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“Computational Thinking is a universal metaphor […] 

of reasoning used by both mankind and machines.” 

 

-Jeanette Wing 
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Abstract 

Computational thinking (CT) has been coined a fundamental 21st skill comparable to literacy 

and numeracy. As a cognitive ability underlying programming and coding skills, CT has been 

suggested to be fostered early on in education. Accordingly, the last decade significant 

research effort has been devoted to developing educational activities for CT, integrated into 

formal and informal educational settings. However, despite the various research on CT, its 

definition and the respective assessment approaches are still in their infancy. Consequently, 

the lack of a consensus definition of CT and the limited validated assessment tools for 

measuring CT restrain the empirical evaluation of the proposed educational materials.  

This thesis aims to investigate CT as a cognitive construct and provide an evidence-based 

definition for it, focusing on the underinvestigated population of elementary school children.  

To achieve this, first, a review of the literature was conducted to identify concrete CT 

concepts. Accordingly, a CT curriculum for 3rd and 4th graders was developed, taking into 

consideration the complexity of the CT concepts and therefore integrating game-based and 

embodied activities to provide a low-threshold introduction to CT. The novel parts of the 

curriculum, which are a series of life-size board games, were iteratively evaluated for their 

usability with adults and children before being integrated into it. After improvements to the 

games, the curriculum underwent a pilot and an effectiveness evaluation, the latter one 

designed as a randomized control field trial. In order to measure the effectiveness of the 

curriculum, a CT assessment tool was developed. Additionally, a correlational analysis was 

performed in both evaluation phases in order to investigate associations of CT with other 

cognitive abilities, and therefore complement the nomological network of CT and define the 

construct. 

Results on the effectiveness of the curriculum showed positive effects on students’ CT abilities 

and therefore appropriateness of the curriculum design, the development and evaluation 

procedures followed.  Moreover, the proposed CT assessment seems reliable for measuring 

CT at elementary school students and can be used in future studies. Results on the cognitive 

correlates of CT revealed positive associations of CT with verbal reasoning-, non-verbal 

visuospatial-, and complex numerical abilities. These results, compared to similar research in 

other age groups, show similarities but also differences. This implies that CT development is 

supported by different cognitive abilities across age groups. Additionally, the cognitive 
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abilities investigated in this research could only partially explain CT. This further supports the 

argument that CT is a specific cognitive ability that builds on and recruits a convolute of several 

other cognitive abilities, which are not yet extensively investigated in relation to CT.  
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Zusammenfassung 

Computational Thinking (CT) Computational Thinking (CT) [Informatisches Denken] ist eine 

essentielle Fähigkeit des 21. Jahrhunderts, die von Ihrer gesellschaftlichen Bedeutung mit 

Lesen, Schreiben und Rechnen vergleichbar ist. Diese kognitive Fähigkeit bildet eine Grundlage 

für Programmier- und Kodierfähigkeiten. Damit ist sie heutzutage zentral für die Ausübung 

vieler Berufe. Aufgrund dessen gibt es Bestrebungen, CT frühzeitig während der Schulbildung 

zu fördern. Dementsprechend wurden in den letzten zehn Jahren erhebliche Anstrengungen 

unternommen, um Bildungsaktivitäten für CT zu entwickeln, die in formelle und informelle 

Bildungssituationen integriert werden können. Trotz der verschiedenen Forschungen zu CT 

stecken seine Definition und die entsprechenden Bewertungsansätze noch in den 

Kinderschuhen. Das Fehlen einer einheitlichen Definition sowie die nur begrenzt validierten 

Bewertungsinstrumente zur Messung von CT schränken die empirische Evaluation der 

vorgeschlagenen Lehrmaterialien folglich ein. 

Das Ziel dieser Arbeit ist es, CT als kognitives Konstrukt zu untersuchen und eine 

evidenzbasierte Definition dafür zu liefern. Hierbei liegt der Schwerpunkt auf der noch wenig 

untersuchten Population von Grundschulkindern. In einem ersten Schritt wurde eine 

Literaturanalyse durchgeführt, um konkrete CT-Konzepte zu identifizieren. Darauf aufbauend 

wurde ein CT-Lehrplan für Schüler*nnen der 3. und 4. Klasse entwickelt, der die Komplexität 

der CT-Konzepte berücksichtigt und spielbasierte und verkörperte („embodied“) Aktivitäten 

integriert, um eine einfache Einführung in CT zu ermöglichen. Hierbei handelt es sich um eine 

Reihe lebensgroßer Brettspiele. Diese wurden vor ihrer Integration iterativ auf ihre 

Verwendbarkeit mit Erwachsenen und Kindern bewertet. Nach Verbesserungen der Spiele 

wurde der Lehrplan einer Pilot- und Effektivitätsbewertung unterzogen, wobei letztere als 

randomisierte Kontrollfeldstudie konzipiert wurde. Um die Wirksamkeit des Lehrplans zu 

testen, wurde ein CT-Bewertungsinstrument entwickelt. Zusätzlich wurde in beiden 

Bewertungsphasen eine Korrelationsanalyse durchgeführt, um Assoziationen von CT mit 

anderen kognitiven Fähigkeiten zu untersuchen und damit das nomologische Netzwerk von 

CT zu ergänzen und das Konstrukt zu definieren. 

Die Ergebnisse zur Wirksamkeit des Lehrplans zeigten positive Auswirkungen auf die CT-

Fähigkeiten der Schüler*nnen und damit auf die Angemessenheit des Lehrplandesigns. 

Darüber hinaus scheint die vorgeschlagene CT-Bewertung für die Messung von CT bei 
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Grundschüler*innen zuverlässig zu sein und kann in zukünftigen Studien verwendet werden. 

Die Ergebnisse zu den kognitiven Korrelaten von CT zeigten positive Assoziationen von CT mit 

verbalen Argumentations-, nonverbalen visuellen und komplexen numerischen Fähigkeiten. 

Der Vergleich dieser Ergebnisse mit bereits existierenden Studien in anderen Altersgruppen 

zeigt viele Ähnlichkeiten, aber auch Unterschiede. Dies impliziert, dass die CT-Entwicklung 

durch unterschiedliche kognitive Fähigkeiten in verschiedenen Altersgruppen unterstützt 

wird. Darüber hinaus konnten die in dieser Studie untersuchten kognitiven Fähigkeiten CT nur 

teilweise erklären. Dies stützt ferner das Argument, dass CT eine spezifische kognitive 

Fähigkeit ist, die auf mehreren anderen kognitiven Fähigkeiten aufbaut und diese rekrutiert, 

was im Bezug auf CT noch nicht umfassend untersucht wurde. 
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1 Computational Thinking: Definition 

Computational thinking (CT) is a term attracting considerable and increasing educational and 

research interest over the past few decades. The initial articulation of the term is credited to 

Seymour Papert (for a historical overview on the term conceptualization, see Kong & Abelson, 

2019) and the foundations of constructionism (Papert & Harel, 1991). Ιn 2006 though, Janette 

Wing launched the starting signal for the development of a whole new field of research in the 

interdisciplinary field bounded mainly within the domains of educational sciences, computer 

science (CS), psychology, and other complementary to these science domains. This first 

conceptualization of the term described CT as a way of “solving problems, designing systems, 

and understanding human behavior, by drawing on the concepts fundamental to computer 

science (...)  Computational thinking is reformulating a seemingly difficult problem into one we 

know how to solve, perhaps by reduction, embedding, transformation, or simulation.” (Wing, 

2006, p. 33). CT already in this initial attempt of definition was introduced as a fundamental 

skill distinctly different from programming, that requires thinking in higher levels of 

abstraction, draws upon mathematical and engineering thinking and is essential for everyone 

and not just computer scientists (Armoni, 2016; Settle et al., 2013).  

As already indicated in the first conceptualization of the term, CT is “a fundamental, not rote 

skill” (Wing, 2006, p. 35). This clear distinction emphasizes the difference of CT from computer 

programming, often referred also as coding. In CS, programming and coding refer to more 

practical and to a lesser extend cognitive skills, describing the acts of developing computer 

programs and writing computer code respectively. However, these two terms are very often 

referenced as related or complementary to CT (Armoni, 2016). Central concepts in coding and 

computer programming are the notions of sequencing, loops, parallelism, events, 

conditionals, operators and data (variables and constants) (Brennan & Resnick, 2012a). CT 

draws on cognitive processes such as algorithmic thinking, conditional logic, decomposition, 

abstraction, pattern matching, parallelization, and evaluation (e.g., Astrachan & Briggs, 2012; 

Wing, 2010). These cognitive processes can reflect concepts fundamental to coding and 

computer programming. However, though driven from CS in general and programming or 

coding in particular, they can be applied to various other domains, and in real-life problems 

or activities as well (P. S. Wang, 2015). Therefore, though CT seems a prerequisite for 

developing coding and programming skills, CT is considered a broader cognitive skill. As such, 



6 
 

and also as a universal problem-solving skill CT is related to the development of cognitive skills 

in various contexts, beyond CS (Armoni, 2016; Moreno-Leon et al., 2018; Yaşar, 2018a).  

As a cognitive ability underpinning programming and coding skills, CT has been suggested a 

competence comparable to literacy and numeracy, to be acquired early on in education (e.g., 

Wing, 2006a; Yadav et al., 2014). Consequently, over the last decade CT has been attracting 

increasing research interest (K. Tang, 2019), being considered a 21st-century and a universal 

skill (e.g., D. Barr et al., 2011; Settle et al., 2013; J. Voogt et al., 2013; Yadav et al., 2011).   This 

interest has inspired multiple efforts for integrating CT in school curricula either as a 

standalone topic or interdisciplinarily in the curricula of other STEM domains such as CS, but 

also beyond that (Chiprianov & Gallon, 2016; Lockwood & Mooney, 2017; Moreno-Leon et al., 

2018; Settle et al., 2013; Weintrop et al., 2016). This integration has been observed at all levels 

of education, from pre-school to university level, both in formal and informal educational 

settings (K. Tang, 2019). 

The increasing interest of integrating CT in school curricula and the consequent development 

of numerous educational materials for fostering CT demands appropriate assessment tools 

for evaluating their effectiveness. The design and validation of reliable CT assessments, 

however, demands a well-defined construct to be the targeted construct of assessment. There 

have been different efforts to elaborate on a purposeful definition of CT over the last years 

(Garcia-Peñalvo, 2016; Grover & Pea, 2013; Lockwood & Mooney, 2017; Yaşar, 2018b), but no 

consensus definition has been formulated yet in an evidence-based manner and therefore 

widely popularized. As a working definition and conceptualization of CT for this work, I used a 

definition that resulted from a review of the literature by Shute et al. (2017). This review 

describes CT as “the conceptual foundation required to solve problems effectively and 

efficiently (i.e., algorithmically, with or without the assistance of computers) with solutions 

that are reusable in different contexts” (Shute et al., 2017, p.142). This interpretation is in line 

with my approach of defining CT as the cognitive underpinning of computer programming, 

that goes beyond CS and can find application as a cognitive strategy in various other aspects 

of life. 

In the following four sections, first, a cognitive interpretation of CT is attempted (section 2), 

then, a description of integrating CT into a curriculum is presented (section 3), the CT 
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assessment is discussed (section 4), and last, the objectives of this dissertation are introduced 

(section 5). 
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2 Computational Thinking: Relevance to Cognition 

A recent summary of results from various empirical studies has shown multiple transfer effects 

of programming - as an integrative approach of teaching, learning, and assessing CT- on 

cognition (Scherer et al., 2019). This meta-analysis demonstrated positive near and far 

transfer effects on situations requiring creative thinking, mathematical skills, metacognition, 

spatial skills, and reasoning. Even though the most considerable part of research on potential 

transfer effects of programming is focused on the elementary school level, studies 

investigating the cognitive underpinnings of CT consider students at university level and, to a 

smaller extent, high school students (Román-González et al., 2018). Apart from the lack of 

studies on the cognitive correlates of CT in different age groups, the lack of a precise 

positioning of CT within the nomological network of cognitive abilities was also supported by 

a recent review on the empirical assessment of CT (X. Tang et al., 2020). Although 80 per cent 

of the reviewed studies on CT assessment measured cognitive constructs, the cognitive 

definition of CT is not yet well-grounded independently of the domain of programming skills. 

In the following sections, the available empirical evidence on associations of CT with other 

cognitive abilities at pre-school, elementary, middle, high-school, and university level is 

presented. These associations, in many cases, are investigated within the context of 

programming or other STEM activities, a research limitation already been pointed out in 

literature (e.g., Scherer et al., 2019; Tang et al., 2020). The conclusions drawn by examination 

of the current state of the literature posit that there are specific associations of CT (and, 

therefore, programming skills) with other cognitive abilities. Nevertheless, these associations 

should be further investigated across age groups and with larger sample sizes in order to gain 

a better understanding of how this construct develops.  

2.1 CT and numerical/mathematical cognition 
The association between programming and numerical/mathematical abilities was already 

reported almost thirty years ago (e.g., Pea & Kurland, 1984). A significant number of 

subsequent empirical studies substantiated these results (e.g., Bergin & Reilly, 2006; Byrne & 

Lyons, 2001; McCoy & Burton, 1988; Nowaczyk, 1983). CT literature so far points towards 

programming as the most common way of fostering CT in the early years of school (Moreno-

Leon et al., 2018). Consequently, investigating associations of CT with numerical 
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/mathematical abilities seems relevant for an initial understanding of CT as a unique cognitive 

ability, which could potentially find application beyond CS (Settle et al., 2013). 

From a theoretical perspective, the associations between CT and numerical/mathematical 

abilities have been visually portrayed by Sneider et al. (2014) with a Venn diagram that 

indicated besides unique capabilities of mathematical and computational thinking; 

capabilities considered common for both (see Figure 1). The similarities between the two 

support the notion that CT could be used as a teaching approach infused in different STEM 

domain classes (e.g., Perkovic et al., 2010; Settle et al., 2012, 2013; Weintrop et al., 2016). 

 

Figure 1. Venn diagram of mathematical and computational thinking (Sneider et al., 2014). 

From an empirical perspective, associations between CT and numerical/mathematical 

cognition have been inconsistent among studies and across age groups (for a brief review, see 

Study 5: A cognitive approach to defining and assessing computational thinking: An empirical 

study in primary school). There have been studies showing no significant association between 

CT (or programming) and numerical/mathematical abilities (Ambrosio et al., 2014; Román-

González et al., 2017) and others that indicated positive weak to high associations (Prat et al., 

2020; Román-González et al., 2018; Werner, 2020). 

The inconsistent results on the association of CT and programming skills with 

numerical/mathematical cognition follow a pattern that indicates that the association seems 

more evident in younger than in older populations. This pattern may be explained by the fact 

that numerical/mathematical abilities may be a prerequisite for thinking computationally at 
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an early stage of cognitive development rather than that they are later on when a specific 

threshold of numerical/mathematical abilities has been reached or exceeded (Tsarava et al., 

2019). 

2.2 CT and language ability 

The association between CT and language abilities has been investigated in quite a few studies 

so far (for a brief review, see Study 5: A cognitive approach to defining and assessing 

computational thinking: An empirical study in primary school); however, these studies can be 

found less frequently than similar ones investigating the association of CT with other cognitive 

abilities. Significant positive associations have been reported in populations of pre-schoolers 

(Marinus et al., 2018), middle school children (Howland & Good, 2015), high-school students 

(Román-González et al., 2017), and adults (Prat et al., 2020). Interestingly, one of these studies 

found a positive correlation between CT and verbal ability, while did not find a significant one 

between CT and numerical/mathematical abilities (Román-González et al., 2017). 

These results seem to indicate that language ability is relevant for CT and programming skills. 

In some cases, this relevance was even more pronounced than the one of 

numerical/mathematical abilities.  

2.3 CT and visuospatial abilities 
Several empirical studies have supported the association between CT (and programming skills) 

and visuospatial abilities over the last decade (for a brief review, see Study 5: A cognitive 

approach to defining and assessing computational thinking: An empirical study in primary 

school). These studies provide evidence on the association across different age groups, like 

elementary school children (e.g., Città et al., 2019), middle school children (e.g., Román-

González et al., 2017), university students (e.g., Jones & Burnett, 2008), and adults (e.g., 

Parkinson & Cutts, 2019).  

In brief, these studies suggest that visuospatial abilities are significantly associated with CT, 

and the results have been consistent among age groups, from early elementary school 

students up to adults. 

2.4 CT and general cognitive ability 
CT is often described in the literature as a problem-solving process (for a review, see Kalelioğlu 

et al., 2016). Problem-solving skills are closely related to specific aspects of fluid intelligence 
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(Carroll, 1993). According to various empirical studies, the ability to program is also associated 

with non-verbal and general intelligence. In comparison, the empirical evidence on the 

association of CT with problem-solving ability has been evaluated explicitly in very few studies 

(Román-González et al., 2017).  

Having already described CT as a cognitive ability that is closely related to programming skills 

and thus, having strong indications of the association between both CT and programming 

ability with problem-solving skills, it seems we can presume and expect an association 

between CT and cognitive abilities in general. 
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3 Computational Thinking: Curricula 

During the past few years, CT has been systematically integrated into the official curricula of 

many countries  (e.g., for the UK, see Brown et al., 2014; for France, see Chiprianov & Gallon, 

2016; for Australia, see Falkner et al., 2014; for North Macedonia, see Jovanov et al., 2016; for 

Taiwan, see S. Kong & Abelson, 2019). The integration has occurred with CT fostered either as 

a standalone teaching subject within CS curricula or as an interdisciplinary teaching approach 

of other STEM-related teaching subjects (e.g., V. Barr & Stephenson, 2011; Dierbach et al., 

2011; Weintrop et al., 2016).  

Apart from the consequent integration of CT in university-level education (e.g., Dierbach et 

al., 2011) where the transfer of knowledgable workers to the technology-oriented job market 

is immediate, the efforts of promoting CT are also focusing on the secondary educational level 

(e.g., Settle et al., 2012). Lately, such efforts have been embraced in elementary school 

education (e.g., Brackmann et al., 2017) as well and gradually, are also being experimentally 

introduced in pre-school settings (e.g., Sullivan et al., 2013). These efforts are observed both 

in formal and informal educational settings worldwide. 

Though CT still lacks an elaborated definition, its educational value is broadly supported by 

the research community, educational policymakers, professional associations and non-

governmental initiatives worldwide (e.g., Qualls & Sherrell, 2010; for a short review, see also 

Study 6: Evaluation of a Computational Thinking Intervention for Elementary School Children: 

A Randomized Controlled Field Trial).  CT as an integral part of ICT literacy has caused a 

transparent shift in education by switching the main focus from teaching particular 

technological tools to inspiring students’ understanding of how technology works and trigger 

students’ technological creations (Curzon et al., 2014). In other words, CT provides the 

pathway for students to not just behave as consumers of technology but be also the potential 

creators of technology (i.e., prosumers).  

The continually increasing interest in fostering CT  has resulted in plentiful educational CT 

materials. Accordingly, there have been various frameworks proposed for designing CT 

curricula to foster CT as a broader cognitive ability applied to different courses and in different 

contexts (e.g., Curzon et al., 2014; Perković et al., 2010). The effectiveness of these materials 

(either as complete curricula or independent activities) has been explored in several studies 
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(e.g., Aggarwal et al., 2017; Tran, 2019; Van Dyne & Braun, 2014; for a short review, see also 

Study 6: Evaluation of a Computational Thinking Intervention for Elementary School Children: 

A Randomized Controlled Field Trial). Regardless of the various studies on the effectiveness of 

CT curricula, very few of them manage to report relevant statistical information (i.e., effect 

sizes, confidence intervals, and levels) about the learning effects of CT interventions (McGill & 

Decker, 2020). This gap in research does not allow for generalization about the effectiveness 

of the teaching approaches for CT followed so far. Consequently, the lack of adequate 

statistical results of empirical research on the effectiveness of CT curricula delays the 

advancement of the research field. 

To conclude, at the same time, that plenty of CT curricula and other educational materials 

have been designed and implemented worldwide, their effectiveness has not yet been 

thoroughly investigated. This can be partly explained by the lack of reliable CT assessment 

tools. The assessment instruments for measuring CT and therefore, the learning outcomes of 

these educational materials are still in an early stage of development and validation (Román-

González et al., 2019; X. Tang et al., 2020).  In the following section, an overview of the existing 

research effort for the development and validation of such tools is presented. 
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4 Computational Thinking: Assessment 

The evaluation of the numerous curricula and educational materials designed to foster CT is 

highly dependent on appropriate CT assessment tools. These measurement instruments are 

required in order to assess prior CT abilities effectively, monitor the learning development of 

CT, and measure learning outcomes. The research on this field has progressed a lot in the last 

few years; however, there is still a lot to be done for the creation and validation of assessment 

tools that allow for reliably assessing CT development across age groups (for a brief review, 

see Study 4: Cognitive Correlates of Computational Thinking: Evaluation of a Blended 

Unplugged/Plugged-In Course). 

The most recent review of studies on the assessment of CT has revealed multiple weaknesses 

in the empirical research conducted so far (X. Tang et al., 2020). A synopsis of this review’s 

conclusions indicates that i. there is a lack of CT assessment tools for the upper educational 

levels, starting from high-school and onwards, ii. the assessment tools should correspond to 

specific definitions of CT and specific subject-domains of application, iii. they should also be 

qualitative, iv. undergo a reliability analysis and validation process, v. should support the 

differentiation of CT from strictly CS-related topics, and vi. should be platform-independent in 

order to be accessible. Despite a series of limitations, the attempts of measuring CT so far 

have been numerous (e.g., Ambrósio et al., 2015; Moreno-León et al., 2015; Mühling et al., 

2015; Román-González, Moreno-León, et al., 2017; Weintrop et al., 2014; Wiebe et al., 2019), 

and have paved the way for future progressions in CT research. 

Some approaches to measuring CT are tightly dependent on the assessment of projects 

developed in specific programming environments. Brennan & Resnick (2012b), for example, 

suggested a CT assessment utilizing the Scratch programming environment for portfolio 

analysis of projects developed in Scratch, artefact-based interviews, and design scenarios. In 

the same vein, the Progression of Early Computational Thinking model (PECT; Seiter & 

Foreman, 2013)  extended the previous approach by integrating evidence variables, design 

pattern variables, and CT concepts when assessing Scratch projects. Similarly, Dr. Scratch 

(Moreno-León et al., 2015) is a formative CT assessment tool that analyzes automatically CT 

concepts identified in Scratch projects. There have been quite a few similar approaches 

dependent on programming environments other than Scratch. The Fairy Performance 

Assessment (L. Werner et al., 2012), for example, assesses CT within the Alice programming 
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environment and a real-time assessment tool which, in a like manner, assess CT within 

activities of the programming environment Agentsheet and Agentcubes (Koh et al., 2014). 

Though quite a few examples of CT assessment approaches are linked to specific programming 

environments, others go beyond both programming environments and programming 

activities as well. The extensive work of Weintrop et al. (2014), for instance, proposes digital 

interactive assessment tasks that measure CT within different STEM subjects, like biology, 

chemistry e.t.c. Likewise, the Organisation for Economic Co-operation and Development 

(OECD) recently announced that the 2021 PISA (Programme for International Student 

Assessment) mathematics assessment would incorporate tasks that will assess CT within its 

mathematics assessment framework (OECD, 1970).  

Apart from digital assessments, there have been quite a few psychometric approaches for 

assessing CT detached from any specific digital environment (e.g., Chen et al., 2017; Mühling 

et al., 2015). An example of such an approach is the Commutative Assessment (Weintrop & 

Wilensky, 2015), which assesses different CT concepts in two different modalities (i.e., text- 

and block-based), aiming to provide further insights into the understanding of CT depending 

on the modality of the tasks.  

CT assessments, except from their modality (i.e., digital/non-digital and programming-

environment dependent/independent), vary also based on the target group they are designed 

for. There has been an attempt to assess CT already in pre-school with the Coding 

Development (CODE) Test 3-6 (Marinus et al., 2018). A very recent assessment tool for the 

early elementary school is the Beginners Computational Thinking test (BCTt; Zapata-Cáceres 

et al., 2020), which is still undergoing validation. A well-validated CT assessment for middle 

school is the Computational Thinking test (CTt; Román-González et al., 2017).  

According to the population that those tests are addressed to, they utilize accordingly specific 

graphical designs for their assessment tasks. For example, the CODE Test 3-6 presents the 

tasks orally on a life-size mat, and children have to resolve them by programming an 

educational robot. The BCTt employs a kids-friendly graphic environment of mazes on paper 

that uses colourful animals and shapes for the presentation of the tasks which children have 

to solve by selecting one of four multiple answers, given as a series of arrows and shapes. 

Similarly, the CTt used a slightly more complex graphic environment to present tasks with 
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more detailed mazes and drawing canvas, which children had to solve by selecting one of four 

multiple answers,  given as a series of visual programming block commands or arrows. 

Even though there has been a significant development of CT assessment tools recently, tools 

that operationalize different definitions of CT, use various modalities and approaches of 

assessment and are targeting different populations, most of them still luck evaluation and 

validation with large samples.  An exception to this phenomenon is the CTt. The CTt is the only 

CT assessment tool so far for which there is empirical evidence on its content validity, criterion 

validity, convergent validity, predictive validity, and cross-cultural validity (Tsarava et al., 

2019). 

As Román-González et al. (2019) and Shute et al. (2017) state in their work, there have been 

a myriad of CT assessment tools developed; however, if we -the research community- want 

CT to survive and be considered an ability worth to be fostered and developed, we need to 

define it as a well-established psychological construct. To do so, they suggest to define 

operational CT models and empirically validate them in order to advance the research on CT 

assessment and CT in general. Towards this direction, Román-González et al. (2019) classified 

existing CT assessment tools in seven categories, namely: i. diagnostic tools, ii. summative 

tools, iii. formative-iterative tools, iv. data-mining tools, v. skill-transfer tools, vi. perceptions-

attitudes scales, and vii. vocabulary assessments. They then combined specific CT assessment 

tools of different categories, and empirically investigated their converged validity. They 

concluded that the three different types of CT assessment tools they incorporated in their 

investigation seem to be complementary to each other, and for that reason, they suggested 

future research on “systems of assessment”. These systems would combine tools from 

different categories instead of using one single CT assessment tool. In that way, CT could be 

more effectively captured at an overall level.  

In conclusion, CT assessment research has made progress during the last years, showing the 

development of a plethora of assessment tools. Critical for the existence and the development 

of the CT research field, in general, would be the validation of these tools. Moreover, the 

elaborated comparative investigation of the existing CT assessment tools would be crucial for 

the understanding and concrete definition of CT as a cognitive construct of high value for 

education. 
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5 Objectives of the Thesis 

Addressing the above-described lack of definition, the present thesis seeks to specify CT as a 

cognitive construct. Therefore, I evaluated associations of CT with other cognitive abilities 

(e.g., verbal and spatial reasoning, etc.) as well as the contribution of these cognitive abilities 

to learning CT in a randomized control field trial. Thereby, I gained insights into what CT is as 

a cognitive construct underlying programming skills as well as how CT may be assessed and 

fostered efficiently and differentially. A better understanding of CT as a cognitive construct 

would allow for the design and development of more reliable CT assessment tools and 

therefore, for evaluated and more effective educational materials for teaching CT.  

CT as a term has been widely popularized in the last few decades (Kong & Abelson, 2019; 

Lockwood & Mooney, 2017; Moreno-Leon et al., 2018), and its importance is notably leading 

to a considerable development of educational material to foster it (e.g., Grover & Pea, 2013; 

Lockwood & Mooney, 2017). Nevertheless, these efforts are often evaluated only 

insufficiently using empirical methods, and the corresponding assessment tools are still in the 

early stages of development and validation (X. Tang et al., 2020). Against this background, I 

aim at providing new empirical evidence on CT as a cognitive construct, on the respective 

assessment of CT, and the effectiveness of specific design approaches for fostering CT. 

Because CS education has already been part of the elementary school curricula in many 

countries and is even suggested to be relevant already from the pre-school level, this thesis 

focuses on an elementary school population.  

5.1 Summary of objectives 

The overarching aim of this thesis is the cognitive definition of CT, which in the future would 

allow for more relevant didactical approaches to foster CT, along with the development of 

appropriate assessment tools for measuring CT. New insights on what CT is in relation to other 

cognitive abilities will complement the current literature and research on the didactics of CT 

as crucial 21st-century skillset that needs to be fostered early on in education, either as part 

of computer science courses or interdisciplinarily in other STEM and non-STEM courses. A 

better understanding of CT as a cognitive structure will, therefore, facilitate better curricula 

design, implementation, and evaluation. Thus, it will enhance current and future research on 

CT assessment tools. 
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To specify the cognitive correlates of CT, a curriculum was developed for intervention studies. 

The curriculum design was based on a review of the literature on recent didactic approaches 

in the CS education community worldwide (Study 1). Accordingly, the unplugged playful parts 

of the curriculum that were developed exclusively for it were iteratively evaluated to ensure 

appropriateness regarding the targeted audience‘s age and the study’s purpose (i.e., 

evaluation with adult participants, Study 2; evaluation with elementary school children, Study 

3). Furthermore, an assessment tool for CT in secondary school children (CTt; Román-

González, Pérez-González, et al., 2017) was adapted and validated to be used as an instrument 

for assessing CT differentially in comparison to other cognitive skills (Studies 4 and 5). 

Additionally, the proposed curriculum underwent a multi-level evaluation procedure to 

evaluate its learning effects as assessed by the newly developed CT assessment instrument, 

among others (i.e., pilot-phase evaluation, Study 4; effectiveness evaluation, Study 6). 

In the following, motivation and objectives of each study will be outlined briefly. The six 

studies of the current thesis are separated into two sections (i.e., Part II, section 6 and 7) with 

three studies each. The first section (i.e., 6) focuses on the design and development of the 

curriculum fostering CT in elementary school children, which was later on used as an 

intervention for the studies to follow. The second section (i.e., 7) focuses on the specification 

of CT as a cognitive construct and its assessment. The articles and manuscripts reflecting the 

research summarized in sections 5.2 and 5.3 are presented in sections 6 and 7, respectively. 

The individual results of the six studies will be summarized at the beginning of the general 

discussion (Part III, section 8).     

5.2 Curriculum design and development for fostering CT 

5.2.1 Study 1: Training computational thinking: Game-based unplugged and 
plugged-in activities in primary school 

In Study 1, a review of the literature was done to identify the current state of curriculum 

design approaches in elementary school CS education, and upon that to design a new CT 

curriculum for elementary school children. This curriculum would be offered as an 

intervention in the following studies (Studies 4 and 6). First, definitions of CT and CT concepts, 

in particular, were identified from the literature. Then the instructional methods for fostering 

CT in computer science-related topics were described. Consequently, the conceptualization of 

a curriculum for fostering CT in 3rd and 4th graders was introduced along with some 

unplugged/plugged-in playful activities.  
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The CT concepts identified from the literature were i) sequences, ii) loops, iii) parallelism, iv) 

events, v) conditionals, vi) operators, and vii) data/variables. These concepts were planned to 

be introduced in the curriculum using initially playful unplugged activities and then plugged-

in ones in order to decrease the cognitive effort of understanding complex concepts and hence 

increase motivation. These unplugged activities build upon the concept of programmable 

robots, like Papert’s turtle (Papert, 1999), which are non-digital, life-size board games that 

facilitate embodiment and collaboration during the learning activities. These were proposed 

to be followed-up by plugged-in activities, which draw on the same CT concepts in a well 

structured educational programming environment, which facilitates novice programmers by 

supporting a block-based programming language. All activities addressed topics of different 

STEM domains and provided a perspective on the usability of CT concepts in real-life problem-

solving broader than the context of computer science.  

5.2.2 Study 2: Computational thinking through board games: The case of Crabs & 
Turtles 

In Study 2, the unplugged activities of the curriculum conceptualized in Study 1 are described 

in more detail, and the results of an initial evaluation are presented. The unplugged activities 

are three life-size board games introduced under the name “Crabs & Turtles: A Series of 

computational adventures”8 (in German: Schildkröten & Krabben). They offer a low threshold 

introduction to CT and coding concepts and are addressed to elementary school children. 

Moreover, they are designed in life-size embodiment during learning and collaboration during 

play. In 2018, the games competed at the 12th European Conference on Games Based Learning 

and won two prizes, the 1st prize in the category of non-digital games, and the overall 1st prize 

of the competition (joint). In 2020, they became available as an open educational resource 

(OER) via the digital repository of OER materials of the University of Tübingen9. 

The study reports the two first phases of the empirical evaluation that the educational games 

underwent. In these evaluation phases, feasibility and user experience during play were 

investigated in two different adult samples to ensure the appropriateness of the games before 

evaluating the target population of elementary school children. First, we examined users’ 

game experience on a sample of university students who provided quantitative and qualitative 

 
8 https://crabsturtles.iwm-tuebingen.de/  
9 The games are accessible at http://hdl.handle.net/10900.3/OER_MDCKSMXP. 

https://crabsturtles.iwm-tuebingen.de/
http://hdl.handle.net/10900.3/OER_MDCKSMXP#_blank
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feedback, which was then integrated into the next version of the games. Second, we examined 

users’ gaming experience on a sample of gamification experts and teachers. The results of this 

study were incorporated into the next version of the games, which was evaluated on a sample 

of elementary school children (Study 3). 

5.2.3 Study 3: Board games for training computational thinking 

Study 3 builds upon the results of the previous study, the qualitative feedback of gamification 

experts and teachers was integrated into a newer version of game instructions, and the users’ 

gaming experience was evaluated on a sample of elementary school children. The iterative 

process of evaluating the games is presented along with the results of the evaluation on the 

target population. The results are presented separately for each one of the three games as 

they were evaluated as separate games. The overall results substantiated the appropriateness 

of the games as playful activities and were integrated into the curriculum as it was 

conceptualized in Study 1. 

5.3 Cognitive correlates of CT and its assessment  
5.3.1 Study 4: Cognitive correlates of computational thinking: Evaluation of a 

blended unplugged/plugged-in course 

In Study 4, a pilot evaluation of the developed CT curriculum is presented as well as an initial 

investigation of CT and its association with other cognitive abilities. Moreover, the 

development of a CT assessment tool used in the studies to follow was presented. Course 

evaluation followed a pre-/post-test design procedure utilizing standardized assessment tools 

of well-established cognitive abilities (i.e., numerical, verbal, visuospatial) and a CT 

assessment instrument, which was adapted to fit the study’s target population. This 

instrument resulted as an adaptation of an existing validated assessment tool, which was 

initially designed for an older group. 

The aim of this study was i.) to initially evaluate the feasibility of the course before moving on 

to the next evaluation phase, which was a randomized control field trial (Study 6) on a larger 

sample, and ii. to examine the reliability of the assessment tools used for the evaluation and 

especially the reliability of the adapted CT assessment tool before moving on to a correlational 

study on a larger sample (Study 5). The results of this study provided first indications of course 

feasibility and effectiveness, along with a first overview of the relationship of CT with other 

cognitive abilities.  
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5.3.2 Study 5: A cognitive approach to defining and assessing computational 
thinking: An empirical study in primary school  

In Study 5, associations of CT with other cognitive abilities in elementary school children are 

investigated in more depth and relying on a larger sample. Similar research has been done on 

populations of secondary school, high-school, and university level but not yet on elementary 

school children. This study aimed at investigating the associations of CT with other cognitive 

abilities to understand CT as a cognitive construct better and thus enrich its definition and 

allow for an appropriate assessment approach of CT in this particular age group. The results 

for associations of CT with other cognitive abilities in this elementary school sample 

complement the known cognitive correlates of CT across age groups, from elementary school 

to university level, indicating differences of cognitive interdependencies of CT during age 

development. 

