
restricted to outdoor lighting and cannot be used explicitly for relighting.

Of particular relevance to our work, neural face editing [Shu et al., 2017] and the re-
lated SfSNet [Sengupta et al., 2018] train CNNs to decompose a face image into surface
normals, albedo, and SH lighting. These approaches also impose a loss on the intrinsic
components, as well as a rendering loss which ensures that the combination of these com-
ponents is similar to the input image. FRADA [Le and Kakadiaris, 2019] revisited the
idea of relighting for improving face recognition with face-specific 3D morphable mod-
els (similar to Shu et al. [2017]), while we do not impose any face-specific templates.
Single image portrait relighting [Zhou et al., 2019a] bypasses the need for decomposi-
tion, while still estimating the illumination to allow editing. In a similar line of work,
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Sun et al. [2019] capture faces in a light stage using one light at a time, but then train
using smoother illuminations from image based rendering which leads to artifacts when
exposed to hard cast shadows or strong specularities. Recently, Meka et al. [2019] also
used light stage data and train to relight to directional lighting as we do. However, their
network expects a pair of images captured under spherical gradient illumination at test
time, which can only be captured in a light stage. The portrait lighting transfer approach
of Shu et al. [2018] directly transfers illumination from a reference portrait to an in-
put photograph to create high-quality relit images, but fails when adding or removing
non-diffuse effects.

7.3 Architecture of the Relighting Network
The following two sections first introduce an image formation process (Sec. 7.3.1) and
then describe its integration into a physics-based neural relighting architecture (Sec. 7.3.2).

7.3.1 Image formation process
The image formation process describes the physics-inspired operations transforming the
intrinsic properties of a 3D surface to a rendered output. The majority of physics-based
works are based on specific instantiations of the rendering equation [Kajiya, 1986] (in-
troduced in Sec. 3.2.5):

Lo(ωo) =
∫

ωi∈Ω

f (ωi,ωo)Li(ωi)〈n,ωi〉 dωi, (7.1)

where ωi,ωo are the incoming and outgoing light directions relative to the surface nor-
mal n at the surface point X j. Li(ωi) and Lo(ωo) are the corresponding (ir)radiances,
f (·, ·) is the BRDF describing the material’s reflectance properties, and 〈n,ωi〉 is the
attenuating factor due to Lambert’s cosine law.

This model is often simplified further by assuming a diffuse decomposition into albedo
a ∈ R and shading s ∈ R,

a = f (ωi,ωo), [const.] (7.2)

s =
∫

ωi∈Ω

Li(ωi)〈n,ωi〉 dωi. (7.3)

Non-diffuse effects. A realistic relighting approach must relax modeling assumptions
to allow complex reflectance properties such as subsurface scattering, transmission, po-
larization, etc., and, if using Eq. (7.2), specularities. Unfortunately, learning a spatially
varying BRDF model f (ωi,ωo) based on a non-parametric representation is infeasible:
assuming an image size of 512× 768 and a pixelwise discretization of the local half-
angle space [Matusik, 2003] would result in 1.7×1012 parameters. Learning a low-
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dimensional representation in terms of semantic parameters [Burley, 2012] seems like a
viable alternative but is still prone to overfitting and cannot account for light-material-
interactions outside of its parametric space.

We propose a hybrid approach and decompose f into two principled components, a
diffuse albedo a and a light-varying residual r:

f (ωi,ωo) = a+ r(ωi,ωo). (7.4)

This turns Eq. (7.1) into

Lo(ωo) = as+
∫

ωi∈Ω

r(ωi,ωo)Li(ωi)〈n,ωi〉 dωi. (7.5)

For a light source with intensity I(ωi), we can identify Li(ωi) = I(ωi)v(ωi), where
v ∈ {0,1} is the binary visibility of the light source. Under the assumption of a single
directional light source from ω̃i, we integrate over one point only, so if we further write
r̃(ω̃i,ωo) = r(ω̃i,ωo)I(ω̃i)〈n, ω̃i〉, we can re-formulate our rendering equation Eq. (7.1)
to

Lo(ωo) = (as+ r̃(ω̃i,ωo)) · v(ω̃i). (7.6)

This will be the underlying image formation process in all subsequent sections. While as
captures much of the diffuse energy across the image according to an explicit generative
model, the residual r̃(ω̃i,ωo) accounts for physical effects outside of the space repre-
sentable by Eq. (7.2) and is modeled as a neural network (akin to Sengupta et al. [2019]).
We do not impose any assumptions on r(ω̃i,ωo), even allowing light subtraction, but do
enforce a to be close to the ground truth albedo of a diffuse model which we obtain from
photometric stereo [Xiong et al., 2014].

