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René Gazzari Zusammenfassung

Zusammenfassung in deutscher Sprache

Während die grundlegenden syntaktischen Gegenstände formaler Sprachen,
wie es etwa deren Terme, Formeln und Ableitungen sind, eine wohldurch-
dachte Behandlung in der Logik und verwandter Wissenschaften erfahren,
werden Vorkommen solcher Gegenstände im wissenschaftlichen Diskurs über
Gebühr vernachlässigt. An jenen Stellen im Diskurs, an denen die Diskussion
der syntaktischen Gegenstände selbst nicht mehr genügt, werden, im besten
Fall, rudimentäre Theorien zugrundegelegt oder es wird, im schlechtesten
Fall, lediglich auf Intuitionen verwiesen.

Wesentliches Ziel der von uns vorgelegten Untersuchung “Formal Theories
of Occurrences and Substitutions” ist, diese Situation zu ändern. Entspre-
chend werden unsere Intuitionen widerspiegelnde formale Repräsentanten des
philosophischen Begriffs von Vorkommen, also die formalen Vorkommen, in
verschiedenen Verallgemeinerungen eingeführt und jeweils einer mathemati-
schen Untersuchung unterzogen. Innerhalb dieser Untersuchungen werden
grundlegende Methoden und Begrifflichkeiten einer Theorie der Vorkommen
erarbeitet und Anwendungen des Begriffs der formalen Vorkommen beispiel-
haft diskutiert.

Insbesondere wird durch diese Untersuchung eine mathematische Grund-
lage geschaffen, um in weitergehenden Projekten fundamentale Begriffe der
Beweistheorie adäquat einzuführen und um eine formal fundierte Erörterung
interessanter Probleme der Philosophie der Mathematik, wie etwa die Rein-
heit von Beweisen oder auch deren Einfachheit, zu ermöglichen.

Eine erste philosophische Analyse des Begriffs der Vorkommen ergibt, dass
diese durch drei Aspekte bestimmt sind. Zunächst ist ein Vorkommen im-
mer schon ein Vorkommen eines syntaktischen Gegenstandes, welcher seine
Form genannt wird. Weiterhin kommt ein Vorkommen grundsätzlich in-
nerhalb eines syntaktischen Gegenstandes vor, welcher sein Umfeld genannt
wird. Schließlich ist ein Vorkommen durch seine Position innerhalb des Um-
felds bestimmt; verschiedene Vorkommen der selben Form im selben Umfeld
werden durch ihre Position unterschieden.

Damit wird schon deutlich, dass jede sinnvolle Kombination syntakti-
scher Gegenstände für Umfeld und Form einen eigenen Typ von Vorkommen
nach sich zieht. Die hier vorgelegte Untersuchung konzentriert sich auf den
paradigmatischen Fall einer Theorie von Vorkommen von Termen in Ter-
men (einer erststufigen formalen Sprache der Logik); eine Übertragung der
hier diskutierten Theorie auf andere Typen von Vorkommen erscheint ohne
wesentliche Probleme möglich.
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Die von Schütte [29] eingeführten Nominalformen erweisen sich für eine
formale Repräsentation der Position von Vorkommen als besonders geeignet
und insbesondere den bisher üblichen Methoden überlegen. Diese Nominal-
formen sind Verallgemeinerungen der üblichen syntaktischen Gegenstände,
in denen sogenannte Nominalsymbole als weitere Zeichen des Alphabets Ver-
wendung finden dürfen.

Die Position eines Vorkommens wird durch diejenige Nominalform an-
gegeben, die dadurch entsteht, dass im Umfeld des Vorkommens ihre Form
an intendierter Stelle durch ein Nominalsymbol ersetzt ist. Nominalformen,
die die Position von Termen in Termen repräsentieren, sind eine Verallge-
meinerung der Terme der zugrundeliegenden Sprache, in der die Nominal-
symbole für Terme stehen.

