Combining Learning and
Structure for Robotic
Manipulation

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultéat
der Eberhard Karls Universitét Tiibingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

M.Sc. Alina Kloss

aus Bietigheim-Bissingen

Tiibingen
2020

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultét
der Eberhard Karls Universitédt Tiibingen.

Tag der miindlichen Qualifikation: 16.12.2020

Stellvertretender Dekan: Prof. Dr. Jozsef Fortagh

1. Berichterstatter: Assist. Prof. Dr. Jeannette Bohg
2. Berichterstatter: Prof. Dr. Hendrik P. A. Lensch

Abstract

Household robots have been a long standing promise of robotics. But despite of
decades of robotic research and progress in the field, we still do not encounter many
robots in our everyday life. Creating the robotic helpers envisioned in science-fiction
movies would of course require advances towards more general, human-like artifi-
cial intelligence. However, today’s robots also already struggle with much simpler
tasks, like accurately and reliably manipulating novel objects based only on sensory
data. Such sensory-motor skills often have challenging dynamics and are further
complicated by the fact that the state information that can be extracted from raw
sensory input is noisy or even incomplete.

Over the last decade, a perceived dichotomy between model-based and data-driven
approaches has often shaped the discussion about how to implement such robotic
skills: In the “traditional”, model-based approach, engineers manually define a skill
as a combination of models, state representations and algorithms. The data-driven
approach, in contrast, relies on powerful function approximators like deep neural
networks to learn robot skills from large amounts of training data. Both approaches
have advantages and limitations that are in many aspects complementary.

The model-based approach requires no training data, is transparent and relies on
models that are grounded in the laws of physics and are thus universally applicable.
However, formulating accurate and efficient models can be difficult for many tasks,
especially when it comes to interpreting sensory signals. For example, manually
modeling the appearance of all objects that a robot might encounter in a typical
household is clearly impossible.

The data-driven approach, on the other hand, requires little prior knowledge
about the task. Deep neural networks can directly predict robot actions from raw
sensory inputs and have shown impressive results especially in domains like com-
puter vision, for which specifying analytical models is difficult. The disadvantages
of learning are the large amounts of required training data, which can be difficult to
obtain when robots are involved, and the black-box nature of the resulting learned
solutions. In particular, guaranteeing safety and correct performance for data not
seen during training (generalization) is currently an open problem.

In this thesis, we propose to combine learning and structure to get the best of

both worlds. We hypothesize that including learning into a model-based approach
could fill the gaps where no analytical model could be found, speed up approaches

il

Abstract

when the analytical solution is too slow or improve existing models with a learned
component. Furthermore, introducing more structure into learning methods could
help to reduce the amount of necessary training data and improve the generalization
performance and interpretability of the learned models.

We evaluate this hypothesis on the sensory-motor skill of planar pushing. This
task requires the robot to translate and rotate an object on a flat surface using
a cylindrical pusher given only visual observations of the system. While the task
is simple to describe, the associated dynamics are already quite challenging with
different contact modes and complex friction forces.

Our evaluation starts at the level of the individual models and representations
required for perception and prediction. We compare a purely learned approach
for predicting the outcome of pushing actions from sensory data to a combined
one, that trains a neural network for perception end-to-end through an analytical
model for prediction. While the purely learned approach reaches the best prediction
accuracy when training and test data are similar, the combined method generalizes
better to pushes and objects not seen during training and is more data-efficient.

Analytical dynamics models and physically meaningful state representations are
of course not the only way to provide structure to learning approaches. While
models describe certain aspects of the system, algorithms contain knowledge about
how to solve a given task. On the example of state estimation with Bayesian fil-
ters, we demonstrate that embedding model-learning into differentiable algorithms
facilitates learning in comparison to unstructured models. In addition, it allows to
optimize the learned models specifically for their respective algorithm and can be
advantageous when designing the models manually is difficult.

Finally, we address the complete task of planning pushing actions based on visual
input. Its main challenges are the computational cost of optimizing pushing motions
and contact locations simultaneously and the uncertainty induced by imperfect per-
ception. We present an approach that combines learning and structure to address
both of these challenges. First, we improve the planning efficiency by decomposing
the problem into contact point selection and pushing motion optimization. This
allows focusing the expensive motion optimization on few promising contact loca-
tions. We compare using a learned or an analytical model for both planning steps.
Second, we combine learning-based perception with a physically meaningful state
representation and an explicit state estimation algorithm to increase the accuracy
of our approach as compared to a previously published, purely learned method.

In summary, this thesis shows that the model-based and the data-driven approach
do not have to be understood as exclusive choices but can rather be viewed as
extreme points in a trade-off between providing prior knowledge and leaving flexi-
bility for learning new solutions. On the example of planar pushing, we demonstrate
how combining learning and structure can make sensory-motor skills more robust,
general and data-efficient.

v

Kurzfassung

Haushaltsroboter gehéren schon seit Langem zu den Versprechungen der Robo-
tik. Doch trotz jahrzehntelanger Forschung und grofien Fortschritten auf dem Ge-
biet treffen wir in unserem Alltag nach wie vor nicht viele Roboter an. Um die
Roboter-Helfer zu entwickeln, die sich das Science-Fiction Kino ausmalt, bediirfte
es natiirlich grofler Fortschritte hin zu einer menschenédhnlicheren, allgemeinen
kiinstlichen Intelligenz. Jedoch scheitern unsere heutigen Roboter auch noch haufig
an viel einfacheren Aufgaben, etwa daran, nur anhand von Sensor-Daten unbekann-
te Gegenstidnde genau und verlésslich zu handhaben. Die physikalischen Prozesse
hinter solchen sensorisch-motorischen Fihigkeit sind in vielen Féllen komplex und
schwierig mathemathisch zu modellieren. Erschwerend hinzu kommt zudem, dass
aus den sensorischen Daten oftmals nur fehlerbehaftete oder unvollstandige Infor-
mationen iiber den aktuellen Zustand des Systems gewonnen werden konnen.

In den letzten zehn Jahren hat eine gefiihlte Zweiteilung zwischen modellbasierten
und datenbasierten Methoden héufig die Diskussion dariiber bestimmt, wie solche
Roboter-Fahigkeiten implementiert werden sollten. Bei der ’traditionellen” modell-
basierten Herangehensweise definieren Ingenieure die Fahigkeit von Hand, indem
sie Modelle, Représentationen des Systemzustands und Algorithmen miteinander
kombinieren. Die datenbasierte Herangehensweise hingegen versucht mit Hilfe von
Lernverfahren wie kiinstlichen neuronalen Netzen die gewiinschte Fahigkeit direkt
anhand grofler Mengen von Trainingsbeispielen zu erlernen. Beide Methoden ha-
ben sowohl Vor- als auch Nachteile, die jedoch in vielerlei Hinsicht komplementéar
zueinander sind.

Die modellbasierte Herangehensweise kommt grofitenteils ohne Trainingsdaten
aus, ist versténdlich und nutzt Modelle, die auf den Gesetzen der Physik basieren
und somit universell giiltig sind. Jedoch kann es oft schwierig sein, exakte und effi-
ziente Modelle zu formulieren, besonders wenn es darum geht, sensorische Signale
zu interpretieren. Es ist zum Beispiel offensichtlich unmoglich, manuell Modelle fiir
das Aussehen jeglicher Objekte zu erstellen, denen ein Roboter in einem durch-
schnittlichen Haushalt begegnen kénnte.

Dagegen braucht es kaum vorheriges Wissen iiber die Aufgabe um datenbasierte
Methoden zu nutzen. Kiinstliche neuronale Netze mit vielen Schichten von Neuro-
nen konnen direkt sensorische Daten verarbeiten, um die néchsten Aktionen eines
Roboters zu planen. Besonders in Bereichen wie dem maschinellen Sehen, wo es

Kurzfassung

schwer ist analytische Modelle zu formulieren, erreichen neuronale Netze beein-
druckende Erfolge. Ein Nachteil neuronaler Netze ist ihr hoher Bedarf an Trai-
ningsdaten. Diese sind zum Teil schwierig zu beschaffen, insbesondere wenn dazu
reale Roboter genutzt werden miissen. Zusétzlich sind die gelernten Losungen in-
transparent und es ist daher schwer zu garantieren, dass sie auch dann sicher und
zuverléssig funktionieren, wenn die Eingabedaten nicht den im Training Gesehen
entsprechen.

In dieser Dissertation schlagen wir daher vor, maschinelles Lernen mit analytischen
Strukturen zu kombinieren um von den Vorteilen beider Herangehensweisen zu pro-
fitieren. Unser Hypothese ist, dass Lernverfahren im Rahmen der modellbasierten
Herangehensweise genutzt werden konnen, wenn kein analytisches Modell gefunden
werden konnte oder die analytische Losung zu rechenaufwindig ist. Auch kénnten
Komponenten gelernt werden, um existierende Modelle zu verbessern. Im Gegen-
zug konnte die bessere Strukturierung von Lernverfahren die Menge an benétigten
Trainingsdaten reduzieren, die Ubertragbarkeit gelernter Funktionen auf neue Si-
tuationen verbessern und die gelernten Losungen transparenter machen.

Wir iiberpriifen diese Hypothese anhand einer sensorisch-motorischen Fahigkeit,
bei der der Roboter ein Objekt mit Hilfe eines zylindrischen Fingers auf einer flachen
Oberflache verschieben und drehen muss. Dazu erhélt er ausschliellich unverarbei-
tete visuelle Informationen iiber das System. Diese Aufgabe ist zwar an sich einfach
zu beschreiben, die zugehorigen physikalischen Abliufe sind jedoch auf Grund von
komplexen Reibungsinteraktionen und wechselnden Kontakt-Modi schwer zu mo-
dellieren.

Wir beginnen unsere Untersuchung auf der Ebene der einzelnen Modelle und
Systembeschreibungen, die fiir die visuelle Wahrnehmung und die Vorhersage der
Konsequenzen einer Schiebebewegung notwendig sind. Dazu vergleichen wir ein
reines Lernverfahren mit einer kombinierten Methode, die ein neuronales Netz fiir
die Verarbeitung der sensorischen Daten direkt durch ein analytisches Modell der
physikalischen Prozesse trainiert. Wir stellen fest, dass die gelernte Losung die ge-
nauesten Vorhersagen trifft, solange auf Daten getestet wird, die den Trainingsdaten
ahneln. Die kombinierte Methode hingegen lésst sich besser auf Bewegungen und
Objekte iibertragen, die nicht in den Trainingsdaten enthalten waren und benotigt
dariiber hinaus weniger Trainingsdaten.

Physikalische Modelle und Repréisentationen des Systemzustands sind natiirlich
nicht die einzige Moglichkeit um Lernverfahren mit Struktur zu versehen. Neben
Modellen, die einzelne Aspekte des Systems beschreiben, enthalten Algorithmen
Wissen dariiber, wie ein gegebenes Problem gelost werden kann. Am Beispiel von
Bayesschen Filtern demonstrieren wir, dass das Einbetten von neuronalen Netzen
in differenzierbare Algorithmen das Lernen vereinfacht. Dariiber hinaus erlaubt
das Verfahren es, die gelernten Modelle speziell fiir den jeweiligen Algorithmus zu
optimieren.

vi

Kurzfassung

Abschlieend betrachten wir die Aufgabe, anhand visueller Daten Schiebeaktio-
nen zu planen, in ihrer Gesamtheit. Die gréfiten Herausforderungen dabei sind es,
gleichzeitig die Schiebebewegungen und den Kontaktpunkt dafiir zu optimieren, so-
wie mit der Unsicherheit durch die unvollkommene Wahrnehmung umzugehen. Wir
préasentieren eine Methode, die Lernverfahren mit modellbasierten Herangehenswei-
sen kombiniert um beiden Herausforderungen zu begegnen. Zuerst verbessern wir
die Effizienz bei der Planung, indem wir die Wahl des Kontaktpunktes und die Op-
timierung der Schiebebewegung dort getrennt betrachten. So kann die aufwéndige
Optimierung auf wenige, vielversprechende Punkte beschrinkt werden. Fiir beide
Schritte vergleichen wir ein analytisches und ein gelerntes Modell. Dariiber hinaus
erreicht unsere Methode eine hohere Genauigkeit als eine bisher versffentlichte Me-
thode, welche ausschlieSlich auf Lernverfahren basiert, indem wir neuronale Netze
fiir die Wahrnehmung mit einer physikalisch bedeutsamen Beschreibung des Sys-
temzustands und einem Bayesschen Filter Algorithmus zur Schéitzung dieses Sys-
temzustands kombinieren.

Zusammenfassend zeigt diese Dissertation, dass die modellbasierte und die daten-
basierte Herangehensweise sich nicht gegenseitig ausschliefen miissen. Stattdessen
konnen sie als Extreme in einer Abwagung dazwischen verstanden werden, wie viel
Vorwissen in einem Ansatz bereit gestellt wird und wie viel Flexibilitéat fiir das Er-
lernen neuer Losungen gelassen wird. Am Beispiel der Schiebeaufgabe zeigen wir,
wie sensorisch-motorische Fahigkeiten durch die Kombination von Lernverfahren
und analytischen Strukturen robuster, allgemeingiiltiger und dateneffizienter wer-
den konnen.

vil

Acknowledgments

This thesis marks the end of a five year journey full of ups and downs, with parts
I thoroughly enjoyed but also parts that brought me to my limits. If there is one
advice that I would like to give to students at the beginning of their journey, it
would be to take care of yourself and not let other people’s pace put pressure on
you. Sometimes, good research needs time and in my case, the only person that
was not supportive when things took longer than expected turned out to be myself.
In the end, the best and most important part about this journey were the people
that I was lucky enough to share it with.

First and foremost, this is my supervisor Jeannette Bohg, who did a great job
and was always there when I needed her. Even when her path took her to Stan-
ford, she stayed firmly at my side and was maybe more present remotely than some
supervisors who have their office one corridor away from yours. Thank you for all
your great advice, your patience and for all the times you got up early to meet with
your student at the other side of the ocean.

I also want to thank Georg Martius, who took me in when the Autonomous
Motion Department (AMD) was shut down and I suddenly found myself without
an official group. Thank you for your help and advice and all the additional work
you faced to support me, even though we did not have much time to do research
together. Professor Hendrik Lensch and Jorg Stiickler completed my Thesis Advi-
sory Committee and supported me in those last two years that turned out to be so
different from what I had expected when I started.

The official end of AMD of course did not mean that I ever had to spent my
time at the institute alone. I want to thank all the great folks at AMD and later at
the Intelligent Control Systems and the Movement Generation and Control groups
for making the every-day research fun, for their helpful advice, the funny and weird
discussions over lunch and the wonderful sushi-evenings. Alonso Marco-Valle espe-
cially has been a great friend right from the start. I am so glad we could go on this
adventure called PhD together.

Lidia Pavel, Kara Loehr, Leila Masri, Vincent Berenz and Felix Grimminger are
the people that keep the research running at AMD and IMPRS. Thank you all for
your kind, quick and competent help with administrative and technical issues.

I also encountered lots of great people during my visit at MIT. Both Josh Tenebaum’s

1X

Acknowledgments

and Alberto Rodriguez’ group made me feel at home right away. Special thanks go
to Alberto, Josh and Jiajun Wu, who made this stay possible for me and gave great
input to our joint research project. Amir Soltani helped me find my way around
MIT and has been a great friend and office mate. Finally, I want to thank Maria
Bauza Villalonga for all the effort she put into the project to make sure that I got
all the real-robot time I needed.

But even for PhD students, there is life outside of the institute, and mine was
made so much better by the people close to me. Felix Widmaier was always there
for me, had my back when things got stressful and sometimes overwhelming and is
simply the best thing that ever happened to me. My parents also always supported
me and made sure that I did not lose track of the nicer things in life. Thank you
for everything and sorry that I made you worry sometimes.

I also want to thank Sarah Borner and all my friends outside of the institute
for always cheering me up when I needed it, for long board-game nights, for cake,
for hikes, festivals, COVID-19 Discord calls and all the other great activities, and
especially for having patience with me when another upcoming deadline made me
vanish into the lab again.

And finally, T want to thank a bunch of people who do not even know I exist
and still helped me countless times during this journey with their art. To name
a few, Neil Gaiman and Brandon Sanderson could always cheer me up with their
stories and provided a sometimes much-needed contrast to the mathematical world
of science. Insomnium, Alcest, Parkway Drive and all the others made me feel alive
with their music, calmed me down when I felt stressed or gave me energy when I
needed to get things done. Thanks to you, this has been no Slow Surrender...

This work was supported by the Max Planck Society and the International Max
Planck Research School for Intelligent Systems (IMPRS-IS).

Contents

(1.2 Sensory-Motor Skills: An Example]

(1.3 Learning and Structure|.

M3.1

Model-Based Approach|.

(1.3.2 Data-Driven Approach|

[1.3.3 Combining Learning and Structure in Robotics]

1.4 Outline and Contributionsl

2__Foundations|

[2.1 Approximating Functions with Deep Learningl

PRIl

Universal Approximation Theorem|

[2.1.2 Underfitting and Overfittingl

[2.2 Modeling Dynamic Systems|

[2.3 Bayesian Filtering for State Estimation

231 Kalman Filted 00000,

2.3.2 Extended Kalman Filter (EKF)[.

2.3.3 Uncentered Kalman Filter (UKF)

2.3.4 Monte Carlo Unscented Kalman Filter (MCUKF)

2.3.5 Particle Filter (PF)|.

[2.4 Planar Pushing| .

PA1

An Analytical Model of Planar Pushing|.

[2.4.2 Robotic Pushing Plattorm|

[3 Models for Perception and Prediction|

B21

Models tor Pushing|

[3.2.2 Learning Dynamics Based on Raw Sensory Datal.

[3.2.3 Combining Analytical Models and Learningl

.24 Newer Workl

[3.5 Combining Neural Networks and Analytical Models|

B5.1

Perception|

—_
S O 00O U W W

—_

x1

Contents

[3.0.2 Predictionl 35
[3.5.3 raming| 37

[3.6 Evaluating Generalization| 39
B.61 Baselined. 39
.62 Metricso 40
[3.6.3 Data Efficiency| 0. 40
[3.6.4 Generalization to New Pushing Angles and Contact Points| . 43
3.6.5 Generalization to Different Push Velocities 45
[3.6.6 Generalization to Different Objects| 48

B.7 Visualizationso 49
3.8 Fvaluation of Models with Frror-Correctionl 50
3.8.1 FEvaluation of Different Architecturesl 50
[3.8.2 Compensation of Model Exrrors| 52

3.9 Conclusion|. 55
[4 State Estimation and Uncertainty| 57
4.1 Introduction|o 58
42 Related Workl o oo 59
[4.2.1 Combining Learning and Algorithms{ 59
[4.2.2 Differentiable Bayesian Filters| 60
4.2.3 Variational Inferencelo 61

4.3 Implementation| 61
4.3.1 Differentiable Filters| 61
KM.3.2 Observation Modell 62
M33 ProcessModell. 63
434 Noise Modeld o000 63
[4.3.5 Tramming Loss| 64

(4.4 Experiments| 64
[4.4.1 Training and Initialization| 65

4.5 Simulated Disc Trackingl 65
HEET Datal o o oo 65
“U.5.2 Network Architectures and Initializationl 66
[4.5.3 Implementation and Parameters: dEKF, dUKF, dMCUKEF| . 67
[4.5.4 Implementation and Parameters: dPF| 69
455 Toss Functionl 72
[4.5.6 Training Sequence Length| 73
4.5.7 Learning Noise Models| 74
[4.5.8 Benchmarking 78
[4.5.9 Summary|l 79

4.6 Kitti Visual Odometry| 80
H6T Dafal 81
4.6.2 Network Architectures and Initializationl 81

x1i

Contents

[4.6.3 Training Sequence Length and Filter Parameters|. 83
4.6.4 Learning Noise Models| 85
4.6.5 End-to-End versus Individual Training| 87
4.6.6 Benchmarking 88
[4.6.7 Summary| 89

(4.7 Planar Pushing| 91
ETT Datalo 92

4. 7.2 Network Architectures and Initializationl 92
4.7.3 Learning Noise Models| 93
[4.7.4 Benchmarkingo L. 96

48 Conclusions 97
[5 Planning Contact Interactions| 99
b1 Introductionlo 100
h.2 Related Worklo 102
(5.2.1 Efficient Contact Planning under Full Observability] 102
[5.2.2 Push Planning under Partial Observability| 102

[>.3 Planning Pushing Actions| 103
(b.3.1 Planar Pushingl 103
[5.3.2 Perception and State Estimation| 104
[5.3.3 Shape Encoding|. o000 105
b.3.4 Affordance Predictionl 105
(b.3.5 Planning|. 106

[b.4 Tramming| 108
[5.5 Simulation Experiments|o 108
.............................. 108
6.5.2 Affordance Predictionl 109
b.0.3 Contact Point Selection| 109
[5.5.4 Pushing Motion Optimization| 110
(5.5.5 Full System| oo 111

[5.6 Real-Robot Experiments 114
b7 Conclusion|. 115
6 Conclusions| 117
(6.1 Summary| 117
[6.1.1 Models tfor Perception and Prediction| 117
[6.1.2 State Estimation and Uncertainty| 118
[6.1.3 Planning Contact Interactions| 119

6.2 Tessons Learnedl. o 119
6.3 Directions for Future Worklo 121
[6.4 Personal Reflections on Deep Learning for Robotics| 122

xiil

Contents

[Abbreviationsl 125

(Bibliography| 127

Xiv

Notation and Symbols

Throughout this thesis, we use the following notation conventions:

e Functions are denoted by italic lowercase symbols followed by their arguments
in parentheses, e.g. f(x). If the arguments are not specified, we use - as a
placeholder, e.g. p()

e Scalars are denote by italic lowercase symbols, e.g. a, i

e Vectors are denoted by bold lowercase symbols, e.g. x = (m, y)T

e Matrices are denoted by bold uppercase symbols, e.g. Q, X

e Sets are denoted by calligraphic uppercase symbols, e.g. X

e Predictions of quantities are indicated with a hat, e.g. x

e N(u,X) is a normal distribution with mean p and covariance matrix X
e I, denotes an identity matrix with n rows and columns

e Where relevant, the timestep ¢ at which a quantity is evaluated is denoted by
a subscript, e.g. x;, 2

Chapter 1

Introduction

1.1 Motivation

Household robots have been a long standing promise of robotics. But despite
decades of robotic research and progress in the field, we still do not encounter many
robots in our everyday life. The only notable exceptions are robots that mow lawns,
vacuum floors or clean pools - all tasks that do not require complex interactions
with objects or humans in the environment but can essentially be solved by driving
around in an enclosed area.

So what are the challenges that prevent us from developing robots for tasks that
require more interaction? One problem is surely that we are still far from developing
the kind of general artificial intelligence (Al) that would be necessary for building
capable robot helpers like Wall-E (Stanton et al., 2008)). But even tasks where the
high-level planning can be solved by today’s Al agents can often not be executed
reliably by our robots.

Let’s for example think about a robot that plays board-games with its owner. The
recent game of Go that Google Deepminds’s Al AlphaGo (Silver et al.,[2016) played
and won against the human Go champion Lee Sedol demonstrated impressively that
Als are able to compete with and win against the best human players in such games.
However, for moving and placing the Go pieces on the board, AlphaGo still relied
on a human. Of course, building a Go-playing robot was not the aim of the project
and a team of good engineers could undoubtedly build a system that could have
physically played against Sedol.

But the core of the problem still becomes evident if we imagine trying to build a
general board-game playing robot: Even if the robot knows how to play all possible
games well, it would also need to be able to manipulate all possible variants of
pieces, from beautifully carved wooden chess figures to the small magnetic stones
found in portable game sets (see Figure . And the users will not only expect
their robot to deal with boards and pieces in all shapes, sizes and colors. It should
also be able to play in different places with vastly different appearances and lighting-
conditions. Furthermore, the robot should still be able to play reliably and safely
if the user’s cat decides to walk over the board or if a child tries to interfere with

Chapter 1 Introduction

Figure 1.1: Left: “White” Queen pieces from three different chess sets. Right: A portable Reversi
game with small, magnetic stones. Board-game pieces come in a huge variety of shapes, colors
and materials, which would make it hard for a robot to recognize and manipulate them reliably.

the robot’s sensors or movements.

The robotic systems that we build for manipulation tasks today do not dis-
play this level of robustness and generalization ability. Seemingly simple tasks like
grasping (Du et al 2020) or pushing (Stiiber et al.,|2020) previously unseen objects
based only on sensory data still remain active areas of research.

1.2 Sensory-Motor Skills: An Example

In this thesis, we will mostly focus on what we call sensory-motor skills: The robot
interacts with an object based only on raw sensory information. Specifically, we
study planar pushing as an exemplary task: The robot is equipped with a single
“finger” that it can use to push an object to a desired position and into a desired
orientation. As sensory information, it receives RGBD camera images such as the
view show in Figure [1.2

Although the state-space of the object is rather low-dimensional (2D position
plus orientation), pushing is already a quite complex manipulation problem: The
system is under-actuated and the relationship between the push and the object
movement is highly non-linear as well as non-smooth. The pusher can for example
slide along the object during pushing and the dynamics change drastically when it
transitions between sticking and sliding contact or makes and breaks contact. We
will discuss one analytical model for describing the dynamics of pushing in detail
in Section

But not only the dynamics of the pushing task are challenging: We attempt
to solve the task using the raw image data as input, which means that crucial
information like the current object pose or its shape has to be extracted from this
high-dimensional and potentially noisy sensory signal. This is a challenging problem
and will usually result in inaccurate state estimates - which has to be taken into

1.3 Learning and Structure

Figure 1.2: The exemplary task of planar
pushing that we study in this thesis. The
robot is equipped with a cylindrical, vertical
Pusher pusher that it can use to make point contact
with the manipulated object. The task is to
move the object into a desired position and
orientation as indicated by the red overlay.
In this thesis, we only make use of visual
sensor data in the form of RGB images and
depth information.

account when planning actions. In addition, we might not even be able to extract
all necessary information for solving the task from the sensory input directly. For
example, attributes like friction coefficients or the mass of an object cannot be
determined from single images. And even aspects like the shape of an object that
are generally observable will not be recovered reliably when the object is occluded
in the current view.

1.3 Learning and Structure

On a very abstract level, we can view a sensory-motor skill like planar pushing as a
function s(-) that accepts the current goal g; and the current sensory observations
D; and outputs robot actions u; to achieve the goal: s(Dy,g;) = u;. Our task
is then to implement this function such that some quality metric, for example
the distance to the goal after applying the actions, is optimized over all possible
observations and goals.

Over the last decade, a perceived dichotomy between model-based and data-driven
approaches has often shaped the discussion about how to implement robotic skills:
In the “traditional”, model-based approach, robotic engineers manually define the
function s(-) as a combination of models, state representations and algorithms.
The data-driven approaches, in contrast, seek to learn s(-) using general function
approximators like deep neural networks (DNN) and large amounts of training data.

We can see these approaches as extreme cases on a trade-off curve between the
amount of prior structure that we impose on s(-) and the flexibility that we leave
for learning the shape of s(-) by fitting its response to the training data. In the
following, we discuss the advantages and limitations of these two extreme cases on
the example of planar pushing and motivate what could be gained by combining
both, learning and structure.

Chapter 1 Introduction

4 State Planning . N (
Sensory Estimation State Action Sensory
Observations | Algorithm | Representation| ajgorithm Observations

A
&

| Oke

(S

Model j \ /

(a) Model-based approach (b) Data-driven approach

-

Figure 1.3: Schematic comparison between the purely model-based and the purely data-driven
approach to robotics. In the model-based approach, the task is decomposed into sub-problems,
e.g. state estimation and planning. Each sub-problem is solved by an algorithm which relies
on hand-designed models. The different modules communicate through predefined intermedi-
ate representations. In the data-driven approach, a or a comparable
function approximator learns how to solve the task end-to-end from labeled training data.

1.3.1 Model-Based Approach

Under the purely model-based approach, the first step to solving a task like pla-
nar pushing is to decompose the problem into smaller sub-problems that can be
addressed individually. For sensory-motor skills like pushing, this decomposition
will usually result in modules for state estimation, planning and control. The state
estimation module processes the raw sensory observations D and outputs a repre-
sentation of the system state x. In the pushing example, x could correspond to the
position and orientation of the object while D would be camera and depth images.
The planning module then takes the estimated state x and the goal g as input
to plan a sequence of pushing actions that will move the object towards the goal
pose. Finally, the control module is responsible for translating these desired pusher
motions into motor-commands that are executed to move the robot arm. In the
remainder of this thesis, we will assume that the control module is given and focus
on state-estimation and planning.

As depicted in Figure each module consists of an algorithm that uses knowl-
edge about the system in the form of models. For example, the state-estimation
module could use a 3D model of the pushed object to determine its position and
orientation from an observed point-cloud using the RANSAC algorithm (Fischler
and Bolles, 1981)). For planning, an analytical model that describes how the object
will move in response to a push could be used to compute the action necessary to
push the object from its estimated pose into the desired pose.

1.3 Learning and Structure

Advantages

One big advantage of fully specifying the structure of function s(-) is that the result-
ing pipeline is interpretable for humans. The intermediate representations usually
correspond to physical quantities that we can easily relate to the real world, which
greatly facilitates the development and debugging process. In addition, we can
understand why and how each of the algorithms and models produced the results
they did and what assumptions they make. In many cases, we can give estimates
of the uncertainty and noise in the system or even formulate theoretical guarantees
like error bounds or optimality guarantees for some or all of the components of s(-).

A further advantage of this approach is that it requires little to no training data,
since s(-) only has very few degrees of freedomE]. That also means that we do not
need to worry much about generalization - in some sense, the generalization ability
of a model- based solution is mostly determined by our ability to formulate models
that hold for the complete task domain.

Disadvantages

On the other hand, the performance of a robotic skill implemented with the fully
model-based approach is always limited by how well its structure explains the real
process.

Decomposing the problem into a sequence of modules can easily lead to a loss of
information when the intermediate state representations are not expressive enough
to capture all available information from the input data. The state representation
that one module outputs might also not be the ideal input for the next module or,
vice versa, the ideal input for one module might not be easy to produce with the
previous one.

In addition, it can be difficult to formulate accurate models and optimal algo-
rithms. For example, when modeling the dynamics of a system, it is often necessary
to make simplifying assumptions for the computations to become tractable and fast
enough for execution on a robot. These assumptions rarely hold in practice and
the resulting models will thus not be accurate. The same holds true for many al-
gorithms we use. The Kalman filter for state estimation is, for example, provably
optimal, but only for linear systems with Gaussian additive noise (Kalmanl, 1960)).

But things get even worse for perception: While providing 3D models of objects
that a robot should be able to detect and localize is a viable solution for laboratory
experiments with a limited set of objects, it is clearly impossible to model every
object a robot could ever encounter in the real world. Until now, it remains unclear
how a “general” perception algorithm would work and what kind of models it would
require.

1Some algorithms for example have parameters that might require data for tuning

Chapter 1 Introduction

Summary

In summary, the traditional approach to robotics mainly relies on prior knowledge
about the system, which is supplied by the engineer in the form of (i) a decom-
position of the task into sub-problems, (ii) their intermediate representations, (iii)
algorithms for addressing the sub-problems and (iv) the models used by these al-
gorithms.

It requires little to no training data and the resulting implementation of s(-)
is transparent and interpretable for humans. With the exemption of few tuning
parameters, the performance of a system that executes s(-) is fully determined
by the accuracy of the used models and the correctness and optimality of the
algorithms.

The biggest challenge and limitation of this approach is formulating models and
algorithms that are at the same time accurate and efficient enough to be executed
on a robot and general enough to apply to every situation the robot may encounter
in the real world.

1.3.2 Data-Driven Approach

In its most extreme form, the data-driven approach implements the function s(-)
with a single trainable model that learns s(-) end-to-end. As shown in Figure[1.3b]
this means it takes the raw sensory observations as input and learns to directly
output motor commands for the robot.

The use of learning techniques however does not mean that s(-) has zero prior
structure: For example, the user still has to decide which type of trainable model
to fit against the training data. While there are several possibilities, in this the-
sis we will focus on deep neural networks (DNN). Since the immensely successful
application of DNNs for image classification by Krizhevsky et al.|(2012)) less than
a decade ago, deep learning methods have rapidly become the state-of-the-art for
many different problems - from computer vision (Russakovsky et al. 2015; Zendel
et al., 2018)) over natural language processing (Otter et al., 2020)) to playing games
like Go or StarCraft I (Vinyals et al., 2019). In the context of robotics, vision-
based sensory-motor skills have been successfully addressed with Reinforcement
Learning techniques, for example in the seminal work by Levine et al.| (2016). Such
approaches are sometimes referred to as pixel-to-torque methods.

One key ingredient for this success is large amounts of labeled training data.
These labels can take different forms, for example manually annotated images for
classification or segmentation, ground truth trajectories for state estimation or
rewards for the outcome of robot trials to complete a given task.

Another important characteristic of today’s deep models is a very high number of
trainable parameters (or weights). The main idea is that the larger the number of
weights, the larger the family of functions that the network can represent. Specifi-

1.3 Learning and Structure

cally, the Universal Approximation Theorem (Cybenko, 1989; |Leshno et al., 1993)
states that a large enough neural network with most standard activation functions
can fit any function arbitrarily well within a closed domain.

Advantages

The main appeal of the data-driven approach is that it does not require any prior
knowledge about the function one tries to model. This is, of course, especially
useful for problems where applying the model-based approach is difficult - be it
because we struggle to find the right structure or because the required models and
algorithms are not computationally tractable.

For example, sensory-motor sills such as vision-based grasping require detecting
and localizing objects in images and extracting relevant object properties. While
model-based approaches can solve these problems using predefined descriptions
of known objects, it is not clear how they could generalize to previously unseen
objects. Vision-based Reinforcement Learning methods like QT-Opt (Kalashnikov
et al., [2018) can instead learn to directly predict actions from images and have
demonstrated remarkable generalization performance to novel objects.

Disadvantages

While the Universal Approximation Theorem promises that for every function s(-)
a network exists that can learn it, finding this network and the correct set of weights
can be challenging. In practice, designing and training DNN is often a trial-and-
error process which requires experience and has been compared to the methods of
medieval alchemists by Rahimi and Recht| (2017)).

While too small networks will not be able to fit s(-) well (underfitting), having
too many trainable parameters can result in overfitting. In this case, the network
can perfectly reproduce the training data but does not perform well on previously
unseen input values. A particularly illustrative example for this problem are ad-
versarial examples: Tiny perturbations of the network input that are not even per-
ceptible for humans but alter the response of a trained DNN dramatically (Szegedy
et al), 2014). Generalization to data not seen during training is thus one of the
main issues that prevents DNNs from being used in consumer robots today. We
will discuss the function approximation abilities and limitations of DNNs in more
detail in Chapter

The limited ability of DNN to generalize also means that the larger the domain
over which we want to learn s(-), the more training data will be necessary to achieve
a good network performance. However, producing the required amount of data can
be challenging and costly when real robots are involved. And while simulation offers
a wealth of easily accessible data, the gap between simulation and the real world
is often too large to successfully transfer models without additional finetuning on

Chapter 1 Introduction

real-world data (James et al., [2019)).

Another criticism of the data-driven approach is that the learned models and
internal representations are not easily interpretable for humans. This makes it dif-
ficult to understand failures of the trained networks or to guarantee their safety -
which is, of course, especially important for physical robots. Furthermore, the lack
of an explicit problem decomposition with interpretable intermediate representa-
tions also makes it difficult to reuse parts of an existing solution for new but related
tasks.

