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Chapter 1

Introduction

This thesis is about answering enumerative questions using tropical geometry.

Tropical geometry, a toolbox for enumerative questions. Tropical geometry is a rather
young field of mathematics that is intimately connected to algebraic geometry, non-Archimedean
analytic geometry and combinatorics. It can be viewed as a degeneration of classical algebraic
geometry. An important property of this tropicalization is that it usually is compatible with
combinatorial structures. Which means that combinatorial structures of algebraic varieties are
not only preserved when this degeneration is applied, but they are rather carved out and thus
become visible in the tropical world.

In the past, tropical geometry turned out to provide powerful methods to answer enu-
merative questions. To apply methods from tropical geometry to an enumerative problem, a
so-called correspondence theorem is required. A correspondence theorem states that an enu-
merative number equals its tropical counterpart, where in tropical geometry we have to count
each tropical object with a suitable multiplicity reflecting the number of classical objects in our
counting problem that tropicalize to the given tropical object. Thus tropical geometry hands
us a new approach to enumerative problems:

(1) Find a suitable correspondence theorem, then

(2) use combinatorics to enumerate the tropical objects in question.

In many situations such correspondence theorems are known, which enables us to work on the
tropical side for the largest parts of this thesis.

Mikhalkin [Mik05] pioneered the use of tropical methods in enumerative geometry by prov-
ing a correspondence theorem for counts of curves in toric surfaces satisfying point conditions.
Later, other correspondence theorems were proven.

The tools: Tropical moduli spaces and intersection theory. (Tropical) moduli spaces
and (tropical) intersection theory therein play – as in enumerative algebraic geometry – an im-
portant role in enumerative tropical geometry. Often, an enumerative problem can be expressed
as an intersection product on the moduli space parametrizing the objects to be counted. Gath-
mann and Markwig [GM08] started to use these tropical moduli space techniques to answer an
enumerative question.

Moduli spaces of abstract rational tropical curves were studied in [Mik07]. They also
show up in the study of the tropical Grassmannian as the space of trees [AK06, SS06]. It
turns out that these tropical moduli spaces are tropicalizations of the corresponding mod-
uli spaces in algebraic geometry in a suitable embedding [Tev07, GM10]. Tropicalizations of

1



2 1. Introduction

moduli spaces of curves of higher genus (in a toroidal and non-Archimedean setting) were
studied by Abramovich, Caporaso and Payne [ACP15]. The theory of rational tropical stable
maps was introduced by Gathmann, Kerber and Markwig in [GKM09]. Ranganathan [Ran17]
tropicalized the moduli space of rational stable maps to toric surfaces using logarithmic and
non-Archimedean geometry.

A coherent tropical intersection theory was initiated by Mikhalkin [Mik06] and established
by Allermann and Rau [AR10, Rau16]. Katz [Kat12] related tropical intersection theory to
intersection theory on toric varieties studied by Fulton and Sturmfels in [FS97]. For matroidal
fans (i.e. tropicalizations of linear spaces) Shaw offers in [Sha13] a framework of tropical
intersection theory.

1.1 Topics

The present thesis consists of two main parts, which are to a great extend independent.

Part I is about counting rational tropical curves in R2 and R3 with so-called cross-ratio
conditions. It is based on the published papers [Gol20a, Gol20c] and the preprint
[Gol20b], which are written by the author of this thesis.

Part II is about counting tropical covers and counting tropical curves on a cylinder sur-
face, using and extending tropical mirror symmetry techniques. It is based on
the published paper [BGM20] and the preprint [BGM18], which are joint work
with Janko Böhm and Hannah Markwig.

Figure 1.1 outlines the general structure of the thesis. On the left side, it shows Part I, which
breaks down into three parts, that are different approaches to (almost) the same counting
problem. Each of these approaches yields deeper insights into the original counting problem.
As Figure 1.1 indicates, the combinatorial approach generalizes to rational tropical curves in
R3. On the right side, the two subparts of Part II, their relation and the dimensions of their
counting problems are shown.

Recursive
approach

dimension

1

2

3

Constructive
approach

Combinatorial
approach

Covers of elliptic
curves E

Combinatorial
approach

Curves in
E × P1

Part II

Tropical mirror
symmetry

Part I

Tropical
cross-ratios

Figure 1.1: The overall structure of the present thesis.

1.1.1 Part I: Tropical cross-ratios

Consider the following enumerative problem: Determine the number Nd of rational degree d
curves in P2

C passing through 3d−1 general positioned points. For small d, this question can be



1.1. Topics 3

answered using methods from classical algebraic geometry. It took until ’94 when Kontsevich,
inspired from developments in physics, presented a recursive formula to calculate the numbers
Nd for all degrees. This recursion is known as Kontsevich’s formula.

Theorem (Kontsevich’s formula, [KM94]). The numbers Nd are determined by the recursion

Nd =
∑

d1+d2=d
d1,d2>0

(
d2

1d
2
2 ·
(

3d− 4

3d1 − 2

)
− d3

1d2 ·
(

3d− 4

3d1 − 1

))
Nd1Nd2

with initial value N1 = 1.

Tropical geometry, which is efficient when it comes to enumerative problems, provides a
tropical proof of Kontsevich’s formula. Recall that tropical geometry is applied in two steps:

(1) Find a suitable correspondence theorem. Mikhalkin’s correspondence theorem [Mik05]
states that the numbers Nd equal their tropical counterparts, i.e. they can be obtained
from the weighted1 count of rational tropical degree d curves in R2 passing through 3d−1
general positioned points. Hence Kontsevich’s formula translates into a recursion on the
tropical side called tropical Kontsevich’s formula and vice versa.

(2) Use combinatorics to enumerate the tropical objects in question. Gathmann and Mark-
wig demonstrated the efficiency of tropical methods by giving a purely tropical proof
of tropical Kontsevich’s formula [GM08]. Applying Mikhalkin’s correspondence theorem
then yields Kontsevich’s formula.

In the tropical proof — similar to the classical one — rational tropical degree d curves that
satisfy point conditions, two line conditions and one tropical cross-ratio condition are consid-
ered. In fact, a byproduct of the proof of (tropical) Kontsevich’s formula is a recursive formula
for the number of rational (tropical) plane degree d curves that satisfy point conditions, two
line conditions and one (tropical) cross-ratio condition in general position.

(Tropical) cross-ratios. A cross-ratio is the element

(q3 − q1)(q4 − q2)

(q3 − q2)(q4 − q1)

associated to four ordered points q1, q2, q3, q4 on a line. It encodes the relative position of these
four points to each other. It is well-known that it is invariant under projective transformations
and is therefore well-defined when four points on the projective line are considered. If a cross-
ratio is given, then the positions of the points subject to that cross-ratio are restricted. Hence
a cross-ratio can be seen as a condition that can be imposed on elements of the moduli space
of n-pointed rational stable maps to a toric variety.

The tropical counterpart of a cross-ratio, a tropical cross-ratio, was first introduced by
Mikhalkin in [Mik07] under the name “tropical double ratio” and can be thought of as paths
of fixed lengths in a tropical curve. More precisely: A plane rational tropical curve is a 1-
dimensional polyhedral complex in R2 whose unbounded polyhedra are uniquely labeled. Let
(q1, q2, q3, q4) be a quadruple of labels of unbounded polyhedra. Mikhalkin defined the tropical
double ratio as signed length of the intersection of the geodesic paths q1q2 and q3q4, where the
sign is positive if and only if the orientations of those paths are compatible.

1Tropical curves are always counted with multiplicities.



4 1. Introduction

Correspondence theorem. Tyomkin [Tyo17] provides a correspondence theorem that in-
volves tropical cross-ratios. It states that the number of rational algebraic curves in a toric
variety over an algebraically closed field of characteristic zero that satisfy general positioned
point and cross-ratio conditions equals its tropical counterpart.

Counting problems. The idea of the proof of Kontsevich’s formula raises the following
enumerative question, which serves as a starting point of a whole list of enumerative questions.

(Q1)
How many rational plane degree d curves are there that satisfy any appropriate2number
of general positioned point and cross-ratio conditions?

Inspired from Kontsevich’s recursive formula, we specialize (Q1) to the following question:

(Q2)
Is there a general version of Kontsevich’s formula that recursively calculates the number
from Question (Q1)?

Further questions we may ask are:

(Q3) Can the rational (tropical) plane degree d curves from Question (Q1) be constructed?

(Q4)
What about rational curves in other toric surfaces? What is the number of rational
curves of a given degree in a toric surface that satisfy conditions as in Question (Q1)?

(Q5)
What about rational curves in higher dimensional spaces? What is, for example, the
number of rational degree d space curves that satisfy conditions as in Question (Q1)?

In order to find answers to questions (Q1)–(Q5), we use Tyomkin’s correspondence theorem
[Tyo17] for cross-ratios such that tropical geometry can be applied. It turns out that questions
(Q2)–(Q5) require different approaches within tropical geometry. Each of the three approaches,
which we call recursive, constructive and combinatorial approach, sheds light on different as-
pects of tropical curves that satisfy tropical cross-ratio conditions.

Recursive approach. In Chapter 4, Question (Q2) is answered by proving a general tropical
Kontsevich’s formula (Theorem 4.3.4) that recursively calculates the weighted number of ratio-
nal plane tropical curves of degree d that satisfy point conditions, curve conditions and tropical
cross-ratio conditions. In order to obtain a classical general Kontsevich’s formula (Corollary
4.3.5), Tyomkin’s correspondence theorem [Tyo17] is applied.

Notice that Tyomkin’s correspondence theorem only holds for point and cross-ratio condi-
tions. There is no correspondence theorem that relates the tropical numbers that also involve
curve conditions to their classical counterparts, yet. That is, the general tropical Kontsevich’s
formula we obtain is capable of not only computing the algebro-geometric numbers we are
looking for in Question (Q1), but also of computing further tropical numbers for which there
is no correspondence theorem, yet.

The general Kontsevich’s formula we derive allows us to recover Kontsevich’s formula, see
Corollary 4.3.7. The initial values of the general Kontsevich’s formula are the numbers provided
by the original Kontsevich’s formula and so-called cross-ratio multiplicities, which are purely
combinatorial (Definition 3.2.16).

2“Appropriate” means that there are enough conditions such that the numbers obtained from counting are
finite.
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We remark that Kontsevich’s formula was generalized in different ways before, e.g. Ern-
ström and Kennedy took tangency conditions into account [EK98, EK99] and Di Francesco
and Itzykson [DFI95] generalized it among others to P1

C × P1
C. We are not aware of any gener-

alization that involves multiple cross-ratios.

Constructive approach. There is a well-known combinatorial tool tropical geometry pro-
vides to explicitly construct tropical curves, the so-called lattice path algorithm. In Chapter
5, the tropical version of Question (Q3) is answered, i.e. all rational tropical plane degree d
curves that satisfy an appropriate number of general positioned point conditions and tropical
cross-ratio conditions are constructed. For that, the lattice path algorithm is extended such
that it involves tropical cross-ratios. The resulting generalized lattice path algorithm is called
cross-ratio lattice path algorithm. It is capable of explicitly constructing the tropical curves we
want and thus gives an alternative answer to Question (Q1) using Tyomkin’s correspondence
theorem [Tyo17]. Moreover, our algorithm also works in arbitrary compact toric surfaces and
thus answers Question (Q4).

Lattice paths were used in [Mik03, Mik05] to construct tropical curves that satisfy point
conditions. Besides our generalization to tropical cross-ratios, there are other generalizations
(in particular [MR09]) of lattice paths that inspired our approach. The lattice path algorithm
can also be extended to determine invariants connected to counts of real curves as well, see
[Shu06].

Combinatorial approach. In Chapter 6, the concept of so-called floor diagrams is gener-
alized in order to answer question (Q5). Floor diagrams are graphs that arise from so-called
floor-decomposed tropical curves by forgetting some information. Floor diagrams were in-
troduced by Mikhalkin and Brugallé in [BM07, BM08] to give a combinatorial description of
Gromov-Witten invariants of Hirzebruch surfaces. Floor diagrams have also been used to es-
tablish polynomiality of the node polynomials [FM10] and to give an algorithm to compute
these polynomials in special cases – see [Blo11]. Moreover, floor diagrams have been general-
ized, for example in case of Psi-conditions, see [BGM12], or for counts of curves relative to a
conic [Bru15].

We extend the concept of floor diagrams to involve tropical cross-ratios, and call the result-
ing combinatorial objects cross-ratio floor diagrams. Each of these cross-ratio floor diagrams
is counted with a suitable multiplicity which reflects how many tropical curves degenerate to
that cross-ratio floor diagram. Hence a weighted count of cross-ratio floor diagrams offers an
alternative way of answering Question (Q1) using Tyomkin’s correspondence theorem [Tyo17].

However, the main benefit of the combinatorial cross-ratio floor diagram approach is that
it generalizes to higher dimension. Floor diagrams (resp. floor-diagram-like approaches) have
been used in higher dimensions before, see [BM] (resp. [Tor14]). Using cross-ratio floor dia-
grams in higher dimension, we are able to provide an answer for the second part of Question
(Q5), i.e. in case of space curves.

1.1.2 Part II: Tropical mirror symmetry

Mirror symmetry. Mirror symmetry is a duality relation that originated from string theory,
where it relates 3-dimensional Calabi-Yau manifolds. Beyond that, mirror symmetry is at the
base of many interesting developments in mathematics. For example, it appears in enumerative
contexts which makes it particularly interesting for us. More precisely, enumerative results
relate Gromov-Witten invariants to so-called Feynman integrals, where a Feynman integral is
a formal expression that can be calculated using a computer algebra system.
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Hurwitz numbers. Hurwitz numbers are counts of simply ramified covers with fixed genus
and degree. It is known from Okounkov-Pandharipande’s Gromov-Witten/Hurwitz correspon-
dence [OP06] that Hurwitz numbers are a special case of descendant Gromov-Witten invariants.
So some results of enumerative mirror symmetry are stated for Hurwitz numbers, like Dijk-
graaf’s famous mirror symmetry theorem for elliptic curves. For that, let Nd,g denote a Hurwitz
number of an elliptic curve, i.e. a count of simply ramified genus g covers of degree d of an
elliptic curve with 2g − 2 fixed branch points.

Theorem (Dijkgraaf’s mirror symmetry theorem for elliptic curves, [Dij95]). For fixed g ≥ 2,
the equation

∑
d

Nd,gq
d =

∑
Γ

1

|Aut(Γ)|
IΓ(q)

of formal power series holds, where the sum on the right goes over all 3-valent connected graphs
of genus g and IΓ(q) denotes a Feynman integral.

Quasimodularity. Dijkgraaf’s mirror symmetry theorem was used in [Dij95, KZ95] to prove
that the generating series of Hurwitz numbers is a quasimodular form of weight 6g− 6. Quasi-
modularity behavior is desirable because it controls the asymptotic of the generating series.

Tropical mirror symmetry. Batyrev [Bat94] and Batyrev-Borisov [BB96] used combina-
torics and toric geometry to study mirror symmetry. Their constructions influenced the well-
known Gross-Siebert program for mirror symmetry, which aims at constructing new mirror pairs
and providing an algebraic framework for SYZ-mirror symmetry [SYZ96, GS03, GS06, GS10].
The Gross-Siebert program established tropical geometry as a tool to prove such mirror sym-
metry relations [Gro11]. The philosophy how tropical geometry can be exploited is illustrated
in the following triangle3:

tropical
Gromov-Witten

invariants

Gromov-Witten
invariants

Feynman
integrals

C
orrespondence

T
heorem

Mirror symmetry

Tro
pi

ca
l

m
irr

or
sy

m
m

et
ry

Figure 1.2: Tropical geometry and mirror symmetry.

In many situations, correspondence theorems relating Gromov-Witten invariants resp. enumer-
ative invariants to their tropical counterparts are known [Mik05, NS06, CJM10, BBM11]. If we
can relate the generating series of tropical invariants to Feynman integrals, we obtain a proof
of the desired mirror symmetry relation using a detour via tropical geometry [Gro10, Ove15].

3A similar version of this triangle can be found in [Gro11].
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Tropical mirror symmetry for elliptic curves

The tropical mirror symmetry part of the current thesis contains two subparts, see Figure 1.1.
The first of these subparts (Chapter 8) is about tropical mirror symmetry for elliptic curves.

Dijkgraaf’s mirror symmetry theorem via tropical geometry. Böhm, Bringmann,
Buchholz and Markwig [BBBM17] investigated the triangle of Figure 1.2 for the case of Hurwitz
numbers of an elliptic curve and Feynman integrals. They proved a tropical mirror symmetry
relation, i.e. they provided the right arrow of the triangle of Figure 1.2 in this situation. Cor-
respondence theorems for Hurwitz numbers existed already [CJM10, BBM11], where tropical
Hurwitz numbers essentially count certain decorated graphs. Thus Dijkgraaf’s mirror sym-
metry theorem follows as a corollary from [BBBM17] and a suitable correspondence theorem.
Interestingly, the tropical approach of [BBBM17] revealed that the tropical mirror symmetry
relation holds on an even finer level. Tropically, Feynman integrals and generating series of
(labeled) tropical covers can be related graph by graph and order by order. As a consequence,
one obtains interesting new quasimodularity statements for graph generating series [GM20].

The tropical mirror symmetry theorem for Hurwitz numbers of an elliptic curve can be
viewed as a support for the strategy of the Gross-Siebert program, or more generally for the
philosophy of using tropical geometry as a tool in mirror symmetry.

Fock space. The traditional approach to mirror symmetry of an elliptic curve involves op-
erators on Fock spaces. There are two Fock spaces, a fermionic and a bosonic Fock space,
and an isomorphism between them called the Boson-Fermion correspondence. The latter is
usually viewed as the essence of mirror symmetry for elliptic curves. The generating series
of Gromov-Witten invariants can be interpreted on the fermionic side. The Boson-Fermion
correspondence expresses them in terms of matrix elements on the bosonic Fock space, which
can be related to Feynman integrals [KR87, OP06, Li11a, Li11b]. Thus mathematical physics
provides a proof of Dijkgraaf’s theorem that involves operators on Fock spaces.

Generalizing tropical mirror symmetry of elliptic curves. The previous results about
tropical mirror symmetry of elliptic curves yield the following question (we continue the num-
bering of the questions from above):

(Q6)
Can the tropical mirror symmetry relation of tropical Hurwitz numbers of an elliptic
curve be extended to tropical descendant Gromov-Witten invariants of an elliptic curve?

As it turns out in Chapter 8, the answer to Question (Q6) is positive. Therefore previous
results involving the Fock space suggest the next question:

(Q7)
Is there a relation between tropical descendant Gromov-Witten invariants of an elliptic
curve and the Fock space?

It is also shown in Chapter 8 that the answer to Question (Q7) is positive as well. Again, we
want to emphasize that Chapter 8 is based on [BGM18], which is joint work of the author of
the present thesis with Janko Böhm and Hannah Markwig.

Methodology. The most important new tool of [BBBM17] in the study of mirror symmetry
for elliptic curves was a bijection between tropical covers (i.e. decorated graphs) satisfying
fixed discrete data and sets of monomials contributing to a coefficient in a Feynman integral
(Theorem 2.30, [BBBM17]). To answer Question (Q6), it is generalized in two directions, both
involving the source curves of the tropical covers in question:
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(a) we need to allow vertices of valence different from 3, and

(b) we need to allow genus at vertices.

The task in (a) is a major extension of the bijection. The task in (b) involves the multiplicities
with which covers are counted. In case of tropical Hurwitz numbers the multiplicity of a
tropical cover is simply the product of expansion factors of its edges. In the case of descendant
Gromov-Witten invariants, we also obtain local vertex contributions which are 1-point relative
descendant Gromov-Witten invariants. In dimension one, the generating series of 1-point
relative descendant Gromov-Witten invariants has a nice form and can be given in terms of
sinus hyperbolicus [OP09]. This nice form enables us to single out vertex contributions in
Feynman integrals and to prove a tropical version of Dijkgraaf’s mirror symmetry theorem
that involves descendant Gromov-Witten invariants.

To answer Question (Q7), we restrict to the case of tropical Hurwitz numbers since the
general case of tropical descendant Gromov-Witten invariants could be treated similarly but
the amount of notation required would increase largely. The main ingredient to link tropical
Hurwitz numbers to the Fock space is a version of Wick’s Theorem [Wic50] which encodes
matrix elements in a bosonic Fock space as weighted sums of graphs, which can then directly
be related to tropical Hurwitz covers.

Tropical mirror symmetry for E × P1

The second subpart of tropical mirror symmetry (see Figure 1.1) is Chapter 9 in which the
tropical mirror symmetry relation between tropical Gromov-Witten invariants of an elliptic
curve E and Feynman integrals (Figure 1.2) is utilized to study generating series of Gromov-
Witten invariants of E × P1.

Relating Gromov-Witten invariants of E×P1 to Feynman integrals. Gromov-Witten
invariants of E × P1 can be viewed as counts of curves in E × P1 of fixed bidegree (d1, d2) and
genus g that satisfy generic point conditions. Such a number is denoted by N(d1,d2,g). A main

result of Chapter 9 states that, for fixed d2 and g, the generating series
∑

d1
N(d1,d2,g)q

d1 equals
a sum of Feynman integrals (see Corollary 9.3.5):∑

d1

N(d1,d2,g)q
d1 =

∑
P

1

|Aut(P)|
IP(q), (1.1)

where the sum on the right goes over particular graphs P which we call pearl chains (see
Definition 9.2.1) of type (d2, g). For fixed d2 and g, there is a finite list of pearl chains of type
(d2, g). Equation (1.1) and, more generally, Chapter 9 is based on [BGM20], which is joint
work of the author of the present thesis with Janko Böhm and Hannah Markwig.

Obviously, Dijkgraaf’s mirror symmetry theorem for elliptic curves inspired equation (1.1).
It is interesting that our generating series of Gromov-Witten invariants of E × P1 can be
expressed as a sum over the same kind of Feynman integrals that appear in Dijkgraaf’s mirror
symmetry theorem. Only the graphs over which we sum change when comparing Dijkgraaf’s
mirror symmetry theorem which involves Hurwitz numbers of an elliptic curve to Equation
(1.1) which involves Gromov-Witten invariants of E × P1.

Floor diagrams and curled pearl chains. In order to obtain (1.1), tropical geometry is
used. To do so, we prove a correspondence theorem that states the equality of the Gromov-
Witten invariant N(d1,d2,g) to its tropical counterpart. As in Part I (see “combinatorial ap-
proach” there), floor diagram techniques are then utilized. They allow us to reduce the counting
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problem of the tropical curves in tropical E×P1 to certain tropical covers of a tropical elliptic
curve. More precisely, floor diagrams are used to relate counts of tropical curves to counts of
curled pearl chains, which can essentially be viewed as (combinatorial types of) tropical covers
of a tropical elliptic curve with a particular source graph, namely a pearl chain. Thus results
of Chapter 8 can be applied to deduce (1.1).

Further generalization and limitations. For our study of generating series of Gromov-
Witten invariants of E × P1, we restrict to invariants evaluating point conditions. This puts
us within the scope of current techniques for correspondence theorems. It is also possible to
evaluate points and insert Psi-conditions, i.e. study stationary descendant Gromov-Witten in-
variants. Preliminary work on correspondences exists for this case [MR20, CJMR21]. However,
it is more complicated to relate the generating series of descendant Gromov-Witten invariants
to Feynman integrals. The difficulty that arises can be expressed in terms of the multiplicity
with which tropical objects are counted. In case of descendant Gromov-Witten invariants,
local vertex contributions appear, which are one-point relative descendant Gromov-Witten in-
variants. Recall (b): in dimension one, the generating series of one-point relative descendant
Gromov-Witten invariants has a nice form and can be given in terms of sinus hyperbolicus
[OP09]. To count descendant Gromov-Witten invariants of E × P1 tropically, we need one-
point relative descendant Gromov-Witten invariants of P1 × P1. We are not aware of a nice
form of their generating series. This momentarily limits our possibilities to generalize Equation
(1.1) to descendant Gromov-Witten invariants.

1.2 Overview of the results

Each of the parts I and II contains a preliminary chapter, namely chapters 2 and 7. The
preliminary chapters contain no new results of this thesis. The results of Part I can be found
in chapters 3 to 6, whereas the results of Part II can be found in chapters 8 and 9.

1.2.1 Part I

The results of Part I involve a description of tropical cross-ratios via tropical intersection
theory on tropical moduli spaces, a generalized Kontsevich’s formula, an algorithm to construct
rational tropical curves that satisfy cross-ratio conditions and a combinatorial tool that enables
us to determine the number of rational tropical curves in R3 that satisfy point and cross-ratio
conditions.

Results of Chapter 3: Tropical cross-ratios and their degenerations

Most of the results of this chapter can be found in the paper [Gol20a] of the author that is
published in Mathematische Zeitschrift.

A novel approach to tropical cross-ratios that uses tropical intersection theory on tropical
moduli spaces is introduced (Definition 3.1.1, Remark 3.1.2). It is shown that the arising zero-
dimensional cycles tropical intersection theory produces are enumerative. That means, on the
one hand, that it is shown that the tropical curves that contribute to such zero-dimensional
cycles are precisely the ones we expect according to the definition of tropical cross-ratios of
Mikhalkin [Mik07] (Corollary 3.1.17). On the other hand, it means that it is shown that the
multiplicities of tropical curves that the tropical intersection theoretic framework provides co-
incides with the multiplicities used in Tyomkin’s correspondence theorem [Tyo17] (Proposition
3.1.19). Therefore our novel approach to tropical cross-ratios goes well with existing results.
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In particular, it provides tools to determine the numbers of algebraic curves that satisfy point
and cross-ratio conditions (Corollary 3.1.20).

Tropical intersection theory allows us to define degenerated tropical cross-ratios (Definition
3.2.1). We show that zero-dimensional cycles that are associated to such degenerated tropical
cross-ratios are also enumerative (in the sense that they yield the desired numbers of Tyomkin’s
correspondence theorem), see Corollary 3.2.10. Compared to non-degenerated tropical cross-
ratios, degenerated ones allow a simple combinatorial description of tropical curves that satisfy
them (Corollary 3.2.12). This advantage of degenerated tropical cross-ratios comes with a
minor trade-off: To determine the multiplicity of a tropical curve that satisfies degenerated
tropical cross-ratios, an additional factor, called cross-ratio multiplicity, is required (Definition
3.2.16). It is shown that cross-ratio multiplicities are well-behaved: they are local and purely
combinatorial (Corollary 3.2.22). Moreover, the well-known evaluation-multiplicity of tropical
curves in R2 is generalized in order to describe multiplicities of tropical curves in R2 that satisfy
degenerated tropical cross-ratios (Lemma 3.2.32).

Results of Chapter 4: General Kontsevich’s formula

The results of this chapter can be found in the paper [Gol20c] of the author that was accepted
for publication in the Electronic Journal of Combinatorics.

A general tropical Kontsevich’s formula is established (Theorem 4.3.4) which is an answer
to leading questions (Q1), (Q2), see Corollary 4.3.5. Moreover, it is shown that it implies
the well-known original Kontsevich’s formula (Corollary 4.3.7). We remark, that the general
tropical Kontsevich’s formula (Theorem 4.3.4) is not only capable of computing the numbers
of rational algebraic curves that satisfy point and cross-ratio conditions we are interested in,
but it also computes tropical numbers that involve tropical curve conditions for which there is
no correspondence theorem, yet.

To prove the general tropical Kontsevich’s formula, new methods in tropical geometry are
developed. One of the new concepts arises in the context of movements of tropical curves. More
precisely, if there are not enough conditions given, then rational tropical curves satisfying them
may be moved and thus give rise to families of rational tropical curves. Such movements are
described in special cases using the concept of chains inside the so-called movable component
of a rational tropical curve, see the proof of Proposition 4.1.1. Another new method is used
to describe multiplicities of rational tropical curves which have a so-called contracted bounded
edge and thus split into two “smaller” rational tropical curves. Our approach is based on
considering additional “artificial” degenerated tropical line conditions to the smaller rational
tropical curves (Notation 4.2.1, Proposition 4.2.3).

Results of Chapter 5: Constructing tropical curves algorithmically

The results of this chapter can be found in the paper [Gol20a] of the author that is published
in Mathematische Zeitschrift.

An algorithm, called cross-ratio lattice path algorithm, is presented. It calculates the
numbers from leading question (Q1) by explicitly constructing all rational tropical curves that
contribute to these numbers for a specific configuration of the point conditions (Theorem 5.2.4,
Corollary 5.2.6). The cross-ratio lattice path algorithm therefore answers the leading question
(Q3). Moreover, the cross-ratio lattice path algorithm works in arbitrary compact toric surfaces,
i.e. it provides an answer to question (Q4).

Results of Chapter 6: Counting curves via cross-ratio floor diagrams

The results of this chapter can be found in the preprint [Gol20b] of the author.
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Cross-ratio floor diagrams in R2 and R3 are introduced. We show that they are useful
combinatorial tools to determine the numbers we are interested in. Cross-ratio floor diagrams
in R2 provide an alternative answer to Question (Q1) when the tropical cross-ratios satisfy a
simple additional condition, see Theorem 6.2.13. To define cross-ratio floor diagrams in R3,
the concept of so-called condition flows on rational tropical curves is introduced4 (Subsection
6.3.1). It is shown that cross-ratio floor diagrams in R3 are capable of determining the numbers
of rational tropical curves in R3 that satisfy point conditions and tropical cross-ratio conditions
if the tropical cross-ratios satisfy a simple additional condition (Theorem 6.3.34). As a result,
the second part of Question (Q5) is answered (Corollary 6.3.37). Interestingly, the “artificial”
degenerated tropical line conditions introduced in Chapter 4 also play an important role in the
proof of Theorem 6.3.34.

1.2.2 Part II

The results of Part II involve a tropical mirror symmetry relation for generating series of
tropical descendant Gromov-Witten invariants of an elliptic curve E, its interpretation in terms
of operators on the Fock space, a mirror symmetry theorem for E × P1 and results about
quasimodularity of certain generating series of invariants of E and E × P1.

Results of Chapter 8: Tropical mirror symmetry for elliptic curves

The results of this chapter can be found in the preprint [BGM18] which is joint work of the
author with Janko Böhm and Hannah Markwig.

Question (Q6) is answered, i.e. the tropical mirror symmetry relation of tropical Hurwitz
numbers of tropical elliptic curves is extended to tropical descendant Gromov-Witten invari-
ants, see Theorem 8.1.9. It is remarkable that tropical mirror symmetry naturally holds on a
finer level (Theorem 8.1.9, Theorem 8.1.14). Using a correspondence theorem, we show that
the tropical mirror symmetry relation implies the mirror symmetry relation for descendant
Gromov-Witten invariants of elliptic curves (Theorem 8.1.4). Moreover, the finer level on
which the tropical mirror symmetry relation holds allows us to deduce quasimodularity results
for generating functions of tropical covers (resp. for sums contributing to Feynman integrals),
see Corollary 8.1.20.

We also show that in case of Hurwitz numbers there is a connection between the Fock
space approach to mirror symmetry of elliptic curves and the tropical approach (Theorem
8.2.10). More precisely, we shown that tropical Hurwitz numbers of elliptic curves can directly
be linked to matrix elements on the bosonic Fock space. Figure 1.3 illustrates the philosophy
of how tropical geometry acts as a shortcut to the bosonic Fock space, which supports the
slogan “tropicalization is bosonification” from [CJMR18], and the intuition underlying the
Gross-Siebert program that tropical geometry is a natural language in the context of mirror
symmetry.

4We want to remark that a similar construction was independently introduced by Mandel and Ruddat [MR19]
to study multiplicities of tropical curves.
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Figure 1.3: Boson-Fermion correspondence and tropical geometry as a shortcut.

Results of Chapter 9: Tropical mirror symmetry for E × P1

The results of this chapter can be found in the paper [BGM20] which will appear in Annales
de l’Institut Henri Poincaré D: Combinatorics Physics and their Interactions. It is joint work
of the author with Janko Böhm and Hannah Markwig.

The main results of Chapter 9 are Theorem 9.3.1 and its refined version which is Theorem
9.3.11. Both theorems are stated using so-called pearl chains which we introduce in Definition
9.2.1. We show that pearl chains are an effective tool to count tropical curves since counting
them leads to the same numbers as counting tropical curves in tropical E×P1 (Theorem 9.2.8).

Theorem 9.3.1 yields a tropical mirror symmetry statement which relates generating series
of tropical curves in tropical E × P1 to sums of Feynman integrals (Corollary 9.3.4). Using
the correspondence theorem 9.1.16, a mirror symmetry statement for E×P1 is established, see
Corollary 9.3.5. It relates generating series of Gromov-Witten invariants of E × P1 to sums of
Feynman integrals.

Moreover, Theorem 9.3.1 as well as Theorem 9.3.11 is stated for tropical curves of so-called
leaky degree. This is done with a view towards further generalizations involving tangency con-
ditions. Most natural, and most important for our main application, which is Corollary 9.3.5,
is the case where the leaky degree is zero. Equation (1.1) of Corollary 9.3.5 and Theorem 7.3.7
is the equality of the very left side with the very right side of Figure 1.4. For the intermedi-
ate equalities, we prove more general versions involving tropical curve counts of leaky degree,
curled pearl chains with leaking and Feynman integrals which are (non-constant) coefficients
of power series (see theorems 9.3.1, 9.3.11 and Corollary 9.3.12). These generalizations can
be obtained essentially with the same effort and have potentially further applications in the
theory of tropical curve counts.

As in the case of an elliptic curve, the relation of Gromov-Witten invariants of E × P1 and
Feynman integrals can be used to obtain new quasimodularity statements: the quasimodularity
of a summand IP(q) of Equation 1.1 for a fixed graph P can be deduced from [OP18], see
Theorem 9.4.5.
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Figure 1.4: A chart partially summing up results of Chapter 9.

1.3 Outlook and open questions

The approaches and results of the current thesis raise further questions. We briefly gather
them in this section and make suggestions for further research.

Tropical curves and tropical cross-ratios.

(1) The multiplicity of a rational tropical curve that satisfies degenerated tropical cross-
ratios depends on a cross-ratio multiplicity, which is a combinatorial factor that can be
calculated locally at vertices (Definition 3.2.16). Although this cross-ratio multiplicity
can be calculated by distinguishing all finitely many cases, it raises the question whether
there is a more efficient way of calculating it, see 3.2.27.

(2) The floor decomposition technique that is used in Chapter 6 generalizes to higher di-
mension (Proposition 6.1.6). In order to use this technique for counting rational tropical
curves that satisfy general positioned point conditions and degenerated tropical cross-
ratio conditions, a sufficiently local description of the multiplicity of a floor decomposed
rational tropical curve is required, see sections 3.2.2, 6.3.2. Currently, no such description
is available for floor decomposed rational tropical curves in Rn for n > 3. This prevents
us from extending our combinatorial cross-ratio floor diagram approach to higher dimen-
sions.

(3) Tropical geometry can be used to deduce results for real enumerative problems like
Welschinger invariants [IKS03, IKS09]. It would be interesting to see whether tropical
cross-ratios could be incorporated into such real enumerative problems.

Tropical mirror symmetry.

(4) Our approach to tropical mirror symmetry for E × P1 involves point conditions only,
whereas our results for tropical mirror symmetry for E involve point conditions as well as
Psi-conditions. Thus the question is raised whether Psi-conditions can be incorporated
into our tropical mirror symmetry theorem 9.3.1 for E × P1. Again, multiplicities of
tropical curves prevent us from doing so: When considering Psi-conditions (i.e. in case of
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descendant Gromov-Witten invariants) local vertex contributions appear, which are one-
point relative descendant Gromov-Witten invariants. In case of tropical mirror symmetry
for E the generating series of one-point relative descendant Gromov-Witten invariants has
a nice form and can be given in terms of sinus hyperbolicus [OP09]. To count descendant
Gromov-Witten invariants of E × P1 tropically, we need one-point relative descendant
Gromov-Witten invariants of P1×P1. We are not aware of a nice form of their generating
series. This momentarily prevents us from incorporating Psi-conditions into our results
for tropical mirror symmetry for E × P1.

(5) There is a proof of tropical mirror symmetry for E in case of Hurwitz numbers via
the bosonic Fock space (Section 8.2). Thus the question whether there is a Fock space
approach to tropical mirror symmetry for E × P1 comes up. Intuitively, we expect that
there is such an approach since tropical geometry usually acts as a shortcut to the bosonic
Fock space, see Figure 1.3. Indeed, the only difficulties we anticipate are of technical
nature and arise due to the amount of notation. More precisely, we expect that one
can define black and white labeled cut-join operators similar to the labeled cut-joint
operators used for proving tropical mirror symmetry for E (Definition 8.2.9). Once
suitable operators are found, proofs of Section 8.2 can be imitated to yield the desired
bosonic Fock space approach to tropical mirror symmetry for E × P1.
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Chapter 2

Preliminaries

In the preliminary section, we first give a brief overview of the necessary tropical intersection
theory. After that, standard notations and definitions from tropical geometry (e.g. moduli
spaces of rational tropical stable maps) are recalled, see [Mik07, GM08, GKM09]. It is pointed
out that tropical intersection theory can be applied to the moduli spaces of interest. Besides
this, we try to make notations used as clear as possible by introducing them in separate blocks
to which we refer later.

Notation 2.0.1. We write [m] := {1, . . . ,m} if 0 6= m ∈ N, and if m = 0, then define [m] := ∅.
Underlined symbols indicate a set of symbols, e.g. n ⊂ [m] is a subset of {1, . . . ,m}. We may
also use sets S of symbols as an index, e.g. pS , to refer to the set of all symbols p with indices
taken from S, i.e. pS := {pi | i ∈ S}. The #-symbol is used to indicate the number of elements
in a set, for example #[m] = m.

2.1 Tropical intersection theory

This section collects intersection theoretic background. For more details about tropical inter-
section theory, see [FS97, Rau09, All10, AR10, Kat12, Sha13, AHR16, Rau16].

2.1.1 Affine tropical cycles

Definition 2.1.1 (Normal vectors and balanced fans). Let V := Γ⊗ZR be the real vector space
associated to a given lattice Γ and let X be a fan in V . The lattice generated by span(κ) ∩ Γ,
where κ is a cone of X, is denoted by Γκ. Let σ be a cone of X and τ be a face of σ of
dimension dim(τ) = dim(σ)−1 (we write τ < σ). A vector uσ ∈ Γσ that generates Γσ/Γτ such
that uσ + τ ⊂ σ defines a class uσ/τ := [uσ] ∈ Γσ/Γτ that does not depend on the choice of uσ.
This class is called normal vector of σ relative to τ .

X is a weighted fan of dimension k if X is of pure dimension k and there are weights on
its facets (i.e. its k-dimensional faces), that is there is a map ωX : X(k) → Z. The number
ωX(σ) is called weight of the facet σ of X. To simplify notation, we write ω(σ) if X is clear.
Moreover, a weighted fan (X,ωX) of dimension k is called a balanced fan of dimension k if∑

σ∈X(k),τ<σ

ω(σ) · uσ/τ = 0

holds in V/〈τ〉R for all faces τ of dimension dim(τ) = dim(σ)− 1.

Definition 2.1.2 (Affine cycles). Let V := Γ⊗ZR be the real vector space associated to a given
lattice Γ. A tropical fan X (of dimension k) is a balanced fan of dimension k in V and [(X,ωX)]

17
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denotes the refinement class of X with weights ωX (see Definition 2.8 and Construction 2.10
of [AR10]). Such a class is also called an affine (tropical) k-cycle in V . Denote the set of all
affine k-cycles in V by Zaff

k (V ). For a fan X in V , we may also define an affine k-cycle in
X as an element [(Y, ωY )] of Zaff

k (V ) such that the support of Y with nonzero weights lies in
the support of X (see Definition 2.15 of [AR10]). Define |[(X,ωX)]| as the support of X with
nonzero weights.

The set Zaff
k (V ) (resp. Zaff

k ([(X,ωX)])) can be turned into an abelian group by taking unions
while refining appropriately.

Example 2.1.3. Consider the vector space R2 with its standard lattice Z2. Let e1, e2 be the
vectors of the standard basis of R2. Let X be the 1-dimensional fan whose rays are given by
−e1,−e2, e1 + e2. Define all weights of X to be 1. Hence (X,ωX) is a balanced fan and its
refinement class [(X,ωX)] is an affine (tropical) 1-cycle.

Definition 2.1.4 (Rational functions). Let [(X,ωX)] be an affine k-cycle. A (nonzero) rational
function on [(X,ωX)] is a continuous piecewise linear function

ϕ : |[(X,ωX)]| → R,

i.e. there exists a representative (X,ωX) of [(X,ωX)] such that on each cone σ ∈ X the map
ϕ is the restriction of an integer affine linear function. The set of (nonzero) rational functions
of [(X,ωX)] is denoted by K∗([(X,ωX)]).

Define

K ([(X,ωX)]) := K∗([(X,ωX)]) ∪ {−∞}

such that (K([(X,ωX)]),max,+) is a semifield, where the constant function −∞ is the “zero”
function.

Definition 2.1.5 (Divisor associated to a rational function). Let [(X,ωX)] be an affine k-
cycle in V := Γ⊗Z R and ϕ ∈ K∗([(X,ωX)]) a rational function on [(X,ωX)]. Let (X,ω) be a
representative of [(X,ωX)] on whose cones ϕ is affine linear and denote these linear pieces by
ϕσ. We denote by X(i) the set of all i-dimensional cones of X. We define

div(ϕ) := ϕ · [(X,ωX)] := [(
k−1⋃
i=0

X(i), ωϕ)] ∈ Zaff
k−1([(X,ωX)]),

where

ωϕ : X(k−1) → Z

τ 7→
∑

σ∈X(k),τ<σ

ϕσ(ω(σ)vσ/τ )− ϕτ

 ∑
σ∈X(k),τ<σ

ω(σ)vσ/τ


and the vσ/τ are arbitrary representatives of the normal vectors uσ/τ . If [(Y, ωY )] is an affine
k-cycle in [(X,ωX)], we define ϕ · [(Y, ωY )] := ϕ ||[(Y,ωY )]| ·[(Y, ωY )].

Example 2.1.6. Let [(X,ωX)] be the affine 1-cycle with representative (X,ωX) whose weights
are all 1 and whose 1-dimensional rays are given by −e1,−e2, e1 +e2 as in Example 2.1.3. Then

ϕ : X → R
(x, y) 7→ max(x, y, 0)
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is a rational function on [(X,ωX)] and (X,ωX) is a representative such that ϕ is integer linear
affine on each cone. The divisor associated to ϕ, namely ϕ ·X, is given by the codimension-
1-skeleton of X which is just one point (namely 0 ∈ R2) and that point has weight 1. We
calculate this weight as an example: Let τ = 0 ∈ R2, σ1 = cone (−e1) , σ2 = cone (−e2) and
σ3 = cone (e1 + e2) be cones of X. Applying Definition 2.1.5 yields

ωϕ(τ) = ϕσ1

(
ω(σ1)vσ1/τ

)
+ ϕσ2

(
ω(σ2)vσ2/τ

)
+ ϕσ3

(
ω(σ3)vσ3/τ

)
− ϕτ

(
ω(σ1)vσ1/τ + ω(σ2)vσ2/τ + ω(σ3)vσ3/τ

)
= ϕσ3

(
ω(σ3)vσ3/τ

)
= ϕσ3 (1(e1 + e2)) = 1

because ϕσ1 , ϕσ2 , ϕτ ≡ 0 and ϕσ3 (e1 + e2) = max(1, 1, 0).

Definition 2.1.7 (Affine intersection product). Let [(X,ωX)] be an affine k-cycle. The sub-
group of globally linear functions inK∗([(X,ωX)]) with respect to + is denoted byO∗([(X,ωX)]).
We define the group of affine divisors of [(X,ωX)] to be the quotient group

Div([(X,ωX)]) := K∗([(X,ωX)])/O∗([(X,ωX)]).

Let [ϕ] ∈ Div([(X,ωX)]) be a divisor. The divisor associated to this function is denoted by
div([ϕ]) := div(ϕ) and is well-defined. The following bilinear map is called affine intersection
product

· : Div([(X,ωX)])× Zaff
k ([(X,ωX)])→ Zaff

k−1([(X,ωX)])

([ϕ], [(Y, ωY )]) 7→ [ϕ] · [(Y, ωY )] := ϕ · [(Y, ωY )].

Definition 2.1.8 (Morphisms of affine cycles). Let X be a fan in V = Γ ⊗Z R and Y a fan
in V ′ = Γ′ ⊗Z R. A morphism f : X → Y is a Z-linear map from |X| ⊆ V to |Y | ⊆ V ′

induced by a Z-linear map on the lattices. A morphism of weighted fans is a morphism of
fans. A morphism of affine cycles f : [(X,ωX)]→ [(Y, ωY )] is a morphism of weighted fans f :
|[(X,ωX)]| → |[(Y, ωY )]| that is independent of the choice of representatives, where |[(X,ωX)]|
(resp. |[(Y, ωY )]|) denotes the support of X (resp. Y ) with nonzero weights.

Example 2.1.9. Let e1, e2 be the vectors of the standard basis of R2. Let [(X,ωX)] be the affine
1-cycle from Example 2.1.3. Let [(Y, ωY )] be another affine 1-cycle in R2 with representative
(Y, ωY ) whose weights are all 1 and whose two 1-dimensional rays are given by −e1−e2, e1 +e2.
Then

f : |[(X,ωX)]| → |[(Y, ωY )]|
−e1 7→ −e1 − e2

−e2 7→ −e1 − e2

is a morphism of affine cycles which is illustrated in Figure 2.1.
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f

(X,ωX) (Y, ωY )

Figure 2.1: A morphism of affine cycles. The colors indicate where lattice points of |X| are
mapped to.

Definition 2.1.10 (Push-forward of affine cycles). Let V = Γ ⊗Z R and V ′ = Γ′ ⊗Z R. Let
[(X,ωX)] ∈ Zaff

m (V ) and [(Y, ωY )] ∈ Zaff
n (V ′) be cycles with representatives (X,ωX) and (Y, ωY ).

Let f : X → Y be a morphism. Choosing a refinement of (X,ωX), the set of cones

f∗X := {f(σ) | σ ∈ X contained in a maximal cone of X on which f is injective}

is a tropical fan in V ′ of dimension m with weights

ωf∗X(σ′) :=
∑

σ∈X(m): f(σ)=σ′

ωX(σ) · |Γ′σ′/f(Γσ)|

for all σ′ ∈ f∗X
(m). The equivalence class of (f∗X,ωf∗X) is uniquely determined by the

equivalence class of (X,ωX). For [(Z, ωZ)] ∈ Zaff
k ([(X,ωX)]), we define

f∗[(Z, ωZ)] := [(f∗(|[(Z, ωZ)]|), ωf∗(|[(Z,ωZ)]|))] ∈ Zaff
k ([(Y, ωY )])

The map

Zaff
k ([(X,ωX)])→ Zaff

k ([(Y, ωY )]), [(Z, ωZ)] 7→ f∗[(Z, ωZ)]

is well-defined, Z-linear and f∗[(Z, ωZ)] is called push-forward of [(Z, ωZ)] along f .

Example 2.1.11. Let f be the morphism of Example 2.1.9. Notice that no ray of X is
mapped to a point under f . Therefore f∗X = Y . Let σ′− (resp. σ′+) be the ray of (Y, ωY ) that
is generated by −e1 − e2 (resp. e1 + e2). There are two rays of X that are mapped onto σ′−
under f (indicated by blue dots in Figure 2.1) such that primitive direction vectors are mapped
to a primitive direction vector again. Hence

ωf∗X(σ′−) = 2.

On the other hand, there is exactly one ray of (X,ωX) that is mapped to σ′+. As indicated by
the green dots in Figure 2.1, a primitive direction vector is stretched to twice its length. Thus

ωf∗X(σ′+) = 2.

So in total

f∗[(X,ωX)] = [(Y, 2 · ωY )].
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Definition 2.1.12 (Pull-back of divisors). Let [(X,ωX)] ∈ Zaff
m (V ) and [(Y, ωY )] ∈ Zaff

n (V ′) be
cycles in V = Γ ⊗Z R and V ′ = Γ′ ⊗Z R. Let f : [(X,ωX)] → [(Y, ωY )] be a morphism. The
map

Div([(Y, ωY )])→ Div([(X,ωX)])

[h] 7→ f∗[h] := [h ◦ f ]

is well-defined, Z-linear and f∗[h] is called pull-back of [h] along f .

Proposition 2.1.13 (Projection formula). Let [(X,ωX)] ∈ Zaff
m (V ) and [(Y, ωY )] ∈ Zaff

n (V ′)
be cycles in V = Γ⊗Z R and V ′ = Γ′ ⊗Z R. Let f : [(X,ωX)]→ [(Y, ωY )] be a morphism. Let
[(Z, ωZ)] ∈ Zaff

k ([(X,ωX)]) be a cycle and let ϕ ∈ Div ([(Y, ωY )]). Then the equality

ϕ · (f∗[(Z, ωZ)]) = f∗ (f∗ϕ · [(Z, ωZ)]) ∈ Zaff
k−1([(Y, ωY )])

holds.

2.1.2 Abstract tropical cycles

So far, we introducted affine cycles only. Affine cycles are building blocks of abstract cycles.
Since the whole “affine-to-abstract”-procedure is quite technical, we omit it here and refer
to section 5 of [AR10] instead. We want to remark that concepts like pull-backs and push-
forwards carry over to abstract cycles. In particular, the projection formula (Proposition 2.1.13)
also holds for abstract cycles. For our purposes, the following definition of abstract cycles is
sufficient:

Definition 2.1.14 (Abstract cycles). An abstract k-cycle C is a class under a refinement
relation of a balanced polyhedral complex of pure dimension k which is locally isomorphic to
tropical fans.

Remark 2.1.15 (Rational functions on abstract cycles). In the same way rational functions
on affine cycles led to an affine intersection product, one can also consider rational functions
on abstract cycles to obtain an intersection product. Again, we want to omit technicalities and
refer to Definition 6.1 of [AR10] instead. The main point of considering rational functions on
abstract cycles is that they are no longer piecewise linear but piecewise affine linear.

As we see below, it happens that we start with an affine cycle [(X,ωX)] and want to intersect
it with a rational function f that is piecewise affine linear. In order to do so, we need to refine
[(X,ωX)] in such a way that f is a rational function on the affine cycle locally around each
codimension one face. Hence [(X,ωX)] becomes a polyhedral complex which is a representative
of an abstract cycle C. Then we can intersect f with C.

In the following we want to restrict to tropical intersection theory on Rn.

Remark 2.1.16 (Rational equivalence of abstract cycles). There is a concept of rational equiv-
alence of abstract cycles (section 8 of [AR10]). When we consider abstract cycles, we usually
consider them up to this equivalence relation.

Definition 2.1.17 (Degree map). Let A0(Rn) denote the set of abstract 0-cycles in Rn up to
rational equivalence. The map

deg : A0(Rn)→ Z

[ω1P1 + · · ·+ ωrPr] 7→
r∑
i=1

ωi

is a well-defined morphism and for D ∈ A0(Rn) the number deg(D) is called the degree of D.
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2.2 Tropical curves and their moduli spaces

In this section moduli spaces of tropical abstract curves and moduli spaces of tropical stable
maps are recalled. For more background on these moduli spaces see [Mik07, GM08, GKM09].

Definition 2.2.1 (Moduli space of abstract rational tropical curves). Notation 2.0.1 is used.
An abstract rational tropical curve is a metric tree Γ with unbounded edges called ends and
with val(v) ≥ 3 for all vertices v ∈ Γ. It is called M -marked abstract tropical curve (Γ, x[M ]) if
Γ has exactly M ends that are labeled with pairwise different x1, . . . , xM ∈ N. Two M -marked
tropical curves (Γ, x[M ]) and (Γ̃, x̃[M ]) are isomorphic if there is a homeomorphism Γ → Γ̃

mapping xi to x̃i for i ∈ [M ] and each edge of Γ is mapped onto an edge of Γ̃ by an affine linear
map of slope ±1. The set M0,M of all M -marked tropical curves up to isomorphism is called
moduli space of M -marked abstract tropical curves. Forgetting all lengths of an M -marked
abstract tropical curve gives us its combinatorial type.

x1

x3

x2

x4

x5

x6

l1

l2

l3

Figure 2.2: An example of a 6-marked abstract tropical curve (Γ, x[6]). The lengths of the
bounded edges of Γ are denoted by l[3].

Theorem 2.2.2 (M0,M is a tropical fan, [SS06, Mik07, GKM09, GM10]). The moduli space
M0,M can explicitly be embedded into a Rt such that M0,M is a fan of pure dimension M − 3
with its fan structure given by combinatorial types. Equip Rt with a lattice which arises from
considering integer edge lengths of abstract tropical curves inM0,M and let all weights ofM0,M

be one. Then M0,M ⊂ Rt is a tropical fan, i.e. M0,M represents an affine cycle in Rt. This
allows us to use tropical intersection theory on M0,M . For an example, see Figure 2.3.

1

2
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4

1

3

2

4

1

2

3

4

Figure 2.3: One way of embedding the moduli space M0,4 into R2 centered at the origin of
R2. The length of a bounded edge of an abstract tropical curve depicted above is given by
the distance of the point in M0,4 corresponding to this curve from the origin of R2. The ends
of M0,4 correspond to different distributions of labels on ends of abstract tropical curves with
four ends. We refer to these ends as (12|34), (13|24), (14|23).
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Definition 2.2.3 (Degree). A tuple (∆, l) is called a degree in Rm if ∆ is a nonempty finite
multiset, l : ∆ ↪→ N is an injective map and each entry v of ∆ is a nonzero element of Zm such
that ∑

v∈∆

v = 0 and 〈v | v ∈ ∆〉 = Rm.

Thus each entry of ∆ is equipped with a unique natural number called label. Let ∆ =
∆1∪̇ . . . ∪̇∆r be a decomposition of ∆ into multisets such that each ∆i consists of copies of
a vi ∈ ∆ and #∆i is maximal for i ∈ [r]. The number of bijective maps l : ∆ → [#∆] with
l |∆i : ∆i → [#∆i+

∑i−1
t=1 #∆t] is called the number of ways to label ∆. Let v = (v1, . . . , vm) ∈ ∆,

then gcd(v1, . . . , vm) is called weight of v. Most of the time the map l is suppressed in the
notation, i.e. we usually write ∆ and assume that elements of ∆ are labeled. If we refer to
a degree to be partially labeled, then we mean that l is restricted to a subset of ∆, i.e. some
entries of ∆ are labeled and some are not. In particular, a degree is called unlabeled if all
entries of ∆ are not labeled.

Notation 2.2.4 (Standard directions and certain degrees). Let ei := (δti)t∈[m] for i ∈ [m] de-
note the vectors of the standard basis of Rm, and define e0 :=

∑m
i=1 ei. We call e0,−e1, . . . ,−em

standard directions of Rm. The following degrees are used often:

(a) For m ∈ N>0 and d ∈ N, we define the degree ∆m
d to be the multiset consisting of d copies

of e0 and d copies of each −ei for i ∈ [m].

(b) Let α := (αi)i∈N and β := (βi)i∈N be two sequences with αi, βi ∈ N such that

|α| :=
∑
i∈N

αi and |β| :=
∑
i∈N

βi

are finite. Let d ∈ N such that d−
∑

i∈N i · αi +
∑

i∈N i · βi = 0 and define

∆m
d (α, β) := ∆m

d \ {−em, . . . ,−em}︸ ︷︷ ︸
d many

∪
⋃
i∈N
{i(−em), . . . , i(−em)}︸ ︷︷ ︸

αi many

∪
⋃
i∈N
{i · em, . . . , i · em}︸ ︷︷ ︸

βi many

,

where unions are actually unions of multisets. We write αlab (resp. βlab) to refer to the
set of labels associated to ends in α (resp. β). Notice that by definition

∆m
d = ∆m

d ((0, . . . ), (0, . . . )).

If a degree ∆ is given and we refer to αlab (resp. βlab), we mean that αlab = βlab = ∅ if
∆ 6= ∆m

d (α, β) for suitable d,m, α, β.

Remark 2.2.5 (Degree associated to a polytope). Notice that each degree of Notation 2.2.4
arises as outer normal fan of a lattice polytope (e.g. each degree ∆2

d(α, β) is associated to a
polytope that defines a Hirzebruch surface). Whenever a given degree appears as such a normal
fan, then we denote its associated lattice polytope by Σ (∆). Note also that each degree in R2

corresponds to a lattice polytope.

Example 2.2.6. Let ∆2
1 ((1, 1, 0, . . . ), (0, 1, 0, . . . )) be a degree as in Notation 2.2.4. Then

∆2
1 ((1, 1, 0, . . . ), (0, 1, 0, . . . )) = {e0,−e1,−e2, 2 · (−e2), 2 · e2}

holds by definition, where the equality is an equality of multisets. Notice that

{e0,−e1,−e2, 2 · (−e2), 2 · e2} = {e0} ∪̇ {−e1} ∪̇ {−e2} ∪̇ {−2e2} ∪̇ {2e2}
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is a decomposition as in Definition 2.2.3. Hence there is one way to label, namely

vector e0 −e1 −e2 −2e2 2e2

label 1 2 3 4 5
.

Figure 2.4 shows the polytope associated to ∆2
1 ((1, 1, 0, . . . ), (0, 1, 0, . . . )), see Remark 2.2.5.

−e1

−e2

−2e2

e0

e2
4

1

3

2

5

x2

x1

Figure 2.4: On the left, the degree ∆2
1 ((1, 1, 0, . . . ), (0, 1, 0, . . . )) of Example 2.2.6 is shown.

The circled numbers indicate the labels. On the right, its associated lattice polytope
Σ
(
∆2

1 ((1, 1, 0, . . . ), (0, 1, 0, . . . ))
)

that defines a Hirzebruch surface is shown.

Definition 2.2.7 (Moduli space of rational tropical stable maps to Rm). Let (∆, l) be a degree
in Rm as in Definition 2.2.3 and let N ∈ N. A rational tropical stable map of degree (∆, l) to
Rm with N contracted ends is a tuple (Γ, x[M ], h), where (Γ, x[M ]) is an M -marked abstract
tropical curve with M = N + #∆, x[N ] /∈ l(∆), and a map h : Γ → Rm that satisfies the
following:

(a) Let e ∈ Γ be an edge with length |e| ∈ [0,∞], identify e with [0, |e|] and denote the
vertex of e that is identified with 0 ∈ [0, |e|] by V . The map h is integer affine linear, i.e.
h |e: t 7→ tv + a with a ∈ Rm and v(e, V ) := v ∈ Zm, where v(e, V ) is called direction
vector of e at V and the weight of an edge (denoted by ω(e)) is the gcd of the entries of
v(e, V ) if v(e, V ) 6= 0 and zero otherwise. The vector 1

ω(e) · v(e, V ) is called the primitive

direction vector of e at V . If e = xi ∈ Γ is an end, then v(xi) denotes the direction vector
of xi pointing away from its one vertex it is adjacent to.

(b) The direction vector v(xi) of an end labeled with xi is 0 ∈ Rm if i ∈ [N ]. Otherwise,
v(xi) equals the unique v ∈ ∆ with l(v) = xi ∈ N. Ends with direction vector zero are
called contracted ends.

(c) The balancing condition ∑
e∈Γ an edge,
V vertex of e

v(e, V ) = 0

holds for every vertex V ∈ Γ.

The combinatorial type of a rational tropical stable map (Γ, x[M ], h) is the combinatorial type
of its underlying M -marked abstract tropical curve (Γ, x[M ]). Two rational tropical stable
maps of degree ∆ (the map l of (∆, l) is usually suppressed in the notation) with N contracted
ends, namely (Γ, x[M ], h) and (Γ′, x′[M ], h

′), are isomorphic if there is an isomorphism ϕ of their

underlying M -marked tropical curves such that h′◦ϕ = h. The setM0,N (Rm,∆) of all rational
tropical stable maps of degree ∆ to Rm with N contracted ends up to isomorphism is called
moduli space of rational tropical stable maps of degree ∆ to Rm (with N contracted ends).
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Example 2.2.8. Figure 2.5 provides an example of a rational tropical stable map (Γ, x[6], h)
of degree ∆2

1 ((0, 1, 0, . . . ), (1, 0, . . . )) to R2. The weights and the directions of ends of Γ in R2

are prescribed by its degree. The lengths of bounded edges are given by the lengths l[3] of Γ.
The directions of the bounded edges of Γ in R2 are determined by the balancing condition.

x1

x3

x2

x4

x5

x6

l1

l2

l3

x1

x3

x2
x4

x5

x6

l1
l2

l3

h

R2

2

Figure 2.5: Left: The 6-marked abstract tropical curve from Figure 2.2. Right: The image of
Γ under h, where the ends x1, x2 are contracted to points which is indicated by drawing them
dotted.

Notation 2.2.9. See Notation 2.2.4 for the following: The projection

π : Rm → Rm−1, (x1, . . . , xm) 7→ (x1, . . . , xm−1)

induces a map

π̃ :M0,1 (Rm,∆m
d (α, β))→M0,1+|α|+|β|

(
Rm−1,∆m−1

d

)
,

where ends in ∆m
d (α, β)\ (∆m

d \{−em, . . . ,−em}) are contracted. So π̃ induces labels on con-
tracted ends by contracting labeled ends of direction parallel to ±em. To emphasize how
non-contracted ends are labeled, we writeM0,1+|α|+|β|

(
Rm−1, π (∆m

d (α, β))
)

instead of writing

M0,1+|α|+|β|
(
Rm−1,∆m−1

d

)
.

Theorem 2.2.10 (M0,N (Rm,∆) is a fan, [GKM09]). The map

M0,N (Rm,∆)→M0,M × Rm

(Γ, x[M ], h) 7→
((

Γ, x[M ]

)
, h(x1)

)
with M = N+#∆ is bijective andM0,N (Rm,∆) is a tropical fan of dimension #∆+N−3+m
(notice that h(x1) is an arbitrary choice of a base point). Hence M0,N (Rm,∆) represents an
affine cycle in a Rt. This allows us to use tropical intersection theory on M0,N (Rm,∆).

Definition 2.2.11 (Local coordinates on M0,M and M0,N (Rm,∆)). The bounded edges’
lengths of M -marked abstract tropical curves parametrized by M0,M give rise to local coor-
dinates on M0,M . Consequently, the identification of Theorem 2.2.10 yields local coordinates
on M0,N (Rm,∆) as well. They are given by the bounded edges’ lengths and the position of a
vertex in Rm to which we refer as base point.

Definition 2.2.12 (Combinatorial types of cells). Since M0,M (resp. M0,N (Rm,∆)) are
in particular polyhedral complexes (see Theorem 2.2.2, Theorem 2.2.10) we often refer to
their cones as cells. Let σ be a cell of M0,M (resp. of M0,N (Rm,∆)). Let (Γ, x[M ]) be an
abstract rational tropical curve (resp. let (Γ, x[M ], h) be a rational tropical stable map) in σ
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such that (Γ, x[M ]) (resp. (Γ, x[M ], h)) is in the interior of σ if σ is not 0-dimensional. Then
the cell σ is determined by the combinatorial type of (Γ, x[M ]) (resp. (Γ, x[M ], h)) because
combinatorial types are constant on the interior of σ if σ is not zero-dimensional. Thus defining
the combinatorial type c(σ) of σ to be equal to the combinatorial type of (Γ, x[M ]) (resp.
(Γ, x[M ], h)) makes sense.

Definition 2.2.13 (Evaluation maps I). Define the map

evi :M0,N (Rm,∆)→ Rm

(Γ, x[M ], h) 7→ h(xi)

for i ∈ [M ]. Typically, evi is used for contracted ends. That is, if i ∈ [N ], then the map evi is
called i-th evaluation map. Under the identification from Theorem 2.2.10, the i-th evaluation
map is a morphism of fans evi :M0,M × Rm → Rm. Let ϕ[r] ∈ Div ([(Rm, ωRm)]) for r ∈ N>0.
Consider the cycle C := ϕ1 · · ·ϕr · [(Rm, ωRm)] and define the pull-back of C along the i-th
evaluation map evi as

ev∗i (C) := ev∗i (ϕ1) · · · ev∗i (ϕr) · M0,N (Rm,∆) .

This is well-defined because of Proposition 1.12 of [Rau16] and allows us to pull-back cycles
like C via the i-th evaluation map.

If follows from [Rau16] that the support of ev∗i (C) for a cycle C is the set of all rational
tropical stable maps inM0,N (Rm,∆) whose contracted end xi is mapped to C ⊂ Rm. We may
therefore refer to ev∗i (C) as rational tropical stable maps on which a condition is imposed. If
C is a point, then the imposed condition is called point condition.

In the following, we shorten notation by writing Rm instead of [(Rm, ωRm)] if all weights
are one.

Example 2.2.14 (Pull-back of a point). A point p = (p1, . . . , pm) ∈ Rm is an intersection
product of m rational functions, e.g.

p =
m∏
j=1

max{pj , xj} · Rm,

where x[m] are the standard coordinates of Rm. The pull-back of the point p along the i-th
evaluation map evi is

ev∗i (p) =
m∏
j=1

ev∗i (max{pj , xj}) · M0,N (Rm,∆)

=
m∏
j=1

max{pj , (evi(?))j} ·M0,N (Rm,∆)

according to Definitions 2.2.13 and 2.1.12.

Example 2.2.15. Let (Γ, x[6], h) be the rational tropical stable map of Example 2.2.8. Denote
the vertex of Γ that is adjacent to xi by vi for i = 1, 2. Let p1, p2 ∈ R2 be two non-collinear
points. Then (Γ, x[6], h) ∈ ev∗1(p1) · ev∗2(p2) ·M0,2

(
R2,∆2

1 ((0, 1, 0, . . . ), (1, 0, . . . ))
)

if h(vi) = pi
for i = 1, 2.
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Definition 2.2.16 (Evaluation maps II). Let ∆m
d (α, β) be a degree in Rm as in Notation 2.2.4.

