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Making predictions is very difficult — especially without data.





Abstract

Multi-frame data-driven methods bear the promise that aggregating multiple ob-
servations leads to better estimates of target quantities than a single (still) ob-
servation. This thesis examines how data-driven approaches such as deep neural
networks should be constructed to improve over single-frame-based counterparts.
Besides algorithmic changes, as for example in the design of artificial neural net-
work architectures or the algorithm itself, such an examination is inextricably linked
with the consideration of the synthesis of synthetic training data in meaningful size
(even if no annotations are available) and quality (if real ground-truth acquisition
is not possible), which capture all temporal effects with high fidelity.

We start with the introduction of a new algorithm to accelerate a nonparamet-
ric learning algorithm by using a GPU adapted implementation to search for the
nearest neighbor. While the approaches known so far are clearly surpassed, this em-
pirically reveals that the data generated can be managed within a reasonable time
and that several inputs can be processed in parallel even under hardware restric-
tions. Based on a learning-based solution, we introduce a novel training protocol
to bridge the need for carefully curated training data and demonstrate better per-
formance and robustness than a non-parametric search for the nearest neighbor via
temporal video alignments. Effective learning in the absence of labels is required
when dealing with larger amounts of data that are easy to capture but not feasible
or at least costly to label.

In addition, we show new ways to generate plausible and realistic synthesized data
and their inevitability when it comes to closing the gap to expensive and almost
infeasible real-world acquisition. These eventually achieve state-of-the-art results
in classical image processing tasks such as reflection removal and video deblurring.
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Kurzfassung

Datengesteuerte Verfahren, welche auf Multi-Bild-Eingaben basieren können durch
die Aggregation mehrerer Beobachtungen im Vergleich zu ihren Einzelbild Varian-
ten zu einer besseren Schätzung der Zielgröße führen. Diese Arbeit untersucht, wie
tiefe künstliche neuronale Netze als datengesteuerte Ansätze konstruiert werden
sollten, um sich gegenüber den Einzelbild-basierten Pendants zu verbessern. Ne-
ben den algorithmischen Veränderungen in dem Design von künstlichen neuronalen
Netzwerkstrukturen oder dem Trainingsalgorithmus selbst ist eine solche Unter-
suchung untrennbar von der Betrachtung der Datengenerierung von künstlichen
Trainingsdaten. Diese Betrachtung muss sowohl einen sinnvollem Umfang der Trai-
ningsdaten als auch eine aussagekräftiger Qualität (z.B. wenn Ground Truth Auf-
nahmen unmöglich sind) umfassen. Die Generierung von Trainingsdaten für das
Lernen von Multi-Bild-Eingaben bringt zusätzliche Herausforderungen, wie tempo-
rale Effekte durch dynamische Szenen, falsch ausgerichtete Aufnahmen und dem
nicht zu vernachlässigen Speicherbedarf.

Diese Arbeit führt einen neuen Algorithmus zur Beschleunigung eines nicht-
parametrischen Lernalgorithmus ein. Dieser basiert auf der Verwendung einer GPU-
angepassten Implementierung zur Suche nach dem nächsten Nachbarn in großen Da-
tenmengen. Es zeigt sich, dass unter vergleichbarer Qualität zu bisherigen Ansätzen,
diese in Ausführungsgeschwindigkeit deutlich übertroffen werden. Damit können
nun auch große Datensätzen in plausibler Zeit verarbeitet werden – auch wenn
die Hardware bestimmte Einschränkungen bereithält. Da das Annotieren bei Trai-
ningsdaten meist zeitaufwendig, nicht praktikabel oder gar unmöglich ist, stellt
diese Arbeit ein neuartiges Trainingsprotokoll vor, um den Bedarf an sorgfältig an-
notierten Trainingsdaten zu umgehen. Der Ansatz zeigt, dass ein effektives Lernen
auf neuronalen Netzen ohne Annotationen möglich ist und auf größere Datenmen-
gen skaliert, wie dies später am Beispiel der Videosynchronisierung gezeigt wird.

Darüber hinaus zeigt diese Arbeit neue Wege auf, um plausible und realistische
Trainingsdaten für klassische Computer-Vision-Probleme synthetisch zu erzeugen.
Es ist unvermeidlich einen Anspruch auf solche Genauigkeit zu stellen, um die Lücke
zwischen synthetisch simulierter und real aufgenommener Daten zu schließen und
damit die Generalisierung der tiefen neuronale Netzen zur Inferenz sicherzustellen.
Dies wird an Beispielen, wie Entfernung von Reflexionen in Bildern und Unschärfe
in Videos, vorgestellt. Dabei zeigt sich, dass die Verbindung zwischen synthetischen
Trainingsdaten, mit hoher Detailtreue zu realistischen Daten, und angepasste da-
tengetriebenen Algorithmen zu deutlich besseren Ergebnissen führt.
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Chapter 1

Introduction

Rule #4:
A deep neural network will cheat

whenever possible!

The collection of an enormous amount of data has become a lot easier in recent
years. By developing new hardware for more cost-effective storage and faster com-
putation, data-driven approaches - and in particular deep artificial neural networks
- can uncover concealed patterns and structures within the collected and merely
unstructured data and gain additional knowledge and insights. This enables re-
markable technologies such as end-to-end autonomous driving [Boj+16], machine
translation [Vas+17], text-to-speech [Hsu+14] and image classification [He+16a] or
generation [AB19] to name just a few we were allowed to witness in the last few
years. Nevertheless, there are fundamental limits to the success of these techniques.
These limitations range from more technical limitations such as computational de-
mands and memory consumption, e.g . when analyzing minute-long video streams,
to theoretical challenges such as generalizing over longer sequences that have not
been trained due to the hardware limitations described above.

The majority of tasks where the latest machine learning methods have reached
the state-of-the-art shifted the focus from traditional feature engineering to data
engineering. Undoubtedly, one of the primary ingredients for the early success of
accurate object classification, e.g . ImageNet-Challenge [Den+09], is the availability
of a carefully curated set of human annotations in reasonable quantities. However,
the development of data-driven methods capable of tabula rasa learning without
any human annotation is necessary if these methods are to be applied to problems
where annotation of data is time-consuming, costly, or even impracticable. Consider
online platforms that allow users to share hours of video content. While these
sources provide comprehensive data on our environment and everyday life, they
are rarely labeled and can therefore hardly be used as a direct learning signal in
the application of data-driven approaches. Transfer-learning in combination with
fine-tuning may not be the solution for a variety of tasks, even if only a small part
of the available labels is missing. This leads to requirements for surrogate models
and novel iterative training protocols, which collect more and more useful training
data over time fully automatically.

The development of such methods, which can operate without the need for anno-
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Chapter 1 Introduction

tations, appears to be problematic from a theoretical point of view concerning classi-
cal back-propagation algorithms and commonly used loss functions. In recent years,
the trend of AlexNet [KSH12], VGG [SZ14], Inception [Sze+15], ResNet [He+16b]
and DenseNet [Hua+17] had only the direction of deeper models with more layers
and improvements in the choice of architectural design or creating larger non-public
datasets [HVD15]. The training protocol, however, remained unaltered. Further,
the use of multiple data sources – possibly unlabeled – has not yet become standard
practice. This is inexplicable, as annotated data is rarely or at best costly to obtain.
Moreover, it seems to be a rather unnatural way of learning. Even though we were
never given an exact definition (label) of the term “clockwise”, we still understand
it as a rotation of an object in the well-defined direction given by the clock hands.
Understanding this kind of abstraction by leveraging our experience (how the clock
hands turn over time) and combining it with certain linguistic concepts (compound
words) helps us to navigate successfully through our environment and make sense
out of multiple sensorial impressions. Multi-frame information as several successive
sensory inputs underlying the constraint of temporal coherence (arrow of time) can
thus convey a strong learning signal — even in the absence of annotations.

There is another motivation considering multi-frame methods. The landscape in
how we interact with photography has changed dramatically in recent years, be it
as a casual photographer or in a profession. However, the development of the pho-
tography from the “Camera Obscura” to the latest built-in sensors in smartphones
can not only be understood from the perspective of the hardware development over
35mm film or single-lens reflex cameras (SLRs). Since the arrival of digital captur-
ing devices like MegaVision Tessera1 in 1987, improving the capturing process is not
anymore purely based on better optics hardware. Instead, the digital data format
allowed complex post-processing pipelines, starting with raw denoising, automatic
white balancing, photography of high dynamic range (HDR) and is far from over
with synthesizing depth of field effects [Wad+18] in an “app”. Eventually, a single
deep neural network DeepISP [SGB19] handles all the individual steps involved in
traditional image-signal-processing (ISP) pipelines.

Further circumstances, like the spherical aberration on the Hubble Space Tele-
scope caused by the mounted mirror of the device [Whi92] led to several algo-
rithm [Lin17; Las90] to restore sharp observations before corrective optics has been
installed on site2. Popular attempts of today’s computer vision target ill-posed
problems such as the removal of obstructions by in-painting these regions from
hallucinated plausible content [Liu+18] or the increase of the spatial resolution in
photos [Lai+17], removal of unwanted reflections [LB13] or handling blur due to
camera shake [Cha16] using deep neural networks. In the past, whenever a tri-
pod was necessary in order to obtain a relatively sharp photograph, these aids

1http://www.mega-vision.com/why_Measured_Photography.html
2https://www.nasa.gov/content/hubbles-mirror-flaw
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have become increasingly superfluous and can almost be replaced by calculations.
Recently it has been shown that neural networks are capable of hallucinating en-
tire high-resolution image contents from noise and massive data [AB19; Kar+18]
using generative adversarial networks (GANs). Therefore, it is questionale to use
methods like GANs to recover galaxy features from mediocre observations [Sch+17]
whenever accurate observations are necessary but training data is rare.

Now, as the development of hardware has not stopped, sensors are capable of
recording multiple images at high frame-rates. Even in smartphones, multiple
frames are taken to deal with noise in dimly lit scenes as quite recently done in
Google’s “Night Sigth”3. Most intriguing, our own perception – based on aston-
ishing hardware (the human eye) – is delivering 10Mbps continuous data transmis-
sion [Koc+06] on the way to our brain. This is the throughput a common Ethernet
connection is able to forward. When millions of years in evolutionary opportunity
to come up with alternative perception systems still converges to such a system, it
is evidently prodigal to drop almost all sensory impressions and temporal context
by just using a single observation in an artificial system, which aims at reproducing
human intelligence capabilities. Instead, it is standing to reason to follow the same
practices evolution came up with and feed respectively handle a continuous stream
of observations in data-driven approaches — without any explicit learning signal
from an external teacher.

Although multiple observations might promise better estimates if they are in-
dependent, they also pose additional challenges such as the temporal and spatial
(mis-)alignment of different observations. And they seize greedily computational
resources as the input is given an additional dimension: “Time”. As the effects
in real-world practice become more and more difficult to grasp, a pipeline for syn-
thetic data generation also becomes more complicated compared to single frame
based counterparts. To pre-empt a later chapter of this work: The synthesis of
blur in images caused by camera shake is well understood in literature and mold
in a relatively simple mathematical model. However, the temporal multi-frame
counterpart, which deals with dynamic content, requires a novel and far more so-
phisticated approach to generate plausible synthetic training data at scale. Finally,
this shapes two forms of inputs for multi-frame methods which we are going to in-
vestigate in this thesis: those that are observed under different circumstances (e.g .
different polarization of light) without a particular order and methods that stream
data directly into a neural network with a canonical order — both are potentially
spatially misaligned.

3https://ai.googleblog.com/2018/11/night-sight-seeing-in-dark-on-pixel.html
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Chapter 1 Introduction

1.1 Main Contributions and Research Questions

The primary objective of this thesis is to design deep learning based models to han-
dle multi-frame data more naturally. This presents two challenges: the generation
of data of appropriate size and quality and the handling of data in learning-based
algorithms.

As a recurring theme, all the deep-learning based approaches presented in this
thesis share the ability to generate almost infinite amounts of training data with
various distortions automatically to optimize capable models that eliminate these
unwanted effects — even if there is no ground-truth available. Fortunately, for most
problems (e.g . deblurring, removing reflections) the inverse problem (e.g . blurring
a photo, adding reflections) once defined is somewhat easier to accomplish and its
effect easier to synthesize. A second recurring pattern is the faithful replication of
real-world data in a synthesized training set in which all effects such as blur and
reflections are captured with high fidelity. In all chapters, we further show how
more plausible and realistic synthesized multi-frame data can close the gap to an
expensive and almost unfeasible real-world acquisition, leading to better models
and estimates that ultimately come closer to solving these problems.

Still, handling entire data streams requires algorithms which work at acceptable
costs in terms of time and memory. This is likewise true for rather classical ap-
proaches such as nearest neighbor search, and it becomes the main focus later in
this thesis when assembling approaches based on neural networks.

In detail, we formulate the research questions and main contributions as:
Research Question 1: Can we utilized modern hardware like the Graphics Pro-
cessing Unit (GPU) to gain a speed-up over traditional CPU based nearest neighbor
approaches without sacrificing recall-performance?

The nearest neighbor problem as a non-parametric data-driven method is a cen-
tral part of traditional computer vision pipelines and typically represents a massive
bottleneck. GPU hardware fueled latest developments in deep learning. Therefore,
it is important to identify other classical problems that may profit from recent
breakthroughs in hardware development. We introduce the first GPU approach
obtaining a significant speed-up over all previous methods [Wie+16a] and at the
same time improving the accuracy of previous attempts.

Research Question 2: Can we train a neural network to understand video content
from a continuous data stream without any external training signal?

We introduce a novel training protocol [WFL17] for tabula rasa learning for
robust video synchronization beyond the field of reinforcement algorithms for deep-
learning. Hereby, our method iteratively increases the complexity of the training
data autonomously. This is done by a iterative process which based on exploit-
ing temporal coherence constraints in videos to train a deep neural network over
several iterations. The current iteration of a trained deep neural network is used

4



1.1 Main Contributions and Research Questions

to gather training examples via predictions which might be missed by a previous
(less-trained) version the neural network. Hereby, false positives and false negatives
are rejected based on a novel heuristic to avoid contamination of the next genera-
tion of the gathered training data. The newly assembled training data is used to
refine the deep neural network. The final trained model can synchronize videos,
which are even months apart and their appearances almost do not resemble each
other [WFL17].

Research Question 3: Given there is no practical way to reliable gather ground-
truth data, can we still use a data-driven learning method to, for example, remove
reflection from images?

The removal of reflections is vital when it comes to estimating correspondences
in multi-frame computer vision methods. Ambiguities caused by reflection are typ-
ically instances where such an algorithm fails. We have developed a novel image
synthesis pipeline [Wie+18] that faithfully reproduces reflections and the polar-
ization effects from real examples with an imaging-based rendering. This resulted
in state-of-the-art results on multi-frame reflection removal in-the-wild, even when
based on a rather small neural network architecture to ensure this model fits hard-
ware constraints on todays smartphones.

Research Question 4: How can we merge classical multi-frame approaches and
deep neural networks to further improve the neural network performance?

While most learning-based methods work entirely independently to classical ap-
proaches, we have modified a classical lucky-imaging method to integrate it as a
novel layer into a deep neural network. We further demonstrate the combination
of both can be trained and a joint-training leads to better results [Wie+16b] than
a combination of several approaches.

Research Question 5: Given a stream of continuous video data, how can a deep-
learning approach handle arbitrary long sequences while having low memory and
computational footprint?

Handling the additional time dimension poses some challenges. While typical 2D
convolutional layers are translation invariant, existing methods with image inputs
based on recurrent cells [PHC16] are difficult to train or not flexible enough to
handle different sequence lengths [Su+17]. We propose a novel way of recurring
network blocks to deal with a stream of data in a neural network [Wie+17]. This
obtains state-of-the-results in video deblurring and generalizes well to sequences
of lengths which are never observed during training. Further, the specific network
layout design is adjusted such that it can process full HD-frames even on modest
GPU-hardware.

5



Chapter 1 Introduction

1.2 Outline

The outline of this thesis is as follows: Chapter 2 introduces a practical and ef-
ficient approach to solve the Approximate Nearest Neighbor (ANN) problem in
a large-scale setting. Efficiently finding related points in a database for a given
query point using ANN states an integral part in many relevant computer vision
approaches. While ANN algorithms previously remained as a critical bottleneck in
these approaches, we introduce the first method utilizing the parallelism of GPU
devices to provide superior performance compared to previous attempts.

Such an ANN approach can be used to align entire video sequences temporally
or for loop-closing in Simultaneous Localization and Mapping (SLAM) approaches.
However, this introduces two challenges: While matching multiple local descrip-
tors, e.g . Scale-invariant Feature Transform (SIFT) vectors, is possible (similar
to Chapter 2), learning a single scene-descriptor would alleviate the impact of the
nearest neighbor lookup speed by employing a single global descriptor. Further two
videos showing the same content might feature drastic appearance differences, e.g .
consider out-door videos captured during summer and winter. A global descriptor
might be capable of encoding only relevant information, but inherits all require-
ments from data-driven approaches — mainly the demand for accurately annotated
data. To circumvent these issues, we present a tabula rasa learning approach based
on Convolutional Neural Networks (CNNs) in Chapter 4 to automatically analyze
and temporally align videos which are eventually recorded months apart sharing the
same scene under different illumination, seasonal effects and motion blur created by
the recording equipment. Importantly, the presented method autonomously man-
ages the underlying training data for learning a meaningful representation in an
iterative procedure collecting training examples with increased complexity from a
large corpus of un-annotated videos. Consequently, it removes the need of human
intervention in the training loop at all.

In contrast to a single global 2D scene descriptor (Chapter 4), common 3D recon-
structions methods seek for a per-pixel depth annotation. However, when working
with images or videos acquired in the wild one has to deal with different effects
reducing the image quality or even violating commonly made assumptions. The re-
maining two Chapters 5, 6 address the problem of restoring the unobserved ground-
truth image from observations deteriorated by different causes.

Chapter 5 deals with the problem of separating reflection and transition images.
It is virtually impossible to avoid semi-reflectors in human-made environments.
Hence, as they can severely impact the performance of computer vision algorithms,
e.g . during computing correspondences matching (required in dense 3D reconstruc-
tions) it is required to disambiguate such super-imposed information. Instead of
using temporal information (Chapter 4), we describe a multi-frame approach which
exploits physical properties of natural light in the presence of different polarization
states. Modeling the physics of light (polarization on thin glass plates), imperfect-
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1.2 Outline

ness of semi-reflectors (geometry of scene) and scene dynamics (object motion) in
an image-based training data generation allows for separating reflections and trans-
missions in images later captured in common places using a convolutional neural
network.

Finally, while approaches relying on a temporal sequence like videos provide ad-
ditional insights, e.g . consider the ambiguity between “sit down” and “stand up”
from a seat in a single shot. However, these multi-frame inputs capturing differ-
ent appearances (e.g . different polarization states, Chapter 5) are confronted with
additional challenges like spatial alignment or blur. Chapter 6 therefore addresses
the problem of propagating temporal information across multiple frames to reduce
blur in the recorded sequences. While blur caused by camera shake (ego-motion)
can be modeled and synthesized in a relatively simple mathematical model, sim-
ulating respectively removing motion blur (object-motion) from a dynamic scene
challenges any method. It requires to broadcast extracted information from one
time step to consecutive time steps — possibly over completely different spatial
locations to successfully restore the sharp ground-truth frame.
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Chapter 2

Nearest Neighbor Search

Rule #3:

More data has never been harmful.

Given a large collection of data points in a potentially high-dimensional space,
finding the nearest neighbor for a particular query is a serious problem in image
processing. While previous attempts either accept loss in speed due to a compre-
hensive search on the GPU or perform this search on the CPU due to sequential
algorithm components, we demonstrate the first method that is specifically tailored
to the GPU architecture and offers superior performance.

The material of this chapter is based on the following publication:

[Wie+16a] Patrick Wieschollek, Oliver Wang, Alexander Sorkine-Hornung, and
Hendrik P.A. Lensch.

”
Efficient Large-scale Approximate Nearest Neigh-

bor Search on the GPU“. in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). June 2016. doi:
10.1109/CVPR.2016.223

Consider a set X of vectors x ∈ Rd in Euclidean space with metric δ(a, b) = ‖a− b‖2

representing collected data. Hereby, commonly used dimensions are d = 128 for
SIFT vectors or d ≥ 1024 for extracted features from a deep convolutional neural
network such as ResNet [He+16a]. Finding the nearest neighbor N(q) ∈ X of
a query vector q ∈ Rd in such high-dimensional space is a fundamental task in
computer vision that can be formulated as

N(q) := arg min
x∈X

δ(q, x). (2.1)

However, extracting and collecting SIFT features from common scenes such as
shown in Figure 2.1 typically results in 20k local features for each single frame.
Hence, building such a dataset for a 30-minute short video clip typically produces
n > 109 data points with the ensuing need of pairwise matching. In practice
d as well as n are often large, leading to nearest neighbor searches being a sig-
nificant computational bottleneck in many applications when relying on a dense
correspondence matching. This is due to the necessity of performing exact distance
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Chapter 2 Nearest Neighbor Search

Figure 2.1: Extracting local features such as SIFT from a fairly simple scene (left)
frequently results in 20k features per frame (right). Any dense cor-
respondence matching for multiple frames algorithm would be hard
stressed without a reasonable acceleration structure for the nearest
neighbor search component.

computations in a high-dimensional space between many pairs of vectors, a problem
exacerbated by the phenomenon known as the curse of dimensionality.

This phenomenon can be easily illustrated by scaling X to fit into an enclosing
d-dimensional hyper-unit cube. Exploring a v fraction of the volume to identify
potential nearest neighbor candidates requires to visit at least a v1/d percent of each
hyper-cube edge. Hence, to explore 10% of a SIFT vectors set (d = 128) in a hyper
unit-cube, one has to potentially search an interval covering ≈ 98% of the possible
values per coordinate. Also, the use of the advantages of parallel computations
on GPU devices by processing batches of multiple queries simultaneously does not
resolve this dilemma.

While leveraging GPU parallelism seems obvious, in practice accelerating nearest
neighbor search techniques using GPU parallelism is notoriously tricky, mainly due
to hardware constraints, e.g . memory restrictions of GPUs compared to the amount
of RAM available for CPU-based methods, and algorithmically constraints, e.g . se-
quential nature of the local search. For a concrete example, consider an NVIDIA
Titan X GPU, which provides 12GB addressable global memory compared to work-
stations providing 512GB of RAM. As a result, previously existing GPU-based
methods often either exploit the parallelism by implementing exhaustive search
approaches, which are limited to small datasets of up to 225 candidate neighbors
[Tsa+14] to fit data into memory or handle only 3-dimensional vectors [ML14],
making these approaches unsuited for many vision problems. A highly optimized
exhaustive search on 1 Million SIFT vectors performed on the NVIDIA Titan X
GPU – providing perfect accuracy – takes 23ms per query compared to 5.32ms from
a CPU-based approximate nearest neighbor approach like FLANN [ML14].

Hence, accepting a minimal loss in accuracy enables the usage of vector com-
pression methods to provide a significant speed-up. Relaxing the computational
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complexity is desired, as for most applications, an approximate nearest neighbor
search is sufficient, which seek to retrieve the nearest neighbor for a given query
“only” with a high probability. Designing such a compression technique in combina-
tion with a GPU-tailored index structure is advantageous for such rather memory-
limited devices, e.g . storing a plain index structure itself already occupies ≈ 8GB
of memory — assuming each such datapoint (N = 109) representation is limited to
be represented by at most 8 bytes.

2.1 Related Work

There exist many sequential CPU-approaches for computing ANN in the literature,
the most common of which are KD-trees [FBF77], which hierarchically subdivide
the vector space iteratively in each axis. While these methods are widely used in
graphics and vision, it has been shown that KD-trees are no more efficient than
brute force searches when d is large [JDS11]. The FLANN software package [ML14]
proposes randomized KD-forests and k-Means trees, which prune the overall search
space by identifying small regions around the query vectors, yielding better perfor-
mance with higher dimensional vectors.

Another family of approaches is based on the idea of Locality Sensitive Hashing
(LSH) [Dat+04]. These methods hash database vectors with a number of random
projections and perform nearest distance checks only on vectors that are hashed
to the same bin. The speed and accuracy of such methods depend on the hashing
function used. Andoni and Indyk [AI08] describe a family of hashing functions
which are near-optimal. These ideas have since been used in the computer vi-
sion community by extending them into the image domain for patch-based nearest
neighbor computation [KA11]. While these methods work well, they have not yet
achieved the same performance as space partitioning methods [ML14].

One commonly used concept for nearest neighbor search [JDS11; KA14; ML14;
Ge+13; BL12] is using two different phases: The offline phase is used to build an
index structure for accelerating a query lookup relying only on available informa-
tion from the data set representing the search space. Such a structure is optimized
to represent global as well as local information such that, a query (during the on-
line phase) can pin down the search space and enumerate datapoints in the vicinity.
The online phase can exploit query-dependent information in combination with the
prebuilt index structure. A common strategy in the offline phase is to balance the
trade-off between reducing the search space by grouping multiple dataset entries
into bins and the overhead of maintaining these bins during the online phase when
only addressing a few candidate bins during a query. A recurrent pattern is the
maintenance of priority queues guiding the traversal of bins, which contain multiple
candidate vectors. Unfortunately, updating or synchronizing a priority queue per
CUDA kernel is notoriously challenging due to its sequential nature and indepen-
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a) KD-tree b) Vector-Quantization
(VQ)

c) Product-Quantization
(PQ)

Figure 2.2: Illustration of different quantization methods for accelerating a nearest
neighbor query on a toy dataset. The KD-tree illustration results from
a few iterations for clarity. In PQ, the clustering is done in sub-spaces
(here each axis) and then re-projected.

dence of parallel launched CUDA blocks when not using atomic operations or a
device-wide synchronization. Hence, a GPU-based method — like ours — needs
to relax such constraints. A successor of our work, FAISS [JDJ17], even further
decreases the required query-time by optimizing the GPU usage mainly by rely-
ing on in-register memory and kernel fusing. Additionally, they showed increased
performance when employing multiple GPU devices. Apparently, such a scaling
gives superior throughput on the GPU at the cost of the query latency. Quite re-
cently, there has been some interest in exploring alternative hardware like the Intel
HARPv2 FPGA platform [ZKL18].

Vector Quantization (VQ) [LBG80] is a simple compression method that clusters
the search space into some bins based on the distance to the cluster centroid. If
a query vector is quantized to a bin, all other vectors in that bin are likely to be
good candidates for being the nearest neighbor. Unfortunately, if a query lies at
the edge of a bin, one has to consider all neighboring bins as well, and the number
of neighbors to each Voronoi cell increases exponentially w.r.t to the dimension D
of the space.

The concept of Product Quantization (PQ) was introduced by Sik [KS99] and
made popular in the computer vision community by Jégou et al. [JDS11]. Sev-
eral state-of-the-art ANN approaches extend these ideas, such as locally optimized
product quantization[KA14] and the inverted multi-index [BL12]. These methods
currently provide the most efficient techniques for ANN search for high-dimensional
data, in terms of speed, accuracy, and memory requirements. As our introduced
Product Quantization Tree (PQT) represent an extension to the family of PQ
methods, we will describe PQ in more detail in the next section.

12
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2.1.1 Vector and Product Quantization

Our approach builds on the idea of Vector Quantization VQ and Product Quanti-
zation (PQ) [JDS11], which we describe in the following section.

Let X = {x1, . . . , xn} be a finite set of database vectors xi ∈ Rd. Without loss of
generality we consider the Euclidean space (X, δ) with δ(a, b) = ‖a− b‖2. However,
these approaches can be used with any arbitrary metric δ.

In Vector Quantization (VQ), each vector x ∈ Rd is encoded by a codebook
C = {c1, . . . , ck} of k centroids using the discretization-mapping:

c : X → C, x 7→ c(x) := arg min
c∈C

‖x− c‖2 . (2.2)

In other words, each vector x is represented by its closest centroid cj in the code-
book. The set Cj = {x ∈ Rd | c(x) = cj} containing all vectors x which are mapped
to cj is called the cluster or bin for centroid cj. This quantization of vectors in-
troduces an approximation error ‖x− c(x)‖2, but allows for quick retrieval of a set
Cj of similar vectors, i.e., all those vectors from X that are quantized to the same
bin like the query. Classical Lloyd iterations [Llo06] can be used on a subset of
the original data to approximate a good codebook C efficiently. For each query q
finding a bin from a codebook of k bins requires k full vector comparisons having
complexity O(d · k).