Discussion of our physics guided relighting approach. While directional lights are
conceptually simple, they lead to challenging relighting problems. Our combination of
an explicit diffuse rendering process and a non-diffuse residual (with implicit shading)
serves several purposes:

1. Describing most of the image intensities with a physics-based model means the
output image will be more consistent with the laws of physics;

2. Describing specular highlights as residuals alleviates learning with a CNN;

3. Leaving the residual unconstrained (up to ground truth guidance) allows us to
model effects that are not explainable by the BRDF, such as subsurface scatter-
ing and indirect light;

4. Modeling visibility explicitly helps, because the simple diffuse model does not
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handle cast shadows. At the same time, expecting the residual to take care of
shadow removal by resynthesis is much harder than just masking it.

7.3.2 Physics-guided relighting

Presented with an input image Isrc that was lit by an input illumination `src, our goal is to
learn a generator G, relighting Isrc according to a desired output illumination `dst,

G(Isrc, `src, `dst) = Idst. (7.7)

At training time, we assume `src and `dst to be directional lights, which is known to
be a particularly challenging instance of relighting and accurately matches our captured
data (see Chapter 6). At test time, this is not a limitation, since we can easily fit a set of di-
rectional lights to an environment map to perform more complex relighting (see Sec. 7.6).

Our physics-guided approach to solving the relighting task consists of a recognition
model inferring intrinsic components from observed images (de-lighting) and a gener-
ative model producing relit images from intrinsic components (relighting). While the
recognition model takes the form of a traditional CNN, the generative model follows our
image formation process (Sec. 7.3.1) and is represented by structured layers with clear
physical meaning. In line with Eq. (7.6), we implement the latter as a two-stage process:
(Stage 1) Using the desired target lighting, we compute shading from predicted normals
and multiply the result with our albedo estimate to obtain a diffuse render;
(Stage 2) Conditioned on all intrinsic states predicted in stage 1, we infer a residual image
and a visibility map, which we combine with the diffuse render according to Eq. (7.6).
An illustration of this pipeline is shown in Fig. 7.2. Since all its operations are differen-
tiable and directly stacked, this allows us to learn the proposed model in an end-to-end
fashion from input to relit result.

We introduce losses for all internal predictions, i.e., albedo, normals, shading, dif-
fuse rendering, visibility, and residual. We emphasize the importance of using the right
loss function and refer to Sec. 7.5.1 for a comprehensive study. In order to obtain the
corresponding guidance during training, we use standard photometric stereo reconstruc-
tion [Xiong et al., 2014].

7.4 Data

Our data from Chapter 6 comprises a diverse set of facial expressions captured under
various lighting conditions. Capturing with 6 cameras and 32 white LEDs lit in sequence
gives us the data necessary to record each of the 482 poses/expressions from 21 subjects
under 192 light configurations each, which provides a total of 2,961,408 relighting pairs
for training that provide the necessary intrinsic layers as described in Sec. 6.4.
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(b) Stage 2: Non-Diffuse Residual.

Figure 7.2: Physics-guided relighting with structured generators. Our generator consists of two stages
modeling diffuse and non-diffuse effects. All intrinsic predictions are guided by losses w.r.t.
photometric stereo reconstructions. (a) We use a U-Net with grouped convolutions to make in-
dependent predictions of the intrinsic components. Predicted normals are always re-normalized
to unit vectors. Given a desired output lighting, we compute shading from normals and render
a diffuse output. (b) Conditioned on all modalities inferred in (a), we predict a non-diffuse
residual and binary light visibility map to model specularities, cast shadows, and other effects
not captured by our instance of the rendering equation.
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7.5 Experiments

Augmentation. Modern neural architectures are much better at interpolation than ex-
trapolation. It is therefore critical to cover the space of valid light transports as well as
possible. To this end, we perform a series of data augmentation steps in an attempt to
establish strong correlations throughout the parametric relighting space:

1. We flip all training images along the horizontal and vertical axis, increasing the
effective dataset size by a factor of 4. Note that this also requires adaptation of the
corresponding light directions and normals;

2. We perform a linear scaling x′= s ·x, s∼U[0.6,1.1], of the images, shading, residuals
and light intensities. In practice, we did not observe substantial benefits compared
to training without scaling;

3. We randomly perturb the light calibration with Gaussian noise n∼N (0,0.012) to
improve generalization and account for minimal calibration errors;

4. For quantitative results, we perform a spatial rescaling to 1
8 th of the original image

resolution (135×256), train on random crops of size 128×128 and test on center
crops with the same resolution to have comparability with SfSNet. Qualitative re-
sults are generated by rescaling to 1

2 of the original resolution (540×1024), trained
on random crops of size 512×768 and tested on center crops of that resolution.

7.5 Experiments
Our models were implemented using PyTorch [Paszke et al., 2017] with a U-Net [Ron-
neberger et al., 2015] generator and PatchGAN [Goodfellow et al., 2014] discrimina-
tor (for the final relit image) based on the implementations provided by pix2pix [Isola
et al., 2017]. The images in our dataset are camera RAW, represented as 16-bit linear
RGB values nominally in the range [0,1]. There is under- and over-shoot headroom,
but for training and evaluation we clamp them into this range and linearly transform
to [−1,1] as input into the network.