Let π be the projection from Notation 2.2.9 that forgets the last canonical coordinate of Rm.
For k ∈ αlab ∪ βlab the map

∂ evk :M0,N (Rm,∆m
d (α, β))→ Rm−1

(Γ, x[M ], h) 7→ ((h(xk))i)i=1,...,m−1

is by abuse of notation also called k-th evaluation map since it evaluates the position of certain
non-contracted ends under the projection π. Equivalently, we may write

∂ evk = π ◦ evk .

To see that pull-backs of cycles along ∂ evk, which are defined analogously to pull-backs of
cycles along evi, make sense, consider the map

M0,N (Rm,∆m
d (α, β))→ Rm−1 ×M0,M × R

which is similar to the one of Theorem 2.2.10, where the vertex vk adjacent to the end labeled
with k is the base point, i.e. the first m−1 coordinates of vk in Rm are in the Rm−1-factor and
the last coordinate of vk is in the R-factor. Thus Proposition 1.12 of [Rau16] can be applied
and yields that pull-backs of cycles like C in Definition 2.2.13 along ∂ evk are well-defined.

Similar to pull-backs of cycles via evaluation maps, the support of pull-backs along ∂ ev∗k(C)
for a cycle C is the set of all rational tropical stable maps in M0,N (Rm,∆m

d (α, β)) whose end
xk has its first m − 1 coordinates in C. We may refer to ∂ ev∗k(C) as rational tropical stable
maps on which a tangency condition is imposed.

Definition 2.2.17 (Forgetful maps). For M ≥ 4 the map

ftx[M−1]
:M0,M →M0,M−1

(Γ, x[M ]) 7→ (Γ′, x[M−1]),

where Γ′ is the stabilization (straighten 2-valent vertices) of Γ after removing its end marked by
xM is called the M -th forgetful map. Applied recursively, it can be used to forget several ends
with markings in IC ⊂ x[M ], denoted by ftI , where IC is the complement of I ⊂ x[M ]. With
the identification from Theorem 2.2.10, and additionally forgetting the map h to the plane, we
can also consider

ftI :M0,N (Rm,∆)→M0,|I|

(Γ, x[M ], h) 7→ ftI(Γ, xi | i ∈ I).

Any forgetful map is a morphism of fans. This allows us to pull-back cycles via the forgetful
map.

Before proceeding with the next section, we want to briefly recall facts about rational
equivalence that are then frequently used in the following chapters.

Remark 2.2.18 (Rational equivalence). Throughout Part I of this thesis, we consider inter-
section products of the form ϕ∗1(Z1) · · ·ϕ∗r(Zr) ·M0,N (Rm,∆), where ϕi is either an evaluation
map evi (resp. ∂ evk) from Definition 2.2.13 (resp. 2.2.16) or a forgetful map ftI toM0,4 from
Definition 2.2.17, and Zi is a cycle we want to pull-back via ϕi for i ∈ [r]. When considering
such cycles Zi that are conditions we impose on tropical stable maps, then we usually want to
ensure that a 0-dimensional cycle ϕ∗1(Z1) · · ·ϕ∗r(Zr) ·M0,N (Rm,∆) is independent of the exact
positions of the conditions Zi for i ∈ [r]. This is where rational equivalence comes into play.
We usually consider cycles like Zi up to a rational equivalence relation (cf. Remark 2.1.16).
The most important facts about this relation are the following:
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(a) Two cycles Z,Z ′ in Rm that only differ by a translation are rationally equivalent.

(b) Pull-backs ϕ∗(Z), ϕ∗(Z ′) of rationally equivalent cycles Z,Z ′ are rationally equivalent.

(c) The degree of a 0-dimensional cycle (see Definition 2.1.17) is compatible with rational
equivalence, i.e. if two 0-dimensional cycles are rationally equivalent, then their degrees
are the same.

Notice that (a)-(c) allows us to “move” all conditions we consider slightly without affecting
counts of tropical stable maps we are interested in.

Definition 2.2.19 (Tropical curves and multi-lines). A tropical curve C of degree ∆ is the
abstract 1-dimensional cycle a rational tropical stable map of degree ∆ gives rise to, i.e. C is
a weighted embedded 1-dimensional polyhedral complex in Rm. A (tropical) multi-line L is a
rational tropical curve in Rm with m+ 1 ends such that the primitive direction of each of this
ends is one of the standard directions of Rm, see Notation 2.2.4. The weight with which an
end of L appears is denoted by ω(L).

Another well-known fact about rational equivalence is the following:

Theorem 2.2.20 (Recession fan, [AHR16]). Notation 2.2.4 is used. Each tropical curve C of
degree ∆m

d is rationally equivalent to a multi-line LC with weights ω(LC) = d. Hence pull-backs
of C and LC along the evaluation maps are rationally equivalent. The multi-line LC is also
called recession fan of C.

It was shown in Example 2.1.6 that a multi-line L which is centered at the origin of R2 and
that has weight ω(L) = 1 is cut out by the rational function max(x,y)∈R2(x, y, 0). Analogously,
one can show that a multi-line centered at 0 ∈ R2 of weight ω is cut out by the rational function
max(x,y)∈R2(ω · x, ω · y, 0). This gives rise to the following definition.

Definition 2.2.21 (Degenerated multi-lines in R2). Let ω ∈ N>0. The following tropical in-
tersections max(x,y)∈R2(ω ·x, 0) ·R2, max(x,y)∈R2(ω · y, 0) ·R2 and max(x,y)∈R2(ω · (x− y), 0) ·R2

and any translations thereof are called degenerated (tropical) multi-lines of weight ω. In par-
ticular, degenerated multi-lines with ω = 1 are called degenerated lines. They (and transla-
tions of them) are denoted by L10 := max(x,y)∈R2(x, 0) · R2, L01 := max(x,y)∈R2(y, 0) · R2 and
L1-1 := max(x,y)∈R2(x,−y) · R2, see Figure 2.6.

(
0
1

) (
1
0

) (
1
1

)

Figure 2.6: Degenerated tropical lines (from left to right) L10, L01 and L1-1 in R2 with ends of
weight one.

2.3 Tyomkin’s correspondence theorem

The tropical counterpart to classical cross-ratios was first introduced by Mikhalkin under the
name tropical double ratio in [Mik07]. Tyomkin’s correspondence theorem [Tyo17] states that
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the number of classical curves satisfying point and cross-ratio conditions and the number of
tropical curves satisfying point and tropical double ratio conditions are equal. Since different
classical curves may tropicalize to the same tropical curve, each tropical curve has to be counted
with a multiplicity. We recall the definition of these multiplicities. For that, we stick to the
notation used in [Tyo17]. For more details, see (4.1) of [Tyo17].

Definition 2.3.1 (Tropical double ratios defined by [Mik07, Tyo17]). Let (Γ, x[M ]) ∈ M0,M .
Let {βi1 , βi3} and {βi2 , βi4} be two sets of labels of ends of Γ such that βi1 , . . . , βi4 are pairwise
different. A bounded edge γ of Γ separates βi1 , βi2 from βi3 , βi4 if βi1 , βi2 belong to one of the
two connected components of Γ\{γ} and βi3 , βi4 to another.

The tropical double ratio λDR
i of {βi1 , βi2} and {βi3 , βi4} is given by

λDR
i :=

∑
γ

ε(γ, i)|γ|,

where the sum goes over all bounded edges of Γ and |γ| is the length of a bounded edge and

ε(γ, i) :=


1, if γ separates the ends βi1 , βi2 from βi3 , βi4 ,

−1, if γ separates the ends βi1 , βi4 from βi2 , βi3 ,

0, otherwise.

Notice that by abuse of notation the βi’s are not incorporated into the notation of a tropical
double ratio λDR

i . Moreover, the definition of tropical double ratios also applies to tropical
stable maps (Γ, x[M ], h) ∈M0,N (Rm,∆).

βi1

βi2

βi3

βi4

βi1

βi4

βi2

βi3

βi1

βi3

βi2

βi4

γ γ γ

Figure 2.7: Schematic picture of the three cases of ε(γ, i) for λ′i as in Definition 2.3.1 for a
4-marked abstract rational tropical curve. From left to right: ε(γ, i) = 1,−1, 0.

Remark 2.3.2 (Tropical double ratios and tropicalizations). Tropical double ratios are indeed
tropicalizations of classical cross-ratios (see Lemma 3.1 of [Tyo17]), i.e. given an algebraic
curve over a valued field that satisfies a classical cross-ratio, then its tropicalization satisfies a
tropical double ratio which is given by applying the valuation map of the ground field to the
classical cross-ratio.

Example 2.3.3. Let p1, p2 ∈ R2 be two non-collinear points. Let λDR
1 be a tropical double

ratio of {x1, x2} and {x5, x6} with length l > 0. The rational tropical stable map (Γ, x[6], h) of

Example 2.2.8 satisfies the point conditions and the tropical double ratio condition λDR
1 if its

lengths l[3] are chosen appropriately. In particular, we need to set l3 = l. Notice that (Γ, x[6], h)
is fixed by these conditions, i.e. the position of (Γ, x[6], h) in R2 and the lengths of its bounded

edges are completely determined by the conditions p1, p2, λ
DR
1 .

Definition 2.3.4 (Correspondence theorem’s multiplicities). Let C = (Γ, x[M ], h) be a trop-
ical stable map in ∈ M0,N (Rm,∆) that satisfies given point conditions p[n] (i.e. prescribed

contracted ends are mapped to prescribed points) and that satisfies tropical double ratios λDR
[l] .

Let x1 be the end of Γ that is contracted to p1 under h. We refer to the vertex adjacent
to x1 in Γ as root vertex and orient all edges of Γ away from the root vertex. The head of a
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bounded edge γ is denoted by h(γ) and its tail by t(γ). Let V (Γ) be the set of vertices of Γ and
let Eb(Γ) be the set of bounded edges of Γ. We refer to a vertex of Γ as v and to a bounded
edge of Γ as γ for now. The vertices adjacent to ends x[M ] are denoted by v[M ] and do not need
to be different. Define the complex

θ :
⊕

v∈V (Γ)

Zm ⊕
⊕

γ∈Eb(Γ)

Z

︸ ︷︷ ︸
M1

B−→
⊕

γ∈Eb(Γ)

Zm ⊕
n⊕
i=1

Zm ⊕
l⊕

j=1

Z

︸ ︷︷ ︸
M2

(2.1)

given by the maps (that are defined copywise)

1γ 7→ nγ +

l∑
i=1

ε(γ, i) and av 7→
∑
γ

ε̃(γ, v)av +

n∑
i=1

δ(v, vi)av,

where av is the coordinate vector of h(v) and where (see Definition 2.2.7 for the notation
v(γ, t(γ)))

ε̃(γ, v) :=


1, if v = t(γ)

−1, if v = h(γ)

0, otherwise

and nγ := v(γ, t(γ))

and

δ(v, vi) :=

{
1, if v = vi

0, otherwise.

Let θZ be the map from above in the complex (2.1)⊗ZZ. Finally, we can define the multiplicity
of C by

mC(Γ, h) := # coker θZ,

which is equal to | det(B)|.

Example 2.3.5. Let (Γ, x[6], h) be the rational tropical stable map of Example 2.3.3 that

satisfies point conditions p1, p2 and a tropical double ratio λDR
1 . Let γi denote the bounded

edge of Γ which is of length li for i ∈ [3] (see Figure 2.5). The matrix MB associated to the
map B of (2.1) is given by

MB =

v1 v2 v3 v4 γ1 γ2 γ3

γ1



1 0 0 0 −1 0 0 0 2 0 0


0 1 0 0 0 −1 0 0 0 0 0

γ2

0 0 −1 0 1 0 0 0 0 1 0
0 0 0 −1 0 1 0 0 0 1 0

γ3

0 0 0 0 1 0 −1 0 0 0 1
0 0 0 0 0 1 0 −1 0 0 −1

p1

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0

p2

0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0

λDR
1 0 0 0 0 0 0 0 0 0 0 1

.
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Laplace expansion yields

mC(Γ, h) = |det (MB) | = 2.

Theorem 2.3.6 (Tyomkin’s correspondence theorem — Theorem 5.1 of [Tyo17]). Notation
2.0.1 is used. Let ∆ be a degree as in Definition 2.2.3 that arises from a lattice polytope Σ(∆)
as in Remark 2.2.5. Let XΣ(∆) be the toric variety associated to Σ(∆). Let qn be points in
XΣ(∆) and let µ[l] be classical cross-ratios. If the conditions qn, µ[l] are in general position,
i.e. there is only a finite number of rational algebraic curves in XΣ(∆) over an algebraically

closed field of characteristic zero that fulfill them, then denote this number by Nalg
∆

(
qn, µ[l]

)
.

Let pn, λ
DR
[l] be the tropicalizations (see Remark 2.3.2) of the conditions above. Then

Nalg
∆

(
qn, µ[l]

)
= N∆

(
pn, λ

DR
[l]

)
holds, where N∆

(
pn, λ

DR
[l]

)
is the weighted number of rational tropical stable maps of degree ∆

that satisfy the point conditions pn and the tropical double ratio conditions λDR
[l] . The multi-

plicity with which each rational tropical stable map is counted is the one of Definition 2.3.4.

The numbers Nalg
∆

(
qn, µ[l]

)
(resp. N∆

(
pn, λ

DR
[l]

)
) are independent of the exact positions of

the points qn (resp. pn) as long as all conditions are in general position (see Corollary 3.1.20
and Remark 3.1.10). Incorporating the point conditions explicitly in the notation allows us to
directly access them which simplifies notation later.





Chapter 3

Tropical cross-ratios and their
degenerations

Tyomkin’s correspondence theorem 2.3.6 shows that enumerative problems that involve cross-
ratios can be formulated tropically. An approach to enumerative questions that proved to be
fruitful in the past is using intersection theory on moduli spaces. Thus a tropical intersection
theoretic description of tropical stable maps that satisfy tropical double ratios is required. In
this chapter, tropical cross-ratios are introduced in such a way that they provide a tropical
intersection theoretic description we are looking for. The main advantage of tropical cross-
ratios over tropical double ratios is that they allow a degeneration that yields degenerated
tropical cross-ratios. This degenerated version of tropical cross-ratios yields a local description
of so-called cross-ratio multiplicities from which we profit from in chapters 4, 5, 6.

3.1 Tropical cross-ratios

In this section, tropical cross-ratios are introduced. The tropical intersection theoretic frame-
work provides multiplicities for tropical stable maps satisfying tropical cross-ratios. It turns
out that these multiplicities have an enumerative meaning.

3.1.1 Tropical cross-ratios via intersection products

Definition 3.1.1 (Tropical cross-ratios). A tropical cross-ratio λ′ is an unordered pair of
pairs of unordered numbers (β1β2|β3β4) together with an element in R>0 denoted by |λ′|,
where β1, . . . , β4 are pairwise distinct labels of ends of an abstract tropical curve in M0,M

(resp. of a tropical stable map in M0,N (Rm,∆)). We say that C ∈ M0,M (resp. C ∈
M0,N (Rm,∆)) satisfies the tropical cross-ratio condition λ′ if C ∈ ft∗λ′ (|λ′|) · M0,M (resp.
C ∈ ft∗λ′ (|λ′|)·M0,N (Rm,∆)), where |λ′| is the canonical local coordinate of the end (β1β2|β3β4)
of M0,4, see Figure 2.3.

Remark 3.1.2. Definition 3.1.1 expresses the definition of tropical double ratios 2.3.1 used by
Mikhalkin and Tyomkin in terms of tropical intersection theory. This can be seen by applying
a suitable projection πλ′ : M0,4 → R shrinking one end to zero, sending another one to R>0

and the last one to R<0 such that πλ′ ◦ ftλ′ coincides with Definition 2.3.1.

33
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1
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l

0

R

−l

M0,4 ⊂ R2

1

2

3

4

Figure 3.1: As in Theorem 2.2.2, one way of embedding M0,4 into R2 is shown. A projection
that maps the shown rational tropical stable map with an edge of length l to −l ∈ R is indicated.

Definition 3.1.3 (General position I). Notation 2.0.1 is used. Let m,N ∈ N>0. Let n, κ be
disjoint subsets of the set [N ]. Let pn be points in Rm and let Lκ be tropical multi-lines in Rm.
Let ∆ be a degree as in Definition 2.2.3 and let λ′[l] be tropical cross-ratios for some l ∈ N. Let

ηγ ⊂ γlab and κγ ⊂ γlab for γ = α, β be pairwise disjoint sets of labels as in Notation 2.2.4.
Let Pηγ be points in Rm−1 for γ = α, β. Let Lκγ be tropical multi-lines in Rm−1 for γ = α, β
such that in total

#∆− 3 +N +m = m ·#n+ (m− 1) ·#
(
κ ∪ ηα ∪ ηβ

)
+ (m− 2) ·#

(
κα ∪ κβ

)
+ l (3.1)

holds. The conditions pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ
′
[l] are in general position if

Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
:=∏

k∈κα∪κβ
∂ ev∗k(Lk) ·

∏
f∈ηα∪ηβ

∂ ev∗f (Pf ) ·
∏
h∈κ

ev∗h (Lh) ·
∏
i∈n

ev∗i (pi) ·
∏
j∈[l]

ft∗λ′j

(
|λ′j |
)
· M0,N (Rm,∆)

(3.2)

is a zero-dimensional that is not rationally equivalent to a zero cycle and it lies inside top-
dimensional cells of M0,N (Rm,∆).

Usually, we refer to pn as point conditions and to Lκ as multi-line conditions. Moreover,
we refer to Pηα∪ηβ and Lκα∪κβ as tangency conditions, where, in particular, Pηα∪ηβ are called

codimension one tangency conditions and Lκα∪κβ are called codimension two tangency condi-
tions.

Remark 3.1.4. Notice that if there are tangency conditions in a set of general positioned
conditions, then ∆ = ∆m

d (α, β) for some m, d, α, β, see Notation 2.2.4.

Notation 3.1.5. A convention is used in Definition 3.1.3 to which we stick from now on:
Given a degree ∆ and general positioned conditions, we know which conditions we expect to
be satisfied by which labeled ends as we use the same index for conditions and ev (resp. ∂ ev)
maps. In particular, we may e.g. consider a submultiset of ∆m

d (α, β) which contains all ends
satisfying the tangency conditions Lκα ∪ Lκβ .

Remark 3.1.6. Given an intersection product as in Definition 3.1.3, where Lk is a rational
tropical curve in Rm of degree ∆m

d (resp. a rational tropical curve in Rm−1 of degree ∆m−1
d ),

we can pass to its recession fan and obtain an intersection product that is rationally equivalent
to the one we started with, see Remark 2.2.18 and Theorem 2.2.20. Therefore we can always
assume that Lk is in fact a tropical multi-line in Rm (resp. in Rm−1).
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Remark 3.1.7. We assume in the following that all given sets of conditions are in general
position. If we refer to a set of conditions to be in general condition although it has not enough
elements, then we mean that there are some conditions that we can add to this set such that
all together these conditions are in general position.

Definition 3.1.8. Remark 3.1.4 is used. Let Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
be the zero-

dimensional cycle associated to general positioned conditions pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ
′
[l] as

in Definition 3.1.3. Define the number

N∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
:= deg

(
Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

))
,

where deg is the degree map of Definition 2.1.17. If we write N∆

(
pn, λ

′
[l]

)
, we mean that there

are no multi-line and tangency conditions in the set of given conditions.

Remark 3.1.9. Recall Remark 2.2.18: for t ∈ N translated cycles in Rt are rationally equiv-
alent. Hence embedding M0,4 into R2 as in Theorem 2.2.2 implies that all points of M0,4 are
rationally equivalent. Thus pulling-back different points of M0,4 yields rationally equivalent
cycles, see Remark 2.2.18. Therefore the numbers of Definition 3.1.8 are independent of the
exact lengths |λ′j | of the tropical cross-ratios λ′j for j ∈ [l]. Additionally, the numbers do not
depend on the partition of the four entries of each tropical cross-ratio into pairs. Moreover, the
numbers of Definition 3.1.8 are also independent of the exact positions of the point, multi-line
and tangency conditions involved.

Remark 3.1.10. Given conditions as in Definition 3.1.8, then the set of positions where these
conditions can be moved as in Remark 3.1.9 while remaining in general position is open and
dense in the space of all possible positions of conditions. To see this, consider the map

ϕ := ×
k∈κα∪κβ

∂ evk× ×
f∈ηα∪ηβ

∂ evf ××
h∈κ

evh××
i∈n

evi××
j∈[l]

ftλ′j :

M0,N (Rm,∆)→ Rt × (M0,4)l ,

where t is a suitable natural number. The map ϕ is a morphism of fans. The first part of
Corollary 3.1.17 does not require general positioned conditions and thus yields that pull-backs
along ϕ lie in the intersections of the preimages of the evaluation and forgetful maps involved in
ϕ. Hence the set where general positioned conditions can be moved while remaining in general
position is the complement of a codimension one skeleton of a pure dimensional fan and thus
it is open and dense.

3.1.2 Multiplicities of rational tropical stable maps.

The intersection theoretic definition of tropical cross-ratios automatically assigns a multiplicity
to each tropical stable map that satisfies given point, multi-lines, tangency and tropical cross-
ratio conditions. We now recall how to calculate such multiplicities.

Definition 3.1.11 (ev-ft-matrix). Let pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ
′
[l] be general positioned con-

ditions in the sense of Remark 3.1.7, i.e. the cycle Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
associ-

ated to these conditions as in Definition 3.1.8 is not necessary zero-dimensional. Let C be a

rational tropical stable map in a top-dimensional cell σ of Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
such that C lies in the interior of σ if σ is not zero-dimensional. Let ϕi for i ∈ [r] for a suitable
r ∈ N denote the pull-backs that appear in (3.2), i.e.

Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
= ϕ1 · · ·ϕr · M0,N (Rm,∆) .
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Locally (around C) each pull-back ϕi is of the form max{hi, 0} for an integer linear map hi.
Thus the map

H :M0,N (Rm,∆)→ Rd × Rl

x 7→ (h1(x), . . . , hr(x))

with d := m · #n + (m − 1) · #(κ ∪ ηα ∪ ηβ) + (m − 2) · #(κα ∪ κβ) is linear locally around
C as well. It gives rise to a matrix with respect to the local coordinates of Definition 2.2.11.
This matrix is called ev-ft-matrix and is denoted by M(C). If there are no tropical cross-ratio
condition, then M(C) is also called ev-matrix. Notice that the entries of M(C) are in Z and
define

multev,ft(C) := | ind (M(C)) |,

where ind is the index of M(C), i.e. the product of elementary divisors that appear in its
Smith normal form over Z. If there are no tropical cross-ratio conditions, then define multev(C)

analogously for the ev-matrix M(C) of C.

Lemma 1.2.9 of [Rau09] states that multev,ft(C) (resp. multev(C)) equals the weight ω(σ) of

the top-dimensional cell σ of Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
(resp. of the top-dimensional

cell σ of Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ

)
).

Remark 3.1.12. If the cycle Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
appearing in Definition 3.1.11

is zero-dimensional, then multev,ft(C) equals the absolute value of the determinant of the ev-ft-
matrix M(C). In particular, the multiplicity with which a rational tropical stable map C in the

cycle Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
contributes to N∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
is

precisely |det(M(C))|.

Remark 3.1.13. The absolute value of the index of an ev-ft-matrix (resp. ev-matrix) equals
a weight of a top-dimensional cell in an intersection product. Thus it does not depend on the
base point of the local coordinates, see Definition 2.2.11.

Example 3.1.14. Consider the rational tropical stable maps C whose image in R3 is shown
in Figure 3.2. The ends of C are labeled by 1, . . . , 6. The labels are indicated with circled
numbers in Figure 3.2. The direction vectors of edges and ends of C are shown in Figure
3.2. Moreover, the lengths of the three bounded edges of C are denoted by l1, l2, l3. The end
labeled with 1 which is drawn dotted indicates a contracted end. The degree of C is ∆3

1 (α, β),
where α = (0, 1, 0, . . . ) and β = (1, 0, . . . ) (see Notation 2.2.4), i.e. C has one end of primitive
direction −e3 whose weight is 2 and C has one end of primitive direction e3 whose weight is 1.

The rational tropical stable map C satisfies the following conditions by which it is fixed: p1

is a point condition to which the end labeled with 1 is contracted to. The end labeled with 3
satisfies a codimension two tangency condition L3, where L3 is a multi-line with ends of weight
1 which is indicated by a dashed line in Figure 3.2. Moreover, the end labeled with 6 satisfies
a codimension one tangency condition P6. Notice that Notation 3.1.5 was used.
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Figure 3.2: The tropical stable map C that is fixed by a point p1 and two tangency conditions
L3, P6. The arrows indicate the direction vectors of the edges.

Then the ev-matrix M(C) with respect to the base point p1 of C reads as

M(C) =

Base p1 l1 l2 l3

ev1



1 0 0 0 0 0


0 1 0 0 0 0
0 0 1 0 0 0

∂ ev3 1 0 0 1 0 0
∂ ev6 1 0 0 1 1 1

0 1 0 0 0 1

.

The first 3 rows describe the position of p1. The fourth row describes the position of L3 and
the last two rows describe the position of P6 using the coordinates l1, l2, l3.

Example 3.1.15. Let C be the rational tropical stable map whose image in R2 is shown
in Figure 3.3. The ends of C are labeled by 1, . . . , 6. The labels are indicated with circled
numbers in Figure 3.3. The lengths of the three bounded edges of C are denoted by l1, l2, l3.
The rational tropical stable map C satisfies two point conditions p1, p2 with its contracted ends
1, 2 and a tropical cross-ratio λ′1 = (12|56) of length |λ′1| = l3.

1

3

2 4

5

6

l1

l2

l3

2

(
2
0

) (
1
1

)

(
1
−1

)

Figure 3.3: The tropical stable map C that is fixed the points p1, p2 and a tropical cross-ratio
λ′1. The arrows indicate the direction vectors of the edges.
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The ev-ft-matrix M(C) of C with respect to the base point p1 is

M(C) =

Base p1 l1 l2 l3

ev1


1 0 0 0 0


0 1 0 0 0

ev2 1 0 2 1 0
0 1 0 1 0

ftλ′
1

0 0 0 0 1

.

Therefore

multev,ft(C) = |det (M(C)) | = 2.

The rational tropical stable map C is actually the one of Example 2.3.5. There, its multiplicity
used in Tyomkin’s correspondence theorem was computed. Notice that both multiplicities
coincide. This observation holds in general since Proposition 3.1.19 states that these two
multiplicities are indeed always the same.

3.1.3 Enumerative properties of tropical cross-ratios

Often, tropical intersection theory yields multiplicities needed for correspondence theorems,
which enables us to count tropical stable maps by means of tropical intersection theory on
tropical moduli spaces. The same holds true for the counts of tropical stable maps satisfying
tropical cross-ratio conditions we consider here. More precisely, our next aim is to show that
the set of rational tropical stable maps that appears in Tyomkin’s correspondence theorem
2.3.6 equals the set of rational tropical stable maps contributing to suitable numbers from
Definition 3.1.8. Each rational tropical stable map in such a set has two multiplicities, namely
the one used in Tyomkin’s correspondence theorem 2.3.6 and the one assigned to it via tropical
intersection theory (Remark 3.1.12). Showing that these multiplicities coincide yields that the

numbers N∆

(
pn, λ

′
[l]

)
of Definition 3.1.8 are indeed enumerative in the sense that Tyomkin’s

correspondence theorem can be applied.

Lemma 3.1.16. Let ∆ be a degree in Rm and let λ′[l] be tropical cross-ratios which are not
necessary in general position. Then

|
∏
j∈[l]

ft∗λ′j

(
|λ′j |
)
· M0,N (Rm,∆) | ⊂

⋂
j∈[l]

ft−1
λ′j

(
|λ′j |
)

(3.3)

holds, where | ? | denotes the support of
∏
j∈[l] ft∗λ′j

(
|λ′j |
)
·M0,N (Rm,∆) with nonzero weights.

Moreover, if the tropical cross-ratios λ′[l] are in general position (in the sense of Remark

3.1.7), then
∏
j∈[l] ft∗λ′j

(
|λ′j |
)
·M0,N (Rm,∆) equals the polyhedral set

⋂
j∈[l] ft−1

λ′j

(
|λ′j |
)

with the

additional data of weights such that some of them might be zero.

Proof. To show (3.3), induction on the number l of tropical cross-ratios is used. Let l = 1 and
denote λ′1 = (β1β2|β3β4). The map ftλ′1 takes rational tropical stable maps to M0,4, which

can without loss of generality be embedded into R2 such that the direction vector of its end
(β1β2|β3β4) is e0, see Theorem 2.2.2, Figure 2.3 and Notation 2.2.4. Thus P := (|λ′1|, |λ′1|) ∈ R2

is the point which is pulled-back along ftλ′1 . Therefore P is cut out by

max{?, ?, |λ′1|} :M0,4 → R
(x, y) 7→ max{x, y, |λ′1|}.



3.1. Tropical cross-ratios 39

Hence

ft∗λ′1

(
|λ′1|
)

= max{
(

ftλ′1(?)
)
x
,
(

ftλ′1(?)
)
y
, |λ′1|} (3.4)

is affine linear on each connected component of the complement of ft−1
λ′1

(|λ′1|). Hence the left-

hand side of (3.3) is a subset of the right-hand side of (3.3) for l = 1 according to Definition
2.1.5.

For l > 1, observe again that

ft∗λ′l

(
|λ′l|
)

= max{
(

ftλ′l(?)
)
x
,
(

ftλ′l(?)
)
y
, |λ′l|}

can only be locally nonlinear at ft−1
λ′l

(|λ′l|) and use the induction hypothesis.

To show the second part of Lemma 3.1.16, recall that
∏
j∈[l] ft∗λ′j

(
|λ′j |
)
· M0,N (Rm,∆) is

a polyhedral complex of pure codimension l. We just proved that its nonzero part is con-

tained in
⋂
j∈[l] ft−1

λ′j

(
|λ′j |
)

. Thus the second part of Lemma 3.1.16 holds if the claim that⋂
j∈[l] ft−1

λ′j

(
|λ′j |
)

is of codimension l is true. For each map ftλ′j with j ∈ [l], consider a suitable

projection πλ′j as in Remark 3.1.2 such that πλ′j ◦ ftλ′j maps ftλ′j

(
|λ′j |
)

to |λ′j | ∈ R. Notice that

for j ∈ [l]

ft∗λ′j

(
|λ′j |
)

=
(
πλ′j ◦ ftλ′j

)∗ (
|λ′j |
)

holds, where by abuse of notation |λ′j | denotes a point inM0,4 on the left-hand side and it also
denotes the corresponding point in R on the right-hand side. Thus∏

j∈[l]

ft∗λ′j

(
|λ′j |
)
· M0,N (Rm,∆) =

∏
j∈[l]

(
πλ′j ◦ ftλ′j

)∗ (
|λ′j |
)
· M0,N (Rm,∆)

holds. If we take Remark 3.1.10 into account, then Proposition 1.15 of [Rau16] can be applied
to prove the claim and hence finishes the proof.

The analogous statement of Lemma 3.1.16 that involves evaluation maps instead of forgetful
maps is well-known, see for example Remark 1.16 of [Rau16]. Thus combining Lemma 3.1.16
with its ev-analogue immediately yields the following corollary.

Corollary 3.1.17. Let ∆ be a degree in Rm. Let pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ
′
[l] be conditions

with the usual notation from Definition 3.1.3 that are not necessary in general position. Then

|Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
| ⊂⋂

k∈κα∪κβ
∂ ev−1

k (Lk) ∩
⋂

f∈ηα∪ηβ
∂ ev−1

f (Pf ) ∩
⋂
h∈κ

ev−1
h (Lh) ∩

⋂
i∈n

ev−1
i (pi) ∩

⋂
j∈[l]

ft−1
λ′j

(
|λ′j |
) (3.5)

holds, where |?| denotes the support of Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
with nonzero weights.

Moreover, if all conditions are in general positioned (in the sense of Remark 3.1.7), then

Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
equals the polyhedral set on the right-hand side of (3.5)

with the additional data of weights such that some of them might be zero.
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Remark 3.1.18. Let N∆

(
pn, λ

DR
[l]

)
be a tropical number as in Theorem 2.3.6. Let λ′j be the

tropical cross-ratio that is associated to the tropical double ratio λDR
j for j ∈ [l] by Remark

3.1.2. Notice that N∆

(
pn, λ

DR
[l]

)
is by definition the weighted number of rational tropical stable

maps C with C ∈
⋂
i∈n ev−1

i (pi) ∩
⋂
j∈[l] ft−1

λ′j

(
|λ′j |
)

, where the multiplicity mC(Γ, h) of C is

the one of Definition 2.3.4 which appears in Tyomkin’s correspondence theorem 2.3.6. On the

other hand, Corollary 3.1.17 shows thatN∆

(
pn, λ

′
[l]

)
is the weighted number of rational tropical

stable maps C with C ∈
⋂
i∈n ev−1

i (pi) ∩
⋂
j∈[l] ft−1

λ′j

(
|λ′j |
)

, where the multiplicity with which

C is counted is given by |det(M(C))| as in Remark 3.1.12. The two multiplicities associated
to C are compared in the next proposition which we prove using methods well-known to the
experts in the area.

Proposition 3.1.19. Let ∆ be a degree. Let p[n], λ
′
[l] be general positioned condition as in

Definition 3.1.3. Let C ∈
⋂
i∈[n] ev−1

i (pi) ∩
⋂
j∈[l] ft−1

λ′j

(
|λ′j |
)

be a rational tropical stable map.

Then the intersection theoretic multiplicity | det(M(C))| of C coincides with mC(Γ, h) used in
Tyomkin’s correspondence theorem 2.3.6.

Proof. Let (Γ, x[M ], h) be a rational tropical stable map in
⋂
i∈n ev−1

i (pi)∩
⋂
j∈[l] ft−1

λ′j

(
|λ′j |
)

. In

terms of tropical intersection theory the multiplicity of (Γ, x[M ], h) is given by | det(A)|, where
A is the ev-ft-matrix of (Γ, x[M ], h), see Definition 3.1.11. We want to sketch how to prove that
| det(A)| and | det(B)| (from Definition 2.3.4) are equal. For that, we start with the following
complex

Zm ⊕
⊕

γ∈Eb(Γ)

Z

︸ ︷︷ ︸
N1

A−→
n⊕
i=1

Zm ⊕
l⊕

j=1

Z︸ ︷︷ ︸
N2

,

where the first summand on the left belongs to the root vertex defined in 2.3.4. There are maps
between the complex above and the complex (2.1) in the following way: Let α2 : N2 →M2 be
the canonical embedding and let

α1 : N1 →M1, (a, e) 7→ (a, a+
∑
±eiuei , e)

be a map where a is the coordinate of the root vertex, ei is the length of the edge γi and uei
is the primitive direction vector of γi. Moreover, we choose a+

∑
±eiuei in such a way that it

is the shortest path between the root vertex and the vertex associated to the j-th contracted
end depending on which entry of the vector in the image we are considering (the choice of ±
should be consistent with the orientation on Γ). Note that α1, α2 are both injective and that
the diagram given by the maps A,B, α1, α2 commutes. This commutative diagram extends to
the commutative diagram shown below. By definition

cokerα1
∼= (Zm)#V (Γ)−1 and cokerα2 = (Zm)#Eb(Γ) .

Considering the definitions of B, ζ2, we can see that ζ2 ◦B is surjective. Hence C is surjective.
Since C is a surjective morphism of free modules of the same rank it is an isomorphism.
Therefore cokerα3 vanishes which guarantees that α3 is surjective. The map ∂ which we
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obtain from applying the snake lemma yields that G vanishes. Therefore α3 is an isomorphism.
Thus

| det(A)| = |det(B)|

follows.

0 0 G

0 N1 N2 cokerA 0

0 M1 M2 cokerB 0

cokerα1 cokerα2 cokerα3

A

α1 α2 α3

B

ζ1 ζ2

C

∂

The following corollary is an immediate consequence of Remark 3.1.18 and Proposition

3.1.19. It gives an enumerative meaning to the numbers N∆

(
pn, λ

′
[l]

)
in the sense that Ty-

omkin’s correspondence theorem 2.3.6 can be applied to them.

Corollary 3.1.20. Let ∆ be a degree. Let pn, λ
DR
[l] be general positioned conditions as in Theo-

rem 2.3.6. Let λ′j be the tropical cross-ratio that is associated to the tropical double ratio λDR
j for

j ∈ [l] by Remark 3.1.2. Each rational tropical stable map C that contributes to N∆

(
pn, λ

DR
[l]

)
with multiplicity mult(C) also contributes to N∆

(
pn, λ

′
[l]

)
with multiplicity mult(C) and vice

versa. In particular, Tyomkin’s correspondence theorem 2.3.6 can be applied to N∆

(
pn, λ

′
[l]

)
.

Hence the numbers N∆

(
pn, λ

′
[l]

)
we compute via tropical intersection theory are equal to the

corresponding algebro-geometric counts of curves that satisfy point and cross-ratio conditions.

3.2 Degenerated tropical cross-ratios

An advantage of our intersection theoretic definition of tropical cross-ratios is that it allows us
to degenerate tropical cross-ratios easily. It was indicated in Remark 3.1.9 that — up to rational
equivalence — it does not matter which points of M0,4 are pulled-back to describe the cycle

Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
(resp. the numbers N∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ

′
[l]

)
).

In particular, the 3-valent vertex identified with 0 ∈ R2 ofM0,4 might be pulled-back. In other
words, we could allow the lengths of tropical cross-ratios to become zero, which gives rise to
the notion of degenerated tropical cross-ratios.
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Definition 3.2.1 (Degenerated tropical cross-ratios). A degenerated (tropical) cross-ratio λ is
a set {β1, . . . , β4}, where β1, . . . , β4 are pairwise distinct labels of ends of an abstract tropical
curve in M0,M (resp. of a tropical stable map in M0,N (Rm,∆)). We say that C ∈ M0,M

(resp. C ∈ M0,N (Rm,∆)) satisfies the degenerated tropical cross-ratio condition λ if C ∈
ft∗λ (0) · M0,M (resp. C ∈ ft∗λ (0) · M0,N (Rm,∆)).

Another way of thinking about a degenerated cross-ratio λ is that λ is the degeneration of
a tropical cross-ratio λ′ when |λ′| becomes zero in the process of taking a limit.

Notation 3.2.2. In the following we stick to the convention to denote a non-degenerated
tropical cross-ratio by λ′ and to denote its degeneration by λ.

Definition 3.2.3 (Tropical cross-ratios on contracted ends). A tropical cross-ratio λ′ given
by λ′ = (β1β2|β3β4) (resp. a degenerated tropical cross-ratio λ = {β1, . . . , β4}) is called
(degenerated) tropical cross-ratio on contracted ends if βi is the label of a contracted end for
i ∈ [4]. Let λ̃′[l′] be tropical cross-ratios and let λ[l] be degenerated tropical cross-ratios. The

set λ̃′[l′], λ[l] is called on contracted ends if each (degenerated) tropical cross-ratio therein is a

(degenerated) tropical cross-ratio on contracted ends.

The notation used in the following definition is consistent with the one of Definition 3.1.3.
In particular, Remark 3.1.4 also holds for Definition 3.2.4.

Definition 3.2.4 (General position II). Notation 2.0.1 is used. Let m,N ∈ N>0. Let n, κ be
disjoint subsets of the set [N ]. Let pn be points in Rm and let Lκ be tropical multi-lines in Rm.

Let ∆ be a degree as in Definition 2.2.3. Let λ̃′[l′] be tropical cross-ratios for some l′ ∈ N and

let λ[l] be degenerated cross-ratios for some l ∈ N. Let ηγ ⊂ γlab and κγ ⊂ γlab for γ = α, β be
pairwise disjoint sets of labels as in Notation 2.2.4. Let Pηγ be points in Rm−1 for γ = α, β.

Let Lκγ be tropical multi-lines in Rm−1 for γ = α, β such that in total

#∆− 3 +N +m = m ·#n+ (m− 1) ·#
(
κ ∪ ηα ∪ ηβ

)
+ (m− 2) ·#

(
κα ∪ κβ

)
+ l + l′

(3.6)

holds. The conditions pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃
′
[l′], λ[l] are in general position if

Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

)
:=∏

k∈κα∪κβ
∂ ev∗k(Lk) ·

∏
f∈ηα∪ηβ

∂ ev∗f (Pf ) ·
∏
h∈κ

ev∗h (Lh) ·
∏
i∈n

ev∗i (pi) ·
∏
j̃∈[l′]

ft∗
λ̃′
j̃

(
|λ̃′
j̃
|
)
·
∏
j∈[l]

ft∗λj (0)

· M0,N (Rm,∆)

(3.7)

is a zero-dimensional cycle that is not rationally equivalent to a zero cycle and it lies inside
top-dimensional cells of

X∆

(
λ[l]

)
:=
∏
j∈[l]

ft∗λj (0) · M0,N (Rm,∆) .

Remark 3.1.7 also applies to 3.2.4, i.e. if we refer to a set of conditions to be in general
position according to Definition 3.2.4, then we mean that some conditions can be added to this
set such that all together these conditions are in general position.
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Definition 3.2.5. Remark 3.1.4 is used. Let Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

)
be the

zero-dimensional cycle associated to general positioned conditions as in Definition 3.2.4. Define
the number

N∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

)
:= deg

(
Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

))
,

where deg is the degree map of Definition 2.1.17. If we write N∆

(
pn, λ[l]

)
, we mean that there

are no multi-line and tangency conditions in the set of given conditions.

Remark 3.2.6. Given conditions as in Definition 3.2.5, then the set of positions where these
conditions can be moved as in Remark 3.1.9 while remaining in general position is open and
dense in the space of all possible positions of conditions. This follows analogously to Remark
3.1.10 with the morphism

×
k∈κα∪κβ

∂ evk× ×
f∈ηα∪ηβ

∂ evf ××
h∈κ

evh××
i∈n

evi××
j∈[l′]

ftλ̃′j
: X∆

(
λ[l]

)
→ Rt × (M0,4)l

′

for a suitable t ∈ N.

The following proposition ensures that the numbers N∆

(
pn, λ[l]

)
are enumerative in the

sense that Tyomkin’s correspondence theorem can be applied.

Proposition 3.2.7. Let pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃
′
[l′], λ

′
[l] be general positioned conditions as

in Definition 3.1.8. Let λj denote the degeneration of λ′j for j ∈ [l]. Then there is an open dense

subset in the set of all positions where pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃
′
[l′], λ

′
[l] can be moved (see

Remark 3.1.10) such that the conditions pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃
′
[l′], λ

′
[l] and the conditions

pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃
′
[l′], λ[l] are simultaneously in general position.

In particular, if the cycle Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ

′
[l]

)
of Definition 3.1.3 and

the cycle Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

)
of Definition 3.2.4 are zero-dimensional, then

N∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ

′
[l]

)
= N∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

)
holds on an open dense subset in the set of all positions of conditions. In particular, Tyomkin’s
correspondence theorem 2.3.6 can be applied to N∆

(
pn, λ[l]

)
.

Proof. By Remark 3.1.9 the cycles Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ

′
[l]

)
of Definition 3.1.3

and Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

)
of Definition 3.2.4 are rationally equivalent. Hence

none of them is rationally equivalent to a zero cycle if either

S′ := {pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃′[l′], λ
′
[l]} or S := {pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃′[l′], λ[l]}

are in general position. Moreover, there are open dense sets U,U ′ associated to S, S′ by remarks
3.1.10, 3.2.6. Since U ∩ U ′ is again open dense, it is the desired open dense set. Thus

N∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ

′
[l]

)
= N∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

)
. (3.8)

Therefore, in particular,

N∆

(
pn, λ

′
[l]

)
= N∆

(
pn, λ[l]

)
(3.9)
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in the special case of only point and (degenerated) tropical cross-ratio conditions. Notice that
the equalities (3.8), (3.9) hold on an open dense subset of positions of conditions as we defined

the numbersN∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ

′
[l]

)
, N∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

)
(resp. the numbers N∆

(
pn, λ

′
[l]

)
, N∆

(
pn, λ[l]

)
) for general positioned conditions only. Ty-

omkin’s correspondence theorem can be applied due to Corollary 3.1.20.

Remark 3.2.8. One could define the numbers N∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ

′
[l]

)
(resp.

the numbers N∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

)
) as degree of a zero-dimensional cycle

where the conditions are not necessarily in general position. Then (3.8) would still hold using
Remark 2.2.18. However, it is easier to restrict to general positioned conditions since tropical
curves satisfying them are combinatorially more intuitive (corollaries 3.1.17, 3.2.10) and their
weights can be calculated via indices of matrices, see Definition 3.1.11.

Lemma 3.2.9. Let ∆ be a degree in Rm. Let λ̃′[l′] be tropical cross-ratios and let λ[l] be

degenerated tropical cross-ratios such that λ̃′[l′], λ[l] are in general position. Then
∏
j∈[l] ft∗λj (0) ·

M0,N (Rm,∆) is contained in the codimension-l skeleton of M0,N (Rm,∆). Additionally, the

cycle
∏
j̃∈[l′] ft∗

λ̃′
j̃

(
|λ̃′
j̃
|
)
·
∏
j∈[l] ft∗λj (0)·M0,N (Rm,∆) equals the polyhedral set

⋂
j̃∈[l′] ft−1

λ̃′
j̃

(
|λ̃′
j̃
|
)
∩⋂

j∈[l] ft−1
λj

(0) with the additional data of weights such that some of them might be zero.

Proof. Notice that analogously to the proof of Lemma 3.1.16

ft∗λj (0) = max{
(
ftλj (?)

)
x
,
(
ftλj (?)

)
y
, 0} (3.10)

holds for all j ∈ [l]. To see that
∏
j∈[l] ft∗λj (0) ·M0,N (Rm,∆) is contained in the codimension-l

skeleton ofM0,N (Rm,∆), induction on l is used. If l = 1, then ft∗λ1
(0) is because of (3.10) affine

linear on each top-dimensional cell of M0,N (Rm,∆). Thus no refinement of M0,N (Rm,∆) is
necessary when intersecting with ft∗λ1

(0). Therefore ft∗λ1
(0) · M0,N (Rm,∆) is contained in

the codimension-1 skeleton of M0,N (Rm,∆). If l > 1, then
∏
j∈[l−1] ft∗λj (0) · M0,N (Rm,∆)

is contained in the codimension-(l − 1) skeleton of M0,N (Rm,∆) by the induction hypoth-
esis. Equation (3.10) implies that ft∗λl (0) is affine linear on each top-dimensional cell of∏
j∈[l−1] ft∗λj (0) · M0,N (Rm,∆). Therefore

∏
j∈[l] ft∗λj (0) · M0,N (Rm,∆) is contained in the

codimension-l skeleton of M0,N (Rm,∆).
In the same way (3.10) was used above, we can use it (and (3.4)) to inductively deduce —

like in Lemma 3.1.16 — that

|
∏
j̃∈[l′]

ft∗
λ̃′
j̃

(
|λ̃′
j̃
|
)
·
∏
j∈[l]

ft∗λj (0) · M0,N (Rm,∆) | ⊂
⋂
j̃∈[l′]

ft−1

λ̃′
j̃

(
|λ̃′
j̃
|
)
∩
⋂
j∈[l]

ft−1
λj

(0) (3.11)

holds, where | ? | denotes the support of
∏
j∈[l] ft∗λj (0) · M0,N (Rm,∆) with nonzero weights.

Before showing the general statement, we want to see that
∏
j∈[l] ft∗λj (0) · M0,N (Rm,∆)

equals the polyhedral set
⋂
j∈[l] ft−1

λj
(0) with the additional data of weights. For that, induction

on l is again utilized. If l = 1, then ft∗λ1
(0) is of codimension-1 in M0,N (Rm,∆) such that the

statement follows from (3.11) since ft∗λ1
(0) ·M0,N (Rm,∆) is of pure codimension-1. Let l > 1.

There are two cases. First, the dimensions of
∏
j∈[l] ft∗λj (0) · M0,N (Rm,∆) and

⋂
j∈[l] ft−1

λj
(0)

coincide. Thus induction and (3.11) yield the desired statement repeating the arguments from
the initial step l = 1. In the second case,

dim

 ⋂
j∈[l−1]

ft−1
λj

(0)

 = dim

⋂
j∈[l]

ft−1
λj

(0)

 (3.12)
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holds by induction and (3.11). Hence, by (3.11) and (3.12),
∏
j∈[l] ft∗λj (0) · M0,N (Rm,∆)

is a codimension-1 complex in
⋂
j∈[l] ft−1

λj
(0) with respect to a suitable refinement. Since∏

j∈[l] ft∗λj (0) ·M0,N (Rm,∆) is contained in the codimension-l skeleton ofM0,N (Rm,∆) there

is no need to refine
⋂
j∈[l] ft−1

λj
(0) further. Notice that ft∗λl (0) is locally linear around the

codimension-1 skeleton of
⋂
j∈[l] ft−1

λj
(0). Hence

∏
j∈[l] ft∗λj (0) · M0,N (Rm,∆) is a zero cycle

which contradicts that λ[l] are in general position.

To show that the cycle
∏
j̃∈[l′] ft∗

λ̃′
j̃

(
|λ̃′
j̃
|
)
·
∏
j∈[l] ft∗λj (0)·M0,N (Rm,∆) equals the polyhedral

set
⋂
j̃∈[l′] ft−1

λ̃′
j̃

(
|λ̃′
j̃
|
)
∩
⋂
j∈[l] ft−1

λj
(0) with the additional data of weights, apply Proposition

1.15 of [Rau16] as in the proof of Lemma 3.1.16 to
∏
j∈[l] ft∗λj (0) · M0,N (Rm,∆) instead of

M0,N (Rm,∆).

Analogously to Corollary 3.1.17, which follows from Lemma 3.1.16, the following corollary
is a direct consequence of Lemma 3.2.9.

Corollary 3.2.10. Let ∆ be a degree in Rm. Let pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃
′
[l′], λ[l] be condi-

tions with the usual notation from Definition 3.2.4 that are in general position. Then the cycle

Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

)
equals the polyhedral set⋂

k∈κα∪κβ
∂ ev−1

k (Lk) ∩
⋂

f∈ηα∪ηβ
∂ ev−1

f (Pf ) ∩
⋂
h∈κ

ev−1
h (Lh)

∩
⋂
i∈n

ev−1
i (pi) ∩

⋂
j̃∈[l′]

ft−1

λ̃′
j̃

(
|λ̃′
j̃
|
)
∩
⋂
j∈[l]

ft−1
λj

(0)

with the additional data of weights such that some of them might be zero.

Given a tropical stable map C that satisfies a tropical cross-ratio condition λ′, we can think
of this condition as a path of fixed length inside this stable map, see Lemma 3.1.16. Given a
degenerated tropical cross-ratio condition λ instead, we it can be thought of as a path of length
zero inside a tropical tropical stable map, see Lemma 3.2.9. Hence there is a vertex of valence
> 3 in a tropical stable map satisfying a degenerated tropical cross-ratio.

Definition 3.2.11. Let λ be a degenerated tropical cross-ratio. Let C be a tropical stable
map. If there is a vertex v ∈ C such that the image of v under ftλ is 4-valent, then we say
that λ is satisfied at v. We define the set λv of tropical cross-ratios associated to a vertex v
that consists of all given degenerated tropical cross-ratios whose images of v using the forgetful
maps associated to the degenerated cross-ratios are 4-valent.

A direct consequence of Lemma 3.2.9 is the following criterion to decide whether a tropical
stable map satisfies a degenerated tropical cross-ratio.

Corollary 3.2.12 (Path criterion). Let C be a rational tropical stable map and let λ =
{β1, . . . , β4} be a degenerated tropical cross-ratio. Then C satisfies λ if and only if there is
a vertex v of C that satisfies λ. To check whether λ is satisfied at v the so-called path criterion
can be used: A pair (βi, βj) with different i, j ∈ [4] induces a unique path in C. If the paths
associated to (βi1 , βi2) and (βi3 , βi4) intersect in exactly one vertex v of C for all pairwise differ-
ent choices of i1, . . . , i4 such that {i1, . . . , i4} = [4], then and only then the tropical cross-ratio
λ is satisfied at v.

Remark 3.2.13. Note that “for all choices” in Corollary 3.2.12 above is equivalent to “for one
choice”.
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3.2.1 Cross-ratio multiplicities

Compared to non-degenerated tropical cross-ratios, degenerated ones allow a simple combi-
natorial description of the rational tropical stable maps satisfying them, see Corollary 3.2.12.
This advantage of degenerated tropical cross-ratios comes with a trade-off. To determine the
multiplicity of a rational tropical stable map C that satisfies given degenerated tropical cross-
ratio conditions λ[l], a combinatorial factor, the so-called cross-ratio multiplicity, needs to be
considered. Let λ′[l] be non-degenerated tropical cross-ratios that degenerate to λ[l]. Then the

cross-ratio multiplicity reflects how many rational tropical stable maps that satisfy λ′[l] degener-

ate to C when the tropical cross-ratios λ′[l] degenerate to λ[l]. The advantage we take from this
situation is that the cross-ratio multiplicities can be described locally on the level of vertices
of rational tropical stable maps.

Definition 3.2.14 (Resolutions of vertices). Let v be a vertex of an abstract rational tropical
curve and let val(v) denote the valance of v. Let λj ∈ λv be a degenerated tropical cross-ratio
that is satisfied at v as in Definition 3.2.11. Let λ′j denote a tropical cross-ratio that degenerates
to λj . We say that v is resolved according to λ′j if the following conditions are satisfied:

(1) The following equality holds:

val(v) = 3 + #λv.

(2) The vertex v is replaced by two vertices v1, v2 that are connected by a new edge such
that λ′j is satisfied. In particular, the length |e| of e equals |λ′j |.

(3) The following equality holds for k = 1, 2:

val(vk) = 3 + #λvk .

(4) The set λv decomposes according to the vertices v1, v2, i.e.

λv = {λj}∪̇λv1∪̇λv2

is a union of pairwise disjoint sets.

v

1 2

5

4
3

3

4

1

2

5

v1 v2

Figure 3.4: Let λ1 := {1, 2, 3, 4} and λ2 := {1, 2, 3, 5} be two degenerated tropical cross-ratios.
On the left there is a 5-valent vertex v with λv = {λ1, λ2}. On the right v is resolved according
to λ′1 := (12|34). Notice that the resolution is unique in this case.

Example 3.2.15. Resolving a vertex according to a tropical cross-ratio is not unique. It is
neither unique in the sense (A) that the edges adjacent to v1, v2 are uniquely determined nor
in the (weaker) sense (B) that the sets λvk are uniquely determined. Let Γ be an abstract
rational curve consisting of a single vertex v to which all six ends are adjacent to. Define the
following degenerated tropical cross-ratios:

λ1 = {1, 2, 3, 4}, λ2 = {3, 4, 5, 6}, λ3 = {1, 2, 5, 6}

such that λv = {λ1, λ2, λ3}.
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(A) If v is resolved according to λ′3 = (12|56), then there are at least two ways of doing so
which are shown in the Figure below.
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(B) If another non-degenerated tropical cross-ratio λ′3 = (15|26) is chosen, then there are at
least two resolutions shown in the Figure below.
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Definition 3.2.16 (Cross-ratio multiplicity). Let v be a vertex of an abstract rational tropical
curve with

λv = {λj1 , . . . , λjr} and val(v) = 3 + r.

Let λ′jt be tropical cross-ratios that degenerate to λjt for t ∈ [r] such that |λ′j1 | > · · · > |λ
′
jr
| is a

total order. A total resolution of v is a 3-valent labeled rational abstract tropical curve on r+1
vertices that arises from v by resolving v according to the following recursion. First, resolve
v according to λ′j1 . The two new vertices are denoted by v1, v2. Choose vk with λj2 ∈ λvk
and resolve it according to λ′j2 (this may not be unique, pick one resolution). Now we have 3
vertices v1, v2, v3 from which we pick the one with λj3 ∈ λvk̃ , resolve it and so on. We define
the cross-ratio multiplicity multcr(v) of v to be the number of total resolution of v. Notice
that in the special case of #λv = 0 the cross-ratio multiplicity of v equals one. The cross-
ratio multiplicity of a vertex v of a rational tropical stable map is defined to be the cross-ratio
multiplicity of v in its underlying abstract tropical curve. For an abstract rational tropical curve
C (resp. a rational tropical stable map) that satisfies given degenerated cross-ratio conditions,
the cross-ratio multiplicity multcr(C) of C is defined as

multcr(C) :=
∏
v∈C

multcr(v),

where the product goes over all vertices of C.

Example 3.2.17. Let v be a 6-valent vertex such that λv = {λ1, λ2, λ3} and the non-
degenerated tropical cross-ratios are given by λ′1 := (12|56), λ′2 := (34|56), λ′3 = (12|34).
The following two 3-valent trees schematically show all total resolutions of v with respect
to |λ′1| > |λ′2| > |λ′3|.
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Construction 3.2.18. Let λ[l] be general positioned degenerated tropical cross-ratios. To
each λj with j ∈ [l], we want to associate a non-degenerated tropical cross-ratio λ′j . For that,
recall that λ′j consists of two information, namely a split of λ′j into a pair of pairs and a lengths
denoted by |λ′j |. Let λ′j (by abuse of notation) be some split of λj into a pair of pairs for all
j ∈ [l]. IfM0,4 is given such that the four appearing labels of ends of rational abstract tropical
curves it parametrizes are in λj , then let Eλ′j denote the end of M0,4 which is associated to

the split λ′j for j ∈ [l]. A length |λ′j | is associated to λ′j via the following recursive procedure.
Let i ∈ [l] and assume that the lengths |λ′j | for j ∈ [i− 1] are already defined. Consider the

map

ϕi := ftλi :
i−1∏
j=1

ft∗λ′j

(
|λ′j |
)
·

l∏
t=i+1

ft∗λt (0) · M0,N (Rm,∆)→M0,4. (3.13)

It induces a subdivision Si on M0,4 on the right-hand side of (3.13). Let τλ′i be the top-
dimensional cell of Si |Eλ′

i
that is adjacent to the vertex 0 ∈ M0,4 (see Figure 2.3). Choose a

point |λ′i| (expressed in the local coordinates of Eλ′i as in Definition 2.2.11) in the interior of
τλ′i such that |λ′i−1| > |λ′i|.

Remark 3.2.19. It can be assumed that the tropical cross-ratios λ′[l] of Construction 3.2.18
are in general position, see Proposition 3.2.7.

Construction 3.2.18 associates tropical cross-ratios λ′[l] to degenerated tropical cross-ratios

λ[l]. The lengths of the tropical cross-ratios λ′[l] are chosen in such a way that λ′1, . . . , λ
′
l can be

degenerated one by one while tropical stable maps that satisfy them are in a particular nice
form. More precisely, if λ′1 is degenerated to λ1, then all tropical stable maps that satisfy λ′[l]
have exactly one edge e that contributes to λ′1, see Lemma 3.2.9 and Construction 3.2.18. Thus
degenerating λ′1 means to shrink exactly the edge e in each of those tropical stable maps. We
then may proceed with λ′2, . . . , λ

′
l in the same way. Such degeneration arguments are useful

to prove the following lemma which describes the weights of the cycle X∆

(
λ[l]

)
of Definition

3.2.4.

Lemma 3.2.20 (Weights of X∆

(
λ[l]

)
). Notation of Definition 2.2.12 is used. Let ∆ be a degree.

Let λ[l] degenerated tropical cross-ratios in general position. Let λ′j be tropical cross-ratios that
degenerate to λj for j ∈ [l] such that |λ′1| > · · · > |λ′l|. Let

X∆

(
λ[l]

)
=
∏
j∈[l]

ft∗λj (0) · M0,N (Rm,∆)

be the intersection product of Definition 3.2.4. Let τ be a top-dimensional cell of X∆

(
λ[l]

)
and let c(τ) denote the combinatorial type of τ . Then τ equals a top-dimensional cell of the
codimension-l skeleton of M0,N (Rm,∆) such that for all vertices v of c(τ)

val(v) = 3 + #λv

holds. Let ṽ ∈ c(τ) be a vertex such that λ1 ∈ λṽ. The weight of τ is recursively given by

ω(τ) =

{
1 , if l = 1∑

σ ω(σ) , otherwise

where the sum goes over all top-dimensional cells of
∏l
j=2 ft∗λj (0) · M0,N (Rm,∆) such that

their combinatorial types c(σ) are given by resolving the vertex ṽ ∈ c(τ) according to λ′1. In
particular, all weights of X∆

(
λ[l]

)
are non-negative.
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Remark 3.2.21. The intersection product X∆

(
λ[l]

)
in Lemma 3.2.20 does not depend on the

non-degenerated tropical cross-ratios λ′[l]. In particular, the weights of X∆

(
λ[l]

)
are independent

of the exact choice of the λ′[l] in Lemma 3.2.20.

Proof of Lemma 3.2.20. According to Remark 3.2.21, we may assume that the non-degenerated
tropical cross-ratios associated to λ[l] are given by Construction 3.2.18.

To prove the lemma, identify

M0,N (Rm,∆) ∼=M0,M × Rm (3.14)

as in Theorem 2.2.10 such that it is sufficient to prove the statement forM0,M because tropical
cross-ratio conditions do not interact with the Rm-factor in (3.14). Let M ∈ N>3. Induction
on the number l of degenerated tropical cross-ratios is used.

Let l = 1 and let λ1 = {β1, . . . , β4} be the degenerated cross-ratio. A top-dimensional cell
τ of ft∗λ1

(0) ·M0,M is a top-dimensional cell of the codimension-1 skeleton of M0,M such that
there is exactly one 4-valent vertex v in the combinatorial type c(τ) of τ such that

val(v) = 3 + #λv

holds, see Lemma 3.2.9 and Corollary 3.2.12. The codimension-1 cell τ is adjacent to three
top-dimensional cells ofM0,M that arise form resolving v according to (β1β2|β3β4), (β1β3|β2β4)
or (β1β4|β2β3). Denote these top-dimensional cells by σ(β1β2|β3β4), σ(β1β3|β2β4), σ(β1β4|β2β3), that
is σ(βi1βi2 |βi3βi4 ) denotes the cell where in σ(βi1βi2 |βi3βi4 ) a newly inserted edge separates {βi1βi2}
from {βi3βi4)}. Recall (3.10), that is ft∗λ1

(0) equals max{(ftλ1(?))x , (ftλ1(?))y , 0}. Observe that
on two of the cells σ(β1β2|β3β4), σ(β1β3|β2β4), σ(β1β4|β2β3) the map max{(ftλ1(?))x , (ftλ1(?))y , 0} is
the zero function and on one of them it maps tropical stable maps to the length of the edge
that was obtained from resolving the vertex v. Which of the cells σ(β1β2|β3β4), σ(β1β3|β2β4) or
σ(β1β4|β2β3) are mapped to zero depends on the choice of how to embed M0,4 into R2.

Let v(β1β2|β3β4) denote the direction vector inM0,M associated to an abstract tropical curve
that has only one bounded edge of length one that separates the ends β1, β2 from β3, β4 (see
the following Figure) and define v(β1β3|β2β4), v(β1β4|β2β3) analogously.

β1

β2

β3

β1

β2

β3

β3β4 β4
β4

β1β2

a
a

a
b

b

b

Figure 3.5: From left to right: an arbitrary τ with its σ(β1β3|β2β4) and the curve associated to
v(β1β3|β2β4).

We assume without loss of generality that σ(β1β2|β3β4) is not mapped to zero under the map
max{(ftλ1(?))x , (ftλ1(?))y , 0}. Therefore v(β1β2|β3β4) is mapped to 1 and v(β1β3|β2β4), v(β1β4|β2β3)

are mapped to zero. To shorten notation, write ϕ := max{(ftλ1(?))x , (ftλ1(?))y , 0}. The weight
ωϕ(τ) is (see Definition 2.1.5)

ωϕ(τ) =
∑

σ=σ(β1β2|β3β4),
σ(β1β3|β2β4), σ(β1β4|β2β3)

ϕσ
(
ω(σ) · vσ/τ

)
− ϕτ

 ∑
σ=σ(β1β2|β3β4),

σ(β1β3|β2β4), σ(β1β4|β2β3)

ω(σ) · vσ/τ

 ,

(3.15)
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where ϕσ, ϕτ denote the linear parts of ϕ on σ, τ , and ω(σ) = 1 denotes the weight of a
top-dimensional cell σ in M0,M . Moreover, vσ/τ denotes an arbitrary representative of the
normal vector uσ/τ . Therefore set vσ(β1β2|β3β4)/τ = v(β1β2|β3β4) and vσ(β1β3|β2β4)/τ , vσ(β1β4|β2β3)/τ ,

respectively. Note that the second sum of the right-hand side of (3.15) is in τ as M0,M

is balanced. Hence it vanishes under ϕτ since τ ⊂ ft−1
λ1

(0). As discussed above, only one
summand of the first sum of (3.15) is nonzero, namely the one with σ = σ(β1β2|β3β4). Hence
ωϕ(τ) = 1.