In Product Quantization (PQ), the high-dimensional vector space Rd is decom-
posed as a Cartesian product

Rd = Rm × Rm × . . .× Rm

︸ ︷︷ ︸
p times

(2.3)

of p parts, when d = p ·m.
Likewise, each vector x ∈ Rd can be written as a concatenation of p vector-parts

x = ([x]1 , [x]2 , . . . , [x]p)
> with [x]j ∈ Rm. In Product Quantization, each subspace

Rm is then quantized independently using VQ. This allows for exponentially large
codebook of kp bins by encoding x ∈ Rd into a Cartesian product of sub-codebooks
S1,S2, · · · ,Sp for Sj ⊆ Rm, while retaining a complexity O(k · d) for a lookup and
space (see Figure 2.2c)

Keeping the same complexity while increasing the number of bins (using a larger
p) enables a much finer granularity for the query process. Consequently, the vectors
in each bin are much more coherent. The canonical projection is a mapping of each
vector-part [x]p independently

sp : X → Sp, x 7→ sp(x) := arg min
s∈Sp

∥∥∥[x]p − s
∥∥∥

2
, (2.4)

to its nearest part-centroid s ∈ Sp. The nearest centroid c(x) ∈ C for x ∈ Rd is the
concatenation of the sub-centroids

c(x) = (s1(x), s2(x), . . . , sp(x))> . (2.5)

13



Chapter 2 Nearest Neighbor Search

Table 2.1: Creating enough bins using a small memory footprint is essential to
ensure informative bins during the quantization. VQ and PQ use the
same amount of memory but provide a different level of granularity.

Number of Addressable Centroids
k p = 1(V Q) p = 2 (PQ) p = 4 (PQ) p = 8 (PQ)

4 4 16 256 65536
8 8 64 4096 16777216
16 16 256 65536 4294967296
32 32 1024 1048576 1099511627776

Finding a good quantizer c(·) for X can be formulated as finding p sub-codebooks
S1,S1, . . . ,SP independently, which can also be done using Lloyd iterations. There-
fore, when setting p = 1, Product Quantization becomes Vector Quantization.

It is indeed easy to produce exponentially many (with respect to (w.r.t.) p)
clusters using PQ as illustrated in Table 2.1. However, many will be empty as the
intrinsic dimension d̄ of the dataset can be smaller than, d > d̄. Assuming the set
of query vectors share a similar distribution with the set of database vectors (a
common assumption), we can expect that most queries will also correspond to non-
empty clusters. Nonetheless, we still must be able to deal with clusters of highly
multifaceted cardinality as illustrated in Figure 2.2.

2.1.2 IVFADC and Extensions

The full approach Inverted File With Asymmetric Distance computation (IVFADC)
of Jégou et al . [JDS11] combines both ideas of VQ and PQ when constructing an
index structure for large-scale datasets. Hereby, the VQ acts as a coarse quantizer
with k1 bins Ccoarse in a first stage and each coarse cluster Cj ∈ Ccoarse contains its
own PQ index structure applied to the residual r = x − ccoarse(x). Retrieving a
set of possible candidate vectors during a query is based on traversing both index
structures.

Extensions For a better quantization, the authors of optimized-PQ (OPQ) [Ge+13]
propose to augment the PQ index structure using the mapping

c : X → C, x 7→ c(x) := arg min
c∈C

δ(Rx, c), (2.6)

where R ∈ Rd×d is a d×d rotation matrix. Another extension locally-optimized-PQ
(LOPQ) [KA14] uses a individual rotation matrix Rj for each coarse cluster

ccoarse,1, ccoarse,2, . . . , ccoarse,j . . . , ccoarse,k1
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and quantizes the residual of a rotated query vector version Rjq − c(q).
While at first glance, it seems to be appealing to rotate the index structure resp.

the dataset globally [Ge+13] or even locally [KA14], it requires a high-dimensional
matrix multiplication slowing down the entire query time — even when based on
a GPU implementation. As multiple matrix multiplications require a severe com-
putational effort, the authors of LOPQ [KA14] precompute all possible projections
during the offline phase. However, this approach is only practical when query
vectors are known beforehand.

2.1.3 Inverted Multi-Index (IMI)

The inverted multi-index [BL12] exploits PQ rather than VQ for an indexing struc-
ture over all database vectors, which reduces the number of centroid-distance cal-
culation for cluster proposals or vise-versa increases the number of bins: Given
part distances to k codebook vectors, for each part [q]p of the query vector q this
approach sorts the corresponding k centroids w.r.t. to the ascending distances

[q]1 → {i11, i12, i13, . . . , i1k} = I1

[q]2 → {i21, i22, i23, . . . , i2k} = I2
...

...
...

...
...

...
[q]p → {ip1, ip2, ip3, . . . , ipk} = Ip,

where i23 is the index of the 3rd nearest cluster for part p = 2. The combined
cluster indices of all parts encoded a bin index via a multi-index

i ∈ I1 × I2 × · · · × Ip. (2.7)

For a query, starting with bin Bi for i = (i11, i21, . . . , ip1) a heuristic is needed to
traverse all bins Bi in the vicinity. Babenko et al . [BL12] make use of a priority
queue to dynamically select the next closest not yet visited bin until sufficiently
many bins are proposed. All vectors stored in each visited bin Bi are then examined
in an exhaustive search using PQ-based re-ranking of the residual to each bin
centroid.

2.1.4 Spotting the Computational Bottleneck

Both methods IVFADC [JDS11] and IMI [BL12] achieve state-of-the-art precision
but have efficiency issues when making a query. VQ-based indexing requires a vast
number of full-vector comparisons of high-dimensionality codebook vectors, and
even for PQ-based indexing the number is still substantial.

A typical search space is SIFT1B (see Table 2.2), which contains 1 billion SIFT
vectors. When doing a query for q ∈ Rd, the IVFADC approach [JDS11] uses
k1 = 8192 clusters in the initial coarse VQ quantizer to extract possible subsets
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Table 2.2: Standard datasets used for benchmarking ANN approaches containing
ground-truth data, when performing queries from a query set disjoint
from the data set.

Dataset Dimension (d) Base Set (n) Query Set(nq)

DEEP1M 256 106 103

SIFT1M 128 106 104

GIST1M 960 106 103

SIFT1B (BigANN) 128 109 104

in the search space. The number of candidates is empirically set to 0.05% of the
database size to find the nearest neighbor with probabilty ≥ 0.9 by visiting 64
clusters [JDS11]. This corresponds to 524288 candidate vectors for each query in
the SIFT1B database. Thus, this approach requires k exact d-dimensional distance
calculations for each query vector q to identify reasonable clusters. The centroids
are then sorted based on distances, and the w-best clusters are chosen, giving a
coarse list of database vectors Lc ⊂ X which has a high chance of containing the
nearest neighbor. These vectors are again sorted in a re-ranking step based on PQ of
the expensive residual-computation rw = q − cw to the identified cluster cw, which
are precomputed [JDS11], [KA14] and stored in a distance lookup-table. Again,
this precomputation is only possible when query vectors are known beforehand.
The distance between the query vector q ∈ Rd and each nearest neighbor candidate
x ∈ Lc can be approximated by quantizing the residual using a second PQ codebook
with k2 words. Re-sorting the list using a better approximation from PQ gives a
filtered list Lc → Lf . Considering only the first few vectors L′f ⊂ Lf , an exhaustive
search in L′f becomes feasible.

The lookup and re-ranking steps when visiting w clusters require k1 +w ·k2 exact
distance calculations during query time. With typical values of k1 = 8192, w =
64, k2 = 256 (compare [JDS11]), this implies 24576 full distance calculations –
excluding possible matrix multiplications [Ge+13; KA14].

To put these values into context, we benchmarked a GPU-based approach using
an NVIDIA Titan X. for computing 214 = 16384 exact distances under optimal
conditions, which takes 0.13ms. This provides a lower bound when transferring
the previously described methods in a practical setting to a hypothetical ideal
GPU implementation omitting latency and other overheads. In the next section,
we introduce a hierarchical approach reducing the total number of exact distance
calculations to less than 200. As computing 256 exact distance computations takes
0.0021 ms under ideal conditions, the number of exact vector comparison represent
a bottleneck. A complete query in our algorithm, which we will describe now, only
takes about 0.02 ms in total due to a combination of an efficient hierarchical index
structure and the parallel nature of our approach.
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a) PQ b) hierarchical clustering c) PQT

Figure 2.3: Three different quantization schemes with k = 32 clusters. Vector
Quantization (a) represents vectors by their closest centroids. Prod-
uct Quantization performs the clustering in subspaces (here axes) (b).
A tree structure can be used to build a hierarchy of clusters on each
axis (c). Our method use the hierarchy of two quantization levels, first
using PQ with a low number of centroids, and then a second-layer of
PQ within these bins (d). Points drawn as are PQ centroids, and
each corresponding cluster is split again into finer 4 clusters (2 on each
axis) with centroids illustrated as .

2.2 PQ-Tree (PQT)

Previous proposed methods [BL12; JDS11; KA14] require quantizing the residual
within each bin for re-ranking, which is accelerated by precomputing these val-
ues. However, with unknown query vectors, such optimization cannot be made.
Additionally, these methods are hindered by a slow enumeration of the next best
bin [BL12].

We address these issue by reducing the number of exact vector comparisons
based on a PQT. Our approach presents an efficient heuristic for proposing bins,
as well as a novel re-ranking method based on projections to quantized lines for re-
ranking. Our re-ranking step is particularly efficient as it can merely reuse distance
calculations computed during the tree traversal. Finally, we demonstrate that our
approach can be efficiently implemented on a GPU.

The main idea is that product quantization is performed using a hierarchical VQ-
tree [ML14] for each part rather than a flat codebook. The tree structure on the
centroids speeds up the query (online), sorting into the database (offline), and in-
dexes considerably more bins in contrast to the inverted multi-index. Additionally,
it is designed to enable the reuse of computed values for fast re-ranking.
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2.2.1 Tree Structure - Offline Phase

Sorting each database vector x ∈ X into a bin B` gives disjoint sets, X =
⋃̇k

`=1B`.
We describe how to effectively map a vector into a bin, m : X → I1×I2× · · ·×Ip.

The indexing structure is a tree which consists of two levels of quantizers. The
first level is a traditional p-parts product quantizer with k1 centroids for each part.
Each resulting part cluster is then independently refined by one additional vector
quantizer with k2 centroids as illustrated in Figure 2.4. The bins are addressed by
any combination of the per-part child node centroids. Mapping a database vector
x ∈ X to one of n = (k1 · k2)p bins allows us to prune the entire search space by
only picking bins during a query which are likely to contain the nearest neighbor.

The same figure shows a PQT trained on SIFT1M and projected to 2D using
random coordinates. Thereby, each pixel represents a point p. The gray-value is
defined as 0.8f1 + 0.2f2, where fk is the ratio between the smallest two distances
from p to a centroid from the k-th layer in the PQT to emphasize the hierarchy. To
find nearest neighbor candidates for a query the PQT prunes the search space to
the highlighted area (w = 1), which itself is then further clustered.

Training the codebook. Constructing the VQ-trees is done independently
for each part, first by constructing a VQ codebook (level 1) using Lloyd iteration
in the fashion of the Linde-Buzo-Gray algorithm [LBG80] and then quantizing all
sub-vectors (level 2) assigned to a first level cluster.

While the inverted multi-index approach [BL12] also uses two levels of product
quantization, the second is exclusively used for re-ranking. As opposed to this, we
use two levels for indexing. While additional tree levels are possible, we empirically
found this configuration to be optimal in terms of balancing the number of bins to
check with the reduction of candidate vectors.

2.2.2 Query - Online Phase

A query now consists of four steps: tree traversal, bin proposal, vector proposal,
and re-ranking. The tree traversal is carried out as described above producing an
ordered list of (i, d)2

p for the best subset of level 2 clusters.
Tree Traversal. The tree reduces the number of exact distance computations

required during traversal by pruning. After comparing to all k1 first-level codebook
vectors, the distances are sorted, and only the w best clusters are refined for further
distance calculations for the level 2 codebook. Let y ∈ Rd be the query vector,
distances δ([y]p , [c

1]p) to the k1 first-level separately computed for each part. This
step returns a set of IDs and distance pairs

{(i, δ′)1
p | δ′ = δ([y]p ,

[
c1
i

]
p
)} (2.8)

for each part p and each level-1 centroid c1
j .
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Figure 2.4: Left: Both parts of ([x]1 , [x]2) ∈ Rd are quantized by a VQ tree with
k1 = 4 clusters in the first and k2 = 5 finer clusters in the second level.
During traversal, only the best w closest clusters of the first level are
refined. The example search space by extending w = 2 clusters is il-
lustrated as the gray area. Right: Voronoi-cells from first and second
level clusters of the index-structure obtained from the SIFT1M exper-
iment when projected onto two random coordinates. The highlighted
search region corresponds to the best first level clusters for the illus-
trated query.

From these possible per-part clusters, we only use the closest w centroids for
further processing, i.e. computing the distances δ([y]p , [c

2]p) only to those level 2

centroids whose corresponding c1 are in the best set. The level-2 distances are
ordered to find the best cluster indices for each part. Finally, combining the best
indices of the individual parts identifies the best bin as in Equation 2.7.

A typical configuration might consist of four parts (p = 4, k1 = 16, k2 = 16, w =
4), amounting to only 16 + 4 · 16 = 80 full vector distance calculations to address
(16 · 16)4 ≈ 4 trillion bins. For practical purposes, we applied modulo-hashing by
using unsigned integers representing the index.

Bin Proposal Heuristic. Given the best bin as determined by the index i =
(i11, i21, . . . , ip1). Due to the quantization nature of this approach, this bin might
not contain the actual nearest neighbor point. Instead, one has to find a sequence
of neighbor bins to ensure that a sufficient number of vectors for re-ranking is
generated. The priority queue used in Babenko and Lemptsky [BL12] would yield
the optimal sequence but it requires a resorting operation for each proposed bin,
which is expensive and is sequential by nature. This operation is the green solution
illustrated in Figure 2.5.

Instead, we propose to choose a precomputed fixed traversal heuristic. The most
simple order would be to compute all id-vectors v ∈ {1, r}p and sort them accord-
ing to their distance from the origin ‖v‖2. However, this returns an isotropic bin
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Figure 2.5: Merging the independent lookups from differents parts p, p′ to find the
best bin-combination requires sorting all combinations. A Dijkstra-
based traversal [BL12] (green) cannot be evaluated on a GPU due to
its sequential nature, though it is the optimal sequence. Illustrations
of possible parallel approximations are a naive (blue) or an anisotropic
(orange) heuristic.

traversal heuristic as depicted in Figure 2.5 (blue line) compared to the optimal
sequence from [BL12] (green lines) and our proposed anisotropic traversal heuristic
(red line). The anisotropic version with flexible slope produced a better approxi-
mation of the Dijkstra ordering. As the anisotropic version is a generalization, it
already covers the isotropic version and therefore represents a better relaxation of
the priority queue traversal. Hereby, we precompute bin orderings for 10 slopes
1.08k with k = −5,−4, . . . , 4. Each slope describes the progress balance on one
part-pair. A slope of 1 would equally handle both parts, while a slope of 1.08−5

would allow more bin combinations with higher IDs in the second part (see orange
lines in Figure 2.5).

2.2.3 Re-ranking by Line Quantization

In the index structure, each database vector is quantized to its nearest bin with a
quantization error ∆i. To find the best vectors in the bin, they need to be sorted
based on their distance to the query vector. However, a full d-dimensional distance
calculation for each vector is too expensive. Similarly, re-ranking based on product
quantized residuals [JDS11] requires comparison to yet another codebook.

Inspired by the Johnson-Lindenstrauss lemma [IM98], we propose a novel line
quantization, where some of the information gathered during traversal is reused.

Offline computation Each vector ( ) is quantized to the nearest projection ( )
onto any line ( - ) through the level 1 centroids for each part, see Figure 2.6. For
multiple parts, this quantization effectively spans hyper-planes. The distance of the
query point to the line quantized vector can be evaluated exactly and efficiently
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∆1

∆2

[bk]p

[x1]p
δ1

[x2]p

δ2

[c1]p

[c2]p

[c3]p
[q]p

Figure 2.6: Line Quantization. In traditional PQ, each database vector part [xi]p
( ) is projected onto the bin centroid part [bk]p ( ) yielding an approxi-
mation error ∆i. Vectors in a bin would be indistinguishable from each
other given a query y. We project [xi]p onto ( ) on the nearest line
- which gives an approximation error δi making vectors within a bin

distinguishable. Computing δi can reuse intermediate values without
the need of a full distance computation.

using only one 2D triangle calculation per part.
In order to disambiguate the database vectors x in these bins, we propose an

approximation by projecting each vector part [x]p in the linear subspace

span([ci]p , [cj]p), ci, cj ∈ C (2.9)

defined by the first level centroids [ci]p and [cj]p illustrated by in Figure 2.6.
Thereby [ci]p , [cj]p are chosen such that the quantization error δp is minimized.
Therefore, the calculation of the distance δ(y, x), x ∈ X is not an impediment for
efficient lookups as each database vector part [x]p ≈ (1− λp) [ci]p + λp [cj]p can be
approximated by drawing on existing information from the tree-structure.

Hence, it is sufficient to store λp and (ip, jp) for each database vector, where
the information of λp and the indicies from [ci]p, [cj]p in Figure 2.7 describes the
approximation ( ) of a vector ( ). In fact, all information about a database vector
xi ∈ X we need for the complete algorithm is encoded in the 3 · p tuple

xi ↔ (λ1, . . . , λp, i1, . . . , ip, j1, . . . , jp), (2.10)

which can be heavily compressed to 2 bytes per part p in our implementation.
The value λk is quantized to fit uint8 t and ik · jk < 256 in practise. While this
scheme does not have the same compression rate as previous methods, it is the
first to allow an efficient parallel re-ranking on the GPU by look-up from already
computed values without any computational overhead. For p ≤ 4 parts storing
these values directly on the GPU is possible even for the SIFT1B dataset.
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[q]p

[x]p

[ci]p

[cj ]p

Figure 2.7: Exact query to line calculation. The database vector part ([x]p, ) is
projected onto ( ) at the line ([ci]p , [cj]p) with error δp. When re-ranking
the exact distance hp between the query ( [y]p ) and the quantized
database point is obtained using triangulation. All necessary values
are known as they are computed during tree traversal (ap, bp) or during
database construction (cp, λp, (i, j)).

Additionally, storing one global lookup table of p×k1×k1 precomputed distances
between all pairs of level 1 centroids, i.e. ‖ [cs]p − [ct]p ‖2

2 for all p, s, t is required.
But this can be computed in the offline phase as it is independent of query vectors.

While the size of this lookup table looks huge at first glance, it contains at most
1024 entries in practice. Hence, using p = 8 forces K = k1 · k2 < 32 to allow each
vector ID fit into a 32bit integer. Therefore, the lookup table contains only 1024
entries for k1 = 4, k2 = 8 and P = 8. In this case, even for the SIFT1B dataset, at
most each 4th bin is only filled1.

Online computation During tree traversal all distances between a query point
y ∈ RD and all level 1 centroids have already been computed as list of pairs (i, d)1

p.
The approximate distance to the database vector x is computed given the triple
(λp, ip, jp), looking up ap and bp in the query’s list, and cp. The distance between y
and x is approximated by

d(y, x)2 =

p∑

p=1

d([y]p , [x]p)
2 ≈

p∑

p=1

hp(y, x)2 (2.11)

≈
p∑

p=1

(
b2
p + λ2

p · c2
p + λp · (a2

p − b2
p − c2

p)
)
. (2.12)

Note, that it is possible to compute the distance between a query and database
vector by triangulation exactly up to the projection error2 δi as illustrated by the

1There are (k1 · k2)p = (4 ∗ 8)8 bins.
2The induced distortion does not impair the query process. Please refer to Section 2.3.3 for more

details.
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2.3 Results

SIFT1M GIST1M
Recall Recall

Method Query Time (ms) R@1 R@10 R@100 Speedup Method Query Time (ms) R@100

FLANN [ML14] 5.32 0.97 n.a. n.a. ×9.6 FLANN [ML14] n.a. n.a.
LOPQ [KA14] 51.1 0.51 0.93 0.97 ×1 LSH [Dat+04] 22.7 0.132
IVFADC [JDS11] 11.2 0.28 0.70 0.93 ×4.5 IVFADC [JDS11] 65.9 0.744
Ours: PQT1 (CPU) 4.89 0.45 0.86 0.98 ×10.4
Ours: PQT2 (CPU) 5.74 0.98 (exact re-ranking) ×8.9 Ours: PQT(CPU) 63 0.83

Ours: PQT (GPU) 0.02 0.51 0.83 0.86 ×2555

Ours: GPU brutef. 23.7 1 - - ×2

Table 2.3: Performance on the SIFT1M (left) and GIST1M (right) dataset using
different methods. Reported query times include query + re-ranking
times. The GPU implementation uses the first 212 vectors from the
proposed bins and (64 · 8)4 bins. The reported CPU performance is base
on (8 · 4)2 bins. PQT2 is PQT1 but with additional exact re-ranking.

dashed line in Figure 2.7.
In practice we use different numbers of parts for the tree (Ptree = 2 or 4) and for

the line quantization (Pline = 8, 16 or 32) for sufficiently precise re-ranking. Using
exactly the same level 1 codebook with p parts, we split each centroid part to get
p′ = k · p parts and compute the distances by aggregating the components.

2.3 Results

We now present the results of the PQT evaluated on several standard benchmark
sets. All reported CPU query times were obtained from a single-threaded C++
implementation using SSE2 instructions. Results of our GPU implementations are
obtained with a NVIDIA GTX Titan X.

We use the publicly available benchmark SIFT1M, SIFT1B datasets [Jég+11], of
128-dim vectors and GIST1M [JDS11] of 960-dim vectors. For the codebook train-
ing process, we solely use the first 100K/1M vectors from the respective datasets.
It was not possible to obtain any results on GIST1M using FLANN in Table 2.3.

2.3.1 Query Times and Recall

We compared our implementation with the available implementations [KA14; BL12].
Due to the approximation nature of these algorithms and discrete parameter space,
it is non-trivial to find parameter settings which produce the same accuracy for
timing comparisons. Therefore, we choose a highly optimized GPU-based exhaus-
tive search as a strong baseline method. The accuracy is measured in recall (Recall
at k (R@k)), which is the fraction of nearest neighbors found in the first k proposed
vectors after re-ranking.
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Chapter 2 Nearest Neighbor Search

Table 2.3 gives the average query time in milliseconds obtained on the same ma-
chine using publicly available code. Compared to all PQ-based approaches [BL12;
KA14] our approach (Pline = 32) is faster on the CPU at similar accuracy. Allow-
ing [KA14] to use more memory consumption for re-ranking slows down the query
process. Note that the reported time of Kalantidis et al . [KA14] excludes all inten-
sive operations like the multiplication of query vector with a d× d rotation matrix,
which were precomputed.

On the GPU, sorting the SIFT1M vectors into the bins takes 1051ms, performing
the line quantization for these 1M vectors about 458ms (p = 4, k1 = 16, k2 = 8, w =
8). The processing time for one query is roughly 39 microseconds, split into 4%
traversal, 35% bin selection, 11% vector proposal, and 50% re-ranking. In our
implementation, the maximum number of sortable vectors on the GPU per query
is currently limited to 4096 during re-ranking. Applying different algorithms, this
restriction could be removed.

With the right configuration of bins, high recall values can even be achieved on
the SIFT1B data set (Figure 2.8). Because the full data set did not fit on the
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Figure 2.8: Recall rates on the SIFT1B data set (p = 4, k1 = 32, k2 = 16, w = 8)
with ordering of bins. The recall from PQT is without a reranking step.
Even with significant lower query time, our approach is comparable in
quality to the inverted multi-index (IMI) with k = 212.

GPU, the database was build in waves of 1M vectors, aggregating the information
on the CPU. With file I/O this offline phase took about 144min. On an NVIDIA
GTX Titan X with 12GB of RAM one can upload the resulting DB structure, i.e.,
bin sizes and vector IDs per bin. For the SIFT1B dataset, it was essential to re-
sort the proposed bins by the actual distance. This slowed down query time to
0.027ms in total without re-ranking. The recall rate (R@k) at 10 of our approach
is R@10 = 0.35. For the re-ranking, we directly accessed the CPU main memory
from the GPU resulting in a total query time of 0.15ms.
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Figure 2.9: The SIFT1B dataset is split up into max{108, (k1 ·k2)4} bins by a PQT
with hashing. Each bar above 2` counts the number of bins which con-
tains [2`−1, 2`] vectors. More cluster centers yield fewer highly occupied
bins. Distributions with smaller median and shorter tail are better.

Memory is the limiting factor for the maximum number of actual bins. We apply
hashing to 100M bins. Increasing the number of parts P or introducing a further
level into the tree would further boost the number of bins – at the same time, also
the number of bins to be visited in the vicinity would drastically increase and slow
down the system.

2.3.2 Distribution of Vectors

While mapping a database vector to a bin reduces the entire search space, those
bins may contain millions of vectors when the total number of bins b is small. On
the other hand, traversing million of bins is infeasible, even on the GPU. Figure
2.9 contains the bin-histogram for the SIFT1B dataset (Table 2.4) in combination
with hashing for a maximum of 100M bins. Using higher values of b allows a much
finer granularity of produced bins.

By restricting the number of bins to be at most 100M by hashing, bins are
unions of several different clusters. A re-ranking step would only pick vectors from
the correct cluster, because of the smaller approximate distance.

2.3.3 Precision of Line Quantization

The line projection approach for re-ranking proposed nearest neighbor candidates
uses a lossy compression of the original datapoints. When choosing the correct
value of Pline usually the tradeoff between better approximation (higher values of
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Absolute Frequency of Bins

Vectors per Bin (64 · 64)4 (32 · 32)4 (32 · 16)4 (16 · 16)4

2 19,381 15,963 16,473 14,044
4 189,062 154,028 161,860 135,162
8 233,141 189,513 198,391 166,573

16 16,122,413 13,076,618 13,654,802 11,451,256
32 3,581,330 3,115,776 3,206,650 2,720,408
64 1,354,592 1,449,036 1,418,639 1,351,564

128 361,308 498,769 454,400 519,172
256 110,007 168,674 148,859 193,192
512 34,012 53,860 48,198 66,601

1,024 11,925 19,287 17,610 25,269
2,048 4,327 7,056 6,678 9,670
4,096 1,654 2,585 2,521 3,761
8,192 613 1,111 1,067 1,634

16,384 228 394 397 608
32,768 77 160 160 255
65,536 34 51 60 90

131,072 5 29 27 33
262,144 0 12 15 14
524,288 0 3 6 10

1,048,576 0 0 0 8
2,097,152 0 0 0 0

Table 2.4: Numerical values of Figure 2.9.

Pline) and less memory consumption (smaller values of Pline) arises. To illustrated
the effect of our re-ranking approach with Pline � d, we applied PQT with re-
ranking to the MNIST dataset of handwritten-digests X ⊆ R784 using Pline = 28
(see Figure 2.10), where Lc comes from the bin traversal is re-ranked using line
quantization.

We tested the performance of encoding each database vector x ∈ X by its pro-
jection onto a line for different numbers of parts used for line quantization (see
Figure 2.11). The recall rate increases with the number of line parts Pline. Low
quantization errors with moderate computational and storage effort are obtained
with Pline = 16. The necessary data for each query vector is hereby directly as-
sembled during the tree traversal without the need for any further quantization
computation.
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unsorted Lc

re-ranked Lc
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Figure 2.10: List of nearest neighbor candidates Ls (resp. Lc) on MNIST for a
query from the test set. Re-ranking these d = 784 dimensional raw
image vectors was done with our line projection method (Pline = 28).
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Pline = 32
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Pline min distor. max distor. avg. distor. time (ms)

2 10874.9 179870 30534.6 2.0
4 8967.8 166722 26257.9 2.6
8 6709.2 145082 19719.4 3.6
16 3318.3 84640 10509.7 5.3
32 1035.3 39143 3686.71 8.5

Figure 2.11: Line Quantization recall on SIFT1M using p = 2, k1 = 16, k2 = 8, w =
4 (single-threaded CPU, |Lc| < 20000).

