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Abstract

Understanding the principles underlying human movement is the basis for investigating the
generation of healthy movements and, more importantly, the origins of motor disorders due
to neurodegenerative diseases or other pathological conditions. However, gaining this under-
standing is challenging since human motion is the result of a complex, dynamic interplay of
biochemical and biophysical processes in the musculoskeletal system and the hierarchically or-
ganized neuronal control structures. To study the interactions of these structures, computer
simulations that combine mathematical models of the musculoskeletal system with models of its
neuronal control provide a useful tool. In these simulations, single processes or whole functional
units can be disabled or perturbed to study the effects of these changes on the predicted move-
ments. The plausibility of the underlying models can be assessed by comparing the simulations
with data from human experiments and biologically inspired robotic models.

The purpose of this work was to use neuro-musculoskeletal models as tools to study concepts
of biological motor control. Of particular interest was the contribution of muscle dynamics to
the control, i.e. how the intrinsic musculoskeletal properties simplify motor control without
compromising motor accuracy. Additionally, the influence of proprioceptive reflex mechanisms
was tested in different scenarios. The neuro-musculoskeletal models that were used are a com-
bination of multibody musculoskeletal models of the arm or the whole body with a biologically
inspired hybrid equilibrium-point controller.

In a simulation study, we found that our arm model predicts realistic reactions to exter-
nal mechanical perturbations while performing one-degree-of-freedom goal-directed movements.
Based on this, we simulated the application of wearable assistive devices to compensate for un-
wanted hypermetria, i.e. an overshooting response in goal-directed movements associated with
cerebellar ataxia and other neurodegenerative disorders. We found that simple mechanical de-
vices may be sufficient to reduce the hypermetria to a normal level. However, we also observed
that the magnitude of torque and power that is required to compensate for the disorder may
be significantly underestimated if muscle-tendon characteristics are not considered in the com-
putational model. The results of these two studies confirmed the hypothesis from literature
that the morphology of musculoskeletal systems significantly contributes to the movement and
thus simplifies its control. Therefore, we made use of the information-theoretic approach of
quantifying morphological computation to characterize this contribution for goal-directed and
oscillatory arm movements with two degrees of freedom. The results asserted that the lower
levels of control, including the muscles and their activation dynamics, make important con-
tributions to the overall control hierarchy. For example, a simple piecewise constant muscle
stimulation signal that contains only little information results in a smooth movement.

The level of physiological detail that is included in our musculoskeletal models does not
only allow for the examination of motor control theories but also makes it possible to study



Abstract

quantities like internal forces in muscles and joints, usually not experimentally accessible. These
quantities are relevant, for example, in ergonomics and for the development of assistive devices.
In a whole-body simulation study, we investigated the contribution of the stretch reflex to the
resulting muscle forces during active external repositioning of the hip joint for a large range of
movement velocities. We found that, depending on the modeled cognitive state, the relative
force contribution of the feedback mechanism is not negligible, especially for high repositioning
velocities.

The entirety of our results shows that the properties of the musculoskeletal system signif-
icantly contribute to the generation and control of movement and, thus, it is important to
take them into account when modeling human movement. Therefore, the results advocate
the combination of a physiologically well-founded biomechanical and biochemical model of the
musculoskeletal system with biologically inspired concepts of motor control. These computer
simulations have proven to be a useful tool towards the comprehension of the processes under-
lying the generation of healthy and pathologically impaired human movements.



Kurzfassung

Das Verstandnis der Prinzipien, die menschlichen Bewegungen zugrunde liegen, ist die Ba-
sis fiir die Untersuchung der Entstehung gesunder Bewegungen und, was noch wichtiger ist,
der Entstehung motorischer Storungen aufgrund neurodegenerativer Erkrankungen oder an-
derer pathologischer Zustédnde. Dieses Verstandnis zu erlangen ist jedoch herausfordernd, da
menschliche Bewegung das Ergebnis eines komplexen, dynamischen Zusammenspiels von bio-
chemischen und biophysikalischen Prozessen im Bewegungsapparat und den hierarchisch or-
ganisierten neuronalen Kontrollstrukturen ist. Um die Wechselwirkungen dieser Strukturen zu
untersuchen, bieten Computersimulationen, die mathematische Modelle des muskuloskeletta-
len Systems mit Modellen seiner neuronalen Kontrolle kombinieren, ein niitzliches Werkzeug. In
diesen Simulationen kénnen einzelne Prozesse oder ganze Funktionseinheiten deaktiviert oder
gestort werden, um die Auswirkungen dieser Verdnderungen auf die vorhergesagten Bewegungen
zu untersuchen. Die Plausibilitdt der zugrundeliegenden Modelle kann durch den Vergleich der
Simulationen mit Daten aus Humanexperimenten und biologisch inspirierten Robotermodellen
beurteilt werden.

Das Ziel dieser Arbeit war es, neuro-muskuloskelettale Modelle als Hilfsmittel zur Unter-
suchung von Konzepten der biologischen Bewegungskontrolle zu verwenden. Von besonderem
Interesse war der Beitrag der Muskeldynamik zur Kontrolle, d.h. wie die intrinsischen musku-
loskelettalen Eigenschaften die motorische Kontrolle vereinfachen, ohne die motorische Genau-
igkeit zu beeintrachtigen. Zuséatzlich wurde der Einfluss propriozeptiver Reflexmechanismen in
verschiedenen Szenarien getestet. Die verwendeten neuro-muskuloskelettalen Modelle sind eine
Kombination von Mehrkérpermodellen der Muskel-Skelett-Struktur des Armes oder des ganzen
Korpers mit einem biologisch inspirierten hybriden Gleichgewichtspunkt-Kontrollmodell.

In einer Simulationsstudie stellten wir fest, dass unser Armmodell realistische Reaktionen auf
externe mechanische Storungen fiir zielgerichtete Bewegungen mit einem Freiheitsgrad vorher-
sagt. Auf dieser Grundlage simulierten wir die Anwendung von tragbaren Assistenzgeriten zur
Kompensation unerwiinschter Hypermetrie, d.h. einer iiberschiefsenden Reaktion bei zielgerich-
teten Bewegungen im Zusammenhang mit zerebelldrer Ataxie und anderen neurodegenerativen
Erkrankungen. Wir fanden heraus, dass einfache mechanische Hilfsmittel ausreichend sein kon-
nen, um die Hypermetrien auf ein normales Niveau zu reduzieren. Wir stellten jedoch auch
fest, dass die Grofse des Drehmoments und der Kraft, die zur Kompensation der Stérung erfor-
derlich sind, moglicherweise deutlich unterschatzt wird, wenn die Muskel-Sehnen-Eigenschaften
im Modell nicht beriicksichtigt werden. Die Ergebnisse dieser beiden Studien bestétigten die
Hypothese aus der Literatur, dass die Morphologie des Muskel-Skelett-Systems signifikant zur
Bewegung beitragt und somit deren Kontrolle vereinfacht. Deshalb haben wir einen informa-
tionstheoretischen Ansatz verwendet, um diesen Beitrag fiir zielgerichtete und oszillatorische
Armbewegungen mit zwei Freiheitsgraden zu charakterisieren. Die Ergebnisse bestétigten, dass
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die unteren Kontrollebenen, einschliefslich der Muskeln und ihrer Aktivierungsdynamik, wichtige
Beitrage zur gesamten Kontrollhierarchie leisten. Beispielsweise fiihrt ein einfaches, stiickweise
konstantes Muskelstimulationssignal, das nur wenig Information enthélt, zu einer geschmeidigen
Bewegung.

Der physiologische Detailgrad, der in unseren Muskel-Skelett-Modellen enthalten ist, ermog-
licht nicht nur die Untersuchung von Theorien zur motorischen Kontrolle, sondern auch die
Untersuchung von Grofen wie inneren Kréften in Muskeln und Gelenken, die experimentell
normalerweise nicht zugénglich sind. Diese Gréfen sind zum Beispiel in der Ergonomie und fiir
die Entwicklung von Assistenzgeréten von Bedeutung. In einer Ganzkorpersimulationsstudie un-
tersuchten wir den Beitrag des Dehnungsreflexes zu den resultierenden Muskelkréaften bei einer
aktiven externen Repositionierung des Hiiftgelenkes fiir einen grofsen Bereich von Bewegungsge-
schwindigkeiten. Wir fanden heraus, dass der relative Kraftbeitrag des Feedback-Mechanismus
vom modellierten kognitiven Zustand abhéngig ist und einen nicht vernachléssigharen Beitrag
leistet, insbesondere bei hohen Repositionsgeschwindigkeiten.

Die Gesamtheit unserer Ergebnisse zeigt, dass die Eigenschaften des Bewegungsapparates si-
gnifikant zur Erzeugung und Kontrolle von Bewegung beitragen und es daher wichtig ist, sie bei
der Modellierung der menschlichen Bewegung zu beriicksichtigen. Daher sprechen die Ergeb-
nisse fiir die Kombination eines physiologisch fundierten biomechanischen und biochemischen
Modells des Bewegungsapparates mit biologisch inspirierten Konzepten der motorischen Kon-
trolle. Diese Computersimulationen haben sich als ein niitzliches Werkzeug zum Verstédndnis der
Prozesse erwiesen, die der Erzeugung gesunder und pathologisch beeintrachtigter menschlicher
Bewegungen zugrunde liegen.
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1 | Introduction

1.1 Motivation

How are human movements generated and what happens if the neuronal control is im-
paired?

The coordinated movement of humans and other animals is a fascinating result of a dynamic
interplay between the nervous system, the biomechanical structures (muscles, skeleton, and
passive tissue), and the environment. Herein, an output descending from the central nervous
system is combined with sensory feedback from the body. The resulting motor command leads
to a stimulation of the muscles that drive the movement (Wise and Shadmehr, 2002). This
structure allows the human to perform dynamic, but precise and robust movements. Neuro-
degenerative diseases or other pathological conditions can, however, impair this well-matched
interplay by affecting neuronal structures that are involved in motor control, leading to move-
ment disorders. One example of such a neurodegenerative disease is cerebellar ataxia. Due
to atrophy in the cerebellum that can have different causes, patients suffering from cerebellar
ataxia experience motor dysfunction, balance problems, and ataxia in limbs and gait (Smeets
and Verbeek, 2014). For example, dysmetric voluntary movements lead to numerous difficul-
ties in their everyday life (Topka et al., 1998b). Herein, the term atazia describes unspecified
movement incoordination typically due to dysfunction in or injury to the cerebellum, while
dysmetria stands for movements over incorrect distances (hypermetria: overshoot, hypometria:
undershoot) (Latash, 2012). Another example of impairment due to neurodegeneration is mul-
tiple sclerosis (MS) that can lead to tremor, dysmetria, or other ataxic conditions (Koch et al.,
2007; Stadelmann, 2011). To find out more about possible causes and consequences of such
movement disorders, the healthy and impaired generation of movement needs to be understood.
For example, in the case of cerebellar ataxia, the role of the cerebellum in the movement gen-
eration and motor control needs to be identified to investigate the origins of the disorders that
result from its dysfunction.

Due to the complexity of the human organism, many studies investigating human movements
concentrate on the neuronal control, neglecting or simplifying the dynamics of the musculoskele-
tal system. In torque-driven models, for example, the outputs of the controller are torques that
are directly applied to the joints. The benefit of these models is that the joint torques for a
given desired trajectory can be calculated with standard inverse-dynamics algorithms. How-
ever, they do not consider the contribution of the viscoelastic properties of the muscle and
activation dynamics. Thus, the conclusions drawn from torque-driven models about motor
control might be unreliable, depending on the research question (Pinter et al., 2012). To ac-
count for this, additional negative feedback controllers (e.g., PD controller) can approximate

17
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the net muscular, biochemical and low-level neuronal reflex response to external perturbations
(e.g., Bhanpuri et al., 2014; Kalveram and Seyfarth, 2009). However, internal perturbations on
the neuronal or muscular level can not be reproduced as the contribution of these components
is not resolved separately. For the same reason, these models do not provide the possibility to
investigate proprioceptive feedback that is based on muscle fiber lengths like the stretch reflex.

On the other hand, there are advanced and detailed musculoskeletal models that often use
optimal control (Kistemaker et al., 2014; Pandy et al., 1990; Sharifi et al., 2016) or EMG
based muscle stimulation signals (Lloyd and Besier, 2003; Sartori et al., 2011) to drive forward-
dynamic simulations instead of including models of the neuronal control. However, there is
evidence suggesting that especially the interaction of the mechanical properties of the human
body with the neuronal control structures is key to understanding human motor control in
its entirety (Pinter et al., 2012; Todorov and Jordan, 2002). The complex high-dimensional,
nonlinear and redundant hierarchical structure of the human body may even simplify the task of
movement control as the intrinsic characteristics of the musculoskeletal system can be exploited
(Al Borno et al., 2020; Berniker et al., 2009; Haeufle et al., 2010a, 2020b; Koditschek et al.,
2004; Loeb et al., 1999; Ting and Macpherson, 2005). Therefore, an interdisciplinary approach
combining neuroscience, natural science, and engineering promises to provide a useful tool for
gaining new insights into the generation of biological movement. This integrative method that
investigates the coupling between the processing of neural information and the mechanical
behavior of the human body has been termed as neuromechanics (Nishikawa et al., 2007).

To investigate concepts of motor control, human experiments are usually the first choice. Mo-
tion capture systems can measure the kinematics of human movements, force contact sensors can
measure the force transmitted to the environment and with the aid of electromyography (EMG),
the electric activity generated by muscle cells during a movement can be detected. However, the
neuroscientific deductions from these experimental approaches are restricted due to their inher-
ent ethical and practical limitations. For example, it is not possible to remove or add specific
control structures to investigate their function. Therefore, computational neuro-musculoskeletal
models provide a valuable framework to investigate concepts of motor control as they enable
the testing of hypotheses to an extent that is not possible in human experiments (Pandy, 2001).
On this basis, the hierarchical composition of motor control and the contribution of muscle-
tendon dynamics and reflexes can be evaluated (Berniker et al., 2009; Campos and Calado, 2009;
Kistemaker et al., 2013; Latash, 2010). Also, it can be investigated how the movement genera-
tion process has to be disturbed to reproduce the movement of patients with neurodegenerative
movement disorders (Elias et al., 2018). This newly acquired knowledge about possible causes
of these disorders might, for example, help to treat their symptoms in neuro-rehabilitation.
Also, the design of assistive devices and (neuro-)prostheses can profit from models that make it
possible to predict the behavior of humans in the interaction with the device and to study quan-
tities like internal muscular and joint forces that are not experimentally accessible (Holzbaur
et al., 2005; Pennestri et al., 2007). Another possible benefit of the presented approach lies
in ergonomic research: Using neuro-musculoskeletal models, the internal load due to external
mechanical loads or repetitive movements (Glenday et al., 2020; Papachrysostomou, 2018) can
be predicted. Additionally, the biological control concepts that are developed this way can be
used to design new control mechanisms for technical devices (Nishikawa et al., 2007).

18



1.2 Objectives of the doctoral research

1.2 Objectives of the doctoral research

The overall goal of this work was to investigate biological motor control concepts and thus
contribute to the understanding of the processes underlying the generation of healthy and
impaired movements. Also, the roles of muscles and proprioceptive reflexes in the neuro-
musculoskeletal interplay are to be investigated.

To this end, a computational neuro-musculoskeletal model of the arm is implemented to
perform forward-dynamic computer simulations of human movements. The model should in-
clude the necessary level of physiological detail to allow for the investigation of motor control
hypotheses that rely on the viscoelastic properties of the muscles and feedback mechanisms.
At the same time, its implementation was supposed to be easy to use to allow for fast proofs
of concept, rapid prototyping, and an easy entry for student projects. Using this model in
combination with bio-inspired control concepts should make the reproduction of experimental
data gained from human test subjects possible. The successful prediction of human behavior
in these computer simulations can then indicate whether the suggested control hypothesis is
plausible. This framework also allows for the investigation of the contribution of the char-
acteristics of muscles and their activation dynamics to the observed behavior. In particular,
the question of whether the control can be simplified due to the stabilizing characteristics of
the musculoskeletal system should be addressed. In addition to that, the contribution of an
implemented stretch reflex to the movement is tested in different scenarios.

Besides the reproduction of healthy human movements in computer simulations, a future goal
would be to simulate pathological movements as well. For the investigation of the origins of
these impaired movements, the neuronal control model can be disturbed and the effects can be
compared to the behavior observed in patients with neurological motor disorders. Also, tech-
nical assistive devices to compensate for the disorders can be designed and tested in computer
simulations. First steps in these directions are taken in this project.

1.3 Overview of the project

The doctoral project that is presented in this thesis resulted in five manuscripts that are
described below (see Figure 1.1 and Chapter 2). For a better understanding, a summary of the
used methods is given in Chapter 3. The structure and benefit of musculoskeletal models are
explained and the arm model, as well as the whole-body model, that were used in the presented
studies, are described. For the stimulation of the muscles, an overview of concepts of human
motor control is given and the hybrid equilibrium point controller that was used is explained.
In addition to that, Chapter 3 contains an introduction to biologically inspired robotic models
and the concept of quantifying morphological computation.

Using the presented arm model, a bio-inspired control concept that includes a model of
proprioceptive feedback was implemented. To validate this neuro-musculoskeletal model of the
arm, human movements with and without external perturbations were reproduced (Chapter 4,
Manuscript 1). To this end, a way to determine or optimize the involved control parameters
needed to be found. Herein, the level of detail of the model allowed for the analysis of the
internal muscular force response to the perturbations.

As we were not only interested in the movement of healthy subjects, we also took a first
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Figure 1.1: Overview of the manuscripts that resulted from this doctoral project. A
bio-inspired hybrid equilibrium point controller (Section 3.3) was used to determine
muscle stimulations for the multibody models of the musculoskeletal structure of
the arm Arm26 (Section 3.2.4) and the whole-body model allmin (Section 3.2.5). In
the five manuscripts that resulted from this project, different kinds of perturbations
were applied to the simulated movements. More details on the manuscripts can be
found in Chapter 2.

step in the direction of modeling the motion of patients with neurological impairments and the
design of simple assistive devices to compensate for the disorders (Chapter 5, Manuscript 2).
Introducing a neuronal perturbation in the controller allowed us to produce an arm movement
with an overshooting behavior (hypermetria) that resembled the movement of patients with
neurodegenerative movement disorders. Simple assistive torque strategies were tested in the
computer simulations with different arm models and possible implications for the design of
wearable assistive devices were discussed.

The simulated perturbed movements indicated that the musculoskeletal system significantly
contributes to the resulting movement: The mechanical zero-time delay response of the muscle
characteristics compensated for the perturbations to a large extend and the influence of the
implemented feedback mechanism (with optimized feedback gains) was rather small. To quan-
tify the contribution of the musculoskeletal system to the resulting movement, we applied the
concept of quantifying morphological computation on different levels on the biological motor
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control hierarchy (Chapter 6, Manuscript 3).

Further, we showed that the control concept that we developed for the simulation model
can be transferred to a biologically inspired robot to reproduce human movements (Chap-
ter 7,Manuscript 4). This threefold framework of computer simulation, bio-inspired robot,
and data from human experiments can also be used to investigate other bio-inspired control
concepts.

To test the same control concept on a more complex model, we implemented it on a whole-
body musculoskeletal model (Chapter 8, Manuscript 5). With this model, we looked at the
reflex contribution to the muscle forces during an active external repositioning of the hip joint
by a technical device.

Finally, to show that our control concept also transfers to other kinds of musculoskeletal
models, we applied it to a finite element (FE) model. In comparison to multibody models,
FE models consider the deformation of soft tissues and are therefore more suitable for some
applications. However, predicting human movements using FE models is much more compu-
tationally expensive and, therefore, the determination of control parameters is more difficult.
Hence, we investigated whether the control parameters that were optimized for a multibody
model can be transferred to its FE equivalent (Chapter 9).
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2 | List of publications and personal
contributions

The content of this thesis is the product of a close collaboration with my colleagues and large
parts have been submitted for peer-reviewed publication in scientific journals or conferences.
Therefore, I would like to emphasize my personal contribution to these manuscripts below. All
involved co-authors agreed to this listing.

2.1 Accepted publications

Manuscript 1 (Stollenmaier et al., 2020b)

Title: Predicting perturbed human arm movements in a neuro-musculoskeletal
model to investigate the muscular force response

Authors: Katrin Stollenmaier, Winfried Ilg, and Daniel F.B. Haeufle

Journal: Frontiers in Bioengineering and Biotechnology

Year: 2020

Link: https://doi.org/10.3389/fbioe.2020.00308
(see also for electronic supplementary material)

Summary: Using the musculoskeletal arm model Arm26, we simulated static perturba-

tions of the inertia and damping properties of the arm, as well as dynamic
torque perturbations for one-degree-of freedom movements around the elbow
joint and reproduced experimental data with only one set of basic parame-
ters.

Contribution:  The project was conceptualized in cooperation with Daniel Haufle and with
advice from Winfried Ilg. I implemented the arm model and performed and
analyzed the numerical experiments under the supervision of Daniel Haufle.
I created all the figures for the manuscript and significantly contributed to all
parts of the text. I wrote the electronic supplementary material describing
the arm model.
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2 List of publications and personal contributions

Manuscript 2 (Stollenmaier et al., 2020d)

Title:

Authors:
Conference:

Year:
Summary:

Contribution:

Simulating the response of a neuro-musculoskeletal model to assistive forces:
implications for the design of wearables compensating for motor control
deficits

Katrin Stollenmaier, Ilka S. Rist, Fabio Izzi, and Daniel F.B. Haeufle
IEEE International Conference on Biomedical Robotics and Biomechatron-
ics — BioRob2020

2020

Using the musculoskeletal arm model Arm26, we simulated two-degree-of-
freedom point-to-point arm movements. By introducing inconsistent neu-
ronal control parameters, we induced hypermetria. We implemented me-
chanical and low-level assistive torque strategies in simulation which lead to
a reduction of hypermetria. We compared the predicted torques and powers
to the prediction of a torque-driven model.

The project was conceptualized in cooperation with Daniel Haufle. I per-
formed and analyzed one part of the numerical experiments and the corre-
sponding figures, the rest of the results were created under my supervision
by Ilka Rist who did a student project in our group. I drafted the manuscript
and significantly contributed to all parts of the text of the manuscript.

Manuscript 3 (Haeufle et al., 2020a)

Title:
Authors:
Journal:

Year:
Summary:

Contribution:

24

Morphological computation increases from lower- to higher-level of biological
motor control hierarchy

Daniel F.B. Haeufle, Katrin Stollenmaier, Isabelle Heinrich, Syn Schmitt,
and Keyan Ghazi-Zahedi

Frontiers in Robotics and Al, section Soft Robotics

2020

We simulated point-to-point and oscillatory human arm movements with
the neuro-musculoskeletal model Arm26. We then quantified morphological
computation with an information entropy-based approach on different levels
on the neuronal control hierarchy.

I performed the numerical experiments for the goal-directed movements and
analyzed the results. I created most of the figures and contributed to the
text of the manuscript as well as the electronic supplementary material.



2.3 Manuscripts ready for submission

2.2 Submitted manuscripts

Manuscript 5 (Stollenmaier et al., 2020a)

Title:

Authors:
Journal:

Year:
Summary:

Contribution:

Active external propulsion of the hip activates internal reflex-based resis-
tance forces depending on movement speed and neuronal preparedness: a
full-body computer simulation study

Katrin Stollenmaier, Daniel F.B. Haeufle, and Syn Schmitt

Computer Methods in Biomechanics and Biomedical Engineering (submit-
ted)

2020

Using the whole-body musculoskeletal model allmin in combination with
a model of low-level proprioceptive feedback, we investigated an external
repositioning of the hip joint by a technical device. For a large range of
movement velocities, we investigated the influence of the implemented feed-
back mechanism and the modeled cognitive state on the resulting internal
muscular forces.

The project was conceptualized in cooperation with Syn Schmitt with advice
from Daniel Haufle. I performed the numerical experiments and analyzed
the results. I drafted and finalized the manuscript and created all the figures
within. I significantly contributed to the electronic supplementary material
describing the used model.

2.3 Manuscripts ready for submission

Manuscript 4 (Stollenmaier et al., 2020c)

Title:
Authors:

Year:
Summary:

A coherent numerical and biorobotic framework to investigate neuro-
muscular interaction in goal-directed arm movements

Katrin Stollenmaier, Tobias Nadler, Christina Pley, Winfried Ilg, Simon
Wolfen, Syn Schmitt, and Daniel F.B. Haeufle

2020

We developed an integrated framework of data measured in human ex-
periments, the numerical musculoskeletal model Arm26, and a bio-inspired
robotic system with pneumatic muscles. The framework was designed for the
investigation of control concepts for two-degree-of-freedom point-to-point
arm movements, a setup commonly used in motor control studies. We
demonstrate the relevance of this framework using the example of a bio-
inspired intermittent hybrid equilibrium posture control scheme, which has
previously been successfully used to reproduce human arm movements in
computer simulation.
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Contribution:

26

The project was conceptualized in cooperation with Syn Schmitt and Daniel
Héufle. I performed the numerical experiments and plotted and analyzed
the resulting data from all three methods. I significantly contributed to
all parts of the text of the manuscript, in particular the parts describing
the computer simulation. I wrote the electronic supplementary material
describing the arm model.



3 | Methodological background

3.1 Modeling the interplay of the neuro-musculoskeletal
structures

What are computational neuro-musculoskeletal models and why do we use them?

Computational neuro-musculoskeletal models are a combination of mathematical models de-
scribing the neuronal and biophysical structures in the human body. They describe the signal-
ing cascade from the nervous system via the musculoskeletal structure to a resulting movement
(Figure 3.1). They consist of a musculoskeletal model describing the muscles interacting with
the skeleton and a motor control model that describes the neuronal control of these muscles.
These components are described in more detail in the following. One of the advantages of the
usage of such computational neuro-musculoskeletal models is that they allow for the devel-
opment and investigation of concepts of motor control. Single structures or whole functional
units can be removed or perturbed without practical or ethical limitations and the effects can
be analyzed.

Biochemical Torques acting
muscle activities on the joints
Activation Muscle
Nervous system dynamics model
yotemn/ u() a(t) F(t) (1) a(t)
Controller
Muscle stimulation Muscle-tendon unit Resulting joint
signals forces angle trajectory

Figure 3.1: The chain of signals that leads to a movement in the human body and
that is represented in neuro-musculoskeletal models. The nervous system,
or in our models the control model that represents the nervous system, generates
muscle stimulation signals over time u(¢). Due to biochemical processes, these
muscle stimulations lead to muscle activities a(t). The active muscles contract and
thus produce forces F(t) in the muscle-tendon units. Due to the attachment of
the muscles to the skeleton, these forces lead to torques T(¢) acting on the joints
resulting in a movement q(t).
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3 Methodological background

3.2 Models of the musculoskeletal system

How can the interaction between the muscles and the skeleton be described by a mathe-
matical model?

For modeling the musculoskeletal system, there are two main approaches: multibody simu-
lation (MBS) and the finite element method (FEM). At the cost of high computational effort,
finite element models allow for the detailed analysis of material stress and deformation and are
therefore more suitable for modeling micro-scale mechanics of single body parts than simulat-
ing the dynamic behavior of limbs or the whole body (Guess et al., 2010; Lloyd et al., 2012;
Navacchia et al., 2019; Stops et al., 2012). In particular, the determination of motor control
parameters can be challenging due to the high computational costs of every simulation run
(Chapter 9, Martynenko et al. (2019)). In contrast, multibody simulations using rigid bodies
coupled via constrained joints and forces are a simplification of the real world that allows the
computationally efficient calculation of the course of human movement with several degrees of
freedom. Therefore, we chose this multibody approach for most of our musculoskeletal models.

A forward-dynamic multibody model allows for the prediction of kinematics based on given
muscle stimulations without the need to invert the underlying set of differential equations.
However, the determination of these muscle stimulations for a desired movement is nontrivial,
especially due to the non-linearity of the system and the redundant setup of the muscles (see
Section 3.3). Due to this complex control task, many models are reduced to single body parts
or movement tasks. For example, there are forward-dynamic multibody models of walking (e.g.,
Anderson and Pandy, 2001; Geyer and Herr, 2010; Giinther and Ruder, 2003; John et al., 2013),
hopping (e.g., Haeufle et al., 2012a; van Soest et al., 1993Db), rising (Shelburne and Pandy, 2002)
and standing (e.g., Micheau et al., 2003; Walter et al., 2021) or arm movements (e.g., Huh and
Todorov, 2009; Kistemaker et al., 2006; Pinter et al., 2012; Song et al., 2008).

3.2.1 Modeling the skeletal structure

The basis of the multibody approach is that, using Newton’s second law (F = ma), the accel-
eration of each segment of the body can be determined given that the mass distribution and
all forces acting on the body are known. Since the deformations of the body segments are
small in comparison to the range of the movements we are interested in, the segments can be
approximated by rigid bodies. This means that the position and orientation of a segment can
be described by the position and orientation of its center of mass. Therefore, the equations of
motion for each degree of freedom can be formulated using the Lagrange approach:

i@i _oL i (3.1)
dt 0q; 9,

where JL'(q(t),q(t)) denotes the Lagrange function that is defined as the difference between
the kinetic and the potential energy of a system, g are generalized coordinates and F are
generalized forces. The approximation of the joints by simplified joint models (e.g., revolute
joints) allows for the calculation of joint forces as constraint forces acting between segments.
This approximation is a useful simplification as it leads to a reduction of the degrees of freedom
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3.2 Models of the musculoskeletal system

and thus the number of state variables that are needed to describe the system. The differential
equation of motion can then be written as (e.g., Henze, 2002; Legnani et al., 1996; Niku, 2020)

M(q)q + C(q7q) =F, (3'2)

DoF DoF . . DoF . . . .
where M € R™ X" ig the mass matrix, C € R™ " is a vector of gravitational, centrifugal

and Coriolis forces and F € R™ " is a vector of forces (internal and external) acting on the me-
chanical part of the system. Herein, nP°F stands for the number of degrees of freedom (DoFs)
in the system. Solving these equations for the trajectory q(t) allows for the forward-dynamic
prediction of the movement. Besides other software tools, the toolbox Simscape Multibody™
as part of Matlab® / Simulink® provides a graphical tool to set up and then numerically ap-
proximate the solution of the underlying equations of a multibody system.

3.2.2 Modeling the muscle-tendon characteristics

To generate movements, the skeletal structure needs to be connected to muscles that drive
the movement. These muscles can be represented by mathematical models. However, in order
to draw meaningful deductions about concepts of motor control by testing them with mus-
culoskeletal models, these models need to provide the necessary level of physiological detail
(Pinter et al., 2012) and — if available — the models should be validated by reproducing exper-
imentally observed data. For validation, the simulation results can, for example, be compared
to kinematic data from perturbation experiments (see Chapter 4). The level of detail that is
required to investigate motor control concepts depends on the research question and on the
control concept that is used.
The criteria on the level of detail that we chose for our models are that they consider

e muscle-fiber characteristics by using Hill-type muscle models (Haeufle et al., 2014a; Mil-
lard et al., 2013; Siebert and Rode, 2014),

e non-linear tendon elasticity,

e muscle activation dynamics (Hatze, 1977; Rockenfeller et al., 2015),

e antagonistic muscle setup (Schmitt et al., 2019b) and

e anatomical muscle routing (Hammer et al., 2019; Holzbaur et al., 2005).

The choice of these criteria is justified in the following: It is important to include the vis-
coelastic properties as well as the force-length and force-velocity relations of the muscle-tendon
structures since these relations determine the muscle forces and, for example, elastic energy
is stored in the tendons (Biewener and Roberts, 2000). Also, the intrinsic muscle properties
provide an immediate response to perturbations which tend to stabilize the system and hence
simplify control (Daley et al., 2009; Loeb et al., 1999; Nishikawa et al., 2007). This stabilizing
behavior has been termed preflex (Brown et al., 1995; Prilutsky and Edwards, 2015) as it acts
similar to neural reflexes but without the neuronal delay. These characteristics of the muscle-
tendon structures in combination with an antagonistic muscle setup allow for the emergence
of stable equilibrium positions (Feldman and Levin, 2009; Kistemaker et al., 2007b) that can
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3 Methodological background

be utilized in motor control (see also Section 3.3). Therefore, both the muscle-fiber character-
istics and the non-linear tendon elasticity is included in our models. In addition to that, the
biochemistry that transforms muscle stimulations to muscle activities plays an important role
in the control of movement as, due to its smoothening properties, it allows for smooth trajec-
tories based on discontinuous muscle stimulation signals. The last criterion that we require our
models to fulfill is anatomical muscle routing. It provides realistic moment arms and ensures
that the effective direction of the muscle forces is not reverted for extreme joint angles. Also,
muscle-bone contact forces can be calculated when the routing of the muscles around the bones
is described.

3.2.3 Our musculoskeletal models

The models that are used in most studies presented here are forward-dynamic multibody models
of the musculoskeletal system. Additionally, in Chapter 9, a comparison to a finite element (FE)
model is drawn. In both kinds of models, a controller (see Section 3.3, Figure 3.7) determines a
muscle stimulation pattern over time. Using a model of the muscles’ activation dynamics, the
muscular activity depending on the current muscle stimulation and the fiber length is predicted
(Hatze, 1977; Rockenfeller et al., 2015). The force of each muscle-tendon unit (MTU) is then
calculated using a macroscopic Hill-type muscle model that accounts for force-length-velocity
characteristics, tendon and parallel tissue elasticity, and damping in the tendon (Haeufle et al.,
2014a). To match realistic lever arms, muscle path geometry, i.e., muscle origin, insertion, and
deflection, is implemented. To this end, we use a via-ellipse approach, that restricts the muscle
path to geometric ellipses that are attached to the rigid bones (Hammer et al., 2019). Using
this algorithm, muscle-bone contact forces and internal joint loadings can be predicted.

3.2.4 The arm model Arm26

In most of the studies that are described in this thesis, we focused on goal-directed point-
to-point movements of the human arm with one or two degrees of freedom. We chose this
movement because most voluntary movements of the upper extremity consist of either moving
from one pose to another or to hold a pose (Shadmehr, 2017). Also, this movement is the task
of many neuroscientific experiments with and without the use of a manipulandum (Campos
and Calado, 2009).

Therefore, the forward-dynamic multibody model Arm26 with two degrees of freedom and six
muscles was developed (Figure 3.2). This model has been used in Chapters 4 to 7 (Manuscript
1 to Manuscript 4) and is described in detail in the following. Its implementation was designed
to be easy to use to allow for fast proofs of concept, rapid prototyping, or an easy entry for
student projects. Large parts of the following model description were published/submitted
as electronic supplementary material accompanying Haeufle et al. (2020a); Stollenmaier et al.
(2020a,b,c). It was written in collaboration with Daniel Haufle.

The neuro-musculoskeletal model Arm26 consists of a musculoskeletal model of the arm with
two degrees of freedom actuated by six muscles and a controller. The model is implemented
using Matlab® R2018a/Simulink® with the Simscape Multibody™ environment. For a better
overview, the implementation of the model is divided into three parts: the mechanical part
(representing the bone structure and the muscle routing), the actuation of this mechanical part
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3.2 Models of the musculoskeletal system

a(t)

Muscle model

Figure 3.2: Visualization of the arm model Arm26. (a) Visualization of the musculoskele-
tal model of the arm and the definition of the shoulder angle 1(¢) and the elbow
angle p(t) and (b) Structure of the arm model: the motor command u(t) is fed
into the model of the activation dynamics of muscles which relates the neuronal
stimulation to muscular activity a(¢) that drives the muscle model. The muscles
produce forces F(t) that act on the skeletal system resulting in a simulated move-
ment q(t) = [¢(t),1(t)] of the arm.

(muscle-tendon structures) and the controller (nervous system) which provides the input to the
actuation part.

3.2.4.1 Musculoskeletal model of the arm: Mechanics and Actuation

The musculoskeletal model Arm26 of the human arm uses the same geometry and muscle
parameters as the simulation model described in Driess et al. (2018) which is based on Bayer
et al. (2017). It consists of two rigid bodies (lower and upper arm) that are connected via
two one-degree-of-freedom revolute joints that represent the shoulder and elbow joint. This
multibody system is actuated by six MTUs, four monoarticular and two biarticular muscles
(see Figure 3.2a). The muscles are modeled as lumped muscles, i.e. they represent a multitude
of anatomical muscles:

1. Monarticular Elbow Flexion (MEF) (short: Elbow Flexion (EF)):
m. brachioradialis, m. brachialis, m. pronator teres, m. extensor carpi radialis
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3 Methodological background

2. Monarticular Elbow Extension (MEE) (short: Elbow Extension (EE)):
m. triceps lateralis, m.triceps medialis, m. an-coneus, m. extensor carpi ulnaris

3. Biarticular Elbow Flexion Shoulder Anteversion (BEFSA) (short: Biarticular Flexion
(BF)):
m. biceps brachii caput longum and caput breve

4. Biarticular Elbow Extension Shoulder Retroversion (BEESR) (short: Biarticular Exten-
sion (BE)):
m. triceps brachii caput longum

5. Monoarticular Shoulder Anteversion (MSA) (short: Shoulder Flexion (SF)):
m. deltoideus (pars clavicularis, anterior, lateral), m. superior pectoralis major, m.
coracobrachialis

6. Monoarticular Shoulder Retroversion (MSR) (short: Shoulder Extension (SE)):
m. deltoideus (pars spinalis, posterior), m. latissimus dorsi

The MTU structure is modeled using an extended Hill-type muscle model as described in
Haeufle et al. (2014b) with muscle activation dynamics as introduced by Hatze (1977). The
muscle model is a macroscopic model consisting of four elements: the contractile element (CE),
the parallel elastic element (PEE) and the serial elastic element (SEE) and serial damping
element (SDE), as illustrated in Figure 3.2b. The inputs to the muscle model are the length

of the MTU IMTV the contraction velocity of the MTU iMTU and the muscular activity a.

The output of the muscle model is a one-dimensional muscle force FMTU. This force drives

the movement of the skeletal system. For the routing of the muscle path around the joints,

deflection ellipses are implemented as described by Hammer et al. (2019) (see Figure 3.3). The

muscle path can move within these ellipses and is deflected as soon as it touches the boundary.
All in all, the governing model dependencies for all muscles i = 1,...,n are:

i = poREeE MU Y g (3.3)
ai = fYai,ug, 1EP) (3.4)
FMTU — pPiTu Y oe ) (3.5)
El == fq(Q7q7FMTU)7 (36)

where q denotes a generalized state vector, in this case it can be defined as q = [¢, ] and
FUTU = {F?/ITU}?—l'

The mechanical parameters of the arm segments are taken from Kistemaker et al. (2006) and
can be found in Table A1.1. The positions and sizes of the deflection ellipses were chosen in
order to match moment arms in literature (see Figure 3.4) and can be found in Appendix Al.
For more details on this see Suissa (2017). The (non-)muscle-specific parameters can be found
in Table A1.3 and Table A1.2.

32



3.2 Models of the musculoskeletal system

Figure 3.3: Illustration of the positions of the deflection ellipses that are used for the
muscle routing in two different arm positions. Green arrows indicate active
ellipses that deflect the muscle path, while red arrows indicate inactive ellipses that
do not change the muscle path.
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Figure 3.4: Comparison of the moment arms of the muscles in the model with simula-
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tion and experimental data from literature for the elbow muscles (upper
plot) and the shoulder muscles (lower plot). The lines marked with demoa
refer to the model by Suissa (2017) on which our model is based (for the naming
of the muscles see Table A1.3). We use the same geometry and position and size of
the ellipses, so our moment arms are the same as in the demoa model. The moment
arms are compared to a calculatory model by Bayer et al. (2017) (here M /B stands
for mono- and biarticular, E stands for elbow and F/E stands for flexion and exten-
sion, respectively) and to experimental data. The black marks show experimental
data of the biceps brachii (BB) and the triceps brachii (TB) taken from Pigeon
et al. (1996). The yellow line shoes a weighted combination of the monoarticular
flexor muscles that are represented by the MEF in the model. They are weighted ac-
cording to their proportion of the joint torques, see Aumdiller et al. (2017); Sobotta
(2010). The figure was taken from Suissa (2017) with kind permission of the author.



3.2 Models of the musculoskeletal system

3.2.5 The full-body human model allmin

In Chapter & (Manuscript 5), a full-body human model is used (Figure 3.5). It is a multibody
model with 15 rigid bodies that are connected via 14 joints. 36 antagonistically arranged muscle-
tendon units move the skeleton. The model is implemented using a multibody simulation code

in C/C++.

A detailed description of this model can be found below. Note that large parts of the
following model description were submitted as electronic supplementary material accompanying
Stollenmaier et al. (2020a). It was written in collaboration with Johannes Walter, Marc Jacob,
Patrick Lerge, and Syn Schmitt.

