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Abstract

We study deformations of hypersurfaces with normal velocity given by a smooth
symmetric increasing function of the principal curvatures. Specifically we study flows
where the speed is a nonlinear concave function, so that at the coordinate level the
evolution is governed by a fully nonlinear parabolic PDE. For each k ≥ 3 we construct
the first flows of this kind which smoothly deform any compact k-convex hypersurface
of Euclidean space through a family of hypersurfaces which are also k-convex, before
forming finite-time singularities which are necessarily convex (by k-convexity we mean
that the sum of the smallest k principal curvatures is everywhere positive). That
is, we show that k-convexity is preserved and establish an analogue of the Huisken-
Sinestrari convexity estimate, which implies convexity of singularities for mean-convex
mean curvature flow.

In contrast to the mean curvature flow, the fully nonlinear flows constructed here
also preserve k-convexity in a Riemannian background, and we show that the convex-
ity estimate carries over to this setting as long as the ambient curvature is suitably
pinched.

We then employ our convexity estimate to prove Harnack and derivative estimates
for the second fundamental form of solutions which are embedded. These results
imply for example that sequences of rescalings about a singularity satisfy universal
bounds for the second fundamental form and all of its higher derivatives on compact
subsets of spacetime. The estimates are obtained by generalising an induction on
scales technique introduced by Brendle-Huisken for two-convex flows to the k-convex
setting. Our arguments apply to a general class of flows including mean-convex mean
curvature flow, and in this case we recover the influential global Harnack inequality
of Haslhofer-Kleiner, but without using Huisken’s monotonicity formula.
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Zusammenfassung

Wir untersuchen Deformationen von Hyperflächen, wobei die Geschwindigkeit in
Richtung der Normalen durch eine glatte, symmetrische und monoton wachsende
Funktion der Hauptkrümmungen gegeben ist. Insbesondere werden nichtlineare,
konkave Geschwindigkeiten betrachtet, wodurch nach der Wahl von Koordinaten die
Evolutionsgleichung der Hyperfläche zu einer voll nichtlinearen partiellen Differen-
tialgleichung wird. Zu jedem k ≥ 3 konstuieren wir erstmals Flüsse dieser Art, die
eine k-konvexe Hyperfläche im Euklidischen Raum durch eine Familie k-konvexer Hy-
perflächen glatt deformiert, bis zu der Entstehung von Singularitäten, die wiederum
zwingend konvex sind (mit k-Konvexität ist gemeint, dass die summe der kleinsten k
Hauptkrümmungen überall positiv ist). Das heißt, wir zeigen dass die k-Konvexität
der Anfangsfläche erhalten bleibt, und leiten eine Konvexitäts-Abschätzung her. Let-
ztere verallgemeinert die Konvexitäts-Abschätzung, die für Lösungen des mittleren
Krümmungsflusses mit positiver mittleren Krümmung von Huisken-Sinestrari be-
wiesen wurde.

Im Gegensatz zum mittleren Krümmungsfluss erhalten die hier konstruierten voll
nichtlinearen Flüsse k-Konvexität auch dann, wenn als Anfangswert eine Hyperfläche
einer Riemannschen Mannigfaltigkeit genommen wird. Auch in diesem Fall gilt unsere
Konvexitäts-Abschätzung, solange der Krümmungstensor des umgebenden Raumes
bestimmte Bedingungen erfüllt.

Die Konvexitäts-Abschätzung wird verwendet, um Harnack-Ungleichungen sowie
Gradienten-Abschätzungen für eingebettete Lösungen zu zeigen. Aus diesen Resul-
taten folgt, zum Beispiel, dass die zweiten Fundamentalformen von Aufblasungen
einer Singularität auf kompakten Untermengen gleichmäßig beschränkter Ableitungen
aller Ordnungen besitzen. Für die Beweise wird eine Methode, mit welcher Brendle-
Huisken schon Gradienten-Abschätzungen für zwei-konvexe Lösungen zeigen konnten,
so weiterentwickelt, dass sie auch unter der schwächeren Annahme von k-Konvexität
anwendbar ist. Wegen der Allgemeinheit der Argumente erhalten wir Abschätzungen
für eine große Klasse von Flüssen, die insbesondere den mittleren Krümmungsfluss
enthält. In diesem Fall finden wir einen neuen Beweis für die einflussreiche Harnack-
Ungleichung von Haslhofer-Kleiner, und zwar ohne Huiskens Monotonie-Formel zu
verwenden.
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CHAPTER 1

Introduction

A geometric evolution equation is a rule for deforming geometric objects where the
infinitesimal change at any given time is determined by the geometry at that instant.
When the evolving object is a Riemannian manifold or submanifold, the infinitesimal
change or velocity at each point might be determined by the intrinsic or extrinsic
curvature, and there are in fact many interesting equations of this form. Since cur-
vature can be expressed in terms of the second derivatives of a parameterisation, at
the coordinate level, deformations by curvature are governed by partial differential
equations.

We will be concerned with geometric flows, that is evolution problems for which the
underlying PDE is parabolic. The canonical parabolic equation is the heat equation
of classical physics, which models the diffusion of heat in physical objects. Intuitively,
we understand that in an otherwise isolated system, unevenly distributed heat will
rapidly average itself out, and this is reflected in the strong regularity properties of
the heat equation and of parabolic equations more generally. At the geometric level,
the effects of diffusion manifest in many interesting ways; parabolic flows tend to
exhibit strong regularising properties, yet preserve important aspects of the under-
lying geometric structure. For these reasons, apart from arising naturally in areas
of physics and applied mathematics, parabolic geometric flows have led to striking
solutions of difficult problems in pure mathematics.

Eells and Sampson introduced the harmonic map heat flow [ES64], which evolves
mappings between Riemannian manifolds with pointwise velocity given by the Laplace-
Beltrami operator applied to the map. Using this flow, they were able to prove the ex-
istence of a harmonic representative in every homotopy class of smooth maps between
compact manifolds where the target has nonnegative sectional curvature. Inspired by
this work, Hamilton was led to define the Ricci flow [Ham82], which is a rule for de-
forming Riemannian manifolds. At each point on a solution, the infinitesimal change
in the metric tensor is a negative multiple of the Ricci curvature. In local normal
coordinates, the highest-order part of the Ricci tensor is the coordinate Laplacian of
the metric, so the Ricci flow is a direct analogue of the heat equation for Riemannian
manifolds. In a certain sense, just as the heat equation attempts to average temper-
ature, the Ricci flow attempts to average out the curvature of the manifold. Unlike
the heat equation, however, the equations governing the Ricci flow are nonlinear, and
alongside diffusion, the curvature is subject to complicated dynamical effects. This
can result in the curvature of a solution becoming unbounded as it evolves, in which
case we say the solution encounters a singularity.

Understanding how singularities form, and how a solution can be continued past
singularities, are fundamental problems in the study of geometric flows in general. For
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12 1. INTRODUCTION

three-dimensional Ricci flow, Perelman was able to complete Hamilton’s ‘surgery’ pro-
cedure for extending the flow past singularities, and in doing so proved Thurston’s
geometrisation conjecture [Per02], [Per03]. Perelman’s results have been generalised
to a natural class of solutions in higher dimensions by Brendle [Bre18]. A further ex-
ample of a deep geometric result obtained using Ricci flow is the differentiable sphere
theorem due to Brendle and Schoen [BS09], [BS08]. This rules out the existence
of exotic smooth structures on Riemannian spheres whose sectional curvatures are
pointwise 1/4-pinched.

The mean curvature flow is the canonical example of a parabolic flow of submani-
folds in a Riemannian background space. The extrinsic curvature of a submanifold is
encoded in the second fundamental form (this is a vector-valued bilinear form defined
on the tangent space at each point), and the mean curvature vector is the trace of this
form. A one-parameter family of submanifolds is said to solve mean curvature flow if
the normal velocity at every point is equal to the mean curvature vector. The second
fundamental form can be found by computing the Hessian of the position vector of
the submanifold and projecting onto the normal bundle, so in normal coordinates, the
mean curvature vector is equal to the Laplacian of the position vector. The behaviour
of submanifolds moving by their mean curvature vector can vary greatly depending on
the structure of the ambient space and the codimension, but even in the simplest case
of a hypersurface evolving in Euclidean space, many interesting phenomena occur.

For a smooth orientable hypersurface the normal bundle is trivial, and given a
choice of global unit normal (we take the outward normal when this makes sense),
the mean curvature vector is captured by a scalar quantity, which we call the mean
curvature. If we write the hypersurface locally as the graph of a function, then the
mean curvature is given by a second-order quasilinear elliptic operator applied to
this function, and in this sense, mean curvature flow is governed by a quasilinear
parabolic equation. As with the Ricci flow, the geometric nature of mean curvature
flow can lead to solutions forming singularities. It is not difficult to see an example of
this: one can compute explicitly that a round sphere in Euclidean space shrinks to a
point in finite time under the flow, and if one compact solution sits inside another at
some time, a maximum principle argument shows that this remains true while both
solutions are smooth. Any compact solution can be surrounded by a shrinking round
sphere, so we see that every compact solution must form a singularity no later than
when the surrounding sphere vanishes.

Mean curvature flow also arises naturally as the flow of steepest descent for the
area functional, so it is clear that understanding the formation of singularities, and
continuing the flow past them, are fundamental problems. Generally speaking, it is
common in the study of PDE to handle singularities by introducing notions of weak
solution, which allow for objects of low regularity to be interpreted as solutions. This
was the original approach to mean curvature flow taken by Brakke [Bra78], who
worked with varifold solutions and tools from geometric measure theory. Another
approach, known as level-set flow, was introduced independently by Evans and Spruck
in [ES91], and by Chen, Giga, and Goto in [CGG91]. These authors view a family
of embedded hypersurfaces evolving by mean curvature flow as the level sets of a
scalar function solving (in the sense of viscosities) a nonlinear degenerate elliptic
equation. The level sets of a differentiable function need not be differentiable, or
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of fixed topology, so the level-set formulation encodes the onset of singularities very
efficiently.

Both the level-set flow and Brakke flow are important tools in the study of mean
curvature flow, but in this work we adopt the viewpoint first taken by Huisken in
[Hui84]. Here, smooth solutions are studied in a parameterisation, allowing for the
use of powerful PDE methods to extract precise quantitative estimates controlling
the geometry. By the combined work of Huisken and others, for certain classes of
solutions, it is now possible to give an essentially complete description of the forma-
tion of singularities and consequently to continue the flow past them. For example,
for embedded solutions in R4 with two-positive second fundamental form, Huisken
and Sinestrari [HS09] were able to implement a surgery procedure like the one de-
veloped by Hamilton and Perelman for Ricci flow. In this way they confirmed that
the Schoenflies conjecture, which asks whether every embedded three-sphere in R4

bounds a smooth four-ball, holds true if the embedding has positive scalar curvature.
Apart from the mean curvature, there are many other scalar geometric quantities

which can be computed from the second fundamental form of a hypersurface. In fact,
inserting the principal curvatures (eigenvalues of the second fundamental form) into
any symmetric function yields a scalar quantity which captures information about the
curvature and is invariant under isometries of the ambient space. For example, the
Gauss curvature and scalar curvature of a hypersurface can be obtained in this way.
Such curvature quantities then give rise to geometric flows, where the inward normal
velocity of an evolving hypersurface is given by a symmetric ‘speed’ function of the
principal curvatures. If the speed is increasing in each of the principal curvatures,
then the flow is parabolic. The mean curvature flow is the only quasilinear equation
of this kind - all others are fully nonlinear.

These kinds of fully nonlinear hypersurface flows may exhibit behaviour similar
to the mean curvature flow, or have different properties, depending on the chosen
speed function and ambient manifold. In particular, different speed functions give
rise to flows which preserve different classes of hypersurfaces. This fact has been
applied in interesting ways, for example, by Andrews in [And03] and [And94b],
and Brendle-Huisken [BH17]. In each of these works, a fully nonlinear flow is used
to prove statements about hypersurfaces in a curved background space which could
not have been obtained using mean curvature flow.

In the present work, we make new contributions to the theory of fully nonlinear
parabolic hypersurface flows, with emphasis placed on speed functions which are one-
homogeneous and concave in the principal curvatures. Our new results include a
general pinching theorem (Theorem 2.6), a convexity estimate for certain flows of
k-convex hypersurfaces (Theorem 3.1), and a Harnack inequality for the curvature
of embedded solutions (Theorem 4.17).

Let us describe these results in more detail before placing them in context by
surveying the earlier works on which we build. Readers to whom the terminology
used in the following outline is unfamiliar may prefer to first read Section 2 of the
introduction and then return here.
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1. Main results and outline

In this work we establish new curvature pinching and regularity results for fully
nonlinear hypersurface flows. Specifically, we study flows where the normal velocity
at each point is given by a smooth symmetric function of the principal curvatures
which is also positive, one-homogeneous and concave.

In Chapter 2 we describe the proof of a cylindrical estimate which is essentially due
to Brendle-Huisken [BH17][Theorem 3.1]. As it is written, their result only applies
to uniformly two-convex solutions, but the same approach works in the k-convex case
as well, and we state and prove the result at this level of generality. In summary, the
estimate says that as the curvature of a compact uniformly k-convex solution becomes
unbounded, the second fundamental form either becomes strictly (k − 1)-convex, or
approaches the second fundamental form of a cylinder of the form Rk−1 × Sn−k+1

(for the precise statement see Theorem 2.4). There are different quantities which
one can estimate to reach this conclusion, but here we work with the ratio of the
mean curvature to the speed. For this quantity to contain useful information, we
need to assume that the speed function is strictly concave (in off-radial directions -
its Hessian vanishes in radial directions by the one-homogeneity). A more general
cylindrical estimate, which also works for speeds that are only weakly concave, can
be found in work of Langford and the author [LL].

The proof of the cylindrical estimate is by Stampacchia iteration and follows the
general scheme pioneered by Huisken in [Hui84]. Since Huisken’s work, this technique
has been expanded upon and used to prove convexity and cylindrical estimates for
the mean curvature flow, and other flows where the speed is one-homogeneous. What
is perhaps interesting about the discussion in Chapter 2 is that (using ideas from
[BH17]) we carry out the Stampacchia iteration for a general function satisfying
some structural conditions, and recover in one go all of the convexity and cylindrical
estimates previously established using this method (this is Theorem 2.6).

In Chapter 3 we turn to the problem of establishing convexity estimates for families
of k-convex hypersurfaces moving by a concave curvature function. In the k = 2 case
considered by Brendle-Huisken, such an estimate already follows from the cylindrical
estimate, but this is no longer the case if k ≥ 3. The methods used to prove convexity
estimates for the mean curvature flow and for flows by other convex speeds do not
seem to work either. The reason is that when the speed is concave, the evolution
of the smallest principal curvature contains a nonpositive gradient term which is
difficult to overcome. It remains an interesting open problem to determine exactly
which algebraic property of the speed ensures that a convexity estimate holds, but
we provide here the first examples of flows where the speed is a nonlinear concave
function supported on the k-positive cone, and for which compact solutions satisfy a
convexity estimate.

To be more specific, for each n ≥ 4 and 3 ≤ k ≤ n − 1 we look at the family of
speeds

λ 7→

( ∑
1≤i1<···<ik≤n

ρ

λi1 + · · ·+ λik
+

1− ρ
λ1 + · · ·+ λn

)−1

for ρ ∈ (0, 1], and show that if ρ is sufficiently small depending on n and k, compact
solutions satisfy a convexity estimate (see Theorem 3.1 for the precise statement).
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This family of functions constitutes a nonlinear interpolation between the k-harmonic
mean and the sum of the entries. We choose ρ with the a priori cylindrical estimate
from Chapter 2 in mind, so that at points where the curvature is very large, the
speed is approximately equal to the mean curvature. We present detailed arguments
for solutions in a Euclidean background, but the same techniques also work in certain
curved background spaces, as discussed in Section 5.

In Chapter 4 we adapt a technique introduced in [BH17] to prove a global Harnack
inequality for the curvature of embedded k-convex solutions (Theorem 4.17). Com-
bining this estimate with the regularity theory for fully nonlinear parabolic PDE, we
establish pointwise scaling-invariant estimates for all of the derivatives of the second
fundamental form (Corollary 4.18). These results apply to any flow where the speed
is inverse-concave on the positive cone (we define what this means just below), and for
which compact solutions satisfy a convexity estimate. This class includes the speeds
constructed in Chapter 3, the two-harmonic mean, and the mean curvature. In this
last case, we essentially recover the global convergence theorem of Haslhofer-Kleiner
[HK17a][Theorem 1.12], but our proof has the advantage of not needing Huisken’s
monotonicity formula or exterior noncollapsing (neither of which is available for con-
cave nonlinear speeds). We note that the results of this chapter use in a crucial
way the interior noncollapsing estimate due to Andrews-Langford-McCoy [ALM13].
Another important ingredient is a new strong maximum principle for the smallest
principal curvature established in Corollary 3.8.

Further discussion of these main results can be found at the beginning of the
chapters in which they are contained.

2. Background

Our results build on a host of earlier works for both the mean curvature flow
and fully nonlinear flows more generally, which we now survey. We cannot hope to
describe all of the important contributions made in these areas, so the focus will be on
results that directly relate to the contents of the thesis. We begin with a discussion of
preserved curvature conditions and the phenomenon of curvature blow-up. We then
discuss the theory of convex and mean-convex solutions of mean curvature flow and
other flows, with particular attention given to two-convex solutions and noncollapsing
estimates.

2.1. Preserved curvature cones. For scalar parabolic equations, the maxi-
mum principle provides a mechanism for identifying properties of solutions that are
preserved over the course of their evolution. For a family of hypersurfaces moving by
a parabolic curvature flow, the second fundamental form satisfies a parabolic equa-
tion, so maximum principle arguments can be used to identify curvature conditions
which are preserved by the flow.

A family of compact hypersurfaces which is evolving by its mean curvature can
be parameterised by a family of immersions

F : M × [0, T )→ Rn+1

which satisfy

∂tF (x, t) = −H(x, t)ν(x, t)
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for each (x, t) ∈ M × [0, T ). Here M is a compact smooth n-manifold. Writing gij
for the induced metric and gij for its inverse, the second fundamental form Aij and
mean curvature are given by

Aij = 〈DiF,Djν〉, H = gijAij,

where D is the Euclidean connection on Rn+1. The mean curvature can also be
expressed as the sum of the principal curvatures,

H(x, t) = λ1(x, t) + · · ·+ λn(x, t).

In [Hui84] Huisken demonstrated that under the above parameterisation, the Wein-
garten map (obtained from A by raising an index) satisfies the following reaction
diffusion equation:

(∂t −∆)Aij = |A|2Aij,
where ∆ is the Laplace-Beltrami operator of the induced metric on M . Since the
cubic reaction term is just a nonnegative multiple of A, a version of the maximum
principle for tensors due to Hamilton [Ham82] implies that every convex curvature
cone is preserved by the flow. To be precise, by this we mean that if the principal
curvatures initially sit inside some convex symmetric cone in Rn, then they cannot
exit this cone for as long as the solution is evolving smoothly. This result provides
us with a wealth of curvature conditions which are preserved by the flow, some first
examples being convexity (A > 0), and mean-convexity (H > 0). More generally, if
we label principal curvatures so that λ1 ≤ · · · ≤ λn then each of the conditions

λ1 + · · ·+ λk > 0

is preserved. A hypersurface satisfying this condition at every point is said to be
k-convex.

For speeds other than the mean curvature, the evolution of the second fundamental
form is more complicated, and identifying preserved curvature conditions becomes
more subtle. If γ is a smooth symmetric function of the principal curvatures (or
equivalently of the second fundamental form), and the family of immersions F now
satisfies

∂tF (x, t) = −γ(A(x, t))ν(x, t),

then there holds(
∂t −

∂γ

∂Apq
∇p∇q

)
Aij =

∂γ

∂Apq
ArpArqA

i
j +

∂2γ

∂Apq∂Ars
∇iApq∇jArs.

The operator on the left-hand side is weakly parabolic if γ is increasing in A, and
the cubic curvature term on the right points in the direction of A. If γ is convex in
A then the gradient term is favourable, and it is easy to find preserved cones - for
example, the flow will preserve k-convexity for each 1 ≤ k ≤ n. If γ is instead concave
in A, then the Hessian of γ seems to have the wrong sign, and roughly speaking, a
curvature cone will only be preserved if its boundary is convex enough to counteract
the effect of the nonpositive gradient term. It is always true however that positivity of
the speed is preserved: if we set G(x, t) := γ(A(x, t)), then in an orthonormal frame
there holds (

∂t −
∂γ

∂Apq
∇p∇q

)
G =

∂γ

∂Apq
AprArqG,
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and we see that the right-hand side is positive as long as G > 0.
This last observation makes it possible to design speeds which preserve a given

curvature condition, even in a curved background space. If the solution sits inside
a Riemannian manifold (N, ḡ), then the speed satisfies the same equation as before,
with an extra term involving the curvature tensor of N , which we denote by R̄. In a
local orthonormal frame,(

∂t −
∂γ

∂Apq
∇p∇q

)
G =

∂γ

∂Apq
AprArqG+

∂γ

∂Apq
R̄(ep, ν, eq, ν)G.

If the first derivatives of γ and the curvature of N are bounded, then the maximum
principle implies that G can decay at most exponentially in time. In particular, if
G is positive initially, then it cannot become zero in finite-time, so to construct a
flow which preserves a given curvature cone, we only need to choose a speed γ which
vanishes at its boundary. For example, taking the speed to be the k-harmonic mean,

γ(λ) =

( ∑
1≤i1<···<ik≤n

1

λi1 + · · ·+ λik

)−1

,

one obtains a flow which preserves k-convexity in any curved ambient space with
bounded curvature. The mean curvature flow does not have this property. The k = 1
case was studied by Andrews in [And94b], and the k = 2 case by Brendle-Huisken
[BH17]. We elaborate on their results further below.

We note that for the k-harmonic means (and many other interesting speeds) the
matrix of first derivatives of γ becomes degenerate as the second fundamental form
approaches the boundary of the cone where γ is positive. Hence the parabolic operator
appearing in the evolution of A can also become degenerate, unless we can establish
that A remains at a controlled distance from the boundary. It is clear then that the
identification of preserved curvature cones is often also essential for establishing that
a flow has good analytic properties.

2.2. Curvature blow-up. Like solutions of scalar parabolic PDE, solutions of
parabolic hypersurface flows tend to have very strong regularity properties. For ex-
ample, if F : M × [0, T ) → Rn+1 is a compact solution of mean curvature flow, and
|A| is uniformly bounded over M × [0, T ), then all of the higher covariant derivatives
of A are bounded as well (see for example [EH91]). From the curvature derivative
bounds it is possible to prove uniform bounds for all of the derivatives of F over
M × [0, T ), so no singularity can be forming as t→ T . Conversely, singularity forma-
tion is characterised in terms of blow-up of the quantity |A|. If the velocity is instead
given by a nonlinear function γ of A, then this result only holds under conditions on
γ. Typically, unless M is two-dimensional (see [And04]), one assumes γ is concave
or convex in the second fundamental form. The reason is that for fully nonlinear
parabolic operators which are concave or convex in the Hessian, there is a well de-
veloped regularity theory due to Krylov [Kry82] and Evans [Eva82]. In particular,
for such equations, it is possible to pass from a C2-estimate to a C2,α-estimate (at
which point the Schauder estimates can be used to bootstrap and get higher regular-
ity). Identifying further classes of operators with this property remains a major open
problem.
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When it is possible to characterise singularity formation in terms of curvature
blow-up, understanding how singularities form largely reduces to determining the
structure of those regions of the solution where |A| is extremely large (relative to the
initial hypersurface). This in turn is facilitated by the scaling properties of the flow -
particularly interesting is the case where γ is one-homogeneous in A. Then the first
derivatives of γ are scaling-invariant, and at the level of the curvature, the diffusive
effects of the flow act equally at all curvature scales. Also, the space of solutions is
closed under parabolic rescaling: if a family of hypersurfaces {Mt : t ∈ [−T, 0]} is
moving with inward normal velocity γ(A(x, t)), then so is the family of hypersurfaces

{rMr−2t : t ∈ [−r2T, 0]},
where r can be any positive number.

The scaling-invariance gives us a way of magnifying solutions to better understand
their properties at different curvature scales. In particular, if {Mt : t ∈ [0, T )} is a
solution and (xj, tj) any sequence of spacetime points, then we can shift in space
and time to send (xj, tj) to the spacetime origin, and rescale by rj = |A|(xj, tj) to
normalise the curvature at this point:

M j
t := rj(Mr−2

j t+tj
− xj), t ∈ [−r2

j tj, 0].

If rj →∞ we call the sequence of solutionsM j
t a blow-up sequence. If rj is comparable

to the maximum of |A| up to time tj, then the curvature of the rescaled solution is
uniformly bounded over all of spacetime, and by parabolic regularity and the Arzela-
Ascoli theorem, it is possible to extract a smooth limiting solution. Since r2

j tj →∞,
this limiting flow is defined for all negative times. Such solutions are called ancient
solutions, and are much more rigid than solutions on finite time intervals - this should
be likened to the situation for elliptic equations, where entire solutions are often also
very rigid.

This is an indication that the regions of a solution where the curvature is extremely
large might have special geometric and regularity properties. On the other hand, a
priori, the curvature might be blowing up at drastically different rates even at nearby
points on the solution, so a general blow-up sequence may not even converge locally
about the spacetime origin. Understanding when blow-up sequences converge locally
and globally, and the possible geometries of limits thus obtained, is an important
and difficult problem. The geometry is controlled by proving curvature pinching
estimates, which control the position of the second fundamental in curvature space
at high curvature scales, and compactness is established by proving scaling-invariant
estimates for the derivatives of A. These two tasks are intimately related - often
pinching implies regularity, and vice versa. For the mean curvature flow, the first
results of this kind were established for convex solutions by Huisken in [Hui84].

2.3. Convex solutions. In [Hui84], Huisken considered the evolution of com-
pact convex hypersurfaces of dimension at least two under the mean curvature flow.
This work introduced fundamental tools which have continued to be applied to the
study of hypersurface flows, also for solutions which are not convex. As mentioned
above, the maximum principle implies that convexity is preserved, and this implies
that

|A|2 ≤ H2,
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so as the maximal time is approached, H blows up at the same rate as |A|. However,
as Huisken observes, not all scalar functions of the second fundamental form have this
property, and indeed, the traceless second fundamental form satisfies the following a
priori estimate:

|A|2 − 1

n
|H|2 ≤ CH2−σ,

where C and σ ∈ (0, 2) depend only on the solution at the initial time. The right-hand
side can be written as ∑

i<j

(λi − λj)2,

so this estimate says that at points where H is very large, the difference between
the principal curvatures is extremely small relative to H. In particular, if a blow-up
sequence converges smoothly on some spacetime neighbourhood, the limit must be
totally umbilic (λ1 = · · · = λn), and hence a piece of a shrinking sphere solution.

The pinching estimate is proven using a Stampacchia iteration scheme, which
takes as inputs a novel Poincaré inequality derived from Simons’ identity, and the
Michael-Simon Sobolev inequality. This procedure has since been used to prove var-
ious curvature pinching estimates for the mean curvature flow and fully-nonlinear
flows where the speed is one-homogeneous, also for solutions which are not convex.
It lies at the heart of this work, and is discussed in detail in Chapter 1 (see in par-
ticular Theorem 2.6). We note that the ideas underlying Stampacchia iteration were
introduced by De Giorgi to solve Hilbert’s 19th problem in [DG60] (Nash solved the
same problem independently in [Nas58]).

Using the pinching estimate and the maximum principle, Huisken then derives a
pointwise gradient estimate for the mean curvature and combines this with Myers’s
theorem to prove a global Harnack inequality for the curvature, which says that

max
Mt

H ≤ C min
Mt

H

on every timeslice where the maximum of H is sufficiently large. The constant C
depends only on the initial data, so this estimate ensures that the curvature blows up
at the same rate over the whole solution. Combined with the pinching estimate, this
shows that the whole solution is simultaneously becoming spherical as the maximal
time is approached. Another way to say this is that every blow-up sequence converges
to a shrinking sphere solution. Colloquially, the solution is said to shrink to a round
point.

There are also fully nonlinear flows for which convex solutions behave in this way.
Chow [Cho85] considered the flow by the n-th root of the Gauss curvature, and
adapted Huisken’s arguments to show that the flow contracts strictly convex initial
hypersurfaces to a round point. Andrews later showed that for any smooth speed
γ which is one-homogeneous and convex, convex solutions shrink to a round point
[And94a]. The same holds if γ is instead concave and the flow preserves uniform
convexity (A ≥ εHg with ε > 0), which is for example the case when γ vanishes
at the boundary of the positive cone. In [And94b], Andrews then showed that
in a Riemannian ambient space with curvature bounded from above, and sectional
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curvature bounded below by −κ2, the concave speed

γ(λ) =

(∑
i

1

λi − κ

)−1

gives rise to a flow which contracts any compact initial hypersurface satisfying λi > κ
to a round point.

We note that Andrews uses convexity in a more crucial way than Huisken, ap-
pealing in particular to the fact that a compact convex n-dimensional hypersurface
admits special parameterisations over the unit n-sphere. This gives the space of so-
lutions good compactness properties, which is important since in the fully nonlinear
case, it does not seem to be possible to establish gradient estimates for the curvature
via the maximum principle alone.

So far we have only discussed flows of convex hypersurfaces where the singular
behaviour is very well understood. Flows of non-convex hypersurfaces may exhibit
much more complicated behaviour, but it is still possible to make general statements
about mean-convex solutions, some of which we will now survey.

2.4. Mean-convex solutions. A remarkable result (of the combined efforts of
Gage [Gag84], Gage-Hamilton [GH86] and Grayson [Gra87]) says that when n = 1,
every compact embedded solution of mean curvature flow (in this case commonly
called curve-shortening flow) becomes convex in finite time, and shrinks to a round
point. In contrast, when n ≥ 2 a compact solution of mean curvature flow which
is non-convex can form local singularities, where the curvature blows up in some
regions, and remains bounded elsewhere. An instructive example is the dumbbell,
which is a surface of rotation constructed by attaching two large spheres in R3 by a
long thin cylinder. If this is done correctly, then the mean curvature of the cylinder
or ‘neck’ will be much larger than that of the spherical regions, forcing it to shrink
much more quickly and become singular whilst the curvature of the spherical regions
remains bounded. If the initial dumbbell is mean-convex, then this remains true by
the maximum principle, and blowing up the singularity, one sees a homothetically
shrinking cylinder of the form R× S1.

In higher dimensions, it is possible to construct compact mean-convex solutions
which form singularities modeled on any cylinder of the form Rn−k × Sk with k ≥ 1.
Other singularity models also occur, such as the bowl soliton, which is a noncompact
convex solution with rotational symmetry that moves by translation. Each spatial
slice of the bowl soliton is asymptotic to a paraboloid, and so contains arbitrarily
large regions modeled on a cylinder of the form R × Sn−1. In general, it is believed
that for mean-convex solutions, many more complicated models can also occur (the
exception to this is the two-convex case, discussed further below). We note that the
class of mean-convex hypersurfaces in Rn+1 can be quite complicated. Indeed, if Σ is
any compact embedded k-dimensional submanifold in Rn+1 with k ≤ n− 1, then the
set

Σε := {x ∈ Rn+1 : dist(x,Σ) = ε}

is a mean-convex hypersurface, provided that ε is small enough.



2. BACKGROUND 21

On the other hand, under the assumption of mean-convexity, powerful curvature
pinching and regularity results have been established, and these place marked restric-
tions on the geometric properties of singularity models. We now survey some these
results, and discuss also generalisations to fully nonlinear flows.

2.4.1. Convexity estimates. In [HS99b] and [HS99a], Huisken and Sinestrari es-
tablished what is referred to as the convexity estimate for mean-convex mean curva-
ture flow. This says that the negative part of the second fundamental form blows up
at a strictly slower rate than the full curvature: for each ε > 0,

λ1 ≥ −εH − C,

where C > 0 depends only on ε and the solution at the initial time. Like Huisken’s
pinching estimate for convex solutions, the proof is by Stampacchia iteration, but
contains many new ideas needed to go beyond the convex case. A consequence of
this estimate is that any solution obtained by blowing up a singularity must have
nonnegative second fundamental form. We note that convexity of blow-up limits was
established independently by White in [Whi03], but his methods do not seem to
generalise to the fully nonlinear case.

Convexity estimates have also been established for flows where the speed is one-
homogeneous and convex in dimension n ≥ 3 [ALM14], or simply one-homogeneous
in case n = 2 [ALM15]. For uniformly two-convex solutions moving by concave
nonlinear speed functions, a convexity estimate follows from the cylindrical estimate
in [BH17], which is further discussed just below. All of these results are established
using Stampacchia iteration, as in [HS99b] - the hard work always lies in identifying
an appropriate function to which this can be applied.

2.4.2. Cylindrical estimates. The cylindrical estimate for mean curvature flow is
a generalisation of Huisken’s pinching estimate for convex solutions to the k-convex
case. The statement is that, on a compact k-convex solution, for each ε > 0 there
holds

|A|2 − 1

n− k + 1
H2 ≤ εH + C,

where the C depends only on ε and the solution at the initial time. To say this in
words, as the curvature blows up, the quantity |A|2/H2 improves towards the value
it takes on a cylinder Rk−1 × Sn−k+1. In general, one cannot expect any further
improvement, since there are k-convex solutions which form singularities modeled on
Rk−1 × Sn−k+1.

From the cylindrical estimate we conclude that the second fundamental form of
any solution obtain by blowing up a singularity satisfies

|A|2 − 1

n− k + 1
H2 ≤ 0.

This inequality implies that the sum of the smallest k − 1 principle curvatures is
nonnegative, and vanishes if and only if

λ1 = · · · = λk−1 = 0, λk = · · · = λn.

Note that if n = 2 and k = 2, then the cylindrical estimate is simply the convexity
estimate. If n ≥ 3 and k = 2, then the cylindrical estimate is significantly stronger
than the convexity estimate.
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The cylindrical estimate was first established in Huisken-Sinestrari [HS09] (see
[Theorem 5.3]). To be precise, they only consider the case of two-convex solutions, but
it is clear that their method also applies in the k-convex case. Their work was then
generalised to the case of convex one-homogeneous speeds by Andrews-Langford-
McCoy [ALM14]. Rather than comparing |A|2 with H2, Andrews and Langford
consider a different quantity which is adapted to the speed, but their estimate contains
roughly the same information - the second fundamental form either approaches that
of an Rk−1 × Sn−k+1, or becomes strictly (k − 1)-positive, as |A| blows up.

The proofs of Huisken-Sinestrari and Andrews-Langford both make use of a con-
vexity estimate, but with some more careful analysis, Brendle-Huisken show that this
is not necessary in [BH17]. With this observation they are able to prove a cylindrical
estimate for a large class of flows by concave speed functions, without having to first
prove a convexity estimate. They only write down a proof in the two-convex case,
but again, only minor modifications are required to get the analogous estimate for
k-convex flows by concave speed functions - the details can be found in the literature
in [LL][Theorem 1.1], or in Chapter 2 of this thesis.

In the case of two-convex mean curvature flow, the cylindrical estimate has lead
to a fairly complete picture of the kinds of singularities which can form.

2.4.3. Two-convex solutions. Using their cylindrical estimate, Huisken and Sines-
trari were able to derive an extremely detailed picture of the singular behaviour of
two-convex solutions of mean curvature flow, at least for solutions of dimension at
least three. A further key ingredient in their work is a pointwise gradient estimate
for the curvature:

|∇A|2 ≤ CH4 + C,

where C depends only on the initial data. This is proven by a delicate maximum
principle argument, applied to a quantity built from |∇A|2 and the quantity appearing
in the cylindrical estimate. The same kind of argument is also used to prove higher
derivative estimates of the form

|∇kA|2 ≤ CH2k+2 + C,

which can be integrated over a small spacetime neighbourhood to prove a local Har-
nack inequality for the curvature, valid at points where the curvature is sufficiently
large.

With these estimates in hand, Huisken and Sinestrari are able to show that if
the curvature is sufficiently large at (x0, t0), then there are only a few possibilites for
the geometry of the solution near this point. Either: the whole solution is convex
at time t0; the point x0 sits in a convex cap attached to an extremely long neck
region modeled on R× Sn−1; or the point (x0, t0) sits itself inside an extremely long
neck. With further analysis, they determine exactly how these local pieces can fit
together, and so obtain an extremely precise picture of the entire high-curvature
region of a solution. They then show that the high-curvature region can actually
be excised and replaced by finitely many smooth disks of controlled curvature. This
procedure is known as surgery, and allows for the flow to be continued until, after
a bounded number of surgeries, the hypersurface has been decomposed into finitely
many recognisable pieces. The flow with surgeries produces a classification of two-
convex immersions up to diffeomorphism, and as mentioned above, this proves the
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famous Schoenflies conjecture in the special case that the embedding is two-convex
(when n = 3, every hypersurface which has positive scalar curvature is two-convex).