2.4 Possible Future Work

There are several aspects which could lead to potential improvements. Given that
all distances to first level clusters are known, the natural question arises if more
sophisticated plane-quantization or cube-quantization schemes instead of the pro-
posed line-quantization method might lead to better recall rates due to better
approximations. A better approximation scheme requiring fewer parts Pline will
counteract the overhead of storing and reading additional information. Identifying
the trade-off and the best approximation approach would yield a more efficient
traversal within bins and finally emerge in a more meaningful candidate list Lc.

Currently, the ordering of the input dimension is fixed and therefore the parts only
receive the same dimensions. Along with the observations that a perfectly sorted
candidate list of the database does not change, when shuffling the coordinate axes
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Chapter 2 Nearest Neighbor Search

x(x1, x2, . . . , xd) 7→ x̃(xπ(1), xπ(2), . . . , xπ(d)) for a permutation3 π ∈ Symd. When re-
ordering the coordinate axis, different parts will lead to different clusters. Using n
re-orderings π1, π2, . . . , πn in conjunction with n different index structures increases
the recall accuracy, while pay the price of losing speed by factor n. Let X1, . . . , Xn

be random variables denoting the position of the correct nearest neighbor within
the candidate list Ls from n different runs — assuming (Xi)i=1,2,...,n iid. Hence,
F (m) := P (Xi ≤ m) describes the probability of the nearest neighbor is found
within the first m retrieves elements from the candidate list. It is easy to verify, that
P (min(X1, X2, . . . , Xn) ≤ m) = 1− (1−F (m))n. Figure 2.12 plots the recall rates
(R@k) from Figure 2.11 and expected improvements when shuffling the coordinates
axis n = 1, 2, . . . , 6 times. The (expected) recall rate R@10 increases from 77% to
95% for Pline = 16 when doubling the query time which eventually surpasses the
accuracy from Pline = 32 (recall 91%).
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Figure 2.12: Expected improvements when accumulating the results of multiple
runs n ≥ 1 with different orderings of the coordinate axes.

Traversing the PQT to identify the first promising bin containing the nearest
neighbor has minor computational costs compared to iterate neighboring bins in
case of missing the correct nearest neighbor in the first bins. Currently, PQT tra-
verses multiple paths (multiple bins) to increase the chance of finding the nearest
neighbor, represents the main bottleneck in the algorithm — despite the anisotropic
heuristic. Interconnecting bins vectors with their nearest neighbors vectors poten-
tially across different bins would help to parallelize the query.

3Symd contains all bijections from the set of d symbols to itself.
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Chapter 3

Deep Learning: Fundamentals And
Practice

Rule #28:
Check your gradients at least twice!

If they are wrong, neural networks will

ignore them and still learn something.

Deep learning as a subfield of machine learning is the backbone for many of today’s
applications in computer vision. Machine learning methods regularly outshines
other techniques when it comes to learning from observations. Thereby, predictions
are made without a set of fixed symbolic rules and hand-crafted features. Deep
learning methods usually refers to deep neural networks that have been trained to
detect a pattern in a given training data set.

In this thesis we use deep neural networks for solving real-world problems. For the
sake of completeness, we introduce relevant terminology and fundamental concepts
to explain background material which eases the understanding of the following
chapters. The experienced reader may thus skip to the next chapter. For a more
in-depth introduction in learning from data, we recommend the Machine Learning
Book [Mit97].

3.1 Introduction - Learning from Data

The famous painter Michelangelo left his painting “The Entombment” as an unfin-
ished piece. Large areas of the canvas seems to be never be touched by any brush
stroke of Michelangelo himself. While famous artists certainly can leverage several
ways to capture a scene on a plain white canvas, they cannot escape their unique
signature and technique – a pattern – during creating their art pieces.

We discuss how a deep neural network could hallucinate a finished version of
“The Entombment” several hundred years later. Such a deep neural network can
predict how the painting might look like, where even the smallest area is filled with
details. Such a deep neural network hereby describes a special type of a function

f : X ⊂ Rn → Y ⊂ Rm, (3.1)

which resembles a real relation freal : X → Y between observed input data x ∈ X
and expected output values y ∈ Y . In the case of completing a painting, the

29



Chapter 3 Deep Learning: Fundamentals And Practice

deep neural network f

artist freal

in
co

m
p
le
te

p
a
in
ti
n
g

co
m
p
le
te

p
a
in
ti
n
g

Figure 3.1: While a human artist would sketch missing parts and fill fine details in
a sequence, a deep neural network can be trained to imitate this process
and hallucinate the missing content in a single forward pass.

real relation freal is the process of the artist delivering a finished painting. It is a
mapping from an unfinished piece x ∈ X to an finished artwork y ∈ Y that we can
inspect in today’s galleries. The function can be modeled as

freal : X ⊂ Rh×w×3 → Y ⊂ Rh×w×3. (3.2)

It takes an RGB image x ∈ Rh×w×3 of size h × w with missing image parts and
hallucinates content forming another image y ∈ Rh×w×3, where these parts are
filled. This input representation is by no means unique. Instead of choosing a pixel
representation, each stroke [ZJH19] could be encoded in a vector bi with a certain
brush type, color, pressure, direction and velocity. The function freal could then
predict the next stroke freal(bi) = bi+1 forming a sequence of brush strokes. Further,
the process of painting a picture can be describe in higher concepts of content
(e.g . landscape, portrait) and painting genre (e.g . minimalism, impressionism). A
function might map these high-level characteristics to a final painting.

Hence, the input data representation has a crucial impact on performance and
interpretability of deep learning systems. Completing an RGB image representation
in one pass is fast. But a brush-stroke based representation could illustrate the
entire process of developing a painting.

Technically, freal is approximated by the non-linear function fΩ. And fΩ is hereby
parametrized by p tunable parameters Ω ∈ Rp that can be freely chosen. Each single
parameter in a highly non-linear function can dramatically change the behavior
and output of the function fΩ. In todays deep neural networks p typically ranges
in the millions (e.g . 25.6 or 60 million parameters in ResNet-50 resp. ResNet-
152 [He+16a]).

Training a deep neural network refers to the process of finding specific parameter
values in Ω, that reduce the discrepancy ` (fΩ(x), freal(x)) on some input data
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x ∈ X . The function ` describing the discrepancy is termed as loss-function. In the
example of image in-painting the loss between fΩ and freal can be modeled as an
Euclidean distance between fΩ(x) and freal(x) in RGB space for a given image x.
If the final appearance of an infinitesimal small area in a painting has only a few
possibilities, the network can learn to classify these using the cross-entropy loss.
Once the parameters Ω are optimized, a well-trained neural network fΩ behaves
similar to the real relation freal and can predict freal(x) for any valid input x during
the inference phase.

In summary, a deep learning approach draws on choices made in the representa-
tion of the data, the form of fΩ and the way the loss is measured and minimized.
While each part demonstrates a high degree of flexibility, the effectiveness of the
overall approach relies heavily on the choices made.

3.2 Generating Training Data

As freal is generally unknown, directly deriving the parameters Ω of fΩ from freal is
infeasible. In some cases, sampling from freal is costly and involves human annota-
tions to generate pairs (xk, freal(xk)) (e.g . image classification). When completing
artworks, a recorded video of the painting process can deliver training data for the
sequence of brush strokes. In some cases, fortunately, the inverse relation f−1

real is
well-understood and easier to compute than freal. Digitally removing regions from
finished paintings (f−1

real) would produce input data xk. Once enough observation
pairs

T = {(x1, freal(x1)), (x2, freal(x2)), . . . , (xk, freal(xk))} (3.3)

are available as a training set T , a deep neural network fΩ can be optimized
such that fΩ(xi) ≈ freal(xi) holds for all k gathered training observations, i.e.
` (fΩ(xi), freal(xi)) is minimal in Ω for all i = 1, . . . , k.

3.2.1 Generalization Beyond Training Data

Ideally, fΩ would be identical to freal under all circumstance, i.e. the parameters
Ω in fΩ are chosen such that the expected risk1 is minimal. This means that over
all possible input-output pairs — which might not be part of data T — fΩ and
freal behave similar. In such a situation a deep neural networks has learned to
perfectly mimicking the way an artist fills an empty canvas. As the optimization
of fΩ can only be based on the finite amount of observed data, the expected risk
cannot be directly minimized. Instead, the optimization procedure performs an
empirical risk minimization on the observed data with bounded guarantees for the

1The expectation of the loss function.
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expected risk [Vap92]. Presumably, a not surprising consequence of more observed
data is a better match between the theoretical bound of the expected risk and the
empirical risk that can be minimized in practice. In other words, incorporating more
independent observed training examples (more paintings) significantly improves
the generalization of fΩ (a better chance to accurately mimicking yet unobserved
samples of the painter’s work). However, the expressiveness of fΩ (e.g . number
of parameters) counteracts this generalization guarantee [Vap92]. Therefore, the
preparation of data comprises the technical challenge to store and handle enough
data – besides solving the ambiguity of data representation.

Assuming freal to be surjective, we might want to generate training data via
sampling from

{
(f−1

real(y), y) | y ∈ Y
}
. (3.4)

Sampling training data according Equation (3.4) is preferable, when f−1
real is easier

to compute than freal. While in the in-painting example from the beginning of this
chapter the function f−1

real can be directly evaluated (vanish information in a small
patch), in some cases like deblurring videos in Chapter 6 or removing reflections in
Chapter 5 neither freal nor f−1

real are easily accessible. But faithfully approximating
f−1

real by a computational less expensive but adequate function f−1
Ω would effectively

generate training data

T̃ =
{

(f−1
Ω (y), y) | y ∈ Y

}
(3.5)

on the fly. In Chapter 6 the approximation f−1
Ω will replicate common causes of

blur in videos and in Chapter 5 the physical process of reflection on surfaces under
polarized light is faithfully modeled to synthesize training data.

While sampling training data from Equation (3.5) might produce plenty of data,
the generation can be still costly compared to an training step of the deep neural
network performed on the GPU.

3.2.2 Data Pipeline and Speed

Therefore, synthesizing training examples on-the-fly poses a trade-off between the
number of possible observations for training and speed of generating these observa-
tions pairs. For example, the on-the-fly generation of blurry images (see Chapter 6)
– while expensive – gives the benefit of independently sampling a specific blur for
training and eventually increasing the number of independently synthesized blurry
observation for training. A way to speed up this process is to store several patches
of an blurry image and its sharp counterpart in advance on disk that can be digested
later by the neural network at the cost of being limited by available memory.

This is the first decision to be made: What information should be stored on disk.
Although each training example can be generated, fed through the network and dis-
banded, storing the data on the disk has the benefits of reproducible optimization
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runs. This is especially useful during testing and comparing different network archi-
tectures and hyper-parameter choices. When it comes to the data storage format,
several options exist. Training examples from the ImageNet Challenge [Den+09]
are distributed directly as images2. While this eases the way of sharing, iterating
all files can represent a severe bottleneck. To understand all common factors, parts
of the system have to be benchmarked independently.

The combination of 8 consumer GPUs can process3 1536 images per second (1008
MB/second) during training, see Table 3.1. As the setup is based on PCI-e v2.0
connections between GPU memory and host memory, it has a maximal throughput
of 8 GB/second. In this case the computation is clearly bounded by GPU com-
putation. The only way to improve the speed would be using a smaller network
architecture, e.g . ResNet-18 can process 1094 images/second on a single GPU.

Table 3.1: Raw speed (images per second) of ResNet-50 [He+16c]. Some configu-
rations could not be tested due to missing hardware.

Images/second (different number of GPUs)
GPU - Type 1 2 3 4 5 6 7 8

Titan Xp 241 448 658 893 - - - -
GeForce GTX 1080 Ti 213 396 587 791 841 1021 1200 1536
GeForce RTX 2080 Ti 243 537 - - - - - -
Titan RTX 262 576 - - - - - -

The data input pipeline must ensure that at least as many images are delivered
as the bandwidth is capable of handling. This prevents the training process from
being blocked by additional waiting times on the GPU side. Reading from an
SSD (on the machine that has been used for the projects in this thesis) gives a
speed of 460 MB/second with disabled cache and 9947 MB/second with cache
enabled. Note, loading a single file into the cache has performance benefits if it
is kept in the cache. A typical first optimization epoch (one entire optimization
pass showing each image the deep neural network exactly once) is slow as the
data is not cached yet. Throughout all following projects, each dataset has been
stored as a Lightning Memory-Mapped Database (LMDB) file. Each entire subset
(training/validation/test) is stored with all meta-data in a different LMDB file
to guarantee performance and reproducibility. Once this file is loaded, the only
remaining operation to switch between training examples is seeking within this file.
An alternative to LMDB is the Hierarchical Data Format 5 (HDF5) and tf-Records

2Even the official dataset contains invalid images. An excellent first step is always to check the
readability of the training data.

3Experiments were done in TensorFlow (v1.11, CUDA 10, CuDNN 7.3.0, Ubuntu 18.04) using
the tf.StagingArea to keep the data on the GPU removing any non-GPU related overhead.
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format, where the latter is part of the TensorFlow framework [Aba+15] and does
not support random access. An experimental setup reading images in a random
order from LMDB gives on average 333.84 MB/second compared to HDF5 with
173.52 MB/second in a single-threaded environment.

The standard strategy of handling training data in the following chapters is
to load the data from the LMDB files in several independent processes. These
independent processes augment and send the data over sockets using Zero-Em-
Queue (ZMQ) to the primary training process which manages the (multi-)GPU
interaction and consumes all the training examples. Separate processes are used
for data reading and augmentation in Python as opposed to multi-threading. The
default Python interpreter is slowed down by the Global-Interpreter-Lock. While
this gives thread-safe memory management, a real multi-threading with parallel
execution is therefore not possible. In Chapter 6, the Python implementation defers
the computationally expensive part to separate CUDA/cuDNN implementations to
blur an image.

Optimizing Neural Networks

Given a training set T = {(xi, yi)i=1,2,...,n} of observations, we might hypothesize
linear relationship between xj ∈ Rd and yj ∈ Rd′ for the sake of simplicity:

freal(xj) =: yj ≈ f(xj) = Wxj, W ∈ Rd′×d. (3.6)

Again, the discrepancy between the model prediction (actual output, f(xj)) and
ground-truth (expected output, freal(xj)) can be measured. For the sake of sim-
plicity we use the squared Euclidean loss function

1

2n

n∑

i=1

‖f(xi)− freal(xi)‖2
2 . (3.7)

The optimal weights W ? yielding minimal error and can be obtained via solving
the optimization problem

W ? = arg min
W

n∑

i=1

`(f(xi), yi), `(f(xi), yi) = ‖Wxi − yi‖2
2 . (3.8)

Since, ` is a convex function [NW06, p. 8] in Equation (3.8), it is easy to verify that
its unique minimum is obtained at Y X>(XX>)−1 when columns of X, Y represent
the independent data points4. Typically the number of datapoints n in combination

4Usually, one uses the convention of per-row data points, which would complicate all following
equations.
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Figure 3.2: Behavior of loss function for different initial learning rates using the
ADAM optimizer [KB14a] for experiments done with an earlier version
of the network presented in Chapter 5. Even in the context of learning
rate heuristics halving the learning rate when the error plateaus is a
good strategy.

with high dimensions d, d′ makes it infeasible to compute this solution directly in
practice besides numerical issues when computing the pseudo-inverse (XX>)−1

with a high condition number. Using an iterative approach like stochastic gradient
descent [RM85; KW+52], the initial random guess W0 is updated in the steepest-
descent direction [NW06, p. 21] given by −∇W `(f(xi), yi):

Wt+1 = Wt − η · ∇W `(f(xi), yi) (3.9)

= Wt − η ·
∂

∂Wt

‖Wtxi − yi‖2
2 (3.10)

= Wt − η · 2(Wt · xi − yi) · x>i (3.11)

in a loop over each data point i by a pre-defined step-size η. In the convex setting the
optimal step-size can be determined by the strong Wolfe condition [MT94; HZ06] to
guarantee a decrease in the objective function. Unfortunately, the assumption of a
linear and convex relation rarely holds in real-world problems. Deep convolutional
neural networks then need to model a more complex relation. With this, η is treated
as a hyperparameter choice and is usually adapted via some modern heuristics, e.g .
ADAM [KB14a]. The specific choice of all optimizer’s hyperparameters have an
enormous impact on the fully trained model. To test the robustness of the proposed
solutions, we rely on the defaults and choose an appropriate initial learning rate in
the following chapters only.

Finding a good learning rate A helpful strategy to determine a good initial
learning rate in practice is to first find a learning rate that will minimize the loss
function in the first few iterations. To find a better learning rate value, we suggest
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Figure 3.3: A deep neural network is trained to classify input data (top-left) from
its position (x1, x2). The network consists of two fully-connected lay-
ers with parameters W (2),W (1) and a sigmoid activation function. For
illustration purposes the training has been stopped after 20 iterations
without final convergence.

to test several other choices of η by gradually increasing the value of the learning
rate and run a few updates on an untrained neural network. This should be done
until the learning rate leads to divergence within in the first few updates. Then the
half of the highest learning rate, which still leads to convergent behavior, is usually
a good choice. If the loss curve plateaus one can half the learning rate again. This
process is illustrated in Figure 3.2.

To increase the model capabilities, a composition of basic functions is used, e.g .

f = f (1) ◦ f (2) ◦ f (3). (3.12)

As the composition of multiple linear functions is linear itself, non-linear functions
are interposed, e.g .

f(xj) = W (1)
(
σ
(
W (2)xj

))
︸ ︷︷ ︸

x̃j

= W (1)x̃j, (3.13)

f (1)(x) = W (1)x, f (2)(x) = σ(x), f (3)(x) = W (2)x. (3.14)
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Table 3.2: Description of a two-layer neural network for non-linear regression.

Common Term Forward Pass Backward Signal Multiplier

Squared Euclidean loss ‖x− y‖2
2 ca

Fully-connected Layer W (1)x cb
Activation Function σ(x) cc
Fully-connected Layer W (2)x ∂x̂j/∂W (2)

t

Hereby, σ is a non-linear function (typical choices are Sigmoid or ReLU [NH10]).
This neural network is illustrated in Figure 3.3. The updates for the weights W (1)

during the optimization procedure can be obtain via basic vector calculus

W
(1)
t+1 = W

(1)
t − η ·

∂

∂W
(1)
t

∥∥W (1)x̃j − yj
∥∥2

2
(3.15)

= W
(1)
t − η · 2(W

(1)
t · x̃j − yi) · x̃j>. (3.16)

The derivative w.r.t. W
(2)
t is computed using chain-rule with automatic differen-

tiation in reverse mode5 (coined as “back-propagation”):

∂

∂W
(2)
t

∥∥∥W (1)
t x̃j − yi

∥∥∥
2

2
(3.17)

=

[
∂

∂W
(1)
t x̃j

∥∥∥W (1)
t x̃j − yi

∥∥∥
2

2

][
∂W

(1)
t x̃j
∂x̃j

][
∂x̃j

∂W
(2)
t

]
(3.18)

=
[
2
(
W

(1)
t x̃j − yi

)][∂W (1)
t x̃j
∂x̃j

]

∂σ
(
W

(2)
t xj

)

∂W
(2)
t


 (3.19)

=
[
W

(1)
t

]> [
2
(
W

(1)
t x̃j − yi

)]


∂σ
(
W

(2)
t xj

)

∂W
(2)
t


 (3.20)

=
[
W

(1)
t

]>
︸ ︷︷ ︸

cb

[
2
(
W

(1)
t x̃j − yi

)]

︸ ︷︷ ︸
ca

[(
1− σ

(
W

(2)
t xj

))
σ
(
W

(2)
t xj

)]

︸ ︷︷ ︸
cc

∂W
(2)
t xj

∂W
(2)
t

(3.21)

=
[
W

(1)
t

]>
︸ ︷︷ ︸

cb

[
2
(
W

(1)
t x̃j − yi

)]

︸ ︷︷ ︸
ca

[(
1− σ

(
W

(2)
t xj

))
σ
(
W

(2)
t xj

)]

︸ ︷︷ ︸
cc

x>j . (3.22)

5Interestingly, there is no clear consensus of who invented back-propagation. A first publication
about the derivation from the chain-rule is from Dreyfus [Dre62] in 1962 while the first practical
implementation is described in the Master’s thesis of Linnainmaa [Lin70] (1970). The first
publication with application to neural networks is from Werbos [Wer81] (1981) and became
popular after a paper by Rumelhart, Hinton and Williams in 1986 [RHW88].
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Note, the scaling factors ca, cb can be computed independently fromW
(2)
t . Each such

building block is coined as a layer in a deep neural network, see Table 3.2. Hence,
using the chain-rule for derivatives we can embed any novel layer in the network
as long as the derivative of the layer output w.r.t. to its inputs is explicitly given.
For example, it is possible to embed a Fisher-Vector representation [WGL17] as a
neural network layer, convolution operation over a set of arbitrary points [GWL18]
or a PatchMatch operation (extension of [Bar+09]).

A simple implementation of the derived update formulas can be done directly
using NumPy. The entire training – without the claim to be an highly efficient
implementation – of a two-layer neural network can be implemented as:

import numpy as np

x = np.concatenate([np.random.randn(2, 50) - 1,

np.random.randn(2, 50) + 1], axis=1)

y = np.concatenate([np.ones((1, 50)), -np.ones((1, 50))], axis=1)

W2 = np.random.randn(2,2)

W1 = np.random.randn(1,2)

eta = 0.01

for i in range(20):

x_bar = W2.dot(x)

x_tilde = sigmoid(x_bar)

y_hat = W1.dot(x_tilde)

loss = np.linalg.norm(y_hat - y)

ca = 2 * (W1.dot(x_tilde) - y)

cb = W1.T

cc = (1- sigmoid(x_bar))*sigmoid(x_bar)

grad_x_tilde = cb.dot(ca)

grad_x_bar = grad_x_tilde * cc

gradW1 = 2 * (W1.dot(x_tilde) - y).dot(x_tilde.T)

gradW2 = grad_x_bar.dot(x.T)

W1 -= eta * gradW1

W2 -= eta * gradW2

This implementation was used to generate the data for the illustration in Fig-
ure 3.3. Popular deep learning frameworks allows to define the forward pass as a
graph. The framework then automatically constructs necessary operations for a
given graph to run backpropagation without any user action. An implementation
of the small neural network using TensorFlow [Aba+15] is:
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import tensorflow as tf

x = tf.placeholder(dtype=tf.float32, [100, 2])

y = tf.placeholder(dtype=tf.float32, [100, ])

net = tf.layers.dense(x, 2, activation=’sigmoid’)

net = tf.layers.dense(net, 1)

loss = tf.reduce_mean(tf.squared_difference(net, y))

optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)

train = optimizer.minimize(loss)

with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

for i in range(20):

sess.run(train, {x: ..., y: ...})

Recent deep neural networks rely on discrete 2D grid-based convolution oper-
ations (deep convolutional neural networks) to reduce the number of parameters
which yields more efficient training. As a discrete 2D convolution be formulated
as a matrix multiplication using a Toeplitz matrix all derived formulas from above
can be used for these networks as well. Technically, most routines are indeed
implemented on the GPU as a matrix multiplication [Che+14]. But the matrix
multiplication scheme is adapted [CPS06] to unroll the convolution operations in
a matrix multiplication and does not use a Toeplitz matrix. As todays neural net-
works mostly rely on convolutions with smaller kernel sizes more dedicated methods
like Winograd [Win80] are even more effective.

Deep Network Architectures

Deep neural network architectures typically differ in the way fΩ is modeled – es-
pecially how the layers interact. Since deep neural networks address non-convex
problems, small changes in architecture can have a significant impact on the perfor-
mance. One counter-intuitive observation is that deeper networks (although having
larger capacity) yield more significant training errors [He+16a] without some ad-
justments. It has been empirically shown [He+16a] that using rather simple residual
skip-connections f(x) = h(x) + x (instead of f(x) = h(x)) eases the optimization
procedure and improves performance. Hence, optimizing the weights towards zero
in a residual skip-connection h(x) = 0 is therefore empirically easier than learning
the identity mapping f(x) = x when training deeper networks [He+16a].

Further, the choice of the loss-function highly depends on the underlying task.
While image restoration approaches (Chapter 5 and 6) generally rely on the Eu-
clidean loss in RGB space, learning an encoding of inputs in a high-dimensional
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Figure 3.4: Illustration of an encoder-decoder network with ResNet [He+16a] (or-
ange) and UNET skip-connections [RFB15] (green)

space (Chapter 4) involves a Triplet-Loss [HA14]. Still, exchanging the loss function
changes the first backward signal multiplier ca and has an impact on all subsequent
back-propagation steps.

For image restoration task typically an encoder-decoder network structure is
used, which can be written as

f = D1 ◦D2 ◦ · · · ◦Dn−1 ◦Dn︸ ︷︷ ︸
decoder D

◦En ◦ En−1 ◦ · · · ◦ E2 ◦ E1︸ ︷︷ ︸
encoder E

. (3.23)

Hereby, Ei is usually a block of convolution layers followed by a down-sampling
layer by either striding or some pooling operation (max-pooling, average pool-
ing). Typically the decoder block Di mirrors the encoder Ei block (see Figure 3.4)
by assembling convolution layers and some up-sampling. Most networks architec-
tures follow the suggestion of using nearest neighbor up-sampling [ODO16] to avoid
checkerboard artifacts as a reverse operation to pooling.

One particular clever structure for encoder-decoder networks in image restoration
task is the UNET [RFB15], see Figure 3.4. Instead of just having a neural network
f̄ learning a residual f̄(x) = x+ f(x), where fΩ is from Equation (3.23), all blocks
have Unet-skip connections, i.e. a function h is applied to the output of the previous
layer x and the corresponding encoder block result Ei(x), i.e. Di(x) = h([x,Ei(x)]).

3.3 Writing Custom Operations

In Chapters 4 and 6 custom TensorFlow operations have been used for speed con-
siderations. Hence, part of the data generation pipeline was executed directly in the
TensorFlow graph to benefit from local data availability on the GPU in combination
with access to CUDA. The TensorFlow framework allows loading custom operation
implementations living in a separate library dynamically. Each custom operation
has a dedicated function to display the documentation in the Python front-end,
a function to propagate input/output tensor description (data-type, shape). The
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latter function is used to statically infer all tensor shapes throughout the entire
network during the graph construction phase. The library further exposed func-
tions encapsulated in a class that handles both phases: graph construction and
execution. A typical custom operation is illustrated below:

class MyCustomOperation : public OpKernel {

public:

explicit MyCustomOperation(OpKernelConstruction* ctx) : OpKernel(ctx) {

// Static checks during graph construction.

// E.g., saving parameter choices.

}

void Compute(OpKernelContext* ctx) override {

// Dynamic computations during graph execution.

// Use all inputs ’ctx->input(i)’ compute the final output tensor.

}

};

While not officially supported6 from the TensorFlow team, writing custom oper-
ation outside from the official source code repository is possible since TensorFlow
v1.9. If a layer operation is differentiable, the backward pass as described in Sec-
tion 3.2.2 is exposed as a separate custom operation independently from the forward
pass. Registering the backward operation as a gradient to another operation is then
done directly within Python.

6A documented way of compiling an example operation is given and tested in the project
https://github.com/PatWie/tensorflow-cmake that has be maintained in parallel with
the research projects in this thesis.
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Chapter 4

Video Synchronization

Rule #15:

Whenever a network does not converge,

refine the idea not the random seed!

Based on a un-annotated collection of videos with partly overlapping routes of car
journeys, we present a tabula rasa learning approach, which is able to temporally
align videos recorded months apart. Videos are synchronized, though they appear
rather different due to weather and seasonal variations. The approach extends its
training data set and autonomously selects training examples that serve as inputs
for the training of a CNN.

