
Graph Drawing

Beyond the Beaten Tracks

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Henry Förster (M.Sc.)

aus Wippra

Tübingen
2020

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 30.09.2020
Stellvertretender Dekan: Prof. Dr. József Fortágh
1. Berichterstatter: Prof. Dr. Michael Kaufmann
2. Berichterstatter: Prof. Dr. Klaus-Jörn Lange
3. Berichterstatter: Prof. Dr. Markus Chimani

i

Abstract

Graph drawing is a well-established research area in theoretical computer science
with an active research community that studies the embedding of graphs on sur-
faces such as the Euclidean plane. While traditional results stem from discrete
maths, graph embeddings have become more widespread with the emergence of
computing technology. Two important applications are the design of computer
chips and various diagram types such as UML and BPMN whose development was
possible due to the ubiquity of computers in professional environments. While the
traditional settings emerging from these newer applications are by now well stud-
ied, research has started to focus on advanced settings whose analysis becomes
more technically involved. One of the most important research directions of this
type is known as graph drawing beyond planarity and studies drawings of graphs
where the types of edge intersections are restricted. In this thesis, we consider
three such settings that go beyond the beaten tracks.

The most important drawing model in diagramming applications are orthog-
onal drawings in which edges are represented by polylines whose segments are
axis-aligned. Unsurprisingly, there exists a large body of research focusing mostly
on planar orthogonal drawings. We investigate two settings that have been pro-
posed in the literature that extend beyond this traditional model: In the smooth
orthogonal drawing model, bends are replaced by circular arcs, while in octilinear
drawings, segments of polylines may additionally have slopes ±1. In the first part
of this thesis, we show several new results for these “beyond orthogonal” drawing
styles: First, we characterize the relationship between the classes of graphs that
admit smooth orthogonal and octilinear drawings, respectively. Second, we prove
that techniques which diverge from the traditional ones used for orthogonal graph
drawings are needed to compute smooth orthogonal and octilinear drawings of
minimal curve complexity. Third, we give a drawing algorithm that guarantees
several desirable properties. Finally, we also extend the study of orthogonal and
smooth orthogonal drawings to the 1-planar setting where edges may be inter-
sected at most once. Here, we provide algorithms which compute drawings whose
curve complexity we prove to be worst-case optimal in almost all scenarios.

A graph drawing type that emerged from applications in VLSI chip design are
linear layouts. In a linear layout, vertices are totally ordered on a line called spine
while edges are drawn entirely above the spine. In a stack layout, the edges are
additionally colored so that no two edges of the same color class intersect. This
model has been deeply studied especially for planar graphs. The most important
result in this field is that four colors suffice for the edges of any planar graph. A
related model called queue layouts, however, has proven to be much more difficult
to analyze. In a queue layout, edges are also colored, in contrast to stack layouts
however, edges of the same color class may intersect but not nest. For more
than 25 years the conjecture that a constant number of colors suffices for planar
graphs had been open. In the second part of the thesis, we show that for planar

ii

graphs of bounded degree this is indeed true. We point out that the result has been
generalized to all planar graphs in the meanwhile. We also consider another drawing
style that extends beyond the capabilities of stack layouts called arc diagrams. In
contrast to stack layouts, edges in an arc diagram may be drawn above and below
the spine and may even intersect the spine once, yielding a so-called biarc. In
addition, all edges are intersection-free. We consider a variant called down-up
monotone arc diagram where all biarcs must have the same monotone shape. This
drawing style has applications in point-set-embeddability problems. We improve
the best known upper bound for the number of biarcs in such arc diagrams and
present a SAT formulation of the arc diagram drawing problem.

In the third and final part of the thesis, we shift our attention to beyond planar
drawings which are motivated by the fact that visualization of nonplanar real-world
graphs is necessary in many applications. In particular, we study RACk drawings,
that is, drawings in which every edge is drawn as a polyline with at most k bends so
that all intersections occur at right angles. First, we consider the density of graphs
admitting RAC1 drawings and give a new upper bound that we prove to be tight
up to an additive constant. We also show that the graphs that admit simple RAC1

drawings have slightly smaller edge density and provide a lower bound construction
for this restricted scenario. Second, we investigate the area requirement of RAC
drawings of dense graphs. Namely, we prove that every graph admits a RAC3

drawing in cubic area and a RAC8 drawing in quadratic area. In the case of p-
partite graphs we even show how to achieve quadratic area RAC3 drawings which
we prove to not be possible for general graphs.

Finally, we conclude the thesis with a summary of our results and several
interesting open research problems.

iii

Zusammenfassung

Graphenzeichnen ist ein etabliertes Forschungsgebiet mit einer aktiven Forschungs-
gemeinschaft in der theoretischen Informatik, das die Einbettung von Graphen
auf Oberflächen wie der euklidischen Ebene untersucht. Während traditionelle
Ergebnisse aus der diskreten Mathematik stammen, haben sich Einbettungen von
Graphen mit dem Aufkommen der Computertechnologie weiter verbreitet. Zwei
wichtige Anwendungen sind das Design von Computerchips und verschiedene Dia-
grammtypen wie UML und BPMN, deren Entwicklung aufgrund der Allgegenwart
von Computern in professionellen Umgebungen möglich war. Während die tradi-
tionellen Modelle, die sich aus diesen neueren Anwendungen ergeben, inzwischen
gut untersucht sind, hat die Forschung begonnen, sich auf erweiterte Kontexte
zu konzentrieren, deren Analyse technisch komplizierter ist. Eine der wichtigsten
Forschungsrichtungen dieses Typs ist bekannt als Graph Drawing Beyond Planarity
und untersucht Zeichnungen von Graphen, bei denen die Arten von Kantenkreuzun-
gen eingeschränkt sind. In dieser Dissertation werden drei solche Modelle, die
“beyond the beaten tracks” gehen, betrachtet.

Das wichtigste Zeichnungsmodell in Diagrammanwendungen sind orthogonale
Zeichnungen, bei denen Kanten durch Polylinien dargestellt werden, deren Seg-
mente achsenausgerichtet sind. Es ist nicht überraschend, dass es eine große
Anzahl von Forschungsarbeiten gibt, die sich hauptsächlich mit planaren ortho-
gonalen Zeichnungen beschäftigt. In dieser Thesis werden zwei Szenarien, die in
der Literatur vorgeschlagen wurden und über dieses traditionelle Modell hinausge-
hen, untersucht: Im smooth-orthogonalen Zeichnungsmodell werden Knicke durch
Kreisbögen ersetzt, während in oktilinearen Zeichnungen Segmente von Polylinien
zusätzlich die Steigungen ±1 aufweisen können. Im ersten Teil dieser Arbeit wer-
den einige neue Ergebnisse für diese "beyond-orthogonalen" Zeichenstile gezeigt:
Zunächst werden die Beziehungen zwischen den Klassen von Graphen, die smooth-
orthogonale und oktilineare Zeichnungen zulassen, charakterisiert. Zweitens wird
bewiesen, dass Techniken erforderlich sind, die von den traditionellen Methoden
für orthogonale Diagrammzeichnungen abweichen, um smooth-orthogonale und
oktilineare Zeichnungen mit minimaler Kurvenkomplexität zu berechnen. Drit-
tens wird ein Zeichenalgorithmus angegeben, der mehrere wünschenswerte Eigen-
schaften garantiert. Anschließend werden orthogonale und smooth-orthogonale
Zeichnungen 1-planarer Graphen, bei der Kanten höchstens einmal geschnitten
werden dürfen, betrachtet. Hier werden effiziente Algorithmen zur Verfügung
gestellt, die Zeichnungen berechnen, für deren Kurvenkomplexität in fast allen
Szenarien gezeigt wird, dass sie worst-case-optimal sind.

Ein Graphenzeichnungstyp, der aus Anwendungen im VLSI-Chip-Design her-
vorgegangen ist, sind lineare Layouts. In einem linearen Layout sind die Knoten
entlang einer Linie angeordnet, die Spine genannt wird, während die Kanten voll-
ständig über der Spine gezeichnet werden. In einem Stack-Layout werden die
Kanten zusätzlich eingefärbt, so dass sich keine zwei Kanten derselben Farbklasse

iv

schneiden. Dieses Modell wurde insbesondere für planare Graphen eingehend un-
tersucht. Das wichtigste Ergebnis in diesem Bereich ist, dass vier Farben für
die Kanten jedes planaren Graphen ausreichen. Ein verwandtes Modell namens
Queue-Layouts hat sich jedoch als wesentlich schwieriger zu analysieren erwiesen.
In einem Queue-Layout sind die Kanten ebenfalls gefärbt, im Gegensatz zu Stack-
Layouts dürfen sich jedoch Kanten derselben Farbklasse zwar schneiden, aber nicht
schachteln. Über 25 Jahre lang war die Vermutung, dass eine konstante Anzahl von
Farben für planare Graphen ausreicht, weder bewiesen noch widerlegt. Im zweiten
Teil der Arbeit wird gezeigt, dass diese für planare Graphen begrenzten Grades in
der Tat zutrifft. Dabei sei darauf hingewiesen, dass das Ergebnis inzwischen für
alle planaren Graphen verallgemeinert worden ist. Es wird auch ein anderer Zei-
chenstil in Betracht gezogen, dessen Ausdrucksstärke jenseits der Möglichkeiten
von Stack-Layouts liegt und Arc Diagram genannt wird. Im Gegensatz zu Stack-
Layouts können die Kanten in einem Arc Diagram über und unter der Spine gezeich-
net werden und die Spine sogar einmal schneiden, was einen sogenannten Biarc
ergibt. Darüber hinaus sind alle Kanten kreuzungsfrei. Es wird eine Variante na-
mens up-down-monotones Arc Diagram betrachtet, bei der alle Biarcs die gleiche
monotone Form haben müssen. Dieser Zeichenstil findet Anwendung bei Point-
Set-Embeddability-Problemen. Die beste bekannte Obergrenze für die Anzahl der
Biarcs in solchen Arc Diagrams wird verbessert und eine SAT-Formulierung des
Problems des Zeichnens von Arc Diagrams präsentiert.

Im dritten und letzten Teil der Arbeit wird der Fokus auf beyond-planare Ze-
ichnungen gelegt, die dadurch motiviert sind, dass die Visualisierung nicht-planarer
realer Graphen in vielen Anwendungen notwendig ist. Insbesondere werden RACk-
Zeichnungen untersucht, d.h. Zeichnungen, in denen jede Kante als Polylinie mit
höchstens k Knicken gezeichnet wird, so dass alle Kreuzungen im rechten Winkel
auftreten. Zunächst wird die Kantendichte der Graphen, die RAC1-Zeichnungen
zulassen, betrachtet und eine neue Obergrenze angegeben, die bis auf eine addi-
tive Konstante optimal ist. Es wird auch gezeigt, dass die Graphen, die einfache
RAC1-Zeichnungen zulassen, eine etwas geringere Kantendichte aufweisen und es
wird eine Konstruktion, die eine untere Schranke für die Dichte solcher Graphen
darstellt, präsentiert. Zweitens wird der Flächenbedarf von RAC-Zeichnungen von
dichten Graphen untersucht. Es wird bewiesen, dass jeder Graph eine RAC3-
Zeichnung in kubischer Fläche und eine RAC8-Zeichnung in quadratischer Fläche
zulässt. Im Falle von p-partiten Graphen wird sogar gezeigt, wie man RAC3-
Zeichnungen in quadratischer Fläche erreicht, was für allgemeine Graphen als nicht
möglich bewiesen wird.

Schlußendlich wird die Arbeit mit einer Zusammenfassung der Ergebnisse und
einigen interessanten offenen Forschungsproblemen abgeschlossen.

v

Acknowledgements

First and foremost, I want to thank my advisor Prof. Michael Kaufmann for
sparking my interest in theoretical computer science, algorithms and graph drawing,
for being a great advisor and co-author and for giving me the opportunities of
writing this thesis, being part of his research group, and visiting several workshops
and conferences in the past couple of years.

Moreover, I want to express my gratitude towards my other coauthors Patrizio
Angelini, Fouli Argyriou, Michael Bekos, Till Bruckdorfer, Steve Chaplick, Sabine
Cornelsen, Giordano Da Lozzo, Robert Ganian, Chris Geckeler, Martin Gronemann,
Lukas Holländer, Fabian Klute, Stephen Kobourov, Myroslav Kryven, Beppe Liotta,
Tamara Mchedlidze, Fabrizio Montecchiani, Martin Nöllenburg, Yoshio Okamoto,
Tito Patrignani, Simon Poschenrieder, Chrysanthi Raftopoulou, Thomas Schneck,
Amadäus Spallek, Jan Splett, Thomas Stüber, Torsten Ueckerdt, Sascha Wolff for
the pleasant and fruitful collaborations. On this note, a special thanks has to go
to Michalis for teaching me a lot about scientific work in the initial phase of my
doctoral studies, and to Brillo Frati, Stephen Kobourov, Martin Nöllenburg and
Antonis Symvonis for having me as a guest at their research groups for a couple
of weeks.

My thanks also go to the past and present members of our work group Pa-
trizio Angelini, Michael Bekos, Renate Hallmayer, Nik Heinsohn, Axel Kuckuk,
Maxi Pfister, Lena Schlipf, Thomas Schneck and Alessandra Tappini not only for
scientific discussions but also for the amazing work atmosphere.

For their delightful company especially also in the current weird times I want
to thank my friends AJ, Alex, Anna, Anna, Chris, Eva, Jinglin, Marc, Natasha,
Simon, Steffen, Stoyan, Tobi and everyone else I probably forgot now to mention
by name (sorry! :().

Special thanks also go to the proofreaders Michael and Lena for the fast and
valuable feedback.

Last but not least I want to thank my parents for their support.

vi

Contents

1 Introduction 1

2 Preliminaries and Related Work 11

2.1 Graph Theoretic Foundations . 11

2.1.1 Graphs . 11

2.1.2 Connectivity . 12

2.1.3 Special Families of Graphs 13

2.2 Graph Drawing Basics . 13

2.2.1 Basic Definitions . 14

2.2.2 Aesthetic Criteria . 16

2.2.3 Vertex Orderings and Shift Method 17

2.3 Graph Drawing Styles . 19

2.3.1 Orthogonal Drawings and Extensions 19

2.3.2 Beyond Planar Graph Drawings 24

2.3.3 Linear Layouts . 27

I Beyond Orthogonal Drawings 33

3 Smooth Orthogonal and Octilinear Drawings of Planar Graphs 35

3.1 Relations . 35

3.2 NP-Hardness of the Metrics Step 46

3.3 Bi-Monotone Kandinsky Drawings 53

vii

viii CONTENTS

4 (Smooth) Orthogonal Drawings of 1-Planar Graphs 61

4.1 1-Planar Bar Visibility Representations 63

4.2 1-Planar Drawings . 64

4.3 Outer-1-Planar Drawings . 71

II Beyond Stack Layouts 87

5 Queue Layouts of Bounded Degree Planar Graphs 89

5.1 Tools froms the Literature . 91

5.2 ∆-Matched Graphs . 94

5.3 General Planar Graphs of Bounded Degree 99

5.4 Time Complexity . 102

6 Monotone Arc Diagrams with few Biarcs 105

6.1 Overview of the Algorithm . 106

6.2 Default Vertex Insertion . 112

6.3 Vertex Insertion involving Open Configurations 113

6.4 Proof of Theorem 5.1 . 125

6.5 Description of the SAT Formulation 126

III Beyond Planar Drawings 131

7 Density Bounds for RAC Drawings with one Bend per Edge 133

7.1 Overview of the Charging Scheme 134

7.2 Upper Bound Results . 137

7.3 Lower Bound Results . 147

8 Area Bounds for RAC Drawings with three and more Bends per

Edge 155

8.1 A New Upper Bound for the Area of RAC3 Drawings 156

8.2 A First Lower Bound for the Area of RAC3 Drawings 158

CONTENTS ix

8.3 Area Optimal RAC8 Drawings . 173

8.4 Area Optimal RAC3 Drawings of p-partite Graphs 178

9 Conclusions 183

Bibliography 187

A Other Works of the Author 203

Index 205

x CONTENTS

Chapter 1

Introduction

Graph drawing deals with the embedding of graphs on surfaces such as the Eu-
clidean plane. First results on topological graph embeddings date back at least
to Euler [87, 88]. While initially a discipline of discrete maths, present-day graph
drawing was vastly shaped by the ubiquity of computer science as new applica-
tion domains became widespread: Graphs are a fundamental data structure in
computer science and new technology such as VLSI design required special graph
embeddings [125, 126, 127, 153, 156], diagrams like UML and BPMN diagrams1

became increasingly more used in professional settings and motivated new fields
of research [41, 62, 95] while graph visualizations in everyday applications such
as metro maps that were traditionally drawn by hand could now be created with
the support of a computer [110, 135]. Nowadays, graph drawing is an established
discipline in theoretical computer science with an active research community and
an annual conference.2 While the traditional settings that are investigated in graph
drawing are by now quite well understood, new topics of research have been identi-
fied and have become a main focus. In the following three paragraphs, we discuss
exemplarily how three of the traditional models have matured and how new con-
cepts extend beyond the classic framework. This thesis consists of three parts that
each present several new results in one of these models which may be regarded as
prototypical for current trends in graph drawing.

Beyond orthogonal drawings. The study of orthogonal graph drawings was
motivated by applications in VLSI design and floor-planning [125, 127, 156]; see
Fig. 1.1a. In an orthogonal drawing, edges are drawn as sequences of axis-aligned
segments and attached to either the north, the south, the east or the west port of
their endpoints which each may be used by only a single edge. A very important
aspect in the evaluation of orthogonal drawings is the curve complexity which is the
maximum number of segments of the drawing of any of the edges. In particular,

1See https://www.omg.org/spec/UML and https://www.omg.org/spec/BPMN.
2See http://www.graphdrawing.org.

1

https://www.omg.org/spec/UML
https://www.omg.org/spec/BPMN
http://www.graphdrawing.org

2 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: Typical applications of orthogonal graph drawings: (a) VLSI micropro-
cessor3, (b) UML diagram4. Observe the axis-aligned edge routing in both applica-
tions.

an orthogonal drawing of curve complexity k is referred to as an OCk drawing .
Some of the most well-known works on orthogonal drawing proved that all

planar graphs of maximum degree four admit a planar OC3-drawing with the ex-
ception of the octahedral graph which admits a planar OC4-drawing [43, 129] while
all planar graphs of maximum degree three admit OC2-drawings [117]. Note that
this indicates that bounding the allowed curve complexity reduces the complexity
of graphs that may be visualized.

In addition, it is noteworthy, that for maximum degree four planar graphs,
it is NP-hard to find a drawing with minimum curve complexity [100]. On the
other hand, the problem becomes polynomial time solvable if an embedding is
given [149]. More precisely, in the latter scenario, one typically first computes an
orthogonal representation that defines the angles between edges around a vertex
and the number and types of bends along an edge. Based on this representation,
segments are assigned a length in a subsequent step. This approach is well-known
as the topology-shape-metrics approach [149] since one computes the orthogonal
representation from a topological embedding that defines a shape, before comput-
ing the metrics of the resulting drawing. A very important aspect here is, that
every orthogonal representation in which the angles around each face of length k

3Pauli Rautakorpi: “Die shot of Tandem VLSI VF4723 microprocessor designed by Tan-
dem Computers for CLX 800 series fault tolerant computers and manufactured by VLSI Tech-
nology. Chip has both Tandem and VLSI logos and VLSI, 9404TV 341321, VF4723-0001,
31093B00 CPU, TANDEM USA as markings”, 21 August 2018. Taken from https://commons.
wikimedia.org/wiki/File:VLSI_Tandem_CLX_800_CPU_die.jpg. Published under CC-BY
3.0, see https://creativecommons.org/licenses/by/3.0/legalcode for the license infor-
mation.

4EleGall: “An UML diagram of IEEE1484.12.1 Learning Object Metadata (LOM) base
schema”, 7 August 2011. Taken from https://commons.wikimedia.org/wiki/File:LOM_
base_schema.svg Published under CC-BY SA 3.0, see https://creativecommons.org/
licenses/by-sa/3.0/legalcode for the license information.

https://commons.wikimedia.org/wiki/File:VLSI_Tandem_CLX_800_CPU_die.jpg
https://commons.wikimedia.org/wiki/File:VLSI_Tandem_CLX_800_CPU_die.jpg
https://creativecommons.org/licenses/by/3.0/legalcode
https://commons.wikimedia.org/wiki/File:LOM_base_schema.svg
https://commons.wikimedia.org/wiki/File:LOM_base_schema.svg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/legalcode

3

(a) (b)

Figure 1.2: (a) In BPMN diagrams, it is common practice to replace bends with
circular arcs5. (b) Metromaps are typically drawn with octilinear edges6.

sum up to the valid amount of (k−2)ı also admits a realizing orthogonal drawing.
The orthogonal graph drawing model restricts graphs to have maximum degree

four due to the port restriction. Especially in the context of UML and BPMN
diagrams, this has been relaxed so to accommodate multiple edges at the same
side of a vertex which also allows graphs of maximum degree larger than four to be
visualized; see e.g. Fig. 1.1b. This model is known as the Kandinsky model . Due
to its practical applications it is unsurprising, that a large body of literature has
focused on Kandinsky drawings [36, 41, 44, 45, 62, 95, 96]. Another limitation in
the practical application of orthogonal drawings is that, traditionally, research has
mainly focused on planar graphs. For the scenario where intersections cannot be
avoided, some algorithms exist that however cannot guarantee in which patterns
these intersections occur, see e.g. [43, 96].

Over the years, in some application domains, drawing types have evolved that
may be regarded as extensions of the orthogonal graph drawing model. For in-
stance, in BPMN diagrams, it is common practice to replace bends with circular
arcs; see Fig. 1.2a. As a result, for maximum degree four graphs optimal angular
resolution can be maintained while also realizing each edge with a smooth curve.
In the literature, this concept has been introduced as smooth orthogonal drawings,
in which every edge consists of a sequence of axis-aligned straight-line segments
and circular arcs such that two consecutive segments have an overlapping tangent
at their shared point. In addition, the port restriction is adopted from orthogo-

5Figure taken from https://commons.wikimedia.org/wiki/File:BPMN-CollectVotes.
jpg.

6HerrMay: “Metromap of Vienna in December 2019”, 18 February 2020. Taken from https:
//commons.wikimedia.org/wiki/File:U-Bahnnetz_Wien_2019.png Published under CC-
BY SA 3.0, see https://creativecommons.org/licenses/by-sa/3.0/legalcode for the
license information.

https://commons.wikimedia.org/wiki/File:BPMN-CollectVotes.jpg
https://commons.wikimedia.org/wiki/File:BPMN-CollectVotes.jpg
https://commons.wikimedia.org/wiki/File:U-Bahnnetz_Wien_2019.png
https://commons.wikimedia.org/wiki/File:U-Bahnnetz_Wien_2019.png
https://creativecommons.org/licenses/by-sa/3.0/legalcode

4 CHAPTER 1. INTRODUCTION

nal drawings. In contrast to common practice in many of the applications, it is
even possible to entirely draw edges with circular arcs, which may even lead to a
reduction in curve complexity. Similar to orthogonal drawings, we call a smooth
orthogonal drawing with curve complexity k an SCk drawing .

The main results of the literature state that all planar graphs of maximum
degree four admit an SC2 drawing [9] while planar graphs of maximum degree
three [29] admit an SC1 drawing. The principles of the Kandinsky drawing model
were also applied to smooth orthogonal drawings, achieving drawings of curve
complexity two [31]. Moreover, it is known that every maximum degree four graph
admits an SC1 drawing [29], but as it was the case with orthogonal drawings, no
guarantees for the patterns of intersection can be made. Finally, it is noteworthy
that it is conjectured that testing if a planar graph of maximum degree four admits
a planar SC1 drawing is NP-hard [9].

Another extension of orthogonal drawings can be found in metro maps, where
the number of slopes used by segments of edges is also limited. Usually, metro maps
use the two axis-aligned slopes and the slopes 1 and −1; see Fig. 1.2b. Drawings in
which the slopes of segments are restricted in this fashion are known as octilinear
drawings. Octilinear drawings are also often used in the typical applications of
orthogonal drawings to allow for a larger maximum degree without adopting the
Kandinsky model. Again, the curve complexity is an important quality measure
and an octilinear drawing of curve complexity k is known as an 8Ck drawing .

All planar graphs of maximum degree eight admit a planar 8C3-drawing [121]
while if the maximum degree is five a planar 8C2-drawing is possible [28]. Moreover,
planar graphs of maximum degree three always admit a planar 8C1-drawing [69,
116]. Deciding if a maximum degree eight planar graph admits a planar 8C1-
drawing is however NP-hard [135]. This raises the question which is the lowest
maximum degree for which NP-hardness holds. Results on octilinear Kandinsky
drawings so far have been limited mostly to a restricted subcase called Sloginsky
drawings [33, 36].

In Part I, we will investigate several properties of smooth orthogonal and octi-
linear drawings. In addition, we will also reconsider the classic orthogonal drawing
model and show new results for non-planar graphs in which intersections are re-
stricted. Both of these perspectives extend beyond the classic planar orthogonal
graph drawings.

Beyond stack layouts. Another drawing type that became popular due to its
application in VLSI design [57, 58] is known as stack layout. A stack layout is a
linear layout. In a linear layout, all vertices are restricted to a line S called spine
while edges are drawn in disjoint halfplanes delimited by S. The occurence of
vertices along S induces a total order ≺. We then say that two edges (u; v) and
(u′; v ′) are intersecting , if u ≺ u′ ≺ v ≺ v ′. Also we say that (u; v) nests (u′; v ′),
if u ≺ u′ ≺ v ′ ≺ v . In a stack layout no two edges on the same halfplane may

5

(a)

(b) (c)

Figure 1.3: Applications of linear layouts: (a) Multi layer printed circuit board7,
(b) 3D graph drawing8, and, (c) circular layout9.

intersect, hence the subdrawing on each halfplane is planar. A natural application
are multi layer printed circuit boards: Typically, the input and output pins (vertices)
are located at one side of the circuit board while in the different layers connections
(edges) are routed; see Fig. 1.3a.

The most important parameter of a graph class G related to stack layouts is
the stack number which is the minimum number s such that each graph belonging
to G admits a stack layout where the edges use at most s halfplanes. The graphs
with stack number one and two are exactly the outerplanar and subhamiltonian
graphs, respectively [40]. Since the recognition of subhamiltonian graphs is NP-
hard, computing the stack number is NP-hard as well. On a positive side, it is
known that the stack number of planar graphs is four [30, 161]. We point out that
there are also results dealing with nonplanar graphs in the literature, see e.g. [75].

7Christoph Kappel: “Multi layer printed circuit board with copper gold ISA”, 02 April
2006. Taken from https://commons.wikimedia.org/wiki/File:Multilayer_pcb.jpg.
Published under CC-BY SA 3.0, see https://creativecommons.org/licenses/by-sa/3.
0/legalcode for the license information.

8Eltobgy: “Three-dimensional brain graph”, 8 December 2017. Taken from https:
//commons.wikimedia.org/wiki/File:Three-dimensional_brain_graph.jpg. Pub-
lished under CC-BY SA 4.0, see https://creativecommons.org/licenses/by-sa/4.0/
legalcode for the license information.

9Evmorfia Argyriou, Michael Baur, Anne Eberle and Armin Gufler: Winning contribution to
the Graph Drawing Contest 2018. Taken from http://mozart.diei.unipg.it/gdcontest/
contest2018/results.html.

https://commons.wikimedia.org/wiki/File:Multilayer_pcb.jpg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://commons.wikimedia.org/wiki/File:Three-dimensional_brain_graph.jpg
https://commons.wikimedia.org/wiki/File:Three-dimensional_brain_graph.jpg
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
http://mozart.diei.unipg.it/gdcontest/contest2018/results.html
http://mozart.diei.unipg.it/gdcontest/contest2018/results.html

6 CHAPTER 1. INTRODUCTION

In addition to stack layouts, the related drawing style known as queue layouts
has been investigated in the literature. A queue layout is also a linear layout, but
in contrast to stack layouts edges assigned to the same halfplane may intersect
but not nest. We point out that it may appear as if allowing intersections on a
halfplane would allow for graphs to be realized which are more complex than those
realizable with stack layouts with the same number of halfplanes. However, the
graphs that may be realized in one halfplane are the arched-level planar graphs [108]
which have the same density as outerplanar graphs and are a subfamily of planar
graphs. Despite the potentially many intersections on each halfplane, queue layouts
are related to intersection-free three dimensional graph visualizations [68, 78] and
have been motivated by three-dimensional circuit layouts [126]. Over the decades,
three dimensional graph drawings have become more widespread, especially in
applications that deal with three-dimensional data or simply have the need to
visualize large complex networks, see also Fig. 1.3b.

The queue number is defined analogously to the stack number. More precisely,
the queue number of a graph class G is the minimum q such that each graph
belonging to G admits a queue layout where the edges use at most q halfplanes.
Based on the queue number, the relation to three-dimensional graph drawings can
be defined more clearly, namely, graph classes of bounded queue number admit an
intersection-free three-dimensional drawing in linear volume [68, 78]. At the start of
this thesis, bounded queue numbers have been known only for not necessarily planar
graphs for which some other graph parameter is bounded [23, 78, 81, 107, 158].
In this context, it is also noteworthy that bounding the degree is not bounding
the queue number in general [160]. On the other hand, similar results were known
only for more limited subfamilies of planar graphs [8, 98, 143]. Moreover, the best
known upper bound for the queue number of planar graphs was O(log n) [23]. In
Chapter 5, we will show that the queue number of bounded degree planar graphs
is bounded. In the meantime, it was shown, that this result extends to all planar
graphs [76].

Another application of stack layouts arises in circular layouts, where vertices
are restricted to a circle; see e.g. Fig. 1.3c. In fact, by glueing together both ends
of the spine, such a layout is easily obtained [65]. Moreover, if the stack layout
only uses two halfplanes, one of them can be projected to the outside of the circle
while the second can be projected to the inside. If the stack number however is
at least three, this approach cannot be easily applied as projecting two pages to
the same side of the circle may introduce arbitrary intersections. One strategy to
cope with this is to use arc diagrams instead of stack layouts. In an arc diagram,
one restricts the number of halfplanes to two but allows edges to be composed of
sequences of segments such that each segment is located on either halfplane and
starts and ends on the spine. If an arc diagram is mapped to a circle to create
a circular layout, an edge composed of more than one segment is partially drawn
inside and outside of the circle. Arc diagrams also find applications in point set
embeddability problems [15, 89, 130].

7

It is known that every planar graph admits an arc diagram in which each edge
is either drawn as a proper arc (i.e., with one segment) or as a biarc (i.e., with two
segments) [120]. Biarcs have been investigated for additional properties. Namely,
biarcs can be monotone, if their intersection with the spine occurs between their
corresponding endpoints. Moreover, a monotone biarc can be down-up, if its
left segment regarding the spine appears on one halfplane that is defined as the
“bottom” halfplane while its second segment is located on the other halfplane
called “top”. This down-up property is used in several works that build upon
arc diagrams [89, 130]. In fact, every planar graph admits a so-called down-up
monotone arc diagram, in which every edge is either a proper arc or a down-up
monotone biarc [67]. While biarcs are required in general, one may hope to use
as few of them as possible. It was shown, that every planar graph admits an
arc diagram with b(n − 3)=2c not necessarily monotone biarcs and a down-up
monotone arc diagram with n − 4 biarcs while in general b(n − 8)=3c biarcs may
be required [51].

In Part II, we first show that the queue number of bounded degree planar graphs
is bounded. This complements similar results that are known for stack layouts.
Second, we investigate the number of biarcs in down-up monotone arc diagrams
that are stack layouts on two half-planes where the spine may be intersected. Both
of these models go beyond the classic study of stack layouts of planar graphs.

Beyond planar drawings. Planar graphs have been the traditional focus of
graph drawing research. Hence, it comes at no surprise that planar graphs are
quite well understood and that efficient planar drawing algorithms exist for popular
drawing styles such as straight-line drawings [60], orthogonal drawings [149] or
upward drawings [102]. The literature for nonplanar drawings initially considered
properties such as the number of required intersections [7, 124] while algorithmic
works often did not discuss the intersection patterns created [43].

In contrast, many graphs arising in real-world applications are not planar. In
addition, it has been shown that drawings are easier to interpret if the angles
formed by intersecting edges are rather large [113, 115]; see also Fig. 1.4. As a
result, in the past decade, a new research direction called graph drawing beyond
planarity became a main focus of graph drawing [72]. In this line of research,
drawing styles are considered in which the patterns formed by intersections are
restricted. The two probably most well-known beyond planar drawing styles are
1-planar drawings, in which every edge is intersected at most once, and right angle
crossing drawings (or RAC drawing, for short), in which each pair of intersecting
edges is perpendicular. Note that we also say that a graph is 1-planar or RAC if
it admits a 1-planar drawing or a RAC drawing, respectively.

Most work on 1-planar drawings deals with straight-line drawings. It is known
that not every 1-planar graph admits a 1-planar straight-line drawing [85, 154].
However, every triconnected 1-planar graph admits a straight-line 1-planar drawing

8 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.4: Two drawings of the same graph10. Drawing (b) is clearly easier to
read than drawing (a). Observe that in drawing (b) every edge is intersected at
most once while the angle between two intersecting edges is fairly large; these two
properties cannot be found in drawing (a).

except for at most one edge on the outer face [10]. This and the fact that testing
1–planarity is NP-hard [101] stand in contrast to similar results on planar graphs.
It is also known that deciding if a given 1-planar drawing can be straightened can
be done in linear time [112].

For RAC drawings, an important parameter is the curve complexity. It is easy to
see that every graph admits a RAC drawing for sufficiently large curve complexity,
however, this would come at the expense of potentially many bends per edge.
Hence, the literature considers RACk drawings, which are RAC drawings with at
most k bends per edge for small values of k . Depending on the number of bends
per edge, the density of the graphs, that can be realized, differs. The density of
graphs that admit a RAC0 drawing have at most 4n−10 edges which is also tightly
achieved by an infinite class of graphs [71] which is in fact 1-planar [84]. Another
similarity to 1-planarity is that testing whether a graph is RAC0 is NP-hard [17],
even in some restricted settings [14, 24]. RAC1 and RAC2 graphs both also have
a linear number of edges [19]: The best known upper bounds are 6:5n − 13 and
74:2n for the edge density of RAC1 and RAC2 graphs, respectively, while there exist
lower bound constructions achieving 4:5n−O(

√
n) and 7:83−O(

√
n), respectively.

Finally, every graph admits RAC3 drawing in O(n4) area [71]. Subsequently, this
area bound was improved to O(n3) for RAC4 drawings [66] and recently to O(n2:75)

10Both drawings are taken from http://mozart.diei.unipg.it/gdcontest/
contest2019/results.html#manual and were created in the scope of the Graph Drawing
Contest 2019. Subfigure (a) shows the input for problem 5 created by the contest committee,
subfigure (b) the best manual submission due to team Dinosaurs.

http://mozart.diei.unipg.it/gdcontest/contest2019/results.html#manual
http://mozart.diei.unipg.it/gdcontest/contest2019/results.html#manual

9

for RAC6 drawings [142].
In Part III, we prove new results for polyline RAC drawings, both in terms of

edge density and area. These results are prototypical for the research in the field
of graph drawing beyond planarity.

Overview of the thesis. The remainder of this thesis is structured as follows.
We first provide basic definitions and formally introduce the drawing styles dis-
cussed in this thesis in Chapter 2. In addition, we also discuss the related literature
in more careful detail in this chapter.

In Part I, we investigate some new directions in the analysis of the beyond
orthogonal graph drawing models discussed above. Namely, in Chapter 3, we first
investigate the relationship between graphs admitting SC1 and graphs admitting
8C1 drawings, respectively. Then, we prove that the topology-shape-metrics ap-
proach cannot be easily adopted to smooth orthogonal and octilinear drawings
despite their relationships to orthogonal drawings. In particular, we show that de-
ciding whether a given shape can be realized is NP-hard. Finally, we also provide
efficient Kandinsky drawing algorithms for both drawing styles. Then, in Chapter 4,
we begin the study of orthogonal and smooth orthogonal drawings with restricted
intersection patterns, namely, we show how to draw 1-planar and outer-1-planar
graphs in the orthogonal and smooth orthogonal drawing style while maintain-
ing the embedding. In addition, except for the smooth orthogonal outer-1-planar
setting, we show that the resulting drawings have worst-case optimal curve com-
plexity.

In Part II, we show new results for queue layouts and arc diagrams. Namely, in
Chapter 5 we prove that the queue number of planar graphs of bounded degree is
bounded. This partially affirms a long-standing conjecture by Heath, Leighton and
Rosenberg [107] and is the first result standing in strict contrast to similar results
for nonplanar graphs [160]. We point out that subsequently to our publication [25],
it was shown that the queue number of planar graphs is bounded in general [76].
In Chapter 6, we then investigate arc diagrams and prove that every planar graph
admits a down-up monotone arc diagram with 15=16n − O(1) biarcs. While the
improvement upon the previous best known algorithm [51] is not very large, we
point out that our algorithm is much more technically elaborate. Finally, we present
a SAT formulation for computing arc diagrams.

In Part III, we consider polyline RAC drawings. More precisely, in Chapter 7,
we continue the study of RAC1 graphs and achieve a tight density bound of 5:5n−
O(1). In addition, we show, that there are RAC1 graphs that admit no simple
RAC1 drawing, that is, in any of their RAC1 drawings some pairs of edges share
more than one point. We do so, by providing a density upper bound of 5:4n−10:8
for the class of graphs with simple RAC1 drawings. In addition, we demonstrate
that there are simple RAC1 drawings of infinitely many graphs with 5n− 10 edges
which still improves upon the best known previous lower bound. In Chapter 8, we

10 CHAPTER 1. INTRODUCTION

then shift our attention to RACk drawings with k ≥ 3. We improve the results for
the area of RAC3 drawings and show that cubic area is sufficient while quadratic
area is not. In addition, we close the gap between upper and lower bound of
the area of RAC drawings by showing that every graph admits a RAC8 drawing
in quadratic area. Moreover, we show that the required curve complexity can be
reduced to three bends per edge if the input graph is p-partite.

We then conclude the thesis in Chapter 9 by summarizing our results and
presenting some open problems. We point out that the results appearing in this
thesis have been previously published in [12, 18, 25, 26, 52, 94]. Most of the figures
in this thesis have been adopted from those publications and were transformed in
a consistent style. Other works coauthored by the author of the thesis during
the thesis period have been published in [11, 16, 27, 53, 54, 93]; we provide an
annotated list of those works in Appendix A.

Chapter 2

Preliminaries and Related Work

In this chapter, we provide definitions and preliminary results that will be used
in the subsequent chapters. Further, we provide an overview over previous work
related to the results of this thesis. Technical details of previous results that our
proof techniques build upon can be found in the corresponding chapters instead.
As this thesis deals with graph drawing, we first establish several definitions and
properties related to graph theory in Section 2.1 before we proceed to introduce
several commonly used principles and techniques from graph drawing in Section 2.2.
Finally, we discuss the drawing styles we focus on in this thesis in Section 2.3.

2.1 Graph Theoretic Foundations

We first give formal definitions of the fundamental concepts used in this thesis
in Section 2.1.1. Then, in Section 2.1.2, we show how graphs can be categorized
based on structural properties before introducing several graph families occuring in
the remaining chapters in Section 2.1.3. Unless specified otherwise, the contents
of this section can also be found in [74, Ch.1]. For a more in-depth introduction
to graph theory, we refer the reader to [74, 159].

2.1.1 Graphs

In the context of this thesis, the term (simple) graph refers to a tuple G = (V; E)
where V is called the set of vertices and E ⊆ V × V is referred to as the set of
edges. Graphs are commonly used to model relational data and form a fundamental
data structure in many applications of computer science. For the sake of brevity,
we will denote the number of vertices by n and the number of edges by m.

Let e = (u; v) be an edge. We refer to u and v as endpoints (or endvertices)
of edge e and we say that e is incident to u (and v). We call edge e = (u; v) ∈ E
directed , if and only if (v; u) 6∈ E. Otherwise we call e = (u; v) undirected and

11

12 CHAPTER 2. PRELIMINARIES AND RELATED WORK

also denote it by {u; v} and (v; u). In addition, if e = (u; v) is directed, we call u
source (or initial vertex) of e and v target (or terminal vertex) of e. Moreover, we
say that G is directed if all its edges are directed and we say that G is undirected
if all its edges are undirected. For a directed graph G, we call vertex v a source
of G if there is no edge e ∈ E such that v is target of e and we call v a sink of G
if there is no edge e ∈ E such that v is source of e [159, Ch.7]. Unless otherwise
specified we consider undirected graphs. Let G be an undirected graph and G ′ be
a graph obtained by choosing a source and a target for every edge of G. Then, we
call G ′ orientation of G.

Let v be a vertex. We call u neighbor of v if (u; v) ∈ E. Further, we denote
by N(v) = {u ∈ V |(v; u) ∈ E} the neighborhood of v . Further, we denote
by deg(v) the degree of vertex v , that is, the number of edges incident to v .
For a subgraph S of G, we denote by degS(v) the degree of vertex v in S. In
addition, we say that G has maximum (vertex) degree ∆, or for the sake of brevity
deg(G) = ∆, if there is a vertex v ∈ V with deg(v) = ∆ but no vertex v ′ ∈ V
with deg(v) > ∆. If all vertices in G have degree exactly k , we call G k-regular .

Let S ⊆ V be a subset of the vertices of G and let ES = {(u; v) ∈ E|u ∈
S ∧ v ∈ S} be the set of edges with both endpoints in S. We call G[S] = (S; ES)
the subgraph of G induced by S.

2.1.2 Connectivity

Let G = (V; E) be a graph. Let P = (v1; : : : ; vk) be a sequence of vertices in V .
We call P a path in G if and only if ∀i : 1 ≤ i < k : (vi ; vi+1) ∈ E. We call G
k-connected if and only if for any pair of vertices u; v ∈ V there exist at least k
paths in G between u and v which are vertex-disjoint except for u and v . Note
that 1-connected graphs are also known as (simply) connected graphs whereas 2-
and 3-connected graphs are also known as biconnected and triconnected graphs,
respectively [138].

The following observations may provide a helpful intuition for connectivity: In a
connected graph which is not also biconnected, there exists a single vertex, called
cut vertex , whose removal will separate the graph. Moreover, in a biconnected
graph which is not also triconnected, there exists a pair of vertices, called separation
pair , whose removal separates the graph. Finally, if a triconnected graph is not 4-
connected, it contains a triple of vertices whose removal would separate the graph.
Moreover, if G is k-connected, by definition, deg(G) ≥ k .

In a connected graph, the graph-theoretic distance dist(u; v) between two
vertices u and v is the number of edges in a shortest path connecting them.

2.2. GRAPH DRAWING BASICS 13

2.1.3 Special Families of Graphs

Let G = (V; E) be a graph. Let X = (v1; : : : ; vk) be a sequence of k vertices of
V . We call X a cycle in G if and only if (vi ; v(i+1) mod k) ∈ E for 1 ≤ i ≤ k and
we call X a path in G if and only if (vi ; v(i+1)) ∈ E for 1 ≤ i < k . We call G a
cycle (or path, respectively) if and only if G entirely consist of a cycle (or path,
respectively. Further, we call G a tree if and only if G contains no cycles and G
is connected. Note that each path is also a tree. Let T = (V; E) be a tree. We
call each vertex of degree one in T a leaf . Moreover, if T consists of a path P
and leafs which are connected to one vertex of P each, we call T a caterpillar and
P the spine of T [105]. Trees can be rooted at a special vertex r called root, in
such a case, we assume that all edges are directed such that their target has a
larger graph-theoretic distance from the root than their source. Let (u; v) be a
directed edge in a rooted tree. We call u parent of v and v child of u [59, Ch.10].
A tree in which each vertex has at most k children is called k-ary ; a k-ary tree
has maximum degree k + 1 [59, Ch.10]. A k-ary tree is called complete if each
inner vertex has exactly k children. We say that a rooted tree T has height h if
the graph-theoretic distance between root r to any of the other vertices of T is at
most h. A spanning tree T of a graph G = (V; E) is a subgraph of G that is a tree
and includes all vertices of V . We call a spanning tree T a BFS-tree1 with root
r ∈ V if the graph-theoretic distance between every vertex v and r is the same in
T and G [59, Ch.22]. A BFS-tree can be computed in time O(n+m) [59, Ch.22].

If each connected component of G is a tree we call G a forest. A forest that
consists of paths of length at most one is called a matching . If in a matching,
every vertex is incident to an edge, we call the matching perfect. Note that perfect
matchings are also known as 1-factors in the literature [74, Ch.2]. If G consists of
a cycle C = (v1; : : : ; vk), a vertex c and edges (c; vi) for 1 ≤ i ≤ k , we call G a
(k + 1)-wheel , c the center of G and C the rim of G [159, Ch.2].

If the vertices of G can be partitioned into p sets V1; : : : ; Vp such that G[Vi]
contains no edges for 1 ≤ i ≤ p, we call G p-partite. Let ni denote the number
of vertices in subset Vi . We call the graph Kn1;:::;np a complete p-partite graph
if each vertex in Vi is connected to each vertex in Vj for 1 ≤ i < j ≤ p. If
n1 = n2 = : : : = np, we also write K(np)p instead of Knp ;:::;np . Moreover, we call
the graph Kn = (V; V × V) with |V | = n the complete graph on n vertices.

2.2 Graph Drawing Basics

Here, we first provide several basic definitions in Section 2.2.1 and desirable prop-
erties of graph layouts in Section 2.2.2. Then, we will introduce techniques com-
monly used in graph drawing in Section 2.2.3 which we will apply in the subsequent

1The name derives from the fact that a BFS-tree can be computed with breadth-first-search.

14 CHAPTER 2. PRELIMINARIES AND RELATED WORK

chapters. The contents of Section 2.2.1 and 2.2.2 can, unless noted otherwise,
for instance also be found in [157] and [133, Ch.1], respectively, we also refer the
reader to [63, 119, 133, 150] for a more in-depth introduction into graph drawing.

2.2.1 Basic Definitions

A drawing Γ of a graph G = (V; E) is a function that maps each v ∈ V to a point
Γ(v) ∈ R2 and each edge (u; v) ∈ E to a simple open Jordan curve Γ((u; v))
with endpoints Γ(u) and Γ(v). We refer to Γ(v) (or Γ(e)) as the representation of
vertex v ∈ V (or edge e ∈ E, respectively) in drawing Γ. Conversely, we say that
G admits drawing Γ. If all vertices are located on integer coordinates, we call Γ a
grid drawing. If in Γ the representations of all edges are sequences of straight-line
segments, we also call Γ a polyline drawing whereas we call Γ straight-line if every
edge is represented by one straight-line segment. We say that two edges e; e ′ ∈ E
intersect if their representations Γ(e) and Γ(e ′) share at least one common point
which is not a shared endpoint. A point in the plane that is shared by at least two
edge representations is referred to as an intersection if it is not a shared endpoint.
We call Γ planar if there exists no pair of edges e; e ′ ∈ E such that representations
Γ(e) and Γ(e ′) intersect. Further, we say that G is a planar graph if and only if
G admits a planar drawing. Let S ⊆ V . We call the drawing Γ[S] of graph G[S]
contained in Γ the subdrawing of G induced by S.

A planar drawing Γ of a graph G partitions R2 into topologically connected
regions. We refer to these regions as faces and to the one unbounded face as
outer (or external) face. If in Γ all vertices are incident to the outer face, we call
Γ an outerplanar drawing. We say that a face f is incident to a vertex v , if v
appears on the boundary of f . We say that a face has degree deg(f), if deg(f)
vertices are incident to f and we say that a face has length ‘(f) if the cyclic order
of vertices along the boundary of f repeats after ‘(f) vertices. Note that it may
occur that deg(f) 6= ‘(f). More precisely, we also define a face f by the cyclic
order (v1; : : : ; v‘(f)) of vertices along its boundary which also uniquely defines the
corresponding region bounded in Γ.

We say that two planar drawings Γ1 and Γ2 are topologically equivalent, if there
exists a bijection ffi between the set of faces F1 of Γ1 and the set of faces F2 of
Γ2 such that for every face f1 ∈ F1 it holds that f1 and ffi(f2) are bounded by the
same cyclic order of vertices. A class of topologically equivalent drawings of a
graph G is referred to as (topological) planar embedding of G. Let E be a planar
embedding of a graph G. For two drawings Γ1; Γ2 ∈ E it holds that for every vertex
v ∈ V , the cyclic order of edges around v is the same in Γ1 and Γ2. Let S ⊆ V .
Similarly to induced subgraphs, we call the embedding E[S] of graph G[S] induced
by the restrictions of the cyclic orders in E to S the subembedding of G induced
by S. We refer to the tuple (G; E) as a plane graph, for the sake of brevity, we
may also write that G is a plane graph which implicitly assumes that a suitable

2.2. GRAPH DRAWING BASICS 15

embedding E is part of the input. The terms outerplanar embedding and outerplane
graph are defined analogously. Note that the term embedding can be equivalently
defined by an equivalence function that considers the cyclic order of edges around
each vertex, in this case we call the equivalence classes combinatorial embeddings.
This distinction can be found in the literature for two reasons: First, sometimes
a specified outer face is considered to be part of a topological embedding but
not of a combinatorial embedding. Second, combinatorial embeddings generalize
naturally to nonplanar drawings since only the cyclic orders of edges around each
vertex are considered whereas faces are not well-defined in nonplanar drawings; we
will discuss nonplanar drawings further in Section 2.3.2. It is worth noting that
triconnected planar graphs have only two embeddings (where one can be obtained
from the other by a mirroring operation).

Let F denote the set of faces of an embedded planar graph G. The dual graph
G∗ = (V ∗; E∗) of G has a vertex for every face of G, i.e., V ∗ = F . Moreover, two
vertices f1; f2 ∈ V ∗ are connected by edge (f1; f2) ∈ E∗ if and only if the f1 and
f2 share an edge in G. For triconnected planar graphs, it holds that the dual of
the dual graph is the initial graph, i.e., (G∗)∗ = G. In particular, for outerplanar
graphs, the weak dual graph G? is considered [92]. Let f0 be the outer face of the
embedded graph G. Then, the weak dual graph G? is the subgraph of G∗ induced
by all vertices but f0, i.e., G? = G∗[F \ {f0}]. Most notably, in a outerplane graph
G, G? is a tree.

Maximal planar graphs are planar graphs which cannot be augmented by any
edge without destroying planarity. In particular, every maximal planar graph is
triconnected and a triangulation of the plane, i.e., in all of its two embeddings
it partitions the plane into triangular faces. Moreover, it is always possible to
augment a planar graph to a maximal planar graph by adding more edges. The
resulting triangulations however may depend on the chosen embedding that was
triangulated. Since this augmentation is always possible, we will assume that
graphs are maximal planar where appropriate.

In a triconnected planar graph which is not 4-connected, the triples of vertices
whose removal separates the graph may be assumed to form induced 3-cycles,
called separating triangles. Since separating triangles form difficult configurations
for many algorithms in graph drawing, Kleetopes are an important graph class often
appearing in upper and lower bound constructions. A Kleetope can be obtained
from a planar graph G by placing a vertex vf in each face f of G and connecting
vf to all vertices on the boundary of f [103]. Note that often Kleetopes based
on triangulations are considered as every new vertex is placed inside a separating
triangle in such a Kleetope.

16 CHAPTER 2. PRELIMINARIES AND RELATED WORK

2.2.2 Aesthetic Criteria

Several aesthetic criteria have been proposed in the literature to evaluate the
quality of a graph drawing [63, 119, 133]. Here, we only introduce those which
will be important in the scope of this thesis. In general, for a given graph drawing
algorithm, we will measure its aesthetic quality by giving functions in the number
of vertices (or edges) as bounds for the aesthetic criteria that will be achieved
when applying the algorithm to a valid input graph.

The area and the aspect ratio of a graph drawing Γ are usually defined by a
minimally sized axis-parallel bounding rectangle R ⊆ R2 encapsulating Γ. The
area of Γ is defined as the area of R whereas the aspect ratio is equal to the ratio
of the length of the long side of R divided by the length of the short side of R.
In the case of grid drawings, R is well defined, otherwise, the shortest distance
between any two vertices in Γ can be considered as the unit distance to define
R. We are mostly interested in small area drawings while we intend to maintain a
small aspect ratio.

In non-planar drawings, we may be interested in the crossing number and the
number of intersections per edge in order to measure to which extent planarity
is deviated. The crossing number is a global parameter that measures the total
number of intersections. The number of intersections per edge, on the other hand,
counts the maximum number of intersections on any edge, and hence can provide
more information on the local structure of the graph drawing.

In drawing styles where the representations of edges are sequences of geometric
primitives, such as straight-line segments and circular arc segments, the curve
complexity is an important aesthetic criterion. If in a drawing Γ the representation
of each edge consists of at most k such primitives, we say that Γ has curve
complexity k . A low curve complexity is a desirable property of a graph drawing.

The intersection points of two consecutive primitives are referred to as bends.
The smoothness of a drawing, measured by the minimum angle formed by the
tangents of the two primitives meeting at any bend, also plays an important role
in the readability of the drawing [114]. In this thesis, we will consider three special
cases: First, we will consider smooth drawings, that is, drawings in which at
each bend the tangents of both primitives overlap. Second, we will consider the
orthogonal case, that is, the case where the angle between such tangents is always
right. The third special case will be the octilinear case where the angles between
the tangents at each bend is one of {ı

4
; ı

2
; 3ı

2
}.

Finally, we will also consider the angular and the crossing resolution of a graph
drawing Γ. The angular resolution is equal to the smallest angle formed by any
pair of edges at a common endpoint. A large angular resolution indicates that
there is few clutter around the representation of vertices. The crossing resolution,
on the other hand, measures the smallest angle formed by any pair of intersecting
edges at their intersection. A large crossing resolution is desirable as otherwise it

2.2. GRAPH DRAWING BASICS 17

may be difficult to follow the trajectory of intersecting edges.

2.2.3 Vertex Orderings and Shift Method

In this section, we outline two important vertex orderings, namely, st-orderings for
biconnected graphs [128] and the canonical ordering [60] for maximal planar graphs.
Also, we present the shift method, which is the most well known application of the
canonical ordering [60].

Let ı = (v1; : : : ; vn) be a permutation of the vertices of a biconnected graph
G = (V; E) and let s = v1 and t = vn. Then, we call ı an st-ordering if
and only if for 2 ≤ i ≤ n − 1, there exists 1 ≤ j < i < k ≤ n such that
(vj ; vi); (vi ; vk) ∈ E [128]. Further, for vertex vi we say that i is the st-number of
vi . Most notably, st-orderings are used to employ a nice orientation of a graph.
In particular, directing all edges from the vertex with lower st-number to the one
with larger st-number yields an orientation of G such that s is the only source and
t the only sink of G. An st-ordering exists for all biconnected graphs and each
pair of vertices s and t used as source and sink, respectively [128]. In fact, for
planar graphs with a fixed embedding E, selecting as s and t two vertices on the
same face yields an st-ordering that allows for a planar upward drawing , that is,
a planar drawing that preserves E in which vertices are placed at a y -coordinate
equal to their corresponding st-number while edges are drawn monotone in y -
direction [145].

Let ı = (v1; : : : ; vn) be a permutation of the vertices of a maximal planar
graph G = (V; E). For 1 ≤ k ≤ n, let Vk := {v1; : : : ; vk} and Gk = G[Vk].
Further, for a fixed embedding E of G with outer face (v1; v2; vn), let Ck denote
the outer face of E[Vk]. We call ı a canonical ordering if and only if for 2 ≤ k ≤ n

(i) Gk is biconnected and internally triangulated

(ii) the neighbors of vk belonging to Gk−1 appear consecutively along Ck−1, and,

(iii) unless k = n, vk has at least one neighbor v‘ with ‘ > k .

A canonical ordering of a maximal planar graph can be computed in linear time;
in fact, a well-known linear time algorithm [117] even generalizes to triconnected
planar graphs. For biconnected planar graphs several variants have been proposed
in the literature [102, 104, 106]; however, not all algorithms using the canonical
order can be easily adapted to these variants. We also point out that the canonical
ordering can be seen as a special st-ordering for s = v1 and t = vn.

Moreover, a canonical ordering of a triangulation G is equivalent to a Schnyder
realizer of G [147]. Let (v1; v2; v3) be one of the faces of G. A Schnyder realizer
is a set of three rooted trees {T1; T2; T3} such that

(i) every edge e ∈ E belongs to exactly one of T1, T2 and T3,

18 CHAPTER 2. PRELIMINARIES AND RELATED WORK

v

T1 T2

T3

T3

T2 T1

Figure 2.1: Ordering of edges around a vertex in a Schnyder realizer {T1; T2; T3}.

(ii) G is exactly the union of T1, T2 and T3,

(iii) T1 is a spanning tree of G, T2 a spanning tree of G without v1 and T3 a
spanning tree of G without v1 and v2,

(iv) the root of T1 is v1, the root of T2 is v2 and the root of T3 is v3, and,

(v) for every vertex v ∈ V , the counter-clockwise order of edges around v is as
follows: edge to the parent in T1, edges from the children in T3, edge to the
parent in T2, edges from the children in T1, edge to the parent in T3, edges
from the children in T2; see Fig. 2.1. Note that the three trees are oriented
from leaf to root.

In the literature, Schnyder realizers are often colored in a specific way. In par-
ticular, T1 is usually colored blue, while T2 and T3 are colored green and red,
respectively [90]. From a given canonical ordering, a Schnyder realizer can be
obtained as follows: For vertex vk consider the consecutive sequence of neigh-
bors (w‘; : : : ; wr) along Ck . Then, we define (vk ; w‘) ∈ T1, (vk ; wr) ∈ T2 and
(vk ; wi) ∈ T3 for all ‘ < i < r . Further, we select v1 to be the root of T1, v2

to be the root of T2 and vn to be the root of T3. We will use such a Schnyder
coloring of a graph regarding a canonical ordering to classify edges in the analysis
of algorithms using the canonical ordering.

Next, we outline a linear time algorithm, known as shift-method , that produces
straight-line drawings for maximal planar graphs [60]. The algorithm incrementally
inserts vertices according to a canonical ordering ı and produces a drawing Γk for
the subgraph Gk induced by k already inserted vertices that satisfies the following
invariants:

I.1 Γk is straight-line and planar and all vertices are located on integer coordinates.

I.2 Γk fits into an area of width 2k − 4 and height k − 2.

I.3 All edges on Ck have slope 1 or −1 except for edge (v1; v2) which has slope 0.
For an illustration, refer to Fig. 2.2a.

