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1) Introduction 

1.1 Radiation therapy in cancer 

After the discovery of X-rays by Wilhelm Conrad Röntgen in 1895, ionizing radiation 

has been developed as an effective treatment for a wide range of malignancies 

(Connell and Hellman 2009). Radiotherapy as a local treatment applies ions 

(electrically charged particles) and deposits high physical energy to kill tumor cells 

mostly in combination with surgery and systemic chemotherapy (Barton et al. 2014). 

It is estimated that approximately 50% of all cancer patients need to be treated by 

radiation therapy during the course of disease (Delaney et al. 2005, Begg et al. 

2011). 

Ionizing radiation including gamma rays, X-rays and radioactive particles acts 

through displacement of electrons and is able to break chemical bonds. This leads 

to disruption of the genetic integrity of cells by producing DNA double strand breaks 

(DSBs),single strand breaks (SSBs) as well as the generation of reactive oxygen 

species (ROS) (Borrego-Soto et al. 2015). The efficacy of ionizing radiation for killing 

cells depends on different factors including total dose, fractionation rate, linear 

energy transfer (LET) and sensitivity of cells (Baskar et al. 2014). 

The main aim of radiation therapy is to prevent extension capability of cancer cells 

by inducing damages in DNA and eventually killing of cells through various cellular 

mechanism including apoptosis, mitotic cell death or mitotic catastrophe, necrosis, 

senescence and autophagy (Baskar et al. 2012). After radiation exposure cells try to 

activate repair pathway to protect the genome from damages. Therefore, resistance 

to radiation may develop and can finally result in failure of cancer treatment. In this 

context, different factors are involved in radio-resistance of cancer cells, e.g. DNA 

damage repair pathways, cell cycle arrest mechanisms, alterations in oncogene and 

tumor suppressor status, changes in tumor microenvironment, cell death, generation 

of cancer stem cells (CSCs) and tumor metabolism (Tang et al. 2018).  
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In spite of the successes that has been achieved over years to increase in the 

number of cancer survivors using radiation therapy, radio-resistance still remains a 

major obstacle to cancer treatment. Thus, further investigations are required to 

optimize the efficacy of radiation therapy alone or in combination with molecular 

targeted therapy approaches. 

 

1.2 DNA double strand breaks repair 

DNA damage can occur as a result of many endogenous and exogenous insults that 

are able to influence DNA replication and chromosome segregation. DNA is subject 

to various types of damages including base lesions, intra- and interstrand cross-

links, DNA-protein cross-links, single strand breaks (SSBs) and double-strand 

breaks (DSBs) (Mehta and Haber 2014). Among all DNA damages types double 

strand breaks (DSBs) are the most dangerous ones as this kind of DNA lesion can 

lead to mutations, loss of heterozygosity, chromosome rearrangements, cancer and 

cell death (Cannan and Pederson 2016). DNA double strand breaks can take place 

during normal cellular process such as metabolic reactions, DNA replication and 

DNA repair or as a result of exposure to exogenous agents, e.g. radiation and certain 

chemicals (Lindahl 1993). One gray of IR results in approximately 2000 base 

modifications, 1000 DNA single-strand breaks, and 35 DSBs per cell (Rothkamm et 

al. 2003). 

Presence of DSBs in the DNA results in activation of cell cycle checkpoint responses 

which block cell cycle progression to prevent transmission of damaged 

chromosomes and finally in stimulation of the DNA repair machinery (Petrini and 

Stracker 2003). Sensitivity to DSB-causing agents has been reported in different 

human syndromes such as Ataxia telangiectasia (A-T) and Nijmegen breakage 

syndrome (NBS) (Khanna et al., 1998).  

DNA damage response (DDR) proteins are involved in the process of genome 

protecting against DNA damage. Assembly of multiple DDR proteins quickly happen 
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at the site of breaks which are visible as distinct foci by microscopy. DDR proteins 

can be classified in four groups:  sensor, transducer, mediator and effector proteins 

(Coster and Goldberg 2010). Sensor proteins including ataxia telangiectasia 

mutated(ATM), ataxia telangiectasia and Rad3-related (ATR), Rad17-RFC complex 

and the 9-1-1 complex are important for damage detection and transporting the 

damage signal to transducer proteins such as Checkpoint kinase 1 (Chk1) and 

Checkpoint kinase 2 (Chk2) Ser/Thr kinases as well as Cdc25 phosphatases. This 

signal substantially amplified by mediator proteins and results in recruitment and 

activation of downstream DDR effector proteins (Dasika et al. 1999, Coster and 

Goldberg 2010). MDC1, also known as NFBD1 (Nuclear Factor with BRCT Domains 

1) is a key member of the DDR network. Presence of MDC1 at the site of damage is 

important for recruitment of other proteins, such as MRN complex (Mre11-Rad50-

NBS1), Breast-Cancer Susceptibility gene 1 (BRCA1) and P53 binding protein 1 

(53BP1). H2AX, a variant of histone H2A and an integral part of the nucleosome is 

another important protein of DDR (Goldberg et al. 2003, Lou et al. 2003, Mochan et 

al. 2003). Histone H2AX has a C-terminal tail with a conserved SQEY-COOH motif. 

In this motif the serine residue-139 (Ser-139) can be phosphorylated within minutes 

after generation of DSB (Fernandez-Capetillo O2004, Gideon Coster2010). This 

phosphorylation known as gamma H2AX (γ-H2AX) is reported to be executed by 

one of three phospho-inositide-3-kinase-related protein kinases (PIKKs): ATM, ATR 

or DNA-PK (Burma et al. 2001, Soubeyrand et al. 2001, Stiff et al. 2004, Ward and 

Chen 2004). γ-H2AX foci formation at the site of damage is required for the 

accumulation of downstream DDR proteins, recruitment of repair factors  and 

activation of cell cycle checkpoints in response to DNA-damage (Bassing et al. 2003, 

Celeste et al. 2003, Lou et al. 2006). 

In eukaryotes DNA double-strand breaks are repaired through two main pathways, 

i.e. the classical non-homologous end joining (C-NHEJ) or homology directed 

recombination (HDR). Both pathways are regulated at different levels and sub-

pathways through cooperation of several proteins and enzymes (Featherstone and 
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Jackson 1999). In addition to these two major pathways for DNA-DSB repair, in case 

of their malfunction or absence, a third pathway operates as an alternative form of 

C-NHEJ, named alternative NHEJ (A-NHEJ) (Mladenov and Iliakis 2011). 

 

 

1.2.1 Classical-Non Homologous End Joining 

C-NHEJ is a dominant pathway of DSBs repair and is active in all cell cycle phases. 

NHEJ is an error prone pathway which can results in insertions, deletions, 

substitutions and translocations at the site of damage. This pathway is conserved 

from bacteria to higher eukaryotes (Lieber 2010). 

This pathway is initiated by binding of a double-stranded DNA (dsDNA) end-

binding protein complex, i.e. the Ku70-Ku80 heterodimer (Ku) to the 5′ end of DNA. 

This protein is a platform for the combination of various factors involved in NHEJ 

(Marini et al. 2019). After binding of Ku70-Ku80 heterodimer to DNA, its conformation 

changes and it recruits DNA-dependent protein kinase catalytic subunit (DNA-PKcs). 

DNA-PKcs is a large serine/threonine kinase and its activation increases after 

binding to Ku70/80.(Meek 2004). DNA-PKcs kinase activity is needed for 

phosphorylating downstream proteins in NHEJ pathway including end processing or 

ligation factors. Polynucleotide kinase phosphatase (PNKP), terminal 

deoxynucleotidyl transferase (TDT), DNA polymerases λ and μ, and Artemis are 

important proteins which are required for processing of DNA break ends creating 

ligatable ends (Davis and Chen 2013). Lig4-XRCC4-XLF complex is needed for 

sealing DNA ends. X-ray cross complementing protein 4 (XRCC4) is able to bind to 

DNA-PK and Lig4, therefore it can stabilize and stimulate ligase4 activity. Binding of 

XLF to the XRCC4/Lig4 complex is the final step that leads to reclosing of DNA ends  

(Gottlieb and Jackson 1993, Riballo et al. 2004). 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/indel
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-complexes
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It has been shown that the absence of NHEJ factors are associated with different 

disorders. For instance, mutation in Artemis leads to progressive radiosensitive 

severe combined immunodeficiency (RS-SCID) (Hendrickson et al. 1991). 

Moreover, LIGIV gene mutations result in LigIV syndrome and severe problems such 

as immunodeficiency, radiosensitivity and developmental delay (Chistiakov et al. 

2009).  

 

1.2.2 Alternative-Non Homologous End Joining 

Alternative non-homologous end-joining (alt-NHEJ) is a backup repair pathway. It is 

also known as microhomology-mediated end-joining (MMEJ), or KU-independent 

end-joining pathway. In A-NHEJ pathway microhomologies of DNA ends can be 

used for repairing. In comparison to C-NHEJ pathway the probability of translocation 

formation, deletions and other sequence alterations at the junction is higher in A-

NHEJ pathway (Ferguson et al. 2000). Likewise, the repair velocity for DSBs by A-

NHEJ is slower than for C-NHEJ (t50 30 min to 20 h) (Dueva and Iliakis 2013).  

Poly (ADP-ribose) polymerase 1 (PARP1) and LigIII/XRCC1 complex are the main 

players of the A-NHEJ pathway in vertebrates  (Herceg and Wang 2001, Hassa et 

al. 2006). Similar to HRR, the end resection process in A-NHEJ is initiated by the 

Mre11/Rad50/Nbs1 (MRN) complex and CtIP. Poly (ADP-ribose) polymerase 1 

(PARP1)  is a sensor of DNA damage that binds to single strand breaks (SSBs) as 

well as double strand breaks. PARP can activate poly (ADP-ribosyl) ation of proteins 

and recruits MRE11/RAD50/NBS1 (MRN) complex to the damage sites.  In 

subsequent steps Exo1 or DNA2 interact to produce long stretches of single 

stranded DNA. Ligation of DNA ends is terminated either by LIG3 or LIG1 and 

cooperation of  XRCC1 complex (Iliakis 2009, Ali et al. 2012). Likewise,  it is reported 

that binding of KU to DSBs leads to suppression of  Exo1 and Dna2 function and 

reduced micro-homology mediated end joining (Symington 2016). There is evidence 

showing the association of A-NHEJ upregulation and expression of oncogenic BCR-
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ABL gene fusion and chronic myelogenous leukemia (CML). It is shown that 

decreasing of C-NHEJ proteins such as Artemis and DNA LigIV and consequently 

increasing of A-NHEJ proteins, LigIII and Werner’s syndrome protein (WRN) is 

associated with genomic instability in BCR-ABL–positive CML cells. (Sallmyr et al. 

2008, Poplawski and Blasiak 2010) 

 

Figure 1.1. Schematic representation of DNA repair by Non-Homologous End Joining repair 
pathways. (A) C- NHEJ starts with binding of KU heterodimer to double-stranded DNA ends 
and recruitment of DNA-PKcs. Subsequent steps is DNA ends processing and recruitment 
of the DNA ligase IV (LIG4)-XRCC4 complex and DNA polymerases which results in ligation 
of DNA ends.(B) A- NHEJ starts after resection of damaged ends by CtIP and MRN complex. 
Binding of PARP1 and reqruitment of DNA repair factors promotes ligation of DNA ends 

through cooperation of Lig1/3 and XRCC1. modified from (Iliakis et al. 2015) 
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1.2.3 Homologous recombination repair  

The first step in HR is DNA-end resection by means of 5' to 3' nucleolytic resection 

of the DSBs DNA-ends and producing of 3′-OH single-stranded DNA (ssDNA) (Her 

and Bunting 2018). This process is done by MRN complex including Mre11-Rad50-

Xrs2. Meiotic recombination 11 (MRE11) acts as an endonuclease that nicks up to 

300 nucleotides of 5′ terminus of DSB away from the break point and also has 3′−5′ 

exonuclease activity for extending of the nick to the DNA end (Nimonkar et al. 2012). 

Other proteins such as CtIP , Breast cancer type 1 susceptibility protein (BRCA1) , 

Exo1, BLM and DNA2 proteins also cooperate in this process which is followed by 

covering of 3' ss-DNA overhang by Replication Protein A (RPA) (Gravel et al. 2008, 

Mimitou and Symington 2009, Cannavo and Cejka 2014). RPA is the main eukaryote 

single-stranded DNA binding protein, consist of three subunits RPA70 (RPA1), 

RPA32 (RPA2), and RPA14 (RPA3). RPA resolves secondary structures and ssDNA 

bound by RPA cannot pair with other proteins (San Filippo et al. 2008). 

Subsequently, RPA is replaced by the radiation repair protein 51 (Rad51) by means 

of mediator proteins such as Radiation repair protein 52 (Rad52), Rad51 paralogs 

including Rad55-Rad57 and Shu1-Psy3 in Saccharomyces cerevisiae and 

(RAD51B/C/D, XRCC2/3) in mammals. Breast cancer type 2 susceptibility protein 

(BRCA2) is another mediator proteins which cooperates in RAD51 filament 

nucleation to the dsDNA junction ( (Sung and Robberson 1995, Robertson et al. 