Figure 3.5:

—

Activation dynamics

Ja(t)

Muscle model

1.78 m

CE SDE
|MTU L

JFMTU(t)

Skeletal system

Visualization of the full-body model allmin. (a) Frontal and side view of the
visualization of the musculoskeletal model of the human body. The green lines show
the muscle geometry. (c) Structure of the model: the motor command u(t) € R
is fed into the model of activation dynamics (Hatze, 1977; Rockenfeller and Giinther,
2018) of muscles which relates the neuronal stimulation to muscular activity a(t) €
R™""” that drives the muscle model (Haeufle et al., 2014b). The muscles produce
forces FMTU(¢) R™"" that act on the rigid bodies of the skeletal system. The

resultant joint torques FMTV depend on the respective moment arms alg;m. In

combination with external forces, this results in a movement of the DoFs ¢q(t) €
R of the body.

The musculoskeletal model allmin consists of nRSB = 15 rigid bodies (see Table A2.2). The

rigid bodies are connected via 14 joints (see Table A2.1) including n

DoF' — 90 degrees of freedom.

Each degree of freedom (DoF) (except for the wrist) is controlled by an agonistic-antagonistic
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3 Methodological background

setup (AAS) beeing congruent with the elementary biological drive (EBD) as described by
Schmitt et al. (2019a). The musculoskeletal model is actuated by nMTV = 36 muscle-tendon
units (MTUs) (see Table A2.4 and Figure 3.5a for first impression).

The model is implemented in C/C++ code within our in-house multi-body simulation code
demoa.

3.2.5.1 The Multibody System

The skeletal system is modeled as a chain of rigid bodies, connected by rotational joints and
described by differential equations. The resulting DoFs q(t) = [q1(t), ..., ¢,,por (t)]T € R
of these rotational joints describe the movement of the rigid bodies over time and are referred
to as generalized coordinates. For the equations of motion, a Lagrangian formulation with the
generalized coordinates q(t) as state variables is realized (see Section 3.2), which can be set up
algorithmically, e.g. as described by Legnani et al. (1996). The evaluation of this algorithm
leads to the differential equation of motion of the rigid body system in the form

M(q)q + C(q’ q) =F, (3'7)

where M € R™* X" ig the mass matrix, C € R is a vector of gravitational, centrifugal

and Coriolis forces and F € R™™ is a vector of forces (internal and external) acting on the
mechanical part of the system. Hereby F includes forces, e.g. due to contact of the body to
the environment (external), as well as forces of the biological structures, such as muscles, joint
limitations (internal).

3.2.5.2 Joint limitations

The joint limitations are modeled as linear one-sided spring-damper elements, acting directly
on the respective DoF:

1 ki(q; — q1;) + dig;, q9; <91
gimt = 0, q; <q; < Qi (3.8)
ku(q; — qu4) + dug;s 9 > Qui

with the lower and upper threshold angles g;/,, corresponding to the respective range of motion
(RoM) (Table A2.1), and linear spring and damping parameters k;/,, = 100 [lr\%‘] and d/, =

0.001 [1\1{2115] For the joints of the lumbar and cervical spine, as well as the wrist, the same

force law is used to model passive properties with different parameters. The upper and lower
threshold angles are set to ¢q;/, = 0 and the spring and damping parameters are set to k.5 =

10 (23], des = 0.2[523], ky = 20 [F2], dys = 0.2 [F2E], by = 15 [08], dyr = 1[F22].

rad rad rad rad rad rad

3.2.5.3 Muscles

The muscles are modeled as lumped muscles, i.e. they represent a multitude of anatomical
muscles and motor units. A list of all included muscle elements can be found in Table A2.4.

The MTU structure is modeled using an extended Hill-type muscle model as described in
Haeufle et al. (2014b) with muscle activation dynamics as introduced by Hatze (1977) and
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3.2 Models of the musculoskeletal system

simplified by Rockenfeller and Giinther (2018). Herein, the muscles are activated using a 15
order differential equation of normalized calcium ion concentration (Rockenfeller et al., 2014)

V() = Mu(u(t) —~(t)) (3.9)
and a nonlinear mapping onto the muscles activation

ap +w

alt) = , (3.10)

with @(y(t),1°F(t)) = (y(t) - p(I°F))” and p(I°F) = wPt . % =Y po- % The parameter
values are chosen muscle non specifically and are given in Table A2.5.

The muscle model is a macroscopic model consisting of four elements: the CE, the PEE, the
SEE and SDE, as illustrated in Figure 3.5b. Herein, the muscle fibers and their contraction
dynamics are described by a contractile element (CE) representing the cross-bridge-cycle of the
myosin heads and a parallel elastic element (PEE) representing the passive connective tissue in
the muscle belly. The viscoelastic properties of tendons are approximated using a series elastic
element (SEE) and a serial damping element (SDE).

The inputs to the muscle model are the length of the MTU IMTV the contraction velocity

-MTU
of the MTU 1 and the muscular activity a. The output of the muscle model is a one-

dimensional muscle force FMTU. This force drives the movement of the skeletal system.

For the routing of the muscle path around the joints, deflection ellipses are implemented as
described by Hammer et al. (2019). The muscle path can move within these ellipses and is
deflected as soon as it touches the boundary. For the investigations presented here, we set the
length of both half-axes of all ellipses to zero, resulting in fixed via points. The position of
these points can be found in Table A2.3. The resulting moment arms translate the muscle force
FMTU to generalized forces FMTU acting on the DoFs of the system

FMTU _ oY . FpMTU (3.11)
0q

All in all, the governing model dependencies for all muscles ¢ = 1,...,n are:

:CE -MTU
L= SRR R ) (3.12)
di = fa(aiau’ia lq,CE) (313)
FMTU  _  pMTUMTU iMTU ICE . 3.14
i = i (i 2 b 7 ag) (3.14)
('i = fq((‘?’q’FMTU’]:lmt’]_—ext) ’ (315)

DoF
where g = {q,};—, denotes a generalized state vector that contains all joint angles and FMTU —
{F%V[TU}?ZP Flmtl — {9’%““}?21 and FX' = {9”‘;““}?:1 contain the muscle forces, the joint
limitation forces and the external forces, respectively.
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3 Methodological background

3.3 Models of human motor control
How do the muscles need to be stimulated in order to generate a desired movement?

To investigate biological motor control theories using the aforementioned computational mus-
culoskeletal models, control models that determine the muscle stimulations over time need to
be formulated. In the research field of human motor control, there are many theories on how
movement is planned and controlled (for reviews on this topic see, e.g., Krakauer and Shad-
mehr, 2007; Latash et al., 2010; Nishikawa et al., 2007; Osth et al., 2015; Scott and Norman,
2003; Wolpert, 1997; Wolpert et al., 2011), but there are still various open questions (Karniel,
2011; Nordin et al., 2017). The overall question that motivated this particular work is how hu-
man movement is generated and what happens if the neuronal control is perturbed. A concrete
aspect of this quite general question that we focused on is the contribution of muscle dynamics
to biological motor control. In particular, we investigated how the control can be simplified due
to the intrinsic characteristics of the musculoskeletal system. Therefore, we looked at control
concepts that explicitly make use of these characteristics.

In motor control theory, the term internal model describes the neural representation of the
relationship between action and consequences that are updated with experience (Latash, 2012),
possibly located in the cerebellum (Kawato, 1999). More precisely, they describe an input-
output relationship between the control signals and the resulting movement (forward internal
models) or the inverse (inverse internal models) that can be used to control movements (Wolpert
et al.,, 1998). Due to the large feedback delays in biological systems in contrast to robotic
systems, fast and smooth movements cannot be achieved when the muscular stimulation is
controlled only based on feedback (Kawato, 1999; Ostry and Feldman, 2003; Wolpert et al.,
1998). Therefore, some kind of feed-forward control is likely to be involved. To this end,
inverse internal models could determine the muscular stimulation that is necessary to obtain
a desired movement. In addition to that, forward internal models could be used to predict
the movement based on an efference copy to estimate the error between actual and desired
movement without a time delay (Wolpert et al., 1998) with the possible use to finetune the
inverse model (see Section 10.2). However, it is unclear how detailed these models need to be in
order to control human movement. The inverse dynamics model hypothesis proposes that the
nervous system learns an inverse dynamics model of the controlled object. On the other hand,
the equilibrium point control hypothesis argues that complex computations can be avoided
by exploiting the spring-like properties of the musculoskeletal system and the proprioceptive
feedback loops (Kawato, 1999; Wolpert et al., 1998). The latter hypothesis is used and evaluated
in this work.

3.3.1 Equilibrium point control

The equilibrium point hypothesis (Feldman, 1986) is based on the observation that the antag-
onistic setup of the muscle-tendon units with tuneable viscoelastic characteristics in the joint
allows for the emergence of equilibrium positions or equilibrium postures (EPs) (Feldman and
Levin, 2009; Kistemaker et al., 2007b). These EPs (set points) are stable positions where the
sum of all torques acting on a joint is zero (Figure 3.6) and short external perturbations can
be compensated due to the spring-like properties of muscles (Mclntyre and Bizzi, 1993). Given
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3.3 Models of human motor control

a constant set of open-loop muscle stimulations, an EP is reached and stabilized due to the
passive characteristics of the muscle-tendon unit, without the need for any neuronal feedback
control (Figure 7.2). Herein, the resulting EP depends on the external forces that act on the
body.

Equilibrium Position:
Torque 14 Torque 2+
Muscle 2 \SA Torque 2 external torques = 0
(Extensor)

Figure 3.6: Emergence of an equilibrium position (EP) for a joint that is actuated
by two antagonist muscles (elementary biological drive). The forces that
the muscles produce depend on their activity a and the current lengths [°F of their
muscle fibers. Depending on the muscles’ lever arms, they produce a torque acting
on the joint. An EP is reached when the sum of these torques and external torques
is zero.

Using a continuous sequence of these EPs to generate a movement is the basis of equilibrium
trajectory control (Feldman and Levin, 2009; Flash, 1987; Gribble and Ostry, 2000; Gribble
et al., 1998). Furthermore, due to the dynamics of the musculoskeletal system, smooth tra-
jectories can be generated by a combination of only a few discrete EPs in intermittent control
concepts (Bayer et al., 2017; Bréndle et al., 2020; Giinther and Ruder, 2003; Kistemaker et al.,
2006; Koike et al., 2011; Wochner et al., 2020). It has been observed that shifting between
EPs intermittently leads to faster movements (Kistemaker et al., 2006). Even though, in this
formulation, the feed-forward signal is a piecewise constant function over time, a smooth tra-
jectory emerges from the muscles’ activation and contraction dynamics and the inertia of the
limbs. In this case, the inverse internal model needs to relate a desired movement with given
boundary conditions to a suitable combination of equilibrium positions over time. So, there is
no need for solving the complex inverse dynamics problem in order to control movement. The
observation that smooth movements can be generated solely based on a feedforward signal has
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3 Methodological background

an impact on the understanding of the role and necessity of feedback. Nevertheless, we include
a model of proprioceptive feedback in our model as it promises to allow for more valid reactions
to external perturbations.

In our models, the model of biological motor control combines a feed-forward command
uPe" (¢) with a feedback signal u®°*¢d(¢) that incorporates proprioceptive feedback (Figure 3.7).
Therefore, this model can be called a hybrid equilibrium point controller as it combines the
open-loop command (o model) with a model of the stretch reflex that is based on muscle
spindle feedback (A model). The total motor command u(t) is a sum of those components
and represents a-motor neuron firing rate. For each muscle i, the muscle stimulation is then
calculated as

’U/z(t) — {’U/;-)pen( + uclosed }0 , (316)

where the operation {uz}(l) sets values u; < 0 to 0 and u; > 1 to 1. This formulation is based
on the assumption that every muscle is stimulated by one a-motor neuron that linearly adds
the central open-loop input and the afferent feedback signal. The model of the stretch reflex
assumes that muscle spindles detect changes in the length and contraction velocity of muscle
fibers and induce a-motor neuron activity if a certain threshold is passed.

For the forward-dynamic simulation of human movement that was described above, the mus-
cle stimulations need to be determined beforehand in order to generate a movement. However,
finding the muscle stimulations for a given movement task is non-trivial due to the redundancy
of the musculoskeletal system (degree of freedom problem or motor equivalence problem, see
Bernstein (1967), Shadmehr (1991)). For example, for goal-directed movements between two
points, infinitely many trajectories are possible and even for one certain trajectory, many com-
binations of muscle stimulations lead to the same motion. Therefore, assumptions have to be
made to resolve the redundancy and determine a unique set of muscle stimulation patterns.
Many models resort to (bio-inspired) optimality principles and define a cost function that al-
lows for the optimization of the muscle stimulations (Alexander, 1997; Flash and Hogan, 1985;
Uno et al., 1989; Wochner et al., 2020). Using our neuro-musculoskeletal model, the open-loop
muscle stimulations u®?*"(¢) can be optimized assuming that the movement consists of a lim-
ited number of EPs and setting a desired level of muscle co-contraction (for more details see
Chapter 4 and Chapter 7).

The closed-loop component u incorporates proprioceptive feedback since it represents
a simplified version of muscle spindle feedback by comparing the actual lengths and contrac-
tion velocities (1°B(t),1°B(¢)) of the muscle fibers (contractile elements (CEs)) to desired values
(A(t), A(t)). This formulation of the stretch reflex is based on the assumption that the muscle
spindles provide accurate time-delayed information about the muscle fiber lengths and contrac-
tion velocities (Kistemaker et al., 2006). The closed-loop signal u!s*d(t)
calculated as

closed (t)

for each muscle 7 is

kp ka '
closed (1) = [ (lCE(t —6) - /\i(t)> + [CEopt (lCE(t —0) - Ai(t)) : (3.17)

u

where k, and kg are the feedback gains, ¢ denotes a time delay and ZCE’Opt stands for the optimal
length of the contractile element (Bayer et al. (2017); Kistemaker et al. (2007b)). Note that not
all our models include velocity feedback. Due to the time it takes to acquire and process sensor
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3.3 Models of human motor control

information, time delays in the feedback loop are inevitable (Nishikawa et al., 2007). Depending
on the chosen time lag, the model represents a short- or long-latency feedback mechanism.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

i Body 3
! Muscle model }
ucpen u ' Activation a . F Skeletal ;(I(t)
+ ' dynamics w system |
. | ST ;
—_— Fj% E— . - - ——————_——————————_———_——_ |
opt —|—+ uclosed
Delay §
lCE (t)
kd
— F ——
Delay § —
1CE (f>

Figure 3.7: Schematic diagram of our neuro-musculoskeletal models. The total motor

command u is a sum of the open-loop signal u°?" and the time-delayed feedback
signal uc°sd, Tt is fed into the model of the activation dynamics of muscles which
relates the neuronal stimulation to muscular activity a that drives the muscle model.
The muscles produce forces F' that act on the skeletal system resulting in a simulated
movement q(t) of the body. In the time-delayed feedback loop, the sensory system
which represents a simplified version of the muscle spindles measures the current
lengths and contraction velocities of the muscle fibers (1°F(¢),1°E(t)). They are
compared to the desired values (X, )\) and the resulting feedback error is multiplied
by the feedback gains k, and k4, normalized by the muscle’s optimal fiber length
ICE0Pt (see Equation (3.17)). Note that not all our models incorporate velocity
feedback (gray lines).
Explanation of the control scheme symbols:

: block that transforms the input signal to an output signal,

: addition or subtraction of the input signals, depending on the signs at its input,

: multiplication with the factor specified in the triangle.
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3.4 Bio-inspired robotic models

How can biorobotics be a good addition to computer simulations of human movements?

Biologically inspired robots use principles from neuromechanics and transfer them to a phys-
ical model. In doing so, they can out-perform other designs for certain tasks (Nishikawa et al.,
2007). For example, McMahan et al. (2006) developed a robotic arm that is inspired by the
design of octopus tentacles and that impresses with a high payload and range of motion while
having a soft compliant structure. Other famous examples are humanoid robots that mimic
the human body (Albu-Schéffer et al., 2008; Buschmann et al., 2007; Hirose and Ogawa, 2007)
or parts of it (Kalveram et al., 2008; Niiyama et al., 2012; Radkhah et al., 2011) and other
animal-inspired models (Lin et al., 2011; Mergner et al., 2006; Renjewski and Seyfarth, 2012;
Rutishauser et al., 2008). The field of neuro-robotics describes the consolidation of neuroscience
and robotics to design robots that are especially well equipped for the close interaction with
humans, for example in rehabilitation or personal assistance (Vitiello et al., 2015). Besides
the advantages in the design of robots for various applications, bio-inspired robots are also a
valuable tool in the development and testing of biological hypotheses. For example, parts of
the robot can be disabled or removed without ethical limitations and even structural limits can
be tested. Also, all sensory signals and physical states can be recorded and analyzed (Hoff-
mann and Pfeifer, 2011). In addition to that, the practicability of motor control hypotheses
can be tested under real-world conditions. In contrast to mathematical models, physical mod-
els necessarily obey physical laws like friction or impact dynamics (Nishikawa et al., 2007).
In particular, a combination of a biologically inspired robot with a resembling mathematical
model and human experiments can reveal valuable insights into the control of human move-
ments. Kalveram and Seyfarth (2009) proposed such a test trilogy of simulation test, hardware
test, and behavioral comparison test to investigate movement generation theories. To this end,
however, both the biorobotic and the mathematical model need to incorporate the necessary
level of physiological detail as, for example, some control concepts rely on the muscular charac-
teristics (see Section 3.3). In biorobotic models, these muscles can be mimicked by pneumatic
actuators (Boblan et al., 2004; Klute et al., 2002; Wolfen et al., 2018) in combination with
cables as tendons (Haegele et al., 2015; Shin et al., 2011).

We compared our simulation of arm movements with the biologically inspired robot Ataro.
Both models reproduced human experimental data using the same control concept (see Chap-
ter 7). A detailed description of this robotic model can be found in Appendix A5.

3.5 Quantifying morphological computation

How can we quantify how much the morphology of the system contributes to the observed
behavior?

As mentioned before, the intrinsic properties of the muscle-tendon structures and their zero-

time delay response stabilize the system, in particular in response to external perturbations
(Brown et al., 1995; Gerritsen et al., 1998; John et al., 2013; Kukillaya et al., 2009; Nishikawa
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et al., 2007; Proctor and Holmes, 2010; Wagner and Blickhan, 1999). This self-stabilizing
behavior simplifies the control of movement and one can say that the morphology of the system
and its interaction with its environment contribute to the observed behavior. This contribution
has been termed as morphological computation (Ghazi-Zahedi et al., 2016; Paul, 2006; Pfeifer
and Iida, 2005) or more recently as the more general term morphological intelligence (Ghazi-
Zahedi, 2019a). It describes the computation that the body and its environment perform that
otherwise would have to be conducted by the controller, or in a more biological sense: by the
brain (Pfeifer and Bongard, 2006). It is possible to characterize this contribution by applying an
information-theoretic approach: the concept of quantifying morphological computation (Ghazi-
Zahedi, 2019a; Ghazi-Zahedi et al., 2016; Zahedi and Ay, 2013). Alternatively, the control effort,
i.e. the minimum amount of information that is processed in the controller to perform a certain
movement, can be measured (Haeufle et al., 2014b, 2020b).

In our study, we used MCyw (Zahedi and Ay, 2013) to quantify morphological computation
on different levels on the neuronal control hierarchy (Chapter 6). A short summary of this
method is given here, more details on the background, the implementation, and other measures
can be found in Chapter 6 and Appendix A4.

For the calculation of MCyy, the system is described by a causal diagram of the sensorimotor
loop (Figure 3.8). Capital letters denote random variables, lower-case letters stand for a specific
value that a random variable can take and Greek letters refer to generative kernels, i.e., kernels
that describe a causal relationship between random variables. The world dynamics kernel
a(w'|w, a) describes how the next world states W’ depends on the current world state W and
the current action A (Figure 3.8a). If we assume that the current world state W does not
influence the next world state W', the world dynamics kernel reduces to a(w'|a) (Figure 3.8b).
Using the Kullback-Leibler divergence (Cover and Thomas, 2006), it can be measured how
much the observed behavior differs between those two assumptions:

a(w'|w, a)

M = ! 1 1
CW wgap(w , W, CL) 082 a(w’\a) (3 8)
— (W', W|A), (3.19)

where p(w’, w, a) denotes the joint probability distribution of occurrences of (w', w, a).

So, MCyy is defined as the Kullback-Leibler divergence between the distribution where the
world depends on the previous state and the actuator signal and the distribution where it only
depends on the actuator signal. Herein, the Kullback-Leibler divergence quantifies how much
the entropy (average information content of an outcome) differs between the two distributions
(MacKay, 2003). Therefore, MCyw quantifies how much the information content differs between
including the previous state or not, i.e. how much information content the previous state
provides about the next state. Hence, MCyw is high when the current state strongly influences
the next state, meaning that the system exploits its physical properties. Figure 3.9 shows an
illustrative example of the calculation of MCyy.
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Figure 3.8: Visualization of the causal diagrams of the sensorimotor loop that un-

derlie the calculation of MCw. With: W: current world state, including the
system’s morphology and the part of the environment that it affects, W’: next world
state, S: output of the sensors that is available to the controller, A: input to the
actuators. (a) Causal diagram for a reactive system. (b) Causal diagram assuming
that the previous world state W does not influence the next world state W’.
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Figure 3.9: Illustrative example for the calculation of MCy. The top figure shows the
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chain of signals that leads to a movement. The lower figures show the muscle stim-
ulations and forces of four arm muscles that move the arm around the elbow joint
with the resulting elbow angle trajectory. Calculating morphological computation
by using the muscle stimulations u as actuator and the elbow angle ¢ as world state
leads to a much higher value for MCyw (2.72bits) than using the muscle forces F
as actuator (0.06 bits). This means that most of the morphological computation
in this system is performed somewhere between the muscle stimulations and the
forces, namely by the activation dynamics and the muscle model.



4 | Simulating perturbed arm
movements

While the mechanical and muscle parameters of the arm model Arm26 (Section 3.2.1) are
based on literature or chosen to match experimental moment arm data, it was still an open
question whether the combination of the musculoskeletal model with the chosen control ap-
proach (Section 3.3) is capable of reproducing human movements, in particular in the presence
of external perturbations. Therefore, we simulated static perturbations of the inertia and damp-
ing properties of the arm, as well as dynamic torque perturbations for one-degree-of freedom
movements around the elbow joint. These perturbations are relevant in everyday life, as they
represent interactions with other people or objects as for example with technical assistive de-
vices. The controller consists of a feed-forward motor command and feedback based on muscle
fiber length and contraction velocity representing short-latency (25ms) or long-latency (50 ms)
stretch reflexes as the first neuronal responses elicited by an external perturbation. To deter-
mine the open-loop control signal, we parametrized the control signal resulting in a piecewise
constant stimulation over time for each muscle. Interestingly, such an intermittent open-loop
signal results in a smooth movement that is close to experimental observations. So, our model
can generate the unperturbed point-to-point movement solely by the feed-forward command.
The feedback only contributed to the stimulation in perturbed movements. We found that the
relative contribution of this feedback is small compared to the feed-forward control and that
the characteristics of the musculoskeletal system create an immediate and beneficial reaction
to the investigated perturbations. The novelty of these findings is (1) the reproduction of static
as well as dynamic perturbation experiments in one neuro-musculoskeletal model with only
one set of basic parameters. This allows to investigate the model’s neuro-muscular response to
the perturbations that — at least to some degree — represent stereotypical interactions with the
environment; (2) the demonstration that in feed-forward driven movements the muscle char-
acteristics generate a mechanical response with zero-time delay which helps to compensate for
the perturbations; (3) that this model provides enough biomechanical detail to allow for the
prediction of internal forces, including joint loads and muscle-bone contact forces which are
relevant in ergonomics and for the development of assistive devices but cannot be observed in
experiments.

Note that large parts of the content of this chapter were published in Frontiers in Bioengi-
neering and Biotechnology. For details on this publication, including a list of authors, see
Manuscript 1 in Chapter 2.
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4.1 Introduction

Humans generate goal-directed movement by an interplay between the nervous system, the
biomechanical structures, and the environment, where high-level motor control is fine-tuned to
the dynamics of the low-level muscular system and exploits its characteristics (Scott, 2004).
Understanding and predicting this dynamic interplay by means of a computational model is
relevant for two reasons: firstly, it allows gaining insight into the hierarchical structure of
motor control and the sensorimotor integration of muscle-tendon dynamics and reflexes to
control (Berniker et al., 2009; Campos and Calado, 2009; Kistemaker et al., 2013; Latash,
2010). Secondly, it provides the opportunity to study internal forces in the musculoskeletal
system which are relevant in ergonomics and for the development of assistive devices and
otherwise experimentally not accessible (Holzbaur et al., 2005; Pennestri et al., 2007).

To this end, we here propose a model of human goal-directed arm movements which fulfills
the following criteria: (a) it represents the biomechanical structures to a level of detail which
allows the prediction of internal joint loads and muscle-bone contact forces; (b) it considers
muscle-tendon based short- or long-latency reflexes as the first neuronal responses elicited by
an external perturbation; (c) it reproduces experimentally observed responses to static as
well as dynamic external perturbation forces which allow to investigate the model’s neuro-
muscular response and — at least to some degree — represent stereotypical interactions with the
environment.

Individually, these criteria have been fulfilled in models before. For criterion (a), models
typically consider muscle fiber characteristics (Hill-type muscle models, e.g., Haeufle et al.
(2014b); Millard et al. (2013); Siebert and Rode (2014)), tendon non-linear elasticity, neuro-
muscular activation dynamics (e.g., Hatze, 1977; Rockenfeller et al., 2015), antagonistic setup
(e.g., Schmitt et al., 2019a), and anatomical muscle routing (e.g., Hammer et al., 2019; Holzbaur
et al., 2005). Such models are used for ergonomics or for the development of assistive devices,
but, to our knowledge, do not fulfill at least one of the other two criteria (Chadwick et al.,
2009; Glenday et al., 2019; Holzbaur et al., 2005; Loeb, 2012).

Musculoskeletal models which fulfill criterion (b) have also been developed (e.g., Bayer et al.
(2017); Gribble and Ostry (2000); Kistemaker et al. (2006); Lan and Zhu (2007), review:
Todorov (2004)). Two studies further employed perturbations to demonstrate the benefit of
combining muscle spindle and Golgi tendon organ signals (Kistemaker et al., 2013) and the
role of muscular characteristics in stabilization against different perturbations (Pinter et al.,
2012). However, none of these models fulfills criterion (a) as they do not account for anatom-
ical muscle routing. Furthermore, although the latter two studies investigate the reaction to
perturbations, they do not fulfill criterion (c): they employ the perturbations to investigate
their research questions, but they do not compare their perturbation response to experimental
data (Kistemaker et al., 2013; Pinter et al., 2012).

Finally, many models successfully reproduce data from perturbation experiments (criterion
(c), reviews see Campos and Calado (2009); Wolpert and Ghahramani (2000)). Examples
are the predicted response to static perturbations mimicking changes in inertia or damping
(Bhanpuri et al. (2014)), or to dynamic torque perturbations (Kalveram et al. (2005)). Both
models incorporate feedback but have no representation of the muscles. Furthermore, they
consider feedback on the joint level and not on the muscular level required to investigate
sensorimotor integration. In addition to that, none of these models represent the muscular
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Figure 4.1: Schematic diagram of the neuro-musculoskeletal model. The desired tra-
jectory 9 (t) is a minimum jerk trajectory between a desired starting and an
ending point. The command generator maps this trajectory to an open-loop motor
command u®?®" and to desired muscle fiber lengths and contraction velocities (A,
)\) that correspond to the desired trajectory. The total motor command u is fed
into the model of the activation dynamics of muscles which relates the neuronal
stimulation u to muscular activity a that drives the muscle model. The muscles
produce forces F' that act on the skeletal system resulting in a simulated move-
ment ¢(t) of the arm. In the time-delayed feedback loop, the sensory system which
represents a simplified version of the muscle spindles measures the current lengths
and contraction velocities of the muscle fibers (1°E(¢),1°%(¢)). They are compared
to the desired values (A, )\) and the resulting feedback error is multiplied by the
feedback gains k, and k; (see Equation (4.4)).

characteristics to fulfill criterion (a).

The purpose of this study was to develop a neuro-musculoskeletal model that fulfills all three
criteria. The approach results in a neuro-musculoskeletal model that shows valid responses to
both static and dynamic perturbations as reported in the literature (Bhanpuri et al., 2014;
Kalveram and Seyfarth, 2009). These responses match those of previous motor control models
but allow a novel interpretation of the relative contribution of feedback and biomechanical
characteristics as well as the calculation of internal forces. This contribution is a step in the
attempt to foster the dual use of musculoskeletal models as tools to study motor control models
and as tools for the development of a virtual design and testbed for ergonomics or assistive
devices.

4.2 Methods

In order to simulate goal-directed arm movements, we combine a musculoskeletal model of the
arm including two degrees of freedom and six muscles (based on Driess et al. (2018); Kistemaker
et al. (2007a); Suissa (2017)) with a neuronal control model (based on the concept of Bhanpuri
et al. (2014)). Both parts are described in more detail in the following. The structure of the
neuro-musculoskeletal model is illustrated in Figure 4.1.
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4 Simulating perturbed arm movements

To investigate the model’s interaction with the environment and compare it to experimental
results, static perturbations of the inertia and viscosity properties of the arm (as reported in
Bhanpuri et al. (2014)) as well as dynamic torque perturbations (as reported in Kalveram et al.
(2005)) are applied. An overview over the applied perturbations is given in Figure 4.2.

7 torque per-
turbation
@ Static perturbations: @ Dynamic torque perturbations:
a +{F+ Increased damping a L' Positive impulse, flexion
b {F- Decreased damping b LIt Negative impulse, flexion
¢ [+ Increased inertia c L1 Positive impulse, extension
d - Decreased inertia d LI v Negative impulse, extension
Figure 4.2: Overview over the applied static and dynamic perturbations.

@ The static perturbations of the inertia and viscosity properties of the arm during
a flexion movement in the horizontal plane (without gravity) are: a Increased damp-
ing (+0.30 Nms/rad) b Decreased damping (—0.31 Nms/rad) ¢ Increased inertia
(+0.039 kgms?) d Decreased inertia (—0.032kgms?), in accordance with Bhanpuri
et al. (2014).

@ During the dynamic torque perturbations a constant torque that mimics gravity
(=1.5Nm) is applied. Hence, we visualized this movement as a movement in the
vertical plane. The perturbation is a temporal torque impulse in or against the
direction of movement: a Positive torque impulse (+5Nm) during a flexion move-
ment b Negative torque impulse (—5Nm) during a flexion movement ¢ Positive
torque impulse (+5N m) during an extension movement d Negative torque impulse
(—5Nm) during an extension movement, in accordance with Kalveram et al. (2005).

4.2.1 Musculoskeletal model of the arm

The musculoskeletal model Arm26 (2 degrees of freedom, six muscles, see Bayer et al. (2017);
Driess et al. (2018)) of the human arm is described in detail in Section 3.2.4. The arm model
consists of two rigid bodies (lower and upper arm) that are connected via two one-degree-
of-freedom revolute joints that represent the shoulder (glenohumeral) and elbow joint (see

Figure 4.1,
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4.2 Methods

are generated by six muscle-tendon units (MTUs, see Figure 4.2), four monoarticular (shoulder
anteversion, shoulder retroversion, elbow flexor, elbow extensor) and two biarticular muscles
(biarticular flexor, biarticular extensor). The muscles are stimulated by a neuronal control
stimulation signal u. The model of the activation dynamics predicts the activity a of the
muscle depending on the current muscle stimulation, considering the fiber length dependency
(Hatze, 1977) (see Figure 4.1). Depending on the muscular activity, the force of each MTU,
is modeled using a Hill-type model accounting for force-length-velocity characteristics, tendon
and parallel tissue elasticity, and damping in the tendon (Haeufle et al. (2014b)). Muscle path
geometry, i.e., origin, insertion and path deflection, is implemented to match experimental lever
arm data. For the joint angle-dependent deflection geometry, we used the via-ellipse approach
confining the path of the muscle to geometric ellipses attached to the rigid bones (Hammer
et al., 2019). This algorithm allows to calculate muscle-bone contact forces and applies forces
to the bones such that internal joint loadings can be predicted.

The parameters used in the models are not subject-specific but represent a generic man and
are collected from different sources (among others: Bhanpuri et al. (2014); Kistemaker et al.
(2006); Morl et al. (2012); van Soest et al. (1993a)) that are listed in detail in Section 3.2.4.
Due to the muscle-tendon model in combination with anatomical muscle routing, our model
provides the necessary level of biomechanical detail to determine internal muscular and joint
loads as well as muscle-bone contact forces. Hence, criterion (a) that we established in the
introduction is fulfilled.

The experimental perturbations that we reproduce in this simulation study were confined
to the elbow joint. Thus, we here fix the shoulder joint to 30° such that only one-degree-of-
freedom movements are possible. Hence, the monoarticular shoulder muscles have no effect on
the movement and are excluded from our investigations. To make the results comparable to
experiments, the inertia properties of the forearm were changed according to an arm that is
attached to an exoskeleton robot that was used by Bhanpuri et al. (2014).

4.2.2 Control model

The neuronal control model is illustrated in Figure 4.1. It is based on the control model that
was proposed by Bhanpuri et al. (2014) to reproduce static perturbations in a torque-driven
model of the arm. The input to the controller is a desired trajectory ¢4° (¢) that is considered
to be a result of the movement planning. The controller consists of an open-loop command
u°P°" and a closed-loop signal u®°*®d that incorporates proprioceptive feedback. The total
stimulation u; is the sum of those components and represents a-motor neuron activity. For
each muscle 7, it is calculated as

uz(t) — {u?pen( + udosed }0 , (4.1>

where the operation {x}} sets values 2 < 0 to 0 and > 1 to 1.
The total motor command {u;(t)}$
simulated movement ¢(t) of the arm. This control approach can be classified as a modified
hybrid equilibrium point (EP) controller where the open-loop signal is intermittent while the

feedback signal is continuous (see Kistemaker et al. (2006)).

_, is fed into the musculoskeletal model resulting in a

49



4 Simulating perturbed arm movements

4.2.2.1 Movement planning

We assume that a higher-level structure conducts planning of the movement and provides a
desired kinematic movement trajectory 9 (¢) as an input to the lower-level control structures
that are modeled here. Therefore, the input to our controller is the desired trajectory which
we determined by generating a minimum-jerk trajectory between desired starting and ending
angles. To this end, a fifth-order polynomial approach for the desired angle trajectory ¢ ()
is chosen in accordance with Flash and Hogan (1985) who have shown that their mathematical
model shows the typical bell-shaped velocity profile and predicts experimental observations of
voluntary unconstrained point-to-point movements in a horizontal plane.

4.2.2.2 Open-loop control generates reference trajectory

The command generator maps the desired trajectory ¢ (t) to an open-loop motor command
u’P" and to desired contractile element lengths and velocities (A, )\) that correspond to the
desired trajectory. Using a musculoskeletal model, the generation of these motor commands
is nontrivial since the system is redundant (degree of freedom problem, see Bernstein (1967),
Shadmehr (1991)) and nonlinear. In addition to that, the fact that the activation dynamics and
the muscle model are described by first-order differential equations including time delays and
the resulting time-dependency prohibits the straight-forward calculation of the inverse problem.

- final
0.3 Yi agonist
%} muscles
03r
uidec.
—0.25F
c
S
% 0.2+ antagonist
E muscles
w
0.15
)
° yace.
7]
=3
= 0.1 [
—— Elbow flexor
0.05 u® — biart. flexor
! biart. extensor
u™n —— Elbow extensor
0 n n .
0 0.2 t, 05 t, 08 1
Time [s]

Figure 4.3: Triphasic stimulation pattern for a flexion movement. Starting from the
initial position at ¢ = 0.1s, during the acceleration phase, mainly the agonist mus-
cles are active. In the second phase between ¢t = t; and t = to, both muscle groups
are active, braking the movement. In the last phase for ¢ > to, again both muscle
groups are active in order to reach the final position and hold it with a desired level
of co-contraction.

To simplify this process, instead of deriving a continuous set of stimulations over time, we in-
troduce a triphasic stimulation pattern with a limited number of parameters (see Equation (4.2),
illustrated in Figure 4.3). It is inspired by the three phases that have been observed in muscle
surface electromyogram (EMG) patterns during fast point-to-point movements (see e.g., Wach-
holder and Altenburger (1926), Wierzbicka et al. (1986) and Kistemaker et al. (2006)): an
acceleration phase where mostly the agonist muscles are active which is followed by a braking
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phase and a final phase which keeps the arm in the desired final position. Hence, the muscles
are divided into two groups: the agonists and the antagonists for a movement. We define the
muscle stimulations over time for those muscle groups as

(U? fort < 0.1s
acc. fa . ;
ooen e — U . for agonist Tnuscles for 0.1s <t <
(3! u™™  for antagonist muscles (4.2)
u?ec' for t1 <t <ty
ku?nal for to < t.

Following this approach, the control parameters that are required to follow the desired tra-
jectory need to be determined.
The initial and the final position are determined to be stable equilibrium positions, i.e.

=0 and p=0, (4.3)

which leads to the condition that the net joint moment vanishes in these positions. This allows
for the determination of the necessary muscle stimulations u? and ugmal to hold the initial and
the final position by minimizing Z?Zl(ui — u4°%) subject to the constraint that the sum of all
torques acting on a joint is zero, i.e. the system is in a stable equilibrium position. Herein, the
desired level of stimulation u4® allows influencing the level of co-contraction. The condition
that the system is supposed to be in equilibrium at ¢ = 0 defines the initial conditions. The final
phase starts at to = 0.7s which is approximately the time when the final position is reached.

The dynamic movement between those equilibrium positions (0.1s < t < t9) is parametrized
such that it is close to the desired trajectory 9 ():

In the acceleration phase, the muscle stimulation u?““ and the switching time t; are opti-
mized using a Bayesian optimization approach (see for example Brochu et al. (2010)) where
the squared point-wise difference between the current trajectory and the desired trajectory is
minimized. The minimal level of stimulation u™™ is set to a fixed value (0.005) in order to
reduce the search space for possible stimulations.

The muscle stimulation pattern u?ec' in the braking phase is determined analogously to the
stimulations u?nal but with a lower level of co-contraction to reach the final position following
the desired pathway.

In the following, these optimized muscle stimulation patterns are used as open-loop signals
u;P"(t). If no external perturbation occurs, this stimulation pattern generates a trajectory

that is close to the desired minimum jerk trajectory ¢4 (¢). This trajectory will be used as
reference hereafter.

4.2.2.3 Closed-loop response to perturbations

If a perturbation occurs, the movement trajectory changes. As a consequence, the actual fiber
lengths and contraction velocities differ from the values from the reference trajectory. In this
case, the feedback loop modifies the control signal, see Equation (4.1). This proprioceptive
feedback is incorporated in the closed-loop signal u$l®d(¢) by comparing the actual lengths

and contraction velocities (I°F(t),1°F(t)) of the muscle fibers (contractile elements (CEs)) of
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4 Simulating perturbed arm movements

the muscles to desired values (A(t), A(t)). The desired CE lengths and velocities (X, A) are set
to the values (1°F(¢),1°%(¢)) recorded during an unperturbed movement. So, as long as there is
no external perturbation, the feedback error is zero and hence the closed-loop signal vanishes.

Since the information about the current state of the muscle only becomes available with a
neuronal delay, a time lag § is introduced. To investigate different hierarchy levels of feedback
mechanisms, we tested both, a short-latency and a long-latency stretch reflex. For the short-
latency response, the time delay is set to 25 ms in accordance with similar arm models (Bayer
et al., 2017; Gribble et al., 1998; Kistemaker et al., 2006) which is in a physiologically plausible
range (R1 response Kurtzer et al. (2014); Scott (2016),Pruszynski et al. (2011); Weiler et al.
(2016)). This short-latency feedback represents a simplified model of the spinal, mono-synaptic
muscle spindle reflex (Pruszynski and Scott, 2012; Weiler et al., 2019), assuming that the
muscle spindles provide accurate time-delayed information about the muscle fiber lengths and
contraction velocities (Kistemaker et al., 2006). Since experimental findings indicate that the
long-latency stretch reflex plays an important role in the reaction to mechanical perturbations
in goal-directed reaching movements (e.g., Kurtzer et al., 2014; Weiler et al., 2016), we also
implemented a long-latency feedback loop by setting the time delay to 50 ms (R2 response Scott
(2016),Pruszynski et al. (2011)). Since both, short- and long-latency feedback are implemented
with the same mathematical model (see below) and lead to similar results, we focus in the
following on the long-latency response, while the short-latency responses to the perturbations
can be found in Appendix A3. By considering these muscle-tendon based reflexes, our model
fulfills criterion (b) that we suggested in the introduction.