Next, the induction step from l − 1 to l is performed. Denote the elements of λ1 as above,
that is λ1 = {β1, . . . , β4} with |λ1| = 0. We use that

l∏
j=1

ft∗λj (0) · M0,M = ft∗λ1
(0) ·

 l∏
j=2

ft∗λj (0) · M0,M


and then apply the induction hypothesis to

∏l
j=2 ft∗λj (0)·M0,M . A top-dimensional polyhedron

τ of ft∗λ1
(0) ·

(∏l
j=2 ft∗λj (0) · M0,M

)
is a top-dimensional polyhedron of the codimension-l

skeleton of M0,M such that there is a vertex v of c(τ) with λ1 ∈ λv, see Lemma 3.2.9 and

Corollary 3.2.12. Since the interior of τ is in the codimension-1-boundary of
∏l
j=2 ft∗λj (0) ·

M0,M and the lengths of the tropical cross-ratios are given by Construction 3.2.18, the vertex
v is obtained by shrinking an edge connecting two vertices v1, v2 in the combinatorial type
neighboring top-dimensional cells of

∏l
j=2 ft∗λj (0) · M0,M such that

val(v) = 3 + #λv1 + 3 + #λv2 − 2

= 4 + # (λv1 ∪ λv2)

= 3 + # (λv1 ∪ λv2 ∪ {λ1})
= 3 + #λv,

where the first equality holds by induction. Again, there are three types of resolutions of
v concerning λ1 and M0,4 ⊂ R2 is embedded in such a way that the top-dimensional cells

of
∏l
j=2 ft∗λj (0) · M0,M given by resolving the vertex v according to the pairs of unordered

numbers of λ′1 are not mapped to zero. Analogously to the start of the induction, the weight
ωϕ(τ) is

ωϕ(τ) =
∑
σ

ϕσ
(
ω(σ) · vσ/τ

)
− ϕτ

(∑
σ

ω(σ) · vσ/τ

)
, (3.16)

where the sums goes over all top-dimensional cells of
∏l
j=2 ft∗λj (0) ·M0,M that have τ in their

boundaries. Since
∏l
j=2 ft∗λj (0) · M0,M is balanced, the second sum of (3.16) is in τ and

vanishes. Moreover, the arguments from the start of the induction yield that ϕσ
(
vσ/τ

)
is zero

if and only if v is not resolved according to λ′1. By definition ϕσ
(
vσ/τ

)
= 1 otherwise.

An immediate consequence of Lemma 3.2.20 is the following corollary.

Corollary 3.2.22 (Weighs of X∆

(
λ[l]

)
via resolutions). Make the same assumption as in

Lemma 3.2.20. In particular, let τ be a top-dimensional cell of X∆

(
λ[l]

)
. Let C be a rational

tropical stable map in τ such that C lies in the interior of τ if τ is not zero-dimensional. Then
the weight ω(τ) of τ is given by

ω(τ) =
∏
v∈C

multcr(v), (3.17)
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where the product goes over all vertices of C and multcr(v) is the cross-ratio multiplicity of v,
see Definition 3.2.16.

Remark 3.2.23. Let multcr(v) be a cross-ratio multiplicity of a vertex v. By Definition 3.2.16,
multcr(v) depends on a choice of non-degenerated cross-ratios λ′j1 , . . . , λ

′
jr

whose degenerations
are {λj1 , . . . , λjr} = λv. Moreover, it also depends on an order of lengths |λ′j1 | > · · · > |λ

′
jr
|.

The left-hand side of (3.17) is independent of such choices. Hence multcr(v) does in fact not
depend on the choice of non-degenerated cross-ratios λ′j1 , . . . , λ

′
jr

, in particular, it does not
depend on their order |λ′j1 | > · · · > |λ

′
jr
|.

Corollary 3.2.22 allows us to deduce the following nice property which is extensively used
later.

Corollary 3.2.24. Let X∆

(
λ[l]

)
be the cycle from Definition 3.2.4. Let τ be a top-dimensional

cell of X∆

(
λ[l]

)
such that its weight ω(τ) is nonzero. Let C be a rational tropical stable map

in τ such that C lies in the interior of τ if τ is not zero-dimensional. Let v ∈ C be a vertex
of C with val(v) > 3. Then for every edge e adjacent to v in C there is a βi in some λj ∈ λv
such that e is in the shortest path from v to the end labeled with βi.

Proof. Assume that there is a vertex v of C with val(v) > 3 and that there is an edge e of v
such that e does not appear in some shortest path to some βi in some λj ∈ λv. Then a total
resolution of v cannot have 3-valent vertices only since each 3-valent vertex that arises from
resolving v according to a tropical cross-ratio cannot be adjacent to e. Thus Corollary 3.2.22
implies that the cell τ in which C lives has weight zero which is a contradiction.

Proposition 3.2.25. Let ∆ be a degree in Rm. Let pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃
′
[l′], λ[l] be con-

ditions with the usual notation from Definition 3.2.4 that are in general position. Let σ be a

top-dimensional cell of the cycle Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

)
which is cut out by

the given conditions. Let C be a rational tropical stable map in σ such that C lies in the interior
of σ if σ is not zero-dimensional. Associate an ev-ft-matrix M(C) to C as in Definition 3.1.11
(i.e. replace M0,N (Rm,∆) by X∆

(
λ[l]

)
). Then the weight ω(σ) of σ equals the multiplicity

mult(C) of C which is defined by

mult(C) := multev,ft(C) ·multcr(C),

where multcr(C) is the product of the cross-ratio multiplicities over all vertices of C (see Defi-
nition 3.2.16), and multev,ft(C) equals the absolute value of the index of the ev-ft-matrix M(C)
associated to C.

Proof. The proposition follows from Corollary 3.2.22 and Lemma 1.2.9 of [Rau09].

Remark 3.2.26. If the cycle Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

)
appearing in Proposition

3.2.25 is zero-dimensional, then multev,ft(C) equals the absolute value of the determinant of the
ev-ft-matrix M(C). In particular, a rational tropical stable map C in the zero-dimensional cycle

Z∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

)
contributes with multiplicity |det(M(C))| ·multcr(C)

to N∆

(
pn, Lκ, Lκα , Lκβ , Pηα , Pηβ , λ̃

′
[l′], λ[l]

)
.

Future research 3.2.27. The numbers multcr(v), which are the local multiplicities of degen-
erated tropical cross-ratios, are not well understood. Of course, one can calculate them by
considering all trees with an appropriate number of labeled ends and pick the ones that are
total resolutions of v with respect to the given tropical cross-ratios. This approach is neither
fast nor pleasing. So a question for future research naturally comes up: is there another,
more efficient way to calculate the cross-ratio multiplicity multcr(v) of a vertex v satisfying
degenerated tropical cross-ratios?
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3.2.2 Special case: Multiplicities of rational tropical stable maps to R2.

Proposition 3.2.25 implies that the multiplicity of a rational tropical stable map C that con-

tributes to the numberN∆

(
pn, Pηα , Pηβ , λ[l]

)
equals a product multev(C)·multcr(C) of two mul-

tiplicities (see Definition 3.1.11 for the definition of multev(C)). The cross-ratio factor multcr(C)
of this product is local, that is, it can be calculated as a product over cross-ratio multiplicities
of each vertex of C. The evaluation factor multev(C) of the product multev(C) ·multcr(C) does
not need to be local in the sense that it cannot be calculated via a product of multiplicities on
the level of vertices of C.

If C is a rational tropical stable map to R2 with 3-valent vertices only, then it is well-known
[Mik05, GM08] that multiplicities of evaluation maps are local, i.e. they can be calculated
on the level of vertices of C. Degenerated tropical cross-ratios lead to vertices of valence
> 3. It turns out that the well-known local evaluation-multiplicities can be generalized to this
situation. Thus multiplicities of rational tropical stable maps to R2 that satisfy (degenerated)
tropical cross-ratio conditions are completely local.

Definition 3.2.28 (Free and fixed components). For conditions, the usual notation from Defi-
nition 3.2.4 is used. Let ∆ be a degree in R2. Let C be a rational tropical stable map (possibly
with vertices of higher valence) of degree ∆ that is fixed by general positioned conditions pn, λ[l].
Let v be an r-valent vertex of C. Denote adjacent bounded edges of v by e[r]. Fix i ∈ [r], cut
the edge ei and stretch it to infinity. Now there are two rational tropical stable maps, namely
one that contains v and one that does not. The rational tropical stable map Ci that does not
contain v is called a component of v. A component of v is called a fixed component of v if it
is fixed by the conditions on it. If this component is only a line, then it is considered fixed
if there is a vertex on it that is adjacent to a contracted end that satisfies a point condition.
Otherwise, a component is called a free component of v.

Note that if a vertex v as in Definition 3.2.28 is not adjacent to a contracted end that satisfies
a point condition, then it has exactly two fixed components: It is clear that v has at least two
fixed components, otherwise its position in R2 would not be fixed. On the other hand, general
positioned conditions pn, λ[l] do not allow the number of fixed components to be greater than
two (move the point conditions slightly, see Remark 3.2.6). Hence the following multiplicities
that generalize the well-known local ev-multiplicities for 3-valent vertices are well-defined.

Definition 3.2.29 (Local ev-multiplicities). The usual notation from Definition 3.2.4 is used
for given conditions. Let ∆ be a degree in R2. Let C be a rational tropical stable map (possibly
with vertices of higher valence) of degree ∆ that is fixed by general positioned conditions pn, λ[l].
Let v be a vertex of C. Two cases are distinguished:

(a) If v is not adjacent to a contracted end that satisfies a point condition, then there are
exactly two fixed components C1, C2 of v associated to different edges e1, e2 that are
adjacent to v. Let v(ei, v) denote the direction vectors of ei at v for i = 1, 2, see Definition
2.2.7. Define the multiplicity of v by

multev(v) := |det (v(e1, v), v(e2, v)) |.

(b) If v is adjacent to a contracted end that satisfies a point condition, then define the
multiplicity of v by

multev(v) := 1.
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Remark 3.2.30. If v of part (a) of Definition 3.2.29 is 3-valent, i.e. there are exactly three
edges e1, e2, e3 adjacent to v, then, by the balancing conditions, |det (v(ei, v), v(ej , v)) | does
not depend on the choice of i, j ∈ [3] such that i 6= j. Thus Definition 3.2.29 generalizes the
well-known local ev-multiplicities from [Mik05, GM08].

Remark 3.2.31. Another way to think about the local ev-multiplicity of a higher-valent vertex
is to add up edges of free components, to be more precise, consider the following example:

On the left there is a 4-valent vertex whose black edges belong to fixed components and its red
edges belong to free components. The multiplicity of this vertex is completely determined by
its black edges. If we “add” these red edges (add their direction vectors), we obtain the 3-valent
vertex on the right whose multiplicity is again completely determined by its black edges. Notice
that the multiplicity of the right vertex equals the well-known local ev-multiplicity.

Lemma 3.2.32. Let ∆ be a degree in R2. Let pn, λ[l] be general positioned conditions. Let C
be a rational tropical stable map in the zero-dimensional cycle Z∆

(
pn, λ[l]

)
of Definition 3.2.4.

Then

multev(C) =
∏

v|v vertex of C

multev(v)

hold, where multev(C) equals the absolute value of the determinant of the ev-matrix of C as in
Remark 3.2.26.

Proof. The following prove uses ideas from Proposition 3.8 of [GM08]. Let v1, v2 be two vertices
of C that are connected by an edge e. Cut e into e1, e2, stretch the loose edges e1, e2 to infinity
to obtain two rational tropical stable maps C1, C2 with vi ∈ Ci such that vi is adjacent to the
end ei for i = 1, 2. Let ∆i be the degree of Ci. Moreover, splitting C into C1, C2 also splits pn
into pni and [l] into li for i = 1, 2. Additionally, the total number N of contracted ends of C
equals the sum of the numbers Ni of contracted ends of Ci for i = 1, 2. Since the conditions
pn, λ[l] are in general position, (3.6) yields

(#∆1 + #∆2 − 2)︸ ︷︷ ︸
=#∆

−3 + (N1 +N2)︸ ︷︷ ︸
=N

+2 = 2 ·
(
#n1 + #n2

)︸ ︷︷ ︸
=#n

+ (#l1 + #l2)︸ ︷︷ ︸
=l

. (3.18)

Notice that pni , λli are in general position as well. Hence

#∆1 − 3 +N1 + 2 ≥ 2 ·#n1 + #l1 (3.19)

#∆2 − 3 +N2 + 2 ≥ 2 ·#n2 + #l2 (3.20)

hold. Adding (3.19) and (3.20) leads to

(#∆1 + #∆2 − 2)− 3 + (N1 +N2) + 2 + 1 ≥ 2 ·
(
#n1 + #n2

)
+ (#l1 + #l2). (3.21)

Compare (3.21) to (3.18) to deduce that not both of the inequalities (3.19), (3.20) can be
strict. Thus assume without loss of generality that (3.19) is an equality. Therefore C1 is a fixed
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component of v2. Hence the ev-matrix M(C) of C is of the following form if v1 is chosen as
base point, see Remark 3.1.13:

M(C) =

Base v1 lengths in C1 lengths in C2

conditions in C1


A 0

conditions in C2

∗ B

.

Since we assumed that (3.19) is an equality

#∆1 − 3 +N1︸ ︷︷ ︸
# of lengths in C1

+ 2︸︷︷︸
# of columns

of the base point

= 2 ·#n1 + #l1︸ ︷︷ ︸
# of rows associated
to conditions in C1

holds. Thus the upper left matrix A in M(C) is square. Moreover, A equals M(C1). Therefore

multev(C) = |det (M(C)) |
= |det (M(C1)) | · | det (A) |
= multev(C1) · | det (A) |.

Add a new 3-valent vertex v′ to C2 such that v′ is adjacent to the end e2, the vertex v2 and
a new contracted end that satisfies a new point condition. Denote this new rational tropical
stable map by C ′2. The ev-matrix M(C ′2) of C ′2 with respect to the base point v′ fulfills

M(C ′2) =


1 0

0


0 1

∗ A
.

Hence

multev(C) = multev(C1) ·multev(C ′2).

Applying this procedure recursively yields two final cases:

(1) A free component gives rise to C ′ that consists of exactly one vertex v′ that is not adjacent
to a contracted end which satisfies a point conditions plus n other vertices that are 3-
valent and each of them is adjacent to a contracted end that satisfies a point condition.
Let N ′ be the number of contracted ends adjacent to v′. Since C ′ is fixed by the conditions
it satisfies, equation (3.6) yields that

(val(v′)−N ′)− 3 + (n+N ′) + 2 = 2n+ #λv′ .

Lemma 3.2.20 implies that #λv′ = val(v′)− 3, hence

(val(v′)−N ′)− 3 + (n+N ′) + 2 = 2n+ val(v′)− 3.

Thus n = 2, i.e. there are two vertices v′1, v
′
2 that are adjacent to v′ via e′1, e

′
2 and that

are adjacent to contracted bounded edges such that each of these contracted bounded
edges satisfies a point condition. Therefore

M(C ′) =
(
v(e′1, v

′
1), v(e′2, v

′
2)
)
,
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where v(ei, v) denotes the direction vector of e′i at v′i for i = 1, 2, see Definition 2.2.7.
Thus

multev(C ′) = multev(v′).

(2) A fixed component C ′′ consists of a single vertex v′′ adjacent to a contracted end that
satisfies a point condition. Thus

multev(C ′′) = 1 = multev(v′′)

since M(C ′′) equals the 2× 2 identity matrix.

Construction 3.2.33. Let pn, Pηα , Pηβ , λ[l] be general positioned conditions such that the

cycle Z∆

(
pn, Pηα , Pηβ , λ[l]

)
is zero-dimensional. For each rational tropical stable map C in the

cycle Z∆

(
pn, Pηα , Pηβ , λ[l]

)
let ef (C) for f ∈ η := ηα ∪ ηβ denote its end that satisfies Pf . Let

e̊f (C) denote the interior of ef (C). Let pf ∈ R2 be a point such that

pf ∈
⋂
C

e̊f (C)

for f ∈ η, where the intersection goes over all C in Z∆

(
pn, Pηα , Pηβ , λ[l]

)
. We can assume

that pn, pη, λ[l] are in general position with respect to ∆, see Remark 3.2.6. To each rational

tropical stable map C in Z∆

(
pn, Pηα , Pηβ , λ[l]

)
, a rational tropical stable map Cp is associated

the following way: Given C as above, subdivide its end ef ⊂ R2 by adding a new 3-valent
vertex to it that is adjacent to a new contracted end such that this contracted end satisfies pf .

Doing this for all f ∈ η gives us Cp, see Figure 3.6. Notice that Cp is in Z∆

(
pn, pη, λ[l]

)
by

Corollary 3.2.10.

Figure 3.6: Left: A rational tropical stable map C to R2 of degree ∆2
1 with one contracted

end (dotted) that satisfies a point condition and C satisfies one codimension one tangency
condition (left black dot). Right: The rational tropical stable map Cp of Construction 3.2.33
that satisfies two point conditions.

Proposition 3.2.34. Notation from Definition 3.2.4 is used. Let ∆ be a degree in R2. Let
pn, Pηα , Pηβ , λ[l] be general positioned conditions. Let C be a rational tropical stable map in the

zero-dimensional cycle Z∆

(
pn, Pηα , Pηβ , λ[l]

)
of Definition 3.2.4. Let Cp denote the rational

tropical stable map that is associated to C by Construction 3.2.33. Then

multev(C) =
∏

v|v vertex of Cp

multev(v) ·
∏

f∈ηα∪ηβ

1

ω(ef )

holds, where multev(C) equals the absolute value of the determinant of the ev-matrix of C as
in Remark 3.2.26, and where ω(ef ) denotes the weight of the end labeled by ef .
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Proof. Let v be a vertex of C. Notice that v is also a vertex of Cp by Construction 3.2.33.
Consider the ev-matrix M(Cp) of Cp with respect to the base point v. Let lf denote the
column of M(Cp) that is associated to the length which appeared in Cp due to subdividing the
end ef of C as in construction 3.2.33. Notice that there is exactly one nonzero entry, namely
±ω(ef ), in each lf -column of M(Cp) for f ∈ ηα ∪ ηβ. Laplace expanding each lf -column yields
multev(C) ·

∏
f∈ηα∪ηβ ω(ef ). Thus

multev(Cp) = multev(C) ·
∏

f∈ηα∪ηβ
ω(ef )

holds. Applying Lemma 3.2.32 proves the proposition.

Corollary 3.2.35. Let C be a rational tropical stable map as in Proposition 3.2.34. Then the
ev-multiplicity multev(C) of C can be calculated locally at vertices.

Proof. Let Cp be the rational tropical stable map associated to C by Construction 3.2.33. Let
vf denote the vertex of Cp that satisfies pf for f ∈ ηα ∪ ηβ as in Construction 3.2.33. Then,
by Definition 3.2.29,

multev(vf ) = 1

for each f ∈ ηα ∪ ηβ. Therefore∏
v|v vertex of Cp

multev(v) =
∏

v|v vertex of Cp
and vertex of C

multev(v)

since the remaining vertices of Cp are precisely the vertices of C by construction. This finishes
the proof since the factor

∏
f∈ηα∪ηβ

1
ω(ef ) of Proposition 3.2.34 is already known considering ∆

and the labels ηα ∪ ηβ.



Chapter 4

Recursive approach: General
Kontsevich’s formula

By the end of this chapter, a general Kontsevich’s formula 4.3.4 is established. It answers the
leading question (Q2), which asks whether there is a recursion that calculates rational plane
degree d curves that satisfy general positioned point and cross-ratio conditions. Our approach
to a general Kontsevich’s formula is inspired by the one of Gathmann and Markwig in [GM08].
Let us sum up the (for our purposes) most relevant ideas and techniques used in [GM08]:

1 Splitting rational tropical stable maps
An important observation is that a count of rational tropical stable maps that satisfy a
tropical cross-ratio condition λ′ is independent of the length λ′. In particular, one can
choose a large length for λ′. An even more important observation, which, at the end of
the day, gives rise to a recursion is the following: If the length of λ′ is large enough, then
all rational tropical stable maps that satisfy λ′ have a contracted bounded edge. Hence
they can be split into two rational tropical stable maps.

2 Splitting multiplicities
Rational tropical stable maps are counted with multiplicities. So splitting them using a
large length for a tropical cross-ratio only yields a recursion if their multiplicities split
accordingly.

3 Using rational equivalence
A tropical cross-ratio condition appears as a pull-back of a point of M0,4 and pull-backs
of different point of M0,4 are rationally equivalent (Remark 2.2.18). Hence the number
of rational tropical stable maps that satisfy a tropical cross-ratio λ′ = (β1β2|β3β4) does
not depend on how the labels β1, . . . , β4 are grouped together — we could also consider
the cross-ratio λ̃′ = (β1β3|β2β4) and obtain the same number. This yields an equation.

As a result, we obtain a general tropical Kontsevich’s formula (Theorem 4.3.4) that recur-
sively calculates the weighted number of rational tropical stable maps to R2 of degree ∆2

d that
satisfy point conditions, curve conditions and tropical cross-ratio conditions which are on con-
tracted ends, see Definition 3.2.3. In order to obtain a classical general Kontsevich’s formula
(Corollary 4.3.5), Tyomkin’s correspondence theorem 2.3.6 is applied (cf. Corollary 3.1.20).
Notice that Tyomkin’s correspondence theorem only holds for point and tropical cross-ratio

conditions, i.e. for N∆

(
pn, λ

′
[l]

)
. There is no correspondence theorem that relates the tropical

numbers N∆

(
pn, Lκ, λ

′
[l]

)
that also involve multi-line conditions to their classical counterparts,

yet.

57
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The general Kontsevich’s formula allows us to recover Kontsevich’s formula, see Corollary
4.3.7. The initial values of the general Kontsevich’s formula are the numbers provided by the
original Kontsevich’s formula and the cross-ratio multiplicities, which are purely combinatorial
(Definition 3.2.16).

To deduce the general Kontsevich’s formula, it is necessary to assume throughout the
current chapter that all degenerated and non-degenerated tropical cross-ratios are on contracted
ends only, i.e. that no entry of a tropical cross-ratio is a non-contracted end, see Definition
3.2.3.

4.1 Splitting rational tropical stable maps

A first step towards a recursion that calculates the numbers N∆2
d

(
pn, Lκ, λ

′
[l]

)
of Definition

3.1.8 (resp. N∆2
d

(
pn, Lκ, λ[l]

)
of Definition 3.2.5) is to split rational tropical stable maps into

“smaller” ones. One way of doing so is to force the existence of a contracted bounded edge
which can be cut to obtain two rational tropical stable maps (Subsection 4.1.1). In order to
glue two such rational tropical stable maps back together, a description of the movement of
the new loose ends is required, see Subsection 4.1.2.

4.1.1 Existence of contracted bounded edges

The aim of this subsection is to prove Propositions 4.1.1, 4.1.25, which are crucial for the
recursion we aim for. They guarantee that the tropical stable maps we are dealing with have a
contracted bounded edge at which we can split them. Proposition 4.1.1 covers the case when
there is at least one point condition. Proposition 4.1.25 covers the case of no point conditions.

Proposition 4.1.1. Notation from Definition 3.2.4 is used. Let C be a rational tropical stable
map that contributes to N∆2

d

(
pn, Lκ, λ[l−1], λ

′
l

)
, where λ′l is a non-degenerated tropical cross-

ratio (Notation 3.2.2) and λ[l−1], λ
′
l are on contracted ends (Definition 3.2.3). If #n ≥ 1 and

|λ′l| is large, then there is exactly one contracted bounded edge in C.

To keep track of the overall structure of the proof of Proposition 4.1.1, important steps are
briefly outlined:

� Definition 4.1.2: Forget λ′l, to obtain a 1-dimensional cycle Y∆2
d

(
pn, Lκ, λ[l−1]

)
.

� Definition 4.1.2, Remark 4.1.4, Example 4.1.5: Consider the ends of Y∆2
d

(
pn, Lκ, λ[l−1]

)
.

They correspond to rational tropical stable maps D that satisfy pn, Lκ, λ[l−1] such that
D admits a movement which gives rise to an unbounded 1-dimensional family of rational
tropical stable maps of the same combinatorial type as D. Hence we should study rational
tropical stable maps D that have a movable component (i.e. a subgraph) B which can
be moved unboundedly without changing the combinatorial type of D.

� Definition 4.1.9, Corollary 4.1.22: Show that B contains a single vertex. For this, chains
of vertices in B are defined and it is shown that no chain has more than one element.

� Proof of Proposition 4.1.1: Conclude that there must be a contracted bounded edge.

Definition 4.1.2 (Movable component). Notation from Definition 3.2.4 is used and it is as-
sumed that all degenerated tropical cross-ratios are on contracted ends only. Let C be a rational
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tropical stable map that has no contracted bounded edge and that lies in the 1-dimensional
cycle

Y∆2
d

(
pn, Lκ, λ[l−1]

)
:=
∏
k∈κ

ev∗k(Lk) ·
∏
i∈n

ev∗i (pi) ·
∏

j∈[l−1]

ft∗λj (0) · M0,N

(
R2,∆2

d

)

such that C gives rise to a 1-dimensional family of rational tropical stable maps by moving some
of its vertices. Since the family obtained by moving vertices of C is 1-dimensional, no vertex
can be moved freely, i.e. in each possible direction. Hence each vertex of C is either fixed, i.e.
it can not be moved at all, or movable in a direction b(v) given by a vector in R2 which is called
direction of movement of v. Directions of movements of vertices are indicated in Figure 4.1
of Example 4.1.5. Since each movable vertex v cannot move freely, its movement is restricted
by a condition imposed to it via an edge adjacent to v. More precisely, v either needs to be
adjacent to a fixed vertex or to a contracted end which satisfies a multi-line condition. The
connected component of C which consists of all movable vertices of C (and edges connecting
movable vertices) is called the movable component B(C) of C. Notice that there is exactly one
movable component since C gives rise to a 1-dimensional family only. A connected component
of C\B(C) is called fixed component. We say that a movable component allows an unbounded
movement, if the movement of the movable component gives rise to a family of rational tropical
stable maps of the same combinatorial type as C that is unbounded.

Remark 4.1.3. Showing that the movable component B(C) contains a single vertex is non-
trivial. However, the difficulties arise primarily due to the degenerated tropical cross-ratios. If
there are no degenerated tropical cross-ratios, then every vertex in a rational tropical stable
map in question is 3-valent and the B(C) boils down to a string as introduced in [GM08],
which can be thought of as a single chain.

Remark 4.1.4. Consider a 1-dimensional family of rational tropical stable maps of the same
combinatorial type that is unbounded, and consider a movable component B(C) within a
rational tropical stable map C of this family that allows an unbounded movement. Notice that
the direction of movement b(v) of a vertex v in B(C) might change as moving the component
B(C) generates the family. Since v is either adjacent to a fixed vertex or adjacent to an
end satisfying a multi-line condition, b(v) can only change, when v is adjacent to an end that
satisfies a multi-line condition L. Thus b(v) can only change if v passes over the vertex of L, see
Example 4.1.5. Hence the direction of movement of a vertex in the movable component cannot
change if we already moved the movable component enough. In the following, we focus on
movable components that allow an unbounded movement and that already have been moved
sufficiently such that it can assumed that the direction of movement of each vertex therein
does not change anymore when moving. In particular, we may assume that the direction of
movement of a vertex satisfying a multi-line condition is parallel to (−1, 0), (0,−1) or (1, 1).

Example 4.1.5. Figure 4.1 provides an example of a rational tropical stable maps C to R2

whose contracted ends labeled with 1, 2, 4, 5 satisfy point conditions and the contracted end
labeled with 3 satisfies a multi-line condition (the dashed line). The vertex v adjacent to the
end labeled with 3 is in the movable component of C and the direction of movement b(v)
(indicated by an arrow) of v might changes as v is moved. The movement shown in Figure 4.1
is bounded.
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1

2

4

5

3

b(v)

1

2

4

5

3

b(v)

Figure 4.1: A rational tropical stable maps satisfying point conditions and one multi-line
condition. The movable component is drawn in red. The arrows indicate the directions of
movement. The movement shown is bounded.

Classification 4.1.6 (Types of movable vertices). Let C be a rational tropical stable map as
in Definition 4.1.2. If there is a vertex v in the movable component of C that is adjacent to a
fixed component and all of its adjacent edges and ends which are non-contracted are parallel,
then the movable component of C has exactly one vertex, namely v. Otherwise C would not
give rise to a 1-dimensional family only.

Hence the following classification is complete if we assume that the movable component of
C has more than 1 vertex (if it has exactly 1 vertex, then we can directly jump to the proof of
Proposition 4.1.1): We distinguish 4 types of vertices in the movable component.

Type (I) vertices are adjacent to a fixed component and not all adjacent edges
and non-contracted ends are parallel.

Type (II) vertices are not 3-valent and adjacent to a contracted end which satisfies
a multi-line condition.

Type (IIIa) vertices are 3-valent, adjacent to two bounded edges and adjacent to a
contracted end which satisfies a multi-line condition

Type (IIIb) vertices are 3-valent, adjacent to one bounded edge, a contracted end
which satisfies a multi-line condition and an end in standard direction.

Throughout this section the assumption that the movable component of C has more than 1
vertex is used whenever we refer to this classification of vertices.

Construction 4.1.7. In the following we often forget the vertices of type (IIIa) and type
(IIIb) in C by gluing the non-contracted edges adjacent to a vertex of type (IIIa) (resp. type
(IIIb)) together and obtain a rational tropical stable map denoted by C̃. This notation of C̃
is fixed throughout this section.

If C̃ allows no 1-dimensional movement, then the only vertices in the movable component
B(C) of C are of type (IIIa) or (IIIb). Hence there is no type (I) vertex in B(C). Thus C
has no fixed component. In particular, pn = ∅, but this case is treated separately in Lemma
4.1.23, Lemma 4.1.24 and Proposition 4.1.25. Therefore it can be assumed that C̃ allows an
unbounded 1-dimensional movement.
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v1

v2

e
b(v1)

σv2(b(v1), e)

H

Figure 4.2: The cone σv2(b(v1), e) in which the direction of movement of v2 lies. The slope of
the edge connecting v1, v2 is fixed during the movement. Hence the translation b(v2) + v2 of
the direction of movement b(v2) of v2 is contained in the open half-plane H whose boundary
is 〈e〉+ v2 and whose interior contains b(v1) + v1.

Lemma 4.1.8 (Angle Lemma). Let C̃ be a rational tropical stable map to R2 as in Construction
4.1.7 that allows an unbounded 1-dimensional movement. Let v1, v2 be adjacent vertices in
the movable component B(C̃). Let b(v1) 6= 0 be the direction of movement of v1 and let
v(e, v1) 6= b(v1) be the direction vector at v1 of the edge e that connects v1 and v2. Then the
direction of movement b(v2) of v2 lies in the half-open cone

σv2(b(v1), e) := {x ∈ R2 | x = v2 + λ1v(e, v1) + λ2b(v1), λ1 ∈ R≥0, λ2 ∈ R>0}

centered at v2 that is spanned by b(v1) and v(e, v1), where half-open means that the boundary
of σv2(b(v1), e) that is generated by b(v1) is part of the cone and the boundary that is generated
by v(e, v1) is not part of the cone, while v2 itself is also not part of the cone.

Proof. This is true since the length of the edge e′ that connects v1 and v2 cannot shrink when
moving v1 and v2, otherwise the movement would be bounded. Therefore the (affine) lines
〈b(v1)〉 + v1 and 〈b(v2)〉 + v2 must either be parallel or their point of intersection does not lie
in H.

Definition 4.1.9 (Partial order). Notation from Construction 4.1.7 is used. Let C̃ be a rational
tropical stable map to R2 that allows an unbounded 1-dimensional movement and let H be an
open half-plane. If we translate H to a vertex v ∈ C̃, i.e. v is contained in the boundary of H,
then the translated half-plane is denoted by Hv. Let M be the set of all vertices of the movable
component of C̃, i.e. M consists of all type (I) and type (II) vertices of the movable component
of C. The half-plane H induces a partial order Ω(H) on M as follows: For v1, v2 ∈M define

v1 ≥ v2 :⇐⇒

{
v1 = v2, or

v2 is adjacent to v1 and v2 ∈ Hv1 .

Here, we only use open half-planes H such that b(v1) + v1 ∈ Hv1 . Therefore if v1 ≥ · · · ≥ vr is
a maximal chain and b(vi) is the direction of movement of vi for i ∈ [r], then bi + vi ∈ Hvi for
i ∈ [r] by inductively applying Lemma 4.1.8.

Notation 4.1.10. Given a chain v1 ≥ · · · ≥ vr in the movable component of C̃, the direction
of movement of vi is denoted by b(vi) for i ∈ [r] throughout this section. If such a chain is
maximal, then an edge connecting vi and vi+1 is usually denoted by ei for i ∈ [r− 1]. by abuse
of notation, we often write ei instead of the direction vector v(ei, vi) at vi from Definition 2.2.7.
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H

Hv1

v4

v3

v2

v1

Hv3

Hv2

Figure 4.3: This is an example of the partial order Ω(H) for H ⊂ R2 which is an open half-
plane as shown on the left (the boundary of the half-plane is darkened). On the right there is
a sketch of a tropical curve in R2 such that v1 ≥ v3 ≥ v4 and v2 ≥ v3 ≥ v4 with respect to the
order Ω(H).

Lemma 4.1.11 (Maximal chains). Notation 4.1.10 is used. Let C̃ be a rational tropical stable
map to R2 as in Construction 4.1.7 that allows an unbounded 1-dimensional movement. Let
v1 ≥ · · · ≥ vr be a maximal chain with r > 1 and b(v1) + v1 ∈ Hv1 in C̃ with respect to Ω(H)
as in Definition 4.1.9. Then there is no vertex vr+1 ∈ C̃ adjacent to vr such that vr+1 ∈ Hvr .

Proof. Notation 4.1.10 is used. By definition, vn, b(vr−1) + vn−1 ∈ Hvr−1 and there is an edge
er−1 connecting vr−1 to vr. If 〈b(vr−1)〉 = 〈er−1〉, then b(vr−1) and b(vr) are parallel. Thus we
have a 2-dimensional movement which yields a contradiction since we just allow a 1-dimensional
movement. In total, the requirements of Lemma 4.1.8 are fulfilled such that b(vr) + vr ∈ Hvr

follows. Since there is an edge er that connects vr to vr+1 and vr+1 ∈ Hvr , Definition 4.1.9
yields vr ≥ vr+1 with respect to Ω(H). This contradicts our maximality assumption.

Definition 4.1.12 (Special half-planes). Let e ∈ R2 be a vector of standard direction, see
Notation 2.2.4. An open half-plane is called special half-plane if the affine subspace 〈e〉+v ⊂ R2

for some v ∈ R2 that is generated by e is the boundary of H. There are six special half-planes
up to translation, see Figure 4.4.

Figure 4.4: All six special half-planes up to translation. The boundary of each is darkened.

Definition 4.1.13. An open half-plane H is called 1-ray (resp. 2-ray) half-plane if it contains
exactly one (resp. two) rays of standard direction. Notice that special half-planes are 1-ray
half-planes.
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Lemma 4.1.14. Let C̃ be a rational tropical stable map to R2 as in Construction 4.1.7 that
allows an unbounded 1-dimensional movement. Let v1 be a vertex of the movable component
of C̃. Let H be a 1-ray half-plane that contains a ray of standard direction D. If v1 ≥ · · · ≥ vr
is a maximal chain starting at v1 with respect to Ω(H) such that r > 1 and b(v1) + v1 ∈ Hv1,
then there is an end e of C̃ adjacent to vr which is parallel to D.

Proof. Notation 4.1.10 is used. Notice that vr−1 ≥ vr. Hence er−1 + vr /∈ Hvr , where Hvr

denotes the closure of Hvr . Thus by balancing, there is an edge e ∈ C̃ adjacent to vr such
that e ∈ Hvr . If e connects vr to a fixed component, then b(vr) + vr /∈ Hvr because the
movement of vr should be unbounded, i.e. b(vr) moves vr away from that fixed component
while 〈e〉+ vr = 〈b(vr)〉+ vr, which contradicts that b(vr) + vr ∈ Hvr by Lemma 4.1.8. Hence
e is an end of C̃ by Lemma 4.1.11. Since Hvr is a 1-ray half-plane containing exactly 1 ray of
standard direction D, the direction of e is D.

Lemma 4.1.15 (About maximal chains, weak version). Let C̃ be a rational tropical stable map
to R2 as in Construction 4.1.7 that allows an unbounded 1-dimensional movement. Let v1 be a
vertex of the movable component of C̃. If there is a 1-ray half-plane H and v1 ≥ · · · ≥ vr is a
maximal chain starting at v1 with respect to Ω(H) such that r > 1 and b(v1) + v1 ∈ Hv1, then
vr is a 3-valent type (I) vertex.

Proof. Notation 4.1.10 is used. By Lemma 4.1.14, there is an end e of C̃ adjacent to vr.
Moreover, since H is a 1-ray half-plane containing exactly 1 ray of standard direction D, the
direction of e is D. Assume that the valence of vr is greater than 3, i.e. there is a degenerated
tropical cross-ratio in λvr . Since we assumed in Classification 4.1.6 that all degenerated tropical
cross-ratios are on contracted ends only (see Definition 3.2.3), Corollary 3.2.24 can be applied.
Therefore there is a vertex v ∈ C connected to vr via e such that v is of type (IIIa) or type
(IIIb) such that v satisfies a multi-line condition. Since the movement of v is unbounded, its
direction of movement, denoted by b(v), is parallel to e (cf. Remark 4.1.4). Therefore the
movable component of C allows a 2-dimensional movement, which is a contradiction.

In total, vr can only be a 3-valent type (I) vertex since the other cases were ruled out.

Corollary 4.1.16. If we make the same assumptions as in Lemma 4.1.15 and additionally
require that H is a special half-plane (see Definition 4.1.12), then there exists no chain v1 ≥
· · · ≥ vr with respect to Ω(H) such that r > 1 and b(v1) + v1 ∈ Hv1.

Proof. Notation 4.1.10 is used. It is sufficient to show the statement for maximal chains
v1 ≥ · · · ≥ vr starting at v1. So we assume that our chain is maximal. The vertex vr is 3-valent
of type (I) by Lemma 4.1.15. Let D denote the ray of standard direction that is contained in
H. By Lemma 4.1.14, there is an end e adjacent to vr of standard direction D. Denote the
edge that connects vr to a fixed component by f , and because 〈f〉+ vr = 〈b(vr)〉+ vr, we know
that f + vr /∈ Hvr . Since all non-contracted ends determined by ∆2

d are of weight 1, the end
e is also of weight 1. Using balancing and the definition of special half-planes, we conclude
that the edge er−1 that connects vr−1 to vr lies in the boundary of Hvr , which contradicts
vr−1 ≥ vr.

Observation 4.1.17. Let v1, v2 be two vertices of the movable component of C̃. Let e be an
edge that connects v1 and v2 and let b(v1) be the direction of movement of v1. Corollary 4.1.16
shows that there cannot be an open half-plane H such that b(v1) + v1, e+ v1 ∈ Hv1 , and such
that Hv1 is a special half-plane. Note that 〈b(v1)〉 6= 〈e〉, otherwise our movable component
would move in a 2-dimensional way. Therefore, for each pair of directions of b(v1) and e, there
are open half-planes that contain b(v1) and e. But each of these open half-planes is not a
special half-plane. This observation gives rise to the following classification.
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Classification 4.1.18 (Dependence of b(v1) and e). Let C̃ be as in Construction 4.1.7. In
particular, we assume that C̃ has more than one vertex. Use the notation of Observation 4.1.17,
i.e. let v1 ∈ C̃ be a vertex with direction of movement b(v1). If b(v1)+v1 is in one of the dashed
red cones of Figure 4.5, then e+ v1 has to lie in the opposite cone. Otherwise, there would be
a special half-plane H such that b(v1) + v1, e+ v1 ∈ Hv1 , which contradicts Observation 4.1.17.
The 3 cases depicted in Figure 4.5 are distinguished: If b(v1) + v1 and e + v1 lie in the red
cones depicted on the left, then v1 is said to be of type F1. The other two cases can be seen in
Figure 4.5.

v1

v1
v1

Type F1 Type F2 Type F3

Figure 4.5: A vertex v1 with its cones in which b(v1) + v1 and e+ v1 can lie. From left to right:
A vertex v1 of type F1, F2 and F3.

The other way round, given a vertex v1 ∈ C̃ and its type Fi, the positions of b(v1) + v1 and
e + v1 can be estimated. See Figure 4.5 for the following: If v1 is of type Fi, then b(v1) + v1

and e+ v1 need to lie in the red cones depicted in Figure 4.5 in such a way that b(v1) + v1 and
e+ v1 lie in opposite cones.

Remark 4.1.19. If there is a maximal chain v1 ≥ · · · ≥ vr in C̃ with respect to Ω(H) such
that b(v1) + v1 ∈ Hv1 and v1 is of type Fi, then vj is also of type Fi for j = 2, . . . , r.

Proof. Notation 4.1.10 is used. By induction, is is sufficient to show the statement for v1 ≥ v2.
Let e1 be the edge adjacent to v1, v2. Let Fi be the type of v1 such that σe1 + v1 and σb(v1) + v1

are its two opposing cones, where e1 + v1 ∈ σe1 + v1 and b(v1) + v1 ∈ σb(v1) + v1. Hence
−e1 + v2 ∈ σb(v1) + v2. By Observation 4.1.17, we obtain b(v2) + v2 ∈ σe1 + v2.

Lemma 4.1.20. Notation 4.1.10 is used. Let C̃ be a rational tropical stable map to R2 as in
Construction 4.1.7 that allows an unbounded 1-dimensional movement. Let v1 be a vertex of
the movable component of C̃. Let H be an open half-plane. Let v1 ≥ · · · ≥ vr be a maximal
chain with respect to Ω(H) such that r > 1 and b(v1) + v1 ∈ Hv1. If br is of non-standard
direction, then vr is adjacent to two ends of C̃ of different standard directions. If br is of
standard direction, then vr is adjacent to one end of C̃ of standard direction parallel to br.

Proof. Assume that vr is of type Fi for an i ∈ [3] and that br is of non-standard direction. Thus,
by Classification 4.1.18, b(vr) + vr lies in the interior of one of the dashed red cones of Figure
4.5 and all bounded edges adjacent to vr lie in the opposite cone. Therefore, by the balancing
condition, vr needs to be adjacent to at least two ends of different standard directions.

Next, assume that br is of standard direction. Hence b(vr) + vr appears in the boundary
of two of the red cones σ1, σ2 of Classification 4.1.18. Therefore all edges which are no ends
adjacent to vr ∈ C̃ are in the union σ′1∪σ′2 of the opposing cones σ′j of σj for j = 1, 2. Therefore

balancing guarantees that there is an end adjacent to vr ∈ C̃ which is parallel to b(vr).

The following lemma generalizes Lemma 4.1.15 from 1-ray half-planes to arbitrary half-
planes.
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Lemma 4.1.21 (About maximal chains, strong version). Let C̃ be a rational tropical stable
map to R2 as in Construction 4.1.7 that allows an unbounded 1-dimensional movement. Let
v1 be a vertex of the movable component of C̃. If there is an open half-plane H such that
v1 ≥ · · · ≥ vr is a maximal chain starting at v1 with respect to Ω(H) such that r > 1 and
b(v1) + v1 ∈ Hv1, then vr is a 3-valent type (I) vertex.

Proof. We use Notation 4.1.10, assume that val(vr) > 3, that vr is of type Fi for an i ∈ [3]
and that br is of non-standard direction. By Lemma 4.1.20, vr needs to be adjacent to at least
two ends E1, E2 of different standard directions. By Corollary 3.2.24, a vertex of type (IIIb)
can be reached via each of the edges E1, E2 in C. The direction of movement of such a type
(IIIb) vertex cannot be parallel to the end of standard direction it is connected to, otherwise
we would have a 2-dimensional movement. Recall that type (IIIb) vertices can only move in
standard direction since their contracted ends satisfy multi-line conditions. See Figure 4.6 for
the following: If i = 1, i.e. vr is of type F1, we consider the cone in which b(vr) + vr lies and
go through all different directions of movements of the type (IIIb) vertices. In each case a
contradiction to the unbounded movement occurs.

We still get a contradiction if b(vr) + vr would lie in the other red cone of Figure 4.6. More
generally, the same arguments and conclusion of the case i = 1 are true for i = 2, 3 and lead
to contradictions as well.

bn
vn

Figure 4.6: A vertex vr of type F1 connected to two type (IIIb) vertices which move along the
directions of the arrows.

Next, we assume that b(vr) is of standard direction. By Lemma 4.1.20, there is an end E1

adjacent to vr ∈ C̃ which is parallel to b(vr). Since we assumed that val(vr) > 3, there must,
again, be a type (IIIb) vertex adjacent to vr via E1. Notice that this vertex can only move
unboundedly in the direction of b(vr), which is a contradiction because our movement is only
1-dimensional.

In total, vr can only be a type (I) vertex that is 3-valent.

Corollary 4.1.22. Let v1, b(v1) and H be as in Lemma 4.1.21. Then there is no chain v1 ≥
· · · ≥ vr with r > 1 and b(v1) + v1 ∈ Hv1 in the movable component of C̃.

Proof. We use Notation 4.1.10 and assume that there is a maximal chain v1 ≥ · · · ≥ vr starting
at v1. Hence vr must be a 3-valent type (I) vertex by Lemma 4.1.21. By Lemma 4.1.20, there
is an end E of C̃ adjacent to vr. Moreover, denote the direction vector at vr of the edge that
connects vr to a fixed component by f . Therefore the direction of movement of vr, denoted by
b(vr), is given by −f since vr moves unboundedly, i.e. it moves away from the fixed component
it is adjacent to. All cases of Classification 4.1.18 are distinguished for vr: Let the type of
the vertex vr be Fi for an i ∈ [3] (see Figure 4.5). Since b(vr) = −f , the edges er−1 and f
adjacent to vr lie in the same cone. Then there exists no end E such that vr is balanced (for
each possible end E we find a half-plane P such that E + vr, f + vr,−er−1 + vr ∈ Pvr) which
is a contradiction.
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The following proof builds on ideas of Proposition 5.1 in [GM08].

Proof of Proposition 4.1.1. Consider the 1-dimensional cycle

Y∆2
d

(
pn, Lκ, λ[l−1]

)
=
∏
k∈κ

ev∗k(Lk) ·
∏
i∈n

ev∗i (pi) ·
∏

j∈[l−1]

ft∗λj (0) · M0,N

(
R2,∆2

d

)
from Definition 4.1.2. We need to show that

{ftλ′l(C) | C ∈ Y∆2
d

(
pn, Lκ, λ[l−1]

)
has no contracted bounded edge}

is bounded in M0,4. If it is unbounded, then there is a rational tropical stable map C in
the cycle Y∆2

d

(
pn, Lκ, λ[l−1]

)
without a contracted bounded edge which allows an unbounded

movement. Hence the movable component of C has exactly one vertex v by Corollary 4.1.22
which is not of type (IIIa) or (IIIb) as in Classification 4.1.6. Notice that C has at least one
fixed component as well since we assume that there is at least one point condition that C
satisfies.

v

Lv1

v1

Lv2

v2

v

Lv1

v1

Lv2

v2

v

Lv1

v1

Lv2

v2

v

Lv1

v1

Lv2

v2

Figure 4.7: The movable vertex v and its movement away from the fixed component.

We distinguish different cases for v.

(1) Assume that val(v) = 3 and that v is adjacent to two edges E1, E2 which are parallel to
two ends of different direction. The edges E1, E2 lead to other vertices in the movable
component since moving v varies ftλ′l(C). There are 3 cases (choose 2 different direc-
tions for E1, E2 from the 3 standard directions) that we need to distinguish. Moving v
unboundedly, we obtain an end adjacent to v. More precisely, Figure 4.7 shows one of
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the 3 case where the directions are (1, 1) and (0,−1) (the other two cases are analogous).
Hence moving v further in its direction of movement eventually produces a combinatorial
type that does not allow ftλ′l(C) to become larger as v is moved.

(2) Assume that val(v) = 3 and that all edges adjacent to v are parallel. Since all ends of C
are of weight 1 (the degree of C is ∆2

d), the two edges E1, E2 adjacent to v, which lead to
other vertices in the movable component, are on the same side of v. Therefore moving v
as before (analogous to Figure 4.7 but with v1, v2 lying on parallel ends) does not make
the coordinate ftλ′l(C) larger.

(3) Assume that val(v) > 3, then there are edges E1, E2 adjacent to v (by Corollary 3.2.24)
which connect v to vertices v1, v2 of the movable component that satisfy line conditions
Lv1 , Lv2 . The same movement as in the case of val(v) = 3 yields a combinatorial type
where there is an end adjacent to v which contradicts Corollary 3.2.24 since val(v) > 3,
see again Figure 4.7.

In total, choosing a large value for |λ′l| implies that only rational tropical stable maps with a
contracted bounded edge can contribute to N∆2

d

(
pn, Lκ, λ[l−1], λ

′
l

)
. Moreover, there is exactly

one contracted bounded edge. Otherwise, a rational tropical stable map C contributing to
the number N∆2

d

(
pn, Lκ, λ[l−1], λ

′
l

)
would give rise to a 1-dimensional family of stable maps

contributing to N∆2
d

(
pn, Lκ, λ[l−1], λ

′
l

)
which is a contradiction.

Notice that it was assumed in Proposition 4.1.1 that #n ≥ 1, i.e. that there is at least one
point condition. However, even without point conditions we can still assume that there is a
contracted bounded edge, see Proposition 4.1.25.

Lemma 4.1.23. Let C be a rational tropical stable map that contributes to N∆2
d

(
Lκ, λ[l]

)
,

where all degenerated tropical cross-ratios are on contracted ends only. Then there is a vertex v
of C which is adjacent to two contracted ends e1, e2 such that e1 satisfies a multi-line condition
La and e2 satisfies a multi-line condition Lb with a, b ∈ κ.

Proof. Assume that each vertex of C is at most adjacent to one contracted end that satisfies
a multi-line condition. Hence each vertex of the rational tropical stable map associated to C
allows a 1-dimensional movement since its movement is only restricted by at most one multi-
line condition (there are no point conditions). Thus C give rise to a 1-dimensional family which
is a contradiction.

Lemma 4.1.24. Let v be the vertex adjacent to e1, e2 from Lemma 4.1.23. Then val(v) > 3
and there is a degenerated tropical cross-ratio λ ∈ λ[l] such that λ = {e1, e2, β3, β4}.

Proof. Notation from Lemma 4.1.23 is used. If val(v) = 3, then, by Lemma 4.1.23, there is a
contracted bounded edge adjacent to v. Hence C cannot be fixed by the set of given conditions
which is a contradiction. Thus val(v) > 3.

By Corollary 3.2.24, there is a degenerated tropical cross-ratio λ as desired or there are
degenerated tropical cross-ratios λ1 = {e1, . . . } and λ2 = {e2, . . . } such that e2 /∈ λ1 and
e1 /∈ λ2. Assume that there is no degenerated tropical cross-ratio λ as desired. Then v can be
resolved by adding a contracted bounded edge e to C that is adjacent to v and a new 3-valent
vertex v′ which is adjacent to e1, e2. Notice that this resolution of v is compatible with λ1, λ2

but gives rise to a 1-dimensional family of rational tropical stable maps satisfying Lκ, λ[l] which
is a contradiction.
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Proposition 4.1.25. We use notation from Lemma 4.1.23 and Lemma 4.1.24 and assume
without loss of generality that e1, e2 are entries of the degenerated tropical cross-ratio λl. Let
λ′l be a non-degenerated cross-ratio that degenerates to λl, where e1, e2 are grouped together.
Then every rational tropical stable map C ′ that contributes to N∆2

d

(
Lκ, λ[l−1], λ

′
l

)
(where all

(degenerated) tropical cross-ratios are on contracted ends only) arises from a rational tropical
stable map C that contributes to N∆2

d

(
Lκ, λ[l]

)
by adding a contracted bounded edge e to C that

is adjacent to v and a new vertex v′ which is in turn adjacent to e1, e2.

Proof. Let C be a rational tropical stable map that contributes to N∆2
d

(
Lκ, λ[l]

)
and let v be

the vertex from Lemma 4.1.23 at which λl is satisfied. Assume that the edge e′ we add by
resolving v according to λ′l is not contracted. Denote the rational tropical stable map obtained
this way by C ′′. Denote the vertex adjacent to e′ and e1, e2 by ṽ. Consider C ′′ as a point in the
cycle that arises from dropping the tropical cross-ratio condition λ′l (cf. Definition 4.1.2). Then
C ′′ is in the boundary of a 2-dimensional cell of the same cycle that arises from C ′′ by adding a
contracted bounded edge e to C ′′ that separates ṽ from e1, e2. Hence there is a 2-dimensional
cell inside a 1-dimensional cycle, which is a contradiction.

Each rational tropical stable map C that contributes to N∆2
d

(
Lκ, λ[l]

)
yields a contribution

to N∆2
d

(
Lκ, λ[l−1], λ

′
l

)
if the vertex v at which λl is satisfied is resolved according to λ′l and each

resolution of v according to λ′l produces a contracted bounded edge e. Hence Proposition 3.2.7
and the description of mult(C) via resolutions of vertices (see Proposition 3.2.25) guarantees
that there cannot be more stable maps C ′ contributing to N∆2

d

(
Lκ, λ[l−1], λ

′
l

)
than the ones

obtained from adding a contracted bounded edge e to tropical stable maps C.

4.1.2 Behavior of cut contracted bounded edges

After a contracted bounded edge e was identified in Propositions 4.1.1, 4.1.25, we can cut this
edge which yields a split of the original rational tropical stable map into two new ones. The
aim of this subsection is to prove Corollary 4.1.31, in which the behavior of the two new ends
that arise from cutting e is described.

Construction 4.1.26 (Cutting the contracted bounded edge). Let C be a rational tropical
stable map that contributes to N∆2

d

(
pn, Lκ, λ[l−1], λ

′
l

)
, where λ′l is a non-degenerated tropical

cross-ratio such that |λ′l| is large and all (degenerated) tropical cross-ratios are on contracted
ends. Assume that C has a contracted bounded edge e.

If e is cut, we obtain two rational tropical stable maps C1 and C2 with contracted ends
e1 and e2 that come from e. By abuse of notation, the label of ei is also ei for i = 1, 2. We
usually denote the vertices adjacent to the ends e1, e2 by v1, v2. Notice that Ci is of degree
∆2
di

for i = 1, 2 such that ∆2
d1
∪∆2

d2
= ∆2

d as a union of multisets since C is balanced and of

degree ∆2
d. Recall that we assume that all degrees are labeled (see Definition 2.2.3). Thus the

notation ∆2
d1
∪ ∆2

d2
= ∆2

d implies that the labels l of
(
∆2
d, l
)

are distributed among
(
∆2
d1
, l1
)

and
(
∆2
d2
, l2
)
, i.e. Im(l) = Im(l1) ∪ Im(l2) by abuse of notation.

If a contracted bounded edge e is cut, the degenerated tropical cross-ratios can be adapted
the following way: If λj is a degenerated tropical cross-ratio that is satisfied at some vertex
v ∈ Ci for an i ∈ [2], then, by the path criterion (Corollary 3.2.12), either all entries of λj are
labels of contracted ends of Ci or 3 entries of λj are labels of contracted ends of Ci and one
entry β is a label of a contracted end of Ct for t 6= i. In the first case, we do not change λj and
in the latter case, we replace the entry β of λj by ei. A degenerated tropical cross-ratio that is
adapted to ei is denoted by λ→eij .

Let f denote the set of labels of contracted ends of C that satisfy no point or line condition,
i.e. (κ, n, f) is a partition of [N ] using the usual notation (see Definition 3.2.4). Each Ci of
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degree ∆2
di

for i = 1, 2 satisfies point conditions pni , multi-line conditions Lκi and degenerated
tropical cross-ratio conditions λ→eili

such that n1∪̇n2 = n, κ1∪̇κ2 = κ, f1∪̇f2 = f and l1∪̇l2 =

[l − 1] hold, where all degenerated tropical cross-ratios were adapted to the cut edge e.

We say that C splits into the two rational tropical stable maps C1 and C2 and the splitting
type of C is defined as (∆2

d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2).

Definition 4.1.27 (1/1 and 2/0 splits). Let ∆2
d be a degree, let pn, Lκ, λ[l−1] be given conditions

and let f be labels of contracted ends that satisfy no conditions as in Construction 4.1.26. We
refer to

(∆2
d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2)

as a split (of conditions) if ∆2
d1
∪ ∆2

d2
= ∆2

d as a union of multisets, n1∪̇n2 = n, κ1∪̇κ2 = κ,
l1∪̇l2 = [l − 1], f1∪̇f2 = f hold and each degenerated tropical cross-ratio in λli has at least 3
of its entries in ni ∪ κi ∪ fi. If we write λ→eili

, we mean that each entry of each cross-ratio in

λli that is not in ni ∪ κi ∪ fi is replaced by the label ei. Such a split is called a 1/1 split if

3di = #ni + #li −#fi + 1 (4.1)

holds for i = 1, 2. If

3di = #ni + #li −#fi and 3dt = #nt + #lt −#ft + 2 (4.2)

holds for i = 1, 2 with t 6= i for some choice of i, t ∈ {1, 2}, then we refer to the split
(∆2

d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2) as a 2/0 split.

Definition 4.1.28 (1/1 and 2/0 edges). Let (∆2
d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2) be a split

of conditions as in Definition 4.1.27. Define for the (adapted) conditions pni , Lκi , λ
→ei
li

and for

i = 1, 2 the cycles

Yi := evei,∗

∏
kκi

ev∗k(Lk) ·
∏
t∈ni

ev∗t (pt) ·
∏
j∈li

ft∗
λ
→ei
j

(0) · M0,Ni

(
R2,∆2

di

) ⊂ R2,

where Ni := #ni + #κi + #fi + 1. Notice that (∆2
d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2) is a 1/1

split if and only if Y1, Y2 are 1-dimensional. It is a 2/0 split if and only if Yi is 0-dimensional
and Yt is 2-dimensional (see (4.2) in Definition 4.1.27).

Let C be a rational tropical stable map with a contracted bounded edge e such that C is
of splitting type (∆2

d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2). Then Ni is the number of contracted

ends of Ci and the cycle Yi is the condition Ci imposes on Ci for i 6= i via e. For example, if Y1

is 0-dimensional, then the position of v2 (for notation, see Construction 4.1.26) is completely
determined by Y1 since v2 is connected to v1 via e in C and C is fixed by the given conditions
pn, Lκ, λ[l−1], λl. Since all given conditions are in general position, the dimension of Y2 is 2 in
this case, i.e. v2 cannot impose a condition via e to v1. In general, there are two cases for C:

(1) One of the cycles Yi is 0-dimensional and the other one is 2-dimensional. We then refer
to e as a 2/0 edge.

(2) Both of the cycles Yi are 1-dimensional. We then refer to e as a 1/1 edge.

Which case occurs depends only on di,#ni,#κi,#li,#fi for i = 1, 2.
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Example 4.1.29. An example of a 1/1 split is provided below, see Example 4.2.2. An ex-
ample of a 2/0 split is the following: Let C be a degree ∆2

2 rational tropical stable map
that satisfies point conditions p[2], multi-line conditions L[6]\[2], degenerated tropical cross-
ratios λ1 = {p1, L3, L4, L5}, λ2 = {p1, p2, L3, L4} and a non-degenerated tropical cross-ratio
λ′3 = (p1L3|p2L6) whose length is large enough such that C has a contracted bounded edge e.
Construction 4.1.26 yields a split of C into C1 and C2, where the vertices adjacent to the split
edge e are denoted by vi ∈ Ci for i = 1, 2. Figure 4.8 shows C1 and C2, where we shifted C2 in
order to get a better picture (in fact v1 and v2 are the same point in R2).

L6

v2

p2

L3

v1

p1
L4

L5

Figure 4.8: The rational tropical stable map C1 satisfying p1, L[5]\[2], λ[2] is shown on the left,
the rational tropical stable map C2 satisfying p2, L6 is shown on the right. Notice that the
length of e in C is given by λ′3, i.e. C is fixed by the given conditions.

Remark 4.1.30. Fix a degree ∆2
d, point conditions pn, multi-line conditions Lκ and degener-

ated tropical cross-ratio conditions λ[l−1]. Let (∆2
d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2) be a split

of these conditions. Consider degree ∆2
di

rational tropical stable maps Ci for i = 1, 2 with
#ni+#κi+#fi+1 contracted ends that satisfy the point conditions pni , the multi-line condi-
tions Lκi and the degenerated tropical cross-ratio conditions λ→eili

. The cycles Yi for i = 1, 2 of

Definition 4.1.28 tell us how to glue the end e1 of C1 to the end e2 of C2 to form a contracted
bounded edge e such that the new rational tropical stable map C satisfies all given conditions.

If Y1 is 0-dimensional and pe2 is a point in Y1, then considering rational tropical stable
maps C2 that satisfy pn2 , Lκ2 , λ

→e2
l2

and that satisfy pe2 with the end e2 allows us to glue C1

to C2, where the contracted bounded edge is contracted to pe2 ∈ R2.
If both Yi are 1-dimensional, then we can consider tropical stable maps C2 that satisfy the

conditions pn2 , Lκ2 , λ
→e2
l2

and Y1. Since eve2(C2) ∈ Y2, i.e. C2 satisfies Y2, the position of the

contracted end e2 of C2 in R2 is a point p contributing to the 0-dimensional cycle Y1 · Y2. On
the other hand, there is a rational tropical stable map C1 that satisfies pn2 , Lκ2 , λ

→e1
l2

and Y2

such that its end e1 is contracted to p. Thus e1 of C1 and e2 of C2 can be glued to form a
bounded edge e that is contracted to p.

Corollary 4.1.31 (of Proposition 4.1.1). If C is a rational tropical stable map as in Proposition
4.1.1 whose contracted bounded edge is a 1/1 edge, then the 1-dimensional cycles Yi from
Definition 4.1.28 have ends of primitive directions (1, 1), (−1, 0) and (0,−1) ∈ R2 only. In
other words, the 1-dimensional conditions that a contracted bounded 1/1 edge passes from one
vertex to the other has ends of standard directions.

Proof. Proposition 4.1.25 implies that each contracted bounded edge that appears in the no-
point-conditions case is a 2/0 edge. Hence we may assume that at least one point condition is
given.
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Let C be a rational tropical stable map in Yi whose movement is unbounded, i.e. that
gives rise to an end of Yi. Corollary 4.1.22 yields that the movable component of C consists of
exactly one vertex vi of type (I) or (II). Thus vi is of type (I) since we assumed that there is at
least one point condition. If there is a cross-ratio λj ∈ λ[l−1] such that λ→eij is satisfied at vi,
i.e. λ→eij ∈ λv, then Corollary 3.2.24 guarantees that vi is not adjacent to unbounded edges.
This yields a contradiction when vi moves unboundedly as the proof of Proposition 4.1.1 shows.
Hence vi is a 3-valent type (I) vertex which is adjacent to ei and an end E of C. Therefore, vi
moves parallel to E.

Corollary 4.1.32. Notation from Construction 4.1.26 is used, i.e. denote the vertex adjacent
to the end ei of Ci by vi. Under the same assumptions as in Corollary 4.1.31, it follows that
vi is 3-valent and adjacent to an end of Ci for i = 1, 2.

Proof. This follows immediately from the proof of Corollary 4.1.31.

4.2 Multiplicities of splits

In order to obtain a recursion, splitting a rational tropical stable map C into C1, C2 as in
Construction 4.1.26 is not enough. It is also necessary that the multiplicity of C splits as well.
However, it is observed in this subsection that the multiplicity of C does not have to be equal
to mult(C1) ·mult(C2). We have to deal with this problem later.

Notation 4.2.1 (Replacing 1/1 edge conditions). Let C be a rational tropical stable map that
contributes to N∆2

d

(
pn, Lκ, λ[l−1], λ

′
l

)
such that C has a contracted bounded edge e that is a

1/1 edge (see Definition 4.1.28). Split e as in Construction 4.1.26 to obtain C1, C2 and let Yi
denote the 1-dimensional condition Ci satisfies for i 6= i as in Definition 4.1.28. Let vi be the
vertex of Ci that is adjacent to ei (ei is the contracted end of Ci that came from cutting e)
which satisfies Yi. Let st ∈ {01, 10, 1-1} and let Lst be a degenerated line as in Definition 2.2.21
such that its vertex is translated to vi. Let Ci,st denote the rational tropical stable map that
equals Ci, but where we replaced the Yi condition with Lst, i.e. Ci,st satisfies Lst instead of Yi.

Notice that only the multiplicities of Ci and Ci,st may differ. In particular, the multiplicity
of Ci,st may be zero, whereas the multiplicity of Ci can be nonzero.

We fix the convention that if the ev-matrix M(Ci,st) is considered, then the replaced con-
dition appears in the first row of M(Ci,st).

l1

l2

p1

p2

p3

p4

L6

v1

L7

L8

v2

l3

p5

Figure 4.9: The rational tropical stable map C1 of Example 4.2.2 satisfying p[4], L6, λ1 is shown
on the left, the rational tropical stable map C2 satisfying p5, L7, L8, λ2 is shown on the right.
Notice that the length of e in C is given by λ′3, i.e. C is fixed by the given conditions.
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Example 4.2.2. Let C be a rational tropical stable map of degree ∆2
3 that satisfies point

conditions p[5], multi-line conditions L[8]\[5], degenerated tropical cross-ratio conditions λ1 =
{p1, p2, p5, L6}, λ2 = {p1, p5, L7, L8} and a non-degenerated tropical cross-ratio condition
λ′3 = (p1p2|L7L8) whose length is large enough such that C has a contracted bounded edge e.
Construction 4.1.26 yields a split of C into C1 and C2, where the vertices adjacent to the split
edge e are denoted by vi ∈ Ci for i = 1, 2. Figure 4.9 shows C1 and C2, where we shifted C2 in
order to get a better picture (in fact v1 and v2 are the same point in R2 as in Example 4.1.29).

Notice that e is a 1/1 edge, so we use Notation 4.2.1 to replace conditions. For example,
C2,10 equals C2, where the end e2 adjacent to v2 satisfies the degenerated line condition L10.
Figure 4.9 shows that C2,10 is not fixed by its conditions, i.e. mult(C2,10) = 0. If we consider
C2,01 instead, then its multiplicity is 1 since it is the absolute value of the determinant the
matrix

M(C2,01) =

Base p5 l1 l2 l3
L01


0 1 1 0 0


1 0 0 0 0
0 1 0 0 0

L7 1 0 0 −1 0
L8 1 0 0 0 1

of Remark 3.2.26, where p5 is chosen as base point and the first row is associated to L01 satisfied
by e2.