7.5.1 Evaluation metric
Quantitatively comparing the relit prediction Îdst of the generator against the ground
truth Idst requires an appropriate error measure. We consider the L1 and L2 norms but
recognize that they do not coincide with human perceptual response. We also consider
the “Learned Perceptual Image Patch Similarity” (LPIPS) loss suggested by Zhang et al.
[2018b] using the distance of CNN-features pretrained on ImageNet. Another prevailing
metric of image quality assessment is structural similarity (SSIM) [Wang et al., 2004]
and its multi-scale variant (MS-SSIM) [Wang et al., 2003]. In our evaluation, we use the
corresponding dissimilarity measure DSSIM = 1−SSIM

2 , and likewise for MS-SSIM, to
consistently report errors.
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Table 7.1: Loss selection. We explore the influence of different training losses and evaluation metrics on
direct image-to-image translation (“pix2pix”) and our structured guidance approach (“ours”).
For each class, we show validation scores for all pairwise combinations of 5 training losses
(rows) and the same 5 evaluation metrics (columns). The best model for each evaluation metric
is shown in bold.

M
od

el Training
Loss

Evaluation Metric

L1 L2 LPIPS DSSIM
MS-

DSSIM

pi
x2

pi
x

L1 .0452 .0067 .2564 .1707 .1144
L2 .0516 .0082 .2663 .1911 .1369
LPIPS .0424 .0062 .1868 .1440 .0992
DSSIM .0406 .0055 .2138 .1378 .0930
MS-DSSIM .0422 .0058 .2358 .1547 .0913

ou
rs

L1 .0406 .0055 .2237 .1484 .0913
L2 .0415 .0056 .2302 .1547 .0953
LPIPS .0365 .0048 .1701 .1308 .0803
DSSIM .0362 .0045 .2008 .1270 .0793
MS-DSSIM .0410 .0055 .2165 .1470 .0910

LPIPS: “Learned Perceptual Image Patch Similarity” [Zhang et al., 2018b];
DSSIM: structured dissimilarity; MS-DSSIM: multi-scale DSSIM

When defining the loss function during training, the same choices of distance metrics
are available. To densely evaluate their performance, we report in Table 7.1 the results
of training all intrinsic layers with the same loss function from the options above. Sur-
prisingly, we conclude that, for our task, using DSSIM for the training loss consistently
leads to models which generalize better on the validation set using most of the error
metrics. The only exception is evaluation using the LPIPS metric, which is better when
also trained using this metric. Therefore, we chose the models trained on DSSIM for
computing the final test results.

7.5.2 Baseline comparisons
We now provide quantitative and qualitative comparisons of our proposed architecture,
to related work.

Baselines

Our baselines comprise the following set of related methods:

PMS. To understand the lower error bound of a diffuse model, we take albedo A and
shading S from photometric stereo (PMS; [Xiong et al., 2014]) and diffuse render
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via A�S. We note that this model has access to all light configurations at the same
time, with the desired target illumination amongst them. Since this gives an unfair
advantage, we do not highlight results for this model in Table 7.2.

SfSNet (pretrained). We take the pretrained network of SfSNet [Sengupta et al., 2018]
and apply it to our data by using their decomposition into albedo and normals,
but ignoring the output spherical harmonics estimate. Instead, we compute target
shading as the dot product of `dst and normals to have a direct comparison with our
assumption of directional light and present the result after diffuse rendering.

SfSNet (retrained). We retrain SfSNet [Sengupta et al., 2018] on the calibrated PMS
data and also provide the source illumination as input, to which our model has
access as well. Compared to the pretrained model above, this baseline can be seen
as a fairer comparison to SfSNet.

Pix2pix/no guidance. The arguably simplest way to learn Eq. (7.7) from data is to in-
stantiate G as a traditional neural network consisting of a series of generic convolu-
tional layers with no semantic meaning and no knowledge of the image formation
process.We adapt the pix2pix translation GAN [Isola et al., 2017] to our use case
by conditioning the generator on the input image as well as the source and target il-
lumination. This ensures an objective comparison with our more structured model,
which also has access to lighting information.

Evaluation

Qualitative evaluation. We compiled a collection of qualitative results in Figs. 7.3
and 7.4. While the shading of SfSNet is smooth, it has a bias towards an albedo which
probably resembles skin color in their training data and does not distinguish well between
different skin tones and hair. As expected, retraining their model on our data leads to
more accurate results. Still, due to the diffuse assumption, it looks flat compared to
our more expressive model. It misses specularities and surface normals orthogonal to
the light direction are missing ambient light from inter-reflections. The pix2pix model
generates promising results, but its domain-agnostic architecture often leads to physically
implausible artifacts, such as missing shadows. In comparison, the predictions of our
proposed architecture are typically the most realistic, mainly due to its need to estimate
a consistent albedo, as can be seen for example at the hair in the first row of Fig. 7.3.
The last row shows a hand occluding the face, leading to strong cast shadows that have
to be introduced and removed. Our model using intrinsic guidance gracefully handles
that case.