5.3.3 Study 6: Computational thinking training: Implementation and effects on 
elementary school children’s cognitive and computational thinking skills 

Study 6 describes the last phase of curriculum evaluation, which is a randomized control field 

trial on elementary school children—this study aimed at evaluating the effectiveness of the 

CT curriculum developed as described above. In contrast to the pilot evaluation phase (Study 

4), the instructors participating in the study were not the developers of the course material. 

This approach allowed for conclusions on the effectiveness of the course while controlling for 

instruction fidelity. The curriculum materials (e.g., lesson plans, short assessments, etc.) along 

with information about the theoretical and methodological approaches of the course are 

documented in a detailed course manual of 250 pages (Leifheit et al., 2018). The effects of the 

course were measured for performance on different cognitive and CT assessments and 

provided indications on the appropriateness of the course design to foster CT. 

Taken together, the six studies as mentioned above, seek to contribute in answering the 

existing open questions gathered from the research literature of CT. These open questions 

summarized concern the following: i. a widely accepted definition of CT, ii. reliable assessment 

tools for measuring CT abilities, iii. the cognition of CT, iv. the appropriate age of introducing 

CT to children, v. the context and modality of the materials designed to foster CT, vi. the 

interdisciplinarity of the CT concepts, and vii. the teachers’ qualifications for delivering CT 

interventions (Angeli et al., 2016; Brackmann et al., 2017; Chiprianov & Gallon, 2016; 

Lockwood & Mooney, 2017; Sentance & Csizmadia, 2017; Settle et al., 2012; Joke Voogt et al., 
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2015; P. Wang et al., 2019; Yadav et al., 2014). In Study 1, the literature on CT was reviewed, 

and accordingly, the conceptualization of a CT curriculum for elementary school students was 

presented. In Studies 2 and 3, the appropriateness and usability of the game-based materials 

developed for the CT curriculum was investigated with samples of adults and children. In Study 

4, the pilot evaluation of the CT curriculum was conducted, along with a first correlational 

analysis of CT performance with other cognitive abilities, on a limited sample of elementary 

school children. Moreover, a CT assessment tool for elementary school students was 

developed, based on an adaptation of an existing tool for older children. In Study 5, the 

cognition of CT was investigated by conducting a correlational analysis of CT performance with 

other cognitive abilities on a sample of almost 200 elementary school students. Finally, in 

Study 6, the proposed CT curriculum was evaluated for its effectiveness on children’s CT 

abilities in a randomized controlled field trial.  
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6 Computational Thinking: Curriculum Design 

In this chapter, the following articles are attached: 

 Study 1: Training computational thinking: Game-based unplugged and plugged-in 
activities in primary school.  

 Study 2: Training computational thinking through board games: The case of Crabs & 
Turtles.  

 Study 3: Board Games for Training Computational Thinking.  
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Training Computational Thinking: Game-based 
Unplugged and Plugged-in Activities in Primary School 

Katerina Tsarava, Korbinian Moeller, Niels Pinkwart, Martin V. Butz, Ulrich Trautwein, 

Manuel Ninaus 

 

Abstract 

Computational thinking (CT) denotes the idea of developing a generic solution to a problem 

by decomposing it, identifying relevant variables and patterns, and deriving an algorithmic 

solution procedure. As a general problem-solving strategy, it has been suggested a 

fundamental cognitive competence to be acquired in education - comparable to literacy and 

numeracy. However, integrating CT into general curricula has been challenging. Therefore, the 

current project aims at developing an extra-curricular training of CT for primary school 

children. From a literature review, we identified seven concepts central to CT: i) sequencing, 

ii) loops, iii) parallelism, iv) events, v) conditionals, vi) operators, and vii) data/variables. In our 

targeted educational training program, we will specifically address these concepts (which are 

shared concepts between CT and programming/computer science education) in 2-step 

procedures using corresponding game-based unplugged and plugged-in activities. Playful 

unplugged activities, such as a treasure hunt board game for the concept of using variables as 

placeholders for information, shall allow children to get a first grip on CT processes by actively 

engaging them. In the game, a treasure is to be hunted by completing a series of arithmetic 

operations, in which players have to handle different variables (e.g., dice faces, scores, etc.). 

Building on this unplugged activity, a related plugged-in scenario is a programmable 

simulation of raindrops filling a glass. While raindrop and glass volume are constants, the fill 

level of the glass may be the variable to manipulate. In both kinds of activities, we aim at 

clarifying the association between CT-based solving real-life problems and aspects of different 

STEM disciplines. The series of unplugged and plugged-in activities are integrated into a 

gamified approach suitable for primary school children, employing badges for mastering 

specific CT processes to increase students’ engagement and give feedback about their learning 

progress. The instructional design will integrate principles of constructionism, game-based, 

and project-based learning, such that students will construct knowledge through playing and 

interacting with interdisciplinary educational scenarios. The course will be empirically 
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evaluated with 3rd and 4th graders in primary schools. Thereby, the idea of evidence-based 

instruction is pursued to ensure the efficiency and validity of our training. 

Keywords: computational thinking, programming, coding, unplugged activities, game-based 

learning, gamification 
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1 Introduction 

In recent years, there is a growing emphasis on the importance of computer programming or 

coding skills as 21st-century skills (Wing, 2006, 2010; NRC, 2011). For STEM disciplines, in 

particular, programming/coding has been argued to be an indispensable instrument for 

solving complex problems or increasing efficiency through automation (Wing, 2010). Thus, 

fostering those relevant skills early on in education seems a desirable prerequisite, preparing 

children for current and future demands of our knowledge societies, spanning from job 

requirements to leisure time activities. Against this background, the current article proposes 

an educational course and training for 3rd and 4th graders to foster programming/coding skills. 

However, in contrast to most similar courses, we take a more cognitive skill-oriented 

approach, integrating the training of programming/coding skills into the conceptual, 

theoretical framework of computational thinking (henceforth CT), by employing 2-step 

procedures using unplugged and plugged-in activities. Moreover, we embedded this in a 

game-based constructivist pedagogical approach with the aim of introducing CT to young 

students (by means of coding). CT, as an overarching cognitive skill, is closely related to the 

different STEM disciplines (e.g., Sanders, 2009). Thus, CT allows for an interdisciplinary 

perspective on using fundamental coding skills to solve real-world problems. Accordingly, the 

main contribution of this study will be the development of an integrated framework that 

fosters coding competence as a practical skill and CT competence as a conceptual cognitive 

skill. 

In the following, we will first elaborate on the close association between programming/coding 

as a practical and CT as a cognitive skill, before highlighting the relevance of CT for modern 

educational programs. We then provide a short overview of existing coding and CT trainings, 

followed by a detailed description of the training we developed to foster coding in 3rd and 

4th-graders and a brief conclusion. 

1.1 Coding and computational thinking 

Computer programming – also referred to as coding – has been coined a crucial 21st-century 

skill due to the constantly increasing need to keep up with the growing impact of information 

and communication technologies (henceforth ICT) on human activities. ICT have become 

prevalent in many facets of everyday life, like production, health, and education, security, job 

requirements, but also leisure time activities etc. This is reflected in the latest interest of 
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scientific organizations and also governments (e.g., European Schoolnet, European Coding 

Initiative) all over the world on the establishment of an effective framework for introducing 

ICT, coding, and CT skills to students already at a young age. Although these three terms share 

common meanings, they should not be confused as identical. ICT skills refer to general skills 

related to the use of computer devices and relevant digital content, like software, digital 

documents, etc. In contrast, coding skills describe the practical ability to write and design 

software programs as functional computer applications. Finally, CT denotes more general 

cognitive problem-solving skills based on systematic and computationally-oriented 

procedures (Balanskat & Engelhardt, 2015). Each of these skills is important not only to 

become a competent user of ICT but also to meet the needs of our increasingly digitized world. 

However, while programming/coding is considered a more practical skill, we want to 

emphasize that CT reflects a broader cognitive concept that is fundamentally critical for 

becoming computationally literate, besides the fact that at least rudimentary CT is essential 

for the acquisition of more practical coding skills (Balanskat & Engelhardt 2015; Garcia-

Penalvo et al., 2016). At the same time, fostering CT, detached from coding, might result in 

somewhat subpar and abstract educational scenarios. This fact supports the latest efforts and 

increased interest in fostering CT as a conceptual cognitive skill that can be applied 

interdisciplinarily in different domains over the mere training of practical skills, such as coding 

(e.g., Yadav et al., 2016; see also Figure 1). 

Being able to code reflects the “21st-century vision of students who are not just computer 

users but also computationally literate creators” (https://k12cs.org/). Unsurprisingly, ideas to 

specifically promote and teach coding abilities already starting in primary school have become 

increasingly popular (e.g., Balanskat & Engelhardt, 2015; https://code.org/). Central concepts 

in coding are the generic ideas of sequencing, loops, parallelism, events, conditionals, 

operators, and data/variables (e.g., Brennan & Resnick, 2012). Interestingly, coding as a 

practical skill shares these concepts with the psychological construct of CT as a cognitive skill 

(see Figure 2). Computational Thinking is construed as “the thought processes involved in 

formulating problems and their solutions so that the solutions are represented in a form that 

can be effectively carried out by an information-processing agent” (Cuny et al., 2010). CT 

denotes the idea of developing a generic solution to a problem by decomposing it, identifying 

relevant variables and patterns, and deriving an algorithmic solution procedure (e.g., Wing, 

2006; Kazimoglu, 2013). In fact, this closely resembles the proceeding in coding. As such, code 
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is usually organized in loops of sequences of defined events that involve specific operations 

performed on the to-be defined variables. Correspondingly, CT skills specifically draw on 

processes such as algorithmic thinking, conditional logic, decomposition, abstraction, pattern 

matching, parallelization, evaluation, and generalization (e.g., Wing, 2010; Briggs, 2014); 

thereby reflecting cognitive instantiations of concepts central to coding. Importantly, these 

concepts, as well as their cognitive counterparts in CT, are not to be understood as domain-

specific in the sense that they can only be applied to the domain of computer science. Instead, 

CT should be viewed as a much more general problem-solving strategy, which can be applied 

to different domains over and beyond computer science (e.g., deductive reasoning). 

Therefore, CT has been suggested as a fundamental cognitive competence that should be 

acquired in education – comparable to literacy and numeracy (Yadav et al., 2014). 

1.2 Computational thinking in education 

As a general problem-solving strategy, the influences of CT are closely related to STEM 

disciplines (V. Barr & Stephenson, 2011). Furthermore, CT has also begun to influence areas 

of active study over and beyond STEM, such as algorithmic medicine, computational 

archaeology, computational economics/finance, digital humanities etc. (Wing, 2010). For this 

reason, governments and educational institutions all over the world worked on a coherent 

definition of CT and the integration of CT in the curricula of educational programs of primary, 

secondary, and higher education over the last decade. For instance, educational institutions 

in the US revised their undergraduate curriculum in computer science and changed their first 

course in computer science to cover fundamental principles and processes of CT as a cognitive 

skill (e.g., Perkovic et al., 2010; Wing, 2010). Moreover, in 2013, the computer science 

curriculum for universities in the UK was revised by focusing strongly on the promotion of CT 

as a widely applicable and transferable skill in computer science (Brown et al., 2014). 

Furthermore, the relevance and importance granted to CT are also reflected by the fact that 

in 2014 the European Coding Initiative was founded. In collaboration with several European 

Ministries of Education, members of the European Schoolnet, and the support of major 

technological enterprises (e.g., Microsoft, Facebook), the initiative aims at promoting a 

sensible integration and evaluation of coding and CT in the official educational curricula 

(Balanskat & Engelhardt, 2015).  
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Figure 1: Illustration of Google trends over the course of time, for the search terms “computational thinking” 
and “programming skills”. Worldwide interest (y-axis) reflects the search interest of the corresponding topic 

relative to the highest point in the chart (https://trends.google.com/trends/). [Accessed 30/04/2017] 

This envisaged societal relevance of CT and its wide range of applicability let us decide to 

develop a training of practical coding skills, integrated into a course on CT applied to various 

STEM contexts for 3rd and 4th graders. To realize the broad applicability of the training and 

because of reasons of platform independency, we suggest that coding in young ages should 

not be based on a specific programming language, as these change rapidly according to market 

and technology changes. For this reason, we aimed at fostering children’s coding skills on the 

broader and more transferrable level of CT. Moreover, we tried to avoid common concerns 

on introducing coding already in primary school (Garcia-Peñalvo, 2016) by i) implementing a 

game-based approach of learning by doing, ii) focusing on cognitive processes of CT and not 

on practical coding skills related to specific programming languages, iii) using unplugged haptic 

games and plugged-in low-threshold visual programming environments, and iv) by adopting 

an overarching gamified framework accompanying the training for maintaining and increasing 

motivation. Thereby, we build our training on the theory of constructionism following the 

principles of “learning-by-doing” (e.g., Harel & Papert, 1991), which were established and 

evaluated in well-known environments for early programming, like the Logo programming 

language, Scratch, etc.  
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Figure 2: Illustration of association between the practical skills of coding, CT as corresponding cognitive skills 
and the broad applicability of CT as a general problem-solving strategy to different content domains such as 

STEM. 

2 Course Concept 

2.1 Course aim 

We specifically designed the course to address CT processes defined and identified as shared 

with coding. In particular, we considered the concepts of sequences, loops, parallelism, 

events, conditionals, operators, and data and integrated them into non-programming (i.e., 

unplugged) and programming (i.e., plugged-in) activities. The instructional design of our 

training is based on introducing each of the CT processes in a multimodal way, using 

unplugged and plugged-in activities, and demonstrating their applicability within different 

STEM-related contexts. The general idea of the whole course follows the theme: “play-modify-

create”. Students are introduced to CT processes through playful unplugged activities. 

Subsequently, they are asked to modify elements within existing plugged-in activities before 

they finally have to create their own usable designs. 

In the following description of the course concept, we first describe the actual lesson content 

and activities and their aim. Subsequently, we elaborate on how the employed activities allow 

for a broad applicability of CT by relating the activities to different STEM contexts. Moreover, 

we outline how the combination of unplugged and plugged-in activities allows for an 
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integrated constructivist approach to convey the respective content. Finally, we briefly 

describe how we use a gamification framework to incorporate lessons on differing content 

conveyed in different modes into a coherent and overarching course design. 

2.2 Course outline 

The course is structured as a series of eight lessons of 90 minutes each (see also Figure 3). 

During these lessons, CT processes are introduced gradually, beginning from more unplugged 

haptic, practical, and experiential activities, moving on to plugged-in more abstract and 

demanding ones. During the lessons, students create their own applications with MIT 

AppInventor, which they can reuse on their own devices. Teacher’s guidance is gradually 

decreased towards students’ gradual independence of learning and creating. The specific 

lesson plan is as follows: 

2.2.1 Lesson 1 

Description: Students are first introduced to the gamified assessment framework (see below). 

Moreover, they get acquainted with unplugged concepts and tangibles and are introduced to 

the idea of computing without a computer. The first activity is an unplugged life-size board 

game with turtles. The game shares ideas with the concepts of the educational programming 

language Logo and is inspired by the commercial board game Robot Turtles (Shapiro, 2013). 

In this treasure hunting game, small groups of students have to manipulate turtle pawns, 

which move by following specific commands written on game cards. Players need to edit and 

combine command-cards and make strategic decisions to create effective sequences, which 

allow them to lead their pawns to the place where a treasure can be found. The aim of the 

game is the fast and efficient collection of treasure items.  

Aim: The main purpose of this first activity is the playful introduction to CT processes, such as 

logical and algorithmic thinking, as well as pattern recognition through the use of common 

coding mediums, like sequences and loops. 

2.2.2 Lesson 2 

Description: This lesson encompasses playing within unplugged activities and recognizing CT 

processes in STEM disciplines. The second activity also employs an unplugged treasure hunt 

like a board game and utilizes math problems as progression stages. Specifically, this 
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multiplayer board game is a competitive scenario, where groups of players have to find their 

way through a maze of various difficulty levels. Each challenge includes equations containing 

variables and placeholder images for constants (e.g., a blue crystal reflecting a value of 4). 

Small groups of players have to solve the respective arithmetic equations in alternating order 

and find the best strategy to progress on their way to the centre of the maze. Conditions set 

by the game’s board (maze) provide obstacles to obstruct the most direct way of reaching the 

centre. 

Aim: This activity aims at introducing conditionals, operators, variables, and constants, as well 

as previously presented coding concepts (i.e., sequences and loops) to foster CT skills of logic, 

algorithmic thinking, and evaluation. 

2.2.3 Lesson 3 

Description: Students play within unplugged activities and concepts, which are then gradually 

transferred to the plugged-in environment of AppInventor, reusing established concepts from 

previous lessons. In this blended activity, students have the opportunity to observe how 

unplugged coding and CT processes, like, for example, events and parallelism, are applied and 

how they function within the plugged-in programming environment through simple precoded 

scripts and scenarios. For instance, in a science simulation about rain (event) drops (variable) 

increasing the fill level (variable) of a glass (constant), students need to recognize the coding 

concepts previously introduced unplugged and understand how they are depicted and used 

in the plugged-in environment. Students should be able to recognize, use, and modify coding 

concepts in these pre-built AppInventor applications.  

Aim: In this lesson, students should comprehend the interconnections between coding 

concepts and the newly introduced CT abstract processes of decomposition and 

generalization.  

2.2.4 Lesson 4 

Description: After recapitulating the coding concepts and CT processes already introduced, 

Lesson 4 requires students to brainstorm real-life scenarios and applications of these 

concepts, to highlight the importance of CT processes in everyday life and STEM disciplines in 

particular. Following this, students are introduced to the AppInventor software through 
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multiple interactive tutorials as well as editing and playing simple game applications. Pre-

developed simple games in the MIT AppInventor environment are used as demonstrators and 

allow students to manipulate code elements, e.g., building blocks/variables, in order to grasp 

the effects of changes in a running system. 

Aim: The activities of this lesson are intended to support students’ familiarity and 

understanding of the environment and how visual coding blocks can replicate coding concepts 

already identified in the previous lessons.  

2.2.5 Lesson 5 & 6 

Description: In Lessons 5 and 6, students are guided through the creation of a simple app using 

scenarios in STEM contexts. A simple calculator is developed by first explaining and 

understanding its usability and later on designing and programming it in AppInventor. 

Afterwards, students are asked to create other and more advanced apps in other STEM 

disciplines, for instance, science simulations. By providing pre-built AppInventor assets to 

students, we can facilitate work and guide the learning experience even in complex projects. 

Different projects are assigned randomly to small groups of students.  For instance, the 

creation of a simple pool billiard physics app, to understand and visualize kinetic 

energy/momentum conservation of colliding balls. Other projects require, for example, the 

creation of apps that simulate a magnetic field and the forces operating in it, and the creation 

of the four seasons, or how the water cycle works, etc. After completing their respective app, 

all the student groups have to interact and test the creations of their peers.  

Aim: Both activities aim at fostering students’ coding independence through fading out 

teacher guidance. The CT processes fostered by these activities are the process of evaluation 

and abstraction. Moreover, using and developing simulated real-life STEM contexts should 

increase the awareness of the necessity of coding skills in order to solve problems in different 

STEM disciplines. 

2.2.6 Lesson 7 

Description: During the 7th lesson, students are asked to brainstorm simple game ideas. Once 

they decided on one of the designs, students can create their own game. Of course, they need 

to create rather simple games (e.g., dice, memory game, mini-golf, etc.) to keep it feasible. 
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The instructor is crucial in this part of the lesson as he/she has to assist in deciding on a 

realizable game by taking into consideration its basic mechanisms. After deciding on a game, 

students collaboratively create the game application. Importantly, in such complex projects, 

students have to apply all their previously learned coding and CT skills by understanding, 

analyzing, designing, implementing, and evaluating their own game app. Created games can 

also be shared among group members and peer-evaluated by fellow groups of students. 

Aim: The aim of this activity is the engagement of students with more complex activities of 

problem-solving and procedural thinking, by creating and evaluating designs of their own. 

2.2.7 Lesson 8 

Description: In the last lesson, students have to create their own applications. They are asked 

to create an application dedicated to one of the STEM disciplines already presented and adapt 

or extend existing programs. They are urged to do so by reusing parts of code created in 

previous lessons to facilitate the working process, but should also integrate new mechanics or 

functionalities, respectively, into the application; for instance, scripts of app interface 

functionalities, such as interactive screen components, random number generators, etc. 

Aim: During this activity, students also have to follow the procedure of analyzing the demands 

and requirements to design an effective structure for their app. The evaluation procedure 

relies on sharing and peer-reviewing, as beta testers will test the apps of fellow student 

groups, repeating and fostering the obtainment of all the previously identified CT processes. 

2.3 Unplugged and plugged-in activities 

Contemporary board games have proven to represent an informal and interactional context 

in which computational thinking has to be applied. For instance, Pandemic (Leacock, 2008) 

and RaBit EscApe (Apostolellis et al., 2014) are two strategic board games, in which 

computational thinking was embedded in collaborative play. Considering this evidence, 

unplugged activities employed in the present course are realized as life-size board games, in 

which students play collaboratively around a floor-board by strategically solving problems and 

manipulating their pawns accordingly in space. Their active engagement in those unplugged 

games should raise their motivation for participation and learning (see Echeverría et al., 2011; 

for an overview), as well as allowing for an embodied experience of basic coding concepts and 
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CT processes (cf. Barsalou, 2008 for embodied cognition), supporting conceptual abstractions 

in a natural manner (Butz, 2016).  Moreover, the game-based approach of the employed 

plugged-in activities does not only aim at engaging students into the learning activities but 

should also enhance the training and development of students’ symbolic thinking through 

multimodal representations (Plass et al., 2015) and simplifications of complex computer-

related concepts (e.g., the concept of variables and constants described above, represented 

by the game rules as objects of predetermined value). 

For plugged-in activities of the course, we selected the MIT AppInventor software in its 

browser-based version. MIT AppInventor offers a novice-oriented introduction to 

programming and app creation that transforms the complex language of text-based coding 

into visual drag-and-drop building blocks. The low-threshold graphical interface allows even 

an inexperienced novice to create a basic, fully functional app within an hour or less. 

AppInventor allows the development of applications for Android-run devices, using a web 

browser and either a connected smartphone/tablet or emulator. This allows for taking home 

self-generated apps as a trophy after the learning activity. We consider this software an 

advanced alternative to Scratch visual-programming language, as it allows the creation and 

distribution of a standalone application.  

The design of the course embeds the training of CT skills in a multimodal procedure. Coding 

concepts and associated CT processes are first introduced in a playful and embodied way 

(unplugged activities), before they are reconsidered in programming context (plugged-in 

activity), which also implies their application in a STEM discipline. This aims at highlighting the 

relevance of coding concepts and CT processes not only for digital contexts but also real-life 

problems in general and STEM contexts in particular. For instance, in Lesson 2, students play 

a math-based treasure hunting game. Following the rules of the game, players have to devise 

effective sequences of commands by combining constants, variables, and operators correctly. 

They have the opportunity to make their sequence even more successful by recognizing 

patterns of moves, which may be folded and operated by loops. Those unplugged game rules 

reflect fundamental and applicable coding concepts, which can easily be applied and 

transferred to any programming language or complex problems in STEM. Accordingly, the 

aforementioned activity is integrated into a plugged-in task in Lesson 3, where several of these 

coding concepts are integrated into short, simple pre-coded scripts. As an advanced task, 
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students are then asked to modify those scripts experimentally to observe and experience the 

immediate consequences of their changes (picking up on the idea of live coding, e.g., Paxton, 

2002). 

 

Figure 3: Illustration of the course design taking into consideration the factors of mode (i.e., 
unplugged/plugged-in), coding concepts (C1-Sequences to C7-Parallelism, see Figure 2), CT processes (P1-

Decomposition to P7-Generalization, see Figure 2) and the gamification framework. C*/P*: all concepts (C1-
7) and processes (P1-7). 

2.4 Gamification and assessment framework 

By employing digital games as a learning medium and providing an overarching gamification 

framework for the course, we aim at increasing the motivation and enjoyment of students. In 

fact, as a medium for learning, games provide promising possibilities to motivate and engage 

students in learning (e.g., Chen et al., 2012). Importantly, even simple game-like extrinsic 

motivators, such as score points and badges, can increase enjoyment and performance (e.g., 

Ninaus et al., 2015; for a review, see Hamari et al., 2014). In the current CT course, we use a 

gamified assessment framework, which is based on the assessment framework created by 

Dorling and Walker (2014) for the effective evaluation of the UK computer science and CT 

curriculum (see also Moreno-León et al., 2015). As such, we apply a gamified award system, 

awarding badges for the successful acquisition of coding concepts, core CT processes, STEM 
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specialization domain (e.g., leaderboard for Maths, Science, etc.), creativity, and social skills 

(e.g., cooperation within or between group, etc.). For instance, students receive stickers for 

each attended session to put down in their individual course membership card, or, after 

successfully creating a science simulation, students are awarded a science-badge. 

3 Future Studies and Conclusion 

The current course is planned to be part of the Hector-Core-Course program of the Hector-

Children Academies10 in Germany, which provides extra-curricular enrichment programs. 

Therefore, the course will undergo a rigorous three-stage evaluation process. Phase 1 will 

include piloting and testing the course concept. For this reason, multiple rounds of discussion 

with experts on the content as well as educators, will take place. This phase also includes an 

initial evaluation of the effectiveness of the course in a small-scale intervention study at about 

3-6 Hector-Children Academies to acquire first empirical data on training gains and the 

feasibility of the course design. In phase 2, feedback and experiences generated in phase 1 

might result in modifications of the course. Following this, another empirical evaluation of the 

effectiveness of the course at about 10 Hector-Children Academies will be run using a pre-

post-test control group design. Importantly, in this phase, we will also evaluate the training of 

instructors as well as the training material itself. Finally in phase 3, implementation and 

effectiveness of the course will be evaluated in a randomized controlled field trial involving at 

least 20 Hector-Children Academies. Evaluation in phases 2 and 3 will also aim at assessing 

possible transfer effects of the training by employing standardized psychological tests in order 

to examine whether CT training affects other related cognitive skills, such as reasoning or 

general problem-solving skills. The primary objective at this stage of the evaluation is to 

whether the course yields any overall effect on computational thinking. Given that positive 

effects are observable in all three evaluation phases, the current course will be certified as a 

Hector-Core-Course to be offered to all Hector-Children Academies. Moreover, in order to 

better understand the underlying mechanisms on how the various elements of the course 

influence the overall efficiency, design research methods will be applied. After the design, 

development, and evaluation phases, we expect to deliver hands-on un-plugged games and 

their related plugged-in activities built in AppInventor, along with instructional materials for 

future teachers of the course.  

 
10 www.hector-kinderakademie.de  

http://www.hector-kinderakademie.de/
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The design and development of the current course is based on the most recent literature on 

educational practices for coding and CT introduction into official curriculums and latest 

educational practice in STEM. We integrated elements of game-based learning and 

gamification methods aiming at engaging and motivating students, while specifically 

addressing STEM context to reflect the broad applicability of CT. Importantly, this course does 

not aim at being a core programming course. Using a more general and cognitive perspective 

on programming and coding we aim at fostering the underlying cognitive concept of CT, which 

might have broader beneficial effects than instructing a single programming language alone. 

Consequently, the course is not only aiming at improving practical programming skills but 

fundamental cognitive skills relevant for the 21st century.  
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Computational Thinking through Board Games: The Case 
of Crabs & Turtles 

Katerina Tsarava, Korbinian Moeller, Manuel Ninaus 

 

Abstract 

As a cognitive ability computational thinking describes a specific way of algorithmic reasoning 

building on concepts and processes derived from computer programming/coding. Recently, 

computational thinking was argued to be a fundamental and educationally relevant 21st-

century skill that should be fostered already in childhood. Accordingly, we developed three 

life-size board games – Crabs & Turtles: A Series of Computational Adventures – aimed at 

providing an unplugged and low-threshold introduction to computational thinking. In 

particular, the games aimed at introducing basic coding concepts and computational thinking 

processes to 8 to 9-year-old primary school children. In the current study, we first describe 

the design of the games in detail to explicate the development process and allow for 

reproducibility. We then report on a first empirical evaluation of feasibility and user 

experience of our educational board games in a two-phase approach. We conducted 

quantitative analyses of player experience and qualitative feedback of adult student 

participants (phase 1) and a sample of gamification experts and teachers (phase 2). We 

examined users’ game experience with an adult population to ensure the game’s 

appropriateness. Results indicated an overall positive game experience for all three games. 

Future studies would be desirable, which should evaluate player experience and learning 

outcomes in the primary target population of children. 

Keywords: educational board games, computational thinking, coding, embodied cognition 
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1 Introduction 

Computational Thinking (CT) denotes the idea of developing a generic solution to a problem 

by decomposing it, identifying relevant variables and patterns, and deriving an algorithmic 

solution procedure (Wing, 2006a). As such, CT represents a cognitive ability to apply 

fundamental concepts and reasoning that derive from computer science in general and 

computer programming/coding in particular to different other domains, including real-life 

activities (Wang, 2015). Accordingly, CT is considered a fundamental ability for everyone and 

not just for computer scientists (Wing, 2006a). The psychological construct of CT as a cognitive 

ability shares common concepts with coding as a practical skill. Central concepts in coding are 

the generic ideas of sequencing, loops, parallelism, events, conditionals, operators, and 

data/variables (Brennan & Resnick, 2012a). Correspondingly, CT abilities specifically draw on 

processes such as algorithmic thinking, conditional logic, decomposition, abstraction, pattern 

matching, parallelization, evaluation, and generalization (Astrachan & Briggs, 2012; Wing, 

2010); thereby reflecting cognitive instantiations of concepts central to coding. 

Importantly, these concepts, as well as their cognitive counterparts in CT, are not to be 

understood as domain-specific in the sense that they can only be applied to the domain of 

computer science. Instead, CT should be viewed as a more general problem-solving strategy, 

which can be applied to different domains over and beyond computer science. Therefore, CT 

has been suggested to be a fundamental cognitive ability that should be acquired in education 

– comparable to literacy and numeracy (Yadav et al., 2014). 

This broad applicability of CT abilities has lately led to several adaptations and reformations 

of educational programs (e.g., in Finland where coding was introduced as a subject recently; 

see Brown et al., 2014; Tuomi et al., 2018). Governments and educational institutions all over 

the world have been working on a coherent definition of CT and its integration in curricula of 

educational programs of primary, secondary, and higher education (e.g., Brown et al., 2014; 

Code.Org.; European Coding Initiative; European School Network; National Science 

Foundation). This envisaged societal relevance of CT and its wide range of applicability inspired 

us to develop a training of practical coding skills integrated into a course on CT applied to 

various STEM contexts for 3rd and 4th graders (for the overall course program, see Tsarava et 

al., 2017). This approach aims at highlighting the relevance of coding concepts and CT not only 

for digital contexts but also real-life problems in general and STEM contexts in particular, 
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thereby increasing students interest in improving their CT skills. Moreover, taking into 

consideration common concerns on introducing coding already in primary school (Garcia-

Peñalvo, 2016), we aimed at implementing a game-based approach of learning by doing, 

focusing on central concepts of CT and not on practical coding skills related to specific 

programming languages. To do so, we developed and employed, among others, unplugged 

life-size board games Crabs & Turtles: A Series of Computational Adventures (henceforth 

referred to as Crabs & Turtles). A first empirical evaluation of these will be described in the 

current article. Games or game-based applications are an increasingly important approach in 

cognitive training, learning, and educational interventions because of their ability to keep 

learners motivated to play and to interact with the application or learning environment, 

respectively (Boyle et al., 2016a; Plass et al., 2016). Recent research even indicated that game-

based learning might be more effective in terms of learning and retention than conventional 

instruction methods (Wouters et al., 2013). 

 Our game design relied on Piaget’s theory of constructivism (Papert, 1999) and was further 

inspired by Papert’s integrated constructionism approach (Kafai & Burke, 2015; Papert, 1999). 

In addition, we were inspired by the successful implementation of the haptic Logo-Turtle 

(Papert, 1999; Papert & Solomon, 1971), which led to the Logo visual programming language. 

As regards content, we considered the central concepts of coding as identified by (Brennan & 

Resnick, 2012a). After years of development and evaluation using the educational software 

Scratch, they identified seven overarching computational concepts, applicable to other 

programming and non-programming contexts but also generalizing beyond them: (i) 

Sequences, (ii) Loops, (iii) Parallelism, (iv) Events, (v) Conditionals, (vi) Operators, and (vii) 

Data. We integrated 6 of those concepts into our game content design and aimed at training 

children through un-plugged playing activities in a board game (Table 1). Here, we describe 

the development, design, and results of initial user tests of three games – all addressing 

different CT concepts – which are subsumed under the game series Crabs & Turtles. 

While there are a number of games aiming at training CT related abilities, most of them are 

digital (e.g., Program your Robot, Kazimoglu, 2013), whereas only a few allow for non-digital 

haptic (e.g., Robot Turtles, Dan, 2013; Ricochet Robots, Randolph, 1999; Pandemic, Leacock, 

2012), and thus embodied or blended approaches (e.g., Osmo Coding Family). Moreover, 

these games can be further distinguished on whether they are a commercial (e.g., Qwirkle, 
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McKinley, 2006) or research and experimental project productions (e.g., Dragon Architect, 

Bauer et al., 2015; Rabbit Escape, Apostolellis et al., 2014). All of them differ in their target 

audience, holistic perspective, and mode. Program your Robot, for example, is a web-based 

environment aiming at introducing computer programming concepts and various CT skills, 

such as problem-solving, algorithm building, debugging, etc. In the game, players have to 

manipulate non-verbal commands by dragging and dropping them to program their robot to 

collect or avoid items. Dragon Architect is another web-browser game based on the Blockly 

(Fraser, 2015) programming environment. It introduces concepts through puzzles that require 

a command solution, which gradually becomes more difficult. There are quite a few games 

like those aiming at supporting CT skills with promising results so far (Berland & Lee, 2011; 

Kazimoglu et al., 2012). However, most of them lack qualitative and/or quantitative evaluation 

of their training effects.  

Crabs & Turtles shares common ideas with concepts of the educational Logo-Turtle and logo-

inspired games and gamified educational activities. Importantly, the development process of 

the game was driven by own previous research and piloting. For instance, in 2016, we created 

a life-size board game called Turtle Steps (Tsarava, 2016), which can be considered the initial 

archetype educational intervention of Crabs & Turtles. The game aimed at an embodied 

training of simple computational concepts with direct transferability to an educational Python 

editor environment, in which children were able to program in a native translation (Greek) of 

the actual Python programming language. After multiple pilot sessions with Turtle Steps, we 

derived conceptual ideas for the first game-based learning activities of Crabs & Turtles. Note 

that we intentionally designed Crabs & Turtles to be independent of any specific programming 

environment or language. The games’ main target group are primary and secondary school 

students (8-12 years old) with no prior programming knowledge. It is, however, also suitable 

for older students and adults with no programming experience. The life-size dimensions of the 

game allow playability within the classroom or open-air spaces, such as a schoolyard. We 

chose the life-size game design to encourage active engagement and participation and thus 

to increase children’s motivation for active learning (for an overview, see Echeverría et al., 

2011), on the one hand, and to enhance learning outcomes by an embodied experience of 

basic coding concepts and CT processes (cf. Barsalou, 2008 for the concept of embodied 

cognition) supporting conceptual abstractions (Butz, 2016), on the other hand. The chosen un-

plugged mode takes into account common concerns on introducing coding to primary school 
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children (e.g., Grover & Pea, 2013; Pea & Kurland, 1984) and offers a smooth and children 

friendly transition to digital, more complex educational programming environments. 