Proposition 4.2.3. Let C be a rational tropical stable map such that it contributes to the num-
ber N∆2

d

(
pn, Lκ, λ[l−1], λ

′
l

)
and such that it has a contracted bounded edge e. The components

arising from cutting e as in Construction 4.1.26 are denoted by C1, C2.

(a) If e is a 2/0 edge, then

mult(C) = mult(C1) ·mult(C2).

(b) If e is a 1/1 edge, then

mult(C) = |det (M(C1,10)) · det (M(C2,01))− det (M(C1,01)) · det (M(C2,10)) |,

where Ci,st is defined in Notation 4.2.1. In particular, if det (M(C1,01)) or det (M(C2,10))
vanishes, then

mult(C) = mult(C1,10) ·mult(C2,01).

Proof. It is sufficient to prove (a), (b) for ev-multiplicities only since the cross-ratio multi-
plicities can be expressed locally at vertices, see Proposition 3.2.25. Thus contributions from
vertices to cross-ratio multiplicities do not depend on cutting edges.

(a) If e is a 2/0 edge, then the situation is similar to Lemma 3.2.32 as the following proof
shows. Denote the vertices adjacent to e by v1, v2 such that v1 ∈ C1 and v2 ∈ C2

and assume without loss of generality that Y1 (notation from Definition 4.1.28) is 0-
dimensional. Consider the ev-matrix M(C) of C of Definition 3.1.11 with base point v1,
i.e.

M(C) =

Base v1 lengths in C1 lengths in C2

conditions in C1


* * 0

conditions in C2

* 0 *
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Let y1 be the number of rows that belong to the conditions in C1, let x1 be the number
of columns belonging to the base point and the lengths in C1. Using notation from
Definition 4.1.28, we obtain

x1 = 2 + 3d1 − 3 + #n1 + #κ1 −#l1 + #f1 + 1,

y1 = 2 ·#n1 + #κ1.

On the other hand, C1 is fixed by its set of conditions since Y1 is 0-dimensional, i.e. we
can apply (3.6) for N = #n1 + #κ1 + (#f1 + 1) to obtain x1 = y1. Thus the bold red
lines in M(C) above divide M(C) into squares, hence

|det(M(C))| = mult(C1) · | det(M)|,

where M is the square matrix on the bottom right. Define the matrix

M(C2,v2) :=

Base v2
1 0

0


0 1

* M

where the first two columns are chosen in such a way that M(C2,v2) is the ev-matrix of
C2 with respect to the base point v2. Notice that

| det(M)| = |det(M(C2,v2))|

and

|det(M(C2,v2))| = mult(C2)

hold, where C2 satisfies the additional point condition imposed on e2 by Y1.

(b) We assume that the weight of each multi-line ω(Lk) (see Definition 2.2.19) for k ∈ κ
equals 1 since we can pull out the factor ω(Lk) from each row of the ev-matrix, apply all
the following arguments and multiply with ω(Lk) later.

Denote the vertex of C1 adjacent to the cut edge e by v1 and the other vertex adjacent
to e by v2. The ev-matrix M(C) of C with respect to the base point v1 is given by

M(C) =

Base v1 lengths in C1 lengths in C2

conditions in C1


* *

∗
0


...
∗

conditions in C2

* 0
0

*
...
0

The bold red lines divide M(C) into square pieces at the upper left and the lower right.
This follows from similar arguments as used in the proof of part (a). Let M be the matrix
consisting of the lower right block of M(C) whose entries (see above) are indicated by
∗ and its columns are associated to lengths in C2. Let A = (aij)ij be the submatrix of
M(C) given by the rows that belong to conditions of C1 and by the base point’s columns
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and the columns that are associated to lengths in C1, i.e. A consists of all the ∗-entries
above the bold red line in M(C).

Consider the Laplace expansion of the rightmost column of A. Recursively, use Laplace
expansion on every column that belongs to the lengths in C1 starting with the rightmost
column. Eventually, we end up with a sum in which each summand contains a factor
det(Mar1ar2) for a matrix Mar1ar2 , which is one of the following three matrices, namely

Mar1ar2 :=

lenghts in C2

ar1 ar2 0 . . . 0
∗ M
,

where (ar1, ar2) = (1, 0), (ar1, ar2) = (0, 1) or (ar1, ar2) = (1,−1) are the remaining
entries of A in its r-th row after the recursive procedure. Notice that in each of the three
cases the entries of the first two columns are of such a form that Mst for st = 10, 01, 1-1
is the ev-matrix of C2,st (see Notation 4.2.1) with base point v2. We can group the
summands according to the values ar1, ar2 and obtain in total

|det(M(C))| = |F10 · det(M10) + F01 · det(M01) + F1-1 · det(M1-1)|, (4.3)

where Fst ∈ R for st = 10, 01, 1-1 are factors occurring due to the recursive Laplace
expansion. More precisely, let b be the number of bounded edges in C1, i.e. the number
of Laplace expansions we applied. Then

Fst =
∑

r:(ar1,ar2)=(s,t)

∑
σ

sgn(σ)
3+b∏
j=3

aσ(j)j , (4.4)

where the second sum goes over all bijections σ : {3, . . . , 3+b} → {1, . . . , r−1, r+1, . . . , b+
1}, i.e. it goes over all possibilities of choosing for each column Laplace expansion was
used on an entry in a row of A which is not the r-th row.

Let A10, A01, A1-1 be the square matrices obtained from A by adding the new first row
(1, 0, 0, . . . , 0), (0, 1, 0 . . . , 0) or (1,−1, 0, . . . , 0) to A. Again, notice that Ast for st =
10, 01, 1-1 is the ev-matrix of C1,st (see Notation 4.2.1, Definition 3.1.11) with base point
v1. We claim that

det(A10) = F01 − F1-1 (4.5)

holds. Let N be the number of columns and rows of Ast. Denote the entries of the
ev-matrix M(C) by m(C)ij . Define

Sst := {r ∈ [N − 1] | m(C)r1 = s, m(C)r2 = t}

for (s, t) = (1, 0), (0, 1), (1,−1) and notice that #S10 + #S01 + #S1-1 = N − 1. Denote

the entries of A10 by a
(10)
ij and apply Leibniz’ determinant formula to obtain

det(A10) =
∑
σ∈SN

sgn(σ)
N∏
j=1

a
(10)
σ(j)j

=
∑
σ∈SN

σ(2)∈S01

sgn(σ)

N∏
j=1

a
(10)
σ(j)j +

∑
σ∈SN

σ(2)∈S1-1

sgn(σ)

N∏
j=1

a
(10)
σ(j)j = F01 − F1-1,
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where the second equality holds by definition of Sst and the third equality holds by
considering how contributions of F01 and F1-1 arise as choices of entries of A, see (4.4).

The minus sign comes from the factor a
(10)
σ(2),2 = −1 in each product in the last sum. Thus

(4.5) holds.

It can be shown in a similar way that

det(A01) = − (F10 + F1-1) = −F10 − F1-1, (4.6)

det(A1-1) = F10 + F1-1 + F01 − F1-1 = F10 + F01 (4.7)

hold. Solving the system of linear equations (4.5), (4.6), (4.7) for F10, F01, F1-1 yields F10

F01

F1-1

 ∈
 −det(A01)

det(A10)
0

+ 〈

 −1
1
1

〉, (4.8)

where the 1-dimensional part appears because of the relation

−det(M10) + det(M01) + det(M1-1) = 0.

Combining (4.3) with (4.8) proves part (b), where Ast = C1,st and Mst = C2,st. In
particular,

mult(C) = |det (M(C1,10)) · det (M(C2,01))− det (M(C1,01)) · det (M(C2,10)) |
= |det (M(C1,10)) · det (M(C2,01)) |
= |det (M(C1,10)) | · | det (M(C2,01)) |
= mult(C1,10) ·mult(C2,01)

holds if det (M(C1,01)) or det (M(C2,10)) vanishes.

4.3 General Kontsevich’s formula

Results from Section 4.1 and Section 4.2 are now combined. In particular, we deduce that it
can be assumed that one summand in part (b) of Proposition 4.2.3 always vanishes. Hence
multiplicities split in a way which is desirable when aiming for a recursion. Indeed, a general
tropical Kontsevich’s formula is established by the end of this section. Applying Tyomkin’s
correspondence theorem 2.3.6 then yields a general (classical) Kontsevich’s formula. It is also
shown that the original Kontsevich’s formula [KM94] is a consequence of our general version.

Definition 4.3.1. Given a split (∆2
d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2) and a tropical non-

degenerated cross-ratio λ′l = (β1β2|β3β4) with entries in n1 ∪ κ1 ∪ f1 ∪ n2 ∪ κ2 ∪ f2 and β1 =

min4
i=1(βi) (the labels of ends of abstract tropical curves are natural numbers), we say that

(∆2
d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2)

is a split respecting λ′l if β1, β2 ∈ n1 ∪ κ1 ∪ f1 and β3, β4 ∈ n2 ∪ κ2 ∪ f2. Using the minimum

here prevents a factor of 1
2 later, which would come from renaming C1 to C2 and vice versa.
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Lemma 4.3.2. Notation of Construction 4.1.26 is used. Fix a 2/0 split of general positioned
conditions as in Remark 4.1.30 and Definition 4.1.27 (∆2

d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2) that

respects λ′l such that additionally

3d1 = #n1 + #l1 −#f1

holds. Then ∑
C:

(∆2
d1
,n1,κ1,l1,f1|∆2

d2
,n2,κ2,l2,f2)

mult(C) = N∆2
d1

(
pn1 , Lκ1 , λ

→e1
l1

)
·N∆2

d2

(
pn2 , pe2 , Lκ2 , λ

→e2
l2

)
(4.9)

holds, where the sum goes over all rational tropical stable maps C with a contracted bounded
edge e such that C contributes to N∆2

d

(
pn, Lκ, λ[l−1], λ

′
l

)
, where λ′l is the large non-degenerated

cross-ratio C satisfies such that C has a contracted bounded edge, and C is of splitting type
(∆2

d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2), and pe2 is a point condition imposed on e2.

Proof. Each rational tropical stable map C on the left-hand side of (4.9) can be cut at its
contracted bounded edge as in Construction 4.1.26 to obtain a rational tropical stable map C1

that contributes toN∆2
d1

(
pn1 , Lκ1 , λ

→e1
l1

)
and a rational tropical stable map C2 that contributes

to N∆2
d2

(
pn2 , pe2 , Lκ2 , λ

→e2
l2

)
.

The other way around, each pair of rational tropical stable maps C1, C2 such that C1

contributes to N∆2
d1

(
pn1 , Lκ1 , λ

→e1
l1

)
and C2 contributes to N∆2

d1

(
pn2 , pe2 , Lκ2 , λ

→e2
l2

)
can be

glued to a rational tropical stable map C using Remark 4.1.30.

Proposition 4.2.3 states that

mult(C) = mult(C1) ·mult(C2)

and thus proves the lemma.

Lemma 4.3.3. Notation of Construction 4.1.26 is used. Fix a 1/1 split of general positioned
conditions as in Remark 4.1.30 and Definition 4.1.27 (∆2

d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2) that

respects λ′l. Then∑
C:

(∆2
d1
,n1,κ1,l1,f1|∆2

d2
,n2,κ2,l2,f2)

mult(C) = N∆2
d1

(
pn1 , Lκ1 , Le1 , λ

→e1
l1

)
·N∆2

d2

(
pn2 , Lκ2 , Le2 , λ

→e2
l2

)
(4.10)

holds, where the sum goes over all rational tropical stable maps C with a contracted bounded
edge e such that C contributes to N∆2

d

(
pn, Lκ, λ[l−1], λ

′
l

)
, where λ′l is the large non-degenerated

tropical cross-ratio C satisfies such that C has a contracted bounded edge and all (degener-
ated) tropical cross-ratios are on contracted ends only. Additionally, C is of splitting type
(∆2

d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2), and Lei for i = 1, 2 is a multi-line condition with ends

of weight one that is imposed on ei, see Definition 2.2.19.

Proof. The ends of Y1 and Y2 (see Definition 4.1.28) are of standard directions, i.e. of direction
(1, 1), (−1, 0) and (0,−1) by Corollary 4.1.31. The position of Y1 and Y2 in R2 depends only on
the position of the given conditions. In particular, moving the given conditions (while keeping
the property of being in general position, see Remark 3.2.6) moves Y1 and Y2 as well.
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Assume that the given conditions are positioned in such a way that Y1 and Y2 intersect
only in their ends as shown in Figure 4.10. Define the multi-line conditions Le1 and Le2 with
weights one as in Figure 4.10 and consider a rational tropical stable map C1 that contributes

to N∆2
d1

(
pn1 , Lκ1 , Le1 , λ

→e1
l1

)
and a rational tropical stable map C2 that contributes to the

number N∆2
d2

(
pn2 , Lκ2 , Le2 , λ

→e2
l2

)
. The contracted end of Ci for i = 1, 2 that satisfies Lei is

ei. Let vi denote the vertex adjacent to ei for i = 1, 2. Notice that evei(Ci) ∈ Yi, i.e. Ci
satisfies Yi by definition. Hence vi is a point in Yi ·Lei for i = 1, 2. Each pair of points (v1, v2)
is uniquely associated to a point p in Y1 · Y2, see Figure 4.10. By Corollary 4.1.32 each of
the vertices vi is 3-valent and adjacent to an end of Ci for i = 1, 2. Hence (by moving v1, v2

along those ends) each pair of rational tropical stable maps (C1, C2) as above can be glued to a
rational tropical stable map C as in Remark 4.1.30 such that the ends e1, e2 are glued to form
a bounded edge that is contracted to p. On the other hand, each rational tropical stable map
C on the left-hand side of (4.10) can be split into a pair (C1, C2) of rational tropical stable
maps as above using Construction 4.1.26. Moreover,

mult(C) = mult(C1) ·mult(C2)

holds by Proposition 4.2.3 since det (M(C1,01)) and det (M(C2,10)) both vanish by our choice
of positions of Y1 and Y2.

Y2

Y1

Le1

Le2

V1

V2

p

Figure 4.10: The 1-dimensional conditions Y1 and Y2 after movement, together with the (multi)
line conditions Le1 and Le2 , where p ∈ Y1 · Y2 is the point associated to V1 ∈ Y1 · Le1 and
V2 ∈ Y2 · Le2 .

To finish the proof, we need to see that we can always assume that Y1 and Y2 intersect
as shown in Figure 4.10, i.e. we want to show that the left-hand side of (4.10) does not
depend on the position of Y1 and Y2. Let C be a rational tropical stable map contribut-

ing to N∆2
d1+d2

(
pn1 , pn2 , Lκ1 , Lκ2 , λl1 , λl2 , λ

′
l

)
as in Proposition 4.1.1. Notice that n ≥ 1

by Proposition 4.1.25 since we have a 1/1 edge. The tropical cross-ratio’s length |λ′l| is
so large such that there is a contracted bounded edge e in C, and C is of splitting type
(∆2

d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2). Consider the cycle Zi that arises from forgetting the

point conditions pni and the line conditions Lκi for i = 1, 2 imposed on C. Hence C gives rise
to a top-dimensional cell of Zi, where points in that cell correspond to C together with some
movement of the conditions pni , Lκi . The proof of Proposition 4.1.1 implies that if |λ′l| is large

enough, then the given conditions can be moved in a bounded area B (say B ⊂ R2 is a rectan-
gular box) and all rational tropical stable maps that satisfy this moved conditions still have a
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contracted bounded edge. Moreover, the splitting type of those rational tropical stable maps
cannot change since that would require two contracted bounded edges which would contradict
that our given conditions are in general position. Since Z1, Z2 are balanced, we might choose
different positions for our point and line conditions for every splitting type without effecting
the overall count. Let B1, B2 ⊂ B be disjoint small rectangular boxes such that B1 lies in
the lower right corner of B and B2 lies in the upper left corner of B. Move the conditions
pn1 , Lκ1 , λl1 into B1 and the conditions pn2 , Lκ2 , λl2 into B2 while maintaining their property
of being in general position, see Remark 3.2.6. By choosing B1 and B2 small enough, we can
bring Y1 and Y2 in the desired position from Figure 4.10. Therefore (4.10) follows.

Theorem 4.3.4 (General tropical Kontsevich’s formula). Notation from Notation 2.0.1, Def-
inition 4.1.28, 4.3.1, 3.2.3 and Remark 4.1.30 is used. Fix a degree ∆2

d, point conditions pn,
multi-line conditions Lκ and degenerated tropical cross-ratios λ[l] on contracted ends only such
that these conditions are in general position. Let λ′l denote a cross-ratio that degenerates to λl.

(a) If there is at least one point condition, i.e. pn 6= ∅, then the equation

N∆2
d

(
pn, Lκ, λ[l]

)
=∑

(∆2
d1
,n1,κ1,l1,f1|∆2

d2
,n2,κ2,l2,f2)

is a 1/1 split respecting λ′l

N∆2
d1

(
pn1 , Lκ1 , Le1 , λ

→e1
l1

)
·N∆2

d2

(
pn2 , Lκ2 , Le2 , λ

→e2
l2

)

+
∑

(∆2
d1
,n1,κ1,l1,f1|∆2

d2
,n2,κ2,l2,f2)

is a 2/0 split respecting λ′l and
3d1=#n1+#l1−#f1

N∆2
d1

(
pn1 , Lκ1 , λ

→e1
l1

)
·N∆2

d2

(
pn2 , pe2 , Lκ2 , λ

→e2
l2

)

+
∑

(∆2
d1
,n1,κ1,l1,f1|∆2

d2
,n2,κ2,l2,f2)

is a 2/0 split respecting λ′l and
3d2=#n2+#l2−#f2

N∆2
d1

(
pn1 , pe1 , Lκ1 , λ

→e1
l1

)
·N∆2

d2

(
pn2 , Lκ2 , λ

→e2
l2

)

(4.11)

holds.

(b) If there are no point conditions, i.e. pn = ∅, then the equation

N∆2
d

(
Lκ, λ[l]

)
=

∑
(l1,f1|l2,f2)

is a 2/0 split respecting λ′l

N∆2
0

(
La, Lb, λ

→e
l1

)
·N∆2

d

(
p, Lκ\{La, Lb}, λ→el2

)
(4.12)

holds, where the line conditions La, Lb are the ones of Lemma 4.1.23.

Moreover, (4.11) and (4.12) give rise to a recursion with two types of initial values:

(1) The numbers N∆2
d

(
pn
)

which tropical Kontsevich’s formula (Corollary 4.3.7) provides.

(2) The numbers N∆2
0

(
La, Lb, λ

→e
l1

)
which satisfy

N∆2
0

(
La, Lb, λ

→e
l1

)
= ω(La) · ω(Lb) ·multcr(v

′), (4.13)
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where v′ denotes the only vertex of the only rational tropical stable map contributing

to N∆2
0

(
La, Lb, λ

→e
l1

)
and multcr(v

′) is its cross-ratio multiplicity, see Definition 3.2.16.

Notice that in the special case of λ→el1
= ∅ we have

N∆2
0

(La, Lb) = ω(La) · ω(Lb). (4.14)

Using Tyomkin’s correspondence theorem 2.3.6 (more precisely, Corollary 3.1.20 and Propo-
sition 3.2.7), Theorem 4.3.4 immediately yields the following corollary.

Corollary 4.3.5 (Algebro-geometric general Kontsevich’s formula). Let Nalg
∆2
d

(
pn, µ[l]

)
denote

the number of plane rational degree d curves over an algebraically closed field of characteristic
zero that satisfy point conditions and classical cross-ratios µ[l] as in Theorem 2.3.6 such that
all conditions are in general position. If the tropicalizations of µ[l] are on contracted ends only,
then Theorem 4.3.4 provides a recursive formula to calculate these numbers with initial values
as in Theorem 4.3.4.

Example 4.3.6. We want to give an example of how to compute numbers we are looking for
using our general tropical Kontsevich’s formula. Say we want to compute N∆2

2

(
p[3], L4, L5, λ[2]

)
.

For degenerated tropical cross-ratios

λ1 := {1, 2, 3, 4} and λ2 := {1, 2, 3, 5}.

Notice that (3.6) is satisfied so your input data makes sense. Recall the conventions we used for
labeling ends: in this example, we want to count rational tropical stable maps C of degree ∆2

2

in R2 that have 5 contracted ends. A contracted end labeled with i satisfies the point condition
pi for i = 1, 2, 3 and satisfies the multi-line condition Li for i = 4, 5. There is no non-contracted
end which satisfies no condition. To use Theorem 4.3.4, we need to fix a tropical cross-ratio λ′2
that degenerates to λ2. We choose

λ′2 := (12|35).

If C splits into C1, C2, then by Definition 4.3.1 ends 1, 2 are contracted ends of C1, i.e. p1, p2

are satisfied in C1, and 3, 5 are contracted ends of C2, i.e. p3, L5 are satisfied in C2. Therefore
λ1 is satisfied in C1 such that 4 is a contracted end of C1 that satisfies L4. Going through the
three cases of different types of splits using (4.1) and (4.2), we see that the only possible splits
are the 2/0 splits

(∆2
1, p1, p2, L4, λ1 | ∆2

1, p3, L5).

Since they only differ in the distribution of the labels l of
(
∆2

2, l
)

among the two degrees
(
∆2

1, l1
)

and
(
∆2

1, l2
)

there are
(

2
1

)3
= 8 of them (for notation, see Construction 4.1.26). Hence part (a)

of Theorem 4.3.4 yields

N∆2
2

(
p[3], L4, L5, λ[2]

)
= 8 ·N∆2

1
(p1, p2, L4, λ

→e1
1 ) ·N∆2

1
(p3, pe2 , L5) ,

where the rightmost factor can be written as

N∆2
1

(p3, pe2 , L5) = ω(L5) ·N∆2
1

(p3, pe2)︸ ︷︷ ︸
=1

by tropical Bézout’s Theorem [AR10].
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So it remains to calculate N∆2
1

(p1, p2, L4, λ
→e1
1 ). For that, we want to use Theorem 4.3.4

again. A rational tropical stable map C contributing to N∆2
1

(p1, p2, L4, λ
→e1
1 ) has 4 contracted

ends. A contracted end labeled with i satisfies pi for i = 1, 2 and Li for i = 4. The remaining
contracted end is labeled with e1 and satisfies no point condition. To stick to our convention of
labeling ends with natural numbers, we relabel e1 by 6. Again, fix a tropical cross-ratio λ′→e11

that degenerates to λ→e11 = {1, 2, 6, 4}. We choose

λ′→e11 := (12|46).

If C splits into C1, C2 then 1, 2 are contracted ends of C1, i.e. p1, p2 are satisfied in C1, and 4, 6
are contracted ends of C2, i.e. L4 is satisfied by C2 and there is one contracted end, labeled 6,
in C2 that satisfies no condition. As before, we can go through all splits and notice that

(∆2
1, p1, p2 | ∆2

0, L4, 6)

is the only possible split. Hence part (a) of Theorem 4.3.4 yields

N∆2
1

(p1, p2, L4, λ
→e1
1 ) = N∆2

1

(
p1, p2, Le′1

)
·N∆2

0

(
L4, Le′2

)
,

where

N∆2
1

(
p1, p2, Le′1

)
= ω(Le′1)︸ ︷︷ ︸

=1

·N∆2
1

(p1, p2)︸ ︷︷ ︸
=1

holds by tropical Bézout’s Theorem and by definition of Le′1 . Moreover,

N∆2
0

(
L4, Le′2

)
= ω(L4)

by Theorem 4.3.4.
In total, we calculated

N∆2
2

(
p[3], L4, L5, λ[2]

)
= 8 · ω(L4) · ω(L5)

for λ1, λ2 defined as above.

We now prove Theorem 4.3.4, discuss the initial values of the recursion Theorem 4.3.4
provides and then proceed with tropical Kontsevich’s formula which is a corollary of part (a)
of Theorem 4.3.4.

Proof of part (a) of Theorem 4.3.4. Proposition 3.2.7 yields that

N∆2
d

(
pn, Lκ, λ[l]

)
= N∆2

d

(
pn, Lκ, λ[l−1], λ

′
l

)
for a tropical cross-ratio λ′l that degenerates to λl. Since N∆2

d

(
pn, Lκ, λ[l−1], λ

′
l

)
does not

depend on |λ′l| (see Remark 3.1.9), choose it to be large as in Proposition 4.1.1. Hence each
rational tropical stable map contributing to N∆2

d

(
pn, Lκ, λ[l−1], λ

′
l

)
has a contracted bounded

edge e which can be cut using Construction 4.1.26 and thus gives rise to some splitting type
(∆2

d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2) that respects λ′l. Therefore

N∆2
d

(
pn, Lκ, λ[l−1], λ

′
l

)
=

∑
(∆2

d1
,n1,κ1,l1,f1|∆2

d2
,n2,κ2,l2,f2)

is a split respecting λ′l

∑
C

mult(C), (4.15)

where the second sum goes over all rational tropical stable maps C that give rise to the split
(∆2

d1
, n1, κ1, l1, f1 | ∆2

d2
, n2, κ2, l2, f2). Reordering the first sum of (4.15) as in (4.11) and

applying Lemmas 4.3.2, 4.3.3 proves part (a) of Theorem 4.3.4.
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Proof of part (b) of Theorem 4.3.4. We use notation from lemmas 4.1.23, 4.1.24 and Proposi-
tion 4.1.25. Proposition 3.2.7 yields that

N∆2
d

(
Lκ, λ[l]

)
= N∆2

d

(
Lκ, λ[l−1], λ

′
l

)
, (4.16)

holds. Conclude with Proposition 4.1.25 that each rational tropical stable map contributing to
the right-hand side of (4.16) has a contracted bounded edge e which is adjacent to a vertex v′

which is in turn adjacent to e1, e2. Notice that cutting e yields a 2/0 split. Thus Lemma 4.3.2
gives us equation (4.13).

Proof of the initial values part of Theorem 4.3.4. Notice that equations (4.11) and (4.12) of
Theorem 4.3.4 allow us to successively reduce the number of point, multi-line or degenerated
tropical cross-ratio conditions. There are three cases:

(1) We run out of degenerated tropical cross-ratio conditions. Then, if there are point con-
ditions left, tropical Bézout’s Theorem [AR10] can be applied to reduce the initial value
problem to the numbers N∆2

d

(
pn
)

which tropical Kontsevich’s formula (Corollary 4.3.7)
provides. If there are no point conditions left, then

N∆2
d

(
Lκ
)

= 0

for all d 6= 0 applies. Otherwise d = 0, #κ = #{a, b} = 2 and #f = 1 (for notation, see
Construction 4.1.26) such that

N∆2
0

(Lκ) = ω(La) · ω(Lb)

holds.

(2) We run out of point conditions. Then (4.12) reduces the initial value problem to calcu-

lating N∆2
0

(
La, Lb, λ

→e
l1

)
. This can be done via (4.13).

For equation (4.13), notice that each edge of a rational tropical stable map of degree ∆2
0

must be contracted. Thus there cannot be a bounded edge since all tropical cross-ratios
are degenerated. Hence there is exactly one vertex v′ in such a rational tropical stable map
whose position is determined by the unique point of intersection of La and Lb. Therefore

there is exactly one rational tropical stable map contributing to N∆2
0

(
La, Lb, λ

→e
l1

)
whose

multiplicity is ω(La) · ω(Lb) ·multcr(v
′) by Proposition 3.2.25.

(3) We run out of multi-line conditions. Then (4.11) can still be applied, so cases (1) and
(2) apply.

Gathmann and Markwig proved the following tropical Kontsevich’s formula [GM08] in
order to give a tropical proof of Kontsevich’s original formula via Mikhalkin’s correspondence
theorem [Mik05]. Here, it is a consequence of certain special cases of our general Kontsevich’s
formula 4.3.4.

Corollary 4.3.7 (Tropical Kontsevich’s formula, [GM08]). For #n = 3d − 1 > 0 general
positioned point conditions the equality

N∆2
d

(
pn
)

(d!)3
=

∑
d1+d2=d
d1,d2>0

(
d2

1d
2
2 ·
(

3d− 4

3d1 − 2

)
− d3

1d2 ·
(

3d− 4

3d1 − 1

)) N∆2
d1

(
pn1

)
(d1!)3

·
N∆2

d2

(
pn2

)
(d2!)3

holds and provides a recursion to calculate N∆2
d

(
pn
)

from the initial value N∆2
1

(p1, p2) = 1.
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Remark 4.3.8. The factors 1
(d!)3 ,

1
(d1!)3 ,

1
(d2!)3 in Corollary 4.3.7 appear since ends of our ra-

tional tropical stable maps are labeled. Let ∆2,unlab
d denote the unlabeled degree associated

to ∆2
d. For each rational tropical stable map to R2 of degree ∆2

d there are (d!)3 ways to label

its non-contracted ends. Thus
N

∆2
d
(pn)

(d!)3 equals the number of rational tropical stable maps to

R2 of degree ∆2,unlab
d that satisfy the point conditions pn. Often tropical Kontsevich’s for-

mula is stated for rational tropical stable maps of unlabeled degrees such that the factors
1

(d!)3 ,
1

(d1!)3 ,
1

(d2!)3 disappear.

Notice that the following proof of tropical Kontsevich’s formula that we present here is
inspired by the one given by Gathmann and Markwig in [GM08].

Proof of Corollary 4.3.7. Let pn be point conditions, let La, Lb be line conditions, i.e. multi-
lines with weights ω(La) = ω(Lb) = 1 and let λ = {La, Lb, pc, pd} be a degenerated tropical
cross-ratio, where pc, pd ∈ pn are points and the labels are chosen in such a way that a < b <
c < d.

Consider the tropical cross-ratio λ′ := (Lapc|Lbpd) that degenerates to λ. We claim that
(4.11) reduces to

N∆2
d

(
pn, La, Lb, λ

)
=

∑
(∆2

d1
,n1|∆2

d2
,n2)

is a 1/1 split respecting λ′

N∆2
d1

(
pn1 , La, Le1

)
·N∆2

d2

(
pn2 , Lb, Le2

)
(4.17)

in our case. Since we only have two line conditions and no contracted ends without point or
line conditions, each split we deal with can be written as (∆2

d1
, n1 | ∆2

d2
, n2) since λ′ determines

the distribution of La and Lb in each possible split respecting λ′. To show the claim, it remains
to show that the last two sums of (4.11) vanish. For that, it is because of symmetry sufficient
to show that the second sum vanishes. Let N∆2

d1

(
pn1 , La

)
·N∆2

d2

(
pn2 , pe2 , Lb

)
be a factor of the

second sum. Let C1 be a rational tropical stable map that contributes to N∆2
d1

(
pn1 , La

)
and

let C2 be a rational tropical stable map that contributes to N∆2
d2

(
pn2 , pe2 , Lb

)
. Using Remark

4.1.30, C1 and C2 can be glued to form a rational tropical stable map C which has a contracted
bounded edge e. Since our split was a 2/0 split, the 3-valent vertex v1 of C that is adjacent to
e is fixed. Hence there is a contracted end satisfying a point condition that is adjacent to v1.
Thus there is another contracted end adjacent to v1 which needs to satisfy either a point or a
line condition which is a contradiction since all conditions are in general position.

Now consider the tropical cross-ratio λ̃′ := (LaLb|pcpd) that degenerates to λ. We claim
that (4.11) reduces to

N∆2
d

(
pn, La, Lb, λ

)
=

∑
(∆2

d1
,n1|∆2

d2
,n2)

is a 1/1 split respecting λ̃′

N∆2
d1

(
pn1 , La, Lb, Le1

)
·N∆2

d2

(
pn2 , Le2

)

+N∆2
0

(La, Lb) ·N∆2
d

(
pn, pe2

) (4.18)

in this case. As before, splits can be written as (∆2
d1
, n1 | ∆2

d2
, n2). The last sum of (4.11)

vanishes with the same arguments from before. It remains to see that the second sum of
(4.11) equals the product N∆2

0
(La, Lb) · N∆2

d

(
pn, pe2

)
. If d1 > 0 and we consider a product

contributing to the last sum, then the same arguments from before show that this product
vanishes. Hence the only remaining contribution from the second sum that is possible is
N∆2

0
(La, Lb) ·N∆2

d

(
pn, pe2

)
.



4.3. General Kontsevich’s formula 83

Notice that there are no degenerated tropical cross-ratios on the right-hand sides of (4.17)
and (4.18) such that tropical Bézout’s Theorem [AR10] yields∑

(∆2
d1
,n1|∆2

d2
,n2)

is a 1/1 split respecting λ′

d2
1N∆2

d1

(
pn1

)
· d2

2N∆2
d2

(
pn2

)

=
∑

(∆2
d1
,n1|∆2

d2
,n2)

is a 1/1 split respecting λ̃′

d3
1N∆2

d1

(
pn1

)
· d2N∆2

d2

(
pn2

)
+N∆2

0
(La, Lb) ·N∆2

d

(
pn, pe2

)

since ω(La) = ω(Lb) = ω(Le1) = ω(Le2) = 1. Using N∆2
0

(La, Lb) = ω(La)ω(Lb) = 1, we obtain

N∆2
d

(
pn, pe2

)
= ∑

(∆2
d1
,n1|∆2

d2
,n2)

is a 1/1 split respecting λ′

d2
1d

2
2N∆2

d1

(
pn1

)
N∆2

d2

(
pn2

)

−
∑

(∆2
d1
,n1|∆2

d2
,n2)

is a 1/1 split respecting λ̃′

d3
1d2N∆2

d1

(
pn1

)
N∆2

d2

(
pn2

)
.

Since all conditions we started with are in general position

3d = #n+ 1 + 1

holds, i.e. each choice of n1, n2 in a split for fixed d1, d2 is a choice of distributing the remaining

3d − 4 points. There are
(

3d−4
3d1−2

)
choices if pc ∈ n1 and

(
3d−4
3d1−1

)
choices if pc, pd ∈ n2. Using

3di = #ni + 1 provides the following index for the sum (notation from Construction 4.1.26 is
used), namely

N∆2
d

(
pn
)

=
∑

(∆2
d1
|∆2
d2

):

∆2
d=∆2

d1
∪∆2

d2
,

d1,d2>0

(
d2

1d
2
2 ·
(

3d− 4

3d1 − 2

)
− d3

1d2 ·
(

3d− 4

3d1 − 1

))
N∆2

d1

(
pn1

)
N∆2

d2

(
pn2

)
.

For each choice of d1, d2 > 0 there are(
d

d1

)3

=
d!3

d1!3(d− d1)!3
=

d!3

d1!3 · d2!3

summands (∆2
d1
| ∆2

d2
) with ∆2

d = ∆2
d1
∪∆2

d2
associated to it. Hence

N∆2
d

(
pn
)

=
∑

d1+d2=d
d1,d2>0

(
d2

1d
2
2 ·
(

3d− 4

3d1 − 2

)
− d3

1d2 ·
(

3d− 4
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)
holds, which yields the desired formula.

Further generalizations The same methods Gathmann and Markwig used to prove tropical
Kontsevich’s formula [GM08] also yield a recursive formula for counting rational tropical stable
maps of bidegree (d1, d2) (i.e. with ends of directions (±1, 0), (0,±1)) to R2 that satisfy point
conditions, see [FM11]. Analogously, the methods developed here yield a recursive formula for
rational tropical stable maps to R2 of bidegree (d1, d2) that satisfy point conditions, degenerated
multi-line conditions and degenerated tropical cross-ratio conditions.





Chapter 5

Constructive approach:
Constructing tropical curves
algorithmically

In this chapter, a cross-ratio lattice path algorithm is presented. It calculates N∆

(
pn, λ[l]

)
which

is the number of rational tropical stable maps that satisfy point conditions and degenerated
tropical cross-ratio conditions, when ∆ is a degree in R2. Notice that these numbers can also be
calculated recursively using the general tropical Kontsevich’s formula 4.3.4 if all degenerated
tropical cross-ratios are on contracted ends only. The benefits that the cross-ratio lattice path
algorithm offers are that it takes degenerated tropical cross-ratios into account that are not on
contracted ends only and that it is constructive. That is, it allows us to explicitly construct all
rational tropical stable maps to R2 that contribute to N∆

(
pn, λ[l]

)
for a specific configuration

of the points pn. The cross-ratio lattice path algorithm therefore answers the leading question
(Q3) which asks whether contributions to N∆

(
pn, λ[l]

)
can be constructed. Moreover, the

cross-ratio lattice path algorithm works in arbitrary compact toric surfaces, i.e. it provides an
answer to question (Q4).

Dual subdivision. Let C be a rational tropical stable map of degree ∆ to R2. Let Σ (∆)
denote the lattice polytope associated to ∆ (see Remark 2.2.5). If C is simple (which we can
always assume, see Remark 5.2.2), then C induces a subdivision of Σ (∆) into lattice polytopes
the following way: edges locally around a vertex vi of C give rise to a local degree ∆i which
corresponds to a lattice polytope Σ (∆i). Gluing these polytopes together with respect to the
structure of C, which is a polyhedral complex, yields a a subdivision of Σ (∆). It is called dual
subdivision of C and is denoted by SC . See Figure 5.1 for an example of a dual subdivision.
For more details about dual subdivision, we refer to [Mik03, Mik05].

Original lattice path algorithm. Before diving into technical details, we shortly recall the
original lattice path algorithm introduced by Mikhalkin in [Mik03, Mik05]. The original lattice
path algorithm determines the number N∆

(
p[n]

)
of rational tropical stable maps of a degree ∆

in R2 that satisfy general positioned point conditions p[n]. It does so by explicitly constructing
the images of these rational tropical stable maps in R2 for a specific configuration of points.
To obtain a suitable point configuration, pick points p[n] in general position linearly ordered
on a line θ with a small negative slope such that distances of consecutive points grow, i.e.

|pi − pi−1| << |pi+1 − pi|.
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p1

p2

p3 p4
p5

p6

p7

p8

Figure 5.1: From left to right: A rational tropical stable map of degree ∆2
3 satisfying the

point conditions p[8], its associated dual subdivision and its associated lattice path in bold red.
Although p[8] are not lying on a line with small negative slope, they can be moved into this
position without effecting the combinatorial type (resp. the dual subdivision) of the rational
tropical stable map drawn. We just draw the points this way to get a better picture.

Let C be a rational tropical stable map of degree ∆ to R2 that satisfies these point conditions
and let SC be its dual subdivision of the polytope Σ (∆) (see Remark 2.2.5). Using that the
point conditions are in general position, it can be achieved that SC consists only of triangles
and parallelograms since C is 3-valent (see Remark 5.2.2). Hence each contracted end xi of C
that satisfies a point condition pi is dual to an edge ai of SC . A crucial observation is that the
set A := {ai | i ∈ [n]} forms a path in SC , a so-called lattice path with respect to the chosen
line θ on which p[n] lie. Figure 5.1 provides an example of a rational tropical stable map of
degree ∆2

3 that satisfies eight point conditions, its dual subdivision and its associated lattice
path.

The idea of the original lattice path algorithm is to go the other way round: start with
a lattice path A inside Σ (∆) and reconstruct all rational tropical stable maps C that satisfy
p[n] and yield the given lattice path A. To do so, construct all possible dual subdivisions of
Σ (∆) by starting with the lattice path A and then recursively fill in missing polytopes. The
original lattice path algorithm provides the necessary set of rules which govern how triangles
and parallelograms can be filled in. For more details about the original lattice path algorithm,
we refer to [Mik03, Mik05].

5.1 Cross-ratio lattice path algorithm

We now want to generalize the original lattice path algorithm to rational tropical stable maps
to R2 that satisfy point conditions and degenerated tropical cross-ratio conditions. Notice that
degenerated tropical cross-ratios lead to vertices of valence > 3, which means that nor there
are only triangles and parallelograms in our subdivisions, neither A needs to be a path (i.e. a
collection of connected edges). We overcome these technical problems by considering a wider
range of polytopes and carefully adapting the rules of filling them in when completing a path-
like A to an appropriate subdivision. Moreover, a consequence of having vertices of valence
> 3 is that edges of a rational tropical stable map may be mapped onto vertices in R2. To deal
with this problem, our polytopes are equipped with additional discrete data, see Figure 5.4.
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5.1.1 Building blocks

The building blocks which form subdivisions later on are now introduced. Notice that all
additional data polytopes are equipped with is discrete. Notice that the following definition
of edge is only used in the current chapter and is different from the definition of an edge of a
rational tropical stable map.

Definition 5.1.1 (Segments and labeled polytopes). Notation 2.0.1 is used.

� An edge E is a 1-dimensional lattice polytope in R2 consisting of one 1-dimensional face
and two 0-dimensional faces. A labeled edge is a tuple

(
E, τE

)
, where τE is a multiset of

m > 0 elements denoted by τE1 , . . . , τ
E
m in N>0 such that

∑
i τ

E
i = |E|, where |E| denotes

the lattice length of E. We refer to τE as labeling of E and to τE[m] as labels of E.

� In particular, a labeled edge
(
E, τE

)
with τE = {n} for some n ∈ N>0 is called a segment.

� Let P be a lattice polytope in R2 where each of its e facets is a labeled edge. Denote the
labeling of an edge Ej of P by τ j . Then (P, τ) with τ =

(
τ1, . . . , τ e

)
is called a labeled

polytope.

Definition 5.1.2 (Minkowski labeled polytopes). Notation 2.0.1 is used. Let P be the
Minkowski sum of a labeled polytope P̃ ⊂ R2 that is either 0-dimensional or 2-dimensional and
segments S1, . . . , Sr such that each segment is parallel to an edge of P̃ and P is 2-dimensional.
Note that if P̃ is a point, then every segment is by definition parallel to it. Moreover, we
require that if P̃ is 0-dimensional, then there are two segments Si1 , Si2 ∈ S[r] such that all
other Minkowski summands of P are parallel to Si1 or Si2 . Let E be an edge of P and denote
by F[k] edges of the Minkowski summands P̃ , S[r] that contribute to E. If τFi is the labeling of

Fi, then we define τE to be the multiset

τE := τF1∪̇ . . . ∪̇τFk .

A pair (P, τ) of such a polytope P with e edges E[e] and a tuple of multisets τ =
(
τE

1
, . . . , τE

e
)

,

where τE
i

is defined above, together with maps that match labels to the summands they come
from

fP |E : τE → {P̃ , S1, . . . , Sr}

such that if fP |E (t) = A ∈ {P̃ , S1, . . . , Sr}, then t ∈ τFi for Fi ⊂ A, is called a Minkowski
labeled polytope.

{1, 1}

{1}

{1}

{1}

{1} {1} {1}

{1}
S1 P̃ P

Figure 5.2: From left to right: A Segment S1 and a 2-dimensional labeled polytope P̃ whose
Minkowski sum forms the labeled polytope P on the right. The colors indicate the matching
of labelings of P1, P2 to their Minkowski summands.
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Notation 5.1.3. The non-segment Minkowski summand of a Minkowski labeled polytope P
is always denoted by P̃ as in Definition 5.1.2.

Definition 5.1.4 (Valid Polytopes and pointed segments). Notation 5.1.3 is used.

� A Minkowski labeled polytope P is called k-marked if P̃ has e edges Ej with labelings
τ j such that

∑e
j=1 #τ j = 3 + k holds, where #τ j ∈ N>0 is the number of entries of τ j .

If k = 0 or P̃ is 0-dimensional, then P is called unmarked.

� A Minkowski labeled polytope is called valid polytope if it is either unmarked or k-marked.
Two valid polytopes that share an edge E are compatible if their labelings of E coincide.

� Let P̃ be a 1-dimensional polytope where each side of its edge E is equipped with a
labeling. The Minkowski sum of P̃ with segments S1, . . . , Sr parallel to it, where each
summand contributes a label to the two labelings of E as in Definition 5.1.2 is called a
pointed segment. If P̃ is 0-dimensional, then it is called a non-pointed segment (all Si are
then parallel). The notion of compatibility extends to (non-)pointed segments as well: If
a valid polytope and a (non-)pointed segment share an edge, then they are compatible
if their labelings on this (side of the) edge coincide. We can refer to a (non-)pointed
segment as k-marked as above.

5.1.2 Coloring

The building blocks introduced in the last section are now enhanced with colors. Later, they
help us decide whether a rational tropical stable map which we constructed is fixed by the
given conditions or not.

Definition 5.1.5 (Coloring). Notation 5.1.3 is used. A coloring of a labeled polytope P is
a 2-coloring of all of its labels on each of its edges. The two colors are called fixed and free.
A colored polytope is called free (or fixed) if it is monochromatic of the color free (or fixed).
Given a colored Minkowski labeled polytope P , we say that exactly P̃ is fixed if all labels
associated to P̃ are colored fixed and the rest is colored free.

Algorithm 5.1.6 (Adjusting colors of two compatible polytopes.). Notation 5.1.3 is used. Let
P1, P2 be two colored polytopes that are compatible and denote their shared edge by E with
labelings τEP1

, τEP2
. Let fP1 |E , fP2 |E be maps as in Definition 5.1.2 and let g : τEP1

→ τEP2
be a

bijective map such that g(t) = t for all t ∈ τE ∩ N>0. Let t ∈ τEP1
be a colored label of E in

P1 and let g(t) be its image under g in τEP2
. When comparing and adjusting the colors of t and

g(t), we follow the slogan “fixed wins”:

(1) If t is colored fixed and g(t) is colored fixed, we leave the colors the way they are.

(2) If t is colored fixed and g(t) is colored free, we change g(t) to fixed. When changing g(t)
to fixed, we check whether all other labels coming from fP2 |E (g(t)) are fixed. If this is
not the case, then change them to fixed if fP2 |E (g(t)) is a segment. If fP2 |E associates
g(t) to P̃2, then change the labels associated to P̃2 to fixed if exactly two of the labels
associated to P̃2 are fixed (where g(t) is one of them).

(3) If t is colored free and g(t) is colored fixed, then do the same as in (2) but with the roles
of t, g(t) and P1, P2 exchanged.

(4) If t is colored free and so is g(t), then do nothing.
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We repeat this procedure using different labels in τEP1
until no color of labels of P1, P2 can be

changed according to the rules above. Note that this algorithm terminates since colors can
only be changed from free to fixed.

Algorithm 5.1.7 (Adjusting colors of a set of polytopes). Let P[z] be a finite set of colored
polytopes, where two polytopes are compatible if they share an edge. Go through all pairs of
compatible polytopes of P[z] and adjust their colors according to Algorithm 5.1.6. Repeat this
procedure until no colors can be changed. This algorithm terminates because we only allow
changing a color from free to fixed, following the slogan that fixed wins.

Note that the notion of coloring and adjusting colors extends to (non-)pointed segments.

5.1.3 Cross-ratio lattice paths and subdivisions

We are now ready to define cross-ratio lattice paths. The following two definitions are similar
to definitions of lattice paths in [Mik03] and [MR09]. Having these lattice paths, Construction
5.1.11 can then be used to construct subdivisions from lattice paths. It turns out, however,
that this gives us too many subdivisions such that some of them have to be sorted out.

Definition 5.1.8 (Lattice path). Fix θ to be a linear map of the form

θ : R2 → R, (x, y) 7→ x− εy,

where ε is a small irrational number. A path γ : [0, n]→ R2 is called a lattice path if γ |[j−1,j]

for j ∈ [n] is an affine-linear map and γ(j) ∈ Z2 for all j = 0, . . . , n. For j ∈ [n], we call
γ |[j−1,j] ([j − 1, j]) a step (the j-th step) of the lattice path γ. A lattice path is called θ-
increasing if θ ◦ γ is strictly increasing. If every step in a lattice path is a labeled edge, the
lattice path is called labeled lattice path.

Definition 5.1.9 (Cross-ratio lattice path). Notation 5.1.3 is used. Let ∆ be a degree in R2

and let Σ (∆) be its associated polytope (Remark 2.2.5). Let n ∈ N>0. Let A be an ordered
set P[n+z] of colored polytopes in Σ (∆) such that there are polytopes {Pi1 , . . . , Pin} ⊂ A such

that Pij is a pointed segment or a valid polytope such that P̃ij is fixed and not 0-dimensional
for j ∈ [n]. The other polytopes in A\{Pi1 , . . . , Pin} are non-pointed segments that are colored
free. The set A is called a cross-ratio lattice path if the following conditions are satisfied:

(1) Two polytopes Pi, Pj ∈ A intersect in at most one point.

(2) If an edge E of a polytope Pi ∈ A lies in the boundary ∂Σ (∆) of Σ (∆), then it is labeled
by τE = (1, . . . , 1).

(3) Let πx denote the projection of R2 onto the x-axis. There are sets γ+, γ− of edges of
P1, . . . , Pn+z such that γ+, γ− form θ-increasing labeled lattice paths, γ+ ∪ γ− is the set
of all edges of P1, . . . , Pn+z and for all x ∈ πx (Σ (∆)) and all E+ ∈ γ+, E− ∈ γ− such
that there are points (x, y+) ∈ E+ ⊂ R2, (x, y−) ∈ E− ⊂ R2 the inequality y+ ≥ y− holds
(see Figure 5.3).

(4) The order of the polytopes P[n+z] agrees with the obvious order given by γ+ and γ−,
respectively.

(5) Let p and q be the points in Σ (∆) where θ |Σ(∆) reaches its minimum (resp. maximum),
then p = γ+(0) = γ−(0) and q = γ+(n+) = γ−(n−), where γ+ : [0, n+] → R2 and
γ− : [0, n−]→ R2 are defined as above.
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P1

P2
P3

P4 P5

Figure 5.3: Consider the polytope Σ
(
∆2

4

)
which is a 2-simplex stretched to side length 4. From

left to right: A = {P1, . . . , P5}, γ+, γ− in Σ
(
∆2

4

)
.

Convention 5.1.10. Throughout the rest of this section, we fix a degree ∆ in R2 such that
all vectors in ∆ are of weight one, see Definition 2.2.3. Moreover, fix point conditions p[n] and
degenerated tropical cross-ratio conditions λ[l] in general position such that

#∆− 1 = n+ l

holds, see Definition 3.2.4. That is, each contracted end satisfies a point condition.

Construction 5.1.11 (Constructing subdivisions of Σ (∆) from A). Let A be a cross-ratio lat-
tice path in the polytope Σ (∆) with #A = n+z for some z ∈ N such that z ≤ #

(
Σ (∆) ∩ Z2

)
.

Let γ+ be the associated labeled lattice path from Definition 5.1.9.

Let γ+(j) and γ+(j + 1) be the j-th and the (j + 1)-th labeled edge of γ+ that form the
first left turn. Fill up this left turn with a valid polytope P ⊂ Σ (∆) that is colored free, whose
edges that equal γ+(j) and γ+(j + 1) are compatible with γ+(j) and γ+(j + 1) and if P shares
other edges with our polytopes, it should there be compatible, too. Whenever two compatible
labeled edges with labelings τE come together, we choose a bijective map g : τE → τE such
that g(t) = t for all t ∈ τE ∩ N>0. Moreover, we use Algorithm 5.1.7 to adjust the colors of
the set of polytopes we have so far. If P shares an edge E with the boundary ∂Σ (∆), then we
require τE = (1, . . . , 1) and we choose a bijective map g′ : τE →M , where M is a submultiset
of the labels of the degree ∆ that are associated to vectors orthogonal (and pointing away from
Σ (∆)) to E. When another polytope P ′ shares an edge with ∂Σ (∆), then we choose M ′ in
the set of labels of ∆ minus M . In the same way the right turns of γ− can be filled up.

Repeating these steps (i.e. fill up the first left (resp. right) turn), a subdivisions of Σ (∆)
is obtained if and only if

Σ (∆) = A ∪
⋃
P

{P},

where the union runs over all valid polytopes P used to fill up turns during the process described
above. The cells of such a subdivision are valid polytopes which are compatible and connected
via maps called g above. Such a subdivision is called a lattice path subdivision of A if all
polytopes are colored fixed. The set of all lattice path subdivisions of A is denoted by S0(A).
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{1, 1}

{1}

{1}

{1}

P1

1 1
1

1

1

Figure 5.4: On the left is the Minkowski labeled polytope P introduced in Figure 5.2 and on
the right is its dual rational tropical stable map.

Construction 5.1.12 (Dual tropical curve). Notation 5.1.3 is used. Let S ∈ S0(A) be a
lattice path subdivision. We want to construct the dual tropical stable map CS to S. For that,
draw a k-valent vertex v for every k-marked (k > 0) polytope P in S and an edge passing
through this vertex for every segment of P (the edge is orthogonal to the segment). An edge
e adjacent to v is dual (and orthogonal) to an edge E of P̃ , that is, the weight of e is given
by an entry of the labeling τE of E. The weight of an edge passing through v is given by
the label of its associated segment that is dual to this edge. If two polytopes P,Q ∈ S0(A)
share an edge E with labeling τE , we connect the edge associated to τEi in P with the edge
associated to g

(
τEi
)

in Q for all i, where g is a map as in Construction 5.1.11. Moreover, if
P ∈ A and P is neither a pointed segment nor a non-pointed segment, then add a contracted
end (which has to satisfy a point condition) to the vertex dual to P̃ . If P ∈ A and P is a
pointed segment, then the edges dual to the labelings associated to P̃ meet in one vertex which
is in addition adjacent to a contracted end (which has to satisfy a point condition). In this
way, a combinatorial type CS is obtained. The general construction of tropical stable maps
dual to lattice paths (see [Mik05]) and the fact that all polytopes are fixed implies that for
given points p[n] in general position linearly ordered on a line with a small negative slope such
that distances grow (|pi − pi−1| << |pi+1 − pi|) there is exactly one tropical stable map whose
combinatorial type equals CS . Moreover, this tropical stable map satisfies the point conditions
p[n]. Hence CS can uniquely be turned into a tropical stable map.

Since we are only interested in rational tropical stable maps, we need to remove subdivisions
whose dual tropical stable maps are reducible. The set of lattice path subdivisions for a given
cross-ratio lattice path A which are dual to irreducible tropical stable maps is denoted by
S1(A).

Definition 5.1.13. Notation 5.1.3 is used. Let Λ denote the union of all given degenerated
tropical cross-ratio conditions λ[l], i.e.

Λ :=
⋃
j∈[l]

λj .

Let S be a lattice path subdivision in S1(A) and let P be a valid polytope or a pointed segment
in S. Consider the summand P̃ of P and define for all entries τ1, . . . , τm of labelings of edges of
P associated to P̃ the sets Λ(P, i) ⊂ Λ of points and ends appearing in the tropical cross-ratios
λ[l] that can be reached from P via τi. That is, the elements of Λ(P, i) are obtained with the
following procedure:

� If the edge E of P where τi appears is contained in the boundary ∂Σ (∆), then its dual
edge is a labeled end determined by g(τi) (Construction 5.1.11), and we add it to Λ(P, i).
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� If there is a non-pointed segment S in A such that P and S share an edge E such that
τi appears in τE , then there is exactly one τ ′i on the other side of the edge of S that is
mapped to the same segment of S as τi. Continue with τ ′i .

� Else, there is a valid polytope (or a pointed segment) Q in S such that Q 6= P and P,Q
share an edge E such that τi appears in τE . Then either:

– τi is mapped to Q̃ (via the map fQ |E from Definition 5.1.2) and Q /∈ A, then
continue with all other labels mapped to Q̃ instead of τi.

– τi is mapped to Q̃ and Q = Ptj ∈ {Pt1 , . . . , Ptn} ⊂ A (where {Pt1 , . . . , Ptn} are all
valid polytopes and pointed segments in A), then add the label of the contracted
end xtj to Λ(P, i) and continue with all other labels mapped to Q̃ instead of τi

– τi is mapped to a segment of Q, then there is exactly one τ ′i in another edge E′ of
Q that is mapped to the same segment. We continue with τ ′i .

In each case, we follow all appearing edges until either ends associated to ∂Σ (∆) are
reached (for which we add the labels of such an end to Λ(P, i)) or contracted ends are
reached.

Let {Pt1 , . . . , Ptn} denote the set of all valid polytopes and pointed segments in A. If P
equals Ptj ∈ {Pt1 , . . . , Ptn}, then set

Λ(P, 0) := {xj},

where xj is the label of the j-th contracted end. Otherwise, set

Λ(P, 0) := ∅.

Moreover, define

Λ(P ) := {λj = {βj1 , . . . , βj4} ∈ λ[l] | βji ∈ Λ(P, ki) for i ∈ [4] and ki 6= ki′ if i 6= i′}.

We say that the lattice path subdivision S fits the degenerated tropical cross-ratios λ[l] if∑
P

#Λ(P ) = l,

where the sum goes over all valid polytopes and pointed segments in S and

#Λ(P ) =

{
k , if P is k-marked

0 , otherwise.

For a cross-ratio lattice path A, the subset of S1(A) of subdivisions which fit the given
degenerated tropical cross-ratios is denoted by S2(A).

5.1.4 Multiplicities of subdivisions

The algorithm of the last section which yields a set of subdivisions S2(A) is now enriched such
that is also yields a multiplicity with which each subdivision in S2(A) can be counted. The
overall algorithm which then constructs subdivisions and their multiplicities is called cross-ratio
lattice path algorithm.
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Definition 5.1.14 (Multiplicity of a subdivision). Notation 5.1.3 is used. In order to associate
a multiplicity to a lattice path subdivision S ∈ S2(A), define the ev-multiplicity of S by

multev(S) :=
∏
P

multev(P ),

where the product goes over all valid polytopes and pointed segments in S, and mult(P ) is
defined as follows: If P̃ is 0-dimensional or P ∈ A, then mult(P ) := 1. Otherwise, let τ1, . . . , τm
denote the entries of labelings of edges of P associated to P̃ , let Ei be the number of ends that
can be reached from P via τi and let Ci be the number of constraints that can be reached from
P via τi (using the procedure from Definition 5.1.13), that is

Ci := C(points)
i + C(cross-ratios)

i ,

C(cross-ratios)
i :=

∑
P ′

#Λ(P ′),

where the sum goes over all valid polytopes and pointed segments in S that can be reached

from P via τi, Λ(P ′) is defined in 5.1.13 and C(points)
i is the number of contracted ends that can

be reached from P via τi. We either have

Ei − 1 = Ci or Ei − 2 = Ci.

In the first case, the edge dual to τi in the associated rational tropical stable map CS (Con-
struction 5.1.12) leads to a fixed component, in the second case it leads to a free component
(see Definition 3.2.28). Every vertex of the dual rational tropical stable map has exactly two
fixed components, we use the indices i0 and i1 for those labels corresponding to edges CS that
lead to a fixed component. Then we set

multev(P ) := | det (τi0 · v0, τi1 · v1) |,

where v0 (resp. v1) is the primitive vector of the edge E0 (resp. E1) of P that belongs to τi0
(resp. τi1).

Let P /∈ A be a valid polytope or a pointed segment in S. Again, let τ1, . . . , τm denote the
entries of labelings of edges of P associated to P̃ . Let λj ∈ Λ(P ) with = {βj1 , . . . , βj4}, then
(by Definition 5.1.13) there are pairwise different ki for i ∈ [4] such that βji ∈ Λ(P, ki). Define
the degenerated tropical cross-ratio that is adapted to P by

λ→P := {τk1 , . . . , τk4}

and define

Λ→P (P ) := {λ→P | λ ∈ Λ(P )}.

Consider a vertex v of valence m that is adjacent to only ends which are labeled by τ1, . . . , τm.
Define

multcr(P ) := multcr(v),

where multcr(v) is the cross-ratio multiplicity of v with respect to Λ→P (P ). If P is the t-th of
the n pointed segments or valid polytopes in A, then define multcr(P ) analogously to above
with

λ→P := {τk1 , . . . , τk4} ∪ {xt},
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where xt is the label to which the t-th point condition pt ∈ p[n] is associated to. Define the
cross-ratio multiplicity of S by

multcr(S) :=
∏
P

multcr(P ),

where the product goes over all valid polytopes and pointed segments in S. The multiplicity
mult(S) of the subdivision S is defined as

mult(S) := multev(S) ·multcr(S).

Definition 5.1.15 (Output cross-ratio lattice path algorithm). Let ∆ be a degree in R2 and
let p[n], λ[l] be general positioned conditions as in Convention 5.1.10. Define

N lpa
∆

(
p[n], λ[l]

)
:=
∑
S

mult(S),

where the sum goes over all S ∈ S2(A) for all cross-ratio lattice paths A with respect to ∆ and
with n+ z steps for all z.

Remark 5.1.16 (Arbitrary degree). In Convention 5.1.10 we restricted to degrees ∆ such that
all vectors in ∆ are of weight one. This was done to keep notation simple. Indeed, the whole
cross-ratio lattice path algorithm can be extended to arbitrary degrees in R2.

Example 5.1.17. We want to give an example of the cross-ratio lattice path algorithm. Fix
the degree ∆2

3, see Notation 2.2.4. We choose points p[7] and a degenerated tropical cross-ratio
λ = {1, 2, 14, 15}. It turns out that all cross-ratio lattice paths we need to consider have 7
steps. The top row of Figure 5.5 shows these cross-ratio lattice paths. There are no labels on
polytopes and colors in Figure 5.5 because all labels are 1 and all labels are colored fixed. The
column under each of these cross-ratio lattice paths shows the subdivisions arising from these
cross-ratio lattice paths. The maps that glue together the polytopes in a subdivision (maps
like g from Construction 5.1.11) are not mentioned in Figure 5.5 since they are the obvious
ones. However, the gluing maps that connect the polytopes in the subdivsion to the boundary
of ∆3 are not unique since we labeled ends of rational tropical stable maps (we come back to
this later). The grey polytopes are 1-marked, that is λ leads to a vertex of valence four that
is dual to these polytopes. Note that all subdivisions fit the degenerated tropical cross-ratio λ
for an appropriate choice of gluing the polytopes to the boundary.

The numbers in the rightmost column correspond to subdivisions shown on the left. Each of
these numbers is a product, where the first factor is the multiplicity mult(S) of its associated
subdivision S. Note that multcr(S) = 1 for all subdivisions since there is only one way of
resolving the 4-valent vertex dual to each 1-marked polytope according to some λ′ degenerating
to λ. The second factor comes from different gluings of polytopes to the boundary of ∆2

3 and
can easily be seen from an example, see Figure 5.6.

The total sum of the numbers in the right column is 40, which is the number of ratio-
nal tropical stable maps of an partially labeled degree such that they satisfy the given point
conditions and the degenerated tropical cross-ratio condition. Since the second factor of each
product in the rightmost column equals the number of ways to label ends with direction vec-
tor (1, 1) ∈ R2, we obtain the number of rational tropical stable maps of a labeled degree by
multiplying 40 with (3!)2, which is 1440.



5.2. Duality: Tropical curves and subdivisions 95

mult · boundary

2 · 1, 1 · 2, 1 · 2, 1 · 4

2 · 1, 1 · 2, 1 · 2

2 · 4, 1 · 2

1 · 4, 1 · 2

1 · 2, 1 · 2

1 · 2, 1 · 2

Figure 5.5: A complete example of cross-ratio lattice paths, subdivisions and their multiplici-
ties.

14

15

15

14

14

15

15

14

Figure 5.6: The subdivision in the right top corner of Figure 5.5 and the four different choices
of labels of ends that appear in λ such that the subdivision still fits λ.

5.2 Duality: Tropical curves and subdivisions

In this section, Theorem 5.2.4 is proved. It relates the numbers obtained from the cross-ratio
lattice path algorithm to the numbers N∆

(
pn, λ[l]

)
of rational tropical stable maps we are

interested in (where ∆ is a degree in R2).

The general tropical Kontsevich’s formula 4.3.4 allows us to determine some of these num-
bers N∆

(
pn, λ[l]

)
already. Notice, however, that it does not allow to compute the numbers
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N∆

(
pn, λ[l]

)
if ∆ is an arbitrary degree in R2 and if not all degenerated tropical cross-ratios

are on contracted ends only. The cross-ratio lattice path algorithm determines these numbers
for arbitrary degrees in R2 and arbitrary degenerated tropical cross-ratios instead. Moreover,
it is constructive allowing us to explicitly construct all rational tropical stable maps that con-
tribute to such a number N∆

(
pn, λ[l]

)
.

As a consequence, the corresponding algebraic numbers (via Tyomkin’s correspondence
theorem 2.3.6) become computable too.

Definition 5.2.1 (Simple rational tropical stable maps). A rational tropical stable map(
Γ, x[M ], h

)
in M0,N

(
R2,∆

)
is called simple if is satisfies:

� The map h that embeds Γ in R2 is injective on vertices of Γ.

� If h(v) ∈ h(e) for a vertex v and an edge e, then there is an edge e′ adjacent to v such that
h(e) and h(e′) intersect in infinitely many points. Additionally, there is a finite sequence
(ei)i∈[r] of edges of Γ with e1 := e′ and er := e′ such that h(ei) is contained in the affine
span of h(e) for all i ∈ [r] and such that two consecutive elements of the sequence are
incident in Γ.

� If there is a point p ∈ R2 through which more than two edges pass, then divide these
edges into equivalence classes depending on the slope of the affine line they are mapped
to. Then there are at most two equivalence classes.

Remark 5.2.2. Consider point conditions pn and degenerated tropical cross-ratio conditions
λ[l] in general position and a rational tropical stable map C that satisfies them such that C is not
simple. Since the position of every vertex of C depends on the positions of the point conditions
only, it follows that moving the point conditions slightly (see Remark 3.2.6) deforms C into a
simple rational tropical stable map C ′ that satisfies the moved conditions. By definition, the
multiplicity mult(C ′) equals mult(C). Moreover, the set of positions where the conditions can
be moved such that all rational tropical stable maps that satisfy them are simple is open and
dense in the space of all possible positions of conditions.

