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Abstract

(Deutsche Version siehe unten.) This dissertation examines how
classical density functional theory (DFT) [11] can be applied
to study liquid-liquid phase transitions in simple fluids under
confinement. Here, two model system are investigated. The
primary focus is on the construction of a DFT for the Jagla
fluid [22] – this constitutes Pt. II of this work – which exhibits a
liquid-liquid critical point in the bulk phase diagram as well as
a density anomaly, and, thus, is a suitable simple model system
for water. In Pt. III the effect of confinement by the infinite slit
geometry on the liquid-liquid phase transition of colloids in a
ternary colloid-polymer mixture is investigated. For this, the
Asakura-Oosawa model [2, 3] is applied.

First, we determine the bulk phase diagram of the Jagla fluid
by using perturbation theory. We find that the perturbation
approaches of Barker and Henderson (BH) [4] as well as of Week,
Chandler, and Andersen (WCA) [41] are not suited to obtain the
liquid-liquid binodal of the Jagla fluid due the long range of the
Jagla interaction potential. Instead, we succeed to compute the
gas-liquid and the liquid-liquid binodal of the Jagla fluid using
first-order perturbation theory by separating the Jagla potential
twice into reference and perturbation part. Based on this, we
continue to construct a perturbation DFT for the Jagla fluid,
where we follow the route of Sokolowski and Fischer [37], to be
able to describe the inhomogeneous fluid. While our perturbation
DFT produces correct density profiles in the infinite slit geometry
at high temperatures and not too close to the binodals, it fails
at low temperatures where the bulk liquid-liquid critical point of
the Jagla fluid is located. Nevertheless, our perturbation DFT
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performs significantly better than standard mean-field DFT. In
a second approach to describe the inhomogeneous Jagla fluid,
we try to use Monte Carlo (MC) simulation data of the Jagla
bulk fluid to compute an optimized interaction potential which,
if applied in standard mean-field DFT, recovers the quasi-exact
MC results of the inhomogeneous fluid. We find the density
profiles of the MC-optimized DFT in the infinite slit geometry to
have improved compared to the results of the perturbation DFT.
Especially at state points not too close to the bulk binodals, the
agreement between MC and optimized DFT profiles is excellent,
even at state points where perturbation DFT produces unphysical
oscillations. In the low temperature region, where the bulk liquid-
liquid critical point of the Jagla fluid is located, the optimized
DFT profiles are at least in the same range as the MC data. It
turns out, however, that our optimized DFT fails to predict phase
transitions inside the slit caused by the reduction of the wall
separation distance, and, thus, is not suited to compute the phase
diagram of the inhomogeneous Jagla fluid.

Interestingly, it is also possible to encounter a liquid-liquid
transition in a model for colloid-polymer mixtures within the
so-called Asakura-Oosawa model [2, 3], if the polymers are bi-
or polydisperse and thus give rise to a second length scale in
the effective colloid-colloid interaction [15]. Here, we use the
framework of fundamental measure theory (FMT) [30, 32] to
describe the bulk mixture as well as the inhomogeneous mixture
within DFT. We find that under the confinement of the infinite
slit with hard walls, the binodals (gas-liquid and liquid-liquid)
are shifted towards higher colloid packing fractions, where the
density jump between coexisting phases decreases. The critical
points are shifted to higher polymer reservoir packing fractions.
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German version: Diese Dissertation untersucht, inwieweit klas-
sische Dichtefunktionaltheorie (DFT) verwendet werden kann
[11], um flüssig-flüssige Phasenübergänge in einfachen Fluiden
innerhalb einschränkender Geometrien zu untersuchen. Dabei
werden zwei Modellsysteme näher betrachtet. Das Hauptaugen-
merk liegt auf der Konstruktion einer DFT für das Jagla-Fluid
[22] – dies geschieht in Teil II dieser Arbeit –, welches sowohl
einen flüssig-flüssigen kritischen Punkt im Bulkphasendiagramm
aufweist, als auch eine Dichteanomalie, und daher ein geeignetes
einfaches Modellsystem für Wasser ist. In Teil III wird der Effekt
von räumlicher Einschränkung durch einen Spalt mit unendlich
großen Wänden auf den flüssig-flüssigen Phasenübergang von Kol-
loiden in einer ternären Kolloid-Polymer-Mischung untersucht.

Zunächst bestimmen wir das Bulkphasendiagramm des Jagla-
Fluids mittels Störungstheorie. Dabei stellt sich heraus, dass
die Störungstheorien von Barker und Henderson (BH) [4], sowie
von Weeks, Chandler und Andersen (WCA) [41] ungeeignet sind,
um die flüssig-flüssige Binodale des Jagla-Fluids zu bestimmen.
Dies lässt sich auf die lange Reichweite des Jagla-Wechselwir-
kungspotentials zurückführen. Stattdessen gelingt es uns, die gas-
flüssige und die flüssig-flüssige Binodale des Jagla-Fluids mittels
Störungsrechung erster Ordnung zu berechnen, wobei wir hierzu
das Jagla-Potential zweimal in Referenz- und Störungspotential
aufteilen. Hierauf basierend konstruieren wir eine Störungs-DFT
für das Jagla-Fluid, um das inhomogene Fluid behandeln zu kön-
nen. Hierbei folgen wir der Arbeit von Sokolowski and Fischer
[37]. Diese Störungs-DFT liefert korrekte Dichteprofile im Spalt
mit unendlich ausgedehnten harten Wänden, bei hohen Tem-
peraturen und nicht in direkter Umgebung einer der Binodalen.
Jedoch versagt sie für tiefe Temperaturen, wo der flüssig-flüssige
kritische Punkt des Jagla-Fluids liegt. Dennoch liefert unsere
Störungs-DFT signifikant bessere Ergebnisse als die gewöhnliche
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Mean-Field DFT. In einem zweiten Versuch, das inhomogene
Jagla-Fluid korrekt zu beschreiben, versuchen wir Daten aus
Monte-Carlo(MC)-Simulationen des homogenen Jagla-Fluids zu
verwenden, um ein optimiertes Wechselwirkungspotential zu be-
rechnen. Dieses soll, falls in der gewöhnlichen Mean-Field-DFT
angewendet, die quasiexakten MC-Ergebnisse des inhomogenen
Fluids reproduzieren. Die mittels der optimierten DFT gewon-
nenen Dichteprofile in der Spaltgeometrie mit unendlich aus-
gedehnten harten Wänden stellen eine Verbesserung gegenüber
den Ergebnissen unserer Störungs-DFT dar. Insbesondere in
Zuständen, die nicht allzu nahe an den Binodalen liegen, ist die
Übereinstimmung der optimierten DFT-Dichteprofile mit den
MC-Dichteprofilen exzellent; dies ist sogar in Zuständen der Fall,
für welche die Störungs-DFT-Dichteprofile unphysikalische Os-
zillationen aufzeigen. In der Niedrigtemperaturregion, wo sich
der flüssig-flüssige kritische Punkt des Jagla-Fluids befindet, äh-
neln die Dichteprofile der optimierten DFT zumindest noch den
MC-Dichteprofilen. Trotz diesen zunächst positiven Ergebnissen,
stellt es sich heraus, dass die optimierte DFT nicht in der Lage ist,
Phasenübergänge im Inneren des Spalts vorherzusagen, die durch
die Änderung der Spaltbreite hervorgerufen werden. Damit ist
auch die optimierte DFT ungeeignet, um das Phasendiagramm
des inhomogenen Jagla-Fluids zu untersuchen.

Interresanter Weise ist es ebenfalls möglich, einen flüssig-flüs-
sigen Phasenübergang in einem Modellsystem einer Kolloid-Poly-
mer-Mischung innerhalb des sogenannten Asakura-Oosawa-Mod-
ells [2, 3] zu beobachten; dieser tritt auf, wenn die Polymere
bi- oder polydispers sind und somit eine zweite Längenskala in
der effektiven Kolloid-Kolloid-Wechselwirkung entstehen lassen
[15]. Hierbei verwenden wir die Fundamental-Measure-Theory
(FMT) [30, 32], um die Bulkmischung sowie die inhomogene
Mischung mittels DFT zu beschreiben. Unter der räumlichen

8



Contents

Einschränkung durch den Spalt verschieben sich die gas-flüssige
und flüssig-flüssige Binodale zu höheren Kolloidpackungsdichten,
wobei sich der Dichtesprung zwischen koexistierenden Phasen
verringert. Des Weiteren wandern beide kritischen Punkte zu
höheren Polymerreservoirpackungsdichten.
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1. Introduction

One possible explanation of the various anomalies of water is the
assumption of a liquid-liquid transition between two phases of
supercooled water [29, 9]. The physical existence of a liquid-liquid
critical point, however, is not verified yet, as it corresponds to
metastable states which are experimentally inaccessible due to
crystallization [6, 9].

In contrast, the existence of a liquid-liquid critical point and
a density anomaly can be achieved quite easily in rather simple
model systems where the spherically symmetric interaction po-
tential is composed of an attractive part and two characteristic
short-ranged repulsive components [14]. As for these model sys-
tems also cases are reported in which a liquid-liquid transition
exists while no density anomaly is observed [13], the model for the
actual physical system of interest needs to be chosen carefully. In
his work from 2001 [22] Jagla introduces a three dimensional iso-
tropic ramp potential, composed of a hard core, a linear repulsion
at short distances, and a long ranged linear attractive part, which
exhibits a liquid-liquid transition and a density anomaly. Xu
et al. [42] furthermore showed in their molecular dynamic (MD)
simulation study that the Jagla model displays a liquid-liquid
coexistence line without the need to supercool.

While the work mentioned so far focus on bulk phase behav-
ior, the major aim of this dissertation (see Pt. II) is to exploit
the rather simple shape of the Jagla model to develop a per-
turbation theory for the inhomogeneous fluid based on classical

11



1. Introduction

density functional theory (DFT) [11]. Being able to describe the
inhomogeneous Jagla fluid would provide us the possibility to
alter the phase diagram based on the nature of the confinement.
This in turn might be a first small step towards the finding of
an experimental setting which stabilizes the liquid-liquid critical
point of water, thus enabling experimental proof. In addition,
a description of the inhomogeneous Jagla fluid would enable us
to study its local structure close to walls and phenomena like
wetting and dewetting and capillarity. The advantage of a per-
turbation DFT over simulations is that, once established, the
confining geometry and its properties can be altered rather easily,
and, furthermore, the time cost of the calculations is notably
smaller (minutes instead of hours), making DFT a highly efficient
framework for testing various confinements. The challenge with
a perturbation DFT, of course, is finding an approximation of
the intrinsic excess free energy functional which yields reasonable
results.

In this work we use the same form of the Jagla potential as in
Refs. [24, 42], but scaled by a factor of 2/7 in the direction of the
ordinate which essentially comes down to a scaling of temperature.
The functional form is given by:

𝑣J(𝑟) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∞ , 𝑟 < 𝜎
−2 𝜖

7
𝑟−𝑟0

𝑟m−𝑟0
, 𝜎 ≤ 𝑟 ≤ 𝑟m

2 𝜖
7

𝑟−𝑟2
𝑟2−𝑟m

, 𝑟m < 𝑟 ≤ 𝑟2

0 , 𝑟 > 𝑟2 ,

where 𝑟 denotes the particle-particle distance, and 𝑟0 = 1.56𝜎,
𝑟m = 1.72𝜎, and 𝑟2 = 3.0𝜎 are the positions of the first zero
crossing and the minimum, and the range of the potential, respec-
tively. The quantity 𝜎 denotes the hard-sphere diameter and 𝜖 is
our unit of energy. Figure 1.1 shows a plot of the Jagla potential,
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and compares it with the modified Lennard-Jones potential

𝑣LJ(𝑟) = 8𝜖
7

[︃(︂
𝜎

𝑟

)︂12
−
(︂
𝜎

𝑟

)︂6]︃
(1.1)

which is the standard Lennard-Jones potential scaled by 2/7 so
that the depths of the potential wells are equal. Note, the far
greater range of the Jagla potential’s repulsive and attractive
parts.

Interestingly, it is also possible to encounter a liquid-liquid
transition in a model for colloid-polymer mixtures within the
so-called Asakura-Oosawa model [2, 3], if the polymers are bi- or
polydisperse and thus give rise to a second length scale in the
effective colloid-colloid interaction [15]. Our aim is to study the
behavior of the liquid-liquid transition under confinement.

This dissertation is structured as follows. In Pt. I we briefly
introduce the concepts and quantities required in the following
chapters. Part II covers our effort to construct a DFT which
is capable of describing the inhomogeneous Jagla fluid. Here,
we begin to establish a bulk perturbation description in Chpt. 6,
upon which a perturbation DFT can be built. The construction
of the latter is described in Chpt. 7. A second approach to gain
a DFT for the Jagla fluid is discussed in Chpt. 8, where we use
Monte Carlo (MC) simulation data to compute an optimized
interaction potential for standard mean-field DFT. In Pt. III
the effect of confinement of the infinite slit geometry with hard
walls on the gas-liquid and the liquid-liquid binodal of a ternary
colloid-polymer mixture is investigated. We conclude and present
additional remarks in Pt. IV.
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1. Introduction
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v
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Figure 1.1.: The reduced Jagla potential 𝑣*
J = 𝑣J/𝜖 as applied in

this work (solid line), and reduced (12-6)-Lennard-Jones potential
𝑣*

LJ = 𝑣LJ/𝜖 scaled such that the depths of the potential wells are
equal (dash-dotted line), namely 2𝜖/7. The quantity 𝑟* = 𝑟/𝜎 is the
reduced center-to-center particle distance.

14



Part I.

Basic concepts
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Introduction to Pt. I: The aim of Pt. I of this thesis is to
briefly introduce the reader to the concepts and quantities applied
in the following parts. Here, no claim to completeness of the
corresponding topics is made, as those have been discussed in
detail elsewhere before.

Chapters 2 and 3 are meant to introduce all quantities needed
for the derivation of the bulk perturbation theory in Sec. 6.1,
especially the concept of the radial distribution function which is
of central importance in this work. Here, we follow closely Ref. [17].
A thorough introduction to the idea of statistical ensembles can
e.g. be found in Refs. [26, 17].

Chapter 4 concisely explains the concept of classical density
functional theory, the central theory applied in this work, and of
fundamental measure theory which is a density functional theory
for hard-sphere fluids. For a more detailed discussion of the
topics the reader is referred to Refs. [11, 17, 20, 16] for classical
density functional theory and to Refs. [32, 30, 31, 18, 17, 16] for
fundamental measure theory.

In Chpt. 5 the methods to calculate the radial distribution
function of an isotropic homogeneous fluid by means of classi-
cal density functional theory and Monte-Carlo simulations are
explained, as these were a central element of the calculations
done for this thesis. A comprehensive discussion of Monte-Carlo
simulations methods for simple fluids is given in Refs. [8, 17].

17





2. Canonical ensemble

2.1. Basics
Let us consider an ensemble of isolated, macroscopic systems at
fixed temperature 𝑇 , which consist of 𝑁 identical, spherically
symmetric particles of mass 𝑚, described via the 3𝑁 spatial coor-
dinates r𝑁 ≡ r1, . . . , r𝑁 and the 3𝑁 momenta p𝑁 ≡ p1, . . . ,p𝑁 ,
which are enclosed in a volume 𝑉 . The corresponding ensemble
equilibrium probability density is then given by [17, 26, 20]

𝑃𝑁 (r𝑁 ,p𝑁 ) = 1
ℎ3𝑁𝑁 !

exp(−𝛽ℋ)
𝑄𝑁

, (2.1)

where
𝑄𝑁 = 1

ℎ3𝑁 𝑁 !

∫︁∫︁
exp(−𝛽ℋ)dr𝑁 dp𝑁 (2.2)

is the partition function of the canonical ensemble, ℎ is Planck’s
constant, 𝛽 = (𝑘B𝑇 )−1, with Boltzmann’s constant 𝑘B, and
ℋ = ℋ(r𝑁 ,p𝑁 ) is the hamiltonian of the system which we assume
to be of the form:

ℋ(r𝑁 ,p𝑁 ) = 𝐾𝑁 (p𝑁 ) + 𝑉𝑁 (r𝑁 ). (2.3)

Here,

𝐾𝑁 =
𝑁∑︁

𝑖=1

|p𝑖|2

2𝑚
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2. Canonical ensemble

is the total kinetic energy of the system and 𝑉𝑁 is the interatomic
potential energy. With a hamiltonian given, we can calculate the
equilibrium canonical ensemble average ⟨𝐵(r𝑁 ,p𝑁 )⟩ of a function
𝐵(r𝑁 ,p𝑁 ) via [17]

⟨𝐵(r𝑁 ,p𝑁 )⟩ =
∫︁∫︁

𝐵(r𝑁 ,p𝑁 )𝑃𝑁 (r𝑁 ,p𝑁 )dr𝑁 dp𝑁

= 1
ℎ3𝑁𝑁 !

1
𝑄𝑁

∫︁∫︁
𝐵(r𝑁 ,p𝑁 ) exp(−𝛽ℋ)dr𝑁 dp𝑁 ,

(2.4)

where the expression in Eq. (2.1) was used for the second equality.
If the hamiltonian is of the form as in Eq. (2.3), the integration
over the momenta in Eq. (2.2) can be carried out analytically
and yields a factor of (2𝜋𝑚𝑘B𝑇 )1/2 for each of the 3𝑁 degrees of
freedom [17]. Hence, the partition function 𝑄𝑁 can be rewritten
to be

𝑄𝑁 = 1
𝑁 !

𝑍𝑁

Λ3𝑁
,

where

Λ =

√︃
ℎ2𝛽

2𝜋𝑚 (2.5)

is the thermal wavelength and

𝑍𝑁 =
∫︁

exp(−𝛽𝑉𝑁 )dr𝑁 (2.6)

is the so called configuration integral [17]. Likewise, if additionally
the function 𝐵 is only a function of the spatial coordinates r𝑁 ,
𝐵 = 𝐵(r𝑁 ), the expression for the ensemble average in Eq. (2.4)
simplifies to be

⟨𝐵(r𝑁 )⟩ = 1
𝑍𝑁

∫︁
𝐵(r𝑁 ) exp

(︀
− 𝛽𝑉𝑁 (r𝑁 )

)︀
dr𝑁 . (2.7)
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2.1. Basics

If, for a moment, we assume non-interacting, or ideal, particles,
i.e. 𝑉𝑁 = 0, the configuration integral reduces to

𝑍𝑁 =
∫︁

· · ·
∫︁

dr1 . . . dr𝑁 = 𝑉 𝑁 , (2.8)

and, hence, the partition function of a an ideal gas in bulk is
given by [17]

𝑄id
𝑁 = 1

𝑁 !
𝑉 𝑁

Λ3𝑁
. (2.9)

With this, we can rewrite the partition function of our system of
interacting particles to be

𝑄𝑁 = 𝑄id
𝑁

𝑍𝑁

𝑉 𝑁
. (2.10)

The thermodynamic potential of the canonical ensemble is the
Helmholtz free energy [17, 26]

𝐹 = 𝑈 − 𝑇 𝑆, (2.11)

with the internal energy 𝑈 = 𝑇𝑆 − 𝑝𝑉 + 𝜇𝑁 , the entropy 𝑆, the
pressure 𝑝, and the chemical potential 𝜇, which can be calculated
from the partition function 𝑄𝑁 via

𝐹 = −𝑘B𝑇 ln𝑄𝑁 .

Given the expression in Eq. (2.10), and by applying Stirling’s
approximation, ln𝑁 ! ≈ 𝑁 ln𝑁 −𝑁 for large 𝑁 , the Helmholtz
free energy can be written as the sum of ideal and excess parts:

𝐹
(2.10)= −𝑘B𝑇 ln𝑄id

𝑁 − 𝑘B𝑇 ln 𝑍𝑁

𝑉 𝑁

(2.9)= 𝑁𝑘B𝑇 (ln Λ3𝜌− 1) − 𝑘B𝑇 ln 𝑍𝑁

𝑉 𝑁

≡ 𝐹 id + 𝐹 ex, (2.12)
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2. Canonical ensemble

where 𝜌 = 𝑁/𝑉 is the bulk density1 of the system. The excess
part contains all information of the particle-particle interaction
and in case of a non-vanishing external potential, i.e. in case of
an inhomogeneous fluid, also the contribution of the external
potential to the Helmholtz free energy.

2.2. Distribution functions in the canonical
ensemble

Often, the information on the positions and momenta of all 𝑁
particles in the system, provided by the probability density in
Eq. (2.1), is unnecessarily detailed, and it is sufficient to only
consider a subset of 𝑛 particles and their positions, and to inte-
grate out the positions of the other 𝑁 − 𝑛 particles as well as the
momenta of all particles [17]. Hence, it is convenient to introduce
the canonical equilibrium 𝑛-particle density of a system without
external potential [17]:

𝜌
(𝑛)
𝑁 (r𝑛) = 𝑁 !

(𝑁 − 𝑛)!
1
𝑄𝑁

∫︁∫︁
exp(−𝛽ℋ)dr(𝑁−𝑛)dp𝑁

= 𝑁 !
(𝑁 − 𝑛)!

1
𝑍𝑁

∫︁
exp(−𝛽𝑉𝑁 )dr(𝑁−𝑛), (2.13)

where in the second equality the integration over the momenta is
carried out. The quantity 𝜌(𝑛)

𝑁 (r𝑛)dr𝑛 is the probability to find 𝑛
arbitrary particles of the system inside the volume element dr𝑛

at the position r𝑛 = (r1, . . . , r𝑛), irrespective of the positions of
the other 𝑁 − 𝑛 particles and the momenta of all particles. From

1We denote the bulk density of an homogeneous system by 𝜌 and, for resons
of clarity, the bulk density in case of an inhomogeneous system by 𝜌b.
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2.2. Distribution functions in the canonical ensemble

Eq. (2.13) we can see that∫︁
𝜌

(𝑛)
𝑁 (r𝑛)dr𝑛(2.6)= 𝑁 !

(𝑁 − 𝑛)! ,

and, hence, ∫︁
𝜌

(1)
𝑁 (r)dr = 𝑁. (2.14)

For a homogeneous fluid, the single-particle density 𝜌(1)
𝑁 (r) must

be independent of the position r from which follows2 that for a
homogeneous fluid the single-particle density is equal to the bulk
number density 𝜌:

𝜌
(1)
𝑁 (r) = 𝑁

𝑉
= 𝜌. (2.15)

If the fluid is not only homogeneous, but also ideal, the pair
density is given by3

𝜌
(2)
𝑁 = 𝜌2

(︂
1 − 1

𝑁

)︂
. (2.17)

2If the single-particle density is independent of the position r, Eq. (2.14)
can be rewritten to be

𝑁 = 𝜌
(1)
𝑁

∫︁
dr.

Since
∫︀

dr = 𝑉 , we obtain 𝜌
(1)
𝑁 = 𝑁/𝑉 for the homogeneous fluid.

3From Eq. (2.13) we know that

𝜌
(2)
𝑁 (r1, r2) = 𝑁 !

(𝑁 − 2)!
1
𝑍𝑁

∫︁
exp(−𝛽𝑉𝑁 )dr(𝑁−2). (2.16)

In the case of an ideal gas 𝑉𝑁 = 0 and 𝑍𝑁 = 𝑉 𝑁 holds [see Eq. (2.8)],
and (2.16) simplifies to be

𝜌
(2)
𝑁 = 𝑁 !

(𝑁 − 2)!
1
𝑉 𝑁

𝑉 𝑁−2 = 𝑁

𝑉

𝑁 − 1
𝑉

= 𝜌2
(︂

1 − 1
𝑁

)︂
.
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2. Canonical ensemble

Based on the canonical 𝑛-particle densities, the canonical 𝑛-
particle distribution functions can be defined [17]:

𝑔
(𝑛)
𝑁 (r𝑛) = 𝜌

(𝑛)
𝑁 (r1, . . . , r𝑛)∏︀𝑛

𝑖=1 𝜌
(1)
𝑁 (r𝑖)

. (2.18)

For a homogeneous system (2.18) becomes

𝜌𝑛𝑔
(𝑛)
𝑁 (r𝑛)(2.15)= 𝜌

(𝑛)
𝑁 (r𝑛). (2.19)

The particle distribution functions are a measure for how much
the structure of the fluid is different to complete randomness,
and provide, together with the particle densities, a complete
description of a fluid’s structure. The low-order distribution func-
tions, especially the pair density 𝜌(2)

𝑁 (r1, r2), are often sufficient
to obtain the thermodynamic properties of a system such as the
equation of state. For an isotropic particle-particle interaction
potential, the pair distribution function 𝑔

(2)
𝑁 (r1, r2) becomes a

function of merely the particle-particle distance 𝑟12 = |r2 − r1|,
and it is then often simply called the radial distribution function
𝑔(𝑟). If the particle-particle distance 𝑟 is much greater than the
range of the interaction potential, the information on the latter
gets lost, and the two particles ”see” each other as ideal. There-
fore, for large 𝑟, 𝑔(𝑟) approaches the ideal gas limit which, via
Eqs. (2.17) and (2.19), we identify as (1 − 1/𝑁). For large 𝑁 , in
good approximation, this is equal to 1. The quantity 𝜌𝑔(𝑟) can be
interpreted as the single-particle density around a reference parti-
cle in the fluid, and, hence, the average number of particles inside
the spherical shell around the reference particle, containing all
distances from 𝑟 to 𝑟 + d𝑟, is 4𝜋𝑟2𝜌𝑔(𝑟)d𝑟 [17]. Figure 2.1 shows
the radial distribution function of a one-component hard-sphere
fluid, obtained through a density functional theory calculation,
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2.2. Distribution functions in the canonical ensemble

at a reduced density 𝜌* = 𝜌 ≈ 0.67, or at a packing fraction
𝜂 = 𝜋

6𝜌𝜎
3 = 0.35. The form of the radial distribution function

0 1 2 3 4 5 6

r∗

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g
(r
∗ )

Figure 2.1.: The radial distribution function 𝑔(𝑟*) of a one component
hard-sphere fluid at 𝜂 = 0.35 as a function of the reduced center-to-
center particle distance 𝑟* = 𝑟/𝜎.

delivers a basic idea of what is understood as the structure of
a fluid at the level of pair correlations. For 0 ≤ 𝑟 ≤ 𝜎, the
radial distribution function is zero, which is due to the fact that
hard-sphere particles can not overlap, and for large 𝑟 the ideal
gas limit is attained. The peaks in the plot represent ”shells” of
neighboring particles around the reference particle [17].
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3. Grand canonical ensemble

3.1. Basics
If the system of consideration is open, in the sense that the
exchange of particles with a particle reservoir is possible, its
thermodynamic state is defined via the chemical potential 𝜇,
the volume 𝑉 , and the temperature 𝑇 , and the corresponding
statistical ensemble is called the grand canonical ensemble. The
grand canonical probability density is given by [17, 26]

𝑃 (r𝑁 ,p𝑁 ;𝑁) =
exp

(︀
− 𝛽(ℋ −𝑁𝜇)

)︀
Ξ

which now is not only a function of the phase space variables
r𝑁 and p𝑁 , but also of the number of particles 𝑁 in the system.
Here,

Ξ =
∞∑︁

𝑁=0

exp(𝑁𝛽𝜇)
ℎ3𝑁𝑁 !

∫︁∫︁
exp(−𝛽ℋ)dr𝑁 dp𝑁

=
∞∑︁

𝑁=0

𝑧𝑁

𝑁 !𝑍𝑁 , (3.1)

and ℋ is the hamiltonian of the system which we assume to be
of the form as in Eq. (2.3). In the second equality of (3.1) the
degrees of freedom of the momenta are integrated out, and the
quantity

𝑧 = exp(𝛽𝜇)
Λ3
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3. Grand canonical ensemble

is the activity. The grand canonical ensemble average of a function
𝐵(r𝑁 ,p𝑁 ) is

⟨𝐵⟩ =
∞∑︁

𝑁=0

1
ℎ3𝑁𝑁 !

∫︁∫︁
𝐵(r𝑁 ,p𝑁 )𝑃 (r𝑁 ,p𝑁 ;𝑁)dr𝑁 dp𝑁 .

If the function 𝐵 is independent of the phase space variables, the
average can be written as

⟨𝐵⟩ =
∞∑︁

𝑁=0
𝐵

1
ℎ3𝑁𝑁 !

∫︁∫︁
𝑃 (r𝑁 ,p𝑁 ;𝑁)dr𝑁 dp𝑁

≡
∞∑︁

𝑁=0
𝐵 𝑃 (𝑁), (3.2)

where we have defined the quantity

𝑃 (𝑁) = 1
ℎ3𝑁𝑁 !

∫︁∫︁
𝑃 (r𝑁 ,p𝑁 ;𝑁)dr𝑁 dp𝑁 = 1

Ξ
𝑧𝑁

𝑁 !𝑍𝑁 (3.3)

which, from (3.2), we can identify as the probability that a system
of the ensemble contains 𝑁 particles. In the second equality of
(3.3), again, the integral over the momenta is carried out. With
this, we can calculate the mean number of particles in the system
[17]:

⟨𝑁⟩ =
∞∑︁

𝑁=0
𝑁 𝑃 (𝑁) = 1

Ξ

∞∑︁
𝑁=0

𝑁
𝑧𝑁

𝑁 !𝑍𝑁 = 𝜕 ln Ξ
𝜕 ln 𝑧 .

The thermodynamic potential of the grand canonical ensemble is
the grand potential [17, 26]

Ω = 𝐹 −𝑁𝜇
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3.2. Distribution functions in the g.c. ensemble

which can be calculated from the grand partition function Ξ via

Ω = −𝑘B𝑇 ln Ξ. (3.4)

With the free energy 𝐹 from Eq. (2.11), the grand potential
simplifies to be

Ω = −𝑝𝑉.

3.2. Distribution functions in the grand
canonical ensemble

The grand canonical equilibrium 𝑛-particle density is defined via
the canonical equilibrium 𝑛-particle density [Eq. (2.13)] to be

𝜌(𝑛)(r𝑛) =
∞∑︁

𝑁=𝑛

𝑃 (𝑁)𝜌(𝑛)
𝑁 (r𝑛)

(3.3)(2.13)= 1
Ξ

∞∑︁
𝑁=𝑛

𝑧𝑁

(𝑁 − 𝑛)!

∫︁
exp(−𝛽𝑉𝑁 )dr(𝑁−𝑛). (3.5)

Integration of (3.5) with respect to the spacial variables r1, . . . , r𝑛

gives (see App. A.1)∫︁
𝜌(𝑛)(r𝑛)dr𝑛 =

⟨
𝑁 !

(𝑁 − 𝑛)!

⟩
,

from which follows that∫︁
𝜌(1)(r)dr = ⟨𝑁⟩. (3.6)

If the fluid is homogeneous, the single-particle density 𝜌(1)(r)
must be independent of the position r, and, hence, we find from
(3.6), with the analogue calculation as in Sec. 2.2:

𝜌(1)(r) = ⟨𝑁⟩/𝑉 ≡ 𝜌.
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3. Grand canonical ensemble

Note that for reasons of simplicity, from now on we refer to the
one-particle density as 𝜌(r). For a homogeneous and ideal fluid
the 𝑛-particle densities are (see App. A.2)

𝜌(𝑛) = 𝜌𝑛.

The definition of the grand canonical 𝑛-particle distribution func-
tion is similar to the definition in the canonical ensemble, namely:

𝑔(𝑛)(r𝑛) = 𝜌(𝑛)(r1, . . . , r𝑛)∏︀𝑛
𝑖=1 𝜌

(1)(r𝑖)
, (3.7)

and in the homogeneous case:

𝜌(𝑛)(r𝑛) = 𝜌𝑛𝑔(𝑛)(r𝑛).

If, in the homogeneous case, for all pairs of the 𝑛 particles the
separation becomes sufficiently large, 𝑔(𝑛) approaches the ideal
gas limit (c.f. Sec. 2.2): 𝑔(𝑛)(r𝑛) → 1 for all 𝑛. Recall, that this
is not the case in the canonical description. If the system is
homogeneous and isotropic, the 2-particle distribution function,
again, is simply denoted by 𝑔(𝑟). In the thermodynamic limit
canonical and grand canonical descriptions become equivalent
and, thus, we denote the radial distribution function from now on
as 𝑔(𝑟), irrespective of which ensemble was used for the derivation.

