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Summary

Cognitive load refers to the total amount of working memory resources a person is
currently using. Successfully detecting the cognitive load a person is experiencing
is the first important step towards applications that adapt to a user’s current load.
Provided that cognitive load is estimated correctly, a system can enhance a user’s
experience or increase its own efficiency by adapting to this detected load. Us-
ing digital learning environments as an example to illustrate this idea, a learning
environment could tune the difficulty of presented exercises or learning material
to match the learner’s current load to not underwhelm them, but also to prevent
overload and frustration.

Physiological sensors have great promise when cognitive load estimation is con-
cerned as many physiological signals show distinctive signs of cognitive load. Eye
tracking is an especially promising candidate as it does not require physical con-
tact between sensor and user and is therefore very subtle. A major problem is the
lack of general classifiers for cognitive load as classifiers are usually specific to a
single person and do not generalize well. For adaptive interfaces based on a user’s
cognitive load to be viable, a classifier that is accurate and performs well indepen-
dently of user and specific task would be needed. In the current doctoral thesis, I
present four studies that successively build upon each other and build up towards
an eye-tracking based classifier for cognitive load that is 1) accurate, 2) robust, 3)
can generalize, and 4) can operate in real-time.

Each of the presented studies advances our approach’s capability to generalize
one step further. Along the way, different eye-tracking features are explored and
evaluated for their suitability as predictors of cognitive load and the implications
for the distinction between cognitive load and perceptual load are discussed. The
resulting method demonstrates a degree of generalization that no other approach
has achieved and combines it with low hardware requirements and high robust-
ness into a method that has great promise for future applications. Overall, the
results presented in this thesis may serve as a foundation for the use of eye track-
ing in adaptive interfaces that react to a user’s cognitive load.






Zusammenfassung

Kognitive Belastung bezeichnet die Menge an Arbeitsgedichtnisresourcen, die eine
Person gerade verwendet. Das erfolgreiche Erkennen von kognitiver Belastung
stellt den ersten Schritt auf dem Weg zu Anwendungen dar, die sich der Belas-
tung des Nutzers anpassen. Vorausgesetzt, dass die kognitive Belastung richtig
eingeschétzt wurde, konnte ein System sich dieser Belastung anpassen und damit
das Erlebnis des Nutzers verbessern oder seine eigene Effizienz steigern. Dies
lasst sich gut am Beispiel von digitalen Lernumgebungen veranschaulichen. Die
Lernumgebung konnte den Schwierigkeitsgrad der prasentierten Aufgaben und
des Lernmaterials so anpassen, dass sie den kognitiven Anforderungen der ler-
nenden Person ensprechen, sodass sie weder iiberwiltigt ist, noch durch Uber-
beanspruchung frustriert wird.

Physiologische Sensoren sind vielversprechend, wenn es um die Einschéitzung
von kognitiver Belastung geht, da sich diese Belastung in vielen physiologischen
Signalen widerspiegelt. Eye Tracking sticht dabei besonders heraus, da es keinen
physischen Kotakt mit dem Anwender braucht und daher sehr subtil eingesetzt
werden kann. Ein grof3es Problem ist jedoch, dass Klassifizierungsmethoden, die
mit physiologischen Signalen arbeiten, schlecht verallgemeinern konnen und die
resultierenden Klassifikatoren nur spezifisch fiir die Person funktionieren, fiir die
sie trainiert wurden. Damit adaptive Interfaces, die sich der kognitiven Belas-
tung des Nutzers anpassen konnen, realisierbar sind, ben6tigt man einen Klas-
sifikator, der genau ist und unabhingig vom Nutzer und der konkreten Aufgabe
gute Ergebnisse liefert. In der vorliegenden Doktorarbeit prasentiere ich vier Stu-
dien, die aufeinander aufbauen und sukzessive auf einen Eye-Tracking basierten
Klassifikator fiir kognitive Belastung hinarbeiten, der 1) genau, 2) robust und 3)
allgemeingiiltig ist, sowie in 4) Echtzeit verwendet werden kann.

Jede der vorgestellten Studien bringt uns der Generalisierbarkeit unserer Vorge-
hensweise einen Schritt ndher. Dabei werden verschiedene Eye-Tracking Feature
untersucht und auf ihre Eignung hin getestet, als Pradiktoren fiir kognitive Belas-
tung zu fungieren. Aullerdem werden die Implikationen, die diese Feature fiir die
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Zusammenfassung

Unterscheidung zwischen kognitiver Belastung und Belastung der Wahrnehmung
haben, erortert. Die Methode, die in dieser Arbeit prasentiert wird, erreicht einen
Grad an Generalisierung, der von keinem anderen Verfahren erreicht wird, und
kombiniert diese Tatsache mit einem sparsamen Umgang mit Hardware-Resourcen
und guter Robustheit zu einem Verfahren, das fiir zukiinftige Anwendungen sehr
vielversprechend ist. Die Ergebnisse, die in dieser Arbeit prasentiert werden, kon-
nen als Grundlage fiir adaptive Anwendungen dienen, die Eye Tracking verwenden
und auf die kognitive Belastung des Nutzers reagieren.
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1 Introduction and Theoretical Framework

Our brain’s resources - e.g. working memory, attention, decision making, or task-
related knowledge - are limited. The degree to which these resources are currently
used is commonly referred to as cognitive load [1]. It is apparent that measuring
and managing cognitive load in human-computer interaction is beneficial in a
plethora of situations and even essential in others. If a system would be able
to adapt to the user’s current state, frustration and stress caused by cognitive
overload could be avoided as well as boredom that may originate from low levels
of cognitive load and too little challenge [2].

This may be especially relevant for digital learning environments. In learning
contexts, the zone of proximal development [3] describes the difficulty level of a
learning task that is best for growth by challenging the learner, but not overwhelm-
ing them. This difficulty level can be overcome with help, differentiating it from
material that is too easy (which offers no opportunity to learn) or too difficult
to even solve with help. Provided that estimation of cognitive load works suc-
cessfully, the difficulty of learning material could be adjusted to suit the learner’s
current needs or scaffolding could be employed to point the learner in the right di-
rection. Utilizing such adaptations the learner can be kept in the zone of proximal
development, thereby optimizing learning.

This concept, however, is not limited to learning scenarios. Virtually any digital
environment can incorporate cognitive load assessments and many could adapt to
it. Gaming is an obvious example, as difficulty can usually be adjusted in various
ways depending on the specific game. By lowering the difficulty when cognitive
load indicates that a user is struggling with a challenge, frustration can be pre-
vented and the overall experience can be improved. On the other hand, certain
obstacles may be to easy and can be made more enjoyable by increasing their dif-
ficulty. Adapting to cognitive load can help tailoring the experience to the user’s
specific skill-set, expertise, and current mental and cognitive states. Achieving a
flow-state [4] by balancing the presented challenge with the user’s available re-
sources is a prime example for useful adaptation in gaming creating a state of
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optimal experience [5].

Conventional ways to measure cognitive load such as questionnaires or sec-
ondary tasks are not viable for real-time adaptation as they either do not provide a
continuous estimation or interfere with the main task. Predictive machine learning
models that use physiological data on the other hand can provide exactly that: a
continuous estimation of cognitive load without imposing additional load through
a secondary task.

What limits cognitive load estimation using physiological sensors in its current
form - and consequently its applications - is the lack of generalization. Machine
learning classifiers that distinguish between different levels of cognitive load are
usually person and task specific and do not work outside of their specific context
61, [7]. This challenge is not limited to physiological approaches, but cognitive
load estimation in general, as Heard et al. conclude in their meta-review of al-
gorithmic assessments of cognitive load [8]]. In the current doctoral thesis I want
to work towards a person and task independent classifier for cognitive load that
relies on eye tracking. Compared to most other physiological measures eye track-
ing is not intrusive while still offering good classification accuracy (e.g. up to 70%
as reported by Hogervost and colleagues [9]), making it a prime candidate for
indirect cognitive load assessment. The goal of this thesis is first to find a way to
generalize across participants, then outfit this approach with enough robustness
to handle real-world situations, and finally show that it also works across differ-
ent tasks. This level of generalization has not been demonstrated by researchers
before and therefore can be seen as a major leap in cognitive load research that
possibly enables many applications in the future.

1.1 Theoretical Framework

There are many theories concerned with cognitive load. On the one hand there
is the broader term of “workload” referring to an amount of labor or quantified
effort. It is often used in context of human factors and described by Wickens’
Multiple Resource Theory (MRT) [10], [[11]]. Wickens proposes that there are
multiple different resource pools that can be tapped simultaneously and describes
them in terms of modality (e.g. visual, auditory, or tactile), stage (perception,
processing, and action), and reasoning (subconscious, symbolic, or linguistic).
Each resource pool is finite and can be overloaded, forming a potential bottleneck.
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On the other hand there are theories like Cognitive Load Theory (CLT) [1],
[12], [13] that focus on instructional design and describe cognitive load as the
amount of working memory resources being used. Working memory describes
the small amount of information that can be held and manipulated in one’s mind
simultaneously for the execution of a current cognitive task [14]]. CLT mainly
focuses on instructional design in educational contexts, but can also be applied to
concepts of human-computer interaction [[15]. The cognitive load imposed on the
working memory’s storage components is seen as the main bottleneck for learning,
assuming that these components constrain the amount of new information that
can be processed simultaneously in order to be integrated into long-term memory.
If this storage is overloaded, learning is hindered and performance decreases.

The amount of cognitive load a person experiences depends on the presentation
of a task as well as on the relationship between the learner’s skill and the task
complexity. A task can cause varying amounts of cognitive load depending on the
knowledge prerequisites, making a fixed task easy for an expert and difficult for a
novice. This kind of load is referred to as intrinsic cognitive load, as it is inherent
to a task itself. The second type of cognitive load is called extraneous cognitive
load. Extraneous cognitive load is caused by the manner in which information
is presented to the learner, so it can be eased by beneficial instructional design
and modalities. The final type of load defined in the framework of CLT is ger-
mane cognitive load. It describes the load caused by processing, construction and
automation of schemas.

1.2 Measuring Cognitive Load

The foundation for any kind of adaptation based on cognitive load is to assess it
[16]1, [17]. Three different avenues to assess cognitive load exist, each with its
own advantages and disadvantages: self-reports, task performance, and physio-

logical measures.

1.2.1 Self-Reports

Subjective rating scales like the NASA-TLX [18]], see widespread use as a tool
for cognitive load assessment and have been successfully used in various areas of
research. They however, offer little flexibility and are very coarse in their granu-
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larity. Measurements are only available at few points in time and not continuously
throughout an experiment. Moreover, there may be other factors influencing the
results of such a questionnaire with the current level of cognitive load being only
one of them [19]. As a person needs to stop a task in order to fill out a ques-
tionnaire, its nature is rather disruptive and makes it unsuitable for any real-time

application.

1.2.2 Task Performance

The second method of measurement is task performance. Quantifiable perfor-
mance metrics like reaction times obtained from a secondary task are used to
evaluate how much cognitive load is caused by the primary task. The worse the
secondary task performance, the higher the cognitive load induced by the primary
task. These dual-task paradigms (e.g. [20]) have the distinct advantage that they
are objective, but the induced secondary load interferes with the primary task.
Additionally, while the assessment is available at more points in time, it is still not
continuous.

Antonenko and colleagues conclude that neither performance metrics nor ques-
tionnaire data can provide continuous and unobtrusive cognitive-load monitoring
which is a prerequisite for real-time applications [21]].

1.2.3 Physiological Measures

The human nervous system is divided into two sub-subsystems: the central ner-
vous system (CNS) and the peripheral nervous system. The CNS is comprised of
all cells of the brain, brain stem, and spinal cord, whereas the peripheral nervous
system encompasses cells outside the skull and spinal column. Cognitive load is re-
lated to both systems and can either be measured directly or through physiological
changes that accompany the changes in the nervous system.

Common ways to evaluate CNS activity are neuro-imaging procedures like elec-
troencephalography (EEG), near-infrared spectroscopy (NIRS), or functional mag-
netic resonance imaging (fMRI) that measure brain activity. One successful ap-
proach for participant independent classification of cognitive load was published
by Popovic et al. [22]]. They used a combination of EEG and electrocardiography
(ECG) achieving 72.5% classification accuracy in a leave-one-participant-out cross-
validation. Wang and colleagues [23]] were able to use hierarchical Bayes models



1.2 Measuring Cognitive Load

that were trained on all of their 8 participants to classify cognitive load for individ-
ual participants with roughly 80% accuracy. They used EEG measurements in their
approach and concluded that their results were on par with within-participant re-
sults for similar data. Cross-task capability was demonstrated by Ke et al. for EEG
data [24]. By applying feature selection to participant-specific regression mod-
els they could generalize from a working memory task to a complex simulated
multi-attribute task (see [25] for details of the task). Furthermore, Krol and col-
leagues developed a paradigm to calibrate a task-independent EEG classifier for
participant-specific use [26]] that was successfully used in further studies [27]],
[28]] and achieved results above chance-level.

The peripheral nervous system is made up of two parts: the somatic nervous
system that is concerned with voluntary activation of muscles and the autonomic
nervous system (ANS) governing subconscious bodily functions like breathing,
heart beats, or digestion. The ANS is influenced by cognitive load through two
systems that counteract each other: the parasympathetic nervous system and the
sympathetic nervous system. The fundamental function of the sympathetic ner-
vous system is to ready the human body for emergencies and mobilize the re-
quired resources. This includes increasing heart rate and blood flow to internal
organs, sweating, and pupil dilation. Opposed to the sympathetic nervous system
the parasympathetic nervous system regulates the conservation and maintenance
of bodily resources. High cognitive load impacts the ANS in a similar way as a
fight-or-flight situation by reducing activity of the parasympathetic nervous sys-
tem and increased activity of the sympathetic nervous system. This is reflected in
physiological changes that can be picked up by sensors and used to estimate the
cognitive load that caused them.

Sarkar and colleagues successfully implemented a cross-participant method to
detect cognitive load based on ECG recordings of 9 participants during a surgical
simulation task [29]]. After baseline correction and normalization they achieved
88.74% classification accuracy for distinguishing low and high cognitive load. Even
though the number of participants is small, there seems to be potential for cross-
participant cognitive load detection as long as physical contact is not an issue for
the experiment.
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1.3 Eye Tracking and Cognitive Load

The majority of physiological sensors are intrusive in some way (e.g. by being
in physical contact with a user) and therefor may break immersion. A notable
exception is eye tracking. Eye tracking - more specifically remote eye tracking -
offers a great way to obtain physiological information indicating cognitive load in
an non-intrusive way. It is non-invasive by nature and does not require physical
contact. This helps with keeping users immersed as their awareness of the sensor
is very low and the application does not need to be interrupted to get an estimation
of cognitive load.

1.3.1 Overview

Eye tracking is the process of measuring either the point of gaze (where one is
looking) or the motion of the eye relative to the head. A device used for this
procedure is called an eye tracker. Eye movement has been studied since the
1800s but only on the basis of visual observations or using very intrusive methods,
such as giant contact lenses connected to an aluminium pointer [30]. In 1937,
Guy Thomas Buswell was the first to use light beams directed at the eye which
were reflected and captured on film [31]]. He used his apparatus to study reading
behavior and noticed differences in oral and silent reading. In the 1950s and
1960s, Alfred Lukyanovich Yarbus conducted research concerning task-dependent
exploration strategies. In 1967, he published a book called “Eye Movements and
Vision” A. L. Yarbus, Eye Movements and Vision. Plenum Press, 1967 that would
be quoted by eye-tracking enthusiasts for the next decades and is still one of the
most influential books in the research field. Since then, eye-tracking technology
has advanced and eye trackers have become increasingly versatile, accurate and
popular.

In general, there are two different types of eye trackers in use today: remote
eye trackers and head-mounted eye trackers. The former utilize several infrared,
near-infrared or regular cameras (usually mounted as an array below a display) to
measure the pupil and calculate the gaze position based on that data. The latter
are similar in appearance to glasses but feature several cameras. One is facing
away from the wearer and (usually) two infrared or near-infrared cameras are
fixed below the wearer’s eyes and capture eye movements. From the recorded
pupil and eye data, gaze vectors for both eyes are calculated with regard to the
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current head position of the wearer. Since in both cases the pupil has to be de-
tected in an image, this means that apart from the pupil center used for the gaze
vector, the pupil diameter is an additional measure that can be used as a source of
data.

Meanwhile, eye tracking is employed in various application fields. It can be
employed in many psychological studies - especially reading studies [33]-[35].
Marketing and economics also utilize eye tracking to analyze the efficiency of
advertisement and optimize their placement [36[]-[38]]. In the area of human-
computer interaction eye-tracking has been employed as a modality to improve
the interaction with a user [39]-[41]]. There are also many applications for eye
tracking in driving tasks and the simulations thereof. It can for example be used to
detect whether an obstacle, traffic sign, or hazard has been noticed by the driver
[[42] or eye related features can be used to detect fatigue, drowsiness, or defects
in the field of vision [43]]-[52].

Advances in technology render eye trackers affordable for a broad audience [53]]
and many VR-headsets come already pre-equipped with eye-tracking technology.
Recent studies even show that low-cost eye trackers can be used for estimating
cognitive load [54], [55]. Furthermore, many manufacturers add cameras and
eye trackers to their cars which enhances the opportunity for pervasive cognitive
load estimation even further. As no other physiological sensor achieves the balance
of cost, accuracy, and availability that eye tracking offers, it is a prime candidate
for applications that aim for a large target audience.

Technological advancement does not only happen with regards to hardware,
but eye-tracking software is getting more potent, too. Pupil detection has greatly
improved over the last years enabling not only more accurate pupil diameter mea-
surements, but also more precise gaze estimation [56]-[61]]. These improve-
ments make high quality eye tracking available even on low-cost devices. Fur-
ther improvements in calibration procedures [|62] and slippage compensation [|63]]
dramatically increase data quality and robustness to real-world circumstances of
head-mounted eye trackers.

Eye movements are very sensitive and private in nature. Even based on anony-
mous data inference about personal attributes like age and gender is possible [|64],
651, which poses a threat to a user’s privacy. Therefore, privacy-preserving meth-
ods have to be employed in order to protect users. Differential privacy approaches
seem to be a good solution to these concerns on a database level [|66], while ran-
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domized encoding can be used to calculate a user’s gaze without accessing their
facial landmarks [67].

1.3.2 Features

To get closer to the goal of a general eye-tracking based cognitive load classifier,
I rely on features that are in large parts independent of the presented stimulus
and its structure. Assuring this criterion allows us to generalize across tasks and
situations. Saccade characteristics are highly dependent on task [68]-[70] and
stimulus as they are guided by visual attention and therefore are ill-suited as gen-
eralizing features. The same holds true for most features that are derived from
fixations. Examples that illustrates this fact well are tasks that do not employ
visual stimuli. Pupil diameter features are still reported to change as expected
(see [71] for a good overview), but fixation and saccade characteristics lose their
meaning. Summarizing, any eye-tracking feature that relies on gaze positions is
unlikely to generalize across different tasks, consequently, the primary focus of
this thesis is on measurements of pupil diameter. Still, I consider certain basic
fixation and saccade metrics, microsaccades, as well as blinks.

Fixations

Fixations describe a voluntary, stable gaze on the same location typically lasting
between 200 ms and 350 ms [72]], but they may last up to several seconds. The
frequency of fixations is influenced by a lot of factors. Time pressure tends to
increase the number of fixations while reducing their duration [73]. Chen et al.
related fixation duration to the level of cognitive processing whereas a high fixa-
tion duration and decreased fixation rate indicate higher working memory usage
[[74]. They interpret these observations as indicators of increased attention caused
by tasks with higher complexity. The idea that longer fixation are associated with
higher processing load and more effort is supported by further eye-tracking re-
search [|75]-[78].

Other research leans in the opposite direction by associating higher fixation
duration with less invested cognitive effort [[79], [80]. It is possible that these
results are influenced by processing difficulty or visual demands of the stimuli
[72].
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Saccades

Saccades are rapid eye movements that usually occur between fixations. The effect
that cognitive load has on specific saccade characteristics is highly dependent on
the presented stimulus, which makes them unlikely candidates for features that
generalize well. This work therefore focuses on microsaccades instead of regular
saccades.

Microsaccades are small involuntary eye movements that may occur during a
fixation and are associated with cognitive load and visual load. Studies reported
an increase in microsaccade frequency in visually demanding tasks [81]], whereas
non-visual tasks (e.g, auditory tasks or mental arithmetic) seemed to reduce their
frequency [|82]-[84].

Pupil

The pupil is the circular black area in the center of an eye that allows light to strike
the retina [85]]. It is controlled by two muscles: the sphincter muscle sphincter
pupillae responsible for contracting the pupil and the radial muscle dilator pupil-
lae that dilates it. The ANS influences the pupil diameter through the parasympa-
thetic and sympathetic nervous system respectively. High task demand decreases
PNS activity and increases SNS activity, both causing the pupil to dilate [86]], [87]],
which is often referred to as task-evoked pupillary response. Kahneman showed
that this effect persists within task, between tasks, and between individuals, con-
cluding that there is a consistent influence of cognitive load in the pupil diameter
[881.

Many factors, however, play a role in pupil dilation. The most common is the
light reflex - the pupil’s involuntary adaptation to lighting. It regulates the amount
of light that strikes the retina and assists in adaptation of vision to various levels of
lightness/darkness. A phenomenon unrelated to this function is known as hippus
or pupillary unrest, which is a rhythmical and regular contraction and dilation of
the pupil [[89]. It is independent of eye movement and lighting conditions and
usually normal, however pathological hippus can occur with increased frequency
and/or amplitude.

The connection between pupil dilation and cognitive load has been investigated
since the early 1960s [[90], [91], but is receiving more and more attention in recent
years. Advances in technology make eye tracking in general and pupil diameter
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estimation in particular more accurate and easier to apply. The accompanying re-
duction in cost helps making this avenue of CL estimation more accessibly, further

increasing its use.

Pupil dilation has been used extensively as an indicator of cognitive effort through-
out the last decades. Amongst the most prominent areas of research are driving
and simulations thereof. Palinko and colleagues showed in multiple studies that
pupil based CL estimation is feasible in driving scenarios [92], [93] - to a certain
extent even under different lighting condition [94]. They administered an audi-
tory version of the n-back task to induce different levels of cognitive load while
driving and concluded that remote eye tracking might provide reliable driver cog-
nitive load estimation. This evaluation is supported by several other researchers
(95, [96].

In accordance with common preprocessing guidelines [97], [[98], all studies of
this thesis first remove blink artifacts and implausible outliers. Furthermore, small
gaps are interpolated and the pupil signal is smoothed to reduce noise.

A key point in cross-participant CL estimation is the use of relative measures.
A pupil diameter in millimeters carries little information outside a person-specific
context. In order to meaningfully compare participants, pupil diameters relative to
a baseline are imperative [97], [98]. Subtracting a baseline pupil diameter from
a participant’s pupil signal allows for analysis with reduces participant-specific
influence and therefor helps generalization. In all studies presented in this thesis,
I either use a tutorial or an instruction phase as a baseline in order to have greater
real-world application compared to a conventional baseline measurement with a

fixation cross.