The material of this chapter is based on the following publication:

[WFL17] Patrick Wieschollek, Ido Freeman, and Hendrik P. A. Lensch.
”
Learning

Robust Video Synchronization without Annotations“. In: IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA).
Dec. 2017. doi: 10.1109/ICMLA.2017.0-173

While the previously described approach for approximate nearest neighbor search
applies to all classical computer vision methods based on matching local features,
understanding and assessing the current situation around us (humans) in a single
glance is necessary to interact with the world as we know.

Figure 4.1: For any given frame our approach learns a global scene descriptor. Pair-
wise descriptor distances represent semantic similarity of the frames.
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Looking at Figure 4.1 within a few tenths of a millisecond [GO09], humans can
perceive and understand the scenes shown to conclude those highlighted frames in-
deed show the same scene although they are recorded at different times, with differ-
ent illumination, motion blur, seasonal effects and a small spatial miss-alignment.
For this task, we are focusing with ease on useful traits like the location of the
houses or the shape of the road and mask irrelevant features such as traffic or the
actual road conditions. From our experience we are familiar with all effects that
might change the current appearance and we understand the global context. Given
our speed in understanding the world around us, it is unlikely, that humans ex-
tract and match several scene-independent local descriptors, which then requires
a nearest neighbor search as presented in the previous chapter (Chapter 2). It is
more likely, that we will encode the entire scene from a glimpse using our global
semantic understanding of the scene. Confronted with steady visual stimuli, we
might learn such a scene abstraction from temporal information — we were never
explicitly told which traits to look at to compare the two scenes in Figure 4.1.

This chapter focuses on training a convolutional neural network without provid-
ing such explicit information (annotations) for comparing multiple frames within
the task of temporal video alignment (synchronization). Such a temporal video
alignment is a dense frame-to-frame mapping between the involved videos in each
time step with consistency along the time dimension. In contrast to classical ap-
proaches [Rüe+13; Aga+05; ST04; Wan+14] based on matching local descriptors,
the presented neural network learns to describe an entire – potentially unseen –
scene by a single descriptor. This method has two advantages over classical ap-
proaches: First, the network can learn to understand videos capturing the same
content at different times, which might look completely different besides additional
challenges such as ego- and object-motion or changes of the view angle and illu-
mination. All these effects effectively hinder the extraction of meaningful local
features in traditional computer vision methods when not relying on a global scene
understanding. And second, a single learned descriptor per scene could avoid the
computationally expensive step of matching multiple local features in a nearest
neighbor search. This is essential, when processing hours of video content.

Although data-driven approaches like deep convolutional neural networks have
proven excellent performance and capabilities in scene understanding [MMPN16],
they usually require a large amount of high-quality labeled training data describ-
ing the underlying scenes accurately. One way to automate the labeling process
for video synchronization would be to record synchronization signals such as Lon-
gitudinal Time Codes, genlock, GPS data or a landmark-based audio fingerprint-
ing [BSM12] during acquisition. Solutions based on this kind of additional data
are as accurate as the device which registered the data. Besides its limitation to
out-door scenes, GPS has a typical precision of three meters [Gps]. While minor
alignment errors would not be visible in vanilla image alignment, any non-frame
accurate alignment would become apparent during simultaneous video playback.

44



4.1 Related Work

Further, in many real-world scenarios, these explicit synchronization signals are
not available as most consumer cameras only encode the creation date of the video
file within the meta-data. Directly applying a learning based approach [Ara+16]
to learn the alignment is not possible in this case. Producing a dense labeling by
manual effort is not feasible either1. Our used video dataset consists of 28 million
frames. Note, the ILSVRC challenge [Den+09] is based on 1.4 million labeled
images only, which were annotated with by single label using crowdsourcing. It
is worth mentioning, that in our setting, we deal with unstructured video content
without any explicit knowledge about which frames or entire videos do match or
not.

To overcome these problems, we propose a novel learning-based approach:

– Section 4.2 introduces a new challenging dataset for video-alignment covering
rural scenes as well as city scenes across a year under different appearances.

– In Section 4.3 we propose a training protocol for training a neural network to
match frames from different videos of the same scene without any annotation.

– Section 4.3.3 presents a method for robust identification and computation of
matching tours for partially overlapping video pairs, which can automatically
detect the start and end points of the matching tour.

– Section 4.4 evaluates the robustness and effectiveness of our algorithm, which
will demonstrate significantly faster processing than competing methods and
allows for robust synchronization of videos even under drastic appearance
changes.

4.1 Related Work

The process of video alignment holds a natural relation to image alignment which
was addressed by several studies [Bro92], e.g . using stereo correspondence estima-
tion [SS02] or robust pixel descriptors [LYT11]. Algorithms like video stitching for
creating panoramic videos [Aga+05], automatic summarization of videos [NMZ05],
HDR video generation [Kan+03], vehicle detection for advanced driver assistance
systems [Die+11] and video-copy detection [BBK10] among others are heavily de-
pendent on such a robust and accurate temporal alignment of video-frames between
multiple videos.

Basic video alignment is commonly used in the field of human action retrieval or
surveillance motion capture. Here, finding similarities of human actions in videos
are based on dynamic time warping of various sensor features to track the human
skeleton [ZD09]. Bazin et al . introduced ActionSnapping [BSH16] which focuses on
synchronizing actions performed by humans such as weightlifting, baseball pitching
or dancing assuming a static background scene and frontal views.

1An attempt to thoroughly aligning a video pair of 8-minute length by hand took 41 minutes.
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Most approaches for spatio-temporal video alignment [LY07; WZ06; TG04; CI02;
UI06] assume a linear temporal correspondence, i.e. either a constant time shift be-
tween two videos or a constant change in playback speed for one video. Sand and
Teller [ST04] compute a matching-likelihood of 3D motion to match videos. A
non-linear solution was proposed by Wang et al . [Wan+14] based on a matching
histogram of SIFT vectors using nearest neighbor search. Here, the search space
dramatically increases with the length of the video sequence. In terms of applica-
tion the most similar work to ours is from Evangelidis et al . [EB11; EB13], which
allows for sub-frame accurate alignments of at most one-minute video snippets un-
der negligible appearance changes on rather simple street scenes. Another related
task is to recognize places from different view angles. A data-driven version of
VLAD descriptors by Arandjelovic et al . [Ara+16] demonstrates the capability of
neural networks to detect specific locations that are already present in the training
dataset. Compared to a coarse place recognition, video alignment however requires
a much finer temporal resolution. Figure 4.2 illustrates typical examples of frame-
pairs from different datasets which are considered as similar for the specific task.

Learning similarities by training neural networks has been done previously for
very specific applications such as signature verification [Bro+94], face recogni-
tion [CHL05; VHW16] and comparing image patches for depth estimation [ZK15].
These work rely on datasets with extensive human annotations and reliable ground-
truth data.

4.2 Dataset

Our underlying dataset comprises of 602 full-HD, 30fps videos2 (1.8 TB of raw data)
capturing 260 hours of commuter’s car journeys on partially overlapping routes
between April 2012 and March 2013 and spanning over approximately 16, 000km.
The videos were captured using a GoPro Hero 2 camera mounted on the dashboard
before every journey without any specific adjustments. However, the view angle
does not feature differences as significant as in place recognition tasks [Ara+16].

The acquired videos feature both rural landscapes and urban scenes under vary-
ing traffic conditions such as temporary roadworks, rush hour, diverse weather
conditions, e.g ., snowfall, rain, and seasonal environment appearance, for example,
effects of vegetation as well as different daytime illumination (see Figure 4.2d).

Most videos show journeys between the same two cities but still have a variation
in start and end locations and the actual roads driven. The temporal alignment of
the videos thus poses a further challenge when trying to match stationary situations
like waiting in traffic during rush hour with a video showing little traffic. This is
different to linear video alignment tasks like copy-detection [Dou+16].

2frames per second (fps)
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a b

c d

Figure 4.2: Comparing the datasets of related work. Each pair shows a typical
matching frame-pair. (a) [EB11] only shows small changes in appear-
ance and perspective, (b) [Tor+15] has a totally different view angles
and (c) [Dou+16] requires only a constant time shift for alignment.
For our dataset (d), an alignment method has to handle a different
appearance and produce a playback with non-linear speed adjustment.
(Images from the specified datasets.)

The enormous range of possible variations in the video content which also suffers
from a noisy acquisition (e.g . different viewing angles, wipers, raindrops, cam-
era transformation, etc.) requires an understanding of the entire scene context
rather than a simple local feature matching like histogram-based methods [Wan+14;
BSH16; EB13]. Moreover, the videos might show interrupted content, e.g . when
the lens is cleaned or remounted during recording.

4.3 Method

We propose a framework to learn descriptors for all frames such that the Euclidean
distance represents a similarity metric between captured scenes or locations. By
properly designing the training protocol this generic approach features fast match-
ing computation, robustness against seasonal effects and it does not rely on pre-
existing labels for training.

The similarity metric can be exploited to robustly synchronize videos as will
be explained in Section 4.3.3. While we establish the procedure to align partially
overlapping video pairs (without knowing the exact frames) it is straightforward to
extend it to multiple videos in a collection (see Figure 4.16).

Tabula-Rasa Learning. The algorithm alternates between two steps: the learning
step and the label generation step. In the learning step, we assume given labels
` and train a neural network to produce meaningful descriptors for a similarity
metric δ. The label-generation is based on the current version of the trained network
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Figure 4.3: Let (a, p, n) be a frame-triplet with descriptors (Φa,Φp,Φn) produced
by the same CNN. During training, the CNN is optimized to encode
positive frames p close to the anchor point a, while negative frames n
are pulled away from the anchor point if the distance is smaller than a
margin m.

combined with tour matching (Section 4.3.3) to exploit temporal consistency. Given
the learned similarity space, potentially more reliable labels are produced, replacing
the old ones.

Over multiple iterations, more and more sophisticated and more informative
training data is generated. None of these steps requires any human annotation nor
recorded GPS signals.

4.3.1 Learning Step

In the learning step we want to learn an encoding of frames to establish a similarity
measure between individual frames (x, y). Relying on the currently available labels
from the training data we train a CNN [LeC+95] to predict a high-dimensional
descriptor Φi for each frame i such that the Euclidean distance

(x, y) 7→ δ(x, y) := ‖Φx − Φy‖2 (4.1)

is small when the frames are similar and vice versa. We use the standard ResNet-50
architecture [He+15] and add a projection from the pool5 layer to learn the 1000-
dimensional descriptors Φi. As SIFTs tend to learn edge filters in the first layers,
we use a pre-trained ResNet version for object recognition as initialization.

In order to efficiently train the concept of similarity the triplet neural network
approach [HA14] with weight-sharing is used, which generalizes well to unseen ex-
amples. It requires labels ` = (a, p, n) in the form of triplets of frames: for an anchor
frame a the label needs one similar or positive frame p and one negative/dissimilar
frame n. The similarity metric δ (Eq. (4.1)) is enforced by minimizing the triplet
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loss by Hoffer et al . [HA14]

L(a, p, n) =
[
m+ ‖Φa − Φp‖2

2 − ‖Φa − Φn‖2
2

]
+

(4.2)

for some margin m ∈ R. The first term penalizes encodings of similar frame-pairs
(a, p) that are too far away from each other in the high-dimensional feature space.
The latter penalizes encodings of negative (non-matching) frame-pairs (a, n) if they
are too close to each other (closer than some margin m – Figure 4.3). In practice,
we constrain this encoding to live on the d-dimensional hypersphere, i.e. ‖Φi‖2 = 1
and set m to 0.5.

Despite tagged by a high-dimensional descriptor, these learned encodings can be
projected into 2d using t-SNE [MH08]. We sampled 20 frames per video from our
entire video collection and placed these frame according to their encoding projec-
tions, see Figure 4.4. Clearly, all learned Φi are mostly independent of the actual
appearance of a specific scene. Scenes showing the same content, e.g . rural scenes,
downtown areas or forest scenes are clustered together. This is independent of the
appearance, e.g ., rural scenes feature all conditions: dusk, fog, blue sky or sunsets.
Only frames captured at night are packed into a cluster independent from their
content.

4.3.2 Label Generating Step

While the learning step is rather straight-forward the challenge lies in automatically
generating appropriate frame-triplet labels as training data. This label-generating
step automatically harvests new training data for subsequent learning steps by
explicitly exploiting the coherence in videos and by proposing and judging video
alignments based on current encodings. The goal is to gather more and more
informative training data in each iteration by successively increasing the complexity,
i.e. to find positive frame pairs which show the same scene location but with a
potentially different appearance as well as finding negative pairs which currently
are assigned rather similar encodings. This is achieved in three waves:

Iteration 0: Intra-video sampling of nearby frames for initial training.
Iteration 1+: Inter-video sampling of frames from matching tours.
Iteration 2+: Transitive inter-video sampling of frames from matching

tours by propagation of alignments to other videos.

After each iteration of the label-generating step, which produces an augmenta-
tion of the training dataset, we re-train the neural network in the learning step,
alternating between training and label generation.
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Figure 4.4: Visualization of input frames from our database positioned by their
learned encodings projected into 2d using t-SNE [MH08]. Rual scenes
are located on the top left, downtown areas in the middle and forrest
scenes on the right. Only, night drives are hard to encode properly due
to rare information within the headlight beam.

Iteration 0. In Iteration 0 one has to solve the dilemma of generating reliable
labels ` without having any trained network for proposing distances δ. Instead,
we rely on the inherent coherence within the same video. Any arbitrary frame-pair
which is at most 15 frames apart serves as positive sample (a, p). Any other random
frame sufficiently far away from a is regarded as a negative frame n.

Iteration 1+. After the first iteration the network is trained on the given task
and can produce features Φi for each frame i which is carried out for every 10th
frame of all videos in the dataset. One can use the estimated Φi for approximating
the pair-wise similarity, but since the network is not fully trained yet, it is essential
to disambiguate between frame-pair encoding distances we can rely on or not.

The criteria for accepting a positive frame pair or detecting a negative one in this
step is based on temporal coherence by potential matching tours between distinct
videos (X, Y ). A playback along this tour yields a synchronized video pair. A cost
matrix

C = (δ(Φx,Φy))x,y, x ∈ X, y ∈ Y (4.3)
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a) intra-video b) inter-video

c) transitive inter-video d) transitive inter-video

a

p n

Figure 4.5: Development of the cost matrix of the same video pair throughout the
iterative training process. Dark entries represent frame-pairs that are
considered similar having a small distance in the feature space. Note
how the path (red) of similar frame-pairs becomes more distinct. Large
coherent regions along the path indicate stand-still, e.g., waiting at
a traffic light. We further highlight matching frames a, p and hard
negative n.
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can be computed containing all coarse pair-wise distances of frames. Corresponding
frames should have a small distance. Though this does not hold all cases in early
iterations (since the network is not fully trained yet), it might already be possible
to detect a matching tour as explained in Section 4.3.3, i.e. to find an optimal
path through the cost matrix (see Figure 4.5). If the path is sufficiently distinct
a playback of both videos along the path will synchronize them correctly and all
nodes on the path resemble positive pairs with row a and column p, independent
of the currently proposed measure δ(a, p). Some new positive pairs might be found
this way giving hints on how to optimize the encoding in the next training phase.
Similarly, we can harvest challenging negative pairs (a, n) by just choosing a column
n sufficiently far away from the path. Most informative will be such a pair if δ(a, n)
is rather small, indicating the frames clearly should be rated distinct but are not
yet.

Though we might not find all possible paths between all videos yet, the resulting
labels `(a, p, n) will be more informative than in the previous iteration as the ap-
pearance between two videos will more likely be different even for matching frames.
The process is visualized in Figure 4.5 where the correct matching path becomes
more obvious and easier to detect throughout the iterative training. An improved
encoding Φi, which results from the augmented training data, compare to intra-
video sampling (Figure 4.5 a)) results in a cost matrix with a clearer path, see
Figure 4.5 b). It is important to note that this new information does not come
out of nowhere. Our heuristic of detecting false-positive (new hard negatives) and
false-negatives (frames pairs on the path with relatively high costs) forms this new
information.

Iteration 2+. Computing a (coarse) cost matrix for each single video pair is inef-
ficient. When the network becomes more robust during training, we can propagate
detected matching tours transitively to other pairs — without the need of comput-
ing all cost matrices. The property of “X and Y have a matching tour”, denoted
as X ∼ Y , is an equivalence relation (meeting the requirements reflexivity, sym-
metry and transitivity). Therefore, we propose a transitive sampling. In fact, our
entire dataset can be split into distinct equivalence classes3 V/ ∼ under the rela-
tion X ∼ V when videos X and V share a part of the same tour. Hence for any
two videos X and Y from V/ ∼ we already know the existence of a matching tour
X ∼ V and V ∼ Y . Transitivity also directly gives us a matching tour for X ∼ Y
if both share some overlap. This allows us to sparsely sample video-pairs and to
propagate matching frames across videos. Using a tree-based index structure re-
duces the complexity to O(n log n) when synchronizing n videos (see Figure 4.16).
Due to transitivity, one can establish matching tours which so far could not be

3A more figurative description is a clustering of all videos assigning them to an exemplary video
with partly the same tour as a cluster center.
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Figure 4.6: Extracted hard-negatives pairs, i.e. frame pairs (a, n) with a small dis-
tance δ(a, n) between their encodings Φa,Φn. Looking at these frame-
pairs without temporal context it is hard to tell whether they belong to
the same place or not.

detected using the previously trained encodings. With this iterative process we can
quickly generate a huge number of challenging and informative training triplets
`(a, p, n) even for videos which have been captured months apart or the appear-
ance difference makes them elusive for our heuristic in previous iterations. Starting
in iteration two we equally mix the obtained training examples from inter-video
sampling (Iteration 1+) and transitive inter-video sampling (Iteration 2+).

Training facilitates hard negative sample mining in all iterations (as described
above) mixed with random negative with p = 0.5. Hard negatives are frames
formerly adjudged as somewhat similar by the network and even humans are hard-
pressed to examine whether they depict the same scene or not, see Figure 4.6.

4.3.3 Robust Tour Matching

We will now describe how to find a matching tour given a cost matrix C. The entire
iterative scheme is based on robustly detecting false-positives resp. false-negatives
from the network prediction and producing complex training data in a reliable way.

Pre-processing: De-correlate Costs

Particularly in the early iterations, the similarity matrices C produced by the CNN
contain a lot of false predictions, since it is not yet fully adapted to the task.
These errors exhibit a low-rank structure because any frame that is not correctly
encoded is likely to corrupt an entire column (or row) of the similarity matrix (left
of Figure 4.7). Additionally, some of the pairs are, indeed rather similar although
we would like to treat them as different. For example, many journeys through
rural areas with little information but crop fields on both sides of the road appear
extremely similar making it hard to disambiguate between true-positives and true-
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(a) cost matrix C (b) de-correlated cost matrix C′ (c) found path

Figure 4.7: Computed similarity matrix from the first iteration in our training pro-
cess (a). As they contain highly correlated entries, directly finding a
matching tour would fail. After the de-correlation of the cost matrix
(b) finding a path (c) is significantly more robust.

negatives. As a pre-processing to the tour extraction we remove those correlation
effects by subtracting a low-rank matrix approximation

C ′ ← C −
r∑

k=1

UkΣkV
?
k (4.4)

from singular value decomposition UΣV ? of C. The result is illustrated in Figure
4.7 (middle) using rank r = 5. We found an approximate SVD approach [Vem04]
being sufficient. Abusing notation we further denote the de-correlated cost matrix
C ′ as C.

Formulation as a Shortest Path Algorithm

The only missing step for aligning a video pair is to find a plausible path (matching
tour) through its respective de-correlated cost matrix. Intuitively, such a path is
a collection of consecutive frame-pairs of minimal matching costs over both time
dimensions. Matching frame-pairs should lie on a clearly distinct path in the cost
matrix. A well-studied algorithm to solve a shortest-path problem is Dijkstra’s
Algorithm [Dij59]. For a given start- and endpoint it computes the globally optimal
path with minimum cost. We shortly outline the vanilla grid-version when applying
to the cost matrix C.

Dijkstra’s algorithm [Dij59]. For detecting paths we assume non-negative costs,
i.e. cij ≥ 0 and only allow for three directions: downwards, rightwards and a
diagonal bottom-right step basically preventing reverse playback. Given a start-
entry (s, t) and end-point (v, w) with s ≤ v and t ≤ w the algorithm propagates
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costs in C̃ with entries

c̃s,t = 0, (c̃)i,j = min {c̃i−1,j, c̃i−1,j−1, c̃i,j−1} (4.5)

(cdirect)i,j = arg min {c̃i−1,j, c̃i−1,j−1, c̃i,j−1} (4.6)

and infinite costs∞ for not reachable frames. Following the path backward encoded
in (cdirect) from (v, w) gives a path P with lowest costs between (s, t) and (v, w).
Figure 4.7 c) shows such a path from our augmented version.

Augmented Dijkstra’s Algorithm

Unfortunately, we neither know the start- nor end-point in contrast to the vanilla
version [Wan+14] nor can we guarantee that there is a path through the entire cost
matrix, e.g . consider different sub-tours (detours). For most videos of an extensive
collection, one does not even know if two videos match at all. We augment Dijkstra’s
algorithm by processing subsequences individually with the goal to flexibly handle
non-matching regions without corrupting the entire path when searching for the
global optimum over the entire matrix.

The coarse cost matrix C is split along one time dimension into multiple over-
lapping column-stripes C0, C1, . . . , Cn (see Figure 4.8) each containing 90 seconds
of the video. Now, our approach tries to find a matching tour through the entire
cost matrix building on possible tours from each stripe.

Local tours within stripes. Let us consider such a single stripe Ck. Introducing
an artificial start node with zero costs to the left enables almost complete freedom
regarding the location of each match within one stripe. We are only interested in
finding a matching tour from the left ci,0 to the right cj,N in the current stripe.
Further, this artificial start node allows us to treat each stripe individually.

For the final extraction, we remove path parts from the overlap – taking all
information but the overlap – as Dijkstra tends to deviate (see Figure 4.9) from the
correct path near the borders of the stripe. For each stripe the vanilla regularized
Dijkstra’s algorithm is applied as described from St to St+1 by only allowing the
three mentioned directions. Each possible path Pt = (St, p1, p2, . . . , pn, St+1) has
associated matching costs defined as

π(Pk) =
∑

p∈Pk

c(p), (4.7)

where c(p) is equivalent to an entry cab in the cost matrix C for the frame-pair
p = (a, b).
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Figure 4.8: Given a cost matrix C, we split up one video by dividing the cost matrix
into overlapping stripes C0, C1, . . .. Finding the local shortest path in
each stripe independently and testing for plausibility in the overlap
region, we obtain a reliable matching tour for synchronizing videos.

Heuristic of combining local tours to a global matching tour. As a robust
global matching tour does not necessarily span the entire cost matrix and all stripes,
e.g . for detours, we reject local stripes which cannot be connected to any neigh-
boring stripes with a tolerance of up to two seconds. This tolerance accounts
for the fact that we currently only consider coarse information (each 10th frame).
Moreover, applying Dijkstra’s algorithm to each stripe individually might gener-
ate local paths of minimum costs, which are not necessarily a matching tour –
there might not exists a matching tour at all. We therefore, reject local stripes
with entries (x, y) ∈ Pk from the local matching tour, if an alternative frame-pair
p′ ∈ {(x± ε, y), (x, y ± ε)} does not have significant higher associated costs than
p, i.e. we simply use the threshold c(p′) > ξ · c(p). Empirical evidence suggests
ξ = 6

5
as a good tradeoff between omitting too many valid frame-pairs and tak-

ing frame-pairs erroneously. This threshold might be conservative, but the specific
choice only impacts a small fraction of paths during exploration. All remaining
frame-pairs from the global matching tour are considered for the generation of the
next training dataset version.

4.3.4 Final Alignment of Videos

So far, we only considered each 10th frame during training. In order to prevent
temporal miss-alignments due to interpolation artifacts in the final alignment, the
full temporal resolution is required.

A coarse-to-fine approach only computes entries of C̄ at finer resolution if they
are near a matching tour in the coarse cost matrix C, see Figure 4.10. The global
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de-correlated cost matrix propagated costs (Dijkstra’s alg.) union of overlapping stripes

Ci

Figure 4.9: For any de-correlated cost matrix C (left) a vanilla Dijkstra-based so-
lution causes severe deviation artifacts and would include frames which
are not part of the matching tour following the valley of minimal prop-
agated costs (middle). Our stripe-based heuristic classifies between
non-consistent tours-snippets (red, e.g . the deviation effect) and reli-
able tour-snippets (green). The parts illustrated as blue lines will be
only taken into account if they do not violate the global consistency
constraint.

matching tour is split into chunks of the same size. For each chunk, we compute
all frame distances. As the start and end point of the matching tour through a
single box is known, we directly apply vanilla Dijkstra’s algorithm without further
modification.

Modifying the playback speed of only one video would introduce visible jumps
and spurts in this video when matching to the reference video. Consider a linear
playback of a reference scene with a green traffic light, while the other video has
to jump over the frames when waiting on red. To achieve visually pleasing video
playback for the human eye, we smooth the matching tour along both time dimen-
sions using Kalman filters [Kal60] with the additional constraint to not revert the
timeline of a single video.

4.4 Experiments

We validated our approach on a single workstation with an NVIDIA Titan X GPU.
We demonstrate the robustness on aligning a couple of challenging scenes. To
evaluate our method despite missing ground truth, we compare our CNN prediction
of similarity to [EB11; EB13], the SIFT-based histogram matching from [Wan+14],
conducted a user study and evaluate against a manual alignment of videos.
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cost matrix de-correlated cost matrix accumulated costs ROI for finer resolution final path

coarse C full C̄

Figure 4.10: Taking each 10th frame into considerations yields a coarse cost matrix
C (left). The final path for a frame by frame alignment is just com-
puted on a small region of interest (ROI) in C̄ adjacent to the coarse
solution.

Table 4.1: Timings for extracting features from unseen videos in fps. Enabling high
frame-rates is essential on large-scale datasets.

Approach [EB11; EB13] [Wan+14] [Dou+16] Ours

Speed 0.11 fps 3.77 fps 15 fps 140 fps

4.4.1 Timings and Memory Consumptions

The presented approach compares favorably to a local-feature-based approach con-
cerning the runtime (Table 4.1) and has small storage requirements (102 MB for
the network weights). When considering every 10th frame of a single video with
a length of 35 minutes, the encoding takes 45 seconds in total. This allows us to
efficiently compute new encodings of the entire dataset of 260 hours content for the
training procedure within less than half an hour using 12 GPUs.

The path detection and extraction procedure to produce coarse paths on unseen
video-pairs of 35 minutes each takes two seconds given the encodings. This splits
into pairwise-distance computation (1071 ms, GPU), de-correlation (370 ms, CPU)
and path detection/computation (405 ms, CPU). Computing the final matching
tour takes 6 seconds due to multiple runs of the pathfinding procedure on a finer
scale. This gives a speed-up factor of at least 300 compared to [Wan+14; EB11;
EB13]. So far ours is the first approach enabling large-scale interactive and real-
time applications.

4.4.2 Which visual cues are used by the approach?

For aligning videos, the network has to distinguish between relevant and irrelevant
regions in the frame, e.g . the appearance of traffic and road lanes and the weather
depending on the moment of recording. To visualize which input information is
used inside the neural network for a particular prediction, we compute saliency
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Figure 4.11: Each row contains pairs of coarsely aligned videos (every 10th frame)
across different seasons, lightning, weather conditions as well as veg-
etation. These videos are taken from the validation set and are not
used during training. The algorithm can robustly handle windscreen
wipers, motion blur and raindrops on the windshield.

maps using guided-ReLU [Spr+15]. Informally, this method computes the gradient
information of the network output w.r.t. to the input images holding all weights
fixed. Let f(i) = y be a neural network acting as a function approximation with
an image i as input and y ∈ Rn as an unnormalized classification score with n
categories. Then the saliency is ∂y′

∂i
where y′ = arg maxj yj. The magnitude of

this gradient (illustrated in Figure 4.12) indicates pixels where small changes in the
input affect the output score most.

