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Abstract 

 
Proton magnetic resonance spectroscopy (1H MRS) in the human brain is a non-invasive 

technique capable of aiding the investigation of the neurochemical composition. The 

clinical importance of 1H MRS can be seen in pathological diagnosis, understanding 

disease mechanisms or in treatment monitoring. 

Reliable detection and quantification of metabolites is of paramount importance in 

establishing potential biomarkers for several neurological pathologies. Furthermore, 

broad macromolecular resonances underlying metabolite peaks in a proton spectrum also 

hold a wealth of information. These macromolecular resonances originate from amino 

acids within cytosolic peptides and proteins. Some studies in the past have even 

discussed their clinical relevance in pathologies such as acute multiple sclerosis, glioma, 

and traumatic encephalopathy. However, the characteristics of these macromolecular 

resonances are yet to be fully explored. In-depth knowledge about the macromolecules 

could open up a new horizon of potential biomarkers for neurological diseases. In 

addition, characterizing macromolecular resonances may help the MR community answer 

some of the lingering research questions such as identifying the biological background of 

the individual macromolecular peaks, assigning macromolecular peaks to particular 

amino acids, and investigating other contributions to the macromolecular signal such as 

sugars, DNA or RNA. 

Detection capabilities of MRS have increased to a great extent with increasing static 

magnetic field. Ultra-high field (≥7 T) MRS benefits from increased signal-to-noise ratio 

(SNR) and improved spectral resolution. There is also constant development in 

localization techniques and quantification methods to accurately measure concentrations 

of metabolites and macromolecules with lower signal-to-noise ratio and complex spectral 

pattern due to J-coupling. 

The first part of the thesis focuses on characterizing the physical properties of 

macromolecular resonances in the human brain at 9.4 T and understanding their 

contribution to the metabolite spectrum. T2 relaxation times are calculated and a 

quantitative linewidth analysis is performed to understand the degree of overlap and J- 
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coupling effects in the observed macromolecular peaks. Moreover, a novel double 

inversion recovery method is proposed to determine T1 relaxation times of individual 

macromolecular resonance lines. 

The second part of the thesis focuses on quantification of metabolites in the human brain 

at 9.4 T using one-dimensional and two-dimensional MRS techniques. Metabolite 

concentrations are reported in millimoles/kg after correcting for T1- and T2-weighting 

effects and the tissue composition. The concentration values measured from both the 

acquisition techniques were compared against each other and to literature. 
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Zusammenfassung 

 
Die Protonen-Magnetresonanzspektroskopie (1H-MRS) ist eine nicht-invasive Technik, 

die die Untersuchung der neurochemischen Zusammensetzung des menschlichen 

Gehirns ermöglicht. Bedeutende klinische Anwendungen von 1H-MRS ergaben sich in 

der Diagnose von Erkrankungen, in dem Verständnis von Krankheitsmechanismen oder 

in der Behandlungsüberwachung. 

Die zuverlässige Erkennung und Quantifizierung der Metaboliten ist von größter 

Bedeutung, um Biomarker für verschiedene neurologische Krankheiten zu etablieren. 

Zusätzlich enthalten Makromoleküle, die in dem Protonen-Spektrum breite Spektrallinien 

unter dem Metaboliten-Spektrum bilden, zahlreiche, wertvolle Informationen. Die 

Spektrallinien der Makromoleküle stammen von Aminosäuren aus Proteinen und 

Peptiden des Cytosols. Frühere Studien haben die klinische Relevanz von 

Makromolekülen in Erkrankungen wie Multiple Sklerose, Tumoren oder chronisch- 

traumatische Enzephalopathie gezeigt. Jedoch müssen mehrere Charakteristiken der 

Makromoleküle noch erforscht werden. Ein tiefgehendes Verständnis der Makromoleküle 

könnte dabei die Entdeckung neuer Biomarker für neurologische Krankheiten 

ermöglichen. Zusätzlich kann die Charakterisierung der makromolekularen Spektrallinien 

helfen folgende offene Fragen der MR Spektroskopie zu beantworten: den biologischen 

Ursprung der einzelnen makromolekularen Spektrallinien, die Zuordnung der 

makromolekularen Spektrallinien zu einzelnen Aminosäuren sowie die Untersuchung von 

anderen möglichen Beiträgen zum Signal der Makromoleküle wie z.B. verschiedene 

Zucker, DNA oder RNA. 

Die Sensitivität von MRS wurde durch stärkere Magnetfelder erheblich verbessert. MRS 

Messungen am Ultrahochfeld (≥7 T) profitieren von einem höheren Signal-Rausch- 

Verhältnis und einer höheren spektralen Auflösung. Zusätzlich wurden 

Lokalisierungsmethoden und Quantifizierungsmethoden weiterentwickelt, die es 

ermöglichen, die Konzentrationen auch der Metaboliten und Makromoleküle akkurat zu 

bestimmen, die ein kleines Signal-Rausch-Verhältnis haben oder komplexere spektrale 

Muster aufgrund von J-Kopplung aufweisen. 
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Im Fokus des ersten Teils dieser Doktorarbeit steht die Charakterisierung der 

physikalischen Eigenschaften der makromolekularen Spektrallinien und die Frage, wie 

diese das Metaboliten-Spektrum beeinflussen. Dazu wurden Spektren am 9.4 T im 

menschlichen Gehirn aufgenommen, um hiermit T2 Relaxationszeiten zu bestimmen bzw. 

Linienbreiten quantitativ zu analysieren. Diese Analysen liefern Erkenntnisse über die 

spektrale Überlappung und J-Kopplungseffekte, die man in den makromolekularen 

Spektrallinien beobachtet. Zusätzlich wird eine neue „double inversion recovery“ Methode 

vorgestellt, um damit die T1 Relaxationszeiten von einzelnen makromolekularen 

Spektrallinien zu bestimmen. 

Der zweite Teil dieser Doktorarbeit beschäftigt sich mit der Quantifizierung von den 

Metaboliten des menschlichen Gehirns am 9.4 T mittels ein- und zweidimensionaler MRS 

Methoden. Die Konzentrationen der Metaboliten werden in mmol/kg berichtet. Hierbei 

wurden T1- und T2-Gewichtungen korrigiert sowie die Zusammensetzung des 

gemessenen Gewebes berücksichtigt. Die resultierenden Konzentrationen, die mittels 

der zwei Methoden gemessen wurden, werden untereinander sowie mit weiterer Literatur 

verglichen. 
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1 Synopsis 

 
1.1 Introduction 

 
Nuclear magnetic resonance (NMR) spectroscopy is a sought-after technique often used 

to understand the three-dimensional structure of molecules, to determine concentrations 

of certain molecules present in a complex mixture or to observe chemical reactions and 

binding of different components to each other. It is used in a wide range of applications 

including chemistry, medicine, geology, biology and so on. 

An atomic nucleus, composed of protons and neutrons, possesses certain important 

physical properties such as mass, electric charge, magnetism and spin. Out of these 

physical properties, the NMR technique exploits nuclear magnetism and nuclear spin. 

The nucleus in a strong external static magnetic field is perturbed by a weak oscillating 

magnetic field. Resonance occurs when the frequency of the oscillating field matches the 

frequency of the nucleus that depends on the static magnetic field strength, chemical 

environment of the nucleus, and magnetic properties of the nucleus. The energies 

absorbed correspond to the radiofrequency (RF) part of the electromagnetic spectrum. 

Extending the application of NMR to in vivo tissues, single voxel magnetic resonance 

spectroscopy (MRS) allows for non-invasive detection and quantification of the 

concentrations of neurochemicals and metabolites in biological tissues. More specifically, 

the complex biochemical changes contributing to metabolism in the human brain tissues 

are extremely intriguing. MRS enables both neuroscientific and clinical researchers to 

understand the metabolic processes in the in vivo healthy human brain, respective 

changes in case of pathological conditions and during treatment monitoring. 

This chapter focuses on familiarizing with the most important concepts of NMR/MRS and 

concludes with introducing the primary goals of this thesis. The introductory chapter 

attempts to cover only the basic concepts of NMR/MRS that would aid in understanding 

the scientific work presented here. For a more thorough explanation of the NMR/MRS 

spin physics in classical and quantum mechanical perspectives and for the derivations of 
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the equations used, referring to the textbooks by de Graaf1, Keeler2, and Levitt3 is 

suggested. 

1.1.1 Larmor frequency 

 

An intrinsic property possessed by the nucleus is angular momentum. The nuclear spin 

angular momentum (𝑰) is often denoted as nuclear spin. It is a vector quantity with both 

magnitude and direction. According to quantum mechanics, angular momentum is 

quantized. 

Protons and neutrons have 𝐼 = 1/2. Nuclei with even numbers of both protons and 

neutrons have 𝐼 = 0 whereas nuclei containing odd number of both protons and neutrons 

have 𝐼 = 1. For the other nuclei with odd-even or even-odd numbers of protons and 

neutrons respectively have half integral values of 𝐼. When nuclei have 𝐼 = 0, the nuclei 

are said to be NMR silent. However, the nuclei are said to be NMR active when 𝐼 has half- 

integral or integral values. Out of these nuclei, the NMR behavior of the half-integral 

nuclear spins is easier to understand and detect because of their spherically distributed 

electric charge. 

Each nuclear spin is associated with a nuclear magnetic moment 𝝁. When placed in an 

external static magnetic field (𝑩𝟎) 𝝁 experience a torque (𝑟) and precess about the 𝑩𝟎 

axis at a frequency given by 

 

𝑚𝟎 = − 𝛾 𝑩𝟎 (1) 

 
where 𝑚𝟎 is the angular frequency, famously known as the Larmor frequency, and 𝛾 the 

gyromagnetic ratio which is a constant for a given nucleus. Figure 1 shows a proton spin 

precessing around an external static magnetic field 𝑩𝟎. 
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Figure 1: A proton spin precessing in an external magnetic field 𝑩𝟎. The Larmor 

frequency 𝑚𝟎 is proportional to 𝑩𝟎. Gyromagnetic ratio 𝛾 of a proton is positive; therefore, 

it undergoes a negative precession according to Equation 1. 

For in vivo MRS, detection of metabolically valuable and MR-visible nuclei such as 1H, 

13C and 31P are feasible. Among them proton (1H) MRS is quite a popular technique due 

to the high natural abundance (>99.9%) of proton nucleus and its high 𝛾 and thus 

sensitivity. Therefore, 1H MRS allows for the detection of a large number of brain 

metabolites. 

1.1.2 Energy levels 

 

In general, spectroscopy techniques exploit the energy difference between quantized 

energy states and detect the frequency absorbed by the object. The number of nuclear 

spin states for nuclear spin 𝐼 is given by 2𝐼 + 1. In the absence of external field, the 

nuclear spin states are degenerate. However, for example, in the presence of an external 

magnetic field, the nuclear spin states have different energies. This is called the Zeeman 
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effect and the splitting of the energy levels in the presence of a magnetic field is known 

as Zeeman splitting. 

Considering proton (𝐼 = 1/2), there are two possible energy levels corresponding to the 

two nuclear spin states. These two spin states are known as parallel or spin-up (𝛼) and 

anti-parallel or spin-down (𝛽) depending on their orientation with the external magnetic 

field. This is illustrated in Figure 2. 

Borrowing concepts from quantum mechanics, the energy corresponding to the magnetic 

quantum states are given by 

 

ℎ 
𝐸𝑚 = −𝑚 

2𝜋 
𝛾 𝐵0 

(2) 

 
where 𝑚 is the magnetic quantum number and can take 2𝐼 + 1 values between −𝐼 and 

+𝐼 in steps of 1. 

 
More specifically, in NMR electromagnetic waves in the RF range of 10-800 MHz are 

absorbed by the spins when there is an induced energy difference created by the external 

static magnetic field (𝑩𝟎) in a nucleus between the parallel and anti-parallel nuclear spin 

states. This energy difference ∆𝐸 between the quantized states is given by the Planck 

relation: 

 

∆𝐸 = ℎ𝜈 (3) 

 
where ℎ is the Planck’s constant and 𝜈 is the absorbed frequency. 

 
The energy of a magnetic dipole moment 𝝁 when placed in an external static magnetic 

field is given by 

 

𝐸 = −𝝁. 𝑩𝟎 = −𝜇 𝐵0 cos 𝜃 (4) 

 
where 𝜃 is the angle between 𝝁 and 𝑩𝟎. Therefore, 𝐸 is minimum when 𝜃 = 0° and 

maximum when 𝜃 = 180°. Therefore, classically speaking 𝐸 can take any value between 

+𝜇𝐵0 to −𝜇𝐵0 since 𝝁 can assume any orientation between 0° and 180°. However, it is 

not true since the resonance condition for magnetic resonance spectroscopy cannot be 
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derived that way. Therefore, a quantum mechanical treatment is necessary (∆𝐸 = ℎ𝜈). 

That way it can be explained why the angle 𝜃 between 𝝁 and 𝑩𝟎 is also quantized. 

 

 

Figure 2: Spin energy level diagram for a proton (𝐼 = 1/2). Therefore, there are two 

possible magnetic quantum numbers (𝑚 = -1/2, +1/2) and therefore two possible energy 

states corresponding to 𝑚. The energy level difference between the two spin states 𝛼 and 

𝛽 corresponds to energy in the RF range. 

 
When the spin transitions from 𝑚 = +1/2 (𝛼) to −1/2 (𝛽) state (Figure 2), the energy 

difference is given by 

 

ℎ 
∆𝐸 = 𝛾  𝐵0 

2𝜋 

(5) 

 
Therefore, the resonance occurs when 

 
𝛾 

𝜈 =  𝐵0 
2𝜋 

(6) 

 
with 𝜈 being the Larmor frequency in Hz. The resonance condition is satisfied by applying 

RF energy equal to the Larmor frequency, which is then absorbed by the spins. This will 

result in a resonance line in the nuclear magnetic resonance spectrum at the given 

frequency 𝜈. 

Moreover, cosine of the angle between 𝝁 and 𝑩𝟎 is given by 
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𝑚 
cos θ = 

√𝐼(𝐼 + 1) 

(7) 

 

 

which indicates θ = 54.75° relative to the z-axis for protons (𝐼 = 1/2). This means that the 

protons are distributed on the surface of the two cones (with 𝝁 parallel or anti-parallel to 

𝑩𝟎) rotating about the static field 𝑩𝟎 at 𝜈. We have seen that the energy of interaction 

between the magnetic moment of the nucleus and the external static magnetic field (𝑩𝟎) 

is dependent on the angle 𝜃 between them (Equation 4). Therefore, in order to have the 

preferred minimum energy the spins align with the applied field. The population difference 

between the two spin states is given by the Boltzmann equation1. 

The nuclear spin angular momentum can point in any possible direction and the direction 

of the spin angular momentum is known as the spin polarization. For nuclei with 𝛾 > 0 

(such as 1H), magnetic moment 𝝁 of the nucleus points in the same direction as the spin 

polarization and for nuclei with 𝛾 < 0, magnetic moment of the nucleus points in the 

opposite direction to the spin polarization. In the absence of an external magnetic field, 

the magnetic moments in a sample point in all possible directions. However, despite the 

random thermal motion of the molecules, the magnetic moments are aligned over time in 

such a way that the average over the sample is parallel to the external magnetic field. 

This is represented by a bulk magnetization vector denoted by 𝑴 which is the sum of all 

magnetic moments. There are slightly more spins aligned parallel to the magnetic field 

than anti-parallel to the field making the total net magnetization the so-called macroscopic 

magnetization - parallel to the static magnetic field. Since there is no net component along 

the transverse XY plane, the net macroscopic magnetization is parallel to +Z-axis and is 

called the longitudinal magnetization 𝑴𝟎. 

An RF transmitter/receiver system (transceiver) is used for generating an oscillating 

magnetic field (𝑩𝟏) along the XY-plane. This results in the initial longitudinal 

magnetization 𝑴𝟎 experiencing a torque. Hence, the macroscopic magnetization vector 

rotates towards the transverse XY-plane in the case of a 90° excitation RF pulse or rotates 

towards the antiparallel state –Z in the case of a 180° inversion RF pulse. At this point, 

the external magnetic field 𝑩𝟎 acts on the nuclear spins in order to attain a phase 
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coherence between a large number of spins in the sample under investigation resulting 

in a detectable net transverse magnetization 𝑴𝑿𝒀. This magnetization rotates about the 

𝑩𝟎 field at Larmor frequency inducing an electromotive force (emf) in the receiver coil, 

thereby detecting the NMR/MRS signal. 

1.1.3 Chemical shift 

 

Depending on the chemical environment of the nucleus, the effective magnetic field 

experienced by the spin of the nucleus is given by 𝑩 is not the same as the external 

magnetic field 𝑩𝟎 (Figure 3). 

 

𝑩 = 𝑩𝟎 (1 − 𝜎) (8) 

 

In this equation 𝜎 is known as the shielding constant. 
 
 

 
Figure 3: A proton is shielded by the electron orbital thereby making it experience not 𝑩𝟎, 

but a slightly lower field strength 𝑩. 

Therefore, the resonance condition becomes 

 
ℎ 

𝜈 = 𝛾  𝐵0 (1 − 𝜎) 
2𝜋 

(9) 
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The resonance frequency not only depends on the gyromagnetic ratio and external static 

magnetic field, but also on the chemical environment of the nucleus. This is termed as 

chemical shift. As an example, a more shielded proton will experience a larger 𝜎𝑩𝟎, 

therefore a lower field 𝑩. This results in a decrease in the difference between the energy 

states 𝛼 and 𝛽. Consequently, it gives rise to a signal in the lower frequency range. On 

the other hand, a more deshielded proton results in a signal in the higher frequency range. 

In a 1H MRS spectrum, protons from aliphatic chains resonate at lower frequencies 

(upfield); and protons that belong to aromatic rings, amide or amine groups resonate at 

higher frequencies (downfield) as shown in Figure 4. 

 

 

 
Figure 4: A proton spectral range from 0 to 12 ppm is depicted here with aliphatic chains 

resonating at lower frequency (upfield) and aromatic rings, amide or amine groups 

resonating at higher frequency (downfield). Two protons belonging to the water molecule 

resonate close to 4.7 ppm. The ppm scale is preferred for plotting NMR/MRS spectra as 

it is field strength independent which makes the proton spectrum of a particular sample 

comparable across different field strengths. (Courtesy: American Medical Colleges and 

Khan Academy, www.khanacademy.org CC BY-NC-SA 3.0) 

http://www.khanacademy.org/
http://www.khanacademy.org/
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From Equation 9 it can be observed that the resonance frequency 𝜈 is dependent on 

external static magnetic field 𝐵0. So comparing NMR spectra across different field 

strengths becomes tedious when the chemical shift is expressed in hertz (Hz). In order to 

avoid the field strength dependence, chemical shift scale in parts per million (ppm) was 

introduced. The chemical shift scale requires a reference compound such as 2.2- 

dimethyl-2-silapentane-5-sulfonate (DSS) whose chemical shift has been assigned 

chemical shift 𝛿 = 0 ppm. 

The position of a peak in a spectrum is taken as the frequency separation between the 

peak of interest and reference peak divided by the frequency of the reference peak. 

Chemical shift 𝛿 in ppm is therefore defined as 
 

𝜈 − 𝜈𝑟𝑒𝑓 
𝛿 = × 106 

𝜈𝑟𝑒𝑓 

(10) 

 
where 𝜈 is the resonance frequency of a spectral line representing the molecule of interest 

and 𝜈𝑟𝑒𝑓 is the frequency of a spectral line from a reference compound. Traditionally, the 

lower frequency resonances are displayed to the right of the water resonance (known as 

upfield) in the 1H MRS spectrum and higher frequency resonances to the left of the water 

resonance (known as downfield) in the spectrum (Figure 4). 

1.1.4 J-coupling 

 

J-coupling or scalar coupling is a phenomenon that occurs as a result of indirect magnetic 

interaction between two nuclei and their spins which is brought about by the electron spins 

contributing to the chemical bonds between the nuclei. The effect can be seen in the 

spectrum as splitting of peaks into multiplets in the NMR spectrum. The spacing between 

the peaks in the multiplet is given by the coupling constant 𝐽. The J-coupling constant is 

independent of the external magnetic field and is reported in Hz. 

The hyperfine interactions between the nuclear spin and the electron spin is governed by 

Fermi contact. The s-electrons play a significant role in this interaction since they have a 

finite probability of being at the nucleus. According to Fermi contact, the nuclear and the 

electron spins favor an anti-parallel arrangement. Therefore, four nuclear spin 
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combinations (and hence four corresponding energy levels) are possible for a coupled 

spin system containing two nuclei as shown in Figure 5. Introducing Pauli exclusion 

principle which states that two or more fermions (particles with half integral spins) cannot 

occupy the same quantum state within a same quantum system. Therefore, the 

interacting bonding electrons need to be antiparallel. These rules influence the energy 

level of the coupled spin system resulting in changes in the energy levels. Compared to 

energy levels of a non-coupled spin system, in a coupled system, high-energy 𝛽𝛽 state 

is energetically less favorable. Therefore, there is an increase in the energy level of 𝛽𝛽 

state. Similarly, there is an increase in the energy level of the 𝛼𝛼 state. 𝛼𝛽 and 𝛽𝛼 states 

have antiparallel electron spins leading to more favorable with a decrease in their energy 

levels. A more thorough explanation of the energy levels is given in the text book by de 

Graaf1. 

The multiplicity of the peak is given by the 𝑛 + 1 empirical rule where 𝑛 is the number of 

hydrogens attached to the immediate neighboring carbon atom. It means that the number 

of line splitting of a peak can be predicted as one more than the number of hydrogens 

attached to the immediately neighboring carbon atom. Additionally, the relative heights of 

the subpeaks are given by the binomial coefficients of Pascal’s triangle. 

There is a rapid decrease in the J-coupling effect with increasing number of bonds and 

the effect can be ignored for four or more bonds. Considering an AX spin system where 

A and X are two coupled nuclei, if |𝜈𝐴 − 𝜈𝑋| ≫ 𝐽𝐴𝑋 then the system is known as a weakly 

coupled system. The spectrum corresponding to a weakly coupled system is known as a 

first-order spectrum. If the frequency difference is about the same order as the coupling 

constant 𝐽𝐴𝐵, then the spin system AB where A and B are two coupled nuclei is known as 

a strongly coupled system. In such a spin system, 𝛼𝛽 and 𝛽𝛼 spin states are mixed 

leading to more complicated spectral pattern since both peak intensities and frequencies 

are perturbed. The outer peaks are lesser in amplitude and in the so-called roof effect 

with an imaginary roof forming from the outer to inner resonances. These spectra are also 

referred to as second-order spectra. Since J-coupling is field strength independent, higher 

external static magnetic field improves the spectral dispersion and reduces strong 

coupling effects thereby simplifying second-order spectral pattern. 
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Figure 5: In an uncoupled spin system, there are two possible energy states 

corresponding to parallel and anti-parallel spin states as shown in Figure 2. Here the 

figure shows energy level diagram of a weakly coupled AX spin system. There are four 

possible combinations of parallel and anti-parallel spin states for both nuclei which 

correspond to four different energy levels. Four transitions are allowed with respect to 

spin quantum number 𝑚 = ±1 (single quantum coherences). Therefore, the 

corresponding spectrum would contain four resonance lines at 𝜈𝐴 + 𝐽𝐴𝑋/2, 𝜈𝐴 − 𝐽𝐴𝑋/2, 

𝜈𝑋 + 𝐽𝐴𝑋/2, and 𝜈𝑋 − 𝐽𝐴𝑋/2, where 𝜈𝐴 and 𝜈𝑋 are resonance frequencies corresponding 

to non-coupled A and X spin systems and 𝐽𝐴𝑋 is the J-coupling constant. In addition, 𝑚 = 

0 𝑜𝑟 ± 2 (zero and double quantum coherences) are also allowed resulting in two more 

transitions. But they are not observable directly4. 

Magnetically equivalent nuclei (such as protons within an isolated CH3 group) have 

identical scalar coupling constants with a third non-equivalent nucleus (such as an 

additional CH group in the molecule) whereas for chemically equivalent nuclei, the scalar 
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coupling constant of the two nuclei with the third nucleus is different. All magnetically 

equivalent nuclei are also chemically equivalent and chemically equivalent nuclei do not 

show first-order splitting in the spectrum. 

The concept of J-coupling is used in multi-dimensional spectroscopy5–7 (section 1.1.7 and 

1.3). The coupled spin systems undergo J-evolution with increasing echo time TE. 

Therefore, an incremental delay in the pulse sequence is introduction for J-coupling to 

undergo evolution. A thorough quantum mechanical treatment using product operator 

formalism is necessary to explain the scalar coupling evolution and it is beyond the scope 

of this thesis. Therefore, it is suggested to refer to the text books of Levitt3 and Keeler2 to 

understand about the concept of J-evolution. In principle, the magnetization vector of the 

coupled spins oscillates between in-phase and anti-phase terms in the transverse XY 

plane and this leads to what is observed as J-evolution and inversion of the J-coupled 

resonances in the spectrum. The spectral peaks are fully inverted by 180° when 𝑇𝐸 = 

1/𝐽. 

1.1.5 T1 and T2 relaxation times 

 

The concepts of T1 and T2 relaxation are essential to understand even a basic NMR 

experiment. A single RF pulse or a sequence of different RF pulses perturbs the spins 

thereby causing a change in the net magnetization. 

T1 relaxation time (also known as spin-lattice relaxation or longitudinal relaxation) is the 

time that it takes to return the longitudinal net magnetization to its equilibrium 𝑀0 which is 

parallel to the external static magnetic field 𝐵0. The recovered magnetization at time 𝑡 is 

given by 

 

𝑀 (𝑡) = 𝑀 (1 − 𝑒
−𝑡⁄𝑇 ) 

𝑍 0 1
 

(11) 

 
When 𝑡 > 5𝑇1, 𝑀𝑍(𝑡) = 𝑀0 . Therefore, the knowledge of metabolite specific T1 

relaxation times is necessary to optimize the data acquisition parameters such as the flip 

angle and repetition time TR for a spectroscopy experiment. A repetition time TR that is 

short in comparison to 5T1 gives the spectrum a T1-weighting. Moreover, it is important to 
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correct for T1 relaxation effects for accurate concentration estimates of metabolites and 

the calculation of chemical exchange rates. T1 relaxation times are dependent on external 

magnetic field and get longer with increasing static magnetic field strength 𝐵0. T1 

relaxation time in vivo is also tissue-specific and dependent on temperature. 

T1 relaxation times are measured using inversion recovery techniques or using a 

progressive saturation approach with a repetition time series. This results in the spectral 

signal sweeping a range of magnetizations from positive to negative. Fitting the resulting 

signal to inversion recovery equation or to Equation 11 with 𝑡 = 𝑇𝑅, T1 relaxation times 

can be calculated. Section 1.2 describes the use of a double inversion recovery sequence 

for measuring T1 relaxation times of the macromolecular peaks. 

T2 relaxation is the exponential decay process of the transverse magnetization with time. 

It is also known as transverse relaxation or spin-spin relaxation. T2 relaxation time is the 

time taken by the transverse magnetization MXY to fall to 37% (1/e) of its initial value. For 

a simple spin-echo sequence, the transverse magnetization at a specific time 𝑡 is given 

by 

 

𝑀 (𝑡) = 𝑀 (0)𝑒
−𝑡⁄𝑇 

𝑋𝑌 𝑋𝑌 2
 

(12) 

 
The relationship between echo time 𝑡 = 𝑇𝐸 and T2 relaxation time is an exponential 

curve according to Equation 12 and it is used to measure the T2 relaxation times in section 

1.2 and 1.3. A non-zero TE gives a T2-weighting to the spectrum. Various factors 

contributing to the exponential decay of the NMR signal include microscopic magnetic 

susceptibility differences, dipole-dipole interaction, chemical shift anisotropy, molecular 

translation, fluid flow, J-coupling and chemical exchange. T2 relaxation times decrease 

with increasing field strength. 

The Lorentzian linewidth component of the spectral peaks arise from the T2 relaxation. 

The T2 component contributing to linewidth of the peaks is metabolite/resonance-specific. 

On the other hand, the linewidth component arising from 𝐵0 inhomogeneities is identical 

to all the spins present in the sample/voxel of interest. The 𝐵0 inhomogeneities originate 
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from microscopic and macroscopic susceptibility effects as well as tissue compartment 

effects8 contributing to the Gaussian linewidth component. 

Bloembergen-Purcell-Pound (BPP) theory9 explains the relaxation of pure substances in 

a magnetic field. However, the relaxation phenomenon gets more complex in in vivo 

samples. The relaxation times are also shown to vary with pathological or physiological 

changes. Unlike the metabolites, relaxation times of water have been studied in detail 

and they are governed by a principle known as dipole-dipole interaction. Their relaxation 

property is explained as a result of the fast exchange of free bulk water and the bound 

water near macromolecular surfaces. 

Molecules undergo translational, rotational and vibrational motion. Out of these, 

frequencies corresponding to the rotational motion are in the MHz range thereby having 

an impact on the MR signal. Smaller molecules rotate faster compared to larger 

molecules. Also, as temperature increases, increase in the kinetic energy of the 

molecules make them rotate faster. Therefore, with increasing tumbling rate, both T1 and 

T2 relaxation times increase. Therefore, for larger macromolecules with shorter tumbling 

rates, T1 and T2 relaxation times are shorter compared to those of metabolites. 

In vivo, T1 relaxation times are predominantly tissue specific. On the other hand, in 

addition to being field strength specific, T2 relaxation times are also sequence specific 

depending primarily on whether the sequence employs adiabatic pulses or not. For 

instance, the adiabatic pulses cause a spin-locking effect10 which suppresses the 

evolution of spins to some extent for the pulse duration. Furthermore, T2 relaxation times 

are not only tissue specific, but they are also specific to the region of the brain since they 

depend on the iron content11. 

Analyzing relaxation times can also lead to spectral assignment of unknown compounds 

in sample mixtures. In the later sections, the necessity of knowing T1 and T2 relaxation 

times of water and metabolites for the quantification of metabolites in comparable units 

(molar or molal) is emphasized. 
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1.1.6 Bloch equations 

 

Looking at the macroscopic magnetization gives an equation of motion from the classical 

mechanics point of view. Bloch proposed a set of equations for the time dependence of 

the net magnetization during an NMR experiment involving RF pulses. The bulk 

magnetization 𝑴 experiences a torque and therefore precesses around the external static 

magnetic field 𝑩𝟎: 

 

𝑑𝑴(𝑡) 
= 𝑴(𝑡) × 𝛾𝑩(𝑡) 

𝑑𝑡 

(13) 

 

The magnetic field 𝑩(𝑡) is time dependent when RF pulses are applied. The vector 𝑴 has 

three components: 𝑀𝑥 and 𝑀𝑦 which are the transverse components and 𝑀𝑧 which is the 

longitudinal component. Solving the cross product yields 

 

𝑑𝑀𝑥(𝑡) 
= 𝛾[𝑀𝑦(𝑡)𝐵𝑧(𝑡) − 𝑀𝑧(𝑡)𝐵𝑦(𝑡)]) 

𝑑𝑡 

(14) 

𝑑𝑀𝑦(𝑡) 
= 𝛾[𝑀𝑧(𝑡)𝐵𝑥(𝑡) − 𝑀𝑥(𝑡)𝐵𝑧(𝑡)] 

𝑑𝑡 

(15) 

𝑑𝑀𝑧(𝑡) 
= 𝛾[𝑀𝑥(𝑡)𝐵𝑦(𝑡) − 𝑀𝑦(𝑡)𝐵𝑥(𝑡)] 

𝑑𝑡 

(16) 

 
Bloch assumed the spins to relax differently in the transverse (spin-spin relaxation) and 

longitudinal planes (spin-lattice relaxation); however, the Bloch equations follow first order 

kinetics. Considering the relaxation process where T1 and T2 are relaxation time 

constants, the relaxation terms become 

𝑀𝑥(𝑡) 
(− 

𝑇2 

𝑀𝑦(𝑡) 
, − 

𝑇2 

𝑀𝑧(𝑡) − 𝑀0 
, − ) 

𝑇1 
 

Therefore, accounting for relaxation in Equations 14, 15, and 16 and since 𝐵𝑧(𝑡) in the 

laboratory frame is 𝐵0, the Bloch equations in the laboratory frame are written as 
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𝑑𝑀𝑥(𝑡) 𝑀𝑥(𝑡) 
= 𝛾[𝑀𝑦(𝑡)𝐵0 − 𝑀𝑧(𝑡)𝐵𝑦(𝑡)] − 

𝑑𝑡 𝑇2 

(17) 

𝑑𝑀𝑦(𝑡) 𝑀𝑦(𝑡) 
= 𝛾[𝑀𝑧(𝑡)𝐵𝑥(𝑡) − 𝑀𝑥(𝑡)𝐵0] − 

𝑑𝑡 𝑇2 

(18) 

𝑑𝑀𝑧(𝑡) 𝑀𝑧(𝑡) − 𝑀0 
= 𝛾[𝑀𝑥(𝑡)𝐵𝑦(𝑡) − 𝑀𝑦(𝑡)𝐵𝑥(𝑡)] − 

𝑑𝑡 𝑇1 

(19) 

 
 

Considering a rotating frame (x’, y’, z’) with frequency ω around the static magnetic field 

B0 = - γω0, 

 

𝑀′𝑥 = 𝑀𝑥 cos 𝜔𝑡 + 𝑀𝑦 sin 𝜔𝑡 (20) 

𝑀′𝑦 = 𝑀𝑦 cos 𝜔𝑡 − 𝑀𝑦 sin 𝜔𝑡 (21) 

𝑀′𝑧 = 𝑀𝑧 (22) 

the equations above transform as follows: 

 
𝑑𝑀′𝑥(𝑡) 𝑀′𝑥(𝑡) 

= [−(𝜔0 − 𝜔)𝑀′𝑦(𝑡) − 𝛾𝑀′𝑧(𝑡)𝐵′𝑦(𝑡)] − 
𝑑𝑡 𝑇2 

(23) 

𝑑𝑀′𝑦(𝑡) 𝑀′𝑦(𝑡) 
= [ (𝜔0 − 𝜔)𝑀′𝑥(𝑡) + 𝛾𝑀′𝑧(𝑡)𝐵′𝑥(𝑡)] − 

𝑑𝑡 𝑇2 

(24) 

𝑑𝑀′𝑧(𝑡) 𝑀′𝑧(𝑡) − 𝑀0 
= 𝛾[𝑀′𝑥(𝑡)𝐵′𝑦(𝑡) − 𝑀′𝑦(𝑡)𝐵′𝑥(𝑡)] − 

𝑑𝑡 𝑇1 

(25) 

A detailed derivation can be found in the paper by Bloch12. The Bloch equations are used 

in section 1.2.2 to determine the longitudinal magnetizations of MM peaks for different 

combinations of inversion times in a double inversion recovery sequence to find optimal 

sequence parameters to measure T1 relaxation times of MM. 

1.1.7 Single voxel spectroscopy techniques 

 

Application of concepts from physics in medicine has been of immense importance. The 

branch of medical physics has grown tremendously and yielded diagnostic, therapeutic 
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and theranostic methods. Magnetic resonance imaging (MRI) and spectroscopy are used 

for diagnostic purposes and for monitoring treatment response. Single voxel proton MRS 

is a non-invasive technique that has complemented MRI by providing a means to detect 

and quantify concentrations of metabolites in the human brain. About 18 brain metabolites 

can be detected at ultra-high field (UHF) (≥ 7 T) using this technique13. MRS is used to 

not only understand the regular metabolism in the human brain, but also in establishing 

biomarkers for diagnostics and therapy response monitoring in a range of pathologies in 

the human brain, therefore proving to be clinically useful14. Quite contrasting to MRI, in 

MRS, one aims to suppress tissue water and fat signal, and measure the concentrations 

of metabolites. The sensitivity of 1H MRS allows for detection of metabolites with 

concentrations in the millimolal range. Therefore, 1H MRS provides more specificity since 

this technique can detect several metabolite peaks of interest. Figure 6 a) shows 1H MRS 

spectrum acquired at 9.4 T. 

The most common in vivo spectroscopy pulse sequences for single voxel localization are 

PRESS15, STEAM16, semiLASER17,18, LASER19 and SPECIAL20 . They differ from each 

other with respect to type and number of radiofrequency pulses needed for 3D 

localization, the resulting chemical shift displacement and SNR. Typically, the most suited 

pulse sequence is chosen for a study depending on the metabolites of interest, hardware 

constraints and feasibility of acquisition duration and other parameters such as TE, TR 

and number of averages required to yield a good quality spectrum. A recent experts’ 

consensus article21 compares the pulse sequences based on various characteristics and 

recommends sequences for different situations such as lower/higher field strengths, 

reducing chemical shift displacement and to overcome inhomogeneous B1
+ fields. 

Another interesting review article by Landheer et al.,22 describes the pulse sequences 

more theoretically and elaborates the trade-offs between them. 
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Figure 6: a) Proton spectrum acquired in vivo in the human brain at 9.4 T using a one- 

dimensional metabolite-cycled semiLASER sequence with an inlay showing the voxel 

placement in an anatomical image. A gray matter rich voxel of interest in the occipital lobe 

was chosen. The spectrum shows regions of severe spectral overlap highlighted with red 

boxes in the spectrum. These regions contain spectral peaks from J-coupled metabolites 

such as aspartate, glutamine, glutamate and myo-inositol. b) A in vivo human brain two- 

dimensional J-resolved metabolite-cycled semiLASER spectrum acquired from the same 

voxel shows well-resolved spectral patterns of these metabolites with J-coupled spin 

systems across the indirect dimension f1. The spectral range containing most metabolites 

with J-coupled spin systems are shown with white boxes. In both a) and b) major singlet 

resonance lines of metabolites such as NAA, tCr and tCho are labeled to serve as spectral 

landmarks for comparison between the two figures. Further explanation about the 

sequences and acquisition parameters are given in section 3. 
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UHF pose several technical challenges13 and they have to be addressed in order to reap 

the benefits offered by UHF. Some of the challenges include B1
+ inhomogeneity23, and 

increased chemical shift displacement effect. In this thesis, semiLASER17 (semi 

localization by adiabatic selective refocusing) sequence is used for localization. The 

semiLASER24 sequence employed 90° sinc pulse of 8000 Hz bandwidth for excitation. 

Higher bandwidth adiabatic full passage (AFP) pulses (pulse duration: 3.5 ms; bandwidth: 

8000 Hz) can minimize chemical shift displacement thereby improving the localization of 

the voxel of interest. In addition, adiabatic pulses are also relatively insensitive to B1
+ 

inhomogeneity. This helps overcome the B1
+ field inhomogeneity especially at UHF. Even 

though LASER offers better localization since it uses adiabatic pulses also for excitation 

as well, semiLASER allows shorter TEs since it has lesser number of RF pulses. This is 

beneficial since T2 relaxation times of metabolites are shorter at UHF compared to lower 

field strengths, therefore using a shorter TE sequence is better. The sequence is 

described in detail in Giapitzakis et al24. 