Cognitive activity was observed to cause fluctuations in the pupil signal mainly
consisting of sharp and pronounced spikes. Unlike the rhythmical and regular hip-
pus, these events are more rapid and do not follow any rhythm. Marshall patented
her approach to measuring this phenomenon as the Index of Cognitive Activity
(ICA) in 2000 [99]]. An openly accessible adaptation was developed by Duchowski
and colleagues to counteract the intransparency of the ICA: the Index of Pupillary
Activity (IPA) [100]. It is meant to open up this method of pupil analysis to a
broader audience and help prove the validity of measuring rapid pupil dilation as
an index of cognitive processing load. Both utilize wavelet decomposition in order
to detect unusual increases in pupil diameter. Fairclough and colleagues found
the ICA to not be significantly sensitive to isolated working memory tasks like
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the N-back task [[101]], however Marshall reports positive results for other tasks
including surgery and driving [[102].

Blinks

A blink not only describes the time period when the eyelid is occluding the pupil,
but also the semi-automatic process of closing and re-opening the eyelid . The
main function of blinks is to keep the eye lubricated and protect it from irritants,
but there is also a connection to cognitive functions [[103] and visual processing
[104].

Chen and Epps found blinks to indicate visual load well. Though the results for
cognitive load were not significant there was a slight trend indicating that blink
rate may increase with cognitive load under certain conditions [105]]. Hogervorst
and colleagues achieved good results using blink rate to separate different levels of
cognitive load during an n-back task [|9]. Since the n-back task does not increase
visual load with difficulty, blinks may carry meaningful information regarding cog-
nitive load.

1.4 Methodological Background

This thesis aims to provide a method that can be applied to other situations and
users and therefore needs to provide a model that can make predictions. As a
consequence, classic statistical analyses that tests group effects are not the method
of choice for this task. Machine learning on the other hand provides exactly what
is needed; a model can be trained based on recorded data and the same model
can later be employed to make predictions for new participants or situations.

Since the ability to generalize is the focus of my work, the value of different
types of eye tracking data varies. Fixation and saccade information emphasizes the
gaze location and temporal sequence of gaze points, which are highly dependent
on the task at hand and the presented stimulus. Consequently, features related
to pupil diameter and microsaccades form the core of information that I rely on.
These are also other types of eye related features that haven been shown to be
discriminating features for cognitive load in a wide range of tasks, as illustrated in
Section

The datasets that are used in this doctoral thesis are based on tasks that have a
clear separation into difficulty levels, so as far as the selection of a machine learn-
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ing method is concerned, it seems reasonable to formulate cognitive load estima-
tion as a classification problem. Task difficulty is oftentimes used as a proxy for
cognitive load, even though not all participants will experience the same amount
of cognitive load for each of the difficulty levels.

For the choice of classification algorithm, generalization is still the main goal.
It is therefore necessary to minimize overfitting so the resulting models main-
tain their ability to generalize. For this reason, I decided to use ensemble methods
which are good at avoiding overfitting [[106]; more specifically forests of extremely
randomized trees (Extra-Trees) [[107]]. Their tendency to not overfit [[108]], [[109]
as fast as other approaches additionally allows the use of more features with the
same amount of samples per participant. This is especially important considering
that the amount of available data per participant is limited. Moreover, Saez et al.
found extremely randomized forest to yield the best results for cross-participant
classification of physical activities [[110] suggesting that they may be useful for
cross-participant approaches. They also compute much faster than regular ran-
domized forests [107]], which helps greatly with developing an approach that can
be executed in real-time with limited hardware resources. This is essential for a
method that may be used in actual applications. If necessary, the number of trees
per classifier can also be lowered to save computation time. A further advantage
of ensemble methods is that they do not only output a decision for one class, but
by virtue of the distribution of individual classifier within the ensemble, a prob-
ability for each class can be estimated. In the case of a distinction between low
and high cognitive load, class probabilities translate to a value between 0 and 1
that in itself contains additional information beyond a dichotomous distinction.
Low values could be interpreted as cognitive load being to low, while values close
to 1 may indicate high cognitive overload and values around 0.5 may be optimal
for some applications. Additionally, Extra-Trees can provide estimations of feature
importance which greatly helps to interpret the results and thereby makes this
approach very transparent.

Other methods do not explicitly rely on eye-tracking features, but rather use
video material directly. One example of such an end-to-end approach was pre-
sented by Fridman et al. [[111]. They had drivers perform a n-back as a secondary
task while driving and captured their eye movements via a driver facing camera.
Facial landmarks were detected and eye regions were extracted based on these
landmarks. After transforming eye patches to be frontal facing, sequences of 6
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seconds were used as input for a convolutional neural network (CNN). This ap-
proach yielded a cross-validated (with participants only being in the training or
validation set) accuracy of 86.1% for a three-class problem. These results seem
very promising, since they represent cross-participant classification. However, the
main feature that is encoded by the CNN is pupil position within the eye - more
specifically, horizontal eye movement. Horizontal dispersion has been shown to
be a good indicator of cognitive load while driving [112], so it may even be pos-
sible to generalize from Fridman’s study to other driving scenarios. It is, however,
unlikely that the same holds true for tasks that do not involve driving. There-
fore, while the accuracy is very good, this end-to-end approach is only suited for
a confined set of situations.

End-to-end approaches in general run the risk of overfitting to specific circum-
stances since there is no theory driven component that can deliberately counteract
that. I therefore think, that for a cross-participant and cross-task classifier for
cognitive load to work, this may not be the right path as the degree of general-
ization is questionable. Additionally, a more explicit feature extraction procedure
could make use of domain-specific knowledge to reduce the number of features
and thereby reduce the amount of data that is needed to train a classifier.

Cross-validation with a strict separation of participants will be key to estimate
how well a method works in general. Cross-validation refers to the practice of
withholding a portion of the data from the training phase and using it to validate
the results by applying the newly trained model to the previously withheld data.
Withholding one participant for validation and only relying on data from all other
participants ensures that one participant’s samples are either in the training set or
in the validation set, but never in both. Consequently, leave-one-participant-out
cross-validation will be a recurring theme throughout all studies that compose this
thesis.
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The connection between eye-tracking features and cognitive load is undeniable,
but reliably deriving an estimation of cognitive load from eye-based features inde-
pendent of task and participant is still an open issue. Even though intra-participant
results are usually good, researchers repeatedly report failure when it comes to es-
timating cognitive load across participants or tasks based on physiological signals
(e.g. [113]-[116]). This lack of generalization is the obstacles that stands be-
tween potential practical applications and their realization.

In this thesis, I will present a partial solution in four studies that build on each
other. The overarching goal of this thesis is to present a eye-based classifier for
cognitive load that fulfills the following research goals (RG):

RG1 it is accurate

RG2 it is robust

RG3 it is able to generalize

RG4 it can be executed in real-time

RG1 is self-explanatory: If estimations cast by my approach are not accurate
then they are useless, so accuracy is the overall measure of success regardless of
any additional requirements. Real applications that I aim to facilitate with this
thesis will not be used under laboratory conditions, but in real-world scenarios
that include noise, unfavorable conditions, and without the luxury of extended
calibration phases. This necessitates robustness in order to deal with these prob-
lems and motivates RG2. The biggest contribution of this thesis, however, lies
in RG3. Although there are methods that perform cross-participant classification
to a certain degree and to an even more limited extent cross-task classification,
there is no method that does both at the same time, even less so based on pure
eye tracking. The core method in this thesis provides a remedy to this problem
by introducing a weighted scheme to combine participant-specific models into a

15



2 Research Questions and Goals

general one, but not without limitations. Finally, to be usable in a adaptive appli-
cation, a system has to access a user’s cognitive load in real-time and therefore,
the processing demands for cognitive load estimation need to be low, constituting
RG4. This ensure that estimations can be performed frequently, but also that the
main application can use the majority of hardware resources.

2.1 Study 0: Detecting Blinks

Study O does not investigate the overarching research goal itself, but represents a
useful tool for that exact goal. This study presents a reliable way to detect blinks
with minimal hardware requirements enabling it to be employed even in low-end
devices. As blinks can be an indicator for cognitive load this low-resource solution
that shows high accuracy even under difficult circumstances can help to build a
fast way to detect cognitive load in real-time. Due to its nature, this algorithm
partially pursues RG2 (robustness) and RG4 (real-time capability).

Though the algorithm was developed for head-mounted eye trackers, it is rea-
sonable to assume that it would perform similarly in remote eye trackers. After
extraction of the eye region, the presented approach could be applied in the same
manner - likely with similar results.

2.2 Study 1: Predicting Cognitive Load during a Working

Memory Task across Participants

Study 1 investigates how classification of cognitive load can be performed across
participants. It uses a laboratory setting with a controlled environment and a com-
mon working memory updating task: the n-back task. This minimizes interference
and excludes most sources of noise like changing lighting conditions, visually com-
plex stimuli, or inconsistent cognitive load, thereby increasing data quality.

Aiming for a classification method that works across participants, we first gener-
ate reliable classifiers for each participant and combine them in a weighted voting
scheme. In this study, we focus on pupil-related measures including median and
maximum pupil diameter, blink duration and frequency, as well as the ICA.

Study 1 tackles research goals 1 through 4 - at least in part. Accuracy (RG1) and
real-time capability (RG4) are the main objectives in this study as we try to build
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a foundation for further research. The controlled circumstances of the experiment
limit the robustness (RG2) that we can test and generalization (RG3) can only be
tested across participants.

In an exploratory take on RG4, real-time capability is not only evaluated in ex-
ecution time, but also by simulating data recording and assessing cognitive load
in real-time. This controlled and task specific evaluation represents the first small
step that is necessary for real-time adaptation based on cognitive load. Addition-
ally, different window sizes for feature extraction are examined.

The approach from study 1 serves as a base for the subsequent studies and
represents a prerequisite and first but important step towards the overarching
research goal.

2.3 Study 2: Expanding Cross-Participant Cognitive Load
Prediction to a Real-World Application

Study 2 takes an approach similar to study 1, but applies it to a scenario with
more real-world applicability: an emergency simulation. Emergency is a com-
mercial software that can serve as a training simulator but may also be used for
entertainment like a video game. This highlights two possible areas of application
for adaptive interfaces that react to a user’s cognitive load.

Compared to study 1, this study highlights the robustness (RG2) of our ap-
proach. Participants were not restrained with a headrest and the baseline that was
available is far from ideal. Furthermore, the simulation does not evoke a consistent
level of cognitive load and the rapidly changing stimulus adds to the obstacles that
need to be overcome. RG3, too, is evaluated beyond its cross-participant aspect
by testing classifiers trained on a specific scenario of Emergency across different
scenarios. While this is not strictly cross-task application, it varies stimuli signif-
icantly and can be interpreted as an easier variation of cross-task classification.
Still, RG1 and RG4 are addressed in order to get closer to the main goal of this
thesis.

Study 2 not only tries to provide solutions to RG1-4, but additionally evaluates
heart rate and user activity as exploratory features. A heart rate monitor may be
used as an additional sensor due to its inexpensive nature and user activity can be
evaluated on a situational basis.
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2.4 Study 3: Applying Cognitive Load Classifiers across
Participants and Tasks

Finally, study 3 expands the previous work by applying cognitive load classifiers
across tasks. Classifiers are trained on n-back-data from study 1 and performance
is evaluated for data from study 2 - Emergency. The focus in this study is RG3,
since classification is attempted across tasks and participants which is the missing
piece of generalization. To the author’s knowledge this is the only successfully
attempt at classifying cognitive load with this level of generalization.

This represents the final step towards the main research goal and offers a solu-
tion to RG1-4: an accurate and robust classifier for cognitive load that uses eye
tracking data, works across tasks and participants, and is capable of real-time ex-
ecution.
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The main research goal for this doctoral thesis was to create a classifier for cogni-
tive load that uses eye-tracking data and works independently of participant and
task. Additionally, it should be executable in real-time to make it usable for appli-
cations and it was required to be robust to withstand the complications and noisy
nature of real-world applications.

In Study O a robust, low-cost solution to detect blinks was presented that can
be used in real-time detection of cognitive load. It provided a method for future
application involving cognitive load. Study 1 then served as a proof-of-concept
that sets the foundation for the overarching research goal by demonstrating the
effectiveness of a novel approach to cross-participant classification of cognitive
load in a laboratory setting using a standard working memory task. Building upon
the promising results obtained in this controlled environment, Study 2 applied a
similar concept to a real-world application with challenging conditions. Finally,
Study 3 combined the findings of Study 1 and 2 by applying classifiers that were
trained with data from Study 1 to Study 2. The success of this cross-task applica-
tion represented the last missing piece in pursuit of this thesis’ research goal. In
the following, I present the main outcomes of the individual studies conducted for
this thesis and show how they correspond to the four main research goals.

3.1 Main Qutcomes

3.1.1 Study 0

Study 0 did not serve the purpose to detect cognitive load directly, but provided a
basic method for blink detection, thereby providing a tool to detect cognitive load.
The approach of this study achieved a leave-one-participant-out cross-validated
accuracy of 96.35% for a challenging dataset and can be incorporated into future
attempts at cognitive load detection.
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While this study did not classify cognitive load, blinks play an important role
in both cognitive and perceptual load [[117]-[119] and hence it contributed to
the research goals of this doctoral thesis. With regards to RG1-4, this algorithm
can only be evaluated to a limited degree. It had a high accuracy with leave-
one-participant-out cross-validation, but since it detects blinks and not cognitive
load directly, it can only contribute to RG1 and RG3 by providing features for the
subsequent studies.

The same holds true for RG2 (robustness). The approach displayed a high de-
gree of robustness and thereby promotes RG2, if it is employed in a larger frame-
work. The dataset that is used to train the presented classifier was extracted from
an on-road driving experiment [43]] and therefore was very challenging - contain-
ing changing lighting, bad angles, partial blinks, blurring, and reflections. With
a recording frequency of 25Hz and a resolution of 384 x 288, the quality of the
recordings themselves did also not hold up to the standards of modern Eye Track-
ers, making blink detection especially difficult.

The approach that was presented in Study 0 used only very basic operations and
was therefore fast in its execution. On an i7-4790 at 3.60GHz using 12GB of RAM
feature extraction and classification of a single sample took 0.0264ms on average.
This would allow real-time calculation even on low-end devices. Incorporating
this method into a eye-tracking pipeline could contribute to the whole system
being real-time capable and help attain RG4.

Finally, the method in Study O was designed for head-mounted eye tracking,
while the other three studies used remote eye tracking. When blinks are con-
cerned, remote and head-mounted eye tracking are not too different. An eye
region extracted from a remote eye tracker is very similar in structure and ap-
pearance to a frame of a head-mounted eye tracker. It therefore is reasonable to
assume that an approach that yielded good results in head-mounted eye tracking
would also fare well in remote eye tracking and its properties would carry over to
this new setting.

3.1.2 Study 1

The main goal in Study 1 was to demonstrate the feasibility of cross-participant
classification of cognitive load. Good intra-participant results are common across
studies that use eye-tracking features (e.g. [[120] with 84% using pupil dilation
and blinks), but cross-participant results are rarely above chance level [113]-
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[115]. While there are promising results in studies involving EEG or other neuro-
imaging methods, to the author’s knowledge there is no approach that works cross-
participant and relies purely on eye tracking.

With Study 1, we achieved a participant-specific accuracy of 82.4% for the dis-
tinction of low and high cognitive load (as represented by level 0 and level 2 of
the n-back). Levels 0 and 1 accomplished 69.8% and levels 1 and 2 79.4%. As this
exceeds the results that other researchers reached purely based on eye tracking
(e.g. Haapalainen et al. with 57.4% [116]], Shojaeizadeh et al. with 79% [121]],
or Chen et al. with 53.9% for a three class problem [122]), we can conclude, that
RG1 - the classifier being accurate - was accomplished for the participant-specific
scenario.

Robustness (RG2) could only be evaluated to a certain degree in Study 1, as it
was recorded in a laboratory setting. The task used to induce different levels of
cognitive load did not involve any emotionally charged stimuli and - by nature of
the task - the amount of cognitive load should be more or less constant throughout
a level. These conditions were ideal and therefore did not require any robustness
to noise. The period that was used to derive a baseline from was the instruction
phase, which should be slightly different for each participant. This added a certain
amount of uncontrolled variability and thereby testing the algorithms robustness
to a limited degree. The common practice to use a period with no cognitive load
at all as a baseline would likely have resulted in slightly higher accuracy.

Study 1 introduced a novel approach to cross-participant classification by com-
bining participant-specific classifiers into a composite classifier that generalizes.
Tackling this sub-goal of RG3 was the focus of this study. Accuracy for the classifi-
cation of level 0 and 2 dropped from 82.4% to 76.8%, whereas levels 0 and 1 and
levels 1 and 2 went from 69.8% to 54.0% and from 79.4% to 71.5%, respectively.
The decrease in classification accuracy was most pronounced for the distinction
between levels 0 and 1, which can likely be attributed to the very small-scale dif-
ference between the levels of cognitive load. While results for the intra-participant
setting were good, the error introduced by mismatching classifiers had the great-
est effect here. Classification for levels 1 and 2 and levels 0 and 2 only suffered
minor losses in accuracy when applied cross-participant. The differences in cogni-
tive load were more pronounced in these comparisons meaning that the error for
cross-participant application did not impact the results to the same degree. Con-
sidering that cross-participant accuracy for the approach presented in this study
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trumps intra-participant accuracy for most other eye-tracking based studies, we
can conclude that RG1 was still accomplished and we are one step closer to RG3.

Computing features of a segment with length of 5 seconds took on average 0.134
seconds on a machine with 16GB RAM and an i7-7700HQ. Our method was not
optimised and did not utilize parallel processing indicating that runtime can be
improved further. Even in its current state, 7Hz are attained which should be suf-
ficient to realize real-time adaptations since users rarely experience a significant
change in cognitive load that happens this rapidly, hence several cognitive load es-
timations per second should be sufficient. We can conclude that RG4 was fulfilled
in Study 1.

Potential for real-time adaptation was further examined in real-time online clas-
sification. To this end, we used participants’ data to simulate the recording of
a new participant and simultaneously classified cognitive load with our cross-
participant approach. The issue that scaling was involved was circumnavigated
by joining the simulated data with existing data and scaling them jointly. Using
this technique, not all data needed to be available to get accurate scaling and the
quality of scaled data improved the more it became available. Accuracy of 70.4%,
53.8%, and 66.8% was achieved for distinctions of levels 0 and 2, levels 0 and
1, and levels 1 and 2, respectively. These results were still only slightly worse
than the offline cross-participant classification results highlighting that - under
the right circumstances - real-time adaptation may be performed based on eye-
tracking recordings. Especially the approach of jointly scaling features may hold
promise for real-time processing of eye-tracking data streams.

As expected, longer windows for feature extraction yielded better results for
intra-participant classification in all combination of levels. Longer sequences meant
that the features are less susceptible to noise making them more robust and con-
sequently improving results. On the other hand, accuracy seemed to be almost
unaffected in cross-participant classification, which came as a surprise. One can
speculate that the error that is introduced by cross-participant application was the
main source of error and it overshadows the accuracy gain from longer sequences.

3.1.3 Study 2

Study 2 focused on demonstrating robustness (RG2) by applying an approach sim-
ilar to the one used in Study 1 to a challenging real-world dataset. Participants
first completed the tutorial for Emergency - a commercially available simulation
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software - followed by three scenarios each presented in three difficulty levels.
Our method had to deal with subpar baselines, varying cognitive load with miss-
ing ground truth, and illumination changes caused by the dynamic stimuli. This
study also included first results for classification not only across participants but
also scenarios - which can be interpreted as a precursor to actual cross-task classi-
fication.

In an actual application, obtaining baseline measures would require the user to
look at a fixation cross for several minutes which could already discourage them
from using this application in the first place. Therefor, we used the tutorial that
each participant had to complete as a baseline period circumventing an explicit,
conventional baseline. It goes without saying that participants experienced differ-
ent levels of cognitive load during the tutorial depending on their experience with
game-like simulations, their cognitive abilities, their familiarity with input modal-
ities, and many other factors. As a consequence, the baseline level of cognitive
load varied greatly between participants which in turn added noise to the whole
dataset, because we normalized all features with this baseline.

Further variance was added by the nature of the task itself. The stimuli were
dynamic and colors and light changed constantly. This influenced the pupil and
possibly other features even though it was not necessarily correlated with cognitive
load. On the other hand, cognitive load changed with the state of the simulation
and the corresponding time pressure, so cognitive load was not constant through-
out one iteration of a scenario. This represented a source of error that can not be
compensated for as - in the absence of ground truth - we used difficulty levels as
a proxy for cognitive load. For instance, the whole period of scenario 1c was la-
beled as "high cognitive load" by virtue of it being the difficult version of scenario
1 although cognitive load was likely not constantly high during this period.

With additional noise caused by the deliberate decision not to employ chin rests,
we still achieved cross-participant accuracy scores of 80.56%, 70.37%, and 69.81%,
for classification of cognitive load in "high" and "low" for the three Emergency
scenarios. As with Study 1, accuracy indicated that RG1 was fulfilled. Considering
complications that had to be overcome and circumstances that were far from ideal,
we can further conclude that our approach is robust and satisfies RG2.

It has to be noted though, that not all features were eye related. Participants’
activity in the simulation was used as an exploratory feature and feature weights
revealed that it carried almost as much information as pupil dilation. It is apparent
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that participants had to perform more actions within the simulation if there were
more tasks to perform simultaneous and more sub-goals to fulfill. The inclusion
of this feature, however, did not trivialize the classification problem, since the
results of Study 3 show, that almost the same accuracy can be achieved with eye-
related features only (see and Figure [3.1] for more details). Heart rate was
the second exploratory feature, but its feature weights were negligibly, possibly
because the window used for feature extraction was only 4 seconds resulting in
very few beats per segment. A bigger window might yield better results and allow
for more features including heart rate variability.

A feature that was not used in Study 1 but was examined in this study is mi-
crosaccade frequency. The sampling rate recommended for reliable detection and
analysis of microsaccades is 300Hz [84]], however, the eye tracker that we used
sampled at 250Hz. This unfortunately means that more complex microsaccade
features like peak velocity or magnitudes were not usable, so we restricted mi-
crosaccade features to microsaccade frequency. Detecting the occurrence and di-
rection of a microsaccade can be performed at 250Hz as demonstrated by Engbert
and Kliegl [123]]. Feature weights show that microsaccade frequency is a useful
feature for detecting cognitive load, but it was still outperformed by pupil diame-
ter. We can conclude that microsaccades are a meaningful indicator for cognitive
load that can be used to complement pupil diameter and blinks.

The transition from participant specific classifiers to general cross-participant
classifiers did not lead to significant losses in classification accuracy. Our approach
still yielded accuracy scores of 80.56%, 70.37%, and 69.81%, respectively, compared
to within-participant scores of 79.03%, 70.14%, and 72.13%. We can conclude that

RG3 concerning cross-participant classification was fulfilled.

Progressing towards a cross-task method, our algorithm was tested across the
three scenarios of Emergency. We applied classifiers trained on easy and difficult
samples from one scenario to different scenarios while still operating strictly cross-
participant. As expected, the results were worse, but in the majority of cases the
accuracy loss is less than three percentage points. This gave hope that RG3 can be
satisfied with little loss of accuracy.