While our data allows foreground masking computed from PMS, we show the full im-
age predictions for better judgment. At test time, an off-the-shelf face matting approach,
e.g. Wadhwa et al. [2018], could be used for cleaning the predictions.
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(a) input
image

(b) SfSNet
(pretrained)

(c) SfSNet
(retrained)

(d) pix2pix (e) ours
(f) ground

truth

Figure 7.3: Qualitative evaluation on unseen subjects and expressions. We compare relighting (a) the
input image with (b/c) pretrained and retrained variants of SfSNet, (d) pix2pix, and (e) our
model. In (f), we show the ground truth capture of the given target illumination. Notice our
model’s ability to generate realistic shadows and specular highlights. All results have been
converted from linear to sRGB. See Fig. 7.4 for more results.
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(a) input
image

(b) SfSNet
(pretrained)

(c) SfSNet
(retrained)

(d) pix2pix (e) ours
(f) ground

truth

Figure 7.4: Qualitative evaluation on unseen subjects and expressions (continued). Additionally
to Fig. 7.3, we compare relighting (a) the input image with (b/c) pretrained and retrained
variants of SfSNet, (d) pix2pix, and (e) our model. In (f), we show the ground truth capture
of the given target illumination. Notice our model’s ability to generate realistic shadows and
specular highlights. All results have been converted from linear to sRGB.
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Table 7.2: Quantitative evaluation. We show a quantitative comparison of our approach to baseline meth-
ods. Performance on the test set is reported under the assumption of both known (‘with’) and
unknown (‘w/o’) source illumination. All models have been trained with the DSSIM loss.

L Model
Evaluation Metric

L1 L2 LPIPS DSSIM
MS-

DSSIM

w
ith

SfSNet (R) .0636 .0121 .2508 .1840 .1277
pix2pix .0668 .0144 .2430 .1832 .1328
ours .0609 .0123 .2144 .1618 .1138

w
/o

SfSNet (P) .1359 .0424 .4703 .3221 .3121
pix2pix .0815 .0189 .2783 .2076 .1623
ours .0684 .0142 .2273 .1763 .1316

PMS .0391 .0047 .1630 .1125 .0561

L: access to source illumination; LPIPS: Zhang et al. [2018b];
DSSIM: structured dissimilarity, MS-DSSIM: multi-scale DSSIM;

PMS: photometric stereo; P/R: (p)retrained

We encourage the reader to look at more qualitative results of this type on our project
page1, where we also show relighting under a moving target illumination.

Quantitative evaluation. In Table 7.2 (first block), we analyze the quantitative perfor-
mance of our model in the described scenario with known source illumination `src. The
test set comparison with the diffuse SfSNet and the unstructured pix2pix baseline con-
firms the importance of our physics-based guidance and non-Lambertian residuals. An
extension of our model without the assumption of known source illumination (second
block) will be discussed in Sec. 7.6.1. For reference, the PMS reconstruction, restricted
to a diffuse model but computed from multiple images, is also shown.

7.5.3 Additional qualitative comparisons

We provide more qualitative comparisons to the following recent portrait relighting ap-
proaches in Fig. 7.5.

The mass transport relighting [Shu et al., 2018] approach is different in that it defines
the target lighting as that of another portrait. To match those conditions, we set the
desired output to directly be the ground truth reference image. Despite these optimal
conditions, Shu et al. [2018] fails to generate specular highlights and cast shadows, which
are well-captured by our technique.

1https://lvsn.github.io/face-relighting
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(a) input (b) MT (c) SIPR (d) DPR (e) ours

Figure 7.5: Additional qualitative comparisons. We relight the input in the first row to the input in the
second row, and vice versa. Results in the Mass Transport (MT) [Shu et al., 2018] approach
and Single Image Portrait Relighting (SIPR) [Sun et al., 2019] were provided by the authors.
For Deep Portrait Relighting (DPR) [Zhou et al., 2019a], we use their provided code and ap-
proximate the light directions manually.

Single image portrait relighting using an environment map is learned by Sun et al.
[2019]. Training images are produced by compositing multiple ‘one light at a time’
captures. As already discussed in Sun et al. [2019], the method fails on strong light.

Finally, Zhou et al. [2019a] learn to do deep portrait relighting using a spherical har-
monics representation, which also handles smooth lighting exclusively, see Fig. 7.5.