Another important aspect of acquiring MRS data is a water suppression scheme. Water 

molecule is present in abundance in the human brain resulting in a huge water peak at 

~4.7 ppm in the 1H spectrum. Therefore, it is essential to suppress the water peak in order 

to detect metabolites that are present in millimolal range. The water suppression also 

needs to be robust in order to avoid any baseline distortions or water tails affecting the 

detection of metabolites closer to 4.7 ppm. However, water suppression techniques25,26 

uses a combination of RF pulses which increases RF power deposition at UHF. 

Therefore, metabolite-cycling (MC) technique was proposed27 which is an alternative to 

using water suppression techniques. The MC technique24 used in this thesis employed 

an asymmetric adiabatic inversion pulse. The MC inversion pulse preceeded the 

semiLASER localization24. It works by selectively alternatively inverting the upfield and 

the downfield part of the proton spectrum (upfield and downfield parts are inverted in the 

odd and even numbered acquisitions respectively). Therefore, adding the even and odd 

numbered acquisitions gives the water spectrum and their difference results in the 

metabolite spectrum. The inversion of the upfield and the downfield part of the spectrum 
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without affecting the water peak also enables detection of some of the peaks that 

exchange their proton with water28. 

Using proper preprocessing steps (such as averaging, eddy current correction, RF coil 

combination, frequency and phase drift correction, etc.,) in order to reconstruct the raw 

data from the MRI scanner is just as important as choosing the appropriate pulse 

sequence with optimized parameters for a study. This is aptly illustrated in experts’ 

consensus recommendations on preprocessing, analysis and quantification in single 

voxel MRS29. 

As a next step, in order to quantify the concentrations of metabolites, a linear combination 

of simulated basis spectra are fit to model the acquired spectrum. There are several 

software packages such as LCModel30, FiTAID31 or jMRUI32, which perform spectral 

fitting. The most preferred way to generate the basis spectra for individual metabolites is 

using software tools such as Vespa33 by performing density matrix calculations on the 

spin-system of the metabolites that are expected to be observed in the acquired 

spectrum. All the acquisition parameters are taken into consideration. Major metabolites 

observed in the in vivo neurochemical profile are N-acetyl aspartate (NAA), NAA 

glutamate (NAAG), 𝛾-aminobutyric acid (GABA), aspartate (Asp), creatine (Cr), glutamate 

(Glu), glutamine (Gln), glutathione (GSH), glucose (Glc), glycerophosphocholine (GPC), 

glycine (Glyc), myo-inositol (mI), scyllo-inositol (Scy), lactate (Lac), phosphocreatine 

(PCr), phosphocholine (PCho), phosphoethanolamine (PE), and taurine (Tau). These are 

typically included as basis vectors in the basis set. The acetyl and aspartate moieties of 

NAA is represented as NAA(CH3) and NAA(CH2) respectively. The total creatine singlets 

at 3.028 and 3.925 ppm are given as tCr(CH3) and tCr(CH2) respectively. tCho 

corresponds to total choline combining PCho and GPC. The resulting relative 

concentrations from the spectral fitting are often converted to molar or molal units after 

correcting for various factors that are described in detail in section 1.1.8. 

Several challenges are encountered when one attempts to perform spectral fitting due to 

complex spectral patterns and severe overlap of peaks in a proton spectrum acquired 

using the techniques/pulse sequences discussed so far. It becomes difficult to distinguish 
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some peaks of metabolic importance such as GABA, Gln, Glu, Lac, etc., since these 

peaks appear as multiplets and also overlap with other metabolite peaks. 

One technique to acquire well-resolved MR spectroscopy data is by utilizing 1D MRS at 

ultra-high field strength (UHF)13 since it benefits from higher SNR and increased spectral 

resolution. Therefore, acquisition of spectra at UHF helps distinguishing metabolites with 

lower SNR peaks and/or J-coupled spin systems better. 

Another technique used by the NMR community to reduce spectral overlap is multi- 

dimensional spectroscopy34,35. Among these multi-dimensional spectroscopy techniques 

that exist, two-dimensional J-resolved spectroscopy is shown to be feasible and also to 

be promising in vivo36–38. The principle of 2D J-resolved spectroscopy7 exploits the 

concept of J-evolution and the consequential amplitude and phase modulation of spectral 

pattern. It simply consists of a series of signals acquired with different TEs encoding the 

indirect f1 dimension. The direct f2 dimension consists the chemical shift and J-coupling 

information as in 1D MR spectroscopy experiments. The second dimension (f1) in two- 

dimensional J-resolved spectrum contains J-coupling information. After a Fourier 

transformation in both dimensions, the spectrum displays the J-coupling information in 

the indirect dimension eliminating the overlap of J-coupled resonances. Figure 6 a) and 

b) illustrates a spectral comparison between 1D and 2D MC-semiLASER spectra (section 

1.3) acquired in vivo from the human brain at 9.4 T. In this thesis, quantification of 

metabolites using one-dimensional MRS and two-dimensional MRS semiLASER 

localization at UHF is compared in section 1.3. 

1.1.8 Quantification of metabolites 

 

The relative metabolite concentrations obtained from the fitting software are not directly 

comparable between various time points measured during treatment monitoring or across 

different acquisition methods, field strengths, or vendors. Hence, it is necessary to 

introduce correction factors in order to convert these relative concentrations to standard 

comparable values such as molal or molar units. To perform the corrections a reference 

of known concentration is essential. Several approaches39–47 exist in order to measure 

the concentrations of metabolites. One such method uses the internal water signal as the 
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reference48. This thesis uses the quantification formula described in detail by Gasparovic 

et al.,48 to calculate the concentration values in millimoles/kg (millimolal) using the internal 

water referencing method. The concentrations of metabolites are obtained after correcting 

for the fractional tissue compositions and T1 and T2 corrections for both water and 

metabolite signals. 

The quantification values are reported after applying the necessary correction factors 

(unless stated otherwise) for determining concentrations using the internal water 

referencing method. For external concentration reference methods certain factors such 

as coil loading, RF homogeneity, temperature differences need to be considered. While 

using internal water referencing method, the unsuppressed water spectrum is acquired 

from the same voxel as the metabolites. Since the metabolite signal and water signal are 

acquired similarly, internal water referencing is advantageous in comparison to external 

concentration references. 

In order to estimate the fractional tissue compositions, this work uses segmentation of 

acquired high-resolution MP2RAGE49 images into WM, GM and CSF (white-matter, gray 

matter and cerebrospinal fluid) using Statistical Parametric Mapping 12 (SPM 12) 50 

software. Later the tissue fractions were calculated using an in-house written script in 

Python (v3.7). Finally, the concentrations of metabolites were calculated using the 

formula48 given below: 

 
2 

[M]𝑚𝑚𝑜𝑙𝑎𝑙 = [M]obs × 𝑐𝑜𝑛𝑐𝑝𝑢𝑟𝑒_𝐻2𝑂 × 
1 + Fs 

(fGM × 𝑅𝐻2𝑂_𝐺𝑀 + fWM × 𝑅𝐻2𝑂_𝑊𝑀+fCSF × 𝑅𝐻2𝑂_𝐶𝑆𝐹 ) 
× 

(1 − fCSF) × 𝑅𝑀 

 
  𝑓𝑦_𝑣𝑜𝑙 × 𝑎𝑦  where 𝑓𝑦 = 
𝑓 × 𝑎 + 𝑓 × 𝑎 +𝑓 × 𝑎 
𝐺𝑀_𝑣𝑜𝑙 𝐺𝑀 𝑊𝑀_𝑣𝑜𝑙 𝑊𝑀 𝐶𝑆𝐹_𝑣𝑜𝑙 𝐶𝑆𝐹 

 
 

(26) 

 
where 𝑦 corresponds to either GM, WM or CSF; 𝑓𝑦_𝑣𝑜𝑙 is the fraction of the respective 

tissue type determined by segmentation; 𝑎𝐺𝑀, 𝑎𝑊𝑀, 𝑎𝐶𝑆𝐹 (78%, 65%, 97% respectively) 

are the relative densities of MR-visible water for the given tissue type; The pure water 

concentration (55,510 millimolal) is used along with the MR visible fractions of water in 

GM, WM, and CSF. 
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𝑅𝐻2𝑂_𝑦 
= exp [− 

𝑇𝐸
 

𝑇2𝐻2𝑂_𝑦 

] [1 − exp[− 
TR

 
𝑇1𝐻2𝑂𝑦 

]] is the relaxation correction factor for each 

water compartment 𝑦. 𝑇1𝐻2𝑂𝑦  and 𝑇2𝐻2𝑂_𝑦 are the 𝑇1 and 𝑇2 relaxation times of water in 

the compartment 𝑦. 

𝑅 = exp [− 
𝑇𝐸 

] [1 − exp[− 
TR 

]] is the relaxation correction term for metabolites 
  

𝑀 𝑇2𝑀 𝑇1𝑀 

(section 1.3). For macromolecules 𝑅𝑀 was replaced by 𝑅𝑀𝑀 as the macromolecular 

spectra were acquired using double inversion recovery (DIR) the relaxation (section 

𝑇𝐼2 

1.2.3). The relaxation correction term for macromolecules is given by 𝑅𝑀𝑀 = [1 − 2𝑒 𝑇1 + 
𝑇𝐼1+ 𝑇𝐼2 

−( 
2𝑒 𝑇1 

)
] exp [−   

𝑇𝐸
 

𝑇2𝑀𝑀 

] [1 − exp[−   
TR

 
𝑇1𝑀𝑀 

]] . The denominator 1 − 𝑓𝐶𝑆𝐹 was implemented 

for partial-volume correction. The factor 2 
1+Fs 

was introduced to correct for the 

multiplication of even-numbered acquisitions with the scaling factor (F𝑠), originating from 

the metabolite-cycling data processing. [M]obs is the concentration obtained from LCModel 

(section 1.2 and 1.3.2) or ProFit 2.0 (section 1.3.3). For metabolite concentrations 

(section 1.3), number of protons contributing to the metabolite peaks were accounted. 

However, for macromolecules since the proton contributions to each macromolecular 

peak is not known, the proton contribution was not corrected (section 1.2.3). 

1.1.9 Macromolecules 

 

Broad macromolecular resonances underlie narrow higher intensity metabolite resonance 

lines in short TE 1H MR spectra. Macromolecules (MMs) between 0.5 and 4.5 ppm are 

attributed to mobile methyl, methylene, and methine groups of amino acids from cytosolic 

peptides and proteins51. Several studies at field strengths between 1.5 to 3 T have 

highlighted the clinical relevance of MMs in aging52 and in pathologies such as traumatic 

encephalopathy53, Kennedy’s disease54, acute multiple sclerosis55, and glioma56. Figure 

7 shows a MM spectrum (summed from eleven healthy volunteers) acquired at 9.4 T 

(section 1.2). Due to increased spectral dispersion, SNR, and resolution, more MM peaks 

are distinguishable at ultra-high field57; hence, it is possible to more accurately 

characterize the behavior of individual MM peaks. 
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On the other hand, the well-resolved underlying MM spectrum at UHF often distorts the 

metabolite spectrum. Therefore, characterizing MM peaks additionally improves accuracy 

in quantifying metabolite concentrations. Various techniques have been used to handle 

MM signals in metabolite spectra. Cudalbu et al.,58 suggested that using prior information 

from experimentally acquired MM spectra may prove to be the best solution at UHF. 

 

 
Figure 7: Macromolecular spectrum summed from eleven healthy volunteers acquired 

from a gray matter rich voxel in the human brain using a double inversion recovery MC- 

semiLASER sequence59 with inversion times set to 2360 and 625 ms at 9.4 T. Further 

details are provided about acquisition set up and parameters in section 1.2. The MM 

peaks are labeled as MX.XX where the subscript X.XX represents the chemical shift of the 

MM peak in ppm. A sharper metabolite residual tCr-CH2 peak is seen at 3.925 ppm. 

Macromolecules have shorter T1 relaxation times when compared to metabolites57. 

Exploiting this difference in T1 relaxation times MM spectra are acquired using inversion 

recovery methods. The chosen inversion time (TI) determines the T1-weighting of the 
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MRS spectrum. In addition, MMs have shorter T2 relaxation times compared to 

metabolites. Therefore, some studies use longer TE spectra are acquired in order to avoid 

the MM contribution to the proton spectrum. However, it results in SNR loss for shorter 

T2 and J-coupled metabolites. 

 

1.1.10 Objectives and outcome of doctoral research 

 

Reliable detection and quantification of the concentration of metabolites and 

macromolecules in the human brain using proton single voxel spectroscopy at an ultra- 

high field strength of 9.4T was the prime goal of this thesis. Increased spectral dispersion 

and SNR at UHF provides better detection and distinction of the metabolite peaks13. 

However, this also implies that the MM peaks are more distinguishable at UHF, which 

may negatively impact the accuracy and precision of metabolite concentration estimates. 

Furthermore, the MM spectrum itself contains potentially clinically relevant information. 

This makes it necessary to characterize and understand the contribution of MM peaks 

better. Therefore, the first part of this thesis focuses on characterizing the relaxation times 

of MMs (Publication 1, Publication 2) and to quantify their brain tissue concentrations 

(Publication 2). This work helps in accounting for the contribution of MMs in the metabolite 

spectrum and to understand the nature of MMs. The effective T2 relaxation times (𝑇𝑒𝑓𝑓) 

of MMs (Publication 1) are reported for gray and white matter-rich voxels in the human 

brain at 9.4 T. The 𝑇𝑒𝑓𝑓 relaxation times were calculated for MM peaks from an echo 

time series of a double inversion recovery (DIR) metabolite-cycled (MC) semiLASER 

sequence. In Publication 2, T1 relaxation times of MM peaks for gray and white-matter 

rich (GM and WM respectively) voxels are calculated by using a novel DIR technique. 

These two publications helped in understanding the sequence and scan parameter 

dependency of the contribution of MMs to the metabolite spectrum and led to the 

development of a respective simulated relaxation corrected sequence specific MM 

model60 (co-author paper not a part of this thesis). 

The second part of the thesis focuses on quantifying the concentrations of brain 

metabolites (Publication 1, Publication 3) reliably. This is done using two different single 
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voxel spectroscopy localization techniques namely one-dimensional (Publication 1) and 

two-dimensional spectroscopy (Publication 3) and comparing their performance. The MC 

semiLASER sequence was used for acquiring one dimensional spectroscopy data from 

a GM-rich voxel in the occipital lobe. In addition, a two-dimensional J-resolved MC 

semiLASER sequence with a maximum echo sampling scheme was developed and used 

to acquire two-dimensional spectroscopy data from a GM-rich voxel in the occipital lobe 

as well. MM contributions to the metabolite spectra in both 1D and 2D MC semiLASER 

were accounted for by including experimentally acquired 1D and 2D MM spectra using 

1D and 2D double inversion recovery MC semiLASER respectively. T1 relaxation times61 

(co-author paper not part of this thesis) and T2 relaxation times of metabolites (Publication 

1) were determined and used in the correction factors to obtain concentration values. 

This thesis is written in a cumulative form and includes three publications that arose 

during my PhD work. The results from Publication 1, Publication 2, and Publication 3 are 

summarized and presented here. The full articles as published in peer reviewed journals 

are appended in this thesis and can be found in Chapter 5. 
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1.2 Characterization and Quantification of Macromolecules 

 
The broad macromolecular peaks underlying the metabolite spectrum in 1H MRS 

experiments with short echo time are often viewed as a distortion due to the negative 

impact on the quantification accuracy and precision of metabolite concentrations. 

Therefore, characterizing these macromolecular peaks is necessary in understanding 

their influence in quantifying metabolite concentrations in dependence of sequence 

parameters. Moreover, several studies52–54,58,62 have highlighted the clinical importance 

of MMs since respective changes have been detected in various pathologies in the rat 

brain and human brain. Hence, in order to understand the mechanisms behind different 

pathologies and to improve the diagnostic capability for several diseases of clinical 

relevance by establishing potential biomarkers, assimilation of MMs and their behavior is 

essential. A recent consensus article about MRS visible MM57 also emphasized that the 

knowledge of T1 and T2 relaxation times of individual peaks at different field strengths is 

necessary. In the following sections, characterization of T2 (Publication 1) and T1 

(Publication 2) relaxation times of MM peaks in GM- and WM-rich voxels at 9.4 T is 

described in detail. Finally, the concentration of MM peaks (Publication 2) in the human 

brain are reported after correcting for tissue fractions of the respective voxels and for the 

tissue type specific relaxation effects. 

1.2.1 T2 relaxation times of macromolecules 

 
Introduction 

 
At the time when this study was performed, T2 relaxation times of all individual MM peaks 

detectable in the human brain have not been reported at any field strength to the best of 

our knowledge. The T2 relaxation times of MM peaks have been reported in the rat 

brain63–66 at 4.0, 9.4, 11.7, and 17.2 T and for the non-overlapping M0.92 peak in the human 

brain at 2.1 T by Behar et al67. Therefore, the primary goal of this study was to measure 

the effective T2 relaxation times (𝑇𝑒𝑓𝑓; includes the J-evolution effects) of individual MM 

peaks in both GM- and WM-rich voxels in the human brain at 9.4 T. Another interesting 

aspect of this study is a quantitative analysis of the actual full width at half maximum 
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FWHM (∆1/2) of the MM peaks compared to the respective contributions by T2 relaxation 

times, micro-susceptibility and macro-susceptibility as well as chemical shift anisotropy 

effects. 

Study design 

 
In this study, eleven and five healthy volunteers participated for data acquisition in the 

GM- and WM-rich voxels respectively. A 2 × 2 × 2 cm3 GM-rich voxel was chosen in the 

occipital lobe and a WM-rich voxel of same dimensions was chosen in the occipital- 

parietal transition. A home-built coil with 8 transmit and 16 receive channels68 was used 

for the study, by driving power to only the bottom three channels for the single-voxel 

spectroscopy experiments as described in Giapitzakis et al24. 

First- and second-order B0 shimming using FAST(EST)MAP69 (acronym for fast, 

automatic shim technique using echo-planar signal readout using mapping along 

projections), and voxel-based power calibration70,71 were performed. A non-linearly 

spaced TE series (TE: 25, 32, 40, 52, and 60 ms) of MM spectra was acquired using a 

DIR59 MC semiLASER sequence (TR: 10 s, Averages per TE: 32, transmit reference 

frequency: 2.4 ppm) to estimate the 𝑇𝑒𝑓𝑓of MM peaks. 

 
All raw data were preprocessed with in-house written software in MATLAB (version 

2016a; MathWorks, Natrick, MA) as described in Publication 1. MM spectral fitting was 

performed in LCModel V6.3-1L30 using simulated Voigt lines. The following MM peaks 

were included in the basis set: M0.92, M1.21, M1.39, M1.67, M2.04, M2.26, M2.56, M2.70, M2.99, 

M3.21, M3.62, M3.75, M3.86, M4.03, and M4.17 where the corresponding subscripts indicate their 

chemical shifts in ppm. For the fitting of the MM peaks, the chemical shifts and ∆1/2 were 

systematically varied to achieve minimum possible standard deviation of the 𝑇𝑒𝑓𝑓 

relaxation time values among subjects, to maximize R2 values, and to minimize the mean 

Cramer-Rao lower bounds. After considering the above-mentioned criterions, the values 

chosen by Lopez et al63   best suited the data. Hence, these chemical shifts and 

∆1/2values, with minor deviations were used as input for the spectral fitting model. 

Creatine (tCr-CH2) metabolite residual was subtracted by adding a narrower Voigt peak 
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at 3.925 ppm. More information on basis set creation can be found in the appended 

Publication 1. 

 

 
Figure 8: Echo time series (TE: 24, 32, 40, 52, and 60 ms from top to bottom) 

macromolecular spectra from GM- and WM-rich voxels. The MM spectra shown here are 

summed from all the healthy volunteers for the respective voxels. The figure has been 

adapted from Publication 1. 

To calculate the 𝑇𝑒𝑓𝑓 relaxation of MM peaks, the resulting concentrations of MM peaks 

across the TE series were fit to a mono-exponential decay for the individual subject data 

and spectra summed across all volunteers. The mean coefficient of determination R2 was 

used to evaluate the goodness of the exponential fits. 

The FWHM of the MM peaks were extracted from the LCModel .coord files. The 

contribution of 𝑇𝑒𝑓𝑓 relaxation times to ∆1/2 was calculated as (𝜋𝑇𝑒𝑓𝑓)−1. The residual 
2 2 

linewidth was calculated as 

 
∆𝜈 =  ∆ − (𝜋𝑇𝑒𝑓𝑓)

−1 
− ∆𝜈 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1/2 2 𝑠𝑖𝑛𝑔𝑙𝑒𝑡 
(27) 
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Figure 9: Exponential decay plots of M0.92, M2.04, M2.26 and M2.99 from MM spectra 

summed for all healthy volunteers for GM- and WM-rich voxels. The scatter points show 

the fitted concentrations for the respective TEs and the line shows the exponential decay 

fit. The y-axis has arbitrary units. Therefore, conclusions should not be drawn about the 

differences between GM and WM plots. The figure is adapted from Publication 1. 

The B0 components deduced from the tCr(CH2) residual as 

 
∆𝜈 =  ∆ − (𝜋𝑇𝑒𝑓𝑓)

−1   
≈  ∆𝜈 + ∆𝜈 

𝑠𝑖𝑛𝑔𝑙𝑒𝑡 1/2 2 𝑚𝑖𝑐𝑟𝑜 𝑚𝑎𝑐𝑟𝑜 
(28) 

 
 

The values of ∆𝜈𝑚𝑖𝑐𝑟𝑜, ∆𝜈𝑚𝑎𝑐𝑟𝑜 represent the microscopic and macroscopic susceptibility 

components respectively. 

Results 
 

Figure 8 shows the TE series of MM spectra from GM- and WM-rich voxels. The shaded 

area represents the standard deviation in the signal between subjects illustrating the high 

reproducibility of the data quality. The exponential decay fits for M0.92, M2.04, M2.26 and 

M2.99 peaks in the GM- and WM-rich voxels are shown in Figure 9. The LCModel fit 

residual was minimum and showed minimal structured noise indicating a good fit quality 

for all individual data from GM- and WM-rich voxels (Publication 1). M2.70 is observed to 

undergo J-evolution and it attains full inversion between TE = 52 and TE = 60 ms. In order 
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to account for this effect in fitting, the M2.70 peak was simulated as a negative peak at the 

aforementioned TEs. 

The 𝑇𝑒𝑓𝑓relaxation times calculated from fits of the individual subject data and the across 

subjects summed spectra were in good agreement. The box plots of the 𝑇𝑒𝑓𝑓relaxation 

times are given in Figure 10. The values lie between 13 and 37 ms for GM-rich voxels 

and between 13 and 40 ms for WM-rich voxels. The mean R2 values of the exponential 

decay fits were above 0.70 for all MM peaks except M4.03. 
 
 

 
Figure 10: The boxplots show 𝑇𝑒𝑓𝑓 relaxation times calculated for 14 MM peaks in GM- 

rich (dark blue) and WM-rich (light blue) voxels. Horizontal lines inside the boxes indicate 

median values (50% quartile). The boundaries at the bottom and the top represent 25 

and 75 % quartiles respectively. Red and magenta crosses represent the 𝑇𝑒𝑓𝑓,𝑠𝑢𝑚 

relaxation times calculated for the subject-wise summed spectrum from GM- and WM- 

rich voxels respectively. The figure is adapted from Publication 1. 

The measured ∆1/2 of the MM peaks ranged between 35 and 85 Hz across all TEs. 

However, the contribution of 𝑇𝑒𝑓𝑓relaxation times (𝜋𝑇𝑒𝑓𝑓)−1 calculated were between 4 
2 2 
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and 30 Hz. The ∆𝜈𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 for MM peaks calculated after using the ∆𝜈𝑠𝑖𝑛𝑔𝑙𝑒𝑡 of tCr(CH2) 

varied between 10 and 60 Hz (Figure 11). 

Discussion 

 
𝑇𝑒𝑓𝑓 relaxation time values are comparable between the GM- and WM-rich voxels in the 

occipital lobe and the occipital-parietal transition respectively. These values are brain 

region specific as the difference in T2 relaxation times is primarily governed by the iron 

concentrations across the human brain as shown by Hasan et al11. 

 

Figure 11: Residual linewidths calculated using Equation 27 for the MM peaks and 

metabolite residual tCr(CH2) at 3.925 ppm. The figure is adapted from Publication 1. 

Table 1 shows a comparison of 𝑇𝑒𝑓𝑓 relaxation time values across field strengths. Most 

MM peaks show a mild B0 dependence. As discussed in the MM experts’ consensus 

article57, even though the 𝑇𝑒𝑓𝑓 relaxation times tend to decrease with field strength, they 

have a very mild B0 dependence. M0.92 peak shows maximum deviation from the field 

strength trend since 𝑇𝑒𝑓𝑓 relaxation times at 9.4 T is slightly higher than 𝑇𝑒𝑓𝑓 reported at 
2 2 
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3 T72,73. In addition, Hoefemann et al72 reported lower 𝑇𝑒𝑓𝑓 relaxation times for M1.22 and 

M1.43 peaks combined. The 𝑇𝑒𝑓𝑓 relaxation times of MMs obtained from this study was 

utilized also to develop the relaxation corrected MM simulation model60. In addition, the 

knowledge of 𝑇𝑒𝑓𝑓 relaxation times of MMs was essential to optimize the acquisition 

parameters in the two-dimensional spectroscopy study (Publication 3). 

The linewidth of the MM peaks were not explained by contribution of the T2 relaxation 

times and the microsusceptibility and macrosusceptibility effects. The ∆𝜈𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 values 

for the MM peaks (Figure 11) varied consistently between 10 and 60 Hz for both GM- and 

WM-rich voxels indicating the magnitude of chemical shift anisotropy, potential spectral 

overlap and/or J-evolution components for each MM peak is similar between different 

tissue types. These peaks could originate from amino acids74 which, depending on the 

larger protein structure they belong to, can have different chemical shifts, but are 

distributed around a main resonance frequency for the bulk of protein peaks. 

Conclusion 

 
In this study, for the first time, 𝑇𝑒𝑓𝑓 relaxation times of 14 individual MM peaks ranging 

from 13 to 45 ms were measured in both GM- and WM-rich voxels. The 𝑇𝑒𝑓𝑓relaxation 

times follow the decreasing trend of T2 relaxation times with increasing B0 field strength. 

The 𝑇𝑒𝑓𝑓 relaxation time values were utilized to quantify the concentrations of the MMs in 

human brain tissue (section 1.2.3) and for the development of a generalized relaxation- 

corrected MM simulation model for accurate quantification of metabolite concentrations60. 

Finally, this work quantitatively shows the contribution of 𝑇𝑒𝑓𝑓relaxation times and B0 

components to the linewidths of the MM peaks and demonstrates a substantial additional 

contribution by chemical shift anisotropy, potential spectral overlap and J-coupling 

components to the residual linewidth of amino acid proton groups. 
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T2 relaxation times of macromolecular peaks in the human brain [ms] 

Study 
Murali-Manohar (2020) 

Publication 1 
Landheer (2020)73 Hoefemann (2020)72 Behar (1994)67 

B0 (T) 9.4 3 3 2.1 

Sequence DIR-semiLASER DIR-semiLASER 
2DJ-IR 

MC-PRESS 
ISIS 

Echo Time (ms) 24 - 60 20.1 - 62.1 20 - 95 19.4 - 145.2 

Repetition Time 
(ms) 

10000 2000 3000 - 4000 3300 

 
 

Region of Interest 

Occipital lobe Occipital and frontal 
lobe 

(GM-rich) 

 
Occipital lobe 

(GM-rich) 

 
Occipital lobe 

(mixed) 
GM-rich WM-rich 

M0.94 36 ± 7 35 ± 10 27 ± 2 21 44 ± 4 

M1.22 34 ± 13 25 ± 0 39 ± 13  

19 
 

M1.43 32 ± 7 40 ± 24 18 ± 4 

M1.70  

18 ± 4 
 

18 ± 8 
 

17 ± 3 
27 

M1.81  
 
 

19 

M1.9  

16 ± 2 

 

19 ± 2 

 

14 ± 1 M2.05 

M2.07 

M2.17  

18 ± 2 

 

18 ± 1 

 

20 ± 2 M2.27  

 
24 

M2.36 

M2.47     

M2.57 20 ± 3 24 ± 3  

26 ± 4 
M2.74 14 ± 3 13 ± 2 16 

M2.97  

19 ± 2 
 

19 ± 1 
 

21 ± 4 

 

[35] 
M3.00 

M3.09    

[35] 
M3.21  

18 ± 3 
 

16 ± 5 
 

18 ± 5 
M3.26-3.28 [35] 

M3.4-3.6 14 ± 6 16 ± 5  
 
 

21 ± 2 

 

24 M3.71  

25 ± 7 
 

25 ± 7 
M3.79 

M3.87 22 ± 5 24 ± 7  

34 
M3.97 21 ± 8  

M4.20    

Table 1: T2 relaxation times of macromolecular peaks from Publication 1 and from 

previous studies performed at other field strengths. The T2 relaxation times given with 

square brackets indicate that the values reached the maximum limits set in the FitAid 

software used for spectral fitting. The table is adapted from the MM consensus article57 

(co-author publication). 
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1.2.2 T1 relaxation times of macromolecules 
 

Introduction 

 
Estimating T1 relaxation times can help elucidate the exchange dynamics and can lead 

to spectral assignments. Previous literature reported T1 relaxation times of MMs in the 

human brain for MM spectra as a whole75, only for the non-overlapping MM peak at ~0.94 

ppm63,67,76 or for groups of MM peaks72. The T1 relaxation times of individual MM peaks 

are yet to be reported at any field strength in vivo. Therefore, the prime goal of this study 

is to report T1 relaxation times of individual MM peaks. 

Inversion recovery (IR) techniques are often utilized as a reliable method for acquiring 

MM spectra. This method exploits the difference in the T1 relaxation times between MMs 

and metabolites57. MM peaks are known to have faster T1 relaxation times compared to 

those of metabolites. In order to determine T1 relaxation times of MM peaks, it is 

necessary to suppress the metabolite signal while still sweeping through a range of 

magnetizations for the MM peaks. A range of longitudinal magnetization of MM peaks is 

necessary to plot the T1 relaxation curve. Even though single IR sequences are popular 

to acquire MM spectra, in the case of characterizing T1 relaxation times for all individual 

MM peaks a single IR technique would be a difficult choice due to eventual contribution 

from metabolites. More specifically, using a single IR technique would result in metabolite 

signal contaminating the inversion series MM spectra at most of the TIs; consequently, 

making it challenging to estimate the T1 relaxation times of most MM peaks with a 

sufficient range of longitudinal magnetization. As a result, a DIR technique was chosen 

for this study as it allowed flexibility for more consistent metabolite nulling while allowing 

for the observation of a range of different magnetizations of MM peaks simultaneously. 

Moreover, using a DIR technique proved to be advantageous as this approach is shown 

to be insensitive to inhomogeneity of the transmit field B1
+. 

Depending on the chosen inversion time (TI) and repetition time (TR), the use of IR 

techniques results in a T1-weighting of the MM peaks. Therefore, it is likely that using T1- 

weighted MM spectra to account for MM contribution while fitting metabolite spectra will 

influence quantitative accuracy. This is because the metabolite spectra are typically 
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acquired without inversion pulses, and thus often also with a shorter TR. Hence, it is 

necessary to characterize the T1-relaxation behavior of the MM peaks for improved 

metabolite spectral fitting and accurate quantification of both MMs and metabolites. 

Study design 

 
Exhaustive Bloch simulations (section 1.1.6) assuming a single proton spin were 

performed in order to determine a range of longitudinal magnetization values for MM 

signals ranging from negative to positive MZ, which are required to calculate T1 relaxation 

times of the MM peaks. The magnetization vector (M(x,y,z)) was calculated for the actual 

inversion pulse shape implemented at the 9.4 T MRI scanner and the inversion times TI1 

and TI2 as depicted in the DIR scheme (Figure 12). The ratio of the available 

magnetization following a DIR block to the initial magnetization (MZ/M0) was calculated 

for the inversion pulse with a frequency offset ranging from -2000 to 2000 Hz, which is 

equal to the actual bandwidth of the pulse. 

For the Bloch simulations, T1 relaxation times of metabolites and MMs were considered 

from previous in vivo results at 9.4 T77 and at 7 T75 respectively. TI1/TI2 combinations were 

chosen such that the corresponding spectra had minimal metabolite residual while 

sweeping a range of longitudinal magnetizations for MM peaks. Finally, the resultant 

TI1/TI2 combinations were further tested in vivo to ensure good quality MM spectra with 

minimal residual metabolite contributions. 

Eleven healthy volunteers participated in the study. All measurements were performed 

on a 9.4T Siemens Magnetom whole-body MRI scanner using a home-built 8Tx/16Rx 

coil68. A 2 × 2 × 2 cm3 voxel was placed spanning the longitudinal fissure of the occipital 

lobe for GM measurements, and a voxel was placed within the left occipital-parietal 

transition for WM measurements. Second-order B0 shimming with FAST(EST)MAP69,78 

and voxel-based power calibration70 were performed. 
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Figure 12: (Top) Schematic pulse sequence diagram of the double inversion recovery 

metabolite-cycled semiLASER localization. Eleven different combination of inversion 

times TI1/TI2 were employed to obtain a range of magnetization values for the MM peaks 

with almost nulled metabolite signal. (Bottom) GM- and WM-rich voxels in the occipital 

lobe and occipital-parietal transition respectively. The figure is adapted from Publication 

2. 

A DIR MC semiLASER59 (TE: 24 ms, TR: 8000 ms, averages per TI1/TI2 combination: 32, 

transmit reference frequency: 2.4 ppm) sequence was used to acquire MM data. 11 MM 

spectra were acquired per subject with 11 different TI1/TI2 combinations chosen (TI1/TI2: 

2360/625, 2150/600, 2000/575, 1900/550, 1800/525, 1050/238, 1300/80, 1200/20, 

1250/20, and 1300/20 ms). Additional unsuppressed water signals (averages: 16, 

transmit reference frequency: 4.7 ppm) were acquired without MC. All MM raw data were 

processed as described in Publication 2 and then the preprocessed spectra were fitted in 

LCModel (v6.3-1L)30 using CHSIMU simulated Voigt lines to fit 13 MM peaks. Tailored 

basis sets corresponding to each TI1/TI2 combination were established with adjusted 

phases to consider metabolite residuals. 
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The individual LCModel concentrations from all subjects sorted by TI1/TI2 combinations 

were fitted to the DIR signal equation 

 

𝑎 −𝑇𝐼2 𝑇𝐼1+𝑇𝐼2 

𝑆 =  (1 − 2𝑒 𝑇1     + 2𝑒
−( 

𝑇1 
)
) 

2 

(29) 

 

to determine T1 relaxation times for each of the MM peaks. The differences in T1 

relaxation times between GM- and WM-rich voxels were evaluated using Welch’s t-test 

(α = 0.05) for all 13 MM peaks. Adjusted P-values were calculated using the Bonferroni 

correction to account for multiple comparisons. 

Results 

 
Metabolite-nulled MM spectra were acquired from GM- and WM-rich voxels with the 11 

chosen TI1/TI2 combinations encompassing a range of magnetizations. All the spectral 

fits showed good quality with minimal fit residue, which lacked structured noise (Figure 

13). Figure 14 shows M0.92 peak amplitudes fitted to Equation 29. Figure 15 reports the 

T1 relaxation times of MM peaks from GM- and WM-rich voxels. Additionally, since T1 

relaxation times are mostly tissue-type but not brain region dependent, T1 relaxation times 

for pure GM- and WM-voxels are also reported assuming a linear relationship between 

T1 relaxation time and the contribution of tissue-type. 

The T1 relaxation times of MM peaks range from 204 to 510 ms and 253 to 564 ms in 

GM- and WM-rich voxels respectively. Significant differences in T1 relaxation times 

between GM- and WM-rich voxels are denoted in Figure 15 by an asterisk: *P<0.0038. 
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Figure 13: Spectral fitting of MM peaks in LCModel for DIR MM spectra (summed across 

all the healthy volunteers) with TI1/TI2: 2360/625 and 1300/20 ms. The figure is adapted 

from Publication 2. 
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Figure 14: A DIR series signal scatter plot for the M0.92 peak from a GM-rich voxel. Black 

crosses represent data points from eleven healthy volunteers and the dark blue dashed 

line is the fitted solution to DIR signal Equation 29. No data points were excluded for this 

T1 curve fit. The figure is adapted from Publication 2. 
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Figure 15: The bar plots show calculated T1 relaxation times for 13 individual MM peaks 

in GM-pure, GM-rich, WM-rich, and WM-pure voxels. T1 relaxation times for MM peaks 

that have significant differences (P<0.0038) between GM- and WM-rich voxels from 

Welch’s t-test and Bonferroni corrections are indicated with an asterisk *. The figure is 

adapted from Publication 2. 

Discussion 

 
Although it is possible to estimate T1 relaxation times of the MM peaks using a single 

inversion recovery technique by simultaneously fitting metabolites, this approach may 

lead to wrong estimation in the concentration of MM peaks that are overlapped by the 

metabolite peaks. In contrast, the proposed DIR technique reduced metabolite residuals 

to a large extent at the expense of T1-weighting. 

Out of the eleven TI1/TI2 combinations chosen, five of them had negative MZ/M0 ranging 

from -0.82 to -0.58, and five of them had positive MZ/M0 ranging from 0.42 to 0.53 when 

assuming a T1 relaxation time of the whole MM spectrum of 420 ms as reported by Xin et 

al75 at 7 T. The range of magnetizations chosen was limited by the additional need to 
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suppress the metabolite signal. However, the chosen range appeared to be sufficient 

since the R2 of the T1 curve and low standard deviations in the T1 relaxation times of the 

MM peaks represented good confidence. The negative MZ/M0 points of M2.99, M3.62, and 

M3.75 had a higher signal amplitude which skewed the 3D signal fits thereby resulting in 

longer T1 relaxation times of these peaks. This might be due to lower weight metabolites 

contributing to MM resonance at these chemical shifts, which may have led to an 

overestimation of the respective T1 relaxation times. 

T1 relaxation times of MM peaks strongly increase with increasing field strength, which is 

in agreement with BPP theory57. Table 2 shows T1 relaxation times of MM peaks reported 

so far across various field strengths. 