The closed-loop signal u§'°s®d(¢) for each muscle i is calculated as

OB 5 _A(t—3)),  (44)

|CE,opt

u

k
closed (t) — P

i = 1CF,opt (75— 6) = Xilt —0)) +

where k, and kg are the feedback gains and [CEPt stands for the optimal length of the con-
tractile element. The feedback gains k, and kg as well as the desired level of co-contraction in
the braking phase u9¢$:9¢¢ play an important role in the way how the system reacts to per-
turbations. Therefore, they are optimized in order to reproduce the answer to all four static
perturbations seen in experiments.

In the objective function for this optimization, we incorporated the quantities early velocity
and dysmetria (as used by Bhanpuri et al. (2014), illustrated in Figure 4.4) that we also use
as evaluation criteria for the static perturbations below. FEarly velocity is defined as the joint
angle velocity 155 ms after the first time the velocity exceeds 10°/s. Dysmetria is defined as the
difference between the final position (at t=1s) and the position at the time of first correction.
Herein, the time of first correction is the time when the absolute value of the angular velocity
is smaller than 2°/s or the absolute value of the angular acceleration falls below 2°/s%. The
objective function is minimized using the pattern search algorithm in Matlab® and is defined
as
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early velocity difference simulation
Z [ - mean early velocity difference experiment

— maximal standard deviation early velocity difference experiment
static

perturbation types

dysmetria difference simulation 2

- mean dysmetria difference experiment ]

maximal standard deviation dysmetria difference experiment

>

static
perturbation types

<Avsoim - M(Avgxp)>2 N (Adsim - M(Adexp)>2] 7 (4.5)

max o (Avd,) max 0 (Adexp)

with v%: early velocity, d: dysmetria, u: mean, o: standard deviation, A: difference that is
calculated as the early velocity /dysmetria of the perturbed movement minus the early veloci-
ty/dysmetria of the reference movement.

The whole set of resulting control parameters can be found in Table A3.1. To quantify the
influence of these control parameters on the resulting movements, we performed a sensitivity
analysis (see Section 4.3.5).
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Figure 4.4: Illustration of the determination of early velocity and dysmetria. Farly
velocity is defined as the joint angle velocity 155 ms after the first time the velocity
exceeds 10°/s. Dysmetria is defined as the difference between the final position (at
t=1s) and the position at the time of first correction.

4.2.3 Simulation experiments

To test whether this model also fulfills criterion (c) from the introduction, we simulated its
response to static and dynamic perturbations.
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4 Simulating perturbed arm movements

4.2.3.1 Static perturbation of inertia and viscosity

Bhanpuri et al. (2014) performed experiments where healthy subjects carried out goal-directed
single-joint arm movements while the arm was attached to an exoskeleton robot. Each subject
performed two blocks with 40 trials each of which 36 trials were null trials (without perturba-
tion). In the perturbation trials, the robot exerted a force to mimic changes in the dynamic
properties of the arm, in particular inertia and viscosity. The movements were performed in a
horizontal plane (Figure 4.2 (1)).

In our computer simulation, we adapted the moment of inertia of the modeled forearm to
account for the influence of the robot arm to be able to compare our simulation results to
their experiments. In accordance with Bhanpuri et al. (2014), the static perturbations were an
increase in moment of inertia (+0.039 kgms?), a decrease in inertia (—0.032 kgms?), an increase
in damping (+0.30 Nms/rad) or a decrease in damping (—0.31 Nms/rad) (Figure 4.2 (1)).

Evaluation criterion In order to compare the simulation results to the experimental data,
we introduced an evaluation criterion as used by Bhanpuri et al. (2014). They investigate the
relation between early velocity and dysmetria, as defined above in Section 4.2.2.3 and illustrated
in Figure 4.4.

4.2.3.2 Dynamic torque perturbation

In analogy with the experiments described in Kalveram and Seyfarth (2009); Kalveram et al.
(2005), a dynamic torque perturbation was applied to the simulated pointing movement (Fig-
ure 4.2 @) A constant torque that mimics gravity (—1.5Nm) is applied. The perturbation is
an additional temporal torque change in or against the direction of movement (£5Nm). The
perturbation starts after 25% of the movement (corresponds to 7.5° of 30° in total) and lasts
37.5ms. Hence, relative to the total movement, we apply the same perturbation as Kalveram
et al. (2005). The starting and final position and all other biomechanical and control parameters
are identical to the static perturbation simulations @

Evaluation criterion For the dynamic torque perturbation, we chose the quotient of the
angular velocity at the elbow joint at the beginning and at the end the perturbation as an
evaluation criterion:

angular velocity at the beginning of the perturbation

elocity quotient := . (4.6
v vd angular velocity at At after the beginning of the perturbation (4.6)

Setting At to the duration of the perturbation (37.5ms), the velocity quotient relates the
angular velocity at the beginning of the perturbation to the one at the end of the perturbation.
This allows investigating the muscle-dominated response to the perturbations. In addition to
that, we also evaluate the velocity quotient of the angular velocity at At =100 ms after the
beginning of the perturbation, which quantifies also the first neuronal response.

4.2.3.3 Implementation

The arm model and the optimization and analysis scripts are implemented using Matlab® /
Simulink® version 2018a with the Simscape Multibody™environment. For all simulations, the
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variable-step Matlab ODE solver odel5s with relative solver tolerance 1 x 1075 has been used.
The absolute tolerance and the minimum/maximum /initial step size are set to be determined
automatically.

For comparison, the experimental results were digitized from Bhanpuri et al. (2014) and
Kalveram and Seyfarth (2009). For a smooth appearance and for the calculation of the angular
velocity, we fitted a smoothing spline to the digitized discrete data (using the curve fitting
toolbox in Matlab®).

4.2.4 Open-loop and torque-driven model as comparison

To investigate the influence of the implemented feedback mechanism, we applied the same
perturbations to an open-loop controlled version of our model, i.e. without the implemented
feedback loop (kp, = 0 and kq = 0).

In addition to that, we implemented an idealized torque-driven model to compare the reaction
to external forces to those of the musculoskeletal model. This comparison allows investigating
the contribution of the viscoelastic reaction forces which are generated by the muscle-tendon
contraction dynamics (preflex forces). The torque-driven model uses the same mechanical
parameters (segment lengths, masses, inertia) as the musculoskeletal model. To determine
the torque that is necessary to reproduce the musculoskeletal model’s movement, we recorded
the net joint torque that is applied by the muscles during both the unperturbed movement.
In accordance with the model of Bhanpuri et al. (2014), the feedback is based on the joint
positions with a delay of 100 ms representing a long-latency reflex.

4.3 Results

We here show the results for the long-latency feedback loop (50 ms delay). The short-latency
responses (25ms delay) to the perturbations is quite similar and can be found in Appendix A3.

4.3.1 Intermittent open-loop signals reproduce unperturbed movement

The simulation of the unperturbed movement is in good agreement with the desired minimum
jerk trajectory and with the experimental data (see Figure 4.5 and Figure 4.7, orange curves).
As mentioned above, without perturbations the feedback signal vanishes. So, the movement is
solely controlled by the open-loop command which is a piecewise constant function over time.
This unperturbed movement is the reference for the perturbed cases.

4.3.2 Static perturbation of inertia and viscosity

In presence of the static perturbations, the simulation and experimental results show the same
qualitative behavior in the relation between early velocity difference and dysmetria difference
(Figure 4.5a). An increase in inertia leads to a lower early velocity which results in higher
dysmetria. A decrease in inertia causes an increase in early velocity which leads to lower
dysmetria. For the damping perturbations, it is the other way round. The comparison of the
movement trajectory in the simulation (Figure 4.5b) and the experiments of Bhanpuri et al.
(2014) (Figure 1.5¢) shows a qualitatively and quantitatively similar behavior at the beginning
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of the movement. Towards the end of the movement, the subject in the experiment tends to
take longer to reach the final position, especially for the damping perturbations. Note that
we only compared our results with experimental trajectories of one typical control subject and
with early velocity/dysmetria difference of a small control group, respectively, while we used
generic, not subject-specific parameters for the mechanical description of the limb.

The open-loop controlled system shows a similar response to the static perturbations as the
closed-loop version and also as the subjects in the experiment (Figure 4.6a and Figure 4.6Db).
However, in three of four cases, the closed-loop controller leads to better results than the
open-loop approach and also the sum of all cases is smaller (Figure 4.6a vs. Figure 4.6b and
Table 4.1). The only case that does not profit from the feedback and leads to similar results is
the decreasing of inertia.

The trajectories generated by the torque-driven model do not reach the desired target position
without feedback (Figure 41.6¢). With feedback, the trajectories get closer to what has been
observed in the experiments, but there are oscillations around the target position (Figure 1.6d).

An increase in arm inertia causes an overshoot of the movement using the musculoskeletal
model with and without feedback while the forward-controlled torque model predicts an under-
shoot (Figure 4.6). The former counter-intuitive behavior was also observed in the experiments
(Figure 4.5¢).

Closed-loop  Open-loop

Increased damping 0.19 4.43
Decreased damping 0.03 1.77
Increased inertia 0.43 0.69
Decreased inertia 3.19 2.87
Sum of all cases 3.84 9.76

Table 4.1: Quantification of the difference between simulation and experiment for
case (1) by evaluating the cost function (Equation (4.5)) that was used
in the optimization of the closed-loop control parameters and splitting it
into the contributions of the different perturbations. Hence, for the single
cases, a value smaller than one means that the result lies within the experimental
standard deviation area (taking the maximum standard deviation in each direction).
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Figure 4.5: Results for case (1). (a) Evaluation criterion for the static perturbations: Early
velocity difference in relation to the dysmetria difference (both calculated as the
early velocity /dysmetria of the perturbed movement minus the early velocity /dys-
metria of the reference movement) shown for both, simulation and experiment. The
experimental results are digitized from Bhanpuri et al. (2014), the control group
averages (n—11) are shown and the error bars indicate standard deviation. (b) our
simulation results and (c) experimental results digitized from Bhanpuri et al. (2014)
for one typical control subject in null condition (reference) and with perturbations
(shaded areas indicate standard deviation).
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sulting trajectories when controlling the musculoskeletal model open-loop, (b) tra-
jectories when controlling the musculoskeletal model closed-loop, (c) trajectories
when controlling a purely torque-driven model open-loop and (d) trajectories when
controlling a purely torque-driven model closed-loop.
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4.3.3 Dynamic torque perturbation

The response to the dynamic perturbations in the simulation is qualitatively similar to what
has been observed in the experiments (Figure 4.7b and Figure 4.7¢). Most relevant here is the
reaction directly after the perturbation which reflects in a change in angular velocity. Therefore,
we calculated the relation between the angular velocity in the elbow joint at the beginning and
the end of the perturbation (Figure 4.7a, At = 37.5ms). For a perturbation in the direction
of the movement, the velocity is approximately doubled while it is halved for perturbations
against the direction of movement. The velocity quotient between the velocity in the beginning
and the one 100 ms after the beginning of the perturbation (Figure 4.7a, At = 100 ms) deviates
more from the experiment than the one after 37.5 ms.

Note that no parameters were tuned to match the perturbed trajectories. For all static
and dynamic perturbation types, the same feedback gains, delays and desired levels of co-
contraction are used. For case @, some parameters need to be re-optimized in comparison to
@ to compensate for the constant torque that mimics gravity and to allow for an extension
movement. The whole set of control parameters can be found in Table A3.1.

The open-loop controlled system shows a similar response to the dynamic perturbations as
the closed-loop version and also as the subjects in the experiment (Figure 4.8a).

The trajectories generated by the torque-driven model do not reach the desired target position
without feedback (Figure 1.8¢). With feedback, the trajectories get closer to what has been
observed in the experiments, but there are oscillations around the target position (Figure 4.8d).
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(37.5ms and 100ms, see Equation (4.6)) shown for both, the simulation results
(filled bars) and the experimental results (empty bars) for all four perturbation
types (experimental results are digitized from Kalveram and Seyfarth (2009)). (b)
Joint angle trajectories for the four different perturbation types in our simulation
and (c) in the experiment (digitized from Kalveram and Seyfarth (2009)). Note that
the experimental results show the trajectory for one typical control subject. The
upper curves show flexion movements, the lower curves show extension movements.
The dashed lines visualize the applied torque perturbations.
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Figure 4.8: Comparison to open-loop and torque-driven model for case @ (a) Re-
sulting trajectories when controlling the musculoskeletal model open-loop, (b) tra-
jectories when controlling the musculoskeletal model closed-loop, (c) trajectories
when controlling a purely torque-driven model open-loop and (d) trajectories when
controlling a purely torque-driven model closed-loop with the same controller as
described above.
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4.3.4 Internal force responses

Our model approach allows for analyses of internal muscular and joint force responses as well
as the proprioceptive feedback signals that cannot be observed in experiments. To show the
possibilities this method offers, we evaluated the joint angle, muscle stimulation and resulting
activity, internal muscle and joint forces and active joint torque exemplary for one static and
one dynamic perturbation case and for one muscle (Figure 41.9). The changes in the total muscle
stimulation are due to the implemented feedback mechanism: For example in Figure 4.9b, the
perturbation acts against the direction of movement, so the muscle stimulation is increased to
compensate for it. Also the muscle force is increased as a consequence of the perturbation. In
consequence, the contact force and the constraint force in the elbow joint are increased as well.

4.3.5 Sensitivity analysis

We perform a local, first order differential sensitivity analysis by varying the control parameters
listed in Table A3.1 one-at-a-time (e.g., Dickinson and Gelinas, 1976; Morio, 2011; Rockenfeller,
2016). We calculate absolute and relative sensitivities as defined below and choose scalar state
variables for the different cases. The relative change of a parameter z is set to A = 1 x 1073 -z,
i.e. we perform a local sensitivity analysis without taking into account the physiological range
of the parameters (Rockenfeller et al., 2015; ten Broeke, 2017).

4.3.5.1 Absolute sensitivity of the trajectory per time step

We define the absolute sensitivity coefficient as

flz+A) - f(z)
A :

Sabs. = (4.7)
which approximates the derivative of f(x) in the direction of the parameter x for A small
enough.

As scalar state variable we choose the difference between the simulated and the experimental
trajectory. For every time step, we sum this trajectory difference over all four perturbation
cases and add the unperturbed case for each the static and the dynamic perturbations. In
doing so, the time evolution of the sensitivity of the trajectory to the control parameters can
be investigated.

4.3.5.2 Relative sensitivity of one characteristic measure
We define the relative sensitivity coefficient as

f(inA();f(fE) .
Srel. = - A = Pabs. * m ) (48)

x

i.e. it is a normalized approximation for the derivative of the state variable f(x) in the direction
of the parameter x for A small enough (e.g., Lehman and Stark, 1982). This relative sensitivity
is sometimes referred to as elasticity (ten Broeke, 2017). The advantage of the normalization
is that the resulting sensitivity indicator is easier to interpret and more comparable between
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different cases or even across models (Rockenfeller et al., 2015; Scovil and Ronsky, 2006). Using
this definition, the relative sensitivity indicates the percentage change in the state variable per
percentage change in the parameter value. For example, a relative sensitivity Sie). = 2 indicates
that a m% change of the input parameter z results in a 2m% change of the output f(x).

As scalar state variable that describes the behavior in reaction to the perturbations, we
choose a measure that describes the characteristics of the reaction to the perturbations. For
the static perturbations, we choose the cost function (4.5). For the dynamic perturbations, we
calculate the difference between the velocity quotient (4.6) in the simulation and the one in the
experiment and sum it over all four types of perturbations.
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Figure 4.9:
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torque impulse perturbation

Selection of quantities that can be investigated using our model. Elbow
joint angle, muscle stimulation and activity, muscle force, muscle-bone contact force,
joint constraint force and active joint torque for the unperturbed trajectory (orange)
and for a perturbed movement (blue). These results are exemplary shown for the
elbow flexor muscle and (a) for an increase in inertia and (b) for a flexion movement
with a negative torque impulse perturbation. Here, the gray area visualizes the
length of the time delay in the controller (50 ms), i.e. the time after the perturbation
before the feedback mechanism is activated. Note that the total muscle stimulation
in the unperturbed case is equal to the open-loop contribution in the perturbed
case. For all forces, the resultant force is shown. The contact force is the force
at the first deflection ellipse (positions of the ellipses see electronic supplementary
material). The active joint torque represents the torque acting on the joint that is
a consequence of the muscle forces.
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Figure 4.10: Normalized absolute sensitivity Sups. over time for (a) the static and (b) the
dynamic perturbations. Each line represents one of the varied parameters. For
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in magnitudes.
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Figure 4.11: Relative sensitivity S for each of the varied parameters for (a) the static
perturbations using the cost function (4.5) as characteristic measure and (b) the

dynamic perturbations using the summed difference between the velocity quotient
(1.6) in the simulation and in the experiment.
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4.4 Discussion

Our goal was to propose a model of human goal-directed arm movements which fulfills all three
criteria that we formulated in the introduction: Our neuro-musculoskeletal model shows valid
responses to both static and dynamic perturbations and therefore fulfills criterion (c). This
alone is novel, as typically only one category of perturbations is studied and reproduced by
previous models. The predicted response to both types of perturbations is an emerging behav-
ior of the sensorimotor integration in the model which was achieved by fulfilling the other two
criteria, both specifying the level of detail of the modeling. The high level of biomechanical
detail allows predicting muscle-tendon based proprioceptive feedback signals, internal muscle
forces, muscle-bone contact forces, and joint loads (Figure 4.9), all of which require the repre-
sentation of muscle-tendon complexes and geometrical muscle routing in the model (criterion
(a)). In consequence, kinematic- or torque-based control concepts of human motor control are
not applicable, as a control input is required on the muscular level for our model (one for each
muscle). The proposed controller is a combination of an open-loop controller and a low-level
muscle spindle signal based controller (criterion (b)). The open-loop controller generates a
(close-to) minimum jerk trajectory for the unperturbed movement. Only in the presence of a
perturbation, the closed-loop control contributes to the muscle stimulations. Thus, this model
allows for gaining insights into the sensorimotor integration in response to external forces.

The experimental data on the applied static (Bhanpuri et al., 2014) and dynamic pertur-
bations (Kalveram and Seyfarth, 2009) that we used to validate our model response has been
previously reported in the literature. The static perturbations represent changes in inertia and
viscosity continuously affecting the dynamics of the lower arm (Bhanpuri et al., 2014). Such
force fields have been a valuable tool to investigate motor control models (e.g., Pinter et al.,
2012) and, particularly, motor adaptation (e.g., Gribble and Ostry (2000); Kistemaker et al.
(2010), review: Franklin and Wolpert (2011)). Please note that in this contribution we fo-
cused on the non-adaptive neuro-muscular response in the sense of a sudden response to an
unexpected perturbation in between a large set of null-trials, thus, neglecting motor learning
(e.g., Burdet et al., 2006; Shadmehr et al., 2010; Yang et al., 2007). This is also the case for
the dynamic perturbations, which represent a sudden and time-limited external torque. These
perturbations represent a broad spectrum of systematic perturbations as they may occur in
ergonomically relevant scenarios or in the interaction with assistive devices.

Individually, the response to these perturbations have been reproduced by motor control
models before (static: (Bhanpuri et al., 2014) and dynamic: (Kalveram and Seyfarth, 2009)).
Both models reproduced the experimental kinematics by means of a torque in the elbow joint.
Both have an inverse model which, due to the simple equations of the model, can analytically
compute the required open-loop torque to achieve a desired joint trajectory. The model pro-
posed by Bhanpuri et al. (2014) compensated for the static perturbations with a long-latency
(100 ms) negative feedback control on the error between desired (minimum-jerk) and actual
elbow joint angle trajectory. The model proposed by Kalveram and Seyfarth (2009) is quite
similar. However, it proposes zero-time-delay negative feedback representing the tunable me-
chanical elasticity of the muscles. Both models did not consider muscle contraction dynamics
and, therefore, do not allow to investigate the sensorimotor interplay in consequence of such
perturbations. The model presented here transfers these control concepts to the more physio-
logically detailed musculoskeletal model. As a consequence, it validly reproduces the response

66



4.4 Discussion

to both static and dynamic perturbations and, in addition, allows for further insights into the
neuromuscular interplay of arm movements and internal dynamics in response to such pertur-
bations (Figure 4.9), as we will discuss in the following.

4.4.1 Unperturbed movements: intermittent open-loop control

In our model, the unperturbed reference movement is solely generated by an open-loop com-
mand. Although other musculoskeletal models show that feedback signals may play a role in
the generation of unperturbed arm movements (e.g., Bizzi et al., 1992; Desmurget and Grafton,
2000; Kambara et al., 2009; Kistemaker et al., 2006), we chose this approach to closely re-
semble the motor control models previously used to investigate these perturbations (Bhanpuri
et al., 2014; Kalveram et al., 2005). To be able to determine an open-loop control signal in
our neuro-muscular model, we parametrized the control signal resulting in a piecewise constant
stimulation over time for each muscle (Figure 4.3). Hereby we exploit the advantage of neuro-
musculoskeletal models that allow stable open-loop starting and target positions due to the
passive viscoelastic characteristics of the muscles and the length dependence of the activation
dynamics (Kistemaker et al., 2005, 2007a). Such so-called equilibrium points (Feldman, 1986)
can be found without and with gravity. Previously, complete equilibrium trajectories have
been proposed as control concept for smooth movements, where each point on the kinematic
trajectory is an equilibrium point (Bizzi et al., 1992; Flash and Hogan, 1985). Kistemaker et al.
(2006) composed their open-loop signal from several intermittent equilibrium points resulting
in a piecewise constant stimulation over time for every muscle. Also, our controller generates
an intermittent purely open-loop stimulation to generate the desired movement.

This intermittent control has two characteristics worth mentioning. Firstly, it is interesting
to see that it actually results in a smooth movement — without gravity: Figure 4.6a and with
gravity: Figure 4.8a. This is a result of the activation dynamics, the viscoelastic properties of
the muscle-tendon units, and the inertia of the lower arm. Secondly, it can achieve the required
velocity purely controlled by an open-loop signal. This is in contrast to previous intermittent
equilibrium point control, where proprioceptive feedback was included to achieve fast move-
ments (Kistemaker et al., 2006). While their intermittent control points all were equilibrium
points taken directly from their desired trajectory, the intermittent control parameters in our
optimization are free, allowing us to match the velocity of the experiments purely by open-loop
control.

4.4.2 Perturbed movements: hierarchical levels of feedback

An external force applied to the arm during the movement generates a deviation from the
planned /anticipated movement. With our model, we can study the response of the neuro-
musculoskeletal system on several hierarchical levels:

Musculoskeletal response: The evaluation of the stimulation signals (Figure 4.9) shows
that the relative contribution of the feedback signal is small (always <16% for 25 ms delay, <34%
for 50 ms delay, even less for the static perturbations), i.e. the stimulation comes predominantly
from the open-loop controller. We therefore repeated the perturbation simulations with open-
loop control. Interestingly, even when solely driven by an open-loop command, the system
already shows a similar response to the perturbations as the healthy subjects in the experiments
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(Figure 4.6a and Figure 4.82). The reason for this is that the antagonistically arranged muscle
models account for the non-linear force-length-velocity relationship of muscle fibers and the
passive non-linear elasticities of tendons. This relationship basically acts as a zero-time-delay
peripheral feedback (previously termed preflex, (Brown et al., 1995)). In consequence, the
force produced by the muscles changes not only with changes in stimulation but also with
changes in the length and contraction velocity of the muscle fibers — which change during the
movement. Hence, our open-loop controlled system includes an internal feedback mechanism
on the muscular level. The role of this effect becomes strikingly clear in comparison to a torque-
based model that was able to reproduce the unperturbed movement but failed to adequately
respond to the perturbations in the open-loop scenario. So, the difference between the open-
loop controlled musculoskeletal model (Figure 4.6a and Figure 4.8a) and the torque-driven
model (Figure 4.6¢ and Figure 1.8¢) is the consequence of the immediate physical response due
to the impedance of the muscular system. The relevance of this immediate response is also
emphasized by the velocity quotient evaluated at 37.5ms after the perturbation (Figure 4.7a)
as it is independent of the feedback signal and thus reflects the musculoskeletal response. The
resemblance of this velocity quotient to the experiment indicates that the system’s state is
adequately represented as it characterizes the initial response to perturbations. This means
that the first zero-time-delay response is provided by the muscle-tendon units and it shows
already correct qualitative responses to the perturbations. This indicates that the relative
importance of feedback over feed-forward may be diminishing in the presence of muscular
characteristics (Pinter et al., 2012), which is particularly interesting with respect to assistive
devices for rehabilitation. Furthermore, the capability of the musculoskeletal system to stabilize
against external perturbations (Brown et al., 1996; Wagner et al., 2007) may allow reducing
the informational control effort (Haeufle et al., 2014a, 2020b) by exploiting the capability of
morphological computation of the biomechanical system (Ghazi-Zahedi et al., 2016).

First neuronal response: The next level of response to the perturbation is the short- or
long-latency feedback mechanism that we implemented in our model. Both the short- and the
long-latency feedback lead to the same qualitative behavior (see Appendix A3 for short-latency
results). Depending on the type of perturbation, the feedback in our model helps to bring the
simulated trajectory closer to the experiment (Table 4.1). For the damping perturbations, the
closed-loop controlled system is less sensitive to the perturbations than the version without
feedback, because the feedback works against the perturbations during the whole movement.
Therefore, with feedback, the movement is closer to the unperturbed trajectory which is closer
to the experiment than the open-loop version of the model. When perturbing the inertia prop-
erties, feedback enhances the effect of the perturbation which leads to a trajectory that is
further away from the experiment. This becomes visible in the quantification criterion dys-
metria, which evaluates the deviation in the target position due to the static perturbations.
On the other hand, the quantification criterion early velocity for the static perturbations is
only little affected by the feedback because it is measured in the early phase of the movement
where feedback does not play a big role due to its delay. Also for the dynamic perturbation,
feedback improves the response. However, this is only little reflected in the chosen quantifi-
cation criterion (velocity quotient, Figure 4.7a) since it takes into account the velocity before
the perturbation and 37.5ms or 100 ms after the perturbation, respectively, while the feedback
delay is 50 ms. Hence, the model prediction benefits from the sensorimotor integration on the
lower-level reflex level in response to these perturbations.
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More complex long-latency feedback and higher-level adaptation: In addition to
the musculoskeletal response and the simple short- and long-latency feedback, more complex
long-latency feedback and higher-level control would be able to further handle the late con-
sequences of perturbations. While data on dynamic perturbations in human arm movements
indicate only a small response in the time-window of short-latency reflexes — as in our model —,
it shows well-tuned and adequate responses of long-latency reflexes (45-100 ms, Kurtzer et al.
(2008)). Such long-latency feedback (100 ms) has been used by Bhanpuri et al. (2014) to com-
pensate for the static perturbations in their torque-driven model, an effect we can reproduce
in our torque model as well (Figure 4.6d and Figure 4.8d) where responses get closer to the ex-
periment than without feedback but tend to oscillate around the final positions. Currently, our
neuro-musculoskeletal model does only consider the muscle-fiber-length- and velocity-dependent
aspects of long-latency reflexes. More complex or higher-level feedback strategies seem not nec-
essary to reproduce the immediate perturbation response.

Relevance for motor control: We interpret these findings such that muscles generate
an immediate zero-time-delay impedance response. Short-latency feedback and our simplified
representation of long-latency feedback have little influence, and not necessarily beneficial for
all types of unexpected interaction forces. More complex long-latency feedback could then
consider an internal model of limb dynamics (Kurtzer et al., 2014, 2008) for an adequate
complex response. However, this is not implemented in our model (Equation (4.1)). Therefore,
the detailed modeling of the low-level neuro-muscular control mechanism is suggested to be
important to understand (i) higher-level control mechanisms, (ii) their disturbances in patients
with movement disorders and (iii) to develop effective assistive devices to compensate for those
disturbances.

4.4.3 Model assumptions and limitations

To derive control parameters, we made a few assumptions. The most prominent assumption
was the triphasic pattern (Equation (4.2)) which was our approach to tackle the inverse model
problem: finding required control signals for the desired trajectory. Our approach was inspired
by the observation of triphasic patterns in muscle surface electromyograms (EMG) (see e.g.,
Wachholder and Altenburger (1926), Wierzbicka et al. (1986) and Kistemaker et al. (2006))
and has been discussed in detail above (Section 4.4.1). Other approaches tackled this inverse
problem by reducing the biomechanical complexity: Examples are ideal torque generators in
the joints (e.g., Bhanpuri et al., 2014), linear or non-linear spring ,and spring-damper models
(e.g., Kalveram and Seyfarth, 2009; Kalveram et al., 2005), or simplified muscle models which
contain no tendons, no activation dynamics and an entire model without any neuronal delays
(Teka et al., 2017). Furthermore, inverse relations between a desired movement and control may
also be resolved for musculoskeletal models by more elaborate optimizations (Driess et al., 2018;
Kistemaker et al., 2014; Todorov, 2004), although it is not easy to determine a physiologically
relevant cost function (Berret et al., 2011; Loeb, 2012; Todorov, 2004). A third option entirely
circumvents the inverse problem by iterative motor learning (e.g., Gribble and Ostry, 2000;
Kambara et al., 2009).

Some of the control parameters were chosen by hand while others were optimized to match
the unperturbed or perturbed trajectories (see Table A3.1). To investigate the influence of
the control parameters on the resulting movement, we performed a sensitivity analysis (see
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Section 4.3.5). We quantified the sensitivity to small changes of the control parameters in two
ways: a) by measuring the effect on the trajectory (time-based measure) or b) by measuring
the effect on a scalar characteristic measure that describes the behavior (cost function used in
the optimization Equation (1.5); velocity quotient Equation (4.6)). Note that these sensitivity
indicators need to be treated carefully as for example the relative sensitivity to a change of
the time delay § around the reference value of 50 ms is relatively high (Figure 4.11) while a
change of the time delay from 50 ms to 25 ms or 100 ms without re-optimizing the other control
parameters has only little influence on the qualitative behavior in reaction to the perturbations
(results not shown here). This is due to the fact that the chosen state variables are sums
over several cases and non-linear functions of the input parameters. The influence is even
smaller when re-optimizing the other control parameters after changing the time delay from
50ms to 25ms (see Appendix A3) or 100ms (not shown here). In doing so, the changes in
the delay can be compensated for by adapting the other control parameters. We assume that
the nervous system similarly adapts the motor control when for example the feedback delay
changes. Overall, the sensitivity analysis shows that some control parameters do have a relevant
influence on the results. However, the overall behavior is only little affected when the other
control parameters are re-optimized to compensate for the change.

The second assumption for the control is further related to the biomechanical representation:
the type of feedback. Torque models and other simplified models often use the joint angle as the
control level to account for deviations between desired and actual trajectory (e.g., Bhanpuri
et al., 2014; Kalveram et al., 2005). In our model, however, we use muscle spindle signal
based feedback and assume that it provides direct feedback of the muscle fiber length and
contraction velocity. We neglect other types of proprioceptive feedback, for example from
Golgi tendon organs, which may provide a link to joint-based control (Kistemaker et al., 2013).
Furthermore, more detailed representations of the proprioceptors (Loeb and Mileusnic, 2016)
allow for a detailed analysis of, e.g., the role of alpha-gamma co-activation (Lan and Zhu, 2007;
Lan and He, 2012).

Finally, one crucial assumption is the neuronal delay, as it strongly influences the interpre-
tation of the location of the feedback in the neuronal hierarchy. By assuming zero time delay,
Kalveram et al. (2005) located the negative feedback control at the biomechanical level — a
common approach which is not always clearly separated from afferent signals (e.g., Teka et al.,
2017). Experimental findings show that the short-latency reflex can produce more sophisticated
responses to perturbations than previously thought (Weiler et al., 2019). This short-latency
feedback occurs after a time delay of approximately 20-50 ms after a perturbation (Kurtzer
et al., 2014; Pruszynski and Scott, 2012; Shemmell et al., 2010). Other delays in the order of
50-100 ms represent long-latency reflexes (Kurtzer, 2015; Pruszynski and Scott, 2012; Shemmell
et al., 2010; Weiler et al., 2016), as used for example by Bhanpuri et al. (2014); Gribble and
Ostry (2000). Several studies have shown that the long-latency stretch response plays an im-
portant role in the reaction to mechanical perturbations in goal-directed reaching movements
(e.g., Kurtzer et al., 2014; Weiler et al., 2016). In our model, using 25 ms delay, the imple-
mented feedback mechanism represents a simplified model of the spinal, mono-synaptic muscle
spindle reflex (Pruszynski and Scott, 2012; Weiler et al., 2019), assuming that the muscle spin-
dles provide accurate time-delayed information about the muscle fiber lengths and contraction
velocities (Kistemaker et al., 2006). However, this model of the afferent feedback does not
accurately reflect the natural muscle spindle feedback which is only sensitive to the muscle’s
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local stretch (Kurtzer et al. (2014), see Scott (2016) for an overview) while our formulation
reacts to stretch and shortening. Therefore, choosing a time delay of 50 ms and thus modeling
a long-latency reflex seems more appropriate. However, this model considers only the muscle-
fiber-length- and contraction-velocity-dependent part of the long-latency feedback and neglects
other aspects. This becomes visible in the velocity quotient after 100 ms (Figure 4.7a) which
characterizes the behavior at the end of the first neuronal response. It is further away from the
experiments than the velocity quotient after 37.5 ms, suggesting that our long-latency feedback
model does not include all relevant feedback mechanisms. Experimental findings indicate that
long-latency feedback represents the net impact of spinal and cortical circuits and thus includes
several independent processes (e.g., Kurtzer et al., 2014; Pruszynski et al., 2011) that for ex-
ample account for limb biomechanics (Kurtzer, 2015) or evoke responses in muscles that were
not stretched (Weiler et al., 2018). The reaction after more than 100 ms after the perturbation
is influenced by more complex and higher-level feedback mechanisms and voluntary activities
(Kurtzer, 2015; Pruszynski and Scott, 2012; Weiler et al., 2016) that are not represented in
our model. Although the resulting reactions of our model to the perturbations seem quite
sensitive to the chosen delay time (see Section 4.3.5), the results were quite similar for choosing
25ms, 50ms or even 100 ms delay (the latter results are not shown in this contribution). Our
model reproduces the response to the perturbation by using short-latency feedback (25ms)
which represents spinal control layers or long-latency feedback (50ms) which has spinal and
supraspinal influences. Once more this emphasizes the decentralized control. However, as the
feedback contribution was rather small and did not improve the response in all cases, it is likely
that more sophisticated models, which may, for example, include multiple layers of feedback
including more complex long-latency feedback (Kurtzer et al., 2008) would improve the model
prediction.

As with the control and feedback assumptions, also the level of detail of the musculoskeletal
model has its limitations. Although our muscle model represents contraction dynamics quite
well (Haeufle et al., 2014b), it does not consider recent findings on the behavior of muscles under
eccentric loading conditions (Tomalka et al., 2017), on the possible role of short-range stiffness
(De Groote et al., 2017; Nichols and Houk, 1976), or the effect of transversal loading (Siebert
et al., 2014). As we see significant force changes in the dynamic perturbations originating
from the muscle’s passive characteristics (Figure 4.9), these new findings may also influence
the response. Ultimately, for the study of internal contact forces, finite-element models may
allow a more detailed analysis (Rohrle et al., 2016) but significantly increase the complexity of
finding an adequate controller (Martynenko et al., 2017).

4.4.4 Conclusion

For our study, the focus was on the valid prediction of the response to static and dynamic
external perturbations while providing the possibility to investigate the neuromuscular interplay
at a level that allows predicting muscle-bone contact forces and joint loadings. As our model
with its assumptions and limitations still fulfills the initially stated criteria, we consider it
a starting point to further develop models with the integrated use: studying motor control
and ergonomics with the same model for research questions where they overlap, e.g., for the
development and ergonomic risk assessment of assistive devices.
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assistive forces of wearables

In the previous chapter, we found that our arm model can reproduce human movements with
and without external mechanical perturbations. Such mechanical perturbations can for exam-
ple be introduced by a wearable assistive device. Therefore models of the human arm may help
to estimate design parameters like peak torque and power of such assistive devices by predicting
required forces to compensate for motor control impairments. This chapter focuses on the idea
of compensating hypermetria (overshoot), a motor control deficit that may occur in neurodegen-
erative diseases, by a simple assistive device. As musculoskeletal dynamics play an important
role in the interaction between an assistive device and the neuro-musculoskeletal system, we
hypothesized that their consideration in the model might influence the predicted design param-
eters. To test this, we simulated two-degree-of-freedom point-to-point arm movements with our
neuro-musculoskeletal model (Section 3.2.4). By introducing inconsistent neuronal control pa-
rameters, we induced hypermetria. We implemented mechanical and low-level assistive torque
strategies in simulation which lead to a reduction of hypermetria. We quantified the differ-
ence between required peak torque and mean power as predicted by our neuro-musculoskeletal
model in comparison with a torque-driven arm model. We found that, depending on the type
of assistance, the predicted torques and powers can differ by more than a factor of 10 between
musculoskeletal and torque-driven arm models. We conclude that the magnitude of torque and
power required to reduce hypermetria by simple wearable assistive devices may be significantly
underestimated if muscle-tendon characteristics are not considered.

Note that large parts of the content of this chapter were accepted for publication at the con-
ference BioRob2020. For details on this publication, including a list of authors, see Manuscript
2 in Chapter 2.

5.1 Introduction

Neurodegenerative diseases may cause progressive motor control impairments. The number of
individuals affected by such impairments increases worldwide due to aging populations (Logros-
cino et al., 2018). Currently, there are only symptomatic treatments and medicines to slow down
the disease development (Duraes et al., 2018). Hence, a growing number of people is expected
to benefit from progressive motor assistance in the next decades.

Wearable assistive devices promise to improve the quality of life of people with impaired
motor control (Frisoli, 2018; Fromme et al., 2019; Soekadar et al., 2015; Varghese et al., 2018).
In the early stage of motor disability of neurodegenerative origin, wearable assistive devices
may need to provide relatively small assistive forces to improve movement coordination, e.g.,
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to correct unwanted hypermetria (overshoot) in goal-directed arm movements (Bhanpuri et al.,
2014; Topka et al., 1998a). By matching force and torque specifications of assistive devices to
the impairment level (subject-specific), it would be possible to minimize weight, volume, and
cost, potentially increasing user acceptance (Fromme et al., 2019; Varghese et al., 2018). To
this end, it would be useful to have adequate computer simulations allowing to predict force
and torque requirements, as well as to test control concepts, already in the design phase.

In the literature, motor control models exist which consider and predict impaired movement
generation (e.g., Bhanpuri et al. (2014); Mugge et al. (2012)), as well as models describing the
response of the (neuro-)musculoskeletal system to external forces (Petri¢ et al., 2019; Stollen-
maier et al., 2020b). Here, the muscle-tendon contraction dynamics are particularly important
(Pinter et al., 2012) as they generate the first viscoelastic reaction forces to external pertur-
bations, termed preflezes (Brown et al., 1995). Therefore, the integration of impaired motor
control models, musculoskeletal dynamics, and assistive forces into one simulation framework
is required for the model-based design of wearable assistive devices.

The purpose of this study is to use such an integrated simulation framework to test to which
degree the musculoskeletal preflexive forces would influence the design of wearable assistive
devices. We focus our analysis on a simplified assistance scenario, i.e., the reduction of hyper-
metria (overshoot) in goal-directed arm movements through mechanical or low-level controlled
assistive torques. We hypothesized that neglecting the muscle-tendon preflex forces (passive
viscoelasticities) results in different predictions for the torque and power requirements of the
device. We expect this investigation to benefit the design process of wearable assistive devices
for early-stage neurodegenerative diseases, i.e., for those applications requiring minimal assis-
tance (light, user-customized) and for which complex EMG-based control schemes might be
unfeasible due to impaired neuronal control signals.

5.2 Methods

We simulated goal-directed vertical human arm movements in the sagittal plane. We chose a
task in analogy to experiments where subjects point with the index finger to markers appearing
on a vertical screen. Going from the start to the target position requires to retract slightly, and
afterward extend the finger (typically by elbow flexion) to avoid collision with the screen.

5.2.1 Musculoskeletal model

The musculoskeletal model that we used has been published in a previous work (Stollenmaier
et al., 2020b), where it has been shown that it validly reacts to static and dynamic external
forces for single-joint arm movements. The response of the model matched that of experimental
results under similar perturbations (Bhanpuri et al., 2014; Kalveram et al., 2005).

Here, we used the same model to investigate a movement with two degrees of freedom. The
novelty is that we modeled a neuronal impairment leading to hypermetria (overshoot) and
additional external assistive torques to reduce the hypermetria.

The model consists of two rigid bodies (lower arm and upper arm) that are connected via two
revolute joints (shoulder and elbow, see Figure 5.1). This skeletal structure is actuated by six
antagonistically arranged muscle-tendon units (MTUs) (four monoarticular and two biarticular
muscles) that are routed anatomically (Hammer et al., 2019) and apply active forces to the
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Figure 5.1: Musculoskeletal model that is used for the computer simulations of the
arm movements. The colored lines represent the six muscles that are modeled us-
ing an extended Hill-type muscle model. We investigate the two-degree-of-freedom
point-to-point arm movement that is visualized here.

bodies. The MTUs are modeled using a Hill-type model that accounts for muscle fiber and
tendon characteristics (Haeufle et al., 2014b), in combination with a model of muscle activation
dynamics that considers the fiber length dependency (Hatze, 1977; Rockenfeller et al., 2015)
(see Stollenmaier et al. (2020b) for detailed model description and model parameters).