Since we dropped the ICA in favor of game activity and heart rate, computa-
tion time for feature extraction was a lot faster. On average feature calculation
took 0.699ms and classification took another 6.723ms resulting in 7.422ms in to-
tal. Again, these runtimes were measured in an i7-770HQ with 16GB RAM and
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non-optimized code. The resulting 134.7 classifications per second were almost at
the frequency of the eye tracker and should be more than sufficient for real-time
applications. This means that RG4 was satisfied in Study 2.

3.1.4 Study 3

The third study aimed at satisfying all four research goals. The missing piece - true
cross-task application - was introduced by applying classifiers trained on data from
Study 1 to data from Study 2. Furthermore, the feature set was refined to be as in-
dependent of the task at hand as possible to enable cross-task application. Finally,
we used pupil diameter features, microsaccade frequency, standard deviation of
pupil diameter, blink frequency, fixation frequency, and ICA.

Accuracy of this approach was at 69.25% for scenario 1 of Emergency, at 63.78%
for scenario 2, and at 64.02% for the third scenario. In line with the results of
Study 1 and Study 2, one can argue that these results are accurate and thereby
satisfy RG1. Since the same conditions as in Study 2 applied to the dataset that
classifiers were evaluated on, RG2 (robustness) can also be checked as satisfied.
Even more so, since cross-task application introduced further noise that needed to
be compensated.

At the core of Study 3 was RG3 - generalization. Applying only cross-participant,
but within-task classification using methods and features presented in Study 3, N-
back accuracy droped from 79.55% for intra-participant classification to 75.81%
for cross-participant application. Results for Emergency data almost stayed the
same, only decreasing from 71.91% to 71.41%, from 71.98% to 69.34%, and from
68.91% to 67.16% respectively. When going one step further and applying N-back
trained classifiers to Emergency data, accuracy, again, decreased to 69.25%, 63.78%,
and 64.02%, respectively. Even though accuracy decreased, the scores that were
achieved are significantly above chance level and show that RG3 - a cognitive load
classifier that can generalize - is by no means impossible to attain.

Mean runtime for our algorithm to extract features from a single sample was
59.168ms and classification added another 5.473ms resulting in a total of 66.641ms.
Specification of the executing machine were the same as in Study 1 and Study 2:
i7-770HQ with 16GB RAM and code that was not optimized for runtime. If no
other strain is imposed on the computer, our approach could process 15 samples
per second, which should be enough to fulfill the criterion for RG4.

To further prove the validity of our method, we calculated Pearson correlations
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between cross-task predictions made by our algorithm and cognitive load scales
of the NASA-TLX. Our predictions correlated at 0.484 with subjectively perceived
effort, at 0.399 with self-reported cognitive demand, at 0.404 with stress, and at
0.459 with reported temporal demand. All correlations were significant with p <
0.001 and highlight that our method produces predictions that may be useful in
real-wold applications since they correlate with participants’ questionnaire data.
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Figure 3.1: Feature weights for different scenarios of Emergency and the N-back

A detailed analysis of feature weights revealed that pupil diameter features work
in both datasets. This holds true for median pupil diameter, pupil maximum, and
standard deviation of pupil diameter. Fixation count also carried information dur-
ing performance of the N-back task as well es while executing Emergency. Both
categories of features were supposed to work rather independent of task and stim-
ulus (e.g. summarized in [[124]) and as such these findings were not surprising.

Microsaccades had a higher weight in Emergency compared to the N-back and
therefor may not be universally useful for cognitive load. Emergency had a greater
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Figure 3.2: Standard deviations of all feature weights for different scenarios of
Emergency and the N-back

visual demand on participants and required a wider distribution of attention. This
is similar to ambient visual search which according to findings by Duchowski and
colleagues [125] increases the number of microsaccades. Benedetto and col-
leagues [81] conducted a driving simulation study and found microsaccades to
increase when a secondary task was added compared to a control group with only
the main task. They also concluded that microsaccades are linked to visual at-
tention. Krueger et al. drew similar conclusions in their study regarding mental
arithmatic and visual load [|126].

ICA is the second feature that had diverging feature weights in the two datasets.
While performing the N-back task, ICA was not sensitive at all to changes in cogni-
tive demand, but during Emergency it had a high feature weight. Demberg reports
the ICA to be sensitive to driving and laguage tasks [[127]. More difficult driving
task increasd the ICA, whereas it decreased with the onset of the secondary lan-
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guage task. It may be the case that the ICA only shows an effect in the presence
of visual stimuli that impose a higher demand on participants or that a dual-task
is needed in order to see an effect. In a multi-media learning study, Korbach and
colleagues found no correlation between ICA and learning success or subjective
task difficulty ratings [[128]. They speculate that the ICA may not be sensitive to
higher order cognitive processing. Similarly, Rerhaye et al. found no effect of a
Stroop task on the ICA, but could confirm its effectiveness for a spacial processing
task [[129]. It seems likely that the ICA only reacts to cognitive load under certain
circumstances, but more research is needed to shed light on this issue.

3.2 Integrated Discussion

The four studies that comprise my dissertation form a coherent line of research
that starts at basic research with a proof of concept and consequently advances
towards real-world settings and scenarios. Along the road to this thesis’ goals we
tested different eye-tracking features and variations of the fundamental approach
that is presented in Study 1 and elaborated upon in the two subsequent studies.
This section highlights the strengths and limitations of this work and embeds re-
sults and findings into the existing body of literature.

3.2.1 Strengths

Over the course of four studies it has become apparent that the approach of par-
ticipant matching and combining participant-specific classifiers by weighted votes
greatly helps with generalization from intra-participant classification to cross-participant
classification. Reported accuracy loss was minimal showing how promising this
method is compared to naive cross-participant classification that rarely exceeds
chance level. Finding participants that are similar regarding their baseline mea-
surements indirectly combats inter-individual differences that may be caused by
factors such as physiology or age.

The combination of good cross-participant and cross-task results represents the
biggest strength of this work. This level of generalization has not been displayed
before for eye-tracking data. As the lack of generalization is what prevents the
development of adaptive systems that react to a user’s cognitive load, the present
thesis may remove this obstacle and enable such systems.
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An added benefit of this thesis is the analysis of feature weights that can help
to identify what eye-tracking features indicate cognitive load and seem to be in-
dependent of stimulus and task. We confirmed the consent in the literature that
pupil diameter works for different types of tasks. In addition, fixation frequency
also seems to be a feature that consistently is sensitive to cognitive load. This
indicates that fixation duration may not be related to visual load exclusively, but
could actually be an indicator for cognitive load for a variety of tasks. Feature
weights and distributions may also help discern cognitive load from perceptual
load. Especially microsaccades seem a promising candidate for visual attention.

A strength of the method presented in this thesis is how short the sequences
used for feature extraction can be while still offering good accuracy. A common
approach is to average the pupil diameter change throughout one experimental
condition or use very long periods of time (e.g. Hogervost et al. with 30, 60, and
120 seconds [9]]). In Study 1 we showed that as short as 1s can be enough to
collect meaningful data. This means that we can assess cognitive load with a very
fine granularity and are able to capture load changes that may be missed with a
larger window. It also implies that we can quickly implement adaptations that are
chosen based on the last second making our method highly reactive. Additionally,
the core method of this thesis only uses features that can be expressed in units
per minute, thus being independent of the actual window size. One benefit of
this fact is that different window sizes can be employed simultaneously to capture
cognitive load within a the last = seconds in order to adapt to micro and macro
changes in cognitive load. A second benefit can be exploited during training of the
classifiers as training can be performed with longer intervals to enhance robustness

and reduce noise.

Relying on eye tracking as a tool to estimate cognitive load offers advantages
that other methods lack. On the one hand, it does not have the subjective and
disruptive nature of self-reports. On the other hand, it does not impair perfor-
mance like a dual-task paradigm would. In this regard eye tracking has the same
advantages as any other physiological sensor that could be used for cognitive load
estimation. As a video based system, (remote) eye tracking does not require direct
contact with a participant, which gives it an edge over sensors like EEG or heart
rate monitors. It is a sensor that is easy to use and very subtle in its application and
therefore suited for a wider range of applications. The fact that eye tracking does
not rely on physical contact with a participant helps to keep them in an immersed
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state and increases validity of the resulting measurement. Combining this with its
ease of use and cheap device options on the market, there is great potential for
applications tailored towards users at home.

The fact that the proposed approach works by matching participants to find
classifiers that are likely to perform well is one of the biggest strengths of this
dissertation. This allows a greater degree of adaptation by virtue of adding more
classifiers to the database. Classifiers that are trained with different tasks could be
added and comparison between baseline conditions could then include the type
of task. This way cross-task errors could be reduced and the algorithm would be
more flexible overall. Similarly, different environmental conditions like time of
day, ambient light, or screen brightness could be added.

3.2.2 Limitations

Missing ground truth measurement for cognitive load is a problem for all re-
searchers trying to estimate cognitive load. Task performance or task difficulty
are commonly used as proxies for degrees or levels of cognitive load, but both do
not reflect the interplay between effort and skill. Self-reports on the other hand
take into account ones individual skills and cognitive capacity, but are subjective
and participants may rate their load on very different scales. Physiological sensors
could provide ground truth as they are objective, but to interpret physiological
signals validly and reliably and establish them as representing ground truth, an
existing ground truth would have to be available to justify that interpretation. To
the author’s knowledge, there is no way of avoiding proxies in favor of any ground
truth.

A major limitation that needs to be tackled in future research is the reliance on
scaling. This limitation is twofold in nature. Firstly, we need a certain amount of
data from one participant until scaling can be performed in a meaningful manner.
If little data is available, scaling may skew the participant-specific classifier and
render its predictions more harmful than useful as they could be completely off.
Secondly, for scaling to be meaningful, we need similar distributions for all par-
ticipants. This also entails the need for roughly equal amounts of time with low
and high cognitive load. At the very least there is the need for any amount of low
and high cognitive load to be present within the participant’s data or else we run
into problems of scaling. Imagine a participant only looking at a fixation cross and
then Z-normalizing their data. Such data is meaningless once scaled.
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A consequence of the limitation of scaling is that online assessment - as it would
be needed for real-time adaptation - is only possible if we already have a database
of classifiers that were trained under the same circumstances. Study 1 illustrated
that cross-participant online classification can be performed, but only under very
specific circumstances. The online estimation in Study 1 relied on joint scaling
features from two participants and slowly transitioning to intra-participant scaling
as more data becomes available. Before this transition, joint scaling only works
reliably if the conditions during baseline recording were very similar or - ideally -
identical. After the transition, scaling only works if the specific participant expe-
rienced both high and low cognitive load limiting the use of this method for real
applications where this may not be guaranteed.

Another limitation is the small range of participants that were used in this the-
sis. All participants were students of the University of Tiibingen with a limited
spectrum of age and cognitive abilities. If the method was to be used in an ap-
plication, one would need to ensure that it also works for users from a general
population. This limitation, however, could be overcome with a larger dataset of
N-back participants. If age is added to the similarity rating, appropriate classifiers
can be used and a accuracy comparable to the one reported in this thesis can be
expected.

A limitation similar to the small spectrum of participants is the small range of
tasks. We only used two datasets from different tasks so one can argue that this
transfer is not general but possibly restricted to these two tasks. Furthermore,
both tasks involved visual stimuli so the approach may not work for other modal-
ities of presentation. However, the features that receive high weights are mainly
pupil diameter features, so they should be independent of the task used to invoke
cognitive load as task-evoked pupillary responses were found to fulfil Kahneman’s
three criteria for indicating processing load [88], [[130]. So even if other features
fail, pupil diameter features should still yield good results, preserving at least a
part of the accuracy presented in this thesis. Zekveld and colleagues also found
pupil diameter to be a reliably indicator of higher cognitive load in dozens of stud-
ies that used auditory stimuli, so the argument that an increase in pupil diameter
indicates cognitive load universal may apply to modalities, too [71]. Other fea-
tures such as microsaccades and ICA need more investigation before they can be
included in general eye-tracking features for cognitive load.

A drawback that any pupil related approach has is its high number of confound-
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ing factors, especially light and emotion. This usually limits the application of
pupil based algorithms to laboratory settings with controlled lighting and stimuli
that do not have a strong emotional connotation. This is the only way to ensure
that the pupil diameter change is caused by cognitive load by means of excluding -
or at least minimizing - any other possible cause. Light plays an especially impor-
tant role when it comes to confounding factors. If there is no way to compensate
for the influence of light, the whole experiment has to be performed with the same
lighting conditions which even limits dynamic stimuli as a dark or bright screen
can cause pupil dilation that far exceeds those typically seen for cognitive load
[131]-[133]. Emotions certainly influence the pupil [134], [135], but researchers
found that emotional arousal only shows via pupil dilation under low cognitive
load [[136] and that the effect of cognitive load is dominating over the effect of
emotional arousal [[137]]. This indicates that for most situations the effect of emo-
tion only plays a secondary role and can be disregarded in certain applications and

circumstances.

3.2.3 Theoretical Embedding

Cognitive Load Theory

From a Cognitive Load Theory perspective, varying task difficulty in order to evoke
different levels of cognitive load is equivalent to manipulating intrinsic cognitive
load while extraneous load is kept constant. The amount of germane load, how-
ever, can still change depending on the task. Melby-Lervag and colleagues meta
review on working memory training concludes that there is no significant transfer
to other skills and only a short-term, specific training effect [|[138]], which in turn
suggests that germane load is not applicable to working memory tasks. Therefore,
Study 1 should not involve germane load. This indicates that the physiological
changes that were measured in Study 1 only reflect variations in intrinsic load.
Intrinsic load was also the major type of load that was manipulated in Study 2,
but extraneous and germane load need a lot more attention in this study. Even
though all participants completed the same tutorial, not all participants had the
same foundation to work with during the simulation. Their previous gaming ex-
perience and corresponding skills influenced their intrinsic load as well as their
extraneous load. Familiarity with input modalities and interfaces commonly used
in video games makes Emergency easier to use and lowers extraneous load as the
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presentation is familiar and controls are more intuitive. Likewise, prior knowledge
and experience with games in general and strategy simulations in particular lower
a participant’s perceived difficulty while simultaneously enhancing their task per-
formance - they lower intrinsic load. As none of the participants had performed
the task before and since there was a significant transfer between scenarios and
difficulty levels, it is apparent that Study 2 involved germane load. The presence
of all three types of cognitive load and their different distribution for each partici-
pant and scenario makes the analysis of Emergency inherently more complex than
Study 1.

Since general familiarity with games does no change over time, task difficulty
manipulation in Study 2 is primarily limited to intrinsic load and only to a minor
degree to extraneous and germane load. As participants complete more scenarios
of Emergency, they are better acquainted with the controls and interface, thereby
reducing extraneous load to a small degree. The cognitive capacity not occupied
by intrinsic or extraneous load can be used for germane load - learning and devel-
oping schemata to deal with future variations of the Emergency task.

One can notice that cross-task application of N-back classifiers to scenario 1 of
Emergency barely reduced accuracy compared to within-task, within-participant
classifiers for Emergency and within-task, cross-participant classifiers. This indi-
cates that the way cognitive load is expressed by the selected eye-tracking features
was very similar between these tasks and between participants and consequently
hints at a similar profile of cognitive load. We, however, expected the distribution
of cognitive load to be different since Study 1 was likely only varying intrinsic load
and Study 2 evoked different levels of all three types of load. This suggests that
classifiers trained on N-back data are not specific to intrinsic load but react to the
total amount of cognitive load. This seems to be in line with findings by Zu et
al. that indicate that pupil diameter changes are affected by extraneous load and
germane load [139].

To shed more light on the transfer ability of N-back classifiers, the higher accu-
racy loss for cross-task application for scenarios 2 and 3 of Emergency have to be
examined. Considering that average completion rates for scenario 1 were 83.33%
for both, easy and hard versions, it seems unlikely that many participants suffered
from cognitive overload in this specific scenario, since completion rate for the hard
variant is still high. On the other hand, scenarios 2 and 3 had a completion rate
for their easy version of 97.22% and a rates of 36.11% and 33.33% respectively for
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their hard versions. This makes it highly likely that many participants experienced
intrinsic cognitive overload caused by the high difficulty of this part of the task.
Chen and Epps report a decrease in pupil diameter for a visual search task that in-
duced intrinsic overload with its visual demand [105]], suggesting that this could
also be the case in scenarios 2 and 3. Similar findings for a short term memory
task by Johnson and colleagues further support this hypothesis [[140]. As a conse-
quence, N-back trained classifiers that rely primarily on pupil diameter would fare
worse in scenario 2 and 3 and seem to be best suited for situations that can cause
high cognitive load, but no overload.

Multiple Resource Theory

Through the lens of Wicken’s multiple resource theory, the N-back task used a
single perceptual modality (the focal visual channel), focused on spacial cognition,
and required a manual response. The strain on perception should be negligible
and most resources should be used in the cognition stage, especially since the
mode and difficulty of perception were not altered during presentation of this
task. Manipulation of task difficulty focused in cognition and important features
in Study 1 consequently represented that.

As with Study 1, Study 2’s Emergency also used the visual perception channel,
but it made use of focal as well as ambient visual perception. Similarly, Study 2
mainly used spacial cognition and required a manual output. These two studies
seem to be very similar in the structure of their resource demand, but Study 2 was
more complex. Varying task difficulty was performed by adding more available
emergency personnel and more sub-tasks that needed to be completed. It did,
therefore, not only change the strain on the cognition stage, but more difficult
scenarios and version featured a lot more visual perception load. Furthermore,
a lot more and faster responses were required in order to successfully complete
difficult versions of scenarios.

The manipulation in cognitive demand during Study 1 was well reflected in
the pupil dilation features. In Study 2, microsaccades and ICA had a significantly
higher importance while pupil dilation features still played an important role. This
discrepancy in feature importance may be caused by the manipulation in percep-
tual load that happened in Study 2. Microsaccades are linked to visual attention
[[125], [141] which played a crucial role in Study 2, but not in Study 1. The dif-
ference regarding ICA was not so clear since it did not seem to be tied to visual

34



3.2 Integrated Discussion

demand, but task demand. However, pupil fluctuations were not indicative of task
difficulty in Study 1, which again gives rise to the question what exactly ICA and
IPA are sensitive to.

Cross-task application of N-back trained classifiers to the first scenario of Study
2 maintained a high accuracy, while it decreased for the second and third scenario.
Since cross-scenario results in Study 2 barely reduced accuracy, this result is puz-
zling. All three scenarios seem to be similar enough for classifiers to work for all
of them, but classifiers trained on N-back data can only be applied to scenario 1
without a significant loss.

83.33% of participants successfully completed the hard version of scenario 1
indicating that most of them were not overloaded and allowing the difficulty ma-
nipulation to manifest itself equally for perception and cognition. Since N-back
classifiers are mainly sensitive to strains in the cognition stage, their perform well
for scenario 1.

The high importance of microsaccades in scenario 2 combined with the low rate
of success for the hard scenario could mean that participants’ overload can be at-
tributed to perception instead of cognition. Fire as an additional hazard (that can
spread if not controlled) was first introduced in scenario 2 and could be the source
of perceptive overload providing a possible explanation for this observation.

Scenario 3 showed a feature importance distribution very similar to scenario 1.
The emphasis on microsaccades that can be observed for scenario 2 is no longer
apparent, meaning that perception overload does no longer seem to be the dis-
criminating factor. Meanwhile, only 33.33% of all participants completed the hard
version of scenario 3 successfully, suggesting that many were overloaded with the
combination of perceptual and cognition load. Also, according to participant’s
self-reports, cognitive demand and invested effort were already high for the easy
version. Since features of all scenarios were normalized with the same baseline,
this means that the difference in eye-tracking features between the easy and hard
version were less pronounced in scenario 3 and therefore the separation into the
two classes worked less accurate. This may be amplified further by the fact that
the step from maximum load to overload reduces the features that typically show
high cognitive load (see [[105], [[140]).

For future work it may be advantageous to estimate the load on perception
and cognition separately and combine them in accordance with Wicken’s multiple
resource theory to get a more complete picture about a participant’s load situation.
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3.3 Contribution of this Thesis

At its core, this thesis contributes to the field of computer science, but the appli-
cations that can be derived from this contribution extend into psychology, educa-
tional science, and potentially commercial applications.

Cognitive load estimation based on eye tracking has been investigated for decades,
but generalization has always been an issue. Here lies the main contribution of
my doctoral thesis. It offers methodological remedies to combat the inadequacy
of conventional approaches. Cross-participant performance of the presented core
method is only marginally worse compared to within-participant accuracy and
seems to work well across different tasks. This degree of generalization has not
been achieved by other researchers making this thesis a valuable methodological
contribution to the field of computer science.

Furthermore, the presented method is robust to noise and complications that
real-world application entail. It is also computationally inexpensive allowing it
to be executed concurrently with an application that has higher demands. It’s
low hardware demand additionally allows it to be used in real-time, enabling
interactive systems to react to a user’s current cognitive state. Combining all these
strengths, the core method of this doctoral thesis could serve as a basis for a large
number of applications in various areas.

The impact of this work, however, could reach far beyond computer science. It
represents a tool that can be applied to different fields provided that eye tracking
is involved. Cognitive load is an important factor in learning and instructional de-
sign and correctly assessing cognitive load in real-time is a prerequisite for many
adaptive human-computer interfaces. Especially in the field of e-learning the ap-
plications are manifold. As it is desirable to keep learners in the zone of proximal
development [3]], we first have to detect when they leave it. This happens when a
task is too difficult for a learner to be completed with assistance of the e-learning
system or when they easily can do it on their own. It can also be interpreted in
terms of cognitive load: If a task cognitively overloads a learner, they will not ben-
efit from it, but if the task or learning material does not pose a challenge, their
learning outcomes will be equally subpar. As a consequence, adapting a system to
suit a learner’s current needs may help them learn at their optimal rate.

Following this train of thought, assessing cognitive load in real-time is a first
step necessary for adapting a learning interface to fit the learners’ needs. If a sys-
tems detects a overwhelming amount of cognitive load while learning with texts,
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the system could adjust the selection of available text to learn from accordingly.
Similar methods could be applied with selection of mathematical exercises or vo-
cabulary training.

If one was to reverse the idea, this method can be used as an evaluation tool.
If the material is fixed, assessing cognitive load can serve as a proxy for difficulty
as cognitive load increases with task demands. This way a learning task can be
evaluated even if it does not feature a performance metric.

There are also applications outside of education. Any computer system that ex-
poses a user to cognitive load could employ eye tracking to make use of cognitive
load estimation. During driving cognitive load could be monitored and incorpo-
rated in a model that estimates fatigue or exhaustion. If a driver is experiencing
high cognitive demands for a prolonged time, performance may suffer and the risk
of error increases. Here a prompt to either take a break or switch drivers can be
made to help ensure the safety of all involved parties.