We can use these input pixel with high impact on the network prediction, to
visualize important features. Comparing the obtained saliency maps of the vanilla
ResNet-50 to our trained model (same architecture with different weights) indi-
cates, that our approach learned to ignore irrelevant information like traffic, see
Figure 4.12. Instead, it focuses on the shape of the horizon and vegetation of the
environment. This is not possible by previous methods [BSH16; ST04; Wan+14;
EB11; EB13] using Harris or SIFT features as they also put attention on passing
cars and clouds as depicted in the lower row of Figure 4.12.
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frame vanilla trained Harris SIFT

Figure 4.12: The network (trained) learned to ignore common content such as traf-
fic or road lanes and instead focuses on striking environment informa-
tion compared to vanilla ResNet. Previous methods [BSH16; ST04;
Wan+14; EB11; EB13] rely on local features (Harris Corner Fea-
ture Detector (Harris), SIFT), capturing irrelevant information like
the white car or clouds.

4.4.3 Robustness and Accuracy

Unlike methods based solely on aggregating SIFT vectors, our method is able to
synchronize even videos recorded five months apart as depicted in Figure 4.14.
Remarkably, as the videos for the dataset are collected over multiple months, the
network has learned to interpret scenes globally. Even sequences where human
interventions like tree-felling cause a rather different look of the same scene, the
respective videos are immaculately synchronized by our approach as we enforce
temporal consistency.

To evaluate the accuracy quantitatively, we manually assessed 500 tours pre-
dicted by our approach from the cost matrices (see Figure 4.5, left). Note, how
the accuracy increases over the iterations. Hence, the harvested additional training
data of higher complexity results in a higher recall of found matching tours.

In addition, an expert annotated the videos of Figure 4.11 for two experiments
thoroughly by manually adjusting the best visual matching frame. We regard this
as expert annotation, since the locations shown are known to the annotator and
the temporal context can be studied by playing the video forwards or backwards.
In a user study, we displayed a single reference frame and the manually aligned
frames besides several other neighboring frames. The evaluation of 450 submitted
results from 14 participants is illustrated in Figure 4.15, which reveals discordance
between different participants on the same frame. Approximately, 53% agree with
a tolerance of four frames. This clearly reveals the difficulty of this task, which
is presumably caused by a change of perspective of the camera, lack of temporal
information in rural scenes or unfamiliarity with the places shown. This might also
contain challenging examples as shown in Figure 4.13. Consequently, we directly
compared the frame-distance between our annotations and the extracted path of

60



4.4 Experiments

Figure 4.13: The left frame was captured in November 2012 and right frame in
March 2013 after tree felling works. These kinds of differences cause
high matching costs in the found tour in our approach, but the sit-
uation is resolved by our matching tour heuristic utilising temporal
consistency.

our approach. This compares favorably to our estimated human performance as
62% of the predicted frame-pairs have a frame offset of at most four frames, see
Figure 4.15.

4.4.4 Multi-Video Alignment

Having all coarse encodings Φi at hand, we can query multiple videos showing the
same scene independent from appearance and simultaneously align them accord-
ingly. Frames from the synchronized video snippets are illustrated in Figure 4.16,
which shows the alignment of 7 videos across different seasons. The reference video
is represented by the left-most frames. Although these videos feature all deviations
from the reference video in terms of weather and seasonal effects, cloudiness, il-
lumination and windshield wipers the alignment stays robust — even over longer
temporal range. For efficiency reasons, the nearest neighbor lookup is restricted to
take only each 10th frame encoding into account.
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SIFT
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b

Figure 4.14: Although, there should be a matching tour between the videos a and
b (taken in September 2012 and February 2013 respectively) through
the entire video snippet, it is not possible to align both videos using
SIFT vectors [Wan+14]. The cost matrix in our approach contains
reasonable information for most frames.
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Figure 4.15: Comparison to human annotated alignment. After each iteration we
report (left) the number of found matching tours between videos and
true positives (expert annotation). The mis-alignment from partic-
ipants in a user-study and the automatic results of our approach is
evaluated against ground-truth from the expert annotation (right).
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Figure 4.16: Multi-Video temporal alignment: After querying similar and time con-
sistent video snippets using the learned encodings, the approach is able
to robustly synchronize all found snippets to a reference video snippet.
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4.5 Conclusion

As the amount of available data increases, algorithms based on supervised training
will not catch up to integrate all the data when the manual labeling process remains
the bottleneck. During this chapter, a training method for deep neural networks
was developed, which improved the performance of neural networks without human
interaction in the loop and without requiring any label.

On the basis of a heuristic to iteratively generate labels for certain training data
our approach effectively demonstrates that a large amount of multi-frame data
represents an opportunity if we can take advantage natural properties that this
data features (temporal consistency) as opposed to single-frame observations. Such
properties can act as a lever to control the entire learning process if they are used
during training. Further, taking advantage of heuristic properties like transitivity
training data can be gathered which does not arise originally from the heuristic
itself (frame-pairs from videos which are captured months apart under different
weather conditions and vegetation).

The presented approache learned an organization of all data by structuring the
underlying dataset in a latent space by distinguishing relevant and irrelevant fea-
tures. This concludes that in addition to the optimization procedure of how to
adjust the learnable parameters in a deep neural network the sampling process of
the training data is important as well. Instead of looping over a random permu-
tation of the training set, a more sophisticated sampling of the training data has
meaninful impact.

4.6 Possible Future Work

In the previous sections, we introduced a method to automatically establish a link
between images that feature the same scenery but differ in appearance. Being able
to query multiple such frame-pairs opens new possibilities to learn photorealistic
image-to-image translations [Iso+17], which is currently constrained by the avail-
ability of training data in high quality as it mostly relies on synthetic data gathered
from modern games [Ric+16]. Image-to-image translation methods based on Gen-
erative Adversarial Networks (GANs), which learn a mapping f : A → B between
two sets of images A,B are usually limited by restrictions such as knowing the exact
matches {(a, b), a ∈ A, b ∈ B, f(a) = b} in the training set or they are indeed lim-
ited to only two (disjoint) sets [Zhu+17]. Extensions [Hua+18] are able to produce
a variety of generated images from multiple sets, but are limited to cases where
these sets are rigorously separable by well-defined and known boundaries in simple
cases4, such as “cats” to “dogs” or “summer” to “winter” and vice versa [Hua+18].

4An implicit assumption made in these attempts is that the latent coding has a categorical
distribution.
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Figure 4.17: Given triplets of content, style and target images the joint decoder is
trained to synthesize photorealistic images (RGB Discriminator) wrt.
Mutual Information (MI) between Ît and some binary coin-flip b ∼
Ber(0.5). The additional features discriminator enforces small Mutual
Information MI[c, s] even when extracted from the same image.

In our case, the matching tour contains orthogonal information to what has been
used by known methods in literature [Iso+17; Zhu+17; Hua+18]. Each entry of
the matching tour can provide exact matches (xi, xj) from subsets Xi,Xj ∈ 2F of
all frames, which however are not necessary disjoint in terms of appearance, e.g .
Xi might represent all frames captured in winter and Xj all videos showing dusk.
In our case, there is no clear distinction possible and the samples are distributed
continously in the latent space instead of merely belonging to class A or B. Given
such image analogies, training a neural network for video editing is possible such
that a video appearance can be altered during playback.

Given a triplet of a content image Ic, style image Is and target image It a possible
attempt is to trained two encoder networks Ec, Es to encode content c = Ec(Ic) as
well as style information s = Es(Is), see Figure 4.17. The joint decoder network
D(c, s) is trained to fit a target image It in adversarial fashion by minimizing the MI
(MI[x, b] between a coin-flip outcome b and x). Hereby x is either T̂t or Tt depending
on the actual value of b. The entire pipeline can be considered as a latent-variable
model, which disentangles the content representation and style information — es-
pecially when an additional Discriminator forces small MI[c, s] between extracted
features c and features s. This can be done by training a discriminator to decide
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Figure 4.18: Transferred appearances from style-inputs (single images) applied to
content inputs (frames of one video).

whether s, c are extracted from the same image or not.
Any such trained model can be used to augment training data for e.g . semantic

segmentation task. Preliminary results of the synthesizing process are depicted
in Figure 4.18. Further, any interpolation in style s = λs1 + (1 − λ)s2 between
two styles s1, s2 is likely to cause such a smooth translation in RGB space from
the decoder output. It has been already demonstrated [Lar+16], that these latent
spaces are highly structured and therefore simple latent vector space calculus leads
to complex operations on the generated images. It remains open, how to train
a network to interpolate a specific effect, e.g . weather change or seasons change.
The InfoGAN [Che+16] approach has demonstrated such abilities in shaping the
learned latent space representation without any annotation – but as of yet only for
MNIST digits.
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Chapter 5

Separating Reflection and
Transmission Images in the Wild

Rule #7:
Deep learning is highly forgiving.

Although GANs are a disaster in theory,

they deliver amazing results in practice!

Reflections caused by common semi-reflectors, such as glass windows, can severely
impact the performance of computer vision algorithms. Previous works can remove
reflections from synthetically generated data or in controlled scenarios. However,
they are based on strong assumptions and do not generalize well to real-world im-
ages. Contrary to a common misconception, real-world images are challenging even
when physical effects like polarization of light are used. We present a deep learning
approach to separate the reflected and the transmitted components of the recorded
irradiance, which explicitly uses the polarization properties of light in a multi-frame
setting.

The material of this chapter is based on the following publication:

[Wie+18] Patrick Wieschollek, Orazio Gallo, Jinwei Gu, and Jan Kautz.
”
Separat-

ing Reflection and Transmission Images in the Wild“. In: Proceedings
of the European Conference on Computer Vision (ECCV). Sept. 2018

In the previous chapter, we witnessed the ability of neural networks to deal with
different appearances in a single-value discriminative approach (deciding whether
two frames show the same scene or not). However, depth estimation from observa-
tions generally necessitates a per-pixel estimation and therefore relies on a model
capable of generating such information. In this chapter, we present a learning-
based method generating a per-pixel estimate as a pre-processing step for subse-
quent pipelines. The motivation for this pre-processing is a result of the assumption
made by many computer vision algorithms: The value of each observed pixel is a
function of the radiance of a single area in the scene. Semi-reflectors, such as typical
windows or glass doors, regularly break this assumption by creating a superposition
of the radiance of two different objects: the one behind the surface (transmission)
and the one that is reflected (reflection). Now, seeking for corresponding pixels
from multiple views requires to deal with such ambiguities, see Figures 5.1 (a,b).
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(a) (b) (c)

Figure 5.1: Correspondence issues when matching patches between the observations
(a) and (b). Any 3D reconstruction algorithm relying on matching
corresponding pixels resp. patches will need to disambiguate between
two possible candidate patches matches respecting either information
of reflection or transmission. Further, note how the reflection in the
window facade manifests information (c) about the scene, which is not
directly observable.

Here, each highlighted patch can be mapped to two candidate patches in the sec-
ond view depending on whether the choice is made on the reflection or transmission
information.

It is virtually impossible to avoid semi-reflectors in human-made environments,
as can be seen in Figure 5.2(a), which shows a typical downtown area. This effect
can impact tasks such as recognition or 3D reconstruction by introducing noise or
even causing them to fail. As a dense 3D reconstruction relies on matching pixel
from different views, any multi-view stereo or SLAM algorithm would be hard-
pressed to produce accurate reconstructions on this type of images. This is where
a trained neural network for pre-processing comes into play.

Several methods exist that attempt to separate the reflection and transmission
layers. At a semi-reflective surface, the observed image, Io, can be modeled as a
linear combination of the reflection and the transmission images:

Io = αrIr + αtIt. (5.1)

Equation 5.1 shows that the problem is ill-posed: we need to estimate multiple
unknowns from a single observation. A solution, therefore, requires additional
priors or data. Indeed, previous works heavily rely on assumptions about the
appearance of the reflection (e.g ., it is blurry when captured with large aperture
and focusing to infinity), about the shape and orientation of the surface (e.g ., it is
perfectly flat and exactly perpendicular to the principal axis of the camera), and
others. Images taken in the wild, however, regularly break even the most basic
of these assumptions, see Figure 5.2 (b), causing the results of state-of-the-art
methods [SSK00; KTS; Fan+17a] to deteriorate even on seemingly simple cases, as
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Figure 5.2: Depending on the ratio between transmitted and reflected radiance, a
semi-reflector may produce no reflections 1 , pure reflections 2 , or a
mix of the two, which can vary smoothly 3 , or abruptly 5 . The local
curvature of the surface can also affect the appearance of the reflection
4 . The last two, 4 and 5 , are all but uncommon, as shown in (b).

shown in Figure 5.3, which depicts a fairly typical real-world scene.
However, a successful separation between both components facilitates reconstruc-

tions using scene information which is never directly observed. The footbridge and
stairs in Figure 5.1 (c) are not directly visible from the current camera orientation,
but the manifestation at the glass front might still convey enough information for
proper reconstruction. Hence, a successful separation between reflection and trans-
mission might guide, complete or in the first place concede 3D reconstructions.

One particularly powerful tool to address the ill-posedness of the problem is
polarization: when unpolarized light interacts with an interface separating media
with different refractive indexes, its transmitted and reflected components take on
different polarization states. Hence, images captured through a polarizer oriented
at different angles offer additional observations.

An approach requiring images captured under different polarization angles obvi-
ously requires corresponding hardware. Cameras that can simultaneously capture
multiple polarization images exist1 and have the potential to become more popular,
at least for professional applications. Indeed, methods based on polarization are
not intended to benefit a casual photographer. Rather, they are geared towards
popular computer vision applications such as content capture for virtual reality
and gaming, or aforementioned 3D reconstruction. For such applications, which
are hindered by reflections, specialized hardware and specific capturing procedures
are generally considered an acceptable cost.

Our analysis of the state-of-the-art methods indicates that the quality of the

1See, for instance, https://www.ricoh.com/technology/tech/051_polarization.html or
http://www.fluxdata.com/imaging-polarimeters.
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T̂ T̂ T̂ T̂

R̂ R̂ R̂ R̂

Input Ours [SSK00] [KTS] [Fan+17a]

Figure 5.3: Glass surfaces are virtually unavoidable in real-world pictures. Our ap-
proach to separate the reflection and transmission layers, works even for
general, curved surfaces, which break the assumptions of state-of-the-
art methods. In this example, only our method can correctly estimate
both reflection (the tree branches) and transmission (the car’s interior).

obtained results degrades significantly when moving from synthetic to real data,
even when using polarization. This is due to the simplifying assumptions that
are commonly made, but also to an inherent issue that is all too often neglected:
A polarizer’s ability to attenuate reflections dramatically depends on the viewing
angle [Col05]. The attenuation is maximal at an angle called the Brewster2 angle,
θB. However, even when part of a semi-reflector is imaged at θB, the Angle Of
Incidence (AOI) in other areas is sufficiently different from θB to essentially void the
effect of the polarizer, as clearly shown later in Figure 5.5. In other words: Because
of limited signal-to-noise ratio, for specific regions in the scene, the additional
observations may not be independent.

Since even polarization information is not always sufficient, we propose to comple-
ment it with the ability to learn prior information directly from images. We present
a deep-learning method capable of separating the reflection and transmission com-
ponents of images captured in the wild. Our approach does not make assump-
tions about the curvature of semi-reflecting surfaces (including the local curvature
variations caused by the manufacturing process), and can deal with considerable
variations of dynamic range between the reflected and the transmitted scene, and
with non-rigid scene motion, both of which are severe issues for polarization-based
methods. The success of our method stems from our two main contributions. First,
rather than requiring a network to learn the reflected and transmitted images di-
rectly from the observations, we leverage the properties of light polarization and use
a residual representation, and a layer that projects the input images on the canon-
ical polarization angles (Section 5.2.1 and 5.2.2). Second, ground truth data is not
available and needs to be synthesized. Therefore, we design an image-based data

2For window panes Snell’s law dictates θB = arctan
(
n2

n1

)
≈ 56.31◦ with refactive indicies n1 =

1, n2 = 1.5 for air respectively glass.
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generator that faithfully reproduces the image formation model (Section 5.2.3). We
show that the different parts of the proposed pipeline are indeed necessary to model
real-world behaviors. Notably, our method can successfully separate the reflection
and transmission layers even in challenging cases, on which previous works does not
meet the desired result. To further validate our findings, we capture the Urban Re-
flections Dataset, a polarization-based dataset of reflections in urban environments
that can be used to test reflection removal algorithms on realistic images.

5.1 Related Work

There is a rich literature of methods dealing with semi-reflective surfaces, which
can be organized in three main categories based on the underlying assumptions.

Single-image methods can leverage gradient information to solve the prob-
lem. Levin and Weiss, for instance, require manual input to separate gradients of
the reflection and the transmission [LW07]. Methods that are fully automated can
distinguish the gradients of the reflected and transmitted images by leveraging the
defocus blur [LB14]: reflections can be blurry because the subject behind the semi-
reflector is much closer than the reflected image [Fan+17a], or because the camera
is focused at infinity and the reflected objects are close to the surface [ADAS17].
Moreover, for the case of double-pane or thick windows, the reflection can appear
“doubled” [DS08], and this can be used to separate it from the transmitted im-
age [Shi+15]. While these methods show impressive results, their assumptions are
stringent and do not generalize well to real-world cases, causing them to fail in
common real-world scenarios.

Multiple images captured from different viewpoints can also be used to
remove reflections. Several methods propose different ways to estimate the relative
motion of the reflected and transmitted image, which can be used to separate
them [LB13; Xue+15; SAA00; GCM14; HS17]. It is important to note that these
methods assume static scenes—the motion is the apparent motion of the reflected
layer relative to the transmitted layer, not scene motion. Other than that, these
methods make assumptions that are less stringent than those made by single-image
methods. Nonetheless, these algorithms work well when reflected and transmitted
scenes are shallow in terms of depth, so that their velocity can be assumed uniform.
For the case of spatially and temporally varying mixes, Kaftory and Zeevi [KZ13]
propose to use sparse component analysis instead.

Multiple images captured under different polarization angles offer a
third venue to tackle this problem. Unpolarized light takes different polarization
states depending on whether it is transmitted or reflected by a semi-reflector. One
can separate between reflection and transmission assuming that images taken at
different polarization angles offer independent measurement of the same scene by
using independent component analysis (ICA) [FA99; BYO+01; Bro+05]. Another

71



Chapter 5 Separating Reflection and Transmission Images in the Wild

way to separate reflection from transmission exploits semi-reflective surface which
generates double reflections in combination with polarization information [DS08].
Under ideal conditions, and leveraging polarization information, a solution can also
be found in closed form [SSK00; KTS]. In our experiments, we found that most
of the pictures captured in unconstrained settings break even the well-founded
assumptions used by these papers, as shown in Figure 5.2.

To allow our approach to work on images captured in the wild, we avoid making
assumptions about reflections altogether. We rather leverage polarization in a
learning-based approach with constraints offered by the properties of polarized
light, and propose a novel approach to synthesizing realistic training data.

5.2 Method

We address the ill-posed problem of layer decomposition, by leveraging the abil-
ity of a semi-reflector to polarize the reflected and transmitted layers differently.
Capturing multiple polarization images of the same scene, offers partially indepen-
dent observations of the two layers. To learn to use these observations to predict
the latent layers directly, we use an encoder-decoder neural network. Since the
ground truth for this problem is virtually impossible to capture, our only option
is to synthesize it. As for any data-driven approach, the realism of the training
data is paramount to the quality of the results, which makes it critical to design a
data-generation pipeline that captures the many nonidealities affecting real data.

In this section, after reviewing the image formation model, we give an overview of
our approach and we discuss the limitations of the assumptions that are commonly
made. Moreover, we describe how we address them in our data generation pipeline.
Finally, we describe the details of our implementation.

5.2.1 Polarization, Reflections and Transmissions

Consider two points, PR and PT such that the reflection P
′
R of PR, lies on the line

of sight of PT , and assume that both emit unpolarized light, see Figure 5.4. After
being reflected or transmitted, unpolarized light becomes polarized by an amount
that depends on θ, the AOI.

At point PS, the intersection of the line of sight and the surface, the total radiance
L(PS, θ) is a combination of the reflected radiance LR(PS, θ), and the transmitted
radiance LT (PS, θ). If we place a linear polarizer with polarization angle φ in front
of the camera, and we average out the solid angle and exposure time to get from
the radiance at PS the corresponding intensity at pixel x on the camera sensor, we
can write for each pixel x:

Iφ(x) = α(θ, φ⊥, φ) · IR(x)

2
+ (1− α(θ, φ⊥, φ)) · IT (x)

2
, (5.2)
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Figure 5.4: Unpolarized light from PT and PR becomes polarized at PS by a degree
that is a function of the AOI, θ. Camera C observes the superposition
of the radiance of objects PT and P ′R, the reflection of PR. Depending
on the amount of polarization and on the angle of the polarizer, φ, the
observation changes.

where α(·) ∈ [0, 1] denotes the mixing coefficient, θ(x) ∈ [0, π/2] denotes the AOI,
φ⊥(x) ∈ [−π/4, π/4] describes the p−polarization direction [SSK00], and IR(x) resp.
IT (x) the reflected resp. transmitted images at the semi-reflector. All terms on the
right side of Equation (5.2) unknown.

At the Brewster angle, θB, the reflected light is completely polarized along φ⊥,
i.e. in the direction perpendicular to the incidence plane3, and the transmitted
light along φ‖, the direction parallel to the plane of incidence. The angles φ⊥ and
φ‖ are called the canonical polarization angles. In the unique condition in which
θ(x) = θB, two images captured with the polarizer at the canonical polarization
angles offer independent observations that are sufficient to disambiguate between IR
and IT . Unless the camera or the semi-reflector are at infinity, however, θ(x) = θB
only holds for few points in the scene, if any. Figure 5.5 shows a typical case where
part of the reflection is imaged around θB (the reflection of the plant), while the
reflection of a nearby object, the book on the right, is virtually unaffected by the
different polarization angles.

To complicate things, for curved surfaces θ(x) depends on x in non-linear way.
Making any assumptions about the AOI can lead to severe artifacts in the separation
of IR and IT . Finally, even for arbitrarily many acquisitions at different polarization
angles, φj, the problem remains ill-posed as each observation Iφj adds new pixel-
wise unknowns α(θ, φ⊥, φj).

3The incidence plane is defined by the direction, in which the light is traveling and the semi-
reflector’s normal.
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Figure 5.5: A polarizer attenuates reflections when they are viewed at the Brewster
angle. For the scene shown on the left, we manually selected the two
polarization directions that maximize and minimize reflections respec-
tively. Indeed, the reflection of the plant is almost completely removed.
However, only a few degrees away from the Brewster angle, the polar-
izer has little to no effect, as is the case for the reflection of the book
on the right.

5.2.2 Recovering R and T

When viewed through a polarizer oriented along direction φ, IR and IT , which are
the reflected and transmitted images at the semi-reflector, produce image Iφ at the
sensor. Due to differences in dynamic range, as well as noise, in some regions the
reflection may dominate Iφ, or vice versa, see Section 5.2.3. Without hallucinating
content, one can only aim at separating the original sources R and T , which we
define to be the observable reflected and transmitted components. For instance, T
may be zero in regions where R dominates, even though IT may be greater than
zero in those regions. To differentiate them from the ground truth, we refer to our
estimates as R̂ and T̂ .

To recover R̂ and T̂ , we use an encoder-decoder architecture, which has been
shown to be particularly effective for many tasks, such as image-to-image transla-
tion [Iso+17] or denoising [MSY16a]. Learning to estimate R̂ and T̂ directly from
images taken at arbitrary polarization angles does not produce satisfactory results.
One main reason is that parts of the image may be pure reflections, thus yielding
no information about the transmission, and vice versa.

To address this issue, we turn to the polarization properties of reflected and
transmitted images. Recall that R and T are maximally attenuated, though gener-
ally not completely removed, at φ‖ and φ⊥ respectively. The canonical polarization
angles depend on the geometry of the scene, and are thus hard to capture directly.
However, we note that an image Iφ(x) can be expressed as [KTS]:

Iφ(x) = I⊥(x) cos2(φ− φ⊥(x)) + I‖(x) sin2(φ− φ⊥(x)). (5.3)

Since Equation (5.3) has three unknowns, I⊥, φ⊥, and I‖, we can use three different
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Figure 5.6: Our encoder-decoder network architecture with ResNet blocks includes
a Canonical Projection Layer, which projects the input images onto the
canonical polarization directions, and uses a residual parametrization
for T̂ and R̂.

observations of the same scene, {Iφi(x)}i={0,1,2}, to obtain a linear system that

allows to compute I⊥(x) and I‖(x). To further simplify the math we capture images
such that φi = φ0 + i · π/4.

For efficiency, we implement the projection onto the canonical views as a network
layer in TensorFlow, see Figure 5.6. The canonical views and the actual observations
are then stacked in a 15-channel tensor and used as input to our network. Then,
instead of training the network to learn to predict R̂ and T̂ , we train it to learn the
residual reflection and transmission layers. More specifically, we train the network
to learn an 8-channel output, which comprises the residual images T̃ (x), R̃(x), and
the two single-channel weights ξ‖(x) and ξ⊥(x). Dropping the dependency on pixel
x for the sake of clarity, we can then compute:

R̂ = ξ⊥R̃ + (1− ξ⊥)I⊥ and T̂ = ξ‖T̃ + (1− ξ‖)I‖. (5.4)

While ξ⊥ and ξ‖ introduce two additional unknowns per pixel, they significantly sim-
plify the prediction task in regions where the canonical projections are already good
predictors of R̂ and T̂ . We use an encoder-decoder with skip connections [RFB15]
that consists of three down-sampling stages, each with two ResNet blocks [He+16b].
The corresponding decoder mirrors the encoding layers using a transposed convo-
lution with two ResNet blocks. We use an `2 loss on R̂ and T̂ . We also tested `1

and a combination of `1 and `2, which did not yield significant improvements.

The use of the canonical projection layer, as well as the parametrization of resid-
ual images is key to the success of our method. Figure 5.7 depicts a comparison
our network with the output of the exact same architecture trained to predict R̂
and T̂ directly from the three polarization images Iφi(x).
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Direct R̂ Direct T̂ Blended R̂ Blended T̂

Figure 5.7: Comparison of outputs from the same network architecture either
trained to directly estimate R̂ and T̂ or to predict the residuals as
propose in this chapter.
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Figure 5.8: The image-based data generation procedure. We apply several steps
to images IR and IT simulating reflections in most real-world scenarios
(Section 5.2.3). Starting by sampling IR, IT from an image database we
apply several steps to simulate reflections in most real-world scenarios.

5.2.3 Image-based Data Generation

The ground truth data to estimate R̂ and T̂ is not available and virtually inacces-
sible to capture perfectly. Recently, Wan et al . released a dataset for single-image
reflection removal [Wan+17], but it does not offer polarization information. One
could synthesize it by means of ray tracing, but most of the available rendering
engines do not model polarization. In principle, Equation 5.2 could be used di-
rectly to generate the data we need from any two images. The term α in the
equation, however, hides several subtleties and nonidealities. For instance, previ-
ous polarization-based works use it to synthesize data by assuming uniform AOI,
perfectly flat surfaces, comparable power for the reflected and transmitted irradi-
ance, or others. This generally translates to poor results on images captured in
the wild: Figures 5.2 and 5.3 show common scenes that violate all of these as-
sumptions. Those difficulties are even out-of-scope for the patch-wise extension by
Kong et al . [KTS].
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We propose a more accurate synthetic data generation pipeline, see Figure 5.8.
Our pipeline starts from two randomly picked images from the PLACE2 dataset
[Zho+17], IR and IT , which we treat as the image of reflected and transmitted scene
at the surface. From those, we model the behaviors observed in real-world data,
which we describe as we “follow” the path of the photons from the scene to the
camera.

Dynamic Range Manipulation at the Surface

To simulate realistic reflections, the Dynamic Range Manipulation (DR) of the
transmitted and reflected images at the surface must be significantly different. This
is because real-world scenes are generally high-dynamic-range (HDR). Additionally,
the light intensity at the surface drops with the distance from the emitting object,
further expanding the combined DR. However, our inputs are low-dynamic-range
images because a large dataset of HDR images is not available. We propose to arti-
ficially manipulate the DR of the inputs to match the appearance of the reflections
we observe in real-world scenes.