A particular consequence of the analysis in [HS09] is that the local Harnack
inequality becomes valid over larger and larger spacetime regions about (x0, t0) as
the curvature at (x0, t0) increases. Another way of saying this is that for a blow-up
sequence, rescaled to make the curvature bounded at the spacetime origin, the curva-
ture is universally bounded on compact subsets of spacetime. Hence an Arzela-Ascoli
argument shows that any such sequence subconverges smoothly to a convex ancient
solution. The picture of the high-curvature regions drawn by Huisken-Sinestrari has
since been reinforced by Brendle-Choi [BC19], [BC18], who show that the only pos-
sible limits that can be obtain in this way are shrinking spheres or cylinders of the
form R× Sn−1, and the bowl soliton (see also [ADS18]).

It is natural to ask whether the surgery procedure can also be carried out for mean
convex solutions in R3. Here the cylindrical estimate contains less information, and
for immersed solutions, counterexamples show that the pointwise gradient estimate
cannot hold in general. It turns out that this behaviour is ruled out if the solution is
embedded, and in this case, it is also possible to define a flow with surgeries.

2.4.4. Non-collapsing. Compact solutions of mean curvature flow which are em-
bedded at the initial time remain embedded up to their maximal time of existence.
It is not difficult to see why this is true - if two nonequal points on the solution touch
for the first time, then the mean curvature vectors at these two points are pointing
in opposite directions, so the two points are moving away from each other. This of
course means that any rescaled version of the solution is also embedded, but along
a blow-up sequence, where the scaling factor tends to infinity, the region inside the
solution at time zero may be ‘collapsing’ onto a set of lower-dimension.

Huisken gave an interesting proof that this kind of behaviour cannot occur for
embedded solutions of curve-shortening flow [Hui98]. He used a maximum principle
argument to show that the intrinsic and extrinsic distance between any two points
on the solution remain uniformly comparable along the flow. The first noncollapsing
result in higher dimensions was established by White [Whi00], [Whi03], who uses
in a crucial way Huisken’s monotonicity formula [Hui90]. White’s result says that
on an embedded solution, if the mean curvature is normalised at a point, then there
is a nearby ball of controlled radius which is contained in the region bounded by the
solution. Sheng and Wang [SW09] later gave a different proof of the same result.
The results of White and Sheng-Wang both make use of blow-up arguments and the
convexity estimate.

Andrews later established a noncollapsing estimate for embedded mean-convex
solutions using a direct maximum principle argument [And12]. The argument draws
inspiration from Huisken’s work on curve-shortening flow, in that the maximum prin-
ciple is applied to a ‘two-point’ function, which is defined on the product of the
solution with itself. The conclusion is the following: for any point (x, t) on an embed-
ded solution, the radius r̄(x, t) of the largest ball which makes interior contact with
the solution at (x, t) is bounded from below in terms of the initial hypersurface and
H(x, t). To be precise,

r̄(x, t)H(x, t) ≥ min
M

r̄(·, 0)H(·, 0).
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We call this the interior noncollapsing estimate. There is a similar exterior noncol-
lapsing estimate, which says that

r(x, t)H(x, t) ≥ min
M

r(·, 0)H(·, 0),

where r(x, t) denotes the largest ball making exterior contact with (x, t). Andrews’
arguments have been carried over to the fully nonlinear case by Andrews-Langford-
McCoy [ALM13]: they show using the maximum principle that one-homogeneous
concave speeds admit interior noncollapsing, whilst convex speeds exhibit exterior
noncollapsing. If the solution is convex and the speed is both concave and has an
additional property known as inverse-concavity, then both the interior and exterior
noncollapsing estimates are true [AL16].

The noncollapsing estimates have significantly advanced the study of embed-
ded solutions of hypersurface flows. For the mean curvature flow, Haslhofer-Kleiner
[HK17a] combined the noncollapsing with White’s ε-regularity theorem [Whi05] to
derive a new gradient estimate for embedded mean-convex solutions. Taking inspira-
tion from Perelman’s work on three-dimensional Ricci flow, they then combine their
gradient estimate with the convexity estimate to prove a powerful global Harnack in-
equality. In particular, this says that for a compact embedded solution, any blow-up
sequence satisfies universal curvature bounds on compact subsets of spacetime, and
hence subconverges to a convex ancient solution. In another important advancement,
Brendle [Bre15] used Stampacchia iteration to show that the noncollapsing estimates
become optimal, in an appropriate sense, at a singularity. In particular, this improv-
ing noncollapsing estimate can be used as a subsitute for the cylindrical estimate in
two dimensions, allowing Brendle-Huisken [BH16] to carry out surgery for embedded
mean convex solutions in R3, and later in three-manifolds more generally [BH18].
The result in Euclidean space was obtained independently by Haslhofer-Kleiner in
[HK17b].

The interior non-collapsing also plays a role in [BH17], where Brendle and Huisken
use a fully nonlinear flow to study two-convex embeddings in a Riemannian back-
ground space. If the ambient space satisfies the curvature condition

R̄jiji + R̄kiki ≥ −2κ2,

then they define a flow with surgeries for the concave speed

λ 7→
( ∑

1≤i<j≤n

1

λi + λj − 2κ

)−1

.

In an important step the authors carry out an induction on scales argument, com-
bining their cylindrical estimate with the interior non-collapsing property, to prove a
pointwise gradient estimate for the curvature. The surgery construction then proceeds
in much the same way as for two-convex mean curvature flow.

This brings us to the present work, where we generalise some of the results in
[BH17] to flows of k-convex hypersurfaces. We hope that the new estimates obtained
here will play a role in future work on the geometric and topological structure of
interesting classes of hypersurfaces in Riemannian background spaces.
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3. Notation and preliminary results

In the rest of the introduction we lay down some basic definitions, notation and
results which will be used frequently in the rest of the thesis.

3.1. Notation for solutions. We will be concerned with smooth one-parameter
families of immersions F : M × I → Rn+1, which evolve according to

(CF) ∂tF (x, t) = −G(x, t)ν(x, t),

where M is a smooth n-manifold, I ⊂ R is an interval, and ν is a globally defined unit
normal vector. The function G(x, t) is given by applying a smooth symmetric speed
function γ to the n-tuple of principal curvatures λ(x, t). The principal curvatures will
always be labeled so that

λ1(x, t) ≤ · · · ≤ λn(x, t).

We define the class of speed functions γ under consideration just below. The principal
curvatures are the eigenvalues of the second fundamental form A with respect to the
induced metric g. To be precise, g(x, t) is the pullback of the Euclidean metric by
F (·, t) at x, and A is defined as follows:

A(x, t) : TxM × TxM → R
(v, w) 7→ 〈Dvν, w〉,

where D denotes the Euclidean connection. With this convention, a round sphere
equipped with the outward pointing unit normal has positive principal curvatures.

At times, it will be convenient to work with a slightly more general definition of
solution:

(1) (∂tF (x, t))⊥ = −G(x, t).

If F solves (CF), then composing F with any time-dependent diffeomorphism of M
yields a solution of (1). If M is compact and I is bounded from below, as will typi-
cally be the case, then every solution of (1) can be composed with a time-dependent
diffeomorphism of M to get a solution of (CF) (see for example Chapter 1 in [Eck12]).

When considering embedded solutions, we write Mt for the smooth hypersurface
F (M, t), and also use the notation

M := {(x, t) ∈ Rn+1 × I : x ∈Mt}.
When Mt bounds an open region in Rn+1, we denote this region by Ωt, and write also

Ω := {(x, t) ∈ Rn+1 × I : x ∈ Ωt}.

3.2. Admissible speed functions. Throughout this work, γ : Γ → R will
always denote a smooth symmetric function, and Γ an open, convex cone in Rn which
is also symmetric (closed under permutations on n-elements). We say that γ is an
admissible speed if in addition to these properties, the following hold:

(1) Positivity - for each λ ∈ Γ, γ(λ) > 0;
(2) Ellipticity - the first derivatives ∂γ

∂λi
(λ) are all positive for each λ ∈ Γ;

(3) Symmetry - the value of γ(λ) does not change if the entries of λ are permuted;
(4) One-homogeneity - for each positive r and each λ ∈ Γ, there holds

γ(rλ) = rγ(λ).
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One consequence of these properties is that the ray parallel to (1, . . . , 1) is in Γ. The
simplest example of an admissible speed is the mean, which we denote by

tr : Rn → R
λ 7→ λ1 + · · ·+ λn,

restricted to its support. Of course, the function tr is smooth and satisfies conditions
(2)-(4) on all of Rn, but other key examples which we study, such as the harmonic
mean

γ(λ) :=

(
1

λ1

+ · · ·+ 1

λn

)−1

,

do not admit smooth extensions beyond the cone on which they are positive. The
ellipticity condition is so named because, in local coordinates, this is precisely the
property which makes (CF) weakly parabolic. Symmetry is necessary to make sure
that γ(λ) is geometric, and the one-homogeneity ensures that the space of solutions is
closed under parabolic rescaling. We note however that there are interesting geometric
flows by speeds with other scaling properties, such as the one used in [And03].

We discussed in the introduction the necessity of imposing some kind of concav-
ity on the speed, and the differences between flows by concave and convex speed
functions. Our discussion will focus on concave speeds.

In addition to these properties, we will often assume one or more of the following
additional conditions on the speed:

(1) Zero at the boundary - we say γ vanishes at the boundary if it admits a
continuous extension to Γ̄ which vanishes identically on ∂Γ;

(2) Strict concavity in off-radial directions - For each ξ ∈ Rn and λ ∈ Γ, there
holds

∂2γ

∂λi∂λj
(λ)ξiξj ≤ 0,

with equality if and only if ξ is a multiple of λ.

Finally, we say that an admissible speed defined on the positive cone,

Γ+ := {λ ∈ Rn : min
1≤i≤n

λi > 0},

is inverse-concave if the function

γ∗(λ) := γ(λ−1
1 , . . . , λ−1

n )−1

is concave in λ on Γ+.

3.3. Smooth symmetric functions. For each 1 ≤ k ≤ n, let σk : Rn → R
denote the elementary symmetric polynomial

σk(λ) :=
∑

1<i1<···<ik≤n

λi1 · . . . · λik ,

and let S : Rn → Rn be the mapping

S : λ 7→ (σ1(λ), . . . , σn(λ)).

Newton proved that every symmetric polynomial in the entries of λ can be expressed
as a symmetric polynomial in σ1(λ), . . . , σn(λ). In [Gla63], Glaeser proved a far-
reaching generalisation of this result: if U ⊂ Rn is a symmetric open set and ϕ : U →
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R is a smooth symmetric function, then there is a smooth function ϕ̂ defined on S(U)
such that

ϕ(λ) = ϕ̂(S(λ))

holds for each λ ∈ U .
This gives us a way of viewing ϕ as a smooth function on the set of symmetric

matrices with eigenvalues in U . For an open symmetric set U in Rn we write

OU := {O diag(λ)OT : λ ∈ U, O ∈ O(n)},

where diag(λ) is the diagonal matrix with entries λ on the diagonal, and O(n) is the
orthogonal group. This is equivalent to saying that

OU = {A ∈ Sym(n) : λ(A) ∈ U},

where λ is the map taking A to its eigenvalues (labeled so that λ1 ≤ · · · ≤ λn). The
characteristic polynomial of a diagonalisable matrix admits the expansion

det(A− tI) =
∏

1≤k≤n

(t− λi) =
∑

1≤k≤n

(−1)kσk(λ)tn−k,

and from this we see that σk(λ) can be expressed as a smooth function σ̂k of A by
defining

σ̂k(A) :=
1

(−1)k(n− k)!

dn−k

dtn−k
det(A− tI)

∣∣∣∣∣
t=0

.

Therefore, the function ϕ defined on OU by

Φ(A) := ϕ̂(σ̂1(A), . . . σ̂n(A))

is smooth in A, and agrees with ϕ applied to λ(A).
Going the other way, Schwarz [Sch75] showed that given a smooth function Φ

defined on OU which satisfies

Φ(OAO−1) = Φ(A) ∀ A ∈ OU, O ∈ O(n),

there is a smooth function ϕ : U → R such that

ϕ(λ(A)) = Φ(A).

In practice, if ϕ is a smooth symmetric function, we view it as either a function
of eigenvalues or of matrix entries as is convenient. If we write ϕ(λ), where λ ∈ Rn,
then it is understood that we are viewing ϕ as a function of eigenvalues, whereas if
we write ϕ(A) and A is a matrix, then we are viewing ϕ as a function of the entries
of the matrix. Also, to ease notation, we often write

ϕ̇i(λ) :=
∂ϕ

∂λi
(λ), ϕ̈ij(λ) :=

∂2ϕ

∂λi∂λj
(λ),

and

ϕ̈ij(A) :=
∂ϕ

∂Aij
(A), ϕ̈ij,kl(A) :=

∂2ϕ

∂Aij∂Akl
(A).

If A is diagonal then

ϕ̇ij(A) = ϕ̇i(λ)δij,
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and if in addition the eigenvalues of A satisfy λ1 < · · · < λn, then

ϕ̈ij,kl(A)TijTkl = ϕ̈ij(λ)TiiTjj + 2
∑
i<j

ϕ̇j(λ)− ϕ̇i(λ)

λj − λi
|Tij|2

holds for every symmetric T . For proofs of these identities we refer to [And07][Theorem
5.1]. With these formulae we can show that concavity with respect to eigenvalue and
matrix variables are equivalent when U is convex:

Lemma 1.1. Let U ⊂ Rn be open, convex and symmetric, and let ϕ : U → R be a
smooth symmetric function. Then the conditions

ϕ̈ij(λ)ξiξj ≤ 0, ∀ λ ∈ U, ξ ∈ Rn

and

ϕ̈ij,kl(A)TijTkl ≤ 0 ∀ A ∈ OU, T ∈ Sym(n)

are equivalent.

Proof. That the second inequality implies the first is clear - one only has to
apply the second derivative identity above with A = diag(λ) and B = diag(ξ). To get
the second implication, note that since ϕ is smooth, it suffices to show that the second
inequality is true for all A with distinct eigenvalues, since the general case then follows
by approximation. In this case, choosing O ∈ O(n) so that OAOT = Ã = diag(λ),
and writing also T̃ = OBOT , we compute

ϕ̈ij,kl(A)TijTkl =
d2

dt2

∣∣∣∣
t=0

ϕ(OAOT + tOTOT ) = ϕ̈ij,kl(Ã)T̃ijT̃kl.

Now we can invoke the identity above to get

ϕ̈ij,kl(A)TijTkl = ϕ̈ij(λ)TiiTjj + 2
∑
i<j

ϕ̇j(λ)− ϕ̇i(λ)

λj − λi
|Tij|2.

We are assuming that the first term is nonpositive, and nonpositivity of the second
term follows if we can show that

ϕ̇j(λ)− ϕ̇i(λ)

λj − λi
≤ 0

whenever λj > λi. To this end, we let s denote the permutation which swaps the i-th
and j-th entries and note that by symmetry and convexity, (1 − t)λ + ts(λ) is in U
for each t ∈ [0, 1]. Thus the function

t 7→ ϕ((1− t)λ+ ts(λ))

is even and concave, and consequently there holds

0 ≤ d

dt

∣∣∣∣
t=0

ϕ((1− t)λ+ ts(λ)) = ϕ̇i(λ)(λi − λj) + ϕ̇j(λ)(λj − λi),

which we can rearrange to get the desired inequality. �
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3.4. Evolution equations. Fix an admissible speed γ : Γ → (0,∞) and let
F : M → Rn be a smooth immersed hypersurface such that λ(x) ∈ Γ for each x ∈M .
Given a a smooth symmetric function ϕ defined on Γ, we define a smooth function
Φ on M by setting Φ(x) := ϕ(λ(x)). In a smooth local orthonormal frame, we can
view A as a smooth map from M into O Γ, and write Φ(x) = ϕ(A(x)). Since the
coefficients of A are smooth, this shows that G(x) := γ(A(x)) is smooth as a function
of x, and we have

∇pG =
∂γ

∂Aij
∇pAij

and

∇p∇qG =
∂γ

∂Aij
∇p∇qAij +

∂2γ

∂Akl∂Aij
∇pAij∇qAkl.

In a slight abuse of notation, we will write ϕ(A) to mean the quantity returned when
an orthonormal basis is chosen and ϕ is evaluated on the coefficient matrix of A.
In the same vein, we will write ∂γ

∂Aij
(A) or just γ̇ij(A) for the (2, 0) tensor whose

coefficient matrix has these entries with respect to any orthonormal basis, and the
analogous convention applies to the second derivatives.

We state here the evolution equations for various geometric quantities along a
solution of (CF). Huisken derived these identities for the mean curvature flow in
[Hui84][Section 3], and only minor modifications are necessary to cover more general
speed functions. With respect to a local frame for the tangent bundle of M , the
induced metric g and outward pointing unit normal ν satisfy

∂tgij = −2GAij;

∂tν = ∇G.
The speed G satisfies (

∂t −
∂γ

∂Aij
∇i∇j

)
G =

∂γ

∂Aij
gklAikAljG,

and for the Weingarten map (this is just the name given to gprArq) we have(
∂t −

∂γ

∂Aij
∇i∇j

)
Apq =

∂γ

∂Aij
gklAikAljA

p
q +

∂2γ

∂Akl∂Aij
∇pAij∇qAkl.

To ease notation, we will write

∆γ :=
∂γ

∂Aij
∇i∇j, |A|2γ :=

∂γ

∂Aij
gklAikAlj.

If ϕ is a smooth symmetric function on Γ, and is σ-homogeneous (meaning that
ϕ(rλ) = rσϕ(λ) for every r > 0), then for Φ(x, t) := ϕ(A(x, t)) there holds

(∂t −∆γ)Φ = σ|A|2γΦ +

(
∂ϕ

∂Apq

∂2γ

∂Akl∂Aij
− ∂γ

∂Apq

∂2ϕ

∂Akl∂Aij

)
∇pAij∇qAkl.

Notice that if γ is the mean, then the term involving its Hessian vanishes, and the
gradient term has a sign as long as ϕ is convex or concave. This fact is extremely
useful in the study of k-convex solutions of mean curvature flow, since there are
many interesting concave functions defined on the k-positive cone. In contrast, when
γ is nonlinear, it is much more difficult to find curvature functions for which the
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two gradient terms combine to give something with a sign or otherwise favourable
structure. Of course, as well as the speed itself, the mean curvature clearly always
satisfies a nice equation.

3.5. Pinching and uniform parabolicity. For many of the speeds we consider,
the first derivatives with respect to the principal curvatures are not uniformly positive
on Γ. This means that the parabolic operator appearing in the evolution of the
second fundamental form and other curvature quantities can become degenerate if
λ approaches ∂Γ somewhere on a solution. To rule out this behaviour, we usually
impose a uniform parabolicity assumption on solutions, by requiring that

λ(x, t) ∈ Γ′, ∀ (x, t) ∈M × [0, T ),

where Γ′ is a symmetric cone which is compactly contained in Γ. By this we mean
that Γ̄′∩∂B(0, 1) is a compact subset of Γ, and as a shorthand, if Γ′ has this property
then we write Γ′ b Γ.

In fact, if λ ∈ Γ′ b Γ, then we get bounds for all of the derivatives of γ at λ, as
follows.

Lemma 1.2. Let γ : Γ → (0,∞) be an admissible speed, and suppose Γ′ b Γ.
Then there is a constant C = C(n, γ,Γ′) such that if A ∈ O Γ′, there holds

C−1δij ≤ γ̇ij(A) ≤ Cδij,

and
|A||γ̈ij,kl(A)TijTkl| ≤ C|T |2

for each symmetric T . More generally, if k is an (n × n)-matrix with entries in N
and |k| :=

∑
i,j kij then we have

tr(A)k−1

∣∣∣∣∣ ∂|k|γ

∂k11A11 . . . ∂knnAnn

∣∣∣∣∣ ≤ C(n, k, γ,Γ′).

Proof. Differentiation of the one-homogeneity condition yields

λγ̇ij(A) =
∂

∂Aij
γ(λA) = λγ̇ij(λA),

so the first derivatives of γ are scaling-invariant. By assumption, the set

Γ̄′ ∩ ∂B(0, 1)

is a compact subset of Γ. It follows that

O Γ′ ∩ {A ∈ Sym(n) : |A| = 1}
is a compact subset of O Γ, so since γ is smooth and elliptic, the following quantity
is positive:

c0 := inf{γ̇ij(A)ξiξj : A ∈ O Γ′, |A| = 1, ξ ∈ Rn}.
Then because of the scale-invariance of γ̇ij, for every non-zero A ∈ O Γ′ there holds

γ̇ij(A) = γ̇ij(|A|−1A) ≥ c0δij.

The remaining estimates are proven using the same kind of argument - differ-
entiating the homogeneity condition k times shows that k-th derivatives scale like
|A|1−k. �
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In all of the cases we are interested in, uniform parabolicity is guaranteed by the
maximum principle. Taking ϕ to be the trace in the evolution equation for curvature
quantities stated above, and defining H(x, t) := tr(A(x, t)), we get

(∂t −∆γ)H = |A|2γH + gpq
∂2γ

∂Akl∂Aij
∇pAij∇qAkl.

Combining this with the equation for G sated above, we get

(∂t −∆γ)
H

G
=

1

G
gpq

∂2γ

∂Akl∂Aij
∇pAij∇qAkl +

2

G

〈
∇H
G
,∇G

〉
γ

,

where we have also introduced the notation 〈v, w〉γ := γ̇ijviwj. If γ is concave,
applying the maximum principle to this equation gives:

Lemma 1.3. Let F : M × [0, T ) → Rn+1 be a solution of (CF), where γ is a
concave admissible speed. Then for each (x, t) ∈M × [0, T ) there holds

H(x, t)

G(x, t)
≤ max

M

H(·, 0)

G(·, 0)
.

For each α ∈ (0,∞) we define a cone as follows:

Γα := {λ ∈ Γ : tr(λ) ≤ αγ(λ)}.
With this notation, the lemma says that if λ(M×{0}) ⊂ Γα, then λ(M×[0, T )) ⊂ Γα.
Since γ is concave and tr is linear, the sublevel sets of λ 7→ γ(λ)−1 tr(λ) are convex,
so each of the cones Γα is convex. If γ vanishes at the boundary of Γ and is strictly
concave in off-radial directions, then for every α > 0 such that Γα is nonempty, there
holds

Γα b Γ.

Hence the lemma guarantees uniform parabolicity of the flow with Γ′ = Γα and α
depending only on F (·, 0).

3.6. Short- and long-time existence. Suppose γ : Γ→ (0,∞) is an admissible
speed, and let

F0 : M → Rn+1

be a compact immersed hypersurface such that λ(x) ∈ Γ for every x ∈M . Then there
is certainly a symmetric convex cone Γ′ b Γ such that λ(x) ∈ Γ′ for each x ∈ M .
Suppose we know a priori that, if F : M×[0, T )→ Rn+1 solves (CF), then λ(x, t) ∈ Γ′

remains true for every (x, t) ∈ M × [0, T ). Then in particular, we have an a priori
estimate of the form

|A|(x, t) ≥ c(n, γ,Γ′)G(x, t)

with c > 0 which is valid on all of M× [0, T ). Furthermore, by the evolution equation
for G stated above,

G(x, t) ≥ min
M

G(·, 0)

for each (x, t) ∈ M × [0, T ), so we have a positive a priori lower bound for |A|.
Combining this with Lemma 1.2, we obtain a positive upper and lower bounds for
the first derivatives of the speed, and uniform upper and lower bounds for all of its
higher derivatives, all of which are valid on M × [0, T ) and depend only on F0.
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With these bounds and the evolution of G, one can establish an a priori upper
bound for the growth rate of

max
M
|A|(·, t)

as t increases. Since |A| controls the rate of change of the normal, this means that
there is a uniformly positive time up to which any potential solution remains a graph
over the initial hypersurface. With this fact, and the a priori estimates for the deriva-
tives of the speed, the problem of solving (CF) on a short time interval starting from
F0 reduces to a uniformly parabolic scalar PDE problem for the graph representation.
This problem always has a short-time solution - we refer to Section 3.5 of [Lan14]
for further details.

If in addition to admitting a preserved cone Γ′ b Γ, the speed is convex or concave,
then the solution remains smooth while the curvature is bounded. To be precise, if
F : M × [0, T )→ Rn+1 solves (CF) and

sup
M×[0,T )

|A|(x, t) ≤ C,

then all of the derivatives of F are bounded in terms of C on M×[0, T ). To sketch the
argument, the curvature bound means the solution is locally a graph over spacetime
sets of controlled size, and each local graph representation solves a uniformly parabolic
fully nonlinear equation, where the parabolic operator is concave or convex in the
Hessian. The bound on |A| implies a C2 estimate for the graph representation, and
from this it is possible to deduce a C2,α estimate (this fact is due independently to
Evans [Eva82] and Krylov [Kry82]). Schauder theory then implies higher regularity.
The technical results required to make this argument rigourous are contained in the
appendix, but we do not give the details, and refer instead to Section 4.3 of [Lan14]. If
n = 2, then all of this works even if γ is not convex or concave, since the Evans-Krylov
theory can be replaced by a C2,α-estimate for fully nonlinear parabolic equations due
to Andrews [And04].



CHAPTER 2

Cylindrical estimates

Our goal in this chapter is to prove a cylindrical estimate for immersed hypersur-
faces moving by an admissible speed γ which is strictly concave in off-radial directions.
The statement of the estimate can be summarised as follows: on any compact uni-
formly k-convex solution moving with inward normal velocity G(x, t) = γ(λ(x, t)),
there holds

H ≤ (αk−1 + ε)G+ Cε,

where αk−1 is the value taken by G−1H on a cylinder Rk−1×Sn−k+1 and ε can be any
positive number. The constant Cε depends only on ε, the quality of the k-convexity,
and the solution at the initial time. The proof we give is directly adapted from
Brendle-Huisken [BH17][Theorem 3.1]. Analogous estimates for the mean curvature
flow and other convex admissible speed functions were established in [HS09][Theorem
5.3] and [AL14], respectively. A cylindrical estimate for speeds which are only weakly
concave is established in [LL][Theorem 1.1].

The cylindrical estimate implies that, as G blows up, the principal curvatures of
the solution must approach the cone

Γαk−1
:= {λ ∈ Γ : tr(λ) ≤ αk−1γ(λ)},

which is the smallest sub-level set of the function

λ 7→ γ(λ)−1 tr(λ)

which contains the principal curvatures of every cylinder of the form Rk−1 × Sn−k+1.
Since it is possible to construct uniformly k-convex solutions which form singularities
modeled on a homothetically shrinking Rk−1 × Sn−k+1, the constant αk−1 is sharp.
We note that the assumption that γ is strictly concave in off-radial directions ensures
that the cone Γαk−1

sits inside the (k − 1)-nonnegative cone (see Lemma 2.1 below),
so the cylindrical estimate implies that the second fundamental form is becoming
(k − 1)-nonnegative at a singularity.

To establish the cylindrical estimate we prove an a priori supremum estimate for
the pinching quantity

uσ :=
H − (αk−1 + ε)G

G1−σ ,

where σ is chosen to be small depending on ε and the initial data. Let us sketch
how this works. Since uσ scales like Gσ, its evolution equation contains a positive
zeroth-order term:

(∂t −∆γ)uσ = σ|A|2γuσ + . . .

We can try to combat this term using the gradient of curvature term in the evolution
of H, which is nonpositive by the concavity of γ, but this cannot work pointwise.
Hence a direct maximum principle argument does not seem to be viable.

33
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The idea, introduced by Huisken in [Hui84], is to instead use integral estimates
and an iteration argument to get the desired supremum bound. One of the key
observations is that, by integrating some form of Simons’ identity, it is possible to
bound integrals of certain curvature quantities in terms of integrals of gradients of
the curvature. There are different ways of implementing this idea, but a particularly
simple route is taken by Brendle-Huisken in [BH17]. They take the square of a
symmetrised version of Simons’ identity, and so obtain an identity of the following
form: ∑

i,j

λ2
iλ

2
j(λi − λj)2 = A ∗ A ∗ A ∗ ∇2A,

where the ∗ denotes some contraction. The quantity on the left vanishes precisely
when the principal curvatures take the form

λ1 = · · · = λm = 0, λm+1 = · · · = λn

for some m, but the uniform k-convexity and definition of αk−1 imply that this cannot
occur over the support of uσ. This crucial property of uσ means that, on its support,
the norm of the second fundamental form can be controlled by some term of the
form A ∗ A ∗ A ∗ ∇2A, and an integration by parts argument then allows us to
estimate integrals of |A|2uσ in terms of integrals of ∇uσ and ∇A (this is all made
precise in Proposition 2.9). These terms can then be controlled using the diffusion
term and good gradient-of-curvature term in the evolution of uσ, leading to powerful
Lp-estimates. Along with the Michael-Simon Sobolev inequality, these are the key
ingredient needed to carry out Huisken’s Stampacchia iteration argument.

The chapter is divided into two halves. First we establish some basic properties
of the cones Γα, and then state the cylindrical estimate precisely (see Theorem 2.4)
before discussing some of its consequences. We then analyse the terms in the evolu-
tion equation of the quantity H−1G and reduce the proof of the cylindrical estimate
to an application of the Stampacchia procedure. In the second half the Stampacchia
argument is presented in a general form (this is Theorem 2.6) which implies a supre-
mum estimate for a general function uGσ, where σ is small and u satisfies certain
structural conditions. Crucially, u must be a bounded subsolution of a certain par-
abolic equation where the right-hand side contains a negative gradient-of-curvature
term, and at no point on the support of u can the second fundamental form equal
that of a cylinder.

With this general supremum estimate established, in order to prove a pinching
estimate, one only needs to identify an appropriate quantity u satisfying the structural
conditions. Hence Theorem 2.6 can be used to recover the cylindrical and convexity
estimates for mean curvature flow, and the analogous estimates for fully nonlinear
flows mentioned above. We also use it to prove the convexity estimate in the next
chapter.

1. Curvature cones

In this section we establish some elementary properties of the cones

Γα = {λ ∈ Rn : tr(λ) ≤ αγ(λ)},
where γ : Γ → (0,∞) is an admissible speed function which is strictly concave in
off-radial directions and vanishes at ∂Γ. These assumptions imply that for every
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α ∈ (0,∞) there holds

Γα b Γ.

For each 0 ≤ k ≤ n− 1, we write

Cylk := {λ · (ei1 + · · ·+ ein−k) : λ > 0, 1 ≤ i1 < · · · < in−k ≤ n},
where the ei are the standard basis vectors in Rn. This is the set of possible eigenvalue
n-tuples of a cylinder Rk × Sn−k. We then write

Cyl :=
⋃

0≤k≤n−1

Cylk .

Observe that if Cylk ⊂ Γ then the value of γ(λ)−1 tr(λ) is constant for λ ∈ Cylk, so
we may define

αk := γ(λ)−1 tr(λ), λ ∈ Cylk .

The cones Γαk will play an important role. We record some of their key properties in
the following lemma.

Lemma 2.1. Let γ be strictly concave in off-radial directions and fix 0 ≤ k ≤ n−2.
Then the following statements are true:

(1) The set Cylk is in the convex hull of Cylk+1;
(2) Suppose k ≥ 1 and Cylk ⊂ Γ. Then for each 0 ≤ l < k, Cyll ⊂ int Γαk ;
(3) If Cyll ⊂ Γ and l > k then Cyll is in the complement of Γαk .

Proof. (1) Since Cylk+1 consists of rays, its convex hull is a cone. A convex
cone contains every positive linear combination of any finite subset of its elements,
so we only need to show that each point in Cylk can be expressed as a positive linear
combination of points in Cylk+1. By symmetry, it suffices to check this for one element
of Cylk, so let us take

λ̂ =
n∑

i=k+1

ei.

For each j ∈ {k + 1, . . . , n} the vector

λj := λ̂− ej
is an element of Cylk+1, and summing over j we get

n∑
j=k+1

(λ̂− ej) = (n− k)λ̂− λ̂ = (n− k − 1)λ̂.

We have n− k − 1 ≥ 1 by assumption, so

λ̂ =
1

n− k − 1

n∑
j=k+1

(λ̂− ej),

which is the required decomposition of λ̂.
(2) Note that since Γαk is convex and contains Cylk, it also contains the convex

hull of Cylk. Claim (1) thus implies that, since l < k, Cyll ⊂ Γαk . Suppose now that

λ̂ ∈ Cyll ∩ ∂Γαk ,
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and relabel indices and rescale so that

λ̂ =
n∑

k=l+1

ei.

Let λj := λ̂ − ej for each l + 1 ≤ j ≤ n, and write X for the set of positive linear
combinations of the vectors λj. Then X is an open cone of dimension n− l − 1 < n

which, as we showed in (1), has λ̂ in its interior. Since X ∈ Γαk , and the smooth

hypersurface Σ := ∂Γαk \ {0} contains λ̂, the dimension of ker(AΣ) must therefore

have dimension at least n− l−1 at λ̂. On the other hand l < m ≤ n−1, so l ≤ n−2,
and the dimension of ker(AΣ) is therefore at least two at the point λ̂. Since γ is
strictly concave in off-radial directions, the second fundamental form of Σ vanishes
precisely in the radial direction at each point, so its kernel is one-dimensional. We
have thus a reached a contradiction, so the original assumption must have been false.
That is, λ̂ ∈ int Γαk .

(3) We know by claim (2) that if Cyll ⊂ Γ and k < l then Cylk ⊂ int Γαl . The
interior of Γαl consists precisely of those points λ where tr(λ) < αlγ(λ), so we have

αk =
tr

γ

∣∣∣∣
Cylk

< αl,

which implies Γαk ⊂ int Γαl . Since Cyll is a subset of the boundary of Γαl , this implies
that Cyll is in the complement of Γαk . �

Lemma 2.2. Fix k ≥ 1 and suppose Cylk ⊂ Γ. Then for each λ ∈ Γαk satisfying
λ1 ≤ · · · ≤ λn there holds

λ1 + · · ·+ λk ≥ 0,

with equality if and only if

λ1 = · · · = λk.

Proof. Fix a nonzero vector λ ∈ Γαk , normalise so that tr(λ) = 1, and relabel
the entries so that λ1 ≤ · · · ≤ λn. We first prove that

λ1 + · · ·+ λk ≥ 0.

If λ1 ≥ 0 then there is nothing to prove, so let m be the largest natural number such
that δ := λ1 + · · ·+ λm < 0.

Since Γαk is a symmetric convex cone, we can take any permutation of the entries
of λ, add the result to λ, and get back an element of Γαk . In particular, cycling over
the first m entries and taking the average gives

δ

m
(e1 + · · ·+ em) +

n∑
i=m+1

λiei ∈ Γαk .

Similarly, we have

λ̂ :=
δ

m
(e1 + · · ·+ em) +

1− δ
n−m

(em+1 + · · ·+ en) ∈ Γαk .

Appealing again to convexity, we find that for each s ∈ (0, 1],

(1− s)λ̂+ s(e1 + · · ·+ en) ∈ int Γαk .



1. CURVATURE CONES 37

Since δ < 0 by assumption, we can choose s0 ∈ (0, 1] so that (1 − s0)δ/m + s0 = 0,
and so find that (

(1− s0)(1− δ)
n−m

+ s0

)
(em+1 + · · ·+ en) ∈ int Γαk ,

so we have found an element common to Cylm and int Γαk . Since Γαk is a cone, and
Cylm consists of individual rays, it follows that Cylm ⊂ int Γαk . Appealing then to
part (3) of Lemma 2.1, we find that m < k. By the definition of m, we therefore have

λ1 + · · ·+ λk ≥ 0.

Next we consider the equality case. Suppose λ ∈ Γαk satisfies λ1 + · · · + λk = 0.
Then if we set

λ′ :=
n∑

i=k+1

ei,

the line segment λλ′ lies in the hyperplane P0, where

Pε := {λ ∈ Rn : λ1 + · · ·+ λk = ε}.

We have just shown that Pε is disjoint from Γαk for all ε < 0, so any points which are
common to P0 and Γαk must lie in ∂Γαk . In particular,

λλ′ ⊂ ∂Γαk .

Since the boundary of Γαk is strictly convex in off-radial directions, λλ′ must therefore
lie in a ray emanating from the origin. Since λ′ is in Cylk, this implies that λ is also
in Cylk. �

As an easy corollary, we get the following:

Corollary 2.3. Fix 1 ≤ k ≤ n−1 and suppose Cylk ⊂ Γ. Then for every η > 0,
there is a constant ε > 0 depending on η such that if λ ∈ Γαk+ε and λ1 ≤ · · · ≤ λn,
then

λ1 + · · ·+ λk ≥ −η tr(λ).

In addition, for each 0 ≤ k ≤ n − 1 with Cylk ⊂ Γ, there is a constant ε′ depending
on η such that if λ ∈ Γαk+ε′ satisfies λ1 ≤ · · · ≤ λn and λ1 + · · ·+ λk ≤ ε′ tr(λ), then∑

1≤i≤k

|λi|+
n∑

i=k+1

∣∣∣∣λi − tr(λ)

n− k

∣∣∣∣ ≤ η tr(λ).