The broad range of T1 relaxation times of MM peaks suggests that approximating these 

values as a single value for the entire MM spectrum may neither be ideal for quantifying 

the concentrations of MM peaks with high accuracy nor to consider MM contributions to 

metabolite spectra correctly. A linear relationship between T1 relaxation times and tissue 

type was assumed and the values for pure GM and WM voxels were calculated. Pure GM 

and WM T1 relaxation times can in a next step be utilized for correct modeling of MM 

contributions in voxels with arbitrary tissue composition which is especially useful in 

sequences with strong T1-weighting such as the FID-MRSI. 

Conclusion 

 
The demonstrated novel method to determine T1 relaxation times of MM peaks at 9.4 T 

is extendible to all field strengths. T1 relaxation times of 13 MM peaks in GM- and WM- 

rich voxels in the human brain at 9.4 T are reported for the first time. The calculated T1 

relaxation times were used in the quantification of MM peaks (section 1.2.3) and were a 

key in the development of the relaxation-corrected sequence-specific MM simulation 

model60. 
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T1 relaxation times of macromolecular peaks in the human brain [ms] 

Study 
Murali-Manohar (2020) 

Publication 2 
Xin (2013)75 

Hoefemann 
(2020)72 

Behar 
(1994)67 

Kreis 
(2005)76 

B0 (T) 9.4 7 3 2.1 1.5 

Sequence DIR-MC-semiLASER IR-SPECIAL 
2DJ-IR 

MC-PRESS 
IR-3D ISIS IR-PRESS 

Echo Time (ms) 24 12 20 - 95 17 20 

Repetition Time 
(ms) 

8000 7500 3000 - 4000 4450 400-9000 

 
Region of Interest 

Occipital lobe Occipital 
lobe 

(GM rich) 

Occipital 
lobe 

(GM rich) 

Occipital 
lobe 

(mixed) 

 
mixed voxel 

GM rich WM rich 

M0.94 280 ± 10 284 ± 10  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
420 ± 20 

290 250 ± 36 220 ± 60 

M1.22 273 ± 27 280 ± 28 
309 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
200 ± 50 

M1.43 326 ± 21 270 ± 24 

M1.70 231 ±13 253 ± 17 225 

M1.81    
 
 

247 

M1.90 

M2.05  

279 ± 8 
 

319 ± 9 
M2.07 

M2.17   

M2.27 281 ± 7 313 ± 9  

 
263 

M2.36   

M2.47 

M2.57 309 ± 20 327 ± 18 

M2.74 306 ± 19 383 ± 22 [400] 

M2.97  

463 ± 15 
 

518 ± 15 
 

[400] 
M3.00 

M3.09    

[400] 
M3.21 204 ± 20 379 ± 29 

M3.26-3.28   [400] 

M3.4-3.6 510 ± 30 564 ± 35  

[400] M3.71 280 ± 24 434 ± 25 

M3.79   

M3.87 280 ± 27 307 ± 22  

347 
M3.97   

M4.20  

 

Table 2: T1 relaxation times of macromolecular peaks in the human brain from Publication 

2 and other studies performed at different field strengths. The values in brackets reached 

the maximum limits set in the FitAid software. The table is adapted from the MM 

consensus article57 (co-author publication). 
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1.2.3 Quantification of macromolecules 

 
Introduction 

 
Several clinical biomarkers exist based on the changes in metabolite concentrations for 

neurological pathologies. Calculating MM concentrations reliably and to be able to 

compare them across different vendors and sites will open a completely new possibility 

of establishing potential biomarkers for various diseases. For example, changes in 

concentrations of MMs have been reported previously in multiple sclerosis79, brain 

tumors80, and stroke81. 

Since inversion recovery techniques used to acquire MM spectra introduce a severe T1- 

weighting, it is essential to correct for the relaxation effects when estimating tissue 

concentrations of MM. Previous works have reported concentrations for some or all MM 

peaks without correcting for T1 or T2 relaxation times. Here in this section, the 

concentrations of MM peaks are reported for the first time after correcting for both spin- 

lattice and spin-spin relaxation effects using T1 relaxation times from Publication 2 and 

𝑇𝑒𝑓𝑓 relaxation times from Publication 1. 

 
Study design 

 
MP2RAGE images were acquired by using the home-built coil68 in volume mode and 

driving power to all 8 transmit channels. The high-resolution anatomical images were then 

segmented into GM, WM, and CSF tissue content with SPM1250. 

GM- and WM-rich voxels (2×2×2 cm3) were chosen in the occipital lobe and occipital- 

parietal transition respectively. Spectra were acquired using a DIR MC semiLASER 

sequence (TE/TR: 24/8000 ms) with TI1/TI2 = 2360/625 ms (Publication 2) since it 

corresponded to maximal MM signal retention and minimal metabolite residuals. Water 

reference spectra (TE/TR: 24/8000 ms) were acquired without MC. The acquired water 

spectra were used as internal reference. Spectral fitting was performed as described in 

section 1.2.2 using LCModel30 using simulated Voigt peaks for 13 MM peaks. 
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The LCModel MM concentrations were then corrected for tissue fractions and relaxation 

effects of both MM peaks and water as described in section 1.1.8. Using the calculated 

T1 relaxation times from Publication 2 (section 1.2.2) and 𝑇𝑒𝑓𝑓 relaxation times of MM 

peaks from Publication 1 (section 1.2.1), MM concentrations were quantified in protons 

mmol/kg48 in both GM- and WM-rich voxels using internal water reference. Wilcoxon rank- 

sum tests (𝛼 = 0.05) were performed to assess for different concentrations for all MM 

peaks between tissue types. 

Results 

 
The average tissue content in the voxels were calculated to be GM/WM/CSF = 72 ± 2 / 

22 ± 3 / 6 ± 4% and 35 ± 6 / 62 ± 7 / 3 ± 3% respectively. The concentrations of 13 MM 

peaks after correcting for tissue type specific water content and water and MM relaxation 

effects are reported in Figure 16 in protons per mmol/kg. M2.04 has the highest 

concentration with 78.4 ± 10.7 and 76.6 ± 10.9 protons per mmol/kg in GM- and WM-rich 

voxels respectively. 

 
Figure 16: Concentrations of MM peaks in GM- and WM-rich voxels are reported in 

protons mmol/kg. Black plus signs represent data points that were not within the 95% 

confidence interval when assuming a Gaussian distribution. The figure is adapted from 

Publication 2. 
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Concentration of macromolecular peaks in the human brain [protons mmol/kg] 

Study 
Murali-Manohar (2020) 

Publication 2 
Landheer 
73(2020) 

Giapitzakis82 (2018) 
Snoussi83 

(2015) 
Snoussi83 

(2015) 

B0 (T) 9.4 3 9.4 3 7 

Sequence DIR MC semiLASER 
DIR 

semiLASER 
DIR MC semiLASER IR-semiLASER IR-semiLASER 

Echo Time (ms) 24 20.1 24 31 31 

Repetition Time 
(ms) 

8000 2000 10000 1559 3000 

Inversion Time(s) 
[ms] 

2360/625 920/330 2360/625 600 900 

T1 correction Yes No No No No 

T2 correction Yes Yes No No No 

Tissue fraction 
correction 

Yes Yes Yes Yes Yes 

 

Region of 
Interest 

Occipital lobe  

Occipital and 
frontal lobe 

 

Occipital lobe 
(GM rich) 

 
Left parietal 

lobe 
(WM rich) 

Centrum 
semiovale 

and anterior 
cingulate 

cortex 

Centrum 
semiovale 

and anterior 
cingulate 

cortex 

 

GM rich 

 

WM rich 

M0.92 21.1 ± 3.3 21.0 ± 2.6 33.0 ± 4.1 8.31 7.05 ~ 16 ~ 15 

M1.21 8.2 ± 4.6 7.9 ± 2.2 6.8 ± 1.7 1.82 2.63 ~ 4 ~ 5 

M1.39 20.4 ± 5.3 12.6 ± 6.4 39.1 ± 15.1 5.48 5.97 ~ 15 ~ 14 

M1.67 48.0 ± 11.2 46.7 ± 12.6 63.5 ± 15.1 8.63 5.34 ~ 7 ~ 6 

M2.04 78.4 ± 10.7 76.6 ± 10.9 122.1 ± 33.1 11.31 11.56 ~ 18 ~ 19 

M2.26 50.4 ± 6.8 49.0 ± 7.9 43.5 ± 13.7 9.54 9.42 ~ 6 ~ 5 

M2.56 11.9 ± 2.0 13.0 ± 3.7  

- 
0.96 1.93 ~ 5 ~ 8 

M2.70 7.1 ± 1.1 8.6 ± 2.6 1.84 2.14  
 
 
 

 
- 

 
 
 
 

 
- 

M2.99 29.1 ± 3.0 34.7 ± 6.5 28.0 ± 6.1 3.97 3.89 

M3.21 10.0 ± 2.1 14.9 ± 4.6 17.2 ± 8.9 2.62 3.03 

M3.62 23.5 ± 8.1 23.5 ± 8.1  
57.0 ± 7.1 

1.10 1.23 

M3.75 4.8 ± 1.0 4.8 ± 1.0 3.34 3.66 

M3.86 11.8 ± 1.3 11.9 ± 2.3 0.83 1.36 

M3.87 
- - - 

7.59 7.00 

M4.20 1.83 1.70 

 

 

Table 3: Concentration of macromolecular peaks [mmol/kg] reported from previous 

studies73,82,83 is compared with the concentrations reported from Publication 2. 

Publication 2 has corrected for relaxation effects of the individual MM peaks whereas the 

other studies have not performed this correction. This leads to varying values of 

concentrations across different studies since the respective MM spectra have 

accumulated different T1- and T2-weightings based on the acquisition parameters used. 
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Discussion 

 
Since MM peaks are not yet assigned to specific proteins, peptides or amino acids, the 

number of protons contributing to each peak is unknown and hence not accountable. 

Therefore, the concentrations are reported with respect to each MM peak in protons per 

mmol/kg. Significant differences in concentration of M3.75 peak was found between GM- 

and WM-rich voxels. Nevertheless, future work with a larger number of datasets is 

required to claim statistical differences with higher certainty. 

Previous publications73,82,83 have reported the concentrations for some or all MM peaks 

without correcting either for T1 or T2 relaxation times or both. Since inversion recovery 

techniques used to measure the MM peaks introduce some T1-weighting of the MM 

spectrum and MM T2 relaxation times are short in comparison to TEs of the utilized 

sequences, not correcting for relaxation effects would result in differences in MM 

concentration estimates across sites. Therefore, they might not be directly comparable. 

The concentration values reported by Landheer et al73 appear to be somewhat in 

agreement with values from Publication 2; however, since Landheer et al73 did not correct 

for T1-weighting, there could be some discrepancy between the results. A comparison 

between the concentrations of MM peaks in the human brain reported from previous 

studies73,82,83 and this study is presented in Table 3. 

Conclusion 

 
The concentrations of 13 individual MM peaks in both GM- and WM-rich voxels are 

reported. The values are reported in protons × mmol/kg using internal water referencing 

after correcting for tissue type specific water and MM T1 and 𝑇𝑒𝑓𝑓 relaxation times. This 

is the first study to report the concentrations of MM peaks in the human brain after 

correcting for both T1 and 𝑇𝑒𝑓𝑓 relaxation times of the MM peaks. The importance of 

performing such a correction is illustrated as it enables easier comparison across sites, 

sequences, field strengths and vendors. 
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1.3 Quantification of metabolites 

 
MRS at UHF benefits from improved SNR, increase in frequency dispersion and more 

simplified spectral patterns from strong J-coupled systems13. This allows better detection 

of metabolites at UHF. Methodologies at UHF have underwent significant development in 

order to overcome the challenges that are posed by UHF such as B0 inhomogeneity, 

inhomogeneous B1
+ and B1

- (transmit and receive respectively) fields, shorter T2 

relaxation times and so on. 

Even though in NMR it is common to use both one-dimensional (1D) and two-dimensional 

(2D) spectroscopy techniques, the most commonly utilized method for in vivo 1H MRS is 

one-dimensional spectroscopy. This is because of the fact that the 2D MRS techniques, 

especially in vivo, have longer scan durations and they require more advanced post- 

processing and dedicated spectral fitting routines. On the other hand, 2D MRS techniques 

may hold advantages in terms of quantifying low concentration and J-coupled metabolites 

more reliably. 

This section of the thesis primarily aims at quantification of metabolite concentrations in 

the human brain at 9.4 T using both 1D (1.3.2) and 2D (1.3.3) MRS techniques and 

compare both approaches with each other. In addition, T2 relaxation times of metabolites 

are calculated in section 1.3.1 in order to facilitate correction for T2 relaxation times of 

metabolites in sections 1.3.2 and 1.3.3. 

1.3.1 T2 relaxation times of metabolites 

 
Introduction 

 
As discussed in section 1.1.8, concentrations of metabolites are comparable across 

different field strengths, vendors or localization schemes after correcting for tissue fraction 

composition and for T1 and T2 relaxation effects of both water and metabolites. Therefore, 

in order to quantify metabolite concentrations at 9.4 T, the knowledge of T1 and T2 

relaxation times is essential. For this, T1 and T2 relaxation times of water in GM, WM and 

CSF at 9.4 T were considered from Hagberg et al49. T1 relaxation times of metabolites at 
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9.4 T were taken from Wright et al60,61 (co-author paper not a part of this thesis). T2 

relaxation times of metabolites at a given field strength, as mentioned in section 1.1.5, 

are not only tissue- and sequence-specific, but also specific to the brain region from where 

the values were measured11. Other than as a correction factor in the quantification of 

metabolites, the knowledge of T2 relaxation estimates are also helpful in optimizing the 

acquisition parameters for 2D MRS (section 1.3.3). Moreover, T2 relaxation times of 

metabolites have been observed to undergo changes in pathologies such as Alzheimer’s 

disease84. This section of the thesis focuses on calculating T2 relaxation times of 

metabolites in a GM-rich voxel in the occipital lobe from an echo-time series experiment 

using MC-semiLASER. The contribution of MM signal to the metabolite TE series was 

accounted for using the corresponding TE series of MM acquired in section 1.2.1. 

Study Design 

 
Eleven healthy volunteers participated in the study after providing written informed 

consent before the examination. The measurements were performed on a 9.4 T 

Magnetom whole-body MRI scanner using a home-built proton coil with 8 transmit and 16 

receive channels68. For the spectroscopy experiments, the coil was driven in surface 

mode with the three bottom channels using an unbalanced three-way Wilkinson splitter 

as described in Giapitzakis et al24. The metabolite-cycled semiLASER24 localization 

scheme was employed to acquire the 1D MRS data from a GM-rich voxel in the occipital 

lobe. For the calculation of the T2 relaxation times of metabolites, an echo time series of 

MC-semiLASER24 spectra (TE: 24, 32, 40, 52, and 60 ms; TR: 6000 ms; averages: 96; 

excitation frequency: 7.0 ppm) were acquired. 

Raw data were preprocessed with an in-house written software in MATLAB. The 

preprocessing steps are described in detail in Publication 1. Metabolite basis sets were 

simulated using Vespa33,85 (version 0.9.3) for the semiLASER sequence for real pulses. 

The following metabolites were included in the basis set: NAA, NAAG, GABA, Asp, Cr, 

Glu, Gln, GSH, GPC, Glyc, mI, Scy, Lac, PCr, PCho, PE, and Tau. The abbreviations of 

these metabolites are given in section 1.1.7. Also TE-specific MM spectrum (section 

1.2.1) were included in the corresponding basis sets. Finally, the data were fitted in 
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LCModel30 with the simulated basis set. The relative concentrations of metabolites 

obtained from LCModel for the TE series were fit to a mono-exponential decay. 

T2 relaxation times of metabolites were derived from the exponential decay curves. The 

mean coefficient of determination (R2) was calculated for the exponential fit. T2 relaxation 

times estimated from exponential fits that had R2 < 0.5 were discarded. Therefore, T2 

relaxation times for Lac, Tau, and Scy were not reported. 

 

 
 

Figure 17: Echo time series spectra of metabolites (TE: 24, 32, 40, 52, and 60 ms) 

obtained using MC-semiLASER localization for determining T2 relaxation times of human 

brain metabolites at 9.4T. The figure is adapted from Publication 1. 
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Results 

 
Figure 17 shows the TE series of metabolite spectra from the GM-rich voxel in the 

occipital lobe. For TE = 32, 40, 52 and 60 ms, the J-evolution of Asp, Glu, mI, NAA(CH2), 

and Tau can be observed. Spectral fitting for TE = 24 ms is shown in Figure 18. 

The T2 relaxation times calculated from both individual data and summed data (across 11 

healthy volunteers) are shown as box plots in Figure 19. The T2 relaxation times are 

reported along with respective R2 values in Publication 1. The values range from 55 to 

105 ms, except for NAAG with ~40 ms. R2 values for all the reported metabolites were 

above 0.7 except for Asp and Glyc. 

 

 

 

 
Figure 18: LCModel spectral fit of metabolite basis vectors simulated using Vespa to 

subject-wise summed TE = 24 ms data. The figure is adapted from Publication 1. 
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Discussion 

 
This study reported the T2 relaxation times of J-coupled metabolites at 9.4 T for the first 

time. The values of the T2 relaxation times of singlet resonances from a previous study at 

9.4 T8 are lower compared to the values reported in this study. The higher values in this 

work may be attributed to TE specific MM spectra included in the basis set for spectral 

fitting. It is known that the underlying MM spectra are faster decaying components whose 

presence could have caused shorter T2 relaxation values reported in the previous study 

at 9.4 T8. 

The T2 relaxation times of metabolites reported in this study followed the same trend 

compared to previous literature63,86–88 in terms of singlets such as NAA(CH3), tCho and 

tCr(CH3) having longer T2 relaxation times than tCr(CH2). NAAG has shorter T2 relaxation 

times compared to NAA moieties86. All the reported T2 relaxation times in this study 

followed the field strength trend, values decreasing with increasing field strength. T2 

relaxation time of Glu is higher than that of Gln86. However, the difference between the 

values was unexpected given that they have a similar distribution89 in the human brain 

and that they have similar molecular weight. Therefore, most likely the T2 relaxation time 

of Gln was underestimated in this study. 

 

 
Figure 19: T2 relaxation times of metabolites are reported in ms for metabolites in box 

plots in descending order. The figure is adapted from Publication 1. 
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Conclusion 

 
T2 relaxation times of 12 metabolites and metabolite moieties are reported for a GM-rich 

voxel in the occipital lobe at 9.4 T. The T2 relaxation times ranged from 40 to 110 ms and 

are in line with the prediction of a decrease in T2 relaxation times with increasing field 

strength. These values were further used in the correction factor for quantification of 

metabolite concentrations in sections 1.3.2 and 1.3.3. 

1.3.2 One-dimensional spectroscopy (MC-semiLASER) 

 
Introduction 

 
Quantitative investigation of metabolite profiles in the human brain using 1H MRS 

techniques have shown to aid clinical management of several brain pathologies90. 

Utilizing the advantages of UHF, non-invasive detection of up to 20 metabolites is 

possible using robust MRS acquisition methods13. Therefore, measuring the 

neurochemical profile of the human brain at UHF may help the neuroscientific and clinical 

research communities understand the disease mechanisms. This section focuses on the 

quantification of metabolite concentrations in the human brain using 1D MRS acquisition 

technique (MC-semiLASER) at 9.4T. 

Study design 

 
The experimental set up for this study was similar to the study design in section 1.3.1. 

For the quantification of metabolite concentrations, metabolite spectra were acquired with 

TE/TR: 24/6000 ms using MC-semiLASER24 localization (averages: 32; excitation 

frequency: 2.4 ppm). In addition, unsuppressed water spectra (averages: 16; excitation 

frequency: 4.7 ppm) were acquired in order to quantify metabolite concentrations based 

on internal water signal. 

Spectral fitting was performed in LCModel using a simulated basis set from Vespa. Same 

metabolites that were listed in section 1.3.1 were included here. 

The high-resolution MP2RAGE91 images (resolution: 0.6 mm3) were segmented using 

SPM1250 and the tissue compositions of the GM-rich voxels were calculated as GM: 
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32.9% ± 9.3%, WM: 64.7% ± 11.1%, and CSF: 2.4% ± 3.7%. The concentrations of the 

metabolites were then calculated using the formula given by Gasparovic et al48 (section 

1.1.8) including the relaxation time corrections for both water91 and metabolites. For the 

quantification of metabolite concentrations, knowledge of relaxation times are necessary 

in order to correct for the T1 and T2 weighting in the MRS spectrum. T1 relaxation times 

of metabolites were used from Wright et al61 and T2 relaxation times calculated in section 

1.3.1 were utilized. 

 
Results 

 
Good spectral quality was achieved for all data and therefore, no data sets were excluded 

from further analysis. 

The calculated concentrations of metabolites with and without T2 correction are shown in 

Figure 20 for a fair comparison between this work and other studies, since some of those 

studies did not include a T2 correction. Additionally, a consolidated comparison of 

concentrations of metabolites in mmol/kg was presented in a table in Publication 1. 

Discussion 

 
Corresponding MM spectra were included for each subject to account for the MM 

contribution in the metabolite spectrum. The residual tCr(CH2) metabolite peak at 3.925 

ppm was subtracted from the MM spectra before including the MM spectra in the basis 

set. 

Previous metabolite quantification study24 at 9.4 T using MC- semiLASER reported 

concentrations for 18 metabolites. However, the basis set was simulated assuming a a 

simple spin-echo sequence with TE: 6.5 ms due to the complex nature of the adiabatic 

pulses and their spin-locking effect10. This study included real adiabatic RF pulse shapes 

while simulating the basis set. The J-evolution pattern in the spectral data was mimicked 

well by the basis set both in this study and for the TE series basis sets that were simulated 

in section 1.3.1. 

Mean T2 relaxation times from all metabolites were used for correcting the concentrations 

of GABA, PE, and Scy as R2 < 0.5 for the T2 exponential curve fits in the previous section 
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1.3.1.NAA, Cr, tCho, PE, Tau, GABA, and mI concentrations with T2 correction agree with 

previous literature77,87,92–94. However, Asp, Gln, Glyc, and Glu concentrations were 

significantly higher with T2 correction. When considered without T2 correction, the 

concentration values match with prvious literature for these metabolites. These 

discrepancies could have aroused because of the underestimated T2 relaxation times of 

these metabolites. Particularly, the spline baseline behavior near the Gln chemical shift 

was negative, and this could not be compensated even when the stiffness factor 

DKNTMN in LCModel was set to 0.25. Therefore, there is a possibility of higher estimation 

of Gn concentrations. In addition, the T1-weighting acquired in the DIR MM spectra 

(section 1.2.2) could also have influenced the concentration differences in some of these 

metabolites. The consolidated concentration comparison table provided in Publication 1 

also described the relaxation corrections included in the previous literature, the sequence 

and the acquisition parameters considered77,87,92–94. 

 

Figure 20: Metabolite concentration box plots are shown here in mmol/kg with and 

without metabolite T2 correction. The figure is adapted from Publication 1. 
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Conclusion 

 
The concentration values of metabolites measured in a GM-rich voxel in the occipital lobe 

are reported in mmol/kg both with and without T2 correction. Most of the metabolite 

concentrations matched with previous literature with T2 correction while some of the 

metabolite concentrations (Asp, Gln, Glyc and Glu) were higher compared to previous 

literature while including T2 correction. 

1.3.3 Two-dimensional spectroscopy (J-resolved MC-semiLASER) 

 
Introduction 

 
The NMR community has used the technique of multi-dimensional spectroscopy in order 

to reduce spectral overlap of peaks. Homonuclear two-dimensional techniques are also 

utilized in vivo and show promising results in detection and quantification of low SNR and 

J-coupled metabolite concentrations. Spectral acquisitions using correlation 

spectroscopy and J-resolved spectroscopy were shown to be feasible in vivo in humans 

at 1.5, 3 and 7 T36–38. The 2D techniques in vivo have longer scan durations and require 

sophisticated pre-processing and spectral fitting routines. 

The detection capabilities are enhanced in 2D J-resolved spectroscopy7 by spreading the 

spectral information into two dimensions by adding a step-wise increasing J-evolution 

delay during acquisition. In order to further improve the detection sensitivity, maximum 

echo sampling 7,95,96 is used where the data acquisition begins right after the final crusher 

gradients. This adds a tilt to the peak tails thereby further reducing spectral overlap7. 

This study shows the implementation of a 2D J-resolved MC-semiLASER sequence with 

a maximum echo sampling scheme at 9.4 T for human brain application and quantifies 

metabolite concentrations using ProFit v2.097, a dedicated 2D spectral fitting tool. In 

addition, respective quantification results are compared to previous 1D MRS studies. 
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Study design 

 
Initially phantom measurements were performed in order to test the implementation of the 

2D J-resolved MC-semiLASER sequence (Figure 21) and to optimize the sequence 

parameters. 

2D metabolite spectra were then acquired from eleven healthy volunteers. Five healthy 

volunteers returned for the acquisition of 2D MM spectra. J-resolved MC-semiLASER with 

maximum echo sampling scheme (TR: 6000 ms, n: 85, ∆t: 2ms, averages per TE: 8, 

transmit reference frequency: 2.4 ppm) acquisition was performed after second-order B0 

shimming69 and voxel-based power calibration70,78. The encoding of the J-evolution in the 

second (indirect) dimension was created by inserting an incrementally increasing time 

delay of ∆t/2 between the last pair of AFP pulses. TEs ranged from 24 to 194 ms 

incremented in steps of 2 ms. The MC pulse was turned off for the acquisition of 2D water 

reference spectra (average per TE:1) with transmit reference frequency set to 4.7 ppm. 

 

 
 

Figure 21: Sequence diagram of J-resolved MC-semiLASER sequence is shown. The 

first two RF pulses are turned on for double inversion recovery in order to acquire a MM 

spectrum with two inversion times TI1/TI2 set as 2360/625 ms. They are turned off when 

acquiring the metabolite spectrum. The increasing J-evolution delay which corresponds 

to a progressively longer TE time is introduced between the last two AFP pulses in the 

sequence. Maximum echo sampling is implemented by beginning data acquisition right 

after the final set of crusher gradients after the last AFP pulse. The figure is adapted from 

Publication 3. 
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MM spectra were acquired with DIR59 (TI1/TI2: 2360/625 ms) J-resolved MC semiLASER 

sequence with all acquisition parameters set identical to metabolite spectra except TR 

set to 8000 ms. 

Raw data were pre-processed as described in Publication 3 using an in-house MATLAB 

tool and J-resolved spectroscopy pre-processing tool which is a part of ProFit 

software97,98 package. MP2RAGE91 images were segmented into GM, WM and CSF 

tissue fractions using SPM1250 in order to calculate the tissue composition specific tissue 

water content and metabolite and water relaxation correction factors during quantification 

of metabolite concentrations using internal water referencing (see section 1.1.8.). 

Metabolite basis vectors (NAA, NAAG, GABA, Asp, Cr, Glu, Gln, Glc, GSH, GPC, Glyc, 

mI, Scyllo, Lac, PCr, PCho, PE and Tau) corresponding to 85 TE steps were simulated 

using Vespa33 for the semiLASER sequence including real pulse shapes and sequence 

timings. All the 85 1D MRS basis sets were combined to form a 2D J-resolved MRS basis 

set. In addition, the summed MM spectrum from five healthy volunteers was also included 

in the 2D basis set. 

As a next step, the 2D basis set were fitted to each of the metabolite spectra using ProFit 

2.097. Finally, metabolite concentrations were quantified in mmol/kg after the peak 

amplitudes obtained from the fitting software were referenced against the internal water 

were corrected for relaxation effects of both metabolites and water as well as tissue 

fractions48. 

Results 

 
Figure 22 shows a metabolite spectrum acquired from a phantom with brain metabolites. 

There are no prominent artifacts due to truncation or t1 noise in the indirect dimension. 

Also no visible J-refocused38,99 peaks are seen. A representative 2D metabolite spectrum 

from a GM-rich voxel in the human occipital lobe (average content: GM/WM/CSF: 67 ± 8/ 

29 ± 9/ 4 ± 1 % respectively) is shown in Figure 23. 
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Figure 22: Phantom spectrum acquired using the developed 2D J-resolved MC 

semiLASER sequence. To the right, zoomed in view of the lactate doublet present at 1.3 

ppm is shown. The yellow arrows indicate the J-resolved peaks. The figure is adapted 

from Publication 3. 

 
 

 
Figure 23: 2D J-resolved MC-semiLASER spectrum from a representative volunteer is 

shown with labeled metabolite peaks. The direct f2 dimension has the chemical shift 

information and the indirect f1 dimension has the J-coupling information. The figure inlay 

shows an anatomical MP2RAGE image with a gray matter rich voxel of interest in the 

occipital lobe. The figure is adapted from Publication 3. 
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Spectral fitting of the 2D metabolite spectrum using ProFit 2.097 (Figure 24) yielded a 

minimum residual and demonstrate good agreement between model and experimental 

data. Finally, the metabolite concentration values after correcting for relaxation effects 

and tissue composition48 are shown in bar plots in Figure 25. The bar plots aim at 

comparing the concentrations from this study and other recent 1D MRS studies at 

UHF8,60,61,87,100,101. 

 

Figure 24: Spectral fitting result for a representative in vivo 2D spectrum using ProFit 2.0. 

Top to bottom 2D MRS data, spectral fit and residue are shown. Minimum residual without 

any structured noise is achieved indicating that the tailored 2D basis set (simulated for 16 

metabolites on Vespa including real pulses, sequence timings and experimentally 

acquired MM) fits the data well. The figure is adapted from Publication 3. 
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Figure 25: Bar plots showing concentration of metabolites from this study and other 

recent 1D MRS studies8,60,61,87,100,101 at UHF from a similar voxel location in the occipital 

lobe. The concentration values shown here are the mean and standard deviation of the 

metabolite concentrations reported by the respective studies. The figure is adapted from 

Publication 3. 

Discussion 

 
Edden et al99 showed that the chemical shift displacement effect causes spatially 

dependent differences in J-evolution of coupled spin systems for JPRESS spectra using 

both simulation and experimental methods at 3 and 7 T. This in turn can result in 

additional J-refocused peaks along the f1 = 0 axis. The appearance of these unwanted 

additional peaks cause a loss of intensity in J-resolved peaks and more spectral overlap. 

Later Lin et al38 demonstrated that the use of higher bandwidth pulses reduced the 

intensity of the J-refocused peaks by a factor of 

 
(1 − 

∆𝛿. 𝐵0 
) 

𝐵𝑊 
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where ∆𝛿 is the chemical shift difference in ppm of the spins A and X in an AX spin system, 

𝐵0 is the frequency of the static magnetic field in MHz and 𝐵𝑊 is the bandwidth of the 

refocusing pulse. For the most separated lactate coupled peaks in upfield, the reduction 

in the intensity of the J-refocused peaks calculated is 86%. Therefore, it can be seen from 

Figure 22 that there are barely any J-refocused peaks present in the 2D spectrum. 

Furthermore, this study reports the concentration of 16 metabolites in mmol/kg after 

correcting for relaxation effects and tissue content. Figure 25 compares the reported 

concentration from this study to concentration values from previous 1D MRS 

studies8,60,61,87,100,101 at UHF for similarly located voxels in the occipital lobe. It can be 

observed from the figure that all the concentration values reported in this study lie within 

the range of values that were reported in previous studies except mI. The higher 

concentration of mI could possibly be due to a possible oppositely phased residual mI in 

the MM spectra as shown in a previous study (Publication 2). While removal of metabolite 

residuals is easier in 1D MRS, it is more complicated in 2D MRS especially with maximum 

echo sampling. Therefore, removal of metabolite residuals in the experimentally acquired 

2D MM spectra or avoiding metabolite residuals using a relaxation-corrected sequence- 

specific MM simulation model60 is necessary in the future for accurate estimation of mI 

concentration. For Asp, GABA, and Gln, the concentration values from this study are 

closer to previous literature8,87,101 compared to values from 1D MRS studies60,61,100 at 9.4 

T. In addition, Glc and Lac are quantifiable with 2D MRS at 9.4T, while quantification of 

concentrations of these metabolites remains challenging with 1D MRS even at 9.4 

T60,61,100. Statistical analysis was also performed to compare the 1D and 2D MRS 

acquisition techniques (Publication 3). 

Not only the 2D metabolite spectrum show J-resolved peaks, but also the 2D MM 

spectrum and the 2D downfield spectrum show some well-resolved peaks. Given the 

efforts to assign MM and DF resonances to amino acids and metabolites, the 2D J- 

resolved acquisition technique may prove useful in assigning these peaks. Therefore, 

despite the longer scan durations of 2D MRS acquisition techniques at UHF, this may still 

be a good option to answer some open basic science questions in the field of MRS and 

brain metabolism. Open research questions include assigning unlabeled peaks in the DF 
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part of the spectrum, understanding the J-coupling behavior of MM peaks and aid 

assignment to amino acids, or in quantifying lower SNR J-coupled metabolite 

concentrations that are of importance in the brain energy metabolism in the healthy brain 

or in pathologies. 

Conclusion 

 
A two-dimensional J-resolved MC-semiLASER acquisition sequence with maximum echo 

sampling was implemented at 9.4 T. The concentration values of 16 metabolites in a GM- 

rich voxel in the occipital lobe are reported. Quantification of lower SNR and J-coupled 

metabolite concentrations such as Asp, GABA, Gln, Glc, and Lac was possible. The 2D 

MRS acquisition may prove beneficial to assign so far unlabeled downfield peaks 

between ~5.5 to 10.0 ppm, to understand the J-coupling behavior and the overlap of MM 

peaks, and for detection and quantification of lower SNR J-coupled metabolite 

concentrations such as Glc, and Glyc which are otherwise hard to assess. 
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1.4 Summary and Outlook 

 
Extensive information about the neurochemical profile in the human brain can be obtained 

using in vivo 1H MRS acquisition techniques. Therefore, MRS has steadily made its way 

as a key tool in the fields of neuroscience research and clinical diagnostics of brain 

disorders. In this thesis, characterization and quantification of concentrations and 

relaxation times of macromolecules and metabolites in the human brain using single voxel 

1H MRS at 9.4 T is presented. 

There is very limited knowledge about the broad macromolecular resonances and several 

of their properties are yet to be thoroughly investigated. In view of this, a recent consensus 

article57 on MRS visible macromolecules stressed the importance of studying the 

relaxation properties of the individual macromolecular peaks at various field strengths. As 

a first step towards this suggestion, this thesis achieved characterizing T1 and T2 

relaxation times of individual macromolecular peaks at 9.4 T. In fact, the novel method 

proposed to determine the T1 relaxation times of macromolecular peaks is extendible to 

all field strengths. The calculated T1 and T2 relaxation times of MM peaks were also 

discussed in the context of other studies performed at different field strengths. 

The quantitative linewidth analysis of the MM peaks aided better understanding of the 

contribution to the residual linewidths of the MM peaks. Unlike the metabolite singlets 

whose linewidths were explainable by T2 relaxation contribution and B0 effects, the 

broader linewidths of the MM peaks were not explainable by T2 relaxation contribution 

and B0 effects alone. Therefore, it was concluded that the residual linewidth originated 

either from J-evolution effects or from spectral overlap of MM resonances that could 

originate from amino acids of the cytosolic protein. Depending on the large protein 

structure amino acids belong to, they can have different chemical shifts. However, these 

chemical shifts are distributed around a main resonance frequency for the bulk of 

proteins. This motivated fitting of macromolecular spectra to histograms of amino acids 

given in the Biological Magnetic Resonance Bank BMRB102 (co-author abstract not a part 

of this thesis)74. The preliminary fits showed promising results with amino acids fitting 

model representing the MM spectra. Further development of a better spectral fitting model 
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of amino acids to MM peaks may allow characterization and quantification of amino acids 

from the MM spectra. This might also potentially help assign some of the unlabeled peaks 

in the downfield part of the proton spectrum to amino acids74,102 and characterize the 

downfield peaks better103 (co-author paper not a part of this thesis). Furthermore, the 

measured T1 and T2 relaxation times of macromolecules enabled T1- and T2-weighting 

corrections during quantification of these peaks. This, in turn, makes the concentration of 

the macromolecular peaks comparable across field strengths, vendors or sites opening a 

new possibility for potential clinical biomarkers for neurological diseases. 

All the more, utilizing the T1 and T2 relaxation times of MM peaks as prior knowledge, a 

relaxation-corrected sequence-specific MM simulation model60 (co-author paper not a 

part of this thesis) was constructed. This MM simulation model helps tackle some of the 

major challenges regarding the acquisition of MM spectra such as saving scan time in 

clinical applications or enable correct handling of MM in presence of short TR and TE 

magnetic resonance spectroscopic imaging89,104 acquisitions. 

Quantification of metabolite concentrations in mmol/kg was performed using one- 

dimensional MC-semiLASER acquisition at 9.4 T. T2 relaxation times of metabolites were 

also reported which enabled T2-weighting correction for quantification of metabolite 

concentrations. 

Two-dimensional J-resolved MC-semiLASER acquisition method with maximum echo 

sampling was introduced and optimized at 9.4 T. It is seen as a good candidate for studies 

that aim at understanding the J-coupling and overlap in the macromolecular spectrum, 

assigning unlabeled downfield resonances or reliably quantifying J-coupled and lower 

SNR metabolite concentrations to understand changes in the energy metabolism in the 

healthy brain and in brain pathologies. The two-dimensional J-resolved semiLASER 

sequence was also optimized for 3 T105 (own conference abstract) and is currently used 

in a clinical psychiatry study involving major depression disorder patients for a 

collaboration project during the course of my PhD. This also shows a potential clinical 

application for the developed 2D J-resolved semiLASER and its feasibility in a clinical 

environment. 
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Purpose: Relaxation times can contribute to spectral assignment. In this study, 

effective T relaxation times ( 2 T   ) of macromolecules are reported for gray and white 
eff 
2 

matter–rich voxels in the human brain at 9.4 T. The T of macromolecules are help- 
eff 

2 

ful to understand their behavior and the effect they have on metabolite quantification. 

Additionally, for absolute quantification of metabolites with magnetic resonance 

spectroscopy, appropriate T2 values of metabolites must be considered. The T2 relax- 

ation times of metabolites are calculated after accounting for TE/sequence-specific 

macromolecular baselines. 

Methods: Macromolecular and metabolite spectra for a series of TEs were acquired 

at 9.4 T using double inversion–recovery metabolite-cycled semi-LASER and 

metabolite-cycled semi-LASER, respectively. The T2 relaxation times were cal- 

culated by fitting the LCModel relative amplitudes of macromolecular peaks and 

metabolites to a mono-exponential decay across the TE series. Furthermore, absolute 

concentrations of metabolites were calculated using the estimated relaxation times 

and internal water as reference. 