In addition, each vertex v on Ck will be associated with a so-called shift-set
S(v) ⊂ Vk such that each vertex in Vk is contained in exactly one shift-set. Based
on the shift-sets there exists the following additional invariant:

2.3. GRAPH DRAWING STYLES 19

w1 = v1

w‘
wr

wp = v2

Γk−1

(a)

vk

w‘
wr

Γk−1

w1 = v1 wp = v2

(b)

Figure 2.2: (a) Illustration of Invariant 3 maintained by the shift-method, and,
(b) illustration of the shifting operation and insertion of the new vertex in an iteration
of the shift-method.

I.4 Let (u; v) ∈ Gk such that u and v appear in different shift-sets. Then the
slope of Γk(u; v) is in the interval [−1; 1]. Moreover, in a Schnyder coloring,
edge (u; v) is blue or green.

As an initial drawing, G3 is realized as Γ3(v1) = (0; 0), Γ3(v2) = (2; 0) and
Γ3(v3) = (1; 1) and S(vi) = {vi} for 1 ≤ i ≤ 3. For 4 ≤ k ≤ n, assume that
we have a straight-line drawing Γk−1 and shift-sets for the vertices on Ck−1. Let
(w1 = v1; : : : ; wp = v2) denote the vertices along Ck−1 from left to right and let
w‘ and wr denote the leftmost and rightmost neighbor of vk on Ck−1, respectively.
Observe that by definition of the canonical ordering, vk is also incident to wi for
‘ < i < r and that vk is the last neighbor of wi to be inserted. In order to avoid
overlappings of edges, first, for 1 ≤ i ≤ ‘, all vertices in S(wi) are translated one
unit to the left, while for r ≤ i ≤ p, all vertices in S(wi) are translated one unit
to the right. Note that this operation only affects the representations of edges
between shift-sets S(w‘−1) and S(w‘) as well as for the representations of edges
between S(wr) and S(wr+1); all these edges are green or blue and the remaining
edge representations are simply shifted. After this shifting operation, vk is placed
on the intersection point of the line of slope 1 passing through w‘ and the line
of slope −1 passing through wr ; refer to Fig. 2.2b. Finally, the shift set of vk is
defined as S(vk) =

Sr
i=‘ S(wi) ∪ {vk}.

2.3 Graph Drawing Styles

In this section, we define the graph drawing models investigated in this thesis and
give an overview over related work on the specific drawing styles.

2.3.1 Orthogonal Drawings and Extensions

Orthogonal Drawings. In an orthogonal drawing Γ of a graph G = (V; E), each
vertex is represented as a point in the plane whereas each edge e is represented

20 CHAPTER 2. PRELIMINARIES AND RELATED WORK

as a sequence of horizontal and vertical line segments Γ(e). In addition, each
vertex v is associated with four distinct ports called north, west, south and east.
If the segment of the representation of edge e that is attached to v has v as its
bottom (right, top, left) endpoint, we say that e uses v ’s north (west, south, east;
respectively) port. As a further restriction to orthogonal drawings, each of the
ports of a vertex can be used only by one edge. Hence, the maximum degree of
a graph admitting an orthogonal drawing is at most four. For an example of an
orthogonal drawing refer to Fig. 2.3b.

Orthogonal graph drawing dates back to applications in VLSI design and floor-
planning which where studied in the early 1980’s [125, 127, 156]. Nowadays, the
most important applications include UML or BPMN diagrams. Hence, it comes at
no surprise that the orthogonal graph drawing model has been deeply studied. For
an overview of well-established techniques we refer the reader to [63, 119, 150]
while we point the reader to [43, 95, 129, 149] for some efficient algorithmic
solutions providing high quality drawings.

By definition, orthogonal drawings achieve perfect angular resolution for graphs
of maximum degree four while they also avoid acute angles at the bends of edges.
These properties contribute to the good readability of orthogonal drawings. Addi-
tionally, orthogonal graph drawing algorithms usually also try to optimize the area
and the curve complexity of the resulting layout. For the sake of brevity, we will call
an orthogonal drawing of curve complexity k an OCk-drawing . It is known that
all planar graphs of maximum degree four admit a planar OC3-drawing with the
exception of the octahedral graph which admits a planar OC4-drawing [43, 129];
these drawings require O(n)× O(n) area. Moreover, if the maximum degree of a
planar graph is three, it admits a planar OC2-drawing [117].

It is also known that each connected graph of maximum degree four admits a
(not necessarily planar) OC3-drawing with no guarantees regarding the number of
intersections per edge [43].

The Topology-Shape-Metrics framework. Finding an orthogonal drawing
with a minimum number of bends over all embeddings of a maximum degree four
planar graph has been shown to be NP -hard [100]. For plane graphs of maxi-
mum degree four, it can however be solved in polynomial time by reduction to
two min-cost flow problems [149]. More precisely, given the embedding (that is, a
topology), the solution of the first network flow defines an orthogonal representa-
tion, which defines the angles between any two edges incident to the same vertex
and the bends encountered on each edge. The second network flow problem is
based on a feasible representation (or shape) and the flow algorithm computes
how long each edge should be (that is, the metrics of the drawing) in order to
find a drawing that realizes the given representation. We say that an orthogonal
drawing Γ realizes an orthogonal representation R, if the angles between any pair
of edges incident to the same vertex in Γ is identical to the angle prescribed in R

2.3. GRAPH DRAWING STYLES 21

(a) (b) (c) (d) (e)

Figure 2.3: Five drawings of the same graph using different drawing styles:
(a) Straight-line drawing, (b) Orthogonal drawing, (c) Smooth orthogonal drawing,
(d) Octilinear drawing, and, (e) Kandinsky drawing.

and if in Γ, the bends occuring on each edge are the ones described by R. This
framework of graph drawing is also known as the topology-shape-metrics approach
as the drawing is produced in three steps (where the first topology step is to decide
for an embedding). It is worth pointing out that each feasible orthogonal repre-
sentation also can be realized. This makes it so that each of the algorithms used
for solving one of the three steps of the framework are interchangeable without
influencing the other steps.

In the following, we discuss two extensions of the orthogonal graph drawing
model which each allow one more type of geometric primitives in the representa-
tions of edges, namely smooth orthogonal drawings [31] which also allow circular
arcs and octilinear drawings which also allow diagonal straight-line segments. Af-
terwards, we discuss Kandinsky drawings [95] which generalize orthogonal drawings
to graphs of larger maximum degree.

Smooth Orthogonal Drawings. A smooth orthogonal drawing Γ of a graph
G = (V; E) maps each vertex v ∈ V to a point Γ(v) ∈ R2 and each edge e ∈ E
to a sequence of straight-line segments and quarter, half and three-quarter circular
arcs such that the tangents of consecutive segments overlap at their shared bend.
In addition, the port restriction of the orthogonal model is also used in smooth
orthogonal drawings. As in orthogonal drawings, smooth orthogonal drawings can
only visualize graphs of maximum degree at most four. For an example of a smooth
orthogonal drawing refer to Fig. 2.3c. Observe that the orthogonal drawing of the
same graph in Fig. 2.3b has curve complexity three which is in fact necessary
while there even exists a (less symmetric) smooth orthogonal drawing of curve
complexity one.

Smooth orthogonal drawings have been proposed by Bekos et al. [31] as a
drawing style which combines the easy readability and rigidity of the well established
orthogonal drawing style with the artistic appeal and smoothness of Lombardi
drawings2 [82, 86]. As a result, smooth orthogonal drawings achieve optimal

2In a Lombardi drawing, edges are represented by circular arc segments. In addition, all angles
between consecutive pairs of edges around a vertex have the same size.

22 CHAPTER 2. PRELIMINARIES AND RELATED WORK

angular resolution for graphs of maximum degree four while also realizing each
edge with a smooth curve. Similar to the orthogonal graph drawing model, other
important parameters to evaluate the quality of smooth orthogonal drawings are the
area and the curve complexity of the layout. We will refer to a smooth orthogonal
drawing of curve complexity k as an SCk drawing .

It is known that planar SC1-drawings always exist for maximum degree three
planar graphs [29] and for outerplanar graphs of maximum degree four [9] both
requiring superpolynomial area. In contrast, there exist maximum degree four
planar graphs which do not admit a planar SC1-drawing [31]. On the other hand,
all planar graphs of maximum degree four admit a planar SC2-drawing. The
required area may however be exponential for graphs of maximum degree four,
while it is cubic for graphs of maximum degree three [9]. The problem of deciding
if a planar graph of maximum degree four admits a planar SC1-drawing is open
and has been conjectured to be NP -hard [9].

In addition, each graph of maximum degree four admits an SC1-drawing with
no guarantees regarding the number of intersections per edge [29].

Octilinear Drawings. In an octilinear drawing , each vertex is represented by
a point in the plane whereas each edge is drawn as a sequence of straight-line
segments at slopes {0;−1; 1;∞}. In contrast to orthogonal drawings and smooth
orthogonal drawings, each vertex is assigned eight ports (north, north-west, west,
south-west, south, south-east, east, and north-east) and as a consequence octilin-
ear drawings can realize graphs of maximum degree at most eight. More intuitively
speaking, octilinear drawings add two additional slopes for segments to the orthog-
onal graph drawing model. For an example octilinear drawing refer to Fig. 2.3d.
Observe that the curve complexity of the example drawing is two whereas the
orthogonal drawing of the same graph in Fig. 2.3b has curve complexity three.
Moreover, when comparing the octilinear layout to the smooth orthogonal one in
Fig. 2.3c, we can observe that in both drawings all bends and all vertices have the
same position. We will investigate this observation further in Section 3.1.

The most common applications of octilinear drawings include metro-maps and
map schematization [110, 135, 134, 148]. In addition, octilinear drawings gen-
eralize the concept of orthogonal drawings for graphs with maximum degree at
most eight while also a variant called slanted orthogonal drawings3 has been in-
vestigated in the literature [32, 35] for representing nonplanar graphs of maximum
degree four. The most important aesthetic criteria for octilinear drawings include
area, curve complexity and smoothness of edges since diagonal and axis-aligned
segments can meet at their shared bend either at ı

4
or 3ı

4
. As with orthogonal

and smooth orthogonal drawings we will refer to an octilinear drawing of curve
complexity k as an 8Ck drawing .

3In slanted orthogonal drawings, vertices are incident to axis-aligned segments while intersec-
tion occur on diagonal segments. This faciliates distinction between vertices and intersections.

2.3. GRAPH DRAWING STYLES 23

It has been shown that all planar graphs of maximum degree eight admit a
planar 8C3-drawing [121]. Moreover, for planar graphs of maximum degree five it
is possible to compute a planar 8C2-drawing which even fits in polynomial area if
the maximum degree is at most four [28]. In addition, planar graphs of maximum
degree three always admit a planar 8C1-drawing [69, 116]. The problem of deciding
whether a planar graph of maximum degree eight admits a planar 8C1-drawing has
been shown to be NP -hard [135] while it is not known if NP -hardness is still true
for planar graphs of lower maximum degree. In particular, this question is especially
interesting for planar graphs of maximum degree four since as mentioned earlier
planar graphs of maximum degree three are always positive instances whereas there
exist planar graphs of maximum degree four without a planar 8C1-drawing [34].

Kandinsky Drawings. In a Kandinsky drawing Γ of a graph G = (V; E) [41,
62, 95, 96], each vertex v ∈ V is represented by an axis-aligned square Γ(v) and
each edge (u; v) ∈ E is represented by a sequence of axis-aligned straight-line
segments Γ((u; v)) whose endpoints touch Γ(u) and Γ(v) at exactly one point.
In the classic model, the squares representing vertices have uniform side length ∆
where ∆ denotes the maximum degree of G so that the side to which each edge
attaches can be chosen arbitrarily. Moreover, in the case of grid drawings, vertices
are centered on a coarse grid whose grid lines are sufficiently far apart to avoid
vertices to overlap (i.e. at Ω(∆) distance) whereas bends of edges are located
on a fine grid (usually fine grid lines have unit distance). For an example of a
Kandinsky drawing refer to Fig. 2.3e.

Kandinsky drawings relax the strict port constraints of the orthogonal graph
drawing style to allow drawings for graphs of arbitrary degree while also it may
be possible to reduce the curve complexity for graphs of maximum degree four
(compare for instance the drawings in Figs. 2.3b and 2.3e). They find wide usage
in VLSI design and UML and BPMN diagrams where usually vertices are realized
by two-dimensional objects due to application constraints. Due to their practical
applications, Kandinsky drawings have received much attention in research over
the decades, see for instance [36, 44, 45].

The Kandinsky drawing model allows for natural extensions to smooth orthog-
onal and octilinear drawings which so far have only received little attention in the
literature. A topological book embedding (as defined in Section 2.3.3) can be used
to produce a planar SC2-Kandinsky drawing for any planar graph in linear time [31].
The resulting drawings have quadratic area and all vertices are located on a line
while edges are represented by half circular arcs or as a sequence of two half cir-
cular arcs (one above and one below the line). Further, it was shown that not
all planar graphs admit an SC1-Kandinsky drawing [29]. In the octilinear setting
the most notable application of the Kandinsky style are the so-called Sloginsky
drawings [33, 36] which generalize slanted orthogonal drawings to higher maxi-
mum degree. As in slanted orthogonal drawings, the additional slopes are used for

24 CHAPTER 2. PRELIMINARIES AND RELATED WORK

segments on which intersections occur to make them easier distinguishable from
vertices.

2.3.2 Beyond Planar Graph Drawings

A currently popular research direction in graph drawing is the study of so-called
beyond planar graphs, that is, classes of graphs which extend planarity by admit-
ting drawings in which the configurations formed by intersections are restricted.
This line of research was motivated by experimental studies verifying that a large
crossing resolution indeed yields well readable drawings [113, 115]. As a result,
one of the earliest studied beyond planar graph classes is the class of Right-Angle-
Crossing graphs, or RAC graphs for short, that is, the class of graphs, admitting
some drawing where all pairs of intersecting edges intersect at a right angle. The
most commonly used restriction to achieve meaningful RAC drawings is to limit the
curve complexity, which is also supported by experiments as an important aesthetic
criterion [140, 141]. With a fixed curve complexity, it might become increasingly
more difficult to realize drawings with many intersections per edge such that all
intersections are at right angles. This observation and the notion that few inter-
sections per edge do not impede readability too much motivate the continuation of
the study of so-called k-planar graphs, that is, graphs in which every edge is inter-
sected at most k times. The class of k-planar graphs had received some attention
in research (typically with slightly different scope) as early as the 1960’s [144].
Additionally, k-planar graphs prove to have nice structural properties which can
be used in many algorithms. Consequently, k-planar graphs have become another
well-studied class of graphs, especially for the case k = 1; see [123] for a survey
of results. In the scope of this thesis, we only consider the classes of RAC and
1-planar graphs, however, we point out that more classes have been investigated
in the literature. We refer the interested reader to [72] for a recent survey.

1-planar graphs. 1-planar graphs were already introduced by Ringel in 1965
when studying simultaneous colorings of a planar graph G and its dual G∗ [144].
Most importantly, straight-line drawings have been studied for 1-planar graphs
in the literature. In contrast to planar graphs, not every 1-planar graph admits
a 1-planar straight-line drawing [85, 154]. However, every triconnected 1-planar
graph admits a straight-line 1-planar drawing except for at most one edge on the
outer face [10]. Moreover, it can be decided in linear time, if a given 1-planar
drawing can be straightened [112]. However, it is NP-hard to compute a 1-planar
embedding [101]; in fact, the result was recently extended to the computation of
k-planar embeddings [155].

A subclass of 1-planar graphs that we will consider in this thesis is the class
of outer-1-planar graphs. An outer-1-planar graph admits a 1-planar drawing
where all vertices are on the boundary of one topologically connected region. It

2.3. GRAPH DRAWING STYLES 25

is known that such graphs are planar and can be recognized in linear time [20,
109]. Other subclasses that have been considered in the literature include IC-
planar (independent crossings) [48] and NIC-planar graphs (nearly independent
crossings) [21], in which, pairs of intersecting edges share no or at most one
vertex, respectively.

RAC graphs. In a RAC drawing of a graph all pairs of intersecting edges in-
tersect at a right angle. If the curve complexity is unbounded, this can be easily
achieved by bending each edge arbitrarily close to its intersections. As a result,
with very few exceptions [54], research has focused on so-called RACk drawings,
that is, polyline RAC drawings in which each edge has at most k bends, or, curve
complexity k + 1, which were introduced in [71]. Similarly to planar graphs, we
call a graph RACk if it admits a RACk drawing. In the following, we provide an
overview over previous results.

RAC0 or straight-line RAC graphs with n vertices have at most 4n− 10 edges
which is also tightly achieved by an infinite class of graphs [71]. Moreover, the
RAC0 graphs that have exactly 4n − 10 edges are 1-planar [84]. The relationship
to 1-planar graphs has been further studied and it is known that the subclass
of IC-planar graphs always admits a RAC0 drawing [48] while the subclass of
NIC-planar graphs does not [21]. Moreover, outer-1-planar graphs admit RAC0

drawings [61]. The problem of testing whether a graph is RAC0 is NP -hard [17],
even in the restricted case where the output drawing must be 1-planar [24] or
upward [14]. In contrast, the complete bipartite graphs admitting RAC0 drawings
are fully characterized [70] and the biconnected graphs that admit a RAC0 drawing
with the vertices restricted to two parallel lines can be recognized in linear time [64].
Outer-RAC0 graphs, that is, graphs admitting a RAC0 drawing with the vertices
restricted to the unbounded region of the drawing have also been investigated [111].

Already the first paper on RAC drawings [71] established that RAC1 and RAC2

graphs have a subquadratic edge density , that is, they have a subquadratic number
of edges. However, it was subsequently shown that indeed both have only linearily
many edges [19]: The best known upper bounds are 6:5n − 13 and 74:2n for
the edge density of RAC1 and RAC2 graphs, respectively, while there exist lower
bound constructions achieving 4:5n − O(

√
n) and 7:83 − O(

√
n), respectively.

Interestingly, all graphs of maximum degree three admit a RAC1 drawing while all
graphs of maximum degree six admit a RAC2 drawing [14]. Further, there exists an
embedding-preserving algorithm that can compute a RAC1 drawing of a 1-planar
graph in super-polynomial area [24]. Polynomial area on the other hand can be
achieved in RAC2 drawings or when the 1-planar graph is in fact NIC-planar [55].
In addition, if the maximum degree is three, a RAC2 drawing, in which each edge
segment has one of three possible slopes, can be computed [122].

It is known, that any graph with n vertices admits a RAC3 drawing in O(n4)
area [71]. This area bound was later improved toO(n3) for RAC4 drawings [66] and

26 CHAPTER 2. PRELIMINARIES AND RELATED WORK

more recently to O(n2:75) for RAC6 drawings [142]. In addition, a relaxation called
large angle crossing drawings, or LAC drawings for short, has been considered. In
an ¸-LAC drawing, pairs of intersecting edges intersect at an angle of ¸ = ı

2
−" for

some small deviation angle " > 0. It has been shown that every graph admits an ¸-
LAC drawing with one bend per edge in O(n2 cot2 "

2
) [66]. We emphasize that this

construction requires that " is strictly greater than 0 while the multiplicative factor
of cot2 "

2
albeit being a constant can be prohibitively large for small values of " and

moderate values of n. In the cited studies, vertices and bends of edges are placed
on an underlying integer grid while the positions of intersections are implicitly
defined by the endpoints of the intersecting segment. If also intersections must be
located on the grid, Ω(n4) area is required since in any drawing of the complete
graph Ω(n4) intersections are required by the crossing lemma [7, 124]. Hence, in
this version of the problem, an area optimal algorithm is known [71] while in the
normal setting, the lower bound is Ω(n2) area.

Commonly used techniques. Beyond planar drawings can be grouped into
equivalence classes to which we refer as beyond planar embeddings. For instance,
a 1-planar embedding specifies the cyclic order of edges incident to each vertex
and which pairs of edges form intersections. In contrast, a k-planar embedding
for k ≥ 2 specifies in addition the sequence of intersections along each edge. As
typically the problem of computing a beyond planar embedding is NP -hard, algo-
rithms producing beyond planar drawings usually assume that a valid embedding
is provided as an input.

Given an embedding E of a beyond planar graph G that specifies the sequence
of intersections along each edge, a planarization Gp of G can be computed by
replacing every intersection with a so-called dummy vertex of degree four [50].
As E specifies the sequence of intersections along each edge, it also defines how
dummy vertices have to be connected with each other or with real vertices. The
planarization Gp can then be used as input for planar drawing algorithms or as an
auxiliary graph in the process of drawing G directly.

Another important tool is the so-called crossing lemma which allows us to
give a bound on the required number of intersections based on the density of a
graph [7, 124]. More precisely, for a graph with m edges and n vertices, it holds
that in any drawing there are Ω(m3=n2) intersections.

Finally, in some cases drawings are required to be simple, that is, the pair of
representations of each pair of edges share at most one point which can be either
an endpoint or an intersection. Straight-line drawings are simple by definition,
however, requiring simplicity can impose further restrictions beyond the forbidden
pattern of intersecting edge. For instance, the class of quasiplanar graphs4 has a
maximum edge density of 7n −O(1) while the class of simple quasiplanar graphs
has a maximum edge density of 6:5n − 13 [5]; both bounds being tight.

4A quasiplanar graph admits a drawing in which no triple of edges pairwise intersect.

2.3. GRAPH DRAWING STYLES 27

u v u′ v ′

(a)
v ′vu = u′

(b)
u u′ v ′ v

(c)
u u′ v v ′

(d)

Figure 2.4: Four different relationships between edges (u; v) and (u′; v ′) in a linear
layout: (a) Independent, (b) Dependent, (c) Nesting, and, (d) Intersecting.

2.3.3 Linear Layouts

A special type of graph drawings are linear layouts in which the drawings of all
vertices are restricted to a line called spine. In this thesis, we mainly consider two
types of linear layouts, namely, queue layouts and arc diagrams. Since both of
these linear layout types are also closely related to so-called stack layouts, we will
also introduce those in this section.

Stack and Queue Layouts. Consider a total ordering ≺ of the vertices of a
graph G. When arranging the vertices according to ≺ on the spine, we may observe
four different relationships between edges (u; v) and (u′; v ′):

(i) If u ≺ v ≺ u′ ≺ v ′, we say that (u; v) and (u′; v ′) are independent; see
Fig. 2.4a.

(ii) If (u; v) and (u′; v ′) have a common endpoint, we say that (u; v) and (u′; v ′)
are dependent; see Fig. 2.4b.

(iii) If u ≺ u′ ≺ v ′ ≺ v , we say that (u; v) nests (u′; v ′); see Fig. 2.4c.

(iv) If u ≺ u′ ≺ v ≺ v ′, we say that (u; v) and (u′; v ′) intersect; see Fig. 2.4d.

Based on these relationships, we can define stack and queue layouts. A k-page
stack layout5 of a graph G consists of a total ordering ≺ of its vertices and an
assignment of its edges to k color classes called pages such that no two edges
(u; v) and (u′; v ′) of the same color intersect. Conversely, a k-page queue layout
of a graph G consists of a total ordering ≺ of its vertices and an assignment of
its edges to k color classes called pages such that no two edges (u; v) and (u′; v ′)
of the same color nest. The names “stack” and “queue” derive from the fact, that
when traversing the vertices from the left end to the right end of the spine, edges
of the same color can be pushed or enqueued when processing the left endpoint
while they can be popped or dequeued when processing the right endpoint. We
say that a graph G has stack number sn(G) or queue number qn(G) if G admits
a sn(G)-page stack layout but no (sn(G) − 1)-page stack layout or qn(G)-page
queue layout but no (qn(G)−1)-page queue layout, respectively. Also we say that

5Stack layouts are also known as book embeddings in the literature.

28 CHAPTER 2. PRELIMINARIES AND RELATED WORK

a graph class G has stack number sn(G) or queue number qn(G) if sn(G) or qn(G)
is the minimum number such that for every G ∈ G, it holds that sn(G) ≤ sn(G)
or qn(G) ≤ qn(G), respectively.

Both stack and queue layouts have been successfully used in VLSI design [57,
58, 126] and sorting [153]. In addition, queue layouts have been applied in schedul-
ing applications [42] and despite allowing intersections on the same page have a sur-
prising connection to graph drawing: Namely, graph classes of bounded queue num-
ber admit an intersection-free three-dimensional drawing in linear volume [68, 78].

For visualization purposes, the edges assigned to one page may be embedded on
a halfplane delimited by the spine. While many intersections can occur on the same
page of queue layouts, a single page of a stack layout is indeed outerplanar since
the spine is on the boundary of the associated halfplane; in fact the outerplanar
graphs are exactly the graphs with stack number 1 [40]. By using the halfplanes
above and below the spine for embedding both pages, a 2-page stack layout can
be easily converted into a planar drawing. However, only subhamiltonian planar
graphs admit a 2-page stack layout, that is, planar graphs that can be augmented
with planar edges so to contain a Hamiltonian cycle [40]. As a result, computing
the stack number of a graph is NP -hard. Otherwise, for planar graphs, up to four
pages may be required [30, 161]. In addition, k-planar graphs have stack number
O(log n) [75] while in general, the stack number can be as large as dn=2e [40] for
nonplanar graphs.

In contrast to stack layouts, outerplanar graphs have queue number 2. Sur-
prisingly enough, the graphs of queue number one are a subclass of planar graphs
called arched-level planar [108] which even have the same density as outerplanar
graphs. Since testing for arched-level planarity is NP -complete [107], also com-
puting the queue number of a graph is a difficult computational problem. Similar
to stack layouts, the complete graph Kn has queue number bn=2c [108]. Sublinear
upperbounds are known for graphs with m ∈ o(n2) edges [107] and minor-closed
graph families [78]. Constant upper bounds are known for not necessarily pla-
nar graphs of bounded tree- and pathwidth [78, 158], bounded tracknumber [81],
bounded bandwidth [107] and bounded layered pathwidth [23].

At the start of the work on this thesis, results for queue numbers of planar
graphs in the literature were rather limited. It was known that subclasses of
planar graphs have constant queue number, namely, Halin graphs [98], series-
parallel graphs [143] and planar 3-trees [8]. The best known upper bound for
the queue number of planar graphs was O(log n) [23] while the best known lower
bound was four for a family of planar 3-trees [8]. For planar graphs on the other
hand, Heath, Leighton and Rosenberg had conjectured that the queue number
was bounded [107]. During this thesis, we positively answered the conjecture for
planar graphs of bounded degree [25] which stands in contrast to general bounded
degree graphs [160]; we also discuss this result in Chapter 5. Subsequently, the
conjecture was positively answered for all planar graphs [76].

2.3. GRAPH DRAWING STYLES 29

(a) (b) (c) (d)

Figure 2.5: Four arc diagrams of the same graph: (a) General arc diagram with
intersections, (b) Plane arc diagram, (c) Plane monotone arc diagram, (d) Plane
proper arc diagram (or 2-page stack layout).

Arc Diagrams. As previously discussed, only subhamiltonian planar graphs ad-
mit a 2-page stack layout while general planar graphs require up to four half-planes
for realizing their edges. On the other hand, even 3-page stack layouts cannot be
easily embedded into the plane; drawing two half-planes on top of each other may
introduce many intersections. This is in contrast to the possibility to embed a
2-page stack layout intersection-free in the plane by drawing one half-plane above
and one below the spine.

In order to retain the clarity of stack layouts when restricting the drawing
to two half-planes, it is however possible to draw some edges as sequences of
segments which alternate between both half-planes. Such layouts are known as
arc diagrams; see Fig. 2.5. While the first works on arc diagrams considered the
number of intersections [1, 132, 146], due to the previously discussed motivation,
plane arc diagrams also have been considered, that is, arc diagrams, in which
edges do not intersect [51, 67]; see Fig. 2.5b. Two special types of edge drawings
in arc diagrams are proper arcs and biarcs which consist of exactly one and two
segments, respectively. Additionally, the drawings of edges can be monotone with
respect to the spine. An arc diagram in which all edges are monotone is called
a monotone arc diagram; see Fig. 2.5c. In addition, an arc diagram in which all
edges are proper arcs is called proper arc diagram; see Fig. 2.5d.

It is known that all planar graphs admit a planar arc diagram in which each
edge is represented by a proper arc or a biarc [120]. This result originates from
the study of point set embeddability , that is, the problem of defining a point set S
whose size is polynomially bounded by n such that all planar graphs on n vertices
admit a planar drawing with vertices located on one of the points in S where edges
are drawn in some restricted way (specifically here polylines with at most 2 bends).
Moreover, a biarc can be down-up, that is, it is monotone such that the spine can
be oriented so that the left segment of the biarc is below and the right segment
of the biarc is above the spine [67]. We call an arc diagram in which all biarcs are
down-up down-up monotone.

While in general biarcs are required, it is also possible to guarantee that a
majority of edges is drawn as proper arcs; the best known upper and lower bounds
on the required number of biarcs are the following [51]: Every planar graph admits
an arc diagram with b(n − 3)=2c not necessarily monotone biarcs and a down-up

30 CHAPTER 2. PRELIMINARIES AND RELATED WORK

monotone arc diagram with n − 4 biarcs. On the other hand, there are planar
graphs that require at least b(n − 8)=3c biarcs in any arc diagram.

Planar arc diagrams are also used as an intermediate tool for related graph
drawing problems. For instance, they can be easily transformed to a circular
layout [65], that is, a polyline drawing where vertices are restricted to a circle;
see also Fig. 2.6a. In addition, they found applications in point set embeddability
problems as a point set can be ordered with respect to some line (such that each
point of the point set has a unique projection on the line) yielding some sort of
“wiggled” spine; see Fig. 2.6b. In particular, point sets for the problems of drawing
edges with circular arcs [15] and polylines with at most one bend [89, 130] have
been defined based on the existence of monotone and down-up monotone arc
diagrams, respectively; see also Fig. 2.6c. Finally, monotone arc diagrams have
also been considered for directed graphs in the literature as upward topological
book embeddings [67] in their own interest.

2.3. GRAPH DRAWING STYLES 31

(a)

(b)

(c)

Figure 2.6: Three applications of arc diagrams: (a) By gluing together both ends
of the spine, a circular layout is obtained in which biarcs (red) cross the circle on
which the vertices are located. (b) By ordering the points of a general point set with
respect to some orientation and using this ordering as a “wiggled” spine, a drawing
with at most two bends per edge (occuring on the red biarcs) can be achieved [120].
(c) Conversion from a down-up monotone arc diagram to a drawing with one bend
per edge on an universal point set as described in [130]. Note that the positions
of points in the figure diverge from the exact positions according to [130] for easier
readability.

32 CHAPTER 2. PRELIMINARIES AND RELATED WORK

Part I

Beyond Orthogonal Drawings

Smooth Orthogonal Drawings,
Octilinear Drawings and
Beyond Planar Graphs

33

34

Chapter 3

Smooth Orthogonal and
Octilinear Drawings of Planar
Graphs

In this chapter1, we consider two extensions of the well-established orthogonal
graph drawing model: (i) the smooth orthogonal graph drawing style, in which
edges are represented by sequences of circular arcs and axis-aligned straight-line
segments where consecutive segments have a common tangent at their touching
point, and, (ii) the octilinear graph drawing style, where in addition to axis aligned
straight-line segments also diagonals at slopes ±1 are allowed. In particular, we
focus on such drawings that have a low curve complexity , that is, the representa-
tions of edges are composed of few arcs or segments. In addition, in this chapter,
we will only consider planar drawings, hence, we will omit to specifically men-
tion that a drawing is planar. First we show in Section 3.1, that the classes of
graphs that admit SC1 and 8C1 drawings, respectively, are incomparable. Then,
in Section 3.2, we show, that the topology-shape-metrics framework which is of
fundamental importance in orthogonal graph drawing cannot be extended to either
drawing style since in both cases no efficient algorithm for the metrics step can
exist unless P = NP . Finally, in Section 3.3, we present efficient drawing algo-
rithms for creating smooth orthogonal and octilinear Kandinsky layouts of planar
graphs of arbitrary maximum degree.

3.1 Relations

In this section, we investigate the relationships between the classes of graphs
that admit smooth orthogonal and octilinear drawings of low curve complexity.
The primal motivation for investigating these relationships is the observation that

1The results of this chapter also appeared in [26].

35

36 CHAPTER 3. SMOOTH ORTHOGONAL AND OCTILINEAR DRAWINGS

(a) (b) (c) (d)

Figure 3.1: (a)–(b) A smooth orthogonal and an octilinear drawing of the same
graph, respectively, in which vertices and bends have the same position. (c)–(d) A
smooth orthogonal and an octilinear drawing of graph, respectively, whose underlying
graph does not admit an octilinear or smooth orthogonal drawing with the same
vertex position, respectively.

smooth orthogonal layouts and octilinear layouts require the same relative positions
for the endpoints of edges. More precisely, if two points p and q (endpoint or bend)
are connected by a segment of an edge, p and q have to be located on a horizontal
or vertical line (for horizontal and vertical segments in both models as well as half
circular arcs in the smooth orthogonal model) or on a line of slope ±1 (for diagonal
segments in the octilinear model as well as quarter and three-quarters circular arcs
in the smooth orthogonal model). This similar positioning of vertices may be used
to convert a drawing of one type into a drawing of the other type by replacing
circular arcs with diagonal segments, or vice versa; for an example refer to the two
drawings in Figs. 3.1a and 3.1b.

However, such a trivial conversion is not always possible: For instance, consider
the smooth orthogonal drawing in Fig. 3.1c. If we were to replace both edges
represented by circular arcs we would obtain a drawing with two overlapping edges.
Conversely, the octilinear drawing in Fig. 3.1d cannot be converted with fixed vertex
positions as well since the 4-cycle illustrated with black edges cannot be realized
in the smooth orthogonal model such that the correct number of ports is free to
the inner and outer face at each vertex. On the other hand, it is easy to see that
the graphs shown in Figs. 3.1c and 3.1d indeed admit both a smooth orthogonal
and an octilinear drawing. As a consequence, we may ask whether a less trivial
conversion from one drawing style to the other may still be possible.

For the sake of brevity, let SCk and 8Ck denote the class of graphs that admit
an SCk or 8Ck-drawing, respectively. By definition, it holds that SC1 ⊆ SC2 and
8C1 ⊆ 8C2 ⊆ 8C3. Moreover, it is known that all planar graphs of maximum degree
eight admit an 8C3-drawing [121] whereas all planar graphs of maximum degree
four admit both an SC2- [9] and an 8C2-drawing [28]. In addition, it was shown
in [28] that there exist graphs of maximum degree 6 that admit an 8C3-drawing
but no 8C2-drawing. Since there exists planar graphs of maximum degree five that
admit 8C2-drawings but no 8C1-drawings [34], it holds that 8C2 is a superclass of

3.1. RELATIONS 37

8C3 = max-degree 8 planar [121] [28]

8C2

SC2 = max-degree 4 planar [9]
8C1

caterpillarsSC1

Octahedral Graph [28,31,34]

[34]

Theorem 3.2

Theorem 3.3
degree 8

Theorem 3.1

Figure 3.2: Overview of the relationships between the classes of graphs admitting
SC1-, SC2-, 8C1-, 8C2- and 8C3-drawings.

both SC2 and 8C1. The octahedral graph has been shown to admit neither an
SC1- [31] nor an 8C1-drawing [34], however, as a planar graph of maximum degree
four, it admits both an SC2- and an 8C2-drawing. Finally, it is easy to see that a
caterpillar whose spine vertices have degree eight admits an 8C1-drawing whereas
its degree is too large to admit an SC2-drawing.

In the remainder of the section, we will first show in Theorem 3.1, that there
are infinitely many planar 4-regular graphs that admit both an SC1-drawing and an
8C1-drawing. In fact, these graphs will admit drawings in the two drawing styles
that can be “converted” into each other as discussed before by the replacement
of circular arcs with straight-line segments, and vice versa. On the other hand,
we will show in Theorems 3.2 and 3.3, that there are graphs belonging to classes
SC1 and 8C1 that do not belong to the other class. As a result, our analysis will
establish the relationships between graph classes SC1, SC2, 8C1, 8C2 and 8C3 as
depicted in Fig. 3.2.

Theorem 3.1. For every k ∈ N+, there exists a 4-regular planar graph Gk on 20k
vertices that admits both an SC1- and an 8C1-drawing.

Proof. Refer to Fig. 3.3 for an illustration for the case where k = 2. We describe
Gk for k ∈ N+: For 1 ≤ i ≤ 2k and j ∈ {t; b}, graph Gk contains a subgraph
Wi ;j which is a 5-wheel with center ci ;j and rim (ni ;j ; wi ;j ; si ;j ; ei ;j). Note that in
Fig. 3.3, we layout ci ;j as the central vertex of Wi ;j , ni ;j as the topmost vertex of
Wi ;j , wi ;j as the leftmost vertex of Wi ;j , si ;j as the bottommost vertex of Wi ;j and
ei ;j as the rightmost vertex of Wi ;j . In addition, graph Gk contains the following
edges:

- For 1 ≤ i ≤ 2k − 1 and j ∈ {t; b}, we have that (ei ;j ; wi+1;j) is an edge of Gk ;
see the blue dotted edges in Fig. 3.3.

38 CHAPTER 3. SMOOTH ORTHOGONAL AND OCTILINEAR DRAWINGS

W1;t W2;t

W1;b W2;b

W3;t

W3;b

W4;t

W4;b

(a)

W1;t W2;t

W1;b W2;b

W3;t

W3;b

W4;t

W4;b

(b)

Figure 3.3: (a) SC1- and (b) 8C1-drawing of G2 as described in the proof of
Theorem 3.1.

C c

e

(a)

C

e
c

(b)

c

225◦ c

(c)

C1

C2

C3

c1

c2

(d)

Figure 3.4: (a) SC1-drawing of subgraph C, (b) alternative embedding of C, (c) il-
lustration for the proof that C admits no 8C1-drawing with vertex c on the outer
face, and, (d) construction for infinitely many 4-regular graphs containing two copies
of C.

- For 0 ≤ i ≤ k − 1, we have that (n2i+1;t ; n2i+2;t) and (s2i+1;b; s2i+2;b) are edges
of Gk ; see the green dash-dotted edges in Fig. 3.3.

- For 1 ≤ i ≤ 2k , we have that (si ;t ; ni ;b) is an edge of Gk ; see the red dashed
edges in Fig. 3.3.

- (w1;t ; w1;b) and (e2k;t ; e2k;b) are edges of Gk ; see the gray solid edges in Fig. 3.3.

It is straight-forward to verify that Gk is 4-regular. In addition, Figs. 3.3a
and 3.3b certify that Gk admits both an SC1- and an 8C1-drawing, respectively.

Theorem 3.2. For every k ∈ N0, there exists a 4-regular planar graph Gk on
9k + 17 vertices that admits an SC1-drawing but no 8C1-drawing.

Proof. Consider the graph C shown in Fig. 3.4a. Clearly, C admits a SC1-drawing
where vertex c (gray in Fig. 3.4a) is on the outer face such that c also has two
free ports on the outer face. We observe that the graph obtained by removing c

3.1. RELATIONS 39

q2

w1

w2 w3

w4t1
t2

p1

p2

q1

(a) (b)

Figure 3.5: (a) Subgraph B that forms the basic component of the proof of Theo-
rem 3.3, and, (b) a cycle of copies of B.

and connecting its two neighbors by an edge is triconnected, hence C has a unique
embedding up to the choice of the outer face. In particular, the two embeddings
shown in Figs. 3.4a and 3.4b are the only two embeddings where c is on the outer
face.

In the following, we show that there is no 8C1-drawing of C where c is located
on the outer face. Since the only two possible embeddings are those in Figs. 3.4a
and 3.4b, the outer face has length 4 or 5 (Property 1). In addition, we observe,
that in both embeddings, every vertex of the outer face except for c has two edges
that use ports pointing in the interior of C. As a result, the angle formed by two
consecutive edges on the outer face except for the pair of edges incident to c is
at most 225◦ (Property 2). It is easy to see, that it is not possible to draw the
outer face without any bends while satisfying Properties 1 and 2; see Fig. 3.4c. As
a result, we conclude that C does not admit an 8C1-drawing with c on the outer
face.

Finally, based on graph C, we construct a 4-regular planar graph Gk for k ∈ N0

that consists of k + 2 biconnected components C1; : : : ; Ck+2 arranged in a chain;
see Fig. 3.4d for an illustration of G1. In particular, C1 and Ck+2 are isomorphic
to C while components C2; : : : ; Ck+1 are isomorphic to a graph C ′ where edge e
of graph C is split by a vertex c1. Since there are two copies of C in each graph,
one of them has to be drawn with c on the outer face which is not possible in an
8C1-drawing. On the other hand, Fig. 3.4d certifies that an SC1-drawing exists,
hence, we conclude the proof.

Theorem 3.3. For every k ∈ N0, there exists a 4-regular planar graph Gk on
20k + 40 vertices that admits an 8C1-drawing but no SC1-drawing.

Proof. The central ingredient of our proof is the graph B shown in Fig. 3.5a. We
first describe the structure of B: First, B contains a 5-wheel W5 composed of
center c (gray circle in Fig. 3.5a) and rim (w1; : : : ; w4) (white circles in Fig. 3.5a).
Attached to W5, there are two triangular faces (t1; w1; w2) and (t2; w3; w4) (t1 and
t2 are depicted as triangles in Fig. 3.5a). Note that t1 and t2 form a separation pair.

40 CHAPTER 3. SMOOTH ORTHOGONAL AND OCTILINEAR DRAWINGS

(a) (b) (c) (d)

Figure 3.6: (a)–(b) All possible embeddings of a triangle with all free ports on the
outer face, and, (c)–(d) all possible embeddings of W5 with all free ports on the
outer face.

Moreover, both t1 and t2 are connected to vertices p1 and p2 (depicted as pen-
tagons in Fig. 3.5a) creating pentagons (p1; t1; w1; w4; t2) and (p2; t2; w3; w2; t1).
Again, p1 and p2 form a separation pair and are both incident to vertices q1

and q2 (depicted as quadrilaterals in Fig. 3.5a) yielding two quadrilateral faces
(q1; p2; t1; p1) and (q2; p1; t2; p2). As a result, B has two vertices of degree 2 (that
is, q1 and q2, and two separation pairs, that is, (t1; t2) and (p1; p2). All remaining
vertices have degree exactly 4. It is noteworthy that when the outer face is required
to be (q1; p1; q2; p2) (which we will require later), the separation pairs only allow
flips of some symmetric triconnected components which just results in a renaming
of vertices.

For k ∈ N0, we construct a 4-regular planar graph Gk that consists of a cycle
of 2k + 4 copies of B where consecutive copies B and B′ are attached to each
other by identifying vertex q2 of B with vertex q1 of B′; see Fig. 3.5b in which
copies of B are outlined as gray-shaded parallelograms. As certified by Fig. 3.5,
Gk admits an 8C1-drawing. Moreover, by planarity, all but one copy of B must
be realized such that (i) (q1; p1; q2; p2) is the outer face, and (ii) q1 and q2 have
two free ports on the outer face (to identify them with the corresponding vertex
of another copy). In the following, we show that these two properties cannot be
achieved in any SC1-drawing of B which directly implies that for any k , Gk has
no SC1-drawing. Note that since we require (q1; p1; q2; p2) to be the outer face,
the embedding of B must be isomorphic to the embedding shown in Fig. 3.5a.

We start by investigating wheel W5. Since the embedding of W5 is fixed, all
unoccupied ports have to be located on the outer face; the same is true for the four
triangles W5 is composed of. As shown in [9], there are only two SC1-drawings
of a triangle fulfilling this property; see Figs. 3.6a and 3.6b. It is easy to see that
these two realizations can only be combined into two different drawings of W5 (up
to isomorphy) which are shown in Figs. 3.6c and 3.6d.

Next, consider vertices t1 and t2. Each of them creates a triangular face with
two vertices of W5 which again has to have all free ports on the outer face. As a
result, we have to draw each such face with one of the drawings shown in Figs. 3.6a

3.1. RELATIONS 41

(a) (b) (c) (d) (e)

Figure 3.7: All SC1-drawings of the subgraph of B induced by the vertices of W5,
t1 and t2 that might be extendable to a drawing of B.

and 3.6b. It is straight-forward to see that there are only five different drawings of
the subgraph induced by the vertices of W5, t1 and t2 which are shown in Fig. 3.7.
Note that the geometry of the drawings shown in Figs. 3.7d and 3.7e can be altered
by moving vertices t1 and t2 along the gray dashed diagonal rays.

In the next step, we insert p1 and p2 into the drawings of W5, t1 and t2. We do
so by considering all candidate positions, that we identify as follows: In an SC1-
drawing, both endpoints of an edge are located on a common horizontal, vertical
or diagonal (at slope ±1). Since both t1 and t2 are neighbors of p1 and p2 this
limits the number of feasible candidate positions as we only have to consider all
intersections of pairs of rays of slopes {0; 1;−1;∞} which emerge from t1 and t2,
respectively. This allows us to enumerate all possible candidate positions for p1

and p2; see the gray-colored pentagons in Figs. 3.8 and 3.9. It is noteworthy, that
for the case whereW5, t1 and t2 use the drawing in Fig. 3.7e there are four different
subcases to be considered. These subcases depend on the relative positioning of
t1 and t2 that we assume to be fixed in the following; see Fig. 3.9a. Observe that
there are symmetric relative positionings of t1 and t2 with respect to the diagonal
line through c (dashed-dotted in Fig. 3.9a) indicated by the identical numbering
in Fig. 3.9a. In Figs. 3.9b to 3.9e we then illustrate the non-symmetrical ones that
are marked with an asterisk in Fig. 3.9a. In particular, in Fig. 3.9b, t1 and t2 are
diagonally aligned, in Fig. 3.9d, they are vertically aligned (which is symmetrical
to the case where they are horizontally aligned). Figs. 3.9c and 3.9e show the
two remaining cases, that is, the case where t2 is located between a vertical and
a diagonal ray through t1, and the case where t2 is located to the right of the
vertical line through t1, respectively.

For each candidate position, we exhaustively try all possible realizations for
edges from t1 and t2 to p1 (or p2, respectively) using a single edge segment
allowed by the smooth orthogonal model. We then classify a candidate position
as valid if and only if none of the following forbidden patterns arises:

FP.I. one of the two edges cannot be drawn without intersections

FP.II. a port has to be used twice to realize the two edges

42 CHAPTER 3. SMOOTH ORTHOGONAL AND OCTILINEAR DRAWINGS

1

2

3

4 5

6

7

(a)

1

2

3 4 5
6
7

8

(b)

1

2

3 4

5

6

(c)
1

2 3 4

5

6

7

8

9 10

11

(d)

Figure 3.8: Candidate positions for p1 and p2 for the case where W5, t1 and t2 are
drawn as shown in (a) Fig. 3.7a, (b) Fig. 3.7b, (c) Fig. 3.7c, and, (d) Fig. 3.7d.

3.1. RELATIONS 43

1
2
3
4
∗

∗
∗

∗

4
3
2

(a)

1

2

43
5

76

8

9

(b)

1
2
5

3
4
6

7 9
10
8

(c)

1

2

3 4 5

6 7

8

(d)

1

2

3

4

5

6 7 8

9

(e)

Figure 3.9: Candidate positions for p1 and p2 for the case where W5, t1 and t2 are
drawn as shown in Fig. 3.7e. Subfigure (a) shows possible relative positionings of
t1 and t2 (non-symmetric ones marked with an asterisk). Subfigures (b)–(e) show
candidate positions arising for all non-symmetric relative positionings of t1 and t2.

44 CHAPTER 3. SMOOTH ORTHOGONAL AND OCTILINEAR DRAWINGS

Table 3.1: Forbidden patterns arising when using each of the candidate positions
shown in Figs. 3.8 and 3.9 for placing p1 or p2. The gray-shaded row lists forbidden
patterns arising when placing q1 and q2 at each of the candidate positions derived
from the only valid drawing of B without q1 and q2 which is illustrated in Fig. 3.10
and obtained by placing p1 and p2 at Positions 2 and 6 of Fig. 3.8a, respectively.
Table entries of ‘–’ indicate valid candidate positions causing no forbidden pattern.

Case Candidate Position (CP.)/ Forbidden Pattern (FP.)

Fig. 3.8a
CP.: 1 2 3 4 5 6 7
FP.: III – III III III – III

Fig. 3.8b
CP.: 1 2 3 4 5 6 7 8
FP.: III II – III III III – –

Fig. 3.8c
CP.: 1 2 3 4 5 6
FP.: III III III – III III

Fig. 3.8d
CP.: 1 2 3 4 5 6 7 8 9 10 11
FP.: III II II III III I I III III II III

Fig. 3.9b
CP.: 1 2 3 4 5 6 7 8 9
FP.: I II III II – II III II I

Fig. 3.9c
CP.: 1 2 3 4 5 6 7 8
FP.: I II III – III II II I

Fig. 3.9d
CP.: 1 2 3 4 5 6 7 8 9 10
FP.: II III II III III III II III II II

Fig. 3.9e
CP.: 1 2 3 4 5 6 7 8 9
FP.: II III III III III II III II II

Fig. 3.10
CP.: 1 2 3 4 5 6 7 8 9
FP.: I III III I I III I III I

FP.III. a vertex has an unoccupied port incident to an interior face (this will
prevent q1 and q2 from appearing on the outer face)

If a candidate position is not valid, we call it invalid. We point out that we chose
the radii of arcs incident to t1 and t2 in Figs. 3.8d and 3.9 in a way that avoids
the creation of unnecessary Forbidden Patterns I.

In Table 3.1, we list for each candidate position for p1 and p2 as shown in
Figs. 3.8 and 3.9 which forbidden pattern arises (if any). It is immediate to see
that all drawings forW5, t1 and t2 shown in Figs. 3.8c–3.8d as well as in Figs. 3.9b–
3.9e provide at most one valid candidate position for p1 and p2. As a result, those
drawings cannot be subdrawings of any SC1-drawing of B.

The drawing shown in Fig. 3.8b, on the other hand, provides three valid can-

3.1. RELATIONS 45

1

2

3
4

5

6 7

8

9

Figure 3.10: Valid SC1-drawing of B without q1 and q2 and candidate positions
for placement of q1 and q2.

didate positions, namely Positions 3,7 and 8. This gives rise to three different
combinations of placements for vertices p1 and p2, however each of them will re-
sult in a Forbidden Pattern II. It remains the option to place vertices p1 and p2

on Candidate Positions 2 and 6 in Fig. 3.8a, respectively. This indeed results in a
valid drawing as shown in Fig. 3.10.

Finally, as we did before for p1 and p2, we also consider all possible candidate
positions for placing q1 and q2; see the gray squares in Fig. 3.10. Again, when
choosing the radii for arcs incident to p1 and p2 in Fig. 3.10, we ensure that
no unnecessary forbidden configuration arises. Nevertheless, it turns out, that all
candidate positions for q1 and q2 are invalid; see the gray shaded row in Table 3.1
for the corresponding forbidden patterns.

As a result, there exists no SC1-drawing of B where both q1 and q2 are on the
outer face having two free ports. This concludes the proof of the theorem.

46 CHAPTER 3. SMOOTH ORTHOGONAL AND OCTILINEAR DRAWINGS

3.2 NP-Hardness of the Metrics Step

In this section, we investigate the complexity of finding SC1- and 8C1-drawings
for planar graphs of maximum degree four. Recall that planar graphs of maximum
degree three always admit both an SC1- and an 8C1-drawing [29, 69, 116] while
it is known that finding an 8C1-drawing for planar graphs of maximum degree
eight is NP-hard [135]. Here, we make an additional assumption on the input of
our drawing algorithm: We assume, that in addition to an input graph G, we are
also provided with an embedding of G and a smooth orthogonal or an octilinear
representation R. Such a representation is defined analogously to an orthogonal
representation, that is, the input of the last step (that is, the Metrics step) of the
topology-shape-metrics framework for orthogonal graph drawing. More precisely,
it defines

(i) the angles between edges appearing consecutively around a vertex in the cyclic
order (which are multiples of ı=2 for the smooth orthogonal and multiples
of ı=4 for the octilinear setting), and,

(ii) the shape of each edge, that is whether it is drawn as a straight-line segment
(always in the octilinear setting) or as a circular arc (only in the smooth
orthogonal setting) in which case it is specified, if the circular arc is a quarter,
half, or three-quarters circular arc and with which sign the slope of its tangent
changes when exiting either endpoint.

In contrast to the orthogonal graph drawing model, the two theorems in this section
show that in both the smooth orthogonal and the octilinear model, the metrics
step can only be efficiently solved if P = NP . In addition, we remark that the
problems studied in this section are also closely related to HV-rectilinear planarity
testing [131]. More precisely, in HV-rectilinear planarity testing, the input assigns
a label to each edge of an input graph that describes whether it should be drawn
as a horizontal or as a vertical segment. In contrast to our two problems, HV-
rectilinear planarity testing is polynomial-time solvable if the input graph has a fixed
embedding [83] and only becomes NP-hard in the variable embedding setting [73].

Theorem 3.4. Given a planar graph G of maximum degree four with a corre-
sponding smooth orthogonal representation R, it is NP-hard to decide whether G
admits a smooth orthogonal drawing realizing R. This holds even if R specifies
that all edges are to be drawn as straight-line segments or quarter circular arcs.

Proof. Our reduction is from the well-known NP-hard problem 3-SAT [99]: The
input of 3-SAT is a boolean formula ’ in conjunctive normal form, that is, it is a
conjunction (∧) of disjunctive clauses (∨). In particular, in 3-SAT each clause is
the disjunction of exactly three literals (which are either a variable x or a negated
variable ¬x). More formally, ’ consists of a set of variables X and a set of clauses

3.2. NP-HARDNESS OF THE METRICS STEP 47

C where every c ∈ C is a set of three literals l1(c); l2(c); l3(c) taken from the
literal set L = X∪̇{¬x |x ∈ X}. The problem then asks whether there is an
assignment of truth values t : X → {⊥;>} such that for every c ∈ C it holds
that t(l1(c)) ∨ t(l2(c)) ∨ t(l3(c)) = > where for every l ∈ L, t(l) = t(x) if l = x
for x ∈ X or t(l) = ¬t(x) if l = ¬x for x ∈ X. If that is the case, we call ’
satisfiable, otherwise we call it unsatisfiable.

For our reduction, we assume to be given a 3-SAT formula ’ that we encode
in a graph G’ with a smooth orthogonal representation R’ in such a way that G’
admits an SC1-drawing Γ’ if and only if ’ is satisfiable; for an example refer to
Fig. 3.11.

The following are the main ideas of our reduction:

(i) We encode information about the truth values of literals in the length ‘(e)
of certain straight-line edges e of Γ’.

(ii) We use rectangular faces of Γ’ to propagate the information stored in the
length of one of its sides to the opposite side of the rectangular face, that is,
the information flows across rectangular faces.

(iii) We use triangular faces composed of two straight-line edges and a quarter
circular arc to change the direction of the information flow as those faces
have the property that both straight-line edges have the same length while
they are perpendicular.

(iv) We propagate a unit length ‘(u) that can be used as an input for all of our
gadgets. This allows us to communicate the meaning of edge lengths (true
literal versus false literal) amongst disjoint gadgets.

We will make use of those techniques in the construction of our gadgets that we
describe next.

Variable gadgets. For each variable x ∈ X, we introduce a variable gadget as
illustrated in Fig. 3.12. We ensure with the bold-drawn circular arc that the sum
of edge lengths to its left is the same as the sum of the edge lengths to its bottom;
see the gray vertices in Fig. 3.12. The input of the gadget are three unit length
edges, which ensures that the sum of lengths of output edges x and ¬x is equal
to three times the unit edge length, i.e., ‘(x) + ‘(¬x) = 3‘(u).

Assuming that the lengths of all straight-line edges were integer and at least
one and further assuming that ‘(u) = 1, this construction would already suffice to
ensure that ‘(x); ‘(¬x) ∈ {1; 2}, i.e., there would be two disjoint states. Then,
we could define that the assignment ‘(x) = 2 and ‘(¬x) = 1 corresponds to
assignment x = > while we could define the assignment ‘(x) = 1 and ‘(¬x) = 2
to correspond to assignment x = ⊥. However, if ‘(u) = 2, a drawing algorithm
could chose ‘(x) = ‘(¬x) = 3, indicating that both x and ¬x are “half true” . In the

48 CHAPTER 3. SMOOTH ORTHOGONAL AND OCTILINEAR DRAWINGS

a

P
arity

a
b

P
arity

b
c

P
arity

c

C
opies

of
the

unit
length

gadget
*

¬
a
∨
¬
b
∨
c

a
∨
b
∨
c

F
igure

3.11:
D
raw

ing
Γ
’
for

’
consisting

of
variable

set
X

=
{a;b

;c}
and

clause
set

C
=
{{a;b

;c};{¬
a;¬

b
;c}}.

T
he

draw
ing

show
s
that

there
exists

a
satisfying

truth
value

assignm
ent

t
w
ith

t(a)
=
⊥

and
t(b

)
=
t(c

)
=
>
.

3.2. NP-HARDNESS OF THE METRICS STEP 49

u

x

¬x
u u

`(x)

`(¬x)`(u)`(u)̀ (u)

(a)

u u u
x

¬x

`(x)

`(¬x)`(u)`(u)̀ (u)

(b)

Figure 3.12: The variable gadget used by our reduction. Gray arrows show the
information flow. (a) True state x = >: ‘(x) ≈ 2‘(u) and ‘(¬x) ≈ 1‘(u). (b) False
state x = ⊥: ‘(x) ≈ 1‘(u) and ‘(¬x) ≈ 2‘(u).

following, we solve this issue by introducing a parity gadget for each variable, which
allows us to use real valued edge lengths while also ensuring that ‘(x); ‘(¬x) ∈
{‘(u) + "; 2‘(u)− "} for some " << ‘(u).

Parity gadgets. In addition to variable gadgets, we introduce a parity gadget
for each variable x ∈ X that will introduce an intersection in Γ’, if the values
of ‘(x) and ‘(¬x) are not significantly different. We illustrate the gadget in
Fig. 3.13 in which the central detail, referred to as vertical gap is shaded in gray.
The vertical gap is a gap of width 3‘(u) into which two blocks consisting of
two square-shaped and three triangular faces point inside from either side; see
triangular- and square-shaped vertices in Figs. 3.13a–3.13c or Fig. 3.13d for a
more detailed illustration of the vertical gap. Depending on the choice of ‘(x),
which as discussed before fixes ‘(¬x) = 3‘(u) − ‘(x), one of the blocks may be
located above the other. In particular, if ‘(x) ≈ 2‘(¬x), the right block is above
the left block; see Fig. 3.13a. In contrast, if ‘(x) ≈ 1

2
‘(¬x), the left block is above

the right block; see Fig. 3.13a. On the other hand, if ‘(x) ≈ ‘(¬x), both blocks
overlap and intersections occur; see Fig. 3.13c. As a result, in any drawing Γ’
realizing R’, it holds that ‘(x) 6≈ ‘(¬x).