Moreover, we feel that using a non-digital mode is crucial because it fosters the experience 

that possible applications of coding concepts and CT processes are not restricted to digital 

contexts but also generalize to real-life conditions (Tsarava et al., 2017). Although the game 

can be used as a standalone game intervention, it is intended to be part of a structured course 

curriculum (Tsarava et al., 2017), which builds upon skills acquired within the game. To build 

our game, we followed an iterative user-centred development process (Fullerton, 2008). In 

particular, first design ideas of the game content were tested with a custom-made life-size 

game as a pilot educational intervention with primary school children (Tsarava, 2016). Next, 

an early prototype was developed and tested in terms of usability of the materials needed to 

play the game (e.g., printed wooden floor tiles vs linoleum canvas). During a 2 hour workshop 

with children, qualitative feedback was gathered and used to further improve the overall 

design. Finally, we examined users’ game experience quantitatively with an adult population 

to ensure the game’s appropriateness. After providing a detailed description of Crabs & 

Turtles, the presented article reports the results of two evaluation studies with adults. Game 

experience was evaluated in two phases of playtesting with (i) a general audience of 

postgraduate students and went on to (ii) a more specialized group of gamification experts 

and teachers. In the following, we will first describe the design of the latest version of the 

game before reporting the results of the user experience studies afterwards. 

2 Game Description 
Crabs & Turtles consists of three different games: i. The Treasure Hunt, ii. The Race, and iii. 

Patterns. Currently, all three games are available in English, German (“Schildkröten & 

Krabben”), and Greek (“Χελώνες & Κάβουρες”). It is primarily designed for children at the 

primary school level. The teachers or educators play an important role in each of these games 

and are in close contact with their pupils by acting as game masters. The games aim at training 

cognitive processes related to CT, such as algorithmic thinking, abstraction, pattern 

recognition, and decomposition (see Table 1). These processes can be either applied to 

specific coding skills (i.e., sequences, loops, conditionals, patterns, and events) or to 

mathematical skills (i.e., dealing with angular degrees in spatial orientation, addition, and 

multiplication) as well as skills relevant to both coding and mathematics (i.e., operators, 

variables, constants, and values). Our game design can be described within the framework for 
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educational game design as proposed by Roungas & Dalpiaz (2016). The game design elements 

of goals, game mechanics, and challenges were carefully selected and adapted when 

necessary, as was the element of feedback for each game decision given by a teacher serving 

as the game master in all the three games. Moreover, elements and design decisions related 

to educational games like curriculum, readiness for learning, stimuli, and rewards were 

cautiously selected.  

Below we describe the game design of the three different games in detail and specify which 

cognitive processes and learning objectives, respectively, are primarily addressed in each of 

them. 

 

Figure 1. The Treasure Hunt game (1. Sequence board, 2. Game starting points, 3. Game pieces, 4. Water grid, 
5. Stone grid, 6. Grass grid, 7. Treasure collection location).  

2.1 The Treasure Hunt 

The Treasure Hunt is the first game of Crabs & Turtles. In this game, users have to manipulate 

coloured game pieces representing turtles and crabs to figure out the most efficient way to 

collect treasures placed on the grid squares of the game board (see Figure 1). To move a crab 

or turtle, users need to create effective sequences of commands on a sequence board (see 

Figure 1 & 3), representing specific coding concepts. For instance, users have to build 

sequences of steps, turns, and loops to move their game piece towards treasures fast and 

efficiently. As such, coding concepts and, to a lesser degree, mathematic abilities trained by 
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this game are sequence building, value understanding, dealing with angular degrees and 

spatial orientation, loop creation, as well as conditional decisions.  

Importantly, there are some restrictions with regard to the game board and game pieces 

(turtle vs crab) that affect the players’ strategy. For instance, turtles can move only on grid 

squares indicating stone and grass grounds, whereas crabs can only move on grid squares 

representing stone and water ground (see Figure 2). Additionally, turtles can move only 

forward and backwards, contrary to crabs that can move only sideways to either the left or 

right. However, under specific conditions, for instance, when an Event card from the pile, 

indicating Walk forward/backward, is picked up from a crab team, it can be used as it would 

be used by a turtle. Those cards are considered bonus cards for crabs, and correspondingly 

Walk left/right are bonus cards for turtles because they allow movement in more directions 

than usual.  

Table 1. Coding skills & CT processes as aimed game trained skills. 
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Patterns         x   

2.1.1 Learning objectives 

The main learning objectives of this game are the general introduction to algorithmic thinking, 

the use of commands in specific and sequential order, and the consideration of restrictions by 

possible conditions when forming a strategic solution to a problem. After playing the game, 

we expect users to have acquired an understanding of what simple algorithms are and how 

they are formed as sequences of several commands that serve a specific strategical purpose. 
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Besides that, we expect participants to be able to consider specific restrictions when making 

their decisions and recognize small repeatable patterns that can be folded into a loop. 

Table 2. The Treasure Hunt game cards 

Motion command cards  

Event cards Crabs Turtles 

turn ↷ ___ ° turn ↷ ___ ° walk forward 2 

turn ↶ ___ ° turn ↶ ___ ° walk backward 2 

walk left ___ walk forward ___ walk left 2 

walk right ___ walk backward ___ walk right 2 

repeat 2 repeat 2 turn ↷ 90° 

  turn ↶ 90° 

2.1.2 Game play and rules 

The game is played in teams of two. Each team possesses one game piece (crab or turtle), a 

sequence board, five re-writable motion command cards (see Table 2), a marker, and a sponge 

(see Figure 3). Each turn, teams draw one more Event card from the pile (see Table 2), which 

they can either use in building their sequence on the sequence board or return it at the end 

of their turn. The goal of the game is to collect a specific number of food-treasures (e.g., three), 

which are spread across the game-board, as fast as possible. Each team has to collect three 

different food items from three different treasure points on the board grid. Turtles collect 

magenta-coloured items, while crabs collect green ones (Figure 3). To approach the treasure 

on the grid of the game board, teams have to structure their command cards on their 

sequence board and, at the same time, consider the respective restrictions for crabs and 

turtles (i.e., crabs can move only on stone and water grid squares, while turtles can move only 

on grass and stone grid squares). Both types of game pieces can step on all treasure locations 

(see Figure 2). At each turn, teams have in total 6 cards from which they can use a maximum 

of 5 in order to build their sequence. When executing a sequence of commands, users are 

rewarded skill badges related to their achievements. These are collected on the back of the 

game pieces (see Figure 3 and Scoring). The first team to fulfil the condition to win the game 

(e.g., collect three pieces of food) has to wait for the round to finish. In case there is another 
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team to achieve the winning condition within the same round, the winner is determined by 

the number of badges collected.  

 

Figure 2. The Treasure Hunt game restrictions in movement for a certain scenario (black arrows: movements 
normally allowed for each game piece; grey arrows: bonus movements for each game piece due to special 

cards). 

2.1.3 Scoring 

While playing the game, teams collect inventory items that they carry on the back of their 

game pieces. These inventory items include food-treasure items and skill badges. There are 6 

different food-treasure items, differentiated both by shape and colour. Green food items 

represent earth growing food, and magenta ones represent seaweed to-be-collected by 

turtles and crabs, respectively. There are 4 different skill badges (see Figure 3) that teams can 

collect at the end of each turn: (i) sequence-, (ii) loop-, (iii) angular degree-, and (iv) efficiency-

badges. Teams get a sequence badge each time they succeed in forming and executing a 

correct algorithm reflecting a sequence of at least 3 commands. They get a loop or angular 

degree badge each time they succeed in using correctly and meaningfully a loop card or a 

turning card, respectively. Furthermore, in case teams build and execute correctly an 

algorithm consisting of a sequence of 5 commands, they get an efficiency badge because using 

5 cards in an efficient combination is difficult. At the end of the game, scores are summed up 
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based on both food-treasure items collected and on the number of skill badges. Winner of the 

game, however, is considered the team that first collects three food-treasure items. 

2.2 The Race 

The Race is the second game of Crabs & Turtles. In this game, users have to reach the end first 

by solving and handling math-related riddles and events. To do so, players have to manipulate 

constants and changing values of variables or make decisions based on conditionals. Overall, 

this game focuses more on CT abilities related to mathematical skills. In particular, 

understanding of constants and variables, operators, and events handling, addition, and 

multiplication, as well as simple conditional understanding, are the main abilities to be 

acquired or trained, respectively, in this game. 

 

Figure 3. The Treasure Hunt inventory items (1. Food treasure for crabs, 2. Food treasure for turtles, 3. 
Sequence badge, 4. Angular degree badge, 5. Loop badge, 6. Sequence board, 7. Game piece, 8. Re-writable 

motion command cards). 

 

Figure 4. The Race game (1. Starting point, 2. Event cards, 3. Riddle cards). 
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2.2.1 Learning objectives 

Main aim of the game is the general introduction of concepts shared between coding and 

math. Players are introduced to variables, constants, operators, and conditionals. The game 

focuses on training to handle values within simple and more complex arithmetic operations 

that contain additions, subtractions, and multiplications. Operations consist of visual 

representations of variables and constants (see Figure 5), so that the players get familiar with 

recognizing symbolic representations of things, get used to an abstract form of reading 

instructions, and handling events that allow for generalization, as it happens in actual coding.  

The game is played in teams of two, and each team possesses one out of two types of game 

pieces, a re-writable variable/notes board, a marker, and a sponge. The game starts with all 

the game pieces placed at the starting point on the game board (see Figure 4). In each round, 

each team rolls a dice and moves as many steps forward as shown on the dice. In case players 

move their game piece to a circle shape, they receive a card from the pile of circle cards (Riddle 

cards); otherwise, they receive a card from the pile of square cards (Event cards). Circle cards 

contain riddles of equations that players have to solve. An example is presented in Figure 5 

(lower panel), where the riddle asks the solution of an addition. The triangle represents the 

number of the step on which the game piece is currently standing, the colourful circle and 

square, respectively, indicate the value of the colour variable on which the game piece stands, 

and the third part of the addition is the value of the dice in the current turn. In the example 

depicted in Figure 5, assuming that the red crab of Figure 4 is playing and the team rolls the 

dice, and it shows 1, the crab will have to move forward one step. From the green square point 

number 11 it will move on one step to the red circle point number 12. The team will take a 

Riddle card and will have to solve the riddle. The addition consists of the value of the grey 

triangle, which is currently 12, the value of the red color variable that has been influenced by 

all previous turns so far and the value of the dice, which for this turn was 1. 

2.2.2 Gameplay and rules 
When the team solves the riddle correctly, they can move forward a defined number of steps, 

written on the lower right corner of the card (in the example of Figure 5 the steps forward are 

3). The more complicated a riddle, the more steps the team is allowed to move forward. The 

difficulty of the riddles arises from the number of operators, variables, and constants in the 

mathematical expression (polynomial) of each riddle. For example, a mathematical expression 
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that involves both variables and constants is considered more complicated than a 

mathematical expression consisting only from constants. Square cards, in contrast, contain 

events that change the value of a variable. These changes need to be calculated from simple 

numerical operations and/or conditionals specified on each square card. For example, in 

Figure 5, the Event card describes a conditional event, in which the player has to recalculate 

the value of the colour variable his/her game piece has landed on. When, for example, the 

game piece has landed on the red colour, and at this point of the game, the red colour variable 

has a value lower than 10, then the new value that the red colour variable will receive is 

calculated from a multiplication of the current value by 2. Otherwise, the new value of the 

variable would be the current one reduced by 9. When variable values are handled correctly, 

players move forward one step and wait for their next turn. To keep track of the changing 

colour variable values within the game, teams use the rewritable variable board (see Figure 

6). It is also used as a re-writable note board for math calculations. The overall aim of this 

game is to reach the final point in the centre of the game board as fast as possible. While 

teams solve riddles and interact with events, they collect specific skill badges (see Scoring) 

that they collect on their game pieces. The first team to reach the centre of the spiral has to 

wait for the round to finish. In case there is another team to reach the end of the race within 

the same round, the winner is determined based on the number of badges collected.  

 

Figure 5. The Race game, an Event card example (upper panel, colourful square; left: cover, right: content) 
and a Riddle card example (lower panel, colourful circle; left: cover, right: content).  
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2.2.3 Scoring 

Inventory items in The Race consist of 6 different skill badges: (i) addition-, (ii) subtraction-, 

(iii) multiplication-, (iv) variable-, (v) constant-, and (vi) conditional-badge. Teams get a 

variable or a constant badge each time they succeed in recognizing and handling a variable 

and a constant, respectively. They also get an addition, subtraction, or multiplication badge 

each time they solve the respective operation requested on a circle card correctly. Each time 

a team handles an Event card that indicated a  value change of a conditional variable (see 

Figure 5, upper panel)  correctly, it gets a conditional badge as well. At the end of the game, 

scores are summed up based on the inventory items of each team. The winner of the game is 

the first team to reach the end of the game board with the most badges collected. 

 

Figure 6. The Race game, the re-writable variable board. 

2.3 Patterns 

Patterns is a card game, played by individual players and not teams. In this game, players have 

to find patterns and match cards by certain rules, as fast as possible. This procedure is closely 

related to pattern recognition processes that are necessary for coding, for instance, when 

decomposing problems, generalizing solutions and forming loops.  
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2.3.1 Learning objectives 

The game is an introductory activity to the concept of patterns. Patterns are crucial concepts 

in CT. They are used both in identifying abstractions and generalization (Curzon & McOwen, 

2017). This game aims at training to recognize shape and colour patterns by following specific 

rules. 

 

Figure 7. Patterns game. 

2.3.2 Gameplay and rules 

The game is structured in two parts and needs a game master that will act as the card dealer. 

Half of the cards lay open in arbitrary order on the floor, while the other half of the cards is 

being gradually revealed by the game master in random order. Players begin playing with no 

cards and start collecting cards each time they find a correct pair. In the first part (Figure 7, 

left), players have to find and match two cards according to the pattern depicted on them as 

fast as possible. In order for a player to claim a pair, he/she has to be the fastest in turn-taking 

from the game-master, by raising a hand. The game master reveals cards one after the other, 

and the first player to recognize and match two cards correctly wins the paired card and thus 

a point. When a card is revealed but not correctly paired, the game master hides it again and 

opens a new one. To match rectangle cards, players have to follow three rules: i. cards should 

share the same pattern order (e.g., star, triangle, circle, square, see Figure 8 left panel), ii. they 

should not have the same colour at the same position (e.g., in Figure 8, colour order of the 

matching card should not be blue-green-red-blue), and iii. cards should share the same colour 
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palette (e.g., in Figure 8 only the colours blue, green, and red). In the second part of the game 

(Figure 8, right panel) players should read the shape and colour code of the square cards 

correctly and match them to the correct rectangle card (Figure 8 left) as fast as possible. The 

square card’s code is read clockwise or counterclockwise, starting from the indicated shape 

and following the colour order directed by an arrow (i.e., starting with a blue star, going 

clockwise to green, red, and blue again, which matches the shape and colour order of the 

rectangle card, left panel). When players match a rectangle to a square card correctly, they 

win the square card. 

 

Figure 8. Patterns game cards; left panel: rectangle card; right panel: square card. 

2.3.3 Scoring 
In this game, players gain cards when they match cards in pairs correctly. When a pair is 

correctly paired, the player to claim it collects the respective cards from the floor. At the end 

of the game, players count the number of cards they collected while playing. The player who 

won the most cards wins the game.  

3 Pilot Evaluation 

Regular user tests are an important step during the development of a new game, educational 

or not. Here, we describe the results of a 2-phase user test evaluating the game experience of 

the above-described games. Our primary focus was on investigating game experience 

quantitatively and gathering qualitative feedback of participants to identify potential 
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dysfunctionalities during game-play, which then can be addressed before testing it with our 

main target group of primary school children. The main objective of phase 1 was to evaluate 

the overall game experience of Crabs and Turtles as indicated by users. This was followed by 

a more in-depth analysis of game experience in phase 2, which investigated the games The 

Treasure Hunt, The Race, and Patterns subsumed in Crabs and Turtles separately. Moreover, 

to further validate the current approach, participants in phase 1 consisted of regular university 

students, while in phase 2, relevant stakeholders were tested: teachers, computer science 

instructors, and professional gamification experts. 

3.1 Study phase 1 

3.1.1 Participants 

We collected data from 17 adult university students from the University of Tuebingen, aged 

between 22 and 33 (mean = 27.12, SD = 3.20). Students participated voluntarily. 

3.1.2 Procedure and materials 

In 3 separate gaming sessions (á ~2 hours), we evaluated the game experience of participants. 

In each session, all 3 games of Crabs and Turtles were played. After a short introduction to the 

aim of the session, participants were asked to fill in an optional photographic release form. 

Before participants started playing each of the games, we provided oral and visual 

instructions. After playing all 3 games, participants were asked to fill in the Game Experience 

Questionnaire-GEQ (Poels et al., 2007). We used the English version of the Core (33 items) and 

the Social Presence (17 items) modules to assess overall game experience. The Core module 

consists of seven subscales addressing i. Immersion, ii. Flow, iii. Competence, iv. Positive 

Affect, v. Negative Affect, vi. Tension and vii. Challenge. The Social Presence module consists 

of three subscales assessing i. Empathy, ii. Negative Feelings and iii. Behavioural  Involvement. 

For each subscale, we used the average scores of the respective items as the dependent 

variable. Each item had to be responded to on a 5-point Likert-scale (1 = not at all; 2 = slightly; 

3 = moderately; 4 = fairly; 5 = extremely). For example, the first item of the Core module reads 

as follows: “I felt content”, and participants had to rate their experience of content on the 

aforementioned Likert scale by crossing an answer from 1 to 5 (e.g., crossing 2 would mean “I 

felt slightly content”). 
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Moreover, we used 4 additional items to evaluate further overall game experience, which also 

employed a 5-point Likert-scale: Q1. I would explain my experience as playing; Q2. I would 

explain my experience as learning (Q1 & Q2: 1 = not at all; 2 = not really; 3 = undecided; 4 = 

somewhat; 5 = very much); Q3. I would recommend the games to a friend; Q4. I would like to 

play the games again in the future (Q3 & Q4: 1 = not at all; 2 = not really; 3 = undecided; 4 = 

likely; 5 = very likely). Those 4 items were added to the questionnaire with the intention to 

measure the perception of the game as learning and/or playing, as the GEQ questionnaire 

aims at evaluating game experience more broadly and not game experience for educational 

games in particular. 

Finally, 5 more items were used to evaluate specific design elements of the game, i.e., board, 

cards, game pieces, inventory items, and rules, again using a 5-point Likert-scale (1 = not at 

all; 2 = slightly; 3 = moderately; 4 = fairly; 5 = extremely). Moreover, every session included an 

open discussion part to gather qualitative feedback from the participants. 

3.1.3 Results 

Game experience: Mean values of GEQ subscales were considered to reflect game experience 

in this phase. We used a conservative approach of analyzing each subscale by conducting one-

sample t-test comparing means of subscale ratings of the middle value of the scale (3 = 

mediocre) of the 5-point Likert scale. Descriptive results and inferential statistics of Core and 

Social Presence subscales are summarized in Table 3 below. Participants’ ratings of the games 

on the Competence, Sensory & Imaginative Immersion and Positive affect subscales of the 

Core module were significantly higher than mediocre (see Table 3). In contrast, ratings on the 

Tension/Annoyance, Challenge, and Negative Affect subscales of the Core module and the 

Negative Feelings and Behavioural Involvement subscales of the Social Presence module were 

significantly lower than mediocre (see Table 3). We did not observe significant differences to 

mediocre for the subscale Flow of the Core module and the subscale Empathy of the Social 

Presence module. 

Different from the GEQ data, for which we conducted t-tests on averaged ratings for the 

different subscales, differentiating aspects for overall experience and specific design elements 

meant conducting t-tests against mediocre on the data of individual items. Therefore, the 

respective results should be interpreted more cautiously. 
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Table 3. Mean scores for Core Module and Social Presence module of GEQ at phase 1. 

GEQ modules mean SD df t p α α* 

Core   
Competence 3.72 .90 16 3.30 0.005 .913 .826 
Sensory & Imaginative 
Immersion 

3.63 .73 16 3.59 0.002 .783 .891 

Flow 3.02 .83 16 0.12 0.908 .844 .866 
Tension/Annoyance 1.29 .37 16 -18.99 0.001 .402 .811 
Challenge 2.38 .65 16 -3.95 0.001 .735 .745 
Negative affect 1.84 .53 16 -9.04 0.001 .456 .712 
Positive affect 4.19 .46 16 10.76 0.001 .770 .797 

Social Presence   
Empathy 3.27 .60 16 1.89 0.077 .779 .886 
Negative Feelings 2.08 .73 16 -5.17 0.001 .876 .860 
Behavioural 
Involvement 

2.47 .73 16 -3.00 0.008 .829 .711 

 

Overall experience: Participants perceived their experience as somewhat playing (Q1: mean = 

4.18, SD = .73; t(16) = 6.67, p < 0.001) as indicated by a rating significantly above “undecided”, 

but not so much as a learning experience (Q2: mean = 3.35, SD = 1.22; t(16) = 1.19, p = 0.251). 

Participants reported that they would likely to very likely recommend the game to a friend 

(Q3: mean = 4.53, SD = .72; t(16) = 8.79, p < 0.001) and would likely play the game again in the 

future (Q4: mean = 4.18, SD = .64; t(16) = 7.63, p < 0.001) as reflected by ratings significantly 

above “undecided”. 

Evaluation of specific design elements: The five different design elements measured by the 

questionnaire scored a mean of 4.46 (SD = .44) on the 5-point Likert scale. More specifically, 

users rated each design element (Board: mean =4.5, SD =.61, t(16) = 10.10, p < 0.001; Cards: 

mean = 4.38, SD = .70, t(16) = 8.15, p < 0.001; Game pieces: mean = 4.88, SD = .33, t(16) = 

23.38, p < 0.001;  Inventory items: mean = 4.19, SD = .81, t(16) = 6.06, p < 0.001, and Rules: 

mean = 4.38, SD = .78, t(16) = 7.26, p < 0.001) significantly above mediocre. The ratings of one 

participant were missing for the design module of the questionnaire and were replaced with 

the mean of the sample.  

Internal consistency of GEQ, as reported by (Poels et al., 2007) and reflected by Cronbach’s 

alpha, is given in Table 3 (column α*).  Besides, Cronbach’s alpha, as obtained in the current 

study, is also reported in Table 3 (column α). The observed internal consistency indicated 

acceptable reliability for most subscales with α > .70. However, this was not the case for 
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subscales Tension/Annoyance and Negative affect of the GEQ Core module. Qualitative 

feedback: Participants’ impressions on the games were positive and encouraging. Their 

comments in phase 1 led to several design changes regarding the game mechanisms. For 

instance, it became clear that instructions were not always evident in how they were 

presented to players. Moreover, participants reported some in-game unbalances caused by a 

high dependency on chance. For example, in The Treasure Hunt, the command card for loops 

was part of the Event cards which are taken at each turn by chance from the pile. That was 

affecting teams’ strategy to prepare their moves. Therefore, in phase 2, this card was given as 

a Motion command card to each team from the beginning of the game. Reported unbalances 

of this kind were adjusted by excluding and/or adding specific kinds of cards (i.e., in The 

Treasure Hunt, in The Race) in an effort to balance chance and skill-driven strategies during 

gameplay. Participants also criticized other dysfunctionalities, like long waiting in between 

turns or very limited step movement. We addressed this by introducing a time limit for each 

turn using a 3-minute hourglass and by excluding the use of a dice for determining the number 

of steps allowed for a team to move per turn (i.e., in The Treasure Hunt). These problems were 

addressed and fixed before starting the assessment of each game separately in phase 2.  

3.2 Study phase 2 

3.2.1 Objective and Procedure 

The second phase of the adult sessions aimed at a more in-depth evaluation of game 

experience by investing each game separately. This phase also consisted of 3 sessions (á 2-3 

hours), one hosted by the 11th Thessaloniki Gamification Meet-up, and two independently 

organized events. The procedure followed in this phase was comparable to that of phase 1 

with the difference that participants had to fill in the respective questionnaires separately for 

each game.  

3.2.2 Participants 

Data were collected from 19 participants in total, aged between 25 and 52 (mean = 31.43, SD 

= 6.17). There were 10 female and 9 male participants, including teachers, computer science 

instructors, professional gamification designers, etc. Due to technical and organizational 

problems, not all participants were able to play all three games. That is, 15 played all three 
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games, 2 participants played only the first game, 1 participant played only games 1 and 2, and 

1 participant only games 2 and 3. 

3.2.3 Materials 

We used the same questionnaires and additional items as in phase 1. However, participants 

had to answer the questions for each game separately. The questionnaire was completed in 

its original English version from 13 participants. Six participants felt more confident 

completing it in its Greek translation. 

3.2.4 Results 

We applied the same conservative approach of analyzing GEQ Core and Social Presence 

subscales. However, in phase 2, we were able to conduct the analyses for each game. 

Descriptive results and inferential statistics are reported in Table 4. There were few missing 

values, which were replaced by the mean score for the respective item computed from the 

other participants.  

Game experience - The Treasure Hunt: Participants rated this game significantly above 

mediocre on the subscales Competence, Sensory & Imaginative Immersion, and Positive Affect 

of the Core module and Empathy of the Social Presence module. In contrast, ratings were 

significantly below mediocre for the subscales Tension/Annoyance, Challenge, and Negative 

Affect of the Core module and the Negative Feelings and Behavioural Involvement subscales 

of the Social Presence module. We did not find a significant difference from mediocre for the 

Flow subscale of the Core module. 

Game experience - The Race: Participants’ ratings for this game were significantly above 

mediocre for the Competence, Sensory & Imaginative Immersion, and Positive affect subscales 

of the Core module and the Empathy subscale of the Social Presence module. Contrarily, 

participants rated the game significantly below mediocre on the subscales 

Tension/Annoyance, Challenge, and Negative Affect of the Core module and the Negative 

Feelings subscale of the Social Presence module. Again, we did not find a significant difference 

in the Flow subscale of the Core module and the Behavioural Involvement subscale of the 

Social Presence module. 
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Table 4. Mean scores for Core module and Social Presence module of GEQ at phase 2, per game-based 
activity. 

The Treasure Hunt 

GEQ modules mean SD df t p α α* 

Core   
Competence 3.70 .75 17 3.98 0.001 .794 .826 
Sensory & Imaginative Immersion 4.04 .71 17 6.19 0.001 .816 .891 
Flow 3.17 .92 17 0.77 0.454 .764 .866 
Tension/Annoyance 1.51 .48 17 -13.19 0.001 .130 .811 
Challenge 2.21 .54 17 -6.17 0.001 .576 .745 
Negative affect 1.42 .37 17 -17.97 0.001 .300 .712 
Positive affect 4.29 .51 17 10.63 0.001 .800 .797 

Social Presence   
Empathy 3.48 .88 17 2.32 0.033 .885 .886 
Negative Feelings 2.04 .87 17 -4.69 0.001 .795 .860 
Behavioural Involvement 2.49 .92 17 -2.36 0.030 .835 .711 

The Race 

GEQ modules mean SD df t p α α* 

Core   
Competence 3.64 .88 16 2.96 0.009 .635 .826 
Sensory & Imaginative Immersion 3.67 .86 16 3.21 0.005 .858 .891 
Flow 3.28 1.14 16 1.02 0.324 .924 .866 
Tension/Annoyance 1.84 1.09 16 -4.39 0.001 .830 .811 
Challenge 2.42 .73 16 -3.24 0.005 .657 .745 
Negative affect 1.69 .67 16 -8.05 0.001 .639 .712 
Positive affect 4.14 .78 16 6.01 0.001 .894 .797 

Social Presence   
Empathy 3.69 .84 16 3.38 0.004 .862 .886 
Negative Feelings 2.26 .69 16 -4.44 0.001 .589 .860 
Behavioural Involvement 2.55 1.06 16 -1.76 0.097 .876 .711 

Patterns 

GEQ modules mean SD df t p α α* 

Core   
Competence 3.70 .90 15 3.09 0.007 .820 .826 
Sensory & Imaginative Immersion 3.84 .72 15 4.66 0.001 .849 .891 
Flow 3.90 .82 15 4.41 0.001 .772 .866 
Tension/Annoyance 1.73 .84 15 -6.08 0.001 .675 .811 
Challenge 3.18 .80 15 0.87 0.397 .706 .745 
Negative affect 1.32 .51 15 -13.21 0.001 .487 .712 
Positive affect 4.41 .65 15 8.68 0.001 .785 .797 

Social Presence   
Empathy 3.27 .93 15 1.47 0.162 .840 .886 
Negative Feelings 2.08 1.03 15 -3.47 0.003 .821 .860 
Behavioural Involvement 2.47 1.28 15 -1.11 0.285 .933 .711 
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Games experience – Patterns: Largely similar to the results for the other games, participants’ 

ratings for Patterns were significantly above mediocre for the Competence, Sensory & 

Imaginative Immersion, and Positive affect subscales of the Core module and the Empathy 

subscale of the Social Presence module. Again, ratings for the Tension/Annoyance, Challenge, 

and Negative Affect subscales of the Core module and the Negative Feelings and Behavioural 

Involvement subscales of the Social Presence module were significantly below mediocre. Also, 

we did not find a significant difference to mediocre for the subscale Flow of the Core module 

as well as the subscales Empathy and Behavioural Involvement of the Social Presence module. 

Again, analysis of overall experience and specific design elements required us to run t-tests on 

data from individual items. Thus, the respective results should be interpreted more cautiously. 

Overall Experience: Participants experienced The Treasure Hunt very likely as playing (Q1: 

mean = 4.72, SD = .46; t(17) = 15.85, p < 0.001) and somewhat as learning (Q2: mean = 4.22, 

SD = .94; t(17) = 5.50, p < 0.001) as reflected by ratings significantly above “undecided”. 

Additionally, participants reported that they would very likely recommend the game to a 

friend (Q3: mean = 4.50, SD = .71; t(17) = 9.00, p < 0.001), and would likely play the game again 

in the future (Q4: mean = 4.22, SD = 1.06; t(17) = 4.89, p < 0.001), which was also supported 

by ratings significantly above “undecided”.  

For The Race ratings significantly above “undecided” indicated that participants rated their 

game experience very likely as playing (Q1: mean = 4.53, SD = .72; t(16) = 8.79, p < 0.001), and 

somewhat as learning (Q2: mean = 4.24, SD = 1.03; t(16) = 4.93, p < 0.001). Furthermore, 

ratings significantly above “undecided” substantiated that they would likely recommend the 

game to a friend (Q3: mean = 4.18, SD = .73; t(16) = 6.67, p < 0.001), and also would likely play 

it again in the future (Q4: mean = 4.29, SD = .69; t(16) = 7.78, p < 0.001).  

Finally, participants perceived the Patterns game very likely as a playing experience (Q1: mean 

= 4.69, SD = .79; t(15) = 8.51, p < 0.001) and likely as learning (Q2: mean = 4.06, SD = 1.00; 

t(15) = 4.26, p < 0.001), which was again reflected by ratings above “undecided”. Moreover, 

according to ratings above “undecided”, participants reported that they would very likely 

recommend it to a friend (Q3: mean = 4.56, SD = .62; t(15) = 9.93, p < 0.001), and also play it 

again (Q4: mean = 4.56, SD = .73; t(15) = 8.60, p < 0.001). 
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Evaluation of specific design elements: In the current phase, the five design elements were 

evaluated individually. For the two first games all five design elements were assessed. The 

design elements of Games 1 and 2 scored a mean of 4.37 (SD = .47) and 4.03 (SD =.72) 

respectively, on the 5-point Likert scale. Game 3 design elements were scored a mean of 4.49 

(SD =.51). More specifically, users liked all five design elements of The Treasure Hunt (Board: 

mean =4.25, SD =.94, t(17) = 5.65, p < 0.001; Cards: mean = 4.13, SD = .83, t(17) = 5.74, p < 

0.001; Game Pieces: mean = 4.80, SD = .38, t(17) = 20.33, p < 0.001;  Inventory items: mean = 

4.63, SD = .58, t(17) = 11.86, p < 0.001  and Rules: mean = 4.06, SD = 1.00, t(17) = 4.52, p < 

0.001) significantly above than mediocre. Same positive scores received all the five design 

elements of The Race (Board: mean =3.69, SD =1.3, t(16) = 2.17, p = 0.046; Cards: mean = 4.19, 

SD = 1.01, t(16) = 4.83, p < 0.001; Game pieces: mean = 4.38, SD = .93, t(16) = 6.12, p < 0.001;  

Inventory items: mean = 4.13, SD = .93, t(16) = 5.01, p < 0.001  and Rules: mean = 3.75, SD = 

1.15, t(16) = 2.70, p = 0.016) as reflected by ratings significantly above mediocre. The two 

design elements in the questionnaire for Patterns scored also positively) as indicated by 

ratings significantly above mediocre (Cards: mean = 4.38, SD = .72, t(15)  = 7.65, p < 0.001; and 

Rules: mean = 4.60, SD = .49, t(15)  = 13.06, p < 0.001). The missing values for this part of the 

questionnaires were managed as before. There were two participants that did not fill in all the 

five questions concerning the design evaluation of the first game. Their missing values, as well 

as one single missing value from a third participant, were replaced by the mean scores of each 

single item. In the second game, one participant’s responses were missing for all the 5 design 

elements. 

For phase 2, reliability analyses run separately for each GEQ subscale game again indicated 

acceptable reliability for most subscales with α > .70 (see Table 4, column α). However, this 

was not case for the subscales Competence (in The Race), Tension/Annoyance (in The Treasure 

Hunt and Patterns), Challenge (in The Treasure Hunt and The Race), Negative affect (The 

Treasure Hunt, The Race, and Patterns) and Negative feelings (in The Race). Those results may 

be affected by the rather small number of participants in our sample.Qualitative feedback: 

Participants’ impressions of the games were positive and promising for the content and the 

mode of the games. Their comments in phase 2 were taken into consideration and led to 

minor changes in the latest version of the games. For instance, in The Treasure Hunt, the 

maximum duration of play during a turn (3 minutes) was considered too long; thus it was 

reduced and limited to 1 minute. In The Race, the depiction of variables on the cards was 
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somewhat confusing; for that reason, the image was slightly adjusted. In Patterns, several 

participants (2 of them with partial colour blindness) reported colour confusion while trying 

to recognize shapes of yellow colour. Consequently, we changed the hue of yellow colour on 

the cards of this game. Finally, many participants requested a cumulative score across all three 

games that would allow determining an overall winner of Crabs & Turtles. 