5.2.2 Motor control model

A key characteristic of the antagonistic musculoskeletal setup is the emergence of open-loop
stable equilibrium positions (Kistemaker et al., 2006). More precisely, for each combination of
open-loop stimulations u®?"(¢), the antagonistic muscle forces equilibriate in a specific posture
q"Fi (u°Pen(¢)) (EP for equilibrium posture). Moreover, each EP can be held with different
combinations of stimulations (redundancy), resulting in different levels of co-contraction and
thus different joint stiffnesses (due to the non-linear elasticity of the tendons (Bayer et al.,
2017)). An external force applied to the model in equilibrium results in immediate (zero-time-
delay) viscoelastic restoring forces, the so-called preflex forces (Brown et al., 1995).

In addition to the open-loop control, the model considers a time-delayed (6 = 10 ms) mono-
synaptic muscle spindle reflex as a closed-loop component u®'**d(¢) minimizing the difference
between desired ()\) and actual (I°F) muscle fiber length (see Figure 5.2). This feedback further
increases the stability of an EP, but as a time-delayed neuronal response.

Combined, the motor command for each muscle i is

us(t) = P (6) + g™ (n) )

0 ) (5.1)

= {ugPen(t) + k(17 - ) — (1)) }

0
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Figure 5.2: Schematic diagram of the bio-inspired motor control model including an
external assistive torque. The motor command u(?) is a sum of an open-loop and
a closed-loop signal. The time-delayed feedback loop incorporates proprioceptive
feedback (mono-synaptic reflexes) by comparing the actual muscle fiber lengths
1°E(t) to desired values A(t). Here, the observable state q(t) = [¢(t),(t)] contains
the elbow and shoulder angle, respectively. An external torque M(t) is applied to
the joints, representing an ideal assistive device.

where k, > 0 is a feedback gain. The operation {z}} sets values x < 0 to 0 and = > 1 to 1.

To determine the control parameters, the command generator maps the desired trajectory
q%°(t) and the initial muscle co-contraction level u9¢(0) to the open-loop signals u°P®*(¢) and
to desired muscle fiber lengths A(¢). For the vertical pointing movement investigated here,
we assume an intermittent switching (Bayer et al., 2017; Kistemaker et al., 2006) between
three EPs: the initial posture q®F°, an intermediate position retracting the index finger to
avoid collision with the screen q®F!, and the target posture q®2. This assumption results
in piece-wise constant open-loop signals u;""(¢). Their values are determined individually
by minimizing the sum of the difference between muscle stimulations and the desired level of
co-contraction at each equilibrium position q®Fs (Bayer et al., 2017):

6
Z(u@en,Epj B udes,EPj) — min, (5.2)

%
=1

subject to the constraint that the sum of all torques acting on the joints is zero (equilibrium,
optimized with fmincon, Matlab®). The corresponding desired muscle fiber lengths AFFs are
set to the muscle fiber lengths 1°F in the equilibrium positions.

Due to the impedance characteristics of the musculoskeletal system and the closed-loop reflex
contribution, this intermittent control results in smooth movements (Bayer et al., 2017). To
represent an actual human-like movement, the remaining control parameters (the shoulder and
elbow angle for the second EP (qFF1), the desired level of co-contraction for the second and the
third EP (u4°FF1/2)  the starting times for the second and the third EP and the feedback gain
(kp)) are optimized. The optimization is done using a pattern search algorithm minimizing the
quadratic difference between the simulated and an exemplary unimpaired trajectory, which we
assume to be the desired trajectory q4°(¢). All optimizations and simulations are performed
in Matlab® 2018a,/b.
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Figure 5.3: Dysmetric movements in computer simulation and human experiment.
(a) Simulated healthy trajectory for a point-to-point movement and trajectory re-
sulting from a neuronal perturbation. (b) Shoulder angle trajectory for a vertical
pointing movement (task slightly different from our objective) for a healthy subject
and a cerebellar patient. These data are digitized, normalized and replotted from
Topka et al. (1998a).

5.2.3 Neuronal impairment of motor control

In order to simulate impaired motor control, we generated hypermetric (overshooting) behavior
with a perturbation on the neuronal level. We exemplary chose a perturbation of the initial
muscle co-contraction level which defines the system’s initial state (first EP, before the move-
ment starts). For the “healthy” reference movement, the initial co-contraction level is set to
ud5(0) = 0.1, which means that the desired starting posture q"F° is held with a low level
of co-contraction. The control parameters that govern the subsequent movement (second and
third EP and feedback gain) are optimized considering this initial state (see above). The
“impaired” movement is then generated by increasing the co-contraction in the initial posture
(u4°(0) = 0.5) without re-optimizing the other control parameters. This mismatch between
the motor command and the initial conditions leads to a movement that differs from the desired
one. The higher initial co-contraction level results in a slower acceleration of the arm motion
due to two factors: (1) the antagonistic muscles are initially more active and therefore generate
higher eccentric viscous muscle forces dampening the movement; (2) the higher activity of the
antagonistic muscles results in a slower muscle deactivation due to the non-linearity of the acti-
vation dynamics (see Fig. 7a in Bayer et al. (2017)) that further intensifies the first effect. The
initially slower arm movement causes a larger error in the feedback loop, further intensified by
its neuronal delay and eventually resulting in hypermetria (overshooting), predominantly in the
shoulder (Figure 5.3a). We chose the initial co-contraction levels described above (0.1 and 0.5),
because the amplitude of the overshoot generated by this model of the neuronal impairment
roughly matches those reported in the literature for patients suffering from cerebellar ataxia
(Topka et al., 1998a) (Figure 5.3b). This model of impairment leads to a behavior qualitatively
and quantitatively similar to what has been observed in cerebellar patients, but its validity with
respect to the underlying neurological disorder has not been investigated and is not subject of
this study.
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5.2.4 Model of assistive device for correcting impairment

To test how an assistive device could potentially compensate for such an overshoot, i.e. reduce
the amplitude of the overshoot, we implemented different strategies for applying an assistive
torque M(t) = [M¥#(t), M¥(t)] to the arm (Figure 5.2).

5.2.4.1 Constant torque

A simple strategy which requires no online feedback and no knowledge of the desired trajectory
is a constant torque M const, applied to the shoulder joint from the beginning of the movement
until shortly after the maximum of the overshoot in the impaired movement is reached:

Mw (t) = Mconst (t)
B {Mcomst for 0.05 s <t < 0.62 s (5.3)

0 else.

5.2.4.2 Viscous damping

A strategy which could be implemented purely by passive mechanics is a viscous damping
torque M 4 applied to the shoulder joint:

MY(t) = M(t) = d - 4(t), (5.4)

with angular velocity of the shoulder () and damping constant d.

5.2.4.3 Difference in torque

Based on inverse dynamics analysis of the kinematics, an assistive torque could be determined
by calculating the difference in torque Mg;g between the impaired and healthy movement for
both joints and applying it to the respective joint. In our model, the torque in the healthy
Miealthy (t) and impaired Mimpaired(t) movement is determined by measuring the net joint
torque generated by the muscles.

M(t) = Mdiff(t> = Mhealthy (t) - Mimpaired (t) . (5.5)

5.2.4.4 PD controller

Finally, we tested a PD controller M pp acting on both joints (elbow and shoulder). It uses
the current state q(t) as the input signal and the simulated healthy movement as the reference

trajectory quet(t).

M(t) = MPD(t)

= Kp(dret(t) — a(t)) + ka(Qret(t) — a(t)) - (5.6)
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5.2.5 Idealized torque-driven model for comparison

We implemented an idealized torque-driven model to compare the reaction to assistive torques
to those of the musculoskeletal model. This comparison allows for the investigation of the
contribution of the preflex forces. The torque-driven model uses the same mechanical parame-
ters (segment lengths, masses, inertia) as the musculoskeletal model. To determine the torque
that is necessary to reproduce the musculoskeletal model’s movement, we recorded the net
joint torque that is applied by the muscles during both the healthy and the impaired move-
ment. No feedback mechanism is implemented, i.e. the torque-driven model is controlled purely
open-loop.

5.3 Results and discussion

5.3.1 Constant torque and viscous damping

In the musculoskeletal model, a constant assistive torque M .onst 0f adequate magnitude leads
to reduced movement velocity and a reduction of the amplitude of the overshoot in the shoulder
joint (Figure 5.4a). The same holds for the assistive damping torque M, representing viscous
damping (Figure 5.4c¢).

In the torque-driven model, these simple assistive torques also reduce the magnitude of the
overshoot (Figure 5.4e). However, the required torque level is less than 1/10 compared to the
ones in the muscle-driven model. This difference in the magnitude of the predicted assistive
torque becomes even clearer when applying the same levels of constant torque to both models
(Figure 5.4 (a) vs. (d) and (b) vs. (e)).

Please note: in the torque-driven model, the assistive torques lead to changes in the trajectory
and a diverging endpoint. This is expected, as the model is driven by an open-loop torque
command and these assistive torques do not enforce (control) the desired movement or end-
position. In the musculoskeletal model, there is no systematic change in the trajectory and the
final position is reached due to the neuromuscular dynamics, i.e., the low-level reflex and the
passive viscoelastic properties resulting in a stable equilibrium at the target.

Hence, the results using a musculoskeletal model indicate that an assistive device imposing
a simple constant torque or damping to the shoulder joint may be sufficient to decrease the
amplitude of an overshoot without affecting the endpoint accuracy. This is in agreement with
experimental observations that mechanical damping may reduce overshoot (Bhanpuri et al.,
2014) and tremor (Aisen et al., 1993). However, this requires higher torque and damping than
expected from a torque-driven model.

5.3.2 Difference in torque

As expected, applying the torque difference between the impaired and the healthy movement
(Mgigr) to the torque-driven model results in a perfect correction resulting in the originally
desired, healthy trajectory (qef.). (Figure 5.5b). In the musculoskeletal model, however, Mg
does not reduce the amplitude of the overshoot (Figure 5.5a). On the contrary, it even increases
the overshooting behavior.
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Results for constant torque and viscous damping. Applying (1) a constant
torque M const and (2) viscous damping M 4 to the impaired movement to counteract
the overshoot as described in Equation (5.3) and Equation (5.1). The last row shows
the torque that is applied to the shoulder joint. The magnitude of these assistive
torques depends on whether the design is based on the predictions made by a
musculoskeletal model or a torque-driven model. A torque level of Mot = 3 Nm
reduces the overshoot to a healthy level in the musculoskeletal model but causes
dramatic deviations from the trajectory in the torque model. However, a torque
level of M¢onst = 0.15 Nm sufficiently reduces the overshoot in the torque model,
but has no visible effect in the musculoskeletal model. Also for M, the required
damping value in the musculoskeletal model is much larger (d = —0.1 Nms - rad~!
vs. d = —3Nms - rad!).

While the torque difference, e.g. determined by inverse dynamics (Riener and Straube, 1997),
may be helpful for diagnostics, our results suggest that it may cause an increase rather than a
reduction of the impairment if it is directly used as a control signal for an assistive device.

5.3.3 PD controller

The feedback gains of the PD controller are tuned such that the resulting torque reduces the

amplitude

of the overshoot without slowing down the movement. For both models the same

proportional gain x, = 1 Nm - rad~! and derivative gain kg = 15 Nms-rad~! are used. This
results in faster acceleration at the beginning of the movement, thus replicating the healthy
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Figure 5.5: Results for difference in torque and PD controller. Applying (3) the dif-
ference in torque My between the healthy and the impaired movement (Equa-
tion (5.5)) and (4) a torque Mpp that is generated by a PD controller (Equa-
tion (5.6)) to the impaired movement in both (a) the musculoskeletal model and

(b) the torque-driven model. Please note that the small divergence in the end posi-

tion in the torque-driven model (3b) is caused by numeric errors which accumulate

in this chaotic system.

movement almost exactly in both models (Figure 5.5). This occurs because the PD controller
corrects the error in angle and velocities without a time delay. Therefore, the lack of acceleration
at the beginning of the movement that leads to the overshoot in the impaired movement is
corrected instantly, before the time-delayed reflex could react to it and induce an overshoot.
However, the realization of such an assistive device would require exact knowledge of the desired
reference trajectories, which poses the challenge of user motion intention recognition (Huang
et al., 2015).

5.3.4 Comparison of peak torque and power consumption

The type of arm model used to predict the reaction to the assistive torques influences the
magnitude of torque necessary to compensate for the overshoot. To quantify this difference
in the comparison between a muscle-tendon- and a torque-driven model, we calculated the
respective peak torque and mean power of the investigated assistive torques (Figure 5.6). These
two quantities are often design parameters of an assistive device.

Applying a constant torque M .onst or viscous damping M 4 to compensate for the overshoot
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Figure 5.6: Comparison of the peak torque and mean power consumption of the
assistive torque for each type of assistive device applied on the muscle-
driven and the torque-driven model. For this comparison, we selected the
parameters that lead - if possible - to a sufficient reduction of the overshoot in

each of the respective cases (M¢onst = 3Nm or 0.15Nm, d = —3Nms - rad~! or
—0.1Nms - rad~! for the muscle- and the torque-driven model, respectively). The
fff M-gdt

mean power consumption is calculated as P = Rl

requires much higher peak torque and mean power in the musculoskeletal model than in the
torque-driven model. For more information-driven assistive approaches, like applying the dif-
ference in torque My;g or using a PD controller M pp, the predicted peak torque and mean
power are in the same magnitude for both the musculoskeletal model and the torque-driven
model (Figure 5.6).

5.3.5 Model limitations

We neither considered a detailed model of the neuronal impairment, nor any long-latency con-
tribution to the feedback, nor motor learning in the model, all of which may alter the response
to external forces. Including these features in our model, followed by empirical validation,
would be required in the future.

The torque-driven arm model (without assistive torque) does not consider any type of
feedback. We chose this explicitly, as any type of feedback would approximate the neuro-
musculoskeletal properties to some degree. The various possible degrees of model representa-
tion, from simple impedance to more detailed antagonistic viscoelastic setups (Pinter et al.,
2012), would lay between the two approaches considered here.

Finally, the assistive device is modeled in simplified terms. It is assumed to apply an idealized
external torque to the joints while not examining the force transmission to the human and not
considering the weight, inertia, or internal friction of such an assistive device. Also, we do not
address the issue of user intention recognition (Huang et al., 2015), which is always difficult,
but required to provide a desired trajectory for classical control approaches like Mpp.
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5.4 Conclusion

The magnitude of peak torque and mean power required to reduce an overshoot-like motor
control impairment by a mechanically simple assistive device may be underestimated if muscle-
tendon characteristics are not considered. Overshoot, as observed in cerebellar patients (Bhan-
puri et al., 2014; Riener and Straube, 1997; Topka et al., 1998a), is only one motor control
impairment which may progress due to neurodegeneration. Also tremor in Multiple Sclerosis
patients may be reduced by mechanical damping (Aisen et al., 1993). For all progressive motor
control impairments due to neurodegeneration, such simple devices would be preferable over
bulky powerful exoskeletons, especially in the early phase where potentially small assistance
is sufficient. Furthermore, neuronal impairments cause incorrect motor control signals to the
muscles rendering muscle electromyography as the driving signal for powered exoskeletons un-
feasible. Simple mechanistic devices seem promising, but their design requires a model of the
neuronal impairment and, as our results suggest, the consideration of musculoskeletal dynamics
and the preflex forces they generate.
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6 | Quantifying morphological
computation on different
neuronal control hierarchy levels

The simulated perturbed movements in Chapter 4 indicated that the musculoskeletal system
significantly contributes to the resulting movement as the feedback contribution with optimized
feedback gains was rather small (Figures 1.6 and 4.8). To quantify how much the muscle-tendon
structures contribute, in this chapter, we applied the concept of quantifying morphological
computation (Section 3.5). In particular, we were interested in how morphological computa-
tion differs between the levels on the neuronal control hierarchy: Voluntary movements, like
point-to-point or oscillatory human arm movements, are generated by the interaction of several
structures. High-level neuronal circuits in the brain are responsible for planning and initiating
a movement. Spinal circuits incorporate proprioceptive feedback to compensate for deviations
from the desired movement. Muscle biochemistry and contraction dynamics generate movement
driving forces and provide an immediate physical response to external forces, like a low-level
decentralized controller. A simple central neuronal command like “initiate a movement” then
recruits all these biological structures and processes leading to complex behavior, e.g., gener-
ating a stable oscillatory movement in resonance with an external spring-mass system. It has
been discussed that the spinal feedback circuits, the biochemical processes, and the biomechan-
ical muscle dynamics contribute to the movement generation, and, thus, take over some parts
of the movement generation and stabilization which would otherwise have to be performed by
the high-level controller. However, it is unknown whether morphological computation actually
differs between these different hierarchical levels of the control system. To investigate this, we
simulated point-to-point and oscillatory human arm movements with our neuro-musculoskeletal
model (Section 3.2.4). We then quantified morphological computation on the different hierar-
chy levels. The results show that morphological computation is highest for the most central
(highest) level of the modeled control hierarchy, where the movement initiation and timing are
encoded. Furthermore, they show that the lowest neuronal control layer, the muscle stimula-
tion input, exploits the morphological computation of the biochemical and biophysical muscle
characteristics to generate smooth dynamic movements. This study provides evidence that
the system’s design in the mechanical as well as in the neurological structure can take over
important contributions to control, which would otherwise need to be performed by the higher
control levels.

Note that large parts of the content of this chapter were submitted to Frontiers in Robotics
and Al and accepted for publication. For details on this manuscript, including a list of authors,
see Manuscript 3 in Chapter 2.
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6.1 Introduction

In biological systems, voluntary movements are generated through a sequence of different pro-
cessing units. From the motor cortex to the spinal cord to the stimulation signal running down
the motor neuron to the muscle membrane. These processing units can be interpreted as a neu-
rological, hierarchical control system (Karniel, 2011; Loeb et al., 1999). While it seems obvious
that the neuronal structures are responsible for the initiation and execution of goal-directed
movements, it has been discussed that also the morphology of a system contributes to the con-
trol (Blickhan et al., 2007; Ghazi-Zahedi et al., 2016; Iida et al., 2004; Paul, 2006; Pfeifer and
lida, 2005). In particular in human arm movements, several control theories explicitly rely on
the viscoelastic muscle characteristics to generate dynamic movements (e.g., impedance control
(Hogan, 1984), equilibrium point control (Bayer et al., 2017; Kistemaker et al., 2006, 2007a,a)).
Here, the muscles serve as a low-level zero-delay reflexes (termed preflezes (Brown et al., 1995))
capable of stabilizing the system against external perturbations (Gerritsen et al., 1998; Haeufle
et al., 2010b; John et al., 2013; Loeb et al., 1999; Proctor and Holmes, 2010; van Soest et al.,
1993a). Such contributions of the morphology have been termed “intelligence by mechanics”
(Blickhan et al., 2007), “exploitive actuation” (Haeufle et al., 2012b; Kalveram et al., 2012;
Rieffel et al., 2010), or “morphological computation” (Ghazi-Zahedi et al., 2016; Paul, 2006;
Pfeifer and Iida, 2005). Morphological computation, in this sense, captures the concept that
control is partially performed by the controlled system interacting with the environment. More
precisely, that part of the information processing necessary to generate a desired movement is
performed by the morphological characteristics of the system, i.e., by its hard- or wet-ware.

Characterizing this contribution of the system’s morphology to its behavior is possible by
quantifying morphological computation (MC) (Ghazi-Zahedi, 2019a; Ghazi-Zahedi et al., 2016;
Zahedi and Ay, 2013). This requires a causal model of a reactive system’s sensorimotor loop.
The model must allow a clear separation of the system into a controller, actuator signals, sensor
signals, and the physical system termed world, which includes the environment (in engineering
this is typically called the plant). In a nutshell, the quantitative measure of morphological
computation (MCy) then quantifies the contribution of the world state W and the actuator
signal A to the further time evolution of the world state, i.e., the next world state W’. MCyw
is high, if the current world state W has a strong influence on the next world state W', i.e.,
the system exploits its physical properties. Thus, it is possible to quantify morphological
computation in causal models where A and W can be observed, e.g., in neuro-muscular models
(Ghazi-Zahedi et al., 2016).

The open question is, however, where in the biological control system A and W should be
separated. Is A the output of the neurons that innervate the muscles (« motor neurons) and
therefore initiate muscle contraction? Or is A much higher in the control hierarchy: the output
of the central nervous system, i.e., the signals that initiate a movement? One could argue for
the latter separation, as the decentralized low-level control circuits, like mono-synaptic reflexes,
are hard-wired into the spinal cord and are therefore rather part of the system than part of the
controller. Or has A even to be located much lower in the control hierarchy: the output force
of the muscles? The argument for this level of separation would be that muscles with their
non-linear viscoelastic properties serve as low-level zero-delay reflexes (preflexes) contributing
to control. Furthermore, they adapt during our life-time to the requirements of our daily
activities. From our point of view it is unclear where to separate between W and A and how
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this decision influences the calculation of MC. Furthermore, it is unclear, to which extend
higher-level control can exploit morphological computation of the lower-level structures — in
actual units of bit.

This is not only relevant for the understanding of biological systems, but also for bio-inspired
and bio-mimetic robotics. Much effort has been taken to develop new robotic design concepts
exploiting material properties (Kim et al., 2013; Polygerinos et al., 2017; Rus and Tolley, 2015)
such as viscoelastic muscle-like actuators in arm movements (Boblan et al., 2004; Driess et al.,
2018), elasticity in legged locomotion (Hubicki et al., 2016; Hutter et al., 2013; Iida et al., 2009;
Niiyama et al., 2012; Ruppert and Badri-Sprowitz, 2019; Sprowitz et al., 2013) or morphology
which empowers hopping (Nurzaman et al., 2015), goal-directed swimming (Manfredi et al.,
2013), crawling (Shepherd et al., 2011), or even grasping (Deimel and Brock, 2016). How-
ever, also in these approaches, the hierarchy of morphological computation has not yet been
quantified.

The purpose of this study was therefore to investigate morphological computation in a hierar-
chical control system. The novelty of our approach was to quantify morphological computation
on different control levels to better understand the hierarchy. This is relevant for two reasons:
(1) it further evaluates and validates the quantification concept of MC and (2) shows how the
biological control system may benefit from its hierarchical control structure and its non-linear
actuators, i.e., the muscles. For this, we resort to computer simulations of human arm move-
ments with a model that considers joint dynamics, muscles, reflexes, central pattern generators,
and higher-level control.

6.2 Methods

To investigate morphological computation in a hierarchical control system, we simulate human
arm movement with a neuro-musculoskeletal model (Stollenmaier et al., 2020b) (see also elec-
tronic supplementary material). In this model, it is possible to access all state signals, i.e., the
state of the control logic, the input to the low-level controller, the control signal, the muscles’
active state (biochemistry), the muscles’ force, the generated joint torques, and the result-
ing joint angles (Section 6.2.1). Thus, we can access all levels of the neuro-muscular control
hierarchy to quantify morphological computation (Section 6.2.3).

6.2.1 Neuro-muscular model

The neuro-muscular model of human arm movements has been developed to study neuronal
motor control concepts in the interaction with the musculoskeletal model. For this purpose,
we combined a computational motor control model of goal-directed arm movements with a
musculoskeletal model. We will shortly summarize the approach here and refer to Section 3.2.4
and Appendix A4.3 for the details of the model.

The model consists of several hierarchical layers (Figure 6.1), which we will describe shortly
in the following, starting from the lowest hierarchical level (right-hand side). The chosen model
parameters represent a generic man and are collected from different sources (Bhanpuri et al.
(2014); Kistemaker et al. (2006); Morl et al. (2012); van Soest et al. (1993a) and others, listed
in detail in Appendix Al).
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Timed execution Muscle stimulation — Muscle fiber Torques acting
of a movement signals forces on the joints
ucentral - utopfdown u a FCE FMTU T q
Muscle-specific central Biochemical Muscle-tendon unit  Resulting joint
control tuning muscle activities forces angle trajectory

Figure 6.1: Overview over the hierarchy levels in our neuro-muscular model of the
arm. The function of each level is described in detail in the main text.

Angles
The musculoskeletal model predicts two-degree-of-freedom arm movements in the sagittal plane
(see Figure 6.3). Its dynamics are determined by two rigid bodies (lower and upper arm) that
are connected via two one-degree-of-freedom revolute joints that represent the shoulder and
elbow joint. This can be described by double-pendulum equations of motion, i.e., second-order
ordinary differential equations. The outputs of this layer are the predicted joint angles which
correspond to the experimentally observable state (q € R?).

Torques
The rigid bodies are driven by joint torques, which are calculated based on anatomical muscle
paths (Hammer et al., 2019) and translating forces at the muscle origin, insertion, and via-points
into joint torques. The outputs of this layer are the predicted joint torques (T € R?).

Muscle-tendon unit forces
Active forces are generated by six muscle-tendon units (MTUs), four monoarticular and two
biarticular muscles. The force of each MTU is modeled using a Hill-type model accounting for
muscle fiber and tendon characteristics (Haeufle et al. (2014b)). The dynamic of each MTU
is modeled by a first-order ordinary differential equation. The outputs of this layer are the
predicted muscle-tendon unit forces (FMTU ¢ R6).

Muscle fiber forces
The model of the muscle fibers, termed contractile elements (CEs), considers the dependence
of the active fiber force on fiber length and contraction velocity known from biological muscle
fibers. The outputs of this layer are the predicted muscle fiber forces (FCF € RS).

Biochemical muscle activity
The biochemical processes that lead from a neuronal muscle stimulation to a force generation
can be modeled by a first-order ordinary differential equation. The implemented model of the
activation dynamics further considers the fiber length dependency of this process (Hatze, 1977;
Rockenfeller et al., 2015). The outputs of this layer are the predicted muscle fiber activity
states (a € RY).

Muscle stimulation signals
The bio-inspired hybrid equilibrium point controller exploits muscle characteristics by combin-
ing a feed-forward command (u°P*(¢)) with spinal feedback on muscle fiber lengths (ucl°sed(¢)).
This feedback represents a simplified version of the mono-synaptic muscle spindle reflex, as-
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Figure 6.2: Schematic diagram of the motor control model. The motor command u is
a sum of an open-loop and a closed-loop signal. The time-delayed feedback loop
incorporates proprioceptive feedback (mono-synaptic reflexes) by comparing the
actual muscle fiber lengths 1°F(#) to desired values X. q(t) = (@(t),(t)) contains
the elbow and shoulder angle, respectively.

suming that the muscle spindles provide accurate time-delayed information about the muscle
fiber lengths 1°F(t) (Kistemaker et al., 2006). The total motor command wu; for each muscle i
is a sum of those components and is calculated as

ui(t) = {7 (6) + 1) + uPC 1)}
k 1 (6.1)
— {u;?pe“(t) + lCEf”Om (Ni(t) — 155t = 8)) + uiCPG(t)}O ,

where k), is a feedback gain and the time delay ¢ is set to 10 ms representing a short-latency
reflex delay which is in a physiologically plausible range (Houk and Rymer, 1981; More et al.,
2010). ICEoPt stands for the optimal length of the contractile element (CE). The operation
{x}} sets values z < 0 to 0 and = > 1 to 1. The signal u$TC represents a central pattern
generator (CPG). The outputs of this layer are the predicted muscle stimulation signals (a-
motor neuron activities u € R%).

Muscle-specific central control tuning
The low-level controller gets two top-down input signals: The open-loop muscle stimulation
u;P?"(t) and the desired muscle fiber lengths \;(¢). Here, they represent an intermittent control
approach, because they are piecewise constant functions over time. Herein, each constant value
represents an equilibrium posture (EP), i.e. the system is in a stable equilibrium in these
positions. The calculation of these central control signals for a given movement is described in
detail in Appendix A4.3. The outputs of this layer are the top-down central commands to each
low-level reflex circuit (u'°P~down ¢ R12),

Timed execution of a movement

The output of our highest level of motor control is a single piecewise constant signal used to
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time the selection of equilibrium points meaning that all sub-circuits are switched at the same
time (ucentral c Rl).

6.2.2 Simulation experiments

@ (b)

Figure 6.3: Visualization of the musculoskeletal model that was used for the com-
puter simulations of the arm movements. The colored lines represent the
modeled muscles. (a) Goal-directed point-to-point movement between the points 1
to 4 and (b) dynamic oscillation movements with a vibrating rod.

Movement 1: Point-to-point movements
The first movement investigated here is a point-to-point movement along a vertical line. Dif-
ferent movements between four target positions were evaluated (see Figure 6.3 (a) and Ap-
pendix A4.2). The central pattern generator is inactive for those movements (u“P%(t) = 0).
An animation of the movement is provided as electronic supplementary material accompanying
Haeufle et al. (2020a).

To consider the natural variation of this movement, we repeated the simulation of the move-
ment 1 — 4 seven times. Each simulation only differed in the equilibrium postures (EPs) for
the starting joint angles, the peak elbow joint angle, and the target joint angles. We determined
these angles from motion capture data of a single subject performing the movement seven times.
This natural variation of the angles resulted in different signals on the muscle-specific central
control level, i.e., different utop—down
constant.

signals. All other parameters of the controller were kept
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Movement 2: Dynamic oscillatory movements
For the second movement, a vibrating rod was added to the hand in the model (see Figure 6.3
(b) and Heinrich (2019)). The technical specifications of the rod can be found in Appendix A4.
To excite the rod, as done in training and rehabilitation exercises, a sinusoidal signal u®r'¢
mimicking the output of a central pattern generator (CPG) is added to the motor command
u:
uPC(t) = i -sin(2r - FPC £+ @), (6.2)

with @ = 0.1: amplitude, fCPS: frequency, ¢o: phase. The muscles are synchronized by setting
¢o = 0 for flexing muscles and ¢y = 7 for extending muscles.

The oscillation is exited for 0 < t < 4s. After this, uPG = (0 and the oscillation is then
only a result of the dynamics of the system and not of the controller anymore. An animation
of the movement is provided as electronic supplementary material accompanying Haeufle et al.
(2020a).

To consider the natural variation of this movement, we analyzed the frequency pattern of a
single subject performing a swing-rod exercise. The fast-fourier-transform spectrum indicates
a frequency variance of 0.2Hz. We therefore repeated the simulation 14 times with a set of
random CPG frequencies fP¢ = 3.8 + 0.2Hz.

Details on the human experiments to estimate natural variability: Two healthy sub-
jects participated in the study. The experimental procedure was approved by the local ethics
committee (886/2018B02). All participants gave their informed consent prior to participation.
The movements were recorded with a 12-camera motion capturing system (Vicon Motion Sys-
tems Ltd, UK) using a marker set with 29 retro-reflecting markers. Using the recorded marker
positions over time, shoulder and elbow angles were reconstructed (Rettig et al., 2009). The
reconstructed joint angle trajectories were smoothed with a Savitzky-Golay polynomial filter
(of order 4 and with a window size of 41 sampling points).

6.2.3 Quantifying morphological computation

The following paragraphs will only give a brief introduction to the quantification of MC. For a
full discussion on this issue, please read (Ghazi-Zahedi, 2019a) or Appendix A4.1. Quantifying
MC requires a causal model of the sensorimotor loop which divides a cognitive system into a
brain, actuators, environment, and sensors. In the context of this work, we are focusing on
reactive systems which means that the actuators are directly connected with the sensors. A
cognitive system is then fully described by the following set of Markov processes:

B — Ag [B(s|w)] (6.3)
S — Ay [m(als)]
a: W x A — Ay [a(w'|w,a)], (6.5)

where w € W is the value of the world state W, s € & is the value of the sensor state S, and
a € A is value of the actuator state A. We call 5(s|w) the sensor map, as it describes how
the agents perceive the environment, m(als) the policy, as it describes how the agent chooses
an action as a reaction to a sensor, and finally we call a(w'|w, a) the world dynamics kernel,
as it describes how the next world state W’ depends on the current world state W and the
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current action A. It is important to note here that the world state W captures everything
physical. This means that the world state W captures the state of the system’s body and its
environment,.

To quantify MC, we take a closer look at the world dynamics kernel a(w’|w, a). Assume that
the next world state W’ does not depend on the current world state W but only on the current
action A. This means that the world dynamics kernel reduces to @(w’|a). In this case, it is
fair to say that the system shows no MC at all, since the behavior is fully controlled by the
action A. Any measured divergence from this assumption means that the current world state
W had an influence on the next world state W/, and hence, the system is exploiting the physical
properties of its body and its interactions with the environment. This can be measured by the
Kullback-Leibler Divergence (Cover and Thomas, 2006) in the following way:
w'|w, a)

MCw = Z p(w',w, a)logy aé

Sl (6.6)

w’ w,a

The output of our models contains discrete numerical data, i.e., S, A, and W are discrete vari-
ables. Therefore, we will summarize the approach for discrete variables here. For a discussion
on how to estimate MCyw on continuous state spaces, please see (Ghazi-Zahedi, 2019a).

The joint distribution p(w’,w,a) can be estimated by a frequency method, i.e., by counting
the number of occurrences of each triplet (w’,w,a) normalized by the number of samples in
the data. This leads to the following estimation for p(w’, w, a):

/ _ G w,a
p(w ,U), CL) - N 9 (67)

where ¢,y 4 q is the number of occurrences of (w';w,a) and N is the total number of samples.
MCw can now be calculated in the following way:

Algorithm 1 Algorithm for MCyy.
p(w',w, a) < (0)w|xwix|a] {Matrix with [W] x [W] x |A] entries set to zero}
fort=1,2,...,7 — 1 and wey1,w € w*, a; € a* do

P(Wit1, we, ap) < pwipr, we, ap) + 1
end for
p(w',w,a) + p(w',w,a)/(T —1)
Estimate p(w’, a) from w*,a* or by summing over w
p(w’\w, a) = p(w’,w,a)/zw, p(w',w,a)
p(w'la) = PO /S, p(w'a)
MCw = >, .0 P(W', w0, @) logy

p(w'|w,a)
p(w'|a)

The value calculated in line 9, MCyy, represents the morphological computation primarily
used in this work. Sometimes it is further interesting to take a look at the state-dependent
morphological computation, i.e., the time evolution of the quantity. This requires minimal
changes to the original algorithms. Instead of calculating the probability-weighted sum over
all states (line 9 in Algorithm 1), which leads to a single number as a result, the measures are
evaluated n-tuple in the data set. This means that for MCyy, the logarithm is evaluated for
every triple w1, wy, a; (see Alg. 2).
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Algorithm 2 Algorithm for state-dependent MCyy (¢).

1: Perform steps 1-8 from Alg. 1

2: fort=1,2,...,T —1and v, w € w*,a € a* do
3 MCy(t) = log 2w

4: end for

In conclusion, in order to quantify MC, we need time signals of the World and Actuator
states, W and A, respectively. This means that it is necessary to separate the state variables
of the system into W and A.

The neuro-muscular model investigated here has several hierarchical levels (Fig. 6.1). For this
study, we systematically separated the state variables between all of these different hierarchy
levels and calculated MC for each possible hierarchy level.

There are two possible approaches to select W and A and then calculate MC (Figure 6.4):
The first approach (Figure 6.4 (a)) relates to the evaluation of experimental data, where usually
not all state variables can be recorded (especially in biological systems). Here, W is always the
mechanical system state q(t), i.e., the joint positions (and for the oscillation movement also
the position of the rod mass relative to the hand). A on the other hand contains only signals of
one hierarchy level. We term this approach “selected hierarchy levels” and term the respective
morphological computation MC%?}.

The second approach (Figure 6.4 (b)) always includes all signals. It represents a clear cut at
a specific level. All signals below this cut-level are combined into W and all above into A. We
termed this approach “accumulated hierarchy levels” and termed the respective morphological
computation MCF.

6.2.4 Statistical analysis

Each simulation run provides data to calculate morphological computation on all different
hierarchy levels. Each hierarchy level is then quantified by a single scalar quantity MCywy
representing the respective morphological computation (see line 9 in Algorithm Algorithm 1).
By varying the control parameters as described above, the resulting MCyy values represent a
natural variation for the same movement. The hypothesis (Hp) was that there is no significant
difference in MC between hierarchy levels across all repetitions of the movement. Each hierarchy
thus represents a different group and we used ANOVA to test whether these groups differ. The
normal distribution was tested with a Shapiro-Wilk test (with v = 0.1 to keep the beta error
in check). The test confirmed normal distribution in the majority of the groups (17 out of
28). This should not influence the result, since ANOVA is robust to deviations form normal
distribution, especially here where each group has the same number of samples. As the different
hierarchy levels are taken from the same simulation, they are not independent. To test their
statistical difference, we therefore analyzed the data with a repeated measures ANOVA. We
further used a pairwise post hoc test with Bonferroni correction to analyze which levels actually

differ.
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(a) Selected hierarchy levels (MC5):
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Figure 6.4: Visualization of the difference of the calculation of MCyy using (a) selected
and (b) accumulated hierarchy levels as actuator signal A and world state
W. Note that for the oscillation movements, the observable state q includes both
the joint angles and the rod position.

6.3 Results

Morphological computation is highest for the most central level of the control hierarchy inves-
tigated here (u®"ral). This holds for all four types of point-to-point movements we evaluated
(Figure 6.5) as well as for the dynamic oscillation movement (Figure 6.7). Going further down
in the control hierarchy, MC always decreases for the accumulated scenario (MC{{©), and al-
most always for the selected (MC%’%}) with one exception: the torque. Choosing the torque T
as actuator signal, the value for MC is higher than using one of the next higher-level signals
of actuation. Please note that the figures are shown in logarithmic scale to allow a better
comparison of the large differences between MC for the different hierarchy levels.

In general, using accumulated hierarchy levels results in smaller morphological computation
than using selected hierarchy levels (MC{{® < MC%?}) Furthermore, pointing movements have
a lower morphological computation than the dynamic oscillation movements.

The reproduction of the experimentally observed variation of the movement 1 — 4 in sim-
ulation also leads to a variation of MCyy. This variation is relatively small compared to the
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overall difference between hierarchy levels. Therefore, an ANOVA test reveals statistical signif-
icant differences between the hierarchy levels. However, not all levels are significantly different.
Especially w2l and ¢°P~=down a5 well as FCF and FMTU do not differ significantly in MC.

6.3.1 Noise in point-to-point movements

In the pointing movements, all state variables are smooth, which is a result of the noise-free
formulation of the continuous control signals. Therefore, the highest control levels produce very
simple control signals, i.e., piecewise constant signals in time (see above and Appendix A41.3
for more details).

To test whether this smooth definition has an influence on the result, we added random
(uniformly distributed) noise to the muscle stimulation signals u (noise levels: medium: 40/300-
(Umax — Umin), high: 80/300 - (4max — Umin)). This changes the previously consistent trend: the
higher the added noise, the lower the MC at the level of the muscle stimulation u (Figure 6.6).
At the same time, MC between at the muscle activity level a increases. This leads to the fact,
that - after adding noise to the stimulation signal - MC with u as actuator signal is lower
than the calculation with a as actuator signal. However, this change in trend is only true if
morphological computation is evaluated on selected signals (MC%‘%,I) For MC§*, the trend is
never reversed. Noise only slightly shifts the values (not shown).
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Figure 6.5: Point-to-point movement: Morphological computation MCyy on different hier-
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archy levels for an exemplary point-to-point movement (1 — 4, see Figure 6.3 (a)).
Morphological computation was evaluated using (a) selected (MC5) and (b) ac-
cumulated hierarchy levels (MC{{°). Note that a logarithmic scale is used for the
y-axis. Shown are the mean + 1.96 times standard deviation (= 95% confidence
interval) of seven simulation runs with different starting, intermittent, and target
equilibrium postures taken from the natural variation observed in a human experi-
ment. As tested by an ANOVA, there are significant differences in MCw between
the different hierarchy levels. The pairwise post-hoc test revealed that for MC%?}
there are two groups with similar mean: the highest two levels yoentral top—down
and the three levels a, FCE, and FMTU. The levels v and T differ from all others.
For MC3{y©, the three lowest levels F CEFMTU and T are one group. All other
levels differ from all others. All significance levels were set to p < 0.05. The limit
of the y-axis is set to the maximum MC value that would result from having a
constant signal as input. Plots of the results of the other movements can be found
in Appendix A4.4, but show the same trends.
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no noise medium noise high noise

[ topcown [ I [ CE |

Figure 6.6: Influence of noise on morphological computation. Morphological compu-
tation for selected hierarchy levels (MC$) for a point-to-point movement (1 —
4). The noise was added to the muscle stimulation u (noise levels: medium:
40/300 - (Umax — Umin), high: 80/300 - (umax — Umin)). As a result, MC%‘%} at the
muscle stimulation level decreases and increases in adjacent hierarchy levels. Note
that a logarithmic scale is used for the y-axis.
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6.3.2 Dynamic oscillatory movements

The general trend of decreasing morphological computation for lower hierarchy levels was the
same in the dynamic oscillation movements (Figure 6.7).