Results: The T of macromolecules are reported, which range from 13 ms to 
eff 

2 

40 ms, whereas, for metabolites, they range from 40 ms to 110 ms. Both macro- 

molecular and metabolite T2 relaxation times are observed to follow the decreasing 

trend, with increasing B0. The linewidths of metabolite singlets can be fully attrib- 

uted to T2 and B0 components. However, in addition to these components, macro- 

molecule linewidths have contributions from J-coupling and overlapping resonances. 

mailto:saipavitra.murali.manohar@tuebingen.mpg.de
mailto:saipavitra.murali.manohar@tuebingen.mpg.de
http://creativecommons.org/licenses/by/4.0/
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2 

Conclusion: The T2 relaxation times of all macromolecular and metabolite peaks at 

9.4 T in vivo are reported for the first time. Metabolite relaxation times were used to 

calculate the absolute metabolite concentrations. 
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absolute quantification, macromolecules, MR spectroscopy, T2 relaxation time, ultrahigh magnetic field 
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1 | INTRODUCTION  

Single-voxel proton MRS, a noninvasive technique, has com- 

plemented MRI by providing a means to detect and quan- 

tify concentrations of metabolites in the human brain. This 

has proven clinically useful, as shown in the review paper by 

Öz et al,
1 
in establishing biomarkers for pathologies in the brain. 

Advantages of MRS using ultrahigh-field scanners (≥7 T) 

include higher SNR and increased spectral resolution.
2 

Hence, the macromolecular background signal (MMB) lying 

underneath the metabolites has to be characterized more pre- 

cisely. Especially for short TE sequences, reliable metabolite 

quantification is more challenging without accounting for the 

MMB. Therefore, a measured macromolecular (MM) spec- 

trum should be included in the fitting model.
3 

In addition, 

understanding macromolecules may help to identify valuable 

biomarkers for pathologies and several diseases of clinical 

relevance.
3-6 

The T2 relaxation times of MM peaks have 

been reported in previous studies in rat brain
7-10 

and for the 

M0.92 peak in human brain at 2.1 T by Behar et al.
11 

However, 

T2 relaxation times of multiple individual MM peaks in 

human brain have not been reported to the best of our knowl- 

edge. Estimating the T2 relaxation times of individual macro- 

molecules at 9.4 T could help in understanding and modeling 

their behavior.
12

 

To derive absolute concentrations of metabolites in MRS, 

several different approaches exist.
13-15 

In one method, the 

unsuppressed internal water signal is used as a reference.
16 

However, the calculation of absolute concentrations from the 

apparent concentrations output by a quantification software 

requires a correction factor, which includes the T2 relaxation 

times of the metabolites of interest.
16 

In addition, to record 

2D-MRS data, it is useful to have a rough estimate of T2 re- 

laxation times to optimize TE range, such that one obtains the 

highest possible SNR.
17,18 

Additionally, altered T2 relaxation 

times might provide information about evolving pathological 

or physiological states.
19

 

Several studies have reported the T2 relaxation time for 

metabolites in different regions of the human brain for a 

range of magnetic field strengths.
20-22 

The T2 relaxation times 

were measured at 9.4 T for singlets, but not for J-coupled me- 

tabolites by Deelchand et al
23

; however, this study did not 

consider the influence of T2-dependent MM spectra, which 

affects the T2 relaxation estimation of the singlets. 

 
The primary goal of this study was to measure the effec- 

tive T2 relaxation times (Teff ) of MM peaks, which includes 

both relaxation and J-evolution effects, in a gray matter 

(GM)-rich and a white matter (WM)-rich voxel at 9.4 T in 

human brain. In addition, T2 relaxation times of singlets and 

J-coupled metabolites in the GM-rich voxel were calculated 

after correcting for TE-specific MMBs. Furthermore, abso- 

lute concentrations of metabolites are reported after correct- 

ing for the corresponding T2 and T1 relaxation times.
24 

The 

FWHM (Δv1∕2) of MM peaks and metabolites were analyzed 
quantitatively with respect to T2 relaxation times, in addition 

to microsusceptibility and macrosusceptibility effects. 

 
2 | METHODS  

2.1 | Technical description and subjects 

All measurements were performed on a 9.4 T Magnetom 

whole-body MRI scanner (Siemens Healthineers, Erlangen, 

Germany) using a home-built proton coil with 8 transmit and 

16 receive channels.
25 

For single-voxel spectroscopy experi- 

ments, 3 channels at the bottom of the coil were driven using 

an unbalanced three-way Wilkinson splitter as previously 

described.
26 

Eleven healthy volunteers (8 males, 3 females, 

age: 26.3 ± 2.8 years) participated in this study for data ac- 

quisition in the GM-rich voxel. Data for the WM-rich voxels 

was acquired from 5 healthy volunteers (3 males, 2 females, 

age: 27.8 ± 1.9 years). The study was approved by the local 

ethics board, and written informed consent was given by all 

subjects before the examination. 

 
2.2 | Data acquisition 

Gradient-echo images were acquired using a 2D-FLASH 

sequence (in-plane resolution: 0.7 × 0.7 mm
2
, 3.5-mm slice 

thickness, flip angle: 25º) along axial and sagittal orientations 

to facilitate placement of the spectroscopy voxel. A GM-rich 

voxel with the dimensions of 2 × 2 × 2 cm
3 

was chosen in the 

occipital lobe for T2 measurement of metabolites, whereas 

in addition to the GM-rich voxel, a WM-rich voxel of the 

same size was chosen in the occipital–parietal transition for 

T2 measurement of MM peaks. First-order and second-order 
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TABLE 1 Chemical shifts of the modeled MM peaks 

 

 
name δ (ppm) Gray matter White matter δ (ppm) δ (ppm) δ (ppm) 

M0.92 0.916 39.03 ± 4.70 41.87 ± 4.09 0.87 0.916 0.94 

    0.94   

M1.21 1.21 40.59 ± 5.53 38.67 ± 6.24 1.20 1.21 1.22 

M1.39 1.39 43.75 ± 6.23 42.92 ± 5.67 1.39 1.39 1.43 

M1.67 1.67 58.33 ± 8.10 58.33 ± 8.19 1.67 1.67 1.69 

    1.81   

M2.04 2.04 59.28 ± 7.42 58.04 ± 7.30 1.91 2.04 2.04 

    1.93   

    2.04   

    2.13   

M2.26 2.26 62.73 ± 5.59 59.89 ± 5.04 2.26 2.26 2.27 

— —   2.36   

— —   2.46   

— —   2.51   

M2.56 2.56 49.09 ± 2.93 47.46 ± 1.98 2.56  2.57 

M2.70 2.70 32.07 ± 2.37 31.80 ± 1.96 2.68  2.74 

    2.74   

M2.99 2.99 49.70 ± 1.53 49.28 ± 1.44 2.97 2.99 3.01 

    3.02   

M3.21 3.21 71.81 ± 0.83 71.76 ± 0.84 3.09   

    3.22 3.21 3.21 

    3.28   

— — — — 3.54   

M3.62 3.62 44.52 ± 0.65 44.21 ± 0.68 3.62  3.71 

M3.75 3.75 35.40 ± 0.49 35.20 ± 0.56 3.75 3.77 3.79 

M3.86 3.86 35.08 ± 2.05 34.79 ± 1.17 3.86  3.85 

M4.03 4.03 37.90 ± 0.90 37.53 ± 0.64 3.95  3.87 

    4.05   

— — — — 4.17  4.20 

    4.26 4.29  

    4.33  — 

    4.42   

Note: The chemical shifts (in parts per million) of MM peaks modeled with Voigt lines from this work compared with studies on rat brain at 17.2 T,
7 

rat brain at 

9. 4 T,
8 

and human brain at 9.4 T.
30 

The measured FWHM (Δv1∕2) of the MM peaks from this work is also reported. 

 

B0 shimming was performed using FAST(EST)MAP,
27 

and 

then voxel-based power calibration
28,29 

was executed. 

Double inversion recovery (DIR) metabolite-cycled 

semi-LASER
30 

and metabolite-cycled (MC) semi-LASER
26

 

A series of DIR-MC semi-LASER spectra at different non- 

linearly spaced TEs (TE = 24 ms, 32 ms, 40 ms, 52 ms, and 60 

ms; TI1/TI2 = 2360/625 ms; number of excitations = 32; trans- 

mit reference frequency ( ref ) = 2.4 ppm) was acquired to esti- 

spectra were acquired in the same 11 healthy volunteers. mate the Teff of macromolecules. Setting ref to 2.4 ppm led to 

The TR was set to 10 seconds in the case of DIR-MC semi- 

LASER, and to 6 seconds for the MC semi-LASER, respec- 

tively, to ensure complete T1 recovery of MM resonances and 

metabolites.
31 

A 16-step phase-cycling scheme
32 

was imple- 

mented for both spectroscopy sequences. 

maximum chemical shift displacement effects of −11.5% for 

water and +2% for the acetyl moiety of NAA(CH3) due to the 

large bandwidths of the corresponding RF pulses (excitation 

pulse and Adiabatic Full Passage pulse bandwidth of 8 kHz, 

creating a chemical-shift displacement effect of 5% per ppm). 
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To calculate the T2 relaxation times of metabolites, a 

series of MC semi-LASER spectra at different nonlinearly 

spaced TEs (TE = 24 ms, 32 ms, 40 ms, 52 ms, and 60 ms; 

number of excitations = 96; ref = 7.0 ppm) was acquired, 

originally measured to characterize the T2 relaxation times 

of downfield metabolites/resonances in the same healthy vol- 

unteers.
33 

Setting ref to 7.0 ppm led to maximum chemical- 

shift displacement effects of +11.5% for water and +25% for 

NAA(CH3). 

In this study, for absolute quantification of metabolites, 

MC semi-LASER spectra (TE/TR: 24/6000 ms; number of 

excitations = 32) were acquired, with ref set to 2.4 ppm to 

minimize the chemical-shift displacement effect. To avoid 

any influence of MC pulses on quantification based on water, 

water-reference signals (number of excitations = 16) were 

acquired with semi-LASER (TE = 24 ms; ref = 4.7 ppm) 

without metabolite cycling. 

Finally, magnetization-prepared two rapid gradient-echo
34

 

images were acquired using the same coil with RF transmis- 

sion via all eight channels to calculate tissue-volume frac- 

tions for absolute quantification. 

 
2.3 | Data preprocessing 

Raw data were analyzed with in-house-written software in 

MATLAB (version 2016a; MathWorks, Natick, MA). The me- 

tabolite and MM MRS data were processed as described previ- 

ously.
26,30 

The following steps were used in processing the raw 

data: (1) truncation of FIDs at 250 ms for both metabolite and 

MM data; (2) frequency and phase alignment; (3) MC subtrac- 

tion; (4) averaging; (5) zero-order phase and eddy current cor- 

rection using the phase information from the MC water signal; 

(6) coil channel combination using a singular value decompo- 

sition method; (7) peak alignment in the frequency domain to 

3.028 ppm and 3.925 ppm for the metabolite spectra and MM 

data, respectively; (8) residual water removal using a Hankel 

singular value decomposition method; and (9) truncation of 

FIDs at 150 ms for the MM data. 

 
2.4 | Macromolecule fitting 

An MM basis set was created in LCModel V6.3-1L
35 

using 

simulated Voigt peaks, which is the best possible approxi- 

mation used in literature
7,8,30,36 

and does not account for J-

evolution of these MM peaks. The chemical shifts of the 

Voigt lines were varied systematically based on previously 

reported values,
7,8,30 

in which the ones reported by Pfeuffer 

et al
8 

were found to be the best; therefore, the reported chemi- 

cal shifts were chosen for the MM peaks from 0.9 to 2.3 ppm 

and from 2.9 to 3.5 ppm. The values of M2.56 and M2.70 were 

first reported in a human brain study at 9.4 T.
30 

The chemical 

shifts of these two peaks were adapted to fit the shifts reported 

by the 17.2 T rat study.
7 

The chemical shifts for MM peaks 

between 3.5 ppm and 4.2 ppm were chosen based on a pre- 

viously mentioned study,
7 

as the peaks were resolved more 

clearly in Lopez et al
7 

compared with the other two stud- 

ies.
8,30 

All of these chemical shifts are summarized in Table 1. 

The simulated basis set consisted of the following MM 

peaks: M0.92 (0.916 ppm), M1.21 (1.21 ppm), M1.39 (1.39 ppm), 

M1.67 (1.67 ppm), M2.04 (2.04 ppm), M2.26 (2.26 ppm), 

M2.56 (2.56 ppm), M2.70 (2.7 ppm), M2.99 (2.99 ppm), M3.21 

(3.21 ppm), M3.62 (3.62 ppm), M3.75 (3.75 ppm), M3.86 

(3.86 ppm), M4.03 (4.03 ppm), and M4.17 (4.17 ppm). The 

same basis set was used throughout the TE series, with the 

M2.70 peak being simulated with a negative amplitude for 

TE = 52 and 60 ms, as this peak was observed to be fully 

inverted due to J-evolution. A much narrower Voigt line was 

added to fit the residual creatine at 3.925 ppm. The chem- 

ical shifts, Δv1∕2s, and amplitudes were constrained in the 

LCModel as described in Supporting Information Annex B. 

Each individual MM data set and the sum of all data sets 

were fitted to the simulated MM basis set while enforcing a flat 

baseline by setting the LCModel parameter DKNTMN to 99. 

 
2.5 | Metabolite fitting 

The metabolite basis set was simulated in Vespa (ver. 0.9.3)
37 

using full quantum mechanical density matrix calculations 

for the semi-LASER sequence,
38 

including the actual com- 

plex excitation and adiabatic RF pulse shapes for all TEs 

specified in section 2.2. The following 17 metabolites were 

simulated: NAA, NAA glutamate (NAAG), γ-aminobutyric 

acid (GABA), aspartate (Asp), creatine (Cr), glutamate (Glu), 

glutamine (Gln), glutathione, glycerophosphocholine, gly- 

cine (Glyc), myo-inositol (mI), scyllo-inositol (Scy), lactate 

(Lac), phosphocreatine (PCr), phosphocholine (PCho), phos- 

phoethanolamine (PE), and taurine (Tau). Their chemical 

shifts and coupling constants were taken from Govindaraju 

et al,
39,40 

except for the coupling constant of GABA, for 

which the values from Near et al
41 

were chosen. 

Selected metabolites were split into moieties for fitting the 

TE series to calculate the metabolites’ T2 times. As previous 

studies have shown, different moieties of the same metabolite 

have different relaxation times
7,20,21,23

: NAA was split into an 

NAA–acetyl moiety [NAA(CH3)] and an NAA–aspartyl moiety 

[NAA(CH2)], whereas instead of Cr and PCr metabolites, the 

singlets at 3.925 ppm total creatine [tCr(CH2)] and at 3.028 ppm 

[tCr(CH3)] were included in the basis set. The metabolites were 

used in their entirety to calculate absolute concentrations. 

Because of the strong overlap and ill-posed problem of 

fitting PCho and glycerophosphocholine separately, these 

were combined to a total choline metabolite (tCho) with 

corresponding volume fractions of 0.6 mM PCho and 1 mM 
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glycerophosphocholine based on the mean concentration respectively. The values of Δv ,   v 
macro represent the micro- 

values from de Graaf.
42 

Similarly, PCho, glycerophospho- 

choline, and PE were combined with tCho+ (corresponding 

to volume fractions of 0.6 mM PCho, 1.0 mM glycerophos- 

phocholine, and 1.5 mM PE
42

), to obtain a robust metabolite 

fit for the T2 calculations across the TE series. 

Then, all individual metabolite spectra were fitted using 

the LCModel with the simulated basis set, including the re- 

spective MMB summed across subjects for each TE. The 

metabolite spectra summed across subjects were fitted sim- 

ilarly. Because the summed MMB spectra were included 

in the fit, DKNTMN was set to 0.25, resulting in a stiffer 

LCModel baseline compared with the default LCModel 

value of 0.15.
43

 

To further improve the fitting procedure, two soft con- 

straints were introduced into the echo series fit, namely, 

NAA(CH3)/NAA(CH2) = 1.2 ± 0.02 (to account for possi- 

ble faster decay of NAA(CH2) and mI/Glyc = 5 ± 0.5 (value 

extracted from the TE = 24 ms fit) (Supporting Information 

Annex B). No soft constraints were used for GABA or other 

metabolites. 

 
2.6 | T2 relaxation calculations 

susceptibility and macrosusceptibility, respectively. 

 
2.8 | Absolute quantification 

Using Statistical Parametric Mapping 12 software (Wellcome 

Trust Centre for Neuroimaging, London, United Kingdom), 

the acquired magnetization-prepared two rapid gradient-echo 

images were segmented into the following tissues: WM, GM, 

and CSF. Final tissue compositions were calculated using an 

in-house written Python (ver. 3.7) method and were used for 

absolute quantification of metabolites. Obtained tissue com- 

positions for the GM-rich voxels were GM: 69.2% ± 3.9%, 

WM: 25.8% ± 5.0%, and CSF: 4.9% ± 3.0%, and the WM- 

rich voxels were GM: 32.9% ± 9.3%, WM: 64.7% ± 11.1%, 

and CSF: 2.4% ± 3.7%. 

The unsuppressed water-reference signal from the voxel 

was used as the internal concentration reference for absolute 

quantification calculated in millimolal values (millimoles 

per kilogram of solvent [mmol/kg]). The concentrations of 

the metabolites were absolutely quantified using the formula 

(Supporting Information Annex A) given by Gasparovic 

et al
16 

for TE = 24 ms, including corrections for the T1 and 

T2 relaxation times of water in different compartments and 

The concentrations of MM peaks and metabolite peaks 

from the individual data and the summed spectra were fit 

to a mono-exponential decay across the TE series to yield 

the metabolite relaxation times. More specifically, the T1 

and T2 relaxation times of water at 9.4 T in GM (TGM = 2120 ms; 

TGM = 37 ms) and WM (TWM = 1400 ms; TWM = 30 ms) were 

T2 relaxation-time estimates. The mean coefficient of deter- 2 

taken from Hagberg et al.
34 

Relaxation times for CSF were cal- 
culated based on data from the same work (TCSF = 4800 ms; 

mination (R ) value was calculated for the exponential fit 

across the individual subject data and was used to evaluate 

the quality of the exponential fits. Relaxation times with a 

mean R
2 

smaller than 0.5 were discarded. The T2 times for 

Lac, Tau, and Scy are not reported, as they did not satisfy the 

R
2 

criterion. 

 
2.7 | Linewidth calculations 

After quantification and extracting the fitted lineshapes of 
MM peaks and metabolite singlets from the .coord files of 

LCModel quantification, the Δv1∕2 were measured. The con- 
tribution  o−

f
1
T2 relaxation to Δv1∕2  was calculated according 

1 

TCSF = 181 ms). The T1 relaxation times of metabolites were 

taken from Wright et al.
24 

The T2 relaxation times of the 

metabolite peaks calculated in this study were used. For the me- 

tabolites, for which T2 relaxation times could not be estimated, 

the mean T2 relaxation time of all other metabolites was used. 

 

3 | RESULTS 

Spectra without major artifacts were obtained for all 

subjects: The NAA(CH3) SNR ranged from 526 ± 130 to 

334 ± 82 for TE = 24-60 ms, respectively. However, between 

to   лTeff , using the calculated T2 values. 0.9 and 1.8 ppm, some spectra, especially MM spectra from 

WM voxels (Figure 1 and Supporting Information Figure S1), 

The residual linewidth was defined as presented outer-volume lipid impurities for some sub- 

jects, as lipid suppression techniques such as outer-volume 

Δv = Δv 
   −1 
–  лTeff − Δv saturation were not used. The value of Δv1∕2 of the unsup- 

residual 1∕2 2 singlet pressed water signal was 17.6 ± 1.3 Hz. The TE series of 

MM and metabolite spectra from the GM-rich voxel are 

The B0 components were calculated from NAA(CH3) and 

tCr(CH2) as 

shown in Figure 1, where the shaded area depicts the SD, 

illustrating the reproducibility of the data quality. Supporting 

Δv = Δv 
   −1 

–  лTeff ≈ Δv + Δv Information Figure S1 shows the TE series of WM-MM 
singlet 1∕2 2 micro macro spectra. No data sets were excluded. 
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FIGURE 1 Echo time series (TE = 24, 32, 40, 52, and 60 ms) for metabolite spectra (left) and macromolecular spectra (right) from gray 

matter (GM), with solid lines showing the mean spectra and the shaded area indicating the SD across subjects. The inset shows the voxel placement 

on axial and sagittal magnetization-prepared two rapid gradient-echo images 

 

FIGURE 2 Gray matter 

macromolecular (MM) spectrum summed 

across subjects ( subjects GM MM Spectrum) 

(TE = 24 ms) is shown with the fit using 

simulated Voigt lines. The residual total 

creatine 3.9 singlet [tCr(CH2)] peak in the 

spectra is modeled with a significantly 

narrower linewidth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3.1 | Macromolecule fitting 

The spectrum from the GM-rich voxel summed across sub- 

jects, together with all the fitted Voigt lines for the MM 

peaks, is shown in Figure 2 for TE = 24 ms and in Supporting 

Information Figure S2 for the other TEs. Supporting Information 

Figures S3 and S4 show the fit of the WM-TE series spectra 

summed across subjects. The fit residual is minimum without 

structured noise, indicating a high fit quality. Similar fit quality 

was achieved for all data sets across all TEs. The M2.70 peak 

is observed to undergo a full inversion due to J-evolution over 

the TE steps. More precisely, the full-inversion M2.70 occurred 
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between TE = 52 and TE = 60 ms, and was simulated as a 

negative peak. The signal of the MM and the metabolite peaks 

decreased with increasing TE, as expected. 

The residual CH2 resonance of total creatine [tCr(CH2)] 

was modeled by fitting a sharper Voigt line at 3.925 ppm with 

a measured Δv1∕2 of around 0.035 ppm (14 Hz) across sub- 
jects. Next, the residual Cr was extracted from the LCModel 

fit, and was subtracted from the MM spectra to yield a more 

appropriate MMB for the metabolite fits (Figure 3). The re- 

sulting MMB was included in the basis set to fit the metabo- 

lite spectra for T2 relaxation-time calculations as well as for 

absolute quantification. 

 
3.2 | Metabolite fitting 

The fit of the metabolites to the summed metabolite spectra 

is shown in Figure 4. The fit residual is small, indicating a 

high fit quality. For TE = 32, 40, 52 and 60 ms, the basis set 

modeled the J-evolution of mI, NAA(CH2), Asp, Glu, and 

Tau well (Supporting Information Figure S5). 

Adding ascorbic acid or glucose to the simulated basis set 

did not improve the fit in terms of Cramer-Rao lower bounds, 

T2-fit result confidences, and residual artifacts. These reso- 

nances were not found by LCModel in most cases. Hence, 

these metabolites were not included in the final basis set. 

 
3.3 | T2 results 

The calculated Teff and T2 relaxation times (Figure 5) for 

good agreement for the fits of individual subject data and the 

summed spectra. Box plots of the resulting T2 relaxation times 

are shown in decreasing order for metabolites and MM peaks 

in Figure 5. The T2 relaxation time of the residual tCr(CH2) 

peak in the MM spectra was also in agreement with the re- 

laxation time of the tCr(CH2) peak in the metabolite spectra. 

The T2 relaxation times of metabolites and MM peaks 

from the summed spectra and individual data, together with 

the mean and SD of R
2 

of the corresponding exponential fits, 

are listed in Table 2. 

The T2 relaxation times of metabolites were found to lie 

between 55 ms and 105 ms, except for NAAG with approxi- 

mately 40 ms. In contrast, the values of Teff for all MM reso- 

nances were between 13 ms and 40 ms in WM and between 

13 ms and 37 ms in GM. 

The R
2 

for the metabolite exponential decay fits were all 

above 0.70, except for Asp and Glyc. The mean R
2 

of the ex- 

ponential decay fits was above 0.70 for all MM peaks as well, 

except for M4.03, which was subjected to water residuals and 

noise at longer TEs, hence the lower R
2 

value. Furthermore, 

the uncertainties in the Teff relaxation times of the M1.21 and 

M1.39 were influenced by lipid contaminations. 

 
3.4 | Linewidth calculations 

The value of Δv1∕2 of the MM resonances was measured 

to vary betwee n−
3
1 
5 Hz and 85 Hz across all TEs (Table 1), 

whereas   лTeff        was calculated to be between 4 Hz and 
30 Hz (Figure 6). In the case of metabolite resonances, and 

for the residual tCr(CH2) in the MM spectra, a Δv1∕2 of 11 Hz 

MM peaks and metabolites, respectively, were overall in to 20 Hz was found, whereas лTeff ranged between 2 Hz 
 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3 Echo time series of the 

GM-MM spectra summed across subjects 

with the tCr(CH2) residual subtraction 

shown. The spectra after the residual 

tCr(CH2) subtraction were used as the MM 

baseline in the basis set for the metabolite 

fitting. The red line shows the residual 

tCr(CH2), and the black line shows the 

MM spectra after the residual subtraction. 

Residual tCr(CH2) is extracted from the 

LCModel fit as shown in Figure 2 
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FIGURE 4  Summed metabolite spectrum 

( subjects Metabolite Spectrum) (TE = 24 ms) 

from GM with fitted metabolites and 

measured macromolecular background 

(MMB). The basis set configuration shown 

here was used to estimate the T2 relaxation 

times and includes the tCr split into its 

moieties [tCr(CH3) and tCr(CH2)], NAA split 

into NAA(CH2) and NAA(CH3) moiety, and 

total choline (tCho) and phosphoethanolamine 

(PE) combined into tCho+. For each TE, 

a corresponding basis set was simulated 

with Vespa. For absolute quantification, the 

NAA moieties were combined, whereas 

creatine (Cr), phosphocreatine (PCr), 

tCho, and PE were fitted as independent 

metabolites. Abbreviations: Asp, aspartate; 

tCr(CH2), GABA, γ-aminobutyric acid; 

Gln, glutamine; Glu, glutamate; Glyc, 

glycine; GSH, glutathione; Lac, lactate; mI, 

myo-inositol; NAA(CH2), NAA–aspartyl 

moiety; NAA(CH3), NAA–acetyl moiety; 

NAAG, NAA glutamate; Scy, scyllo- 

inositol; Tau, taurine; tCho+, combined 

phosphocholine, glycerophosphocholine, and 

phosphoethanolamine molecules; tCr(CH2), 

total creatine 3.9 singlet; tCr(CH3), total 

creatine 3.0 singlet 

and 5 Hz. This led to a Δv value of approximately 12 Hz 
for the metabolite singlets. 

in vivo absolute concentrations of metabolites for single- 

voxel MRS acquisitions from the occipital lobe are reported. 
Supporting Information Figure S7  shows the Δv 

values of metabolites and MM peaks, which were calculated The resulting T2 values and absolute concentrations were 

using the Δv of NAA(CH3) and tCr(CH2) for the metab- 
largely in line with the literature. 

olite and MM spectra, respectively. The values of Δv of 

metabolites were around zero after applying the correction. 

In contrast, MM peaks had Δv       values ranging between 
10 Hz and 60 Hz. 

 

3.5 | Concentrations 

Absolute concentrations in millimoles per kilogram with 

and without T2 correction are shown in Figure 7. The val- 

ues for the metabolites are reported in Table 3 with and 

without the T2 correction factor. In Supporting Information 

Figure S8 and Supporting Information Table S1, absolute 

concentrations are given in millimoles per tissue volume in 

a liter (mmol/L). 

 
4 | DISCUSSION  

In this study, transverse relaxation times of a wide range of 

MM peaks and metabolites at 9.4 T are reported. Additionally, 

4.1 | Spectral quality and fitting of 
MM spectra 

The DIR technique sufficiently nulled all of the metabolites 

except tCr(CH2) for the chosen TI1 and TI2, as the T1 relaxa- 

tion time of this resonance is the shortest among the singlets, 

as reported by Deelchand et al.
23 

Indeed, the difference be- 

tween the T1 relaxation times of some of the MM peaks
44 

and 

the CH2 group of Cr is not large; thus, there is a residual peak 

present in the MM spectra. The residual tCr(CH2) was sub- 

tracted using the fit of the Cr singlet fit from the LCModel. 

The resulting spectra (Figure 3) after the residual subtraction 

visually showed no leftover Cr. 

For the fitting of the MM spectra, the chemical shifts and 

Δv1∕2 were systematically varied to achieve the lowest SD of 

the T2 results among subjects, to maximize the R
2 

values, and 

to minimize the mean Cramer-Rao lower bounds. These sys- 

tematic variations supported that the values chosen by Lopez 

et al
7 

were among the most suitable choices, and these values 

were also well justified by peak characteristics seen at 17.2 T. 
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of NAA(CH2) could be more significant, as metabolites have 

longer T2 relaxation times than macromolecules. 

 
4.2 | Metabolite fitting 

Previous work at 9.4 T reported concentrations of 18 

metabolites in the human brain using an MC semi-LASER 

sequence.
26 

However, due to the complexity of the adiaba- 

tic pulses and their spin locking effect,
46 

the simulated basis 

set was approximated using a spin-echo sequence with 

TE = 6.5 ms.
30 

In this study, the basis set for MC-semi-LASER 

was simulated using actual adiabatic RF pulse shapes. In 

addition, the same TEs were used in the acquisition of both 

metabolite and MM spectra. This allowed to individually 

fit the metabolite spectra with the matching simulated basis 

set and the corresponding MMB for each TE. The fit results 

(Figure 4 and Supporting Information Figure S5) show that 

the simulated basis set represents the J-evolution patterns of 

the acquired spectra well. 

 
4.3 | T2 results 

This study reports the Teff of individual MM peaks as well as 
Calculated T2 relaxation times for metabolites (top) 

and macromolecules (bottom) are shown in descending order. The red 

and pink crosses (X) indicate the calculations for the spectra summed 
across subjects (Teff , sum), while the box plots show the per-subject fits. 

2 

T2 relaxation times of both singlets and J-coupled metabo- 

lites at 9.4 T in human brain. The values of Teff of MM peaks 

are in agreement with previous work. Behar et al reporting 
2 

Horizontal lines inside the boxes indicate median values 

(50% quartile), whereas the bottom and top box boundaries illustrate 

25% and 75% quartiles, respectively. Plus signs (+) show outliers. The 

summed and the individual fits are in good agreement. Abbreviations: 

Glx, total Glu and Gln; tNAA+, NAA(CH3) and NAA(CH2) 

 
Hence, these values were chosen, with minor deviations as 

indicated in Table 1. 

For the first time, the J-evolution of the M2.7 resonance 

(Figures 1 and 3, Supporting Information Figure S1) was 

investigated in this study. This resonance was preliminarily 

assigned to β-methylene protons of aspartyl groups.
30 

The 

Biological Magnetic Resonance Bank amino acid database
45 

lists the following coupling constants for the β-methylene 

protons (δ2.7 ppm) of aspartate amino acids: approximately 

5 and 8 Hz between α-methylene and β-methylene protons, 

and 17.5 Hz between β-methylene protons. These coupling 

constants are comparable to those of Asp and the aspartate 

moieties of NAA and NAAG,
40 

which experience full inver- 

sion between TEs of 52 and 60 ms. All observations support 

the preliminary attribution of the M2.7 resonance to the aspar- 

tyl groups. Nevertheless, the possibility cannot be excluded 

that the MM spectra also included NAA(CH2) residuals, pro- 

vided that this moiety has a short enough T1 relaxation time. 

In particular, at longer TEs (52 and 60 ms), the contribution 

44-ms T2 at 2.1 T for M0.92 in human brain,
11 

which is in 

agreement with a slow decay across field strengths, as shown 

in the rat brain studies.
7-10

 

The T2 of metabolite singlets, such as NAA(CH3), tCr(CH2), 

tCr(CH3) and tCho, are higher than those previously reported 

at 9.4 T.
23 

The higher values in this work can be attributed to 

the fact that a TE-specific experimentally measured MMB was 

included, which is a faster-decaying component. The reported 

T2 relaxation times of the metabolites appear to follow the same 

trend compared with previous results,
7,20,21,47 

with the longest 

relaxation times found for the singlets NAA(CH3), tCho and 

tCr(CH3) [the T2 of tCr(CH3) larger than for tCr(CH2), differ- 

ence decreasing with increasing field strength],
7,20,21,23,47 

and 

significantly shorter T2 for NAAG than for NAA moieties.
20 

All reported T2 relaxation times show the expected negative 

correlation with increasing field strength. Glutamate T2 is 

higher than that of Gln, in agreement with previous studies.
7,20 

However, the difference is unexpected, considering the similar 

molecular weight of the two metabolites and the similar distri- 

bution within the brain
48

; hence, most likely the T2 of Gln is 

underestimated. Nevertheless, differences could arise from the 

presence in different compartments, or bindings to different 

transporters or enzymes. 

The summed and individual fits are in good agreement for 

T2 relaxation times for both MM resonances and metabolites 
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TABLE 2 T2 relaxation times for metabolites and macromolecules 

Asp 72 54.4 ± 11.5 0.72 ± 0.12 M0.92 36.9 36.4 ± 7.0 0.91 ± 0.07 31.3 35.1 ± 10.0 0.86 ± 0.09 

tCr(CH3) 95.2 100.2 ± 16.0 0.90 ± 0.10 M1.21 37.4 34.3 ± 13.1 0.79 ± 0.13 — 25.3 ± 0.0 0.98 ± 0.00 

tCr(CH2) 95.4 81.8 ± 10.8 0.83 ± 0.08 M1.39 36.7 31.5 ± 7.4 0.83 ± 0.08 31 39.6 ± 24.2 0.75 ± 0.13 

Glu 76.8 87.0 ± 23.3 0.73 ± 0.10 M1.67 15.9 17.6 ± 3.6 0.92 ± 0.08 17.4 17.5 ± 7.5 0.89 ± 0.11 

Gln 65.9 47.0 ± 8.6 0.81 ± 0.06 M2.04 15.9 15.8 ± 2.1 0.98 ± 0.03 17.1 18.9 ± 1.5 0.98 ± 0.02 

GSH 70.7 74.8 ± 34.2 0.73 ± 0.09 M2.26 19.6 18.4 ± 1.5 0.96 ± 0.03 19.1 18.1 ± 1.0 0.96 ± 0.02 

Glyc — 60.9 ± 11.2 0.60 ± 0.07 M2.56 18.7 20.1 ± 3.2 0.93 ± 0.04 19.3 23.9 ± 3.4 0.84 ± 0.10 

mI 84.5 90.0 ± 18.0 0.70 ± 0.09 M2.70 11.6 13.9 ± 2.9 0.93 ± 0.08 11.6 13.4 ± 1.9 0.94 ± 0.03 

NAA(CH2) 90.4 102.2 ± 23.8 0.92 ± 0.12 M2.99 18.9 18.8 ± 1.6 0.94 ± 0.06 18 19.1 ± 1.3 0.93 ± 0.03 

NAA(CH3) 104.9 110.5 ± 27.7 0.93 ± 0.12 M3.21 18.4 18.4 ± 3.2 0.93 ± 0.08 13.9 16.3 ± 5.4 0.91 ± 0.06 

NAAG 37.7 45.0 ± 16.3 0.87 ± 0.09 M3.62 15.5 13.9 ± 6.4 0.90 ± 0.07 12.4 15.9 ± 4.8 0.85 ± 0.06 

tCho+ 80.4 90.1 ± 23.5 0.92 ± 0.11 M3.75 23.3 25.4 ± 6.8 0.91 ± 0.08 25.6 24.5 ± 6.8 0.82 ± 0.11 

tNAA+ 93.2 100.6 ± 21.8 0.93 ± 0.11 M3.86 19.5 22.0 ± 5.3 0.91 ± 0.12 18.5 24.2 ± 5.2 0.84 ± 0.10 

mI+Glyc 77.8 84.4 ± 16.8 0.77 ± 0.12 M4.03 11.5 20.7 ± 8.2 0.71 ± 0.10 — — — 

Glx 72.8 71.9 ± 10.5 0.76 ± 0.09 tCr(CH2) 65.3 71.3 ± 7.9 0.75 ± 0.11 67.3 61.7 ± 3.1 0.84 ± 0.12 

Note: Calculated T relaxation times for metabolites (left), Teff for MM gray matter (middle), and MM white matter (right) are shown for fitting the spectra summed across subjects (Tsum and Teff , sum), the per-subject fits (mean 
2 2 2 2 

and SD) with the confidence of the exponential fit (R
2
). Some exponential decay fits are shown in Supporting Information Figure S6. The T2 relaxation times of GABA, Lac, Scy, and PE are not included, as they did not satisfy 

the imposed R
2 

> 0.5 criterion. 

Abbreviation: GSH, glutathione. 
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FIGURE 6 Calculated Δv1∕2 for the singlets of the metabolite spectra (left) and individual MM peaks and tCr(CH2) peak of the MM spectra 

(right). The crosses (X) indicate the calculations for the spectra summed across subjects, whereas the box plots show the per-subject fits. Per- 

subject individual fits are shown in the blue b o−x1 
plots and red crosses (approximately 15 Hz for metabolite singlets and mostly between 40 Hz and 

80 Hz for macromolecules). Values of vTeff are shown in the green box plots and orange crosses (approximately 3.5 Hz for metabolite singlets 

and mostly between 5 Hz and 20 Hz for macromolecules). Horizontal lines inside the boxes indicate median values (50% quartile), whereas the 

bottom and top box boundaries illustrate 25% and 75% quartiles, respectively. Plus signs (+) show outliers. The value of Δvresidual is displayed in 

Supporting Information Figure S7. Abbreviation: WM, white matter 

 

 
FIGURE 7 Calculated absolute 

concentrations for the metabolites in 

millimoles per kilogram for the different 

subjects. The blue box plots show the 

concentrations when metabolite T2 

correction is applied, whereas the green box 

plots show the concentrations without using 

this correction factor. Horizontal lines inside 

the boxes indicate median values 

(50% quartile), whereas the bottom and 

top box boundaries illustrate 25% and 75% 

quartiles, respectively. Plus signs (+) show 

outliers 

 

 

 

 

 

 

 

 

 

 

 

(Table 2). It can also be noted that the relaxation time of the 

tCr(CH2) in the metabolite spectra and the residual present 

in the MM spectra are in good agreement. The differences 

between Teff relaxation times of MM peaks in WM-rich and 

GM-rich voxels were never investigated previously, nor were 

the relaxation times calculated for the peaks individually. 

tissue compositions in this work. The Teff relaxation times 

found in this study are comparable between these voxels. 