7.5.4 Dynamic input lighting

We illustrate the consistency and robustness of our approach by relighting multiple
source light configurations to the same target lighting (see Figs. 7.6 and 7.7). Our ex-
amples cover a wide spectrum of source illuminations, including strong and challenging
directional lights originating on the side of the face. The extreme cases on the far left and
right, in particular, require the removal of strong shadows. The noise in these low light
areas is high, and visual cues are weak, which makes consistent relighting challenging.
Please also refer to the video on the project page, where we show results in a dynamic
environment with moving lights.
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Figure 7.6: Dynamic input lighting. In each row, we show a different facial expression that we relight
from different input light configurations (columns; see small inset) to the same target light
configuration. All results have been converted from linear to sRGB. See Fig. 7.7 for more
results.
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Figure 7.7: Dynamic input lighting (continued). In each row, we show a different facial expression that
we relight from different input light configurations (columns; see small inset) to the same target
light configuration. All results have been converted from linear to sRGB.
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(a) input (b) with (c) w/o (d) GT

Figure 7.8: Relighting with unknown source illumination. (a) Input image. (b/c) Our relighting model
with and without access to source illumination. (d) Ground truth output.

7.6 Extensions
We now demonstrate that our model successfully generalizes to different scenarios, in-
cluding unknown input illumination, relighting with environment maps, relighting im-
ages captured in the wild and how our model performs on generic objects outside the
domain of human faces.

7.6.1 Relighting with unknown source illumination
While we cannot remove the need for the target illumination, information about the
source illumination is already contained in the input image, allowing for implicit learn-
ing of `src. To illustrate our model’s ability to extract these signals, we trained a version
of our architecture without explicit access to the input lighting; these results, as well
as a comparison to the corresponding baseline variants, are shown in Table 7.2 (second
block) and Fig. 7.8. As expected, all models incur a small drop in performance compared
to their counterparts with explicit knowledge. Nonetheless, our model without access to
the source illumination achieves similar (and in some cases better) performance than the
pix2pix model with access to the source illumination.

7.6.2 Relighting with environment maps
Directional light sources are a very general representation, and our approach easily al-
lows for relighting with environment maps as visualized in our examples of relit scenes
with five environment maps in Figs. 7.9 and 7.10. While more principled approaches like
importance sampling are available [Agarwal et al., 2003], for illustrative purposes here
we simply sample environment maps by downscaling them to 64×32 pixels and instan-
tiating our relighting prediction with one light direction per pixel. Since light is additive,
we then mix the resulting predictions according to their color and intensity. More results
showing temporal stability under dynamically changing environment maps can be found
in the video on our project page.
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Figure 7.9: Relighting with Environment Maps. We relight the input (first column) w.r.t. 5 different en-
vironment maps (first row), ordered from cold (second column) to warm (sixth column) domi-
nating color temperatures. All results have been converted from linear to sRGB. See Fig. 7.10
for more results.
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Figure 7.10: Relighting with Environment Maps (continued). We show the same type of visualization
as in Fig. 7.9 but focus on more challenging scenarios, such as expressions affecting the face
topology and glasses. All results have been converted from linear to sRGB.
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(a) input (b) relit 1 (c) relit 2 (d) relit 3

Figure 7.11: Relighting in the wild. We consider portraits not taken in our capture environment (a) and
relight them with respect to 3 different target point lights (b-d).

7.6.3 Relighting in the wild
To demonstrate generalization outside the domain of our lab-captured dataset, we con-
ducted experiments using pictures taken in an office environment with a Canon EOS 5D
Mark III and visualize results of relighting towards three target lights in Fig. 7.11.

We emphasize the practical difficulties of relighting those portraits, including un-
known discrepancies in the imaging pipeline (camera sensor, illuminant color, image
processing etc.) and approximation of the unknown source lighting. Since the portraits
are taken under uncontrolled office lighting, this results in images which are diffusely lit
by multiple input light sources. Although this violates our model assumption of a single
directional light source, we run our model using an input light direction `src in the image
that would simply light the portrait centrally. To compensate for different illumination
colors in the input, we compute the mean of a 51× 76 center patch and apply a linear
color transform towards our data distribution. The background is masked by hand, which
could be automated [Wadhwa et al., 2018]. Note that we can show neither quantitative
nor qualitative comparisons to ground truth relit images since they do not exist.
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(a) input (b) relit (c) GT

Figure 7.12: Relighting of Generic Objects. Example of a wooden block relit by our model after training
on other poses of that object. (a) Input image. (b) Relit output with masked background.
(c) Ground truth output.

The dynamic component of relighting in the wild can be seen in the video on our
project page2 and more static results are found in Fig. C.1 of the Appendix.

7.6.4 Relighting of Generic Objects

Considering applications like teleconferencing in AR, our main focus was on relighting
portraits. Due to their complex interactions with light, human faces (and skin in general)
provide a great testbed for relighting. Nonetheless, our approach does not rely on any
explicit face template and is thus applicable to arbitrary objects. To illustrate this fact,
we train our model on several poses of a wood block and show a relighting result of
an unseen pose in Fig. 7.12. Note that full abstraction to arbitrary object classes would
require substantially more training data and is thus left for future work.