Based on the radial distribution function 𝑔(𝑟), the so-called
cavity distribution function 𝑦(𝑟) can be defined:

𝑦(𝑟) = exp
[︁
𝛽𝑣(𝑟)

]︁
𝑔(𝑟), (3.8)

where 𝑣(𝑟) is the corresponding particle-particle interaction po-
tential. If we imagine a so-called mixed system in which for
one fixed pair of particles the interaction is suppressed while all
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3.2. Distribution functions in the g.c. ensemble

other interactions remain the same, we can interpret the function
𝑦(𝑟) as the distribution function of this pair of non-interacting
particles. In a hard-sphere system these two particles correspond
to two spheres which can overlap each other but can not overlap
the other particles. This leads to the interpretation of the two
particles as spherical cavities in the fluid; hence, the name cavity
distribution function. Furthermore, 𝑦(𝑟) is a continuous function
of the center-to-center particle distance 𝑟 even for hard spheres
[17]. This is remarkable, since for hard spheres the particle-
particle interaction potential and the radial distribution function
are discontinuous at 𝑟 = 𝜎. Figure 3.1 shows the plots of the
cavity distribution function 𝑦 and the radial distribution function
𝑔 of a one component hard-sphere fluid at 𝜂 = 0.1, the data for
which was derived through a MC simulation in the canonical
ensemble and by means of a DFT calculation, respectively. One
can clearly see the cavity distribution function to be continuous
on the entire range of 𝑟, and that outside the hard core, where
the hard-sphere interaction potential vanishes, the two functions
are equal.
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3. Grand canonical ensemble
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Figure 3.1.: The cavity distribution function 𝑦(𝑟*) (crosses) and the
radial distribution function 𝑔(𝑟*) (solid line) of a one-component hard-
sphere fluid at 𝜂 = 0.1 as functions of the reduced center-to-center
particle distance 𝑟* = 𝑟/𝜎. The data for 𝑦(𝑟*) was calculated by means
of a MC simulation in the canonical ensemble, whereas the data for
𝑔(𝑟*) was derived through a DFT calculation.
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4. Density functional theory

4.1. Basic concept
Classical density functional theory (DFT) is a theory defined in
the grand canonical ensemble. The core of DFT are the two facts
that (i) for a statistical system a functional Ω[𝜌(r)] of the spatial
number density 𝜌(r) exists which (ii) is minimal at the equilibrium
density, for which it takes the value of the grand potential Ω of
the system. I.e. if a functional Ω[𝜌(r)] is given for a particular
system, the equilibrium density and the grand potential of the
system can be computed by minimizing the functional. To do so,
the equation

𝛿Ω[𝜌(r)]
𝛿𝜌(r) = 0 (4.1)

must be solved for the density profile 𝜌(r), where 𝛿Ω[𝜌(r)]/𝛿𝜌(r′)
denotes the functional derivative of the functional Ω[𝜌(r)] with
respect to the density profile. In practice, Eq. (4.1) is solved
numerically by applying e.g. a Piccard iteration. The expression
of the functional of the grand potential reads as follows [11]:

Ω[𝜌(r)] = ℱ [𝜌(r)] +
∫︁

dr 𝜌(r)
[︀
𝑉ext(r) − 𝜇

]︀
, (4.2)

where ℱ [𝜌(r)] is the unique functional of the intrinsic free energy,
𝑉ext(r) is the external potential, and 𝜇 is the particle reservoir’s
chemical potential. The functional ℱ [𝜌(r)] can be written as

ℱ [𝜌(r)] = ℱ id[𝜌(r)] + ℱex[𝜌(r)], (4.3)
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4. Density functional theory

i.e. as the sum of the exact intrinsic free energy functional of the
ideal gas,

ℱ id[𝜌(r)] = 𝑘B𝑇

∫︁
dr 𝜌(r)

[︁
ln
[︀
Λ3𝜌(r)

]︀
− 1

]︁
, (4.4)

and the excess (over the ideal gas) intrinsic free energy func-
tional ℱex[𝜌(r)]. The latter contains all information about the
particle-particle interaction and in general its exact expression is
unknown. Finding approximate expressions for ℱex is the core
challenge of DFT and will be the topic in Secs. 4.2 and 7.1.1.
With the expression of the functional of the grand potential given
by Eqs. (4.2), (4.3), and (4.4), Eq. (4.1) becomes1

ln
(︃
𝜌(r)
𝜌b

)︃
+ 𝛿𝛽ℱex[𝜌(r)]

𝛿𝜌(r′) + 𝛽𝑉ext(r) − 𝛽𝜇ex = 0, (4.5)

and is called the Euler-Lagrange equation of DFT. The quantity
𝜌b is the bulk density of the system.

1With the expressions in Eqs. (4.2) and (4.3) the functional derivative of
Ω[𝜌(r)] is

𝛿Ω[𝜌(r)]
𝛿𝜌(r′) = 𝛿ℱ id[𝜌(r)]

𝛿𝜌(r′) + 𝛿ℱex[𝜌(r)]
𝛿𝜌(r′) + 𝛿

𝛿𝜌(r′)

∫︁
dr 𝜌(r)

[︀
𝑉ext(r) − 𝜇

]︀
.

With Eq. (4.4), we find 𝛿ℱ id[𝜌(r)]
𝛿𝜌(r′) = 𝑘B𝑇 ln

[︀
Λ3𝜌(r)

]︀
, and the functional

derivative of the integral in the last term yields (𝑉ext(r)−𝜇). Furthermore,
we make use of the identiy 𝜇 = 𝜇id + 𝜇ex, where 𝜇id = 𝑘B𝑇 ln

[︀
Λ3𝜌b

]︀
.

With this, we obtain

𝛿Ω[𝜌(r)]
𝛿𝜌(r′) = 𝑘B𝑇 ln

[︀
Λ3𝜌(r)

]︀
+ 𝛿ℱex[𝜌(r)]

𝛿𝜌(r′) + 𝑉ext(r) − 𝑘B𝑇 ln
[︀
Λ3𝜌b

]︀
− 𝜇ex

= 𝑘B𝑇 ln
[︀
𝜌(r)/𝜌b

]︀
+ 𝛿ℱex[𝜌(r)]

𝛿𝜌(r′) + 𝑉ext(r) − 𝜇ex.
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4.2. Fundamental measure theory

4.1.1. Generalization for mixtures
Thus far, our treatment of DFT was limited to fluids with one
particle species; the generalization for mixtures is straight forward,
though. For a fluid comprised of 𝜈 particle species (𝜈-component
fluid) with corresponding one-particle densities 𝜌𝑗(r), where 𝑗 =
1, 2, . . . , 𝜈, the functional of the grand potential reads as follows:

Ω
[︀
{𝜌𝑖}

]︀
= 𝑘B𝑇

𝜈∑︁
𝑗=1

∫︁
dr 𝜌𝑗(r)

[︁
ln
[︀
Λ3

𝑗𝜌𝑗(r)
]︀

− 1
]︁

+ ℱex[︀{𝜌𝑗}
]︀

+
𝜈∑︁

𝑗=1

∫︁
dr 𝜌𝑗(r)

[︀
𝑉ext,𝑗(r) − 𝜇𝑗

]︀
.

In this case, Eq. (4.1) generalizes to be a system of 𝜈 coupled
equations,

𝛿Ω
𝛿𝜌𝑗(r) = 0, 𝑗 = 1, 2, . . . , 𝜈,

which has to be solved to minimize Ω
[︀
{𝜌𝑖}

]︀
.

4.2. Fundamental measure theory
Fundamental measure theory (FMT) is an accurate framework
to gain an (approximate) expression for the intrinsic excess free
energy ℱex for hard-sphere mixtures, and was originally derived
by Rosenfeld [30]. Since hard-sphere systems are often applied as
reference systems in the perturbation theory of fluids with soft
tail, or in colloidal systems, FMT plays a central role in DFT.

For a 𝜈-component hard-sphere mixture, where the density
profile of the species with number 𝑖 is 𝜌𝑖(r), Rosenfeld’s ansatz
for ℱex is

𝛽ℱex[︀{𝜌𝑖}
]︀

=
∫︁

dr Φ
(︁{︀
𝑛𝛼(r)

}︀)︁
, (4.6)
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where the weighted densities 𝑛𝛼(r) are given by

𝑛𝛼(r) =
𝜈∑︁

𝑖=1
𝑛(𝑖)

𝛼 (r) =
𝜈∑︁

𝑖=1

∫︁
dr′ 𝜌𝑖(r′)𝜔(𝑖)

𝛼 (r − r′), (4.7)

with the weight functions of species 𝑖:

𝜔
(𝑖)
3 (r) = Θ(𝑅𝑖 − 𝑟),

𝜔
(𝑖)
2 (r) = 𝛿(𝑅𝑖 − 𝑟),

𝜔
(𝑖)
1 (r) = 1

4𝜋𝑅𝑖
𝜔

(𝑖)
2 (r),

𝜔
(𝑖)
0 (r) = 1

4𝜋𝑅2
𝑖

𝜔
(𝑖)
2 (r),

𝜔
(𝑖)
v2(r) = r

𝑟
𝛿(𝑅𝑖 − 𝑟),

𝜔
(𝑖)
v1(r) = 1

4𝜋𝑅𝑖
𝜔

(𝑖)
v2(r).

The function Θ(𝑟) is the Heaviside step function, 𝛿(𝑟) the Dirac-
delta distribution and 𝑅𝑖 = 𝜎𝑖/2 the radius of the hard spheres of
species 𝑖 with diameter 𝜎𝑖. In the bulk limit, the scalar weighted
densities reduce to the constant scaled particle theory (SPT)
variables,

lim
𝜌𝑖(r)→𝜌

(𝑖)
b

𝑛3(r) =
∑︁

𝑖

4𝜋𝑅3
𝑖

3 𝜌
(𝑖)
b ,

lim
𝜌𝑖(r)→𝜌

(𝑖)
b

𝑛2(r) =
∑︁

𝑖

4𝜋𝑅2
𝑖 𝜌

(𝑖)
b ,

lim
𝜌𝑖(r)→𝜌

(𝑖)
b

𝑛1(r) =
∑︁

𝑖

𝑅𝑖𝜌
(𝑖)
b ,

lim
𝜌𝑖(r)→𝜌

(𝑖)
b

𝑛0(r) =
∑︁

𝑖

𝜌
(𝑖)
b , (4.8)

where 𝜌(𝑖)
b is the bulk density of species 𝑖. The vector weighted

densites vanish in the bulk limit, i.e.,

lim
𝜌𝑖(r)→𝜌

(𝑖)
b

nv1,v2(r) = 0.
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4.2. Fundamental measure theory

The excess free energy density Φ in Rosenfeld’s functional is

ΦRo
(︁{︀
𝑛𝛼(r)

}︀)︁
= −𝑛0 ln(1−𝑛3)+𝑛1𝑛2 − n1·n2

1 − 𝑛3
+𝑛3

2 − 3𝑛2n2·n2
24𝜋(1 − 𝑛3)2 .

The equation of state resulting from the Rosenfeld functional is
the compressibility expression from the solution of the Percus-
Yevick integral equations, namely

𝛽𝑝 = 𝑛0
1 − 𝑛3

+ 𝑛1𝑛2
(1 − 𝑛3)2 + 𝑛3

2
12𝜋(1 − 𝑛3)3 , (4.9)

which in bulk and for a one-component system reduces to

𝛽𝑝

𝜌
= 1 + 𝜂 + 𝜂2

(1 − 𝜂)3 .

Equation 4.9 is in good agreement with simulation results of hard-
sphere fluids at low densities, however, deviates from the exact
result by about 7 % at densities close to the freezing transition.
Furthermore the Rosenfeld functional fails to describe hard-sphere
crystals.

To overcome the shortcoming of the Rosenfeld functional to
accurately describe the hard-sphere liquid at high densities, Roth
et al. [31] constructed the White Bear functional which is of the
same form as Eq. (4.6) but the excess free energy density Φ now
is

ΦWB
(︁{︀
𝑛𝛼(r)

}︀)︁
= −𝑛0 ln(1 − 𝑛3) + 𝑛1𝑛2 − n1·n2

1 − 𝑛3

+ (𝑛3
2 − 3𝑛2n2·n2)𝑛3 + (1 − 𝑛3)2 ln(1 − 𝑛3)

36𝜋𝑛2
3(1 − 𝑛3)2 .

The White Bear functional provides improved results for ther-
modynamic quantities by virtue of the underlying Mansoori-
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4. Density functional theory

Carnahan- Starling-Leland (MCSL) equation of state, however
does not satisfy the SPT differential equation (𝜕Φ/𝜕𝑛3 = 𝛽𝑝 in
bulk) used in the derivation of the Rosenfeld functional [30].

To overcome the inconsistency regarding the SPT differential
equation, the White Bear version of FMT mark II was constructed
by Hansen-Goos et al. [18]. The mark II excess free energy density
reads

ΦWBII
(︁{︀
𝑛𝛼(r)

}︀)︁
= −𝑛0 ln(1 − 𝑛3)

+ (𝑛1𝑛2 − n1·n2)
1 + 1

3𝜑2(𝑛3)
1 − 𝑛3

+ (𝑛3
2 − 3𝑛2n2·n2)

1 − 1
3𝜑3(𝑛3)

24𝜋(1 − 𝑛3)2 ,

where

𝜑2(𝑛3) = 1
𝑛3

(2𝑛3 − 𝑛2
3 + 2(1 − 𝑛3) ln(1 − 𝑛3)),

and

𝜑3(𝑛3) = 1
𝑛2

3
(2𝑛3 − 3𝑛2

3 + 2𝑛3
3 + 2(1 − 𝑛3)2 ln(1 − 𝑛3)).

Here, for a one-component fluid the SPT differential equation
reduces to the Carnahan-Starling (CS) equation of state:

𝜕ΦWBII

𝜕𝑛3
= 𝛽𝑝CS = 𝜌

1 + 𝜂 + 𝜂2 − 𝜂3

(1 − 𝜂)3 .
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5. Computation of the radial
distribution function

The radial distribution functions 𝑔(𝑟), introduced in Secs. 2.2
and 3.2, of various homogeneous isotropic fluids are pivotal in
this work. In Chpts. 6 and 7 the hard-sphere radial distribution
function and the radial distribution function of the Jagla ramp
fluid, the latter being a fluid in which the pairwise particle-particle
interaction potential is given by the repulsive part of the Jagla
potential, are the central quantities to establish perturbation
theories which go beyond the standard mean-field approximation.
In Chpt. 8 the radial distribution function of the Jagla fluid is
employed to transfer information from the exact Monte-Carlo
(MC) simulation results to DFT.

In this section the two numerical schemes applied to compute
𝑔(𝑟) in this work, namely via DFT calculations and within MC
simulations, are commented on.

5.1. Density functional theory calculation

The basis of the computation of the radial distribution function
𝑔(𝑟) of a homogeneous isotropic fluid through DFT is the inter-
pretation [17] of the quantity 𝜌𝑔(𝑟) as the single particle density
around a reference particle of the fluid which is assumed to be
fixed at the origin. The other particles of the system thus move
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5. Computation of the radial distribution function

in the force field constituted by the interaction between them and
the reference particle.

This scenario is also called the test particle geometry, and can
be implemented in a DFT calculation, if the external potential
in the functional of the grand potential Ω[𝜌(r)] in Eq. (4.2) is
chosen to be the particle-particle interaction potential of a particle
located at the origin. Since the interaction potential is assumed to
be isotropic, the resulting density profile 𝜌(𝑟) around the particle
at the origin will be radially symmetric. If a radially symmetric
density profile 𝜌(𝑟) is assumed in the expressions for the functional
of the grand potential and its derivative, the problem reduces from
three dimensions to one dimension which considerably simplifies
its implementation. Once 𝜌(𝑟) is obtained, the radial distribution
function can be calculated by dividing the density profile by the
previously chosen bulk density:

𝑔(𝑟) = 1
𝜌
𝜌(𝑟).

As always with DFT, the accuracy of the result depends on the
quality of the applied (approximate) functional ℱex[𝜌(r)] of the
excess intrinsic free energy.

5.2. Monte-Carlo simulation calculation
Given a working MC simulation program which samples the
isotropic bulk fluid of interest in the chosen statistical ensemble
(canonical or grand canonical) correctly, the corresponding radial
distribution function can be computed as follows. Here, again, the
interpretation of 𝜌𝑔(𝑟) as the single-particle density 𝜌(𝑟) around
a reference particle in the fluid is utilized (see Sec. 2.2). Note,
however, that now, unlike for the DFT calculation, the reference
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5.2. Monte-Carlo simulation calculation

particle is not fixed in space. The first step is to determine
the density profile 𝜌(𝑟) from which 𝑔(𝑟) can easily be calculated
through a division by the bulk density 𝜌.

5.2.1. Canonical ensemble
The idea to obtain a discretized version of the radially symmetric
density profile 𝜌(𝑟) around the reference particle is to determine
the mean number of particles inside the spherical shells1 around
the reference particle which subsequently is divided by the volume
of the corresponding shell. Be Δ𝑟 the thickness of the shells, then
shell number 𝑚, where 𝑚 = 0, 1, 2, 3, . . . , contains all distances 𝑟
in the interval [𝑟𝑚, 𝑟𝑚 + Δ𝑟), where 𝑟𝑚 = 𝑚Δ𝑟. The volume of
shell number 𝑚 then is

𝑉𝑚 = 4
3𝜋
[︁
(𝑟𝑚 + Δ𝑟)3 − 𝑟3

𝑚

]︁
= 4

3𝜋(Δ𝑟)3
[︁
(𝑚+ 1)3 −𝑚3

]︁
.

Now, after every, lets say, 100 MC steps (this worked fine in the
codes applied for this work in which every particle is attempted
to be moved once in every MC step) an evaluation cycle is done
in which the number of particles in the shells is counted.

The simplest implementation of an evaluation cycle is to eval-
uate the distances between the reference particle and all other
(𝑁 − 1) particles (we assume a system with 𝑁 particles in total).
I.e. there is (𝑁 − 1) evaluations per evaluation cycle, namely
one evaluation for each pair. If, e.g. the distance 𝑟𝑖 between
the reference particle and particle number 𝑖 (𝑖 = 1, 2, . . . , 𝑁 − 1)
lies in the interval [𝑟𝑚, 𝑟𝑚 + Δ𝑟) with number 𝑚, the count for
shell 𝑚 goes up by one. Be 𝑁𝑒 the total number of evaluation
cycles, and be 𝑛𝑚 the total count of particles in shell number
𝑚 after all 𝑁𝑒 evaluations (note that we do not reset the count

1In statistics, what we refer to as shell here is usually called a bin.
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5. Computation of the radial distribution function

after one evaluation cycle). Then the average number of particles
in shell 𝑚 is 𝑛̄𝑚 = 𝑛𝑚/𝑁𝑒. This evaluation cycle is simple but
also inefficient, as it takes relatively long to converge to the exact
result.

A more sophisticated evaluation cycle makes use of the fact
that the choice of the reference particle is arbitrary, and, in one
evaluation, we now do not only evaluate the (𝑁 − 1) distances be-
tween one reference particle and the other particles, but evaluate
the distances of all possible 𝑁(𝑁 − 1)/2 pairs of particles. This
makes the calculation of the radial distribution function much
more efficient as the count 𝑛𝑚 increases much faster (by a factor
of 𝑁/2 as we will now show). Now, there obviously is 𝑁(𝑁 −1)/2
evaluations per evaluation cycle which is a factor of 𝑁/2 more
evaluations than before when only (𝑁 − 1) evaluations were car-
ried out. This we have to take into account in the calculation
of the mean number 𝑛̄𝑚 of particles in shell 𝑚 by means of a
division by 𝑁/2:

𝑛̄𝑚 = 𝑛𝑚

𝑁𝑒
𝑁
2
.

With this, the mean density in shell 𝑚 is

𝜌𝑚 = 𝑛̄𝑚

𝑉𝑚
= 𝑛𝑚

4
3𝜋(Δ𝑟)3

[︁
(𝑚+ 1)3 −𝑚3

]︁
𝑁𝑒

𝑁
2

,

and the discrete value of the radial distribution function in shell
𝑚 consequently reads as

𝑔𝑚 = 𝜌𝑚

𝜌
= 𝑛𝑚

𝜌2
3𝜋(Δ𝑟)3

[︁
(𝑚+ 1)3 −𝑚3

]︁
𝑁𝑒𝑁

.
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5.2. Monte-Carlo simulation calculation

5.2.2. Grand canonical ensemble
In a grand canonical MC simulation the number of particles
varies which must be taken into account in the calculation of
𝑛̄𝑚. To calculate 𝑛̄𝑚 in the canonical simulation, 𝑛𝑚 is divided
by 𝑁𝑒𝑁/2 =

∑︀𝑁𝑒
𝑗=1𝑁/2, where 𝑗 counts the evaluation cycles.

For a variable number of particles in the simulation, 𝑁 must be
replaced by 𝑁𝑗 which is the number of particles in the system
when the 𝑗-th evaluation cycle is carried out. Consequently we
find

𝑛̄𝑚 = 𝑛𝑚∑︀𝑁𝑒
𝑗=1

𝑁𝑗

2
,

and, thus,

𝑔𝑚 = 𝑛𝑚

𝜌2
3𝜋(Δ𝑟)3

[︁
(𝑚+ 1)3 −𝑚3

]︁∑︀𝑁𝑒
𝑗=1𝑁𝑗

.
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Part II.

Towards a DFT for the
Jagla fluid
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6. Bulk phase diagram1

6.1. Perturbation theory in bulk
6.1.1. Derivation
Our starting point for a perturbation description of the Jagla
fluid’s bulk properties, and especially its bulk phase behavior, is
the so called 𝜆-expansion, explicitly described in Ref. [17] which
we follow closely here. For the derivation of the 𝜆-expansion,
we first consider a canonical ensemble (see Chpt. 2), where the
number of particles 𝑁 in the system and the system’s volume 𝑉
and temperature 𝑇 are held constant. Later, to derive the second
order term of the 𝜆-expansion, we will switch to a grand canonical
description (see Chpt. 3). Note, however, that canonical and grand
canonical descriptions become equivalent in the thermodynamic
limit. To start with, we assume a pairwise additive particle-
particle interaction potential of the form

𝑣𝜆(𝑟12) = 𝑣0(𝑟12) + 𝜆𝑤(𝑟12). (6.1)

Here, 𝑣0(𝑟12) is the interaction potential of a reference system,
the properties of which are assumed to be known, 𝑟12 = |r2 − r1|,
and 𝑤(𝑟12) is considered to be a perturbation added to 𝑣0(𝑟12).

1At the date of printing, content of this chapter is accepted as a Regular
Article in Physical Review E with the title ”Towards a density functional
theory for the Jagla fluid” by Florian Gußmann, S. Dietrich and Roland
Roth. c○2020/2021 American Physical Society.
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6. Bulk phase diagram

The parameter 𝜆 ∈ [𝜆1, 𝜆2] = [0, 1] is a coupling parameter which,
if increased from 0 to 1, gradually turns on the perturbation, such
that

𝑣(𝜆=1)(𝑟12) = 𝑣0(𝑟12) + 𝑤(𝑟12) = 𝑣J(𝑟12).

With this, the interatomic potential energy of a system of 𝑁
particles intercacting via the potential in Eq. (6.1) is

𝑉𝑁 (r𝑁 ;𝜆) =
𝑁∑︁

𝑖=1

𝑁∑︁
𝑗>𝑖

𝑣𝜆(𝑟𝑖𝑗). (6.2)

If 𝑉𝑁 (r𝑁 ;𝜆) is plugged in the expression for 𝐹 ex [Eq. (2.12)] via
the configuration integral 𝑍𝑁 [Eq. (2.6)], the derivative of 𝐹 ex(𝜆)
with respect to the coupling parameter 𝜆 is2

𝛽
𝜕𝐹 ex(𝜆)
𝜕𝜆

= 1
𝑍𝑁 (𝜆)

∫︁
exp

[︀
− 𝛽𝑉𝑁 (𝜆)

]︀
𝛽𝑉 ′

𝑁 (𝜆)dr𝑁

(2.7)= 𝛽
⟨︀
𝑉 ′

𝑁 (𝜆)
⟩︀

𝜆
. (6.3)

2

𝛽
𝜕𝐹 ex(𝜆)
𝜕𝜆

(2.12)= − 𝜕

𝜕𝜆
ln 𝑍𝑁 (𝜆)

𝑉 𝑁

= − 𝑉 𝑁

𝑍𝑁 (𝜆)
𝜕

𝜕𝜆

𝑍𝑁 (𝜆)
𝑉 𝑁

(2.6)= − 1
𝑍𝑁 (𝜆)

∫︁
dr𝑁 𝜕

𝜕𝜆
exp
(︀

− 𝛽𝑉𝑁 (𝜆)
)︀

= 1
𝑍𝑁 (𝜆)

∫︁
dr𝑁 exp

(︀
− 𝛽𝑉𝑁 (𝜆)

)︀
𝛽
𝜕

𝜕𝜆
𝑉𝑁 (𝜆)⏟  ⏞  

≡𝑉 ′
𝑁

(𝜆)

(2.7)= 𝛽
⟨︀
𝑉 ′
𝑁 (𝜆)

⟩︀

48



6.1. Perturbation theory in bulk

where 𝑉 ′
𝑁 (𝜆) ≡ 𝜕𝑉𝑁 (𝜆)/𝜕𝜆 and

⟨︀
. . .
⟩︀

𝜆
denotes the ensemble

average in the system with particle-particle interaction potential
𝑣𝜆(𝑟12). Integration3 of the derivative of 𝐹 ex(𝜆) [Eq. (6.3)] is the
first step to gain an expansion of the excess free energy:

𝛽𝐹 ex(𝜆1) = 𝛽𝐹 ex
0 + 𝛽

∫︁ 𝜆1

𝜆0

⟨︀
𝑉 ′

𝑁 (𝜆)
⟩︀

𝜆
d𝜆, (6.4)

where 𝐹 ex
0 ≡ 𝐹 ex(𝜆0) is the excess free energy of the reference

system. The second step is to expand the ensemble average⟨︀
𝑉 ′

𝑁 (𝜆)
⟩︀

𝜆
in a series around its value for 𝜆 = 𝜆0:

⟨︀
𝑉 ′

𝑁 (𝜆)
⟩︀

𝜆
=
⟨︀
𝑉 ′

𝑁 (𝜆)
⟩︀

𝜆

⃒⃒⃒
𝜆=𝜆0

+ (𝜆− 𝜆0)
𝜕
⟨︀
𝑉 ′

𝑁 (𝜆)
⟩︀

𝜆

𝜕𝜆

⃒⃒⃒⃒
⃒
𝜆=𝜆0

+ 𝒪(𝜆− 𝜆0)2. (6.5)

3Here, we have got a partial differential equation,

𝜕𝐹 ex(𝜆)
𝜕𝜆

(6.3)=
⟨︀
𝑉 ′
𝑁 (𝜆)

⟩︀
𝜆
,

which can be solved by solving the corresponding characteristic system:

d𝜆
1 = d𝐹 ex⟨︀

𝑉 ′
𝑁 (𝜆)

⟩︀
𝜆

⇔ d𝐹 ex =
⟨︀
𝑉 ′
𝑁 (𝜆)

⟩︀
𝜆
d𝜆

⇔
∫︁ 𝐹 ex(𝜆=𝜆1)

𝐹 ex(𝜆=𝜆0)
d𝐹 ex =

∫︁ 𝜆1

𝜆0

⟨︀
𝑉 ′
𝑁 (𝜆)

⟩︀
𝜆
d𝜆

⇔ 𝐹 ex(𝜆1) = 𝐹 ex(𝜆0)⏟  ⏞  
≡𝐹 ex

0

+
∫︁ 𝜆1

𝜆0

⟨︀
𝑉 ′
𝑁 (𝜆)

⟩︀
𝜆

d𝜆.
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6. Bulk phase diagram

The derivative of the ensemble average
⟨︀
𝑉 ′

𝑁 (𝜆)
⟩︀

𝜆
with respect to

𝜆 in Eq. (6.5) is (see App. B.1)

𝜕
⟨︀
𝑉 ′

𝑁 (𝜆)
⟩︀

𝜆

𝜕𝜆
=
⟨︀
𝑉 ′′

𝑁 (𝜆)
⟩︀

𝜆
− 𝛽

(︁⟨︀
[𝑉 ′

𝑁 (𝜆)]2
⟩︀

𝜆
−
⟨︀
𝑉 ′

𝑁 (𝜆)
⟩︀2

𝜆

)︁
. (6.6)

Insertion of Eq. (6.6) and Eq. (6.5) in Eq. (6.4) gives an expansion
of the excess free energy in powers of (𝜆1 − 𝜆0):

𝛽𝐹 ex(𝜆1) = 𝛽𝐹 ex
0 + (𝜆1 − 𝜆0)𝛽

⟨︀
𝑉 ′

𝑁 (𝜆)
⟩︀

𝜆

⃒⃒⃒
𝜆=𝜆0

+ 1
2(𝜆1 − 𝜆0)2

(︂
𝛽
⟨︀
𝑉 ′′

𝑁 (𝜆)
⟩︀

𝜆

⃒⃒⃒
𝜆=𝜆0

− 𝛽2
(︁ ⟨︀

[𝑉 ′
𝑁 (𝜆)]2

⟩︀
𝜆

⃒⃒⃒
𝜆=𝜆0

−
⟨︀
𝑉 ′

𝑁 (𝜆)
⟩︀2

𝜆

⃒⃒⃒
𝜆=𝜆0

)︁)︂
+ 𝒪(𝜆1 − 𝜆0)3.

If we substitute 𝜆1 and 𝜆0 for their numerical values, namely
1 and 0, respectively, the expression for the excess free energy
simplifies to be

𝛽𝐹 ex(𝜆=1) = 𝛽𝐹 ex
0 + 𝛽

⟨︀
𝑉 ′

𝑁 (𝜆=0)
⟩︀

0

+ 1
2

(︂
𝛽
⟨︀
𝑉 ′′

𝑁 (𝜆=0)
⟩︀

0 − 𝛽2
(︁⟨︀

[𝑉 ′
𝑁 (𝜆=0)]2

⟩︀
0

−
⟨︀
𝑉 ′

𝑁 (𝜆=0)
⟩︀2

0

)︁)︂
+ 𝒪(𝛽3), (6.7)

where ⟨. . . ⟩0 denotes the ensemble average in the reference system.
We now define the total perturbation energy for 𝜆 = 1 as

𝑊𝑁 =
𝑁∑︁

𝑖=1

𝑁∑︁
𝑗>𝑖

𝑤(𝑟𝑖𝑗), (6.8)
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from which follows4 that 𝑉 ′
𝑁 = 𝑊𝑁 and 𝑉 ′′

𝑁 = 0. This lets us
further simplify the expression in Eq. (6.7) to be

𝛽𝐹 ex ≈ 𝛽𝐹 ex
0 + 𝛽⟨𝑊𝑁 ⟩0 − 1

2𝛽
2
(︁
⟨𝑊 2

𝑁 ⟩0 − ⟨𝑊𝑁 ⟩2
0

)︁
+ 𝒪(𝛽3)

≡ 𝛽𝐹 ex
0 + 𝛽𝐹 ex

1 + 𝛽𝐹 ex
2 + 𝒪(𝛽3). (6.9)

Equation (6.9) is called the high temperature expansion; note,
however, that in general 𝛽 is not the only temperature dependent
variable in the expression since the ensemble averages are also
functions of the temperature. While a temperature expansion
of the excess free energy 𝐹 ex is certainly helpful for practical
applications, especially if higher order terms can be neglected, the
form of (6.9) is not, as it involves the summation over all particles
in the system. Hence, we make use of the fact that we assume a
pairwise additive particle-particle interaction potential to rewrite

4It is

𝑉𝑁 (𝜆) =
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

𝑣𝜆(𝑟𝑖𝑗).

=
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

(︀
𝑣0(𝑟𝑖𝑗) + 𝜆𝑤(𝑟𝑖𝑗)

)︀
=

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

𝑣0(𝑟𝑖𝑗) + 𝜆

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

𝑤(𝑟𝑖𝑗)⏟  ⏞  
=𝑊𝑁

.