()

(I conval I ytop-down [ u [ N FOE [ PMTY I T (b) (I cenval [ yro-down [y [ a [N FCE [ FVTV I T

Figure 6.7: Dynamic oscillation movement: Morphological computation MCy for (a) se-

lected (MC5e!) and (b) accumulated hierarchy levels (MC3E). Shown are the mean
+ 1.96 times standard deviation (~ 95% confidence interval) of 14 simulation runs
with a set of random CPG frequencies in the spectrum observed in a human exper-
iment. As tested by an ANOVA, there are significant differences in MCy between
the different hierarchy levels. The pairwise post-hoc test revealed that for MCS!,
the highest levels u®r2! and w'°P~4°"" have similar means, so do the muscle stim-
ulation u, activity a, as well as the forces FCF and FMTY. Only the torque level
T differs from all other groups. For MC{y°, the highest levels ucentral gpd g top—down
have similar means, so do the lowest levels FCE, FMTU and T. All significance
levels were set to p < 0.05. The limit of the y-axis is set to the maximum MC value
that would result from having a constant signal as input. Note that a logarithmic

scale is used for the y-axis.

However, the dynamic oscillation data has different phases. In the initial phase (¢t < 4s),
the rod is excited by sinusoidal muscle stimulation signals with a frequency tuned to the rod’s
resonance (Figure 6.9). In this phase, everything oscillates in sync and the morphological com-
putation is on average smaller. Once the CPG is turned off (¢ > 4s), the control signals become
relatively steady — only influenced by the feedback signals trying to hold the position. The rod,
however, still has a lot of energy and therefore keeps oscillating. In this phase, MCy increases.
These results are similar on all levels of the control hierarchy (Fig. 6.8). Interestingly, MC{*
actually becomes zero on the lower hierarchy levels in the resonance oscillating movements

between 2 < t < 4s. This means that muscle fiber force

CE MTU
F FMTU

, muscle-tendon unit force

and joint torques T contain the same information as the mechanical state of the system q.
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Figure 6.8: Dynamic oscillation movement: Morphological computation is higher for the
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last movement phase where the central pattern stimulation is deactivated and the
movement continues due to the passive dynamics of the arm-rod system. (a) MC{*
evaluated for the time span between 2 and 4s (b) for the time span between 4 and
6s, as indicated by the insets, which show the oscillation of the joints and the rod
(cf. Fig. 6.9). In the first time span, the control signals are sinusoidal muscle
stimulations exciting the rod at its resonance frequency (f°*¢ = 3.8Hz). In the
second time span (b), the sinusoidal stimulation is zero and the oscillation is only
driven by the dynamics of the rod. The limit of the y-axis is set to the maximum
MC value that would result from having a constant signal as input. Note that a
logarithmic scale is used for the y-axis.
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Figure 6.9: Time evolution of morphological computation MCyw, world state W and

actuator state A for the dynamic oscillation movement. The oscillation is
exited for 0 < t < 4s by a sinusoidal CPG stimulation signal. After this, u®F¢ =0
and the oscillation is then only a result of the dynamics of the system and not
of the controller anymore. Shown here is exemplary (a) the case of MC?;}I of the
muscle stimulation level u (yellow bar in Figure 6.7 (a)) and (b) the case of MC{g*
including only the joint angles and rod position as world state (dark red bar in
Figure 6.7 (b)).
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6.4 Discussion

The meaning of morphological computation can be seen quite well in the example of the dynamic
oscillations. In the initial phase, the controller enforces a dynamic oscillation at the system’s
resonance. In resonance, the morphological computation is then quite low, as most—or even
all—information on the system state is already contained in the stimulation, activity, and
muscle force signals (Fig. 6.8a) and (Fig. 6.9). This is similar to a robotic model, driven by
complex control signals (Ghazi-Zahedi et al., 2016). However, if the sinusoidal excitation is
switched off, the rod dynamics take over and generate a rich dynamic behavior at almost no
information input on the control/actuation levels. Hence, morphological computation is high
(Fig. 6.8b). This case is similar to e.g., mechanical toys such as passive dynamic walkers which
generate the entire behavior based on their mechanical properties. This example confirms that
the measure of MCyw captures what we would expect as morphological computation.

By measuring morphological computation in a hierarchical control system, we can—for the
first time—quantify the contribution of different hierarchy-levels to the control. The increase
of morphological computation for higher-levels of the control hierarchy in the accumulative
evaluation (MC{i¢) means that the lower control levels actually contribute quite significantly.
To be able to test whether the differences between the hierarchy-levels are significant, we
introduced variations based on experimental data. Not all MC data generated in this way fulfills
the ANOVA assumption of equal distribution for each group represented by a hierachy level.
Still, the results found by the ANOVA and post-hoc test match what can be seen in Figure 6.5
and Figure 6.7. Literature suggests this contribution of muscles to dynamic movements (Bayer
et al., 2017; Eriten and Dankowicz, 2009; Gerritsen et al., 1998; Haeufle et al., 2020b, 2012b,
2010b; John et al., 2013; Kambara et al., 2013; Pinter et al., 2012; Stollenmaier et al., 2020b;
van der Krogt et al., 2009; van Soest et al., 1993a; Wagner and Blickhan, 1999). In this sense,
the MC{y° quantifies the “importance” of each hierarchical level in the sense of influence on the
behavior (world state evolution) of the system. This approach shows that the muscle-driven arm
movements can be initiated with very little information on the top control levels while the lower
control levels and also the biochemical and muscular dynamics generate a smooth information-
rich signal and ultimately dynamic behavior out of these reduced signals (Kistemaker et al.,
2006; Stollenmaier et al., 2020b). This is reflected in the large differences in MC{i¢ (please note
that the plots use a logarithmic scale).

We expect similar results for robotic arm systems that employ muscle-like actuation, e.g.,
fluidic muscles (Boblan et al., 2004; Driess et al., 2018). Fluidic muscles show muscle-like force-
length-velocity characteristics (Klute et al., 2002) and by antagonistic co-contraction allow for
variable joint stiffness (Wolfen et al., 2018). This way, even simple piecewise constant control
signals will result in smooth dynamic movements (Driess et al., 2018), very similar to what is
known from simulation results (Kistemaker et al., 2007a; Stollenmaier et al., 2020b,d; Wochner
et al., 2020), and are hypothesized to be a control principle of goal-directed arm movements
(Feldman and Levin, 2009). Furthermore, as mechanical (visco-)elastic morphological charac-
teristics are also known to benefit robotic locomotion (Hubicki et al., 2016; Hutter et al., 2013,;
lida et al., 2009; Manfredi et al., 2013; Niiyama et al., 2012; Nurzaman et al., 2015; Ruppert and
Badri-Sprowitz, 2019; Shepherd et al., 2011; Sprowitz et al., 2013), we expect that such a hier-
archy in morphological control may be present in such systems too. This will become especially
interesting if hierarchical control systems learn to exploit these morphological contributions
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to efficiently generate movements (e.g., Biichler et al., 2020; Driess et al., 2018; Manoonpong
et al., 2007).

Difference between the two approaches to calculate MC: The MC3° approach is
particularly of value for the evaluation of hierarchical computational models of motor control,
where all system states are observable. The calculation of morphological computation only
based on selected actuation signals MC%‘{‘,I, however, better represent the experimenters’ reality,
where most of the system states are not or hardly observable. While the general trend is the
same, we observed that for the joint torques the morphological computation increases again.
This can be attributed to the fact that the two joint torque signals contain less information
than the six muscle force signals. Furthermore, MC%‘\B} is influenced by noise. Increasing noise
increases the apparent information content of the signals and thus reduces morphological MC%‘E}
(yellow bar in Fig. 6.6). Interestingly, this additional noise is basically filtered by the low-pass
filter characteristics of the muscles’ activation and contraction dynamics resulting in quite simi-
lar output behavior. Therefore, MC%?} increases for the lower hierarchy levels. The consequence
of this is, that one has to be careful if applying MC%’%} to experimental data, as noise on the
signals may alter the result.

Model considerations: The model used in this study was chosen as it resembles the coarse
organ-level dynamics of the neuro-musculoskeletal system that leads to goal-directed move-
ments. However, it does not consider that in reality, each muscle-tendon unit consists of many
motor units that have to be and can be controlled separately by higher control levels. We
cannot rule out that these principles of the biological system will have a significant effect on
the overall morphological computation and its distribution among the hierarchy levels. In
principle, this could be investigated in more detailed models (e.g., Heidlauf and Rohrle, 2013,;
Mordhorst et al., 2015). However, our model represents the basic functional unit (Schmitt
et al., 2019a) considering the main dynamic properties relevant for the passive contribution of
muscles to control (Pinter et al., 2012). Furthermore, the two movements investigated here
represent primitives that could potentially be combined to generate more complex arm move-
ments (Sternad et al., 2000; Wei et al., 2003). Therefore, we expect that our findings represent
a fundamental concept in biology. We further expect that it extends to other movements too,
e.g., locomotion, for which it is known that muscles significantly contribute to the movement
generation (Daley et al., 2009; Gerritsen et al., 1998; Haeufle et al., 2010b; John et al., 2013;
van Soest et al., 1993a) and allow to simplify higher-level control (Ghazi-Zahedi et al., 2016;
Haeufle et al., 2014b, 2020b).

Overall, we here provide evidence that the systems’ design in the mechanical as well neuro-
logical structure facilitates the control task by providing an appropriate integration of signals
at different levels of the control hierarchy.
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7 | Combining computer
simulations with a bio-inspired
robot and human experiments

Human experiments, numerical computer simulations as well as biorobotic systems have
proven to be valuable tools for the investigation of motor control principles. Combining all
three methods into one coherent framework requires a reasonable similarity between the nu-
merical and the biorobotic model and the human subject. This is especially relevant for motor
control concepts that explicitly rely on the muscles’ non-linear viscoelastic characteristics. For
the investigation of such concepts, linear torque or impedance models on the joint level and
electric motor actuation are not sufficient. Rather, both the numerical and the biorobotic
model need to provide the necessary level of physiological detail and include the relevant mus-
cle characteristics. In this study, we developed such an integrated framework of data measured
in human experiments, a numerical musculoskeletal model, and a bio-inspired robotic system
with pneumatic muscles. The framework was designed for the investigation of two-degree-of-
freedom point-to-point arm movements, a setup commonly used in motor control studies. We
demonstrate the relevance of this framework using the example of a bio-inspired intermittent
hybrid equilibrium posture control scheme, which has previously been demonstrated to repro-
duce human arm movements in computer simulation. The results show that the same controller
(with different parameters) can be used to reproduce four different goal-directed human move-
ments in the sagittal plane in both the numerical simulation and the biorobotic system. This
is possible because the necessary characteristics of biological muscles (force-length relation and
activation dynamics) are considered in both models. The successful transfer to the robotic
system indicates that the controller is robust against changes in the system dynamics, friction,
and natural variance. This demonstrates that our framework is relevant especially for studying
control concepts that consider muscle dynamics and/or investigate the interaction with the
environment where passive mechanical forces contribute to the behavior.

Note that large parts of the content of this chapter are part of a manuscript that was written
in collaboration with other authors. For details on this manuscript, including a list of authors,
see Manuscript 4 in Chapter 2.

7.1 Introduction
It is known that the well-tuned integration of neuronal and muscular dynamics is the physio-

logical basis for human goal-directed arm movements. However, it is still under investigation,
which motor control principles underlay this interaction. To investigate such concepts of motor
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Figure 7.1: Motion generation in biological systems from a system biophysics per-
spective. The system can be divided into a controller and a control system. Herein,
the controller represents the part of the nervous system that processes information
(blue arrows) and generates a motor command. It may include high-level movement
planning or low-level generation of commands. These commands represent the ac-
tivity of c-motor neurons and actuate the control system by changing the activity
of the muscles. The muscle forces drive the skeletal system, leading to a movement
and a resulting change of the system’s state. Consequently - due to the physical
state dependencies (orange arrows) - the muscle and passive tissue forces and the
sensor signals are changed. The loop is closed by feeding back the sensor signals to
the controller. This biophysical concept can be transferred to both, mathematical
and bio-inspired, robotic models of the musculoskeletal system (Picture reproduced
and adapted with permission from Schmitt et al. (2019b)).

control, human experiments are usually the first choice. While this method allows gaining
insights by analyzing behavioral data in different experimental setups, the deductions about
the underlying motor control concept are limited due to the practical and ethical limitations
of human experiments. For example, it is not possible to remove or add dedicated neuronal
circuits and sensors to study their respective contribution and relevance. For this purpose, both
numerical simulations (e.g., Bayer et al., 2017; Kistemaker et al., 2006; Valero-Cuevas et al.,
2009) and biorobotic models (e.g., Casellato et al. (2012); Rosendo et al. (2015), see Vitiello
et al. (2015) for an overview) provide a valuable methodological extension to human experi-
ments. The advantage of numerical simulations is that they provide more variation possibilities
than physical models as the parameters can be adjusted more freely. On the other hand, due to
their physical nature, biorobotic models can reveal the practicability of a control model under
real-world conditions, e.g., friction or impact dynamics, which are difficult to model. Moreover,
the physical nature of such biorobotic models results in random (noise) or systematic (hystere-
sis) variability which reveals whether a control concept is robust under such conditions. Hence,
from this standpoint, it seems desirable to combine human experiments with computer simula-
tions and biorobotic approaches into one research paradigm. Such a combination has previously
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been proposed and termed test trilogy (Kalveram and Seyfarth, 2009): (1) human experiments
providing the data for informed model development and validation, (2) computer simulation
for the confirmation of the mathematical consistency of the derived model, and (3) biorobotic
hardware experiments as a test of the real-world feasibility of the control model. Combining
all three methods promises to overcome the limitations of each of the approaches and provide
a platform to investigate neuro-mechanical interaction in goal-directed arm movements. To
implement this test trilogy, it is necessary to develop a coherent framework of experiment,
numerical model, and biorobotic testbed.

To formally introduce this test trilogy, Kalveram and Seyfarth (2009) investigated a motor
control concept for single-joint human arm movements relying on the assumption that the joint
is actuated directly by a joint torque. This assumption has often been made in computational
models, as it allows a simplified calculation of the required motor control signals for a desired
trajectory (inverse model) (e.g., Bhanpuri et al., 2014; Kalveram and Seyfarth, 2009). Further-
more, the assumption of ideal torque generators in the joints can, at least to some extent, be
implemented by a current-controlled DC motor in a robotic system. Thus, the link between
computational motor control and biorobotics is often approached via this unifying assumption
of torque-based controllers in the joint (Buschmann et al., 2007; Casellato et al., 2012; He et al.,
2017).

However, in biology, motor control is a dynamic interplay of the neuronal and biomechanical
system (Figure 7.1). Joint torques are generated by muscle-tendon units with non-linear state-
dependent lever arms (Murray et al., 1995), series elasticity (Roberts and Azizi, 2011), force-
length-velocity characteristics (Giinther et al., 2007; Nishikawa, 2016; Rassier et al., 1999), and
activation dynamics (biochemistry) (van Zandwijk et al., 1996). The antagonistic setup of such
muscle-tendon units with tuneable viscoelastic characteristics in the joint allows the emergence
of equilibrium positions (Feldman and Levin, 2009; Kistemaker et al., 2007b). This means,
that—in contrast to the torque assumption—a stable position can be achieved without any
neuronal control, simply by the passive characteristics of the muscle-tendon unit. These char-
acteristics are a necessary requirement to study joint stiffness (Gribble et al., 1998; Kistemaker
et al., 2007b) and several motor control theories like impedance control (Hogan, 1984) or equi-
librium trajectory control (Feldman and Levin, 2009; Flash, 1987; Gribble and Ostry, 2000;
Gribble et al., 1998). Moreover, in intermittent control concepts, where the entire movement is
generated by the combination of a few time-discrete signals, a smooth trajectory emerges from
the dynamics of the musculoskeletal system (Bayer et al., 2017; Bréandle et al., 2020; Giinther
and Ruder, 2003; Kistemaker et al., 2006; Koike et al., 2011; Stollenmaier et al., 2020b; Wochner
et al., 2020). For such control concepts, the assumption of ideal torque generators fails as they
rely on the muscles’ non-linear viscoelastic characteristics to explain the dynamic interplay of
neuronal control and musculoskeletal system (Pinter et al., 2012; Stollenmaier et al., 2020b)
(Figure 7.1).

To apply the test trilogy to such control concepts, the muscle characteristics listed above need
to be considered. In computer simulations, this is realized by a muscle-tendon-unit model (e.g.,
Haeufle et al., 2014a), activation dynamics (e.g., Rockenfeller et al., 2015), and anatomical
routing (e.g., Hammer et al., 2019). In robotics, muscle routing can be implemented using
cables as tendons (Haegele et al., 2015; Shin et al., 2011), variable joint impedance by serial
elastic actuators with tuneable stiffness (Albu-Schéffer et al., 2008), and muscle-like force-
length-velocity characteristics e.g., by pneumatic muscles (Boblan et al., 2004; Klute et al.,
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2002, 1999; Shin et al., 2011; Wolfen et al., 2018).

Both numerical (e.g., Kistemaker et al., 2006; Stollenmaier et al., 2020b) and biorobotical
(e.g., Boblan et al., 2004; Lenzi et al., 2011) models that provide the necessary level of physio-
logical detail have been used to investigate such motor control concepts by the comparison with
data from human experiments. However, an integrated, coherent framework of human exper-
iments, computer simulation, and biorobotic testbed allowing a systematic comparison of all
three methodological approaches has not yet been published. The purpose of this study was to
develop such a framework for testing human motor control concepts that explicitly rely on mus-
cle dynamics. We demonstrate the relevance of this framework by applying it to a bio-inspired
intermittent control scheme exploiting the natural dynamic of the musculoskeletal system to
generate point-to-point arm movements. This requires our novel framework to consider the
relevant natural dynamics, i.e, the muscular force-length characteristics, series elasticity, phys-
iological lever arms, activation dynamics, and proprioceptive feedback signals. These natural
dynamics are realized by a musculoskeletal model in the computer simulation and pneumatic
muscles in the biorobotic system, thus allowing the same controller to generate goal-directed
arm movements with acting gravity resembling human arm movements in both models. The
combination of all three methodological approaches promises to establish realistic models of
motor control and, at the same time, may seed translation into (bio-)robotic applications.

7.2 Methods

As stated in the introduction, we developed a framework of human experiment, computer sim-
ulation, and biorobotic testbed. Its purpose is to test motor control hypotheses that explicitly
consider and rely on the passive viscoelastic properties of muscles and tendons. Therefore, we
exemplarily apply the proposed test trilogy to a bio-inspired intermittent hybrid equilibrium
point controller (Kistemaker et al., 2006; Stollenmaier et al., 2020d). We chose this control
scheme because it exploits the viscoelastic properties of the muscle-tendon units as it gener-
ates smooth trajectories by an intermittent control signal representing a sequence of a limited
number of equilibrium points. Hence, the control scheme exploits the muscles’ force-length
relation to achieve stable equilibrium positions (see Figure 7.2) and their activation dynamics
(biochemistry) to generate a smooth movement from a piecewise constant control input (Bayer
et al., 2017; Stollenmaier et al., 2020b). Therefore, these characteristics were considered in
both the numerical model and the biorobotic hardware.

The investigated movement is a point-to-point arm movement. The task is to point to
different targets appearing on a screen, all in one vertical line. In the human experiment,
this resulted in a movement predominantly in the sagittal plane, with flexion and extension
movements in the shoulder and elbow joint. As subjects were not allowed to touch the screen,
going from the start to the target position required to slightly retract, and afterward extend the
arm (typically by elbow flexion) to avoid collision with the screen. This is important, as each
movement thus requires at least three equilibrium points, one initial position, one retraction,
and one final position. The numerical musculoskeletal model and the biorobotic system were
implemented to reflect this level of movement complexity and the operating range of the robot
was tuned to achieve the range of motion in each joint as observed in the experiments.
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Figure 7.2: Emergence of equilibrium states (green) in relation to the static muscle
activity a for an exemplary model with one joint and two antagonistic
muscles (flexor and extensor). The torques that the muscles generate depend
non-linearly on the joint angle g. This force-length relation of muscles is dependent
on the muscle activity a. In case of an external perturbation, the passive viscoelastic
properties of the muscles generate a torque opposing the perturbation. Therefore,
if the sum of both torques (total joint torque) is equal to zero, an equilibrium point
is reached. The joint angle in this equilibrium depends on the muscle activities
a. Simultaneously increasing a in both muscles increases the muscle co-contraction
and, as a consequence, the joint stiffness (see difference in slope at the middle green
point for orange and violet line), while maintaining the equilibrium angle (Picture
re-used, with permission, from Driess et al. (2018) (©)2018 IEEE).

7.2.1 Human Experiment

Eight healthy subjects (age 46 (£5) years) participated in the study. The experimental proce-
dure was approved by the local ethics committee (886/2018B02). All participants gave their
informed consent prior to participation.

The participants were seated in front of a vertical canvas at a distance of 50 % of their arm
length (see Figure 7.3a). Four different targets appeared randomly on a vertical line on the
canvas and the subjects were instructed to follow the targets fast, but precisely with their dom-
inant hand. The vertical distance between the target positions varied between approximately
15 cm for small movements and 45 cm for large movements (distance between circle centers).

The movements were recorded with a 12-camera motion capturing system (Vicon Motion
Systems Ltd, UK) with 120 Hz using a marker set with 29 retro-reflecting markers (see marker
position table in Appendix A4.2). Using the recorded marker positions over time, shoulder and
elbow angles were reconstructed (Rettig et al., 2009). The reconstructed joint angle trajectories
were smoothed with a Savitzky-Golay polynomial filter (of order 4 and with a window size of
41 sampling points). For the comparison with robotic and simulated movements, we chose one
representative movement.
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Figure 7.3: Trilogy of human experiment, computer simulation, and biorobotic
testbed. (a) Sketch of the human experimental setup. Using a motion capture
system, elbow and shoulder angles of fast goal-directed pointing movements have
been captured. (b) Numerical musculoskeletal model that was used for the com-
puter simulations of the arm movements. The colored lines represent the six muscles
that are modeled using an extended Hill-type muscle model (Haeufle et al., 2014b).
(c) Robotic experimental setup. The robot is actuated by pneumatic muscles (Festo
AG & Co. KG). Linear sensors in parallel to the muscles (small blue tubes visible
in the trunk) mimic muscle spindles.

7.2.2 Numerical musculoskeletal model

For the computer simulation of human arm movements, we used a musculoskeletal model of
the human arm with six muscles and two degrees of freedom (Stollenmaier et al. (2020b), see
Figure 7.3b and Section 3.2.4). A vertical arm movement in the presence of gravity is simulated
in accordance with the experimental setup described above.

The skeletal structure of the arm is modeled using two rigid bodies (lower and upper arm)
that are connected via two one-degree-of-freedom revolute joints that represent the shoulder
and elbow joint. Movement is generated by active forces that are applied to the skeleton by
six muscle-tendon units (MTUs, four monoarticular (shoulder flexor (anteversion), shoulder
extensor (retroversion), elbow flexor, elbow extensor) and two biarticular muscles (biarticular
flexor, biarticular extensor)). The force of each MTU is calculated using an extended Hill-
type muscle model including force-length-velocity characteristics, tendon and parallel tissue
elasticity, and damping in the tendon (Haeufle et al. (2014b)). The activity of the muscles is
determined by a model of the activation dynamics that considers the fiber length dependency
of the activity as described by (Hatze, 1977).

The geometry of the muscle path is implemented using a via-ellipse approach that uses
ellipses attached to the bones to limit the muscle path, matching experimental lever arm data
(Hammer et al., 2019).

All parameters used in the musculoskeletal model represent a generic man (collected from
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different sources, among others: Bhanpuri et al. (2014); Kistemaker et al. (2006); Mérl et al.
(2012); van Soest et al. (1993a), see Section 3.2.4 for a detailed list). Hence, the parameters
are not subject-specific.

The input to the model is the vector of muscle stimulation signals u(t) with u € R® including
one signal for each of the six muscles. The output of the model is proprioceptive feedback
describing the muscle fiber length 1B (#) (with 1°F € RY) and the movement q(t) = [p(t), ¥ (t)]
(with q € R?, including elbow and shoulder joint angles, respectively).

Implementation The arm model was implemented using Matlab® / Simulink® version 2018a
with the Simscape Multibody ™environment. For all simulations, the variable-step Matlab ODE
solver odel5s with relative solver tolerance 1 x 10~° has been used. The absolute tolerance and
the minimum /maximum /initial step size are set to be determined automatically.

7.2.3 Biorobotic model

To implement the hardware test, we used a biorobotic model that resembles the characteristics
of the numerical musculoskeletal model as closely as possible in hardware (see also Appendix A5
and (Driess et al., 2018, 2019)). Its key characteristic—in analogy to the numerical model—is
that for a given constant feed-forward set of muscle stimulations, i.e., pressures in its pneumatic
artificial muscles, the arm will reach a static equilibrium posture (EP) which is passively stable
against external perturbations (Driess et al., 2018, 2019; Wolfen et al., 2018).

Similar to the numerical model, the biorobotic model represents the right human arm. It can
perform movements in two degrees of freedom in the sagittal plane. Two hinge joints represent
the shoulder and the elbow joint. It is actuated by five muscle-spring units (four monoarticular
(shoulder flexor (anteversion), shoulder extensor (retroversion), elbow flexor, elbow extensor),
and one biarticular (biarticular flexor)). Due to spatial restrictions, the robotic model has only
one biarticular muscle compared to the numerical model which has two biarticular muscles (six
muscles in total). Each muscle-spring unit consists of a pneumatic artificial muscle (DMSP,
Festo AG & Co. KG) and a spring in series which provides compliance over the entire range
of motion (Wolfen et al., 2018). Similar to the biological muscle, pneumatic artificial muscles
show a force-length relationship with decreasing muscle force for shorter muscle lengths (Festo
AG and Co. KG, 2016; Klute et al., 2002; Wolfen et al., 2018). The force of the muscle-spring
units is transmitted to the arm segments via integrated pulleys in the joints. The lever arm
determines how much force is transmitted to the corresponding segment. In biology (Murray
et al., 1995) and in the numerical model, the muscle lever arm depends non-linearly on the joint
angle. Therefore, we developed a non-linear pulley for the elbow joint which makes it possible to
mimic the biological lever arm (for more details see Appendix A5). Linear sensors (Temposonics
C-Series analog sensor, MTS Sensor Technologie GmbH & Co. KG) in parallel to the pneumatic
muscles provide length feedback similar to proprioceptive muscle spindle feedback. The joint
positions of the arm are measured by magnetic incremental encoders (LM13IC2D0BA10F00,
MRO50E040A080B00; cpr:144000, ppr:36000; RLS Merilna tehnika d.o.o).

The key differences to the numerical model are the following: Firstly, the range of motion is
limited as the pneumatic artificial muscles can contract only by about 20% of their rest length.
The numerical muscle model resembles a biological contraction range of about 50% resulting
in a higher range of motion with similar lever arms. Secondly, the elasticity of the series elastic
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elements is linear in the biorobotic muscle-spring units and non-linear in the numerical model.
Finally, the force levels and inertia properties are not completely matched, but the robotic arm
is powerful enough to through a juggling ball more than two meters up in the air.

The input to the biorobotic model is a vector of muscle stimulation signals u(t) with u € R®
including one signal for each of the five pneumatic muscles. These signals are given as set values
to 3-way proportional valves (VPPX-8L-L-1-G14-0L10H-S1, Festo AG & Co. KG) which then
ensure the desired pressure in the pneumatic artificial muscles. The output of the biorobotic
model is proprioceptive feedback describing the muscle length 1°F(¢) (with 1°F € R®) and
the movement q(t) = [p(t),¥(t)] (with g € R?, including elbow and shoulder joint angles,
respectively). While the length feedback is used for the controller, the joint angles are only
used to record the movement.

Implementation The investigated motor control hypothesis is described below and imple-
mented as a hardware-in-the-loop framework using Matlab® /Simulink® version 2016a with
the Simulink Desktop Real-Time™environment and a Sensoray 626 i/o board. This allowed us
to use the same control scheme and simply apply it to the numerical model and the biorobotic
model replacing the virtual physics engine with real-world hardware.

A few additional measures were taken in the hardware model: To match the muscle activation
dynamics of the numerical model as closely as possible, we used the same model of activation
dynamics (Hatze, 1977). This model acts like a non-linear low-pass filter of the control signals,
which considers biochemical processes that are not present in the pneumatic artificial muscles.
However, design limitations of the muscle-spring units and sensor noise required us to neglect
the muscle fiber length dependence of the activation dynamics, i.e., we used a constant muscle
length as input for the activation dynamics (I°F = [®FPt). In addition, it was necessary to
lower the time constant of the activation dynamics to mpiorobotic = 0-1 - m to reduce unwanted
oscillations in the system. The drawback of the slower reaction of the system to changes in
stimulation is only visible in one movement (movement 1—4), where the slower deflation of the
shoulder muscles led to a lower acceleration. We expect that this trade-off between oscillations
and reaction speed could be improved by higher stiffness of the series elastic element.

7.2.4 Motor control model

The bio-inspired hybrid equilibrium point controller that we used to demonstrate our framework
(Bayer et al., 2017; Haeufle et al., 2020a; Kistemaker et al., 2006; Stollenmaier et al., 2020d)
exploits the muscles’ force-length relation to achieve stable equilibrium positions (see Figure 7.2)
and their activation dynamics (biochemistry) to generate a smooth movement from a piece-wise
constant control input.

The controller combines a feed-forward command u°P®"(¢) with a feedback signal uls*d(t)
that incorporates proprioceptive spinal feedback. This feedback represents a simplified version
of the mono-synaptic muscle spindle reflex, assuming that the muscle spindles provide accurate
time-delayed information about the muscle fiber lengths 1°F(¢) (Kistemaker et al., 2006).

The total motor command u(t) is a sum of those components and represents a-motor neuron
activity. For each muscle i, it is calculated as

wui(t) = {uPn(0) + =)} = L) 4y (8- 6) - n) ) (r)
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Figure 7.4: Schematic diagram of the bio-inspired motor control model. The motor
command u(¢) is a sum of an open-loop and a closed-loop signal. The time-delayed
feedback loop incorporates proprioceptive feedback (mono-synaptic reflexes) by
comparing the actual muscle fiber lengths 1°F(¢) to desired values A(t). Here, the
observable state q(t) = [p(t),(t)] contains the elbow and shoulder angle, respec-
tively.

where k), is a feedback gain and the time delay ¢ is set to 10 ms representing a short-latency
reflex delay which is in a physiologically plausible range for arm muscles (Houk and Rymer,
1981; More et al., 2010). The operation {u;}} sets values u; < 0 to 0 and u; > 1 to 1.

In our model, the open-loop part u;"*"(¢) and the desired muscle fiber lengths \;(¢) represent
an intermittent control approach, because they are piecewise constant functions over time (for
more details see Stollenmaier et al. (2020b) and Haeufle et al. (2020a)). Herein, each constant
value represents an equilibrium posture (EP), i.e. the system is in a stable equilibrium in these

positions:

q=0 and =0, (7.2)

leading to the condition that the net joint moment vanishes in these postures. This condition
allows for the calculation of the open-loop muscle stimulations u;”*"(¢) and the corresponding
desired muscle fiber lengths A;(t): For each EP, the muscle stimulations u;**"(¢) can be deter-
mined by minimizing the difference between the muscle stimulation u;**" and the desired level
of co-contraction udes:

Z(u?pen — u4%) — min, (7.3)

subject to the constraint that the sum of all torques acting on the joint is zero, i.e. the
system is in a stable equilibrium position. The corresponding desired muscle fiber lengths \;
are set by measuring the length liCE of the muscle fibers in the equilibrium positions.

For all considered movements along a vertical screen (see Figure 7.3a), the human movement
can be reconstructed by selecting only three equilibrium postures (EPs) both in the computer
simulation and using the biorobotic model. The first EP represents the initial posture, the last
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7 Combining computer simulations with a bio-inspired robot and human experiments

the target posture. The intermediate EP is necessary to retract the elbow — otherwise, the
finger would penetrate the screen.

Note that in this framework, the steady states of the EPs are not necessarily reached. In
particular, the third EP is triggered (i.e. the control parameters are switched to the third EP)
before the arm reaches the position that corresponds to the second EP.

7.2.4.1 Implementation of the controller in the computer simulation

In the computer simulation, we optimized some of the control parameters to follow the experi-
mental trajectories. The parameters in this optimization are: the shoulder and elbow angle for
the second EP, the desired level of co-contraction for the second and the third EP, the starting
times for the second and the third EP and the feedback gain l?:p. Using the pattern search
algorithm in Matlab®, the quadratic difference between the simulated and the experimental
trajectory was minimized. The resulting parameters can be found in Table A4.3. Note that - in
contrast to the robotic experiments - the feedback gain in the computer simulation is calculated
as

Fp

kp = CE,opt ’
li

(7.4)

CE,opt
li

where Ep is the optimized constant gain for every movement and is the optimal muscle

fiber length of the muscle ¢ in consideration.
Using the resulting parameters, the muscle stimulations u;”*" were then optimized in order
to fulfill the conditions for equilibrium points (see Equation (7.3)) using the Matlab® optimizer

fmincon which is suitable for finding the minimum of a constraint function.

7.2.4.2 Implementation of the controller in the bio-inspired robot

To match the experimental trajectory, three EPs were defined for each movement: The first
EP was determined by an online search procedure that holds the desired position and finds the
minimal stimulation of the muscles to do so. The second and the third EP were found manually
by adjusting the pressure in the pneumatic muscle such that the respective shoulder and elbow
angle trajectories correspond to the experimental data. The switching times between the EPs
were also set manually to achieve the movement speed of the experimental data.

This semi-manual tuning lead to a movement that is not as close to the experiment as the
simulated trajectories but shows the same qualitative behavior. Computationally optimizing
all necessary control parameters, as it was done in the computer simulation, may lead to better
results, but would come with the cost of high material stress in the mechanical robot and
extensive time effort. This seemed not appropriate here, as the purpose is not to exactly
reproduce one trajectory (trajectory optimization) but rather to demonstrate that the same
intermittent controller can generate similar smooth trajectories as observed in the friction- and
noise-free simulation.

The feedback gain k, was set to 0.18 %
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7.2.5 Data processing

All data from human experiments, numerical model, and biorobotic model were aligned such
that ¢ = 0 is defined as the point where the difference quotient of the shoulder angle over time
is greater or equal to 15°/s. To correct for offsets in the angle definitions, the robotic angle
data are shifted by the mean difference to the human experimental reference movement. This
mean difference is calculated by averaging the difference to the reference movement at the start
and the end of the movement over all trials of each case.

7.3 Results

The numerical simulation and the biorobot can reproduce the kinematics of human goal-directed
arm movements with the same control concept by exploiting the viscoelastic properties of
the muscles (numerical muscle model and pneumatic artificial muscles). Both were tuned to
reproduce a selected trajectory from the human experiments (one subject, one trial, orange lines
in Figure 7.5 and Figure 7.6), which is reproduced for all four considered movements. Both
rely on three EPs to generate the movement. The EPs are defined by open-loop control signals
resulting in stable starting and end positions by exploiting the force-length characteristics of the
muscle. Furthermore, both models generate a smooth dynamic behavior from an intermittent
control due to the low-pass filter characteristics of the activation dynamics, the viscoelastic
properties of the muscles, and the inertia of the segments.

The optimization of the control parameters, which was only possible in the numerical simula-
tion, lead to a closer reproduction of the experimental data in the simulation than the manual
tuning in the robot (Figure 7.5 and Figure 7.6). Especially the case from the highest to the
lowest position (1—4) was more difficult to match in the biorobotic system, as here the forces of
the pneumatic artificial flexor muscles did not decrease fast enough to achieve the acceleration
observed in the experiment (and simulation). Furthermore, the dynamics of the muscle-spring
units in the robot caused a significant oscillation towards the end of this movement, which can
be attributed to the fact that the robot operated at the extremes of its range of motion, which
is obviously not true for humans and also not for the simulation (which is parameterized to
roughly match the human range of motion). Despite these limitations, the core characteristics
of the movement are preserved.

Although the maximum forces and contraction ranges differ—and therefore also the values
of the control parameters—the general characteristics of the control remain identical. In both
the computer simulation and the robot, the open-loop muscle stimulation level is dependent
on the position of the arm. For example, for a big upward movement, the mean open-loop
muscle stimulation is low for the starting position and increases for the second and third EP
(Table 7.1). The reason for this is that the muscle lengths change with the position of the arm
and - due to the force-length relationship implemented in the muscle models - the muscles need
to be stimulated differently to produce the same amount of force. In addition to that, the lever
arm of the gravitational force is higher for the more elevated arm positions requiring higher
muscle stimulations to hold the arm.
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(a) Computer Simulation

(b) Bio-inspired Robot
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Figure 7.5: Results for a big upward movement from position 4 to position 1 (4 — 1)
using (a) the computer simulation and (b) the bio-inspired robot. The two
rows show the shoulder and the elbow joint trajectory, respectively. The blue lines
depict the robot and simulation trajectories, the orange lines show one movement
of one typical control subject in the experiment.
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Figure 7.6: Resulting trajectories for the other evaluated movements between the
four target positions. For more details see Appendix A5. The blue lines depict
the robot and simulation trajectories, the orange lines show one movement of one
typical control subject in the experiment.

EP1 EP2 EP3

Simulation 0.11  0.37 0.46
Robot 0.04 0.09 0.08

Table 7.1: Mean open-loop muscle stimulations for every EP (average over all mus-
cles), exemplary for a big upward movement from position 4 to position
1 (4 — 1). For more detailed results on the muscle stimulations, see bar diagrams
in Appendix Ab.
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7.4 Discussion

Using the musculoskeletal numerical model and the biorobotic system in combination with
measurements from human experiments, we set up a framework that allows investigating motor
control concepts that rely on muscular dynamics for two-degree-of-freedom arm movements.
The major novelty is the approach to implement a control hypothesis that relies on the muscular
dynamics in the computer simulation and then develop a biorobotic testbed with dynamics
that are close enough to the numerical model such that the control law can be transferred
directly. The key to this are two characteristics of the biological muscles which are considered
in both models: the force-length relation and the activation dynamics. In our opinion, the
complexity of this setup with two degrees of freedom is a sweet spot as it is complex enough to
reproduce typical motor control experiments and at the same time not too complex to realize
as a biorobotic model.

We tested this framework using the example of an equilibrium point control approach. Our
results show that this control concept can be used to reproduce human two-degree-of-freedom
point-to-point arm movements in both the computer simulation and the biorobot with only
three constant EPs. The bio-inspired control law explicitly uses the non-linear viscoelastic
properties of the muscles, so that the controller does not need a model of the actuator to execute
soft movements. As we consider the required muscle properties in both the computer simulation
and the biorobot, our framework can be used to test the real-world feasibility of this control
concept. Despite several differences between the biorobot and the numerical simulation, it is
possible to reproduce the human experiment with the same controller (using different control
parameters). Hence, combining human experiments, computer simulation, and the biorobotic
testbed into one framework, we showed that EP control can be well-performing in real-world
physical conditions and produce stable movements and positions.

7.4.1 Comparison to other approaches in bio-robotics

Robotic systems are used as tools to study the principles of biological movement generation.
This includes biomechanical principles in locomotion (Ijspeert, 2014; Kashiri et al., 2018), motor
control principles (Lenzi et al., 2011), or even principles of motor learning (Aguirre et al., 2017;
Driess et al., 2018, 2019). We refer the reader to Vitiello et al. (2015) for an overview on neuro-
robotics and the potential mutual benefits of the combination of motor-control neuroscience
and robotics.

As the viscoelastic and variable stiffness joint characteristics of the antagonistic muscle-setup
may also be beneficial for other purposes, e.g., for safe human-robot interaction (Albu-Schéffer
et al., 2008), they have also been implemented on more classical robotic systems with current-
controlled DC motors. Since an electric motor has no innate viscoelastic properties, additional
control policies are required to emulate these. This is possible to some extend (Dietrich et al.,
2011; Wang and Kheddar, 2019) by real-time control with high control frequency (10kHz or
more) but comes at the cost of increased control complexity.

On the other hand, using pneumatic muscle-driven robots for the purpose of classical control
approaches (e.g., torque control) requires an exact model of the pneumatic actuator forces.
These model-based approaches are based on complex characterization using geometric (Boblan
et al., 2007; Martens et al., 2018), empirical (Wickramatunge and Leephakpreeda, 2013), phe-
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Figure 7.7: Several trials of one subject for a big downward movements from position
1 to position 4 (1 — 4). The dashed lines show the trials, the solid line shows
the trial that has been used as reference for this movement in our investigations.

nomenological (Tsagarakis and Caldwell, 2000), or FEM models (Tu et al., 2020). Controllers
for robotic systems with pneumatic muscles often do not have to deal with non-linear lever
arms, different muscle lengths, biarticular muscles, or series elastic tendons (Anh and Ahn,
2011; Shin et al., 2011), all of which are present in the biological system. Here, we show that
a relatively simple bio-inspired control concept allows for the generation of goal-directed arm
movements despite these complications by exploiting the muscles’ properties.