Going back to Figure 5.4, we note that for regions where LT ≈ LR, a picture
taken without a polarizer will capture a smoothly varying superposition of the
images of PR and PT (Figure 5.2 3 ). For areas of the surface where LR � LT ,
however, the total radiance is L ≈ LR, and the semi-reflector essentially acts as a
mirror (Figure 5.2 2 ). The opposite situation is also common (Figure 5.2 1 ). To
allow for these distinct behaviors, we manipulate the dynamic range of the input
images with a random factor β ∼ U [1, K]:

ĨR = βI
1/γ
R and ĨT =

1

β
I

1/γ
T , (5.5)

where 1/γ linearizes the gamma-compressed inputs4. We impose that K > 1 to
compensate for the fact that a typical glass surface transmits a much larger portion
of the incident light than it reflects5.

Images ĨR and ĨT can reproduce the types of reflections described above, but are
limited to those cases for which LR − LT changes smoothly with PS. However, as
shown in Figure 5.2 5 , the reflection can drop abruptly following the boundaries
of an object. This may happen when an object is much closer than the rest of
the scene, or when it has a different reflectivity than the surrounding objects. To
properly model this behavior, we treat it as a type of reflection on its own, which
we apply to a random subset of the image whose range we have already expanded.
Specifically, we set to zero the regions of the reflection or transmission layer, whose

4Approximating the camera response function with a gamma function does not affect the accu-
racy of our results, as we are not trying to produce data that is radiometrically accurate with
respect to the original scenes.

5At an AOI of π/4, for instance, a glass surface reflects less than 16% of the incident light.

77



Chapter 5 Separating Reflection and Transmission Images in the Wild

Figure 5.9: Result of our non-rigid deformation model applied to synthetic data.
The grid lines are drawn for easier visual inspection and not used during
training. We crop an inner patch to avoid impacts from border effects.

intensity is below T = mean(ĨR + ĨT ), similarly to the method proposed by Fan et
al . [Fan+17a].

Dealing with Dynamic Scenes

Our approach requires images captured under three different polarization angles.
As of now, the standard way to capture different polarization images is sequential
and this causes complications for non-static scenes. As mentioned in Section 5.1, if
multiple pictures are captured from different locations, the relative motion between
the transmitted and reflected layers can help disambiguate them. In our case,
“non-static” refers to the scene itself, such as is the case when a tree branch moves
between the shots. Several approaches were proposed that can deal with dynamic
scenes in the context of stack-based photography. Rather than requiring some pre-
processing to fix artifacts due to small scene changes at inference time, however,
we propose to synthesize training data that simulates them, such as local, Non-
rigid Deformation (NRD). We first define a regular grid over a patch, and then we
perturb each one of the grid’s anchors by (dx, dy), both sampled from a Gaussian
of different variance chosen uniformly from {0.1, 0.05, 0.025} for each patch. We
then interpolate the position of the rest of the pixels in the patch. For each input
patch, we generate three different images, one per polarization angle. We only
apply this processing to a subset of the synthesized images — the scene is not
always dynamic. For a given patch our method produces distorted patches such as
those in Figure 5.9.

Geometry of the Semi-reflective Surface

The images synthesized up to this point can be thought of as the irradiance of the
unpolarized light at the semi-reflector. After bouncing off, or going through, the
surface, light becomes polarized as described in Section 5.2.1. The effect of a linear
polarizer placed in front of the camera and oriented at a given polarization angle,
depends on the AOI of the specific light ray. Some previous works assume this
angle to be uniform over the image, which is only true if the camera is at infinity,
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f ′|xp

PS = (xp, yp)

C = (xc, yc)

θ

`

−1 +1 +1 +1

Figure 5.10: Example of our non-rigid motion deformation (right) and a curved
surface-generator given the camera position C, a surface-point PS,
length `, and the convexity ±1 (left).

or if the surface is flat.
We observe that real-world surfaces are hardly ever perfectly flat. Many common

glass surfaces are in fact designed to be curved, as is the case of car windows, see
Figure 5.3. Even when the surfaces are meant to be flat, the imperfections of
the glass manufacturing process introduce Local Curvature Generation (LCG), see
Figure 5.2 4 .

At training time, we could generate unconstrained surface curvatures to account
for this observation. However, it would be difficult to sample realistic surfaces.
Moreover, the computation of the AOI from the surface curvature may be non-
trivial. As a regularizer, we propose to use a parabola. When the patches are
synthesized, we just sample four parameters: the camera position C, a point on the
surface PS = (xp, yp), a segment length `, and the convexity as ±1, Figure 5.10.
Since the segment is always mapped to the same output size, this parametrization
allows generating a number of different, realistic curvatures. Additionally, because
we use a parabola, we can quickly compute the AOI in closed form, from the sample
parameters. For randomly sampled camera positions (xc, yc) the AOI θ is given as

θ = tan−1

(
2xcxp + x2

p − yc
4xcx2

p − 4x3
p + xc − xp

)
. (5.6)

Note, that the camera can be placed on both sides of the parabola and different
segment lengths give different curvatures.
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Iφ0
Iφ1

Iφ2
T R T̂ R̂

Figure 5.11: Randomly sampled training data from PLACE2 [Zho+17] with syn-
thesized observations Iφk from the ground truth data T and R, and

relative estimates T̂ , R̂. (Ground-truth images from [Lin+14].)
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5.3 Experiments

In this section we evaluate our method and data modeling pipeline on both syn-
thetic and real data. For the latter, we introduce the Urban Reflection Database
(URD), a new dataset of images containing semi-reflectors captured with polariza-
tion information. A fair evaluation can only be done against other polarization-
based methods, which use multiple images. For the sake of completeness, we also
compare against single-image methods for completeness.

The Urban Reflections Dataset (URD). For practical relevance, we compile a
dataset of 28 high-resolution RAW images (24MP) that are taken in urban en-
vironments using two different consumer cameras (Alpha 6000 and Canon EOS
7D, both ASP-C sensors), and which we made publicly available. This dataset
includes examples taken with a wide aperture, and while focusing on the plane of
the semi-reflector, thus meeting the assumptions of Fan et al . [Fan+17a].

Notes on Previous Methods To perform a thorough evaluation against state-of-
the-art methods whose implementation are not publicly available, we re-implemented
several representative methods. Here, we give some insights about specific issues
with these methods.

The approach of Schechner et al . [SSK00] assumes a spatially-invariant AOI θ
and seeks to find such a unique local minimum as the best guess for the AOI. We
exactly re-produced the experiments of the work by Schechner et al . [SSK00]: The
exhaustive search is generally able to find the ground-truth AOI in synthetic ex-
amples, where the uniform AOI assumption holds (Figure 5.12 left). As already
discusses in Section 5.2.1, this assumption rarely holds and fails for real-world ex-
amples (Figure 5.12 right). For a fair evaluation, we additionally sample local
minima yielding different AOIs, manually inspected the candidate solutions, and
cherry-pick the best solution from Schechner et al . [SSK00] regarding transmis-
sion/reflection result. This method [SSK00] makes the assumption, that I⊥, I‖ are
known. Therefore, we follow [KTS] to estimate these projections. Further, to re-
duce non-rigid motion artifacts, we down-sample the inputs for this method by a
factor fd for estimating the AOI. Empirical evidence suggest fd = 16 as a good
choice, which consistently gives a significant performance gain, while reducing the
processing time to at most 41 seconds.

Kong et al . [KTS] proposed a patch-based extension, which we also re-implemented
and accelerated by OpenMP and CUDA. As their proposed method already requires
more than five hours computation time for input-size of 256× 256px, we compute
the AOI at that resolution and then up-sample it for the final layer separation.

Fan et al . [Fan+17a] provide a pre-trained neural network. While its architecture
fully-convolutional, the large memory footprint limits its application to rather small
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Figure 5.12: Exhaustive search approach of Schechner et al . [SSK00] on different
examples: On the five synthetic examples produced by the image for-
mation model with uniform AOI the search gives a unique local min-
imum (left), which corresponds to the perfect solution. This exactly
re-produces the experiments done of Schechner et al . [SSK00]. How-
ever, in most real-world cases, e.g ., the five examples on the right, such
a local minimum rarely exists and, when it does, it may not represent
the best AOI for the layer separation.

images. Therefore, we had to down-sample the single-image input, so that the
inference pass would fit the GPU (at most 700× 500px per image).

For our dataset, we particularly capture an example which meets the requirement
of Shih et al . [Shi+15] by having ghosting-cues from double-pane windows. The
reference implementation by the authors takes 46.12 min for the layer separation
process on a down-sampled input image of size 216× 324px.

Reference implementations provided by the authors exists for the methods [LB14;
ADAS17]. We down-sampled the input to meet the memory requirements and to
assess a reasonable computation time.

5.3.1 Numerical Performance Evaluation

Due to the need for ground-truth, a large-scale numerical evaluation can only be per-
formed on synthetic data. For this task we take two datasets, the VOC2012 [Eve+]
and the PLACE2 [Zho+17] datasets. Comparison with state-of-the-art methods
shows that our method outperforms the previously best method by a significant
margin in terms of PSNR: ∼ 2 dB, see Table 5.1.

For a numerical evaluation on real data, we set up a controlled scene in a lab
with a glass surface and objects causing reflections. The camera is placed between
the scene and a black background (wall or curtain), which will effectively consti-
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Table 5.1: Cross-validation on synthetic data. Best results in bold.

PASCAL VOC 2012 PLACE2
Method RMSE PSNR RMSE PSNR

Farid et al . [FA99] 0.401 7.93 0.380 8.38
Kong et al . [KTS] 0.160 15.88 0.156 16.12
Schechner et al . [SSK00] 0.085 21.34 0.086 21.27
Fan et al . [Fan+17a] 0.080 21.89 0.084 21.48
Ours 0.064 23.83 0.066 23.58

tute the transmission component by removing unwanted reflection out-side from
the controlled scene. Figure 5.13 (right) shows such a setup, where we place a
thin glass pane in front of a LEGO figure. Marker pens, were positioned on the
camera side causing the wanted reflection. After capturing polarization images of
the scene, we removed the marker pens and captured the ground truth transmis-
sion. Figure 5.13 shows the transmission images estimated by different methods.
Our method achieves the highest Peak signal-to-noise ratio (PSNR) and the least
amount of artifacts. The pen markers on the lower right of the images are capture
for better comprehension of the scene. The PSNR experiment has been done on a
cropped patch without the direct observation.

5.3.2 Effect of Data Modeling

We also thoroughly validate our data-generation pipeline. Using both synthetic
and real data, we show that the proposed NRD procedure and the LCG are both
effective and necessary. To do this, we train our network until convergence on three
types of data: data generated only with the proposed DR, data generated with
DR+NRD, and data generated with DR+NRD+LCG. We evaluate these three
models on a hold-out synthetic PLACE2 validation set [Zho+17] that features all
the transformations from Figure 5.8. The values in Figure 5.14 shows that the
PSNR drops significantly when only part of our pipeline is used to train the network.
Unfortunately, a numerical evaluation is only possible when the ground truth is
available. However, Figure 5.14 shows the output of the three models on the real
image from Figure 5.3. The benefits of using the full pipeline are apparent.

As our method can deal with curved surfaces and dynamic scenes, we achieve
better performance than the state-of-the-art methods on common scenes, see Fig-
ure 5.3.
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Observation C

Setup

Tgt T̂Ours T̂A T̂B T̂C

PSNR: 26.7 dB PSNR: 20.0 dB PSNR: 25.1 dB PSNR: 25.9 dB

Rgt = C − Tgt R̂Ours R̂A R̂B R̂C

√
Rgt

√
R̂Ours

√
R̂A

√
R̂B

√
R̂C

Figure 5.13: By removing the marker pens, we can capture the ground truth trans-
mission, Tgt, optically without the problems of attenuated light and
possible pollutions of the glass pane. The comparison is done against
A: [SSK00], B: [Fan+17a] and C: [ADAS17].

5.3.3 Evaluation on Real-world Examples

We extensively evaluate our method against previous work on the proposed URD.
For fairness towards competing methods, which make stronger assumptions or ex-
pect different input data, we slightly adapt them, or run them multiple times with
different parameters retaining only the best result. Due to space constraints, Fig-
ure 5.17 only shows seven of the results. We refer the reader to the Chapter B
for the rest of the results in higher resolution. One important remark is in order.
Although the images we use include opaque objects, i.e. the semi-reflector does not
cover the whole picture, the methods against which we compare are local: applying
the different algorithms to the whole image and cropping a region is equivalent to
applying the same algorithms to the cropped region directly, Figure 5.15.

Figure 5.17, Curved Window shows a challenging case in which the AOI is sig-
nificantly different from θB across the whole image, thus limiting the effect of the
polarizer in all of the inputs. Moreover, the glass surface is slanted and locally
curved, which breaks several of the assumptions of previous works. As a result,
other methods completely fail at estimating the reflection layer, the transmission
layer, or both. On the contrary, our method separates T̂ and R̂ correctly, with only
a slight halo of the reflection in T̂ . In particular, notice the contrast of the white
painting with the stars, as compared with other methods. While challenging, this
scene is far from uncommon.
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PLACE2 validation

28.17 dB
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31.18 dB

Figure 5.14: Our reflection estimation (left) on a real-world curved surface and syn-
thetic data (right Table) using the same network architecture trained
on different components of our data pipeline. Only when using the full
pipeline (DR+NRD+LCG) the reflection layer is estimated correctly.
Note how faint the reflection is in the inputs (bottom row).

In Figure 5.17, Bar one can see another result on which our method performs
significantly better than most related works. On this example, the method by
Schechner et al . [SSK00] produces results comparable to ours. However, recall
that, to be fair towards their method, we exhaustively search the parameter space
and hand-pick the best result. Another thing to note is that our method may
introduce artifacts in a region for which there is little or no information about the
reflected or transmitted layer in any of the inputs, such as the case in the region
marked with the red square on our T̂ . We also show an additional comparison
showing the superiority of our method (Figure 5.17, Paintings) and a few more
challenging cases. Please note, that in a few examples, our method may fail at
removing part of the “transmitted” objects from R̂, as is the case in Figure 5.17,
Chairs.

User Study Since we do not have the ground truth for real data, we evaluate our
method against previous results by means of a thorough user study. We asked 43
individuals not involved with the project, to rank our results against the state-of-
the-art [FA99; Fan+17a; LB14; SSK00; KTS] and the input images. In our study,

we evaluate R̂ and T̂ as two separate tasks, because different methods may perform
better on one or the other. For each task, the subjects were shown an input image,
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Figure 5.15: Applying different algorithms to the entire image and cropping a region
(blue) is equivalent to applying the same algorithms to the cropped
region directly (yellow).

Table 5.2: We report the average recall-rate for each method from the user study.

Transmission Reflection
Method R@1 R@2 R@1 R@2

Ours 0.46 0.65 0.34 0.54
[SSK00] 0.14 0.38 0.23 0.40
[KTS] 0.11 0.27 0.09 0.20

[Fan+17a] 0.06 0.17 0.08 0.20
[LB14] 0.08 0.21 0.10 0.29
[FA99] 0.06 0.13 0.15 0.37

and the results of each method on the same screen, in randomized order. To ease
the task for the participants, we created a custom user interface which provides drag
and drop functionality, see Figure 5.16. They were given the task to rank the results
from 1 to 6 using drag and drop, which took, on average, 35 minutes per subject.
We measure the recall rate in ranking, R@k, i.e. the fraction of times a method
ranks among the top-k results. Table 5.2 reports the recall-rates. Two conclusions
emerge from analyzing the table. First, and perhaps expected, polarization-based
methods outperform the other methods. Second, our method ranks higher than
related works by a significant margin.
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Figure 5.16: Created web-interface for the online user study. Participants ordered
the estimated reflections and transmissions using drag and drop.
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Figure 5.17: Results on typical real-world scenes. Top pane: comparison with state-
of-the-art methods, bottom pane: additional results. More results are
given in Chapter B.

88



Chapter 6

Multi-Frame Deblurring

Rule #22:

GPU memory should be reserved for

larger batch sizes and not replace elegant

solutions with sheer computing power.

As handheld video cameras are now commonplace and available in every smart-
phone, recording images and videos can be done almost everywhere at any time.
However, taking such a quick shot frequently yields a blurry result due to unwanted
camera shake during recording or moving objects in the scene. This is especially
true in low-light environments. Removing these artifacts from the blurry recordings
is a highly ill-posed problem as neither the sharp image nor the motion blur kernel is
known. Propagating information between multiple consecutive blurry observations
can help restore the desired sharp image or video.

The material of this chapter is based on the following publications:

[Wie+16b] Patrick Wieschollek, Bernhard Schölkopf, Hendrik P. A. Lensch, and
Michael Hirsch.

”
End-to-End Learning for Image Burst Deblurring“.

In: Proceedings of the Asian Conference on Computer Vision (ACCV).
Nov. 2016. doi: 10.1007/978-3-319-54190-7_3

[Wie+17] Patrick Wieschollek, Michael Hirsch, Bernhard Schölkopf, and Hendrik
P. A. Lensch.

”
Learning Blind Motion Deblurring“. In: Proceedings of

the IEEE International Conference on Computer Vision (ICCV). Oct.
2017. doi: 10.1109/ICCV.2017.34

Nowadays, when consumer cameras are built in every smartphone capturing a
quick shot is possible with low effort. However, under the absence of tripods (carry-
ing such equipment is the opposite being of portable) such a hand-held acquisition
is likely to cause blur when moving camera position during exposure. Let Y (t0)
denote the observed image at time t0. The final observation Y can thus be written
as

Y (t0) =

∫ t0

0

X(t)dt (6.1)

for exposure time t0 and recording X(t) at t. Hence, when X(t) 6= X(t′) for differ-
ent time steps t, t′ the observation becomes a super-imposed combination of differ-
ent observations introducing artifacts. Consequently, there exists two independent
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Observation Y X1 X2 X3 X4
K1 K2 K3 K4Observation Y X1 X2 X3 X4

K1 K2 K3 K4Observation Y X1 X2 X3 X4
K1 K2 K3 K4Observation Y X1 X2 X3 X4

K1 K2 K3 K4Observation Y X1 X2 X3 X4
K1 K2 K3 K4Observation Y X1 X2 X3 X4

K1 K2 K3 K4

Figure 6.1: A single observations Y can be explained by multiple latent images Xi

convolved with an appropriate kernel Ki, i.e. Y = Ki ∗Xi holds for all
i = 1, 2, 3, 4. The associated blur kernel Ki is illustrated in the bottom
right corner.

sources leading to blur: ego-motion, i.e. moving the camera, and object-motion, i.e.
scene is dynamic.

Static scenes A blurry observation Y caused by ego-motion is usually mod-
eled [KH96] as a spatially invariant convolution of a latent sharp image X with
an unknown blur kernel K in

Y = K ∗X + ε, (6.2)

where ∗ denotes the convolution operator and ε models additive zero-mean noise.
This model can be rephrased in Fourier space which leads to

F(ZY Y ) = F(ZKK)�F(ZXX) (6.3)

when omitting noise ε, where � denotes element-wise multiplication, F(J) denotes
the Fourier-Transformation and ZJ zero-padding of matrix J . Given a particular
blur kernel K, recovering X is directly possible via

F(ZKK)∗ �F(ZY Y )

F(ZKK)∗ �F(ZKK)
= F(ZXX) (6.4)

where z∗ denotes the element-wise complex conjugate of z. From Equation (6.4)
the ill-posedness of single image blind deconvolution, i.e. recovering X from a single
observation Y without knowing K, becomes immediately apparent — even without
considering noise.

Figure 6.1 illustrates several mathematically valid (K,X) solution-pairs explain-
ing the same blurry observation Y . While (K1, X1) seems to be the most likely
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Figure 6.2: For static scenes the blur is solely induced from camera shake (ego-
motion, top row). In contrast a cyclist passing by causes motion blur
(bottom row) while the background remains relatively sharp. Aligning
these frames capturing the dynamic scene is a non-trivial task. (Images
from [DS15a; DS15b].)

solution in Figure 6.1, (K2, X2), (K3, X3), (K4, X4) are mathematically feasible so-
lutions as well, indistinguishable in Equation (6.2) from (K1, X1).

Fortunately, modern camera sensors allow a fast read-out, such that instead of
relying on a single observation Y , the information of multiple observations from an
“image-burst” can alleviate the ill-posedness of the problem by using the model

Y (t) = K(t) ∗X + ε(t), for t = 1, 2, . . . , n (6.5)

to estimate the latent sharp image X assuming K(i) 6= K(j) for pair-wise distinct
i 6= j. Still, the problem remains ill-posed. But some valid solutions from the
single-image setting as shown in Figure 6.1 could be potentially explained away
by considering multiple observations under additional assumptions like static and
aligned scene properties.

Dynamic scenes The handling of multi-frame inputs requires a spatial alignment
of successive observations. While aligning images of static scenes can be solved by
estimating a homography between different observations, in dynamic scenes image-
parts might change and therefore hinder a proper alignment in addition to violating
the assumption X = X(t) made in Equation (6.5), see Figure 6.2. The relative
movement of the cyclist causes blur, even if the background features relatively low
blur. Hence, the model changes to

Y (t) = K(t) ∗X(t) + ε(t), for t = 1, 2, . . . , n (6.6)

where X(t) and X(t+1) share similar content but scene parts are eventually shifted
over time t.
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6.1 Related Work

The problem of image deblurring can be formulated as a non-blind or a blind
deconvolution version, depending on whether information about the blur kernel
K is available or not. Blind image deblurring (BD) is quite common in real-world
applications and has seen considerable progress in the last decade. A comprehensive
review is provided in the overview article by Wang and Tao [WT14].

Due to the ill-posed nature of this problem (see Figure 6.1), traditional state-of-
the-art methods such as Sun et al . [Sun+13] or Michaeli and Irani [MI14] use care-
fully chosen patch-based priors for sharp image prediction to identify a meaningful
X amongst all possible solutions. Besides the deblurring images under stationary
blur [Lev+09] assumption, Köhler et al . [Köh+12] recorded real camera motion for
the case of non-uniform blur.

Data-driven methods based on neural networks have demonstrated success in
non-blind restoration tasks [Sch+13; Xu+14; RW15] as well as for the more chal-
lenging task of BD where the blur kernel is unknown [Sch+15; Sun+15; Cha16;
Hra+15; Svo+16]. Using a large corpus of training examples they directly learn
an image-prior to estimate a natural image X during the reconstruction. Remov-
ing the blur from moving objects from a single observation has been recently ad-
dressed [NCF17].

To alleviate the ill-posedness of the problem [Has+09], one might take multiple
observations into account. Hereby, observations of a static scene, each of which
is differently blurred, serve as inputs [ZWZ14; Che+08; Cai+09; ŠM12; ZŠM12;
Hir+10]. To incorporate video properties such as temporal consistency previous
methods [ZC14; ZY15; KNL16; Ito+14] use powerful and flexible generative models
to explicitly estimate the unknown blur along with predicting the latent sharp
image. However, this comes at the price of higher computation cost, which typically
requires tens of minutes for the restoration process for a few low-resolution frames.

To accomplish faster processing times Delbracio and Sapiro [DS15b] have pre-
sented a smart way to average a sequence of input frames based on Lucky Imaging
methods. Instead of an align-and-average approach in the spatial domain, they pro-
pose to compute a weighted combination of all aligned input frames in the Fourier
domain which favors stable Fourier coefficients in the burst containing sharp in-
formation. This Fourier-Burst-Accumulation (FBA) approach yields much faster
processing times and removes the requirement to compute the blur kernel explicitly.
Although removing an explicit deconvolution-step during reconstruction delivers a
speed-up it is limited to sequences, which contain at least one reasonable sharp
shot.

Independently to our approach, the related task of deblurring of entire video
sequences has been later addressed by Su et al . [Su+17]. Their approach uses the
commonly used U-Net architecture [RFB15] with skip connection to directly regress
the sharp image from an input burst similar to denoising approaches [MSY16b].
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Their fully convolutional neural network learns an average of multiple inputs with
reasonable performance. Unfortunately, this requires to fix the temporal input size
at training time and hence limits the amount of usable information, e.g . training
on sequences of 5 images does not allow to incorporate information from 10 images
during inference.

6.2 Learning to Deblur Static Scenes

This section proposes the first discriminative data-driven approach for solving the
blind multi-frame deconvolution problem assuming a static scene and aligned input
frames. We begin by describing the generation of synthetically blurred images Y
given sharp groundtruth data X before discussing an appropriate neural network
architecture to estimate X̂ given only Y .

6.2.1 Training Data Generation

Following the model from Equation (6.5) the blurry observation can be directly
synthesized given a corpus of sharp ground-truth images X ∈ X and sampled
blur kernels Ki(t) ∈ K. We randomly sample image-patches from the MS COCO
dataset [Lin+14], which contains real-world photographs collected from the in-
ternet. To ensure a high quality of ground-truth patches X, we reject potential
ground-truth images with too small image gradients, which indicates that the con-
tent is likely to either consist of either entirely homogeneous regions without any
traits of the blur, or already contains strong blur and therefore should be omitted.
The remaining 542217 sharp patches are then blurred on-the-fly using blur ker-
nels sampled from a Gaussian process following the idea of Schuler et al . [Sch+15].
Figure 6.3 depicts a random subset of some generated blur kernels and Figure 6.4
illustrates a generated image burst of 8 blurry observations given a sharp image. To
obtain robustness against different blur strength, we generate blur kernels of sizes
17× 17 and 7× 7 pixels. In addition, we apply standard data augmentation meth-
ods like rotating and mirroring to the ground-truth data. Hence, this approach
gives nearly an infinite amount of training data due to random Point-Spread Func-
tion (PSF) kernels. To simulate read-out noise, we add white Gaussian noise with
variance σ2 = 0.1. The validation data from the official split [Lin+14] is once
precomputed to ensure fair evaluation during training.

6.2.2 Network Architecture Design

The network πθ operates on a patch-by-patch basis. For a burst of observed images
Y (t), t = 1, 2, . . . , n, it splits each of these observations into overlapping patches
of size 65 × 65 pixels and the network predicts sharp intermediate patches of size
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Figure 6.3: Synthetically generated blur kernels K ∈ K using 3D Gaussian process,
which result is centered. Rescaled for the purpose of illustration.

ground-truth

Figure 6.4: Applying different synthetic blur kernels to the same image (right) gives
different aligned observations (left) featuring different blur artifacts.

33 × 33. All predicted patches are recomposed to form the final prediction X̂
by averaging the predicted pixel values and fusing the burst using an extended
version of FBA [DS15b]. During training, we optimized the network parameters θ
by minimizing the squared `2 objective

‖πθ [Y (1), Y (2), . . . , Y (n)]−X‖2
2. (6.7)

In the following, we will describe the construction of πθ, the optimization of network
parameters θ during the training of the neural network and the restoration of an
entire sharp image. The architecture πθ chains several stages:

(a) Frequency-Band-Analysis with Fourier coefficient prediction,
(b) a deconvolution part and
(c) image fusion.

Figure 6.5 illustrates the first two stages of our proposed system.
(a) Frequency-Band-Analysis. The frequency band analysis computes the

discrete Fourier transform of the observed patch Y (t) following the neural network
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Figure 6.5: Frequency band analysis and deconvolution for an image burst with 3
patches Y (1), Y (2), Y (3). Following the work of Chakrabarti [Cha16]
we separate the Fourier spectrum in 4 different bands. In addition, we
allow each band separately to interact across all images in one burst to
support early information sharing. The predicted output of the decon-
volution step are smaller patches X̂(1), X̂(2), X̂(3).

approach in by Chakrabarti [Cha16] at three different sizes (17×17, 33×33, 65×65)
using different sample sizes, which we will refer to bands b1, b2, b3. In addition, band
b4 represents a low-pass band containing all coefficient max |z| ≤ 4 from band b3.
This is depicted in Figure 6.5. To enable early information sharing within one
burst of patches, we allow the neural network to spread the per band information
extracted from one patch across all images of the burst using 1× 1 convolution.

More precisely, the values of one Fourier coefficient (fij)t at frequency position
(i, j) across the entire burst t = 1, 2, . . . , n can be considered as a single vector
(fij)t=1,2,...,n of dimension n (compare mlp1 in Figure 6.5). A transformed version
of this excerpt will be placed at the same location in the output patch again. This
allows the neural network to adjust the extracted Fourier coefficients right before a
dimensionality reduction occurs based on the entire image burst rather than for each
observation individually. These modified values (f ′ij)t=1,2,...,n give rise to adjusted
Fourier bands b′1, b

′
2, b
′
3, b
′
4.