However, it is known that the region of interest in the 

human brain is crucial when applying T2 correction for abso- 

lute concentrations of metabolites.
20 

Hence, no attempt was 

made to report the T2 relaxation times of metabolites sep- 

Therefore, an attempt was made to calculate Teff for both arately for GM and WM, as the selected voxel was neither 
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Absolute concentrations (mmol/kg ± SD) 

This work with T2 

correction 

Occipital lobe 

GM-rich 

This work without T2 

correction 

Occipital lobe 

GM-rich 

Terpstra et al 

2009 7 T
51

 

Mangia et al 

2006 7 T
50

 

Occipital lobe Occipital lobe 

Mekle et al 2009 Mekle et al 2009 

3 T29 7 T29 

Occipital lobe Occipital lobe 

GM-rich GM-rich 

Deelchand et al 

2010 9.4 T
23

 

 
Occipital lobe 

Marjańska et al 2012 

7 T21 

Occipital lobe mixed 

tissue 

TABLE 3 Absolute concentrations (mmol/kg ± SD) 

Asp 4.84 ± 1.15
b 

3.12 ± 0.74 2.0 ± 0.4 1 ± 0.26 3.1 ± 0.3 2.9 ± 0.5 2.1 ± 0.5 2.9 ± 0.8 

Asc — — 1.1 ± 0.3 1.2 ± 0.21 — — — 0.4 ± 0.3 

Cr 5.70 ± 0.85 4.38 ± 0.65 4.6 ± 0.3 5 ± 0.26 5.8 ± 0.2 5.0 ± 0.3 3.2 ± 0. 5 — 

PCr 4.43 ± 0.83 3.40 ± 0.64 3.9 ± 0.5 3.4 ± 0.24 2.2 ± 0.19 3.0 ± 0.3 4.5 ± 0.4 — 

GABA 1.87 ± 0.92
d 

1.39 ± 0.68 0.9 ± 0.1 1 ± 0.13 2.5 ± 0.4 1.3 ± 0.15 1.3 ± 0.4 1.5 ± 0.3 

Glucose — — — 1.1 ± 0.28 1.4 ± 0.3 — — w/Tau 

Gln 7.61 ± 0.91
b 

4.56 ± 0.54 2.5 ± 0.2 2.9 ± 0.16 1.6 ± 0.4 2.2 ± 0.4 2.2 ± 0.2 1.5 ± 0.5 

Glu 10.90 ± 0.80 8.27 ± 0.61 8.9 ± 0.3 11 ± 0.22 8.9 ± 0.9 9.9 ± 0.9 9.3 ± 0.9 9.6 ± 1.3 

Glyc 1.11 ± 0.28
b 

0.75 ± 0.19 — — — — — 0.7 ± 0.1 

GSH 1.72 ± 0.16 1.25 ± 0.12 0.7 ± 0.1 1 ± 0.1 1.4 ± 0.11 1.3 ± 0.2 1.1 ± 0.3 1.1 ± 0.1 

Lac — — 0.7 ± 0.1 0.8 ± 0.1 — 0.7 ± 0.1 0.5 ± 0.1 0.8 ± 0.2 

mI 5.22 ± 0.45 4.00 ± 0.34 — — 5.3 ± 0.6 5.7 ± 0.5 5.3 ± 0.4 6.4 ± 0.8 

NAA 12.61 ± 1.02 10.06 ± 0.81 12.4 ± 0.7 10.8 ± 0.14 11.2 ± 0.8 11.8 ± 0.2 13.5 ± 1.6 12.6 ± 1.7 

NAAG 1.42 ± 0.19
a 

0.83 ± 0.11 1.2 ± 0.2 1.4 ± 0.11 1.0 ± 0.2 1.1 ± 0.4 1.1 ± 0.5 0.40 ± 0.2 

tCho 1.03 ± 0.12 0.79 ± 0.09 1.0 ± 0.3 1.3 ± 0.05 1.1 ± 0.13 1.1 ± 0.05 0.9 ± 0.2 0.9 ± 0.1 

PE 2.28 ± 0.95
d 

1.75 ± 0.73 2.1 ± 0.2 1.2 ± 0.19 2.2 ± 0.18 2.5 ± 0.3 1.6 ± 0.4 2.3 ± 0.4 

Scy 0.13 ± 0.06
c,d 

0.09 ± 0.05
c 

0.3 ± 0.1 0.4 ± 0.05 0.4 ± 0.11 0.3 ± 0.12 0.3 ± 0.2 0.4 ± 0.1 

Tau 1.58 ± 0.37 1.17 ± 0.27 1.7 ± 0.2 1.9 ± 0.18 1.4 ± 0.5 1.5 ± 0.3 1.3 ± 0.2 2.1 ± 0.3 

NAA+NAAG 13.78 ± 1.01
a 

10.86 ± 0.79 — — 12.3 ± 0.9 12.9 ± 0.4 — — 

mI+Glyc 6.34 ± 0.52 4.77 ± 0.39 6.3 ± 0.9 6.7 ± 0.2 6.2 ± 0.6 6.0 ± 0.4 — — 

Cr+PCr 10.10 ± 0.46
a 

7.76 ± 0.36 8.6 ± 1.2 — 8.0 ± 0.3 8.0 ± 0.4 7.7 ± 0.4 8.7 ± 1.1 

Glu+Gln 17.96 ± 1.49
b 

12.86 ± 1.07 — — 10.5 ± 1.2 12.1 ± 1.2 — — 

(Continues) 
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Absolute concentrations (mmol/kg ± SD) 

This work with T2 

correction 

Occipital lobe 

GM-rich 

This work without T2 

correction 

Occipital lobe 

GM-rich 

Terpstra et al 

2009 7 T
51

 

Mangia et al 

2006 7 T
50

 

Occipital lobe Occipital lobe 

Mekle et al 2009 Mekle et al 2009 

3 T29 7 T29 

Occipital lobe Occipital lobe 

GM-rich GM-rich 

Deelchand et al 

2010 9.4 T
23

 

 
Occipital lobe 

Marjańska et al 2012 

7 T21 

Occipital lobe mixed 

tissue 

TABLE 3 (Continued) 

Included MMB measured measured measured measured From LCModel measured measured measured 

 

 

 

corrections 

 

 
Note: Absolute concentrations for the metabolites are shown (in mmol/kg). Concentrations for this work are reported with the correction of the metabolite T2 values and without this correction. Both reported values use the T1, 

T2, and tissue-compartment corrections of the water signal. The concentrations without metabolite T2 correction are all in good agreement with the millimolal concentrations reported in the literature at different field strengths 

from different studies (sequence and fitting configurations are also summarized). Absolute concentrations for the metabolites (in mmol/L) are found in Supporting Information Table S1 together with the literature comparison. 

Abbreviation: Asc, ascorbic acid; GSH, glutathione. 
a
Concentrations that are higher than the literature values after metabolite T2 correction (small changes). 

b
Concentrations that are higher than the literature values after metabolite T2 correction (large changes). 

c
The Scy concentration is marked because it is possibly underestimated in this study. However, it is not clear whether the other literature used 1 or 6 proton resonances (

1-6
CH) contributing to their Scy basis set simulation. 

d
Metabolites for which the mean T2 relaxation time of all other metabolites was taken. 
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purely WM nor GM. This difference in T2 relaxation times 

is highly influenced by the iron concentrations across the 

human brain, as shown by Hasan et al.
49 

Hence, the T2 relax- 

ation times of metabolites reported in this work are specific 

to the region of the GM-rich occipital lobe. 

The TE values of 24, 32, 40, 52, and 60 ms were chosen 

for the calculation of T2 relaxation times, while keeping the 

shorter MM Teff in mind. The MM signals were almost en- 

tirely decayed at TE = 60 ms. Having a corresponding MMB 

for the metabolite spectra improves the quantification of me- 

tabolite concentrations, hence the choice of identical TEs. 

The chosen TEs were sufficient to estimate the T2 relaxation 

times of MM peaks and metabolites with shorter T2 times. 

However, including some longer TE values would improve 

the accuracy of the T2 relaxation times of metabolites with 

longer T2s. 

 
4.4 | Linewidth calculations 

For any given voxel, B0 inhomogeneities originate from a 

did not include T2 correction due to the use of ultrashort TEs 

(<10 ms). The concentrations of NAA, NAAG, tCho, PE, 

Tau, Glu, GABA, and mI with T2 correction are overall in 

good agreement with the literature.
21,23,29,50,51

 

Concentrations of Asp, Gln, Glyc, and Glu are sig- 

nificantly higher after including the T2 correction factor. 

However, their concentration values match those from the 

literature when considered without T2 correction. Potential 

overestimations in this study could also arise due to an un- 

derestimation of the T2 relaxation times of Gln, Glu and Asp, 

which exhibit strong J-evolution effects at TE = 52 ms and 

TE = 60 ms. In particular, the Gln concentration is likely 

overestimated, as the spline baseline exhibits negative be- 

haviour in that area, which could not be compensated in the 

LCModel fits. Improved spectral resolution at ultrahigh field 

between Glu and Gln also influenced Gln concentrations in 

the current study. Furthermore, the loss of magnetization for 

individual MM components because of T1 differences in DIR 

semi-LASER compared with semi-LASER could also influ- 

ence our results. All referenced literature used single inver- 

sion recovery sequences to measure the MMB component. 

mixture of effects of Δv ,   v 
macro as well as tissue com- Similarly, Cr and PCr concentrations match the literature 

partment effects.
23 

This B0 effect experienced by spins is 

identical, whereas T2 relaxation time is metabolite/reso- 

nance-specific. The Δv1∕2 of metabolite singlets, both in 
MC-semiLASER and tCr(CH2) in DIR MC-semiLASER, 

clearly show the two components of the linewidth 

(Figure 6). The Δv1∕2 of tCr(CH2) is in line with the ones pre- 

viously reported.
23 

The large differences between the Δv1∕2s 

of MM peaks and лTeff  
  −1 

(Figure 6, Table 1) indicate that 

these resonances are potentially composed of unresolved mul- 

tiplets and/or different protons resonating at similar chemi- 

cal shifts, which are strongly overlapping. Also, Supporting 

Information Figure S7 shows that the values of Δv 

for MM peaks are between 10 Hz and 60 Hz, whereas for 

without T2 correction, but are somewhat higher (~25%) when 

the T2 correction is applied. This deviation could indicate 

that including the T2 correction factor in the absolute quanti- 

fication yields higher concentrations compared with the liter- 

ature, as in most studies, no correction for the corresponding 

T2 relaxation times of the metabolites was applied, or the 

Cr + PCr concentration was set to 8 mmol/kg. The shorter TEs 

used in the aforementioned studies, however, should not gen- 

erally have a significant impact on metabolite concentrations. 

Concentration of Scy, on the other hand, is lower in this 

study compared with other studies. However, it remains un- 

clear whether care was taken to use all six carbon atoms, 

written as 
1-6

CH in Govindaraju et al,
40 

each having a proton 

metabolites they are closer to 0 Hz. The Δv value is resonating at the same frequency, thus contributing to their 

consistent between GM and WM MM peaks, indicating that 

the magnitude of potential overlap and/or J-evolution
11 

com- 

ponent for each MM peak is similar between different tissue 

types. These peaks could originate from amino acids
45 

which, 

depending on the larger protein structure they belong to, can 

have different chemical shifts, but are distributed around a 

main resonance frequency for the bulk of protein peaks. 

 
4.5 | Concentrations 

Table 3 provides a consolidated comparison of absolute con- 

centrations (millimoles per kilogram) of metabolites from 

literature
21,23,29,50,51 

and this work. 

Metabolite concentrations from this study are reported 

with and without T2 correction for a fair comparison between 

the other studies and this work, as most of the other studies 

Scy basis set simulation. 

Absolute concentrations in millimoles per liter, given 

in Supporting Information Figure S8 and Supporting 

Information Table S1, are in excellent agreement with the 

concentrations that corrected for metabolite relaxations given 

by Penner et al
52 

and with the literature comparison presented 

in the same article. 

 
5 | CONCLUSIONS  

In this study, for the first time, T2 relaxation times of 14 indi- 

vidual macromolecule peaks ranging from 13 ms to 45 ms are 

measured in both GM-rich and WM-rich voxels. 

In addition, in vivo transverse relaxation times of 12 me- 

tabolites and metabolite moieties in a GM-rich voxel in the 

occipital lobe at 9.4 T are reported. The T2 relaxation values 
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ranged from 40 ms to 110 ms and were used as a correction 

factor for the absolute quantification of metabolites. The Teff 

and T2 values for MM peaks and metabolites, respectively, 

confirm the decreasing trend of transverse relaxation times 

with increasing static magnetic field. Finally, this work quan- 

titatively shows the contribution of T2 relaxation times and 

B0 components to the linewidth of MM peaks. The residual 

linewidth includes not only components of J-coupling, but 

also chemical-shift distributions of amino acid proton groups. 
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SUPPORTING INFORMATION  

Additional supporting information may be found online in 

the Supporting Information section. 

FIGURE S1 Echo time series (TE = 24, 32, 40, 52, and 

60 ms) for MM spectra (right) from WM, with solid lines 

showing the mean spectra and the shaded area indicating the 

SD across subjects 

FIGURE S2 Gray Matter MM spectra summed across sub- 

jects (TE = 32, 40, 52 and 60 ms) are shown with the fit- 

ted macromolecules and tCr(CH2) moiety. The basis set 

configuration shows the setup for inverting the M2.70 peak at 

TE = 40, 52, and 60 ms 

FIGURE S3 White matter MM spectrum summed across 

subjects (TE = 24 ms) is shown with the fit using simulated 

Voigt lines. The residual tCr(CH2) peak in the spectra is mod- 

eled with a significantly narrower linewidth 

FIGURE S4 White matter MM spectra summed across 

subjects (TE = 32, 40, 52, and 60 ms) are shown with the 
fitted macromolecules and tCr(CH2) moiety. The basis set 

NMR Spectroscopy. Hoboken, New Jersey: John Wiley & Sons; 

2007:43–110. 
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peak at 
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FIGURE S5 Metabolite spectra summed across subjects 

(TE = 32, 40, 52, and 60 ms) are shown with the fitted me- 

tabolites and measured MMB. The basis set configuration 

shown here with the tCr split to its moieties tCr(CH3) and 

tCr(CH2), NAA split to NAA(CH2) and NAA(CH3) moiety, 

and tCho and PE combined with tCho+ was used to estimate 

the T2 relaxation times. For each TE, a corresponding basis 

set was simulated with Vespa 
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FIGURE S6 Exponential decay plots of M0.92, M2.04, M2.26, 

and M2.99 from summed GM and WM spectra. The lines 

show the fit, whereas the scatter shows the quantified data 

points. The y-axis is reported in arbitrary units, and no con- 

clusions should be drawn between GM and WM concentra- 

tion differences 

FIGURE S7 The FWHMs for the singlets of the metabolite 

spectra (left) and individual MM peaks and tCr(CH2) peak of 

the MM spectra (right) after correcting for the T2 component 

of corresponding metabolite/macromolecule, and the B0 com- 

ponents from NAA(CH3) and tCr(CH2), respectively. The me- 

tabolite FWHM of tCho+ and tCr(CH2) reflects the multiple 

components contributing to the singlet peak. The crosses (X) 

indicate the calculations for the spectra summed across subjects, 

whereas the box plots show the per-subject fits. Horizontal lines 

inside the boxes indicate median values (50% quartile), whereas 

the bottom and top box boundaries illustrate 25% and 75% 

TABLE S1 Absolute concentrations for the metabolites (in 

mmol/L) 

Note: Concentrations for this work are reported with the cor- 

rection of the metabolite T2 values. The concentrations are 

all in good agreement with the millimolal concentrations re- 

ported by Penner et al (sequence and fitting configurations 

are also summarized). 
a
Concentrations that are higher than the literature values 

(small changes). 
b
Concentrations that are higher than the literature values 

(large changes). 
c
The Scy concentration is marked, because it is possibly un- 

derestimated in this study. However, it is not clear whether 

the other literature used 1 or 6 proton resonances (
16

NH) con- 

tributing to their Scy basis set simulation. 
d
Metabolites for which the mean T2 relaxation time of all 

other metabolites was taken. 

quartiles, respectively. Plus signs (+) show outliers    

FIGURE S8 Calculated absolute concentrations for the me- 

tabolites for the different subjects (in mmol/L). The blue box 

plots show the concentrations when metabolite T2 correc- 

tion is applied, while the green box plots show the concen- 

trations without applying this correction factor. Horizontal 

lines inside the boxes indicate median values (50% quartile), 

whereas the bottom and top box boundaries illustrate 25% 

and 75% quartiles, respectively. Plus signs (+) show outliers 
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SUPPORTING INFORMATION FIGURES 

 
 

Supporting Information Figure S1: Echo time (TE) series (TE = 24, 32, 40, 52 and 60 ms) 

for macromolecular spectra (right) from white matter with solid lines showing the mean spectra 

and the shaded area indicating the standard deviation across subjects. 

 



 

Supporting Information Figure S2: The gray matter across subjects summed 

macromolecular spectra (TE = 32, 40, 52 and 60 ms) are shown with the fitted macromolecules 

and tCr(CH2) moiety. The basis set configuration shows the setup for inverting the M2.70 peak 

at the TEs 40, 52 and 60 ms. 

 

 



 

Supporting Information Figure S3: White matter macromolecular spectrum summed 

across subjects (TE = 24 ms) is shown with the fit using simulated Voigt lines. The 

residual total creatine – 3.9 singlet (tCr(CH2)) peak in the spectra is modeled with a 

significantly narrower linewidth. 

 
 
 



 

Supporting Information Figure S4: The white matter across subjects summed 

macromolecular spectra (TE = 32, 40, 52 and 60 ms) are shown with the fitted macromolecules 

and tCr(CH2) moiety. The basis set configuration shows the setup for inverting the M2.70 peak 

at the TEs 40, 52 and 60 ms. 

 

 



 

Supporting Information Figure S5: The across subjects summed metabolite spectra (TE = 

32, 40, 52 and 60 ms) are shown with the fitted metabolites and measured MMB. The basis 

set configuration shown here with the tCr split to its moieties tCr(CH3) and tCr(CH2) , NAA split 

to NAA(CH2) and NAA(CH3) moiety, and tCho and PE combined to tCho+ was used to 

estimate the T2 relaxation times. For each echo time a corresponding basis set was simulated 

with Vespa. 

 
 



 

Supporting Information Figure S6: Exponential decay plots of M0.92, M2.04, M2.26 and M2.99 

from summed GM and WM spectra. The lines show the fit while the scatter shows the 

quantified data points. The y-axis is reported in arbitrary units, and no conclusions should be 

drawn between GM and WM concentration differences. 

 

 

 

 

 

 

 

 

 

 

 



 

Supporting Information Figure S7: FWHMs for the singlets of the metabolite spectra (left) 

and individual MM peaks and tCr(CH2) peak of the macromolecular spectra (right) after 

correcting for the T2 component of corresponding metabolite/macromolecule, and the B0 

components from NAA(CH3) and tCr(CH2) respectively. The metabolite FWHM of tCho+ and 

tCr(CH2) reflect the multiple components contributing to the singlet peak. The crosses (X) 

indicate the calculations for the spectra summed across subjects, while the box plots show 

the per subject fits. Horizontal lines inside the boxes indicate median values (50% quartile), 

whereas the bottom and top box boundaries illustrate 25% and 75% quartiles, respectively. 

Plus signs (+) show outliers. 

 
 
 

 



 

Supporting Information Figure S8: Calculated absolute concentrations for the metabolites 

in mmol/L for the different subjects. The blue box plots show the concentrations when 

metabolite T2 correction is applied, while the green box plots show the concentrations without 

applying this correction factor. Horizontal lines inside the boxes indicate median values (50% 

quartile), whereas the bottom and top box boundaries illustrate 25% and 75% quartiles, 

respectively. Plus signs (+) show outliers. 

 
 



 

Supporting Information Table S1: 

Absolute concentrations for the metabolites in mmol/L are shown. Concentrations for this work 

are reported with the correction of the metabolite T2 values. The concentrations are all in good 

agreement with the mmolal concentrations reported by Penner et al., (sequence and fitting 

configurations are also summarized). 

a,b Concentrations which are higher than the literature values are marked with a for small 

changes, and with b for large changes. 
c The Scyllo concentration is marked with since it is possibly underestimated in this study. 

However, it is not clear, whether the other literature used one or six proton resonances 

(1-6NH) contributing to their Scyllo basis set simulation. 
d Metabolites for which the mean T2 relaxation time of all the other metabolites was taken. 

 
Absolute concentrations [mmol/L ± std] 

 This work 

with 

T2 correction 

Penner 2015 

7T [10] 

 Occipital lobe 

GM rich 

Occipital lobe 

mixed tissue 

Asp 3.19 ± 0.75 3.8 ± 1.3 

Cr 4.21 ± 0.64 4.1 ± 0.6 

PCr 3.27 ± 0.61 3.5 ± 0.9 

GABA 1.37 ± 0.67 d - 

Gln 5.43 ± 0.67 b 2.2 ± 0.4 

Glu 8.05 ± 0.63 a 10.7 ± 1.6 

Glyc 0.81 ± 0.21 - 

GSH 1.28 ± 0.12 1.6 ± 0.3 

Lac 1.27 ± 0.58 - 

mI 3.85 ± 0.33 - 

NAA 9.31 ± 0.79 - 

NAAG 1.07 ± 0.15 - 

tCho 0.76 ± 0.09 a 1.8 ± 0.4 

PE 1.68 ± 0.70 d 1.2 ± 0.5 

Scy 0.09 ± 0.04 c, d 0.4 ± 0.1 

Tau 1.15 ± 0.27 1.0 ± 0.5 

NAA+NAAG 10.05 ± 0.78 11.8 ± 0.8 

mI+Glyc 4.68 ± 0.39 a 5.9 ± 0.3 

Cr+PCr 7.46 ± 0.33 7.6 ± 0.9 

Glu+Gln 13.03 ± 1.15 12.9 ± 1.6 

Included MMB measured measured 

Metabolite 
T2 correction 

yes yes 

Tissue fraction 

corrections 

 
yes 

78% fractional water content 

of GM & WM, correction for 

CSF with water reference 

Sequence semiLASER semiLASER 

Echo time 24 ms 38 ms 



 

ANNEX A - Absolute Quantification 
 
 
 

 

Concentrations in mmolal 
 
 
 

 
 

[M] 
 

= [M] 
 

× 𝑐𝑜𝑛𝑐 (fGM × 𝑅𝐻2𝑂_𝐺𝑀 + fWM × 𝑅𝐻2𝑂_𝑊𝑀+fCSF × 𝑅𝐻2𝑂_𝐶𝑆𝐹) 2 × × 
 

𝑚𝑚𝑜𝑙𝑎𝑙 obs 𝑝𝑢𝑟𝑒_𝐻2𝑂 (1 − fCSF) × 𝑅𝑀 1 + Fs 

 

where 𝑓𝑦 =
 𝑓𝑦_𝑣𝑜𝑙 × 𝑎𝑦  

𝑓𝐺𝑀_𝑣𝑜𝑙 × 𝑎𝐺𝑀 + 𝑓𝑊𝑀_𝑣𝑜𝑙 × 𝑎𝑊𝑀 +𝑓𝐶𝑆𝐹_𝑣𝑜𝑙 × 𝑎𝐶𝑆𝐹 

 

where 𝑦 corresponds to either GM, WM or CSF; 𝑓𝑦_𝑣𝑜𝑙 is the fraction of the respective tissue 

type determined by segmentation; 𝑎𝐺𝑀, 𝑎𝑊𝑀, 𝑎𝐶𝑆𝐹 (78%, 65%, 97% respectively) are the 

relative densities of MR-visible water for the given tissue type; The molal concentration of 

water in metabolite solution is 55510 mmoles/kg and is denoted by 𝑐𝑜𝑛𝑐𝑝𝑢𝑟𝑒_𝐻2𝑂. 

 
 

Concentrations in mmolar 

 
2 

[M]𝑚𝑚𝑜𝑙𝑎𝑟 = [M]obs × 𝑐𝑜𝑛𝑐𝑝𝑢𝑟𝑒_𝐻2𝑂 × 
1 + Fs 

(fGM_vol × 𝛼GM × 𝑅𝐻2𝑂_𝐺𝑀 + fWM_vol × 𝛼WM × 𝑅𝐻2𝑂_𝑊𝑀 +fCSF_vol × 𝛼CSF × 𝑅𝐻2𝑂_𝐶𝑆𝐹 ) 
× 

(1 − fCSF ) × 𝑅𝑀 

 

Where 𝑓𝑦_𝑣𝑜𝑙 is the fraction of the respective tissue type determined by segmentation; 𝑎𝐺𝑀, 

𝑎𝑊𝑀, 𝑎𝐶𝑆𝐹 (78%, 65%, 97% respectively) are the relative densities of MR-visible water for the 

given tissue type; The molar concentration of water is 55126 mM and is  denoted by 

𝑐𝑜𝑛𝑐𝑝𝑢𝑟𝑒_𝐻2𝑂 . 
 
 

 
For both cases, 𝑅𝐻2𝑂_𝑦 = exp [− 

𝑇𝐸
 

𝑇2𝐻2𝑂_𝑦 

] [1 − exp [− 
TR

 
𝑇1𝐻2𝑂𝑦 

 
]] is the relaxation correction factor 

for each water compartment 𝑦. 𝑇1𝐻2𝑂𝑦 
and 𝑇2𝐻2𝑂_𝑦 are the 𝑇1 and 𝑇2 relaxation times of water 

in the compartment 𝑦.. 𝑅𝑀 = exp [− 
𝑇𝐸

 
𝑇2𝑀_𝑎𝑣𝑒 

] [1 − exp [− 
TR

 
𝑇1𝑀_𝑎𝑣𝑒 

]]   is the relaxation correction 

term for metabolites. The denominator 1 − 𝑓𝐶𝑆𝐹 was implemented for partial-volume 

correction. The factor 2 
1+Fs 

was introduced to correct for the multiplication of even numbered 

acquisitions with the scaling factor (F𝑠). [M]obs is the concentration obtained from LCModel 

divided by the preset value (40873). 



 

While quantifying NAA absolutely, the mean T2 relaxation time of NAA(CH3) and NAA(CH2) 

was used; for Cr and PCr metabolites the mean T2 relaxation time of tCr(CH2) and tCr(CH3) 

singlets was used. Calculating the mean value was numerically equivalent to fitting a T2 

exponential to the combined metabolite moiety concentrations across the TE series. 

ANNEX B - Control files (.control) for LCModel quantification 
 

 

Sample LCModel .control files used for the quantification of the occipital lobe spectra for 

macromolecules and metabolite fitting. 

Macromolecules fitting 
 

Note: NAA_DF_basis.basis contains only the NAA 7.8 ppm peak, which seems 

relatively stable across TE series 

$LCMODL 
OWNER='Max Planck Institute biological Cybernetics' 
TITLE= ‘Macromolecule_Fit_TE24 
FILBAS='~/SampleConfigs/Basis_sets/ NAA_DF_basis.basis' 
FILRAW='~/SampleConfigs/data/macromolecule_TE24.RAW' 
FILH2O='~/SampleConfigs/data/water.RAW' 
FILPS='~/SampleConfigs/Output/macromolecule_TE24.ps' 
FILTAB='~/SampleConfigs/Output/macromolecule_TE24.table' 
FILCSV='~/SampleConfigs/Output/macromolecule_TE24.csv' 
FILCOO='~/SampleConfigs/Output/macromolecule_TE24.coord' 
LTABLE=7 
LCOORD=9 
LCSV=11 
atth2o= 1 
deltat= 1.2500e-04 
dkntmn= 0.25 
doecc= F 
dows= T 
hzpppm= 399.719 
neach= 50 
nunfil= 4096 
ppmend= 0.2 
ppmst= 8.2 
ppmgap(1,1)= 7.6 
ppmgap(2,1)= 4.1 
sddegp= 0 
sddegz= 0 
wconc= 40873 
shifmn(2) = -0.07 
shifmx(2) = 0.07 
nratio=0 
nsimul= 15 
chsimu(1)= 'MM09 @ 0.916 +- 0.01 FWHM= .08 < .11 +- .01 AMP= 1.' 
chsimu(2)= 'MM12 @ 1.21 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(3)= 'MM14 @ 1.39 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(4)= 'MM17 @ 1.67 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 



 

chsimu(5)= 'MM20 @ 2.04 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(6)= 'MM22 @ 2.26 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(7)= 'MM26 @ 2.56 +- 0.01 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(8)= 'MM27 @ 2.7 +- 0.05 FWHM= .04 < .08 +- .005 AMP= 1.' 
chsimu(9)= 'MM30 @ 2.99 +- 0.01 FWHM= .10 < .12 +- .005 AMP= 1.' 
chsimu(10)= 'MM32 @ 3.21 +- 0.02 FWHM= .12 < .18 +- .005 AMP= 1.' 
chsimu(11)= 'MM36 @ 3.62 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(12)= 'MM37 @ 3.75 +- 0.02 FWHM= .02 < .10 +- .005 AMP= 1.' 
chsimu(13)= 'MM38 @ 3.86 +- 0.01 FWHM= .02 < .10 +- .005 AMP= 1.' 
chsimu(14)= 'MM40 @ 4.03 +- 0.01 FWHM= .05 < .10 +- .005 AMP= 1.' 
chsimu(15)= 'Cre @ 3.925 +- 0.01 FWHM= .01 < .035 +- .003 AMP= 1.' 
$END 

 
 

Metabolite Fitting Absolute Quantification 
 

$LCMODL 
OWNER='Max Planck Institute biological Cybernetics' 
TITLE= ‘Metabolite_Fit_TE24 
FILBAS='~/SampleConfigs/Basis_sets/sLASER_2.4ppm_abs_quantif_met_TE24.basis' 
FILRAW='~/SampleConfigs/data/metabolite_TE24.RAW' 
FILH2O='~/SampleConfigs/data/water.RAW' 
FILPS='~/SampleConfigs/Output/metabolite_TE24.ps' 
FILTAB='~/SampleConfigs/Output/metabolite_TE24.table' 
FILCSV='~/SampleConfigs/Output/metabolite_TE24.csv' 
FILCOO='~/SampleConfigs/Output/metabolite_TE24.coord' 
LTABLE=7 
LCOORD=9 
LCSV=11 
atth2o= 1 
deltat= 1.2500e-04 
dkntmn= 0.25 
doecc= F 
dows= T 
hzpppm= 399.719 
neach= 50 
nunfil= 4096 
ppmend= 0.6 
ppmst= 4.1 
sddegp= 1 
sddegz= 1 
wconc= 40873 
nsimul = 0 
nnot2= 0 
nratio=0 
$END 

 
 

Metabolite Fitting Absolute Quantification 
 

$LCMODL 
OWNER='Max Planck Institute biological Cybernetics' 
TITLE= ‘Metabolite_Fit_TE24 
FILBAS='~/SampleConfigs/Basis_sets/sLASER_7ppm_moiety_met_TE24.basis' 
FILRAW='~/SampleConfigs/data/metabolite_TE24.RAW' 



 

FILH2O='~/SampleConfigs/data/water.RAW' 
FILPS='~/SampleConfigs/Output/metabolite_TE24.ps' 
FILTAB='~/SampleConfigs/Output/metabolite_TE24.table' 
FILCSV='~/SampleConfigs/Output/metabolite_TE24.csv' 
FILCOO='~/SampleConfigs/Output/metabolite_TE24.coord' 
LTABLE=7 
LCOORD=9 
LCSV=11 
atth2o= 1 
deltat= 1.2500e-04 
dkntmn= 0.25 
doecc= F 
dows= T 
hzpppm= 399.719 
neach= 50 
nunfil= 4096 
ppmend= 0.6 
ppmst= 4.1 
sddegp= 1 
sddegz= 1 
wconc= 40873 
nsimul = 0 
nnot2= 0 
nratio=2 
chrato(1) = 'NAA_ac/NAA_as=1.2+-0.02' 
chrato(2) = 'mI/Glyc=5+-0.5' 
$END 
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Purpose: Macromolecular peaks underlying metabolite spectra influence the quan- 

tification of metabolites. Therefore, it is important to understand the extent of con- 

tribution from macromolecules (MMs) in metabolite quantification. However, to 

model MMs more accurately in spectral fitting, differences in T1 relaxation times 

among individual MM peaks must be considered. Characterization of T1-relaxation 

times for all individual MM peaks using a single inversion recovery technique is 

difficult due to eventual contributions from metabolites. On the contrary, a dou- 

ble inversion recovery (DIR) technique provided flexibility to acquire MM spectra 

spanning a range of longitudinal magnetizations with minimal metabolite influence. 

Thus, a novel method to determine T1-relaxation times of individual MM peaks is 

reported in this work. 

Methods: Extensive Bloch simulations were performed to determine inversion time 

combinations for a DIR technique that yielded adequate MM signal with varying 

longitudinal magnetizations while minimizing metabolite contributions. MM spectra 

were acquired using DIR-metabolite-cycled semi-LASER sequence. LCModel con- 

centrations were fitted to the DIR signal equation to calculate T1-relaxation times. 

Results: T1-relaxation times of MMs range from 204 to 510 ms and 253 to 564 ms in 

gray- and white-matter rich voxels respectively at 9.4T. Additionally, concentrations 

of 13 MM peaks are reported. 

Conclusion: A novel DIR method is reported in this work to calculate T1-relaxation 

times of MMs in the human brain. T1-relaxation times and relaxation time corrected 

concentrations of individual MMs are reported in gray- and white-matter rich voxels 

for the first time at 9.4T. 

mailto:saipavitra.murali.manohar@tuebingen.mpg.de
mailto:saipavitra.murali.manohar@tuebingen.mpg.de
http://creativecommons.org/licenses/by/4.0/
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1 | INTRODUCTION  

Broad macromolecular resonances underlie metabolite spec- 

tra in 
1
H MR spectroscopy (MRS) at short echo times (TE). 

Macromolecules (MMs) between 0.5 and 4.5 ppm are at- 

tributed to mobile methyl, methylene, and methine groups of 

amino acids from cytosolic peptides and proteins.
1 

Several 

studies at field strengths between 1.5 to 3 T have highlighted 

the clinical relevance of MMs in aging
2 

and in pathologies 

such as traumatic encephalopathy,
3 

Kennedy’s disease,
4 

acute 

multiple sclerosis,
5 

and glioma.
6 

To understand mechanisms 

better in the aforementioned pathologies, it is of interest to 

use advantages of higher field strengths. Due to increased 

spectral dispersion, signal-to-noise ratio (SNR), and resolu- 

tion, more MM peaks are distinguishable at ultra-high field 

(UHF) (B0 ≥ 7 T); hence, it is possible to more accurately 

characterize the behavior of individual MM peaks. 

On the other hand, the well-resolved underlying MM 

spectrum at UHF often distorts the metabolite spectrum. 

Therefore, characterizing MM peaks additionally improves 

accuracy in quantifying metabolites. Various techniques 

have been used to handle MM signals in metabolite spectra 

namely: (1) opting for longer TE while measuring the me- 

tabolite spectra,
7 

(2) applying mathematical models such as 

a flexible spline baseline while fitting metabolite spectra,
8 

and (3) using prior information from experimentally acquired 

MM spectra.
9
 

The first two techniques (1, 2) do not prove to be the best 

solution at high field strengths (≥3 T). Using longer TEs (1) 

can lead to complications in quantifying metabolites due to 

decreased SNR and evolving J-coupling Therefore, short TEs 

are preferred in studies at UHF due to the generally faster 

transversal relaxation times of metabolites.
7 

With a decrease 

in the amount of overlapping of MM peaks at UHF, a flexi- 

ble spline baseline (2) may not hold to be a good solution to 

the problem of accounting for the MM spectrum accurately.
9 

Work done previously at 14.1 T acquired the MM spectrum 

by nulling metabolite resonances, and reported that the use of 

a prior knowledge MM spectrum in spectral fitting leads to 

more accurate and more reliable metabolite quantification at 

UHF.
10 

Hence, using prior information (3) from experimen- 

tally acquired MM spectra may prove to be a better solution. 

Inversion recovery (IR) techniques are a reliable method 

for acquiring MM spectra due to the relatively fast T1- 

relaxation times of MM peaks compared with those of me- 

tabolites.
11 

However, IR techniques that are used to acquire 

MM spectra introduce T1-weighting to the MM signals which 

depend on the chosen inversion time (TI) and repetition time 

(TR). It is likely that using T1-weighted MM spectra when 

fitting metabolite spectra, that are acquired without inversion 

pulses and typically a shorter TR, will influence quantitative 

accuracy. Indeed, a better characterization of the behavior 

of the relaxation times of the MM spectrum will lead to im- 

proved spectral fitting and fitting reproducibility. 

Previous studies have: characterized the T1-relaxation times 

of MMs in the human brain for MM spectra as a whole
12-14

; 

or for non-overlapping MM peaks
1,15,16

; or for groups of MM 

peaks.
11,17 

The T1-relaxation times of individual MM peaks 

have yet to be reported for any field strength. Characterizing 

T1-relaxation times for all individual MM peaks using a sin- 

gle inversion recovery technique is difficult due to eventual 

contributions from metabolites. More specifically, using a 

single-IR technique would have resulted in metabolites con- 

taminating MM spectra at most TIs through an inversion 

series; consequently, making it challenging to estimate the 

T1-relaxation times of most MM components with a sufficient 

range of longitudinal magnetization. Therefore, a double-IR 

(DIR) technique
18 

was chosen for this study because it per- 

mitted flexibility for more consistent nulling of metabolites 

along with observing a range of magnetizations of MM peaks. 

The flexibility gained with a DIR approach comes from the 

freedom to change the TI for both of the inversion pulses. 

Moreover, when using adiabatic localization sequences such 

as semiLASER, a DIR technique
18 

is more advantageous as 

this technique is shown to be insensitive to B+ effects.
19

 

Detection of 15 MM peaks between 0.8 and 4.2 ppm 

has been previously reported at 9.4 T by using DIR semi- 

LASER with metabolite cycling (MC).
20 

To measure an MM 

spectrum with minimal metabolite contribution an optimized 

combination of TIs (TI1/TI2 = 2360/625 ms) was required.
20 

However, for the current study, more than a single TI1/TI2 

combination was needed; consequently, several TI1/TI2 

combinations that yielded a range from negative to positive 

longitudinal magnetizations of MMs and simultaneously sup- 

pressed the metabolite signal had to be determined. 

Classically, characterizing T1-relaxation times of metab- 

olites requires either an inversion recovery series or a pro- 

gressive saturation approach with a TR-series to induce a 

sweep from negative to positive longitudinal magnetizations 

of the resonances of interest. The goal of the current study 

was to calculate the T1-relaxation times of 13 MM peaks be- 

tween 0.8 and 4.0 ppm in the human brain. However, simul- 

taneously minimizing metabolite contributions to detect MM 

peaks while also introducing a sufficiently broad range of 
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longitudinal magnetizations to determine T1-relaxation times 

of the MM peaks required extensive optimization on combi- 

nations of TI1/TI2. 