2009). BRCA2 has ssDNA binding motifs (OB-folds), a dsDNA binding motif (tower 

domain), and a number of Rad51 binding sites. (Yang et al. 2005). Rad51 is a 

recombination enzyme and acts as core enzymatic reaction in HR (West 2003). It is 

loaded to 3' ssDNA and forms pre-synaptic nucleoprotein filament for searching of 

homologous template and invading to the sister chromatin. BRCA1–BARD1 complex 

is also involve in RAD51-mediated homologous pairing (Tarsounas et al. 2003). 

Following the synapsis step, the post-synapsis homologous recombination can be 

completed through three different pathways. One of these pathways is break-

induced replication (BIR) that acts when DNA breaks have only one end. This 
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pathway may cause translocations, chromosomal rearrangements, copy-number 

variations and complex chromosomal changes (Sakofsky and Malkova 2017). The 

second pathway is synthesis-dependent strand-annealing (SDSA) in which DNA 

synthesis starts from 3' at the 3′ termini of the invading single-strand tail and is 

followed by annealing of the newly synthesized strand with its complement (Miura et 

al. 2012). Double-strand break repair is the other pathway of Homologous 

recombination in which double Holliday junction forms and can lead to non-crossover 

or crossover products (Li and Heyer 2008). 

 

Figure 1.2 Model for HRR pathway. MRN complex recognizes DSBs. End resection process 
is done by CtIP and ssDNA is formed. ssDNA is covered with RPA. Replacement of Rad51 
with RPA leads to formation of RAD51 nucleoprotein filament homology sequence searching 
and strand invasion. DNA synthesis, ligation, and resolution of Holliday junctions results in 

DSBs repair. Modified from (Iliakis et al. 2015). 
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1.3 PI3K/Akt signaling pathway 

The phosphatidylinositol 3-kinase (PI3K)/Protein Kinase B (PKB, Akt) pathway is one 

of the most frequently mutated pathways in cancer. Mutations of the PI3K-pathway 

are associated with tumor growth, metastatic spread, and resistance to treatment 

(Fruman and Rommel 2014). PI3K is a member of lipid kinase family and acts as a 

critical signaling component of growth factor receptor tyrosine kinases (RTKs). This 

kinase can be activated by  phosphorylating the 3-hydroxyl  inositol phospholipids 

and producing PI(3,4,5)P3 and PI(3,4)P2 which leads to translocation and activation 

of Protein kinase B (PKB)/Akt to the  inner membrane (Adimonye et al. 2018).  

 Akt is a serine/threonine kinase protein from the cAMP-dependent, cGMP-

dependent, protein kinase C (AGC) kinase family with various important roles in 

cellular process. In 1977, this protein identified for first time in the transforming 

murine leukemia virus (AKT-8 provirus) and classified as an oncogene (Staal and 

Hartley 1988). The Akt structure consists of a three domains: 1) an amino terminal 

pleckstrin homology (PH) domain; 2) a central kinase domain containing a regulatory 

threonine residue (Thr308) 3); a carboxyl-terminal regulatory domain containing the 

serine regulatory residue (Ser473)(Song et al. 2005).  

Although Phosphorylation at T308 by PDK1 increases the activity of Akt1, in order 

to full activation, Akt needs to be phosphorylated at Ser473s as well. It is suggested 

that phosphorylation at Ser473s is done by so-called PDK2 and is important for 

stabilizing T308 phosphorylation (Alessi et al. 1996). Phosphoinositide-dependent 

Mammalian Target of Rapamycin complex 2 (mTORC2), inhibitor of B-kinase (IKK), 

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Integrin-linked 

kinase (ILK) or auto-phosphorylation of Akt are proposed to act as PDK2 (Yang et 

al. 2002).  

Receptor tyrosine kinases( RTKs), integrins, B, T cell receptors and cytokine 

receptors are able to activate Akt signaling pathway (Nitulescu et al. 2018). 

Regarding termination of Akt activity, two pathway has been proposed: 1.removing 

https://www.sciencedirect.com/topics/medicine-and-dentistry/inner-membrane
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of activating lipid messengers PI(3,4,5)P3 and PI(3,4)P2 by 30-lipid phosphatase 

PTEN as well as the 40-lipid phosphatase inositol polyphosphate-4-phosphatase 

(INPP4B) and  2. Inhibition of Akt through dephosphorylating of S473 or T308 by 

different phosphatases (Manning and Toker 2017, Rodgers et al. 2017). 

 

 

 

 

Figure 1.3. Activation of Akt. PI3K pathway is activated by growth factors or cytokines and 
subsequently Akt protein is activated by phosphorylation at T308 and S473 by PDK1 and 

PDK2. modified from (Adimonye et al. 2018). 
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Akt consist of three isoforms: AKT1 (PKBα) (including 3 splice variants), AKT2 

(PKBβ), and AKT3 (PKBγ) (including 2 splice variants). These three isoforms are 

produced by different genes and have 80% similarity in amino acid identity (Ruan 

and Kazlauskas 2011) . Akt isoforms exert critical roles in cellular process through 

different downstream targets (Brown and Banerji 2017, Manning and Toker 2017). 

The main isoform in the majority of tissues is Akt1.  However, Akt2 is reported as the 

predominant isoform in liver, skeletal muscle and adipose tissue and Akt3 

expression is mainly in the brain and testes (Wang et al. 2017). Moreover, Cho et al 

(Cho et al. 2001) showed that depletion of  the Akt2 isoform results in 

hyperinsulinaemia and insulin resistance in mice and Tschopp et al. (Tschopp et al. 

2005) reported that Akt3−/− mice have smaller brains. Overexpression of AKT2 is 

also associated with invasion and metastasis in human breast and ovarian cancer 

cells (Arboleda et al. 2003). 

In general, Akt is involved in the regulation of cell survival, cell growth and 

proliferation by affecting downstream proteins including BAD, FOXO, TSC2, 

PRAS40, GSK3β and CDKN (Hers et al. 2011) (Manning and Cantley 2007). 

Impairment of Akt signaling has been investigated in different cancers. For instance,  

Akt1 upregulation is reported for gastric carcinoma, glioblastomas and gliosarcomas 

while Akt2  amplification is shown in head and neck squamous cell carcinoma, 

pancreatic, ovarian and breast cancers (Manning and Cantley 2007) . Akt3 is also 

shown in androgen resistant prostate cancer cells, estrogen receptor-deficient 

breast cancer cells, and in primary ovarian cancers (Nakatani et al. 1999). Finally, 

an oncogenetic activation mutation (E17K) in the PH domain of Akt1 is reported in 

melanoma, breast, colorectal, lung and ovarian cancers (Shoji et al. 2009, Nitulescu 

et al. 2018). 

With reference to the role of Akt signaling in cell survival, proliferation and invasion, 

this pathway has been considered as therapeutic target in cancer research. Inhibition 

of Akt signaling pathway could induce apoptosis and increase sensitivity of tumor 

cells to cytotoxic agents (Altomare and Testa 2005). Therefore, various Akt inhibitors 

https://www.nature.com/articles/bjc2017153#ref-CR8
https://www.nature.com/articles/bjc2017153#ref-CR40
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are developed in order to specifically target this protein. These inhibitors are either 

allosteric inhibitors of the AKT PH-domain that block localization of AKT to the 

plasma membrane or they are ATP-competitive inhibitors of Akt. Numerous studies 

have used different Akt inhibitors in combination with chemo- or radiotherapy in 

different cancers (Brown and Banerji 2017). 

In this context, Page et al (Page et al. 2000) showed that ovarian cancer cell lines 

get more resistant to paclitaxel after constitutive AKT1 activity or AKT2 gene 

amplification. Hu et al (Hu et al. 2002) reported that dual treatment of ovarian cancer 

models with the PI3K inhibitor LY294002 plus paclitaxel increased the efficiency of 

treatment. It is also shown that PI3K inhibition leads to apoptosis in tumor cells with 

high level of Akt (Brognard et al. 2001, Altomare et al. 2004). Finally, a phase I 

clinical study by Vink et al (Vink et al. 2006) showed that the Akt inhibitor Perifosine 

can be safely combined with fractionated radiotherapy in patients with advanced 

solid tumors. 

 

1.4 The involvement of Akt in DSBs repair 

In various studies it has been shown that Akt is phosphorylated following exposure 

of cells to IR (Li et al. 2009, Toulany and Rodemann 2013, Freudlsperger et al. 

2015). After inducing DNA lesions, ataxia telangiectasia mutated (ATM), ataxia 

telangiectasia and Rad3-related (ATR), and DNA-dependent protein kinase catalytic 

subunit (DNA-PK) are able to activate Akt in the DNA damage response pathway 

(Liu et al. 2014).  Szymonowicz et al (Szymonowicz et al. 2018) reported that 

overexpression of Akt mutated in both phosphorylation sites (T308A,S473A) induced 

radiosensitivity of prostate cancer cells.  Several studies provided evidence that Akt 

is involved in the regulation of NHEJ pathway (Toulany et al. 2012, Sahlberg et al. 

2014). 

Holler et al (Holler et al. 2016) showed that dual inhibition of mammalian target of 

rapamycin-complex 1 (mTORC1) and Akt leads to blocking of NHEJ pathway and 

https://www.nature.com/articles/1209085#ref-CR61
https://www.ncbi.nlm.nih.gov/pubmed/?term=Szymonowicz%20K%5BAuthor%5D&cauthor=true&cauthor_uid=30065170
https://www.ncbi.nlm.nih.gov/pubmed/?term=Holler%20M%5BAuthor%5D&cauthor=true&cauthor_uid=27137757
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increased DNA-DSBs. Fraser et al (Fraser et al. 2011) reported that pAKT (S473) 

colocalized with γ-H2AX and pATM (Ser1981) at the site of damages and involve in 

NHEJ repair of IR induced DSBs.  Toulany et al (Toulany et al. 2012) showed that 

Akt forms a complex with DNA-PKcs to induce DNA-PKcs and Ku binding to DNA 

ends. Moreover, Akt can activate kinase activity of DNA-PKcs for efficient NHEJ and 

stimulates its autophosphorylation in order to induce removal of DNA-PKcs from 

DNA to facilitate the ligation process. Sahlberg et al (Häggblad Sahlberg et al. 2017) 

showed that AKT1 and AKT2 isoforms significantly increase the survival of colorectal 

cancer cells exposed to ionizing radiation. 

Concerning the role of Akt in homologous recombination repair, conflicting data exist. 

For instance, Plo et al (Plo et al. 2008) reported that the presence of AKT1 in breast 

cancers cells resulted in a BRCA1-deficient–like phenotype via cytoplasmic retention 

of BRCA1 and RAD51 and Jia et al (Jia et al. 2013) showed that activation of AKT1 

in BRCA1-deficient cells impacts the interaction of Chk1 and Rad51 to consequently 

reduce HR.  On the other hand Mueck et al (Mueck et al. 2017) showed that 

downregulation of AKT1 resulted in reduced Rad51 protein expression and 

diminished Rad51-foci formation  after radiation exposure of NSCL cancer cells. 

Moreover, data from Philip et al (Philip et al. 2017) indicated that PI3K inhibition 

reduces RAD51 foci formation and induces sensitivity of PTEN mutated cells to the 

PARP inhibitor treatment. 

 

 

 

 

 

https://www.tandfonline.com/author/Fraser%2C+Michael
https://www.ncbi.nlm.nih.gov/pubmed/?term=Philip%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=28886696
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1.5 Aim of the study 

Based on this knowledge and scientific background with respect to the addressed 

role of Akt isoforms in DNA-DSB repair processes and especially HR the study was 

designed to clarify the roles of Akt1 and Akt2 isoforms in regulation of homologous 

recombination repair of human colon carcinoma cells.  

Furthermore, as our lab has identified the role of Akt in non-homologous end-joining 

(NHEJ) DNA-DSB repair, the study was also designed to shed further light onto the 

role of HR versus NHEJ in Akt-mediated radioresistance of cells from solid human 

tumors. With respect to this point that all studies so for only address the role of Akt1, 

this project investigated the role of the Akt isoforms Akt-1, Akt-2, in the 

regulating/modifying DNA double-strand breaks repair through the homologous 

recombination repair mechanism.  . 

Previous results using the HR reporter assay system demonstrated that Akt1-

knockdown decreases the relative proportion of GFP-positive cells indicating an 

inhibition of HR-repair. Moreover, as the knock down approaches for Akt used did 

not allow complete knockdown of the Akt proteins of interest, in the present study 

knock-out cells for Akt1 and Akt2 isoforms were used. This approach did not only 

allow a verification of the results obtained so far but also provided clear cut answers 

to the importance of Akt-isoforms in the regulation of DNA double-strand break repair 

through the homologous recombination mechanism. Thus, the study aimed to 

provide detailed mechanistic evidence to show how and to what degree antagonistic 

strategies directed against Akt may be effective to overcome radioresistance of 

different tumor entities during radiotherapy. 
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2) Materials and Methods: 

2.1 Materials 

2.1.1 Cell lines: 

Table 2.1. Cell line used in this project. 