Summary

To summarize, the data-driven approach to robotics relies on powerful function
approximators like deep neural networks and large amounts of labeled training
data. It has shown impressive results and excels especially in domains like computer
vision, for which specifying analytical models can be difficult.

The main challenges when applying deep learning to robotics is the large amount
of required training data that may be hard to come by, and the black-box nature of
the learned function. In particular, guaranteeing safety and correct performance for
data not seen during training (generalization) is currently an open problem (Corso
et all 2020).

1.3.3 Combining Learning and Structure in Robotics

If we look at the advantages and disadvantages of the purely model-based and the
purely data-driven approach for implementing robotic skills, it becomes clear that
the two approaches are in many aspects complementary: Including learning into a
model-based approach could fill the gaps where no analytical model could be found,
speed up approaches when the analytical solution is too slow or improve existing
models with a learned component. And introducing more structure into learning
methods could help to reduce the amount of necessary training data and improve
the generalization performance and interpretability of the learned models. In this
thesis, we will thus investigate different ways to combine learning and structure for
robotic sensory-motor skills.

1.4 Outline and Contributions

The next chapter reviews the foundations for this thesis. In Chapters [3]- 5 we will
present different ways of combining learning approaches with structure from the
model-based approach.

10

1.4 Outline and Contributions

Chapter 3: Models for Perception and Prediction In Chapter[3] we start by
investigating the models and representations required for perception and prediction
in terms of accuracy, data-efficiency and generalization to novel input data. For
this, we look at the task of predicting the effects of a pushing action based on
sensory input.

We propose to combine an analytical model for describing the dynamics of push-
ing with a DNN for perception. The network is trained end-to-end through the
dynamics model and can thus learn to extract an optimal state representation from
the raw sensory data. At the same time, the analytical model may be able to
regularize the learned component to prevent overfitting. To further increase the ac-
curacy of the predictions, we also investigate augmenting the analytical dynamics
model with a learned error-correction term.

We compare these combined approaches to using one DNN for both, perception
and predictions. A systematic evaluation on a large real-world dataset shows two
main advantages of the combined approach: Compared to a pure neural network, it
significantly (i) reduces the required training data and (ii) improves generalization
to novel pushing actions and object shapes. This chapter is based on (Kloss et al.,

2020D).

Chapter 4: State Estimation and Uncertainty Chapter [4] takes the focus
from the individual models to the algorithms that use them. While models describe
certain aspects of the system, algorithms contain knowledge about how to solve
tasks. Discovering this higher-level logic on top of learning the required models
can be challenging for DNNs. By embedding the model-learning into the given
structure of algorithms, we can thus facilitate learning and optimize the models for
their respective algorithm.

Specifically, we look at the problem of state estimation: Many robotic applica-
tions require maintaining a probabilistic belief about the system state over a series
of robot actions. These state estimates serve as input for planning and decision
making and provide feedback during task execution. Having information about
how certain the system is about its predictions enables identifying failures and thus
makes the system more safe.

Recursive Bayesian filtering algorithms address the state estimation problem, but
they require models of process dynamics and sensory observations as well as the
noise characteristics of these models. Recently, multiple works have demonstrated
that these models can be learned by training DNN components end-to-end through
differentiable versions of Recursive filtering algorithms.

The aim of Chapter {4]is to to highlight the advantages of such differentiable filters
(DF) over both, unstructured learning approaches and Bayesian filtering algorithms
with manually designed models, while also providing concrete practical advice on
how to train differentiable filters.

11

Chapter 1 Introduction

We implement DF's with four different underlying filtering algorithms and com-
pare them in extensive experiments. Specifically, we (i) evaluate different implemen-
tation choices and training approaches, (ii) investigate the advantages of learning
complex models of uncertainty in DFs and (iii) compare the DFs among each other
and to unstructured LSTM models (Hochreiter and Schmidhuber, [1997)).

Chapter 5: Planning Contact Interactions In Chapter [5] we finally address
the full task of planning pushing actions based on raw sensory input. Planning
such contact interactions is one of the core challenges of many robotic tasks. The
main problems are the computational cost of optimizing actions and contact points
simultaneously and the uncertainty induced by imperfect perception and state es-
timation.

We present an approach that combines learning and structure to address both of
these challenges. First, we improve planning efficiency by further decomposing the
planning problem into one step for selecting contact points and one for optimizing
the direction and magnitude of the pushing motion taken there. Explicitly reason-
ing over contact locations allows us to focus the expensive motion optimizations
on few promising contact locations. Second, we compare using a learned or an
analytical model for proposing contact points as well as for optimizing the pushing
actions. And finally, as proposed in Chapters [3| and] we combine learning-based
perception with a physically meaningful state representation and explicit state es-
timation algorithms to increase the accuracy and generalizability of our approach
under partial observability.

In simulation and real-world experiments on the task of planar pushing, we show
that our method is efficient and achieves a higher manipulation accuracy than a
previous vision-based method that relies entirely on learning. This chapter is based
on (Kloss et al., 2020a).

12

Chapter 2

Foundations

In this chapter, we introduce the foundations for this thesis. We start by review-
ing some concepts from deep learning that are important for understanding the
capability and limitations of DNNs to learn different functions.

Then we turn to the model-based approach: Here, we start with introducing the
notation that we will use throughout this thesis for describing dynamic systems.
Afterwards, we discuss different Bayesian filtering algorithms for state estimation
that will serve as an example for combining algorithmic structure with learning in
Chapter [d Finally, we take a closer look at the planar pushing task that serves as
experimental test bed for many of the concepts introduced in this thesis.

2.1 Approximating Functions with Deep
Learning

Deep Learning is a huge and rapidly growing field and for a detailed introduction,
we refer the reader to books like |Goodfellow et al. (2016]). In this section, we want
to focus on understanding how DNN approximate their target functions and what
that means for their ability to accurately model the training data and to generalize
to input data not seen during training.

2.1.1 Universal Approximation Theorem

The Universal Approximation Theorem for Neural Networks as first formulated by
Cybenko (1989) and Hornik et al.| (1989) states that a single-layer network with a
large enough number of neurons (with sigmoidal activation functions) can approxi-
mate any (Borel) measurable function to any desired accuracy. It was later extended
to multiple layers and broader classes of activation functions (e.g. by [Leshno et al.
(1993)). This theorem clearly explains the appeal of DNNs for addressing any
task that requires modeling an unknown function. However, for understanding the
potential but also the limitations of DNNs; it is worthwhile looking at how the
theorem can be intuitively visualized.

13

Chapter 2 Foundations

(a) (b)
i o ‘

2| %

o
|
P
~ L

® Training data

Figure 2.1: Fitting the function f(z) = 2% given observations from the interval [—2,2]. (a) With a
single sigmoid neuron in the hidden layer and four training examples, the network cannot fit f(z)
well. (b) Fitting the function with four neurons in the hidden layer works better. (c) Increasing
the number of neurons and training examples makes the approximation more accurate. (d) The
neural network approximation however only fits f(x) within the training data range of x € [-2,2].

Let’s assume we have a one-dimensional input variable x and a neural network
with one hidden and one output layer. The neurons in the hidden layer are of
the form n(x) = o(wx + b) with o(z) = m a (relatively sharp) sigmoid
function. w and b are the trainable weight and bias of the neuron. The output layer
does not use a non-linearity but simply computes a weighted sum of the hidden layer
neurons. We try to model a simple quadratic function f(z) = 2? for x € [—-2,2].

As shown in Figure (a), with a single neuron, we can barely fit the target
function using only a constant function with a single step. But when we add more
neurons, the steps can be arranged such that the network output coarsely follows
the training data from the target function. The more neurons, i.e. steps, we add,
the more accurate the approximation becomes (Figure (b) and (c)). As long
as we provide enough data points in the target interval to place the steps, we can
thus approximate every continuous function in this way with arbitrary accuracy.

Note that while the shown examples are the result of a real neural network
training, they were specifically designed to illustrate the Universal Approximation
Theorem. With a less sharp non-linearity, for example the frequently used ReLLU
function, the network would be able to fit its target function much better.

What does this example teach us about neural networks? The first important
aspect is visualized in Figure (d): Given enough neurons and training examples,
the neural network can approximate f(z) accurately within the training data range
of z € [—2,2]. However, if we query the network with an input value not seen
during training, e.g. x = 3, the network’s predictions can become arbitrarily bad.
This limited ability to extrapolate makes it hard to apply neural networks in cases
where it is difficult to obtain training data from the full expected range of input
values.

A second point that is important to keep in mind is that while the network’s
approximation can get arbitrarily accurate, it does not learn the actual mathemat-

14

2.1 Approximating Functions with Deep Learning

) Figure 2.2: Finding the right DNN archi-
THIS 15 YOUR MACHINE LEARNING SYSTET tecture for a task can be difficult and is

YUP! YoU POUR THE DATA INTO THIS BIG often a trial-and-error process in prac-
PILE OF LINEAR ALGEBRA, THEN COLLECT tice. Image “Machine Learning” from

THE ANSLIERS ON THE CTHER SIE. xkecd.com/1838| (C) Randall Munroe (li-
WHAT IF THE ANSWERS ARE LJRONG?) cense CC BY-NC 2.5)
JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

ical square operation. In this concrete example, the neural network approximation
thus turns out to be much more complex than the true underlying function. If we
had instead used a least squares method to fit a polynomial to the training data,
we would have been able to recover the true underlying function with much less
training data.

To summarize, neural networks are powerful models that can in theory approx-
imate any continuous function inside the domain of their training data. However,
they usually do not learn the true underlying function and are thus not able to
extrapolate beyond their training domain. If we have prior knowledge about the
structure of the target function, we can potentially reduce the amount of required
training data and improve the accuracy and extrapolation performance of the fit-
ted function by restricting the approximator to a smaller family of functions that
reflects our prior.

2.1.2 Underfitting and Overfitting

While the Universal Approximation Theorem guarantees the existence of a DNN
that can model any given function, it does not offer any guidance on how many
parameters this DNN needs. In practice, finding the right DNN architecture is
often a trial-and-error process that is sometimes made fun of in satirical depictions
of deep learning such as Figure [2.2]

To judge how well a given network learns to approximate its target function, we
can look at two metrics: The training risk shows how well the network is able to
predict the data points in its training set. More relevant in practice is the test risk,
which is the expected loss of the network for data points that were not seen during
training. Since, as discussed in the previous section, extrapolation is generally

15

xkcd.com/1838

Chapter 2 Foundations

difficult for neural networks, here, we assume that the test data comes from the
same distribution as the training data.

Plotting the training and test risk of function approximators against their ca-
pacity often results in curves similar to the one shown in Figure (Belkin et al.,
2019). Models with very small capacity typically struggle to fit the training data
and consequently have high training and test risk. These models are said to underfit
the training data and if we increase their capacity, both training and test risk will
decrease.

However, at some point, we can often see that while the training risk keeps
decreasing, the test risk starts to rise again. An explanation for this is that the
model starts to learn overly complex functions that can fit the training data points
well, but behave badly when evaluated at new data points. This behavior is called
overfitting.

One way to reduce overfitting in models with higher capacity would be to increase
the amount of training examples. If this is not possible, we can attempt to reqularize
the model to favor learned functions with certain properties we belief to be desirable.
For example, the commonly used weight decay regularization penalizes solutions
with high network weights and thus favors learning simpler functions. It is also
possible to directly change the structure of the network to reflect priors that we
may have about the target function. A famous example for this are Convolutional
Neural Networks (CNN) for image processing: By applying the same operation
(kernel) at every input pixel, they enforce translation invariance on the learned
functions.

Nowadays, DNNs often have many more parameters than necessary for fitting the
training data optimally. Research shows that for such over-parameterized models,
the test risk can start to decreases again. Belkin et al. (2019) suggest that increasing
the capacity of the models in the over-parameterized regime increases the number
of different solutions with optimal training risk they could learn. With the right
regularization, the training algorithm can thus select solutions that perform well
on both, training and test data. If the test risk obtained in the over-parameterized
regime will be lower than the optimal trade-off between over- and underfitting de-
pends on the problem and on how well the priors we express through regularization
match the underlying function.

2.2 Modeling Dynamic Systems

In this section, we introduce the terminology that we will use throughout this thesis
to describe dynamic systems, such as a robot interacting with its environment.
We describe the state of a system at time ¢ by the vector x; that contains all
quantities that are of interest for the task the robot tries to solve. This state
changes over time, possibly in response to robot actions u;, according to an un-

16

2.3 Bayesian Filtering for State Estimation

A Underfitting Overfitting Overparametrized

Test Risk

4o
.

e
.,
.....
.........
........

Risk

0
.,
™
L
.
.....

Training Risk

Network Capacity

Figure 2.3: Training and test risk as a function of the model capacity: Models with a too small
capacity underfit the training and test data. However, when the capacity increases over a certain
point, the models can start to overfit to the training data, which results in an increasing test
risk despite the decreasing training risk (grey area). Over-parameterized models like many DNN
have more parameters than necessary for optimally fitting the training data (blue area). In this
regime, the test risk often decreases again, as the number of possible learned functions that match
he training data well increases. Different regularization methods can be used to reduce overfitting
and guide the learning towards solutions with desirable properties.

known stochastic process. We approximate this process with the process model
f(x,u) that describes the dynamics and an associated process noise model.

The robot cannot access the true system state directly, but it can use its sensors
to get noisy observations z; of the system. Just like the system dynamics, the
exact process by which observations are generated for a certain state is unknown.
We model it with the observation model h(z) and the associated observation noise
model. In many cases, z will not contain information about all components of x;.

2.3 Bayesian Filtering for State Estimation

The first requirement for solving any robotic task is knowing the current state of
the system. However, as stated before, a robot usually has no access to the true
system state. Instead, it has to estimate the state based on sensory observations
and its internal models of the system.

Filtering algorithms address the state estimation problem by maintaining a
probabilistic belief bel(x) about the latent state x of the system over time given
an initial belief bel(xy) and a sequence of sensory observations zg_; and robot
actions ug_; 1. Formally, a filtering algorithms seeks the posterior distribution
P(X¢|Xo0...0-1, Wo..t—1, Zo...t)-

Bayesian filters make the Markov assumption, i.e. that the distribution of the
future states and observations is conditionally independent from the history of past
states and observations given the current state. This assumption makes it possible
to compute p(Xt|X0..,t717 Up...t—1, ZoA..t) recursively from p<Xt71|X0...t727 Uo...t—2, ZO...t71>

17

Chapter 2 Foundations

using the process model f and observation model h.
Xy = f(xt—h U;—1, Qt—l) Zy = h(xt,rt)

The random variables q and r represent the process and observation noise.

In Chapter [4, we will investigate differentiable versions of four different nonlinear
Bayesian filtering algorithms: The Extended Kalman filter (EKF), the Unscented
Kalman filter (UKF), a sampling-based variant of the UKF that we call Monte Carlo
Unscented Kalman filter (MCUKF) and the Particle filter (PF). In the following,
we briefly review these algorithms. For more details on EKF, UKF and PF, we
refer to [Thrun et al.| (2005).

2.3.1 Kalman Filter

The Kalman filter (Kalman, |1960) is a closed-form solution to the filtering problem
for systems with a linear process and observation model and Gaussian additive
noise:

f(xi—1,w1) = Ax 1 +Bu1 +q q: ~ N(0,Qy) (2.1)
h(Xt) = HXt + 1, ry ~~ N(O, Rt)

The belief about the state x is represented by the mean g and covariance matrix
¥ of a normal distribution. At each timestep, the filter predicts fi, and 3, using the
process model. The innovation i; is the difference between the predicted and actual
observation and is used to correct the prediction. The Kalman Gain K trades-off
the process noise Q and the observation noise R to determine the magnitude of the
update.

Prediction Step:

i, = Ap,_, + Bu, (2.3) 2 =A%, AT+ Q. (2.4)

Update Step:

S,=HZ,H ' +R, (25 py = fo, + K (2.8)
K, = 3H'S? 2.6) ¥ = (1, -KHY (29
it = Z¢ — Hl:\l’t 2 7)

18

2.3 Bayesian Filtering for State Estimation

2.3.2 Extended Kalman Filter (EKF)

The EKF (Sorenson, [1985) extends the Kalman filter to systems with non-linear
process and observation models. It replaces the linear models for predicting fi in
Equation and the corresponding observations z in Equation with non-linear
models f(-) and A(-). For predicting the state covariance ¥ and computing the
Kalman Gain K, these non-linear models are linearized around the current mean
of the belief. The Jacobians F,, and H|,, replace A and H in Equations -
and [2.9] This first-order approximation can be problematic for systems with strong
non-linearity, as it does not take the uncertainty about the mean into account (Van
Der Merwe, 2004).

2.3.3 Uncentered Kalman Filter (UKF)

The UKF (Julier and Uhlmann, (1997 Van Der Merwe], 2004)) was proposed to ad-
dress the aforementioned problem of the EKF. Its core idea, the Unscented Trans-
form (Julier and Uhlmann, |1997)), is to represent a Gaussian random variable that
undergoes a non-linear transformation by a set of specifically chosen points in state
space, the so called sigma points x € X.

X' =p X' =pEt(/(n+r)X); Vie{l.n} (2.10)
0 K i 0.5 ,

= = \4 1..2 2.11

v K4+n v K+n ied n} ()

Here, n is the number of dimensions of the state x. Each sigma point x* has
a weight w'. The parameter x controls the spread of the sigma points and how
strongly the original mean x° is weighted in comparison to the other sigma points.

The statistics of the transformed random variable can then be calculated from
the transformed sigma points. For example, in the prediction step of the UKF, the
non-linear transform is the process model (Equation and the new mean and

covariance of the belief are computed in Equations and [2.14]

X, = f(Xq,w) (2.12)

S = 3wt —) (i~)"+ Q (2.14)

%

In theory, the UKF conveys the nonlinear transformation of the covariance more
faithfully than the EKF and is thus better suited for strongly non-linear problems

19

Chapter 2 Foundations

(Thrun et al., 2005). In contrast to the EKF, it also does not require computing
the Jacobian of the process and observation models, which can be advantageous
when those models are learned.

In practice, tuning the parameter x of the UKF can sometimes be difficult: If
k 4 n is high, the sigma points will be placed far from the mean, which increases
prediction uncertainty and can even destabilize the filter. |Julier and Uhlmann
(1997) suggested to chose x such that x4+ n = 3. This however results in negative
values of k if n > 3, for which the estimated covariance matrix is not guaranteed
to be positive semidefinite any more. This problem can be solved by changing the
way in which 3 is computed (see Appendix IIT in Julier et al| (2000))). However,
for —n < k < 0, the sigma point x°, which represents the original mean, is also
weighted negatively. This not only seems counter-intuitive but strongly negative
w® can also cause divergence of the estimated mean.

To address the problem of placing the sigma points too far away from the mean,
Julier| (2002) proposed the Scaled Unscented Transform:

x' = X' =p+(/(n+NE); Vie{l.n} (2.15)

wh = < i - wi = Aofn Vie {1..2n} (2.16)
We—2 (et p) wi=-2 vie{l.2n} (2.17)
A +n A +n
A=a(k+n)—n (2.18)

The authors suggest using x = 0 and small positive values for «, e.g. 1073, In
addition, this formulation uses different weights for computing the mean (w,,) and
the covariance (w.) of the transformed sigma points in Equations [2.13] and [2.14]
Here, f = 2 is recommended if the true distribution of the system is Gaussian.
With « = 1 and 8 = 0, the original parametrization from |Julier and Uhlmann
(1997) can be recovered. The suggested parameters however again result in large
negative weights for x°.

2.3.4 Monte Carlo Unscented Kalman Filter (MCUKF)

The UKF represents the belief over the state with as few sigma points as possi-
ble. However, finding the correct scaling parameters «, x and § can be difficult,
especially if the state is high dimensional. Instead of relying on the Unscented
Transform to calculate the mean and covariance of the next belief, we can also
resort to Monte Carlo methods, as proposed by Withrich et al.| (2016). In prac-
tice, this means replacing the carefully constructed sigma points and their weights

in Equations or Equations - with uniformly weighted samples
from the current belief. The rest of the UKF algorithm stays the same, but more

20

2.4 Planar Pushing

sampled pseudo sigma points are necessary to represent the distribution of the belief
accurately.

2.3.5 Particle Filter (PF)

In contrast to the different variants of the Kalman filter explained before, the
Particle filter (Gordon et al., |1993) does not assume a parametric representation
of the belief distribution. Instead, it represents the belief with a set of weighted
particles. This allows the filter to track multiple hypotheses about the state at the
same time and makes it a popular choice for tasks like localization or visual object
tracking (Thrun et al., 2005).

An initial set of particles x} € X, is drawn from some prior belief and initialized
with uniform weights 7. At each timestep, new particles are generated by applying
the process model to the previous particles and sampling additive process noise:

Xy = f(Xo1,uy, Qt) (2-19)

Given an observation z;, the weight 7! of each particle x! is updated based on the
likelihood p(z|x;) by x': 7} = mi_1p(z|x})-

A potential problem of the PF is particle deprivation: Over time, many parti-
cles will receive a very low likelihood p(z|x!), and eventually the state would be
represented by too few particles with high weights. To prevent this, a new set of
particles with uniform weights can be drawn (with replacement) from the old set
according to the weights. This resampling step focuses the particle set on regions
of high likelihood and is usually applied after each timestep.

2.4 Planar Pushing

As explained in Section [1.2] we will use the task of planar pushing as the main
test bed for the research presented in this thesis. In the following, we introduce an
analytical model for describing the dynamics of planar pushing with a point contact
and discuss its underlying assumptions. We also describe a hardware platform that
was used to collect data and perform experimental evaluations.

2.4.1 An Analytical Model of Planar Pushing

Throughout this thesis, we use an analytical model of quasi-static planar pushing
that was devised by [Lynch et al|(1992)). It predicts the object movement v, given
the pusher velocity v, the contact point r and associated surface normal n as well
as two friction-related parameters [and m. The model is illustrated in Figure [2.4
which also contains a list of symbols. Note that this model is still approximate

21

Chapter 2 Foundations

Po position of the object

0 orientation of the object

Vo linear and angular object velocity

vy linear velocity at the contact point -
effective push velocity

Pu position of the pusher

Vu linear pusher velocity - action

contact point (global)

contact point relative to p,

n surface normal at r

l ratio between maximal torsional and
linear friction force

m friction coefficient pusher-object

f, left or right boundary force of the fric-
tion cone

Th torques corresponding to the boundary
forces

Voo object velocities resulting from bound-
ary forces

Vb effective push velocities corresponding

to the boundary forces
b=1,r placeholder for left or right boundary
contact indicator, s € [0, 1]

Figure 2.4: Overview and illustration of the terminology for pushing.

22

2.4 Planar Pushing

and far from perfectly modeling the stochastic process of planar pushing (Yu et al.,
2016)).

Predicting the effect of a push with this model has two stages: First, it determines
whether the push is stable (“sticking contact”) or whether the pusher will slide along
the object (“sliding contact”). In the first case, the velocity of the object at the
contact point will be the same as the velocity of the pusher. In the sliding case,
however, the pusher movement can be almost orthogonal to the resulting motion at
the contact point. We call the motion at the contact point “effective push velocity”
v,. It is the output of the first stage. Given v, and the contact point, the second
stage then predicts the resulting translation and rotation of the object’s center of
mass which we here assume to correspond to the object position p,.

Stage 1: Determining the Contact Type and Computing v,:

To determine the contact type (slipping or sticking), we have to find the left and
right boundary forces f;, f,. of the friction cone (i.e. the forces for which the pusher
will just not start sliding along the object) and the corresponding torques 7, 7.
The opening angle «, of the friction cone is defined by the friction coefficient m
between pusher and object. The forces and torques are then computed by

a,, = arctan(m) (2.20)
fi =R(—a,)n f. = R(an)n (2.21)
71 =15 fiy — T;flx Ty =1l fry — r;fm (2.22)

where R(a,,) denotes a rotation matrix given «,, and r' = r — p, is the contact
point relative to the object’s center of mass.

To relate the forces to object velocities, Lynch et al.| (1992) use an ellipsoidal
approximation to the limit surface. To simplify notation, we use subscript b to
refer to quantities associated with either the left [or right » boundary forces. v,
and w,; denote linear and angular object velocity, respectively. vy 1, are the push
velocities that would create the boundary forces. They span the so called "motion
cone”.

opl”
Vob = ob fy (2.23)
Tp
l2
Vpb = w07b(—fb + k x C/) (224)
Tp

Here, k is the rotation axis of the object and w, acts as a scaling factor. Since we
are only interested in the direction of v, ; and not in its magnitude, we set w,;, = 7:

Voo = Pf + 1k x 1/ (2.25)

23

Chapter 2 Foundations

To compute the effective push velocity v,, we need to determine the contact
case: If the push velocity lies outside of the motion cone, the contact will slip. The
resulting effective push velocity then acts in the direction of the boundary velocity
v, which is closer to the push direction:

Vv, n

= 2.26
Vp Voo o pb ()

Otherwise, the contact is sticking and we can use the pusher velocity as effective
push velocity v, = v,. When the norm of n is zero (due to e.g. a wrong prediction
of the perception neural network), we set the output v, to zero.

The object will of course only move if the pusher is in contact with the object.
To use the model also in cases where no force acts on the object, we introduce the
contact indicator variable s. It takes values between zero and one and is multiplied
with v, to switch off responses when there is no contact.

Vp = S8Vy

We allow s to be continuous instead of binary to give the model a chance to react
to the pusher making or breaking contact during the interaction.

Stage 2: Using v, to Predict the Object Motion:

Given the effective push velocity v, and the contact point r’ relative to the object
center of mass, we can compute the linear and angular velocity v, = [vpg, Vpy, w| Of
the object.

. (2 + 72)vp + T;r;vpy (2.27)

(* + Tf)”z)y + T;T;UPLU
Yoy = 12+ 72+ 2 (2.28)
z y
T Voy — T Vos
w= AL (2.20)

Discussion of Underlying Assumptions

The analytical model is built on three simplifying assumptions:

(i) Quasi-static pushing: the force applied to the object is big enough to move
the object, but not to accelerate it.

(ii) The pressure distribution of the object on the surface is uniform and the
limit-surface of frictional forces can be approximated by an ellipsoid.

24

2.4 Planar Pushing

Figure 2.5: Robotic platform for collecting push-
ing data. Figure reproduced with permission

from ©2016 IEEE

B

Vicon camera

interchangeable
surface

(iii) The friction coefficient between surface and object is constant.

The analysis performed by [Yu et al| (2016) shows that assumption (ii) and (iii)
are frequently violated by real world data. Assumption (i) holds for push velocities
below 50 ™. In addition, the contact situation may change during pushing (as
the pusher may slide along the object and even lose contact), such that the model
predictions become increasingly inaccurate the longer ahead it needs to predict in
one step.

2.4.2 Robotic Pushing Platform

To train and evaluate our methods, we frequently use data from a robotic platform
shown in Figure It is located at MIT’s Manipulation and Mechanisms Labora-
tory (https://mcube.mit.edu) and consists of an ABB IRB 120 robot arm with
an attached cylindrical pusher that can push steel objects with different shapes on
a table with interchangeable surface materials. A Vicon motion capture system
is used to track the pose of the manipulated objects with high accuracy. Sensory
input can be obtained using an Intel RealSense D415 RGBD camera mounted in
front of the robot and the force/torque sensor at the pusher.

Besides from performing our own experiments on the robot in Chapter 5, we will
use two datasets of robotic pushes collected with this platform by [Yu et al.| (2016);
Bauza et al. (2019).

25

https://mcube.mit.edu

Chapter 3

Models for Perception and
Prediction

This chapter is based on a previously published article

Alina Kloss, Stefan Schaal, and Jeannette Bohg. (2020) ” Combining learned and
analytical models for predicting action effects from sensory data.” In International
Journal of Robotics Research. DOI: 10.1177/0278364920954896. (©)2018 SAGE
Publications

For author contributions, Alina Kloss developed the theory and methods, and
conceived, planned and carried out the experiments. Alina Kloss wrote the manuscript
with inputs from all authors. Stefan Schaal helped supervise the project and pro-
vided feedback. Jeannette Bohg supervised the project and shaped its direction.

27

Chapter 3 Models for Perception and Prediction

3.1 Introduction

In this chapter, we want to study the advantages and limitations of model-based and
data-driven approaches for perception and prediction and how we can combine both.
As an exemplary task, we approach the problem of predicting the consequences of
push interactions with objects based on raw sensory data.

Traditionally, interaction dynamics are described by physics-based analytical
models (Yu et al., 2016 |Lynch et al.l [1992; Zhang and Trinkle, 2012)) which rely
on a fixed representation of the environment state. As discussed before, this ap-
proach has the advantage that both state representation and dynamics model have
physical meaning and are therefore interpretable for humans and easily transfer-
able to similar problems. They also make the underlying assumptions in the model
transparent. However, defining such dynamics models for complex scenarios and
extracting the required state representation from raw sensory data may be difficult,
especially if no assumptions, for example about the shape of objects, are made.

More recently, we have seen approaches for predicting the effects of pushing
actions that successfully replace the physics-based models with learned ones (Zhou
et all 2016} Belter et al., 2014; Mericli et al., 2015} Kopicki et all [2017} |Bauza
and Rodriguez, 2017). While often more accurate than analytical models, these
methods still assume a predefined state representation as input and do not address
the problem of how it may be extracted from raw sensory data.

Other neural network based methods instead simultaneously learn a represen-
tation of the sensory input and the associated dynamics from large amounts of
training data, for example (Byravan and Fox, 2017; Agrawal et al.| 2016; Watters
et al. 2017, |[Finn et all [2016). They have shown impressive results in predicting
the effect of physical interactions directly from sensory observations.

Agrawal et al.| (2016) argue that a neural network may benefit from choosing
its own intermediate representation of the input data instead of being forced to
use a predefined state representation. They reason that a problem can often be
parameterized in different ways and that some of these parameterizations might be
easier to obtain from the given sensory input than others. The disadvantage of a
learned representation is, however, that it usually cannot be be mapped to physical
quantities. This makes it hard to intuitively understand both the learned functions
and the representations. In addition, it remains unclear models with a learned state
representation could be transferred to different but similar problems.

As discussed in Chapter and shown by [Zhang et al.| (2017), neural networks
also often have the capacity to memorize their training data perfectly and learn
a mapping from inputs to outputs instead of fitting the true underlying function.
This can make perfect sense if enough training data is available that covers the
whole problem domain. However, when data is sparse (for example because a
robot learns by experimenting), it can easily lead to overfitting. The question of
how to generalize beyond the training data then becomes very important.

28

3.1 Introduction

Our hypothesis is that using prior knowledge from existing physics-based models
can reduce the amount of required training data for learning the perception models
and at the same time ensure good generalization of the whole system beyond the
training domain. In this chapter, we thus investigate using neural networks for
extracting a suitable state representation from raw sensory data that can then
be consumed by an analytical model for prediction. Optionally, the output of
the analytical model can be further refined by adding a learned error term. We
compare these hybrid approaches to using a neural network for both, perception
and prediction, as well as to the analytical model applied on ground truth input
values.

As example physical interaction task, we use planar pushing as introduced in
Chapter 2.2] For this task, a well-known physical model (Lynch et all], [1992) is
available as well as a large, real-world dataset (Yu et al., 2016)) which we augmented
with simulated images. Given a depth image of a tabletop scene with one object
and the position and movement of the pusher, our models need to predict the object
position in the given image and its movement due to the push.

Our experiments show that despite of relying only on depth images to extract
position and contact information, all our models perform similar to the analytical
model applied on the ground truth state. Given enough training data and evaluated
inside of its training domain, the pure neural network implementation performs best
and even outperforms the analytical model baseline significantly. However, when it
comes to generalization to new actions, the hybrid approach is much more accurate.
Additionally, we find that the hybrid approach needs significantly less training data
than the neural network model to arrive at a high prediction accuracy.

To summarize, in this chapter, we make the following contributions:

e We show how analytical dynamics models and neural networks can be com-
bined and trained end-to-end to predict the effects of robot actions based on
visual input like depth images.

e We compare this hybrid approach to using a pure neural network for learning
both, perception and prediction. Evaluations on a real world physical in-
teraction task demonstrate improved data efficiency and generalization when
including the analytical model into the network over learning everything from
scratch.

e We show how the hybrid approach can be further extended by combining the
analytical model with a learned error-correction term to better compensate
for possible inaccuracies of the analytical model

e For training and evaluation, we augmented an existing dataset of planar push-
ing with depth and RGB images and additional contact information. The code
for this is available online.

29

Chapter 3 Models for Perception and Prediction

3.2 Related Work

3.2.1 Models for Pushing

Analytical models of quasi-static planar pushing have been studied extensively in
the past, starting with Mason (1986)). |Goyal et al| (1991) introduced the limit
surface to relate frictional forces with object motion, and much work has been done
on different approximate representations of it Hong Lee and Cutkosky| (1991)); Howe
and Cutkosky| (1996). The model by [Lynch et al|(1992), which we use here, relies
on an ellipsoidal approximation of the limit surface.

More recently, there has also been a lot of work on data-driven approaches to
modeling the dynamics of pushing (Zhou et all 2016} Belter et al., [2014; [Mericli
et al., 2015, Kopicki et al.,[2017; Bauza and Rodriguez, |2017)). Kopicki et al. (2017)
describe a modular learner that outperforms a physics engine for predicting the
results of 3D quasi-static pushing even for generalizing to unseen actions and object
shapes. This is achieved by providing the learner not only with the trajectory of
the global object frame, but also with multiple local frames that describe contacts.
The approach however requires knowledge of the object pose from an external
tracking system and the learner does not place the contact-frames itself. |[Bauzal
and Rodriguez (2017) train a heteroscedastic Gaussian Process that predicts not
only the object movement under a certain push, but also the expected variability
of the outcome. The trained model outperforms the analytical model by |[Lynch
et al. (1992)) given very few training examples. It is however specifically trained for
one object and generalization to different objects is not attempted. Moreover, this
work, too, assumes access to the ground truth state, including the contact point
and the angle between the push and the object surface.

3.2.2 Learning Dynamics Based on Raw Sensory Data

Many recent approaches in reinforcement learning aim to solve the so-called pizel-
to-torque problem, where the network processes images to extract a representation
of the state and then directly returns the required action to achieve a certain task
(Lillicrap et al., 2015; |Levine et al., |2016)). Jonschkowski and Brock| (2015) argue
that the state-representation learned by such methods can be improved by enforc-
ing robotic priors on the extracted state, that may include for example temporal
coherence. This is an alternative way of including basic principles of physics in
a learning approach, compared to what we propose here. While policy learning
requires understanding the effect of actions, the above methods do not acquire an
explicit dynamics model. We are interested in learning such an explicit model, as
it enables optimal action selection (potentially over a larger time horizon). The
following papers share this aim.

30

3.2 Related Work

Agrawal et al| (2016)) consider a learning approach for pushing objects. Their
network takes as input the pushing action and a pair of images: one before and one
after a push. After encoding the images, two different network streams attempt to
predict (i) the encoding of the second image given the first and the action and (ii) the
action necessary to transition from the first to the second encoding. Simultaneously
training for both tasks improves the results on action prediction. The authors do
not enforce any physical models or robotic priors. As the learned models directly
operate on image encodings instead of physical quantities, we cannot compare the
accuracy of the forward prediction part (i) to our results.

SE3-Nets (Byravan and Fox, [2017)) process organized (i.e. image shaped) 3D point
clouds and an action to predict the next point cloud. For each object in the scene,
the network predicts a segmentation mask and the parameters of an SE3 transform
(linear velocity, rotation angle and axis). In newer work, Byravan et al.| (2018) add
an intermediate step, that computes the 6D pose of each object before predicting
the transforms based on this more structured state representation. The output
point cloud is obtained by transforming all input pixels according to the transform
for the object they correspond to. The resulting predictions are very sharp and
the network is shown to correctly segment the objects and determine which are
affected by the action. An evaluation of the generalization to new objects or forces
was however not performed.