(b) Deconvolution. Pairwise merging of the resulting bands b′1, b
′
2, b
′
3, b
′
4 with

modified Fourier coefficients using fully connected layers with ReLU activation units
entails a dimension reduction. The produced 4096 feature vector encoding is then
fed through several fully connected layers producing a 4225 dimensional prediction
of the filter coefficients of the deconvolution kernel. This essentially resembles
a convolution layer in the Fourier space with large spatial support. Applying the
deconvolution kernel predicts a sharp intermediate patch X̂ of size 33×33 from each
input burst. This step is implemented as a multiplication of the predicted Wiener
Filter with the Fourier transform of the input patch, similar to Equation (6.4).

(c) Image fusion. In the last part of our pipeline, we fuse all available patches
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Y (1), Y (2), . . . , Y (N) by adopting the FBA approach [DS15a] as a neural network
component with learnable weights. The vanilla FBA algorithm applies the following
weighted sum to a Fourier transform α̂ of the patch α:

u(α̂) = F−1

(
k∑

i=1

wi(ζ)α̂i(ζ)

)
(x) (6.8)

wi(ζ) =
|α̂i(ζ)|p∑k
j=1 |α̂j(ζ)|p

, (6.9)

where wi denotes the contribution of frequency ζ of a patch αi. The term u(α̂)
is differentiable w.r.t. α allowing to pass gradient information to previous layers
through back-propagation. The motivation is that Fourier coefficients with stable
magnitude |α̂i(ζ)| across the entire burst are carrying information about the sharp
content, while changing magnitudes indicates blurry information and consequently
get a smaller weight. To incorporate this algorithm as a neural network layer into
our pipeline, we replace Equation (6.8) by a parametrized version

u(α̂) = F−1

(
k∑

i=1

hφ(ζ)α̂(ζ)

)
(x). (6.10)

Hence, instead of a hard-coded weight-averaging (using hand-crafted weights wi)
the network is able to learn a data-dependent weighted-averaging scheme. Again,
the function hφ(·) represents two 1x1 convolutional layers with trainable parameters
φ following the same idea of considering the Fourier coefficient across one burst as
a single vector (compare mlp1 in Figure 6.5).

6.2.3 Correcting Colors during Inference

During inference, we feed input patches of size 65×65 into our neural network with
stride 5. Using overlapping patches helps to average multiple predictions. For the
recombination of overlapping patches, we weight each patch content with a two-
dimensional Hanning window to favor pixel values in the middle of the patch and
devalue information at the edge of the patch.

While the predicted images X̂ generated by our neural network contain well-
defined sharp edges we observed desaturation in color contrast. To correct the
color of the predicted image, we replace its ab-channel in the CIE-Lab color space
by the ab-channel of the FBA results (compare Figure 6.6) obtaining our final
prediction X̃.

Regarding runtime, the most expensive step is the frequency band analysis. Given
a burst of 14 images of size 1000 × 700 pixels the entire reconstruction process
takes roughly 5 minutes per channel with our unoptimized implementation executed
partly on the CPU.
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X X̂ X̃

Figure 6.6: Deblurring a burst of degraded images from a groundtruth image (left)
results in a desaturated image X̂ (middle). Therefore we correct those
colors X̃ (right) using non-parametric color transfer by histogram-
matching. (Inputs images from [Lin+14].)

6.2.4 Experiments

To evaluate and validate our approach we conduct several experiments including a
comprehensive comparison with state-of-the-art techniques on a real-world bench-
mark dataset [DS15a], and performance evaluation on a synthetic dataset to test
the robustness of our approach with varying image quality of the input sequence.

Training Details

Unfortunately, sophisticated stepsize heuristics like Adam [KB14b] or Adagrad [DHS11]
failed to guarantee a stable training. We suspect the large range of values in
the Fourier space to mislead those heuristics based on statistics about exponen-
tial moving averages. Instead, we use stochastic gradient descent with momentum
(β = 0.9), batch size 32 and an initial learning rate of η = 2 which decreases every
5000 steps by a factor of 0.8. Training the neural network took six days using
TensorFlow [Aba+15] on a NVIDIA Titan X.

Baseline Comparison

A baseline to our approach is stacking the method of Chakrabarti [Cha16] and
Delbracio and Sapiro [DS15a] subsequently, each in a separate step. Therefore,
we fine-tuned the provided weights from [Cha16] in combination with our FBA-
layer. Figure 6.7 shows the training progress for an exemplary patch, where the
improvement in sharpness is clearly visible over different training epochs i.

In addition, we run the entire pipeline of Chakrabarti [Cha16] including the
computational demanding non-blind deconvolution EPLL [ZW11] step and after-
wards FBA [DS15a]. The ad-hoc combination is significantly slower and results
in reconstructions having ringing-artifacts1 (see Figure 6.8). They are significantly
dampened in our joint training approach.

1Please refer to Chapter A for more details about such artifacts.
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i=0, i=1, . . .

i=19,i=20, . . . i=37 (gt)

Figure 6.7: Estimates of a single patche over different training epochs (top left to
bottom right) compared to the unobserved ground-truth patch (“gt”).
Note how the sharpness continuously increases with training.

[DS15a] Ours [DS15a; ZW11; Cha16] Input

Figure 6.8: Comparison to a baseline approach of simply stacking multiple ap-
proaches [Cha16]+[ZW11]+[DS15a]. An end-to-end training (ours)
avoids producing ringing-artifacts which are clearly visible on the roof
parts and edges without joint training. (Inputs images from [DS15a].)

Comparison on real-world images

We compare the restored images with other state-of-the-art multi-image blind de-
convolution algorithms. In particular, we compare with the multichannel blind
deconvolution method from Šroubek et al. [ŠM12], the sparse-prior method of
[ZWZ13] and the FBA method [DS15a]. We used the data provided by [DS15a],
which contains typical photographs captured with hand-held cameras (iPad back
camera, Canon 400D) that contain complex structures in the images. As they are
captured under various challenging lighting conditions they exhibit both noise and
saturated pixels.

The FBA algorithm [DS15a] demonstrated superior performance compared to
previous state-of-the-art multi-image blind deconvolution algorithms [ŠM12; ZWZ13]
in both reconstruction quality and runtime. Figure 6.9 shows crops of the deblurred
results on these images. Our trained neural network featuring the FBA-like aver-
aging yields comparable if not superior results compared to previous approaches
[ŠM12; ZWZ13; DS15a]. In direct comparison to the FBA results (see Figure 6.9),
our method is better removing blur due to our additional prepended deconvolution
module.
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Figure 6.9: Comparison to state-of-the-art multi-frame blind deconvolution algo-
rithms on a real-world benchmark data set. Our approach produces the
sharpest results except for the last scene, which could be caused by the
color transfer described in Section 6.2.3. (Inputs images from [DS15a].)

6.2.5 Deblurring Bursts with varying Number of Frames and
Quality

A burst of images might share different levels of blurriness potentially featuring a
relatively sharp shot being handy for Lucky Imaging methods, like FBA [DS15b].
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To analyze the performance of our approach depending on the burst “quality”, we
sorted all images provided by [DS15a] within one burst according to their PSNR
beginning with images of strong blur and consequently adding sharper shots to the
burst gives a series of bursts starting with images of poor quality up to bursts with
at least one close-to-sharp shot. Since our architecture is trained for deblurring
bursts with exactly 14 input images, we duplicated input observations of bursts
with fewer frames. Figure 6.10 clearly indicates good performance of our neural
network even for a relative small number of input images with strong blur artifacts.
For example, the license plate becomes readable using only two blurry observations
in our approach, see Figure 6.10 (a). In the book example (b) using only one
shot is already sufficient to read the title of the book, while FBA requires at least
four input images. The neural network produces consistently sharper outputs (c),
and the two most blurry observations are sufficient for our method to significantly
sharpen the scene (d), while FBA requires at least six blurry observations to produce
a reasonable sharp output. Already capturing two observations which are perfectly
aligned without any moving objects is arduous and not ubiquitous suitable. Hence,
an approach like ours reducing the number of used observations is beneficial for
broader applicability.
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Figure 6.10: Comparison against previous state-of-the-art results limiting the
amount of inputs. Our discriminative approach (FourierNet) gets
along with fewer observations creating superior sharp reconstructions.
(Inputs images from [DS15a].)
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6.3 Learning to Deblur Dynamic Scenes

While generating blurry observations of static scenes from the previous section is
based on evaluating Equation (6.2), synthesizing blur caused by object motion for
training data is notoriously difficult. It requires realistic training data with two
coordinated versions for each frame: a blurred version as input and an associated
sharp version as ground truth. Obtaining real-world ground-truth data with dy-
namic scenes itself is a challenge, as any recorded sequence could suffer from the
described blur effects. In addition, such a generation mechanism needs to scale to
several thousand training points when optimizing a convolutional neural network
for the task of deblurring dynamic scenes. In the following section, we will discuss
possible methods to collect such reliable ground-truth data.

6.3.1 Synthesizing Dynamic Scenes for Training

Recent works [Su+17; NCF17] have built a training data set by manually recording
videos captured at 240fps with a GoPro Hero camera to minimize the blur in the
ground-truth. Frames from these high-fps videos are then processed and averaged
to produce plausible motion blur synthetically. While they described significant
effort to capture a broad range of different situations, this process is limited in the
number of recorded samples, in the variety of scenes and the used recording devices.
For fast moving objects, artifacts are likely to arise due to the finite framerate. In
addition, such a manual recording at high fps is prone to low signal-to-noise ratio
using short exposure times effectively limited to outdoor scenes. Both disadvantages
come to bear when using even more professional equipment like the Fastec TS5Q
camera as done by Janai et al . [Jan+17] for optical flow estimation.

We also tested this method for generating training data and inspected the data
recorded by Janai et al . [Jan+17], but found it hard to produce a large enough and
diverse dataset of sharp ground-truth videos of high quality. An alternative way
is to render synthetic scenes as shown in Figure 6.11, e.g . using Blender [Ble17].
While this approach can accurately incorporate both sources of blur, it is limited
by the number of available synthetic scenes and demanding rendering time, as it
demands a higher amount number of samples per pixel during rendering.

Rather than acquiring training data manually or synthesizing it using 3D ren-
dering software, we propose to acquire and filter video data from online media.
As people love to share and rate multimedia content, each year millions of video
clips are uploaded to online platforms like YouTube. The video content ranges
from short clips to professional videos of up to 8k resolution. From this source, we
have collected videos with 4k-8k resolution and a frame rate of 60fps or 30fps. The
video content ranges from movie trailers, sports events, advertisements to videos
on everyday life. To remove compression artifacts and to obtain slightly sharper
ground-truth we resized all collected videos by the factor 0.25 respectively 0.125,
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Ego Motion Ego Motion Object Motion Object Motion

(Observation) (Ground-truth) (Observation) (Ground-truth)

Figure 6.11: Synthetic scenes consisting of a planar background photo and synthetic
3D object in the foreground. A rendering engine like Blender [Ble17]
can produce physically correct blurry observation and ground-truth
pair. Rendering for each pair takes 14 seconds using Blender [Ble17].

finally obtaining full-HD resolution videos.
Consider such an acquired video with frames (Ft)t=1,2,...,T . For each consecu-

tive frame pair (Ft,Ft+1) at time t we compute n additional synthetic sub-frames
between the original frames Ft,Ft+1 resulting in a high frame rate video

(. . . , F
(n−1)
t−1 , F

(n)
t−1,Ft, F

(1)
t , F

(2)
t , . . . , F

(n−1)
t , F

(n)
t ,Ft+1, F

(1)
t+1, F

(2)
t+1, . . .). (6.11)

All sub-frames are computed by blending between the neighboring original frames
Ft and Ft+1 warping both frames using the optical flow in both directions wFt→Ft+1

and wFt+1→Ft . Given both optical flow fields [HS80], we can synthesize an arbitrary
number of subframes, see Figure 6.12. For practical purposes, we set n = 40, thus
implying an effective framerate of more than 1000fps without suffering from low
signal-to-noise ratio (SNR) due to short exposure times.

These generated sub-frames are then averaged to synthesize a plausible blurry
version

Bt =
1

1 + 2L

(
Ft +

L∑

`=1

F
(`)
t + F

(n−`)
t+1

)
(6.12)

for each sharp frame Ft. We choose L ∈ {20, 40} to create different levels of
motion blur. The entire computation can be done offline on a GPU. For all video
frames (5.43 hours in total) that passed our sharpness test (see Section 6.2.1) we
produce a ground-truth video clip and blurry version both at 30fps in full-HD.
Besides the unlimited amount of training data, another principal advantage of this
method is that it incorporates different capturing devices naturally. Furthermore,
the enormous amount of video content available allows us to conservatively tune
all thresholds and parameters of the pre-processing pipeline to reject low-quality
video (too dark, too static) without affecting the overall effective size of the training
data. Though the recovered optical flow using the Farneback method is not perfect,
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Figure 6.12: For any two consecutive and sharp frames Ft,Ft+1 the estimated op-
tical flow between them can be used to synthesize a high-framerate
video as in Equation (6.11) which frames are averaged to simulate mo-
tion blur resulting in a blurry frame Bt. The background sharpness is
unaffected, while moving objects feature strong blur. (Inputs images
from BigBuckBunny.)

we observed an acceptable quality of the synthetically motion blurred dataset.
Importantly, tracking pixel movements when computing the optical flow requires
reasonable sharp frames, those frames which already passed the sharpness test.
Quite recent methods like FlowNet2 [Ilg+17] are now on par regarding the speed
with the used optical method but were not available at the time when generating
training data. We used FlowNet2 for the illustration in Figure 6.12. To add variety
to the training data, we crop random parts from the frames and resize them to
128×128px. Figure 6.13 contains the final blurry training data of 5 consecutive
frames with synthesized blur from motion and camera shake along with the ground-
truth frames.

6.3.2 Handling the Time Dimension

The typical input shape required by CNNs in computer vision tasks is [B,H,W,C]
— batch size, height, width and number of channels. However, processing series of
images includes a new dimension: time T . To apply spatial convolution layers the
additional dimension has to be “merged” either into the channel [B,H,W,C · T ]
or batch dimension [B · T,H,W,C]. Previous methods [Su+17; Wie+16c] stack
the time along the channel dimension rendering all information across the entire
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B0 B1 B2 B3 B4 F0 F1 F2 F3 F4

Figure 6.13: Synthesized training data with motion blur and blur from camera
shake (left 5 frames, Bt) and corresponding sharp ground-truth frames
(right 5 frames, Ft) for t = 0, 1, 2, 3, 4.

burst available without further modification. This comes at the price of remov-
ing information about the temporal order. Further, the number of input frames
needs to be fixed before training, which limits their application. Longer sequences
could only be processed with workarounds like padding and sliding window pro-
cessing. On the other hand, merging the time-dimension into the batch dimension
would give flexibility at processing different length of sequences. However, the pro-
cessing of each frame is then entirely decoupled from its adjacent frames — no
information is propagated. Architectures using convLSTM [PHC16] or convGRU
cells [Cho+14] are designed to naturally handle time series but they would require
several tricks [Lau+16; Wan+13] during training. We tried several architectures
based on these recurrent cells but found them difficult to train and observed hardly
any improvement even after two days of multi-GPU training.

6.3.3 Recurrent Network Architecture Design

Instead of including recurrent layers, we propose to formulate the entire network
as a recurrent application of deblur blocks and successively process pairs of inputs
(target frame and additional observation), which gives us the flexibility to handle
arbitrary sequence lengths and enables information fusion inside the deblur block
network.
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Consider a single deblur step with the current prediction Îk−1 of shape [H,W,C].
A blurry observation I−k for k > 1 is used to enhance the current prediction Îk−1

resulting in Îk, which again is fed along with a new observation I−k′ , k′ > k trough
the same network. Each such intermediate prediction Îk results in a `2 loss term
Lk, which is minimized during training. Further, we introduce novel temporal
skip-connections to allow the network propagating information between different
iterations potentially guiding subsequent iterations. Inspired by the work of Ron-
neberger et al . [RFB15] and the recent success of residual connections [He+16a] we
use an encoder-decoder architecture in each deblur block, see Figure 6.14. Hereby,
the network only consists of convolution and transpose-convolution layers with
Batchnorm [IS15]. We applied the ReLU activation to the input of the convolution
layers [He+16a].

DB DB DBI := Î(0) Î(1) Î(2) Î(3) . . . Î(N)

I−1 I−2 I−3 I−4

L1 = ‖I(gt) − Î(1)‖2, L2 = ‖I(gt) − Î(2)‖2, L3 = ‖I(gt) − Î(3)‖2, LN = ‖I(gt) − Î(N)‖2

DB

Î(k−1)

Î−k

Î(k)

+ + + + + +

+
+

+

Figure 6.14: Given the current deblurred version of I each deblur block DB pro-
duces a sharper version of I using information contributed by another
observation I−k. The deblur block follows the design of an encoder-
decoder network with several residual blocks with skip-connections.
To share learned features between various observations, we propagate
some previous features into the current DB (green).

The first trainable convolution layer expands the 6-channel input (two 128 ×
128px RGB images during training) into 64 channels. In the encoder part, each
residual block consists of a down-sampling convolution layer ( ) followed by three
convolution layers ( ). The down-sampling layer halves the spatial dimension with
stride 2 and doubles the effective number of channels [H,W,C]→ [H/2,W/2, C ·2].
During the decoding step, the transposed-convolution layer ( ) inverts the effect
of the down-sampling [H,W,C] → [2 ·H, 2 ·W,C/2]. We use a filter size of 3 × 3
/ 4 × 4 for all convolution/transposed-convolution layers to avoid2 checkerboard
artifacts [ODO16]. In the beginning, an additional residual block without down-
sampling accounts for resolving larger blur by providing a larger receptive field.

2Please refer to Section A for more details about such artifacts.
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To speed up the training process, we add skip-connections between the encoding
and decoding part. With this, we add the extracted features from the encoder to
the related decoder part. This enables the network to learn a residual between the
blurry input and the sharp ground-truth rather than ultimately generating a sharp
image from scratch. Hence, the network is fully-convolutional and therefore allows
for arbitrary input sizes. For more details please refer to Table 6.1.

Table 6.1: Encoder-Decoder Network Specification: Outputs of layers marked with
* are concatenated with features from previous deblur blocks except in
the first step. This doubles the channel size of the output. The blending
layers “B·,·” are only used after the first deblur step.

Layer Filter-size Stride Output Shape

A0,1 3× 3× 64 2 H/1× H/1× 64

C1,1 3× 3× 64 2 H/2× H/2× 64
C1,2−C1,4 3× 3× 64 1 H/2× H/2× 64

C2,1−C2,4 3× 3× 64 1 H/2× H/2× 64

C3,1 3× 3× 128 2 H/4× H/4× 128
C3,1−C3,4 3× 3× 128 1 H/4× H/4× 128

C4,1 3× 3× 256 2 H/8× H/8× 256*
B4,2 1× 1× 256 1 H/8× H/8× 256
C4,3−C4,5 3× 3× 256 1 H/8× H/8× 256

Encoder Architecture

Layer Filter-size Stride Output Shape

C5,1 4× 4× 128 1/2 H/4× H/4× 128*
B5,2 1× 1× 128 1 H/4× H/4× 128
C5,3−C5,5 3× 3× 128 1 H/4× H/4× 128

C6,1 4× 4× 64 1/2 H/2× H/2× 64*
B6,2 1× 1× 64 1 H/2× H/2× 64
C6,3−C6,5 3× 3× 64 1 H/2× H/2× 64

C7,1 4× 4× 64 1/2 H/1× H/1× 64
C7,2 4× 4× 6 1 H/1× H/1× 6
I(k) 3× 3× 3 1 H/1× H/1× 3

Decoder Architecture

Skip connections as temporal links. We also propose to propagate latent features
between subsequent deblur blocks over time. For this, we concatenate specific layer
activations from a previous iteration with some from the current deblur block.
These skip connections are illustrated as green lines in Figure 6.14. Further, to
reduce the channel dimension to match the required input shape for the next layer,
we use a 1×1 convolution layer, denoted as blending layerB·,·. This way the network
can learn a weighted sum by blending between the current features and propagated
features from the previous iteration. This effectively halves the channel dimension.
One advantage of such a construction is that we can disable these skip connections
in the first deblur block and only apply these in subsequent iterations. Further,
they can be applied to a pre-trained model without temporal skip connections.

Training details. Aligning inputs using homography matrices or estimated optical
flow information can be error-prone and slows down the reconstruction preventing
time-critical applications. Therefore, we trained the network directly on a sequence
of unaligned frames featuring large camera shakes. To further challenge the network
we add artificial camera shake to each blurry frame from synthetic PSF kernels on-
the-fly. These PSF kernels of sizes 7×7, 11×11, 15×15 are generated by a Gaussian
process (see Section 6.2.1) simulating camera shake. To account for the effect of
vanishing gradients, we force the output I(k) of each deblur block to match the
sharp ground-truth I(gt) in the corresponding loss term Lk (see Figure 6.14).
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We use ADAM [KB14a] heuristic for minimizing the total loss L =
∑4

k=1 Lk for
sequences of 5 inputs with the optimizer’s default parameters (β1 = 0.9, β2 = 0.999)
and an initial learning rate η = 5 · 10−3.

6.4 Experiments

We evaluate the performance of our proposed method in several experiments on
challenging real-world examples. In addition, a comprehensive comparison to recent
methods is given using the implementation provided by the respective authors.
Importantly, being fully convolutional the Recurrent Deblur Network (RDN) does
not require patch-wise processing allowing to aggregate information between larger
spatial distances and significantly speed up the reconstruction process. During
inference we pass a pair of frames with resolution 1280× 720px respectively 1920×
1080px into a deblur block iteratively. Each iteration takes approximately 0.57
seconds on an NVIDIA Titan X. For any larger frame sizes, we tile the input
frames. The network was trained exclusively on our synthetically blurred dataset
featuring both motion blur and camera shake. All provided results in the section
are based on benchmark sets from previous methods. Our RDN generalizes to
different kinds of unseen videos and recording devices. Please note, we include the
full-resolution images and frames from videos in the appendix (see Chapter C).

6.4.1 Burst Deblurring

In burst deblurring, the task is to restore a sharp frame from an entire sequence of
aligned images. The sequence is usually taken by a single camera and only suffers
from stationary blur caused by ego-motion. In our data-driven approach, we process
each observation which finally produces significantly better results than previously
proposed methods. Notably, ours is the first, which can restore the lettering below
the license plate in Figure 6.15.

Random Shot [DS15b] Section 6.2 RDN (Ours)

Figure 6.15: In contrast to previous state-of-the-art methods, our recurrent ap-
proach is able to even recover the subtle writing on the bottom of
this number plate. It further reflects the original color tones from the
random blurry shot. (Input image from [DS15a].)
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Further, images featuring spatially varying blur are quite common in real-world
scenarios due to imperfect lenses or turbulences. Figure 6.16 and 6.17 show a
comparison to the Efficient Filter Flow framework (EFF) [Hir+10] which is dedi-
cated this kind of blur. Notably, the results demonstrate two interesting findings of
our approach: On one hand, our approach successfully generalizes to handle spa-
tially varying blur, which was never explicitly provided in the training dataset and
therefore the network was not trained on. On the other hand, although the net-
work has been trained exclusively on training sequences of length 5, it can handle
longer sequences and further improves the prediction due to its recurrent struc-
ture. However, too many input frames might introduce over-sharpening. And for
longer sequences local contrast might saturate, potentially resulting also in a small
color shift, which could be corrected using non-parametric histogram-based color
matching.

random RDN EFF GT

i=2 i=3 i=4 i=5 i=6 . . . i=10 . . . i=15 i=17

Figure 6.16: Recovery from image bursts with spatially varying blur. Reconstruc-
tions from using i = 2, 3, . . . blurry input frames are shown. A random
shot from the inputs is given on the left and the ground-truth on the
right next to the EFF result [Hir+10]. (Inputs images from [Hir+10].)

Ours EFF GT Ours EFF GT

Ours EFF GT Ours EFF GT

Ours EFF GT Ours EFF GT

Ours EFF GT Ours EFF GT

Ours EFF GT Ours EFF GT

Ours EFF GT Ours EFF GT

Ours EFF GT Ours EFF GT

Ours EFF GT Ours EFF GT

Figure 6.17: Zoomed-in version of final results from EFF [Hir+10] and our RDN
compared to ground-truth (GT).
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Random Shot Sec. 6.2 [DS15a] Ours

SSIM 0.335 SSIM 0.855 SSIM 0.874
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Figure 6.18: Comparison to state-of-the-art multi-frame blind deconvolution algo-
rithms FourierNet ([Wie+16c], Section 6.2), FBA [DS15b] and ours
(RDN) on real-world data for static scenes of low-light environments.
RDN recovers significantly more detail. (Inputs images from [DS15a].)
Best viewed in the electronic version by zooming in.
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6.4.2 Video Deblurring

In contrast to the previous burst-deblurring task, videos are usually degraded by
additional blur caused by object motion. Moreover, any deblurring approach has to
solve the underlying frame alignment problem. Such an alignment step can be done
offline, e.g . using a standard registration procedure, such as homography warping
or by estimating optical flow fields to warp the frames to the reference frame. While
this preprocessing delivers an easier task to the network, it might introduce artifacts
which the network later has to account for. The approach of Su et al . [Su+17]
(DBN) extensively use preprocessing (homography warping DBN(homog), optical
flow alignment DBN(OF)) for alignment and directly train their networks to solve
both tasks: deblurring and removing artifacts.

Our approach does not require any preprocessing. Hence, it is faster while pro-
ducing comparable or better results. Figure 6.19 shows a comparison between
DBN [Su+17] and our network directly applied to the input. Significant improve-
ment in sharpness by our method can be observed on the trousers, the hair of the
woman or the hand of the baby, to highlight a few. Artifacts due to the alignment
procedure in the approach by Su et al . [Su+17] are visible on the lit wall in the
Starbucks scene, for the cyclist in the second last row and in the piano scene, where
the white keys are distorted (Figure 6.19, left second row). While ours is competi-
tive when removing small motion, their optical flow based methods produce slightly
sharper results when the camera motion is severe as seen on the road markings in
the in the “bicycle” scene. Due to the limited capacity of the trained networks
neither their nor our approach is fully capable of recovering the strong motion blur
of swift motion.

Time-structure. Our network architecture consists of an “anti-causal” structure
deblurring one frame by considering the original previous frames in a sequence-to-
one mapping Î = DB(DB(I, I−1), . . .). We experimented with several sequence-
to-sequence mapping approaches producing a sharp frame in an online way Ît =
DB(It, Ît−1). We noticed no learning benefit which might be caused by the limited
capability of propagating temporal information.

Using multi-scale input. While our network has been trained on sequences of
constant spatial resolution only, we experimented with feeding multi-scale input to
recover strong object motion. In particular, we deblurred the entire input sequence
at different levels n = 1, 2, 3 with 1/2n−1 resolution and then up-scaled the predicted
result to obtain an additional new input frame for the sequence at the higher scale.
While it partly helped to deal with larger motion blur which is not covered in the
training data, the upsampling can produce artifacts which the network was not
trained for. Figure 6.20 shows such results. Although the bike became significant
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DBN (plain) DBN (hom.) DBN (OF) Ours (plain) DBN (plain) DBN (hom.) DBN (OF) Ours (plain)

Figure 6.19: Comparison between (DBN) [Su+17] with different pre-processing
strategies and our raw network prediction. (Inputs images
from [Su+17].) Best viewed in the electronic version by zooming in.

sharper, the static parts of the scene rendered a “comic style” appearance. Directly
training such a multi-scale network seems to be an interesting research direction.

1 level 2 levels 3 levels 1 level 2 levels 3 levels 1 level 2 levels 3 levels

Figure 6.20: Multi-scale input for large motion blur. We show the deblurred re-
sults with tradition single-scale input (1 level) or extending the input
sequence with upscaled version of the deblurred results at half respec-
tively quarter resolution.