Cell line Description Cultured in 

HCT116 Parental  

(Horizon, UK) 

Colon carcinoma cell 

line 

RPMI+10%FCS 

HCT116 AKT1-KO 

(Horizon, UK) 

Colon carcinoma cell 

line 

RPMI+10%FCS+0.3mg/mL 

G148 

HCT116 AKT2-KO 

(Horizon, UK) 

Colon carcinoma cell 

line 

RPMI+10%FCS+0.3mg/mL 

G148 

HCT116 DNAPK-

KO 

Colon carcinoma cell 

line 

RPMI+10%FCS 

 

2.1.2 Antibodies: 

Primary antibodies 

 

Table 2.2.Primary antibodies. 

Antibody  Species  Dilution(Application) Company/Cat.N. 

anti-γH2AX Mouse 1:500(IF) Merck/05-636 

anti-P-Akt(S473)  Rabbit 1:1000 (WB) Cell Signaling/4060 

anti-Akt1   Mouse 1:1000 (WB), 1:100(IP) Biosciences/ 610877 

anti-Akt2 Mouse 1:1000 (WB), 1:100(IP) Cell Signaling/2964 

anti-Akt3  Mouse 1:1000 (WB) Cell Signaling/8018 

anti- Rad51 Mouse 1:1000 (WB) Abcam/88572 

anti- pRad51  Rabbit 1:1000 (WB) Abcam/31769 

anti-RPA2 Mouse 1:1000 (WB), 1:100(IP) Abcam /2175 

DNA-PKcs  Mouse 1:1000 (WB) Abcam/1832 
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anti- CENP-F Rabbit 1:700(IF) LSBio/B276 

anti- BRCA2 Rabbit 1:1000 (WB),1:100(IP) Abcam /27976 

anti-GAPDH Mouse 1:1000 (WB) Cell Signaling/2118 

anti-Lamin A/C Mouse 1:500 (WB) Abcam/40567 

anti-Lamin B Mouse 1:1000 (WB) Santa Cruz/74015 

anti-Tubulin Mouse 1:1000 (WB) Calbiochem/ CP06 

anti-IgG Rabbit 1:1000 (IP) Cell Signaling/7074 

 

Secondary antibodies 

 

Table 2.3. Secondary antibodies. 

Antibody  Dilution(Application) Company/Cat.N. 

HRP-linked donkey anti rabbit 1:2000 (WB) GE Healthcare/ NA934 

HRP-linked sheep anti mouse 1:2000 (WB) GE Healthcare/ NA931 

Donkey anti-rabbit AlexaFluor 594 1:1000 (IF) Thermofisher/ A32754 

Goat anti-mouse AlexaFluor 488 1:1000 (IF) Thermofisher/ A11001 

 

2.1.3 Small molecule inhibitors: 

2.4. List of inhibitors. 

Inhibitor target Concentration(used) Company 

MK2206 Akt   5mg (1µM) Selleckchem/ 

S1078 

NU7441 DNA-PK   5mg (1µM) Selleckchem/ 

S2638 

Olaparib PARP   5mg (1µM) Selleckchem/ 

S1060 

BO2 Rad51   5mg (1µM) Sigma /0364 
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2.1.4 siRNA 

Table 2.5 siRNA 

siRNA Catalogue Number Concentration  Company 

AKT1-siRNA  M-003000-03 5nM Dharmacon 

AKT2-siRNA M-003001-02 5nM Dharmacon 

nontargeting siRNA D-001810 5nM Dharmacon 

 

 

2.1.5 Chemicals 

Table 2.6 Chemicals 

Chemicals Company 

Acrylamide  Roth 

Agarose  Sigma-Aldrich  

Ammonium persulfate (APS)  Sigma-Aldrich  

ß-Mercaptoethanol  Sigma-Aldrich 

Boric acid  Sigma-Aldrich 

Bovine serum albumin (BSA)  Roth 

Bromophenol blue  Applichem 

Crystal violet  Applichem 

4’,6-diamidino-2-phenylindole (DAPI) Serva 

DMEM  Gibco 

Dimethylsulfoxide (DMSO)  Applichem 

Dithiotreitol (DTT)  Sigma-Aldrich 

EDTA  Sigma-Aldrich 

Ethanol Merck 

Ethidium bromide  Roth 

Formaldehyde  Merck 
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Glucose  Sigma-Aldrich 

Glycerin  Applichem 

Glycin  Roth 

HCl  Roth 

HEPES  Applichem 

Isopropanol Merck 

KCl Roth 

KH2PO4 Applichem 

Methanol Merck 

MgCl2 Applichem 

Na2HPO4  Sigma-Aldrich 

Na3VO4  Sigma-Aldrich 

NaCl  Merck 

NaF  Sigma-Aldrich 

NaHCO3  Biochrom 

NaOH  Roth 

Nonidet P-40 (NP-40)  Sigma-Aldrich 

Propidium iodide  Roth 

RPMI-1640  Gibco 

Sodium dodecylsulfate (SDS)  Serva 

TEMED  Sigma-Aldrich 

Tris-Base  Sigma-Aldrich 

Tris-HCl  Sigma-Aldrich 

Triton X-100  Sigma-Aldrich 

Trypsin  Serva 

Tween-20 Roth 

Vectashield Mounting Medium with 

DAPI 

Vector Laboratories 
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2.1.6 Buffers, solutions and growth media 

Table 2.7 Buffers, solutions and growth media 

Anode buffer 3.10 g boricacid                                                                                             

4 ml 10% SDS 

200 ml methanol 

ad 1 l ddH2O 

 pH 9.0                                                                             

 

Cathode buffer 3.10 g boric acid 

4 ml 10% SDS 

50 ml methanol 

ad 1 l ddH2O 

pH 9.0 

 

Lysis buffer A (Cytoplasmic buffer) 10 mM HEPES, pH 7.9 

10 mM KCl 

0.1 mM EDTA 

phosphatase and protease inhibitors 

Lysis buffer C (Nuclear buffer) 20 mM HEPES, pH 7.9 

400 mM KCl 

1 mM EDTA 

10 ml glycerol 

 phosphatase, and protease inhibitors 

Lysis buffer, whole cell 3.94 g Tris-HCl 

5.40 g ß-glycerol phosphate 

4.38 g NaCl 

0.09 g Na3VO4 

50 ml glycerol 

 5 ml Tween-20 
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0.02 g NaF 

in 500 ml ddH2O pH 7.5 

1 M DTT 

tablet protease inhibitor (complete mini, 

Sigma) 

phosphatase inhibitor cocktail 2 (Sigma) 

phosphatase inhibitor cocktail 3 

((Sigma) 

Protein loading buffer  20 ml glycerin 

20 ml 10% SDS 

2.50 mg bromophenol blue 

25 ml stacking gel buffer (4x) 

ad 95 ml ddH2O 

56.2 µl β-mercaptoethanol per 1000 µl 

SDS running buffer (5x)  144.10 g glycin 

30.30 g Tris-base 

10.00 g SDS 

In 2 l ddH2O 

pH 8.6 

Separation gel buffer (4x)  90.85 g Tris-base 

20 ml 10% SDS 

ad 500 ml ddH2O 

pH 8.8 

Stacking gel buffer (4x)  

 

30.30 g Tris-base 

20 ml 10% SDS 

ad 500 ml ddH2O 

pH 6.8 
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Staining solution (CFA assay) 0.50 g crystal violet 

27 ml formaldehyde 

In 1liter PBS 

Stripping buffer  4.50 g glycin 

3 ml 10% SDS 

3 ml Tween-20 

in 300 ml ddH2O 

pH 2.2 

DMEM medium 12.04 g DMEM 

3.30 g NaHCO3 

In 900 ml ddH2O 

pH 7.2 

RPMI medium 9.38 g RPMI-1640 

1.80 g NaHCO3 

In 900 ml ddH2O 

pH 7.2 

PBS 13.7 mM NaCl 

2.7 mM KCl 

80.9 mM Na2HPO4 

1.5 mM KH2PO4 

pH 7.4 

Western blot washing buffer (TBST) 3.15 g Tris-HCl 

11.70 g NaCl 

2 ml Tween-20 

ad 2 l ddH2O 

pH 7.5 

Propidium iodide (PI) solution 0.1 mg/ml PI 

10 mg/ml RNaseA 

In PBS 
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IP washing buffer 10mM Tris HCL 

150Mm NACL 

0.5Mm EDTA 

phosphatase and protease inhibitors 

 

 

2.1.7 Kits 

Table 2.8 Kits 

Kit Company 

Duolink® PLA Multicolor Probemaker Kit Sigma-Aldrich 

 

 

2.1.8 Laboratory consumables 

Table 2.9 Laboratory consumables 

Laboratory consumables Company 

Cell culture flask (20 cm², 75 cm²) BD Falcon 

Cell culture dishes (6 cm,10 cm,15 cm) BD Falcon 

Culture slides (4well) BD Falcon 

Cover slips Roth 

Centrifuge tubes (15 ml, 50 ml) Greiner 

FACS tubes  Beckman Coulter 

Pasteur pipets Wilhelm Ulbrich 

Filter paper, Whatman GE Healthcare  

Nitrocellulose blotting membrane GE Healthcare 

Immersion oil  Zeiss 

Micro tubes  Roth 
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2.1.9 Instruments  

Table 2.10 Instruments 

Equipment Manufacturer 

Binocular  Zeiss 

Centrifuges  Roth Hettich 

Clean bench  Thermo Fisher Scientific 

Drying cabinet  Heraeus 

Electrophoresis equipment Hoefer 

Flow cytometer  BD Biosciences 

Fluorescence microscope  Zeiss 

Incubators  Binder, Heraeus 

Irradiation device Gulmay 

Light microscope  Leitz 

Semidry blot equipment  Hoefer 

Spectrophotometer  Thermo Fisher Scientific 

Western blot scanner  LI-COR 
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2.2 Methods 

2.2.1 Cultivation of human cell lines 

The cells (HCT116 parental, AKT1-KO, AKT2-KO, and DNAPK-KO) were grown in 

RPMI, routinely supplemented with 10% fetal calf serum and 1% 

penicillin/streptomycin and under sterile condition. All cells were cultured in a 

humidified atmosphere of 7% CO2/93% air at 37° C. The HCT116 AKT1-KO and 

AKT2-KO cells were cultured with 0.3 mg/ml G418. To passage the cells, the old 

culture media was removed and cells were washed with PBS. Cells were incubated 

with 1ml Trypsin for 2 min and new media were added to cells to stop trypsinization. 

Cells were transferred to new culture flask and incubated. 

 

Table 2.11 Cell number and culture media volume for different culture dishes 

Culture dishes Cell number 

6  cm plate 300,000 cells per well 

10 cm plate 420,000 cells per well 

15 cm plate 900,000 cells per well 

4 well slides 20,000   cells per well 

 

 

2.2.2 Cell cycle analysis 

 The number of 300,000 cells were seeded in 6cm plates. Cell cycle distribution was 

analyzed 3, 4 and 5 days after seeding. The cells were harvested by trypsinization 

as well as collecting floating cells in the media. The cells were spun down (350 g, 6 

min) and fixed in 70% ethanol. After washing with PBS, the cells were incubated with 

ribonuclease (100 µg/ml in PBS) for 10 min, washed again and the DNA was stained 

using propidium iodide. Cell cycle fractions were determined by flow cytometer. 
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2.2.3 Subcellular fractionation 

Nuclear cytoplasmic fractionation was performed in order to determine post-

irradiation localization of proteins of interest after irradiation. To this aim, cells were 

swollen in cytoplasmic lysis buffer for 15 min on ice. NP40 5% were added and after 

short vortex cell lysates were centrifuged at 10,000 rpm for 2 min at 4°C to sediment 

the nuclei. Following separation of Obtained supernatant as cytoplasmic fraction, 

nuclear pellet was washed. After two times washing in cytoplasmic lysis buffer they 

re-suspended in the nuclear lysis buffer and incubated on ice for 1 hour. After 

sonication and centrifugation (10,000 rpm, 10 min, and 4°C) nuclear fraction was 

extracted. Equal amounts of protein were resolved by SDS-PAGE and transferred 

to a nitrocellulose membrane. 

  

2.2.4 Irradiation 

A Gulmay RS225 X-ray machine (Gulmay Ltd., 293 Chertsey, UK) is used for 

irradiation of cells. Irradiation is performed at 200 kVp, 15 mA and with 0.5-mm 

copper filter. Cells were irradiated with single doses of 2 – 4 Gy. 

 

2.2.5 siRNA Transfection 

Silencing of AKT isoforms cells was transiently done by transfecting 50 nM of a pool 

of siRNAs against AKT1 and AKT2. Non-targeting siRNA is transfected in parallel to 

the control condition. Lipofectamine 2000 and Opti-MEM® serum free medium were 

used for optimizing transfection. The Day after transfection media containing siRNA 

was removed and fresh medium added to the cells. Knockdown efficiency were 

analyzed 72 h after transfection by western blotting.  
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2.2.6 Protein assay 

To calculate the concentration of obtained protein needed for western blot and 

immunoprecipitation Biorad protein assay was used. 5 µl of protein solution were 

mixed with 25 µl of Biorad reagent A and 200 µl of Biorad reagent B and incubated 

for 7 min at RT. The absorption of light at 590 was measured by microplate reader. 