In the following, we give a more precise bound for the difference between ‘(x)
and ‘(¬x) that is needed in order to avoid intersections. We consider only the case
where x = ⊥ as the other case is symmetric. Here, we have to avoid that the two
quarter circular arcs intersected by the dashed diagonal in Fig. 3.13d are involved
in intersections, that is, the top circular arc has to be entirely located above the
bottom one. By the design of the gadget, both circular arcs have radius ‘(u), that
is, their centers (colored in gray in Fig. 3.13d) must have an Euclidean distance
of more than 2‘(u) which is equal to the length of the diagonal dashed line-
segment. Using the Pythagorean theorem, we can also express the same length asq

4–2 + ‘(u)2 where – = ‘(¬x)−‘(x). As a result, in order to avoid intersections,

it follows that – >
√

3
2
‘(u) ≈ 0:866‘(u) and hence in order to avoid intersections

‘(x); ‘(¬x) ∈ (0; 1:067‘(u)) ∪ (1:933‘(u); 3), that is " < 0:067‘(u) << ‘(u).

50 CHAPTER 3. SMOOTH ORTHOGONAL AND OCTILINEAR DRAWINGS

u u u u u u u u u

¬x¬x x x

(a)

¬x ¬x x x

u u u u u u u u u

(b)

¬x ¬x x x

u u u u u u u u u

(c)

`(u)
2`(¬x)

2`(x)

`(u)

`(u)

(d)

Figure 3.13: The parity gadget used by our reduction. Gray arrows show the
information flow. (a) True state x = >: ‘(x) ≈ 2‘(u) and ‘(¬x) ≈ 1‘(u). (b) False
state x = ⊥: ‘(x) ≈ 1‘(u) and ‘(¬x) ≈ 2‘(u). (c) Invalid state: ‘(x); ‘(¬x) ≈
3
2‘(u). (d) Central detail of the construction.

u u u u

l2l3 l1 *

Figure 3.14: The clause gadget used by our reduction. Gray arrows show the
information flow. The bold drawn arc can only be realized as a quarter circle if
‘(l1) + ‘(l2) + ‘(l3) > 4‘(u).

3.2. NP-HARDNESS OF THE METRICS STEP 51

i2

i1

i2

i1

(a)

i

ii

i

(b)

Figure 3.15: Auxiliary gadgets used by our reduction. Gray arrows show the infor-
mation flow. (a) The crossing gadget lets two flows of information cross. (b) The
copy gadget creates three copies of an input information.

Clause gadget. Finally, for every clause c ∈ C with literals l1, l2 and l3, G’
contains a clause gadget as shown in Fig. 3.14. As in the construction of the
variable gadget, the bold-drawn quarter circular arc ensures equality between the
two sums of information on the righthand side and on the bottom side. At the
bottom-side, the three literals enter and hence the sum of edge lengths is equal
to ‘(l1) + ‘(l2) + ‘(l3). On the righthand side on the other hand, we have four
unit length edges as input in addition to a free edge (marked with an asterisk in
Fig. 3.14). As a result, the sum of edge lengths at the righthand side is more than
4‘(u) since the free edge has an arbitrary non-zero length.

We show that the quarter circular arc can be realized if and only if one of the
three literals is true. Assume w.l.o.g. that for each variable, the length of the true
literal is 2 − " while the length of the false literal is 1 + " for some " chosen as
large as possible (i.e., " < 0:067‘(u)). We will see that this assumption is indeed
not a loss of generality as this allows use to choose the length of the unfulfilled
literals as large as possible. Clearly, if at least one literal is true, it holds that
‘(l1) + ‘(l2) + ‘(l3) ≥ 4‘(u) + " and the inequality holds. Then, the length of the
free edge can be chosen such that the quarter circular arc can be realized. On the
other hand, if no literal is fulfilled, ‘(l1) + ‘(l2) + ‘(l3) = 3‘(u) + 3" < 4‘(u) and it
is not possible to draw the bold drawn edge of Fig. 3.14 as a quarter circular arc.
We conclude that the clause gadget can indeed verify whether a clause is satisfied
or not.

Auxiliary Gadgets. In addition to the previously mentioned gadgets, our reduc-
tion uses two gadgets for routing the information flow within Γ’. First, we have
the crossing gadget, which is simply a rectangular face which allows two flows
of information i1 and i2 to cross; see Fig. 3.15a. In addition, we also have copy
gadgets as depicted in Fig. 3.15b, that create three copies of an input information
i . In particular, the copy gadget achieves that task by having two quadrilateral
faces whose vertices are located at the vertices of a rectangle with sides of slopes
±1; see the gray vertices in Fig. 3.15b. Finally, the unit length is provided by
a unit length gadget which is a single edge which defines all unit lengths in our
construction through a propagation via copy gadgets; see the edge marked with

52 CHAPTER 3. SMOOTH ORTHOGONAL AND OCTILINEAR DRAWINGS

an asterisk in Fig. 3.11.

Overall construction of G’ and R’. It remains to describe the entire con-
struction; see Fig. 3.11 for an example drawing. We point out that the entire
construction is rigid enough so that it can only be entirely rotated, as a result, we
will describe the relative positioning of gadgets with terms such as “to the left”
even though this can be altered by a rotation of the resulting drawing. Graph G’
contains one unit length gadget that we copy O(|X|+ |C|) times using copy gad-
gets. All these copy gadgets are located below the remainder of the construction
in R’. Then, for each x ∈ X, we create both a variable and a parity gadget which
we connect to different copies of the unit length gadget. Moreover, we place the
variable gadget to the top left of the corresponding parity gadget and connect the
output literals of the variable gadget to the parity gadget with one copy gadget
each. We enumerate all variables arbitrarily and position the variable and parity
gadget of the i-th variable to the bottom right of the corresponding gadgets of the
(i − 1)-th variable. In addition, for each c ∈ C, we introduce a clause gadget that
has four connections to different unit length copies. We position all clause gadgets
in a row below the bottommost variable gadget. As a result we can connect the
output literals of variable gadgets to the corresponding clause gadgets so that all
crossings between literal informations appear above the clause gadgets. In partic-
ular, if a clause contains the i-th variable, there will be a crossing with all literals
of variables with indices larger than i . All those crossings will be resolved with
crossing gadgets. In total, for each clause, we add O(|X|) crossing and three copy
gadgets. Since we can order variables and clauses arbitrarily in advance, the posi-
tion of all required copy and crossing gadgets is fixed which allows us to compute
G’ and R’ in O(|X||C|) time.

We complete the proof by showing that indeed there is a SC1-drawing Γ’
realizing R’ if and only if ffi is satisfiable. Assume that a valid drawing Γ’ exists.
Then, we can compute a satisfying truth value assignment t as follows: For each
x ∈ X, we set t(x) = > if and only if ‘(x) ≥ 1:933‘(u). Note that ‘(u) can be
easily determined by measuring the length of the unit length gadget. As we have
shown before, for clause c ∈ C with literals l1; l2; l3, a clause gadget ensures that
‘(l1) + ‘(l2) + ‘(l3) > 4‘(u), which can only be the case, if for one of the literals
li it holds that t(li) = >. As a result, t is satisfying ’. For the other direction
of the proof, assume that there is a satisfying truth assignment t for ’. Here,
we set ‘(u) = 1 and ‘(x) = 1:95 if t(x) = >, or ‘(x) = 1:05 otherwise. As a
result, for c ∈ C with literals l1; l2; l3 out of which at least one is true, it holds that
‘(l1) + ‘(l2) + ‘(l3) ≥ 4:05 > 4‘(u). This completes the proof.

Next, we give an equivalent statement for the octilinear drawing problem.

Theorem 3.5. Given a planar graph G of maximum degree four with a corre-
sponding octilinear representation R, it is NP-hard to decide whether G admits an

3.3. BI-MONOTONE KANDINSKY DRAWINGS 53

3`(u)

6`(x)

6`(¬x) 5`(u)

3`(u)

3`(u)

3`(u)d

Figure 3.16: The vertical gap of the parity gadget used in the proof of Theorem 3.5.
The illustration shows the case where x = ⊥, i.e., ‘(¬x) ≈ 2‘(u) and ‘(x) ≈ ‘(u).
The dotted line describes the the smallest vertical distance d between the top and
bottom block.

octilinear drawing realizing R. This holds even if R specifies that all edges are to
be drawn without bends.

Proof. We follow the same proof outline as in the proof of Theorem 3.4. The
adjustment to the octilinear model is achieved by replacing every quarter circular
arc with a diagonal segment that uses one of the new ports in the octilinear model.
This also maintains planarity by construction. The only gadget that needs more
adjustments is the parity gadget; see Fig. 3.16. The routing of input information
towards the vertical gap is done analogously, however the blocks are layed out
differently.

Assume that x = ⊥. It is straight-forward to see that the smallest vertical
distance d between the top and bottom block in the vertical gap is equal to
6‘(¬x) − 6‘(x) − 5‘(u); see the dotted line-segment in Fig. 3.16. This implies
that ‘(¬x)− ‘(x) > 5

6
‘(u) as d must be positive. Hence, in the octilinear setting,

" < 0:084‘(u) << ‘(u).

3.3 Bi-Monotone Kandinsky Drawings

In this section, we introduce new efficient algorithms for producing Kandinsky draw-
ings in the smooth orthogonal and the octilinear model. In the smooth orthogonal
model, only one drawing algorithm has been proposed so far [31]; the produced
SC2-Kandinsky drawings are obtained from planar arc diagrams and restrict ver-
tices to one line and contain rather complicated edge representations consisting

54 CHAPTER 3. SMOOTH ORTHOGONAL AND OCTILINEAR DRAWINGS

of up to two half circular arcs. Here, we provide new algorithms that construct
SC2-drawings, which improves upon the previously known algorithm achieving the
following aesthetic benefits:

(i) vertices are not restricted to a line but more equally spaced in the entire
drawing area

(ii) each edge is bi-monotone, that is, both x- and y -monotone.

Our two algorithms will allow to opt either for quadratic area but an unbounded
number of edges consisting of two segments or for cubic area and a spanning tree
realized with edges consisting of one segment. We point out that not all planar
graphs admit an SC1-drawing in the Kandinsky model [29], hence, we achieve
optimal curve complexity.

Theorem 3.6. Let G be an n-vertex maximal planar graph. A planar bi-monotone
SC2-Kandinsky drawing of G in O(n2) area can be computed in O(n) time.

Proof. We use a modified version of the shift-method [60]. Let ı = (v1; : : : ; vn)
be a canonical ordering of G. Our drawing algorithm will satisfy the following
invariants for the drawing Γk of graph Gk :

I.1 All edges on Ck are quarter circular arcs except for edge (v1; v2) which is a
horizontal line-segment; see Fig. 3.17a. As a consequence, both endpoints of
an edge on Ck (except for (v1; v2)) are located on a line of slope ±1.

I.2 Γk is planar.

I.3 Each vertex v on Ck is associated with a shift-set S(v) such that edges between
two shift-sets are blue or green (according to the Schnyder coloring obtained
from the canonical ordering).

I.4 All blue and green interior edges in Gk+1 are a sequence of a quarter circular
arc and a horizontal segment (of possibly zero length).

We draw G3 such that v1, v2 and v3 are located at points (0; 0); (2; 0), and (1; 1),
respectively. This allows us to draw (v1; v2) as a horizontal line-segment and edges
(v1; v3) and (v2; v3) as quarter circular arcs. Moreover, we set S(v1) = {v1},
S(v2) = {v2} and S(v3) = {v3}. According to the Schnyder coloring, we color
(v1; v3) blue and (v2; v3) green. Clearly, Γ3 fulfils Invariants 1 to 4.

Moreover, for k = 4; : : : ; n assume that Γk−1 has been drawn such that it fulfils
Invariants 1 to 4; see Fig. 3.17a. Let (w1 = v1; : : : ; wp = v2) be the sequence
of vertices from left to right along Ck−1 and let w‘ and wr be the leftmost and
rightmost neighbors of vk on Ck−1. As in the shift-method, we translate all vertices
in
S‘
i=1 S(wi) one unit to the left and all vertices in

Sp
i=r S(wi) one unit to the right.

3.3. BI-MONOTONE KANDINSKY DRAWINGS 55

w1 = v1

w‘
wr

wp = v2

Γk−1

(a)

w‘
wr

Γk−1

w1 = v1 wp = v2

vk

(b)

Figure 3.17: (a) Illustration of Invariant 1 maintained by the algorithm in the proof
of Theorem 3.6, and, (b) illustration of the insertion of a new vertex vk in an iteration
of the algorithm in the proof of Theorem 3.6.

As a result, edges (w‘; w‘+1) and (wr−1; wr) acquire a new horizontal segment
which is in accordance to Invariant 4; see the bold edges in Fig. 3.17b. Moreover,
by Invariant 4, we know that all blue and green edges between different shift-sets
have a horizontal segment (possibly of length zero) that can be extended to achieve
a planar drawing of Gk−1 after the shifting operation. Then, vk is placed at the
intersection of the line –‘ with slope +1 through w‘ and the line –r of slope −1
through wr ; see the dotted lines in Fig. 3.17b. We set S(vk) = {vk}∪

Sr−1
i=‘+1 S(wi)

as in the shift-method to ensure Invariant 3. Now, the new blue edge (w‘; vk)
and the new green edge (wr ; vk) can be realized as quarter circular arcs, hence
Invariant 1 is satisfied. On the other hand, red edges (wi ; vk) for ‘ < i < r
are realized by a representation consisting of a vertical line-segment starting from
wi and ending on –‘ (if wi is to the left of vk) or –r and a quarter circular arc
connecting the end of the vertical line-segment with vk . Since those new edges
are intersection-free we maintain Invariant 2. We point out that the position of
vertices is identical to the positioning of vertices in the shift-method. The time
complexity follows analogously to the time complexity of the shift-method.

We remark that the result from Theorem 3.6 transfers to all planar graphs since
each planar graph can be triangulated to obtain a maximal planar graph. Next,
we improve on Theorem 3.6 by ensuring that a certain number of edges will be
drawn as a single segment at the cost of increasing the drawing area:

Theorem 3.7. Let G be an n-vertex maximal planar graph. A planar bi-monotone
SC2-Kandinsky drawing of G in O(n3) area where at least n − 1 edges are repre-
sented by a single segment can be computed in O(n) time.

Proof. For each vertex, we use the x-coordinates as computed by the algorithm
in the proof of Theorem 3.6. However, we compute new y -coordinates processing
the vertices in the order of the same canonical ordering ı = (v1; : : : ; vn). Here,
we maintain the following invariants for the drawing Γk of Gk :

I.1 In Γk , all edges (vi ; vj) of Ck for i < j consist of a vertical segment (of
potentially zero length) attached to vi and a quarter circular arc unless i = 1

56 CHAPTER 3. SMOOTH ORTHOGONAL AND OCTILINEAR DRAWINGS

w1 = v1 wp = v2

Γk−1

(a)

wr

w1 = v1 wp = v2

w‘

Γk−1

vk

∗

Lk

(b)

Figure 3.18: (a) Illustration of Invariant 1 maintained by the algorithm in the proof
of Theorem 3.7, and, (b) illustration of the insertion of a new vertex vk in an iteration
of the algorithm in the proof of Theorem 3.7.

and j = 2, in which case it is a horizontal line-segment; see Fig. 3.18a. All
interior edges either follow the same rules or are realized as a vertical segment.

I.2 Γk is planar.

I.3 Gk contains a spanning tree whose edges are realized with a single segment
each in Γk .

Initially, we draw G2 such that y(v1) = y(v2) = 0. This initial drawing ob-
viously realizes all invariants. Next, assume that vk for k = 3; : : : ; n is the next
vertex to be positioned and that there is a drawing Γk−1 fulfilling all invariants.
Further, let (w‘; : : : ; wr) denote the ordered sequence of neighbors from left to
right along Ck−1. For vertex wi with ‘ ≤ i ≤ r , we draw a line ‘i of slope +1 (or
−1) passing through wi , if wi is strictly to the left (or right, respectively) of vk .
The intersection of such a line ‘i with the vertical line Lk with x-coordinate x(vk)
is a candidate position for the placement of vk ; see dashed circles in Fig. 3.18b.
If for some wi with ‘ < i < e it holds that x(wi) = x(vk), we instead obtain a
trivial candidate position at location (x(wi); y(wi) + 1); see the candidate position
marked with an asterisk in Fig. 3.18b. We position vk at the candidate position
with the largest y -coordinate, that is,

y(vk) = max
‘≤i≤r
{y(wi) + max{∆x(vk ; wi); 1}}

where ∆x(u; v) denotes the horizontal distance between vertices u and v .
Note that if x(wi) = x(vk) for ‘ < i < r , we realize (wi ; vk) as a vertical seg-

ment. Let wi∗ ∈ {w‘; : : : ; wr} denote the vertex on Ck−1 that defines the candidate
position with largest x-coordinate. Since ‘i∗ passes through vk if x(wi∗) 6= x(vk),
(wi∗; vk) can be realized as a quarter circular arc if it is not a vertical segment. As
a result, we satisfy Invariant 3. Moreover, since vk is located above all lines ‘i for
‘ < i < r , it is possible to realize all remaining edges with at most two segments;

3.3. BI-MONOTONE KANDINSKY DRAWINGS 57

w‘

vk

wi∗

Lk

–r
–‘

wr

L‘ Lr

R‘ Rr

Figure 3.19: Illustration for the proof that Invariant 2 is maintained in the algorithm
proving Theorem 3.7.

one vertical segment attached to wi (possibly zero length) and one quarter circular
segment attached to vk . Hence, Invariant 1 is satisfied for Γk .

It remains to show that Γk is planar to prove Invariant 2. For this, consider
vertical lines L‘ and Lr through w‘ and wr , respectively. Moreover consider lines
–‘ and –r through vk with slopes +1 and −1, respectively. By construction, all
vertices wi for ‘ ≤ i ≤ r are located in the union of regions R‘ and Rr , where
R‘ (Rr) is the open region bounded by L‘ (Lr), –‘ (–r) and Lk which is below –‘
(–r), see the gray-shaded region in Fig. 3.19. Note that vertices may be located
on the boundary of the region; in particular w‘ and wr are located on L‘ and Lr ,
respectively, while w ∗i is either located on Lk or on one of –‘ and –r .

Since the radii of all quarter circular arcs incident to vk are different, those
segments do not overlap. Moreover, since all vertices are located in R‘ ∪ Rr , vk
attaches to Ck−1 from above, either with the end of a quarter circular arc (which
has a vertical tangent at the point) or with a vertical segment. As a result, edges
incident to vk do not intersect Γk−1 and planarity is guaranteed.

The time complexity follows analogously to the time complexity of the shift-
method. Invariant 3 immediately implies that n− 1 edges are drawn with a single
segment. Finally, the width of the drawing remains linear in n, while the height is
at most O(n2) since when inserting a vertex it is placed at most O(n) units above
the topmost vertex already present.

We conclude the discussion of smooth orthogonal Kandinsky drawings by pre-
senting an example run of our two SC2-Kandinsky drawing algorithms applied on
a planar triangulation on seven vertices; see Fig. 3.20. In particular, Figs. 3.20a–
3.20e show the algorithm described in the proof of Theorem 3.6. Figs. 3.20f–
3.20j show how the algorithm described in the proof of Theorem 3.7 computes

58 CHAPTER 3. SMOOTH ORTHOGONAL AND OCTILINEAR DRAWINGS

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.20: Example runs of the two SC2-Kandinsky drawing algorithms discussed
in this section with an input graph on seven vertices: (a)–(e) Algorithm in the proof
of Theorem 3.6, and, (f)–(j) Algorithm in the proof of Theorem 3.7.

new y -coordinates based on the drawing in Fig. 3.20e. The bold-drawn edges in
Figs. 3.20f–3.20j show the spanning tree whose edges are realized without any
bends, the purple edge is the one defining the y -coordinate for the new vertex.

Finally, we shift our attention to octilinear Kandinsky drawings. Kandinsky
drawings in the octilinear model have received some attention before, mostly in
the context of slanted orthogonal drawings [33, 36] which are mainly used for
non-planar graph drawing and have at least curve complexity three by definition.
Here, we provide an algorithm that produces 8C2-drawings for planar graphs with
large angles at every bend. While in contrast to the classic orthogonal Kandinsky
drawings, we obtain smaller angles between edges at a vertex, the large angles
formed by segments at bends might still prove to result in good readability. We
state the analogous theorem of Theorem 3.6 for octilinear graphs:

Theorem 3.8. Let G be an n-vertex maximal planar graph. A planar bi-monotone
8C2-Kandinsky drawing of G where each bend is at 3

4
ı in O(n2) area can be

computed in O(n) time.

Proof. The proof is analogous to the proof of Theorem 3.6; it suffices to replace
all quarter circular arcs by diagonal segments; see Fig. 3.21. As a result, all bends
are at 3

4
ı. Planarity is ensured since blue and green edges do not pass through

vertices by construction.

Again, we point out that Theorem 3.8 can be extended to all planar graphs via
triangulation of the input graph.

3.3. BI-MONOTONE KANDINSKY DRAWINGS 59

w1 = v1

w‘
wr

wp = v2

Γk−1

(a)

vk

w‘
wr

Γk−1

w1 = v1 wp = v2

(b)

Figure 3.21: (a) Illustration of the contour condition maintained by the algorithm
in the proof of Theorem 3.8, and, (b) illustration of the insertion of a new vertex vk
in an iteration of the algorithm in the proof of Theorem 3.8.

60 CHAPTER 3. SMOOTH ORTHOGONAL AND OCTILINEAR DRAWINGS

Chapter 4

Orthogonal and Smooth
Orthogonal Drawings of
1-Planar Graphs

In the past, orthogonal and smooth orthogonal graph drawings have been mainly
studied for planar graphs. For orthogonal drawings, this can be in part attributed
to the nature of classical applications like VLSI and floor-planning, while smooth
orthogonal drawings are a quite recent research direction making planar graphs the
most intuitive starting point for their study.

As a result, for both drawing models, planar graphs are well understood. It is
known that every connected planar graph of maximum degree four admits a planar
OC3-drawing (with the exception of the octahedron which admits a planar OC4-
drawing) [43, 129] and a planar SC2-drawing (here, including the octahedron) [9].
For maximum degree three planar graphs, planar OC2-drawings [117] and planar
SC1-drawings [29] can always be achieved. Moreover, in the smooth orthogonal
setting, outerplane graphs admit planar SC1-drawings in superpolynomial area [9].

On the other hand, for orthogonal and smooth orthogonal drawings of non-
planar graphs, results are sparse. It is known, that every graph of maximum
degree four admits both an OC3-drawing [43] and an SC1-drawing [29]. The
drawback of both algorithms is, that they do not restrict how intersections are
formed except for the fact that in the orthogonal setting they appear at right
angles by construction. However, the broad study of beyond-planar graphs [72]
suggests that it is worthwhile to limit how many intersections may occur on one
edge. As a result, studying how a k-planar embedding can be maintained in an
orthogonal or smooth orthogonal drawing of maximum degree four graphs is an
interesting research question.

In this chapter1, we begin the study of this direction of research. In particular, in
Section 4.2 we prove that every 1-planar graph admits a 1-planar OC4- and, if it is

1The results of this chapter also appeared in [18].

61

62 CHAPTER 4. (SMOOTH) ORTHOGONAL 1-PLANAR DRAWINGS

Table 4.1: Overview of our results and comparison to previous work. (*) indicates
that the octahedron admits only an OC4-drawing.

graph class max. curve drawing referencedeg. complexity area

or
th
og

on
al

general (non-planar) 4 OC3 n × n [43]

planar 4 OC3 (?) n × n [43, 129]
3 OC2 n × n [117]

1-plane 4 OC4 O(n)×O(n) Thm. 4.1
6⊆ OC3 Thm. 4.2

bicon. outer-1-plane 4 OC3 O(n)×O(n) Thm. 4.4
6⊆ OC2 Thm. 4.6

sm
oo

th
or
th
og

on
al

general (non-planar) 4 SC1 2n × 2n [29]

planar
4 SC2 super-poly [9]

3 SC2 bn2=4c × bn=2c [9]
SC1 super-poly [29]

bicon. outerplane 4 SC1 super-poly [9]

bicon. 1-plane 4 SC3 O(n)×O(n2) Thm. 4.3

bicon. outer-1-plane 4 SC2 super-poly Thm. 4.5
6⊆ SC1 Thm. 4.7

biconnected, also a 1-planar SC3-drawing preserving the input embedding. Those
two results will be based on the notion of 1-planar bar visibility representations,
that we discuss in Section 4.1. Further, we prove that there are indeed 1-planar
graphs that require curve complexity four in the orthogonal setting. In contrast
to planar graphs, this increases the curve complexity only by one in both cases,
which is not achieved by drawing the planarization of the input graph with a planar
drawing algorithm from the literature.

Moreover, we show in Section 4.3 that every biconnected outer-1-planar graph
admits an OC3-drawing and an SC2-drawing, preserving the input embedding.
Again, in the smooth orthogonal setting, the curve complexity increases by one in
comparison to the outerplanar setting. We further show, that these two results are
tight regarding the achieved curve complexity. We summarize our results and set
them into context to previous results from the literature in Table 4.1.

4.1. 1-PLANAR BAR VISIBILITY REPRESENTATIONS 63

(a) (b) (c)

Figure 4.1: Configurations for kites in 1-planar bar visibility representations: (a) left
wing, (b) right wing, and, (c) diamond.

4.1 1-Planar Bar Visibility Representations

Before we shift our attention to orthogonal and smooth orthogonal drawings, we
describe how to compute a 1-planar bar visibility representation which will serve
as an intermediate step to compute an orthogonal drawing. A similar technique
has been used for orthogonal drawings of planar graphs before [152]. In a 1-planar
bar visibility representation, each vertex is represented by a horizontal segment,
called bar while each edge is represented either as a vertical segment or an L-
sequence, that is, a sequence of one vertical and one horizontal segment such
that the endpoints of the edge representation touch the bars corresponding to the
vertices connected by the edge. In addition, we require horizontal segments of
L-sequences to be located on top of the vertical segment and cross another edge
that is represented by a vertical segment; see Fig. 4.1. We call an edge represented
by an L-sequence red and will represent them with red color in the figures in this
chapter. Similarly, we call edges intersected by red edges blue. Every edge will be
considered as being composed of a pair of half-edges, which are each associated to
one of the two endpoints of the edge. In particular, we split red edges at their bends
to which we refer as construction bends. As a result, a red edge is composed of a
horizontal and a vertical half-edge. Note that 1-planar bar visibility representations
extend bar visibility representations, in which every vertex is represented by a bar
and every edge by an intersection-free vertical segment. It is well-known, that
every planar graph admits a bar visibility representation preserving a given input
embedding [145, 151]. We outline an algorithm from [47]2 to show that every
1-planar graph admits a 1-planar bar visibility representation.

As a prepocessing step, intersections are caged into so-called kites. A kite is a
K4 induced by the endpoints of two intersecting edges such that each of the four
triangles induced by the intersection and one endpoint of each of the intersecting
edges is a topologically connected region in the drawing. We say an intersection
is caged if the four endpoints involved in the intersection induce a kite. This can

2In fact, in [47], Brandenburg studies so called 1-bar visibility representations, in which edges
are drawn as vertical segments only but are allowed to intersect one bar each. His algorithm for
showing that 1-planar graphs admit such a representation in fact produces 1-planar bar visibility
representations, which are more restricted.

64 CHAPTER 4. (SMOOTH) ORTHOGONAL 1-PLANAR DRAWINGS

be achieved for all intersections by augmenting G to a not necessarily simple super
graph G ′ in which all intersections are caged and into which no planar edge can
be inserted without creating a double edge [10].

After the preprocessing, the intersecting edges are removed, yielding a plane
graph Gp. Then, a bar visibility representation of Gp is computed using one of
the well-known algorithms from the literature [145, 151]. These algorithms make
use of an st-numbering of Gp and place each bar at a y -coordinate equal to the
st-number of its corresponding vertex. In the resulting bar visibility representation
of Gp, quadrangular faces that bound the kites of G are drawn with one of the
configurations in Fig. 4.1, called left wing, right wing and diamond. The missing
edges are inserted into the kite as shown in Fig. 4.1 resulting in a 1-planar bar
visibility representation of G ′. Finally, the removal of the caging edges yields a 1-
planar bar visibility representation of G which also respects the input embedding.3

The resulting bar visibility representation requires O(n)×O(n) area.
Consider a 1-planar bar visibility representation Γ of a graph. We say that an

edge e is left, right, top or bottom for a bar Γ(v) if and only if Γ(e) is attached to
the corresponding side of Γ(v). Observe that a red edge can be left or right edge
only of one of its endpoints while it is a top edge for its second endpoint. Further,
by construction, each bar has at most one left and at most one right edge. We
call a bar Γ(v) bottom (or top), if it has no top (or bottom, respectively), edges.
If Γ(v) has both bottom and top edges, we call it a middle bar . Let Γ(v) be a
bottom or top bar. Consider the x-coordinates of the points at which its incident
edges touch Γ(v). We say that e is leftmost (or rightmost) edge of Γ(v) if its
touching point has the smallest (or largest, respectively) x-coordinate. If Γ(v) has
a left or right edge, this edge is also leftmost or rightmost edge by construction,
respectively.

4.2 1-Planar Drawings

In this section, we consider orthogonal and smooth orthogonal drawings of general
1-planar graphs of maximum degree four. First, we show that every maximum
degree four 1-planar graph admits an embedding preserving OC4-layout. Then, we
prove that this result is optimal by showing that there are infinitely many graphs
which do not admit an OC3-layout. Finally, we extend our positive result to the
smooth orthogonal model and show that SC3-drawings can always be achieved for
biconnected 1-planar graphs of maximum degree four.

Theorem 4.1. Every embedded 1-planar graph G with n vertices and maximum
degree four admits an embedding preserving OC4-drawing on a grid of size O(n)×

3The original description of the algorithm in [47] omits the possibility to maintain the em-
bedding as it instead maintains simplicity of every intermediate graph. However, parallel edges
can be easily simulated by a path of length two which suffices to maintain simplicity.

4.2. 1-PLANAR DRAWINGS 65

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Replacement of middle bars of degree four with vertices in the case
where (a)–(c) zero, (d)–(e) one, and, (f) two horizontal half-edges are present.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Replacement of bottom bars of degree four with vertices in the case
where (a)–(b) zero, (c)–(d) one, and, (e)–(f) two horizontal half-edges are present.

O(n).

Proof. Our algorithm is outlined in Algorithm 4.1 and explained in the follow-
ing. Without loss of generality assume that G is connected; otherwise we apply
Algorithm 4.1 to every connected component. First, we compute a 1-planar bar
visibility representation as described in Section 4.1.

Similar to the approach described in [152] for planar orthogonal drawings, we
replace every bar by a vertex; see Figs. 4.2 and 4.3 for the degree four cases.
For lower degree, we use some suitable subdrawing, and remaining cases such as
for top bars are symmetric. In addition, we have to reroute some half-edges by
the introduction of additional bends. We point out that some of those additional
bends can be removed again: Consider two consecutive bends along an edge e
with an incident topologically connected region f . If both bends are convex or
concave in f , they form a so-called U-shape, otherwise, they form an S-shape. As
a direct consequence of the flow model in [149], S-shapes can be removed unless
an intersection appears in between the two consecutive bends. As a result, the
vertex replacement introduces at most one new bend on horizontal half-edges and
at most two new bends on vertical half-edges; see Fig. 4.2 and 4.3. We call a
half-edge extreme if it is a horizontal segment and got one additional bend or if it
is vertical and got two additional bends creating a U-shape.

We claim that edges can be routed such that no edge is composed of two
extreme half-edges which contribute two bends each (where horizontal extreme

66 CHAPTER 4. (SMOOTH) ORTHOGONAL 1-PLANAR DRAWINGS

Input: An embedded 1-planar graph G = (V; E) and an edge (s; t) ∈ E
Output: An OC4-layout Γo of G

1 ı = (s = v1; : : : ; t = vn)← st-numbering(G);
2 Γb ← 1-planar-bar-visibility(G; ı);
3 Let VB denote the vertices realized with top and bottom bars in Γb;
4 Γo ← Γb;
5 for v ∈ V \ VB do
6 Replace bar Γo(v) with a node-link representation according to

Fig. 4.2;
7 Remove S-shapes on half-edges incident to Γo(v);
8 end
9 Let VE denote the set of leftmost and rightmost edges of vertices in VB

and let H = (VB∪̇VE; EH) such that (vb; ve) ∈ EH if and only if ve is
leftmost or rightmost edge of vb;

10 MH ← maximum-matching(H);
11 for v ∈ VB do
12 Let e be the edge matched to v in MH;
13 Replace bar Γo(v) with a node-link representation according to

Fig. 4.3 such that the half-edge of e incident to v receives two bends;
14 end
15 return Γo ;
Algorithm 4.1: Algorithm for computing an OC4-layout. Note that Line 1
assumes G to be biconnected. This property can be easily achieved by the
insertion of dummy edges if it is not given.

half-edges contribute the additional bend plus their construction bend). This suf-
fices to show that the resulting drawing is an OC4-drawing. We observe that
half-edges can only be extreme if they are a leftmost or rightmost edge of a bot-
tom or top bar. Note that it can be chosen freely which one of the leftmost and
rightmost half-edge will become an extreme edge in either case; see the pairs of
Figs. 4.3a–4.3b and 4.3c–4.3d and 4.3e–4.3f. Hence consider a bipartite graph H
whose vertex set is composed of the set of top and bottom bars VB and the set of
leftmost and rightmost edges of such bars VE. Further, a bar b ∈ VB is connected
to an edge e ∈ VE if and only if e is incident to b. As a result, all vertices in VB
have degree exactly two while all vertices in VE have degree at most two. Hence, H
is a union of disjoint paths and cycles such that each path or cycle h in H contains
at least as many vertices of VB as h contains vertices of VE. Consequently, there
is a matching MH covering VB. If (b; e) ∈ MH for b ∈ VB and e ∈ VE, we define
the half-edge of e incident to b to be its extreme half-edge. This assigns exactly
one extreme half-edge to every top and bottom bar while only one half-edge per
edge becomes extreme. This concludes the proof.

Next we prove a corresponding lower bound for the required edge complexity.

4.2. 1-PLANAR DRAWINGS 67

a b

c

t

s

x

(a)

C1

C2

· · ·
Ck

(b)

Figure 4.4: Illustrations for the proof of Theorem 4.2: (a) Component graph C,
and, (b) Graph composed of a chain of components isomorphic to C.

(a) (b) (c)

Figure 4.5: Conversion of half-edges from an orthogonal layout to a smooth orthog-
onal layout. (a) L-shaped half-edge, (b)-intersect S-shaped half-edge, and, (c) U-
shaped half-edge.

Theorem 4.2. For every k ≥ 2, there exists a biconnected 1-planar graph Gk
with maximum degree four and fixed embedding Ek on 9k vertices that admits no
1-planar OC3-drawing realizing Ek . In addition, k edges of complexity at least four
are required in any embedding preserving OC4-drawing.

Proof. The central component of our proof is an embedded 1-planar graph C on
9 vertices shown in Fig. 4.4a. C contains a triangle T = (a; b; c) which must be
embedded such that all ports of vertices a, b and c point inside T . As a result,
T requires at least 7 bends and one of the edges forming it must have at least
three bends; see edge (b; c) in Fig, 4.4a. The outer face of C is formed by a
planar triangle (s; x; t). As a result, k copies C1; : : : ; Ck of C can be arranged in
a chain by connecting vertex t from copy Ci with vertex s from copy C(i+1) mod k

for 1 ≤ i ≤ k . This concludes the proof.

In the next theorem, we reconsider the result from Theorem 4.1 in order to
compute an SC3-drawing of a 1-planar input graph.

Theorem 4.3. Every embedded biconnected 1-planar graph G with n vertices and
maximum degree four admits an embedding preserving SC3-drawing on a grid of
size O(n)×O(n2).

Proof. We first compute an OC4-drawing Γo with Algorithm 4.1. Recall that
Algorithm 4.1 treats edges as being composed of half-edges where construction

68 CHAPTER 4. (SMOOTH) ORTHOGONAL 1-PLANAR DRAWINGS

u

v

P

u′

eN

(a)
u

v

eRu′

(b)

Figure 4.6: (a) Proof that u is below u′, and, (b) proof that e ′ (blue) is rightmost
outgoing edge of u′ for certain pairs of intersecting edges (u; v) and (u′; v ′) with
bottom endpoints u and u′.

bends of red edges are assigned to their top half-edge. As a result, each half-
edge is either a single vertical segment, an L-shape (that is, half-edges with one
bend), an S-shape that is intersected by another edge (between both bends) or a
U-shape. In addition, each edge can have at most one half-edge that is S-shaped
and intersected or U-shaped. We convert Γo into a smooth orthogonal drawing
Γs by first stretching Γo along appropriate cuts and by then replacing L-shaped
half-edges by a sequence of a quarter circular arc and a vertical segment (see
Fig. 4.5a), intersected S-shaped half-edges by a sequence of two quarter circular
arcs and a vertical segment (see Fig. 4.5b), and, U-shaped half-edges by a half
circular arc followed by a vertical segment (see Fig. 4.5c). Since the two vertical
segments of consecutive half-edges are adjacent, they can be merged into a single
segment. As a result, an SC3-drawing is obtained, except for the special case,
where an edge is composed of an intersected S-shaped half-edge and an L-shaped
half-edge. Note that Algorithm 4.1 ensures that edges are never composed of an
intersected S-shaped half-edge and a U-shaped half-edge.

Consider an edge e = (u; v) with source u and target v that has an intersected
S-shaped half-edge hS incident to v and L-shaped half-edge hL incident to u. If
the bend of hL and the construction bend of e (which is assigned to hS) form an
S-shape, we can remove both bends [149]. Otherwise, the two bends form a U-
shape. In this case, consider edge e ′ = (u′; v ′) that intersects e. Assume w.l.o.g.
that e is attached to u at the east port while u′ is located left of e; see Fig. 4.6.
We first make two observations: First, u is located below u′, and, second, that e ′

is the rightmost outgoing edge of u′. We show both statements by contradiction.
First, assume, u′ has a smaller st-number than u. Since the north port was not

used by e, vertex u must have another outgoing edge eN attached to the north port
of u which is part of a path P leading to the global sink t since G is biconnected.
Then, eN ’s target is located inside a region that is bounded from above by the
two intersecting edges e and e ′ and hence P cannot exist; see Fig. 4.6a. This
contradicts our initial assumption and we conclude that u is located below u′.

Second, assume that u′ has another outgoing edge eR that leaves u′ to the

4.2. 1-PLANAR DRAWINGS 69

u u

v v

u′ u′

(a)
u u

v v

u′ u′

(b)

u′u′ u′

u

v

u

v

u

v

(c)

Figure 4.7: Removal of intersected S-shaped half-edges from a red edge e = (u; v)
intersected by an edge e ′ (blue) with source u′. The case where e ′ has (a) one
bend, (b) two bends, and, (c) no bend at the half-edge connected to its source. In
either case local rotations around the intersection of e and e ′ or the source of e ′ (see
dashed circles) remove the intersected S-shape.

right of e ′. Then, the target of eR is located in a region that is bounded from
above by the two intersected edges e and e ′; see Fig. 4.6b. This contradicts the
biconnectivity of G and hence e ′ is the rightmost outgoing edge of u′.

We perform a rotation around the intersection of e and e ′; see the dashed
arrows in Fig. 4.7. As a result, hS becomes a straight-line segment. Consider the
half-edge h′ incident to the source u′ of e ′. If e ′ uses the east or south port of
u′, h′ has a horizontal segment which is initially intersection-free and a vertical
segment which intersects e. As a result of the rotation, the intersection with e ′

now occurs on the horizontal segment while the shape of h′ remains the same; see
Figs. 4.7a and 4.7b. Hence, the curve complexity of e ′ does not increase in those
cases. If h′ uses the north port of u′, we instead let it use the west port if this port
is free. Otherwise, h′ becomes an intersected S-shaped half-edge while the edge eE
attached to the east port of e ′ connects u′ to a vertex with lower st-number; see
the middle drawing in Fig. 4.5c. We may assume w.l.o.g. that u′ is also incident
to edges eS and eW incident to the south and west ports of u′, respectively, such
that eS connects u′ with another vertex with lower st-number. In this case, we
also rotate around u′ adding another bend on all incident edges. In particular, this
will make the half-edge of eE incident to u′ become a straight-line segment, while
it adds a bend to both the half-edges of eW and eS incident to u′; see the right
drawing in Fig. 4.5c. However, none of those additional bends can result in a new
intersected S-shape, in particular, if eS was such an intersected S-shape before, a
new S-shape is formed whose bends can be removed. The half-edge of eW incident
to u′ will become either an S-shape (which can be removed) if eW connects u′ to

70 CHAPTER 4. (SMOOTH) ORTHOGONAL 1-PLANAR DRAWINGS

(a) (b) (c)

Figure 4.8: Transformation of U-shapes from an orthogonal to a smooth orthog-
onal drawing. (a) Initial U-shape with dummy vertex, (b) stretched U-shape, and,
(c) replacement by a half circular arc.

a vertex with larger st-number, or it will become a U-shaped half-edge otherwise.
After this preprocessing, the intermediate orthogonal layout has certain prop-

erties: First, the area bounded by U-shaped half-edges is free of vertices; see the
gray area in Fig. 4.8a. In addition, each edge that has an intersected S-shaped
half-edge has another straight-line half-edge. Moreover, w.l.o.g., each vertex is on
a unique level as otherwise horizontal straight-line edges can be replaced by an
S-shaped edge. We now split each U-shaped half-edge with a dummy vertex into
an edge represented by a vertical straight-line segment and an L-shaped half-edge;
see the gray vertex in Fig. 4.8a. Let v1; : : : ; vn′ denote the vertices of the graph
obtained after introducing all dummy vertices ordered in ascending vertical order.
Further, let ∆↑x(vi) denote the largest horizontal distance between vi and a bend
on its incident L-shaped half-edges that connect vi to a vertex vj with j > i .
Analogously, let ∆↓x(vi) denote the largest horizontal distance between vi and a
bend on its incident L-shaped half-edges and red intersected S-shaped half-edges
that connect vi to a vertex vj with j < i . We stretch the drawing by increasing
the y -coordinate of all vj with j ≥ i by ∆↓x(vi) and by increasing the y -coordinate
of all vj for j > i by ∆↑x(vi). Note that this corresponds to stretching along hor-
izontal cuts slightly below and above vi through the drawing, respectively. It is
noteworthy, that the area enclosed by U-shaped half-edges remains free of vertices;
see Fig. 4.8b.

After the stretching procedure, the dummy vertices introduced at U-shaped
half-edges are removed. We then replace half-edges as described before and as
illustrated in Fig. 4.5. In particular, the half-circles replacing U-shaped half-edges
are entirely located inside the vertex-free area; see Fig. 4.8c.

Since the orthogonal drawing Γo had O(n) × O(n) area and since for every
vertex we increase the height by at most twice the length of the longest horizontal
segment in Γo , the smooth orthogonal drawing Γs requires O(n)×O(n2) area.

4.3. OUTER-1-PLANAR DRAWINGS 71

s

t

v‘

v

(a)
s

t

v

v‘

vr

(b)
s

t

v‘

v

(c)

vr

v

s

t

(d)

v

vr

v‘

s

t

(e)

vr

v

s

t

(f)

Figure 4.9: Replacement of bottom and top bars in the proof of Theorem 4.4.

4.3 Outer-1-Planar Drawings

In this section, we shift our attention to orthogonal and smooth orthogonal draw-
ings of outer-1-planar graphs. It is noteworthy that such graphs are in fact planar
graphs [20], hence, they clearly admit both a planar OC3- and an SC2-drawing while
an OC2- or an SC1-drawing may not be achievable. Here, we show a stronger re-
sult, namely, that the same curve complexity bounds apply when the outer-1-planar
embedding must be preserved. We start by adapting our result from Theorem 4.1
for the outer-1-planar case.

Theorem 4.4. Every embedded biconnected outer-1-planar graph G with n ver-
tices and maximum degree four admits an embedding preserving OC3-drawing on
a grid of size O(n)×O(n).

Proof. We adapt Algorithm 4.1 to yield the given result. In particular, we make
three adaptations: First, we use a specific st-ordering (cf. line 1 in Algorithm 4.1)
that will make it easier for us to control which edges have at least three bends.
Second, we will specify based on the st-numbering, which half-edges incident to
bottom bars receive two bends (in contrast to the specification by a matching in
line 13 in Algorithm 4.1). This specification of half-edges with two bends may
initially result even in edges with four bends, which are avoided by Algorithm 4.1.
Finally, we remove S-shapes from edges with three or four bends to obtain an
OC3-layout which we will show is always possible.

In order to compute the st-ordering, we first augment G such that all inter-
sections are caged. The resulting graph G ′ is bounded by a planar cycle C. Let
s and t be two vertices of G and let S‘ and Sr denote the sequences of vertices
encountered following the clockwise and counterclockwise path, respectively, from
s to t along C. We choose as st-ordering the sequence s; S‘; Sr ; t.

Based on the computed st-ordering, we proceed normally with Algorithm 4.1
until we have to replace top and bottom bars of degree four with a node-link
representation (cf. line 13 in Algorithm 4.1). Let v be a top or bottom bar of
degree four and let e‘ = (v; v‘) and er = (v; vr) be its leftmost and rightmost
incident edge, respectively. We distinguish the following cases for such vertices:

72 CHAPTER 4. (SMOOTH) ORTHOGONAL 1-PLANAR DRAWINGS

1) v ∈ S‘ ∪ {s} and v is bottom bar. If v‘ ∈ S‘, we attach e‘ to the south
port of v ; see Fig. 4.9a. Note that e‘ cannot be a red edge connecting v with
a vertex below v , as otherwise, it is intersected by a blue edge which prevents
v from being part of S‘. Otherwise, vr ∈ Sr and we attach er to the south
port of v ; see Fig. 4.9b.

2) v ∈ S‘ ∪ {s} and v is top bar. Then, all neighbors of v appear below v and
we attach e‘ to the north port of v ; see Fig. 4.9c.

3) v ∈ Sr ∪ {t} and v is top bar. If vr ∈ Sr , we attach er to the north port of
v ; see Fig. 4.9d. Otherwise, v‘ ∈ S‘ and we attach e‘ to the north port of v ;
see Fig. 4.9e.

4) v ∈ Sr ∪ {t} and v is bottom bar. Then, all neighbors of v connected
with planar edges appear above v and we attach er to the south port of v ; see
Fig. 4.9f. Note that er cannot be a red edge connecting v with a vertex below
v , as otherwise, it is intersected by a blue edge which prevents v from being
part of Sr .

It remains to analyze the resulting drawing focusing on edges with at least three
bends. We first show that if edge e = (u; v) with u below v has at least three
bends, two of these bends are vertically aligned and form an S-shape. We consider
three cases based on whether the endpoints of edge e belong to S‘∪{s} or Sr∪{t}:

1) u; v ∈ S‘ ∪ {s}. Since e has two bends, it either uses the south port of u or
the north port of v . First, assume that e is connected to the south port of u.
This is the case, when u is a bottom bar of degree four while e is the leftmost
edge of u. At least two of the remaining neighbors of u are placed above u,
the exception is the rightmost neighbor which may be connected to u by a red
edge. Hence, the remaining neighbors of v that are connected to the bottom
side of the bar of v are located between u and v and e is the rightmost edge
at the bottom of b(v); see Fig. 4.10a. As a result, e can only use the south or
east port of v even when v is a top bar as then the leftmost edge will use its
north port. If e uses the south port of v , it has only two bends, otherwise, two
vertically aligned bends form an S-shape, see Fig. 4.10b.

Second, assume that e uses the north port of v . This is the case if v is a top
bar of degree four with e being its leftmost edge. It follows immediately that
all other neighbors of v are drawn below u. Similar to the argument in the first
case, we conclude that e is attached to the north or the east port of u. Again,
we only obtain three bends when e uses the east port of u, in which case two
vertically aligned bends create an S-shape as required; see Fig. 4.10c.

2) u; v ∈ Sr ∪ {t}. This case is symmetric to the previous case in which u; v ∈
S‘ ∪ {s}; see Figs. 4.10d–4.10f.

4.3. OUTER-1-PLANAR DRAWINGS 73

s

t

u

v

(a)

u

v

(b)

v

u

(c)

v

s

t

u

(d)

u

v

(e)

v

u

(f)

u

v

s

t

(g)

u

v

(h)

Figure 4.10: Figures for proving that edges of an outer-1-planar graph with three
or four bends have two vertically aligned bends forming an S-shape when bars are
replaced according to the rules described in the proof of Theorem 4.4.

3) u ∈ S‘ ∪ {s} and v ∈ Sr ∪ {t}. First, assume that e uses the south port of
u. If this is the case, u is a bottom bar of degree four and e the rightmost
edge attached to u. As a consequence, v cannot be connected to vertices in S‘
which are placed above u and e is the leftmost edge attached to the bottom of
the bar representing v ; see Fig. 4.10g. Therefore, e is not attached to v at the
east port of v . Analogously, if e uses the north port of v , it cannot be attached
to the west port of u. We conclude that e has at most four bends while if it has
at least three bends, two of them are vertically aligned and form an S-shape;
see Fig. 4.10h for an illustration of the case where e has four bends.

We established now, that in all cases where an edge e has at least three
bends, two of them are vertically aligned and form an S-shape. If e is planar or a
red edge (which is always intersected at a horizontal segment), the S-shape can
be eliminated [149] and we obtain a representation of e with at most two bends.
Hence, it remains to consider the case, where e is a blue edge such that the vertical
segment that is part of the S-shape is intersected by a red edge e ′ = (u′; v ′).
Recall that the algorithm described in Section 4.1 ensures that the the blue edge
e is always incident to the topmost bar involved in the intersection configuration,
i.e., v is located above v ′; see also Fig. 4.1. We distinguish based on the type of
configuration that contains the intersection:

1) e and e ′ form a left wing configuration. Since u must be located on the
outer face, it belongs to S‘ ∪ {s}. Since u′ is located below u, it also is part
of S‘ ∪ {s}. Finally, by construction v ′ is located left of e and it follows that
also v ′ ∈ S‘ ∪ {s}; see Fig. 4.11a. Since e and e ′ intersect, u cannot have

74 CHAPTER 4. (SMOOTH) ORTHOGONAL 1-PLANAR DRAWINGS

s

t

u′

v ′

u

v

(a)

u

v

u′

v ′

(b)

s
uu′

v ′

v

t

(c)

u

v

u′

v ′

(d)

v

u′

u

v ′

s

t

(e)

Figure 4.11: (a)–(d) A blue edge e = (u; v) with three and more bends involved in a
wing configuration can be simplified as removing the S-shape from e will create a new
S-shape on edge e ′ = (u′; v ′). (e) A blue edge involved in a diamond configuration
has at most two bends.

another edge right of e to a vertex above u or a neighbor in Sr ∪ {t} that is
not v . Hence, e will not use the south or west port of u. Since e has at least
three bends, e is attached to the east port of u and to the north port of v ;
see Fig. 4.11b. Since e is attached to the north port of v , v must be a degree
four top bar. Moreover, its rightmost edge er must be incident to a vertex in
S‘∪{s}, since otherwise er would be connected to the north port of v . It follows
that u′ has no edge to a vertex above u′ that is attached to u′ right of edge e ′

while v is the only potential neighbor of u′ belonging to Sr ∪ {t}. Hence, e ′

can only be attached to the north or west port of u′ while it is attached to the
south or east port of v ′. It follows that the construction bend of e ′ was not
removed before as it was not creating any S-shape. As a result, we can apply
a rotation around the intersection of e and e ′; see Fig. 4.11b. This removes
the S-shape on edge e and adds two bends to e ′, however, one of those bends
creates an S-shape with the construction bend of e ′ so that both bends can be
removed. In other words, this moves the construction bend of e ′ to the other
side of e by letting the two edges intersect at a vertical segment of e ′ without
changing the shape of e ′. Hence, afterwards both e and e ′ have at most two
bends each.

2) e and e ′ form a right wing configuration. This case is symmetric to the
previous case, as indicated by Figs. 4.11c–4.11d.

3) e and e ′ form a diamond configuration. Then, u appears below u′ while
v appears above v ′. Hence, edges e and e ′ only intersect if u; u′ ∈ S‘ ∪ {s}
and v; v ′ ∈ Sr ∪ {t}. Similar to the wing configuration cases, it follows that
e is rightmost edge of u leading to vertices above u except for a possible edge
(u; v ′) whereas e is also the leftmost edge of v leading to vertices below v
except for a possible edge (u′; v). Hence, e will use the north or east port of u
and the south or west port of v and has at most two bends as required.

We conclude that we can always reduce the number of bends to two bends per
edge which results in an embedding preserving OC3-drawing of G as required.

4.3. OUTER-1-PLANAR DRAWINGS 75

v ′

xc
v

u

u′

(a)

u′

v ′

xi

v

u

f1

f2

f3

f4

(b)

Figure 4.12: (a) Caging of cut vertices of Gp in the auxiliary graph G′, and,
(b) traversal (red) of a cycle around an in-dummy xi in the weak dual of G′. Face
f4 is first inserted as a triangle with virtual reference edge (v; v ′).

Next, we discuss smooth orthogonal drawings of outer-1-planar graphs. In
contrast to the general planar case discussed in Section 4.2, we cannot simply
convert the OC3-drawing obtained by Theorem 4.4. Instead, we will modify an
algorithm for outerplanar SC1-drawings [9] to achieve SC2-drawings in the outer-
1-planar case. The SC1-drawing algorithm by Alam et al. first computes the weak
dual tree T of the input outerplanar graph and then traverses T face by face in
a BFS traversal. When face f is encountered, a reference edge shared with its
parent face in T is already drawn. Then, the remaining vertices of f are inserted
such that f is outerplanar.

Theorem 4.5. Every embedded biconnected outer-1-planar graph G with n ver-
tices and maximum degree four admits an embedding preserving SC2-drawing.

Proof. We follow the same structure as the algorithm by Alam et al. [9]. Since
G is 1-planar, the weak dual graph is not well defined, hence, we first compute
a biconnected auxiliary graph G ′ to define a suitable order in which we will insert
vertices. Consider the planarization Gp of G. A dummy vertex x that replaces an
intersection in the embedding of G is of one of the following three types:

(i) x is a cut vertex of Gp. Then we call x a dummy-cut.

(ii) x is not a cut vertex and located on the outer face of Gp. Then we call x an
out-dummy . Note that exactly two clockwise consecutive incident edges of
x are incident to the outer face.

(iii) x is not a cut vertex and not located on the outer face of Gp. Then we call
x an in-dummy .

We obtain G ′ from Gp by dealing with dummy-cuts xc as follows: Let (u; v ′)
and (v; u′) be the pair of edges in G whose intersection has been replaced by xc .
Then, we create the 4-cycle (u; v ; v ′; u′) around xc by inserting virtual edges if the
corresponding edges do not already exist and remove xc from Gp; see Fig. 4.12a.
We call face (u; v ; v ′; u′) of Gp a cut-face while faces that are not a cut-face are

76 CHAPTER 4. (SMOOTH) ORTHOGONAL 1-PLANAR DRAWINGS

s

s ′

Figure 4.13: Initial drawing for our SC2 drawing algorithm.

called a normal face. All other vertices and edges in G ′ remain as in Gp. Clearly,
G ′ is biconnected and has maximum degree four. Consider an edge e of G ′. Edge
e can be either a planar edge in G, a half-edge, that is an edge incident to an
in-dummy or out-dummy, or a virtual edge caging a dummy-cut. Moreover, the
weak dual of G ′ is almost a tree, the only exception is cycles of length four that
may occur around in-dummies xi ; see Fig. 4.12b. Note that since Gp is obtained
from an outer-1-planar embedding of G, the cycles of length four are edge disjoint.
We order the faces of G ′ using a leftmost BFS of its weak dual starting from some
face f0. In particular, the cycles of faces in G ′ surrounding an in-dummy xi form
two directed paths of length two in the orientation obtained by the BFS traversal,
say (f1; f2; f4) and (f1; f3; f4); see Fig. 4.12b. Faces f2 and f3 will be processed
consecutively and we call them a facial pair. We will process faces f1, f2 and f3
normally, however, instead of immediately drawing f4, we first insert the triangle
(xi ; u

′; v ′) where u′ and v ′ are the two vertices on the boundary of f4 that xi is
incident to. We point out that (u′; v ′) may not exist in G, in this case it will serve
as a virtual reference edge for drawing f4. In either case, (u′; v ′) will be drawn as
a convex quarter circular arc.

We first define how to find a suitable face f0 for the start of the BFS. To do so,
we claim that there is an edge es = (s; s ′) on the outer face of Gp that is either
a planar edge or a half-edge incident to some out-dummy. To see this, consider
a leaf-component C in a BC-tree T 4 decomposition of Gp. If C is also the root
of the BC-tree, it contains no dummy-cut and the claimed property is trivially
fulfilled. Otherwise, C has exactly one dummy-cut with degree two and hence at
least two more vertices u and v . As there is no second dummy-cut and since C is
biconnected, there is path between u and v that consists entirely of planar edges
and half-edges incident to out-dummies as claimed. We choose as f0 the inner
face incident to es .

As an intial drawing, we draw edge es as a three-quarter circular arc. In addition,
we add the virtual reference edge (s; s ′) realized as a concave quarter circular arc;
see Fig. 4.13. Based on the BFS traversal of the weak dual of G ′ starting from
f0, we incrementally construct Gp. We point out a significant difference to the
algorithm for outerplanar graphs: When a face f of G ′ is first encountered, the
already drawn reference edge er may either belong to Gp or it may be a virtual

4A BC-tree decomposition T of a graph G has a vertex for every biconnected component and
for every cut-vertex and an edge (C; x) if x is a cut vertex of a biconnected component C.

4.3. OUTER-1-PLANAR DRAWINGS 77

edge that does not belong to Gp. In the latter case, when we draw f , we remove
the reference edge er and reuse the ports that were occupied by er . In particular,
this is the case for the first face f0, as initially we only draw es . Before we define
suitable invariants, we introduce the notion of a so-called side-arc . A side-arc is
an edge that uses the north port of one of its endpoints and the west port of its
other endpoint or the west port of one of its endpoints and the south port of its
other endpoint. This notion will become clear when we encounter such a case.
During each step we maintain the following invariants.

I.1 Half-edges incident to an out-dummy x are drawn with a single segment unless
they are a side-arc incident to the south or west port of x . In the latter case,
they are composed of two segments, a straight-line segment incident to x and
a quarter circular arc.

I.2 A virtual reference edge for a normal face is always drawn as a quarter-circular
arc which can be convex or concave.

I.3 A non-virtual reference edge for a cut-face is composed of a single segment
which can be a convex or concave quarter circular arc or a horizontal or vertical
segment.

I.4 If a virtual reference edge for a cut-face is a side-arc, it is drawn with two
segments. Namely, with a quarter-circular arc incident to the north or west
port of one of its endpoint and a straight-line segment incident to its second
endpoint.

I.5 If a non-virtual edge is drawn as a convex quarter-circular arc, its two endpoints
are not dummy vertices and have remaining degree at most one.