4 Discussion 

The main aim of the present study was to describe the design and development of three 

unplugged games to foster computational thinking abilities in primary school children. The 

three games focused on different concepts relevant to computational thinking. In a 2-phase 

process, we evaluated users’ game experience. Using an iterative user-centred development 

process, dysfunctionalities in gameplay and shortcomings in instructions were identified and 

fixed during the development process. Quantitative analyses of overall (phase 1) and game-

specific game experience (phase 2) provided promising results as to the validity of our 

approach. In the following, we will discuss the results of phases 1 and 2 in turn. 

In phase 1, university student participants rated their overall game experience after playing 

all three games. Results indicated an overall positive reception of the educational games. In 

particular, users reported to feel competent and immersed during gameplay and perceived 

positive affect. In contrast, their GEQ ratings did neither indicate the experience of tension 

nor did they report to perceive negative emotions more generally. Additional analyses of 

overall experience further indicated that the games were primarily perceived as a playful 

activity and only to a lesser degree as learning. These results are in line with our objective of 

conveying basic concepts of computational thinking in a low threshold and game-based 

manner. Importantly, this is also reflected in users reported willingness to play the games 

again and also recommend playing the respective games to friends. Therefore, the overall 

evaluation of the games yielded promising results about users’ game experience that further 

backed the design of Crabs &Turtles as a whole. 

In the more in-depth analysis of each individual game in phase 2 results of phase 1 were 

substantiated as we identified similar patterns for participants’ ratings of game experience. 

Importantly, participants with a more educational oriented background (i.e., teacher, 

computer science instructors, etc.) again indicated that they perceived high levels of positive 

emotions, competence, as well as immersion while playing each of the three games. 
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Additionally, they reported only low perceived levels of negative emotions and tension in all 

three games. Interestingly, high levels of flow were only reported by participants for playing 

Patterns. At the same time, the overall challenge was rated relatively low in The Treasure Hunt 

and The Race, suggesting that these games in their current form might be rather easy for adult 

participants. This might also explain the rather mediocre perception of flow in these two 

games. Nevertheless, all three games were perceived as playful activities, and users indicated 

that they would like to play again as well as recommend all of the games to their friends. 

Moreover, the design elements of each game (i.e., game board, cards, game pieces, inventory 

items, rules) were rated positively throughout. 

Taken together, results of phase 1, as well as phase 2 evaluations, provided converging 

evidence on the validity of Crabs &Turtles as an unplugged and game-based approach to 

convey basic concepts of computational thinking – both overall (phase 1) but also when 

considered separately for the three games The Treasure Hunt, The Race, and Patterns.  

As such, this indicated that we took the first steps in developing an educational game. The 

design and CT concepts employed in all three games were derived from recent research 

(Berland & Lee, 2011; Brennan & Resnick, 2012a; Weintrop, Holbert, et al., 2016), which is a 

first crucial step in developing educational (board) games. From the beginning, we used an 

iterative user-centred development procedure, starting with pilot tests with primary school 

children, our main target group. However, before starting a comprehensive evaluation of 

cognitive effects and learning outcomes due to the three games in our main target group, we 

aimed at optimizing game experience and in-game procedures. Therefore, we employed a 2-

phase evaluation of game experience in adults, as reported in the current article. Overall and 

specific game experience was consistently positive, as indicated by participants’ ratings in 

both phases. Moreover, qualitative feedback by users helped to further optimize gameplay 

and mechanics. Adult participants, in particular the specialized group of teachers, computer 

science instructors, and gamification experts considered in phase 2, was able to provide us 

with specific and to-the-point feedback to further develop and improve the games and 

prepare them for the use in our main target group.  

Based on our observations, we are confident that the employed alternation of different 

mechanics across the games helped to keep different personal characters (e.g. shy, extrovert, 

patient or impatient participant) engaged in the educational content of the game. We noted 
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that for the mechanic of turns, seemingly more analytical and patient individuals with a focus 

on details seemed to be attracted more to the gameplay in the first game (The Treasure Hunt). 

In contrast, in the third game (Patterns), we found that seemingly more impatient and 

extrovert users were highly engaged. For the second game (The Race), the mechanism of turns 

seemed to engage all kinds of users more equally after modification of the rules from phase 1 

to phase 2. Another supporting example is the alternating mode of gameplay across games, 

starting with cooperation within teams and competition between teams (The Treasure Hunt 

and The Race) moving on to the final game with competition between all participating 

individuals (Patterns). This alternation of modes across games supported the collaborative 

introduction to the games (The Treasure Hunt and The Race), as well as the personal 

satisfaction of each user at the endmost of the games (Patterns).     

There are limitations to the present study that need to be considered when interpreting the 

results and should be addressed in already planned follow-up studies to overcome these 

limitations. For instance, while adult participants might be well able to provide more specific 

feedback and are easier to recruit and test as compared to children for initial pilot tests, a 

comprehensive analysis of game experience and learning outcomes in the main target group 

is, of course, necessary. Therefore, such a comprehensive evaluation of our games will be our 

next step, with a special focus on learning outcomes (by implementing a pre-/post-test design) 

in addition to questionnaire data on game and learning experience. 

5 Perspectives 

Future studies will, thus, have to evaluate game experience but also learning outcomes of the 

three games in primary school children to appraise their educational value in fostering CT 

abilities. Moreover, these games will be integrated into the first three lessons of a 10 lesson 

CT course curriculum (Tsarava et al., 2017). In this CT course, a game-based introduction of CT 

concepts in an unplugged manner is provided (i.e., without using a computer or other digital 

technology). In later lessons of the course, the very same CT concepts are picked up again in 

the context of other educational programming environments, for instance, Scratch, Scratch 

for Arduino (S4A), and Roberta robot programming (for a more comprehensive description of 

the course curriculum see Tsarava et al., 2017). Generally, the extra-curricular course primarily 

aims at introducing and fostering computational thinking, but not exclusively in gifted 

students between 7 and 9 years of age. More specifically, in a first phase, the games described 
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in this article are planned to be evaluated in 4 Academies of the Hector Children's Academy 

Program (HCAP) for gifted children, as one of 10 Hector Core Courses developed by the Hector 

Research Institute of Education Sciences and Psychology in Germany. In a second phase, the 

course curriculum, including the three life-size board games, will be taught in more than 

twenty Hector Children’s Academies across Baden-Wuerttemberg, Germany.  

Besides an overall evaluation of the educational value of the 3 games presented in terms of 

learning outcomes, we will specifically investigate whether game metrics, such as acquired 

badges and points, may provide a valid and reliable stealth assessment tool to allow for 

formative assessment of CT abilities (Shute & Kim, 2014). Finally, this upcoming 

comprehensive evaluation aims at investigating the underlying cognitive abilities involved in 

CT and possible transfer effects of the training by administering standardized psychological 

tests to allow for a differential view on CT (Shute et al., 2017). 
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Board Games for Training Computational Thinking 
Katerina Tsarava, Korbinian Moeller, Manuel Ninaus 

 

Abstract 

Computational thinking (CT) is a term widely used to describe algorithmic thinking and logic 

reasoning concepts and processes often related to computer programming. As such, CT as a 

cognitive ability, builds on concepts and processes that derive from computer programming 

but are applicable to wider real-life problems and STEM domains. CT has recently been argued 

to be a fundamental skill for 21st-century education and an early academic success indicator 

that should be introduced and trained already in primary school education. Accordingly, we 

developed three life-size board games – Crabs & Turtles: A Series of Computational Adventures 

– that aim at providing an unplugged, gamified and low-threshold introduction to CT by 

presenting basic coding concepts and computational thinking processes to 8 to 9-year-old 

primary school children. For the design and development of these educational board games, 

we followed a rapid prototyping approach. In the current study, we report the results of an 

empirical evaluation of the game experience of our educational board games with students of 

the target age group. In particular, we conducted quantitative analyses of player experience 

of primary school student participants. Results indicate an overall positive game experience 

for all three board games. Future studies are planned to further evaluate learning outcomes 

in educational interventions with children. 

Keywords: computational thinking, unplugged activities, board games 
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1 Introduction 

Computational Thinking (CT) denotes the mental ability of creating a computational solution 

to a problem, by first decomposing it, and then developing a structured and algorithmic 

solution procedure (Wing, 2006a, 2010). CT, as a cognitive ability, is argued to reflect the 

application of fundamental concepts and reasoning processes that derive from computer 

science and informatics to wider everyday life activities and problems but also STEM (Science, 

Technology, Engineering, and Mathematics) domains (Wang, 2015). The construct of CT as a 

cognitive ability shares common concepts with computer programming as a practical skill. 

Central concepts in computer programming are the ideas of sequences, operators, 

data/variables, conditional, events, loops, and parallelism (Brennan & Resnick, 2012a). 

Respectively, CT draws on processes such as decomposition, algorithmic thinking, conditional 

logic, pattern recognition, evaluation, abstraction, and generalization, which reflect cognitive 

counterparts of central computer programming concepts (Astrachan & Briggs, 2012; Wing, 

2010). 

CT, as a rather general problem-solving strategy applied to different domains, has been 

identified as a fundamental 21st-century skill (Wing, 2006a). It has been suggested that the 

instruction on CT concepts may improve students’ analytical skills and provide early indication 

and prediction of academic success (Haddad & Kalaani, 2015). Therefore, CT is considered a 

key competence for everyone and not just computer scientists (Wing, 2006a), comparable to 

literacy and numeracy (Yadav et al., 2014), that should be taught and acquired early in 

education.  

Recent research focused on the benefits of CT and its integration into educational curricula, 

which has lately led to several adaptations and reformations of educational programs 

throughout all levels of education worldwide (Brown et al., 2014; Tuomi et al., 2018). 

Educational initiatives and governmental institutions all over the world have been working on 

the integration of CT into curricula of educational programs of primary, secondary, and higher 

education (Code.Org; European Coding Initiative; European School Network; National Science 

Foundation).  

The societal relevance of CT led us to design and develop a CT training course for primary 

school children, introducing computer programming concepts and CT processes, applied to 

different STEAM (Science, Technology, Engineering, Art, and Mathematics) domains (for 



79 
 

information on the overall course structure see Tsarava et al., 2017). Importantly, to offer a 

low threshold introduction to CT utilizing embodied learning (Barsalou, 2008), we developed 

unplugged life-size board games Crabs & Turtles: A Series of Computational Adventures (for a 

more detailed description of the games see Tsarava et al., 2018) for our CT training course.  

Crabs & Turtles share common ideas with concepts of Papert’s educational Logo Turtle 

(Papert, 1999) and logo-inspired gamified educational activities (Papert & Solomon, 1971). 

Logo Turtle transferred to the real world conceptualized ideas of programing-like commands 

and algorithms by applying them for the first time to a transparent moving and haptic object, 

the Turtle. The unplugged life-size game design allows embodied training (for the concept of 

embodied cognition, see Barsalou, 2008) of simple computational concepts and encourages 

active engagement and participation of students (for an overview, see Echeverría et al., 2011). 

The games' target group are primary and secondary school students (8-12 years old) with no 

prior programming knowledge. We deliberately chose an unplugged mode of the game, taking 

into consideration common concerns regarding the introduction of computer programming 

to young children (Grover & Pea, 2013; Pea & Kurland, 1984). The unplugged mode fosters 

the understanding that CT processes do not occur only within digital contexts, but have a 

wider application in real-life problem-solving. 

The design and development of the game followed an iterative user-centred process 

(Fullerton, 2008). More specifically, we tested the first design ideas of the game with a custom-

made life-size game as a pilot educational intervention with primary school children (Tsarava, 

2016). Later on, we developed and tested the usability of an early prototype with primary 

school students during a short workshop session. After integrating feedback from both 

previous stages, we continued with the examination of users’ game experience quantitatively 

with an adult population to ensure the games’ appropriateness for children before evaluating 

the game with the target age group (Tsarava et al., 2018). Feedback from this study was 

integrated again and resulted in the latest version of the games. The final version of the games 

was evaluated for its game experience in the target age group. The results of this evaluation 

are reported in the current article. 
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2 Games Description 

Crabs & Turtles (Tsarava et al., 2018) consists of three different games: i. The Treasure Hunt, 

ii. The Race, and iii. Patterns. The games are designed for children at primary school level, 

focusing specifically on 3rd and 4th graders. They are intended to be used as integrated 

educational interventions in the classroom. Teachers play a central role in their 

implementation by acting as the game master in all three games, which can be played 

independently from each other and at any order of preference. The games aim at introducing 

and training processes related to CT, like abstraction, algorithms, decomposition, evaluation, 

and patterns. In particular, they focus on mathematical (i.e., addition, multiplication, 

subtraction, and angular degrees) and coding (i.e., conditionals, constants and variables, 

events, loops, operators, and sequences) concepts related to those processes. 

 

Figure 1. The Treasure Hunt game/grid board: 1. Sequence of commands created by the players, 2. Pawn, 3. 
Treasure collection point, 4. Pawn with food treasure items and badges that are collected by the players. 

The Treasure Hunt (see Figure 1) is the first game of Crabs & Turtles. Players have to 

strategically move the pawn in teams of two on a grid board to collect food treasure items for 

their pawns (either crabs or turtles). To do so, teams of two have to efficiently build sequences 

of instructions, consisting of specific card commands to move their pawns across the board to 
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gather treasures. They also need to obey specific rules and restrictions on movements 

indicated by the environment. For example, crab and turtle pawns can move only across 

specific coloured tiles on the grid, water or stone, and grass or stone, respectively. The main 

learning objective of the game is the general introduction to algorithmic thinking and 

sequential problem solving, as well as the consideration of restrictions and the use of simple 

conditional orders. Coding concepts explicitly addressed in this game are sequences and loops. 

For successful application of coding concepts, players are awarded badges during the game 

(e.g., loop badge, sequence badge, etc.). Along with coding concepts, students get familiar 

with handling angular degrees in spatial orientation. The winner of the game is the team that 

first collects a specific number of food treasure items.  

 

Figure 2. The Race game board (Inner upper panel: example of game cards). 

The Race (see Figure 2) is the second game of Crabs & Turtles. In this game, players in teams 

of two have to reach the end of the game board by solving math/related riddles and handle 

the changing characteristics of variables (e.g., in-/decreasing of values). This game specifically 

focuses on coding concepts related to mathematics. In particular, coding skills explicitly 
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addressed in this game are constants and variables, conditionals, events, and operators. 

During the game, players are awarded badges related to their achievements like variable 

badge, addition badge, etc. Mathematical abilities trained in the game relate to addition, 

subtraction, and multiplication. Consequently, the riddles of the game consist of equations 

related to mathematical operations and variables. The winner of the game is the team of two 

that first reaches the end of the race in the centre of the game board. 

Patterns (see Figure 3) is the third game of Crabs & Turtles. In this game, children play 

individually, trying to match as fast as possible two types of cards based on visual patterns 

depicted on them. In order to do so, they have to read colour codes, recognize patterns, and 

follow specific restrictions. The colour codes consist of colours, a shape, and an arrow that 

indicates the order of reading the colour code (see Figure 3, left). The patterns consist of 

colourful shapes, which are depictions of a star, a square, a circle, and a triangle (see Figure 3, 

right). The order of the shapes, as well as their colour, is different on each card, matching in 

this way only one specific colour code. The main learning objective of the game is the 

introduction to the concept of patterns by identifying colour and shape patterns. The winner 

of the game is the player that succeeds in collecting the most cards. 

 

Figure 3. Patterns card pairing example (Left: a card depicting a colourful pattern; Right: a colour code 
matching the pattern card on the left). 
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3 Evaluation 

After a successful 2-phase user test evaluation procedure with adult participants (Tsarava et 

al., 2018), we moved on to evaluating the games with primary school children – the actual 

target group of the games. In our 45-minute gaming sessions, the main focus was on assessing 

game experience quantitatively to identify potential dysfunctionalities during game-play, 

which then can be addressed before integrating the games into our CT course and evaluating 

their educational potential. To validate the design approach, participants consisted of 

different grades of primary school. Instructors and game masters in those sessions were the 

creators of the games. 

3.1 Participants 

We collected data from 79 primary school students aged between 8 and 12 years of age from 

6 different schools in Greece and Germany. Due to missing data on more than 10% of the 

items, we excluded data of 9 participants from further analysis. For another 4 participants who 

completed more than one game, we had to exclude some of their questionnaires for specific 

games because responses were missing due to local organizational issues. Missing values for 

fewer items in the questionnaires were replaced by the mean score for the respective item 

computed from other participants. As such, data of a final sample of 70 participants was 

considered in the analyses (age in years: mean = 9.44, SD = 0.845; male: 42, female: 20, not 

indicated: 8). 

3.2 Procedure and materials 

In separate teaching sessions, we evaluated the game experience of primary school students. 

Most of the participants played all 3 games of Crabs & Turtles. Before participants started 

playing each of the games, we provided oral and visual instructions. After playing each game, 

participants were asked to complete the Game Experience Questionnaire (henceforth GEQ;  

Poels et al., 2007). We used a translated version of the Core (33 items) module in Greek and 

German to assess the overall game experience. The Core module consists of seven subscales 

addressing i. Immersion, ii. Flow, iii. Competence, iv. Positive Affect, v. Negative Affect, vi. 

Tension, and vii. Challenge. For each subscale, we used the average scores of the respective 

items as the dependent variable in our analyses. Each item had to be responded to on a 5-

point Likert-scale (1 = not at all; 2 = slightly; 3 = moderately; 4 = fairly; 5 = extremely). For 
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example, the fourth item of the Core module reads as follows: “I felt happy”, and participants 

had to rate their experience of content on the aforementioned Likert scale by crossing an 

answer from 1 to 5 (e.g., crossing 4 would mean “I felt fairly happy”). 

Furthermore, we used 4 additional items to further evaluate the overall game experience, 

which also employed a 5-point Likert-scale: Q1. I would explain my experience as playing; Q2. 

I would explain my experience as learning (Q1 & Q2: 1 = not at all; 2 = not really; 3 = undecided; 

4 = somewhat; 5 = very much); Q3. I would recommend the games to a friend; Q4. I would like 

to play the games again in the future (Q3 & Q4: 1 = not at all; 2 = not really; 3 = undecided; 4 

= likely; 5 = very likely). We added these 4 items to the questionnaire with the intention to 

measure the experience of the game as learning and/or playing because the GEQ aims at 

evaluating game experience more broadly and not game experience for educational games in 

particular. 

Finally, to evaluate specific design elements of The Treasure Hunt and The Race, such as 

boards, cards, game pieces, inventory items, and rules, 5 more items (e.g., Q: How much did 

you like the inventory items?), again using a 5-point Likert-scale (1 = not at all; 2 = slightly; 3 = 

moderately; 4 = fairly; 5 = extremely), were used. For Patterns, only cards and rules were 

evaluated.  

3.3 Results 

The analyses of the questionnaires were conducted for each game separately. The current 

results are presented in the following three sections. We used a conservative approach of 

analyzing each subscale of the GEQ by conducting one-sample t-test comparing means of 

subscale ratings to the middle value of the scale (3 = mediocre) of the 5-point Likert scale. 

Internal consistency (Cronbach's Alpha) of the GEQ, as reported by Poels et al. (2007), is 

presented in Table 1 (column α*). In addition, Cronbach’s alpha, as obtained in the current 

sample, is also reported in Table 1 (column α). The observed internal consistency indicated 

acceptable reliability for most subscales with α > .70. However, this was not the case for 

subscales Tension/Annoyance (for games 2 and 3), Challenge (for games 1, 2, and 3), and 

Negative Affect (for game 1). For the analyses of overall game experience and the specific 

design elements, we again ran t-tests against the middle of the respective scale. Descriptive 
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results and inferential statistics for the GEQ subscales are summarized in Table 1 and Figure 

4. 

3.3.1 The Treasure Hunt 

Game Experience. Participants rated this game significantly above mediocre on the subscales 

Competence, Sensory & Imaginative Immersion, and Positive Affect. In contrast, ratings were 

significantly below mediocre for the subscales Tension/Annoyance, Challenge, and Negative 

Affect. We did not find a significant difference from mediocre for Flow (see Table 1). 

Overall Experience. Participants experienced The Treasure Hunt somewhat as playing (Q1: 

mean = 4.22, SD = 1.10; t(17) = 6.29, p < 0.001) as reflected by ratings significantly above 

mediocre and not so much as a learning activity (Q2: mean = 2.98, SD = 1.51; t(17) = -.09, p = 

0.929). Additionally, participants reported that they would likely recommend the game to a 

friend (Q3: mean = 3.74, SD = 1.37; t(17) = 3.05, p = 0.005), and would likely play the game 

again in the future (Q4: mean = 4.29, SD = 1.08; t(17) = 6.71, p < 0.001), as indicated by ratings 

significantly above mediocre.  

 

Figure 4. Students' ratings of GEQ subscales for each of the three games. On the y-axes, mean ratings of each 
subscale of the GEQ is represented. The y-axes refer to each of the subscales of the GEQ (Comp = Competence; 

Immersion = Sensory & Imaginative Immersion; Flow = Flow; Tension = Tension/Annoyance; Challenge = 
Challenge; NegAff = Negative Affect; PosAff = Positive Affect). Error bars depict 1 standard error of the mean. 

Design Elements’ Evaluation. The design elements of The Treasure Hunt scored a mean of 4.13 

(SD = 1.02) on the 5-point Likert scale. More specifically, users rated all five design elements 

of The Treasure Hunt (Board: mean =4.09, SD =1.17, t(17) = 5.27, p < 0.001; Cards: mean = 
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3.88, SD = 1.24, t(17) = 4.00, p < 0.001; Game Pieces: mean = 4.50, SD = .84, t(17) = 10.07, p < 

0.001;  Inventory items: mean = 4.16, SD = 1.17, t(17) = 5.61, p < 0.001 and Rules: mean = 4.02, 

SD = 1.35, t(17) = 4.27, p < 0.001) significantly above mediocre. 

3.3.2 The Race 

Game Experience. Participants’ ratings for this game were significantly above mediocre for the 

Competence, Sensory & Imaginative Immersion, and Positive Affect subscales of the GEQ Core 

module. In contrast, participants rated the game significantly below mediocre on the 

subscales Tension/Annoyance, Challenge, and Negative Affect. Also, we did not find a 

significant difference to mediocre for the Flow subscale. 

Overall Experience. For The Race ratings significantly above mediocre indicated that 

participants rated their game experience somewhat as playing (Q1: mean = 4.16, SD = 1.03; 

t(16) = 5.64, p < 0.001) and not as a learning activity for which there was no significant 

difference from mediocre (Q2: mean = 3.21, SD = 1.41; t(17) = 0.74, p = 0.467). Furthermore, 

ratings significantly above mediocre reflected that they would likely recommend the game to 

a friend (Q3: mean = 3.91, SD = 1.12; t(16) = 4.09, p < 0.001), and also would likely play it again 

in the future (Q4: mean = 4.09, SD = 1.15; t(16) = 4.72, p < 0.001).  

Design Elements’ Evaluation. Overall, all five design elements of The Race were positively rated 

scoring a mean of 4.02 (SD = 1.01). More specifically, participants liked all five design elements 

(Board: mean =4.08, SD =1.08, t(16) = 5.03, p < 0.001; Cards: mean = 3.75, SD = 1.20, t(16) = 

3.13, p = 0.005; Game pieces: mean = 4.42, SD = 1.08, t(16) = 6.58, p < 0.001;  Inventory items: 

mean = 3.91, SD = 1.22, t(16) = 3.72, p = 0.001  and Rules: mean = 3.96, SD = 1.27, t(16) = 3.76, 

p = 0.001) as reflected by ratings significantly above mediocre. 

3.3.3 Patterns 

Game Experience. Similarly to the results of the other two games, participants’ ratings for 

Patterns were significantly above mediocre for the Competence, Sensory & Imaginative 

Immersion and Positive affect subscales of the GEQ Core module. Again, ratings for the 

Tension/Annoyance, Challenge, and Negative Affect subscales were significantly below 

mediocre. Also, we did not find a significant difference to mediocre for the subscale Flow. 
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Overall Experience. Participants perceived the Patterns game somewhat as a playing 

experience (Q1: mean = 3.93, SD = 1.24; t(15) = 4.92, p < 0.001) which was again reflected by 

ratings above mediocre and with a marginally significant score as a learning activity as well 

(Q3: mean = 3.42, SD = 1.43; t(17) = 1.94, p = 0.059). Moreover, according to ratings above 

mediocre, participants reported that they would likely recommend it to a friend (Q3: mean = 

3.74, SD = 1.29; t(15) = 3.75, p = 0.001), and also play the game again (Q4: mean = 4.10, SD = 

1.30; t(15) = 5.58, p < 0.001).  

Table 1. Mean scores for the Core module of GEQ at phase 2, per game-based activity. 

The Treasure Hunt 

GEQ modules mean SD df t p α α* 

Core   
Competence 3.86 1.09 31 4.48 0.000 .923 .826 
Sensory & Imaginative Immersion 3.82 1.11 31 4.17 0.000 .910 .891 
Flow 3.26 1.07 31 1.39 0.174 .813 .866 
Tension/Annoyance 1.55 .96 31 -8.57 0.000 .890 .811 
Challenge 1.92 .70 31 -8.76 0.000 .560 .745 
Negative Affect 1.58 .69 31 -11.69 0.000 .640 .712 
Positive Affect 4.20 1.06 31 6.38 0.000 .956 .797 

The Race 

GEQ modules mean SD df t p α α* 

Core   
Competence 3.60 .98 24 3.05 0.006 .799 .826 
Sensory & Imaginative Immersion 3.60 1.09 24 2.77 0.011 .876 .891 
Flow 3.13 .99 24 .676 0.506 .759 .866 
Tension/Annoyance 1.54 .71 24 -10.34 0.000 .546 .811 
Challenge 2.00 .80 24 -6.20 0.000 .673 .745 
Negative Affect 1.81 .82 24 -7.28 0.000 .745 .712 
Positive Affect 4.13 .95 24 5.98 0.000 .938 .797 

Patterns 

GEQ modules mean SD df t p α α* 

Core   
Competence 3.49 1.03 42 3.12 0.003 .865 .826 
Sensory & Imaginative Immersion 3.46 1.08 42 2.82 0.007 .871 .891 
Flow 2.86 .99 42 -0.95 0.345 .771 .866 
Tension/Annoyance 1.43 .66 42 -15.72 0.000 .625 .811 
Challenge 2.18 .75 42 -7.21 0.000 .592 .745 
Negative Affect 1.67 .87 42 -10.06 0.000 .752 .712 
Positive Affect 3.86 1.12 42 5.07 0.000 .928 .797 

 

Design Elements’ Evaluation. The design elements in Patterns scored a mean of 3.98 (SD = 

1.01) on the 5-point Likert scale. The two design elements in the questionnaire for Patterns 
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scored positively as indicated by ratings significantly above mediocre (Cards: mean = 4.00, SD 

= 1.05, t(15)  = 6.27, p < 0.001; and Rules: mean = 3.95, SD = 1.09, t(15)  = 5.72, p < 0.001).  

4 Discussion and Future Work 

The present study aimed at evaluating the game experience of primary school students in the 

three games of Crabs & Turtles and thus complements a previous evaluation of game 

experience in adults (Tsarava et al., 2018). After evaluating the game experience in adults and 

gathering overall positive results and valuable feedback, we completed the design of the final 

prototype for our games and tested user experience in the actual target group. We play-tested 

the games and collected data using the GEQ. Quantitative analyses on the game users’ 

experience provided promising results regarding the validity of our approach. 

Student participants rated their game experience after playing each game. Results indicated 

an overall positive reception of the games. In particular, students reported feeling competent 

and immersed while playing all three games, as well as experiencing positive affect. On the 

other hand, the overall challenge was rated low. Importantly, tension and negative affect 

ratings were also low for all three games. In addition, all three games of Crabs & Turtles were 

experienced as a playing activity, and students would likely be willing to play all three of them 

again and recommend them to their friends. Additionally, evaluation of the quality of design 

elements for each game was rated highly positive. In summary, this indicates that we managed 

to implement CT concepts into three gaming activities while achieving an overall positive game 

experience in children. However, the actual educational value of each of the games needs to 

be investigated comprehensively and evaluated empirically in separate studies, which, in fact, 

are currently being conducted in Germany. 

The main aim of this study was the quantitative evaluation of primary school students’ game 

experience in Crabs & Turtles to extend a previous evaluation in adults (Tsarava et al., 2018). 

The overall positive evaluation of game experience replicated in the target group now allows 

for a comprehensive evaluation of cognitive and educational benefits when playing the games. 

Although the overall results were positive, the relatively low scores in challenge and flow in 

all three games may not be optimal. Therefore, we plan to provide a set of game instructions 

with multiple adaptations. For example, we will facilitate selection of difficulty levels based on 

the number of players, so that the game becomes adaptive to classroom conditions (e.g., few 

or many students) and to students’ game understanding (e.g., in case the game is understood 
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well and gameplay seems easy, rules could become gradually more challenging while playing). 

We also plan to adapt a challenging game mechanic in The Race that will foster competition 

between the teams at every round of the game by allowing all the teams to solve the riddle 

as fast as possible. 

Future studies are planned with primary school students of 3rd and 4th grade to evaluate the 

learning outcomes of the three games and their educational effectiveness on training CT-

related skills. The three games, as part of a structured curriculum dedicated to training CT 

(Tsarava et al., 2017), will be evaluated through a pre-/post-test study design using a 

randomized field trial with a control group in 20 Hector Children’s Academies in Baden-

Wuerttemberg, Germany. Moreover, this forthcoming evaluation will aim at investigating 

cognitive abilities underlying CT and possible transfer effects of the course, using standardized 

cognitive tests to allow a diverse approach and definition of CT. Finally, we aim at developing 

digital versions of our board games to allow for individual dynamic adaptation of – for instance 

– the difficulty of the games.  
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7 Computational Thinking: Cognitive Definition & 
Assessment 

In this chapter, the following articles and manuscripts are attached: 

 Study 4: Cognitive Correlates of Computational Thinking: Evaluation of a Blended 
Unplugged/Plugged-In Course.  

 Study 5: A Cognitive Approach to Defining and Assessing Computational Thinking: An 
Empirical Study in Primary School (under review). 

 Study 6: Evaluation of a Computational Thinking Intervention for Elementary School 
Children: A Randomized Controlled Field Trial (in preparation). 
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Cognitive Correlates of Computational Thinking: 
Evaluation of a Blended Unplugged/Plugged-In Course 

Katerina Tsarava, Luzia Leifheit, Manuel Ninaus, Marcos Román-González, Martin V. Butz, 
Jessika Golle, Ulrich Trautwein, Korbinian Moeller 

 

Abstract 

Coding as a practical skill and computational thinking (CT) as a cognitive ability have become 

an important topic in education and research. It has been suggested that CT, as an early 

predictor of academic success, should be introduced and fostered early in education. 

However, there is no consensus on the underlying cognitive correlates of CT in young 

elementary school children. Therefore, the present work aimed at (i) assessing CT and 

investigating its associations to established cognitive abilities, and (ii) evaluating a newly 

developed CT course for elementary school children. 

As such, 31 7-10-year-old children took part in 10 lessons of a structured CT course. The course 

aimed at introducing and fostering CT concepts in both unplugged and plugged-in ways, 

incorporating life-size board games, Scratch, Scratch for Arduino, and Open Roberta 

programming environments. In a pre-/post-test design, we assessed several cognitive abilities 

using standardized tests on non-verbal visuospatial and verbal reasoning abilities, numeracy, 

as well as short-term memory and measured CT using an adapted version of the only existing 

validated test CTt, to accommodate it to the younger sample. 

We identified significant associations between CT and non-verbal visuospatial reasoning, as 

well as different aspects of numeracy (e.g., fact retrieval and problem completion). In line with 

recent theoretical accounts and empirical investigations for other age groups, these findings 

specify the underlying cognitive mechanism of CT in elementary school. Moreover, our results 

indicated that students were able to specifically improve their CT abilities through the course, 

as assessed by the adapted version of the CTt. 

Keywords: computational thinking, computational thinking assessment, computational 

thinking curriculum, cognitive skills 
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1 Introduction 

1.1 Definition of CT 

Computational thinking (CT) has been coined a crucial 21st-century skill, along with 

collaboration, communication, digital literacy, citizenship, problem-solving, critical thinking, 

creativity, and productivity (Bocconi et al., 2016; Voogt et al., 2013). As such, these skills have 

been suggested to be important for children to acquire and develop early on in education to 

be prepared for the demands of the present and future digital world (Settle et al., 2013; Yadav 

et al., 2014, 2011). The first conceptualized introduction of the term CT by Wing (Wing, 2006a) 

described it as an applicable attitude and skill set for everyone and not only for programmers 

or computer scientists. Due to the term attracting considerable interest in research and 

education alike, there have been numerous attempts to further defining and conceptualizing 

CT (e.g., Barr et al., 2011; Grover & Pea, 2013). 

A recent review on CT in educational contexts (Shute et al., 2017) describes CT as a 

"conceptual foundation required to solve problems effectively and efficiently (i.e., 

algorithmically, with or without the assistance of computers) with solutions that are reusable 

in different contexts". This holistic definition characterizes CT as a cognitive ability rather than 

just being a practical skill in a specific context and hence emphasizes the broad applicability of 

CT. This is particularly important, as there are common misconceptions between the terms 

and definitions of CT, computer science, programming, and coding. As part of computer 

science, coding and programming usually refer to the somewhat more practical and less 

theoretical skills of computer science, referring to writing computer code and building 

computer programs, respectively. In contrast, CT is considered as a broader cognitive concept, 

which is associated with computer science, but which is also applied more broadly in various 

other - not essentially computerized - domains (Armoni, 2016). While it is assumed that basic 

CT competencies are required for acquiring more practical coding and programming skills, CT 

generally reflects a broader cognitive skill that is crucial for computational literacy (Balanskat 

& Engelhardt, 2015; García-Peñalvo et al., 2016). Moreover, recently, the definition of CT was 

extended by Resnick (2017), who used the term computational fluency to describe CT not only 

as an understanding of computational concepts and problem-solving strategies but also as a 

creative ability for self-expression through means of digital technologies. 
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1.2 CT curriculum and assessment 

Although there are inconsistencies in the definition and conceptualization of CT, its value for 

education is broadly accepted (V. Barr & Stephenson, 2011; Qualls & Sherrell, 2010). 

Consequently, during the past decade, many governments (e.g., for England, see Williamson, 

2015) and educational institutions all over the world adopted and integrated CT in their 

national curricula for elementary (e.g., Bers et al., 2014), secondary (e.g., Settle et al., 2012), 

and post-secondary education (e.g., Dierbach et al., 2011). This integration was based on 

different suggested frameworks for designing CT curricula (Curzon et al., 2014; Perković et al., 

2010) aiming at fostering CT as a broader cognitive ability applicable in different contexts. The 

continued interest in CT resulted in numerous newly designed educational materials to be 

used for fostering CT. However, at the same time, tools or instruments measuring CT are 

required to assess the outcomes of these educational materials. 

The quantitative assessment of CT may be contradictory to the initial anthropological views of 

constructivism, which proposed the idea that learning is the active construction of meaning 

rather than the simple internalization of knowledge (Hein, 1991) and can therefore not 

adequately be measured by assessing individual, prespecified learning outcomes. However, 

educators should monitor learning outcomes to assess the quality of the used educational 

material (Hickmott & Prieto-Rodriguez, 2018). The assessment of CT has so far been 

attempted in different ways (e.g., Hubwieser & Mühling, 2014; Moreno-León et al., 2015; 

Román-González et al., 2017; Weintrop et al., 2014). 