Remark 5.2.3. Given a rational tropical stable map (Γ, x[M ], h) to R2, two graph structures
can be associated to h(Γ) in R2. The first graph structure is the one coming from Γ. The
second graph structure is the one of h(Γ) ⊂ R2, i.e. whenever edges of h(Γ) in R2 intersect,
this intersection is considered a vertex, see Figure 5.7. Notice that Minkowski labeled polytopes
as in Figure 5.4 help to keep track of the graph structures.

h(Γ)

Figure 5.7: Left: A local picture of Γ and its graph structure. Middle: A local picture of a
vertex of h(Γ), where the two edges on the left are mapped on top of each other, we shifted them
slightly to get a better picture. Right: The graph structure of h(Γ) induced from intersections
of edges.
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Theorem 5.2.4. For notation, see Notation 2.0.1, Definition 3.2.5 and Definition 5.1.15. Let
∆ be a degree in R2. Let pn be point conditions and let λ[l] be degenerated tropical cross-
ratio conditions such that these conditions are in general position with respect to λ such that
#∆− 1 = #n+ l. Then the equality

N∆

(
p[n], λ[l]

)
= N lpa

∆

(
p[n], λ[l]

)
holds. Moreover, the lattice path algorithm explicitly constructs all rational tropical stable maps
that contribute to N∆

(
p[n], λ[l]

)
if the position of the conditions is chosen appropriately.

Proof. Remark 3.2.6 and Remark 5.2.2 allow us to assume that the point conditions pn are
linearly ordered on a line with a small negative slope such that distances grow, i.e.

|pi − pi−1| << |pi+1 − pi|,

and that all rational tropical stable maps that contribute to N∆

(
pn, λ[l]

)
are simple.

Let S∆

(
pn, λ[l]

)
denote the set of elements that contribute to N lpa

∆

(
pn, λ[l]

)
. Denote the

set of rational tropical stable maps that contribute to N∆

(
pn, λ[l]

)
by R∆

(
pn, λ[l]

)
. Consider

the map

φ : S∆

(
pn, λ[l]

)
→ R∆

(
pn, λ[l]

)
S 7→ CS

that maps a lattice path subdivision S to its dual rational tropical stable map CS given by
Construction 5.1.12. This map is obviously well-defined because in all subdivisions all polytopes
are colored fixed, i.e. each rational tropical stable map CS is fixed by the given conditions.
Moreover, the map is injective because rational tropical stable maps of different combinatorial
types are different. To see that φ is surjective, we need to construct a preimage for a given
rational tropical stable map C := (Γ, x[N ], h) inR∆

(
pn, λ[l]

)
. For that, the two graph structures

of C of Remark 5.2.3 are used: if we refer to a vertex in h(Γ), we mean the graph structure
induced by h and if we refer to a vertex in Γ, we mean the graph structure of Γ.

First of all, associate a valid polytope (resp. a pointed segment) to every vertex v ∈ h(Γ):
Let v be a vertex of h(Γ) and consider its dual polytope Pv. The polytope Pv can be turned into
a labeled polytope (resp. a pointed segment) if we label its edges Ei with weights of its dual
edges ei1 , . . . , eim ∈ Γ. Moreover, denote by P̃v the dual polytope of v ∈ Γ and label its edges
as before. Note that Pv is a Minkowski sum of P̃v and segments S1, . . . , Sr that correspond
to edges of v ∈ h(Γ) that are no edges of v ∈ Γ. Since C is simple it follows that edges of
v ∈ h(Γ) that are no edges of v ∈ Γ can only be parallel to edges of v ∈ Γ. Furthermore, if
P̃v is 0-dimensional, then there are two segments Si1 , Si2 ∈ S[r] such that all other Minkowski
summands of Pv are parallel to Si1 or Si2 . Note also that there are mappings of entries of
labeled edges of Pv to its Minkowski summands. In addition, Pv is unique because permuting
parallel edges of v ∈ h(Γ) leads to the same dual polytope. In this way, a valid polytope (resp.
pointed segment) is associated to every vertex v ∈ h(Γ).

The second step is to associate a subdivision SC ∈ S∆

(
pn, λ[l]

)
to C: The rational tropical

stable map C determines how to glue the polytopes Pv (via maps called g in Construction
5.1.11) for all vertices v ∈ h(Γ) together. Notice that if two vertices v, v′ ∈ h(Γ) are adjacent,
then their dual valid polytopes Pv, Pv′ are compatible. Denote the subdivision obtained this
way by SC . The dual polytopes resp. segments associated to the vertices and edges of h(Γ)
meeting the points pn and non-pointed segment (we associate in the obvious way to the edges
of C that intersect the line the points pn lie on) form a cross-ratio lattice path A. Hence SC
is a lattice path subdivision whose dual tropical stable map is C, the genus of C is zero, all



98 5. Constructive approach

polytopes of SC are fixed and SC fits to the given degenerated tropical cross-ratios by the path
criterion (Corollary 3.2.12). Therefore SC ∈ S2(A) for a cross-ratio lattice path A. Thus φ is
bijective.

Comparing Definition 5.1.14 with Lemma 3.2.32 yields that

mult(S) = mult(φ(S))

holds for all S ∈ S∆

(
pn, λ[l]

)
. Hence Theorem 5.2.4 follows.

Example 5.2.5. To illustrate the proof of Theorem 5.2.4, consider the subdivision of Example
5.1.17 given be the entry (4, 2) of Figure 5.5, where matrix notation is used. Figure 5.8 shows
this entry on the left and its associated rational tropical stable map on the right. The degen-
erated tropical cross-ratio λ of Example 5.1.17 is satisfied at the vertex v which corresponds to
the gray square in the subdivision.

p2

p1

p3
p4

p5

p6
p7

v

Figure 5.8: Left: Entry (4, 2) of Figure 5.5 with its lattice path colored red. Right: Its
associated rational tropical stable map that satisfies the point conditions p[7]. Moreover, it
satisfies a degenerated tropical cross-ratio λ at the vertex v. Labels of ends are not shown here.

Using Tyomkin’s correspondence theorem 2.3.6 (more precisely, Corollary 3.1.20 and Propo-
sition 3.2.7), Theorem 5.2.4 immediately yields the following corollary.

Corollary 5.2.6 (Algebro-geometric count via cross-ratio lattice path algorithm). Notation
2.0.1 is used. Let ∆ be a degree in R2 as in Definition 2.2.3 and let Σ(∆) be its associated
lattice polytope, see Remark 2.2.5. Let XΣ(∆) be the toric variety associated to Σ(∆). Then the
number of rational algebraic curves in XΣ(∆) over an algebraically closed field of characteristic
zero that satisfy point conditions and classical cross-ratio conditions in general position can be
calculated via the cross-ratio lattice path algorithm.



Chapter 6

Combinatorial approach: Counting
curves via cross-ratio floor diagrams

In this chapter, cross-ratio floor diagrams are presented. They are combinatorial objects that
arise as degenerations of rational tropical stable maps. Each such cross-ratio floor diagram is
equipped with a multiplicity that reflects how many rational tropical stable maps degenerate
to it. Counting cross-ratio floor diagrams with their multiplicities then yields numbers of
interest, namely the counts of rational tropical stable maps that involve degenerated tropical
cross-ratio conditions. In case of rational tropical stable maps to R2 these numbers are known
thanks to the lattice path algorithm from Chapter 5 and general tropical Kontsevich’s formula
4.3.4 of Chapter 4. Here, cross-ratio floor diagrams provide another — combinatorial — way
to calculate those numbers. The benefit of this combinatorial approach is that it can be
generalized to rational tropical stable maps of degree ∆3

d(α, β) (Notation 2.2.4) to R3 which is
done in Theorem 6.3.34. Thus cross-ratio floor diagrams provide (partial) answers to leading
questions (Q1) and (Q5). We remark that almost all techniques presented in this chapter
extend to even higher dimensions. What prevents us from extending the cross-ratio floor
diagram approach to rational tropical stable maps to Rm with m > 3 is the currently unknown
behavior of multiplicities of so-called floor-decomposed rational tropical stable maps to Rm if
degenerated tropical cross-ratios are involved.

Original floor diagrams. The original concept of floor diagrams was introduced by Brugallé
and Mikhalkin in [BM07, BM08] to describe, among other things, the numbers N∆2

d

(
p[n]

)
(Definition 3.1.8). More floor diagram techniques were then elaborated in [FM10]. Recall
that the numbers N∆2

d

(
p[n]

)
are independent of the exact positions of the general positioned

point conditions p[n]. Moreover, by Remark 3.1.10, the set of all positions of point conditions
that are in general position is open and dense in the set of all possible positions for the point
conditions. Hence it can be assumed that the given point conditions are in a so-called stretched
configuration, which means that they lie in a thin stripe (−ε, ε)×R ⊂ R2 with large distances
between them. A crucial observation is that all rational tropical stable maps that contribute to
N∆2

d

(
p[n]

)
(where the point conditions p[n] are in a stretched configuration) are of a particularly

nice form. This form is referred to as floor-decomposed.

Figure 6.1 provides an example of a floor-decomposed rational tropical stable map C of
degree ∆2

3 satisfying eight point conditions p[8]. Notice that the distances between the given
point conditions are not large. However, stretching the point conditions further apart yields
a rational tropical stable map of the same combinatorial type as C. Notice that the floor-
decomposed rational tropical stable map C can easily be degenerated to a graph. In Figure
6.1 it is indicated with dotted lines which parts of C are contracted to vertices of the graph

99
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p1

p2

p3

p4

p5
p7

p8

p6

x

y

Figure 6.1: Top: A floor-decomposed rational tropical stable map C of degree ∆2
3 that satisfies

eight point conditions p[8]. Its so-called floors are indicated by dotted lines. Bottom: Its
associated floor diagram, where larger floors are shrunk to white vertices.

downstairs. Such a graph is called floor diagram.
Each such floor diagram is then counted with a suitable multiplicity that reflects how many

rational tropical stable maps degenerate to it such that the overall count equals N∆2
d

(
p[n]

)
.

Thus determining the numbers N∆2
d

(
p[n]

)
boils down to a purely combinatorial counting prob-

lem.

6.1 Floor decomposition

To incorporate degenerated tropical cross-ratios into the floor diagram approach, it is essential
to show that rational tropical stable maps that satisfy given degenerated tropical cross-ratio
conditions are floor-decomposed (see also Figure 6.1). For that, it is necessary that we restrict
to (degenerated) tropical cross-ratios whose entries are contracted ends or ends of certain
directions only.

Definition 6.1.1 (Stretched configuration). Let ∆m
d (α, β) be a degree as in Notation 2.2.4.

Let p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l] be general positioned conditions with respect to ∆m
d (α, β) as in

Definition 3.2.4. Let π : Rm → Rm−1 be the projection that forgets the xm-coordinate as in
Notation 2.2.9. Let ε > 0 be a real number, and define for the open interval (−ε, ε) ⊂ R the
open box Bt

ε := (−ε, ε)t ⊂ Rt. The conditions p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l] are said to be in a

stretched configuration if the following properties are satisfied.

(1) π
(
Pηγ
)
⊂ Bm−1

ε for γ = α, β.

(2) L
(0)
k ∈ B

m−1
ε for k ∈ κα ∪ κβ, where L

(0)
k denotes the 0-skeleton of Lk.

(3) π(p[n]) ⊂ Bm−1
ε and the distances of the xm-coordinates pi,xm of the points pi for i ∈ [n]

are large compared to the size of the box Bm−1
ε , i.e. |pi,xm−pj,xm | >> ε for all i 6= j ∈ [n].

(4) Each entry of each degenerated tropical cross-ratio λj ∈ λ[l] is either the label of a
contracted end or the label of and end of primitive direction ±em (see Notation 2.2.4).

Remark 6.1.2. Stretched configurations exist, because the set of all positions of general po-
sitioned conditions is open and dense in the set of all possible positions of conditions (Remark
3.2.6), i.e. the property of being in general position can be preserved when stretching the points
p[n] in xm-direction.
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Definition 6.1.3 (Floor-decomposed). Notation 2.2.4 is used. An elevator of a rational tropi-
cal stable map C of degree ∆m

d (α, β) is an edge whose primitive direction is ±em. A connected
component Ci of C that remains if the interiors of the elevators are removed is called floor of
the rational tropical stable map C. The number si ∈ N of ends of Ci that are of direction e0 is
called the size of the floor Ci. A rational tropical stable map that is fixed by general positioned
conditions as in Definition 3.2.4 is called floor-decomposed if each of the points p[n] lies on its
own floor. Notice that floors can be of size zero, i.e. a floor can have exactly one vertex.

Later, we equip floors with additional ends by cutting elevators (Construction 6.3.16) and
stretching them to infinity. By abuse of notation we refer to these rational tropical stable maps
as floors as well when no confusion can occur.

Example 6.1.4. The top part of Figure 6.1 shows a floor-decomposed rational tropical stable
map to R2. Its horizontal edges are the elevators and its floors are indicated by dotted lines.

Example 6.1.5. Figure 6.2 shows a floor-decomposed rational tropical stable map C. The
labels of some of its ends are indicated with circled numbers. The ends labeled with 1 and 2
are drawn dotted which indicates that these ends are contracted. The other labeled ends are of
primitive direction ±e3 ∈ R3 using Notation 2.2.4. The end labeled with 8 is of weight two while
all other ends are of weight one such that the degree of C is ∆3

4 ((4, 1, 0, . . . ), (2, 0, . . . )), see
Notation 2.2.4. The general positioned conditions C satisfies are the following: The end labeled
with 1 (resp. 2) satisfies a point condition p1 (resp. p2). The ends labeled with f ∈ [9]\[2]
satisfy codimension one tangency conditions Pf for f ∈ [9]\[2]. Moreover, C satisfies the
degenerated tropical cross-ratio λ1 = {1, 2, 3, 7} at its only 4-valent vertex.

The elevator of C has weight two and is drawn dashed. Thus C has two floors Ci for
i = 1, 2, where the point pi lies on Ci for i = 1, 2.

x

y

z

2
2

1

2

3

4
5

6
7

8

9

Figure 6.2: The rational tropical stable map C from Example 6.1.5 which is floor-decomposed.
It has two floors Ci for i = 1, 2, where C1 is of size s1 = 3 and C2 is of size s2 = 1. The dashed
edge is the elevator of weight two of C.

Proposition 6.1.6. Notation of Definition 3.2.4 is used. Let p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l] be

conditions in a stretched configuration as in Definition 6.1.1. Then every rational tropical

stable map that contributes to N∆m
d (α,β)

(
p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l]

)
is floor-decomposed.

Proof. We follow arguments used in [BM, Tor14], where an analogous statement is proved



102 6. Combinatorial approach

for the case without degenerated tropical cross-ratios. To incorporate degenerated tropical
cross-ratios, Corollary 3.2.24 is used.

Let C be a rational tropical stable contributing to N∆m
d (α,β)

(
p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l]

)
.

The set of all possible bounded edges’ directions of C is finite because of the balancing condition
and the fixed directions of ends. If ε from Definition 6.1.1 is sufficiently small compared to the
distances between the points p[n] and all vertices of C lie inside the stripe Bm−1

ε × R, then C
decomposes into parts that are connected by edges of primitive direction ±em (see Notation
2.2.4). So it is sufficient to show that all vertices of C lie inside Bm−1

ε × R from Definition
6.1.1.

Assume that a vertex v ∈ C whose x1-coordinate is maximal lies outside of Bm−1
ε × R.

Since the x1-coordinate of v is maximal, there is an end e of direction e0 adjacent to v. If v is
not 3-valent, then there is a j ∈ [l] such that λj ∈ λv and the label of e appears as an entry
in λj because of Corollary 3.2.24. Due to our assumptions on the tropical cross-ratios λ[l], the
end e cannot be an entry of any of these, which is a contradiction. Hence v must be 3-valent.
Denote the edges adjacent to v by ea, eb, e, where e is, as before, an end of direction e0. If ea is
an end of primitive direction ±em, then v allows a 1-dimensional movement in the direction of
eb, since ea either satisfies no condition or satisfies a codimension two tangency condition Lk
for some k with π(eb), π(e) ⊂ Lk. This is a contradiction. If ea is a contracted end or an end
whose direction vector at v is e0, . . . , em−1, then v can (since ea cannot satisfy any condition)
be moved in the direction of eb. This is a contradiction. Thus ea, eb are bounded edges.

Since e is an end of direction e0 and thus of weight 1, and v is maximal with respect to
its x1-coordinate, it follows (without loss of generality) that the x1-coordinate of the direction
vector of ea is 0 and the x1-coordinate of the direction vector of eb is −1. Denote the vertex
adjacent to v via ea by v′. Notice that v′ is also 3-valent, adjacent to an end e′ parallel to e
and a bounded edge ẽ 6= ea. By balancing, eb, e, ea, e

′, ẽ lie in the affine hyperplane 〈ea, e〉+ v
of Rm. Thus v allows a 1-dimensional movement in the direction of eb which is a contradiction.

Notice that similar arguments hold if v is chosen in such a way that its xi-coordinate (for
i = 2, . . . ,m − 1) is maximal or its xj-coordinate for j ∈ [m − 1] is minimal. So in any
case a 1-dimensional movement leads to a contradiction. Hence all vertices of C lie inside the
stripe Bm−1

ε × R. Moreover, each floor of C satisfies exactly one point condition. Otherwise,
a floor would give rise to a 1-dimensional movement parallel to ±em. Therefore C is floor-
decomposed.

6.2 Cross-ratio floor diagrams for R2

Cross-ratio floor diagrams for R2 are now introduced. Additional discrete data encodes which
floor-decomposed rational tropical stable maps degenerate to a cross-ratio floor diagram.

Definition 6.2.1 (Cross-ratio floor diagrams for R2). Notations 2.0.1 and 2.2.4 are used. Let(
∆2
d(α, β), l

)
be a degree as in Definition 2.2.3. Let F be a tree without ends on a totally

ordered set of vertices v[n], then F is called a cross-ratio floor diagram of degree ∆2
d(α, β) if it

satisfies the following:

(1) Each edge of F consists of two half-edges. There are two types of half-edges, thin and
thick ones. A thin half-edge can only be completed to an edge with a thick half-edge and
vice versa.

(2) Each vertex v is equipped with sv,#λv ∈ N and a set δv of labels that appear in ∆2
d(α, β),

where #λv is called the number of degenerated tropical cross-ratios of v and sv is called
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the size of v such that

sv = #{x ∈ δv | l−1(x) = e1} = #{x ∈ δv | l−1(x) = e0}

and ∅ = δv ∩ δv′ for all v 6= v′ and
⋃
v δv is the set of all labels appearing in ∆2

d(α, β).

(3) For γ = α, β, define

δγv := {x ∈ δv | primitive direction of l−1(x) is ±e2},

where −e2 is considered if γ = α and +e2 is considered otherwise. The total order of the
vertices induces an orientation of the edges in the following way: we order the vertices on
a line starting with the smallest vertex v1 on the left and orient the edges from smaller
to larger vertices. Each edge e of the graph is equipped with a weight ω(e) ∈ N such that
the balancing condition

0 = sv +
∑
e

±ω(e) +
∑
x∈δβv

ω
(
l−1(x)

)
−
∑
x∈δαv

ω
(
l−1(x)

)
holds for all vertices v of F , where ± is + for outgoing edges and − for incoming edges
of v.

Example 6.2.2. The figure below shows a cross-ratio floor diagram of degree ∆2
3, where all

weights on the edges are 1 and where thick edges are drawn thick.

i 1 2 3 4 5 6 7

svi 0 0 0 1 1 0 1

#λvi 0 0 0 0 1 0 0

δvi {1} {2} {3} {4, 9} {5, 8} ∅ {6, 7}

6.2.1 Multiplicities

Recall that cross-ratio multiplicities are local and that ev-multiplicities are also local in case
of R2 due to Corollary 3.2.35. Thus multiplicities of floor-decomposed rational tropical stable
maps to R2 can be calculated locally at floors. Therefore we define the multiplicity of a cross-
ratio floor diagram locally at its vertices such that each local multiplicity of a vertex reflects
the multiplicities of floors degenerating to it.

Definition 6.2.3 (Path criterion for cross-ratio floor diagrams). Let F be a cross-ratio floor
diagram of degree ∆2

d(α, β) on n vertices. Let λ = {β1, . . . , β4} be a degenerated tropical
cross-ratio with respect to M0,n

(
R2,∆2

d(α, β)
)
. Each element βi of λ is associated to a vertex

of F the following way:

(1) If βi is the label of an end in ∆2
d(α, β), then βi is associated to the unique vertex v ∈ F

such that βi ∈ δv.

(2) If βi is the label of a contracted end, i.e. βi = j ∈ [n], then βi is associated to vj .
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Hence a pair {βi, βj} induces a unique path in F . If the paths associated to {βi1 , βi2} and
{βi3 , βi4} intersect in exactly one vertex v of F for all pairwise different choices of i[4] such that
{i1, . . . , i4} equal {1, . . . , 4}, then the degenerated tropical cross-ratio λ is satisfied at v.

Remark 6.2.4. In Definition 6.2.3, similar to Remark 3.2.13, “all pairwise different choices
of i[4]” is equivalent to “one choice of pairwise different i[4]”. This makes it easier to check
whether F satisfies a degenerated tropical cross-ratio.

Example 6.2.5. The cross-ratio floor diagram of Example 6.2.2 satisfies the degenerated
tropical cross-ratio λ = {1, 4, 5, 6} at its vertex v5.

Definition 6.2.6 (Conditions satisfied by F). Let ∆2
d(α, β) be a degree. Let p[n], Pηα , Pηβ , λ[l]

be in a stretched configuration with respect to ∆2
d(α, β). A cross-ratio floor diagram F satisfies

p[n], Pηα , Pηβ , λ[l] if the following properties are fulfilled.

(1) The number of vertices of F equals n. The total order of the vertices v[n] of F is induced
by the total order of the point conditions p[n] (they are ordered according to their last
coordinate), where the point pi is identified with the vertex vi.

(2) For each degenerated tropical cross-ratio λj ∈ λ[l] there is a vertex of F that satisfies
it and for each vertex v of F the number #λv equals the total number of degenerated
tropical cross-ratios that are satisfied at v. For a vertex of a cross-ratio floor diagram
that satisfies degenerated tropical cross-ratios λ[l], denote the set of all λj ∈ λ[l] that are
satisfied at v by λv.

(3) The number of thick half-edges ethick
v that are adjacent to a vertex v of F is given by

ethick
v = #λv + 2− 2sv −#

((
δαv ∪ δβv

)
\ {x ∈ ∆2

d(α, β) | l(x) ∈ ηα ∪ ηβ}
)
, (6.1)

where l(x) denotes the label of x in ∆2
d(α, β).

Definition 6.2.7 (Cutting F into pieces). Notation of Definition 6.2.1 is used. Let F be a
cross-ratio floor diagram of degree ∆2

d(α, β) such that F satisfies given degenerated tropical
cross-ratios λ[l]. Denote the ordered set of vertices of F by v[n]. For i ∈ [n], define the i-th
piece

(
Fi, δvi , svi ,#λvi , λ→vi

)
of F the following way:

Cut all edges that connect the vertex vi to other vertices of F into (thick or thin) half-edges.
Denote the connected component that contains vi by Fi. Equip each cut edges e adjacent to
vi with the label

le := {j ∈ [n] | e is in the shortest path connecting vi and vj}.

Similar to Construction 4.1.26, we adapt the degenerated tropical cross-ratios λvi to the cut
edges. If {β1, . . . , β4} = λj ∈ λ[l] is a degenerated tropical cross-ratio which is satisfied at vi
(i.e. λj ∈ λvi), then the paths associated to λj in F (see Definition 6.2.3) might have been cut
by cutting the edges connecting vi to the rest of F . Let βt ∈ λj be such that the path from the
vertex associated to βj to vi is cut. If the path used to contain the edge e adjacent to vi, then
replace βj by le. Notice that notation is abused here since le is not a natural number1. Denote
the resulting degenerated tropical cross-ratio by λ→j . Moreover, let λ→vi denote the set λvi of
degenerated tropical cross-ratios that are satisfied at vi where each of them is adapted to the
cut edges. To shorten notation, Fi is used to refer to the i-th piece

(
Fi, δvi , svi ,#λvi , λ→vi

)
of

F if the additional data δvi , svi ,#λvi , λ
→
vi is obvious from context.

1However, one can encode the information le contains into a unique natural number Ne. If le = {x1, . . . , xr} ⊂
[n], then define t := mink{10k ≥ n} and consider (in the decimal system) Ne := 1 0 . . . 0x1︸ ︷︷ ︸

t digits

. . . 0 . . . 0xr︸ ︷︷ ︸
t digits

.
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Definition 6.2.8 (Multiplicities of cross-ratio floor diagrams in R2). Let ∆2
d(α, β) be a degree.

Let p[n], Pηα , Pηβ , λ[l] be in a stretched configuration with respect to ∆2
d(α, β), see Definition

6.1.1. Let F be a cross-ratio floor diagram of degree ∆2
d(α, β) that satisfies these conditions.

Let Fi be the i-th piece of F as in Definition 6.2.7.
Weights associated to δαvi (Definition 6.2.1) and weights of incoming edges of vi induce a

partition αi of the sum of all weights associated to δαvi and all weights of incoming edges of
vi. Analogously, a partition βi is induced. By abuse of notation, we can consider the degree
∆2
svi

(αi, βi). Define

δthin
vi := {le | e is an edge of F such that its thin half-edge is adjacent to vi},

where, for an edge e of F , the label le is the one of Definition 6.2.7. Define

A :=
((
δαvi ∪ δ

β
vi

)
∩ {x ∈ ∆2

d(α, β) | l(x) ∈ ηα ∪ ηβ}
)

and

B :=
((
δαvi ∪ δ

β
vi

)
\ {x ∈ ∆2

d(α, β) | l(x) ∈ ηα ∪ ηβ}
)

such that A ∪B is a decomposition of δαvi ∪ δ
β
vi .

The multiplicity mult(Fi) of the i-th piece Fi of F is defined as the degree of the cycle

Zi := ev∗i (pi) ·
∏
f∈A

∂ ev∗f (Pf ) ·
∏

g∈δthin
vi

∂ ev∗g (Xg) ·
∏

λ→j ∈λ→vi

ft∗λ→j (0) · M0,1

(
R2,∆2

svi

(
αi, βi

))
,

where Xg are codimension one tangency conditions such that pi, PA, Xδthin
vi

, λ→vi are in general

position. Notice that mult(Fi) does not depend on the choice of the Xg by Remark 2.2.18.
The multiplicity of F is defined by

mult(F) :=
∏
e

ω(e) ·
∏
i∈[n]

mult(Fi),

where the first product goes over all edges of F and ω(e) is the weight of an edge e.

Proof. We need to show that the cycle Zi of Definition 6.2.8 is indeed zero-dimensional, i.e. we
need to check whether (3.6) holds. Since F satisfies the given conditions (6.1) yields

ethick
vi = #λ→vi + 2− 2svi −#B.

Thus

2svi + #B + ethick
vi − 2 = #λ→vi

holds and therefore

2svi + #A+ #B + #δthin
vi + ethick

vi − 2 = #δthin
vi + #A+ #λ→vi (6.2)

holds. Notice that

#∆2
svi

(
αi, βi

)
= 2svi + #A+ #B + #δthin

vi + ethick
vi ,

which together with (6.2) yields

#∆2
svi

(
αi, βi

)
− 3 + 1 + 2 = 2 · 1 + 1 ·

(
#δthin

vi + #A
)

+ #λ→vi .

This equation is the desired one, namely (3.6).
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6.2.2 Enumeration in R2 using cross-ratio floor diagrams

Cross-ratio floor diagrams of degree ∆2
d(α, β) are now related to counts of rational tropical

stable maps of degree ∆2
d(α, β). This is done in two steps. First, floor-decomposed rational

tropical stable maps are degenerated to cross-ratio floor diagrams. Second, it is shown that the
multiplicity of a cross-ratio floor diagram reflects how many floor-decomposed rational tropical
stable maps degenerate to it.

Construction 6.2.9 (Floor-decomposed rational tropical stable map 7→ cross-ratio floor dia-
gram). Let ∆2

d(α, β) be a degree. Let p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l] be conditions in a stretched

configuration with respect to ∆2
d(α, β) (Definition 6.1.1). Let C be a floor-decomposed ratio-

nal tropical stable map of degree ∆2
d(α, β) that satisfies these conditions. A cross-ratio floor

diagram FC of degree ∆2
d(α, β) is associated to C the following way: Cut all elevators of C,

i.e. cut all bounded edges of C whose primitive direction equals (0, 1) ∈ R2. Notice that
each remaining component contains exactly one contracted end which satisfies one of the point
conditions p[n]. Shrink the component Ci associated to pi to a vertex called vi for i ∈ [n]. The
set of vertices v[n] inherits the order of the point conditions p[n] which is given by comparing
x2-coordinates. The set v[n] are the vertices of FC . Two different vertices vi, vj are connected
by an edge if and only if the floors of C that are associated to pi, pj ∈ [n] are connected by
an elevator. Draw half-edges thin if they lead to a fixed component, and thick if they lead to
a free component (Definition 3.2.28). Moreover, equip each vertex vi of FC with the following
data: Record which non-contracted ends are adjacent to the component Ci by collecting their
labels in a set δvi . Set

#λvi :=
∑
u

#λu,

where the sum goes over all vertices u of the component Ci. Finally, the balancing condition
of C turns FC into a cross-ratio floor diagram of degree ∆2

d(α, β).

Lemma 6.2.10. The cross-ratio floor diagram FC associated to C by Construction 6.2.9 sat-
isfies the conditions p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l] if C does.

Proof. This follows directly from Definition 6.2.6 and the calculations of the proof after Defi-
nition 6.2.8.

Example 6.2.11. In order to illustrate Construction 6.2.9, a floor-decomposed rational tropical
stable map C (see Figure 6.3) of degree ∆2

3 is given. It satisfies the point conditions p[7] and
the degenerated tropical cross-ratio λ = {1, 4, 5, 6}. The cross-ratio floor diagram FC is the
one of Example 6.2.2. The floors of C are indicated by dotted lines.

1

2

3

4
5 6

7

89
p1

p2

p3

p4
p5

p6

p7

Figure 6.3: A floor-decomposed rational tropical stable map C of degree ∆2
3.
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Lemma 6.2.12. Let G be a tree without ends such that each edge of G consists of two half-
edges and there are two types of half-edges, thin and thick ones. A thin half-edge can only be
completed to an edge with a thick half-edge and vice versa. Then there is a vertex of G that is
only adjacent to thick half-edges.

Proof. Induction over the number n of vertices of G is used. For n = 2 it is obviously true.
If n > 2, then there is a 1-valent vertex v of G since G is a tree. There are two cases: either
v is adjacent to a thick half-edge, then we are done or v is adjacent to a thin half-edge. If v
is adjacent to a thin half-edge, then remove this edge and v from G. The graph G′ obtained
this way has one vertex less than G such that there is a vertex v′ ∈ G′ that is by the induction
hypothesis only adjacent to thick half-edges. Again, there are two cases: if v′ is not connected
to v in G, then we are done. Otherwise, the edge connecting v′ to v in G is thick at v′ since it
is thin at v.

Theorem 6.2.13. Notation from Notation 2.0.1, 2.2.4 and Definition 3.2.4 is used. Let
∆2
d(α, β) be a degree. Let p[n], Pηα , Pηβ , λ[l] be conditions in a stretched configuration with

respect to ∆2
d(α, β), see Definition 6.1.1. Then the equality

N∆2
d(α,β)

(
p[n], Pηα , Pηβ , λ[l]

)
=
∑
F

mult(F) (6.3)

holds, where the sum goes over all cross-ratio floor diagrams F of degree ∆2
d(α, β) that F satisfy

the conditions p[n], Pηα , Pηβ , λ[l].

Proof. LetR∆2
d(α,β)

(
p[n], Pηα , Pηβ , λ[l]

)
denote the set of rational tropical stable maps that con-

tribute to N∆2
d(α,β)

(
p[n], Pηα , Pηβ , λ[l]

)
. Proposition 6.1.6 yields that all rational tropical stable

maps in R∆2
d(α,β)

(
p[n], Pηα , Pηβ , λ[l]

)
are floor-decomposed. Let F∆2

d(α,β)

(
p[n], Pηα , Pηβ , λ[l]

)
denote the set of cross-ratio floor diagrams that contribute to the right-hand side of (6.3).
Define the map

φ : R∆2
d(α,β)

(
p[n], Pηα , Pηβ , λ[l]

)
→ F∆2

d(α,β)

(
p[n], Pηα , Pηβ , λ[l]

)
C 7→ FC

which maps a floor-decomposed rational tropical stable map to the cross-ratio floor diagram
Construction 6.2.9 associates to it. For each elevator e of C, take its x1-coordinate π(e) ∈ R
(Notation 2.2.9) as codimension one tangency condition Xe of Zi in the definition of mult(FC)
(Definition 6.2.8). Hence if mult(C) is nonzero, then Proposition 3.2.25 and Corollary 3.2.35
yield that mult(FC,i) is also nonzero for all pieces FC,i of FC . Thus mult(FC) is nonzero.
Therefore, by Lemma 6.2.10, the map φ is well-defined.

We want to show that φ is onto by constructing preimages. Let F be a cross-ratio floor

diagram in F∆2
d(α,β)

(
p[n], Pηα , Pηβ , λ[l]

)
. Using Lemma 6.2.12, there is a vertex vi of F such

that vi is only adjacent to thick half-edges. Let
(
Fi, δvi , svi ,#λvi , λ→vi

)
be the piece of F

that contains the vertex vi. As in Definition 6.2.8 its associated degree is ∆2
svi

(αi, βi). Since

mult(Fi) is nonzero there is a rational tropical stable map Ci corresponding to a point of Zi
(see Definition 6.2.8). Remove vi and its adjacent edges from F . The resulting graph might be
disconnected. Let K be a component of this graph. Using Lemma 6.2.12, there is a vertex vj
of K such that vj is only adjacent to thick half-edges. There are two cases:

(1) If vj ∈ F is only adjacent to thick half-edges, then associate a rational tropical stable
map Cj to vj like we did before for vi.
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(2) There is an edge e in F that connects vi and vj such that the thick half-edge of e is
adjacent to vi. Let π(e) ∈ R be the x1-coordinate of the end associated to e in Ci. We

argue like above: Let
(
Fj , δvj , svj ,#λvj , λ→vj

)
be the piece of F that contains vj . Since

mult(Fj) is nonzero there is a rational tropical stable map Cj corresponding to a point
in Zj , where for Zj the only additional codimension one tangency condition is given by
π(e) (cf. Definition 6.2.8).

Iterating this procedure yields rational tropical stable maps Ct for each piece Ft of F such that
C1, . . . , Cn can be glued together by construction. Denote the rational tropical stable map
obtained from this gluing by C. The multiplicity of C is given by

mult(C) =

n∏
t=1

mult(Ct)

because of Proposition 3.2.25 and Corollary 3.2.35. Therefore C ∈ φ−1(F).
Note that the procedure above does not depend on the choice of Ct we associated to each

Ft. Hence applying Proposition 3.2.34 yields

mult(F) =
∑

C∈φ−1(F)

mult(C)

such that in total Theorem 6.2.13 follows.

Using Tyomkin’s correspondence theorem 2.3.6 (more precisely, Corollary 3.1.20 and Propo-
sition 3.2.7), Theorem 6.2.13 immediately yields the following corollary.

Corollary 6.2.14 (Algebro-geometric count via cross-ratio floor diagrams for R2). Notation
2.0.1 is used. Let ∆2

d(α, β) be a degree in R2 as in Notation 2.2.4 and let Σ
(
∆2
d(α, β)

)
be its

associated lattice polytope, see Remark 2.2.5. Let XΣ(∆2
d(α,β)) be the toric variety associated to

Σ
(
∆2
d(α, β)

)
. Then the number of rational algebraic curves in XΣ(∆2

d(α,β)) over an algebraically

closed field of characteristic zero that satisfy point conditions and classical cross-ratio conditions
in general position can be calculated by via a weighted count of cross-ratio floor diagrams of
degree ∆2

d(α, β) that satisfy point conditions and degenerated tropical cross-ratio conditions if
each entry of each degenerated tropical cross-ratio is either the label of a contracted end or the
label of and end of primitive direction ±e2 (see Notation 2.2.4).

Remark 6.2.15. The results of this section are not restricted to rational tropical stable maps
of degree ∆2

d(α, β), or in other words, the results are not restricted to stable maps to Hirzebruch
surfaces. One can replace the degree ∆2

d(α, β) by another degree ∆ whose associated polytope
Σ(∆) is h-transverse. That is, the results can be extended to stable maps to toric varieties of
h-transverse polytopes. Cross-ratio floor diagram techniques can be extended to these degrees
∆ in a straightforward way. For more about h-transverse polytopes and floor diagrams, see
[AB13].

Example 6.2.16. Consider the degree ∆2
3. Let p[7] be point conditions and let λ = {1, 2, 3, 4}

be a degenerated tropical cross-ratio such that these conditions are in a stretched configuration.
We want to determine the number N∆2

3

(
p[7], λ

)
using cross-ratio floor diagrams. For that, draw

all floor diagrams of degree ∆2
3 on the 7 vertices v1 < · · · < v7 that satisfy the point conditions

p[7] and the degenerated tropical cross-ratio λ. Since we have seven point conditions, no floors
of size 3 or 2 in floor-decomposed rational tropical stable maps that satisfy the conditions
p[7], λ. Figure 6.4 shows all possible cross-ratio floor diagrams. Note that in this example we
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do not need all discrete data a cross-ratio floor diagram is equipped with, i.e. floors of size 1
are drawn white and floors of size 0 are drawn black (instead of specifying svi for each floor).
The number of degenerated tropical cross-ratios satisfied at each floor is obvious (we only have
one degenerated tropical cross-ratio). The labels of ends adjacent to each floor are dropped
here, so we need to add a factor of (d!)3 to the final count. Moreover, all weights of edges
are one. By considering the multiplicities of each piece Fi of a cross-ratio floor diagram F in
Figure 6.4, we end up with multiplicity 1 for all cross-ratio floor diagrams shown in Figure 6.4.
Hence

N∆2
3

(
p[7], λ

)
= 4 ∗ (3!)3 = 864.

Figure 6.4: Cross-ratio floor diagrams with floors of size 0 (black) and 1 (white). The vertices
v[7] are ordered from left to right such that the smallest vertex v1 is left. Notice that #λv4 = 1
for #λv4 of the three cross-ratio floor diagrams on the top and that #λv3 = 1 for the cross-ratio
floor diagram on the bottom.

6.3 Cross-ratio floor diagrams for R3

Cross-ratio floor diagrams for R3 are now introduced. They extend the degeneration technique
of the last section to higher dimension. As a result, the algebro-geometric numbers of Tyomkin’s
correspondence theorem 2.3.6 can be calculated for certain 3-dimensional toric varieties.

6.3.1 Condition flows

In this subsection, condition flows on rational tropical stable maps are defined. They help
us generalizing the “thin” and “thick” edges of cross-ratio floor diagrams of Section 6.2 which
made sure that rational tropical stable maps that degenerate to a given cross-ratio floor diagram
are fixed by given conditions. In other words, the motivation behind conditions flows is the
following: In case of a rational tropical stable map C to R2 and some set S of general positioned
conditions, the following implication holds (see for example [GM08]): If C satisfies all given
conditions S and C has a string2, then C is not fixed by the given conditions. Now that we

2A string is defined as a path between two non-contracted ends such that no contracted end that satisfies a
point condition lies on it.
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are in higher dimension (i.e. let C be a rational tropical stable map to Rm), we aim for a
generalization, namely the implication: If C satisfies all given conditions S and there is no
conditions flow of type m on C, then C is not fixed by the given conditions. We remark, that
condition flows are defined for rational tropical stable maps to Rm for arbitrary m ∈ N>0.
A similar construction was independetly introduced by Mandel and Ruddat [MR19] to study
multiplicities of tropical curves.

Definition 6.3.1 (Leaky). A graph G together with a function leak : V (G)→ N that assigns
a natural number to each vertex of the graph is called leaky.

Definition 6.3.2 (Flow). Let G be a tree, where we allow ends, i.e. edges that are adjacent
to a single vertex only without forming a loop. Each edge e that is adjacent to two vertices
consists of two half-edges e1, e2. If v is a vertex of G that is adjacent to e, then we refer to
the half-edge ei (i = 1, 2) of e that is adjacent to v as outgoing edge of v and to the other
half-edge of e as incoming edge of v. If e is an edge that is adjacent to a single vertex v, then
e is considered to be an incoming edge of v. A flow structure on G is given by a map R that
assigns to each half-edge and to each end of G an element of N. We refer to the image R(ei)
of an end or a half-edge ei under the flow structure map R as flow on ei. Moreover, the flow
of a vertex v is defined by

flow(v) :=
∑

e incoming edge of v

R(e).

v1 v2

3

0

1

02 2
0 v3

v4

0

1
1

0 2

Figure 6.5: An example of a flow structure, where each half-edge and if it is considered incoming
or outgoing is indicated by an arrow. The numbers on the arrows are the numbers associated to
the half-edges by the flow structure. The vertices are denoted by vi for i ∈ [4] and flow(vi) = 3
for i ∈ [4].

Definition 6.3.3 (Condition flow). Let G be a leaky graph with a flow as defined in 6.3.2.
The flow structure on G is called condition flow of type m if it satisfies the following properties:

(P1) If e is an edge of G that consists of the two half-edges e1, e2, then

R(e1) +R(e2) = m− 1.

(P2) The flow is balanced on each vertex, that is

flow(v)− leak(v) = 0

holds for all vertices v of G.

Example 6.3.4. Figure 6.5 provides an example of a condition flow of type 3, where leak(vi) =
3 for i ∈ [4].
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Remark 6.3.5. A condition flow of type 2 is a flow structure on a graph G such that for
each edge consisting of two half-edges there is exactly one half-edge e1 with R(e1) = 1 and
another half-edge e2 with R(e2) = 0. There are different ways of encoding this condition flow
of type 2 into a graph G. In [GMS13] orientations on G where used to indicate half-edges e1

with R(e1) = 1, and in [CJMR21] “thick” half-edges were used. Notice that we also used thick
half-edges for cross-ratio floor diagrams for R2. One advantage of condition flows over these
ad hoc constructions is that they are applicable in higher dimensions.

Lemma 6.3.6. A condition flow of type m on a tree is uniquely determined by its leak function
and the flow on its ends.

Proof. Assume there are two condition flows of type m with the same leak function on a tree
G. First, note that the leak function determines the flows on the vertices by (P2). Assume
there is at least one half-edge e1 on which the flows differ. Since we assumed that the flows
on the ends are equal, there is another half-edge e2 adjacent to e1. Thus the flows also differ
on e2 because of (P1). So there is an edge e of G on which the flows differ. Denote a vertex
to which e is adjacent by v. If v is only adjacent to one bounded edge, namely e, then (P2)
yields a contradiction. Hence there is another edge e′ 6= e adjacent to v on which the flows
differ because of (P2). Since G is a tree, there is a vertex v′ of G which is only adjacent to one
bounded edge such that the flows on this edge differ, which leads to the same contradiction as
above.

Construction 6.3.7. Let G be a tree with fixed flows on its ends. We construct a flow
structure on G the following way. Note that we can think of each bounded edge of G as being
glued from two half-edges (by cutting it into two halves). Set all flows on all half-edges that
are no ends to be zero. We use the following procedure to spread the flows of the ends to all
half-edges: Choose a vertex v of G. Now spread the flows on G according to the following rule.
If a vertex v has r outgoing edges eout,[r] and r̃ incoming edges einc,[r̃] such that einc,i and eout,i

form an edge for i ∈ [r], then

R(eout,i) =

{
flow(v)−R(einc,i)− 1 , if flow(v)−R(einc,i) > 0

0 , if flow(v)−R(einc,i) = 0 and flow(v) 6= 0
(6.4)

for i = 1, . . . , r.

Repeat with another vertex v′ of G. Notice that flows on half-edges can at most increase.
Stop when the flows on all edges stay the same. This construction yields a unique flow on G.

Example 6.3.8. We want to illustrate Construction 6.3.7. Figure 6.6 provides an example of
a tree G on the four vertices vi for i ∈ [4]. The flows on ends of G are indicated in Figure
6.6. Before starting with the procedure, all flows of non-end half-edges are set to be zero as in
Figure 6.6.

v1 v2

3

0
1

00 0
0 v3

v4

0

0
0

0 2

Figure 6.6: The graph G to which Construction 6.3.7 should be applied.
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See Figure 6.7 for the following: In the first step, Construction 6.3.7 is applied to determine the
flow on the outgoing half-edges of v1. After that, Construction 6.3.7 is applied to determine
the flows on the outgoing half-edges of v2. If Construction 6.3.7 is then applied to v4 and after
that to v3, then the procedure terminates. The fourth step in Figure 6.7 shows the resulting
flow structure on G which is the same as the one in Figure 6.5.

Step 1 Step 2

Step 3

v1 v2

3

0
1

02 0
0 v3

v4

0

0
0
0 2

v1 v2

3

0
1

02 2
0 v3

v4

0

0
0
0 2

v1 v2

3

0
1

02 2
0 v3

v4

0

0
1
0 2 Step 4

v1 v2

3

0
1

02 2
0 v3

v4

0

1
1
0 2

Figure 6.7: The progress of Construction 6.3.7 applied to G and the condition flow of type 3
it yields on G.

Proof that Construction 6.3.7 terminates uniquely. We use induction on the number N of ver-
tices of G. If N = 1, then there is nothing to show. So let N = 2. Then the procedure of
Construction 6.3.7 stops uniquely after at most 2 steps. For the induction step notice that G
is a tree, i.e. there is a vertex v that is adjacent to exactly one edge e that is no end. The flows
on the ends of G are given and thus

R(eout,v) =

{
0 if all ends adjacent to v are of flow zero,

flow(v)− 1 else

is uniquely determined. Let v′ be the vertex adjacent to v via e. Consider the tree G′ that
arises from G the following way: forget e, v and all ends adjacent to v, then attach a new end
e′ to v′ and assign the flow R(eout,v) to e′. Now run the procedure of Construction 6.3.7 on G′.
By induction, this procedure terminates uniquely. Notice that the missing flow on e associated
to the outgoing half-edge eout,v′ of v′ is determined by (6.4). Moreover, the flow on eout,v′ does
not affect the other flows on G which the procedure generated on G′. Thus Construction 6.3.7
terminates uniquely.

Definition 6.3.9 (Induced flows). Consider a rational tropical stable map C that contributes

to the number N∆m
d (α,β)

(
p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l]

)
. Associate flows R(e) to ends e of C the

following way: If e is a non-contracted end of C that satisfies a codimension two tangency
condition Lk for some k ∈ κγ , γ ∈ {α, β}, then R(e) := m− 2. If e satisfies a codimension one
tangency condition Pf for some f ∈ ηγ , γ ∈ {α, β}, then R(e) := m − 1. If e is a contracted
end of C satisfying a point condition, then R(e) := m. Otherwise, set R(e) := 0. We refer to
these flows on the ends as induced flows from the tangency and point conditions.

Example 6.3.10. Let C be the rational tropical stable map depicted in Figure 3.2 that con-
tributes to the number N∆3

1((0,1,0,... ),(1,0,... )) (p1, L3, P6) as in Example 3.1.14. Step 1 in Figure
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6.7 shows the flows conditions induce on ends of C. Example 6.3.8 shows the flow structure
Construction 6.3.7 assigns so C. Notice that the resulting flow structure is a condition flow of
type 3 and that the constructed flow structure does not depend on the order of the vertices
from which the flows were spread.

Proposition 6.3.11. Let C be a rational tropical stable map that contributes to the number

N∆m
d (α,β)

(
p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l]

)
such that flows on its ends are induced from the point

and tangency conditions as in Definition 6.3.9. Then Construction 6.3.7 associates the unique
condition flow of type m to C, where the leak function is given by leak(v) = m for all vertices
v of C.

Proof. Given a rational tropical stable map C as in Proposition 6.3.11, we give another inter-
pretation of the flow constructed in 6.3.7, namely in terms of spatial restrictions the vertices of
C impose on their neighbors. By restrictions we mean the following: Let Γ be the combinatorial
type of C, i.e. C without its metric structure. Since C fulfills all given conditions, we are able
to re-embed Γ into Rm, i.e. we are able to reconstruct the lengths of all edges of C. To do so,
we proceed in the following way: Let v ∈ C be a vertex adjacent to a contracted end satisfying
a point condition pi for some i, then choose Γ → Rm in such a way that v 7→ pi. Let e be a
bounded edge adjacent to v and some other vertex v′. Since Γ knows the direction of e in Rm,
fixing v imposes an (m− 1)-dimensional restriction on the position of v′. In other word, v′ can
only move along the direction of e. We encode this restriction from v to v′ into Γ by interpret-
ing e as two glued half-edges e1, e2, where the half-edge ei adjacent to v is equipped with a
number R(ei) = m− 1. We refer to this half-edge as outgoing edge of v or as incoming edge of
v′. Iteratively, the restrictions spread along Γ, i.e. let e′ be another bounded edge adjacent to
v′ and some other vertex v′′ 6= v. Since we know the direction of e′ in Rm, the 1-dimensional
movement of v′ allows v′′ to only move along two directions. More precisely, we may vary the
length of e and the length of e′. Said differently, v′ imposes at least an (m − 2)-dimensional
restriction on v′′.

Obviously, we could also have started with a tangency condition, i.e. some other restriction
incoming to a vertex via an end.

We claim that the flow structure constructed from restrictions passing from a vertex to
another via half-edges fulfills the procedure equation (6.4) describes in Construction 6.3.7.

Denote the equations of (6.4) by I and II, from top to bottom.

� Let v be a vertex that is adjacent to another vertex v′ via an edge e such that v gains all its
spatial restrictions via the incoming half-edge einc of e. Then v does not impose a spatial
restriction to v′ via its outgoing half-edge eout of e. Hence II holds. Said differently, a
vertex cannot pass spatial directions back to an adjacent vertex from which they came.

� I holds since repeating the argument of II yields the summand R(einc,i) of (6.4), and as
we saw before, passing over a vertex lowers the number of restrictions in general by 1,
where in general means that edges e, e′ adjacent to the same vertex v are usually not
parallel – if they are parallel, then there is (because C is fixed by the general positioned
conditions) a end adjacent to v that either satisfies a point condition or some tangency
condition. Notice that in both of these two special cases I holds.

Hence our flow structure on Γ defined as restrictions passing from one vertex to another is
governed by the same equations as the flow structure assigned to Γ by Construction 6.3.7.
Hence these two flow structures on Γ coincide. Next, we claim that the flow structure on Γ
interpreted as spatial restrictions is a condition flow of type m, i.e. it satisfies (P1) and (P2) of
Definition 6.3.3. Given a bounded edge e of C, cut it and stretch it to infinity. Denote the two
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components of C obtained that way by C1, C2, where e1 is the end of C1 that used to be e and
e2 is the analogous end of C2. We use the following notation: Let ∆i be the degree of Ci, let
ni ⊂ [n] be the point conditions satisfied by Ci, let li ⊂ [l] be the degenerated tropical cross-
ratios satisfied by Ci, let κi ⊂ κα ∪κβ be the codimension two tangency conditions satisfied by
Ci and let ηi ⊂ ηα ∪ ηβ be the codimension one tangency conditions satisfied by Ci for i = 1, 2.
Let Ni be the number of contracted ends of Ci for i = 1, 2. Then

#∆1 + #∆2 − 2 = #∆m
d (α, β) (6.5)

and

#∆i − 3 +Ni +m = m ·#ni + #li + (m− 1) ·#ηi + (m− 2) ·#κi +R(ei) (6.6)

hold for i = 1, 2. Adding both equations from (6.6), using (6.5) and applying (3.6) yields (P1).
Moreover, (P2) can be satisfied by defining the leak function this way. Then the leak function
coincides with the one given in Proposition 6.3.11 since all conditions are in general position.
Moreover, this condition flow is unique due to Lemma 6.3.6.

Proposition 6.3.11 allows us to think about condition flows the way we think about strings in
rational tropical stable maps to R2: Proposition 6.3.11 is an exclusion criterion for stable maps

that are not contributing toN∆m
d (α,β)

(
p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l]

)
on the level of combinatorial

types. If C is the combinatorial type of a tropical stable map C ′ and Construction 6.3.7 does
not lead to a condition flow of type m with the leak function given in Proposition 6.3.11, then

C ′ cannot contribute to N∆m
d (α,β)

(
p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l]

)
.

Remark 6.3.12. Another way to think about flows is the following: each vertex v of a rational
tropical stable map to Rm is a point in Rm, i.e. the minimal number of affine linear equations
needed to cut out v is m. The flow of v is the number of equations v needs to satisfy. These
equations arise from imposing conditions to our rational tropical stable map as in the proof of
Proposition 6.3.11, and these equations are affine linear since rational tropical stable maps are
piecewise linear. Choosing all conditions in general conditions means to choose the minimal
number of conditions needed to fix our rational tropical stable map, i.e. the matrix of affine
linear equations associated to each vertex needs to have full rank, or in other words, the flow
of each vertex needs to be m if each vertex should be fixed.

If there are not enough conditions to fix a rational tropical stable map, then parts of it are
movable. These movable parts are encoded in the flow structure since all vertices with flow less
than m are movable. The special case of one missing condition and one movable component for
rational tropical stable maps to R2 was studied in Subsection 4.1.1 in order to deduce a general
tropical Kontsevich’s formula. We remark here, that we also could have used flows there to
describe which parts of a rational tropical stable map are movable.

6.3.2 Multiplicities of floor-decomposed rational tropical stable maps to R3

Multiplicities of floor-decomposed rational tropical stable maps to R3 can not be calculated
locally at vertices (see also Example 3.1.14). On the other hand, we would like to see that
multiplicities of cross-ratio floor diagrams for R3 are local at vertices of such diagrams. Inter-
estingly, the techniques we developed to prove the general tropical Kontsevich’s formula 4.3.4
come in handy. They provide a way of expressing multiplicities of floor-decomposed rational
tropical stable maps to R3 in terms of multiplicities of their floors.
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Notation 6.3.13 (1/1 and 2/0 edges). Let C be a floor-decomposed rational tropical stable

map that contributes to N∆3
d(α,β)

(
p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l]

)
. Whenever we refer to the con-

dition flow of C, we mean that C is equipped with the condition flow of type 3 associated to
it using Construction 6.3.7. In particular, given a bounded edge e of C that consists of two
half-edges e1, e2, we refer to e as 1/1 edge if R(e1) = R(e2) = 1, and we refer to e as 2/0 edge
if either R(e1) = 2 and R(e2) = 0 or R(e1) = 0 and R(e2) = 2.

Definition 6.3.14 (Floor graph). Notation 2.2.4 is used. Let p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l] be

conditions in a stretched configuration with respect to the degree ∆3
d(α, β) as in Definition 6.1.1.

Let C be a rational tropical stable map of degree ∆3
d(α, β) that is fixed by these conditions.

Then C is floor-decomposed by Proposition 6.1.6. We associate a so-called floor graph ΓC , i.e.
a weighted graph on an ordered set of vertices with a flow structure, to C the following way:
each vertex of ΓC corresponds to a floor of C, an edge of ΓC corresponds to an elevator of
C and connects the vertices of ΓC that correspond to the floors the elevator connects in C.
Weights on the edges of ΓC are induced by weights on the elevators of C. The given point
conditions p[n] are totally ordered according to their x3-coordinates. Thus the floors of the
floor-decomposed rational tropical stable map C are also totally ordered, i.e. the vertices of
ΓC are totally ordered as well. Moreover, a flow structure on ΓC is induced by the flows on
the elevators of C (see Notation 6.3.13), i.e. if an elevator is a 1/1 (resp. 2/0) elevator, then
its associated edge in ΓC is a 1/1 (resp. 2/0) edge.

Example 6.3.15. Figure 6.8 shows the floor graph ΓC associated to the floor-decomposed
rational tropical stable map C of Example 6.1.5. Notice that the elevator of C is a 1/1 elevator.

v1 v2

11

2

Figure 6.8: The floor graph ΓC associated to the floor-decomposed rational tropical stable map
C of Example 6.1.5. The vertex vi of ΓC corresponds to the floor Ci of C for i = 1, 2.

The following construction is similar to Definition 6.2.7. It allows us to break floor-
decomposed rational tropical stable map to R3 into parts by cutting elevators.

Construction 6.3.16 (Cutting elevators). Notation of Definition 3.2.4 is used. Let ∆3
d(α, β)

be a degree and let p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l] be conditions in a stretched configuration with

respect to ∆3
d(α, β) as in Definition 6.1.1. Let C be a floor-decomposed rational tropical stable

map of degree ∆3
d(α, β) that is fixed by these conditions. If e is an elevator of C, then we

construct two rational tropical stable maps C1, C2 from C by cutting e. The loose ends of e
are stretched to infinity. These ends (with their induced weights) are denoted by ei ∈ Ci for
i = 1, 2 and the vertex adjacent to ei is denoted by vi for i = 1, 2. By abuse of notation we
also refer to the label of ei by ei.

The condition flow on C induces flow structures on Ci, where the flow on ei is given by the
flow on e that is incoming to vi for i = 1, 2.

As in Definition 6.2.7 the degenerated tropical cross-ratios are adapted to the cutting.
Denote a degenerated tropical cross-ratio λj for j ∈ [l] that is adapted to ei by λ→eij .

If e is a 2/0 elevator, then the component Ci to which 2 is the incoming flow along e satisfies
the codimension one tangency condition Pei , given by π(vt) for i 6= t ∈ {1, 2}, where π is the
projection from Notation 2.2.9. If e is a 1/1 elevator, then each Ci satisfies a codimension two
condition Lei for i = 1, 2, given by the projection π of the movement of the vertices vi. Notice
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that ends of Lei are a priori not of standard direction. However, as we see with Corollary
6.3.23, we can assume that Lei for i = 1, 2 are — like Lκα , Lκβ — tropical multi-lines.

Denote the new sets of general positioned conditions each rational tropical stable map Ci
for i = 1, 2 satisfies by pni , Lκiα , Lκiβ , Pηiα , Pηiβ , λ

→ei
li

. Moreover, denote the degree of Ci by

∆3
si

(
αi, βi

)
for i = 1, 2 as in Notation 2.2.4.

Notation 6.3.17. If Construction 6.3.16 is used to cut more than one elevator, then it can
be necessary to adapt the degenerated tropical cross-ratios λ[l] to more than one cut. This is
denoted by λ→j for λj ∈ λ[l].

Notation 6.3.18 (Replacing tangency conditions on 1/1 edges). Let C be a floor-decomposed
rational tropical stable map as in Construction 6.3.16 and let e be a 1/1 elevator. See Con-
struction 6.3.16 for the following: cut e and obtain two new tangency conditions Le1 (resp.
Le2) that C1 (resp. C2) satisfy. Let vi be the vertex of Ci that is adjacent to the end ei which
satisfies Lei . Let π(vi) ∈ R2 denote the projection of vi under π along the elevator direction
(see also Notation 2.2.9) for i = 1, 2. Let Lst be a degenerated line (Definition 2.2.21) such that
its vertex is translated to π(v1) (resp. π(v2)). Let Ci,st denote the rational tropical stable map
that equals Ci, but where the Lei tangency condition is replaced with Lst, i.e. Ci,st satisfies
Lst instead of Lei for i = 1, 2.

Analogously to Notation 4.2.1 the multiplicities of Ci and Ci,st may differ. In particular, the
multiplicity of Ci,st may be zero, whereas the multiplicity of Ci can be nonzero, see Example
6.3.19.

Example 6.3.19. Consider the floor C2 of C from Example 6.1.5. The ev-multiplicity of C2,10

equals 1 since it is the absolute value of the determinant of the ev-Matrix of Example 3.1.14.
The ev-multiplicity of C2,01 is 0 since C2,01 is not fixed by its conditions.

Proposition 6.3.20. Let C be a floor-decomposed rational tropical stable map that contributes

to N∆3
d(α,β)

(
p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l]

)
. Let e be an elevator of weight ω(e) and cut C along

e as in Construction 6.3.16 to obtain C1, C2.

(a) If e is a 2/0 elevator, then

mult(C) = ω(e) ·mult(C1) ·mult(C2).

(b) If e is a 1/1 elevator, then

mult(C) = ω(e) · | det (M(C1,10)) · det (M(C2,01))− det (M(C1,01)) · det (M(C2,10)) |,

where M(·) denotes an ev-matrix and tangency conditions are replaced as in Notation
6.3.18. In particular, if det (M(C1,01)) or det (M(C2,10)) vanishes, then

mult(C) = ω(e) ·mult(C1,10) ·mult(C2,01).

Proof. It is sufficient to prove (a), (b) for ev-multiplicities only since the cross-ratio multi-
plicities can be expressed locally at vertices, see Proposition 3.2.25. Thus contributions from
vertices to cross-ratio multiplicities do not depend on cutting edges.

(a) Denote the vertices adjacent to the elevator e by v1, v2 such that v1 ∈ C1 and v2 ∈ C2

and assume without loss of generality that the half-edge e1 of e incoming to v1 has zero
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flow, i.e. R(e1) = 0. Consider the ev-matrix M(C) (Definition 3.1.11) of C with base
point v1, i.e.

M(C) =

Base v1 lengths in C1 lengths in C2 le

conditions in C1


* * 0

0


...
0

conditions in C2

* 0 *
∗
...
∗

where le is the length-coordinate associated to e. Let y1 (resp. y2) be the number of
rows that belong to the conditions in C1 (resp. C2). Let x1 be the number of columns
that belong to the base point and the lengths in C1. Let x2 be the number of columns
that belong to the lengths in C2. Using notation from Definition 3.2.4 and Construction
6.3.16 with κi := κi

α ∪ κiβ and ηi := ηi
α ∪ ηiβ for i = 1, 2, we obtain

x1 = #∆3
s1

(
α1, β1

)
+ #n1 −#l1,

y1 = 3 ·#n1 + 2 ·#η1 + #κ1.

On the other hand, C1 is fixed by its set of conditions since the incoming flow at v1 along
e is zero, i.e. (3.6) can be applied to obtain

#∆3
s1

(
α1, β1

)
= 2 ·#n1 + 2 ·#η1 + #κ1 + #l1

which yields

x1 = 3 ·#n1 + 2 ·#η1 + #κ1

= y1.

Thus the bold red lines in M(C) above divide M(C) into squares, hence

|det(M(C))| = mult(C1) · | det(M)|,

where M is the square matrix on the bottom right. Let M ′ denote the matrix M without
its le-column. Define the matrix

M(C2,P ) :=

Base P le

1 0 0 0
0


0 1 0

...
0 0 1 0

*
∗

M ′
...
∗

where the first three columns are chosen in such a way that M(C2,P ) is the ev-matrix of
C2 with respect to an additional point called P that we added to the end e2, i.e. there is
an additional 3-valent vertex of C2 that is adjacent to e2 and a contracted bounded end
P . Notice that

| det(M)| = |det(M(C2,P ))|
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holds. Since |det(M(C2,P ))| is independent of the choice of the base point of C2,P (chang-
ing the base point can be achieved performing column operations), we can choose the
new base point to be v2, i.e. we obtain the matrix M(C2,v2) with

|det(M(C2,P ))| = |det(M(C2,v2))|.

The le-column of M(C2,v2) has exactly one nonzero entry, namely ω(e) that is associated
to evaluating the x3-coordinate of P , where ω(e) is the weight of the cut elevator edge e.
Thus, using Laplace expansion on the le-column, we obtain

|det(M(C2,v2))| = ω(e) · | det(M(C2))|,

where C2 satisfies a codimension one tangency condition Pe2 as in Construction 6.3.16.
Putting everything together yields part (a) of Proposition 6.3.20.

(b) It can be assumed that the weight ω(Lk) of each multi-line Lk (Definition 2.2.19) for
k ∈ κα ∪ κα equals 1 since we can pull out the factor ω(Lk) from each row of the ev-
matrix, apply all the following arguments and multiply with ω(Lk) later.

Notation from Construction 6.3.16 is used, i.e. we denote the vertex of C1 adjacent to
the cut elevator e by v1 and the other vertex adjacent to e by v2. The ev-matrix M(C)
of C with respect to the base point v1 is given by

M(C) =

Base v1 lengths in C1 lengths in C2 le

conditions in C1


* *

∗
0

0


...
...

∗ 0
conditions in C2

* 0
0

*
∗

...
...

0 ∗

.

The bold red lines divide M(C) into square pieces at the upper left and the lower right.
This follows from similar arguments used in the proof of part (a). Let M be the matrix
consisting of the lower right block of M(C) whose entries (see above) are indicated by
∗ and its columns are associated to lengths in C2. Let A = (aij)ij be the submatrix of
M(C) given by the rows that belong to conditions of C1 and by the base point’s columns
and the columns that are associated to lengths in C1, i.e. A consists of all the ∗-entries
above the bold red line in M(C).

Consider the Laplace expansion of the rightmost column of A. Recursively, use Laplace
expansion on every column that belongs to the lengths in C1 starting with the rightmost
column. Eventually, we end up with a sum in which each summand contains a factor
det(Ni) for a matrix Ni, which is one of the following two matrices, namely

N1 =

Base v1 le

∗ ∗ 0 0
0


∗ ∗ 0 0

*

∗ ∗

M
...

...
...

...
∗ ∗

and N2 =

Base v1 le

∗ ∗ b1 0
0


∗ ∗ b2 0

*

∗ ∗

M
...

...
...

...
∗ ∗

.

Since the le column of N1 equals ω(e) times the third column of N1, the determinant
det(N1) is zero and thus does not occur in the Laplace expansion from above. In case
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of matrix N2, at least one of the entries b1, b2 is 1. Moreover, if b1 or b2 equals 1, then
this 1 is the only nonzero entry in the whole row. Thus Laplace expanding this row and
dividing the le column by ω(e) to obtain the column l̃e (which gives the global factor of
ω(e) in part (b) of Proposition 6.3.20) yields the following 3 cases.