3.4 Implications and Future Research

The current thesis can serve as a point of origin for many improvements and ap-
plications. The biggest limiting factor of this thesis is that online cognitive load
estimation is only viable under very specific circumstances using the presented
methods. At the core of this limitation is the need to scale features to make par-
ticipants easier to compare. Study 1 counteracted this issue to a certain degree
by jointly scaling data of multiple participants, but only to a certain degree. In
order to not rely on scaling anymore, we need to be able to computationally elim-
inate inter-individual differences. In part this task is accomplished by deducting
the baseline, but this only helps for within-task classification. It is difficult to com-
pare participants’ baselines across tasks since the recording conditions are differ-
ent (especially lighting) and as Pfleging et al. have demonstrated, the magnitude
of pupil dilation is dependent on the light and baseline condition [133]], which is
what made scaling pupil diameter features necessary in the first place. The self-
evident solution to this problem is to incorporate an illumination model into our
algorithm that for a given screen illumination and ambient lighting outputs the
expected pupil diameter. There has been research conducted on this topic and a
promising candidate for a pupil model seems to be the unified model for light-
adapted pupil sizes by Watson and colleagues [[142]. If for any given moment we
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have an accurate estimate of the expected pupil size, we can use it as a baseline
eliminating the need for a dedicated baseline recording and improve comparabil-
ity between participants. Once this is achieved, we can also start jointly scaling
provided that participants are similar enough.

More research has to be conducted regarding baselines in general - not limited
to pupil dilation. It is unclear what baseline operation works best for eye-tracking
features that are not directly related to average pupil diameter. As Mathot et al.
suggest, pupil dilation is best corrected by subtraction and not division [97]. It
is, however, unclear how other features like blinks, ICA/IPA, or microsaccades are
best corrected. Furthermore, compared to pupil dilation, it is not well researched,
how environmental factors influence these other features and if we can devise a
model that helps us to reduce these effects.

A major factor that influences cognitive performance and eye related measure-
ments is fatigue [[143]-[145]. For a true out-of-the-box solution to work, the
influence of fatigue has to be taken into account and integrated into the cognitive
load detection model. A possible way would be to monitor cognitive load over
time and estimate fatigue based on these observations. It has been suggested by
Mizuno and colleagues that prolonged cognitive load induces mental fatigue and
is associated with sympathetic hyperactivity based on decreased parasympathetic
activity [|[146]. Grounded in this observation, it seems plausible to devise a cogni-
tive load model that uses an estimation of the level of cognitive load over time to
- in turn - estimate fatigue. More research has to be conducted, however, in order
to confirm this hypothesis and develop such a model.

As the feature weight differences and cross-task results indicate, it many be
useful to investigate cognitive load and perceptual load separately. Both can rep-
resent a bottleneck in overall load and considering them separately could help
disentangle them and take appropriate actions.

One of the most apparent avenues for future work that builds on this thesis is
expanding the database of classifiers. In theory it is possible to achieve the same
accuracy as within-task, within-participant classifiers, if there are just enough dif-
ferent classifiers available to choose from. Once the database contains data from
multiple task, lighting conditions, and environmental circumstances for a wide ar-
ray of participants, one will always find a classifier that is very similar and thus
should be accurate for the current situation. It goes without saying that sufficiently
populating this enormous classifier space is an extraordinary laborious task and is
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likely not the most efficient way to solve this problem. but for a limited applica-
tion this brute force approach may yield acceptable results until a more efficient
solution can be engineered.

Considering that this thesis shows that cross-participant cognitive load estima-
tion works without significant loss of accuracy, it could already be deployed in
adaptive applications if the application’s scope is small enough and the nature of
the application is suited. A small set of initial participants would be needed to
train classifiers which then will be employed for the actual application. Study 1
suggests that such an approach could give decent results, but pilot testing and
additional research are needed to confirm this.

3.5 Conclusion

In summary, the present doctoral thesis shows certain limitations - some are due
to eye tracking and the nature of pupil signals, others are methodological. How-
ever, these limitation can be addressed in future research using this thesis as a
foundation. The four studies of this thesis have demonstrated that it is possible
to use eye tracking as a tool to estimate cognitive load in a way that is accurate
(RG1), robust (RG2), works across tasks and participants (RG3), and is capable
of execution in real-time (RG4). Pupil related features still seem to be the gold
standard when it comes to cognitive load estimation, but there is promise in pupil
fluctuation measures like ICA or IPA as well as microsaccades. Moreover, Stud-
ies 2 and 3 showed that eye-tracking based approaches can cope with real-world
applications that are inherently more noisy than laboratory tasks.

Successfully combining cross-task and cross-participant classification of cogni-
tive load based on eye tracking, the present doctoral thesis demonstrates a level of
generalization that has not been displayed before, rendering it a valuable contribu-
tion and tool with high potential. The low hardware requirements and real-time
capabilities further add to this fact. It represents a step towards out-of-the-box
solutions for the detection of cognitive load that could be the foundation for a
multitude of applications.
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Abstract

Blinks are an indicator for fatigue or drowsiness and can as-
sist in the diagnose of mental disorders, such as schizophre-
nia. Additionally, a blink that obstructs the pupil impairs the
performance of other eye-tracking algorithms, such as pupil
detection, and often results in noise to the gaze estimation.
In this paper, we present a blink detection algorithm that is
tailored towards head-mounted eye trackers and is robust to
calibration-based variations like translation or rotation of the
eye. The proposed approach reached 96,35% accuracy for
a realistic and challenging data set and in real-time even on
low-end devices, rendering the proposed method suited for
pervasive eye tracking.

Author Keywords
Blink detection; Pervasive eye tracking, Real time; Image
processing

ACM Classification Keywords

1.5.4 [PATTERN RECOGNITION]: Applications; 1.4.8 [IM-
AGE PROCESSING AND COMPUTER VISION]: Object
recognition,Shape; 1.4.9 [IMAGE PROCESSING AND COM-
PUTER VISION]: Applications

Introduction
A blink is a rapid closing and opening of the eyelids that
falls within three classes: endogenous, reflex, and volun-
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Figure 1: Eyelid movement during
an endogenous blink, which
typically lasts for 75 to 400 ms [4].
For a low-end eye tracker (=~ 25
frames per second), this results in
approximatelly 4 to 16 frames.

tary movements [21]. Endogenous (or spontaneous) blinks
serve to spread the tear film over the cornea and remove
irritants.

Reflex blinks originate from the startle reflex to protect the
eye from external stimuli. For these two classes, blinks
usually range from 75 to 400 ms [4]. In contrast, voluntary
blinks are performed consciously, can be used for interac-
tion — e.g., in human-computer interfaces (HCI) [10] — and
have no determined duration patterns. Apart from these bi-
ological functions, unusual blink patterns are also indicative
of a person’s state of vigilance, fatigue, and drowsiness [15,
25, 22]. Such states are specially important in situations
that require quick reactions, e.g., during driving [3]; in this
context, real-time blink detection combined with pervasive
eye tracking has the potential to prevent dangerous and
life-threatening circumstances. Furthermore, blinks are a
significant source of noise for eye-tracking algorithms. For
instance, there is a trade-off between detecting pupils in
realistic and challenging scenarios and false positives dur-
ing blink (when no pupil is visible). Moreover, mid-blink the
pupil becomes partially occluded causing pupil detection
algorithms to bias the pupil center towards the still visible
part; as a result, blinks must be taken into account during
the automatic classification of eye movements [19]. Thus,
a robust and accurate blink detection algorithm enables not
only the employment of blink-related data (e.g., frequency)
but also circumvents the noise introduced by blinks in other
eye-tracking algorithms.

Due to the many advantages that head-mounted eye track-
ers offer — e.g., mobility and unintrusivnes — they are promis-
ing candidates for pervasive eye tracking, and, thus, this
work focuses on these eye trackers. An algorithm for use

in head-mounted eye trackers has different requirements
than one for remote eye tracking. There is no need for head
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or eye localization, but the exact location, alignment, and
angle of the eye in the video depends on the eye camera
position, which varies significantly from subject to subject.
This makes it uncertain, where to expect the pupil or eye-
lids and mostly prohibits the use of any priors in an algo-
rithm. Motion bluring and frame skips also pose problems.
The former renders blink detection based on edges almost
impossible, and the latter can significantly distort a blink
sequence. Further challenges are added by reflections, un-
common angles, and illumination changes.

In this work, we propose a brightness and motion based al-
gorithm that runs in real-time in systems equivalent to those
used in state-of-the-art eye tracking systems and does not
rely on prior information. The fact that a sequence is ana-
lyzed in contrast to a frame-by-frame approach makes our
algorithm robust to frame skips and the brightness-based
detection does not rely on edges of any kind. Furthermore,
we introduce a new labeled data set of realistic and chal-
lenging images from on-road driving experiments. To foster
further research in the field and effortless replication of our
result, we contribute the algorithm implementation and data
sets openly at:

www.ti.uni-tuebingen.de/perception

Related work

The great majority of video-based blink identification con-
cerns remote eye trackers or regular cameras. In a first
stage, a plethora of methods, such as Viola-Jones [24]
and KLT trackers [23], are used to identify and track the
subject’s face and eyes region. As previously mentioned,
in this work we focus on head-mounted eye trackers. On
one hand, these devices impose extra constraints on the
blink identification task. For instance, since near-infrared
images are employed, no color information is available. Fur-
thermore, the orientation of the eye image and eye corner
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positions are not known a priori. On the other hand, head-
mounted devices do not require the aforementioned stage;
thus, henceforth we discuss related work assuming this ini-
tial stage is performed appropriately and eye boxes have
been identified correctly.

Smith et al. [20] first identify the eye-white color as the
brightest pixel in the eye region on an initial frame; fur-

ther frames are classified on whether eye-white pixels exist
in the eye region (non-blinks) or not (blinks). Grauman et
al. [7] employ an open eye template and correlation scores
to determine whether a frame contains an open or closed
eye (based on a predetermined threshold). Ito et al. [9] di-
vide the input image into vertical sections and, for each sec-
tion, find the pair of maximal and minimal intensity deriva-
tives most distant from the darkest point in the section. The
candidates from five sections are grouped, and two groups
are estimated to represent the upper and lower eyelid; the
average distance between the upper and lower eyelid points
is used to measure the degree of closure. A threshold then
discriminates between blinks and open eyes. Moriyama et
al. [16] rely on the average illumination intensity for the up-
per and lower halves of the eye region. Crossings between
these values are employed to determine when the eyelid
crosses the line separating these regions and, thus, blinks.
Morris et al. [17] use a mean image and variance map to
detect blinks; these are updated with each new frame, and
the resulting variance maps is thresholded. If the number of
pixels remaining is larger in relation to the eye box, a blink
is assumed. Lalonde et al. [13] employ scale-invariant fea-
ture transform to identify tracking points. The optical-flow of
the points inside the eye region is then employed to iden-
tify when the eyelid descends and ascends. Bavivarov et

al. [1] models the eyes through an active appearance model
and define a blink criteria based on the ratio between the
resulting eye width and aperture. Lee et al. [14] first nor-
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malize the eye region illumination to account for illumination
variations. The cumulative difference of black pixels in a
binarized version of the normalized eye region and the ra-
tio between the eye height/width are used as features for

a support vector machine classifier that discriminates be-
tween open and closed eyes. Drutarovsky and Fogelton [5]
employ a flock of KLT trackers within the eye region, which
are used to evaluate the average motion of nine equally
sized cells in the region. The variance of the superior six
cells drive a finite state machine that identifies downward
and upward eyelid movements. Jiang et al. [11] consider
images provided by head-mounted eye trackers. Their ap-
proach consists with thresholding the difference between
two subsequent frames. The resulting image is then mor-
phologically opened, and pupil and eyelids identified. Blink
onset is determined based on eyelid position changes be-
tween the two consecutive frames, whereas blink offset is
identified based on pupil size changes during an ongoing
blink.

Method

The nature of our data leads to an approach that does not
rely on edge detection or prior knowledge about the loca-
tion of the pupil or shape of the eye. It is based on two sim-
ple assumptions: the pupil is dark and gets at least partly
obstructed by the eyelid during a blink. Those two facts
can be exploited if we look at the brightness of consecu-
tive frames. During the blink onset, the frame brightness
steadily increases, reaching its maximum at the blink apex.
Afterwards, frame brightness decreases during the blink
offset until it approaches a level similar to the one prior the
blink (see Figure 2).

Percentile values serve as a measure of brightness in our
algorithm. In addition, differences between consecutive
frames are used to determine if there is enough change to
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development of brightness during a blink

brightness(50-percentile)
=} & & g} B IS
X ® 3 8 5 S
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frame number

Figure 2: The brightness development for a typical blink.

classify a sequence as a blink or not. For this, the frames f;
and f;_1 were blurred to reduce noise, and the absolute dif-
ference between them are calculated and summed up. Both
together form the features of a single frame. In the following
formula, ¢ and r denote column number and row number
respectively, and b( f;) is the blurred version of frame f;.

diffi;1 = Y [b(fi)(r,e) = b(fim1)(r, )] M

T,C

feature; = (Ppercentite (fi), diffi i—1) @

These features are calculated for k£ consecutive frames,
which together make up the feature vector for a window of
size k. Figure 3 illustrates the feature extraction procedure.

feature;_j ; = (feature;_y, ..., feature;) (3)

1729

{ video sequence

{ sliding window

frame - frame

[diﬁerence} [ .
percentile
image
features

image
features of
sliding window

Figure 3: Feature extraction process

Even though blinks may vary in length, their basic structure
remains similar. For a small amount of frames the eyelid
descends, whereas ascension takes a larger amount of
frames since eyelid velocity is higher during blink onset.
Thus, it is reasonable to assume a fixed window size that
appropriately models this behavior exists. Different choices
for the chosen percentile and the window size k are dis-
cussed in the evaluation section.
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Duration Blinks
<5 5
5 69
6 316
7 699 ! ) ) . ) ) )
8 683 Figure 4: Challenging examples due to bad angle, incomplete blink, make-up, motion blurring and reflections
9 349
10 156 Based on these features, a Random Forest Classifier [8] This system is consistent with those used by state-of-the-
" 65 with 100 trees is trained. If more computational power is art eye trackers (e.g., Dikablis [6]). The mean runtime of the
12 33 available, the amount of trees can be increased to increase feature extraction process was 0.6630ms and predicting the
12 12 accuracy. In contrast, the number of trees can be scaled class of all 4820 training samples took 0.0264ms on aver-
>

down to allow a faster evaluation. Random Forests are
the method of choice, because they are quick to train and

age. This amounts to a processing rate of 1450.54 frames
per second once the images are loaded.

Table 1: Duration distribution in
terms of frames for all recorded
blinks. Each frame encompasses

very fast to evaluate in addition to being able to handle

non-linearity. The possibility to parallelize both processes Evaluation

~ 40 ms.

64

increases the speed further. In addition to the already men-
tioned advantages, Random Forests do not need scaling for
their input and, thus, effectively handle the combined fea-
ture vector of summed differences and brightness changes.
Furthermore, these classifiers are resilient to outliers, so
eccentric blinks do not influence its ability to generalize.

The algorithm was implemented in Python using the OpenCV [2]

and Scikit-learn [18] libraries. Testing was done with an In-
tel® Core™ i7-4790 at 3.60GHz and with 12GB of RAM.
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The proposed algorithm was evaluated using a data set

of 20 video sequences of 5 minutes each extracted from

a on-road driving experiment [12]; thus, the data contains
endogenous and, possibly, reflex blinks. Each video cor-
responds to a different subject. The videos were recorded
using a Dikablis Essential eye tracker at a sampling rate
of 25Hz and a resolution of 384 x 288 pixels. All blink se-
quences were annotated, amounting to a total of 2410
blinks; their duration distribution is shown in 1. Every blink
sequence starts with a completely open eye, is followed by



Figure 5: Subject 17 showed only
little occlusion of the pupil during
most blinks. This leads to a
relativly high false negative rate.
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the blink apex, and continues until roughly the same degree
of openness that the eye had before the blink is reached.

It is worth noticing that this data set provides realistic and
challenging eye images, including quick changing illumina-
tion, blurring, reflections, and makeup. In contrast, related
work usually employs data from indoor scenarios, which dif-
fer little from laboratory settings and are not realistic in the
context of pervasive eye tracking. This data set is available
for download at:

www.ti.uni-tuebingen.de/perception

We investigate the algorithm behaviour for window sizes
that encompass expected durations of endogenous and
reflexive blinks, ranging from ~ 80 ms (i.e., k = 2)to~
600 ms (i.e., k = 15). Blinks durations vary inside this
range. However, in order to train a classifier, we need a
fixed amount of features; thus, it is necessary to clip or ex-
tend blink sequences in order to fit the selected window
size. In the case that our blink sequence was too short to
fit the window, subsequent frames were added to the blink
sequence until it was the same length as the window. Since
mostly the start of a blink is needed for classification, ex-
tending the sequence at the end only influences the clas-
sification negatively if there are blinks in extremely rapid
succession —i.e., the sequence covers two or more blinks.
If a blink sequence was to long, we trimmed it at the end.
The second parameter under investigation is the percentile
used as brightness indicator. For this, we investigate a wide
range, from 5 up to 90-percentile. The method was evalu-
ated through leave-one-out cross-validation. In other words,
results were obtained by training on the other 19 subjects
and evaluating on the remaining one; this procedure was
performed for each subject. Negative training samples were
chosen at random from periods not encompassing blinks,
and the amount of negative sequences was chosen as to
equal the amount of positive (blink) sequences for each
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Subject Accuracy (%)

50 Percentile
Non-Blink

5 Percentile
Blink  Non-Blink  Blink

1 96.0 97.0 97.0 95.0
2 100.0 53.1 96.9 89.0
3 100.0 98.5 98.5 100.0
4 95.0 95.0 95.6 95.6
5 97.0 99.0 96.0 99.0
6
7
8

96.6 97.8 97.8 97.8
100.0 92.3 100.0 89.3
97.8 98.9 96.6 97.8

) 92.0 96.6 92.5 94.3
10 100.0 100.0 100.0 100.0
11 92.1 99.5 91.6 98.0
12 96.7 97.5 96.7 95.0
13 91.1 97.8 91.7 97.8
14 100.0 91.3 100.0 95.7
15 96.0 98.0 97.0 93.9
16 97.6 99.2 96.8 100.0
17 90.0 100.0 83.8 100.0
18 93.3 98.7 88.7 100.0
19 91.0 99.6 9ie 97.9
20 96.5 100.0 94.8 99.1

Table 2: Individual results for the subjects obtained with a window
size of 12
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Figure 7: Difficult cases in terms of false negatives: subjects 9, 11 and 13

subject.

Figure 8 reports the average positive and negative predic-
tive value as the window size and brightness percentile
change. This figure clearly shows that the detection rate
of a blink increases with the window size. This is to be ex-
pected because by clipping blink sequence information is
lost. Nonetheless, since blinks usually do not last longer
than 400ms, there is a point where increasing the window
size further does not further improve detection. Moreover,
larger windows enables a more clear distinction between
blinks and non-blinks, because the features of a non-blink
sequence are less likely to match those of blink sequences
by chance. However, problems arise when there are sev-
eral blinks in rapid succession that are to short to fill the

1732

window. Oftentimes, this leads to misclassification as non-
blink. The brightness percentile affects both accuracies

of blinks and non-blinks. The smaller the percentile, the
better in terms of blink accuracy. With the choice of the 5-
percentile only changes from very dark pixels to brighter
ones are measured, and, thus, mainly changes in pupil pix-
els occur. This increases the accuracy of blink detection.
However, if a subject has distinctly dark eyelashes, these
have roughly the same pixel intensity as the pupil; as a re-
sult, the algorithm responds to every sequence, classifying
it as a blink. This is especially true for small narrow eyes.
Per subject results are reported in Table 2 for a window size
of 12 frames. Averaged over all evaluated percentile, a win-
dow size of 12 yielded the best F1-score. As can be seem
in this table, only one subject (subject 2) presented such
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Figure 8: Average predictive value across subjects for blink (left) and non-blink (right) sequences as the window size k and brightness

percentile change.

distinctly dark eyelashes. Remaining subjects were classi-
fied properly with the 5-percentile or equally well with both
percentiles. With 96,3795% the overall best F1-score was

achieved using the 50th percentile and a window size of 11.

Figure 6 illustrates the problems with subject 2 as well as
subject 7, who too had a small pupil and wore make-up. In
addition to that, subject 7 had a partly occluded pupil even
when not blinking. Subject 14 suffered from an iris defect
that can be misinterpreted as a pupil and in the process of
looking downwards it gets obscured, mimicking a blink.

Figure 7 shows three subjects that had a false negative
rate above average. This can stem from a bad angle or il-
lumination. Both can lead to a low visibility of the pupil and
lessen the brightness change, which ultimately results in a
lower detection rate. In the case of subject 17 the lower de-
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tection rate arises from the fact that the pupil does not get
occluded significantly during a blink (see figure 5). Double
blinks only occurred in the video of subject 19. The rapid
sequence of blinks lead to some misclassification and a
lower detection rate.

Conclusion

We presented an approach that is fast and has very high
detection rate for blinks. For further elaboration of the pro-
posed algorithm, we plan to broaden the spectrum of sub-
jects to have a representative data base to train, which will
significantly decrease false positives. A greater data base
would also allow us to train different classifiers for differ-
ent window sizes and would enable us to narrow down the
time span of a blink. This way the blink duration can be es-
timated. Additionally a calibration phase can be integrated

67



Manuscript 0

68

at the start of an experiment where the subject is asked to
open and close its eyes to have samples to construct blink
sequences of different lengths and estimate the expected
brightness change during a blink, which allows for normal-
ization. To foster further research in the field and effortless
replication of our result, we contribute the algorithm imple-
mentation and data sets openly at:
www.ti.uni-tuebingen.de/perception
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ABSTRACT

Real-time evaluation of a person’s cognitive load can be desirable
in many situations. It can be employed to automatically assess or
adjust the difficulty of a task, as a safety measure, or in psychological
research. Eye-related measures, such as the pupil diameter or blink
rate, provide a non-intrusive way to assess the cognitive load of a
subject and have therefore been used in a variety of applications.
Usually, workload classifiers trained on these measures are highly
subject-dependent and transfer poorly to other subjects. We present
a novel method to generalize from a set of trained classifiers to
new and unknown subjects. We use normalized features and a
similarity function to match a new subject with similar subjects,
for which classifiers have been previously trained. These classifiers
are then used in a weighted voting system to detect workload for
an unknown subject. For real-time workload classification, our
methods performs at 70.4% accuracy. Higher accuracy of 76.8% can
be achieved in an offline classification setting.
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1 INTRODUCTION

Workload or cognitive load refers to the load on ones working
memory in response to a particular task. It can either be mea-
sured by subjective ratings, performance data, or physiological
response. Already in 1982, Beatty showed that the pupil qualifies
as a indicator for cognitive load as its diameter increases linearly
with task difficulty [Beatty 1982]. Building on this work, scien-
tists from many different fields investigated the relationship be-
tween pupillary changes and workload, e.g., in the fields of aviation
[Peysakhovich et al. 2015], driving [Kun et al. 2013; Marquart et al.
2015], medicine [Szulewski et al. 2015], or psychology [Klingner
et al. 2011; Laeng et al. 2011].

As a physiological measure, the pupil is objective compared to
subjective ratings by the user. Additionally, eye tracking is easily
applicable in a lot of different situations and less cuambersome and
intrusive compared to measures like EEG, but more reliable than
skin conductance and heart rate.