And with this

𝑉 ′
𝑁 (𝜆) = 𝜕

𝜕𝜆
𝑉𝑁 (𝜆) = 𝑊𝑁 , and

𝑉 ′′
𝑁 (𝜆) = 𝜕2

𝜕𝜆2 𝑉𝑁 (𝜆) = 𝜕

𝜕𝜆
𝑊𝑁 = 0.
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6. Bulk phase diagram

the first and second order expressions of the high temperature
expansion in terms of the radial distribution function 𝑔(𝑟). For
this we consider the integral term in Eq. (6.4) once more,

𝛽𝐹 ex = 𝛽𝐹 ex
0 + 𝛽

∫︁ 1

0

⟨︀
𝑉 ′

𝑁 (𝜆)
⟩︀

𝜆
d𝜆

Fn. 4= 𝛽𝐹 ex
0 + 𝛽

∫︁ 1

0

⟨︀
𝑊𝑁

⟩︀
𝜆

d𝜆, (6.10)

and rewrite the ensemble average of 𝑊𝑁 to be (see App. B.2)

⟨︀
𝑊𝑁

⟩︀
𝜆

= 1
2

∫︁∫︁
𝜌

(2)
𝑁 ;𝜆(r1, r2)𝑤(𝑟12)dr1dr2, (6.11)

where 𝜌(2)
𝑁 ;𝜆(r1, r2) is the canonical 2-particle density [Eq. (2.13)]

of the system with interaction potential 𝑣𝜆(𝑟12). Now, we plug
Eq. (6.11) back in Eq. (6.10) and obtain

𝐹 ex = 𝛽𝐹 ex
0 + 𝛽

2

∫︁ 1

0
d𝜆
∫︁∫︁

𝜌
(2)
𝑁 ;𝜆(r1, r2)𝑤(𝑟12)dr1dr2. (6.12)

Finally, we expand the 2-particle density in powers of 𝜆,

𝜌
(2)
𝑁 ;𝜆(r1, r2) = 𝜌

(2)
𝑁 ;0(r1, r2) + 𝜆

𝜕𝜌
(2)
𝑁 ;𝜆(r1, r2)
𝜕𝜆

⃒⃒⃒⃒
⃒⃒
𝜆=0

+ 𝒪(𝜆2),

where 𝜌(2)
𝑁 ;0(r1, r2) is the 2-particle density of the reference system,

and plug the expansion back in Eq. (6.12) which yields

𝐹 ex = 𝛽𝐹 ex
0 + 𝛽

2

∫︁∫︁
𝜌

(2)
𝑁 ;0(r1, r2)𝑤(𝑟12)dr1dr2

+ 𝛽

4

∫︁∫︁ 𝜕𝜌
(2)
𝑁 ;𝜆(r1, r2)
𝜕𝜆

⃒⃒⃒⃒
⃒⃒
𝜆=0

𝑤(𝑟12)dr1dr2 + 𝒪(𝜆3). (6.13)
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6.1. Perturbation theory in bulk

By comparison of Eqs. (6.13) and (6.9), we obtain5 for the first
order term

𝛽𝐹 ex
1
𝑁

= 𝛽

2𝑁

∫︁∫︁
𝜌

(2)
𝑁 ;0(r1, r2)𝑤(𝑟12)dr1dr2

= 𝛽𝜌

2

∫︁
𝑔0(𝑟)𝑤(𝑟)dr

= 2𝜋𝜌
∫︁ ∞

0
𝑔0(𝑟)𝛽𝑤(𝑟) 𝑟2d𝑟, (6.14)

where 𝑔0(𝑟) is the (canonical) radial distribution function of
the reference system. The second order term in Eq. (6.13) in-
volves the derivative 𝜕𝜌(2)

𝑁 ;𝜆(r1, r2)/𝜕𝜆, the exact expression of
which is rather lengthy [17], and, hence, little useful in practice.
Thus, we make use of the so called ’compressibility’ approxima-
tion of the second order term, originally derived by Barker and
Henderson [5], and continue to follow closely Ref. [17] for the

5The second equality in Eq. (6.14) holds, since

𝛽

2𝑁

∫︁∫︁
𝜌

(2)
𝑁 ;0(r1, r2)𝑤(𝑟12)dr1dr2

(2.19)= 𝛽

2𝑁

∫︁∫︁
𝜌2𝑔

(2)
𝑁 ;0(r1, r2)𝑤(𝑟12)dr1dr2

= 𝛽𝜌

2𝑁
𝑁

𝑉

∫︁∫︁
𝑔0(|r2 − r1|)𝑤(𝑟12)dr1dr2

= 𝛽𝜌

2𝑉

∫︁
dr1⏟  ⏞  

=𝑉

∫︁
𝑔0(𝑟)𝑤(𝑟)dr

= 𝛽𝜌

2

∫︁
𝑔0(𝑟)𝑤(𝑟)dr,

where we make use of the fact that the system is homogeneous in the first
equality, and that it is isotropic in the second equality. Furthermore, we
substitute (r2 − r1) → r in the third equality.
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6. Bulk phase diagram

corresponding derivation. Since the latter involves the particle
fluctuations of an open system, it must be carried out in the
grand canonical ensemble; note, however, that canonical and
grand canonical descriptions become equivalent in the thermo-
dynamic limit. The aim of the ’compressibility’ approximation
is to approximately rewrite the second order term of Eq. (6.9)
based on a semi-macroscopic argument. For this, the range of
possible particle-particle distances 𝑟 in the reference system is
divided into equal intervals [𝑟𝑚, 𝑟𝑚+1] of length Δ𝑟 = 𝑟𝑚+1 − 𝑟𝑚,
where 𝑚 = 0, 1, 2, . . . . Furthermore, be 𝑆(𝑖)

𝑚 the spherical shell
around the particle with number 6 𝑖 (𝑖 = 1, . . . , 𝑁) including all
points with a distance from particle 𝑖 in the interval [𝑟𝑚, 𝑟𝑚+1].
Then, the mean number of particles in all shells, i.e. in the volume⋃︀𝑁

𝑖=1 𝑆
(𝑖)
𝑚 , is7

⟨𝑁𝑚⟩0 = 2𝜋𝑁𝜌
∫︁ 𝑟𝑚+1

𝑟𝑚
𝑔0(𝑟)𝑟2d𝑟, (6.15)

where 𝑔0(𝑟) now is the grand canonical radial distribution function
of the reference system. If the interval Δ𝑟 is sufficiently small,

6Since we pursue a grand canonical description 𝑁 may vary, but is always
countable.

7The mean number or particles in one shell is:∫︁ 𝑟𝑚+1

𝑟𝑚

𝜌0(𝑟) 4𝜋𝑟2d𝑟,

where 𝜌0(𝑟) = 𝜌𝑔0(𝑟) is the radial mean density around one particle in the
reference system, and 𝜌 is the bulk density. Since we consider the mean
number of particles in all shells, we multiply by 𝑁 and add a factor of 1/2
to count each particle-particle interaction only once. Because, if particle
number 𝑖 is in the shell of particle number 𝑗, also particle number 𝑗 is in
the shell of particle number 𝑖, but the interaction 𝑖𝑗 must only be counted
once; hence the factor of 1/2. Taken together, we get the expression in
Eq. (6.15).
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6.1. Perturbation theory in bulk

the perturbation potential 𝑤(𝑟) will, in good approximation, have
the same value 𝑤𝑚 at all points inside the shell. With this, the
high temperature expansion [Eq. (6.9)] can be rewritten8 in terms
of the mean numbers ⟨𝑁𝑚⟩0, (𝑚 = 0, 1, 2, . . . ):

𝛽𝐹 ex = 𝛽𝐹 ex
0 + 𝛽

∑︁
𝑚

⟨𝑁𝑚⟩0𝑤𝑚

− 1
2𝛽

2∑︁
𝑚

∑︁
𝑛

(︀
⟨𝑁𝑚𝑁𝑛⟩0 − ⟨𝑁𝑚⟩0⟨𝑁𝑛⟩0

)︀
𝑤𝑚𝑤𝑛

+ 𝒪(𝛽3). (6.16)

Barker and Henderson [5] now argue that if the shells were large
macroscopic volumes, the number of molecules in different shells
would be uncorrelated, i.e.

⟨𝑁𝑚𝑁𝑛⟩0 = ⟨𝑁𝑚⟩0⟨𝑁𝑛⟩0 𝑚 ̸= 𝑛.

8The mean ⟨𝑊𝑁 ⟩0 in Eq. (6.9) can now be rewritten to be

⟨𝑊𝑁 ⟩0 =
⟨∑︁

𝑚

𝑁𝑚𝑤𝑚

⟩
0

=
∑︁
𝑚

⟨𝑁𝑚⟩0𝑤𝑚,

where the second equality holds, as the mean ⟨. . . ⟩0 is a linear operator,
and 𝑤𝑚 is constant for fixed 𝑚. Likewise, in the second order term we
have

⟨𝑊 2
𝑁 ⟩0 − ⟨𝑊𝑁 ⟩2

0 =
⟨∑︁

𝑚

∑︁
𝑛

𝑁𝑚𝑤𝑚𝑁𝑛𝑤𝑛

⟩
0

−
⟨∑︁

𝑚

𝑁𝑚𝑤𝑚

⟩
0

⟨∑︁
𝑛

𝑁𝑛𝑤𝑛

⟩
0

=
∑︁
𝑚

∑︁
𝑛

(︀
⟨𝑁𝑚𝑁𝑛⟩0 − ⟨𝑁𝑚⟩0⟨𝑁𝑛⟩0

)︀
𝑤𝑚𝑤𝑛.
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6. Bulk phase diagram

With this, in the second order term in Eq. (6.16) all terms with
𝑚 ̸= 𝑛 would be zero and the expression thus would reduce to:

𝛽𝐹 ex
2 = −1

2
∑︁
𝑚

(︀
⟨𝑁2

𝑚⟩0 − ⟨𝑁𝑚⟩2
0
)︀
(𝛽𝑤𝑚)2, (6.17)

where ⟨𝑁2
𝑚⟩0 −⟨𝑁𝑚⟩2

0 ≡ ⟨Δ𝑁2
𝑚⟩0 is the fluctuation in the number

of particles in all shells, i.e. in the volume
⋃︀𝑁

𝑖=1 𝑆
(𝑖)
𝑚 . The fluctua-

tion ⟨Δ𝑁2
𝑚⟩0 is related to the compressibility 𝜒0

𝑇 of the reference
system via9

⟨Δ𝑁2
𝑚⟩0 = ⟨𝑁𝑚⟩0𝑘B𝑇𝜌𝜒

0
𝑇 .

Inserted in the second order expression (6.17), this yields

𝛽𝐹 ex
2 = −1

2
∑︁
𝑚

⟨𝑁𝑚⟩0𝑘B𝑇𝜌𝜒
0
𝑇 (𝛽𝑤𝑚)2.

If we now plug in Eq. (6.15) for ⟨𝑁𝑚⟩0 and replace the sum by
an integral10, we obtain

𝛽𝐹 ex
2
𝑁

= −𝜋𝜌𝑘B𝑇

∫︁ ∞

0
[𝛽𝑤(𝑟)]2𝜌𝜒0

𝑇 𝑔0(𝑟)𝑟2d𝑟.

9See e.g. Eq. (2.4.23) in Ref. [17].
10First, ⟨𝑁𝑚⟩0 is replaced by the expression in Eq. (6.15):

𝛽𝐹 ex
2 = −1

2
∑︁
𝑚

⟨𝑁𝑚⟩0𝑘B𝑇𝜌𝜒
0
𝑇 (𝛽𝑤𝑚)2

(6.15)= −𝜋𝜌𝑁𝑘B𝑇
∑︁
𝑚

∫︁ 𝑟𝑚+1

𝑟𝑚

𝑔0(𝑟)𝑟2𝜌𝜒0
𝑇 (𝛽𝑤𝑚)2d𝑟.

Then, the limit Δ𝑟 → 0 is considered from which follows that 𝑤𝑚 → 𝑤(𝑟).
Furthermore,

∑︀
𝑚

∫︀ 𝑟𝑚+1
𝑟𝑚

=
∫︀∞

0 . With this, one obtains

𝛽𝐹 ex
2 = −𝜋𝜌𝑁𝑘B𝑇

∫︁ ∞

0
[𝛽𝑤(𝑟)]2𝜌𝜒0

𝑇 𝑔0(𝑟)𝑟2d𝑟.
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6.1. Perturbation theory in bulk

Barker and Henderson now use11 that 𝜌𝜒0
𝑇 = (𝜕𝜌/𝜕𝑝)0, where 𝑝

is the pressure in the system, to gain the so called ’macroscopic’
compressibility approximation:

𝛽𝐹 ex
2
𝑁

= −𝜋𝜌𝑘B𝑇

∫︁ ∞

0
[𝛽𝑤(𝑟)]2

(︂
𝜕𝜌

𝜕𝑝

)︂
0
𝑔0(𝑟)𝑟2d𝑟.

We, however, use the relation between the compressibility and
the radial distribution function12,

𝜌𝑘B𝑇𝜒
0
𝑇 = 1 + 𝜌

∫︁
[𝑔0(𝑟) − 1]dr,

to get

𝛽𝐹 ex
2
𝑁

= −𝜋𝜌
[︂
1 + 4𝜋𝜌

∫︁ ∞

0
[𝑔0(𝑟′) − 1]𝑟′2d𝑟′

]︂
×
∫︁ ∞

0
[𝛽𝑤(𝑟)]2𝑔0(𝑟)𝑟2d𝑟. (6.18)

With Eqs. (6.14) and (6.18), we have gained an approximate13

expansion up to second order of the excess free energy of the
system with the interaction potential in Eq. (6.1) with 𝜆 = 1.
Moreover, we could express the second order expression of 𝐹 ex

solely in terms of the radial distribution function 𝑔0(𝑟) of the
reference system, the perturbation potential 𝑤(𝑟), and the bulk
density 𝜌. Since 𝑤(𝑟) is specified by the system of interest and
𝜌 is a parameter we control, only 𝑔0(𝑟) must be calculated to
obtain the approximate 𝐹 ex.

Now, we can continue to determine the bulk line of coexistence
(binodal), the so-called spinodal, the line which seperates meta-
stable from unstable states in the phase diagram, and the critical
11See e.g. text body below Eq. (2.4.21) in Ref. [17]
12See e.g. Eq. (2.6.12) in Ref. [17].
13Since the second order term in Eq. (6.18) is approximate.
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6. Bulk phase diagram

point of the system of interest. For this, we first calculate the
bulk chemical potential 𝜇 and the pressure 𝑝 via the free energy
density 𝑓 = 𝐹/𝑉 = (𝐹 id + 𝐹 ex)/𝑉 = 𝑓 id + 𝑓 ex:14

𝜇 = 𝜕𝑓

𝜕𝜌
= 𝜕𝑓 id

𝜕𝜌
+ 𝜕𝑓 ex

𝜕𝜌
= 𝜇id + 𝜇ex (6.19)

𝑝 = −𝑓 + 𝜌𝜇, (6.20)

where 𝑓 id = 𝑘B𝑇𝜌
(︀

ln[Λ3𝜌] − 1
)︀
. To calculate the binodal, we

demand chemical and mechanical equilibrium for two phases,
labeled I and II, with different densities or packing fractions
𝜂I = 𝜋

6𝜌I𝜎
3 and 𝜂II = 𝜋

6𝜌II𝜎
3 at fixed temperature 𝑇 :

𝜇(𝜂I, 𝑇 ) = 𝜇(𝜂II, 𝑇 )
𝑝(𝜂I, 𝑇 ) = 𝑝(𝜂II, 𝑇 ). (6.21)

14It is
𝜇 = 𝜕𝐹 (𝑁,𝑇, 𝑉 )

𝜕𝑁
,

and, if we plug in a factor of one in the form of 𝑉/𝑉 , we obtain

𝜇 = 𝑉

𝑉

𝜕𝐹 (𝑁,𝑇, 𝑉 )
𝜕𝑁

= 𝑉
𝜕𝑉 −1𝐹 (𝑁,𝑇, 𝑉 )

𝜕𝑁
.

Since 𝐹 is a homogeneous function of degree one in the extensive variables,

𝑉 −1𝐹 (𝑁,𝑇, 𝑉 ) = 𝐹 (𝑁/𝑉, 𝑇, 𝑉/𝑉 ) ≡ 𝑓(𝜌, 𝑇 )

holds, and thus

𝜇 = 𝑉
𝜕𝑓(𝜌, 𝑇 )
𝜕𝑁

= 𝑉
𝜕𝑓(𝜌, 𝑇 )
𝜕𝜌

𝜕𝜌

𝜕𝑁
= 𝜕𝑓(𝜌, 𝑇 )

𝜕𝜌
,

where we have used that 𝜕𝜌/𝜕𝑁 = 𝑉 −1. Furthermore, in bulk Ω =
−𝑝𝑉 = 𝐹 −𝑁𝜇, and, hence,

𝑝 = −𝐹

𝑉
+ 𝑁

𝑉
𝜇 = −𝑓 + 𝜌𝜇.
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6.1. Perturbation theory in bulk

The system of equations (6.21) is then solved for the two packing
fractions 𝜂I and 𝜂II. In the 𝑇 -𝜂-diagram, the binodal is then
given by all the sets

{︀(︀
𝜂I(𝑇 ), 𝑇

)︀
,
(︀
𝜂II(𝑇 ), 𝑇

)︀}︀
of phase points

(𝜂, 𝑇 ), where 𝑇 is smaller than the critical temperature 𝑇crit.
The spinodal seperates meta-stable from unstable states in the
phase diagram. Unstable states are characterized by a negative
slope of the pressure as a function of the packing fraction 𝜂, for
fixed 𝑇 < 𝑇crit. Thus, for a given temperature 𝑇 < 𝑇crit, the
unstable regions lie between the maximum and the minimum of
the pressure curve 𝑝(𝜂, 𝑇 ), and the two points on the spinodal lie
at the position of the maximum and the minimum, respectively.
By solving

𝜕𝑝(𝜂, 𝑇 )
𝜕𝜂

= 0 (6.22)

for 𝑇 , the spinodal is obtained as a function 𝑇 (𝜂). At the critical
point (𝜂crit, 𝑇crit) binodal and spinodal meet, and the pressure
curve 𝑝(𝜂, 𝑇crit) has a saddle point at 𝜂 = 𝜂crit. Hence, the critical
point is determined by solving the system of equations

𝜕𝑝(𝜂, 𝑇 )
𝜕𝜂

= 0, 𝜕2𝑝(𝜂, 𝑇 )
𝜕𝜂2 = 0 (6.23)

for 𝜂 and 𝑇 .
In the following, the full expressions of the free energy density

𝑓 , the chemical potential 𝜇 and the pressure 𝑝 obtained via the
(approximate) second order high temperature expansion of 𝐹 ex

are shown, where we use the following abbreviations15:

𝐼 =
∫︁ ∞

0
𝑔0(𝑟)𝛽𝑤(𝑟) 𝑟2d𝑟, (6.24)

15The integral 𝐼 is the integral of the first order expression of 𝐹 ex in Eq. (6.14),
and was derived in a canonical description. Hence, it originally contains
the canonical radial distribution function. However, in the thermodynamic
limit, canonical and grand canonical descriptions become equivalent.
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6. Bulk phase diagram

𝐽1 =
∫︁ ∞

0
[𝑔0(𝑟) − 1]𝑟2d𝑟,

and
𝐽2 =

∫︁ ∞

0
𝑔0(𝑟)[𝛽𝑤(𝑟)]2 𝑟2d𝑟.

The expression for the free energy density thus reads

𝛽𝑓 = 𝛽𝑓 id + 𝛽𝑓 ex
0 + 𝛽𝑓 ex

1 + 𝛽𝑓 ex
2 + 𝒪(𝛽3),

where

𝛽𝑓 id = 𝜌
(︀

ln[Λ3𝜌] − 1
)︀
,

𝛽𝑓 ex
1 = 2𝜋𝜌2𝐼,

𝛽𝑓 ex
2 = −𝜋𝜌2

[︁
1 + 4𝜋𝜌𝐽1

]︁
𝐽2. (6.25)

The chemical potential, hence, is given by

𝛽𝜇 = 𝛽𝜇id + 𝛽𝜇ex
0 + 𝛽𝜇ex

1 + 𝛽𝜇ex
2 + 𝒪(𝛽3),

with

𝛽𝜇id = ln[Λ3𝜌],

𝛽𝜇ex
1 = 4𝜋𝜌𝐼 + 2𝜋𝜌2𝜕𝐼

𝜕𝜌
, (6.26)

𝛽𝜇ex
2 = −2𝜋𝜌

[︁
1 + 4𝜋𝜌𝐽1

]︁
𝐽2 − 4𝜋2𝜌2

[︃
𝐽1 + 𝜌

𝜕𝐽1
𝜕𝜌

]︃
𝐽2

− 𝜋𝜌2
[︁
1 + 4𝜋𝜌𝐽1

]︁𝜕𝐽2
𝜕𝜌

,

and the pressure consequently reads as

𝛽𝑝 = 𝛽𝑝id + 𝛽𝑝ex
0 + 𝛽𝑝ex

1 + 𝛽𝑝ex
2 + 𝒪(𝛽3),
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6.1. Perturbation theory in bulk

where

𝛽𝑝id = 𝜌,

𝛽𝑝ex
1 = 2𝜋𝜌2𝐼 + 2𝜋𝜌3𝜕𝐼

𝜕𝜌
, (6.27)

𝛽𝑝ex
2 = −𝜋𝜌2

[︁
1 + 4𝜋𝜌𝐽1

]︁
𝐽2 − 4𝜋2𝜌3

[︃
𝐽1 + 𝜌

𝜕𝐽1
𝜕𝜌

]︃
𝐽2

− 𝜋𝜌3
[︁
1 + 4𝜋𝜌𝐽1

]︁𝜕𝐽2
𝜕𝜌

.

Note that since 𝑔0(𝑟) in general is dependent on the density 𝜌
and the temperature 𝑇 , also the integrals 𝐼, 𝐽1, and 𝐽2 are. In
practice, the radial distribution function of the reference system is
obtained numerically, and, hence, the calculation of the integrals
and their derivatives is done numerically, too.

The form of the expressions 𝛽𝑓 ex
0 , 𝛽𝜇ex

0 , and 𝛽𝑝ex
0 , obviously,

depends on what reference system is chosen. In what follows,
we apply the hard-sphere fluid as reference system, since its
thermodynamic and structural properties are well known [17]. In
particular we use the expressions originally derived by Carnahan
and Starling [7] to describe the hard-sphere bulk properties. Thus,
we have for the free energy density 𝛽𝑓 ex

0 and the chemical potential
𝛽𝜇ex

0 of the hard-sphere reference system

𝛽𝑓 ex
0 = 𝛽𝑓 ex

hs = 𝛽𝑓 ex
cs = 𝜌

4𝜂 − 3𝜂2

(1 − 𝜂)2 (6.28)

and

𝛽𝜇ex
0 = 𝛽𝜇ex

hs = 𝛽𝜇ex
cs = 8𝜂 − 9𝜂2 + 3𝜂3

(1 − 𝜂)3 .
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6. Bulk phase diagram

The Carnahan-Starling expression for the pressure is given by

𝛽𝑝cs = 𝜌
1 + 𝜂 + 𝜂2 − 𝜂3

(1 − 𝜂)3

= 𝛽𝑝id + 𝛽𝑝ex
cs = 𝛽𝑝id + 𝛽𝑝ex

hs = 𝛽𝑝id + 𝛽𝑝ex
0 .

6.1.2. The mean-field approximation
The first order and the approximate second order term of the 𝜆-
expansion of the excess free energy 𝐹 ex in Eqs. (6.14) and (6.18),
respectively, require the knowledge of the radial distribution
function 𝑔0(𝑟) of the reference system. Obtaining the latter
can be tedious, as it can be a function not only of the particle-
particle distance 𝑟 but also of the particles’ bulk density 𝜌 or
packing fraction 𝜂 (as is the case for hard spheres), and even of
the temperature. In practice, this means that for every system
density or even for every state point (𝜂, 𝑇 ) under consideration,
the radial distribution function of the reference system must be
calculated. The idea of the so called mean-field approximation is
to circumvent this effort by considering a first order 𝜆-expansion
for which the first order term [Eq. (6.14)] is simplified. The ansatz
is to neglect the local structure of the reference fluid by setting
𝑔0(𝑟) = 1. With this, the first order term basically reduces to an
integral over the perturbation potential 𝑤(𝑟):

𝛽𝐹 ex
1
𝑁

= 𝛽𝐹 ex
mf
𝑁

= 𝛽𝜌

2

∫︁
𝑤(𝑟)dr

= 2𝜋𝜌
∫︁ ∞

0
𝛽𝑤(𝑟) 𝑟2d𝑟. (6.29)

The approach might seem rough at first glance, but its simplicity
is appealing, making it a commonly used approximation. Never-
theless, the simplicity comes at a price and the mean-field ansatz
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6.2. BH and WCA perturbation theory

describes the bulk phase equilibrium rather poorly in compari-
son to simulation results. Hence, often empirical corrections to
the perturbation potential are required to optimize the outcome.
This, for example, is the case for the square-well potential which
in the mean-field approach is separated into hard-sphere potential
and attractive well. The latter is then extended into the hard
core to optimize the bulk phase behavior [1]. In the mean-field
approximation the integral 𝐼 in Eq. (6.24) becomes independent
of the density 𝜌, and, hence, the derivatives of 𝐼 in the first order
expressions of excess chemical potential and pressure in Eqs. (6.26)
and (6.27) vanish, which simplifies the calculations required to
study the phase behavior. The mean-field contributions to the
excess chemical potential and the pressure thus read:

𝛽𝜇ex
mf = 4𝜋𝜌

∫︁ ∞

0
𝛽𝑤(𝑟)𝑟2d𝑟 (6.30)

and
𝛽𝑝ex

mf = 2𝜋𝜌2
∫︁ ∞

0
𝛽𝑤(𝑟)𝑟2d𝑟 (6.31)

To study the Jagla fluid, the mean-field approximation is too
rough as it does not capture the liquid-liquid phase transition.
The binodal of the Jagla fluid’s gas-liquid transition, calculated
by means of the mean-field approximation, is shown in Fig. 6.12.
Here, hard spheres are the reference system and the soft tail of
the Jagla potential is the perturbation.

6.2. BH and WCA perturbation theory
6.2.1. Theory
The 𝜆-expansion, described in Sec. 6.1, is useful only, if a well-
understood reference system can be found for the system of
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6. Bulk phase diagram

interest. For the reasons noted above, an apparent choice for a
reference system is the hard-sphere fluid, which is exploited by
the perturbation theories of Barker and Henderson (BH) [4] and
Weeks, Chandler, and Andersen (WCA) [41]. In both approaches
the interaction potential is separated in a repulsive reference
part 𝑣0(𝑟) and an attractive perturbation part 𝑤(𝑟); the former
is then mapped onto a hard-sphere potential with an effective
hard-sphere diameter 𝑑, providing an effective reference system
comprised of hard spheres. The only difference between the two
approaches is the way, in which the interaction potential is split.

In their original work, [4] BH separate the potential at the zero
crossing into a positive reference part and a negative perturbation.
This is illustrated in Fig. 6.1 for the Jagla potential. The reference
potential 𝑣0(𝑟) is then mapped onto the effective hard-sphere
diameter 𝑑 via [4, 17]

𝑑 =
∫︁ ∞

0

(︀
1 − exp[−𝛽𝑣0(𝑟)]

)︀
d𝑟. (6.32)

The WCA method has the advantage over the BH method that for
some systems, where a second order term of the 𝜆-expansion would
be needed by the BH theory to obtain accurate results, a first
order WCA 𝜆-term is sufficient [17]. In the WCA approach the
potential is split at its minimum in a purely repulsive (reference)
and a purely attractive (perturbation) part. This has the benefit
that the potential’s rapidly varying bit between the zero crossing
and the minimum is not treated in the perturbation of the 𝜆-
theory, resulting in a perturbation potential that is more slowly
varying in space. This in turn makes the perturbation series
converge more rapidly [17]. To avoid discontinuities, the repulsive
part of the potential is shifted upwards by the amount of the depth
of the potential well, and the perturbation part is extended as a
constant function into the hard core. This is depicted in Fig. 6.2.
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1.0 1.5 2.0 2.5 3.0 3.5

r∗

−0.5

0.0

0.5

1.0

1.5

v
∗ (
r∗

)

Figure 6.1.: The reduced Jagla potential 𝑣*
J = 𝑣J/𝜖 split according

to the BH method as a function of the reduced center-to-center particle
distance 𝑟* = 𝑟/𝜎. The solid line shows the reduced interaction potential
of the reference system, 𝑣*

0 = 𝑣0/𝜖, whereas the dotted line depicts the
reduced perturbation potential 𝑤* = 𝑤/𝜖. Note that except for the
hard-sphere contribution, the potentials are zero in the regions where
no lines are shown.
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6. Bulk phase diagram

As in the BH theory, the reference potential is then mapped onto
the corresponding hard-sphere diameter 𝑑 via Eq. (6.32).
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Figure 6.2.: The reduced Jagla potential 𝑣*
J = 𝑣J/𝜖 split according

to the WCA method as a function of the reduced center-to-center
particle distance 𝑟* = 𝑟/𝜎. The solid line shows the reduced interaction
potential of the reference system, 𝑣*

0 = 𝑣0/𝜖, whereas the dotted line
depicts the reduced perturbation potential 𝑤* = 𝑤/𝜖. Note that except
for the hard-sphere contribution, the potentials are zero in the regions
where no lines are shown.
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6.2. BH and WCA perturbation theory

6.2.2. Results

In our attempt to describe the Jagla fluid’s bulk phase behavior
by means of the WCA and BH pertrubation theories, we try out
both approaches. Some characteristic pressure curves obtained
at various temperatures using the WCA and BH theory up until
the first order, are shown in Figs. 6.3 and 6.4, respectively. Here,
𝑔0(𝑟) in Eq. (6.14) is given by the radial distribution function
𝑔hs(𝑟; 𝜂) of hard spheres which we obtain by means of a DFT
calculation, where the White Bear II version of FMT (see Sec. 4.2)
is applied. Except for 𝑇 * = 50, the temperatures are chosen
such, that a comparison with the MC simulation data by Lomba
et al. [24], who show a liquid-liquid critical point in the respective
temperature region in their phase diagram of the Jagla fluid,
is possible. Note that Lomba and colleagues apply a reduced
Jagla potential 𝑣*

J = 𝑣J/𝜖 which is stretched by a factor of 7/2 in
direction of the ordinate, compared to the one we use here. This
requires to multiply the reduced temperatures 𝑇 * = 𝑘B𝑇/𝜖 of their
results by the inverse of the factor, i.e., by 2/7, in order to gain
comparability with our results. In both figures the pressure line at
𝑇 * = 50 is in excellent agreement with the hard-sphere equation
of state, shown by the circles in the plots, which demonstrates
that the high-temperature limit of our calculations is correct.
The pressure curves for the three low temperatures show van der
Waals loops, which vanish with increasing temperature, indicating
a gas-liquid critical point. We find the corresponding first order
binodals, depicted in Fig. 6.5, to be in good agreement with
the MC data by Lomba and co-workers, considering the usual
deviation occurring between perturbation theory and, quasi-exact,
MC results. However, neither the WCA, nor the BH approach
show van der Waals loops for a liquid-liquid critical point in
our pressure data for greater packing fractions. Instead, the
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Figure 6.3.: The reduced pressure 𝑝*
𝑑wca

= 𝛽𝑝𝑑3
wca of the Jagla fluid

as a function of the effective packing fraction 𝜂𝑑wca = 𝜋𝜌𝑑3
wca/6, for

various reduced temperatures 𝑇 * = 𝑘B𝑇/𝜖, when described by means
of the first order WCA perturbation theory (lines). The hard-sphere
equation of state is plotted as filled circles. For reasons of clarity, the
main plot focuses on high values of 𝜂𝑑wca , while the inset shows data
for 𝜂𝑑wca < 0.5.
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Figure 6.4.: The reduced pressure 𝑝*
𝑑bh

= 𝛽𝑝𝑑3
bh of the Jagla fluid as

a function of the effective packing fraction 𝜂𝑑bh = 𝜋𝜌𝑑3
bh/6, for various

reduced temperatures 𝑇 * = 𝑘B𝑇/𝜖, when described by means of the
first order BH perturbation theory (lines). The hard-sphere equation
of state is plotted as filled circles. For reasons of clarity, the main plot
focuses on high values of 𝜂𝑑bh , while the inset shows data for 𝜂𝑑bh < 0.4.
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Figure 6.5.: The bulk binodals of the Jagla fluid in the 𝑇 *-𝜂 phase
diagram obtained by means of the first order WCA (stars) and BH
(squares) perturbation theories, standard mean-field theory (solid line)
and MC simulations [24] (triangles). The dashed line shows the mean-
field bulk spinodal of the Jagla fluid.
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6.2. BH and WCA perturbation theory

pressure curves begin to oscillate wildly, where the oscillations
are stronger in the BH results. These oscillations have their
origin in the calculation of the first order perturbation term 𝛽𝐹 ex

1
of the excess free energy [Eq. (6.14)] in which the hard-sphere
radial distribution function 𝑔hs(𝑟, 𝜂) enters. For the calculation
of the latter the non-freezing White Bear II [18] functional is
used, which enables us to calculate the pressure at such high
packing fractions in the first place. But not only is a hard-sphere
radial distribution function at packing fractions beyond the hard-
sphere freezing transition (𝜂f ≈ 0.492) highly questionable, also
the DFT results in this density range exhibit inaccuracies which
cause oscillations in the derivative 𝜕𝑔hs(𝑟; 𝜂)/𝜕𝜂 of the hard-
sphere radial distribution function, which enters the expression
for the pressure 𝑝(𝜂) [Eq. (6.27)], and, hence, cause the oscillation
observed in the plot.

This raises the question why 𝜂𝑑bh and 𝜂𝑑wca become so large
after all. In Sec. 6.2.1 the mapping of the reference potential
𝑣0(𝑟) onto the effective hard-sphere diameter 𝑑 is described, thus
creating an effective hard-sphere reference system. The latter has
the effective packing fraction 𝜂𝑑 which is related to the packing
fraction 𝜂 via

𝜂𝑑 = 𝜋

6 𝜌𝑑
3 = 𝜋

6 𝜌𝜎
3 𝑑

3

𝜎3 = 𝜂

(︂
𝑑

𝜎

)︂3
. (6.33)

All calculations are then carried out in the effective system and
are later transformed back to the “real” density scale using (6.33).
This scaling is the crux of the matter in case of the Jagla potential.
Since the corresponding reference potentials 𝑣0(𝑟) in the BH and
WCA perturbation theories are rather long ranged, compared to
the hard-sphere diameter 𝜎 (see Figs. 6.1 and 6.2), the cube (𝑑/𝜎)3

of the diameter ratio is well greater than one for low temperatures.
This is illustrated in Fig. 6.6. The liquid-liquid critical point in the
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Figure 6.6.: The cube (𝑑/𝜎)3 of the hard-sphere diameter ratio as a
function of the reduced temperature 𝑇 * = 𝑘B𝑇/𝜖 for the Jagla potential
in the WCA description (solid line) and in the BH description (dashed
line), as well as for the scaled Lennard-Jones potential (see Fig. 1.1) in
the WCA description (dotted line) and in the BH description (dash-
dotted line).
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work by Lomba et al. [24], if scaled to match the Jagla potential
used in our work, is located at (𝜂, 𝑇 *) ≈ (0.2, 0.1). At 𝑇 * = 0.1,
the cube of the diameter ratio in the WCA case is (𝑑wca/𝜎)3 ≈ 4.6,
implying that in the effective system the liquid-liquid critical point
would be located at 𝜂𝑑wca = 0.92. Not only is this packing fraction
located in the density region where our pressure curves oscillate,
but it is way beyond the freezing packing fraction of hard spheres,
𝜂f ≈ 0.492, and even beyond close-packing which occurs at 𝜂cp =

𝜋
3
√

2 ≈ 0.7405. To properly calculate the liquid-liquid binodal, the
pressure at even lower temperatures and greater packing fractions
must be known, rendering the WCA perturbation theory useless
for describing the Jagla fluid. In the BH case the scaling is not
quite as dramatic, (𝑑bh/𝜎)3 ≈ 3.4 at 𝑇 * = 0.1, resulting in a
effective packing fraction 𝜂𝑑bh = 0.68 for the liquid-liquid critical
point. However, our BH pressure curves show more dramatic
oscillations than the WCA curves for 𝜂𝑑bh & 0.65, making it again
impossible to observe liquid-liquid van der Waals loops.