Our own architecture is inspired by this work. The pure neural network we use
to compare to our hybrid approach can be seen as a simplified variant of SE3-Nets,
that predicts SE2 transforms (see Section [3.5)). Since we define the loss directly
on the predicted movement of the object, we omit predicting the next observation
and the segmentation masks required for this. We also use a modified perception
network, which relies mostly on a small image patch around the robot end-effector.

The work presented by [Finn et al| (2016); Ebert et al.| (2017, 2018)) is similar
to the method by Byravan and Fox| (2017) and explores different possibilities of
predicting the next frame of a sequence of actions and RGB images using recurrent
neural networks.

Visual Interaction Networks (Watters et al., 2017) also take temporal information
into account. A convolutional neural network encodes consecutive images into a
sequence of object states. Dynamics are predicted by a recurrent network that
considers pairs of objects to predict the next state of each object.

3.2.3 Combining Analytical Models and Learning

The idea of using analytical models in combination with learning has also been ex-
plored in previous work. Degrave et al. (2019) implemented a differentiable physics
engine for rigid body dynamics in Theano and demonstrate how it can be used to
train a neural network controller. Nguyen-Tuong and Peters| (2010) significantly
improve Gaussian Process learning of inverse dynamics by using an analytical model

31

Chapter 3 Models for Perception and Prediction

of robot dynamics with fixed parameters as the mean function or as feature trans-
form inside the covariance function of the GP. Both works, however, do not cover
visual perception.

More recently, [Wu et al.| (2017) used a graphics and physics engine to learn
to extract object-based state representations in an unsupervised way: Given a
sequence of images, a network learns to produce a state representation that is
predicted forward in time using the physics engine. The graphics engine is used to
render the predicted state and its output is compared to the next image as training
signal. In contrast to the aforementioned work, we not only combine learning and
analytical models, but also evaluate the advantages and limitations of this approach.

Finally, [Sahoo et al.| (2018]) present an interesting approach to learning functions
by training a neural network to combine a number of mathematical base opera-
tions (like multiplication, division, sine and cosine). This enables their “Equation
Learner” to learn functions which generalize beyond the domain of the training
data, just like traditional analytical models. Training these networks is however
challenging and involves training many different models and choosing the best in
an additional model selection step.

3.2.4 Newer Work

A first preprint of the work presented in this chapter was published in 2017[f] Since
then, multiple authors have worked on related problems.

Jiang and Liu| (2018), for example, mix analytical and learned components for
modeling contact dynamics, where the analytical part ensures that physical con-
straints like non-penetration are observed while the learned part models frictional
interactions that are difficult to compute analytically.

Similarly to our hybrid approach with learned error-correction term, |Ajay et al.
(2018); |Ajay et al.|(2019)) train recurrent neural networks to correct the predictions
of an analytical model over several timesteps and provide estimates of the system
uncertainty.

Instead of correcting the prediction of an analytical model with a learned error-
term, Zeng et al.|(2020) propose to directly correct the resulting control parameters
for grasping and throwing objects. To compute the residual term, their method
takes the analytical control parameters and visual input into account.

3.3 Problem Statement

Our aim is to analyze the benefits of combining neural networks with analytical
models. We therefore compare this hybrid approach to models that exclusively rely

!Preprint at https://arxiv.org/abs/1710.04102

32

https://arxiv.org/abs/1710.04102

3.4 Data

on either approach. As a test bed, we use planar pushing, for which a well-known
analytical model and a real-world dataset are available.

We consider the following problem: The input consists of a depth image D; of a
tabletop scene with one object and the pusher at time ¢, the starting position p,,; of
the pusher and its movement between this and the next timestep v, ; = Put+1—Put-
With this information, the models need to predict the object position p,; before
the push is applied and its movement v,; = Pot+1 — Po, due to the push.

This can be divided into two subproblems:

Perception Extract a suitable state representation of the scene at time ¢ (before
the push) x; from the input image. The form of x; depends on the following
prediction model, we only require that x; contains the object position p,;.

fperception (Dt) = Xy

Prediction Given the state representation x;, the start position p,; of the pusher
and its movement v, ;, predict how the object will move:

fprediction (Xta Put, Vu,t) = Vo,t

3.4 Data

We use the MIT Push Dataset by [Yu et al.| (2016) for our experiments. It contains
object pose and force recordings (not used here) from real robot experiments, where
eleven different planar objects are pushed on four different surfaces. For each
object-surface combination, the dataset contains about 6000 pushes that vary in
the manipulator (“pusher”) velocity and acceleration, the point on the object where
the pusher makes contact and the angle between the object surface and the push
direction. Pushes are 5cm long and data was recorded at 250 Hz.

As this dataset does not contain RGB or depth images, we render them using
OpenGL and the mesh-data supplied with the dataset. In this chapter, we only use
the depth images, RGB will be considered Chapter 4l A rendered scene consists
of a flat surface with one of four textures (representing the four surface materials),
on which one of the objects is placed. The pusher is represented by a vertical
cylinder with no arm attached. Figures and show the different objects
and example images. We also annotated the dataset with all information necessary
to apply the analytical model to use it as a baseline. The code for annotation and
rendering is available at https://github.com/mcubelab/pdproc.

For each experiment, we construct datasets for training and testing from a subset
of the Push Dataset. As the analytical model does not take acceleration of the
pusher into account, we only use push variants with zero pusher acceleration. We,

33

https://github.com/mcubelab/pdproc
https://github.com/mcubelab/pdproc

Chapter 3 Models for Perception and Prediction

¢

bbbk 1L “‘-‘,"*-" Sl

(a) Rendered objects of the Push Dataset (2016): (b) Rendered RGB images showing two of the
rect1-3, ellip1-3, tril-3, butter, hex. Red dots indicate the four surfaces in the MIT dataset, plywood and

subset of contact points we use to collect a test set with abs.
held-out pushes for Experiment [3.6.4]

however, do evaluate on data with high pusher velocities, that break the quasi-
static assumption made in the analytical model (in Section . One data point
in our datasets consists of a depth image showing the scene before the push is
applied, the object position before and after the push and the initial position and
movement of the pusher. The prediction horizon is 0.5seconds in all datasets ﬂ
More information about the specific data for each experiment can be found in the
corresponding sections.

We use data from multiple randomly chosen timesteps of each sequence in the
Push Dataset. Some of the examples thus contain shorter push-motions than oth-
ers, as the pusher starts moving with some delay or ends its movement during the
0.5 seconds time-window. To achieve more visual variance and to balance the num-
ber of examples per object type, we sample a number of transforms of the scene
relative to the camera for each push. Finally, about a third of our dataset consists
of examples where we moved the pusher away from the object, such that it is not
affected by the push movement.

3.5 Combining Neural Networks and Analytical
Models

We now introduce the neural network variants that we will analyze in the following
experiments. All architectures share the same first network stage that processes raw
depth images and outputs a lower-dimensional encoding and the object position.
Given this output, the pushing action (movement v, and position p,) of the pusher,
and the friction related parameters m and [, the second part of these networks
predicts the linear and angular velocity v, of the object. Here, we provide the
friction related parameters to the models since such information cannot be obtained
from single images. In Chapter 4.7, we demonstrate how m and [can be estimated
from sequences of observations and pushes using Bayesian Filtering.

The predictive part differs between the network variants. While three of them

2We also evaluated two different prediction horizons but found no significant effect on the per-
formance.

34

3.5 Combining Neural Networks and Analytical Models

(simple, full, error) use variants of the analytical dynamics model established in
Chapter variant neural has to learn the dynamics with a DNN. The prediction
part has about 1.8million trainable parameters for all variants except for error,
which has 2.7 million parameters.

We implement all our networks as well as the analytical model in tensorflow
(Abadi et al., 2015]), which allows us to propagate gradients through the analytical
models just like any other layer.

3.5.1 Perception

The architecture of the network part that processes the image is depicted in Fig-
ure 3.2, We assume that the robot knows the position of its end-effector, which
allows us to extract a small (80 x 80 pixel) image patch (“glimpse”) around the
tip of the pusher. If the pusher is close enough to the object to make contact, the
relevant information for predicting the effect of the push - like the contact point
and the normal to the object surface - can be estimated from this smaller image.
It thus serves as an attention-mechanism to focus the computations on the most
relevant part of the image. Only the position of the object needs to be estimated
from the full image. The state representation that our perception model extracts
thus contains the estimated object position and an encoding of the information
represented in the glimpse.

To obtain the glimpse encoding, we process the glimpse with three convolutional
layers with ReLLU non-linearity, each followed by max-pooling and batch normal-
ization [loffe and Szegedy! (2015)). For estimating the object position, the full image
is processed with a sequence of four convolutional and three deconvolution layers.
The output of the last deconvolution has the same size as the image input and
only has one channel that resembles an object segmentation map. We use spatial
softmax (Levine et al., 2016) to calculate the pixel location of the segmented object
center.

Initial experiments showed that not using the glimpse strongly decreased perfor-
mance for all networks. We also found that using both, the glimpse and an encoding
of the full image, for estimating the state representation was disadvantageous: Us-
ing the full image increases the number of trainable parameters in the prediction
network but adds no information that is not already contained in the glimpse.

3.5.2 Prediction

Neural Network Only (neural): Figure|3.3|a) shows the prediction part of the
variant neural, which uses a neural network to learn the dynamics of pushing. The
input to this part is a concatenation of the output from perception with the action

35

Chapter 3 Models for Perception and Prediction

and parameter ﬂ The network processes this input with three fully connected
layers before predicting the object velocity v,. All intermediate fully connected
layers use ReLLU non-linearities. The output layers do not apply a non-linearity.

Full Analytical Model (hybrid): This variant uses the complete analytical
model as described in Chapter Several fully connected layers extract the nec-
essary input values from the glimpse encoding and the action, as shown in Figure|3.3
b). These are the contact point r, the surface normal n and the contact indicator
s. For predicting s, we use a sigmoidal non-linearity to limit the predicted values

to [0, 1].

Simplified Analytical Model (simple): Simple (Figure c¢) only uses the
second stage of the analytical model. As for hybrid, a neural network extracts the
model inputs (effective push velocity v, contact point r) from the encoded glimpse
and the action.

We use this variant as a middle ground between the two other options: It still
contains the main mechanics of how an effective push at the contact point moves
the object, but leaves it to the neural network to deduce the effective push velocity
from the scene and the action. This gives the model more freedom to correct for
possible shortcomings of the analytical model. We expect these to manifest mostly
in the first stage of the model, as small errors can have a big effect there when
they influence whether a contact is estimated as sticking or slipping. Since the
second stage of the analytical model does not specify how the input action relates
to the object movement, simple also allows us to evaluate the importance of this
particular aspect of the analytical model.

Full Analytical Model + Error-Correction (error): One concern when us-
ing a predefined analytical model is that the trained network cannot improve over
the performance of the analytical model. If the analytical model is inaccurate, the
hybrid architecture can only compensate to some degree by manipulating the input
values of the model, i.e. by predicting “incorrect” values for the components of the
state representation. This limits its ability to compensate for model errors as it
might not be possible to account for all types of errors in this way.

As an alternative, we propose to learn an error-correction term which is added
to the output prediction of the analytical model. The error-term is thus not con-
strained by the model and should be able to compensate for a broader class of
model errors.

Figure d) shows the architecture. As input for predicting the error-term,
we use the same values that neural receives for predicting the object velocity, i.e.

3Since the friction coefficient between pusher and objects m is constant over all examples, we
saw no reason for including it in the inputs of the network

36

3.5 Combining Neural Networks and Analytical Models

Input Encoding Localization To prediction
/NS |
= =
~ <t B o
N S 5 - 8=
g g g 3 & 2%
SMEINENE = ch]
o
n
3 3 7-8 5-16 3-32 3-64
Glimpse: |
p - — N o % éo
{ T R
- - > > 2 ag
g g g g3
| Q =} - Q
o © o w0 =
80x80)

3

o]

3-16 3-32

Figure 3.2: Perception part for all network variants. White boxes represent tensors, green arrows
and boxes indicate network layers, whereas black arrows represent dataflow without processing.
For green arrows, the type of layer (convolution or deconvolution) is denoted in the name of their
output tensors. The numbers below the output tensors denote the kernel size and the number of
output channels for each layer.

The output of this module, glimpse encoding and the estimated object position p,, serves as
input for the prediction network depicted in Figure [3.3] For training, gradient information is
backpropagated through the prediction to the perception network.

the glimpse encoding, the action, the predicted object position and the friction
parameter. Note that we do not propagate gradients to the inputs of the error-
prediction module. The intuition behind this is that we do not want the error-
prediction to interfere with the prediction of the inputs for the analytical model.
We evaluate the effect of this architectural decision in Section 3.8l A second variant
that we compare to in this section aims to improve the generalizability of the error-
prediction to faster push movements. This is achieved by normalizing the input
action to unit length before feeding it into the error-prediction module.

3.5.3 Training

All our architectures are trained end-to-end, i.e. the loss is propagated through
the prediction to the perception part of the networks. The loss L penalizes the
Euclidean distance between the predicted and the real object position in the input
image (pos), the Euclidean error of the predicted object translation (trans), the
error in the magnitude of translation (mag) and in angular movement (rot) in
degree (instead of radian, to ensure that all components of the loss have the same
order of magnitude). We use weight decay with A = 0.001.

Let v, and p, denote the predicted and v,, p, the real object movement and
position. w are the network weights and v, = [vo, Usy| denotes linear object

37

Chapter 3 Models for Perception and Prediction

Input: Neural Network
a)Neural Network only (neural)

action

object

Input:

Neural Network:
¢) Simplified analytical model (simple)

velocity v

glimpse
encoding

b) Full analytical model (hybrid)

Po |

action

glimpse
encoding

512 256 128

—

0

'8

| contact !
indicator =
.}j

contact =

| point r %

z

normal N £

512 256

128

contact point r

leffective push
velocity v,

Out:

:I|Po
o
<

53
[}

'*518 °
L &g
%
S
73
i
+ 2>
S
3 &
n I

d) Full analytical model with error-correction (error)

256

256
™
&

128

fc3

128
)
&

64

contact indicator S

contact point I

R

| Full analytfcal model I

= [7]
Q Q

| PN |
>error term

Figure 3.3: Prediction parts of the four network variants neural, hybrid, simple and error. White
and purple boxes represent tensors, where the purple color indicates tensors that are computed

by the perception part shown in Figure (3.2
propagated through these tensors to the perception part.
Green arrows and boxes indicate network layers, whereas black arrows represent dataflow without
processing. In this network, all green arrows represent fully connected layers and the numbers be-
neath their output tensors (fc) denote the number of output channels. The red bar in architecture
(d) indicates that no gradients are propagated to the inputs of this layer.

38

During training, the gradient information is back-

3.6 Evaluating Generalization

velocity.

L(¥,,0,V,,po) = trans + mag + rot + pos + A g | w |
w
trans = ||D, — Vol mag = |[|D,]| — |[vll|

rot = 1fr—o|cu —w| pos=|po—DPo

When using the variant hybrid, a major challenge is the contact indicator s: In
the beginning of training, the direction of the predicted object movement is mostly
wrong. s therefore receives a strong negative gradient, causing it to decrease quickly.
Since the predicted motion is effectively multiplied by s, a low s results in the other
parts of the network receiving small gradients and thus greatly slows down training.
We therefore add the error in the magnitude of the predicted velocity to the loss
to prevent s from decreasing too far in the early training phase.

We use Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.0001
and a batch-size of 32 for 75,000 steps.

3.6 Evaluating Generalization

In this section, we test our hypothesis that using an analytical model for prediction
together with a neural network for perception improves data efficiency and leads to
better generalization than using neural networks for both, perception and predic-
tion. We evaluate how the performance of the networks depends on the amount of
training data (Experiment and how well they generalize to (i) pushes with
new pushing angles and contact points (Experiment [3.6.4)), (ii) new push velocities
(Experiment and (iil) unseen objects (Experiment [3.6.6).

For the experiments here, we use a top-down view of the scene, such that the
object can only move in the image plane and the z-coordinate of all scene compo-
nents remains constant. This simplifies the application of the analytical model by
removing the need for an additional transform between the camera and the table.
It also simplifies the perception task and allows us to focus this evaluation on the
comparison of the hybrid and the purely neural approach. In Chapter we will
show how to extend the proposed model to work on more difficult camera settings.

3.6.1 Baselines

We use three baselines in our experiments. All of them use the ground truth
input values of the analytical model (action, object position, contact point, surface
normal, contact indicator and friction coefficients) instead of depth images. They
thus do not solve the full problem of predicting object movement from raw sensory
input. Instead, they address the easier problem of prediction given perfect state

39

Chapter 3 Models for Perception and Prediction

information. Accordingly, the baselines only output the object velocity, but not its
initial position in the scene.

If the pusher makes contact with the object during the push, but is not in contact
initially, we use the contact point and normal from when contact is first made
and shorten the action accordingly. Note that this gives the baseline models an
additional advantage over architectures that have to infer such input values from
raw sensory data.

The first baseline is just the average translation and rotation over the dataset.
This is equal to the error when always predicting zero movement, and we therefore
name it zero. The second, physics, is the full analytical model evaluated on the
ground truth input values. The third baseline, called neural dyn is a neural net-
work that has the same three-layer architecture as the prediction module of neural
(see Figure a) for details). The difference between neural and neural dyn is
their input: While neural receives the glimpse encoding and object position from
the perception network as input, neural dyn gets the ground truth physical state
representation that is also used in the analytical model. This allows us to evaluate
whether neural benefits from being able to learn its own state representation (the
glimpse encoding) end-to-end through the prediction part.

3.6.2 Metrics

For evaluation, we compute the average Euclidean distance between the predicted
and the ground truth object translation (frans) and position (pos) in millimeters
as well as the average error on object rotation (rot) in degree. As our datasets
differ in the overall object movement, we report errors on translation and rotation
normalized by the average motion in the corresponding dataset given by the error
of the baseline zero.

3.6.3 Data Efficiency

The first hypothesis we test is that combining the analytical model with a neural
network for perception reduces the required training data as compared to a pure
neural network.

Data: We use a dataset that contains all objects from the MIT Push dataset and
all pushes with velocity 20 and split it randomly into training and test set. This
results in about 190k training examples and about 38k examples for testing. To
evaluate how the networks’ performance develops with the amount of training data,
we train the models on different subsets of the training split with sizes from 2500
to the full 190k. We always evaluate on the full test split. To reduce the influence
of dataset composition especially on the small datasets, we average results over
multiple different datasets with the same size.

40

3.6 Evaluating Generalization

Results: Figure |3.4] shows how the errors in predicted translation, rotation and
object position develop with more training data and Table contains numeric
values for training on the biggest and smallest training split. As expected, the
combined approach of neural network and analytical model (hybrid and error)
already performs very well on the smallest dataset (2500 examples) and beats the
other models including the neural dyn baseline, which uses the ground truth state
representation, by a large margin. It takes more than 20k training examples for the
other models to reach the performance of hybrid, where predicting rotation seems
to be harder to learn than translation.

Despite of having to rely on raw depth images instead of the ground truth state
representation, all models perform at least close to the physics baseline when using
the full training set. However, only the pure neural network and the hybrid model
with error-correction are able to improve on the baseline. This shows that the
analytical model limits hybrid in fitting the training data perfectly, since the model
itself is not perfect and does not allow for overfitting to noise in the training data.
Neural and error have more freedom for fitting the training distribution, which
however also increases the risk of overfitting.

Combining the learned error-correction with the fixed analytical model is es-
pecially helpful for predicting the translation of the object. To also improve the
prediction of rotations, the model needs more than 20k training examples, which is
similar to neural. While neural makes a larger improvement on the full dataset, er-
ror combines the comparably good performance of hybrid on few training examples
with the ability to improve on the model given enough data.

The variant simple, which uses only the second part of the analytical model, also
combines learning and a fixed model for predicting the dynamics. But in contrast
to error, this variant seems to combine the disadvantages of both approaches: It
needs much more training data than hybrid but is still limited by the performance
of the analytical model and gets quickly outperformed by the pure neural network
when more data is available.

The comparison of neural and the baseline neural dyn shows that despite of
having access to the ground truth data, neural dyn actually performs worse than
neural on the full dataset. This seems to agree with the theory of |[Agrawal et al.
(2016), that training perception and prediction end-to-end and letting the network
chose its own state representation instead of forcing it to use a predefined state
may be beneficial for neural learning.

Finally, we evaluate how accurate the predicted input values to the analytical
model are for simple, hybrid and error. If the analytical model was perfect, we
would expect the predicted values to be very close to the real physical state. Higher
errors could thus indicate that the models learn to compensate for inaccuracies of
the analytical model.

As can be seen in Table [3.2] both hybrid and error make fairly accurate pre-
dictions for the object state, with contact point errors around 5mm and less than

41

Chapter 3 Models for Perception and Prediction

Table 3.1: Error in predicted translation (¢rans) and rotation (rot) as percentage of the average
movement given by zero (standard errors in brackets). pos denotes the error in predicted object
position. Values shown are for training on the full training set (190k examples) and on a 2500
examples subset.

trans rot pos [mm]
neural 33.6(0.18) % 62.5(0.42)% 0.46 (0.002)
. simple 32.3(0.19)% 53.6 (0.37)% 0.44 (0.002)
2 hybrid 25.4(0.17)% 45.5(0.36)% 0.46 (0.002)
error 24.7(0.16) % 46.8(0.36) % 0.45 (0.002)
neural dyn 32.6 (0.19)% 63.5 (0.46) % -
neural 17.4(0.12)% 33.4(0.28)% 0.31(0.002)
o simple 19.3(0.13)% 35.7(0.3)% 0.33(0.002)
S hybrid 19.3(0.13)% 36.1(0.3)% 0.32(0.002)
error 18.4(0.12)% 34.6(0.29)% 0.31(0.002)
neural dyn 19.2(0.12)% 36.3 (0.29) % -
physics 18.95(0.13) % 35.4(0.3) % -
zero 2.95(0.02)mm 1.9(0.01)° -
trans [%)] rot [%] pos [mm)]
35] » R I —— T T 05T I I T
I 1 60 = |
s0|- 1 [] j\
: : 50 : : 0.4 -
21 1 L 1 0 \
| i N h | ¥
20 [| 40 — [
[- - M7 : _____________ e 1 0.3
B 1| T |
DY N B N B NN N v O B N B L1 T I L1
2.5 5 7.510 1520 50 100 190 2.5 5 7.510 1520 50 100 190 2.5 5 7.510 1520 50 100 190
thousand training examples thousand training examples thousand training examples
—w— neural —e— simple —— hybrid erToT aeeeeen neural dyn - - ~= physics

Figure 3.4: Prediction errors versus training set size (x-axis in logarithmic scale). Errors on
translation and rotation are given as percentage of the average movement in the test set. The
model-based architectures hybrid and error perform much better than the other networks when
training data is sparse.

Table 3.2: Errors of the predicted input values for the analytical model: Hybrid and error predict
the contact point r, then normal n and the contact indicator s accurately. Simple only predicts
the contact point and the effective push velocity v,,, which both deviate notably from their ground
truth values. Values shown are for training on the full training set (190k examples).

r [mm] n [°] 8 vp]

simple 22.4 (0.03) - - 18.1 (0.1)
hybrid 4.4 (0.01) 3.6 (0.02) 0.08 (0.001) -
error 4.8(0.01) 2.5(0.02) 0.08(0.001) -

42

3.6 Evaluating Generalization

5° angle between the predicted and correct normal. The contact point indicator
s is also estimated with high accuracy. Only variant simple shows a larger error
between the predicted and true contact points. The predicted effective push ve-
locity v, also does not match the values we got from applying the first stage of
the analytical model on ground truth input very closely. Since these errors do not
seem to harm the overall prediction accuracy, we conclude that they cancel each
other out. This shows that simple is not as strongly constrained by its analytical
component as hybrid and error and that it thus has more freedom in choosing its
state representation.

Summary: All our models reach the performance of the (perception-free) physics
baseline given enough training data. Combining neural networks and analytical
models strongly improves performance in comparison to to purely learned models
when little training data is available. However, neural can achieve the highest
prediction accuracy and beat the physics baseline when trained on a very large
dataset.

To further improve the prediction accuracy of hybrid while preserving its data-
efficiency, an additive error-correction term can be learned. Replacing a part of the
analytical model with a learned component in simple in contrast harmed the data
efficiency.

3.6.4 Generalization to New Pushing Angles and Contact
Points

The previous experiment showed the performance of the different models when
testing on a dataset with a very similar distribution to the training set. Here, we
evaluate the performance of the networks on held-out push configurations that were
not part of the training data. Note that while the test set contains combinations of
object pose and push action that the networks have not encountered during training,
the pushing actions or object poses themselves do not lie outside of the value range
of the training data. This experiment thus test the models’ interpolation abilities.

Data: We again train the networks on a dataset that contains all objects and
pushes with velocity 20™™*. For constructing the test set, we collect all pushes with
(1) pushing angles £20° and 0° to the surface normal (independent from the contact
points) and (ii) at a set of contact points illustrated in Figure (independent
from the pushing angle).

The remaining pushes are split randomly into a training and a validation set,
which we use to monitor the training process. There are about 114k data points in
the training split, 23k in the validation split and 91k in the test set.

43

Chapter 3 Models for Perception and Prediction

Table 3.3: Prediction errors

‘) trans rot pos [mm]
for testing on pushes with
pushing angles and contact neural 16.5 (0.06) % 36.1(0.17)% 0.31(0.001)
points not seen durlng train- szmple 16.4 (O 06) % 37.1 (018) % 0.31 (0 001)
ing. hybrid 15.6 (0.01)% 35.3(0.19)% 0.31(0.001)
error 15.6 (0.07)% 34.5(0.18)% 0.32 (O 001)
neural dyn 18.1 (0.07) % 44.1 (0.2) %
physics 14.6 (0.06) % 32.8 (0.18) % -
zero 4.36 (0.013) mm 2.27 (0.009) ° -

Results: As Table shows, hybrid and error perform best for predicting the
object velocity for pushes that were not part of the training set. Although still
being close, none of the networks can outperform the physics baseline on this test
set.

Note that the difficulty of the test set in this experiment differs from the one
in the previous experiment, as can be seen from the different performance of the
physics baseline: Due to the central contact point locations and small pushing
angles, the test set contains a high proportion of pushes with sticking contact
(see Section , for which the resulting object movement is similar to the pusher
movement. Prediction in sticking contact cases is therefore generally simpler than
in cases in which the pusher slides along the object. This difference in difficulty
makes it hard to compare the results between Table [3.1] and Table [3.3] in terms of
absolute values.

With more than 100k training examples, we supply enough data for the pure
neural model to clearly outperform the combined approach and the baseline in
the previous experiment (i.e. when the test set is similar to the training set, see
Figure . The fact that neural now performs worse than hybrid and physics
indicates that its advantage over the physics baseline may not come from it learning
a more accurate dynamics model. Instead, it probably memorizes specific input-
output combinations that the analytical model cannot predict as well, e.g. due to
noisy object pose data.

This might also be the reason why error cannot improve on hybrid as much as in
the previous experiment, especially when it comes to predicting the translation of
the object. It is however encouraging to see that the learned error correction term
for the predicted rotation is still beneficial for pushes not seen during training.

In contrast to hybrid and error, simple again does not seem to profit from using
the simplified analytical model and performs similar to neural.

As in the previous experiment (see Table , we also tested the generalization
ability of the networks when trained on a smaller training set. If we supply only
2500 training examples, the difference between hybrid and the purely learned model
is again much more pronounced: Hybrid achieves 20.3% translation and 43.8 %
rotation error whereas neural lies at 38.7 % and 63.4 % respectively.

44

3.6 Evaluating Generalization

Summary: The purely learned model performs worse than the hybrid approaches
when interpolating to unseen push configurations. For all models, the difference
to the physics baseline is larger when the training distribution does not match the
test distribution.

3.6.5 Generalization to Different Push Velocities

In this experiment, we test how well the networks generalize to unseen push veloc-
ities. In contrast to the previous experiment, the test actions in this experiment
have a different value range than the actions in the training data, and we are thus
looking at extrapolation. As neural networks are usually not good at extrapolat-
ing beyond their training domain, we expect the model-based network variants to
generalize better to push-velocities not seen during training.

Data: We use the networks that were trained in the first experiment on
the full (190k) training set. The push velocity in the training set is thus 20 ™. We
evaluate on datasets with different push velocities ranging from 10 ™™ to 300 =*.
Since seeing only one push velocity during training might be a disadvantage for
the learned models, we also compose two new training datasets, one with velocities
conform to the quasi-static assumption (10 and 20 ™) and one with a higher second
velocity (20 and 50 ™) that violates the quasi-static assumption. Both datasets
have slightly more than 125k training examples.

Results: Results are shown in Figure [3.5] Since the input action does not influ-
ence perception of the object position, we only report the errors on the predicted
object motion.

When training on push velocities below 50 ™™, we see a very large difference
between the performance of our combined approach and the pure neural network
for higher velocities. Neural’s and neural dyn’s predictions quickly become very
inaccurate, with the error on predicted translation rising to more than 60 % and
the error on predicted rotation to more than 80 % of the error when predicting zero
movement always. The performance of hybrid on the other hand is most constant
over the different push velocities and declines only slightly more than the physics
baseline. FError, too, extrapolates well, but only when trained on more than one
push velocity.

Like neural and neural dyn, simple, too, gets worse on higher velocities. Its per-
formance when predicting rotations however degrades much less than for predicting
translations. The reason for this is that all three architectures struggle mostly with
predicting the correct magnitude of the object translation and not so much with
predicting the translation’s direction. By using the second stage of the analytical
model, simple has information about how the direction of the object translation

45

Chapter 3 Models for Perception and Prediction

80

60

40

10, 20 mm/2
trans [%)]

20

80

60

40

20 mm/s
trans [%)]

20

80

60

1
1
1
1
1
1
]
1
]
.J
N RN N B R A

40

trans [%)]

(3

20, 50 mm/s

20

(&
1
L?00 =L l

| |
N IN)
,S o

25 |-

! ! ! 1
D N N N
s &S S

o FTT
20
5o |-
25 |-

!
N
& N 3
push velocity [™™] push velocity [™]
- - - physics —w— neural —e— simple —— hybrid ETTOT wxnasss neural dyn

Figure 3.5: Errors on predicted translation and rotation for testing on different push velocities.
In the first row, all models were trained on push velocities 10 and 20 %, in the second row on

velocity 20 ™™ and in the last row on velocities 20 and 50 . When training on velocities that
are small enough to ensure quasi-static pushing, all models have trouble extrapolating to higher
velocities, but hybrid and error stay much closer to the physics baseline than simple, neural and
neural dyn. Seeing additional training data from a higher push velocity (50 ™) that violates the
quasi-static assumption strongly improves the generalization to higher velocities for all models
and enables them to beat the physics baseline in many cases. Especially for the predicted object
translation, we however still see a much stronger decrease in performance for simple, neural and

neural dyn than for hybrid, error and physics.

46

3.6 Evaluating Generalization

and the contact point relate to its rotation, which results in much more accurate
predictions.

The advantage of hybrid for extrapolation lies in the first stage of the analytical
model, which allows it to scale its predictions according to the magnitude of the
action and the contact indicator s. Both are in essence multiplication operations.
A general multiplication of inputs can however not be expressed using only fully
connected layers (as used by simple, neural, neural dyn and the error-prediction
part of error) because fully connected layers essentially perform weighted additions
of their inputs. So instead of learning the underlying function, the networks are
forced to resort to memorizing input-output relations for the magnitude of the
object motion, which explains why extrapolation does not work well, especially
when training on low push velocities.

When combining the prediction of the analytical model with a learned error-term
and training only on one push velocity, the resulting model suffers from the same
issues as the other network-based variants. The decline is however less pronounced
than for neural, and only starts after 50™*. A possible reason for this is that
the error-correction term is rather small compared to the output of the analytical
model. This means that the weights with which the action enters the computation
of the error term are smaller than for neural, simple or neural dyn.

Interestingly, adding a second training velocity completely changes the picture
and makes error perform on par with or even better than hybrid. Our hypothesis
is that seeing different velocities during training prevents the error term from over-
fitting to the input action and minimizes the effect of the action magnitude on the
predicted error-term. In Section [3.8] we show that for training on only one push
velocity, error can also be made more robust to higher velocities by normalizing
the push action before using it as input to the error-prediction.

While the physics baseline performs better than the models trained on low push
velocities, it predictions also get worse on higher push velocities. The main reason
for this is that the quasi-static assumption of the model is violated: For pushes
faster than 20 ™™, the object gets accelerated and can continue sliding even after
contact to the pusher was lost.

How different the dynamics of pushing are between the quasi-static and this
dynamic behaviour also becomes apparent when we include the push velocity 50 ™2
in the training data for our learned models: They all extrapolate much better
to higher velocities and are often able to outperform the physics baseline. This
increase of performance for fast pushes however only extends to the slowest push
velocity (10 ™) for hybrid, whereas all other models perform slightly worse than
their counterparts that were only trained on one push velocity.

We also still see that with increasing push velocities, the variants simple, neu-
ral and neural dyn make significantly larger errors for predicting the translation
of the object than hybrid and error. Interestingly, for predicting the object rota-
tion, all models except for neural dyn perform extremely well, with hybrid even

47

Chapter 3 Models for Perception and Prediction

doing slightly worse than the others. A possible reason for this difference between
translation and rotation could be that the magnitude of rotations does not increase
as strongly with the push velocity as the magnitude of translations: The average
rotation increases from 1.4° on 10 ** pushes to 14.4° on 300 ™" pushes, whereas
translation increases from 2.1 to 24.8 mm. The models therefore need to change
their predicted rotations less in response to higher push velocities than they have
to for translation.

Summary: Extrapolating to different push velocities is difficult for purely learned
models, especially when the training data only contains low pushing velocities.
Using the analytical model in hybrid and error facilitates extrapolation by providing
multiplication operations and explaining the influence of the action on the resulting
movement. Since the quasi-static assumption of the analytical model is violated by
fast pushes, our models can however learn to outperform the physics baseline in
this regime when they have training data from faster pushes.

3.6.6 Generalization to Different Objects

This experiment tests how well the networks generalize to unseen object shapes and
how many different objects the networks have to see during training to generalize
well.

Data: We train the networks on three different datasets: With one object (but-
ter), two objects (butter and hex) and three objects (butter, hex and one of the
ellipses or triangles). The datasets with fewer objects contain more augmented
data, such that the total number of data points is about 35k training examples in
each. As test sets, we use one dataset containing the three ellipses and one contain-
ing all triangles. While this is fewer training data than in the previous experiments,
it should be sufficient for the pure neural network to perform as well as hybrid, since
the test sets contain only few objects.

Results: The results in Figure[3.6/show that neural is consistently worse than the
other networks, especially when predicting rotations. It also improves most notably
when one example of the test objects is in the training set. The differences between
the models are less pronounce when predicting translation, except for simple which
performs particularly bad on triangles. In contrast to neural, the architecture with
added error-term also does not perform very different from hybrid. These results
suggest that the fixed state representation and the analytical model can act as a
regularizer that prevents the perception part from overfitting to the object shape.