To detect cognitive load, usually subject-related data is analyzed
in hindsight. However, various applications, such as automotive,
HCI, learning, and many more would benefit from a real-time de-
tection of cognitive load. A widely known application area, where
the online detection of cognitive load might be very beneficial is
driving. In fact, with the increasing use of eye-tracking and dri-
ver observation technology as input to adaptive assistance sys-
tems [Braunagel et al. 2017; Kasneci et al. 2017], workload detection
could be implemented based on the physiological response of the
pupil to increasing workload. Another field with great potential
is virtual reality. Most VR-headsets can meanwhile be equipped
with eye trackers, at the same time offering a working environment
with controlled illumination. In such a setting, workload estimation
could be perfectly utilized to automatically adjust the task difficulty
to the user.

To date, what is preventing most of the above mentioned real-
time application from making practical use of workload detection
based on the pupillary response, is that most of the available al-
gorithmic approaches that have been implemented so far, prove
low capability to generalize [Lobo et al. 2016]. Classifiers are very
subject-dependent and as such, each user who would want to use
such an application would need to undergo a lengthy calibration
procedure.

Walter et al. successfully applied regression algorithms to EEG
data in a cross-subject setting [Walter et al. 2014] and applied their
method to an online environment for arithmetic learning [Walter
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et al. 2017]. In this environment they used the detected workload of
university students to adjust the difficulty of the task and improve
learning outcomes. While the results are promising, EEG measure-
ments require more time and effort to prepare and are impractical
to use on a wide basis.In another work, Lobo and colleagues com-
bined EEG and eye-tracking features trying to achieve cross-subject
classification of three different workload levels, but were unable
to transfer the good subject-specific results to a cross-subject level
[Lobo et al. 2016]. Another more successful attempt at cross-subject
and cross-task workload estimation was done by Smith and col-
leagues [Smith et al. 2015]. They aggregated 66 data-channels, 4 of
which were eye-related and performed a regression across different
tasks and subjects. An approach only relying on eye tracking was
chosen by Fritz et al. achieves 69% precision, but it incorporates not
only the pupil, but the fixations and saccades during a programming
task [Fritz et al. 2014]. This makes it unlikely to transfer well to
different tasks.

In this work we use pure pupillometry which is not task-dependent
like fixation- or saccade-related features. We evaluate how feasi-
ble it is to apply classifiers across different subjects and evaluate
subjects with classifiers not trained on their data. We present a
novel method to tackle this task with promising results. The loss in
accuracy distinguishing low and high cognitive load is low when
we move from intra-subject to cross-subject classification.

The remaining of the paper is organized as follows. Section 2
introduces the task and collection process of the dataset. In Section
3, light is shed on the features that we use for our classification and
Section 4 presents the details of our workload classification method.
The results are shown in Section 5 and discussed in Section 6.

2 DATA

We use data collected from a modified n-back task by Scharinger et
al. [Scharinger et al. 2015] and an unpublished dataset also collected
by Scharinger et al. based on the same task. We combined both
datasets and treat them as one, since the task and collection process
were identical for both.

2.1 Task and Stimulus

The n-back task consists of a randomly generated sequence of letter
from the set L = {C, F, H, S} that are shown one after another. Each
letter is presented for 0.5 seconds and is followed by a 1.5 second
period of black screen. Over the course of the experiment subjects
must state whether the currently presented stimulus is the same as
the one n trials before by pressing one of two buttons. For level 0,
the task is to compare the presented stimulus letter with a constant
one that is shown at the beginning of the task.

Scharinger and colleagues introduced flanking letters that were
either congruent to the actual stimulus or incongruent, in which
case they served as distractors. For the purpose of distinguishing
different levels of cognitive load that correspond with the n-back
levels, this minor modification will be disregarded for this work.
Since these distractors were evenly distributed across all levels and
subjects, their effect is negligible when it comes to the classification
of the levels.

Every subject completed two blocks, where each of them consists
of one 0-back task, one 1-back task and one 2-back task that were
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ordered randomly and had 154 trials each. Half of the trials were
targets that coincided with the stimulus n trials before and the other
half were non-targets that did not coincide. Participants underwent
a training phase for each level before they started the trials that
are analyzed here. They were presented with a block from the level
they were training for and continued to receive a training block
until they reached an accuracy of at least 60%.

2.2 Participants

The experiment was conducted with 28 students of the University
of Tiibingen (mean age 24.71, SD 4.12, 14 females), with German
being their mother tongue. They received a payment of 8€ per hour
and did not have any neurological disorders. All participants had
normal or corrected-to-normal vision. The local ethics committee
of Knowledge Media Research Center in Tiibingen approved the
study and participants gave their written informed consent at the
beginning of the study.

Three subjects were excluded from the analysis, because of prob-
lems during the eye-tracking recording or poor tracking ratios.

2.3 Devices

The stimulus was presented on a 22-inch monitor with a resolution
of 1,680 X 1,050 and a font-size of 25 utilizing the Arial font. All
letters were presented in gray on a black background and eyes were
tracked with a 250 Hertz SMI remote eye-tracking system. A chin
rest ensured the distance of 70 cm was constant over the course of
the test. Recording took place in SMI iView X 2.7.13. Calibration
was done at the beginning and during each break using SMI’s built
in 9-point calibration.

3 FEATURES

Several different features can be derived from the pupil signal. We
used the pupil diameter, blinks and the Index of Cognitive Activity
as proposed by Marshall [Marshall 2000], which is described in
more detail in the following.

3.1 Pupil

Across a wide variety of tasks and conditions, the pupil has been
observed to increase in diameter with increasing cognitive load [Al-
naes et al. 2014; Chen and Epps 2014; G. Brown et al. 1999; Klingner
etal. 2011]. The task causes cognitive load, and as a result, decreases
the parasympathetic activity in the peripheral nervous system, lead-
ing to an increase in pupil diameter [Kramer 1990]. This behavior
of the pupil shows in many of tasks, including short-term memory,
language processing, reasoning, perception, sustained attention
and selective attention [Beatty 1982]. Additionally, it was found
to fulfill Kahneman’s three criteria for indicating processing load:
the ability to reflect differences in processing load within a task,
between different tasks, and finally between different individuals
[Kahneman 1973].

We observed blink artifacts in our dataset, so we removed those
parts from the pupil signal that had an unreasonably large slope
right before or after a sequence of missing data. During this se-
quences, the eyelid had either already covered part of the pupil
during the onset of a blink or was not completely visible yet after
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Figure 1: The n-back flanker task.

a blink. The pupil being tracked during that time results in pupil
sizes changes that are not related to workload.

In this work we will employ the median and maximum of the
pupil diameter as a feature to derive cognitive load. The median
is used in order to be robust to outliers, remaining blink artifacts
and other noise, while the maximum captures the peaks that occur
while performing the n-back task.

3.2 Blinks

Studies have shown, that workload influences the rate and duration
at which humans blink [Benedetto et al. 2011; Orden et al. 2001].
Increased task difficulty for a visual task also tends to increase
the delay between two blinks, while the blink duration decreases
[Veltman and Gaillard 1998]. Since the n-back task only varies
the load on the memory capability, we expect a higher number of
blinks per minute and little difference in blink duration [Fukuda
et al. 2005].

Two different characteristics of blinks were used: average blink
duration and number of blinks per minute.

3.3 ICA

The Index of Cognitive Activity as described by Marshall [Marshall
2000] uses a wavelet decomposition to detect sudden changes in
pupil diameter that may be indicative of cognitive activity. These
specific kind of changes can be caused by two different sources; ei-
ther by cognitive activity or by the light reflex that causes the pupil
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to pulsate irregularly and continually. The first are short and abrupt
while the latter are slower and larger. This difference is caused by
the different activation and inhibition pattern of the radial mus-
cles responsible for dilating and contracting the pupil respectively.
Wavelet decomposition is suited to differentiate between the two
sorts of events.

Since interpolation may have a great influence on the decompo-
sition when large gaps occur, but a continuous signal is need for
the decomposition, we followed the suggestion given by Marshall
and leave out those parts. As suggested for the recording rate of
250 Hz, we use the Daubechies 16 wavelet. What we finally use as
a feature for classification is the number of ICA-events per minute.

4 METHODS

To get a representative set to train models with, 50 sequences of
set length were randomly sampled from every session, subject and
level without overlap. Every level was treated as one long sequence
from which sub-sequences were taken at random. The random
sampling ensures that the regular structure of the dataset with 154
2-second-trials does not influence the training set and it is indeed
representative. Collecting 50 samples from each level and session
results in 100 samples per level for each subject which ensures that
enough data per class is available to handle 5-10 features.
Samples with less than 70% usable data points were dismissed.
With one level consisting of 154 trials, we can work with 308 seconds
which - in theory - allows these sequences to be of length 6 seconds
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at most. We will examine sequences of 1 to 5 seconds, however.
With longer sequence we would not be able to reach 50 random
samples, considering that some are unsuitable due to too much
missing data and the combination of the exact position of a sample
being random and sequences not overlapping.

Individual
subjeci-data

Instruction
phase
Feature
‘ baselines J level 0 level 1 level 2
| !
Extract random Extract random| |Extract random
intervals intervals intervals
b |
Calculate Calculate Calculate
features features features
T ]
Subtract Subtract Subtract
baseline baseline baseline
Accuracy on Subject-wise
subject-level feature scaling
Individual Subject-wise
classifiers classifiaction

Figure 2: Summary of the construction of individual classi-
fiers. This procedure is applied to the data of each subject in
order to train classifiers explicitly suited for them.

We first use our data to train subject-wise classifiers to distin-
guish between different workload levels and then apply these clas-
sifiers to data of subjects that they were not trained on. For the
cross-subject classification, two cases were examined: offline and
online. Offline refers to the situation that one wants to analyze data
that is already collected, whereas online means workload classifica-
tion while the subject is still completing the given task.

4.1 Intra-subject classification

For better inter-subject comparability, the same features that will
serve for classification are also calculated for the instruction phase
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to have a baseline. This baseline is then subtracted. This way, only
relative changes are regarded and the great variance in baselines be-
comes less relevant. In addition, we normalize the resulting features
to have a mean of 0 and a standard deviation of 1. Figure 2 illustrates
the classification procedure. The per-subject classifiers described
in this section will later be used for cross-subject classification.

We then use forests of 100 extremely randomized trees (Extra-
Trees)[Geurts et al. 2006] to classify different levels of the n-back
task, either pairwise or all three levels jointly.

One criterion for the choice of classifier is its good accuracy
compared to simpler approaches and its tendency not to overfit
to the data. In addition, Extra-Trees are far less computationally
expensive compared to other tree ensemble classifiers and allow
real-time evaluation and quick training. The implementation was
done in python using the scikit-learn toolbox [Pedregosa et al. 2011].
The number of trees can be adjusted at will. A larger forest mainly
increases the training time, whereas the time needed to evaluate a
new sample only marginally increases.

4.2 Offline cross-subject classification

4 v

Known |Other subjects Subject-data Novel
subjects subject
- -————

Offline: 1

jExtract randomy

Indivi_dual Basalines Instruction Iintewa\s L
classifiers phase yPnline_Sliding

—/ I ‘WEGEWI _ 4
Get d\ﬁerences\

of normalized Calculate l

S
/

" Baselines features
baselines

Scale
. Subtract
differences Subject baseline
with feature matching
importance

—— o =

'Oﬁlineﬂntra-sumect scaling

- o

I

Find n most

1

S'”:gi;g“nnéfvm—»'omine: Scale with features !
lof similar subjects !

subject v ]

i —

Get associated
classifiers

i Weighted
voting
)\ ’l classification )

Figure 3: Voting scheme for cross-subject classification. The
dashed line shows the difference between online and offline
classification.

Once the per-subject workload classifiers are trained (4.1), they
will be employed to estimate the workload of other subjects in a
weighted voting scheme. For this purpose, features from the instruc-
tional phase are gathered and used as a baseline to determine the
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pairwise similarity between two subjects. The similarity between
subject xp¢qy that we want to classify and subject x,;4 that already
has a classifier is calculated as follows:

1

Z Wxola |fxnew - fx01d| ’
whereas fy; denotes the baseline feature vector of subject i and wy;
the feature importance for the classifier of i. This way important
features get higher weights and contribute more to the similarity
measure. In random trees, good splits are chosen for nodes near
the root, so the discriminating power of a feature can be seen as
the expected fraction of samples that a feature is contributing to.
Averaging over all trees in the forest helps in reducing the variance.

Based on this similarity, a nearest neighbor search is conducted
and the closest n subjects are considered. Their classifiers are ap-
plied to the normalized data from the new subject xy¢,, and their
votes are weighted according with their normalized similarity. Fig-
ure 3 illustrates the process of cross-subject classification.

ey

s(Xnew> Xold) =

4.3 Online cross-subject classification

To simulate the use-case of actual real-time cross-subject applica-
tion with out-of-the-box classifiers, we parse the data of a subject
and every data point that is parsed is treated as a newly made mea-
surement. This simulates the data recording of a new subject x,¢4y
performing the n-back task.

Over the course of this simulation, every newly available mea-
surement is added to the existing ones of subject xpeqy to gradually
build up a dataset for xpeqy. All currently available data from sub-
ject xpeq is joined with the data of x,,;; whose classifier we want
to use. Candidates for x,;4 are chosen in the same manner as in the
offline scenario: by similarity of baselines weighted with the feature
importance of the classifier. Then they are jointly scaled to have
a mean of 0 and a standard deviation of 1, in order to reasonably
apply the pre-trained classifier to the new data from subject xpeqy.
This is a critical point, as the first measurements are without refer-
ence points for low and high workload and so scaling them does
not lead to the outcome we want. Here scaling the features jointly
with those of x,;4 for which we have those reference points makes
sense. A certain error is introduced because the pupil features for
low and high workload of xyew and x,;4 will not be exactly the
same, but this error decreases as more data from x,¢ becomes
available.

The same voting scheme as in the offline classification is then
applied to classify the new sample. For this procedure we did not
dismiss any sample due to quality issues or missing data, as such a
measure of quality may not yet be available. This procedure is also
presented in Figure 3.

5 RESULTS

To better evaluated which levels of workload - represented by the
n-back levels - can be differentiated best, we trained classifiers to
distinguish between specific pairs of n-back levels. To judge what
amount of workload is caused by each n-back level, we first took a
look at the descriptive statistics of EEG and performance measures
presented in Table 1. It is apparent that level 0 and level 1 do not
differ in difficulty as much as level 1 and level 2 do. This shows in all
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Table 1: Descriptive statistics about the difficulty of each
level illustrated by pupil performance and EEG measures.

These values are taken from Scharinger et al. [Scharinger et al.

2015]
level0 level1  level 2

Pupil diameter [mm] 5.59 5.72 6.14
Reaction time [ms] 462 506 632
Accuracy [%] 88 86 79

Pz, P300 mean amplitude [pV]  4.05 3.76 2.75
Pz, upper aplha [1V?/Hz] 6.80 6.25 5.43
Fz, theta [V?/Hz] 11.34 11.87 12.12

Table 2: Results overview

intra- Cross- Cross-

subject subject subject
offline online
Ovs1 69.8% 54.0% 53.8%
0Ovs2 82.4% 76.8% 70.4%
1vs2 79.4% 71.5% 66.8%
Ovslvs2 63.7% 46.7% 37.8%

measurements, from EEG data to pupil diameter and performance
measures. Therefore, we expect a better distinction between level
1 and level 2 than between level 0 and level 1. Consequently, the
accuracy of the classifiers should be better.

The actual level of cognitive load that a subject experiences
is not necessarily identical with the n-back level, because many
factors can influence the workload. Since we cannot determine the
cognitive load exactly, we use the task difficulty represented by the
level of the n-back task as an indicator for workload.

For our study, the number of neighbors for the cross-subject
classification was set to 9, but it can easily be adjusted to the com-
putational power available. More neighbors means greater runtime,
but possibly better accuracy. Table 2 shows the exact scores for 5
second sequences.

5.1 Intra-subject results

We used 10-fold cross-validation for the intra-subject classification
to have a point of reference for the cross-subject accuracy. These
are the scores we may be able to achieve, if the database of available
classifiers is large enough to find good fits for every new subject.
The levels 0 and 1 can be distinguished with an accuracy of 69.8%,
while the levels 0 and 2 score 82.4% and the levels 1 and 2 79.4%.
All three levels jointly, the classification is 63.7% accurate. Figure 4
shows the detailed results averaged for all subjects.

To evaluate the contribution of individual features to this result,
the feature importance for the classifiers was calculated and av-
eraged for every subject and specific level distinction. The details
can be seen in Figure 7. Especially for short sequences, the pupil
diameter is the most important feature, but with longer intervals,
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accuracy

H
sequence length [s]

Figure 4: Accuracy of the intra-subject workload classifica-
tion

accuracy

1 2 H
sequence length [s]

Figure 5: Accuracy of the cross-subject offline workload clas-
sification

accuracy

H
sequence length [s]

Figure 6: Accuracy of the cross-subject online workload clas-
sification

blink-related features increase in weight. The weight of the ICA is
almost constant independent of the sequence length.

5.2 Cross-subject results

To measure the accuracy in a cross-subject setting where workload
estimation is performed after all data is collected, we used the same
samples for the intra-subject classification, but classified them with
our cross-subject method as described in 4.2. Classification was
performed for every sample individually and results were averaged
across subjects. In this offline scenario, the levels 0 and 1 could be
correctly distinguished with 54.0% accuracy, while in the case of
level 0 and 2 76.8% were achieved and for level 1 and 2 71.5%. Figure
5 depicts the outcome of this classification.

For online classification, we used a sliding window to simulate
newly available data and applied the procedure described in 4.3.

Tobias Appel, Christian Scharinger, Peter Gerjets, and Enkelejda Kasneci

The width of the sliding window was set to the sequence length
that we also used for the training data, but in theory this is not
strictly necessary. Since all features are either per second or median
values, The window size can be set independently from the sequence
length used for training. Using levels 0 and 1, 53.8% were classified
correctly, with levels 0 and 2 it were 70.4% and with levels 1 and 2
66.8%. The detailed results are presented in Figure 5. On a computer
equipped with an i7-7700HQ and 16GB RAM, feature calculation
and classification took on average 0.134 seconds per sample of 5
seconds length, making it more than real-time capable.

It is unexpected that the accuracy of the intra-subject classifi-
cation gets better with longer sequences, while the scores of the
cross-subject classification do not. Most likely this is due to the fact
that the main portion of the error is caused by choosing sub-optimal
classifiers. This could be remedied with a larger set of subjects or a
longer instruction for more stable baselines.

6 DISCUSSION

We have shown that cross-subject classification of cognitive load
can be done with reasonable accuracy. With 82.4% our intra-subject
scores for the distinction of low and high workload are slightly
better than those reported in other n-back studies that employ
eye tacking (e.g. [Hogervorst et al. 2014] with about 75%). One
explanation may be the fact that we use the ICA as an additional
feature, even though its feature importance is low. Another reason
may be the removal of blink artefacts that increases the usefulness
of the average pupil diameter as a feature or that we use the median
instead of the mean. Since the lighting conditions also influence
the pupil diameter change, maybe that is part of the reason, too.
The pupil diameter change that occurs with increasing workload
is more pronounced if the illumination is low, but the standard
deviation also increases [Pfleging et al. 2016].

Looking at the feature weights, we can conclude that the pupil di-
ameter is the best pupil-related indicator for workload. The median
is the more stable indicator, whereas the importance of the maxi-
mum decreases over time which is expected. It is worth noting, that
the importance of blink count and blink duration increases with the
sequence length. If blinks reflect workload, this is to be expected.
Sequences of short length most likely do not contain blinks and
therefore they are not a feature to distinguish with. The longer the
sequences get, the more likely it is for them to contain more than 0
blinks and the discriminating power of the feature increases. The
ICA suffers from the same problem as blinks, but longer sequences
only slightly increase its importance for classification.

It is curious that the performance of the cross-subject classifiers
stagnates or slightly increases at best with the sequence length. It
is possible that the quality of the classifiers as well as the individual
data sample increases with longer sequences, but the main portion
of the error is caused by choosing an unfitting classifier in the first
place. Further investigation with a larger set of subjects is needed
to test this hypothesis.

The biggest drop in accuracy can be observed for the level distinc-
tion of levels 0 and 1. Here the class differences were the smallest
and so the error introduced by using an inappropriate classifier is
punished the hardest.
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Average feature weights of the classifiers for specific workload level distinction.

What sets our method apart from others is the short time window
that we evaluate. With 1-5 seconds, we only use a fraction of the
time-span usually used which is 30-120 seconds [Hogervorst et al.
2014]. This gives us the opportunity to detect changes in workload
that only last for a very short amount of time. Combined with
the low computational demand of our method, real-time workload
estimation can be performed at a very fine-grained level.

One of the benefits of our method is how easily the database
can be expanded. Since we use per-subject classifiers with a voting
scheme, there is no need to retrain a large model with all the data.
If new data is available, we just need to train a model for a single
subject and integrate its classifier into the database. Additionally,
our approach is not restrictive when it comes to classifiers. The
same neighbor matching and weighted voting can be performed
with classifiers of different kinds. This way we can use Extra-Trees
alongside SVM-classifiers or any classifier that can output its feature
weights.

One factor that influences the accuracy of our workload clas-
sification is fatigue. Fatigue and exhaustion increase a subject’s
cognitive load while the pupil shrinks in size [Lowenstein and
Loewenfeld 1962]. This makes it hard to compare samples from
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the same task that have long time intervals between them. In our
study this does not have a systematic effect, that our classifiers may
have learned, because we randomized the order of n-back levels for
every subject. This however means that a classifier from a subject
that first completed level 2 and one that did level 2 last are quite
different. If we are able to compensate for this effect, classification
accuracy will dramatically improve, because the difference in pupil
diameter caused by fatigue can be substantial [Morad et al. 2000]. In
our dataset the pupil decrease by 0.53mm averaged over all subjects,
levels and sessions. This difference is about as large as the average
pupil diameter difference between level 0 and level 2 and is likely
to be responsible for a large portion of wrong classifications.

The same procedure is applicable to wearable eye trackers and
the small but constant distance to the subject’s eyes would likely
yield even better results. This hypothesis needs testing, but we see
great potential in head-mounted eye tracking. In addition, more
advanced methods for pupil detection such as ElSe [Fuhl et al.
2016b] or PupilNet [Fuhl et al. 2016a] could be employed to detect
eye features more robustly.

A next step would be to test how well our cross-subject approach
performs across different tasks and with a database of different
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lighting conditions. Also, a bigger database of subjects is needed to
minimize the error if unsuited classifiers. This would be a big step
towards an out-of-the-box algorithm for online workload detection
that is invariant to circumstances and is universally applicable.