Mar1ar2 :=

l̃e lenghts in C2

ar1 ar2 0 0 . . . 0
∗ M
,

where (ar1, ar2) = (1, 0), (ar1, ar2) = (0, 1) or (ar1, ar2) = (1,−1) are the remaining
entries of A in its r-th row after the recursive procedure. Notice that in each case the
entries of the first 3 columns are of such a from that Mst for st = 10, 01, 1-1 is the
ev-matrix of C2,st (see Notation 6.3.18) with base point v2.

We can group the summands according to the values ar1, ar2 and obtain in total

|det(M(C))| = ω(e) · |F10 · det(M10) + F01 · det(M01) + F1-1 · det(M1-1)|, (6.7)

where Fst ∈ R for st = 10, 01, 1-1 are factors occurring due to the recursive Laplace
expansion. More precisely, let b′ be the number of bounded edges in C1 and define
b := b′ + 1, i.e. b is the total number of Laplace expansions we applied. Then

Fst =
∑

r:(ar1,ar2)=(s,t)

∑
σ

sgn(σ)

3+b∏
j=3

aσ(j)j , (6.8)

where the second sum goes over all bijections

σ : {3, . . . , 3 + b} → {1, . . . , r − 1, r + 1, . . . , b+ 1},

i.e. it goes over all possibilities of choosing for each column Laplace expansion was used
on an entry in a row of A which is not the r-th row.

Let A10, A01, A1-1 be the square matrices obtained from A by adding the new first row
(1, 0, 0, . . . , 0), (0, 1, 0 . . . , 0) or (1,−1, 0, . . . , 0) to A. Again, notice that Ast for st =
10, 01, 1-1 is the ev-matrix of C1,st (Definition 3.1.11, Notation 6.3.18) with base point
v1.

We claim that

det(A10) = F01 − F1-1 (6.9)

holds. Let N be the number of columns and rows of Ast. Denote the entries of the
ev-matrix M(C) by m(C)ij . Define

Sst := {r ∈ [N − 1] | m(C)r1 = s, m(C)r2 = t}

for (s, t) = (1, 0), (0, 1), (1,−1) and notice that #S10 + #S01 + #S1-1 = N − 1. Denote
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the entries of A10 by a
(10)
ij and apply Leibniz’ determinant formula to obtain

det(A10) =
∑
σ∈SN

sgn(σ)

N∏
j=1

a
(10)
σ(j)j

=
∑
σ∈SN

σ(2)∈S01

sgn(σ)
N∏
j=1

a
(10)
σ(j)j +

∑
σ∈SN

σ(2)∈S1-1

sgn(σ)
N∏
j=1

a
(10)
σ(j)j = F01 − F1-1,

where the second equality holds by definition of Sst and the third equality holds by
considering how contributions of F01 and F1-1 arise as choices of entries of A, see (6.8).

The minus sign comes from the factor a
(10)
σ(2),2 = −1 in each product in the last sum. Thus

(6.9) holds.

We can show in a similar way that

det(A01) = − (F10 + F1-1) = −F10 − F1-1, (6.10)

det(A1-1) = F10 + F1-1 + F01 − F1-1 = F10 + F01 (6.11)

hold. Solving the system of linear equations (6.9), (6.10), (6.11) for F10, F01, F1-1 yields F10

F01

F1-1

 ∈
 −det(A01)

det(A10)
0

+ 〈

 −1
1
1

〉, (6.12)

where the 1-dimensional part appears because of the relation

−det(M10) + det(M01) + det(M1-1) = 0.

Combining (6.7) with (6.12) proves part (b) of Proposition 6.3.20, where Ast = C1,st and
Mst = C2,st. In particular,

mult(C) = ω(e) · | det (M(C1,10)) · det (M(C2,01))− det (M(C1,01)) · det (M(C2,10)) |
= ω(e) · | det (M(C1,10)) · det (M(C2,01)) |
= ω(e) · | det (M(C1,10)) | · | det (M(C2,01)) |
= ω(e) ·mult(C1,10) ·mult(C2,01)

holds if det (M(C1,01)) or det (M(C2,10)) vanishes.

Notice that Proposition 6.3.20 and its proof is similar to Proposition 4.2.3. Moreover,
notice that proof of part (b) of Proposition 6.3.20 actually gives rise to slightly different ways
of expressing mult(C) by considering other special solutions to the system of linear equations,
see (6.12). We now want to present an alternative proof of part (b) of Proposition 6.3.20 that
was suggested to us by an anonymous referee. It is shorter and uses general Laplace expansion
instead of a recursive procedure. However, it does not yield the different ways of expressing
mult(C).

Alternative proof of part (b) of Proposition 6.3.20. We assume that the weights of each multi-
line ω(Lk) (see Definition 2.2.19) for k ∈ κα ∪ κα equals 1 since we can pull out the factor
ω(Lk) frome each row of the ev-matrix, apply all the following arguments and multiply with
ω(Lk) later.
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We denote the vertex of C1 adjacent to the cut edge e by v1 and the other vertex adjacent
to e by v2. Moreover, let Mi denote the (non-square) evaluation matrix of Ci with respect to
the base point vi for i = 1, 2. Similar arguments as in the proof of part (a) of Proposition
6.3.20 using (3.6) yield that

M :=

Base v1 lengths in C1 Base v2 lengths in C2 le

1 0 0
0

−1 0 0
0

0


0 1 0 0 −1 0 0
0 0 1 0 0 −1 ω(e)

conditions in C1

M1 0
0
...
0

conditions in C2

0 M2

0
...
0

is a square matrix. Subtract the first three rows of M from the rows of M1 in M to obtain a
matrix of the form

Base v1 lengths in C1 Base v2 lengths in C2 le

1 0 0
0

−1 0 0
0

0


0 1 0 0 −1 0 0
0 0 1 0 0 −1 ω(e)

conditions in C1

0 * * 0
∗
...
∗

conditions in C2

0 M2

0
...
0

.

Notice that there is a 3× 3 block matrix in the upper left and that its associated other block
in the lower right is precisely the ev-matrix of C with base point v2. Therefore

mult(C) = | det(M)|. (6.13)

On the other hand, general Laplace expansion with respect to the first three rows of M can
be used to determine |det(M)|: Denote the number of rows (resp. columns) of M by t and let
M(a1, . . . , ar | b1, . . . br) denote the r × r minor of M that is given by the columns a1, . . . , ar
and rows b1, . . . , br of M . Then

| det(M)| = |
∑

1≤k1<k2<k3≤t
ε(k1, k2, k3) ·M(k1, k2, k3 | 1, 2, 3) ·M(l1, . . . , lt−3 | 4, . . . , t)|, (6.14)

where {l1, . . . , lt−3} ∪ {k1, k2, k3} = [t] and

ε(k1, k2, k3) := sgn

(
1 2 3 4 . . . t
k1 k2 k3 j1 . . . jt−3

)
,

where j1 < · · · < jt−3 such that {k1, k2, k3} ∪ {j1, . . . , jt−3} = [t]. Notice that in (6.14) a
summand can only be nonzero if each ki does not correspond to a zero-column in the first three
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rows of M . Moreover, k3 = t must be satisfied since otherwise M(l1, . . . , lt−3 | 4, . . . , t) is zero
due to a zero-column (the le-column). Hence

| det(M)| = |
∑

1≤k1<k2<t

ε(k1, k2, t) ·M(k1, k2, t | 1, 2, 3) ·M(l1, . . . , lt−3 | 4, . . . , t)|, (6.15)

where k1, k2 are columns associated to the base point v1 or v2. Therefore (6.15) breaks down
to four summands. Let Mi,ĵ denote the matrix Mi without its j-th column. The four relevant
summands of (6.15) are

det

 1 0 0
0 1 0
0 0 ω(e)

 · det

(
M1,1̂,2̂ 0 0

0 ∗ M2,1̂

)
,

det

 −1 0 0
0 −1 0
0 0 ω(e)

 · det

(
M1 ∗ 0
0 0 M2,1̂,2̂

)
,

det

 0 −1 0
1 0 0
0 0 ω(e)

 · det

(
M1,2̂ 0

0 M2,1̂

)
,

det

 1 0 0
0 −1 0
0 0 ω(e)

 · det

(
M1,1̂ 0

0 M2,2̂

)
.

The bold red lines indicate square boxes in the matrices. Notice that the first two listed
summands vanish. Using Notation 6.3.18 yields that

det

 0 −1 0
1 0 0
0 0 ω(e)

 · det

(
M1,2̂ 0

0 M2,1̂

)
= −ω(e) · det (M(C1,01)) · det (M(C2,10))

and

det

 1 0 0
0 −1 0
0 0 ω(e)

 · det

(
M1,1̂ 0

0 M2,2̂

)
= ω(e) · det (M(C1,10)) · det (M(C2,01)) .

The signs ε(k1, k2, k3) appearing in (6.15) are all the same as one can see from a case-by-case
analysis distinguishing if the numbers of columns of M1 (resp. M2) are even or odd. Thus
(6.15) yields

| det(M)| = ω(e) · | det (M(C1,10)) · det (M(C2,01))− det (M(C1,01)) · det (M(C2,10)) |

The desired equation now follows from (6.13).

Future research 6.3.21. Proposition 4.2.3 states how the multiplicity of a rational tropical
stable map to R2 can be expressed when a contracted bounded edge is cut. Notice that
Proposition 4.2.3 and its proof is similar to Proposition 6.3.20. Thus, in terms of multiplicities,
a contracted bounded edge of a rational tropical stable map to R2 behaves like an elevator of
a floor-decomposed rational tropical stable map to R3. This may be a hint on how to express
multiplicities of floor-decomposed rational tropical stable maps to Rm for m > 3 in terms of
multiplicities of their floors.
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6.3.3 Pushing forward conditions along elevators

The aim of this subsection is to prove the following proposition, which determines how the
1-dimensional conditions a floor-decomposed rational tropical stable map exchanges via its 1/1
elevators look like. More precisely, cutting a 1/1 elevator q adjacent to the floors Ci, Cj leads
to loose edges that can move in a 1-dimensional way, i.e. the floor Ci adjacent to q gives rise to
a 1-dimensional cycle Yi,q that can be pushed forward to R2 using ∂ evq. The cycle ∂ evq,∗(Yi,q)
is the 1-dimensional restriction Ci imposes on Cj via the elevator q.

Proposition 6.3.22. Notation from Theorem 2.2.20, Definition 3.2.4, notations 2.0.1, 6.3.17
and Construction 6.3.16 is used. Let Ci be a floor of a floor-decomposed rational tropical
stable map C ∈ M0,n

(
R3,∆3

d(α, β)
)

which satisfies general positioned conditions, namely
p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l]. Let ∆3

si

(
αi, βi

)
be the degree of Ci and let q ∈ ∆3

si

(
αi, βi

)
be

the label of an end whose primitive direction is (0, 0,±1). The cycle

Yi,q :=
∏

k∈κiα∪κiβ
∂ ev∗k(Lk) ·

∏
f∈ηiα∪ηiβ

∂ ev∗f (Pf ) ·
∏
j∈li

ft∗λ→j (0) · ev∗i (pi) · M0,1

(
R3,∆3

si

(
αi, βi

))
has the following properties.

(1) The recession fan of the push-forward ∂ evq,∗(Yi,q) does only contain ends of standard
directions.

(2) Each unbounded cell σ ∈ Yi,q that is mapped to an end of the recession fan of ∂ evq,∗(Yi,q)
under the push-forward ∂ evq,∗ satisfies the following: If Cσ ∈ σ is a rational tropical
stable map in the interior of σ, then q is adjacent to a 3-valent vertex, which is adjacent
to another end E 6= q such that π(E) ⊂ R2 is an end of standard direction.

An immediate consequence of Proposition 6.3.22 is the following corollary, which yields that
all restrictions exchanged via a 1/1 elevator are in fact rational tropical stable maps to R2 with
ends of standard direction.

Corollary 6.3.23. Let C be a floor-decomposed rational tropical stable map that contributes to

N∆3
d(α,β)

(
p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l]

)
. Then the codimension two tangency conditions each 1/1

elevator passes on to its neighbors have ends of standard direction only. In particular, we can
assume that if we cut all elevators as in Construction 6.3.16, then the appearing codimension
two tangency conditions have ends of standard directions.

Proof. Apply part (1) of Proposition 6.3.22 inductively by cutting one 1/1 elevator after an-
other.

Remark 6.3.24. Notice that Proposition 6.3.22 can also be shown the way Corollary 4.1.31
was shown, i.e. by using Proposition 4.1.1. Since Proposition 4.1.1 is actually a stronger
statement than Proposition 6.3.22 there is is no need to evoke the machinery developed in
Chapter 4.

Proof of Proposition 6.3.22. Let L10 be a degenerated tropical line in R2 which is parallel to
the y-axis as in Definition 2.2.21. The projection formula (Proposition 2.1.13 in case of abstract
cycles) yields

L10 · ∂ evq,∗(Yi,q) = ∂ evq,∗
(
∂ ev∗q(L10) · Yi,q

)
. (6.16)

Assume that the degenerated line L10 is shifted in the direction (−1, 0) ∈ R2 such that L10

intersects ∂ evq,∗(Yi,q) ⊂ R2 only in 1-dimensional ends of ∂ evq,∗(Yi,q).
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Let π : R3 → R2 be the projection that forgets the z-coordinate and let

π̃ :M0,1

(
R3,∆3

si

(
αi, βi

))
→M0,1+|αi|+|βi|

(
R2, π

(
∆3
si

(
αi, βi

)))
be its induced map π on the moduli spaces as in Notation 2.2.9.

Each tropical stable map corresponding to a point of π̃∗(Yi,q) can be lifted uniquely to a
tropical stable map corresponding to a point in Yi,q as in the proof of Proposition 6.3.31. Thus
for

Yπ,i,q :=
∏

k∈κiα∪κiβ
ev∗k(Lk)

·
∏

f∈ηiα∪ηiβ
ev∗f (Pf ) ·

∏
j∈li

ft∗λ→qj
(0) · ev∗i (π(pi)) · M0,1+|αi|+|βi|

(
R2, π

(
∆3
si

(
αi, βi

)))
the equality

π̃∗(Yi,q) = Yπ,i,q (6.17)

holds on the level of sets. To see that (6.17) also holds on the level of cycles, multiplicities are
compared. Notice that each multiplicity of a top-dimensional cell of π̃∗(Yi,q) (resp. Yπ,i,q) arises
as a product of a cross-ratio multiplicity and an index of an ev-matrix, see Definition 3.1.11.
The lifting of the proof of Proposition 6.3.31 guarantees that the cross-ratio multiplicity part
coincides. Let σ be a top-dimension cell of Yi,q the ev-multiplicity part of σ is given by the
absolute value of the index of the ev-Matrix M(σ) associated to σ, see Definition 3.1.11. We
choose pi as base point for the local coordinates used for M(σ). Then

M(σ) =

Base pi

1 0 0 0 . . . 0


0 1 0 0 . . . 0
0 0 1 0 . . . 0

∗
∗

∗...
∗

.

The ev-matrix M(π(σ)) is obtained from M(σ) by erasing the third column and row which
intersect in the z-coordinate of the base point, which is 1. Recall that ∂ ev is by definition
ev ◦π, i.e. the indices of M(σ) and M(π(σ)) are equal. Therefore (6.17) holds on the level of
cycles.

By definition of ∂ evq and the arguments from before, the right-hand side of (6.16) is equal
to evq,∗

(
ev∗q(L10) · Yπ,i,q

)
, which is, by the projection formula, equal to L10 · evq,∗ (Yπ,i,q). By

shifting L10 to the left as before, we can assume that L10 intersects evq,∗ (Yπ,i,q) only in ends
of evq,∗ (Yπ,i,q).

We claim that each tropical stable map C that contributes to the 0-dimensional cycle
ev∗q(L10) · Yπ,i,q has an end of direction (−1, 0) ∈ R2 that is adjacent to a 3-valent vertex v
which in turn is adjacent to the contracted end q. To prove the claim, it is sufficient to show
that C has no vertex that is not adjacent to q whose x-coordinate is smaller or equal to the one
of L10. Assume that there is a vertex v of C that is not adjacent to q and that the x-coordinate
of v is minimal. Assume also that v is adjacent to an end e of direction (−1, 0) ∈ R2. Since
each entry of a given tropical cross-ratio is a contracted end, Corollary 3.2.24 yields that v
is 3-valent. If v is adjacent to a contracted end e, then this end needs to satisfy a condition,
otherwise v allows a 1-dimensional movement which is a contradiction. Since L10 was moved
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sufficiently into the direction of (−1, 0) in R2, we know that the condition e satisfies can only
be a multi-line condition that locally around v is parallel to the x-axis of R2. Hence v allows
again a 1-dimensional movement which is a contradiction. In total, v is 3-valent, adjacent to
an end of direction (−1, 0) and is not adjacent to a contracted end.

Assume additionally that the y-coordinate of v is minimal among the vertices with minimal
x-coordinate that are not adjacent to q and that are adjacent to an end of direction (−1, 0).
We distinguish two cases:

� In the fist case, the x-coordinate of v is strictly smaller than the one of L10. Hence v
is by balancing (all ends have weight 1) adjacent to an edge of direction (0,−1). If this
edge is an end, then v gives rise to a 1-dimensional movement which is a contradiction.
If this edge leads to a vertex v′ that is adjacent to a contracted end t, then t can only
satisfy a multi-line condition that locally around t is parallel to the x-axis of R2. By our
assumption, there is no vertex with the same x-coordinate as v′ below v′ that is adjacent
to an end of direction (0,−1). Hence v allows a 1-dimensional movement which is a
contradiction.

� In the second case, the x-coordinate of v equals the x-coordinate of L10 and v is adjacent
to a vertex v′ that is in turn adjacent to the contracted end q such that the y-coordinate
of v′ is smaller than the one of v (if there is no such vertex v′, then we end up with
the same contradiction as in case one). By Corollary 3.2.24, v′ cannot be adjacent to
an end of direction (−1, 0) and by minimality of the y-coordinate of v, there is an end
e′ of direction (0,−1) ∈ R2 adjacent to v′ which is parallel to L10. Thus v′ allows a
1-dimensional movement which is a contradiction.

Thus the claim is true.
Since the x-coordinate of L10 is so small that L10 intersects evq,∗ (Yπ,i,q) in ends only, we

can use the claim from above to determine the directions of those ends: Consider a point C
in ev∗q(L10) · Yπ,i,q. Then C is also a point of Yπ,i,q. Our claim tells us that the contracted
end q of C is adjacent to a 3-valent vertex which in turn is adjacent to an end of direction
(−1, 0) ∈ R2. Thus C gives rise to a ray of Yπ,i,q whose direction under evq,∗ is (−1, 0) ∈ R2,
which is a standard direction. Since we shifted L10 sufficiently to the left, all rays of evq,∗ (Yπ,i,q)
whose direction vector’s x-coordinates are negative occur this way. Notice that by definition of
Yπ,i,q this implies that all ends of ∂ evq,∗(Yi,q) whose direction vector’s x-coordinate is negative
(i.e. such ends that intersect a shifted line parallel to the y-axis) are actually of the standard
direction (−1, 0) ∈ R2.

We can use similar arguments for L10 if the x-coordinate of L10 is so large that it intersects
∂ evq,∗(Yi,q) in ends only, and we can use similar arguments for L01 with small (resp. large)
y-coordinate. In total, it follows that ends of ∂ evq,∗(Yi,q) are of standard direction and that
their weights are given as in Proposition 6.3.22.

6.3.4 Cross-ratio floor diagrams for R3 and their multiplicities

Cross-ratio floor diagrams for R3 are now introduced. Similar to the R2-case additional discrete
data is used to encode which floor-decomposed rational tropical stable maps degenerate to a
cross-ratio floor diagram. Multiplicities of cross-ratio floor diagrams are then defined. We want
to point out that these multiplicities can be obtained from enumerating rational tropical stable
maps to R2 such that results of previous chapters can be used.

Definition 6.3.25 (Cross-ratio floor diagrams for R3). Notation of Definition 3.2.4 is used.
Let ∆3

d(α, β) be a degree. Let F be a tree without ends on a totally ordered set of vertices v[n],
then F is called cross-ratio floor diagram of degree ∆3

d(α, β) if it satisfies the following:
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(1) The graph F is equipped with a flow structure that is a condition flow of type 3.

(2) Each vertex vi is equipped with a (possibly empty) set of labels that appear in ∆3
d(α, β)

such that δvi ∩ δvj = ∅ for all i 6= j and
⋃n
i=1 δvi is the set of all labels appearing in

∆3
d(α, β). Moreover, each vertex vi is equipped with an integer #λvi ∈ N.

(3) Each edge e of F (consisting of two half-edges) is equipped with a weight ω(e) ∈ N>0

such that vertices vi of F are balanced with respect to these weights, i.e.

#δ(1,1,1)
vi +

∑
e′∈δβvi

ω(e′) +
∑

e an edge
between vi < vj

ω(e)−
∑
e′∈δαvi

ω(e′)−
∑

e an edge
between vj < vi

ω(e) = 0

holds for all i ∈ [n], where δ
(1,1,1)
vi is the subset of δvi that contains all labels of ends

of primitive direction (1, 1, 1), δβvi is the subset of δvi that contains all labels of ends of
primitive direction (0, 0, 1) and δαvi is the subset of δvi that contains all labels of ends of
direction (0, 0,−1).

Remark 6.3.26. The path criterion for cross-ratio floor diagrams (Definition 6.2.3) can be
defined analogously for cross-ratio floor diagrams in case of R3 by replacing ∆2

d(α, β) with
∆3
d(α, β). This is used in the following definition.

Definition 6.3.27 (Conditions satisfied by F). Let ∆3
d(α, β) be a degree as in Notation 2.2.4.

Let p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l] be in a stretched configuration with respect to ∆3
d(α, β). A

cross-ratio floor diagram F satisfies p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l] if the following properties are

fulfilled.

(1) The number of vertices of F equals n. The total order of the vertices v[n] of F is induced
by the total order of the point conditions p[n] (they are ordered according to their last
coordinate), where the point pi is identified with the vertex vi.

(2) For each degenerated tropical cross-ratio λj ∈ λ[l] there is a vertex of F that satisfies it
(Remark 6.3.26) and for each vertex v of F the number #λv equals the total number of
degenerated tropical cross-ratios that are satisfied at v. For a vertex of a cross-ratio floor
diagram that satisfies degenerated tropical cross-ratios λ[l], denote the set of all λj ∈ λ[l]

that are satisfied at v by λv.

(3) Define

A(vi) :=

3#δ(1,1,1)
vi + #δαvi + #δβvi + val(vi)− 2−#λvi − 2(#δα,Pvi + #δβ,Pvi )−#δα,Lvi −#δβ,Lvi

for every vertex vi, where val(vi) is the valence of vi in F and δαvi , δ
β
vi , δ

α,P
vi , δβ,Pvi , δα,Lvi , δβ,Lvi

are subsets of δvi such that

� δαvi (resp. δβvi) are the ends that are associated to α (resp. β),

� δα,Pvi ⊂ δαvi (resp. δβ,Pvi ⊂ δβvi) are the ends that satisfy some codimension one
tangency conditions (see Notation 3.1.5),

� δα,Lvi ⊂ δαvi (resp. δβ,Lvi ⊂ δ
β
vi) are the ends that satisfy some codimension two tangency

conditions (see Notation 3.1.5).
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The leak function of F is given by

leak(vi) =

{
0 , if δ

(1,1,1)
vi = ∅

A(vi) , else

Notice that the leak function determines the condition flow of type 3 on F uniquely by
Lemma 6.3.6.

Example 6.3.28. Let ∆3
4 ((4, 1, 0, . . . ), (2, 0, . . . )) denote a degree as in Notation 2.2.4 whose

labeling is:

Ends of primitive direction. . . e3 −e3 −e1 −e2 e0

its associated labels 3, 9 4, 5, 6, 7, 8 10, 11, 12, 19 13, 14, 15, 20 16, 17, 18, 21
,

such that the end of weight two is labeled by 8. Let p[2], P[9]\[2], λ1 = {1, 2, 3, 7} be conditions
in a stretched configuration with notation from Definition 3.2.4. Recall the floor graph from
Example 6.3.15. Equipping it with discrete data as below turns it into a cross-ratio floor
diagram F of degree ∆3

4 ((4, 1, 0, . . . ), (2, 0, . . . )) that satisfies p[2], P[9]\[2], λ1.

v1 v2

11

2

i 1 2

δvi [18]\{2, 9} {2, 9, 19, 20, 21}

δ
(1,1,1)
vi {16, 17, 18} {21}

δαvi {4, 5, 6, 7, 8} ∅

δβvi {3} {9}

λvi {λ1} ∅

δα,Pvi {4, 5, 6, 7, 8} ∅

δβ,Pvi {3} {9}

δα,Lvi ∅ ∅

δβ,Lvi ∅ ∅

Definition 6.3.29 (Multiplicity of a cross-ratio floor diagrams in R2). Let ∆3
d(α, β) be a

degree as in Notation 2.2.4. Let p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l] be in a stretched configuration

with respect to ∆3
d(α, β). Let F be a cross-ratio floor diagram of degree ∆3

d(α, β) that satisfies
these conditions. Let v[n] denote the totally ordered set of vertices of F . For γ = α, β, define the
following: Let 2/0i

γ be the 2/0 edges adjacent to vi and vj (with j 6= i) in F such that vj < vi
if γ = α and vi < vj if γ = β. Let 1/1i

γ be the 1/1 edges adjacent to vi, where γ ∈ {α, β} is

defined analogously. For a vertex vi of the cross-ratio floor diagram F , its multiplicity mult(vi)
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is defined as

mult(vi) := N∆3

#δ
(1,1,1)
vi

(αi,βi)

(
pi, Lδα,Lvi

∪1/1i
α , Lδβ,Lvi ∪1/1i

β , Pδα,Pvi
∪2/0i

α , Pδβ,Pvi ∪2/0i
β , λ→vi

)
,

with the notation from Definition 6.3.25 and Notation 2.0.1, where αi (resp. βi) of the degree

∆3

#δ
(1,1,1)
vi

(
αi, βi

)
arises from δαvi (resp. δβvi) and edges contributing to val(vi) in F , and where

L1/1i
α (resp. L1/1i

β ) are collections of tropical multi-line conditions with ends of weight 1.

Moreover, the cross-ratios λvi are adapted to cutting the edges adjacent to vi similar to Con-
struction 6.3.16 and Notation 6.3.17. The multiplicity of the entire cross-ratio floor diagram F
is defined to be the product of the vertices’ multiplicities times the edges’ weights, i.e.

mult(F) :=
∏
e edge

of F

ω(e) ·
n∏
i=1

mult(vi).

Example 6.3.30. Let F be the cross-ratio floor diagram of Example 6.3.28. Label its edge of
weight two by 22. The multiplicities of the vertices v1, v2 of F are

mult(v1) = N∆3
3((4,1,0,... ),(1,1,0,... ))

(
p1, L22, P[8]\[2], λ

→22
1

)
,

mult(v2) = N∆3
1((0,1,0,... ),(1,0,... )) (p2, L22, P9) ,

where λ→22
1 = {1, 22, 3, 7} and L22 is a tropical multi-line with ends of weight 1 (Notation 3.1.5

is used).

The following Proposition reduces the calculation of the multiplicity of a cross-ratio floor
diagram in R3 to the enumeration of rational tropical stable maps to R2 satisfying point,
multi-line and degenerated tropical cross-ratio conditions.

Proposition 6.3.31. For notation, see Notation 2.0.1, 2.2.9 and Definition 6.3.29. Let F be a
cross-ratio floor diagram of degree ∆3

d(α, β) that satisfies conditions p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l].

The multiplicity mult(vi) of a vertex vi of F equals the degree of the cycle∏
k∈κiα∪κiβ

ev∗k(Lk) ·
∏

f∈ηiα∪ηiβ
ev∗f (Pf ) ·

∏
λj∈λvi

ft∗λ→j (0) · ev∗i (π(pi))

· M0,1+|αi|+|βi|

(
R2, π

(
∆3

#δ
(1,1,1)
vi

(
αi, βi

)))
,

(6.18)

where κi
γ := δγ,Lvi ∪ 1/1i

γ and ηi
γ := δγ,Pvi ∪ 2/0i

γ for γ = α, β.

Proof. Notice that since the given conditions pi, Lκiα , Lκiβ , Pηiα , Pηiβ , λ
→
vi are in general position

with respect to ∆3

#δ
(1,1,1)
vi

(
αi, βi

)
and there is only one point condition pi, we can assume that

the conditions π(pi), Lκiα , Lκiβ , Pηiα , Pηiβ , λ
→
vi are also in general position with respect to the

degree π

(
∆3

#δ
(1,1,1)
vi

(
αi, βi

))
. Using (3.6), we see that the cycle (6.18) is indeed 0-dimensional.

Thus considering its degree makes sense.
Let C be a rational tropical stable map that contributes to mult(vi). Applying the map π̃

from Notation 2.2.9 induced by the projection π : R3 → R2 that forgets the x3-coordinate leads
to a rational tropical stable map π̃(C) that contributes to (6.18) by Corollary 3.2.10. The other
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way round, a rational tropical stable map C ′ that contributes to (6.18) can be lifted uniquely
to a rational tropical stable map C that contributes to mult(vi), because the x3-coordinates of
the directions of the edges can be recovered from the balancing condition and the overall x3-
position of C is fixed by the x3-coordinate of pi. Hence π induces a bijection between rational
tropical stable maps C that contribute to mult(vi) and rational tropical stable maps π̃(C) that
contribute to (6.18).

It remains to show that the multiplicities of C and π̃(C) coincide. For that, notice that
the cross-ratio multiplicities of every vertex v ∈ C and its image π(vi) in π̃(C) coincide. Thus
is remains to show that the ev-multiplicities coincide as well. The ev-multiplicity of C (resp.
π̃(C)) is given by the absolute value of the determinant of the ev-Matrix M(C) (resp. the
ev-matrix M(π̃(C))) associated to C (resp. π̃(C)), see Definition 3.1.11. We choose pi as base
point for the local coordinates used for M(C) (resp. π(pi) as base point for M(π̃(C))) which
are the lengths of the edges of C (resp. π̃(C)). The matrix M(π̃(C)) is obtained from M(C)
by erasing the third column and row which intersect in the x3-coordinate of the base point,
which is 1 (see below). The matrices M(C) and M(π̃(C)) look like follows

M(C) =

Base pi

1 0 0 0 . . . 0


0 1 0 0 . . . 0
0 0 1 0 . . . 0

B
∗

M
...
∗

and M(π̃(C)) =

Base π(pi)
1 0 0 . . . 0


0 1 0 . . . 0

B M

.

Recall that ∂ ev equals ev ◦π, i.e. the submatrices B,M marked above are equal. Therefore

| det(M(C))| = |det(M(π̃(C))|

follows from using Laplace expansion on the third row of M(C).

The general tropical Kontsevich’s formula 4.3.4 recursively calculates the weighted number
of rational tropical stable maps to R2 that satisfy point, multi-line and degenerated tropical
cross-ratio conditions. As a consequence, the multiplicity of a cross-ratio floor diagram in R3

can be determined recursively.

Corollary 6.3.32. The multiplicity mult(vi) of a vertex vi of a cross-ratio floor diagram of
degree ∆3

d(α, β) can be calculated recursively using the general tropical Kontsevich’s formula
4.3.4.

Example 6.3.33. Let F be the cross-ratio floor diagram of Example 6.3.28. Using Proposition
6.3.31 to express mult(v1),mult(v2) of Example 6.3.30 yields

mult(v1) = N∆2
3

(
π(p1), π

(
P[8]\[2]

)
, L22, λ

→22
1

)
,

mult(v2) = N∆2
1

(π(p2), π (P9) , L22) .

This allows us to use Corollary 6.3.32, resp. general tropical Kontsevich’s formula 4.3.4. Hence

mult(v1) = 5,

mult(v2) = 1.

Therefore mult(F) = 10.
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6.3.5 Enumeration in R3 using cross-ratio floor diagrams

Cross-ratio floor diagrams of degree ∆3
d(α, β) are now related to counts of rational tropical

stable maps of degree ∆3
d(α, β). This is done in two steps. First, floor-decomposed rational

tropical stable maps are degenerated to cross-ratio floor diagrams. Second, it is shown that the
multiplicity of a cross-ratio floor diagram reflects how many floor-decomposed rational tropical
stable maps degenerate to it.

Theorem 6.3.34. Notation of Definition 3.2.5, 6.1.1, 6.3.25 and Notation 2.2.4 is used. Let
∆3
d(α, β) be a degree. Let p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l] be in a stretched configuration with respect

to ∆3
d(α, β). Then

N∆3
d(α,β)

(
p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l]

)
=
∑
F

mult(F) (6.19)

holds, where the sum goes over all cross-ratio floor diagrams of degree ∆3
d(α, β) that satisfy the

given conditions.

Construction 6.3.35 (Floor-decomposed rational tropical stable map 7→ cross-ratio floor di-
agram). Let C be a floor-decomposed rational tropical stable map that contributes to the

number N∆3
d(α,β)

(
p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l]

)
. We want to construct a cross-ratio floor dia-

gram F that satisfies the given conditions p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l].

Let F denote the floor graph associated to C, see Definition 6.3.14. To turn F into a
cross-ratio floor diagram of degree ∆3

d(α, β), define δvi (notation of Definition 6.3.25 is used)
as the set of labels of ends adjacent to the floor Ci of C which satisfies the point condition pi.
Moreover, F is balanced in the sense of Definition 6.3.25 since C is balanced. Thus F is indeed
a cross-ratio floor diagram of degree ∆3

d(α, β) if its flow structure is a conditions flow of type
3. The flow structure of F is discussed below.

We now check whether F satisfies the given conditions, i.e. we need to check if properties
(1), (2) and (3) of Definition 6.2.6 are satisfied. Property (1) is satisfied by definition of the
floor graph from which F was constructed. For (2), define λvi as the union over all λuj (the set
of cross-ratios satisfied at uj), where uj is a vertex of the floor Ci, and use the path criterion
(Corollary 3.2.12) to verify that F satisfies the degenerated tropical cross-ratios λ[l] if C does.
Property (3) is more technical: If the floor Ci does not contain an end of direction (1, 1, 1) (i.e.

if δ
(1,1,1)
vi = ∅ with the notation from Definition 6.3.27), then flow(vi) = 0 since Ci consists of a

single vertex satisfying the point condition pi that gains all its flow in Ci via a contracted end

which is not contained in F . Let now δ
(1,1,1)
vi 6= ∅ and let the elevator flow flowelevator(Ci) of

Ci be the total flow incoming to vertices of Ci via elevators. Let the end flow flowend(Ci) of
Ci be the total flow incoming to vertices of Ci via non-contracted ends (notice that notation is
abused here as indicated in Definition 6.1.3). Since Ci, that is of degree ∆3

si

(
αi, βi

)
(notation

of Construction 6.3.16), is fixed by all restrictions imposed to it via its ends and edges, we can
use Equation (3.6) and the notation of Definition 6.3.27 to obtain

#∆3
si

(
αi, βi

)
− 2−#λvi − flowend(Ci) = flowelevator(Ci),

where −2 comes from the point condition pi that is satisfied by Ci. Using

#∆3
si

(
αi, βi

)
= 3 ·#δ(1,1,1)

vi + #δαvi + #δβvi + val(vi)

and

flowend(Ci) = 2 ·#δα,Pvi + 2 ·#δβ,Pvi + #δα,Lvi + #δβ,Lvi
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turns the induced flow on F into a condition flow of type 3 if the leak function is defined as
leak(vi) := flowelevator(Ci) for all i ∈ [n]. Notice that this leak function coincides with the one
of Definition 6.3.27. In this case, the condition flow is uniquely determined by its leak function
(see Lemma 6.3.6). Hence F is a cross-ratio floor diagram that satisfies the given conditions.
We say that C degenerates to F and denote it by C → F .

Example 6.3.36. Let F be the cross-ratio floor diagram of Example 6.3.28. Observe that
the floor-decomposed rational tropical stable map C of Example 6.1.5 degenerates to F if the
labels of ends that are not shown in Figure 6.2 are chosen appropriately, i.e. to fit Example
6.3.28.

Figure 6.9 shows another floor-decomposed rational tropical stable map D. It satisfies the
degenerated tropical cross-ratio λ1 = {1, 2, 3, 7}. Moreover, we claim that it is possible to
assign lengths to the bounded edges of D in its schematic representation in Figure 6.9 in such a
way that D satisfies the same conditions as C. The conditions in question are point conditions
p1, p2 and the codimension one tangency conditions P[9]\[2]. Cut the elevators of C and D,
project the floors to R2 using π as in the proof of Proposition 6.3.31. Notice that it is sufficient
to check whether the projections of the floors C1 and D1 satisfy the same conditions. For that,
use the cross-ratio lattice path algorithm of Chapter 5 with the degenerated tropical cross-
ratio λ1 to obtain the projections π(C1) and π(D1) that then satisfy π

(
p[2]

)
and π

(
P[9]\[2]

)
.

Lifting π(C1) and π(D1) yields the desired lengths. The lattice path calculation can be found
in Example 5.1.17 and Figure 5.5. More precisely, π(C1) corresponds to the entry (read as a
matrix) (6, 2), and π(D1) corresponds to the entry (4, 2) of Figure 5.5 (see also Example 5.2.5).

Thus D degenerates to F as well if the missing labels in Figure 6.9 are chosen appropriately.

x

y

z 2
2

1

2

8

9

3

4

5

6
7

Figure 6.9: The floor-decomposed rational tropical stable map D of Example 6.3.36. It has
two floors Di for i = 1, 2. The dashed edge is the elevator of weight two of D.

Proof of Theorem 6.3.34. By Proposition 6.1.6 every rational tropical stable map that con-
tributes to the left-hand side of (6.19) is floor-decomposed. Hence Construction 6.3.35 as-
sociates a cross-ratio floor diagram that contributes to the right-hand side of (6.19) to each
such rational tropical stable map. Therefore it is sufficient to show for a fixed cross-ratio floor
diagram F of degree ∆3

d(α, β) which satisfies the given conditions that

mult(F) =
∑
C→F

mult(C) (6.20)
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holds, where the sum goes over all C degenerating to F . In other words, we need to show
that the multiplicity with which a cross-ratio floor diagram F is counted equals the sum of
the multiplicities of all rational tropical stable maps C that contribute to the left-hand side of
(6.19) such that C degenerates to F . So fix a cross-ratio floor diagram F that contributes to
the right-hand side of (6.19).

To shorten notation, let B := {p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l]} be the set of conditions that F
satisfies, and let N(B) (resp. Nfloor(B)) denote the number on the left-hand side (resp. the
right-hand side) of (6.19). Assume that F has more than 1 vertex, because otherwise there is
nothing to show. Since F is a tree, there is a 1-valent vertex vi of F adjacent to a vertex vj via
an edge q such that vi < vj . There are two cases: q is either a 1/1 edge or a 2/0 edge. First,
assume that q is a 1/1 edge. Let L(j) (resp. L(i)) be the codimension two tangency condition of
Corollary 6.3.23 which vi passes to vj via q (resp. vj passes to vi). Notice that the conditions
L(j) (resp. L(i)) are cycles in R2 as in Proposition 6.3.22 that do not depend on the tropical
stable maps that degenerate to F .

Similar to the proof of Lemma 4.3.3, we follow the idea of recursively moving conditions in
such a way that mult(C) can be calculated as a product in which each factor is associated to
a floor. Cut q to obtain two new cross-ratio floor diagrams Fi and Fj , where Fi consists of a
single vertex vi and Fj is given by F without vi. Decomposing F into Fi and Fj decomposes B
into Bi and Bj as well, more precisely, let Bi ⊂ B (resp. Bj ⊂ B) be the subset of conditions
Fi ⊂ F (resp. Fj) satisfies. Notice that the set of all conditions Fi (resp. Fj) satisfies is
Bi ∪ L(i) (resp. Bj ∪ L(j)).

If we change the x1- and x2-coordinates of the conditions in Bi and Bj in such a way that
all conditions are still in a stretched configuration, then any rational tropical stable map C
with C → F is still floor-decomposed and still degenerates to F . Notice that moving conditions
as above moves L(i) and L(j) accordingly. More precisely, we are allowed to move the x1- and
x2-coordinates of the conditions in Bi and Bj inside a box, which is small compared to the
stretching of the conditions in x3-direction. Notice that moving conditions as above moves L(i)

and L(j) accordingly. Hence we can achieve (by bringing the x1, x2-positions of conditions in
Bj (resp. Bi) arbitrarily close together) that L(i) and L(j) intersect in the following way: all
points of the intersection of L(i) and L(j) are on the ends of L(i) that are of primitive direction
(0,−1) ∈ R2, and on the ends of L(j) that are of primitive direction (−1, 0) ∈ R2, see Figure
6.10. Thus, using part (b) of Proposition 6.3.20 and Notation 6.3.18, we have∑

C→F
mult(C) = ω(q)

∑
C→F

mult(Ci,10) mult(Cj,01),

where ω(q) is the weight of the cut edge q and Ci, Cj are the pieces obtained from C by cutting
the elevator that corresponds to q.

We claim that∑
C→F

mult(Ci,10) mult(Cj,01) = N(Bi ∪ {E(i)})
∑

Cj→Fj

mult(Cj), (6.21)

where Fj is understood as a cross-ratio floor diagram that satisfies the conditions Bj ∪ {E(j)},
and where E(i) and E(j) are codimension two tangency conditions that are tropical multi-lines
in R2 with ends of weight 1. To see this, let E(i) and E(j) be two tropical lines with ends of
weight 1 whose positions are chosen according to Figure 6.10, i.e. choose E(i) (resp. E(j)) in
such a way that it intersects L(j) (resp. L(i)) only in its ends of primitive direction (−1, 0)
(resp. (0,−1)) and such that each point of intersection locally looks like the x1 and x2 axes’
intersection.
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L(i)

L(j)

E(i)

E(j)

π(Vi)

π(Vj)

p

Figure 6.10: Codimension two tangency conditions L(i) and L(j) after movement, together
with the codimension two tangency conditions E(i) and E(j), where p ∈ L(i) ∩L(j) is the point
associated to π(Vi) and π(Vj).

Each rational tropical stable map Ci that contributes to N(Bi∪{E(i)}) has an end q parallel
to the x3-axis whose adjacent vertex Vi is 3-valent and satisfies π(Vi) ∈ L(j) ∩ E(i), where π is
the natural projection that forgets the x3-coordinate. This is true due to Proposition 6.3.22 and
since Ci satisfies L(j) by definition of L(j). Analogously, by definition of L(i) and Proposition
6.3.22, each rational tropical stable map Cj from the right-hand side of (6.21) has an end q
parallel to the x3-axis whose adjacent vertex Vj is 3-valent and satisfies π(Vj) ∈ L(i) ∩ E(j).
Since Vi (resp. Vj) is by Proposition 6.3.22 adjacent to an end of Ci (resp. Cj), we can move
Vi and Vj as in Figure 6.10 to the corresponding point of intersection of L(j) ∩ L(i) such that
the combinatorial types of Ci and Cj do not change and such that the multiplicities of Ci
and Cj understood as rational tropical stable maps that contribute to the right-hand side of
(6.21) do not change. Since we moved Vi and Vj to one point, Ci and Cj can be glued to
obtain a rational tropical stable map C such that C → F and the multiplicities of Ci and Cj
(understood as rational tropical stable maps that contribute to the right-hand side of (6.21))
are equal to mult(Ci,10) and mult(Cj,01) by our special choice of the positions of L(i) and L(j).
Reversing the process of gluing yields a bijection between factors of the left and factors of the
right-hand side of (6.21).

The multiplicity of the vertex vi of F equals N(Bi∪{E(i)}) by Definition 6.3.29. Moreover,
if q is a 2/0 edge instead, then part (a) of Proposition 6.3.20 guarantees that multiplicities split
nicely if edges are cut. So in total (6.21) gives rise to a recursion that eventually yields

∑
C→F

mult(Ci,10) mult(Cj,01) =

n∏
i=1

mult(vi)

since F is a tree. Hence (6.20) holds.

Notice that L(i) and L(j) depend on the choice of the floor diagram F . So we should

use the notation L
(i)
F and L

(j)
F instead. It remains to show that we can bring L

(i)
F and

L
(j)
F in a position as above for each choice of floor diagram F without effecting the overall

weighted count of cross-ratio floor diagrams of degree ∆3
d(α, β) that satisfy the given con-

ditions p[n], Lκα , Lκβ , Pηα , Pηβ , λ[l]. Moving conditions as above does not lead to a rational

tropical stable map that degenerates to another cross-ratio floor diagram then it initially did,
and the cycle obtained by moving conditions (i.e. by relaxing some of the initially given condi-

tions) as above is balanced. Therefore we can assume that L
(i)
F and L

(j)
F are always in a position

as shown in Figure 6.10.
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Using Tyomkin’s correspondence theorem 2.3.6 (more precisely, Corollary 3.1.20 and Propo-
sition 3.2.7), Theorem 6.3.34 immediately yields the following corollary.

Corollary 6.3.37 (Algebro-geometric count via cross-ratio floor diagrams for R3). Notation
2.0.1 is used. Let ∆3

d(α, β) be a degree in R3 as in Notation 2.2.4 and let Σ
(
∆3
d(α, β)

)
be its

associated lattice polytope, see Remark 2.2.5. Let XΣ(∆3
d(α,β)) be the toric variety associated to

Σ
(
∆3
d(α, β)

)
. Then the number of rational algebraic curves in XΣ(∆3

d(α,β)) over an algebraically

closed field of characteristic zero that satisfy point conditions and classical cross-ratio conditions
in general position can be calculated via a weighted count of cross-ratio floor diagrams of degree
∆3
d(α, β) that satisfy point conditions and degenerated tropical cross-ratio conditions if each

entry of each degenerated tropical cross-ratio is either the label of a contracted end or the label
of and end of primitive direction ±e3 (see Notation 2.2.4).

Notice that Corollary 6.3.37 indeed provides a way of explicitly calculating the numbers in
question since there are only finitely many cross-ratio floor diagrams of degree ∆3

d(α, β) which
can be found when going through all possible cases.

Remark 6.3.38. As in Section 6.2 the results of the current section are not restricted to
rational tropical stable maps of degree ∆3

d(α, β). They can be extended to a slightly larger
class of degrees similar to the ones of Remark 6.2.15.
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Chapter 7

Preliminaries

In this preliminary section, we give a brief overview of the necessary Gromov-Witten invariants
and Feynman integrals. The part about Gromov-Witten invariants is split into two parts,
namely Gromov-Witten invariants of an elliptic curve E and Gromov-Witten invariants of
E × P1. The part about Gromov-Witten invariants of E provides preliminaries necessary for
Chapter 8. The part about Gromov-Witten invariants of E × P1 is for Chapter 9. Feynman
integrals are important for both, Chapter 8 and Chapter 9.

7.1 Covers of an elliptic curve E

Descendant Gromov-Witten invariants of E (i.e. Gromov-Witten invariants which involve psi-
conditions) are recalled. Moreover, relative Gromov-Witten invariants of P1 are recalled as well
since they turn out to be useful later. Then, the tropical counterparts to such invariants are
defined and correspondence theorems are recalled.

7.1.1 Descendant Gromov-Witten invariants

Gromov-Witten invariants are virtual enumerative intersection numbers on moduli spaces of
stable maps. Let E be an elliptic curve. Gromov-Witten invariants of E do not depend on its
complex structure. A stable map of degree d from a curve of genus g to E with n markings is a
map f : C → E, where C is a connected projective curve with at worst nodal singularities, and
with n distinct nonsingular marked points x1, . . . , xn ∈ C, such that f∗([C]) = d[E] and f has
a finite group of automorphism. The moduli space of stable maps, denoted Mg,n(E, d), is a
proper Deligne-Mumford stack of virtual dimension 2g−2+n [Beh97, BF97]. The ith evaluation
morphism is the map evi :Mg,n(E, d)→ E that sends a point [C, x1, . . . , xn, f ] to f(xi) ∈ E.
The ith cotangent line bundle Li → Mg,n(E, d) is defined by a canonical identification of its
fiber over a moduli point (C, x1, . . . , xn, f) with the cotangent space T ∗xi(C). The first Chern
class of the cotangent line bundle is called a psi class (ψi = c1(Li)).

Definition 7.1.1 (Stationary descendant Gromov-Witten invariants of E). Let E be an elliptic
curve. Fix g, n, d and let k1, . . . , kn be non-negative integers with

k1 + . . .+ kn = 2g − 2.

The stationary descendant Gromov-Witten invariant 〈τk1(pt) . . . τkn(pt)〉E,dg,n is defined by:

〈τk1(pt) . . . τkn(pt)〉E,dg,n =

∫
[Mg,n(E,d)]vir

n∏
i=1

ev∗i (pt)ψ
ki
i , (7.1)

where pt denotes the class of a point in E.
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Remark 7.1.2. It follows from the Gromov-Witten/Hurwitz correspondence in [OP06] that
a stationary descendant Gromov-Witten invariant with ki = 1 for all i is a Hurwitz number
which counts covers of the given degree and genus and with n fixed simple branch points.

Similarly to Definition 7.1.1, relative Gromov-Witten inviariants of P1 can be defined. For
that, let Mg,n(P1, µ, ν, d) denote the moduli spaces of relative stable maps, where part of the
data specified are the ramification profiles µ and ν which we fix over 0 resp. ∞ ∈ P1. The
preimages of 0 and ∞ are marked. A detailed discussion of spaces of relative stable maps to
P1 and their boundary is not necessary for our purpose, but can be found in [Vak08]. Relative
Gromov-Witten invariants of P1 are useful to study descendant Gromov-Witten invariants of
E as we see later.

Definition 7.1.3 (Relative descendant Gromov-Witten inviariants of P1). Fix g, n, d and let
k1, . . . , kn be non-negative integers with

k1 + . . .+ kn = 2g − 2.

The relative descendant Gromov-Witten invariant 〈µ|τk1(pt) . . . τkn(pt)|ν〉P
1,d
g,n is defined by:

〈µ|τk1(pt) . . . τkn(pt)|ν〉P1,d
g,n =

∫
[Mg,n(P1,µ,ν,d)]vir

n∏
i=1

ev∗i (pt)ψ
ki
i ,

where pt denotes the class of a point in P1.

Notation 7.1.4. One can allow source curves to be disconnected, and introduce disconnected
Gromov-Witten invariants. We add the superscript • anytime we wish to refer to the discon-
nected theory.

Definition 7.1.5 (S-function). Let sinh denote the sinus hyperbolicus. Define the formal
series

S(z) :=
sinh(z/2)

z/2

in the variable z and call it S-function. Note that the S-function is an even function (i.e.
S(−z) = S(z)), since sinh is an odd function and quotients of odd functions are even.

The following theorem provides a nice form for the generating series of relative one-point
descendant Gromov-Witten invariants.

Theorem 7.1.6 (Okounkov-Pandharipande’s one-point series, Theorem 2 of [OP06]). The
generating series of relative one-point descendant Gromov-Witten invariants with respect to g
can be expressed in terms of the S-function. More precisely, the equation∑

g≥0

〈µ|τ2g−2+`(µ)+`(ν)(pt)|ν〉
P1,d
g,1 · z

2g =

∏
S(µiz) ·

∏
S(νiz)

S(z)
(7.2)

holds, where the product goes over all entries µi (resp. νi) of the fixed partition µ (resp. ν).

7.1.2 Tropical descendant Gromov-Witten invariants

The following definition generalizes Definition 2.2.1 of abstract rational tropical curves to ab-
stract tropical curves of any genus.
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Definition 7.1.7 (Abstract tropical curves). An abstract tropical curve is a connected metric
graph Γ together with a genus function g : Γ→ Z≥0, such that Γ can have unbounded non-loop
edges adjacent to only one vertex called ends which have infinite length, and the genus function
g has finite support. Locally around a point p, the metric graph Γ is homeomorphic to a star
with r halfrays. The number r is called the valence of the point p and is denoted by val(p).
The vertex set of Γ is identified with the points where the genus function is nonzero, together
with points of valence different from 2. Besides edges, the notion of flags of Γ is introduced.
A flag is a pair (V, e) of a vertex V and an edge e incident to it (V ∈ ∂e). Edges that are not
ends are required to have finite length and are referred to as bounded edges.

A marked tropical curve is an abstract tropical curve whose leaves are labeled. An isomor-
phism of abstract tropical curves is an isometry that respects the leaf markings and the genus
function. The genus of an abstract tropical curve Γ is defined as

g(Γ) := b1(Γ) +
∑
p∈Γ

g(p),

where b1(Γ) denotes the first Betti number of Γ. An abstract tropical curve of genus zero
is called rational and an abstract tropical curve that satisfies g(v) = 0 for all v is called
explicit. The combinatorial type of an abstract tropical curve is the equivalence class of abstract
tropical curves obtained by identifying any two abstract tropical curves which differ only by
edge lengths.

Example 7.1.8. We denote the tropical numbers R ∪ {−∞} by T. The tropical projective
line, P1

T, equals R ∪ {±∞}. As in algebraic geometry, it is glued from two copies of the affine
line T using the tropicalization of the identification map, i.e. using x 7→ −x on R.

A (nondegenerate) tropical elliptic curve ET is a circle with a fixed length.

Definition 7.1.9 (Tropical covers). A tropical cover π : Γ1 → Γ2 is a surjective balanced map
of abstract tropical curves. The map π is piecewise integer affine linear on each edge, the slope
of π on a flag or edge e is a non-negative integer called the expansion factor ω(e) ∈ N.

The expansion factor of e can be zero only if e is an end. We fix the convention that the
ends marked 1, . . . , n are the ones with expansion factor 0. These ends are called contracted
ends.

For a point v ∈ Γ1, the local degree dv of π at v is defined as follows. Choose a flag f ′

adjacent to π(v), and add the expansion factors of all flags f adjacent to v that map to f ′, i.e.

dv :=
∑
f 7→f ′

ω(f). (7.3)

We define the balancing condition (or harmonicity condition, see [ABBR15]) to be the fact that
for each point v ∈ Γ1, the local degree at v is well defined (i.e. independent of the choice of
f ′). The map π is called balanced if it satisfies the balancing condition.

The degree d of a tropical cover is the sum over all local degrees of preimages of a point a,
i.e.

d :=
∑
p 7→a

dp.

By the balancing condition, this definition does not depend on the choice of a ∈ Γ2. For a flag
f of Γ2, let µf be the partition of expansion factors of the flags of Γ1 mapping onto f . We call
µf the ramification profile above f .
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Definition 7.1.10 (Psi- and point conditions). We say that a tropical cover π : Γ1 → Γ2 with
a marked end i satisfies a psi-condition with power k at i, if the vertex V to which the marked
end i is adjacent has valence k + 3− 2g(V ). We say π : Γ1 → Γ2 satisfies the point conditions
p1, . . . , pn ∈ Γ2 if

{π(1), . . . , π(n)} = {p1, . . . , pn},

where 1, . . . , n are the labels of the contracted ends of Γ1.

In our case, the abstract tropical curve Γ2 is either a tropical elliptic curve ET or a tropical
projective line P1

T as in Example 7.1.8. If Γ2 is a tropical elliptic curve such that all ends of a
tropical cover of ET are contracted ends with image points the points pi we fix as conditions
in ET, then it is easy to count the vertices of the tropical source curve:

Lemma 7.1.11. Fix g, n, d ∈ N>0 and let k1, . . . , kn be non-negative integers with

k1 + . . .+ kn = 2g − 2.

Let π : Γ→ ET be a tropical cover of degree d such that Γ is of genus g and has n marked ends.
Fix n distinct points p1, . . . , pn ∈ ET. If at the marked end i, a psi-condition with power ki is
satisfied, and the point conditions are satisfied, then Γ has exactly n vertices, each adjacent to
one marked end.

Proof. Let V i
Γ be the set of vertices of Γ such that each vertex in V i

Γ is adjacent to one marked
end. Notice that the marked ends must be adjacent to different vertices, since they satisfy
different point conditions. Thus |V i

Γ| = n. Let VΓ be the set of vertices of Γ and let V ′Γ be the
complement of V i

Γ in VΓ. Denote a := |V ′Γ|. The Euler characteristic χ(Γ) of the graph Γ (as a
simplicial complex) is by definition

χ(Γ) = −|VΓ|+ |EΓ|,

where EΓ is the set of edges of Γ. There can not be a non-contracted end in Γ since the degree
d is finite. Therefore

χ(Γ) = −(n+ a) +
1

2

n+

∑
vi∈V iΓ

(ki + 3− 2g(vi))

+

∑
v′∈V ′Γ

(
val(v′) + 2g(v′)− 2g(v′)

)
holds by the handshaking lemma. Using k1 + . . .+ kn = 2g − 2 and the definition of g(Γ), we
obtain

χ(Γ) = −(n+ a) + 2n− g + h1(Γ) + g − 1 +
1

2

∑
v′∈V ′Γ

(val(v′) + 2g(v′))


= −n− a+ 2n+ h1(Γ)− 1 +

1

2

∑
v′∈V ′Γ

(val(v′) + 2g(v′))

 .

(7.4)

On the other hand, removing all n ends of Γ and b1(Γ) additional edges yields a tree which has
|VΓ| − 1 edges. Thus

χ(Γ) = −1 + n+ b1(Γ). (7.5)
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Combining (7.4) and (7.5) yields

|V ′Γ| = a =
1

2

∑
v′∈V ′Γ

(
val(v′) + 2g(v′)

) .

By definition of vertices of Γ it holds that 2g(v′) > 1 or val(v′) > 2. This yields a contradiction
unless V ′Γ = ∅.

Definition 7.1.12 (Local vertex multiplicities). Let π : Γ → Γ′ be a tropical cover of degree
d, where Γ′ = ET or Γ′ = P1

T (see Example 7.1.8) such that Γ is of genus g and satisfies given
point conditions and psi-conditions as in Definition 7.1.10. Locally at the marked end i, the
cover sends the vertex to an interval consisting of two flags f and f ′. Define the local vertex
multiplicity multi(π) to be a one-point relative descendant Gromov-Witten invariant, i.e.

multi(π) := 〈µf |τki(pt)|µf ′〉
P1,di
gi,1

, (7.6)

where gi denotes the genus of the vertex adjacent to the marked end i, di its local degree, and
µf resp. µf ′ the ramification profiles above the two flags of the image interval.

Define the multiplicity of the cover π to be

1

|Aut(π)|
·
n∏
i=1

multi(π) ·
∏
e

ω(e), (7.7)

where the last product goes over the bounded edges e of Γ.

Definition 7.1.13 (Tropical stationary descendant Gromov-Witten invariant of ET). Fix
g, n, d ∈ N>0 and let k1, . . . , kn be non-negative integers with

k1 + . . .+ kn = 2g − 2.

Define the tropical stationary descendant Gromov-Witten invariant

〈τk1(pt) . . . τkn(pt)〉E,d,trop
g,n

to be the weighted count of tropical genus g degree d covers of ET with n distinct marked points
such that each such tropical cover satisfies point and psi-conditions as above and is counted
with its multiplicity as defined in (7.7).

Remark 7.1.14. The metric structure of the source curves of covers contributing to a tropical
descendant Gromov-Witten invariant is implicit in the metric data of ET and the chosen point
conditions. We can thus neglect length data in the source curve.

Example 7.1.15. Fix three different points p1, p2, p3 on ET and let d = 3, g = 2, k1 = 2,
k2 = 0, k3 = 0. Notice that

∑
i ki = 2g − 2 is satisfied. We list all covers that contribute to

〈τ2(pt)τ0(pt)τ0(pt)〉E,3,trop
2,3 in Figure 7.1 below. Figure 7.1 shows schematic representations of

the source curves of all covers contributing, where we assume that the top vertex of each such
representation is mapped to p1, the right vertex is mapped to p2 and the left one is mapped to
p3. This convention gives us one choice out of 3! choices of an order of labeled vertices of the
source curve mapping to p1, p2, p3 on ET. A circled number indicates that there is a nonzero
genus gi at a vertex i. The other numbers are the weights of the edges that are greater than
1. Notice that the valence of a vertex i is given by ki + 3 − 2gi when taking the contracted
ends into account. When neglecting marked ends, the underlying graph is either a figure 8 or
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a loop (see Example 7.3.4). In each case, every loop is mapped to ET. When drawing a curl in
an edge, it means that the edge is mapped once around ET.

2

2

2

2

3 3

3

2

2

2

2

1 1 1 1

1 1 1

1 1 1

Figure 7.1: Schematic representations of source curves.

The multiplicity with which each curve contributes is given by (7.7). The local multiplicities
multi(π), which are one-point relative descendant Gromov-Witten invariants, can be calculated
explicitly using the one-point series (7.2). Each entry of the tabular below corresponds to one
source curve of Figure 7.1 in the obvious way. An entry is the multiplicity of the corresponding
cover π, where the first factor equals |Aut(π)|−1, the second factor equals

∏
i multi(π) and the

third factor equals
∏
e ω(e).

1 · 1 · 2 1 · 1 · 8 1 · 1 · 1 1 · 1 · 1 1 · 1 · 1
1 · 1 · 1 1 · 17

24 · 27 1 · 1
24 · 1 1 · 1

24 · 1 1 · 1
24 · 1

1 · 1
24 · 1 1 · 1

24 · 1 1 · 1
24 · 1 1 · 1 · 4 1 · 1 · 4

1 · 1
24 · 1 1 · 1

24 · 1 1 · 1
24 · 1 1 · 1 · 1 1 · 1 · 1

1 · 1 · 1 1 · 1 · 1 1 · 1 · 1

Summing over all entries and considering the factor 3! yields

〈τ2(pt)τ0(pt)τ0(pt)〉E,3,trop
2,3 = 3! · 93

2
= 279.

Notation 7.1.16. For a partition µ, let `(µ) denote its length, i.e. its number of entries.
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Definition 7.1.17 (Tropical relative stationary descendant Gromov-Witten invariant of P1
T).

Let g, d ∈ N. Let µ, ν be two partitions of the degree d. Let k1, . . . , kn be non-negative integers
with

k1 + . . .+ kn = 2g + `(µ) + `(ν)− 2,

where Notation 7.1.16 is used. Consider tropical covers of P1
T such that the ramification profile

over −∞ equals µ and the ramification profile over ∞ equals ν. That is, in addition to the
contracted ends that we use to impose point conditions, the source curve Γ has `(µ) + `(ν)
marked ends which map to ±∞ with expansion factors imposed by µ and ν. Define the tropical
relative stationary descendant Gromov-Witten invariant

〈µ|τk1(pt) . . . τkn(pt)|ν〉P1,d,trop
g,n

to be the weighted count of tropical genus g degree d covers of P1
T with n marked points such

that each of these tropical covers satisfies point and psi-conditions (Definition 7.1.10), and such
that the expansion factors of the unmarked ends are imposed by µ and ν. The multiplicity
with which each such tropical cover is counted is given by (7.7).

For more details about tropical relative stationary descendant Gromov-Witten invariant of
P1
T, see Definition 3.1.1 of [CJMR18].

Example 7.1.18. Choose three different points p1, p2, p3 on ET and let d = 3, g = 2, k1 = 2,
k2 = 0, k3 = 0 be as in Example 7.1.15. Let p0 be a base point on ET such that p0, p1, p2, p3

are pairwise different and ordered this way on ET. Consider the source curve of a cover π of
ET depicted in the upper left corner of Figure 7.1 and cut it along π−1(p0). Stretching the cut
edges to infinity yields the cover shown below (we let i be mapped to pi). Note that this is a

cover π′ of P1
T that contributes to 〈(2, 1)|τ2(pt)τ0(pt)τ0(pt)|(2, 1)〉P

1,3,trop
0,3 .

π′

P1
Tp1 p2 p3

1 2 3

2

1

2

1

7.1.3 Correspondence theorems for descendant Gromov-Witten invariants

The following correspondence theorems relate descendant Gromov-Witten invariants of E and
relative descendant Gromov-Witten invariants of P1 to their tropical counterparts, and thus
establish tropical geometry as a tool to study such Gromov-Witten invariants.

Theorem 7.1.19 (Stationary correspondence theorem, Theorem 3.2.1 of [CJMR18]). A sta-
tionary descendant Gromov-Witten invariant of E from Definition 7.1.1 coincides with its
tropical counterpart from Definition 7.1.13, i.e.

〈τk1(pt) . . . τkn(pt)〉E,dg,n = 〈τk1(pt) . . . τkn(pt)〉E,d,trop
g,n .

Theorem 7.1.20 (Relative correspondence theorem, Theorem 3.1.2 of [CJMR18]). A relative
stationary descendant Gromov-Witten invariant of P1 from Definition 7.1.3 coincides with its
tropical counterpart from Definition 7.1.17, i.e.

〈µ|τk1(pt) . . . τkn(pt)|ν〉P1,d
g,n = 〈µ|τk1(pt) . . . τkn(pt)|ν〉P1,d,trop

g,n .
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Notation 7.1.21. As in Notation 7.1.4, a superscript • is added to the notation to refer to
the disconnected theory, where it is allowed for tropical source curves to be disconnected.

Remark 7.1.22 (Leaking). We can tweak the definition of tropical covers of ET (resp. P1
T)

that satisfy point and psi-conditions as follows: fix a direction for the target curve and specify
for each end i of the source curve an integer li. Change the balancing condition in such a way
that for the two flags f1 and f2 adjacent to π(i) ∈ {p1, . . . , pn} (where we chose the notation
to match the direction), the local degrees are not equal but differ by li:∑

f ′ 7→f1

ω(f ′) =
∑
f ′′ 7→f2

ω(f ′′)− li.

We call such covers leaky tropical covers. Leaky tropical covers show up as floor diagrams
representing counts of tropical curves in toric surfaces (see e.g. [BM08, FM10, AB17]). They
are of interest here, since they can be treated in terms of Feynman integrals analogously to
their balanced versions.