I.6 Planar edges and edges whose intersections produce in-dummies and dummy-
cuts are drawn with at most two segments.

I.7 Let (u; v) be the reference edge of a face f such that u is to the right or
below v . Let Lu and Lv denote the lines of slope +1 passing through u and v ,
respectively. Further, let Lu;v be the semi-strip in between Lu and Lv , where
Lu and Lv are not included, which is bounded by the diagonal through u and
v . Also, let w denote the width of Lu;v , i.e., the distance between Lu and Lv ,
and let Ltu;v and Lbu;v denote the semi-strip of width 0:42w above and below
Lu;v , respectively, which are bounded by the straight-line through u and v . In
addition, let Lsu;v denote the semi-strip of width 0:16w in the center of Lu;v .
Then:

– if f is using neither the east port of u nor the north port of v , then, if it is
not a virtual reference of a cut face, f is located entirely in Lu;v , otherwise,
f is located entirely in Lsu;v .

78 CHAPTER 4. (SMOOTH) ORTHOGONAL 1-PLANAR DRAWINGS

– if f is using the east port of u but not the north port of v , f is located
entirely in Lu;v ∪ Lbu;v .

– if f is using the north port of v but not the east port of u, f is located
entirely in Lu;v ∪ Ltu;v .

– if f is using both the east port of u and the north port of v , f is located
entirely in Lu;v ∪ Ltu;v ∪ Lbu;v .

Moreover, if one of the side arcs of such a face is virtual reference edge for a
cut-face, the cut-face is also located in the corresponding semi-strip. Note that
we will not discuss Invariant 7 in the case analysis; instead, we visualize Lu;v
and Lsu;v in gray and Ltu;v and L

b
u;v in dark-gray in the figures of this section. For

better readability, the width of strip Lsu;v is not up to scale in the illustrations.

I.8 All free ports of vertices are located on the outer face. We illustrate this in
the figures in this section by small arrows connected to newly placed vertices.
Furthermore, we use ports from reference edges such that no free port is located
inside the newly drawn face which is easily visible from the figures.

Let f be the next face to be drawn. Consider the type of f :

(i) f is a normal face that does not belong to a facial pair. Based on the
shape of the reference edge (u; v) and the number of vertices to be inserted,
we choose a suitable case from Fig. 4.14. Note that if we create a side-arc
as for instance, if (u; v) is a horizontal segment and f is a triangle, we can
decide between two different drawings; see Figs. 4.14a and 4.14i. We make
our decision based on whether the specific side-arc will be a virtual reference
edge for a cut-face; if this is the case, we realize the side arc with two
segments (see the red edges in Fig. 4.14), otherwise, we chose the drawing
where it is realized with one segment. This guarantees Invariant 4 and since
such edges are not half-edges incident to out-dummies also Invariant 1. If
edge (u; v) is a virtual reference edge it is drawn as a quarter circular arc by
Invariant 2 and we choose the corresponding drawing from Fig. 4.15. Note
that we reuse the ports of the reference edge while we do not create any
side-arcs. In each case, Invariants 2, 5 are trivially fulfilled as no such edges
are inserted. Finally, the planar edges fulfill the requirements of Invariants 3
and 6.

(ii) f is a normal face belonging to a facial pair. Recall that a facial
pair is formed by two faces surrounding an in-dummy xi ; see Fig. 4.12b. In
particular, the four faces surrounding xi are f1, f2, f3 and f4, where we have
already realized a drawing of face f1, which placed xi and its two incident
half-edges (xi ; u) and (xi ; v) while f = f2. Note that half-edges (xi ; u) and
(xi ; v) are either a straight-line segment or a concave quarter-circular arc as
they where constructed by one of the constructions from Fig. 4.14.

4.3. OUTER-1-PLANAR DRAWINGS 79

v u

(a)

v

u

(b)

v

u

(c)

v

u

(d)

v u

(e)

v

u

(f)

v

u

(g)

v

u

(h)

v u

(i)

v

u

(j)

v u

(k)

v

u

(l)

v

u

(m)

v

u

(n)

v

u

(o)

Figure 4.14: Drawing of a normal face with non-virtual reference edge (u; v). (a)–
(h) Standard cases. (i)–(o) Special cases, where at least one of the side-arcs is
a virtual reference edge for a cut-face (red). The cases in subfigures (a)–(c) and
(e)–(g) are identical to the corresponding cases in the algorithm for outerplanar
graphs [9].

v

u

(a)

v

u

(b)

Figure 4.15: Drawing of a normal face with virtual reference edge (u; v).

80 CHAPTER 4. (SMOOTH) ORTHOGONAL 1-PLANAR DRAWINGS

u

xi

v

u′
v ′

(a)

xi
v

u

u′
v ′

(b)

xi

u

v

v ′

u′

(c)

xi
v

u

u′

v ′

(d)

xi

v

v ′
u′

u

(e)

u

u′
xi

v ′

v

(f)

xi

u

v u′
v ′

(g)

xi
v

u

u′
v ′

(h)

Figure 4.16: Drawing of a facial pair of an in-dummy xi . (a)–(d) Possibly occuring
cases for the drawings of f2 and f3. (e)–(h) Due to changes of edge lengths, reference
edge (u′; v ′) is realized as a quarter circular arc.

We finish the drawing of the facial pair in two steps: First, we choose a
suitable drawing for both f2 and f3 from the potential drawings of normal
faces; see Fig. 4.14; this choice is determined based on the shapes of reference
edges (xi ; u) and (xi ; v) and the number of vertices on f2 and f3; see Fig. 4.16a
to 4.16d for some subcases.

Note that each of faces f2 and f3 can be either triangular or of larger length
which determines whether we use one of the drawings in Figs. 4.14a to 4.14d
(or 4.14i to 4.14j if there are virtual side-arcs) or 4.14e to 4.14h (or 4.14k
to 4.14o if there are virtual side-arcs), respectively.

Finally, it remains to add edge (u′; v ′). Note that v ′ and u′ are part of faces
f2 and f3, respectively. We align v ′ and u′ on a common diagonal and realize
(u′; v ′) as a convex quarter circular arc as follows:

– If edges (u; xi) and (v; xi) are both concave quarter arcs, we move xi along
the diagonal through u and v ; 4.16a. When moving xi towards u, the
length of the vertical segment (xi ; v

′) increases w.r.t. to the length of the
horizontal segment (xi ; u

′). Hence, we find a placement where they have
the same length; see Fig. 4.16e.

– If edge (v; xi) is a horizontal segment and edge (xi ; u) is a quarter circular
arc, we distinguish two cases. If the length of (xi ; v

′) is smaller than the
length of (xi ; u

′), we move xi horizontally towards u′; see Fig. 4.16b. As a
result, we redraw (u; xi) with two segments, with a quarter circular arc in-
cident to u and a vertical segment incident to xi ; see Fig. 4.16f. Otherwise,
the length of (xi ; v

′) is larger than the length of (xi ; u
′); see Fig. 4.16c.

Then, we redraw the side-arc incident to v with two segments such that a

4.3. OUTER-1-PLANAR DRAWINGS 81

quarter circular arc is incident to v and is followed by a horizontal segment;
see Fig. 4.16g.

– The case where edge (v; xi) is a quarter-circular arc and (xi ; u) is a vertical
segment is symmetrical to the previous case.

– If (u; xi) and (v; xi) are both straight-line segment, we shorten the longer
segment from (xi ; v

′) and (xi ; u
′); see Fig. 4.16d. In the process, we redraw

the corresponding side-arc as in the previous case; see Fig. 4.16h.

Note that it may be required to redraw one of reference edges (xi ; u) and
(xi ; v) as a sequence of a quarter-circular arc and a straight-line segment
incident to xi ; see Fig. 4.16f. Since however half-edges (xi ; u

′) and (xi ; v
′)

are always realized as a straight-line segment, the two intersecting edges
(u; v ′) and (v; u′) of G are drawn with at most two segments, which satisfies
Invariant 6 for them.

Since xi is a dummy, neither u′ nor v ′ can be a dummy and Invariant 5 is
fulfilled. If (u′; v ′) is a virtual reference edge for f4, it fulfills Invariant 2;
otherwise it fulfills Invariant 6 for f4. If a side-arc is drawn with two segments
it fulfills Invariant 1 while Invariant 6 still holds for faces f2 and f3. All
remaining edges are drawn according to one of the cases discussed in the
previous case, hence, they do not violate an invariant.

(iii) f is cut-face. Recall that f consists of 4-cycle (u; v ; v ′; u′); see Fig. 4.12a.
Instead of drawing f , we immediately draw the two intersecting edges (u; v ′)
and (v; u′). If reference edge (u; v) is not virtual, it is drawn either as a
horizontal segment or as a quarter circular arc by Invariant 3. Moreover, it
cannot be a side-arc as in such a case, one of u or v would have no free
port left. Here, we use one of the drawings from Figs. 4.17a to 4.17d for
edges (u; v ′) and (v; u′). If edge (u; v) is a virtual reference edge and no
side-arc, we instead use one of the drawing from Figs. 4.17e to 4.17h. Finally,
if (u; v) is a virtual side-arc, we use one of the two drawings from Figs. 4.17i
and 4.17j; which can always be done by Invariant 4. Note that in either case,
u′ and v ′ are diagonally aligned so that (u′; v ′) can be realized as a concave
quarter circle. This guarantees Invariants 2 and 3. Since no side-arcs and
convex arcs are introduced, Invariants 1, 4 and 5 hold. Finally, edges (u; v ′)
and (v; u′) satisfy Invariant 6.

It remains to discuss that the output is indeed an embedding preserving SC2-
drawing. We start by proving that all edges are drawn with at most two segments.
By Invariant 6 the property holds for all edges except those that cross at out-
dummies. So consider a pair of edges (u; v ′), (v; u′) that intersects at an out-
dummy xo . By Invariant 1, a half-edge h incident to xo has two segments only if it
is a side-arc incident to the south or west port of xo . Moreover, we only encounter
this scenario when drawing a facial pair; see Fig. 4.16. Assume w.l.o.g. that h

82 CHAPTER 4. (SMOOTH) ORTHOGONAL 1-PLANAR DRAWINGS

uv

v ′

u′

(a)

v

u

v ′

u′

(b)

v ′

u′v

u

(c)

v ′

u′
v

u

(d)

v

v ′

u′ u

(e)

v ′

v

u

u′

(f)

v ′v

u

u′

(g)

v

u

v ′

u′

(h)

u′
v ′

u

v

(i)

u′

v ′v

u

(j)

Figure 4.17: Drawing of the pair of intersecting edges (u; v ′), (v; u′) when en-
countering a cut-face. (a)–(d) Cases where reference edge (u; v) is part of G. (e)–
(h) Cases where reference edge (u; v) is a virtual reference edge but not a side-arc.
(i)–(j) Cases where reference edge (u; v) is a virtual side-arc.

4.3. OUTER-1-PLANAR DRAWINGS 83

is incident to the west port of xo . Then h is attached to xo with a horizontal
segment. Consider the second half-edge h′ that is connected to the east port of xo
and forms an edge with h. By Invariant 1, it is drawn as a single segment which
is not a convex quarter-circular arc by Invariant 5. So, assume it was a side-arc.
Then, both h and h′ are on the outer face. This however contradicts the fact, that
for an out-dummy exactly two consecutive incident half-edges are on the outer
face. Hence, h′ is a horizontal segment and e is composed of two segments.

We ensure the 1-planar embeddings with Invariants 7 and 8. By Invariant 8, we
ensure that we can always insert new faces on the current outer face. Moreover,
if all arcs of a face inserted at the same time are chosen with the same radius,
Invariant 7 ensures that the new subgraphs inserted at such reference edges do not
overlap due to the corresponding widths of the different semi-strips. We remark
that the widths of semi-strips for child components decreases exponentially, hence,
we cannot claim polynomial area for the produced drawings.

Finally, we show that the curve complexity bounds achieved by our results in
Theorem 4.4 and 4.5 are worst-case optimal.

Theorem 4.6. For every k ≥ 2, there exists a biconnected outer-1-planar graph
Gk with maximum degree four and fixed embedding Ek on 4k vertices that admits
no 1-planar OC2-drawing realizing Ek . In addition, Ω(k) edges of complexity at
least three are required in any embedding preserving OC3-drawing.

Proof. Consider K4 with an outer-1-planar embedding. As every vertex must have
at least one free port to the interior of the outer cycle, there are at least four
bends on the outer face. Therefore, each edge on the outer face has one bend
in an embedding preserving OC2-drawing. As a result, the remaining two edges
must be drawn without a bend since they must have an even number of bends;
see Fig. 4.18a. We conclude that K4 has a unique outer-1-planar OC2-drawing.

Next, consider two copies G1 and G2 of K4 and let e1 be an edge on the outer
face of G1 and e2 be an edge on the outer face of G2. We can create a biconnected
outer-1-planar graph G by connecting the endpoints of e1 with one of the endpoints
of e2 each such that the two resulting edges e ′1 and e ′2 intersect; see Fig. 4.18b.
Since e1 and e2 must be drawn with a bend per edge each in an outer-1-planar
drawing of G, we can only draw one of e ′1 and e ′2 with at most one bend per edge;
see Fig. 4.18b.

Clearly, we can repeat the previous construction by connecting k copies of K4

in a chain as shown in Fig. 4.18c. By the previous argument, for each independent
pair of two consecutive copies of K4 at least one edge must be drawn with at least
two bends, which proves the theorem.

Theorem 4.7. For every k ≥ 2, there exists a biconnected outer-1-planar graph
Gk with maximum degree four and fixed embedding Ek on 4k + 2 vertices that

84 CHAPTER 4. (SMOOTH) ORTHOGONAL 1-PLANAR DRAWINGS

(a)

or

(b)

. . .

(c)

Figure 4.18: (a) K4 has a unique outer-1-planar OC2-drawing. (b) Connecting
two K4’s with a pair of intersecting edges creates an outer-1-planar graph that has
no OC2-drawing with fixed embedding. (c) A construction that can be repeated
to create an infinite family of graphs that requires Ω(n) edges with at least three
segments.

(a) (b) (c) (d)

Figure 4.19: (a) An outer-1-planar drawing of K4 is composed of four planar
triangles that share one edge each with every other triangle. If the free ports of K4

are required to be located on the exterior, such a triangle must have two vertices
whose two free ports are outside the triangle and one vertex which has one free port
outside and inside the triangle each. (b)–(d) All valid SC1-drawings of a triangle
fulfilling the properties.

admits no 1-planar SC1-drawing realizing Ek . In addition, Ω(k) edges of complexity
at least two are required in any embedding preserving SC2-drawing.

Proof. Our counterexample follows closely the construction from the proof of The-
orem 4.6. Again, we first consider an outer-1-planar embedding of K4. In order to
restrict how this embedding can be realized with an SC1-drawing, we additionally
require that all its free ports are located on the outer face. We now observe that
such a drawing of K4 is composed of four planar triangles which share one edge
each with each other triangle; see Fig. 4.19a. Let T be such a triangle. Since the
K4 containing T has all free ports on its exterior, two of the vertices of T must
have all free ports outside T , while the remaining vertex has one free port inside
T and outside T each.

Since one free port will be located inside T , the sum of angles at vertices inside
T is equal to 2ı. However, the sum of interior angles of a triangle must be equal
to ı. The difference of ı must be accommodated by a convex curvature of edges
incident to T . Table 4.2 lists all triples of edge curvatures and whether those
curvatures can be combined into an SC1-drawing for T . Since every edge of T has

4.3. OUTER-1-PLANAR DRAWINGS 85

Table 4.2: Overview of all triples of edge curvatures for a triangle T that yield a
total curvature of ı and information whether such a triple admits an SC1-drawing
of T . Positive curvatures are convex, negative curvatures are concave.

Edge Curvatures Realizable?
ı
2
, ı

2
, 0 yes, see Fig. 4.19b

ı, 0, 0 yes, see Fig. 4.19c
ı, ı

2
, −ı

2
yes, see Fig. 4.19d

ı, ı, −ı no
3ı
2
, 0, −ı

2
no

3ı
2
, ı

2
, −ı no

3ı
2
, ı, −3ı

2
no

to be shared with an edge of another triangle T ′, we observe that the drawings
in Figs. 4.19c and 4.19d cannot be part of an SC1-drawing of K4. In particular,
if T and T ′ share the half circular arc, the two remaining vertices overlap if both
T and T ′ use the same drawing. If T and T ′ use the drawings of Fig. 4.19c and
of Fig. 4.19d, respectively, the third vertex of T will be located entirely inside
T ′, which contradicts outer-1-planarity. Hence, all triangles use the drawing of
Fig. 4.19b. It follows that there is a unique outer-1-planar SC1-drawing of K4 with
all free ports on the outer face, see Fig. 4.18a.

As in the proof of Theorem 4.6, we connect k copies of K4 in a chain via pairs
of intersecting edges as shown in Fig. 4.20b. In order to force the ports of each
copy to be located on the outer face, we introduce two more degree two vertices
at the ends of the chain. The resulting graph is still biconnected. Again, we will
show that each independent pair of consecutive copies G1 and G2 of K4 requires
at least one edge that must be drawn with at least one bend in any SC2-drawing.

Hence, consider such a pair of copies G1 and G2 of K4. Let e1 be an edge
on the outer face of G1 and e2 be an edge on the outer face of G2. Recall that
G1 and G2 must be drawn such that all free ports are on the outer face. The
endpoints of e1 are connected with one of the endpoints of e2 each such that the
two resulting edges e ′1 and e ′2 intersect; see Fig. 4.20c. Since e1 and e2 must be
drawn as a quarter circular arc in any outer-1-planar SC1-drawing of Gk , we can
only draw one of e ′1 and e ′2 with exactly one segment; see Fig. 4.20c. Note that
vertices located on dashed lines in Fig. 4.20c must be necessarily aligned if e ′1 is
drawn with a single segment. This immediately results in e ′2 being not drawable
with a single segment. This completes the proof.

86 CHAPTER 4. (SMOOTH) ORTHOGONAL 1-PLANAR DRAWINGS

(a)

. . .

(b)

or or or

(c)

Figure 4.20: (a) K4 has a unique outer-1-planar SC1-drawing where all free ports
are on the outer face. (b) The construction from Fig. 4.18c can be adjusted to
require the free ports of all K4’s to be on the outer face by introducing two more
degree two vertices at the end of the chain. (c) Connecting two K4’s with all free
ports on the outer face with a pair of intersecting edges creates an outer-1-planar
graph that has no SC1-drawing with fixed embedding. The gray dashed lines indicate
vertices that are required to be placed on the same line.

Part II

Beyond Stack Layouts

Queue Layouts and
Arc Diagrams of
Planar Graphs

87

88

Chapter 5

Queue Layouts of Bounded
Degree Planar Graphs

A linear layout of a graph consists of a total ordering ≺ of the vertices and an
assignment of the edges to k different color classes called pages. In a k-page
queue layout no two edges (u; v) and (u′; v ′) of the same color class nest each
other, that is, u ≺ u′ ≺ v ′ ≺ v is a forbidden pattern. Queue layouts have diverse
applications such as scheduling [42], sorting [153], VLSI design [126], and graph
drawing [68, 78]. An important parameter in such applications is the queue number
qn(G) of a graph G, that is, the minimum integer value such that G admits a k-
page queue layout. While for the complete graph qn(Kn) = Θ(n) [108], in many
situations better bounds for the queue number are possible: First, graphs with m
edges have queue number O(

√
m) [107]. Second, any minor-closed graph family

has polylogarithmic queue number [78]. Finally, the queue number is also bounded
by tree- and pathwidth [78, 158], tracknumber [81], bandwidth [107] and layered
pathwidth [23].

For the class of planar graphs on the other hand, mostly restricted subclasses
have been investigated in the past. Namely, it has been shown that the graphs
admitting 1-page queue layouts are indeed a subclass of planar graphs [108] while
also outerplanar graphs [107], series parallel graphs [143] and Halin graphs [98]
have bounded queue number. The best known upper bound of O(log n) for planar
graphs on the other hand has been derived from the layered pathwidth of planar
graphs [23] – this result is obtained without explicitly using the planarity of the
graph. Recently, the upper bound on the queue number of planar 3-trees has been
improved [8] using arguments that build upon planarity.

In this chapter1, we provide a strong evidence for the correctness of the con-
jecture by Heath, Leighton and Rosenberg that the class of planar graphs has a
bounded queue number [107] which was open until recently.2 Namely, we show

1The results of this chapter also appeared in [25].
2We acknowledge that more recently the conjecture has been shown to be correct [76].

89

90 CHAPTER 5. QUEUE LAYOUTS OF BOUNDED DEG. PLANAR GRAPHS

that every planar graph of maximum degree ∆ admits a O(∆c)-page queue layout
for a small constant value of c . In particular, our result relies on the input graph
being planar and stands in contrast to the fact that, in general, graphs of bounded
maximum degree have arbitrarily large queue number [160]. More precisely, we
show:

Theorem 5.1. Let G be a planar graph of maximum degree ∆. Then, it holds
that qn(G) ≤ 32(2∆− 1)6 − 1.

Moreover, our proof is constructive and indicates that such a queue layout can
be computed in polynomial time as discussed in Section 5.4. Before we describe
our result, we first discuss some notable implications of Theorem 5.1.3

First, consider the so-called track layouts. In a k-track layout, vertices are
partitioned into k subsets called tracks. The vertices on track t are linearily ordered
with a total ordering ≺t such that the edges between each pair of tracks do not
intersect, that is, for two edges (u; v) and (u′; v ′) with u and u′ on track t1 and
v and v ′ on track t2, it holds that u ≺t1 u′ if and only if v ≺t2 v ′. The track
number tn(G) of a graph G is equal to the minimum number of tracks such that
G has a tn(G)-track layout. The best upper bound for the track number of planar
graphs is O(log n) [23].3 It is known that a graph with queue number q and
acyclic chromatic number k has track number at most k(2q)k−1 [78]. Moreover,
planar graphs have acyclic chromatic number at most five [46]. Together with
Theorem 5.1 we obtain:

Corollary 5.1. Let G be a planar graph of maximum degree ∆. Then, it holds
that tn(G) = O(∆24).

Second, consider three-dimensional straight-line grid drawings. Every c-vertex
colorable graph with n vertices and track number t admits a three-dimensional
straight-line grid drawing in volume O(c) × O(ct) × O(c5n) [80]. A similar re-
verse relation is also known, namely, if G has a three-dimensional straight-line grid
drawing in volume X × Y × Z, it holds that tn(G) ≤ 2XY [77]. The question
whether a planar graph has a three-dimensional straight-line grid drawing in linear
volume is a major open problem in graph drawing and has been asked in 2003 [91].
The best known upper bound for planar graphs is O(n log n) volume [23]3, which
we can improve in the restricted degree case:

Corollary 5.2. Let G be a planar graph of maximum degree ∆. Then, G admits
a three-dimensional straight-line grid drawing in volume O(1)×O(∆24)×O(n).

Third, consider the 2-track thickness of a bipartite graph G. Here the problem
is to draw the vertices of each partition of G on one of two parallel lines and

3Note that the implications discussed also can be improved and generalized to all planar
graphs using the result from [76].

5.1. TOOLS FROMS THE LITERATURE 91

u1 v1 u2 v2 u3 v3

(a)

u1 u2 u3 v3 v2 v1

(b)

Figure 5.1: Different patterns formed by edges in a linear ordering: (a) 3-necklace,
and, (b) 3-rainbow.

then color the edges of G such that no two edges of the same color intersect in
a straight-line drawing. The minimum number of colors that suffices is called the
2-track thickness „2(G). It is known that „2(G) is directly related to qn(G) [81]
which implies the best known upper bound of O(log n) for planar graphs [23].3

For the case of bounded degree we obtain the following:

Corollary 5.3. Let G be a planar graph of maximum degree ∆. Then, it holds
that „2(G) = O(∆6).

Finally, we point out that Theorem 5.1 can be generalized for k-planar graphs
where k is a constant according to a result in [81]:

Corollary 5.4. Let G be a k-planar graph of maximum degree ∆. Then, it holds
that qn(G) = ∆O(k).

The remainder of the chapter is organized as follows: First, in Section 5.1, we
introduce some additional helpful lemmas and concepts from the literature. Then,
in Section 5.2, we show that ∆-matched graphs which are a subfamily of planar
graphs of maximum degree ∆ have queue number at most 2∆ − 2. Based on
this result, we generalize to all planar graphs of maximum degree ∆ in Section 5.3
before discussing the time complexity of our layout algorithm in Section 5.4.

5.1 Tools froms the Literature

Results on Queue Layouts. Consider a linear ordering ≺ of the vertices of a
graph G and k edges (u1; v1); : : : ; (uk ; vk) that pairwise do not share any endpoint.
If (u1; v1); : : : ; (uk ; vk) are pairwise independent, that is, w.l.o.g. u1 ≺ v1 ≺ u2 ≺
v2 ≺ : : : ≺ uk ≺ vk , we say they form a k-necklace in ≺; see Fig. 5.1a. If each pair
of edges from (u1; v1); : : : ; (uk ; vk) is such that one edge nests the other, that is,
w.l.o.g. u1 ≺ : : : ≺ uk ≺ vk ≺ : : : ≺ v1, we say that edges (u1; v1); : : : ; (uk ; vk)
form a k-rainbow in ≺; see Fig. 5.1b. It is known that a graph G admits a k-page
queue layout Γ if and only if it admits a linear order ≺ of its vertices in which no
(k + 1)-rainbow occurs [108]; more precisely, such a linear order ≺ will be used
by Γ. On the other hand, a k-necklace that occurs in the linear order of a queue
layout can be realized on the same page of the queue layout for any k .

92 CHAPTER 5. QUEUE LAYOUTS OF BOUNDED DEG. PLANAR GRAPHS

V1

V2

V0
V0 V1 V2

Figure 5.2: Computation of a queue layout of a tree.

Next, we describe how to compute a 1-page queue layout of a tree T according
to [108]4. Assume w.l.o.g. that r is the root of T and let h denote the height of
T , i.e., the maximum graph-theoretic distance between r and any other vertex in
T . Further, let V0; : : : ; Vh be a partition of the vertices such that v ∈ Vi if the
graph-theoretic distance between v and r is equal to i . In addition, let ≺0; : : : ;≺h
be linear orderings of the vertices in V0; : : : ; Vh, respectively, such that for any pair
of edges (u; v) and (u′; v ′) with u; u′ ∈ Vi and v; v ′ ∈ Vi+1 it holds that u ≺i u′
if and only if v ≺i+1 v

′. Then we create a linear ordering ≺ of all vertices V by
merging orderings ≺0; : : : ;≺h such that v ≺ v ′ if v ∈ Vi and v ′ ∈ Vj for i < j ; see
Fig. 5.2. We call such a linear ordering ≺ a good tree ordering . More precisely,
we can define a good tree ordering as follows.

Definition 5.1. Let F = (V; E) be a forest and V0; : : : ; Vh be a partititoning of
V into independent sets such that (u; v) ∈ E if and only if w.l.o.g. u ∈ Vi and
v ∈ Vi+1 for some 0 ≤ i ≤ h. A linear ordering ≺ of V is a good tree ordering if
the following holds:

T.1 Let u ∈ Vi and v ∈ Vj be vertices such that i < j . Then u ≺ v .

T.2 Let (u; v); (u′; v ′) ∈ E such that u; u′ ∈ Vi and v; v ′ ∈ Vi+1. Then u ≺ u′ if
and only if v ≺ v ′.

Consider two edges (u; v) and (u′; v ′) such that u � u′, u ≺ v and u′ ≺ v ′.
If u ∈ Vi and u′ ∈ Vj for j > i , it follows that v ≺ v ′ due to Property T.1.
Hence, (u; v) cannot nest (u′; v ′). Otherwise, consider the case where u; u′ ∈ Vi
and v; v ′ ∈ Vi+1. Here, we know from Property T.2 that v ≺i+1 v

′ since u �i u′.
Again, it is not possible that (u; v) nests (u′; v ‘′). We conclude that ≺ contains
no 2-rainbow implying the following:

Lemma 5.1 ([108]). Let G = (V; E) be a forest and ≺ a good tree ordering of
V . Then G admits a 1-page queue layout with linear ordering ≺.

Finally, we point out that queue layouts are known to have a nice behavior
regarding subdivisions. Consider two graphs G = (V; E) and G ′ = (V ′; E ′). We
say that G ′ is obtained from G by subdividing edge e = (u; v) ∈ E k times if and

4In [108], the result is actually shown for the class of arched-level planar graphs which are a
superclass of trees.

5.1. TOOLS FROMS THE LITERATURE 93

1 2

3

4 6

5

(a)

C1 C0
1

5

24

3

6

(b)

Figure 5.3: (a) The octahedral graph with a BFS-tree (bold) rooted a vertex 1
(red). (b) The corresponding ordered concentric representation.

only if G ′ consists of G \ e and a path pe of length k + 1 between u and v such
that u and v are the only vertices along pe that are part of G. In a k-subdivision
G ′ of a graph G, every edge e of G is subdivided at most k times. It is known,
that a graph has bounded queue number if one of its subdivisions has:

Lemma 5.2 ([81]). Let G ′ be a k-subdivision of a graph G and let qn(G ′) = q.
Then qn(G) ≤ 1

2
(2q + 2)2k − 1.

Ordered Concentric Representations. Ordered concentric representations
have been recently introduced in the study of linear layouts [139]. Let G a planar
graph and r a vertex of G. In an ordered concentric representation Γ of a planar
graph G with center r , vertices are restricted to concentric circles C0; : : : ; Ch where
h is the maximum smallest graph-theoretic distance between r and any vertex in
G such that the following properties hold:

O.1 Vertex v is located on Ci if and only if dist(r; v) = h − i . In particular, Ch
contains only r and can be considered as a single point. As a consequence,
each edge e of G is either connecting two vertices on the same circle or two
vertices on consecutive circles. In the former case, we call e a level edge; in
the latter case, we call it a binding edge.

O.2 Vertex r is incident to the outer face.

O.3 Each level edge is drawn outside the circle to which its two endpoints are
restricted to.

O.4 Each binding edge has a segment between the two circles to which its two
endpoints are restricted to and potentially a second segment that is drawn
outside those two circles.

Ordered concentric representation are computed by first computing a BFS-tree
rooted at a vertex r on the outer face. Root r is then placed on Ch, while every
other vertex v is placed on Ci where i = h − dist(r; v). The embedding of the

94 CHAPTER 5. QUEUE LAYOUTS OF BOUNDED DEG. PLANAR GRAPHS

input graph can be maintained. In particular, the edges of the BFS-tree become
binding edges which are drawn entirely between both circles; cf. Property O.4.
More formally, we can summarize this as follows:

Lemma 5.3 ([139]). Let G be a planar graph on n vertices and r one of its vertices.
An ordered concentric representation with center r where vertices are restricted
to circles C0; : : : ; Ch can be computed in O(n) time where h is the height of a
BFS-tree of G rooted at r .

Since we will make use of ordered concentric representations throughout this
chapter, we introduce some shortened notation. Consider a BFS-tree T of a graph
G with height h rooted at a vertex r . For vertex v , we denote by dist(v) the
graph-theoretic distance between v and r in T . Note that dist(r) = 0 while there
exists a leaf l with dist(l) = h. Moreover, we call the value h− dist(v) the layer
‘(v). In particular, ‘(r) = h while there exists a leaf l with ‘(l) = 0. Also note
that in an ordered concentric representation, vertex v is located on Ci if and only
if ‘(v) = i .

5.2 ∆-Matched Graphs

We first consider a special subclass of planar graphs of bounded degree ∆, called
∆-matched graphs.

Definition 5.2. A ∆-matched graph G = (V; E) consists of a complete (∆− 1)-
ary spanning tree T with root r ∈ V and a perfect matching M of its leaves such
that:

P.1 All leaves have the same graph-theoretic distance to r .

P.2 G admits an ordered-concentric representation with BFS-tree T and r on the
innermost circle such that all edges of T are drawn with a single segment (cf.
Property O.4) while all edges of M are drawn outside of C0.

Refer to Fig. 5.4 for an illustration of a 3-matched graph. Note that a ∆-
matched graph extends a tree in such a way that a good tree ordering ≺ for T
may introduce k-rainbows for arbitrary integers k in the perfect matching M. In
the following, we will define a total ordering ≺ of the vertices and a (2∆ − 3)-
coloring of the edges of T such that ≺ is a good tree ordering for each of the
forests induced by the set of edges of one color while M forms a k-necklace in
≺ for some integer k . Then, using ≺ and Lemma 5.1, we can draw each of the
(2∆−3) subforests in one page each and matchingM in a separate page achieving
a (2∆− 2)-page queue layout of G. We point out that this result cannot be easily
obtained by considering the treewidth of G as the treewidth of ∆-matched graphs

5.2. ∆-MATCHED GRAPHS 95

1

0

1

2

C0

C1

C2

C3

0 1 2 2

2

1 1 1

10

0

0

0

0

0

Figure 5.4: A 3-matched graph G in an ordered concentric representation according
to Property P.2. Matching edges are labeled with their nesting value while vertices
are labeled with their matching value. In this example every inner vertex has degree
exactly ∆, which is not necessary in general.

is not bounded by a constant. In particular, a suitable subdivision of a grid graph
gives a 4-matched graph and has treewidth Θ(

√
n).

First, we define a linear order for the vertices on each of the circles C0; : : : ; Ch
of the ordered concentric representation of G where h is the height of tree T . Since
r is part of the outer face, there exists a curve c starting at r and intersecting each
of circles C0; : : : ; Ch−1 exactly once. For Ci , we define the linear order ≺i of the
vertices on Ci according to the order in which we encounter them in a clockwise
traversal of Ci starting from the intersection between Ci and c . In particular, since
each edge of T is drawn with a single segment and since the ordered-concentric
representation is planar, we have the following additional property:

P.3 Let (u; v) and (u′; v ′) be two edges of the tree such that u and u′ appear on
Ci and v and v ′ appear on Ci−1. Then, u ≺i u′ if and only if v ≺i−1 v

′.

Observe that this is basically Property T.2 of a good tree ordering.
Next, we consider the edges belonging to M and assign an integer value to

each of them that we call the nesting value. For edge e ∈ M, the nesting value
nv(e) is equal to the number of edges that nest e in ≺0. Afterwards, we assign an
integer value to each vertex v ∈ V which we call the matching value mv(v). We
assign the matching values in a bottom-up traversal of the tree T from C0 to Ch.
First, for a vertex v on C0, we set mv(v) = nv(e) where e is the unique edge in
M incident to v . Then, for a vertex v on Ci , the matching value mv(v) is equal
to the minimum matching value of any of its neighbors on Ci . The nesting and
matching values are labeled in the example in Fig. 5.4. Intuitively speaking, the
matching value of vertex v is equal to the minimum nesting value of an edge in
M that is incident to a leaf in the subtree of T rooted at v .

We point out that the matching values of leaves which are consecutive in ≺0

differ by at most one. Therefore, if the subtree of T rooted at v has two leaves

96 CHAPTER 5. QUEUE LAYOUTS OF BOUNDED DEG. PLANAR GRAPHS

with matching values ¸ and ˛ with ¸ < ˛, then it also has at least one leaf with
matching value m for every m ∈ [¸; ˛]. Since a vertex v on layer ‘(v) and hence
on circle C‘(v) can be incident to at most (∆− 1)‘(v) leaves, the matching values
of its leaves differ by at most (∆ − 1)‘(v) − 1. As a result, two vertices u and v
on layer ‘(v) behave differently, if their matching values differ by (∆− 1)‘(v). We
capture this behavior by assigning each vertex v to a layer group g(v) such that

g(v) =

$
mv(v)

(∆− 1)‘(v)

%
: (5.1)

In particular, for vertices in layer 0, it holds that mv(v) = g(v), while in general
mv(v) ∈

h
g(v)(∆− 1)‘(v); (g(v) + 1)(∆− 1)‘(v)

”
. We denote by V g‘ the vertices

of G for which the layer is ‘ and the layer group is g . It is easy to see that {V g‘ }‘;g
partitions the vertices of G. We are now ready to prove the following lemma:

Lemma 5.4. Let G be a ∆-matched graph. Then qn(G) ≤ 2∆− 2.

Proof. Let {V g‘ }‘;g be a partition of the vertices and let ≺i be a linear ordering of
the vertices of layer i as described above. We construct the linear ordering ≺ of
the vertices such that u ≺ v if and only if one of the following conditions holds:

C.1 ‘(u) < ‘(v), or,

C.2 ‘(u) = ‘(v) and g(u) < g(v), or,

C.3 ‘(u) = ‘(v) =: ‘ and g(u) = g(v) and u ≺‘ v .

We first show that M forms a necklace in ≺. To see this, consider an edge e ∈ M.
Since the matching value of vertices in layer 0 is equal to the corresponding nesting
value of the incident matching edge, both endpoints of e belong to the same layer
group. In addition, e only nests edges with larger nesting values. Since vertices of
the same layer group are ordered according to ≺0 by Condition C.3, the endpoints
of e are indeed consecutive in ≺. Hence, we can assign all edges of M to the same
page in a queue layout with ordering ≺.

It remains to assign edges belonging to T to some page. In order to do
so, we show that we can partition the edges of T to 2∆ − 3 disjoint forests
(which each can be augmented to a tree) for which ≺ is a good tree ordering
and use one page for each of those forests; see Lemma 5.1. We first consider
a vertex u belonging to layer ‘ + 1 and establish to how many different layer
groups of layer ‘ it can be incident to. So let u ∈ V g‘+1 and let v1; v2; : : : ; vd be
the neighbors of u in layer ‘ where d ≤ ∆. Assume without loss of generality
that mv(v1) ≤ mv(v2) ≤ : : : ≤ mv(vd), i.e., it is not necessarily true that
v1 ≺‘ v2 ≺‘ : : : ≺‘ vd . Clearly, mv(u) = min{mv(vi)|i = 1; : : : ; d} = mv(v1).
By u ∈ V g‘+1 and Eq. (5.1),

mv(v1) = mv(v) ∈
h
g · (∆− 1)‘+1; (g + 1) · (∆− 1)‘+1

”
:

5.2. ∆-MATCHED GRAPHS 97

In other words,

g · (∆− 1)(∆− 1)‘ = g · (∆− 1)‘+1

≤ mv(v1)

< (g + 1) · (∆− 1)‘+1

= (g + 1) · (∆− 1)(∆− 1)‘;

(5.2)

that is,
g · (∆− 1) ≤ g(v1) < (g + 1) · (∆− 1):

Alternatively, we can write

v1 ∈
∆−2[
k=0

V
g ·(∆−1)+k
‘ :

Next, we show that for vertex vi with 1 ≤ i ≤ d , it holds that

g · (∆− 1) ≤ g(vi) < (g + 1) · (∆− 1) + (i − 1): (5.3)

Recall first that the matching values of two consecutive leaves differ by at most
one. Therefore, mv(vi) and mv(vi−1) differ at most by the number of leaves in the
subtree rooted at vi−1. Since this subtree has at most (∆− 1)‘ leaves, it follows
that

mv(vi) ≤ mv(vi−1) + (∆− 1)‘: (5.4)

Applying Eq. (5.4) recursively, we obtain

mv(vi) ≤ mv(v1) + (i − 1)(∆− 1)‘;

which by Eq. (5.2) yields

mv(vi) < (g + 1) · (∆− 1)(∆− 1)‘ + (i − 1)(∆− 1)‘

= ((g + 1) · (∆− 1) + (i − 1))(∆− 1)‘:

Because mv(v1) ≤ mv(vi) for i > 1 we obtain

g · (∆− 1)(∆− 1)‘ ≤ mv(vi) < ((g + 1) · (∆− 1) + (i − 1))(∆− 1)‘;

which is equivalent to our claimed Eq. 5.3. Since i ≤ d ≤ ∆− 1, we obtain

vi ∈
2∆−4[
k=0

V
g ·(∆−1)+k
‘ : (5.5)

We assign each edge (u; v) of T to one of the forests F1; : : : ; F2∆−3 as follows:
Let u ∈ V g‘+1 and v ∈ V g ·(∆−1)+k

‘ . Then, we assign edge (u; v) to forest Fk+1.
Note that by Eq. (5.5), we can assign each edge to one of forests F1; : : : ; F2∆−3

98 CHAPTER 5. QUEUE LAYOUTS OF BOUNDED DEG. PLANAR GRAPHS

C0

C1

C2

C3

0 0 1 1

0

1 1 2

00

0

0

0

2

1

F1

F2

M

(a)

0 0 1 1 1 1 2 2
V 0
0 V 1

0 V 2
0

0 0 0 1
V 1
1

0 0
V 0
2

0
V 0
3V 0

1

(b)

Figure 5.5: (a) The 3-matched graph G from Figure 5.4 where the vertices on each
layer have been reordered according to ≺ as computed by our algorithm. Matching
edges (gray) form a necklace while the edges of T can be separated into two forest F1

(red) and F2 (blue) which are intersection-free because ≺ is a good tree ordering for
both forests. Vertices are labeled with their layer group and colored in correspondence
with Figure 5.4. (b) Resulting 3-page queue layout.

like this; for an illustration refer to Fig. 5.5a. We now show that ≺ is a good tree
ordering for each of forests F1; : : : ; F2∆−3 (which in Fig. 5.5a is reflected by the
fact that all forests are drawn planar). Lemma 5.1 then implies that there exists
a (2∆ − 2)-page queue layout where each of the forests F1; : : : ; F2∆−3 is located
on a unique page while M is located on a separate page PM .

Consider one of the forests Fi . We first observe that ≺ fulfils Property T.1
since the layering of G is according to the graph-theoretic distance to the root r
of T . Hence, we only have to assert Property T.2.

For this purpose, consider two edges (u; v) and (u′; v ′) assigned to forest Fi
such that ‘(u) = ‘(u′) = ‘(v) + 1 = ‘(v ′) + 1 and u 6= u′. We have two
subcases: If w.l.o.g. g(u) < g(u′), it holds by Condition C.2 that u ≺ u′. Since
u and u′ belong to the same forest Fi , it holds that g(v) = g(u)(∆ − 1) + i <
g(u′)(∆− 1) + i = g(v ′) and by Condition C.2, it follows that v ≺ v ′. Hence, in
this case, Property T.2 holds.

Otherwise g(u) = g(u′). Since u and u′ belong to the same forest Fi , it holds
that g(v) = g(u)(∆− 1) + i = g(u′)(∆− 1) + i = g(v ′). Assume w.l.o.g. that
u ≺‘(u) u

′. By Property P.3, it follows that v ≺‘(v) v
′. Then by Condition C.3

also u ≺ u′ and v ≺ v ′ which fulfils Property T.2. We conclude that ≺ is indeed
a good tree ordering for forest Fi and the proof follows.

5.3. GENERAL PLANAR GRAPHS OF BOUNDED DEGREE 99

5.3 General Planar Graphs of Bounded Degree

In this section, we use the result from the previous section to show that the queue
number of the class of bounded degree planar graphs is bounded. Before we go
into detail, we sketch our approach to compute a queue layout of a planar graph
G with maximum degree ∆:

1. As a first step, we subdivide some edges of G at most three times to obtain a
graph G1 which consists of a BFS-tree T rooted at a vertex r and some level
edges regarding T .

2. In a second step, we replace the remaining level edges and their incident vertices
with appropriate ∆-matched subgraphs. The resulting graph G2 then is ∆-
matched.

3. In the third step, we first apply Lemma 5.4 to obtain a (2∆ − 2)-page queue
layout of G2. We then observe that the level edges that were replaced when
building G2 based on G1 can be realized as a necklace which yields a (2∆ −
2)-page queue layout of G1. Finally, we use Lemma 5.2 in order to obtain
Theorem 5.1.

In the following, we assume w.l.o.g. that ∆ ≥ 3 as all graphs with maximum
degree at most two have queue number one [108] which settles Theorem 5.1 in
the case where ∆ ≤ 2. In addition assume w.l.o.g. that G has no vertex v with
deg(v) = 1. Otherwise, we can insert vertices v1 and v2 and edges (v; v1), (v; v2)
and (v1; v2) for each vertex v with deg(v) = 1 to obtain a graph G ′ without
vertices of degree one. Since the queue number of G is at most the queue number
of G ′, this assumption is indeed not a loss of generality.

Step 1: Construction of G1. We begin by selecting a vertex r of G with
deg(r) = 2. If no such vertex exists, we instead subdivide an arbitrary edge
once obtaining a degree two vertex r . We then compute an ordered concentric
representation R of G centered at r . Let C0; : : : ; Ch denote the concentric circles
of R ordered decreasing in their radius and let T be the BFS-tree rooted at R
that we used for computing R according to Section 5.1; see also Fig. 5.6a. Recall
that R contains two types of edges: binding edges (i.e., edges that are incident
to vertices at consecutive circles), and level edges (i.e., edges between vertices on
the same circle). Here, we further distinguish two types of binding edges, namely,
tree edges (i.e., edges that belong to T) and interlevel edges (i.e., edges that do
not belong to T). Note that if r is a subdivision vertex created by subdividing
edge (u; v) the two resulting edges (u; r) and (r; v) are tree edges. We will not
subdivide tree edges again.

We obtain G1 in two steps. First, we subdivide each interlevel edge (u; v)
with ‘(v) > ‘(u) once with subdivision vertex v ′. In the resulting graph, edge

100CHAPTER 5. QUEUE LAYOUTS OF BOUNDED DEG. PLANAR GRAPHS

C0 C1 C2 C3
v1

u3

u1

u2

v2

r v3

(a)

C0 C1 C2 C3
v1

u3

u1

u2

v2

r

v ′
1

v3

(b)

C0 C1 C2 C3
v1

u3

u1

u2

v2

r

v ′
1

v3

u′
2
v ′
2

(c)

C0 C1 C2 C3
v1

u3

u1

u2

v2

r

v ′
1

v3

u′
2
v ′
2

(d)

Figure 5.6: An example of the computations of auxiliary graphs G1 and G2. Tree
edges are drawn solid in all subfigures. (a) Ordered concentric representation of G
with root r . (b) Interlevel edge (u1; v1) where ‘(v1) > ‘(u1) is replaced by path
(u1; v

′
1; v1) such that ‘(v ′1) = ‘(u1). The resulting path consists of a tree edge and a

level edge. (c) Level edge (u2; v2) is replaced by path (u2; u
′
2; v
′
2; v2) which consists

of two tree edges and a level edge incident to the two degree two leaves u′2 and v ′2.
The resulting graph is G1. (d) Level edges (u3; v3) and (u1; v

′
1) are replaced by trees

rooted at their endpoints and matching edges obtaining graph G2.

(v; v ′) is a tree edge while edge (u; v ′) is a level edge. For instance interlevel edge
(u1; v1) in Fig. 5.6a is being subdivided obtaining the graph shown in Fig. 5.6b.
Second, we subdivide each level edge (u; v) twice with subdivision vertices u′ and
v ′ if deg(u) > 2 or deg(v) > 2. The resulting edges (u; u′) and (v; v ′) are tree
edges while (u′; v ′) is a level edge. For instance, edge (u2; v2) in Fig. 5.6b becomes
subdivided twice yielding the graph shown in Fig. 5.6c. The resulting 3-subdivision
of G is the auxiliary graph G1. Note that all level edges in G1 are incident to two
leaves of the BFS-tree T1 of G1.

Step 2: Construction of G2. Graph G1 is already almost a ∆-matched graph,
in fact, only Property P.1 is violated since some of the leaves of the BFS-tree T1

of G1 are not on C0. We apply the following procedure to each level edge (u; v)
on C‘ with ‘ > 0. We remove (u; v) and insert two complete (∆ − 1)-ary trees
Tu and Tv of height ‘ rooted at vertices u and v , respectively. Then, we insert a
perfect matching Mu;v of the leaves on Tu and Tv such that the i-th leaf of Tu is

5.3. GENERAL PLANAR GRAPHS OF BOUNDED DEGREE 101

matched with the ((∆ − 1)‘ − i)-th leaf of Tv according to the ordering ≺0. As
a result, Mu;v is forming a (∆ − 1)‘-rainbow in ≺0. For an illustration refer to
Fig. 5.6d which is obtained from the drawing in Fig. 5.6c by replacing level edges
(u3; v3) and (u1; v

′
1). Graph G2 is indeed planar as we can insert trees Tu and Tv

and matching edges Mu;v following the representation of (u; v) in G1. Trees Tu
and Tv become part of the BFS-tree T2 of G2. Since after this operation all leaves
of T2 are located on C0 while all remaining edges are part of a planar matching
on C0, it follows that G2 indeed is a ∆-matched graph. Moreover, T2 defines an
ordered concentric representation with the properties described in Property P.2.

Step 3: Construction of a queue layout of G. We begin by computing a
(2∆− 2)-page queue layout Γ2 of G2 using Lemma 5.4.

Next, we create a queue layout Γ1 of G1 based on Γ2. All edges of G1 that also
occur in G2 will be drawn the same way, hence, it remains to consider level edges
(u; v) on layer ‘ > 0 that were replaced by Tu, Tv and Mu;v in G2. We claim the
following:

Lemma 5.5. Let L be the set of level edges (u; v) on layer ‘ > 0 that were
replaced by Tu, Tv and Mu;v in G2. We can draw all edges in L on page PM using
the vertex ordering ≺ of Γ2.

Proof. Assume for a contradiction that there are two such edges (u; v) and (u′; v ′)
such that (u; v) nests (u′; v ′), i.e., u ≺ u′ ≺ v ′ ≺ v . By Condition C.1 of ≺, it
follows that ‘(u) = ‘(v) = ‘(u′) = ‘(v ′), i.e., both edges occur on the same layer
‘. Next consider the matching values mv(u), mv(v), mv(u′) and mv(v ′). Since
the matching edges incident to subtrees Tu and Tv in G2 are identical, it holds that
mv(u) = mv(v) and therefore also g(u) = g(v). Similarly, mv(u′) = mv(v ′) and
g(u′) = g(v ′). If g(u) = g(v) < g(u′) = g(v ′), by Condition C.2, it holds that
v ′ 6≺ v which contradicts our assumption. Hence, g(u) = g(v) = g(u′) = g(v ′).
Since the ordered concentric representation of G1 is planar, there are two possible
cases. Either edges (u; v) and (u′; v ′) are independent with respect to ≺‘ or (u; v)
and (u′; v ′) nest with respect to ≺‘. By Condition C.3, it follows that edges (u; v)
and (u′; v ′) show the same behavior in ≺ as they show in ≺‘. Therefore, (u; v)
must nest (u′; v ′) in ≺‘. But then, all of the (∆− 1)‘ edges of Mu;v nest all edges
of Mu′;v ′ in ≺0 of the ordered concentric representation of G2. Since vertices u
and u′ belong to layer ‘, it follows that mv(u′) ≥ mv(u) + (∆− 1)‘ and thus by
Eq. (5.1) also g(u′) > g(u); a contradiction.

We conclude that indeed the edges assigned to PM form a necklace in ≺. Thus,
we have a (2∆− 2)-page queue layout Γ1 of G1. Since we obtained G1 from G by
subdividing each edge at most three times, we can apply Lemma 5.2 with k = 3
and q = 2∆− 2 and obtain:

Theorem 5.1. Let G be a planar graph of maximum degree ∆. Then, it holds
that qn(G) ≤ 32(2∆− 1)6 − 1.

102CHAPTER 5. QUEUE LAYOUTS OF BOUNDED DEG. PLANAR GRAPHS

5.4 Time Complexity

In this section, we analyze the runtime of our algorithm that constructs a (32(2∆−
1)6 − 1)-page queue layout for planar graphs of maximum degree ∆. We first
reevaluate our algorithm for ∆-matched graphs:

Lemma 5.6. Let G be a ∆-matched graph with an ordered concentric representa-
tion R with the properties described in Property P.2. Then a k-page queue layout
of G with k ≤ 2∆−2 can be computed with O(n) basic computations (additions,
comparisons) that involve a constant number of values each.

Proof. We consider the runtime of each of the steps performed by the algorithm
in the proof of Lemma 5.4:

1. The nesting value for each edge in M is computed. Given the ordered
concentric representation of G, this can be performed with O(|M|) = O(n)
basic computations.

2. The matching value for each vertex in G is computed. Based on the nesting
value of each edge in M, the matching values of leaves can be computed
with O(|M|) basic computations. For the remaining vertices, a bottom-up
traversal of T yields the corresponding matching values. Hence, we compute
all matching values with O(n) basic computations.

3. The layer group of each vertex v can be easily deduced from the matching
value mv(v) which was computed before and the layer ‘(v) that is defined by
R. Hence, all layer groups can be computed with O(n) basic computations.

4. The linear order of vertices can be computed based on a single traversal
through each of the linear orders ≺‘ for 0 ≤ ‘ ≤ h which are defined by
R; see Conditions C.1–C.3. Hence, this step can be done with O(n) basic
computations.

5. The assignment of edges to pages of the queue-layout are determined on the
layer groups of their endpoints which were already computed. Hence, for each
edge, we only have to look up two values. In total, we need O(m) = O(n)
basic computations.

We conclude that the algorithm in the proof of Lemma 5.4 needs O(n) basic
computations.

The time critical step in the computation of a queue layout of a general planar
graph G of maximum degree ∆ is Step 2, that is, the construction of G2. Namely,
for a level edge (u; v) on layer ‘, we introduce new trees Tu and Tv on ∆Θ(‘)

vertices. Note that ‘ is bounded by the height h of the BFS-tree T1 of G1.

5.4. TIME COMPLEXITY 103

However, a BFS-tree of a planar graph may have height Θ(n). So in order to
compute a queue layout of G efficiently, we cannot explicitly introduce such trees.
Instead, we assign weights to level edges of G1 and compute a (2∆ − 2)-page
queue layout of G1 directly.

In fact, the purpose of such trees is the following: Consider two level edges
(u; v) and (u′; v ′) on layer ‘. If (u; v) nests (u′; v ′) in ≺‘, replacing (u; v) with
Tu, Tv and Mu;v ensures that g(u) = g(v) > g(u′) = g(v ′). This is because each
of the edges in Mu;v nests each edge of Mu′;v ′ in ≺0 while |Mu;v | = (∆− 1)‘. We
can achieve the same effect as follows: Instead of replacing each level edge (u; v)
with Tu, Tv and Mu;v we route it outside of layer 0. If we perform this operation
first on edges on layers with lower indices, this can be done in a single pass of the
level edges on each of the layers. Then, we introduce a weight w(u; v) equal to
|Mu;v |. Since the new routing of edge (u; v) corresponds to the routing of Tu, Tv
and Mu;v , the piece of (u; v) outside of C0 nests everything that Mu;v would have
nested before. Moreover, if we perform this operation on all level edges, each level
edge has a piece outside of C0.

We then update the computation of nesting values and matching values in
Step 3 as follows: Edge (u; v) has nesting value 0 if and only if its piece outside
of C0 is not nested by any piece of another edge (u′; v ′) outside of C0. Otherwise,
let (u′; v ′) be the edge of maximum nesting value which has a piece outside of C0

that nests the piece of (u; v). Then, we set n((u; v)) = n((u′; v ′)) +w(u′; v ′). As
a result, each vertex of G1 is assigned the same matching value as it would have
been assigned if we replaced level edges as discussed before. We point out that the
largest nesting value is in O(∆n) since the height of the BFS-tree is bounded by
the number of vertices. Hence, we can represent all nesting and matching values
with a O(n log ∆) length binary string. Since we only use standard operations
on such values (namely, addition and comparison), each such operation can be
performed in time O(n log ∆).

Based on the matching and nesting values we can then compute a (2∆− 2)-
page queue layout using the linear order defined by Conditions C.1–C.3. As a
result, we obtain the following:

Theorem 5.2. Let G be a planar graph of maximum degree ∆. Then, a k-page
queue layout of G with k ≤ 32(2∆−1)6−1 can be computed in time O(n2 log ∆).

Proof. We reconsider the steps of the algorithm supporting Theorem 5.1:

1. In order to construct G1 in Step 1, we compute an ordered concentric rep-
resentation R which can be done in time O(n) by Lemma 5.3. Then, we
subdivide all interlevel edges in time O(n) since they are uniquely defined by
R. Finally, we obtain G1 by splitting each of the level edges at most twice.
Those edges are again well-defined by R and can be found in time O(n).

2. We use the new version of Step 2 as described above. Namely, we reroute
each of the level edges of G1 which can be done by first rerouting edges on

104CHAPTER 5. QUEUE LAYOUTS OF BOUNDED DEG. PLANAR GRAPHS

layers with lower indices. Hence, we traverse each layer once achieving time
O(n) in total. Then, we assign weights to each level edge. As discussed
above, the weights of level edges can be represented with O(n log ∆) bits
each, hence, this takes time O(n2 log ∆).

3. In Step 3, we first compute the nesting and matching values as described
above. For nesting values, we have to make a pass over all level edges and in
each step deal with a constant number of values representable by O(n log ∆)
bits each. Hence, this takes time O(n2 log ∆) time. Then, we calculate the
matching values in a bottom-up traversal during which O(n) calculations
are performed. As a result, all matching values can be computed in time
O(n2 log ∆). We then use the remaining steps from Lemma 5.4 to compute
a (2∆ − 2)-page queue layout of G1. Since each basic computation may
involve numbers of size O(n log ∆) in bit representation, this may take time
O(n2 log ∆). Finally, we use Lemma 5.2 to compute the queue layout of G.
While the time complexity of Lemma 5.2 is not explicitly stated in [81], it
is easy to see that it can be performed in time O(n) when there are only
a constant number of subdivision vertices per edge. In particular, the main
operation performed in the lemma is the computation of a track layout of a
subgraph of G [79] which is repeated a number of times which is logarithmic
in the constant number of subdivision vertices.

Since we proved that each of the three steps can be performed in total time
O(n2 log ∆), the theorem follows.

Chapter 6

Monotone Arc Diagrams with
few Biarcs

Only subhamiltonian planar graphs, that is, subgraphs of planar graphs with Hamil-
tonian cycles, admit a 2-page stack layout [40]. In general, up to four pages may
be required for visualizing planar graphs in a stack layout [30, 161]. However,
even 3-page stack layouts admit no nice embedding in the plane, since two pages
have to use the same half-plane delimited by the spine which can introduce many
intersections.

A different approach to visualize graphs with vertices restricted to a line are the
so-called arc diagrams in which edges are realized on two pages, i.e., a half-plane
below and a half-plane above the spine. In order to realize all planar graphs, some
edges have to be drawn as biarcs, that is, a sequence of a segment above and a
segment below the spine. In fact, all biarcs can even be down-up monotone, i.e.,
monotone with respect to the spine such that the left segment is below the spine.

Arc diagrams find applications in circular layouts [65] and point set embed-
dability problems, in particular, for the cases where edges are drawn as circular
arcs [15] as well as 1-bend polylines [89, 130]. In the latter application, specifically
down-up monotone arc diagrams are required. In either scenario, the number of
biarcs in the arc diagram affects the quality of the drawing: In circular layouts,
biarcs become curves that cross the circle to which vertices are restricted, while
the number of points in universal point sets is tied to the number of biarcs that
may be required in an arc diagram. As a result, the number of required biarcs has
been investigated in the literature [51, 67, 120]. The best known upper bounds are
b(n−3)=2c for general plane arc diagrams and n− 4 for plane down-up monotone
arc diagrams [51]. The lower bound for the required number of biarcs on the other
hand is b(n − 8)=3c in both the down-up monotone and general case.