7.7 Conclusion
We propose a method which learns to relight a face with strong directional lighting, ac-
curately reproducing non-diffuse effects such as specularities and hard-cast shadows. We
introduce a structured relighting architecture with semantic decomposition into, and sub-
sequent re-rendering from intrinsic components. On our challenging light-stage dataset
with directional light, the integration of an explicit generative rendering process and a
non-diffuse neural refinement layer within an end-to-end architecture proved to be supe-
rior. We found that our model tends to produce shadows and albedo maps that are qualita-
tively closer to reality than all baselines. A more structured approach also has advantages
beyond raw performance, including better interpretability, as well as explainability and
the possibility for direct manipulation and extraction of its semantically meaningful in-
termediate layers for downstream tasks. A comprehensive study of different losses and

2https://lvsn.github.io/face-relighting
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evaluation metrics highlighted the benefits of training on a perceptual loss over more tra-
ditional choices. Thus, our model can be useful in a wide range of face-centric and more
general applications in, e.g., augmented reality.

Limitations and future work. While our model generally deals well with cast shad-
ows in the input image (see Fig. 7.5), results get worse when there is so little light that the
camera mostly returns noise. Although a crude infilling for those pixels based on context
can be learned, an interesting future direction would be to identify these pixels explicitly.
A dedicated infilling method, conditioned on the properly relit parts of the image and
other intrinsic layers, could be applied to them. To cancel ambient input illumination (as
in Fig. 7.11), future work could experiment with taking a flash photo and subtracting a
second non-flash photo (in linear color space).
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Chapter 8

Conclusions

In this thesis, we looked into multiple aspects of intelligent systems and how they are
interconnected through intrinsic images, the separation of images into their constituent
layers which is giving important insights in a powerful vision system.

We first covered the field of Robotics and understood the need for planning coherent
future moves in a multi robot system. It was achieved by assigning dynamic priority
roles among the individual UAVs, which they use to accordingly scale their traveling
forces. This leadership principle allows to effectively and efficiently visit set locations
in parallel while never losing connectivity in the overall group. An extension of this
setup where a human is operating one of the robots makes it obvious that more artificial
intelligence is necessary to be able to perceive the world in the first place. In order to do
so, an illumination independent representation of a scene is deemed beneficial.

Because also humans rely on vision as their most important sense of perceiving the
world, we therefore shifted the focus to Computer Vision, to perceive and understand
the surroundings through cameras. Hence, we summarized the preliminaries of machine
learning and computer vision to lay the foundation for the rest of the thesis. This allowed
us to then be able to study a Convolutional Neural Network approach that predicts intrin-
sic images, a decomposition of scenes into their reflectance and shading components, of
which the first provides the desired illumination-invariant representation. Since this sep-
aration is an ill-posed problem and data are hard to come by, we tackled this by learning
from existing sparse human reflectance judgments and presented a direct CNN predic-
tion model that infers a dense result without any post-processing step which therefore
results in fast inference. We realized that a context-free per-pixel judgment is sufficient
for competitive results, but continued by presenting a novel way of introducing the prior
knowledge of sparse reflectance as edge-aware filtering to improve results thereon. This
generally applicable framework proved advantageous also for a wide variety of other
reflectance predicition algorithms.

Afterwards we looked into another big goal of intelligent systems, namely Augmented
Reality (AR). We studied how to relight faces in order to enable telepresence when con-
ferencing with another participant in AR. Having the sender’s face being shown in the
receiver’s augmented reality glasses requires to relight it towards the receiver’s scene
lighting as spotted through the glasses. The previously used separation into reflectance
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and shading under the Lambertian assumption alone leads to flat looking faces under
strong directional light because all the specularities and cast shadows are missing. Real-
izing this, we saw the need to create a novel relighting dataset which provides additional
intrinsic layers that we subsequently learn to predict. Since synthetic data leads to re-
duced realism, we described how a capturing setup in the form of a light stage can be
built and calibrated so that it later on is able to generate the necessary ground truth in-
trinsic layers for a diverse set of facial expressions under various lighting conditions.
We then provided details of a structured approach that learns to generate relit portraits
through a mix of rendering, which utilizes the predicted intrinsic layers of albedo and
normals, and additional non-Lambertian ingredients. This pysics-based approach leads
to results more consistent with the laws of physics, while still allowing for the power
of unstructured residuals to model effects not explainable by a BRDF. As expected, this
approach proved to be beneficial over a completely unstructured model or a merely rigid
Lambertian rendering.

All together, this work will serve as one more piece in the puzzle towards the big goal
of general artificial intelligence [Das et al., 2018].
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Decentralized connectivity maintenance
For the sake of completeness, we recap the main features of the connectivity maintenance
algorithm presented in Robuffo Giordano et al. [2013] with some changes in the variable
names for readability. We start by defining di j = ‖qi−q j‖ as the distance between two
robot positions qi and q j, and di jo = minς∈[0,1],o∈O ‖qi + ς(q j− qi)− o‖ as the closest
distance from the line of sight between robot i and j to any obstacle.