Proof. If the first claim is false, then there is a positive number η and a sequence
of points λ(j) for j ∈ N such that

λ(j) ∈ Γαk+1/j,

but

λ
(j)
1 + · · ·+ λ

(j)
k ≥ −η tr(λ(j)).

Let us normalise so that tr(λ(j)) = 1 for each j ∈ N. Since

tr(λ(j))

γ(λ(j))
≤ αk +

1

j
,
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and the sets Γα ∩ {λ ∈ Rn : tr(λ) = 1} are compact, we can extract a subsequence

converging to some limit λ̂ ∈ Γαk . The lemma then implies that

λ̂1 + · · ·+ λ̂k ≥ 0,

contradicting our assumption. The proof of the second claim proceeds in a very
similar way. �

2. The cylindrical estimate and consequences

We now give a precise statement of the cylindrical estimate. The conditions on the
cone Γ′ are stated quite generally, but the key case to keep in mind is when Γ is the
(k + 1)-positive cone, and Γ′ = Γα for some α <∞. Then the condition λ(x, t) ∈ Γ′

is guaranteed by Lemma 1.3.

Theorem 2.4. Fix n ≥ 2 and let γ : Γ→ (0,∞) be an admissible speed function
which is strictly concave in off-radial directions and vanishes at ∂Γ. Let

F : M × [0, T )→ Rn+1

be a compact evolving immersion satisfying

∂tF (x, t) = −G(x, t)ν(x, t),

where G(x, t) := γ(λ(x, t)). Suppose there is a closed symmetric convex cone Γ′ b Γ
such that

λ(x, t) ∈ Γ′ ∀ (x, t) ∈M × [0, T ),

and let

k := max{0 ≤ l ≤ n− 1 : Cyll ⊂ Γ′}.
Then, for each ε > 0, there is a constant

Cε = Cε(n, γ,Γ
′, sup

M
G(·, 0), µ0(M), T )

such that the inequality

H(x, t) ≤ (αk + ε)G(x, t) + Cε

holds for each (x, t) ∈M × [0, T ).

Before proving the theorem, let us draw some consequences by comparing with
Corollary 2.3. Given any ε > 0, the theorem says that if G(x, t) is sufficiently large
depending on ε and the initial data, then

(2) H(x, t) ≤ (αk + ε)G(x, t).

Suppose first that k = 0, in which case the assumptions imply that the solution is
uniformly convex. Then (2) and Corollary 2.3 tell us that there is an η(ε) such that

n∑
i=1

∣∣∣∣λi(x, t)− 1

n
H(x, t)

∣∣∣∣ ≤ ηH(x, t),

and η(ε) → 0 as ε → 0. That is, points where the curvature is extremely large are
approximately umbilic.
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If k ≥ 1, then (2) and Corollary 2.3 tell us that λ(x, t) is close to being k-positive:
there is an η(ε) such that

λ1(x, t) + · · ·+ λk(x, t) ≥ −η(ε)G(x, t),

and η(ε) → 0 as ε → 0. In particular, if k = 1 then A(x, t) is approximately non-
negative - this property is what allowed Brendle-Huisken to establish their convexity
estimate in [BH17]. In addition to this, there is an η′(ε) such that if

λ1(x, t) + · · ·+ λk(x, t) ≤ η′(ε)H(x, t),

then λ is extremely close to Cylk:∑
1≤i≤k

|λi(x, t)|+
n∑

i=k+1

∣∣∣∣λi(x, t)− 1

n− k
H(x, t)

∣∣∣∣ ≤ η(ε)G(x, t).

The value of η′(ε) also tends to zero as ε→ 0.
A key step in the proof of the cylindrical estimate involves extracting a uniform

gradient of curvature term from the term involving the Hessian of γ appearing in the
evolution of H. This argument is contained in the following lemma.

Lemma 2.5. Let Γ′ be a closed symmetric cone such that

Γ′ b Γ \ Cyln−1,

and consider a symmetric (n × n)-matrix A which is diagonal and has eigenvalues
λ ∈ Γ′. Then there is a positive constant c = c(n, γ,Γ′) such that∑

k

γ̈pq,rs(A)TkpqTkrs ≤ −c
|T |2

tr(A)

for every totally symmetric T .

Proof. Let S be any n × n-matrix. Since γ is one-homogeneous there holds
γ̈pq,rs(A)ApqArs = 0, so for any symmetric S we have

γ̈pq,rs(A)SpqSrs = γ̈pq,rs(A)

(
Spq −

tr(S)

tr(A)
Apq

)(
Srs −

tr(S)

tr(A)
Ars

)
+ 2

tr(S)

tr(A)
γ̈pq,rs(A)SpqArs.

The last term on the right vanishes, since f(t) := γ̈pq,rs(tSpq + Apq)(tSrs + Ars) is
nonpositive and vanishes at t = 0, giving

0 = f ′(0) = 2γ̈pq,rsSpqArs.

Now let

c0 = min{−γ̈pq,rs(A)SpqSrs : A ∈ O Γ′, tr(A) = 1, tr(S) = 0, |S| = 1},
which is strictly positive, since γ is strictly concave in off-radial directions and the
conditions tr(A) = 1 and tr(S) = 0 prevent S from being proportional to A over this
compact set. By scaling, we have

γ̈pq,rs(A)SpqSrs ≤ −c0
|S|2

tr(A)
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for all A ∈ O Γ′, as long as S is traceless. In particular, for every symmetric S we
have

γ̈pq,rs(A)

(
Spq −

tr(S)

tr(A)
Apq

)(
Srs −

tr(S)

tr(A)
Ars

)
≤ − c0

tr(A)

∣∣∣∣S − tr(S)

tr(A)
A

∣∣∣∣2.
Collecting these facts, we obtain

γ̈pq,rs(A)SpqSrs ≤ −
c0(n, γ,Γ′)

tr(A)

∣∣∣∣S − tr(S)

tr(A)
A

∣∣∣∣2.
Next we observe that since

4
∑
k,p,q

(
Tkpq −

tr(Tk)

tr(A)
Apq

)2

≥
∑
k,p,q

(
Tkpq −

tr(Tk)

tr(A)
Apq − Tpkq +

tr(Tp)

tr(A)
Akq

)2

,

and A is diagonal, if T is totally symmetric then there holds

4
∑
k,p,q

(
Tkpq −

tr(Tk)

tr(A)
Apq

)2

≥
∑
k,p,q

(
− tr(Tk)

tr(A)
Apq +

tr(Tp)

tr(A)
Akq

)2

= 2
∑
k

|λ|2 − λ2
k

tr(λ)2
tr(Tk)

2.

Let us define

c1 := min{|λ|2 − λ2
k : λ ∈ Γ′, tr(λ) = 1, 1 ≤ k ≤ n}.

Since |λ|2 − λ2
k only vanishes if λ = 0 or λ ∈ Cyln−1, the assumption Γ′ b Γ \ Cyln−1

ensures that c1 > 0. It follows that

c1

∑
k

| tr(Tk)|2 ≤ 2
∑
k,p,q

(
Tkpq −

tr(Tk)

tr(A)
Apq

)2

.

On the other hand,

|T |2 =
∑
k,p,q

(
Tkpq −

tr(Tk)

tr(A)
Apq +

tr(Tk)

tr(A)
Apq

)2

≤ 2
∑
k,p,q

(
Tkpq −

tr(Tk)

tr(A)
Apq

)2

+ 2
|A|2

tr(A)2

∑
k

tr(Tk)
2,

so by setting

C0 := max{|A|2 : A ∈ O Γ′, tr(A) = 1},
we obtain

|T |2 =
∑
k,p,q

(
Tkpq −

tr(Tk)

tr(A)
Apq +

tr(Tk)

tr(A)
Apq

)2

≤ 2(1 + c−1
1 C0)

∑
k,p,q

(
Tkpq −

tr(Tk)

tr(A)
Apq

)2

.

Combining this with the bound from the previous paragraph completes the proof. �
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With this lemma in place, we can now establish the cylindrical estimate by ap-
plying Huisken’s Stampacchia procedure. It will be convenient to give the arguments
out of order - we establish the key supremum estimate in Theorem 2.6 just below,
and in the meantime demonstrate that Theorem 2.6 implies Theorem 2.4.

Proof of Theorem 2.4 assuming Theorem 2.6. Recall that we are assum-
ing

λ(x, t) ∈ Γ′

for each (x, t) ∈M × [0, T ), where Γ′ b Γ. Also, Cyll ⊂ Γ′ if and only if l ≤ k. Fix a
small constant ε > 0 and consider the function

u(x, t) :=
H(x, t)

G(x, t)
− αk − ε.

We claim that on the support of u, the principal curvatures of the solution are com-
pactly contained away from Cyl. To see this, observe that if u(x0, t0) > 0, there
holds

λ(x0, t0) ∈ Γ′ \ Γαk+ε =: Γ′′.

By Lemma 2.1, we know that Cyll b Γαk+ε for every l ≤ k. If k < l ≤ n − 1
and Cyll ⊂ Γ, then by the definition of k there holds Cyll b Γ \ Γ′. Putting these
statements together, we get

Γ′′ b Γ \ Cyl .

We saw in the proof of Lemma 1.3 that u satisfies the equation

(∂t −∆γ)u =
1

G
gklγ̈pq,rs∇kApq∇lArs +

2

G
〈∇u,∇G〉γ.

In light of the previous paragraph, we can choose an orthonormal basis of principal
directions and apply Lemma 2.5 at each point in sp(u) to obtain

(∂t −∆γ)u ≤ −c0(n, γ,Γ′, ε)
|∇A|2

G2
+

2

G
〈∇u,∇G〉γ.

Here we have also used the fact that γ and tr are comparable on Γ′. We now make
use of Young’s inequality to estimate the remaining gradient term, and so arrive at

(∂t −∆γ)u ≤ −c0(n, γ,Γ′, ε)
|∇A|2

G2
+ r
|∇G|2γ
G2

+
1

r
|∇u|2γ,

where r can be taken to be any positive number. By setting

C0 := max{γ̇i(λ) : λ ∈ Γ′, tr(λ) = 1, 1 ≤ i ≤ n},
and computing in an orthonormal basis of eigenvectors for A, we get

|∇G|2γ = γ̇kγ̇pγ̇q∇kApp∇kAqq ≤ C1(n, γ,Γ′)|∇A|2.
Therefore, by setting r = c0/2C1 we ensure that

(∂t −∆γ)u ≤ −c1
|∇A|2

G2
+ C2|∇u|2,

where c1 and C2 depend only on n, γ, Γ′ and ε. Since u ≤ C3(n, γ,Γ′), we can pass
to the weaker estimate

(∂t −∆γ)u ≤ −c1C
−1
3 u
|∇A|2

G2
+ C2C3

|∇u|2

u
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on sp(u). Applying Theorem 2.6 (with k0 = 0), we obtain the estimate

u(x, t) ≤ ε+ CεG(x, t)−1,

where Cε = Cε(n, γ,Γ
′, ε, supG(·, 0), µ0(M), T ), and since ε can be taken to be any

positive number, this proves the claim. �

3. Huisken’s Stampacchia procedure

In this section we prove a general pinching estimate for hypersurface flows by ad-
missible speed functions. Consequences of this result include the cylindrical estimate
stated in the previous section and the convexity estimate of the next chapter. The
result can also be used to recover the analogous cylindrical and convexity estimates
for mean curvature flow, and other flows as well.

Theorem 2.6. Fix n ≥ 2 and let γ : Γ → (0,∞) be an admissible speed. Let
F : M × [0, T )→ Rn+1 be compact evolving immersion which satisfies

∂tF (x, t) = −G(x, t)ν(x, t)

for every (x, t) ∈ M × [0, T ), where G(x, t) := γ(λ(x, t)). Let u : M × [0, T ) → R be
a smooth function satisfying u ≤ C0, set

R−1 := sup
M

G(·, 0),

and suppose there is a constant k0 > 0 and a symmetric cone Γ′ b Γ \ Cyl such that

λ(x, t) ∈ Γ′ ∀ (x, t) ∈ sp(u) ∩ sp(G− k0R
−1).

Assume also that there are positive constants C1, C2, C3, C4 and δ ∈ (0, 2] such that

(∂t −∆γ)u ≤ C1
|∇u|2

u
− 1

C2

u
|∇A|2

G2
+ C3|A|2−δ + C4(3)

holds at every point in sp(u) ∩ sp(G − k0R
−1). Set C ′ := (C0, C1, C2, C3, C4). Then

for every ε > 0 there is a constant

Kε = Kε(n, γ,Γ
′, k0, C

′, δ, R, µ0(M), T )

such that

u(x, t) ≤ ε+KεG(x, t)−1

for each (x, t) ∈M × [0, T ).

Remark 2.7. Suppose T is the maximal time of smooth existence. By scaling,
the constant Kε can be written as Kε = K̃εR

−1, where

K̃ε = K̃ε(n, γ,Γ
′, k0, C

′, δ, θ1, θ2, θ3)

and

θ1 := min
M×[0,T )

|A|2γ
G2

; θ2 :=
infM G(·, 0)

supM G(·, 0)
; θ3 := sup

M
G(·, 0)n · µ0(M).

Here we have appealed to the fact that T can be bounded from above in terms of θ1,
θ2 and R−1. This is a consequence of the evolution equation

(∂t −∆γ)G = |A|2γG.
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If the derivatives of γ are bounded from above then θ1 is automatically bounded from
below by the Cauchy-Schwarz inequality.

Remark 2.8. The conclusion of the theorem remains true if, rather than being
smooth, u is only locally Lipschitz and satisfies the differential inequality in the fol-
lowing weak sense: for every nonnegative Lipschitz function ϕ : M × [0, T ) → R
supported in sp(u) ∩ sp(G− k0R

−1), the inequality∫
M

ϕ∂tu dµt ≤ −
∫
M

〈∇u,∇ϕ〉γ dµt −
∫
M

ϕγ̈ij,pq∇iApq∇ju dµt + C1

∫
M

ϕ
|∇u|2

u
dµt

− 1

C2

∫
M

ϕu
|∇A|2

G2
dµt + C3

∫
M

|A|2−δϕdµt + C4

∫
M

ϕdµt(4)

holds for almost every t ∈ [0, T ). If u is smooth and satisfies (3) then this inequality
is a consequence of the divergence theorem. In the proof of the theorem, we will take
care to only use this weaker assumption. This will be important in the next chapter,
where we need to apply the theorem to λ1, which may not be smooth.

3.1. Poincaré and Sobolev inequalities. The following Poincaré-type inequal-
ity first appeared in the form used here in [BH17] (see the proof of Theorem 3.1).
Earlier incarnations were used to prove pinching estimates in [Hui84] and [HS09].

Proposition 2.9. Let M be a smooth hypersurface in Rn+1 satisfying |A| > 0
and consider a compactly supported Lipschitz function u : M → R. Suppose that u is
nonnegative, and that there is a symmetric cone

Γ′ b {λ ∈ Rn : tr(λ) > 0} \ Cyl

such that

λ(x) ∈ Γ′ ∀ x ∈ sp(u).

Then there is a positive constant c = c(n,Γ′) with the property that for every r > 0,

c

∫
M

u2|A|2 dµ ≤ 1

r

∫
M

|∇u|2 dµ+ (1 + r)

∫
M

u2 |∇A|2

|A|2
dµ,

where µ is the induced measure on M .

Proof. Simons’ identity implies that the second fundamental form of M satisfies

∇i∇jAkl +∇j∇iAkl −∇k∇lAij −∇l∇kAij = 2Cijkl,

where C is defined to be

C = A⊗ A2 − A2 ⊗ A.
In a principal frame for A, the only non-zero components of C are Ciijj = λiλj(λi−λj)
for i 6= j, so

(5) |C|2 =
∑

1≤i,j≤n

λ2
iλ

2
j(λi − λj)2.

Let Γ = {λ ∈ Rn : tr(λ) > 0} and consider the function h : Γ→ [0,∞) defined by

h(λ) :=
∑

1≤i<j≤n

λ2
iλ

2
j(λi − λj)2

|λ|6
.
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The norm is positive on Γ, so the right-hand side is well defined. We then define c to
be the constant

c := inf{h(λ) : λ ∈ Γ′, |λ| = 1},
which is guaranteed to be positive, since h vanishes precisely on Cyl, but by assump-
tion Γ′ b Γ \ Cyl. By the scaling-invariance, we then have

h(λ) = h(λ/|λ|) ≥ c

for each λ ∈ Γ′, which is to say that∑
1≤i<j≤n

λ2
iλ

2
j(λi − λj)2 ≥ c|λ|6.

This means that at each point in sp(u),

|C|2 ≥ c|A|6.
We thus have

c

∫
M

u2|A|2 dµ ≤
∫
M

u2|A|−4|C|2 dµ.

Using Simons’ identity and the symmetry of A, we obtain

c

∫
M

u2|A|2 dµ ≤ 8

∫
M

u2|A|−4Cijkl(∇i∇jAkl −∇k∇lAij) dµ.

Consider the first Hessian term on the right (the remaining term can be handled in
the same way). Setting T i := u2|A|−4Cijkl∇jAkl, we may write

u2|A|−4Cijkl∇i∇jAkl = ∇iT
i − 2u∇iu|A|−4Cijkl∇jAkl

− 4u2|A|−5∇i|A|Cijkl∇jAkl − u2|A|−4∇iC
ijkl∇jAkl.

The divergence term vanishes upon integration, and there is a constant K = K(n)
such that

|C| ≤ K|A|3, |∇|A|| ≤ K|∇A|, |∇C| ≤ K|A|2|∇A|,
so we can bound∫

M

u2|A|−4Cijkl∇i∇jAkl dµ

≤ K

∫
M

(
u|∇u||A|−1 + u2|A|−2|∇A|

)
|∇A| dµ,

where K is a larger constant, still depending only on n. The claim now follows from
Young’s inequality. �

We will also make use of the Michael-Simon Sobolev inequality [MS73].

Proposition 2.10. Let u be a compactly supported Lipschitz function on a smooth
hypersurface M . Then there holds(∫

M

|u|
n
n−1 dµ

)n−1
n

≤ C(n)

∫
M

|∇u|+ |H||u| dµ.

Let us record here a straightforward consequence of the Sobolev inequality for
later use:
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Corollary 2.11. Let u be a compactly supported nonnegative Lipschitz function
on a smooth hypersurface M . Then the inequality(∫

M

u2q dµ

) 1
q

≤ C(n)

∫
M

|∇u|2 dµ+ C(n)

(∫
sp(u)

|H|n dµ
) 2

n
(∫

M

u2q dµ

) 1
q

holds with q = n
n−2

if n ≥ 3. If n = 2, then for every q ≥ 1,(∫
M

u2q dµ

) 1
q

≤ Cq2µ(M)
1
q

∫
M

|∇u|2 dµ+ C

∫
sp(u)

|H|2 dµ
(∫

M

u2q dµ

) 1
q

.

Proof. Let β ≥ 1 be a real number to be determined later. Then uβ is a Lipschitz
function, so the Michael-Simon Sobolev inequality and Hölder’s inequality give(∫

M

u
nβ
n−1 dµ

)n−1
n

≤ C

∫
M

βuβ−1|∇u|+ |H|uβ dµ

≤ Cβ

(∫
M

u2(β−1) dµ

) 1
2
(∫

M

|∇u|2 dµ
) 1

2

+ C

(∫
sp(u)

|H|n dµ
) 1

n
(∫

M

u
nβ
n−1 dµ

)n−1
n

.

Suppose for now that n > 2. Let us square both sides and choose β = 2n−1
n−2

. This

ensures that 2(β − 1) = nβ
n−1

, so we obtain(∫
M

u
2n
n−2 dµ

) 2(n−1)
n

≤ C

∫
M

u
2n
n−2 dµ ·

∫
M

|∇u|2 dµ

+ C

(∫
sp(u)

|H|n dµ
) 2

n
(∫

M

u
2n
n−2 dµ

) 2(n−1)
n

,

which gives the desired estimate after canceling.
When n = 2 we proceed as before, but use the Hölder inequality again to get∫

M

u2β dµ ≤ Cβ2

∫
M

u2(β−1) dµ ·
∫
M

|∇u|2 dµ+ C

∫
sp(u)

|H|2 dµ ·
∫
M

u2β dµ

≤ Cβ2µ(M)
1
β

(∫
M

u2β dµ

)β−1
β
(∫

M

|∇u|2 dµ
)

+ C

∫
sp(u)

|H|2 dµ ·
∫
M

u2β dµ,

and then simply rearrange to obtain the desired estimate. �

3.2. Modifying u. Let uσ(x, t) := u(x, t)G(x, t)σ. We want to estimate the
quantity (∂t − ∆γ)uσ, assuming u is smooth and satisfies (3). For v positive there
holds

(∂t −∆γ)(uv) = u(∂t −∆γ)v + v(∂t −∆γ)u− 2〈∇u,∇v〉γ

= u(∂t −∆γ)v + v(∂t −∆γ)u−
2

v
〈∇(uv),∇v〉γ + 2

u

v
|∇v|2γ,
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and

(∂t −∆γ)G
σ = σ|A|2γGσ − σ(σ − 1)Gσ−2|∇G|2γ.

Combining these formulae, we arrive at

(∂t −∆γ)uσ = u(σ|A|2γGσ − σ(σ − 1)Gσ−2|∇G|2γ) +Gσ(∂t −∆γ)u

− 2

Gσ
〈∇uσ,∇Gσ〉γ + 2

u

Gσ
|∇Gσ|2γ

= σ|A|2γuσ + σ(σ + 1)uσ
|∇G|2γ
G2

− 2σ

〈
∇uσ,

∇G
G

〉
γ

+Gσ(∂t −∆γ)u.

If the inequality

(∂t −∆γ)u ≤ C1
|∇u|2

u
− 1

C2

u
|∇A|2

G2
+ C3|A|2−δ + C4,

holds on sp(u) ∩ sp(G− k0R
−1), then on this same set,

(∂t −∆γ)uσ ≤ σ|A|2γuσ + σ(σ + 1)uσ
|∇G|2γ
G2

− 2σ

〈
∇uσ,

∇G
G

〉
γ

+ C1G
σ |∇u|2

u
− C−1

2 uGσ |∇A|2

G2
+ C3|A|2−δGσ + C4G

σ.

Recall that in Theorem 2.6 we assume

λ(x, t) ∈ Γ′ ∀(x, t) ∈ sp(u) ∩ sp(G− k0R
−1),

where Γ′ b Γ \ Cyl. Under this assumption there is a C5 = C5(n, γ,Γ′, C1) such that
on sp(u) ∩ sp(G− k0R

−1) there holds

C1G
σ |∇u|2

u
≤ C5G

σ
|∇u|2γ
u

= C5

|∇uσ|2γ
uσ

− 2C5σ

〈
∇uσ,

∇G
G

〉
γ

+ C5σ
2uσ
|∇G|2γ
G2

,

and consequently, the inequality

(∂t −∆γ)uσ ≤ σ|A|2γuσ + C5

|∇uσ|2γ
uσ

+ σ((1 + C5)σ + 1)uσ
|∇G|2γ
G2

− 2(1 + C5)σ

〈
∇uσ,

∇G
G

〉
γ

− C−1
2 uσ

|∇A|2

G2
+ C3|A|2−δGσ + C4G

σ

holds on sp(u)∩sp(G−k0R
−1). By Young’s inequality there is a C6 = C6(n, γ,Γ′, C1)

such that on sp(u) ∩ sp(G− k0R
−1),

(∂t −∆γ)uσ ≤ σ|A|2γuσ + C6

|∇uσ|2γ
uσ

− (C−1
2 − C6σ)uσ

|∇A|2

G2
+ C3|A|2−δGσ + C4G

σ.

Here we have used the fact that at points where λ ∈ Γ′ we have a bound of the form

|∇G|2γ = γ̇iγjγk∇iAjj∇iAkk ≤ C(n, γ,Γ′)|∇A|2.
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If u is only Lipschitz and satisfies (4), then similar considerations show that for
every Lipschitz test function ϕ supported in sp(u) ∩ sp(G− k0R

−1) there holds∫
M

ϕ∂tuσ dµt ≤ −
∫
M

〈∇uσ,∇ϕ〉γ dµt −
∫
M

ϕγ̈ij,pq∇iApq∇juσ dµt

+ C6

∫
M

ϕ
|∇uσ|2γ
uσ

dµt − (C−1
2 − C6σ)

∫
M

ϕuσ
|∇A|2

G2
dµt

+ σ

∫
M

|A|2γuσϕdµt + C3

∫
M

|A|2−δGσϕdµt + C4

∫
M

Gσϕdµt.(6)

3.3. The Lp-estimate. We are now ready to prove the crucial Lp-estimate for
the function

uσ,k := max{uσ − k, 0}.

Proposition 2.12. Let F and u satisfy the assumptions of Theorem 2.6. Then
there are positive constants p0 and `0 which depend only n, γ, Γ′, C ′ and δ, and a
positive constant k1 = k1(C0, k0, R), with the following property. For all k, σ and p
satisfying

k ≥ C0 ·max{1, k0R
−1}, p ≥ p0, σ ≤ `0p

− 1
2 ,

there holds

sup
t∈[0,T )

(∫
M

upσ,k dµt

)
≤ C

for some

C = C(n, γ,Γ′, k0, C
′, δ, R, µ0(M), T, k, σ, p).

The same inequality also holds if u is only a Lipschitz function satisfying (4).

Proof. Consider constants σ ∈ (0, 1) and k > 0. Observe that, on sp(uσ,k), we
have

k ≤ uGσ ≤ C0G
σ,

so by assuming k ≥ k1 := C0 ·max{1, k0R
−1}, we ensure that

G ≥ max{1, k0R
−1}

1
σ ≥ max{1, k0R

−1}

holds on sp(uσ,k). By assumption, we then have that λ(x, t) ∈ Γ′ holds for every
(x, t) ∈ sp(uσ,k), and in addition to this, the function uσ,k is a valid test function to

which we can apply (4) (or more precisely (6)). For p ≥ 2 the function pup−1
σ,k is also

a valid test function, and inserting this choice into (6) gives

p

∫
M

upσ,k∂tuσ dµt ≤ −p(p− 1)

∫
M

up−2
σ,k |∇uσ|

2
γ dµt − p

∫
M

up−1
σ,k γ̈

ij,pq∇iApq∇juσ dµt

+ C6p

∫
M

up−1
σ,k u

−1
σ |∇uσ|2γ dµt − (C−1

2 − C6σ)p

∫
M

up−1
σ,k uσ

|∇A|2

G2
dµt

+ σp

∫
M

|A|2γuσu
p−1
σ,k dµt + C3p

∫
M

|A|2−δGσup−1
σ,k dµt

+ C4p

∫
M

Gσup−1
σ,k dµt



48 2. CYLINDRICAL ESTIMATES

for almost every t ∈ [0, T ). For p ≥ 2 and

`0 ≤
1

2C2C6

,

the condition σ ≤ `0p
− 1

2 ensures that

−(C−1
2 − C6σ)p

∫
M

up−1
σ,k uσ

|∇A|2

G2
dµt ≤ −c0p

∫
M

upσ,k
|∇A|2

G2
dµt

where c0 := (2C2)−1. Using

d

dt

∫
M

upσ,k dµt = p

∫
M

up−1
σ,k ∂tuσ dµt −

∫
M

HGupσ,k dµt

and estimating

C6p

∫
M

up−1
σ,k u

−1
σ |∇uσ|2γ dµt ≤ C6p

∫
M

up−2
σ,k |∇uσ|

2
γ dµt

we obtain

d

dt

∫
M

upσ,k dµt ≤ −(p(p− 1)− C6p)

∫
M

up−2
σ,k |∇uσ|

2
γ dµt

− p
∫
M

up−1
σ,k γ̈

ij,pq∇iApq∇juσ dµt − c0p

∫
M

upσ,k
|∇A|2

G2
dµt

+ σp

∫
M

|A|2γuσu
p−1
σ,k dµt + C3p

∫
M

|A|2−δGσup−1
σ,k dµt

+ C4p

∫
M

Gσup−1
σ,k dµt.

Choose C7(n, γ,Γ′) so large that

|γ̈ij,rs(A)| ≤ C7γ(A)−1

holds for all combinations of indices and every A ∈ O Γ′. Then, working in an
orthonormal frame at any point in sp(uσ,k), and using Young’s inequality, we can
bound

pup−1
σ,k γ̈

ij,rs∇iArs∇juσ ≤ C7p
∑
i,j,r,s

up−1
σ,k G

−1|∇iArs||∇juσ|

≤ C7p
3
2

∑
i,j,r,s

up−2
σ,k |∇juσ|2 + C7p

1
2

∑
i,j,r,s

upσ,k
|∇iArs|2

G2

≤ C8p
3
2up−2

σ,k |∇uσ|
2
γ + C8p

1
2upσ,k

|∇A|2

G2
.
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Here C8 depends only on n, γ and Γ′. Hence there holds

d

dt

∫
M

upσ,k dµt ≤ −(p(p− 1)− C8p
3
2 − C6p)

∫
M

up−2
σ,k |∇uσ|

2
γ dµt

− (c0p− C8p
1
2 )

∫
M

upσ,k
|∇A|2

G2
dµt

+ σp

∫
M

|A|2γu
p−1
σ,k uσ dµt + C3p

∫
M

|A|2−δGσup−1
σ,k dµt

+ C4p

∫
M

Gσup−1
σ,k dµt(7)

Next we set

C9(n, γ,Γ′) := sup{γ̇i(λ) : λ ∈ Γ′, 1 ≤ i ≤ n}

so that we have |A|2γ ≤ C9|A|2 on sp(uσ,k). Using this we bound

σp

∫
M

|A|2γu
p−1
σ,k uσ dµt = σp

∫
M

|A|2γu
p−1
σ,k (uσ,k + k) dµt

≤ C9σp

∫
M

|A|2upσ,k dµt + C9kσp

∫
M

|A|2up−1
σ,k dµt,

so that for almost every t ∈ [0, T ) there holds

d

dt

∫
M

upσ,k dµt ≤ −(p(p− 1)− C8p
3
2 − C6p)

∫
M

up−2
σ,k |∇uσ|

2
γ dµt

− (c0p− C8p
1
2 )

∫
M

upσ,k
|∇A|2

G2
dµt

+ C9σp

∫
M

|A|2upσ,k dµt + C9kσp

∫
M

|A|2up−1
σ,k dµt

+ C3p

∫
M

|A|2−δGσup−1
σ,k dµt + C4p

∫
M

Gσup−1
σ,k dµt.

Let us restrict `0 further so that

`0 ≤ min

{
1

2C2C6

,
δ

2

}
.

Then σ ≤ `0p
− 1

2 ensures that σ ≤ δ/2. Since we have arranged that G ≥ 1 on sp(uσ,k)
we can estimate

C3p

∫
M

|A|2−δGσup−1
σ,k dµt + C4p

∫
M

Gσup−1
σ,k dµt

≤ C3p

∫
M

|A|2−δGδ/2up−1
σ,k dµt + C4p

∫
M

Gup−1
σ,k dµt

≤ C10p

∫
M

|A|2−δ/2up−1
σ,k dµt + C10p

∫
M

|A|up−1
σ,k dµt
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where C10 depends on n, γ, Γ′, C3, C4 and δ. Using Young’s inequality we obtain

C3p

∫
M

|A|2−δGσup−1
σ,k dµt + C4p

∫
M

Gσup−1
σ,k dµt

≤ σp

∫
M

|A|2up−1
σ,k dµt + C11p

∫
M

up−1
σ,k dµt,

where C11 depends only on C10, δ and σ. Hence for almost every t ∈ [0, T ) we have

d

dt

∫
M

upσ,k dµt ≤ −(p(p− 1)− C8p
3
2 − C6p)

∫
M

up−2
σ,k |∇uσ|

2
γ dµt

− (c0p− C8p
1
2 )

∫
M

upσ,k
|∇A|2

G2
dµt + C9σp

∫
M

|A|2upσ,k dµt

+ (C9k + 1)σp

∫
M

|A|2up−1
σ,k dµt + C11p

∫
M

up−1
σ,k dµt.

We now use Young’s inequality,

ab ≤ p− 1

p
a

p
p−1 +

1

p
bp,

to estimate

(C9k + 1)σp

∫
M

|A|2up−1
σ,k dµt ≤ σ(p− 1)

∫
M

|A|2upσ,k dµt

+ (C9k + 1)pσ

∫
sp(uσ,k)

|A|2 dµt

and

C11p

∫
M

up−1
σ,k dµt ≤ C11

∫
M

(p− 1)upσ,k + 1 dµt ≤ C11p

∫
M

upσ,k + 1 dµt.

Hence for almost every t ∈ [0, T ) we have

d

dt

∫
M

upσ,k dµt ≤ −(p(p− 1)− C8p
3
2 − C6p)

∫
M

up−2
σ,k |∇uσ|

2
γ dµt

− (c0p− C8p
1
2 )

∫
M

upσ,k
|∇A|2

G2
dµt + (C9 + 1)σp

∫
M

|A|2upσ,k dµt

+ (C9k + 1)pσ

∫
sp(uσ,k)

|A|2 dµt + C11p

∫
M

upσ,k + 1 dµt.

The two zeroth-order terms on the last line are of lower order and will be dealt
with later. The remaining zeroth-order term can be absorbed by the good gradient
terms via the Poincaré inequality, as follows. Since Γ′ b Γ \ Cyl and λ ∈ Γ′ holds

on sp(uσ,k), we can apply Proposition 2.9 with u = u
p
2
σ,k. This provides us with a

constant c1 = c1(n, γ,Γ′) such that

c1

∫
M

|A|2upσ,k dµt ≤ s(p/2− 1)2

∫
M

up−2
σ,k |∇uσ|

2
γ dµt

+ (1 + s−1)

∫
M

upσ,k
|∇A|2

G2
dµt,
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where s can be any positive number. From this we obtain

(C9 + 1)σp

∫
M

|A|2γu
p
σ,k dµt ≤ c−1

1 (C9 + 1)sσp3

∫
M

up−2
σ,k |∇uσ|

2
γ dµt

+ c−1
1 (C9 + 1)(1 + s−1)σp

∫
M

upσ,k
|∇A|2

G2
dµt,

where to ease notation we have used p ≥ 2 to estimate (p/2 − 1)2 ≤ p2. Setting

s = p−
1
2 and C12 := c−1

1 (C9 + 1), we therefore have

d

dt

∫
M

upσ,k dµt ≤ −(p(p− 1)− C12σp
5
2 − C8p

3
2 − C6p)

∫
M

up−2
σ,k |∇uσ|

2
γ dµt

− (c0p− C12σp
3
2 − C12σp− C8p

1
2 )

∫
M

upσ,k
|∇A|2

G2
dµt

+ (C9k + 1)pσ

∫
sp(uσ,k)

|A|2 dµt + C11p

∫
M

upσ,k + 1 dµt.

We now insert the assumption σ ≤ `0p
− 1

2 and make `0 a bit smaller so that

`0 ≤ min

{
1

2C2C6

,
δ

2
,

1

2C12

,
c0

2C12

}
.

This ensures that for almost every t ∈ [0, T ),

d

dt

∫
M

upσ,k dµt ≤ −(p2/2− p− C8p
3
2 − C6p)

∫
M

up−2
σ,k |∇uσ|

2
γ dµt

− (c0p/2− C12`0p
1
2 − C8p

1
2 )

∫
M

upσ,k
|∇A|2

G2
dµt

+ (C9k + 1)pσ

∫
sp(uσ,k)

|A|2 dµt + C11p

∫
M

upσ,k + 1 dµt.

We now take p0 so large that the inequalities

−(p2/2− p− C8p
3
2 − C6p) ≤ −p2/4

and

−(c0p/2− C12`0p
1
2 − C8p

1
2 ) ≤ −c0p/4

both hold for every p ≥ p0. The constants c0, C6, C8, C12 and `0 depend only on n, γ,
Γ′, C ′ and δ, so we can choose p0 having only these same dependencies. In particular,
with this choice of parameters, for almost every t ∈ [0, T ) we have

d

dt

∫
M

upσ,k dµt ≤ (C9k + 1)pσ

∫
sp(uσ,k)

|A|2 dµt + C11p

∫
M

upσ,k + 1 dµt.
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Let C13 := C13(n, γ,Γ′) be such that |A|2 ≤ C13HG holds on sp(u). Then by the
last inequality, for almost every t ∈ [0, T ) we have

d

dt

∫
M

upσ,k + 1 + C13(C9k + 1)pσ dµt

≤ (C9k + 1)pσ

∫
sp(uσ,k)

|A|2 dµt + C11p

∫
M

upσ,k + 1 dµt

− (1 + C13(C9k + 1)pσ)

∫
M

HGdµt

≤ C11p

∫
M

upσ,k + 1 dµt

≤ C11p

∫
M

upσ,k + 1 + C13(C9k + 1)pσ dµt.