Within the scope of this work we also calculate the second order
perturbation terms for the BH and WCA perturbation theories.
However, we do not show the corresponding results in a plot, as
no new information is gained. Due to the occurrence of more
complicated integrals in the second order terms (see Eq. (6.18)),
we observe more dramatic oscillations than in the first order case
and no liquid-liquid van der Waals loops. This is to be expected,
since the scaling factor between the “real” and the effective system
is independent of the order of the perturbation; also the improper
DFT input data for high packing fractions is the same.

If we consider Figs. 1.1 and 6.6 once more, it becomes clear that
in terms of the scaling between the “real” and the effective system,
the BH and WCA theories also work well in the high density
region for short ranged particle-particle interaction potentials,
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6. Bulk phase diagram

such as the Lennard-Jones potential. Here, in the WCA case the
cube (𝑑/𝜎)3 of the diameter ratio is smaller than 1.5, and in the
BH case even smaller than 1.0 for all temperatures above zero.

6.3. Pure hard sphere reference system
6.3.1. Theory
As shown in Sec. 6.2.2, the mapping of the reference system 𝑣0(𝑟)
onto an effective hard-sphere diameter according to the method
of BH [4] (see Sec. 6.2.1) renders the BH and WCA perturbation
theories [4, 41] unemployable to describe the Jagla fluid’s liquid-
liquid critical point, due to the dramatic density scaling between
the effective and the “real” system. Hence, it seems reasonable
to apply the perturbation theory discussed in Sec. 6.1 without
the introduction of an effective hard-sphere system. One of the
simplest implementations of such a system, certainly, is to choose
hard spheres with diameter 𝜎 to be the reference system, and
to consider the Jagla potential for 𝑟 > 𝜎 as perturbation. This
splitting into reference and perturbation potential is depicted in
Fig. 6.7.

6.3.2. Results
For the first order perturbation ansatz of this basic splitting
into reference and perturbation potential, we obtain the pressure
curves depicted in Fig. 6.8. As expected, we observe gas-liquid
van der Waals loops in the 𝜂-region below 𝜂 ≈ 0.35, which vanish
at higher temperatures, indicating a gas-liquid critical point.
Furthermore, the pressure curves show a second van der Waals
loop for packing fractions above 0.35 which also vanishes at greater
temperatures. This is remarkable, given how simple the applied
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Figure 6.7.: The reduced Jagla potential 𝑣*
J = 𝑣J/𝜖 split into reference

and perturbation potential at 𝑟=𝜎 as a function of the reduced center-
to-center particle distance 𝑟* = 𝑟/𝜎. The solid line shows the reduced
interaction potential of hard spheres with diameter 𝜎 which constitute
the reference system with reduced interaction potential 𝑣*

0 = 𝑣0/𝜖 =
𝑣hs/𝜖. The dotted line depicts the reduced perturbation potential
𝑤* = 𝑤/𝜖 which, in this case, is the full Jagla potential outside the
hard core. Note that the perturbation potential is zero in the regions
where no lines are shown.
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Figure 6.8.: The reduced pressure 𝑝* = 𝛽𝑝𝜎3 of the Jagla fluid as
a function of the packing fraction 𝜂 = 𝜋𝜌𝜎3/6 for various reduced
temperatures 𝑇 * = 𝑘B𝑇/𝜖 when described by means of the first order
perturbation theory with the potential splitting depicted in Fig. 6.7.
The inset shows the pressure data for small 𝜂 in greater detail.
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ansatz is, and a clear indication of a second critical point. However,
half of each second van der Waals loop lies above the freezing
packing fraction 𝜂f ≈ 0.492 of hard spheres and we are only able
to obtain this result, since we apply the non-freezing White Bear
II version of FMT to calculate the hard-sphere radial distribution
function 𝑔hs(𝑟). Recall, that the latter enters the first order term
of the excess free energy [Eq. (6.14)]. For completeness we note
that, again, we observe unphysical oscillations in the pressure
curves for 𝜂 & 0.65 (not depicted in the plot) due to the reasons
discussed in Sec. 6.2.2. In the corresponding phase diagram in
Fig. 6.9, we indeed observe a second binodal the high-density
branch of which lies, as expected from the pressure curves, in the
region above the hard-sphere freezing transition. This renders the
applied potential separation a poor model for a liquid-liquid phase
transition. Furthermore, we find no agreement with the second
MC binodal [24] and only poor agreement with the first binodal.
Since this simple splitting of the Jagla potential into reference
and perturbation potential already yields a second binodal in a
first order treatment, and since the first order perturbation term
is easier to implement than the second order one, especially with
regard to the inhomogeneous system, we do not investigate a
second order treatment here. Instead, we continue to apply a
more elaborate reference system.

6.4. Two reference systems
6.4.1. Theory
Motivated by the fact that our simple first order perturbation
treatment of the Jagla fluid in Sec. 6.3 yields a second binodal, we
now try to find a way to split the Jagla potential into reference
and perturbation potential such that, in a first order treatment,
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Figure 6.9.: The bulk binodals of the Jagla fluid in the 𝑇 *-𝜂 phase
diagram. The diamonds show the results of a first order perturbation
ansatz with the potential splitting depicted in Fig. 6.7. The triangles
show the results of MC simulations [24].
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the second binodal lies fully in the liquid-density region of the
hard-sphere fluid. For this, we, again, separate the Jagla potential
according to the method of BH, depicted in Fig. 6.1, into a purely
repulsive reference system 𝑣0(𝑟) and an attractive perturbation
𝑤(𝑟) comprised of the potential’s well. This results in a first order
𝜆-expansion [Eq. (6.9)] of the form

𝛽𝐹 ex = 𝛽𝐹 ex
0 + 𝛽𝐹 ex

1 + 𝒪(𝛽2). (6.34)

Now, of course, we face the problem that, unlike assumed before,
the excess free energy term 𝐹 ex

0 of the repulsive reference system
is unknown. To overcome this issue, we apply another potential
separation, and divide the potential 𝑣0(𝑟) of the repulsive ref-
erence system into a hard-sphere potential 𝑣hs(𝑟) (representing
the reference system of the repulsive reference system) and a
repulsive ramp 𝑣rep(𝑟) (the perturbation of the hard-sphere refer-
ence system), which lets us expand 𝐹 ex

0 in a further first-order
𝜆-expansion to be

𝛽𝐹 ex
0 = 𝛽𝐹 ex

hs + 𝛽𝐹 ex
1,rep + 𝒪(𝛽2). (6.35)

This twofold split of the Jagla potential is depicted in Fig. 6.10.
Also, note that the hard spheres of the hard-sphere reference
system have a diameter 𝜎 and no effective diameter 𝑑. Now, we
plug Eq. (6.35) in Eq. (6.34), and obtain a first order expression
of the Jagla fluid’s excess free energy:

𝛽𝐹 ex = 𝛽𝐹 ex
hs + 𝛽𝐹 ex

1,rep + 𝛽𝐹 ex
1 + 𝒪(𝛽2). (6.36)

The hard-sphere term is known [see Eq. (6.28)], and the two first
order terms are according to Eq. (6.14):

𝛽𝐹 ex
1,rep
𝑁

= 𝛽𝜌

2

∫︁
𝑔hs(𝑟)𝑣rep(𝑟)dr (6.37)

𝛽𝐹 ex
1
𝑁

= 𝛽𝜌

2

∫︁
𝑔0(𝑟)𝑤(𝑟)dr, (6.38)
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Figure 6.10.: The twice split reduced Jagla potential 𝑣*
J = 𝑣J/𝜖 as

a function of the reduced center-to-center particle distance 𝑟* = 𝑟/𝜎.
The first separation divides the potential according to BH into a purely
positive reference part 𝑣*

0 = 𝑣0/𝜖 (solid and dashed lines) and a negative
perturbation well 𝑤* = 𝑤/𝜖 (dotted line). The reference potential 𝑣*

0 is
again divided into a hard-sphere potential 𝑣*

hs = 𝑣hs/𝜖 (solid line) and
a repulsive ramp 𝑣*

rep = 𝑣rep/𝜖 (dashed line). Note that except for the
hard-sphere contribution, the potentials are zero in the regions where
no lines are shown.

80



6.4. Two reference systems

where 𝑔hs(𝑟) is the hard-sphere radial distribution function, and
𝑔0(𝑟) is the radial distribution function of the original repulsive
reference system with interaction potential 𝑣0(𝑟).

6.4.2. Results
To obtain an explicit expression for the excess free energy 𝐹 ex

of the Jagla fluid via Eqs. (6.36), (6.37), and (6.38), we compute
the hard-sphere radial distribution functions 𝑔hs(𝑟; 𝜂) and the
radial distribution functions 𝑔0(𝑟; 𝜂, 𝑇 *) of the repulsive reference
system. In particular, we deploy DFT calculations and use the
White Bear II version of FMT (see Sec. 4.2) to calculate 𝑔hs(𝑟; 𝜂),
whereas 𝑔0(𝑟; 𝜂, 𝑇 *) is computed by use of (MC) simulations16.
Three characteristic pressure curves, derived by means of the

first order 𝐹 ex in Eq. (6.36), are shown in Fig. 6.11. As expected,
the curves show gas-liquid van der Waals loops in the 𝜂-region
between 0.0 and 0.125, which vanish for increasing temperatures,
indicating a gas-liquid critical point. Additionally, for greater
packing fractions, i. e. 0.125 < 𝜂 < 0.3, each pressure line shows
a second van der Waals loop which is fully in the liquid regime of
hard spheres and which becomes weaker for higher temperatures.
These indicate the existence of a liquid-liquid critical point. The
corresponding phase diagram is shown in Fig. 6.12. We find the
gas-liquid binodal in the 𝜂-region between 0 and 0.125 to be in
good agreement with the respective MC data by Lomba et al. [24],
considering the usual deviation occurring between perturbation
theory results and, quasi-exact, MC data. Additionally, we ob-
serve a liquid-liquid binodal for packing fractions between 0.125
and 0.325, peaking in a liquid-liquid critical point, the critical
16We, also, tried to compute 𝑔0(𝑟; 𝜂, 𝑇 *) trough mean-field DFT calculations,

however, the results exhibit unphysical oscillations at low temperatures,
and, hence, can not be deployed here.
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Figure 6.11.: The reduced pressure 𝑝* = 𝛽𝑝𝜎3 of the Jagla fluid as a
function of the packing fraction 𝜂 = 𝜋𝜌𝜎3/6 for various temperatures
𝑇 * = 𝑘B𝑇/𝜖 when calculated by means of the first order twice split
potential approach described in Sec. 6.4.1.
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Figure 6.12.: The bulk binodals of the Jagla fluid in the 𝑇 *-𝜂 phase
diagram obtained by means of the first order twice split potential
approach (circles), described in Sec. 6.4.1, standard mean-field theory
(solid line) and MC simulations [24] (triangles). The dashed line shows
the mean-field bulk spinodal of the Jagla fluid.
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6. Bulk phase diagram

packing fraction of which is in good agreement with the MC result
by Lomba and colleagues.

In Fig. 6.12 we also show the binodal and spinodal line of
the Jagla fluid when described by means of the standard mean-
field approximation (Sec. 6.1.2). The improvement of the first
order twice split potential approach over the mean-field ansatz
is remarkable. The latter already fails to predict the gas-liquid
binodal correctly and does not capture the liquid-liquid line of
coexistence. From this comparison it becomes clear that a proper
perturbation ansatz is required to study the Jagla fluid’s liquid-
liquid critical point.
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7. Perturbation DFT1

7.1. Theory

7.1.1. Derivation of a perturbation DFT

Having derived a bulk perturbation theory for the Jagla fluid ca-
pable of describing a liquid-liquid phase separation in the previous
sections, the next step is to extend the theory to inhomogeneous
systems. This would not only enable us to study e.g. the local
structure of the fluid close to walls or other physical boundaries,
the first step to investigate phenomena such as wetting and dewet-
ting and capillarity, but also would offer possibilities to alter the
Jagla fluid’s phase diagram to our needs. Hence, we continue
to consider an inhomogeneous Jagla fluid, which we describe
using classical density functional theory (DFT) [11] (see Chpt. 4).
As already mentioned above, in general, the exact expression of
the excess intrinsic free energy functional ℱex[𝜌(r)] is unknown.
Hence, and to ensure that the excess functional has the correct
bulk limit, namely 𝐹 ex in Eq. (6.36), we derive an approximate
expression for ℱex[𝜌(r)] as follows. Initially, we derive an exact
expression for ℱex which is the sum of the intrinsic excess free
energy ℱex

0 of a reference system and a perturbation term ℱex
𝑤 ,

1At the date of printing, content of this chapter is accepted as a Regular
Article in Physical Review E with the title ”Towards a density functional
theory for the Jagla fluid” by Florian Gußmann, S. Dietrich and Roland
Roth. c○2020/2021 American Physical Society.
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7. Perturbation DFT

where we follow closely Ref. [17]. Based on this, we apply the
approximation originally proposed by Sokolowski and Fischer [37]
to obtain an expression of ℱex

𝑤 which is practically applicable.
Again, we assume a pairwise particle-particle interaction poten-

tial 𝑣(r1, r2), and, consequently, the interatomic potential energy
𝑉𝑁 is

𝑉𝑁 (r𝑁 ) =
𝑁∑︁

𝑖=1

𝑁∑︁
𝑗>𝑖

𝑣(r𝑖, r𝑗).

With this, the grand partition function Ξ can be written as2

Ξ =
∞∑︁

𝑁=0

1
𝑁 !

∫︁
· · ·
∫︁ 𝑁∏︁

𝑖,𝑗>𝑖

exp[−𝛽𝑣(r𝑖, r𝑗)]
𝑁∏︁

𝑘=1
𝑧*(r𝑘)dr1 . . . dr𝑁 ,

(7.1)
2 The grand partition function of an inhomogeneous fluid is given by [17]

Ξ =
∞∑︁
𝑁=0

1
𝑁 !

∫︁
exp(−𝛽𝑉𝑁 )

(︃
𝑁∏︁
𝑘=1

𝑧 exp[−𝛽𝜑(r𝑘)]

)︃
dr𝑁 ,

and can be easily derived from Eq. (3.1), if the potential energy∑︀𝑁

𝑘=1 𝜑(r𝑘), caused by the external potential acting upon the particles,
is added to the hamiltonian in Eq. (2.3), and if the particle momenta are
integrated out. Here, 𝑧 = exp(𝛽𝜇)/Λ3 is the activity. If we now define the
local activity 𝑧*(r) = 𝑧 exp[−𝛽𝜑(r)], the expression for Ξ can be rewritten
to be

Ξ =
∞∑︁
𝑁=0

1
𝑁 !

∫︁
exp(−𝛽𝑉𝑁 )

𝑁∏︁
𝑘=1

𝑧*(r𝑘)dr𝑁 .

Finally, we use that 𝑉𝑁 is a sum of pair potentials to rewrite the term
exp(−𝛽𝑉𝑁 ):

Ξ =
∞∑︁
𝑁=0

1
𝑁 !

∫︁
· · ·
∫︁ 𝑁∏︁

𝑖,𝑗>𝑖

exp[−𝛽𝑣(r𝑖, r𝑗)]
𝑁∏︁
𝑘=1

𝑧*(r𝑘)dr1 . . .dr𝑁 .
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7.1. Theory

where 𝑧*(r) = 𝑧 exp[−𝛽𝜑(r)] is the local activity, 𝑧= exp(𝛽𝜇)/Λ3

is the activity,
∏︀𝑁

𝑖,𝑗>𝑖 =
∏︀𝑁

𝑖=1
∏︀𝑁

𝑗>𝑖, and 𝜑(r) is the external
potential acting on a particle at position r. Now, the functional
derivative of the functional of the grand potential Ω[𝜌(r)] with
respect to the interaction potential 𝑣(𝑟) is (see App. C.1):

𝛿Ω
𝛿𝑣(r1, r2) = 1

Ξ

∞∑︁
𝑁=2

𝑁(𝑁 − 1)
2𝑁 !

×
∫︁

· · ·
∫︁ 𝑁∏︁

𝑖,𝑗>𝑖

exp[−𝛽𝑣(r𝑖, r𝑗)]
𝑁∏︁

𝑘=1
𝑧*(r𝑘)dr3 . . . dr𝑁 .

(7.2)

If we compare this result with the expression for the 𝑛-particle
density 𝜌(𝑛) in Eq. (3.5)3, we see that

𝜌(2)(r1, r2) = 2 𝛿Ω
𝛿𝑣(r1, r2) .

Since the only term in Ω[𝜌(r)] which is dependent on 𝑣(r1, r2) is
ℱex[𝜌(r)], it also holds that

𝜌(2)(r1, r2) = 2𝛿ℱ
ex[𝜌(r)]

𝛿𝑣(r1, r2) . (7.3)

We now further assume the particle-particle interaction potential
to be of the form

𝑣𝜆(r1, r2) = 𝑣0(r1, r2) + 𝜆𝑤(r1, r2), (7.4)

where 𝜆 ∈ [𝜆1, 𝜆2] = [0, 1] (cf. Eq. (6.1) and text thereafter). As in
Sec. 6.1.1, be 𝑣0(r1, r2) the interaction potential of a well-known

3 Due to the addition of the external potential term to the hamiltonian
discussed in Fn. 2, in the inhomogeneous case the quantity 𝑧𝑁 in Eq. (3.5)
must be replaced by

∏︀𝑁

𝑘=1 𝑧
*(r𝑘) and be written under the integral.
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7. Perturbation DFT

reference system and 𝑤(r1, r2) a perturbation added to 𝑣0. The
coupling parameter 𝜆 gradually turns on the perturbation when
increased from 0 to 1. By integration of Eq. (7.3), with 𝑣(r1, r2) =
𝑣𝜆(r1, r2), which is explicitly carried out in App. C.2, the intrinsic
excess free energy functional ℱex[𝜌(r)] of the system characterized
by the particle-particle interaction potential 𝑣(𝜆=1)(r1, r2) can be
expressed as [17]

ℱex[𝜌(r)] = ℱex
0 [𝜌(r)] + ℱex

𝑤 [𝜌(r)], (7.5)

where

ℱex
𝑤 [𝜌(r)] = 1

2

∫︁ 1

0
d𝜆
∫︁

dr1𝜌(r1)

×
∫︁

dr2𝜌(r2)𝑔(2)(r1, r2;𝜆)𝑤(r1, r2), (7.6)

and ℱex
0 [𝜌(r)] is the intrinsic free energy of the reference sys-

tem, i. e. the system with interaction potential 𝑣(𝜆=0)(r1, r2).
Furthermore, 𝑔(2)(r1, r2;𝜆) denotes the 2-particle distribution
function of the inhomogeneous system with particle-particle in-
teraction potential 𝑣𝜆(r1, r2). Since merely little is known about
the 2-particle distribution function of an inhomogeneous sys-
tem, approximations for Eq. (7.6) are required. The so called
mean-field approximation to the problem (see also Sec. 7.1.2),
commonly used in DFT calculations, is to set 𝑔(2)(r1, r2;𝜆) = 1,
thereby neglecting the local structure around a particle in the
fluid. However, this approach is too simple for our investigation,
since setting the 2-particle distribution function equal to unity,
would give us an incorrect bulk-limit of ℱex

𝑤 , when compared
to the bulk expressions derived earlier [Eqs. (6.37) and (6.38)].
Instead, we exploit the fact that when we separate the Jagla
potential as in the bulk investigations above into reference part
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7.1. Theory

and perturbation, the reference system is always fully repulsive,
and, hence, follow the route of Sokolowski and Fischer [37], also
described in Ref. [40], who approximate ℱex

𝑤 via

ℱex
𝑤 [𝜌(r)] = 1

2

∫︁
dr1𝜌(r1)

∫︁
dr2𝜌(r2)𝑔(2)

0 (r1, r2)𝑤(r1, r2), (7.7)

where 𝑔(2)
0 (r1, r2) is the 2-particle distribution function of the

inhomogeneous repulsive reference system. Since 𝑔(2)
0 (r1, r2) is a

complicated function and no detailed knowledge of its behavior in
realistic non-uniform systems is available, Sokolowski and Fischer
continue to approximate 𝑔(2)

0 (r1, r2) by the corresponding bulk
radial distribution function evaluated at some mean density 𝜌:

𝑔
(2)
0 (r1, r2) ≈ 𝑔b

0 (𝑟12; 𝜌). (7.8)

They further note that 𝜌 has to be chosen such that the resulting
radial distribution function is firstly symmetric with respect to
the interchange of particles, and secondly approaches the corre-
sponding bulk radial distribution function as 𝜌 tends to the bulk
density 𝜌b.

With the aim to preserve the expression of the bulk excess
free energy [Eq. (6.36)], we continue to construct a perturbation
functional for the twice split Jagla potential based on Eqs. (7.5)
and (7.6) using the approximations in Eqs. (7.7) and (7.8) which
is of the following form:

ℱex[𝜌(r)] = ℱex
0 [𝜌(r)] + ℱex

𝑤 [𝜌(r)]
= ℱex

hs [𝜌(r)] + ℱex
rep[𝜌(r)] + ℱex

𝑤 [𝜌(r)], (7.9)

where

ℱex
rep[𝜌(r)] = 1

2

∫︁
dr1𝜌(r1)

∫︁
dr2𝜌(r2)𝑔b

hs(𝑟12; 𝜌)𝑣rep(𝑟12),
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7. Perturbation DFT

and

ℱex
𝑤 [𝜌(r)] = 1

2

∫︁
dr1𝜌(r1)

∫︁
dr2𝜌(r2)𝑔b

0 (𝑟12; 𝜌)𝑤(𝑟12).

Taken together, we obtain

ℱex[𝜌(r)] = ℱex
hs [𝜌(r)] + 1

2

∫︁∫︁
dr1dr2𝜌(r1)𝜌(r2)

×
[︁
𝑔b

hs(𝑟12; 𝜌)𝑣rep(𝑟12) + 𝑔b
0 (𝑟12; 𝜌)𝑤(𝑟12)

]︁
≡ ℱex

hs [𝜌(r)] + ℱex
J [𝜌(r)]. (7.10)

The hard-sphere bulk radial distribution function 𝑔b
hs(𝑟12; 𝜌) and

the bulk radial distribution function of the original reference
system with interaction potential 𝑣0(𝑟), 𝑔b

0 (𝑟12; 𝜌), are the same
as in Sec. 6.4.1, only, here, they are evaluated at the mean density
𝜌. The potentials 𝑣0(𝑟), 𝑣rep(𝑟) and 𝑤(𝑟) are also the same as in
Sec. 6.4.1 and are depicted in Fig. 6.10. The quantity ℱex

hs [𝜌(r)]
is the hard-sphere intrinsic free energy functional for which we
apply the White Bear version [31] of FMT [30, 32] (see Sec. 4.2).
Note that ℱex

J [𝜌(r)] in (7.10) has the correct bulk limit, namely
𝐹 ex

1,rep + 𝐹 ex
1 in Eqs. (6.36), (6.37) and (6.38), if the bulk limit of

𝜌 is the bulk density 𝜌b. The proof is done analogously to the
one in Sec.7.1.2 for the mean-field term.

The question remains which mean density 𝜌 to apply, espe-
cially with regard to the calculation of the functional derivative of
𝛿ℱex

J [𝜌(r)]/𝛿𝜌(r), needed to minimize the functional of the grand
potential. If the mean density is dependent on the density distri-
bution 𝜌(r), this must be considered in the functional derivative,
making its calculation more sophisticated and the result lengthy.
Hence, the easiest route to continue from here is to set 𝜌 to be the
bulk density 𝜌b. With this, the functional derivative of ℱex

J [𝜌(r)]
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in Eq. (7.10) is given by

𝛿ℱex
J

𝛿𝜌(r2) =
∫︁
𝜌(r1)

[︁
𝑔b

hs(𝑟12; 𝜌b)𝑣rep(𝑟12) + 𝑔b
0 (𝑟12; 𝜌b)𝑤(𝑟12)

]︁
dr1.

(7.11)
A more sophisticated version for the mean-density is the one
introduced by Sokolowski and Fischer [37], namely

𝜌(r1, r2) = 1
2
[︀
𝜌𝜈(r1) + 𝜌𝜈(r2)

]︀
.

Here,

𝜌𝜈(r) =
∫︁

dr′𝜌(r′)𝜔𝜈(|r − r′|)

is a coarse grained, or weighted, density with the weight function

𝜔𝜈(𝑟) = 3
4𝜋𝑟3

𝜈

Θ(𝑟𝜈 − 𝑟),

and the Heaviside step function Θ(𝑟). The coarse grained density
𝜌𝜈(r) is the average density in a sphere of radius 𝑟𝜈 at position r,
making 𝜌(r1, r2) the mean of the two average densities in the
spheres at r1 and r2. With 𝜌 now also being a functional of
𝜌(r), care is needed when evaluating the functional derivative
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𝛿ℱex
J /𝛿𝜌(r). The latter is given by

𝛿ℱex
J

𝛿𝜌(r0) = 1
2

∫︁
dr1

∫︁
dr2

𝛿
(︀
𝜌(r1)𝜌(r2)

)︀
𝛿𝜌(r0)

×
[︁
𝑔b

hs(𝑟12; 𝜌)𝑣rep(𝑟12) + 𝑔b
0 (𝑟12; 𝜌)𝑤(𝑟12)

]︁
+ 1

2

∫︁
dr1

∫︁
dr2𝜌(r1)𝜌(r2)

×
[︃
𝜕𝑔b

hs(𝑟12; 𝜌)
𝜕𝜌

⃒⃒⃒⃒
⃒
𝜌=𝜌

𝑣rep(𝑟12)

+ 𝜕𝑔b
0 (𝑟12; 𝜌, 𝑇 *)

𝜕𝜌

⃒⃒⃒⃒
⃒
𝜌=𝜌

𝑤(𝑟12)
]︃

𝛿𝜌

𝛿𝜌(r0)

=
∫︁

dr2𝜌(r2)
[︁
𝑔b

hs(𝑟02; 𝜌)𝑣rep(𝑟02) + 𝑔b
0 (𝑟02; 𝜌)𝑤(𝑟02)

]︁
+ 3

8𝜋𝑟3
𝜈

∫︁
dr2𝜌(r2)Θ(𝑟𝜈 − 𝑟02)

∫︁
dr1𝜌(r1)

×
[︃
𝜕𝑔b

hs(𝑟12; 𝜌)
𝜕𝜌

⃒⃒⃒⃒
⃒
𝜌=𝜌

𝑣rep(𝑟12)

+ 𝜕𝑔b
0 (𝑟12; 𝜌, 𝑇 *)

𝜕𝜌

⃒⃒⃒⃒
⃒
𝜌=𝜌

𝑤(𝑟12)
]︃
, (7.12)

where 𝑟02 = |r2 − r0|. Evaluating the expression in Eq. (7.12)
requires in every step of the iteration to minimize Ω[𝜌(r)] the
calculation of 𝜌(r1, r2) at all points (r1, r2) at which at least
one of the two quantities 𝜌𝜈(r1) and 𝜌𝜈(r2) is unequal to zero.
Furthermore, 𝑔b

hs(𝑟; 𝜌) and 𝑔b
0 (𝑟12; 𝜌, 𝑇 *) must be known on a

(𝑟, 𝜌)-grid, to calculate the derivatives in the second term of
Eq. (7.12). This makes the calculation of the functional derivative
of ℱex

J [𝜌(r)] extremely tedious, if not almost impossible regarding
computation time, and, hence, we simplify the expression in
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Eq. (7.12) further and set the weighted density to be the bulk
density: 𝜌(r1, r2) = 𝜌b.

7.1.2. The mean-field approximation in the
inhomogeneous case

In case of an inhomogeneous fluid, the idea of the mean-field
approximation is the same as in bulk (see Sec. 6.1.2), namely
to set 𝑔(r1, r2;𝜆) in Eq. (7.6) to be 1, thereby fully neglecting
the structure of the fluid in the vicinity of a particle. With
𝑔(r1, r2;𝜆) = 1, the integration with respect to 𝜆 in Eq. (7.6)
becomes trivial and gives a factor of 1, and the expression for
ℱex

𝑤 [𝜌(r)] reduces to

ℱex
mf[𝜌(r)] = 1

2

∫︁∫︁
𝜌(r1)𝜌(r2)𝑤(r1, r2)dr1dr2. (7.13)

Under the assumption of identical particles, 𝑤(r1, r2) = 𝑤(r2, r1)
holds, and then the functional derivative 𝛿ℱex

mf/𝛿𝜌(r) of the mean-
field term is

𝛿ℱex
mf

𝛿𝜌(r2) =
∫︁
𝜌(r1)𝑤(r1, r2)dr1. (7.14)

As is the case for its bulk version, the mean-field approximation
is appealing due to its simplicity. To evaluate the functional
derivative (7.14), only the perturbation potential 𝑤(r1, r2) is
required, and no additional input is necessary for the minimization
process of DFT.

If the interaction potential is a function of only the particle-
particle distance |r2 − r1| = 𝑟12, the bulk limit of Eq. (7.13) is4
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1
𝑁

lim
𝜌(r)→𝜌b

ℱex
mf[𝜌(r)] = 1

𝑁

𝜌2
b
2 𝑉

∫︁
𝑤(𝑟)dr = 𝜌b

2

∫︁
𝑤(𝑟)dr

which is exactly the expression in Eq. (6.29).

7.2. Results
In order to test the quality of the perturbation DFT for the
Jagla fluid derived in Sec. 7.1.1, we perform perturbation DFT
calculations and MC simulations in a slit geometry. We compare
the resulting perturbation DFT density profiles with our MC
simulation data as well as with density curves obtained through
mean-field DFT (see Sec. 7.1.2). The slit geometry is composed
of two infinitely expanded, parallel and planar hard walls with
reduced distance 𝑙 = 𝐿/𝜎. In the following, we present the results
calculated in a slit with reduced length 𝑙 = 22 for various assorted
state points (𝜂, 𝑇 *). Here, 𝑙 is chosen such that a bulk limit in the
slit center can be observed to check for consistency. Also note that

4In bulk 𝜌(r) = 𝜌b and, with 𝑤(r1, r2) = 𝑤(|r2 − r1|) we have

lim
𝜌(r)→𝜌b

ℱex
mf[𝜌(r)] = 𝜌2

b
2

∫︁∫︁
𝑤(|r2 − r1|)dr1dr2.

Now, we substitute (r2 − r1) → r in the integration with respect to r2,
i.e. dr = dr2, and find

lim
𝜌(r)→𝜌b

ℱex
mf[𝜌(r)] = 𝜌2

b
2

∫︁
dr1

∫︁
𝑤(𝑟)dr.

The integration with respect to r1 gives the volume V, and with this

lim
𝜌(r)→𝜌b

ℱex
mf[𝜌(r)] = 𝜌2

b
2 𝑉

∫︁
𝑤(𝑟)dr.
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not the full density profiles (which are symmetric) are presented,
but only the densities in the vicinity of the left wall in order to
show all relevant details. For the bulk radial distribution functions
𝑔b

hs(𝑟; 𝜌b) and 𝑔b
0 (𝑟; 𝜌b, 𝑇

*), needed to calculate the functional
derivative in Eq. (7.12), we apply the same data as for the bulk
calculations. Here, 𝑔b

hs(𝑟; 𝜌b) is obtained via DFT calculations,
where the mark II [18] version of the White Bear functional is
used (see Sec. 4.2), and 𝑔b

0 (𝑟12; 𝜌b, 𝑇
*) via MC simulations.