To determine suitable TI1/TI2 combinations, exhaustive 

Bloch simulations were performed for an optimized DIR 

technique. Ultimately, from all the Bloch simulation results, 

11 TI1/TI2 combinations were chosen for this study. Hence, 

a novel DIR approach with 11 different combinations of two 

inversion delays is described to determine the T1-relaxation 

times of individual MM resonances. Using this approach, 

T1-relaxation times for all MM resonances between 0.8 and 

4.0 ppm are reported for the first time in the human brain at 

9.4 T in both gray matter (GM) and white matter (WM). 

Furthermore, quantification using internal water as refer- 

ence was performed for each MM peak reported in this work 

by using the knowledge gathered for the T1-relaxation times 

of MM peaks and T2-relaxation results from Murali-Manohar 

et al.
21

; thus, concentrations without correction for proton 

density are reported. This work is an extension of the pre- 

liminary results presented earlier as a conference abstract.
22

 

 
2 | METHODS  

2.1 | Study design 

Eleven healthy volunteers (6 males, 5 females, age: 27.7 ± 

2.3 years) were measured on a 9.4 T Siemens Magnetom 

whole-body MRI scanner (Siemens Healthineers, Erlangen, 

Germany) using a home-built 8Tx/16Rx coil.
23 

The coil 

was driven in surface mode by a three-way splitter to drive 

power to the bottom three channel-elements as described in 

Giapitzakis et al.
20 

A 2 × 2 × 2 cm
3 

voxel was placed spanning 

the longitudinal fissure of the occipital lobe for GM meas- 

urements, and a voxel was placed within the left occipital- 

parietal transition for WM measurements (Figure 1). All 

eleven volunteers completed participation for GM measure- 

ments; however, only nine volunteers (4 males, 5 females, 

age: 28.2 ± 2.2 years) finished the second acquisition for 

WM measurements. Studies were performed with approval 

of the local ethics committee, and volunteers provided writ- 

ten informed consent prior to measurements. 

 
2.2 | Bloch Simulation 

A range of longitudinal magnetization values for MM sig- 

nals ranging from negative to positive MZ are required to cal- 

culate T1-relaxation times of MM resonances. To estimate 

individual MM peaks, the metabolite signals must be sup- 

pressed as much as possible. Hence, Bloch simulations were 

performed assuming a single proton spin to determine DIR 

schemes with suitable TIs TI1 and TI2. The magnetization 

vector (M(x, y, z)) was calculated for the actual inversion 

pulse shape implemented at the 9.4 T MRI scanner and the 

TIs (TI1 and TI2) as depicted in the DIR sequence scheme 

 

 
 

FIGURE 1 Top, MC semi-LASER sequence preceded by double inversion recovery scheme. TI1 and TI2 were changed as given in Table 1. 

Bottom, Voxels were placed into GM-rich (left) and WM-rich (right) regions to measure the inversion series. Red within the highlighted region 

represents WM; whereas, blue within the highlighted region represents GM. The average voxel content for GM-rich and WM-rich voxels were 

found to be GM/WM/CSF = 72 ± 2/22 ± 3/6 ± 4% and 35 ± 6/62 ± 7/3 ± 3%, respectively 
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in Figure 1; the inversion pulse profile is described in fur- 

ther detail by Giapitzakis et al.
19 

The available longitudinal 

magnetization following a DIR block is given by the MZ 

component, and the ratio of Mz to the initial magnetization 

(MZ/M0) was calculated for the inversion pulse profile
19 

with 

a frequency offset range equal to the actual bandwidth of the 

pulse (−2000 to 2000 Hz, Supporting Information Figure S1, 

which is available online).
20

 

Metabolite T1-relaxation times were taken from previ- 

ously acquired in vivo results at 9.4 T.
7 

MM resonances were 

grouped as a single MM spectrum containing all resonances 

with a T1-relaxation time measured in vivo at 7 T.
13 

In addition 

to effects of T1-relaxation, the transmit field strength B+ and 

resonance offset effects were accounted for in the Bloch sim- 

ulations. MZ/M0 for MM spectrum and metabolite peaks were 

systematically simulated in increments of 50 ms for the first 

pass sweeping a range from 800 to 2500 and from 10 to 800 ms 

for TI1 and TI2 respectively. Following the initial simulation, 

tighter increments were simulated for TI1/TI2 combinations 

to find optimal inversion delays. TI1/TI2 combinations were 

chosen such that spectra had minimal metabolite residual Mz 

while sweeping a range of Mz for MM signals as reported in 

the Results section. These resultant TI1/TI2 combinations were 

then further tested in vivo to ensure acquisition of clean MM 

spectra with minimal contribution from metabolites. For addi- 

tional information, the script used for Bloch simulations has 

been provided in Supporting Information Material Annex A. 

 
2.3 | Data acquisition 

High-resolution 2D FLASH images (in-plane resolution: 0.7 × 

0.7 mm
2
, slice thickness: 3.5 mm, 25 slices) were acquired 

in the sagittal and transversal planes to position spectroscopy 

voxels into GM- and WM-rich regions. Prior to spectroscopy 

measurements, localized FAST(EST)MAP
24 

second-order 

shimming and power optimization
25,26 

were performed to en- 

sure that sufficient linewidths and adiabatic conditions would 

be fulfilled. The shim volume was set to be 150% of the vol- 

ume of the voxel of interest. 

A metabolite-cycled semi-LASER (MC semi-LASER) 

sequence
27 

preceded by a novel DIR technique
20 

(Figure 1) 

was used for spectroscopic acquisition (echo time [TE]/TR = 

24/8000 ms; number of excitations [NEX] = 32) with 11 dif- 

ferent combinations of TI1 and TI2 (Table 1). The TR used in 

all combinations of TI1/TI2 was given such that the following 

inversion pulse (TI1) did not begin until 8000 ms after the 

position of the MC pulse (Figure 1). The transmit reference 

frequency was set at 2.4 ppm, and a 16-step phase cycling 

scheme was implemented. To avoid any influence of MC 

pulses on quantification based on internal water referencing, 

additional unsuppressed water reference signals (NEX: 16) 

were acquired with semi-LASER (TE: 24 ms) without MC. 

TABLE 1 Corresponding ratios of Mz to the initial magnetization 

(Mz/M0) of MMs and a range for metabolite singlets (NAA(CH3), 

tCr(CH3), tCr(CH2), and tCho) are reported from Bloch simulation 

results for each TI1/TI2 combination. Magnetization ratios are reported 

following simulation of the two inversion pulses and prior to any 

magnetization effects from localization pulses. Spin ensemble Bloch 

simulations used T1-relaxation times from 9.4 T for metabolites
49 

and 

from 7 T for the combined MM spectrum.
13 

Ten of the TI1/TI2 

combinations maintain minimal metabolite residuals; while one 

combination (1050/238 ms) was higher in metabolite contributions and 

used as an MM null point spectrum. 
 

MZ/M0 

TI1/TI2 [ms] MMs Metabolites 

2360/625 0.5344 −0.0451 to 0.0200 

2150/600 0.5079 −0.0020 to 0.0220 

2000/575 0.4799 −0.0030 to 0.0225 

1900/550 0.4501 0.0056 to 0.0362 

1800/525 0.4191 0.0079 to 0.0521 

1050/238 −0.0498 −0.0146 to 0.2195 

1300/80 −0.5797 −0.3267 to 0.0080 

1300/60 −0.6549 −0.3528 to −0.0033 

1200/20 −0.7919 −0.3497 to 0.0290 

1250/20 −0.8048 −0.3787 to 0.0011 

1300/20 −0.8162 −0.4063 to −0.0261 

 

 
MP2RAGE images

28 
(resolution: 0.6 mm

3
) were acquired 

with the same coil mentioned above by driving power to all 

eight channels. MP2RAGE data were used to calculate tis- 

sue volume fractions for each voxel to correct for the tissue 

composition dependence of T1-relaxation as well as for MM 

quantification. 

 
2.4 | Data preprocessing 

The raw data were reconstructed with an in-house MATLAB 

(version 2016a, MathWorks, Natick, MA) tool and were 

processed with a similar method as described in Giapitzakis 

et al.
27

 

Firstly, the FIDs were truncated to 250 ms so that data 

with better SNR were available for the following data prepro- 

cessing steps. Then they were frequency and phase-aligned 

in the time domain. This was followed by metabolite-cycling 

subtraction and the data were then averaged. After this, the 

data were zero-order phase and eddy current corrected using 

the phase information from the MC water signal. Signals 

from all 16 receive channels were then combined using an 

SVD method. The residual water in the spectra was removed 

using a HSVD method, and finally, the FIDs were truncated 

to 150 ms. 
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2.5 | Spectral fitting 

Spectra were fitted with LCModel (v6.3-1L)
29 

using simu- 

lated Voigt lines (CHSIMU) to fit 13 MM peaks. MM data 

were fit from 0.8 to 4.0 ppm. Initial fitting of MM spectra 

was performed using the subject-wise summed results for 

each TI1/TI2 combination. Metabolites predicted to contribute 

by Bloch simulations were initially included as characteristic 

spectral pattern in the basis sets, but only those metabolites 

which were fit in the initial trial (fitting subject-wise summed 

spectra) was kept in the final fit settings to avoid over- 

parameterization (Supporting Information Table S1). Complete 

basis vectors were not suitable for fitting metabolite residuals 

for the NAA(CH3) singlet and tCr resonances at most TI1/TI2 

combinations due to the minor contributions to spectra and dif- 

ferent relaxation of different moieties of the same metabolites. 

Thus, the contributions from these metabolite signals were 

simulated using narrow Voigt line shapes. Following determi- 

nation of metabolite contributions from summed spectra, opti- 

mized basis sets were defined for fitting of the individual data 

sets (Supporting Information Material Annex B). 

The chosen combinations of simulated Voigt lines were 

used to represent residual singlets in the spectra: N-acetyl 

aspartate (NAA(CH3) – 2.008 ppm), and creatine (tCr(CH3) 

– 3.027 ppm and tCr(CH2) – 3.925 ppm) across the inver- 

sion series to handle residual metabolite signals (Supporting 

Information Table S1). myo-Inositol (mI) was simulated 

in VesPA and was included in the basis set with negative a 

phase to fit spectra with TI1/TI2 = 2360/625, 2150/600, and 

2000/575 ms (Supporting Information Table S2). Glycero- 

phosphocholine (GPC), mI, glutamate (Glu), mI and aspar- 

tate moiety of NAA (NAAasp) were simulated in VesPA,
30

 

and were included in the basis set only for TI1/TI2 combina- 

tions that had negative MZ (i.e., inverted peaks with negative 

amplitudes). The chemical shifts of MM peaks were chosen 

from Murali-Manohar et al.
21  

Fit settings files are given in 

 
baseline stiff to allow for a more accurate fit of the MM data, 

and water scaling was performed to more accurately quantify 

the MM resonances. 

LCModel water scaling was performed with respect to 

the downfield NAA amide resonance at 7.79 ppm (wsppm = 

7.79, n1hmet = 1) rather than the LCModel default water 

scaling peak (tCr(CH3) taking three protons contribution). In 

particular, there were no peaks in the upfield range of the 

spectrum that were not affected by the DIR scheme. Thus, the 

downfield NAA amide resonance was chosen as its amplitude 

was stable and was not affected by the DIR scheme. Water 

scaling with the stable NAA-NH resonance not only allowed 

shifting of the spectrum with respect to a known resonance 

frequency, but also was included to account for variations 

in coil loading across subjects. Automated LCModel phase 

correction was also constrained by the downfield NAA peak. 

This approach provided a stable reference for quality control 

of LCModel fitting results. 

 
2.6 | Segmentation 

MP2RAGE images were segmented into GM, WM, and CSF 

probability maps with SPM12.
32 

2D FLASH images used for 

voxel placement were co-registered to the MP2RAGE image 

using SPM12, which returned an affine transformation be- 

tween the image spaces. The affine matrix relating the two 

images was used in a home-built Python (v3.7)
33,34 

tool to 

determine the tissue fraction in spectroscopy voxels. 

 
2.7 | T1 calculation 

Following spectral fitting in LCModel, all data were sorted by 

TI1/TI2 combination and fitted to the DIR signal equation
35

 

Supporting Information Material Annex B. 

To fit the MM null point data (TI1/TI2 = 1050/238 ms), 

a metabolite basis set including NAA(CH3), tCr(CH3), 

S = 
a

 
2 

1 − 2e 
– 

TI2 

T1 + 2e 
– 

TI1 +TI2 

T1 . (1) 

tCr(CH2), GPC, glutamine (Gln), Glu, gamma-aminobu- 

tyricacid (GABA), glycine (Glycin), Aspartate (Asp), mI, 

NAAasp, and taurine (Tau) were simulated using VeSPA.
30 

Metabolite basis vectors were chosen to be given here be- 

cause of the low MM signals and the strong metabolite contri- 

butions. The simulated basis set was created with a modified 

semiLASER protocol
31 

with sequence parameters and pulses 

adjusted to match those in the present study. 

Individual phases of metabolite residuals were adjusted in 

the LCModel basis sets as necessary depending on the mag- 

netization achieved from a TI1/TI2 combination. Furthermore, 

the observed phase for DIR combinations was adjusted indi- 

vidually for GM- and WM-rich voxels to improve the accu- 

racy of fits. DKNTMN parameter was set to 99 to keep the 

The optimization was done as a four-parameter bi- 

exponential model on the signal curve. In this model, TI1 and 

TI2 were both known parameters while a and T1 were both 

unknown variables which were optimized on. Optimizing 

for T1 from Equation (1) was performed in Python using the 

SciPy,
36 

NumPy,
34 

Matplotlib,
37 

and Pandas
38 

tool kits with 

a non-linear least squares, Levenberg-Marquardt algorithm; 

where a was assumed as a constant. Individual LCModel 

concentrations from all subjects were used in the curve fitting 

to calculate MM T1-relaxation times. 

T1-relaxation has been shown to vary predominantly due 

to tissue type for water
28,39 

in contrast to T2-relaxation which 

also varies spatially depending on microscopic susceptibil- 

ity differences.
40 

Hence, an assumption to further estimate 
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the relaxation of theoretically pure GM and WM voxels, 
Tpure voxel and Tpure voxel respectively, was used. The following 

to be that of pure water (55,510 mmol/kg). SMM is the signal 

from an MM peak; 
1, GM 1,WM 

two linear equations were concurrently solved by assuming 

a linear relationship of relaxation time to the contribution of 

tissue type: 

 
R = exp −

  TE 
 

H2O_y T2H2O
 

 
1 − exp −

  TR 
 

T1H2O 

f ⋅Tpure voxel +f ⋅Tpure voxel = Trich voxel 

GM_vol 
 

1,GM WM_vol 
 

1,WM 
⋅ 

1,GM 
1 −fCSF_vol 

(2) is the relaxation correction factor for each water compartment 

y. T1H2Oy 
and T2H2Oy 

are the T1- and T2-relaxation times of 

water in the compartment y; in particular, the relaxation times 
ff ⋅Tpure voxel + ff ⋅Tpure voxel = Trich voxel ⋅ 1 − ff 

     of water in GM are T1 = 2120 ms, T2 = 37 ms; 

(3) 

where fy_vol represents the tissue fraction in measures from GM- 

in WM are T1H20_WM = 1400 ms, T2H20_WM = 30 ms; and in 

CSF are T1H20_CSF = 4800 ms, T2H20_CSF = 181 ms at 9.4 T.
28

 

rich voxels and ff represents the tissue fraction measures TI2 

RMM =   1 − 2e T1   + 2e – 
 TI1 +TI2 

T1 exp  −   TE   1 − exp  −
TR

 

from WM-rich voxels. More specifically, by solving Equations 

(2) and (3) as a linear system, it allows us to then approximate 

T2MM T1 

the T1-relaxation time of voxels with arbitrary ratios of GM and 

WM. 

 
2.8 | Quantification of MM peaks 

MM concentrations were quantified in protons mmol/kg 

by using spectra acquired with a TI1/TI2 combination of 

2360/625 ms from all subjects in both GM- and WM-rich 

voxels. Spectra corresponding to TI1/TI2 combination of 

2360/625 ms were chosen for quantification because it of- 

fered maximal MM signal retention as well as minimal me- 

tabolite residuals. 

For internal water referencing, the concentrations result- 

ing from LCModel fitting were corrected for tissue water 

fractions and relaxation times as follows
41

: 

SMM × fGM ×RH20 +fWM ×RH20 +fCSF ×RH20 
[M] = GM WM CSF 

 
 

is the relaxation correction term for macromolecules. T2MM 

were considered from Murali-Manohar et al
21 

and T1MM de- 

termined from this work were taken. The denominator 1 −fCSF 

was implemented for partial-volume correction arising from 

contributions of CSF to the voxel volume. The factor 2 was 

introduced to correct for the multiplication of even numbered 

acquisitions with the scaling factor (Fs) from metabolite cycling. 

 
3 | RESULTS 

3.1 | Bloch simulations 

Bloch simulation results for TI1/TI2 = 2000/575 and 

2150/600 ms are shown in Supporting Information Figure S1. 

Simulations estimated similar metabolite nulling efficiency 

for the all chosen TIs retaining the MM signal at different ob- 

servable magnetizations except for TI1/TI2 = 1050/238 ms. 

SH20 
  

1 −fCSF   MM ×#HMM The MM null spectrum resulted in a maximum Mz/M0 

× 
2 of 0.22 of metabolites and −0.05 of MM  spectrum; this 

    × H2O specific TI /TI combination was optimized by confirm- 
1 +FS 1 2 

 

f × a 

ing spectral quality in vivo from two healthy volunteers. 
Table 1 shows the chosen TIs and the corresponding 

where f = y_vol y 

.
 M /M for each MM spectrum. The M /M for MM spectrum y fGM_vol× aGM + fWM_vol× aWM + fCSF_vol× aCSF 

z 0 z 0
 

Here y corresponds to either GM, WM, or CSF; fy_vol is 

the fraction of the respective tissue type determined by seg- 

mentation; ay are the relative densities of MR-visible water 

for the given tissue types (78%, 65%, 97% for GM, WM and 

CSF respectively
42

); these ay remain uncorrected for the rela- 

tive densities of GM and WM tissue (1.04 g/ml
43-45

) and were 

taken to be 1.0 g/ml. #HMM is the number of protons that con- 

tribute to the signal of an MM peak, and was not accounted 

in this work. To arrive at proton mmol/kg concentrations, the 

concentration of water within a voxel, [H2O], was assumed 

after DIR range block from −0.82 to 0.58 for the 11 chosen 

TI1/TI2 combinations. 

 
3.2 | Inversion series of spectra and 
voxel content 

Metabolite-nulled spectra were obtained with the 11 chosen 

TI1/TI2 combinations encompassing a range of magnetiza- 

tions. Summed spectra from the inversion series for GM and 

WM MM spectra are displayed in Figure 2. 

1,WM 1,WM WM_vol 1,GM GM_vol 
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FIGURE 2 DIR series spectra from GM-rich (left) and WM-rich (right) voxels summed subject-wise. The same TI1/TI2 combinations were 

used to measure the T1-relaxation times for GM- and WM-rich voxels. The DIR series shows a broad range of signal intensities measured for MM 

peaks while having simultaneously minimized metabolite peaks 
 

The subject-wise summed spectra display good spectral 

quality with 13 resolved MM peaks across the 11 TI1/TI2 

combinations. However, there was noticeable noise and 

sometimes slight lipid contamination in the individual, non-

summed spectra. Nevertheless, 13 MM peaks could be 

observed in a majority of spectra in both GM-rich and WM-

rich voxels. Therefore, all data sets were included in the 

analysis. 

On average, the tissue content for GM-rich and WM-rich 

voxels were found to be GM/WM/CSF = 72 ± 2/22 ± 3/6 

± 4% and 35 ± 6/62 ± 7/3 ± 3% respectively. Indeed, resid- 

ual metabolite signals were observed in several DIR spectra 

at various TI1/TI2 combinations, and the residual metabolite 

resonances corresponding to each TI1/TI2 combination is 

given in Supporting Information Table S1. 

 
3.3 | Spectral fitting 

Figure 3 shows fits and residues from LCModel for TI1/TI2 = 

2360/625, 1300/20, and 1050/238 ms subject-wise summed 

spectra from GM-rich voxels. Fits corresponding to the same 

3.4 | T1 relaxation times 

Figure 5 and Supporting Information Figure S4 show all MM 

peak data fitted to Equation (1) to calculate the T1-relaxation 

times of MM peaks in 3D signal plot diagrams. Black crosses 

represent individual data points from the TI1/TI2 series. The 

dashed, blue line represents the result from fitting the data 

to Equation (1) with a Levenberg-Marquardt algorithm. 

Resultant T1-relaxation times of 13 MM peaks are reported 

for GM-rich and WM-rich voxels in Table 2 and shown in 

Figure 6. T1-relaxation times of MM peaks range from 204 to 

510 ms and 253 to 564 ms in GM-rich and WM-rich voxels 

respectively. M3.62 had the longest T1-relaxation time in both 

GM- and WM-rich voxels. The results from GM-rich and 

WM-rich voxels were used to solve for the T1-relaxations of 

theoretically pure GM and WM voxels with a linear system 

of two equations and are reported in Table 2. 

The goodness of fit for each MM T1-relaxation time cal- 

culated was assessed by the coefficient of determination 

(R
2
). The differences in T1-relaxation times between GM- 

and WM-rich voxels were evaluated using Welch’s t-test 

(α = 0.05) for all MM peaks. Adjusted P-values were cal- 

TI1/TI2 combinations from WM-rich voxels are given in culated using the Bonferroni correction α   
tests 

to cor- 

Supporting Information Figure S2. Supporting Information 

Figure S3 shows fits for the remaining eight TI1/TI2 com- 

binations for subject-wise summed spectra from GM-rich 

voxels. The tailored basis sets, for each TI1/TI2 combination 

and according to tissue type, fit the pre-processed data well. 

Furthermore, the residual for summed spectra fit from both 

GM-rich and WM-rich voxels showed minimized metabo- 

lite residuals. The fit residuals lacked structure in individual 

per subject fits (Figure 4). Metabolite residual fitting using 

basis vectors and fitted Voigt lines (Supporting Information 

Table S1) for residual peaks was sufficient for 10 TI1/TI2 

combinations spectra; for the TI1/TI2 = 1050/238 ms combi- 

nation yielding almost MM nulled spectra, a metabolite basis 

set was included, and it accurately accounted for metabolite 

contributions to spectra. 

rect for multiple comparisons. Significant differences in T1-

relaxation times between GM- and WM-rich voxels are 

denoted in Figure 6 and Table 2 by an asterisk: *P < .0038. 

Results from Welch’s t-test and P -values are reported in 

Supporting Information Table 3. 

 
3.5 | Quantification of MM peaks 

The TI1/TI2 combination of 2360/625 ms was chosen for 

quantification of MM peaks by means of internal water 

referencing. The unsuppressed water spectrum used for in- 

ternal water referencing. The concentration results are thus 

reported in Figure 7 and Supporting Information Table S4. 

The concentration values were corrected for T1-relaxation 

| 607 



 

Ntests 

 

  MURALI-MANOHAR ET AL. 

 

times of MMs from this work and for T2-relaxation times 

from Murali-Manohar et al,
21 

with corrections as described 

in the Methods section. M2.04 has the highest concentration 

in both GM- and WM-tissue types with 78.4 ± 10.7 and 76.6 

± 10.9 protons mmol/kg respectively. M0.92 has similar con- 

centrations in GM- and WM-voxels, 21.1 ± 3.3 and 21.0 ± 

 

 

FIGURE 3 LCModel fits of summed spectra for 2360/625, 

1200/20, and1050/238 ms for GM-rich voxel. Summed spectra 

were fitted using simulated Voigt lines for MM peaks. Metabolite 

contributions were accounted for using sharp Voigt lines to fit 

metabolite singlet residuals (NAA(CH3), tCr(CH2), and tCr(CH3)) and 

basis vectors to fit other metabolite residuals. Fitting results from the 

subject-wise summed spectra were used to guide creation of basis sets 

for fitting of individual spectra. Corresponding subject-wise summed 

spectra for WM voxels are shown in Supporting Information Figure S2. 

The remaining inversion series fit for subject-wise summed spectra for 

GM voxels are displayed in Supporting Information Figure S3 
 

 

 
2.6 protons mmol/kg, respectively. Wilcoxon rank-sum tests 

(α = 0.05) were performed to assess for differences in con- 

centrations between tissue types for all MM peaks. After 

correcting for multiple comparisons, using a Bonferroni cor- 

rection α = 0.0038 , a significant difference for the con- 

centration of M3.75 (P = .0009) between GM and WM was 

found (Figure 7 and Supporting Information Table S4). 

 
4 | DISCUSSION  

While it is possible to estimate T1-relaxation time of the MM 

spectrum when using a single inversion recovery approach by 

simultaneously fitting metabolites, SIR techniques have been 

used to measure T1-relaxation times of non-overlapping MM 

resonances as well as the whole MM spectrum. However, 

this could lead to misestimation of the MM peaks underlying 

metabolites and to ambiguities with respect to distinguish- 

ing metabolite and MM signals during spectral fitting.
46,47 

Although there were also metabolite residuals present in the 

proposed DIR technique, this approach reduced metabolite 

residuals better at the expense of T1-weighting. Bloch simu- 

lations were used to predict where metabolites would be con- 

tributing to the MM spectra. Supporting Information Table S1 

shows in detail where metabolite vectors or singlets were in- 

cluded in the MM spectral fitting. Albeit, T1-relaxation time 

estimates for individual MM peaks were possible. 

Careful evaluation of Bloch simulation results helped de- 

termine valid sets of TI1/TI2 combinations. While there were 

many simulated TI1/TI2 combination results that maintained 

high MZ of MMs, the contributions of metabolites in many 

of these cases led to heavy contamination in MM spectra or 

noisy MM spectra. While the chosen TI1/TI2 combinations 

provided good MM spectra there were still metabolite resid- 

uals that required fitting. 

All 11 TI1/TI2 combinations were used in the calculation 

of T1-relaxation times for MM peaks. The five TI1/TI2 com- 

binations with negative Mz/M0 covered a range from −0.82 

to −0.58, and the five TI1/TI2 combinations with positive 

Mz/M0 covered a range from 0.42 to 0.53 as can be seen from 

Table 1. Although the entire range of MMs MZ/M0 could not 
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standard deviation and R

2 
of the curve fit for T1-relaxation 

values which imply good confidence. Previous results
48 

sug- 

gested a TR of 8000 ms to be the best bet for a comfortable 

scan duration and to stay within specific absorption rate 

limits. 

It was expected that WM-rich voxels may be slightly 

noisier and lower in SNR. This arose from the fact that WM- 

rich voxels were typically further away from the transmit 

coil elements; thus, the achieved B1 was lower for WM-rich 

voxels compared to GM-rich voxels. As was evidenced by 

the data in this study, WM data tended to be slightly noisier 

(Figure 2), but the metabolite residuals in MM spectra for 

GM-rich and WM-rich voxels were similar. However, MM 

peaks were T1-weighted slightly differently in GM-rich and 

WM-rich voxels due to the differences in their T1-relaxation 

times. 

Reliable HSVD for residual metabolite suppression was 

not achievable for particular TI1/TI2 combinations poten- 

tially due to the broad linewidths encountered and low SNR. 

A detailed list of all the metabolite residuals present in the 

corresponding TI1/TI2 combination spectra that were fitted 

is given in Supporting Information Table S1. M4.03 and M4.20 

were excluded from analysis due to water contamination in 

the spectra in multiple TI1/TI2 combinations. 

NAAasp, mI, Glu, and GPC were predicted to be metab- 

olite residuals in the negative MZ MM spectra due to their 

T1-relaxation times,
49 

and were furthermore visible when fit- 

ting spectra. To correct for the contribution these metabolites, 

they were simulated and added to all basis sets corresponding 

to TI1/TI2 combinations resulting in negative magnetization. 

From Supporting Information Figure S4, it can be seen 

that the negative Mz points had larger amounts of signal 

for M2.99, M3.62, and M3.75 which skewed the signal fit re- 

sulting in a longer calculated T1-relaxation time. It could 

be that lower weight metabolites contributed to the reso- 

nances within these peaks, which led to the increased es- 

timation of the T1-relaxation time. Attempts to account 

for metabolite resonances at these peaks were performed 

by including metabolite basis vectors; however, it was 

not possible to reliably fit all potential contributions from 

lower weight metabolites with this scheme. The increased 

T1-relaxation times for these peaks at 3T have been re- 

ported by Hoefemann et al
17

; in their study the observed 

T1-relaxation times reached the “predefined borders of … 

400 ms for T1.” 

T1-relaxation times of MM peaks in GM- and WM-rich 

FIGURE 4 A representative subject fit for 2360/625, 1200/20, 

and1050/238 ms for GM-rich voxel. All three spectra are from the 

same subject. The peaks for metabolite residuals were modeled based 

on the summed spectra fit shown in Figure 3 

be sampled due to the additional need to suppress metabolite 

signal, the chosen approach appears to be adequate for mod- 

eling the T1-relaxation of MM peaks evidenced by the low 

voxels range from 204 to 510 ms and from 253 to 564 ms, re- 

spectively. For pure GM and WM voxels, T1-relaxation times 

are between 189 and 478 ms, and between 220 and 612 ms 

respectively. Indeed, the linear relationship used to calculate 

T1-relaxation times likely simplifies the complex nature of 

the MM spectrum. However, it could be useful in modelling 

MM spectra voxel-wise where T1-weighting of MMs is pres- 

ent such as FID-MRSI.
50
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FIGURE 5 A signal scatter plot and 

fitted solution (blue dashed line) from the 

inversion series for M0.92 fitted by Equation 

(1). Black crosses represent data points 

from the 11 volunteers acquired in GM-rich 

voxels, and the blue line is the fitted solution 

to Equation (1). T1-relaxation calculation 

plots for the other MM peaks are reported 

in Supporting Information Figure S4. Points 

were excluded when the CRLB was equal 

to 999 because these points were not fitted 

in LCModel. In the present fit of M0.92, no 

points are excluded 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
M 

* 
326 ± 21 0.867 270 ± 24 0.828 358 ± 57 220 ± 50 

M1.67 231 ±13 0.903 253 ± 17 0.894 218 ± 37 273 ± 32 

 
TABLE 2 T1-relaxation times of 

13 MM peaks in both GM-rich and 

WM-rich voxels at 9.4T are presented in the 

table with accompanying R
2 

values for the 

fit of the data to Equation (1). Furthermore, 

T1-relaxation times of pure GM and WM 

voxels for these peaks are also reported as 

solved by Equations (3) and (4). MM peaks 

that have significant differences between 

GM- and WM-rich voxels are indicated 
M 

* 
279 ± 8 0.971 319 ± 9 0.974 256 ± 22 355 ± 19 

2.04 

2.26 

by an asterisk *P < .0038. Full statistical 

 
2.70 

2.99 

3.21 

3.62 

3.75 

 

 

 

The broad range of MM peak T1-relaxation times suggests 

that approximating the T1-relaxation time of the MM spectrum 

as single value may not be ideal for quantifying MM peaks 

with high accuracy. Furthermore, when a measured IR MM 

spectrum is included to fit metabolites, T1-weighting within 

the MM spectrum could lead to misestimates of metabolite 

concentrations. For example, the MM spectrum correspond- 

ing to TI1/TI2 = 2360/625 ms was used in fitting metabo- 

lites in previous works.
21,27 

However, as seen from Table 3, 

T1-weighting for MM peaks following this DIR scheme range 

from 42% to 87% in a GM-rich voxel and 35% to 83% in 

a WM-rich voxel. Hence, quantifying metabolites with this 

particular MM spectrum could lead to over- or under-fitting 

of metabolites amplitudes depending on the T1-weighting of 

different MM peaks. 

While comparing differences between GM- and WM- 

rich T1-relaxation times, significant differences (P < .0038) 

between tissue types were found for all MM peaks except 

M0.92, M1.21, M1.67, M2.56, and M3.86 as shown in Figure 6 and 

Supporting Information Table S3. Based on T1-relaxation 

differences between GM and WM, tissue type specific MM 

models could be more appropriate than using averaged MM 

spectra to fit MM signals especially in metabolite spectra. 

The relaxation times of MM peaks do not follow a clear 

trend of increased T1-relaxation time of resonances as field 

strength increase.
51 

Behar et al
52 

measured the T1-relaxation 
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GM-rich 

MM T1 [ms] R2 

WM-rich 

T1 [ms] R2 

Pure-GM 

T1 [ms] 

Pure-WM 

T1 [ms] 

M0.92 280 ± 10 0.959 284 ± 10 0.966 278 ± 26 288 ± 23 

M1.21 273 ± 27 0.752 280 ± 28 0.782 269 ± 71 286 ± 62 

 

M 
* 

281 ± 7 0.977 313 ± 9 0.972 263 ± 20 342 ± 17 results are in Supporting Information 

M2.56 309 ± 20 0.866 327 ± 18 0.915 299 ± 50 343 ± 44 Table S3 

M 
* 

306 ± 19 0.879 383 ± 22 0.902 262 ± 52 452 ± 45  

M 
* 

463 ± 15 0.953 518 ± 15 0.966 431 ± 39 567 ± 34  

M 
* 

204 ± 20 0.785 379 ± 29 0.836 103 ± 59 535 ± 51  

M 
* 

510 ± 30 0.846 564 ± 35 0.853 479 ± 82 612 ± 71  

M 
* 

280 ± 24 0.805 434 ± 25 0.887 191 ± 63 571 ± 55  

M3.86 280 ± 27 0.764 307 ± 22 0.871 264 ± 66 331 ± 58  
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FIGURE 6 T1-relaxation times for 13 MM peaks are reported. Results are shown for GM- and WM-rich voxels as well as for GM- and 

WM-pure voxels. The T1-relaxation estimates for pure voxels were extrapolated by means of Equations (2) and (3). Additionally, these values are 

reported in Table 2. MM peaks that have significant differences following Welch’s t-test and Bonferroni correction between GM- and WM-rich 

voxels are indicated by an asterisk *P < .0038. Full statistical results are in Supporting Information Table S3 

 

 
TABLE 3 Calculated T1-weighting in percent of MM peaks following DIR scheme (TI1/TI2 = 2360/625 ms; TR = 10 s) using T1-relaxation 

times from measured GM- and WM-rich voxels in this work 

T1-weighting [%] 

 M0.92 M1.21 M1.39 M1.67 M2.04 M2.26 M2.56 M2.70 M2.99 M3.21 M3.62 M3.75 M3.86 

GM 78 80 71 87 79 78 74 74 48 91 42 79 79 

WM 78 78 80 83 72 73 70 61 41 62 35 53 74 

 

of the M0.93 peak as 250 ms at 4.0T, which is slightly lower 

compared to the T1-relaxation time measured in this work 

at 9.4 T confirming the field strength trend for this non- 

overlapping MM peak. However, recent work at 3 T found the 

T1-relaxation time of M0.92 to be about 290 ms.
17

 

For the first time, concentrations of 13 MM peaks are re- 

ported (Supporting Information Table S4) for both GM- and 

WM-rich voxels after correcting for T1- and T2-relaxation 

times. Previous works
5,20,53,54 

have reported concentrations for 

some or all peaks without correcting for T1- or T2-relaxation 

times. Inversion recovery preceding the localization scheme 

will lead to strong T1- weighting of the MM spectrum, and 

not correcting for the relaxation times will result in discrep- 

ancies in concentrations across sites while using different in- 

version recovery techniques. Due to severe overlap of MM 

peaks, the number of protons contributing to each peak is 

not easily accountable; hence, the concentration values were 

not corrected for the number of contributing protons. The 

concentration of M0.92 agrees with the values reported by 

Hofmann et al
55 

and Snoussi et al,
53 

and are slightly less than 

the recent results from Landheer et al.
54 

However, concen- 

trations for other MM peaks or groups of MM peaks vary 

among literature.
20,53-55 

The results from Landheer et al
54 

ap- 

pear that they could be in agreement with the current work 

at 9.4 T; however, the uncorrected T1-weighting could be a 

cause of discrepancy between results. 

Statistical tests highlighted a significant difference for ele- 

vated concentration of M3.75 (P = .0009) in WM. Furthermore, 

the results suggest that there could be slight variation between 

tissue types for M1.39, M2.99, and M3.21; whereas the differ- 

ences between GM and WM tissue signal for M2.26 have 

been reported in MRSI results.
56 

Figure 7 and Supporting 

Information Table S4 suggest that there are trends toward ele- 

vated concentrations of M1.39 in GM and for M2.99, and M3.21 

in WM; however, this study was not able to claim with cer- 

tainty that these concentrations vary in a significant manner. 

Further work focusing on specific MM peaks is necessary to 

assess tissue concentration differences appropriately. 
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FIGURE 7   MM concentrations are reported in protons mmol/kg for each MM peak. Black crosses represent data points that were not within 

the 95% confidence interval (assuming a Gaussian distribution). Mann-Whitney U-tests (α = 0.05), with Bonferroni adjustment α = 0.0038 for 

multiple comparisons were performed to test for statistical significance in differences between GM- and WM-rich voxels. Supporting Information 

Table S4 lists the results from Mann-Whitney U-tests 
 

Finally, it has been previously reported by Giapitzakis et al
57 

that significant differences arise in some of the metabolite con- 

centrations while using MM spectrum from different brain re- 

gion to account for MM contribution underlying the metabolite 

spectrum. Based on the differences in T1-relaxation times of 

MM peaks in GM- and WM-rich voxels reported in this work, 

we believe that it could be beneficial to account for underlying 

MM spectra with tissue content considered in order to maintain 

quantitative accuracy in spectral fitting of metabolites. 

 
5 | CONCLUSIONS  

In this work, we report a novel DIR technique to measure T1- 

relaxation times of individual macromolecular peaks. The study 

here is performed at 9.4 T; however, this technique is extendible 

to all field strengths. T1-relaxation times for 13 MM resonances 

in vivo at 9.4 T are reported for the first time. The differences 

in the T1-relaxation times between the MM resonances suggest 

that T1-weighting from inversion pulses and short TRs should 

be considered while using experimentally acquired MM spectra 

in fitting metabolite spectra. Alternatively, simulation models 

which account for relaxation effects of MMs could also provide 

a solution for estimating MM contributions to metabolite spectra 

where overlapping peaks are difficult to distinguish. This will 

allow us to produce more accurate quantitative results by correct- 

ing for the influence of MMs in short TE spectra. Furthermore, 

concentrations of 13 MM peaks after correcting for both 

T1- and T2-weighting are reported. 
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SUPPORTING INFORMATION  

Additional Supporting Information may be found online in 

the Supporting Information section. 