In short, the function

ζ(t) :=

∫
M

upσ,k + 1 + C13(C9k + 1)pσ dµt,

which is Lipschitz-continuous, satisfies

ζ ′(t) ≤ C11pζ(t)

for almost every t ∈ [0, T ). Hence∫
M

upσ,k dµt ≤ ζ(t) ≤ ζ(0) exp(C11pT )

for each t ∈ [0, T ), and this gives the desired estimate. �

3.4. The supremum estimate. With the Lp-estimate in hand, we are ready
to carry out the Stampacchia iteration procedure to derive a supremum estimate for
the function uσ. The argument closely follows the proof of Theorem 5.1 in [Hui84].

Proposition 2.13. Let F and u be as in the statement of Theorem 2.6. Then
there are constants p1 and `1, each of which may depend only on n, γ, Γ′, C ′ and δ,
with the following property. Suppose p ≥ p1 and σ ≤ `1p

− 1
2 , and define

A(k) := sp(uσ,k), |A(k)| :=
∫ T

0

∫
sp(uσ,k)

dµtdt.

Then there is a constant C = C(n, γ,Γ′, k0, C
′, δ, R, µ0(M), T, σ, p) such that

|A(h)| ≤ C

(h− k)p
|A(k)|θ

for all h > k > k2, where k2 = k2(n, γ,Γ′, k0, C
′, δ, R, µ0(M), T, σ, p) and θ > 1

depends only on n.

Proof. Suppose

p1 ≥ p0, `1 ≤ `0,
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where p0 and `0 are the constants from Proposition 2.12. Then the assumptions
k ≥ k1, p ≥ p1 and σ ≤ `1p

− 1
2 ensure that (7) holds: for almost every t ∈ [0, T ),

d

dt

∫
M

upσ,k dµt ≤ −(p(p− 1)− C8p
3
2 − C6p)

∫
M

up−2
σ,k |∇uσ|

2
γ dµt

− (c0p− C8p
1
2 )

∫
M

upσ,k
|∇A|2

G2
dµt

+ σp

∫
M

|A|2γu
p−1
σ,k uσ dµt + C3p

∫
M

|A|2−δGσup−1
σ,k dµt

+ C4p

∫
M

Gσup−1
σ,k dµt.

By our choice of p0, we can estimate

d

dt

∫
M

upσ,k dµt ≤ −
p2

4

∫
M

up−2
σ,k |∇uσ|

2
γ dµt + σp

∫
M

|A|2γu
p−1
σ,k uσ dµt

+ C3p

∫
M

|A|2−δGσup−1
σ,k dµt + C4p

∫
M

Gσup−1
σ,k dµt,

and as before

C3p

∫
M

|A|2−δGσup−1
σ,k dµt + C4p

∫
M

Gσup−1
σ,k dµt

≤ σp

∫
M

|A|2up−1
σ,k dµt + C11p

∫
M

up−1
σ,k dµt,

hence

d

dt

∫
M

upσ,k dµt ≤ −
p2

4

∫
M

up−2
σ,k |∇uσ|

2
γ dµt + σp

∫
M

|A|2γu
p−1
σ,k uσ dµt

+ σp

∫
M

|A|2up−1
σ,k dµt + C11p

∫
M

up−1
σ,k dµt

for almost every t ∈ [0, T ). Let A(k, t) := sp(uσ,k(·, t)). Without loss of generality we
may assume k ≥ 1 so that

σp

∫
M

|A|2γu
p−1
σ,k uσ dµt + σp

∫
M

|A|2up−1
σ,k dµt ≤ C(n, γ,Γ′)σp

∫
A(k,t)

G2upσ dµt.

We chose k1 to ensure that G ≥ 1 on sp(uσ,k) for all k ≥ k1, so we can also bound

C11p

∫
M

up−1
σ,k dµt ≤ C11p

∫
A(k,t)

G2upσ dµt.

We chose C11 depending only on n, γ, Γ′, δ and σ, and may therefore conclude that
there is a constant

B0 = B0(n, γ,Γ′, C ′, δ, σ, p)

such that for almost every t ∈ [0, T ),

d

dt

∫
M

upσ,k dµt ≤ −
1

B0

p2

4

∫
M

up−2
σ,k |∇uσ|

2 dµt +B0

∫
A(k,t)

G2upσ dµt.
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Let vk = u
p
2
σ,k. We then compute that

|∇vk|2 =
p2

4
up−2
σ,k |∇uσ|

2,

which upon substitution into the previous inequality yields

(8)
d

dt

∫
M

v2
k dµt +

1

B0

∫
M

|∇vk|2 dµt ≤ B0

∫
A(k,t)

G2upσ dµt.

Define

α := sup{γ(λ)−1 tr(λ) : λ ∈ Γ′}.
Then since γ ∈ Γ′ holds on sp(uσ,k) (as a consequence of k ≥ k1), we have∫

A(k,t)

Hn dµt ≤ αn
∫
A(k,t)

Gn dµt

≤ αn

kp

∫
A(k,t)

Gnupσ dµt

=
αn

kp

∫
A(k,t)

upσ′ dµt,

where σ′ := σ + n/p. From this it follows that∫
A(k,t)

Hn dµt ≤
2p−1αn

kp

∫
A(k,t)

(uσ′ − k1)p + kp1 dµt

≤ αn

2

(
2

k

)p ∫
M

upσ′,k1 dµt +
αn

2

(
2k1

k

)p
µ0(M).

We can apply Proposition 2.12 to to the first term as long as σ′ ≤ `0p
− 1

2 . To arrange
this, we choose p1 and `1 a bit smaller so that

p1 ≥ max

{
p0,

4n2

`2
0

}
, `1 ≤

`0

2
.

Then for p ≥ p1 and σ ≤ `1p
− 1

2 we have

σ′ = σ +
n

p
≤
(
`0

2
+

n

p
1
2

)
1

p
1
2

≤ `0

p
1
2

.

Invoking Proposition 2.12 we get∫
A(k,t)

Hn dµt ≤ B1k
−p

for some B1 = B1(n, γ,Γ′, k0, C
′, δ, R, µ0(M), T, σ, p).

The Sobolev inequality from Corollary 2.11 tells us that(∫
M

v2q
k dµt

) 1
q

≤ K0

∫
M

|∇vk|2 dµt +K1

(∫
A(k,t)

Hn dµt

) 2
n
(∫

M

v2q
k dµt

) 1
q

,
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where Ki = Ki(n) and q = n
n−2

if n ≥ 3. If n = 2, the same estimate holds for q = 2
(this is an arbitrary choice) but K0 picks up an additional dependence and µ0(M).
Inserting ∫

A(k,t)

Hn dµt ≤ B1k
−p

gives (∫
M

v2q
k dµt

) 1
q

≤ K0

∫
M

|∇vk|2 dµt +K1B
2
n
1 k
− 2p
n

(∫
M

v2q
k dµt

) 1
q

.

We increase p1 if necessary so that

p1 ≥ max

{
p0,

4n2

`2
0

, n

}
.

Then p ≥ p1 ensures that

K1B
2
n
1 k
− 2p
n ≤ K1B

2
n
1 k
−2

and for every

k ≥ max{k1, 2K
1
2
1 B

1
n
1 }

there holds

K1B
2
n
1 k
− 2p
n ≤ 1/4,

and consequently (∫
M

v2q
k dµt

) 1
q

≤ 4K0

∫
M

|∇vk|2 dµt.

Inserting this into (8) gives

(9)
d

dt

∫
M

v2
k dµt +

1

4K0B0

(∫
M

v2q
k dµt

) 1
q

≤ B0

∫
A(k,t)

G2upσ dµt

for almost every t ∈ [0, T ).
Observe that

uσ ≤ C0G
σ ≤ C0 max{1, R−1}

on M0. Therefore, by choosing k a bit larger so that

k ≥ max{k1, 2K
1
2
1 B

1
n
1 , C0, C0R

−1} =: k2,

we ensure upσ,k = v2
k ≡ 0 on M0. Integrating (9) in time then gives∫

M

v2
k dµτ +

1

4K0B0

∫ τ

0

(∫
M

v2q
k dµt

) 1
q

dt ≤ B0

∫ τ

0

∫
A(k,t)

G2upσ dµtdt

for each τ ∈ [0, T ). Throwing away terms on the left yields

sup
t∈[0,T )

∫
M

v2
k dµt ≤ B0

∫ T

0

∫
A(k,t)

G2upσ dµt dt

and ∫ T

0

(∫
M

v2q
k dµt

) 1
q

dt ≤ 4K0B
2
0

∫ T

0

∫
A(k,t)

G2upσ dµt dt,
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which we recombine to get

sup
t∈[0,T )

∫
M

v2
k dµt +

∫ T

0

(∫
M

v2q
k dµt

) 1
q

dt ≤ B1

∫ T

0

∫
A(k,t)

G2upσ dµt dt,

where B1 := B0 + 4K0B
2
0 .

Fix a constant q0 ∈ (1, q). To exploit the second term on the left above, we use
the following interpolation inequality for Lp spaces:

‖f‖q0 ≤ ‖f‖1−θ
r ‖f‖θq,

where θ ∈ (0, 1) and 1
q0

= θ
q

+ 1−θ
r

. We set r = 1 and θ = 1
q0

. This gives(∫
M

v2q0
k dµt

) 1
q0

≤
(∫

M

v2
k dµt

) q0−1
q0

(∫
M

v2q
k dµt

) 1
qq0

.

Raising both sides to q0, integrating in time and using Young’s inequality we have∫ T

0

∫
M

v2q0
k dµtdt ≤

∫ T

0

(∫
M

v2
k dµt

)q0−1(∫
M

v2q
k dµt

) 1
q

dt

≤
(

sup
t∈[0,T )

∫
M

v2
k dµtdt

)q0−1 ∫ T

0

(∫
M

v2q
k dµt

) 1
q

dt

≤ q0 − 1

q0

(
sup
t∈[0,T )

∫
M

v2
k dµt

)q0
+

1

q0

(∫ T

0

(∫
M

v2q
k dµt

) 1
q

dt

)q0
≤
(

sup
t∈[0,T )

∫
M

v2
k dµt +

∫ T

0

(∫
M

v2q
k dµt

) 1
q

dt

)q0
,

hence (∫ T

0

∫
M

v2q0
k dµtdt

) 1
q0

≤ B1

∫ T

0

∫
A(k,t)

G2upσ dµt dt.

Turning now to the right-hand side, let r be a large constant depending only on
n whose value we will fix later. By Hölder’s inequality,

B1

∫ T

0

∫
A(k,t)

G2upσ dµt dt ≤ B1|A(k)|1−
1
r

(∫ T

0

∫
A(k,t)

G2ruprσ dµt

) 1
r

.

We estimate the integral on the right-hand side by∫
A(k,t)

G2ruprσ dµt =

∫
A(k,t)

uprσ+2/p dµt

≤
∫
A(k,t)

(uσ+2/p − k1 + k1)pr dµt

≤ 2pr−1

∫
M

uprσ+2/p,k1
dµt + 2pr−1µ0(M)kpr1 .
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We would like to bound the first term on the last line using Proposition 2.12. For
this to work, we need

σ +
2

p
≤ `0

(pr)
1
2

,

which can be achieved by further restricting p1 and `1 as follows:

p1 ≥ max

{
p0,

4n2

`2
0

,
16r

`2
0

}
, `1 ≤

`0

2r
1
2

.

Then by Proposition 2.12 there holds∫
A(k,t)

G2ruprσ dµt ≤ B2

for some

B2 = B2(n, γ,Γ′, k0, C
′, δ, R, µ0(M), T, σ, p, r).

Substituting back in, we obtain(∫ T

0

∫
M

v2q0
k dµtdt

) 1
q0

≤ B1T
1
rB

1
r
2 |A(k)|1−

1
r =: B3|A(k)|1−

1
r .(10)

For every h > k ≥ k2 there holds

|A(h)| =
∫ T

0

∫
sp(uσ,h(·,t))

(h− k)p

(h− k)p
dµt dt

≤
∫ T

0

∫
sp(uσ,h(·,t))

v2
k

(h− k)p
dµt dt

≤ 1

(h− k)p

∫ T

0

∫
M

v2
k dµt dt,

and ∫ T

0

∫
M

v2
k dµt dt ≤ |A(k)|1−

1
q0

(∫ T

0

∫
M

v2q0
k dµt dt

) 1
q0

.

Combining these two estimates with (10), we now arrive at

|A(h)| ≤ B3

(h− k)p
|A(k)|2−

1
q0
− 1
r .

Fixing r = r(n) large enough so that

θ := 2− 1

q0

− 1

r
> 1,

the proof is complete. �

The iteration inequality just proven implies that |A(k)| = 0 for large k, by Stam-
pacchia’s lemma (for a proof see Lemma B.1. in [KS80a]).

Lemma 2.14. Let ϕ : [k̄,∞)→ [0,∞) be a nonincreasing function such that

ϕ(h) ≤ C

(h− k)α
ϕ(k)θ
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for all h > k > k̄, where C, α > 0 and θ > 1 are constants. Then ϕ(k̄+ d) = 0, where

dα = Cϕ(k̄)2
αθ
θ−1 .

Proof of Theorem 2.6. Fix p = p1 and σ = `1p
− 1

2
1 and set ϕ(k) = |A(k)|.

Then by Proposition 2.13 there is a

C = C(n, γ,Γ′, k0, C
′, δ, R, µ0(M), T )

such that

ϕ(h) ≤ C

(h− k)p1
ϕ(k)θ

for every h > k > k̄, where k̄ = k̄(n, γ,Γ′, k0, C
′, δ, R, µ0(M), T ). Since θ > 1,

Stampacchia’s Lemma now implies that

ϕ(k̄ + d) = 0,

where dp1 = Cϕ(k̄)2
θp1
p1−1 . Since ϕ(k̄) = |A(k̄)| ≤ Tµ0(M), and θ = θ(n), the constant

k′ := k̄ + d depends only on n, C, p1, µ0(M) and T . Unpacking the dependencies of
C and p1, we see that

k′ = k′(n, γ,Γ′, k0, C
′, δ, R, µ0(M), T ).

By the definition of A(k), the inequality

u ≤ k′G−σ1

holds on all of M × [0, T ). Appealing to Young’s inequality, we obtain

u ≤ ε+ σ

(
k′G−σ1

ε1−σ1

) 1
σ1

=: ε+KεG
−1.

The constant Kε only depends on k′, σ1 and ε, so the theorem is proven. �



CHAPTER 3

A convexity estimate

Our goal in this chapter is to establish a convexity estimate for certain fully
nonlinear flows of k-convex hypersurfaces. The first result of this kind was established
by Huisken and Sinestrari for mean-convex mean curvature flow in [HS99b] and
[HS99a]. They use Stampacchia iteration and induction to prove that on a compact
mean-convex solution of dimension n ≥ 2, for each 2 ≤ k ≤ n, the elementary
symmetric polynomial Sk of degree k applied to λ satisfies an estimate of the form

Sk(λ(x, t)) ≥ −εH(x, t)k − Cε,k.
Here ε can be any positive constant, and Cε,k depends only on ε, k, and the solution
at the initial time. Hence this estimate implies that, at points where the curvature is
sufficiently large, the quantity Sk(λ) is almost positive.

Combining these estimates one concludes that the smallest principal curvature
satisfies an estimate of the same form:

λ1(x, t) ≥ −εH(x, t)− Cε.
In particular, the rescaled second fundamental form H−1A is approximately nonneg-
ative at points of extremely large curvature, and the limit of any smoothly converging
blow-up sequence must have nonnegative second fundamental form. We note that the
Huisken-Sinestrari convexity estimate plays the same role in the study of mean curva-
ture flow as the Hamilton-Ivey estimate (see [Ham93][Theorem 24.4] and [Ive93]) in
three-dimensional Ricci flow, which in turn was an essential ingredient in Perelman’s
proof of the geometrisation conjecture.

Andrews, Langford and McCoy generalised the convexity estimate to flows by
convex admissible speed functions in [ALM14]. Rather than working with elemen-
tary symmetric polynomials, the authors apply the Stampacchia procedure to a single
cleverly chosen curvature quantity, which is in a sense a smooth approximation of the
smallest principal curvature. In this way, their proof is technically simpler than that
of Huisken-Sinestrari, even in the mean curvature flow case. Using an idea of Bren-
dle [Bre15], Langford then gave another proof of the convexity estimate for mean
curvature flow in [Lan17] by applying the Stampacchia procedure directly to the
nonsmooth quantity λ1.

For flows where the speed function is instead concave in the curvature, the evolu-
tion of the second fundamental form picks up a nonpositive gradient term, which in
general makes it much more difficult to control the second fundamental form ‘from
below’. It is possible that for certain concave speeds with some special algebraic struc-
ture, the pinching quantities utilised by Huisken-Sinestrari and Andrews-Langford-
McCoy could be used to prove a convexity estimate, but this approach will not work
for concave speeds in general. Despite these new hurdles in the concave case, it is
possible to prove a convexity estimate if the speed is supported in the two-positive

59
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cone. Then, as we saw in the last chapter, one can prove a cylindrical estimate which
implies a convexity estimate (see the discussion following the statement of Theorem
2.4).

This is no longer the case if we look at flows even of three-convex hypersurfaces.
The problem is that, in general, a uniformly k-convex solution can form singularities
modeled on a shrinking Rk−1 × Sn−k+1. This means that if we want to prove an a
priori estimate showing that the principal curvatures pinch onto some convex cone
Γ′ ⊂ Γ+ at a singularity, this cone must contain the convex hull of Cylk−1. When
k = 2, the convex hull of Cylk−1 = Cyl1 intersected with ∂Γ+ is a set of finitely many
rays, so Γ′ needs to contain these rays, but this is not very restrictive. In particular,
the boundary of Γ′ can have this property and still be strictly convex. The general
case is not so favourable, since the convex hull of Cylk−1 intersects ∂Γ+ in a set of
finitely many cones of dimension k − 1. This means that, in order for Γ′ to sit in
Γ+ and contain the convex hull of Cylk−1, its boundary must contain regions with at
least k − 1 flat directions. On the other hand, we need the boundary of Γ′ to have
a certain amount of convexity in order to overcome the nonpositive gradient term
appearing in the evolution of A. This is essentially the reason why, at present, we are
only able to establish a convexity estimate for some very special speeds.

We note that similar issues arise when one tries to identify which speed functions
give rise to a flow that preserves convexity. It turns out that concavity of the speed
is not enough to ensure this, and in fact, the speed needs to satisfy a weak kind of
convexity condition known as inverse-concavity. Andrews proved that inverse-concave
speeds preserve convexity in [And07] (see also Corollary 3.7 below) and in [AMZ13]
the authors construct compact solutions moving by a concave admissible speed which
start off convex and become non-convex in finite time.

We introduce here the first examples of nonlinear concave speed functions which
are defined on the k-positive cone in Rn for n ≥ 4 and k ≥ 3, and for which it is
possible to prove a convexity estimate. For each k ≥ 3 we work with a family of
speeds that interpolates (in a nonlinear fashion) between the k-harmonic mean and
the mean:

γρ(λ) :=

( ∑
1≤i1<···<ik≤n

ρ

λi1 + · · ·+ λik
+

1− ρ
λ1 + · · ·+ λn

)−1

,

where ρ ∈ (0, 1]. For every ρ > 0 the function γρ is an admissible speed which vanishes
at the boundary of the k-positive cone and is strictly concave in off-radial directions.
As ρ goes to zero, γρ becomes steeper and more concave near the boundary, but
approaches the trace function on the interior of the k-positive cone. This gives us
very precise control over the size of the Hessian of γρ, and hence over the size of the
troublesome term in the evolution of A, over a large region in curvature space. It is
this property and the cylindrical estimate of Chapter 2 that allow us to prove the
convexity estimate:

Theorem 3.1. Fix n ≥ 4 and k ∈ {3, . . . , n − 1}. Let Γ denote the k-positive
cone in Rn,

Γ := {λ ∈ Rn : λi1 + · · ·+ λik > 0 ∀ 1 ≤ i1 < · · · < ik ≤ n},
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and let γρ : Γ→ (0,∞) be defined as above. Consider a compact evolving immersion
F : M × [0, T )→ Rn+1 which satisfies

∂tF (x, t) = −Gρ(x, t)ν(x, t)

for each (x, t) ∈ M × [0, T ), where Gρ(x, t) := γρ(λ(x, t)). Then there is a positive
constant ρ0 = ρ0(n, k) with the property that if ρ ∈ (0, ρ0], for every ε > 0,

λ1(x, t) ≥ −εGρ(x, t)− Cε
holds for every (x, t) ∈M × [0, T ). The constant Cε has the dependencies

Cε = Cε(n, k, ρ, ᾱ, R, µ0(M), T ),

where

ᾱ := max
M

H(·, 0)

Gρ(·, 0)
, R−1 := sup

M
G(·, 0).

The outline of the chapter is as follows. We first derive an evolution equation
for the smallest principal curvature (interpreted in an appropriate weak sense) which
holds for a general hypersurface flow by an admissible speed. Following this we
discuss the inverse-concavity condition and some of its implications, which include
a strong maximum principle for the smallest principal curvature. This result plays
a key role in Chapter 4. We then establish some algebraic properties of the family
of speeds γρ and begin studying compact immersions moving with inward normal
velocity γρ(λ(x, t)). By applying the cylindrical estimate from Chapter 2 we show that
the gradient terms in the evolution of λ1 have a favourable structure at high curvature
scales, provided ρ is small. This allows us to apply the Stampacchia principle to (a
modified quantity built from) λ1 and prove the estimate. Following [Bre15] and
[Lan17], we estimate the nonsmooth function λ1 directly, rather than working with
a smooth approximation.

The arguments are structured so that little extra work is needed to prove an
analogous theorem when the background space is a Riemannian manifold satisfying
a certain curvature condition. In the final section of the chapter we sketch the extra
arguments needed to prove the convexity estimate in this more general setting.

Let us remark here that our construction also works for curvature conditions other
than k-convexity. Indeed, given any convex curvature cone Γ and a concave admissible
speed γ : Γ → (0,∞) which vanishes at ∂Γ, compact hypersurfaces moving by the
speed

λ 7→ (ργ(λ)−1 + (1− ρ) tr(λ)−1)−1

satisfy a convexity estimate provided that ρ > 0 is sufficiently small.

1. An equation for λ1

For the next result we consider a general admissible speed γ : Γ → (0,∞). Let
F : M × [0, T )→ Rn+1 be a smooth immersion evolving by (CF). We first recall the
evolution equation for the second fundamental form: choosing a basis at any point in
spacetime, we have

(∂t −∆γ)Aij = |A|2γAij − 2GgklAikAlj + γ̈pq,rs∇iApq∇jArs.
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For each (x, t) ∈M × [0, T ), let λ1 denote the smallest principal curvature of A(x, t).
This is a Lipschitz function on M × [0, T ), which can be written as

λ1(x, t) = min
v∈TxM\{0}

|v|−2A(x, t)(v, v).

In the following proposition, we use the evolution of the second fundamental form to
derive an evolution equation for λ1, which holds in the sense of viscosities. This kind of
computation was first carried out by Andrews in [And07] (see Theorem 3.2) to prove
a stronger version of Hamilton’s tensor maximum principle. Further refinements were
made by Langford in [Lan14] (see Theorem 4.18). We use the following terminology:

Definition 3.2. Consider a function f : M × [0, T ) → R and a point (x0, t0) ∈
M × (0, T ). We call ϕ a lower support for f at (x0, t0) if there is a positive constant
r such that

ϕ ∈ C2(Bg(t0)(x0, r)× [−r2 + t0, t0])

and there holds
ϕ(x, t) ≤ f(x, t)

on Bg(t0)(x0, r)× [−r2 + t0, t0], with equality at (x0, t0). If the inequality is reversed ϕ
is called an upper support for f at (x0, t0).

For any point (x0, t0) ∈ M × [0, T ), we say that {ei}ni=1 ⊂ Tx0M is a principal
frame at (x0, t0) if the ei are unit-length eigenvectors of A(x0, t0) such that

A(x0, t0)(ei, ei) = λi, λ1 ≤ · · · ≤ λn.

Proposition 3.3. Fix a point (x0, t0) ∈M × (0, T ) and let ϕ be a lower support
for λ1 at (x0, t0). Then, in a principal frame at (x0, t0), there holds

(∂t −∆γ)ϕ ≥ |A|2γϕ+ γ̈pq,rs∇1Apq∇1Ars + 2γ̇k
∑
λp>λ1

|∇kAp1|2

λp − λ1

.

Proof. Let us choose coordinates {xi} on M in a neighbourhood of x0 and denote
the corresponding coordinate tangent vectors by {ei}. We may assume that at (x0, t0),
the {ei} form a principal frame satisfying

A(ei, ei) = λi, λ1 ≤ · · · ≤ λn,

and that ∇iek = 0 for all i and k. These coordinates give rise to a local system of 2n
coordinates for the tangent bundle TM , since we can write any smooth vectorfield v
defined near x0 as viei.

Define Z(x, t, v) := |v|−2A(x, t)(v, v) for all (x, t) ∈ M × [0, T ) and nonzero v ∈
TxM . This is a smooth function on TM × [0, T ) with the property that

Z(x, t, v)− λ1(x, t) ≥ 0,

and this holds with equality at (x0, t0, e1). Since ϕ is a lower support for λ1, we get
that Z(x, t, v)−ϕ(x, t) ≥ 0 with equality at (x0, t0, e1). This means that all 2n of the
first-order coordinate derivatives of Z(x, t, v)− ϕ(x, t) vanish at (x0, t0, e1), and

∂t(Z − ϕ)(x0, t0) ≤ 0.

In addition, the second-order coordinate derivatives form a nonnegative 2n × 2n-
matrix. We will use these facts to derive the desired inequality for ϕ.
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With respect to coordinates, we have

Z(x, t, v) = (gpq(x, t)v
pvq)−1Apq(x, t)v

pvq.

Therefore, at the point (x0, t0, e1) there holds

∂ϕ

∂t
(x0, t0) ≥ ∂Z

∂t
(x0, t, e1)

= −∂g
∂t

(e1, e1)A11 +
∂A

∂t
(e1, e1)

= 2GA2
11 + ∆γA11 + |A|2γA11 − 2GA2

11 + γ̈pq,rs∇1Apq∇1Ars

= ∆γA11 + |A|2γA11 + γ̈pq,rs∇1Apq∇1Ars.

The remaining first derivatives of Z are given by:

∂Z

∂xl
= −∂gpq

∂xl
vpvq · |v|−4A(v, v) + |v|−2∂Apq

∂xl
vpvq;

∂Z

∂vq
= −2gpqv

p|v|−4A(v, v) + 2|v|−2Apqv
p,

and the second derivatives of Z at (x0, t0, v) are:

∂Z

∂xk∂xl
= − ∂2gpq

∂xk∂xl
vpvq · |v|−4A(v, v) + |v|−2 ∂

2Apq
∂xk∂xl

vpvq;

∂Z

∂xk∂vp
= −2gpqv

q|v|−4∂Ars
∂xk

vrvs + 2|v|−2∂Apq
∂xk

vq;

∂Z

∂vp∂vq
= −2gpq|v|−4A(v, v) + 8giqv

igjpv
j|v|−6A(v, v)

− 4giqv
i|v|−4Aprv

r − 4gipv
i|v|−4Arqv

r + 2|v|−2Apq.

Evaluating at (x0, t0, e1) gives

∂ϕ

∂xi
(x, t) =

∂Z

∂xi
(x0, t0, e1) = ∇iA11,

and

∂2Z

∂xk∂xl
= − ∂2g11

∂xk∂xl
A11 +

∂2A11

∂xk∂xl
;

∂2Z

∂xk∂vp
= −2δp1

∂A11

∂xk
+ 2

∂Ap1
∂xk

;

∂2Z

∂vp∂vq
= −2gpqA11 + 8gp1g1qA11 − 4gp1A1q − 4g1qAp1 + 2Apq

= −2δpqA11 + 2Apq.

Since the Hessian of Z −ϕ is nonnegative at (x0, t0, e1), for every n×n-matrix Γpk we
have

∂2ϕ

∂xk∂xl
≤ ∂2Z

∂xk∂xl
+ Γpk

∂2Z

∂xl∂vp
+ Γql

∂2Z

∂xk∂vq
+ ΓpkΓ

q
l

∂2Z

∂vpvq

=
∂2A11

∂xk∂xl
− ∂2g11

∂xk∂xl
A11 − 2Γ1

k

∂A11

∂xl
+ 2Γpk

∂Ap1
∂xl

− 2Γ1
l

∂A11

∂xk
+ 2Γql

∂Aq1
∂xk

− 2δpqΓ
p
kΓ

q
lA11 + 2ΓpkΓ

q
lApq.
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From this it follows that at (x0, t0, e1),

γ̇kl∇k∇lϕ ≤ γ̇kl
∂2A11

∂xk∂xl
− γ̇kl ∂

2g11

∂xk∂xl
A11 + 4γ̇kl

∑
p>1

Γpk∇lAp1

+ 2γ̇kl
∑
p>1

ΓpkΓ
p
l (λp − λ1).

Next we observe that

∇k∇lA11 =
∂2A11

∂xk∂xl
− 2

∂Γ1
k1

∂xl
A11 =

∂2A11

∂xk∂xl
− ∂2g11

∂xk∂xl
A11,

and so obtain

γ̇kl∇k∇lϕ ≤ γ̇kl∇k∇lA11 + 2γ̇kl
∑
p>1

(
2Γpk∇lAp1 + ΓpkΓ

p
l (λp − λ1)

)
.

Combining this last inequality with the time-derivative condition above, we find
that at (x0, t0) there holds

(∂t −∆γ)ϕ ≥ |A|2γϕ+ γ̈pq,rs∇1Apq∇1Ars

− 2γ̇kl
∑
p>1

(
2Γpk∇lAp1 + ΓpkΓ

p
l (λp − λ1)

)
.

Let us choose Γpk = 0 for all indices p such that λp = λ1, and

Γpk = − ∇kAp1
λp − λ1

whenever λp > λ1. Using the fact that in a principal frame γ̇kl = γ̇kδkl, this gives

(∂t −∆γ)ϕ ≥ |A|2γϕ+ γ̈pq,rs∇1Apq∇1Ars + 2γ̇k
∑
λp>λ1

|∇kAp1|2

λp − λ1

.

�

The useful output of these careful computations is the nonnegative gradient term
on the right-hand side. When exploiting this term, we use the following elementary
lemma.

Lemma 3.4. Fix (x0, t0) ∈M × (0, T ) and suppose λ1 admits a lower support ϕ at
(x0, t0). Then if e1 and e2 are two orthonormal vectors in Tx0M which are such that

A(x0, t0)(e1, e1) = A(x0, t0)(e2, e2) = λ1(x0, t0),

there holds ∇A(e1, e2) = 0 at (x0, t0).

Proof. Extend e1 and e2 to an orthonormal basis {ei}, and then to a local
orthonormal frame on a spatial neighbourhood of x0, using parallel transport with
respect to the Levi-Civita connection. Then, computing at x0, we have

∇kA(e1, e2) = ek(A12)

=
1

4
ek(A(e1 + e2, e1 + e2)− A(e1 − e2, e1 − e2)).
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On the other hand, since |e1 + e2| ≡
√

2, there holds

A(e1 + e2, e1 + e2) ≥
√

2λ1 ≥
√

2ϕ,

and by assumption, this inequality becomes an equality at x0. From this we conclude
that, at x0,

ek(A(e1 + e2, e1 + e2)) =
√

2∇kϕ,

but the same argument shows that

ek(A(e1 − e2, e1 − e2)) =
√

2∇kϕ,

also holds at x0. Combining these two equalities with the computation above gives
the result. �

One easy consequence of the lemma just proven is that our choice of Γpk in the
proof of Proposition 3.3 was optimal. Indeed, in light of the lemma, at (x0, t0) we
have

−2γ̇kl
∑
p>1

(
2Γpk∇lAp1 + ΓpkΓ

p
l (λp − λ1)

)
= −2γ̇kl

∑
λp>λ1

(
2Γpk∇lAp1 + ΓpkΓ

p
l (λp − λ1)

)
.

Using the fact that in a principal frame γ̇kl = γ̇kδkl, pulling out a factor of λp − λ1

and completing the square, we obtain

−2γ̇kl
∑
p>1

(
2Γpk∇lAp1 + ΓpkΓ

p
l (λp − λ1)

)
= 2γ̇k

∑
λp>λ1

(λp − λ1)

[
|∇kAp1|2

(λp − λ1)2
−
(

Γpk +
∇kAp1
λp − λ1

)2]
,

In order to maximise the right-hand side, it is clear that we should choose Γpk so that

Γpk = − ∇kAp1
λp − λ1

for each p such that λp(x0, t0) > λ1(x0, t0).

1.1. Inverse-concavity. If the speed γ is inverse-concave on the positive cone,
meaning the function γ∗(A) := γ(A−1)−1 is concave in A, then the gradient terms
appearing in the equation for λ1 have a favourable structure at points where λ1 ≥ 0.
This observation seems to have been made by Huisken, and communicated to Urbas
[Urb91] and Andrews [And07]. In particular, one finds that for flows by inverse-
concave speeds, if a compact solution is strictly convex at the initial time, then this
remains true up to the maximal time of smooth existence. The proof of this fact uses
the following characterisation of inverse-concavity in terms of second derivatives.
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Lemma 3.5. Let γ : O Γ+ → (0,∞) be a smooth symmetric function, and for each
matrix A ∈ O Γ+, define γ∗(A) = γ(A−1)−1. Then there holds

−γ̈pq,rs∗ (A−1)T ∗pqT
∗
rs

=
1

γ(A)2

(
γ̈pq,rs(A) + 2γ̇pr(A)(A−1)qs −

2

γ(A)
γ̇pq(A)γ̇rs

)
TpqTrs,

where

T ∗pq := (A−1)pk(A
−1)qlTkl.

In particular, γ is inverse-concave if and only if

γ̈pq,rs(A) + 2γ̇pr(A)(A−1)qs −
2

γ(A)
γ̇pq(A)γ̇rs(A) ≥ 0

for every A > 0.

Proof. Fix a matrix B ∈ O Γ+, and let A denote B−1. The first derivatives of
γ∗ at B are given by

γ̇pq∗ (B) = −γ(A)−2γ̇kl(A)ApkAql,

and differentiating again gives

γ̈pq,rs∗ (B) = 2γ(A)−3γ̇kl(A)γ̇ij(A)AkpAlqAirAjs − γ(A)−2γ̈kl,ij(A)AkpAlqAirAjs

+ γ(A)−2γ̇kl(A)ApiAjkAql + γ(A)−2γ̇kl(A)ApkAqiAjl.

Contracting this against T ∗pq := BpkBqlTkl gives

γ̈pq,rs∗ (B)T ∗pqT
∗
rs = 2γ(A)−3γ̇kl(A)γ̇ij(A)TklTij − γ(A)−2γ̈kl,ij(A)TklTij

+ 2γ(A)−2γ̇kl(A)BijTikTjl

= −γ(A)−2

(
γ̈ij,kl(A) + 2γ̇ik(A)Bjl −

2

γ(A)
γ̇ij(A)γ̇kl(A)

)
TijTkl.

�

Combining this computation with the evolution of λ1 gives the following inequality.
Crucially, the right-hand side is nonnegative except for terms which contain |∇ϕ| as a
factor and thus vanish at a spatial minimum of λ1. We note that the analysis carried
out here is slightly more detailed than in [And07], where Andrews computes only
at a nonnegative spacetime minimum of λ1. The main difference here is that we use
Lemma 3.4 to get an equation for λ1 which holds everywhere. This will allow us to
apply the strong maximum principle to prove Corollary 3.8 below.

Proposition 3.6. Let γ : Γ → (0,∞) be such that Γ+ ⊂ Γ and suppose the
restriction of γ to Γ+ is inverse-concave. Fix a point (x0, t0) ∈ M × (0, T ) and let ϕ
be a lower support for λ1 at (x0, t0). Then if λ1(x0, t0) ∈ Γ′ ∩ Γ+ for some Γ′ b Γ, in
a principal frame at (x0, t0) there holds

(∂t −∆γ)ϕ ≥ |A|2γϕ− C
|∇ϕ|2

G
− C |∇ϕ||∇1A|

G
+ 2
|∇1G|2

G
,

where C = C(n, γ,Γ′).
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Proof. At the point (x0, t0), we have the decomposition

∇1A = S + T,

where

S := ∇1A11e
1 ⊗ e1 +

∑
p≥2

∇1Ap1e
p ⊗ e1 +

∑
q≥2

∇1A1qe
1 ⊗ eq

T :=
∑
p,q≥2

∇1Apqe
p ⊗ eq.

Suppose that the dimension of the eigenspace of λ1 at (x0, t0) is m. By Lemma 3.4,
if 1 < p ≤ m, then ∇qAp1(x0, t0) = 0 for all indices q. Therefore, by the Codazzi
equations, at (x0, t0) we have

T =
∑

p,q≥m+1

∇1Apqe
p ⊗ eq.