7.4.2 Outlook and relevance for motor control research

To study how humans achieve the variety and incredible performance in motor control, different
classes and aspects of movements are investigated in isolation and combination. Hogan and
Sternad proposed that three classes of dynamic primitives are used to encode motor commands:
submovements, oscillations, and impedance (Hogan and Sternad, 2013). The impedance class
of dynamic primitives is relevant when interacting with the environment and may physically
emerge from the antagonistic setup of muscles and be tuned by their co-contraction (Hogan,
1984). Especially for this class, the passive characteristics of the musculoskeletal system play an
important role, as already described in detail in the introduction. One important research field
in this direction is the control of goal-directed movements facing perturbations (Kurtzer et al.,
2009). In the last years, there is emerging evidence that such control strategies consist of a fine-
tuned interaction of musculoskeletal system characteristics, short- and long-term reflexes, and
voluntary error feedback correction, with a strong interaction of the different mechanism levels
in terms of adaptation and optimization. Regarding movement adaptation, control strategies
do not only have to be adjusted in respect to external changes like abrupt perturbations or
handheld objects changing arm dynamics, but also in respect to internal changes, e.g. changes in
musculoskeletal system characteristics caused by muscle fatigue (Dube and Roy, 2019) or even
neuro-muscular diseases (Dunkelberger et al., 2020; Kurtzer et al., 2013). In order to investigate
the described interaction between mechanisms for the control (Kistemaker et al., 2013; Kurtzer
et al., 2008; Weiler et al., 2019) and adaptation (Maeda et al., 2020) of movements, the explicit
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modeling of the neuro-muscular system and its characteristics in interaction with the higher
control levels delivers specific insights (Cheng and Loeb, 2008; Tytell et al., 2011).

Moreover, the natural variability in motor control, as e.g., visible in the human data shown
in Figure 7.7, provides insights into control strategies (Latash et al., 2002), motor learning
(Herzfeld and Shadmehr, 2014), and motor control impairments (Markanday et al., 2018;
Sanger, 2006). Furthermore, the reaction to small variations may reveal the stability and
robustness of a controller (Kalveram and Seyfarth, 2009). One drawback of deterministic mo-
tor control models is the lack of any natural variance and hysteresis of the data, if not explicitly
introduced. The implementation on a suitable biorobotic system introduces noise, hysteresis,
and variance by physical processes and has therefore not only the potential to reveal inconsis-
tencies and instabilities in the controller, but may also provide a means to distinguish between
physical and neuronal sources of motor control variability. At least, we find that in general,
the variability in our robotic setup is smaller than found in the human experimental data.
This may become especially relevant for building testbeds in two fields: (1) learning strategies
like reward-based trial-and-error learning (Codol et al., 2020) which exploit variability as a
means of exploration for increased robustness and (2) motor control impairments, when con-
sequences of specific dysfunctional mechanisms can be examined without the system inherent
motor variability of the human motor control system.
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8 | Investigating the reflex
contribution in repositioning
processes

In the closed-loop interaction of humans and technical devices, it can become necessary that
the artificial system manipulates the human by imposing a movement without exactly knowing
the human’s intention. In this chapter, we investigated the interactive dynamics of such a
repositioning by combining a whole-body musculoskeletal model (Section 3.2.5) with a model
of low-level proprioceptive feedback (Section 3.3). The core questions are: 1) How much differs
the muscle force prediction when including feedback? 2) Does this depend on the externally
imposed movement speed? 3) How much is the muscle force affected by the human’s cognitive
state? We investigated both the passive reaction forces of the musculoskeletal system as well
as the contribution of a long-latency stretch reflex to the muscular forces for a large range of
movement velocities. We found that in our setting, the predicted relative force contribution of
the feedback mechanism is not negligible, especially for high movement velocities. The force
increases when modeling an unprepared cognitive state and decreases for the prepared case.

Note that large parts of the content of this chapter were submitted to Computer Methods in
Biomechanics and Biomedical Engineering. For details on this manuscript, including a list of
authors, see Manuscript 5 in Chapter 2.

8.1 Introduction

Pervasive augmentation of human capabilities, that is, closed-loop interactions of humans and
technical devices seem to become part of almost every aspect of our lives in the future. Starting
from already established augmentation of motorized hospital beds and robots for walking reha-
bilitation, new devices will emerge, for example, exoskeletons for standing, walking and running
or repositioning devices in future mobility vehicles. In this regard, it becomes more and more
relevant to investigate the interplay of humans with such systems that can be autonomous and
intelligent for their part. This interplay can be seen as an interaction of two autonomous intel-
ligent systems: (a) a natural autonomous intelligent system, the human which we consider as a
neuro-mechanical, senso-motorical system and (b) an autonomous artificial intelligent system.
In this interaction, it can become necessary that the artificial system manipulates the move-
ment of the human by imposing a movement without exactly knowing the human’s movement
intention. Such a repositioning process can happen on different time scales (Figure 8.1): slow
movements like in motorized hospital beds or rehabilitation robotics or faster movements in
exoskeletons as human power amplifiers or active seats as they might, for example, occur in
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8 Investigating the reflex contribution in repositioning processes

cars as an active safety system (Adient Ltd. & Co. KG, 2018). One interesting example is
the repositioning of a driver to a safe position in the event of an anticipated crash (Adient
Ltd. & Co. KG, 2015). In this interaction, the behavior of the artificial system can depend
on the current state of the human (e.g. position, velocity, relaxed vs. tensed state) and the
movement of the human is partially prescribed /imposed by the artificial system. To investigate
this interaction and how it affects the human, the interactive dynamics between the human and
the artificial system need to be considered.

Computer simulations using neuro-musculoskeletal models provide a useful tool to investigate
this interaction and to predict the consequences for the human in these repositioning move-
ments. Internal muscle forces can be calculated, reflexes can be modeled and their contribution
can be investigated (Stollenmaier et al., 2020b). Another advantage of musculoskeletal model-
ing is that different levels of co-contraction can be investigated. As a result, different levels of
attention can be investigated by testing different levels of co-contraction. Also, a change in the
level of attention or preparedness (e.g. when the human notices that they are moved by the ar-
tificial system or when they are warned by a signal shortly before movement) can be considered.
More and more complex models of both, the neuronal control and the musculoskeletal system,
are being developed (Kapelner et al., 2020). More physiologically valid models consider more
effects and are hence expected to yield better results. However, these models are also more
complex and usually need more sophisticated tuning of parameters and are computationally
more expensive. So the question is: how much do the predictions differ when different levels
of modeling detail are included? Previous work indicates that the resulting movement mostly
depends on the controller and the pre-activation of the muscles and not on the biophysical
model components (Bayer et al., 2017). Therefore, the two core questions of this contribution
are: 1) How much differs the internal muscle force prediction for an increased level of neuronal
control modeling detail? 2) Does this depend on the externally imposed movement speed?

We exemplary look at a device that moves the human from a lying to a seated position
and investigate the consequences on the hip muscle forces. To this end, we combine a whole-
body musculoskeletal model with a model of low-level proprioceptive feedback. This allows
us to investigate both the passive reaction forces of the musculoskeletal system as well as the
contribution of a (long-latency) stretch reflex to the resulting muscular forces for a large range
of movement velocities.

The prediction of muscle forces can be relevant for different applications as it can allow
for the calculation of joint stiffness, the prediction of possible injuries, and the estimation of
the required torque to move the system. For example for exoskeletons, the estimation of the
system’s stiffness is important for the choice of actuators, materials, and the design in both the
normal application velocity and fast emergency actions, e.g. to prevent the user from falling.
In the case of an active car seat, the prediction of the hip joint stiffness can help to predict
whether the passenger will stay in the seat. The predicted muscle force itself can be compared
to soft tissue material data to assess the potential injury risk of this biological part (Noelle
et al., 2020).

In a previous study (Stollenmaier et al., 2020b), we investigated the neuro-muscular response
to external perturbations using a musculoskeletal model of the arm in combination with the
same control concept as used here. On a full-body scale, however, the investigation of the
dynamic interplay between the somatosensory system and the musculoskeletal system in the
presence of external perturbations is a novelty. In particular, the systematic analysis for differ-
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ent movement velocities allows for new insights into the influence of different levels of neuronal
model detail in the interplay with a musculoskeletal model.
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Figure 8.1: Hip angle difference in relation to the angular velocity of the reposition-

ing process in different applications where an artificial systems interacts
with a human. The orange dots show our simulation experiments. The black dots
show other potential devices. Automatic hospital beds can move the patients from a
lying to a seating position (Griswold, Lee F; Edward A. and Beckstrom, 2014; Her-
mann Bock GmbH, 2018; Lacasse et al., 2016). Exoskeletons can support walking
movements by prescribing typical walking speeds to the lower limb joints: maximal
hip angle differences and angular velocities for different walking speeds (Mentiplay
et al., 2018) and sprinting (Belli et al., 2002; Higashihara et al., 2018; Hunter et al.,
2005; Slawinski et al., 2010) are shown here. One example of such an exoskeleton
is the Lokomat (Hocoma AG, Volketswil, Switzerland, Jezernik et al. (2003)) that
is used for gait rehabilitation (Domingo and Lam, 2014). The shown values are
examples and do not represent the whole working range of these applications. The
horizontal blue line shows the maximal physiological hip angle difference averaged
over a group of 200 people of different ages and genders (Elson and Aspinall, 2008).
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8.2 Methods

8.2.1 Full-body musculoskeletal model

For the investigations presented here, we used a three-dimensional musculoskeletal model of
the full human body representing a generic, 50th percentile male. A detailed description of the
musculoskeletal model can be found in Section 3.2.5.

The model of the skeletal structure consists of 15 rigid bodies, connected via 14 joints includ-
ing 20 mechanical degrees of freedom. This multibody system is actuated by 36 muscle-tendon
units that produce active forces. These muscle-tendon units are modeled using an extended
Hill-type muscle model as described by Haeufle et al. (2014b), which accounts for force-length-
velocity characteristics, tendon and parallel tissue elasticity, and damping in the tendon (see
Figure 8.2). The activity of the muscles is determined using a model of biochemical muscle
activation dynamics (Rockenfeller and Giinther, 2018) as introduced by Hatze (1977), which
considers the fiber length dependency. The muscle and activation dynamics parameters are
taken from the literature (see Section 3.2.5). The muscle-tendon unit forces are internal forces
that act on the skeleton. External forces that act on the system are gravity and contact forces
(see below).

8.2.2 Controller

The bio-inspired control model combines a feed-forward motor command with a feedback loop
based on muscle fiber lengths and contraction velocities (Figure 8.2). The total stimulation u
represents a-motor neuron firing rate and is calculated for each muscle ¢ as

wilt) = {u" () + ugd (1)}, (8.1)

where the operation {uz}(l) sets values u; < 0 to 0 and u; > 1 to 1.
Herein, the feed-forward (open-loop) command u°P®"(¢) represents a constant basis muscle
tone which is set to the same value for all muscles :

udP(t) = GOPe" (8.2)

With @°Pe" it is possible to regulate the level of muscle co-contraction. It can hence be related
to the level of attention or tenseness of the human: A higher value of u°P°" leads to higher
muscle tensions and hence a higher stiffness of the system.

The closed-loop signal u'*°d(¢) incorporates proprioceptive feedback since it represents a
simplified version of the muscle spindle reflex by comparing the actual lengths and contraction
velocities (1°F(t),1°%(t)) of the muscle fibers (contractile elements (CEs)) to desired values
(A(t), A(t)). As the information about the current state of the muscle only becomes available
with a neuronal delay, a time lag § is introduced. Since experimental findings indicate that
the long-latency stretch reflex plays an important role in the reaction to mechanical pertur-
bations in goal-directed reaching movements (e.g., Kurtzer et al., 2014; Weiler et al., 2016),
we implemented a long-latency feedback loop by setting the time delay to 50 ms (R2 response
(Pruszynski et al., 2011; Scott, 2016)). This model approach is based on the assumption that
the muscle spindles provide accurate time-delayed information about the muscle fiber lengths
1°E(t) (Kistemaker et al., 2006).
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Figure 8.2: Schematic diagram of the neuro-musculoskeletal model. In the feed-forward
version of the model (black lines), the total motor command u contains only the
open-loop signal u®P*". The motor command u is fed into the model of the activation
dynamics of muscles which relates the neuronal stimulation to muscular activity a
that drives the muscle model. The muscles produce forces F that act on the skeletal
system resulting in a simulated movement q(¢) of the body. In the time-delayed
feedback loop (gray lines), the sensory system, which represents a simplified version
of the muscle spindles, measures the current lengths and contraction velocities of
the muscle fibers (1°B(¢),1°E(¢)). They are compared to the desired values (A,
)\) and the resulting feedback error is multiplied by the feedback gains k4 and k,,

normalized by the muscle’s optimal fiber length lg;é (see Equation (8.3)). To include

feedback, the total motor command u is a sum of the open-loop signal u°?°* and
the time-delayed feedback signal uclosed,
The closed-loop signal u®°sd(t) for each muscle i is calculated as
u;;losed (t) _ u;losed,l(t) + uglosed,V(t)
(8.3)

k kg (- .
:laﬁm<§E@—5)—Axw>+jmim<§Eu—5y—&@0,

where k, and kg are the feedback gains and lZCE’Op i

tractile element (Kistemaker et al., 2007a).

The desired muscle fiber lengths A are set depending on the considered scenario, see Sec-
tion 8.2.4. Since the human is assumed to target a resting position at all times, the desired
muscle fiber contraction velocity J; is set to zero for all muscles i. The feedback gains k, and
kg4 are set as:

stands for the optimal length of the con-

kp=0.1,kg = 0.01.
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The components of the input parameter vectors to the controller (u°Pe™(t), X(t), A(t)) are
piecewise constant functions over time where each constant set of parameters represents a stable
equilibrium posture or equilibrium point (EP). Therefore, this control model can be classified
as a hybrid equilibrium point controller (Bayer et al., 2017; Kistemaker et al., 2006).

8.2.3 Seat and contact points

To investigate different repositioning velocities in the hip joint, the human model is placed on
a model seat (Figure 8.3). To achieve a stable lying position, the initial position of the human
is above the seat and the human falls into the seat before the repositioning movement starts
(Figure 8.3a). After a short resting phase (1.1s), the seat is moved from a lying position (0°,
t = 0s, Figure 8.3¢) to a seated position (80°, Figure 8.3d). The movement of the seat is
implemented by prescribing the angle between seat and seatback as a linear function over time
between the starting and the target angle. The contact between the seat and the human is
implemented using 11 viscoelastic contact points (Figures 8.3a and 8.3b, Table 8.1). In addition
to the contact points between the seat and the human, there are contact points between the
feet and the floor.

Human | Seat Position
Knee Seat left, right
Pelvis | Seat left, right

Back Seatback | left, right
Head Seatback | middle

Elbow | Seatback | left, right
Wrist Seatback | left, right

(a) Initial position (b) List of contact points

(¢) Movement start (¢ = 0s) (d) Movement end

Figure 8.3: Investigated repositioning movement. (a) Initial position before the start of
the movement. The red spheres visualize the positions of the contact points between
the human and the seat. (b) List of all contacts between the human and the seat.
(c) Lying position at the beginning (¢t = 0s, 0° seat angle) and (d) sitting position
(80° seat angle) at the end of the repositioning movement.
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The contacts between the human and the seat are described using linear contact elements
with stip-slick transitions. However, the contacts were parametrized such that only stick occurs.
The contact algorithm describes the contact between a point and a surface. The point and the
surface are in contact if the perpendicular distance between is negative. The contact force is
calculated as

K1T1 + Poll vyl + PETLUJ_ .
Fo (1) ( vy + pl fL| dif f <0 (8.4)
0 : otherwise,
TL = folfLlwl, (8.5)

with (-) 1 : perpendicular component and (-): parallel component. 7: distance v: velocity w:
angular velocity.

Body part K1 poj plf o I Ve Lo We
Knee 1.0eb 1.0e2 0.0 0.0 1.5 1.0e—3 0.0 9.9¢1
Pelvis 1.0e5 1.0e2 0.0 0.0 1.5 1.0e—3 0.0 9.9¢1
Back 2.0e7 5.0e3 0.0 0.0 1.5 1.0e—3 0.0 9.9¢1
Head 2.0e7 5.0e3 0.0 0.0 1.5 1.0e—3 0.0 9.9e1
Elbow 5.0e6 5.0e3 0.0 0.0 1.5 1.0e—3 0.0 9.9¢1
Wrist 5.0e6 5.0e3 0.0 0.0 1.5 1.0e—3 0.0 9.9¢1
Body part K| Pl 1o Ko Po oo

Knee 2.0e4 2.0e3 2.0 2.0e2 2.0el 9.9¢el

Pelvis 2.0e4 2.0e3 2.0 2.0e2 2.0el 9.9el

Back 2.0e4 2.0e3 2.0 2.0e2 2.0el 9.9el

Head 2.0e4 2.0e3 2.0 2.0e2 2.0el 9.9el

Elbow 2.0e4 2.0e3 2.0 2.0e2 2.0el 9.9el1

Wrist 2.0e4 2.0e3 2.0 2.0e2 2.0el 9.9el

Table 8.1: List of contact points with their parameters.

8.2.4 Simulation Experiments

We changed the angle between the seat and the seatback with different angular velocities. The
changes in angle shall represent a repositioning from a lying position (0° seat angle) to a seated
position (80° seat angle, see Figure 8.3). We varied the velocity of this repositioning process
from 50 °/s to 500 °/s to investigate the effect of the movement velocity on the resulting internal
forces. In addition to that, we varied the level of basic muscle stimulation @°P*" from 1% to
10% to investigate the influence of muscle co-contraction.

Using these variations of velocity and co-contraction level, we investigated three different
levels of control model detail:
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8 Investigating the reflex contribution in repositioning processes

Level 1: Without feedback To investigate the contribution of the properties of the mus-
culoskeletal system to the resulting movements and forces, we ran purely open-loop controlled
simulations by switching off the feedback mechanisms (kp, kg = 0, see Figure 8.2). This
means that the stimulation of every muscle is constant throughout the simulation experiment:
u;(t) = uPem.

Level 2a: With feedback, unprepared Introducing feedback requires setting desired mus-
cle fiber lengths A(t). This tuning of the control target variable A can be associated with setting
the threshold of the stretch reflex.

The unprepared cognitive state is modeled by setting the desired muscle fiber lengths A to the
lengths corresponding to the position at the beginning of the repositioning movement (¢ = 0s).
Due to the closed-loop part of the controller u®°*d, the muscles are then stimulated with the
goal to maintain the starting position. Hence, this choice of desired values represents that the
human is at rest and strives to maintain this resting position.

Experimental findings indicate that early voluntary activities start at around 100ms after
a perturbation (Kurtzer, 2015; Pruszynski and Scott, 2012; Weiler et al., 2016). Therefore,
we assume that the human reacts to the imposed movement and adapts the reflex threshold
lengths anticipating the repositioning. At 100 ms after the beginning of the movement, we set
the desired muscle fiber lengths A to the lengths corresponding to the position at the end of
the movement. This can be seen as a switch of desired equilibrium positions from the starting
to the target position once a human may become aware of the repositioning.

1OEstart for ¢ < 0.1
A(t) = . or t < S
1CE en fort > 0.1s .

Level 2b: With feedback, prepared The prepared cognitive state is modeled by using
the muscle fiber lengths of the target position as desired values A in the controller already
at the beginning of the movement. So, the human is assumed to be aware of the upcoming
repositioning process and adapts the reflex thresholds in accordance with the target position.

[CEstart o ¢ < (g
Alt) = CE,end _
| et fort > 0s .
All in all, the investigated variations are 6 different repositioning velocities, 3 levels of co-
contraction, and 3 control model variants. We ran simulations for all of the 54 combinations of
these variations and analyzed them below.

8.2.5 Data analysis

To investigate the influence of the repositioning velocity and model detail, we evaluate the
internal muscle forces exemplary for the left hip extensor muscle at 100 ms after the beginning
of the movement (Figure 8.4). We focus on this first part of the movement, because at a later
point in time, voluntary reactions and higher-level feedback mechanisms come into play that are
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not considered in our model. The hip extensor muscle is of particular interest in this movement
as it is stretched with different velocities and is possibly overburdened.

8.2.6 Sensitivity analysis

The resulting muscle forces are influenced by the chosen model parameters, in particular the
feedback gains in the control model (Equation (8.3)) and the parameters that describe the
passive properties of the muscle are expected to have a big influence. To quantify this influence,
we performed a local, first order differential sensitivity analysis (e.g., Dickinson and Gelinas,
1976; Morio, 2011; Rockenfeller, 2016, see also Stollenmaier et al. (2020b)).

To this end, both the feedback gains k, and kg, as well as the parameters describing the
passive viscoelastic behavior of the muscle [SFF-0 _PEE0 - HSDE RSPE
a-time and the sensitivity of a scalar state variable to the chosen parameters is quantified.

We define the relative sensitivity coeflicient as

, and , are varied one-at-

fa+A)—f(z)

Srel. = fz) 5 (86)

a normalized formulation of the difference quotient of the state variable f(x). The difference
quotient is an approximation of the derivative of f(z) in the direction of the parameter x for
A small enough (e.g., Lehman and Stark, 1982). We set the relative change of a parameter x
to A =1x1073 .z, i.e. we perform a local sensitivity analysis without taking into account
the physiological range of the parameters (Rockenfeller et al., 2015). The relative sensitivity
is sometimes referred to as elasticity (ten Broeke, 2017). The advantage of the normalization
is that the resulting sensitivity indicator is easier to interpret and more comparable between
different cases or even across models (Rockenfeller et al., 2015; Scovil and Ronsky, 2006). Using
this definition, the relative sensitivity indicates the percentage change in the state variable per
percentage change in the parameter value. For example, a relative sensitivity Sye. = 2 indicates
that a m% change of the input parameter z results in a 2m% change of the output f(x).

As scalar state variables f that describe the behavior, we chose two quantities that are also
evaluated in Figures 8.4a and 8.4b: (a) To investigate the influence on the absolute muscle force,
the muscle force of the left hip extensor in the closed-loop controlled movement is chosen. (b)
The influence on the contribution of the feedback mechanism can be quantified by choosing
the relative difference between the open- and closed-loop forces as state variable. For example
when the force increases by 20% when including a feedback mechanism, the relative difference
would be 0.2. In both cases, we look at the unprepared case with u°P** = (0.1 at 100 ms after
the beginning of the movement.
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8.3 Results
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Figure 8.4: Resulting internal muscle forces for the left hip extensor muscle for dif-
ferent repositioning velocities and modelling details at t = 0.1s. (a) Muscle
force normalized by the muscle’s maximal isometric force F™*. (b) Muscle force
relative to the open-loop force. This depiction emphasizes the feedback contribution
to the muscle forces and shows that the unprepared case (2a) results in increased
muscle forces, while the prepared case (2b) results in reduced muscle forces.

We evaluated the muscle forces normalized to their maximal isometric force and relative to
the force that results from an open-loop controller and compared different levels of control model
detail (Figures 8.4a and 8.4b). Our main result is that, at this evaluation time point, the muscle
force increases when including feedback that represents an unprepared cognitive state (+) and
decreases when the feedback parameters correspond to a prepared cognitive state (x). The
influence of these feedback representations becomes clearer when looking at the resulting forces
relative to the open-loop forces (Figure 8.4b). For the lowest investigated co-contraction level
(u°Pe™ = 0.01), the difference between the models with and without feedback is comparatively
small. For the higher muscle tones, including feedback can increase or decrease the muscle
forces compared to the open-loop case by a factor of approximately two for the unprepared and
prepared cases, respectively. However, the relative force contribution of the feedback does not
necessarily depend on the movement velocity, in particular for the prepared cases.

Looking at different repositioning velocities, the absolute force after 100 ms increases with the
angular velocity of the movement for all cases (Figure 8.4a). Note that we look at the muscle
forces at a fixed time for different movement velocities. Hence, the body is in different positions
depending on the angular velocity. Consequently, the muscle fiber lengths and therefore the
resulting forces differ both due to the force-length relationship of the muscles and the length-
dependency of the feedback mechanism. As a result, the velocity dependence of the muscle force
that is observed here is a combined consequence of both the length and the velocity dependency
of both the muscle forces and the feedback mechanism. Evaluating the components of the muscle
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stimulations (Figures 8.5a and 8.5b) and the muscle forces (Figures 8.5¢ and 8.5d) allows gaining
further insight into the processes that are involved in the dependencies that can be observed
in the muscle forces. With the chosen feedback gains, the contribution of the closed-loop part
is rather small in the unprepared case (Figure 8.5a), while the contribution in the prepared
case (Figure 8.5b) is larger. This difference can be attributed to the higher length-dependent
feedback contribution in the prepared setting due to the higher discrepancy between the current
and the desired muscle fiber lengths at the beginning of the movement. In the unprepared cases,
the length-dependent feedback contribution u°%*d! increases with the angular velocity of the
prescribed movement while it decreases in the prepared case. The contribution of the velocity-
dependent feedback uc°%°d:V relative to the length-dependent feedback u°°d! increases with
the angular velocity. The muscle output force FMTU is a sum of the force acting in the serial
elastic element FSPE and the serial damping element force FSPE (Figure 8.5¢). The latter
represents the passive damping force of the muscles. It is small and does not have a significant
influence on the velocity dependency of the muscle forces. For the considered hip extensor
muscle, the investigated movement is an eccentric movement as it is passively stretched during
the repositioning process. Therefore, the muscle force depends only little on the velocity as the
slope of the force-velocity curve in the eccentric area is comparatively small for fast velocities
(see Haeufle et al. (2014b)).

Another relation that can be observed is that the resulting muscle force increases with the
desired level of co-contraction u°P" (Figure 8.4a).

8.3.1 Sensitivity analysis

Calculating the relative sensitivity, allows to quantify the influence of control and muscle pa-
rameters on the resulting muscle force (Figure 8.6a) and the contribution of the feedback
mechanism (Figure 8.6b) . While the influence of the feedback parameters (k, and kq) is rel-
atively small at this early stage of the movement, the predicted muscle force is more sensitive
to the muscle parameters, in particular the parameters describing the damping properties of
the muscle-tendon unit (DSP¥ and RSPF). Due to the velocity dependence of the damping
force FSPE the sensitivity of the muscle force to the damping parameters increases with the
angular velocity of the repositioning process. The parameter that determines the rest length
of the parallel elastic element (LTPP0) has zero influence on the result, as [°F < [PFEO
therefore FPPE = 0 in the considered movement.

and
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Figure 8.5: Components of the muscle stimulations and muscle forces for the left
hip extensor muscle for different repositioning velocities and modelling
details at ¢ = 0.1s. (a) and (b) Muscle stimulations for the unprepared and
prepared cognitive state exemplary for u°P*" = 0.1. (c) Components of the muscle
forces and (d) normalized force-length (F-1) and force-velocity (F-v) components
of the muscle force for the unprepared cognitive state exemplary for u°P°" = 0.1.
The F-1 component is equivalent to F°™ in the muscle model. The normalized F-v

component is calculated by setting F™®*, g and F'*°™ to 1 in the calculation of the
FCE force.
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Figure 8.6: Relative sensitivity S of (a) the left hip extensor muscle force and (b) the
contribution of the feedback mechanism to the muscle force at ¢ = 0.1 s with respect
to changes of the feedback gains and the free parameters describing the viscoelastic
properties of the muscle for different repositioning velocities. Fach line represents
one of the varied parameters.
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8.4 Discussion

The main question we want to address is whether adding simple cognitive state modeling and
how much the level of detail of neuronal modeling influence the predicted internal muscle forces
dependent on the movement velocity in a repositioning process. To address this question,
we looked at an exemplary, daily movement over a wide range of movement velocities. We
compared the resulting muscle forces in the hip extensor muscle when neglecting proprioceptive
feedback (case 1 open loop) with the results that include feedback with two different parameter
sets representing different cognitive states (cases 2a unprepared and 2b prepared). Reflexes
are a well-documented part of the neuro-muscular interaction in the generation of movement
in the human body (e.g., Kurtzer et al., 2008; Schmit and Benz, 2002). However, for certain
scenarios, they may not play a significant role and it may be justifiable to neglect them in model
representations. Neglecting feedback in the model can have various advantages. For example,
modeling the prepared feedback state as described above, requires knowledge about the target
pose and configuration, even when investigating only the beginning of the movement. This
also means that the model includes more parameters. For a multi-body model as used here,
this is a manageable problem. For more complex models like finite element models, including
more parameters and simulating the target position may be a considerable additional effort
(Martynenko et al., 2017).

Our results show that the hip extensor muscle force including the reflex is higher when
the human works against the movement, because of unforeseen repositioning, i.e. when the
starting position is used as reference length for the muscle spindle reflex. When the human
anticipates the repositioning and sets the reflex threshold towards the upcoming movement,
e.g. forward bending, the reflex contribution to the muscle forces acts in the direction of
movement and, as a result, the muscle forces are smaller than without the reflex contribution.
Therefore, at the beginning of the movement, the hip extensor muscle forces decrease when
including feedback (Figure 8.4a). This means that if the human is prepared and can tune
its reflex thresholds accordingly, the resulting muscle forces might be smaller. So, our results
indicate that a warning signal (e.g. sound or haptic signal) could decrease the injury risk in
this particular muscle before the beginning of the movement. However, at the same time, the
muscle forces increase with higher muscle co-contraction. Hence, when the human gets tenser
and increases the muscular co-contraction due to a warning signal, this warning might have the
opposite effect.

The cognitive state of the human depends on the device and the situation of the repositioning
process. For example, when using a rehabilitation robot, the subject is aware of the process
and can adapt their neuronal state accordingly, given that the respective neuronal function is
intact. However, for the feedback parameters chosen here, the difference in muscle force due to
altering repositioning velocities (and resulting positions) exceeds the difference due to changes
in the reflex modeling.

In the case of high to very high repositioning velocities, for example in emergency situations
in which the human has no time to prepare for the upcoming external perturbation, potential
injury risk can be studied using a digital human model. One exemplary scenario could be a
sleeping driver of a future autonomous car in a close-to-lying position. In this scenario, i.e. the
autonomous intelligent artificial system car realizes a potential, upcoming crash within the next
several milliseconds, the artificial system has to decide which next action is best to mitigate
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injury risk of its occupants. Repositioning of the occupants to a more upright position might
be one solution in this case. This contribution shows that only including the highest level of
detail for the neuronal modeling allows for an appropriate assessment of the potential injury
risk imposed by the interaction of the artificial and natural system. In our case, a muscle force
criterion could be defined to evaluate whether the repositioning could be potentially harmful,
for example, the ratio of actual muscle force and physiological maximum muscle force (Noelle
et al., 2020).

As with most digital engineering approaches, using the presented modeling approach, not
only muscle forces and muscle-related criteria can be investigated. It is further possible to
assess other internal quantities like for example the kinematics for assessing typical movement
ranges in collaborative workspaces with robots or kinetics to develop appropriate active ex-
oskeletons on all body parts. This approach opens up the possibility towards integrating a
human-centered design approach of many future artificial systems, which we foresee coming as
pervasive augmentation in our daily life, very soon.

8.4.1 Limitations and assumptions

The control concept that we use is based on the assumption that the reflex threshold parameters
are changed only once during the movement. However, especially for the slower movements,
it is likely that the human adapts these parameters more often (potentially at about 5-9 Hz,
(Gross et al., 2002)). In addition to that, for the reflex model, we assume that the human
targets a resting position at all time ()\1 = 0) and that the state at the target position (in
particular muscle fiber lengths) are known such that the muscle spindle sensitivity can be
tuned accordingly. Due to the chosen neuronal delay time of 50 ms, the model represents a
long-latency proprioceptive feedback (R2 response (Scott, 2016)) that reacts to both stretch
and shortening of the muscle. However, our formulation only includes the muscle-fiber-length-
and contraction-velocity-dependent contribution to the long-latency feedback while neglecting
other aspects. All considered movements have a duration that is longer than the reflex delay
threshold of long-latency reflexes, so in a holistic investigation, also feedback mechanisms with
longer time delay should be considered (e.g. visual feedback). This is of particular importance
when the investigation is focused on the late parts of the movement.

In a previous study (Stollenmaier et al., 2020b), we investigated the neuro-muscular response
to external perturbations using a musculoskeletal model of the arm in combination with the
same control concept as used here. The resulting trajectories were in good agreement with
results from human experiments. In this work, we transfer the same control concept to a full-
body model in a different scenario. Since there are no experimental data available for this
setting, we can not validate this control concept for the hip muscle in the considered scenario.
For this reason, it is difficult to choose adequate feedback gain parameters. The choice in
this contribution was therefore for a generic set of parameters. These parameters do affect
the magnitude of the influence of the feedback loop (Figure 8.6b), but compared to the other
parameters, their influence is small. Nonetheless, without validation of our model, we can not
make absolute statements about the influence of proprioceptive reflexes on the internal forces in
such a scenario. However, a comparison of the contribution for different velocities and cognitive
states allows for insights into the relevant processes that are not experimentally accessible.

In addition to the feedback parameters, also other model parameters and assumptions in-
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fluence the results. The choice of contact model between human and device and its model
parameters change the system’s behavior. Also, in the model, a multitude of muscles is rep-
resented by a smaller number of lumped substitute muscles (see Section 3.2.5) and the model
of the skeleton is reduced to a limited number of necessary degrees of freedom. This method
has the advantage that many cases can be investigated with little computing effort. However,
the results are sensitive to the parametrization of these substitute muscles. For example, the
maximum isometric force F™?* scales the resulting muscle force and thus both F™#* of the
muscle in consideration and of its antagonist influence the behavior.

Due to the complexity of the system, we restricted the analysis presented here to one muscle
(left hip extensor) at a fixed time. The result for the right hip extensor muscle is identical,
because of the system’s symmetry. Due to the evaluation at a fixed time, the body is in a
different mechanical state depending on the movement velocity. However, in comparison with
a time-based evaluation, this method has the advantage that the time-based controller is in the
same state for all data points.

For the considered scenario, the hip extensor muscle is stretched and thus loaded eccentrically.
The contraction dynamics are considered in the muscle model we use (Haeufle et al., 2014b), but
recent findings on the behavior of muscles under eccentric loading conditions (Tomalka et al.,
2017) as well as the possible role of short-range stiffness (De Groote et al., 2017; Nichols and
Houk, 1976), or the effect of transversal loading (Siebert et al., 2014) are not considered. These
new findings may influence the response originating from the muscles’ passive characteristics.
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9 | Transferring the control
parameters of a multibody
model to a finite element model

The hybrid equilibrium point control approach that we used in the chapters above has proven
to be efficient for predicting human movements in combination with a multibody musculoskele-
tal model. However, for certain applications, the use of finite element (FE) models is more
suitable. These applications include car crash simulations were the dynamics and deformation
of the soft tissues play a significant role due to the fast movements. Therefore, a transfer of the
same control approach to FE models would be beneficial. For the determination of the control
parameters, however, the optimization paradigms that were proposed for multibody models are
not feasible in finite element models due to the high computational cost of every simulation
run. Hence, in this chapter, we describe an approach to transferring control parameters that
were optimized for a multibody model to a finite element model.

Note that this chapter describes work in progress and parts of the content of this chapter have
been published in Proceedings in Applied Mathematics and Mechanics (PAMM) (Martynenko
et al., 2019).

9.1 Introduction

Finite element active human body models (FE aHBMs) are used for the design and testing of
vehicle safety systems as they allow for the analysis of an occupant’s voluntary motion during
different phases of crash simulation. Primarily, they are used for simulations of the pre-crash
phase of an accident where the influence of the active movements of occupants is significant.
Such models are capable of accounting for dynamic human behavior and reflexes by incorpo-
rating bio-inspired muscle controllers. For this forward-dynamic modeling of active behavior,
the stimulations of hundreds of muscles need to be determined for every time step before run-
ning the simulation. The determination of these muscle stimulations is, however, nontrivial
due to the highly nonlinear relationship between muscle stimulations and body motion and
the redundant assembly of the muscles. Tuning these parameters using an optimization algo-
rithm that requires multiple runs of the FE model is computationally expensive and requires
a tremendous amount of run time. As run time is an essential element in the research and
development process of a new vehicle, we instead propose a method to perform all calculations
that are required to determine the controller parameters on a reduced multibody model and to
then transfer these parameters to the fully deformable FE model.
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9.2 Methods

9.2.1 Musculoskeletal model

To demonstrate the applicability of the proposed approach, the right upper extremity from the
50th percentile male THUMS v.5 FE model (Iwamoto et al., 2015) was extracted, simplified
and transformed into a multibody model in LS-DYNA® (Figure 9.1). This multibody model
was then actuated by six lumped muscles modeled with an extended Hill-type material (Haeufle
et al., 2014a; Kleinbach et al., 2017) and activation dynamics as introduced by Hatze (1977).
The resulting arm model is very similar to the Arm26 model described in Section 3.2.4. There-
fore, the muscle parameters from Arm26 were used. However, unlike Arm26, the THUMS
model represents a 50th percentile male. Therefore, we scaled all length-dependent quantities
to the segment lengths of the THUMS model.

shoulder hand

forearm

upper arm

/

(a) Full FE model with (b) FE model with deformable (¢) Multibody model with rigid
soft tissue bones bones

Figure 9.1: The upper extremity model from the THUMS v.5 active human body
model (Iwamoto et al., 2015): transformation steps from the full finite
element model to a multibody model. (a) Isolated FE arm model with soft
tissues, (b) FE model with deformable bones consisting of various materials after
removing the soft tissues and (c¢) multibody model with bones made from rigid
material.

9.2.2 Hybrid equilibrium point controller

The same control approach as described in Section 3.3 was used to determine the muscle
stimulations. It is based on the hypothesis that voluntary movements are generated by switching
between stable equilibrium points. The stimulation u;(¢) for each muscle i is calculated as

U (t) = {u(,’pen (t) + ulglosed (t) }(1)

(2

1
k kq (:CE (9-1)
_ open P CE(; _ 8 _ ). v (6 —
_ {ul (t) + oF (195t = 9) = X)) + CF (i 5))}0,

Note that in comparison with the general formulation in Section 3.3, the desired contraction
velocity was set to A;(t) = 0 for all ¢ to model point-to-point movements between two EPs.
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The desired muscle fiber lengths \; are set to the muscle fiber lengths lZ-CE in the equilibrium

positions.

9.2.3 Determination of the control parameters

Optimization algorithms Using the multibody model, the open-loop muscle stimulations
for each equilibrium position (EP) can be optimized such that the net joint torques are equal
to zero, meaning the system is in stable equilibrium in this position. An optimal set of muscle
stimulations can then be determined by minimizing the sum of all muscle stimulations. Once
all control parameters are determined using the multibody model, they can be transferred to
the FE model with the goal to obtain the same equilibrium points.

Machine learning approaches An alternative to optimizing the muscle stimulations using
the aforementioned optimization paradigm is to use machine learning approaches as, for exam-
ple, reinforcement learning (Iwamoto et al., 2012). Additionally, previous work showed that an
approach based on a combination of neural networks and sequential quadratic programming
(SQP) can be used to learn the relationship between muscle stimulations and resulting equi-
librium positions (Driess et al., 2018). They used an arm model that was implemented in the
C/C++ multibody simulation code demoa that is very similar to Arm26 and found that the
dynamics of the musculoskeletal structure simplify the learning task if treated properly. As
part of a student project, the scalability of this neural network approach to the 50th percentile
model (Figure 9.1), to a model with two additional muscles and one additional degree of free-
dom and to a finite element model was explored (Endler, 2019). These investigations are part
of a manuscript that is being worked on at the moment.

9.3 First results and discussion

To investigate the transferability of the muscle stimulations optimized or learned for a multi-
body model to the FE model, three target positions were chosen on a horizontal line. Using
the multibody model in combination with a neural network, the muscle stimulations required
for the multibody model to reach these positions are optimized and then applied to the FE
model. In doing so, the comparability of these models and the influence of the soft tissue on
the movement can be assessed.

The results indicate that given the constant muscle stimuli, the finite element model reaches
stable equilibrium positions (Figure 9.2). However, the reached end positions differ between the
multibody and the FE model (Table 9.1). Also, the end positions in z-direction differ between
the movements to the three target points which should not be the case as positions on a
horizontal line are targeted (the different end position of the multibody model in z-direction for
the left position in comparison to the other two positions originates from an error in the neural
network). These results show that in the current state of the models, the control parameters
optimized or trained on the multibody model can not be used to reach the same positions with
the finite element model. Therefore, further adaptations of the multibody model to the more
complex finite element model are necessary. The differences might originate in differences in
joint modeling as the multibody model, for example, does not consider damping effects due
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9 Transferring the control parameters of a multibody model to a finite element model

to friction or tissue deformation. Also, the oscillations that have been observed in the first
simulation seconds of the FE model need to be addressed (Figure 9.2b).