7.2 Curves in E × P1

Let E be an elliptic curve. We recall Gromov-Witten invariants of E × P1. A stable map of
bidegree (d1, d2) from a curve of genus g to E × P1 with n markings is a map f : C → E,
where C is a connected projective curve with at worst nodal singularities, and with n distinct
nonsingular marked points x1, . . . , xn ∈ C, such that f∗([C]) is of class (d1, d2) and f has a finite
group of automorphism. The moduli space of stable maps, denoted Mg,n(E × P1, (d1, d2)), is
a proper Deligne-Mumford stack of virtual dimension 2d2 + g − 1 + n [Beh97, BF97]. The
ith evaluation morphism is the map evi :Mg,n(E × P1, (d1, d2))→ E × P1 that sends a point
[C, x1, . . . , xn, f ] to f(xi) ∈ E × P1.

Definition 7.2.1 (Gromov-Witten invariants of E×P1). Let g, n ∈ N>0 and let (d1, d2) ∈ N×N
such that n = 2d2 + g − 1 holds. Define the Gromov-Witten invariant

〈τ0(pt)n〉E×P1,(d1,d2)
g,n :=

∫
[Mg,n(E×P1,(d1,d2))]vir

n∏
i=1

ev∗i (pt),

where pt denotes the class of a point in E × P1. In order to shorten notation, we also write

N(d1,d2,g) := 〈τ0(pt)n〉E×P1,(d1,d2)
g,n .

In order to relate Gromov-Witten invariants of E × P1 to their tropical counterparts (see
Theorem 9.1.16), relative Gromov-Witten invariants of P1 × P1 are required. For that, let µ+,
φ+, µ− and φ− be partitions such that the sum d1 of the parts in µ+ and φ+ equals the sum
of the parts in µ− and φ−. Let

n1 := `(φ+) + `(φ−) and n2 := `(µ+) + `(µ−),

where Notation 7.1.16 is used. Consider the moduli space of relative stable maps to P1 × P1

Mg,n(P1 × P1, (µ+, φ+), (µ−, φ−), (d1, d2)),

where part of the data specified are the partitions of contact orders (µ+, φ+) resp. (µ−, φ−)
which we fix over the 0- resp. ∞-section in P1 × P1. The points of contact with the 0- and ∞-
section are marked. We want to fix the points with contact orders given by φ+ and φ−, the ones
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with contact orders given by µ+ and µ− are allowed to move. A detailed discussion of spaces
of relative stable maps and their boundary can be found e.g. in [Vak08]. This moduli space is
a Deligne-Mumford stack of virtual dimension (g − 1) + 2d2 + n + n1 + n2. For i = 1, . . . , n,
the ith evaluation morphism is the map

evi :Mg,n(P1 × P1, (µ+, φ+), (µ−, φ−), (d1, d2))→ P1 × P1

that sends a point [C, x1, . . . , xn, f ] to f(xi) ∈ P1× P1. The points marking the contact points
with the 0- and ∞-section give rise to evaluation morphisms

êvi :Mg,n(P1 × P1, (µ+, φ+), (µ−, φ−), (d1, d2))→ P1,

where the target P1 is the 0-section for φ− and µ−, and the ∞-section for φ+ and µ+.

Definition 7.2.2 (Relative Gromov-Witten invariants of P1×P1). A relative Gromov–Witten
invariant is defined as the following intersection number on the moduli space of relative stable
maps Mg,n(P1 × P1, (µ+, φ+), (µ−, φ−), (d1, d2)):

〈(φ−, µ−)|τ0(pt)n|(φ+, µ+)〉P1×P1,(d1,d2)
g,n =

∫ n∏
j=1

ev∗j (pt)

n+n1∏
i=n+1

êv∗i (pt). (7.8)

Notation 7.2.3. Again, one can allow curves to be disconnected. Whenever we refer to the
disconnected Gromov-Witten invariants, a superscript • is added.

The following statement is a consequence of the degeneration formula [Li01, Li02], see also
Theorem 2.3.2 in [CJMR18]:

Proposition 7.2.4. A Gromov-Witten invariant of E × P1 equals a weighted sum of relative
Gromov-Witten invariants of P1 × P1:

N•(d1,d2,g)
=

∑
(µ,φ) `d1

∏
i µi
∏
j φj

|Aut(µ)||Aut(φ)|
〈(µ, φ)|τ0(pt)n|(φ, µ)〉P

1×P1,(d1,d2),•
g−`(µ)−`(φ),n .

Here, the sum goes over all tuples of partitions which together form a partition (µ, φ) of d1.

7.3 Feynman integrals

Feynman integrals are now defined as coefficients of a formal series as in [BBBM17]. Notice
that such coefficients can be computed using a computer algebra system. They are called
“integrals” because in a special case there is an interpretation of Feynman integrals in terms
of path integrals using complex analysis.

Definition 7.3.1 (Propagator). Define the propagator as a (formal) series in x and q:

P (x, q) :=
∞∑
w=1

w · xw +
∞∑
a=1

∑
w|a

w
(
xw + x−w

) qa.

Definition 7.3.2 (Feynman graphs). Fix n > 1. A Feynman graph is a (non-metrized) graph
Γ without ends with n vertices which are labeled x1, . . . , xn and with labeled edges q1, . . . , qr.

Notation 7.3.3. We do not fix the number of edges for a Feynman graph, the index r can vary
from graph to graph. The letter r is always used for the number of edges in a fixed Feynman
graph Γ. For k > s, denote the vertices adjacent to the (non-loop) edge qk by xk1 and xk2 ,
where we assume xk1 < xk2 in Ω.
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Example 7.3.4. Recall Example 7.1.15, where we provided all covers contributing to the num-
ber 〈τ2(pt)τ0(pt)τ0(pt)〉E,3,trop

2,3 . We can label their source curves, turning them into Feynman
graphs, see Figure 7.2.

q3
q2

q1

x1

x3

x2

q1

q2

q3

q4
q1

q2

q3

q4

x1

x2

x3

x1x2 x3

Figure 7.2: Examples of Feynman graphs with three vertices.

Definition 7.3.5 (Feynman integrals). Let Γ be a Feynman graph without loops. Let Ω be
an order of the n vertices of Γ. Denote the vertices adjacent to the edge qk by xk1 and xk2 as
in Notation 7.3.3

For integers l1, . . . , ln, define the Feynman integral for Γ and Ω to be

I l1,...,lnΓ,Ω (q) := Coef
[x
l1
1 ...x

ln
n ]

r∏
k=1

P
(xk1

xk2

, q
)

and the refined Feynman integral to be

I l1,...,lnΓ,Ω (q1, . . . , qr) := Coef
[x
l1
1 ...x

ln
n ]

r∏
k=1

P
(xk1

xk2

, qk

)
.

Finally, we set

I l1,...,lnΓ (q) :=
∑

Ω

I l1,...,lnΓ,Ω (q),

where the sum goes over all n! orders of the vertices of Γ, and

I l1,...,lnΓ (q1, . . . , qr) :=
∑

Ω

I l1,...,lnΓ,Ω (q1, . . . , qr).

If the superscript l1, . . . , ln in the notations above is dropped, then this stands for li = 0 for all
i.

Complex analysis and Feynman integrals Often, Feynman integrals are defined as path
integrals using complex analysis. The advantage of our definition of Feynman integrals is that
it is more general. That is, Feynman integrals can be viewed as path integrals in case of li = 0
for all i. Our general definition allows us to also relate counts of leaky tropical covers (Remark
7.1.22) to Feynman integrals.

To recall how Feynman integrals and path integrals are related, define

p(z, q) := − 1

4π2
℘(z, q)− 1

12
E2(q2)

in terms of the Weierstraß-P-function ℘ and the Eisenstein series

E2(q) := 1− 24

∞∑
a=1

σ(a)qa,
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where σ denotes the sum-of-divisors function σ(a) =
∑

w|aw. A coordinate change x = eiπz,
yields that p has the following nice form (see Theorem 2.22 [BBBM17]):

P (x, q) =
∞∑
w=1

w · xw +
∞∑
a=1

∑
w|a

w
(
xw + x−w

) qa, (7.9)

where |x| < 1 is assumed in order to use a geometric series expansion (see Lemma 2.23
[BBBM17]). Notice that (7.9) is precisely the propagator from Definition 7.3.1.

Definition 7.3.6 (Feynman integrals in complex analysis). Let Γ be a Feynman graph without
loops and let Ω be an order as in Definition 7.3.5. Pick starting points of the form iy1, . . . , iyn
in the complex plane, where the yj are pairwise different small real numbers. Define integration
paths γ1, . . . , γn by

γj : [0, 1]→ C : t 7→ iyj + t,

such that the order of the real coordinates yj of the starting points of the paths equals Ω. We
then define the integral

I ′Γ,Ω(q) :=

∫
zj∈γj

r∏
k=1

(p(zk1 − zk2 , q)) , (7.10)

and the refined version

I ′Γ,Ω(q1, . . . , qr) :=

∫
zj∈γj

r∏
k=1

(p(zk1 − zk2 , qk)) .

Here, as in Definition 7.3.5, xk1 and xk2 are the two vertices adjacent to an edge qk. Finally,
we set

I ′Γ(q) :=
∑

Ω

I ′Γ,Ω(q) and I ′Γ(q1, . . . , qr) :=
∑

Ω

I ′Γ,Ω(q1, . . . , qr).

Since p is an even function in z (because ℘(z, q) is by definition an even function in z), it
is not important here in which way the vertices xk1 and xk2 of qk are ordered. The order Ω is
only important for the arrangement of the integration paths.

The following theorem is a consequence of Lemma 2.24 and Lemma 2.25 of [BBBM17].

Theorem 7.3.7. The complex analysis version of Feynman integrals agrees with the version
from Definition 7.3.5 that used constant coefficients of formal series. More precisely:

IΓ,Ω(q) = I ′Γ,Ω(q) and IΓ,Ω(q1, . . . , qr) = I ′Γ,Ω(q1, . . . , qr).





Chapter 8

(Tropical) mirror symmetry for
elliptic curves

In this chapter, which is based on joint work with Janko Böhm and Hannah Markwig [BGM18],
the tropical mirror symmetry relation for tropical elliptic curves is extended to tropical descen-
dant Gromov-Witten invariants (Theorem 8.1.9). For that, a bijection as in [BBBM17] is used.
Thus leading question (Q6), which asks whether the tropical mirror symmetry relation of Hur-
witz numbers of an elliptic curve can be extended, is answered. As a consequence, statements
about quasimodularity of generating functions of certain tropical covers of a tropical elliptic
curve are obtained, see Corollary 8.1.20.

Moreover, another approach to mirror symmetry of an elliptic curve is studied. For that,
tropical Hurwitz numbers are directly linked to matrix elements on the bosonic Fock space.
To do so, a version of Wick’s Theorem (similar to [CJMR18]) is used, which encodes matrix
elements in a bosonic Fock space as weighted sums of graphs, which can then directly be related
to tropical Hurwitz covers. Notice that this partially answers leading question (Q7). To answer
Question (Q7) completely (i.e. to relate tropical descendant Gromov-Witten invariants to the
Fock space), only the amount of notation has to be increased, which we omit here.

8.1 Generating series and Feynman integrals

The aim of this section is to prove Theorem 8.1.9, which is a tropical mirror symmetry the-
orem for tropical elliptic curves that involves tropical descendant Gromov-Witten invariants.
Theorem 8.1.9 then yields a classical analogue, namely Theorem 8.1.4 for elliptic curves which
generalizes Dijkgraaf’s mirror symmetry theorem.

8.1.1 Generalizing Feynman integrals

Feynman integrals are now generalized to take loop-edges and genus at vertices of the underlying
Feynman graphs into account.

Notation 8.1.1. Let Γ be a Feynman graph with labeled edges q1, . . . , qr as in Definition 7.3.2.
By convention, we assume that q1, . . . , qs are loop edges and qs+1, . . . , qr are non-loop edges.

Definition 8.1.2 (Loop Propagator and refined Feynman integrals). In addition to the prop-
agator P (x, q) from Definition 7.3.1, we introduce another formal series in q, namely

P loop(q) :=
∞∑
a=1

(∑
w|a

w

)
qa.

149
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P loop(q) is called loop-propagator and it should be viewed as the propagator for loop-edges of a
Feynman graph, i.e. use Notation 8.1.1 and define the refined Feynman integral for a Feynman
graph Γ with loop-edges as

I l1,...,lnΓ,Ω (q1, . . . , qr) = Coef
[x
l1
1 ...x

ln
n ]

s∏
k=1

P loop(qk)
r∏

k=s+1

P
(xk1

xk2

, qk

)
.

Analogously to Definition 7.3.5, we also define I l1,...,lnΓ (q1, . . . , qr) for Feynman graphs with
loop-edges.

Definition 8.1.3 (Feynman integrals with vertex contributions). Let Γ be a Feynman graph,
and equip it with an additional genus function g that associates a nonnegative integer gi to every
vertex xi of Γ. Let Ω be an order of the n vertices of Γ. We adapt our notion of propagators
from definitions 7.3.1, 8.1.2 and 7.3.5 to include vertex contributions. For non-loop-edges, we
set

P̃ (
xk1

xk2

, q) :=

∞∑
w=1

S(wzk1)S(wzk2) · w ·
(
xk1

xk2

)w
+
∞∑
a=1

(∑
w|a

S(wzk1)S(wzk2) · w ·
((

xk1

xk2

)w
+

(
xk2

xk1

)w))
· qa,

where Notation 7.3.3 is used and S denotes the S-function (Definition 7.1.5). For loop-edges
connecting the vertex xk1 to itself, we set

P̃ loop(q) :=

∞∑
a=1

(∑
w|a

S(wzk1)2 · w

)
qa.

We define the Feynman integral with vertex contributions for Γ, g and Ω to be

I l1,...,lnΓ,g,Ω (q) := Coef
[z

2g1
1 ...z2gn

n ]
Coef

[x
l1
1 ...x

ln
n ]

n∏
i=1

1

S(zi)

s∏
k=1

P̃ loop(q)

r∏
k=s+1

P̃ (
xk1

xk2

, q)

and the refined Feynman integral with vertex contributions

I l1,...,lnΓ,g,Ω (q1, . . . , qr) := Coef
[z

2g1
1 ...z2gn

n ]
Coef

[x
l1
1 ...x

ln
n ]

n∏
i=1

1

S(zi)

s∏
k=1

P̃ loop(qk)

r∏
k=s+1

P̃ (
xk1

xk2

, qk).

Moreover, we set

I l1,...,lnΓ,g (q) :=
∑

Ω

I l1,...,lnΓ,g,Ω (q),

where the sum goes over all n! orders of the vertices, and

I l1,...,lnΓ,g (q1, . . . , qr) :=
∑

Ω

I l1,...,lnΓ,g,Ω (q1, . . . , qr).

The superscript l1, . . . , ln is dropped in case of li = 0 for all i.
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8.1.2 Mirror symmetry for (tropical) elliptic curves

We now state theorems 8.1.4 and 8.1.9. The latter is a a tropical mirror symmetry theorem for
ET and is one of the main results of Chapter 8. It expresses generating series of so-called labeled
tropical descendant Gromov-Witten invariants in terms of Feynman integrals. Moreover, we
shown that it implies the classical mirror symmetry theorem 8.1.4, which is a generalization of
Dijkgraaf’s mirror symmetry theorem for elliptic curves.

Theorem 8.1.4 (Mirror symmetry for E). Fix g ≥ 2, n ≥ 1 and k1, . . . , kn ≥ 1 such that

k1 + . . .+ kn = 2g − 2

holds. The generating series of descendant Gromov-Witten invariants of E can be expressed in
terms of Feynman integrals:∑

d≥1

〈τk1(pt) . . . τkn(pt)〉E,dg,n q
d =

∑
(ft(Γ),g)

1

|Aut(ft(Γ), g)|
IΓ,g(q), (8.1)

where Γ is a Feynman graph (see Definition 7.3.2) with a genus function g, such that the vertex
xi has genus gi and valence ki + 2− 2gi, and such that

b1(Γ) +
∑

gi = g,

where b1(Γ) denotes the first Betti number of Γ. Moreover, in (8.1) automorphisms of unlabeled
graphs are considered (ft is the forgetful map that forgets all labels of a Feynman graph Γ, see
Definition 8.1.7) that are required to respect the genus function.

A version of Theorem 8.1.4 is proved in [Li11b], Proposition 6.7 (resp. [Li11a], Proposition
3.4) using the Fock space approach common in mathematical physics to which we relate the
tropical approach in Section 8.2. In our approach, Theorem 8.1.4 becomes an easy corollary
obtained by combining our tropical mirror symmetry Theorem 8.1.9 with the Correspondence
Theorem 7.1.19.

Example 8.1.5 (Automorphisms). Consider the middle Feynman graph of Example 7.3.4,
denote it by Γ and let its genus function be g = 0, i.e. there is no genus at the vertices.
The automorphisms appearing in Theorem 8.1.4 are automorphisms respecting the underlying
graph structure and the genus function of (Γ, g). In other words, we forget the labels of Γ before
determining its automorphisms. In case of Γ as above, the automorphism group is Z2×Z2×Z2,
because we can exchange the edges q1 and q2 (see Example 7.3.4) which gives a factor of Z2,
we can exchange the edges q3 and q4 and we can exchange the vertices x2 and x3 in such a way
that the edge q1 maps to q3 and the edge q2 maps to q4, see also the left side of Figure 8.1.

In Section 8.1.4, we deal with unlabeled tropical covers, but with fixed order. That is, we
fix which end i maps to which point pj on the elliptic curve. In such a case, on the Feynman
integral side, we deal with automorphisms of the underlying Feynman graph with vertex labels
(see Corollary 8.1.18). If we choose (Γ, g) as above, then the automorphism group of the graph
with vertex labels is Z2 × Z2 since we cannot exchange the vertices x2 and x3 anymore, they
are now distinguishable (see also the right side of Figure 8.1).

x1
x2 x3

Figure 8.1: A non-labeled and a partially labeled graph.
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Remark 8.1.6. If ki = 1 for all i, then the condition for the valences implies that the genus
at each vertex is 0 and the vertices are 3-valent. When forming the integral, the in the zi
constant coefficient is just 1, so we can neglect the zi and obtain Feynman integrals without
vertex contributions in this case.

By Remarks 7.1.2 and 8.1.6, the equality in Theorem 8.1.4 specializes to the well-known
relation involving the generating series of Hurwitz numbers and Feynman graphs, see e.g. the
mirror symmetry theorem for elliptic curves of Dijkgraaf [Dij95] and Theorem 2.6 of [BBBM17].

Using the Correspondence Theorem 7.1.19, we can formulate a version of the mirror symmetry
relation in Theorem 8.1.4, where instead of the generating function of descendant Gromov-
Witten invariants the generating function of tropical descendant Gromov-Witten invariants
are used. It turns out however that a finer version of a mirror symmetry relation naturally
holds in the tropical world, which uses labeled tropical covers, multidegrees and refined Feyn-
man integrals:

Definition 8.1.7 (Labeled tropical cover). Let π be a tropical cover that satisfies given psi-
conditions with powers k1, . . . , kn and denote the genus of a vertex of the source curve which
is adjacent to end i by gi, where gi is given by ki via the psi-conditions (see Definition 7.1.10).
We can shrink the ends of the source curve and label the vertex that used to be adjacent
to end i with xi. The cover π is called labeled tropical cover if there is an isomorphism of
multigraphs sending a Feynman graph (Γ, g′) with a genus function (see Definition 7.3.2) to
the combinatorial type of the source curve of π, where the ends of the source curve are shrunk,
such that g′i = gi for all vertices. We say that π is of type Γ.

Shortly, a labeled tropical cover is a tropical cover for which we label the vertices and edges
of the source (vertices of different genus are distinguishable) according to a Feynman graph.

Definition 8.1.8 (Multidegree and labeled descendant invariants). Fix a point p0 ∈ ET on a
tropical elliptic curve. For a labeled tropical cover of ET of type Γ, we define its multidegree
as the vector a in Nr with k-th entry

ak = |π−1(p0) ∩ qk| · ω(qk),

where ω(qk) denotes the expansion factor of the edge qk. We define a labeled tropical descendant
Gromov-Witten invariant

〈τk1(pt) . . . τkn(pt)〉E,a,trop
Γ,n

as a count of labeled tropical covers of type Γ and with multidegree a satisfying the prescribed
point- and psi-conditions, again counted with multiplicity as in Equation (7.7). (Note that
there are no nontrivial automorphism for a labeled tropical cover since all edges and vertices
are distinguishable by their labeling.)

The following Theorem is a main result of this chapter. Using Correspondence Theorem
7.1.19, we show below that it indeed implies the classical mirror symmetry theorem 8.1.4.

Theorem 8.1.9 (Tropical mirror symmetry for ET). Fix g ≥ 2, n ≥ 1 and k1, . . . , kn ≥ 1 such
that

k1 + . . .+ kn = 2g − 2

holds. Let Γ be a Feynman graph (Definition 7.3.2) such that vertex xi has valence ki+2−2gi,
and record the numbers gi in a genus vector g. Then generating series of labeled descendant
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Gromov-Witten invariants of ET of type Γ (Definition 8.1.8) can be expressed in terms of a
Feynman integral with vertex contributions (Definition 8.1.3):∑

a∈Nr
〈τk1(pt) . . . τkn(pt)〉E,a,trop

Γ,n qa1
1 · . . . · q

ar
r = IΓ,g(q1, . . . , qr).

Theorem 8.1.9 is proved in Section 8.1.3 using Theorem 8.1.14, which establishes a bijection
between labeled tropical covers contributing to a labeled tropical descendant Gromov-Witten
invariant and monomials contributing to a term of the series used for the Feynman integrals.

Proof of Theorem 8.1.4 using Theorem 8.1.9. In order to deduce Theorem 8.1.4 from Theorem
8.1.9, we follow the ”Proof of Theorem 2.14 using Theorem 2.20“ in [BBBM17].

Fix a Feynman graph (Γ, g) with a genus function g. Let 〈τk1(pt) . . . τkn(pt)〉E,d,trop
Γ,n be

the number of (unlabeled) tropical covers of degree d (satisfying the conditions), where the
combinatorial type of the source curve C is Γ and the genus function of C is given by g. Each

cover π : C → ET is counted with multiplicity 1
|Aut(π)| ·

∏n
i=1 multi(π) ·

∏
e ω(e) (see (7.7)).

There is a forgetful map ft from the set of labeled tropical covers satisfying the conditions
to the set of unlabeled covers by forgetting labels of edges and vertices. Let π : C → ET be an
unlabeled cover as above. The automorphism group Aut(ft(Γ)) (by abuse of notations ft(Γ) is
the forgetful map that forgets all labels of the Feynman graph Γ) acts transitively on ft−1(π)
by relabeling edges and vertices while respecting the genus function. Since the stabilizer of this
action is Aut(π), the size of the orbit ft−1(π) is

| ft−1(π)| = |Aut(ft(Γ))|
|Aut(π)|

.

Each labeled cover π̃ in ft−1(π) is counted with multiplicity 1
|Aut(π̃)| ·

∏
i multi(π) ·

∏
e ω(e),

where |Aut(π̃)| = 1 since π̃ is labeled. Hence

∑
a:∑
ai=d

〈τk1(pt) . . . τkn(pt)〉E,a,trop
Γ,n =

∑
π̃:C→ET

∏
e

ω(e)
n∏
i=1

multi(π)

=
∑

π:C→ET

∑
π̃:C→ET:
ft(π̃)=π

∏
e

ω(e)
n∏
i=1

multi(π)

=
∑

π:C→ET

|Aut(ft(Γ))|
|Aut(π)|

∏
e

ω(e)
n∏
i=1

multi(π)

= |Aut(ft(Γ))| · 〈τk1(pt) . . . τkn(pt)〉E,dg,n ,

where the second sum goes over all labeled covers with fixed multidegree a, genus function g
and combinatorial type Γ. The third sum goes over all unlabeled covers that satisfy the given
conditions.

Summing over all degrees d and using Theorem 8.1.9 with q1 = · · · = qr = q gives us∑
d≥1

|Aut(ft(Γ))| · 〈τk1(pt) . . . τkn(pt)〉E,d,trop
Γ,n · qd = IΓ,g(q)

for a fixed Feynman graph Γ with genus function g. If we sum over all Feynman graphs Γ with
a genus function g and use Theorem 7.1.19, then Theorem 8.1.4 follows.
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Example 8.1.10. Fix g = 2. We want to use Theorem 8.1.9 to calculate contributions to
〈τ2(pt)τ0(pt)τ0(pt)〉E,a,trop

Γ,3 for two cases, where in the first case the covers contributing have a
source curve with a nonzero genus function and in the second case the source curves have a
loop.

First case: we choose a = (0, 0, 3) and Γ as the left Feynman graph of Example 7.3.4. So
Theorem 8.1.9 tells us that we need to calculate the q0

1q
0
2q

3
3-coefficient of IΓ,g(q1, q2, q3) with

g = (1, 0, 0). We fix an order Ω, namely the identity as we did in Example 7.1.15. That is,
we require that end i is mapped to the point pi on ET. Notice that the covers contributing to

〈τ2(pt)τ0(pt)τ0(pt)〉E,(3,0,0),trop
Γ,3 for Ω as above are the ones corresponding to the entries1 (2, 2)

and (3, 1) in the table given in Example 7.1.15. So we expect

1

24
+

17 · 27

24
=

115

6
(8.2)

as the contribution. We start by calculating terms of the propagators that contribute to the
q0

1q
0
2q

3
3-coefficient (we first let w = 1 for a3) in the product of the propagators such that their

product is constant in the xi, i.e. l1 = l2 = l3 = 0,

P̃
(x1

x3
, q3

)
=

4 sinh
(
z1
2

)
sinh

(
z3
2

) (
x1
x3

+ x3
x1

)
q3

3

z1z3
+ . . . ,

P̃
(x2

x3
, q2

)
=

4 sinh
(
z2
2

)
sinh

(
z3
2

)
x2

z2z3x3
+ . . . ,

P̃
(x1

x2
, q1

)
=

4 sinh
(
z1
2

)
sinh

(
z2
2

)
x1

z1z2x2
+ . . . .

Therefore,

Coef [q0
1q

0
2q

3
3 ]

P̃ (x1
x3
, q3)P̃ (x2

x3
, q2)P̃ (x1

x2
, q1)

S(z3)S(z2)S(z1)
=

8 sinh
(
z1
2

)
sinh

(
z2
2

)
sinh

(
z3
2

)
z1z2z3

= · · ·+ 1

1920
z1

4 +
1

576
z1

2z2
2 +

1

576
z1

2z3
2 +

1

1920
z2

4 +
1

576
z2

2z3
2

+
1

1920
z3

4 +
1

24
z1

2 +
1

24
z2

2 +
1

24
z3

2 + 1

and, hence, the z2
1z

0
2z

0
3-coefficient is 1

24 , which is precisely the first summand of (8.2). The
second summand is obtained by letting w = 3 for a3 such that

P̃
(x1

x3
, q3

)
=

4 sinh
(

3z1
2

)
sinh

(
3z3
2

) (x3
1

x3
3

+
x3

3

x3
1

)
q3

3

3z1z3
+ . . . ,

P̃
(x2

x3
, q2

)
=

4 sinh
(

3z2
2

)
sinh

(
3z3
2

)
x3

2

3z2z3x3
3

+ . . . ,

P̃
(x1

x2
, q1

)
=

4 sinh
(

3z1
2

)
sinh

(
3z2
2

)
x3

1

3z1z2x3
2

+ . . .

and therefore

Coef [q0
1q

0
2q

3
3 ]

P̃ (x1
x3
, q3)P̃ (x2

x3
, q2)P̃ (x1

x2
, q1)

S(z3)S(z2)S(z1)
=

8
(
sinh

(
3z1
2

))2 (
sinh

(
3z2
2

))2 (
sinh

(
3z3
2

))2
27 sinh

(
z1
2

)
sinh

(
z2
2

)
sinh

(
z3
2

)
z1z2z3

= . . .
3369

640
z1

4 +
867

64
z1

2z2
2 +

867

64
z1

2z3
2 +

3369

640
z2

4 +
867

64
z2

2z3
2

+
3369

640
z3

4 +
153

8
z1

2 +
153

8
z2

2 +
153

8
z3

2 + 27,

1Given a table, matrix notation is used to refer to its entries.
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where the z2
1z

0
2z

0
3-coefficient is 153

8 which equals the second summand of (8.2).
Second case: we choose a = (2, 0, 0, 1) and Γ as the right Feynman graph of Example 7.3.4.

By Theorem 8.1.9, we need to calculate the q2
1q

0
2q

0
3q

1
4-coefficient of IΓ,g(q1, q2, q3, q4) with g = 0.

Again, we pick Ω as the order given by the identity. As before, we calculate the terms of the
propagators that contribute to the q2

1q
0
2q

0
3q

1
4-coefficient in the product of the propagators such

that their product is constant in the xi, i.e. l1 = l2 = l3 = l4 = 0, and let w = 2 for a1, then

P̃ loop(q1) =
2 (sinh (z1))2 q1

2

z1
2

,

P̃
(x1

x2
, q2

)
=

4 sinh
(
z1
2

)
sinh

(
z2
2

)
x1

z1z2x2
+ . . . ,

P̃
(x2

x3
, q3

)
=

4 sinh
(
z2
2

)
sinh

(
z3
2

)
x2

z2z3x3
+ . . . ,

P̃
(x1

x3
, q4

)
=

4 sinh
(
z1
2

)
sinh

(
z3
2

) (
x1
x3

+ x3
x1

)
q4

z1z3
+ . . .

and

Coef [q2
1q

0
2q

0
3q

1
4 ]

P̃ loop(q1)P̃ (x1
x3
, q4)P̃ (x2

x3
, q3)P̃ (x1

x2
, q2)

S(z3)S(z2)S(z1)

=
16 (sinh (z1))2 sinh

(
z1
2

)
sinh

(
z2
2

)
sinh

(
z3
2

)
z1

3z2z3

= 2 +
3

4
z1

2 +
1

12
z2

2 +
1

12
z3

2 +
113

960
z1

4 +
1

32
z1

2z2
2

+
1

32
z3

2z1
2 +

1

960
z2

4 +
1

288
z3

2z2
2 +

1

960
z3

4 + . . . ,

where the constant coefficient in the zi is 2. If we let w = 1 for a1, we get 1. This makes 3 in
total, which is the number we expect when using the table from Example 7.1.15 again (entries
(1, 1) and (2, 1)).

8.1.3 The bijection

In this section, the tropical mirror symmetry theorem 8.1.9 is proved. The main ingredient is a
bijection of graph covers and monomials that contribute to a Feynman integral. It generalizes
the bijective approach used in [BBBM17] to graph covers with loop-edges. For an overview of
the bijective method, see also Figure 8.3.

Definition 8.1.11 (Graph covers of fixed order). Let Γ be a Feynman graph (see Definition
7.3.2). Fix a multidegree a ∈ Nr and an order Ω. The order Ω can be viewed as an element
in the symmetric group on n elements, associating to i the place Ω(i) that the vertex xi of Γ
takes in the order Ω. Moreover, fix an orientation of ET and points p0, p1, . . . , pn ordered in
this way when going around ET in the fixed orientation starting at p0.

A graph cover of type Γ, order Ω and multidegree a is a (possibly leaky w.r.t. (l1, . . . , ln),
see Remark 7.1.22) tropical cover π : Γ′ → ET, where Γ′ is a metrization of Γ, such that the
multidegree of π at p0 is a and such that π−1(pΩ(i)) contains xi. Notice that since there are n
point conditions and n vertices, it follows from Lemma 7.1.11 that there is precisely one vertex
of Γ in each preimage π−1(pj).

Define N l1,...,ln
Γ,a,Ω to be the weighted count of (l1, . . . , ln)-leaky graph covers of type Γ, order Ω

and multidegree a, where each such (l1, . . . , ln)-leaky graph cover is counted with the product
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of the expansion factors of its edges. If there is no mentioning of l1, . . . , ln, then we refer to the
case of no leaking as usual.

Lemma 8.1.12 (Graph covers and labeled tropical covers). Let g ≥ 2, n ≥ 1 and k1, . . . , kn ≥ 1
be natural numbers such that

k1 + . . .+ kn = 2g − 2

is satisfied. Let Γ be a Feynman graph such that for each vertex xi of Γ, the number ki+val(xi)
is even. Fix a multidegree a and an order Ω.

Then there is a bijection between graph covers of type Γ, order Ω and multidegree a (Defi-
nition 8.1.11) and labeled tropical covers π : Γ′ → ET (definitions 8.1.7, 8.1.8) that contribute
(possibly with weight zero) to

〈τk1(pt) . . . τkn(pt)〉E,a,trop
Γ,n

and satisfy π(i) = pΩ(i).

Proof. Let π : Γ′ → ET be such a labeled tropical cover. We can describe the bijection as
the map sending π to a graph cover π̃ by shrinking marked ends of Γ′, labeling the vertex
that used to be adjacent to end i by xi, and forgetting the genus at vertices. By definition of
〈τk1(pt) . . . τkn(pt)〉E,a,trop

Γ,n , the graph cover is of type Γ. The multidegree is the same for the

tropical cover and the graph cover. The set π−1(pΩ(i)) contains xi, since the marked end i is

mapped to pΩ(i) by π. The inverse map associates the genus ki+2−val(xi)
2 to the vertex xi (which

is an integer by our assumption), and attaches the end marked with i. Then the valence is
ki + 3− 2gi and the psi-condition is satisfied according to Definition 7.1.10.

Remark 8.1.13. Let 〈τk1(pt) . . . τkn(pt)〉E,a,trop
Γ,n,Ω denote the weighted count of tropical covers

that contribute to 〈τk1(pt) . . . τkn(pt)〉E,a,trop
Γ,n such that π(i) = pΩ(i) for a fixed order Ω. Then

Lemma 8.1.12 establishes a one-to-one correspondence between contributions (possibly with

weight zero) to 〈τk1(pt) . . . τkn(pt)〉E,a,trop
Γ,n,Ω and graph covers that possibly contribute to NΓ,a,Ω

from Definition 8.1.11. Notice that this does not imply that 〈τk1(pt) . . . τkn(pt)〉E,a,trop
Γ,n,Ω and

NΓ,a,Ω are the same number since the weight of an element contributing to NΓ,a,Ω is a product

of expansion factors, whereas the weight of an element contributing to 〈τk1(pt) . . . τkn(pt)〉E,a,trop
Γ,n,Ω

is given by (7.7).

Theorem 8.1.14 (Bijection of graph covers and tuples in Feynman integrals). Notations 7.3.3,
8.1.1 are used. Let Γ be a Feynman graph as in Definition 7.3.2. Fix a multidegree a ∈ Nr
with ak > 0 for all k ≤ s, an order Ω, and integers l1, . . . , ln.

There is a bijection between (l1, . . . , ln)-leaky graph covers of type Γ, order Ω and multidegree
a (Definition 8.1.11), and tuples((

wk

)
k=1,...,s

,
((
ak, wk ·

(xki
xkj

)wk))
k=s+1,...,r

)
, (8.3)

where i = 1 and j = 2 if ak = 0, and {i, j} = {1, 2} otherwise, where wk divides ak if ak 6= 0,
and where the product of the fractions has exponent li in xi.

Moreover, the weighted count of graph covers equals the qa1
1 . . . qann -coefficient of the refined

Feynman integral (Definition 7.3.5):

N l1,...,ln
Γ,a,Ω = Coef [q

a1
1 ...qarr ] I

l1,...,ln
Γ,Ω (q1, . . . , qr). (8.4)
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Remark 8.1.15 (Tuples and Feynman integrals). Note that the products of second entries for
k > s of a tuple as in (8.3) are precisely the contributions showing up in the series

r∏
k=s+1

P
(xk1

xk2

, qk

)
=

r∏
k=s+1

 ∞∑
w=1

w ·
(xk1

xk2

)w
+
∞∑
a=1

∑
w|a

w

((xk1

xk2

)w
+
(xk1

xk2

)−w) qak



with the exponents of the xi given by the li, and the exponents of the qi given by the ai. By
definition of the refined Feynman integral (see Definition 8.1.2), adding a choice of summand
wk for each loop-edge qk, k ≤ s, each tuple contributes exactly w1 · . . . · wr to the qa1

1 . . . qann -

coefficient of the refined Feynman integral I l1,...,lnΓ,Ω (q1, . . . , qr).

In particular, if ak = 0 for some k ≤ s, the qa1
1 . . . qann -coefficient of the refined Feynman

integral I l1,...,lnΓ,Ω (q1, . . . , qr) is zero, and there are no tuples.

Proof of Theorem 8.1.14. Given a tuple as in (8.3), we construct a graph cover as follows. We
keep track of the cover by drawing the vertices and edges projecting onto their images. To ease
the drawing, we think of ET as being cut off at p0 (see Example 7.1.18).

We start by drawing vertices xi above the points pΩ(i) in ET.

For k > s and for an entry wk·
( xki
x
kj

)wk , we draw an edge with expansion factor wk connecting

vertex xki to vertex xkj . If ak = 0, we draw this edge in our cut picture direct, without passing
over p0. If ak > 0, we ”curl it”, passing over p0 exactly ak

wk
times before it reaches its end

vertex. We assume in our tuple that i = 1 and j = 2 if ak = 0. By Notation 7.3.3, xk1 < xk2 in
Ω, which implies that in our picture, the vertex xk1 is drawn before xk2 (in the orientation of
ET), which makes it possible to draw the edge qk directly without passing p0. Since wk divides
ak, it is possible to ”curl” the edges qk with ak > 0 as required.

For k ≤ s and an entry wk, we draw a loop-edge of weight wk connecting the vertex of qk
to itself, ”curled” over p0 exactly ak

wk
times.

In the drawing we created for the tuple (8.3), we have obviously drawn a graph cover
with source curve of type Γ, since we connected the vertices xk1 and xk2 with the edge qk.
Furthermore, the multidegree is a because of our curling requirement. The order Ω is respected
by the way we have drawn the vertices. It remains to show that the graph cover is (l1, . . . , ln)-
leaky. To see this, notice that the edges adjacent to vertex xi correspond to tuples whose
fraction contains a power of xi, and that the exponent equals ± the expansion factor of the
edge, where the sign is positive if the edge leaves xi and negative if it enters xi (w.r.t. the
orientation of ET). Since we require the total power in xi to be li, the cover leaks li at vertex
xi.

Clearly, the process can be reversed associating a tuple to a graph cover, and using the
same arguments as before, the tuple satisfies the requirements from above. In particular, the
entry ak of the multidegree of a cover with a loop-edge qk is nonzero. Thus, we have a bijection
between graph covers and tuples.

Equality 8.4 follows from Remark 8.1.15, taking into account that a graph cover is counted
with multiplicity the product of its expansion factors (which are the wi) in N l1,...,ln

Γ,a,Ω .
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p1 p2 p3

x1

x2 x3

q3 q4

q2

q2

q2

q1 q1

p0 p0

Figure 8.2: The graph cover constructed from (8.5). Notice that this graph cover arises from
cutting (and labeling) the upper right source curve in Figure 7.1 along the preimages of a point
p0 (see also Example 7.1.18).

Example 8.1.16. We illustrate the proof of Theorem 8.1.14 by constructing a graph cover
from a given tuple as in (8.3). We let Γ be the right graph of Example 7.3.4, Ω the identity,
and li = 0 for all i. Consider the tuple

(
1,

(
2, 1 ·

(
x1

x3

)−1
)
,

(
0, 1 ·

(
x1

x2

)1
)
,

(
0, 1 ·

(
x2

x3

)1
))

. (8.5)

Notice that it is not leaky. See Figure 8.2 for the following: We start by drawing the vertices
x1, x2, x3 above p1, p2, p3. Then we add the non-curled edges q3, q4 which are given by the third
and fourth entry of our tuple above. The edge q2 is obtained by starting at x1 and going left
(we have a negative exponent in the second entry of our tuple), curling once (we want to pass
p0 twice with q2) and ending at x3. There is also one loop edge (the first entry of the tuple)
adjacent to x1 which does not curl. Since all weights of edges are 1, we can also see from the
graph that it is not leaky as we expected. The upper graph in Figure 8.2 inherits a metrization
from downstairs. Thus a graph cover is obtained.

Figure 8.3 illustrates the structure of the proof of Theorem 8.1.9. In particular, it sums up
the idea behind the bijective method, namely to establish bijections (the double sided arrows in
Figure 8.3) and then, in a second step, to compare the weights of the elements that are identified
under the concatenation of the bijections. Lemma 8.1.12 states that graph covers are closely
related to tropical covers that show up in a tropical descendant Gromov-Witten invariant.
However, the multiplicity of a tropical cover contains, besides the expansion factors for edges
which already appear in the bijection in Theorem 8.1.14, also factors for each vertex which can
be viewed as local descendant Gromov-Witten invariants (see Equation (7.6)). By Theorem
7.1.6, such contributions of local descendant Gromov-Witten invariants can be computed using
the S-function. Thus we need to consider Feynman integrals with vertex contributions (see
Definition 8.1.3) instead of refined Feynman integrals (Definition 7.3.5) as we did in Theorem
8.1.14
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Tuples

N l1,...,ln
Γ,a,Ω

Coef [q
a1
1 ...qarr ] I

l1,...,ln
Γ,Ω (q1, . . . , qr)

∑
Ω〈τk1(pt) . . . τkn(pt)〉E,a,trop

Γ,n,Ω
Coef [q

a1
1 ...qarr ]

∑
Ω IΓ,g,Ω(q1, . . . , qr)

〈τk1(pt) . . . τkn(pt)〉E,a,trop
Γ,n,Ω

Theorem

8.1.9

sum over
orders Ω
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sum over
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Coef [q
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1 ...qarr ] IΓ,g,Ω(q1, . . . , qr)

Figure 8.3: Overview of the structure of the proof of Theorem 8.1.9. The black dots indicate
contributions (possibly with weight zero) to the box they are connected to. For example, the
arrow in the upper right indicates that Remark 8.1.15 establishes a one-to-one correspondence
between certain tuples and elements that contribute to Coef [q

a1
1 ...qarr ] I

l1,...,ln
Γ,Ω (q1, . . . , qr).

Proof of Theorem 8.1.9. We prove the equality by restricting to the qa1
1 . . . qarr -Coefficient on

each side. It follows from Lemma 8.1.12 that we can expand the left side as a sum over orders
Ω, which we can do by definition of Feynman integral also on the right. We thus have to show
that the weighted count of labeled tropical covers contributing to 〈τk1(pt) . . . τkn(pt)〉E,a,trop

Γ,n

and satisfying π(i) = pΩ(i) equals Coef [q
a1
1 ...qarr ] IΓ,g,Ω(q1, . . . , qr).

To see this, note that by Remark 8.1.15 we deal with tuples as in Theorem 8.1.14 when
computing Coef [q

a1
1 ...qarr ] IΓ,Ω(q1, . . . , qr), however since we compute a Feynman integral with

vertex contributions (see Definition 8.1.3) now each second entry wk ·
( xki
xkj

)wk showing up in a

tuple meets S(wkzk1)S(wkzk2) first. By Theorem 8.1.14, the tuples are in bijection with graph
covers. For a fixed graph cover corresponding to a fixed tuple, the vertex contributions in the
Feynman integral thus produce factors of S(wkzk1)S(wkzk2) for an edge of expansion factor
wk connecting the vertices xk1 and xk2 . Collecting those factors, sorting by zi, and adding in
the factor 1

S(zi)
we have in the definition of Feynman integral with vertex contributions (see



160 8. (Tropical) mirror symmetry for elliptic curves

Definition 8.1.3), we obtain for each vertex xi a contribution of∏
S(µjzi) ·

∏
S(νjzi)

S(zi)
.

Here, the notation is set up as follows: we collect the expansion factors of all incoming edges
adjacent to xi in the partition µ and those of all outgoing edges in the partition ν. Taking the
z2gi
i -coefficient, we obtain a local vertex contribution of

〈µ|τki(pt)|ν〉
P1,|µ|
gi,1

by the one-point series from Equation (7.2). By Equation (7.6), this is exactly the local vertex
multiplicity we need to take into account for the labeled tropical cover.

Remark 8.1.17. Let us compare the Tropical mirror symmetry Theorem 8.1.9 for tropical
descendant invariants with the version for Hurwitz numbers (Theorem 2.20 [BBBM17]). As we
saw in remarks 7.1.2 and 8.1.6, in the version for Hurwitz numbers, we only have to take 3-valent
graphs into account such that all vertices have genus zero. Adding in descendants requires us
to generalize in two ways: we need to include graphs whose vertices have other valencies, and
whose vertices have genus. The main ingredient in our proof of tropical mirror symmetry is
the bijection between graph covers and monomials contributing to a Feynman integral, see
Theorem 8.1.14 or the upper triangle in Figure 8.3. Graphs with vertices of valence bigger 3
fit into this context. The genus at vertices requires us to use local vertex multiplicities for the
tropical covers, which are hard to translate to the Feynman integral world. The fact that the
one-point series (7.2) can be expressed in a way separating contributions for the edges adjacent
to a vertex makes it possible to incorporate these multiplicities in a Feynman integral with
vertex contributions as in Definition 8.1.3.

8.1.4 Quasimodularity

Quasimodularity of a generating function is desirable because it controls its asymptotic. A
series in q is quasimodular if and only if it is in the polynomial ring C[E2, E4, E6] generated by
the three Eisenstein series E2, E4 and E6 [KZ95]. The weight of a quasimodular form refers to
its degree when viewed as a polynomial in the Eisenstein series. A series is called a quasimodular
form of weight w if it is a homogeneous polynomial of degree w in the Eisenstein series, and
it is called a quasimodular form of mixed weight if it is a non-homogeneous polynomial in the
Eisenstein series.

In case that all ki = 1, the mirror symmetry theorem 8.1.4 specializes to the well-known
relation involving the generating series of Hurwitz numbers and Feynman integrals for 3-valent
graphs without vertex contributions (see Remark 8.1.6). This special case of the mirror sym-
metry relation was used in [Dij95, KZ95] to prove that the generating function of Hurwitz
numbers for g ≥ 2 is a quasimodular form of weight 6g − 6. Note that quasimodularity of
generating functions of covers is a phenomenon that was studied beyond the case considered
here, see e.g. [EO06, EOP08].

From the tropical mirror symmetry theorem 8.1.9, the generating function of descendant
Gromov-Witten invariants of an elliptic curve obtains a natural stratification as sum over
Feynman graphs, and, even finer, as sum over orders Ω for each Feynman graph (see Corollary
8.1.18). If we fix a Feynman graph Γ and a suitable genus function g (if ki = 1 for all i,
this means that we fix a 3-valent graph with genus 0 at each vertex), then we can study
quasimodularity of individual summands. We can consider summands IΓ,g(q), or we can even
break the sum into finer contributions by considering IΓ,g,Ω(q) for a fixed order Ω.
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For the case that ki = 1 for all i, this study was initiated in [BBBM17], where it is
conjectured that IΓ,g(q) is quasimodular of weight 6g − 6. In [GM20], Goujard and Möller
provide tools to study quasimodularity of generating series depending on Feynman graphs, and
they prove that if ki = 1 for all i, each summand IΓ,g,Ω(q) is a quasimodular form of mixed
weight, where the highest appearing weight is 6g−6. They also compute examples where lower
weights appear. Since the whole sum (over all graphs, and over all orders) is quasimodular of
weight 6g − 6, the contributions of lower weights must cancel in the sum. It remains an open
question whether they already cancel in a summand IΓ,g(q), i.e. when we sum over all orders
Ω, but for a fixed graph Γ.

In case of arbitrary ki, quasimodularity (of mixed weight) of the whole generating series
(the sum over all graphs, and all orders) was studied before [Li16].

We now deduce from [GM20] that IΓ,g,Ω(q) is a quasimodular form of mixed weight even
in case of arbitrary ki. For that, we start with interpreting IΓ,g,Ω(q) as a generating function
of tropical covers:

Corollary 8.1.18. Let g ≥ 2, n ≥ 1 and k1, . . . , kn ≥ 1 be natural numbers such that

k1 + . . .+ kn = 2g − 2

is satisfied. Fix a Feynman graph Γ such that the vertex xi has valence ki+2−2gi with gi ∈ N.
Record the numbers gi in the genus function g. Fix an order Ω. For d ∈ N, let

〈τk1(pt) . . . τkn(pt)〉E,d,trop
Γ,n,Ω

denote the number of (unlabeled) tropical covers (counted with multiplicity) that contribute to

〈τk1(pt) . . . τkn(pt)〉E,d,trop
g,n , for which the source curve has combinatorial type Γ after shrinking

the ends and satisfying π(i) = pΩ(i).
Then we can express the generating function of these invariants in terms of the Feynman

integral ∑
d∈N
〈τk1(pt) . . . τkn(pt)〉E,d,trop

Γ,n,Ω qd =
1

|Aut(ftedge(Γ), g)|
IΓ,g,Ω(q),

where ftedge is the map that forgets the edge labels of a Feynman graph, and automorphisms
respect the remaining vertex labels and the genus function (see Example 8.1.5).

Proof. Consider Theorem 8.1.9 and let q1 = · · · = qr = q. With a similar argument as we use
to deduce Theorem 8.1.4 from Theorem 8.1.9, we also obtain an automorphism factor here.
Fixing the order leads to labels on the vertices of the source curves, i.e. we need to consider
automorphisms which respect partially labeled graphs as in Example 8.1.5.

Example 8.1.19. We want to express IΓ,g,Ω(q) as polynomial in the Eisenstein series, where
Ω is the identity, g = (0, 0, 0) or g = (1, 0, 0) and Γ is any Feynman graph as shown in Example
7.3.4. So this example is a continuation of Examples 7.1.15 and 8.1.10.

First, let Γ1 be the left Feynman graph of Example 7.3.4 and let g
1

= (1, 0, 0). We calculate
that

IΓ1,g1
,Ω(q) =

1

20736
E6(q)− 1

13824
E2(q)E4(q) +

1

41472
E3

2(q) +
1

20736
E2

4(q)

− 1

10368
E2(q)E6(q) +

1

20736
E2

2(q)E4(q)

=
1

24
q +

5

2
q2 +

39

2
q3 +

278

3
q4 +

1025

4
q5 + 738q6 +

4165

3
q7 + 3080q8 + . . .
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Notice that IΓ1,g1
,Ω is of of mixed weight since E6 and E2E6 are of different weights. Recall

that we calculated 115
6 as contribution to the q3-coefficient in Example 8.1.10. The other covers

contributing are shown in Figure 7.1 of Example 7.1.15 and are the ones corresponding to the
following entries of the table of Example 7.1.15 (read as a matrix): (2, 3), (2, 4), (2, 5), (3, 2),
(3, 3), (4, 1), (4, 2), (4, 3). Each of these covers contributes with 1

24 such that in total we expect
(see Corollary 8.1.18)

Coef [q3] IΓ1,g1
,Ω(q) =

115

6
+

8

24
=

39

2
,

which matches our calculation.
Second, we choose Γ2 to be the right Feynman graph of Example 7.3.4 and let g

2
= 0. We

calculate that

IΓ2,g2
,Ω(q) = − 1

20736
E6(q) +

1

13824
E2(q)E4(q)− 1

41472
E3

2(q) +
1

20736
E2(q)E6(q)

− 1

13824
E2

2(q)E4(q) +
1

41472
E4

2(q)

= q2 + 15q3 + 76q4 + 275q5 + 720q6 + 1666q7 + 3440q8 + 6129q9 + . . .

Notice that, again, IΓ2,g2
,Ω is of mixed weight, but IΓ1,g1

,Ω +IΓ2,g2
,Ω is homogeneous. As above,

we can verify the q3-coefficient using Example 7.1.15.
Third, we choose Γ3 to be the middle Feynman graph of Example 7.3.4 and let g

3
= 0. In

this case, we obtain the homogeneous expression

IΓ3,g3
,Ω(q) =

1

20736
E2

4(q)− 1

10368
E2

2(q)E4(q) +
1

20736
E4

2(q)

= 4q2 + 48q3 + 240q4 + 800q5 + 2160q6 + 4704q7 + 9920q8 + 17280q9 + . . .

= 4 · (q2 + 12q3 + 60q4 + 200q5 + 540q6 + 1176q7 + 2480q8 + 4320q9 + . . . ),

where the factor 4 in the last row is due to the automorphisms of the underlying Feynman
graph, see Corollary 8.1.18. Again, we can verify the q3-coefficient using Example 7.1.15.

Corollary 8.1.20. Let g ≥ 2, n ≥ 1 and k1, . . . , kn ≥ 1 be natural numbers such that

k1 + . . .+ kn = 2g − 2

is satisfied. Let Γ be a Feynman graph with r edges (see Definition 7.3.2) and let g be a genus
function that satisfies

b1(Γ) +

n∑
i=1

gi = g,

where b1(Γ) denotes the first Betti number of Γ. Fix an order Ω.
Then the Feynman integral IΓ,g,Ω(q) — i.e. the generating function counting tropical covers

for the tropical descendant Gromov-Witten invariant 〈τk1(pt) . . . τkn(pt)〉E,d,trop
Γ,n of type Γ and

order Ω, see Corollary 8.1.18 — is a quasimodular form of mixed weight, with highest occurring
weight 2 · (r +

∑n
i=1 gi).

Proof. This follows from Theorem 6.1 of [GM20], since the local vertex contributions we have
to take into account for a vertex xi are polynomial of even degree 2gi in the expansion factors
of the adjacent edges by Theorem 4.1 in [GM20] (see [OP06], [SSZ12]).
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This statement is essentially a byproduct of Corollary 6.2 of [GM20] which states that
the generating series of tropical covers with fixed ramification profiles (see [CJMR21], Defini-
tion 2.1.3) and with fixed underlying graph Γ and order Ω is a quasimodular form of mixed
weight. The proof in [GM20] detours by deducing the quasimodularity of the function above
from the quasimodularity of our IΓ,g,Ω(q) (without explicitely stating this). The descendant
Gromov-Witten invariants we focus on here are called Hurwitz numbers with completed cy-
cles in [GM20], which is explained by the Okounkov-Pandharipande GW/H correspondence in
[OP06], see also [SSZ12].

8.2 Tropical mirror symmetry and Boson-Fermion correspon-
dence

The purpose of this section is to reveal the close relation between the proof of Theorem 8.1.4 in
mathematical physics, using Fock spaces, and our tropical approach. Since the tropical setting
requires a labeling of the underlying Feynman graphs and the use of the variables q1, . . . , qr to
distinguish degree contributions from the different edges, we enrich the Fock space approach by
incorporating adequate labelings. This enlarges the set of operators, but makes it easier to dis-
tinguish contributions for a fixed Feynman graph to a matrix element. In this way, we extend
the Fock space approach so that it gives an alternative proof of the tropical mirror symmetry
Theorem 8.1.9, which holds on a finer level. Our main ingredient is Theorem 8.2.10, proving
the equality of the number of labeled tropical covers with fixed underlying source graph, fixed
multidegree and order and a sum of matrix elements in a bosonic Fock space.

For the sake of explicitness, we limit our considerations to the case of Hurwitz numbers, i.e.
ki = 1 for all i, and we do not have vertex contributions for Feynman integrals (see remarks
7.1.2 and 8.1.6). In particular, all our graphs are 3-valent, have no loops and genus 0 at vertices.
Higher descendants resp. vertex contributions can be incorporated into our discussion also, but
would increase the amount of notation largely — we would have to consider more summands
for a bosonic vertex operator, and the tropical local vertex multiplicities would have to show
up as coefficients of the bosonic vertex operator [CJMR18].

As shown in Figure 1.3, tropical geometry hands us a short-cut in the Fock space setting:
we can relate the generating series of Hurwitz numbers directly to operators on the bosonic
Fock space and do not need to evoke the fermionic Fock space and the Boson-Fermion Corre-
spondence, which is often viewed as the essence of mirror symmetry for elliptic curves.

8.2.1 Hurwitz numbers as matrix elements

We shortly review the bosonic Fock space approach for generating series of Hurwitz numbers:
The bosonic Heisenberg algebra H is the Lie algebra with basis αn for n ∈ Z such that for
n 6= 0 the following commutator relations are satisfied:

[αn, αm] = (|n| · δn,−m)α0,

where δn,−m is the Kronecker symbol and

[αn, αm] := αnαm − αmαn

The bosonic Fock space F is a representation of H. It is generated by a single “vacuum vector”
v∅. The positive generators annihilate v∅: αn · v∅ = 0 for n > 0, α0 acts as the identity and the
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negative operators act freely. That is, F has a basis bµ indexed by partitions, where

bµ = α−µ1 . . . α−µm · v∅.

We define an inner product on F by declaring 〈v∅|v∅〉 = 1 and αn to be the adjoint of α−n.
We write 〈v|A|w〉 for 〈v|Aw〉, where v, w ∈ F and the operator A is a product of elements

in H, and we write 〈A〉 for 〈v∅|A|v∅〉. The first is called a matrix element, the second a vacuum
expectation.

Example 8.2.1. To get used to the inner product on F , two easy examples are calculated.
First,

〈α−3 · v∅|α−5 · v∅〉 = 〈v∅|α3α−5 · v∅〉 = 0

since α3 and α−5 commute such that α3 meets v∅ and therefore vanishes. We observe from this
example that if we want to obtain not zero from our inner product, we need to have for each
operator on the left of the inner product one on the right with the same index. For example:

〈α−3α−5 · v∅|α−5α−3 · v∅〉 = 〈v∅|α5α3α−5α−3 · v∅〉
= 〈v∅|α5α−5α3α−3 · v∅〉
= 〈v∅|5 · 3 · v∅〉
= 15,

where the commutator relation was used once for the second equation and it was used twice
for the third equation.

Definition 8.2.2. The cut-join operator is defined by:

M :=
1

2

∑
k>0

∑
0<i,j
i+j=k

α−jα−iαk + α−kαiαj . (8.6)

The relative invariants of P1 can be interpreted as a matrix element involving M (notice that
the invariants in questions are equal to double Hurwitz numbers by Okounkov-Pandharipande’s
GW/H correspondence [OP06]):

Proposition 8.2.3. Notation 7.1.4 is used. A relative Gromov-Witten invariant of P1, resp.
a double Hurwitz number, equals a matrix element on the bosonic Fock space:

〈µ|τ1(pt)n|ν〉P1,d,•
g,n =

n!∏
i µi ·

∏
j νj
〈bµ|Mn|bν〉.

This statement follows by combining Wick’s Theorem with the Correspondence Theorem
7.1.20: Wick’s Theorem ([Wic50], Proposition 5.2 [BG16], Theorem 5.4.3 [CJMR18]) expresses
a matrix element as a weighted count of graphs that are obtained by completing local pictures.
It turns out that the graphs in question are exactly the tropical covers we enumerate to obtain

〈µ|τ1(pt)n|ν〉P
1,d,trop
g,n , where n! arises from fixing a set of points to which labeled ends are

mapped to (rather than prescribing a point a labeled end should map to, see Definition 7.1.10).
Notice that we have to use the disconnected theory here (•), since the matrix element

encodes all graphs completing the local pictures and cannot distinguish connected and discon-
nected graphs.

The local pictures are built as follows: we draw one vertex for each cut-join operator. For
an αn with n > 0, we draw an edge germ of weight n pointing to the right. If n < 0, we draw
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an edge germ of weight n pointing to the left. For the two Fock space elements bµ and bν , we
draw germs of ends: of weights µi on the left pointing to the right, of weights νi on the right
pointing to the left. Wick’s Theorem states that the matrix element 〈bµ|Mn|bν〉 equals a sum
of graphs completing all possible local pictures, where each graph contributes the product of
the weights of all its edges (including the ends). A completion of the local pictures can be
interpreted as a tropical cover of P1

T (with suitable metrization).
The cut-join operator sums over all the possibilities of the local pictures for the graphs, i.e.

it sums over all possibilities how a vertex of a tropical cover can look like (see Figure 8.4).

i

j
k k

i

j

Figure 8.4: Local pictures of graphs with weights on the edges.

Example 8.2.4. Consider the local pieces shown below. There are three ways of completing
them to a graph with local pictures like in Figure 8.4.

2

1

2

1

The completed graphs are shown in Figure 8.5. The product of the upper graph’s edge weights
(including the ends) is 12, 4 for the middle graph and 4 for the lower graph. Hence Wick’s
Theorem and Proposition 8.2.3 yield

〈(2, 1)|τ1(pt)2|(2, 1)〉P
1,3,•

2,2 = 2! ·
(

3 + 1 +
1

2

)
= 9,

where we have to divide the last summand by two because there is an automorphism exchanging
the two edges that connect the vertices in the lower graph of Figure 8.5.

2

1

2

1

3

2

1

2

1

1

2

1

1

1
2

1

Figure 8.5: Completions of the local pieces above. Note that there is an automorphism ex-
changing the two bounded edges in the lower graph.

Combining Proposition 8.2.3 with a degeneration argument, we can express Gromov-Witten
invariants, resp. Hurwitz numbers of the elliptic curve in terms of matrix elements:
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Proposition 8.2.5. A Hurwitz number of the elliptic curve equals a weighted sum of double
Hurwitz numbers of P1:

〈τ1(pt)n〉E,d,•g,n =
∑
µ `d

∏
i µi

|Aut(µ)|
〈µ|τ1(pt)n|µ〉P

1,d,•
g−`(µ),n.

Here, the sum goes over all partitions µ of d, µi denotes their entries, and `(µ) the length.

Proposition 8.2.3 which relates relative Gromov-Witten invariants to matrix elements yields
the following corollary.

Corollary 8.2.6. A Hurwitz number of the elliptic curve E equals a sum of matrix elements
on the bosonic Fock space:

〈τ1(pt)n〉E,d,•g,n =
∑
µ `d

n!

|Aut(µ)|
∏
i µi
〈bµ|Mn|bµ〉.

Proposition 8.2.5 is a corollary from the two Correspondence Theorems 7.1.19 and 7.1.20:
given a tropical cover of ET, let µ be the partition encoding the weights of the edges mapping
to the base point p0. We mark the preimages of p0, for which we have |Aut(µ)| choices. For
each choice, we cut off ET at p0 and the covering curve at the preimages of p0, obtaining a
cover of P1

T with ramification profiles µ and µ above ±∞. The cut off tropical cover contributes

to 〈µ|τ1(pt)n|µ〉P
1,d,•,trop
g,n , but its multiplicity differs from the multiplicity of the cover of ET by

a factor of
∏
µi, since the edges we cut off are no longer bounded.

Example 8.2.7. We want to calculate 〈τ1(pt)2〉E,3,•2,2 using Corollary 8.2.6 and Wick’s Theorem.
The partitions of 3 are (1, 1, 1), (2, 1) and (3). The summand of (2, 1) follows from Example
8.2.4, namely 9 · 2 = 18. The figure below shows how to complete the local pieces given by the
partitions (1, 1, 1) and (3).

1

1

1

1

3

1

2

1 1

3

2

Figure 8.6: More completions of local pieces. Note that there are automorphisms of the upper
graph that exchange the edges of weight one adjacent to a 3-valent vertex.

Note that there are in fact 9 choices of how to complete the local pieces of (1, 1, 1) since we
can choose which ends (in the upper graph) the straight line should connect. Thus the upper
graphs contribute (9 of them) 2! · 9·2

4 ·
1
3! = 3

2 and the lower graph contributes 2! · 2 · 3 = 12.

Therefore 〈τ1(pt)2〉E,3,•2,2 = 63
2 .

8.2.2 Labeled matrix elements for labeled tropical covers

Now we would like to link this Fock space language for Gromov-Witten invariants resp. Hur-
witz numbers with tropical mirror symmetry. Recall that tropical mirror symmetry holds
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naturally on a fine level, giving an equality of the qa1
1 . . . qarr -coefficient of a Feynman integral

IΓ,Ω(q1, . . . , qr) and the number NΓ,a,Ω, which counts labeled tropical covers of type Γ, with
multidegree a and such that the order Ω is satisfied, i.e. (in case of Hurwitz numbers) the

contribution to 〈τ1(pt)n〉E,a,trop
Γ,n of covers π satisfying π(i) = pΩ(i) (see Lemma 8.1.12, Theorem

8.1.14 and Theorem 8.1.9).

Fix a Feynman graph Γ, a multidegree a and an order Ω. Remember that Γ is a 3-valent
connected graph with first Betti number g, because of our restriction that ki = 1 for all i. In
particular, Γ has no loops.

Notation 8.2.8. Our expression for NΓ,a,Ω in terms of matrix elements (see Theorem 8.2.10
below) involves a sum over all tuples (wk)k:ak>0 with wk|ak for all k with ak > 0, since we
incorporate the degeneration idea from Proposition 8.2.5.

For a fixed choice of (wk)k, let Γ′ be the graph obtained from Γ by cutting the edge qk
exactly ak

wk
times. We introduce the following labels for the (cut) edges of Γ′: we denote the

pieces by qk,1, . . . , qk, ak
wk

+1. There are at most ak + 1 pieces, depending on wk. For an edge

which is not cut, i.e. ak = 0, we call it qk,1 to consistently have two indices for the edge labels
in Γ′.

We enlarge our set of operators in a way that allows to distinguish the edges of the cut
graph Γ′: Let the αk,jn , for each k = 1, . . . , r, j = 1, . . . , ak + 1, and n ∈ Z \ {0}, satisfy the
commutator relations

[αk,jn , αl,im] := (|n| · δk,l · δj,i · δn,−m)α0.

As before, we let the bosonic Fock space F be generated by v∅, following the rules from before:
αk,jn · v∅ = 0 for n > 0, α0 acts as identity, and the operators with negative subscript act freely.
We let 〈v∅|v∅〉 = 1 and let αk,jn be the adjoint of αk,j−n.

Definition 8.2.9. Let Γ, a and (wk)k be as in Notation 8.2.8. Let xi be a vertex of Γ. We
denote its three adjacent edges by qi1 , qi2 and qi3 . For l = 1, 2, 3 set cl =

ail
wil

+ 1 if ail > 0 and

cl = 1 else. We also set dml = cl if ml > 0 and dml = 1 otherwise. Define the labeled cut-join
operator for the vertex xi as

Mi :=
∑

m1,m2,m3∈Z\{0}
m1+m2+m3=0

α
i1,dm1
m1 α

i2,dm2
m2 α

i3,dm3
m3 .