In general, all models perform surprisingly well on ellipses, even if the models only
had access to data from the butter object. Reaching the baseline performance on

48

3.7 Visualizations

8 zo ="l
é 2 40

O F Imf Iﬁﬂ Ij |-
5 20
® i] §40 — - N §60 _—

N 2z _ 5 40

AN S99 =

20

trained on g 80 Jos 800 g 30 8oa 800 3 80 8og 8300

Buneural Ouosimple DBhybrid [0error —— physics

Figure 3.6: Prediction errors in translation, rotation and position on objects not seen during
training. Training objects are shown on the z-axis. The top row shows results for evaluating on
ellipses, the bottom row on triangles. All networks generalize well to ellipses, but are worse for
triangles, where the error in predicted position is by factor ten higher than for the other objects.
Neural particularly struggles with predicting rotations of previously unseen objects.

triangles is however only possible with a triangle in the training set. Predicting the
object’s position is most sensitive to the shapes seen during training: It generalizes
well to ellipses which have similar shape and size as the butter or hex object. The
triangles on the other hand are very different from the other objects in the dataset
and the error for localizing triangles is by factor ten higher than for ellipses. The
results for predicting the object position do not differ much between the different
models. This is not surprising, since they share the same perception architecture.

Summary: Using the analytical model with its fixed state representation in hy-
brid and error also facilitates generalization to novel object shapes, which is more
difficult for the purely learned model. All models struggle slightly with localizing
objects of unknown shapes.

3.7 Visualizations

As a qualitative evaluation, we plot the predictions of our networks, the physics and
neural dyn baselines and the ground truth object motion for 200 repetitions of the
same push configuration. The data for these repeated pushes is available with the
MIT Push dataset. All repetitions have the same nominal pushing angle (0°), veloc-
ity (20™*) and contact point, but the exact values vary slightly between individual
pushes. To keep the visual input diverse, we also sample a different transformation
of the whole scene for each repetition, such that the object’s pose in the image
varies. The networks were trained on the full dataset from Experiment

The results shown in Figure illustrate that the resulting ground truth object

49

Chapter 3 Models for Perception and Prediction

motion for the same push configuration varies greatly between trials. Especially
in terms of object rotation, the distribution of outcomes shows two distinct modes
(one close to the overall mean and one with notably stronger object rotation). By
comparing the ground truth with the prediction of the analytical model, we can
estimate how much of this variance is due to slight changes in the push configuration
between trials (these also reflect in the analytical model) and how much is caused
by other, non-deterministic effects.

The predictions of hybrid and the analytical model are very similar. This again
shows that the state-representation that the neural network part of hybrid predicts
is mostly accurate. The plotted contact point and normal estimates in Figure [3.8
further confirm this. Adding an error-correction term to the hybrid architecture
improves the average estimation quality a little, but also increases the variance of
the predictions.

The visualizations for the other models (Figure (d)-(f)) show that they, too,
make good predictions in this example, but simple and neural dyn have much more
variance in the direction of the predicted translation than hybrid or neural. It is
also interesting to see that neural, neural dyn and simple all slightly overestimate
the object rotation in comparison to the mean ground truth movement, whereas
physics slightly underestimates it. Figure |3.8] also shows that simple is not very
accurate in predicting the contact points, confirming the quantitative results found
in Tabld3.2] As stated before, we believe that this inaccuracy is compensated for
by the predicted v,,.

3.8 Evaluation of Models with Error-Correction

The previous results have shown that adding a learned error-correction term to
the output of the analytical model in the hybrid architecture enables the network
to improve over the performance of the analytical model. The error model we
analyzed is able to outperform hybrid and the physics baseline if the training set
and the test set are similar (see Experiment [3.6.3).

In the following experiments, we evaluate different choices we made for the ar-
chitecture of error. We also compare the ability of hybrid and error to compensate
for larger errors in the analytical model.

3.8.1 Evaluation of Different Architectures

As explained in Section [3.5] we chose to block the propagation of gradients from the
error-correction module to the glimpse-encoding, because we did not want the error-
computation to interfere with the prediction of the state representation. Here, we
also evaluate an architecture err-grad that does not block the gradient propagation.

20

3.8 Evaluation of Models with Error-Correction

" —

(a) Ground truth (b) Physics Lynch et al. (c) Hybrid (d) Simple

1992

L L L

(e) Neural (f) Neural dyn (g) Error

Figure 3.7: Qualitative evaluation on 200 repeated pushes with the same push configuration (angle,
velocity, contact point). The green rectangles show the (predicted) pose of the object after the
push and the blue lines illustrate the object’s translation (for better visibility, we upscaled the lines
by factor 5). The thicker orange rectangle is the average ground truth pose of the object after the
push. Red crosses indicate the predicted initial object positions. All models predict the movement
of the object and its initial position well, but cannot capture the multimodal distribution of the
ground truth data.

! V

(a) Contact points (b) Contact points (c) Contact points (d) Contact normal (e) Contact normal
predicted by simple predicted by hybrid predicted by error predicted by hybrid predicted by error

Figure 3.8: Predicted contact points and normals from 200 repeated pushes with the same push
configuration (angle, velocity, contact point). The black point marks the (average) ground truth
contact point. While hybrid and error make fairly accurate predictions, simple predicts the
contact points not on the edge of the object but close to its center.

51

Chapter 3 Models for Perception and Prediction

Table 3.4: Evaluation of different architectures

trans rot
for predicting an error-correction term. In con-
trast to error, error-grad allows the propagation neural 17.4(0.12)% 33.4(0.28) %
of gradients from the error-prediction module to hybrid 19.3 (0.13) % 36.1(0.3) %
the glimpse encoding. Error-norm instead nor- error 18.4(0.12)% 34.6(0.29) %
malizes the push action to unit length before us- error-grad 17.9 (0.12) % 34.4(0.29) %
ing it as input to the error-prediction. Values error-norm 18.3 (0.12) % 35.3 (0.29) %

shown are for training on the fulll training set physics 18.95 (0.13) % 35.4(0.3) %
(190k examples). Results for hybrid and neural 2.95 (0.02) mm 1.9 (0.01)°

are repeated for reference.

This architecture manages to beat hybrid by an even bigger margin, as shown in
Table 3.4

The downside of propagating the gradients becomes apparent if we look at gen-
eralization to new pushing velocities: While the predictions of error become worse
with increasing velocity, they still remain more accurate than the predictions of
neural, as illustrated in Figure |3.9. Error-grad on the other hand performs even
worse than the pure neural network. A reason for this difference could be that error-
grad relies more strongly on the error-correction term than error. This allows it to
fit the training data more closely but at the same time impedes generalization to
novel actions.

As explained before, the reason for the decline in performance when extrapolating
is that the neural networks cannot scale their predictions correctly according to the
input velocity. One possibility to make the error-prediction more robust to higher
input velocities is the architecture we call error-norm. In this model, we scale
the push action to unit length before using it as input to the error-prediction.
This makes the error-prediction independent of the magnitude of the action, while
still giving it information about the push direction. The resulting model performs
only slightly worse than error inside the training domain, but much better for
extrapolation. It is still worse than hybrid though, as it cannot properly adapt the
error-term to match higher velocities.

3.8.2 Compensation of Model Errors

Using the error-correction term of course becomes much more interesting if the
analytical model is bad. To test how well the hybrid and error architectures can
compensate for wrong models, we manipulate the friction parameter [by setting it
to 1.5 or 3 times its real value. The results are shown in Table 3.5l

Wrong values of [are especially harmful for predicting the rotation of the object,
and both hybrid and error perform better than the physics baseline under this con-
dition. This shows that the hybrid architecture has the ability to compensate for
some errors of the analytical model by manipulating the predicted state represen-
tation. However, while hybrid performs similar to error if [is only 1.5 times bigger

52

3.8 Evaluation of Models with Error-Correction

100

oo
[=}

rot [%)]
B

IS
o

ST TR T T T T T O

o f

[C)

j=}

[V
[=}

| [
10 20 50 75 100 150 50 75 100 150

push velocity [™™] push velocity [™™]
- - = physics —w— neural —— hybrid erroT asfhes error-grad error-norm

Figure 3.9: Evaluation of the different architectures for predicting an error-correction term on
unseen push velocities. All models were trained on push velocity 20 ™. None of the error-
prediction models is as robust as hybrid to higher input velocities. Error-norm performs best
because its predicted error terms are independent from the push velocity. Error-grad presumably
relies more on the error-prediction term than the other architectures and therefore performs worst
outside of the training domain.

trans rot Table 3.5: Prediction errors of physics, hybrid

and error when using a manipulated friction
hybrid 20.7(0.13) % 40.5(0.32) % parameter [. In contrast to physics, both
error 19.2(0.14)% 35.9(0.3)% neural networks can compensate for the re-

-1

2 (

' physics 23.9(0.15)% 46.1(0.37)% sulting error of the analytical model. Hybrid
hybrid 25.1(0.15)% 66.9 (0.45) % can however only modify the input values to

; error 19.6 (0.13)% 37.2(0.3)% the analyt’ical rnodel3 while error can correct
physics 356 (0.23)% 80.1(0.53) % the model’s output directly and thus compen-

sates the error of the analytical model much
better.

than the correct value, it cannot compensate as well for larger deviations in /. In
this case, the ability of error to directly alter the output of the analytical model
instead of only manipulating its input values proves to be necessary for achieving
good performance.

The visualization in Figure |3.10[shows that both models predicted incorrect con-
tact points to counter the effect of the higher friction value. This makes sense,
since the location of the contact point influences the tradeoff between how much
the object rotates and how much it translates. The predictions from error deviate
farther from the ground truth values, which shows that the additional error-term
does not prevent the model from manipulating the input values to the analytical
model. Instead, it achieves its good results by combining both forms of correction.

Summary: Adding an learned error-correction term to the hybrid approach im-
proves its ability to compensate for errors in the analytical model. It however does
not prevent prediction of “wrong” state representations in such cases. For general-
ization, we found it helpful to limit the error term’s dependency on the magnitude
of the pushing action and to stop gradient flow from the error to the perception

23

Chapter 3 Models for Perception and Prediction

(a) Physics (b) Hybrid (c) Error

(d) Contact points pre- (e) Contact points pre- (f) Contact normal pre- (g) Contact normal pre-
dicted by hybrid dicted by error dicted by hybrid dicted by error

Figure 3.10: Predicted movement, contact points and normals from 200 repeated pushes when
using a wrong friction parameter (1.5 - 7). The black point marks the (average) ground truth
contact point. Both networks compensate for the wrong friction parameter by predicting the
contact point in a slightly wrong position, but the deviation from the ground truth is stronger for
error, which also flips the direction of the predicted normal (this is however not relevant in our
implementation of the analytical model).

o4

3.9 Conclusion

module.

3.9 Conclusion

In this chapter, we studied the advantages and limitations of model-based and data-
driven approaches for perception and prediction and how we can combine both. As
an exemplary task, we approach the problem of predicting the consequences of push
interactions with objects based on raw sensory data. We compared a purely learned
approach to a hybrid approach that uses a neural network for perception and an
analytical model for prediction.

We observed two main advantages of the hybrid architecture. Compared to
the pure neural network, it significantly (i) reduces the amount of required train-
ing data and (ii) improves generalization to novel physical interaction and object
shapes. The analytical model aides generalization by limiting the ability of the
hybrid architecture to overfit to the training data and by providing multiplication
operations for scaling the output according to the input action and contact indi-
cator. This kind of mathematical operation is hard to learn for fully connected
architectures and requires many parameters and diverse training examples for cov-
ering a large value range. The drawback of the hybrid approach is that it cannot
as easily improve on the performance of the underlying analytical model.

The pure neural network on the other hand can beat both, the hybrid approach
and the analytical model (with ground truth input values) if trained on enough data.
This, however, only holds when we evaluate on actions encountered during training
and does not transfer to new push configurations, velocities or object shapes. The
challenge in these cases is that the distribution of the training and test data differ
significantly.

To enable the hybrid approach to improve more on the prediction accuracy of its
analytical model, we experimented with learning an error-correction term that is
added to the prediction of the analytical model. These error models are almost as
data-efficient as hybrid and can to some extend retain the ability to generalize to
different test data provided by the analytical model. They, however, require more
diversity in the training data than hybrid to avoid overfitting. Our experiments
with a wrong analytical model also showed that the error models can compensate
for errors of the model much better than hybrid, which can only influence the
prediction by manipulating the input values of the analytical model.

The last architecture, simple, showed that combining learning and analytical
models is not automatically guaranteed to lead to good performance. By replacing
the first stage of the analytical model with a neural network, we instead combined
the disadvantages of both approaches: The architecture needs lots of training data
and does not generalize well to new pushes, because it misses the part of the an-
alytical model that explains the influence of the pushing action on the resulting

95

Chapter 3 Models for Perception and Prediction

object velocity. In contrast to the pure neural network, it, however, also cannot
improve much on the performance of the analytical model.

A limitation of the presented hybrid approach is that it may be hard to find an ac-
curate analytical model for some physical processes and that not all existing models
are suitable for our approach, as we require them to be differentiable everywhere.
If no analytical model is available, learning the predictive model with a neural net-
work is still a very good option. Especially the switching dynamics encountered
when the contact situation changes proved to be challenging and more work needs
to be done in this direction.

In perception on the other hand, the strengths of neural networks can be well
exploited to extract the input state representation of the analytical model from
raw sensory data. By training end-to-end through a given model, we can avoid the
effort of labeling data with the ground truth state. Our experiments also showed
that training end-to-end allows the hybrid models to compensate for smaller errors
in the analytical model by adjusting the predicted input values.

Using the state representation of the analytical model for the hybrid architec-
ture has the advantage that the predictions of the network can be visualized and
interpreted. This is not easily possible for the intermediate representations learned
in the pure neural network. Our results, however, suggest that the pure neural
network benefits from being free to chose its own state representation, as learning
the dynamics model from the ground truth state representation (neural dyn) lead
to worse prediction results.

The work presented here mainly serves as a case study for combining analytical
and learned models and we thus kept the visual scenes relatively simple. An inter-
esting direction for future work is to extend the concept to more challenging visual
problems, like scenes with multiple objects or objects with more complex geometry.
The visual processing of point-clouds and understanding of object geometry could
potentially be facilitated by using methods like pointnet++ (Qi et al., 2017) that
are specifically designed for this type of input data.

A logical next step is also to consider sequences of actions and observations
instead of single-step prediction. Working on sequences makes it possible to exploit
temporal cues like optical flow or to guide learning by enforcing constraints like
temporal consistency. One approach to do so that we will present in the next
chapter is to embed the model-learning into the structure of Bayesian filtering
algorithms to provide probabilistic estimates of the state of the system over time.

56

Chapter 4

State Estimation and Uncertainty

This chapter has not been previously published, but an article based on its contents
is currently under review. The preprint can be found on arXiv.org

Alina Kloss, Georg Martius, and Jeannette Bohg. (2020) "How to Train Your
Differentiable Filter” arziv.org/abs/2012.143183.

For author contributions, Alina Kloss developed the theory and methods, and
conceived, planned and carried out the experiments. Alina Kloss wrote the manuscript
with feedback from all authors. Jeannette Bohg and Georg Martius supervised the
project and shaped its direction.

o7

Chapter 4 State Estimation and Uncertainty

4.1 Introduction

In the previous chapter, we investigated combining structure and learning at the
level of individual models for perception and prediction. Here, we take the focus up
to the level algorithms. Algorithms are formal descriptions of how to solve a certain
task using the corresponding models. Discovering this type of higher-level logic on
top of learning the required models can be challenging for unstructured DNNs.
Embedding the model-learning into the given structure of algorithms thus has the
potential to facilitate learning and allows us to optimize the models specifically for
their respective algorithm.

For evaluating this hypothesis, we look at the problem of state estimation: In
many robotic applications, it is crucial to maintain a belief about the state of the
system over time, like tracking the location of a mobile robot or the pose of a
manipulated object. These state estimates serve as input for planning and decision
making and provide feedback during task execution. In addition to tracking the
system state, it can also be desirable to estimate the uncertainty associated with the
state predictions. This information can be used to detect failures and enables risk-
aware planning, where the robot takes more cautions actions when its confidence
in the estimated state is low.

Recursive Bayesian filters are a class of algorithms that combine perception and
prediction for probabilistic state estimation in a principled way. To do so, they
require an observation model that relates the estimated state to the sensory obser-
vations and a process model that predicts how the state develops over time. Both
have associated noise models that reflect the stochasticity of the underlying system
and determine how much trust the filter places in perception and prediction.

Formulating good observation and process models for the filters can, however,
be difficult for many problems, especially when the sensory observations are high-
dimensional and complex, like camera images. Over the last years, deep learning
has become the method of choice for processing such data. While (recurrent) neu-
ral networks can be trained to address the full state estimation problem directly,
recent work (Jonschkowski and Brock, 2016; Haarnoja et al., 2016; Jonschkowski
et al., 2018 |Karkus et al., |2018a) showed that it is also possible to include data-
driven models into Bayesian filters and train them end-to-end through the filtering
algorithm. For Histogram filters (Jonschkowski and Brock, 2016)), Kalman filters
(Haarnoja et al} [2016) and Particle filters (Jonschkowski et al| [2018; Karkus et al.,
2018al), the respective authors showed that such differentiable filters (DF) system-
atically outperform unstructured neural networks like LSTMs. In addition, the
end-to-end training of the models also improved the filtering performance com-
pared to using observation and process models that had been trained separately.

A further interesting aspect of differentiable filters is that they allow for learning
sophisticated models of the observation and process noise. This is useful because
finding appropriate values for the noise models is often difficult and despite much

o8

4.2 Related Work

research on identification methods (e.g. (Bavdekar et all, 2011; Valappil and Geor-
gakis|, 2000))) they are often tuned manually in practice. To reduce the tedious
tuning effort, the noise is then typically assumed to be uncorrelated Gaussian noise
with zero mean and constant covariance. Many real systems are, however, better
described by heteroscedastic noise models, where the level of uncertainty depends
on the state of the system and/or possible control inputs. Taking heterostochas-
ticity of the dynamics into account has been demonstrated to improve filtering
performance in many robotic tasks (Bauza and Rodriguez, 2017; Kersting et al.,
2007). Haarnoja et al.|(2016)) also showed that learning heteroscedastic observation
noise helped a Kalman filter dealing with occlusions in the observations.

In this chapter, we perform a through evaluation of differentiable filters. Our
main goals are to highlight the advantages of DF's over both unstructured learning
approaches and manually-tuned filtering algorithms, and to provide practical guid-
ance to researchers interested in applying differentiable filtering to their problems.

To this end, we review and implement existing work on differentiable Kalman
and Particle filters and introduce two novel variants of differentiable Unscented
Kalman filters. The underlying algorithms are introduced in Chapter 2.3 Our
implementation for TensorFlow (Abadi et al. 2015) is publicly availableﬂ

In extensive experiments on three different tasks, we compare the DFs and evalu-
ate different design choices for implementation and training, including loss functions
and training sequence length. We also investigate how well the different filters can
learn complex heteroscedastic and correlated noise models and compare the DFs
to unstructured LSTM (Hochreiter and Schmidhuber|, 1997) models.

4.2 Related Work

4.2.1 Combining Learning and Algorithms

Integrating algorithmic structure into learning methods has been studied for many
robotic problems, including state estimation, planning (Tamar et al., 2016; Karkus
et al., 2017; |Oh et al., [2017; |Farquhar et al. 2018} \Guez et al., |2018) and control
(Donti et al. 2017, |Okada et al., 2017; Amos et al., 2018; Pereira et al.l [2018;
Holl et al., 2020). Most notably, Karkus et al| (2019) combine multiple differen-
tiable algorithms into an end-to-end trainable “Differentiable Algorithm Network”
to address the complete task of navigating to a goal in a previously unseen environ-
ment using visual observations. Here, we focus on addressing the state estimation
problem with differentiable implementations of Bayesian filters.

1https ://github.com/akloss/differentiable_filters

29

https://github.com/akloss/differentiable_filters

Chapter 4 State Estimation and Uncertainty

4.2.2 Differentiable Bayesian Filters

There have been few works on differentiable filters so far. Haarnoja et al.| (2016)
propose the BackpropKF, a differentiable implementation of the (extended) Kalman
filter. |Jonschkowski and Brockl (2016)) present a differentiable Histogram filter
for discrete localization tasks in one or two dimensions and Jonschkowski et al.
(2018) and Karkus et al| (2018al) both implement differentiable Particle filters for
localization and tracking of a mobile robot. In the following, we focus our discussion
on differentiable Kalman and Particle filters, since Histogram filters as used in
Jonschkowski and Brock] (2016)) are usually not feasible in practice, due to the need
of discretizing the complete state space.

Observation Model and Noise All three works have in common that the
raw observations are processed by a learned neural network that can be trained
end-to-end through the filter. In Haarnoja et al. (2016)), the network outputs a
low-dimensional representation of the observations together with input-dependent
observation noise R (see Section for a detailed explanation), while in [Jon-
schkowski et al| (2018)); [Karkus et al| (2018a)), a neural network learns to predict
the likelihood p(z|x!) of each particle given an image and a map of the environment.

As a result, all three works use heteroscedastic observation noise, but only
Haarnoja et al.|(2016) evaluate this choice: They show that conditioning R on the
raw image observations drastically improves filter performance when the tracked
object can be occluded.

Process Model and Noise For predicting the next state, all three works use
a given analytical process model. While Haarnoja et al. (2016) and |Karkus et al.
(2018a)) also assume known process noise, |Jonschkowski et al.| (2018)) train a network
to predict Q that can be conditioned on the actions u. The effect of learning action
dependent process noise was however not evaluated.

Effect of End-to-End Learning |Jonschkowski et al. (2018) compare the results
of an end-to-end trained filter with one where the observation model and process
noise were trained separately. The end-to-end trained variant performs better,
presumably because it learns to overestimate the process noise. Possible differences
between the learned observation models are not discussed. The best performance
for the filter could be reached by first pretraining the models individually and the
finetuning end-to-end through the filter.

Comparison to Unstructured Models All works compare their differentiable
filters to LSTM models trained for the same task and find that including the struc-
tural priors of the filtering algorithm and the known process models improves per-
formance. |Jonschkowski et al| (2018) also evaluate a Particle filter with learned

60

4.3 Implementation

process model in one experiment, which performs worse than the filter with ana-
lytical process model but still beats the LSTM.

In contrast to the existing work on differentiable filtering, the main purpose of
this chapter is not to present a new method for solving a robotic task. Instead,
we attempt a thorough evaluation of differentiable filtering and of implementation
choices made by the aforementioned seminal works. We also compare differentiable
filters with different underlying Bayesian filtering algorithms in a controlled way.

4.2.3 Variational Inference

A second line of research closely related to differentiable filters is variational in-
ference in temporal state space models (Krishnan et al., 2016; Karl et al 2017;
Watter et al., 2015} Fraccaro et al. 2017; |Archer et al., [2015)). For a recent review
of this work, see (Girin et al., 2020). In contrast to DFs, the focus of this research
lies more on finding generative models that explain the observed data sequences
and are able to generate new sequences. The representation of the underlying state
of the system is often not assumed to be known. But even though the goals are
different, recent results in this field show that structuring the variational models
similarly to Bayesian filters improves their performance (Karl et al. [2017; [Fraccaro
et al., 2017).

4.3 Implementation

In this section, we describe how we embed model-learning into the nonlinear filtering
methods presented in Chapter 2.3] Specifically, we will investigate differentiable
versions of the Extended Kalman filter (EKF), the Unscented Kalman filter (UKF),
a sampling based variant of the UKF that we call Monte-Carlo Unscented Kalman
filter (MCUKF) and the Particle Filter (PF). The differentiable versions of the
filters will be denoted by dEKF, dUKF etc. in the following.

4.3.1 Differentiable Filters

We implement the aforementioned filtering algorithms as recurrent neural network
layers in TensorFlow. For UKF and MCUKF, this is straight-forward, since all
necessary operations are differentiable and available in TensorFlow.

dEKF

In contrast, the dEKF requires the Jacobian of the process model F. TensorFlow
implements a method for computing Jacobians, with or without vectorization. The

61

Chapter 4 State Estimation and Uncertainty

former is fast but has a high memory demand, while the latter can become very slow
for large batch sizes. Therefore, we recommend to derive the Jacobians manually
where applicable.

dPF

The Particle filter is the only filter we investigate that is not fully differentiable: In
the resampling step, a new set of particles with uniform weights is drawn (with re-
placement) from the old set according to the old particle weights. While the drawn
particles can propagate gradients to their ancestors, gradient propagation to other
old particles or to the weights of the old particle set is disrupted (Jonschkowski
et al., 2018, Karkus et al) 2018a; Zhu et al., [2020). If we place the resampling
step at the beginning of the per-timestep computations, this only affects the gra-
dient propagation through time, i.e. from one timestep ¢ 4+ 1 to its predecessor ¢.
At time t, both particles and weights still receive gradient information about the
corresponding loss at this timestep. We therefore hypothesize that the missing
gradients through time are not problematic as long as we provide a loss at every
timestep.

As an alternative to simply ignoring the disrupted gradients, we can also apply
the resampling step less frequently or use soft resampling as proposed by Karkus
et al] (2018a). We evaluate these options in Experiment [4.5.4]

In addition, we investigate two alternative implementation choices for the dPF:
The likelihood used for updating the particle weights in the observation update
step can be implemented either with an analytical Gaussian likelihood function or
with a trained neural network as in [Jonschkowski et al.| (2018)) and Karkus et al.
(2018a)). The learned observation likelihood is potentially more expressive than the
analytical solution and can be advantageous for problems where formulating the
observation and sensor model is not as straight-forward as in our experiments. A
potential drawback is that in contrast to the analytical solution, no explicit noise
model or sensor network is learned. We compare these two options in Section [4.5.4]

4.3.2 Observation Model

In Bayesian filtering, the observation model h(-) is a generative model that predicts
observations from the state z; = h(x;). In practice, it is, however, often hard to
find such models that directly predict the potentially high-dimensional raw sensory
signals without making strong assumptions.

We therefore use the method first proposed by Haarnoja et al. (2016) and train
a discriminative neural network ng with parameters w, to preprocess the raw
sensory data D and create a more compact representation of the observations
z = ng(D,w,). This network can be seen as a virtual sensor, and we thus call

62

4.3 Implementation

it sensor network. In addition to z;, the sensor network can also predict the het-
eroscedastic observation noise covariance matrix R; (see Section for the cur-
rent input D;.

In our experiment, z contains a subset of the state vector x. The actual observa-
tion model h(x) thus reduces to a simple linear selection matrix of the observable
components, which we provide to the DF's.

4.3.3 Process Model

Depending on the user’s knowledge about the system, the process model f(-) can
be implemented using a known analytical model or a neural network n,(-) with
weights w,. When using neural networks, n,(-) outputs the change from the last
state n,(x;, u;, w,) = Ax; such that x4 = x; + Ax;. This form ensures stable
gradients between timesteps (since 83_;1 =1+ g—;:’t) and provides a reasonable
initialization of the process model close to identity.

4.3.4 Noise Models

For learning the observation and process noise, we consider two different condi-
tions: constant and heteroscedastic. In both cases, we assume that the process and
observation noise at time t can be described by zero-mean Gaussian distributions
with covariance matrices Q; and R;.

A common assumption in state-space modeling is that Q; and R; are diagonal
matrices, but we can also use full covariance matrices to model correlated noise.
In this case, the output of the noise models are upper-triangular matrices L;, such
that e.g. Q; = L;LI.

For constant noise, the filters directly learn the diagonal or triangular elements
of Q and R. In the heteroscedastic case, Q; is predicted from the current state
x; and (if available) the control input u; by a neural network n,(x;, us, w,) with
weights w,. In dUKF, dMCUKF and dPF, n,(-) outputs separate Q' for each sigma
point/particle and Q; is computed as their weighted mean. The heteroscedastic
observation noise covariance matrix R; is an additional output of the sensor model
ns(Dy, ws).

We initialize the diagonals Q; and R; close to given target values by adding a
trainable bias variable to the output of the noise models. To prevent numerical
instabilities, we also add a small fixed diagonal matrix to both covariance matrices
as a lower bound for the predicted noise. The value of the lower bound depends
on the overall value range of the state and observations, but we found that values
below 10~* increase the risk of numerical errors.

63

Chapter 4 State Estimation and Uncertainty

4.3.5 Training Loss

For training the filters we always assume that we have access to the ground truth
trajectory of the state x'_, ;. In our experiments, we test the two different loss
functions used in related work: The first, used by Karkus et al.| (2018a) is simply
the mean squared error (MSE) between the mean of the belief and true state at
each timestep:

]~
£

t=0
For the dPF, we compute i as the weighted mean of the particles.

The second loss function, used by [Haarnoja et al.| (2016) and [Jonschkowski et al.
(2018), is the negative log likelihood (NLL) of the true state under the predicted
distribution of the belief. In dEKF, dUKF and AMCUKEF, the belief is represented
by a Gaussian distribution with mean g, and covariance ¥; and the negative log
likelihood is computed as

Lnin = == Zlog 13,]) + - l*l“t)TEz‘,_l(Xff) (4.2)

The dPF represents its belief using the particles x, € X and their weights ;.
We consider two alternative ways of calculating the NLL for training the dPF: The
first is to represent the belief by fitting a single Gaussian to the particles, with
p=SN mx; and =S mi(x; —) (x; — p)" and then apply Equation
We refer to this variant as dPF-G.

This is, however, only a good representation of the belief if the distribution of the
particles is unimodal. To better reflect the potential multimodality of the particle
distribution, the belief can also be represented with a Gaussian Mixture Model
(GMM) as proposed by |Jonschkowski et al.| (2018)). Every particle contributes a
separate Gaussian N;(x’,) in the GMM and the mixture weights are the particle
weights. The drawback of this approach is that the fixed covariance 3 of the
individual distributions is an additional tuning parameter for the filter. We call
this version dPF-M and calculate the negative log likelihood with

¥

Lyt = Zl gz \/E exp(x Xi)Tz_l(Xi _XD (4.3)

4.4 Experiments

In the following, we will evaluate the DF's on three different datasets. We start with
a simple simulation setting that gives us full control over parameters of the system

64

4.5 Simulated Disc Tracking

such as the process noise (Section [A.5). In Sections and [4.7, we then study
the performance of the DFs on two real-robot tasks: The first is the Kitti Visual
Odometry problem, where the filters are used to track the position and heading of
a moving car given only RGB images. With the last dataset, we return to the task
of robotic pushing, where the filters track the pose of an object while the robot
performs a series of pushes.

4.4.1 Training and Initialization

Unless stated otherwise, we will train the DFs end-to-end for 15 epochs using
the Adam optimizer (Kingma and Ba, 2015). During training, the initial state
is perturbed with noise sampled from a Normal distribution Ny (0, Xiy). For
testing, we evaluate all DF's with the correct initial state as well as with few fixed
perturbations (sampled from Ny,;;) and average the results.

The initial covariance for dEKF, dUKF and dMCUKF are set accordingly to
g = Yiit- For the dPF, we sample the initial particles around the perturbed state
from Ninit‘

4.5 Simulated Disc Tracking

We first evaluate the DF's in a simulated environment similar to the one in Haarnoja
et al.| (2016)): The task is to track a red disc moving amongst varying numbers of
distractor discs, as shown in Figure 1.1} The state consists of the position p and
linear velocity v of the red disc.

The dynamics model that we used for generating the training data is

Pir1 =Pt + Vi +dpy

Vir1l = Ve — fppt - fdvfsz'gn(vt) + oyt

The velocity update contains a force that pulls the discs towards the origin (f, =
0.05) and a drag force that prevents too high velocities (f; = 0.0075). q represents
the Gaussian process noise.

The sensor network receives the current image at each step, from which it can es-
timate the position but not the velocity of the target. As we do not model collisions,
the red disc can be occluded by the distractors or leave the image temporarily.

4.5.1 Data

We create multiple datasets with varying numbers of distractors, different levels of
constant process noise for the disc position and constant or heteroscedastic process
noise for the disc velocity. All datasets contain 2400 sequences for training, 300

65

Chapter 4 State Estimation and Uncertainty

Figure 4.1: Two sequential obser-
vations from our simulated task.
The filters need to track the red
disc, which can be occluded by the
other discs or leave the image tem-
porarily.

Table 4.1: Sensor model and heteroscedastic observation noise architecture. Both output layers
(for z and diag(R)) get fc 2’s output as input.

Layer Output Size Kernel Stride Activation
Input D 100 x 100 x 3 - - -
conv 1 50 x 50 x 4 9x%x9 2 ReLU
conv 2 25 x 25 X 8 9x%x9 2 ReLLU
fc 1 16 - - ReLU
fc 2 32 - - ReLU

z (fc) 2 - - -
diag(R) (fc) 2 - - -

validation sequences and 303 sequences for testing. The sequences have 50 steps
and the colors and sizes of the distractors are drawn randomly for each sequence.

4.5.2 Network Architectures and Initialization

The network architectures for the sensor model and heteroscedastic observation
noise model are shown in Table [4.1l Tables and show the architecture for
the learned process model and the heteroscedastic process noise. We denote fully
connected layers by fc and convolutional layers by conv.

For the noisy initial state, we use X, = 25 * I,. When training from scratch,
we initialize Q and R with Q = 100 * I, and R = 900 x I, reflecting the high

(a) Learned process model architecture . . .
(b) Heteroscedastic process noise model architecture

Layer Output Size Activation

Layer Output Size Activation
Input x 4 -
fe 1 32 ReLU Input x 4 :

fc 1 32 ReLU
fc 2 64 ReLLU fe 9 39 ReLU
fe 3 64 ReLU ¢ ¢
Ax (fC) 4 _ dlag(Q) (fc) 4 -

66

4.5 Simulated Disc Tracking

uncertainty of the untrained models.

4.5.3 Implementation and Parameters: dEKF, dUKF,
dMCUKF

We first evaluate different design choices and filter-specific parameters for the DF's
that are based on different versions of the Kalman filter. We seek settings that
perform well and increase the stability of the filters during training. The dPF has
much more implementation choices and will thus be treated in a separate section.

All experiments are performed on a dataset with 15 distractors and constant pro-
cess noise (o, = 0.1, 0, = 2). The filters are trained end-to-end on Lyy, and learn
the sensor and process model as well as heteroscedastic observation and constant
process noise models. We repeat each experiment two times to account for different
initializations of the weights and report mean and standard errors.

dEKF

Of all DF's discussed here, the dEKF is the only filter without parameters or relevant
implementation choices.

dUKF

The dUKF has three filter-specific scaling parameters, o, x and . As explained
in Section [2.3.3] o and x determine how far from the mean of the belief the sigma
points are placed and how the mean is weighted in comparison to the other sigma
points. [only affects the weight of the central sigma point when computing the
covariance of the transformed distribution.

Experiment The original version of the UKF by |Julier and Uhlmann! (1997)) uses
a simple parameterization where o = 1 and § = 0 are fixed and only x varies. The
authors recommend setting k = 3 —n. « and [are used in the later proposed
scaled unscented transform (Julier, 2002), for which Van Der Merwe| (2004)) suggest
setting k = 0, f = 2 and « to a small positive value.

We evaluate the original, simple parameterization as well as the one for the scaled
transform. For the first, we test training the dUKF with x values in [—10,10]. In
the second case, we evaluate a € {0.001,0.1,0.5} but do not vary 3, for which the
value 2 is optimal when working with Gaussians.

Results The results show no significant differences between the different parame-
ter settings or between using the original parameterization from Julier and Uhlmann
(1997) and the scaled transform. Ounly for x € {5, —10} (i.e. K < —n), the train-
ing failed due to a non-invertible matrix in the calculation of the Kalman Gain.