To begin with, we examine the performance of perturbation
DFT regarding the choice of the mean density 𝜌(r1, r2). For this,
we compare the density profiles of the DFTs with 𝜌(r1, r2) =
1
2
[︀
𝜌𝜈(r1)+𝜌𝜈(r2)

]︀
[Eq. (7.12)], where5 𝑟𝜈 = 0.5𝜎, and 𝜌(r1, r2) =

𝜌b [see Eq. (7.11)] to MC profiles in a system at state point
(𝜂, 𝑇 *) = (0.1, 1.0). This is depicted in Fig. 7.1. While the DFT
with 𝜌 = 𝜌b performs better than mean-field DFT, the corre-
sponding density profile lies notably below the MC result. By
contrast, the DFT with 𝜌 = 1

2
[︀
𝜌𝜈(r1) + 𝜌𝜈(r2)

]︀
almost perfectly

hits the MC contact value and provides results which are in very
good agreement with the simulation data for 0.5 < 𝑧* < 1.25 and
𝑧* > 5.0. Only for 1.25 < 𝑧* < 5.0, the DFT result is slightly
below the MC data but still in good agreement. These results
clearly show an improvement of DFT gained by the perturba-
tion ansatz, where the DFT with 𝜌 = 1

2
[︀
𝜌𝜈(r1) + 𝜌𝜈(r2)

]︀
clearly

outperforms the one with 𝜌 = 𝜌b. Since the latter already lacks
precision at this relative high temperature, we continue to apply
the DFT with 𝜌 = 1

2
[︀
𝜌𝜈(r1) + 𝜌𝜈(r2)

]︀
, exclusively. We have to

keep in mind that the critical point of the Jagla fluid’s gas-liquid
bulk binodal lies a little below 𝑇 * = 0.4 and the liquid-liquid

5We tried various values for the parameter 𝑟𝜈 , none of which seemed to
produce results overall superior to the others, and chose the value for
which the agreement of the contact value with the MC contact value was
the best.
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Figure 7.1.: The density distribution 𝜌* = 𝜌𝜎3 of the Jagla fluid
in a slit with hard walls and reduced length 𝑙 = 𝐿/𝜎 = 22 at
(𝜂, 𝑇 *) = (0.1, 1.0) described by means of the perturbation DFT with
𝜌 = 1

2
[︀
𝜌𝜈(r1) + 𝜌𝜈(r2)

]︀
(solid line), the perturbation DFT with 𝜌 = 𝜌b

(dotted line), standard mean-field DFT (dashed-line) and MC simula-
tions (crosses). The abscissa provides the reduced distance 𝑧* = 𝑧/𝜎
from the left wall.
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bulk binodal at temperatures around 𝑇 * = 0.1 (see Fig. 6.12).
Thus, we need a DFT which performs reliably at temperatures
way below 𝑇 * = 1.0, and, hence, discard the DFT with 𝜌 = 𝜌b.
Therefore, from now on, by perturbation DFT, we mean the
perturbation DFT with 𝜌 = 1

2
[︀
𝜌𝜈(r1) + 𝜌𝜈(r2)

]︀
. From Fig. 7.1,

it also becomes clear that at the state point (𝜂, 𝑇 *) = (0.1, 1.0)
mean-field DFT already fails to give the correct density curve
and predicts, apart from the bulk limit in the slit center, values
which are clearly below the (quasi-exact) MC result.

For an increased density, i.e. (𝜂, 𝑇 *) = (0.3, 1.0) (see Fig. 7.2),
perturbation DFT gives still good results close to the wall but
predicts a contact value which is a little below the MC data. Fur-
thermore, perturbation DFT fails to predict the correct positions
of the first minimum and maximum of the density profile away
from contact, which are shifted somewhat to the right. Also,
the depth of the first minimum is underestimated. However,
perturbation DFT still produces significantly better results than
mean-field DFT which gives a contact value that is almost a
factor of 1

2 off the MC data. Compared to the previous case, the
overall performance of mean-field DFT seems to have improved,
nevertheless.

For lower temperatures (𝑇 * = 0.5) perturbation DFT clearly
underestimates the density in the slit close to the wall at small den-
sity (𝜂 = 0.1), whereas mean-field DFT fails and predicts a profile
close to or in a gas phase (see Fig. 7.3). The failure of mean-field
DFT, however, comes at no surprise as for the state point under
consideration the mean-field Jagla fluid is unstable (see phase
diagram in Fig. 6.12). At greater densities (𝜂 = 0.3), however,
the perturbation DFT results are in the range of the MC profile,
where the contact value is too low, and, again, the positions of the
maxima and minima is predicted incorrectly. Mean-field DFT,
at least, gives the correct bulk limit (Fig. 7.4). Thus, it seems
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Figure 7.2.: The density distribution 𝜌* = 𝜌𝜎3 of the Jagla fluid in
a slit with hard walls and reduced length 𝑙 = 𝐿/𝜎 = 22 at (𝜂, 𝑇 *) =
(0.3, 1.0) described by means of perturbation DFT (solid line), standard
mean-field DFT (dashed-line) and MC simulations (crosses). The
abscissa provides the reduced distance 𝑧* = 𝑧/𝜎 from the left wall.
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Figure 7.3.: The density distribution 𝜌* = 𝜌𝜎3 of the Jagla fluid in
a slit with hard walls and reduced length 𝑙 = 𝐿/𝜎 = 22 at (𝜂, 𝑇 *) =
(0.1, 0.5) described by means of perturbation DFT (solid line), standard
mean-field DFT (dashed-line) and MC simulations (crosses). The
abscissa provides the reduced distance 𝑧* = 𝑧/𝜎 from the left wall.
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Figure 7.4.: The density distribution 𝜌* = 𝜌𝜎3 of the Jagla fluid in
a slit with hard walls and reduced length 𝑙 = 𝐿/𝜎 = 22 at (𝜂, 𝑇 *) =
(0.3, 0.5) described by means of perturbation DFT (solid line), standard
mean-field DFT (dashed-line) and MC simulations (crosses). The
abscissa provides the reduced distance 𝑧* = 𝑧/𝜎 from the left wall.
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that at state points in the vicinity of the corresponding binodal
line (circles and solid line, respectively, in Fig. 6.12) DFT has
especially difficulties producing correct results.

Even closer to the liquid-liquid binodal at (𝜂, 𝑇 *) = (0.3, 0.3),
also perturbation DFT fails to reproduce the structure of the
MC density profile and exhibits unphysical oscillations. This
is depicted in Fig. 7.5. Furthermore, mean-field DFT, being
considered at a state point in the unstable region of its bulk
phase diagram, erroneously predicts a gas phase. At even lower
temperatures, the unphysical oscillations of perturbation DFT
become only worse, and, hence, we, obviously, have reached a point
where the results of our perturbation theory are not meaningful
anymore. The liquid-liquid critical point derived by our bulk
perturbation approach, however, lies clearly below 𝑇 * = 0.3. This
poses a major problem, since our motivation to derive a DFT for
the Jagla fluid is to examine its liquid-liquid binodal line under
confinement. Evidently, the perturbation DFT derived above is
of no use for this purpose.

7.3. Conclusions and outlook

Above results show that, obviously, the information on the Jagla
potential and the Jagla fluid’s bulk structure, which enters pertur-
bation DFT via 𝑣rep(𝑟12), 𝑤(𝑟12), and 𝑔b

0 (𝑟12; 𝜌b) in Eq. (7.10), is
not sufficient for the prediction of the fluid’s behavior under con-
finement at low temperatures and close to the binodal line. The
perturbation techniques applied in this work are constructed such
that the system of interest, i.e. the particle-particle interaction po-
tential of interest, is split into a well-known reference system and
a perturbation which is coupled to the reference potential via the
coupling parameter 𝜆 [see Eqs. (6.1) and (7.4)]. The parameter
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Figure 7.5.: The density distribution 𝜌* = 𝜌𝜎3 of the Jagla fluid in
a slit with hard walls and reduced length 𝑙 = 𝐿/𝜎 = 22 at (𝜂, 𝑇 *) =
(0.3, 0.3) described by means of perturbation DFT (solid line), standard
mean-field DFT (dashed-line) and MC simulations (crosses). The
abscissa provides the reduced distance 𝑧* = 𝑧/𝜎 from the left wall.
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𝜆 and the perturbation potential thus appear in the expressions
of the excess free energy 𝐹 ex [Eq. (2.12)] and the intrinsic excess
free energy functional ℱex [Eq. (7.6)]. For the bulk expression
𝐹 ex, subsequently, a series expansion in powers of the parameter
𝜆 is made which is normally aborted after the first or second
order term as the higher order expressions are too complicated
to evaluate. Note that the second order term is usually already
approximated [see Sec. 6.1.1 and Eq. (6.18)]. The low-order expan-
sion, of course, only yields reasonable results if the perturbation is
small compared to the reference. In the inhomogeneous case, the
expression for ℱex is approximated by substituting the 2-particle
distribution function 𝑔(2)(r1, r2;𝜆) of the actual inhomogeneous
system with the 2-particle distribution function 𝑔

(2)
0 (r1, r2) of

the inhomogeneous (repulsive) reference system. Certainly, this
approximation works the better, the smaller the perturbation, i.e.
the more similar the two radial distribution functions.

In the case of the Jagla fluid, none of the two key require-
ments for a successfully working perturbation theory is optimally
met. Firstly, the perturbation is not small compared to the refer-
ence system due to the long range of the perturbation potential
𝑤(𝑟). Hence, aborting the 𝜆- or high temperature expansion
after the first or second term (bulk system), as well as substitut-
ing 𝑔(2)(r1, r2;𝜆) with 𝑔

(2)
0 (r1, r2) (inhomogeneous case) is not

optimal. Secondly, the properties of the reference system [with
interaction potential 𝑣0(𝑟)] are not well-known, and, hence, we
have to apply the perturbation techniques again, to describe the
reference system as a combination of a hard-sphere system and a
repulsive ramp. While the hard-sphere system is well-described
in bulk and in the inhomogeneous case (e.g. via FMT [30, 32]),
the long-ranged repulsive ramp of the Jagla potential, again, is
not a small perturbation to the hard sphere system creating more
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inaccuracies. This is essentially the reason why the BH and WCA
perturbation theories fail to describe the Jagla fluid (see discus-
sion in Sec. 6.2.2). Here, the reference potential 𝑣0(𝑟), i.e. the
repulsive ramp, is mapped onto an effective hard-sphere system
with effective hard-sphere diameter 𝑑 [see Sec. 6.2 and Eq. (6.32)].
The long range of the Jagla potential’s repulsive part becomes
obvious, if the ratio of the effective diameter 𝑑 and the actual
hard-sphere diameter 𝜎 is compared to the corresponding ratio
of the Lennard-Jones fluid [Figs. 6.6 and 1.1].

While, despite their shortcomings discussed in this section,
the techniques applied here yield reasonable results for the bulk
system, in the inhomogeneous case the Jagla fluid is described
correctly only at state points at high temperatures not too close
to the binodal. Close to the binodal line and at low temperatures,
perturbation DFT, for which further approximations are applied
when the 2-particle distribution functions of the inhomogeneous
systems are substituted with the corresponding bulk radial distri-
bution functions, fails to describe the Jagla fluid correctly.

The shortcomings of DFT discussed herein might be remedied
by feeding it (quasi-exact) MC simulation data as is suggested in
the outlook of Ref. [33]. This is the topic of the following chapters.
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8.1. The idea
In Chpt. 7 the poor performance of perturbation DFT to describe
the inhomogeneous Jagla fluid at low temperatures and in states
close to the binodals of the bulk phase diagram was discussed.
These shortcomings motivate the idea, initially formulated in
Ref. [33], to feed standard mean-field DFT quasi-exact Monte-
Carlo simulation data to gain a (mean-field) DFT which produces
correct results also at low temperatures. In particular, the aim
of this chapter is to use MC data, in fact cavity distribution
function 𝑦(𝑟) [see Eq. (3.8)] and radial distribution function 𝑔(𝑟)
(see Secs. 2.2 and 3.2), to derive a, with respect to mean-field
DFT, optimized interaction potential for the Jagla fluid in the test
particle geometry and subsequently in the infinite slit geometry
to gain an accurate mean-field DFT description (density profiles
and phase behavior) of the inhomogeneous fluid. This, eventually,
would enable us to alter the Jagla fluid’s phase diagram due to the
confining slit. Here, the challenge clearly is to transfer the results
from the test particle geometry to the infinite slit geometry.

This ansatz might sound similar to the uniqueness theorem
for fluid pair correlation functions [21] by Henderson, but clearly
is a different approach. Under the assumption of only pairwise
interactions, the uniqueness theorem states that, for a given
temperature and density, two pair potentials which give rise to
the same radial distribution function 𝑔(𝑟) can at most differ by a
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constant [21]. It is not our aim to use the MC radial distribution
function to find this, up to a constant, unique interaction potential
of the “exact” theory. In fact, we already know the form of
the Jagla potential which is why we are able to calculate the
corresponding radial distribution function. Instead, we want
to derive an interaction potential which is optimized for the
use within standard mean-field DFT and thus makes up for the
shortcomings of this approximate theory.

8.2. Theory
In the original study [33] on this topic the comparison of classical
DFT and MC simulations is limited to hard spheres, and the
functional ℱex[𝜌] of the excess intrinsic free energy is given by
FMT [30, 32] (see Chpt. 4.2). In the present analysis, we want to
extent the concept to spherically symmetric fluids with a hard
core repulsion at small distances and an additional soft tail by
deploying standard mean-field DFT (see Sec 7.1.2). The mean-
field expression of the functional of the intrinsic excess free energy
reads [c.f. Eq. (7.13)]:

ℱex[𝜌(r)] = ℱex
hs [𝜌(r)] + 1

2

∫︁∫︁
dr1dr2𝜌(r1)𝜌(r2)𝑤(𝑟12), (8.1)

where ℱex
hs [𝜌(r)] is the intrinsic free energy functional of the

hard-sphere reference system for which we apply the White Bear
version [31] (see Chpt. 4.2) of FMT, and 𝑤(𝑟) is the perturbation
potential. As before, the quantity 𝑟12 = |r2 − r1| denotes the
center-to-center distance of the particles labeled 1 and 2.

For the discussion which follows, it is important to note that
there is an important difference between the particle-particle in-
teraction potential 𝑣(𝑟) and the associated perturbation potential
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𝑤(𝑟) in the mean-field approach applied in the present study.
While the two are equal outside the hard core (𝑟 ≥ 𝜎), namely
the soft tail of the interaction potential, they can differ inside
the hard core (𝑟 < 𝜎), where, obviously, 𝑣(𝑟) is the hard-sphere
potential, whereas there usually is a freedom of choice for the
perturbation potential’s behavior. In perturbation theories the
behavior of the perturbation potential inside the core is com-
monly chosen such that the results are optimized. A well-known
example is the square-well fluid for which the potential well of the
perturbation potential is extended into the hard core to optimize
the bulk phase behavior.

As suggested in the outlook of Ref. [33], we want to derive
an, with respect to standard mean-field DFT, optimized particle-
particle interaction potential 𝑣opt(𝑟) and the associated perturba-
tion potential 𝑤opt(𝑟) via the Euler-Lagrange equation of DFT [see
Eq. (4.5)] in the test particle geometry (see Sec. 5.1) by employing
(quasi-exact) MC simulation data. The optimized potential(s)
shall then reproduce the Monte-Carlo density profile once plugged
into the original mean-field DFT framework. In a second step,
we try to optimize the interaction potential in such a way that it
also can be applied to the infinite slit geometry (see the beginning
of Sec. 7.2). While, in the following, we limit our investigation
to the Jagla fluid, we emphasize that the techniques employed
are also applicable to other spherically symmetric fluids with
hard-core-plus-soft-tail interaction potential.

8.2.1. Via the cavity distribution function

In a first attempt, our ansatz for the optimized potential is

𝑣opt(𝑟) = 𝑣hs(𝑟) + 𝑤J(𝑟) + 𝑤1(𝑟),

107



8. Monte-Carlo-optimized DFT

where 𝑣hs(𝑟) is the hard-sphere potential, 𝑤J(𝑟) is the soft tail of
the Jagla potential, i.e., 𝑤J(𝑟 < 𝜎) = 0, and 𝑤1(𝑟) is a correction
added to 𝑤J, which, in general, is not zero for 𝑟 < 𝜎. Thus
in our case, 𝑤(𝑟) in Eq. (8.1) is equal to 𝑤J(𝑟) + 𝑤1(𝑟). The
determination of 𝑤1(𝑟) is the goal of this section. To this end,
we rewrite1 the Euler-Lagrange equation of DFT [Eq. (4.5)] in
terms of the cavity distribution function 𝑦(𝑟) for the test particle
geometry to be:

𝛿𝛽Ω
𝛿𝜌(r) = ln

(︀
𝑦(𝑟)

)︀
+ 𝛿𝛽ℱex

𝛿𝜌(r) − 𝛽𝜇ex = 0. (8.2)

1First, we use that in the test particle geometry 𝜌(r) = 𝜌(𝑟) = 𝜌b𝑔(𝑟) holds.
Thus, Eq. (4.5) becomes

ln
(︀
𝑔(𝑟)

)︀
+ 𝛿𝛽ℱex

𝛿𝜌(r) + 𝛽𝑉ext(r) − 𝛽𝜇ex = 0

Now, we use that 𝛽𝑉ext(r) = ln
(︁

exp
(︀
𝛽𝑉ext(r)

)︀)︁
, and that in the test

particle geometry 𝑉ext(r) = 𝑉ext(𝑟) = 𝑣(𝑟) with the particle-particle
interaction potential 𝑣(𝑟) = 𝑣opt(𝑟). With this, we obtain

ln
(︁
𝑔(𝑟) exp

(︀
𝛽𝑣opt(𝑟)

)︀)︁
+ 𝛿𝛽ℱex

𝛿𝜌(r) − 𝛽𝜇ex = 0.

Finally, we make use of the definition of the cavitiy distribution function,
Eq. (3.8), and find the expression in Eq. (8.2):

ln
(︀
𝑦(𝑟)

)︀
+ 𝛿𝛽ℱex

𝛿𝜌(r) − 𝛽𝜇ex = 0.
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With Eq. (8.1), 𝑤(𝑟) = 𝑤J(𝑟) + 𝑤1(𝑟), and Eq. (7.14), we can
rewrite the functional derivative of ℱex and obtain

𝛿𝛽Ω
𝛿𝜌(r) = ln

(︀
𝑦(𝑟)

)︀
+ 𝛿𝛽ℱex

hs
𝛿𝜌(r)

+
∫︁

dr1𝜌(r1)𝛽𝑤J(|r − r1|)

+
∫︁

dr1𝜌(r1)𝛽𝑤1(|r − r1|)

− 𝛽𝜇ex

= ln
(︀
𝑦(𝑟)

)︀
+ 𝛿𝛽ℱex

hs
𝛿𝜌(r)

+
(︀
𝜌 * 𝛽𝑤J

)︀
(𝑟) +

(︀
𝜌 * 𝛽𝑤1

)︀
(𝑟) − 𝛽𝜇ex = 0, (8.3)

where the integrals are rewritten as convolutions in the second
equation. Now, instead of solving Eq. (8.3) for the density profile
(which we could not do, because 𝑤1(𝑟) is unknown), we plug in the
quasi-exact density profile 𝜌J

mc(𝑟) of the test particle geometry of
the Jagla fluid which is obtained from a MC simulation and, hence,
is denoted by the index ’mc’. The MC simulation calculates the
quasi-exact bulk radial distribution function 𝑔J

mc(𝑟) of the Jagla
fluid, and we subsequently make use of the fact that 𝜌J

mc(𝑟) =
𝜌b𝑔

J
mc(𝑟) holds in the test particle geometry. We note that the

MC input data is somewhat smoothed to ensure that noise do
not cause strong numerical artifacts. Furthermore, we plug into
(8.3) the cavity distribution function 𝑦J

mc(𝑟) of the Jagla fluid
which we compute by employing the direct MC simulation method
described in the work by Llano-Restrepo and Chapman [23]. From
(3.8) we see that 𝑦(𝑟) = 𝑔(𝑟) holds for all distances 𝑟 for which the
interaction potential 𝑣(𝑟) vanishes. Since the Jagla potential 𝑣J(𝑟)
has a finite range, we use this identity to verify our results for
𝑦J

mc(𝑟). Finally, we plug into Eq. (8.3) the mean-field expression
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of the excess chemical potential of the Jagla fluid, 𝜇ex
mf,J, which is

given by Eq. (6.30) and can be easily calculated, where 𝑤(𝑟) in
(6.30) now is the soft tail 𝑤J(𝑟) of the Jagla fluid. With this we
obtain:

𝛿𝛽Ω
𝛿𝜌(r)

⃒⃒⃒⃒
𝜌J

mc(𝑟)
= ln

(︀
𝑦J

mc(𝑟)
)︀

+ 𝛿𝛽ℱex
hs

𝛿𝜌(r)

⃒⃒⃒⃒
𝜌J

mc(𝑟)

+
(︀
𝜌J

mc * 𝛽𝑤J
)︀
(𝑟) +

(︀
𝜌J

mc * 𝛽𝑤1
)︀
(𝑟) − 𝛽𝜇ex

mf,J

= 0. (8.4)

The only unknown quantity in Eq. (8.4) is the potential correction
𝑤1(𝑟) and, thus, we rewrite it to be

𝜌J
mc * 𝛽𝑤1 = −

[︃
ln
(︀
𝑦J

mc(𝑟)
)︀

+ 𝛿𝛽ℱex
hs

𝛿𝜌(r)

⃒⃒⃒⃒
𝜌J

mc(𝑟)

+ 𝜌J
mc * 𝛽𝑤J − 𝛽𝜇ex

mf,J

]︃
≡ 𝑢(𝑟), (8.5)

where, for reasons of simplicity, we term the right side 𝑢(𝑟). Note,
that 𝑢(𝑟) is also well defined for 𝑟 < 𝜎 and unequal zero, and,
hence, the same holds for the solution 𝑤1(𝑟). If we manage to
accurately solve Eq. (8.5) for 𝑤1(𝑟), we are able to reproduce
the MC density profile 𝜌J

mc(𝑟) with mean-field DFT with 𝑤1(𝑟)
as perturbation potential. To determine the latter, we make
use of the convolution theorem which states that the Fourier
transform of a convolution of two functions 𝑓(r) and 𝑔(r) is
equal to the product of the Fourier transforms of the functions:
F[𝑓 *𝑔] = F[𝑓 ]F[𝑔], where F denotes the three-dimensional Fourier
transform. If we now apply the Fourier transform on either sides
of Eq. (8.5) as well as the convolution theorem , we obtain

F
[︀
𝜌J

mc(𝑟)
]︀
(𝑘)F

[︀
𝛽𝑤1(𝑟)

]︀
(𝑘) = F

[︀
𝑢(𝑟)

]︀
(𝑘)
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which can be rewritten to be

𝛽𝑤1(𝑟) = F−1
[︃

F
[︀
𝑢(𝑟)

]︀
F
[︀
𝜌J

mc(𝑟)
]︀]︃, (8.6)

where F−1 denotes the inverse Fourier transform, i.e., F−1 F = id.
This approach, however, is not as straight forward as it might seem
at first glance. The (discrete) Fourier transform F

(︀
𝜌J

mc(𝑟)
)︀
(𝑘) of

the density profile 𝜌J
mc(𝑟) oscillates around zero while decaying,

hence, causing the fraction in Eq. (8.6) to become extremely large
at certain points where F

(︀
𝜌J

mc(𝑟)
)︀
(𝑘) is close to zero. This is

especially the case for large values of 𝑘, and causes inaccuracies
in the result 𝛽𝑤1(𝑟). We tried to overcome this issue by fitting a
high order polynomial to the data points of the fraction of Fourier
transforms at which the large values occur. This, however, could
not improve the outcome enough to derive a potential correction
𝑤1(𝑟) which is sufficiently accurate to reproduce the MC density
profile with mean-field DFT.

8.2.2. Via the radial distribution function
In a second approach, we implement all calculations in real space.
For this, we apply an interaction potential 𝑣opt(𝑟) which is of the
form 𝑣opt(𝑟) = 𝑣hs(𝑟) + 𝑤opt(𝑟) with the perturbation potential
𝑤opt(𝑟). Furthermore, we substitute 𝑦(𝑟) in Eq. (8.2) via 𝑦(𝑟) =
exp

[︀
𝛽𝑣opt(𝑟)

]︀
𝑔(𝑟) which yields a Euler-Lagrange equation that

contains the radial distribution function 𝑔(𝑟):

𝛿𝛽Ω
𝛿𝜌(r) = ln

(︀
𝑔(𝑟)

)︀
+ 𝛿𝛽ℱex

𝛿𝜌(r) + 𝛽𝑣opt(𝑟) − 𝛽𝜇ex = 0.

As in Sec. 8.2.1, we use Eq. (8.1) to rewrite the functional deriva-
tive of ℱex, and we plug in the quasi-exact MC simulation data
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8. Monte-Carlo-optimized DFT

in terms of the density profile 𝜌J
mc(𝑟) of the test particle geometry

and the radial distribution function 𝑔J
mc(𝑟) of the Jagla fluid.

Also as above, we plug in the mean-field expression of the excess
chemical potential 𝜇ex

mf,J. With this we obtain:

𝛿𝛽Ω
𝛿𝜌(r)

⃒⃒⃒⃒
𝜌J

mc(𝑟)
= ln

(︀
𝑔J

mc(𝑟)
)︀

+ 𝛿𝛽ℱex
hs

𝛿𝜌(r)

⃒⃒⃒⃒
𝜌J

mc(𝑟)

+
(︀
𝜌J

mc * 𝛽𝑤opt
)︀
(𝑟) + 𝛽𝑣opt(𝑟) − 𝛽𝜇ex

mf,J

= 0. (8.7)

Since both unknown functions 𝛽𝑣opt(𝑟) and 𝛽𝑤opt(𝑟) occur in
Eq. (8.7), it can only be quasi-solved for 𝛽𝑣opt(𝑟):

𝛽𝑣opt(𝑟) = − ln
(︀
𝑔J

mc(𝑟)
)︀

− 𝛿𝛽ℱex
hs

𝛿𝜌(r)

⃒⃒⃒⃒
𝜌J

mc(𝑟)

−
(︀
𝜌J

mc * 𝛽𝑤opt
)︀
(𝑟) + 𝛽𝜇ex

mf,J; (8.8)

yet, it can be solved numerically by using e.g. a Piccard iteration.
This procedure is equivalent to the standard functional minimiza-
tion in DFT. The only difference is that now the (quasi-exact)
MC density profile is the input, and the result is the (optimized)
interaction potential, whereas in standard DFT the interaction
potential is the input, and the equilibrium density profile the
output. Unlike in Eq. (8.5), the right side of Eq. (8.8) is not well
defined for 𝑟 < 𝜎, as 𝑔J

mc(𝑟 < 𝜎) = 0, and therefore is only valid
for 𝑟 ≥ 𝜎. This gives us a freedom of choice for the behavior of
the perturbation potential 𝛽𝑤opt(𝑟) inside the hard core. In the
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(𝑖+ 1)-th iteration step, Eq. (8.8) takes the shape

𝛽𝑣(𝑖+1)(𝑟) = (1 − 𝛼)𝛽𝑣(𝑖)(𝑟)

+ 𝛼

[︃
− ln

(︀
𝑔J

mc(𝑟)
)︀

− 𝛿𝛽ℱex
hs

𝛿𝜌(r)

⃒⃒⃒⃒
𝜌J

mc(𝑟)

−
(︀
𝜌J

mc * 𝛽𝑤(𝑖))︀(𝑟) + 𝛽𝜇ex
mf
(︀
𝑤(𝑖)(𝑟)

)︀]︃
, (8.9)

where we have introduced the parameter 𝛼 which mixes the old
solution 𝛽𝑣(𝑖)(𝑟) with the new solution (the term in brackets),
to avoid divergence in the iteration. Only the convolution and
the excess chemical potential must be calculated in every iter-
ation step, whereas the functional derivative of 𝛽ℱex

hs has to be
calculated only once. The initial perturbation potential 𝑤(0)(𝑟)
we set to be the Jagla potential 𝑣J(𝑟) for 𝑟 ≥ 𝜎; the choice of the
behavior of 𝑤(0)(𝑟) for 𝑟 < 𝜎 we discuss in Sec. 8.3. Since Eq. (8.9)
is only valid outside the hard core, 𝑤(𝑖)(𝑟 < 𝜎) = 𝑤(0)(𝑟 < 𝜎)
holds for all values of 𝑖. It is important to note that the behavior
of the perturbation potentials 𝑤(𝑖) for 𝑟 < 𝜎 influences the up-
dated potential 𝑣(𝑖+1)(𝑟) outside the hard core via the convolution(︀
𝜌mc * 𝛽𝑤(𝑖))︀(𝑟) and the excess chemical potential 𝜇ex(︀𝑤(𝑖)(𝑟)

)︀
.

Nevertheless, if in the original test particle mean-field DFT the
optimized perturbation potential is applied which is composed of
the chosen behavior inside the core and the associated potential
behavior outside the core which was determined with Eq. (8.9),
the correct MC density profile is recovered, independent of the
actual choice of 𝑤(𝑖)(𝑟 < 𝜎). Although not implied in the notation
so far, the procedure discussed as of yet must be executed for
every state point (𝜂, 𝑇 *) of interest to obtain optimal results.
This leads to an optimized potential of the form 𝑣opt(𝑟; 𝜂, 𝑇 *)
with associated perturbation potential 𝑤opt(𝑟; 𝜂, 𝑇 *). In practice,
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8. Monte-Carlo-optimized DFT

executing the optimization algorithm at certain state points and
applying a fit through the thus gained optimized perturbation po-
tentials works well to obtain a continuous optimized perturbation
potential.

8.2.3. Optimizing the behavior of the bulk pressure
In the mean-field approach, for a given hard-core-plus-soft-tail
interaction potential 𝑣(𝑟; 𝜂, 𝑇 *) (not necessarily derived via the
techniques discussed in this chapter as of yet), the behavior of
the associated perturbation potential inside the hard core can
be utilized to optimize the behavior of the bulk pressure of the
corresponding fluid. To do so, we use bulk pressure data gained by
canonical MC simulations. The mean-field expression of the bulk
pressure 𝑝 of a fluid with a particle-particle interaction potential
which is a function of the density, or the packing fraction, reads

𝛽𝑝 = 𝜌
1 + 𝜂 + 𝜂2 − 𝜂3

(1 − 𝜂)3

+ 2𝜋𝜌2

𝑇 *

[︃
𝐼(𝜂, 𝑇 *) + 𝜂

𝜕𝐼(𝜂, 𝑇 *)
𝜕𝜂

]︃
, (8.10)

where the first term is the Carnahan-Starling expression for the
hard-sphere pressure [7], and 𝐼(𝜂, 𝑇 *) denotes the integral

𝐼(𝜂, 𝑇 *) =
∫︁ ∞

0
d𝑟 𝑟2𝛽𝑤(𝑟; 𝜂, 𝑇 *), (8.11)

with the perturbation potential 𝑤(𝑟; 𝜂, 𝑇 *). Unlike in Eq. (6.31),
the integral 𝐼 now is a function of the packing fraction 𝜂, or the
bulk density 𝜌, since the perturbation potential now is a function
of the packing fraction. This has to be taken into account in the
calculation of the mean-field expression of the pressure in terms
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of the derivative of 𝐼 with respect to 𝜂. Given the MC pressure
data, Eq. (8.10) can be rewritten as a first-order linear ordinary
differential equation for the expression 𝐼(𝜂, 𝑇 *):

𝜕𝐼(𝜂, 𝑇 *)
𝜕𝜂

= −𝐼(𝜂, 𝑇 *)
𝜂

+ 𝑏(𝜂, 𝑇 *). (8.12)

Here, the expression 𝑏(𝜂, 𝑇 *) contains the CS pressure and the MC
pressure data. Equation (8.12) can easily be solved numerically
to obtain 𝐼(𝜂, 𝑇 *). Furthermore, we can write the integral in
Eq. (8.11) as

𝐼(𝜂, 𝑇 *) =
∫︁ 𝜎

0
d𝑟 𝑟2𝛽𝑤(𝑟; 𝜂, 𝑇 *) +

∫︁ ∞

𝜎
d𝑟 𝑟2𝛽𝑤(𝑟; 𝜂, 𝑇 *)

≡ 𝐼core(𝜂, 𝑇 *) + 𝐼ext(𝜂, 𝑇 *). (8.13)

As we assume a given hard-core potential 𝑣(𝑟; 𝜂, 𝑇 *), the exterior
integral 𝐼ext is known, and we can solve Eq. (8.13) for 𝐼core. Here,
only the value of the core integral is of importance; hence, we can
assume the perturbation potential 𝑤(𝑟; 𝜂, 𝑇 *) to be a constant
𝛽𝑐(𝜂, 𝑇 *) inside the core, and thus write

𝐼core(𝜂, 𝑇 *) = 𝛽𝑐(𝜂, 𝑇 *)
∫︁ 𝜎

0
d𝑟 𝑟2

(︀
Eq. (8.13)

)︀
= 𝐼(𝜂, 𝑇 *) − 𝐼ext(𝜂, 𝑇 *). (8.14)

Equation (8.14) can now easily be solved for the constant 𝑐(𝜂,𝑇 *):

𝛽𝑐(𝜂, 𝑇 *) = 3
𝜎3

[︁
𝐼(𝜂, 𝑇 *) − 𝐼ext(𝜂, 𝑇 *)

]︁
.

If we plug the thus gained perturbation potential (core plus
exterior) back into Eq. (8.10), we recover the MC pressure.
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8.3. Results and discussion

We apply the techniques discussed in Sec. 8.2.2 to study the
inhomogeneous Jagla fluid. The phase behavior of the latter,
and especially the appearance of a liquid-liquid critical point, we
tried to investigate in Chpt. 7 by application of the perturbation
DFT which ultimately failed at low temperatures and close to
the binodals.