Since the first superscript differs for the α-operators in a summand, the commutator relations
imply that these factors can be permuted within a summand without changing the cut-join
operator.

This operator sums over all possibilities of how, locally, a vertex with its adjacent edge
germs can be arranged, as shown in Figure 8.7.
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qi1 ,m1

qi2 ,m2

qi3 ,m3 qi3 ,m3

qi1 ,m1

qi2 ,m2

qi1 ,m1

qi3 ,m3

qi2 ,m2 qi2 ,m2

qi1 ,m1

qi3 ,m3

qi2 ,m2

qi3 ,m3

qi1 ,m1 qi1 ,m1

qi2 ,m2

qi3 ,m3

Figure 8.7: Local pictures of graphs with weights m1,m2,m3 on the labeled edges qi1 , qi2 , qi3 .

Notice that, compared to the (unlabeled) cut-join operator, we do not need a factor of
1
2 which had to be there to take automorphisms into account resp. to undo overcounting by
distinguishing edges which are not distinguishable. Here, all edges are labeled and thus distin-
guishable.

Theorem 8.2.10. For a fixed 3-valent Feynman graph Γ without loops, multidegree a and an
order Ω, the count of labeled tropical covers of ET of type Γ and of the right multidegree and
order (see Lemma 8.1.12, Theorem 8.1.14 and Theorem 8.1.9) equals a sum of matrix elements:

NΓ,a,Ω =
∑

(wk)k
wk|ak

r∏
k=1

( 1

wk

) ak
wk ·

〈
r∏

k=1

ak
wk∏
l=1

αk,l−wkv∅

∣∣∣∣∣
n∏
i=1

MΩ−1(i)

∣∣∣∣∣
r∏

k=1

ak
wk

+1∏
l=2

αk,l−wkv∅

〉
. (8.7)

Proof. We use Wick’s Theorem: the right hand side is a sum over all possible ways to combine
the local pictures given by the cut-join operators to a graph Γ′ that covers P1

T. Our local

pictures are now vertices with labels xΩ−1(i). For each αk,jn , we have an adjacent edge germ
with label qk,j of weight |n|, pointing to the right if n is positive and to the left otherwise.
Fix a graph Γ′ which is a completion of such local pictures. The preimages of −∞ are leaf
vertices of Γ′ whose adjacent edges are labeled qk,1, . . . , qk, ak

wk

and are of weight wk (for all k).

The preimages of ∞ are leaf vertices whose adjacent edges have labels qk,2, . . . , qk, ak
wk

+1, also of

weight wk. Since the α-operators in the cut-join operator only have the values 1 or ak
wk

+ 1 as
their second superscript, the commutator relation guarantees that the leaves of qk,2 . . . , qk, ak

wk

over −∞ have to be connected to the leaves with the corresponding label over ∞. The leaf
adjacent to qk,1 over −∞ is merged with an interior vertex adjacent to qk, by definition of the
labeled cut-join operator which depends on Γ. The same holds for the leaf adjacent to qk, ak

wk
+1.

To produce a tropical cover of ET, we glue Γ′ as follows: for all k and for i = 1, . . . , akwk , the
leaf of qk,i over−∞ is attached to the leaf of qk,i+1 over∞. Identifying the edges qk1 , . . . , qk, ak

wk
+1

(which are subdivided by 2-valent vertices obtained from gluing) to one edge qk, we obtain a
graph cover of ET of type Γ which is of the right order and multidegree: the order is imposed by
the order in which we multiply the cut-join operators, the multidegree is given by the ”curls”
of the edge qk, which has weight wk and which is curled ak

wk
times by our way of gluing.



8.2. Tropical mirror symmetry and Boson-Fermion correspondence 169

Obviously, each tropical cover of type Γ and multidegree a with order Ω can be obtained
by gluing a graph Γ′ that arises with Wick’s Theorem from the right hand side.

On the right hand side, a graph Γ′ that we produce with Wick’s Theorem contributes with
the product of the weights of all edges which are connected, including the ends. For an edge

qk (which is cut into w
ak
wk

+1

k pieces in Γ′) with ak > 0, we thus obtain a factor of w
ak
wk

+1

k , where
we actually only want wk for the tropical multiplicity. This is taken care of by the pre-factor
before the summands on the right.

Example 8.2.11. Fix the multidegree a = (2, 1, 0), an order Ω on the vertices x1, x2 such that
x1 < x2 and the following Feynman graph:

x1

x2

q1

q2

q3

Fix points p1, p2 on ET. We obtain a labeled tropical cover of P1
T that can be glued to a cover

of ET of type Γ by choosing local pieces (see Figure 8.7).

Notice that there are two choices of the expansion factor w1, namely w1 = 1 or w1 = 2. We
start with w1 = 2 and obtain the following source curve of a tropical cover to P1

T, where the
local pieces are indicated by boxes.

2

1

2

1

1

q1,1

q2,1

q1,1

q1,2

q2,2

q3,1
q3,1

q2,1

q1,2

q2,2

x1

x2

1 1

2 2

3q2,1 q2,2

q1,1 q1,2

q1,2

q2,2q3,1q3,1

x1 x2

q2,1

q1,1

In case of w1 = 2, there are no other choices of local pieces that fit Γ than the ones shown
above. If we choose w1 = 1, then another valid choice of local pieces is shown below.

1

1

1

1

1 1

2q1,1

q1,2 q1,2

q1,3

q2,1 q2,2

q2,2

q1,3q3,1q3,1

x1 x2

q1,1

q2,1
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Note that these two graphs are labeled version of the middle and upper graph of Figure 8.5
and the upper graph of Figure 8.6. However, we do not get all graphs of examples 8.2.4 and
8.2.7 since we fixed Γ and a.

8.2.3 From matrix elements to Feynman integrals

Finally, we link the matrix elements on the right of (8.7) in Theorem 8.2.10 with Feynman
integrals. To do so, we introduce formal variables for vertices in the labeled cut-join operators:

Definition 8.2.12. Let Γ, a and (wk)k be as in Notation 8.2.8. For l = 1, 2, 3 set cl =
ail
wil

+ 1

if ail > 0 and cl = 1 otherwise. We also set dml = cl if ml > 0 and dml = 1 otherwise. Define
the labeled cut-join operator for the vertex xi as

M(xi) :=
∑

m1,m2,m3∈Z\{0}

α
i1,dm1
m1 xm1

i α
i2,dm2
m2 xm2

i α
i3,dm3
m3 xm3

i .

Here, the labeled cut-join operators are treated as formal series in x1, . . . , xn. With this,
we can rewrite equation (8.7) of Theorem 8.2.10, namely

NΓ,a,Ω = Coef [x0
1...x

0
n]

∑
(wk)k
wk|ak

r∏
k=1

( 1

wk

) ak
wk ·

〈
r∏

k=1

ak
wk∏
l=1

αk,l−wkv∅

∣∣∣∣∣
n∏
i=1

M(xΩ−1(i))

∣∣∣∣∣
r∏

k=1

ak
wk

+1∏
l=2

αk,l−wkv∅

〉
.

(8.8)

Each matrix element on the right-hand side of (8.8) is now a series in x1, . . . , xn when evaluated.

Lemma 8.2.13. Fix Γ, a and Ω as in Notation 8.2.8. The right-hand side of Equation (8.8),
satisfies the following:

Coef [x0
1...x

0
n]

∑
(wk)k
wk|ak

r∏
k=1

( 1

wk

) ak
wk ·

〈
r∏

k=1

ak
wk∏
l=1

αk,l−wkv∅

∣∣∣∣∣
n∏
i=1

M(xΩ−1(i))

∣∣∣∣∣
r∏

k=1

ak
wk

+1∏
l=2

αk,l−wkv∅

〉

= Coef [x0
1...x

0
n]

∏
k:ak>0

wk ·

((xk1

xk2

)wk
+
(xk2

xk1

)wk)
·
∏

k:ak=0

(∑
wk>0

wk ·
(xk1

xk2

)wk)
.

Here, xk1 and xk2 denote the vertices adjacent to the edge qk, where in the order Ω we have
xk1 < xk2 as in Notation 7.3.3.

Proof. Let qk be an edge with ak = 0. Since ak = 0, an α with first superscript k does not show
up in the vectors of the matrix element, only in the labeled cut-join operators. Also, the second
superscript must be 1, and it appears for exactly two cut-join operators, namely the one for xk1

and the one for xk2 . Thus, we draw an edge germ labeled qk,1 at xk1 and an edge germ labeled
qk,1 at xk2 . These are the only edge germs with this label. To obtain a nonzero contribution to
the matrix element, the edge germ at xk1 must point to the right and the one at xk2 must point
to the left. Furthermore, they must have the same weight wk. There is no restriction on the
weight wk. (The balancing condition is imposed only after we take the x0

1 . . . x
0
n-coefficient.)

So, for any wk > 0, we have nonzero contributions to the matrix elements above with an αk,1wk in

the cut-join operator M(xk1) and an αk,1−wk in the cut-join operator M(xk2). Combining those

α-operators with the respective power of the variable, we obtain αk,1wk ·x
wk
k1 ·αk,1−wk ·x

−wk
k2 , which,

after applying the commutator relation and simplifying becomes wk ·
(
xk1

xk2

)wk
.
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We have treated the sum of matrix elements as a weighted sum of graphs. Any nonzero
summand must have an edge connecting the edge germs above, and it can be of any weight.
More precisely, if we have a graph with such an edge of a certain weight, we also have all
summands that correspond to the same graph, but with the weight of the edge varying. Thus,
we can pull out a factor ∑

wk>0

wk ·
(xk1

xk2

)wk
for the edge qk.

Let us now consider an edge qk with ak > 0. The matrix elements on the left are summed
over all wk|ak. For the local pictures, we draw end germs of weight wk on the left pointing
to the right, with labels qk,1, . . . , qk, ak

wk

, and on the right, pointing to the left, with labels

qk,2, . . . , qk, ak
wk

+1. We use the commutator relations for the α in charge of connecting the

”curls” qk,2, . . . , qk, ak
wk

, they produce a factor of wk which is cancelled by the pre-factor. The

end germ qk,1 must be connected to an edge germ appearing in a cut-join operator, that can
be either M(xk1) or M(xk2). The end germ qk, ak

wk
+1 must also be connected to an edge germ

of a cut-join operator, necessarily the other on in the choice of M(xk1) or M(xk2). Thus, we
either have

αk,1wk · α
k,1
−wk · x

−wk
k1 · α

k,
ak
wk

+1

wk · xwk
k2 · α

k,
ak
wk

+1

−wk or

αk,1wk · α
k,1
−wk · x

−wk
k2 · α

k,
ak
wk

+1

wk · xwk
k1 · α

k,
ak
wk

+1

wk

(notice the subscript changes sign when we let factors jump in the scalar product, by convention
of the adjoints). Taking the commutator relations into account, and realizing that one factor
of wk is again cancelled by the pre-factor, we obtain either wk · (

xk1

xk2
)wk or wk · (

xk2

xk1
)wk . Also,

wk was imposed by the summand we picked on the left hand side. But for a given graph with
an edge of weight wk, we also have the analogous graph (with fewer or more curls) where the
edge has another weight which divides ak. Thus, for the edge qk we obtain a total factor of∑

wk|ak

wk ·
((xk1

xk2

)wk
+
(xk2

xk1

)wk)
.

Taking the x0
1 . . . x

0
n-coefficient on the right-hand side of our desired equation ensures that there

are no vertices (in the graph associated to a factor of the right-hand side) whose three adjacent
edge germs are pointing in the same direction. Thus Lemma 8.2.13 follows.

Having this, we can give an alternative proof of Theorem 8.1.9 (in the case ki = 1 for all
i), which follows the more traditional Fock space approach, now with a larger set of operators
in charge of the labels. Thus using tropical geometry, we can take a shortcut that avoids the
fermionic Fock space and relies on Wick’s Theorem instead, see Figure 1.3.

Proof of Theorem 8.1.9 in the case ki = 1 for all i. We prove the equality by restricting to the
qa1

1 . . . qarr -Coefficient on each side. It follows from Lemma 8.1.12 that we can expand the left
side as a sum over orders Ω, which we can do by definition of Feynman integral also on the right.
We thus have to show that the weighted count NΓ,a,Ω of labeled tropical covers contributing to

〈τ1(pt)n〉E,a,trop
Γ,n and satisfying π(i) = pΩ(i) equals Coef [q

a1
1 ...qarr ] IΓ,g,Ω(q1, . . . , qr). By Definition

7.3.5 of a Feynman integral, the x0
1 . . . , x

0
n-Coefficient on the right-hand side of Lemma 8.2.13

equals the qa1
1 . . . qarr -Coefficient of IΓ,Ω(q1, . . . , qr). Using Lemma 8.2.13 and Equation (8.8)

(which follows from Theorem 8.2.10 relying on Wick’s Theorem), it follows that it also equals
NΓ,a,Ω. Thus the statement is proved.





Chapter 9

Tropical mirror symmetry for E × P1

In this chapter, which is based on joint work with Janko Böhm and Hannah Markwig [BGM20],
a mirror symmetry relation for E × P1 involving counts of curves and Feynman integrals is
established, see Corollary 9.3.5. To do so, a correspondence theorem 9.1.16 is used to count
tropical stable map to tropical E×P1 instead. The floor decomposition techniques (see Chapter
6) of tropical stable maps allow us to pass from tropical stable maps to tropical E×P1 to certain
tropical covers of a tropical elliptic curve called curled pearl chains. Hence results of Chapter 8
can be applied, which yield a tropical mirror symmetry relation that relates generating series
of curled pearl chains to sums of Feynman integrals, see Theorem 9.3.1.

As in Chapter 8, an even finer version of the tropical mirror symmetry relation holds
naturally (Theorem 9.3.11). Moreover, our tropical approach again allows us to deduce quasi-
modularity results for certain generating series of tropical stable maps to tropical E × P1, see
theorems 9.4.2, 9.4.5.

9.1 Tropical stable maps to tropical E × P1

For an elliptic curve E, denote the tropical analogue of the surface E × P1 by ET × P1
T. We

define it as an infinite cylinder surface arising from ET and P1
T, see 9.1. It is a tropical surface

in the sense of Definition 3.1 [Sha15]. Correspondence theorem 9.1.16 shows that ET × P1
T

should indeed be viewed as the tropical analogue of E × P1.

ET

P1
T

Figure 9.1: An illustration of ET × P1
T.

9.1.1 Tropical stable maps to ET × P1
T via cut open ones

To define tropical stable maps to ET × P1
T, we consider tropical stable maps to R2 of a degree

that allows us to glue some of its ends together such that the resulting tropical curve winds
around an infinite cylinder. For that, notice that a nice feature of tropical geometry is that
often, we do not have to use compactifications to get sufficient geometric information. This
holds true for our counts of curves. Therefore, we can consider tropical versions of stable maps

173
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as maps to R2. The compactification is implicit in the choice of directions of the ends, resp. in
the way they glue.

In Definition 9.1.1, we recall the basic concept of a tropical stable map to R2 (cf. Definition
2.2.7 for rational tropical stable maps). Next, in 9.1.2, this concept is specified in such a way
that the tropical stable maps in question can be interpreted as (building blocks of) maps to
ET × P1

T by gluing opposite ends appropriately. In this definition, we introduce the concept
of a leaky degree first. We do this with a view towards further generalizations. Most natural,
and most important for our main applications here, is the case where the leaky degree is zero.
The general case of leaky degrees is included for the sake of completeness.

Definition 9.1.1. A tropical stable map to R2 is a tuple (Γ, f) where Γ is an explicit (i.e. there
is no genus function) and not necessarily connected abstract tropical curve (see Definition 7.1.7)
with n marked ends denoted x1, . . . , xn and f : Γ→ R2 is a map satisfying:

1. Integer affine on each edge: On each edge e of Γ, the map f is of the form

t 7→ a+ t · v with v ∈ Z2,

where we parametrize e as an interval of size the length l(e) of e. The vector v, called the
direction, arising in this equation is defined up to sign, depending on the starting vertex
of the parametrization of the edge. We sometimes speak of the direction of a flag v(V, e)
at a vertex V . If e is an end we use the notation v(e) for the direction of its unique flag.

2. Balancing condition: At every vertex, we have∑
V ∈∂e

v(V, e) = 0.

For an edge with direction v = (v1, v2) ∈ Z2\{0}, we call w := gcd(v1, v2) the expansion
factor and 1

w · v the primitive direction of e. If v = 0, then we set w := 0 as expansion factor.

An isomorphism of tropical stable maps is an isomorphism of the underlying tropical curves
respecting the map. The combinatorial type of a tropical stable map is the data obtained when
dropping the metric of the underlying graph. More explicitly, it consists of the data of a finite
graph Γ, and for each edge e of Γ, the direction of e.

Definition 9.1.2. A (cut, open) tropical stable map to ET × P1
T of leaky degree

∆ = {L1, . . . , Ld2}

is a tropical stable map to R2, with N marked ends satisfying:

1. ∆ is a multiset containing elements of Z such that
∑d2

i=1 Li = 0.

2. End directions: The directions of the ends are given as follows:

� The marked ends xi, i = 1, . . . , n < N , are contracted: v(xi) = 0.

� There are d2 ends of direction (0,−1). All these ends are unmarked.

� There are d2 (unmarked) ends of direction (Li, 1).

� The remaining ends are marked and of primitive direction (±1, 0).

3. Gluing: The ends of primitive direction (±1, 0) come in pairs, one of direction (1, 0) and
one of direction (−1, 0), with the same expansion factor and the same y-coordinate.
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When Li = 0 for all i = 1, . . . , d2, we refer to these tropical stable maps as maps without
leaking or of leaky degree zero.

Construction 9.1.3. In two steps, we can produce a tropical stable map to ET × P1
T from a

cut, open tropical stable map:

1. We glue the pairs of ends in (2) of Definition 9.1.2 and partially compactify by adding
1-valent vertices at infinity for the ends of direction (0,−1). The markings for the ends
which we glued are forgotten. The graph obtained this way is denoted by Γ′. The map
f extends to Γ′ and the image f(Γ′) is a non-compact tropical stable map to ET × P1

T.

2. To produce a tropical stable map to ET × P1
T, we need to mark the ends of directions

(Li, 1) and fix the following additional data:

(a) A partition of ∆ into subsets ∆i = {Li1 , . . . , Liki} satisfying
∑ki

j=1 Lij = 0 for all i.

(b) For each subset ∆i a 3-valent tree Ti that satisfies the following.

i. The tree Ti has ki + 1 leaves, where each Lij for j = 1, . . . , ki appears as a label
of a leaf and exactly one leaf, called the root vertex, is unlabeled.

ii. The tree Ti is balanced in the following sense: Equip Ti with the orientation
that is induced by the root vertex such that the edge adjacent to the root
vertex points towards the root vertex (notice that every non-leaf vertex of Ti
has precisely 2 incoming edges and 1 outgoing edge). Equip each edge adjacent
to a leaf labeled by Lij with the weight Lij ∈ Z. For every non-leaf vertex V
of Ti, define the adjacent edges’ weights by balancing, i.e. the outgoing edge’s
weight of V is the sum of the two incoming edges’ weights. We do not allow a
vertex V of Ti to have two incoming edges of the same weight .

(c) Each non-leaf vertex V of Ti is decorated with a number nV ∈ N>0.

With this additional data, we can produce a (compact) tropical curve in ET×P1
T from the

non-compact one: If two leaves L1 and L2 are adjacent to a vertex V in Ti (in particular,
L1 6= L2 by condition (2b)), the two open ends of direction (L1, 1) and (L2, 1) meet in
ET×P1

T. At their nV -th meeting point, we let them merge to a 3-valent vertex and start
a new open end at that vertex whose direction is determined by the balancing condition.
We cut the cherry corresponding to L1 and L2 from the tree Ti and continue recursively
with the new tree. Finally, we end up with the edge adjacent to the root vertex that
produces an end of vertical direction (0, ki), which we compactify by adding a vertex at
infinity.

In this way, we produce a tropical stable map to ET×P1
T whose upper vertical ends may

have non-trivial expansion factors.

Here, we focus on the non-compact tropical stable maps we obtain using step (1) above. In
particular, we provide methods to count such non-compact tropical curves and study their
generating functions. We believe that our methods can be used in future research focusing on
counts of curves in ET × P1

T with ends of non-trivial expansion factors, i.e. tropicalizations of
curves in E × P1 satisfying tangency conditions with the ∞-section.

Note that for tropical stable maps without leaking, step (2) of Construction 9.1.3 is trivial:
we only compactify by adding vertices at infinity for the vertical ends of direction (0, 1). We
also neglect markings for these upper vertical ends. These curves, providing counts of curves
satisfying point conditions in E × P1, play the main role in this chapter.
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2

d2 = 2

d1 = 1

Figure 9.2: Left: A cut tropical stable map (Γ, f) to ET × P1
T of bidegree (d1, d2) = (1, 2)

and genus 1. Right: A non-cut picture, where step 1 of Construction 9.1.3 is used. The leaky
degree is {−1, 1}.

L2 = 1 L1 = −1

root
vertex

T1

V

Figure 9.3: Left: An example of a tree T1 as in step 2 of Construction 9.1.3 with its orientation
and labels. Right: A glued picture that is produced by Construction 9.1.3 by taking the cut
tropical stable map on the left of Figure 9.2, the tree T1 and nV = 2. The two arrows mark
the intersections which we need to take into account for nV = 2.

Definition 9.1.4. Two tropical stable maps are equivalent, if they differ only in the markings
for the ends of primitive direction (±1, 0), i.e. the glued graph and the map to ET × P1

T from
Construction 9.1.3(1) coincide. By abuse of notation, we consider tropical stable maps only up
to equivalence.

Depending on the image of their end vertices, an end of direction (L1, 1) and an end of
direction (L2, 1) of a cut tropical stable map can intersect. In the dual subdivision for f(Γ),
such an intersection corresponds to a parallelogram. Consider the dual subdivision without
these parallelograms, and let d1 be the minimal distance of its vertices to its base line (see
Chapter 5 for more about dual subdivisions). Let d2 be the number of ends of direction (0,−1)
which equals the number of ends of direction (Li, 1) for all i. We call (d1, d2) the bidegree (see
Figure 9.2) of the tropical stable map (Γ, f) for leaky degree ∆ to ET × P1

T.

We define the genus of a tropical stable map (Γ, f) to ET×P1
T to be the genus of the graph

Γ′ obtained by gluing pairs of ends of Γ as in Construction 9.1.3(1). We say that a tropical
stable map to ET × P1

T is connected if Γ′ is connected. If ν ` d1 is the partition of expansion
factors of the ends of Γ of direction (1, 0) (equivalently, (−1, 0)) and the genus of (Γ, f) is g,
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then Γ has genus g − `(ν), where `(ν) denotes the length of the partition ν.

Definition 9.1.5 (Point conditions). For points p1, . . . , pn ∈ R2, a tropical stable map (Γ, f)
to ET×P1

T satisfies the point conditions (p1, . . . , pn) if the point f(xi) to which the end marked
xi is contracted equals pi.

Remark 9.1.6. Notice that a tropical stable map to ET × P1
T satisfying point conditions can

be viewed as a tropical stable map to the R2 that satisfies end and point conditions, where the
end conditions are imposed by gluing (see Definition 9.1.11). In particular, the theory of counts
of plane tropical curves applies, see [Mik05, GM07a, GM07b, GM08]. The end conditions that
are imposed by gluing are not necessarily in general position, for example there can be an
edge of the glued graph Γ′ in Construction 9.1.3(1) that is ”curled” several times. In Γ, this
edge is cut into several connected components which are all mapped to the same horizontal
line. If we shift the end conditions slightly, we have a tropical stable map to R2 satisfying
general conditions, and thus it is 3-valent and, away from the contracted marked ends, locally
an embedding.

Example 9.1.7. Let p1, . . . , p5 ∈ R2 be general positioned points. Figure 9.4 shows a tropical
stable map to ET × P1

T of leaky degree ∆ = {−1, 1} with a curled edge such that the point
conditions are satisfied. Note that we need to fix pairs of ends with the same y-coordinate to
make the gluing unique.

p1
p2

p3 p4
p5

Figure 9.4: A (cut) tropical stable map satisfying point conditions. Note that one edge is
curled once. The different pairs of end markings tell us how to glue, but note that we shifted
the y-coordinates of glued ends a bit in order to get a better picture (in fact their y-coordinates
are the same).

For n := 2d2 + g − 1 points p1, . . . , pn ∈ R2 in (tropical) general position, there are finitely
many tropical stable maps (Γ, f) to ET × P1

T of bidegree (d1, d2) and genus g satisfying the
point conditions. Furthermore, each Γ is 3-valent, and f is an embedding locally around the
vertices which are not adjacent to contracted ends. In particular, the multiplicity of a tropical
stable map can be defined as in the original count of plane tropical curves [Mik05]:

Definition 9.1.8. Let (Γ, f) be a tropical stable map to ET × P1
T such that Γ is 3-valent,

and f is an embedding locally around the vertices which are not adjacent to marked ends.
For a vertex V of Γ which is not adjacent to a marked contracted end, we define its vertex
multiplicity multV (Γ, f) to be | det(v1, v2)|, where v1 and v2 denote the direction vectors of two
of its adjacent edges.

We define the multiplicity of (Γ, f) to be the product of its vertex multiplicities, i.e.

mult(Γ, f) =
∏
V

multV (Γ, f),

where the product goes over all vertices not adjacent to marked contracted ends.
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Definition 9.1.9. Fix positive integers d1, d2 and g. Fix n = 2d2 +g−1 points p1, . . . , pn ∈ R2

in (tropical) general position. Let N trop
(∆,d1,d2,g)

be the number of connected tropical stable maps

to ET × P1
T of leaky degree ∆, bidegree (d1, d2) and genus g satisfying the point conditions

p1, . . . , pn, counted with multiplicity as in Definition 9.1.8. If we only list 3 subscripts, then
this refers to the case without leaking, i.e.

N trop
(d1,d2,g)

:= N trop
({0,...,0},d1,d2,g)

.

As usual, the analogous count of not necessarily connected tropical stable maps is denoted
by N trop,•

(∆,d1,d2,g)
, resp. N trop,•

(d1,d2,g)
.

Remark 9.1.10. The numbers of Definition 9.1.9 are independent of the exact positions of
the point conditions by Remark 9.1.6.

9.1.2 Relative tropical stable maps

The correspondence theorem we prove in Subsection 9.1.3 relies on cutting open the infinite
cylinder and obtaining from the tropical stable maps within tropical stable maps to R2 with
tangency conditions on the cut line. The latter are known to produce relative Gromov-Witten
invariants. We introduce these tropical stable maps in Definition 9.1.11, and relate them to
tropical stable maps to ET × P1

T in Proposition 9.1.14.

Definition 9.1.11 (Relative tropical stable map). Fix partitions µ+, φ+, µ− and φ− such
that the sum d1 of the parts in µ+ and φ+ equals the sum of the parts in µ− and φ−. Let
n1 := `(φ+)+`(φ−) and n2 := `(µ+)+`(µ−). Fix n ∈ N>0 and a leaky degree ∆ = {L1, . . . , Ld2}
which is a multiset containing elements of Z such that

∑d2
i=1 Li = 0.

A relative tropical stable map matching the discrete data above is a (not necessarily con-
nected) tropical stable map to R2 of leaky degree ∆, with n+ n1 + n2 marked ends satisfying:

1. The direction of the ends are imposed as follows:

� The marked ends xi for i = 1, . . . , n are contracted, i.e. v(xi) = 0.

� The other marked ends are of primitive direction (±1, 0).

� There are d2 ends of direction (0,−1).

� There is an end of direction (Li, 1) for each i = 1, . . . , d2.

� The partition of expansion factors of the marked ends with primitive direction (1, 0)
is (µ+, φ+).

� The partition of expansion factors of the marked ends with primitive direction
(−1, 0) is (µ−, φ−).

The genus of a relative tropical stable map (Γ, f) is defined to be the genus of Γ. We say
(Γ, f) is connected if Γ is.

For relative tropical stable maps, end conditions can be imposed by requiring that the
y-coordinate of the horizontal line to which f(xi) is mapped equals a fixed value yi for the
end marked i. By convention, we fix y-coordinates for the ends corresponding to φ+ and φ−.
For points and end conditions in general position, every relative tropical stable map satisfying
the conditions has a 3-valent source graph and is locally an embedding. We can define its
multiplicity similar to Definition 9.1.8:
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Definition 9.1.12. Let µ+, φ+, µ− and φ−, ∆, d1, d2, n, n1 and n2 be as in Definition 9.1.11.
Fix n points in general position and n1 y-coordinates for ends. For a relative tropical stable
map (Γ, f) satisfying the point and end conditions, we define its multiplicity as

mult(Γ, f) :=
1∏

i φ
+
i

∏
j φ
−
j

∏
V

multV (Γ, f),

where the last product goes over all vertices V not adjacent to contracted ends and multV (Γ, f)
is defined in 9.1.8.

Definition 9.1.13. Fix µ+, φ+, µ− and φ−, ∆, d1, d2, n, n1 and n2 as in Definition 9.1.11,
and a genus g. Fix n := n2 + 2d2 + g − 1 points in general position and n1 y-coordinates for
ends. For the invariant

〈(φ−, µ−)|τ0(pt)n|(φ+, µ+)〉trop,∆,(d1,d2)
g,n ,

we count connected relative tropical stable maps of genus g, matching the data and satisfying
the conditions with their multiplicity as defined in 9.1.12. The invariant

〈(φ−, µ−)|τ0(pt)n|(φ+, µ+)〉trop,∆,(d1,d2),•
g,n

denotes the analogous count of not necessarily connected relative tropical stable maps. For the
case ∆ = {0, . . . , 0}, we drop the superscript ∆ from the notation above.

Proposition 9.1.14. The number N trop,•
(∆,d1,d2,g)

of tropical stable maps to ET×P1
T of leaky degree

∆, bidegree (d1, d2) and genus g satisfying general point conditions equals a sum of counts of
relative tropical stable maps:

N trop,•
(∆,d1,d2,g)

=
∑

(µ,φ) `d1

∏
i µi
∏
j φj

|Aut(µ)||Aut(φ)|
〈(µ, φ)|τ0(pt)n|(φ, µ)〉trop,∆,(d1,d2),•

g−`(µ)−`(φ),n .

Here, the sum goes over all pairs of partitions (µ, φ) of d1.
In particular, the corresponding equality holds for the case ∆ = {0, . . . , 0}, for which the

superscript ∆ is dropped from the notation above.

Proof. Fix a tropical stable map (Γ, f) to ET × P1
T contributing to N trop,•

(∆,d1,d2,g)
. Consider Γ

minus the closures of the contracted ends. Since the point conditions are in general position,
each connected component contains at least one end. There can be connected components of
Γ which just consist of a single unbounded edge of primitive direction (±1, 0), we consider the
left and the right part as an end. Such connected components arise from edges of the glued
graph Γ′ from Construction 9.1.3(1) which are curled multiple times. Let us first consider ends
which are not part of such connected components.

An end is fixed by the point conditions if it is the unique end in its connected component.
The other ends are moving: we can form a 1-parameter family of tropical stable maps of the
same combinatorial type that still meet the point conditions by shifting one of the moving ends
slightly and letting the other edges follow.

We treat one end of a component consisting of a single unbounded edge as a fixed end, and
the other as a moving end, opposite to the assignment of the end they glue to.

Let φ be the partition of expansion factors of ends of primitive direction (−1, 0) which are
fixed by the point conditions, and µ the partition of expansion factors of ends of primitive
direction (−1, 0) which are moving. Then (µ, φ) is a partition of d1. Furthermore, the gluing
condition implies that the expansion factors of the ends of primitive direction (1, 0) are also
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given by (µ, φ), however, the ones corresponding to φ must be moving, since the gluing already
imposes a condition on them. Vice versa, the ones corresponding to µ must be fixed, since they
impose conditions by gluing.

In this way, we can interpret each tropical stable map to ET × P1
T as a relative tropical

stable map.
The factors of

∏
i µi
∏
j φj show up because the multiplicity of the relative tropical stable

maps differs from the multiplicity of the tropical stable map to ET × P1
T by factors of 1

w for
each expansion factor w of fixed ends, and the ends with expansion factors φj are fixed on the
left while the ones with expansion factors µi are fixed on the right.

The factors of 1
|Aut(µ)||Aut(φ)| show up because the relative tropical stable maps have marked

ends of primitive direction (±1, 0), and we forget such markings for tropical stable maps to
ET × P1

T.

9.1.3 Correspondence theorems

Correspondence Theorems for relative Gromov-Witten invariants of Hirzebruch surfaces have
been studied before [GM07a, CJMR18]:

Theorem 9.1.15. Relative Gromov-Witten invariants of P1 × P1 are equal to their tropical
counterparts. This holds both for the connected and the disconnected theory:

〈(µ, φ)|τ0(pt)n|(φ, µ)〉P1×P1,(d1,d2)
g,n = 〈(µ, φ)|τ0(pt)n|(φ, µ)〉trop,{0,...,0},(d1,d2)

g,n

〈(µ, φ)|τ0(pt)n|(φ, µ)〉P1×P1,(d1,d2),•
g,n = 〈(µ, φ)|τ0(pt)n|(φ, µ)〉trop,{0,...,0},(d1,d2),•

g,n .

Using the degeneration formula in Proposition 7.2.4 together with the tropical relation of
counts of stable maps to ET×P1

T and relative tropical stable maps, Proposition 9.1.14, we can
deduce:

Theorem 9.1.16 (Correspondence theorem for E × P1). Notation of definitions 7.2.1, 9.1.9
is used. Gromov-Witten invariants of E × P1 agree with the corresponding tropical counts of
stable maps to ET × P1

T without leaking:

N•(d1,d2,g)
= N trop,•

(d1,d2,g)
.

Since connectedness can be read off the dual graph of a degeneration, we can also deduce
the version for connected numbers:

N(d1,d2,g) = N trop
(d1,d2,g)

.

9.2 Pearl chains

Using a floor diagram technique as in Chapter 6, we introduce a finite method to list all tropical
stable maps of genus g, leaky degree ∆ and bidegree (d1, d2) to ET × P1

T — we count curled
pearl chains.

A floor diagram technique relies on picking particular point conditions for which a further
degeneration for the tropical stable maps is achieved: as in Figure 9.7, each tropical stable
map satisfying the particular point conditions can be split into its horizontal edges (of which
each meets a point) and its so-called floors. These remaining parts, the floors, each contain
one downward- and one upward-pointing end and meet precisely one point condition also. By
shrinking the floors to white vertices, we obtain a bipartite graph, which, due to its embedding
in ET × P1

T, comes with a natural projection to ET. This projection is what we call a curled
pearl chain, the source is what we call a pearl chain. The process how to obtain a curled pearl
chain from a tropical stable map to ET × P1

T is described in Construction 9.2.6.
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9.2.1 Pearl chains and curled pearl chains

Definition 9.2.1 (Pearl chain). Let d2 and g be positive integers. A pearl chain of type (d2, g)
is a (non-metric) connected graph P of genus g. It has d2 white and d2 + g − 1 black vertices.
Edges can only connect a white with a black vertex, but not vertices of the same color. Black
vertices must be 2-valent, white vertices can have any valence. There are no cycles of length
two.

3 3 7

Figure 9.5: Some examples of pearl chains of type (3, 2) and a non-example (the right picture
contains a cycle of length 2).

To define curled pearl chains, leaky tropical covers are recalled and their degree is defined:

Definition 9.2.2 (Leaky tropical covers). Consider a tropical cover π : Γ → ET of a tropical
elliptic curve as in Definition 7.1.9, and assume that the images of the vertices of Γ are distinct.
Let p ∈ ET be the image of the vertex v. Fix an orientation of ET. Let f1 and f2 be the two
flags of ET adjacent to p, ordered such that the orientation is respected. We say that there is
a leaking of L ∈ Z at p (resp. at v) if

dv,f1 − dv,f2 = L

holds for the local degrees of π at v with respect to fi for i = 1, 2. If not all vertices of a
tropical cover π : Γ → ET satisfy balancing, but some have leaking, we say that it is a leaky
tropical cover.

For a leaky tropical cover π : Γ → ET, define the degree d to be the minimum of all sums
over all local degrees of preimages of a point a with respect to an adjacent flag f ′, i.e.

d :=
∑
p 7→a

dp,f ′ .

Definition 9.2.3 (Curled pearl chains). Fix d2, g ∈ N>0. Fix a multiset ∆ = {L1, . . . , Ld2}
that contains elements of Z such that their sum vanishes, i.e.

∑d2
i=1 Li = 0. Let n := 2d2 +g−1,

and let ET be a tropical elliptic curve on which we fix n+ 1 points p0, . . . , pn ordered this way.
Notice that this choice fixes an orientation of ET. Let P be a pearl chain of type (d2, g).
A curled pearl chain of type (∆, d2, g) is a leaky tropical cover π : P ′ → ET, where P ′ is a
metrization of P, such that each π−1(pi) contains one vertex for i = 1, . . . , n, and such that

(1) each element L of ∆ corresponds to a white vertex with leaking L (in particular, there
are d2 white vertices), and

(2) the black vertices are balanced.

Definition 9.2.4. Let Npearl
(∆,d1,d2,g)

be the weighted count of curled pearl chains of type (∆, d2, g)

and degree d1. Each curled pearl chain is counted with multiplicity
∏
ewe, the product goes
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over all expansion factors of edges. If we write Npearl
(d1,d2,g)

, this refers to the case without leaking

∆ = {0, . . . , 0}, i.e.

Npearl
(d1,d2,g)

:= Npearl
{0,...,0}(d1,d2,g)

.

Example 9.2.5. We want to determine Npearl
(2,2,1). We list curled pearl chains of type (2, 1)

and degree 2 below, where we suppress ET and the map π and fix the upper white vertex as
preimage of p1 instead (the numbers i of the vertices in Figure 9.6 indicate to which point pi
on ET the vertices are mapped to). One curled pearl chain has multiplicity 24 = 16 and the
rest has multiplicity 1. So Figure 9.6 yields 16 + 14 = 30 curled pearl chains counted with
multiplicity. Since all vertices are 2-valent, we can exchange the colors (i.e. fix a black vertex
as preimage of p1) and obtain a factor 2. Therefore

Npearl
(2,2,1) = 60.
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Figure 9.6: Curled pearl chains contributing to Npearl
(2,2,1).

9.2.2 Floor-decomposed tropical stable maps to ET × P1
T

Since the images of tropical stable maps to ET×P1
T can be viewed as tropical plane curves, we

can also make use of the floor diagram technique [BM08, FM10] as in Chapter 6 by picking a
horizontally stretched set of point conditions (similar to Definition 6.1.1).
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p1
p2

p3 p4
p5

Figure 9.7: Left: The tropical stable map to ET×P1
T of leaky degree {−1, 1} with a curled edge

from Example 9.1.7, where we indicated the floors. Right: The curled pearl chain Construction
9.2.6 associates to this tropical stable map (we suppressed the map π).

Every tropical stable map (Γ, f) of leaky degree ∆ = {L1, . . . , Ld2} satisfying these con-
ditions is floor-decomposed, i.e. every connected component of Γ minus the edges of primitive
direction (±1, 0) (called a floor) contains exactly one marked end which satisfies a point con-
dition, one end of direction (0,−1) and one end of some direction (Li, 1). Furthermore, each
edge of primitive direction (±1, 0) (called an elevator), except for n1 ends whose y-coordinates
are imposed by the gluing condition, is adjacent to precisely one marked end that satisfies a
point condition.

Construction 9.2.6 (Tropical stable map 7→ curled pearl chain). Given a floor-decomposed
tropical stable map (Γ, f) to ET×P1

T of bidegree (d1, d2) and genus g satisfying n = 2d2 +g−1
horizontally stretched point conditions, a curled pearl chain π : P ′ → ET can can be associated
to it as follows:

As in Construction 9.1.3(1), let Γ′ be the graph obtained from Γ by gluing the pairs of ends
of primitive direction (±1, 0). Shrink each floor in Γ′ to a white vertex. Shrink the marked
points on elevators to black vertices. The graph obtained this way is P ′. Its edges correspond
to elevator edges of Γ′, see Figure 9.7.

Let pr denote the vertical projection of ET×P1
T to a tropical elliptic curve and let p1, . . . , pn

be the images of the horizontally stretched point conditions. The map π can be viewed as the
composition of (the extension of) f with pr. It maps the white vertex arising from the floor
containing xi to pi in E, and the black vertex arising from xj to pj . The edge of P arising from
an elevator edge of Γ′ is mapped as the projection of the elevator edge. The expansion factors
we of the edges of P are given as the expansion factors of the corresponding elevator edges of
Γ′. Note that the leaky degree of the tropical stable map and the leaking of the associated
curled pearl chain coincide.

Lemma 9.2.7. Construction 9.2.6 associates a curled pearl chain π : P ′ → ET of type (∆, d2, g)
and degree d1 to a floor-decomposed connected tropical stable map (Γ, f) to ET × P1

T of leaky
degree ∆, bidegree (d1, d2) and genus g.

Proof. Denote ∆ = {L1, . . . , Ld2}. The tropical stable map has d2 ends of direction (0,−1)
and exactly one end of directions (Li, 1) for each i = 1, . . . , d2. Each floor of its floors contains
one end of direction (0,−1) and one of direction (Li, 1) for some i. The white vertices of P ′
come from the d2 floors. The black vertices come from the remaining d2 + g − 1 points. Every
elevator edge of Γ′ must be fixed by a point, so the corresponding edge in P must be adjacent
to a black vertex. An edge cannot connect two black vertices since this would correspond to
an elevator edge adjacent to two contracted ends, which would then be mapped to the same
horizontal line. Since the point conditions are general, two contracted ends cannot be mapped
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to the same horizontal line. It follows that each edge of P ′ is adjacent to one black and one
white vertex. A black vertex comes from a contracted end and its two adjacent elevator edges,
thus it must be 2-valent. The graph P ′ arises from the glued graph Γ′ of Construction 9.1.3(1)
by shrinking floors resp. ends, hence it has the same genus. Assume P ′ had a cycle of length 2,
which necessarily connects a white with a black vertex. This would correspond to an elevator
edge of Γ′, starting at the floor corresponding to the white vertex and returning to the same
floor with the same y-coordinate. The balancing condition implies that the floor cannot have a
3-valent vertex adjacent to those two edges, the elevator loop would form a separate connected
component, which we excluded. Thus P ′ has no cycles of length 2. It follows that P, which
equals P ′ after forgetting metric data, is a pearl chain of type (d2, g). From the construction of
the map π, it is clear that the preimage of each pi contains exactly one vertex. Also, the two
flags adjacent to a black vertex are mapped to the two flags in E adjacent to the image vertex,
and their expansion factors agree: they correspond to the two elevator edges adjacent to a
contracted end, which by the balancing condition must have direction (we, 0) resp. (−we, 0).
For a white vertex, which represents a floor of (Γ, f), note that it has two non-contracted ends
of direction (0,−1) and (Li, 1) for some i. The other edges leaving the floor are the elevators,
they are of primitive direction (±1, 0). It follows from the balancing condition that there is
leaking of ∆ at the white vertices. Thus, π : P ′ → ET is a curled pearl chain of type (∆, d2, g).
For a floor-decomposed tropical stable map, the first entry of the bidegree (d1, d2) equals the
minimum of the sums of expansion factors of all elevators passing a fixed vertical line. This
equals the degree of the curled pearl chain constructed from (Γ, f).

9.2.3 Counts of leaky tropical stable maps to ET × P1
T and pearl chains

Theorem 9.2.8. The count of curled pearl chains of type (∆, d2, g) and degree d1 from Defi-
nition 9.2.4 equals the number of connected tropical stable maps to ET × P1

T of leaky degree ∆,
genus g and bidegree (d1, d2) (see Definition 9.1.2):

Npearl
(∆,d1,d2,g)

= N trop
(∆,d1,d2,g)

.

In particular, for the case without leaking, we have

Npearl
(d1,d2,g)

= N trop
(d1,d2,g)

.

Proof. Given a tropical stable map contributing to N trop
(∆,d1,d2,g)

, we know from Construction

9.2.6 and Lemma 9.2.7 how to construct a curled pearl chain contributing to Npearl
(∆,d1,d2,g)

. Here,
we want to show that Construction 9.2.6 yields a bijection between the set of tropical stable
maps contributing to N trop

(∆,d1,d2,g)
and the set of curled pearl chains contributing to Npearl

(∆,d1,d2,g)
,

and that each tropical stable map is counted with the same weight as its associated curled
pearl chain.

Pick general positioned horizontally stretched points p′1, . . . , p
′
n in R2. Given a curled pearl

chain π : P ′ → ET, each vertex of P corresponds to a point p1, . . . , pn ∈ ET via its image under
the map π. We construct a tropical stable map (Γ, f) satisfying the point conditions p′1, . . . , p

′
n

starting from local pieces of the image f(Γ) ⊂ R2.
For a black vertex mapping to pi ∈ ET, we draw germs of elevator edges adjacent to p′i.

Each elevator edge of the glued graph Γ′ must be fixed by a unique point. We draw end
germs for elevator edges of Γ which are moving ends, but whose y-coordinate is imposed by the
gluing conditions. If an edge of P curls multiple times, this corresponds to multiple connected
components of Γ consisting of a single edge which is mapped to a horizontal line.

Consider a white vertex mapping to pj ∈ ET. It corresponds to a floor which satisfies
the point condition p′j . In Γ, a floor can be viewed as a path connecting an end of direction
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(0,−1) with an end of direction (Li, 1) — the choice of i here depends on the leaking of the
corresponding white vertex. The edges adjacent to this path in Γ are elevator edges, and they
correspond to the edges of P adjacent to the white vertex. There is a unique way to connect
the corresponding elevator edges (for which the horizontal line to which they map is already
fixed) via a path, and to map this floor with f , such that it meets the point p′j . In this way, we
have constructed a floor-decomposed stable map (Γ, f). This construction is obviously inverse
to Construction 9.2.6, and so it follows in particular that the discrete data matches.

The multiplicity of (Γ, f) is given by the product of its local vertex multiplicities (see
Definition 9.1.8). Each 3-valent vertex V which is not adjacent to a contracted end is contained
in a floor. Thus each such vertex V is adjacent to an elevator e. Hence the multiplicity
multV (Γ, f) of V is given by

multV (Γ, f) = |det

(
we ∗
0 ±1

)
| = we,

where the first column is the direction of the elevator e and the second column is the direction
of another edge adjacent to V . From the directions of the non-contracted ends that belong to
the floor — (0,−1) and (Li, 1) — and the balancing condition, it follows that the y-coordinate
of this direction vector must be ±1. Thus every such vertex V contributes a factor of the
expansion factor of its adjacent elevator edge. Vice versa, every elevator edge is adjacent to
one contracted end and one such vertex V . It follows that mult(Γ, f) equals the product of
the expansion factors of its elevators, which equals the weight with which the associated curled
pearl chain contributes to Npearl

(∆,d1,d2,g)
by Construction 9.2.6 and Definition 9.2.4.

9.3 Generating series and Feynman integrals

A pearl chain P of type (d2, g) can be turned into a Feynman graph by labeling its vertices by
x1, . . . , xn and by labeling its edges by q1, . . . , qr, see Definition 7.3.2. Therefore we can form
a Feynman integral I l1,...,lnP,Ω (q) for a total order Ω of the n vertices of P, see Notation 7.3.3 and
Definition 7.3.5. Thus results of Chapter 8 can be applied to study generating series of the
numbers N trop

(∆,d1,d2,g)
in terms of Feynman integrals.

9.3.1 The tropical mirror symmetry theorem for E × P1

We now state the main mirror symmetry theorem of this chapter and its corollaries involving
generating series of counts of curled pearl chains, tropical stable maps of leaky degree, and
Gromov-Witten invariants.

Theorem 9.3.1. Fix positive integers d2, g and a multiset ∆ = {L1, . . . , Ld2} containing ele-
ments of Z such that

∑d2
i=1 Li = 0. The generating series of counts of curled pearl chains of

type (∆, d2, g) (see Definition 9.2.4) equals a sum of Feynman integrals:∑
d1

Npearl
(∆,d1,d2,g)

qd1 =
∑
P

1

|Aut(P)|
∑
v

∑
Ω

IvP,Ω(q).

The first sum on the right hand side goes over all pearl chains P of type (d2, g) (see Definition
9.2.1), the second sum goes over all vectors v which associate the leakings L1, . . . , Ld2 to the
white vertices of P, and 0 to the black vertices.

Definition 9.3.2. We call the vectors v over which we sum in Theorem 9.3.1 the suitable
leaking vectors.



186 9. Tropical mirror symmetry for E × P1

Remark 9.3.3. Notice that the generating series on the left of the equality in Theorem 9.3.1
can be stratified into summands for pearl chains also — counting only those curled pearl chains
π : P ′ → ET for a fixed pearl chain P. The equality holds for each summand indexed by a
pearl chain P.

Using Theorem 9.2.8 and, for ∆ = {0, . . . , 0}, the Correspondence Theorem 7.1.19, we can
interpret the generating series on the left as generating series of counts of tropical stable maps
to ET × P1

T of some leaky degree ∆, and, for ∆ = {0, . . . , 0}, also as the generating series of
Gromov-Witten invariants of E × P1.

Corollary 9.3.4 (Tropical mirror symmetry for ET × P1
T). Fix positive integers d2, g and a

leaky degree ∆. The generating series of counts of connected tropical stable maps to ET × P1
T

of leaky degree, genus g and bidegree (d1, d2) (see Definition 9.1.9) equals a sum of Feynman
integrals: ∑

d1

N trop
(∆,d1,d2,g)

qd1 =
∑
P

1

|Aut(P)|
∑
v

∑
Ω

IvP,Ω(q).

The first sum on the right hand side goes over all pearl chains of type (d2, g) (see Definition
9.2.1), the second over all suitable leaking vectors.

Proof. This follows from Theorem 9.2.8 and Theorem 9.3.1 since the generating series on the
left are equal.

Also here, the left hand side can be stratified into sums corresponding to a fixed pearl
chain, where we sum only over those tropical stable maps (Γ, f) whose glued graph Γ′ (see
Construction 9.1.3(1)) equals P after shrinking floors and contracted ends and forgetting the
metric. We denote those counts by N trop,P

(∆,d1,d2,g)
. For each pearl chain P, we have∑

d1

N trop,P
(∆,d1,d2,g)

qd1 =
1

|Aut(P)|
∑
v

∑
Ω

IvP,Ω(q),

where the sum goes over all suitable leaking vectors.

Corollary 9.3.5 (Mirror symmetry for E×P1). Fix positive integers d2 and g. The generating
series of Gromov-Witten invariants of E × P1 of genus g and bidegree (d1, d2) (see Definition
7.2.1) equals a sum of Feynman integrals:∑

d1

N(d1,d2,g)q
d1 =

∑
P

1

|Aut(P)|
∑

Ω

IP,Ω(q).

The first sum on the right-hand side goes over all pearl chains P of type (d2, g) (see Definition
9.2.1).

Proof. This follows from Corollary 9.3.4 using the correspondence theorem 9.1.16 and taking
into account that the sum over all suitable leaking vectors v in Corollary 9.3.4 becomes trivial
for ∆ = {0, . . . , 0}.

Using tropical geometry, we can stratify the generating series on the left again into sum-
mands corresponding to a pearl chain: close to the tropical limit, we can take those stable
maps which degenerate to a tropical stable map with a fixed underlying pearl chain. If we
denote these numbers by NP(d1,d2,g)

, then we have∑
d1

NP(d1,d2,g)
qd1 =

1

|Aut(P)|
∑

Ω

IP,Ω(q). (9.1)
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Remark 9.3.6. Notice that the Feynman integrals that appear on the right-hand side of the
equation of Corollary 9.3.5 and in Equation (9.1) are equal to the complex analysis version of
Feynman integrals, see Theorem 7.3.7.

9.3.2 Labeled curled pearl chains and the proof of Theorem 9.3.1

The proof of Theorem 9.3.1 relies on methods developed in [BBBM17] and Chapter 8. The
main ingredient is a bijection between certain covers of graphs and monomials contributing
to a Feynman integral, see Theorem 8.1.14. We can apply this here to our case of curled
pearl chains, but to do this we need to introduce labeled curled pearl chains whose underlying
tropical cover is labeled.

Definition 9.3.7 (Labeled curled pearl chain). A labeled curled pearl chain π : P ′ → ET is a
curled pearl chain (Definition 9.2.3) for which we fix labels x1, . . . , xn for the vertices of P and
q1, . . . , qr for the edges.

Remark 9.3.8. By definition, a labeled curled pearl chain is a graph cover with a particular
source graph, namely a pearl chain, for which only suitable leaking vectors v are allowed, see
definitions 9.2.3, 9.3.2.

Definition 9.3.9. See definitions 8.1.8, 8.1.11, 9.2.1, 9.3.2 for the following. Let P be a pearl
chain of type (d2, g), Ω and order and a a multidegree. Let v be a suitable leaking vector for
∆.

We define Nv
P,a,Ω to be the number of labeled curled pearl chains whose source curve is

a metrization of P, of order Ω and multidegree a, where the leaking is imposed by v. Each
labeled curled pearl chain is counted with the product of the expansion factors we of the edges
e of P.

Remark 9.3.10. Notice that Nv
P,a,Ω is a count of graph covers with fixed order and multidegree

as in Definition 8.1.11, for which we chose a particular source graph (namely a pearl chain)
and a suitable leaking vector.

Theorem 9.3.11. Fix positive integers d2, g and a leaky degree ∆. Fix a labeled pearl chain
P, an order Ω and a multidegree a. Let v be a suitable leaking vector.

The numbers Nv
P,a,Ω of labeled curled pearl chains of Definition 9.3.7 are coefficients of a

refined Feynman integral:

Nv
P,a,Ω = Coef [q

a1
1 ...qarr ] I

v
P,Ω(q1, . . . , qr).

Proof. This follows from Theorem 8.1.14 using Remark 9.3.10.

The following is an immediate corollary of Theorem 9.3.11.

Corollary 9.3.12. Fix positive integers d2, g and a leaky degree ∆. Fix a labeled pearl chain
P, an order Ω and a multidegree a. Let v be a suitable leaking vector.

The generating series of the numbers of labeled curled pearl chains (see Definition 9.3.7)
equals a refined Feynman integral:∑

a∈Nr
Nv
P,a,Ωq

a1
1 · . . . · q

ar
r = IvP,Ω(q1, . . . , qr).

Proof of Theorem 9.3.1. The equality of the generating series and the sum of Feynman integrals
now follows from Corollary 9.3.12 by summing over all pearl chains P of type (d2, g) and leaking
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∆, and over all suitable leaking vectors v, setting the qk equal to q again for all k and keeping
track of automorphisms as in the proof of Theorem 8.1.4 using Theorem 8.1.9:

Fix a pearl chain, a leaking vector v, an order Ω and a degree d1. Let Nv
P,Ω,d1

be the
number of curled pearl chains of degree d1, order Ω and with underlying pearl chain P. Each
curled pearl chain π : P ′ → ET is counted with multiplicity

∏
e ω(e). There is a forgetful map

ft from the set of labeled curled pearl chains (with P, d1, v,Ω) to the set of curled pearl chains
by forgetting labels of edges and vertices.

Let π : P ′ → ET be a curled pearl chain as above. The automorphism group Aut(P) acts
transitively on ft−1(π) by relabeling edges and vertices. Since the stabilizer of this action is
Aut(π), the size of the orbit ft−1(π) is

| ft−1(π)| = |Aut(P)|
|Aut(π)|

.

Note that |Aut(π)| = 1 since Ω is fixed and there are no multiple edges. Each labeled curled
pearl chain π̃ in ft−1(π) is counted with multiplicity

∏
e ω(e). Hence∑

a:
∑
ai=d1

Nv
P,a,Ω =

∑
π̃:P ′→ET

∏
e

ω(e)

=
∑

π:P ′→ET

∑
π̃:P ′→ET:
ft(π̃)=π

∏
e

ω(e)

=
∑

π:P ′→ET

|Aut(P)|
∏
e

ω(e)

= |Aut(P)| ·Nv
P,Ω,d1

,

where the second sum goes over all labeled curled pearl chains with fixed multidegree a and
underlying pearl chain P.

Summing over all degrees d1 and using Corollary 9.3.12 with q1 = · · · = qr = q gives us∑
d1≥1

|Aut(P)| ·Nv
P,a,Ωq

d1 = IvP,Ω(q)

for a fixed pearl chain P of type (∆, d2, g) such that v is a suitable leaking vector. If we sum
over all P, all Ω and all v of type ∆, then Theorem 9.3.1 follows.

Example 9.3.13. Let a = (1, 0, 0, 1) be a multidegree and let v be zero, i.e. there is no leaking.
Fix points p0, . . . , p4 on ET and let Ω be the order associated to the identity in the permutation
group of 4 elements. We want to determine Nv

P,a,Ω, where P and its labels are depicted on
the left in Figure 9.8. Using Figure 9.6 from Example 9.2.5, we can see that the only labeled
curled pearl chain of multidegree (1, 0, 0, 1) and order Ω is the one shown on the right below.
The gray dots indicate the preimages of p0 ∈ ET. Since this labeled curled pearl chain has
multiplicity 1, we have NP,a,Ω = 1. This count can be verified using Theorem 9.3.11.

x1

x2

x3

x4

q1

q2q3

q4

x1

x2

x3

x4

q1

q2q3

q4

Figure 9.8: Left: A pearl chain P with labels. Right: A labeled curled pearl chain.
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Figure 9.10: Curled pearl chains and their contributions to the refined Feynman integral.

Example 9.3.14. We want to provide a larger example illustrating Theorem 9.3.11. First of
all, fix the following data: we consider no leaking, the pearl chain P (which is of genus 2) is
shown in Figure 9.9, the order Ω corresponds to the identical permutation and the total degree
d should be 3. First, we want to determine the left hand side of Theorem 9.3.11 for the given
input data, i.e.

∑
aNP,a,Ω, where the sum goes over all a contributing to a total degree of 3.

After that, we calculate the refined Feynman integral on the right-hand side and compare its
coefficients to the combinatorial count of labeled pearl chains from before.

x2

x3

x4

x1

q4

q2

q3

q1

x5
q5

q6

Figure 9.9: Left: A pearl chain P. Right: P with labels.

Since we fixed an order Ω, we should label the pearl chain’s vertices and edges (see Figure
9.9) before curling them. Using Figure 9.10, we determine

∑
aNP,a,Ω. Figure 9.10 shows

schematic representations of labeled curled pearl chains: we suppress the elliptic curve ET and
only show the source curve of each cover. The labels of the source curve are also suppressed,
but can easily be seen from comparing Figure 9.10 to Figure 9.9. Each curled pearl chain
contributes with the product of its source curve’s edge expansion factors (the edge expansion
factors not equal to 1 are shown in Figure 9.10), thus∑

a

NP,Ω,a = 96.

The sum of the refined Feynman integral’s terms that are of degree 3 is

40q2
4q5 + 40q4q

2
5 + 4q4q5q6 + 4q3q4q5 + 4q3q

2
5 + 4q2

4q6,
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which makes 96q3 if we set q1 = · · · = q4 = q, i.e. we obtained exactly the coefficient which we
expected from our combinatorial count. The contributions of each term can directly be seen
from our curled pearl chains. These contributions can be found under each curled pearl chain
in Figure 9.10.

9.4 Quasimodularity

Following the study of quasimodularity for generating series of Gromov-Witten invariants of an
elliptic curve, Oberdieck and Pixton conjectured a quasimodularity statement for cycle-valued
generating series of Gromov-Witten invariants of elliptic fibrations (Conjecture A [OP18]),
which they prove for the case of certain products involving an elliptic curve (Corollary 2).

As in Section 8.1.4 of Chapter 8, our tropical mirror symmetry results (see Theorem 9.3.1,
Corollary 9.3.4 and Corollary 9.3.5) hand us a new way to study quasimodularity by making
use of Feynman integrals. The quasimodularity (of mixed weight) of a summand IP(q) for a
fixed pearl chain P can be deduced from the recent study of quasimodularity for graph sums
in [GM20].

When passing to the tropical limit, the summands IP(q) obtain a meaning as summands
of the generating series corresponding to a fixed pearl chain:

Remark 9.4.1. Fix positive integers d2, g, and a pearl chain P of type (d2, g).
Then the following generating series coincide (see also Figure 1.4):

(1) the generating series of Gromov-Witten invariants of E×P1 of bidegree (d1, d2) and genus
g which correspond to a fixed pearl chain P close to the tropical limit,

(2) the generating series of tropical stable maps to ET × P1
T of bidegree (d1, d2) and genus g

with fixed underlying pearl chain P,

(3) the generating series of curled pearl chains of type (d2, g) without leaking with fixed
underlying pearl chain P.

In other words, ∑
d1

NP(d1,d2,g)
qd1

︸ ︷︷ ︸
(1)

=
∑
d1

N trop,P
(d1,d2,g)

qd1

︸ ︷︷ ︸
(2)

=
∑
d1

Npearl,P
(d1,d2,g)

qd1

︸ ︷︷ ︸
(3)

. (9.2)

By Theorem 9.3.1, the series in Equation (9.2) equal a sum of Feynman integrals, namely

1

|Aut(P)|
∑

Ω

IP,Ω(q).

Theorem 9.4.2. Fix positive integers d2, g and a pearl chain P of type (d2, g). Each summand
IP,Ω(q) corresponding to an order Ω in the generating series (9.2) is a quasimodular forms of
mixed weight at most 4(d2 + g − 1).

This follows from Theorem 1.1 resp. Theorem 6.1 in [GM20]. These results imply that each
summand IP,Ω(q) corresponding to an order Ω is a quasimodular form of mixed weight at most
2r, where r is the number of edges of P. Note that r equals two times the number of black
vertices of P (which is by definition d2 +g−1) because black vertices are 2-valent and no black
vertex is adjacent to a black vertex.

As a consequence, the generating series which is the sum of the ones in Equation (9.2),
summing over all pearl chains P, is a quasimodular form:
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Corollary 9.4.3. Let d2, g be positive integers. Then the generating series of Gromov-Witten
invariants of E × P1 (resp. of tropical stable maps to ET× P1

T of bidegree (d1, d2) and genus g,
resp. of curled pearl chains of type (d2, g))∑

d1

N(d1,d2,g)q
d1 =

∑
d1

N trop
(d1,d2,g)

qd1 =
∑
d1

Npearl
(d1,d2,g)

qd1

is a quasimodular form of mixed weight at most 4(d2 + g − 1).

Proof. This follows from the quasimodularity of each summand corresponding to a pearl chain
P and an order Ω as considered in Theorem 9.4.2. The maximal weight arises because a pearl
chain of type (d2, g) has 2(d2 +g−1) edges, where d2 +g−1 is the number of black vertices.

In the following, we give an example illustrating Corollary 9.4.3 which states that the series∑
d1
Npearl

(d1,d2,g)
qd1 is a quasimodular form. Recall that

∑
d1
Npearl

(d1,d2,g)
qd1 is stratified as a sum

over orders Ω. We observe that for a choice of input data d2, g each of these strata contributes
with a summand that is a quasimodular form of mixed weight, but the sum over all orders
yields a homogeneous quasimodular form.

This is in accordance with the situation of generating series of Hurwitz numbers, where
each summand is quasimodular of mixed weight, but the whole sum is homogeneous [GM20].

Example 9.4.4. Let d2 = 2 and g = 1. Hence there is only one pearl chain P contributing
to
∑

d1
Npearl

(d1,d2,g)
qd1 , namely the one shown in Example 9.3.13. Using Corollary 9.3.12, we

can calculate the generating series for our pearl chain P and any order Ω in terms of refined
Feynman integrals. We observe that there are 8 orders Ω that are the elements of the symmetry
group

D4 = {(), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2), (2, 4), (1, 3), (1, 2)(3, 4), (1, 4)(2, 3)}

of the square, which all lead to the same generating series

g1 := . . .15092q11 + 13560q10 + 7701q9 + 5680q8 + 2520q7 + 1872q6 + 670q5

+ 344q4 + 92q3 + 20q2 + q.

The series g1 is a quasimodular form of mixed weight since it can be expressed in Eisenstein
series as

g1 =− 1

1080
E6(q) +

1

1080
E2(q)E4(q) +

1

6912
E2

4(q)− 1

2592
E2(q)E6(q)

+
1

3456
E2

2(q)E4(q)− 1

20736
E4

2(q).

Moreover, we observe that the remaining 16 orders all lead to the same generating series

g2 := . . .440q11 + 2220q10 + 888q9 + 1000q8 + 112q7 + 360q6 + 40q5 + 52q4

+ 8q3 + 2q2,

which is also a quasimodular form of mixed weight since it can be expressed in Eisenstein series
as

g2 =
1

2160
E6(q)− 1

2160
E2(q)E4(q) +

1

6912
E2

4(q)− 1

2592
E2(q)E6(q)

+
1

3456
E2

2(q)E4(q)− 1

20736
E4

2(q).
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Taking the sum, we obtain that the generating series∑
d1

Npearl
(d1,2,1)q

d1 = 8g1 + 16g2

=
1

288
E2

4(q)− 1

108
E2(q)E6(q) +

1

144
E2

2(q)E4(q)− 1

864
E4

2(q)

is a homogeneous quasimodular form of weight 8.

The observations from Example 9.4.4 are true in general, which follows from the study of
Oberdieck and Pixton (Theorem 7, Appendix A, [OP18]):

Theorem 9.4.5. Fix positive integers d2, g and a pearl chain P of type (d2, g). Then the gen-
erating series

∑
d1
N trop,P

(d1,d2,g)
qd1 obtained for a fixed pearl chain as the sum of the contributions

over all orders is a homogeneous quasimodular form of weight 4(d2 + g − 1).
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