 

2.2.7 Immunofluorescence Analysis  

Immunofluorescence analyses were performed for detecting -H2AX foci in order to 

evaluate the efficiency of repair in cells after exposure to irradiation. Moreover, Rad 

51 foci was detected for evaluating the functionality of HRR in cells. To specifically 

check the repair process in S and G2 phase of cell cycle, immunofluorescence 

analyses were performed for CENP-F protein (a marker for proliferating cells). 

To perform these analysis, cells were plated on 4-well chamber slides. Cells were 

allowed to grow for 3 days to reach the highest percentage of G2 cells. Cells were 

exposed to a single dose of 4 Gy of ionizing irradiation either with or without inhibitor 

treatment for 2 hours. Thereafter, Cells were incubated for 6 and 24 hour post 

irradiation and fixed in 3.7% formaldehyde for 10 minutes. After permeabilizing with 

0.1% Triton X-100 in PBS for 10 minutes, cells were incubated in blocking solution 

(5% bovine serum albumin in PBS) for 1 hour at room temperature. After overnight 

incubation with primary antibody at 4°C, cells were washed with PBS, and then 

incubated in the dark with secondary antibody for 1 hour at room temperature. At the 

last step, cells were washed with PBS and mounted in Vectashield mounting. 

Imaging was performed by fluorescence microscope (Axioplan 2, Zeiss,Jena, 

Germany). At least 100 nucleus was counted per for each experimental condition 

and graphed using the Sigma plot graphics software (SPSS). 
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2.2.8 Immunoprecipitation 

To clarify if AKT is in the complex with BRCA2, RPA and Rad51, 

immunoprecipitation assay was performed as follows. Cells were washed with 

phosphate buffered saline and lysed with lysis buffer containing 50 mM HEPES, pH 

7.4, 150 mM NaCl, 1% NP-40, 0.5%, 10% glycerol, 1mM NAF, 1 mM EDTA, 1 mM 

DTT, and phosphatase as well as protease inhibitors. After protein concentration 

analysis, 2.5 mg of obtained protein from cell lysate were incubated with 1 µg of 

antibody (RPA2, AKT1, AKT2, BRCA2 and normal mouse IgG) for 1 hour at 4°C. 

Thereafter, 50 μl A/G agarose beads were added and cell lysates were incubated 

overnight at 4°C. The immune-precipitates were washed three times with washing 

buffer and were centrifuged for 2min (2700 g). Immune-complexes received were 

then extracted by boiling in loading buffer for 5 minutes. 

 

 

2.2.9 Colony Formation Assay 

To check radiosensitivity of HCT116 cells colony forming assay were used in 

different condition. Sub confluent cells with a density of 350 cells/well were plated 

into 6well plates. After 48h, cells were treated with above mentioned inhibitors for 2 

hours. Cells were irradiated with single doses of 0, 2 and 4 Gy and incubated for 12 

days for colony formation. Cells fixed and stained with crystal violet and colonies 

with more than 50 cells were counted as survivors.  The survival fractions (SF) were 

calculated by normalizing the plating efficiency of the treated cells to the plating 

efficiency of the untreated cells according to the formula published in (Mueck et al. 

2017). 

 

 

 



36 
 

2.2.10 Proximity ligation assay 

Proximity ligation assay were used to detect possible protein-protein interactions of 

Akt1 and Akt2 with RPA2 and BRCA2in HCT116 fixed cells following the 

manufacturer’s protocol. Irradiated (4 Gy) and non-irradiated cells were fixed in 3.7% 

formaldehyde for 10 minutes. After permeabilizing with 0.1% Triton X-100 in PBS for 

10 minutes, cells were incubated with blocking solution for 30 min at humidity 

chamber. For each condition the antibody of two proteins of interest (from different 

species) were added and cells were incubated overnight at 4°C. Next, following two 

times washing, PLA probes were added to slides and were incubated for 60 min at 

37°C. PLA probes contain secondary antibodies against two different species with 

two oligonucleotides. Next, cells were again washed and ligation buffer were added 

to cells. Incubation with amplification stock solution for 100 min at 37°C resulted in 

rolling circle amplification. This structure is detectable through oligonucleotides 

which are labeled with fluorescence. Finally, the cells were washed with washing 

buffer and mounted for Vectashield mounting. Imaging was performed with a 

fluorescence microscope (Axioplan 2, Zeiss,Jena, Germany). For negative control 

condition, primary antibodies were not added to the cells. For positive control 

condition cells were treated with EGF for 10 min and fixed with 3.7% formaldehyde. 
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3) Result 

3.1 The effect of Akt depletion on cell cycle distribution and cell proliferation 

To address the question of role of Akt in homologous recombination repair pathway 

the  human colorectal cancer cell line HCT116 parental cells as well as HCT116 cells 

with inactivated AKT1 and AKT2 genes were used. First of all, as shown in Figure 3.1 

western blot analyses were performed to check the accuracy of knockout. As Ericson 

et al (Ericson et al. 2010) already reported it could be observed that AKT3 is inactive 

in HCT116 parental and HCT116 AKT-1- KO cells as. However, Akt3 is expressed 

in AKT2-KO cells indicating a potential compensatory effect in these cells. 

 

Figure 3.1 Protein levels of Akt isoforms Akt1, Akt2 and Akt3 in HCT116 parental and 

knockout cells were quantified by western blotting. 

 

 

As it is already mentioned, HRR is only active in late S and G2 cells. In order to 

determine the percentage of cells in different cell cycle phases, cell cycle distribution 

analysis was performed by flowcytometry. Cell cycle distribution at different time 

points after seeding with a density of 300,000 cells showed that in HCT116 Parental, 

AKT1-KO and AKT2-KO cells, proportion of G2 and S phase cells reach the highest 
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amount three days after seeding of cells (Figure 3.2). Based on these results, all 

further experiments were performed on day 3 after seeding the cells.  

 

 

 

Figure 3.2. Cell cycle distribution analysis of HCT116 parental, AKT1-KO and AKT2-KO 
cells. The number of 300,000 cells  were seeded in 6cm plates and percentage of cells in 
different cell cycle phases obtained by FACS analysis in different time points after seeding 
(Day 3, Day 4  and Day 5). Percentage of cells in G1, S and G2 phases at indicated time 
pints for (A) HCT116 parental, (B) AKT1-KO and (C) AKT2-KO cells. Error bars represent 

the SEM of two independent experiments with 3 parallel cultures each. 

 

 

 

Centromeric protein F (CENP-F protein), also known as p330d, is a cell cycle 

regulated protein and is associated with centromeres and the nuclear matrix. CENP-

F expression is very low in G0/G1 while it accumulates in the nucleus of cells in S-

phase as well as G2/M (Landberg et al. 1996). Immunofluorescence analysis was 

performed for staining of CENP-F protein in HCT116 cells. Three days after seeding 

of cells in 4well chamber slides (20000 cells per well) it could be observed that the 

majority of cell population are in G0/G1 phase (CENP-F negative cells). 

Approximately 20 percent of cells were positive for CENP-F protein indicating cells 
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in S and G2/M phases. As it is shown in Figure 3.3 Akt isoforms depletion did not 

change the proportion of cells in S/G2 phases.  

 

Figure 3.3. Determination of cells in S and G2 phase of cell cycle using immunostaining of 
CENP-F protein. (A) CENP-F negative cells. (B) CENP-F positive cells represent cells in S 
and G2 phase. Error bars represent the SEM of three independent experiments. 

 

 

 

3.2 Increased residual -H2AX in AKT1-KO and AKT2-KO cells 

To examine the influence of AKT isoforms on DSBs repair through homologous 

recombination, -H2AX foci assays for HCT116 parental and AKT1 and AKT2 

knockout cells were performed. To determine specifically cells which are able to 

perform homologous recombination, Centromeric protein F (CENP-F) staining were 

applied. Cells were irradiated and 24 hours after 4Gy, number of -H2AX foci in 

CENP-F positive protein were monitored. As shown in Figure 3.4 AKT1-KO and 

AKT2-KO cells presented higher amount of damages in comparison to parental cells 

24h after 4Gy irradiation. The result indicates that in f Akt1- and Akt2-knock out cells 
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repair of radiation induced DSBs in cells which are in S and G2 phases of the cell 

cycle is significantly reduced when compared to AKT wild type cells. 

 

Figure 3.4. AKT depletion results in increased residual -H2AX in irradiated CENP-F positive 

cells. (A) Immunofluorescence analysis was performed as described in material and 
methods. The γ-H2AX foci (green) 24 hours after 4 Gy in CENP-F positive cells (red). (B) 
The number of γ-H2AX foci was analyzed 24 h after 4 Gy radiation. The data represent the 
mean ± SEM of three independent experiments and a total of at least 300 nuclei per 

condition (** p < 0.01, and *** p < 0.001, Student’s t-test).(Mohammadian Gol et al. 2019) 
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Next to specifically check the effect of Akt on homologous recombination C-NHEJ 

and A-NHEJ were blocked using respectively DNA-PK inhibitor NU7441 and PARP-

1 inhibitor Olaparib. Following 2hours treatment with inhibitors, cells were i rradiated 

with 4Gy.  HCT116 AKT1 and AKT2 knockout cells presented significantly increased 

number of residual -H2AX foci in compare to parental control cells. Yet, in AKT2-

KO cells amount of damages were more than AKT1-KO (Figure 3.5). Furthermore, 

the effect of pan Akt inhibitor MK2206 on the DSBs repair was analyzed. MK2206 is 

an  allosteric inhibitor of Akt which  is able to block kinase activity of Akt at both 

phosphorylation sites (Akt T308 and S473) and that it does not change the basic 

protein level of Akt (Szymonowicz et al. 2018). In parallel with MK treatment, cells 

were treated with DNAPK inhibitor NU7441 and PARP-1 inhibitor Olaparib 

separately as well as combination treatment of three inhibitor. As it is shown in 

Figure 3.5B using MK, NU and Olaparib increased the number of -H2AX 

approximately to the same level. Combination treatment of MK, NU and Olaparib 

showed further increasing of damages. This result indicates that Akt is important for 

the repair of DSBs in S and G2 phases cells. 
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Figure 3.5. Blocking of c-NHEJ and alt-NHEJ pathways (A) The HCT116 parental 

and knockout cells were irradiated 2 h after treatment with a combination of NU7441 
and Olaparib (1 µM each). (B) The HCT116 parental cells were treated with 1 µM 
of inhibitors (MK2206, NU7441, and Olaparib) for 2 h and irradiated with 4 Gy. The 

number of γ-H2AX foci were counted 24 h after irradiation. The data represent the 
mean ± SEM of three independent experiments and a total of at least 300 nuclei 
per condition (*** p < 0.001, Student’s t-test). (Mohammadian Gol et al. 2019) 

 

 

3.3 Blocking of HRR through inhibiting Rad51 binding to the damage site. 

 It has been reported that BO2 can inhibit Rad51 foci formation in different cell line 

(Algotar et al. 2014, Huang and Mazin 2014).To examine the inhibitory effect of BO2 

on Rad51 foci formation of HCT116 cells, cells were treated with 1µM of this inhibitor 

2h before irradiation. The number of Rad51 foci in the nucleus of cells were 

monitored 6 hours after 4 Gy Irradiation. As it is shown in Figure 3.6 BO2 treatment 

significantly reduced number of Rad51 foci in HCT116 parental cells. Next, DSBs 
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repair efficiency of parental and knockout cells under BO2 treatment after irradiation 

was analyzed. As shown in Figure 3.6 inhibition of Rad51 binding to the DNA using 

BO2 inhibitor resulted in increased -H2AX in compare to DMSO treated cells. 

Moreover, enhancement of residual DSBs is stronger in AKT1 and AKT2 knout cells.  

 

Figure 3.6. Blocking of Rad51 focus formation at the site of damage leads to increased -

H2AX. (A) Number of Rad51 foci 6 hours after 4Gy irradiation in HCT116 BO2 treated cells. 
(B) The number of -H2AX foci in CENP-F positive HCT116 parental, AKT1-KO and AKT2-

KO cells after BO2 treatment and 24 hour post irradiation. The data represent the mean ± 
SEM of three independent experiments and a total of at least 300 nuclei per condition (*** p 
< 0.001, Student’s t-test). 

 

 

 

3.4  The role of Akt in post irradiation clonogenic survival capacity of HCT116  

Post-irradiation cell survival of HCT116 Parental, AKT1-KO and AKT2-KO was 

investigated using a standard colony formation assay. This assay is testing the ability 

of single cells to proliferate into a large colony, i.e. more than 50 cells.  To this aim 

proliferating cells were trypsinized and seeded in 6well plates. Cells were irradiated 

48 hours after seeding with indicated doses and incubated for 13 days. As 

demonstrated in Figure 3.7 AKT1-KO and AKT2-KO cells are significantly more 
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sensitive to irradiation in comparison to parental cells. Interestingly, among the Akt-

KO cells AKT2-KO cells showed a significantly stronger effect than AKT1-KO cells.  