It is noteworthy, that monotone arc diagrams are not as well understood as
general arc diagrams while they are specifically required in some applications. In

105

106 CHAPTER 6. MONOTONE ARC DIAGRAMS WITH FEW BIARCS

this chapter1, we provide more insight in this regard by showing the following:

Theorem 6.1. Every planar graph admits a plane down-up monotone arc diagram
with at most b15=16n − 5=2c biarcs that can be computed in linear time.

As a side result we describe a SAT formulation, that is based on [39], with
which we verified the following:

Observation 6.1. No Kleetope based on a triangulation with up to 14 vertices
requires more biarcs in its down-up monotone arc diagrams compared to its general
arc diagrams even if the outer face is arbitrarily prescribed.

In the remainder of the chapter, we first describe an algorithm that asserts
Theorem 6.1 in Sections 6.1 to 6.4. More precisely, in Section 6.1, we provide
an overview of our algorithm that inserts vertices one at a time. Here, we also
introduce the distinction between default steps of the algorithm and more complex
steps in which vertices are inserted above so-called open configurations. Then, we
discuss the default steps in Section 6.2 and the steps involving open configurations
in Section 6.3. We summarize the proof of Theorem 6.1 in Section 6.4. Afterwards,
we shift our attention to the SAT formulation in Section 6.5.

6.1 Overview of the Algorithm

Our algorithm is an elaborate improvement of the algorithm by Cardinal et al. [51].
We assume w.l.o.g. that the input graph of our algorithm is a triangulation;
otherwise we can triangulate it. We insert the n vertices v1; : : : ; vn according
to a canonical ordering. Recall that Gi denotes the graph consisting of vertices
v1; : : : ; vi while Ci is the outer face of the drawing of Gi . In addition, degGi

(v)
denotes the degree of vertex v in Gi .

We will pay close attention to the part of the outer face Ci−1 of the drawing
of graph Gi−1 that is covered by vertex vi . More formally, we say that vi covers
an edge e (or vertex v , respectively) if and only if e (v , respectively) is an edge
(vertex, respectively) on Ci−1 but not on Ci . In addition, we distinguish two types
of proper arcs, namely mountains (above the spine) and pockets (below the spine).

Every edge that is not a proper arc, will be realized as a down-up biarc. In
order to bound the number of biarcs created by our algorithm, we require that one
credit is allocated to each biarc. When inserting vertex vi , we also introduce ¸
credits to the drawing that can either be allocated to biarcs or stored on edges
whose endpoints are on the outer face Ci so that they can be used later.

The following invariants hold after inserting vertex vi for the drawing of Gi :

I.1 Every edge is either drawn as a proper arc or as a down-up biarc.
1The results of this chapter also appeared in [52].

6.1. OVERVIEW OF THE ALGORITHM 107

vip‘ pr
‘i ri

(a)

vip‘
pr
ri

‘i

(b)

Figure 6.1: Inserting a vertex vi onto a pocket costs at most 1 − ı credits if
degGi (vi) ≥ 4: (a) If ri 6= pr , the credit from pocket (p‘; pr) reduces the cost to at
most 1− ı. (b) If ri = pr , at least one pocket (or mountain) left of p‘ is covered.

I.2 Let w1 = v1; w2; : : : ; wp−1; wp = v2 denote the vertices of Ci ordered from left
to right along the spine. Then, edge (v1; v2) forms the lower envelope of the
drawing of Gi while the path (w1; w2; : : : ; wp−1; wp) forms the upper envelope.
All edges of Ci are drawn as proper arcs.

I.3 Every mountain whose left endpoint is part of Ci is allocated 1 credit.

I.4 Every pocket on the outer face Ci is allocated ı credits, for some constant
ı ∈ [0; 1).

I.5 Every biarc in Gi is allocated 1 credit.

In most cases, we do not discuss explicitly that we maintain the invariants. We
visualize the assignment of credits to edges in the figures with coin symbols and

for ı and a full credit, respectively. In addition, if we cover an edge that was
assigned credits in Gi−1 but not in Gi , we visualize that some unused credit can be
reallocated with green coin symbols and for ı and a full credit, respectively.

In most cases, we will insert vertex vi above one of the edges it covers, i.e.,
between its leftmost neighbor ‘i and its rightmost neighbor ri on Ci−1. The fol-
lowing two lemmas are directly derived from the two different cases (some covered
edge is a pocket or no covered edge is a pocket) that can arise in the algorithm
by Cardinal et al. [51] and give a first bound for ¸.

Lemma 6.1. If at least one pocket is covered by vi , vertex vi can be inserted for
a cost c ≤ 1 such that Invariants I.1 to I.5 hold. If degGi

(vi) ≥ 4, then c ≤ 1−ı.

Proof. Vertex vi is always placed onto the rightmost covered pocket (p‘; pr) while
all incident edges are drawn as proper arcs; see Fig. 6.1. In particular, edges
(p‘; vi) and (vi ; pr) are drawn as pockets while all remaining new edges are drawn
as mountains which satisfies Invariants I.1 and I.2.

If (vi ; pr) is not covered, we reallocate the ı credits from (p‘; pr) to it to
maintain Invariant I.4. Otherwise, consider a vertex r to the right of pr incident
to vi . Edge (vi ; r) is a mountain and requires one allocated credit by Invariant I.3.

108 CHAPTER 6. MONOTONE ARC DIAGRAMS WITH FEW BIARCS

vim‘

mr

‘i

ri

(a)

vi
‘i rim′

‘ m′
r

(b)

Figure 6.2: (a) Inserting a vertex vi on top of mountains only costs at most 1 + ı
credits. (b) If degGi (vi) ≥ 4, the cost can be reduced to 5− degGi (vi).

On the other hand, since (p‘; pr) is the rightmost pocket, the left neighbor of r
on Ci−1 is connected to r with a mountain mr . By Invariant I.3, mr has a credit
which we can reallocate to (vi ; r).

In addition edge (‘i ; vi) may be either realized as a mountain or as a pocket. If it
is realized as a mountain, we have to allocate one credit on it by Invariant I.3, while
if it is realized as a pocket, we have to allocate ı credits on it by Invariant I.4. It
might not be possible to redistribute these credits from covered edges, i.e., c ≤ 1.
This suffices to prove the part of the lemma where degGi

(vi) < 4.
If ri 6= pr , pocket (vi ; pr) is not on the outer face and hence does not need

to carry ı credits. Then, the ı credits from edge (p‘; pr) can be reallocated and
c ≤ 1 − ı; see Fig. 6.1a. If ri = pr and degGi

(vi) ≥ 4, there exists at least
one covered edge e on the outer face whose right endpoint is p‘ that we did not
consider so far. Since the left endpoint of e is covered by vi , we can reallocate its
credits; see Fig. 6.1b. By Invariants I.3 and I.4, e was allocated at least ı credits
in Ci−1 and we can insert vi for c ≤ 1− ı.

So far, we discussed the case where vi covers a pocket. If this is not the
case, vertex vi has no access to the spine between its leftmost neighbor ‘i and its
rightmost neighbor ri and biarcs have to be created. In such a case, one mountain
m of the outer face will be pushed down, that is, m and all mountains that have the
same left endpoint as m are transformed into down-up biarcs. By Invariant I.3 each
of those mountains carries a credit so pushing down m does not violate Invariant
I.5. The following lemma estimates the cost for inserting vi when covering only
mountains:

Lemma 6.2. If only mountains are covered by vi , vertex vi can be inserted for a
cost c ≤ 1 + ı such that Invariants I.1 to I.5 hold. If degGi

(vi) ≥ 4, the cost is
c ≤ 5− degGi

(vi).

Proof. First, consider the case where degGi
(vi) ≤ 3. Here, we push down the

leftmost mountain (m‘; mr) and place vi between m‘ and mr and realize edge
(m‘; vi) as a pocket and all other edges incident to vi as a mountain; see Fig. 6.2a.

6.1. OVERVIEW OF THE ALGORITHM 109

(a) (b)

Figure 6.3: A repeatable configuration that (a) creates many biarcs when using
only down-up biarcs and (b) creates only one biarc when using only up-down biarcs.

The credits for newly created biarcs are already allocated to the corresponding
edges by Invariant I.3. In order to satisfy Invariant I.4, we have to allocate ı
credits to (m‘; vi). In addition, we have to allocate 1 credit to each mountain
incident to vi . We have to pay the credit for mountain (vi ; mr). If ri 6= mr , we
have degGi

(vi) = 3 and we also cover mountain (mr ; ri) and can reallocate the
credit to the new mountain (vi ; ri); see Fig. 6.2a. Therefore, c ≤ 1 + ı.

Second, consider the case where degGi
(vi) ≥ 4. Here, we instead push down

the rightmost mountain (m′‘; m
′
r) and place vi between m′‘ and m

′
r and realize edge

(m′‘; vi) as a pocket and all other edges incident to vi as a mountain; see Fig. 6.2b.
Here, we have to allocate a credit to new mountains (‘i ; vi) and (vi ; ri). However,
there are at least degGi

(vi)− 3 more covered mountains whose left endpoints got
covered as well. When redistributing the credits of these mountains, we achieve a
cost of 2− (degGi

(vi)− 3) = 5− degGi
(vi).

It is noteworthy that in the proofs of Lemmas 6.1 and 6.2, we only reallocate
credits from arcs on Ci−1. However, if we cover the left endpoint of a mountain
not on Ci−1 there may be some slack. Also observe that so far we can only say
that ¸ ≤ 1 + ı. By setting ı = 0, we obtain the result from Cardinal et al. [51].
In order to reduce the number of biarcs, we want to choose ı > 0 to improve the
result from Lemma 6.1. This will prove useful as in the critical case of Lemma 6.2,
we create new pockets whose ı credits may be reallocated in a future step.

We also point out that it is impossible that the case degGi
(vi) < 4 continually

occurs due to the density of maximal planar graphs. However, it is possible that
a sequence of degree two vertices that becomes stacked on top of mountains can
occur in the canonical ordering; see Fig. 6.3a. In such a case, for every inserted
vertex a biarc is created and the worst-case cost of 1 + ı is achieved. However, if
we would adopt a symmetric scheme with up-down biarcs, we would only end up
with one created biarc for the first inserted vertex; see Fig. 6.3b.

In order to use this behavior, we actually create two drawings, called forward
(where we only use down-up biarcs) and reverse (where we only use the symmetric
up-down biarcs). In the forward drawing

−→
Γ i of Gi , we use the version of Invari-

110 CHAPTER 6. MONOTONE ARC DIAGRAMS WITH FEW BIARCS

ants I.1 and I.3 as stated before while in the reverse drawing
←−
Γ i of Gi we use

symmetric formulations. More precisely, in
←−
Γ i , we use up-down biarcs instead of

down-up ones while mountains whose right endpoints (in contrast to the left ones)
are part of Ci are allocated 1 credit. From the two resulting drawings, we choose
the one with fewer biarcs after inserting all vertices. Note that Ci can be drawn
differently in

−→
Γ i and

←−
Γ i which will give rise to many different cases later.

As mentioned before, we want to claim later that on average we can save the
credits allocated to one pocket of the outer face. Hence, we will show in the
remainder of the description of the algorithm that we can insert vertices at an
average cost ¸ = 2 − ı. Unfortunately, this may not be the case for a single
vertex that is considered in isolation: Consider a vertex vi of degree three that
is inserted above two mountains in both

−→
Γ i−1 and

←−
Γ i−1; see Fig. 6.4b. In both

drawings, we tightly achieve the cost of 1 + ı credits as stated in Lemma 6.2.
Hence, we pay 2 + 2ı for both drawings, which is 3ı credits more than ¸. In
fact, it is not possible to improve this result here when placing vi between ‘i and
ri which however is necessary to maintain Invariant 2.

We solve this problem by introducing open configurations. An open configu-
ration C consists of up to two adjacent vertices c1 and possibly c2 on the outer
face and their incident edges where the insertion of c1 and possibly c2 could not be
covered by the ¸ or possibly 2¸ credits introduced when inserting c1 and possibly
c2. Each open configuration C is associated with a debt d(C) which is the amount
of additional credits that were required to maintain Invariants 1 to 5 when inserting
c1 and possibly c2. Once any arc of C becomes covered by a vertex vi , we either
have to cover the debt of C or create a new open configuration C′ that consists
of the vertex of C and vi . Note that after inserting vn, we have at most one open
configuration left. We formulate this new property as another invariant:

I.6 The outer face Ci may contain pairwise disjoint open configurations consisting
of up to two adjacent vertices and their incident edges. An open configuration
C is associated with a debt d(C) ≤ 5ı.

We list all possible types of open configurations labeled Ca; : : : ; Ck in Fig. 6.4.
We point out that Lemmas 6.1 and 6.2 do only account for the costs of paying

the edges incident to vi while ignoring the debts of possibly existing open config-
urations. In the following section, we discuss how we process vertices that do not
cover arcs belonging to open configurations; here we will introduce most of the
open configurations listed in Fig. 6.4. Then, in Section 6.3, we consider the case
where vertices are inserted that cover at least one arc of an open configuration. In
either occuring case, we will show that ¸ credits are sufficient if ı ≤ 1=8.

6.2. DEFAULT VERTEX INSERTION 111

c1 c1

(a) d(Ca) = 3ı

c1 c1

(b) d(Cb) = 3ı

c1 c1

(c) d(Cc) = 3ı

c1 c1

(d) d(Cd) = ı

c1 c1

(e) d(Ce) = ı

c1 c1

(f) d(Cf) = ı

c1 c1

(g) d(Cg) = 2ı

c1 c1

(h) d(Ch) = 2ı

c1 c2 c1 c2

(i) d(C«) = 4ı

c1 c2 c1 c2

(j) d(Cj) = 5ı

c2 c1c2 c1

(k) d(Ck) = 5ı

Figure 6.4: All eleven types of open configurations Ca; : : : ; Ck that can be created.
In each subfigure, we show the forward (left) and the reverse drawing (right) while
the caption shows the corresponding debt. Note that pairs (Cd ; Ce), (Cg ; Ch) and
(Cj ; Ck) are symmetric while the remaining open configurations are symmetric to
themselves.

112 CHAPTER 6. MONOTONE ARC DIAGRAMS WITH FEW BIARCS

6.2 Default Vertex Insertion

In this section, we discuss how we insert a vertex vi if it does not cover any arc that
is part of an open configuration. In principal, we apply the procedures discussed
in Lemmas 6.1 and 6.2. If the cost exceeds the ¸ credits introduced with vi , we
introduce an open configuration.

If degGi
(vi) ≥ 4 and at least one pocket is covered in either of the two drawings,

by Lemmas 6.1 and 6.2 the sum of both insertion costs is at most 2− ı = ¸. If
we however only cover mountains and degGi

(vi) = 4, we end up with the open
configuration Ca shown in Fig. 6.4a that has a cost of 2 + 2ı and hence a debt of
3ı. Note that by Lemma 6.2, we can achieve a cost of 2 for Ca, however we do
not use the cheapest drawing to obtain a pocket on the outer face which becomes
easier to handle later. On the other hand, if degGi

(vi) ≥ 5, by Lemma 6.2 we
achieve a total cost of 0 for both drawings if we only cover mountains.

Next, consider the case where degGi
(vi) = 2. If vi covers a pocket in either of

the two drawings, the insertion in this drawing costs only ı. Therefore, we achieve
a total cost of at most 1 + 2ı which is at most ¸ if ı ≤ 1=3. If we cover a
mountain in both drawings however, we obtain the open configuration Cc shown
in Fig. 6.4c that has a cost of 2 + 2ı and hence a debt of 3ı.

Finally, consider the case where degGi
(vi) = 3. Here, there are four possible

configurations for the two arcs that are covered by vi , namely from left to right:
mountain-mountain (or MM), mountain-pocket (or MP), pocket-mountain (or
PM) and pocket-pocket (or PP). In either drawing, we can insert vi on the
configuration PP for a cost of 1 − ı while we can insert vi on the configuration
MM for 1 + ı. The insertion into PM costs 0 in the forward and 1 in the reverse
drawing, while the insertion into MP costs 1 in the forward and 0 in the reverse
drawing. We consider all possible forward|reverse configuration combinations:

– Insertion into MM|MM costs 2 + 2ı and we obtain the open configuration Cb
shown in Fig. 6.4b with debt of 3ı.

– Insertion into MM|PM costs 2 + ı and we obtain the open configuration Cg
shown in Fig. 6.4g with debt of 2ı. Symmetrically, if we insert into pattern
MP |MM, we obtain the open configuration Ch shown in Fig. 6.4h.

– Insertion into MM|PP costs 2 and we obtain the open configuration Cd shown
in Fig. 6.4d with debt of ı. Symmetrically, if we insert into pattern PP |MM,
we obtain the open configuration Ce shown in Fig. 6.4e.

– Insertion into MP |PM costs 2 and we obtain the open configuration Cf shown
in Fig. 6.4f with debt of ı.

– Insertion into all other combinations costs at most ¸ for any ı.

6.3. VERTEX INSERTION INVOLVING OPEN CONFIGURATIONS 113

vi vi

Figure 6.5: Drawing for the insertion of a degree two vertex vi that covers a
mountain belonging to an open configuration of type C«.

Hence, if vi covers no arc of an open configurations, we can always insert it
such that the ¸ new credits are sufficient for reallocating credits in both drawings
or we end up with one of the open configurations listed in Fig. 6.4.

6.3 Vertex Insertion involving Open Configura-
tions

In this section, we discuss how we insert a vertex vi if it covers at least one arc that
is part of an open configuration. Before we begin, we point out two properties of
open configurations that will become useful in the discussion; see also Fig. 6.4:

P.1 In each drawing, every open configuration contains at least one mountain and
one pocket.

P.2 The debt of any open configuration is at most 5ı.

Also note that open configurations C«, Cj and Ck that did not occur in Sec-
tion 6.2 will be introduced here. We will consider different cases based on the
degree of vi in the following three subsections. To this end, we mainly consider
open configurations C‘ and Cr that include the leftmost and rightmost arc e‘ and
er covered by vi , respectively. Note that e‘ and er might not be part of an open
configuration, then C‘ = ∅ or Cr = ∅.

Insertion of Vertices with Degree two

Case 1: degGi
(vi) = 2. Here, vertex vi can interfere only with one open con-

figuration C = Cr = C‘ since it covers only one arc. If vi covers at least one
pocket (in

−→
Γ i or

←−
Γ i), inserting vi costs at most 1 + 2ı for both

−→
Γ i and

←−
Γ i .

Since d(C) ≤ 5ı, the total cost is at most 1 + 7ı which is at most ¸ as long as
ı ≤ 1=8.

If vi covers a mountain in both drawings, C can only be one of the types Cg ,
Ch and C«; see Fig. 6.4. If C is of type Cg or Ch, the insertion of vi creates the
open configuration Cj or Ck , respectively; see Fig. 6.4j or 6.4k. Both of these open

114 CHAPTER 6. MONOTONE ARC DIAGRAMS WITH FEW BIARCS

c1vi

Figure 6.6: Case 2a.1: Drawing when vi covers a configuration of type Cf .

configurations have a cost 4 + 3ı for two vertices and hence a debt of 5ı. On the
other hand, if C is of type C«, we use the drawings in Fig. 6.5 for the forward and
reverse drawing if vi is inserted on the left mountain; the drawings for the case
where vi is inserted on the right mountain are symmetric. Note that we completely
redraw the forward drawing of C«. The costs for inserting vi and vertices c1, c2 are
2 + 3ı in the forward drawing and 3 + 2ı in the reverse drawing, achieving a total
cost of 5 + 5ı which is at most 3¸ if ı ≤ 1=8.

Insertion of Vertices with Degree three or four

We treat the cases degGi
(vi) = 3 and degGi

(vi) = 4 simultaneously as very often
we will apply the same argument. Figures that refer to both cases show the case
degGi

(vi) = 4; the removal of the leftmost vertex yields the corresponding drawing
for the case degGi

(vi) = 3. We distinguish two cases based on whether vi covers
one or more edges of open configuration Cr .

Case 2a: vi covers at least the two leftmost edges of Cr .

We treat the case where vi covers at least the two rightmost edge of C‘ symmet-
rically by exchanging the role of forward and reverse drawing in the analysis.

Case 2a.1: degGi
(vi) = 3. Due to the degree of vi , it holds that Cr = C‘.

Recall that every open configuration contains both a pocket and a mountain on
Ci−1; cf. Property P.1. More precisely, unless Cr = Cf , vi is inserted above a PM
pattern in forward or above a MP pattern in reverse drawing. Inserting vi above
such a pattern costs 0 credits while the reverse drawing costs at most 1 credit by
Lemma 6.1. Since by Property P.2 d(Cr) ≤ 5ı, the total cost for inserting vi is
at most 1 + 5ı which is at most ¸ for ı ≤ 1=6.

If Cr = Cf , we redraw Cr by pushing down the mountain covered by c1. Then,
vi and c1 can be placed above the new biarc; see Fig. 6.6. Then, edges incident to
c1 do not need to be assigned credits while we pay for a pocket and a mountain
incident to vi . Since we cover a pocket and reclaim its ı credits, we achieve a cost
of 1 for both vertices in the forward drawing. As Cf is symmetric in the reverse
drawing, we achieve a total cost of 2 which is less than the 2¸ credits introduced
with vi and c1 as long as ı ≤ 1.

6.3. VERTEX INSERTION INVOLVING OPEN CONFIGURATIONS 115

vi c1

(a)

vi c1c2

(b)

vi c1c2

(c)

Figure 6.7: Case 2a.2: Drawings when vi covers a configuration of types (a) Ca,
Cb, Cc , Cd or Cg (the illustration shows the case where a configuration of type Cc is
covered while e‘ is a mountain), (b) C«, and (c) Cj .

Case 2a.2: degGi
(vi) = 4 and Cr is completely covered by vi . We consider

the forward drawing
−→
Γ i and show that it is cheap enough so that we can even use

the default rules discussed before for
←−
Γ i .

If Cr ∈ {Ca; Cb; Cc ; Cd ; Cg}, we redraw Cr by placing both vi and c1 of Cr above
e‘ which we push down if needed; see Fig. 6.7a. While this may create a biarc
incident to vi , we cover all mountains incident to c1 and hence do not need to
allocate credits to them. In addition, we have to pay one credit for mountain (vi ; ri)
and ı credits for pocket (‘i ; vi) while we cover at least one mountain covered by
c1. As a result the cost is at most 1 + ı for both vertices in the forward drawing.
In the reverse drawing, we pay at most 1 + ı for c1 by Lemmas 6.1 and 6.2 while
vi is inserted above a pocket by Property P.1, yielding a cost of 1−ı for inserting
vi into

←−
Γ i . Hence, we pay at most 3 + 6ı for both vertices, which is at most 2¸

if ı ≤ 1=8.
Next, consider the case where Cr ∈ {Ce ; Cf ; Ch}. If Cr ∈ {Cf ; Ch}, vi is inserted

into pocket er which costs at most 1−ı by Lemma 6.1. If Cr = Ce , we redraw Cr
by putting c1 in the right pocket it covers instead of the left one; achieving again a
cost of 1−ı for the insertion of vi . In each case, we observe that the left endpoint
of the left mountain of Cr becomes covered by vi , hence, it cannot become a biarc
in subsequent iterations and we do not need to charge it. Therefore, the forward
drawing costs at most 1−ı. In the reverse drawing, inserting c1 can cost at most
1 +ı by Lemmas 6.1 and 6.2 while vi is inserted above a pocket, yielding a cost of
1− ı for inserting vi . The total cost for inserting both vertices in both drawings
then is 3−ı, achieving a cost of at most 3 + 4ı for the insertion of vi and c1 and
d(C‘). This is less then 2¸ for ı ≤ 1=6.

Finally, consider the case where Cr ∈ {C«; Cj ; Ck}. Note that C‘ = Cr . If
Cr ∈ {C«; Cj}, we use the default drawing of c1 and place both vi and c2 into
pocket e‘; see Figs. 6.7b and 6.7c, respectively. Since vi covers both c1 and c2

whose incident edges are all proper arc, we only have to assign 1 credit to mountain
(vi ; ri) and ı credits to pocket (‘i ; vi). In addition, we can retrieve one credit from

116 CHAPTER 6. MONOTONE ARC DIAGRAMS WITH FEW BIARCS

vi c1c2

(a)

vi c1c2

(b)

vi c1 c2

(c)

Figure 6.8: Case 2a.3: Drawings when vi covers two edges of configuration Cr of
type (a) C«, (b) Cj , and (c) Ck (reverse drawing).

a mountain below Cr . Hence, the forward drawing costs at most ı for all three
vertices. By Lemmas 6.1 and 6.2, the reverse drawing costs at most 3 + 3ı for
all three vertices. We achieve a total cost of 3 + 4ı for both orientation which is
at most 3¸ if ı ≤ 3=7. If Cr = Ck we apply the same argument for the reverse
drawing due to the symmetry of Ck and Cj .

Case 2a.3: degGi
(vi) = 4 and vi covers the two leftmost edges of Cr but

does not cover Cr completely. Then, Cr ∈ {C«; Cj ; Ck}. If Cr ∈ {C«; Cj}, we
place vi and vertices c1 and c2 of Cr on edge e‘ which we push down if it is a
mountain; see Fig. 6.8a and 6.8b, respectively. We have to pay 2ı credits for
two pockets incident to vi , possibly one credit for a biarc incident to vi and up
to two credits for mountains incident to c2, while c1 is covered without pushing
down any of its incident mountains. Since we also cover two mountains below Cr ,
we achieve a total cost of 1 + 2ı for the forward drawing of the three vertices.
By Lemmas 6.1 and 6.2, the reverse drawing can cost at most 3 + 3ı while by
Property P.2, d(C‘) ≤ 5ı. The total cost for all three vertices therefore is at most
4 + 10ı which is less than 3¸ if ı ≤ 2=13.

If Cr = Ck , we instead consider the reverse drawing. Again, we place vi , c1

and c2 on top of e‘, which we push down if needed; see Fig. 6.8c. Then, we have
to pay at most one credit for edge (‘i ; vi), one credit for mountain (c1; ri) and
ı credits for pocket (vi ; c1). All remaining edges do not need to carry credits.
Moreover, we cover the right endpoint of a mountain covered by c1, whose credit
we can reallocate. As a result, the cost of the reverse drawing here is at most
1 +ı. Together with the forward drawing of cost at most 3 + 3ı and d(C‘) ≤ 5ı,
we achieve a cost of 4 + 9ı for all three vertices which is less than 3¸ if ı ≤ 1=6.

Case 2b: vi covers only the leftmost edge of Cr .

We assume w.l.o.g. that d(Cr) ≥ d(C‘) since otherwise we can apply a symmetric
argument by exchanging the roles of

−→
Γ i and

←−
Γ i . In particular, this is the case if

Cr = ∅ and vi covers the rightmost edge of C‘ 6= ∅. Since we already discussed
Case 2a, we may assume that only edge e‘ belongs to C‘. In the cases below, we

6.3. VERTEX INSERTION INVOLVING OPEN CONFIGURATIONS 117

vi c1c2

(a)

vi c1c2

(b)

vi c1c2

(c)

Figure 6.9: Case 2b.1: Forward drawings when vi covers the leftmost edge of
configuration Cr of type Ck . (a) The edge e∗ left of Cr is a pocket. (b) Edge e∗ is
a mountain and degGi (vi) = 3. (c) Edge e∗ is a mountain and degGi (vi) = 4.

will pay close attention to the edge e∗ that is the covered edge left of Cr , i.e.,
e∗ = e‘ if degGi

(vi) = 3. We distinguish several subcases based on the type of Cr ,
starting with the open configuration types that incur the largest debts.

Case 2b.1: Cr = Ck . First consider the forward drawing. If e∗ is drawn as a
pocket, we put both vi and c2 above e∗ and c1 into the pocket it covers; see
Fig. 6.9a. Then, we need to assign 2ı credits to the two pockets (vi ; c2) and the
one incident to c1 and 1 credit to the mountain (c2; c1) and at most one credit to
(‘i ; vi). We also cover one mountain and two pockets, hence, the cost for inserting
vi , c1 and c2 in the forward drawing is at most 1 in this case.

If e∗ is a mountain and degGi
(vi) = 3, we push down e∗ and place vi , c1 and

c2 above e∗; see Fig. 6.9b. We have to pay 1 credit for the biarc incident to vi ,
2 credits for the mountains incident to c2 and 3ı for three created pockets, while
we can reallocate 1 + ı credits from covered edges. Hence, the cost for inserting
vi , c1 and c2 in the forward drawing is at most 2 + 2ı in this case.

If e∗ is a mountain and degGi
(vi) = 4, we push down the mountain covered

by Cr and place vi , c1 and c2 above; see Fig. 6.9c. Then, we pay 3 credits for
mountain (vi ; ‘i) and the two mountains incident to c1 and 2ı for two pockets
incident to c2. In addition, we reclaim 1 + ı credits from covering e∗ and the
pocket covered by c1. Hence, the cost for inserting vi , c1 and c2 in the forward
drawing is at most 2 + ı in this case. So, in either case, inserting vi , c1 and c2 in
the forward drawing costs at most 2 + 2ı.

In the reverse drawing, we place all of vi , c1 and c2 above e∗ which we push
down if necessary; see Fig. 6.10. We have to pay at most 3 credits for newly created
mountains and 2ı credits for newly created pockets. In addition, we reclaim at
least 1 +ı credits from covered edges. Hence, the reverse drawing can be realized
for a cost of at most 2 + ı.

Since the forward drawing costs at most 2 + 2ı while the reverse drawing costs
at most 2 + ı while d(C‘) ≤ 5ı by Property P.2, the total cost for vertices vi , c1

and c2 is at most 4 + 8ı which is at most 3¸ for ı ≤ 2=11.

118 CHAPTER 6. MONOTONE ARC DIAGRAMS WITH FEW BIARCS

vi c1c2

(a)

vi c1c2

(b)

c1c2vi

(c)

c1c2vi

(d)

Figure 6.10: Case 2b.1: Reverse drawings when vi covers the leftmost edge of
configuration Cr of type Ck .

Case 2b.2: Cr = Cj . Observe that c2 of Cr is not incident to vi . Since Cr
is an open configuration, c2 did not receive new neighbors after being inserted.
Therefore, we can adjust the canonical ordering, so that we insert c2 directly after
vi ; in particular c2 then does not cover any open configuration while when inserting
vi , Cr = Cg , which we will discuss below. Note that since we have already discussed
open configurations Cj and Ck , in the following we may assume that d(C‘) ≤ 4ı.

Case 2b.3: Cr = C«. If degGi
(vi) = 4, we apply the same technique as in

Case 2b.2 and insert c2 of Cr after vi . Then, Cr = Cc which will be discussed
below while c2 is not covering any open configuration.

On the other hand, if degGi
(vi) = 3, this cannot be done because vi is sym-

metric to c2 regarding c1 and this exchange in the canonical ordering would give
rise to a new open configuration of type C«. Then, we place vi above e‘ using the
default rules. If e‘ is a pocket, inserting vi costs 0 credits, while we can reallocate
the credit of the mountain covered by Cr . Hence, the forward drawing costs −1
credit. Since by Lemmas 6.1 and 6.2 the reverse drawing costs at most 1 + ı and
d(Cr) + d(C‘) ≤ 8ı, the total cost for inserting vi is at most 9ı which is at most
¸ for ı ≤ 1=4.

If e‘ is a mountain, we pay for one mountain and one pocket in the forward
drawing, while we still cover the mountain covered by Cr . Hence, inserting vi
costs ı in the forward drawing. Then, we consider the reverse drawing. If e‘ is
a mountain in the reverse drawing, C‘ ∈ {∅; Cg ; C«}. If C‘ = ∅, the total cost
for inserting vi and paying d(Cr) is 1 + 6ı which is at most ¸ for ı ≤ 1=7. If
C‘ ∈ {Cg ; C«}, the drawing is symmetric to the one in the forward drawing and
costs at most ı. Hence, the total cost including d(Cr) and d(C‘) is at most 10ı
which is at most ¸ if ı ≤ 2=11.

6.3. VERTEX INSERTION INVOLVING OPEN CONFIGURATIONS 119

vi c1 c2

Figure 6.11: Case 2b.3: Non-default reverse drawing when deg(vi) = 3 and Cr =
C«.

vi c1

Figure 6.12: Case 2b.4: Forward drawing for the case where e∗ is a pocket. The
figure illustrates the case where Cr = Cc .

Finally, if e‘ is a pocket in the reverse drawing, we put vi and c1 of Cr in e‘
and push down the rightmost mountain covered by c2 of Cr to place c2 there;
see Fig. 6.11. We have to pay for two mountains incident to c2 and two pockets
incident to vi while we reclaim 1 + ı credits from covered edges. The total cost
for inserting vi , c1 and c2 in the reverse drawing is 1 + 2ı while we pay at most
3 + 3ı in the forward drawing by Lemmas 6.1 and 6.2. Because d(C‘) ≤ 4ı, we
can insert all vertices for a total cost of 4 + 9ı which is less than 3¸ for ı ≤ 1=6.
Since we now also handled C«, we may assume in the following that d(C‘) ≤ 3ı.

Case 2b.4: Cr ∈ {Ca; Cb; Cc ; Cd ; Cg}. If e∗ is a pocket, we put vi and c1 of Cr
into e∗; see Fig. 6.12. Then we move the ı credits from e∗ to pocket (vi ; c1) and
put a credit on all created mountains. While this may require several credits, note
that for each mountain incident to c1 and a vertex vm to the right of c1 we also
cover a mountain with right endpoint vm. Therefore, we can insert vi and c1 for a
cost of at most 1 in the forward drawing. By Lemmas 6.1 and 6.2, insertion into
the reverse drawing costs at most 2 + 2ı. Since d(C‘) ≤ 3ı, we insert vi and c1

for a total cost of 3 + 5ı which is at most 2¸ as long as ı ≤ 1=7.
If e∗ is a mountain and degGi

(vi) = 4, we use the default drawings for both
drawings. In the forward drawing, we observe that er is a pocket while e∗ is covered
and contributes 1 − ı additional free credits compared to what is considered in
Lemma 6.1. Hence, we insert vi for cost 0 into

−→
Γ i . In the reverse drawing, we

obtain a cost of at most 1− ı by Lemmas 6.1 and 6.2 and we conclude that the
total cost including d(C‘) ≤ 3ı is at most 1 + 2ı which is at most ¸ if ı ≤ 1=3.

If e∗ is a mountain and degGi
(vi) = 3, we use the default drawing in the

forward drawing for c1 and vi . By Lemmas 6.1 and 6.2 this costs at most 2 + ı
for both vertices. We then consider the reverse drawing. If e∗ is a pocket in the

120 CHAPTER 6. MONOTONE ARC DIAGRAMS WITH FEW BIARCS

vi c1

(a)

c1vi

(b)

Figure 6.13: Case 2b.4: Reverse drawings where degGi (vi) = 3 and e∗ is a
(a) pocket, or (b) mountain.

reverse drawing, we place both vi and c1 of Cr into it; see Fig. 6.13a. We pay 2ı
credits for the two pockets incident to vi and one credit for the mountain between
c1 and its rightmost neighbor. Since we can reallocate the ı credits from e∗, this
costs at most 1 + ı.

If e∗ is a mountain in reverse drawing, we distinguish based on the type of Cr .
If Cr ∈ {Ca; Cb}, we push down e∗ to place both vi and c1 above; see Fig. 6.13b.
Then, we have to pay 2 +ı for two mountains and a pocket while we can reclaim
one credits from one of the mountains covered by c1 achieving again a cost of 1+ı
for inserting both vi and c1 in the reverse drawing. If Cr ∈ {Cd ; Cg}, we use the
default drawings for both vertices vi and c1 which costs at most 2 by Lemmas 6.1
and 6.2. Note that in the process we cover mountain e‘ , hence, we pay at most
1 credit for inserting both vertices in the reverse drawing.

Either way, if e∗ is a mountain in the reverse drawing and Cr 6= Cc , inserting
vi and c1 into the reverse drawing can be done for at most 1 +ı while the cost of
the insertion into the forward drawing is at most 2 +ı. Since d(C‘) ≤ 3ı, we pay
at most 3 + 5ı for vi and c1 which is at most 2¸ if ı ≤ 1=7. Finally, if Cr = Cc ,
we create a new open configuration of type C«.

Case 2b.5: Cr ∈ {Cf ; Ch}. We use the default drawing for vi in the forward
drawing which costs at most 1 + ı by Lemmas 6.1 and 6.2. As a result, we do
not push down er . Since there is another mountain below er , we can reallocate its
credit which reduces the cost for inserting vi to at most ı. Since by Lemmas 6.1
and 6.2 the insertion of vi into the reverse drawing costs at most 1 + ı and since
d(C‘) ≤ 3ı, the total cost for inserting vi is at most 1 + 7ı which is less than ¸
for ı ≤ 1=8. Note that, by symmetry, we discussed all cases where C‘ 6∈ {∅; Cd}
since C‘ = Cd behaves in the same way as Cr = Ce . Hence, we can now assume
that d(C‘) ≤ ı.

Case 2b.6: Cr = Ce. We use the default drawings for c1 of Cr and vi in the
forward drawing which costs at most 1 − ı by Lemma 6.1 since both cover a
pocket. Thus, the forward drawing costs at most 2− 2ı for both c1 and vi .

If e∗ is a pocket in the reverse drawing, we put both vi and c1 in it; see
Figs. 6.14a and 6.14b. If e∗ is a mountain and degGi

(vi) = 3 or e‘ is a mountain,

6.3. VERTEX INSERTION INVOLVING OPEN CONFIGURATIONS 121

c1vi

(a)

c1vi

(b)

c1vi

(c)

c1vi

(d)

Figure 6.14: Case 2b.6: Reverse drawings when vi covers the leftmost edge of
configuration Cr of type Ce .

we push down e∗ and put both vi and c1 in it; see Figs. 6.14c. In each of these
cases, we have 1 credit to pay for mountain (‘i ; vi) and if e∗ is a mountain ı for
pocket (vi ; c1). If degGi

(vi) = 4, e∗ is a mountain and e‘ is a pocket, we use the
default drawing for both vi and ci , for a cost of 1 + ı; see Fig. 6.14d.

Since d(C‘) ≤ ı, it follows that inserting vi and c1 into both drawings costs
at most 3 which is at most 2¸ if ı ≤ 1=2.

Cases 2a, and 2b cover all possible subcases. In either case, we have shown
that if ı ≤ 1=8, we can either insert vi at a cost of at most ¸ (while a covered
open configuration may be redrawn) or create a new open configuration or change
the canonical ordering locally to reduce to some simpler case.

Insertion of Vertices with Degree at least five

If degGi
(vi) ≥ 5, it may cover several open configurations, some completely (i.e.

all arcs of the open configuration) and some partially. The general idea is that
completely covered open configurations pay for themselves due to Property P.1:
The left endpoint of their mountain on the outer face becomes covered which
frees an allocated credit that can be used to pay their debt. However, the partially
covered open configurations must be more carefully considered. We show in the
following how to insert vi in the forward drawing for a cost of at most 1 − ı
which includes the coverage of debt d(Cr) and the debts of all fully covered open
configurations except C‘ as long as ı ≤ 1=8. By a symmetric argument, vi can
be inserted into the reverse drawing for at most 1 − ı including paying the debt
d(C‘). This then implies that vi can be inserted for a cost of 2− 2ı.

122 CHAPTER 6. MONOTONE ARC DIAGRAMS WITH FEW BIARCS

Case 3a: vi covers only mountains.

By Property P.1, vi cannot fully cover any open configuration. In addition, by
Lemma 6.2, inserting vi costs at most 0 credits. Since d(Cr) ≤ 5ı by Property P.2
introduced at the beginning of this section, we can insert vi into

−→
Γ i for 1− ı as

long as ı ≤ 1=6.

Case 3b: er is a pocket.

Here, vi is inserted into er . We pay 1 credit for mountain (‘i ; vi) and ı for pocket
(vi ; ri) which we can reclaim for er . In addition, we can reallocate the credits of
all remaining covered edges, i.e., 1 for every mountain and ı for every pocket.
The least amount of credits that we can obtain that way is achieved, when e‘
is a mountain (whose credit we cannot reallocate) while all remaining edges are
pockets. We achieve the following bound for the insertion cost of vi :

c ≤ 1− (degGi
(vi)− 3)ı ≤ 1− 2ı (6.1)

This bound even holds if one of the covered mountains m is part of an open
configuration Cm. Namely, if m = e‘, we account for d(Cm) in the reverse drawing.
Otherwise, m is allocated a full credit in contrast to the ı credits used in the
calculation of Eq. (6.1). Since by Property P.2 d(Cm) ≤ 5ı, we can pay the debt
d(Cm) without violating Eq. (6.1) if ı ≤ 1=6.

If we fully cover Cr , the mountain of Cr is not er and we are done. The same
is true if d(Cr) = ı. Otherwise, we consider four subcases based on the edge e ′r
occuring to left of er along Ci−1.

Case 3b.1: e ′r is a mountain and not part of an open configuration. We
gain at least 1 − ı more credits compared to Eq. (6.1) from covering e ′r . Those
are sufficient to pay d(Cr) if ı ≤ 1=6.

Case 3b.2: e ′r is a mountain and part of the open configuration Cr . Then
Cr = C«. Moreover, vi covers the left endpoint q of Cr . Vertex q is the left endpoint
of two mountains. We gain at least one more credit compared to Eq. (6.1) from
covering q which we can use to cover debt d(Cr).

Case 3b.3: e ′r is a mountain and part of an open configuration C′r 6= Cr .
Then, e ′r is the rightmost edge of C′r . First, consider the left endpoint q of e ′r . If
C′r 6∈ {Cc ; Ce ; C«; Cj}, vertex q is the left endpoint of two mountains. Then, when
covering q, we can reallocate an extra credit compared to Eq. (6.1) that we can
use to cover d(Cr).

If C′r = Cc , we completely cover C′r . Then, we reposition vertex c1 of C′r into
er which allows to redraw the edge covered by c1 as a mountain instead of as a

6.3. VERTEX INSERTION INVOLVING OPEN CONFIGURATIONS 123

vic1

(a)

vic1c2

(b)

c2c1
vi

(c)

Figure 6.15: Case 3b.3: Redrawing of open configuration C′r that involves edge e ′r .
(a) C′r is of type Cc . (b) C′r is of type C«. (c) C′r is of type Cj .

biarc; see Fig. 6.15a. We save an additional 1− ı credits compared to Eq. (6.1)
that is sufficient to cover d(Cr) if ı ≤ 1=4.

Similarly, if C′r = Ce , we redraw C′r such that c1 is put into the right pocket
covered by c1 instead. Then, e ′r becomes a pocket and we proceed with the
discussion of Case 3b.4 below.

If C′r = C«, we redraw C′r such that both c1 and c2 appear in pocket er ; see
Fig. 6.15b. This way, we only have to charge one mountain incident to c1 with the
credits introduced with c1 and c2 while we also cover another mountain. Hence,
the 2¸ credits introduced with c1 and c2 can be reallocated to pay d(Cr).

Finally, if C′r = Cj , we move vertex c2 of C′r on top of edge er . This way, we
can redraw the two biarcs incident to c1 as mountains; see Fig. 6.15c. Since c1

gets covered, we can reclaim the two credits of the mountains to pay Cr .

Case 3b.4: e ′r is a pocket (which may be part of an open configuration).
This case can only occur if Cr ∈ {Ca; Cb; Cc ; Cg ; Cj ; Ck}. If Cr ∈ {Cj ; Ck}, there are
two pockets belonging to Cr and er can be either one of them. First consider the
case, where er is the left pocket of Cr . We move the vertices c1 and possibly c2 of
Cr into pocket er right of vi . This allows to redraw the biarc below c1 and c2 as
a mountain; see Figs. 6.16a and 6.16b for illustrations where Cr is of type Cj and
Ck , respectively. Since we cover the left endpoint of the newly created mountain,
we gain a surplus of at least 1−ı credits compared to Eq. (6.1) which suffices to
pay for d(Cr) if ı ≤ 1=6.

Hence, it remains to discuss the case where e ′r is the leftmost pocket of Cr ∈
{Cj ; Ck}. If Cr = Cj , we move c2 and vi into pocket e ′r . Then, we can redraw both
biarcs incident to c1 as mountains; see Fig. 6.16c. Since c1 is covered by vi , we
can use the credits of these two mountains to cover debt d(Cr).

If Cr = Ck , consider the edge e ′′r left of e ′r on Ci−1. If e ′′r is a pocket, we redraw
Cr as follows: We move c1 into the pocket covered by Cr and c2 into pocket e ′′r .
Then, we insert vi into e ′′r to the left of c2; see Fig. 6.16d. Compared to the
default drawing, we can reallocate two credits; one of the edge below Cr that can
be redrawn as a biarc and one credit that is allocated to a mountain incident to
c1. This suffices to pay debt d(Cr) if ı ≤ 2=5.

124 CHAPTER 6. MONOTONE ARC DIAGRAMS WITH FEW BIARCS

c1 c2vi

(a)

c1c2vi

(b)

c1c2vi

(c)

c2vi c1

(d)

Figure 6.16: Case 3b.4: Redrawing of open configuration Cr if edge e ′r is a pocket.
(a)–(b) e ′r is not part of Cr . (c)–(d) e ′r is part of Cr .

If e ′′r is a mountain, we distinguish two cases. If e ′′r is part of no open configu-
ration or of C‘, we gain an additional 1− ı credits from covering its left endpoint
that are not accounted for in Eq. (6.1). These suffice to pay for d(Cr) if ı ≤ 1=6.
Otherwise, e ′′r is part of an open configuration C′′r 6= C‘ which cannot be of types
Cf or Ch since e ′′r is the rightmost arc of C′′r . Since C′′r 6= C‘ we cover it com-
pletely. Unless C′′r ∈ {Cc ; Ce ; Cj}, there exists another mountain below C′′r whose
left endpoint becomes covered by vi . The reclaimed credit can be used to pay for
d(Cr) if ı ≤ 1=5. If C′′r = Ce , we redraw C′′r by moving c1 into the right pocket
it covers. This does not change the costs, but e ′′r becomes a pocket and we use
the argument above. Next, if C′′r = Cc , we move c1 into e ′r which allows the biarc
below C′′r to be redrawn as a mountain. We obtain another 1− ı credits that can
be reallocated which suffices to pay for d(Cr) if ı ≤ 1=6. Finally, the case where
C′′r = Cj can be resolved similarly by moving c1 and c2 into pocket e ′r which even
yields 2− ı credits to redistribute.

Case 3c: vi covers a pocket and er is a mountain.

We apply Lemma 6.1 to insert vi for a cost of 1 − ı by placing vi into the
rightmost covered pocket p. As in Case 3b, all fully covered open configurations
left of p except for C‘ can pay for their own debt since by Property P.1 they have a
mountain on the outer face whose left endpoint becomes covered. Moreover since
all covered edges right of p are mountains, by Property P.1 there are at most two
open configurations whose debts where not covered yet, namely, Cr and possibly
Cp to which p belongs to. If Cr 6= Cp, the rightmost edge of Cr is mountain er
and it can only be of types Cf , Ch and C«. For each of those, there exists another
mountain m below er whose credit can be reallocated when inserting vi . This extra
credit can be used to pay for Cr if ı ≤ 1=5.

6.4. PROOF OF THEOREM 5.1 125

c1 vi

Figure 6.17: Case 3c: Redrawing of open configuration Cp = Cc .

Hence, it remains to discuss open configuration Cp. If Cp = C‘, we will pay its
debt in the reverse drawing. Hence, assume now that Cp is completely covered. If
Cp ∈ {Cf ; Ch; C«}, there is a mountain of Cp to the left of p that is entirely covered.
Since we do not account for it in Lemma 6.1, we obtain 1 − ı extra credits that
can be used to pay d(Cp) if ı ≤ 1=6.

If Cp ∈ {Ca; Cb; Cd ; Cg ; Ck}, there is at least one mountain in Cp which is not
on the outer face but whose left endpoint is covered by vi . We can use this extra
credit to pay d(Cp) if ı ≤ 1=5. For Cp = Cj , we can use the rearrangement
discussed in Case 3b.4 with the difference that vi also covers c2; see Fig. 6.16c.

If Cp = Ce , we redraw Cp such that both c1 and vi are inserted into the right
pocket covered by c1. This redrawing does not alter the cost of the drawing,
however, we can now use the credit on the mountain incident to c1 to pay the debt
of Cp if ı ≤ 1=5.

Finally, consider the case where Cp = Cc . If Cp = Cr , we use the argument from
Case 3b. Otherwise, consider the mountain m to the right of p on Ci−1. If m is er ,
Cr can only be of types Cf , Ch and C« and d(Cr) ≤ 4ı. In addition, there is another
mountain below er , whose credit can be used to pay for d(Cr) + d(Cp) ≤ 7ı as
long as ı ≤ 1=7. Otherwise, m is not part of any open configuration. Then we
push down m and place c1 of Cp and vi on top; see Fig. 6.17. While m becomes a
biarc, vi has one less mountain to its right, hence, the cost for inserting vi stays the
same. On the other hand, we can redraw the edge covered by c1 as a mountain,
which gives us another credit, that we can use to pay d(Cp) as long as ı ≤ 1=3.

Cases 3a, 3b and 3c cover all situations. In either case, we have shown that
if ı ≤ 1=8, we can insert vi in

−→
Γi while paying the debts for all partially covered

open configurations except for C‘ for a cost of at most 1− ı as claimed.

6.4 Proof of Theorem 5.1

In this section, we now prove the main theorem of this chapter:

Theorem 6.1. Every planar graph admits a plane down-up monotone arc diagram
with at most b15=16n − 5=2c biarcs that can be computed in linear time.

Proof. In Sections 6.2 and 6.3, we showed that vertices can be inserted at a cost
of at most ¸ credits in both drawings while maintaining Invariants I.1 to I.6 in both
drawings if ı ≤ 1=8. Therefore, we choose ı = 1=8 to obtain the largest savings.

126 CHAPTER 6. MONOTONE ARC DIAGRAMS WITH FEW BIARCS

Here, we still have to discuss the initial drawings of G3, the open configurations
present in Gn and the running time of our algorithm.

The initial drawings
−→
Γ 3 and

←−
Γ 3 are identical, in particular, we have v1 as left-

most and v2 as rightmost vertex while all edges are realized as pockets. Therefore,
we assign ı credits each to pockets (v1; v3) and (v3; v2) in both drawings. Hence,
after assigning credits to the initial drawing, we have 3¸ − 4ı = 6 − 7ı > 5
credits left from the credits arriving with vertices v1, v2 and v3. Moreover, these
credits are still remaining after inserting vn. This is the case as in Gn only one
open configuration can be left as the upper envelope consists only of edges (v1; vn)
and (vn; v2). Moreover, by Property P.1, if those two edges belong to an open
configuration, one is realized as a mountain that carries an entire credit while
the debt is at most 5ı by Property P.2. We conclude that we create at most
¸n − 5 = 15=8n − 5 biarcs in both drawings or b15=16n − 5=2c in the drawing
with less biarcs.

Finally, consider the runtime. A canonical ordering can be computed in linear
time. In addition, when inserting a vertex, we only consider the vertices it covers
and its leftmost and rightmost neighbor while we only redraw such parts of the
drawing. This results in a linear runtime.

6.5 Description of the SAT Formulation

In this section, we describe a SAT formulation that can check whether a planar
input graph G can be realized as an arc diagram with a prespecified number of
biarcs ». Our formulation is based on a SAT formulation that can decide whether G
admits a k-page stack layout [39]. Most notably, we did the following adjustments:

(i) We restricted the SAT formulation to only two pages.

(ii) For every edge ei , we introduce a dummy vertex dei that represents the spine
crossing of a potential biarc and variables ˛ji for 1 ≤ j ≤ ». We can enforce
dei to be located in between the endpoints of ei to obtain a monotone arc
diagram.

(iii) An edge e = (u; v) needs to be assigned to a page only if it is not a biarc.
Otherwise, its two half-edges (u; de) and (de ; v) must be assigned to different
pages.

(iv) We check intersections between pairs of edges and/or half-edges only if both
are assigned to the same page.

The resulting formulae are of size Θ(n3) for a graph on n vertices. Therefore,
an actual implementation can only be used for small values of n when running on
a standard workplace machine. We experimentally verified the following:

6.5. DESCRIPTION OF THE SAT FORMULATION 127

Observation 6.1. No Kleetope based on a triangulation with up to 14 vertices
requires more biarcs in its down-up monotone arc diagrams compared to its general
arc diagrams even if the outer face is arbitrarily prescribed.

We generated the input triangulations with the program plantri [49]. Also, we
tested several other triangulations without more concrete results. In the following,
we describe the clauses of the SAT formulation. We start with required clauses
and then describe optional clauses. We describe our clauses also using boolean
operators ⊕ (exclusive or), ⇒ (implication) and ⇔ (equivalence) which can be
easily transformed into conjunctive normal form.

Required Clauses

Vertex Ordering. We first enumerate vertices and edges arbitrarily from 1 to
n and 1 to m, respectively. The dummy vertex dek of edge ek is represented as
vertex vn+k . We introduce a variable ffi ;j for each pair of vertices vi , vj which we
interpret as follows: If ffi ;j = >, we assume that vi appears before vj on the spine,
otherwise, vj appears before vi . In order to obtain a total ordering of the vertices
on the spine, we simply must ensure antisymmetry, i.e.,

(ffi ;j ⊕ ffj;i) ∀1 ≤ i < j ≤ n +m

and transivity, i.e.,

((ffi ;j ∧ ffj;k)⇒ ffi ;k) ∧ ((ffk;j ∧ ffj;i)⇒ ffk;i) ∀1 ≤ i < j < k ≤ n +m:

Reflexitivity does not need to be ensured as the position of a vertex to itself will
not be checked.

Bounding the Number of Biarcs. As mentioned before, we have variables ˛ji
for 1 ≤ j ≤ » for edge ei . In particular, edge ei will be interpreted as a biarc if and
only ˛ji = > for at least one j ∈ {1; : : : ; »}. If ˛ji = >, we enforce that ˛jk = ⊥
for all edges ek 6= ei to ensure that there are at most » biarcs as follows:^

1≤i<k≤m
(¬˛ji ∨ ¬˛

j
k) ∀1 ≤ j ≤ k:

Note that this creates Θ(n3) clauses.

Page Assignment. Each edge and half-edge that is present in the resulting arc
diagram must be assigned to one page. In particular, for edge ek = (vi ; vj) with
i < j there are two half-edges hk;1 = (vi ; vn+k) and hk;2 = (vj ; vn+k). For the sake
of brevity, we also define hk;0 = ek . For edge ek we introduce six page variables
ffik;i ;j with 0 ≤ i ≤ 2 and 1 ≤ j ≤ 2. We interpret ffik;i ;j = > such that half-edge

128 CHAPTER 6. MONOTONE ARC DIAGRAMS WITH FEW BIARCS

hk;i is drawn on page j where w.l.o.g. page 1 is the bottom and page 2 the top
page. In order to obtain a valid page assignment, an edge ek must be labelled as
a biarc or it must be drawn on one of the two pages:0@ _

1≤j<»
(˛jk) ∨ ffik;0;1 ∨ ffik;0;2

1A ∀1 ≤ k ≤ m:

In addition, if ek happens to be a biarc, we require that its two half-edges are
drawn on two different pages:

(˛jk ⇒ (ffik;1;1 ∨ ffik;2;1)) ∀1 ≤ k ≤ m ∀1 ≤ j < »

(˛jk ⇒ (ffik;1;2 ∨ ffik;2;2)) ∀1 ≤ k ≤ m ∀1 ≤ j < »

(¬ffik;1;1 ∨ ¬ffik;1;2) ∀1 ≤ k ≤ m
(¬ffik;2;1 ∨ ¬ffik;2;2) ∀1 ≤ k ≤ m:

Planarity. An intersection between a pair of edges and/or half-edges can only
occur if they are drawn on the same halfplane. Hence, we first introduce a variable
fflk;k ′;i ;i ′ for 1 ≤ k ≤ k ′ and 0 ≤ i ; i ′ ≤ 2. We interpret fflk;k ′;i ;i ′ = > such that half-
edges hk;i and hk ′;i ′ are located on the same page and thus can possibly conflict.
This can be formulated as follows:^

1≤j≤2

(ffik;i ;j ∧ ffik ′;i ′;j ⇒ fflk;k ′;i ;i ′) ∀0 ≤ i ; i ′ ≤ 2 ∀1 ≤ k < k ′ ≤ m

After computing fflk;k ′;i ;i ′ , it is easy to avoid intersections. For this, let hk;i =“
vs(k;i); vt(k;i)

”
and hk ′;i ′ =

“
vs(k ′;i ′); vt(k ′;i ′)

”
. We avoid intersections as follows: if

hk;i and hk ′;i ′ would intersect if they are on the same page, we require that both
are not on the same page, i.e., fflk;k ′;i ;i ′ = ⊥:

(ffs(k;i);s(k ′;i ′) ∧ ffs(k ′;i ′);t(k;i) ∧ fft(k;i);t(k ′;i ′) ⇒ ¬fflk;k ′;i ;i ′)
(¬ffs(k;i);s(k ′;i ′) ∧ ¬ffs(k ′;i ′);t(k;i) ∧ ¬fft(k;i);t(k ′;i ′) ⇒ ¬fflk;k ′;i ;i ′)

(fft(k;i);s(k ′;i ′) ∧ ffs(k ′;i ′);s(k;i) ∧ ffs(k;i);t(k ′;i ′) ⇒ ¬fflk;k ′;i ;i ′)
(¬fft(k;i);s(k ′;i ′) ∧ ¬ffs(k ′;i ′);s(k;i) ∧ ¬ffs(k;i);t(k ′;i ′) ⇒ ¬fflk;k ′;i ;i ′)

(ffs(k;i);s(k ′;i ′) ∧ ffs(k ′;i ′);t(k;i) ∧ fft(k;i);t(k ′;i ′) ⇒ ¬fflk;k ′;i ;i ′)
(¬ffs(k;i);t(k ′;i ′) ∧ ¬fft(k ′;i ′);t(k;i) ∧ ¬fft(k;i);s(k ′;i ′) ⇒ ¬fflk;k ′;i ;i ′)

(fft(k;i);t(k ′;i ′) ∧ fft(k ′;i ′);s(k;i) ∧ ffs(k;i);s(k ′;i ′) ⇒ ¬fflk;k ′;i ;i ′)
(¬fft(k;i);t(k ′;i ′) ∧ ¬fft(k ′;i ′);s(k;i) ∧ ¬ffs(k;i);s(k ′;i ′) ⇒ ¬fflk;k ′;i ;i ′)

6.5. DESCRIPTION OF THE SAT FORMULATION 129

Optional Clauses

Monotone Biarcs. The monotonicity of biarcs can be achieved by requiring
dummy vertex dek = vn+k of edge ek = (vi ; vj) to be located in between vi and vj :

((ffi ;n+k ∧ ffn+k;j) ∨ (ffj;n+k ∧ ffn+k;i)) ∀ek = (vi ; vj) ∈ E

Conversely, if we omit such clauses, we can compute a non-monotone arc
diagram instead.