8.3.1. Test particle geometry

To obtain the optimized perturbation potential 𝑤opt(𝑟; 𝜂, 𝑇 *) for
the test particle geometry, we apply the iteration in Eq. (8.9),
where we choose the perturbation potential to be zero for 𝑟 < 𝜎,
and, furthermore, force it to be zero for 𝑟 > 𝑎max 𝜎, to have a
finite range; i.e., the potential in the iteration is only updated at
𝜎 ≤ 𝑟 ≤ 𝑎max 𝜎. Here, our choice of the parameter 𝑎max depends
on the state point (𝜂, 𝑇 *) at which the optimization is carried out.
Subsequently, we apply the potential 𝑤opt(𝑟; 𝜂, 𝑇 *) in a standard
mean-field DFT code for the test particle geometry and find
excellent agreement between DFT and (initial) MC results in a
wide range of the parameters 𝑇 * and 𝜂. While a value of 𝑎max =
20𝜎 yields excellent results at high temperatures (𝑇 * ≈ 1.0), we
have to reduce the range of 𝑤opt(𝑟) at lower temperatures (𝑎max =
5𝜎 at 𝑇 * = 0.1) to ensure convergence of both the iteration to find
the optimized potential and the actual mean-field DFT code run
with the optimized potential. This in turn causes small deviations
between DFT and MC results for 𝑟 > 𝑎max. These differences,
however, are smaller than the accuracy of the corresponding
plots (Fig. 8.2). We note that, unless otherwise stated, all MC
results presented here are computed using a standard canonical
Metropolis [25] MC algorithm.
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Figure 8.1 shows a comparison of the radial distribution func-
tions, at the state point (𝜂, 𝑇 *) = (0.1, 1.0), calculated by means
of MC simulations, the optimized DFT, and standard mean-field
DFT, the latter being a mean-field DFT where the particles
interact via the Jagla potential 𝑣J and not via the optimized
potential. As already mentioned, the agreement between MC and
optimized DFT data is excellent, while mean-field DFT already
predicts an inaccurate contact value. Figure 8.2 depicts the radial
distribution functions of MC simulation and optimized DFT at
(𝜂, 𝑇 *) = (0.3, 0.1). Even tough we have to reduce the range of
𝑎max to 5𝜎, to ensure convergence of the code, the thus caused
deviations are still smaller than the accuracy of the plot, whereas
mean-field DFT, being in its unstable region at this particular
state point (see Fig. 8.10), fails to converge. For the two state
points considered here, the soft tails of the optimized interaction
potentials 𝑣opt are shown in Fig. 8.3. We observe that at high
temperatures, where mean-field DFT still predicts results in the
range of the MC data, the changes in the interaction potential
necessary to acquire accurate results are rather small. However,
at lower temperatures and in the unstable region of mean-field
theory, the interaction potential needs to be modified dramatically
to compensate the shortcomings of mean-field DFT.

8.3.2. Infinite slit geometry

To study the phase behavior of the Jagla fluid under confinement,
we extent the techniques described in Sec. 8.3.1 to the infinite
slit geometry (see Sec. 7.2). As the iteration technique [Eq. (8.9)]
to determine the optimized interaction potential is applicable
only in the test particle geometry - there the external potential
is equal to the particle-particle interaction potential - but not
in the slit geometry, we use the freedom of choice of the pertur-
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Figure 8.1.: The radial distribution function 𝑔(𝑟*) of the Jagla fluid
as a function of the reduced center-to-center particle distance 𝑟* = 𝑟/𝜎
at (𝜂, 𝑇 *) = (0.1, 1.0) calculated by means of Monte Carlo simulations
(crosses), the optimized DFT (solid line), and standard mean-field DFT
(dashed line). The cutoff parameter 𝑎max of the optimized potential
was set to 20𝜎.
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Figure 8.2.: The radial distribution function 𝑔(𝑟*) of the Jagla fluid
as a function of the reduced center-to-center particle distance 𝑟* = 𝑟/𝜎
at (𝜂, 𝑇 *) = (0.3, 0.1) calculated by means of Monte Carlo simulations
(crosses) and the optimized DFT (solid line). The cutoff parameter
𝑎max of the optimized potential was set to 5𝜎.
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Figure 8.3.: The soft tail of the reduced Jagla potential 𝑣*
J = 𝑣J/𝜖

as applied in this work (solid line), and the soft tails of the reduced
optimized (for the test particle geometry) potentials 𝑣*

opt = 𝑣opt/𝜖 for
(𝜂, 𝑇 *) = (0.1, 1.0) (dashed line) and (𝜂, 𝑇 *) = (0.3, 0.1) (dotted line)
as functions of the reduced center-to-center particle distance 𝑟* = 𝑟/𝜎.
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bation potential’s behavior inside the hard core to adjust the
optimized potential, gained in the test particle geometry, to the
slit geometry. To this end, we fix the perturbation potential inside
the core to a certain behavior, calculate the optimized potential
behavior outside the hard core in the test particle geometry, and
then apply the thus gained perturbation potential (hard core
plus optimized soft tail) as interaction potential in a DFT code
for the slit geometry. The latter we term optimized slit DFT.
Subsequently, we compare the density profiles gained with the
optimized slit DFT to those computed with a standard Metropo-
lis [25] MC code for the slit. We studied constant, linear and
quadratic functions as perturbation potential cores and found
that the improvement of the linear function over the constant
function was tremendous, whereas only little, if at all, accuracy
was gained by shifting from linear to quadratic behavior. Hence,
we calculate optimized potentials for a wide range of parameters of
the linear function in the core using the just described technique,
and afterwards determine for which parameter set the deviation
between optimized slit DFT and MC density profiles is minimal.
Since both the iteration to determine the optimized potential
and the optimized slit DFT calculation are carried out quickly,
thanks to fast-Fourier techniques, we refrain from applying a
more elaborate minimization algorithm. As it turns out, also the
choice of the parameter 𝑎max (the optimized potential’s range)
is crucial in the minimization process and we had to reduce it
to 3.08𝜎 (0.08𝜎 to achieve a smooth transition of the potential
to zero) in order to gain good compliance between optimized slit
DFT and MC density distributions. Interestingly, 3𝜎 is the range
of the original Jagla potential.

In the following, we compare the optimized slit DFT density
profiles to those obtained via MC simulations, perturbation DFT,
and mean-field DFT in a slit with reduced length 𝑙 = 22 at
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different assorted state points (𝜂, 𝑇 *). Here, 𝑙 is chosen such that
the bulk limit can be observed in the center of the slit to check
for consistency.

At high temperatures and low densities, i.e. (𝜂, 𝑇 *)=(0.1, 1.0),
we find the agreement between optimized slit DFT and MC
results to be very good (see Fig. 8.4). Only at the first minimum
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Figure 8.4.: The density distribution 𝜌* = 𝜌𝜎3 of the Jagla fluid in
a slit with hard walls and reduced length 𝑙 = 𝐿/𝜎 = 22 at (𝜂, 𝑇 *) =
(0.1, 1.0) described by means of the optimized slit DFT (solid line),
perturbation DFT (dashed line), standard mean-field DFT (dotted
line), and MC simulations (crosses). The abscissa provides the reduced
distance 𝑧* = 𝑧/𝜎 from the left wall.

away from the hard wall the optimized slit DFT profile is a
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little off the MC data, but overall optimized slit DFT yields an
improvement over the already good perturbation DFT result.
As already discussed in Sec. 7.2, mean-field DFT fails to predict
correct results in the vicinity of the hard wall.

If we move closer to the first biondal line of the Jagla fluid (see
triangles in Fig. 8.10), by reducing the temperature at constant
density, we find that at (𝜂, 𝑇 *) = (0.1, 0.5) the optimized slit
DFT looses a bit of its accuracy but still produces result in good
agreement with the corresponding MC data. This is depicted in
Fig. 8.5. Again, the first minimum away from the hard wall is
not reproduced correctly. Also, optimized slit DFT lies a little
below the MC data between the first minimum and the bulk limit.
However, compared to the perturbation DFT profile, which clearly
lies below the MC profile, these are only minor shortcomings.
Standard mean-field DFT fails and predicts a profile close to or
in a gas phase. This is not surprising, since at the state point
under consideration, the mean-field Jagla fluid is unstable (see
solid line in Fig. 8.10).

At lower temperatures and higher densities, but not close to
first or second binodal, which is the case at (𝜂, 𝑇 *) = (0.3, 0.3), the
optimized slit DFT overall is in very good agreement with the MC
results (see Fig. 8.6). This is remarkable since here perturbation
DFT fails and exhibits unphysical oscillations. Mean-field DFT,
being considered at a state point in its unstable region, erroneously
predicts a gas phase.

By further reducing the temperature, i.e. (𝜂, 𝑇 *) = (0.3, 0.1),
which also brings us closer to the second binodal, optimized slit
DFT looses some of its accuracy and clearly shows deviations from
the exact MC profile (see Fig. 8.7). However, the contact value
seems still to be predicted well, and also the overall shape of the
profile is in agreement with the MC results. Even though the den-
sity profile is not perfect, this is still a great improvement within
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Figure 8.5.: The density distribution 𝜌* = 𝜌𝜎3 of the Jagla fluid in
a slit with hard walls and reduced length 𝑙 = 𝐿/𝜎 = 22 at (𝜂, 𝑇 *) =
(0.1, 0.5) described by means of the optimized slit DFT (solid line),
perturbation DFT (dashed line), standard mean-field DFT (dotted
line), and MC simulations (crosses). The abscissa provides the reduced
distance 𝑧* = 𝑧/𝜎 from the left wall.
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Figure 8.6.: The density distribution 𝜌* = 𝜌𝜎3 of the Jagla fluid in
a slit with hard walls and reduced length 𝑙 = 𝐿/𝜎 = 22 at (𝜂, 𝑇 *) =
(0.3, 0.3) described by means of the optimized slit DFT (solid line),
perturbation DFT (dashed line), standard mean-field DFT (dotted
line), and MC simulations (crosses). The abscissa provides the reduced
distance 𝑧* = 𝑧/𝜎 from the left wall.
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Figure 8.7.: The density distribution 𝜌* = 𝜌𝜎3 of the Jagla fluid in
a slit with hard walls and reduced length 𝑙 = 𝐿/𝜎 = 22 at (𝜂, 𝑇 *) =
(0.3, 0.1) described by means of the optimized slit DFT (solid line) and
MC simulations (crosses). The abscissa provides the reduced distance
𝑧* = 𝑧/𝜎 from the left wall.
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8.3. Results and discussion

DFT given that the perturbation DFT shows coarse artifacts in
its density profile at higher temperature already. Perturbation
DFT and mean-field DFT, being considered at a state point in
the unstable regions of the corresponding bulk phase diagrams
(see Fig. 8.10), fail to converge at (𝜂, 𝑇 *) = (0.3, 0.1).

Moving even closer to the second binodal line to the state
point (𝜂, 𝑇 *) = (0.25, 0.1) by reducing the density increases the
deviations between optimized slit DFT and MC results further.
This is depicted in Fig. 8.8. Now, also the contact value is not
predicted correctly anymore. Still, the optimized slit DFT results
are in the range of the MC data while, at least roughly, resembling
the shape of the quasi-exact density distribution. Perturbation
DFT and mean-field DFT, again, fail to converge which is to
expect given that the state point under consideration lies even
deeper in the corresponding unstable regions (see Fig. 8.10).

As mentioned above, the MC results presented so far are cal-
culated in a canonical simulation box in which, as the density
is kept constant, no phase transition is possible. Hence, using
canonical MC density profiles as input data for our optimized slit
DFT at state points close to a binodal is questionable; especially
since DFT is a theory formulated in the grand canonical ensemble.
For this reason, we also fed the optimized slit DFT MC data
we calculated by means of grand canonical MC simulations [27]
for state points close to a binodal line, especially in the region
0.25 ≤ 𝜂 ≤ 0.3 at 𝑇 * = 0.1. However, when comparing grand
canonical MC and corresponding optimized slit DFT density pro-
files, no improvement regarding the deviation of the latter from
the former can be observed as against the canonical calculations.
By this we mean that if we, for example, compare the mean
square deviation between MC and optimized slit DFT profiles of
a canonical calculation at (𝜂, 𝑇 *) = (0.25, 0.1) to the mean square
deviation of a grand canonical calculation, which results in a bulk
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Figure 8.8.: The density distribution 𝜌* = 𝜌𝜎3 of the Jagla fluid in
a slit with hard walls and reduced length 𝑙 = 𝐿/𝜎 = 22 at (𝜂, 𝑇 *) =
(0.25, 0.1) described by means of the optimized slit DFT (solid line) and
MC simulations (crosses). The abscissa provides the reduced distance
𝑧* = 𝑧/𝜎 from the left wall.
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8.3. Results and discussion

density of 𝜂 = 0.263 in the slit center at the same temperature,
the two are of the same magnitude.

We also investigate the optimized slit DFT’s performance re-
garding the variation of the slit length at state points where no
phase transition due to a change of geometry is to expect. The
calculations to calibrate the optimized slit DFT are all performed
in a geometry with reduced slit length 𝑙 = 22. If we gradually re-
duce the slit length down to 𝑙 = 6, keeping the original optimized
interaction potential, we find the agreement between optimized
slit DFT and MC data to be only slightly poorer compared to the
case with 𝑙 = 22 for all state points checked. Figure 8.9 shows a
comparison of optimized slit DFT and MC density distributions
in slits with 𝑙 = 16, 𝑙 = 11 and 𝑙 = 6 at (𝜂, 𝑇 *) = (0.3, 0.3). Note
that an investigation of the optimized slit DFT’s phase behavior
due to a variation of the slit length follows below.

Furthermore, we note that the optimized slit DFT seems to
be robust regarding small changes in the optimized perturbation
potential. To acquire a continuous optimized perturbation poten-
tial 𝑤opt(𝑟; 𝜂, 𝑇 *), we perform curve fits, first in 𝑇 *-direction and
subsequently in 𝜂-direction, through the optimized perturbation
potentials for previously considered state points. This is done
for the data gained using canonical MC. The fitted potential
obviously deviates slightly from the original version; nevertheless,
when plugged into the optimized slit DFT, the quality of the
results remains the same. For the fit in 𝑇 *-direction we apply the
function

𝑤(𝑟;𝑇 *) = 𝑤J(𝑟) +
5∑︁

𝑖=0
𝑤𝑖(𝑟)

(︁
𝑇 *
)︁−𝑖/8

, (8.15)

where the functions 𝑤𝑖(𝑟) are the fit parameters and 𝑤J(𝑟) is the
soft tail of the original Jagla potential. In particular, the fit in 𝑇 *-
direction is done as follows. For a given packing fraction 𝜂, we have
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Figure 8.9.: The density distribution 𝜌* = 𝜌𝜎3 of the Jagla fluid in
a slit with hard walls and reduced length 𝑙 = 𝐿/𝜎 = 16 (bottom),
𝑙 = 11 (center), 𝑙 = 6 (top) at (𝜂, 𝑇 *) = (0.3, 0.3) described by means of
the optimized slit DFT (solid line) and MC simulations (crosses). For
reasons of clarity, the center and the top line are shifted upwards by
1.0 and 2.0, respectively. The abscissa provides the reduced distance
𝑧* = 𝑧/𝜎 from the left wall.
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previously calculated optimized potential values 𝑤opt available
at 𝑟 = 0.00𝜎, 0.01𝜎, 0.02𝜎, . . . , 3.08𝜎 for various temperatures
𝑇 * = 0.1, 0.2, . . . , 1.0, 2.0, . . . , 5.0. Note, that 𝑎max = 3.08𝜎 is
the range of the optimized potential. Now, for a fixed value of
𝑟, we fit the function in Eq. (8.15) to the values of 𝑤opt at the
various temperatures. This is repeated for every value of 𝑟 which
gives us the perturbation potential 𝑤opt for every temperature in
the interval [0.1, 5.0] at the previously chosen packing fraction.
This procedure is then repeated for the packing fractions 𝜂 =
0.001, 0.1, 0.15, 0.2, 0.25, 0.3.

The subsequent fit in 𝜂-direction is done using the polynomial

𝑤(𝑟;𝑇 *, 𝜂) =
3∑︁

𝑖=0
𝑢𝑖(𝑟;𝑇 *)𝜂𝑖 (8.16)

with fit parameters 𝑢𝑖(𝑟;𝑇 *). Here, for a fixed value of the tuple
(𝑟, 𝑇 *), we fit the function in Eq. (8.16) to the previously, through
the fit in 𝑇 *-direction, determined values of 𝑤opt at the packing
fractions 𝜂 = 0.001, 0.1, 0.15, 0.2, 0.25, 0.3. This is repeated for
every tuple (𝑟, 𝑇 *), where 𝑟 = 0.00𝜎, 0.01𝜎, 0.02𝜎, . . . , 3.08𝜎, as
before, and 𝑇 * = 0.08, 0.09, 0.1, . . . , 5.0. This finally yields the
fitted optimized perturbation potential 𝑤opt(𝑟; 𝜂, 𝑇 *).

The obvious question now is, if the optimized slit DFT is able
to describe the phase behavior of the Jagla fluid correctly. We first
examine the bulk phase behavior of the canonical optimized slit
DFT and for this purpose apply the fitted potential 𝑤opt(𝑟; 𝜂, 𝑇 *).
We calculate the bulk binodal as described in Secs. 6.1.1 and
6.1.2, where we have to consider that the perturbation potential
𝑤opt(𝑟; 𝜂, 𝑇 *) is a function of the packing fraction 𝜂. Thus, the
mean-field term of the bulk excess free energy density now reads:

𝛽𝑓 ex
mf = 2𝜋𝜌2

∫︁ ∞

0
d𝑟 𝑟2𝛽𝑤opt(𝑟; 𝜂, 𝑇 *), (8.17)
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and the corresponding expressions for the excess chemical poten-
tial and the pressure are [c.f. Eqs. (6.26) and (6.27)]

𝜇ex
mf = 4𝜋𝜌𝐼 + 2𝜋𝜌2𝜕𝐼

𝜕𝜌
,

and
𝑝ex

mf = 2𝜋𝜌2𝐼 + 2𝜋𝜌3𝜕𝐼

𝜕𝜌
,

where the integral 𝐼 now is the integral in Eq. (8.17). Note, that
Eq. (8.17) is the bulk limit of the second term in Eq. (8.1) divided
by the system’s volume 𝑉 . The resulting phase diagram of the
canonical optimized slit DFT is plotted in Fig. 8.10 (plus symbols),
and we find that it has little in common with the phase diagram
of the Jagla fluid derived via MC simulations by Lomba and
coworkers [24] (triangles). Not only does the optimized slit DFT
binodal merely show one critical point instead of the expected
two, also it is neither close to the first nor to the second MC
binodal.

In an attempt to improve the bulk phase behavior of the
optimized slit DFT, we, as described in Sec. 8.2.3, modify the
potential core of the fitted perturbation potential 𝑤opt(𝑟; 𝜂, 𝑇 *)
such that the canonical MC bulk pressure is recovered. The
new potential, which we term 𝑤p

opt(𝑟; 𝜂, 𝑇 *), now has the value
of the well-chosen constant inside the core and is the unaltered
fitted perturbation potential 𝑤opt(𝑟; 𝜂, 𝑇 *) outside the core. If we
calculate the bulk phase diagram using the potential 𝑤p

opt(𝑟; 𝜂, 𝑇 *),
we find the two resulting binodals to be in good agreement with
the MC binodals by Lomba and et al. (see Fig. 8.10, crosses).
This implies that our method to improve the bulk pressure of the
fluid also seems to improve its bulk phase behavior. However, if
we plug the potential 𝑤p

opt(𝑟; 𝜂, 𝑇 *) back into the slit DFT (this
DFT we call pressure-optimized slit DFT), we can not recover the
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Figure 8.10.: The bulk binodal lines of the Jagla fluid in the 𝑇 *-𝜂
phase diagram obtained by means of mean-field perturbation theory
with the optimized perturbation potential 𝑤opt(𝑟; 𝜂, 𝑇 *) (plus symbols),
mean-field perturbation theory with the pressure-optimized perturbation
potential 𝑤p

opt(𝑟; 𝜂, 𝑇 *) (crosses), standard mean-field theory, i.e., mean-
field theory with the soft tail of the Jagla potential as perturbation (solid
line), first order perturbation theory of the twice split Jagla potential
(circles, Sec. 6.4.2), and MC simulations [24] (triangles). The dashed
line shows the standard mean-field bulk spinodal of the Jagla fluid.
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density profiles of the optimized slit DFT. The density profiles
of the pressure-optimized slit DFT are far off the corresponding
MC density distributions and sometimes even show a gas phase
at state points where the MC simulations predict a liquid.

Hence, we try to merge optimized slit DFT and pressure-
optimized slit DFT results, by calculating a potential behavior
inside the core which is as close as possible to the linear ramp of
optimized slit DFT, under the constraint that the integral 𝐼core
[see Eq. (8.13)] takes the same value as in the pressure-optimized
slit DFT. This is essentially a minimization under constraints in
the function space on the interval [0, 𝜎], and we apply the method
of Lagrange multipliers to solve it. If we term the new behavior
of our optimized potential inside the core 𝑤L

opt(𝑟; 𝜂, 𝑇 *), then the
constraint of the minimization is given by∫︁ 𝜎

0
d𝑟 𝑟2𝛽𝑤L

opt(𝑟; 𝜂, 𝑇 *)
(︀

Eq. (8.13)
)︀

= 𝐼core(𝜂, 𝑇 *)(︀
Eq. (8.14)

)︀
= 𝛽𝑐(𝜂, 𝑇 *)

∫︁ 𝜎

0
d𝑟 𝑟2

= 𝜎3

3 𝛽𝑐(𝜂, 𝑇
*),

whereas the expression to be minimized reads∫︁ 𝜎

0
d𝑟
(︁
𝛽𝑤L

opt(𝑟; 𝜂, 𝑇 *) − 𝛽𝑤opt(𝑟; 𝜂, 𝑇 *)
)︁2
.

Thus, the corresponding Lagrangian function is the functional

Λ
[︁
𝑤L

opt, 𝜆
]︁

=
∫︁ 𝜎

0
d𝑟
(︁
𝛽𝑤L

opt(𝑟; 𝜂, 𝑇 *) − 𝛽𝑤opt(𝑟; 𝜂, 𝑇 *)
)︁2

+ 𝜆

[︃ ∫︁ 𝜎

0
𝑟2𝛽𝑤L

opt(𝑟; 𝜂, 𝑇 *) d𝑟 − 𝜎3

3 𝛽𝑐(𝜂, 𝑇
*)
]︃
,
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with the the Lagrange multiplier 𝜆. We now demand

𝛿Λ
[︁
𝑤L

opt, 𝜆
]︁

𝛿𝑤L
opt

= 0, (8.18)

and
𝜕Λ
[︁
𝑤L

opt, 𝜆
]︁

𝜕𝜆
= 0,

where the l.h.s. of Eq. (8.18) is a functional derivative, and obtain

𝑤L
opt(𝑟; 𝜂, 𝑇 *) = 𝑤opt(𝑟; 𝜂, 𝑇 *) − 1

2𝜆 𝑟
2, (8.19)

and
𝜆 = − 10

3𝜎2 𝑐(𝜂, 𝑇
*) + 10

𝜎5

∫︁ 𝜎

0
d𝑟 𝑟2𝑤opt(𝑟; 𝜂, 𝑇 *).

On the interval [0, 𝜎], on which the minimization is carried out,
the potential 𝑤opt(𝑟; 𝜂, 𝑇 *) is a linear function in 𝑟, and, hence,
𝑤L

opt(𝑟; 𝜂, 𝑇 *) in Eq. (8.19) is quadratic in 𝑟, where 𝑤L
opt(𝑟 =

0; 𝜂, 𝑇 *) = 𝑤opt(𝑟 = 0; 𝜂, 𝑇 *). This is depicted in Fig. 8.11 which
shows a comparison of the perturbation potentials 𝑤opt, 𝑤p

opt,
𝑤L

opt, and the soft tail of the original Jagla potential 𝑣J at the
state point (𝜂, 𝑇 *) = (0.3, 0.3). We observe that while the behav-
ior of 𝑤L

opt inside the hard core is much closer to the behavior
of 𝑤opt than the behavior of 𝑤p

opt, the deviation between 𝑤L
opt

and 𝑤opt inside the core is still rather large. If we calculate the
bulk binodal line of the fluid with perturbation potential 𝑤L

opt
inside the core and 𝑤opt outside the core, we recover the binodal
of the fluid with the perturbation potential 𝑤p

opt inside and 𝑤opt
outside the core. The density profiles in the slit calculated with
the Lagrangian-optimized fluid (𝑤L

opt), however, show the same
shortcomings as the previously determined density profiles of the
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Figure 8.11.: The reduced perturbation potentials of the optimized
slit DFT [𝑤*

opt = 𝑤opt/𝜖 (solid line)], the pressure-optimized slit DFT
[𝑤*p

opt = 𝑤p
opt/𝜖 (dash-dotted line)], and the Lagrangian-optimized slit

DFT [𝑤*L
opt = 𝑤L

opt/𝜖 (dashed line)] at (𝜂, 𝑇 *) = (0.3, 0.3). The dotted
line shows the soft tail of the original reduced Jagla potential 𝑣*

J = 𝑣J/𝜖.
Since 𝑤*

opt, 𝑤
*p
opt, and 𝑤*L

opt are equal for 𝑟 > 𝜎, only 𝑤*
opt is plotted

outside the hard core for reasons of clarity. The abscissa provides the
reduced center-to-center particle distance 𝑟* = 𝑟/𝜎.
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pressure-optimized slit DFT (𝑤p
opt). Obviously, the deviation

between the potentials 𝑤L
opt and 𝑤opt inside the core is still too

large to recover the results of the optimized slit DFT (𝑤opt) .
While, as shown before, the latter seems stable to small changes
in the optimized interaction potential, large changes in the be-
havior of 𝑤opt(𝑟; 𝜂, 𝑇 *) inside the hard core obviously destroy the
resemblance of optimized slit DFT and MC density profiles.

The second investigation regarding the optimized slit DFT’s
phase behavior done in this work is focused on the slit geometry,
and investigates if a phase transition inside the slit can be trig-
gered by variation of the slit length. For this, we choose a state
point in the stable region close to the high density liquid branch
of the MC bulk liquid-liquid binodal (triangles in Fig. 8.10) and
prepare a DFT slit system with corresponding reservoir. We then
decrease the reduced slit length 𝑙 step by step and perform two
DFT calculations for each step; one with an initial density profile
which has the liquid density of the state point under consideration
and one with a gas initial density profile. We note that for all
calculations with variable length 𝑙 the optimized perturbation
potential 𝑤opt(𝑟; 𝜂, 𝑇 *) calibrated for 𝑙 = 22 is applied. In case
of a phase transition due to the reduction of the slit length, the
density inside the slit suddenly jumps to a lower density. Fur-
thermore, if plotted as a function of the slit length 𝐿 = 𝑙 𝜎, the
grand potential per area, given by Ω* = −𝑝𝐿+2 𝛾, where 𝑝 is the
pressure and 𝛾 the surface tension, exhibits a kink at the length
where the two phases can coexist due to the change in pressure
and surface tension. We do this investigation by deploying both
canonically and grand-canonically calibrated optimized slit DFT,
but cannot observe any phase transition. The density in the slit
center is almost constant, also the grand potential per area shows
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only one slope. Furthermore, these findings are independent of
the chosen initial density.

This is in contrast to the grand canonical MC simulation results
where a phase transition inside the slit can be observed in the
density profiles as well as in the excess chemical potential 𝜇ex

mc
due to the variation of the slit length. In Fig. 8.12, 𝜇ex

mc is plotted
vs. the slit length 𝑙 and we observe that the data is unsteady at
𝑙co ≈ 15. This is the reduced slit length at which the two phases
can coexist, and the jump in the data indicates a first-order phase
transition. The MC simulations conducted to obtain the data in
Fig. 8.12 all have the same initial density to achieve comparable
results. In Fig. 8.13, a comparison of the corresponding grand
canonical MC density profiles with grand-canonically optimized
slit DFT density profiles is depicted for various slit lengths. Both
figures show data at 𝑇 * = 0.1 and at a chemical potential 𝜇 which
results in a density of 𝜌* ≈ 0.493, or 𝜂 ≈ 0.256, in the slit center
of the slit with 𝑙 = 22. The aim of Fig. 8.13 is to show the drop
in density in the slit centers of the MC profiles, which can be
observed especially in the region where 𝑧* > 4. The upper family
of MC profiles, oscillating roughly in the vicinity of 𝜌* = 0.45,
or 𝜂 ≈ 0.24, is the density distributions in the slits with length
𝑙 = 16, 18, 22. Note that the state point at 𝜂 ≈ 0.24 and at
𝑇 * = 0.1 is in the vicinity of the high density liquid branch of the
MC bulk liquid-liquid binodal (triangles [24] in Fig. 8.10). The
lower family of MC profiles, oscillating roughly in the vicinity
of 𝜌* = 0.35, or 𝜂 ≈ 0.18, is the density distributions in the
slits with length 𝑙 = 12, 14. The state point at 𝜂 ≈ 0.18 and
at 𝑇 * = 0.1 is in the vicinity of the low density liquid branch
of the MC bulk liquid-liquid binodal. The discontinuity in the
excess chemical potential 𝜇ex

mc(𝑙) and the drop of density in the
slit centers of the grand canonical MC simulations both occur at
𝑙 ≈ 15, indicating a first-order phase transition, which is triggered
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Figure 8.12.: The excess chemical potential of the grand canonical
MC simulations as a function of the reduced slit length 𝑙 = 𝐿/𝜎. The
corresponding state point is at 𝑇 * = 0.1 and at a chemical potential 𝜇
which results in a density of 𝜌* ≈ 0.493, or 𝜂 ≈ 0.256, in the slit center
of the slit with 𝑙 = 22. The ordinate is scaled such that the excess
chemical potential of the smallest slit length is zero.
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Figure 8.13.: (Color online.) The density distributions 𝜌* = 𝜌𝜎3 of
the Jagla fluid in slits with hard wall and reduced length 𝑙 = 𝐿/𝜎 =
12, 14, 16, 18, 22 described by means of the optimized slit DFT, which
is optimized using grand canonical MC data (solid lines) and grand
canonical MC simulations (crosses). The corresponding state point is
at 𝑇 * = 0.1 and at a chemical potential 𝜇 which results in a density
of 𝜌* ≈ 0.493, or 𝜂 ≈ 0.256, in the slit center of the slit with 𝑙 = 22.
The abscissa provides the reduced distance 𝑧* = 𝑧/𝜎 from the left wall.
For reasons of clarity only the left parts of the profiles are plotted. We
comment on the deviation between MC and DFT data in the text body.
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due to the reduction of the slit length. The density profiles of
the optimized slit DFT lack the sudden drop in density between
𝑙 = 14 and 𝑙 = 16; instead, the DFT density in the slit centers
decreases merely slightly and continuously if the slit length is
reduced. The degree of deviation between MC and optimized
slit DFT density profiles for 𝑙 = 22 is in the same range as
in Fig. 8.8, which shows the canonical MC and the canonically-
optimized slit DFT density profiles at (𝜂, 𝑇 *) = (0.25, 0.1), and is
commented on in the corresponding paragraph in the text body.
For completeness we note that, even though it does not produce
correct density profiles, we also investigated the phase behavior
of the pressure-optimized slit DFT (𝑤p

opt) inside the slit, and find
the same negative result.

8.4. Conclusions and outlook

Obviously, the information the optimized slit DFT inherits from
the MC density profiles in the calibration process discussed in
Sec. 8.2.2 is enough to predict the density distribution inside the
slit if no phase transition is to expect. The information about the
latter, however, seems to be lost. The entire information from the
MC calculations conducted to calibrate the optimized slit DFT is
passed on via the optimized interaction potential 𝑤opt with which
the optimized weighted density 𝑛opt(𝑟) =

(︀
𝜌 * 𝛽𝑤opt

)︀
(𝑟) and the

excess chemical potential 𝛽𝜇ex is determined. For a given state
point (𝜂, 𝑇 *), we determine one optimized perturbation potential
for the reduced slit length 𝑙 = 22. Hence, if we vary the slit length
in the DFT calculation, the excess chemical potential is constant.
This is in contrast to the grand canonical MC simulations where
the excess chemical potential depends on the average particle
number density inside the slit and, hence, changes if the slit length
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8. Monte-Carlo-optimized DFT

is varied. Moreover, the excess chemical potential in the grand
canonical MC simulations is an unsteady function of the reduced
slit length 𝑙, if a phase transition inside the slit occurs due to
the variation of 𝑙 (see Fig. 8.12). Here, the jump occurs at the
slit length where the two phases can coexist. Our optimized slit
DFT misses this information which presumably is one reason for
it does not describe the phase transition inside the confining slit.
One could try to pass on the behavior of the grand canonical MC
simulation excess chemical potential to the optimized slit DFT,
but for this MC simulations with different reduced slit lengths
𝑙 at the fixed state point of interest need to be conducted. If
this is the case, it is more accurate to not only fix the behavior
of DFT’s chemical potential, but to do a full calibration for
different slit lengths, i.e., to obtain an optimized perturbation
potential 𝑤opt(𝑟; 𝜂, 𝑇 *, 𝑙) which is now additionally a function
of the reduced slit length 𝑙. This has the benefit that also the
optimized weighted density 𝑛opt(𝑟) =

(︀
𝜌 * 𝛽𝑤opt

)︀
(𝑟) is adjusted

to the variation of 𝑙. This, however, would make the optimized
slit DFT redundant as it would not deliver information which
is novel compared to the information already gained by the MC
simulations conducted to calibrate it.
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Part III.