We may write

γ̈pq,rs∇1Apq∇1Ars = γ̈pq,rsSpqSrs + 2γ̈pq,rsSpqTrs + γ̈pq,rsTpqTrs.

Recall that at (x0, t0) there holds

(∂t −∆γ)ϕ ≥ |A|2γϕ+ γ̈pq,rs∇1Apq∇1Ars + 2γ̇k
∑
λp>λ1

|∇kAp1|2

λp − λ1

.

Since we are assuming that λ1(x0, t0) ≥ 0, we can use the Codazzi equations to
estimate

2γ̇k
∑
λp>λ1

|∇kAp1|2

λp − λ1

= 2γ̇k
∑

p≥m+1

|∇kAp1|2

λp − λ1

= 2γ̇1
∑

p≥m+1

|∇1Ap1|2

λp − λ1

+ 2
∑

k,p≥m+1

γ̇k
|∇kAp1|2

λp − λ1

≥ 2
∑

k,p≥m+1

γ̇k
|Tkp|2

λp
,

and putting this all together we find that at (x0, t0),

(∂t −∆γ)ϕ ≥ |A|2γϕ+ γ̈pq,rsSpqSrs + 2γ̈pq,rsSpqTrs

+
∑

p,q,r,s≥m+1

(γ̈pq,rs + 2γ̇prλ−1
q δqs)TpqTrs.

If B is any positive diagonal matrix with eigenvalues µ, we can write∑
p,q,r,s≥m+1

(γ̈pq,rs(B) + 2γ̇pr(B)µ−1
q δqs)TpqTrs

= (γ̈pq,rs(B) + 2γ̇pr(B)(B−1)qs)TpqTrs,

and conclude using the inverse-concavity and Lemma 3.5 that∑
p,q,r,s≥m+1

(γ̈pq,rs(B) + 2γ̇pr(B)µ−1
q δqs)TpqTrs ≥

2

γ(B)
(γ̇pq(B)Tpq)

2.
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Since Tpq = 0 if p ≤ m or q ≤ m, by approximation, the same inequality also holds
in the case that

0 = µ1 = · · · = µm, 0 < µm+1 ≤ · · · ≤ µn,

as long as γ is smooth in a neighbourhood of µ. Therefore, at the point (x0, t0), we
have ∑

p,q,r,s≥m+1

(γ̈pq,rs(A) + 2γ̇pr(A)λ−1
q δqs)TpqTrs

≥ 2

G
(γ̇pq(A)Tpq)

2

=
2

G
(∇1G− γ̇pq(A)Spq)

2

=
2

G
|∇1G|2 −

4

G
∇1G(γ̇pq(A)Spq) +

2

G
(γ̇pq(A)Spq)

2,

and consequently,

(∂t −∆γ)ϕ ≥ |A|2γϕ+ γ̈pq,rsSpqSrs + 2γ̈pq,rsSpqTrs

+
2

G
|∇1G|2 −

4

G
∇1G(γ̇pq(A)Spq) +

2

G
(γ̇pq(A)Spq)

2.

To estimate the remaining terms, we note that since λ(x0, t0) ∈ Γ′,

γ̈pq,rsSpqSrs + 2γ̈pq,rsSpqTrs ≥ −C(n, γ,Γ′)

(
|S|2

G
+
|S||T |
G

)
,

and

−4∇1G(γ̇pq(A)Spq) + 2(γ̇pq(A)Spq)
2 ≥ −C(n, γ,Γ′)(|∇1A||S|+ |S|2).

By the Codazzi equations,

|S|2 = |∇1A11|2 + 2
∑
p≥2

|∇1Ap1|2 ≤ 2|∇A11|2,

and ∇pA11(x0, t0) = ∇pϕ(x0, t0), so we have

|S|2 ≤ 2|∇ϕ|2.

Also, |T |2 ≤ |∇1A|2, so at the point (x0, t0) there holds

(∂t −∆γ)ϕ ≥ |A|2γϕ− C
|∇ϕ|2

G
− C |∇ϕ||∇1A|

G
+ 2
|∇1G|2

G
,

where C = C(n, γ,Γ′). �

Now we can apply the maximum principle to draw some important conclusions
from these computations. First, by an elementary argument we have:

Corollary 3.7. Let γ : Γ → (0,∞) be an admissible speed with Γ+ ⊂ Γ and
suppose the restriction of γ to Γ+ is inverse-concave. Let F : M × [0, T ) → Rn+1 be
a compact solution of (CF) which is such that

λ(x, t) ∈ Γ′ ∀ (x, t) ∈M × [0, T ),
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where Γ′ b Γ is a symmetric cone, and

min
x∈M

λ1(x, 0) > 0.

Then λ1 is positive on M × [0, T ).

Next, by the strong maximum principle for viscosity solutions of parabolic equa-
tions (see for example [DL04]), we can conclude that if λ1 is nonnegative and vanishes
at an interior point, then it vanishes everywhere backwards in time. This result will
play a key role when we derive curvature derivative estimates in the next chapter (see
Step 5 of the proof of Theorem 4.11). Note that we do not require M to be complete.

A similar result for two-convex solutions can be found in [BL16][Theorem A.1].
The two-convex case is made somewhat simpler by the fact that no zero eigenvalue
of A can occur with multiplicity.

Corollary 3.8. Let γ : Γ→ (0,∞) be an admissible speed such that Γ+ ⊂ Γ and
suppose the restriction of γ to Γ+ is inverse-concave. Let M be a connected smooth
manifold and consider an evolving immersion F : M × [−T + t0, t0] → Rn+1 which
solves (CF). Suppose there is a symmetric cone Γ′ b Γ such that λ(x, t) ∈ Γ′ ∩ Γ+

for each (x, t) ∈ M × [−T + t0, t0]. If in addition λ1(x0, t0) = 0 for some x0 ∈ M ,
then λ1 ≡ 0 on M × [−T + t0, t0]. Furthermore, if v ∈ TxM is in ker(A(x, t)) then
there holds

∇vG(x, t) = 0.

Proof. The fact that λ1 vanishes identically follows from Proposition 3.6 and
the strong maximum principle in [DL04]. If v ∈ TxM is as in the kernel of A(x, t),
then we can normalise so that |v| = 1 and extend v to a principal frame at (x, t).
Since the constant function ϕ ≡ 0 is a lower support for λ1 at (x, t), Proposition 3.6
implies that

0 = |∇vG|2(x, t).

�

2. A speed for k-convex hypersurfaces

We consider a fixed dimension n ≥ 4, and a fixed 3 ≤ k ≤ n− 1. Let

γ1(λ) =

( ∑
1≤i1<···<ik≤n

1

λi1 + · · ·+ λik

)−1

,

for each λ in the cone

Γ := {λ ∈ Rn : λi1 + · · ·+ λik > 0 ∀ 1 ≤ i1 < · · · < ik ≤ n}.
For the rest of this chapter we will be concerned with the following family of speed
functions: for each ρ ∈ (0, 1], we define γρ : Γ→ (0,∞) by

γρ(λ) = (ργ1(γ)−1 + (1− ρ) tr(λ)−1)−1.

As the parameter ρ ranges over (0, 1], γρ interpolates between γ1 and the trace, and
for each λ ∈ Γ there holds

min
1≤i1<···<ik≤n

λi1 + · · ·+ λik
ρ

> γρ(λ).
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This property ensures that a family of hypersurfaces evolving with inward normal
velocity given by γρ applied to the principal curvatures will remain strictly k-convex
for all time, even in a curved background space (we elaborate on this in Section 5
below). If ρ is small, then γρ is approximately linear away from ∂Γ, and it is essentially
this property that will allow us to prove the convexity estimate (Theorem 3.1).

For now, we observe that γρ is concave for every ρ ∈ (0, 1], is strictly concave
in off-radial directions, and is also inverse-concave on the positive cone. Indeed, for
λ ∈ Γ+, there holds

γρ(λ
−1
1 , . . . , λ−1

n )−1

= ρ
∑

1≤i1<···<ik≤n

(
1

λi1
+ · · ·+ 1

λik

)−1

+ (1− ρ)

(
1

λ1

+ · · ·+ 1

λn

)−1

,

and each of the summands on the right is a concave function of λ.

2.1. Estimates for the derivatives of γρ. As the parameter ρ tends to zero,
γρ converges smoothly to the trace function on Γ, but since γρ always vanishes at
the boundary of Γ, this convergence clearly cannot be uniform. Our aim now is to
establish estimates which control how the first and second derivatives of γρ differ from
those of the trace at a fixed distance from ∂Γ.

Let us define

h(x1, x2) =

(
1

x1

+
1

x2

)−1

, ∀ x1, x2 > 0,

so that we may write

γρ(λ) = h

(
γ1(λ)

ρ
,

tr(λ)

1− ρ

)
.

Using the fact that

ḣp(x) =
h(x)2

x2
p

,

we compute

γ̇pqρ (A) = ρ
γρ(λ)2

γ1(λ)2
γ̇pq1 (A) + (1− ρ)

γρ(λ)2

tr(λ)2
δpq.

Furthermore, since for each ξ ∈ R2, the Hessian of h acts by

ḧpq(x)ξpξq = −2
h(x)3

x1x2

(
ξ1

x1

− ξ2

x2

)2

,

for A ∈ O Γ we have

γ̈pq,rsρ (A)TpqTpq = ρ
γρ(A)2

γ1(A)2
γ̈pq,rs1 (A)TpqTrs

− 2ρ(1− ρ)
γρ(A)3

γ1(A) tr(A)

(
γ̇pq1 (A)Tpq
γ1(A)

− tr(T )

tr(A)

)2

.(11)

Lemma 3.9. For each ρ ∈ (0, 1] and λ ∈ Γ, there holds

γ1(λ) ≤ γρ(λ) ≤ min{tr(λ), ρ−1γ1(λ)}.
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Proof. We first observe that

γρ(λ)−1 = ργ1(λ)−1 + (1− ρ) tr(λ)−1 ≥ ργ1(λ)−1,

which is one of the desired upper bounds. Also, since

γ1(λ) ≤ min
1≤i1<···<ik≤n

λi1 + · · ·+ λik ≤ tr(λ),

there holds

tr(λ)−1 ≤ ργ1(λ)−1 + (1− ρ) tr(λ)−1 ≤ γ1(λ)−1.

Inverting this gives the remaining two inequalities. �

Inserting these estimates into the expression for the derivatives of γρ from above,
we immediately obtain the following:

Lemma 3.10. For each ρ ∈ (0, 1] and A ∈ O Γ, there holds:

γ̇klρ (A) ≤ min

{
1

ρ
,

tr(A)2

γ1(A)2

}
γ̇kl1 (A) + δkl;

γ̇klρ (A) ≥ ργ̇kl1 (A) + (1− ρ)
γ1(A)2

tr(A)2
δkl.

For the second derivatives, we have:

Lemma 3.11. For each ρ ∈ (0, 1] and symmetric A ∈ O Γ, there holds

γ̈pq,rsρ (A)TpqTrs ≤ ργ̈pq,rs1 (A)TpqTrs,

and

−γ̈pq,rsρ (A)TpqTrs

≤ min

{
ρ−2, ρ

tr(A)3

γ1(A)3

}(
− γ̈pq,rs1 (A)TpqTrs + 4

(γ̇pq1 Tpq)
2

tr(A)
+ 4

tr(T )2

tr(A)

)
.

Proof. The first estimate follows immediately from (11) and Lemma 3.9. To
obtain the second, we first bound

2ρ(1− ρ)
γρ(λ)3

γ1(λ) tr(λ)

(
γ̇pq1 (A)Tpq
γ1(λ)

− tr(T )

tr(λ)

)2

≤ 4ρ
γρ(λ)3

γ1(λ) tr(λ)

(
(γ̇pq1 (A)Tpq)

2

γ1(λ)2
+

tr(T )2

tr(λ)2

)
≤ 4ρ

γρ(λ)3

γ1(λ)3

(
(γ̇pq1 (A)Tpq)

2

tr(λ)
+

tr(T )2

tr(λ)

)
.

Using the fact that γρ ≥ γ1, we obtain

−γ̈pq,rsρ (A)TpqTrs ≤ ρ
γρ(λ)3

γ1(λ)3

(
− γ̈pq,rs1 (A)TpqTrs + 4

(γ̇pq1 Tpq)
2

tr(λ)
+ 4

tr(T )2

tr(λ)

)
,

and the claim then follows from Lemma 3.9. �
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At points which are at a controlled distance from the boundary of Γ, we can say
more. We introduce the notation

Γα = {λ ∈ Rn : tr(λ) ≤ αγ1(λ)},
and observe that since γ1 is strictly concave in off-radial directions and vanishes at
∂Γ, the set

Γα ∩ {λ ∈ Rn : tr(λ) = 1}
is a compact subset of Γ.

Lemma 3.12. For every α < ∞, there is a positive constant C = C(n, k, α) with
the following properties. If A ∈ O Γα, then

C−1δij ≤ γ̇ijρ (A) ≤ Cδij,

and

−γ̈pq,rsρ (A)TpqTrs ≤ Cρ
|T |2

tr(A)
.

Proof. Consider the set

S := {A ∈ O Γα : tr(A) = 1}.

As noted above, S is a compact subset of O Γ. Therefore, since γ̇ij1 is smooth and
positive-definite on Γ, the quantity

c0 := min{γ̇ij1 (A)ξiξj : A ∈ S, ξ ∈ Rn, |ξ| = 1}
is strictly positive, and depends only on n, k, and α. If A ∈ O Γα, and ξ ∈ Rn, then
since γ̇ij1 is scaling-invariant there holds

γ̇ij1 (A)ξiξj = γ̇ij1 (tr(A)−1A)ξiξj ≥ c0|ξ|2.
For A ∈ O Γα, Lemma 3.10 tells us that

ργ̇ij1 (A) + (1− ρ)α−2δij ≤ γ̇ijρ (A) ≤ α2γ̇ij1 (A) + δij.

We also have γ̇ij1 ≤ C(n, k)δij, so appealing to the lower bound just derived, we find
that

min{c0, α
−2}δij ≤ γ̇ijρ (A) ≤ (α2C(n, k) + 1)δij.

Next we define C0 = C0(n, k, α) by

C0 := max{−γ̈pq,rs1 (A)TpqTrs : A ∈ S, T ∈ Sym(n), |T | = 1},
and observe that C0 is nonnegative by the concavity of, since γ1. Then if A is any
matrix in O Γα and T ∈ Sym(n), there holds

−γ̈pq,rs1 (A)TpqTrs = − tr(A)−1γ̈pq,rs1 (tr(A)−1A)TpqTrs ≤ C0 tr(A)−1|T |2.
Combining this inequality with the second bound in Lemma 3.11, we obtain

−γ̈pq,rsρ (A)TpqTrs

≤ ρα3

(
− γ̈pq,rs1 (A)TpqTrs + 4

(γ̇pq1 Tpq)
2

tr(A)
+ 4

tr(T )2

tr(A)

)
≤ C(n, k, α)ρ tr(A)−1|T |2.

�
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3. Consequences of the cylindrical estimate

We continue to consider a fixed n ≥ 4 and k ∈ {3, . . . , n − 1}. Let M be a
compact smooth n-manifold and suppose F : M × [0, T ) → Rn+1 is an evolving
immersion satisfying the equation

∂tF (x, t) = −Gρ(x, t)ν(x, t),

where Gρ(x, t) := γρ(x, t) and ρ > 0. It follows from Lemma 1.3 that since γρ is
concave, we have the estimate

H(x, t)

Gρ(x, t)
≤ max

M

H(·, 0)

Gρ(·, 0)

for all (x, t) ∈M × [0, T ). Inserting the definition of γρ, we find that

ρ
H(x, t)

G1(x, t)
+ 1− ρ ≤ ρmax

M

H(·, 0)

G1(·, 0)
+ 1− ρ,

which we may simplify to

H(x, t)

G1(x, t)
≤ max

M

H(·, 0)

G1(·, 0)
.

Interestingly, this estimate no longer contains the parameter ρ.
This same algebraic property lets us draw a powerful consequence from the cylin-

drical estimate derived in the previous chapter. Let us define α
(ρ)
j to be the value

attained by the function λ 7→ γρ(λ)−1 tr(λ) on a cylinder of the form Rj×Sn−j. Then,
applied to the speed γρ, the cylindrical estimate can be stated as follows.

Theorem 3.13. Fix ρ > 0, consider F : M × [0, T )→ Rn+1 as above, and define

R−1 := sup
M

Gρ(·, 0), ᾱ := max
M

H(·, 0)

Gρ(·, 0)
.

Then, for each ε > 0, there is a positive Cε = Cε(n, k, ρ, ᾱ, R, µ0(M), T ) with the
property that

H(x, t)

Gρ(x, t)
≤ α

(ρ)
k−1 + ε+ CεGρ(x, t)

−1

for each (x, t) ∈M × [0, T ).

Using the definition of γρ as before, we can simplify the statement of the estimate.
The parameter ρ does not completely disappear, but in the end, appears only in the
lower-order term.

Corollary 3.14. For each ε > 0, there is a positive Cε = Cε(n, k, ρ, ᾱ, R, µ0(M), T )
with the property that

H(x, t)

G1(x, t)
≤ α

(1)
k−1 + ε+ CεGρ(x, t)

−1

for each (x, t) ∈M × [0, T ).



74 3. A CONVEXITY ESTIMATE

Proof. Inserting the definition of γρ into the cylindrical estimate, we find that
for each ε > 0,

ρ
H(x, t)

G1(x, t)
+ 1− ρ ≤ ρα

(1)
k−1 + 1− ρ+ ε+ CεGρ(x, t)

−1,

which we rearrange to obtain

H(x, t)

G1(x, t)
≤ α

(1)
k−1 + ρ−1ε+ ρ−1CεGρ(x, t)

−1.

Since ε was arbitrary, this implies the desired estimate. �

As a consequence of this estimate, we see that for any positive ρ, if Gρ(x, t) is
sufficiently large, then λ(x, t) is extremely close to the cone Γ

α
(1)
k−1

. The smaller ρ is,

the larger Gρ(x, t) will need to be to ensure that this is the case, but the conclusion
on the position of λ in curvature space is independent of ρ.

4. Proof of the convexity estimate

The proof of Theorem 3.1 will proceed by an application the Stampacchia principle
from Chapter 2 to a certain curvature quantity, which we now construct and analyse.
Throughout this section, n ≥ 4 and k ∈ {3, . . . , n − 1} are fixed, M is a smooth
compact n-manifold, and F : M × [0, T )→ Rn+1 is an evolving immersion satisfying

∂tF (x, t) = −Gρ(x, t)ν(x, t),

with ρ ∈ (0, 1]. We define

R−1 := max
M

Gρ(·, 0), ᾱ := max
M

H(·, 0)

Gρ(·, 0)
.

Lemma 3.15. Fix a spacetime point (x0, t0) ∈ M × (0, T ), and suppose that
λ(x0, t0) ∈ Γα, where α > 0. Then if ϕ is a lower support for λ1 at (x0, t0), in a
principal frame at (x0, t0) there holds

(∂t −∆γρ)ϕ ≥ |A|2γρϕ− Cρ
|∇1ϕ|2

H
+ (C−1 − Cρ)

∑
p+q>2

|∇1Apq|2

H
,

where C = C(n, k, α).

Proof. We let m be the dimension of the kernel of A(x0, t0)−λ1(x0, t0)g(x0, t0),
so that λp > λ1 if and only if p ≥ m+ 1. By Proposition 3.3, we know that at (x0, t0)
there holds

(∂t −∆γρ)ϕ ≥ |A|2γρϕ+ γ̈pq,rsρ ∇1Apq∇1Ars + 2γ̇iρ
∑
λp>λ1

|∇iAp1|2

λp − λ1

,

and since λ(x0, t0) ∈ Γα, by Lemma 3.12 we can estimate γ̇iρ(λ(x0, t0)) ≥ c0(n, k, α)
and so obtain

2γ̇iρ
∑
λp>λ1

|∇iAp1|2

λp − λ1

≥ 2c0

∑
i

∑
p≥m+1

|∇iAp1|2

λp − λ1

.

Since λ1 + · · ·+ λk > 0 and k ≤ n− 1 we have λn < tr(λ), and consequently

λp − λ1 < λp + λ2 + · · ·+ λk < k tr(λ)
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for each p ≥ m+ 1. Substituting this in, we find that at (x0, t0) there holds

(∂t −∆γρ)ϕ ≥ |A|2γρϕ+ γ̈pq,rsρ ∇1Apq∇1Ars + 2c0k
−1
∑
i

∑
p≥m+1

|∇iAp1|2

H
.

By Lemma 3.4, the definition of m, and the Codazzi equations, the tensor ∇1A
has the following structure at (x0, t0):

∇1A = ∇1A11e
1 ⊗ e1 +

∑
p≥m+1

∇1Ap1e
p ⊗ e1 +

∑
q≥m+1

∇1A1qe
1 ⊗ eq

+
∑

p,q≥m+1

∇1Apqe
p ⊗ eq.

Using the Codazzi equations again, we find that at (x0, t0),∑
i

∑
p≥m+1

|∇iAp1|2 =
∑
i

∑
p≥m+1

|∇1Api|2

=
∑

p≥m+1

|∇1Ap1|2 +
∑

i,p≥m+1

|∇1Api|2

=
1

2

∑
p≥m+1

|∇1Ap1|2 +
1

2

∑
q≥m+1

|∇1A1q|2 +
∑

p,q≥m+1

|∇1Apq|2

≥ 1

2
(|∇1A|2 − |∇1A11|2).

Hence at (x0, t0) we have

(∂t −∆γρ)ϕ ≥ |A|2γρϕ+ γ̈pq,rsρ ∇1Apq∇1Ars + c0k
−1

(
|∇1A|2

H
− |∇1A11|2

H

)
= |A|2γρϕ+ γ̈pq,rsρ ∇1Apq∇1Ars + c0k

−1
∑
p+q>2

|∇1Apq|2

H
.

To finish the proof, we use Lemma 3.12 and the assumption λ(x0, t0) ∈ Γα to conclude
that at (x0, t0),

γ̈pq,rsρ ∇1Apq∇1Ars ≥ −C(n, k, α)ρ
|∇1A|2

H

= −C(n, k, α)ρ
|∇1ϕ|2

H
− C(n, k, α)ρ

∑
p+q>2

|∇1Apq|2

H
.

Here we have also used ∇1A11(x0, t0) = ∇1ϕ(x0, t0). �

Next we rearrange the version of the cylindrical estimate from Corollary 3.14 to
find that

0 ≤ G1(x, t)− 1

α
(1)
k−1 + ε

H(x, t) +
Cε

α
(1)
k−1 + ε

G1(x, t)

Gρ(x, t)

for each (x, t) ∈ M × [0, T ). We (somewhat arbitrarily) set the parameter ε equal

to ε0 := 100−1α
(1)
k−1 in this estimate, and use G1(x, t) ≤ Gρ(x, t) (this was proven in

Lemma 3.9) to obtain
0 ≤ Gρ(x, t)− 2µH(x, t) +K,
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where

µ :=
1

2(1 + 100−1)α
(1)
k−1

, K :=
Cε0

(1 + 100−1)α
(1)
k−1

We will make use of the function h(x, t) := Gρ(x, t) − µH(x, t) + K, which by con-
struction satisfies

µH(x, t) ≤ h(x, t) ≤ Gρ(x, t) +K

for every (x, t) ∈M × [0, T ). The constant µ depends only on n and k, and

K = K(n, k, ρ, ᾱ, R, µ0(M), T ).

The function h evolves according to

(∂t −∆γρ)h = |A|2γρ(h−K)− µgklγ̈pq,rsρ ∇kApq∇lArs.

We are going to make use of the good gradient term on the right to control the
gradient terms appearing in the evolution of λ1. Here it will be crucial that the
coefficient µ depends only on n and k, since we will have to choose ρ small depending
on µ. In principle, we could carry out the entire construction of this section with µ

taken to be any positive value larger than α
(1)
k−1, so our choice of ρ is not canonical.

For each η ∈ (0, 1], we define

fη(x, t) =
−λ1(x, t)− ηGρ(x, t)

h(x, t)
.

This is the function to which we are eventually going to apply the Stampacchia pro-
cedure. Our immediate goal is to derive an evolution equation for fη and analyse the
gradient terms appearing on the right-hand side. To do so, we employ the following
elementary lemma.

Lemma 3.16. Let Γ ⊂ Rn be an open convex symmetric cone containing (1, . . . , 1),
and let γ : Γ → R be a smooth symmetric function which is one-homogeneous, con-
cave, and satisfies

γ(1, . . . , 1) > 0.

Then if λ ∈ Γ is such that λ1 ≤ · · · ≤ λn, there holds γ̇1(λ) ≥ 0.

Proof. Fix λ ∈ Γ satisfying λ1 ≤ · · · ≤ λn. Since γ is concave, the super-level
set

S := {z ∈ Γ : γ(z) ≥ γ(λ)}
is convex, and since γ is symmetric, each of the vectors

(λm, . . . , λn−1, λn, λ1, . . . , λm−1)

is in S. Taking the average, we get λ̄ ∈ S, where

λ̄ :=
tr(λ)

n
(1, . . . , 1).

Since Γ is open, convex, symmetric, and contains (1, . . . , 1),

Γ ⊂ {z ∈ Rn : tr(z) > 0},
so all of the entries of λ̄ are positive. Therefore, since γ(1, . . . , 1) > 0, for every s ≥ 1
there holds

γ(sλ̄) = sγ(λ̄) ≥ γ(λ̄) ≥ γ(λ),
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which means sλ̄ ∈ S. Appealing again to the convexity of S, we find that for each
s ≥ 1, the line segment connecting λ with sλ̄ is contained in S. It follows that

{λ+ sλ̄ : s ∈ [0,∞)} ⊂ S.

Another way to say this is that γ(λ) ≤ γ(λ+ sλ̄) for all s ≥ 0, so we have

0 ≤ d

ds

∣∣∣∣
s=0

γ(λ+ sλ̄) = γ̇i(λ)λ̄i =
tr(λ)

n

n∑
i=1

γ̇i(λ).

Without loss of generality, we may assume that λ1 < · · · < λn, since the general
case then follows by approximation. Then since γ is concave, γ̇j(λ) ≤ γ̇i(λ) is true
whenever i < j. Substituting this fact into the inequality above, we get

0 ≤ tr(λ)γ̇1(λ),

and the claim follows. �

With the lemma in hand, we can establish the following estimate for the gradient
terms in the evolution of fη.

Proposition 3.17. Let (x0, t0) ∈ M × (0, T ) be such that λ(x0, t0) ∈ Γα, where
α > 0, and let ϕ be an upper support function for fη at the point (x0, t0). Suppose in
addition that fη(x0, t0) ≥ 0. Then at the point (x0, t0) there holds

(∂t −∆γρ)ϕ ≤ K|A|2γρ
ϕ

h
+ µ

ϕ

h
gij γ̈pq,rsρ ∇iApq∇jArs +

2

h
γ̇ijρ ∇iϕ∇jh

+ Cρ
h

H
|∇1ϕ|2 − (C−1 − Cρ)

∑
p+q>2

|∇1Apq|2

hH
,

where C = C(n, k, α).

Proof. We first observe that the smooth function

ϕ̃(x, t) := −h(x, t)ϕ(x, t)− ηGρ(x, t).

is a lower support for λ1 at (x0, t0), and

ϕ(x, t) =
−ϕ̃(x, t)− ηGρ(x, t)

h(x, t)
.

For smooth functions u and v, with v > 0, there holds

(∂t −∆γ)
u

v
=

1

v
(∂t −∆γ)u−

u

v2
(∂t −∆γ)v +

2

v
γ̇ij∇i

(
u

v

)
∇jv,

so we have

(∂t −∆γρ)ϕ = −1

h
(∂t −∆γρ)(ϕ̃+ ηGρ) +

ϕ̃+ ηGρ

h2
|A|2γρ(h−K)

− µϕ̃+ ηGρ

h2
gklγ̈pq,rsρ ∇kApq∇lArs +

2

h
γ̇ijρ ∇iϕ∇jh

= K|A|2γρ
ϕ

h
+ |A|2γρ

ϕ̃

h
− 1

h
(∂t −∆γρ)ϕ̃

+ µ
ϕ

h
gij γ̈pq,rsρ ∇iApq∇jArs +

2

h
γ̇ijρ ∇iϕ∇jh.
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Applying Lemma 3.15 to ϕ̃, we find that at the point (x0, t0),

(∂t −∆γρ)ϕ̃ ≥ |A|2γρϕ̃− Cρ
|∇1ϕ̃|2

H
+ (C−1 − Cρ)

∑
p+q>2

|∇1Apq|2

H
,

where C = C(n, k, α), and therefore,

(∂t −∆γρ)ϕ ≤ K|A|2γρ
ϕ

h
+ µ

ϕ

h
gij γ̈pq,rsρ ∇iApq∇jArs +

2

h
γ̇ijρ ∇iϕ∇jh

+
1

h

(
Cρ
|∇1ϕ̃|2

H
− (C−1 − Cρ)

∑
p+q>2

|∇1Apq|2

H

)
.

We are going to decompose and then absorb part of the term ∇1ϕ̃. At (x0, t0)
there holds

∇1ϕ̃ = −h∇1ϕ− ϕ∇1h− η∇1Gρ

= −h∇1ϕ− ϕ(γ̇iρ − µ)∇1Aii − ηγ̇iρ∇1Aii

= −h∇1ϕ− (ηγ̇1
ρ + ϕ(γ̇1

ρ − µ))∇1ϕ̃−
n∑
i≥2

(ηγ̇iρ + ϕ(γ̇iρ − µ))∇1Aii,

which we rearrange to obtain

(1 + ηγ̇1
ρ + ϕ(γ̇1

ρ − µ))∇1ϕ̃ = −h∇1ϕ−
n∑
i≥2

(ηγ̇iρ + ϕ(γ̇iρ − µ))∇1Aii.

The function
λ 7→ γρ(λ)− µ tr(λ)

is concave and one-homogeneous, and positive for each

λ ∈ int Γµ−1 .

Recalling that µ−1 := 2(1 + 100−1)α
(1)
k−1, we see that Cylk−1 ⊂ Γµ−1 and consequently

Cyl0 ⊂ int Γµ−1 (see Lemma 2.1), so there holds

γρ(1, . . . , 1)− µ tr(1, . . . , 1) > 0.

We may therefore apply Lemma 4 to conclude that the quantity γ̇1
ρ(λ(x0, t0)) − µ is

nonnegative. We are assuming that

ϕ(x0, t0) = fη(x0, t0) ≥ 0,

so we have
1 + ηγ̇1

ρ + ϕ(γ̇1
ρ − µ) ≥ 1.

In particular, at the point (x0, t0) there holds

∇1ϕ̃ =
1

1 + ηγ̇1
ρ + ϕ(γ̇1

ρ − µ)

(
− h∇1ϕ−

n∑
i≥2

(ηγ̇iρ + ϕ(γ̇iρ − µ))∇1Aii

)
.

Let us introduce the abbreviation ξi := ηγ̇iρ +ϕ(γ̇iρ−µ), so that we may write the
last identity as

∇1ϕ̃ = − 1

1 + ξ1
h∇1ϕ−

n∑
i≥2

ξi

1 + ξ1
∇1Aii.
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Then since ξ1 ≥ 0 we can bound

|∇1ϕ̃|2 ≤ 2h2|∇1ϕ|2 + C(n)
n∑
i≥2

|ξi|2|∇1Aii|2.

There holds

|ξi|2 ≤ 2η2|γ̇iρ|2 + 4ϕ2(|γ̇iρ|2 + µ2),

and η ∈ (0, 1] by definition. Since λ(x0, t0) ∈ Γα, we can bound γ̇iρ(λ(x0, t0)) purely
in terms of n, k and α using Lemma 3.12, and at (x0, t0),

0 ≤ ϕ =
−λ1 − ηGρ

h
≤ λ2 + · · ·+ λk

h
≤ (k − 1)

H

h
≤ k − 1

µ
.

Putting these facts together, we can bound |ξi| purely in terms of n, k and α, hence

|∇1ϕ̃|2 ≤ 2h2|∇1ϕ|2 + C(n, k, α)
n∑
i≥2

|∇1Aii|2.

Substituting this estimate back in, we find that at (x0, t0) there holds

(∂t −∆γρ)ϕ ≤ K|A|2γρ
ϕ

h
+ µ

ϕ

h
gij γ̈pq,rsρ ∇iApq∇jArs +

2

h
γ̇ijρ ∇iϕ∇jh

+ Cρ
h

H
|∇1ϕ|2 +

1

h

(
Cρ

n∑
i≥2

|∇1Aii|2

H
− (C−1 − Cρ)

∑
p+q>2

|∇1Apq|2

H

)
,

which completes the proof. �

Applying the proposition with α = (1 + 100−1)α
(1)
k−1, we obtain the following

corollary.

Corollary 3.18. There is a positive constant

ρ0 = ρ0(n, k)

with the following property. Fix (x0, t0) ∈ M × (0, T ), let ϕ be an upper support
function for fη at the point (x0, t0), and suppose that

λ(x0, t0) ∈ Γ
(1+100−1)α

(1)
k−1
, fη(x0, t0) ≥ 0.

Then at the point (x0, t0) there holds

(∂t −∆γρ)ϕ ≤ K|A|2γρ
ϕ

h
+ µ

ϕ

h
gij γ̈pq,rsρ ∇iApq∇jArs +

2

h
γ̇ijρ ∇iϕ∇jh

+ Cρ
h

H
|∇1ϕ|2,

where C = C(n, k).
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4.1. Applying Stampacchia. We need to carry out a few more steps before
the Stampacchia procedure can be applied to prove the convexity estimate. Let us
introduce the notation

Γ′ := Γ
(1+100−1)α

(1)
k−1
.

Lemma 3.19. Suppose ρ ≤ ρ0. Then if (x0, t0) ∈M × (0, T ) is such that

λ(x0, t0) ∈ Γ′, fη(x0, t0) > 0,

and ϕ is an upper support for fη at (x0, t0), at (x0, t0) there holds

(∂t −∆γρ)ϕ ≤ CK|A|ϕ− C−1ρϕ
|∇A|2

hH
+ C(ρ−1 +KH−1)

|∇ϕ|2

ϕ
,

where C = C(n, k).

Proof. By Corollary 3.18 we have that at (x0, t0),

(∂t −∆γρ)ϕ ≤ K|A|2γρ
ϕ

h
+ µ

ϕ

h
gij γ̈pq,rsρ ∇iApq∇jArs +

2

h
γ̇ijρ ∇iϕ∇jh

+ Cρ
h

H
|∇1ϕ|2,

where C = C(n, k). Since λ(x0, t0) ∈ Γ′, by Lemma 3.12 we can estimate

h−1|A|2γρ ≤ C(n, k)µ−1H−1|A|2 ≤ C(n, k)|A|,
so at (x0, t0),

K|A|2γρ
ϕ

h
≤ C(n, k)K|A|ϕ.

Next, by Lemma 3.12, we know that

gij γ̈pq,rsρ ∇iApq∇jArs ≤ ρgij γ̈pq,rs1 ∇iApq∇jArs.

Therefore, since γ1 is strictly concave in off-radial directions, we can invoke Lemma
2.5 to bound

gij γ̈pq,rsρ ∇iApq∇jArs ≤ −c0(n, k)ρ
|∇A|2

H
.

This estimate also relies on the fact that Γ′ b Γ \ Cyln−1, which holds since Cyln−1

lies outside of the k-positive cone for each k ≥ n− 1.
Since ϕ(x0, t0) > 0 and γ̇iρ(λ(x0, t0)) ≤ C(n, k), at the point (x0, t0) we can use

Young’s inequality to estimate

2

h
γ̇ijρ ∇iϕ∇jh ≤ s−1C(n, k)

H

h

|∇ϕ|2

ϕ
+ sC(n, k)ϕ

|∇h|2

hH
,

where s can be any positive number. Since at (x0, t0) we have

|∇h|2 ≤ 2|∇Gρ|2 + 2µ2|∇A|2 ≤ C(n, k)|∇A|2,
this leads to

2

h
γ̇ijρ ∇iϕ∇jh ≤ s−1C0(n, k)

H

h

|∇ϕ|2

ϕ
+ sC0(n, k)ϕ

|∇A|2

hH
.

Setting s = c0µ
2C0

ρ and putting all of this together, we get

(∂t −∆γρ)ϕ ≤ CK|A|ϕ− c0µ

2
ρϕ
|∇A|2

hH
+ Cρ−1H

h

|∇ϕ|2

ϕ
+ Cρ

h

H
|∇1ϕ|2.
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Now, using Lemma 3.9 to estimate

H

h
≤ µ−1,

h

H
≤ Gρ

H
+
K

H
≤ 1 +

K

H
,

and using
ϕ(x0, t0) ≤ fη(x0, t0) ≤ kµ−1,

we find that at (x0, t0),

Cρ−1H

h

|∇ϕ|2

ϕ
+ Cρ

h

H
|∇1ϕ|2 ≤ C(n, k)(ρ−1 +KH−1)

|∇ϕ|2

ϕ
.