The generalization ability across different tasks and lighting
conditions still needs to be examined, but enough data may make
accurate online estimation of a subjects workload independent of
task and circumstances possible.
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ABSTRACT

The reliable estimation of cognitive load is an integral step
towards real-time adaptivity of learning or gaming environ-
ments. We introduce a novel and robust machine learning
method for cognitive load assessment based on behavioral
and physiological measures in a combined within- and cross-
participant approach. 47 participants completed different
scenarios of a commercially available emergency personnel
simulation game realizing several levels of difficulty based
on cognitive load. Using interaction metrics, pupil dilation,
eye-fixation behavior, and heart rate data, we trained indi-
vidual, participant-specific forests of extremely randomized
trees differentiating between low and high cognitive load.
We achieved an average classification accuracy of 72%. We
then apply these participant-specific classifiers in a novel
way, using similarity between participants, normalization,
and relative importance of individual features to success-
fully achieve the same level of classification accuracy in
cross-participant classification. These results indicate that a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICMI °19, October 14-18, 2019, Suzhou, China

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6860-5/19/10.
https://doi.org/10.1145/3340555.3353735

82

Natalia Sevcenko
Leibniz-Institut fiir Wissensmedien
Tibingen, Germany

Korbinian Moeller
Leibniz-Institut fiir Wissensmedien
Tiibingen, Germany

Franz Wortha
LEAD Graduate School and Research
Network
Tiibingen, Germany

Manuel Ninaus
Leibniz-Institut fiir Wissensmedien
Tiibingen, Germany

Peter Gerjets
Leibniz-Institut fiir Wissensmedien
Tibingen, Germany

combination of behavioral and physiological indicators al-
lows for reliable prediction of cognitive load in an emergency
simulation game, opening up new avenues for adaptivity and
interaction.
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1 INTRODUCTION

Real-time user modeling in general and cognitive model-
ing in particular are essential for successfully implementing
adaptive interfaces and environments. One important aspect
of cognitive modeling is its consideration of cognitive load,
which refers to the degree to which cognitive resources such
as working memory are recruited while performing a task
[6, 10]. Often it is beneficial to adapt a system in a way that
the cognitive load experienced by a user does not exceed a
critical level. An e-learning environment, for example, should
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neither provide trivial learning materials, nor overstrain the
user with materials and tasks they cannot cope with [30].
This also holds true for most computer environments in-
volving different levels of difficulty, such as games, training
simulations, or tutoring systems. An example of successful
implementation of this kind of adaptivity is demonstrated by
Yuksel and colleagues [35]. They used EEG data for adapting
difficulty during piano lessons, which they observed to in-
crease participants’ learning gains. Wilson and Russel used
physiological measures such as EEG, respiration, and heart
rate, but also eye-fixation behavior to realize adaptivity [34]
in an aviation simulation. The provided real-time adaptive
feedback enhanced participants’ performance.

However, assessing cognitive load can not only be used
for adaptation. In many situations, its assessment can be
valuable on its own, in particular in the absence of other out-
come measures. In this case, reliable indicators of cognitive
load may allow for evaluating which interaction modality
is easiest to use, which type of interface causes the desired
degree of cognitive load, or how difficult a certain activity is
[3].

Yet many traditional ways of assessing cognitive load are
impractical for many situations. Using questionnaires like
the NASA task-load index (TLX) [15] make the user aware of
the assessment, interrupting and impairing task performance
and reducing immersion. As a retrospective measure, this is
not an issue, but for real-time measuring and adaptation it
is not the right tool.

Other methods make use of physiological changes caused
by cognitive load to derive respective indicators. Direct im-
pact of cognitive load was suggested to be measurable consid-
ering brain activity (e.g., by means of EEG) and participant-
specific predictions were found to be accurate [22, 24]. Meth-
ods for measuring brain activity such as EEG have the draw-
back of usually being intrusive, uncomfortable to use, and
requiring a high expertise to be set up. While there are mobile
versions of such devices, mitigating some of the drawbacks,
the intrusive nature making users aware of being monitored
still remains. There are, however, physiological parameters
which can be measured indirectly or with little effort. Eye-
fixation behavior is a prime example of such measures be-
cause it is easy to measure, less invasive for the user, and
allows for using changes in pupil diameter as an indicator
of cognitive load [1, 20]. Moreover, changes in heart rate
are also a common effect of variations of cognitive load that
can be measured with little effort and intrusion. Combining
these two streams of data increases predictive power [31].

In addition to estimating cognitive load through measure
of pupil dilation, eye tracking has the benefit of allowing for
evaluating participants’ gaze behavior. This allows insights
into cognitive processes and offers behavioral data as another
means for assessing cognitive load. Gaze information can be
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used in conjunction with interaction log-files to better grasp
how participants react under low or high cognitive load.

The advantage of jointly considering several (physiologi-
cal) data streams for the assessment of cognitive load was
previously demonstrated in several studies [13, 16, 17, 28].
Hussain et al. used a combination of heart rate, skin conduc-
tance, respiration data, and eye-tracking [17]. In addition,
they synchronized these physiological measures with fa-
cial features and behavioral data in pursuit of classifying
cognitive load under the effect of affective interference. Haa-
palainen and colleagues further added a skin temperature
sensor and an EEG-headset to this set of sensors and achieved
amean classification rate of 81.1% for the distinction between
low and high cognitive load for 6 cognitive tasks [13].

A frequent problem in practice arising from the estimation
of cognitive load being participant-specific results in a lack
of generalizability [23]. As a consequence, a cognitive model
for each participant needs to be trained in order for adaptive
systems to work. This would necessitate a lengthy calibration
period involving examples of low and high cognitive load
for each participant. This often seems impractical and may
deter users from actually using the system in the first place.

In this article, we combine behavioral and physiological
measures in a novel multimodal approach for classifying cog-
nitive load in an emergency simulation game. We specifically
aim to increase cross-participant generalizability up to the
point where the accuracy of cross-participant classification
is the same as within-participant classification. In particular,
we want to develop a method for classifying cognitive load
that satisfies the criteria of i) allowing for a robust estimation
with ii) high classification accuracy and iii) generalizability
across participants for potential iv) real-time application.

2 SETUP AND STIMULI
Task

Participants had to perform in different scenarios taken from
an adapted version of the real-time simulation game Emer-
gency [12]. The three scenarios were adapted specifically
for the purpose of this study, Figure 1 providing an exam-
ple. The goal of the game is to coordinate emergency forces.
Participants take control of paramedics, ambulances, and
firefighters to save people from emergency situations and
fight fires in the scenario.

Participants first completed a tutorial introducing all game
mechanics with instructions and in absence of time pressure,
followed by three different scenarios: a car crash, burning
buildings, and a train crash. Each scenario was presented in
three versions, “easy”, “medium”, and “hard”. The scenarios
were always presented in the same order, starting with the
easiest version of the car crash scenario going through the
hardest version of the train crash scenario. The simulation’s
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difficulty was raised by increasing the number of tasks a
participant had to complete as well as the number of units
available, while maintaining the same time constraint. This
necessitates planning more steps ahead, while also requiring
more micro-managing and better prioritizing. As planning
gets more sophisticated and time pressure increases, cog-
nitive load should increase as a consequence. Because we
lack means of measuring cognitive load directly, we instead
aimed to classify task difficulty as a proxy for cognitive load.
All instructions were presented in German.

Scenario 0: Tutorial. The tutorial provided instructions on
how to give orders to emergency forces and which tasks
needed to be carried out for successfully completing the
game. It also introduced the different units participants needed
to coordinate and their purpose in the simulation. There was
no time limit.

Scenario 1: Car Crash. The first scenario featured a car crash
at a crossroads. Some accident victims were trapped within
their cars and the participant needed to send firefighters to
free them. At the same time, other victims needed treatment
by a paramedic before being transported to the hospital.
There was a 5 minute time limit for this scenario.

Scenario 2: Burning Buildings. In this scenario, several build-
ings were on fire. This poses a more dynamic threat as the fire
can spread to neighbouring buildings and paramedics cannot
operate in close proximity to fire. Several victims needed to
be saved from burning buildings with ladders, while others
were in need of medical aid. To extinguish the flames, fire
trucks and firefighters could be used, which differ in their
effectiveness. The dynamics of the fire made this scenario
inherently more difficult than the first one. The time limit
was 7 minutes and 30 seconds.

Scenario 3: Train Crash. In the final scenario, participants
faced a derailed train that had crashed into a building. As a
consequence of the train having hit a building, the building
had caught on fire. This also threatened the surrounding
buildings. Furthermore, train wagons were deformed, mak-
ing it necessary for them to be cut open to save trapped
victims. Adding to these tasks, there were victims in need of
medical aid. By combining all challenges participants faced
before, the final scenario further increased the difficulty com-
pared to the previous ones. This especially emphasizes the
need for prioritizing actions because firefighters could either
cut victims free or extinguish fires. Taking into consideration
the complexity and volume of this scenario, the time limit
was set to 10 minutes.

Apparatus

The experiment took place in individual sessions in a labora-
tory setting under constant light conditions. The emergency
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simulation and the eye tracker were installed on a notebook
with a 16" screen driven at 1920 x 1080 resolution. The posi-
tion of each participant was individually determined based
on the calibration of the eye tracker. No chin rest was used.
For the recording of eye-fixation behavior, we used a RED250
eye tracker from SensoMotoric Instruments (SMI) in combi-
nation with the SMI Experiment Center 3.7.60 software. The
eye tracker was calibrated using SMI’s integrated 9-point
calibration procedure.

For the measurement of heart rate, a custom-made Bitalino
wearable was used in combination with OpenSignals Rev-
olution software. To increase the signal-to-noise ratio, we
attached three pre-gelled electrodes to participants’ chests,
which were cable-connected with the Bitalino unit. For tech-
nical reasons, an additional laptop was necessary to acquire
heart-rate data. The laptop was connected to the measur-
ing computer via Bluetooth. The whole setup is depicted in
Figure 2.

Participants

We gathered data from 47 right-handed participants (mean
age = 24.6, SD = 6.3, 33 females). None of them reported
psychological, neurological, or cardiovascular diseases. All
participants provided written informed consent and were
able to speak German on native speaker level. Participants
were informed about the study aims and received monetary
compensation after the experiment. We had to exclude 7
participant due to problems with recordings of eye-tracking,
physiological or meta-data. Another 2 were excluded because
they reported that they did not take the experiment seriously.
Finally, 2 participants did not provide enough usable data
for all scenarios, rendering their data partly unusable. The
data of all remaining 36 participants was considered in the
analyses. Participants with periods of low tracking ratios —
time spans with invalid data caused by the pupil not being
detected reliably — were deliberately included in our dataset.
Including them renders the dataset more realistic and con-
sequently the results more accurately reflect a real-world
scenario.

3 FEATURES

We looked at features which have been used successfully
in the past to detect cognitive load. We grouped the fea-
tures into different categories of i) pupil dilation, ii) fixations,
iii) saccades, iv) heart rate, and v) in-game activity. In this
section, we describe them in more detail.

Pupil

Many studies have successfully used pupil diameter as an
indicator for cognitive load [7, 19, 25]. Increasing cognitive
load was observed to decrease parasympathetic activity in
the peripheral nervous system, leading to an increase in pupil
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Figure 1: Example of how the task looked like.

Figure 2: Setup that was used during data collection.

diameter [20]. This effect was found for different tasks, in-
cluding short-term memory, language processing, reasoning,
perception, as well as sustained and selective attention [1].
The effect was also consistently observed within a task, be-
tween tasks, and between individuals [18]. In a preprocessing
step, we first removed all data points where pupil diameter
was 0 or negative. Such artifacts typically occur in case of
invalid data points. We also removed data points up to 100
ms directly before and after a blink. During these periods,
the pupil is partly occluded by the eyelid or eyelashes and
cannot be detected reliably. Finally, we linearly interpolated
small gaps of up to 50 ms to increase the amount of usable
data. Because the analyzed time periods are very short and

thus susceptible to noise, we used the median of pupil diam-
eter instead of the more commonly used mean. We expect
this to result in more robust features and more reliable pre-
dictions. Additionally, we used the pupil diameter maximum
to also consider peaks in pupil diameter. Both parameters
are expected to increase with increasing task difficulty.

Fixations

Fixations describe a stable gaze on the same location usu-
ally lasting between 200 ms and 350 ms [27]. The number of
fixations per second depends on many factors. Higher cogni-
tive load was found to lead to fewer but longer fixations [8],
whereas time pressure tended to decrease fixation duration
while increasing the number of fixations per second [33].
We used the number of fixations per second as a feature.
The difficulty levels of our scenarios were mainly driven by
the number of emergency personnel to coordinate, the num-
ber of sub-tasks to perform and increases in time pressure,
leading to the expectation of an increase in the number of
fixations per second.

Saccades

Rapid eye movements that usually occur between fixations
are called saccades. How cognitive load and task difficulty
influence saccade characteristics strongly depends on the
task at hand. There is evidence pointing towards an increase
of average saccade amplitude in search tasks compared to
free viewing [32]. With increasing task difficulty, the amount
of visual exploration should decrease and participants’ gaze
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behavior should be dominated by specific goal-directed sac-
cades. Hence, we expect to find higher saccade frequency
during high-difficulty tasks. Because participants have to
navigate the interface efficiently to perform well during the
simulation, we expect a higher saccade amplitude during
phases of high task difficulty.

Another form of saccades are so-called microsaccades. Mi-
crosaccades are small involuntary eye movements that can
occur during a fixation. Studies have tied them to cognitive
load in different situations. Non-visual tasks appear to re-
duce the number of microsaccades [9, 21, 29], while visually
more demanding tasks appear to increase the frequency of
microsaccades [2]. We used the method suggested by Krejtz
and colleagues [21] to detect microsaccades, but focused on
microsaccade frequency rather than amplitude or velocity.
We expected to see an increase of miscrosaccade frequency
with task difficulty.

Heart Rate

Just like pupil diameter increases as a consequence of re-
duced parasympathetic activity, heart rate was observed to
increase as well. Various studies investigated the relationship
between cognitive load and heart rate [4] and substantiated
this association.

We used the raw ECG signal recorded by the Bitalino
unit and processed it with the python package biosppy [5]
which uses an approach by Hamilton [14] for QRS detection
and provides us with a timestamp for every R-peak. A QRS
complex is the main spike in an ECG signal, marking a heart
beat, and an R-peak is the highest point of this complex.
Using the exact R-peak points, we then calculated the number
of heart beats per second, which we used as a feature for
assessing task difficulty.

In-game Activity

Not only physiological measures can be used to assess task
difficulty, but also the way participants interact with the
simulation. Periods of high task difficulty should be accom-
panied by higher in-game activity. Successfully completing
different sub-tasks — such as putting out fires or saving vic-
tims under time pressure — requires coordinating emergency
forces while keeping the overall setting in mind. !

We used actions per second as a measure for in-game
activity. Actions comprise opening the menu of an emer-
gency respondent, selecting a specific command, and select-
ing a target for that command. For instance, commanding a
paramedic to care for a certain victim results in 3 actions.

1Using the number of clicks may seem to render the classification problem
trivial, but even without the in-game activity as a feature, classification
accuracy is still around 70% and as our results show, it is not the dominant
feature.
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4 METHOD
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Figure 3: Schematic overview of our method showing how
we train individual classifiers and combine them to a general
one.

Our goal was to develop a robust classifier that works
reliably as well as independently of individual participants.
The main rationale underlying our approach was to train
classifiers based on participants from a database and apply
these classifiers to novel participants.

Participant-specific Classifiers

In the within-participant part of our approach, we aimed to
train a classifier for each participant and scenario, classifying
whether a participant currently plays the easy or hard ver-
sion of the simulation. To train such classifiers, we needed
samples from low- and high-difficulty periods to learn from.
This prerequisite was achieved by drawing 60 random sam-
ples of 4 s intervals, half of which are obtained from the
easy versions of each scenario and the other half from the
hard version. This process was repeated for each participant
and scenario. The 4 s interval enabled us to sample without
overlap and still include participants that had completed the
scenario well before the time limit was reached. Furthermore,
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this interval length enabled us to reject samples with more
than 30 % missing data, while still including all participants.
This prevented any bias that may have been introduced by
systematically excluding well-performing participants.

For each sample obtained, we calculated the features men-
tioned in Section 3. We used the tutorial as a baseline, mean-
ing that we extracted the same features for the whole tutorial
and used them for standardization, resulting in features that
were a percentage change of the baseline. This did not require
any further processing because all the used features were
standardized per second. Choosing the tutorial as a baseline
made it unnecessary to employ a dedicated calibration or
baseline period, which increases real-world applicability of
our approach.

After extracting the features, we z-standardized all fea-
tures for each scenario. This resulted in all features having
a mean of 0 and a standard deviation of 1, ensuring that all
features had the same normalized scale and that any machine
learning algorithm did not weight features according to their
scaling. Finally, we trained a forest of 100 extremely ran-
domized trees (Extra-Trees) [11] with a single participant’s
data to obtain a classifier specific to that participant. This
resulted in one classifier per participant and scenario being
able to distinguish a sample as either originating from a pe-
riod of high or low task difficulty. Instead of just classifying
into “low” or “high”, we used class probabilities, which are
scores between 0 and 1. All outputs above 0.5 were consid-
ered to reflect high task difficulty and all below 0.5 were
considered to indicate low task difficulty. This provided the
advantage of incorporating confidence into the prediction,
improving generalizability in the following step. Our method
was implemented in Python using the scikit-learn toolbox
[26].

General Classifiers

Based on the classifiers for each participant, the next step
was to generalize across participants. A naive way of ap-
proaching this issue would be to either train one classifier
for all participants or to blindly apply the trained classifiers
to other participants. It does, however, make little sense to
apply participant A’s classifier to participant B if their physi-
ological or behavioral features are very different. Therefore,
we weighted the prediction of individual classifiers accord-
ing to how similar they were to the participant we wanted
to apply them to.

First, we standardized the baselines for participant, guar-
anteeing that certain baseline features do not receive a higher
weight when calculating the Euclidean distance between two
baselines. Features on a larger scale tend to dominate the
distance, because they result in larger numbers (e.g., there
are a lot more fixations per second than in-game actions).
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Let x be a novel participant whose cognitive load we want
to classify, sample, a sample of x characterized with a set of
features, and Y the set of participants we trained on. Every
y € Y has a classifier ¢, that predicts a value between 0 and
1 for sample,. We combine these predictions according to
the following equations:

X _ 1
sim(x,y) = 2. weights, |baseliney — baseliney|
sim(x, y)pred., (sample
pred(sampley) = Zyey (x, y)prede, (sampley)

Syer sim(x,y)

sim(x, y) refers to the baseline similarity between partici-
pants x and y, weights, to the normalized feature weights
of classifier ¢,, and pred, to the prediction of classifier c,,.
This means we let each classifier ¢, predict the cognitive
load and weight these predictions according to the similarity
between participants x and y. Additionally, we factor the
feature weights of classifier ¢, into the similarity, giving a
higher weight to more important features. Dividing by the
sum of all similarities normalizes these similarities and en-
sures that the prediction’s final result is within the interval
of [0, 1].

5 RESULTS

In order to provide a frame of reference for the accuracy of
our method, we first present descriptive statistics for the 3
scenarios in Table 1. This illustrates how difficult the indi-
vidual scenarios were. The higher the increase in difficulty,
the larger differences between the easy and the hard version
should be and consequently the performance of our classifi-
cation should be better. We focus on the distinction between
easy and hard task difficulty, but our method can also be
applied to the classification problems “easy vs. medium”,
“medium vs. hard” and for the multi-class problem “easy
vs. medium vs. hard”. Evaluating these problems and their
results, however, is beyond the scope of this article.

Table 1: Descriptive statistics about the difficulty of the sce-
narios.

scenario | finished | average time of com-
on time | pletion, if finished
1 easy 8333 % | 4:12
1 hard 8333 % | 4:16
2 easy 97.22 % | 3:58
2 hard 36.11% | 6:31
3 easy 97.22 % | 7:01
3 hard 3333 % | 8:57
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Participant-specific Results

To evaluate how well our cross-participant approach works,
we first ran participant-specific classifiers. This was per-
formed using 10-fold cross-validation, to ensure that we do
not artificially increase classification accuracy by overfitting.
Table 2 shows the average accuracy for each scenario.

Table 2: Mean accuracy for within-participant classification
of cognitive load.

scenario accuracy

1 79.03%
2 70.14%
3 72.13%

Feature Weights
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Figure 4: Average feature importance for each of the 3 sce-
narios.

To better understand our results, we also present average
feature weights in Figure 4. Interestingly, pupil features have
the highest weight, making them the most important features.
We expected a large contribution from the pupil data and this
result is in line with the literature. Another important feature
is in-game activity. In particular, it is very important in the
first scenario, because participants are not yet familiar with
the controls, but by the time they have to perform the hard
version they already acquired more experience, increasing
the difference in in-game activity. Learning and experience
reduce this effect in the subsequent scenarios. Microsaccades
are the next most important category. Several publications
indicated that cognitive load has an effect on microsaccade
frequency [21], but usually with higher relative influence.
Our recording frequency of 250 Hz may be too low to detect
all microsaccades and most studies recorded microsaccades
during very long fixations of several seconds, whereas our
task resulted in rather short fixations.
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As expected, saccade and fixation characteristics are pre-
dictive for task difficulty, but do not carry as much weight
as other features. Finally, heart rate does not seem to matter
very much for our algorithm. Nevertheless, looking at mean
values per difficulty level, we still consistently find heart rate
to increase with difficulty. A possible reason might be the
short intervals analyzed. 4 s may be a very short time frame
to evaluate heart rate meaningfully.

Cross-participant Results

After we trained our participant-specific classifiers, we ap-
plied them for cross-participant classification according to
the schema described in Section 4. We performed leave-one-
out cross-validation on the participant level, meaning that
we withheld the participant to whom we applied our cross-
participant algorithm. To also test how well our approach per-
forms across different situations, we used classifiers which
had been trained either on the same scenario or on one of the
two others. The average results for classification accuracy
are shown in Table 3.

Table 3: Mean accuracy for cross-participant classification of
cognitive load when applying classifiers trained on different
scenarios.

applied to 9 ‘ 3
Classifier from
1 80.56% | 67.92% | 70.10%
2 73.70% | 70.37% | 67.04%
3 76.13% | 67.73% | 69.81%

It is noticeable that our approach does not lose accuracy
performing cross-subject classification compared to within-
subject classification. Only in the case of scenario 3, accuracy
drops slightly. This is likely to be the case, because towards
the end of our experiment subjects adapt strategies that differ
between them. Overall our approach generalizes well on
participant level, which can be attributed to the weighting
and various forms of standardization. We performed the
same classification with only the 10 most similar participants
instead of all participants and still got the same accuracy.
This may be used to save runtime in case little processing
power is available or when the number of participants gets
very large.

Also note that the accuracy barely drops when we use
data from another scenario, so our method does not only
generalize well across participants but also across different
scenarios. This is signified by the columns of Table 3. The
diagonal shows the the results obtained by training and eval-
uating on the same scenario setting the bar for other clas-
sifiers, whereas the rest of the column depicts results from
sub-optimal classifiers trained on other scenarios. As the
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scenarios differ in regards to how well easy and hard version
can be distinguished, meaningful row-wise comparisons can
not be made.

With regard to runtime, calculation of features took 0.699
ms on average and weighted classification took 6.723 ms, thus
resulting in a total runtime of 7.422 ms. The reported perfor-
mance was measured on a laptop with an Intel(R) Core(TM)
i7-7700HQ with 16 GB RAM running a non-optimized ver-
sion of our algorithm that does not make use of parallel
processing. Limiting the number of participants we consider
for classification to the n most similar ones would further
speed up our algorithm while still maintaining a high accu-
racy.