Identifying valuable temporal information. One novel feature of our designed
network architecture are the temporal skip connection (Figure 6.14 in green) act-
ing as information links between subsequent deblur blocks. As we do not add
constraints to these links, we essentially allow the network to propagate whatever
feature information seems to be beneficial for the next deblur block. To illus-
trate this temporal information, we visualized the respective layer activation in
Figure 6.21. The illustration suggests that the network uses this opportunity to
propagate image locations which might profit from further deblurring (yellowish
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parts). This is reasonable, as estimating the optical flow (bottom row) from blurry
observations is as challenging as the deblurring task itself and flow information can
only indirectly help to solve in motion deblurring.
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Figure 6.21: Visualization of features propagated along the temporal skip connec-
tions (top-row) when encoded in HUE colorspace, random input image
(mid row) and estimated optical flow used exclusively to synthesize the
motion blur (bottom row). Apparently, the network learned to mark
regions in “features” which might benefit from deblurring.

6.5 Possible Future Work

Deblurring videos introduces the challenge of spreading information across the tem-
poral domain over potentially hundreds of frames. However, training such long
sequences is not feasible considering the computational costs. The introduced it-
erative approach (Section 6.3.3) generalizes from a 5-tuple to inputs lengths never
observed during training (Figures 6.16, 6.17) before color shift artifacts occurs.

Retrospectively, the entire network can be seen as a more extensive version of an
LSTM [PHC16] or GRU cell [Cho+14] without explicit gates. A desirable property
of a neural network architecture handling video inputs for tasks like deblurring or
super-resolution would be a baked-in mechanism (gates) enabling to weight new in-
put observation regarding their estimated impact on the prediction. Such a network
would be versed to filter out mediocre observations and could stop consuming new
input-observations if the expected output quality would decrease. A possible lead
would be to start learning to rank images according to their estimated blurriness.

A significant issue in dynamic scenes is handling video-frames of moving objects.
While the previous section demonstrated a neural network is capable of detecting
and sharpening such objects, we hypothesize that learning to estimate the optical
flow and warping the features will ease the task of broadcasting information over
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longer temporal distances. Along with temporal propagation, a deep-learning ap-
proach is required to take information from different spatial locations into account.
Aliasing and blur effects could be more effectively solved in a repeating texture
if such pattern is detected. Current architectures prefer smaller filter-kernel sizes
3× 3 for their smaller computational costs but therefore lack the size of the recep-
tive fields. Instead of using separable filters [Xu+14] or multi-scale approaches like
ours, classical algorithms exploit patch recurrence [MI14]. Enabling convolutional
neural networks to match similar features across different scales or within multiple
inputs, e.g . using PatchMatch [Bar+09] algorithm, would overcome the issue of
the receptive field with a limited spatial size and would allow connecting features
across the entire image.

Another interesting idea, which has been proven to be successful in intrinsic
images decomposition is the introduction of an auxiliary task like edge predic-
tion [Fan+17b]. Thereby, a network-part is pre-trained to predict a sparse repre-
sentation of the final reconstruction. Given such an intermediate solution of the
“guidance network” a second network is then trained to refine the sparse repre-
sentation and predict the reconstruction. The motivation of such an approach is
the empirical evidence [Dos+15] that several refinement networks and redundant
inputs [Ilg+17] eases the training.

As the camera shake is unknown, the spatial offsets between consecutive frame
are unkown as well. However, in multi-view stereo 3D reconstructions the baseline
between two cameras might be known beforehand. While our trained network
currently does not exploit such information, it already delivers useful reconstruction
of image-triplets compare to our (yet unpublished) multi-scale encoder-decoder
network trained on single image inputs for two months, see Figure 6.22. This figure
additionally confirms the need for multi-frame methods.

Explicitly exploiting the (known) baseline information of stereo-cameras enrich
the input information and therefore is likely to improve the quality further. Such
a camera setup is rather typical, considering the latest development in the smart-
phones industry. These consumer devices already carry two lenses of different
aperture and a small baseline, e.g . for faking depth of field.
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Figure 6.22: Comparison between one input (left), a network trained over two
months (middle) on single-image deblurring and our multi-frame ap-
proach (right). The proposed multi-frame method shows clear ad-
vantages in resolving and deblurring filigree details as visible in the
branching of the trees, the characters in the info text, electronic cir-
cuit details and roof tiles. (Inputs images were captured by Benjamin
Resch.)
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Chapter 7

Conclusion

Rule #20:

The training time does not measure the

convergence rate — but your patience.

The application of deep learning methods is one essential technique to solve
fundamental problems in computer vision. This thesis has demonstrated several
ways beyond the processing of single image inputs and showed severe improvements
in the performance by incorporating multiple observations in novel multi-frame
methods.

Chapter 2 demonstrates that a vital component of computer vision pipelines,
nearest neighbor search, can be efficiently solved on modern hardware like GPUs.
Improvements to the algorithm itself by cutting down the number of exact vector
comparisons and parallelizing approximated sequential searches during ranking had
tremendous effects on performance. Although our algorithm is tailored to GPU
hardware, we have shown that even our CPU implementation achieves state-of-the-
art results, while our GPU version significantly surpasses the performance of earlier
work on standard benchmark datasets.

In Chapter 4, it turned out that the temporal information carried over several
successive frames is sufficient to learn a global scene descriptor without any external
supervision from first principle: “Consecutive observations are similar”. Indeed,
this learned descriptor is even resistant to alterations in appearance and has been
trained from a rather large but affordable dataset. This makes it quite evident how
the training of modern artificial neural networks can be summed up by the question
of how to draw training samples efficiently. Further, we introduced a heuristic to
reject wrong predictions to automatically compile a more complex and reliable
training dataset on-the-fly, from which a improved model is iteratively derived.

Chapter 5 was aimed at the blind signal separation of reflection and transmission
in uncontrolled environments. This revealed another strength of multi-frame meth-
ods based on incorporating physical models as a novel initial layer in combination
with a learned image prior. We illustrated a way of synthesizing physically plausible
training data, which incorporates imperfections of the capturing process itself, like
alignment issues from motion. We empirically proved all these subtle ingredients
of our data generation pipeline are necessary to improve the results on real-world
examples compared to previous work. While reflections usually hinder accurate 3D
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acquisition, such a separation could indeed help to even recover structures which
are not directly observable.

In Chapter 6 we discussed the problem of blind image deconvolution using mul-
tiple observations. We started by showing that a deep neural network can benefit
from the integration of modified classical methods. Therefore, we adapted a lucky-
imaging method such that it is suitable as a neural network layer, which can be
jointly trained in an end-to-end fashion while leading to a substantial improvement
over the combination of previous state-of-the-art methods. In a second approach,
we proposed a novel network architecture that can flexibly handle different lengths
of input sequences, eliminating the limitation of handling only a certain number
of observations. We saw empirical evidence that our present recurrent deblur-
ring blocks can readily generalize to much longer sequences than observed during
training. Although, we trained our deep-learning approach exclusively on spatially-
invariant blur the achieved results on spatially-variant blur is at least on-par with
state-of-the-art methods.

All these introduced approaches do not involve any tricks like excessively tuning
hyperparameters or resorting to generative adversarial models (GAN) that would
hallucinate any missing information and break evaluations protocols based on stan-
dard metrics like PSNR or RMSE. The main part in each solution is based on an
effective sampling of training data: “When to use a data point?” (Chapter 4)
or “How to realistically synthesize training data?” with all imperfections given a
limited amount of available ground-truth data (Chapters 5 and 6) or even in the
absence of it.

The multi-frame methods proposed here have been proven successful in advancing
the state-of-the-art in performance and flexibility. Nevertheless, open problems
remain. First and foremost, recent hardware developments allow to manifest obser-
vations in digital form in very high resolution and high framerate. There already
exists devices which can capture data with 60fps in 16k resolution. Today’s deep
learning methods can barely handle such data, which is a severe limitation. One
reason is that, while basic convolution layers are spatially-variant, they lack con-
cerning resolution not being scale-invariant.

A significant development, besides the possibility that deep neural networks can
treat many observations at low latency, must be the capability of processing with
higher resolution. Prediction of deep neural networks at VGA resolution must no
longer be appropriate.
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Appendix A

Artifacts in Outputs of Deep Neural
Networks

Rule #1:

It is wise to be deeply suspicious of any

deep learning method – even your own.

When training CNNs on image-related tasks like image deblurring, the predicted
image from a deep neural network can suffer from unwanted effects like checkerboard
artifacts, ringing artifacts or even color desaturation issues. These distortions of
the output delivering mediocre results can be corrected, reduced or even suppressed
by the following design choices in the neural network architecture.

A.1 Checkerboard Artifacts

Output images from neural networks can exhibit the checkerboard pattern even
in supposedly homogeneous image regions. In Figure A.1 an encoder-decoder net-
work has been trained to reconstruction the input images. The encoder consists
of convolution layers with kernel-size 3 and stride 2 for sub-sampling purposes.
Mirroring the structure of the encoder network in the decoder network by using
transposed convolution layers with kernel-size 3 and stride 2 can result in recon-
structions which contain a regular high-frequency pattern as shown in Figure A.1.
When using kernel-size 4 instead of 3 in the transposed convolution layers the out-
put quality unequivocally is improved.

This effect can be intuitive explained in the case of a transposed convolution layer
containing only filter-weights with value 1. Applying such a transposed convolution
layer to an input image with constant pixel values, e.g . all set to 1, illustrates the
effect. Figure A.2 contains the output of chaining two transposed convolution layers
with kernel-size 3 (left) and kernel-size 4 (right).

As this effect is “baked” into the neural network design, choosing kernel-size 3
in transposed convolution layers will have an impact on the neural network per-
formance and training efficiency as the neural network is constantly optimized to
avoid these inherent patterns. It is common practice to consider a nearest-neighbor
up-sampling. However, such an un-parametrized layer cannot be trained reducing
the flexibility of the neural network. Even worse such an up-sampling strategy
will up-sample any features without correcting them such that following layers will
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Input Reconstruction (k: 3) Reconstruction (k: 4)

Input Reconstruction (k: 3) Reconstruction (k: 4)Input Reconstruction (k: 3) Reconstruction (k: 4)Input Reconstruction (k: 3) Reconstruction (k: 4)

Input Reconstruction (k: 3) Reconstruction (k: 4)Input Reconstruction (k: 3) Reconstruction (k: 4)Input Reconstruction (k: 3) Reconstruction (k: 4)

Figure A.1: A encoder-decoder neural network has been trained to reconstruct the
input image (without Unet skip-connections). Left: An example input
image shown to the neural network. Middle: Output of the neural
network, where the decoder network part mirrors the encoder network
and kernel size 3 for the reconstruction process. Right: Output of the
neural network, with the same decoder network structure but using
kernel-size 4.

require a larger filter size to ensure potential miss-placed feature can be detected
within the receptive field. This is the motivation to use transposed convolution lay-
ers instead of nearest-neighbor up-sampling throughout all data-driven approaches
in this thesis.

A.2 Color Desaturation Artifacts

Another quite common issue when training deep-neural network is missing satu-
ration of the colors in the predicted image. Such an example has been shown in
Section 6.2 for image deblurring of static scenes (see Figure 6.6) and in Chapter 5
for reflection removal. There exists several different strategies to correct for this is-
sue. In Chapter 5 a non-parametric histogram-matching of the colors in the output
image is used to match those in the input image as an independent post-processing
step during inference. And Section 6.2.3 describes our approach of replacing the
colors from the predicted image by the colors of the input image in CIE-Lab color
space. The RDN in Section 6.3.3 has been as well been a victim of this effect during
early stages of the training. Empirical observations show the evidence that these
desaturation issues can be removed by longer training runs of the deep neural net-
work. Preliminary tests for the RDN in Section 6.3.3 suggest that using ReLU or
omitting the activation function in the last output layer greatly reduces the occur-
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after first after second after first after second

transp.-convolution transp.-convolution transp.-convolution transp.-convolution

Figure A.2: Applying a two stacked transposed convolution layers with weights all
set to 1 to an input image with all pixels set to 1. Left: The output of
both layers with kernel-size set to 3. Right: The outputs of the stacked
transposed convolution layers when kernel-size is set to 4. The contrast
and size of these images has been increased for illustration purposes.

rence of color desaturation compared to other non-linearities like tanh or Sigmoid.
This seems to be counterintuitive as tanh and the Sigmoid non-linearity function
acts a safeguards to ensure the predicted values are indeed within a meaningful
range for pixel intensities (e.g . typically [0, 1] or [−1, 1]).

My conjecture for this artifact being more common when using a non-linearity
as the final activation function is based on the observation that in early trainings
iterations the mean RGB value of the predicted image is wrong, which is one form
of desaturated colors. And the neural network cannot correct this shift of the mean
output value in this case.

Any clipping or clamping operation by the activation function in the final layer
will unintentionally hide high costs for large values by the nature on how these
non-linear mappings work. Figure A.3 shows two common activation functions
used in neural networks as a final activation function. Let ε > 0. Predicting the
value x + ε instead of the correct value x would cause only small gradients in the
regions marked as blue, while the training signal is significant higher in the red
area. The gradient which scales the back-propagation signal during training (see
Section 3) is much higher in the red-marked region. In other words, squeezing the
valid range of output values into a pre-defined interval (e.g . in the range [−1, 1])
using a non-linear mapping reduces costs a neural network has to pay for difference
in extreme cases and therefore causes a weaker training signal. Hence, the neural
network can afford to wrongly predict lower and higher intensities values compared
to values in the mid of the valid range.

But these non-linearities are still commonly used. One reason for their popularity
in GANs (e.g . see CycleGAN [Zhu+17] and related work) is their guarantee for
pixels from the generator to be within the correct range eliminating the short-cut for
the discriminator to judge from the value range itself. Otherwise, the discriminator
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Figure A.3: Typical activation functions and their derivatives. Each derivative fea-
tures a “bump” which causes a strong gradient in the red-marked region
and weak gradients otherwise.

would not provide a meaningful back-propagation signal to the generator during
training.

A.3 Ringing Artifacts

Another common artifact in predictions from deep neural networks – especially
in image deblurring – are ringing artifacts. These effects are quite noticeable in
early iterations during training. Strong edges in images might exhibit a ghosting.
An illustration of these effects is given in Figure A.4. The road markings edges
appear multiple times in the image and fine structures as shown in the background
in Figure A.4 are likely to produce blob-like artifacts. One cause of this effect
is high-frequency information corruption. In Figure A.4, we trained an encoder-
decoder neural network on restoring the sharp image from a blurry observation.
Since the expressiveness of the neural network was radically reduced, only low-
frequency information can be reconstructed by the neural network. Depending on
the number of layers this effect might occur with noticeable larger edge ghosting or
smaller ghosting effects.

This effect behaves like a low-cut filter in Fourier space and can be synthetically
reproduced: Let x be the input signal and mr be the mask with mr(x, y) = 1 if
and only if

√
x2 + y2 ≤ 1 else 0. Then the effect can be simulated by

y = F−1 (mr �F(x)) , (A.1)

where F denotes the discrete 2D Fourier-Transform. An illustration is given in
Figure A.5.
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Input Small Ringing Artifacts Larger Ringing Artifacts

Input Small Ringing Artifacts Larger Ringing ArtifactsInput Small Ringing Artifacts Larger Ringing ArtifactsInput Small Ringing Artifacts Larger Ringing Artifacts

Input Small Ringing Artifacts Larger Ringing ArtifactsInput Small Ringing Artifacts Larger Ringing ArtifactsInput Small Ringing Artifacts Larger Ringing ArtifactsFigure A.4: Two encoder-decoder neural networks (6 (middle) resp. 4 (right) stages
in encoder and decoder) have been trained to deblur the input image
(without Unet skip-connectins) with sharp ground-truth image (left).
Both networks feature ringing artifacts.

Figure A.5: For a given input image (left) cutting high-frequencies in the Fourier
space (middle) and transforming the remaining information back leads
to ringing artifacts (right).

The absence of high-frequency information is particularly true in early training
iterations of the Burst-Deblurring Network in Section 6.2 as the neural network
uses the Fourier transform of the input.

A possible direction in future work is to train a deep neural network with two
loss functions at different positions in the neural network: One loss function to
force reconstructing the low-frequency information potentially without ringing ar-
tifacts and a GAN-like approach to fill in the high-frequencies to improve perceptual
quality. But training a deep neural network to “just” reconstruct low-frequency in-
formation without ringing artifacts is possible as the neural network usually directly
operations in the spatial domain.
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Appendix for Separating Reflection
and Transmission Images

Rule #34:

You cannot advance the field by stick-

ing to the usual layers. We simply need

other operations in the neural network.

The following section presents more details on the described approach for separat-
ing reflection and transmission images (see Chapter 5). The used encoder-decoder
neural network architecture is given as below.

lr = symbolic_functions.get_scalar_var(’learning_rate’, 5e-3, summary=True)

optimizer = tf.train.AdamOptimizer(lr)

# project onto canonical axes

I_s, I_p = img_otho_extraction(I1, I2, I3)

observations = tf.concat([I_s, I_p, I1, I2, I3], axis=3)

observations = observations * 2. - 1.

# ResNet block for down-sampling

def block_down(net, nf, name, stride=2):

with tf.variable_scope(name):

skip = Conv2D(’conv1’, net, nf, stride=stride, nl=tf.identity)

net = INReLU(’inrelu’, skip)

net = Conv2D(’conv2’, net, nf)

net = Conv2D(’conv3’, net, nf)

net = tf.concat([net, skip], axis=3)

net = Conv2D(’conv4’, net, nf, kernel_shape=1)

return net

# ResNet block for up-sampling

def block_up(net, uskip, nf, name, stride=2):

with tf.variable_scope(name):

skip = Deconv2D(’conv1’, net, nf, kernel_shape=4,

stride=stride, nl=tf.identity)

net = INReLU(’inrelu’, skip)

net = tf.concat([net, uskip], axis=3)
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net = Conv2D(’conv2’, net, nf)

net = Conv2D(’conv3’, net, nf)

net = tf.concat([net, skip], axis=3)

net = Conv2D(’conv4’, net, nf, kernel_shape=1)

return net

# entire network architecture (INReLU is InstanceNormalization with ReLU)

with argscope([Conv2D, Deconv2D], nl=INReLU, kernel_shape=3, stride=1):

net = observations

# prologue

out0 = Conv2D(’conv0’, net, 15)

# encoder

out1 = block_down(out0, 32, ’block1’)

out1b = block_down(out1, 32, ’block1b’, stride=1)

out2 = block_down(out1b, 64, ’block2’)

out2b = block_down(out2, 64, ’block2b’, stride=1)

net = block_down(out2b, 128, ’block3’)

net = block_down(net, 128, ’block3b’, stride=1)

# decoder

net = block_up(net, out2b, 64, ’block4’)

net = block_up(net, out2, 64, ’block4b’, stride=1)

net = block_up(net, out1b, 32, ’block5’)

net = block_up(net, out1, 32, ’block5b’, stride=1)

net = block_up(net, out0, 16, ’block6’)

# epilogue

with tf.variable_scope(’epilog’):

net = Conv2D(’deconv_1’, net, 16)

net = tf.concat([net, observations], axis=3)

net = Conv2D(’deconv_2’, net, 16)

net = Conv2D(’deconv_0’, net, 8, kernel_shape=3,

stride=1, nl=tf.identity)

# gates

mask_t = tf.expand_dims(tf.sigmoid(net[:, :, :, -1]), axis=-1)

mask_r = tf.expand_dims(tf.sigmoid(net[:, :, :, -2]), axis=-1)

# direct estimation

pre_t = (tf.tanh(net[:, :, :, :3]) + 1.) / 2.

pre_r = (tf.tanh(net[:, :, :, 3:6]) + 1.) / 2.
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# blending

est_lr = mask_r * pre_r + (1 - mask_r) * I_s

est_lt = mask_t * pre_t + (1 - mask_t) * I_p
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The remaining part of this section contains an extensive comparison of the algo-
rithm presented in Chapter 5 against previous work [SSK00; KTS; LB14; Fan+17a;
ADAS17; FA99] for separating reflection and transmission images on URD.
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Appendix C

Appendix for Multi-Frame Deblurring

Rule #46:

Proper training data is a necessary but

not sufficient condition for a decent per-

formance of a neural network.

The following section presents a comparison of the approach proposed in Chap-
ter 6 against the work of Su et al . [Su+17] in higher resolution. Images were taken
from Su et al . [Su+17] .
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The used deblur block as part of the used neural network architecture is given
as below.

@auto_reuse_variable_scope

def deblur_block(self, observation, estimate,

skip_temporal_in=None,

name=None):

"""Apply one deblur step.

Args:

observation: new unseen observation

estimate: latest estimate (the image which should be improved)

skip_temporal_in (None, optional): list of skip_connections

skip_unet_out(None, optional): list of skip connections

between deblurring blocks within the network .

"""

skip_temporal_out = [] # green

skip_unet_out = [] # grey

with tf.name_scope("deblur_block_%s" % name):

# be aware use_local_stat=True gives warnings

with argscope(BatchNorm, use_local_stat=True), \

argscope([Conv2D, Deconv2D], nl=BatchNorm):

inputs = tf.concat([observation, estimate], 3)

block = ReluConv2D(’d0’, inputs, 32, stride=1, size=3)

# H x W -> H/2 x W/2

# ------------------------------------------------------------

with tf.name_scope(’block_0’):

block = ReluConv2D(’d1_0’, block, 64, stride=2)

block_start = block

block = ReluConv2D(’d1_1’, block, 64)

block = ReluConv2D(’d1_2’, block, 64)

block = ReluConv2D(’d1_3’, block, 64, size=1)

block = tf.add(block_start, block, name=’block_skip_A’)

# H/2 x W/2 -> H/2 x W/2

# ------------------------------------------------------------

with tf.name_scope(’block_1’):

block = ReluConv2D(’d2_0’, block, 64)

block_start = block

block = ReluConv2D(’d2_1’, block, 64)

block = ReluConv2D(’d2_2’, block, 64)

block = ReluConv2D(’d2_3’, block, 64, size=1)
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block = tf.add(block_start, block, name=’block_skip_B’)

skip_unet_out.append(block)

# H/2 x W/2 -> H/4 x W/4

# ------------------------------------------------------------

with tf.name_scope(’block_2’):

block = ReluConv2D(’d3_0’, block, 128, stride=2)

block_start = block

block = ReluConv2D(’d3_1’, block, 128)

block = ReluConv2D(’d3_2’, block, 128)

block = ReluConv2D(’d3_3’, block, 128, size=1)

block = tf.add(block_start, block, name=’block_skip_C’)

skip_unet_out.append(block)

# H/4 x W/4 -> H/8 x W/8

# ------------------------------------------------------------

with tf.name_scope(’block_3’):

block = ReluConv2D(’d4_0’, block, 256, stride=2)

block_start = block

block = Merge(skip_temporal_in, 0, block, ’d41_s’)

block = ReluConv2D(’d4_1’, block, 256)

block = ReluConv2D(’d4_2’, block, 256)

block = ReluConv2D(’d4_3’, block, 256, size=1)

block = tf.add(block_start, block, name=’block_skip_D’)

skip_temporal_out.append(block)

# H/8 x W/8 -> H/4 x W/4

# ------------------------------------------------------------

with tf.name_scope(’block_4’):

block = ReluDeconv2D(’u1_0’, block, 128, stride=2, size=4)

block = tf.add(block, skip_unet_out[1], name=’skip01’)

block_start = block

block = Merge(skip_temporal_in, 1, block, ’u1_s’)

block = ReluConv2D(’u1_1’, block, 128)

block = ReluConv2D(’u1_2’, block, 128)

block = ReluConv2D(’u1_3’, block, 128)

block = tf.add(block, block_start, name=’block_skip_E’)

skip_temporal_out.append(block)

# H/4 x W/4 -> H/2 x W/2

# ------------------------------------------------------------

with tf.name_scope(’block_5’):

block = ReluDeconv2D(’u2_0’, block, 64, stride=2, size=4)

block = tf.add(block, skip_unet_out[0], name=’skip02’)
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block_start = block

block = Merge(skip_temporal_in, 2, block, ’u2_s’)

block = ReluConv2D(’u2_1’, block, 64)

block = ReluConv2D(’u2_2’, block, 64)

block = ReluConv2D(’u2_3’, block, 64)

block = tf.add(block, block_start, name=’block_skip_F’)

skip_temporal_out.append(block)

# H/2 x W/2 -> H x W

# ------------------------------------------------------------

with tf.name_scope(’block_6’):

block = ReluDeconv2D(’u3_0’, block, 64, stride=2, size=4)

block = ReluConv2D(’u3_1’, block, 64)

block = ReluConv2D(’u3_2’, block, 64)

block = ReluConv2D(’u3_3’, block, 6)

block = ReluConv2D(’u3_4’, block, 3)

estimate = tf.add(estimate, block, name=’skip03’)

return estimate, skip_temporal_out
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Glossary

Approximate Nearest Neighbor (ANN) The Approximate Nearest Neighbor is a
vector v similar to a query q without any guarantee being the closest vector
in the search space. This is acceptable in some applications to balance the
tradeoff between accuracy and speed.

Angle Of Incidence (AOI) The Angle Of Incidence (AOI) is the angle between a
ray incident on a surface and the surface normal at the point of incidence.

Convolutional Neural Network (CNN) A Convolutional Neural Network (CNN)
is artificial deep neural network. In contrast to traditional deep artificial
neural networks CNNs employ sparse connectivity and weight sharing.

Central Processing Unit (CPU) .

Dynamic Range Manipulation (DR) The Dynamic Range Manipulation (DR) is
the proposed approach to synthesize high-dynamic range images from quan-
tized 8bit RGB images..

frames per second (fps) .

Generative Adversarial Network (GAN) A Generative Adversarial Network (GAN)
is a system of two artificial neural networks competing between synthesizing
realistic samples (generator) and distinguishing these synthetic examples from
real-world cases (discriminator/critic), see [Goo+14].

Graphics Processing Unit (GPU) .

Harris Corner Feature Detector (Harris) Harris Corner Feature Detector (Har-
ris) is a popular feature detection algorithm in traditional computer vision [HS88].

Hierarchical Data Format 5 (HDF5) .

independent and identically distributed (i.i.d.) .

Local Curvature Generation (LCG) The Local Curvature Generation (LCG) is
the proposed approach to synthesize reflections on non-flat surface.

Lightning Memory-Mapped Database (LMDB) .
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Mutual Information (MI) Mutual Information (MI) between two random vari-
ables X and Y measures the amount of information about X provided by Y
and vice versa, see Eq. (1.4) in [CT06]..

Non-rigid Deformation (NRD) The Non-rigid Deformation (NRD) is the pro-
posed approach to synthesize miss-alignment between consecutive observation
causes by moving objects in the scene..

Product Quantization Tree (PQT) A Product Quantization Tree is a hierachical
extension of Product Quantization (PQ) reducing the number of full compar-
ison when querying an ANN.

Product Quantization (PQ) Product Quantization is similar to Vector Quantiza-
tion but uses codebooks for parts of a vector..

Point-Spread Function (PSF) The Point-Spread Function (PSF) represents the
reponse of imaging system to a point light source. They can be directly
observed as light streaks in images caused by point light sources and camera
shakes..

Peak signal-to-noise ratio (PSNR) The Peak signal-to-noise ratio (PSNR) mea-
sures the ration between the signal and corruption by noise. When computing
the PSNR between two images, the PSNR is a scaled version of the logarithm
of the pixel-wise mean-squared error..

Recurrent Deblur Network (RDN) The Recurrent Deblur Network (RDN) is a
specific network architecture introduced in this thesis which can handle streams
of data of arbitrary sizes..

Recall at k (R@k) Recall at k (R@k) is the fraction of the first k retrieved elements
that are relevant to a query q.

Scale-invariant Feature Transform (SIFT) Scale-invariant Feature Transform (SIFT)
is a popular feature detection algorithm in traditional computer vision [Low04].

Simultaneous Localization and Mapping (SLAM) Simultaneous Localization and
Mapping (SLAM) is a method to constructing or refining a virtual map of a
real environment including the agent position.

Urban Reflection Database (URD) The Urban Reflection Database (URD) is a
dataset captured to benchmark reflection and transmission separation algo-
rithms.

Vector Quantization (VQ) Vector Quantization uses a codebook of vectors and
compresses a vector by the id of the codebook entry which is closest to the
vector.
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with respect to (w.r.t.) .

Zero-Em-Queue (ZMQ) ZeroMQ (ZMQ) is an open-source universal high-speed
messaging library..
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