  

 

Figure 3.7. Clonogenic cell survival of irradiated HTC116 parental and AKT1-KO and AKT2-
KO Cells.  Clonogenic assays were performed as described in the Materials and Methods. 
(A) HCT116 parental, AKT1-KO, and AKT2-KO cells irradiated with 0, 2, and 4 Gy. Data 
points represent the mean surviving fractions (SF) ± the standard deviation (SD) of three 
independent experiments (n = 18; *** p < 0.001, Student’s t-test). (Mohammadian Gol et al. 

2019) 

 

 

Next, the colony formation ability was tested after treatment of cells with DNA-PK 

inhibitor NU7441 or Rad51 inhibitor BO2. As shown in Figure 3.8 inhibiting of DNA-

PK resulted in decreased colony survival in all three cell line (HCT116 parental and 

AKT-KO cells) but this decreasing is more pronounced in AKT1-KO cells. 
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Furthermore, blocking of Rad51 showed a stronger effect on AKT2-KO cells in 

compare to parental and AKT1-KO cells. 

 

 

Figure 3.8 Inhibition of HR and C-NHEJ. All three cell lines were treated with 1 µM of the 
indicated inhibitors 2 h before radiation exposure 2 Gy. Bars represent the average number 
of colonies formed when 350 cells were seeded for the different treatment conditions (n = 

18;*** p < 0.001, Student’s t-test).(Mohammadian Gol et al. 2019) 

 

 

3.5 The effect of Akt on HRR through regulation of Rad51  

Rad51 is main player of homologous recombination repair of DSBs as well as normal 

meiotic recombination (Tashiro et al. 2000). It has been shown that downregulation 

of Akt1 in the non-small cell lung cancer cell line A549 leads to reduced Rad51 foci 

formation (Mueck et al. 2017). To asses HR dependent repair in HCT116 AKT wild 

type and knockout cells Rad51 foci formation in these cells was analyzed after 6 and 

24h exposure to irradiation. As shown in Figure 3.9 the number of Rad51 foci was 
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significantly reduced in AKT1-KO and AKT2-KO cells 6h after 4Gy IR indicating an 

impaired homologous recombination in the knockout cells. 

 

Figure 3.9 Rad51 foci formation in HCT116 parental and AKT1/AKT2 depleted cells. (A) 
Immunofluorescence analysis was performed as described in the Materials and Methods. 
Rad51 foci (green) in sub-confluent cells (blue). (B) Rad51 foci number per nucleus were 
analyzed after immunofluorescence staining of HCT116 parental, AKT1-KO, and AKT2-KO 

irradiated cells. (Mohammadian Gol et al. 2019). 

 

To test whether the effect of AKT depletion on Rad51 foci formation could be 

observed in the absence of functional NHEJ, siRNA mediated knockdown of AKT1 

and AKT2 was performed in HCT116 DNAPK-KO cells. Quantification of Rad51 foci 

in HCT116 DNAPK-KO cells 6 hours post IR showed that in the absence of NHEJ, 

Rad51 foci formation increases significantly in comparison to DNAPK wild type cells 

Figure 3.10 A and B. This effect which is also clearly demonstrated by western blot 

analysis for Rad51 expression (Figure 3.10 C) might be due to a compensatory 

strategy of cells in response to the loss of NHEJ pathway and its repair capacity. 
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Moreover, Akt1 and Akt2 isoforms single knockdown as well as dual knockdown 

presented a significant decrease of Rad51 foci in both HCT116 Parental and 

DNAPK-KO cells. Interestingly, the reduction of Rad51 foci was stronger after 

downregulation of Akt2 isoform (Figure 3.10 B). This result indicates that both Akt1 

and Akt2 are involved in the recruitment of Rad51 to the site of damage after inducing 

DSBs.  
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Figure 3.10. Rad51 foci formation in HCT116 Parental and DNAPK-KO cells. HCT116 
parental and DNAPK-KO cells were transfected with AKT1-siRNA, AKT2-siRNA, and 
control-siRNA. (C) Rad 51 foci number per nucleus after dual knockdown of Akt1 and Akt2 
and (D) single knockdown of Akt1 and Akt2. The number of Rad51 foci were counted at the 
indicated time points after 4 Gy. Bars represent the mean number of foci/cell ± SEM from at 
least three independent experiments. (E) siRNA transfection efficacy was analyzed via a 

western blot (** p < 0.01, *** p < 0.001, Student’s t-test). (Mohammadian Gol et al. 2019) 

 

To confirm these data, western blot analysis were done to check Rad51 protein level 

after irradiation in HCT116 Parental and AKT1-KO and AKT2-KO cells. To this aim, 

nuclear cytoplasmic fractionation was performed 6h and 24h after irradiating the cells 

with 4 Gy as well as for nonirradiated cells. As it is shown in Figure 3.11 Rad51 

protein level in the nucleus of AKT1-KO and AKT2-KO cells is less than in parental 

cells after irradiation. The reduction of Rad51 translocation to the nucleus is stronger 

in AKT2-KO cells. This result is another proof for the involvement of Akt1 and Akt2 

in Rad51 nuclear translocation following radiation induced DNA damage. Moreover, 

RPA2 protein level was also reduced in knockout cells versus parental cells. As 

displacement of RPA and Rad51 is a pre-requisite for RAD51 loading to the damage 

site during homologous recombination (Stauffer and Chazin 2004) these data 

indicate the importance of Akt in the translocation and loading process of Rad51 to 

the DNA-DSB. 
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Figure 3.11. Nuclear translocation of Rad51 in HCT116 parental, AKT1 and AKT2 knockout 
cells. (A,B) Cytoplasmic and nuclear fractions were prepared for HCT116 parental, AKT1-
KO, and AKT2-KO cells Six and 24 hours after irradiation. (C,D) Rad51 and RPA2 protein 
levels were determined by western blotting. Tubulin and lamin were used as cytoplasmic 
and nuclear markers, respectively. Densitometry is based on the mean ± SEM of three 

independent experiments. (Mohammadian Gol et al. 2019). 
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3.6 AKT knockout cells are sensitive to Olaparib 

It has been reported that HR deficiency leads to strong sensitivity to PARP inhibition 

(Kötter et al. 2014, Philip et al. 2017). Therefore, the PARP inhibitor Olaparib was 

applied to HCT116 parental and AKT1 and AKT2 knock out cells in order to test the 

efficiency of HRR after radiation exposure of these cells.  In comparison to parental 

HCT116 cells Olaparib treatment of HCT116-AKT-KO cells induced a significantly 

decreased clonogenic activity (Figure 3.12). Interestingly, in the absence of AKT2, 

the sensitivity of HCT116 cells to Olaparib was extremely elevated. As it is shown in 

Figure 3.12 AKT2-KO cells were not able to form colony after Olaparib treatment.  

 

Figure 3.12 inhibition of PARP increase radiosensitivity of HCT116 cells. All three cell lines 
were treated with 1 µM of the Olaparib 2 h before radiation exposure. Clonogenic assays 
were performed as described in the Materials and Methods. Bars represent the average 
number of colonies formed after 2Gy Irradiation when 350 cells were seeded 

(n=3).(Mohammadian Gol et al. 2019) 
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Data reported by Mukhopadhyay et al indicate that PARP inhibition is also 

associated with Rad51 foci formation. Inhibition of PARP results in increased Rad51 

foci while in HR deficient cells PARP inhibition has no effect on Rad51 foci formation 

(Mukhopadhyay 2010). In this context, the effect of Olaparib on Rad51 and -H2AX 

foci formation was analysed. The results of these experiments showed that although 

inhibition of PARP enhanced the number of residual -H2AX foci in all three cell lines, 

i.e. AKT-KO and parental cells, Rad51 foci formation is only increased in HCT116 

parental cells. Thus, based on these results AKT1-KO and AKT2-KO cells are 

sensitive to Olaparib and this sensitivity may be an indicator for a deficiency in HRR 

of AKT1- and AKT2 knock out cells.  

 

Figure 3.13.Inhibition of PARP increase residual -H2AX foci as well as Rad51 foci in 
HCT116 cells. All three cell lines were treated with 1 µM of the Olaparib 2 h before radiation 
exposure. (A) Residual -H2AX number 24h after 4Gy irradiation. (B) Number of Rad51 foci 

6h after 4Gy Irradiation. Bars represent the mean number of foci/cell ± SEM from at least 

three independent experiments. (* p < 0.05, *** p < 0.001, Student’s t-test). 
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3.7 Kinase activity of Akt is not involved in translocation of Rad51. 

Next, the efficacy of Rad51 nuclear foci formation was analyzed in cells treated with 

the Akt-inhibitor MK2206. Blocking of Akt-kinase activity with this inhibitor in HCT116 

parental cells resulted in a slight reduction of Rad51 foci formation, however, this 

effect was not significant indicating that nuclear translocation of Rad51 in Akt-wild 

type cells is not dependent on kinase activity of Akt. 

 

Figure 3.14 Blocking of kinase activity of Akt. (A) Rad51 foci number per nucleus were 
analyzed after immunofluorescence staining of HCT116 parental following 2 h MK2206 (1 

µM) treatment as well as 6 h after irradiation.(Mohammadian Gol et al. 2019) 

 

In further analyses the translocation of Rad51 under MK2206 treatment was tested 

in HCT116 parental and HCT116-DNAPK-KO cells. After nuclear/cytoplasmic 

fractionation of MK2206 treated cells revealed no alteration of Rad51 protein levels 

in the nucleus when compare to DMSO treated control cells neither for HCT116 

Parental nor HCT116 DNAPK-KO cells (Figure 3.15). 
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Figure 3.15. Rad51 translocation after MK2206 treatment. MK2206 (1 µM)-treated and 
nontreated cell were irradiated, and the cytoplasmic and nuclear fractions were prepared 6 

and 24 h later for (A) HCT116 parental and(B)  DNAPK-KO cells cells. 

 

3.8 Phosphorylation of Rad51. 

It is reported by Sørensen et al (Sørensen et al. 2005) that Chk1 mediated 

phosphorylation of Rad51 at amino acid residue T309 is required for the formation 

of nuclear RAD51 foci at the DNA damage site. Thus, the phosphorylation of Rad51 

(T309) after radiation in HCT116 parental and AKT1/2-knockout cells was analysed. 

To this aim, nuclear/cytoplasmic fractionation of HCT116 cells at different time points 

post IR was performed. As shown in Figure 3.16 phosphorylation of Rad51 increased 

in a time-dependent manner after radiation exposure. In comparison to parental 

cells, AKT1 and AKT2 knock out cells presented elevated phosphorylation. 

However, Rad51 and RPA total protein level is decreased in the nucleus of AKT1-

KO and AKT2-KO cell as it was already shown in previous results, see Figure 3.4. 

Moreover, at early time points after irradiation (i.e. from 1h to 6h) MK2206 treatment 
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of parental HCT116 cells did not affect the phosphorylation of Rad51 at T309. 

Nevertheless a small increase is apparent at 24h after IR in MK2206 treated cells. 
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Figure 3.16.Phosphorylation of Rad51 at T309 is higher in the absence of Akt1 and 

Akt2. Nuclear cytoplasmic fractionations were performed 1, 2, 4, 6, and 24 h after 
irradiation with 4 Gy as well as non-irradiated HCT116 cells. The level of pRad51, 
Rad51 and RPA2 in nuclear fraction of (A1) HCT116 parental and AKT1-KO, (B1) 

parental and AKT2-KO cells; (C1) MK- and DMSO-treated parental HCT116 cells. 
(A2, B2, C2) Ratios of nuclear pRad51 (T309)/Rad51 total protein were determined 
by western blotting and normalized to the level of pRad51 at 1h. The non-irradiated 

condition was excluded for normalization because of contamination with 
cytoplasmic fraction (n = 2).(Mohammadian Gol et al. 2019). 

 

 

3.9 Akt and HRR protein interaction: 

As it was observed that kinase activity of Akt is not involved in translocation and foci 

formation of Rad51, potential protein-protein interaction between Akt and Rad51 as 

well as other HR proteins including RPA and BRCA2 was examined. 

Immunoprecipitation experiments showed that neither Akt1 nor Akt2 do not directly 

interact with Rad51 and RPA2.  