�

Next we need to translate the viscosity inequality for fη into an integral inequality.
Following [Bre15], we verify that fη is a locally semiconvex function. By this we mean
that around any point in spacetime there is a small neighbourhood where fη can be
written as the sum of a smooth function and a convex function. It suffices to show
that:

Lemma 3.20. Let F : M × [0, T ) → Rn+1 be a smooth family of smooth immer-
sions. Then λ1 is locally semiconcave on M × (0, T ).

Proof. Fix a point (x0, t0) ∈ M × (0, T ). It suffices to show that λ1 is the sum
of a smooth and a concave function on a small neighbourhood of the form

Q(x0, t0, r) = Bg(t0)(x0, r)× [−r2 + t0, t0 + r2].

Observe that if r is sufficiently small, the function

k̃(x, t) := dg(t)(x, x0)2

satisfies ∇i∇j k̃ ≥ gij on each spatial slice of Q(x0, t0, r). Hence the function

k(x, t) :=
1

2
t2 + k̃(x, t)

is uniformly convex on Q(x0, t0, r).
Making r a bit smaller if necessary, we can express λ1 as the infimum over a

family of smooth functions with uniformly bounded C2-norms. For each unit vector
v in Tx0Mt0 , let X̃v be the vector field obtained by extending v by parallel transport
on Mt0 , and then using ∂t to extend the resulting vectorfield in time directions. For
r small enough, X̃v has positive length on Q(x0, t0, r), so we can set Xv := X̃v/Xv,
and then define

Zv(x, t) := A(x, t)(Xv(x, t), Xv(x, t))

for each (x, t) ∈ Q(x0, t0, r). For each (x, t) ∈ Q(x0, t0, r) there holds

λ1(x, t) := inf{Zv(x, t) : v ∈ Tx0Mt0 , |v| = 1}.
The C2-norm of each of the functions Zv over Q(x0, t0, r) is bounded independently

of v, so there is a constant Λ > 0 with the property that Zv − Λk is concave on
Q(x0, t0, r) for every choice of v. Since the infimum of a family of concave functions
is again concave,

λ1(x, t)− Λk(x, t) = inf{Zv(x, t)− Λk(x, t) : v ∈ Tx0Mt0 , |v| = 1}
is concave. This completes the proof. �
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In particular, Alexandrov’s theorem (see Lemma A.1 in the appendix) now tells
us that λ1 (and hence fη) is twice differentiable on a set of full measure in M × [0, T ).
Using this property we now verify that fη satisfies the hypotheses of the Stampacchia
procedure as stated in Theorem 2.6.

Proposition 3.21. For each ρ ≤ ρ0 there is a positive constant k0 depending
only on n, k, ρ, ᾱ, R−nµ0(M) and R−2T with the following properties. For each
(x, t) ∈ sp(Gρ − k0R

−1) there holds λ(x, t) ∈ Γ′, and if ϕ is a nonnegative Lipschitz
test function satisfying

sp(ϕ) ⊂ sp(fη) ∩ sp(Gρ − k0R
−1),

then for almost every t ∈ [0, T ),∫
M

ϕ∂tfη dµt ≤ −
∫
M

〈∇ϕ,∇fη〉γρ dµt −
∫
M

ϕγ̈ij,pqρ ∇iApq∇jfη dµt

− C−1

∫
M

ϕfη
|∇A|2

H2
dµt + C

∫
M

ϕ
|∇fη|2

fη
dµt + CK

∫
M

|A|ϕdµt

where C = C(n, k, ρ).

Proof. First recall that we defined

K =
Cε0

(1 + 100−1)α
(1)
k−1

,

where ε0 = 100−1α
(1)
k−1 and Cε0 is the constant coming from the cylindrical estimate

in Corollary 3.14. By the remark following Theorem 2.6, for each ε > 0, there is
a constant C̃ε = C̃ε(n, k, ρ, ᾱ, R

−nµ0(M), R−2T ) such that Cε = C̃εR
−1. We may

therefore write K = K̃R−1, where K̃ = K̃(n, k, ρ, ᾱ, R−nµ0(M), R−2T ). Recall that
the statement

λ(x, t) ∈ Γ′ = Γ
α
(1)
k−1+ε0

is equivalent to saying

G1(x, t)−1H(x, t) ≤ α
(1)
k−1 + ε0.

To ensure that this holds whenever Gρ(x, t) ≥ k0R
−1, by the cylindrical estimate

G1(x, t)−1H(x, t) ≤ α
(1)
k−1 + ε0/2 + C̃ε0/2R

−1Gρ(x, t)
−1,

it suffices to take k0 ≥ 2ε−1
0 C̃ε0/2.

By the last lemma fη is a semiconvex function on M × [0, T ), so by Alexandrov’s
theorem there is a set Q of full measure in M × [0, T ) where fη has two spatial
derivatives and two time derivatives. At any point in Q, fη admits an upper support
ϕ, and at the point of contact there holds

(∂t −∆γρ)fη ≤ (∂t −∆γρ)ϕ.

We chose k0 to ensure that λ ∈ Γ′ on sp(Gρ − k0R
−1), so by Lemma 3.19, inside the

set Q ∩ sp(fη) ∩ sp(Gρ − k0R
−1) there holds

(∂t −∆γρ)fη ≤ CK|A|fη − C−1ρfη
|∇A|2

hH
+ C(ρ−1 +KH−1)

|∇fη|2

fη
,
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where C = C(n, k). We now impose the further restriction k0 ≥ K̃, so that

KH(x, t)−1 ≤ K̃R−1Gρ(x, t)
−1 ≤ 1

whenever G(x, t) ≥ k0R
−1. This ensures that at on Q∩ sp(fη)∩ sp(Gρ−k0R

−1) there
holds

(∂t −∆γρ)fη ≤ C1K|A| − C−1
1 fη

|∇A|2

H2
+ C1

|∇fη|2

fη
,

where C1 = C1(n, k, ρ). Here we have also used the fact that fη is bounded in terms
of n and k.

If ϕ is a nonnegative Lipschitz function on M × [0, T ) with the property

sp(ϕ) ⊂ sp(fη) ∩ sp(Gρ − k0R
−1),

we can multiply the last inequality by ϕ and integrate to get∫
M

ϕ∂tfη dµt ≤
∫
M

ϕ∆γρfη dµt − C−1
1

∫
M

ϕfη
|∇A|2

H2
dµt

+ C1

∫
M

ϕ
|∇fη|2

fη
dµt +

∫
M

C1K|A|ϕdµt

for almost every t ∈ [0, T ). To finish we appeal to Lemma A.3 from the appendix,
which says that since fη is semiconvex in space and ϕ is nonnegative,∫

M

ϕ∆γρfη dµt ≤ −
∫
M

〈∇ϕ,∇fη〉γρ dµt −
∫
M

ϕγ̈ij,pqρ ∇iApq∇jfη dµt.

�

All that is left now is to apply the Stampacchia theorem to fη and verify that this
gives the desired estimate.

Proof of Theorem 3.1. We have already observed that fη is bounded:

fη ≤
λ2 + · · ·+ λk

h
≤ kµ−1.

Also, if (x, t) ∈ sp(u) then by the definition of fη there holds

λ(x, t) ∈ {λ ∈ Γ : min
1≤i≤n

λi ≤ −ηγρ(λ)},

so for k0 as above,

λ(x, t) ∈ Γ′ ∩ {λ ∈ Γ : min
1≤i≤n

λi ≤ −ηγρ(λ)} =: Γ′′

for every (x, t) ∈ sp(u) ∩ sp(Gρ − k0R
−1). Since Cyl ⊂ Γ+, we have Γ′′ b Γ \ Cyl.

Combining these facts with Proposition 3.21, we see that for every ρ ≤ ρ0 and
η ∈ (0, 1], the function fη satisfies all of the hypotheses of Theorem 2.6. We conclude
that, for each η ∈ (0, 1], there is a constant

Cη = Cη(n, k, ρ, ᾱ, R, µ0(M), T,K)

such that
fη(x, t) ≤ η + CηGρ(x, t)

−1

holds for every (x, t) ∈M × [0, T ). Since we chose K depending only on

n, k, ρ, ᾱ, R, µ0(M), T,
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the constant Cη depends only on these quantities and η.
Using the definition of fη we obtain

−λ1(x, t)− ηGρ(x, t) ≤ (η + CηGρ(x, t)
−1)h(x, t)

≤ ηGρ(x, t) + Cη +Kη +KGρ(x, t)
−1.

Since η can be made arbitrarily small, this gives an estimate of the desired form at
all points where Gρ ≥ 1. On the other hand, at points where Gρ(x, t) ≤ 1 we have

λ1(x, t) ≥ −C(n, k, ρ, ᾱ),

so there is nothing to prove. �

5. Curved ambient spaces

In contrast to the Euclidean case, in a general Riemannian background, a family
of hypersurfaces moving by mean curvature flow which is k-convex initially may fail
to be k-convex after a finite amount of time. On the other hand, if the background
geometry is bounded, then it is possible to construct fully nonlinear flows which do
preserve k-convexity, by using a speed which vanishes at the boundary of the k-
positive cone. The k = 1 and k = 2 cases were considered in [And94b] and [BH17],
respectively. Each of the speeds γρ gives rise to a flow preserving k-convexity in a
Riemannian background, and if ρ is small relative to n and k, then compact solutions
satisfy a convexity estimate. The argument is very similar to the Euclidean case, so
we only sketch the details.

Consider a fixed n ≥ 4 and 3 ≤ k ≤ n− 1. Let (N, ḡ) be a Riemannian manifold
of dimension n+ 1, and suppose there is a constant C0 such that

sup
N
|R̄|ḡ + |∇̄R̄|ḡ ≤ C0,

where ∇̄ and R̄ are the Levi-Civita connection and Riemann curvature tensor of the
metric ḡ. Let F : M × [0, T )→ (N, ḡ) be a solution of the equation

∂tF (x, t) = −γρ(λ(x, t))ν(x, t),

where M is a compact smooth n-manifold. Then, in an orthonormal basis, the Wein-
garten map satisfies

∂tA
p
q = ∇p∇qGρ + AprArqGρ + R̄(ep, ν, eq, ν)Gρ,

where Gρ(x, t) := γρ(λ(x, t)). Taking the trace with γ̇pqρ then gives

(∂t −∆γρ)Gρ = |A|2γρGρ + γ̇pqρ R̄(ep, ν, eq, ν)Gρ,

so since γ̇pqρ ≤ C1(n, k, ρ)gpq, the maximum principle implies that

Gρ(x, t) ≥ exp(−Ct) ·min
M

Gρ(·, 0),

where C depends only on C0 and C1. On the other hand, on the k-positive cone

λ1 + · · ·+ λk > ρ ·Gρ,

so this estimate shows that the solution remains strictly k-convex for as long as it
exists. If in addition the curvature tensor of N satisfies

R̄(e2, e1, e2, e1) + · · ·+ R̄(ek+1, e1, ek+1, e1) > 0
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for every set of orthonormal vectors {ei}k+1
i=1 , then

γ̇pqρ R̄(ep, ν, eq, ν) > 0,

so we even have

(∂t −∆γρ)Gρ ≥ |A|2γρGρ ≥ C(n, k, ρ)−1G3
ρ,

which is sufficient to conclude that Gρ becomes unbounded in finite time. We may
assume T is the maximal time.

Taking the trace of the evolution of the Weingarten map and using Simons’ iden-
tity, one finds that the mean curvature of the hypersurface satisfies

(∂t −∆γρ)H ≤ |A|2γρH + gij γ̈pq,rsρ ∇iApq∇jArs + CH + C,

where C depends only on C0 and C1. Hence

(∂t −∆γρ)
H

Gρ

≤ 1

Gρ

gij γ̈pq,rsρ ∇iApq∇jArs +
2

Gρ

〈
∇
(
H

Gρ

)
,∇Gρ

〉
γρ

+ C
H

Gρ

,

where C may now depend additionally on the global spactime minimum of Gρ. It
follows that G−1

ρ H can grow at most exponentially, so there is a constant ᾱ depending
on T with the property that

max
M×[0,T )

H

Gρ

≤ ᾱ.

With minor modifications, the proof of Lemma 2.5 allows us to prove that

gklγ̈pq,rsρ ∇kApq∇lArs ≤ −c(n, k, ρ, ᾱ)
|∇A|2

H
+
C

H
.

The constant C comes from the curvature term in the Codazzi equations, and so
depends only on C0. The proof of Huisken’s Stampacchia principle also goes through
with minor modifications (see for example the proof of Theorem 3.1 in [BH17]), so
with the good gradient term in hand, we obtain a cylindrical estimate:

H(x, t) ≤ (α
(ρ)
k−1 + ε)Gρ(x, t) + Cε,

where Cε has all of the same dependencies as in the Euclidean case, and now depends
additionally on C0. As before, if Gρ(x, t) is above a certain threshold depending only
on n, k, ρ, ᾱ, M0 and N , then

λ(x, t) ∈ Γ
α
(1)
k−1+ε0

, ε0 := 100−1α
(1)
k−1.

The second fundamental form satisfies

(∂t −∆γρ)Aij ≥ |A|2γρAij − 2gklAikAljGρ + γ̈pq,rs∇iApq∇jArs − C|A| − C,

where C depends only on C0 and C1. On a set Q of full measure in M × [0, T ), with
respect to a principle frame, we have

(∂t −∆γρ)λ1 ≥ |A|2γρλ1 + γ̈pq,rsρ ∇1Apq∇1Ars + 2γ̇kρ
∑
λp>λ1

|∇kAp1|2

λp − λ1

− C|A| − C.

We now form the same pinching function as before,

fη :=
−λ1 − ηGρ

h
,
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where h = Gρ − µH +K and

µ :=
1

2(1 + 100−1)α
(1)
k−1

, K :=
Cε0

(1 + 100−1)α
(1)
k−1

.

On Q ∩ sp(fη) there holds

(∂t −∆γρ)fη ≤ K|A|2γρ
fη
h
− 1

h

(
γ̈pq,rsρ ∇1Apq∇1Ars + 2γ̇kρ

∑
λp>λ1

|∇kAp1|2

λp − λ1

)

+ µ
fη
h
gij γ̈pq,rsρ ∇iApq∇jArs +

2

h
γ̇ijρ ∇ifη∇jh+ C

|A|
h

+
C

h
.

As before, it is possible to choose ρ0 = ρ0(n, k) so small that, at points in Q where

λ(x, t) ∈ Γ
α
(1)
k−1+ε0

, fη(x0, t0) > 0,

there holds

(∂t −∆γρ)fη ≤ K|A|2γρ
fη
h
− 1

C
fη
|∇A|2

hH
+ C(1 +H−1)

|∇fη|2

fη

+
2

h
γ̇ijρ ∇ifη∇jh+ C

fη
hH

+ C
|A|
H

+
C

H
.

The constant C depends only on n, k, ρ, ᾱ, M0 and C0. This inequality has exactly
the same form as in the Euclidean case, except for the presence of the the last three
terms, which are of lower order and can all be absorbed in the Stampacchia argument.
Hence, as before, we get

λ1(x, t) ≥ −εH(x, t)− Cε,
where Cε depends only on ε, n, k, ᾱ, ρ, M0 and the geometry of N via C0.



CHAPTER 4

Harnack and gradient estimates

In this chapter we establish some regularity results for families of compact embed-
ded hypersurfaces moving by a concave admissible speed. In addition to concavity,
we assume the speed is inverse-concave on the positive cone and such that solutions
satisfy a convexity estimate (see Definition 4.9 for the exact class of solutions we
consider). In particular, the results here apply to the speeds γρ considered in the pre-
vious chapter provided ρ ≤ ρ0, to the two-harmonic mean, and also to mean curvature
flow (although in this last case, we mostly recover existing results). By combining
the interior noncollapsing estimate from [ALM13] with the convexity estimate and
a generalisation of the induction on scales argument in [BH17][Theorem 6.2], we are
able to establish a global Harnack inequality for the curvature, which can be described
as follows (see Theorem 4.17 for the precise statement). We show that for every large
Λ there is a curvature threshold C depending on Λ and the initial data such that if
the value of G at some point (x0, t0) exceeds C, then G is controlled from above and
below over a backward parabolic neighbourhood of size ΛG(x0, t0)−1 about (x0, t0).

The Harnack inequality implies a pointwise gradient estimate, which says that at
points where the curvature is sufficiently large relative to the initial data, the estimate

|∇A|2 ≤ CG4

holds for some universal C. Estimates of this kind first appeared in Huisken’s work
on convex solutions of mean curvature flow [Hui84] and in the work of Huisken-
Sinestrari in [HS09] on immersed two-convex solutions of mean curvature flow of
dimension n ≥ 3. In the two-convex case, the proof by Huisken-Sinestrari uses a
cylindrical estimate, but otherwise consists only of an application of the maximum
principle applied to |∇A|2. We note that this kind of gradient estimate cannot hold
for mean-convex solutions of dimension n = 2 - indeed, the gradient estimate fails on
the grim reaper, and it is not difficult to construct solutions which form a singularity
modeled on the product of a grim reaper with R (take a thin torus over a solution of
curve-shortening flow with self intersections as in [Ang91]). The gradient estimate
proven in [HS09] holds as long as the solution is k-convex with 3k < 2n + 1 (see
Theorem 5.4 in [HS15]).

In the fully nonlinear case it is not clear clear whether a pointiwise gradient
estimate can be obtained via the maximum principle. One difficulty seems to be
that, whereas for the mean curvature flow the worst reaction term in the evolution
equation for |∇A|2 is linear in |∇A|2, for nonlinear speeds there is an additional term
which is quadratic in |∇A|2. A different approach is taken by Brendle and Huisken in
[BH17], who prove a pointwise gradient estimate for embedded solutions moving by
the two-harmonic mean curvature. The key step is an induction on scales argument
(inspired in part by Section 12 of [Per02]) which is combined with the cylindrical

87
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estimate to show that, locally about any point where the curvature is sufficiently
large, the solution is a radial graph over an interior sphere of controlled size. The
existence of the interior sphere is guaranteed by the interior noncollapsing estimate.
The radial graph representation then lets one express the solution locally as a scalar
solution of a fully nonlinear parabolic PDE, and the desired gradient estimate follows
from the regularity theory of Evans and Krylov.

A pointwise gradient estimate of the kind we have been discussing can be inte-
grated along geodesics to obtain a local Harnack inequality for the curvature. This
works on an intrinsic spacetime neighbourhood, but the size of this neighbourhood
is bounded from above on the scale of the curvature. Using this fact it is possible
to establish, for example, that blow-up sequences converge locally in spacetime. To
get global convergence, it is necessary to establish curvature bounds which become
valid over an arbitrarily large spacetime set about any sequence where the curvature
is blowing up. This kind of result is what we refer to as a global Harnack inequality.

We note that differential Harnack inequalities have been established for strictly
convex solutions of mean curvature flow [Ham95], and flows by convex and inverse-
concave admissible speeds [And94c]. These inequalities can be integrated to get
curvature bounds over arbitrarily large spacetime regions. The analysis carried out
in [HS09] to perform surgery also implies curvature bounds at bounded distances near
a singularity. For embedded mean-convex solutions of mean curvature flow, a global
Harnack inequality has been established by Haslhofer-Kleiner in [HK17a][Corollary
3.8]. These authors also make use of ideas from Section 12 of [Per02]. The method
employed by Haslhofer-Kleiner makes use of Huisken’s monotonicity formula [Hui90]
via White’s ε-regularity theorem [Whi05], and exterior noncollapsing estimates, nei-
ther of which is available for flows by a concave nonlinear speed function.

The structure of the chapter is as follows. We first look at solutions which can be
written as a radial graph over a sphere in some spacetime neighbourhood, and use
the maximum principle to show that on a smaller neighbourhood, any such solution
satisfies an a priori upper bound for the curvature (this is Theorem 4.3). This bound
depends on how steep the graph is, and the size of the spacetime neighbourhood on
which the solution is graphical. This result is very similar to a theorem of Ecker
and Huisken for solutions of mean curvature flow which can locally be written as a
graph over a hyperplane [EH91][Theorem 3.1]. Their result was adapted to the case
of radial graphs moving by nonlinear curvature functions in [BH17][Proposition 5.1].
We apply the maximum principle to a slightly different quantity to the one in [BH17],
and in doing so prove an estimate which is stronger on very large spacetime sets. We
then recall the notion of a pseudocone from [BH17], and establish some technical
results needed to prove Theorem 4.11, which is the most difficult step in establishing
the Harnack inequality. This result contains the induction on scales argument adapted
from [BH17], which is used to show that around any point where the curvature is
sufficiently large, a connected component of the solution is locally a radial graph. It
is at this step that we use the inverse-concavity of the speed, which implies that the
smallest principal curvature satisfies a strong maximum principle (see Corollary 3.8).

By Theorem 4.3, the local graph property gives a local scaling-invariant upper
bound for the curvature in a backward neighbourhood of any point where the curva-
ture is sufficiently large. With some further argumentation, we use this upper bound
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to derive an analogous lower bound in Theorem 4.15. Following this we prove the
main result of the chapter, the global Harnack inequality, in Theorem 4.17. With the
Harnack inequality in hand, scaling-invariant estimates for all of the derivatives of A
quickly follow.

The results proven here can be used to show that, for the class of flows under
consideration, every blow-up sequence subconverges smoothly to a complete convex
ancient solution. Identifying an appropriate notion of convergence and establishing
the necessary compactness theorems are interesting problems in their own right, which
we will address elsewhere.

1. Curvature bounds for radial graphs

We first state some evolution equations which will be used just below. In this
section, γ : Γ → (0,∞) can be any admissible speed - no concavity or convexity
properties are required.

Lemma 4.1. Let F : M × [0, T )→ Rn+1 be a solution of (CF), where G(x, t) :=
γ(λ(x, t)) and γ is an admissible speed. Suppose |F | > 0 on M × [0, T ) and set

f :=
(F · ν)2

|F |2
.

Then the following evolution equations hold:

(∂t −∆γ)|F |2 = −2γ̇ijgij;

(∂t −∆γ)F · ν = |A|2γF · ν − 2G;

(∂t −∆γ)f = 2(|A|2γ − 2|F |−1G)f − |F |2

2(F · ν)2
|∇f |2γ +

1

|F |2
〈∇f,∇|F |2〉γ

+ 2
(F · ν)2

|F |4

(
γ̇ijgij −

|∇|F |2|2γ
4|F |2

)
.

Proof. For the first equation, we compute in normal coordinates

(∂t −∆γ)|F |2 = 2F · ∂tF − 2F · γ̇ij ∂2F

∂xi∂xj
− 2γ̇ij

∂F

∂xi
· ∂F
∂xj

= −2GF · ν + 2γ̇ijAijF · ν − 2γ̇ijgij,

and since γ is a one-homogeneous function, we have the result.
It is well known that since the vectorfield F +2tGν generates a parabolic rescaling

of the solution, its normal component satisfies

(∂t −∆γ)(F + 2tGν) · ν = |A|2γ(F + 2tGν) · ν.
A detailed derivation of this fact can be found, for example, in [Lan14][Lemma 3.4].
Inserting the evolution of the speed, we obtain

(∂t −∆γ)F · ν = |A|2γF · ν − 2G.

From this, we readily obtain

(∂t −∆γ)(F · ν)2 = 2|A|2γ(F · ν)2 − 2|∇(F · ν)|2γ − 4GF · ν

= 2|A|2γ(F · ν)2 − 1

2(F · ν)2
|∇(F · ν)2|2γ − 4GF · ν.
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Applying the parabolic operator to a quotient gives

(∂t −∆γ)
u

v
=

1

v
(∂t −∆γ)u−

u

v2
(∂t −∆γ)v +

2

v

〈
∇
(
u

v

)
,∇v

〉
γ

,

so for

f :=
(F · ν)2

|F |2
,

we have

(∂t −∆γ)f =
1

|F |2
(∂t −∆γ)(F · ν)2 − (F · ν)2

|F |4
(∂t −∆γ)|F |2

+
2

|F |2
〈∇f,∇|F |2〉γ

= 2|A|2γf −
1

2|F |2(F · ν)2
|∇(F · ν)2|2γ − 4G

(F · ν)

|F |2

+ 2
(F · ν)2

|F |4
γ̇ijgij +

2

|F |2
〈∇f,∇|F |2〉γ.

We may rewrite the first of the gradient terms as follows:

− 1

2|F |2(F · ν)2
|∇(F · ν)2|2γ

= − |F |2

2(F · ν)2

∣∣∣∣∇(F · ν)2

|F |2

∣∣∣∣2
γ

= − |F |2

2(F · ν)2

∣∣∣∣∇f +
(F · ν)2

|F |4
∇|F |2

∣∣∣∣2
γ

= − |F |2

2(F · ν)2
|∇f |2γ −

1

|F |2
〈∇f,∇|F |2〉γ −

(F · ν)2

2|F |6
|∇|F |2|2γ.

Substituting back in now gives the result. �

Remark 4.2. We observe that the final term in the evolution of f is always posi-
tive. Indeed, since ∇|F |2 equals 2F>, where the > denotes projection onto the tangent
space of M , we are done if F> is zero. Otherwise, we can choose an orthonormal
frame where e1 = |F>|−1F> and observe that

γ̇ijgij −
|∇|F |2|2γ

4|F |2
≥

n∑
i=1

γ̇ii −
1

|F>|2
γ̇(F>, F>) =

n∑
i=2

γ̇ii > 0.

We do not make use of this observation here, but it may be useful in other contexts.

We now establish the curvature bound for local radial graph solutions. The only
difference between our result and Proposition 5.1 in [BH17] lies in the choice of the
function w - we work with the scaling-invariant quantity f defined above, as opposed
to F · ν, which scales like distance. This modification gives rise to an extra reaction
term in the evolution of ψ, but this term is only quadratic in ψ and can be combated
in the same way as the other reaction terms - using the good cubic term which arises
when we divide by w. By working with the modified quantity we gain an extra factor
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of L on the left-hand side of the final estimate, which makes it more powerful at large
distances.

Theorem 4.3. Fix constants θ > 0, r > 0, K > 0 and L > 1, and a point
p ∈ Rn+1. Let

F : M × [−K2r2, 0]→ Rn+1

be a solution of (CF) such that for each t ∈ [−K2r2, 0] the hypersurface F (M, t) is
properly embedded and bounds a smooth domain Ωt. Suppose there is a symmetric
cone Γ′ b Γ such that λ(x, t) ∈ Γ′ for every (x, t) ∈ M × [−K2r2, 0], and that
B(p, r) ⊂ Ω0. For each t ∈ [−K2r2, 0], let Ut denote the connected component of
Ωt ∩B(p, Lr) which contains B(p, r), set Nt := ∂Ut ∩B(p, Lr), and define

N := {(x, t) ∈ B(p, Lr)× [−K2r2, 0] : x ∈ Nt}.
Finally, suppose that for each (x, t) ∈ N there holds

ν(x, t) · F (x, t)− p
|F (x, t)− p|

≥ θ.

Then there is a constant C = C(n, γ,Γ′) such that(
L2r2

4
− |x|2

)
(t+K2r2)

1
2G(x, t) ≤ C max{1, K}L2θ−2r2

for all (x, t) ∈ N ∩ (B(0, Lr/2)× [−K2r2, 0]).

Proof. It will be convenient to identify M × [−K2r2, 0] with the set

M = {(x, t) ∈ Rn+1 × [−K2r2, 0] : x ∈Mt}
via the evolving immersion F . In particular, functions defined on the solution may
equivalently be viewed as functions on M × [−K2r2, 0] or on M. Let us shift the
solution in space if necessary so that p = 0. We define functions

η(x, t) =
L2r2

4
− |F (x, t)|2, w(x, t) = f(x, t)− θ2/2, v(x, t) = w(x, t)−

1
2 ,

and set
ψ(x, t) = η(x, t)v(x, t)G(x, t)

for each (x, t) ∈ N. Note that the assumption on the normal of F says exactly that
w ≥ θ2/2 on N. Since η is negative at points which lie outside the ball B(0, Lr/2),
on each timeslice the support of ψ is compactly contained in Nt.

We compute at an arbitrary point in the support of ψ, writing C for a large
constant which depends only on n, γ and Γ′. From Lemma 4.1, we know that

(∂t −∆γ)w = 2(|A|2γ − 2|F |−1G)f − 1

2f
|∇f |2γ +

1

|F |2
〈∇f,∇|F |2〉γ

+ 2
f

|F |2

(
γ̇ijgij −

|∇|F |2|2γ
4|F |2

)
≥ 2(|A|2γ − 2|F |−1G)(w + θ2/2)− 1

2(w + θ2/2)
|∇w|2γ

+
1

|F |2
〈∇w,∇|F |2〉γ − (w + θ2/2)

|∇|F |2|2γ
2|F |4
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Let ε be a small positive constant to be chosen later, and estimate

1

|F |2
〈∇w,∇|F |2〉γ ≥ −

ε

2(w + θ2/2)
|∇w|2γ − Cε−1(w + θ2/2)

|∇|F |2|2γ
|F |4

,

so that we obtain

(∂t −∆γ)w ≥ 2(|A|2γ − 2|F |−1G)(w + θ2/2)− 1 + ε

2(w + θ2/2)
|∇w|2γ

− Cε−1(w + θ2/2)
|∇|F |2|2γ
|F |4

.

Using this inequality, we get

(∂t −∆γ)v = −1

2
w−

3
2 (∂t −∆γ)w −

3

4
w−

5
2 |∇w|2γ

≤ −w−
3
2 (|A|2γ − 2|F |−1G)(w + θ2/2) +

1 + ε

4

w−
3
2

w + θ2/2
|∇w|2γ

+ Cε−1w−
3
2 (w + θ2/2)

|∇|F |2|2γ
|F |4

− 3

4
w−

5
2 |∇w|2γ.

Rewriting ∇w in terms of ∇v gives

1 + ε

4

w−
3
2

w + θ2/2
|∇w|2γ = (1 + ε)

w−
3
2v−6

w + θ2/2
|∇v|2γ = (1 + ε)

v−1

1 + θ2v2/2
|∇v|2γ,

and

−3

4
w−

5
2 |∇w|2γ = −3w

1
2 |∇v|2γ = −3v−1|∇v|2γ,

so we have

(∂t −∆γ)v ≤ −(|A|2γ − 2|F |−1G)(v + θ2v3/2)−
(

3− 1 + ε

1 + θ2v2/2

)
v−1|∇v|2γ

+ Cε−1(v + θ2v3/2)
|∇|F |2|2γ
|F |4

.

We will use the good terms on the right-hand side of the last inequality to control
various other terms appearing in the evolution of η and G. The evolution of η is given
by

(∂t −∆γ)η = −(∂t −∆γ)|x|2 = 2γ̇ijgij,

and combining this with the equation for v gives

(∂t −∆γ)(ηv) ≤ −(|A|2γ − 2|F |−1G)(ηv + θ2ηv3/2)−
(

3− 1 + ε

1 + θ2v2/2

)
ηv−1|∇v|2γ

+ Cε−1(ηv + θ2ηv3/2)
|∇|F |2|2γ
|F |4

+ 2γ̇ijgijv − 2〈∇η,∇v〉γ.
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Incorporating now the evolution of G, we obtain

(∂t −∆γ)ψ

= −(|A|2γ − 2|F |−1G)(ηvG+ θ2ηv3G/2)−
(

3− 1 + ε

1 + θ2v2/2

)
ηv−1G|∇v|2γ

+ Cε−1(ηvG+ θ2ηv3G/2)
|∇|F |2|2γ
|F |4

+ 2γ̇ijgijvG− 2G〈∇η,∇v〉γ

+ |A|2γηvG− 2v〈∇η,∇G〉γ − 2η〈∇v,∇G〉γ.
We simplify

−(|A|2γ − 2|F |−1G)(ηvG+ θ2ηv3G/2) + |A|2γηvG
= −(|A|2γ − 2|F |−1G)θ2ηv3G/2 + 2|F |−1G2ηv

an cancel some of the gradient terms by expanding

−2v−1ηG|∇v|2G = −2v−1〈∇v,∇ψ〉γ + 2〈∇v,∇(ηG)〉γ
= −2v−1〈∇v,∇ψ〉γ + 2G〈∇v,∇η〉γ + 2η〈∇v,∇G〉γ,

and substituting back in:

(∂t −∆γ)ψ = −(|A|2γ − 2|F |−1G)θ2ηv3G/2 + 2|F |−1G2ηv

−
(

1− 1 + ε

1 + θ2v2/2

)
ηv−1G|∇v|2γ

+ Cε−1(ηvG+ θ2ηv3G/2)
|∇|F |2|2γ
|F |4

+ 2γ̇ijgijvG

− 2v〈∇η,∇G〉γ − 2v−1〈∇v,∇ψ〉γ.
Now we write ∇G in terms of the gradients of ψ, v and η,

−2v〈∇η,∇G〉γ = −2η−1〈∇η,∇ψ〉γ + 2η−1G〈∇η,∇(ηv)〉γ
= −2η−1〈∇η,∇ψ〉γ + 2G〈∇η,∇v〉γ + 2η−1vG|∇η|2γ

and use

−
(

1− 1 + ε

1 + θ2v2/2

)
ηv−1G|∇v|2γ = −θ

2v2/2− ε
1 + θ2v2/2

ηv−1G|∇v|2γ

to arrive at

(∂t −∆γ)ψ = −(|A|2γ − 2|F |−1G)θ2ηv3G/2 + 2|F |−1G2ηv

− θ2v2/2− ε
1 + θ2v2/2

ηv−1G|∇v|2γ + Cε−1(ηvG+ θ2ηv3G/2)
|∇|F |2|2γ
|F |4

+ 2γ̇ijgijvG− 2η−1〈∇η,∇ψ〉γ + 2G〈∇η,∇v〉γ
+ 2η−1vG|∇η|2γ − 2v−1〈∇v,∇ψ〉γ.

Since (F · ν)2 ≤ |F |2, we have

v2 = w−1 = (f − θ2/2)−1 ≥ 1.

Therefore, taking ε = θ2/4 ensures that

θ2v2/2− ε ≥ θ2v2/4 + θ2/4− ε ≥ θ2v2/4.
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We can use Young’s inequality to estimate,

2G〈∇η,∇v〉γ ≤
θ2v2/4

1 + θ2v2/2
ηv−1G|∇v|2γ +

1 + θ2v2/2

θ2v2/4
η−1vG|∇η|2γ,

and inserting the last two inequalities now gives

(∂t −∆γ)ψ ≤ −(|A|2γ − 2|F |−1G)θ2ηv3G/2 + 2|F |−1G2ηv

+ C(θ−2ηvG+ ηv3G/2)
|∇|F |2|2γ
|F |4

+ 2γ̇ijgijvG+
1 + θ2v2/2

θ2v2/4
η−1vG|∇η|2γ

+ 2η−1vG|∇η|2γ − 2η−1〈∇η,∇ψ〉γ − 2v−1〈∇v,∇ψ〉γ.
The condition λ(x, t) ∈ Γ′ implies the bounds

G2 ≤ C|A|2γ, γ̇ijgij ≤ C,

and |F | ≥ r by assumption, so by Young’s inequality we have

|A|2γ − 2|F |−1G ≥ C−1G2 − 2r−1G ≥ C−1G2 − Cr−2.

Subsituting in these bounds, and writing v in terms of ψ, we obtain

(∂t −∆γ)ψ ≤ −C−1θ2η−2ψ3 + Cθ2r−2v2ψ + 2|F |−1η−1v−1ψ2

+ C(θ−2ψ + v2ψ/2)
|∇|F |2|2γ
|F |4

+ 2Cη−1ψ +
1 + θ2v2/2

θ2v2/4
η−2ψ|∇η|2γ

+ 2η−2ψ|∇η|2γ − 2η−1〈∇η,∇ψ〉γ − 2v−1〈∇v,∇ψ〉γ.

We have the bounds 1 ≤ v2 ≤ 2θ−2,

|∇η|2γ ≤ C|F |2 ≤ CL2r2,

and
|∇|F |2|2γ
|F |4

= 4
|F>|2

|F |2
≤ 4|F |−2 ≤ Cr−2,

so

(∂t −∆γ)ψ ≤ −C−1θ2η−2ψ3 + Cθ−2r−2ψ + 2r−1η−1ψ2 + 2Cη−1ψ

+ CL2θ−2r2η−2ψ + CL2r2η−2ψ − 2η−1〈∇η,∇ψ〉γ − 2v−1〈∇v,∇ψ〉γ.

Finally, using η2 ≤ L4r4, we arrive at

(∂t −∆γ)ψ ≤ −C−1θ2η−2ψ3/2 + CL4θ−2r2η−2ψ + CL2rη−2ψ2

− 2η−1〈∇η,∇ψ〉γ − 2v−1〈∇v,∇ψ〉γ.
Let us define

Θ := sup{(t+K2r2)
1
2ψ(x, t) : (x, t) ∈ N},

let Λ be a large positive constant, and assume Θ > Λ. We are going to choose Λ so
that this gives a contradiction.