Next, we define a control force f λ
i , that continuously ensures generalized connectivity

of the network of robots. It is called generalized connectivity, because in addition to
physical limits of the networking device, also collision avoidance and limits of sensing
are modeled within the connectivity framework.

The main conceptual steps behind the computation of f λ
i can be summarized as fol-

lows:

1. Define an auxiliary weighted graph Gλ (t) = (V,Eλ ,W ), where W is a symmetric
nonnegative n×n matrix whose entries Wi j represent the weight of the edge (i, j)
and (i, j) ∈ Eλ ⇔Wi j > 0.

2. Design every weight Wi j as a smooth function of the robot positions qi, q j and of
the obstacle points surrounding qi and q j, with the property that Wi j = 0, meaning
the link between robot i and j is broken, if and only if at least one of the following
conditions is verified:

a) the maximum sensing range Rs is reached: di j ≥ Rs,

b) the minimum desired distance to obstacles Ro is reached (where Ro < Rm):
di jo ≤ Ro;

c) the minimum desired inter-robot distance Rc is reached: dik ≤ Rc for at least
one k 6= i.

3. Compute f λ
i as the negative gradient of a potential function V λ (λ2) that grows un-

bounded when λ2→ λ min
2 from above, where λ2 is the second smallest eigenvalue

of the (symmetric and positive semi-definite) Laplacian matrix

L = diagn
i=1

(
n

∑
j=1

Wi j

)
−W, (A.1)
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and λ min
2 is a non-negative parameter. This eigenvalue λ2 is often also called

Fiedler eigenvalue.

It is known from graph theory that a graph is connected if and only if the Fiedler
eigenvalue of its Laplacian is positive [Fiedler, 1973]. If Gλ (0) is connected, and in
particular λ2(0)> λ min

2 , then under the action of f λ
i , the value of λ2(t) can never decrease

below λ min
2 and therefore Gλ (t) always stays connected.

From a formal point of view the anti-gradient of V λ for the i-th robot takes the form

f λ
i =−∂V λ (λ2)

∂qi
=−dV λ

dλ2

∂λ2

∂qi
. (A.2)

Moreover, if the formal expression of V λ and W are known then Eq. (A.2) can be ana-
lytically computed via the expression

∂λ2

∂qi
= ∑

j∈Ni

∂Wi j

∂qi

(
ν
(i)
2 −ν

( j)
2

)2
(A.3)

(see Yang et al. [2010]), where ν
(i)
2 is the i-th component of the normalized eigenvector

of L associated to λ2.
In order to have a fully decentralized computation of f λ

i , the robots perform a dis-
tributed estimation of both λ2(t) and ν

(i)
2 (t), for all i = 1, . . . ,N, as shown in Yang et al.

[2010]. In Robuffo Giordano et al. [2013] the authors finally prove the passivity (and
then the stability) of the system w.r.t. the pair ( fi,vi) for all i = 1, . . . ,N, as well as the
possibility to compute the connectivity force f λ

i in Eq. (A.2) in a completely decentral-
ized way.
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Appendix B

Supplementary material for Chapters 4
and 5

B.1 Gradients for WHDR-Hinge

For backpropagation through the neural network, we need the gradients of our new
WHDR-Hinge loss layer w.r.t. the reflectance layer. By linearity of the (partial) deriva-
tive for a given pixel j, we have:

∂

∂Rc
j
WHDRδ (J,R)Hinge =

∂

∂Rc
j

∑i wi`
(

Ri1
Ri2

)

∑i wi
=

∑i wi · ∂

∂Rc
j
`
(

Ri1
Ri2

)

∑i wi
(B.1)

To entangle the derivative for a fixed judgement i, we will write y(L) :=
Li1
Li2

and

L(R j) := 1
3 ∑

3
c=1 Rc

j. Hence we have `
(

Ri1
Ri2

)
= `(y(L(R))) and therefore with the chain

rule

∂

∂Rc
j
`

(
Ri1
Ri2

)
=

∂

∂R j
`(y(L(R))) =

∂

∂y
`(y)

∂

∂L
y(L)

∂

∂R j
L(R) (B.2)

It is easy to see that

∂

∂L j
y(L) =

∂

∂L j

Li1
Li2

=





1
Li2

if j = i1

−Li1
L2

i2

if j = i2

0 otherwise

(B.3)

and

∂

∂R j
L(R j) =

∂

∂R j

1
3

3

∑
c=1

Rc
j =

1
3




1
1
1


 (B.4)
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therefore we have

∂

∂L
y(L)

∂

∂R j
L(R) (B.5)

If we make ` dependent on y, we can rewrite:

`(y) =





max
(

0, y− 1
1+δ

)
if Ji = 1

max
(

0, 1
1+δ
− y, y− (1+δ )