Regarding AKT-BRCA2 interaction, although immunoprecipitation of Akt1 did not 

show any interaction of Akt1 and BRCA2, a slight band of Akt1 and Akt2 was to be 

detected after co-immunoprecipitation of BRCA2 (Figure 3.17). Together, these 

results indicate that there is no clear and stable protein interaction of Akt1 and Akt2 

with Rad51 and RPA as well as with BRCA2. 
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Figure 3.17. Akt is not in a complex with BRCA2, RPA2, and Rad51. Immunoprecipitation 
and co- immunoprecipitation analysis for (A) Akt1 and Akt2 (B) RPA2 (C) Akt1 (D) BRCA2 
were performed as described in the Materials and methods. IgG protein immunoprecipitation 

was used as a control.(Mohammadian Gol et al. 2019) 
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To identify potential transient or indirect interactions between Akt1 and AKT2 with 

BRCA2 and RPA a proximity ligation assay (PLA) was performed. PLA assay is a 

method for detection of protein–protein interactions (PPI) in tissue section or cell 

cultures. In this technique two applied antibodies conjugates to complementary 

oligonucleotides. When the proteins of interest are in close distance (<40 nm) 

subsequent hybridization and amplification steps produce fluorescent signal. The 

generated fluorescent signal is visualized as fluorescent dot by microscopy. As it is 

shown in Figure 3.18 the PLA assay showed an interaction of Akt1 and Akt2 with 

BRCA2 in non-irradiated HCT116 cells. Fluorescent dots reflecting Akt1/2 and 

BRCA2 interaction were mostly outside of the nucleus and reduced after irradiation. 

As BRCA2 is one of the potential mediator proteins for translocation of Rad51, these 

transient interaction of Akt1/2 and BRCA2 outside of the nucleus might be 

associated with the role of Akt in translocation of Rad51 to the nucleus. On the other 

hand a reduced interaction after irradiation might be due to a radiation independent 

role of Akt in other cell processes.  
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Figure 3.18. Proximity ligation assay in HCT116 parental cells. PLA assay is performed as 
described in the Materials and methods. EGF treated cells were used as positive control for 
detection of EGFR-HER2 dimerization. For negative control condition primary antibodies 
were not added to the cells. 
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4) Discussion 

4.1 The role of Akt in regulating DSBs repair 

DNA DSBs in mammalian cell are repaired by three pathways including classical 

non-homologous end joining (C-NHEJ) that acts throughout the cell cycle, 

homologous recombination repair (HRR) that operates exclusively in G2/S phase, 

and alternative NHEJ (A-NHEJ) that is a backup pathway in the absence of 

functional C-NHEJ. The role of Akt in the context of DSBs repair is linked to both 

major pathways, i.e. C-NHEJ and HRR. Various studies have investigated the 

importance of Akt with respect to either stimulatory or inhibitory effects on DSBs 

repair. It has been shown that after irradiation P-AKT (Ser-473) is colocalized with 

γ-H2AX at the sites of  DSBs  and promotes DSB repair and thus mediates cellular 

radioresistance (Sørensen et al. 2005, Toulany and Rodemann 2015, Holler et al. 

2016, Szymonowicz et al. 2018).  

Different preclinical investigations have reported that genetic or pharmacologic 

inhibition of Akt is associated with decreased DNA-PKcs-dependent DSB repair and 

induced cytotoxicity to chemo- and radiotheraphy.  Toulany et al (Toulany et al 2012) 

demonstrated that AKT1 directly interacts with DNA-PK through its C-terminal 

domain and induces accumulation of DNA-PKcs at the sites of DNA-DSBs. 

Moreover, they reported that Akt1 promotes DNA-PKcs kinase activity. Therefore, 

Akt1 is needed for efficient NHEJ DNA-DSB repair. Interaction of DNA-PKcs is also 

reported for the  Akt-isoform Akt3 in Non-small-cell lung carcinoma (NSCLC) cell line 

(Mueck et al. 2017). Sahlberg et al. (Sahlberg et al. 2014) reported that single or 

dual depletion of AKT1 or AKT2 impairs the process of DNA-rejoining of DSBs and 

increases  radiosensitivity. Moreover, Turner et al. (Turner et al. 2015) showed an 

enhanced activation of DNA repair proteins in Akt3-expressing human Glioblastoma 

(GBM) cells and as consequence an increased resistance to radiation and 

Temozolomide. Investigations by Oeck et al. (Oeck et al. 2017) showed that 

activated mutant form of Akt1 (Akt1-E17K) in murine prostate cancer cells stimulates 

radiation-induced DNA damage repair and mediates cellular radioresistance . It is 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Oeck%20S%5BAuthor%5D&cauthor=true&cauthor_uid=28209968
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also shown that phosphorylation of Cernunnos/XRCC4-Like Factor (XLF) by Akt 

leads to its dissociation with DNA ligase IV/XRCC4- complex and impairs C-NHEJ 

(Liu et al. 2015). Ubiquitin-conjugating enzyme E2S (UBE2S) is another target 

protein of Akt which exerts an important role in DSBs repair. UBE2S phosphorylation 

by Akt1 as well as UBE2S/Akt1 interaction stimulates Ku70-UBE2S binding and 

subsequently the accumulation of UBE2S-Ku70 at the site of damages which leads 

to an improved C-NHEJ (Hu et al. 2017) 

 
 

4.2 Akt influence HR repair pathway through regulating HRR proteins 

BRCA1 (breast-cancer susceptibility gene 1) exerts different regulatory functions 

including processes of DNA damage repair and checkpoint activation. BRCA1 is 

frequently mutated in breast and ovarian cancer. Akt is known to phosphorylate 

BRCA1 at two amino acid residues, i.e. S694 and T509. Plo et al  (Plo et al. 2008) 

showed that constitutive activation of Akt1 can result in decreased BRCA1-foci 

formation, cytoplasmic retention of BRCA1 and Rad51, and impaired HRR. 

MERIT40 is a member of RAP80 ubiquitin recognition complex which is important 

for assembly of BRCA1 complexes at DNA damage sites. MERIT40 is also able to 

cooperate with BRCA2 in order to resolve interstrand cross-links (Jiang et al. 2015). 

Akt has been described to phosphorylate MERIT40 at S29 (Brown et al. 2015). 

Brown et al (Brown et al. 2015) showed that treatment of breast cancer cell lines with 

doxorubicin results in phosphorylation of MERIT40 by Akt and facilitates the 

assembly of BRCA1 complexes in response to DNA damage through HRR. 

Xiang T et al (Xiang et al. 2011) based on investigation on BRCA1-deficient cells 

demonstrated that reduced BRCA1 expression seems to be associated with an 

increased phosphorylation of Akt. Another study reported by Jia et al (Jia et al. 2013) 

indicated that in BRCA deficient cells, activation of Akt leads to blocking of Chk1-

Rad51 interaction and consequently impairs HRR. This group suggested that 

BRCA1 deficiency is associated with activate Akt1 which contributes to 

tumorigenesis by influencing Chk1-Rad51 signaling pathway. 
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In contrast to the results reported by Jia et al (Jia et al. 2013) and Plo et al.(Plo et al. 

2008) a study published by  Mueck et al (Mueck et al. 2017) indicated that Akt1 

functions as a promoter of homologous recombination repair. In detail Mueck et al 

presented data that downregulation of Akt1 in non-small cell lung cancer cells 

(NSCLC) mediated a decreased clonogenicity after treatment with Mitomycin C. 

Especially and based on a HR-reporter assay system the authors reported that Akt1-

knock down significantly impaired HR. Moreover, the study by Mueck et al indicated 

that siRNA mediated downregulation of Akt1 led to an increased number of residual 

DSBs after irradiation which is partially independent of the DNA-PKcs. Mueck et al. 

also claimed that the demonstrated and significantly increased number of residual 

BRCA1 foci after Akt1-knock down serves as an indicator of unsuccessful HR in 

irradiated cells (Mueck et al. 2017). 

In line with this study of Mueck et al. , the results presented in the present study 

indicate that the number of residual γ-H2AX foci 24 hour after 4 Gy irradiation in 

HCT116 AKT1- and AKT2-knock out cells is significantly higher than that of parental 

wild type cells. In contrast to all studies done and discussed above concerning the 

role of Akt in HRR, in the present study centromeric protein F (CENP-F) staining was 

used to specifically analyze cells in late S- as well as G2-phase, i.e. HR-competent 

cells. Moreover, by blocking other pathways of DSBs repair, i.e. C-NHEJ and A-

NHEJ, the ability of cells for repairing of DSBs preferentially through HRR was 

analyzed. Applying this approach it could be demonstrated that non-repaired DNA-

DSB in CENP-F positive cells is increased in irradiated HCT116 AKT1- and AKT2- 

knock out cells (see Figure 3.5). Furthermore, blockage of homologous 

recombination using the Rad51 inhibitor BO2, indicated that AKT1 and AKT2 knock 

out cells are more sensitive to this inhibitor than the parental cells as the number of 

unrepaired DNA-DSB 24 hour after irradiation was significantly higher in BO2 treated 

Akt knock out cells (see Figure 3.6). 

The results of post-irradiation clonogenic cell survival is also another proof for the 

involvement of Akt1 and Akt2 in repair pathways. Consistent with the results 

obtained through -H2AX analysis, post-irradiation cell survival capacity of AKT1 and 
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AKT2 knock out cells was significantly lower in comparison to parental cells. As 

described in the introduction above it is proven by many studies that Akt1 plays a 

prominent role in the regulation of the NHEJ pathway (e.g. see (Sahlberg et al. 2014, 

Toulany et al. 2017)). Using DNAPK inhibitor strongly increased the radiosensitivity 

of AKT1-KO cells due to their impaired NHEJ capacity. Yet, in AKT2-KO cells Akt1 

is functional. Thus, these cells have proficient NHEJ and consequently treatment 

with the DNAPK inhibitor results only in a slight effect in cells irradiated with 2 Gy. 

Thus, the data presented suggest that knock out of AKT2 affects HRR more than 

knock out of AKT1 (see Figure 3.8). Yet, as AKT2-KO cells presented a significantly 

increased radiosensitivity after BO2 treatment when compared to AKT1-KO cells, it 

can be concluded that both Akt1 as well as Akt2 are involved in the regulation of 

homologous recombination repair process of DNA-DSBs. 

 

 

 

4.3 Inhibition of Kinase activity of Akt 

Activation of the PI3K/Akt/mTOR pathway in tumor cells is an important factor 

involved in sensitivity to Akt-specific inhibitors (She et al. 2008). For instance, 

catalytic Akt inhibitors e.g. GDC-0068 and AZD5363 induce inhibitory effects in 

breast tumor cell lines with Akt mutations while allosteric inhibitors like MK-2206 do 

not exert inhibitory effect on breast, ovarian and colon cancer cells  (Carpten et al. 

2007, Banerji et al. 2012). On the other side, MK2206 in combination with MEK1/2 

inhibitor AZD6244 can stimulate apoptosis and inhibition of cell growth in A549 and 

H157 lung cancer cells (Meng et al. 2010). 

It has been demonstrated that MK2206 increases effect of chemotherapeutic agents 

such as carboplatin, docetaxel, gemcitabine, and doxorubicin and molecularly 

targeted drugs (erlotinib or lapatinib) in different cancer  cell line including lung, 

breast, ovarian, gastric or hepatocellular carcinoma (Simioni et al. 2013). 

An antitumor effect of MK2206 is also reported in combination with radiation in 

various studies (Li et al. 2009, Holler et al. 2016). In contrast to these reports, 
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Djuzenova et al (Djuzenova et al. 2019) showed that blocking of Akt in glioblastoma 

cell line does not enhance IR-induced DNA damage and has no effect on cell cycle 

distribution, apoptosis or autophagy.  

MK2206 is able to block kinase activity of Akt at both phosphorylation sites (Akt T308 

and S473) but does not change the basic protein level of Akt (Szymonowicz et al. 

2018). In the present study, treatment of HCT116 cells with MK2206 led to increased 

residual -H2AX foci indicating a specific effect of kinase activity on the repair of 

radiation induced DNA-DSB-repair (see also Figure 3.14). However, as presented 

herein (see Figure 3.15) the results indicate that Akt kinase activity has no effect on 

nuclear translocation of RPA and Rad51 protein.  Therefore, based on our results, 

the effect of MK2206 on increased γ-H2AX seems to be independent of the role of 

Akt on Rad51 and RPA translocation. Interestingly, the application of MK2206 

inhibitor on HCT116 DNAPK-KO cells also did not change Rad51 translocation. 

Thus, the increased amount of residual -H2AX-foci after MK2206 treatment of 

irradiated cells might be due to the role of Akt kinase activity in phosphorylation of 

other target proteins in DSBs repair pathway. For instance, Akt can phosphorylate 

MERIT40 in HRR pathway and XLF or UBE2S in NHEJ pathway (Liu et al. 2015, 

Brown and Banerji 2017). 

 

 

4.4 Rad51, main player of HRR 

Rad51 is a key enzymes required for pairing and exchange of strands between 

homologous DNA molecules in HRR (Vispé et al. 1998). Rad51 is a conserved 

protein in eukaryotes. Rad51 of vertebrates and fungi have about 74% protein 

sequence similarity. Human and mouse Rad51 homologs are 99% identical. This 

level of similarity indicates that the function of Rad51 is also conserved. The human 

Rad51 (HsRad51) has also structural and functional homologies with the bacterial 

recombinase RecA (Stassen et al. 1997). Rad51 is a monomer when it is in a solution 

but it can polymerase and form a nucleoprotein filament on both double-stranded 
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DNA (dsDNA) and single strand DNA (ssDNA). Moreover, Rad51 is able to bind two 

DNA molecules simultaneously through its primary and secondary DNA binding sites 

to do recombination (McEntee et al. 1981, Shinohara et al. 1992, Baumann et al. 