FIGURE S1 Bloch Simulation results for an inversion pulse 

profile
20 

(pulse duration: 15 ms) after a DIR scheme with TIs 

(A) TI1/TI2 = 2000/575 ms and (B) TI1/TI2 = 2150/600. The 

being elevate
n

d in WM was found when assessing MM 

concentrations 

Video S1 The cine representation of Figure 5 shows a rota- 

tion of the 3D space of the T1-relaxation time curve fitting for 

M0.92. TI1 and TI2 are given in the x- and y- axes respectively 

in seconds; z-axis represents the normalized signal [a.u.]. The 

black crosses are individual data points from eleven volunteers 

and the blue line is the projected fitting to equation 1. 

614 | 

How to cite this article: Murali-Manohar S, Wright 

AM, Borbath T, Avdievich NI, Henning A. A novel 

method to measure T1-relaxation times of 

macromolecules and quantification of the 

macromolecular resonances. Magn Reson Med. 

2021;85:601–614. https://doi.org/10.1002/mrm.28484 

https://doi.org/10.1002/nbm.4393
https://doi.org/10.1002/mrm.28484


 

Supporting Information Figure S1: Bloch Simulation results for an inversion pulse profile27 (pulse 

duration: 15 ms) after a DIR scheme with inversion times a) TI1/TI2 = 2000/575 ms and b) TI1/TI2 = 

2150/600. The resulting inversion bandwidth is represented by the frequency axis (x-axis); while the y- 

axis depicts the resulting MZ/M0 of MM and metabolites at the end of the DIR sequence block. MZ/M0 of 

MM spectrum after DIR block are 0.48 and 0.51 in a) and b) respectively with almost nulled metabolites. 
 

 

 
Supporting Information Figure S2: Fit of WM subject-wise summed spectra of TI1/TI2 combinations 

2360/625, 1300/20 and 1050/238 ms 

 



 

 

 
 



 

Supporting Information Figure S3: Fits of subject-wise summed GM spectra of TI1/TI2 combinations 

2150/600, 2000/575, 1900/550, 1800/525, 1300/60, 1300/80, 1200/20, and 1250/20 ms 
 
 
 
 
 



 

 

 
 
 
 



 

 

 



 

 



 

 

 
 



 

Supporting Information Figure S4: Surface Curve fitted to TI1/TI2 series for M1.21, M1.39, M1.67, M2.04, M2.26, 

M2.56, M2.70, M2.99, M3.21, M3.62, M3.75, and M3.96 from GM-rich voxel to calculate T1-relaxation times. For 

better visualization of the 3D plots a cine is provided as Supporting Information Video S1. 
 
 
 
 
 
 
 



 

 

 



 

Supporting Information Table S1: Residual peaks present corresponding to each TI1/TI2 are given in the 

table. tCr(CH2), tCr(CH3), and NAA(CH3) residual peaks were added as singlets using simulated Voigt lines 

in LCModel for fitting spectra. NAAasp, mI, GPC, and Glu were added to handle the residuals in negative 

Mz spectra. For TI1/TI2 = 1050/238 ms, a complete basis set was provided which was simulated for a 

semi-LASER sequence using VeSPA; specifically without singlets used in the basis set for any metabolite 

residuals. 
 

TI
1
/TI

2 
[ms] Residual peaks present 

2360/625 tCr(CH2), mI* 

2150/600 tCr(CH2), tCr(CH3), NAA(CH3), mI* 

2000/575 tCr(CH2), tCr(CH3), NAA(CH3), mI* 

1900/550 tCr(CH2), tCr(CH3), NAA(CH3) 

1800/525 tCr(CH2), tCr(CH3), NAA(CH3) 

1300/20 tCr(CH2), NAA(CH3), GPC, mI, Glu, NAAasp 

1300/60 tCr(CH2), NAA(CH3), GPC, mI, Glu, NAAasp 

1200/20 tCr(CH2), NAA(CH3), GPC, mI, Glu, NAAasp 

1250/20 tCr(CH2), NAA(CH3), GPC, mI, Glu, NAAasp 

1300/80 tCr(CH2), NAA(CH3), GPC, mI, Glu, NAAasp 

1050/238 tCr(CH2), tCr(CH3), NAA(CH3), GPC, GABA, Glu, 
Gln, Glycin, Tau, mI, Asp, NAAasp 

*mI was added with a negative phase 



 

Supporting Information Table S2: Bloch simulation considering DIR scheme for mI has a negative 

contribution in TI1/TI2 = 2360/625, 2150/575, 2000/550 ms spectra (considering T1-relaxation times from 

Wright et al.46) 
 

TI1/TI2 [ms] mI: MZ/M0 

 GM (T1 = 1470 ms) WM (T1 = 1423 ms) 

2360/625 -0.0448 -0.0436 

2150/600 -0.0217 -0.0224 

2000/575 -0.0056 -0.0077 

 

Supporting Information Table S3: Differences in T1-relaxation times between GM- and WM-rich tissue 

types were analyzed using Welch’s t-test with Bonferroni adjusted p-values to account for multiple 
𝛼 

comparisons ( 
𝑛 

= 0.0038). Significant differences are denoted by an asterisk, and p-values are given 

for all analyses. 
 

T1-relaxation times 
MM peak p-value 

M0.92 0.3858 
M1.21 0.5793 
M1.39* < 0.0001 
M1.67 0.0056 
M2.04* < 0.0001 
M2.26* < 0.0001 
M2.56 0.0489 
M2.70* < 0.0001 
M2.99* < 0.0001 
M3.21* < 0.0001 
M3.62* 0.0020 
M3.75* < 0.0001 
M3.86 0.0242 



 

Supporting Information Table S4: Concentrations (protons mmol / kg) of 13 MM peaks are given in the 

table below after correcting for T1 and T2 relaxation times. Mann-Whitney U-tests were performed with 
𝛼 

multiple comparisons being accounted using Bonferroni corrections ( 
𝑛 

= 0.0038). A significant 

difference for M3.75 being elevated in WM was found when assessing MM concentrations. 
 

Concentration [protons mmol/kg] 

 GM WM p-value 

M0.92 21.1 ± 3.3 21.0 ± 2.6 0.4697 

M1.21 8.2 ± 4.6 7.9 ± 2.2 0.5000 

M1.39 20.4 ± 5.3 12.6 ± 6.4 0.0061 

M1.67 48.0 ± 11.2 46.7 ± 12.6 0.4396 

M2.04 78.4 ± 10.7 76.6 ± 10.9 0.4099 

M2.26 50.4 ± 6.8 49.0 ± 7.9 0.2717 

M2.56 11.9 ± 2.0 13.0 ± 3.7 0.5000 

M2.70 7.1 ± 1.1 8.6 ± 2.6 0.1617 

M2.99 29.1 ± 3.0 34.7 ± 6.5 0.0138 

M3.21 10.0 ± 2.1 14.9 ± 4.6 0.0049 

M3.62 23.5 ± 8.1 30.3 ± 17.7 0.1437 

M3.75
*

 4.8 ± 1.0 7.0 ± 1.5 0.0009 

M3.86 11.8 ± 1.3 11.9 ± 2.3 0.5000 



 

ANNEX A – Matlab script for Bloch Simulation 

%pulse profile 

time = 15*1e-3; %s 

freqOffset = (-2000:10:2000); 

nPoints = 512; 

timeAxis = linspace(0,time,nPoints)*1e+3; 

x = linspace(-pi,pi,nPoints); 

b = 1.904; 

AM = sech(b*x); 

FM = 1017*tanh(-x*1.89); 

PM = (2*pi*cumsum(FM)*time/length(FM)); 

 

%Magnetization vectors 

M0 = zeros(length(freqOffset),3); 

M0(:,3) = 1; 

M = applyRotation( alpha,beta, M0 ); 

 

ih = [0 1 2 -2 -1]; 

for i = 1:5 

Bampl = (1+ih(i)*0.15)*15 *1e-6; %in T 

B = Bampl*AM.*exp(1i*PM); 

 

Bampl = 24 *1e-6; %in T 

B = Bampl*AM.*exp(1i*PM); 

TE = 24; %ms 

TR = 8000; %ms 

[alpha, beta] = fSLR( B', freqOffset, time/length(B),0); 

 

 
T1 = [430 1030 1513 1746 1777]; % MM Cr-CH2 Cho Cr-CH3 NAA (Values for 

metabolites are from Deelchand et al at 9.4 T and MM is from Xin et al at 7 

T) 

 

T2 = [23.88 81.82 

al at 9.4 T) 

90.11 100.21 110.49]; % (Values are from Murali-Manohar et 

 

for TI1 

1300 

 

= [2360] 

 

for TI2 

 

 

= 

 

 

[625] 

 

% 2150 

 

% 600 

 

2000 1900 

 

575 550 

 

2360 1800 

 

625 525 

 

1050 1300 1300 1200 

 

238 80 60 20 

 

1250 

 

20 

20         

for i = 1:length(T1) 

M = applyRotation( alpha, beta, M0 ); 

Mrelax = applyRelaxation( M,T1(i),T2(i),TI1); 

Mrelax = applyRotation( alpha,beta, Mrelax ); 

Mrelax = applyRelaxation( Mrelax,T1(i),T2(i),TI2 ); 

mag.Data{i} = min(Mrelax(:,3)); 

 

function [alpha, beta] = fSLR( B1, freqOffset, deltaT,rephasePoint) 

%FSLR Summary of this function goes here 

% B1 profile in T 

% freqOffset in Hz 

% deltaT in secs 

 
gammaHz = 42.576 *1e+6; %Hz/T 



 

gammaRads = gammaHz*2*pi; %rad/(s*T) 

freqOffset = freqOffset.'; 

G = freqOffset./gammaHz; %Tesla 

a = zeros(length(freqOffset),2); 

b = zeros(length(freqOffset),2); 

a(:,1) = ones(length(freqOffset),1); 

flagRephase = true; 

for i=1:length(B1) 

if flagRephase 

if (i == rephasePoint +1 ) 

G= -G; 

flagRephase = false; 

end 

end 

 

B1eff = B1(i).*ones(size(freqOffset)); 

phi = -gammaRads * deltaT * sqrt( abs(B1eff).^2 + G.^2 ); 

n0 = (gammaRads*deltaT./abs(phi)); 

n = [real(B1eff).*n0, imag(B1eff).*n0, G.*n0]; 

 

av = cos(phi/2) -1i*n(:,3).*sin(phi/2); 

bv = -1i*(n(:,1)+1i*n(:,2)).*sin(phi/2); 

 

a(:,2) = av.*a(:,1) - conj(bv).*b(:,1); 

b(:,2) = bv.*a(:,1) + conj(av).*b(:,1); 

 

a(:,1) = a(:,2); b(:,1) = b(:,2); 

end 

 
alpha = a(:,2); beta = b(:,2); 

 

function M = applyRotation( a,b, M0 ) 

M = zeros(length(M0),3); 

 

M1tmp = conj(a).^2 .*M0(:,1) - b.^2 .*M0(:,2) + 2*conj(a).*b 

.*M0(:,3); 

 
M2tmp = -conj(b).^2 .*M0(:,1) + a.^2 .*M0(:,2) + 2*conj(b).*a 

.*M0(:,3); 

 

M3tmp = -conj(a.*b) .*M0(:,1) - a.*b .*M0(:,2) + (abs(a).^2- 

abs(b).^2) .*M0(:,3); 

 

M(:,1)= M1tmp; M(:,2)= M2tmp; M(:,3)= M3tmp; 

end 

 

function M = applyRelaxation( M0,T1,T2,time ) 

M = zeros(length(M0),3); 

M(:,1) = M0(:,1)*exp(-time/T2); 

M(:,2) = M0(:,2)*exp(-time/T2); 

M(:,3) = (M0(:,3)-1)*exp(-time/T1)+1; 

end 



 

 

ANNEX B – Example Control files (.control) for LCModel quantification 

Control file to fit TI1/TI2 = 1050/238 ms DIR spectrum 
 

The sample fit settings file is given to fit TI1/TI2 = 1050/238 ms DIR spectrum with a semiLASER basis set 

included. The basis set included NAA downfield peak, NAA(CH3), tCr(CH3), tCr(CH2), GPC, glutamine 

(Gln), glutamate (Glu), glycine (Glycin), GABA, NAAasp, mI (myo-inositol) and taurine (Tau). 

$LCMODL 

OWNER='Max Planck Institute biological Cybernetics' 

TITLE='ExampleFit' 

FILBAS='/path/Basis_sets/semiLASER_basis.basis' 

FILRAW='/path/Example.RAW' 

FILH2O='/path/Example_water.RAW' 

FILPS='/path/Output/ps' 

FILTAB='/path/Output/table' 

FILCSV='/path/Output/csv' 

FILCOO='/path/Output/coord' 

LTABLE=7 

LPS = 8 

LCOORD=9 

LCSV=11 

atth2o= 1 
deltat= 1.2500e-04 
dkntmn= 99 

doecc= F 
dows= T 

hzpppm= 399.719 

neach= 50 

nunfil= 4096 
ppmend= 0.2 

ppmst= 8.2 
ppmgap(1,1)= 7.6 

ppmgap(2,1)= 4.0 

sddegp= 0 

sddegz= 0 

shifmn(2) = -0.04 

shifmx(2) = 0.04 
rfwhm= 0.6 

wsppm= 7.790 

wsmet= 'Cr' 

n1hmet= 1 

wconc= 40873 
nsimul= 14 
chsimu(1)= 'MM09 @ 0.916 +- 0.02 FWHM= .08 < .11 +- .005 AMP= 1.' 

chsimu(2)= 'MM12 @ 1.21 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(3)= 'MM14 @ 1.39 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 



 

chsimu(4)= 'MM17 @ 1.67 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 

chsimu(5)= 'MM20 @ 2.04 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 

chsimu(6)= 'MM22 @ 2.26 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(7)= 'MM26 @ 2.56 +- 0.005 FWHM= .09 < .11 +- .005 AMP= 1.' 

chsimu(8)= 'MM27 @ 2.7 +- 0.01 FWHM= .04 < .08 +- .005 AMP= 1.' 
chsimu(9)= 'MM30 @ 2.99 +- 0.005 FWHM= .07 < .09 +- .005 AMP= 1.' 

 

chsimu(10)= 'MM32 @ 3.21 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(11)= 'MM36 @ 3.62 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(12)= 'MM37 @ 3.75 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 

chsimu(13)= 'MM38 @ 3.86 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 

chsimu(14)= 'MM39 @ 4.03 +- 0.01 FWHM= .10 < .14 +- .005 AMP= 1.' 
$END 

 

 
For the other TI1/TI2 combinations DIR spectra resulting in a positive MM magnetization, a basis set 

containing the NAA downfield peak was given. mI was included in the basis set with a negative phase for 

TI1/TI2 = 2360/625, 2150/600 and 2000/575 ms. Simulated Voigt lines (chsimu) were included to fit the 

residual singlets [tCr(CH2), tCr(CH3) and NAA(CH3)] as specified in the Supporting Information Table S1. 
 

Control file to fit TI1/TI2 = 2360/625 ms DIR spectrum 

… 
FILBAS='/home/smanohar/Desktop/MM_T1/GM/Basis_sets/NAA_DF_basis.basis' 
… 
nsimul= 15 

chsimu(1)= 'MM09 @ 0.916 +- 0.02 FWHM= .08 < .11 +- .005 AMP= 1.' 

chsimu(2)= 'MM12 @ 1.21 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 

chsimu(3)= 'MM14 @ 1.39 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(4)= 'MM17 @ 1.67 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(5)= 'MM20 @ 2.04 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 

chsimu(6)= 'MM22 @ 2.26 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 

chsimu(7)= 'MM26 @ 2.56 +- 0.005 FWHM= .09 < .11 +- .005 AMP= 1.' 

chsimu(8)= 'MM27 @ 2.7 +- 0.01 FWHM= .04 < .08 +- .005 AMP= 1.' 

chsimu(9)= 'MM30 @ 2.99 +- 0.005 FWHM= .07 < .09 +- .005 AMP= 1.' 

chsimu(10)= 'MM32 @ 3.21 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 

chsimu(11)= 'MM36 @ 3.62 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(12)= 'MM37 @ 3.75 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 

chsimu(13)= 'MM38 @ 3.86 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 

chsimu(14)= 'MM39 @ 4.03 +- 0.01 FWHM= .10 < .14 +- .005 AMP= 1.' 

chsimu(15)= 'Cr39 @ 3.925 +- 0.04 FWHM= .006 < .06 +- .003 AMP= 1.' 
$END 



 

Control file to fit TI1/TI2 = 2150/600 ms DIR spectrum 

… 
FILBAS='/home/smanohar/Desktop/MM_T1/GM/Basis_sets/NAA_DF_basis.basis' 
… 
nsimul= 17 
chsimu(1)= 'MM09 @ 0.916 +- 0.02 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(2)= 'MM12 @ 1.21 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(3)= 'MM14 @ 1.39 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(4)= 'MM17 @ 1.67 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(5)= 'MM20 @ 2.04 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(6)= 'MM22 @ 2.26 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(7)= 'MM26 @ 2.56 +- 0.01 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(8)= 'MM27 @ 2.7 +- 0.05 FWHM= .04 < .08 +- .005 AMP= 1.' 
chsimu(9)= 'MM30 @ 2.99 +- 0.01 FWHM= .10 < .12 +- .005 AMP= 1.' 
chsimu(10)= 'MM32 @ 3.21 +- 0.02 FWHM= .12 < .18 +- .005 AMP= 1.' 
chsimu(11)= 'MM36 @ 3.62 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(12)= 'MM37 @ 3.75 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(13)= 'MM38 @ 3.86 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(14)= 'MM39 @ 4.03 +- 0.01 FWHM= .10 < .14 +- .005 AMP= 1.' 
chsimu(15)= 'Cr39 @ 3.925 +- 0.04 FWHM= .006 < .06 +- .003 AMP= 1.' 
chsimu(16)= 'Cr30 @ 3.028 +- 0.01 FWHM= .002 < .05 +- .003 AMP= 1.' 
chsimu(17)= 'NAA @ 2.008 +- 0.02 FWHM= .003 < .03 +- .003 AMP= 1.' 
$END 

 
Control file to fit TI1/TI2 = 2000/575 ms DIR spectrum 

… 
FILBAS='/home/smanohar/Desktop/MM_T1/GM/Basis_sets/NAA_DF_basis.basis' 
… 
nsimul= 17 
chsimu(1)= 'MM09 @ 0.916 +- 0.02 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(2)= 'MM12 @ 1.21 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(3)= 'MM14 @ 1.39 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(4)= 'MM17 @ 1.67 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(5)= 'MM20 @ 2.04 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(6)= 'MM22 @ 2.26 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(7)= 'MM26 @ 2.56 +- 0.01 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(8)= 'MM27 @ 2.7 +- 0.05 FWHM= .04 < .08 +- .005 AMP= 1.' 
chsimu(9)= 'MM30 @ 2.99 +- 0.01 FWHM= .10 < .12 +- .005 AMP= 1.' 
chsimu(10)= 'MM32 @ 3.21 +- 0.02 FWHM= .12 < .18 +- .005 AMP= 1.' 
chsimu(11)= 'MM36 @ 3.62 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(12)= 'MM37 @ 3.75 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(13)= 'MM38 @ 3.86 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(14)= 'MM39 @ 4.03 +- 0.01 FWHM= .10 < .14 +- .005 AMP= 1.' 
chsimu(15)= 'Cr39 @ 3.925 +- 0.04 FWHM= .006 < .06 +- .003 AMP= 1.' 
chsimu(16)= 'Cr30 @ 3.028 +- 0.01 FWHM= .002 < .05 +- .003 AMP= 1.' 
chsimu(17)= 'NAA @ 2.008 +- 0.02 FWHM= .003 < .03 +- .003 AMP= 1.' 
$END 



 

Control file to fit TI1/TI2 = 1900/550 ms DIR spectrum 

… 
FILBAS='/home/smanohar/Desktop/MM_T1/GM/Basis_sets/NAA_DF_basis.basis' 
… 
nsimul= 17 
chsimu(1)= 'MM09 @ 0.916 +- 0.02 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(2)= 'MM12 @ 1.21 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(3)= 'MM14 @ 1.39 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(4)= 'MM17 @ 1.67 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(5)= 'MM20 @ 2.04 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(6)= 'MM22 @ 2.26 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(7)= 'MM26 @ 2.56 +- 0.005 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(8)= 'MM27 @ 2.7 +- 0.01 FWHM= .04 < .08 +- .005 AMP= 1.' 
chsimu(9)= 'MM30 @ 2.99 +- 0.005 FWHM= .07 < .09 +- .005 AMP= 1.' 
chsimu(10)= 'MM32 @ 3.21 +- 0.005 FWHM= .12 < .18 +- .005 AMP= 1.' 
chsimu(11)= 'MM36 @ 3.62 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(12)= 'MM37 @ 3.75 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(13)= 'MM38 @ 3.86 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(14)= 'MM39 @ 4.03 +- 0.01 FWHM= .10 < .14 +- .005 AMP= 1.' 
chsimu(15)= 'Cr39 @ 3.925 +- 0.02 FWHM= .006 < .06 +- .003 AMP= 1.' 
chsimu(16)= 'Cr30 @ 3.028 +- 0.01 FWHM= .002 < .05 +- .003 AMP= 1.' 
chsimu(17)= 'NAA @ 2.008 +- 0.02 FWHM= .003 < .03 +- .003 AMP= 1.' 
$END 

 
Control file to fit TI1/TI2 = 1800/575 ms DIR spectrum 

… 
FILBAS='/home/smanohar/Desktop/MM_T1/GM/Basis_sets/NAA_DF_basis.basis' 
… 
nsimul= 17 
chsimu(1)= 'MM09 @ 0.916 +- 0.02 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(2)= 'MM12 @ 1.21 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(3)= 'MM14 @ 1.39 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(4)= 'MM17 @ 1.67 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(5)= 'MM20 @ 2.04 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(6)= 'MM22 @ 2.26 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(7)= 'MM26 @ 2.56 +- 0.005 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(8)= 'MM27 @ 2.7 +- 0.01 FWHM= .04 < .08 +- .005 AMP= 1.' 
chsimu(9)= 'MM30 @ 2.99 +- 0.005 FWHM= .07 < .09 +- .005 AMP= 1.' 
chsimu(10)= 'MM32 @ 3.21 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(11)= 'MM36 @ 3.62 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(12)= 'MM37 @ 3.75 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(13)= 'MM38 @ 3.86 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(14)= 'MM39 @ 4.03 +- 0.01 FWHM= .10 < .14 +- .005 AMP= 1.' 
chsimu(15)= 'Cr39 @ 3.925 +- 0.04 FWHM= .006 < .06 +- .003 AMP= 1.' 
chsimu(16)= 'Cr30 @ 3.028 +- 0.01 FWHM= .002 < .05 +- .003 AMP= 1.' 
chsimu(17)= 'NAA @ 2.008 +- 0.02 FWHM= .003 < .03 +- .003 AMP= 1.' 
$END 



chsimu(12)= 'MM37 @ 3.75 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.'  

For the ones resulting in a negative MM magnetization, GPC, mI, Glu, and NAAasp were also given in the 

basis set in addition to the NAA downfield peak. Simulated Voigt lines (chsimu) were included to fit the 

residual singlets [tCr(CH2), tCr(CH3) and NAA(CH3)] as specified in the Supporting Information Table S1. 

Control file to fit TI1/TI2 = 1300/80 ms DIR spectrum 

… 
FILBAS='/home/smanohar/Desktop/MM_T1/GM/Basis_sets/NAADF_NAA_asp_basis.basis' 
… 
degzer = 180 
… 
nsimul= 16 
chsimu(1)= 'MM09 @ 0.916 +- 0.02 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(2)= 'MM12 @ 1.21 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(3)= 'MM14 @ 1.39 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(4)= 'MM17 @ 1.67 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(5)= 'MM20 @ 2.04 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(6)= 'MM22 @ 2.26 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(7)= 'MM26 @ 2.56 +- 0.005 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(8)= 'MM27 @ 2.7 +- 0.01 FWHM= .04 < .08 +- .005 AMP= 1.' 
chsimu(9)= 'MM30 @ 2.99 +- 0.005 FWHM= .07 < .09 +- .005 AMP= 1.' 
chsimu(10)= 'MM32 @ 3.21 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(11)= 'MM36 @ 3.62 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(12)= 'MM37 @ 3.75 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(13)= 'MM38 @ 3.86 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(14)= 'MM39 @ 4.03 +- 0.01 FWHM= .10 < .14 +- .005 AMP= 1.' 
chsimu(15)= 'Cr39 @ 3.925 +- 0.06 FWHM= .0008 < .06 +- .003 AMP= 1.' 
chsimu(16)= 'NAA @ 2.008 +- 0.02 FWHM= .003 < .03 +- .003 AMP= 1.' 
$END 

 
Control file to fit TI1/TI2 = 1300/60 ms DIR spectrum 

… 
FILBAS='/home/smanohar/Desktop/MM_T1/GM/Basis_sets/NAADF_NAA_asp_basis.basis' 
… 
degzer = 180 
… 
nsimul= 16 
chsimu(1)= 'MM09 @ 0.916 +- 0.02 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(2)= 'MM12 @ 1.21 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(3)= 'MM14 @ 1.39 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(4)= 'MM17 @ 1.67 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(5)= 'MM20 @ 2.04 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(6)= 'MM22 @ 2.26 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(7)= 'MM26 @ 2.56 +- 0.005 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(8)= 'MM27 @ 2.7 +- 0.01 FWHM= .04 < .08 +- .005 AMP= 1.' 
chsimu(9)= 'MM30 @ 2.99 +- 0.005 FWHM= .07 < .09 +- .005 AMP= 1.' 
chsimu(10)= 'MM32 @ 3.21 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(11)= 'MM36 @ 3.62 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 



chsimu(10)= 'MM32 @ 3.21 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.'  

chsimu(13)= 'MM38 @ 3.86 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(14)= 'MM39 @ 4.03 +- 0.01 FWHM= .10 < .14 +- .005 AMP= 1.' 
chsimu(15)= 'Cr39 @ 3.925 +- 0.06 FWHM= .0008 < .06 +- .003 AMP= 1.' 
chsimu(16)= 'NAA @ 2.008 +- 0.02 FWHM= .003 < .03 +- .003 AMP= 1.' 
$END 

 
Control file to fit TI1/TI2 = 1300/20 ms DIR spectrum 

… 
FILBAS='/home/smanohar/Desktop/MM_T1/GM/Basis_sets/NAADF_NAA_asp_basis.basis' 
… 
degzer = 180 
… 
nsimul= 16 
chsimu(1)= 'MM09 @ 0.916 +- 0.02 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(2)= 'MM12 @ 1.21 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(3)= 'MM14 @ 1.39 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(4)= 'MM17 @ 1.67 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(5)= 'MM20 @ 2.04 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(6)= 'MM22 @ 2.26 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(7)= 'MM26 @ 2.56 +- 0.005 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(8)= 'MM27 @ 2.7 +- 0.01 FWHM= .04 < .08 +- .005 AMP= 1.' 
chsimu(9)= 'MM30 @ 2.99 +- 0.005 FWHM= .07 < .09 +- .005 AMP= 1.' 
chsimu(10)= 'MM32 @ 3.21 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(11)= 'MM36 @ 3.62 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(12)= 'MM37 @ 3.75 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(13)= 'MM38 @ 3.86 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(14)= 'MM39 @ 4.03 +- 0.01 FWHM= .10 < .14 +- .005 AMP= 1.' 
chsimu(15)= 'Cr39 @ 3.925 +- 0.06 FWHM= .0008 < .06 +- .003 AMP= 1.' 
chsimu(16)= 'NAA @ 2.008 +- 0.02 FWHM= .003 < .03 +- .003 AMP= 1.' 
$END 

 
Control file to fit TI1/TI2 = 1250/20 ms DIR spectrum 

… 
FILBAS='/home/smanohar/Desktop/MM_T1/GM/Basis_sets/NAADF_NAA_asp_basis.basis' 
… 
degzer = 180 
… 
nsimul= 16 
chsimu(1)= 'MM09 @ 0.916 +- 0.02 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(2)= 'MM12 @ 1.21 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(3)= 'MM14 @ 1.39 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(4)= 'MM17 @ 1.67 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(5)= 'MM20 @ 2.04 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(6)= 'MM22 @ 2.26 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(7)= 'MM26 @ 2.56 +- 0.005 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(8)= 'MM27 @ 2.7 +- 0.01 FWHM= .04 < .08 +- .005 AMP= 1.' 
chsimu(9)= 'MM30 @ 2.99 +- 0.005 FWHM= .07 < .09 +- .005 AMP= 1.' 



 

chsimu(11)= 'MM36 @ 3.62 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(12)= 'MM37 @ 3.75 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(13)= 'MM38 @ 3.86 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(14)= 'MM39 @ 4.03 +- 0.01 FWHM= .10 < .14 +- .005 AMP= 1.' 
chsimu(15)= 'Cr39 @ 3.925 +- 0.06 FWHM= .0008 < .06 +- .003 AMP= 1.' 
chsimu(16)= 'NAA @ 2.008 +- 0.02 FWHM= .003 < .03 +- .003 AMP= 1.' 
$END 

 

Control file to fit TI1/TI2 = 1200/20 ms DIR spectrum 

… 
FILBAS='/home/smanohar/Desktop/MM_T1/GM/Basis_sets/NAADF_NAA_asp_basis.basis' 
… 
degzer = 180 
… 
nsimul= 16 
chsimu(1)= 'MM09 @ 0.916 +- 0.02 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(2)= 'MM12 @ 1.21 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(3)= 'MM14 @ 1.39 +- 0.01 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(4)= 'MM17 @ 1.67 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(5)= 'MM20 @ 2.04 +- 0.01 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(6)= 'MM22 @ 2.26 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(7)= 'MM26 @ 2.56 +- 0.005 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(8)= 'MM27 @ 2.7 +- 0.01 FWHM= .04 < .08 +- .005 AMP= 1.' 
chsimu(9)= 'MM30 @ 2.99 +- 0.005 FWHM= .07 < .09 +- .005 AMP= 1.' 
chsimu(10)= 'MM32 @ 3.21 +- 0.005 FWHM= .10 < .13 +- .005 AMP= 1.' 
chsimu(11)= 'MM36 @ 3.62 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(12)= 'MM37 @ 3.75 +- 0.005 FWHM= .08 < .11 +- .005 AMP= 1.' 
chsimu(13)= 'MM38 @ 3.86 +- 0.02 FWHM= .09 < .11 +- .005 AMP= 1.' 
chsimu(14)= 'MM39 @ 3.98 +- 0.01 FWHM= .10 < .14 +- .005 AMP= 1.' 
chsimu(15)= 'Cr39 @ 3.925 +- 0.06 FWHM= .0008 < .06 +- .003 AMP= 1.' 
chsimu(16)= 'NAA @ 2.008 +- 0.02 FWHM= .0001 < .03 +- .003 AMP= 1.' 
$END 
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1 

2 
3 Abstract 
4 
5 Purpose: 
6 

7 Several localization schemes and data processing techniques have been developed for better 

8 detection and accurate quantification of metabolites in the human brain. This study proposes a 

9 two-dimensional (2D) J-resolved metabolite-cycled (MC) semiLASER localization sequence at 

10 9.4 T in the human brain. 
11 
12 Methods: 
13 

14 Initially, the J-resolved MC semiLASER localization sequence with maximum echo sampling 
15 (MES) scheme was optimized using phantom measurements. Then metabolite spectra were 
16 acquired using the developed sequence from a voxel in the occipital lobe at 9.4 T. In order to 
17 account for the underlying macromolecular (MM) spectrum, J-resolved MM spectra were acquired 
18 using a double inversion recovery (DIR) J-resolved MC semiLASER with MES scheme. Spectral 

19 fitting was performed with ProFit 2.0 using simulated basis set from VesPA. Metabolite 

21 concentrations were calculated using internal water referencing. 

22 Results: 

24 J-resolved MC semiLASER with optimized sequence parameters was developed at 9.4 T to 
25 quantify human brain metabolites. Quantification values for 16 metabolites in mmol/kg are 
26 reported after correcting for proton contribution, tissue content, and relaxation effects of both 

28 water and metabolites at 9.4 T. Bland-Altman plots were calculated in order to compare the 

29 differences in concentration values from this study versus values from a previous 1D MRS study. 
30 

31 Conclusion: 

32 2D J-resolved MC semiLASER sequence was optimized for the first time at 9.4 T. The sensitivity 

33 in the detection of J-coupled metabolites such as glutamine, glucose, lactate etc., improved with 

35 the use of 2D MRS technique along with MES scheme. 

36 Keywords: 2D J-resolved spectroscopy, Ultra-high field, Maximum echo sampling, ProFit 2.0, 

38 Quantification, J-semiLASER, Metabolite-cycling 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 



55 

56 

57 

58 

59 

60 Magnetic Resonance in Medicine 

 

1 

1 

1 

10 

21 

25 

33 

37 

48 

Page 3 of 30 Magnetic Resonance in Medicine 
 

 
1 

2 
3 1. Introduction 
4 
5 Single voxel proton magnetic resonance spectroscopy (1H-MRS) is a popular non-invasive 
6 technique used to study the metabolism in the human brain. It enables detection and 
7 quantification of the neurochemical profile in a particular region of interest, thereby aids in setting 
8 appropriate biomarkers for various pathologies in the human brain1. However, complex spectral 

9 patterns and severe spectral overlap often pose a challenge in quantifying individual metabolite 

11 concentrations2. Therefore, enhancing the signal-to-noise ratio (SNR) and spectral resolution has 

12 always been one of the aims of the MRS community. 
13 

14 One technique used by the NMR community to reduce spectral overlap is multi-dimensional 

15 spectroscopy3,4. Homonuclear two-dimensional (2D) techniques such as correlation spectroscopy 

16 and J-resolved spectroscopy were shown to be feasible in vivo at 1.5, 3 and 7 T5–7 and hold the 

17 promise to yield accurate quantification results for a large number of metabolites in clinical trials 

18 of neurological and psychiatric disorders8–14. Nevertheless, this technique owes to longer 

19 measurement durations and requires non-standard pre-processing, fitting and quantification 

20 routines. 

22 In two-dimensional (2D) J-resolved spectroscopy15, the spectral information is spread into two 
23 orthogonal axes by adding a step-wise increasing evolution delay in the pulse sequence. This 
24 helps improve specificity in the detection of J-coupled metabolites. To further improve detection 

26 sensitivity maximum echo sampling (MES)16 was introduced for in vivo 2D 1H MRS8,17. In MES 

27 scheme, acquisition begins right after the final crusher gradient of the last refocusing pulse in the 

28 localization technique. Later Schulte et al15 compared the sensitivity values of short-echo point- 

29 resolved spectroscopy (PRESS), JPRESS with traditional half echo sampling (where the 

30 acquisition begins at the echo top) and JPRESS with MES. JPRESS with MES had increased 

31 sensitivity in comparison to traditional half echo sampling. Yet another advantage of MES is that 

32 it adds a tilt to the peak tails in the spectrum15 and thus largely reduces overlap of the water peak 

34 tail with the metabolites peaks of interest. 

35 Another means to clearly distinguish more peaks is ultra-high field (UHF) (≥ 7 T) 1H MRS18,19. It 

36 is well known that spectroscopy studies at UHF benefit from both increased spectral resolution 

38 and improved SNR in comparison to lower field strengths. However, at UHF B + inhomogeneity 

39 is one of the crucial challenges posed. Also with increasing static B0 field strength, chemical shift 

40 displacement error between the metabolite peaks increases. 
41 

42 Using simulation and experimental methods at 3 T and 7 T Edden et al20 showed that the chemical 

43 shift displacement effect causes spatially dependent differences in J-evolution of coupled spin 

44 systems in JPRESS spectra. Due to the larger spectral dispersion along with reduced peak 

45 transmit field strength B +, the chemical shift displacement error is increasing with increasing field 

46 strength. The appearance of additional J-refocused peaks result in loss of intensity in the J- 

47 resolved peaks and more spectral overlap thereby leading to uncertain spectral quantification. 

49 However, Lin et al6 compared the spectral quality of JPRESS, J-resolved semiLASER and J- 

50 resolved LASER sequences and demonstrated that the use of adiabatic pulses reduced the 

51 appearance of J-refocused peaks to a great extent due to their higher bandwidth. Adiabatic pulses 

52 in the localization schemes are also effective in reducing the effect of B + inhomogeneity at UHF21. 

53 Both the implications discussed above emphasize the need to use adiabatic localization when 

54 implementing J-resolved spectroscopy at UHF. 
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1 

2 
3 Therefore, in this work, we developed a 2D J-resolved metabolite-cycled (MC) semiLASER 
4 sequence at 9.4 T for the first time. Implementing MC21,22 for J-resolved spectroscopy eliminates 
5 the need for acquiring an interleaved water reference for the sake of eddy current correction or 

7 frequency alignment. This in turn significantly reduces the scan duration when the aim is to 

8 calculate metabolite ratios, thereby tackling one of the problems of 2D spectroscopy in vivo. 