67

Chapter 4 State Estimation and Uncertainty

50

40

Ll ol

20
I I

Oﬁmmmm B

partlcles or sigma pomts # particles or sigma points
liamcuxr [BdPF-M-ana

1

tracking RMSE
o

—log likelihood

Figure 4.2: Results on disc tracking: Tracking error and negative log likelihood of the AMCUKF
and dPF-M-ana (see Experiment [4.5.4) for different numbers of sampled sigma points or particles
during training. At test time, we use 500 sigma points or particles.

The choice of the UKF parameters presumably becomes more important for
problems with strongly non-linear dynamics or high-dimensional state spaces and
should be re-evaluated for each task. We generally recommend using values for

which A = o?(k 4+ n) — n is a small positive number. In the following, we will use
a=1,k=0.5and g =0.

dMCUKF

In contrast to the dUKF, the dAMCUKF simply samples pseudo sigma points from
the current belief. Its only parameter thus is the number of sampled points during
training Nipain and testing Nyeg.

Experiment We train the AMCUKF with N, € {5, 10, 50,100,500} and eval-
uate with Nie € {10,100, 500, 1000}.

Results Figure shows the results for testing with 500 sigma points. We see
that as few as ten sampled sigma points are enough for training the AIMCUKF rela-
tively successfully. The best results are obtained with 100 sigma points. Using more
sigma points than this even slightly decreases the performance again. A possible
explanation for this could be that the number of sigma points has a similar effect
as the batch size, such that more sigma points result in smaller overall gradients.

The number of sigma points during testing does not have a large overall effect
on the filter performance, as long as it is not smaller than the one used during
training. In the following, we will use 100 points for training and 500 for testing.
More complex problems with higher-dimensional states could, however, require
more sigma points.

68

4.5 Simulated Disc Tracking

5 20 |- 4 B a0l S
= 2
o0] N
F0p o - -] m | = s — —
£
£
0 20
0.5 1 5 10 100 0.5 1 5 10 100
o g
lpapr-M-ana BEdPF-M-rn —— dPF-G-ana —— dPF-G-Irn

Figure 4.3: Results on disc tracking: Tracking error and negative log likelihood of the dPF-
M and dPF-G, each with using the analytical (-ana) or learned (-lrn) observation update (see
Experiment . The dPF-M is evaluated for different values of the fixed per-particle covariance
matrix ¥ = ¢2I in the GMM.

4.5.4 Implementation and Parameters: dPF

The differentiable Particle filter has the highest number of different implementation
choices that we will evaluate in the following. The experiments are performed in
the same way as in the previous Section.

Belief Representation

When training on Ly, we have to chose how to represent the belief of the filter for
computing the likelihood (see Section. We investigate using a single Gaussian
(dPF-G) or a Gaussian Mixture Model (dPF-M). For the dPF-M, the covariance ¥
of the single Gaussians in the Mixture Model is an additional parameter that has
to be tuned. As our test scenario does not require tracking multiple hypotheses,
the representation by a single Gaussian in dPF-G should be accurate for this task.

Experiment We evaluate the dPF-M with ¥ = oI for o € {0.1,0.5, 1, 5,10, 100}
and compare it to the dPF-G. For each variant, we evaluate the dPF with a learned
(-Irn) or analytical (-ana) observation update function. This will be further dis-

cussed in Experiment [4.5.4]

Results As shown in Figure when training on Lyp;, and using the analytical
observation update, representing the belief of a dPF with a single Gaussian leads
to much worse results than using a GMM to represent the belief. This could
either mean that Equation facilitates training or that approximating the belief
with a single Gaussian removes useful information even when the task does not
obviously require tracking multiple hypothesis. Interestingly, when using a learned
observation update, this effect is not noticeable, which suggests the first theory.
When evaluating different values of ¥ = oI for the dPF-M, we observe that
smaller values generally lead to lower tracking errors for both versions of the ob-

69

Chapter 4 State Estimation and Uncertainty

servation update. This, however, only holds up to a certain point: using ¢ = 0.1
increases the tracking error again significantly and brings the NLL up to over 200
(which is why results are omitted in Figure [4.3).

While o = 0.5 results in the best tracking errors, the best NLL values are achieved
with ¢ = 1. Both smaller and larger values of ¢ lead to worse uncertainty estimates
as the GMM under- or overestimates the uncertainty around the belief. We will
thus use X = I for the dPF-M in all following experiments on this task. It is,
however, possible that different task could require different settings and we will
thus re-evaluate this parameter for other problems.

Observation Update

As mentioned before, the likelihood for the observation update step of the dPF can
be implemented with an analytical Gaussian likelihood function (dPF-(G/M)-ana)
or with a neural network (dPF-(G/M)-Irn) as in [Jonschkowski et al| (2018)) and
Karkus et al. (2018a).

Jonschkowski et al.| (2018) predict the likelihood based on an encoding of the
sensory data and the observable components of the (normalized) particle states.
Our implementation, too, takes the 64-dimensional encoding of the raw observations
(fc 3 in Table and the observable particle state components as input. However,
we decide not to normalize the particles, since having prior knowledge about the
mean and standard deviation of each state component in the dataset might give an
unfair advantage to the method over other variants.

Results Results for comparing the learned and analytical observation update can
be found in Figure [£.3] Using a learned instead of an analytical likelihood function
for updating the particle weights improves the tracking error of the dPF-M from
10.34+0.1 to 8.3+0.1 and the NLL from 29.64+0.2 to 28.7+0.1. For the dPF-G, the
difference is even more dramatic, with an RMSE of 23.3+1.1 vs. 8.04+0.3 and an
NLL of 31.0£0.05 vs. 27.5+0.1.

One possible explanation for this is that the learned observation likelihood func-
tion enables a better gradient flow through the observation update and thus facil-
itates learning, especially in the dPF-G. It could also help to mitigate numerical
stability problems encountered when the analytical observation likelihoods and the
resulting particle weights are extremely small.

However, the main difference between the learned an the analytical observation
update is that the implicit observation noise model of the learned version does not
have a predefined form. With the analytical version, we restrict the filter to use
additive Gaussian noise that is ether constant or depends only on the raw sensory
observations. The learned update, in contrast, enforces no functional form of the
noise model. In addition, the noise can depend not only on the raw sensory data,
but also on the observable components of the particle states. This means that the

70

4.5 Simulated Disc Tracking

learned observation update is potentially much more expressive than the analytical
one, which pays off when the Gaussian assumption made in the filtering algorithms
does not hold.

While learning the observation update thus improves the performance of the dPF,
we will still use the analytical variant in many of the following evaluations. The
main reason for this is that the analytical observation update makes the observation
noise model explicit and allows us to look at the sensor model and the observation
noise in separation. This facilitates comparing between the dPF and the other
DF variants and gives us control over the learned observation noise. For example,
in Experiment [4.5.7] we compare learning constant or heteroscedastic observation
noise. As the learned observation update always implicitly learns a heteroscedastic
noise model, it does not support this kind of evaluation.

Resampling

The resampling step of the Particle filter discards particles with low weights and
prevents particle depletion. It may, however, be disadvantageous during training
since it is not fully differentiable (Jonschkowski et al., 2018; Karkus et al., 2018a;
Zhu et al., 2020). |[Karkus et al.| (2018a)) proposed soft resampling, where the re-
sampling distribution is traded off with a uniform distribution to enable gradient
flow between the weights of the old and new particles. This trade-off is controlled
by a parameter a, € [0,1]. The higher ay, the more weight is put on the uniform
distribution. An alternative to soft resampling is to not resample at every timestep.

Experiment We test dPF-M-Irn and dPF-M-ana with different values of a,. and
when resampling every 1, 2, 5 or 10 steps. With a training sequence length of 10,
the last option results in resampling only once, before the last step of the sequence.

Results Our results in Figure 4.4] show that independent of how the observation
update is implemented, resampling frequently improves the filter performance. This
is in contrast to the results in [Karkus et al|(2018a), where resampling only every
second step improved performance in comparison to resampling at every step.

Soft-resampling also did not have much of a positive effect in our experiments,
presumably because higher values of «,, decrease the effectiveness of the resampling
step. We do, however, see a slight improvement of performance for the small value
of aye = 0.05, especially when resampling is applied less frequently. In the following
experiments, we will use a;, = 0.05 and resample at every timestep.

Number of Particles

Finally, the user also has to decide how many particles to use during training and
testing. As for the AMCUKF, we train the dPF-M-ana with Ny, € {5, 10,50, 100, 500}

71

Chapter 4 State Estimation and Uncertainty

dPF-M-Irn dPF-M-ana
30 \ \ 30 \ . \
m i%%
n T ey
E 20 |- - 20 [e == -
60
g
Z 10 ’_‘ H{-‘ B 10 |- "‘ ’* -
Q
&
—
B
0 I I I 0

\ \ \ \ \ \ \
T a0 . 40 |- rEE — =
3 —
= =
<
= 30| - 30 [-
80
S
’_l‘ ’s

20 ‘ ‘ ‘ 20
0 0.05 0.1 0.25 0 0.05 0.1 0.25
Qre Qre

|:| [every step |:| [every 2nd step D [levery 5th step D [l every 10th step

Figure 4.4: Results on disc tracking: Tracking error and negative log likelihood of the two dPF-M
variants for different resampling rates and values of the soft resampling parameter oe.

and evaluate with Ny € {10, 100, 500, 1000}.

Results The results shown in Figure 4.2 are very similar to the results we ob-
tained for the AMCUKEF. In the following, we thus also use 100 particles during
training and 1000 particles for testing.

4.5.5 Loss Function

In this experiment we compare the different loss functions introduced in Sec-
tion , as well as a combination of the two L, = 0.5(Lysg + Lnpn). Our
hypothesis is that Lyyy, is better suited for learning noise models, since it requires
predicting the uncertainty about the state, while Lyisg only optimizes the tracking
performance.

Experiment We use a dataset with 15 distractors and constant process noise
(0q, = 0.1, 04, = 2). The filters learn the sensor and process model as well as
heteroscedastic observation noise and constant process noise models.

Results As expected, training on Lypp, leads to much better likelihoods scores
than training on Lysg for all DFs, see Figure [4.5 The best tracking errors on the
other hand are reached with Lysg, as well as more precise sensor models.

For judging the quality of a DF, both likelihood and tracking error should be
taken into account: While a low RMSE is important for all tasks that use the state

72

4.5 Simulated Disc Tracking

-log likelihood

tracking RMSE
! ! 45 | !

obser\‘/ation P‘{MSE

20 20 ‘ ‘

40 (— —
15— - 15 —
35 |- —

10 —
30 |-

-

-

Lo ol ol

dEY(F d\jY(F \\ACUK F M- and

JEKF d\ﬂ(‘? dwc\ﬂﬂi? M- and

[Lyse

|:| D Lmix

Ii LnrL

I I I I
QBT QUIE UKo

Figure 4.5: Results on disc tracking: Tracking error, observation error and negative log likelihood
of dEKF, dUKF, dMCUKF and and dPF-M-ana trained with loss functions Lysg, LNy OF Liix.

estimate, a good likelihood means that the uncertainty about the state is commu-
nicated correctly, which enables e.g. risk-aware planning and failure detection.

The combined loss L, trades off these two objectives during training. It does,
however, not outperform the single losses in their respective objective. A possible
explanation is that they can result in opposing gradients: All DFs tend to over-
estimate the process noise when trained only on Lysg. This lowers the tracking
error by giving more weight to the observations in dEKF, dUKF and dMCUKF and
allowing more exploration in the dPF. But it also results in a higher uncertainty
about the state, which is undesirable when optimizing the likelihood.

We generally recommend using Lyt during training to ensure learning accurate
noise models. If learning the process and sensor model does not work well, Lyrr,
can either be combined with Lygg or the models can be pretrained.

4.5.6 Training Sequence Length

Karkus et al.| (2018a)) evaluated training their dPF on sequences of length k €
{1,2,4} and found that using more steps improved results. We want to test if
increasing the sequence length even further is beneficial. However, longer training
sequences also mean longer training times (or more memory consumption). We
thus aim to find a value for k£ with a good trade off between training speed and
model performance.

Experiment We evaluate dEKF, dUKF, dIMCUKF and dPF-M-ana on a dataset
with 15 distractors and constant process noise (04, = 0.1, 04, = 2). The filters
learn the sensor and process model as well as heteroscedastic observation noise
and constant process noise models. We train using Lyrr, on sequence lengths k €
{1,2,5,10,25,50} while keeping the total number of examples per batch (steps x
batch size) constant.

73

Chapter 4 State Estimation and Uncertainty

40 (—

30

35

MWWW@Wi ﬁ@@@ﬁ

training sequence length training sequence length

RMSE
g
log likelihood
).H

[
(=)

Unaexr [Qpaukr [amcukr [0dpPP-M-ana

Figure 4.6: Results on disc tracking: Tracking error and negative log likelihood of the DF's trained
with different sequence lengths. Each experiment was repeated two times and we report mean
and standard error of the statistics. The cut-off NLL values for sequence length 1 are 65.843.8
for the dUKF and 85.7£1.6 for the dPF-M.

Results Our results in Figure |4.6/show that all filters benefit from longer training
sequences much more than the results in Karkus et al.|(2018a)) indicated. However,
while only one time step is clearly too little, returns diminish after around ten steps.

Why are longer training sequences helpful? One issue with short sequences is
that we use noisy initial states during training. This reflects real-world conditions,
but the noisy inputs hinder learning the process model. On longer sequences, the
observation updates can improve the state estimate and thus provide more accurate
input values.

We repeated the experiment without corrupting the initial state, but the results
with k& € {1,2} got even worse: Since the DFs could now learn accurate process
models, they did not need the observations to achieve a low training loss and thus
did not learn a proper sensor model. On the longer test sequences, however, even
small errors from the noisy dynamics accumulate over time if they are not corrected
by the observations.

To summarize, longer sequences are beneficial for training DFs, because they
demonstrate error accumulation during filtering and allow for convergence of the
state estimate when the initial state is noisy. However, performance eventually
saturates and increasing k also increased our training times. We therefore chose
k = 10 for all experiments, which provides a good trade-off between training speed
and performance.

4.5.7 Learning Noise Models

The following experiments analyze if and how well complex models of the process
and observation noise can be learned through the filters.

To isolate the effect of the noise models, we use a fixed, pretrained sensor model
and the true analytical process model, such that only the noise models are trained.
We initialize Q and R with Q = I, and R = 100I,. All DFs are trained with Lypr,

74

4.5 Simulated Disc Tracking

on different datasets with 30 distractors and increasing positional process noise.
For the dPF, we only evaluate variants that use the analytical observation update
and thus have an explicit observation noise model.

Heteroscedastic Observation Noise

We first test if learning more complex, heteroscedastic observation noise models im-
proves the performance of the filters as compared to learning constant noise models.
For this, we compare DFs that learn constant or heteroscedastic observation noise
(the learned process noise model is constant) on two datasets with constant process
noise (og, € 0.1,3, 0,4, = 2) and 30 distractors.

To measure how well the predicted observation noise reflects the visibility of the
target disc, we compute the correlation coefficient between the predicted R and the
number of visible target pixels. We also evaluate the similarity between the learned
and the true process noise model using the Bhattacharyya distance.

Results Results are shown in Table [4.3] When learning constant observation
noise, the dPF-M is the only filter that performs well in terms of tracking error
on at least one of the datasets: All other filters, (including the dPF-G) learn a
very high R and thus mostly rely on the process model for their prediction. This
is expected, since trusting the observations would result in wrong updates to the
mean state estimate when the target disc is occluded. The PF-M does not use the
mean of the particles in the likelihood computation, which makes it less sensitive
to wrong observations and allows it to learn a lower R.

Like Haarnoja et al. (2016), we find that heteroscedastic observation noise sig-
nificantly improves the tracking performance of all DFs (except for the dPF-M).
The strong negative correlation between R and the visible disc pixels shows that
the DFs correctly predict higher uncertainty when the target is occluded. Only the
dPF-M sometimes fails to learn this correlation well: Since it can already perform
well with constant observation noise, it has less incentive to use state-dependent
observation noise.

Finally, all DFs learn values of q, that are close to the ground truth. For the
position noise q,, however, we see a difference between learning constant or het-
eroscedastic observation noise: On the datasets with lower ground truth process
noise, qy is overestimated by all DFs. Results are especially bad when the learned
observation noise model is constant. This could be because the bad tracking per-
formance with constant observation noise prevents learning an accurate process
model. The results for learning q, indeed also improved when we enable learning
a better process model by using the true initial state instead of a noisy one.

75

Chapter 4 State Estimation and Uncertainty

Table 4.3: Results for disc tracking: End-to-end learning of the noise models through the DFs
on datasets with 30 distractors and different levels of process noise. While Q is always constant,
we evaluate learning constant (const.) or heteroscedastic (hetero) observation noise R. We show
the tracking error (RMSE), negative log likelihood (NLL), the correlation coefficient between
predicted R and the number of visible pixels of the target disc (corr.) and the Bhattacharyya
distance between true and the learned process noise model (Dq).

Oq, = 0.1 Oq, = 3.0

R RMSE NLL corr. Dq RMSE NLL corr. Dq

AEKF const. 21.0 322 - 2.89 25.9 324 . 0.068
hetero. 134 295 -0.67 0.96 13.8 29.1 -0.78 0.001

JUKF const. 21.6 324 0 2.812 27.0 325 - 0.101
hetero. 12.1 28.7 -0.57 0.756 139 29.2 -0.78 0.008

const. 22.0 32.2 - 3.253 25.4 32.5 - 0.366

dMCUKF hetero. 11.3 285 -0.6 1.423 13.8 29.1 -0.78 0.011
APF-Conn const. 227 32.2 . 3.151 26.7 325 - 0.232
T hetero. 16.2 306 -0.54 3.106 184 308 -0.60 0.270
APF-Moana OISt 141 306 - 2.684 24.4 492 - 0.339
—vi-an hetero. 152 30.8 -0.53 2.666 149 370 -0.78 0.309

Heteroscedastic Process Noise

The effect of learning heteroscedastic process noise has not yet been evaluated in
related work. We create datasets with heteroscedastic ground truth noise, where
the magnitude of q, increases in three steps the closer to the origin the disc is. The
positional process noise q, remains constant.

We compare the performance of DFs that learn constant and heteroscedastic
process noise. The observation noise is heteroscedastic in all cases.

Results As shown in Table learning heteroscedastic models of the process
noise is a bit more difficult than for the observation noise. This is not surprising,
as the input values for predicting the process noise are the noisy state estimates.
Plotting the predicted values for Q (see Figure for an example from the
dEKF) reveals that all DFs learn to follow the real values for the heteroscedastic
velocity noise relatively well, but also predict state dependent values for q,,, which is
actually constant. This could mean that the models have difficulties distinguishing
between q, and q, as sources of uncertainty about the disc position. However, we
can see the same behavior also on a dataset with constant ground truth process
noise. We thus assume that the models rather pick up an unintentional pattern
in our data: The probability of the disc being occluded turned out to be higher
in the middle of the image. The filters react to this by overestimating q, in the
center, which results in an overall higher uncertainty about the state in regions

76

4.5 Simulated Disc Tracking

Iqy

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

t
predicted x

predicted y

Figure 4.7: Predicted and true process noise from the dEKF over one test sequence of the disc
tracking task. Our model predicts separate values for the x and y-coordinates of position and
velocity, but the ground truth process noise has the same o for both coordinates.

where occlusions are more likely.

Despite not being completely accurate, learning heteroscedastic noise models
still increases performance of all DFs by a small but reliable value. Even when the
ground-truth process noise model is constant, the DFs were able to improve their
likelihood scores slightly by learning “wrongly” heteroscedastic noise models.

Correlated Noise

So far, we have only considered noise models with diagonal covariance matrices. In
this experiment, we want to study if DF's can learn to identify correlations in the
noise. For this, we create a new dataset with 30 distractors and constant, correlated
process noise. The ground truth process noise covariance matrix is

9. —36 12 54

_|-36 9. —06 0.
Qqt = 1.2 —-06 4. 0.
54 0. 0. 4.

We compare the performance of DFs that learn correlated or diagonal noise
models on datasets with and without correlated process noise. Both the process
and the observation noise model are also heteroscedastic.

Results Results are shown in Table[d.5] Overall, we note that learning correlated
noise models has a small but consistent positive effect on the tracking performance
of all DFs, even when the ground truth noise is not correlated. On the dataset
with correlated ground truth process noise, we also observe an improvement of the

77

Chapter 4 State Estimation and Uncertainty

Table 4.4: Results on disc tracking: End-to-end learning of constant or heteroscedastic process
noise Q on datasets with 30 distractors and different heteroscedastic or constant (og, = 3.0,
04, = 2.0) process noise. Dq is the Bhattacharyya distance between true and learned process
noise.

hetero. oq,, 0g, = 0.1 hetero. oq,, 0q, = 3.0 oqp, = 3.0, 0g, =2.0

Q RMSE NLL Dq RMSE NLL Dq RMSE NLL Dq
dEKF const. 9.5 28.4 2.268 12.2 29.7 0.864 13.8 29.1 0.001
hetero. 8.4 274 1.705 11.6 29.0 0.351 13.6 29.1 0.024
AUKF const. 9.4 28.2 2.819 12.3 29.6 0.867 13.9 29.2 0.008
hetero. 8.6 274 1.679 11.9 29.1 0.4 13.7 29.1 0.032
AMCUKF const. 9.5 28.2 2972 12.3 29.7 0.882 13.8 29.1 0.011
hetero. 8.6 27.5 1915 11.8 29.1 042 13.7 29.1 0.045
dPF-G-ana const. 12.4 29.7 3.984 14.1 30.3 1.126 18.4 30.8 0.270
hetero. 121 294 3.695 13.8 29.8 0.755 18.2 30.8 0.371
dPF-M-ana. const. 11.3 29.6 3.744 12.6 30.4 0.936 14.9 37.0 0.309
hetero. 9.6 28.7 3.327 11.9 29.9 0.589 15.2 36.2 0.495

likelihood scores.

In terms of the Bhattacharyya distance between true and learned process noise
covariance matrix, learning correlated models leads to a slight improvement for
correlated ground truth noise and to slightly worse scores otherwise. This indicates
that the models are able to uncover some, but not all correlations in the underlying
data.

In summary, while learning correlated noise models does not influence the results
negatively, it also does not lead to a very pronounced improvement over models
with diagonal covariance matrices. Uncovering correlations in the process noise
thus seems to be even more difficult than learning accurate heteroscedastic noise
models.

4.5.8 Benchmarking

In the final experiment on this task, we compare the performance of the DF's among
each other and to two LSTM models. We use an LSTM architecture similar to
Jonschkowski et al.| (2018), with one or two layers of LSTM cells (512 units each).
The LSTM state is decoded into mean and covariance of a Gaussian state estimate.

Experiment All models are trained for 30 epochs. The DFs learn the sensor
and process models with heteroscedastic, diagonal noise models. We compare their
performance on datasets with 30 distractors and different levels of constant or
heteroscedastic process noise. Each experiment is repeated two times to account
for different initializations of the weights.

78

4.5 Simulated Disc Tracking

Table 4.5: Results on disc tracking: End-to-end learning of independent (diagonal covariance ma-
trix) or correlated (full covariance matrix) process and observation noise models. We evaluate on
one dataset with independent, constant process noise (qu = 3.0, 04, = 2.0), one with independent
heteroscedastic process noise (o4, = 3.0), and one with correlated constant process noise. Dq is
the Bhattacharyya distance between true and learned Q.

diag. const. noise diag. hetero. noise correlated const. noise

Q RMSE NLL Dq RMSE NLL Dq RMSE NLL Dq

dEKF diag. 13.6 29.1 0.024 11.6 29.0 0.351 13.8 29.0 1.238
full 134 29.0 0.096 11.1 29.0 0.549 13.1 28.6 0.954

AUKF diag. 13.7 29.1 0.032 11.9 29.1 0.4 13.7 29.0 1.255
full 13.6 29.1 0.135 11.7 29.0 0.512 13.5 28.7 1.073

diag. 13.7 29.1 0.045 11.8 29.1 0.42 13.8 29.0 1.326

dMCUKF full 13.6 29.1 0.155 11.4 29.1 0.602 13.5 28.7 1.02
dPF-G-ana diag. 18.2 30.8 0.371 13.8 29.8 0.755 18.5 30.8 1.719
full 17.8 30.7 0.366 13.3 30.0 1.156 17.8 30.5 1.564

dPF-M-ana. diag. 15.2 36.2 0.495 11.9 299 0.589 14.3 36.5 1.6
full 14.0 34.7 1.1 12.2 34.0 1.263 12.9 351 1.638

Results The results in Table |4.6| show that all models except for the dPF-G-ana
learn to track the target disc well and make reasonable uncertainty predictions. In
terms of tracking error, the dPF with learned observation update performs best on
all evaluated datasets. This, however, often does not extend to the likelihood scores.
For the NLL, the dMCUKF instead mostly achieves the best results, however, not
with a significant advantage over the other DF's.

If we exclude the dPF variants with learned observation model (which are more
expressive than the other DFs) and the dPF-G-ana, we can see that the choice of the
underlying filtering algorithm does not make a big difference for the performance
on this task. The unstructured LSTM model, in contrast, requires two layers of
LSTM cells (each with 512 units per layer) to reach the performance of the DFs.
Unstructured models like LSTM can thus learn to perform similar to differentiable
filters, but require a much higher number of trainable parameters than the DFs
which increases computational demands and the risk of overfitting.

4.5.9 Summary

Our simulation experiments have shown that all DFs we evaluated are well suited
for learning both, sensor and process model, as well as the associated noise models.
While the LSTMs models could reach the same performance, they need significantly
more trainable weights.

The results also showed that long enough training sequences are important for
optimizing the performance of the DFs and confirmed that learning heteroscedastic
noise models can be extremely beneficial to allow the filters to deal with events like
occlusions.

79

Chapter 4 State Estimation and Uncertainty

Table 4.6: Results on disc tracking: Comparison between the DFs and LSTM models with one or
two LSTM layers on three different datasets with 30 distractors and constant process noise with
increasing magnitude. Each experiment is repeated two times and we report mean and standard
€error.

oq, = 0.1 04, = 3.0 oq, = 9.0
RMSE NLL RMSE NLL RMSE NLL
dEKF 9.0+0.88 27.1£0.36 11.940.48 28.3£0.09 17.6£0.04 29.5%0.04
dUKF 9.1+0.04 27.1£0.04 12.3+0.38 28.7£0.19 18.7£0.74 29.6%=0.18

dMCUKF 8.7£0.80 27.0+£0.44 11.440.55 28.2£0.25 18.3+£0.99 29.3+0.24
dPF-M-ana 9.340.18 28.840.14 10.3+0.26 29.1+0.07 17.5£0.18 35.6+0.83
dPF-G-ana 19.94£0.08 30.6+0.08 21.5+£0.56 30.9+0.12 28.34+0.15 31.8+0.03
dPF-M-Irn 8.2+0.26 28.5+0.16 8.94+0.24 29.0+0.12 15.1+0.33 34.2+0.47
dPF-G-Irn 7.3£0.05 27.3+0.03 8.9+0.44 28.1+0.1 15.94+0.34 30.140.02
LSTM-1 11.0£2.90 27.7£0.98 14.2+2.05 29.0+0.51 22.9£0.55 30.4%0.08
LSTM-2 9.040.2 27.1+£0.07 11.940.47 28.44+0.06 19.5£1.07 29.9+0.23

In a direct comparison between the different DF's, the dPF with learned observa-
tion update had the best tracking performance. This can be explained by it being
more expressive than the remaining DFs, which all perform similarly. The dPF
is also the DF for which the user faces the most implementation choices. These
choices are highly relevant for the filter performance, as can be seen in the large dif-
ferences between using the learned or the analytical observation update or between
using a single Gaussian or a GMM to represent the belief.

The simulated system we studied here, however, has relatively simple dynamics
without strong nonlinearities and also does not pose a big challenge for the sensor
model. In the following experiments, we will thus test the DFs on more challenging,
real-world problems.

4.6 Kitti Visual Odometry

As a first real-world application we study the Kitti Visual Odometry problem
(Geiger et al, 2012) that was also evaluated by |[Haarnoja et al.| (2016]) and [Jon-
schkowski et al.| (2018)). The task is to estimate the position and orientation of a
driving car given a sequence of RGB images from a front facing camera and the
true initial state.

The state is 5-dimensional and includes the position p and orientation 6 of the
car as well as the current linear and angular velocity v and §. The real control

input u = (v 0)T is unknown and we thus treat changes in v and 0 as results of
the process noise. The position and heading estimate can be updated analytically
by Euler integration.

While the dynamics model is simple, the challenge in this task comes from the

80

4.6 Kitti Visual Odometry

unknown actions and the fact that the absolute position and orientation of the car
cannot be observed from the RGB images. At each timestep, the filters receive
the current images as well as a difference image between the current and previous
timestep. From this, the filters can estimate the angular and linear velocity to
update the state, but the uncertainty about the position and heading will inevitably
grow due to missing feedback.

4.6.1 Data

The Kitti Visual Odometry dataset consists of eleven trajectories of varying length
(from 270 to over 4500 steps) with ground truth annotations for position and head-
ing and image sequences from two different cameras collected at 10 Hz.

Following [Haarnoja et al.| (2016) and Jonschkowski et al|(2018), we build eleven
different datasets. Each of the original trajectories is used as the test split of one
dataset, while the remaining 10 sequences are used to construct the training and
validation split.

To augment the data, we use the images from both cameras for each trajectory
and also mirror the sequences. For training and validation, we extract 200 sequences
of length 50 with different random starting points from each augmented trajectory.
This results in 1013 training and 287 validation sequences. For testing, we extract
sequences of length 100 from the augmented test-trajectory. The number of test
sequences depends on the overall length of the test- trajectory.

When looking at the statistics of the eleven trajectories in the original Kitti
dataset, Trajectory 1 can be identified as an outlier: It shows driving on a highway,
where the velocity of the car is much higher than in all the other trajectories. As
a result, the sensor models trained on the other sequences will yield bad results
when evaluated on Trajectory 1. We will therefore mostly report results for only
a ten-fold cross-validation that excludes the dataset for testing on Trajectory 1.
We will refer to this as kitti-10 while the full, eleven-fold cross validation will be
denoted as kitti-11. In Section [4.6.6 results for both settings are reported, such
that the influence of trajectory 1 becomes visible.

4.6.2 Network Architectures and Initialization

Sensor Network The network architectures for the sensor model and the het-
eroscedastic observation noise model are shown in Table [4.7. At each timestep,
the input consists of the current RGB image and the difference image between the
current and previous image. The network architecture for the sensor model is the
same as was used in Haarnoja et al.|(2016) and Jonschkowski et al.| (2018).

Process Model Tables and show the architecture for the learned pro-
cess model and the heteroscedastic process noise. For both models, we found it

81

Chapter 4 State Estimation and Uncertainty

Table 4.7: Sensor model and heteroscedastic observation noise architecture. Both output layers
(for z and diag(R)) get fc 2’s output as input.

Layer Output Size Kernel Stride Activation Normalization
Input D 50 x 150 x 6 - - - -
conv 1 50 x 150 x 16 7x7 1x1 ReLU Layer
conv 2 50 x 75 x 16 5X%X5 1x2 ReLU Layer
conv 3 50 x 37 x 16 5X%X5 1x2 ReLU Layer
conv 4 25 x 18 x 16 5 X5 2x2 ReLU Layer
dropout (0.3) 25 x 18 x 16 - - - -
fc 1 128 - - ReLU -
fc 2 128 - - ReLU -

z (fc) 2 - - - -
diag(R) (fc) 2 - - - -

(a) Learned process model architecture. We use a
modified version of the previous state x as input:
X = (v,@,cos@7 sin@)

(b) Heteroscedastic process noise model architec-
ture. We use a modified version of the previous
state x as input: X = (v, 0))571

Layer Output Size Activation

Layer Output Size Activation
Input x 4 - .
fe 1 32 ReLU Input (v,6) 2 -

fcl 32 ReLLU
fc 2 64 ReLU ¢ I
fe 3 64 ReLU c2 32 RelL.U
Ax (fc) 5 - diag(Q) (fc) 5 B

82

4.6 Kitti Visual Odometry

to be important not to include the absolute position of the vehicle in the input
values: The value range for the positions is not bounded, and especially for the
dUKF variants, novel values encountered at test time often lead to a divergence of
the filter.

Excluding these values from the network inputs for predicting the state update
also makes sense intuitively, since they are not required for computing the update
analytically, either. For the state-dependent process noise, we not only exclude the
position, but also the orientation of the car, as any relationships between vehicle
pose and noise that could be learned would be specific to the training trajectories.

In addition, we provide the process model with the sine and cosine of # as input
instead of using the raw orientation, to facilitate the learning. In general, dealing
with angles in the state vector requires special attention: First, we correct angles
to the range between [—7,] after every operation on the state vector. Second, it
is important to correctly calculate the difference between angles (e.g. in the loss
function) to avoid differences over 180deg. And third, computing the mean of
several angles, e.g. for the particle mean in the dPF, requires converting the angles
to a vector representation.

Initialization When creating the noisy initial states, we do not add noise to
the absolute position and orientation of the vehicle, since the DFs have no way
of correcting them. We use diag(Xini) = (0.01 0.01 0.01 25 25) for the initial
covariance matrix. When training the DF's from scratch, we initialize the covariance
matrices Q and R with diag(Q) = (0.01 0.01 0.01 100 100) and R = 100I5.
This reflects the high uncertainty of the untrained models, but also the fact that
the process noise should be higher for the velocities (to account for the unknown
driver actions) than for the absolute pose.

4.6.3 Training Sequence Length and Filter Parameters

One special feature of the Visual Odometry task is that the the error on the es-
timated absolute vehicle pose will inevitably grow during filtering. As this could
have an effect on the ideal training sequence length, we repeat the experiment from

Section [4.5.61

For the dPF-M, we also evaluate different values of the fixed per-particle covari-
ance X for calculating the GMM-likelihood. We anticipate that this parameter,
too, could be sensitive to the accumulating uncertainty in the problem.

In addition, we also reevaluate different values for parameterizing the sigma point
selection and weighting in the dUKF'.

83

Chapter 4 State Estimation and Uncertainty

RMSE
log likelihood

100 4
25 [{V - } } i:} ‘I‘ N ‘:[‘ ‘I‘

20 |- R I
T 10
15 |- B
T T T T
2 5 10 25 2 5 10 25

training sequence length training sequence length
Dndaexr [QBdukr [0dPP-Mj-ana D0dPF-Ms-ana [EdPP-M;-Irn

Figure 4.8: Results on kitti-10: Tracking error and negative log likelihood (NLL with logarithmic
y axis) of dEKF, dUKF, dPF-M-ana and dPF-M-Irn trained with different sequence lengths. For
the dPF-M-ana, we show two different values for the covariance 3 of the single Gaussians in the
mixture model, ¥ = I and ¥ = 52I. The cut-off NLL value for the dUKF on sequences of length
2 is 2015.8+518.1.

Training Sequence Length and dPF-M

Experiment We only test with the dEKF, dUKF, dPF-M-ana and dPF-M-Irn
on kitti-10. The filters learn the sensor and process model as well as constant noise
models. We train them using Ly on sequence lengths k& € {2,5,10,25} while
keeping the total number of examples per batch (steps X batch size) constant.

For the dPF-M-ana, we also evaluate two different values of the per-particle
covariance, ¥ = I and ¥ = 5°I.

Results The results shown in Figure largely confirm the results obtained for
the simulation dataset in Section [1.5.6] We again see that longer training sequences
increase the tracking performance of all DFs up to a sequence length of around
k = 10.