1996). Rad51 activity also needs DNA dependent manner hydrolase of ATP 

(Sung1994). Following DNA damage Rad51 translocates to the nucleus 

(Gildemeister et al. 2009) and a clear correlation of Rad51 nuclear accumulation with 

PI3K pathway and Akt protein has been reported in different studies (Plo et al. 2008, 

Juvekar et al. 2012, Mueck et al. 2017, Philip et al. 2017). 

In this context, Philip et al (Philip et al. 2017) showed that inhibition of PI3K pathway 

using BKM-120 inhibitor leads to reduction of Rad51 foci after inducing damages in 

DNA by doxorubicin. Plo et al (Plo et al. 2008) demonstrated correlation of Akt1 with 

BRCA1 and RAD51 cytoplasmic localization analyzing biopsies from breast cancer 

patients. They showed that in AKT-low breast cancers, BRCA1 and Rad51 mostly 

localized in the nucleus whereas in AKT-high tumors, there is mainly cytoplasmic 

localization of both BRCA1 and RAD51. Thus, Plo et al concluded that Akt activation 

results in cytoplasmic retention of BRCA1 and Rad51 in breast cancer cell. Xu et al. 

(Xu et al. 2010) showed that inhibition of Akt by AKT1/2I restored accumulation of 

CtIP, RPA, and Rad51 in RO-3306–arrested Cdk1AS and HCT116 cells in G2 

phase.  

 

In contrast to these studies the report from Mueck et al (Mueck et al. 2017) 

demonstrated that siRNA mediated knockdown of Akt1 led to a significant decrease 

of Rad51 protein amount in the nucleus of the non-small cell lung cancer (NSCLC) 

cell line A549. Moreover, Muek et al showed that colocalization of γ-H2AX and 

Rad51 foci is significantly reduced after downregulation of Akt1 in A549 as well as 

H460 cells. In agreement with the study from Mueck et al (Mueck et al. 2017) but in 

contrast to Xu et al (Xu et al. 2010, Mueck et al. 2017) the data presented herein 

indicate that in the absence of the Akt isoforms Akt1 and Akt2 the nuclear 

accumulation of Rad51 in irradiated cells is markedly reduced (see again Figure 3.9). 

This reduction might be an indication of impaired homologous recombination in 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Xu%20N%5BAuthor%5D&cauthor=true&cauthor_uid=20679434
https://www.ncbi.nlm.nih.gov/pubmed/?term=Xu%20N%5BAuthor%5D&cauthor=true&cauthor_uid=20679434
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AKT1/2 knockout cells which leads to increased residual damages in CENP-F 

positive cells following irradiation (see again Figure 3.4). Furthermore, the presented 

western blot analysis clearly indicate a reduced Rad51 nuclear translocation in 

knockout cells when compared to parental cells. Therefore, the study presented 

provides clear evidence that both the Akt isoforms Akt1 and Akt2 are involved in 

Rad51 nuclear translocation and foci formation after radiation induced DNA-DSB.   

 

Post-translational modifications (PTM) of Rad51 are important for its activity through 

DNA damages response (Chabot et al. 2019). RAD51 has different phosphorylation 

sites on threonine, tyrosine and serine residues although the exact function of these 

phosphorylations is still not clearly understood. It has been reported that 

phosphorylation of Rad51 by CK2 on S14 and phosphorylation by Plk1 on T13 are 

important for the interaction of Rad51 with NBS1 (Yata et al. 2012). c-ABL is a 

tyrosine kinase which is able to phosphorylates Y315 and Y54 residues of Rad51. 

These phosphorylation sites are important for the recombinase activity of Rad51 

(Shimizu et al. 2009, Alligand et al. 2017). Chabot et al (Chabot et al. 2019) 

demonstrated Rad51 phosphorylation by c-MET and its importance for the regulation 

of the BRCA2-RAD51 interaction. 

 

Sørensen et al. (Sørensen et al. 2005) described an interaction of Chk1 and RAD51 

via  phosphorylation of Rad51 on T309 by Chk1. They showed that Chk1 depletion 

results in impairment of RAD51 nuclear foci formation after hydroxyurea treatment. 

They also provided evidence that mutation on Rad51 at the T309 phosphorylation 

site mediates sensitivity to hydroxyurea. In agreement to this report a study by 

Marzio et al 2019 (Marzio et al. 2019) showed that in neocarzinostatin (NCS) treated 

U2OS cells mutant Rad51(T309A) is not able to load on the chromatin as wild type 

Rad51. Based on their result Rad51 phosphorylation on T309 induces binding of 

Rad51 to BRCA2 and leads subsequently to an increased Rad51 stability. 

Nevertheless, Marzio et al 2019 pointed out that phosphorylation of Rad51 in T309 

is not the only involved factor in Rad51 binding to BRCA2 and Rad51 stability at 
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damage site. Thus, other modifications in binding site of Rad51 and BRCA2 should 

be investigated. 

In present study, when compared to wild type parental cells AKT1 and AKT2 

depleted HCT116 cells showed elevated levels of pRad51 (T309) in the nucleus (see 

again Figure 3.16). However, this elevated phosphorylation cannot be correlated with 

an improved homologous recombination capacity as proposed by Marzio et al 

(Marzio et al. 2019) and Sørensen et al (Sørensen et al. 2005) because the data 

presented in this study, i.e. the repair efficiency analyzed by the number of γ-H2AX 

foci in CENP-F positive cells, indicates an opposite effect.  Likewise, the reports from 

Sørensen et al. do not provide an adequate explanation regarding the effect of 

Rad51 mutation (T309A) on accumulation of γ-H2AX foci on the site of damage and 

homologous recombination repair.  Marzio et al 2019. applied NCS as inducer of a 

variety of DNA-damages in U2OS cells while in this project ionizing radiation was 

applied to induce specifically DNA-DSBs in HCT116 colon cancer cells, which were 

then specifically analysed by the γ-H2AX focus assay. Therefore, phosphorylation 

status might be different in these different cell systems. Moreover, Marzio et al. 

showed only Rad51 presence in chromatin fraction after using lentiviruses 

expressing mutant Rad51 (T309A) in cells presenting a knockdown phenotype for 

Rad51. Likewise, in the Marzi et al. study the authors did not show Rad51 focus 

formation in mutant cells nor the phosphorylation status of normal and mutant cells 

after NCS treatment. Taken together, at present there is not sufficient evidence for 

explaining the specific function of Rad51T309 phosphorylation especially following 

radiation exposure of cells. 

 

 



 
  67 
 

4.5 Inhibition of Poly-(adenosine diphosphate-ribose)-polymerase (PARP). 

Poly-(adenosine diphosphate-ribose)-polymerases (PARPs) are a family of 

enzymes with at least 18 members which are able to transfer ADP-ribose to different 

target proteins involved in various cellular processes. PARPs family members exert 

roles in DNA replication, modulation of chromatin structure, transcription, DNA repair 

and cell death (Morales et al. 2014, Lesueur et al. 2017). In this context PARP1 is 

the first characterized and active member of the PARP family.  

PARP activity increases after exposure of DNA to DNA damaging agents or ionizing 

irradiation (SKIDMORE et al. 1979). PARP is involved in base excision repair (BER), 

SSB and DSBs repair(Lesueur et al. 2017). Due to the importance of PARPs proteins 

in DNA damages responses, therapeutic inhibition of PARP in combination with 

chemotherapy or radiotherapy has been considered for various cancers. Yet, 

inhibition of PARP can increase the sensitivity of tumors to chemotherapeutic DNA 

damaging drugs. Moreover, blocking of PARP results in impairment of SSB and BER 

repair and consequently persistence of DNA damages which under normal 

conditions would be repaired via homologous recombination.  In cells lacking 

proficient homologous recombination repair (e.g., BRCA1 and BRCA2 deficient 

cells), PARP inhibition leads to synthetic lethality effect due to the accumulation of 

DSBs (Kyle et al. 2008). 

The main mechanism of PARP inhibitors is trapping of PARP1/2 on DNA which 

results in a toxic PARP–DNA complex (PARP trapping) (Boussios et al. 2019). It has 

been suggested that PARP inhibitors act synergistically with other factors involved 

in cell signaling pathways and these synergistic effect may be useful in cancer 

therapy. For instance, based on reports from Ibrahim et al (Ibrahim et al. 2012) 

combined inhibition of PI3K pathway and PARP resulted in an increased 

accumulation of γ-H2AX foci in triple-negative breast cancers. Likewise, Ibrahim et 

al provided evidence that blocking of PIK3CA by siRNA or pan-PI3K inhibitor 
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(BKM120), is associated with a reduced expression of BRCA1/2 and consequently 

impaired HRR.  

Furthermore, Juvekar et al (Juvekar et al. 2012) demonstrated that inhibition of PI3K 

led to a decreased Akt phosphorylation and reduced Rad51 focus formation which 

in combination with PARP inhibitor led to increased γ-H2AX. In vivo studies by this 

group (Juvekar et al. 2012) revealed that treatment with the PARP inhibitor Olaparib 

diminishes tumor growth. Likewise, combined treatment with Olaparib and the pan-

class IA PI3K inhibitor NVP-BKM120 resulted in increasing of tumor doubling time in 

the mouse model and xenotransplants from human BRCA1-related tumors. 

Furthermore, Mukhopadhyay et al (Mukhopadhyay et al. 2010) developed an assay 

for detecting HR status through Rad51 focus formation after PARP inhibitor 

AG014699 treatment in epithelial ovarian cancers (EOC). Mukhopadhyay et al 

showed that AG014699 treatment of HR-competent cell lines significantly increase 

Rad51 foci formation while AG014699 treatment has no effect on Rad51 foci 

formation in HR-deficient cell lines when compared to untreated controls. 

Olaparib is first FDA approved and orally active PARP inhibitor presenting antitumor 

activity especially in tumors with deficient BRCA function (Jones 2010, Westin et al. 

2018). In the present study, Olaparib treatment in HCT116 AKT1 depleted cells 

resulted in reduced clonogenic activity of cells after irradiation (see again 

Figure 3.12). Interestingly, Olaparib treatment of HCT116 AKT2-KO cells completely 

impaired colonogenic survival indicating a non-functional homologous recombination 

repair mechanism. These results are in agreement with the findings presented in 

Figure 3.4 indicating the involvement of Akt1 and Akt2 in the repair of DSBs through 

HRR. Moreover, and in the context of the results reported by Mukhopadhyay et al 

(Mukhopadhyay et al. 2010), the stable level of Rad51 foci after Olaparib treatment 

in AKT1- and AKT2-knock out cells (see again Figure 3.13), is another indicator of 

nonfunctional homologous recombination in Akt depleted cells. Figure 4.1 proposes 

a possible model for the effect of Olaparib treatment on HRR in Akt proficient cells 

in comparison to Akt deficient cells.  
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Figure 4.1.Model proposed for the effect of PARP inhibition by Olaparib in (A) wild type cell 
(B) AKT1-KO and AKT2-KO cells. Akt promotes homologous recombination after Olaparib 
treatment. In Akt deficient cells, HR is not function and cannot repair DSBs produced by 

irradiation and Olaparib treatment. 

  

 

 

4.6  Interaction of Akt with homologous recombination proteins 

BRCA proteins including BRCA1 and BRCA2 (Breast-Cancer susceptibility gene 1 

and 2) are tumor suppressor genes involved in various cellular processes. Both 

BRCA1 and BRCA2 proteins have specific roles in DNA repair and transcriptional 

regulation after DNA damage as well as maintenance of chromosomal stability, cell 

cycle regulation and apoptosis (Yoshida and Miki 2004).  
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In response to DNA damage BRCA1 is phosphorylated by different kinases, e.g. 

Ataxia telangiectasia mutated kinase (ATM) and G2/M control kinase (Bell et al. 

1999, Gatei et al. 2001). It has been shown that after DNA damaging insults, both 

BRCA1 and BRCA2 colocalize with Rad51 at the sites of recombination (Scully et 

al. 1997). Although Rad51 focus formation is reduced in BRCA1-deficient cells, 

direct interaction of BRCA1 and Rad51 has not been reported (Venkitaraman 2001). 

 Due to the lack of nuclear localization signals (NLSs), Rad51 is not able to enter to 

the nucleus by itself. Thus, Rad51 needs to interact with other proteins presenting a 

functional NLS (Gildemeister et al. 2009). Specific mediator proteins are reported for 

nuclear assembly of RAD51 such as BRCA2, Rad52, and Rad51 paralogues 

(Rad51B, C, D and XRCC 2, 3) (Suwaki et al. 2011). Yet, the results presented in 

this thesis did not show any direct and stable interaction of BRCA2 with Akt1 and 

Akt2 (see again Figure 3.17). However, result obtained by the PLA assay showed 

an interaction between both Akt1 and Akt2 with BRCA2 at least in nonirradiated cells 

(see Figure 3.18). 