Define

t̄ := inf

{
t ∈ [−K2r2, 0] : sup

Nt

(t+K2r2)
1
2ψ(·, t) > Λ

}
.
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Then there is a sequence tj > t̄ such that tj → t̄ and

(tj +K2r2)
1
2ψ(xj, tj) > Λ

for some xj ∈ Ntj ∩B(0, Lr/2). Passing to a convergent subsequence, we may assume

that the xj converge to a point x̄ ∈Mt̄∩B(0, Lr/2). To conclude that x̄ ∈ Nt̄ we need
to find a path from the origin to x̄ inside Ωt̄ ∩ B(0, Lr), but this is easily achieved.
Indeed, for each j there is a continuous path αj : [0, 1] → Ωtj ∩ B(0, Lr) such that
αj(0) = 0 and αj(1) = xj. Since t̄ < tj each of the paths αj maps into Ωt̄ ∩B(0, Lr),
so by smoothness of Ωt and the fact that x̄ ∈ B(0, Lr/2), if j is large enough the path
αj can be extended to a continuous a path from the origin to x̄ which stays inside
Ωt̄ ∩B(0, Lr).

Arguing again using smoothness, we conclude that there is a small δ > 0 such
that

Bg(t̄)(x̄, δ)× [t̄, t̄+ δ2]

is a subset of N and contains (xj, tj) for large j. Consequently,

(tj +K2r2)
1
2ψ(xj, tj)→ (t̄+K2r2)

1
2ψ(x̄, t̄),

hence by the definitions of the (xj, tj) and (x̄, t̄) it must be the case that

(t̄+K2r2)
1
2ψ(x̄, t̄) = Λ.

In particular, since Λ > 0 and ψ vanishes on ∂B(0, Lr/2) and at t = 0, we have
x̄ ∈ B(0, Lr/2) and t̄ > 0. Therefore, making δ > 0 smaller if necessary, we can
ensure that

Q(δ) := Bg(t̄)(x̄, δ)× [−δ2 + t̄, t̄]

is contained in N.
The function

(x, t) 7→ (t+K2r2)
1
2ψ(x, t)

restricted to the set Q(δ) attains its spacetime maximum at (x̄, t̄), so by the compu-
tation above

0 ≤ 1

2

1

(t̄+K2r2)
1
2

ψ(x̄, t̄) + (t̄+K2r2)
1
2∂tψ(x̄, t̄)

≤ 1

2

1

(t̄+K2r2)
1
2

ψ(x̄, t̄)− C−1(t̄+K2r2)
1
2 θ2η(x̄, t̄)−2ψ(x̄, t̄)3

+ C(t̄+K2r2)
1
2 θ2η(x̄, t̄)−2ψ(x̄, t̄)2(L2θ−2r + L4θ−4r2ψ(x̄, t̄)−1).

If ψ(x̄, t̄) ≥ 10CL2θ−2r, then rearranging the last inequality gives

C−1θ2η(x̄, t̄)−2(t̄+K2r2)ψ3(x̄, t̄) ≤ ψ(x̄, t̄),

so there holds
Λ = (t̄+K2r2)ψ(x̄, t̄)2 ≤ Cθ−2η2 ≤ CL4θ−2r4.

If on the other hand ψ(x̄, t̄) ≤ 10C2L2θ−2r, then

Λ = (t̄+K2r2)
1
2ψ(x̄, t̄) ≤ CKL2θ−2r2.

Therefore, we can force a contradiction by choosing

Λ = C max{1, K}L2θ−2r2
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for some sufficiently large C, in which case our original assumption Θ > Λ must have
been false. Combining Θ ≤ Λ with v ≥ 1 we conclude that

η(x, t)(t+K2r2)
1
2G(x, t) ≤ C max{1, K}L2θ−2r2v(x, t)−1

≤ C max{1, K}L2θ−2r2

for each (x, t) ∈ N. �

2. Pseudocones

Following Brendle-Huisken [BH17][Section 6], we introduce the notion of a pseu-
docone. This is the name we give to a piece of cone whose boundary has been bowed
outward slightly, so that parallel to its axis of rotation, the boundary has a small but
definite amount of negative curvature. We define a pseudocone C(x, p, r) for each
pair of points x and p in Rn+1, and each positive r, as follows: set

ϕ(s) =
1

2
(s+ s2), s ∈ [0, 1],

and define

C(x, p, r) = {(1− s)x+ sp+ τv : s ∈ (0, 1), 0 < τ < rϕ(s), 〈v, p− x〉 = 0}.

The point x is the vertex, and p is the center of the base, which is a solid n-ball of
radius r. This ball sits in the hyperplane which is orthogonal to p − x and passes
through p. It will also be convenient to give a name to the smooth, outwardly curved
part of the boundary of C(x, p, r), so we set

S(x, p, r) = {(1− s)x+ sp+ τv : s ∈ (0, 1), τ = rϕ(s), 〈v, p− x〉 = 0}.

Observe that

∂C(x, p, r) ⊂ {x} ∪ S(x, p, r) ∪ B̄(x, r),

and that near the point x, the region C(x, p, r) is asymptotic to a cone of aperture

2 tan

(
r

2|p− x|

)
.

Lemma 4.4. Suppose |p − x| > r. Then the smallest principal curvature of
S(x, p, r) is at most

− 1

10

r

|p− x|2
.

Proof. We can apply a rigid motion taking S(x, p, r) to the hypersurface S(0, de1, r),
where d := |x− p|. Since S(de1, 0, r) is given by rotating the graph of the function

f(s) := rϕ(d−1s), s ∈ (0, d)

about the e1 axis, at each point of its boundary, there are n − 1 positive principal
curvatures, and the remaining principal curvature is equal to the curvature of the
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graph of f . For the latter we have the estimate

−f ′′(s)
(1 + |f ′(s)|2)

3
2

=
−rd−2ϕ′′(d−1s)

(1 + r2d−2|ϕ′(d−1s)|2)
3
2

=
−rd−2

(1 + r2d−2(1/2 + d−1s)2)
3
2

≤ −(4/13)
3
2 rd−2.

Here we have used d−1s ≤ 1 and d−1r ≤ 1. Since (4/13)
3
2 ≥ 1/10, this completes the

proof. �

Consider positive constants r > 0 and Λ > 1, and let Ω be an open subset of
B(p,Λr) which contains B(p, r). It is clear that if for each x ∈ Ω, the pseudocone
C(x, p, r) is contained in Ω, then Ω is starshaped about the point x. If Ω is also
smooth, the smooth part of if its boundary has a globally defined outward-pointing
unit normal vectorfield ν, and we have the following estimate:

Lemma 4.5. Let Ω be a smooth open subset of B(p,Λr) with the property that
C(x, p, r) ⊂ Ω for each x ∈ Ω. Then for each y ∈ ∂Ω ∩B(x,Λr) there holds

ν(y) · y − p
|y − p|

≥ 1√
5

1

Λ
,

where ν is the outward-pointing unit normal to ∂Ω ∩B(p,Λr).

Proof. Fix y ∈ ∂Ω ∩ B(p,Λr). Approximating y by a sequence of points in
Ω ∩B(p,Λr), we find that

C(y, x, r) ⊂ Ω̄.

The aperture of C(y, x, r) is at least

φ := 2 tan

(
1

2Λ

)
,

and the hyperplane tangent to ∂Ω at y lies outside C(y, p, r), so we have

ν(y) · (y − p)
|y − p|

≥ cos

(
π − φ

2

)
=

r/2√
r2/4 + Λ2r2

.

Inserting Λ > 1 now gives the result. �

The following is another technical result which we make use of below. It gives us
a way of characterising whether or not a smooth domain is starshaped in terms of
the curvature of its boundary.

Lemma 4.6. Let Ω be a smooth, connected open subset of B(p,Λr) and suppose
that B(p, r) is contained in Ω. Suppose also that, for some y ∈ Ω, the pseudocone
C(y, p, r) is not contained in Ω. Then there exists a point x ∈ Ω ∩ B(p,Λr) such
that C(x, p, r) ⊂ Ω, but the hypersurface S(x, p, r) makes interior contact with ∂Ω at
some x̃ ∈ B(p,Λr). In particular, if λ1 denotes the smallest principal curvature of
the hypersurface ∂Ω ∩B(p,Λr), then there holds

λ1(x̃) ≤ − 1

10Λ2
r−1.
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Proof. Let us define

B := {x ∈ Ω : C(x, p, r) ⊂ Ω}.

By assumption, the set Ω \ B is nonempty. Therefore, since B is relatively closed in
Ω, and Ω is connected, we conclude that B cannot be relatively open in Ω. That is,
there is a point x ∈ B and a sequence xi ∈ Ω \B such that xi → x. If the boundary
of C(xi, p, r) is in Ω̄, then C(xi, p, r) ⊂ Ω, so there is a sequence x̃i ∈ ∂C(xi, p, r)
which is such that x̃i ∈ B(p,Λr) \ Ω. Passing to a subsequence, we may assume the
x̃i converge to a limit x̃ ∈ ∂Ω ∩B(p,Λr).

We recall that

∂C(xi, p, r) ⊂ {xi} ∪ S(xi, p, r) ∪ B̄(p, r),

and by assumption xi ∈ Ω and B̄(p, r) ⊂ Ω̄. It follows then that x̃i remains at a
uniformly positive distance from both the vertex and base of C(xi, p, r) as i → ∞,
and in the limit we get

x̃ ∈ S(x, p, r) ∩ ∂Ω.

The upper bound for λ1(x̃) follows from Lemma 4.4. �

3. A class of solutions

Let γ : Γ → (0,∞) be an admissible speed and consider an evolving embedding
of a compact manifold M ,

F : M × [0, T )→ Rn+1,

which satisfies (CF), where the normal velocity is G(x, t) := γ(λ(x, t)). We write Ωt

for the smooth open domain bounded by Mt := F (M, t), and Ω for the subset of
Rn+1 × [0, T ) given by

Ω := {Ωt : t ∈ [0, T )}.
Similarly, we set

M := {Mt : t ∈ [0, T )}.
Where there is no chance of confusion we forget about the embedding F and refer to
Ω and M as solutions of (CF). We may view objects such as the principal curvatures
as being defined on M × [0, T ) or on M.

The results in the rest of this chapter all apply to embedded solutions which are
κ-noncollapsed, in the following sense.

Definition 4.7. Fix an admissible speed γ and let Ω = {Ωt : t ∈ [0, T )} be
a solution of (CF). Given t ∈ [0, T ), we say that Ωt is κ-noncollapsed if for each
x ∈Mt, there is a ball of radius κG(x, t)−1 inside Ωt which is tangent to Mt at x. To
be precise, if we set x′ := x− κG(x, t)−1ν(x, t), then

B(x′, κG(x, t)−1) ⊂ Ωt.

The evolving embedding F , or the family of domains Ω = {Ωt : t ∈ [0, T )}, is said to
be κ-noncollapsed if this is true for each t ∈ [0, T ).
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By work of Andrews in the mean curvature flow case [And12], or Andrews-
Langford-McCoy for flows by a concave admissible speed function [ALM13], a solu-
tion Ω is κ-noncollapsed as long as this is true of the initial domain Ω0. Hence every
embedded compact solution moving by a concave admissible speed is κ-noncollaped
for some κ > 0 depending only on Ω0.

In addition to noncollapsing, the results we prove here all assume that high-
curvature regions are becoming convex. We capture this by assuming the solution
is ϕ-almost-convex, in the following sense. Note that ϕ-almost-convexity follows if
a convexity estimate of the form established in Chapter 3 holds. In this case the
function ϕ depends on the speed γ and the solution at the initial time.

Definition 4.8. Fix an admissible speed γ and let Ω = {Ωt : t ∈ [0, T )} be a
smooth solution of (CF). Let ϕ : [0,∞)→ (0,∞) be a non-increasing function such
that

lim
x→∞

ϕ(x)

x
= 0.

We say that Ω is ϕ-almost-convex if for each (x, t) ∈M there holds

λ1(x, t) ≥ −ϕ(G(x, t)).

Since we will repeatedly want to refer back to the same class of solutions with
the properties introduced here, let us give this class a name. We recall that inverse-
concavity means the function

λ 7→ γ(λ−1
1 , . . . , λ−1

n )−1

is concave on Γ+.

Definition 4.9. Let γ : Γ → (0,∞) be a concave admissible speed which is
such that Γ+ ⊂ Γ, and assume the restriction of γ to Γ+ is inverse-concave. Let
Ω = {Ωt : t ∈ [0, T )} be a smooth solution of (CF) with precompact timeslices.
We say that Ω is admissible if it is κ-noncollapsed, ϕ-almost-convex, and there is a
symmetric cone Γ′ b Γ such that

λ(x, t) ∈ Γ′, ∀ (x, t) ∈M.

4. High curvature regions are locally starshaped

To ease the language somewhat in some of the proofs below, we introduce the
following terminology. We implicitly use the fact that Ωt+h ⊂ Ωt for every t ∈ [0, T )
and h > 0.

Definition 4.10. Fix an admissible speed γ and let Ω = {Ωt : t ∈ [0, T )} be a
solution of (CF). Fix positive constants κ > 0 and Λ > κ, let (x0, t0) be a point in
M, and define r−1

0 := G(x0, t0). Suppose [−Λ2r2
0 + t0, t0] ⊂ [0, T ) and that the ball

B(x′0, κr0) is contained in Ωt0, where

x′0 := x0 − κr0ν(x0, t0).

For each t ∈ [−Λ2r2
0 + t0, t0] let Ut denote the connected component of Ωt∩B(x′0,Λr0)

which contains B(x′0, κr0). We say that Ω is (κ,Λ)-starshaped about (x0, t0) if for
every t ∈ [−Λ2r2

0 + t0, t0] and p ∈ Ut the pseudocone C(p, x′0, κr0) is contained in Ut.
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The next theorem is the key technical result of this chapter. It tells us that an
admissible solution Ω is (κ,Λ)-starshaped about any point in M where the curvature
is sufficiently large.

Theorem 4.11. Let Ω = {Ωt : t ∈ [0, T )} be an admissible solution in the sense
of Definition 4.9. Then for every Λ > κ there is a constant K = K(n, γ,Γ′, κ, ϕ,Λ)
with the property that if G(x0, t0) ≥ K, then Ωt is (κ,Λ)-starshaped about (x0, t0).

We make use of the following technical lemma. This is proven using general
regularity results for parabolic PDE, so we defer most of the details to the appendix.

Lemma 4.12. Fix r > 0 and Λ > 0. Let Ω = {Ωt : t ∈ [−Λ2r2 + t0, t0]} be a
solution of (CF) such that

λ(x, t) ∈ Γ′ b Γ ∀ (x, t) ∈M.

Suppose there is a point p ∈ Rn+1 such that B(p, r) ⊂ Ωt0 and for each t ∈ [−Λ2r2 +
t0, t0] let Ut denote the connected component of Ωt ∩B(p,Λr) which contains B(p, r).
Suppose in addition that there is a positive K0 such that

G(x, t) ≤ K0r
−1

for each x ∈ ∂Ut ∩ B(p,Λr) and t ∈ [−Λ2r2 + t0, t0], and let x0 ∈ ∂Ut0 ∩ B(p,Λr/2)
be such that

G(x0, t0) ≥ k0r
−1,

where k0 is some positive constant. Then there is a positive constant

δ = δ(n, γ,Γ′,Λ, k0, K0)

and a smooth function

u : B(0, δr) ∩ Tx0Mt0 × [−δ2r2 + t0, t0]→ R
such that u(x0, t0) = 0 and the mapping

X(·, t) : x 7→ x0 + x+ u(x, t)ν(x0, t0)

is a local parameterisation of ∂Ut∩B(p,Λr) for each t ∈ [−δ2r2 +t0, t0]. Furthermore,

G(x, t) ≥ k0

2
∀ (x, t) ∈ B(0, δr) ∩ Tx0Mt0 × [−δ2r2 + t0, t0],

and for each m ∈ N the spatial derivatives of u satisfy

|Dmu|2 ≤ C(n,m, γ,Γ′,Λ, k0, K0)r−2m+2.

Proof. With the upper bound on curvature, it is straightforward to find a δ with
the right dependencies such that, locally about (x0, t0), the solution is a graph over
B(0, δr)∩ Tx0Mt0 × [−δ2r2 + t0, t0] with uniformly bounded first derivatives. Making
δ a bit smaller if necessary, the desired lower bound for G follows from Lemma B.5,
and the derivative bounds are then a consequence of Proposition B.4. �

With the lemma in place, we are set to prove Theorem 4.11. The technique we use
was introduced in [BH17] to prove curvature derivative estimates for a two-convex
embedding evolving by the two-harmonic mean of its principal curvatures. Let us
give our argument and then afterwards discuss differences with the proof of Theorem
6.2 in [BH17].
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Proof of Theorem 4.11. Step 1: Point-picking. Suppose towards a con-
tradiction that there is a large Λ > κ for which the statement is false. This means
we can find a sequence of spacetime points x̃k ∈Mt̃k

with the property that G(x̃k, t̃k)

tends to infinity, but Ωt fails to be (κ,Λ)-starshaped about (x̃k, t̃k). We are going
to modify this sequence using Perelman’s point-picking trick: Let Q(κ,Λ) be the set
of points (x, t) ∈M with the property that Ωt is (κ,Λ)-starshaped about (x, t). For
each pair of postive integers k and j, let

Uk,j := {(x, t) ∈M : t ≤ t̃k, (x, t) 6∈ Q(κ,Λ), G(x, t) ≥ 2jr−1
k }.

By assumption, Uk,0 is nonempty, since it contains (x̃k, t̃k). On the other hand, Uk,j is
always empty if j is sufficiently large, since G is bounded on the time interval [0, t̃k].
Therefore, for each k, there is a largest value jk ∈ N such that Uk,jk is nonempty.
Let (xk, tk) be a spacetime point in Uk,jk . By this process we have made sure that if
t ≤ tk and G(x, t) ≥ 2G(xk, tk), then (x, t) ∈ Q(κ,Λ).

Step 2: Separating curvature scales. Set r−1
k := G(xk, tk) and x′k := xk −

κrkν(xk, tk). For each t ∈ [−Λ2r2
k + tk, tk], let Uk

t be the connected component of
Ωt ∩ B(x′k,Λrk) containing B(x′k, κrk). Since rk → 0 and tk → T , we may assume
that −Λ2r2

k + tk ≥ 0. By definition, since (xk, tk) 6∈ Q(κ,Λ), there must be some
τk ∈ [−Λ2r2

k + tk, tk] and a point zk ∈ Uτk such that

C(zk, x
′
k, κrk) 6⊂ Uτk .

Therefore, by Lemma 4.6, there is a point ỹk ∈ Uτk such that

C(ỹk, x
′
k, κrk) ⊂ Uτk ,

and the hypersurface S(ỹk, x
′
k, κrk) makes interior contact with ∂Uτk ∩B(x′k,Λrk) at

some point, which we denote by yk. Lemma 4.4 tells us that the smallest principal
curvature of S(ỹk, x

′
k, κrk) is at most − 1

10
κrk|x′k − ỹk|−2, so we have

λ1(yk, τk) ≤ −
1

10
κrk|x′k − ỹk|−2 ≤ − κ

10Λ2
r−1
k .

On the other hand, by the ϕ-almost convexity property there holds

λ1(yk, τk)

G(yk, τk)
≥ −ϕ(G(yk, τk)

G(yk, τk)
.

There is a potentially large positive constant C = C(n, γ,Γ′) such that

λ1(x, t) ≥ −CG(x, t)

holds on M, so we have

− κ

10Λ2
r−1
k ≥ −CG(yk, τk),

which implies that G(yk, τk)→∞. Hence by the almost convexity,

− κ

10Λ2

r−1
k

G(yk, τk)
≥ λ1(yk, τk)

G(yk, τk)
→ 0,

from which we conclude that
G(yk, τk)

G(xk, tk)
→∞.

In particular, passing to a subsequence if necessary, the point-picking construction
ensures that Ωt is (κ,Λ)-starshaped about (yk, τk) for each index k.
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Step 3: Extracting a local limit. Let sk := κG(yk, τk)
−1, and consider the

sequence of rescaled solutions Ωk = {Ωk
t : t ∈ [−κ−2Λ2, 0]} defined as follows:

Ωk
t := s−1

k (Ωτk+s2kt
− yk).

We write G(k) for γ(λ(k)), and λ(k) for the principal curvatures of Ωk. There holds
G(k)(0, 0) = κ−1, and applying a rotation in the ambient space if necessary, we may
assume that

ν(k)(0, 0) = e1,

in which case the κ-noncollapsing says that the ball ∂B(−e1, 1) makes interior contact
with Mk

0 := ∂Ωk
0 at the origin. Here ν(k) is the unit normal to

Mk := {Mk
t : t ∈ [−κ−2Λ2, 0]}.

Since Ωt is (κ,Λ)-starshaped about (yk, τk), applying the rescaling, we find that
Ωk
t is (1, κ−1Λ)-starshaped about (0, 0). That is, if we define Uk

t to be the connected
component of Ωk

t ∩B(−e1, κ
−1Λ) which contains B(−e1, 1), then

C(−e1, p, 1) ⊂ Uk
t ∀ p ∈ Uk

t , t ∈ [−κ−2Λ2, 0].

Therefore, by Lemma 4.5, Ωk satisfies the hypotheses of Theorem 4.3 in

B(−e1, κ
−1Λ)× [−κ−2Λ2, 0],

with p = −e1, r = κ−1, L = K = Λ, and θ = θ(κ,Λ). We may assume that Λ is much
larger than one. Thus, by Theorem 4.3, we have a curvature bound

G(k)(x, t) ≤ K0(n, γ,Γ′, κ,Λ),

valid for each

x ∈ ∂Uk
t ∩B(−e1, κ

−1Λ/4), t ∈ [−κ−2Λ2/2, 0].

Since G(k)(0, 0) = κ−1, Ωk satisfies all of the assumptions of Lemma 4.12 at (0, 0).
Hence there is a positive δ = δ(n, γ,Γ′, κ,Λ) and a sequence of smooth functions

u(k) : B(0, δ) ∩ e⊥1 × [−δ2, 0]→ R
such that u(k)(0, 0) = 0 and the mapping

X(k)(·, t) : x 7→ x+ u(k)(x, t)e1

is a local parameterisation of Mk
t for each t ∈ [−δ2, 0]. Furthermore, for each m ∈ N,

the spatial derivatives of u satisfy

|Dmu(k)|2 ≤ Cr−2m+2,

where C is independent of k, and the value of G on the graph of u(k) is bounded from
below by (2κ)−1.

Now we can apply the Arzela-Ascoli theorem to extract a subsequence of the u(k)

converging smoothly to some û. The embedding

X̂(x, t) := x+ û(x, t)e1

satisfies
(∂tX̂(x, t))⊥ = −Ĝ(x, t),

and as a consequence of the ϕ-almost-convexity, has nonnegative second fundamental

form. On the other hand, we had λ1(yk, τk) ≤ 0 for every index k, so λ
(k)
1 (0, 0) ≤ 0.
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It follows that λ̂1 vanishes at (0, 0), and since we are assuming that γ is inverse-
concave on Γ+, we can invoke the strong maximum principle of Corollary 3.8. This

tells us that λ̂1 vanishes identically, and if v ∈ ker(Â), then ∇vĜ = 0. Let us define

M̂t = X̂(B(0, δ) ∩ e⊥1 , t) for each t ∈ [−δ2, 0].
Step 4: The rescaled pseudocone. We now want to track the pseudocone

S(ỹk, x
′
k, rk) under the rescaling. Recall that S(ỹk, x

′
k, rk) makes interior contact

with Mτk at yk. Observe also that since G(yk, τk) blows up much more quickly than
r−1
k = G(xk, tk), as k → ∞, the sequence yk must be approaching the vertex of the

pseudocone - otherwise, the interior contact would imply an upper bound for G(yk, τk)
on the scale of r−1

k .
Let us write

dk := s−1
k |ỹk − yk|

for the rescaled distance from yk to the vertex of C(ỹk, x
′
k, κrk). If dk →∞, then for

large k, the rescaled pseudocone

Ck := s−1
k (C(ỹk, x

′
k, κrk)− yk)

is very close to a halfspace, and since ν(k)(0, 0) = e1, we get that

Ck → {x ∈ Rn+1 : 〈x, e1〉 < 0},
and this convergence is smooth on compact subsets of the ambient space. Since
G(k)(0, 0) = κ−1 for every k, for large enough k this contradicts the fact that Ck makes
interior contact with Mk

0 at (0, 0). Therefore, the sequence dk must be uniformly
bounded from above, and passing to a subsequence in k, we may assume that the dk
approach some limit d̂ > 0.

To recap, whilst Ck may move around as k varies, its boundary always passes
through zero, where its normal agrees with e1, and the distance from the origin to
the vertex is positive, uniformly bounded, and converges to d̂ ≥ 0. Applying a
further rotation (leaving e1 fixed) for each k, we may arrange that the vertex of Ck is

approaching −d̂e2. Then, since s−1
k →∞, the negative curvature in the boundary of

Ck is being scaled away, and the Ck must converge to a round round cone K̂, which
has positive aperture φ > 0 depending only on κ and Λ. In addition, K̂ has the
following properties:

• The vertex of K̂ is at −d̂e1;
• The ray E2 := {se2 : s ∈ (−d̂,∞)} is in ∂K̂;

• The vector e1 is normal to ∂K̂ at each point in E2.

Step 5: Extending the local limit. The presence of the cone K̂ allows us to
extend the local limiting solution M̂t defined in Step 3. For each σ <∞, let us define
a strip

Sσ := {x ∈ e⊥1 : |x− 〈x, e2〉e2| ≤ δ/2, 〈x, e2〉 ∈ [0, σ]},
where δ is the constant appearing in Step 3, which comes from the technical lemma.
We claim that for each σ <∞, there is a sequence of smooth functions

u(k,σ) : Sσ × [−δ2/4, 0]→ R
which satisfy u(k,σ)(0, 0) = 0, are such that the maps

X(k,σ)(x, t) := x+ u(k,σ)(x, t)e1



104 4. HARNACK AND GRADIENT ESTIMATES

locally parameterise Mk
t , and which converge in C∞ to a limit û(σ). Moreover, Ĝ(σ) ≥

(2κ)−1 on graph(û(σ)(·, t)) for each t ∈ [−δ2/4, 0]. We use an upper (k, σ) to denote
quantities on the graph of u(k,σ), while quantities with a hat and upper (σ) are defined
on the graph of û(σ).

We have already proven the claim for σ ≤ δ/2 in Step 3, so suppose for a contra-
diction that σ0 > δ/2 is the largest constant for which the claim holds. The family

of hypersurfaces M̂σ0
t := graph(û(σ0)(·, t)) solves

∂tû
(σ0)(x, t)(e1 · ν̂(σ0)(x, t)) = −Ĝ(σ0)(x, t),

and the lower bound for the curvature Ĝ(σ) ≥ (2κ)−1 and convexity estimate ensure

that the second fundamental form of M̂σ0
t is nonnegative. On the other hand, M̂σ0

0

is exterior to K̂; the boundary of K̂ contains the ray E2 parallel to e2; and e2 is in
T0M̂

σ0
0 . These properties mean that the function

f(s) := û(σ0)(se2, 0)

is nonnegative and satisfies f ′(0). Since f is also convex, we have f ≡ 0, which is

the same as saying that M̂σ0
0 contains the line segment Eσ0

2 := {se2 : s ∈ [0, σ0]}. In

particular, e2 is tangent to M̂σ0
0 at each point x ∈ Eσ0

2 , and lies in the kernel of the
second fundamental form. Hence, by the strong maximum principle of Corollary 3.8,
we have ∇e2Ĝ

(σ0)(·, 0) on Eσ0
2 , and consequently

Ĝ(σ0)(·, 0) ≡ Ĝ(σ0)(0, 0) = κ−1

on Eσ0
2 .

In particular, Ĝ(σ0)(σ0e2, 0) = κ−1, so there is a sequence of points

zk ∈ graph(u(k,σ0)(·, 0))

which converge to σ0e2, and are such that G(k,σ)(zk, 0)→ κ−1. Consequently, for large
k, the curvature of Mk

t at (zk, 0) is approximately κ−1, and by the point-picking, Ωk
t

is (1, κ−1Λ)-starshaped about (zk, 0). Now we can proceed almost exactly as in Step
3 to get a local limit near (σ0e2, 0). Indeed, the technical lemma (Lemma 4.12) shows
that near (zk, 0), Mk

t can be expressed as an evolving graph over the set

B(0, δ) ∩ ν(k)(zk, 0)⊥ × [−δ2, 0].

Therefore, since zk → σ0e2 and ν(k)(zk, 0) → e1, for sufficiently large k there is a
smooth function

ũ(k,σ0) : B(0, δ/2) ∩ e⊥1 × [−δ2/4, 0]

which gives a local graph representation of Mk
t , and satisfies ũ(k,σ0)(zk, 0)→ 0. More-

over, the technical lemma says that all of the derivatives of the ũ(k,σ0) are bounded
independently of k, and the value of G on the graph of ũ(k,σ0) is bounded from below
by (2κ)−1.

Now, where their domains of definition overlap, the functions u(k,σ0) and ũ(k,σ0)

agree, so for σ′ := σ0 + δ/2, we can define

u(k,σ′)(x, t) :=

{
u(k,σ0)(x, t) (x, t) ∈ Sσ0 × [−δ2/4, 0]

ũ(k,σ0)(x, t) (x, t) ∈ B(σ0e2, δ/2) ∩ e⊥1 × [−δ2/4, 0].
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We have bounds on all of the derivatives of u(k,σ′), and G is bounded from below by
(2κ)−1 on its graph, so passing to a subsequence in k, we get a contradiction to the
maximality of σ0.

Step 6: Drawing a contradiction. Let σ > 0 be a large constant to be chosen
in a moment, and let

M̂σ
t := graph(û(σ)(·, t))

for each t ∈ [−δ2/4, 0], where û(σ) is the smooth limiting function constructed in the

previous step. We saw that the zero timeslice M̂σ
0 contains E2∩Sσ, and M̂σ

0 lies in the

complement of K̂. In particular, this means that at the point z := σ
2
e2, M̂σ

0 touches

∂K̂ from the outside. On the other hand, there is a purely geometric constant C such
that the principal curvatures of the hypersurface

{x ∈ ∂K̂ : 〈x, e2〉 = σ/2}

are all bounded from above by Cσ−1, so we have

Ĝ(σ)(z, 0) ≤ C ′(n, γ,Γ′, C)σ−1.

Since we showed above that Ĝ(σ)(·, 0) ≡ κ−1 on E2 ∩ Sσ, choosing σ sufficiently
large depending only on κ and C ′, we obtain a contradiction. Hence, our original
assumption must have been false - there is no such sequence (x̃k, t̃k). �

The preceding proof diverges from the proof of Theorem 6.2 in [BH17] at Step 3.
In both cases a local limiting solution is obtained by rescaling about yk, and λ1 can
be shown to vanish identically on this limit by a strong maximum principle argument.
However, the special structure of the cylindrical estimate in the two-convex case then
implies that the remaining principal curvatures are all equal, so the limit is a piece
of a cylinder with one flat direction. In particular, its curvature is constant, and by
induction, the limit can be extended arbitrarily far out in space. On the other hand,
the limiting cylinder is supposed to contain a cone of positive aperture by the same
argument as in Step 4, which is absurd.

The cylindrical estimate for a general k-convex solution is not strong enough to
conclude from λ1 ≡ 0 that the local limit has constant curvature. By tracking more
carefully the rescaled pseudocone tangent to yk, and using the inverse-concavity of
the speed, we were able to extend the limit along a ray in the boundary of K̂, which
turned out to be sufficient. In the end, the contradiction comes from the fact that
the final timeslice of the local limiting solution cannot make exterior contact with
the boundary of a round cone. This is interesting, since the same kind of property is
used by Haslhofer-Kleiner to prove their global convergence theorem (which implies a
global Harnack inequality) in [HK17a][Theorem 1.12], and by Perelman to obtain a
similar result for compact three-dimensional Ricci flow [Per02][Section 12]. In each
of these two arguments and ours, noncollapsing and almost-convexity are combined in
different ways, but at a crucial step the strong maximum principle is used to say that
the final timeslice of a solution with ‘nonnegative curvature’ cannot coincide with (or
in our case make exterior contact with) a round cone.
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5. A Harnack inequality for the curvature

We now know that on an admissible solution, about any point (x0, t0) of suffi-
ciently large curvature, there is a large connected component of the solution which
is starshaped. The curvature bound for radial graphs then tells us that over this
connected component, we have an upper bound for the curvature in terms of its value
at (x0, t0).

Lemma 4.13. Let Ω = {Ωt : t ∈ [0, T )} be an admissible solution in the sense of
Definition 4.9. Then for every Λ > κ there is a positive K = K(n, γ,Γ′, κ, ϕ,Λ) with
the following property. Suppose r−1

0 := G(x0, t0) ≥ K, and for each

t ∈ [−Λ2r2
0 + t0, t0]

let Ut denote the connected component of Ωt ∩ B(x0,Λr0) which contains B(x′0, κr0),
where x′0 = x0−κr0ν(x0, t0). Then for each x ∈ ∂Ut∩B(0,Λr0) and t ∈ [−Λ2r2

0+t0, t0],
there holds

G(x, t) ≤ C(n, γ,Γ′, κ)Λ2r−1
0 .

Proof. We may assume Λ ≥ 100κ. By Theorem 4.11, we can choose K so that
if r−1

0 ≥ K, then Ω is (κ, 4Λ)-starshaped about (x0, t0). By Lemma 4.5, this means
that

ν(x, t) · x− x
′
0

|x− x′0|
≥ 1

4
√

5
Λ−1

for each
x ∈ ∂Ut ∩B(x′0, 4Λr0), t ∈ [−16Λ2r2

0 + t0, t0].

Therefore, by Theorem 4.3, if t ∈ [−Λ2r2
0 + t0, t0] and x ∈ ∂Ut∩B(x′0,Λr0) then there

holds
G(x, t) ≤ C(n, γ,Γ′, κ)Λ2r−1

0 .

�

Thus the technical lemma implies a pointwise estimate for all of the derivatives
of A which is valid at points of large curvature:

Theorem 4.14. Let Ω = {Ωt : t ∈ [0, T )} be an admissible solution in the sense
of Definition 4.9. Then there is a constant K = K(n, γ,Γ′, κ, ϕ) with the property
that if G(x0, t0) ≥ K, the estimate

|∇kA|2(x0, t0) ≤ C(n, k, γ,Γ′, κ)G(x0, t0)−2k−2

holds for each k ∈ N.

Proof. Let K be the constant from Lemma 4.13 with Λ = 100κ. For each

t ∈ [−Λ2r2
0 + t0, t0]

let Ut denote the connected component of Ωt ∩B(x0,Λr0) which contains B(x′0, κr0),
where x′0 = x0−κr0ν(x0, t0). Then for each x ∈ ∂Ut∩B(0,Λr0) and t ∈ [−Λ2r2

0+t0, t0]
there holds

G(x0, t0) ≤ C(n, γ,Γ′, κ)r−1
0 .

Applying Lemma 4.12, we conclude that there is a small positive δ = δ(n, γ,Γ′, κ)
and a smooth function

u : B(0, δr0) ∩ Tx0Mt0 × [−δ2r2
0 + t0, t0]
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which represents the solution as a graph near (x0, t0). In particular, u(0, 0) = 0, the
map

x 7→ x0 + x+ u(x, t)ν(x0, t0)

is a local parameterisation of Mt for each t ∈ [−δ2r2
0 + t0, t0], and the derivatives of u

at (0, 0) satisfy

|Dku|2(0, 0) ≤ C(n, k, γ,Γ′, κ)r−2k+2
0 .

The quantity |∇kA|2g(x0, t0) is bounded in terms of the derivatives of u of order at
most k + 2 at (0, 0), so we obtain

|∇kA|2g(x0, t0) ≤ C(n, k, γ,Γ′, κ)r−2k−2
0 ,

as required. �

We would now like to establish that, in a large backwards neighbourhood around
any point where the curvature is large, we also have control on the curvature from
below. This is the key to establishing derivative estimates which are valid on increas-
ingly large subsets of spacetime, and not just at a point or on a small neighbourhood.

Theorem 4.15. Let Ω = {Ωt : t ∈ [0, T )} be an admissible solution in the sense
of Definition 4.9. Then for every Λ > κ there is a positive K = K(n, γ,Γ′, κ, ϕ,Λ)
with the following property. Suppose r−1

0 := G(x0, t0) ≥ K, and for each

t ∈ [−Λ2r2
0 + t0, t0]

let Ut denote the connected component of Ωt ∩ B(x0,Λr0) which contains B(x′0, κr0),
where x′0 = x0−κr0ν(x0, t0). Then for each x ∈ ∂Ut∩B(0,Λr0) and t ∈ [−Λ2r2

0+t0, t0]
there holds

G(x, t) ≥ c(n, γ,Γ′, κ)Λ−1r−1
0 .