The dUKF seems to be most sensitive to the sequence length, with the highest
tracking error and an extremely bad NLL score for sequences of length 2. Different
from the simulation experiment, for both dEKF and dUKF, the NLL keeps decreas-
ing strongly over the full evaluated sequence length range, despite the best RMSE
already being reached at k£ = 5. We attribute this to the accumulating uncertainty
about the vehicle pose. For the dPFs, in contrast, the likelihood behaves similarly
to the RMSE.

In light of the longer training times with higher sequence lengths, we again de-
cide to keep a training-sequence length of 10 when training the DF's from scratch.
However, when only the noise models are trained, longer sequences can be used to
improved results on the NLL.

For the dPF-M, the experiment also shows that the covariance of the single dis-

84

4.6 Kitti Visual Odometry

tributions in the GMM is an important tuning parameter. With 3 = I, we achieve
the best tracking error, however, the likelihood does not reach the performance of
dEKF and dUKF. The NLL values can be drastically improved by using larger 3,
at the cost of a decreased tracking performance. Visual inspection of the position
estimates shows that the particles remain relatively tightly clustered over the com-
plete sequence, such that the likelihood of the GMM is not so different from the
likelihood of the individual Gaussian components.

This clustered particle distribution can be explained by the characteristics of the
task: The uncertainty in the system mainly stems from the velocity components
that are affected by the unknown actions. However, by applying the observation
update and resampling the particles at every step, we keep the variance in the
velocity components small and thus prevent a stronger diffusion of the unobserved
position components. This also explains why the dPF cannot profit as much as the
dUKF and dEKF from seeing longer sequences during training.

The large influence of the tuning parameter ¥ on the value of the likelihood,
independent of the tracking performance, also shows that comparing likelihood
scores between different probabilistic models can be difficult. In light of this, we
decide to keep using 3 = I for the better tracking error.

dUKF

We also repeat the evaluation of different values of the parameters o, x and [for
the dUKF described in Experiment [4.5.3] The experiment confirms our finding
from the simulation experiment that the exact choice of the values does not have
a significant effect on the filter performance. We thus keep the values at a = 1,

k=0.5and 8 =0.

4.6.4 Learning Noise Models

In this experiment, we want to test how much the DFs profit from learning the
process and observation noise models end-to-end through the filters, as compared
to using hand-tuned or individually learned noise models.

We also again compare learning constant or heteroscedastic noise models. In
contrast to the previous experiment, we do not expect as large a difference between
constant or heteroscedastic observation noise for this task, as the visual input does
not contain occlusions or other events that would drastically change the quality of
the predicted observations z.

Experiment As in the experiments on simulated data (Section [4.5.7)), we use a
fixed, pretrained sensor model and the analytical process model, and only train the
noise models. We initialize Q and R with Q =I5 and R = I,. All DFs are trained

85

Chapter 4 State Estimation and Uncertainty

Table 4.9: Results on kitti-10:RMSE and negative log likelihood for the DFs with different noise
models (mean and standard error). Hand-tuned and Pretrained use fixed noise models whereas
for the other variants, the noise models were trained end-to-end through the DFs. R, indicates
a constant observation noise model and Ry, a heteroscedastic one (same for Q). The best result
per DF is highlighted in bold.

Hand-tuned Pretrained Pretrained R:.Q. R.Q, Ry, Q¢ R;,Qp
Rch Rc Qc Rh Qh
. dEKF 15.8+1.1 15.84+1.1 17.1£1.3 15.9+1.1 15.8+1.1 15.94+1.1 15.8+1.1
nn dUKF 16.0+1.1 15.9+1.1 17.44+1.3 15.9+1.1 15.9+1.1 16.0+1.1 15.94+1.1
E dMCUKF 16.0£1.1 16.0+1.1 17.44+1.3 15.9+1.1 15.9+1.1 16.1£1.1 15.9+1.1
dPF-M-ana 18.8+0.7 16.5+1.0 17.24+1.2 15.9+1.1 15.9+1.1 15.9+1.1 16.0+1.1
dEKF 292.9+43.8 128.1+£16.7 96.2+15.6 29.3+4.1 27.1+£5.0 29.243.7 26.1+4.4
j dUKF 294.4+43.7 128.5+16.6 96.6+15.5 29.0+4.0 27.7+£5.0 29.8+4.0 28.3+5.4
7. dMCUKF 343.7+£50.5 149.8+19.3 112.4+17.9 23.6+3.4 21.5+4.0 24.9+3.4 21.8+4.2

dPF-M-ana 86.7£6.6 61.8£8.5 56.71+6.5 62.4+9.7 58.44+10.0 61.6£9.9 59.1+9.7

with Lyrr, and a sequence length of 25, which we found to be beneficial for learning
the noise models in the previous experiment.

We compare the DFs when learning constant observation and process noise
(R.Q.), constant observation and heteroscedastic process noise (R.Qp,), heteroscedas-
tic observation and constant process noise (R;,Q.) and heteroscedastic observa-
tion and process noise (R;Qp). As one baseline, we use DFs with fixed con-
stant noise models that reflect the average validation error of the pretrained sen-
sor model and the analytical process model for one-step predictions: diag(Q) =
(107 107* 107° 0.01 0.16)" and diag(R) = (0.36 0.36)". A second baseline
fixes the noise models to those obtained by individual pretraining, where we eval-
uate both constant and heteroscedastic models. All DFs are evaluated on kitti-10.

Results The results in Table show that learning the noise models end-to-end
through the filters greatly improves the NLL but has no big effect on the tracking
errors for this task. The DFs with the hand-tuned, constant noise model have the
by far worst NLL because they greatly underestimate the uncertainty about the
vehicle pose. The DFs that use individually trained noise models perform better,
but are still overly confident.

For most of the DF's, we achieve the best results when learning constant observa-
tion and heteroscedastic process noise. The worst results are achieved when instead
the observation noise is heteroscedastic and the process noise constant. This could
indicate that the true process noise can be better modeled by a state-dependent
noise model while learning heteroscedastic observation noise leads to overfitting to
the training data. However, the differences are overall not very pronounced.

Finally, we also evaluated the DFs with full covariance matrices for the noise
models. For the setting with constant observation and heteroscedastic process
noise, using full instead of diagonal covariance matrices barely had any effect on the

86

4.6 Kitti Visual Odometry

Table 4.10: Results on kitti-10: RMSE and negative log likelihood for the DFs with different
training schemes (mean and standard error). We compare individually trained process, sensor and
noise models against finetuning only the sensor and process models (Finetune Models), finetuning
only the noise models (Finetune Noise) and finteuning all models (Finetune All) through the
DFs. We also report results for DFs trained from scratch without individual pretraining. The
best results per DF are marked in bold.

Individual Finetune Models Finetune Noise Finetune All From Scratch
dEKF 15.8+1.1 17.2+1.5 15.7+1.1 16.1+1.4 16.7+1.2
r% dUKF 15.9+1.1 15.94+1.1 15.8+1.1 15.3+1.1 15.24+1.0
5 dMCUKF 15.9+1.1 15.6+1.0 15.8+1.1 15.2+1.0 15.940.8
dPF-M-ana 16.7£0.9 17.5+1.1 15.8+1.1 16.14+1.2 16.5+1.1
dEKF 118.5+16.3 148.94+28.8 39.84+5.1 46.245.2 48.14£7.3
j dUKF 115.54+15.6 107.1+14.5 45.9+5.5 75.849.8 46.5+7.2
Zz ~ dMCUKF 133.94+18.3 121.94+16.9 44.1+5.3 71.7+9.0 44.3+8.7
dPF-M-ana 62.5+7.6 72.7£10.8 60.01+9.2 67.3+12.3 70.14+12.0

tracking error and only slightly improved the NLL (e.g. from 27.1£5.0 to 26.5+4.6
for the dEKF).

4.6.5 End-to-End versus Individual Training

Previous work Jonschkowski et al.|(2018]) has shown that end-to-end training through
differentiable filters leads to better results than running the DFs with models that
were trained individually. Specifically, pretraining the models individually and
finetuning end-to-end resulted in the best tracking performance. As a possible
explanation, the authors found that the individually trained process noise model
predicted noise close to the ground truth whereas the end-to-end trained model
overestimated to noise, which is believed to be beneficial for filter performance.

Does this mean that end-to-end training through DFs mostly affects the noise
models? To test this, we pretrain all models individually and compare the perfor-
mance of the DFs without finetuning, when finetuning only the noise models or
only the sensor and process model and when finetuning everything. We also report
results for training the DF's from scratch.

Experiment We pretrain sensor and process model and their associated (con-
stant) noise models individually for 30 epochs. For finetuning, we load the pre-
trained models and finetune the desired parts for 10 epochs, while the end-to-end
trained versions are trained for 30 epochs. All variants are evaluated using kitti-10
and trained using Lyt

Results The results shown in Table seem to confirm our hypothesis that end-
to-end training through the DF's is most important for learning the noise models:
Finetuning only the noise models improved both RMSE and NLL of all DFs in

87

Chapter 4 State Estimation and Uncertainty

comparison to the variants without finetuning or with finetuning only the sensor
and process model (except for the AIMCUKF). For dEKF and dPF, finetuning the
sensor and process model even decreased the performance on both measures.

In terms of tracking error, individual pretraining plus finetuning the noise models
lead to the best results on dEKF and dPF, while dUKF and AMCUKF performed
slightly better when finetuning both sensor and process model and their noise mod-
els (AIMCUKF) or even learning both from scratch (dUKF). For the NLL, finetuning
only the noise models lead to the best results for all DF's, followed in most cases
by training from scratch.

To summarize, the results indicate that individual pretraining is helpful for learn-
ing the sensor and process models, but not for the noise models. End-to-end training
through the DFs, on the other hand, again proved to be important for optimizing
the noise models for the respective filtering algorithm but did not offer advantages
for learning the sensor and process model.

4.6.6 Benchmarking

In the final experiment on this task, we compare the performance of the DFs to a
LSTM model. We again use an LSTM architecture similar to |Jonschkowski et al.
(2018), but with only one layer of LSTM cells with 256 units. The LSTM state
is decoded into an update for the mean and the covariance of a Gaussian state
estimate. Like the process model of the DFs, the LSTM does not get the full initial
state as input, but only those components that are necessary for computing a state
update (velocities and sine and cosine of the heading). We chose this architecture
in an attempt to make the learning task easier for the LSTM.

Experiment All models are trained for 30 epochs using Lyrp,, except for the
LSTM, for which L, lead to better results. The DFs learn the sensor and process
models with constant noise models. We report their performance on kitti-10 and
kitti-11, for comparison with prior work.

Results The results in Table show that by training all the models in the
DFs from scratch, we can reach a performance that is competitive with prior work
by Haarnoja et al. (2016]), despite not relying on an analytical process model. We
were, however, not able to reach the very good performance of the dPF reported by
Jonschkowski et al.| (2018). A possible cause for this could be that the normalization
of the particles in the learned observation update used by |Jonschkowski et al.[(2018)
helps the method to better deal with the higher overall velocity in Trajectory 1 of
the kitti dataset.

In contrast to the DF, we were not able to train LSTM models that reached
a good evaluation performance on this task, despite trying multiple different ar-

88

4.6 Kitti Visual Odometry

chitectures and loss functions. Different from the experiments on the simulation
task, increasing the number of units per LSTM-layer or using multiple LSTM layers
even decreased the performance here. To complement our results, we also report
an LSTM result from Haarnoja et al. (2016) that does better on the position error
but worse on the orientation error. While these findings do not mean that a better
performance could not be reached with unstructured models given better architec-
tures or training routines, it still shows that the added structure of the filtering
algorithms greatly facilitates learning in more complex problems.

For this task, the dPF-M-Irn achieves the overall best tracking result on kitti-11,
closely followed by the dUKF and the AMCUKF. The dUKF has the lowest tracking
error if we exclude the outlier Trajectory 1. One reason for their better performance
in comparison to the dEKF could be that the dynamics of the Visual Odometry
task are more strongly non-linear than in the previous experiments. Both UKF
and PF can convey the uncertainty more faithfully in this case, which could lead to
better overall results when training on Lypp. Given the relatively large standard
errors, the differences between the DFs are, however, not significant.

Interestingly, we find that the difference in performance between the dPF variants
with learned or analytical observation update is not as pronounced as in the results
we obtained for the simulation experiment (Section [£.5.4). In particular, the dPF-
G-Irn now performs similarly bad as the dPF-G-ana.

4.6.7 Summary

Our experiments on the Kitti Visual Odometry problem showed that even on this
more complex, real-world task, the DF's can still learn both, observation and process
models, as well as the associated noise models from scratch. We were not able to
reach a similar performance with an unstructured LSTM model, confirming that
the algorithmic structure of the DF's greatly facilitates the model-learning.

In contrast to the simulation experiments, learning heteroscedastic noise models
did not improve the performance of the DFs much - most likely because the Kitti
task can be described sufficiently well by constant noise models. In particular, the
visual observations do not feature occlusions that would require ignoring some of
the observed images altogether. The bad performance of all DFs on Trajectory 1
with its much higher velocity, however, also shows that the ability to detect input
values outside of the training distribution would be a valuable addition to current
DFs.

While the choice of constant or heteroscedastic noise models did not affect the
filtering performance much, our experiments still confirmed that learning the noise
models end-to-end through the filters is important for the DFs to calibrate their
uncertainty estimates. Individual pretraining of the required models works well
for the process and sensor model, but results in overly confident noise models.
Training or finetuning the noise models end-to-end through the filters improved

89

Chapter 4 State Estimation and Uncertainty

Table 4.11: Results on Kitti: Comparison between the DFs and LSTM (mean and standard error).
Numbers for prior work BKF* LSTM* taken from Haarnoja et al.| (2016) and DPF* taken from
(Jonschkowski et al., [2018). Both, BKF* and DPF* use a fixed analytical process model while
our DFs learn both, sensor and process model. = and d—rff; denote the translation and rotation

error at the final step of the sequence divided by the overall distance traveled.

RMSE NLL m deg
dEKF 26.54£9.9 254.84206.7 0.250.05 0.0840.009
dUKF 24.249.0 313.94267.5 0.214+0.04 0.08+0.007
AMCUKF 247488 292.84248.6 0.23+0.04 0.0840.012
dPF-M-ana 26.3+9.9 102.9+34.6 0.2440.04 0.0840.009

=~ dPF-G-ana 34.349.2 90.8£68.8 0.33+0.04 0.17+0.035
& dPF-M-Im 23.448.2 81.8+33.3 0.2240.04 0.09+0.014
E dPF-G-m 305483 122.8+85.1 0.31£0.06 0.1740.049
LSTM 40.448.6 2836.5+1293.5 0.52+0.05 0.08+0.008
LSTM* - - 0.26 0.29
BKF* - - 0.21 0.08
DPF* - - 0.1540.015 0.064:0.009
dEKF 16.7+1.2 48.1+7.3 0.2140.03 0.0840.01
dUKF 15.241.0 46.54+7.2 0.18+0.02 0.08+0.008
- dMCUKF 15.9+0.8 44.3+8.7 0.2 £0.03 0.08+0.013
< dPF-M-ana 16.5+1.1 70.1£12.0 0.21£0.02 0.08+0.007
£ dPF-G-ana 252419 22.4+4.7 03 £0.04 0.18£0.038
= dPF-M-Im 15.2+1.1 48.946.2 0.1940.03 0.0940.015
dPF-G-lrn 22.943.7 38.4+11.1 0.2740.06 0.1840.053
LSTM 324434 1583.0+352.9 0.51+0.06 0.08+0.008

90

4.7 Planar Pushing

both, tracking performance and uncertainty estimates.

4.7 Planar Pushing

In the Kitti Visual Odometry problem, the main challenges were the unknown
actions and dealing with the inevitably increasing uncertainty about the vehicle
pose. With planar pushing, our second real-robot experiment in contrast addresses
a task with much more complex dynamics. Apart from having non-linear and
discontinuous dynamics (when the pusher makes or breaks contact with the object),
Bauza and Rodriguez (2017)) also showed that the noise in the system can be best
captured by a heteroscedastic noise model.

With 10 dimensions, the state representation we use is also much larger than
in our previous experiments. X contains the 2D position p, and orientation 6 of
the object, as well as the two friction-related parameters [and «,,. In addition,
we include the 2D contact point between pusher and object r, the normal to the
object’s surface at the contact point n and a contact indicator s. The control input
u contains the start position p, and movement v, of the pusher.

An additional challenge of this task is that r and n are only properly defined and
observable when the pusher is in contact with the object. We set the labels for n
to zeros and r = p,, for non-contact cases.

Dynamics We use the analytical model introduced in Chapter to predict the
linear and angular velocity of the object (v,, w) given the previous state and the
pusher motion v,. However, predicting the next r, n and s is not possible with this
model since this would require access to a representation of the object shape.

For r, we thus use a simple heuristic that predicts the next contact point as
ryy1 = r;+Vv,. nand s are only updated when the angle between pusher movement
and (inwards facing) normal is greater than 90°. In this case, we assume that the
pusher moves away from the object and set s;,; and n;,; to zeros.

Observations Our sensor network receives simulated RGBXYZE] images as input
and outputs the pose of the object, the contact point and normal as well as whether
the push will be in contact with the object during the push or not.

Apart from from the latent parameters [and «,,, the orientation of the object,
0, is the only state component that cannot be observed directly. Estimating the
orientation of an object from a single image would require a predefined “zero-
orientation” for each object, which is impractical. Instead, we train the sensor
network to predict the orientation relative to the object pose in the initial image
of each pushing sequence.

2Color images with extra channels for the 3D coordinates of each pixel (in camera frame)

91

Chapter 4 State Estimation and Uncertainty

Figure 4.9: Examples of the rendered RGB images that we use as observations in this section. In
contrast to the images used in Chapter [3] the images here are taken from a realistic viewpoint
and include the robot arm, that can partially occlude the object as in the last example.

4.7.1 Data

We again use the data from the MIT Push dataset (Yu et al., 2016) as a basis
for constructing our datasets. However, in contrast to the experiments presented
in Chapter [3 here, we chose a more realistic view-point for rendering images that
places the camera in front of the robot. The images are thus taken from an angle
and also show the robot arm. The arm and pusher frequently occlude parts of the
object but complete occlusions are rare. Figure |4.9| shows example views.

We use pushes with a velocity of 50 ™™ and render images with a frequency of
5 Hz. This results in short sequences of about five images for each push in the orig-
inal dataset. We extend them to 20 steps for training and validation and 50 steps
for testing by chaining multiple pushes and adding in-between pusher movement
when necessary. The resulting dataset contains 5515 sequences for training, 624
validation sequences and 751 sequences for testing.

4.7.2 Network Architectures and Initialization

Sensor Network Our architectures for the sensor network is very similar to the
one used in Chapter (3|, where only the object position p, is estimated from the full
image while the contact-related state components (r, n, s) are computed from a
smaller glimpse around the pusher location.

For predicting the orientation of the object, we extract a second glimpse from the
full image, this time centered on the estimated object position. A small CNN then
predicts the change in orientation between the glimpse extracted from the initial
image in the sequence and the glimpse at the current time step.

The sensor network predicts object position, contact point and normal in pixel
space because predictions in this space can be most directly related to the input
image and the predicted feature maps. To this end, we also transform the action
into pixel space before using it (together with the glimpse encoding) as input for
predicting the contact point and normal. The pixel predictions are then trans-
formed back to to world-coordinates using the depth measurements and camera

92

4.7 Planar Pushing

(b) Heteroscedastic process noise model architec-

(a) Learned process model architecture. ture. We use a modified version of the previous
state x as input: X does not include the latent pa-
Layer Output Size Activation rameter (.
Input (x, vy,) 12 - Layer Output Size Activation
fe 1 256 ReLU -
fe 2 128 ReLU Input (%, vu) 11 -
fc 2 64 ReLU
Ax (fc) 10 -
diag(Q) (fc) 10 -

information. The resulting sensor network including the layers for computing the
heteroscedastic observation noise is illustrated in Figure |4.10

Process Model Tables 4.12al and 14.12b| show the architecture for the learned
process model and the heteroscedastic process noise. One problem we noticed is
that the estimates for [sometimes diverge during filtering if the DFs estimate that
the pusher is in contact with the object while it is not. Just as for the absolute
position of the vehicle in the Kitti task, we thus found it important for the stability
of the dUKF and dMCUKF to not make the heteroscedastic process noise model
dependent on (.

Note that in the filter state, we measure p, and r in millimeter and 6 and «,, in
degree. To avoid having too large differences between the magnitudes of the state
components, we downscale [by a factor of 100. n is a dimensionless unit vector
and s should take values between 0 and 1.

To keep the filters stable during training, we found it necessary to enforce maxi-
mum and minimum values for «,, and [. Both «,, and [cannot become negative.
The opening angle of the friction cone, «,,, should also not be larger than 90°,
while we limit [to be in the range of [0.1,5000] to ensure that the computations in
the analytical model remain numerically stable.

Initialization For the initial covariance matrix, we use
diag(Zime) = (50 50 1078 5 5 50 50 0.5 0.5 0.5)". When training the
noise models, we initialize Q and R with diag(Q) = I;p and R = I;.

4.7.3 Learning Noise Models

In this experiment, we again evaluate how much the DFs profit from learning the
process and observation noise models end-to-end through the filters. In contrast to
the Kitti task, for pushing, we expect both heteroscedastic observation and process
noise to be advantageous, since the visual observations feature at least partial

93

Chapter 4 State Estimation and Uncertainty

Initial Glimpse ~ Glimpse Image Action Tip Position Glimpse
72x72x3 72x72x3 192x256x6 2 2 64x64x6
VP
\ 4
extract extract
glimpse glimpse

A

concatenate |

¥

i | decon:/—3—8 Q | fc-128
fc-64 ¥ ’ ’ ’

(deconv3 1 I [Tes | [ot | [feoa |

L]

conv-5-16 ’ ’ ;
ﬁ | rP | | npl |fc—32|
conv—.3—32 [to 3d to 3d
Y

A / A / 4 \
7]] [][Caeme)][+]

\ 4 \ 4
[0

Figure 4.10: Architecture of the sensor network and heteroscedastic observation noise model for
planar pushing. We use 6-channel RGBXYZ images as input for computing the object position
and contact related state components. The object orientation is estimated relative to the initial
orientation by comparing the RGB glimpse centered on the current estimated object position to
the initial one.

White boxes represent tensors, green arrows and boxes indicate network layers, whereas black
arrows represent dataflow without processing. For convolution (conv) and deconvolution (deconv)
layers, the numbers in each tensor are the kernel size and number of output channels of the layer
that produced it. For fully connected layers (fc), the number corresponds to the number of output
channels.

With the exception of the output layers, all convolution, deconvolution and fully connected layers
are followed by ReLU non-linearities. The (de)convolution layers also use layer normalization.

94

4.7 Planar Pushing

Table 4.13: Results for planar pushing: Translation (tr) and rotation (rot) error and negative
log likelihood for the DFs with different noise models evaluated on the pushing task (mean and
standard error). The hand-tuned DFs use fixed noise models whereas for the other variants,
the noise models were trained end-to-end through the DFs. R, indicates a constant observation
noise model and Ry, a heteroscedastic one (same for Q). The best result per DF and metric is
highlighted in bold.

Hand—tuned Rch Rth Rth Rth

R.Q.
dEKF 6.22 4.45 4.61 4.44 4.38
= dUKF 4.87 4.44 5.25 4.43 4.45
£ dMCUKF 4.73 4.42 4.8 4.39 4.35
& dPF-M-ana 18.13 5.07 4.92 5.32 4.64
dPF-G-ana 17.95 5.48 35.57 210.45 10.92
dEKF 10.49 10.00 9.71 10.15 9.97
— dUKF 9.87 9.91 9.73 10.05 10.00
~ dMCUKF 9.78 9.95 9.93 10.04 9.85
2 dPF-M-ana 16.18 10.18 9.92 10.39 10.06
dPF-G-ana 16.56 10.27 11.27 43.41 10.25
dEKF 265.17 126.69 33.09 79.24 26.48
_, dUKF 378.08 84.12 33.06 81.55 27.61
3 dMCUKF 130.22 78.53 30.43 64.12 30.1
Z dPF-M-ana 353.25 128.15 104.40 103.21 82.46
dPF-G-ana > 16m 12,089.71 34.18 5,789.83 31.60

occlusions and the dynamics of pushing have been previously shown to exhibit
heterostochasticity (Bauza and Rodriguez, 2017).

To test this hypothesis, we compare DF's that learn constant or heteroscedastic
noise models to DF's with hand-tuned, constant noise models that reflect the average
test error of the pretrained sensor model and the analytical process model.

Experiment As in the corresponding experiments on the previous tasks (Sec-
tion and Section , we use the fixed, pretrained sensor model and the
analytical process model, and only train the noise models. All DFs are trained for
15 epochs on Lypr..

The diagonals of the hand-tuned models are

diag(Q) = (0.23 0.23 0.37 0.01 0.01 0.7 0.7 0.1 0.1 0.13)T and

diag(R) = (3.0 25 88 33 1.0 0.1 0.1 03)".

Results The results shown in Table again demonstrate that learning the
noise models end-to-end through the structure of the filtering algorithms is ben-
eficial. With learned models, all DFs reach much better likelihood scores than
with the hand-tuned variants. For the dEKF and especially the dPF, the tracking

95

Chapter 4 State Estimation and Uncertainty

performance also improves significantly.

Comparing the results between constant and heteroscedastic noise models also
confirms our hypothesis that for the pushing task, heteroscedastic noise models are
beneficial for both observation and process noise. While all DFs reach the best
NLL when both noise models are state-dependent, the effect on the tracking error
is, however, less clear.

For For all DFs but the dPF-M-ana, learning a heteroscedastic observation noise
model leads to a much bigger improvement of the NLL than learning heteroscedastic
process noise. Similar to the simulated disc tracking task, the input dependent noise
model allows the DF's to better deal with occlusions in the observations, which again
reflects in a negative correlation between the number of visible object pixels and
the predicted positional observation noise.

4.7.4 Benchmarking

In the final experiment, we compare the performance of the DF's to an LSTM model
on the pushing task. As before, we use a model with one LSTM layer with 256
units. The LSTM state is decoded into an update for the mean and the covariance
of a Gaussian state estimate.

Experiment All models are trained for 30 epochs using L. As initial experi-
ments showed that learning sensor and process model jointly from scratch is very
difficult for this task due to the more complex architectures, we pretrain both mod-
els. The sensor and process models are finetuned through the DFs and they learn
heteroscedastic noise models. The LSTM, too, uses the pretrained sensor model,
but not the process model.

Results As shown in Table[£.14] even with a learned process model, all DFs (ex-
cept for the dPF-M-Irn) perform at least similar to their pendants in the previous
experiment where we used the analytical process model. dEKF, dUKF and dM-
CUKEF even reach a higher tracking performance than before. As noted in Chap-
ter this can be explained by the quasi-static assumption of the analytical
model being violated for push velocities above 20 =*.

The LSTM model, again, does not reach the performance of the DFs. One dis-
advantage of the LSTM here is that in contrast to the DFs, we cannot isolate
and pretrain the process model. In contrast to the previous tasks, the dPF vari-
ant with the learned likelihood function, however, performs even worse than the
LSTM for planar pushing. This is likely due to the complex sensor model and the
high-dimensional state that make learning the observation likelihood much more
challenging.

96

4.8 Conclusions

Table 4.14: Results on pushing: Comparison between the DFs and LSTM. Process and sensor
model are pretrained and get finetuned end-to-end. The DF's learn heteroscedastic noise models.
Each experiment is repeated three times and we report mean and standard errors.

RMSE NLL tr [mm] rot [°]
dEKF 26.01+0.72 33.9£3.86 3.5+£0.02 8.8+0.22
dUKF 24.44+030 31.1£190 3.7£0.06 8.8+0.14

dMCUKF 24.7+0.07 34.1+£3.57 3.7£0.056 8.8£0.06
dPF-M-ana 35.2£0.83 117.6+5.61 5.6£0.23 10.440.38
dPF-G-ana 43.5£5.85 35.4+1.48 6.7£1.21 11.840.67
dPF-M-Irn 56.01+2.75 483.6+1.49 11.7£0.82 18.940.04
dPF-G-Irn 55.01+0.99 40.7£0.83 10.7£0.20 19.940.52
LSTM 47.440.35 35.4+0.24 8.8+0.17 19.0+0.001

4.8 Conclusions

Our experiments have shown that all DFs we evaluated are well suited for learning
both sensor and process model, and the associated noise models. For simpler tasks
like the simulated tracking task and the Kitti Visual Odometry task, all of these
models can be learned end-to-end without pretraining. Only the pushing problem
with its large state and complex dynamics and sensor model required pretraining
to achieve good results.

In comparison to unstructured LSTM models, the DF's generally use fewer weights
and achieve better results, especially on complex tasks. While training better LSTM
models might be possible for a more experienced user, using the algorithmic struc-
ture of the filtering algorithms definitely facilitated the learning problem. In ad-
dition, the structure of DF's allows us to pretrain components such as the process
model that are not explicitly accessible in LSTMs.

The direct comparison between the DFs with different underlying filtering al-
gorithms showed no clear winner. Only the dPF with learned observation update
performed notably better than the other variants on the simulated example task
and was least affected by the outlier-trajectory of the Kitti-task. This variant re-
laxes some of the assumptions that the filtering algorithms encode by not relying
on an explicit sensor or observation noise model. Its good performance thus shows
that the priors enforced by the algorithm choice can also be harmful if they do not
hold in practice, such as the Gaussian noise assumption.

Our experiments suggest that for learning the sensor and process model, end-to-end
training through the filters is convenient, but provides no advantages over training
the models individually. End-to-end training, however, proved to be essential for
optimizing the noise models for their respective filtering algorithm. In contrast to
end-to-end trained models, both hand-tuned and individually trained noise models
did not result in optimal performance of the DFs.

97

Chapter 4 State Estimation and Uncertainty

Training noise models through DFs also enables learning more complex noise
models than the ones used in learning-free, hand-tuned filters. We demonstrated
that noise models with full instead of diagonal covariance matrices, but especially
heteroscedastic noise model, can significantly improve the tracking accuracy and
uncertainty estimates of DF's.

The main challenge in working with differentiable filters is keeping the training
stable and finding good choices for the numerous hyper-parameters and implemen-
tation options of the filters. While we hope that this work provides some orientation
about which parameters matter and how to set them, we still recommend using the
dEKEF for getting started with differentiable filters. It is not only the most simple of
the DFs we evaluated, but it also proved to be relatively insensitive to sub-optimal
initializations of the noise models and was the most numerically stable during train-
ing. Especially for tasks with strongly non-linear dynamics, the dUKF, dMCUKF
or dPF can, however, ultimately achieve a better tracking performance.

One interesting direction for future research that we have not attempted here is to
optimize parameters of the filtering algorithms, such as the scaling parameters of
the dUKF or the fixed covariance of the mixture model components in the dPF-M,
by end-to-end training. It could also be interesting to implement DFs with other
underlying filtering algorithms. For example, the pushing task we evaluated here
could potentially be better handled by a Switching Kalman filter (Murphy, [1998)
that explicitly treats the contact state as a binary decision variable.

In addition, all of our DFs perform badly on the outlier trajectory of the Kitti
dataset which features a much higher driving velocity than the other trajectories
we used for training the model. This shows that the ability to detect input values
outside of the training distribution would be a valuable addition to current DFs.

98

Chapter 5

Planning Contact Interactions

This chapter is based on a previously published article

Alina Kloss, Maria Bauza, Jiajun Wu, Joshua B. Tenenbaum, Alberto Rodriguez
and Jeannette Bohg. (2020). “Accurate vision-based manipulation through con-
tact reasoning”. In IEFEE International Conference on Robotics and Automation

(ICRA). DOI: 10.1109/ICRA40945.2020.9197409 (©)2020 IEEE

For author contributions, Alina Kloss developed the theory and methods, and
conceived and planned the experiments. Alina Kloss and Maria Bauza carried out
the experiments, where Maria Bauza provided the necessary tools and assistance
for running experiments on the real robot (Section . Alina Kloss wrote the
manuscript with feedback from all authors. Joshua B. Tenenbaum and Alberto
Rodriguez helped supervise the project and provided feedback. Jeannette Bohg
and Jiajun Wu supervised the project and shaped its direction.

99

Chapter 5 Planning Contact Interactions

(a) Planar Pushing: To push an object to a desired pose (red), a robot (b) The test objects triangle, but-
has to reason over where (green contact points) and how (black arrows) to ter and hexagon.
push.

5.1 Introduction

In this chapter, we finally address the full sensory-motor skill of pushing an object
into a desired position and orientation based on visual observations. In addition to
modeling the dynamics of pushing and estimating the state of the system from raw
sensory data, which we addressed in the previous chapters, this requires planning
pushing actions. As illustrated in Figure pushing is a contact interaction, for
which we not only have to optimize how to move the pusher, but also where the
pusher should make contact with the object.

In many robotics applications that involve manipulation or legged locomotion,
planning such contact interactions is one of the core challenges. One problem is
the potentially unlimited number of possible contact points and the resulting high
computational cost of optimizing contact locations and actions jointly. In addition,
for sensory-motor skills, the planned actions also have to be robust against the
uncertainty induced by imperfect perception.

Current approaches for planning contact interactions roughly fall into two cat-
egories that align with these challenges. The first focuses on reducing the com-
putational cost of action optimization especially for long sequences and complex
dynamics. Such approaches typically make the strong assumption of a fully ob-
servable state that requires no perception and of prior knowledge of the robot and
environment. Both are rarely fulfilled in practice. The second category focuses
on including perception and being robust to the resulting uncertainty. Approaches
in this category are typically learning-based and provide a larger level of general-
ization to variations of the environment, such as unknown objects. However, this
often comes at the cost of a lower manipulation accuracy.

Prior work that specifically addresses push-planning can be split according to the
same principles. Approaches based on analytical models and a physically mean-
ingful state representation often achieve high accuracy, but assume access to the
full state information and known object shapes (Zito et al), 2012; Agboh et al.|
2019; Hogan et al., 2018; Dafle et al), 2018; Bauza et al., |2018). Learning-based

100

5.1 Introduction

approaches address the perception problem and make fewer assumptions about the
environment, but are less accurate (Li et al) |2018; Finn and Levine, [2017; Ebert
et al., 2017, [2018; |Agrawal et all 2016; Hermans et al., [2013; [Stiiber et al., 2018).
Moreover, many of these works do not explicitly reason over where to push, but
instead sample and evaluate large numbers of random actions (Zito et al., 2012;
Agboh et al., 2019; Li et al., 2018, Finn and Levine, 2017} [Ebert et al., 2017, 2018)).

Our own approach for planning pushing motions based on RGBD images, in con-
trast, addresses both of the main challenges in planning contact interactions. First,
we improve the efficiency of planning by disentangling contact and motion opti-
mization. This allows us to explicitly reason over contact locations and focus the
computations for motion optimization on few promising regions. Second, we com-
bine learning-based perception with an explicit state representation and Bayesian
filtering to achieve a high manipulation accuracy and enable generalization to novel
objects.

We use a learned model to capture the shape of the object from the visual input
and predict a physically meaningful representation of the object state. Bayesian
filtering makes the state estimate more robust to imperfect perception and allows
us to estimate latent object properties like the center of mass of the object online
to further increase the accuracy of the dynamics model.

For optimizing the contact locations, we annotate each point on the object outline
with approximate predictions of the object motion it affords. This allows sampling
promising candidates of where to push the object given a desired target object pose.
At these fewer contact candidates, we then optimize how to push. For predicting
the possible object motion, we compare an approach based on a physical model to a
learned one. The learned model makes fewer assumptions and shows advantages in
cases that are not well-captured by the physical model. However, the physics-based
model is generally more accurate and even generalizes to scenarios that violate some
of its assumptions.