Replication protein A (RPA) is the other protein involved in HRR which binds to 

Rad51 directly and promotes recombination (Liu and Huang 2016). RPA has three 

subunits including RPA1 (70 kDa), RPA2 (32 kDa), and RPA3 (14 kDa). In our study, 

western blot analysis showed that RPA2 protein level in the nucleus of Akt1 and Akt2 

knockout cells is less than wild type cells. However, in the present study neither 

immunoprecipitation analysis nor PLA assay did indicate any interaction of Akt1 and 

Akt2 with RPA. Thus, these results suggest that the effect of Akt on Rad51 

translocation is not through direct interaction with BRCA2 and RPA. To this topic 

further studies should analyze in detail the role of other mediator proteins. 
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4.7 The specific role of Akt2 in homologous recombination 

Regarding the role of Akt in homologous recombination repair process most of the 

existing data focused so far on the isoform Akt1. The present study is the first that 

provided evidence for the impact of Akt2 in the regulation of HRR. It has been proven 

that Akt isoforms have distinct functions and different expressions in different tissues  

(Thimmaiah et al. 2005). For instance, Matheny Jr et al. (Matheny Jr et al. 2018) 

showed that  AKT2 is the predominant AKT isoform in human skeletal muscle. Wang 

et al (Wang et al. 2017) reported that AKT1 and AKT2 expression and 

phosphorylation is different in different cancer lineages. Moreover, a report from 

Rychahou at al. (Rychahou et al. 2008) indicated an  AKT2 involvement in the 

metastatic process of colorectal cancer and Roy et al. demonstrated the upregulation 

of Akt2 in colon cancer. Concerning the specific role of Akt2 in repair of DSBs, 

Toulany et al. (Toulany et al. 2017) showed that knockdown of Akt2 isoform in A549 

cell line reduced the number of residual γ-H2AX foci and leads to a slight 

radioprotection. In contrast to these reports, Sahlberg et al (Sahlberg et al. 2014) 

showed that deficiency of Akt1 as well as Akt2 inhibit the repair of radiation-induced 

DNA double strand breaks through NHEJ in colon carcinoma HCT116 cell line. 

Interestingly, results presented in the present thesis demonstrate that Akt2 has even 

stronger effect on HRR than Akt1 in the same cell line (HCT116). As it could not 

finally be demonstrated that the effect of Akt2 on homologous recombination repair 

results from the influence of Akt2 on Rad51 translocation and loading to the site of 

DNA-DSB, the exact molecular mechanism of this phenomenon has still to be 

resolved. One explanation to this topic could potentially be related to the function of 

Akt2 in glucose metabolism. The important role of Akt2 in the regulation of of glucose 

metabolism has clearly been proven (Bouzakri et al. 2006). It has also been 

demonstrated that ATM and AKT are able to regulate the ATP-citrate lyase (ACLY) 

in response to DNA-damage (Sivanand et al. 2017). Ampferl et al.(Ampferl et al. 

2018) reported that nuclear ACLY activity is important for production of nuclear 

Acetyl-CoA as well as TIP60-driven histone H3 acetylation which is essential for  
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DNA repair. For activation, ACLY is phosphorylated by Akt at S455 (Berwick et al. 

2002) and consequently acetylation of histone H3 and H4 increases. The enzymatic 

activity of ACLY results in recruitment of BRCA1 to the damage site and initiation of 

HR. The role of this pathway in regulation of homologous recombination by Akt2 

needs to be investigated in more details and may shed further light on the function 

of Akt2. 

 

 

4.8 Conclusion and outlook 

Taken together, based on the data obtained, the presented study provides specified 

evidence that both Akt isoforms Akt1 and Akt2 have a role in the regulation of the 

homologous recombination repair mechanism. Furthermore, in the context of all 

studies performed to this topic the data presented clearly demonstrate especially the 

importance of Akt2 in the HRR process for the first time.  

 

On the basis of the data presented in this thesis it can be proposed that depletion of 

Akt1 and especially Akt2 in combination with PARP inhibition induces a strong 

radiosensitization of human colon cancer cells. This inhibitory effect could be 

considered as a potential target for the future study in the context of radiation 

oncology research. Moreover, the investigation of specific role of different Akt 

isoforms in different tissue and various cancer cell lines in the future studies is 

recommended.  
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5) Summary 

DNA double-strand breaks (DSBs) are genotoxic DNA lesions caused by ionizing 

radiation (IR) or mutagenic chemicals and potentially lead to chromosomal 

breakage, fragmentation, and translocation. Homologous recombination repair 

(HRR), classical non-homologous end-joining (C-NHEJ), and alternative non-

homologous end-joining (Alt-NHEJ) are the major pathways employed by cells for 

repairing of DSBs. Therefore, their function is critical for protecting the genome 

stability in general but also for the development of radiation resistance e.g. in tumor 

cells. 

The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mTOR signaling 

pathway functions at different levels and mechanisms of cell survival and apoptosis. 

Stimulated PI3K/AKT pathway activated by receptor tyrosine kinases or mutational 

hyperactivation has been reported in different human cancer entities. Akt/PKB is a 

serine/threonine kinase and exists in three isoforms known as Akt1 (PKBα), Akt2 

(PKBβ) and Akt3 (PKBγ). In human malignancies, Akt activity plays a major role in 

tumor cell survival. Accumulating evidence exists with respect to the regulatory role 

of Akt isoforms in repair of DSBs through NHEJ pathway. Akt1 stimulates DNA-PKcs 

kinase activity, which is a necessary step for progression of DSB repair through 

NHEJ. Potential involvement of Akt in HRR has been also reported however, existing 

data are conflicting and need to be investigated in more details. 

The main aim of this thesis was to investigate the role of Akt isoforms in double 

strand breaks repair via homologous recombination repair. To achieve this, siRNA 

mediated knockdown as well as stable knock out approaches were applied to 

characterize the importance of Akt isoforms in the repair of DSBs executed by 

homologous recombination. Analyzing DSBs repair in human colorectal cancer cells 

after exposure to 4Gy irradiation indicated that HCT116 AKT1-KO and AKT2-KO 

cells present significantly enhanced levels of residual -H2AX foci in CENP-F 

positive cells (representing the S and G2 phase cells, i.e. cells which are competent 

for HRR). In comparison to wild type control cells inhibition of C-NHEJ and Alt-NHEJ 
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using DNA-PK and PARP inhibitors resulted in elevated non repaired residual DNA-

DSB in HCT116 AKT1- and especially AKT2-knockout cells. 

Moreover, Immunofluorescence analyses were performed to evaluate the regulation 

of Rad51 as a major protein of HRR by Akt. Analyses of Rad51 nuclear translocation 

and foci formation indicated that in the absence of Akt1 and Akt2 isoforms Rad51 

nuclear accumulation is markedly reduced after radiation exposure. Furthermore, 

the results of colonogenic survival assays demonstrated that AKT1-KO and AKT2-

KO cells in comparison to parental cells are significantly more sensitive to irradiation. 

It has been proven that deficiency of homologous recombination repair results in 

synthetic lethality after inhibition of poly-(adenosine diphosphate-ribose)-

polymerase (PARP). In this project, PARP inhibitor Olaparib as a FDA approved drug 

for BRCA deficient tumors was used to evaluate the sensitivity of AKT depleted cells 

to inhibition of PARP.  PARP inhibition in HCT116 cells by Olaparib showed that the 

clonogenic activity of cells is significantly reduced in AKT1-KO cells following 

irradiation. Interestingly, AKT2-KO were not able to form colonies after Olaparib 

treatment. These results indicate deficiency of HRR in AKT1-KO and AKT2-KO cells. 

The data obtained collectively suggest that both Akt isoforms Akt1 and Akt2 are 

important regulatory components in processes of DSB-repair via the homologous 

recombination mechanism. 
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6) Zusammenfassung 

Nicht- oder falsch-reparierte Doppelstrangbrüche als Konsequenz einer Strahlen- 

bzw. Mutagenexposition können potentiell genotoxisch wirken und sich in Form von 

Chromosomenbrüchen und Chromosomentranslokationen im Genom 

manifestieren. Die wichtigsten Reparaturmechanismen für die Beseitigung von 

Doppelstrangbrüchen sind: die homologe Rekombination (HRR), das klassische 

nicht-homologe „end-joining“ (C-NHEJ) und das alternative nicht-homologe „end-

joining“ (A-NHEJ). Das Funktionieren dieser drei Reparaturmechanismen ist 

essentiell für den Erhalt der genomischen Integrität der Zelle, spielt aber auch eine 

Rolle bei der Entstehung einer Strahlenresistenz in Tumorzellen. 

Der Proteinkinase B (Akt/PKB) Signalweg spielt bei der Regulation von 

Zellüberleben und Apoptose nach Bestrahlung eine wichtige Rolle. So beobachtet 

man bei verschiedenen menschlichen Tumorentitäten eine durch Tyrosinkinase-

Rezeptoren oder durch Mutationen getriebene hyperaktivierte PI3K/Akt-

Signaltransduktion. Funktionell agiert Akt/PKB als Serin/Threonin-Kinase und tritt in 

den Isoformen Akt1 (PKBα), Akt2 (PKBβ) und Akt3 (PKBγ) auf. Die Akt 

Kinaseaktivität spielt besonders bei der Regulation des Zellüberlebens von 

Tumorzellen eine Rolle. Besonders wichtig scheint dabei der Effekt auf die 

Reparatur von Doppelstrangbrüchen durch das C-NHEJ zu sein. Dabei stimuliert die 

Akt1 die Kinaseaktivität der DNA-abhängigen Proteinkinase (DNA-PK) dem 

Schlüsselenzym des C-NHEJ. Aber auch für die HRR wird eine Beteiligung der Akt 

diskutiert. Aktuell widersprechen sich jedoch einige Daten und es besteht weiterer 

Forschungsbedarf in der Frage der Bedeutung der Akt.  

So ist es das Ziel der vorliegenden Arbeit die Rolle der verschiedenen Akt-Isoformen 

bei der Doppelstrangbruchreparatur durch die HRR näher zu beleuchten. Dazu 

wurden, mit Hilfe von spezifischen siRNAs temporär bzw. mit spezifischen shRNAs 

stabil die Expressionen der Akt-Isoformen in der kolorektalen Tumorzellinie HCT116 

blockiert. Es zeigte sich, dass in CENP-F Antigen positiven Zellen (d.h. in Zellen in 

der S- bzw. G2-Zellzyklusphase, die HRR-kompetent sind) nach Blockade von Akt1 

oder Akt2 die Menge an nicht reparierten Doppelstrangbrüchen (-H2AX Foci, 24 h 
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nach einer Bestrahlung mit 4 Gy) signifikant erhöht waren. Die Blockade des C-

NHEJ durch Einsatz von DNA-PK Inhibitoren, bzw. die Blockade des A-NHEJ durch 

poly-(adenosine diphosphate-ribose)-polymerase (PARP)-Inhibitoren zeigte für 

Zellen mit Akt1- und insbesondere aber für Zellen mit Akt2 Blockade im Vergleich 

zu den parentalen Kontrollzellen mit Akt-Wildtyp, eine deutliche Erhöhung der 

nichtreparierten Doppelstrangbrüche. 

In Ergänzung dazu, wurden Immunfluoreszenzuntersuchungen durchgeführt, um 

den Einfluss von Akt auf die Regulation von RAD51, dem wichtigsten Protein bei der 

HRR, zu untersuchen. Untersuchungen zur Kerntranslokation von RAD51 und zur 

Foci-Bildung von RAD51 im Kern, zeigten, dass das Fehlen der Isoformen Akt1 und 

Akt2 mit einer deutlich geringeren nukleären Akkumulation von RAD51 nach einer 

Strahlenexposition assoziiert war. Diese Reduktion führte zu einer deutlichen 

Radiosensitivierung im Vergleich zu den Parentalzellen mit Wildtyp Akt.  

Es ist bekannt, dass eine Blockade der HR zur sogenannten “synthetic lethality” in 

Gegenwart von PARP-Inhibitoren führt. Um die Sensitivität von Akt-defizienten 

Zellen auf eine PARP Inhibition zu testen, wurde der PARP-Inhibitor Olaparib 

eingesetzt, der von der FDA für die Behandlung von BRACA defizientem Brustkrebs 

zugelassen ist. In Akt1-defizienten Zellen führte die PARP-Inhibition zu einer 

signifikanten Radiosensitivierung, in Akt2-defizienten Zellen führte die Behandlung 

mit Olaparib sogar zum kompletten Verlust der Klonbildungsfähigkeit. Diese 

Ergebnisse zeigen, dass es in Akt1- und Akt2-defizienten Zellen zu einer starken 

Beeinträchtigung der HRR kommt, die die Zellen besonders sensitiv für eine 

Blockade der PARP und damit für eine Blockade des A-NHEJ macht. 

Zusammenfassend lässt sich das Resümee ziehen, dass die beiden Isoformen Akt1 

und Akt2 wichtige regulatorische Funktionen haben beim Vorgang der HRR, ohne 

die es bei der Reparatur von Doppelstrangbrüchen in der DNA zu einer massiven 

Beeinträchtigung kommt.   
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