‘ FE results, x [mm| FE results, z [mm]| ‘ MB prediction, x [mm]| MB prediction, z [mm)|

left 373.9665 -27.2872 330.5659 -29.7908
mid 403.3229 -60.0191 385.4500 -11.1599
right 421.2955 -72.3742 435.8158 -11.1910

Table 9.1: Actual positions that are reached by the FE arm model and predictions
by the multibody model for the three targeted positions (left, middle,
right). This table was taken from Endler (2019) with kind permission from the

author.
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Figure 9.2: Displacement from the initial position of the FE model that uses mus-
cle stimulations that were optimized using the multibody model. Three
positions are targeted (left, middle, right). These figures were taken from Endler
(2019) with kind permission from the author.
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10.1 Summary of the results

The goal of the projects described in this thesis was to use neuro-musculoskeletal models as
a tool to study concepts of biological motor control and the role of the muscles therein. In
Chapter 4, we showed that our musculoskeletal arm model is capable of validly predicting the
response to both static and dynamic mechanical perturbations with one set of basic parameters
(Figures 4.5 and 4.7). The considered single-joint point-to-point movement was controlled by
a bio-inspired hybrid equilibrium point controller that considers muscle-tendon based stretch
reflexes. This implemented feedback mechanism, however, had only little influence as the
mechanical zero-time delay response elicited by the muscle characteristics compensated for the
perturbations to a large extend (Figures 4.6 and 4.8). While being a useful tool to test motor
control theories, this model provides the necessary level of detail to allow for the investigation of
internal forces, including muscle-bone contact forces and joint loadings (Figure 4.9). Therefore,
we consider this model to be a good starting point for further investigations of research questions
where motor control and ergonomics issues overlap, for example for the development of assistive
devices.

The study described in Chapter 5 took a first step in this direction. It used the same
arm model and control approach as in the study described above, however, in this case, two-
degree-of-freedom movements were investigated. A neuronal perturbation was introduced in
the control scheme, leading to an overshooting behavior (hypermetria) as it can be observed
in the movements of patients with cerebellar ataxia or other neurological movement disorders
(Figure 5.3). This perturbation is implemented as a mismatch between the motor command and
the initial conditions. In the same study, we simulated an assistive torque, as it could be applied
by a simple wearable assistive device, to compensate for the overshooting behavior. Our results
indicate that simple mechanical or low-level controlled devices might be sufficient to reduce
unwanted hypermetria (Figures 5.4 and 5.5). Such simple devices might be relevant in particular
in the early phase of clinical symptoms where the movement coordination may be improved
by relatively small assistive forces. We performed this simulation using our musculoskeletal
model and an equivalent torque-driven arm model. We found that the predicted torques and
powers that are necessary to compensate for the overshoot can differ by a factor of more than
10 between the musculoskeletal model and the torque-driven model. Therefore, the magnitude
of torque and power required to reduce hypermetria by simple wearable assistive devices may
be significantly underestimated if muscle-tendon characteristics are not considered in the model
that is used for the design of the device.

Both the results in Chapter 4 (Figures 4.6 and 4.8) and Chapter 5 (Figures 5.4 and 5.5)
indicated that the musculoskeletal structure and thus the morphology majorly contribute to
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the resulting movement. Therefore, in Chapter 6, the concept of quantifying morphological
computation allowed us to characterize this contribution using an information entropy-based
approach. We applied this concept on different levels on the neuronal control hierarchy for
goal-directed and oscillatory arm movements with two degrees of freedom. We found that
morphological computation is highest for the most central level of modeled control hierarchy
(movement initiation and timing) and decreases for the lower levels (Figure 6.5). These re-
sults indicate that the lower levels of control (including the model of muscle and activation
dynamics) make important contributions to the control. In particular, the muscle stimulation
input exploits the muscles’ biochemical and biophysical characteristics to generate smooth dy-
namic movements. Hence, these results confirm our observations in the other studies, where a
simple control signal that contains only little information was sufficient to generate a smooth
movement and the muscle characteristics stabilized the movement in the presence of external
perturbations.

As we were interested in the further investigation and testing of our control concept, in Chap-
ter 7, we developed a framework that combines three methods that all have their assets and
drawbacks: measuring kinematic data in human experiments and reproducing these movements
in both numeric computer simulations and a biologically inspired robotic system. We proposed
a mathematical model and a biorobot that include the necessary level of physiological detail
to investigate control concepts that explicitly rely on the muscular non-linear viscoelastic char-
acteristics. Our results showed that the same bio-inspired hybrid equilibrium point controller
can be used to reproduce goal-directed human movements in both the robot and the computer
simulations (Figure 7.5). Only three equilibrium positions were necessary to reproduce the
dynamic human movement in the shoulder and elbow joints. This successful transfer to the
robotic system shows that our controller is robust against changes in the system dynamics,
friction, and natural variance and can be well-performing in real-world physical conditions.

In Chapter 8, we applied the same control concept to a more complex, whole-body mus-
culoskeletal model with much more muscles and degrees of freedom. As in the other studies,
we were interested in the contribution of the musculoskeletal system to the control. Here, we
looked at the contribution of the stretch reflex to the muscle forces during an active external
repositioning of the hip joint for a large range of movement velocities and different cognitive
states. We found that in the presented setting, the predicted relative force contribution of
the feedback mechanism is not negligible, especially for high movement velocities (Figure 8.1).
Also, we found that the muscular force increases when modeling feedback representing an un-
prepared cognitive state and decreases for the prepared case. So, the cognitive state might have
an influence on the muscle-force related injury risk.

Applying our control model to a finite element (FE) model, in Chapter 9, we discussed
the possibility to use control parameters that were optimized for a multibody model for the
control of a more complex FE model. First results indicated that our models were not similar
enough for a direct transfer of the control parameters (Table 9.1). However, the emergence
of equilibrium positions in the FE model (Figure 9.2) promises that our control approach is
applicable to the FE model and it might be possible to transfer the control parameters if the
multibody model is further adapted to the FE model.

In summary, our results show that the biochemical and biophysical properties of the mus-
culoskeletal system significantly contribute to the resulting movements as the muscle-tendon
structures compensate for external perturbations to a large extent, stabilizing the movement.
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Additionally, a piecewise constant feed-forward signal that contains only little information is
sufficient to generate information-rich smooth movement trajectories. This observation has
been confirmed when we quantified this contribution using the concept of quantifying morpho-
logical computation. Therefore, it is important to take into account the intrinsic properties
of the muscles when modeling human movements, in particular in the presence of external
perturbations as, for example, for the design of technical assistive devices. Nevertheless, not
only the open-loop muscle stimulations determine the movement. While including a model of
proprioceptive feedback had only little influence for small perturbations, it significantly affected
the results for high externally imposed movement velocities.

10.2 Future work and first steps in these directions

In my point of view, future work following this project would include further steps in the
direction of reproducing and understanding the impaired movements of patients with neurode-
generative movement disorders or other pathological conditions. To this end, it is necessary to
reproduce these impaired movements in computer simulations. A first step could be to try to
use the existing optimization paradigms to optimize the control parameters in order to repro-
duce the impaired trajectories. The resulting parameters for healthy and diseased movements
could then be compared to try to draw conclusions about possible causes for dysmetria or other
impairments. The necessary next step would then be to find a systematic way to perturb the
neuronal controller to reproduce the impaired movements and also the variability observed in
many patients’ movements (Topka et al., 1998a). We tested one approach to this in Chapter 5
where we generated hypermetria in the computer simulation by introducing a mismatch be-
tween the motor command and the initial conditions. This mismatch can be interpreted as a
misestimation of the current state of the system by the neurological structures that are respon-
sible for the generation of the motor command. In this study, the initial co-contraction was
increased after the optimization of the control parameters, leading to a discrepancy between
the motor command and the actual conditions. Testing other kinds of perturbations of the
initial conditions was the task in a student project that I co-supervised (Rist, 2020). Both an
increase and decrease of the initial muscular co-contraction and of a simulated weight in the
hand were tested, representing a misestimation of the muscle co-contraction at the beginning of
the movement or lifting an unknown weight with the hand. Since these settings led to impaired
movements similar to observations in patients (Figure 10.1), it could be the basis of further
investigations of the causes of their movement disorders.

One hypothesis for the physiological processes involved here would be that the cerebellum
finetunes the descending motor command based on its current estimation of the system’s state
(e.g., initial muscle co-contraction, the weight of the arm and manipulated objects, fatigue,
interaction with the environment). Therefore, a false estimation of the state would lead to an
impaired motor command and, consequently, an impaired movement. Since the system’s state
changes constantly, this misestimation might also be the origin of the observed variability. As
mentioned before, internal models in the cerebellum might be involved in the generation of the
motor commands, for example for the selection and timing of EPs (see Section 3.3). Herein, the
choice of the internal model that is appropriate for the current setting might be based on an
estimate of the current state, leading to a flawed selection of motor commands if the estimate
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Figure 10.1: Joint angle trajectories for different perturbations of the initial condi-
tions after optimizing the control parameters. Both (a) increasing the hand
mass, representing lifting an unknown weight, and (b) increasing the initial muscle
co-contraction leads to an overshooting behavior. This dysmetria is measured for
a large range of perturbations in (c¢) and (d), showing that there seems to be an
asymptotic behavior for large changes. The control parameters for all of these
perturbations were optimized for a co-contraction level of 0.1 with 0 kg weight in
the hand. These figures were taken and adapted from the student thesis of Ilka
Rist (Rist, 2020) with kind permission from the author.

is not correct (see Figure 10.2).

Another aspect that can be observed in humans is the adaptation to perturbations (Albert
and Shadmehr, 2017; Shadmehr et al., 2010; Yang et al., 2007). Therefore, when modeling
the reaction to external perturbations or unforeseen physical conditions (e.g., the weight of a
manipulated object), these adaptation processes need to be taken into account, in particular,
when longer-term effects are studied. For example, an iterative optimization approach could
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be used to represent adaptation in a mathematical model. These adaptation processes are of
particular interest for the investigation of neurological disorders, as either the adaptation itself
or the signals it is based on might be disturbed in the patients’ nervous system (Maschke et al.,
2004). A flawed adaptation process might be another reason for the variability that is observed
in patients.

Besides investigating possible origins and pathological processes that are involved in move-
ment disorders, another important advance to help the patients is the development of technical
assistive devices for the compensation of their disorders or rehabilitation devices that can help
them to re-gain or improve physical or cognitive function (Siciliano and Khatib, 2016). For
example, our first tests in computer simulation showed that simple mechanical devices might
be capable of reducing hypermetria to an extent that is present in unimpaired movements
(Chapter 5). Implementing such a device as a prototype in the real-world and testing it in ex-
perimental studies with humans might give further insights into the usability of such a simple
appliance. For example, simple springs or dampers could be tested or a corrective torque might
be applied by an electric motor based on the measured initial velocity.

For all of these investigations, it would be helpful to extend the existing arm model to more
degrees of freedom, such that more movements that are relevant in everyday life can be repro-
duced. Alternatively, one could resort to other existing models and adapt them such that they
fulfill the criteria that we pose on our models. In addition, the physiological accuracy of the
control model could be improved. In its current formulation, our control model includes pro-
prioceptive feedback based on the assumption that the muscle spindles provide direct feedback
on the muscle fiber lengths and contraction velocities. However, as our model reacts to both
stretch and shortening of the muscle fibers, it does not seem to be an accurate representation of
the natural muscle spindle feedback which is only sensitive to the muscle’s local stretch (Kurtzer
et al., 2014). Additionally, recent findings indicate that the muscle spindle afferents are rather
force-dependent than directly encoding muscle fiber lengths and velocities (Blum et al., 2017).
Furthermore, more detailed representations of the underlying processes in muscle spindle feed-
back (Mileusnic et al., 2006) would, for example, allow for the analysis of a-y co-activation
(Lan and Zhu, 2007; Lan and He, 2012; Li et al., 2015). In addition to that, our models neglect
other types of proprioceptive feedback, for example from the tension-sensitive Golgi tendon
organs (Kistemaker et al., 2013; Mileusnic and Loeb, 2006). Another critical assumption in the
control model is the neuronal time delay. The choice of this time delay influences the inter-
pretation of the feedback mechanism on the neuronal control hierarchy. We tested both short-
and long-latency versions of the implemented stretch reflex. The short-latency implementa-
tion (25ms delay) represents a simplified model of the spinal, mono-synaptic muscle spindle
reflex (Pruszynski and Scott, 2012; Weiler et al., 2019). However, as mentioned above, our
model does not accurately reflect the natural muscle spindle feedback. Therefore, modeling a
long-latency reflex (50 ms delay) that includes supraspinal influences seemed more appropriate.
However, we consider only the muscle-fiber-length- and contraction-velocity-dependent part of
the long-latency feedback and neglect other aspects and longer-latency feedback mechanisms
as, for example, visual feedback. Including visual feedback, the impaired eye-hand coordination
that was observed in patients with cerebellar ataxia (Hemmers, 2018) could be investigated. In
a student project, our arm model was used with an open-loop controller in combination with
a model of visual feedback (Inoue, 2019). With six EPs, it was possible to simulate a scenario
where a ball is thrown and caught in the sagittal plane. Also, the influence of motor noise was

143



10 Conclusions and future work

Westimato(0)  Inverse model for

westimate(t) Welght westimate(t)

. ag = a(t=0)
Qo Qend Optimal trajectory, A(t) E
e.g, minimal jerk |
; current estimated E
timing & E
angles of EPs uPn(t) Hybrid low-level (1) Musculoskeletal ﬂ[
cont;roller system ICB (1)

Qeestimate, 1 (t) error

— B 4
FM 1
(lestimate,2 (t) error

— B 4
| FM 2
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of movement in our control model formulation, shown with the exam-
ple of lifting an unknown weight on a desired trajectory. Based on the
information about the current position «g, the desired end position aenq and an
initial estimate of the weight westimate(0), an inverse model is selected. This inverse
model is possibly located in the cerebellum. The outputs of this inverse model are
desired EP angles and the timing of these EPs. Based on this information, mus-
cle stimulation signals over time u°P®"(¢) can be composed. Using the starting
and end position ap and g, an optimal trajectory is determined as part of the
movement planning and is used as reference values A(t) in the feedback part of
the hybrid low-level controller. At the same time, various forward models (FMs)
use an efference copy of the open-loop motor command to predict the movement
for different weights. This parallel execution of several internal models is inspired
by the work of Haruno et al. (2001); Wolpert and Kawato (1998). Based on the
errors between these estimated trajectories crestimate(t) and the actual trajectory
a(t) and the probability for each forward model to be correct, an updated guess
for the estimated weight westimate(t) is used to update the choice of inverse model.
Note that this figure is a visualization of our thoughts with the purpose of being
a possible basis for future work.



10.3 My conclusion

investigated with the result that the catching performance decreased with higher noise levels.
Based on this work, both the inclusion of visual feedback and motor noise could be further
investigated, also for different kinds of movements and in combination with other feedback
mechanisms.

In their current state, the aforementioned musculoskeletal and control models are based
on assumptions and have their limitations that are discussed in detail in the chapters above.
In addition to the limitations named in the last section, for example, the so far neglected
dynamics of soft tissues could be included in form of wobbling masses (Gruber et al., 1998)
as they have a damping effect for high velocities (Denoth et al., 1985; Schmitt and Giinther,
2011) and, therefore, without them unphysiologically high forces might occur. Also, multi-scale
models that include more details of the microscopic processes in the relevant neuronal structures
would be preferable (Elias et al., 2018; Kandel et al., 2013). However, computer simulations
using mathematical models are always a trade-off between modeling and computational effort
and scientific benefit. Reducing the models to the most relevant processes can even have the
advantage that it is easier to investigate the causal relations between the structures. Also, not
all of the limitations of the models limit the conclusions one can draw from the studies.

For the determination of motor commands for a large range of desired movements, an alter-
native to the computationally expensive optimization algorithms that we used above could be
to optimize the control parameters only for selected trajectories and then “interpolate” move-
ments in between (or even “extrapolate” outlying movements) using a support vector regression
model or a similar machine learning approach. First tests of applying support vector regres-
sion in the prediction of motor commands were performed in form of a student project for
one-degree-of-freedom arm movements (Li, 2019). The successful prediction of the timing and
amplitude of motor commands for some unlearned movements (different start/end position or
different weight of the arm) based on previously optimized, learned movements indicates that
this approach could be used as an efficient alternative to the optimization paradigms. One could
even hypothesize that an internal model in the nervous system might use a similar approach.
An alternative approach to determining muscle stimulations for desired movements (or at least
a first guess) might be to approximate the inverse of a multibody musculoskeletal model by
approximating the inverse of single functional units, for example the activation dynamics or
parts of the muscle model. The feasibility of this approach, however, would need to be tested.

10.3 My conclusion

I consider the work that is presented in this thesis an important step towards the comprehen-
sion of the processes underlying the generation of healthy and pathologically impaired human
movements. Our results showed that it is important to take into account the properties of the
musculoskeletal system when modeling human movement as they significantly contribute to
the movement. Therefore, computer simulations using a combination of a physiologically well-
founded biomechanical and biochemical model of the musculoskeletal system with biologically
inspired concepts of motor control have proven to be a useful tool. Complemented with human
experiments and biorobotic systems, this approach promises to allow for the formulation and
investigation of all sorts of hypotheses, hopefully leading to new insights from which people
suffering from motor disorders can benefit.
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Appendix: Supplementary results and
additional information

A1 Model parameters of Arm26

Note that the following tables were published /submitted as electronic supplementary material
accompanying Haeufle et al. (2020a); Stollenmaier et al. (2020b,c,d).

Length [m] d[m] Mass [kg] I [kgm?] I with exoskeleton [kgms?]

Upper arm 0.335 0.146 2.10 0.024 0.024
Lower arm 0.263 0.179 1.65 0.025 0.1118

Table Al.1: Mechanical parameters of the skeletal structure (Kistemaker et al.
(2006)). With d: distance from proximal joint to center of mass and I: mo-
ment of inertia with respect to the center of mass. Last column: when comparing
to experiments, the inertia properties of the lower arm can be adapted according
to an arm that is attached to an exoskeleton robot that was used by Bhanpuri
et al. (2014).

Parameter Unit  Value Source Description

CE AWdes [] 0.45 similar to Bayer et al. width of normalized bell curve
(2017); Kistemaker in descending branch, adapted
et al. (2006) to match observed force-length

curves
AWase [ ] 0.45 similar to Bayer et al. width of normalized bell curve
(2017); Kistemaker in ascending branch, adapted
et al. (2006) to match observed force-length

curve
OB des [] 1.5 Mérl et al. (2012) exponent for descending branch
yCBase [] 3.0 Morl et al. (2012) exponent for ascending branch
Arel0 [] 0.2 Giinther (1997) parameter for contraction dy-
namics: maximum value of A
Breto [1/s] 2.0 Giinther (1997) parameter for contraction dy-

namics: maximum value of B!
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§ece [] 2.0 van Soest et al. (1993a) relation between F'(v) slopes at
CE
v =0
Fece [] 1.5 van Soest et al. (1993a) factor by which the force can
exceed F'°™ for large eccentric
velocities
PEE LPEEO [] 0.95 Giinther (1997) rest length of PEE normalized
to optimal length of CE
yPEE [] 2.5 Morl et al. (2012) exponent of FFEE
FPEE [] 2.0 Morl et al. (2012) force of PEE if I°F is stretched
to ATVdes
SDE DSPE [] 0.3 Morl et al. (2012) dimensionless factor to scale
dSDE,max
RSPE [] 0.01 Morl et al. (2012) minimum value of d°PF (at
FMTU = 0), normalized to
dSDE,;max
SEE AySEEnl [] 0.0425 Morl et al. (2012) relative stretch at non-linear
linear transition
AUSEE! [] 0.017 Morl et al. (2012) relative additional stretch in

the linear part providing a force
increase of AFSEED

AFSEED [N] 0.4 Fmax both force at the transition and

force increase in the linear part
Hatze m [1/s] 11.3 Kistemaker et al. (2006) time constant for the activation

dynamics

c [mol/l] 1.37e-4 Kistemaker et al. (2006) constant for the activation dy-
namics

n [1/mol] 5.27e4 Kistemaker et al. (2006) constant for the activation dy-
namics

k [] 2.9 Kistemaker et al. (2006) constant for the activation dy-
namics

) [] 0.005 Giinther (1997) resting active state for all acti-
vated muscle fibers

v [ ] 3 Kistemaker et al. (2006) constant for the activation dy-
namics

Table A1.2: Muscle non-specific actuation parameters for the muscles and the acti-
vation dynamics.
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max [N] lCE,opt [Hl] ZSEE,O [m]

Monarticular Elbow Flexion (MEF)

Monarticular Elbow Extension (MEE)

Monoarticular Shoulder Anteversion (MSA)

Monoarticular Shoulder Retroversion (MSR)

Biarticular Elbow Flexion Shoulder Anteversion (BEFSA)
Biarticular Elbow Extension Shoulder Retroversion (BEESR)

1420 0.092 0.182
1550 0.093 0.187
838 0.134 0.039
1207 0.140 0.066
414 0.151 0.245
603 0.152 0.260

Table Al1.3: Muscle-specific actuation parameters (Kistemaker et al. (2006) and
Kistemaker et al. (2013)). With F™®: maximum isometric force, [CFPt:

optimal length of the contractile element,
element. The lengths of

ISEED rest length of the serial elastic

[CE-opt were adapted to match the muscle path

and [SEE0

routed through the ellipses in order to allow for a big range of motion. For this
parameter adaptation method see Suissa (2017).

Mechanics parameters defining the geometry and the mechanical properties

% Gravity
PM.Gravity = [0 0 —9.80665]

O %69%%%%%%%%%%%%%%%%%%
s %6%6%6% %% %% %% %% 6% %%

%

% Segment parameters %
96%6%%°%%6%% %6 %6%6% %6 %6% %6 %6 %% 6%
M.SegShoulder.p_Bone_CoM
M.SegShoulder.p_joint_distal

Tz

PM.SegShoulder.m_Bone
PM.SegShoulder.MomInert_Bone
PM.SegShoulder.ProdInert_Bone
PM.SegUparm.p_Bone_CoM
PM.SegUparm.p_joint_distal

PM.SegUparm.m_Bone
PM.SegUparm.MomInert_Bone
PM.SegUparm.ProdInert_Bone
PM.SegForearm.p_Bone_CoM
PM.SegForearm.p_joint_distal

PM.SegForearm.m_Bone
PM.SegForearm.MomInert_Bone
PM.SegForearm.ProdInert_Bone
PM. SegHand . p_Bone_CoM
PM.SegHand.p_fingertip

PM.SegHand.m_Bone
PM.SegHand.MomInert_Bone
PM.SegHand.ProdInert_Bone

o°

eflection parameters %

PI

=

.Deflection.biart_flexor.r0
body %Parent: Shoulder
PM.Deflection.biart_flexor.rI

PM.Deflection.biart_flexor.Ellipsel.r
relative to the parent body %Parent:Uparm

[0 0 0]; %[m] position of Bone CoM relative to proximal joint
[0 —.1816 0]; %[m] position of distal joint relative to CoM

16.895560; %[kg] m

[0.096243 0.0811621 0.159251]; %[kg+m~2] Diagonal elements of the inertia tensor

[0 0 0]; %[kg*m"2] Non—diagonal elements of the intertia tensor in the order [I_yz I_zx I_xy]
[0 0 0.146]*(—1); %[m] position of Bone CoM relative to proximal joint, source: Kistemaker2007
[0 0 —0.189]; %[m] position of distal joint relative to CoM

2.10; %[kg] mass, source: Kistemaker2007

[0.0154388 0.024 0.00278951]; %[kg*m~2] Diagonal elements of the inertia tensor

[0 0 0]; %[kg*m~2] Non—diagonal elements of the intertia tensor in the order [I_yz I_zx I_xy]
[0 0 0.179]%(—1); %[m] position of Bone CoM relative to proximal joint, source: Kistemaker2007
[0 6 —0.084]; %[m] position of distal joint relative to CoM

1.65; %[kg] mass, source: Kistemaker2007

[0.009824518 0.025 0.001500813]; %[kg*m~2] Diagonal elements of the inertia tensor

[0 0 0]; %[kg*m~2] Non—diagonal elements of the intertia tensor in the order [I_yz I_zx I_xy]
[0 0 0.07]%(—1); %[m] position of Bone CoM relative to proximal joint

[0 0 —0.084]; %[m] position of distal joint relative to CoM

%[kg*m"2] Diagonal elements of the inertia tensor
%[kg*m~2] Non—diagonal elements of the intertia tensor in the order [I_yz I zx I xy]

= [0.03 —0.1816 0.02]; % Origin of the muscle relative to the center of mass of the parent

[0.012, 0.0000, 0.12]; % Insertion of the muscle %Parent: Forearm
[0.018, 0.0000, —0.1425]; % Coordinates of the reference point of deflection ellipse 1

PM.
PM.

Deflection.biart_flexor.Ellipsel.G
Deflection.biart_flexor.Ellipsel.H

[0 1 0]%0.0001; % Length of the half—axis of ellipse 1 in y direction
[0 0 1]%0.0001; % % Length of the half—axis of ellipse 1 in z direction

PM.Deflection.biart_flexor.Ellipsel.angle [0,90,0]; % Angle [deg] of rotation of the ellipse triade around y—axis to orient the
ellipse correctly
PM.Deflection.biart_flexor.Ellipse2.r = [0.012, 0.0000, 0.125]; %Parent: Forearm
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o

3

Shoulder_Retroversion.r0

Shoulder_Retroversion.
Shoulder_Retroversion.
Shoulder_Retroversion.
Shoulder_Retroversion
Shoulder_Retroversion.
Shoulder_Retroversion.
Shoulder_Retroversion
Shoulder_Retroversion.
Shoulder_Retroversion.

Elbow_flexor.
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Ellipsel.
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angle

ro

ri

Ellipsel.r
Ellipsel.G
Ellipsel.H
Ellipsel.angle
Ellipse2.r
Ellipse2.G
Ellipse2.H
Ellipse2.angle

[0 1 0]%0.0001;
[0 0 1]%0.0001;
[0,0,0];

= [—0.02 —0.1816 —0.03]; %Parent: Shoulder

[—0.0225, 0.0000, 0.1925]; %Parent: Forearm
[—0.0225, 0.0000, —0.165]; %Parent:Uparm

[0 1 0]%0.0001;

[0 0 1]1%0.00001;

[6,—90,0];

[—0.0, 0.0000, 0.1975]; %Parent:
[0 1 0]%0.0001;

[0 06 1]%0.03;

[06,—60,0];

Forearm

[0.00, —0.1816, 0.05]; %Parent: Shoulder
[0.01, 0.0000, 0.045]; <%Parent:Uparm
[0.025, —0.1816, 0.04]; %Parent: Shoulder
[6 1 0]%0.0001;

[0 6 1]%0.0001;
[0,0,0];

[0.62, 0.0000, 0.1];
[0 1 0]%0.0001;

[0 0 1]1%0.0001;
[0,90,0];

%Parent:Uparm

[—0.035, —0.1816, 0.045]; %Parent: Shoulder
[—0.01, 0.0000, 0.045]; %Parent:Uparm
[—0.04, —0.1816, —0.01]; %Parent: Shoulder
[0 1 0]%0.0001;
[0 0 1]%0.0001;
[0,0,0];
[—0.02, 0.0000,
[0 1 0]%0.0001;
[0 6 1]%0.0001;
[6,90,0];

0.1]; %Parent:Uparm

= [0.01, 0.0000, 0.038]; %Parent:Uparm

[0.01, 0.0000, 0.12]; %Parent: Forearm
[0.0, 0.0000, —0.132]; %Parent:Uparm
[0 1 0]%0.0001;

[0 6 1]%0.005;

[0,90,0];

[0.01, 0.0000, 0.135]; %Parent:
[0 1 0]%0.0001;

[0 0 1]%0.003;

[0,90,0];

Forearm

[—0.022, 0.0000, 0.0605]; %Parent:Uparm
[—0.0225, 0.0000, 0.1925]; %Parent: Forearm
[—0.0225, 0.0000, —0.165]; %Parent:Uparm

[0 1 0]%0.0001;

[0 0 1]%0.00005;

[0,—90,0];

[—0.0, 0.0000, 0.1975]; %Parent:
[6 1 0]%0.0001;

[0 0 1]%0.03;

[0,—60,0];

Forearm
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A2 Model parameters of allmin

Note that the following tables were published as electronic supplementary material accompa-
nying Stollenmaier et al. (2020a). See this reference for the list of authors.

Name Type Movement RoM |[°]
Lumbar spine Universal left/right [—30...30]
Lumbar spine Universal flexion/extension [0...30]
Cervival spine  Universal left/right [—30...30]
Cervival spine Universal flexion/extension [—30...30]
Shoulder (Right) Universal abduction/adduction [—10...60]
Shoulder (Right) Universal flexion/extension [—100...10]
Ellbow (Right)  Revolute flexion/extension [—120...10]
Wrist (Right) Revolute flexion/extension [0...0]
Shoulder (Left)  Universal abduction/adduction [—10...60]
Shoulder (Left)  Universal flexion/extension [—100...10]
Ellbow (Left) Revolute flexion/extension [—120...10]
Wrist (Left) Revolute flexion/extension [0...0]

Hip (Right) Universal flexion/extension [—120--- — 10]
Hip (Right) Universal abduction/adduction [—10...70]
Knee (Right) Revolute flexion/extension [—1...120]
Ankle (Right) Revolute flexion/extension [—20...40]
Hip (Left) Universal flexion/extension [—120...10]
Hip (Left) Universal abduction/adduction [—10...70]
Knee (Left) Revolute flexion/extension [—1...120]
Ankle (Left) Revolute flexion/extension [—20...40]

Table A2.1: List of all joints included in the model.

Parameter Unit  Value Source Description
CE AWydes [ 0.45 similar to Bayer et al. width of normalized bell curve
(2017); Kistemaker in descending branch, adapted
et al. (2006) to match observed force-length

curves

OB des [ 1.5 Morl et al. (2012) exponent for descending branch
yCEasc [ 3.0 Morl et al. (2012) exponent for ascending branch
Arel0 [ 0.2 Giinther (1997) parameter for contraction dy-
namics: maximum value of A™!
Breto [1/s] 2.0 Giinther (1997) parameter for contraction dy-
namics: maximum value of B!
geee [ 2.0 van Soest et al. (1993a) relation between F'(v) slopes at

vCE =0

175



Appendix: Supplementary results and additional information

Grece [ 1.5 van Soest et al. (1993a) factor by which the force can
exceed F5°™ for large eccentric
velocities

PEE LTPEED [ 0.95 Giinther (1997) rest length of PEE normalized
to optimal length of CE

yPEE [ 2.5 Morl et al. (2012) exponent of FFEE

FPEE [ 2.0 Morl et al. (2012) force of PEE if I®F is stretched
to ATydes

. orl et al. 1mensionless factor to scale
SDE DBSDE 0.3 Mérl et al. (2012 di ionless f 1
dSDE,max
. orl et al. minimum value o at

RSDPE 0.01 Mérl et al. (2012 ini lue of d5PE
FMTU = 0), normalized to
dSDE,maX

’ . orl et al. relative stretch at non-linear
SEE AUSEEnl 0.0425 Morl et al. (2012 lati h li
linear transition

AUSEE! [] 0.017 Morl et al. (2012) relative additional stretch in

the linear part providing a force

increase of AFSEED
AFSEED [N] 0.4 Frmax both force at the transition and
force increase in the linear part

activation My [1/s] 11.3 Kistemaker et al. (2006) time constant for the activation
dynamics dynamics
Ve [mol/l] 1.37e-4 Kistemaker et al. (2006) constant for the activation dy-
namics
00 [I/mol] 5.27e4 Kistemaker et al. (2006) constant for the activation dy-
namics
ap [] 0.005 Giinther (1997) resting active state for all acti-
vated muscle fibers
v [ 3 Kistemaker et al. (2006) constant for the activation dy-
namics

Table A2.5: Muscle non-specific actuation parameters for the muscles and the acti-
vation dynamics.
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Name Ro [m] Parent Rpr1 [m] Parent Rpro [m] Parent 7 Ry [m] Parent
LSE —0.0283 0.0000 0.1082 Pelvis | —0.0399 0.0000 0.1101 Pelvis | —0.0416 0.0000—0.1310 Spine —0.0315 0.0000—0.1288 Spine
LSF 0.0181 0.0000 0.1006 Pelvis | 0.0878 0.0000 0.0891 Pelvis | 0.0693 0.0000—0.1059 Spine 0.0089 0.0000—0.1196 Spine
LSSBL —0.0051 0.0500 0.1044 Pelvis | —0.0051 0.0500 0.1044 Pelvis | —0.0113 0.0500—0.1242 Spine —0.0113 0.0500—0.1242 Spine
LSSBR —0.0051—-0.0500 0.1044 Pelvis | —0.0051—0.0500 0.1044 Pelvis | —0.0113—0.0500—0.1242 Spine —0.0113—-0.0500—0.1242 Spine
CSE —0.0544 0.0000 0.1990 Spine | —0.0544 0.0000 0.1990 Spine |—0.0560 0.0000—0.0701 Head —0.0560 0.0000—0.0701 Head
CSF 0.0427 0.0000 0.1752 Spine | 0.0427 0.0000 0.1752 Spine | 0.0436 0.0000—0.0796 Head 0.0436 0.0000—0.0796 Head
CSSBL —0.0059 0.0500 0.1871 Spine | —0.0059 0.0500 0.1871 Spine | —0.0062 0.0500—0.0748 Head —0.0062 0.0500—0.0748 Head
CSSBR —0.0059—-0.0500 0.1871 Spine | —0.0059—0.0500 0.1871 Spine |—0.0062—0.0500—0.0748 Head —0.0062 —0.0500—0.0748 Head
HE (1/r) |—0.0750£0.0796 0.0253 Pelvis | —0.075040.0896 —0.0947 Pelvis | —0.0750F0.0188 0.1209 Thigh | —0.020050.0088 0.0309 Thigh
HF (1/r) 0.0650+0.0396 0.1008 Pelvis | 0.075040.0396 0.0208 Pelvis | 0.0150F0.0188 0.1011 Thigh 0.0150F0.0188 0.0200 Thigh
HAbd (1/r)| —0.0250+£0.1200 0.0500 Pelvis | 0.0000£0.1519—0.0300 Pelvis | —0.03004+0.0400 0.0354 Thigh | —0.0200+0.0300 0.0050 Thigh
HAdd (1/r)| 0.0000 0.0000 0.0000 Pelvis | —0.010040.0100—0.1000 Pelvis | —0.0050F0.0351 0.0902 Thigh 0.0000F0.0201 0.0102 Thigh
KF (1/r) —0.0500 0.0000 0.0000 Thigh | —0.0500 0.0000—0.1075 Thigh | —0.0594 0.0000 0.1060 Shank |—0.0297 0.0000 0.1000 Shank
KE (1/r) 0.0400 0.0000 0.0000 Thigh | 0.0299 0.0000 0.2527 Thigh | 0.0300 0.0000 0.0500 Shank 0.0300 0.0000 0.0500 Shank
FE (1/r) |—0.0500 0.0000—0.0250 Shank | —0.0500 0.0000—0.1750 Shank | —0.1250 0.0000 0.0500 Foot —0.1250 0.0000 0.0500 Foot
FF (1/r) 0.0300 0.0000—0.0250 Shank | 0.0300 0.0000—0.1750 Shank | 0.0300 0.0000 0.0500 Foot 0.0300 0.0000 0.0500 Foot
SE (I/r) —0.0688+0.1816 0.1128 Spine | —0.0500 0.0000 0.1250 Uparm|—0.0172 0.0000 0.0000 Uparm |—0.0172 0.0000 0.0000 Uparm
SF (1/r) 0.0216+0.1816 0.1387 Spine | 0.0216+0.1816 0.1387 Spine | 0.0172 0.0000 0.0000 Uparm | 0.0172 0.0000 0.0000 Uparm
SAbd (1/r)| —0.0263+£0.2422 0.1353 Spine | —0.0263+0.2422 0.1353 Spine 0.0000+0.0172 0.0000 Uparm 0.0000+0.0172 0.0000 Uparm
SAdd (1/r) | —=0.0236 0.0000 0.1257 Spine 0.00734+0.1250 0.1033 Spine 0.0000F0.0400 0.1250 Uparm 0.0000F0.0172 0.0000 Uparm
EF (1/r) 0.0246 0.0000 0.0000 Uparm| 0.0300 0.0000—0.0500 Uparm| 0.0300 0.0000 0.0136 Forearm| 0.0238 0.0000—0.1000 Forearm
EE (I/r) —0.0246 0.0000 0.0000 Uparm| —0.0493 0.0000—0.1603 Uparm| —0.0476 0.0000 0.1002 Forearm|—0.0238 0.0000 0.0000 Forearm
Table A2.3: Muscle routing parameters. Origin Rp, Deflection Point 1 Rpry and 2 Rppe and Insertion Rj relative to their

parent body. All numbers in this table are rounded to four decimal digits. Muscle names: EF, EE, Foot Flexion (FF),
Foot Extension (FE), Hip Abduction (HAbd), Hip Adduction (HAdd), Hip Flexion (HF), Hip Extension (HE),
Cervical Spine Flexion (CSF), Cervical Spine Side Bend Left (CSSBL), Cervical Spine Side Bend Right (CSSBR),
Cervical Spine Extension (CSE), Knee Flexion (KF), Knee Extension (KE), Lumbar Spine Flexion (LSF), Lumbar
Spine Side Bend Left (LSSBL), Lumbar Spine Side Bend Right (LSSBR), Lumbar Spine Extension (LSE), Shoulder
Abduction (SAbd), Shoulder Adduction (SAdd), SF, SE.
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A2 Model parameters of allmin

rmax [N] lCE,opt [m] ATy asc ZSEE,O [m]

EF 1420.0 0.1885 1.0 0.1845
EE 1550.0 0.171  0.525 0.18
FF 3000.0 0.15 1.0 0.133
FE 3000.0 0.13 1.0 0.115
HAbd 2000.0 0.18 1.0 0.121
HAdd 2000.0 0.204 0.75 0.136
HF 5000.0 0.195 1.0 0.135
HE 5000.0 0.192 1.0 0.191
CSF 5000.0 0.07 1.5 0.01
CSSBL 5000.0 0.05 1.5 0.01
CSSBR 5000.0 0.046 1.5 0.01
CSE 5000.0 0.062 1.5 0.01
KF 6000.0 0.258  0.525 0.112
KE 6000.0 0.264 1.0 0.28
LSF 15000.0 0.2 1.5 0.11
LSSBL  15000.0 0.09 1.5 0.02
LSSBR  15000.0 0.09 1.5 0.02
LSE 15000.0 0.075 1.5 0.04
SAbd 6000.0 0.12 1.0 0.08
SAdd 6000.0 0.225 1.0 0.12
SF 10000.0 0.1 1.0 0.073
SE 6000.0 0.165 1.0 0.105

Table A2.4: Muscle-specific actuation parameters. With F™*: maximum isometric force,
[CEoPt: optimal length of the CE, AW?°: width of normalized bell curve in as-
cending branch of the force-length relationship, (SF¥:0 rest length of the SEE,
JCEnit: initial length of the CE. Muscle names: Elbow Flexion (EF), Elbow Ex-
tension (EE), Foot Flexion (FF), Foot Extension (FE), Hip Abduction (HAbd),
Hip Adduction (HAdd), Hip Flexion (HF), Hip Extension (HE), Cervical Spine
Flexion (CSF), Cervical Spine Side Bend Left (CSSBL), Cervical Spine Side Bend
Right (CSSBR), Cervical Spine Extension (CSE), Knee Flexion (KF), Knee Exten-
sion (KE), Lumbar Spine Flexion (LSF), Lumbar Spine Side Bend Left (LSSBL),
Lumbar Spine Side Bend Right (LSSBR), Lumbar Spine Extension (LSE), Shoulder
Abduction (SAbd), Shoulder Adduction (SAdd), Shoulder Flexion (SF), Shoulder
Extension (SE).
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Appendix: Supplementary results and additional information

A3 Additional information and results to Chapter 4

Note that the following tables and plots were published as electronic supplementary material
accompanying Stollenmaier et al. (2020b). See this reference for the list of authors.