Colloid-polymer mixture
under confinement
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9. A liquid-liquid critical point
in a ternary colloid-polymer
mixture

After the difficulties we encountered in Pt. II to describe the inho-
mogeneous Jagla fluid within the framework of DFT, we continue
to use DFT to investigate the influence of the infinite slit confine-
ment on the phase diagram, and in particular on the liquid-liquid
binodal, of a simple model system for a colloid-polymer mixture.
In colloid-polymer mixtures the colloidal particles are immersed
in a solvent of polymer. Here, attraction between the colloids
can be generated and adjusted based on the concentration, or
density, of non-adsorbing polymer, and based on the size ratio
𝑅c/𝑅g, where 𝑅c is the radius of the colloidal sphere and 𝑅g is the
radius of gyration of the polymer. This attraction has its origin
in the for the polymer excluded volume due to the presence of
the colloidal particles. The excluded volume decreases if the col-
loids are packed more densely which in turn decreases the energy
of the effective colloid-colloid interaction, and, thus, creates an
effective attraction between the colloidal particles. This effective
attraction may lead to gas-liquid separation [10], and even to
liquid-liquid separation [15], of the colloidal particles. Here, by
colloidal gas phase, a phase with a low colloid density is meant.
Based on the findings of Ref. [15], in which the existence of a
liquid-liquid critical point in a ternary mixture of monodisperse
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9. Liquid-liquid critical point in a ternary CP mixture

colloidal spheres with two polydisperse or monodisperse polymer
components is discussed, we set up a basic model system of a
ternary colloid-polymer mixture which is comprised of monodis-
perse colloids and two monodisperse polymer species. We show
that a bulk liquid-liquid critical point of the colloidal particles
can arise in this simple system, and continue to study its behavior
under the confinement of an infinitely large slit. To describe the
particle interactions, we apply the Asakura-Oosawa-Vrij (AOV)
model [2, 3, 39] for colloid-polymer mixtures in which the colloids
are considered to be hard spheres, and in which the polymers
exclusively interact with the colloid particles, but not with each
other, via a hard-sphere interaction. Within the AOV model,
the phase diagram of a colloid-polymer mixture of monodisperse
colloids and monodisperse polymer is akin to the phase diagram
of a simple fluid, where the polymer reservoir density corresponds
to an inverse temperature. Furthermore, the phase behavior of
the AOV model is similar to the one which follows from free
volume theory, as has been shown in Ref. [36]. In free volume
theory the excess free energy of the mixture is expressed as an
expansion in the density of the polymer, or, more generally, in
the density of the depletion agent, up to and including first order.
This linearization is identical to the assumption of a vanishing
interaction between the particles of the depletion agent. In the
following, we deploy the framework of FMT (see Sec. 4.2) to
express the free volume theory approach.

9.1. Bulk phase diagram
9.1.1. Theory
To investigate the ternary colloid-polymer mixture comprised of
monodisperse colloids and two monodisperse polymer species, we
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9.1. Bulk phase diagram

consider a system of 𝑁c colloid particles which is coupled to two
polymer particle reservoirs1 and has the Volume 𝑉 . One reservoir
exclusively contains particles of polymer species No. 1 and pos-
sesses the chemical potential 𝜇r

1, where the superscript r stands
for reservoir, and the other reservoir exclusively contains particles
of polymer species No. 2 and possesses the chemical potential
𝜇r

2. I.e., we consider a semi-grand-canonical ensemble. Within
the AOV model the particles are either considered to be hard
spheres or to be ideal, and we refer to the hard-sphere radius of
the colloids as 𝑅c and to the hard-sphere radii of polymer species
No. 1 and No. 2 as 𝑅1 and 𝑅2, respectively. The corresponding
hard-sphere diameters we denote by 𝜎 with the associated index.
The colloid particles interact with each other pairwise via the
hard-sphere interaction potential

𝑣cc(𝑟) =
{︃

∞ , 𝑟 < 2𝑅c

0 , otherwise ,

where 𝑟 denotes the center-to-center particle distance, and the
pair interaction between a colloid particle and a polymer particle
of species No. 𝑖 (𝑖 = 1, 2) is described by the hard-sphere pair
potential

𝑣c𝑖(𝑟) =
{︃

∞ , 𝑟 < 𝑅c +𝑅𝑖

0 , otherwise .

The pair potentials of the possible polymer-polymer interactions,
𝑣𝑖𝑖(𝑟) and 𝑣12(𝑟) = 𝑣21(𝑟), all vanish which implies that the two
reservoirs contain ideal particles.

1If the system is coupled to polymer reservoirs, the strength of the colloid-
colloid interaction is solely dependent on the polymer reservoir densities
and independent of the colloid density inside the system. This is crucial
for interpreting the polymer reservoir density as an inverse temperature
in the phase diagram.
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9. Liquid-liquid critical point in a ternary CP mixture

In order to study the bulk phase behavior of the colloids im-
mersed in the depletion agent of polymer, we continue to deter-
mine coexisting colloid phases. Two colloid phases, labeled I and
II, can coexist if the chemical potentials of the colloids of both
phases are equal and if the system pressures of both phases are
equal [c.f. Eq. (6.21)]:

𝜇I
c = 𝜇II

c

𝑝I = 𝑝II. (9.1)

Thus, in the following, we determine the chemical potential 𝜇c of
the colloids and the system pressure 𝑝. Our starting point is the
Helmholtz free energy density 𝑓 = 𝐹/𝑉 of the system which for
the mixture generally reads as:

𝑓(𝜌c, 𝜌1, 𝜌2) = 𝑓 id
c (𝜌c) + 𝑓 id

1 (𝜌1) + 𝑓 id
2 (𝜌2) + 𝑓 ex(𝜌c, 𝜌1, 𝜌2). (9.2)

Here, 𝑓 id
c (𝜌c), 𝑓 id

1 (𝜌1), and 𝑓 id
2 (𝜌2) are the ideal gas contributions

of the colloids, polymer species No. 1, and polymer species No. 2,
respectively [see first equation in Eq. (6.25)], and 𝑓 ex(𝜌c, 𝜌1, 𝜌2) is
the excess part. The quantities 𝜌c, 𝜌1, and 𝜌2 are the bulk number
densities inside the system of the colloid particles, the particles
of polymer species No. 1, and the particles of polymer species
No. 2, respectively. Since we make use of the FMT approach to
free volume theory, the excess contribution to the free energy
density of the mixture is a function of the weighted densities 𝑛𝛼,
𝛽𝑓 ex(𝜌c, 𝜌1, 𝜌2) = Φ

(︀{︀
𝑛𝛼
}︀)︀

[c.f. Eq. (4.6)], where 𝛼 = 0, 1, 2, 3, as
the vector weighted densities vanish in bulk (see Sec. 4.2). In the
free volume theory, or AOV, ansatz Φ

(︀{︀
𝑛𝛼
}︀)︀

is linearized [28]
in the densities of the polymer around vanishing densities of all
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9.1. Bulk phase diagram

polymer such that

ΦAOV
(︁{︀
𝑛c

𝛼, 𝑛
(1)
𝛼 , 𝑛(2)

𝛼

}︀)︁
= Φ

(︁{︀
𝑛c

𝛼

}︀)︁
+

3∑︁
𝜅=0

𝜕Φ
(︀{︀
𝑛c

𝛼

}︀)︀
𝜕𝑛c

𝜅

𝑛(1)
𝜅

+
3∑︁

𝜅=0

𝜕Φ
(︀{︀
𝑛c

𝛼

}︀)︀
𝜕𝑛c

𝜅

𝑛(2)
𝜅 . (9.3)

Here, 𝑛c
𝛼, 𝑛(1)

𝛼 , and 𝑛(2)
𝛼 are the weighted densities No.𝛼 = 0, 1, 2, 3

of the colloids, polymer species No. 1, and No. 2, respectively [c.f.
Eq. (4.7)], and Φ

(︀{︀
𝑛c

𝛼

}︀)︀
is the hard-sphere free energy density

of the pure colloid system without polymer. We now introduce
the so-called free volume fraction 𝜓𝑖 of polymer species No. 𝑖, the
bulk FMT expression of which reads as

𝜓𝑖 = exp
(︃

−
3∑︁

𝜅=0

𝜕Φ
𝜕𝑛c

𝜅

𝑛
(𝑖)
𝜅

𝜌𝑖

)︃
= 𝜓𝑖(𝜂c), (9.4)

and which is a function of the colloid bulk density 𝜌c, or colloid
packing fraction 𝜂c = 𝜋𝜌𝑐𝜎

3
𝑐/6, exclusively, due to the terms

𝑛
(𝑖)
𝜅 /𝜌𝑖. The free volume fraction 𝜓𝑖 can be interpreted as the

Boltzmann factor of the reversible work required to insert a single
particle of polymer species No. 𝑖 into a pure bulk colloid system,
i.e., [28]

𝜓𝑖 = lim
𝜌1,2→0

exp(−𝛽𝜇ex
𝑖 ). (9.5)

For a vanishing colloid density 𝜌c, the free volume fractions go to
unity. This can easily be seen from (9.5). With the same we have

lim
𝜌c→0

𝜓𝑖 = lim
𝜌c→0

lim
𝜌1,2→0

exp(−𝛽𝜇ex
𝑖 ) = exp(−𝛽 lim

𝜌c→0
lim

𝜌1,2→0
𝜇ex

𝑖 ),
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9. Liquid-liquid critical point in a ternary CP mixture

where the second equation holds since the exponential function
is continuous, and lim𝜌c→0 lim𝜌1,2→0 𝜇

ex
𝑖 = 0 since the energy

required to insert a particle of polymer species No. 𝑖 into vacuum
is zero. With this, we obtain

lim
𝜌c→0

𝜓𝑖 = 1.

By employing Eq. (9.4), we can rewrite the expression for ΦAOV

to be

ΦAOV(𝜂c, 𝜌1, 𝜌2) = Φ
(︁{︀
𝑛c

𝛼(𝜂c)
}︀)︁

−𝜌1 ln
(︁
𝜓1(𝜂c)

)︁
−𝜌2 ln

(︁
𝜓2(𝜂c)

)︁
.

(9.6)
The expression for ΦAOV in Eq. (9.6) as well as the ideal gas
contributions of the polymer in Eq. (9.2) contain the system
polymer densities 𝜌1 and 𝜌2. However, since we assume a system
which is coupled to two polymer particle reservoirs, we can not
control the polymer system densities 𝜌𝑖, but only the polymer
reservoir densities 𝜌r

𝑖 . Hence, we make use of the fact that in the
AOV model the polymer-polymer interactions are neglected and
express 𝜌𝑖 in terms of 𝜌r

𝑖 . Polymer reservoir No. 𝑖 contains an ideal
gas of particles of polymer species No. 𝑖 and has the chemical
potential 𝛽𝜇r

𝑖 = ln(Λ3𝜌r
𝑖). The chemical potential 𝜇𝑖 of polymer

species No. 𝑖 inside the system is given by [see Eq. (6.19)]

𝛽𝜇𝑖 = 𝜕𝛽𝑓

𝜕𝜌𝑖
= ln(Λ3𝜌𝑖) + 𝜕ΦAOV

𝜕𝜌𝑖

= ln(Λ3𝜌𝑖) − ln
(︀
𝜓𝑖(𝜂c)

)︀
. (9.7)

Since we assume particle reservoirs and system to be in thermo-
dynamic equilibrium, 𝜇𝑖 = 𝜇r

𝑖 must hold from which we obtain

𝜌𝑖 = 𝜓𝑖 𝜌
r
𝑖 . (9.8)
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9.1. Bulk phase diagram

Now, we can rewrite the free energy density 𝑓 of the system,
as well as all functions we obtain from 𝑓 , as functions of 𝜌c (or
𝜂c), 𝜌r

1, and 𝜌r
2, which are all variables we can control. Thus, we

continue to calculate the chemical potential 𝜇c of the colloids
inside the system and the system pressure 𝑝. The former is given
by

𝛽𝜇c = 𝜕𝛽𝑓(𝜌c, 𝜌1, 𝜌2)
𝜕𝜌c

= ln
(︀
Λ3𝜌c

)︀
+ 𝜕ΦAOV

𝜕𝜌c

= ln
(︀
Λ3𝜌c

)︀
+ 𝜕Φ
𝜕𝜌c

− 𝜌1
𝜕 ln

(︀
𝜓1(𝜂c)

)︀
𝜕𝜌c

− 𝜌2
𝜕 ln

(︀
𝜓2(𝜂c)

)︀
𝜕𝜌c

,

(9.9)

where we have used the expression in Eq. (9.6) for ΦAOV. The first
two terms in the last equality of Eq. (9.9) we recognize to be the
chemical potential 𝛽𝜇∘

c of the pure, or unperturbed, colloid system.
By using the relation between the polymer system densities 𝜌𝑖

and the polymer reservoir densities 𝜌r
𝑖 in Eq. (9.8), we can rewrite2

2With (9.8) and the definition of 𝛽𝜇∘
c we rewrite the expression in the last

line of Eq. (9.9) to be

𝛽𝜇c = 𝛽𝜇∘
c − 𝜓1𝜌

r
1
𝜕 ln

(︀
𝜓1(𝜂c)

)︀
𝜕𝜌c

− 𝜓2𝜌
r
2
𝜕 ln

(︀
𝜓2(𝜂c)

)︀
𝜕𝜌c

.

Now, we make use of the fact that 𝜕 ln(𝜓𝑖)
𝜕𝜌c

= 1
𝜓𝑖

𝜕𝜓𝑖
𝜕𝜌c

and obtain

𝛽𝜇c = 𝛽𝜇∘
c − 𝜌r

1
𝜕𝜓1

𝜕𝜌c
− 𝜌r

2
𝜕𝜓2

𝜕𝜌c
.

In the last step, we substitute the partial derivatives via

𝜕𝜓𝑖
𝜕𝜌c

= 𝜕𝜓𝑖
𝜕𝜂c

𝜕𝜂c

𝜕𝜌c
= 𝜕𝜓𝑖
𝜕𝜂c

𝜋

6 𝜎
3
c ,
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9. Liquid-liquid critical point in a ternary CP mixture

𝜇c as a function of 𝜂c, 𝜂r
1, and 𝜂r

2, where 𝜂r
𝑖 = 𝜋𝜌r

𝑖𝜎
3
𝑖 /6 are the

polymer reservoir packing fractions:

𝛽𝜇c = 𝛽𝜇∘
c − 𝜂r

1
𝑞3

1

𝜕𝜓1
𝜕𝜂c

− 𝜂r
2
𝑞3

2

𝜕𝜓2
𝜕𝜂c

. (9.10)

Here, we have introduced the diameter ratios 𝑞𝑖 = 𝜎𝑖/𝜎c. In
analogy to Eq. (6.20), the pressure of the three-component colloid-
polymer system is given by

𝑝 = −𝑓 + 𝜌c𝜇c + 𝜌1𝜇1 + 𝜌2𝜇2

which, with the expressions in Eqs. (9.2) and (9.6), becomes

𝛽𝑝 = −𝛽(𝑓 id
c + 𝑓 id

1 + 𝑓 id
2 )

− Φ
(︀
{𝑛c

𝛼}
)︀

+ 𝜌1 ln
(︀
𝜓1(𝜂c)

)︀
+ 𝜌2 ln

(︀
𝜓2(𝜂c)

)︀
+ 𝛽(𝜌c𝜇c + 𝜌1𝜇1 + 𝜌2𝜇2). (9.11)

This can be simplified, and by using Eq. (9.8) one obtains (see
App. D.1)

𝛽𝑝 = 𝛽𝑝∘
c + 𝜌r

1

[︂
𝜓1 − 𝜂c

𝜕𝜓1
𝜕𝜂c

]︂
+ 𝜌r

2

[︂
𝜓2 − 𝜂c

𝜕𝜓2
𝜕𝜂c

]︂
, (9.12)

where we have introduced the pressure of the unperturbed system,

𝛽𝑝∘
c = 𝜌c − Φ + 𝜌c

𝜕Φ
𝜕𝜌c

.

We now restrict ourselves to the special case in which the reservoir
packing fraction of polymer species No. 1 is a multiple of the
reservoir packing fraction of polymer species No. 2, i.e.,

𝜂r
1 = 𝑎 𝜂r

2, (9.13)

and introduce the diameter ratio 𝑞𝑖 = 𝜎𝑖/𝜎c to obtain the expression in
(9.10).
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9.1. Bulk phase diagram

where 𝑎 ≥ 0. This reduces the number of independant parameters
from three, namely 𝜂c, 𝜂r

1, and 𝜂r
2, to two, namely 𝜂c and 𝜂r

2,
and, thus, a state point of the system is now given by (𝜂c, 𝜂

r
2).

With this, the system of equations one has to solve to determine
coexisting colloid phases, Eq. (9.1), becomes

𝜇c(𝜂I
c, 𝜂

r
2) = 𝜇c(𝜂II

c , 𝜂
r
2)

𝑝(𝜂I
c, 𝜂

r
2) = 𝑝(𝜂II

c , 𝜂
r
2),

for a fixed value of 𝜂r
2. Since the attraction between the colloids

is caused by the presence of the polymer and must vanish for
vanishing polymer densities, phase separation is to be expected for
𝜂r

2 greater than a critical polymer reservoir density 𝜂r
2, crit, and the

polymer density 𝜂r
2 can be interpreted as an inverse temperature.

The critical point (𝜂c, crit, 𝜂
r
2, crit) can be determined by solving

the system of equations

𝜕𝑝(𝜂c, 𝜂
r
2)

𝜕𝜂c
= 0, 𝜕2𝑝(𝜂c, 𝜂

r
2)

𝜕𝜂2
c

= 0

for 𝜂c and 𝜂r
2 [c.f. Eq. (6.23)], and by solving

𝜕𝑝(𝜂c, 𝜂
r
2)

𝜕𝜂c
= 0

for 𝜂r
2, we obtain the spinodal as a function 𝜂r

2(𝜂c) [c.f. Eq. (6.22)].

9.1.2. Results
To study gas-liquid and liquid-liquid phase separation of the col-
loid particles in the ternary colloid-polymer mixture described in
Sec. 9.1.1, we adjust the remaining parameters as follows. The
diameter ratios 𝑞𝑖 = 𝜎𝑖/𝜎c we set to 𝑞1 = 0.25 and 𝑞2 = 1.5, and
the parameter 𝑎 in Eq. (9.13), which determines 𝜂r

1 depending on
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9. Liquid-liquid critical point in a ternary CP mixture

the free parameter 𝜂r
2, we set to 𝑎 = 0.6. For the hard-sphere free

energy density Φ
(︀{︀
𝑛𝛼
}︀)︀

of the pure colloid system, we deploy the
White Bear version of FMT mark II (see Sec. 4.2), since it provides
highly accurate results for thermodynamic quantities and, further-
more, satisfies the SPT differential equation, 𝜕ΦWBII/𝜕𝑛3 = 𝛽𝑝
in bulk, the derivational term of which appears in the free volume
fractions 𝜓𝑖 [Eq. (9.4)].

Figure 9.1 shows the thus obtained pressure curves as functions
of the colloid packing fraction 𝜂c for various values of the polymer
reservoir packing fraction 𝜂r

2. We observe van der Waals loops in
the regions 0.02 . 𝜂c . 0.14 and 0.25 . 𝜂c . 0.46 which diminish
and finally vanish as 𝜂r

2 decreases. These indicate that gas-liquid
and liquid-liquid phase separation of the colloid particles can occur
in the given system. The dash-dotted line shows the pressure at
the liquid-liquid critical polymer packing fraction 𝜂r

2,LL ≈ 0.5548,
and we observe a saddle point at 𝜂c,LL ≈ 0.3625. Likewise, at the
gas-liquid critical polymer packing fraction 𝜂r

2,GL ≈ 0.5510, the
pressure curve (dash-dot-dotted line) has a saddle point at 𝜂c,GL ≈
0.0779. For vanishing 𝜂c, the pressure does not go to zero but
approaches a positive limit which is caused by the two remaining
polymer species in the system. In the given configuration the
reduced pressure is given by

𝛽𝑝𝜎3
c

𝜂r
2

= 𝛽𝑝∘
𝑐𝜎

3
c

𝜂r
2

+ 6 𝑎
𝜋 𝑞3

1

[︂
𝜓1 − 𝜂c

𝜕𝜓1
𝜕𝜂c

]︂
+ 6
𝜋 𝑞3

2

[︂
𝜓2 − 𝜂c

𝜕𝜓2
𝜕𝜂c

]︂
.

In the limit 𝜂c → 0, the pure colloid pressure 𝑝∘
𝑐 vanishes, as does

the second term in each bracket, and the free volume fractions 𝜓𝑖

go to unity. With this, we obtain

lim
𝜌c→0

𝛽𝑝𝜎3
c

𝜂r
2

= 6
𝜋

(︂
𝑎

𝑞3
1

+ 1
𝑞3

2

)︂
≈ 73.904 .
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9.1. Bulk phase diagram
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Figure 9.1.: The reduced bulk pressure 𝛽𝑝𝜎3
c/𝜂

r
2 of the ternary colloid-

polymer mixture as a function of the colloid packing fraction 𝜂c for
various values of the polymer reservoir packing fraction 𝜂r

2. The dash-
dotted and the dash-dot-dotted lines show the pressure at the liquid-
liquid critical polymer packing fraction 𝜂r

2,LL ≈ 0.5548 and the gas-
liquid critical polymer packing fraction 𝜂r

2,GL ≈ 0.5510, respectively.
For reasons of clarity, the inset shows the pressure for small values of
𝜂c in greater detail.
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9. Liquid-liquid critical point in a ternary CP mixture

Our pressure data, plotted in Fig. 9.2, attains the same (correct)
low density limit.

We continue to calculate the corresponding phase diagram.
This yields the results presented in Fig. 9.2. As is to be expected
from the previously analyzed pressure curves, we find a spinodal of
the colloid-colloid interaction (dashed line) which has two critical
points (full dots). Furthermore, we obtain a binodal which has
three different branches. One for 𝜂r

2 & 0.6 indicating a transition
from colloid gas to high-density colloid liquid (dotted line), one
which denotes a transition from colloid gas to low-density colloid
liquid (dash-dotted line), and one that marks a transition from
low-density colloid liquid to high-density colloid liquid (dash-
dot-dotted line). The critical point of the gas-low-density-liquid
coexistence is located at (𝜂c,GL, 𝜂

r
2,GL) ≈ (0.0779, 0.5510), and the

critical point of the liquid-liquid coexistence at (𝜂c,LL, 𝜂
r
2,LL) ≈

(0.3625, 0.5548).

9.2. Phase diagram of the inhomogeneous
mixture

9.2.1. Theory

The next step of our analysis is the investigation of the inhomoge-
neous phase diagram of the ternary colloid-polymer mixture, the
bulk properties of which are discussed in Sec. 9.1. For this, we
examine the colloid-polymer mixture when confined in an infinite
slit with hard walls by means of classical DFT; this implies that
we now consider a grand-canonical ensemble. The infinite slit
geometry is introduced in Sec. 7.2. As discussed at the beginning
of this chapter, the presence of the polymer generates an effective
attraction between the hard-sphere colloids; likewise, an effective
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9.2. Phase diagram of the inhomogeneous mixture
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Figure 9.2.: The bulk phase diagram of the colloid-colloid interaction
in the ternary colloid-polymer mixture. The ordinate provides the
reservoir packing fraction 𝜂r

2 of polymer species No. 2, where the reservoir
packing fraction 𝜂r

1 of colloid species No. 1 is adjusted to 𝜂r
1 = 0.6 𝜂r

2.
On the abscissa, the colloid packing fraction 𝜂c is plotted. The dashed
line depicts the spinodal of the colloid-colloid interaction, and the
associated binodal exhibits three branches. These indicate possible
phase transitions from gas to high-density liquid (dotted line), from gas
to low-density liquid (dash-dotted line), and from low-density liquid to
high-density liquid (dash-dot-dotted line). The critical points of the
gas-low-density-liquid binodal and the liquid-liquid binodal are marked
by the full dots.
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9. Liquid-liquid critical point in a ternary CP mixture

interaction potential, which is dependent on polymer concentra-
tion and size ratios, is generated between the colloids and the
hard walls of the slit, making the latter effectively attractive
to the colloids. In the inhomogeneous system, the equilibrium
particle densities of the colloids and the two polymer species,
𝜌c(r), 𝜌1(r), and 𝜌2(r), are functions of the position r inside the
system, and the functional of the grand potential of the ternary
colloid-polymer mixture in the AOV model reads as follows (c.f.
Sec. 4.1):

Ω[𝜌c(r), 𝜌1(r), 𝜌2(r)] = 𝑘B𝑇
∑︁

𝑗=c,1,2

∫︁
dr 𝜌𝑗(r)

[︁
ln
[︀
Λ3

𝑗𝜌𝑗(r)
]︀

− 1
]︁

+ 𝑘B𝑇

∫︁
dr ΦAOV

(︁{︀
𝑛c

𝛼, 𝑛
(1)
𝛼 , 𝑛(2)

𝛼

}︀)︁
+

∑︁
𝑗=c,1,2

∫︁
dr 𝜌𝑗(r)

[︀
𝑉ext,𝑗(r) − 𝜇𝑗

]︀
.

(9.14)

Here, the first term is the sum over the ideal gas contributions
of the three particle species to the functional of the intrinsic
Helmholtz free energy, and the second term is the excess contri-
bution ℱex. The expression for ΦAOV is the same as in Eq. (9.3),
only now also the vector weighted densities nv1(r) and nv2(r)
have to be taken into account, such that 𝛼, 𝜅 = 0, 1, 2, 3, v1, v2.
The external potentials of the slit geometry read as follows:

𝑉ext,𝑗(𝑧) =
{︃

0 , 𝑅𝑗 ≤ 𝑧 ≤ 𝐿−𝑅𝑗

∞ , otherwise ,

where 𝐿 is the wall separation distance, and 𝑧 denotes the distance
form the left wall. Since the bulk system discussed in Sec. 9.1
constitutes the particle reservoir of the inhomogeneous system, the
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9.2. Phase diagram of the inhomogeneous mixture

chemical potentials 𝜇𝑗 are given by the expressions in Eqs. (9.10)
and (9.7), respectively. The equilibrium density profiles 𝜌𝑗(r) can
be obtained by solving the minimization conditions

𝛿Ω
𝛿𝜌𝑗(r) = 0, 𝑗 = c, 1, 2, (9.15)

through, e.g., a Piccard iteration. Insertion of the results of (9.15)
into Eq. (9.14) yields the grand potential Ω of the system.

In the inhomogeneous case, a colloid phase is characterized by
the tuple (𝜂c, 𝜂

r
2). Here, 𝜂c is the mean packing fraction of the

colloids inside the system, i.e.,

𝜂c = 4𝜋
3 𝑅3

c

[︃
1

𝐿− 2𝑅c

∫︁ 𝐿−𝑅c

𝑅c
d𝑧 𝜌c(𝑧)

]︃
, (9.16)

where the term in brackts is the mean colloid density3 inside the
system. Thus, for a given polymer reservoir density 𝜂r

2, two colloid
phases, (𝜂I

c, 𝜂
r
2) and (𝜂II

c , 𝜂
r
2), can coexist if the grand potentials

and chemical potentials of both phases are equal, i.e., if

𝜇c(𝜂I
c, 𝜂

r
2) = 𝜇c(𝜂II

c , 𝜂
r
2),

Ω(𝜂I
c, 𝜂

r
2) = Ω(𝜂II

c , 𝜂
r
2) (9.17)

holds. In bulk, Ω = −𝑝𝑉 , and thus we recover (9.1) from the
bulk limit of Eq. (9.17).

9.2.2. Results and outlook
To determine colloid phases which can coexist in the infinite slit
geometry, we proceed as follows. In so doing, we are guided by

3In the exprssion for the mean colloid density of the system, the volume
of the system is defined to be the volume accessible to the hard-sphere
centers of the colloid particles.
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9. Liquid-liquid critical point in a ternary CP mixture

the bulk phase diagram of the ternary colloid-polymer mixture
(Fig. 9.2). For a given reservoir packing fraction 𝜂r

2 and slit length
𝐿, we determine the grand potential Ω and the equilibrium density
profiles 𝜌1(𝑧), 𝜌2(𝑧), and 𝜌c(𝑧) of the system for various values of
the colloid reservoir packing fraction 𝜂c. Here, we treat the gas-
low-density-liquid and the liquid-liquid binodal separately, and
orient ourselves by the width of the corresponding bulk binodal at
the chosen value of 𝜂r

2 to find an appropriate range of the values
of 𝜂c. Via Eq. (9.10), we calculate the corresponding chemical
potentials 𝜇c(𝜂c) of the colloids and thus gain data points of the
function Ω(𝜇c). This procedure is repeated twice for every value
of 𝜂c with different initial colloid packing fractions 𝜂init

c for the
minimizing iteration; one lies notably below 𝜂c and the other
notably above. In case of a possible phase coexistence inside the
slit, the data Ω(𝜇c) show two different intersecting branches, one
corresponding to a low-density phase and one corresponding to a
high-density phase. Obviously, at the intersection (𝜇co

c ,Ωco) the
chemical potentials of the colloids of both phases and the grand
potentials of both phases are equal and thus the intersection
marks the phase coexistence [c.f. Eq. (9.17)]. Figure 9.3 shows a
plot of the Ω(𝜇c) data corresponding to the liquid-liquid binodal
at 𝜂r

2 = 0.585 for a slit with length 𝐿 = 10.0𝑅c. Via the inverse
of Eq. (9.10), we determine the reservoir colloid packing fraction
𝜂c(𝜇co

c ) corresponding to the phase coexistence. While the value
𝜇co

c is unique, 𝜂c(𝜇co
c ) is not necessarily, and there may be one, two,

or three results. In the latter case, one corresponds to an unstable
phase and can be discarded. The curve 𝜇c(𝜂c) corresponding to
the liquid-liquid binodal at 𝜂r

2 = 0.585 is shown in Fig. 9.4. The
dashed line marks 𝜇co

c and the three intersections with the curve
𝜇c(𝜂c) (solid line) are the three possible values for 𝜂c(𝜇co

c ). The
one located at 𝜂c ≈ 0.4 corresponds to an physically unstable
phase, since here the function 𝜇c(𝜂c) has a negative slope. For each
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9.2. Phase diagram of the inhomogeneous mixture
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Figure 9.3.: The reduced grand potential Ω* = 𝛽Ω𝑅2
c/𝐴 of the ternary

colloid-polymer mixture confined inside an infinite slit with length 𝐿 = 10𝑅c
as a function of the chemical potential 𝛽𝜇c of the colloids. Here 𝐴 denotes
the area of the confining walls. The polymer reservoir packing fraction 𝜂r

2 is
adjusted to 0.585, and each data point (plus symbol or circle) is the result of
one DFT calculation. The range of 𝛽𝜇c on the abscissa corresponds to a range
of 𝜂c from approximately 0.13 to 0.48 (see Fig. 9.4), and the plus symbols
show the results of the calculations for which the initial colloid packing
fraction 𝜂init

c was set to 0.55, whereas the circles show results for 𝜂init
c = 0.02.

We observe two different branches of solutions which are interpolated (thin
solid lines) to determine the intersection (full dot). The latter marks the
phase coexistence, as here the grand potentials and the chemical potentials
of the two branches are equal [see Eq. (9.17)]. The vertical dashed line marks
the chemical potential 𝛽𝜇co

c at which the two branches intersect. From the
corresponding density profiles (two of these, which represent the coexisting
phases, are plotted in Fig. 9.5), we can identify the steeper branch (more
negative slope) with the high-density liquid phase and the branch which is
less steep (less negative slope) with the low-density liquid phase. The results
have been adjusted in the direction of the ordinate such that the greatest
value of the grand potential in the data is zero.
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9. Liquid-liquid critical point in a ternary CP mixture
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Figure 9.4.: The chemical potential 𝛽𝜇c of the colloids as a function
of the colloid reservoir packing fraction 𝜂c (solid line) at a polymer
reservoir packing fraction 𝜂r

2 = 0.585. The curve shows the van der
Waals loop corresponding to the liquid-liquid binodal, and the horizontal
dashed line marks the chemical potential at which the low-density liquid
and the high-density liquid phase can coexist (c.f. Fig. 9.3). The full
dots mark the physically meaningful colloid reservoir packing fractions
𝜂c(𝜇co

c ) which correspond to the phase coexistence.
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9.2. Phase diagram of the inhomogeneous mixture

of the values 𝜂c(𝜇co
c ) which are not associated with an unstable

phase, two more DFT minimizations are carried out, one with
initial colloid packing fraction 𝜂init

c < 𝜂c(𝜇co
c ) and one with 𝜂init

c >
𝜂c(𝜇co

c ). This yields two distinct results which we label I and
II. While the grand potentials of these are, of course, equal, i.e.,
ΩI = ΩII, the density profiles differ. One is the colloid one-particle
density 𝜌I

c(𝑧) of the low-density phase and the other the colloid
one-particle density 𝜌II

c (𝑧) of the high-density phase. An example
is given in Fig. 9.5, where the density profiles of the two liquid
phases which can coexist at 𝜂r

2 = 0.585 in a slit with length
𝐿 = 10𝑅c are plotted. The two colloid mean packing fractions
corresponding to the phase coexistence, 𝜂I

c and 𝜂II
c , are obtained

from the one-particle densities 𝜌I
c(𝑧) and 𝜌II

c (𝑧) via Eq. (9.16).