Brennan and Resnick (Brennan & Resnick, 2012b) suggested assessments based on project 

portfolio analyses, artefact-based interviews, and design scenarios in the Scratch 

programming environment. Assessment components of their approach were extended and 

integrated into the Progression of Early Computational Thinking (PECT) model (Seiter & 

Foreman, 2013), which is comprised of evidence variables (e.g., conditionals, operators, 

boolean expressions), design pattern variables (e.g., animated looks, animated motion, user 

interaction), and CT concepts (e.g., procedures and algorithms, problem decomposition, 

parallelization, and synchronization), based on which Scratch projects are assessed. 

Weintrop et al. (2014) proposed a digital interactive assessment of different items designed 

to measure students’ CT ability within STEM disciplines. Dr. Scratch (Moreno-León et al., 2015) 
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is a formative assessment tool also based on the analysis of CT concepts identified in Scratch 

projects, implemented in an automatic way. The Fairy assessment (L. Werner, Denner, & 

Campe, 2012) measures students CT abilities while engaging students in the game 

programming environment of Alice. Koh et al. (2014) proposed a real-time assessment tool 

that measures students CT performance while they engage the game programming 

environments in Agentsheet and Agentcubes activities. Most of these assessment methods 

are linked to certain digital programming environments, such as Scratch. 

An early psychometric approach for assessing CT, detached from a specific digital 

environment, is the work of Mühling et al. (2015), who created and evaluated an assessment 

tool that focuses on control flow concepts in programming algorithms. Building upon previous 

work, Weintrop and Wilensky (2015) developed the Commutative Assessment, which assesses 

with 28 items different CT concepts, such as conditional logic, loops, functions, algorithms, 

variables, and comprehension in two different modalities, text- and block-based. Ambrósio et 

al. (2015) created a computerized cognitive assessment for CT, which is implemented as a 

tablet-based test. Another psychometric approach assesses CT in robotics programming and 

everyday reasoning with 5th-grade students using 15 multiple choice and 8 open-ended 

questions in pen-and-paper form (Chen et al., 2017). Those 23 items were developed based 

on 6 CT components, namely syntax, data, algorithms, representation of problems and 

solutions, as well as generation of efficient and effective solutions. Furthermore, in an attempt 

to assess CT in preschoolers, the Coding Development (CODE) Test 3-6 (Marinus et al., 2018) 

was developed. 

From this brief review, it becomes evident that many different instruments seem to be 

available for assessing CT. However, most of them are not evaluated and validated in a large 

sample. One clear exception to this is the Computational Thinking Test (CTt), which has been 

validated with over 1200 children (Román-González et al., 2017). The CTt comprises 28 items, 

addressing one or more out of 7 different CT concepts in multiple-choice tasks (Román-

González, 2015b). These are presented primarily utilizing a Pac-Man maze or a painting canvas 

and thus do not specifically refer to a programming language such as Scratch, for instance. 

Studies on CTt so far provide empirical evidence on its content validity (Román-González, 

2015b), criterion validity (Román-González et al., 2018b; Román-González et al., 2017), 

convergent validity (Román-González, Moreno-León, et al., 2017), predictive validity (Román-
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González et al., 2018a), and cross-cultural validity (Wiebe et al., 2019). CTt was used in the 

current study to investigate the association between CT and other cognitive abilities to 

understand its underlying processes better. 

1.3 Cognitive correlates of CT 

Already back in 1977, Brooks (1999) pointed out the necessity of more theory-driven studies 

focusing on specifying the underlying cognitive processes of programming. The author based 

his theory of programming on the problem-solving theory by Newell and Simon (Simon & 

Newell, 2006). Accordingly, he characterized the underlying cognitive processes of 

programming as understanding a written task and finding appropriate methods and strategies 

for solving it. In this context, a meta-analysis of 65 studies on the cognitive outcomes of 

programming (Liao & Bright, 1991) revealed that computer programming could have positive 

effects on a range of cognitive abilities, such as reasoning skills, logical thinking, planning skills, 

and general problem-solving skills. A more recent meta-analysis of 105 studies on the effect 

of computer programming on improving other cognitive skills (Scherer et al., 2019) provided 

further evidence for cognitive benefits in terms of near and far transfer effect. For instance, 

there was a positive transfer found in situations that required creative thinking, mathematical 

skills, and metacognition, followed by spatial skills and reasoning. 

Recently, there have been quite a few studies focused on programming behaviours and on 

assessment of cognitive processes while coding in specific programming environments. 

However, most of them fall short of providing more detailed empirical insights into explicit 

cognitive correlates of CT. Nevertheless, the recent increase in educational materials and 

courses to foster CT also surged interest in examining specific cognitive processes underlying 

CT. While this is not only highly relevant for the proper assessment of existing courses that 

are supposed to teach and improve CT abilities, it also seems important for advancing the 

conceptualization and definition of CT. 

However, empirical studies on the cognitive correlates of CT are still very sparse. Recent 

studies on the cognitive underpinnings of coding with young children of 5 to 6 years of age 

(Marinus et al., 2018) showed that cognitive compiling (the ability to formulate mental action 

plans in natural language) was a predictor of coding ability over and beyond influences of age 

and non-verbal intelligence. In another study, Román-González and colleagues (2017) not only 



100 
 

validated the CTt but also examined associations between the CTt and other cognitive skills. 

For the participating students (10-16 years of age), there were weak to moderate correlations 

between CT and three of the four primary mental abilities assessed (i.e., reasoning, spatial, 

and verbal ability), whereas a high correlation was observed between CT and problem-solving 

abilities. However, no statistically significant correlation was observed between CT and 

numerical ability. These findings are consistent with recent theoretical proposals of Ambrósio 

et al. (2015) that associate CT with some of the core elements of the Cattell-Horn-Carroll (CHC) 

model of intelligence (McGrew, 2009), especially with respect to fluid reasoning (Gf), visual 

processing (Gv) and short-term memory (Gsm). 

1.4 Aim of the study 

The current study aimed at investigating whether similar associations between CT and 

cognitive abilities, as shown by Román-González et al. (2017), can also be found in elementary 

school students, for whom the cognitive correlates of CT have not been evaluated so far. 

Moreover, we asked the question of whether a course designed to improve CT abilities can 

improve both CTt scores as well as the scores in other previously correlated mental abilities. 

Therefore, the current study employed a pre-/post-test pre-experimental design assessing CT 

as well as relevant cognitive abilities before and after a newly developed course, which was 

designed to effectively foster CT. As a result, it was possible not only to analyze associations 

between CT and other cognitive abilities but also which of them would be affected by the 

teaching intervention targeting CT. Based on the most recent literature on CT, we had the 

following hypotheses: 

(i) We hypothesize to observe same (or similar) correlation patterns between CTt scores 

and cognitive abilities in elementary school children when compared to those found in 

secondary school children, like reasoning, spatial and verbal abilities. 

(ii) We expect to find children’s CTt performance to be improved after participating in 

the targeted CT training course. 
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2 Methods 

2.1 Participants 

Participants were 31 (28 boys) 3rd and 4th graders enrolled in the extra-curricular programs of 

four Hector Children’s Academies in Baden-Württemberg, Germany. Students’ age varied 

between 7 and 10 years (mean = 9.47; SD = 0.76). All students decided voluntarily which extra-

curricular course or courses they wanted to attend from a list of various offered courses in 

each academy. The students participating in the study attended a CT training course consisting 

of 10 90-minutes lessons. Informed consent was provided by parents before the start of the 

study. 

2.2 Study design 

Participants took part in a ten-week CT training course. One week before and one week after 

the training, different cognitive abilities, as well as CT, were assessed in two 2-hour long 

sessions each, using the same battery of tests. The study took place in four different local 

extra-curricular programs. The intervention was taught by one instructor in each class. 

Instructors of the course were one of the researchers at three of the classes and one qualified 

computer science teacher in one class. In the following, we first describe the general 

pedagogical principles utilized in the developed CT course before we briefly report the content 

of each lesson. The course consists of 10 lessons of 90 minutes each. It is a blended course 

incorporating both unplugged and plugged-in interventions and is structured in 4 sections: i. 

Unplugged introduction to CT concepts using life-size board-games (Tsarava et al., 2018), ii. 

Application of CT concepts in the Scratch (Lifelong Kindergarten Group - MIT Media lab) 

programming environment, iii. Transfer of CT concepts to the Scratch for Arduino (S4A; Citilab, 

2015) programming environment, and iv. Robot simulation using CT concepts in the Open 

Roberta Lab (Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS) robot 

programming and simulation environment. We documented the theoretical and 

methodological approaches of the course, as well as its’ educational teaching materials (e.g., 

lesson plans, step-by-step activities, game materials, short assessments, etc.) in a detailed 

course manual of 250 pages. 
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2.2.1 Conceptual teaching approach 

The intervention followed a conceptual teaching approach closely linked to CT, aiming at 

imparting computer science knowledge and competencies, which are quickly learnable, well 

structured, and easily transferable to different domains. In order for children to internalize 

this knowledge and develop the competencies as sustainably as possible, the intervention’s 

contents are introduced in a conceptual way. That is, students should be able to independently 

work on programming projects after completion of the current training as well as understand 

and approach computational problems. Consequently, the training was not on specific 

programming environments or technologies but aimed at fostering basic CT processes and 

coding concepts, such as sequences, loops, conditional branching, events, variables, and 

operators (as identified by Brennan & Resnick (2012). 

The first introduction to CT in the course is done by the use of unplugged activities. Such an 

approach was proposed by Prottsman (Prottsman, 2014) to familiarize younger students with 

computational topics and problems. The aim was to these use unplugged exercises to facilitate 

the acquisition of abstract computational concepts, which students will implicitly encounter 

when they first begin to program (Prottsman, 2014) because the attainment of practical 

programming skills requires at least knowledge of basic computational concepts (Balanskat & 

Engelhardt, 2015; García-Peñalvo et al., 2016). However, the promotion of CT detached 

entirely from actual programming may lead to artificial and contextless learning scenarios. 

Therefore, it has been suggested to promote CT by teaching it in a conceptual way, applying 

it in practical programming, and transferring it to interdisciplinary contexts (Yadav et al., 

2014). 

2.2.2 Game-based learning 

Learning activities in which learners build knowledge and competences through games or 

playful tasks are referred to as game-based learning activities. The use of game-based teaching 

and learning methods can improve learners’ performance (e.g., Ninaus et al., 2015; for a meta-

analysis, see Wouters et al., 2013) and increase their motivation and involvement in the 

learning activity (Hamari et al., 2014). Games and game-based activities are an increasingly 

important approach for cognitive training, learning, and education (Boyle et al., 2016b) as they 

motivate learners to interact actively with the learning environment (Plass et al., 2015). 
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Importantly, game-based learning also seems to be superior in terms of learning performance 

as compared to traditional teaching methods (Wouters et al., 2013). 

Accordingly, the present CT training course utilizes life-size board and card games we 

developed specifically for the training. Moreover, previous studies indicated that 3rd and 4th 

grade students benefit particularly from unplugged game activities to introduce CT concepts 

as this format allows for a low threshold introduction facilitating understanding and 

application of these concepts (Leifheit et al., 2018). In particular, these games aim at 

introducing different computational concepts and increasing active involvement of the players 

and thus the learning content (for an overview, see Echeverría et al., 2011). Moreover, the 

games’ board and the card games aim at making abstract coding concepts tangible, thus aiding 

the development of abstract and symbolic thinking through multimodal representations (Plass 

et al., 2015). 

2.2.3 Embodied Learning 

The theory of embodied cognition states that many aspects of human cognition are grounded 

in physical, interactive experiences of the learner with the environment (Barsalou, 2008). In 

concrete learning scenarios, this is the case when the body of the learner plays a significant 

causal role in the experienced situated dynamics (García-Peñalvo et al., 2016). Accordingly, 

learning activities in which learners acquire knowledge and competences through physical 

interaction or manipulation of physical objects are referred to as embodied learning. 

Embodied teaching and learning methods can facilitate implicit learning (Barsalou, 2008) and 

can have a positive effect on comprehension as well as retention by spatially organizing and 

representing conceptual content (Noice & Noice, 2001). 

The life-size board and card games used in the present course are intended to enable 

embodied experiences of the basic concepts and processes of CT (Barsalou, 2008), on the basis 

of which the development of conceptual, event-predictive abstractions can be supported in a 

maximally natural manner (Butz, 2016; Butz & Kutter, 2017). For that reason, the design of 

the game board grid takes into consideration the fee size of a young child in order to allow for 

active movement on it. In one of these board games, for example, the concept of a loop is 

introduced and practised by recognizing repetitions in sequences of movements of a game 

character and then reformulating them as loops of sequences of movement. 
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Furthermore, the open-hardware platform Arduino, as well as the programming language and 

environment S4A (Scratch for Arduino), was used in the course to enable embodied learning. 

By controlling the different sensors of the Arduino and programming the functionality of the 

electronic components, students experience that they can not only influence what happens 

on the screen before their eyes but can also interact with the physical world around them 

through the programs they write. 

2.2.4 Outline of the CT training 

During the course of the training, students gradually progressed from hands-on and non-

digital unplugged tasks (e.g., board games, pen-and-paper exercises; see Figure 2) to 

increasingly more abstract and sophisticated plugged-in programming tasks (for the course 

overview, see Figure 1). In lessons 1, 2, and 3, students got to know basic CT concepts in an 

unplugged way by playing life-size board and card games (Tsarava et al., 2018; Tsarava, 

Moeller, et al., 2019). In lessons 2, 4, 5, and 6, students were introduced to the visual block-

based programming language and environment Scratch. Hence, students got to apply the 

conceptual knowledge acquired while playing the board and card games to Scratch. 

 

Figure 1. Course overview. 

In lessons 7 and 8, when working with the Arduino hardware platform equipped with physical 

sensors, they experienced their program code engaging with the physical world around them. 

In the last two lessons of the intervention, lessons 9 and 10, students exercised their CT 

abilities independently by programming a simulated robot in the interactive robot simulation 

environment Open Roberta Lab. This gave the students the opportunity to test the knowledge 

and skills they acquired throughout the training in a new context and to work more 

independently than in lessons 1 to 8. Open Roberta Lab is particularly suited for this type of 

work for several reasons: First, Open Roberta Lab provides an easy-to-learn block language. 

Thus, students can quickly find their way around the new programming language and 
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environment. Second, the use of the predefined but easily accessible simulation environment 

ensured that students did not spend too much time on tinkering with the purely graphical 

elements of their programs, but actually had to program and think strategically in order to 

control the simulated robot. Finally, controlling the robot stimulates attempts on free problem 

formulation and solving. Specifically, there is no predetermined problem-solving approach, 

but students got to set their own goals, which could be achieved in an indefinite number of 

ways.  

Each of the 10 lessons referred to a specific STEM discipline to which the respective 

applications and unplugged activities were closely related (for an overview of the connection 

between STEM disciplines and computational abilities, see D. Barr et al. (2011) and Sanders 

(2009). For example, students have to program simulations of a food chain or a water cycle in 

one of the lessons, addresses issues from biology or geography in another. This aimed at 

widening the students’ perspective on CT and actual programming skills being valuable for 

solving problems in various contexts and not only for computer science. 

 

Figure 2. An example of an unplugged activity of the life-size board games which introduces sequences, loops, 
simple conditionals, and events. 

2.3 Instruments 

To assess the association between CT and relevant other cognitive abilities, we used the 

following test battery in the pre- and post-test: 
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(i) For the assessment of arithmetic operations, five subtests of the Heidelberger 

Rechentest zur Erfasssung mathematischer Basiskompetenzen im Grundschulalter 

(HRT 1-4; Haffner et al., 2005) were used; namely, the subscales Writing Speed (30 

seconds), Addition (2 minutes), Subtraction (2 minutes),  Multiplication (fact retrieval; 

2 minutes), and Problem Completion (2 minutes). 

(ii) Non-verbal visuospatial reasoning was assessed using two subtests of the Culture 

Fair Intelligence Scale (CFT 20-R; Weiß, 2006), namely the Continuing Series (Subtest 

1; 4 minutes) and the Matrices (Subtest 3; 3 minutes). Participants had 7 minutes to 

complete both subtests. 

(iii) Verbal reasoning ability was assessed using the subtest V1 (Form A) of the 

Kognitiver  Fähigkeitstest (KFT 4-12+R; Heller & Perleth, 2000), for which participants 

had 7 minutes to complete it. 

(iv) CT abilities were assessed using 21 items of the Computational Thinking test (CTt; 

(Román-González et al., 2017) translated to German. Selected items were the 21 

easiest items out of the total number of 28 items (Román-González et al., 2017). The 

respective original item numbers are as follows: 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 

18, 19, 20, 21, 24, 26, 27 and 28. This was done because of the considerable younger 

sample in the current study as compared to the original sample for which the test was 

validated by Roman-Gonzalez et al. (2017). The 7 different CT concepts addressed are 

i. basic directions and sequences, ii. loops implemented with repeat-times commands, 

iii. loops implemented with repeat-until commands, iv. simple conditionals 

implemented with if commands, v. complex conditionals, implemented with if/else 

commands, vi. while conditionals, and vii. simple functions. Participants had 20 

minutes to complete the test. 

2.4 Analysis procedure 

The collected data were digitized, processed, and analyzed using IBM SPSS software. From 

each one of the aforementioned tests, we generated the following variables, coded as 

follows: 
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• WRSpre and WRSpost: number of correct responses in the Writing Speed subtest of 

the HRT 1-4, at pre- and post-test assessment. 

• CALCpre and CALCpost: mean of correct responses in the Addition and Subtraction 

subtests. 

• MULpre and MULpost: number of correct responses in the Multiplication subtest. 

• COMpre and COMpost: number of correct responses in the Problem Completion 

subtest. 

• CFTpre and CFTpost: mean of correct responses in the Continuing Series and Matrices 

subtests of the CFT. 

• KFTpre and KFTpost: number of correct responses in the verbal reasoning subtest of 

the KFT. 

• CTTpre and CTTpost: number of correct responses in the CTt. 

To investigate associations between CT and other relevant cognitive abilities, we ran Pearson 

correlations between all variables at pre-test and post-test. To investigate whether CT 

performance at post-test was related to other relevant cognitive abilities at pre-test, we again 

ran Pearson correlations between the cognitive test scores at pre-test and the CTt values at 

post-test. Furthermore, to evaluate the developed CT course, paired t-tests were performed 

to compare pre- and post-test performance in CTt as well as the other assessed cognitive 

abilities to determine the specificity of the intervention. The effect sizes were calculated with 

Cohen’s d for related samples. The reliability of the shortened version of CTt consisting of the 

21 easiest items of the complete CTt version was measured with Cronbach’s alpha. 

3 Results 

The Cronbach’s alpha for the shortened version of CTt used for the current study was .766, as 

derived from the analysis on the pre-test performance scores of the test. This result indicates 

high internal consistency of the instrument, and we can assume that it is reliable for the age 

group that we administered it. 

Results of the concurrent correlation analyses between CT and other cognitive abilities at pre-

test are reported in Table 1. There was a moderately high positive correlation between 

performance in the CTt and performance at the HRT Multiplication subtest (r = .423; p < .022), 

as well as between CTt performance and HRT Problem Completion subtest (r = .398; p < .032). 
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These results suggest that CT abilities prior to any CT training were related to arithmetic 

abilities, like multiplication (fact retrieval) and problem completion. 

Table 1: Performance correlations between cognitive tests and CTt at pre- and post-test. 

Variable name (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

(1) WRSpre               

(2) CALCpre .378*              

(3) MULpre .286 .812**             

(4) COMpre .350 .881** .702**            

(5) CFTpre .159 .503** .394* .515**           

(6) KFTpre .105 .171 .095 .291 .380*          

(7) CTTpre .023 .347 .423* .398* .172 .108         

(8) WRSpost .112 .231 .147 .130 -.032 -.200 .048        

(9) CALCpost .399* .771** .701** .755** .796** .398* .410* .139       

(10) MULpost .265 .653** .669** .596** .503* .073 .169 .333 .620**      

(11) COMpost .190 .622** .495* .757** .580** .183 .470* .310 .649** .694**     

(12) CFTpost .169 .410* .260 .382 .625** .171 .272 .230 .504** .529** .572**    

(13) KFTpost .338 .001 -.090 .072 .392* .573** .064 -.088 .279 -.035 .163 .264   

(14) CTTpost .165 .119 .101 .190 .474* .238 .217 .137 .411* .324 .390* .417* .193  

*. The correla�on is significant at the level of 0.05 (2-sided). 

**. The correlation is significant at the level of 0.01 (2-sided).  

The longitudinal correlation between CT and specific cognitive skills was evaluated using 

Pearson correlations between post-test CTt performance and the pre-test scores of the other 

cognitive abilities (see also lower left part of Table 1). Results suggested that only CFT seems 

to be predictive of CT performance at post-test assessment (r = .474; p < .014). This indicates 

high relevance of non-verbal visuospatial reasoning in CT training. 

Finally, to investigate possible training effects due to our intervention we ran paired-samples 

t-tests between pre- and post-test scores for each cognitive test (see Table 2). A significant 

performance increase in CTt from pre- (M = 11.19; SD = 3.37) to post-test [M = 14.15; SD = 

3.84] was detected [t(25) = 3.33, p = .003, d = .654] reflecting a medium effect size according 

to Cohen (1988). Moreover, there was a significant improvement from pre-test (M = 9.42; SD 

= 2.34) to post-test (M = 10.88; SD = 1.97) performance for non-verbal visuospatial reasoning 

[t(25) = 3.93, p = .001, d = .770] reflecting a rather large effect size. 
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Table 2: Paired-sample t-tests of cognitive tests and CTt at pre- and post-test. 

 mean post-pre std. deviation post-pre t degrees of freedom sig. (2-tailed) 

WRSpost - WRSpre 
-2.00000 9.68676 -1.032 24 .312 

CALCpost - CALCpre 
-.38000 3.33004 -.571 24 .574 

MULpost - MULpre 
.04000 4.70354 .043 24 .966 

COMpost - COMpre 
.03846 4.88656 .040 25 .968 

CFTpost - CFTpre 
1.46154 1.89696 3.929 25 .001** 

KFTpost - KFTpre 
1.26923 3.31732 1.951 25 .062 

CTTpost - CTTpre 
2.96154 4.52973 3.334 25 .003** 

4 Discussion 

CT, as a 21st-century skill, driven by the progression of science and technology and the 

resulting demands for qualified individuals in STEM jobs, has lately resulted in the 

development of dedicated CT-centered and STEM-oriented educational materials. These 

materials are often addressed to a wide population of students, ranging from elementary 

school children to university level students. However, the evaluation of such dedicated 

materials aimed at fostering CT cannot be properly assessed without valid CT evaluation tools. 

Meanwhile, researchers and educators alike argue about a proper definition and 

conceptualization of CT. To advance the current state-of-the-art, we developed and ran a CT 

intervention course and assessed CT and a range of other cognitive abilities in elementary 

school children. 

Our results showed significant and specific associations between CT and complex arithmetic 

abilities as well as non-verbal visuospatial reasoning abilities. Our observation of an 

association between CT and non-verbal visuospatial reasoning abilities replicates what was 

already found in (Román-González et al., 2017) for middle and secondary school, for 

elementary school children. This seems to indicate that non-verbal visuospatial reasoning 

abilities are moderate and consistent cognitive correlates of CT throughout different school 

levels. However, the associations between CT and complex arithmetic abilities that we found 

were unexpected based on previous results for middle and secondary school (Román-

González et al., 2017). This is an interesting finding that could be explained from the fact that 

numerical abilities at an early age are needed as prerequisites for thinking computationally. 
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For example, to perform a simple sequence of commands, a young child should be able to 

count, or in order to apply a simple loop, one should be able to implement numerical 

operations like addition and multiplication. Nevertheless, once a certain threshold of 

numerical ability is exceeded at a certain level of school education, then it may not be equally 

determinant for higher levels of CT. 

Furthermore, we observed no significant correlation between CT and verbal reasoning ability. 

Previous studies (Román-González et al., 2017) for middle and secondary school - although 

reporting a small correlation between verbal ability, also demonstrated that verbal ability per 

se did not predict CT in a regression analysis including other predictors. Synced with the 

current results, this indicates that verbal ability does not correlate with CT consistently across 

all school levels. Nevertheless, the results of the current pilot study need to be treated 

cautiously as these expected, and unexpected correlation patterns were not perfectly stable 

from pre- to post-test. This might be due to statistical power issues due to the small sample 

and needs to be investigated in the future with a larger sample size. 

Moreover, as expected, the employed 10 lesson blended CT intervention improved children’s 

CT abilities. Hence, these results are indicative of the effectiveness of the current CT course. 

Importantly, though, also verbal and non-verbal visuospatial reasoning skills increased 

through the CT training course. This is not only in line with the results of the correlational 

results at post-test, but these results also substantiate results from a previous study (Román-

González et al., 2017), that showed moderately high correlations between CT and spatial 

abilities, reasoning, as well as problem-solving. 

5 Limitations and Future Work 
One limitation of the current work is the self-selection bias of our sample, which derives from 

the procedure of participating in our course. Students are not assigned to a specific course 

offered by their academies but are allowed to choose for themselves one or more courses 

they would like to participate in every semester, from a list of available courses. This means 

that our results could be generalized only to a similar population of students who voluntarily 

decide to attend a computational thinking course. Moreover, this self/selection procedure 

resulted in an unbalanced gender distribution with primarily boys attending the course. 
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Another limitation of this study is the existence of two different instructors teaching the four 

different classes. This might have an impact on the internal validity of our results. However, 

both instructors strictly followed a very detailed course manual and used the same teaching 

materials to ensure that the course was implemented as intended (i.e., with high 

implementation fidelity (Herbein et al., 2018). In addition, having two different instructors 

enabled us to get external feedback on the newly developed course manual, in order to 

further improve it for future instructors of the course. 

Furthermore, the interpretation of the observed training effect is not straightforward because 

the current study did not include a control group. One might argue that just by completing the 

cognitive tests twice, performance may have improved. If this were the case though, we would 

expect rather similar improvements in all or at least the majority of the scales administered. 

However, improvements were only observed for CT - the primary aim of the current 

intervention - and non-verbal visuospatial reasoning abilities, which, as previous studies 

demonstrated, seem to be closely related to CT (e.g., Parkinson & Cutts, 2018; Román-

González et al., 2017). 

To the best of our knowledge, this is the first study that comprehensively investigates 

cognitive correlates of CT in the age group of elementary school children. Despite limitations 

of the current study in terms of statistical power due to the small sample size, our results are 

well in line with previous investigations of cognitive correlates of CT in other age groups (e.g., 

Parkinson & Cutts, 2018; Román-González et al., 2017). Additionally, our results also indicate 

that for elementary school children, arithmetical abilities also seem to be associated with CT. 

This expands previous findings for older children and may indicate that at an elementary level, 

there might be associations between first computational procedures in mathematics and CT 

as assessed by the CTt. However, one has to acknowledge that the CTt does not cover all 

aspects of CT deemed to be relevant in the literature, such as abstraction, decomposition, 

generalization, or algorithms directly. Nevertheless, the current study advances the ongoing 

debate on the conceptualization of CT by emphasizing the importance of numerical and spatial 

reasoning abilities for CT. 

Future planned studies will extend the presented pilot study by implementing an experimental 

control group design to more than 15 different academies and up to 200 students, randomly 

assigned to groups. The course will be provided to the respective academies by instructed 
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teachers. We expect this increase of sample size to avoid power issues, confirm and further 

substantiate current results. 
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Abstract 

There is increasing effort on integrating Computational Thinking (CT) curricula, particularly but 

not limited to Computer Science Education (CSE). Therefore, research on the assessment of 

CT progressed towards the development and validation of reliable CT assessment tools 

necessary to evaluate students’ learning gains due to developed curricular programs. Over the 

last years, several CT assessment tools were developed for elementary, high-school, and 

university students by which associations between CT scores and other cognitive abilities were 

unravelled. Like the general concept of intelligence, CT is only defined broadly as the ability to 

flexibly combine algorithmic operations to form complex solutions. In this study, we aimed at 

specifying a cognitive definition of CT, focusing on primary school level in a sample of 192 3rd 

and 4th graders. We used an adaptation of a validated CT test, which was initially designed for 

middle school students. Analyses indicated promising results regarding the reliability of the 

adapted CT assessment. Moreover, results revealed positive associations of CT with verbal 

reasoning-, non-verbal visuospatial-, and complex numerical abilities reflecting similarities but 

also differences between CT and other cognitive abilities, which essentially implies several 

basic cognitive abilities that support CT development differentially across time.  

Keywords: 21st-century abilities, elementary education 

 

 

 

 

 



120 
 

1 Introduction 

Computational thinking (CT) as a general problem-solving skill, along with others like 

communication, digital literacy, critical thinking, and creativity, has been coined an essential 

element of the so-called 21st-century skills (D. Barr et al., 2011; Bocconi et al., 2016; Voogt et 

al., 2013). The relevance of CT seems considerable, given the highly computerized world we 

live in. High demands for a digitally-trained workforce that develops and advances technology, 

on the one hand, and the need for well-informed and critical users of technology on the other, 

recently resulted in increasing educational and research interest in the early preparation of 

young students with and for digital technologies.  

As Wing (2006) emphasized, when she introduced the term and concept, CT is a skill essential 

for everyone and not only for programmers or computer scientists. While computer 

programming draws on cognitive skills associated with CT and demonstrates computational 

competencies, CT can be applied to different kinds of problems that do not necessarily include 

programming (Román-González et al., 2018a). Even though the concept of CT is around for 

some time now, it still lacks a specific but widely accepted definition (though references to 

the term and attempts for elaborating the concept have been numerous, e.g., Curzon et al., 

2014; Grover & Pea, 2013; National Research Council, 2011; Selby, 2013; Shute et al., 2017). 

As efforts for integrating CT in formal education increased over the last decade, the need for 

a better understanding and definition of CT becomes vital for the meaningful evaluation of 

new CT curricula, as well as for the development of relevant, accurate, and reliable CT 

assessment tools.  

In the present study, we considered a recent definition of CT by Shute et al. (2017). In this 

literature review, Shute et al. specify CT as “the conceptual foundation required to solve 

problems effectively and efficiently (i.e., algorithmically, with or without the assistance of 

computers) with solutions that are reusable in different contexts” (Shute et al., 2017, p.142). 

Importantly, this definition portrays CT as a broader cognitive construct and not just a practical 

skill that is relevant for specific computing-related contexts (Armoni, 2016). It essentially 

emphasizes the broad applicability of CT as a universal problem-solving approach (Moreno-

Leon et al., 2018).  

Although the relevance of CT for computer science (CS) seems evident, CT as a cognitive 

construct has been considered beyond the field of CS (Armoni, 2016; Settle et al., 2013). The 
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notion of CT as a 21st-century skill to be trained early on in education has led to the integration 

of CT in national curricula, either as a standalone learning field (Brown et al., 2014; Chiprianov 

& Gallon, 2016) or as an integral interdisciplinary part of other STEM topics (Dierbach et al., 

2011; Perković et al., 2010; Settle et al., 2012; Weintrop, Beheshti, et al., 2016). Those efforts 

are continuously increasing (for a review, see Tang et al., 2020) and apply to a wide range of 

educational levels, from preschool (e.g., Bers et al., 2014; Sullivan et al., 2013) to primary (e.g., 

Duncan & Bell, 2015) and secondary school (e.g., Settle et al., 2012), to the university level 

(e.g., Dierbach et al., 2011).  

1.1 Cognition of CT 

In a recent meta-analysis, Scherer et al. (2019) provided valuable summative results from 

multiple empirical studies on the effects of programming – as a way of teaching, learning, and 

assessing computational thinking – on human cognition. These results showed near and far 

transfer effects on various cognitive skills (especially on creative thinking, mathematical skills, 

and reasoning). Although existing studies that are evaluating potential transfer effects of 

programming are mostly found on the primary school level (Scherer et al., 2019), studies on 

the cognitive correlates of programming are more focused on university or high school 

students (Román-González et al., 2018a). Even though considerable effort was devoted to 

studying CT as a cognitive construct [i.e., 80% of studies on CT assessment (Tang et al., 2020)], 

a comprehensive nomological network of cognitive abilities describing CT is still missing. In 

this study, we first review the available evidence for associations of CT with other cognitive 

abilities in primary school children. Notably, we consider associations with 

numerical/mathematical abilities, language, visuospatial abilities, and general cognitive 

abilities. Building upon the insights from our review, we designed our study to evaluate the 

cognitive correlates of CT, aiming at the development of a cognitive concept of CT for the 

underinvestigated age group of primary school students. 

1.1.1 Computational thinking and numerical/mathematical cognition 

A significant association of programming and numerical/mathematical cognition was first 

reported already a few decades ago (Pea & Kurland, 1984). This has been substantiated by 

further empirical evidence resulting from a plethora of studies since then (e.g., Byrne & Lyons, 

2009; McCoy & Burton, 1988; Nowaczyk, 1983). For instance, mathematical cognition was 
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observed to be a reliable predictor of performance in introductory programming courses 

(Bergin & Reilly, 2006). CT is an overarching cognitive construct that is essential for 

programming. Therefore, an evaluation of similarities but also differences between CT and 

numerical/mathematical cognition seems meaningful – in particular, because the latter refers 

to the application of numerical/mathematical abilities to solve mathematical but also more 

general problems in different STEM domains. In their work, Sneider et al. (2014) visualized the 

relationship between CT and numerical/mathematical thinking using a Venn diagram to 

indicate which capabilities might be considered part of numerical/mathematical cognition, CT, 

or both. In the same vein, Weintrop et al. (2016) concluded that the similarities between 

numerical/mathematical cognition and CT could be used for teaching mathematics and 

science classes in schools by using CT methods to support domain-specific learning. 

However, results on the relationship between CT and numerical/mathematical cognition were 

inconsistent across different studies. For instance, Román-González et al. (2017) found no 

significant association between CT and numerical/mathematical abilities in a population of 

1.251 10 to 16-year-old students. Similarly, a study with only a very small sample of 11 

university students (Ambrosio et al., 2014) showed that calculus tasks did not significantly 

correlate with academic achievement in computer science. Nevertheless, in another study by 

Román-González et al. (2018) involving 314 12 to 13-year-old students, mathematics 

achievement correlated significantly but weakly with CT performance. Likewise, in a 

population of 348 university students, Werner (2019) observed a significant, but again only a 

weak correlation between CT and performance on simple arithmetic tasks like subtraction. 

However, they also found a significant weak correlation between CT and performance on 

more complex numerical tasks like algebra. In contrast, a previous study with a sample of 31 

7 to 10-year-old primary school students showed a moderate to high correlation between CT 

and performance in simple and complex arithmetic tasks (Tsarava, Leifheit, et al., 2019). 

Similarly, in a recent study by Prat et al. (2020), involving 36 adults, numerical/mathematical 

abilities were a significant predictor of programming learning outcomes (i.e., learning rate, 

programming accuracy, and declarative knowledge). 