A3.1 Control parameters

@ without exter- @ with external @ with external

nal torque torque, flexion torque, extension
udes.,O 0* 0* 0*
= .S ul Elbow flexor 0.0100% 0.07047% 0.198%
g *@ Elbow extensor 0.0295% 0.0101% 0.0165%
-y biart. flexor 0.0101%# 0.0101# 0.0539%#
biart. extensor 0.0101% 0.0101% 0.0286%
& g umn 0.005* 0.005* 0.005*
g = qace 0.1162 0.1402 4.46 x 1044
R 0.410s2 0.509 2 0.382s2
ydes-dec. 0.240¢ 0.240° 0.240¢
. ude Elbow flexor  0.267%# 0.267# 0.204%
< 3 Elbow extensor 0.0898% 0.08987% 0.259%
IF biart. flexor  0.261% 0.261% 0.221%#
biart. extensor 0.229% 0.229% 0.243%
to 0.7s* 0.7s* 0.7s*
ydes-final 0.3* 0.3* 0.3*
— & ™ Elbow flexor  0.330% 0.334% 0.221%
E -% Elbow extensor 0.104% 0.0928% 0.325%
A, biart. flexor 0.324% 0.326% 0.266%
biart. extensor 0.284% 0.2837% 0.307#
ky 0.2 0.2 0.2
kq 0.15¢ 0.15% 0.15¢
) 0.05* 0.05* 0.05*

Table A3.1: Control parameters used in the computer simulation of external per-
turbations during point-to-point movements in a horizontal plane. For a
better understanding of the abbreviations see Figure 4.3. Gray values indicate that
the same values as for @ have been used. Meaning of the symbols: *: quantities
that we set to a fixed value, #: optimized such that there is an equilibrium point
at this position given the desired level of co-contraction, A: optimized to match
the unperturbed trajectory for case @, {: optimized to match the perturbed
trajectories for case @
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A3 Additional information and results to Chapter 4

A3.2 Additional results using time delay 6 = 25 ms

0.35 u
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udec. muscles
03f |
—0.25
c
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S uacc.
(2]
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ymin- —— Elbow extensor
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0 0.2 t, 05 t, 08 1
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Figure A3.1: Triphasic stimulation pattern for a flexion movement. Starting from the
initial position at ¢ = 0.1s, during the acceleration phase, mainly the agonist
muscles are active. In the second phase between t = t; and t = 2, both muscle
groups are active, braking the movement. In the last phase for ¢t > to, again both
muscle groups are active in order to reach the final position and hold it with a
desired level of co-contraction.

A3.2.1 Static perturbation of inertia and viscosity

Closed-loop Open-loop

Increased damping 0.53 3.47
Decreased damping 0.03 0.70
Increased inertia 0.54 0.84
Decreased inertia 2.99 2.94
Sum of all cases 4.09 7.94

Table A3.2: Quantification of the difference between simulation and experiment for
case (1) by evaluating the cost function that was used in the optimization
of the closed-loop control parameters and splitting it into the contribu-
tions of the different perturbations. Hence, for the single cases, a value smaller
than one means that the result lies within the experimental standard deviation area
(taking the maximum standard deviation in each direction).
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Appendix: Supplementary results and additional information

Figure A3.2: Results for case @ (a) Evaluation criterion for the static perturbations: Early
velocity difference in relation to the dysmetria difference (both calculated as the
early velocity /dysmetria of the perturbed movement minus the early velocity /dys-
metria of the reference movement) shown for both, simulation and experiment.
The experimental results are digitized from Bhanpuri et al. (2014), the control
group averages (n=11) are shown and the error bars indicate standard deviation.
(b) our simulation results and (c) experimental results digitized from Bhanpuri
et al. (2014) for one typical control subject in null condition (reference) and with
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A3 Additional information and results to Chapter 4
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Figure A3.3: Comparison to open-loop and torque-driven model for case @ (a) Re-
sulting trajectories when controlling the musculoskeletal model open-loop, (b)
trajectories when controlling the musculoskeletal model closed-loop, (¢) trajecto-
ries when controlling a purely torque-driven model open-loop and (d) trajectories
when controlling a purely torque-driven model closed-loop.
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A3.2.2 Dynamic torque perturbation

3r Il Simulation at At=37.5ms ] Experiment at At=37.5ms
I Simulation at At=100ms [_| Experiment at At=100ms
25r flexi9n exten§ion
= 2r —
€ S
G_,) N
S 15¢ AN ;
o . /
g B
9]
>
05F
I —— Unperturbed movement
0 : | : — +5Nm
——-5Nm
05 . . . . _ .
+5Nm -5Nm +5Nm -5Nm Torque perturbatlon

Perturbation type

(a) Velocity quotient

157 s 13
I flexi 138
: | flexion 1o
1! 12
! g
1! MmE = P
= [ Z o 10 ¢
@ 1 10 ¢ @ Qo
> S & 13
© 118 o Ee]
Eel [0} =1
B 5 N 12 £
o 25 = &
< a E 13
g 1 413 @ O - 8—
2 V! g < las
- 14 6 e
Iy [t
1 -5
1 : 15
: : extension 1-6 16
s ‘ i . ‘ ‘ ‘ ‘
0 02 3 06 1, o8 y 0 02 04 . 06 0.8 1
Time [s] ime [s]
. . ¢) Experiment (Kalveram and Seyfarth
(b) Simulation (c) Exp ( (2009)) Sey

Figure A3.4: Results for case @ (a) Evaluation criterion for the dynamic perturbations:
The quotient of the angular velocity at the beginning of the perturbation and
after At (37.5ms and 100 ms, see Equation (4.6)) shown for both, the simulation
results (filled bars) and the experimental results (empty bars) for all four per-
turbation types (experimental results are digitized from Kalveram and Seyfarth
(2009)). (b) Joint angle trajectories for the four different perturbation types in
our simulation and (c) in the experiment (digitized from Kalveram and Seyfarth
(2009)). Note that the experimental results show the trajectory for one typical
control subject. The upper curves show flexion movements, the lower curves show
extension movements. The dashed lines visualize the applied torque perturba-
tions.
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Figure A3.5: Comparison to open-loop and torque-driven model for case @ (a) Re-
sulting trajectories when controlling the musculoskeletal model open-loop, (b)
trajectories when controlling the musculoskeletal model closed-loop, (¢) trajecto-
ries when controlling a purely torque-driven model open-loop and (d) trajectories
when controlling a purely torque-driven model closed-loop with the same con-
troller as described above.
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A3.2.3 Internal force responses
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Figure A3.6: Selection of quantities that can be investigated using our model. Elbow
joint angle, muscle stimulation and activity, muscle force, muscle-bone contact
force, joint constraint force and active joint torque for the unperturbed trajectory
(orange) and for a perturbed movement (blue). These results are exemplary shown
for the elbow flexor muscle and (a) for an increase in inertia and (b) for a flexion
movement with a negative torque impulse perturbation. Here, the gray area vi-
sualizes the length of the time delay in the controller (50 ms), i.e. the time after
the perturbation before the feedback mechanism is activated. Note that the total
muscle stimulation in the unperturbed case is equal to the open-loop contribution
in the perturbed case. For all forces, the resultant force is shown.The contact
force is the force at the first deflection ellipse. The active joint torque represents
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the torque acting on the joint that is a consequence of the muscle forces.
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A3 Additional information and results to Chapter 4

A3.2.4 Control parameters

@ without exter- @ with external @ with external

nal torque torque, flexion torque, extension
udes.,O 0* 0* 0*
= 8 u)  Elbow flexor  0.0100% 0.0704% 0.198%
g = Elbow extensor 0.0295% 0.0101# 0.0165%
= 8 biart. flexor 0.0101# 0.0101% 0.05397%
biart. extensor 0.0101% 0.0101% 0.0286%
& g umn 0.005* 0.005* 0.005*
SRR ) A A —64
g B e 0.114 0.138 2.51 x 10
R 0.418 5% 0.467s2 0.372s%
ydes-dec. 0.262 0.262 0.262
, ude® Elbow flexor  0.290% 0.290% 0.212%#
< 8 Elbow extensor 0.0954% 0.09547% 0.283%
IF biart. flexor  0.283% 0.2837% 0.237%#
biart. extensor 0.249% 0.2497% 0.2667%
to 0.7s* 0.7s* 0.7s*
ydes-final 0.3* 0.3* 0.3*
— & uf™ Elbow flexor  0.330% 0.334% 0.221%
E *@ Elbow extensor 0.104% 0.0928% 0.325%
2 biart. flexor 0.324%# 0.326% 0.266%
biart. extensor 0.284% 0.283% 0.307%#
kp 0.503¢ 0.503¢ 0.503¢
kq 0.0484% 0.0484° 0.0484%
) 0.025* 0.025* 0.025*

Table A3.3: Control parameters used in the computer simulation of external per-
turbations during point-to-point movements in a horizontal plane. For a
better understanding of the abbreviations see Figure 4.3. Gray values indicate that
the same values as for @ have been used. Meaning of the symbols: *: quantities
that we set to a fixed value, #: optimized such that there is an equilibrium point
at this position given the desired level of co-contraction, A: optimized to match
the unperturbed trajectory for case @, {: optimized to match the perturbed
trajectories for case @
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A4 Additional information and results to Chapter 6

Note that large parts of this chapter were submitted as electronic supplementary material
accompanying Haeufle et al. (2020a). See this reference for the list of authors.

A4.1 More details on quantifying morphological computation

This section discusses one concept of quantifying morphological computation. For a full dis-
cussion, the reader is referred to Ghazi-Zahedi (2019a).

A4.1.1 Causal Model of the Sensorimotor Loop

We assume that there is a canonical way to separate a cognitive system into four parts, namely
brain, sensors, actuators, and body. We are fully aware that the system—environment separation
is a very difficult and yet unsolved question for biological systems (see e.g., von Forster (2003)
for a discussion). In fact, one question of this paper is to investigate different levels of hierarchy
with respect to quantifying morphological computation.

In our concept of the sensorimotor loop, which is derived from Pfeifer et al. (2007), the brain
or controller sends signals to the actuators that influence the environment (see Figure A4.1).
We prefer the notion of the system’s Umwelt (Ay and Lohr, 2015; Clark, 1996; von Uexkuell,
1957), which is the part of the system’s environment that can be affected by the system and
itself affects the system. The state of the actuators and the Umwelt are not directly accessible
to the cognitive system, but the loop is closed as information about both the Umwelt and the
actuators are provided to the controller by the system’s sensors. In addition to this general
concept, which is widely used in the embodied artificial intelligence community (see e.g., (Pfeifer
et al., 2007)), we introduce the notion of world to the sensorimotor loop, that is, the system’s
morphology and the system’s Umwelt. This differentiation between body and world is analogous
to the agent—environment distinction made in the context of reinforcement learning (Sutton and
Barto, 1998), where the environment is defined as everything that cannot be changed arbitrarily
by the agent.

f Cognitive System

Controller
Sensory Motor

feedback signal

A L w - W'
N

\ Internal stimulation

’ T
External Movement S ’ A
stimulation and feedback
| World

J

\.

Figure A4.1: Sensorimotor Loop. Left-hand side: schematics of the sensorimotor loop (re-
drawn from Pfeifer et al. (2007)), Right-hand side: causal diagram of a reactive
system.
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A4 Additional information and results to Chapter 6

Arm movements, and actually most behaviours that are interesting in the context of mor-
phological computation, can be modelled sufficiently as reactive behaviours. Hence, for the
remainder of this work, we will omit the controller and assume that the sensors are directly
connected to the actuators. For a discussion of the causal diagram for non-reactive systems,
the reader is referred to Ay and Zahedi (2014). Quantifications of morphological computation
for non-reactive systems are discussed in Zahedi and Ay (2013).

The causal diagram of the sensorimotor loop is shown on the right-hand side of Figure A4.1.
The random variables A, S, W, and W' refer to actuator signals, sensor signals, and the current
and next world state. Directed edges reflect causal dependencies between the random variables.
The random variables S and A are not to be mistaken with the sensors and actuators. The
variable S is the output of the sensors, which is available to the controller or brain, and the
action A is the input that the actuators take. Consider an artificial robotic system as an
example. Then the sensor state S could be the pixel matrix delivered by a camera sensor and
the action A could be a numerical value that is taken by a motor controller and converted in
currents to drive a motor.

We use capital letters (A, W, ...) to denote random variables, non-capital letters (a, w, ...)
to denote a specific value that a random variable can take, and calligraphic letters (A, W, ...)
to denote the alphabet for the random variables. This means that a; is the specific value
that the random variable A can take at time ¢t € N, and it is from the set a; € A. Greek
letters refer to generative kernels, i.e., kernels that describe an actual underlying mechanism or
a causal relation between two random variables. In the causal graphs throughout this paper,
these kernels are represented by direct connections between corresponding nodes. This notation
is used to distinguish generative kernels from others, such as the conditional probability of a
given that w was previously seen, denoted by p(a|w), which can be calculated or sampled but
that does not reflect a direct causal relation between the two random variables A and W (see
Figure A4.1).

We abbreviate the random variables for better comprehension in the remainder of this work,
as all measures consider random variables of consecutive time indices. Therefore, we use the
following notation. Random variables without any time index refer to time index t and hy-
phened variables to time index t + 1. The two variables W and W' refer to W; and Wyyq,
respectively.

A4.1.2 Quantifying Morphological Computation

We can now restate the two original concepts of quantifying morphological computation (Ghazi-
Zahedi, 2019a; Zahedi and Ay, 2013) (see Figure A4.2).

The basis for both original concepts MCx and MCyy is the world dynamics kernel o(w'|w, a),
which describes how the next world states W’ depends on the current world state W and the
current action A (see Figure A4.1, right-hand side, and Figure A1.2, left-hand side, respec-
tively). For the first concept MCy, let us assume that there is no dependence of the next
world state W’ on the current action A. In this case, the world dynamics kernel a(w’|w,a)
reduces to &(w'|w) (which is given by &(w'|w) = >, p(w'w.a)/pw), see also Figure A1.2, cen-
tre). As a result, we would state that we have maximal morphological computation, as the
system’s behaviour is not controlled by the brain at all. An example of such a system is the
Passive Dynamic Walker (Collins et al., 2005; McGeer, 1990). We can measure how much the
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W——— W W W W LW
\ / \ \ /
S — A S — A S — A

Figure A4.2: Visualization of the two concepts MCp, and MCy. Left-hand side: causal
diagram for a reactive system. Centre: causal diagram assuming no effect of the
action A on the next world state W’. Right-hand side: causal diagram assuming
no effect of the previous world state W on the next world state W'.

observed behaviour differs from this assumption with the Kullback-Leibler divergence (Cover
and Thomas, 2006). This leads to the following formalisation:

: a(w'|w, a)
MCA = wgap(w/, w, CL) 10g2 W (A41)
(W' AW) (A4.2)

Unfortunately, Equation (A4.1) is zero for maximal morphological computation, which is
why we initially chose to normalise and invert it, leading to the following definition:

1 a(w'|w, a)
MCp =1 — ——— g ! logy —— =
CA 10g2 ‘W| p(w 7w7 a’) Og2 é[

w’ w,a

o) (A4.3)

The second concept, MCyw starts with the opposite assumption, namely, that the current
world state W does not have any influence on the next world state W’ (see Figure A4.2, right-
hand side). In this case, the world dynamics kernel a(w'|w,a) reduces to &(w’|a) (which is
given by a(w'|a) =Y, P’ wa)/pa), see also Figure A4.2) and analogously to the following
definition for MCyy:

a(w'|w, a)

M = ! | Ad4.4
Cw wlzw:ap(w ,w,a)logy ) ( )
=I(W';W|A) (A4.5)

The relation of the measures to transfer entropy (Bossomaier et al., 2016; Schreiber, 2000)
and the information bottleneck (Tishby et al., 1999) are discussed in Ghazi-Zahedi (2019a);
Zahedi and Ay (2013).

Next, we briefly describe, how the quantification can be calculated from data.

A4.1.3 Estimating Quantifications of Morphological Computation

We will explain how to estimate information-theoretic quantities based on an estimation of
entropy. A more detailed discussion about the topic can be found in (Paninski, 2003) and a
more detailed discussion with respect to quantifying morphological intelligence can be found
in (Ghazi-Zahedi, 2019a).
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The general concepts will be discussed along the example of estimation entropy:
H(X)= —/,u(;v) In p(z)de. (A4.6)
xT

Estimating the entropy H (X)) requires knowledge about the underlying probability distribution
pu(x). In real-world scenarios, p(z) cannot be accessed directly, but only via observations
z;. The task is to estimate p(z;) such that the estimated entropy H(X) = — )" p(z)Inp(x)
approximates H (X). The most common technique is known as binning of frequency estimation.
This method uses a discrimination of the state space X and estimates p(x;) by the number of
samples that fall into each bin. Hence, the entropy of X is given by:

H(X) = —Z%ln%, (A4.7)

where ¢; are the number of samples that fall into bin 7 and N is the total number of samples.

The second method is only discussed conceptually. For a full discussion, please read (Fren-
zel and Pompe, 2007; Ghazi-Zahedi, 2019a; Kraskov, Alexander and Stogbauer, Harald and
Grassberger, Peter, 2004). The general idea is to estimate p(x;) without the intermediate step
of binning the state space. Instead, the probability density is estimated by the distance to the
k-nearest neighbour of each sample x;. The distance to the k-nearest neighbour is small if the
sample x; is an area of the state space that has a high concentration of samples, and hence,
the probability mass for x; should be large. The distance to the k-nearest neighbour is large if
the sample z; is in a sparsly populated area of the state space. These assumptions are used to
shape locally constant or Gaussian functions around each sample x;.

Both methods can be used in gomi (Ghazi-Zahedi, 2019b) to estimate MCyw and MCj.

A4.2 Description of the human experiments

The sole purpose of the experiments was to get a quantitative basis for the variations of the
simulated movements. These variations allowed us to statistically test the main hypothesis of
this paper: that there is a difference in morphological computation between different hierarchy
levels.

A4.2.1 Experimental setup: general description

A quantitative movement analysis by a VICON motion capture system with 12 cameras was
used to quantify the participants’ movements. The system captures three-dimensional move-
ment trajectories of the subjects. The spatial resolution of the system was approximately 1 mm.
All trials were recorded at a sampling rate of 120 Hz, using 29 retro-reflecting markers that were
positioned based on the Heidelberger Upper Extremity (HUX) model (Rettig et al., 2009).

The HUX model consists of seven segments and determines the individual’s joint center of
the shoulder and elbow joint with one static and three dynamic calibrations per subject. The
calibration movements include shoulder abduction and adduction, shoulder anteversion and
retroversion (both performed with zero elbow flexion) and elbow flexion and extension, all with
the participant’s maximal range of motion. Additional to the HUX marker set, further markers
were added to evaluate the finger position (point-to-point movements) and to the swing rod
(oscillating movements). All markers are listed in Table A4.1.
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Marker Anatomical Position

HUX model:

HEAD central forehead

R/L MAS above mastoids (right/left)

CLAV jugular notch

Cc7 thoracic vertebrae cervicalis 7

T10 thoracic vertebrae thoracalis 10

SACR mid-way between posteriorsuperior iliac spines

R/L ASI anterior superior iliac spines (right /left)

R/L SHO acromio-clavicular joint (right/left)

R/L HUMS tuberositas deltoidea (right/left)

R/L ELB twin-marker ulna 2 cm distally to the olecranon (right /left)
R/L ELBW twin-marker ulna 2 cm distally to the olecranon (right/left)
R/L ULN processus styloideus ulnae (right /left)

R/L RAD processus styloideus radii (right/left)

additional markers:

R 1PD 1st distal interphalangeal

R 2MCP 2nd articulationes metacarpophalangeae

R 2PD 2nd phalanx distalis

R 5MCP 5th articulationes metacarpophalangeae

Table A4.1: Marker placement according to the HUX model with additional markers
to determine the finger position.

A4.2.2 Experimental setup: Point-to-point movements

For the point-to-point movements, the participant was seated in front of a vertical canvas at a
distance of 50 % of their arm length (see Figure A4.3). Four different targets appeared randomly
on a vertical line on the canvas and the subjects were instructed to follow the targets fast, but
precisely with their dominant hand. The vertical distance between the target positions varied
between approximately 15cm for small movements and 45cm for large movements (distance
between circle centers).

A4.2.3 Experimental setup: Oscillation movements

For the oscillation movements, the participant was standing upright, holding the swing rod in
their dominant hand and instructed to get the swing rod in resonance. We used the therapy rod
called “Propriomed 1” that is produced by the company Haider Bioswing. Here, we additionally
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Figure A4.3: Sketch of the experimental setup. Using a motion capture system, elbow and
shoulder angles of fast goal-directed pointing movements have been captured.

recorded the muscle surface electromyograms (EMG) of the m.bisceps and m.triceps muscle.

A4.2.4 Experimental results: Point-to-point movements

The point-to-point movement of interest was repeated seven times. We extracted the different
initial and target angles, as well as one intermittent posture which represents the point of
maximal elbow angle (Table A4.2). These joint configurations were assumed to represent
the equilibrium points for the neuronal controller in the simulation. See Chapter 6 for more
details. The resulting trajectories in comparison to the experimental trajectories are shown in
Figure A4.4.

_30 —

40 + : -
Simulations
Experiments

.50

joint angle [deg]
&
o
T

t[s]

Figure A4.4: Variability of experimental data (black) and simulated data (red). These
variations are the source of the error bars in Chapter 6.
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Initial angle  Intermittant angle  Target angle
Elbow  Shoulder Elbow  Shoulder Elbow  Shoulder

66,86° 76,03° 83,30° 76,03 72,02° 3991°
62,73°  78,20° 78,54° 78,26° 69,08°  40,52°
63,08° 76,44° 78,99° 76,45  69,56° 36,36°
61,060 7644° 76,61° 76,45  67,92° 37,28°
60,47°  TA67° 77,53° 74670 70,39°  34,88°
61,53° 74,42° 80,79° T74,43° 68,77  33,04°
60,18° 73,26° 76,74° 73,26° 67,79° 33,75°

Table A4.2: Equilibrium point angles extracted from the experimental data.
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A4.2.5 Experimental results: Oscillation movements

The experimental data of the joint angles and EMG was analyzed with a fast Fourier analysis
(Figure A4.5). This data indicates that the range of oscillation frequencies occurring in the
movement is about £0.2Hz. This was used as the variance of randomly selected frequencies to
introduce a ‘natural” variation in the movements in the simulation.

Single-Sided Amplitude Fourier Spectrum
T T T T T

0.025 |- shoulder angle | |
elbow angle
0.02 - m.biceps |
| m.triceps
= 0.015
a
0.01
0.005
0
2.5

Figure A4.5: Fourier transformation of the experimental data on a swing rod exer-
cise. Shown are the frequency spectra for two muscles (EMG of m. biceps and
m.triceps) as well as the two joints (shoulder and elbow). This data indicates that
the range of oscillation frequencies occurring in the movement is about +0.2Hz.
This was used as the variance of randomly selected frequencies to introduce a
“natural” variation into the movements in the simulation.

A4.3 More detailed description of the computer simulation
A4.3.1 Equilibrium Point Controller

The bio-inspired hybrid equilibrium point controller exploits muscle characteristics by combin-
ing a feed-forward command (u°P"(¢)) with spinal feedback on muscle fiber lengths (uc°%d(t)).
This feedback represents a simplified version of the mono-synaptic muscle spindle reflex, as-
suming that the muscle spindles provide accurate time-delayed information about the muscle
fiber lengths 1°%(¢) (Kistemaker et al., 2006). The total motor command wu; for each muscle i
is a sum of those components and is calculated as

ui(t) = { P (0) + w4 (0) + PO 1)}
k) 1 (A4.8)

— {ujpe“(t) + Ch.opt (Na(t) — 155 (t - 6)) + u?PG(t)}O :

where k), is a feedback gain and the time delay ¢ is set to 10 ms representing a short-latency
reflex delay which is in a physiologically plausible range (Houk and Rymer, 1981; More et al.,
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2010). 1“E°Pt stands for the optimal length of the contractile element. The operation {x}}
sets values x < 0 to 0 and = > 1 to 1. The signal uZCPG represents a central pattern generator
(CPG).

The low-level controller gets two top-down input signals: The open-loop muscle stimulation
JP"(t) and the desired muscle fiber lengths A;(t). Here, they represent an intermittent control
approach, because they are piecewise constant functions over time. Herein, each constant value
represents an equilibrium posture (EP), i.e. the system is in a stable equilibrium in these
positions:

u

§g=0 and §=0, (A4.9)

leading to the condition that the net joint moment vanishes in these postures (given enough
time for the system to settle). This allows for the calculation of the muscle stimulations u;?®" (t)
and the corresponding desired muscle fiber lengths \;(¢): For each EP, the muscle stimulations
u;P?"(t) can be determined by minimizing the difference between the muscle stimulation u;"*"
and the desired level of co-contraction 19

Z(u?pen — ud%) — min, (A4.10)

subject to the constraint that the sum of all torques acting on the joint is zero, i.e. the
system is in a stable equilibrium position. The corresponding desired muscle fiber lengths \;
are set by measuring the length of the muscle fiber lengths ll-CE in the equilibrium positions.

A4.3.2 Optimization of the control parameters for a point-to-point movement

For the goal-directed point-to-point movements, three EPs were used per movement. To follow
experimental trajectories, we optimized some of the control parameters: the shoulder and
elbow angle for the second EP, the desired level of co-contraction for the second and the third
EP, the starting times for the second and the third EP and the feedback gain k,. Using the
pattern search algorithm in Matlab®, the quadratic difference between the simulated and the
experimental trajectory was minimized. The resulting parameters can be found in Table A4.3.

Using the resulting parameters, the muscle stimulations u;”*" were then optimized in order to
fulfill the conditions for equilibrium points (see Equation (A4.10)) using the Matlab® optimizer
fmincon which is suitable for finding the minimum of a constraint function.

A4.3.3 Dynamic oscillation movements with vibrating rod

The dynamic oscillation movements were inspired by the training and rehabilitation exercises
performed with a vibrating rod. When we experienced such a training, we noticed how, after
some training, we were able to excite the resonance frequency of the rod. This seems an
interesting task in the sense of morphological computation, as the dynamic interaction with
the “umwelt” with its specific resonance characteristics, is surprisingly not that difficult to learn.

A concept for modeling rhythmic excitement of the processes is the concept of the central
pattern generator (CPG). Central pattern generators are neural networks with the ability to
produce rhythmic patterns without receiving rhythmic input signals from higher control centers
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1442—-34—14—3

EP 1 76.4° 60.4° 36.4° 40.8°

houl
Shoulder o 030 3750 sa3s 4710
Angle
EP 3 37.3° 46.7° 75.9° 48.4°
EP1 61.1° 70.5° 70.0° 69.2°
Elbow
EP 2 74.3° 775" 76.0° 75.9°
Angle
EP 3 679 74.3° 61.9° 734°
EP1 010 0.10 0.10 0.10
Level of co-
. EP 2 0.077 0.094 0.38 0.33
contraction
EP3 028 0.20 0.5 044
g L EP 1 0.00s 0.00s 0.00s 0.00s
tchi
WIS BP9 0.35s 0.43s 0.37s 0.19s
times
EP 3 0.57s 0.63s 0.57 0.41s
kp 0.27 0.09 0.92 0.39

Table A4.3: Resulting control parameters for the computer simulation of point-to-
point movements. Some simulation parameters resulted from the optimization
that was performed to match the corresponding experimental trajectories: the
shoulder and elbow angle for the second EP, the desired level of co-contraction
for the second and the third EP, the starting times for the second and the third
EP and the feedback gain k,. The other parameters were set according to the
experimental data.

or sensory feedback. The control concept of CPG implemented here is a simple sinusoidal
pattern with a defined phase-shift between the stimultations to the extensor and flexor muscles.
This was inspired by the work of Sproewitz et al. (2008).

The vibrating rod was modeled based on a therapy rod called “Propriomed 1” that is produced
by the company Haider Bioswing. To implement the vibrating rod in Simulink the mechanical
parameters of the spring-mass damper system are determinded experimentally including the
mass m, the spring constant £ and the damping constant d. For this purpose the vibrating
rod was fixed and equipped with reflecting markers at both ends of the rod. The vibrating rod
is then deflected evenly on both sides and the resulting vibration is recorded using a motion
capture system (VICON motus). The resulting oscillation is analyzed and the mechanical
properties are calculated with the formula of the quasiharmonic oscillation. Resulting in a
damping constant of d = 0,405kg/s and a spring stiffness of k = 300, 523 kg/s?.

In order to verify the values for the spring and damper constant calculated from the exper-
imental excitation the calculated parameters are fed into the Simulink model and a bilateral
deflection is simulated.
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Rod amplitude [m]

time [s]

Figure A4.6: Rod amplitude over time. The oscillation generated in the simulation (in
orange) corresponds to a large extent to the experimentally generated oscillation
(in blue) at the beginning. Only after a few oscillations a deviation in amplitude
and frequency can be observed.

The Simulink model of the vibrating rod is connected to the wrist and consists of a prismatic
joint as well as the mass of the vibrating rod. The prismatic joint is actuated by a viscoelastic
force element, which contains the spring and damper constants. The is guided by a virtual
rail to limit the movement to horizontal forward movement, compensating for the influence of
gravity.

The control of rhythmic movements is performed based on the general controller described
in the main text

. _ open kp ) CE CPG !
uz(t)—{ui (0 + o (M)~ 15— ) + o <t>}0, (AL11)

The first two terms are parameterized such that, in the absence of a CPG signal, the hand
holds the rod in front of the body at rest.

To excite the rod, as done in training and rehabilitation exercises, a sinusoidal signal u
mimicking the output of a central pattern generator (CPG) is added to the motor command u:

CPG

uPCé(t) = i -sin(w - t + ¢o) , (A4.12)

with @ = 0.1: amplitude, w: angular frequency, ¢g: phase. The muscles are synchronized by
setting ¢g = 0 for flexing muscles and ¢g = 7 for extending muscles.

The oscillation is exited for 0 <t < 4s. After this, u®PG = 0 and the oscillation is then only
a result of the dynamics of the system and not of the controller anymore.

A4.4 Supplementary simulation results point-to-point movements

We further quantified the other three pointing movements, which have quite a different ampli-
tude (and direction) than the point-to-point movement reported in Chapter 6. Despite these
differences in movement, the main trend of the results is similar: morphological computation
is highest for the highest level in the control hierarchy.
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Figure A4.7: Morphological computation MCyw on different hierarchy levels for an
exemplary point-to-point movement (2 — 3). Morphological computation
was evaluated using (a) selected (MC5) and (b) accumulated hierarchy levels
(MC{{°). Note that a logarithmic scale is used for the y-axis. The limit of the
y-axis is set to the maximum MC value that would result from having a constant

signal as input.
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(a)
Figure A4.8: Morphological computation MCyw on different hierarchy levels for an
exemplary point-to-point movement (4 — 1). Morphological computation
was evaluated using (a) selected (MCS) and (b) accumulated hierarchy levels
(MC{F). Note that a logarithmic scale is used for the y-axis. The limit of the
y-axis is set to the maximum MC value that would result from having a constant

signal as input.
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Figure A4.9: Morphological computation MCyw on different hierarchy levels for an
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exemplary point-to-point movement (4 — 3). Morphological computation
was evaluated using (a) selected (MC5) and (b) accumulated hierarchy levels
(MC35°). Note that a logarithmic scale is used for the y-axis. The limit of the
y-axis is set to the maximum MC value that would result from having a constant

signal as input.
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A5 Additional information and results to Chapter 7
A5.1 More detailed description of the human experiments

For more details on the setup of the human experiments see sections A4.2.1 and A4.2.2.

A5.2 The bio-inspired robot Ataro

Note that the following model description was submitted as electronic supplementary material
accompanying Stollenmaier et al. (2020c). It was written by Tobias Nadler, Simon Wolfen, and
Syn Schmitt.

dynamics

Figure A5.1: Visualization of the bio-inspired arm robot ATARO. (a) Picture of the
arm robot with pneumatically actuated MSUs and (b) Schematic representation
of the actuation of the robot arm: the stimulation u(¢) is fed into the model of
the activation dynamics of muscles which relates the neuronal stimulation to the
muscular activation a(t). The activation is converted into an electrical control
signal which controls the pressure valves. The output pressure P(¢) of the valves
causes the pneumatic muscles to contract and exert a force F(t). This force acts
on the arm segments of the robot and leads to a movement q(t) of the arm.

ATARO is a bio-inspired arm robot with two degrees of freedom. The physical model is
based on the musculoskeletal model Arm26. Five artificial muscle-spring units (MSUs) (Wolfen
et al., 2018) are used for actuation. The MSUs, each consisting of a pneumatic artificial muscle
(PAM) and a spring in series, mimic the characteristics of the human muscle-tendon complex.
Five proportional control valves actuate the PAMs. To mimic biological proprioception, a
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force sensor and a length sensor in each muscle, and an angle sensor in each joint are used. A
computer with an I/O board is used to control the arm robot in a real-time hardware-in-the-loop
setup. The controller is implemented using Matlab 2016b® /Simulink®.

A5.2.1 Structure of the Biorobot (ATARO): Mechanics and Actuation

Mechanics The dimensions of the segments, as well as the position of the joints, are based
on the anthropometric data of the numerical simulation model Arm26.
The robot consists of the following segments:

1. Torso: Rigid profile rail construction
2. Upper arm: Rigid sheet metal construction

3. Forearm and hand: Rigid sheet metal construction

The two degrees of freedom of the robot are realized by two mechanical hinge joints (shaft
guided by two radial bearings), which represent the shoulder and the elbow joint. Usually,
linear pulleys are used for force transmission. A linear pulley means that the lever arm has
the same length at each joint angle. Since this does not correspond to biology, we developed a
non-linear pulley exemplary for the elbow joint (Figure A5.3). This non-linear pulley is based
on the lever arm profile of the numerical model Arm26 (see Section 3.2.4). A comparison of
the moment arm trajectory is depicted in Figure A5.4.

Figure A5.2: CAD sketch of the bio-inspired arm robot ATARO.

Actuation The biorobot is actuated by five muscle-spring units (MSUs) (Wolfen et al., 2018),
which are implemented in a bio-inspired agonistic-antagonistic setup. Four of them are monoar-
ticular muscles and one is a biarticular muscle. The muscles represent a multitude of anatomical
muscles:

1. Elbow Flexor (EF):
m. brachioradialis, m. brachialis, m. pronator teres, m. extensor carpi radialis
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- 20° — 100°

+ Elbow flexor
-0.03L *Elbow extensor

(b)

Figure A5.3: Muscle lever arm trajectory. (a) Geometric projection of the lever arm tra-
jectory. The dotted lines representing the angle range from 20° to 100°, starting
with an elongated arm (0°). (b) The 3D model of the nonlinear pulley derived
from the geometry of (a).

2. Elbow Extensor (EE):
m. triceps lateralis, m.triceps medialis, m. an-coneus, m. extensor carpi ulnaris

3. Biarticular muscle: Elbow Flexor Shoulder Anteversion (BF):
m. biceps brachii caput longum and caput breve

4. Shoulder Anteversion (SF):
m. deltoideus (pars clavicularis, anterior,lateral), m. superior pectoralis magjor, m. cora-
cobrachialis

5. Shoulder Retroversion (SE):
m. deltoideus (pars spinalis, posterior), m. latissimus dorsi

Each muscle-tendon-unit (MSU) consists of a pneumatic artificial muscle (PAM) and a spring
in series, mimicking the characteristics of the biological muscle-tendon complex.

1. Elbow Flexor (EF): Actuator: Festo DMSP-20-100N-RM-CM; Spring: Gutekunst D-
339R-01
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Figure A5.4: Comparison of the moment arm trajectory of the monoarticular elbow
flexor between ATARO and the Arm26 Model. The trajectory of the
moment arm of ATARO was measured with the CAD software Autodesk Inventor
2017.

2. Elbow Extensor (EE): Actuator: Festo DMSP-20-100N-RM-CM; Spring: Gutekunst D-
339R-01

3. Biarticular muscle: Elbow Flexor and Shoulder Anteversion (BF): Actuator DMSP-20-
400N-AM-CM

4. Shoulder Anteversion (SF): Actuator: 2x in parallel Festo DMSP-20-400N-AM-CM; Spring:
Gutekunst Z-117QL

5. Shoulder Retroversion (SE): Actuator: 2x in parallel Festo DMSP-20-400N-AM-CM;
Spring: Gutekunst Z-117QL

Due to reasons of comparability between the robot ATARO and the numerical model Arm26,
all MSUs act in parallel to the sagittal plane. Elbow flexor and elbow extensor are located in the
lower arm. The shoulder flexor and the shoulder extensor as well as the biarticular shoulder
anteversion and elbow flexor are located in the torso. The force of the shoulder flexor and
extensor is transmitted through a mechanical shaft extended into the torso. The force of the
biarticular muscle is applied via a rope acting on the shoulder shaft and the elbow shaft.
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The contraction of each PAM depends on the output pressure of a 3-way proportional pressure
control valve (Festo VPPX-8L-L-1-G14-0L10H-S1). The valves (five in total, one per muscle)
have an internal PID controller. The following parameterization for the external control loop
of the VPPX-PID controller is used:

Amplification of the reference variable: F =45

Amplification of the proportional component: P = 16.87

e Amplification of the integral component: I =5

Amplification of the differential component: D =0

Input filter for limiting the dynamics of the setpoint: 7 = 3.2ms

Due to the working pressure range of the pneumatic muscle, the pressure is limited to a
maximum of 6 bar. To compare the activation (0-1) values with the numerical model (Arm26)
the output of the robot controller is multiplied by the factor 6 (6 Volts results in 6 bar).

Sensors To mimic biological proprioception, the following sensors are used for each muscle:

e Force sensors in the muscles: A Lorenz K-1563 (0 N to 2000 N) + DMS-Sensor-Interface
LCV-U10_kompl is used to mimic the Golgi tendon organ.

e Length sensors in the muscles: A non-contact position sensor of the company MTS Sensor
Technologie (Temposonics C-Serie Analogsensor) is used to represent the muscle spindles.

e Angle encoders in the joints: To measure the current movement, the robot has an angle
sensor (LM13IC2D0BA10F00 4+ LM13 magnetic ring encoder system MR050E040A080B00
Magnetring MR050).

Runtime environment To connect the sensors with a PC, a Sensoray Model 626 /0 Board
is used. A bio-inspired hybrid equilibrium point controller is used to control the muscles of the
arm robot. The controller is described in detail in Chapter 7.

This controller is implemented in Matlab 2016b® / Simulink®. The Desktop Real-Time Sys-
tem is used for code generation (Target file: sldrt.tle, Solver: ode4 (Runge-Kutta), fixed-step
size, fundamental sample time: 500Hz).

Length|m| Weight|kg| [kgm?| [lyzloxlxy]

Upper arm  0.335 ~ 6.540 ~ [0.000145 0.052369 0.000041]
Forearm 0.260 ~ 0.367 ~ [0.000003 0.003655 0.000001]

Table A5.1: Skeletal parameters of the arm segments of the single arm robot. The
weight and the moments of inertia I, ., », wWere calculated approximately using
the CAD system Autodesk Inventor 2017.
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Muscle Faz|N| {m| Lspring|m| Origin point Insertion point

EF 6000
EE 6000
BI 6000
SF 6000
SE 6000

0.1
0.1
0.4
0.4
0.4

0.04
0.04
0.04
0.04
0.04

Upper arm Forearm
Upper arm Forearm
Shoulder Forearm

Shoulder Upper arm
Shoulder Upper arm

Table A5.2: Technical data of the pneumatic muscles installed in the single arm
robot. The monoarticular muscles of the shoulder joint for anteversion and retro-
version as well as the biarticular muscle are shifted into the torso. Since this does
not alter the force application, the muscle origin points can still be regarded as
originating from the shoulder.
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A5.3 Additional results for all movements

Note that the following plots were submitted as electronic supplementary material accompany-
ing Stollenmaier et al. (2020c). See this reference for the list of authors.
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Figure A5.5: Results for a big upward movement from position 4 to position 1 (4 — 1)
using (a) the computer simulation and (b) the bio-inspired robot. The
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two rows show the shoulder and the elbow joint trajectory, respectively.

blue lines depict the robot and simulation trajectories, the orange lines show one

movement of one typical control subject in the experiment.
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(a) Computer Simulation (b) Bio-inspired Robot
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Figure A5.6: Results for a small upward movement from position 4 to position 3 (4 —
3) using (a) the computer simulation and (b) the bio-inspired robot.
The two rows show the shoulder and the elbow joint trajectory, respectively. The
blue lines depict the robot and simulation trajectories, the orange lines show one
movement of one typical control subject in the experiment.
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(a) Computer Simulation

(b) Bio-inspired Robot
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Figure A5.7: Results for a big downward movement from position 1 to position 4 (1 —
4) using (a) the computer simulation and (b) the bio-inspired robot.
The two rows show the shoulder and the elbow joint trajectory, respectively. The
blue lines depict the robot and simulation trajectories, the orange lines show one
movement of one typical control subject in the experiment.
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Figure A5.8: Results for a small upward movement from position 2 to position 3 (2 —
3) using (a) the computer simulation and (b) the bio-inspired robot.
The two rows show the shoulder and the elbow joint trajectory, respectively. The
blue lines depict the robot and simulation trajectories, the orange lines show one
movement of one typical control subject in the experiment.
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