If for various values of 𝜂r
2 the colloid mean packing fractions

𝜂I
c(𝜂r

2) and 𝜂II
c (𝜂r

2) of the coexisting phases are plotted in an
𝜂r

2-𝜂c-graph, a phase diagram of the colloid-colloid interaction
in the infinite slit is obtained. Figure 9.6 shows the binodals
of the inhomogeneous system for various reduced slit lengths
𝑙 = 𝐿/𝑅c (symbols), where the solid lines connecting the symbols
are merely intended to guide the eye and are of no physical
meaning. The dashed as well as the dash-dotted and dash-dot-
dotted gray lines are the bulk spinodal and binodals depicted in
Fig. 9.2, respectively. In bulk, the mean colloid packing fraction 𝜂c
inside the system is equal to the colloid reservoir packing fraction
𝜂c, and, hence, the bulk data is plotted on the same scale on
the abscissa as the results for the inhomogeneous system. In an
infinitely long slit, i.e., 𝑙 → ∞, the influence of the walls on the
mean colloid packing fraction inside the system vanishes, and we
obtain the corresponding coexisting phases via DFT calculations
in a system without walls (a bulk system). The respective results
are plotted as crosses in Fig. 9.6 and are in very good agreement
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Figure 9.5.: The colloid density distributions in the slit, 𝜌*
c = 𝜌c𝑅

3
c ,

of the low-density liquid phase (dash-dotted line) and the high-density
liquid phase (solid line) which can coexist at a polymer reservoir packing
fraction 𝜂r

2 = 0.585. The slit length 𝐿 is 10𝑅c, and the abscissa provides
the reduced distance 𝑧* = 𝑧/𝑅c from the left wall. Since the hard walls
are effectively attractive to the colloid particles, the density close to the
walls is notably high.
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Figure 9.6.: The phase diagram of the colloid-colloid interaction in the
ternary colloid-polymer mixture if confined by the infinite slit geometry
for various values of the reduced slit length 𝑙 = 𝐿/𝑅c (symbols). The
black solid lines are intended to guide the eye and are of no physical
meaning. The ordinate provides the reservoir packing fraction 𝜂r

2 of
polymer species No. 2, where the reservoir packing fraction 𝜂r

1 of colloid
species No. 1 is adjusted to 𝜂r

1 = 0.6 𝜂r
2. On the abscissa, the mean

colloid packing fraction inside the slit, 𝜂c, is plotted. The non-solid gray
lines are the bulk spinodal (dashed line) and binodals (dash-dotted and
dash-dot-dotted line) discussed in Sec. 9.1.2 and depicted in Fig. 9.2. In
bulk 𝜂c = 𝜂c, and, hence, bulk and inhomogeneous data are plotted on
the same scale on the abscissa.
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9. Liquid-liquid critical point in a ternary CP mixture

with the bulk data discussed in Sec. 9.1.2 (non-solid gray lines in
Fig. 9.6).

If the slit length 𝐿 is reduced, the liquid-liquid binodal (depicted
by the squares, diamonds, triangles, and stars in Fig. 9.6) is shifted
to higher mean colloid packing fractions and becomes more narrow,
i.e., the density jump of the corresponding liquid-liquid phase
transition at a given value of 𝜂r

2 becomes smaller. Furthermore,
the liquid-liquid critical point (not shown explicitly in our data,
but its position can be roughly estimated) is shifted towards higher
polymer reservoir packing fractions 𝜂r

2. These effects become the
more prominent, the smaller 𝐿 becomes, and the effect on the
liquid-liquid binodal by reducing 𝑙 from 8 (triangles) to 5 (stars)
is tremendous. We observe the same qualitative behavior of the
gas-low-density-liquid binodal under confinement (pentagons),
however, the effect of the confining walls seems to be stronger
here, as the changes in shape and position by going from 𝑙 = ∞
to 𝑙 = 50 are more pronounced than the changes of the liquid-
liquid binodal if 𝑙 is reduced from ∞ to 25. Furthermore, we note
that our data of the gas-low-density-liquid binodal for 𝑙 = 50
(pentagons) exhibits (weak) reentrant phase behavior of the gas
branch, since the data points at 𝜂r

2 = 0.575, 𝜂r
2 = 0.57, and

𝜂r
2 = 0.565 lie at a lower mean colloid packing fractions 𝜂c than

the points at 𝜂r
2 = 0.56 and 𝜂r

2 = 0.58. However, the effect is
weak and only supported by three data points so that we can not
rule out the possibility that we observe a numerical artifact.

The phase behavior of the colloid-polymer mixture inside the
slit we observe in our results is in agreement with the findings by
Evans [12] that the nature of the phase transition in a capillary
is determined by the location of the capillary critical point; the
location of which differs from the location of the bulk critical
point, as can be observed in our results in Fig. 9.6. The smaller
the wall separation distance 𝐿 becomes, the more the critical
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9.2. Phase diagram of the inhomogeneous mixture

point is shifted towards higher mean colloid packing fractions
𝜂c and towards higher polymer reservoir packing fractions 𝜂r

2,
making the critical point dependent on 𝐿:

(︀
𝜂c, crit(𝐿), 𝜂r

2, crit(𝐿)
)︀
.

Reference [12] finds that the phase transition in the capillary is of
first order at temperatures below the capillary critical temperature
𝑇crit(𝐿) and of higher order, i.e., continuous, for temperatures
above the capillary critical temperature. In the case of the colloid-
polymer mixture within the AOV model, this translates to the fact
that phase transitions which occur in the capillary are first-order
if the polymer reservoir packing fraction 𝜂r

2 lies above the critical
capillary polymer reservoir packing fraction 𝜂r

2, crit(𝐿), whereas
phase transitions in the capillary are continuous if 𝜂r

2 < 𝜂r
2, crit(𝐿).

This is confirmed by our results. For fixed 𝜂r
2 > 𝜂r

2, crit(𝐿), we
find the typical two branches in the data Ω(𝜇c) (see Fig. 9.3)
as well as a density jump in the corresponding density profiles.
This is characteristic of a first-order phase transition. For fixed
𝜂r

2 < 𝜂r
2, crit(𝐿), only one branch in Ω(𝜇c) is observed which

changes its slope continuously. The corresponding density profiles
change continuously, too. This is the characteristic of a higher-
order phase transition. When compared to the results by Schmidt
et al. [35], who study the phase diagram of a binary colloid-
polymer mixture with diameter ratio 𝑞 = 𝜎p/𝜎c = 1 in an infinite
slit with hard walls, it appears that the two biondals of our
ternary colloid-polymer mixture are more sensitive regarding the
decrease of the density jump between coexisting densities at fixed
𝜂r

2 upon reduction of the slit length 𝐿.
Possible future work on the subject could be the investigation

of how modification of the colloid-wall interaction alters the
behavior of the gas-low-density-liquid and liquid-liquid binodal
under confinement, as well as a more thorough investigation of
the possible reentrant phase behavior of the gas-low-density-liquid
binodal under confinement.
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10. Conclusions and outlook

The primary aim of this dissertation was the construction of a
DFT capable of describing the phase behavior and, especially, the
liquid-liquid phase transition of the Jagla fluid under confinement.
Here, the motivation was that a successful description of the
inhomogeneous Jagla fluid might be a first small step towards the
finding of an experimental setting which stabilizes the presumed
liquid-liquid critical point of water.

To achieve this goal, two approaches were pursued. First, we
constructed a perturbation DFT based on a first-order pertur-
bation description of the homogeneous Jagla fluid in which the
Jagla interaction potential was separated twice into reference and
perturbation parts. While this perturbation DFT outperformed
standard mean-field DFT and produced results in good agreement
with MC data at state points not too close to the binodals, it
failed at low temperatures in the vicinity of the bulk liquid-liquid
critical temperature. In the second approach, we employed MC
simulation data of the Jagla bulk fluid to compute an optimized
interaction potential which, if applied in standard mean-field
DFT, is supposed to recover the quasi-exact MC results of the
inhomogeneous fluid. This optimized DFT delivered results more
accurate than the results of our perturbation DFT, and at state
points not too close to the binodals the agreement between op-
timized DFT and MC simulation density profiles was excellent.
Even at temperatures in the vicinity of the bulk liquid-liquid
critical temperature the density profiles of the optimized DFT
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10. Conclusions and outlook

were in the same range as the MC simulation profiles. Despite
these positive findings, it turned out that our optimized DFT is
not capable of describing phase transitions inside the infinite slit
geometry, and, hence, is not suited to compute the phase diagram
or the inhomogeneous Jagla fluid.

Future approaches towards a DFT for the Jagla fluid could be
the one derived by Tschopp et al. [38] who present their ’Barker-
Henderson density functional’ to describe classical inhomogeneous
fluids; or a DFT based on the ansatz of Santos et al. [34, 19] who
approximate the soft tails of hard-core interaction potentials by
piecewise constant functions.

Finally, we succeeded in computing the gas-liquid and the
liquid-liquid binodal of a ternary colloid-polymer mixture con-
fined by a slit with infinitely extended hard walls using DFT.
Here, the Asakura-Oosawa-Vrij model was applied in which the
particle interactions are either ideal or hard-sphere-like; the effec-
tive attraction between the colloid particles required to observe
phenomena like phase separation is solely caused by the presence
of the polymer. Since merely hard-sphere interactions had to
be treated, we could fall back on FMT which is a DFT that
accurately describes hard-sphere mixtures. This spared us of
treating the soft tail of an effective interaction potential in a per-
turbative manner. It might be interesting to extract the effective
interaction potential between two colloid particles in the mixture
and examine if the liquid-liquid critical point of the colloid-colloid
interaction can be recovered by using perturbation theory. In so
doing, the colloid-polymer mixture would be treated as a simple
one-component fluid in which the (colloid) particles solely interact
via the effective interaction potential.
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A. Remarks on Chapter 3

A.1. Integration of the 𝑛-particle density
With Eq. (3.5) we have∫︁

𝜌(𝑛)(r𝑛)dr𝑛 = 1
Ξ

∞∑︁
𝑁=𝑛

𝑧𝑁

(𝑁 − 𝑛)!

∫︁
exp(−𝛽𝑉𝑁 )dr𝑁

(2.6)= 1
Ξ

∞∑︁
𝑁=𝑛

𝑧𝑁

(𝑁 − 𝑛)! 𝑍𝑁 .

Now, we plug in a factor of one of the form 𝑁 !/𝑁 !, and find∫︁
𝜌(𝑛)(r𝑛)dr𝑛(3.3)=

∞∑︁
𝑁=𝑛

𝑁 !
(𝑁 − 𝑛)! 𝑝(𝑁)

(3.2)=

⟨
𝑁 !

(𝑁 − 𝑛)!

⟩
.

Note that the sum in the first equality starts from 𝑁 = 𝑛, and not from
𝑁 = 0 as in Eq. (3.2), which is due to the fact that here an ensemble of
systems with 𝑁 ≥ 𝑛 is considered, since the quantity (𝑁 − 𝑛)! is only well
defined in a system where a subset of 𝑛 out of 𝑁 particles can be chosen.

A.2. The 𝑛-particle density of the ideal fluid
The chemical potential of the ideal fluid is 𝜇id = 𝑘B𝑇 ln Λ3𝜌. With this, the
activity of the ideal fluid becomes

𝑧id = exp(𝛽𝜇id)/Λ3 = exp(ln Λ3𝜌)/Λ3 = 𝜌.
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Furthermore, the interatomic potential energy 𝑉𝑁 of the ideal gas is zero,
from which follows that the partition function Ξid of the ideal fluid is

Ξid(3.1)=
∞∑︁
𝑁=0

𝜌𝑁

𝑁 !𝑉
𝑁 ,

and the 𝑛-particle density of the ideal gas is

𝜌(𝑛) = 1
Ξid

∞∑︁
𝑁=𝑛

𝜌𝑁

(𝑁 − 𝑛)!𝑉
(𝑁−𝑛).

Now, we substitute (𝑁 − 𝑛) → 𝑘, i.e. 𝑁 = 𝑘 + 𝑛, and obtain

𝜌(𝑛) = 1
Ξid

∞∑︁
𝑘=0

𝜌𝑛𝜌𝑘

𝑘! 𝑉 𝑘 = 1
Ξid 𝜌

𝑛Ξid = 𝜌𝑛.

174



175



B. Remarks on Chapter 6

B. Remarks on Chapter 6

B.1. The derivative of
⟨
𝑉 ′
𝑁(𝜆)

⟩
𝜆

𝜕
⟨︀
𝑉 ′
𝑁 (𝜆)

⟩︀
𝜆

𝜕𝜆

(6.3)= 𝜕

𝜕𝜆

1
𝑍𝑁 (𝜆)

∫︁
exp
[︀

− 𝛽𝑉𝑁 (𝜆)
]︀
𝑉 ′
𝑁 (𝜆)dr𝑁

=
(︂
𝜕

𝜕𝜆

1
𝑍𝑁 (𝜆)

)︂∫︁
exp
[︀

− 𝛽𝑉𝑁 (𝜆)
]︀
𝑉 ′
𝑁 (𝜆)dr𝑁

+ 1
𝑍𝑁 (𝜆)

∫︁ [︂
𝑉 ′
𝑁 (𝜆) 𝜕

𝜕𝜆
exp
[︀

− 𝛽𝑉𝑁 (𝜆)
]︀

+ exp
[︀

− 𝛽𝑉𝑁 (𝜆)
]︀ 𝜕
𝜕𝜆
𝑉 ′
𝑁 (𝜆)

]︂
dr𝑁

(2.6)= − 1
𝑍𝑁 (𝜆)2

𝜕

𝜕𝜆

(︂∫︁
exp
[︀

− 𝛽𝑉𝑁 (𝜆)
]︀
dr′𝑁

)︂
×
∫︁

exp
[︀

− 𝛽𝑉𝑁 (𝜆)
]︀
𝑉 ′
𝑁 (𝜆)dr𝑁

+ 1
𝑍𝑁 (𝜆)

∫︁ [︂
− 𝑉 ′

𝑁 (𝜆) exp
[︀

− 𝛽𝑉𝑁 (𝜆)
]︀
𝛽𝑉 ′

𝑁 (𝜆)

+ exp
[︀

− 𝛽𝑉𝑁 (𝜆)
]︀
𝑉 ′′
𝑁 (𝜆)

]︂
dr𝑁

= 1
𝑍𝑁 (𝜆)2

∫︁
exp
[︀

− 𝛽𝑉𝑁 (r′𝑁 ;𝜆)
]︀
𝛽𝑉 ′

𝑁 (r′𝑁 ;𝜆)dr′𝑁

×
∫︁

exp
[︀

− 𝛽𝑉𝑁 (𝜆)
]︀
𝑉 ′
𝑁 (𝜆)dr𝑁

+ 1
𝑍𝑁 (𝜆)

∫︁ [︂
− 𝛽𝑉 ′2

𝑁 (𝜆) exp
[︀

− 𝛽𝑉𝑁 (𝜆)
]︀

+ exp
[︀

− 𝛽𝑉𝑁 (𝜆)
]︀
𝑉 ′′
𝑁 (𝜆)

]︂
dr𝑁

=
⟨︀
𝑉 ′′
𝑁 (𝜆)

⟩︀
𝜆

− 𝛽
(︁⟨︀

[𝑉 ′
𝑁 (𝜆)]2

⟩︀
𝜆

−
⟨︀
𝑉 ′
𝑁 (𝜆)

⟩︀2
𝜆

)︁
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B.2. Rewriting the expression ⟨𝑊𝑁⟩𝜆
First, we have⟨︀

𝑊𝑁

⟩︀
𝜆

(2.7)= 1
𝑍𝑁 (𝜆)

∫︁
𝑊𝑁 exp(−𝛽𝑉𝑁 (𝜆))dr𝑁

(6.8)=
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

1
𝑍𝑁 (𝜆)

∫︁
𝑤(𝑟𝑖𝑗) exp(−𝛽𝑉𝑁 (𝜆))dr𝑁 .

Now, we rewrite the integral to be∫︁
· · ·
∫︁
𝑤(𝑟𝑖𝑗) exp

(︀
− 𝛽𝑉𝑁 (r1, . . . , r𝑁 ;𝜆)

)︀
dr1 . . .dr𝑁

=
∫︁

· · ·
∫︁
𝑤(|d − c|) exp

(︀
− 𝛽𝑉𝑁 (a,b, r3, . . . , c⏟ ⏞ 

i-th

, . . . , d⏟ ⏞ 
j-th

, . . . , r𝑁 ;𝜆)
)︀

da db . . . dc⏟ ⏞ 
i-th

. . . dd⏟ ⏞ 
j-th

. . .dr𝑁

=
∫︁

· · ·
∫︁
𝑤(|r2 − r1|) exp

(︀
− 𝛽𝑉𝑁 (r𝑖, r𝑗 , . . . , r1⏟ ⏞ 

i-th

, . . . , r2⏟ ⏞ 
j-th

, . . . , r𝑁 ;𝜆)
)︀

dr𝑖 dr𝑗 . . . dr1⏟ ⏞ 
i-th

. . . dr2⏟ ⏞ 
j-th

. . .dr𝑁

=
∫︁

· · ·
∫︁
𝑤(𝑟12) exp

(︀
− 𝛽𝑉𝑁 (r1, r2, . . . , r𝑖⏟ ⏞ 

i-th

, . . . , r𝑗⏟ ⏞ 
j-th

, . . . , r𝑁 ;𝜆)
)︀

dr1 dr2 . . . dr𝑖⏟ ⏞ 
i-th

. . . dr𝑗⏟ ⏞ 
j-th

. . .dr𝑁

=
∫︁

· · ·
∫︁
𝑤(𝑟12) exp

(︀
− 𝛽𝑉𝑁 (r1, . . . , r𝑁 ;𝜆)

)︀
dr1 . . .dr𝑁

=
∫︁
𝑤(𝑟12) exp(−𝛽𝑉𝑁 (𝜆))dr𝑁

In the first equality we rename the integration variables r1 → a, r2 →
b, r𝑖 → c, r𝑗 → d, in the second equality we rename c → r1, d →
r2, a → r𝑖, b → r𝑗 , and in the third equality we exploit the fact that
we assume identical particles and, hence, 𝑉𝑁 (r1, . . . , r𝑖, . . . , r𝑗 , . . . , r𝑁 ;𝜆) =
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𝑉𝑁 (r1, . . . , r𝑗 , . . . , r𝑖, . . . , r𝑁 ;𝜆) for any 𝑖, 𝑗, i.e. 𝑉𝑁 (r1, . . . , r𝑁 ;𝜆) is invariant
under the exchange of particles. Now we plug the integral back in the
expression for

⟨︀
𝑊𝑁

⟩︀
𝜆

and obtain

⟨︀
𝑊𝑁

⟩︀
𝜆

=
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

1
𝑍𝑁 (𝜆)

∫︁
𝑤(𝑟12) exp(−𝛽𝑉𝑁 (𝜆))dr𝑁 .

Since the integral and 𝑍𝑁 (𝜆) are independent of 𝑖 and 𝑗, we gain a factor of
𝑁(𝑁 − 1)/2 and write⟨︀

𝑊𝑁

⟩︀
𝜆

= 𝑁(𝑁 − 1)
2

1
𝑍𝑁 (𝜆)

∫︁
𝑤(𝑟12) exp(−𝛽𝑉𝑁 (𝜆))dr𝑁

= 1
2

∫︁∫︁
dr1dr2𝑤(𝑟12)

× 𝑁(𝑁 − 1)
𝑍𝑁 (𝜆)

∫︁
· · ·
∫︁

dr3 . . .dr𝑁 exp(−𝛽𝑉𝑁 (r1, . . . , r𝑁 ;𝜆))⏟  ⏞  
𝜌

(2)
𝑁;𝜆(r1,r2)

= 1
2

∫︁∫︁
𝜌

(2)
𝑁 ;𝜆(r1, r2)𝑤(𝑟12)dr1dr2.
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C.1. Functional derivative of Ω with respect
to the interaction potential

We simplify the notation such that 𝑣(r1, r2) ≡ 𝑣(1, 2) and exp[−𝛽𝑣(r1, r2)] ≡
e(1, 2). Now, we rewrite the functional derivative of Ω with respect 𝑣(1, 2) to
be a functional derivative of the partition function Ξ with respect to e(1, 2):

𝛿Ω
𝛿𝑣(1, 2)

(3.4)= 𝛿(−𝑘𝐵𝑇 ln Ξ)
−𝑘𝐵𝑇 (−𝛽)𝛿𝑣(1, 2)

= 𝛿 ln Ξ
𝛿 ln e(1, 2)

= 𝛿 ln Ξ
𝛿e(1, 2)

𝜕e(1, 2)
𝜕 ln e(1, 2)

= 1
Ξ

𝛿Ξ
𝛿e(1, 2)

𝜕 exp[−𝛽𝑣(1, 2)]
−𝛽𝜕𝑣(1, 2)

= 1
Ξ

𝛿Ξ
𝛿e(1, 2) exp[−𝛽𝑣(1, 2)]

= e(1, 2)
Ξ

𝛿Ξ
𝛿e(1, 2) . (C.1)

Finally, the functional derivative 𝛿Ξ/𝛿e(1, 2) must be evaluated. For this, we
consider the change in Ξ due to a variation of 𝑒(𝑖, 𝑗):

𝛿Ξ(7.1)=
∞∑︁
𝑁=0

1
𝑁 !

∫︁
· · ·
∫︁
𝛿

(︃
𝑁∏︁

𝑖,𝑗>𝑖

𝑒(𝑖, 𝑗)

)︃
𝑁∏︁
𝑘=1

𝑧*(r𝑘)dr1 . . .dr𝑁 (C.2)

179



C. Remarks on Chapter 7

To evaluate the expression in parenthesis, we apply the product rule and find

𝛿

(︃
𝑁∏︁

𝑖,𝑗>𝑖

𝑒(𝑖, 𝑗)

)︃
=

𝑁∑︁
𝑘=1

𝑁∑︁
𝑙>𝑘

𝛿𝑒(𝑘, 𝑙)
𝑁∏︁

𝑖,𝑗>𝑖
(𝑖,𝑗) ̸=(𝑘,𝑙)

𝑒(𝑖, 𝑗),

which we plug in (C.2) to obtain

𝛿Ξ =
∞∑︁
𝑁=0

1
𝑁 !

𝑁∑︁
𝑘=1

𝑁∑︁
𝑙>𝑘

∫︁
· · ·
∫︁ (︃

𝛿𝑒(𝑘, 𝑙)
𝑁∏︁

𝑖,𝑗>𝑖
(𝑖,𝑗) ̸=(𝑘,𝑙)

𝑒(𝑖, 𝑗)

)︃
𝑁∏︁
𝑚=1

𝑧*(r𝑚)dr1 . . .dr𝑁 .

Now, in every summand of the double sum over 𝑘 and 𝑙, we rename the
integration variables such that the function 𝛿𝑒(·, ·) has the variables ”1” and
”2” as arguments. Furthermore, we use the fact that the products and integrals
are commutative which lets us write the variation of Ξ as

𝛿Ξ =
∞∑︁
𝑁=0

1
𝑁 !

𝑁∑︁
𝑘=1

𝑁∑︁
𝑙>𝑘

∫︁
· · ·
∫︁ (︃

𝛿𝑒(1, 2)
𝑁∏︁

𝑖,𝑗>𝑖
(𝑖,𝑗)̸=(1,2)

𝑒(𝑖, 𝑗)

)︃
𝑁∏︁
𝑚=1

𝑧*(r𝑚)dr1 . . .dr𝑁 .

Obviously, the summands of the double sum over 𝑘 and 𝑙 are now all equal
which gives a factor of 𝑁(𝑁 − 1)/2 (the number of all pairs of particles).
With this we obtain

𝛿Ξ =
∞∑︁
𝑁=0

1
𝑁 !

𝑁(𝑁 − 1)
2

∫︁
. . .

∫︁ (︃
𝛿𝑒(1, 2)

𝑁∏︁
𝑖,𝑗>𝑖

(𝑖,𝑗)̸=(1,2)

𝑒(𝑖, 𝑗)

)︃
𝑁∏︁
𝑚=1

𝑧*(r𝑚)dr1 . . .dr𝑁 .

Finally, we rearrange the integrals and make use of the fact that the first two
terms of the sum over 𝑁 vanish due to the factor 𝑁(𝑁 − 1) to have

𝛿Ξ =
∫︁∫︁

dr1dr2𝛿𝑒(1, 2)

×

[︃
∞∑︁
𝑁=2

𝑁(𝑁 − 1)
2𝑁 !

∫︁
· · ·
∫︁ 𝑁∏︁

𝑖,𝑗>𝑖
(𝑖,𝑗)̸=(1,2)

𝑒(𝑖, 𝑗)
𝑁∏︁
𝑚=1

𝑧*(r𝑚)dr3 . . .dr𝑁

]︃
. (C.3)

Since per definition of the functional derivative also

𝛿Ξ =
∫︁∫︁

dr1dr2𝛿𝑒(1, 2) 𝛿Ξ
𝛿e(1, 2)
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holds, we can identify the term in brackets in Eq. (C.3) as the functional
derivative 𝛿Ξ/𝛿e(1, 2). With this result, we now go back to Eq. (C.1) and
obtain

𝛿Ω
𝛿𝑣(1, 2) = 1

Ξ

∞∑︁
𝑁=2

𝑁(𝑁 − 1)
2𝑁 !

∫︁
· · ·
∫︁ 𝑁∏︁

𝑖,𝑗>𝑖

𝑒(𝑖, 𝑗)
𝑁∏︁
𝑚=1

𝑧*(r𝑚)dr3 . . .dr𝑁 .

This is exactly the result in Eq. (7.2).

C.2. Integration of Equation (7.3)
With the interaction potential 𝑣𝜆(r1, r2) [Eq. (7.4)] applied, Eq. (7.3) reads
as follows:

𝛿ℱex[𝜌(r)]
𝛿𝑣𝜆(r1, r2) = 1

2𝜌
(2)(r1, r2;𝜆). (C.4)

The left-hand side of the equation, obviously, is the functional derivative of
ℱex[𝜌(r)] with respect to 𝑣𝜆(r1, r2). Hence, the change 𝛿ℱex in ℱex[𝜌(r)] due
to the variation of 𝑣𝜆 is

𝛿𝜆ℱex[𝜌(r)] =
∫︁∫︁

𝛿ℱex[𝜌(r)]
𝛿𝑣𝜆(r1, r2)𝛿𝑣𝜆(r1, r2)dr1dr2, (C.5)

which essentially is a multiplication of the left hand side of Eq. (C.4) with the
variation 𝛿𝑣𝜆(r1, r2) followed by an integration. Note that 𝑣𝜆(r1, r2) varies
since 𝜆 varies, indicated by the subscript 𝜆 in 𝛿𝜆. If we apply this operation
on either side of (C.4), we obtain∫︁∫︁

𝛿ℱex[𝜌(r)]
𝛿𝑣𝜆(r1, r2)𝛿𝑣𝜆(r1, r2)dr1dr2 = 1

2

∫︁∫︁
𝜌(2)(r1, r2;𝜆)𝛿𝑣𝜆(r1, r2)dr1dr2.

(C.6)
Since 𝑣𝜆(r1, r2) is not a functional but a function, it holds that

𝛿𝑣𝜆(r1, r2) = d𝑣𝜆(r1, r2) = 𝜕𝑣𝜆(r1, r2)
𝜕𝜆

d𝜆 = 𝑤(r1, r2)d𝜆. (C.7)

Now, we plug in Eq. (C.7) on the right-hand side and Eq. (C.5) on the left-hand
side of (C.6) which yields

𝛿𝜆ℱex[𝜌(r)] = 1
2

∫︁∫︁
𝜌(2)(r1, r2;𝜆)𝑤(r1, r2)dr1dr2 d𝜆. (C.8)
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Since 𝜆 is a scalar, we integrate on either side of the Eq. (C.8) to get∫︁ ℱex
(𝜆=1)

ℱex
(𝜆=0)

𝛿𝜆ℱex = 1
2

∫︁ 1

0
d𝜆
∫︁∫︁

𝜌(2)(r1, r2;𝜆)𝑤(r1, r2)dr1dr2.

With 𝛿𝜆ℱex = ℱex|𝑣𝜆+𝛿𝜆
− ℱex|𝑣𝜆

, we can evaluate the left-hand side and
find

ℱex
(𝜆=1)[𝜌(r)] − ℱex

(𝜆=0)[𝜌(r)] = 1
2

∫︁ 1

0
d𝜆
∫︁∫︁

𝜌(2)(r1, r2;𝜆)𝑤(r1, r2)dr1dr2.

Now, we rename ℱex
(𝜆=1)[𝜌(r)] to be ℱex[𝜌(r)] and ℱex

(𝜆=0)[𝜌(r)] to be ℱex
0 [𝜌(r)],

the latter being the intrinsic free energy functional of the reference system,
and use that 𝜌(2)(r1, r2;𝜆)(3.7)= 𝜌(r1)𝜌(r2)𝑔(2)(r1, r2;𝜆), to obtain

ℱex[𝜌(r)] = ℱex
0 [𝜌(r)] + 1

2

∫︁ 1

0
d𝜆
∫︁∫︁

𝜌(r1)𝜌(r2)𝑔(2)(r1, r2;𝜆)𝑤(r1, r2)dr1dr2

≡ ℱex
0 [𝜌(r)] + ℱex

𝑤 [𝜌(r)].

Note that Eq. (3.7) also holds in the inhomogeneous case, and, hence, since
𝜌(2)(r1, r2;𝜆) is the 2-particle density of the inhomogeneous system (see
Fn. 3 in Sec. 7.1.1), 𝑔(2)(r1, r2;𝜆) is the 2-particle distribution function of the
inhomogeneous system.
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D.1. Rewriting the system pressure
We start by plugging into Eq. (9.11) the expressions for the ideal gas contribu-
tions to the free energy density [see first line of Eq. (6.25)] and the expressions
for the chemical potentials in Eqs. (9.7) and (9.9):

𝛽𝑝 = −𝜌c
[︀

ln(Λ3𝜌c) − 1
]︀

− 𝜌1
[︀

ln(Λ3𝜌1) − 1
]︀

− 𝜌2
[︀

ln(Λ3𝜌2) − 1
]︀

− Φ + 𝜌1 ln
(︀
𝜓1(𝜂c)

)︀
+ 𝜌2 ln

(︀
𝜓2(𝜂c)

)︀
+ 𝜌c ln

(︀
Λ3𝜌c

)︀
+ 𝜌c

𝜕Φ
𝜕𝜌c

− 𝜌c𝜌1
𝜕 ln

(︀
𝜓1(𝜂c)

)︀
𝜕𝜌c

− 𝜌c𝜌2
𝜕 ln

(︀
𝜓2(𝜂c)

)︀
𝜕𝜌c

+ 𝜌1 ln(Λ3𝜌1) − 𝜌1 ln
(︀
𝜓1(𝜂c)

)︀
+ 𝜌2 ln(Λ3𝜌2) − 𝜌2 ln

(︀
𝜓2(𝜂c)

)︀
.

This rather lengthy expression can be simplified to be

𝛽𝑝 = 𝜌c − Φ + 𝜌c
𝜕Φ
𝜕𝜌c

+ 𝜌1 + 𝜌2 − 𝜌c𝜌1
𝜕 ln

(︀
𝜓1(𝜂c)

)︀
𝜕𝜌c

− 𝜌c𝜌2
𝜕 ln

(︀
𝜓2(𝜂c)

)︀
𝜕𝜌c

,

where we identify the first three terms as the pressure of the unperturbed
colloid system, 𝛽𝑝∘

c = 𝜌c − Φ + 𝜌c𝜕Φ/𝜕𝜌c. Now, we replace the polymer
system densities 𝜌𝑖 by the polymer reservoir densities 𝜌r

𝑖 via Eq. (9.8), and
subsequently use that 𝜕 ln(𝜓𝑖)/𝜕𝜌c = 1/𝜓𝑖

𝜕𝜓𝑖/𝜕𝜌c to obtain

𝛽𝑝 = 𝛽𝑝∘
c + 𝜌r

1

[︂
𝜓1 − 𝜌c

𝜕𝜓1

𝜕𝜌c

]︂
+ 𝜌r

1

[︂
𝜓1 − 𝜌c

𝜕𝜓1

𝜕𝜌c

]︂
.

Finally, we rewrite the derivatives with respect to 𝜌c as derivatives with
respect to 𝜂c, 𝜕𝜓𝑖/𝜕𝜌c = 𝜕𝜓𝑖/𝜕𝜂c 𝜕𝜂c/𝜕𝜌c = 𝜕𝜓𝑖/𝜕𝜂c 𝜋/6𝜎3

c , and replace 𝜌c via
𝜂c = 𝜋/6 𝜌c𝜎

3
c . With this, we find the result in Eq. (9.12):

𝛽𝑝 = 𝛽𝑝∘
c + 𝜌r

1

[︂
𝜓1 − 𝜂c

𝜕𝜓1

𝜕𝜂c

]︂
+ 𝜌r

2

[︂
𝜓2 − 𝜂c

𝜕𝜓2

𝜕𝜂c

]︂
.
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