)
if Ji = E

max(0, 1+δ − y) if Ji = 2

(B.6)

so the (partial) derivatives become:

∂

∂y
`(y) =





{
1 if y > 1

1+δ

0 otherwise
if Ji = 1





−1 if y < 1
1+δ

1 if y > 1+δ

0 otherwise
if Ji = E

{
−1 if y < 1+δ

0 otherwise
if Ji = 2

(B.7)

Hence, we get the full gradient in (B.1) that uses (B.2) by combining (B.7) and (B.5):

• In the case of Ji = 1 this is:

∂

∂Ri1
max

(
0,

Ri1
Ri2
− 1

1+δ

)
=

{
1

Ri2
if

Ri1
Ri2

> 1
1+δ

0 otherwise
(B.8)

∂

∂Ri2
max

(
0,

Ri1
Ri2
− 1

1+δ

)
=




−Ri1

R2
i2

if
Ri1
Ri2

> 1
1+δ

0 otherwise
(B.9)

∀ j 6∈ {i1, i2} :
∂

∂R j
max

(
0,

Ri1
Ri2
− 1

1+δ

)
= 0 (B.10)
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• In the case of Ji = E this is:

∂

∂Ri1
max

(
0,1+δ − Ri1

Ri2

)
=
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0 otherwise

(B.11)

∂

∂Ri2
max

(
0,1+δ − Ri1

Ri2

)
=





Ri1
R2

i2

if
Ri1
Ri2

< 1
1+δ

−Ri1
R2

i2

if
Ri1
Ri2

> 1+δ

0 otherwise

(B.12)

∀ j 6∈ {i1, i2} :
∂

∂R j
max

(
0,1+δ − Ri1

Ri2

)
= 0 (B.13)

• In the case of Ji = 2 this is:
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∀ j 6∈ {i1, i2} :
∂

∂R j
max

(
0,1+δ − Ri1

Ri2

)
= 0 (B.16)

In addition we need the derivatives for each RGB component: If we use R = 1
3(r+g+

b), then we have ∂R
∂ r =




1
3
0
0


, ∂R

∂g =




0
1
3
0


, ∂R

∂b =




0
0
1
3


.

B.2 Extended qualitative results
To better assess the qualitative performance of our approach in comparison to related
work, a collection of results is compiled in Figs. B.1 to B.3. The images are randomly
sampled from the intersection of the Narihira et al. [2015b] and Zoran et al. [2015] test
split. The ‘flat’ image used for guidance in filtering (Sec. 5.2) is given in the first row
each.
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Photo ID 101684 Photo ID 102147
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Figure B.1: Qualitative comparison on sample images of IIW. The first row gives the input image and
the ‘flat’ image (see Sec. 5.2) used for filtering. In the following rows the decompositions into
reflectance in the first column and shading in the second of several methods is shown. All
outputs are mapped to sRGB for display.
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Photo ID 78671 Photo ID 9499
input image flat input image flat
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Figure B.2: Extends Fig. B.1 with Photo IDs 78671 and 9499.
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Photo ID 60820 Photo ID 34647
input image flat input image flat
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Figure B.3: Extends Fig. B.1 with Photo IDs 60820 and 34647.

146



Appendix C

Supplementary material for Chapter 7

C.1 Extended results for Relighting in the wild
For relighting in the wild (see Sec. 7.6.3), we show more face relightings in Fig. C.1, this
time of images taken with a Canon EOS 6D, again outside of our capture environment.
All images were taken in an office with relatively diffuse lighting. Compared to Fig. 7.11,
no additional back-transformation to the original light color distribution was applied.

C.2 Multiple input light sources
Our experiments with environment maps show that the extension to multiple output lights
is straightforward. Although the case of multiple input lights is less obvious, our model
is able to generate meaningful results even when the input image was lit under complex
lighting. Indeed, we have already shown results of this type when we discussed relight-
ing in the wild, which does not put any constraints on the source lighting. In order to
explore the performance in this regime more systematically, we additionally conducted
controlled experiments by using our light stage setup to synthesize multi-illumination
images. Since light is additive, we can simply combine captures under lights from dif-
ferent directions to artificially create inputs that were lit by multiple lights. Providing
these as input to our model, which violates our model assumption, we still get meaning-
ful results, as can be seen in Fig. C.2. Specifically, we sampled 3 input light directions
at random to create the input image, then ran our model 3 times, each time providing the
combined input image and one of the 3 source light directions. Finally, we compose the
corresponding output images.
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Figure C.1: Relighting in the wild. We consider portraits not taken in our capture environment (first
column) and relight them with respect to 5 different target point lights. Point light directions
are visualized by rendered spheres at the top.
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C.2 Multiple input light sources

(a) input light (b) input image (c) ours (d) GT (e) output light

Figure C.2: Multiple input light sources. Using multiple light sources (a), we construct the input image
(b) and relight it with our model (c) towards the desired ground truth (GT) (d) under the output
light direction (e).
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