In summary, previous evidence on the association of programming skills and CT with 

mathematics achievement and numerical/mathematical cognition provided inconsistent 

results across age. Interestingly, the pattern of results so far indicates a more pronounced 
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association for younger children, which seems to decrease with age. Thus, basic 

numerical/mathematical abilities seem more relevant for CT in younger children attending 

primary school as compared to older ones, for whom more complex numerical/mathematical 

abilities seem to be more relevant. This could be explained by the fact that fundamental 

numerical/mathematical abilities, which are assessed by tests for younger children, are 

needed as prerequisites for thinking computationally. After a specific threshold of 

numerical/mathematical abilities is exceeded through formal education and due to the fact 

that most tests for older children and adolescents focus on curricular competencies rather 

than on fundamental numerical/mathematical abilities, the reviewed results indicate that 

these competencies may not be equally determining higher levels of CT (Tsarava, Leifheit, et 

al., 2019). 

1.1.2 Computational thinking and language ability 

Besides relationships to numerical and mathematical abilities, CT also revealed a partial 

relationship with language abilities. For instance, Marinus et al. (2018) found a positive 

association between cognitive compiling of syntax in natural language and programming 

ability in 28 3 to 6-year-old children. On the other hand, in an older population of 31 7 to 10-

year-old children, Tsarava et al. (2019) did not observe a significant association between CT 

and performance on verbal reasoning. Howland & Good ( 2015) observed in a sample of 53 12 

to 13-year-old children that the development of CT through programming activities is 

enhanced by activities that required the solution of narrative problems (e.g., digital 

storytelling) and a programming language that triggers verbal abilities by switching between 

formal and natural language, as a scaffolding strategy. Moreover, in a sample of 1.251 10 to 

16-year-old students, a positive weak to moderate correlation between CT and verbal abilities 

was found (Román-González, Pérez-González, et al., 2017). In line with these results, Prat et 

al. (2020) found that for a sample of 36 adults between 18 and 35 years of age, language ability 

was a robust predictor of programming learning outcomes (i.e., learning rate, programming 

accuracy, and declarative knowledge) in a Python training course.   

In summary, the majority of results indicate that language seems relevant for programming 

and CT. In one study (Román-González, Pérez-González, et al., 2017), even more than 

numerical/mathematical abilities. 
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1.1.3 Computational thinking and visuospatial abilities 

For the last few years, empirical evidence has also accumulated for a mutual relation between 

CT and visuospatial abilities. For instance, in a primary school sample of 92 students (i.e., 1st 

to 5th graders), Città et al. (2019) found a stable positive association between visuospatial 

abilities (i.e., mental rotation) and CT as assessed by performance on a coding test. Likewise, 

results for a sample of 31 7 to 10-year-old primary school students showed that performance 

on visuospatial tasks significantly predicted CT (Tsarava, Leifheit, et al., 2019). Similar results 

were observed in a population of 1.251 10 to 16-year-old secondary school students by 

Román-González et al. (2017), who reported a moderate positive association between CT and 

spatial ability. Moreover, in an older population of 11 first-year university students, Ambrosio 

et al. (2014) reported a moderate to high association between academic achievement in 

programming and visuospatial reasoning. Substantiating these results, Werner (2020) also 

found a significant positive correlation between CT and performance on visuospatial tasks in 

a sample of 348 university students. Additionally, a study with 49 master’s students (Jones & 

Burnett, 2008) again showed a positive association between mental rotation ability and 

attainment in a programming module. Finally, in a sample of students and academic staff of 

different levels of education in a CS department (n = 72), Parkinson & Cutts (2018) reported 

that the level of academic CS achievement increased with the visuospatial skills of participants.  

These studies seem to indicate that visuospatial abilities assessed with either specific (e.g., 

mental rotation) or more general visuospatial tasks are associated significantly with CT – 

consistently from early primary school up to university level. 

1.1.4 Computational thinking and general cognitive ability 

CT, in the context of programming, is considered a problem-solving skill (e.g., Kalelioğlu et al., 

2016). Generally, problem-solving skills seem closely related to aspects of fluid intelligence 

(Carroll, 1993), linked to non-verbal intelligence, as it is often assessed with language-free 

testing materials (Kubinger, 2009). In this context, a study with 28 3 to 6-year-old children 

(Marinus et al., 2018) found a positive association between programming ability and non-

verbal intelligence. Furthermore, in a small-scale exploratory study with 12 first-year 

university students, Ambrosio et al. (2014) found a positive association between academic 

achievement in programming and general intelligence. Moreover, in a meta-analysis of 65 

studies, Liao and Bright (1991) confirmed the association between general intelligence and 
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learning a programming language. According to their findings, learning a programming 

language has positive effects on logical thinking and reasoning, as well as on the ability to plan 

and solve problems, regardless of which programming language was learned. 

In contrast to programming skills, the cognitive correlates of specific CT skills have been 

explicitly investigated in a few studies only (e.g., Boom et al., 2018). For instance, a study on 

1.251 10 to 16-year-old students (Román-González, Pérez-González, et al., 2017) found a 

positive small to moderate relationship between CT and three of the four primary cognitive 

abilities suggested by Thurstone (1939). Furthermore, they reported a high correlation 

between CT and children’s problem-solving ability as a proxy of general cognitive ability 

(particularly fluid intelligence).  

Taken together, these results provide strong empirical evidence for an association between 

CT and general cognitive abilities.  

1.2 Assessment of CT 

Assessment of CT has been pursued in various ways over the last few years (for a review on 

the latest research, see Román-González, Moreno-León, et al., 2017; Tang et al., 2020). There 

are assessment tools designed for specific educational programming environments, like 

Scratch (Brennan & Resnick, 2012b; Moreno-León et al., 2015; Seiter & Foreman, 2013), Alice 

(L. Werner et al., 2015; L. Werner, Denner, & Campe, 2012), and others (Koh, Basawapatna, 

et al., 2014), which primarily assess CT by evaluating projects created in the respective 

environment. Similarly, Weintrop et al. (2014) designed interactive digital assessments linked 

to specific STEM topics. Beyond these formative approaches to assess CT, there have been 

other attempts to develop psychometric tests assessing CT independent of specific 

programming environments.  

An initial effort to assess CT psychometrically was taken by Mühling et al. (2015), who 

designed a summative assessment tool focusing on a specific programming concept. Alike, 

Weintrop and Wilensky (2015) designed a tool for assessing 5 different CT concepts (i.e., i. 

fundamentals like variables, assignment, etc., ii. selection statements, iii. definite loops, iv. 

indefinite loops, and v. function/method parameters). Similarly, Ambrósio et al. (2015) 

designed a digital cognitive assessment system aiming to assess CT, and particularly spatial 

reasoning, induction, and working memory. Another psychometric tool for assessing 5 
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circumscribed CT concepts (i.e., i. syntax, ii. data, iii. algorithms, iv. representations, and v. 

efficiency) was developed by Chen et al. (2017). One of the first attempts to assess CT in 

preschoolers was a test suggested by Marinus et al. (2018), which utilized a wooden 

programmable robot for implementing the assessment tasks. A common characteristic of all 

these propositions for the psychometric assessment of CT is their limited validation in larger 

samples and across different age levels.  

To the best of our knowledge, the Computational Thinking test (CTt; Román-González, Pérez-

González, et al., 2017) presents an exception to this as it has been validated systematically in 

the last few years (Román-González, 2015a; Román-González et al., 2018a, 2018b; Román-

González, Moreno-León, et al., 2017; Wiebe et al., 2019). The CTt comprises 28 multiple-

choice tasks designed to address a total of 7 different CT concepts (i. basic directions - 

sequences, ii. repeat times - loops, iii. repeat until - loops, iv. if - simple conditionals, v. if/else 

- complex conditionals, vi. while conditionals, and vii. simple functions)  and was developed 

for the age group of 10 to 16-year-old children. At the time this study took place, no 

comparable assessment tool was available for our target population of 8 to 10-year-olds11. For 

that reason, we decided to adapt this assessment tool to create an abbreviated German 

version of the CTt, used to measure CT in 3rd and 4th graders.  

1.3 Aim of the study 

This study aimed at specifying the cognitive correlates of CT by evaluating its associations with 

specific cognitive abilities in primary school children. It builds upon the results of a pilot study 

and complements previous research conducted on other age groups, such as preschoolers 

(e.g., Marinus et al., 2018), middle school (e.g., Román-González, Pérez-González, & Jiménez-

Fernández, 2017), and university students (e.g., Ambrósio et al., 2011). Additionally, the 

present study presents a new tool for assessing CT as a unique cognitive ability in primary 

school students, by adapting an assessment test initially designed for older students (CTt; 

Román-González, Pérez-González, & Jiménez-Fernández, 2017).                                                                                                                                                                                                                                                     

 
11 A new assessment similar to CTt but not yet developed at the time this study took place is the 
Computational Thinking Test for Beginners (BCTt; Zapata-Cáceres et al., 2020), which follows a similar 
concept design approach as the CTt, but uses simplified and friendlier to young children task elements. 
Similarly, Relkin et al. (2020) recently proposed an unplugged CT assessment for 5 to 9-year-old students 
in a multiple-choice format. 
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2 Method 

2.1 Participants 

This study was conducted within the Hector Children’s Academy Program (HCAP) in the 

German state of Baden- Württemberg. HCAP provides extracurricular enrichment courses at 

66 local sites that offer additional courses for primary school students (grades 1 through 4; for 

details on the recruitment process and HCAP, see Rothenbusch et al. 2016). 

Overall, students enrolled in 16 different local sites of the HCAP participated voluntarily. Each 

local site had 6 to 20 participating students in 1 or 2 groups of 6 to 10 students each. Overall, 

196 third- (n = 85; 72,9% male; age: M = 8.64, SD = 0.48 years) and fourth-grade (n = 111; 

78.40% male; age: M = 9.62, SD = 0.44 years) elementary school students participated in the 

study. Data of 192 children were submitted to further analyses (75.50% male; age: M = 9.20, 

SD = 0.67 years). Prior to the study, we obtained written, informed consent from the legal 

guardians of the students and the students themselves. The study was approved by the Ethics 

Committee of the Leibniz Institut für Wissensmedien. 

2.2 Measures 

To evaluate the association between CT and relevant other cognitive abilities, we 

administered various scales of standardized test batteries. In addition to these measurements, 

we used two self-developed scales for the assessment of short-term visual and 

auditory/verbal memory. Preliminary analysis showed insufficient psychometric properties for 

these two scales in comparison to the established standardized tests. Therefore, these scales 

were not considered in the present analyses.  

In a 120-minutes long session, we assessed students on the following pen-and-paper cognitive 

tests: 

2.2.1 Numerical /mathematical abilities 

For the assessment of numerical/mathematical abilities, we administered four speeded 

subtests of the Heidelberger Rechentest zur Erfassung mathematischer Basiskompetenzen im 

Grundschulalter (HRT 1-4; Haffner, 2005): i) Addition (2 minutes), ii) Subtraction (2 minutes), 

iii) Multiplication (fact retrieval; 2 minutes), and iv) Problem Completion (2 minutes). Each of 

the scales, Addition, Subtraction, and Multiplication, comprises 40 problems, and participants 
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are asked to correctly solve as many as possible within the time limit of 2 minutes. Each of the 

scales begins with simple one-digit problems (e.g. 2+1, 3-1, 3*2) that gradually increase in 

difficulty through involving more digits (e.g.  366 + 512, 531 - 274, 12 * 15). The scale Problem 

Completion contains 40 mixed addition and subtraction problems, where one operand is 

missing (Haffner et al., 2005). Again, the scale begins with simple problems (e.g., 14 = 8 + _) 

gradually increasing in difficulty. (e.g. 45 -12 = 21 + _).  

Additionally, the subscale Writing Speed of the HRT was employed as a measure of processing 

speed. When completing the Writing Speed scale, participants are asked to copy as many 

target numbers as possible from a total of 40 1-digit numbers within the time limit of 30 

seconds. 

2.2.2 Non-verbal visuospatial reasoning 

Non-verbal visuospatial reasoning was assessed using two speeded subtests of the Culture 

Fair Intelligence Test (CFT 20-R; Weiß, 2006) that comprises inductive reasoning tasks, namely 

the Series Continuation (Subtest 1) and Matrices (Subtest 3). CFT utilizes language-

independent graphic tasks to measure the ability to identify patterns and relationships. 

Participants had 7 minutes to complete both subtests that contain 15 items each. On each 

item of the Series Continuation scale, a series of three figures is presented. From a set of five 

alternatives, participants have to choose a fourth matching figure that completes the 

progression of the series. On each item of the Matrices scale, an incomplete 2x2 matrix of 

figures is presented. From a set of five alternatives, participants have to choose the figure that 

complies with the respective underlying rules.  

2.2.3 Verbal reasoning 

Verbal reasoning was assessed using the speeded subtest Vocabulary (V Test 1-Form A) of the 

Kognitiver Fähigkeitstest (KFT 4-12+R; Heller & Perleth, 2000), which is the German version of 

the Cognitive Abilities Tests (CAT; Thorndike & Hagen, 1971). For completing the 25 items of 

this scale, participants had 7 minutes. For this scale, students are presented with a word and 

are asked to choose another word from five given alternatives that has the same or at least 

the most similar meaning (e.g., a synonym or a generic umbrella term).  
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2.2.4 Computational thinking 

CT was assessed using 21 items of the Computational Thinking test (CTt) (Román-González, 

Pérez-González, et al., 2017), which were translated into German. We used an abbreviated 

version of the CTt scale. In particular, we used the 21 easiest items out of the total number of 

28 items that the original test comprises (i.e., original item numbers: 1, 2, 3, 4, 5, 6, 7, 9, 10, 

11, 13, 14, 17, 18, 19, 20, 21, 24, 26, 27, 28). These items were selected because the sample 

assessed in the current study was much younger as compared to the original sample for which 

the test was validated. The abbreviated CTt can be found in German on the Open Science 

Framework (OSF) platform12. The seven different CT concepts addressed by the test are i. basic 

directions and sequences, ii. loops implemented with repeat-times commands, iii. loops 

implemented with repeat-until commands, iv. simple conditionals implemented with if 

commands, v. complex conditionals, implemented with if/else commands, vi. while 

conditionals, and vii. simple functions. Test items are presented in the form of a ‘Pac-Man’ 

maze or an artist’s canvas and request responses in the form of visual arrows or visual 

programming blocks. Participants are required to navigate an object from one place to 

another on a 2D environment using different commands in the form of programming blocks 

or directive arrows. 

3 Results 

3.1 Abbreviated CTt 

The main descriptive statistics of the abbreviated CTt score for our sample are shown in Table 

1. Generally, they are comparable to the descriptive statistics of the original CTt, as described 

by Román-González et al. (2017). All analyses were performed with IBM SPSS (version 25) and 

R (version 4.0.0). The distribution of the abbreviated CTt along the sample is depicted in Figure 

1. and seems to approach normal distribution. To evaluate sex differences in performance on 

the CTt, we ran an independent t-test (t (190) = 1.790, p = .075, d =.311). These results indicate 

no significant sex difference in CTt performance. Although the difference was not statistically 

significant, the mean CTt performance of girls (m = 10.64, SD = 3.05) was lower than that of 

boys (m = 11.66, SD = 3.48). 

 
12 The temporary web link to the OSF repository is 
https://osf.io/4tp9c/?view_only=23f90904989c471991f429fd56972c61 
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Table 1. Descriptive statistics of the abbreviated CTt. 

 N Mean Std. Error 

of Mean 

Std. 

Deviation 

Variance Skewness Kurtosis Min Max 

CTt 192 11.41 .246 3.403 11.583 -.050 -.580 3 19 

 

The reliability of the abbreviated CTt, as indicated by Cronbach’s alpha, was a = .637. To 

overcome concerns about the alpha coefficient and its assumptions as a biased measurement 

of internal consistency, we decided to also compute the omega alongside a confidence interval 

(Dunn et al., 2013). This allows for a more accurate consistency estimation in case the 

abbreviated CTt is not assessing a unidimensional structure. The coefficient omega was .638, 

95% CI [.55, .71, SE = 0.04]. Both measurements seem comparable and indicate adequate 

reliability of the scale, considering the young population it was administered to and its 

speeded administration.    

 

Figure 1. Histogram of participants’ scores on the abbreviated CTt. 

To evaluate whether the construct measured by the abbreviated CTt is unidimensional and, 

therefore, correctly interprets reliability as indexed by Cronbach’s α, we performed an 

exploratory factor analysis. Inspection of the scree plot (see Figure 2) and based on the so-

called elbow criterion, results of the exploratory factor analysis indicated a one-factor 

solution. As such, our results are in line with those reported by Román-González (2016) on the 

CTt with 28 items assessed in 10 to16-year-old children. Similar results on the 
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unidimensionality of the CTt have also been reported by Guggemos et al. (2019) and Wiebe et 

al. (2019). 

 

Figure 2. Scree plot of the factor analysis of the abbreviated CTt. 

3.2 Correlations 

To examine associations between CT and specific other cognitive abilities, the same analysis 

procedure as in (Tsarava, Leifheit, et al., 2019) was followed by first running correlation 

analyses between the following variables: 

• WRS: number of correct responses in the Writing Speed subtest of the HRT 1-4. The 

maximum score value is 40. 

• CALC: mean of correct responses in the Addition and Subtraction subtests of the HRT 1-4. 

The maximum score value for Calculation is 40. 

• MUL: number of correct responses in the Multiplication subtest of the HRT 1-4.  The 

maximum score value is 40. 

• COM: number of correct responses in the Problem Completion subtest of the HRT 1-4. The 

maximum score value is 40. 

• CFT: mean of correct responses in the Series Continuation and Matrices subtests of the 

CFT. The maximum score value is 30. 

• KFT: number of correct responses in the Vocabulary subtest of the KFT. The maximum 

score value is 25. 
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• CTt: number of correct responses in the shortened version of CTt. The maximum score 

value is 21. 

The CTt performance showed a weak positive correlation with grade (r =.324, n = 192, p < 

.001) and age (r = .286, n = 192, p < .001). These results suggest that CT abilities increase with 

the grade and the age of the students assessed. 

Results of the correlation analyses between CTt performance and the other cognitive tests 

(WRS, CALC, MUL, COM, CFT, KFT) are reported in Table 2. There was a moderately positive 

correlation between performance at the CTt and the KFT Vocabulary subtest (r = .388, n = 191, 

p < .001). Additionally, we observed significant positive correlations between CTt performance 

and performance on the CFT (r = .346, n = 192, p < .001), the HRT Problem Completion subtest 

(r = .333, n = 192, p < .001), the HRT Multiplication subtest (r = .224, n = 192, p = .002), and 

CALC performance (Calculation abilities reflecting performance on HRT subscales Addition and 

Subtraction, r = .232, n = 192, p = .001).  

Corresponding scatter plots are shown in Figure 3. There was no significant correlation 

between CTt performance and the HRT Writing Speed subtest. These results suggest that CT 

is primarily related to verbal and non-verbal visuospatial reasoning abilities, more complex 

arithmetic processes like problem completion, and secondarily with basic arithmetic 

operations like addition, subtraction, and multiplication.  

Table 2. Correlations (Pearson’s r) between CT performance and other cognitive abilities scores. 

 WRS CALC MUL COM CFT KFT 

CTt -.023 .232** .224** .333** .346** .388** 

WRS  .297** .328** .244** .098 .076 

CALC   .714** .621** .308** .307** 

MUL    .546** .273** .187** 

COM     .325** .306** 

CFT      .397** 

KFT       

**. Correlation is significant at the 0.01 level (2-tailed). 
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Figure 3. Scatter plots reflecting association of CTt performance score and other cognitive performance 
scores. 

3.3 Regression 

A multiple linear regression analysis utilizing the ENTER method was performed to investigate 

the prediction of CTt performance by specific cognitive skills. To do so, verbal reasoning, 

problem completion, visuospatial reasoning, writing speed, calculation abilities, and 

multiplication performance were used as predictors. The multiple regression model 

significantly predicted CTt performance and explained about 24% of variance (F (6, 179) = 

9.635; p < .001, R2 = .244, adj. R2 = .219). In particular, CTt performance was predicted 

significantly by verbal reasoning, problem completion, and non-verbal visuospatial reasoning. 
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Inspection of beta weights indicated that better CTt performance was predicted by better 

verbal reasoning (KFT; β = .265, p < .001), better problem completion ability (COM; β = .214, 

p = .014), and better visuospatial reasoning (CFT; β = .178, p = .016). For Writing speed, a 

tendency was observed with better writing speed tending to predict better CTt performance 

(WRS; β = -.124, p = .074). Calculation abilities (CALC; β = -.073, p = .482) and multiplication 

(MUL; β = .101, p = .296) skills were no significant predictors of CTt performance.  

4 Discussion 

Over the last 15 years, numerous national and international initiatives suggested CT as a 

crucial 21st-century skill (for a review, see Hsu et al., 2019). Research so far supports the notion 

that CT seems to be a skill that should be taught early on in education by means of an 

interdisciplinary curriculum including programming activities, mathematics, and other STEM 

and non-STEM subject domains (Curzon et al., 2014; Perković et al., 2010; Shute et al., 2017). 

However, the field is still in its infancy. A clear and commonly accepted definition of CT 

grounded on empirical evidence is still missing. Yet, this definition is vital for the development 

and evaluation of effective instructional materials that help to foster CT as well as for a reliable 

assessment of CT skills and curricula.  

To advance a cognitive definition of CT, the current study investigated the cognitive correlates 

of CT, focusing on analyzing association with established assessments of other cognitive 

abilities in primary school students – a sample that has been fairly neglected so far in CT 

research. We, therefore, modified an existing CT assessment tool for older students to make 

it appropriate for the younger target population. We selected a subset of items by omitting 

more difficult items to make it appropriate for the younger target population. Considering the 

young age group and its administration as a speeded test, the abbreviated CTt showed 

acceptable reliability both in a pilot (Tsarava, Leifheit, et al., 2019) and the current study. 

Importantly though, overall, our abbreviated CTt for primary school students showed similar 

psychometric properties as the original CT intended for older students. Additionally, we 

observed significant associations between CTt and numerical abilities, verbal abilities, and 

non-verbal visuospatial reasoning abilities. In fact, 24% of variance of CTt was explained by 

these cognitive abilities. Taken together, this means that CTt is associated only weakly to 

moderately with other cognitive abilities, which in turn provides further evidence for CT to be 

a specific cognitive ability that seems to build on and recruit a convolute of several other 
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cognitive abilities (for a summative visualization of the correlational analysis, see Figure 4). 

Importantly, please note that the cognitive abilities for which we evaluated potential 

associations with CT in this study are not exhaustive, and there may be other abilities, like 

creativity, working memory, etc. that also convolute in the development of CT. In the 

following, we will discuss our results with respect to other findings in the field. 

Positive association between CT and numerical/mathematical cognition: The weak positive 

association observed between CT and simple as well as complex numerical/mathematical 

abilities replicated findings of a previous study using the same materials (Tsarava, Leifheit, et 

al., 2019). Although studies on older middle school students did not provide similar evidence 

(Román-González, Pérez-González, et al., 2017), these results substantiate the argument that 

at an early stage of development, numerical abilities may be a prerequisite for thinking 

computationally. However, after a certain threshold of numerical abilities may be reached, for 

instance, by formal education, advanced numerical abilities (e.g., algebra, geometry, etc.) may 

not be mandatory to develop CT further. This claim is in line with recent empirical evidence 

indicating that also in adult populations; numeracy is not the most pronounced predictor of 

thinking computationally in the context of programming (Helmlinger et al., 2020; Prat et al., 

2020).  

 

Figure 4. Tree structure of the significant correlational results between CTt performance score and all the 
other cognitive performance scores. 

Positive association of CT and language abilities: The moderate positive association between 

CT and verbal reasoning that was observed in this study is well in line with the majority of 

previous studies conducted in older (e.g., Román-González, Pérez-González, & Jiménez-
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Fernández, 2017) but also younger children (Marinus et al., 2018). Furthermore, the current 

findings substantiate results found in studies investigating the association of programming 

abilities and language abilities. In sum, these results provide convincing evidence on a 

significant association of CT with language abilities in primary school children (8 to 10 years 

old), similar to the ones already observed in preschool (3 to 6 years old; Marinus et al., 2018) 

and middle school students (10 to 16 years old; Román-González, Pérez-González, & Jiménez-

Fernández, 2017) as well as in young adults (Prat et al., 2020). For the latter population, verbal 

ability is not associated with programming experience and CT, as shown by a recent study 

(Helmlinger et al., 2020). This decreasing association of CT with verbal ability with age and 

after secondary education might be explained by the use of language as a scaffolding cognitive 

strategy to read and write algorithms, which becomes less relevant with age.  Nonetheless, as 

regards language, there is empirical evidence for the effectiveness of narrative and storytelling 

activities on promoting CT (e.g., Howland & Good, 2015). The CTt utilized in this study requires 

verbal instruction of the tasks and partially a verbally structured solution (e.g., with 

programming blocks). The involvement of such verbal demands might explain the association 

of CT performance and verbal ability found in this and previous studies. 

Positive association of CT with visuospatial abilities: The weak positive association between 

CT and visuospatial abilities substantiates our previous findings (Tsarava, Leifheit, et al., 2019) 

as well as the findings of numerous other studies conducted on different age groups (like Città 

et al. (2019) in primary school students; (Román-González, Pérez-González, & Jiménez-

Fernández (2017) in middle school; Jones & Burnett, (2008) in master’s students; and others 

(Ambrosio et al., 2014; Parkinson & Cutts, 2018; M. Werner, 2020). In the present study, 

visuospatial processing was a relevant predictor of CT performance. This might reflect that the 

CTt is quite demanding with respect to visuospatial abilities (e.g., spatial navigation through 

mazes and on the grid). In sum, it seems that non-verbal visuospatial reasoning abilities are a 

consistent predictor of thinking computationally across educational levels, from early primary 

school to university level.  

Contextualizing the results of this study within the literature on the existing studies on CT’s 

cognitive correlates across educational levels, three main conclusions may be drawn from a 

developmental perspective (for a visualization, see Figure 5). First, basic numerical abilities 

(like addition, subtraction, and multiplication) seem to be prerequisites for developing CT at 
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primary school level, whereas this seems not the case later on in education after a specific 

threshold of mathematical ability has been achieved. Second, verbal abilities seem to be 

relevant for developing CT both along primary and secondary education levels. It may well be 

that they are relevant for verbalizing an algorithmic process as a scaffolding cognitive strategy 

at an early stage. However, such semantic mapping of words to actions may be less important 

later on after secondary school. Third, non-verbal reasoning abilities seem to be essential for 

CT all the way from primary education level up to the university level and beyond. Importantly, 

non-verbal inductive reasoning often reflects some kind of pattern recognition and 

abstraction, two main elements of CT. As non-verbal inductive reasoning is usually considered 

the main element of fluid intelligence tests, CT might consequently also be considered a 

general problem-solving ability. 

 

Figure 5. Development of CT across educational levels. 

Taken together, results of the current correlation and regression analyses clearly suggest that 

CT in primary school children is primarily related to verbal reasoning abilities, visuospatial 

reasoning, and more complex arithmetic processes. Nevertheless, these cognitive correlates 

of CT explain about 24% of the variance in CT performance only. As such, these results indicate 

that CT is only weakly to moderately associated with other cognitive abilities. In turn, this 

corroborates the assumption of CT representing a special and specific cognitive ability. Future 

studies are needed to further substantiate the acclamation of CT as a unique cognitive ability 
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that relies on a convolute of several other cognitive abilities, taking into consideration factors 

not considered in this study, like creative thinking (Scherer et al., 2018), executive functions 

(Robertson et al., 2020), and non-cognitive behavioural factors, like personality or self-efficacy 

(Román-González et al., 2018b).  

Interestingly, in contrast to the initial validation of the CTt for secondary-school students 

(Román-González, Pérez-González, et al., 2017), we observed no significant sex differences in 

CTt performance. This result may support the argument of Roman-Gonzales et al. that sex 

differences in CT seem to increase as children grow older and advance to higher educational 

levels. This pattern has already been observed in the development of other cognitive skills as 

well (e.g., Keith et al., 2008). However, the result of no significant sex differences in CTt 

performance should be interpreted with caution, as our sample only comprised a smaller 

subsample of girls compared to boys. Comparing means of performance for the two 

subsamples showed better performance for boys than for girls, which is consistent with what 

Román-González, Pérez-González, & Jiménez-Fernández (2017) observed on an older sample. 

4.1 Limitations 

When interpreting the results of the current study, it needs to be acknowledged that the 

participating students had previously been nominated by their teachers to attend an 

extracurricular enrichment program based on their school achievement and/or motivation for 

the topic. Consequently, our sample may not be representative of the overall student 

population but represents a sample biased towards better-performing students. This should 

be kept in mind when generalizing our results beyond the current population. 

5 Conclusions and Further Research 
In this work, we largely replicated the so far observed positive associations of CT with other 

cognitive measures (i.e., language and visuospatial abilities) in a sample of 192 8 to 10-year-

old primary school children. Additionally, we observed a positive association of CT with 

numerical/mathematical abilities, which was not observed in similar studies with secondary 

school children. Our regression results on the cognitive correlates of CT explained 24% of the 

variance in CT performance, which supports the assumption that CT seems to be a unique 

cognitive ability, which needs further empirical investigation. Additionally, we have adapted 

an existing CT assessment tool for secondary school children, making the abbreviated CTt 
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appropriate for primary school children. Thus, we provide evidence on its reliability for 

measuring CT in the respective age group. 

Future work shall focus on the evaluation of CT curricula utilizing the abbreviated CTt along 

with other cognitive tests to investigate the transfer effects of CT trainings. Moreover, further 

cross-validation studies of the abbreviated CTt in comparison to newly developed assessment 

tools like the BCTt (Zapata-Cáceres et al., 2020) and well established Bebras tasks (Dagiene & 

Stupuriene, 2016) are desirable to ensure its psychometric quality. Nevertheless, the current 

study demonstrated the applicability of the abbreviated CTt in young children of 8 to 10 years 

of age.  

ACKNOWLEDGEMENTS 

We gratefully acknowledge the help provided by our student research assistants Jana 

Hofmann, Moritz Werner, Joachim Fritscher, Joshua Schmid, and Daniela Piechnik. Thanks are 

also due to the bachelor’s students Christian Reiff, Mareike Nutz, Marcel Fröhlich, and Ioana 

Uhl. Besides, we are grateful to all the teachers and headmasters of the 16 Hector Children’s 

Academies that participated in the study, as well as the team “Wissenschaftliche Begleitung 

der Hector Kinderakademien” at the Hector Research Institute of Education Sciences and 

Psychology, that coordinated this study and provided us with constant research feedback and 

administrative assistance. This study was made possible by funding of the Hector Foundation 

II. 

 

 

 

 

 

 

 

 



140 
 

References 

Ambrosio, A. P., Costa, F. M., Almeida, L., Franco, A., & Macedo, J. (2011). Identifying cognitive abilities 
to improve CS1 outcome. 2011 Frontiers in Education Conference (FIE), February, F3G-1-F3G-7. 
https://doi.org/10.1109/FIE.2011.6142824 

Ambrosio, A. P., da Silva Almeida, L., Macedo, J., & Franco, A. (2014). Psychology of Programming 
Interest Group Annual Conference 2014. PPIG Proceeding, July, 1–25. 
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf%0Ahttp://cit
eseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.698.1911&rep=rep1&type=pdf 

Ambrósio, A. P., Xavier, C., & Georges, F. (2015). Digital ink for cognitive assessment of computational 
thinking. Proceedings - Frontiers in Education Conference, FIE, February. 
https://doi.org/10.1109/FIE.2014.7044237 

Armoni, M. (2016). COMPUTING IN SCHOOLS Computer science, computational thinking, 
programming, coding. ACM Inroads, 7(4), 24–27. https://doi.org/10.1145/3011071 

Barr, D., Harrison, J., & Conery, L. (2011). Computational Thinking: A Digital Age Skill for Everyone. 
Learning and Leading with Technology, 38(6), 20–23. 

Bergin, S., & Reilly, R. (2006). Predicting introductory programming performance: A multi-institutional 
multivariate study. Computer Science Education, 16(4), 303–323. 
https://doi.org/10.1080/08993400600997096 

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: 
Exploration of an early childhood robotics curriculum. Computers and Education, 72, 145–157. 
https://doi.org/10.1016/j.compedu.2013.10.020 

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., & Punie, Y. (2016). 
Exploring the Field of Computational Thinking As a 21St Century Skill. EDULEARN16 Proceedings, 
1(June), 4725–4733. https://doi.org/10.21125/edulearn.2016.2136 

Boom, K. D., Bower, M., Arguel, A., Siemon, J., & Scholkmann, A. (2018). Relationship between 
computational thinking and a measure of intelligence as a general problem-solving ability. 
Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE, 206–
211. https://doi.org/10.1145/3197091.3197104 

Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study the development of 
computational thinking in interactive media design. Proceedings of the Annual American 
Educational Research Association Meeting (AERA). 
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf 

Brown, N. C. C., Sentance, S. U. E., Crick, T. O. M., & Humphreys, S. (2014). Restart: The Resurgence of 
Computer Science in UK Schools. ACM Transactions on Computing Education, 14(2), 1–22. 
https://doi.org/10.1145/2602484 

Byrne, P., & Lyons, G. (2001). The effect of student attributes on success in programming. ACM SIGCSE 
Bulletin, 33(3), 49–52. https://doi.org/10.1145/507758.377467 

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor analytic studies. Cambridge University 
Press. https://doi.org/10.1177/001698629904300207 

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary 
students’ computational thinking in everyday reasoning and robotics programming. Computers 
& Education, 109, 162–175. https://doi.org/10.1016/j.compedu.2017.03.001 



141 
 

Chiprianov, V. (2016). Introducing Computational Thinking to K-5 in a French Context. ITiCSE. 
https://doi.org/10.1145/2899415.2899439 

Città, G., Gentile, M., Allegra, M., Arrigo, M., Conti, D., Ottaviano, S., Reale, F., & Sciortino, M. (2019). 
The effects of mental rotation on computational thinking. Computers & Education, 141(July), 
103613. https://doi.org/10.1016/j.compedu.2019.103613 

Curzon, P., Dorling, M., Selby, C., Woollard, J., & Ng, T. (2014). Developing computational thinking in 
the classroom: a framework. June. 
http://eprints.soton.ac.uk/369594/10/DevelopingComputationalThinkingInTheClassroomaFra
mework.pdf 

Dagiene, V., & Stupuriene, G. (2016). Bebras - A sustainable community building model for the concept 
based learning of informatics and computational thinking. Informatics in Education, 15(3), 25–
44. https://doi.org/10.15388/infedu.2016.02 

Dierbach, C., Hochheiser, H., Collins, S., Jerome, G., Ariza, C., Kelleher, T., Kleinsasser, W., Dehlinger, J., 
& Kaza, S. (2011). A Model for Piloting Pathways for Computational Thinking in a General 
Education Curriculum. Development, 15(5), 257–262. 
https://doi.org/10.1145/1953163.1953243 

Duncan, C., & Bell, T. (2015). A pilot computer science and programming course for primary school 
students. ACM International Conference Proceeding Series, 09-11-Nove, 39–48. 
https://doi.org/10.1145/2818314.2818328 

Dunn, T. J., Baguley, T., & Brunsden, V. (2013). From Alpha to Omega. The British Journal of Psychology, 
105(3), 399–412. 

Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the Field. 
Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051 

Guggemos, J., Seufert, S., & Román-González, M. (2019). Measuring computational thinking - Adapting 
a performance test and a self-assessment instrument for German-speaking countries. 16th 
International Conference on Cognition and Exploratory Learning in Digital Age, CELDA 2019, 
Celda, 183–191. 

Haffner, J., Baro, K., Parzer, P., & Resch, F. (2005). HRT1-4: Heidelberger Rechentest; Erfassung 
mathematischer Basiskompetenzen im Grundschulalter. Hogrefe. 

Heller, K. A., & Perleth, C. (2000). Kognitiver Fähigkeitstest für 4. bis 12. Klassen, Revision 3. Beltz Test. 

Helmlinger, B., Sommer, M., Feldhammer-Kahr, M., Wood, G., Arendasy, M. E., & Kober, S. E. (2020). 
Programming experience associated with neural efficiency during figural reasoning. Scientific 
Reports, 10(1), 1–14. https://doi.org/10.1038/s41598-020-70360-z 

Howland, K., & Good, J. (2015). Learning to communicate computationally with Flip: A bi-modal 
programming language for game creation. Computers and Education, 80, 224–240. 
https://doi.org/10.1016/j.compedu.2014.08.014 

Hsu, Y. C., Irie, N. R., & Ching, Y. H. (2019). Computational Thinking Educational Policy Initiatives (CTEPI) 
Across the Globe. TechTrends, 260–270. https://doi.org/10.1007/s11528-019-00384-4 

Jones, S., & Burnett, G. (2008). Spatial Ability and Learning to Program. Human Technology: An 
Interdisciplinary Journal on Humans in ICT Environments, 4(1), 47–61. 
https://doi.org/10.17011/ht/urn.200804151352 



142 
 

Kalelioğlu, F., Gülbahar, Y., & Kukul, V. (2016). A Framework for Computational Thinking Based on a 
Systematic Research Review. Baltic J . Modern Computing, 4(3), 583–596. 

Keith, T. Z., Reynolds, M. R., Patel, P. G., & Ridley, K. P. (2008). Sex differences in latent cognitive 
abilities ages 6 to 59: Evidence from the Woodcock-Johnson III tests of cognitive abilities. 
Intelligence, 36(6), 502–525. https://doi.org/10.1016/j.intell.2007.11.001 

Koh, K. H., Basawapatna, A., Nickerson, H., & Repenning, A. (2014). Real time assessment of 
computational thinking. Proceedings of IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC, 49–52. https://doi.org/10.1109/VLHCC.2014.6883021 

Marinus, E., Powell, Z., Thornton, R., McArthur, G., & Crain, S. (2018). Unravelling the Cognition of 
Coding in 3-to-6-year Olds. Proceedings of the 2018 ACM Conference on International Computing 
Education Research  - ICER ’18, August, 133–141. https://doi.org/10.1145/3230977.3230984 

McCoy, L. P., & Burton, J. K. (1988). The relationship of computer programming and mathematics in 
secondary students. Computers in the Schools, 4(3–4), 159–166. 

Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Automatic Analysis of Scratch 
Projects to Assess and Foster Computational Thinking. RED. Revista de Educación a Distancia, 
15(46), 1–23. https://doi.org/10.6018/red/46/10 

Moreno-Leon, J., Roman-Gonzalez, M., & Robles, G. (2018). On computational thinking as a universal 
skill: A review of the latest research on this ability. 2018 IEEE Global Engineering Education 
Conference (EDUCON), 1684–1689. https://doi.org/10.1109/EDUCON.2018.8363437 

Mühling, A., Ruf, A., & Hubwieser, P. (2015). Design and First Results of a Psychometric Test for 
Measuring Basic Programming Abilities. Proceedings of the Workshop in Primary and Secondary 
Computing Education, 2–10. https://doi.org/10.1145/2818314.2818320 

National Research Council. (2011). Report of a Workshop of Pedagogical Aspects of Computational 
Thinking. https://doi.org/978-0-309-21474-2 

Nowaczyk, R. H. (1983). Cognitive Skills Needed in Computer Programming. 
https://www.learntechlib.org/p/136288 

Parkinson, J., & Cutts, Q. (2018). Investigating the Relationship Between Spatial Skills and Computer 
Science. 106–114. https://doi.org/10.1145/3230977.3230990 

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New 
Ideas in Psychology, 2(2), 137–168. https://doi.org/10.1016/0732-118X(84)90018-7 

Perkovic, L., Settle, A., Hwang, S., & Jones, J. (2010). A Framework for Computational Thinking across 
the Curriculum. Proceedings of the Fifteenth Annual Conference on Innovation and Technology 
in Computer Science Education (ITiCS ’10), 123–127. https://doi.org/10.1145/1822090.1822126 

Prat, C. S., Madhyastha, T. M., Mottarella, M. J., & Kuo, C. H. (2020). Relating Natural Language 
Aptitude to Individual Differences in Learning Programming Languages. Scientific Reports, 10(1), 
1–10. https://doi.org/10.1038/s41598-020-60661-8 

Relkin, E., de Ruiter, L., & Bers, M. U. (2020). TechCheck: Development and Validation of an Unplugged 
Assessment of Computational Thinking in Early Childhood Education. Journal of Science 
Education and Technology, 29(4), 482–498. https://doi.org/10.1007/s10956-020-09831-x 



143 
 

Robertson, J., Gray, S., Toye, M., & Booth, J. (2020). The Relationship between Executive Functions and 
Computational Thinking. International Journal of Computer Science Education in Schools, 3(4), 
47–58. https://doi.org/10.21585/ijcses.v3i4.76 

Román-González, M. (2015). Computational Thinking Test : Design Guidelines and Content Validation. 
Proceedings of EDULEARN15 Conference, July, 2436–2444. 
https://doi.org/10.13140/RG.2.1.4203.4329 

Román-González, M. (2016). Codigoalfabetización y pensamiento computacional en educación 
primaria y secundaria: validación de un instrumento y evaluación de programas [Code-literacy 
and Computational Thinking in Primary and Secondary Education:...]. 720. http://e-
spacio.uned.es/fez/view/tesisuned:Educacion-Mroman 

Román-González, M., Moreno-León, J., & Robles, G. (2017). Complementary Tools for Computational 
Thinking Assessment. International Conference on Computational Thinking Education 2017, July. 

Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which cognitive abilities 
underlie computational thinking? Criterion validity of the Computational Thinking Test. 
Computers in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047 

Román-González, M., Pérez-González, J. C., Moreno-León, J., & Robles, G. (2018a). Can computational 
talent be detected? Predictive validity of the Computational Thinking Test. International Journal 
of Child-Computer Interaction, 18, 47–58. https://doi.org/10.1016/j.ijcci.2018.06.004 

Román-González, M., Pérez-González, J. C., Moreno-León, J., & Robles, G. (2018b). Extending the 
nomological network of computational thinking with non-cognitive factors. Computers in 
Human Behavior, 80, 441–459. https://doi.org/10.1016/j.chb.2017.09.030 

Rothenbusch, S., Zettler, I., Voss, T., Losch, T., & Trautwein, U. (2016). Exploring reference group effects 
on teachers’ nominations of gifted students. Journal of Educational Psychology, 108(6), 883–
897. https://doi.org/10.1037/edu0000085 

Scherer, R., Siddiq, F., & Viveros, B. S. (2019). The cognitive benefits of learning computer 
programming: A meta-analysis of transfer effects. Journal of Educational Psychology, 111(5), 
764–792. https://doi.org/10.1037/edu0000314 

Scherer, R., Siddiq, F., & Viveros, B. S. (2018). Technology and the Mind. Proceedings of the Technology, 
Mind, and Society on ZZZ - TechMindSociety ’18, April, 1–1. 
https://doi.org/10.1145/3183654.3183658 

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking of 
primary grade students. Proceedings of the Ninth Annual International ACM Conference on 
International Computing Education Research - ICER ’13, 59. 
https://doi.org/10.1145/2493394.2493403 

Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition. 
http://eprints.soton.ac.uk/id/eprint/356481 

Settle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson, C., Rennert-May, C., & Wildeman, B. (2012). 
Infusing computational thinking into the middle- and high-school curriculum. 22. 
https://doi.org/10.1145/2325296.2325306 

Settle, A., Goldberg, D. S., & Barr, V. (2013). Beyond computer science. July, 311. 
https://doi.org/10.1145/2462476.2462511 



144 
 

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational 
Research Review, 22(September), 142–158. https://doi.org/10.1016/j.edurev.2017.09.003 

Sneider, C., Stephenson, C., Schafer, B., & Flick, L. (2014). Computational Thinking in High School 
Science Classrooms: Exploring the Science “Framework” and “NGSS.” Science Teacher, 81(5), 53–
59. https://www.learntechlib.org/p/155904 

Sullivan, A., Kazakoff, E. R., & Bers, M. U. (2013). The wheels on the bot go round and round: Robotics 
curriculum in pre-kindergarten. Journal of Information Technology Education, 12, 203–219. 
http://www.jite.org/documents/Vol12/JITEv12IIPp203-219Sullivan1257.pdf 

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic 
review of empirical studies. Computers and Education, 148(April), 103798. 
https://doi.org/10.1016/j.compedu.2019.103798 

Thorndike, R. L., & Hagen, E. P. (1971). Cognitive Abilities Test. Houghton-Mifflin. 

Thurstone, L. L. (1939). PRIMARY MENTAL ABILITIES: PSYCHOMETRIC MONOGRAPHS No. 1. British 
Journal of Educational Psychology, 9(3), 270–275. https://doi.org/10.1111/j.2044-
8279.1939.tb03214.x 

Tsarava, K., Leifheit, L., Ninaus, M., Román-González, M., Butz, M. V., Golle, J., Trautwein, U., & 
Moeller, K. (2019). Cognitive Correlates of Computational Thinking. Proceedings of the 14th 
Workshop in Primary and Secondary Computing Education on - WiPSCE’19, October, 1–9. 
https://doi.org/10.1145/3361721.3361729 

Voogt, J., Erstad, O., Dede, C., & Mishra, P. (2013). Challenges to learning and schooling in the digital 
networked world of the 21st century. Journal of Computer Assisted Learning, 29(5), 403–413. 
https://doi.org/10.1111/jcal.12029 

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining 
Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education 
and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5 

Weintrop, D., Beheshti, E., Horn, M. S., Orton, K., Trouille, L., Jona, K., & Wilensky, U. (2014). Interactive 
Assessment Tools for Computational Thinking in High School STEM Classrooms. Lecture Notes of 
the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 
LNICST, 136 LNICST, 22–25. https://doi.org/10.1007/978-3-319-08189-2_3 

Weintrop, D., & Wilensky, U. (2015). Using commutative assessments to compare conceptual 
understanding in blocks-based and text-based programs. ICER 2015 - Proceedings of the 2015 
ACM Conference on International Computing Education Research, August, 101–110. 
https://doi.org/10.1145/2787622.2787721 

Weiß, R. H. (2006). CFT 20-R: grundintelligenztest skala 2-revision. Hogrefe. 

Werner, L., Denner, J., & Campe, S. (2012). The Fairy Performance Assessment: Measuring 
Computational Thinking in Middle School. Proceedings of the 43rd ACM Technical Symposium 
on Computer Science Education - SIGCSE ’12, 215–220. 
https://doi.org/10.1145/2157136.2157200 

Werner, L., Denner, J., & Campe, S. (2015). Children Programming Games. ACM Transactions on 
Computing Education, 14(4), 1–22. https://doi.org/10.1145/2677091 

Werner, M. (2020). Computational Thinking in Beziehung zu seinen verwandten psychologischen 
Konstrukten. University of Tübingen. 



145 
 

Wiebe, E., Mott, B. W., London, J., Boyer, K. E., Aksit, O., & Lester, J. C. (2019). Development of a lean 
computational thinking abilities assessment for middle grades students. SIGCSE 2019 - 
Proceedings of the 50th ACM Technical Symposium on Computer Science Education, 456–461. 
https://doi.org/10.1145/3287324.3287390 

Wing, J. M. (2006). Computational Thinking. Theoretical Computer Science, 49(3), 33–35. 
https://doi.org/https://www.cs.cmu.edu/~15110-s13/Wing06-ct.pdf 

Zapata-Cáceres, M., Martín-Barroso, E., & Román-González, M. (2020). Computational Thinking Test 
for Beginners: Design and Content Validation. 2020 IEEE Global Engineering Education 
Conference (EDUCON), 1905–1914. https://doi.org/10.1109/EDUCON45650.2020.91253688 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



146 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



147 
 

Evaluation of a Computational Thinking Intervention for 
Elementary School Children:   

A Randomized Controlled Field Trial 
Katerina Tsarava, Luzia Leifheit, Manuel Ninaus, Jessika Golle, Ulrich Trautwein, Korbinian 

Moeller 

 

Abstract 

Computational thinking has been increasingly recognized as a fundamental 21st skill to be 

fostered early on in education. Accordingly, many governmental, scientific, and professional 

initiatives have supported developing and implementing educational activities for fostering 

computational thinking in formal and informal educational settings. The definition and 

assessment approaches of computational thinking vary and are still undergoing investigation. 

Consequently, empirical evaluation of the available proposed educational materials is 

restrained. As part of a larger project, in this work, we present the evaluation of a 

computational thinking course, which is based on a proposed curriculum we designed for 3rd 

and 4th graders, utilizing results of our former studies on the cognitive definition of CT and its 

assessment in primary school. The proposed curricula aims at fostering CT by introducing in 

unplugged modality various CT concepts, which later on are transferred to different 

programming environments and are applied in the context of different STEM topics. In a 

randomized controlled trial with a waiting list control group and pre-/post-test design, we 

investigated the CT course’s effectiveness. Results on a sample of 158 3rd and 4th graders 

indicated that the intervention had positive effects on students’ CT abilities. These results 

substantiate the results of a pilot study on the course in the field. 

Keywords: computational thinking, cognitive skills, computing education research, 

randomized controlled trials  
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1 Introduction 

Computational Thinking (CT) has gained increasing research attention over the last few years 

(for a research trends review, see Tang, 2019). As the cognitive underpinning of programming 

skills and, more generally, as a problem-solving ability, CT has inspired many efforts of 

integrating it into curricula of different STEM topics across the formal educational levels (e.g., 

Lockwood & Mooney, 2017; Moreno-Leon et al., 2018). CT has been coined a fundamental 

cognitive competence to be acquired early on in education, comparable to literacy and 

numeracy (Wing, 2006; Yadav et al., 2014). In this regard, recently, CT has been for the first 

time considered for assessment along with other crucial competencies like reading, 

mathematics, and science skills by the Programme for International Student Assessment 

(PISA13) of OECD14.  

CT has been considered a 21st-century-skill important for students of the present to be 

prepared for the demands of the increasingly digitized future (D. Barr et al., 2011; Settle et al., 

2013; Voogt et al., 2013; Yadav et al., 2011). There are multiple definitions of CT as it was first 

popularized by Wing (2006) as a fundamental skill that builds upon concepts of computer 

science  (CS), “complements and combines mathematical and engineering thinking” (Wing, 

2006, p. 35), but is relevant for everyone beyond computer scientists. There have been 

numerous efforts to elaborate on a meaningful definition and conceptualize the term (Garcia-

Peñalvo, 2016; Grover & Pea, 2013; Lockwood & Mooney, 2017; Yaşar, 2018b). For this work, 

we consider as a working definition and conceptualization of CT, the interpretation of CT 

resulting from a literature review by Shute et al. (2017) which describes CT as “the conceptual 

foundation required to solve problems effectively and efficiently (i.e., algorithmically, with or 

without the assistance of computers) with solutions that are reusable in different contexts” 

(Shute et al., 2017, p. 142).  

Interpreting CT as a cognitive ability rather than a practical skill (or as a “fundamental, not rote 

skill”; Wing, 2006, p. 35), we expect its applicability to range across a variety of contexts, not 

limited to CS-related topics (Armoni, 2016; Settle et al., 2013). This distinction highlights the 

difference of CT from computer programming or coding, which are more practical and, to a 

lesser extend, theoretical skills usually referenced as closely related or complementary to CT. 

 
13 Programme for International Student Assessment: http://www.oecd.org/pisa/  
14 Organisation for Economic Co-operation and Development: http://www.oecd.org/  

http://www.oecd.org/pisa/
http://www.oecd.org/
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Though basic CT competencies are required for effective coding and programming, CT as a 

universal problem-solving approach is associated with developing cognitive skills in a variety 

of contexts as well (Moreno-Leon et al., 2018; Yaşar, 2018a). In this vein, CT has been 

integrated into the curricula both as a standalone learning subject (e.g., Chiprianov & Gallon, 

2016) and as an interdisciplinary field within different STEM subjects (e.g., Weintrop et al., 

2016). 

In the following, we first describe the state of CT curricula worldwide, as offered by research, 

professional and governmental initiatives, as well as popular approaches in teaching CT. Then 

we present our curricula design approach and the procedure of evaluating our approach in 

real teaching conditions with a randomized field trial. 

1.1 CT curricula worldwide 

Despite the different approaches in defining CT, its educational value is broadly argued (Qualls 

& Sherrell, 2010). Therefore, during the last decade, there were attempts to systematically 

integrate CT in school and university curricula, supported scientifically by numerous national 

governments and academic institutions worldwide. Thus, there has been a transparent shift 

in ICT literacy curricula, from teaching specific skills (e.g., how to create slides for a 

presentation) on specific tools (e.g., a particular office software) to inspiring thinking on how 

things work (e.g., how software functions) and potentially foster the creation of digital 

technology (Curzon et al., 2014). In other words, CT nowadays provides the pathway for 

students to become potential future creators of technology (or prosumers), and not just 

consumers of technology (for a discussion on policies towards this direction, see Williamson, 

2016).  

In this sense, several countries have integrated CT experimentally or officially in their school 

curricula (e.g., for the UK, see Brown et al., 2014; for France, see Chiprianov & Gallon, 2016; 

for North Macedonia, see: Jovanov et al., 2016; for Australia, see: Falkner et al., 2014). Along 

with governmental policies, many professional associations and non-governmental, research, 

or academic institutions and initiatives have designed and made available curricula to 

introduce and foster CT at different educational levels. Such a professional association that 

promotes CT is the Computer Science Teachers Association (CSTA15) in the US, which provides 

 
15 https://www.csteachers.org  

https://www.csteachers.org/
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the professional CS teachers’ community with the most current standards on teaching CS and 

CT in K-1216. A similar multi-background initiative offering teaching resources and qualification 

seminars to CS teachers is the Computing at School (CAS17) initiative in the UK, providing 

online curricular resources via the Barefoot Computing18 initiative.  

Independently of the CT curricula sources worldwide, an apparent factor of curricula 

categorization is the target age group. There are curricula available for students from 

preschool to students at the high school and university level. Curricula addressed to the K-2 

are rarer; however, such an example is the San Francisco Unified School District (SFUSD) 

initiative’s colour-coded curricula. Experimental research approaches of CT curricula for early 

childhood have been reported significantly effective in various studies so far (e.g., Bers et al., 

2014; Sullivan et al., 2013). Complete curricula addressed to different school levels of K-12 are 

offered by the initiative of code.org19. CT curricula could also be divided into curricula 

dedicated to fostering CT as part of Computing Education and curricula integrating CT as a 

problem-solving approach into other STEM topics beyond CS (V. Barr & Stephenson, 2011; 

Dierbach et al., 2011). The effectiveness of such curricula has also been explored in various 

studies (Aggarwal et al., 2017; Duncan & Bell, 2015; Settle et al., 2012; Tran, 2019; Van Dyne 

& Braun, 2014).  

In the population of primary school students, which is of particular interest to this work, some 

effective curricular interventions have been reported. Rodríguez-Martínez et al. (2020) 

investigated the effectiveness of a Scratch20 curriculum for learning mathematics and 

fostering CT in 6th graders. Results indicated no significant differences on CT performance gain 

between the intervention and the control group. In another study, Brackmann et al. (2017) 

aimed at improving students’ CT skills through unplugged activities (i.e., pen-and-paper 

activities fostering algorithms, decomposition, pattern recognition, and abstraction) in a 

sample of 5th and 6th graders and found statistically significant effects in favour of the 

intervention group. Furthermore, Rose et al. (2019) compared the effectiveness of an 

educational block-based game intervention (namely Pirate Plunder) with a Scratch 

 
16 https://www.csteachers.org/page/about-csta-s-k-12-nbsp-standards  
17 https://www.computingatschool.org.uk  
18 https://www.barefootcomputing.org/curriculum  
19 https://studio.code.org/courses?view=teacher  
20 https://scratch.mit.edu/  

https://www.csteachers.org/page/about-csta-s-k-12-nbsp-standards
https://www.computingatschool.org.uk/
https://www.barefootcomputing.org/curriculum
https://studio.code.org/courses?view=teacher
https://scratch.mit.edu/
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intervention (programming control group) and a spreadsheets intervention (non-

programming control group)  delivered to 10 to 12 years old students. Results indicated a 

significant effect on students’ CT performance for the game intervention group over the non-

programming control group. 

Moreover, Chiazzese et al. (2019) evaluated a robotics curriculum to foster CT skills in a sample 

of 3rd and 4th graders. This study’s results indicated significant positive effects on CT 

performance for the intervention group compared to the effects on the control group. In 

another study,  with a younger sample of 9 to 12 years old students, Perez-Marin et al., 2018 

found that an intervention utilizing the Scratch programming environment and a metaphors’ 

methodology led to significant improvements of students’ CT knowledge (Pérez-Marín et al., 

2018).  

Despite these various studies on effectiveness, a recent review (McGill & Decker, 2020) 

indicates that less than half of the quantitative studies on K-12 computing education report 

relevant statistical information like effect sizes, confidence intervals, and levels. This brief 

overview of evidence on the effectiveness of CT interventions substantiates this claim as only 

two studies (i.e., Brackmann et al., 2017; Rodríguez-Martínez et al., 2020) reported explicitly 

and in detail important statistical information. Consequently, the effectiveness of computing 

and CT curricula still lacks sufficient empirical results. 

1.1 CT curricula design 

There have been several frameworks for designing CT curricula and implementing them as a 

broader cognitive ability in a variety of courses, within different contexts, and across 

educational levels (for an initial framework addressed to university-level students, see 

Perković et al., 2010; for a framework applied across compulsory education, see Curzon et al., 

2014). Though the importance of CT is broadly accepted, and its curricula integration is rapid 

and continuous, there are still critical open framework questions seeking answers (Chiprianov 

& Gallon, 2016; Yaşar, 2018a). The definition of CT, the assessment tools (i.e., Assessment) for 

measuring CT, and its cognitive aspects (i.e., Cognition), as well as the appropriate age of 

introducing CT to students (e.g., see Chiprianov & Gallon, 2016), the context and modality of 

the materials (e.g., see Brackmann et al., 2017; Wang et al., 2019), the concepts’ 

interdisciplinarity (e.g., see Lockwood & Mooney, 2017; Settle et al., 2012), and the teachers’ 
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qualifications on delivering related interventions (e.g., see Angeli et al., 2016; Sentance & 

Csizmadia, 2017; Yadav et al., 2014) are still not extensively investigated. In previous work 

(Tsarava et al., under review), we aimed to shed light empirically on the first three of these 

open topics by investigating the cognitive correlates of CT (Cognition), by suggesting a reliable 

CT assessment tool for primary school students (Assessment) and therefore supplement the 

existing cognitive definition of the CT construct (Definition).  

For providing empirical answers to more open questions about CT, we developed a CT course 

for primary school students (Age), which introduces basic CT processes and coding skills 

(Context), applied in various STEM contexts, like Math, Biology, Technology, etc. (Context), in 

a playful, multimodal way (i.e., unplugged/plugged-in activities, board games, and playful 

digital activities; haptic/visual demonstrations; Modality). We intended to provide a broader 

perspective on the applicability of CT, not only related to CS topics but also applied in activities 

of other STEM domains (like math applications, biology animations, robot simulations, and 

game production; Concepts’ Interdisciplinarity), and subsequently promote the importance of 

understanding basic CT concepts. 

Taking into consideration common concerns about the introduction of coding already in 

primary school (see Garcia-Peñalvo, 2016), we designed a course that introduces and fosters 

broader CT concepts in the context of coding (Context), and we aimed for a low threshold 

introduction to these concepts in a playful and unplugged (i.e., no computers devices involved) 

way (Modality; Age). The course was constructed on the principles of learning-by-doing as 

they derive from Papert’s constructionism (Papert & Harel, 1991), and they are interpreted 

within the context of CS (Sentance & Csizmadia, 2017).  

The CT course focuses on the following: i) material design that stimulates game-based learning 

and promotes learning-by-doing, ii) content that fosters the cognitive processes of CT and not 

only the practical coding skills, iii) unplugged low-threshold introduction to CT and coding 

concept that gradually transfers into plugged-in environments (for the initial 

conceptualization of the course, see Tsarava et al., 2017; for an updated structure of the 

course, see Tsarava et al., 2019). 

For a broader applicability of the developed course and to avoid any platform dependencies, 

we suggest that at an early age, learning to code should be detached from a specific 
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programming language (Age). The programming language trends, highly dependent on the 

technology market developments, change rapidly. For that reason, any attachment to a 

specific language at that early stage would not necessarily benefit students later on as adults 

when the programming language trends would possibly have changed. Thereby, we initially 

introduced CT and coding concepts unplugged by developing a series of life-size unplugged 

games (i.e., Crabs & Turtles: A Series of Computational Adventures21; Tsarava et al., 2018; 

Tsarava, Moeller, et al., 2019) that offer an age-appropriate, haptic and low-threshold 

introduction to CT and coding concepts (Age; Modality). The same concepts are later on in the 

course introduced in different plugged-in visual-programming environments (like Scratch, 

Scratch for Arduino22, and Open Roberta Lab23), specially designed for young novice 

programmers. 

Along with the course content, we developed a detailed course manual, which provides course 

instructors with the essential methodological background on our design decisions and 

methods implemented in the course, as well as detailed lesson plans on how to implement 

each course unit step-by-step (Teachers’ qualification). This manual offers both the theoretical 

background needed for understanding CT and the teaching methods used (the cognitive 

ladder designed for supporting the scaffolding while learning about CT), along with practical 

knowledge on the content (CT concepts and plugged-in/unplugged materials), the activities, 

and the assessments used.  

1.2 Aim of the study 

In a pilot study (Tsarava, Leifheit, et al., 2019), we delivered the proposed intervention to a 

small number of children as part of an extracurricular enrichment program for elementary 

school children. Moving one step forward, in the current study, we evaluated the effectiveness 

of the intervention in a randomized field trial employing a waiting list control group design 

and involving 197 children at 16 different sites. The basic parameters of the study (e.g., 

content and duration of the intervention) remained the same. Importantly, however, the 

 
21 Crabs & Turtles are available as an open educational resource (OER) via the OER repository of the University 
library of Tübingen. The OER is available at http://hdl.handle.net/10900.3/OER_MDCKSMXP.  
22 http://s4a.cat/  
23 https://lab.open-roberta.org/  

http://hdl.handle.net/10900.3/OER_MDCKSMXP#_blank
http://s4a.cat/
https://lab.open-roberta.org/
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intervention was delivered by a group of trained instructors in a natural setting. The details of 

the current study, including the intervention, are described in detail in the following section. 

Based on the findings of the pilot study, we pursued the following hypothesis: We expected 

that children participating in the CT course would improve their CT performance more strongly 

as reflected by a CT assessment compared to the children of the control group (Hypothesis).  

2 Method 
2.1 Research design 

A randomized controlled field trial with pre- and post-intervention measurements and a 

waiting list control group was employed to assess the CT intervention’s effectiveness. 

Participants were assigned randomly to either the experimental or the control group. 

Students’ allocation to either control or experimental group was done after pre-testing to 

ensure unbiased performance at the pre-test (see Figure 1). The study was approved by the 

Ethics Committee of the Leibniz-Institut für Wissensmedien, Tübingen. 

Randomization was done based on random computer-generated numbers and took place 

after the pre-test procedure was over. The pre-test instructors, who were either the 

developers of the course or trained student assistants, conducted the randomization, and the 

procedure was blind to the course instructors. After that, students were informed about the 

group they belonged to, and course instructors were informed about each group’s students. 

All children enrolled in the experimental group took the intervention weekly for ten 

consecutive weeks (except for interfering school vacation weeks) after the pre-test session. 

The post-test took place one week after the end of the intervention, and students of both the 

experimental and the control group were invited to participate. Afterwards, at a prescheduled 

appointment already known to the students during their initial registration to the course, the 

students of the control group were offered the intervention as a block course, organized in 

fewer but longer course sessions.  

The CT course was offered as an intervention in after-school academies. The intervention 

consisted of ten 90-minutes sessions and was designed for groups of five to 10 3rd and 4th 

graders. This study considered courses held at 16 local sites of the Hector Children’s Academy 

Program (HCAP) during the winter semester of 2018/2019. The HCAP is an extracurricular 

program for elementary school students implemented at 66 different sites across the state of 
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Baden-Württemberg, Germany. Children nominated by their teachers can participate in the 

HCAP enrichment program (Rothenbusch et al., 2016), which offers a variety of courses taking 

place in small group after-school classes or during weekends. 

 

Figure 1. Timeline of study procedures. 

The courses at the HCAP are taught by experienced instructors (teachers and professionals of 

different fields). To recruit instructors for the present intervention, we sent informational 

material about the course content and aims, as well as the experimental design of the study, 

to all local HCAP sites, five months before the beginning of the study. Twenty-eight instructors 

registered for participating in the study; however, only the first twenty were considered for 

participation due to organizational matters.  

2.2 Intervention: The CT course 

The CT course aimed at fostering CT skills of 3rd and 4th graders conceptualized for classes of 

five to ten children. The course introduced and trained CT concepts as identified within coding 

and problem-solving activities by Brennan & Resnick (2012). More specifically, the concepts 

considered are the ones of sequences, loops, patterns, events, conditionals, events, operators, 

data (i.e., variables and constants), algorithms, and simulations.  

The instructional design of the course supported the introduction of each concept in a 

multimodal way, integrated into both non-programming (i.e., unplugged) and programming 

(i.e., plugged-in) activities. Students are first introduced to the respective CT concepts by 

engaging in playful unplugged activities. They are then guided to modify elements of existing 

plugged-in activities, and subsequently, they are motivated to create their own functional 

applications (Tsarava et al., 2017; for a detailed course overview, see Figure 2). The course 



156 
 

design reinforced the applicability of the CT concepts within different STEM disciplines. Each 

of the ten-course sessions of the intervention contextualized in a particular STEM discipline 

providing activities related to this specific topic. The aim was to broaden students’ 

perspectives on CT and programming as essential skills for problem-solving in everyday life, 

within various contexts beyond CS. In the course, students start by programming simple 

games, and then simple and more complex simulations inspired by topics inspired from 

biology, mathematics, science, and engineering.  

 

Figure 2. Course overview. 

In course sessions 1, 2, and 3, students were playfully introduced to basic CT concepts, making 

minimal use of technology. In particular, in course unit 1, students played ”The Hunt” game of 

the CT game series “Crabs & Turtles” in teams of two (for a description of the game, see 

Tsarava et al., 2018). In this life-size board game, students got introduced to the concepts of 

sequences and loops in an unplugged mode and learned to build their sequences of 

commands in order to achieve their strategical moves towards collecting treasures on the 2D 

board. In course unit 2, the concept of patterns was introduced along with an implicit 

reference to conditionals. The students first played the card game “Patterns” from the CT 

game series “Crabs & Turtles”, where they had to recognize, interpret, and conditionally 

match pattern cards with each other. Then, students got introduced to the block-

programming environment of Scratch. While working in teams of 2 per machine (laptop or 
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PC), they got to know the essential elements of the block programming environment and how 

to build short algorithms. Course unit 3 was implemented unplugged, and students, again in 

teams of 2, engaged in “The Race” game of “Crabs & Turtles” (for details on the game, see  

Tsarava et al., 2018). The CT concepts introduced in this session were events, operators, and 

data (i.e., variables and constants). Students had to correctly solve mathematical riddles, 

which integrated variables with changing values and constants, in order to first arrive at the 

finish line. 

In course sessions 4, 5, and 6, students worked in the visual block-programming environment 

of Scratch. In the activities of these sessions, students applied the conceptual knowledge 

acquired while playing the unplugged games of “Crabs & Turtles” to activities of gradually 

increased difficulty programmed with Scratch. First, they started by programming two short 

games. They learned how to create, coordinate objects on the screen and program them, and 

assign keyboard reactions to their programs. Additionally, they implemented conditional logic 

for programming the winning and losing conditions of their games. Second, they programmed 

two simulations inspired by biology topics. The simulations demanded to conditionally present 

or hide objects from the main screen and repeatedly implement them using loop constructs. 

Third, students programmed a complex simulation inspired by math concepts. In this activity, 

students had to handle constants and variables embedded in conditional and loop constructs 

that interact with different events. 

In course units 7 and 8, students worked with the Arduino hardware platform, programmed 

in Scratch (S4A). In the activities of these units, students familiarized themselves with the CT 

concepts already acquired in the previous units, programmed in Scratch, and applied on a 

physical output equipped with physical sensors. The activities include interaction with light 

sensors, led lights, and buttons, and implement concepts like a Morse code machine, a light-

controller, and a traffic light. The main objective of all activities was to show the interaction 

of programming in a computer environment with physical objects, and therefore the broad 

applicability of CT concepts. 

In the last two course units of the intervention, 9 and 10, students exercised the CT concepts 

independently by programming a robot simulation in the interactive programming 

environment Open Roberta Lab. In the activities of these course units, students made use of 

all the CT concepts repeatedly introduced throughout the course, used their knowledge on 
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sensors’ functionality already introduced in the sessions with Arduino, and programmed their 

robots in a simulated environment using visual block programming. The robot simulation 

activities were less guided and more open for students to set specific goals, define the 

particular problems, and individually design the required strategies to solve them.  

2.3 Sample 

Data were collected from 197 students (47 girls, age: M = 9.13, SD = 0.61; 150 boys; age: M = 

9.20, SD = 0.70) in Grade 4 (N = 111; girls =24, boys = 87), in Grade 3 (N = 85; girls = 23, boys = 

62), and 1 in Grade 2. Children in both the intervention and the control group were assigned 

to 29 different courses (16 intervention; 13 control). The difference in the number of 

intervention and control groups was due to randomization conditions. The intervention group 

consisted of 103 students, 24 girls (M = 8.98, SD = 0.60) and 79 boys (M = 9.24, SD = 0.67). The 

control group consisted of 94 students, 23 girls (M = 9.28, SD = 0.58) and 71 boys (M = 9.17, 

SD = 0.73). In case a local HCAP site had more than five students registered for the CT course, 

then students would randomly be assigned in two groups (one intervention and one control 

group). When only five or fewer students registered for the CT course, then there was only 

one group created in this HCAP site, which was randomly assigned to be either a control or 

intervention group. Parents provided written informed consent before the start of the study.  

2.4 Implementation 

Instructors of the CT course got qualified in a one-day-long qualification seminar where they 

were presented with the course aims, a comprehensive teaching manual, and evaluation 

procedure. During the qualification seminar, instructors were provided with all teaching 

materials, including a scripted course manual, printable activity- and assessment-sheets, a 

games box, and an Arduino kit. The qualification seminar took place twice in September 2018. 