6 DISCUSSION

Our goal was a i) robust estimator offering ii) high accuracy,
iii) generalizing well across participants, and is also iv) real-
time capable. In conclusion, our approach satisfies all these
criteria.

Firstly, we showed the robustness of our approach. We
operate with a suboptimal baseline derived from the tuto-
rial and did not exclude participants with low tracking rates.
Furthermore, we use only one baseline from the very begin-
ning of the experiment. As a consequence, fatigue influences
pupil data over the course of the experiment, decreasing its
diameter and thereby counteracting some effects of changes
in cognitive load. Furthermore, luminance changes caused
by the dynamic nature of the simulation also add noise that
our methods shows resilience towards.

Secondly, a mean classification accuracy of 72 % appears
sufficient for most real-world applications. Actual classifi-
cation accuracy may most likely be higher because we use
task difficulties for classification and not actual cognitive
load. During a heterogeneous task, cognitive load is usually
not at a constant level and can be low within a difficult task
high within an easy task. Moreover, for participants that fin-
ished on time, we noticed a drop in predicted task difficulty
towards the end of the task indicating they may not be chal-
lenged anymore. Additionally, most participants started any
version of a scenario with low predicted task difficulty, likely
because they were adjusting to the task. Both of these cir-
cumstances reduce nominal accuracy of our approach even
though predictions may be accurate.

Thirdly, our results show that our method is able to gener-
alize across participants. There is no drop in accuracy when
we apply weighted predictions to withheld participants, in-
dicating that we can expect the same level of accuracy when
we apply our method to new participants. This even holds
true when we restrict training the algorithm to the 10 most
similar participants.

This is relevant for the last criterion of being executed in
real-time. When processing power is limited, the number of
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participants whose classifiers are applied can be restricted,
reducing runtime to a fraction of its original time without
loss of classification accuracy. This will allow most devices
to run the algorithm at an acceptable frequency.

Finally, our method maintaining its high classification ac-
curacy even when applied across different scenarios indicates
an additional degree of robustness.

Apart from the ability to generalize there are other ben-
efits to the presented method. For instance, converting the
continuous output to a binary classification is not mandatory,
as the output can be used directly. The higher the score, the
more likely is cognitive load to also be high. In the case of
an adaptive environment, task difficulty could be adjusted
in case it is found, for example, to be below 0.3 or above 0.7.

There are, however, limitations to our approach. We stan-
dardized features of each participant to a mean of 0 and a
standard deviation of 1, which may cause problems when
done in real time. If we assume the same order of tasks as
in this work, participants start with an easy version of the
first scenario. This means we only have data from periods
of low cognitive load during this task and scaling does not
work as expected. This may partly be mitigated by applying
the scaling function from participants from our database,
meaning we subtract the mean of a recorded participant and
divide by their standard deviation. This will still cause minor
loss in accuracy, but partly solves the problem. As soon as
we have data from periods of low and high cognitive load,
this is not an issue anymore.

While our approach can be used for many different tasks,
the trained estimators can not. The fixation and saccade char-
acteristics are specific to our simulation, so any classifier we
trained has limited use for other tasks. If we ignore fixations
and saccades to focus on the less task-dependent features
like pupil diameter, microsaccades and heart rate, the range
of application widens, but the accuracy for a specific task is
reduced.

As a future perspective, we are planning a follow-up study
using the method presented in this article to create an adap-
tive version of the emergency simulation. The 36 participant-
specific classifiers we trained should suffice as a database
to evaluate cognitive load of new participants in real time
and we are confident that we can implement a system allow-
ing for real-time adaptation of cognitive load caused by the
simulation.
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Abstract—Assessment of cognitive load is a major step towards adaptive interfaces. However, non-invasive assessment is rather
subject as well as task specific and generalizes poorly, mainly due to methodological limitations. Additionally, it heavily relies on
performance data like game scores or test results. In this study we present an eye-tracking approach that circumvents these
shortcomings and allows for generalizing well across participants and tasks. First, we established classifiers for predicting cognitive
load individually for a typical working memory task (n-back), which we then applied to an emergency simulation game by considering
the k most similar ones and weighting their predictions. Standardization steps helped achieving high levels of cross-task and
cross-participant classification accuracy between 63.78% and 67.25% for the distinction between easy and hard levels of the
emergency simulation game. These very promising results may pave the way for novel adaptive computer-human interaction across

domains and particularly for gaming and learning environments.

Index Terms—Eye Tracking, Physiology, Intelligent Systems, Cognitive Model, Physiological Measures, Psychology, Adaptive and

Intelligent Educational Systems.

1 INTRODUCTION

N many digital environments designed for learning,

working or even for entertainment purposes there is a
close link between users’ current cognitive load and their
affective experiences. An important impact of users’ cogni-
tive load on their affective states has been demonstrated
repeatedly (e.g. [1], [2], [3]). For instance, in a learning
context, it is highly relevant for users’ subjective experiences
that the instructions provided by a learning environment are
neither over-straining (and thereby frustrating) for learners
nor under-challenging (and thus boring) due to a lack of
workload imposed [4]. However, imposing an optimal level
of cognitive load onto learners that keeps them engaged and
satisfied as well as in their zone of proximal development
[5] might be a highly learner-specific issue that strongly
depends on individual learners’ prerequisites in terms of
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their prior knowledge and abilities. Thus, for calibrating
learning experiences with regard to their cognitive demands
and affective connotations in order to optimize the resulting
learning outcomes technical support systems might be help-
ful that allow for a real-time adjustment of the cognitive-
load level imposed by a learning environment.

Systems able to detect and properly react to a user’s cog-
nitive load in order to calibrate their affective and cognitive
experiences would of course also offer considerable benefits
for numerous other applications beyond learning environ-
ments - ranging from the workplace to the digital play-
ground. For instance, in potentially stressful digital work-
ing environments (such as systems for surgical assistance,
engine control or emergency management), in which er-
rors might have serious and life-threatening consequences,
individuals might also experience strong and fluctuating
affective reactions related to their current level of cognitive
(over-)load. Monitoring cognitive load in these contexts and
providing respective feedback and support to users might
not only help to avoid errors related to high cognitive
load but also to improve the overall affective experience.
For instance, (truck) drivers or other workers controlling
complex engines may be prompted to take breaks or can be
provided with individualized training when detected to be
over-strained in specific situations (e.g. [6] or [7]). Other ex-
amples might be conceivable in the medical domain where
surgeons might be relieved when necessary, or in aviation
scenarios where pilots may be provided with support from
their copilots or from assistance systems depending on their
cognitive-load levels [8].

Beyond scenarios related to learning or working, gam-
ing also seems to be a prime area for applying adaptive
procedures based on cognitive load measurement in order
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to optimize affective user experiences. For instance, in cases
where an obstacle in a game is too difficult for a player to
overcome, frustration may set in and the gaming experience
may suffer. Contrarily, when a game is too easy in relation to
users current abilities, gaming may also not be experienced
as enjoyable. Both cases can be circumvented by adapting
the degree of difficulty based on the player’s current level
of cognitive load. Thus, with accurate estimations of cog-
nitive load during gaming, automatic adaptations might
be enabled that prevent negative affective states (such as
boredom, frustration, and stress) and enhance positive af-
fects (such as engagement, joy, and satisfaction). A prime
example of a desirable affective state in gaming in and many
other scenarios of human-computer interaction is flow [9].
Flow is considered a positive affective state of optimal expe-
rience [10] that creates pleasure by balancing the challenge
of the task at hand and the available capabilities of the
user. Measuring a person’s cognitive load online might help
to adapt the levels of difficulty to a degree where it still
constitutes enjoyable challenge but does not over-strain the
user.

Usually, cognitive load is measured by using self-reports,
such as the NASA task-load index (TLX) [11], or by ob-
taining performance metrics. These traditional approaches,
however, have some drawbacks that render them impracti-
cal for systems aiming at real-time adaptations. In particular,
filling out a questionnaire about the level of cognitive load
currently experienced might strongly interfere with task
performance and immersion and is therefore unsuitable for
most applications. Moreover, questionnaire data are rather
subjective and my be influenced by many factors with the
current level of cognitive load being only one of them
[12].Thus, for real-time adaptations to cognitive load levels,
a more unobtrusive method would be required that does
not interrupt the current task like questionnaires but offers a
reliable, objective and continuous indirect online estimation
of user’s cognitive load.

Performance metrics such as test scores or task comple-
tion times are indirect and thus less interfering compared
to questionnaires. However, they are usually only available
at specific points in time and can not be measured continu-
ously as would be required for real-time adaptations to cog-
nitive load levels. For instance, in the case of digital learning
environments, one would aim at measuring cognitive load
levels during the learning process for adapting difficulty
levels of learning materials and not only after a learning
task is completed (e.g. by means of a test). Thus, the required
continuous and unobtrusive cognitive-load monitoring can
usually neither be provided by performance metrics nor by
questionnaire data [13].

An alternative approach for assessing cognitive load is
based on physiological measures. Cognitive load causes
physiological reactions that can be measured by sensors
[13], [14], [15]. The most reliable indicators are changes that
occur in the brain, but measuring these changes is intru-
sive, hard to set up, and not feasible in broad real-world
settings. In this context, methods like electroencephalog-
raphy (EEG) or near-infrared spectroscopy (NIRS) require
very specialized hardware and expertise to operate. Beres
[16] gives a good overview of EEG measures, including
their advantages and drawbacks - such as the number of
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required trials per experiment - that illustrate why these
measures are rather unsuitable in the context of most real-
life adaptive systems. Less intrusive sensors include heart
rate monitors and devices for measuring skin conductance,
which however seem to lack accuracy and/or validity for
measuring cognitive load [17]. Finally, eye tracking mea-
sures such as eye-fixation features offer a good alternative
to the aforementioned physiological signals. They do not
require physical contact with participants, can be obtained
in real-time, and have been comprehensively demonstrated
to be associated with cognitive load [18]. When obtained
by means of webcams, eye-tracking measures have the
potential to become available to a broad audience across
various application domains. Moreover, with the increasing
integration of eye-tracking technology in VR, AR, and smart
glasses [19], this physiological signal can also be measured
in high quality in a variety of applications in the future [20].

One of the major limitations of physiological indicators
such as eye-tracking data for measuring cognitive load
consists in the difficulty to generalize measures across tasks
and across participants [21], rendering cross-task and cross-
participant predictions or real-time assessments virtually
impossible. This drawback, however, is not limited to eye-
tracking data or physiological measures in general but
applies to many algorithms for real-time workload assess-
ment as Heard et al. conclude in their meta-review [22].
System designed for real-time assessments usually need to
be adapted to individual participants and/or specific tasks
in order to yield reliable predictions. This usually requires
data collection for lengthy calibration procedures for each
participant rendering these systems time consuming and
inconvenient for users. Even with individual calibration,
generalizations to different tasks or applications are usu-
ally poor, resulting in a necessity for repeated calibrations
for different tasks and/or applications. Currently, there is
no satisfying general purpose classifier for cognitive load
available.

Many researchers have worked on the problem of either
cross-task or cross-participant estimations of cognitive load
(see below for a more detailed discussion), but with limited
success so far. Usually, although intra-participant results
are good generalization results are limited or do not even
exceed chance level (e.g. [23], [24], [25]).

In this article, we present a novel and intuitive approach
how to remedy these methodological shortcomings. We
show how a machine learning approach might be used
for cognitive load detection based on eye-tracking data to
allow for successful generalization across participants and
tasks. We employ a schema of weighted votes that combines
participant-specific classifiers into a composite classifier
with a broader scope offering generalization ability across
participants and tasks. Our method might thus be able to
pave the ground for out-of-the-box solutions for adaptive
human-computer interaction based on a reliable assessment
and classification of users’ cognitive load independent of
the user and task at hand. As a result, users’ affective
experiences during human-computer interaction in contexts
such as learning, working, or gaming might strongly benefit
in terms of avoiding frustration, boredom, or stress and
in terms of enhancing engagement, joy, and satisfaction.
In line with this assumption we show that our cognitive-
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load classification is significantly correlated with negative
emotions such as stress and frustration.

2 RELATED WORK
2.1 Adaptations based on cognitive load estimation

Cognitive load estimation usually is performed in a task and
participant-specific way and has also been demonstrated
in this context to allow for useful workload adaptations in
learning environments or vehicel control tasks. Yuksel and
colleagues created a brain-computer interface that adapted
the difficulty of a musical learning task [26]. They measured
cognitive load using fNIRS to decide when to increase
difficulty. Their approach managed to significantly increase
learning gains during piano lessons compared to a control
group. However, the classifiers they used were participant-
specific and were trained using a long training period
consisting of 30 songs per participant.

Moreover, an aviation simulation was used by Wilson
and Russel to provide real-time adaptive feedback [8]. They
used a combination of EEG, respiration, and heart rate, but
also eye-fixation behavior to realize adaptations during an
uninhabited air vehicle task. Participant-specific artificial
neural networks were trained to detect high cognitive load
and adapt the task by slowing down simulated time when
cognitive load was too high. In contrast to our approach,
real-time adaptation was successfully realized only with
participant- and task-specific classifiers.

Furthermore, Kelleher et al. developed a method that
does not rely on EEG data, but rather on users’ behavioural
performance [27]. Their approach was able to distinguish
between a hard puzzle and an easier one based on users’
performance on the previous puzzles with an accuracy
of 71% to 79%. A wide array of features derived from
performance, user input, and user ratings was used to train
random forests and predictions were made based on the last
three puzzles the user was attempting to solve. While the
results are promising, their method is still specific to their
task and individual participants.

2.2 Cross-participant and cross-task approaches

While cognitive load estimation usually is performed in a
task and participant-specific way, there are several studies
that successfully implemented either cross-task or cross-
participant approaches (but not both). In contrast to the
method that we present in this article, most of them rely,
at least partly, on EEG.

A very detailed assessment of mental workload is pro-
vided by Popovic et al. [28]. They classified different kinds
of cognitive load (i.e., speech, fine motor, gross motor, audi-
tory, visual and cognitive) using EEG and ECG. Their cross-
participant classifier achieved 72.5% accuracy for cognitive
load in a leave-one-participant-out cross-validation.

Another interesting approach was presented by Ke and
colleagues [29]. They generalize from individual regression
models to more general ones by applying a feature selection
algorithm to EEG data recorded from a working memory
task and a complex simulated multi-attribute task designed
to evaluate operator performance and workload (see [30]).
In a first step, they used two thirds of their data to systemat-
ically eliminate features with low cross-task correlations and
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then evaluated their feature set on the remaining validation
set. They found a significant increase in performance of
their regression model. Again, these results show cross-task-
but not cross-participant-generalization. This makes them
applicable in some situations, but still not as general as a
many applications would demand.

Finally, Appel and colleagues successfully developed a
machine learning approach for cross-participant classifica-
tion of cognitive load [31] using eye-tracking data. For a
working memory task they achieved an accuracy of 76.8%
for offline classification and 70.4% for real-time online clas-
sification. A reworked version of their approach was used
in a emergency simulation and showed promising results
under noisy conditions similar to actual applications [32].
This updated version worked across different versions of
the simulation, showing potential for a cross-participant and
cross-task solution.

3 EXPERIMENTAL SETUP

We collected eye-tracking data from two different tasks:
(1) an N-back task (a standardized working memory task
inducing a controlled level of cognitive load), and (2) a com-
puter simulation, that represented a real-life application. We
aimed to use data from the first to estimate cognitive load
in the latter.

3.1 N-back task

The N-back task [33] is commonly used to induce cognitive
load and to measure working memory capacity. Participants
are presented with a randomly generated sequence of letters
and have to press one of two buttons to indicate whether the
currently presented letter is the same as IV letters before.
N modulates the difficulty of the task, because a larger
N means that more letters have to be held in memory
and compared to the actual one presented. With regard
to working-memory demands, the N-back task requires to
keep a string of N letters active in memory, compare the first
letter of the string to the current trial, decide on the correct
button, and update the memorized string by deleting the
first letter of the string and adding the letter of the current
trial to it. O-back can be used as a control condition where
participants have to compare the current stimulus with a
constant that was presented at the very beginning. Letters
are randomly chosen from the set L = {C, F, H, S} and are
presented for 0.5 seconds, followed by a black screen shown
for 1.5 seconds. A schematic overview is provided in Figure
1.

Participants first received instructions for the task and
had to perform a short training until they achieved an
accuracy of 60%. They then completed two critical blocks,
each comprising three difficulty levels: 0-back, 1-back, and
2-back. Each level of a block consisted of 154 trials; the order
of levels in a block was randomized.

We used the "N” of the N-back task as an experimental
manipulation of cognitive load (within participants design)
and focused on the difference between 0-back and 2-back
conditions.
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Fig. 1. Overview of the N-back task as illustrated for N = 2

3.1.1 Participants

28 students (mean age = 24.71, SD = 4.12, 14 females) from
the University of Tiibingen were recruited for the N-back
task. Data of one participant was discarded due to problems
with the eye-tracking recordings resulting in too little usable
data.

The experiment was approved by the local ethics com-
mittee and all participants gave written informed consent
at the beginning of the experiment. Participants received
monetary compensation at the end of the experiment. All
were right-handed and German native speakers.

3.1.2 Apparatus

We used a RED250 eye tracker from SensoMotoric In-
struments (SMI) in combination with the SMI Experiment
Center software (version 2.7.13) for the recording of eye
movements and pupil-related features. Calibration was per-
formed with SMI's built-in 9-point calibration. All eye-
tracking data were recorded at 250Hz in a laboratory setting
with illumination held constant in individual sessions.

During the task a chin-rest was used to ensure stable
head position and constant viewing distance. Stimuli were
presented on a 22-inch monitor with a resolution of 1,680 x
1,050 px using Arial font with a size of 25. All letters were
presented in gray on a black background.

3.2 Emergency simulation task

The Emergency simulation task was based on the commer-
cially available simulation Emergency by Promotion Soft-
ware GmbH [34]. Participants had to coordinate emergency
personnel consisting of firefighters, paramedics, and ambu-
lances involved in responding to different scenarios (e.g., a
car crash or burning buildings). The simulation can be used
as a training tool for emergency management tasks as well
as for entertainment purposes and thus covers aspects of
digital environments for learning, working, and gaming.
The simulation started with a tutorial that introduced
participants to the handling of the simulation. After the
tutorial was completed successfully, three scenarios were
presented: A car crash, burning buildings, and a train crash.
Each scenario had three levels of increasing difficulty (easy,
medium, and hard version of the scenario). Scenarios had
to be completed in the same order of easy to difficult
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levels and scenarios (i.e., from car crash to train crash) by
all participants. Scenarios and difficulty levels differed in
the number of sub-tasks to be completed as well as the
available numbers of emergency personnel and their com-
position. These manipulations were calibrated by Promotion
Software GmhH for the purposes of this study in order to
optimally manipulate the levels of cognitive load imposed
onto participants. Descriptive statistics can be found in Table
1.

The fixed order of scenarios and difficulty was chosen
deliberately for this task. While a randomized order would
be ideal to avoid confounds, it is hard to implement in a task
that involves learning and skill acquisition. Participants who
complete easy parts of the simulation first gain proficiency
fast and scenarios that may have been difficult for them in
the beginning become more and more easy. On the other
hand, when participants are confronted with very difficult
scenarios first, they may be overwhelmed which hinders or
even prevents learning. This expertise change over time and
its dependency on the order of task presentation necessi-
tated a fixed order. Gerjets et al. also recommend a fixed
order from simple to complex for learning tasks for this
exact reasons [4]. Moreover, an ascending order of difficulty
is in line with the way learning materials and games are
commonly structured, making it a better showcase for the
application of our method. A further important aspect is
that we aim to use data from the N-back task to estimate
cognitive load in the Emergency simulation so that the train-
ing data are not affected by a confounding of difficulty level
and time.

In the simulation certain sub-tasks could only be per-
formed by specific emergency personnel and with vary-
ing degrees of efficiency. Therefore, especially in scenarios
that did involve fire, planning activities were essential for
successful completion of a mission. For instance, as fire
can spread to nearby buildings and also hurt emergency
personnel, prioritisation of which fires to put out first was
crucial. Putting out fires could be done by firetrucks but
also by firefighters alone, however, with firefighters being
considerably slower at performing the task. Moreover, fire-
fighters might be required for cutting trapped victims free.
In general, more difficult levels involved more emergency
personnel units to be coordinated and more sub-tasks, pos-
ing higher demands on planning, prioritisation, monitoring,
and information updating.

After each level, participants were asked to indicate
their subjective cognitive load and also their affective ex-
periences based on a modified version of the NASA-TLX
questionnaire [11]. The questionnaire contained scales for
positive and negative emotions, mental and temporal de-
mand, effort, frustration, and stress, as well as a measure
of seriousness that were each rated on a scale of 0 to 100.
Participants’ responses were used to evaluate the validity of
our approach and the relation of our envisioned cognitive-
load classification to affective experiences.

For this task, we used the difficulty levels within each
scenario as manipulation of cognitive load (within partic-
ipants design) and focused on the difference between the
easy and hard version of each scenario.

97



Manuscript 3

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING

00:49:19:7
-

+/ ZUGUNGLUCK

Fig. 2. This image is taken from the third scenario "train crash” and shows a typical situation in Emergency. Paramedics and ambulances can be

seen at the bottom of the screen, as well as the firefighters’ trucks.

Scenario | difficulty | units | sub-tasks | fire | time | completed | cog. demand | temp. demand | effort
scenario 1 easy 6 11 no | 300s 83.33% 35.85 32.43 33.29
scenario 1 hard 12 20 no | 300s 83.33% 42.14 40.29 38.14
scenario 2 easy 9 18 yes | 450s 97.22% 39.00 23.14 32.57
scenario 2 hard 15 26 yes | 450s 36.11% 51.14 56.57 52.71
scenario 3 easy 10 24 yes | 600s 97.22% 43.43 31.57 39.43
scenario 3 hard 16 44 yes | 600s 33.33% 59.00 64.57 61.86

TABLE 1

Descriptive statistics of the three scenarios of the Emergency simulation game.

3.2.1 Participants

The Emergency simulation was completed by 47 partici-
pants (mean age = 24.6, SD = 6.3, 33 females). There was
no overlap between the participants of the Emergency simu-
lation and the participants of the N-back task. Seven partici-
pants had to be excluded due to problems with eye-tracking
recordings. Another 2 were excluded because they reported
that they did not take the experiment seriously. Finally, 2
participants had a very high number of missing data and
consequently did not provide enough usable data for all
scenarios, rendering their data partly unusable. The data of
the remaining 36 participants were included in the further
analyses.

We deliberately included participants with noisy data
or poor tracking ratios (i.e., time spans with invalid data
caused by the pupil not being detected reliably). This ren-
ders the data more realistic with closer resemblance to data
one would expect in an online-scenario of a real-world
application.

The experiment was approved by the local ethics com-
mittee and all participants gave written informed consent at
the beginning of the experiment. All participants were right-
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handed, German native speakers and received monetary
compensation at the end of the experiment.

3.2.2 Apparatus

The eye-tracking setup was the same as for the N-back
task, featuring a RED250 eye tracker from SensoMotoric
Instruments (SMI) in combination with the SMI Experi-
ment Center software (3.7.60). Calibration was performed
with SMI’s built-in 9-point calibration and the recording
frequency was set to 250Hz. Data recording was performed
in a laboratory setting with illumination held constant in
individual sessions.