Down-Up Biarcs. Consider edge ek = (vi ; vj). Recall that half-edge hk;1 is
incident to vi while hk;2 is incident to vj . Since ffi ;j defines whether vi is to the
left of vj , we can enforce the left half-edge to be located on the bottom page if ek
is drawn as a biarc as follows:^

1≤‘≤»
((˛‘k ∧ ffi ;j)⇒ ffik;1;1) ∧ ((˛‘k ∧ ffj;i)⇒ ffik;2;1) ∀ek = (vi ; vj) ∈ E

Prescription of an Outer Face for a Triangulation. If the input graph G is
a triangulation, consider a face f0 = (vi ; vk ; vk). First, we ensure that the leftmost
and the rightmost vertex of face f0 are also the leftmost and the rightmost vertex
of G, respectively:

((ffi ;j ∧ ffi ;k)⇒ ffi ;‘) ∧ ((ffj;i ∧ ffk;i)⇒ ff‘;i) ∀v‘ ∈ V \ {vi ; vj ; vk}
((ffj;i ∧ ffj;k)⇒ ffj;‘) ∧ ((ffi ;j ∧ ffk;j)⇒ ff‘;j) ∀v‘ ∈ V \ {vi ; vj ; vk}

((ffk;j ∧ ffk;i)⇒ ffk;‘) ∧ ((ffj;k ∧ ffi ;k)⇒ ff‘;k) ∀v‘ ∈ V \ {vi ; vj ; vk}

Moreover, the edges of f0 must be restricted such that all remaining vertices
can be placed only inside f0. To this end, we assign the edge between the leftmost
and the rightmost vertex on page 1 while the other two edges of f0 are required
to be located on page 2. We define ei j = (vi ; vj), eik = (vi ; vk) and ejk = (vj ; vk)
and obtain the following constraints:

((ffi ;j ⇔ ffj;k)⇒ (ffiik;0;1 ∧ ffii j;0;2 ∧ ffijk;0;2))

((ffj;k ⇔ ffk;i)⇒ (ffii j;0;1 ∧ ffijk;0;2 ∧ ffiik;0;2))

((ffk;i ⇔ ffi ;j)⇒ (ffijk;0;1 ∧ ffii j;0;2 ∧ ffiik;0;2)):

Faster Computation Time for Kleetopes. For a Kleetope G based on a
triangulation T , we can speed up the computation based on the following observa-
tion: An arc diagram of G can be obtained from an arc diagram Γ of T if for every

130 CHAPTER 6. MONOTONE ARC DIAGRAMS WITH FEW BIARCS

face f in T , the new dummy vertex vf has access to the spine inside f . This is the
case if any edge bounding f is a biarc or if f contains both an edge assigned to
page 1 and an edge assigned to page 2. Let ei , ej and ek be the edges bounding
f . Then:

^
1≤‘≤2

0@ffii ;0;‘ ∨ ffij;0;‘ ∨ ffik;0;‘ ∨ _
1≤«≤»

(˛«i ∨ ˛«j ∨ ˛«k)

1A :

Part III

Beyond Planar Drawings

Density and Area Bounds for
Polyline RAC Drawings

131

132

Chapter 7

Density Bounds for RAC
Drawings with one Bend per
Edge

One of the main research directions of graph drawing beyond planarity is bounding
the maximum edge density of the class of graphs realizable in a certain beyond-
planar drawing style. This parameter gives a first intuition of the complexity of
graphs that may be drawn. In the literature, this type of problem is also known as
Turán type and has been studied for many different graph classes beyond planarity;
see e.g. [2, 3, 4, 5, 6, 13, 37, 56, 97, 118, 136, 137, 144].

The maximum edge density of polyline RAC drawings has been already inves-
tigated in the first paper on RAC drawings [71] where it was shown that (i) the
density of RAC0 graphs is at most 4n − 10 which is a tight bound, while, (ii) the
density of RAC1 and RAC2 graphs is subquadratic, whereas, (iii) every graph ad-
mits a RAC3 drawing. Subsequently, Arikushi et al. [19] proved linear upper bounds
for the edge density for RAC1 and RAC2 graphs, in particular, RAC1 graphs have
at most 6:5n−13 edges while RAC2 graphs have less than 74:2n edges. Also, they
showed that there are infinitely many RAC1 and RAC2 graphs with 4:5n−O(

√
n)

edges and and 7:83n −O(
√
n) edges, respectively.

In this chapter1, we close the gap between upper and lower bound of the edge
density of RAC1 graphs up to an additive constant. Namely, we prove that their
maximum edge density is 5:5n − 11 while we also demonstrate that there are
infinitely many RAC1 graphs with 5:5n−72 edges. Additionally, we investigate the
class of simple RAC1 graphs, that is, the class of graphs admitting simple RAC1

drawings. Here, we show that the maximum edge density is at most 5:4n − 10:8
while we give a lower bound of 5n− 10. To the best of our knowledge, this result
makes RAC1 graphs the second class of beyond planar graphs besides quasiplanar
graphs [5] for which a difference in the maximum edge density between the general

1The results of this chapter also appeared in [12].

133

134 CHAPTER 7. DENSITY BOUNDS FOR RAC1 DRAWINGS

setting and the setting in which simplicity of the drawings is required is known.
Our upper bound results are derived by a refinement of the charging technique

used by Arikushi et al. [19] which we describe in Section 7.1. Then, we describe
our adjustment and prove our new upper bounds in Section 7.2. Finally, we present
our lower bound constructions in Section 7.3.

7.1 Overview of the Charging Scheme

In this section we present the most important notation and technical details of
the charging scheme used by Arikushi et al. [19] for bounding the maximum edge
density of RAC1 graphs which we will make use of in Section 7.2. Let G = (V; E)
be a simple RAC1 graph and let Γ be a RAC1 drawing of G with the minimum
number of intersections. We partition E into sets E0 and E1 such that E0 contains
all edges that are intersection-free in Γ while E1 contains all edges that have at
least one intersection in Γ. Further, we denote by G0 and G1 the subgraphs induced
by E0 and E1, respectively. When we mention G0 and G1 in this chapter, we will
implicitly assume that they are derived from a RAC1 drawing Γ. Note that since
G0 is a planar graph, it follows that |E0| ≤ 3n − 6.

In order to bound the number of edges belonging to E1, consider the planariza-
tion G ′1 = (V ′1 ; E

′
1) of G1 and the set of faces F ′1 of G ′1. In the following, we denote

by deg(v) the degree of v in G ′1 and by s(f) the size of face f ∈ F ′1, which is the
number of edges encountered in a walk along the boundary of f . Note that s(f)
counts each edge on the boundary of f as often as it appears in such a walk (i.e.
once or twice). We assign an initial charge ch(v) = deg(v) − 4 to each vertex
v ∈ V ′1 and an initial charge ch(f) = s(f) − 4 to each face of f ∈ F ′1. Using
Euler’s formula, the sum of initial charge isX

v∈V ′1

(deg(v)− 4) +
X
f ∈F ′1

(s(f)− 4) = 2|E ′1| − 4|V ′1 |+ 2|E ′1| − 4|F ′1| = −8:

Afterwards, the charges are redistributed in two phases such that (i) the total
charge of G ′1 is maintained, and, (ii) all faces have non-negative charge.

In the first discharging phase, we redistribute charges from the endpoints of
edges in E1 with a bend to the faces for which the bend forms a convex corner.
Let (u; v) ∈ E1 be an edge with a bend b and let f be the face for which b is
convex. Then, we move 1=2 charge from u to f and 1=2 charge from v to f ;
see Fig. 7.1a. It is shown in [19] that every face of size less than four is incident
to at least one convex bend and therefore receives at least one unit of charge in
this phase. Moreover, it is also shown that lenses, that is, faces of size two, are
incident to a second bend. Thus, the only faces which still have a negative charge
after the first discharging phase are the reflex lenses, that is, faces of size two that
have one convex bend and one reflex bend. More precisely, the charge for a reflex

7.1. OVERVIEW OF THE CHARGING SCHEME 135

1=2
1=2

f

b

u

v

(a)

f ′f 1
˛(f)

(b)

Figure 7.1: Redistribution of charges in the two discharging phases in [19].

lens f is now ch′(f) = −1. On the other hand, for faces f ∈ F ′1 that are not a
reflex lens, the new charge is ch′(f) ≥ 0. Since for every edge incident to a vertex
v we redistributed 1=2 of its charges, the charge of vertex v ∈ V after the first
discharging phase is ch′(v) ≥ 1=2deg(v) − 4 while for v ∈ V ′1 \ V (that is, the
dummy vertices) it is still ch′(v) = ch(v) = 0.

For the second discharging phase, Arikushi et al. [19] prove that there is an
injective mapping ˛ between reflex lenses and convex bends incident to faces in
F ′1 that have size at least four. Let f be a reflex lens and f ′ be the face containing
˛(f). Since s(f ′) ≥ 4, it holds that ch(f ′) ≥ 0. On the other hand, in the
first discharging phase f ′ was assigned at least one additional charge because it is
incident to the convex bend ˛(f). We now move this charge to the reflex lens f ;
see Fig. 7.1b. As a result, the new charge of f is ch′′(f) = 0. Clearly, for all faces
f ∈ F ′1 that are not reflex lenses, it holds that ch′′(f) ≥ ch′(f) ≥ 0 if they are
not involved in the discharging phase or ch′′(f) ≥ ch(f) ≥ 0 if they are one of
the faces of length at least four involved in one of the dischargings. Since for all
vertices ch′′(v) = ch′(v), it follows

|E1| − 4n =
X
v∈V

(1=2deg(v)− 4) ≤
X
v∈V ′1

ch′′(v) +
X
f ∈F ′1

ch′′(f) = −8; (7.1)

which implies that
|E1| ≤ 4n − 8: (7.2)

This immediately gives that |E0| + |E1| ≤ 7n − 14. However, this bound can be
clearly improved as G0 is a triangulation if |E0| = 3n − 6 which then implies that
E1 = ∅ since a planar triangle cannot contain any edge of E1.

In order to give a better bound, Arikushi et al. [19] next consider how many
edges can belong to E1 if G0 can be obtained from a triangulation by the removal
of k edges. Let F0 denote the set of faces of G0 and let d(f) denote the degree
of a face f ∈ F0, that is, the number of distinct vertices on the boundary of f .
By applying Eq. (7.2) to the subgraphs of G ′1 inside each of the faces of F0, we
obtain the following new bound for the number of edges in E1:

|E1| ≤
X
f ∈F0
d(f)>3

(4d(f)− 8) (7.3)

136 CHAPTER 7. DENSITY BOUNDS FOR RAC1 DRAWINGS

Arikushi et al. [19] then prove that the right-hand side of Eq. (7.3) is upper-
bounded by 8k . Since we will apply a similar refined argument in Section 7.2,
we provide their proof here. The argument is inductive on the number of edges
k that where removed from a triangulation to obtain G0. For k = 0, all faces
have degree three and the right-hand side of Eq. (7.3) is 0 = 8k . Assume now
that if G0 is obtained from a triangulation by removing k edges, the right-hand
side of Eq. (7.3) is at most 8k . Then, consider the case where G0 is obtained by
removing k + 1 edges. Clearly, G0 can be obtained from a graph G ′0 by removing
one edge e while G ′0 is obtained from a triangulation by removing k edges. For G ′0
the right-hand side of Eq. (7.3) is at most 8k . We consider four cases depending
of e.

C.1 If e is a bridge of a face2 in G ′0, removing e yields a new face in G0 of the same
size, hence the right-hand side of Eq. (7.3) does not change and remains at
most 8k < 8(k + 1).

C.2 If e is adjacent to two triangles of G ′0, in G0 both triangles become a face of
degree four. Hence, the right-hand side of Eq. (7.3) increases by at most 8
to at most 8k + 8 = 8(k + 1).

C.3 If e is adjacent to a triangle and a face f of degree d(f) > 3 in G ′0, these
two faces create a face of degree at most d(f) + 1 in G0. The right-hand side
of Eq. (7.3) decreases by 4d(f) − 8 since f is not part of G0 anymore but
increases by 4(d(f) + 1)− 8 = 4d(f)− 4, yielding a net increase of 4. Thus
the right-hand side of Eq. (7.3) is now at most 8k + 4 < 8(k + 1).

C.4 If e is adjacent to two faces f1 and f2 of degrees d(f1) > 3 and d(f2) > 3 in
G ′0, respectively, the removal of e creates a face of degree d(f1) +d(f2)− 2 in
G0. The right-hand side of Eq. (7.3) decreases by 4(d(f1) + d(f2))− 16 since
f1 and f2 are not part of G0 anymore but increases by 4(d(f1)+d(f2)−2)−8 =
4(d(f1) + d(f2))− 16, yielding a net increase of 0. Thus the right-hand side
of Eq. (7.3) remains at most 8k < 8(k + 1).

Based on this observation, Arikushi et al. [19] derive two new bounds for the
number of edges in G. Since G0 is obtained from a triangulation by removing k
edges, it follows that

|E| = |E0|+ |E1| ≤ (3n − 6− k) + (4n − 8) = 7n − 14− k (7.4)

On the other hand, since the right-hand side of Eq. (7.3) is at most 8k , we also
obtain

|E| = |E0|+ |E1| ≤ (3n − 6− 8) + (8k) = 3n − 6 + 7k (7.5)

2A bridge of a face is an edge whose removal separates a facial walk of the face into two.

7.2. UPPER BOUND RESULTS 137

The minimum of the two bounds (7.4) and (7.5) is maximized when k = n=2− 1
providing the upper bound

|E| ≤ 6:5n − 13:

It is noteworthy, that Arikushi et al. [19] point out that their upper bound is an
overestimation. In particular, they state that investigating faces of small degree
can be worthwhile. This can be easily observed in Case C.2 which is the only
one where the right-hand side of Eq. (7.3) increases by eight – the resulting face
however is a quadrangle and can only contain two intersecting edges in contrast
to the eight edges in Eq. (7.2). We investigate this behavior in the next section.

7.2 Upper Bound Results

In this section, we improve the analysis of the charging scheme discussed in Sec-
tion 7.1 which results in a better upper bound for the maximum edge density of
RAC1 graphs. Mainly, we improve two aspects of the analysis. First, we analyze
the structure of faces in the planarization G ′1 more carefully. Second, we treat
faces that can be triangulated with few edges separately; this will also allow us to
find a clear difference between RAC1 and simple RAC1 graphs.

We assume w.l.o.g. that G is connected and has at least 5 vertices. Consider
a face f of G0. Recall that we denote by d(f) the degree of f , that is, the number
of vertices on the boundary of f . Since inside f there can be edges of G1, f is
not necessarily connected. Instead, its boundary is composed of a disjoint set of
(not necessarily simple) cycles which we call facial walks and isolated vertices; see
Fig. 7.2a. In particular, we consider isolated edges as a cycle of length two.

We denote by ‘(f) the length of face f , that is the sum of the lengths of
all facial walks of f . Note that some edges can be counted twice; for instance,
edges (v1; v2) and (v9; v10) are appearing twice in the facial walks of the graph in
Fig. 7.2a. Observe that such behavior is caused when a vertex v appears more than
once in a facial walk. We denote by mf (v) the number of occurences of v in facial
walks of f minus one, that is, the number of multiple occurences beyond its first
occurence. Moreover, for face f , we denote the number of such extra occurences
among all its vertices with m(f), that is, m(f) =

P
v∈f mf (v). In addition, we

denote by b(f) the number of biconnected components of all facial walks of f . We
do not consider isolated vertices as biconnected components, but every edge that
is either a bridge of f or that is an entire connected component is considered a
biconnected component. Moreover, the number of isolated vertices of f is denoted
by i(f). Since every vertex v except for the i(f) isolated vertices appears mf (v)+1
times in some facial walk of f , we conclude that ‘(f) = d(f) +m(f)− i(f).

Consider the planarization G ′ of G obtained from drawing Γ. Since the edges
E0 are part of G ′, every face of G ′ is contained inside the polygon bounding one
of the faces of G0. We denote by F ′(f) the set of faces of G ′ that is contained

138 CHAPTER 7. DENSITY BOUNDS FOR RAC1 DRAWINGS

v2

v9 v10

v11

v7

v5v6

v3

v4

v1

v8

(a)

v2

v9 v10

v11

v7

v5v6

v3

v4

v1

v8

(b)

Figure 7.2: (a) A non-simple disconnected face f of G0 (edges colored blue) that
also contains edges of G1 (colored black). Face f consists of one isolated vertex,
namely v11, and two facial walks, namely w1 = (v1; v2; v1; v3; v4; v5; v6; v7; v8) and
w2 = (v9; v10). Clearly d(f) = 11 and i(f) = 1. Further, ‘(f) = 11 since the sum
of lengths of w1 and w2 is 11. Because v1 appears twice in w1 and separates w1 into
two biconnected components, we also have m(f) = 1 and b(f) = 3. Face f is good.
Note that the removal of edge (v4; v7) would result in f not being good anymore
because edges (v5; v6) and (v9; v10) would appear in the same face of G′. (b) The
three faces of F ′1(f) that surround the biconnected components of f are highlighted.
Note that the length of each of these faces is longer than twice the length of the
corresponding biconnected components.

inside face f . We call a face f of G0 good if and only if f is a triangle or each
face in F ′(f) contains at most one planar edge. For instance, the face shown in
Fig. 7.2a is good. In the next two lemmas we assume that all faces of G0 are good.
Afterwards we show how to deal with drawings in which some face is not good; in
this process we may introduce parallel edges (but no self-loops) in G0, which are
non-homotopic3 by construction. Such edges may not be drawable with just one
bend, however, the geometry of the edges in G0 does not affect the discharging
scheme of Arikushi et al. [19] as discussed in Section 7.1. We first give a better
bound on the number of intersected edges inside a face of G0 by using the more
detailed description of faces discussed above.

Lemma 7.1. Let Γ be a drawing of G such that all faces of G0 are good. Each
face f of G0 contains at most 2d(f)− 2m(f) + 2i(f) + 4b(f)− 8 edges of G1.

Proof. Consider the graph G(f) which is the subgraph of G which is induced by
the interior of f in Γ. Further, let Γ(f) be the subdrawing of Γ representing G(f).
In addition, let G1(f) = (V1(f); E1(f)) be the subgraph of G(f) induced by the set
of edges that intersect in Γ(f) and let G ′(f) be the planarization of G1(f).

Consider the set of biconnected components B(f) of f and the set of faces
F ′1(f) of G ′1(f) that are inside the polygon bounding f . Because face f is good, in

3Two parallel edges are non-homotopic if each region that is bounded by both edges contains
at least one vertex.

7.2. UPPER BOUND RESULTS 139

G ′1(f), the two endpoints u and v of an edge on the boundary of f are connected
by paths of length at least two. More precisely, this path contains at least one
dummy vertex in between u and v . Hence, every biconnected component c ∈ B(f)
is surrounded by a face f ′c ∈ F ′1(f) of length ‘(f ′c) ≥ 2‘(c) in G ′1; see Fig. 7.2b. In
the charging scheme described in Section 7.1, the initial charge of f ′c is ch(f ′c) =
‘(f ′c)−4 ≥ 2‘(c)−4. After the second discharging phase, the charge of each face
is at least as much as its initial charge, thus, ch′′(f ′c) ≥ 2‘(c) − 4. Note that an
isolated vertex is not surrounded by a single face of G ′1(f). We sum up the charge
of all faces surrounding biconnected components of f :X

c∈B(f)

ch′′(f ′c) ≥
X

c∈B(f)

(2‘(c)− 4) = 2(‘(f)− 4b(f))

= 2(d(f) +m(f)− i(f))− 4b(f)

After the second discharging phase, every face has a non-negative charge. In
addition, the charges of faces surrounding biconnected components of f is a lower
bound for the sum of charges in all faces of F ′1(f). Hence, it holds thatX

f ′∈F ′1(f)

ch′′(f ′)−
X

c∈B(f)

ch′′(f ′c) ≥ 0:

This allows us to refine Eq. (7.1) for G(f) as follows:

|E1(f)| − 4d(f) =
X
v∈f

(1=2deg(v)− 4) ≤
X
v∈f

ch′′(v)

≤
X
v∈f

ch′′(v) +
X

f ′∈F ′1(f)

ch′′(f ′)−
X

c∈B(f)

ch′′(f ′c)

≤ −8− 2(d(f) +m(f)− i(f)) + 4b(f)

which yields the required result.

Next, similar to the analysis in [19], we consider how many edges are contained
in G1, when the planar subgraph G0 is obtained from a triangulation T by removing
k edges under the assumption that all faces are good. Recall that we assume that
G0 may contain parallel edges as long as they are non-homotopic. Consider a face
f ∈ F0. We denote by t(f) the number of edges needed to triangulate f . Observe
that k =

P
f ∈F0

t(f). We first consider faces that can be triangulated with few
edges. To this end, let F i0 = {f ∈ F0|t(f) = i}. First, if t(f) = 0, f is a planar
triangle and does not contain any edge of G1; see Fig. 7.3a. If t(f) = 1, f can
only be a quadrangle or a face bounded by two facial walks of length two; see
Figs. 7.3b or 7.3c, respectively. In these two cases, f can contain at most two
edges of G1. Moreover, if t(f) = 2, the boundary of f is one of the four possible
configurations shown in Figs. 7.3d–7.3g. In these cases, f contains at most five
intersecting edges, namely, if f is a pentagon; see Fig. 7.3d. By Lemma 7.1 and

140 CHAPTER 7. DENSITY BOUNDS FOR RAC1 DRAWINGS

C .2a)
C .2b)
C .1b)

(a)

(c)(b)

(d) (e) (f) (g)

(h) (i) (j) (k) (o)(n)(m)(l)

(3, 0, 0, 1)

(4, 0, 0, 1) (3, 1, 0, 2)

(5, 0, 0, 1) (4, 1, 0, 2) (4, 1, 0, 2) (3, 0, 1, 1)

(4, 0, 1, 1)(4, 2, 0, 3)(5, 1, 0, 2)(6, 0, 0, 1) (5, 1, 0, 2) (5, 1, 0, 2) (4, 2, 0, 3) (4, 2, 0, 3)

Figure 7.3: All bounded faces that can be triangulated with at most three edges:
(a) t(f) = 0, (b)–(c) t(f) = 1, (d)–(g) t(f) = 2, and, (h)–(o) t(f) = 3. The
caption of each subfigure lists the values (d(f); m(f); i(f); b(f)) and the arrows in
between two configurations show how faces can be obtained from each other by the
removal of edges according to Cases C.1 and C.2. Parallel edges on the boundary of
a face indicate that either two non-homotopic parallel edges are present or that the
face contains a bridge.

our observations, we conclude that

|E1| ≤ 2|F 1
0 |+ 5|F 2

0 |+
XSk

i=3
F i

0

(2d(f)− 2m(f) + 2i(f) + 4b(f)− 8): (7.6)

For simple drawings, we will additionally prove that f contains at most seven
edges if t(f) = 3; the possible boundaries of such faces are listed in Figs. 7.3h–7.3o.
Note that this is clearly true for the faces shown in Figs. 7.3i–7.3o by considering
how many edges are missing from the complete graph. In the case where f is a
simple hexagon, however, nine edges are missing to make the subgraph complete;
see Fig. 7.3h. With this result, we can refine Eq. (7.6) as follows:

|E1| ≤ 2|F 1
0 |+ 5|F 2

0 |+ 7|F 3
0 |+

XSk

i=4
F i

0

(2d(f)− 2m(f) + 2i(f) + 4b(f)− 8): (7.7)

In the following lemma, we will show that overestimations of the right-hand sides
of Eqs. (7.6) and (7.7) are upperbounded by 8

3
k and 5

2
k , respectively. Since those

7.2. UPPER BOUND RESULTS 141

right-hand sides are upper bounds for |E1|, this implies that |E1| ≤ 8
3
k for not

necessarily simple RAC1 drawings and that |E1| ≤ 5
2
k for simple RAC1 drawings.

Lemma 7.2. Let G be a RAC1 graph with a drawing Γ such that G0 is obtained
from a triangulation T by removal of k edges. Then,

8

3
|F 1

0 |+
16

3
|F 2

0 |+
XSk

i=3
F i

0

(2d(f)− 2m(f) + 2i(f) + 4b(f)− 8) ≤ 8

3
k; (7.8)

and, if Γ is simple,

5

2
|F 1

0 |+5|F 2
0 |+

15

2
|F 3

0 |+
XSk

i=4
F i

0

(2d(f)−2m(f)+2i(f)+4b(f)−8) ≤ 5

2
k: (7.9)

Proof. Similar to the corresponding proof of Lemma 5 in [19], we prove the state-
ment by induction on k . However, we assume that we obtain G0 from T by
removing edges in a specific order. Namely, we want to avoid the case, where
an edge between two distinct non-triangular faces is removed; see Case C.4 in
Section 7.1. This can be guaranteed as follows: Consider the subgraph D of the
dual graph of T that is induced by the edges dual to those that we remove from
T to obtain G0. The edges of D are removed in an order in which they appear in
a BFS traversal of each connected component of D. Then, each interlevel edge
in the BFS traversal corresponds to removing an edge incident to a not yet visited
triangular face, while each intralevel edge corresponds to removing a bridge of a
face that was created in prior steps. In neither case, we merge two non-triangular
faces as unwished.

Let fi(G0) and fiS(G0) denote the left-hand sides of Eq. (7.8) and Eq. (7.9),
respectively. For the base case of the induction, k = 0 and G0 = T . Then,
fi(G0) = fiS(G0) = 0 and Eqs. (7.8) and (7.9) hold. For the induction hypothesis,
assume that Eqs. (7.8) and (7.9) hold for k ≥ 0.

For the induction step, consider a RAC1 graph G ′ whose planar subgraph G ′0
is obtained from a triangulation T by removing k ′ = k + 1 edges. Let G0 be the
plane graph obtained by the removal of these k ′ edges except for the last one, say
(u; v) in the ordering according to the BFS traversal discussed above. Recall that
the ordering of edge deletions ensures that (u; v) is not separating two distinct
non-triangular faces. Hence, the difference between G0 and G ′0 is that G ′0 contains
a face f ′ with u and v on its boundary, while G0 contains up to two faces in G0

with (u; v) on their boundaries; only one of which, say f , can be non-triangular.
By the induction hypothesis, for G0, it holds that fi(G0) ≤ 8

3
k and fiS(G0) ≤ 5

2
k .

We consider the following possible cases:

C.1 Edge (u; v) is a bridge of some face f in G0. Let f ′ be the face of G ′0 that
results when removing (u; v) from f . Clearly, t(f ′) = t(f) + 1. Since every
bridge is a biconnected component, it holds that b(f ′) = b(f) − 1. Since

142 CHAPTER 7. DENSITY BOUNDS FOR RAC1 DRAWINGS

(a) C.1a (b) C.1b (c) C.1c (d) C.2a

v ′

(e) C.2b

v ′

(f) C.2b

Figure 7.4: Illustration of Cases C.1 and C.2. Edge (u; v) is colored red.

(u; v) is only on the boundary of f , it also holds that d(f ′) = d(f). Consider
the following subcases:

C.1a u and v become isolated vertices in G ′0; see Fig. 7.4a. Clearly, i(f ′) =
i(f) + 2. Since neither u nor v appeared twice in facial walks of G0, it
also holds that m(f ′) = m(f).

C.1b Exactly one of u and v , say u, becomes an isolated vertex in G ′0; see
Fig. 7.4b. Clearly, i(f ′) = i(f) + 1. Since v is still connected to a facial
walk and since it was connected to u with the biconnected component
(u; v), also m(f ′) = m(f)− 1.

C.1c Neither u nor v become an isolated vertex in G ′0; see Fig. 7.4c. Then,
i(f ′) = i(f). Moreover, both u and v were connected to at least two
biconnected components of facial walks before, one of which was edge
(u; v). Hence m(f ′) = m(f)− 2.

C.2 Removing (u; v) merges a triangular face ∆ and an adjacent face f of G0

creating a face f ′ of G ′0. Again, t(f
′) = t(f) + 1. We consider two cases:

C.2a ∆ and f share only edge (u; v); see Fig. 7.4d. In other words, f ′ is
obtained from f by subdividing an edge along one of its biconnected
components once. Hence, d(f ′) = d(f) + 1, m(f ′) = m(f), b(f ′) =
b(f) and i(f ′) = i(f).

C.2b ∆ and f share at least two edges; see Figs. 7.4e and 7.4f. In other
words, f ′ is obtained from f by splitting a biconnected component of f
with length ‘ into two new biconnected components with total boundary
length ‘ + 1. Both of these components are incident to a cut vertex
v ′ which is neither u nor v . Hence, d(f ′) = d(f), m(f ′) = m(f) + 1,
b(f ′) = b(f) + 1 and i(f ′) = i(f).

In other words, fi(G ′0) is equal to fi(G0) plus the contribution of f ′ to fi(G ′0) minus
the contribution of f to fi(G0); the analogous fact is true for fiS(G ′0) and fiS(G0).
Next, consider t(f ′).

First, if t(f ′) = 1, f is a planar triangle and f ′ is obtained by merging f
with another triangle as described in Case C.2. In Case C.2a, f ′ is a simple
quadrangle; see Fig. 7.3b. In Case C.2b, the biconnected facial walk of f is split
into two biconnected components of length two; see Fig. 7.3c. Since f ′ ∈ F 1

0

7.2. UPPER BOUND RESULTS 143

and f ∈ F 0
0 , it follows that fi(G ′0) = fi(G0) + 8

3
− 0 ≤ 8

3
k + 8

3
= 8

3
k ′ and

fiS(G ′0) = fiS(G0) + 5
2
− 0 ≤ 5

2
k + 5

2
= 5

2
k ′.

Next, consider t(f ′) = 2, that is, f is one of the two configurations in Figs. 7.3b
and 7.3c. Using one of the following three operations, we obtain the configurations
depicted in Figs. 7.3d–7.3g for f ′:

(i) Applying Case C.2a, the length of a biconnected component of a facial walk
of f is increased by one; see the red dashed arrows in Fig. 7.3. For instance,
one of the two biconnected components of length two in Fig. 7.3c can be
subdivided to create the configurations shown in Figs. 7.3e and 7.3f.

(ii) Applying Case C.2b, a biconnected component of a facial walk of f with
length ‘ ≥ 3 is split into two biconnected components of total lengths ‘+ 1;
see the solid orange arrows in Fig. 7.3. For instance, the biconnected compo-
nent of length four in Fig. 7.3b can be split to create the two configurations
shown in Figs. 7.3e and 7.3f. Note that both of these configurations can be
obtained in two different ways.

(iii) Applying Case C.1b, a bridge that is incident to some biconnected component
of a facial walk is removed creating an isolated vertex; see the dash-dotted
green arrows in Fig. 7.3. For instance, removing the bridge in the configura-
tion in Fig. 7.3c yields the new configuration shown in Fig. 7.3g.

Since f ′ ∈ F 2
0 and f ∈ F 1

0 , it follows that fi(G ′0) = fi(G0) + 16
3
− 8

3
≤ 8

3
k+ 8

3
= 8

3
k ′

and fiS(G ′0) = fiS(G0) + 5− 5
2
≤ 5

2
k + 5

2
= 5

2
k ′.

Next, consider t(f ′) = 3. Starting from the possible configurations for f shown
in Figs 7.3d–7.3g, we use the same rules as discussed in the previous case to obtain
the configurations shown in Figs. 7.3h–7.3o for face f ′. Note that in Fig. 7.3, we
also report the values for d(f ′), m(f ′), b(f ′) and i(f ′). With this information, it
is possible to verify that 2d(f ′) − 2m(f ′) + 2i(f ′) + 4b(f ′) − 8 for each of the
configurations shown in Figs. 7.3h–7.3. Since f ′ ∈ F 3

0 and f ∈ F 2
0 , it follows that

fi(G ′0) = fi(G0)+8− 16
3
≤ 8

3
k+ 8

3
= 8

3
k ′. For the case of simple drawings, it is also

possible to show that f ′ contains at most seven edges of G1. Recall that G1 does
not contain parallel edges. In the configurations shown in Figs. 7.3i–7.3o there are
only at most five vertices and at least three distinct edges. Since the complete
graph K5 has ten edges, it follows that there are at most seven edges of G1 in such
faces. Hence, it remains to consider the configuration where f ′ is a simple hexagon;
see Fig. 7.3h. In a simple drawing, no two edges of G1 inside f ′ share more than
one point which can be either an intersection or a common endpoint. Hence, the
graph K6−e, that is, the graph obtained from K6 by removing an edge e, has only
three topological embeddings with the given outer face containing all six vertices;
see Fig. 7.5. Note that these topologies are uniquely defined by the sequence of
intersections along all edges due to the simplicity of the drawing. In each of these
three embeddings, there are ten triangular regions which each are incident to at

144 CHAPTER 7. DENSITY BOUNDS FOR RAC1 DRAWINGS

(a) (b) (c)

Figure 7.5: All topologocial embeddings of K6−e where all vertices are incident to
the outer face. Note that each such topology contains ten triangular regions (shaded
red) which each are incident to at least two intersections.

least two intersections; see the red-shaded regions in Fig. 7.5. Since all intersections
occur at a right angle, each such triangular region must contain a convex bend.
However, there are only eight edges with one bend each, a contradiction. Thus, for
simple RAC1 drawings, fiS(G ′0) = fiS(G0)+7−5 < fiS(G0)+ 15

2
−5 ≤ 5

2
k+ 5

2
= 5

2
k ′.

Finally, consider t(f ′) ≥ 4. We reconsider Cases 1 (removal of an edge (u; v)
that is a bridge of a face f) and 2 (removal of an edge (u; v) that separates a face
f and another triangular face ∆).

C.1a Here, u and v become isolated vertices after removing edge (u; v). As shown
above, d(f ′) = d(f), m(f ′) = m(f), i(f ′) = i(f) + 2 and b(f ′) = b(f)− 1.
Because

2d(f ′)− 2m(f ′) + 2i(f ′) + 4b(f ′)− 8

= 2d(f)− 2m(f) + 2(i(f) + 2) + 4(b(f)− 1)− 8

= 2d(f)− 2m(f) + 2i(f) + 4b(f)− 8;

we conclude that fi(G ′0) = fi(G0) ≤ 8
3
k < 8

3
k ′ and fiS(G ′0) = fiS(G0) ≤ 5

2
k <

5
2
k ′.

C.1b Here, one of u and v becomes an isolated vertex after removing edge (u; v).
As shown above, d(f ′) = d(f), m(f ′) = m(f) − 1, i(f ′) = i(f) + 1 and
b(f ′) = b(f)− 1. Because

2d(f ′)− 2m(f ′) + 2i(f ′) + 4b(f ′)− 8

= 2d(f)− 2(m(f)− 1) + 2(i(f) + 1) + 4(b(f)− 1)− 8

= 2d(f)− 2m(f) + 2i(f) + 4b(f)− 8;

we conclude that fi(G ′0) = fi(G0) ≤ 8
3
k < 8

3
k ′ and fiS(G ′0) = fiS(G0) ≤ 5

2
k <

5
2
k ′.

C.1c Here, u and v become part of two disconnected biconnected components
when removing (u; v). As shown above, d(f ′) = d(f), m(f ′) = m(f) − 2,

7.2. UPPER BOUND RESULTS 145

i(f ′) = i(f) and b(f ′) = b(f)− 1. Because

2d(f ′)− 2m(f ′) + 2i(f ′) + 4b(f ′)− 8

= 2d(f)− 2(m(f)− 2) + 2i(f) + 4(b(f)− 1)− 8

= 2d(f)− 2m(f) + 2i(f) + 4b(f)− 8;

we conclude that fi(G ′0) = fi(G0) ≤ 8
3
k < 8

3
k ′ and fiS(G ′0) = fiS(G0) ≤ 5

2
k <

5
2
k ′.

C.2a Here, faces f and ∆ share only vertices u and v . As shown above, d(f ′) =
d(f) + 1, m(f ′) = m(f), i(f ′) = i(f) and b(f ′) = b(f). Because

2d(f ′)− 2m(f ′) + 2i(f ′) + 4b(f ′)− 8

= 2(d(f) + 1)− 2m(f) + 2i(f) + 4b(f)− 8

= 2d(f)− 2m(f) + 2i(f) + 4b(f)− 8 + 2;

we conclude that fi(G ′0) = fi(G0) + 2 ≤ 8
3
k + 2 < 8

3
k ′ and fiS(G ′0) =

fiS(G0) + 2 ≤ 5
2
k + 2 < 5

2
k ′.

C.2b Here, all vertices on the boundary of ∆ are also on the boundary of f . As
shown above, d(f ′) = d(f), m(f ′) = m(f) + 1, i(f ′) = i(f) and b(f ′) =
b(f) + 1. Because

2d(f ′)− 2m(f ′) + 2i(f ′) + 4b(f ′)− 8

= 2d(f)− 2(m(f) + 1) + 2i(f) + 4(b(f) + 1)− 8

= 2d(f)− 2m(f) + 2i(f) + 4b(f)− 8 + 2;

we conclude that fi(G ′0) = fi(G0) + 2 ≤ 8
3
k + 2 < 8

3
k ′ and fiS(G ′0) =

fiS(G0) + 2 ≤ 5
2
k + 2 < 5

2
k ′.

Finally, we consider the case t(f ′) = 4 for simple RAC1 drawings independently
to conclude the proof. Observe that in each of the cases, fiS(G ′0) ≤ fiS(G0) + 2.
As stated before, for all configurations where t(f) = 3, we have that 2d(f) −
2m(f) + 2i(f) + 4b(f) − 8 ≤ 8; see Figs. 7.3h–7.3o. Thus, it follows that
2d(f ′)− 2m(f ′) + 2i(f ′) + 4b(f ′)− 8 ≤ 8 + 2 = 10. Since f ′ ∈ F 4

0 and f ∈ F 3
0 ,

it holds that fiS(G ′0) = fiS(G0) + 10− 15
2
≤ 5

2
k + 5

2
= 5

2
k ′.

Using Lemma 7.2 and a similar argument as in [19], we can now obtain a bound
on the number of edges in RAC1 graphs in which all faces of G0 are good. Namely,
a planar triangulation has 3n − 6 edges even in the presence of non-homotopic
parallel edges. Hence, G has at most 3n− 6− k + 8

3
k edges. On the other hand,

since |E1| ≤ 4n−8 as shown in [19] and discussed in Section 7.1, we also have that
G has at most 7n− 14− k edges. The minimum of both bounds is maximized for
k = 3

2
(n− 2) yielding a bound of |E| ≤ 5:5n− 11. With an analogous argument,

we obtain that |E| ≤ 5:4n − 10:8 for simple RAC1 drawings when k = 8
5
(n − 2).

It remains to prove that it is not a loss of generality to assume that every face
of G0 is good:

146 CHAPTER 7. DENSITY BOUNDS FOR RAC1 DRAWINGS

(a) (b)

Figure 7.6: Operations of the augmentation procedure described in the proof of
Lemma 7.3. Planar edges are drawn blue. Vertices belonging to G are drawn as
circles, dummy vertices introduced in the planarization step as boxes. The red
dummy vertex in subfigure (b) is the one from which the traversal of the face is
started.

Lemma 7.3. Let G be a RAC1 graph such that not all faces of G0 are good.
Then, G can be augmented to a not necessarily simple supergraph G∗ by the
introduction of intersection-free edges which are drawn as simple Jordan arcs such
that (i) all faces in G∗0 are good, (ii) all parallel edges and self-loops in G∗0 are
non-homotopic, and, (iii) in the obtained drawing of G∗, graph G is represented
by a RAC1 subdrawing.

Proof. Consider the planarization G ′ of G. Let f be a face of G0 that is not good.
Then, there exists a face f ′ of G ′ inside f that is not triangular and contains at
least two edges from the boundary of f . If f ′ is bounded only by planar edges,
that is, f and f ′ coincide, we triangulate f ′; see Fig. 7.6a. Otherwise, we select
an arbitrary dummy vertex on the boundary of f ′ and traverse the boundary of f ′.
We then connect the first vertex incident to a planar edge in this traversal with
the last vertex incident to a planar edge in this traversal. Note that this can be
the same vertex if it is a cut vertex of face f ′. The newly introduced edge can
always be drawn because we only require it to be represented by a simple Jordan
arc. In addition, it splits f ′ into a face that contains only one planar edge and a
second smaller face, hence, this procedure eventually terminates. In the resulting
drawing, edges may have any number of bends, however, the subdrawing of G is
still the valid RAC1 drawing we started with.

In both cases, the newly introduced edges are not parallel to another edge
present in the same face, thus, they are non-homotopic by construction. In the
end, every face of the planarization is either a triangle of planar edges or contains
at most one planar edge. In other words, every face is good.

Recall that Lemma 7.2 allows for parallel non-homotopic edges. Hence, we
only have to deal with self-loops. As discussed in the proof of Lemma 7.3, such
self-loops appear when a vertex v is a cut-vertex of a face of the planarization G ′.
Note that v then is also a cut-vertex of G.

Consider a self-loop s. Edge s is incident to a cut-vertex v of G and encloses a
subdrawing for which we assume that it does not contain any other self-loop. Let

7.3. LOWER BOUND RESULTS 147

Hi and Ho denote the subgraphs of G induced by the vertices of G in the interior
and exterior of s, respectively. In particular, v is part of bothHi andHo which is not
true for any other vertex of G. In addition, s does not belong to Hi or Ho . Let ni
and no denote the number of vertices of Hi and Ho , respectively, and let mi and mo

denote the corresponding number of edges. Since v is accounted for in ni and no ,
we have that n = ni+no−1. Using induction, we may assume that mi ≤ 5:5ni−11
and mo ≤ 5:5no − 11. Then, G contains at most 5:5(ni + no) − 22 + 1 =
5:5n − 15:5 < 5:5n − 11 edges. Analogously, in the case where the drawing is
simple, we have that mi ≤ 5:4ni − 10:8 and mo ≤ 5:4no − 10:8 and conclude
that G has at most 5:4(ni + no) − 21:6 + 1 = 5:4n − 15:2 < 5:4n − 10:8 edges.
Therefore, the upper bound also holds if G0 contains non-homotopic self-loops.

We conclude with the main theorem of this section:

Theorem 7.1. Let G be a graph with n vertices that admits a RAC1 drawing.
Then, G has at most 5:5n − 11 edges.

Similar, for graphs that admit simple RAC1 drawings, we obtain:

Theorem 7.2. Let G be a graph with n vertices that admits a simple RAC1

drawing. Then, G has at most 5:4n − 10:8 edges.

7.3 Lower Bound Results

In this section, we present new lower bound results on the edge density of RAC1

graphs both in the general setting and in the restricted scenario where the drawings
have to be simple. We first prove that the result from Theorem 7.1 is tight up to
a constant additive factor.

Theorem 7.3. For every k ∈ N, there exists a graph with n = 16k + 32 vertices
and 5:5n − 72 edges that admits a RAC1 drawing.

Proof. We define a family of graphs that fulfils the properties stated in the theorem.
The most important ingredient of our construction is a hexagonal tile, that is, a
RAC1 drawing of K6−e (the graph obtained from K6 by removing an edge) which
has the property that all vertices are located on the outer face; see Fig. 7.7a. Let
v1; : : : ; v6 denote the vertices of a tile and let e = (v2; v5). Then, we can describe
the drawing of the tile more precisely as follows:

(i) v1 is located at (1; 40).

(ii) v2 is located at (0; 9).

(iii) v3 is located at (9; 0).

(iv) v4 is located at (1
97

(1313 + 1770
√

2); 1
97

(1960− 528
√

2)).

148 CHAPTER 7. DENSITY BOUNDS FOR RAC1 DRAWINGS

x
y

v1

v6
v5

v4
v2

v3

(a)
(b)

(c)

Figure 7.7: Construction of a graph family with n = 16k+32 vertices and 5:5n−72
edges that admits RAC1 drawings. (a) Hexagonal tile. (b) A ring of tiles. (c) Tiling
of the plane with nested rings. Planar edges are drawn blue.

(v) v5 is located at (1
97

(1313 + 800
√

2); 1
97

(5880 + 1520
√

2)).

(vi) v6 is located at (1
97

(925 + 800
√

2); 1
97

(7044 + 1520
√

2)).

(vii) The outer cycle (v1; : : : ; v6) is drawn with planar edges.

(viii) Edges (v2; v3) and (v5; v6) are straight-line. Moreover, the representation of
(v5; v6) can be obtained from the representation of (v2; v3) by a scaling factor
of 4=9.

(ix) Edge (v1; v2) has a bend that forms a convex (geometric) vertex of the outer
face. This bend is arbitrarily close to the intersection of the line of slope 1
through v1 and the line of slope −1 through v2. Moreover, from its repre-
sentation, it is possible to obtain the representation of (v4; v5) by a scaling

7.3. LOWER BOUND RESULTS 149

factor of 2=3 and a rotation by ı=4. Consequently, the bend of (v4; v5) forms
a reflex (geometric) vertex of the outer face.

(x) Edge (v3; v4) has a bend that forms a convex (geometric) vertex of the outer
face. This bend is arbitrarily close to the intersection of the line of slope −1
through v3 and the line of slope 1 through v4. Moreover, from its representa-
tion, it is possible to obtain the representation of (v1; v6) by a scaling factor
of 2=3 and a rotation by −ı=4. Consequently, the bend of (v1; v6) forms a
reflex (geometric) vertex of the outer face.

(xi) All remaining edges have a bend and are involved in intersections that occur
on horizontal and vertical segments.

Due to the symmetry of edges (v1; v2) and (v4; v5) as well as edges (v3; v4) and
(v1; v6), it is possible to create a ring of tiles as shown in Fig. 7.7b. More precisely,
such a ring is composed of four tiles of unit size rotated by 0, ı=2, ı and 3ı=2,
respectively, and four tiles scaled by a factor of 2=3 rotated by ı=4, 3ı=4, 5ı=4
and 7ı=4, respectively. A ring of tiles has 32 vertices; 16 of them are located on
the outer face while the remaining 16 are incident to the innermost face. Also, the
ring of tiles clearly admits a RAC1 drawing.

Due to the properties of the edges bounding the tiles, we also observe that the
polygon bounding the innermost face can be obtained from the polygon bounding
the outer face by scaling it by a factor of 4=9. Consequently, we can take two
copies of a ring, one of unit size and one scaled by a factor of 4=9, and identify the
innermost face of the first with the outer face of the second copy; see Fig. 7.7c.
The obtained graph has 16 more vertices than a ring of tiles and still admits a
RAC1 drawing. Moreover, the innermost face still has the same geometry up to
scaling so that the outer face of a new ring can be identified with it. This gives rise
to a family of graphs with 16k + 32 vertices for k ∈ N that admit RAC1 drawings.

Regarding the density of this graph family, we observe that in the subgraph
induced by the planar edges all faces except the innermost and outer face are
hexagons. The two remaining faces have length 16. By Euler’s formula the sub-
graph induced by the planar edges then has 3

2
n−8 edges and 1

2
n−6 faces. Since in

each of the 1
2
n− 8 hexagonal faces eight additional intersected edges are present,

we conclude that graphs of this family have 3
2
n − 8 + 8(1

2
n − 8) = 5:5n − 72

edges.

We point out that our lower bound construction in the proof of Theorem 7.3
is closely related to the 3-planar graphs of maximum edge density [38]. In fact,
the subgraph induced by the planar edges of a 3-planar graph of maximum edge
density has only hexagonal faces (however, parallel edges may be present) and in
each hexagonal face eight chords are present. In fact, the construction even omits
the same chord in each face as we did in the construction of the tiles, however,
the drawing of the tile is not 3-planar; for instance edge (v1; v5) in Fig. 7.7a is

150 CHAPTER 7. DENSITY BOUNDS FOR RAC1 DRAWINGS

x
y

v1

v6
v5

v4
v2

v3

Figure 7.8: A simple RAC1 drawing of K6 − {e; e ′} with the same outer face as
the tile in Fig. 7.7a.

intersected four times. According to their edge density, the graph family described
in the proof of Theorem 7.3 does not admit simple RAC1 drawings. In fact, in each
tile, edges (v4; v6) and (v4; v2) intersect. We could easily adopt our proof for the
case where simple drawings are required, as K6−{e; e ′}, the graph obtained from
K6 by removing two edges, admits a simple RAC1 drawing where the outer face
has the same shape as the tile in Fig. 7.7a. This would suffice to prove a lower
bound of 5n − 64 for the edge density of simple RAC1 graphs. However, we will
show a slightly stronger result in the next theorem. Namely, we show that some of
the 2-planar [38], fan-planar [118] and gap-planar [22] graphs of maximum edge
density also admit simple RAC1 drawings.

Theorem 7.4. For every k ∈ N, there exists a graph with n = 15k + 20 vertices
and 5n − 10 edges that admits a simple RAC1 drawing.

Proof. Similar to the lower bound constructions for the maximum edge density of
2-planar [38], fan-planar [118] and gap-planar [22] graphs, we describe a graph
family that consists of a planar spanning subgraph whose faces are pentagons
and all chords inside each face which intersect as shown in Fig. 7.9c. The basic
component of our construction is the dodecahedral graph which admits a planar
straight-line drawing where all faces have one out of three different geometric
shapes (up to scaling); see Fig. 7.9a. In particular, the outer face and the innermost
face (colored red in Fig. 7.9a) are regular pentagons while all five faces incident
to the outer face have the same geometry (up to rotation). In addition, the five
faces incident to the innermost face also have the same geometry (but differrent
than the geometry of the faces incident to the outer face). Moreover, each face
is symmetric to a line that is perpendicular to one of its sides (length denoted by
a in Fig. 7.9b) and passes through the opposite vertex of the face (denoted by A
in Fig. 7.9b). Using the notation of Fig. 7.9b, we can more precisely define the
geometry of the drawing:

7.3. LOWER BOUND RESULTS 151

54◦

136◦160◦

88◦

100◦

(a)

¸

˛ ˛

‚ ‚

cc

b b

a

A

B1 B2

C1 C2

(b)

A

B1 B2

C1 C2

‚1 ‚1
‚2 ‚2

˛1 ˛1

˛2 ˛2

¸1 ¸1

(c)

Figure 7.9: Overview of our lower bound construction for simple RAC1 graphs.
(a) Drawing of the dodecahedral graph. (b) Notation of edge lengths and angles in
a pentagonal face. (c) Intersection configuration and notations for angles formed by
intersecting edges. Planar edges are colored blue.

(i) For the faces incident to the innermost face, the side of length a is shared
with the innermost face. Moreover, ¸ = 88◦, ˛ = 100◦ and b = 1:5a.

(ii) For the faces incident to the outer face, the side of length a is shared with
the outer face. Moreover, ¸ = 160◦, ‚ = 54◦ and b = 8:5c .

Since both the outer and the innermost face are regular pentagons, it is possible
to merge two copies of the dodecahedral graph by identifying the outer face of
one copy with the innermost face of the second copy. We can repeat the same
operation with the newly obtained graph as the innermost face is still a regular
pentagon. Repeating this process k times yields a graph with n = 15k+20 vertices
since the dodecahedral graph has 20 vertices and 5 vertices are shared between
consecutive copies. The resulting family of graphs admits drawings in which the
faces of the planar subgraph only have the three geometries discussed above (up
to scaling and rotation).

It remains to discuss the five chords inside each pentagonal face. In each

152 CHAPTER 7. DENSITY BOUNDS FOR RAC1 DRAWINGS

face the following property is maintained: A chord intersects exactly two other
chords and bends in between both intersections; see Fig. 7.9c. As a result, since
we already defined the face geometries above, it suffices to provide the angles as
labeled in Fig. 7.9c to uniquely define the drawing:

(i) In the innermost face, ¸1 = ˛1 = ˛2 = ‚1 = ‚2 = 45◦; see Fig. 7.10a.

(ii) In the outer face, ¸1 = ˛1 = ˛2 = ‚1 = ‚2 = 45◦; see Fig. 7.10b.

(iii) In a face incident to the innermost face, ¸1 = 40◦, ˛1 = 30◦, ˛2 = 50◦,
‚1 = 45◦ and ‚2 = 60◦; see Fig. 7.10c.

(iv) In a face incident to the outer face, ¸1 = 47:5◦, ˛1 = 85◦, ˛2 = 42:5◦,
‚1 = 45◦ and ‚2 = 5◦; see Fig. 7.10d.

We conclude that each graph in the family admits a simple RAC1 drawing. By
Euler’s formula the subgraph induced by the planar edges has 5

3
(n− 2) edges and

2
3
(n − 2) faces. Since in each face five additional intersected chords are present,

we conclude that graphs of this family have 5
3
(n − 2) + 5 · 2

3
(n − 2) = 5n − 10

edges.

We note that both of our lower bound constructions use exponential area.

7.3. LOWER BOUND RESULTS 153

(a)

(b)

1

1:5

60◦

40◦

(c)

85◦

1

8:5

47:5◦

(d)

Figure 7.10: Drawings of chords inside (a) the innermost face, (b) the outer face,
(c) faces incident to the innermost face, and, (d) faces incident to the outer face.
Planar edges are drawn blue.

154 CHAPTER 7. DENSITY BOUNDS FOR RAC1 DRAWINGS

Chapter 8

Area Bounds for RAC Drawings
with three and more Bends per
Edge

Many graphs that appear in real-world applications are non-planar. Experimental
evaluation of the human perception of graph drawings has shown that non-planar
drawings with a large crossing resolution are better readable than those where
the crossing resolution is small [113, 115]. This observation gave rise to the
study of RAC drawings, in which all intersections occur at right angles [71]. The
curve complexity of RAC drawings is typically also taken into account, since it
is known to negatively correlate with readability [140, 141]. The initial paper on
RAC drawings [71] considered RAC3 drawings along with RAC drawings of lower
curve complexity and proved that every graph admits a RAC3 drawing. It is easy
to verify that the corresponding drawing algorithm produces drawings in Θ(n4)
area for every simple graph on n vertices even though this is not explicitly stated
in [71].

In several follow-up studies, the area of RAC drawings has become a main
focus. In this line of research, it was shown that there are planar graphs that still
require quadratic area in any RAC0 drawing [14] while NIC-planar and general 1-
planar graphs admit polynomial area RAC1 and RAC2 drawings, respectively [55].
Regarding more general graph classes, it was shown that every simple graph admits
a RAC4 drawing in Θ(n3) area [66]. In the same paper, it was proven that every
simple graph admits a drawing in Θ(n2(cot "=2)2) area with one bend per edge
under the relaxation that every intersection occurs at an angle of at least ı=2− "
for " > 0. Such drawings are known as large angle crossing drawings and for fixed
", this result is asymptotically optimal. Note that the multiplicative term cot "=2
can however be quite restrictive for moderate values of n while no true right angles
can be achieved with the construction. With respect to RAC drawings of complete
graphs, the best known area bound was presented in [142] where it was shown

155

156 CHAPTER 8. AREA BOUNDS FOR RAC≥ 3 DRAWINGS

that each simple graph admits a RAC6 drawing in Θ(n2:75) area.
In the analysis of the area, vertices and bends of edges are assumed to be

positioned on an integer grid whereas intersections may also occur on non-grid
points. It is noteworthy that the positions of intersections usually do not need to
be calculated explicitly as they are implied by the positions of the endpoints of
intersected edges. The area of RAC drawings of general graphs is trivially in Ω(n2)
since only graphs of limited edge density can be drawn without bends [71], that
is, in graphs with Θ(n2) edges, there are Θ(n2) bends that must be assigned to
distinct grid points. We emphasize that a RAC drawing in Θ(n2) area cannot be
trivially computed by adding more bends since each such bend must be assigned a
distinct integer coordinate. In addition, we assume in the following that graphs are
simple since every parallel edge would contribute another bend. Hence, in graphs
where every edge is parallel to at most k edges, the area lower bound is Ω(kn2).

In this chapter1, we present several new results on the area requirements of
RAC drawings of dense graphs. In Section 8.1, we prove that every graph admits
a RAC3 drawing in O(n3) area. In contrast, we show in Section 8.2 that not every
graph admits a RAC3 drawing in O(n2) area. Then, in Section 8.3, we prove that
a RAC8 drawing in quadratic area exists for every graph. Finally, we investigate
the special case where the graph is p-partite in Section 8.4 and show that even a
RAC3 drawing in O(n2p4) area can be achieved.

Before we prove our result, we first establish some notation used throughout this
chapter. In all proofs we assume w.l.o.g. that every edge has the same number
of bends (which may however occur at angle ı). This allows us to distinguish
several unique types of segments along an edge. Namely, every edge (u; v) has
two start segments which are the two segments incident to the endpoints u and
v . In the case of RAC3 drawings, we call the remaining segments middle segments
and the bend connecting both middle segments the middle bend . We also call a
start segment that is incident to a vertex v a start segment of v . In our upper
bound constructions, start segments will be located in regions that are free of
intersections, which we refer to as start regions.

8.1 A New Upper Bound for the Area of RAC3

Drawings

In this section, we show that every graph admits a RAC3 drawing in O(n3) area.
This result improves upon two prior results: Namely, it was known that every graph
admits a RAC3 and a RAC4 drawing in O(n4) and O(n3) area, respectively [66, 71].

Theorem 8.1. Let G be a simple graph with n vertices. Then, G admits a RAC3

drawing in O(n3) area.
1The results of this chapter also appeared in [94].

8.1. A NEW UPPER BOUND FOR THE AREA OF RAC3 DRAWINGS 157

Figure 8.1: A RAC3 drawing of K5 produced by the algorithm in the proof of
Theorem 8.1 in 21×7 area. Vertices are drawn as circles, bends of edges as squares.

Proof. We describe an algorithm that computes a RAC3 drawing in O(n3) area.
In particular, we describe how to draw the complete graph on n vertices; see
Fig. 8.1 for an illustration of the drawing of K5. Similar to previously known
constructions [66, 71], each vertex and its incident segment are located in a distinct
region of quadratic area; see the gray regions in Fig. 8.1. Similar to the proof
in [66], we distinguish two types of bends incident to a vertex, namely those bends
that connect to a vertex with smaller index and those that connect to a vertex
with larger index; see the red and green colored squares in Fig. 8.1, respectively.
The middle segments are of almost horizontal and vertical slope.

More precisely, consider an arbitrary enumeration (v0; : : : ; vn−1) of the vertices
of Kn. Vertex vi for 0 ≤ k ≤ n − 1 is placed at (in; 0); see the white circles in
Fig. 8.1. Consider an edge (vi ; vj) with i < j . Let ai ;j denote the bend of (vi ; vj)
incident to vi , bi ;j denote the middle bend of (vi ; vj) and ci ;j denote the bend of
(vi ; vj) incident to vj . We position

(i) ai ;j at (in + 1; j − i − 1); see the green squares in Fig. 8.1.