In summary, we propose a system for planar pushing that:

e allows for efficient planning by explicitly reasoning about contact-locations,

e improves over model-based approaches by including perception and online
estimation of latent object properties and

e achieves a higher accuracy than previous vision-based works by combining
learned and analytical elements.

We quantitatively evaluate our method in simulation through ablation studies and
comparison to state-of-the-art. We also demonstrate that it transfers to a real
robotic platform.

101

Chapter 5 Planning Contact Interactions

5.2 Related Work

As we have shown in previous chapters, there is a wide range of research on robotic
pushing, from modeling the dynamics (Zhou et al., |2018} [Lynch, [1999; Bauza and
Rodriguezl, [2017; [Kloss et al., 2020b)), to state estimation for pushed objects (Yu
and Rodriguez, 2018; Lambert et al., 2019). Here, we focus on works that include
planning. For a broader review, we refer to Stiiber et al.| (2020)).

5.2.1 Efficient Contact Planning under Full Observability

Hogan et al. (2018) present a real-time controller for tracking a desired trajectory
with a pushed object under full observability. While the push is locally optimized by
a neural network that decides between sticking or sliding contact modes, the global
contact location is not. |Zito et al|(2012) present an approach to push an object
into a desired pose that combines a global RRI[Y| planner with a local, sampling
based planner. Dafle et al.| (2018)) reorient a known object in-hand by pushing it
against elements in the workspace. Similar to our work, they use motion-cones
to efficiently describe the set of possible object movements at each environmental
contact. Ajay et al|(2019) use a hybrid approach that augments the predictions
from a physical model with learned residuals to push two disks that are already in
contact. The method evaluates a predefined set of contacts.

The problem of optimizing contacts is also relevant for legged locomotion. [Deits
and Tedrake| (2014) compute a sequence of footsteps given a set of obstacle-free
regions. For efficiency, the dynamics of the robot are not taken into account. To
address this issue, |Lin et al.| (2019) take a similar approach to ours: they train an
approximate dynamics model over a discrete set of actions that can be used for
efficient contact planning while taking robot dynamics into account.

All these approaches assume access to the full state information and known mod-
els of the dynamics and object or environment geometry.

5.2.2 Push Planning under Partial Observability

Agrawal et al.| (2016 train a network to predict the pushing action required to
transform one RGB image into another. In contrast, |Li et al. (2018)); Finn and
Levine| (2017); Ebert et al.| (2017, 2018) do not directly predict actions but instead
learn a dynamics model for predicting the effect of sampled pushes. The input
is either a segmentation mask or a full RGB image. Push-Net (Li et al 2018)
samples 1000 actions by pairing pixels inside and outside of the object, while |[Finn
and Levine (2017)); Ebert et al. (2017, 2018) sample pusher motions that are refined
iteratively. Neither work reasons explicitly over contact locations, whereas our
approach directly samples promising contact points.

IRapidly-exploring random tree

102

5.3 Planning Pushing Actions

Push-Net can also estimate the center of mass of objects during interaction using
an LSTM. Instead of using an LSTM, we rely on an Extended Kalman filter (EKF)
to estimate a physically meaningful state representation during interactions.

Similar to our work, Hermans et al| (2013) learn a scoring function from his-
togram features for finding suitable contact points. [Stiiber et al.| (2018) learn a
contact model and a contact-conditioned predictive model for pushing with a mo-
bile robot.

While making much fewer assumptions, these vision and learning-based methods
generally achieve a lower manipulation accuracy than the model-based methods.
Our proposed approach significantly improves on this.

5.3 Planning Pushing Actions

Figure [5.2| shows an overview of our system. At each time step, it receives an
RGBD image of the current scene, the last robot action and the target object pose
as input. In the perception module, we use a Convolutional Neural Network (CNN)
to segment the object and estimate its position and orientation. Since we do not
assume prior knowledge of the object shape, we extract a representation based on
the segmentation map. Together with the last action, the object pose is input to an
EKF that estimates the full object state including latent properties like the center
of mass (COM).

The next module approximates the object motions that can be produced by
applying a discrete set of pushes at each point on the object silhouette. We refer to
the output as push affordances of the contact points. While this may be considered
an abuse of terminology (Osiurak et al.,[2017)), we use the term for a clear distinction
to other parts in our model. The affordances are continuously updated because they
depend on object properties that are estimated by the EKF. The object shape, in
contrast, has to be computed only once.

Finally, the state estimate and affordances are the input to the planning module
which selects suitable contact points and optimizes the pushing actions beyond the
discrete set that is considered in the affordance model.

5.3.1 Planar Pushing

As in previous chapters, we consider the task of quasi-static planar pushing of a
single object using a point contact. Quasi-static means that the applied force is
enough to move but not to further accelerate the object. We parametrize a pushing
action u by the contact point r and the pushing motion v,. Pushes are executed
at a constant velocity of 20 mm/s.

The dynamics of pushing depend on object shape, friction and pressure distri-
bution of the object on the surface. The relation between push force and resulting

103

Chapter 5 Planning Contact Interactions

Shape Encoding Affordance Prediction
1 pad Planning
A
\/ { \/ Y = Contact Point Push
Selection Optimization
Outline Normals Local Coordinates Possible Object Movement

Perception State Estimation
;

X:[p597cap’7l] > ™
j Estimated Oiject State TS

Top-down view ientati
rien é fon 9—) Extended Kalman Filter
RGBD Image Segementation Mask Position P

Figure 5.2: Overview: the perception module segments the object and computes its pose. An EKF
estimates the full object state including latent properties like the COM c. The object shape is
encoded by a silhouette, coordinates and normals in a top-down view. It is input to the affordance
prediction module, that approximates the possible object motions at each contact point on the
silhouette. The planning module selects contact point candidates using the predicted affordances
and optimizes the pushing motion there.

object motion is often modeled using the limit-surface (Howe and Cutkosky, 1996;
Goyal et all [1991). We again use the analytical model by [Lynch et al| (1992)
defined in Chapter To recapitulate, it assumes continuous object-surface con-
tact and an uniform pressure distribution for an ellipsoidal approximation of the
limit surface parametrized by [. The model predicts object translation and rotation
around the COM given [, the push v,, the normal n at the contact point and the
coefficient of friction between pusher and object m.

Different from the previous chapters, here, we do not assume that the object
frame origin p, corresponds to the object’s COM. Instead, the COM is given by c
relative to p,. We use x = (po, 0,c,l, m) as object state, where 6 is the orientation
of the object.

5.3.2 Perception and State Estimation

We train a CNN to segment the object in each image and compute its world-frame
position from segmentation mask and depth values. A bounding box around the
segmentation mask is reprojected into a top-down view centered on the object.
The orientation of the object is computed relative to the first step by comparing
stepwise rotations of the current top-down projection to the initial one. We also
evaluated using a neural network for this task (as in Chapter [.7) but found it to
be less reliable.

The output object pose is used as observation for an EKF that estimates the
full object state x. The filter uses the analytical model as process model and an
identity matrix selecting the object pose from x as observation model.

104

5.3 Planning Pushing Actions

5.3.3 Shape Encoding

Our shape encoding needs to be independent of the object shape and position and
should contain all the necessary information for predicting the effect of pushes, i.e.
the possible contact points together with their surface normals.

We use the object-centric top-down projection of the segmentation mask and
depth values to compute the and y coordinates of each object pixel in this frame.
Together with the mask, the coordinates are the input to a CNN that predicts the
object outline (i.e. all possible contact points on the object) and the unit 2D surface
normals to each point on the outline. Figure [5.2] shows an example of the resulting
100 x 100 x 5 image (outline, coordinates and normals) under Shape Encoding.

5.3.4 Affordance Prediction

For each point on the object outline, the affordance module makes an approximate
prediction of the object motions that can be achieved by pushing there. For this,
it densely evaluates a predictive model for a fixed set of representative pushing
motions. This prediction then informs contact point selection for pushing the object
towards the target.

For our experiments, we use a relatively large set of ten representative pushes:
we take five directions relative to the respective surface normal (0°, +30° and +60°)
with two push lengths each (1cm and 5cm). In general, the expressiveness of the
affordance model is a tuning parameter of our method that trades off accuracy
against computational speed. Ablation studies showed that including fewer push
directions had an overall small effect on our results, as had removing the shorter
pushes. Removing the pushes with 5 cm length was most detrimental and increased
the average number of steps taken by more than 15 %.

We evaluate two predictive models for obtaining the affordances, the analytical
model and a learned model.

Affordances from the Analytical Model

Given the representative pushes, the shape encoding and parameters c, [and m
from the state estimation module, we can apply the analytical model at each contact
point. We use a one-step prediction, which can be done efficiently on GPU but is
potentially not perfectly accurate: During one push, values like the contact point
and normal there can change when the the pusher slides along the object or even
loses contact completely. Such changes of the model’s input values cannot be taken
into account by the analytical model as is. This would require dividing the actions
into a sequence of much shorter pushes and looking up the new contact point and
surface normal at each step for each combination of pushing motion and initial
contact point, which quickly becomes computationally challenging.

105

Chapter 5 Planning Contact Interactions

Affordances from a Learned Model

Alternatively, we train a CNN to predict the object movement given the pushes,
c and the shape encoding. Different from the analytical model, the learned model
does not require the parameters [and p. In addition, it can take the local shape
around the contact point into account to predict effects of pusher sliding like loss
of contact. For this, the model uses a 3-layer CNN with max-pooling to process
the object outline. The resulting local shape features, the pushes and the shape
encoding serve as input for predicting the object motion using a second 3-layer
CNN without pooling.

5.3.5 Planning

We use a greedy planner to find the contact point and straight pushing motion
that brings the object closest to the desired goal pose at each step. We found
this approach to be sufficient in our scenario where no obstacles are present. For
planning around obstacles, our model could be combined with a global planner for
object poses, as proposed for example by [Zito et al.| (2012); Dafle et al|(2018]).

Instead of jointly optimizing contact point and pushing motion, we divide the
problem into two subtasks. We first propose a set of contact points and then
separately optimize the pushing motions at each candidate point before selecting
the most promising combination.

Contact Point Proposal

Our method uses the affordances to score each point on the object outline by how
close pushing there could bring the object to the target pose:

s(r;) = Vmég | va — Vo(u,7;) |l2 +A|wa — @ (v, 15)| (5.1)
Here, v4 and wy are the desired object translation and rotation, v, € U; are the
representative pushing motions at contact point r;, and V,(v,,r;) and @(vy,r;)
their predicted object motion from the affordance model. We weight the rotation
error (in degree) stronger (A = 2) for a good trade-off between translation and
rotation. A softmax function turns the scores, s(r;), into a probability distribution
that is used to sample k candidate points.

We found that sampling the contact points instead of choosing the k best points
deterministically improved the robustness of our method against imperfect object
outlines and pose estimates. In cases where the planned push fails to make contact
with the object, it prevents the model from trying to execute this same action over
and over again.

106

5.3 Planning Pushing Actions

Analytical 0° 60° Learned 0° 60°
\ |
\ b
~ N g = X

Figure 5.3: Predicted translation magnitude from the analytical and learned affordance model
(brighter is higher) for pushes along the normal and at a 60° angle. In contrast to the analytical
model, the learned model predicts low magnitudes for pushes that are unlikely to properly hit the
object (black arrows) or pushes that are likely to slide off the object (red arrows).

Push Motion Optimization

The discrete set of actions evaluated for the affordance model will in general not
contain the optimal pushing motion at each point. We thus optimize push direc-
tion and length at each candidate contact point by interpolating between five base
pushes U, with different directions as follows:

1. For each v, € Uy, roll out the analytical model over the maximum allowed
push length of 5cm in substeps of 0.5 cm.

2. At each step, score the predicted object movement so far using Equation [5.1

3. Truncate each v, at its best-scoring step or to the minimum required push
length of 1cm. This gives v, with optimal scores s.

4. Find the optimal push direction d by interpolating between the v, with the
best 5 and the two v, with neighboring directions.

5. Optimize the length of d as in steps (1) - (3) to find the optimal push v*,
with score s*

The planner finally returns the contact point and action with the highest score s*.
As explained before, rolling out the analytical model over shorter substeps is more
accurate but also more computationally expensive than predicting the outcome of
the full 5cm push in one step.

In our specific case, the push affordances already contain predictions for the same
five push directions that we also use for U,. This allows us to use the affordance
predictions in step (1) of the push optimization. Instead of steps (2,3), the push
length is then optimized by linearly rescaling the push and predicted object motion
to match the desired motion. We compare this approach to our regular method in

Experiment [5.5.4]

107

Chapter 5 Planning Contact Interactions

Figure 5.4: Heuristic for contact point selection (geo):
line m connects the current p, and desired object po-
sition d, n is its normal. Points on the blue side of n
afford pushing towards d, points to the right of m (red
area) are proposed for counter-clockwise rotation. For
rotations below 2°, candidates need to lie within 2cm
of m. The intersection of both areas (purple) defines
the set of possible contact points for sampling.

5.4 Training

For training the perception, shape encoding and learned affordance model, we rely
mostly on simulated data generated in pybullet (Coumans and Bai, [2016). Each
datapoint contains an RGBD image of an object on a surface, its ground truth posi-
tion, segmentation mask and outline with normals. We annotate 20 random contact
points per object with the object movement in response to the ten representative
pushing actions defined in Section [5.3.4

Properties like object mass, center of mass and friction coefficients are sampled
randomly. We generate more than 15k examples using 21 objects, of which we hold
out three for testing (shown in Figure , which also shows the real-world setup
after which we modeled the simulation).

While the segmentation and shape encoding network are finetuned on real data
from the Omnipush dataset (Bauza et all) [2019), the learned affordance model is
only trained on simulated data. We train the models in Tensorflow (Abadi et al.,
2015)) using Adam (Kingma and Baj, 2015)).

5.5 Simulation Experiments

5.5.1 Setup

We evaluate three different tasks: translating the object by 20 cm without changing
the orientation (translation), rotating the object by 0.5 rad (28.6°) without changing
the position (rotation) and translating for 10 cm plus rotating by 0.35rad (20°)
(mized). A trial counts as successful if it brings the object within less than 0.75 cm
of the desired position and 5° of the desired orientation in at most 30 steps. We
evaluate the percentage of successful trials and the average number of steps until
the goal pose is reached.

For each task, object and method, we perform 60 trials. At the beginning of each,
the object is placed at the center of the workspace. We vary its initial orientation
in 20 steps from 0 to 360° and perform three runs with each orientation.

108

5.5 Simulation Experiments

5.5.2 Affordance Prediction

We first qualitatively compare the learned and the analytical affordance model
to see if there are any major differences between their predictions. Overall, both
models predict similar directions of movement, with the analytical model predicting
more pronounced rotation. A potential advantage of using a learned model becomes
apparent when we compare the magnitude of the predicted translational movement,
which is visualized in Figure[5.3] The analytical model predicts strong translations
for pushes at the sharp corners of the triangle, whereas the learned model predicts
comparatively low magnitudes there. The same effect is visible for angled pushes
that cause the pusher to slide towards corners.

As discussed before, the analytical affordance model cannot predict loss of contact
due to pusher sliding or because the planned motion does not properly hit the target
contact point. Such events are more likely when pushing at sharp corners or with
high angles. The learned model takes the local object shape around the contact
point into account and is therefore able to identify such cases and predict a lower
movement magnitude.

5.5.3 Contact Point Selection

In this experiment, we test our hypothesis that explicitly reasoning about the con-
tact locations makes planning more efficient as compared to sampling pushes that
collide with the object in random locations. For this, we vary the number of
sampled contact points and compare our approach (that uses the affordances to
propose promising contact points) to two baselines that select the contact points
more randomly.

The simplest baseline samples contact points uniformly from all points on the
object outline (rdn). A more informed approach (geo) uses a geometric heuristic
explained in Figure Based on the desired motion, it defines a quadrant of the
object from which the contact points are sampled. In contrast to rdn, geo better
avoids sampling contact points at which the object can only be pushed away from
the goal. It however ignores the exact shape of the object and can thus still propose
unsuitable contact locations especially for non-convex objects.

To minimize the influence of other components of our system on the results, we
do not use filtering for state estimation in this experiment but assume access to
perfect state information at every step.

Results

We first compare the success rates in Figure (left). By sampling from the
affordance model (learned Ilrn or analytical ana), our method can already achieve
a success rate close to 100% with only one contact point. The geometric heuristic

109

Chapter 5 Planning Contact Interactions

‘ Mixed ‘ T‘ranslatio‘n ‘Rotation

|
20
10 —
0
1

10

Success Rate %
[V

Steps

10 1 10

3 5
contact points

3 5
contact points

3 5
contact points

00ran Ulgeo HBana BHim

Figure 5.5: Pushing performance over number of sampled contact points. We compare different
sampling methods of contact locations: randomly (rdn) or according to a geometric heuristic
(geo), the analytical (ana) or the learned (Irn) affordances. We analyze performance for three
different tasks: Pure object translation, pure object rotation and a mixed motion. Results are
averaged over three test objects (See Figure . With our proposed affordance models (ana
and Irn), one contact point sample is already sufficient to achieve a high success rate. Ana and
Irn also require the lowest number of steps to get to a target object pose.

also performs well and often reaches 100% with as few as three sampled contact
points. We only see a big impact of the number of contact points when sampling
randomly. On the tasks that involve translation, rdn only reaches the success rate
of the other methods with ten contact points. The number of sampled points is
generally more important for translating than for rotating the object.

Figure (right) shows the number of steps each method took until the goal pose
was reached. Even in successful runs, rdn needs significantly more steps than the
other methods. Geo again performs better, although still worse than our proposed
method using the affordance predictions. Both Irn and ana work very well with
only one contact point and their performance mostly saturates at three sampled
candidates. There is no significant difference between using the analytical or the
learned model for obtaining the affordances.

To summarize, using an affordance model to sample contact points makes plan-
ning more efficient by reducing the number of contact points that have to be eval-
uated per step and the number of steps taken until the goal is reached.

5.5.4 Pushing Motion Optimization

In this experiment, we test if the predicted affordances are accurate enough to also
be used for optimizing the pushing actions (see Section [5.3.5)). This is especially

110

5.5 Simulation Experiments

Mixed Translation Rotation
| | | | | |
20
n
a,
3 10
n
0
1 3 5 10 1 3 5 10 1 3 5 10
contact points contact points contact points

|:| [l ana I I ana direct |:| 0irn I 0 irn direct

Figure 5.6: Steps taken vs. sampled contact points when rolling out the analytical model for
optimizing the push motions (ana, Irn) or directly using the affordances (ana-direct, lrn-direct).
While ana, lrn and ana-direct perform similar, lrn-direct is less accurate and thus needs more
steps to succeed.

interesting for evaluating the quality of the learned model. We call the variants
that use the predictions from the affordance model directly ana direct and Irn
direct respectively.

Results

As shown in Figure [5.6] using the analytical affordance predictions for action op-
timization does not significantly increase the number of steps taken as compared
to ana. This is not surprising since the only difference between both approaches
is that ana optimizes the actions by rolling out the analytical model over smaller
substeps while ana-direct relies on one-step predictions.

When using the learned affordances for push optimization, the number of steps
taken, however, increases by up to four and the success rate drops by up to 10%
compared to Irn. This implies that while being sufficient for selecting contact
points, the learned model is not as accurate as the analytical model for predicting
the outcome of a push. The negative effect of using the learned model can also not
be compensated by evaluating more contact points, which emphasizes the value of
an accurate predictive model for optimizing the pushes.

5.5.5 Full System

Now we evaluate the accuracy of our full system including the state estimation mod-
ule, with three contact points sampled per step. In all experiments, c is initialized
to zero and [and m to reasonable estimates.

We first test on objects whose center of mass coincides with the geometric center
to evaluate the perception module and how well planning works with imperfect pose
information. In the second experiment, we verify the benefit of estimating latent
properties of the object online on the example of the COM. For this, we sample

111

Chapter 5 Planning Contact Interactions

Table 5.1: Comparison of performance and end pose error when using ground truth (gt) pose in-
formation vs. using pose estimates from the Extended Kalamn Filter (filter). Results are obtained
using the analytical affordance model on the mixed task and are averaged over all test objects.

method suc steps error tr [mm] error rot [°]

gt 1.0 7.3£3.6 5.0+1.8 1.8£1.3
filter 1.0 7.1£3.1 8.7+4.2 3.0£2.2

Table 5.2: Performance of our approach with (+ COM) and without estimating the center of mass
on the mixed task.

butter tri hex
method success steps success steps success steps
Irn 0.75 13.9+7.6 0.75 12.96+6.6 0.92 13.2+6.7
Irn + COM 0.91 10.6+6.1 0.93 11.86%6.2 0.88 11.44+6.5
ana 0.82 12.1+6.2 0.9 13.3+6.2 0.85 10.5£5.1

ana + COM 0.9 11.4+6.6 0.98 10.9+6.6 0.9 10.7£6.3

the COM uniformly inside the objects. We also compare our approach to Push-Net
Li et al.|(2018)) under this condition. Push-Net uses top-down segmentation maps
of the current and desired pose as input to evaluate a large number of randomly
sampled actions. A local planner generates sub-goals by interpolating between the
current and the goal pose with a fixed step size, we use 5cm and 10°.

Results

COM at Geometric Center In the previous experiments, we used the ground
truth object pose information. Here, we compare those results to doing pose es-
timation by filtering. As shown in Table [5.1] we find that using the filter has no
large impact on the success rate of our method or the number of steps taken. How-
ever, it increases the (true) average end pose error from 5.0+1.8 mm, 1.84+1.3° to
8.7£4.2mm and 3.042.2°. This is expected as we use the estimated object pose to
determine if the goal is reached. Therefore, the real pose error can be higher than
the (7.5mm, 5°) margin of the goal region.

Randomly Sampled COM In this experiment, we want to verify that esti-
mating the COM online is possible and beneficial for our approach. For this, we
compare the performance of our method with and without estimating the COM on
objects with a randomly sampled COM.

On the triangle and butter shape, the average estimation error for ¢ is 17.748.5 mm,
on the hexagon it is around 1cm higher. The average distance between the true
COM c and the object frame position p,, which corresponds to the error when the

112

5.5 Simulation Experiments

Mi)‘(ed Trans‘lation Rote‘mtion

-
T
|

Success rate %
Nl

Steps

large medium small large medium small large medium small

BoPush-Net [BOws (ana) Iiours (lrn)

Figure 5.7: Performance of our method and Push-Net on objects with random COM (averaged
over objects). We evaluate three goal region sizes, small (0.75 cm 5°), medium (2.5 cm 7.5°) and
large (5cm 10°). Our method has a higher success rate on smaller goal regions and needs fewer
steps to reach the goal.

COM is not estimated, is 37.4£12.3 mm. This shows that filtering can significantly
improve the estimated COM position. More accurate estimates could potentially be
obtained if the pushing actions were specifically optimized to determine the COM
location.

Table shows that despite not being extremely accurate, estimating c increases
the success rate of our method by up to 18% on the triangle and 16% on the butter
object. The difference is more pronounced when we use the learned instead of
the analytical affordance model. Estimating the COM also decreases the number
of steps taken on the butter and triangle object. The hexagon shape is the only
object for which we do not see much gain from estimating the COM. This is likely
linked to the higher estimation error for the COM on this more compact shape.

Comparison to Push-Net We also compare our approach to Push-Net, which
uses an LSTM to estimate the COM. We evaluate three sizes of the goal region,
from the (0.75cm, 5°) we used in all previous experiments to the (5cm, 10°) used
in the original Push-Net paper, plus a medium size of (2.5cm, 7.5°). Results are
shown in Figure 5.7 With the largest goal region, Push-Net performs competitive
to our approach and it still reaches a good success rate for the medium sized region.
On the smallest size however, our approach outperforms Push-Net by a large mar-
gin, despite evaluating much fewer actions. Our method also consistently requires
fewer steps to reach each level of accuracy. Qualitatively, Push-Net does well for
translating the object, but has trouble controlling its orientation precisely.

113

Chapter 5 Planning Contact Interactions

5.6 Real-Robot Experiments

Finally, we evaluate our approach on the real robotic system introduced in Chap-
ter and shown in Figure [5.Tal This is especially interesting with respect to our
predictive models: We know that the analytical model makes assumptions that
are frequently violated in the real world, while the learned model was trained
purely in simulation and might not transfer well to the real world. A video
of some trials with visualizations of the predicted affordances can be found at
https://www.youtube.com/watch?v=YLnXLHWTAGE0.

Setup

To evaluate our affordance models, we first compare lrn, ana, lrn direct and ana
direct given ground truth state information on the butter object from the MIT
Push Dataset (Yu et al.,[2016]) that we also used in the simulation experiments (see
Figure . We also evaluate rdn and geo again under this conditions.

Then we test the full system with the analytical affordance model on butter,
triangle and a new object from the Omnipush Dataset (Bauza et al. [2019) (shown
in Figure . This object has added weights that alter its pressure distribution
and center of mass and thus violates the uniform pressure distribution assumption
of the analytical model.

For both experiments, we use a new mixed task with 12 cm translation and 46°
rotation. The relatively short translation distance is necessary to ensure that the
object does not leave the workspace of the robot during interaction, independent of
the direction of pushing. We set the maximum number of steps that the methods
can take to 20 and sample three contact points at each step. Every experiment is
repeated 15 times.

Results

When comparing rdn, geo, lrn and ana as well as ana direct and lrn direct given
full state information on the real butter object, the results (shown in Figure
are very similar to the results we obtained in simulation. Using the analytic push
optimization step, both Irn and ana succeed in all trials and need 5.54+2.6 and
5.242.1 steps respectively. For Irn direct and ana direct, the average number of
steps increases to 8.2+4.3 and 6.3+1.9 respectively, while the success rate stays at
100% in both cases. The two baselines rdn and geo in contrast do not succeed in
every trial and also need a higher number of steps to reach the goal in successful
runs. We can thus conclude that both affordance models transfer well between
simulation and the real system.

The results with filtering are shown in Table [5.3] We still achieve a high success
rate on all three test objects. In comparison to the previous experiment with ground

114

https://www.youtube.com/watch?v=YLnXLHWTA60
https://www.youtube.com/watch?v=YLnXLHWTA60

5.7 Conclusion

M

D [rdn I l geo |:| [l ana I I ana direct |:| 0irn I 0 irn direct

o
p -
T T
Steps
=
o
T

Success Rate %
ot
T

o

Figure 5.8: Success rate and steps taken for rdn, geo, lrn and ana as well as ana direct and lrn
direct on the real robot with ground truth state information. As in simulation, our proposed
method reaches a higher success rate and needs fewer steps to reach the goal than the baselines
rdn and geo. Using the analytical model to optimize the pushing motions in lrn and ana further
reduces the number of steps as compared to using the predictions from the affordance models in
ana direct and lrn direct.

Table 5.3: Performance and end pose error of our full approach using the analytical affordance
model and filtering on the real robot.

object success steps error tr [mm] error rot [°]

butter 1 7.4£3.2 8.0£3.2 7.6£3.7
tri 0.93 6.1£3.8 9.2+4.2 9.8£3.7
omni 0.88 8.0£3.6 8.8£4.5 7.2£5.5

truth state information, the number of steps taken for the butter object increased
from 5.2+2.1 to 7.4£3.2.

The biggest challenge in this experiment turned out to be estimating the orienta-
tion of the object correctly. Especially for the relatively compact Omnipush object,
the estimation from the visual information sometimes failed drastically, resulting
in the lowest success rate of 88% and the highest number of steps taken.

Averaged over all test objects, we still reach a success rate of 94% and an end pose
error of 8.64+4.0mm and 6.94+4.3°. This confirms that our approach generalizes to
real-world conditions, even when they potentially violate the assumptions of the
analytical model.

5.7 Conclusion

In this chapter, we presented an approach that addresses the full sensory-motor
skill of planar pushing. Besides from the uncertainty about the system state that
arises from estimating the state from raw sensory data, this task comes with the
additional challenge of optimizing not only the pushing motions but also the contact
locations for pushing efficiently.

We proposed to address this problem by decomposing the action optimization
into first proposing promising contact point locations using an affordance model

115

Chapter 5 Planning Contact Interactions

and then optimizing the pushing motion at each of the contact point candidates.
Our experiments showed that explicitly reasoning over contact locations allows our
method to evaluate fewer actions and at the same time plan more optimal pushing
motions than when sampling random contact locations.

In comparison to the purely learned Push-Net, our method reaches a much higher
manipulation accuracy. To do so, we combined learned components for perception
with structure in the form of a physically meaningful state representation, the an-
alytical model of the pushing dynamics, a Bayesian filtering algorithm for state
estimation, and the aforementioned decomposition of the planning problem into
contact and motion optimization.

A particularly important factor for the accuracy of our approach turned out to
be using the analytical model for optimizing the pushing actions. However, for
predicting the push affordances to select promising contact locations, the learned
model was also sufficient. In contrast to the analytical model, the learned model is
able to take the object shape into account, which can be advantageous for identi-
fying unstable contact locations where the pusher is likely to loose contact quickly.
We thus find that learning is not only well suited for perception but also for pro-
viding “intuitive physics” models that can quickly narrow down large search spaces
to few promising candidates that are then optimized using more accurate but also
costly analytical models.

Some limitations of our approach are the relatively simple scenes we considered
and that our method assumes a mostly unoccluded object outline. Dealing with
strong occlusion is an interesting problem for future work, as is working with more
complex object shapes. Preliminary results in simulation suggest that our approach
is robust to objects with a non-planar surface contact, but real-world experiments
are necessary to confirm these results.

116

Chapter 6

Conclusions

6.1 Summary

In this thesis, we have investigated different ways of combining “traditional” model-
based robotics with data-driven learning techniques in the context of sensory-motor
manipulation skills and in particular robotic planar pushing.

The three projects we presented in Chapters looked at different aspects of
sensory-motor skills and different forms of structure that we can use to solve them.
We went from the level of individual models for perception and prediction, over
algorithms used for state and uncertainty estimation to a full system that solves
the planar pushing task in an efficient and accurate manner. In the following, we
briefly summarize the contributions and results of each project.

6.1.1 Models for Perception and Prediction

In Chapter [3| we considered the problem of predicting the effect of physical inter-
action from raw sensory data. We decomposed the task into a perception model for
compressing the sensory observations into a description of the current state of the
system and a dynamics model that predicts the outcome of the interaction given
this state representation and the action.

We proposed a hybrid architecture that addresses this task by training a DNN
for perception end-to-end through an analytical model of the dynamics. To further
improve the predictions, a learned error-correction or residual term could be added
to the analytical predictions. Our experiments compared this hybrid approach to
a purely learned model in terms of accuracy, data-efficiency and the ability to
generalize to situations not seen during training. While the pure neural network
achieved the best accuracy when training and test distribution are identical, we
observed two main advantages of the hybrid architectures: Compared to the pure
neural network, they required significantly fewer training examples and generalized
better to novel interactions and object shapes.

By using a physics-based analytical model with its fixed state representation to
predict the dynamics of the system, we limit the ability of the full model to overfit

117

Chapter 6 Conclusions

to the training data. In addition, the analytical model provides multiplication oper-
ations that relate the velocity of the input actions to the resulting object movement
and thus facilitate extrapolation to faster pushes. From the perspective of function
approximation and model capacity that we discussed in Chapter [2.1], the analytical
model thus both restricts and at the same time extends the family of functions that
the full system can learn.

End-to-end training is an important aspect for combining learned and analyt-
ical components in a robotic system. Our experiments showed that training the
perception part through the analytical model allowed it to compensate for smaller
errors of the analytical model by adjusting the predicted input values. In addition,
end-to-end training can reduce the labeling effort for supervised training. It allows
learning the intermediate state representation instead of specifying a fixed represen-
tation. While physically meaningful state representations are generally desirable to
ensure an interpretable solution and prevent overfitting, the purely learned model
in our experiments could reach a higher accuracy (on the training domain) when it
was free to learn its own representation.

6.1.2 State Estimation and Uncertainty

For the second project (Chapter , we investigated differentiable Bayesian filtering
algorithms (DF) for tracking the state of a system over multiple time steps and
providing estimates of the uncertainty about the predicted state. The filtering
algorithms formalize prior knowledge about how to solve the state estimation task
and structure the learning problem into learning models of the sensor and the
dynamics as well as their respective noise models.

Our main goal was not only to explore the advantages of DFs over their purely
learned or purely analytical counterparts, but also to provide a comprehensive
overview of existing methods and the factors that are important for making them
work. While the DFs proved to be great tools for state estimation, especially the
differentiable Particle Filter comes with many different and relevant implementation
choices. We hope that our work can provide useful guidance to other researchers
interested in using DF's.

Our experiments confirmed the findings from prior work that the algorithmic
structure of the DF's greatly facilitates training as compared to using less structured
LSTM models. In contrast to their non-differentiable counterparts, DFs enable
learning not only the dynamics and sensor models, but also their associated noise
models. We could show that training these noise models end-to-end through the
filters is important for the performance of DFs and that learning more complex,
heteroscedastic noise models can give them a big advantage over filters that use
hand-tuned noise models.

While we found no large difference between the performance of DFs with different
underlying filtering algorithms, the Particle Filter with learned observation update

118

6.2 Lessons Learned

had the lowest tracking errors in many cases. In contrast to the other DFs, this
variant relaxes some of the assumptions made in Bayesian filtering algorithms (e.g.
that the observation noise is Gaussian). This shows that in cases where the prior
structure does not reflect the true process well, deep learning is a promising tool
for improving the traditional methods.

6.1.3 Planning Contact Interactions

In our last project (Chapter [5)), we finally studied the complete task of using planar
pushing to move an object into a desired pose based on visual input. In addition to
the sub-problems of state estimation from raw sensory data and predicting the out-
come of pushing actions, this task comes with the additional challenge of optimizing
not only the pushing motions but also the contact points for pushing.

We proposed to address this problem by decomposing the optimization task into
a module that proposes promising contact point locations using what we called an
affordance model and a module that optimizes the pushing motion at each of the
contact point candidates. Our experiments showed that this two-step approach not
only reduced the number of contact points and actions that had to be evaluated
at each step but also enabled planning more optimal pushing actions than when
sampling random contact locations.

In comparison to a recent, purely learned approach, our method reaches a much
higher accuracy by relying on a physically meaningful state representation, a Bayesian
Filter for state estimation and an analytical model of the pushing dynamics. An
important factor for the accuracy of our approach turned out to be using the ana-
lytical model for optimizing the pushing actions. However, for selecting promising
contact points, a learned affordance model was also sufficient and even advanta-
geous in some cases. Learning is thus not only well suited for perception but also
for providing “intuitive physics” models that can quickly narrow down large search
spaces to few promising candidates that are then optimized using more accurate
but also costly analytical models.

6.2 Lessons Learned

In the following, we briefly summarize some of the main lessons we learned about
applying deep learning in robotics.

Don’t reinvent the wheel! While nowadays, applying a DNN seems to be our
first impulse, there already exists a wealth of successful models and algorithms for
many tasks. Finding and understanding them might require a lot of work, but it
is also rewarding: Even when the “traditional” methods prove not be sufficient for

119

Chapter 6 Conclusions

solving a problem, studying them still helps to get a better understanding of the
problem and its challenges.

Choose the right function approximator! While DNNs can in theory model
any function, in practice we can often obtain better results if we tailor the function
approximator to the problem we address. In the context of deep learning, a trivial
example for this is using CNNs for processing image data or RNNs for modelling
time series. The more we know about the problem, the more we can restrict the
class of functions that can be learned without impeding the model’s ability to fit the
training data. This is exactly what we do when we combine structure and learning.
Functions learned in this way often generalize better to unseen data and need fewer
training examples than functions learned with a more general approximator.