Proof. Fix Λ ≥ 100κ. Let µ be a small positive constant. Suppose there are
sequences of spacetime points (xk, tk) and (yk, τk) in M with the following properties:

• r−1
k := G(xk, tk)→∞;

• s−1
k := G(yk, τk) = µG(xk, tk);

• τk ∈ [−Λ2r2
k + t0, t0] and yk ∈ ∂Uk

τk
∩B(x′k,Λrk).

For each t ∈ [−Λ2r2
k + t0, t0], Uk

t denotes the connected component of Ωt ∩B(x′k,Λrk)
which contains B(x′k, κrk), where x′k := xk − κrkν(xk, tk). Using these assumptions,
we are going to prove a lower bound for µ of the form

µ ≥ c(n, γ,Γ′, κ, ϕ)Λ−1.

This proves the theorem since, for any µ violating this inequality, no sequence satis-
fying the above properties can exist.

We first observe that

|y′k − x′k| ≤ |y′k − yk|+ |yk − xk|+ |xk − x′k|
≤ κsk + (Λ + κ)rk

= (κ(1 + µ−1) + Λ)rk,

and B(y′k, κsk) = B(y′k, κµ
−1rk), so for Λ0 := 10(κ(1 + 2µ−1) + Λ) there holds

B(y′k, κsk) ⊂ B(x′k,Λ0rk).
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For each t ∈ [−Λ2
0r

2
k + tk, tk], let U0,k

t denote the connected component of Ωt ∩
B(x′k,Λ0rk) which contains B(x′k, κrk). Notice that Uk

t is always a subset of U0,k
t ,

since Λ0 > Λ. Also, since r−1
k blows up as k → ∞, if k is sufficiently large then

Theorem 4.11 tells us that C(x, x′k, κrk) ⊂ U0,k
t for every x ∈ U0,k

t . In particular,
since

yk ∈ ∂Uk
τk
∩B(x′k,Λrk) ⊂ ∂U0,k

τk
∩B(x′k,Λrk),

the line segment x′kyk is in U0,k
τk . It follows that each point y ∈ B(y′k, κsk) can be

connected to x′k by a path which lies in Ωτk ∩B(x′k,Λ0rk), namely, the path

x′kyk ∪ yky′k ∪ y′ky.
This means that B(y′k, κsk) ⊂ U0,k

τk
.

The idea now is to let B(y′k, κsk) evolve by the flow, so that it remains inside the
solution. Then if µ is small, there will be a large ball Bk inside Ωtk at a controlled
distance from xk. If k is sufficiently large then the solution is locally a graph over the
boundary of this large ball, which means that on a large spacetime neighbourhood
around Bk, the curvature is bounded from above on the order of the inverse of the
radius of Bk. If Bk is too large relative to rk (i.e. µ is too small), we get a contradiction
to the fact that G(xk, tk) = r−1

k .
Let

Rk(t)
2 := κ2s2

k − 2γ(1, . . . , 1)(t− τk), t ≤ Tk := τk +
κ2s2

k

2γ(1, . . . , 1)
,

so that the boundary ofB(y′k, Rk(t)) is a solution of the flow, and by the last paragraph

and the avoidance principle, B(y′k, Rk(t)) ⊂ U0,k
t for all τk ≤ t < Tk. We have

Tk ≥ tk − Λ2r2
k +

κ2s2
k

2γ(1, . . . , 1)
= tk +

(
κ2

2γ(1, . . . , 1)
− Λ2µ2

)
s2
k,

so let us assume µ is small enough to ensure

κ2

2γ(1, . . . , 1)
− Λ2µ2 > 0.

Then Tk > tk, so B(y′k, Rk(t)) still has positive radius at time t = tk. In particular,

B(y′k, Rk(tk)) ⊂ U0,k
tk

.
We have the following lower bound for Rk(t) at time t = tk:

Rk(tk)
2 = µ−2κ2r2

k − 2γ(1, . . . , 1)(tk − τk)
≥ (µ−2κ2 − 2γ(1, . . . , 1)Λ2)r2

k

=: η2r2
k.

We recall from above that |xk − y′k| ≤ Λ0rk/10, so if we set

Λ1 = η−1Λ0,

then there certainly holds

xk ∈ B(y′k,Λ1Rk(tk)/10).

Also, since
B(y′k,Λ1Rk(tk)) ⊂ B(x′k,Λ0rk + Λ1κsk),
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if we set Λ2 := 10(Λ0 + µ−1Λ1κ), then

B(y′k,Λ1Rk(tk)) ⊂ B(x′k,Λ2rk).

For each t ∈ [−Λ2
2r

2
k + t0, t0] let U2,k

t be the connected component of Ωt ∩B(x′k,Λ2rk)
which contains B(x′k, κrk). By the last paragraph

B(y′k, Rk(tk)) ⊂ U0,k
tk
⊂ U2,k

tk
.

We are going to show that if k is large then ∂U2,k
t is a radial graph over B(y′k, Rk(tk))

inside
B(y′k,Λ1Rk(tk))× [−Λ2

1Rk(tk)
2 + tk, tk].

Since xk ∈ B(y′k,Λ1Rk(tk)/10), this will imply an upper bound for the curvature at
(xk, tk).

We know by Lemma 4.13 that if k is sufficiently large,

G(x, t) ≤ C(n, γ,Γ′, κ)Λ2
2r
−1
k .

for each x ∈ ∂U2,k
t ∩ B(x′k,Λ2rk) and t ∈ [−Λ2

2r
2
k + tk, tk]. Suppose for a contra-

diction that there is a time t̃k ∈ [−Λ2
2r

2
k + tk, tk] and a point zk ∈ U2,k

t̃k
such that

C(zk, y
′
k, Rk(tk)) is not contained in U2,k

t̃k
. Then by Lemma 4.6 there is a point

z̃k ∈ U2,k

t̃k
such that the hypersurface S(z̃k, y

′
k, Rk(tk)) makes interior contact with

∂U2,k

t̃k
∩ B(x′k,Λ2rk) at some point, which we denote by ãk. In particular, by Lemma

4.6 there holds

λ1(ãk, t̃k) ≤ −
1

10
Rk(tk)|z̃k − y′k|−2.

Since z̃k and y′k are both in B(x′k,Λ2rk) we can bound

|z̃k − y′k| ≤ 2Λ2rk,

and Rk(tk) ≥ ηrk, so there holds

λ1(ãk, t̃k) ≤ −
η

40Λ2
2

r−1
k .

It follows that λ1(ãk, t̃k) tends to −∞ as k →∞, and since

G(ãk, t̃k) ≥ c(n, γ,Γ′)|A|(ãk, t̃k) ≥ c(n, γ,Γ′)|λ1|(ãk, t̃k)
it must be the case that G(ãk, t̃k)→∞. Therefore, by the almost-convexity property,
given any ε > 0 there holds

λ1(ãk, t̃k)

G(ãk, t̃k)
≥ −ϕ(G(ãk, t̃k))

G(ãk, t̃k)
≥ −ε

for every sufficiently large k. We conclude that

−εr−1
k ≤ −

η

40Λ2
2

r−1
k

for all sufficiently large k, but this is a contradiction if ε is too small. To recap, we have
shown that for each t ∈ [−Λ2

2r
2
k + tk, tk] and z ∈ U2,k

t , the pseudocone C(z, y′k, Rk(tk))

is contained in U2,k
t .

Since B(y′k,Λ1Rk(tk)) ⊂ B(x′k,Λ2rk) and

Λ1Rk(tk) ≤ Λ1κsk ≤ Λ2rk
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we can say in particular that if k is sufficiently large, then for each z ∈ U2,k
t ∩

B(y′k,Λ1Rk(tk)) and t ∈ [−Λ2
1Rk(tk)

2 + tk, tk] there holds

C(z, y′k, Rk(tk)) ⊂ U2,k
t ∩B(y′k,Λ1Rk(tk)).

Invoking Lemma 4.5 we find that for each

x ∈ ∂U2,k
t ∩B(y′k,Λ1Rk(tk)), t ∈ [−Λ2

1Rk(tk)
2 + tk, tk]

there holds

ν(x, t) · x− y
′
k

|x− y′k|
≥ 1√

5
Λ−1

1 .

It follows then from Theorem 4.3 that for each

x ∈ ∂U2,k
t ∩B(y′k,Λ1Rk(tk)/4), t ∈ [−Λ2

1Rk(tk)
2/2 + tk, tk]

there holds G(x, t) ≤ C(n, γ,Γ′)Λ2
1Rk(tk)

−1. We chose Λ1 large enough to ensure that
xk ∈ B(y′k,Λ1Rk(tk)/10), so in particular,

r−1
k = G(xk, tk) ≤ C(n, γ,Γ′)Λ2

1Rk(tk)
−1.

By definition
Λ2

1 = η−2Λ2
0,

and we know that Rk(tk) ≥ ηrk, so

Λ2
1Rk(tk)

−1 ≤ η−3Λ2
0r
−1
k ,

and there holds
r−1
k ≤ C(n, γ,Γ′)η−3Λ2

0r
−1
k .

Let us write

L =
1

µΛ
.

We recall the definition of η and insert the definition of L:

η = µ−2κ2 − 2γ(1, . . . , 1)Λ2 = (L2κ2 − 2γ(1, . . . , 1))Λ2.

Suppose L ≥ 10κ−1γ(1, . . . , 1)
1
2 so that we can estimate

η ≥ κ2

2
L2Λ2.

Similarly, using the definition of Λ0 we can estimate

Λ0 = 10(κ(1 + 2µ−1) + Λ)

= 10(κ(1 + 2LΛ) + Λ)

≤ 100κLΛ

as long as L ≥ κ−1 and Λ ≥ 1. Substituting these bounds back in we get

1 ≤ C(n, γ,Γ′)η−3Λ2
0

≤ C(n, γ,Γ′, κ)L−6Λ−6 · L2Λ2

= C(n, γ,Γ′, κ)µ4.

Hence there are two cases: either

L ≥ max{10κ−1γ(1, . . . , 1)
1
2 , κ−1}
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and µ ≥ c(n, γ,Γ′, κ), or else

L ≤ max{10κ−1γ(1, . . . , 1)
1
2 , κ−1}

and by the definition of L there holds µ ≥ c(n, γ, κ)Λ−1. Putting the two cases
together we get the desired estimate,

µ ≥ c(n, γ,Γ′, κ)Λ−1.

�

As a corollary we obtain the following result, which in some sense serves as a
replacement for the exterior noncollapsing estimate available for mean curvature flow.

Proposition 4.16. Let Ω = {Ωt : t ∈ [0, T )} be an admissible solution in the
sense of Definition 4.9. Then for each Λ > κ there is a constant K = K(n, γ,Γ′, κ, ϕ,Λ)
with the following property. If (x0, t0) ∈ M is such that r−1

0 := G(x0, t0) ≥ K then
for each t ∈ [−Λ2r2

0 + t0, t0], the set

Ωt ∩B(x0,Λr0)

is connected.

Proof. Fix Λ > 1. It suffices to show that, for an arbitrary sequence (xj, tj) ∈M
satisfying r−1

j := G(xj, tj)→∞, if j is sufficiently large then

Ωj
t ∩B(xj,Λrj)

is connected for every t ∈ [−Λ2r2
j + tj, tj].

Fix Λ̃ > Λ to be chosen in the course of the proof. We first rescale:

Ωj
t := r−1

j (Ωr2j t+tj
− xj), t ∈ [−r−2

j tj, 0].

We may assume j is so large that [−Λ̃2, 0] is contained in [−r−2
j tj, 0]. For each

t ∈ [−Λ̃2, 0], let U j
t denote the connected component of Ωj

t ∩ B(0, Λ̃) which contains
r−1
j (B(x′j, κrj) − xj), where x′j := xj − κrjν(xj, tj). Then, if j is sufficiently large

relative to Λ̃, Theorem 4.15 tells us that

G(x, t) ≥ c0(n, γ,Γ′, κ)Λ̃−1

for each x ∈ U j
t and t ∈ [−Λ̃2, 0]. Let us define

fj(t) := dist(∂U j
t , 0),

and observe that this function Lipschitz continuous on [−Λ̃2, 0]. At a time of differ-
entiability t̄ for fj, if x̄ ∈ ∂U j ∩B(0, Λ̃) is such that fj(t̄) = |x̄| then there holds

f ′j(t̄) ≤ −G(x̄, t̄) ≤ −c0Λ̃−1.

Since fj(t)→ 0 as t→ 0, we conclude that at time t = −Λ̃2, U j
t contains the ball

B′ := B(0, c0Λ̃).

Let us define yj to be the image of x′j under the rescaling, i.e.,

yj := r−1
j (x′j − xj).
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We may assume Λ̃ ≥ 2κ so that each of the balls B(yj, κ) is contained in B(0, Λ̃).

We claim that if j is sufficiently large and x ∈ Ωj
τ ∩ B′ for some τ ∈ [−Λ̃2, 0] then

yjx ⊂ Ωj
τ ∩B′. In fact we prove the stronger statement that

C(x, yj, κ/2) ⊂ Ωj
τ ∩B′.

Observe that if x ∈ Ωj
τ ∩B′ then there is a small positive ρ such that

B(x, ρ) ⊂ Ωj
τ ∩B′.

We know by the previous paragraph that B′ ⊂ Ω−Λ̃2 , so if it is the case that

C(x, yj, κ/2) 6⊂ Ωj
τ ∩B′,

then there must be some final time τ̃ ≤ τ such that

C(x, yj, κ/2) ⊂ Ωj
τ̃ ∩B′.

In particular, ∂C(x, yj, κ/2) touches ∂Ωj
τ̃∩B′ from the inside. Let the point of contact

be denoted by y.
Since B(x, ρ) and B(yj, κ) are both contained in Ωj

τ̃ the point y must lie in
S(x, yj, κ/2). Furthermore, there is a path from yj to y which stays inside the pseu-

docone, so y and yj are in the same connected component of Ωj
τ̃ ∩ B′, which means

that y ∈ ∂U j
τ̃ . On the other hand, by Lemma 4.13 we have an upper bound for the

curvature on ∂U j
τ̃ which is independent of j, so the almost-convexity property implies

that if j is large then the second fundamental form of the solution is becoming non-
negative at (y, τ̃). Since the smallest principal curvature of S(x, yj, κ/2) is bounded
from above by a negative constant independent of j, if j is large then we have a
contradiction to the interior contact at y.

To recap, we have shown that

xyj ⊂ C(x, yj, κ/2) ⊂ Ωj
τ ∩B′

for every x ∈ Ωj
τ and τ ∈ [−Λ̃2, 0]. In particular, this means that Ωj

t ∩ B′ has a
single connected component for each t ∈ [−Λ̃2, 0], provided that j is sufficiently large.
Therefore, if we take

Λ̃ ≥ c−1
0 Λ,

then B′ = B(0,Λ) and we have that Ωj
t∩B(0,Λ) has a single connected component for

each t ∈ [−Λ2, 0], provided that j is sufficiently large. This completes the proof. �

Combining the last result with the upper and lower curvature estimates in Lemma
4.13 and Theorem 4.15, we finally obtain the following Harnack inequality. For the
mean curvature flow there is a result of this kind in [HK17a], but the method used
there does not yield any information about how the constants depend on Λ. It would
be interesting to know whether the dependence of the upper bound on Λ can be
improved.

Theorem 4.17. Let Ω = {Ωt : t ∈ [0, T )} be an admissible solution in the sense
of Definition 4.9. Then for every Λ > κ there is a constant K = K(n, γ,Γ′, κ, ϕ,Λ)
with the following property. If r−1

0 := G(x0, t0) ≥ K then for each

(x, t) ∈M ∩
(
B(x0,Λr0)× [−Λ2r2

0 + t0, t0]
)
,
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there holds
C−1Λ−1r−1

0 ≤ G(x, t) ≤ CΛ2r−1
0 ,

where C = C(n, γ,Γ′, κ).

As a consequence, we obtain higher derivative bounds by essentially the same
argument used to prove Theorem 4.14.

Corollary 4.18. Let Ω = {Ωt : t ∈ [0, T )} be an admissible solution in the sense
of Definition 4.9. Then for every Λ > κ there is a constant K = K(n, γ,Γ′, κ, ϕ,Λ)
with the following property. If r−1

0 := G(x0, t0) ≥ K then for each k ∈ N and

(x, t) ∈M ∩
(
B(x0,Λr0)× [−Λ2r2

0 + t0, t0]
)
,

there holds
|∇kA|2(x, t) ∈ C(n, k, γ,Γ′, κ)r−2k−2

0 .





APPENDIX A

Semiconvex functions

Let (M, g) be a smooth Riemannian manifold, and U ⊂ M an open subset. We
say that f : U → R is semiconvex if there is a smooth function p : U → R such that
f + p is convex. We say that f is locally semiconvex if for each x ∈ U there is a small
ball around x on which f is semiconvex.

Alexandrov showed that a convex function on an open subset of Euclidean space
is almost-everywhere twice differentiable (see Section 6.4 of [EG15]). Since a semi-
convex function is the difference between a convex and a smooth function, semiconvex
functions also have this property. We also have the following result, which is proven
in Section 6.3 of [EG15].

Lemma A.1. Let U be an open subset of Rn and suppose f : U → R is convex.
For each pair of indices i and j, there is a Radon measure µij on U such that for
every ϕ ∈ C2

0(U), ∫
U

f
∂2ϕ

∂xi∂xj
dx =

∫
U

ϕdµij.

Moreover, the density of the absolutely continuous part of µij is ∂2f
∂xi∂xj

.

The hypothesis on f can be weakened to local semiconvexity using a covering
argument. Hence we can prove the following:

Lemma A.2. Let (M, g) be a Riemannian manifold and consider a compactly sup-
ported locally semiconvex function f defined on M . Then for each smooth vectorfield
V on M , there is a Radon measure µV with the property that∫

M

ϕ∇2f(V, V ) dµg +

∫
M

ϕdµV = −
∫
M

∇k(ϕ · V ⊗ V )kl∇lf dµg

holds for every ϕ ∈ C2
0(M).

Proof. Let {Uα} be an open cover of the support of f such that each Uα admits
a coordinate chart (so we can identify Uα with an open subset of Rn). Let {ζα} be a
family of nonnegative smooth functions such that ζα is compactly supported in Uα,
and the ζα are a partition of unity on sp(f). Composing f with a coordinate chart
yields a locally semiconvex function on Euclidean space, so by Alexandrov’s theorem,
f is almost-everywhere twice differentiable. In addition, for each pair of indices k
and l, the previous lemma tells us that there is a (singular) Radon measure µαkl on
Uα with the property that if ζ ∈ C2

0(Uα) then∫
Uα

ζ
∂2f

∂xk∂xl
dx+

∫
Uα

ζ dµαkl =

∫
Uα

∂2ζ

∂xk∂xl
f dx.
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Since f is locally Lipschitz, we may also write this as∫
Uα

ζ
∂2f

∂xk∂xl
dx+

∫
Uα

ζ dµαkl = −
∫
Uα

∂ζ

∂xk
∂f

∂xl
dx.

If V is a smooth vectorfield defined in Uα, we apply this formula with

ζ = ζαϕV
kV l
√

det g

to obtain:∫
Uα

ζαϕ
∂2f

∂xk∂xl
V kV l

√
det g dx+

∫
Uα

ζαϕV
kV l
√

det g dµαkl

= −
∫
Uα

∂ζα
∂xk
· ϕV kV l ∂f

∂xl

√
det g dx

−
∫
Uα

ζα
1√

det g

∂

∂xk
(ϕV k

√
det g)V l ∂f

∂xl

√
det g dx

−
∫
Uα

ζαϕV
k ∂V

l

∂xk
∂f

∂xl

√
det g dx

=

∫
Uα

ϕV kV l∇kf∇lζα dµ−
∫
Uα

ζα div(ϕV )V l∇lf dµ

−
∫
Uα

ζαϕV
k∇kV

l∇lf dµ+

∫
Uα

ζαϕΓlkm
∂f

∂xl
V kV m

√
det g dx,

We expand the divergence as div(ϕV ) = V k∇kϕ+ ϕ∇kV
k and rearrange to get∫

Uα

ζαϕ∇2f(V, V ) dµ+

∫
Uα

ζαϕV
kV l
√

det g dµαkl

=

∫
Uα

ϕV kV l∇kf∇lζα dµ−
∫
Uα

ζαV
kV l∇kϕ∇lf dµ

−
∫
Uα

ζαϕ(∇kV
kV l + V k∇kV

l)∇lf dµ

=

∫
Uα

ϕV kV l∇kf∇lζα dµ−
∫
Uα

ζα∇k(ϕ · V ⊗ V )kl∇lf dµ.

Summing over α, we obtain∫
M

ϕ∇2f(V, V ) dµ+
∑
α

∫
Uα

ζαϕV
kV l
√

det g dµαkl

= −
∫
M

∇k(ϕ · V ⊗ V )kl∇lf dµ,

so it suffices to define

µV (U) =
∑
α

∫
U∩Uα

ζαV
kV l
√

det g · µαkl

for each measurable U ⊂M . �
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This integration-by-parts formula implies the following inequality, which is used
in the proof of the convexity estimate in Chapter 3. Here γ : Γ → R can be any
smooth symmetric function which is elliptic (increasing in each of its arguments).

Lemma A.3. Let M be a smooth hypersurface with principal curvatures in Γ.
Suppose f : M → R is locally semiconvex and ϕ : M → R is smooth, nonnegative,
Lipschitz continuous and compactly supported. Then there holds∫

M

ϕ∆γf dµ ≤ −
∫
M

∇iγ̇
ij∇jf dµ−

∫
M

γ̇ij∇iϕ∇jf dµ,

where µ denotes the induced measure.

Proof. It suffices to consider ϕ ∈ C2
0(M), since the general case then follows by

approximation. Let {Uα} and {ζα} be as in the last proof, but where the ζα now form
a partition of unity on sp(ϕ). Consider a fixed Uα equipped with coordinates {xi}
and let {ei} denote the associated smooth frame of coordinate one-forms. Since γ is
increasing in each of its arguments the mapping

(ω, ω) 7→ γ̇(ω, ω) := γ̇ijωiωj

defines a smooth inner product of one-forms, so we can apply the Gram-Schmidt
algorithm to produce from {ei} a smooth frame {ẽi} of one-forms such that

γ̇(ẽi, ẽj) = δij.

We now define a local frame {ẽi} for the tangent bundle by the condition

ẽi(ẽj) = δij.

With respect to this basis,

γ̇ = γ̇(ẽi, ẽj)ẽi ⊗ ẽj =
∑
i

ẽi ⊗ ẽi,

so we can express

∆γf = γ̇ij∇i∇jf =
∑
i

∇2f(ẽi, ẽi).

Since ϕζα is nonnegative, we can now use the result from above to estimate∫
M

ϕζα∆γf dµ =
∑
i

∫
M

ϕζα∇2f(ẽi, ẽi) dµ

≤
∑
i

∫
M

ϕζα∇2f(ẽi, ẽi) dµ+
∑
i

∫
M

ϕζα dµẽi

= −
∑
i

∫
M

∇k(ϕζα · ẽi ⊗ ẽi)kl∇lf dµ

= −
∫
M

∇k(ϕζα · γ̇)kl∇lf dµ.

We thus have∫
M

ϕζα∆γf dµ ≤ −
∫
M

ϕζα∇iγ̇
ij∇jf dµ−

∫
M

γ̇ij∇i(ϕζα)∇jf dµ,
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and since this is true for every α we can sum up to obtain∫
M

ϕ∆γf dµ ≤ −
∫
M

∇iγ̇
ij∇jf dµ−

∫
M

γ̇ij∇iϕ∇jf dµ.

�



APPENDIX B

Regularity of graphical solutions

In this section, we establish a number of technical results for graphical hypersur-
faces moving by a concave function of the principal curvatures. The graph condition
allows us to represent the solution purely in terms of a scalar function, which can
be shown to satisfy a fully nonlinear parabolic equation. Using the regularity the-
ory for such equations, it is then possible to establish bounds for derivatives of the
curvature. The results here form the technical basis needed to prove the curvature
derivative estimates in Chapter 4.

What follows is the famous Krylov-Safonov estimate for solutions of linear para-
bolic equations with bounded coefficients [KS80b][Section 4].

Theorem B.1. Let u : B(0, 1)× [−1, 0]→ R be a C2;1 solution of the equation

∂tu = aij(x, t)DiDju+ bi(x, t)Diu+ f(x, t)

with aij, bi and f bounded. Suppose the equation is uniformly parabolic, meaning that

λ|ξ|2 ≤ aij(x, t)ξiξj ≤ Λ|ξ|2,

and that

sup
B(0,1)×[−1,0]

|b(x, t)| ≤ K.

Then for each θ ∈ (0, 1) there holds

sup
(x,s)6=(y,t)∈B(0,θ)×[−θ,0]

|u(x, s)− u(y, t)|
|x− y|α + |s− t|α2

≤ C sup
B(0,1)×[−T,0]

(|u|+ |f |)

where α depends only on n, λ and Λ, and C depends on all of these quantities, and
additionally on K and θ.

The next theorem was proven independently by Krylov [Kry82][Theorem 2.1] and
Evans [Eva82][Theorem 1]. Both of these works make essential use of the Krylov-
Safonov Hölder-estimate. We have not tried to state the theorem in the fullest possible
generality - the following version suffices for our purposes.

Theorem B.2. Let u ∈ C4(B(0, 1)× [−1, 0]) be a solution of the equation

∂tu = Φ(D2u,Du, u, x),

where Φ ∈ C2(U×B(0, 1)), and U is an open subset of Sym(n)×Rn×R. We assume
that the equation is uniformly parabolic, in the sense that there are positive constants
λ and Λ for which

λ|ξ|2 ≤ ∂Φ

∂Aij
(A, p, z, x)ξiξj ≤ Λ|ξ|2
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for every (A, p, z, x) ∈ U × B(0, 1) and ξ ∈ Rn. We also assume that F is convex in
its first argument, by which we mean that

∂2Φ

∂Aij∂Akl
(A, p, z, x)TijTkl ≥ 0

holds for all (A, p, z, x) ∈ U ×B(0, 1) and T ∈ Sym(n), and finally, that there is a K
such that

‖Φ‖C2(U×B(0,1)) ≤ K.

Then for each θ ∈ (0, 1), there holds

sup
(x,s)6=(y,t)∈B(0,θ)×[−θ,0]

(
|∂tu(x, s)− ∂tu(y, t)|
|x− y|α + |s− t|α2

+
|D2u(x, s)−D2u(y, t)|
|x− y|α + |s− t|α2

)
≤ C,

where α depends only on n, λ, Λ, K, and

sup
B(0,1)×[−1,0]

|∂tu|+ |D2u|+ |Du|,

and C depends on all of these same quantities, and on θ.

A standard bootstrap argument employing the Schauder estimates for linear par-
abolic equations (see for example [Lie96][Theorem 4.9]) now yields higher regularity:

Corollary B.3. Let u and Φ now be smooth functions, which otherwise satisfy
all of the same assumptions as in the theorem. Suppose in addition that for each
k ∈ N, the Ck-norm of Φ over the set U × B(0, 1) is bounded by a constant Kk.
Then, for each k ≥ 3 there is a constant Lk depending only on n, λ, Λ, Kk−1 and

sup
B(0,1)×[−1,0]

|∂tu|+ |D2u|+ |Du|

such that the Ck-norm of u over B(0, 1/2)× [−1/2, 0] is bounded by Lk.

Now we will apply the general results stated above to graphical hypersurfaces
moving by curvature. Let γ : Γ → (0,∞) be an admissible speed, which we also
assume to be concave. If M is a smooth hypersurface with principal curvatures λ ∈ Γ
then we write G(x) for γ(λ(x)).

Proposition B.4. Fix a positive constant r and consider a smooth function

u : B(0, r)× [−r2, 0]→ R,
where B(0, r) ⊂ Rn. Identify Rn with e⊥n+1 in Rn+1 and suppose the family of hyper-
surfaces defined by

F (x, t) := x+ u(x, t)en+1, (x, t) ∈ B(0, r)× [−r2, 0]

solves the equation
(∂tF (x, t))⊥ = −G(x, t).

Suppose further that
ν(x, t) · en+1 ≥ θ, |u| ≤ Lr,

where ν is the upward-pointing unit normal. Finally, suppose that for each (x, t) ∈
B(0, r)× [−r2, 0] we have upper and lower curvature bounds and curvature pinching:

K−1
0 r−1 ≤ G(x, t) ≤ K1r

−1, λ(x, t) ∈ Γ′ b Γ.
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Then for each k ∈ N and (x, t) ∈ B(0, r/2)× [−r2/4, 0] there holds

|Dku|2(x, t) ≤ C(n, k, γ,Γ′, θ, L,K0, K1)r−2k+2

Equivalently, for each k ∈ N and (x, t) ∈ B(0, r/2)× [−r2/4, 0] there holds

|∇kA|2g(x, t) ≤ C(n, k, γ,Γ′, θ, L,K0, K1)r−2k−2,

where g denotes the induced metric on the graph of u.

Proof. If we can prove the estimates for r = 1, then the general case follows by
scaling, so let us assume r = 1. In order to apply the regularity theory for scalar
parabolic equations, we need to convert the evolution equation for F into an equation
for u. For this we need expressions for the metric, inverse-metric, and normal in terms
of u:

gij = δij +DiuDju;

gij = δij −
DiuDju

1 + |Du|2
;

ν =
−Du+ en+1√

1 + |Du|2
.

It follows that the coefficients of the second fundamental form and Weingarten map
can be expressed as:

Aij = − DiDju√
1 + |Du|2

; gikAkj = −
(
δik −

DiuDku

1 + |Du|2

)
DkDju√
1 + |Du|2

.

From these formulae, we see that

(∂tF (x, t))⊥ = −G(x, t)

holds if and only if

∂tu = −
√

1 + |Du|2γ
(
−
(
δik −

DiuDku

1 + |Du|2

)
DkDju√
1 + |Du|2

)
.

Note that if A is any diagonalisable matrix with eigenvalues λ in Γ, we define γ(A)
to be γ(λ). The matrix gikAkj is not, in general, symmetric, and it is convenient to
replace it with a symmetric matrix having the same eigenvalues. To achieve this we
borrow a trick from Urbas [Urb91][Equation 2.21] and define

Pij = δij −
DiuDju√

1 + |Du|2(1 +
√

1 + |Du|2)
, Âij = PikAklPlj.

Then Âij is symmetric, and since P 2
ij = gij, one can show that v is an eigenvector of

gikAkj with eigenvalue λ if and only if P−1v is an eigenvector of Â with eigenvalue λ.
Since the value of γ depends only on the eigenvalues of its argument, we may write

∂tu = −
√

1 + |Du|2γ
(
− Pik

DkDlu√
1 + |Du|2

Plj

)
.

The uniform graph property implies that√
1 + |Du|2 ≤ θ−1,
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so there is a constant C depending only on θ such that

C−1δij ≤ gij ≤ Cδij, C−1δij ≤ gij ≤ Cδij.

These bounds imply that

|D2u|2 ≤ C(θ)|A|2 ≤ C(n, γ,Γ′, θ)K2
1 ,

and by assumption

|∂tu| =
√

1 + |Du|2|G| ≤ θ−1K1,

so we have

|∂tu|+ |u|+ |Du|+ |D2u| ≤ C(n, γ,Γ′, θ, L,K1).

Let us define functions

P : B(0, 2
√
θ−2 − 1)→ Sym(n)

p 7→ δij −
pipj√

1 + |p|2(1 +
√

1 + |p|2)

and

Ψ : Sym(n)×B(0, 2
√
θ−2 − 1)→ Sym(n)

(A, p) 7→ Pik(p)
Akl√

1 + |p|2
Plj(p).

Let U be the preimage of the set

{S ∈ O Γ′ : (2K0)−1 < γ(S) < 2K1}
under Ψ. Then on the set Ψ(U), the derivatives of γ up to all orders can be bounded
purely in terms of n, K0, K1 and Γ′, and this implies that all of the derivatives of

Φ : Ψ−1(U)→ (0,∞)

(A, p) 7→ −γ(−Ψ(A, p))

are bounded as well. Also, Φ is convex in A, since Ψ is linear in A and γ is concave.
Next we want to verify that the operator

Φ(D2u,Du) := −γ(−Ψ(D2u,Du))

is uniformly elliptic. To this end, we fix A and p and compute

∂Φ

∂Apq
(A, p) =

∂

∂Apq

(
Pik

Akl√
1 + |p|2

Plj

)
γ̇ij(−Ψ(A, p))

=
1√

1 + |p|2
PipPqj γ̇

ij(−Ψ(A, p)),

and so find that for each ξ ∈ Rn,

∂Φ

∂Apq
(A, p)ξpξq =

1√
1 + |p|2

γij(−Ψ(A, p))(Pξ)i(Pξ)j ≥ c(n, γ,Γ′, θ)|ξ|2.

Hence u and Φ satisfy all of the hypotheses of Corollary B.3 in B(0, 1)× [−1, 0].
We conclude that for each k ∈ N there holds

|u|Ck(B(0,1/2)×[−1/2,0]) ≤ C(n, k, γ,Γ′, θ, L,K0, K1),
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and this implies that for each k ∈ N, on the graph of u restricted to B(0, 1/2) ×
[−1/2, 0] there holds

|∇kA|2g ≤ C(n, k, γ,Γ′, θ, L,K0, K1).

�

The last result assumed a lower bound for G over the domain of u. If we only
assume a lower bound for G at the spacetime origin, the result still holds on a small
neighbourhood.

Lemma B.5. Let u and F be as in Proposition B.4, except that we only assume
the lower bound

G ≥ K−1
0 r−1

to be true at the point (x, t) = (0, 0). Then there is a positive

δ = δ(n, γ,Γ′, θ,K0, K1)

such that
inf

B(0,δr)×[−δ2r2,0]
G ≥ (2K0)−1r−1.

Proof. We can assume r = 1, since the general case then follows by scaling. We
are going to apply the Krylov-Safonov estimate to the function v := −∂tu. As before,
we write

G(x, t) = γ

(
− Pik

DkDlu√
1 + |Du|2

Plj

)
.

Differentiating the equation for u in time gives

∂tv = ∂t(
√

1 + |Du|2G)

= G
Du ·D∂tu√

1 + |Du|2
− γ̇ijPikPljDkDl∂tu− 2γ̇ij∂tPikPljDkDlu

−
√

1 + |Du|2γ̇ijPikPljDkDlu · ∂t
1√

1 + |Du|2
.

Using the one-homogeneity of γ we find that the last term is equal to√
1 + |Du|2γ̇ijPikPljDkDlu

Du ·D∂tu
(1 + |Du|2)

3
2

= G
Du ·D∂tu√

1 + |Du|2
,

so we have

∂tv = γ̇ijPikPljDkDlv − 2γ̇ij∂tPikPljDkDlu− 2G
Du ·Dv√
1 + |Du|2

.

Differentiating Pik in time yields

∂tPik = − DiuDk∂tu√
1 + |Du|2(1 +

√
1 + |Du|2)

+
DiuDku

(1 + |Du|2)(1 +
√

1 + |Du|2)2
∂t(
√

1 + |Du|2(1 +
√

1 + |Du|2)),
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which we can simply write as

∂tPik =: ζiDkv + b̃rikDrv,

where |ζi| ≤ C(θ) and |b̃rik| ≤ C(n, γ,Γ′, θ,K0). Hence

∂tv = γ̇ijPikPljDkDlv − 2γ̇ijPljDkDlu(ζiDkv + b̃rikDrv)− 2G
Du ·Dv√
1 + |Du|2

= aklDkDlv + bkDkv,

where we have defined:

akl := γ̇ijPikPlj;

bk = −2γ̇ijPljDkDlu · ζi − 2γ̇ijPljDrDlu · b̃kir − 2
G√

1 + |Du|2
Dku.

The assumption that λ takes values in Γ′ and the uniform graph property imply
uniform ellipticity,

C(n, γ,Γ′, θ)−1δkl ≤ akl ≤ C(n, γ,Γ′, θ)δkl,

and we also have an estimate of the form

|bk| ≤ C(n, γ,Γ′, θ,K1).

Thus the equation solved by v satisfies all of the hypotheses of Theorem B.1, and v
itself is bounded in terms of θ and K1, so there holds

sup
(x,s)6=(y,t)∈B(0,1/2)×[−1/2,0]

|v(x, s)− v(y, t)|
|x− y|α + |s− t|α2

≤ C(n, γ,Γ′, θ,K1).

In particular, we have

|v(x, t)− v(0, 0)| ≤ C(|x|α + |t|
α
2 ).

Since v =
√

1 + |Du|2 ·G and we have a C2-bound for u this implies

|G(x, t)−G(0, 0)| ≤ C(|x|α + |t|
α
2 ).

Since G(0, 0) ≥ K−1
0 , we can find a uniform spacetime set where G(x, t) ≥ (2K0)−1,

as required. �
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