The course manual offered a description of the general theoretical background of 

computational thinking, of the teaching methods followed in the course, provided information 

for each of the course units, the goals of each unit, the introductory exercises, and the 

assessment sheets for each unit, along with specific time frames for the better time planning.  
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2.5 Measures 

All the performance measures were administered twice, one week before the beginning and 

one week after the end of the course. The measures included several cognitive assessments 

and a CT assessment. Assessment instruments were the following:  

i. Mathematical skills: We used five subtests of the Heidelberger Rechentest zur 

Erfasssung mathematischer Basiskompetenzen im Grundschulalter (HRT 1-4; 

Haffner et al., 2005) to assess students’ mathematical skills in speeded subtests. 

The respective subscales used were the Writing Speed (time-limit of 30 seconds), 

the Addition (2 minutes), the Subtraction (2 minutes), the Multiplication (fact 

retrieval; 2 minutes), and the Problem Completion (2 minutes). Each mathematical 

subtest consisted of 40 arithmetic problems, and students had to complete as 

many tasks as possible within the given time limit.  

ii. Non-verbal visuospatial reasoning: We used two subtests of the Culture Fair 

Intelligence Scale (CFT 20-R; Weiß, 2006) to assess students’ non-verbal 

visuospatial skills. The subtests used were the Continuing Series (Subtest 1; time-

limit of 4 minutes) and the Matrices (Subtest 3; 3 minutes). The participants had in 

total 7 minutes to complete both subtests. 

iii. Verbal reasoning: We used the subtest V1 (Form A) of the Kognitiver Fähigkeitstest 

(KFT 4-12+R; Heller & Perleth, 2000) in order to assess verbal reasoning abilities. 

Participants had 7 minutes to complete as many items as possible. 

iv. Computational thinking: To assess CT abilities, we used the Abbreviated 

Computational Thinking test (Abbreviated CTt; Tsarava et al., 2020 under review). 

The test consists of 21 items of the Computational Thinking test (CTt; Román-

González et al., 2017), translated in German. The seven different CT concepts 

addressed by the test are i. basic directions and sequences, ii. loops implemented 

with repeat-times commands, iii. loops implemented with repeat-until commands, 

iv. simple conditionals implemented with if commands, v. complex conditionals, 

implemented with if/else commands, vi. while conditionals, and vii. simple 

functions. The participants were given a time-limit of 20 minutes to complete the 

test. 
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2.6 Statistical analyses 

From each of the aforementioned tests, the following variables were considered in the 

analyses: 

i. WRSpre and WRSpost: number of correct responses in the Writing Speed subtest of 

the HRT 1-4, at pre- and post-test assessment. 

ii. CALCpre and CALCpost: mean of correct responses in the Addition and Subtraction 

subtests. 

iii. MULpre and MULpost: number of correct responses in the Multiplication subtest. 

iv. COMpre and COMpost: number of correct responses in the Problem Completion 

subtest. 

v. CFTpre and CFTpost: mean of correct responses in the Continuing Series and 

Matrices subtests of the CFT. 

vi. KFTpre and KFTpost: number of correct responses in the verbal reasoning subtest 

of the KFT. 

vii. CTTpre and CTTpost: number of correct responses in the abbreviated CTt. 

To investigate the effectiveness of the CT course, we conducted a repeated-measures 

ANCOVA analysis discerning the within-participant factor measurement time (pre- vs post-

test) and the between-participant factor group (intervention vs control group). This, along 

with the descriptive analyses, were run in SPSS version 26 (IBM Coorporation 1989-2019).  

Results of a correlational analysis of CT with other cognitive abilities conducted on pre-test 

performance are shown in Table 1 (for more information, see Tsarava et al., 2020 -under 

review-). Based on the observed associations of CT with other cognitive skills assessed at pre-

test, we considered performance at pre-test of i. the abbreviated CTt (CTTpre), ii. the Problem 

Completion (COMpre), iii. the Continuing Series and Matrices (CFTpre), and iv. the verbal 

reasoning subtest (KFTpre) as covariates in the ANCOVA. Our selection includes performance 

scores with a Pearson’s r of at least r = .3 with CT performance.  

Table 1. Correlations (Pearson’s r) between CT performance and other cognitive abilities scores. 

 WRSpre CALCpre MULpre COMpre CFTpre KFTpre 

CTTpre -.023 .232** .224** .333** .346** .388** 

**. Correlation is significant at the 0.01 level (2-tailed). 



161 
 

Participants were randomly assigned to the experimental or the control conditions. 

Nevertheless, to ensure that the two groups were comparable at pre-test, we evaluated 

baseline performance at pre-test by running two-sample t-tests for all control variables 

(CTTpre, COMpre, CFTpre, KFTpre).  

3 Results 

3.1 Descriptive statistics 

From the 197 students participating in the study, data of 158 students that completed both 

pre- and post-test was considered in the ANCOVA. The detailed characteristics of this sample 

are presented in Table 2.  

Table 2. Description of the sample considered in the regression analysis. 

Group  Age Grade 2 Grade 3 Grade4 

Intervention 
group 

Girls 
N = 20 

M = 9.05  
SD = 0.58 

N =0 N =11 N =9 

 Boys 
N = 63 

M = 9.21  
SD = 0.69 

N =1 N =24 N =38 

Control group Girls 
N = 15 

M = 9.49  
SD = 0.51 

N =0 N =4 N =11 

 Boys 
N = 60 

M = 9.16  
SD = 0.76 

N =0 N =27 N =33 

3.2 Course effects 

To evaluate the effects of the intervention, an ANCOVA was conducted controlling for 

influences of CTTpre, EGpre, KFTpre, and CFTpre (see Table 3 for descriptives of the variables). 

As dependent variable, we considered the learning gain computed by the difference of the CTt 

performance scores from pre- to post-test [CTT = CTTpost – CTTpre]. Testing our directed 

hypothesis of a more pronounced improvement in CT skills for those children who completed 

the course was substantiated by the results [t(152) = 1.88, p = .031, tested one-sided, ANCOVA 

F-test: F(1, 152) = 3.548, p =.062]. The effect size, according to Morris (2008), was dppc2=0.218, 

which indicates a rather small effect (Cohen, 1988).  

4 Discussion 

CT, as a 21st-century-skill, has attracted significant research attention in recent years (e.g., 

Tang, 2019). A plethora of initiatives worldwide have suggested and worked towards the 

integration of CT in formal and non-formal educational settings by providing guidelines and 
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teaching materials for different age groups, either as short standalone interventions or as part 

of integrative curricula. Consequently, this increasing implementation of CT activities requires 

corresponding empirical studies to evaluate the materials and methods used.  

Table 3. Means and standard deviations of all variables for each measurement point and group. 

 Pre-test Post-test 
Group Intervention  Control  Intervention  Control  
Variables M SD M SD M SD M SD 

Dependent          

Computational thinking (CTT) 11,10 3,38 11,37 3,36 14,30 5,70 13,83 3,58 

Control          

Mathematical skills-Number 

Completion (EG) 14,93 5,70 16,15 6,14 18,67 5,81 19,33 6,71 

Verbal reasoning (KFT) 15,16 3,45 15,28 4,02 16,73 3,63 17,35 3,89 

Non-verbal visuospatial reasoning (CFT) 9,83 2,01 10,13 2,01 10,67 1,80 10,75 1,74 

 

Despite the constant and rapid developments for integrating CT in educational settings, there 

are several open questions seeking answers regarding the definition, the assessment, and the 

cognition of CT, along with the appropriate age, context and modality of introducing it, and 

the teachers’ required qualifications for doing so (Brackmann et al., 2017; Chiprianov & Gallon, 

2016; Lockwood & Mooney, 2017; Sentance & Csizmadia, 2017; Settle et al., 2012; Wang et 

al., 2019; Yadav et al., 2014; Yaşar, 2018b). In this work, we present the continuation of prior 

work we conducted, aiming to answer these open questions empirically. 

In previous work  (Tsarava et al., under review) we focused on the first three open questions 

(Definition, Assessment, Cognition) by i. conducting a correlational analysis between CT and 

other cognitive abilities, and ii. suggesting a CT assessment for primary school students. The 

correlational analysis complemented the current idea of CT as a cognitive skill well integrated 

with other cognitive skills and, therefore, our understanding of the construct. The CT 

assessment developed seems to provide a reliable measure for evaluating CT in primary 

school. In the current study, we evaluated the effectiveness of a CT curriculum we designed 

in a randomized controlled field trial to provide empirical answers to the questions regarding 

the appropriate age, context, and modality for introducing CT, and teachers’ required 

qualifications for delivering CT courses. Notably, the intervention was instructed by trained 

instructors in real classroom settings. 
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The CT course we designed was built based on constructivist principles, integrating game-

based learning, learning-by-doing, and embodied learning. The course introduced basic CT 

processes as applied in coding and implemented through activities of various STEM domains. 

To be age-appropriate, the different CT processes were first introduced unplugged via life-size 

board games, and later on, trained in different plugged-in activities implemented in visual 

programming environments.   

In the following, we elaborate on the course effects' interpretation before discussing the 

potential limitations of the current study and future perspective. 

4.1 Interpretation of the Effects 

The CT course had a significant positive effect on students’ CT abilities. Students in the 

experimental group showed a larger improvement in their CT performance from pre- to post-

test than observed for the students in the control group. Our study used a randomized 

controlled trial design that allows for reliable evidence to interpret the significant beneficial 

effects of the intervention. Importantly, performance improvements from pre- to post-test 

were observed for both groups (as to be expected when participants are tested twice on the 

same test). However, the improvement of the experimental group was significantly larger than 

the improvement of the control group.  

Compared to our pilot study where no control group design was implemented, the current 

results substantiated evidence on the beneficial effects of the course on participants’ CT skills 

(see Tsarava, Leifheit, et al., 2019) – even when delivered by teachers in a natural educational 

setting. They, therefore, reflect the effectiveness of the proposed CT course. Nevertheless, 

the rather small effect size needs to be considered when interpreting the results.  

To the best of our knowledge, there are no comparable intervention studies that implement 

an unplugged/plugged-in approach to foster CT in an extracurricular setting in the age group 

of 3rd and 4th graders. A recent review of the K-12 Computing Education research in the US 

indicated that research findings in extracurricular settings after 2016 are not available, and 

research papers with elementary school populations are significantly more seldom than 

respective papers involving middle and high school students (Upadhyaya et al., 2020).  



164 
 

Due to the lack of comparable research, a direct comparison of effect sizes with similar studies 

cannot be performed. Nevertheless, a recent meta-analysis of children’s learning outcomes in 

block-based programming courses found that in the existing literature, only small effect sizes 

for students’ CT improvement are reported (Chiu & Tsuei, 2020). Since 7 out of the 10 units of 

our CT course consisted of visual block-based programming activities, a distant comparison of 

our effect size with this meta-analysis results confirms this main finding. 

4.2 Limitations 

We are aware that two limitations might have influenced the results of the current work. The 

first is the possibility of self-selection bias of our sample. The students of our sample 

participated in the course intervention of their will. They were not assigned to the CT course, 

but they selected for themselves the course from various available courses offered in their 

academy during the respective school semester. For that reason, our results may not be 

generalized to the broader educational context. Secondly, our sample’s self-selection 

attribute may have also affected the ratio of girls and boys, with a significantly larger number 

of boys participating in the CT course.  

4.3 Future perspective 

Despite the above-described limitations, this study comprehensively investigated the effects 

of a course on CT development in a sample of primary school students. The intervention was 

offered by trained teachers (and not by the developers of the course), which allows for the 

conclusion that the course seems effective in real-class conditions. We hope that future 

analyses of the data on treatment fidelity questionnaires will shed light on a greater detail of 

each course unit’s feasibility.  
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8 Summary of Results 

In this section, a summary of the six enclosed studies' results will be presented in order of 

conduct (sections 8.1 to 8.6). The aim of this thesis is a cognitive definition of CT that will allow 

the development of more appropriate CT assessment tools and, therefore, contribute to 

evaluating educational materials designed for developing CT. The appropriate evaluation of 

CT interventions' learning outcomes can lead to more efficient didactical approaches for 

introducing and fostering CT. This thesis focuses on the elementary school level and aims to 

complement the CT research conducted in other age groups (e.g., at middle and high-school 

levels) so far.  

8.1 Findings of Study 1: CT curriculum design 
In Study 1, a review of the most recent literature was conducted, and based on it, the initial 

conceptualization of a CT curriculum for elementary school students was developed. In this 

study, a first break down of relevant CT processes was formulated (i.e., decomposition, 

algorithms, logic, patterns, evaluation, abstraction, and generalization) associated with 

respective coding concepts (i.e., sequences, loops, parallelism, events, conditionals, operators, 

and data/variables), and contextualized in the STEM disciplines. The overlapping practical co-

existence of coding concepts and CT processes in different STEM disciplines (see Study 1, 

Figure 2) formed the basis of the curriculum’s content design approach.  

CT processes were approached as cognitive counterparts of the more practical coding 

concepts. To offer a low-threshold first introduction to these concepts, they should initially be 

introduced in an unplugged modality without the use of any digital device. Later in, they 

should be trained in a plugged-in modality, using age-appropriate educational programming 

software. In addition, embodied and game-based learning methods were integrated into the 

didactical approaches of the curriculum’s activities to increase motivation and active learning. 

The proposed curriculum was designed for 3rd and 4th graders and aimed at providing students 

with a broader perspective on the applicability of CT and coding in real-life, as a problem-

solving technique.  

In this study, the conceptualization and rough outline of the curriculum were demonstrated. 

The unplugged units of the curriculum were presented and pilot-evaluated in Studies 2 and 3. 
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The elaborated curriculum outline was presented in Study 4, along with its pilot and efficacy 

evaluations, presented in Studies 4 and 6, respectively. 

8.2 Findings of Study 2: Initial evaluation of the unplugged CT games with adults 

In Study 2, the unplugged units of the curriculum were presented in detail. The inspiration for 

the three games of the life-size board games series Crabs & Turtles: A Series of Computational 

Adventures (namely, The Treasure Hunt, The Race, and Patterns) was described, along with 

the components of the games and their instructions for play. Additionally, the results of a 2-

phase empirical evaluation procedure were reported.  

The aim of the games is to foster CT in elementary school children. To evaluate the games, an 

iterative user-centred development process was followed. The purpose of this initial 

evaluation was to explore the feasibility and user experience during play. The evaluation was 

conducted with two different adult samples, a sample of university students (n=17) and a 

sample of gamification experts and educators (n=19). The selection of adult samples for this 

evaluation stage aimed at exploring possible required adjustments to the games before 

evaluating them with the target population of elementary school children.  

At phase 1, the overall game experience was examined after playing all three games, while at 

phase 2, game-specific experience was investigated after each of the three games. 

Quantitative feedback gathered by established game experience questionnaires (GEQ; Poels 

et al., 2007) and qualitative feedback provided in written and verbal formats were 

incorporated into the games' next version. The quantitative analysis results revealed an 

overall positive perception of the games, which were primarily perceived as a playful activity 

and to a lesser degree as a learning activity. Τhe qualitative feedback led to minor adjustments 

that resulted in an improved version of the games.  

After evaluating the games with adult samples, an evaluation with the actual target population 

of elementary school children was conducted, presented in Study 3. 

8.3 Findings of Study 3: Evaluation of the unplugged CT games with students 

In Study 3, the evaluation of users’ gaming experience was further investigated with a sample 

of 70 elementary school children. After integrating the valuable feedback provided by 

gamification experts and educators during Study 2, the games' final version was designed and 

underwent a quantitative evaluation with the actual target group. The three games that 
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constitute Crabs & Turtles: A Series of Computational Adventures were separately evaluated 

as individual game entities by utilizing the same game experience questionnaire (GEQ; Poels 

et al., 2007) used in Study 2.   

The results of Study 3 revealed an overall positive perception of the games. Children reported 

feeling competent and immersed during the three games and experienced positive affect, 

while tension and negative affect ratings were low. The games were primarily perceived as a 

playful activity, and the design elements’ quality was rated high. These results substantiated 

the games’ appropriateness as playful activities for the introduction of CT concepts to 

elementary school children.  

Nevertheless, the challenge during play was rated low for each one of the three games. For 

that reason, the games’ instructions were enriched with a set of alternative game-play 

instructions that allow adaptations based on the number of children participating in the game 

and the available time for play. These adaptations facilitate the selection of difficulty levels 

and therefore allow for a more challenging players’ experience.  

The overall positive evaluation of the games in Study 3 succeeded to replicate our results from 

Study 2 at the target population and allowed to move forward to the next evaluation phase of 

the games, as part of a CT course intervention, investigating their cognitive and educational 

value when teaching CT in elementary school.  This pilot evaluation phase was presented in 

Study 4. 

8.4 Findings of Study 4: Pilot evaluation of the CT curriculum – Investigation of 
CT cognitive correlates 

In Study 4, the pilot evaluation of the proposed in Study 1 CT curriculum was conducted.  After 

the iterative development of the Crabs & Turtles games and the games’ experience evaluation 

with different age groups, they were integrated into the newly developed curriculum, called 

Verstehen wie Computer denken [Understanding how computers work]. The curriculum 

consisted of ten 90-minutes lessons separated into four distinct modules (see also Study 4, 

Figure 1, and Study 6, Figure 2).  

The course was evaluated in 4 different academies of the HCAP (Rothenbusch et al., 2016) 

with 31 3rd and 4th graders. The evaluation followed a pre-/post-test design, using 

standardized cognitive assessments for various cognitive abilities. Additionally, a CT 
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assessment tool was used, which was derived from the adaptation of an already existing and 

validated for an older age group CT assessment (Román-González, Pérez-González, et al., 

2017). Moreover, the cognitive correlates of CT were investigated by observing associations 

between students’ performance at the cognitive assessments and the CT assessment. 

Results indicated the effectiveness of the course with a significant students’ CT performance 

increase from pre- to post-test. Verbal and non-verbal visuospatial reasoning skills also 

increased from pre- to post-test. These results replicate results from a study on an older 

sample of middle and secondary school children (Román-González, Pérez-González, et al., 

2017) that showed associations of CT with spatial, reasoning, and problem-solving abilities. 

Additionally, significant associations between CT and other specific cognitive abilities were 

observed.  CT performance was associated with complex arithmetic abilities. These results do 

not replicate the results of a previous study on a sample of middle and secondary school 

children (Román-González, Pérez-González, et al., 2017).  

The findings of this study, compared to the findings on older children (Román-González, Pérez-

González, et al., 2017), revealed that CT associations with other cognitive abilities are not 

consistent across different age groups. Non-verbal visuospatial abilities seem consistently 

correlated to CT from elementary to high-school level. However, numerical abilities seem 

more related to CT in elementary school level than in middle-school or high-school (Román-

González, Pérez-González, et al., 2017). Similarly to numerical abilities, results regarding the 

associations of CT with verbal abilities did not replicate the results of a similar study with older 

children (Román-González, Pérez-González, et al., 2017). Moreover, in this study, no 

correlations of CT with verbal reasoning ability was observed. In Study 5 of this dissertation, 

however, where the same correlational analysis performed in Study 4 was replicated on a 

larger sample of 197 children, verbal reasoning abilities are significantly correlated to CT. This 

inconsistency between study results occurred most probably because of the smaller sample 

size of Study 4 and can therefore be interpreted as a statical power issue.  

The abbreviated CTt used in this study to measure CT in elementary school children was an 

adaptation of a validated CT assessment tool for older students (CTt; Román-González, Pérez-

González, et al., 2017). The lack of CT assessment tools for the target age group of elementary 

children during the time this study was conducted led to this adaptation. The use of the 

abbreviated CTt seemed as regards duration of completion and items’ difficulty feasible to use 
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with elementary school students, without any ceiling or floor effects. For that reason, the 

abbreviated CTt was further used in Studies 5 and 6. In Study 5, the correlational analysis 

presented in Study 4 was replicated with a larger sample size utilizing the same assessment 

tools and therefore, the abbreviated CTt. In Study 6, the pilot study (Study 4) was followed by 

a randomized field trial with a control group, with a larger sample size, following the same 

pre-/post-test protocol, aiming to investigate the effectiveness of the CT curriculum further. 

8.5 Findings of Study 5: Investigation of CT cognitive correlates 

In Study 5, the correlational study investigating associations of CT with other cognitive abilities 

as conducted previously (Study 4) was replicated with a larger sample of 197 elementary 

school children. Though there have been several studies investigating the cognitive correlates 

of programming abilities in different age groups (Jones & Burnett, 2008; Prat et al., 2020), 

correlational studies investigating CT as a cognitive ability in association with other cognitive 

abilities are limited. There have been studies investigating cognitive associations of CT in pre-

school (e.g., Marinus et al., 2018), elementary (Città et al., 2019; associations of CT with 

mental rotation abilities), middle and high-school (e.g., Román-González, Pérez-González, et 

al., 2017) students, as well as university students and adults (Ambrosio et al., 2014). However, 

to the best of my knowledge, there have been no studies reporting associations of CT with a 

range of other cognitive abilities in elementary school level. The aim of this study was to define 

the construct of CT at this age group cognitively and therefore contribute to its definition and 

assessment. Along the correlational analysis, the study provided initial positive results for the 

reliability of a CT assessment tool for elementary school students. 

To assess CT, we used the abbreviated CTt utilized in Study 4, along with all the other cognitive 

assessment tools of this study. The adaptation of the original CTt (Román-González, Pérez-

González, et al., 2017) revealed acceptable reliability in Study 4, results which were also 

replicated in Study 5. The abbreviated CTt, consisting of 21 items and administered as a 20-

minutes speeded test, showed comparable psychometric attributes as the original CTt, 

suggesting that it can be used as a reliable CT assessment on elementary school students. 

The correlational analysis in Study 5 revealed differences in the cognitive interdependencies 

of CT across different age groups. The results indicated significant associations between CT 

and numerical, verbal, and non-verbal visuospatial abilities (for a visualization, see Study 5, 

Figure 4); however, only 24% of the variance of CTt performance was explained by the 
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performance on all the other cognitive tests. This further substantiates the notion of the 

author’s approach to cognitively define CT as a specific cognitive ability that builds upon 

several other cognitive abilities, which have not yet been extensively investigated in 

correlation to CT. 

Results of Study 5 revealed: i. a weak association of CT with numerical abilities, ii. a moderate 

association with verbal reasoning abilities, and iii. a weak association with non-verbal 

visuospatial abilities. The first association replicated the results of the pilot study (Study 4) on 

the association of CT with simple and more complex numerical abilities, although similar 

studies on an older sample of middle and high-school students (Román-González, Pérez-

González, et al., 2017) did not provide similar evidence. The results of Study 5 are in line with 

the initial results of the pilot study (Study 4), substantiating the argument that numerical 

abilities are a prerequisite for thinking computationally at an early stage of cognitive 

development.  

The second association that of CT with verbal abilities did not replicate the results of the pilot 

study (Study 4) where no significant association between CT and verbal reasoning was 

revealed. Nevertheless, this positive association replicates results of previous studies 

conducted on samples of older and younger age groups investigating cognitive associations of 

CT with verbal abilities (e.g., Good & Howland, 2017; Marinus et al., 2018; Prat et al., 2020; 

Román-González, Pérez-González, et al., 2017). This, however, is not the case with young 

adults, where verbal ability seems not to be associated with programming experience and CT 

(Helmlinger et al., 2020). These results indicate that language is an essential factor in the 

development of CT at a younger age, but not necessarily after secondary education. 

The third association revealed by the correlational analysis is the one of CT with non-verbal 

visuospatial abilities. This weak association substantiates the results of the pilot study (Study 

4) and results of several other studies conducted on similar (Città et al., 2019) or older age 

groups (e.g., Ambrósio et al., 2015; Jones & Burnett, 2008; Parkinson & Cutts, 2018; Román-

González, Pérez-González, et al., 2017; M. Werner, 2020). These results indicate that non-

verbal visuospatial reasoning abilities are consistently and across educational levels a 

predictor of thinking computationally. 
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The results of this study regarding the cognitive associates of CT in elementary school level 

complement the nomological network of the cognitive abilities related to the development of 

CT across age groups and therefore support a cognitive definition of CT as a psychological 

construct (for a visualization, see Study 5, Figure 5).   

8.6 Findings of Study 6: Effectiveness evaluation of the CT curriculum  

In Study 6, the pilot evaluation of the CT curriculum (Study 4) was replicated with a sample of 

197 elementary school children, in a randomized field trial with a control group, following the 

same pre-/post-test protocol. Τhis last phase of the evaluation aimed at investigating the 

effectiveness of the CT curriculum (for an elaborated description of the curriculum content, 

see Study 6, Figure 2). To evaluate the curriculum in a real classroom setting, the training in 

this phase was delivered by trained instructors and not the developers of the course as in the 

pilot phase of the evaluation (Study 4). The effectiveness of the curriculum was measured 

utilizing the various cognitive and CT assessments used in Study 4.  

Evaluation of the pre- and post-test differences revealed a larger improvement in students’ 

CT performance for the intervention group compared to the control group. This significant 

positive effect of the CT curriculum on students’ CT abilities replicates the findings of the pilot 

study (Study 4) where no control group design was implemented. These results substantiate 

the previous evidence on the effectiveness of the CT curriculum even when delivered by 

instructors in real classroom settings.  

The small effect size of our results though not desirable is in line with existing literature on the 

usually small effect sizes reported for CT interventions with block-programming languages 

(Chiu & Tsuei, 2020). Since similar empirical studies on the effectiveness of CT interventions 

for elementary school are limited (Upadhyaya et al., 2020), this study could contribute to the 

body of research focusing on the design and evaluation of effective educational materials for 

fostering and developing CT. 
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9 Conclusions 

In this section, the summary of results presented in section 8 are recapped, structured in two 

subsections based on this thesis's objectives, namely: i. the Curriculum design and 

development for fostering CT (see section 5.1), and ii. the Cognitive correlates of CT and its 

assessment (see section 5.2). First, the CT curriculum design approach, the development 

procedure, and the evaluation results will be discussed (section 9.1). Second, the investigation 

of the cognitive correlates of CT, along with a CT assessment tool for the elementary school 

level, will be recapitulated (section 9.2). 

9.1 Curriculum for fostering CT 
The design and evaluation of the CT curriculum developed in this thesis was based on a 

literature review on the most recent didactical approaches suggested for fostering CT to 

elementary school children. Since CT lacks a concrete and widely accepted definition, as a 

working definition for the six enclosed studies, the definition of Shute et al. (2017) was 

considered. This definition interprets CT as the underpinning construct of effective and 

efficient problem-solving, applied in contexts within and beyond CS. The design of the CT 

curriculum required the set of concrete components to be fostered, a transparent context of 

introduction and application of the components, and didactical methods relevant for 

introducing complex concepts to elementary school students (Study 1). 

There have been specific CT processes identified in the literature which are cognitively 

supporting more practical skills relevant to coding. Though these CT processes can be well-

expressed within the context of CS and coding, they are not limited to this context. However, 

for the purposes of this course, coding served well as an educational context for introducing 

and fostering CT. To provide a broader perspective on the wide applicability of CT, the 

activities incorporated in the curriculum focused on different STEM topics. Additionally, to 

motivate students’ participation and offer a low-threshold introduction to complex concepts, 

game-based learning and embodiment were facilitated with the development of the life-size 

board games Crabs & Turtles. 

The games went through an iterative development procedure, having been evaluated in 

different phases and with different samples of players for the game experience they offer 

(Studies 2 and 3). After integrating feedback from the different evaluation phases, the games 
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were integrated into the proposed CT curriculum and underwent a pilot and an effectiveness 

evaluation (Studies 4 and 6 respectively) with more than 200 elementary school students.  

Results of the different evaluation studies indicated that the design approach of the CT 

curriculum had a positive effect on students’ CT performance. The blended approach of a low-

threshold embodied, and unplugged introduction of CT and coding concepts with playful 

activities and the plugged-in transfer of the same concepts in visual block-programming 

environments of different output modalities (i.e., Scratch: small-scale games and interactive 

applications, S4A: haptic and visual applications with a microcontroller, Open Roberta Lab:  

robot simulations) proved itself efficient.  Given the fact that the evaluations of the CT 

curriculum focused on a sample of students attending an extracurricular enrichment program, 

future research is needed to evaluate whether similar results would occur in formal classroom 

settings. 

Taken together, the findings of the evaluation studies support the idea of a blended unplugged 

and plugged-in approach on teaching concrete CT concepts using coding activities as a vehicle 

for applying them in various STEM domains. The evaluated curriculum is a Hector Core 

Course24 at the Hector Children's Academy Program25 (Rothenbusch et al., 2016) for talented 

children and has been offered as an extracurricular course, across the 66 academies in Baden-

Württemberg, since 2018.   

Additionally, the proposed educational life-size board games developed and evaluated for the 

scope of this curriculum seem to facilitate a playful introduction to CT and coding concepts. 

Their publication as an OER allows for open access and further use of the materials in various 

educational contexts, assisting a direct transfer of research development to educational 

practice. Furthermore, the multi-phase evaluation studies of the developed curricula have 

gone some way towards enhancing the iterative development of CT curricula, evaluated for 

their effectiveness in real-class conditions, and providing robust statistical information that 

will allow future comparative studies with the respective age group.  

 

 
24 Hector Core Course are course developed for the Hector Children's Academy Program and are offered by 
trained instructors across the 66 academies of the program, after being evaluated for their effectiveness. 
25 https://hector-kinderakademie.de  

https://hector-kinderakademie.de/
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9.2 Cognitive correlates and assessment of CT 

The cognitive definition of CT that this thesis seeks to enhance was pursued by focusing on 

the development of the construct at the population of elementary school children, and 

derived from evaluating associations of performance on a CT test and performance on other 

tests of well established cognitive constructs. Since there was no validated CT test for the age 

group of elementary students at the period, this PhD research took place, a CT test for older 

students (CTt; Román-González, Pérez-González, et al., 2017) was adapted and used for the 

purposes of this research. The abbreviated CTt showed adequate reliability in both Studies 4 

and 5, as well as similar psychometric properties to the original CTt. The assessment will be 

openly accessible via the OSF26, and an implication of this is hopefully the use of the proposed 

abbreviated CTt for future research on elementary school students, where no validated CT 

assessment tools are yet widely available.  

The results of the association analyses between CT and other cognitive abilities (i.e., numerical 

abilities, verbal reasoning, and non-verbal reasoning abilities) complements the nomological 

network of CT, by providing empirical evidence on the cognitive underpinnings of CT within 

the underinvestigated population of elementary school students (for a visualization, see Study 

5, Figure 5). Though the correlational analyses revealed some different cognitive associations 

of CT at the elementary school level compared to those observed in older age groups, they 

also substantiated others.  

Non-verbal visuospatial abilities seem to be consistently correlated to CT from elementary to 

high-school level (Román-González, Pérez-González, et al., 2017). Numerical abilities, 

however, seem more relevant to CT in elementary than in middle-school or high-school level 

(Román-González, Pérez-González, et al., 2017). This differentiation of numerical correlations 

with CT across age could be explained by the fact that at an early age, numerical abilities are 

prerequisites for CT, while later on when a certain threshold of numerical ability is achieved 

through formal education, numerical abilities are not decisive for the development of CT (see 

Helmlinger et al., 2020; Prat et al., 2020 for comparable results in adult populations). Verbal 

abilities seems to be associated with CT in elementary school children as well as in younger 

and older populations (Good & Howland, 2017; Marinus et al., 2018; Prat et al., 2020; Román-

González, Pérez-González, et al., 2017). Nevertheless, in young adults, verbal ability seems not 

 
26 The OSF link provided in Study 5 will be openly accessible after the manuscript’s publication. 
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to be associated with programming experience and CT any more (Helmlinger et al., 2020). The 

decreasing association of CT with verbal abilities in older samples might be explained by the 

fact that in younger age, the use of language serves as a scaffolding cognitive strategy to read 

and formulate algorithms while this strategy becomes less relevant when getting older and 

thus more experienced. The observed associations indicate that language is an important 

factor for CT development at a younger age, but not necessarily after secondary education. 

In summary, at the elementary school level, CT, as measured by the abbreviated CTt, is 

moderately to weakly associated with numerical, verbal, and non-verbal visuospatial 

reasoning abilities. However, variance in performance on the abbreviated CTt was only 

partially explained by these other cognitive constructs. This provides further evidence for the 

argument that CT is a specific cognitive ability that builds on and recruits a convolute of several 

other cognitive abilities, which are not yet investigated and understood comprehensively in 

relation to CT. Nevertheless, the results of the current study clearly indicate that CT 

performance is more than just the sum of the assessed other cognitive constructs. 

As such, and with the educational value it has been assigned, CT should be further investigated 

as a unique cognitive ability, taking into consideration its associations with other cognitive and 

non-cognitive factors until it is well defined and reliably measured across educational levels. 

Such factors proposed already are personality and self-efficacy (Román-González et al., 

2018b), executive functions (Robertson et al., 2020), and creative thinking (Scherer et al., 

2018). 
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10 Future Perspectives 

The work related to CT, and more specifically, the cognitive investigation, the curricula design 

and effectiveness as well as the assessment of CT are still in their infancy, despite the 

considerable amount of research being conducted worldwide (Lockwood & Mooney, 2017; 

Román-González et al., 2018). CT as a cognitive construct needs further investigation that will 

allow for more appropriate assessment tools design and therefore, more effective educational 

interventions for fostering CT. The presented CT curriculum design approach and the multi-

phase evaluation procedure for measuring the intervention’s effectiveness outline design and 

evaluation perspectives on future CT curricula addressed to young children at elementary 

school level. The proposed CT assessment tool and the investigated cognitive correlates of CT 

provide a promising tool for assessing CT in elementary school children, complement the 

research on the cognitive embedding of CT at the respective age group and provide a robust 

basis for further research on the definition of CT as a unique cognitive ability.  

To further advance research on CT, future similar studies are required in order to elucidate 

the development of CT in younger and older age groups (like pre-schoolers and university 

students) where the research on the cognition of CT is comparatively limited as in elementary 

school (Upadhyaya et al., 2020). That would allow for a more comprehensive picture of the 

cognitive development of CT across age-groups. In this direction, a replication study (Marinus 

et al., 2018) on the cognitive correlates and assessment of CT with 5 and 6 years old students 

was conducted in 2019 and awaits analysis. Similarly, a study on the cognitive correlates of CT 

with numerical/mathematical abilities and their differential prediction of coding performance 

has been conducted in university students, and part of the results have been presented by 

Werner (2020). Besides, future studies are required to substantiate the argument that CT is a 

unique cognitive ability, that even though it recruits and seems to rest on a convolute of other 

cognitive abilities, may also associate with factors that are not yet extensively investigated in 

relation to CT, like creative thinking, executive functions, and non-cognitive behavioural 

factors.  

Similarly, CT assessment research has a long way to go until reliable CT assessment tools for 

different age-groups are developed. Further cross-validations studies of different CT 

assessment tools are needed in order to ensure the tools’ psychometric quality. A first step in 

this regard is a study conducted earlier this year, translating in German and validating the BCTt 
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(Zapata-Cáceres et al., 2020), a newly developed CT assessment for primary school children 

that had not been yet developed at the time this study took place. Future studies are planned 

for cross-validating BCTt with the abbreviated CTt. 
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