Residual models often work welll An easy way to combine structure and
learning is to learn a residual (error-correction) term on top of the output of an
analytical model or algorithm. As we could show in Chapter [3] residual models
can retain much of the desirable generalization and data efficiency properties of the
underlying analytical solution while at the same time improving its accuracy.

Know your data! Our experiments have shown that differences between the
distributions of training and test data can be problematic for learning methods.
To leverage the full potential of deep learning, it is thus important to make sure
that the training data covers the whole problem domain. This does not necessarily
mean that the training data needs to contain examples of every possible input - if
we think about image processing, it is clear that DNNs can interpolate surprisingly
well in some cases. However, extrapolation to new value ranges is still problematic.

In addition to analysing the training data in the context of the problem domain,
it can be useful to amplify the frequency of rare but important events in the training
data. For example, for predicting the outcome of a push, it is clearly important
to detect when the pusher is not in contact with the object. However, since this
happens rarely in the MIT Push dataset, our perception models in Chapter [3| would
learn to always predict contact until we augmented the training data with more
non-contact examples.

Representations matter! If a learned model does not work well, one problem
could be the representation of its input data. In Chapter [3] we have seen large
differences in performance between neural networks that used a physically mean-
ingful state representation or a learned encoding of an image. Supplying sines and
cosines instead of raw orientations proofed to be helpful for learning dynamics in
Chapter [l Similarly to the input representation, some output representations may
also be easier to predict for a neural network than others.

120

6.3 Directions for Future Work

6.3 Directions for Future Work

We are still a long way away from the robotic butlers and boardgame mates that
we envisioned in the introduction of this thesis and there are thus many exciting
directions for future research. While our work showed that the traditional approach
to robotics with its explicit and transparent structure, algorithms and models is
nowhere close to being obsolete, we still expect that the next big advances in
robotics will result from approaches that also use deep learning. In a recent study,
Stinderhaut et al.|(2018) give a good overview of the special aspects and challenges
when applying learning in robotic systems. Here, we want to highlight some prob-
lems that our work left open and that we belief will be important for taking todays
robots a step closer towards their fictional role models.

Robotic Manipulation With planar pushing, we mainly studied a vision-based
object manipulation task. One constant challenge for such problems is dealing
with novel object shapes and other physical object properties. In our projects, we
side-stepped much of this challenge by using flat objects, often with uniform weight
distribution. This not only eliminates self-occlusions by the object, but also allowed
us to effectively summarize the object shape with its 2D outline and the center of
mass.

Real-world objects, however, have much more interesting shapes and properties.
They can be composed of different materials, be articulated or even be deformable.
Finding representations of object shapes and related properties that are compact,
well suited for prediction and can at the same time be easily extracted from partial
views will be an important step for advancing robotic manipulation skills. |Wu et al.
(2018); Rempe et al.| (2019); Park et al|(2019) are examples of recent work that
make progress in this direction.

A second aspect that we did not address are interactions between multiple objects
or between objects and fixed structures in the environment. Efficiently predicting
which objects will interact and how they will affect each other is still an active area
of research (e.g. Watters et al.|(2017); Janner et al.| (2019)).

Finally, in this thesis, we only used visual and depth information as sensory
inputs. However, we know that other sensory modalities, especially tactile infor-
mation, play a large role when humans solve manipulation tasks. Challenges here
range from fusing information from different sensory modalities (as was studied for
example in Lee et al.| (2020)); Izatt et al. (2017))) to designing better tactile sensors
(such as GelSight (Yuan et all 2017)).

Embracing Imperfection One important rule-of-thumb for roboticists is that
no model - be it learned or analytical - is ever perfect. This means that in addition
to trying to make our models better and better, a second avenue for improving our
robots is to account for modeling errors in our algorithms.

121

Chapter 6 Conclusions

A key ingredient for this is constant monitoring of feedback and the ability to
detect when a model fails. While the differentiable filters we discussed in Chapter
present a promising way for learning about uncertainty, there is still much room
for improvements. In the context of deep learning, this means that we need better
methods for estimating how (un)certain a trained model is about its predictions (as
studied e.g. by (Gal (2016))) and especially for detecting input data that lies outside
of the model’s training domain (as proposed by e.g. Limoyo et al.| (2020)).

Apart from preventing possibly catastrophic failures of the robotic system, the
ability to detect mismatches between model predictions and the observed data also
presents an opportunity for improving the models. Online and self-supervised learn-
ing techniques can thus be expected to play a large role for the future of robotics.
A particularly interesting challenge here is to determine where errors originated.
For example, if a learned dynamics model does not make good predictions in a
novel scenario, this could be caused by the model itself, but also, for example, by a
failure of a perception module that lead to wrong input values. In the latter case,
adapting the dynamics model to work with faulty input values would clearly be
undesirable.

Learning from Deep Learning Another question that is still largely open is
what successful DNNs can teach us about the problems they address and about
previous solutions to those problems. For example, if we can figure out where and
how a DNN'’s prediction deviates from an analytical solution, this might help to
identify and resolve weaknesses of existing models.

One important aspect for distilling knowledge from DNNs is to understand their
intermediate representations. While there exist methods for visualizing the activa-
tions of hidden units or analyzing to which patterns in the input a neuron reacts,
they are still too cumbersome to use.

6.4 Personal Reflections on Deep Learning for
Robotics

When I started my PhD in 2015, Deep Learning was still a relatively young field
and researchers were just starting to apply DNNs to robotics problems. Since then,
the number of published papers about learning in robotics has rapidly risen and
when ICRA and IROS finally created the keyword “Deep Learning in Robotics
and Automation” in 2018, it immediately became the most used keyword of both
conferences. In addition, a learning-themed robotics conference (Conference on
Robot Learning (CoRL)) has been founded and more and more robotic papers
appear in machine learning conferences like NeurIPS, ICLR or ICML.

By now, Deep Learning has thus become a fixed part of robotics research and

122

6.4 Personal Reflections on Deep Learning for Robotics

finding any group that does not leverage learning for any project would be a difficult
task. However, in conversations and reviews alike, one can still get the impression
that large parts of the research community meet this success story with a lot of
skepticism. One expression of this is the growing debate about “structure vs learn-
ing” or “model-based vs. data-driven robotics”. Over the past few years, there have
been numerous workshops and discussion panels on this topic and on methods for
combining the two approaches at all major conferences. When we ourselves orga-
nized a workshop on “Combining Learning and Reasoning” at R:SS 2018 (Karkus
et al., 2018b)), the general feedback we received matched my overall impression that
while the robotics community has accepted that deep learning is the most promis-
ing avenue for advancing the field, many researchers do not feel comfortable with
taking the “fully learned” approach.

The missing generalizability of fully learned systems and the resulting safety is-
sues that we also explored in this thesis surely are one reason for this sentiment. An-
other aspect seems to be a general feeling of resentment towards declaring decades
of past research in analytical models and methods obsolete. In some sense, accept-
ing that learning approaches could lead to better results than all the models and
algorithms the community has created would mean to admit defeat.

A third, related aspect only came to my attention more recently: During a
panel about “the Roles of Physics-Based Models and Data-Driven Learning in
Robotics” (Hsu et all 2020), Aude Billard voiced her belief that as researchers,
our task is to generate new knowledge and understanding about our world. But
how can we learn new things if we just apply black-box function approximators to
solve all robotic problems? From this perspective, the skepticism of the robotics
community towards learning could also be read as a reluctance to accept solutions
that work well in practice but for which we cannot determine exactly how or why
they work.

Following these considerations, combining learning and structure seems to be a
logical solution for us as a research community to profit from the huge potential of
deep learning without sacrificing the achievements of decades of prior research or
our mission to create not only solutions but also understanding. Given the current
rapid progress in deep learning techniques as well as tensor processing hardware,
it might eventually turn out that putting structure into learning approaches is not
necessary anymore for system performance and robustness. But even then, struc-
ture will still be a necessary tool for us to create transparent solutions that can be
broken down into smaller parts to be analyzed and understood individually.

As a field, we might never get rid of the black-boxes of learning again, but we
can still chose how big we make these boxes and where we place them in our overall
architectures. And hopefully, with time, we will also be getting better at peering
into the boxes and create new understanding from them.

123

Abbreviations

Al artificial intelligence

CNN convolutional neural network

COM center of mass

DF differentiable filter

DNN deep neural network

EKF Extended Kalman filter

GP Gaussian process

GMM Gaussian mixture model

LSTM Long Short-Term Memory, a form of recurrent neural net-
work (Hochreiter and Schmidhuber), |1997))

MCUKF Monte-Carlo Unscented Kalman filter

MPC model predictive control

NLL negative log likelihood

PF Particle filter

RMSE root mean squared error

RNN recurrent neural network

UKF Unscented Kalman filter

125

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, 1., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous
systems. Software available from tensorflow.org.

Agboh, W., Ruprecht, D., and Dogar, M. (2019). Combining coarse and fine physics
for manipulation using parallel-in-time integration. In Springer Tracts in Ad-
vanced Robotics (STAR). Springer.

Agrawal, P., Nair, A. V., Abbeel, P., Malik, J., and Levine, S. (2016). Learning to
poke by poking: Experiential learning of intuitive physics. In Advances in neural
information processing systems, pages 5074-5082.

Ajay, A., Wu, J., Fazeli, N., Bauza, M., Kaelbling, L. P., Tenenbaum, J. B., and
Rodriguez, A. (2018). Augmenting physical simulators with stochastic neural
networks: Case study of planar pushing and bouncing. In 2018 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages 3066—
3073.

Ajay, A., Bauza, M., Wu, J., Fazeli, N., Tenenbaum, J. B., Rodriguez, A., and
Kaelbling, L. P. (2019). Combining physical simulators and object-based net-
works for control. In IEEE/RSJ International Conference on Intelligent Robots
and Systems.

Amos, B., Jimenez, 1., Sacks, J., Boots, B., and Kolter, J. Z. (2018). Differentiable
mpc for end-to-end planning and control. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 8289-8300. Curran Associates, Inc.

Archer, E., Park, I. M., Buesing, L., Cunningham, J., and Paninski, L.
(2015). Black box variational inference for state space models. arXiv preprint
arXiw:1511.07567.

127

Bibliography

Bauza, M. and Rodriguez, A. (2017). A probabilistic data-driven model for planar
pushing. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 3008-3015.

Bauza, M., Hogan, F. R., and Rodriguez, A. (2018). A data-efficient approach to
precise and controlled pushing. In Conference on Robot Learning, pages 336-345.

Bauza, M., Alet, F., Lin, Y., Lozano-Perez, T., Kaelbling, L., Isola, P., and Ro-
driguez, A. (2019). Omnipush: accurate, diverse, real-world dataset of pushing
dynamics with rgh-d video. In IEEE/RSJ International Conference on Intelligent
Robots and Systems.

Bavdekar, V. A., Deshpande, A. P.,; and Patwardhan, S. C. (2011). Identification
of process and measurement noise covariance for state and parameter estimation
using extended kalman filter. Journal of Process Control, 21(4), 585 — 601.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling modern machine-
learning practice and the classical bias—variance trade-off. Proceedings of the
National Academy of Sciences, 116(32), 15849-15854.

Belter, D., Kopicki, M., Zurek, S., and Wyatt, J. (2014). Kinematically optimised
predictions of object motion. In 201/ IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4422-4427. IEEE.

Byravan, A. and Fox, D. (2017). Se3-nets: Learning rigid body motion using
deep neural networks. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 173-180. IEEE.

Byravan, A., Leeb, F., Meier, F., and Fox, D. (2018). Se3-pose-nets: Struc-
tured deep dynamics models for visuomotor planning and control. volume

abs/1710.00489.

Corso, A., Moss, R. J., Koren, M., Lee, R., and Kochenderfer, M. J. (2020).
A survey of algorithms for black-box safety validation. arXiv preprint
arXiw:2005.02979.

Coumans, E. and Bai, Y. (2016). Pybullet, a python module for physics simulation
for games, robotics and machine learning. http://pybullet.org.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4), 303-314.

Dafle, N. C., Holladay, R., and Rodriguez, A. (2018). In-hand manipulation via
motion cones. In Robotics: Science and Systems.

128

http://pybullet.org

Bibliography

Degrave, J., Hermans, M., Dambre, J., and Wyffels, F. (2019). A differentiable
physics engine for deep learning in robotics. Frontiers in Neurorobotics, 13, 6.

Deits, R. and Tedrake, R. (2014). Footstep planning on uneven terrain with mixed-
integer convex optimization. In IEEFE-RAS International Conference on Hu-
manoid Robots.

Donti, P., Amos, B., and Kolter, J. Z. (2017). Task-based end-to-end model learning
in stochastic optimization. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 30, pages 5484-5494. Curran Associates, Inc.

Du, G., Wang, K., Lian, S., and Zhao, K. (2020). Vision-based robotic grasping
from object localization, object pose estimation to grasp estimation for parallel
grippers: a review. Artificial Intelligence Review.

Ebert, F., Finn, C., Lee, A. X., and Levine, S. (2017). Self-supervised visual
planning with temporal skip connections. In Conference on Robot Learning.

Ebert, F., Dasari, S., Lee, A. X., Levine, S., and Finn, C. (2018). Robustness
via retrying: Closed-loop robotic manipulation with self-supervised learning. In
Conference on Robot Learning.

Farquhar, G., Rocktaeschel, T., Igl, M., and Whiteson, S. (2018). TreeQN and
ATreec: Differentiable tree planning for deep reinforcement learning. In Inter-
national Conference on Learning Representations.

Finn, C. and Levine, S. (2017). Deep visual foresight for planning robot motion.
In IEEE International Conference on Robotics and Automation.

Finn, C., Goodfellow, 1., and Levine, S. (2016). Unsupervised learning for phys-
ical interaction through video prediction. In Advances in Neural Information
Processing Systems 29, pages 64—72.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.

Commun. ACM , 24, 381-395.

Fraccaro, M., Kamronn, S., Paquet, U., and Winther, O. (2017). A disentangled
recognition and nonlinear dynamics model for unsupervised learning. In Advances
in Neural Information Processing Systems, pages 3601-3610.

Gal, Y. (2016). Uncertainty in deep learning.

129

Bibliography

Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driving?
the kitti vision benchmark suite. In Conference on Computer Vision and Pattern

Recognition (CVPR).

Girin, L., Leglaive, S., Bie, X., Diard, J., Hueber, T., and Alameda-Pineda, X.
(2020). Dynamical variational autoencoders: A comprehensive review. arXiv
preprint arXiw:2008.12595.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Gordon, N. J., Salmond, D. J., and Smith, A. F. (1993). Novel approach to
nonlinear /non-gaussian bayesian state estimation. In IEE Proceedings F (Radar
and Signal Processing), volume 140, pages 107-113. IET.

Goyal, S., Ruina, A., and Papadopoulos, J. (1991). Planar sliding with dry friction
part 1. limit surface and moment function. Wear, 143(2), 307 — 330.

Guez, A., Weber, T., Antonoglou, I., Simonyan, K., Vinyals, O., Wierstra, D.,
Munos, R., and Silver, D. (2018). Learning to search with mctsnets. In J. G.
Dy and A. Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmassan, Stockholm, Sweden, July

10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
1817-1826. PMLR.

Haarnoja, T., Ajay, A., Levine, S., and Abbeel, P. (2016). Backprop kf: Learning
discriminative deterministic state estimators. In Advances in Neural Information
Processing Systems, pages 4376-4384.

Hermans, T., Li, F., Rehg, J. M., and Bobick, A. F. (2013). Learning contact
locations for pushing and orienting unknown objects. In IEEE-RAS International
Conference on Humanoid Robots.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8), 1735-1780.

Hogan, F. R., Grau, E. R., and Rodriguez, A. (2018). Reactive planar manipulation
with convex hybrid mpc. In IEEFE International Conference on Robotics and
Automation.

Holl, P., Thuerey, N., and Koltun, V. (2020). Learning to control pdes with differ-
entiable physics. In International Conference on Learning Representations.

Hong Lee, S. and Cutkosky, M. (1991). Fixture planning with friction. Journal of
Engineering for Industry, 113.

130

http://www.deeplearningbook.org

Bibliography

Hornik, K., Stinchcombe, M., White, H., et al. (1989). Multilayer feedforward
networks are universal approximators. Neural networks, 2(5), 359-366.

Howe, R. D. and Cutkosky, M. R. (1996). Practical force-motion models for sliding
manipulation. The International Journal of Robotics Research, 15(6), 557-572.

Hsu, D., Billard, A., Levine, S., Tedrake, R., and Wang, M. (2020). Ifrr colloquium:
A conversation on the roles of physics-based models and data-driven learning in
robotics.

loffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proc. 32nd Int. Conf. on Machine
Learning, volume 37, pages 448-456.

Izatt, G., Mirano, G., Adelson, E., and Tedrake, R. (2017). Tracking objects with
point clouds from vision and touch. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 4000-4007.

James, S., Wohlhart, P., Kalakrishnan, M., Kalashnikov, D., Irpan, A., Ibarz, J.,
Levine, S., Hadsell, R., and Bousmalis, K. (2019). Sim-to-real via sim-to-sim:
Data-efficient robotic grasping via randomized-to-canonical adaptation networks.
In Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern
Recognition (CVPR).

Janner, M., Levine, S., Freeman, W. T., Tenenbaum, J. B., Finn, C., and Wu,
J. (2019). Reasoning about physical interactions with object-centric models. In
International Conference on Learning Representations.

Jiang, Y. and Liu, C. K. (2018). Data-augmented contact model for rigid body
simulation. CoRR, abs/1803.04019.

Jonschkowski, R. and Brock, O. (2015). Learning state representations with robotic
priors. Autonomous Robots, 39(3), 407-428.

Jonschkowski, R. and Brock, O. (2016). End-to-end learnable histogram filters.

Jonschkowski, R., Rastogi, D., and Brock, O. (2018). Differentiable particle filters:
End-to-end learning with algorithmic priors. In Proceedings of Robotics: Science
and Systems, Pittsburgh, USA.

Julier, S., Uhlmann, J., and Durrant-Whyte, H. F. (2000). A new method for

the nonlinear transformation of means and covariances in filters and estimators.
IEEFE Transactions on Automatic Control, 45(3), 477-482.

131

Bibliography

Julier, S. J. (2002). The scaled unscented transformation. In Proceedings of the
2002 American Control Conference (IEEE Cat. No.CHS37301), volume 6, pages
4555-4559 vol.6.

Julier, S. J. and Uhlmann, J. K. (1997). New extension of the kalman filter to
nonlinear systems. Proc.SPIE, 3068, 3068 — 3068 — 12.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen,
D., Holly, E., Kalakrishnan, M., Vanhoucke, V., and Levine, S. (2018). Scalable
deep reinforcement learning for vision-based robotic manipulation. In 2nd Annual
Conference on Robot Learning, CoRL 2018, Zurich, Switzerland, 29-31 October
2018, Proceedings, volume 87 of Proceedings of Machine Learning Research, pages
651-673. PMLR.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Journal of basic Engineering, 82(1), 35-45.

Karkus, P., Hsu, D., and Lee, W. S. (2017). Qmdp-net: Deep learning for plan-
ning under partial observability. In Advances in Neural Information Processing
Systems, pages 4694-4704.

Karkus, P., Hsu, D., and Lee, W. S. (2018a). Particle filter networks with applica-
tion to visual localization. In Conference on Robot Learning, pages 169-178.

Karkus, P., Kloss, A., Jonschkowski, R., and Kaelbling, L. P. (2018b). R:ss work-
shop on combining learning and reasoning — towards human-level robot intelli-
gence.

Karkus, P., Ma, X., Hsu, D., Kaelbling, L.. P., Lee, W. S., and Lozano-Pérez, T.
(2019). Differentiable algorithm networks for composable robot learning. In
Robotics: Science and Systems.

Karl, M., Soelch, M., Bayer, J., and van der Smagt, P. (2017). Deep variational
bayes filters: Unsupervised learning of state space models from raw data. In
International Conference on Learning Representations (ICLR).

Kersting, K., Plagemann, C., Pfaff, P., and Burgard, W. (2007). Most likely het-
eroscedastic gaussian process regression. In Proceedings of the 24th international
conference on Machine learning, pages 393-400. ACM.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization.
In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

132

Bibliography

Kloss, A., Bauza, M., Wu, J., Tenenbaum, J. B., Rodriguez, A., and Bohg, J.
(2020a). Accurate vision-based manipulation through contact reasoning. In IEEE
International Conference on Robotics and Automation.

Kloss, A., Schaal, S., and Bohg, J. (2020b). Combining learned and analytical
models for predicting action effects from sensory data. The International Journal
of Robotics Research.

Kopicki, M., Zurek, S., Stolkin, R., Moerwald, T., and Wyatt, J. L. (2017). Learning
modular and transferable forward models of the motions of push manipulated
objects. Autonomous Robots, 41(5), 1061-1082.

Krishnan, R. G., Shalit, U., and Sontag, D. (2016). Structured inference networks
for nonlinear state space models. arXiv preprint arXiv:1609.09869.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097-1105.

Lambert, A. S., Mukadam, M., Sundaralingam, B., Ratliff, N., Boots, B., and Fox,
D. (2019). Joint inference of kinematic and force trajectories with visuo-tactile

sensing. In 2019 International Conference on Robotics and Automation (ICRA),
pages 3165-3171. IEEE.

Lee, M. A., Zhu, Y., Zachares, P., Tan, M., Srinivasan, K., Savarese, S., Fei-Fei,
L., Garg, A., and Bohg, J. (2020). Making sense of vision and touch: Learn-
ing multimodal representations for contact-rich tasks. IFFEE Transactions on
Robotics.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedfor-
ward networks with a nonpolynomial activation function can approximate any
function. Neural Networks, 6(6), 861 — 867.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of
deep visuomotor policies. 17(1), 1334-1373.

Li, J., Lee, W. S., and Hsu, D. (2018). Push-net: Deep planar pushing for objects
with unknown physical properties. In Robotics: Science and Systems.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
and Wierstra, D. (2015). Continuous control with deep reinforcement learning.
CoRR, abs/1509.02971.

Limoyo, O., Chan, B., Mari¢, F., Wagstaff, B., Mahmood, A. R., and Kelly, J.
(2020). Heteroscedastic uncertainty for robust generative latent dynamics. IEEE
Robotics and Automation Letters, 5(4), 6654-6661.

133

Bibliography

Lin, Y.-C., Ponton, B., Righetti, L., and Berenson, D. (2019). Efficient humanoid
contact planning using learned centroidal dynamics prediction. In IEFEFE Inter-
national Conference on Robotics and Automation.

Lynch, K. M. (1999). Locally controllable manipulation by stable pushing. IEEE
Transactions on Robotics and Automation, 15(2), 318-327.

Lynch, K. M., Maekawa, H., and Tanie, K. (1992). Manipulation and active sensing
by pushing using tactile feedback. In Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems, volume 1, pages 416-421.

Mason, M. T. (1986). Mechanics and planning of manipulator pushing operations.
The International Journal of Robotics Research, 5(3), 53-71.

Merigli, T., Veloso, M., and Akin, H. L. (2015). Push-manipulation of complex pas-
sive mobile objects using experimentally acquired motion models. Autonomous
Robots, 38(3), 317-329.

Murphy, K. P. (1998). Switching kalman filters.

Nguyen-Tuong, D. and Peters, J. (2010). Using model knowledge for learning
inverse dynamics. In 2010 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 2677-2682. IEEE.

Oh, J., Singh, S., and Lee, H. (2017). Value prediction network. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 6118—
6128. Curran Associates, Inc.

Okada, M., Rigazio, L., and Aoshima, T. (2017). Path integral networks: End-to-
end differentiable optimal control. arXww preprint arXiv:1706.09597 .

Osiurak, F., Rossetti, Y., and Badets, A. (2017). What is an affordance? 40 years
later. Neuroscience & Biobehavioral Reviews, 77, 403 — 417.

Otter, D. W., Medina, J. R., and Kalita, J. K. (2020). A survey of the usages
of deep learning for natural language processing. IEFEE Transactions on Neural
Networks and Learning Systems, pages 1-21.

Park, J. J., Florence, P., Straub, J., Newcombe, R., and Lovegrove, S. (2019).
Deepsdf: Learning continuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern
Recognition (CVPR).

134

Bibliography

Pereira, M., Fan, D. D., An, G. N., and Theodorou, E. (2018). Mpc-
inspired neural network policies for sequential decision making. arXiv preprint
arXiv:1802.05803.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017). Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space. In Advances in Neural
Information Processing Systems, pages 5105-5114.

Rahimi, A. and Recht, B. (2017). Reflections on random kitchen sinks. http:
//www.argmin.net/2017/12/05/kitchen-sinks/. Accessed: 2020-09-02.

Rempe, D., Sridhar, S., Wang, H., and Guibas, L. J. (2019). Learning generalizable
physical dynamics of 3d rigid objects. CoRR, abs/1901.00466.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale
visual recognition challenge. International journal of computer vision, 115(3),
211-252.

Sahoo, S., Lampert, C., and Martius, G. (2018). Learning equations for extrap-
olation and control. In International Conference on Machine Learning, pages
4442-4450).

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the game
of go with deep neural networks and tree search. Nature, 529(7587), 484-489.

Sorenson, H. (1985). Kalman Filtering: Theory and Application. 1EEE Press
selected reprint series. IEEE Press.

Stanton, A., Reardon, J., and andJim Morris, P. D. (2008). Wallee.

Stiiber, J., Kopicki, M., and Zito, C. (2018). Feature-based transfer learning for
robotic push manipulation. In 2018 IEEFE International Conference on Robotics
and Automation (ICRA), pages 5643-5650.

Stiiber, J., Zito, C., and Stolkin, R. (2020). Let’s push things forward: A survey
on robot pushing. Frontiers in Robotics and Al, 7, 8.

Stinderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D., Leitner, J., Upcroft,
B., Abbeel, P., Burgard, W., Milford, M., and Corke, P. (2018). The limits and

potentials of deep learning for robotics. The International Journal of Robotics
Research, 37(4-5), 405-420.

135

http://www.argmin.net/2017/12/05/kitchen-sinks/
http://www.argmin.net/2017/12/05/kitchen-sinks/

Bibliography

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan, D., Goodfellow, I., and
Fergus, R. (2014). Intriguing properties of neural networks. In International
Conference on Learning Representations.

Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. (2016). Value iteration
networks. In Advances in Neural Information Processing Systems, pages 2154—
2162.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic robotics. MIT press.

Valappil, J. and Georgakis, C. (2000). Systematic estimation of state noise statistics
for extended kalman filters. AIChE Journal, 46(2), 292-308.

Van Der Merwe, R. (2004). Sigma-point kalman filters for probabilistic inference
in dynamic state-space models.

Vinyals, O., Babuschkin, I., Chung, J., Mathieu, M., Jaderberg, M., Czar-
necki, W., Dudzik, A., Huang, A., Georgiev, P., Powell, R., Ewalds, T., Hor-
gan, D., Kroiss, M., Danihelka, I., Agapiou, J., Oh, J., Dalibard, V., Choi,
D., Sifre, L., Sulsky, Y., Vezhnevets, S., Molloy, J., Cai, T., Budden, D.,
Paine, T., Gulcehre, C., Wang, Z., Pfaff, T., Pohlen, T., Yogatama, D.,
Cohen, J., McKinney, K., Smith, O., Schaul, T., Lillicrap, T., Apps, C.,
Kavukcuoglu, K., Hassabis, D., and Silver, D. (2019). AlphaStar: Master-
ing the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/.

Watter, M., Springenberg, J., Boedecker, J., and Riedmiller, M. (2015). Embed to
control: A locally linear latent dynamics model for control from raw images. In
Advances in neural information processing systems, pages 2746-2754.

Watters, N., Zoran, D., Weber, T., Battaglia, P., Pascanu, R., and Tacchetti, A.
(2017). Visual interaction networks: Learning a physics simulator from video. In
Advances in neural information processing systems, pages 4539-4547.

Wu, J., Lu, E., Kohli, P., Freeman, B., and Tenenbaum, J. (2017). Learning to
see physics via visual deanimation. In [. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 152-163. Curran Associates,
Inc.

Wu, J., Zhang, C., Zhang, X., Zhang, Z., Freeman, W. T., and Tenenbaum, J. B.
(2018). Learning shape priors for single-view 3d completion and reconstruction.
In Proceedings of the European Conference on Computer Vision (ECCV).

136

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Bibliography

Wiithrich, M., Garcia Cifuentes, C., Trimpe, S., Meier, F., Bohg, J., Issac, J., and
Schaal, S. (2016). Robust gaussian filtering using a pseudo measurement. In
Proceedings of the American Control Conference, Boston, MA, USA.

Yu, K.-T. and Rodriguez, A. (2018). Realtime state estimation with tactile and
visual sensing. application to planar manipulation. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 7778-7785. IEEE.

Yu, K. T., Bauza, M., Fazeli, N., and Rodriguez, A. (2016). More than a million
ways to be pushed. a high-fidelity experimental dataset of planar pushing. In
2016 IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pages 30-37.
Data available from http://web.mit.edu/mcube//push-dataset.

Yuan, W., Dong, S., and Adelson, E. H. (2017). Gelsight: High-resolution robot
tactile sensors for estimating geometry and force. Sensors, 17(12), 2762.

Zendel, O., Alhaija, H. A., Benenson, R., Cordts, M., Dai, A., Fernandez,
X. P., Geiger, A., Hanselmann, N., Jourdan, N., Koltun, V., Kontschieder, P.,
Kuznetsova, A., Kuang, Y., Lin, T.-Y., Michaelis, C., Neuhold, G., Nieiner, M.,
Pollefeys, M., Ranftl, R., Richter, S., Rother, C., Sattler, T., Scharstein, D.,
Schilling, H., Schneider, N., Uhrig, J., Wulff, J., and Zhou, B. (2018). Robust
vision challenge 2018. http://www.robustvision.net/rvc2018.php. Accessed:
2020-08-27.

Zeng, A., Song, S., Lee, J., Rodriguez, A., and Funkhouser, T. (2020). Tossingbot:
Learning to throw arbitrary objects with residual physics. IEEE Transactions
on Robotics, 36(4), 1307-1319.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017). Understanding
deep learning requires rethinking generalization. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Zhang, L. and Trinkle, J. C. (2012). The application of particle filtering to grasping
acquisition with visual occlusion and tactile sensing. In 2012 IEEE International
Conference on Robotics and Automation (ICRA), pages 3805-3812.

Zhou, J., Paolini, R., Bagnell, J. A., and Mason, M. T. (2016). A convex polynomial
force-motion model for planar sliding: Identification and application. In 2016
IEEFE International Conference on Robotics and Automation (ICRA), pages 372—
377. IEEE.

Zhou, J., Mason, M. T., Paolini, R., and Bagnell, D. (2018). A convex polyno-
mial model for planar sliding mechanics: theory, application, and experimental
validation. The International Journal of Robotics Research, 37(2-3), 249-265.

137

http://web.mit.edu/mcube//push-dataset
http://www.robustvision.net/rvc2018.php

Bibliography

Zhu, M., Murphy, K., and Jonschkowski, R. (2020). Towards differentiable resam-
pling.

Zito, C., Stolkin, R., Kopicki, M., and Wyatt, J. L. (2012). Two-level rrt plan-
ning for robotic push manipulation. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

138

	1 Introduction
	1.1 Motivation
	1.2 Sensory-Motor Skills: An Example
	1.3 Learning and Structure
	1.3.1 Model-Based Approach
	1.3.2 Data-Driven Approach
	1.3.3 Combining Learning and Structure in Robotics

	1.4 Outline and Contributions

	2 Foundations
	2.1 Approximating Functions with Deep Learning
	2.1.1 Universal Approximation Theorem
	2.1.2 Underfitting and Overfitting

	2.2 Modeling Dynamic Systems
	2.3 Bayesian Filtering for State Estimation
	2.3.1 Kalman Filter
	2.3.2 Extended Kalman Filter (EKF)
	2.3.3 Uncentered Kalman Filter (UKF)
	2.3.4 Monte Carlo Unscented Kalman Filter (MCUKF)
	2.3.5 Particle Filter (PF)

	2.4 Planar Pushing
	2.4.1 An Analytical Model of Planar Pushing
	2.4.2 Robotic Pushing Platform

	3 Models for Perception and Prediction
	3.1 Introduction
	3.2 Related Work
	3.2.1 Models for Pushing
	3.2.2 Learning Dynamics Based on Raw Sensory Data
	3.2.3 Combining Analytical Models and Learning
	3.2.4 Newer Work

	3.3 Problem Statement
	3.4 Data
	3.5 Combining Neural Networks and Analytical Models
	3.5.1 Perception
	3.5.2 Prediction
	3.5.3 Training

	3.6 Evaluating Generalization
	3.6.1 Baselines
	3.6.2 Metrics
	3.6.3 Data Efficiency
	3.6.4 Generalization to New Pushing Angles and Contact Points
	3.6.5 Generalization to Different Push Velocities
	3.6.6 Generalization to Different Objects

	3.7 Visualizations
	3.8 Evaluation of Models with Error-Correction
	3.8.1 Evaluation of Different Architectures
	3.8.2 Compensation of Model Errors

	3.9 Conclusion

	4 State Estimation and Uncertainty
	4.1 Introduction
	4.2 Related Work
	4.2.1 Combining Learning and Algorithms
	4.2.2 Differentiable Bayesian Filters
	4.2.3 Variational Inference

	4.3 Implementation
	4.3.1 Differentiable Filters
	4.3.2 Observation Model
	4.3.3 Process Model
	4.3.4 Noise Models
	4.3.5 Training Loss

	4.4 Experiments
	4.4.1 Training and Initialization

	4.5 Simulated Disc Tracking
	4.5.1 Data
	4.5.2 Network Architectures and Initialization
	4.5.3 Implementation and Parameters: dEKF, dUKF, dMCUKF
	4.5.4 Implementation and Parameters: dPF
	4.5.5 Loss Function
	4.5.6 Training Sequence Length
	4.5.7 Learning Noise Models
	4.5.8 Benchmarking
	4.5.9 Summary

	4.6 Kitti Visual Odometry
	4.6.1 Data
	4.6.2 Network Architectures and Initialization
	4.6.3 Training Sequence Length and Filter Parameters
	4.6.4 Learning Noise Models
	4.6.5 End-to-End versus Individual Training
	4.6.6 Benchmarking
	4.6.7 Summary

	4.7 Planar Pushing
	4.7.1 Data
	4.7.2 Network Architectures and Initialization
	4.7.3 Learning Noise Models
	4.7.4 Benchmarking

	4.8 Conclusions

	5 Planning Contact Interactions
	5.1 Introduction
	5.2 Related Work
	5.2.1 Efficient Contact Planning under Full Observability
	5.2.2 Push Planning under Partial Observability

	5.3 Planning Pushing Actions
	5.3.1 Planar Pushing
	5.3.2 Perception and State Estimation
	5.3.3 Shape Encoding
	5.3.4 Affordance Prediction
	5.3.5 Planning

	5.4 Training
	5.5 Simulation Experiments
	5.5.1 Setup
	5.5.2 Affordance Prediction
	5.5.3 Contact Point Selection
	5.5.4 Pushing Motion Optimization
	5.5.5 Full System

	5.6 Real-Robot Experiments
	5.7 Conclusion

	6 Conclusions
	6.1 Summary
	6.1.1 Models for Perception and Prediction
	6.1.2 State Estimation and Uncertainty
	6.1.3 Planning Contact Interactions

	6.2 Lessons Learned
	6.3 Directions for Future Work
	6.4 Personal Reflections on Deep Learning for Robotics

	Abbreviations
	Bibliography