9 Spectral fitting was performed using ProFit v2.023, a dedicated 2D fitting software, which 

11 incorporates the theory of LCModel24 and VARPRO25 in attaining a global minimum. The non- 

12 linear fitting routine iterates four times, each time with increasing degrees of freedom. Fuchs et 

13 al26 enhanced the software by adding a spline baseline fit and a spline lineshape model using 

14 self-deconvolution. Additionally, in order to account for the MM contribution in the 2D metabolite 

15 spectra, an experimentally acquired 2D MM spectra was used during the fitting procedure. 
16 
17 Subsequently, quantification of metabolites was performed using the internal water referencing 
18 method taking into account the tissue composition in the voxel of interest, and water 
19 concentration. The concentration values were also further corrected for T1 relaxation times of both 
20 metabolites27 and water28 at 9.4 T. Finally, quantification results obtained with 2D J-resolved 

21 spectroscopy and 1D MRS at 9.4 T were compared with each other and against concentrations 

23 published in previous literature. To the best of our knowledge, the effect of bringing together the 

24 two complementary approaches of UHF and 2D J-resolved spectroscopy to enhance spectral 

25 resolution and hence spectral quantification has not been evaluated yet. This work is an extension 

26 of the initial results reported earlier in a conference abstract29. 
27 

28 2. Methods 
29 

30 2.1 Study Design 

31 All measurements were performed on a 9.4 T Siemens Magnetom whole-body MRI scanner 

33 (Siemens Healthineers, Erlangen, Germany) using a home-built coil30 with eight transmit and 

34 sixteen receive channels. Eleven healthy volunteers (6 male and 5 female, age: 28.0 ± 2.3 years) 

35 participated in this study. Five volunteers returned for a second visit for the acquisition of 2D MM 

36 signal. The study was approved by the local ethics board, and written informed consent was 

37 provided by the volunteers prior to the measurements. 
38 
39 2.2 MRS Sequence 
40 

41 Figure 1a shows the J-resolved metabolite-cycled (MC) semiLASER sequence diagram. The 
42 asymmetric adiabatic MC31 pulse (duration: 22.4 ms) preceded the conventional semiLASER31

 

43 block. A hamming filtered 90 degree-sinc pulse31 (bandwidth: 8000 Hz) was used for excitation. 
44 This pulse was followed by two pairs of adiabatic full passage pulses (duration: 3.5 ms, bandwidth: 
45 8000 Hz). The indirect dimension (t1) was created by inserting an incrementally increasing time 

46 delay of ∆t/2 between the last pair of adiabatic full passage pulses31, which encodes the J- 

48 evolution. The acquisition of the signal began immediately after the final crusher gradient of the 

49 last adiabatic full passage pulse which is called maximum echo sampling (MES) scheme15. 
50 

51 In order to optimize the number of TE steps 𝑛, knowledge of T2 relaxation times of metabolites in 

52 vivo at 9.4 T was utilized from Murali-Manohar et al32. Additionally, phantom measurements 

53 (Figure 2) were performed with different time increment steps (∆t: 2, 3, and 4 ms) and different 

54 number of TE steps (𝑛: 50, 85) to confirm the absence of J-refocused peaks and whether the 

55 peaks are distinctly J-resolved without noise and truncation artifacts in the indirect dimension. 
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1 

2 
3 A double inversion recovery (DIR) block preceding the J-resolved MC semiLASER sequence 
4 (Figure 1b) was used for the acquisition of macromolecular signal. The inversion pulse33 duration 
5 was 15 ms and the inversion bandwidth was approximately 1650 Hz. The optimized inversion 

7 times33,34 (TI1/TI2) combination of 2360 and 625 ms was used in the DIR block. 

8 2.3 Data Acquisition 

10 2.3.1 Anatomical Imaging 
11 
12 MP2RAGE28 images (resolution: 0.6 × 0.6 × 0.6 mm3) were acquired while using the coil in volume 
13 mode driving power to all the eight transmit coil elements. Following this, the volunteer was 
14 instructed to remain stationary on the patient table while the coil setup was changed to suit the 

15 spectroscopy measurements (see 2.3.2). 

17 For the MM acquisition, only 2D FLASH images were acquired which then were co-registered to 
18 the previously acquired MP2RAGE images using rigid body transformation. 
19 
20 2.3.2 Spectroscopy Measurements 
21 
22 For the spectroscopy measurements, power was driven to the bottom three coil elements near 
23 the region of interest using unbalanced three-way Wilkinson splitter31. A localizer was reacquired 
24 to ensure there was no motion of the volunteer between the anatomical and the spectroscopy 
25 scan. This was followed by acquisition of high-resolution 2D FLASH images (in-plane resolution: 

26 0.7 × 0.7 mm2, slice thickness: 3.5 mm, 25 slices) in the sagittal and transversal orientations to 

28 position the spectroscopy voxel (2 × 2 × 2 cm3) in the occipital lobe. Localized second-order 

29 shimming was performed using FAST(EST) MAP35 setting the shim volume to be 150% of the 

30 volume of the voxel of interest. Then, voxel-based power optimization36,37 was performed to 

31 ensure that the adiabatic conditions were fulfilled. 
32 

33 Two-dimensional metabolite spectra were acquired using the J-resolved MC semiLASER 
34 sequence (Figure 1a) (TR: 6000 ms, averages: 8 per TE step, four-step phase cycling) described 

35 above in the MRS Sequence section. TE ranged from 24 to 194 ms (𝑛: 85) incremented in steps 
36 of ∆t = 2ms. In addition, 2D water reference signals were acquired (average per TE: 1) to avoid 

37 any effect due to MC pulse. The transmit reference frequency for the water reference sequence 

39 was set to 4.7 ppm. 

40 In order to account for the MM contribution in the 2D metabolite spectra, 2D MM spectra were 

41 acquired from five healthy volunteers using the DIR sequence (TI /TI : 2360/625 ms) shown in 
42 1 2 

43 Figure 1b. TE ranged from 24 to 144 ms (𝑛: 60) since MM signal decays faster in comparison to 

44 metabolite signal32. All the other acquisition parameters were identical to the metabolite spectra 

45 except the TR which was set to 8000 ms. 
46 

47 2.4 Data Preprocessing 

48 Spectroscopy raw data were preprocessed using an in-house MATLAB (version 2016a, 

50 MathWorks, Natick, MA) tool. Both metabolite and MM data were reconstructed as described in 

51 Giapitzakis et al31. Firstly, the data were frequency and phase-aligned based on the water signal 

52 in the time domain for 85 and 60 blocks for metabolite and MM data respectively. This was 

53 followed by metabolite-cycling subtraction and then the data were averaged within each TE block. 

54 Then Eddy current correction was performed using the phase information from the MC water 

55 signal. Signals from all 16 receive channels were then combined using the SVD method. The 



55 

56 

57 

58 

59 

60 Magnetic Resonance in Medicine 

 

6 

21 

28 

36 

Magnetic Resonance in Medicine Page 6 of 30 
 

 
1 

2 
3 metabolite and MM data were truncated at 250 and 150 ms respectively for better SNR. 
4 Automated zeroth- and first-order phase corrections were performed in the J-resolved 
5 spectroscopy preprocessing tool15,38 which is a part of ProFit. The applied phase correction was 

7 visually verified for correctness as recommended by the recent consensus article39. Using the 

8 same ProFit preprocessing tool, residual water in both the dimensions in the spectra was removed 

9 using a HSVD method. The final 2D spectrum displayed is after applying Fourier transformation 

10 to the data in both the dimensions. SNR of the NAA(CH3) peak at 2.008 ppm was calculated as 

11 the peak intensity from the real part of the spectrum with respect to the noise window from -4.0 to 
12 -1.0 ppm. 
13 
14 2.5 MP2RAGE Segmentation 
15 

16 The high-resolution MP2RAGE images were segmented into gray matter (GM), white matter 
17 (WM) and cerebrospinal fluid (CSF) fractions using SPM1240. 2D FLASH images acquired during 
18 the MM scan session were co-registered to the MP2RAGE images acquired during the first scan 
19 session for four volunteers. A home-built Python (v3.7) tool was used to determine the tissue 

20 fractions in the voxels of interest. 

22 2.6 Spectral Fitting 
23 
24 Metabolite basis sets corresponding to 85 TE steps were simulated using VesPA considering full 
25 quantum mechanical density matrix calculations for the semiLASER sequence including the 
26 excitation and adiabatic full passage pulse shapes. The simulation also incorporated the 

27 sequence timings including the MES scheme. The following metabolites were simulated: n-acetyl 

29 aspartate (NAA), NAA glutamate (NAAG), 𝛾‐aminobutyric acid (GABA), aspartate (Asp), creatine 

30 (Cr), glutamate (Glu), glutamine (Gln), glucose (Glc), glutathione (GSH), glycerophosphocholine 

31 (GPC), glycine (Glyc), myo‐inositol (mI), scyllo‐inositol (Scy), lactate (Lac), phosphocreatine 

32 (PCr), phosphocholine (PCho), phosphoethanolamine (PE), and taurine (Tau). Their chemical 

33 shifts and coupling constants were chosen according to Govindaraju et al41, except for the 

34 coupling constant of GABA, for which the values from Near et al42 were chosen. Subsequently 

35 different metabolite peaks were scaled to correct for the number of proton contributions. GPC, 

37 PCho and PE combined together is denoted by tCho. Finally, all the 85 1D basis sets and the 

38 measured MM spectra were combined to form a complete 2D basis set using an in-house written 

39 MATLAB script. 
40 

41 All the metabolite spectra were fitted using ProFit 2.026 (2D PRiOr knowledge FITting). It takes 

42 the exponential decay of the metabolite signal and the scalar coupling constants into account and 

43 fits the J-resolved spectrum after 2D Fourier transform in both the direct and the indirect 

44 dimensions. 
45 
46 2.7 Quantification 
47 

48 Metabolite concentrations [M] were quantified in mmol/kg from the ProFit 2.0 concentration 

49 results after fitting the metabolite spectra acquired from all subjects. 
50 

51 For internal water referencing, the concentration values from fitting were corrected for tissue water 

52 fractions and relaxation times as follows: 
53 

54 
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1 

2 
3 SMet × (fGM × RH20GM + fWM × RH20WM + fCSF × RH20CSF

) 2 
4 [M] = S (1 ― f ) × R × 

(1 + FS) 
× [H2O] 

5 
6 fy_vol × ay 

H20 CSF Met 

7 where fy = fGM_vol × aGM + fWM_vol × aWM + fCSF_vol   × aCSF 

8 
9 Here y corresponds to either GM, WM, or CSF; fy_vol is the fraction of the respective tissue type 
10 determined by segmentation; ay are the relative densities of MR-visible water for the given tissue 

11 types (78%, 65%, 97% for GM, WM and CSF respectively); these ay values were further scaled for 

13 the relative densities of GM and WM tissue (1.04 g/ml)43–46. To arrive at mmol/kg units , the 

14 concentration of the MR-visible water [H2O] within a voxel was considered in molal concentration 

15 and assumed to be that of pure water (55,510 mmol / kg)47. SMet is the signal from the metabolite 

16 peak. 
17 
18 ProFit 2.0 accounts for the T2 relaxation times of water and metabolites between the second TE 
19 and the last TE by including respective line shape models specific to each metabolite in the fitting 
20 algorithm . Therefore, T correction was included only for the first TE = 24 ms. 
21 
22 

RH2O_y = [1 ― exp [ ― 
    TR    ]] exp [ ― 

    TE    ] 
23 T1H2Oy 

24 

T2H2Oy 

25 is the relaxation correction factor for each tissue type y. T1H2Oy is the T1 relaxation time of water 
26 in the tissue type y; in particular, the T1 relaxation times of water in GM are T1H20_GM = 2120 ms; 
27 in WM are T1H20_WM= 1400 ms; and in CSF are T1H20_CSF = 4800 ms at 9.4 T28. T2H2O is the T2 

29 relaxation time of water in the tissue type y; T2H2O_GM = 37 ms, T2H2O_WM = 30 ms, and T2H2O_CSF 
30 = 181 ms. 
31 
32 RMet = (1 ― exp [ ― 

TR ]) [ ― 
TE ] 

  

33 T1Met 

34 

T2Met 

35 is the relaxation correction term for metabolites. T1Met values from were taken Wright et al27 and 

36 T2Met values were taken from Murali-Manohar et al32. The denominator 1 ― fCSF was implemented 

37 for partial-volume correction arising from contributions of CSF to the voxel volume. The factor 
38 2 

 

 

39 1 + Fs 
was introduced to correct for the multiplication of even numbered acquisitions with the 

40 scaling factor (Fs) from metabolite cycling. 
41 

42 2.8. Statistics 
43 

44 The concentration values reported in this study are mean values from eleven healthy volunteers 

45 and the standard deviation between them. Recent 1D MRS studies27,48–52 at ultra-high field 

46 reporting concentrations in mmol/kg from a similarly located voxel in the occipital lobe as chosen 

47 for this study were considered for comparison. 
48 

49 For a more thorough statistical comparison data from previous 1D MRS study27,48 at 9.4 T was 
50 used. The study27,48 used MC-semiLASER sequence with same sequence parameters (TE/TR: 
51 24/6000 ms) as used in this study. Seven out of eleven healthy volunteers participated in both 

52 studies and hence paired values were considered for statistical analysis. Spectral fitting was 
53 performed in LCModel53 and MM contribution was accounted for from experimentally measured 
54 MM spectra with DIR method (TI /TI : 2360/625 ms). Two-tailed nonparametric Wilcoxon signed 

55 1 2 
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1 

2 
3 rank test was performed (𝛼 < 0.05) for matched data. Adjusted p-values were obtained using 

4 Holm-Bonferroni correction for multiple comparisons (
𝛼 

= 0.0038). 

6 

7 Bland-Altman plots54 were calculated to show the differences in the quantification values between 

8 this study (2D MRS) and the previous 1D MRS study27,48. The most updated concentration values 

9 from the 1D MRS study27,48 were considered. Let 𝑖 denote the subject and 𝑘 the metabolite of 

10 interest; superscripts 2𝐷 and 1𝐷 represent the 2D and 1D MRS study respectively. Then, the 

11 Bland-Altman calculations for metabolite concentrations in mmol/kg is given by 
12 
13 (𝑐2𝐷 ― 𝑐1𝐷) 
14 𝑐 = 𝑖,𝑘 𝑖,𝑘 

𝑖,𝑘 15 
 

 𝑚𝑒𝑎𝑛(𝑐2𝐷,𝑐1𝐷) 

16 

17 3. Results 

18 3.1 Voxel Content and Spectral Quality 

𝑖,𝑘  𝑖,𝑘 

20 
The spectra from the phantom tests (𝑛: 50, ∆𝑡: 2, 3, and 4 ms) showed stronger ‘t1 ridges’20 when 

21 

22 TEmax was shorter (Figure 2). In other words, when TE 
 

max = 124 ms, the ‘t1 ridges’20 were the 

23 strongest. t1 noise was the least when TEmax = 224 ms. When TEmax was set to 100, 99, and 100 

24 ms for ∆𝑡: 2 ms (𝑛: 50), 3 ms (𝑛: 33), and 4 ms (𝑛: 25) respectively, the ‘t1 ridges’ were not seen 

25 to be impacted (Supporting information figure S1). However, ∆𝑡: 2 ms corresponded to higher 

26 SNR since it allows for more number of averages. 
27 
28 Figure 3 shows a phantom metabolite spectrum (𝑛: 85, ∆𝑡: 2 ms, TEmax: 194 ms) in the absolute 
29 magnitude mode. There are no prominent J-refocused peaks appearing in the spectrum or there 
30 are no visible truncation artifacts or t1 noise in the indirect dimension. Even though the t1 noise 
31 seemed minimum for a TEmax = 224 ms, TEmax = 194 ms was chosen for in vivo studies as T2 

32 relaxation times are generally longer in phantom than in in vivo tissues. ∆𝑡 was set to 2 ms since 

34 this allows for a higher number of averages within the given range of TE which is essential for a 

35 good SNR in vivo spectrum. 
36 

37 Figure 4  shows a  representative single  subject 2D  MC J-resolved  semiLASER metabolite 

38 spectrum (𝑛: 85, ∆𝑡: 2 ms) with an inlay showing the voxel position. The average tissue content 

39 of the metabolite spectroscopy measurement voxel in the occipital lobe of eleven healthy 

40 volunteers was GM/WM/CSF = 67 ± 8/ 29 ± 9/ 4 ± 1 % respectively. The 2D metabolite spectra 

41 obtained from voxels in the occipital lobe showed uncoupled peaks lying on the f1 = 0 Hz axis. 

42 This is because during t1, only the coupling information is obtained. However, the J-coupled 

43 multiplets are resolved at an angle of 45° with respect to f1 = 0 Hz since t2 holds both chemical 

45 shift and coupling information. The SNR of the NAA(CH3) peak was 906 ± 147 indicating that the 

46 spectra were of good quality. Also, the spectra did not show any major artifacts such as lipid 

47 contamination or water tails. Therefore, no data sets were excluded from further analysis. 
48 

49 The summed MM spectrum from five healthy volunteers is shown in Figure 5. M0.92, M1.21, M1.39, 

50 M1.67, M2.04, M2.26, M2.56, M2.70, M2.99 and M3.86 are clearly seen to have J-resolved peaks. On an 

51 average, the MM spectroscopy voxel (five healthy volunteers) had GM/WM/CSF = 61 ± 10/ 35 ± 

52 8/ 4 ± 3 % respectively. 
53 
54 Figure 6a shows the summed downfield spectrum (5.1 to 9.5 ppm) from eleven healthy 

55 volunteers. The NAA (7.82 ppm) peak and DF6.83 peaks are observed to split into doublets in the 
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1 

2 
3 spectrum. Also, the DF5.97 peak begins to J-resolve into a doublet. In addition, the zoomed view 
4 of the downfield spectrum (Figure 6b) from 8.7 to 9.45 ppm shows the two low SNR NAD+ multiplet 
5 peaks of nicotinamide moiety that are present at 8.83 and 9.33 ppm. 

7 3.2 Spectral Fitting 
8 
9 A representative metabolite 2D spectral fit is shown in Figure 7. The minimum residual shows the 
10 good quality of fit indicating that the metabolites included in the basis set modeled the acquired 
11 data sufficiently well. The fit quality was similar for all the datasets. 
12 
13 3.3 Concentrations 
14 
15 Supporting information figure S2 shows a bar plot of concentrations of metabolites calculated in 
16 mmol/kg. Table 1 and Figure 8 compares the quantification results in mmol/kg from this study 
17 with previous literature27,48–52. 
18 
19 Significant differences in concentrations obtained from 1D27,48 and 2D MRS data (p < 0.0038) are 
20 denoted by an asterisk (*) in Table 1. Bland Altman plots are shown for 12 metabolites in Figure 
21 9 comparing 2D MRS data and 1D MRS data27,48. The most updated concentration values from 

22 the 1D MRS study27,48 are used here. 

24 4. Discussion 
25 
26 4.1 Spectral Quality 
27 

28 The phantom tests performed to optimize the step size (∆𝑡) along with the knowledge of T2 
29 relaxation times of metabolites in vivo at 9.4 T from Murali-Manohar et al.,32 led to the choice of 

30 ∆𝑡 = 2 ms and number of steps, 𝑛 = 85 for acquisition in vivo. There was sufficient sampling (500 
31 Hz) in the indirect dimension to cover the frequency range of interest in all cases. The final choice 

32 of the scan parameters was made since the appearance of ‘t1-ridges’20 due to t1 noise and sinc 

34 character from t1 truncation was diminished significantly by longer TEmax keeping in mind also 

35 comfortable scan durations. Furthermore, T2-weighting signal loss was avoided largely by setting 

36 the first echo time TEmin to be 24 ms, as short as possible. According to Murali-Manohar et al52, 

37 the T2 relaxation times in the gray-matter rich voxel present in the occipital lobe ranged from ~45 

38 to 110 ms. Thus, the chosen parameters swept a decent range of TEs from 24 to 194 ms. 
39 
40 Using the adiabatic J-resolved semiLASER localization sequence proposed herein resulted in a 
41 chemical shift displacement of 5% per ppm for each voxel dimension (bandwidth: 8000 Hz). Lin 
42 et al6 showed that the intensity of the J-refocused peaks can be reduced by a factor of 
43 
44 ∆𝛿.𝐵0 
45 (1 ― 
46 

𝐵𝑊 
)
 

47 where ∆𝛿 is the chemical shift difference in ppm of the spins A and X in an AX spin system, 𝐵0 is 
48 the frequency of the static magnetic field in MHz and 𝐵𝑊 is the bandwidth of the refocusing pulse. 

49 Considering lactate coupled peaks at 1.31 and 4.09 ppm, the resulting reduction in the intensity 

51 of the J-refocused peaks is 86%. Therefore, there were barely any J-refocused peaks (please see 

52 Figure 3) and no J-refocused peaks in Figure 4 that usually appear because of spatially dependent 

53 evolution (because of limited bandwidth refocusing pulses) of the J-coupled peaks20. 

54 Consequently, the J-resolved multiplet peaks retained maximum possible intensity. 
55 
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1 

2 
3 Implementation of the MES scheme resulted in tilt of the peak tails and hence y avoids the overlap 
4 of phase-twisted line shapes when f1 = 0 Hz. For each TE increment, when the time delay 
5 introduced is ∆𝑡, the acquisition starts ∆𝑡/2 earlier with respect to the echo top. Therefore, data 

7 corresponding to each TE had to be aligned with the corresponding echo tops by shifting them in 

8 the time domain as described in Schulte et al15. The tilt created in the time domain directly 

9 translates after a Fourier transform to the frequency domain where the peak tails along the direct 

10 dimension (f2) are also tilted by 26.6°. This minimizes the overlap of the peak tails with the 

11 metabolite peaks, thus reducing contamination and allowing for better quantification of the 

12 metabolite signals especially of J-coupled spin systems. 
13 
14 The knowledge of T2 relaxation times of MM (approximately ranging from 15 to 37 ms in GM-rich 
15 voxel) at 9.4 T from Murali-Manohar et al32 was utilized in setting 𝑛 = 60 (covering TE: 24 to 144 
16 ms) for the acquisition of MM spectra using DIR MC J-resolved semiLASER. By TEmax = 144 ms, 

17 MM signal decayed completely. Therefore, for 𝑛 = 61 to 85 no corresponding MM spectra were 

19 provided in the basis set for metabolite spectral fitting. This also reduced the acquisition duration 

20 making it feasible for in vivo investigations. M0.92, M1.21, M1.39, M1.67, M1.75, M2.04, M2.26, M2.56, M2.70, 

21 M2.99 and M3.86 are observed to undergo J-evolution and they appear as multiplets in the 2D J- 

22 resolved spectrum shown in Figure 5 indicating that these peaks have J-coupled spin systems. 

23 This observation agrees with Behar et al55 who reported the above-mentioned peaks (except M2.56 
24 and M2.70) as J-coupled MM observed from COSY and J-resolved spectra of dialyzed human 

25 cerebral cytosol at 8.4 T. Giapitzakis et al56 reported M  
2.56 and M 

 
2.70 peaks for the first time and 

27 assigned them to β-methylene protons of aspartyl groups which correspond to doublet-of- 

28 doublets. Figure 5 also shows M1.75, M1.91, M1.95, M2.32, M2.36, M3.02, M3.09, M3.17, and M3.28 peaks 
29 which are observed here in 2D MRS, but not in 1D MRS32–34 in the human brain at 9.4 T. These 
30 MM peaks other than M1.75, M2.32 and M3.28 were previously only reported at 17.2 T in rat brain by 
31 Lopez et al57. 
32 
33 All the downfield peaks reported by Borbath et al58 at 9.4 T in vivo were present also in the 2D 
34 downfield spectra in this study (Figure 6). Since there was no water suppression scheme 
35 implemented it was also possible to detect some of the exchanging downfield peaks (DF5.75, 

36 DF6.83)59 in 2D. It was unclear from the 1D spectra58 whether the DF6.83 peak could be assigned 

38 to Gln (a singlet) or Tyrosine (multiplets). However, it can be seen from Figure 6 that the DF6.83 

39 resonance splits into two peaks across f1 = 0 axis. Nagarajan et al60 reported that the four phenyl 

40 ring protons of tyrosine give rise to multiplets in their 2D L-COSY study in the human brain at 3 

41 T60. Also, fitting of amino acid spectral models to the downfield spectra results in fitting Tyrosine 

42 multiplet to the DF6.83 peak61. This leads to potentially assigning the peak detected at DF6.83 to 

43 Tyrosine. A quadruplet splitting (DF5.48) at around 5.48 ppm can also be observed from the 2D 

44 downfield spectrum. This peak has not been reported earlier and further investigation is necessary 

45 in order to confirm the peak presence. Since this study focused on the upfield metabolites, the 

47 transmit reference frequency was set to 2.4 ppm in the upfield part of the spectrum. However, a 

48 study focusing on the downfield part of the 1H spectra in the human brain using 2D MRS with the 

49 transmit reference frequency set to 7.0 ppm could be of interest since it could lead to better 

50 characterization of some of the unassigned peaks. 
51 

52 2D MRS acquisition technique has longer scan durations, especially at UHF due to SAR 
53 constraints. In particular, 2D J-resolved MC-semiLASER and 2D J-resolved DIR MC-semiLASER 

54 sequences had an acquisition duration of 68 and 128 minutes respectively. This is a disadvantage 

55 compared to 1D MRS techniques at UHF, which typically have shorter scan duration in 
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1 

2 
3 comparison and are thus better suited for clinical applications. On the other hand, the 2D MRS 
4 technique at UHF looks promising to answer some basic research questions such as assigning 
5 unlabeled peaks in the downfield part of the spectrum or in understanding the overlap and J- 

7 coupling behavior of the MM peaks. It could also be utilized in quantifying lower SNR J-coupled 

8 metabolites in order to understand mechanisms of brain energy metabolism, neurotransmission, 

9 or antioxidants. 
10 

11 4.2 Spectral Fitting 

12 Edden and Barker20 suggested that it is important to include the bandwidth of the refocusing pulse 

14 while simulating the basis sets in order to also account for the J-refocused peaks if any. Therefore, 

15 the basis sets simulated to fit the 2D metabolite spectra using VesPA included real pulse shapes 

16 with exact durations, bandwidths and the MES scheme. Therefore, it can be seen from Figure 7 

17 that the simulated 2D basis set fits the data very well. 
18 

19 Spectral fitting of 2D J-resolved data using Profit 2.0 can also be used to determine T2 relaxation 
20 times of metabolites as shown by Wyss et al62. 
21 

22 4.3 Metabolite Concentrations 

23 This study quantifies and reports concentration values of 16 metabolites in mmol/kg using an 

25 adiabatic 2D J-resolved localization technique at 9.4T in the human brain for the first time. The 

26 calculated millimolal concentration values lie within the range of values that were reported in 

27 previous literature27,48–52 for most of the metabolites. Mekle et al50 and Deelchand et al49 did not 

28 perform T2 relaxation correction. However, these studies used shorter TE times; therefore, the 

29 contribution from T2 weighting may have been insignificant. All the studies included experimentally 

30 acquired MM spectrum during the fitting procedure. Mekle et al50 set tCr to 8 mmol/kg. 

32 For metabolites with J-coupled spin systems, low peak amplitudes and/or overlap with larger 
33 singlets such as GABA, GSH, NAAG and Tau the concentrations measured from this study are 
34 in line with previous 1D MRS studies at 7T51,63 and 9.4T27,48. Moreover, the 2D MRS technique 

36 could decently quantify Glc, Lac, and Glyc, which are otherwise challenging to quantify in 1D MRS 

37 studies even at 9.4 T. Separation of PCr and Cr was achieved in this study along with two previous 

38 9.4T study32 and two previous 7T studies51,63. The concentration of Asp measured in this study is 

39 in line with two out of three previous 9.4T27,48,64 and two 7T human brain studies51,63. Gln 

40 concentrations from this study are closely matching those measured in two previous 7T 

41 studies50,65 and one 9.4T study49, but deviate from results of two other previous 1D MRS studies 

42 at 9.4T27,48,52. mI concentrations are higher in this study in comparison to all previous studies due 

44 to a possible oppositely phased residual mI peak in the experimental MM spectra34. 

45 Figure 9 shows Bland-Altman plots54   for 12 metabolites indicating changes in metabolite 

46 concentrations of individual subjects while using 1D and 2D MRS at 9.4T (seven healthy 

48 volunteers were considered as paired datasets). The mean of the metabolite concentrations are 

49 plotted along the x-axis and the difference in the measured concentration of metabolites between 

50 1D and 2D MRS along the y-axis. These Bland-Altman plots enable us to visually assess the 

51 differences in the concentrations measured using 1D versus 2D MRS. A statistical significant 

52 difference is found in the concentration of Gln between 1D and 2D MRS study. Gln concentration 

53 estimate from the 1D MRS study27,48 is higher than expected. Tau also has a significant difference; 

54 however, the concentration of Tau varies across different studies and the concentration from 2D 

56 MRS data agrees with Marjanska et al51. Baeshen et al66 performed a similar analysis to analyze 
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2 
3 the test-retest reliability of measuring GABA and Glx with JPRESS, PRESS, and MEGA-PRESS 
4 at 3T. They concluded that MEGA-PRESS and JPRESS reliably detected GABA at 3T when 
5 compared to PRESS. However, Glx was measured reliably with PRESS, MEGA-PRESS and 

7 JPRESS66. 

8 5. Conclusion 

10 The 2D J-resolved MC-semiLASER sequence implemented at 9.4 T quantified the lower SNR 
11 and J-coupled metabolites such as GABA, Gln, Lac, and Glc. Despite longer acquisition durations 
12 of 2D J-resolved MRS at UHF, it still seems beneficial to answer open questions in the field of 

14 MRS including assigning unlabeled peaks in the downfield part of the spectrum, understanding J- 

15 coupling behavior of the MM peaks (which are severely overlapped broad peaks in 1D MRS), and 

16 to quantify the lower SNR J-coupled metabolites with accuracy. The quantification results in 

17 mmol/kg are reported for 16 metabolites in the occipital lobe and they are compared with previous 

18 literature. 
19 
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7 List of Figures: 
8 

9 Figure 1: Pulse sequence diagram of J-resolved metabolite-cycled semiLASER localization 

10 scheme. The two inversion pulses were turned off when acquiring the metabolite spectra. For the 

11 acquisition of macromolecular spectra, double inversion recovery technique was used with TI1/TI2 

12 set to 2360/625 ms. The indirect dimension is created by increasing the time interval between the 

13 last two AFP pulses by ∆t/2. Both the sequences have maximum echo sampling scheme 

14 implemented i.e., acquisition begins right after the final crusher gradient of the last AFP. 
15 
16 Figure 2: (Top to bottom) 2D J-resolved MC semiLASER spectra from Braino phantom containing 
17 NAA, Cr, Cho, Glu and Lac with n = 50 and ∆t = 2, 3 and 4 ms. White arrows indicate the t1-ridges 
18 as a result of t1 noise and truncation sinc artifacts in the indirect dimension. The ridges are strongly 
19 pronounced when TE  

max = 124 ms and minimum when TE 
 

max = 224 ms. 

21 Figure 3: a) 2D metabolite spectrum from Braino phantom (n = 85, ∆t = 2ms) in magnitude mode 
22 b) Zoomed in view of the lactate peak showing a J-resolved doublet but barely any J-refocused 
23 peaks. An 86% suppression (considering Lac peaks at 1.31 and 4.09 ppm since they have a 

25 maximum separation of values in the observable range of the spectrum) of the J-refocused peaks 

26 is expected when calculated as suggested by Lin et al6 resulting in barely any visible J-refocused 

27 peaks. This in turn leads to maximum intensity of the J-resolved peaks. 
28 

29 Figure 4: 2D J-resolved MC semiLASER spectrum from a representative subject with 𝑛 = 85 and 

30 ∆𝑡 = 2 ms. The figure inlay shows the voxel positioning on the MP2RAGE image in transversal 
31 view. Additionally, the observed metabolites are labeled in the figure. 
32 
33 Figure 5: 2D DIR J-resolved MC semiLASER (TI1/TI2: 2360/625 ms, 𝑛 = 60, ∆𝑡 = 2 ms) summed 
34 spectrum from five healthy volunteers. The subscripts in the labelled MM peaks are the chemical 
35 shift in ppm at which the respective MM resonance occurs. 
36 
37 Figure 6: a) Subject-wise summed (eleven healthy volunteers) two-dimensional downfield (5.1 to 
38 9.5 ppm) spectrum b) Low SNR NAD+ peaks of nicotinamide moiety at 8.7 and 9.45 ppm detected 
39 in a zoomed view. 
40 
41 Figure 7: A representative fit of 2D J-resolved MC semiLASER data acquired at 9.4 T. The figure 
42 shows the data, the fit and the residual from top to bottom scaled similarly. The fitting was 
43 performed in ProFit 2.0 using a tailored 2D basis set created using VesPA. 
44 
45 Figure 8: The figure shows the metabolite concentration values in the occipital lobe of healthy 
46 volunteers at 9.4T measured using 2D J-resolved MC semiLASER localization technique. The 
47 concentration values obtained using 2D spectral fitting for Asp, Gln and GABA are in line with 

49 previous literature. However, the previous 1D MRS studies27,48,52 using MC semiLASER reported 

50 elevated values of these metabolites in comparison to previous literature. In conclusion, 2D MRS 

51 may perform better for the quantification of overlapped and J-coupled resonances such as Gln 

52 and GABA, and additionally also allows for the quantification of Glc and Lac. 
53 

54 Table 1: Quantification results from this study in mmol/kg are reported for 16 metabolites after 
55 correcting for tissue content and water and metabolite relaxation times. T1 and T2 relaxation times 

56 at 9.4 T from Wright et al27,48 and Murali-Manohar et al52 were used to account for the T1-weighting 
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1 

2 
3 of metabolites. Additionally, results from the previous 1D MRS studies27,48–52 are also presented 
4 for comparison. The tissue content and water and metabolite relaxation times included for these 
5 studies are briefly given in the Discussion section. 

7 Figure 9: Bland-Altman plots54 for 12 metabolites comparing concentration values from this 
8 study with the 1D MRS study. The center line shows the mean value of the 
9 concentrations of respective metabolite between the measurements performed using 1D 
10 and 2D MRS. The lines at the top and the bottom represent mean + 1.96 SD and mean – 
11 1.96 SD respectively. 

13 Supporting information figure captions 
14 
15 Supporting information figure S1: (Top to bottom) Phantom spectrum with TEmax = 100, 99, 
16 and 100 ms for ∆𝑡: 2 ms (𝑛: 50), 3 ms (𝑛: 33), and 4 ms (𝑛: 25) respectively. SNR is higher 
17 when ∆𝑡: 2 ms compared to 3 and 4 ms; t1 ridges are not seen to be impacted. 
18 
19 Supporting information figure S2: Box plots of metabolite concentrations in mmol/kg measured 
20 using 2D J-resolved MC semiLASER spectra. Horizontal lines inside the box plots show median 
21 values (50% quartile). The bottom and the top boundaries of the boxes indicate 25% and 75% 

22 quartiles respectively. Plus signs (+) show outlier values. 
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19 Figure 1: Pulse sequence diagram of J-resolved metabolite-cycled semiLASER localization scheme. The two 
20 inversion pulses were turned off when acquiring the metabolite spectra. For the acquisition of 

21 macromolecular spectra, double inversion recovery technique was used with TI1/TI2 set to 2360/625 ms. 
22 The indirect dimension is created by increasing the time interval between the last two AFP pulses by ∆t/2. 

Both the sequences have maximum echo sampling scheme implemented i.e., acquisition begins right after 

24 
the final crusher gradient of the last AFP. 

25 274x100mm (150 x 150 DPI) 

26 
27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 
59 

60 Magnetic Resonance in Medicine 



 

For 
Peer 

Revie
w 

Magnetic Resonance in Medicine Page 20 of 30 
 

 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 Figure 2: (Top to bottom) 2D J-resolved MC semiLASER spectra from Braino phantom containing NAA, Cr, 

46 Cho, Glu and Lac with n = 50 and ∆t = 2, 3 and 4 ms. White arrows indicate the t1-ridges as a result of t1 

47 noise and truncation sinc artifacts in the indirect dimension. The ridges are strongly pronounced when TEmax 

48 = 124 ms and minimum when TEmax = 224 ms. 
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19  Figure 3: a) 2D metabolite spectrum from Braino phantom (n = 85, ∆t = 2ms) in magnitude mode b) 
Zoomed in view of the lactate peak showing a J-resolved doublet but barely any J-refocused peaks. An 86% 
suppression (considering Lac peaks at 1.31 and 4.09 ppm since they have a maximum separation of values 

21 in the observable range of the spectrum) of the J-refocused peaks is expected when calculated as suggested 
22 by Lin et al6 resulting in barely any visible J-refocused peaks. This in turn leads to maximum intensity of the 
23 J-resolved peaks. 
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Figure 4: 2D J-resolved MC semiLASER spectrum from a representative subject with n = 85 and ∆t = 2 ms. 
23 

The figure inlay shows the voxel positioning on the MP2RAGE image in transversal view. Additionally, the 
24 

observed metabolites are labeled in the figure. 
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23 Figure 5: 2D DIR J-resolved MC semiLASER (TI1/TI2: 2360/625 ms, n = 60, ∆t = 2 ms) summed spectrum 

24 from five healthy volunteers. The subscripts in the labelled MM peaks are the chemical shift in ppm at which 

25 the respective MM resonance occurs. 
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40 Figure 6: a) Subject-wise summed (eleven healthy volunteers) two-dimensional downfield (5.1 to 9.5 ppm) 

41 spectrum b) Low SNR NAD+ peaks of nicotinamide moiety at 8.7 and 9.45 ppm detected in a zoomed view. 
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25 Figure 7: A representative fit of 2D J-resolved MC semiLASER data acquired at 9.4 T. The figure shows the 
data, the fit and the residual from top to bottom scaled similarly. The fitting was performed in ProFit 2.0 

using a tailored 2D basis set created using VesPA. 
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25 Figure 8: The figure shows the metabolite concentration values in the occipital lobe of healthy volunteers at 
26 9.4T measured using 2D J-resolved MC semiLASER localization technique. The concentration values obtained 
27 using 2D spectral fitting for Asp, Gln and GABA are in line with previous literature. However, the previous 1D 

MRS studies27,48,52 using MC semiLASER reported elevated values of these metabolites in comparison to 
previous literature. In conclusion, 2D MRS may perform better for the quantification of overlapped and J- 

29 coupled resonances such as Gln and GABA, and additionally also allows for the quantification of Glc and Lac. 
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Table 1: Quantification results from this study in mmol/kg are reported for 16 metabolites after correcting 
41 

for tissue content and water and metabolite relaxation times. T1 and T2 relaxation times at 9.4 T from 
42 

Wright et al27,48 and Murali-Manohar et al52 were used to account for the T1-weighting of metabolites. 
43 

Additionally, results from the previous 1D MRS studies27,48–52 are also presented for comparison. The tissue 
44 

content and water and metabolite relaxation times included for these studies are briefly given in the 
45 

Discussion section. 
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36 Figure 9: Bland-Altman plots54 for 12 metabolites comparing concentration values from this study with the 
37 1D MRS study. The center line shows the mean value of the concentrations of respective metabolite between 

38 the measurements performed using 1D and 2D MRS. The lines at the top and the bottom represent mean + 
39 1.96 SD and mean – 1.96 SD respectively. 
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Supporting information figure S1: (Top to bottom) Phantom spectrum with TEmax = 100, 99, 

and 100 ms for ∆𝑡: 2 ms (𝑛: 50), 3 ms (𝑛: 33), and 4 ms (𝑛: 25) respectively. SNR is higher 

when ∆𝑡: 2 ms compared to 3 and 4 ms; t1 ridges are not seen to be impacted. 
 



 

Supporting information figure S2: Box plots of metabolite concentrations in mmol/kg measured 

using 2D J-resolved MC semiLASER spectra. Horizontal lines inside the box plots show median 

values (50% quartile). The bottom and the top boundaries of the boxes indicate 25% and 75% 

quartiles respectively. Plus signs (+) show outlier values. 

 