(ii) bi ;j at (in + 2; n + j − i − 2); see the yellow squares in Fig. 8.1.

(iii) ci ;j at (jn − j + i + 2; n − 2); see the red squares in Fig. 8.1.

First consider the start segments. Consider a vertex vi . We observe that all
start segments between vi and bends ai ;j for j > i and bends ck;i for k < i are
located in a rectangular start region, ranging from (i − 1)n + 3 to in + 1 in x-
direction and from 0 to n−2 in y -direction; see the gray regions in Fig. 8.1. Since
all bends ai ;j and ck;i are disjoint and located on the boundary of the start region,
the start segments incident to vi are intersection-free. Moreover, the start regions
of vertices vi and vj for j > i do not overlap since (j − 1)n + 3 > in + 1 even if
j = i + 1.

It is easy to verify that the middle segment between bends ai ;j and bi ;j of edge
(vi ; vj) has slope n − 1. Moreover, such a segment does not intersect the start
region of vertex vk for k > i , since (k − 1)n+ 3 (the leftmost x-coordinate of the
start region of vertex vk) is strictly larger than in + 2 (the x-coordinate of bi ;j)
even if k = i + 1.

158 CHAPTER 8. AREA BOUNDS FOR RAC≥ 3 DRAWINGS

In addition, by construction, the middle segment between bends bi ;j and ci ;j
of edge (vi ; vj) has slope −1=(n − 1). Note that these middle segments are
perpendicular to the previous type of middle segments. Since the y -coordinate of
ci ;j is n − 2, such segments do not intersect start regions. Hence, only middle
segments may intersect. Since the intersections of middle segments with the
horizontal line at y = n − 2 are distinct (see the dashed line in Fig. 8.1), no
two parallel segments overlap. Thus the drawing is indeed a RAC drawing.

The smallest x- and y -coordinates are both 0 while the corresponding largest
coordinates are n2−n+1 and 2n−3, respectively, hence the area bound follows.

8.2 A First Lower Bound for the Area of RAC3

Drawings

In this section, we show that not all graphs admit a RAC3 drawing in O(n2)
area. Our proof is by contradiction and can be outlined as follows: First, in
Lemma 8.1 we show that in any RAC drawing with few bends per edge, there exist
two sets of edge segments Si and Ti of cardinality Ω(n2) such that there are Ω(n4)
intersections between segments in Si and Ti . Then, we derive geometric properties
of such segments in Lemmas 8.2 and 8.3. Afterwards, we consider properties that
are specifically true for RAC3 drawings and show in Lemmas 8.4 to 8.6 that there
are Ω(n2) edges that have both a segment from Si and a segment from Ti . We
continue by subdividing the drawing into a set of disjoint regions Ri which contain
only at most one endpoint of each segment in Si and Ti . In Lemmas 8.7 and 8.8,
we restrict the possible positions of vertices connected to endpoints of segments
from Si and Ti located in a region of Ri . This allows us to show in Lemma 8.9,
that the edges which contain both a segment from Si and from Ti induces a
subgraph which is nearly p-partite for some integer p except for a linear number of
edges which we call odd edges. As a result, in the proof of Theorem 8.2, we show
that any RAC3 drawing of Kn in quadratic area contains a drawing of a complete
subgraph that has too few edges which have a segment from Si and a segment of
Ti ; a contradiction to Lemma 8.6 for the drawing of the subgraph.

Lemma 8.1. Let Γ be a RACb drawing of a graph G with n vertices and Ω(n2)
edges for b = O(1). Then, in Γ, there are two sets of parallel edge segments
Si and Ti with |Si |; |Ti | = Ω(n2) such that segments in Si are perpendicular to
segments in Ti .

Proof. Recall that in a RAC drawing all intersections appear between two perpen-
dicular edge segments and that, by the crossing lemma [7, 124], any drawing of
G contains Ω(n4) intersections. We partition the segments in Γ that are involved
in intersections based on their slope into maximal sets S0; : : : ; Sk and T0; : : : ; Tk
such that the segments in Si and Ti are perpendicular for 0 ≤ i ≤ k . Assume

8.2. A FIRST LOWER BOUND FOR THE AREA OF RAC3 DRAWINGS 159

p

qh

w

Figure 8.2: A fine-horizontal grid line (blue) and its common points with the coarse
grid (gray).

w.l.o.g. that |Si | ≥ |Ti | and |Ti | ≥ |Ti+1|. Because every edge has k bends, the
number of segments assigned to one of the sets Si is upper bounded by sn2 for
some constant s = f (k), that is,

|S0|+
kX
i=1

|Si | ≤ sn2 or |S0| ≤ sn2 −
kX
i=1

|Si |:

Since intersections occur only between pairs of segments belonging to Si and Ti
for some i , we can bound the number of intersections cr(Γ) in Γ as follows:

cr(Γ) ≤ |S0||T0|+
kX
i=1

|Si ||Ti | ≤

sn2 −

kX
i=1

|Si |
!
|T0|+

kX
i=1

|Si ||Ti |

= sn2 −
kX
i=1

(|T0| − |Ti |)|Si | ≤ sn2|T0|:

The term sn2|T0| has to be in Ω(n4) which is the case if |T0| = Ω(n2). This then
also implies |S0| = Ω(n2).

In the following, we consider all maximal sets of parallel edge segments which
are involved in Ω(n4) intersections. We partition these sets into families S =
{S1; : : : ; Sk} and T = {T1; : : : ; Tk} such that the segments in Si are perpendicular
exactly to the segments in Ti .2 Observe that in a RACb drawing for constant b,
the maximum index k is a constant.

Consider a pair of segment sets Si ∈ S and Ti ∈ T . In the following analysis
and all illustrations in this section, we assume w.l.o.g. that the slope of segments in
Si is positive. First, we will derive properties of the slope si of segments belonging
to segment set Si ∈ S. In particular, we use the fact that segments in Si and Ti
follow the grid lines of a fine grid Fi that is finer than the coarse integer grid on
which vertices and bends are located; see Fig. 8.2. More precisely, the endpoints
of each segment is an integer coordinate on the coarse grid. This directly implies
that si is a rational number and that the intersections between segments in Si

2In contrast to the proof of Lemma 8.1, we now only consider sets of edge segments that are
involved in many intersections.

160 CHAPTER 8. AREA BOUNDS FOR RAC≥ 3 DRAWINGS

and Ti are located on rational coordinates located on a fine grid Fi . Formally,
the fine grid Fi is defined by fine-horizontal grid lines of slope si and fine-vertical
grid lines having slope of slope −1=si that pass through at least two points of the
coarse grid; see Fig. 8.2. Let si = p=q for coprime integer p and q. By scaling the
drawing by factor pq, the intersections between segments in Si and Ti are located
on integer coordinates. Since there are Ω(n4) intersections in the drawing, this
scaling factor cannot be arbitrarily small for small drawing areas. We analyze this
property in the next lemma:

Lemma 8.2. Let Γ be a RACb drawing of a graph G with n vertices and Ω(n2)
edges for b = O(1) with width w and height h. In addition, let si = p=q be the
slope of segments in Si ∈ S for coprime integers p and q. Then

1. max{p; q} ∈ Ω(
q
n4=wh) or pq ∈ Ω(n4=max{w 2; h2}), and,

2. p; q ∈ O(min{w; h}).

Proof. Depending on the values of p and q, we observe, that fine grid lines might
pass through more than two points of the coarse grid; see Fig. 8.2. This however
limits how many fine grid lines exist.

Consider two consecutive fine-horizontal grid lines ‘1 and ‘2. For i ∈ {1; 2}, the
line ‘i can be expressed by a formula of form y = p=q · x + bi . Since all lines pass
through an integer point, it follows that bi = ci=q for some integer ci . Since ‘1 and
‘2 are consecutive, |c2−c1| = 1. This means, that the vertical distance between ‘1

and ‘2 is equal to 1=q. Next, consider their horizontal distance. For this purpose,
we set p=q · x1 + b1 = p=q · x2 + b2 which yields |x2 − x1| = q=p|b2 − b1| =
1=p|c2 − c1| = 1=p, that is, their horizontal distance is 1=p. Analogously, the
horizontal and vertical distance between two consecutive fine-vertical grid lines is
1=q and 1=p, respectively.

We conclude that there are at most Θ(max{wp; hq}) fine-horizontal and
Θ(max{wq; hp}) fine-vertical grid lines. The number of intersections between
these grid lines is in Θ(max{w 2pq; whp2; whq2; h2pq}) which must be Ω(n4) by
the crossing lemma [7, 124]. This is the case if max{p; q} ∈ Ω(

q
n4=wh) or

pq ∈ Ω(n4=max{w 2; h2}), yielding Claim 1.
Finally, since the endpoints of each segment are on the coarse grid, it follows

that h; w ≥ max{p; q} which implies Claim 2.

All previous lemmas hold without any restriction on the area of the correspond-
ing RAC drawing. We now refine Lemma 8.2 for the case where the drawing area
is quadratic.

Lemma 8.3. Let Γ be a RACb drawing of a graph G with n vertices and Ω(n2)
edges for b = O(1) with width w and height h in O(n2) area. In addition, let
si = p=q be the slope of segments in Si ∈ S for coprime integers p and q. Then

8.2. A FIRST LOWER BOUND FOR THE AREA OF RAC3 DRAWINGS 161

ω(n)

o(n)

(a)

ω(n)

o(n)

O(h)

(b)

Figure 8.3: If the drawing area is !(n)×o(n), either (a) the fine grid Fi is equal to
the coarse grid, or, (b) fine-horizontal grid lines intersect O(h2) = o(n2) fine-vertical
grid lines (red) each.

1. h; w ∈ Θ(n), and,

2. max{p; q} ∈ Θ(n).

Proof. Assume for a contradiction that h = o(n) which implies that w = !(n).
By Lemma 8.2,

1. max{p; q} ∈ Ω(n) or pq ∈ Ω(h2), and,

2. p; q ∈ O(h).

Due to Property 2, we observe that Property 1 can only be fulfilled by condition
pq = Ω(h2). Consider the fine grid Fi . If the fine-horizontal grid lines are indeed
horizontal, that is, p = 0, the fine and the coarse grid are identical; see Fig. 8.3a.
However, there are only O(n2) intersections in the coarse grid which is less than
Ω(n4), the number of intersections by the crossing lemma [7, 124].

Otherwise, p 6= 0. Because pq ∈ Ω(h2) and p; q ∈ O(h), it follows that
p; q ∈ Θ(h). Then, fine-horizonal grid lines have only length O(h) in the drawing
area and can only be intersected by Ω(h2) fine-vertical grid lines each; see Fig. 8.3b.
Since h = o(n), this yields o(n4) intersections in total as there are only Θ(n2) fine-
horizontal grid lines; a contradiction.

We conclude that our initial assumption h = o(n) was wrong and that therefore
h; w = Θ(n) which directly yields p; q ∈ Θ(n).

Next, we consider how the segments of S and T can be distributed on the
edges of G. For this purpose, consider sets Si ∈ S and Xj ∈ S ∪T where Xj = Sj
if it belongs to S; otherwise Xj = Tj . We denote by E[Si ; X̄j] the set of edges
with a segment from Si but no segment from Xj 6= Si . Moreover, we denote
by E[Si ; Xj] the set of edges with both a segment from Si and a segment from
Xj 6= Si . Similarly, we can define E[X̄j ; Ti] and E[Xj ; Ti], which only amounts to
renaming S and T . For an illustration refer to Fig. 8.4 where we color segments
from Si blue and segments from Ti red; a color scheme we will use throughout this
section. We will show that there are sets Si and Ti such that |E[Si ; Ti]| = Ω(n2)

162 CHAPTER 8. AREA BOUNDS FOR RAC≥ 3 DRAWINGS

(a) (b) (c) (d) (e)

Figure 8.4: (a)–(b) Edges belonging to E[Si ; Ti], (c) edge belonging to E[Si ; T̄i],
(d) edge belonging to E[S̄i ; Ti], and, (e) edge belonging to none of E[Si ; T̄i], E[S̄i ; Ti]
and E[Si ; Ti]. Segments belonging to Si are drawn blue, segments belonging to Ti
are drawn red.

if the drawing is a RAC3 drawing. First, we show an intermediate statement for
RACb drawings with constant b:

Lemma 8.4. Let Γ be a RACb drawing of a graph G with n vertices and Ω(n2)
edges for b = O(1). Then, in Γ, there is a pair of segment sets Si ∈ S and
Xj ∈ S ∪ T with |E[Si ; Xj]| = Ω(n2) or a pair of segment sets Ti ∈ T and
Xj ∈ S ∪ T with |E[Xj ; Ti]| = Ω(n2).

Proof. If |E[Si ; Xj]| = Ω(n2) for some Si ∈ S and Xj ∈ S ∪ T with i 6= j
or if |E[Xj ; Ti]| = Ω(n2) for some Ti ∈ T and Xj ∈ S ∪ T with i 6= j , the
lemma trivially holds. Thus, assume in the following that |E[Si ; Xj]| = o(n2) for
all pairs Si ∈ S and Xj ∈ S ∪ T with i 6= j and |E[Xj ; Ti]| = o(n2) for all
pairs Ti ∈ T and Xj ∈ S ∪ T with i 6= j . Assume for a contradiction that also
|E[Si ; Ti]| = o(n2) for all 1 ≤ i ≤ k . Then, for each i , set E[Si ; Ti] participates
in o(n4) intersections. Assume w.l.o.g. that |Ski=1 E[Si ; T̄i]| ≥ |

Sk
i=1 E[S̄i ; Ti]|

and consider the graph G ′ = G \ Ski=1 E[S̄i ; Ti]. Since |E[Si ; Xj]| = o(n2) for all
pairs Si ∈ S and Xj ∈ S ∪ T with i 6= j , G ′ still has Ω(n2) edges. Moreover,
there is a valid subdrawing Γ′ of G ′ in Γ. However, this subdrawing has only o(n4)
intersections, a contradiction to the crossing lemma [7, 124].

Until now we considered properties of RACb drawings for constant b. The
remaining results in this section will be specific for the case where b = 3. As a
first step, we will improve Lemma 8.4. To do so, we observe which segments can
actually belong to sets Si and Ti :

Observation 8.1. Each vertex can only be incident to two start segments of the
same slope. Thus, there are only O(n) start segments overall with the same slope.

Based on this observation, we can show the following:

Lemma 8.5. Let Γ be a RAC3 drawing of a graph G with n vertices and Ω(n2)
edges. Then, for i 6= j , it holds that |E[Si ; Xj]| = o(n2) and |E[Xj ; Ti]| = o(n2)
with Si ∈ S, Ti ∈ T and Xj ∈ S ∪ T .

Proof. Assume that |E[Si ; Tj]| = Ω(n2) for i 6= j . By Observation 8.1, for Ω(n2) of
the edges in E[Si ; Tj] the two middle segments belong to Si and Tj while the start

8.2. A FIRST LOWER BOUND FOR THE AREA OF RAC3 DRAWINGS 163

segments have different slopes. Let E ′[Si ; Tj] denote this set of edges. Consider
the start segments of E ′[Si ; Tj]. Let Pstart = {P1; : : : ; Pr} be a partitioning of
the start segments into maximal sets of parallel segments for some r = O(n2).
By Observation 8.5, each set P‘ ∈ Pstart has cardinality O(n) and hence there are
only O(n2) intersections between start segments. In addition, if there are segments
in Pstart that are perpendicular to Si or Tj , those are only O(n) segments which
form at most O(n2) intersections with middle segments from E ′[Si ; Tj].

Now consider the subgraph G ′ induced by E ′[Si ; Tj]. G ′ has Ω(n2) edges. Also,
drawing Γ contains a valid subdrawing Γ′ of G ′. However, since segments belonging
to Si and Tj are not perpendicular and may not intersect each other, its drawing Γ′

contains only the O(n3) intersections which involve start segments; a contradiction
to the crossing lemma [7, 124].

We summarize Lemmas 8.4 and 8.5 as follows:

Lemma 8.6. Let Γ be a RAC3 drawing of a graph G with n vertices and Ω(n2)
edges. Then, in Γ, there is a pair of segment sets Si ∈ S and Ti ∈ T with
|E[Si ; Ti]| = Ω(n2). More precisely, for sufficiently large n, |E[Si ; Ti]| ≥ cSTn2.

We now investigate which connections can be actually realized with edges
belonging to E[Si ; Ti] for a pair of perpendicular segment sets Si ∈ S and Ti ∈ T .
Let pi=qi be the slope of segments in Si for coprime integers pi and qi . Further,
let Ri be a checkerboard partitioning of the drawing area into axis-parallel square-
shaped disjoint regions of side length max{pi ; qi}=2.3 Note that there are O(1)
regions in Ri because max{pi ; qi} = Θ(n) and h; w = Θ(n) due to Lemma 8.3.
Due to the choice of the slope of segments in S, two consecutive integer points
hit by one segment from S are multiples of qi in horizontal and multiples of pi in
vertical direction apart from each other. Therefore, we observe the following:

Observation 8.2. Let s ∈ Si ∪ Ti . Then at most one endpoint of s is located
in any region R ∈ Ri . Moreover, if an endpoint of s is located in R ∈ Ri , s
intersects the boundary of R.

Recall Observation 8.1. Since there are only O(n) start segments that belong
to Si and Ti , there are O(n2) edges that have both a middle segment from Si and
a middle segment from Ti ; see Fig. 8.5a. In particular, we will consider the bends
that are not middle bends. We refer to bends that are incident to a start segment
and a middle segment from Si as an Si -endpoint; similarly, we call a bend incident
to a middle segment from Ti and a start segment as a Ti -endpoint; see the marked
bends in Fig. 8.5a. Since the segments from Si are perpendicular to the segments
from Ti , we observe the following:

3Observe that the regions at the boundary of the drawing may slightly extend beyond the
area.

164 CHAPTER 8. AREA BOUNDS FOR RAC≥ 3 DRAWINGS

Si Ti
u

v

(a)

R

(b)

R

tun+Si
(R)

(c)

Figure 8.5: (a) An edge (u; v) with middle segments belonging to a perpendicular
pair of edge segments Si ∈ S (blue) and Ti ∈ T (red). The Si -endpoint of (u; v) is
colored blue; the Ti -endpoint is colored red. (b) A region R and the contained bends
belonging to ep+

Si
(R) (green) and ep−Si (R) (red). (c) A region R and the contained

bends belonging to ep+
Si

(R) and the corresponding tunnel tun+
Si

(R).

Observation 8.3. Let e be an edge with middle segments from both Si and Ti .
Then the Si - and the Ti -endpoint of e are located in two disjoint regions of Ri .

Next, consider the set of Si -endpoints epSi (R) and the set of Ti -endpoints
epTi (R) inside a region R ∈ Ri independently. We partition set epSi (R) based
on whether the incident segment from Si intersects the boundary of R above or
below the Si -endpoint. We denote the corresponding sets by ep+

Si
(R) and ep−Si (R),

respectively; see Fig. 8.5b for an illustration. Analogously, we partition set epTi (R)
into sets ep+

Ti
(R) and ep−Ti (R).

By Observation 8.1, we know that most Si - and Ti -endpoints are incident to
start segments that do neither belong to Si nor to Ti . As a consequence, segments
belonging to Si and Ti form obstacles for most start segments incident to Si - and
Ti -endpoints within a region R. Based on this notion, we are next defining regions
that contain the vertices that have a visibility to most of the Si - and Ti -endpoints
inside R. For this purpose, first consider the Si -tunnel tunSi (R) which is the
minimal region bounded by two lines parallel to segments in Si which encloses R.
Moreover, we subdivide tunSi (R) into R, the part tun+

Si
(R) of tunSi (R) that is

located below R and the part tun−Si(R) of tunSi (R) that is located below R;
see Fig. 8.5c. The intuition behind these tunnels is as follows: All bends in set
ep+

Si
(R) are incident to a segment from Si that exits R in positive y -direction. As

a consequence, the part tun−Si(R) of the tunnel tunSi (R) above R is containing
many obstacles that may prevent vertices in tun−Si(R) to have a connection to
one of the bends in ep+

Si
(R). On the other hand, the second part tun+Si(R) may

be free of obstacles and thus contain many start segments incident to bends in
ep+

Si
(R). Analogously to tunSi (R), tun+

Si
(R) and tun−Si (R), we define tunTi (R),

tun+
Ti

(R) and tun−Ti (R).
The vertices incident to bends in ep+

Si
(R) may have a linear distance from region

R. In such a case, they may even be incident to many bends from ep+
Si

(R) if they
are located outside of tun+

Si
(R). We next quantify this effect and define a cone-

8.2. A FIRST LOWER BOUND FOR THE AREA OF RAC3 DRAWINGS 165

b

s`
sr

α`

αr

(a)

R
α`

αr
tun+Si

(R)

(b)

R

αr

αr

tun+Si
(R)

α`

(c)

Figure 8.6: (a) The S+
i -plausible positions for a bend b ∈ ep+

Si
(R) defined by a

wedge of angle ¸‘ + ¸r . (b)–(c) S+
i -plausible region plaus+

Si
(R) for two different

slopes of segments in Si .

shaped region of plausible positions in which vertices have visibility to many bends
from ep+

Si
(R). For discretization, we consider a set of slopes A = {p=q|p; q ∈

{−4; : : : ; 0; : : : ; 4}}. Let s‘ and sr denote the two slopes closest to the slope
pi=qi of segments in Si ; see Fig. 8.6a. Moreover, let ¸‘ as well as ¸r denote the
angle between slopes s‘ and pi=qi as well as between sr and pi=qi , respectively.
It is easy to see that 0 < ¸‘; ¸r < ı=4. Consider a bend b ∈ ep+

Si
(R). We

call the wedge delimited by two rays of slope s‘ and sr starting from b opposite
of the attached segment from Si the S+

i -plausible positions; see Fig. 8.6a. We
refer to the union of the S+

i -plausible regions of all bends in ep+
Si

(R) as the S+
i -

plausible region plaus+
Si

(R). Note that plaus+
Si

(R) consists of R, tun+
Si

(R) and
two attached wedges of angles ¸‘ and ¸r attached to the left and the right side of
tun+

Si
(R), respectively. Note that the two wedges may be attached to adjacent or

opposite corners depending on the slope of segments in Si ; see Figs. 8.6b and 8.6c,
respectively. Analogously, we define plaus−Si (R), plaus+

Ti
(R) and plaus−Ti (R). The

following lemma asserts that indeed most start segments incident to bends in
ep+

Si
(R) lead either to the plausible region plaus+

Si
(R) or to the opposite side of

the tunnel tun−Si (R). We will restrict the latter case afterwards.

Lemma 8.7. Let Γ be a RAC3 drawing of a graph G with n vertices and Ω(n2)
edges in O(n2) area and let R ∈ Ri be a region such that w.l.o.g. |ep+

Si
(R)| =

Ω(n2). Then, vertices outside of plaus+
Si

(R) ∪ tun−Si (R) have a visibility to O(n)
bends in ep+

Si
(R) in total.

Proof. We first recall Observation 8.1 and the fact that only segments from Ti
may intersect segments from Si : Since at most O(n) start segments belong to Ti ,
those can be neglected for the proof of the lemma and we focus our attention on
start segments that cannot intersect the segments from Si incident to bends in
ep+

Si
(R).
Consider a bend b ∈ ep+

Si
(R) and assume that the start segment incident to

b is connected to a vertex vb outside of plaus+
Si

(R) ∪ tun−Si (R). Assume w.l.o.g.

166 CHAPTER 8. AREA BOUNDS FOR RAC≥ 3 DRAWINGS

R
α`

Figure 8.7: Rays of slope s‘ attached to the set of bends B (green) that is visible
from outside plaus+

Si
(R) ∪ tun−Si (R). Non-visible S+

i -endpoints are colored red.

α`

αr
tun+Si

(R) α′
r

α′
`

R

R ′

tun+Ti
(R ′)

c1q c2p

c1p
c2q

Figure 8.8: A region R ∈ Ri and one of its neighbored regions R′ ∈ N (R).

that vb is located to the left of plaus+
Si

(R) ∪ tun−Si (R). Observe that the slope of
the start segment between b and vb diverges by at least ¸‘ from the slope pi=qi
of segments belonging to Si . Thus, if b is attached to vb, a ray of slope s‘ with
right endpoint b is not intersecting any other segment in Si ; in particular no other
segment in Si with an endpoint in ep+

Si
(R).

Consider the set of S+
i -endpoints B that admit such an intersection-free ray;

see Fig. 8.7. Observe that all rays are non-overlapping and parallel. Also note that
all rays hit at least one integer point inside R (the incident bend) and that the
slope s‘ ∈ A can be expressed as s‘ = p‘=q‘ for coprime integers p‘; q‘ ∈ O(1).
This implies that the minimum distance between two parallel rays is Ω(1). Because
region R has size O(n)×O(n), it can only contain O(n) parallel rays of slope s‘.
We conclude that |B| = O(n) and the proof follows.

Next, we consider a region R ∈ Ri and the set of its neighbored regions

8.2. A FIRST LOWER BOUND FOR THE AREA OF RAC3 DRAWINGS 167

R R ′vL

Figure 8.9: An L-tunnel L between two regions R ∈ Ri and R′ ∈ N (R) that
contains a vertex v .

N (R). Let c1 and c2 be two integers and let pi=qi be the slope of segments in
Si . Then, we say that the region R′ obtained by shifting R c1qi + c2pi units in
x-direction and c1pi−c2qi units in y -direction is a neighbored region; see Fig. 8.8.
Intuitively speaking, region R′ contains all Ti -endpoints that are part of edges that
have their Si -endpoints in R and whose middle segments are a segment from Si of
length |c1|

√
p2 + q2 and a segment from Ti of length |c2|

√
p2 + q2, respectively.

Observe that the projections of R contained in N (R) are not necessarily contained
in Ri while it is obviously still true that N (R) = Θ(1). Also recall that by
Observation 8.3, R and R′ are disjoint.

We assume in the following w.l.o.g. that c1; c2 > 0. This implies that the
edges with an Si -endpoint in R and a Ti -endpoint in R′ have two bends that
belong to ep+

Si
(R) and ep+

Ti
(R′), respectively. Consider a vertex v . We say that

v is an R-vertex if it has Ω(n) start segments incident to bends in ep+
Si

(R) but
only o(n) start segments incident to bends in ep+

Ti
(R′). Similarly, we say that v

is an R′-vertex if it has Ω(n) start segments incident to bends in ep+
Ti

(R′) but
only o(n) start segments incident to bends in ep+

Si
(R). Observe that v can be

neither R- nor R′-vertex. In the following we show that almost all edges with Si -
and Ti -endpoints in neighbored regions R and R′ induce a bipartite subgraph on
the two partitions defined by R- and R′-vertices. To do so, we consider edges
that are not connecting an R- and an R′-vertex which we refer to as odd edges.
The intuition behind odd edges is that these edges break the two-colorability of
the induced subgraph and thus bring the graph closer to a complete subgraph. In
particular, we make the following observation:

Observation 8.4. Let e be a odd edge. Then e is incident to (i) at least one
endpoint that is neither R- nor R′-vertex, or, (ii) at least one R-vertex with a start
segment incident to a bend in ep+

Ti
(R′) , or, (iii) at least one R′-vertex with a start

segment incident to a bend in ep+
Si

(R).

We refer to the special vertices discussed in Observation 8.4 as odd endpoints.
We will first consider how odd edges may be incident to odd endpoints that are
located in L-tunnels in the intersection of tun−Si (R) and tun−Ti (R

′). Then, in the

168 CHAPTER 8. AREA BOUNDS FOR RAC≥ 3 DRAWINGS

proof of Lemma 8.9, we will extend the statement to the general case. Consider a
vertex v in tun−Si (R)∩ tun−Ti (R

′). We say that v is located in an L-tunnel L if it is
located inside a region bounded by edges with Si -endpoint in R and Ti -endpoint in
R′ and the boundaries of R and R′; see Fig. 8.9. To be more precise, an L-tunnel is
a region that contains part of tun−Si (R)∩ tun−Ti (R

′) and is bounded from above by
a segment from Si and a segment from Ti , from below by an alternating sequence
of segments from Si and Ti , from the left by R and from the right by R′.

Lemma 8.8. Let Γ be a RAC3 drawing of a graph G with n vertices and Ω(n2)
edges in O(n2) area and let R ∈ Ri be a region such that w.l.o.g. |ep+

Si
(R)| =

Ω(n2) and let R′ ∈ N (R). Then, there are O(n) odd edges with a bend in
ep+

Si
(R) and ep+

Ti
(R′) such that one of their odd endpoints is in an L-tunnel in

tun−Si (R) ∩ tun−Ti (R
′),

Proof. First consider an odd endpoint v that is an R- or an R′-vertex: If v is the
only odd endpoint for a single edge, we can ignore it as it only contributes one
odd edge. Thus, there are only O(n) odd edges incident to endpoints with this
property. Hence, we assume in the following w.l.o.g. that odd endpoints have at
least two connections to ep+

Si
(R) and to ep+

Ti
(R′).

Assume w.l.o.g. that the slope of segments in Si is less than 1, otherwise a
symmetric argument can be applied. Then, the slope of segments in Ti is less
than −1. Due to the choice of the side lengths of regions in Ri , it follows, that
the intersection tun−Si (R)∩ tun−Ti (R

′) is located above R′. We now show that the
odd endpoints in L-tunnels in tun−Si (R)∩ tun−Ti (R

′) are incident to O(n) bends in
ep+

Ti
(R′).
Consider a vertex v in an L-tunnel located in tun−Si (R) ∩ tun−Ti (R

′). Let B(v)
denote the bends of ep+

Ti
(R′) that are endpoint of a start segment incident to v .

We partition B(v) into B(v)+ and B(v)−, that is, the set of bends b for which
v is located in the halfplane below and above the line that is the extension of the
segment from Ti incident to b, respectively.

We begin by considering two bends b and b′ belonging to B(v) for some vertex
v . We show that the y -coordinates of b and b′ differ if both b and b′ belong to
B+(v) or B−(v). Assume w.l.o.g. that the y -coordinate of b′ is at most as large
as the y -coordinate of b. First assume that b and b′ belong to B−(v). Since v is
located above R′, the slope of the two start segments is less than −1. We observe
that v can be incident to b′ only if b′ is located in a wedge W that is formed
by the elongations of the start segment through b and of the segment from Si
through b; see Figs. 8.10a and 8.10b. If this was not the case, either the segment
from Ti incident to b′ would intersect the start segment incident to b as shown in
Fig. 8.10a or the start segment incident to b′ would intersect the segment from Ti
incident to b as shown in Fig. 8.10b. We observe that the angle between the two
lines spanning W is less than ı which implies that no point in W has the same
y -coordinate as b. We can use an analogous argument for the case where both

8.2. A FIRST LOWER BOUND FOR THE AREA OF RAC3 DRAWINGS 169

R ′

W

b′

v

b

(a)

R ′
b

b′ W

v

(b)

R ′

v

b

b′ W

(c)

b
b′

W

v

R ′

(d)

Figure 8.10: Restriction of the position of a bend b′ incident to a vertex v to a
wedge W under the presence of a bend b incident to v . Note that the length of
segments and the size of region R′ are not to scale in the illustration for better
readability.

R ′

v

(a)

R ′v

(b)

Figure 8.11: (a) Edges belonging to B−(v) do not intersect at their middle seg-
ments. (b) Edges belonging to B+(v) pairwise intersect at their middle segments.
Note that the length of segments and the size of region R′ are not to scale in the
illustration for better readability.

bends are part of B+(v); see Figs. 8.10c and 8.10d. Note that in this case the
slope of start segments is still negative but not necessarily less than one. Since all
bends in B−(v) and B+(v), respectively, have distinct y -coordinates, we conclude
that B(v) = O(n).

Since all Si and Ti segments between R and R′ have the same lengths, we
observe that edges with bends in B−(v) do not intersect at their middle segments,
while the edges with bends in B+(v) do so in a pairwise fashion; see Fig. 8.11. We
now consider the dependencies between the bends incident to two odd endpoints
v and v ′ in L-tunnels in tun−Si (R) ∩ tun−Ti (R

′) where v and v ′ are neither R- nor
R′-vertex. We will prove that the bends in B±(v) have y -coordinates distinct from
those of bends in B±(v ′). We first consider B−(v) and B−(v ′). Let btop(v) and
btop(v ′) denote the topmost bend in B−(v) and B−(v ′), respectively. Similarly,
let bbot(v) and bbot(v ′) the bottommost bend in B−(v) and B−(v ′) respectively.
We consider three cases:

C.1 v and v ′ appear in different L-tunnels. Assume w.l.o.g. v ′ is located in
the half-plane below the segment from Ti through bbot(v). Since the start
segments incident to v ′ have negative slope, we conclude that btop(v ′) is
located below bbot(v); see Fig. 8.12a. Thus, the y -coordinates of bends in

170 CHAPTER 8. AREA BOUNDS FOR RAC≥ 3 DRAWINGS

R ′

v

v ′

bbot(v)

btop(v
′)

(a)

v ′v

bbot(v)

btop(v
′)

R ′

(b)

b1
Z R ′

v ′

btop(v
′)

b2

v

(c)

R ′

v

v ′

bbot(v
′)

btop(v)

(d)

bbot(v)

btop(v
′)

R ′v ′v

(e)

Figure 8.12: (a)–(c) Illustration for the proof that bends in B−(v) and B−(v ′)
have distinct y -coordinates. (d)–(e) Illustration for the proof that bends in B+(v)
and B+(v ′) have distinct y -coordinates. Note that the length of segments and the
size of region R′ are not to scale in the illustration for better readability.

B−(v) and B−(v ′) are distinct.

C.2 v and v ′ appear in the same L-tunnel. Assume w.l.o.g. that btop(v ′) is
located in a wedge W strictly below bbot(v) delimited by the elongation of
the segment from Ti through bbot(v); see Fig. 8.12b. This is true since v ′

does not belong to R′ (and hence to W) due to the choice of the side length
of R′. Thus, the y -coordinates of bends in B−(v) and B−(v ′) are distinct.

C.3 v ′ is located between the segments from Ti incident to b1; b2 ∈ B−(v). Then,
the bends in B−(v) are restricted to a region Z which is bounded by two lines
of the slopes of Si and Ti that pass through b1, a Ti -segment which is incident
to b2 and the start segment incident to b2 as well as the boundary of R′; see
Fig. 8.12c. We observe that all points in Z have smaller y -coordinate than b1

and larger y -coordinate than b2, that is, the y -coordinates of bends in B−(v)
and B−(v ′) are distinct.

We point out that the line parallel to segments in Si is part of the boundary
of Z as otherwise the segment from Ti incident to a bend in B−(v ′) would
intersect the segment from Si belonging to the edge involving b1. Then, the
L-tunnel of v ′ would be intersected so that only a start segment incident to
v ′ that belongs to Ti could connect to bends in ep+

Si
(R). But then, v ′ would

be an R′-vertex that can only be incident to one bend in ep+
Si

(R) which is the
first case we ruled out in the proof of the lemma.

8.2. A FIRST LOWER BOUND FOR THE AREA OF RAC3 DRAWINGS 171

The analysis for the case where B+(v) and B+(v ′) are considered is analogous;
see Figs. 8.12d and 8.12e for the corresponding illustrations. We point out that
Case C.3 is trivially covered in this scenario, since the edges involving two bends
from B+(v) intersect and hence immediately make v ′ an R′-vertex that can only
be incident to one bend in ep+

Si
(R).

We conclude that the y -coordinates of bends in
S
v B
−(v) and

S
v B

+(v) are
distinct which implies that |Sv B±(v)| = O(n) and hence |Sv B(v)| = O(n).
The discussion for ep+

Si
(R) is analogously.

We now summarize the partial results from Lemmas 8.7 and 8.8.

Lemma 8.9. Let Γ be a RAC3 drawing of a graph G with n vertices and Ω(n2)
edges in O(n2) area and let R ∈ Ri be a region such that w.l.o.g. |ep+

Si
(R)| =

Ω(n2) and let R′ ∈ N (R). Then, there are O(n) odd edges with a bend in ep+
Si

(R)
and ep+

Ti
(R′).

Proof. Assume that tun−Si (R) is delimited by the elongation of two segments from
Si incident to bends in ep+

Si
(R). Otherwise, R can be restricted to a smaller

region that fulfills the property. Further, assume for a contradiction that there are
!(n) odd edges with endpoints in ep+

Si
(R) and ep+

Ti
(R′). By Lemma 8.8, the odd

endpoints of only O(n) of those odd edges are located in L-tunnels in tun−Si (R)∩
tun−Ti (R

′). Note that tun−Si (R) is bounded by two segments of Si , while tun−Ti (R
′)

is bounded by two segments of Ti . Hence, all remaining odd endpoints are located
outside plaus+

Si
(R) ∪ tun−Si (R) or outside of plaus+

Ti
(R′) ∪ tun−Ti (R

′). According
to Lemma 8.7, there are only O(n) bends in ep+

Si
(R) and ep+

Ti
(R′) that are visible

from outside of plaus+
Si

(R) ∪ tun−Si (R) and plaus+
Ti

(R′) ∪ tun−Ti (R
′), respectively.

Thus there must be odd endpoints which are located in plaus+
Si

(R)∩ plaus+
Ti

(R′).
This leads to a contradiction since plaus+

Si
(R) ∩ plaus+

Ti
(R′) = ∅.

Intuitively speaking, Lemma 8.9 states that the graph induced by the edges with
middle segments from Si and Ti between regions R and R′ is a bipartite graph with
the exception of the O(n) odd edges. Therefore, the subgraph induced by edges
between R and all neighbored regions N (R) is an almost p-partite subgraph for
some constant p. Assuming that we have a drawing of Kn, this stands in contrast
to the fact that the drawing is of the complete graph where all R-vertices must be
pairwise connected. In the proof of the main theorem of this section, we achieve
a contradiction based on these observations:

Theorem 8.2. For sufficiently large n, there is no RAC3 drawing of Kn in O(n2)
area.

Proof. Assume for a contradiction that there is a RAC3 drawing Γ of Kn in O(n2)
area for each value of n ∈ N. In the following, we describe an iterative procedure
that identifies a complete subgraph G ′ with Ω(n) vertices whose subdrawing Γ′ of

172 CHAPTER 8. AREA BOUNDS FOR RAC≥ 3 DRAWINGS

Γ is drawn with o(n2) edges belonging to E[Si ; Ti] for each pair of perpendicular
sets of edge segments Si ∈ S and Ti ∈ T . Clearly, such a subdrawing Γ′ violates
Lemma 8.6 which leads to a contradiction for sufficiently large values of n.

Let cST denote the multiplicative constant from Lemma 8.6 and let G ′ =
(V ′; V ′×V ′). We compute G ′ iteratively and initialize it with G. We consider each
of the constantly many pairs of segments Si ∈ S and Ti ∈ T with |E[Si ; Ti]| ≥
cSTn

2 as follows.
Let pi=qi be the slope of segments in Si for coprime integers pi and qi . Consider

the checkerboard partitioning Ri of the drawing area into disjoint regions of side
lengths max{|pi |; |qi |}=2. Then, consider each of the constantly many regions
R ∈ Ri and each of the neighbored regions R′ ∈ N (R). Note that the number of
regions R and R′ over all pairs of sets Si and Ti is a constant ncomb.

We iteratively perform the following procedure as long as there are at least
cST |V ′|2 edges with a bend in epSi (R) and epTi (R

′) for some i , a region R ∈
Ri and a neighbored region R′ ∈ N (R). Let VR denote the set of R-vertices
for region R and let VR′ denote the set of R′-vertices for region R′. Assume
w.l.o.g. that |VR| ≥ |VR′ |. By Lemma 8.9, there are only O(n) odd edges, say
at most codd |V ′|. Recall that vertices that are not incident to Ω(n) bends, say
at least cR|V ∗|, in epSi (R) and epTi (R

′) each, are R- or R′-vertices in the graph
G∗ = (V ∗; E∗ × E∗) that is obtained at the end of our iterative procedure. Thus,
there are only 2 codd |V

′|
cR|V ∗|

= O(1) vertices which are incident to a linear number
of bends in epSi (R) and epTi (R

′) each. Thus, |VR| = Ω(n); more precisely,
|VR| ≥ (|V ′| − 2 codd |V

′|
cR|V ∗|

)=2. We set G ′ as (VR; VR × VR). Note that G ′ now only
contains coddncomb|V | = O(n) = O(|V ′|) edges that are drawn with both a bend
in epSi (R) and epTi (R

′) since there are only ncomb combinations that have to
be considered. Afterwards, we continue with the next iteration. Observe that in
consecutive iterations, for the same combination of i , R ∈ Ri and R′ ∈ N (R)
in future iterations there are less than cST |V ′|2 edges with a bend in epSi (R) and
epTi (R

′) for sufficiently large n as there are only ncomb combinations that have to
be considered.

After performing all iterations of the procedure, there are less than cST |V ′|2
edges with a bend in epSi (R) and epTi (R

′) for all i , R ∈ Ri and R′ ∈ N (R).
Hence, Γ′ contradicts Lemma 8.6 according to which |E[Si ; Ti]| ≥ cST |V ′|2 for
sufficiently large n.

We remark that the proofs of Lemmas 8.3 and 8.7–8.9 explicitly assume
quadratic area. We point out that some of the proofs cannot be directly transferred
to drawings in O(n2+") area even for small " > 0. The result from Theorem 8.1
may be regarded as a relaxation in this direction. On the other hand, the proofs of
Lemmas 8.5–8.9 assume three bends per edge. In the following section, we con-
sider RAC drawings with slightly more bends per edge to achieve quadratic area.
Finally, the concept of odd edges plays a critical role in the proof of Theorem 8.2.

8.3. AREA OPTIMAL RAC8 DRAWINGS 173

In Section 8.4, we will investigate the restriction to p-partite graphs which can be
drawn without any odd edges.

8.3 Area Optimal RAC8 Drawings

In this section, we show that the required area for polyline RAC drawings is Θ(n2)
by demonstrating how to draw Kn in O(n2) area. The corresponding lower bound
comes from the fact that the complete graph has Ω(n2) edges. We achieve our
result with just eight bends per edge, leaving only a gap of four bends per edge
between our positive result and Theorem 8.2.

Theorem 8.3. Let G be a simple graph with n vertices. Then, G admits a RAC8

drawing in O(n2) area.

Proof. We describe how to produce a drawing of Kn in O(n2) area for odd values
of n; a corresponding drawing for even n is a subdrawing of the drawing of Kn+1.
Figure 8.13 shows the drawing of K5 obtained by our construction. The general
idea of our construction is as follows: Vertices and start segments are located in
the vertex area so that the bends of start segments can be connected to another
segment with a slope s that is slightly less than 1; see Fig. 8.13b. We treat edges
to be composed of two half-edges which are routed to the matching area with a
sequence of segments whose slopes alternate between s and −1=s; see Fig. 8.13a.
The matching area then contains the last bends of the two half-edges which we
refer to as matching bends and a planar matching between those bends realized
by so-called matching segments. A half-edge is associated with one endpoint of
its corresponding edge as indicated by the coloring in Fig. 8.13, where bends of
half-edges are colored in the same color as their associated endpoint. Since these
segments are either parallel or perpendicular, we achieve that intersections occur
at right angles. Moreover, half-edges may end in the top left half of the matching
area or in the bottom right half. Finally, in the matching area, we planarly match
one bend of an half-edge in the top left half with one bend of another half-edge
in the bottom right half; see Fig. 8.13c.

Let (v0; : : : ; vn−1) be an arbitrary ordering of the vertices. Vertex vi is placed
at (i ;−i); see Fig. 8.13b. Consider the half-edges {e0

i ; : : : ; e
n−2
i } associated with

vi and their corresponding start segments. We place the bend of the start segment
of e ji at (i + j + 1; j − i); see Fig. 8.13b. Note that all start segment bends of
vertex vi are located on a diagonal di of slope 1 and that the corresponding start
segments are entirely located in the halfplane above di . Moreover, vertex vi−1 is
located in the halfplane below di and thus start segments are intersection-free. We
observe that the start segment bends are located within a rectangle that is rotated
by ı=4; see Fig. 8.13b.

The routing from vertex area to matching area is done by sequences of segments
of slopes s and −1=s where s = (2n − 1)=2n. In particular, consider the smallest

174 CHAPTER 8. AREA BOUNDS FOR RAC≥ 3 DRAWINGS

Vertex Area

M
atching

Area

(a)

(b)

(c)

Figure 8.13: A RAC3 drawing of K5 produced by the algorithm in the proof of
Theorem 8.3 in 55×47 area. Vertices are drawn as circles and bends as squares. The
bends of half-edges are colored according to their associated endpoint. (a) Overview
of the drawing, (b) zoom into vertex area, (c) zoom into matching area.

rectangle R rotated by ı=4 that contains all start segment bends. By attaching
a segment of slope s to each bend in R, the next integer points used by these
segments are located outside of R. This procedure allows to create “copies” of R
and its contained bends at k · 2n horizontal and k · (2n − 1) vertical distance for
some k ∈ N. The same can be done with segments of slope −1=s. In addition,
recall that the bends of start segments of vi are located on diagonal di of slope 1.
Since s is slightly less than 1, the new segments do not intersect start segments;
see Fig. 8.13b. Similarly, since −1=s is slightly less than −1, the bends in the
top left half of the matching area are accessible from the bottom right without
intersections, while the bends in the bottom right half are accessible from the top
left; see Fig. 8.13c. The bends of edges are defined more precisely as follows.
Consider half-edge e ji . Recall that the first bend is at (i + j + 1; j − i). If e ji
is routed to the top left half of the matching area, the remaining bends are at
(2n + i + j + 1; 2n + j − i − 1) and (4n + i + j; j − i − 1). Otherwise, e ji is
routed to the bottom right half of the matching area and its remaining bends
are at (4n + i + j + 1; 4n + j − i − 2), (10n + i + j − 2;−2n + j − i − 2),
(8n + i + j − 2;−4n + j − i − 1) and (6n + i + j;−2n + j − i − 1). Note that
(4n+ i + j; j− i−1) is the position of the potential bend in the top left half of the
matching area whereas (6n+ i + j;−2n+ j − i − 1) is the position of the potential
bend in the bottom right half. In the following we refer to these bends as top-left

8.3. AREA OPTIMAL RAC8 DRAWINGS 175

e00

e01

e0n−1

...

...

...

...
e10

e11

e1n−1

en−2
0

en−2
1

en−2
n−1

(a)

1 times
span 1

2 times
span 2

3 times
span 3

4 times
span 4

e00 e01 e02 e03 e04 e10 e11 e12 e13 e14 e20 e21 e22 e23 e24 e30 e31 e32 e33 e34

(b)

Figure 8.14: Matching between matching bends in the matching region. (a) Ac-
cessability of matching bends, and, (b) matching assignment for n = 5 as it is used
in Fig. 8.13.

and bottom-right matching bends, respectively.
Before we discuss how to connect bends in the matching area intersection-free

such that all pairs of vertices are adjacent, we discuss the area. The leftmost
x-coordinate is 0 for vertex v0 while the rightmost x-coordinate is 12n − 5 for a
bend of en−2

n−1 . The bottommost y -coordinate is −5n for a bend of e0
n−1 while the

topmost y -coordinate is 5n − 4 for a bend of en−2
0 . Thus the drawing fits in area

(12n − 5)× (10n − 3).
It remains to discuss how to connect matching bends with so-called matching

segments. To this end, first consider how the matching bends are accessible from
the opposite half of the matching area. The first accessible matching bend belongs
to half-edge e0

0 , followed by a matching bend belonging to e0
1 . This pattern repeats

until all e0
i are encountered, in increasing order of i ; see Fig. 8.14a. Note that

each of those matching bends is connected to a different vertex as indicated by
the coloring in Fig. 8.14a. After all e0

i , the matching bends of half-edges all e1
i

are encountered, again in increasing order of i . This pattern repeats for half-edges
e ji in increasing order of j until all matching bends have been encountered; see
Fig. 8.14a.

Based on the ordering defined by the accessibility of matching bends, we de-
fine a matching assignment between top-left and bottom-right matching bends.
First, observe that the orderings of top-left and bottom-right matching bends are

176 CHAPTER 8. AREA BOUNDS FOR RAC≥ 3 DRAWINGS

identical. To define the matching, we make use of the notion of a span. The span
of an edge is equal to the distance of its endpoints in a total ordering. For the
matching, we first connect the first bottom right matching bend with the second
top left matching bend. This edge has span one. Then, we connect the next two
bottom right matching bends with the subsequent two top-left matching bends.
The resulting two edges have span two. We repeat this pattern, creating k edges
of span k for all values 1 ≤ k ≤ n − 1; see Fig. 8.14b for the case where n = 5.

In the following, we show that this matching creates a connection between
every pair of vertices. The matching contains exactly k edges of span k for all
values of 1 ≤ k ≤ n − 1. Moreover, for k ≤ (n − 1)=2, we observe that edges
of span k and span n − k behave similarly: A segment of span k connects the
bottom right matching bend incident to vertex vi to the top left matching bend
of vertex v(i+k) mod n. On the other hand, a segment of span n − k connects the
top left matching bend of vertex vi with the bottom right matching bend of vertex
v(i−(n−k)) mod n = v(i+k) mod n. Hence, it remains to show that the bottom right
matching bends incident to matching segments of span k are connected to differ-
ent vertices than the top left matching bends incident to matching bends of span
n−k for all 1 ≤ k ≤ (n−1)=2. For this, we apply an inductive argument. Clearly,
the claim is true when k = 1. Now assume, that for k all such matching bends are
connected to distinct vertices. Let vi be the vertex connected to the first bottom
right matching bend incident to matching segments of span k and let vj be the
vertex connected to the first top left matching bend incident to matching segments
of span n− k . Clearly, the last bottom right matching bend incident to matching
segments of span k is incident to vertex v(i+k) mod n. Conversely, the last bottom
right matching bend incident to matching segments of span k is incident to vertex
v(j+n−k) mod n = v(j−k) mod n. Since all matching bends are incident to distinct
vertices, it follows that j = (i + 1) mod n. Now consider the matching segments
of span k+1 and n−k−1. The bottom right matching bends incident to edges of
span k are connected to vertices v(i+1) mod n; : : : ; v(i+k+2) mod n while the top left
matching bends incident to matching segments of span n−k−1 are connected to
vertices v(j−1) mod n; : : : ; v(j−1−(n−k−1)) mod n = v(j−1) mod n; : : : ; v(j+k−n) mod n =
v(i) mod n; : : : ; v(i−(n−k−1)) mod n. Thus, all connected vertices are distinct as re-
quired.

It remains to show that the (straight-line) matching segments are indeed planar.
First note that the span of matching segments is bounded by n − 1. Hence,
the bottom right matching bend of half-edge e ji will be matched with a top left
matching bend of some half-edge e‘k such that ‘ ∈ {j; j + 1}. Let d tlj denote the
diagonal of slope −1 passing through the top left matching bends of half-edges
e ji and let dbrj denote the diagonal of slope −1 passing through the bottom right
matching bends of half-edges e ji . Observe that d tlj is located in between dbrj and
dbrj+1 such that the distance to both dbrj and dbrj+1 is the same; see Fig. 8.15. In
order to prove that matching segments are planar, we show that the line through

8.3. AREA OPTIMAL RAC8 DRAWINGS 177

e j0
e j1

e jn−1

e j0
e j1

e jn−1

e j+1
0

e j+1
1

e j+1
n−1

e j+1
0

e j+1
1

e j+1
n−1

Figure 8.15: A matching segment connecting bends of half-edges e ji and e j+1
k

occurs in the gray shaded area.

the top left matching bend of e j+1
0 and through the bottom right matching bend

of e j0 intersects d tlj to the right of the top left matching bend of e jn−1; see crosses
in Fig. 8.15. Note that a symmetric argument holds for the intersection of the
line through the top left matching bend of e j+1

n−1 and through the bottom right
matching bend of e jn−1 with dbrj+1 and the bottom right matching bend of e j+1

0 .

Recall that the top left matching bend of e j+1
0 is located at (4n+ j+ 1; j) while

the bottom right matching bend of e j0 is located at (6n + j − 1;−2n + j − 1).
Hence the line through both bends has slope −(2n + 1)=(2n − 2). It is possible
to compute its line equation:

y =
2n + 1

2n − 2
x +

8n2 + 4nj + 6n − j + 1

2n − 2
: (8.1)

In addition, d tlj has slope −1 and passes through the top left matching bend of
e jn−1 located at (5n + j − 1;−n + j). We can compute its line equation:

y = −x + 4n + j + 1: (8.2)

With Eqs. (8.1) and (8.2), we can compute the x-coordinate of the intersection
point of both lines which is x = 16

3
n + j − 1

3
. This is to the right of e jn−1 which is

located at x = 5n + j − 1 as claimed. We conclude that the drawing is indeed a
RAC8 drawing because there are three bends on half-edges routed to the top left
half of the matching area and five bends on half-edges routed to the bottom right
half.

178 CHAPTER 8. AREA BOUNDS FOR RAC≥ 3 DRAWINGS

Figure 8.16: A RAC3 drawing of K3;3;3 produced by the algorithm in the proof
of Theorem 8.4 in 46 × 28 area. Vertices are drawn as circles, bends of edges as
squares.

8.4 Area Optimal RAC3 Drawings of p-partite
Graphs

In this section, we shift our attention to the class of p-partite graphs, that is,
the graphs whose vertices can be partitioned into p sets such that there exists no
edge between a pair of vertices from the same set. In the restricted setting where
p = O(1), we will improve upon our results from Section 8.1 and Section 8.3 and
show how to compute a RAC3 drawing in O(n2) area. We also point out that the
class of p-partite graphs is a natural candidate for such an improvement since our
negative result in Theorem 8.2 relied on finding a suitably large clique in the graph
that cannot be realized while a clique in a p-partite graph consists of at most p
vertices.

Theorem 8.4. Let G be a simple p-partite graph with n vertices. Then, G admits
a RAC3 drawing in O(n2p4) area.

Proof. We describe a drawing for K(np)p , that is, the complete p-partite graph with
np vertices in each partition. If G has partitions of different sizes, we augment G
to K(np)p where np is the number of vertices in the largest partition of G. Then, it
holds that np < n and pnp ≥ n. Figure 8.16 shows an example drawing of K3;3;3

obtained by our construction that we will discuss in the following.

8.4. AREA OPTIMAL RAC3 DRAWINGS OF P-PARTITE GRAPHS 179

We enumerate the partitions arbitrarily from 0 to p − 1. Let (v j0; : : : ; v
j
np−1)

be an arbitrary ordering of the vertices of partition j with 0 ≤ j ≤ p − 1. Vertex
v ji is positioned at (2pnpj + 2npj − j; 2i − j); see circles in Fig. 8.16. Consider an
edge e = (v ji ; v

‘
k) such that j < ‘. We draw e as a sequence of segments with the

following three bends:

(i) The bend directly incident to v ji is at (2pnpj+np‘+npj+k− i− j+ 1; np‘−
npj + i + k − j); see green squares in Fig. 8.16. We also refer to this bend
as a right bend of v ji .

(ii) The middle bend is at (pnp‘+pnpj+np‘+npj+k− i− j+ 1; pnp‘−pnpj+
np‘− npj + i + k − ‘); see yellow squares in Fig. 8.16.

(iii) The bend directly incident to v ‘k is at (2pnp‘+np‘+npj+k− i−‘+ 1; np‘−
npj + i + k − ‘)); see red squares in Fig. 8.16. We also refer to this bend as
a left bend of v ‘k .

Clearly, the leftmost x-coordinate assigned is 0 for vertices of partition 0, while
the rightmost x coordinate is p2np − 2np − p + 1 for vertices of partition p − 1.
On the other hand, the bottommost assigned y -coordinate is −p + 1 for vertex
vp−1

0 while the topmost assigned y -coordinate is p2np + np − p− 1 for the middle
bend of edge (v 0

np−1; v
p−1
np−1). Since as discussed before, np < n, it follows that the

total required area is O(n2p4).
Hence, it remains to discuss that the drawing is indeed a RAC drawing. We first

observe that all middle segments have slope (pnp−1)=pnp or slope−pnp=(pnp−1);
see the segments between green and yellow or yellow and red bends, respectively.
We conclude that all proper intersections of middle segments are at right angles.
In the following, we show that these intersections are indeed the only intersections.

We start by considering the start regions of two partitions j and ‘ > j ; see
the gray shaded areas in Fig. 8.16. The rightmost start segment bend incident
to a vertex in partition j has x-coordinate 2pnpj + pnp + npj − j and belongs to
edge (v j0; v

p−1
np−1). On the other hand, the leftmost start segment bend incident to

a vertex in partition ‘ belongs to edge (v 0
np−1; v

‘
0) and has x-coordinate 2pnp‘ +

np‘− np − ‘+ 2 ≥ 2pnpj + 2pnp + npj − j + 1 since ‘ ≥ j + 1. Thus, the leftmost
x-coordinate of a start segment bend incident to a vertex in partition ‘ is at least
pnp + 1 larger than the rightmost x-coordinate of a start segment bend incident
to a vertex in partition j and start regions from different partitions are disjoint.

We now show that the start segments incident to vertex v ji are intersection-free.
We first observe that all right bends of v ji are located on a common diagonal dr (v

j
i)

of slope 1 while the left bends of v ji are located on a common diagonal d‘(v
j
i) of

slope −1.; see the green and red bends in Fig. 8.17, respectively. By construction,
vertex v ji is located on the intersection of the diagonal d ′‘(v

j
i) one unit below d‘(v

j
i)

and of the diagonal d ′r (v
j
i) one unit above dr (v

j
i); see dashed-dotted diagonals in

180 CHAPTER 8. AREA BOUNDS FOR RAC≥ 3 DRAWINGS

Figure 8.17: Detail of the start area of the middle partition in Fig. 8.16.

Fig. 8.17. As a result the start segments connecting v ji to its right bends are
located in the half plane above dr (v

j
i), while the start segments connecting v ji to

its left bends are located in the half plane below d‘(v
j
i). In addition, v ji has a

vertical distance of at least two to vertex v jk with k 6= i in the same partition.
Therefore, their incident start segments do not intersect each other; see Fig. 8.17.
Finally, the right bends of v ji are connected to a middle segment of slope slightly
less than 1. Similarly, the left bends of v ji are connected to a middle segment of
slope slightly less −1. Hence, there is no intersection between the start segments
of v ji and these middle segments; see Fig. 8.17. Moreover, since the slope of
middle segments incident to right and left bends is almost 1 and −1, respectively,
they also will only intersect the diagonals d ′r (v

j
k) and d ′‘(v

j
k) of another vertex v jk

at least pnp−1 units to the right and left, respectively. Moreover diagonals dr (v
j
k)

and d‘(v
j
k) of v jk are intersected at least 2(pnp − 1) units to the right and left,

respectively, and thus the middle segments incident to start segment bends of v ji
will not intersect the start segments of v jk .