For the Emergency simulation a laptop with a 16-inch
screen driven at 1920 x 1080 px resolution was used. This
task did not involve a chin-rest as to closer mimic a real-
world learning or gaming situation.

4 FEATURES USED FOR CLASSIFICATION

Eye-fixation behavior is strongly influenced by presented
stimuli as their structure and appearance guide the users
attention (e.g., Rayner, for a review [35], [36]). Therefore, our
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approach relies on eye-related features that were chosen be-
cause they are either independent of the stimulus structure
or only marginally depended on it. More specifically, we did
not rely on saccades, areas of interest, or the coordinates of
fixations.

The feature extraction process for a chosen share of data
always followed the same procedure. First we extracted 7
features which will be described later in this section and
then normalized them using a participant-specific baseline
to allow for cross-participant comparisons. Baseline in this
context refers to the features of a specific part of the data. For
the N-back task this baseline was taken from the instruction
phase, while for the Emergency simulation we used the
tutorial phase as baseline.

Normalization was performed at the participant level
and involved subtracting the baseline from the segment’s
features and dividing by it. As a consequence, all features
that we used reflected relative changes from the individual
participant’s baseline.

Detection of fixations, saccades, and blinks used SMI’s
built-in event detection. For fixations this is a dispersion-
based algorithm with a maximum dispersion of 2 — 3°
(depending on the distance between screen and user) and a
minimum fixation duration of 80ms. Blinks are defined via
the gaze and pupil signal. Gaze coordinates of (0,0) or the
pupil being zero or outside a dynamic computed validity
range is interpreted as a blink. Blinks of less than 70ms are
discarded. SMI's default algorithm interprets anything that
is between between two fixations or a blink and a fixation
as a saccade.

4.1 Pupil-related features

Pupil diameter has been used to measure cognitive load
for several decades. An increase in cognitive load leads to
decreased parasympathetic activity in the peripheral ner-
vous system, which in turn leads to an increase in pupil
diameter [37]. This effect was observed consistently within
a task, between tasks, and between individuals [38]. Various
studies have successfully replicated this relationship within
a wide range of settings, including short-term memory,
language processing, reasoning, perception, as well as sus-
tained and selective attention [18]. Pupil diameter has also
successfully been used to detect cognitive load in a variety
of scenarios, including driving [39], during low visual load
tasks [40], route planning with maps [41], and simultaneous
interpreting [42]. Furthermore, it was successfully used to
differentiate expertise closely related to cognitive load [43]

We applied preprocessing steps to improve data quality
of the pupil signal. First, we removed periods that were
marked as blinks, as well as the 100ms right before and
after a blink. During these phases, the pupil could not be
detected reliably and as a consequence measurements of
pupil diameter would suffer from reduced accuracy. We
furthermore removed implausible pupil values (e.g., values
of Omm or less, as well as values greater than 10mm).
Finally, we linearly interpolated small gaps of less than
50ms (12 data points at sampling rate 250Hz) and applied a
median filter to reduce noise.

We selected the median of the pupil diameter as the
main pupil feature, as it is more robust to outliers than the
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mean, in particular for short sampling periods. Moreover,
we utilized the maximum pupil diameter as a feature to
capture spikes in the pupil signal. We expected to see an
increase in both median and maximum pupil diameter with
increasing cognitive load.

Moreover, we employed the Index of Cognitive Activity
(ICA) as proposed by Marshall [44], [45]. It reflects rapid
spikes in the pupil signal that are caused by cognitive load.
For this part of the analysis, we did not apply the interpola-
tion and filter preprocessing as it may remove those spikes
needed for the ICA. A higher degree of cognitive load was
supposed to result in increased ICA.

As an additional, more exploratory feature, we included
the standard deviation of the pupil diameter. According to
the ICA, cognitive load can cause fluctuations and rapid
spikes in pupil diameter. Based on this assumption, we
expected a higher standard deviation of pupil diameter for
higher cognitive load.

4.2 Blinks

Cognitive load influences the frequency and duration of
blinks [46], [47]. Thus, increasing task difficulty was ex-
pected to increase the frequency of blinks, while increasing
visual demands should lower the amount of blinks [48].
We used blink frequency as a feature and expected it to
increase with cognitive load in both the N-back task and the
Emergency simulation.

4.3 Fixations

Fixations describe a stable gaze on the same location usually
lasting between 200 ms and 350 ms [35]. Frequency of
fixations is influenced by several factors. Time pressure
induced by high task demands tends to increase the number
of fixations while reducing their duration [49]. We expected
to observe the same pattern for higher levels of cognitive
load in our study. Consequently, we used the number of
fixations per second as a feature.

4.4 Microsaccades

Microsaccades are small involuntary eye movements that
may occur during a fixation and are associated with cog-
nitive load. Studies reported an increase in microsaccade
frequency in visually demanding tasks [50], whereas non-
visual tasks (e.g, auditory tasks or mental arithmetic)
seemed to reduce their frequency [51], [52], [53].

We used the method suggested by Krejtz and colleagues
[53] to detect microsaccades, which relies on thresholds to
find small ballistic sequences in an otherwise fixed gaze.
Instead of focusing on amplitude or velocity we use mi-
crosaccade frequency as a feature, as the former two would
require a higher sampling rate than 250Hz to be reliable. Be-
cause both tasks involved visual presentation, we expected
an increase in microsaccade frequency with rising cognitive
load.

5 COGNITIVE LoAD DETECTION METHOD

The core of our approach was strongly inspired by Appel et
al. [31], [32]. The fundamental idea was to train participant-
specific classifiers for low and high cognitive load based on
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data from a N-back task and use their weighted predictions
on the Emergency simulation. Participants that were similar
during baseline periods are weighted stronger as we expect
their physiology to change under cognitive load in a similar
way.

5.1 Within-task and within-participant classification

Participant-specific classifiers were trained on N-back data.
As the N-back is a standard working-memory updating task
that is recorded under laboratory conditions, we expected
it to reflect characteristic physiological changes caused by
cognitive load and to allow for generalization from this task
to the Emergency simulation as described in Section 5.2.

To train a classifier that can differentiate between high
and low cognitive load, we needed data from periods of
high cognitive load and periods of low cognitive load
during the training phase. We used the N-back task as
foundation for single-participant classifiers and considered
the 0-back condition to reflect low cognitive load and the
2-back condition to represent high cognitive load. 25 non-
overlapping samples with a length of 4s each were ran-
domly selected from both conditions, yielding 50 samples
per participants that were used for training the individual
classifier. We rejected samples with more than 50% missing
values in the pupil signal and resampled to ensure that each
sample contained enough information to be useful for train-
ing. These numbers represented a balanced compromise
between sample size and sample length.

For each of the samples we extracted the features de-
scribed in Section 4. All features were then z-transformed
using individual means and SDs for standardization. This
scaling improved inter-participant comparability consider-
ably and should thus help applying classifiers across partic-
ipants.

Finally, we trained a forest of 1000 extremely random-
ized trees (Extra-Trees) [54] per participant to distinguish
between high and low cognitive load based on that indi-
vidual participants” samples. Extra-Trees had the advantage
of providing not just a decision into classes, but also class
probabilities between 0 and 1. This enabled us to form a
continuous scale instead of a dichotomous decision, adding
further information. The output was a number between 0,
when the classifier was absolutely certain that a sample was
collected under low cognitive load, and 1 in case of high
cognitive load. In addition, Extra-Trees tended to not overfit
as fast as other classification methods allowing more fea-
tures in conjunction with less samples. Moreover, Extra trees
seemed appropriate for the goal of real-time classification of
cognitive-load levels as they can be trained and evaluated
fast. The use of 1000 trees was empirically determined, even
though fewer trees may work as well. In case computation
time is an issue, less trees may be chosen.

We used the Extra-Tree implementation provided by the
Python toolbox scikit-learn [55].

5.2 Cross-participant and cross-task approach

In a next step, we combined the single-participant classifiers
trained with data from the N-back task to form a composite
classifier that can be applied across participants and tasks.
The fundamental idea of our approach was to apply the
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classifiers trained on N-back data to the Emergency simula-
tion, but to weigh their contribution to the final prediction
according to how similar their baselines were. In this way,
participants from the N-back taks that were more similar
regarding their physiological features and behavioral pa-
rameters to a participant from the Emergency task were given
higher weights in the final prediction. Adding this weighing
substantially increased the accuracy of the combined classi-
fier.

To verify cross-task capability, sample data from the
Emergency task was needed. Therefor, we randomly sampled
25 segments of length 4s from the easy and hard version
of each scenario of Emergency, resulting in 50 samples per
scenario and participant. Again, these numbers represented
a compromise between sample length and sample number.
From these samples we extracted the features in the same
way as we did with the N-back data including the normal-
ization using the baseline and z-transformation. Segments
extracted from the easy version of a scenario represented
low cognitive load, while segments from the hard version
represented high cognitive load.

For baseline comparison, features were normalized
across all participants to have a mean of 0 and standard
deviation of 1 as to not inflate the importance of features
that are on a larger scale. There were, for instance, a lot fewer
blinks within one second than there were fixations and the
pupil diameter in millimeters was a lot larger compared to
the number of microsaccades per second.

The procedure can be described as follows: Let p be a
participant of Emergency whose cognitive load we want to
classify, s, a sample of p characterized by a set of features,
and P the set of participants of the N-back task. Every p € P
has a classifier ¢, that predicts a value between 0 and 1 for
sample,. We combined these predictions according to the
following equations:

1

S A ey, DA5C, — bSCotter]

sim(p, other) =

ZotherePn sim(z, other)pred,,,,., (sample;)

ZatherePn sim(z, other)

pred(s) =

sim(p, other) refers to the baseline similarity between
participants p and other, we,,,., to the normalized feature
weights of classifier coiper, acce,,,,, to the cross-validated
accuracy that classifier cipe, achieved on participant other,
and predother to the prediction of classifier coiper. This
means that we drew a prediction for cognitive load from
each classifier co¢per and weighted these predictions ac-
cording to how similar the baselines of participants p and
other are. Additionally, we factored the feature weights of
classifier cytper into the similarity, giving a higher weight to
more important features, and also taking into account how
well the classifier performed on its specific participant.

Dividing by the sum of all similarities normalized these
similarities and ensured that the prediction’s final result was
within the interval of [0, 1]. P, refers to a subset of P, that
is restricted to the n participants with the highest similarity.
The choice of a smaller n can help to reduce computational
costs in case there are a lot of classifiers available from the
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Fig. 3. Overview of our method, showing how we train individual classifiers and apply them to new data.

N-back task. We employed n = 5 to highlight that it does
not take a lot of participants to get accurate results.

Figure 3 shows a schematic overview of our method and
Algorithm 1 presents pseudo-code of our cross-participant
and cross-task classification. Both serve to illustrate our
approach.

6 RESULTS
6.1 Within-task

As a frame of reference, we did not only analyze results
for cross-task and cross-participant classification but also for
within-task and within-participant classification. All results
reported for within-participant classification were obtained
based on a 10-fold cross-validation to avoid overfiting a
classifier to a specific participant and thereby artificially
inflating classification accuracy.

Within-task accuracy for the Emergency task is reported
for each scenario individually and is based on random
samples with a length of 4 seconds that were extracted from
the easy and hard version, respectively. Feature extraction
was performed in the same way as described in detail for
the N-back samples.

In case a participant reported that the easy version of
a scenario was experienced to be more difficult than the
hard version, that scenario was excluded from the results
of that participant. “More difficult” refers to the average
rating of cognitive demands, temporal demands, and effort
as reported in the NASA TLX. For 10 participants, the first
scenario had to be excluded for this reason and for 2 the
second scenario. In the easy version of the first scenario,
participants had their first real interaction with the simu-
lation and it is therefore likely that they experienced it as

more difficult than the hard version, because by that time
they already were familiar with the simulation.

Table 2 shows the detailed accuracy scores for the N-back
task and emergency task, respectively.

| within-participant  cross-participant

N-back 79.55% 75.81%
Emergency, Scenario 1 71.91% 71.41%
Emergency, Scenario 2 71.98% 69.34%
Emergency, Scenario 3 68.91% 67.16%

TABLE 2

Detailed accuracy of within-task classification.

It is notable that the results for the N-back task were
slightly better than those obtained for the Emergency task.
Partly, this may be because of the experimental setup. The
N-back task was recorded with participants using a chin-
rest, which helped to improve quality of the eye-tracking
data in general and reliability of the pupil measurements in
particular. Furthermore, difficulty remained constant over
the course of one level, whereas situational difficulty varied
during levels of the emergency simulation. The fact that we
took random samples from easy and difficult versions of
the simulation may thus have led to samples not reflecting
the exact same degree of cognitive load, even within one
participant. This, in turn, added variance to the features
and made the labels "easy” and ”difficult” less distinct for
Emergency than for the N-back.

Comparing the drop in accuracy caused by the shift from
within-participant to cross-participant classification, one can
see that the drop was more pronounced for the N-back task.
This was likely due to the fact that we had a larger number
of participants for the Emergency simulation, meaning that
it was more likely to find good matches during the baseline
comparison.
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Algorithm 1 Pseudocode outlining our method for cognitive load detection

P « set of all participants in N-back task

dp,; <+ data of participant p taken from the ith scenario of Emergency

basep < normalized baseline of participant p
cp < N-back-trained classifier of participant p
n < number of neighbours to consider
for other € P do

acc < accuracy(Cother)

w 4 featureweights(c ther)

w <— i"w
dist(p, other) <= 3 acc w|base, — baseother|
fori e {1,2,3} do

predictionother,p,i < Cother-predict(dp. ;)
end for
dist <

dist
dist
sim 4= 2
P, «— {y € P|y amongst n most similar}
fori e {1,2,3} do

for sample € dp; do

> calculate distances between participants’ baselines and make predictions

> prediction for each sample of dj, ;

> normalize distances to sum to 1
> get similarity from the distance
> n participants with highest similarity to p

(sample)

outy[i, sample] «— ZMMEP"Zs::::ZTZ:(TZ)(T(Z;;LZT)T
end for
end for
end for

6.2 Cross-task

Cross-task and cross-participant results were obtained by
applying classifiers trained on N-back data to samples from
the Emergency simulation following the approach described
in Section 5.2. Classification accuracy is summarized in
Table 3 and ranged between 63.78% and 69.25%.

Scenario | accuracy

Scenario 1 69.25%

Scenario 2 63.78%

Scenario 3 64.02%
TABLE 3

Accuracy of classifiers trained with N-back data and applied to data
gathered during the emergency simulation.

As expected, applying N-back classifiers to Emergency
data led to a slight drop in classification accuracy as it
represented a classification across different participants and
tasks. Using classifiers from “wrong” participants intro-
duced a certain error as the classifier did not match the
participant. The same holds true for the application across
tasks. Moreover, as Figure 4 shows, feature weights also
differed between the two tasks introducing yet another
source of error.

The main difference in feature importance was observed
for ICA and microsaccades. Both carried considerably more
importance in the Emergency simulation than they did for
the N-back task. This was in line with results of Fairclough
and colleagues who found the ICA to not be significantly
sensitive to isolated working memory tasks like the N-
back task [56]. A possible explanation for the difference in
microsaccade importance may be the different nature of the
task. Emergency was a lot more visually demanding and
required more widely distributed attention. This fits with
findings from Duchowski and colleagues [57] that ambient
visual search increases the number of microsaccades. The
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Fig. 4. Average weights for Emergency and N-back tasks

importance of the remaining features was slightly higher
for the N-back task because ICA and microsaccades were
less important and the importance of all features sums up
to1.

For scenario 1 classification accuracy decreased from
71.91% from within-participant, within-task application to
69.25% in cross-participant, cross-task classification. A pos-
sible explanation for this good performance may be that
participants did not yet have experience with the task (i.e.,
they all started at the same point). This “neutral” conditions
with regards to the experience and skills acquired may be
similar to the N-back task, thus leading to less loss caused
by cross-task application of classifiers.

Scenario 2 showed the most pronounced decrease, from
71.98 to 63.78%. The major error source was the cross-task
application, as cross-participant results differed only slightly
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from the within-participant ones for Emergency. It seems
likely that the structure of this specific scenario lead to a
feature distribution that differed the most from the N-back
task’s features, resulting in this decrease in accuracy.

An accuracy loss of less than 5 percentage points — from
68.91% to 64.02% — could be observed for scenario 3. These
results were very similar to the second scenario and likely
have a similar cause: cross-task application.

To verify our prediction not only on a binary level,
we considered participants’ questionnaire data and their
correlation with our predicted continuous cognitive load.
Table 4 shows Pearson correlations between cognitive load
predicted by our algorithm and self-report scores. Self-
reports were normalized on participant level to account
for individual differences of scale. As a frame of reference,
we furthermore included correlations between the question-
naire’s different sub- scales.

Predictions made by our algorithm showed a significant
correlation with self-reports. They correlated at 0.399 with
self-reported cognitive demands, at 0.459 with reported
temporal demands, and at 0.484 with the effort subjectively
experienced by participants. The high correlation with per-
ceived effort is a strong indicator for the validity of our
predictions.

7 DiscussiON

We applied a machine learning approach to the classification
of cognitive load based on eye-tracking data and investi-
gated how this approach generalizes across participants and
tasks. Our results indicate a robust approach that yields
good classification accuracy of 63.78% to 69.25% across
participants and tasks. This is significantly above chance
level and is comparable to eye-tracking based classification
results for cognitive load in other scenarios. For instance,
Hogervost et al. [58] reported roughly 68% accuracy in
the distinction between level 0 and level 2 for the N-back
task purely based on eye-related features. However, their
classification algorithm was trained for each participant
individually, within a specific task, and using intervals that
were 50s long — all limitations that our approach does not
have. Additionally, cognitive load predictions yielded by
our method correlate at » = 0.484 with participants” self-
reported invested effort, which provides an indicator of
validity on a second level.

When taking a closer look at our data set, the robustness
of our approach seems noteworthy. We considered noisy
data in our analyses and, in the case of the Emergency game,
used the tutorial as an active baseline instead of a neutral fix-
ation cross. Furthermore, Emergency is not a well-controlled
laboratory task, but a complex emergency simulation game,
which requires participants to identify what to do with the
right emergency personnel under time constraints in an
environment that adaptively reacts to players actions (e.g.,
spreading fires when not extinguished by fire fighters). As
such, the present results seem promising as they indicate
the validity of our approach even when applied to a real-
world scenario with limited baseline options and complex
interactions.

Moreover, due to the dynamic nature of the Emergency
simulation, cognitive load was not constant over the course
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of one level. Closer inspection of the predictions generated
by our algorithm revealed that participants seem to start
each level with rather high predicted load which quickly
dropped after a first orientation phase of about 20-30s.
Towards the end there was also a clear difference between
participants that successfully finished a level and those who
did not. When participants realized they will finish on time,
predicted cognitive load dropped considerably, whereas it
rose when they became aware that they could not finish
on time. This uneven distribution of cognitive load adds
to the error rates that we report. Therefore, our predictions
may actually be even more accurate then what is reported,
because we had to rely on the overall task difficulty of a
specific level as an indicator of cognitive load instead of a
more direct measure (e.g., derived from interaction metrics).
Generalizing a difficulty level by labeling all samples from
this level as “high cognitive load” even though there were
probably periods of lower cognitive load within the same
time-frame possibly introduced a kind of artificial error.

Additionally, the nature of our features and method are
very versatile. All features we used are either aggregated
over the whole length of the segment or are calculated per
second. As a result, length of segments can be adjusted at
will. Longer segments are less noisy, but shorter segments
better capture the cognitive load at a certain point in time.
Pre-trained classifiers may be applied independent of seg-
ment length, making our approach more flexible. The same
holds true for the number of classifiers that are used. When
computation time is a constraint, less classifiers may be used
for prediction, as n — the number of closest classifies during
baseline comparison — can be adjusted at will.

7.1 Limitations

There are, however, also some limitations to our approach.
First, it only works reliably when features we are z-
transformed the features onat the participant level. This
means that we can only reliably analyze data in hindsight
and when there are periods of low and high cognitive load.
One may nevertheless use the presented approach in real-
time scenarios, but then it has to be considered that work-
load predictions might not be reliable in the very beginning
might not be reliable, but will improve over time as more
data becomes available and more variation in cognitive load
is observed.

Moreover, one of the reasons why our approach works
successfully may also be considered a drawback, namely:
baseline comparisons. When the baseline for two tasks is
recorded under different conditions problems might arise.
For instance, cognitive load may be different in a baseline
obtained while looking at a fixation cross as compared to a
baseline extracted from completing a tutorial. Using the sug-
gested process of matching participants for cross-participant
and cross-task classification, this may lead to a sub-optimal
distance metric and consequently an inappropriate weigh-
ing of predictions. Ideally, all baselines should evoke the
same degree of cognitive load for baseline distances to
operate best.

Furthermore, as our analysis of the feature weights
showed, a complex simulation game like such as Emergency
does not evoke the exact same physiological responses as a
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measure prediction  pos. emotions neg. emotions cog. demand temp. demand effort frustration stress  seriousness

prediction 1.000

pos. emotions | -0.111 1.000

neg. emotions | 0.186** 0.037%*** 1.000

cog. demand 0.399%**  -0.134%** 0.212%** 1.000

temp. demand | 0.459™** -0.175%** 0.285*** 0.633*** 1.000

effort 0.484*** -0.203*** 0.283*** 0.701*** 0.758*** 1.000

frustration 0.294%** -0.338*** 0.443%** 0.474%** 0.546™** 0.607***  1.000

stress 0.4047** -0.184%** 0.309%** 0.551%** 0.622%** 0.657***  (.573*** 1.000

seriousness 0.012 0.175%** -0.112** -0.009 -0.031 -0.023 -0.058 -0.016  1.000
TABLE 4

*Significant at p < 0.05, **Significant at p < 0.01, ***Significant at p < 0.001

laboratory working- memory task like such as the N-back
task. Our results indicate that in particular the importance
of the ICA and of microsaccades, in particular, seems to
depend on the task at hand. This indicates that — although
successful cross-task is possible - there may not be a classi-
fier that works optimally for all tasks. A possible solution
for this problem might could be to have classifiers trained
on data of different tasks and also add these tasks to the
baseline comparison. This way, classifiers trained on tasks
that are similar in nature will be preferred.

Our study relied on visual stimuli and did not include
other modalities like such as auditory tasksstimuli. How-
ever, at least for working memory tasks important features
seem to react alike andbe useful independently of pre-
sentation modality. For instance, Kahneman demonstrated
extensively and with many different stimuli, tasks, and
modalities showed thean effect of working memory load on
pupil diameter [38]. and Rrecent research indicates yielded
similar findings also for microsaccades [51] - at least for
auditory and visual stimuli.

8 CONCLUSION

In summary, we evaluated a cross-participant as well as
cross-task classification algorithm that yields good accuracy.
Combined with the robustness of our method and its non-
invasive nature this article - despite its limitations - provides
a promising step towards out-of-the-box solutions for adap-
tive human-computer interaction based on the assessment
and classification of users’ cognitive load by means of eye-
tracking data.
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