It remains to show that start segments of a partition j cannot be intersected
by a middle segment incident to a start segment bend of partition ‘ 6= j . We
show this statement by proving that in the range of the x-coordinates covered by
the start region of partition j , all middle segments incident to a start segment
bend of partition ‘ are above the start region of partition j . The topmost y -
coordinate of a right bend in j occurs on edge (v jnp−1; v

p
np−1) and is equal to

pnp − npj + 2np − j − 2. Conversely, the topmost y -coordinate of a left bend in j
occurs on edge (v 0

np−1; v
j
np−1) and is equal to npj + 2np − j − 2. We conclude that

the topmost y -coordinate of any start segment bend is at most pnp + 2np− j − 2.
First, consider the case where ‘ > j . More precisely, we assume that ‘ = j + 1

since the middle segments of partitions ‘′ > ‘ are located above those of partition
‘. The horizontal distance between partitions j and ‘ is at least pnp + 1. At the
leftmost x-coordinate belonging to the start region of partition ‘, we encounter
the left bend of edge (v 0

np−1; v
‘
0) which has y -coordinate np‘ + np − ‘ − 1 =

npj + 2np − j − 2. Conversely, if we continue k units in positive x-direction, we
have a minimum distance of pnp + 1 + k towards partition j and encounter a
left bend with y -coordinate npj + 2np − j − 2 − k . Since the slope of middle

8.4. AREA OPTIMAL RAC3 DRAWINGS OF P-PARTITE GRAPHS 181

segments incident to left bends is −pnp=(pnp − 1), we conclude that any such
middle segment has y -coordinate at least (pnp+1+k)· pnp

pnp−1
+npj+2np−j−2−k >

pnp + k + npj + 2np − j − 2− k = pnp + npj + 2np − j − 2 which is larger than
pnp + 2np − j − 2.

Second, consider the case where ‘ < j . More precisely, we assume that ‘ = j−1
since the middle segments of partitions ‘′ < ‘ are located above those of partition
‘. The horizontal distance between partitions j and ‘ is at least pnp + 1. At the
rightmost x-coordinate belonging to the start region of partition ‘, we encounter
the right bend of edge (v ‘0; v

p−1
np−1) which has y -coordinate pnp−np‘+np− ‘−2 =

pnp−npj + 2np− j −1. Conversely, if we continue k units in negative x-direction,
we have a minimum distance of pnp + 1 + k towards partition j and encounter
a left bend with y -coordinate pnp − npj + 2np − j − 1 − k . Since the slope of
middle segments incident to left bends is (pnp − 1)=pnp, we conclude that any
such middle segment has y -coordinate at least (pnp + 1 + k) · pnp−1

pnp
+pnp−npj +

2np − j − 1− k = 2pnp − npj + 2np − j − 2 +−k=pnp. Since k < jnp, we have
that 2pnp − npj + 2np − j − 2 +−k=pnp > 2pnp − npj + 2np − j − 2 +−j=p. In
addition, j ≤ (p − 1) and we conclude that 2pnp − npj + 2np − j − 2 +−j=p >
pnp + 3np − j − 2− (p − 1)(p) which is larger than pnp + 2np − j − 2.

Finally, we conclude that no two middle segments overlap. Middle segments
incident to start segment bends of the same partition do not overlap by construc-
tion, while we showed that middle segments do not pass through start regions of
other partitions which would be the case if two middle segments of two different
partitions overlapped.

We remark that the class of k-planar graphs is a subclass of the Θ(
√
k)-partite

graphs [137]. Using Theorem 8.4, we obtain the following result for k-planar
graphs:

Corollary 8.1. Let G be a k-planar graph with n vertices. Then, G admits a (not
necessarily k-planar) RAC3 drawing in O(n2k2) area.

In particular, note that when applying the construction in the proof of Theo-
rem 8.4, the resulting drawing may be Ω(n)-planar even if the input is a k-planar
graph. For instance, if two vertices in the same color class have degree Ω(n), their
incident edges will form Ω(n2) intersections.

182 CHAPTER 8. AREA BOUNDS FOR RAC≥ 3 DRAWINGS

Chapter 9

Conclusions

In this thesis, we made contributions to the literature that discusses several drawing
styles which extend beyond the traditional principles employed in graph drawing.
The results presented in this thesis may be regarded as typical for present day
graph drawing research. In this chapter, we summarize our results and state some
related open problems.

Beyond orthogonal drawings. In Part I, we considered two extensions of the
widely used orthogonal graph drawing model: smooth orthogonal and octilinear
drawings. Morever, we initiated the study of orthogonal drawings beyond planarity.

More precisely, in Chapter 3, we continued the study on smooth orthogonal
and octilinear drawings of planar graphs. We showed that the class of graphs
admitting a planar smooth orthogonal drawing of curve complexity one and the
class of graphs admitting a planar octilinear drawing of curve complexity one are
incomparable. With previous results, this classifies the relationships between the
classes of graphs admitting planar drawings in either model. We also proved that it
is NP-hard to decide whether a given smooth orthogonal or octilinear representation
of a graph of maximum degree four admits a realizable drawing. Curiously, this
problem is analogous to the Metrics step in the Topology-Shape-Metrics framework
of orthogonal graph drawing which is known to be polynomial time-solvable. Here,
an interesting open problem is to study, whether a similar result holds when the
input is an embedded graph instead of a representation. We conjecture that
NP-hardness still holds in this setting, however, it appears to be difficult to find
suitably rigid gadgets for a reduction as the maximum degree is four. Finally, we
provided algorithms for computing bi-monotone smooth orthogonal and octilinear
Kandinsky drawings with curve complexity two for triangulations. In particular, in
the smooth orthogonal model, we also tried to ensure that many edges are drawn
with one single segment. Generalizing this result for non-triangulated planar graphs
and improving the aspect ratio and how many edges can be drawn with a single
segment are future research directions to obtain high quality graph drawings that

183

184 CHAPTER 9. CONCLUSIONS

can be used in practical applications. Moreover, it may be worthwhile to verify the
presumably good readability of smooth orthogonal drawings in a user study.

In Chapter 4, we extended the study on orthogonal and smooth orthogonal
drawings to 1-planar graphs of maximum degree four. We studied both the gen-
eral 1-planar and outer-1-planar setting and proved upper and lower bounds for the
required curve complexity of embedding preserving drawings. For the general 1-
planar setting we showed that there is always an OC4-drawing and an SC3-drawing
in quadratic and cubic area, respectively. In the outer-1-planar setting we showed
that OC3-drawings and SC2-drawings are always achievable in quadratic and ex-
ponential area, respectively. We also provided lower bound constructions that
showed that with one exception all of our curve complexity results are tight; we
leave the question whether SC3 is required for some embedded 1-planar graph as
an open problem. Moreover, most of our upper bound results assumed biconnec-
tivity. While it seems likely that they can be generalized to the simply connected
case, we leave this as a future research direction. Another natural question arising
from our results is whether outer-1-planar graphs admit an embedding preserving
SC2-layout in polynomial area. Moreover, while we already investigated outer-1-
planar graphs, other meaningful subclasses like triconnected 1-planar or IC-planar
graphs are of interest. Finally, the main open problem posed by this chapter is
whether similar results can be achieved for other beyond planar graph classes such
as 2-planar graphs. In particular, such embedding preserving algorithms for more
complex beyond planar graph classes may prove useful in several applications.

Beyond stack layouts. In Part II, we considered two graph drawing models
closely related to stack layouts of graphs, namely, queue layouts and arc diagrams.
While many results exist for stack layouts of planar graphs in the literature, we
made significant progress in understanding queue layouts for this graph class. We
also investigated down-up monotone arc diagrams which can be seen as an exten-
sion of 2-page stack layouts.

More precisely, in Chapter 5, we proved that the queue number of the class of
planar graphs of bounded degree is bounded by a constant. This result partially
answers a long-standing conjecture by Heath, Leighton and Rosenberg and also
stands in contrast to general bounded degree graphs for which the queue num-
ber cannot be bounded by a constant. Moreover, we showed how to compute a
queue layout achieving our bound in polynomial time. This result has interesting
implications, most notably, it implies that bounded degree planar graphs admit 3D
straight-line drawings in linear volume. In the meanwhile, the most natural open
problem has been settled: Namely, it was shown that the queue number of all
planar graphs is at most 49 [76]. The gap to the best known lower bound of 4
for the queue number of planar graphs [8] is however still significant. Most likely,
new concepts are required for closing the gap. As an intermediate step, it may be
worthwhile to investigate so-called mixed linear layouts in which the edges assigned

185

to some pages do not nest (queue pages) while the edges assigned to some other
pages do not intersect (stack pages). Recently, it was shown that not all planar
graphs admit a mixed layout with one stack and one queue page [139]. It may be
worthwhile to try to achieve a mixed layout with at most three stack pages and less
than 49 queue pages for every planar graph. From a practical point of view, queue
layouts are especially important in 3D graph drawing. In this context, however,
queue layouts are used to create track layouts which in turn are converted to the
3D graph drawing. Hence, efficient layout algorithms that directly produce track
layouts may improve the quality of the resulting drawing.

In Chapter 6, we considered down-up monotone arc diagrams of planar graphs.
We showed that in this setting 15=16n−O(1) biarcs are sufficient, which is the first
upper bound of form c ·n−O(1) for c < 1. The analysis of our algorithm relied on
amortized analysis and in fact only few cases were tight regarding the allocation of
credits. Hence, it seems likely that a further refinement is possible to improve upon
our result. In addition, we gave a SAT formulation for computing arc diagrams
with a given upper bound of biarcs. While we performed some experiments with
our implementation mainly focusing on Kleetopes which are graphs with many
separating triangles, it remains open whether there exists a graph that requires
strictly more biarcs in any of its monotone arc diagrams compared to its non-
monotone arc diagram with the fewest biarcs. Nevertheless, our SAT formulation
could be a useful tool in narrowing the gap between upper and lower bound.

Beyond planar drawings. In Part III, we considered polyline RAC drawings
which are a well-known type of beyond planar drawings. Specifically, we made a
contribution towards closing the few remaining gaps on the density in the literature
and we presented new results on the required area of RAC drawings of dense graphs.

More precisely, in Chapter 7, we showed that the maximum edge density of
RAC1 graphs is 5:5n −O(1) which is tight up to an additive constant. We leave
finding the correct additive constant as an open problem; in particular, our lower
bound construction suggests that some of the 3-planar graphs of maximum edge
density may be RAC1 graphs. In addition, we proved that the class of simple RAC1

graphs, that is graphs that admit a simple RAC1 drawing, has a maximum edge
density of at most 5:4n− 10:8 while we also gave a lower bound construction with
5n− 10 edges. Narrowing this gap is an interesting research question and we con-
jecture that indeed the maximum edge density of simple RAC1 graphs is 5n−10. A
starting point for this line of research could be the observation that the planariza-
tion of a simple RAC1 graph does not contain any lenses which play an important
role in the proof of the upper bound. The maximum edge density of RAC2 graphs
is another open problem; the best known upper and lower bounds in the literature
have a gap of approximately 67n. We also point out two interesting properties
of our lower bound constructions: First, the area required by the drawings in our
lower bound proofs is exponential and hence it may be worthwhile to investigate

186 CHAPTER 9. CONCLUSIONS

whether the same density results hold for RAC1 graphs that admit RAC1 drawings
in polynomial area. Second, our two lower bound constructions are closely related
to the known 2- and 3-planar graphs of maximum edge density. Thus, investigat-
ing the relationship between RAC1 and 3-planar graphs as well as between simple
RAC1 and 2-planar graphs may be of interest. Finally, for both RAC1 and RAC2

graphs the characterization and recognition problems are not settled yet; especially
the recognition could also prove useful in practical applications.

In Chapter 8, we investigated the area requirement of RAC drawings of general
graphs. We improved the best known upper bound for the area of RAC3 drawings
from O(n4) to O(n3) area. At the same time, this result improves upon a known
algorithm which achieves RAC4 drawings in O(n3) area. We complemented this
result by showing that Kn does not admit a RAC3 drawing in O(n2) area for
sufficiently large n. A future direction of research will be to close this gap, we
believe that our lower bound proof may be generalized to yield a better bound.
We then showed that in two relaxations quadratic area can be achieved. Namely,
every graph admits a RAC8 drawing in O(n2) area, while for p-partite graphs with
constant p, even a RAC3 drawing is possible. We state the question how many
bends are sufficient to guarantee the existence of a RAC drawing in quadratic
area as an open question. Moreover, our upper bound constructions result in non-
simple drawings. Thus, it may be worthwhile to consider also the area requirement
of simple RAC drawings. Finally, we also emphasize that our algorithms should
rather be regarded as proofs of concept. For practical applications, algorithms
must take into account other parameters next to area and curve complexity to
provide easy-to-read quadratic area RAC drawings.

Bibliography

[1] B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and
G. Salazar. Shellable drawings and the cylindrical crossing number of Kn.
Discret. Comput. Geom., 52(4):743–753, 2014.

[2] E. Ackerman. On the maximum number of edges in topological graphs with
no four pairwise crossing edges. Discret. Comput. Geom., 41(3):365–375,
2009.

[3] E. Ackerman. On topological graphs with at most four crossings per edge.
Comput. Geom., 85, 2019.

[4] E. Ackerman, B. Keszegh, and M. Vizer. On the size of planarly connected
crossing graphs. J. Graph Algorithms Appl., 22(1):11–22, 2018.

[5] E. Ackerman and G. Tardos. On the maximum number of edges in quasi-
planar graphs. J. Comb. Theory, Ser. A, 114(3):563–571, 2007.

[6] P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir. Quasi-planar
graphs have a linear number of edges. Combinatorica, 17(1):1–9, 1997.

[7] M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi. Crossing-free sub-
graphs. North-Holland Mathematics Studies, 60(C):9–12, Jan. 1982.

[8] J. M. Alam, M. A. Bekos, M. Gronemann, M. Kaufmann, and S. Pupyrev.
Queue layouts of planar 3-trees. In T. C. Biedl and A. Kerren, editors,
Graph Drawing and Network Visualization - 26th International Symposium,
GD 2018, Barcelona, Spain, September 26-28, 2018, Proceedings, volume
11282 of Lecture Notes in Computer Science, pages 213–226. Springer, 2018.

[9] M. J. Alam, M. A. Bekos, M. Kaufmann, P. Kindermann, S. G. Kobourov,
and A. Wolff. Smooth orthogonal drawings of planar graphs. In A. Pardo
and A. Viola, editors, LATIN 2014: Theoretical Informatics - 11th Latin
American Symposium, Montevideo, Uruguay, March 31 - April 4, 2014.
Proceedings, volume 8392 of Lecture Notes in Computer Science, pages
144–155. Springer, 2014.

187

188 BIBLIOGRAPHY

[10] M. J. Alam, F. J. Brandenburg, and S. G. Kobourov. Straight-line grid
drawings of 3-connected 1-planar graphs. In S. K. Wismath and A. Wolff,
editors, Graph Drawing - 21st International Symposium, GD 2013, Bordeaux,
France, September 23-25, 2013, Revised Selected Papers, volume 8242 of
Lecture Notes in Computer Science, pages 83–94. Springer, 2013.

[11] P. Angelini, M. A. Bekos, H. Förster, and M. Gronemann. Bitonic st-
orderings for upward planar graphs: The variable embedding setting. In
Proceedings of the 46th International Workshop on Graph-Theoretic Con-
cepts in Computer Science, 2020. To be published.

[12] P. Angelini, M. A. Bekos, H. Förster, and M. Kaufmann. On RAC drawings
of graphs with one bend per edge. Theoretical Computer Science, 2020.

[13] P. Angelini, M. A. Bekos, M. Kaufmann, M. Pfister, and T. Ueckerdt.
Beyond-planarity: Turán-type results for non-planar bipartite graphs. In
W. Hsu, D. Lee, and C. Liao, editors, 29th International Symposium on
Algorithms and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi,
Yilan, Taiwan, volume 123 of LIPIcs, pages 28:1–28:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

[14] P. Angelini, L. Cittadini, W. Didimo, F. Frati, G. Di Battista, M. Kauf-
mann, and A. Symvonis. On the perspectives opened by right angle crossing
drawings. J. Graph Algorithms Appl., 15(1):53–78, 2011.

[15] P. Angelini, D. Eppstein, F. Frati, M. Kaufmann, S. Lazard, T. Mchedlidze,
M. Teillaud, and A. Wolff. Universal point sets for drawing planar graphs
with circular arcs. J. Graph Algorithms Appl., 18(3):313–324, 2014.

[16] P. Angelini, H. Förster, M. Hoffmann, M. Kaufmann, S. G. Kobourov, G. Li-
otta, and M. Patrignani. The QuaSEFE problem. In D. Archambault and
C. D. Tóth, editors, Graph Drawing and Network Visualization - 27th Inter-
national Symposium, GD 2019, Prague, Czech Republic, September 17-20,
2019, Proceedings, volume 11904 of Lecture Notes in Computer Science,
pages 268–275. Springer, 2019.

[17] E. N. Argyriou, M. A. Bekos, and A. Symvonis. The straight-line RAC
drawing problem is NP-hard. J. Graph Algorithms Appl., 16(2):569–597,
2012.

[18] E. N. Argyriou, S. Cornelsen, H. Förster, M. Kaufmann, M. Nöllenburg,
Y. Okamoto, C. N. Raftopoulou, and A. Wolff. Orthogonal and smooth
orthogonal layouts of 1-planar graphs with low edge complexity. In T. C.
Biedl and A. Kerren, editors, Graph Drawing and Network Visualization -

BIBLIOGRAPHY 189

26th International Symposium, GD 2018, Barcelona, Spain, September 26-
28, 2018, Proceedings, volume 11282 of Lecture Notes in Computer Science,
pages 509–523. Springer, 2018.

[19] K. Arikushi, R. Fulek, B. Keszegh, F. Moric, and C. D. Tóth. Graphs that
admit right angle crossing drawings. Comput. Geom., 45(4):169–177, 2012.

[20] C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, K. Hanauer,
D. Neuwirth, and J. Reislhuber. Outer 1-planar graphs. Algorithmica,
74(4):1293–1320, 2016.

[21] C. Bachmaier, F. J. Brandenburg, K. Hanauer, D. Neuwirth, and J. Reisl-
huber. NIC-planar graphs. Discret. Appl. Math., 232:23–40, 2017.

[22] S. W. Bae, J. Baffier, J. Chun, P. Eades, K. Eickmeyer, L. Grilli, S. Hong,
M. Korman, F. Montecchiani, I. Rutter, and C. D. Tóth. Gap-planar graphs.
Theor. Comput. Sci., 745:36–52, 2018.

[23] M. J. Bannister, W. E. Devanny, V. Dujmović, D. Eppstein, and D. R.
Wood. Track layouts, layered path decompositions, and leveled planarity.
Algorithmica, 81(4):1561–1583, 2019.

[24] M. A. Bekos, W. Didimo, G. Liotta, S. Mehrabi, and F. Montecchiani. On
RAC drawings of 1-planar graphs. Theor. Comput. Sci., 689:48–57, 2017.

[25] M. A. Bekos, H. Förster, M. Gronemann, T. Mchedlidze, F. Montecchiani,
C. N. Raftopoulou, and T. Ueckerdt. Planar graphs of bounded degree have
bounded queue number. SIAM J. Comput., 48(5):1487–1502, 2019.

[26] M. A. Bekos, H. Förster, and M. Kaufmann. On smooth orthogonal and
octilinear drawings: Relations, complexity and Kandinsky drawings. Algo-
rithmica, 81(5):2046–2071, 2019.

[27] M. A. Bekos, H. Förster, C. Geckeler, L. Holländer, M. Kaufmann, A. M.
Spallek, and J. Splett. A Heuristic Approach Towards Drawings of Graphs
With High Crossing Resolution. The Computer Journal, 11 2019.

[28] M. A. Bekos, M. Gronemann, M. Kaufmann, and R. Krug. Planar octilinear
drawings with one bend per edge. J. Graph Algorithms Appl., 19(2):657–680,
2015.

[29] M. A. Bekos, M. Gronemann, S. Pupyrev, and C. N. Raftopoulou. Perfect
smooth orthogonal drawings. In N. G. Bourbakis, G. A. Tsihrintzis, and
M. Virvou, editors, 5th International Conference on Information, Intelligence,
Systems and Applications, IISA 2014, Chania, Crete, Greece, July 7-9, 2014,
pages 76–81. IEEE, 2014.

190 BIBLIOGRAPHY

[30] M. A. Bekos, M. Kaufmann, F. Klute, S. Pupyrev, C. N. Raftopoulou, and
T. Ueckerdt. Four pages are indeed necessary for planar graphs. CoRR,
abs/2004.07630, 2020.

[31] M. A. Bekos, M. Kaufmann, S. G. Kobourov, and A. Symvonis. Smooth
orthogonal layouts. J. Graph Algorithms Appl., 17(5):575–595, 2013.

[32] M. A. Bekos, M. Kaufmann, and R. Krug. Sloggy drawings of graphs. In
N. G. Bourbakis, G. A. Tsihrintzis, and M. Virvou, editors, 5th Interna-
tional Conference on Information, Intelligence, Systems and Applications,
IISA 2014, Chania, Crete, Greece, July 7-9, 2014, pages 82–87. IEEE, 2014.

[33] M. A. Bekos, M. Kaufmann, and R. Krug. Sloginsky drawings of graphs.
In N. G. Bourbakis, G. A. Tsihrintzis, and M. Virvou, editors, 6th Interna-
tional Conference on Information, Intelligence, Systems and Applications,
IISA 2015, Corfu, Greece, July 6-8, 2015, pages 1–6. IEEE, 2015.

[34] M. A. Bekos, M. Kaufmann, and R. Krug. On the total number of bends
for planar octilinear drawings. J. Graph Algorithms Appl., 21(4):709–730,
2017.

[35] M. A. Bekos, M. Kaufmann, R. Krug, T. Ludwig, S. Näher, and V. Roselli.
Slanted orthogonal drawings: Model, algorithms and evaluations. J. Graph
Algorithms Appl., 18(3):459–489, 2014.

[36] M. A. Bekos, M. Kaufmann, R. Krug, and M. Siebenhaller. The effect of
almost-empty faces on planar Kandinsky drawings. In E. Bampis, editor,
Experimental Algorithms - 14th International Symposium, SEA 2015, Paris,
France, June 29 - July 1, 2015, Proceedings, volume 9125 of Lecture Notes
in Computer Science, pages 352–364. Springer, 2015.

[37] M. A. Bekos, M. Kaufmann, and C. N. Raftopoulou. On the density of non-
simple 3-planar graphs. In Y. Hu and M. Nöllenburg, editors, Graph Draw-
ing and Network Visualization - 24th International Symposium, GD 2016,
Athens, Greece, September 19-21, 2016, Revised Selected Papers, volume
9801 of Lecture Notes in Computer Science, pages 344–356. Springer, 2016.

[38] M. A. Bekos, M. Kaufmann, and C. N. Raftopoulou. On optimal 2- and
3-planar graphs. In B. Aronov and M. J. Katz, editors, 33rd International
Symposium on Computational Geometry, SoCG 2017, July 4-7, 2017, Bris-
bane, Australia, volume 77 of LIPIcs, pages 16:1–16:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

[39] M. A. Bekos, M. Kaufmann, and C. Zielke. The book embedding problem
from a SAT-solving perspective. In E. D. Giacomo and A. Lubiw, editors,
Graph Drawing and Network Visualization - 23rd International Symposium,

BIBLIOGRAPHY 191

GD 2015, Los Angeles, CA, USA, September 24-26, 2015, Revised Selected
Papers, volume 9411 of Lecture Notes in Computer Science, pages 125–138.
Springer, 2015.

[40] F. Bernhart and P. C. Kainen. The book thickness of a graph. J. Comb.
Theory, Ser. B, 27(3):320–331, 1979.

[41] P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal
drawings with the minimum number of bends. IEEE Trans. Computers,
49(8):826–840, 2000.

[42] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Schedul-
ing tree-dags using FIFO queues: A control-memory trade-off. J. Parallel
Distributed Comput., 33(1):55–68, 1996.

[43] T. C. Biedl and G. Kant. A better heuristic for orthogonal graph drawings.
Comput. Geom., 9(3):159–180, 1998.

[44] T. Bläsius, M. Krug, I. Rutter, and D. Wagner. Orthogonal graph drawing
with flexibility constraints. Algorithmica, 68(4):859–885, 2014.

[45] T. Bläsius, S. Lehmann, and I. Rutter. Orthogonal graph drawing with
inflexible edges. Comput. Geom., 55:26–40, 2016.

[46] O. V. Borodin. On acyclic colorings of planar graphs. Discret. Math., 306(10-
11):953–972, 2006.

[47] F. J. Brandenburg. 1-visibility representations of 1-planar graphs. J. Graph
Algorithms Appl., 18(3):421–438, 2014.

[48] F. J. Brandenburg, W. Didimo, W. S. Evans, P. Kindermann, G. Liotta,
and F. Montecchiani. Recognizing and drawing IC-planar graphs. Theor.
Comput. Sci., 636:1–16, 2016.

[49] G. Brinkmann and B. D. McKay. Fast generation of some classes of planar
graphs. Electron. Notes Discret. Math., 3:28–31, 1999.

[50] C. Buchheim, M. Chimani, C. Gutwenger, M. Jünger, and P. Mutzel. Cross-
ings and planarization. In R. Tamassia, editor, Handbook on Graph Drawing
and Visualization, pages 43–85. Chapman and Hall/CRC, 2013.

[51] J. Cardinal, M. Hoffmann, V. Kusters, C. D. Tóth, and M. Wettstein. Arc
diagrams, flip distances, and Hamiltonian triangulations. Comput. Geom.,
68:206–225, 2018.

[52] S. Chaplick, H. Förster, M. Hoffmann, and M. Kaufmann. Monotone arc di-
agrams with few biarcs. CoRR, abs/2003.05332, 2020. An extended abstract
has been presented at EuroCG 2020.

192 BIBLIOGRAPHY

[53] S. Chaplick, H. Förster, M. Kryven, and A. Wolff. On arrangements of
orthogonal circles. In D. Archambault and C. D. Tóth, editors, Graph
Drawing and Network Visualization - 27th International Symposium, GD
2019, Prague, Czech Republic, September 17-20, 2019, Proceedings, vol-
ume 11904 of Lecture Notes in Computer Science, pages 216–229. Springer,
2019.

[54] S. Chaplick, H. Förster, M. Kryven, and A. Wolff. Drawing graphs with
circular arcs and right-angle crossings. In S. Albers, editor, 17th Scandinavian
Symposium and Workshops on Algorithm Theory, SWAT 2020, June 22-24,
2020, Tórshavn, Faroe Islands, volume 162 of LIPIcs, pages 21:1–21:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[55] S. Chaplick, F. Lipp, A. Wolff, and J. Zink. Compact drawings of 1-planar
graphs with right-angle crossings and few bends. Comput. Geom., 84:50–68,
2019.

[56] O. Cheong, S. Har-Peled, H. Kim, and H. Kim. On the number of edges of
fan-crossing free graphs. Algorithmica, 73(4):673–695, 2015.

[57] F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Diogenes: a method-
ology for designing fault-tolerant VLSI processor arrays. In Proceedings of
the Thirteenth Fault-Tolerant Computer Symposium, 1983.

[58] F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Embedding graphs
in books: A layout problem with applications to VLSI design. SIAM Journal
on Algebraic Discrete Methods, 8(1):33–58, 1987.

[59] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book
Company, 2001.

[60] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a
grid. Combinatorica, 10(1):41–51, 1990.

[61] H. R. Dehkordi and P. Eades. Every outer-1-plane graph has a right angle
crossing drawing. Int. J. Comput. Geometry Appl., 22(6):543–558, 2012.

[62] G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Orthogonal
and quasi-upward drawings with vertices of prescribed size. In J. Kratochvíl,
editor, Graph Drawing, 7th International Symposium, GD’99, Stirín Cas-
tle, Czech Republic, September 1999, Proceedings, volume 1731 of Lecture
Notes in Computer Science, pages 297–310. Springer, 1999.

[63] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

BIBLIOGRAPHY 193

[64] E. Di Giacomo, W. Didimo, P. Eades, and G. Liotta. 2-layer right angle
crossing drawings. Algorithmica, 68(4):954–997, 2014.

[65] E. Di Giacomo, W. Didimo, and G. Liotta. Spine and radial drawings. In
R. Tamassia, editor, Handbook on Graph Drawing and Visualization, pages
247–284. Chapman and Hall/CRC, 2013.

[66] E. Di Giacomo, W. Didimo, G. Liotta, and H. Meijer. Area, curve complexity,
and crossing resolution of non-planar graph drawings. Theory Comput. Syst.,
49(3):565–575, 2011.

[67] E. Di Giacomo, W. Didimo, G. Liotta, and S. K. Wismath. Curve-constrained
drawings of planar graphs. Comput. Geom., 30(1):1–23, 2005.

[68] E. Di Giacomo, G. Liotta, and H. Meijer. Computing straight-line 3D grid
drawings of graphs in linear volume. Comput. Geom., 32(1):26–58, 2005.

[69] E. Di Giacomo, G. Liotta, and F. Montecchiani. The planar slope number of
subcubic graphs. In A. Pardo and A. Viola, editors, LATIN 2014: Theoretical
Informatics - 11th Latin American Symposium, Montevideo, Uruguay, March
31 - April 4, 2014. Proceedings, volume 8392 of Lecture Notes in Computer
Science, pages 132–143. Springer, 2014.

[70] W. Didimo, P. Eades, and G. Liotta. A characterization of complete bipartite
RAC graphs. Inf. Process. Lett., 110(16):687–691, 2010.

[71] W. Didimo, P. Eades, and G. Liotta. Drawing graphs with right angle cross-
ings. Theor. Comput. Sci., 412(39):5156–5166, 2011.

[72] W. Didimo, G. Liotta, and F. Montecchiani. A survey on graph drawing
beyond planarity. ACM Comput. Surv., 52(1):4:1–4:37, 2019.

[73] W. Didimo, G. Liotta, and M. Patrignani. On the complexity of HV-
rectilinear planarity testing. In C. A. Duncan and A. Symvonis, editors,
Graph Drawing - 22nd International Symposium, GD 2014, Würzburg, Ger-
many, September 24-26, 2014, Revised Selected Papers, volume 8871 of
Lecture Notes in Computer Science, pages 343–354. Springer, 2014.

[74] R. Diestel. Graph Theory, 5th Edition, volume 173 of Graduate texts in
mathematics. Springer, 2017.

[75] V. Dujmović and F. Frati. Stack and queue layouts via layered separators.
J. Graph Algorithms Appl., 22(1):89–99, 2018.

[76] V. Dujmović, G. Joret, P. Micek, P. Morin, T. Ueckerdt, and D. R. Wood.
Planar graphs have bounded queue-number. In D. Zuckerman, editor, 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,

194 BIBLIOGRAPHY

Baltimore, Maryland, USA, November 9-12, 2019, pages 862–875. IEEE
Computer Society, 2019.

[77] V. Dujmović, P. Morin, and D. R. Wood. Path-width and three-dimensional
straight-line grid drawings of graphs. In S. G. Kobourov and M. T. Goodrich,
editors, Graph Drawing, 10th International Symposium, GD 2002, Irvine, CA,
USA, August 26-28, 2002, Revised Papers, volume 2528 of Lecture Notes
in Computer Science, pages 42–53. Springer, 2002.

[78] V. Dujmović, P. Morin, and D. R. Wood. Layout of graphs with bounded
tree-width. SIAM J. Comput., 34(3):553–579, 2005.

[79] V. Dujmović, A. Pór, and D. R. Wood. Track layouts of graphs. Discret.
Math. Theor. Comput. Sci., 6(2):497–522, 2004.

[80] V. Dujmović and D. R. Wood. Three-dimensional grid drawings with sub-
quadratic volume. In G. Liotta, editor, Graph Drawing, 11th International
Symposium, GD 2003, Perugia, Italy, September 21-24, 2003, Revised Pa-
pers, volume 2912 of Lecture Notes in Computer Science, pages 190–201.
Springer, 2003.

[81] V. Dujmović and D. R. Wood. Stacks, queues and tracks: Layouts of graph
subdivisions. Discret. Math. Theor. Comput. Sci., 7(1):155–202, 2005.

[82] C. A. Duncan, D. Eppstein, M. T. Goodrich, S. G. Kobourov, and M. Nöllen-
burg. Lombardi drawings of graphs. J. Graph Algorithms Appl., 16(1):85–
108, 2012.

[83] S. Durocher, S. Felsner, S. Mehrabi, and D. Mondal. Drawing HV-restricted
planar graphs. In A. Pardo and A. Viola, editors, LATIN 2014: Theoretical
Informatics - 11th Latin American Symposium, Montevideo, Uruguay, March
31 - April 4, 2014. Proceedings, volume 8392 of Lecture Notes in Computer
Science, pages 156–167. Springer, 2014.

[84] P. Eades and G. Liotta. Right angle crossing graphs and 1-planarity. Discret.
Appl. Math., 161(7-8):961–969, 2013.

[85] R. B. Eggleton. Rectilinear drawings of graphs. Utilitas Math., 29:149–172,
1986.

[86] D. Eppstein. Planar Lombardi drawings for subcubic graphs. In W. Didimo
and M. Patrignani, editors, Graph Drawing - 20th International Symposium,
GD 2012, Redmond, WA, USA, September 19-21, 2012, Revised Selected
Papers, volume 7704 of Lecture Notes in Computer Science, pages 126–137.
Springer, 2012.

BIBLIOGRAPHY 195

[87] L. Euler. Demonstratio nonnullarum insignium proprietatum, quibus solida
hedris planis inclusa sunt praedita. Novi Commentarii academiae scientiarum
Petropolitanae, 4:140–160, 1758.

[88] L. Euler. Elementa doctrinae solidorum. Novi Commentarii academiae sci-
entiarum Petropolitanae, 4:109–140, 1758.

[89] H. Everett, S. Lazard, G. Liotta, and S. K. Wismath. Universal sets of
n points for one-bend drawings of planar graphs with n vertices. Discret.
Comput. Geom., 43(2):272–288, 2010.

[90] S. Felsner. Geometric Graphs and Arrangements - Some Chapters from Com-
binatorial Geometry. Advanced lectures in mathematics. Vieweg+Teubner,
2004.

[91] S. Felsner, G. Liotta, and S. K. Wismath. Straight-line drawings on re-
stricted integer grids in two and three dimensions. J. Graph Algorithms
Appl., 7(4):363–398, 2003.

[92] H. J. Fleischner, D. P. Geller, and F. Harary. Outerplanar graphs and weak
duals. The Journal of the Indian Mathematical Society, 38(1-4):215–219,
1974.

[93] H. Förster, R. Ganian, F. Klute, and M. Nöllenburg. On strict (outer-
)confluent graphs. In D. Archambault and C. D. Tóth, editors, Graph
Drawing and Network Visualization - 27th International Symposium, GD
2019, Prague, Czech Republic, September 17-20, 2019, Proceedings, vol-
ume 11904 of Lecture Notes in Computer Science, pages 147–161. Springer,
2019.

[94] H. Förster and M. Kaufmann. On compact RAC drawings. In ESA 2020,
volume 173. LIPIcs, 2020. To be published. The results also have been
announced in a poster at GD2019.

[95] U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low
bend numbers. In F. Brandenburg, editor, Graph Drawing, Symposium on
Graph Drawing, GD ’95, Passau, Germany, September 20-22, 1995, Proceed-
ings, volume 1027 of Lecture Notes in Computer Science, pages 254–266.
Springer, 1995.

[96] U. Fößmeier and M. Kaufmann. Algorithms and area bounds for nonplanar
orthogonal drawings. In G. D. Battista, editor, Graph Drawing, 5th Interna-
tional Symposium, GD ’97, Rome, Italy, September 18-20, 1997, Proceed-
ings, volume 1353 of Lecture Notes in Computer Science, pages 134–145.
Springer, 1997.

196 BIBLIOGRAPHY

[97] J. Fox, J. Pach, and A. Suk. The number of edges in k-quasi-planar graphs.
SIAM J. Discrete Math., 27(1):550–561, 2013.

[98] J. L. Ganley. Stack and queue layouts of Halin graphs, 1995. http://www.
ganley.org/pubs/Halin.pdf. Unpublished.

[99] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[100] A. Garg and R. Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM J. Comput., 31(2):601–625, 2001.

[101] A. Grigoriev and H. L. Bodlaender. Algorithms for graphs embeddable with
few crossings per edge. Algorithmica, 49(1):1–11, 2007.

[102] M. Gronemann. Bitonic st-orderings of biconnected planar graphs. In C. A.
Duncan and A. Symvonis, editors, Graph Drawing - 22nd International Sym-
posium, GD 2014, Würzburg, Germany, September 24-26, 2014, Revised
Selected Papers, volume 8871 of Lecture Notes in Computer Science, pages
162–173. Springer, 2014.

[103] B. Grünbaum. Convex Polytopes. Interscience, Wiley, London, 1967.

[104] C. Gutwenger and P. Mutzel. Planar polyline drawings with good angular
resolution. In S. Whitesides, editor, Graph Drawing, 6th International Sym-
posium, GD’98, Montréal, Canada, August 1998, Proceedings, volume 1547
of Lecture Notes in Computer Science, pages 167–182. Springer, 1998.

[105] F. Harary and A. J. Schwenk. The number of caterpillars. Discret. Math.,
6(4):359–365, 1973.

[106] D. Harel and M. Sardas. An algorithm for straight-line drawing of planar
graphs. Algorithmica, 20(2):119–135, 1998.

[107] L. S. Heath, F. T. Leighton, and A. L. Rosenberg. Comparing queues
and stacks as mechanisms for laying out graphs. SIAM J. Discrete Math.,
5(3):398–412, 1992.

[108] L. S. Heath and A. L. Rosenberg. Laying out graphs using queues. SIAM J.
Comput., 21(5):927–958, 1992.

[109] S. Hong, P. Eades, N. Katoh, G. Liotta, P. Schweitzer, and Y. Suzuki. A
linear-time algorithm for testing outer-1-planarity. Algorithmica, 72(4):1033–
1054, 2015.

[110] S. Hong, D. Merrick, and H. A. D. do Nascimento. Automatic visualisation
of metro maps. J. Vis. Lang. Comput., 17(3):203–224, 2006.

http://www.ganley.org/pubs/Halin.pdf
http://www.ganley.org/pubs/Halin.pdf

BIBLIOGRAPHY 197

[111] S. Hong and H. Nagamochi. A linear-time algorithm for testing full outer-
2-planarity. Discret. Appl. Math., 255:234–257, 2019.

[112] S.-H. Hong, P. Eades, G. Liotta, and S.-H. Poon. Fáry’s theorem for 1-planar
graphs. In J. Gudmundsson, J. Mestre, and T. Viglas, editors, Computing
and Combinatorics, pages 335–346, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[113] W. Huang. Using eye tracking to investigate graph layout effects. In S. Hong
and K. Ma, editors, APVIS 2007, 6th International Asia-Pacific Symposium
on Visualization 2007, Sydney, Australia, 5-7 February 2007, pages 97–100.
IEEE Computer Society, 2007.

[114] W. Huang, P. Eades, and S. Hong. A graph reading behavior: Geodesic-
path tendency. In P. Eades, T. Ertl, and H. Shen, editors, IEEE Pacific
Visualization Symposium PacificVis 2009, Beijing, China, April 20-23, 2009,
pages 137–144. IEEE Computer Society, 2009.

[115] W. Huang, P. Eades, and S. Hong. Larger crossing angles make graphs
easier to read. J. Vis. Lang. Comput., 25(4):452–465, 2014.

[116] G. Kant. Hexagonal grid drawings. In E. W. Mayr, editor, Graph-Theoretic
Concepts in Computer Science, 18th International Workshop, WG ’92,
Wiesbaden-Naurod, Germany, June 19-20, 1992, Proceedings, volume 657
of Lecture Notes in Computer Science, pages 263–276. Springer, 1992.

[117] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
16(1):4–32, 1996.

[118] M. Kaufmann and T. Ueckerdt. The density of fan-planar graphs. CoRR,
abs/1403.6184, 2014.

[119] M. Kaufmann and D. Wagner, editors. Drawing Graphs, Methods and Mod-
els (the book grow out of a Dagstuhl Seminar, April 1999), volume 2025 of
Lecture Notes in Computer Science. Springer, 2001.

[120] M. Kaufmann and R. Wiese. Embedding vertices at points: Few bends
suffice for planar graphs. J. Graph Algorithms Appl., 6(1):115–129, 2002.

[121] B. Keszegh, J. Pach, and D. Pálvölgyi. Drawing planar graphs of bounded
degree with few slopes. SIAM J. Discrete Math., 27(2):1171–1183, 2013.

[122] P. Kindermann, F. Montecchiani, L. Schlipf, and A. Schulz. Drawing sub-
cubic 1-planar graphs with few bends, few slopes, and large angles. In T. C.
Biedl and A. Kerren, editors, Graph Drawing and Network Visualization -
26th International Symposium, GD 2018, Barcelona, Spain, September 26-
28, 2018, Proceedings, volume 11282 of Lecture Notes in Computer Science,
pages 152–166. Springer, 2018.

198 BIBLIOGRAPHY

[123] S. G. Kobourov, G. Liotta, and F. Montecchiani. An annotated bibliography
on 1-planarity. Computer Science Review, 25:49–67, 2017.

[124] F. T. Leighton. Complexity Issues in VLSI: Optimal Layouts for the Shuffle-
Exchange Graph and Other Networks. MIT Press, Cambridge, MA, USA,
1983.

[125] F. T. Leighton. New lower bound techniques for VLSI. Mathematical Sys-
tems Theory, 17(1):47–70, 1984.

[126] F. T. Leighton and A. L. Rosenberg. Three-dimensional circuit layouts.
SIAM J. Comput., 15(3):793–813, 1986.

[127] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In 21st Annual
Symposium on Foundations of Computer Science, Syracuse, New York, USA,
13-15 October 1980, pages 270–281. IEEE Computer Society, 1980.

[128] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing
of graphs. In Theory of Graphs (Internat. Sympos., Rome, 1966), pages
215–232. Gordon and Breach, New York; Dunod, Paris, 1967.

[129] Y. Liu, A. Morgana, and B. Simeone. A linear algorithm for 2-bend em-
beddings of planar graphs in the two-dimensional grid. Discrete Applied
Mathematics, 81(1-3):69–91, 1998.

[130] M. Löffler and C. D. Tóth. Linear-size universal point sets for one-bend
drawings. In E. D. Giacomo and A. Lubiw, editors, Graph Drawing and Net-
work Visualization - 23rd International Symposium, GD 2015, Los Angeles,
CA, USA, September 24-26, 2015, Revised Selected Papers, volume 9411
of Lecture Notes in Computer Science, pages 423–429. Springer, 2015.

[131] J. Manuch, M. Patterson, S. Poon, and C. Thachuk. Complexity of finding
non-planar rectilinear drawings of graphs. In U. Brandes and S. Cornelsen,
editors, Graph Drawing - 18th International Symposium, GD 2010, Konstanz,
Germany, September 21-24, 2010. Revised Selected Papers, volume 6502 of
Lecture Notes in Computer Science, pages 305–316. Springer, 2010.

[132] T. A. J. Nicholson. Permutation procedure for minimising the number of
crossings in a network. Proceedings of the Institution of Electrical Engineers,
115(1):21–26, January 1968.

[133] T. Nishizeki and M. S. Rahman. Planar Graph Drawing, volume 12 of Lecture
Notes Series on Computing. World Scientific, 2004.

[134] M. Nöllenburg and A. Wolff. Drawing and labeling high-quality metro
maps by mixed-integer programming. IEEE Trans. Vis. Comput. Graph.,
17(5):626–641, 2011.

BIBLIOGRAPHY 199

[135] M. Nöllenburg. Automated drawing of metro maps. Master’s thesis, Fakultät
für Informatik, Universität Karlsruhe (TH), Aug. 2005.

[136] J. Pach, R. Radoicic, G. Tardos, and G. Tóth. Improving the crossing
lemma by finding more crossings in sparse graphs. Discret. Comput. Geom.,
36(4):527–552, 2006.

[137] J. Pach and G. Tóth. Graphs drawn with few crossings per edge. Combina-
torica, 17(3):427–439, 1997.

[138] M. Patrignani. Planarity testing and embedding. In R. Tamassia, editor,
Handbook on Graph Drawing and Visualization, pages 1–42. Chapman and
Hall/CRC, 2013.

[139] S. Pupyrev. Mixed linear layouts of planar graphs. In F. Frati and K. Ma,
editors, Graph Drawing and Network Visualization - 25th International Sym-
posium, GD 2017, Boston, MA, USA, September 25-27, 2017, Revised Se-
lected Papers, volume 10692 of Lecture Notes in Computer Science, pages
197–209. Springer, 2017.

[140] H. C. Purchase. Effective information visualisation: a study of graph draw-
ing aesthetics and algorithms. Interacting with Computers, 13(2):147–162,
2000.

[141] H. C. Purchase, D. A. Carrington, and J. Allder. Empirical evaluation of
aesthetics-based graph layout. Empirical Software Engineering, 7(3):233–
255, 2002.

[142] Z. Rahmati and F. Emami. RAC drawings in subcubic area. Information
Processing Letters, 159-160:105945, 2020.

[143] S. Rengarajan and C. E. V. Madhavan. Stack and queue number of 2-trees.
In D. Du and M. Li, editors, Computing and Combinatorics, First Annual
International Conference, COCOON ’95, Xi’an, China, August 24-26, 1995,
Proceedings, volume 959 of Lecture Notes in Computer Science, pages 203–
212. Springer, 1995.

[144] G. Ringel. Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, 29(1):107–117, Dec
1965.

[145] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orien-
tations of planar graphs. Discrete & Computational Geometry, 1:343–353,
1986.

200 BIBLIOGRAPHY

[146] T. L. Saaty. The minimum number of intersections in complete graphs.
Proceedings of the National Academy of Sciences of the United States of
America, 52(3):688–690, 1964.

[147] W. Schnyder. Embedding planar graphs on the grid. In D. S. Johnson,
editor, Proceedings of the First Annual ACM-SIAM Symposium on Discrete
Algorithms, 22-24 January 1990, San Francisco, California, USA, pages 138–
148. SIAM, 1990.

[148] J. M. Stott, P. Rodgers, J. C. Martinez-Ovando, and S. G. Walker. Auto-
matic metro map layout using multicriteria optimization. IEEE Trans. Vis.
Comput. Graph., 17(1):101–114, 2011.

[149] R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM J. Comput., 16(3):421–444, 1987.

[150] R. Tamassia, editor. Handbook on Graph Drawing and Visualization. Chap-
man and Hall/CRC, 2013.

[151] R. Tamassia and I. G. Tollis. A unified approach a visibility representation
of planar graphs. Discrete & Computational Geometry, 1:321–341, 1986.

[152] R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE
Transactions on Circuits and Systems, 36(9):1230–1234, Sep. 1989.

[153] R. E. Tarjan. Sorting using networks of queues and stacks. J. ACM,
19(2):341–346, 1972.

[154] C. Thomassen. Rectilinear drawings of graphs. Journal of Graph Theory,
12(3):335–341, 1988.

[155] J. C. Urschel and J. Wellens. Testing k-planarity is NP-complete. CoRR,
abs/1907.02104, 2019.

[156] L. G. Valiant. Universality considerations in VLSI circuits. IEEE Trans.
Computers, 30(2):135–140, 1981.

[157] L. Vismara. Planar straight-line drawing algorithms. In R. Tamassia, editor,
Handbook on Graph Drawing and Visualization, pages 193–222. Chapman
and Hall/CRC, 2013.

[158] V. Wiechert. On the queue-number of graphs with bounded tree-width.
Electr. J. Comb., 24(1):P1.65, 2017.

[159] R. J. Wilson. Introduction to Graph Theory. Addison Wesley Longman
Limited, Edinburgh Gate, Harlow, Essex CM20 2JE, England, 4th edition,
1996.

BIBLIOGRAPHY 201

[160] D. R. Wood. Bounded-degree graphs have arbitrarily large queue-number.
Discret. Math. Theor. Comput. Sci., 10(1), 2008.

[161] M. Yannakakis. Embedding planar graphs in four pages. J. Comput. Syst.
Sci., 38(1):36–67, 1989.

202 BIBLIOGRAPHY

Appendix A

Other Works of the Author

Here, we provide an annotated list of other collaborative works of the author that
were published in peer-reviewed conferences during the thesis period:

– In [11], we investigate a special type of st-orderings called bitonic. In a bitonic
st-ordering of a planar graph, the st-numbers of the successors of each vertex
form a bitonic list in the ordering induced by some planar embedding. Bitonic
st-orderings can for instance be used to create upward graph drawings. It is
noteworthy that not every directed planar graph admits such an ordering. How-
ever, by subdividing each edge at most once, a graph with a bitonic st-ordering
can be obtained. We show how to compute the set of edges of minimal car-
dinality whose subdivision results in a graph with a bitonic st-ordering over all
embeddings.

– In [16], we investigate a variant of the simultaneous graph drawing problem
called QuaSEFE. In simultaneous graph drawing, multiple graphs on a shared
vertex set have to be drawn. In the QuaSEFE model, each such graph has to
be drawn quasiplanar. The main difficulty here is that edges may appear in
more than one of the graphs but must be realized in the same way in each of
them. We identify several sufficient conditions for positive instances and present
restrictive negative instances.

– In [27], we approach the LAC drawing problem from a practical point-of-view.
Namely, we provide a probalistic hill-climbing method that given an initial draw-
ing produces drawings with better crossing, angular or total resolution. Using
a data set of several thousand graphs, we verify that this goal can indeed be
achieved.

– In [53], we investigate arrangements of orthogonal circles, that is, circles in the
arrangement can be either disjoint or intersect at right angles only. We prove
that the number of faces in such arrangements is linear which stands in contrast
to general arrangements of circles. This result also directly transfers to the

203

204 APPENDIX A. OTHER WORKS OF THE AUTHOR

number of edges in an orthogonal circle intersection graph in which vertices
are represented by circles and edges by orthogonal intersections between circles,
Finally, we prove NP-hardness for the recognition of such graphs under the
constraint that all circles have a unit size. In a follow-up study [54], we also
investigate the class of arc-RAC graphs which admit RAC drawings where every
edge is represented by a circular arc and provide a density upper and lower
bound.

– In [93], we investigate strict confluent drawings. In a confluent drawing, edges
are smooth sequences of segments between vertices and/or junctions where
junctions may be regarded as ∆-junctions (that is, three segments are smoothly
connected in a pairwise fashion) or merge/split junctions (that is, one segment
is smoothly connected to two segments which are not connected by a smooth
curve). In a strict drawing, each edge is represented by exactly one smooth
curve. We consider relationships to several types of intersection graphs and
discuss other properties of graphs admitting strict confluent drawings.

Index

2-track thickness, 90
8Ck, 4, 22

8C1, 35

aesthetic criteria, 16
angular resolution, 16
area, 16, 54, 62, 156, 171, 173, 178,

181
aspect ratio, 16
crossing number, 16
crossing resolution, 16, 155
curve complexity, 1, 16, 35, 62, 133,

155
number of intersections per edge, 16
octilinear, 16
orthogonal, 16
smoothness, 16

arc diagram, 6, 29, 105
down-up, 29
down-up monotone, 7, 105, 106, 125,

185
monotone, 29
plane, 29, 106, 125
proper, 29

area, 186

bar, 63
bottom, 64
middle, 64
top, 64

bend, 16, 36, 53, 63, 134
construction bend, 63
left, 179
matching, 173
matching bend, 174
middle, 156, 163

right, 179
biarc, 7, 29

down-up, 7, 29, 105
monotone, 7, 29, 105

book embedding, 27
upward topological, 30

center, 13, 37, 93
child, 13
circular layout, 30, 105
cover, 106
credit, 106
crossing lemma, 26, 158
cut vertex, 12, 75

dummy-cut, 75
in-dummy, 75
out-dummy, 75

cut-face, 75
cycle, 13

default step, 106
degree, 12, 14, 135

maximum (vertex) degree, 12, 35,
36, 46, 61, 90, 101, 184

drawing, 14
1-planar, 7, 24
k-planar, 24
3D, 6, 90
beyond planar, 7
bi-monotone, 54
forward, 109
grid, 14
HV-rectilinear, 46
induced subdrawing, 14
Kandinsky, 3, 4, 23
LAC, 26

205

206 INDEX

Lombardi, 21
octilinear, 4, 22, 35, 183
orthogonal, 1, 19, 61, 184
outerplanar, 14
planar, 14
polyline, 14, 133, 173, 185
RAC, 7, 25, 133, 185
realizing, 20
reverse, 109
simple, 9, 26, 133, 147, 150
smooth orthogonal, 3, 21, 35, 61,

183, 184
straight-line, 14, 90
upward, 17

dummy vertex, 26, 70, 135

edge, 11
binding, 93, 99
bottom, 64
directed, 11
interlevel, 99
left, 64
leftmost, 64
level, 93, 99
odd, 158, 167
representation, 14
right, 64
rightmost, 64
top, 64
tree, 99
undirected, 11
virtual, 75

edge density, 25, 133, 185
embedding

1-planar, 26
k-planar, 26
beyond planar, 26
induced subembedding, 14
outerplanar, 15
planar, 14, 15

endpoint, 11
Si -endpoint, 163
Ti -endpoint, 163

odd, 167

face, 14
good, 138
outer, 14, 67, 73, 93, 106

facial walk, 137
forest, 13

graph, 11
1-planar, 24, 61, 64, 67, 184
∆-matched, 91, 94
k-connected, 12
k-planar, 24, 91, 181
k-regular, 12
p-partite, 13, 186
(simply) connected, 12
arched-level planar, 6, 28, 92
beyond planar, 24
biconnected, 12, 67, 71, 75, 83
complete, 13, 156, 171, 173
complete p-partite, 13, 178
directed, 12
dual, 15
IC-planar, 25
induced subgraph, 12
Kleetope, 15, 106, 127
maximal planar, 15
NIC-planar, 25
outer-1-planar, 24, 71, 75, 83
outerplanar, 61
outerplane, 15
planar, 14, 61, 90, 101, 105
plane, 14, 46
RAC, 24
subhamiltonian, 28, 105
triconnected, 12, 15
undirected, 12
weak dual, 15

graph-theoretic distance, 12, 92
grid, 23, 64, 67, 71, 90

coarse, 23, 159
fine, 23, 159

grid line
fine-horizontal, 160

INDEX 207

fine-vertical, 160

half-edge, 63, 126, 173
extreme, 65

height, 13, 94
hexagonal tile, 147

incident, 14
intersection, 4, 14, 27, 61

Kandinsky, 53
octilinear, 58
smooth orthogonal, 54

kite, 63

L-sequence, 63
red, 63

layer, 94
layer group, 96
leaf, 13, 94
length, 14, 137
lens, 134

reflex, 134
linear layout, 4, 27, 89, 184

matching, 13
perfect, 13, 94

matching area, 173
matching value, 95

necklace, 91
neighbor, 12, 72, 107

leftmost, 107
neighborhood, 12
rightmost, 107

neighbored region, 166
nesting, 4, 27
nesting value, 95

OCk, 2, 20
OC3, 71, 83
OC4, 64, 67

open configuration, 106, 110
ordered concentric representation, 93
ordering, 17, 27

st-ordering, 17, 71
canonical, 17, 106
good tree ordering, 92

orientation, 12, 76
orthogonal representation, 2, 20, 46

octilinear representation, 46
smooth, 46

page, 27, 89, 105
parent, 13
path, 12, 13
planarization, 26, 75, 134
plausible position, 165
plausible region, 165
point set embeddability, 29, 105
port, 1, 20, 36, 53, 67
proper arc, 7, 29, 106

mountain, 106
pocket, 106

push down, 108

queue layout, 6, 27, 89, 184
queue number, 27, 89, 90, 101, 184

RACk, 8, 25
RAC1, 133, 147, 150, 185
RAC2, 133
RAC3, 156, 171, 178, 181, 186
RAC8, 173, 186

rainbow, 91
rim, 13, 37
ring of tiles, 149
root, 13

satisfiable, 47, 106
SCk, 4, 22

SC1, 35
SC2, 75
SC3, 67

Schnyder coloring, 18, 54
Schnyder realizer, 17
segment

matching, 173, 175
middle, 156

208 INDEX

start, 156
separating triangle, 15
separation pair, 12, 39
shape

L, 68
S, 65
U, 65

shift-method, 18, 54
shift-set, 18, 54
side-arc, 77
sink, 12, 68
size, 134
source

of a graph, 12
of an edge, 12, 68

span, 176
spine, 4, 13, 27, 105
st-number, 17, 64
stack layout, 4, 27, 105
stack number, 5, 27
start region, 156
subdivision, 92

target, 12, 68
topology-shape-metrics, 2, 20, 46
track layout, 90
tree, 13

k-ary, 13, 94
BFS-tree, 13, 93, 94
caterpillar, 13, 37
complete k-ary, 13
rooted, 13, 93
spanning, 13, 54, 94

tunnel, 164
L-tunnel, 167

vertex, 11
R-vertex, 167
representation, 14

vertex area, 173
visibility representation

1-bar, 63
1-planar bar, 63
bar, 63

weight, 103
wheel, 13, 37

	Introduction
	Preliminaries and Related Work
	Graph Theoretic Foundations
	Graphs
	Connectivity
	Special Families of Graphs

	Graph Drawing Basics
	Basic Definitions
	Aesthetic Criteria
	Vertex Orderings and Shift Method

	Graph Drawing Styles
	Orthogonal Drawings and Extensions
	Beyond Planar Graph Drawings
	Linear Layouts

	I Beyond Orthogonal Drawings
	Smooth Orthogonal and Octilinear Drawings of Planar Graphs
	Relations
	NP-Hardness of the Metrics Step
	Bi-Monotone Kandinsky Drawings

	(Smooth) Orthogonal Drawings of 1-Planar Graphs
	1-Planar Bar Visibility Representations
	1-Planar Drawings
	Outer-1-Planar Drawings

	II Beyond Stack Layouts
	Queue Layouts of Bounded Degree Planar Graphs
	Tools froms the Literature
	Delta-Matched Graphs
	General Planar Graphs of Bounded Degree
	Time Complexity

	Monotone Arc Diagrams with few Biarcs
	Overview of the Algorithm
	Default Vertex Insertion
	Vertex Insertion involving Open Configurations
	Proof of Theorem 5.1
	Description of the SAT Formulation

	III Beyond Planar Drawings
	Density Bounds for RAC Drawings with one Bend per Edge
	Overview of the Charging Scheme
	Upper Bound Results
	Lower Bound Results

	Area Bounds for RAC Drawings with three and more Bends per Edge
	A New Upper Bound for the Area of RAC_3 Drawings
	A First Lower Bound for the Area of RAC_3 Drawings
	Area Optimal RAC_8 Drawings
	Area Optimal RAC_3 Drawings of p-partite Graphs

	Conclusions
	Bibliography
	Other Works of the Author
	Index