Zunächst werden einförmige Vorkommen eingeführt. Für solche Vorkommen
ist charakteristisch, dass in der Position lediglich ein bestimmtes Nominal-
symbol vorkommen darf, das aber beliebig oft. Entsprechend können sowohl
Einzel- als auch Mehrfachvorkommen, in denen die Form an mehreren Stellen
im Umfeld simultan intendiert ist, repräsentiert werden. Durch die for-
male Grundlegung des Begriffs der Vorkommen kann die Anzahl bestimmter
Vorkommen (in einem gegebenen Umfeld) formal bestimmt werden; ebenso
kann für zwei Vorkommen im gleichen Umfeld bestimmt werden, ob eines der
Vorkommen sich innerhalb des anderen befindet oder nicht.

Eine kanonische Verallgemeinerung der einförmigen Vorkommen sind die
mehrförmigen Vorkommen. Deren Position kann unterschiedliche Nominal-
symbole enthalten, die Form ist durch eine Folge von Termen gegeben. Da
verschiedene mehrförmige Vorkommen dasselbe (informell gegebene) Vorkom-
men repräsentieren können, werden diese durch eine geeignete Äquivalenz-
relation identifiziert; kanonische Normalformen werden bestimmt.

Desweiteren wird die Unabhängigkeit von Vorkommen eingeführt. Unab-
hängige Vorkommen haben ein gemeinsames Umfeld, die intendierten Formen
überlappen sich an keiner Stelle. Unabhängige Vorkommen können zu einem
gemeinsamen Vorkommen verschmolzen werden, ein einzelnes Vorkommen
kann in unabhängige Vorkommen aufgespalten werden.

Eine weitergehende Verallgemeinerung des Begriffs der Vorkommen sind die
formalen Substitutionen, welche imWesentlichen als ein Paar zweier mehrför-
miger Vorkommen mit gemeinsamer Position aufgefasst werden können. Das
erste Vorkommen gibt das Umfeld und die von der Substitution betroffenen
Formen samt ihrer Stellen an. Das zweite Vorkommen beschreibt, welche
Formen an den besagten Stellen ersetzt werden und was das Resultat einer

-12-
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solchen Ersetzung ist. Wie schon im Fall der mehrförmigen Vorkommen wird
eine geeignete Äquivalenzrelation für Substitutionen eingeführt; kanonische
Normalformen werden bestimmt.

Der Begriff der Substitution erweist sich insbesondere als geeignet, Re-
chenschritte und Rechnungen, wie sie in der Mathematik und der Informatik
alltäglich auftreten, zu repräsentieren und diese so einer formalen Unter-
suchung zuzuführen.

Wie schon für Vorkommen wird die Unabhängigkeit von Substitutionen
eingeführt. Unabhängige Substitutionen können zu einer gemeinsamen Sub-
stitution verschmolzen werden, ebenso kann eine Substitution in eine Folge
unabhängiger Substitutionen aufgespalten werden.

Es erweist sich, dass Mengen von Substitutionen mengentheoretische Funk-
tionen sind; diese werden als explizite Substitutionsfunktionen bezeichnet.
Erwartungsgemäß sind Funktionen, die üblicherweise als Substitutionsfunk-
tion verstanden werden, keine expliziten Substitutionsfunktionen. Um diese
dennoch als solche klassifizieren zu können, wird das Konzept impliziter Sub-
situtionsfunktionen eingeführt.

Implizite Substitutionsfunktionen sind Funktionen, die mithilfe einer Ex-
plikationsmethode in explizite Substitutionsfunktionen transformiert werden
können. Anhand zentraler Beispiele werden sowohl die Tragfähigkeit dieses
Konzepts als auch seine Grenzen aufgezeigt. Es verbleibt als philosophisches
Problem, den Begriff der Explikationsmethode soweit einzuschränken, dass
nur noch erwünschte Funktionen als implizite Substitutionen herausgestellt
werden.

-13-
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1 Introduction

The central aim of these investigations is to provide a good formal theory
of the informally given notions of occurrences and substitutions representing
adequately our informal intuitions about both notions. Consequently, these
investigations have a dual character combining a philosophical attitude with
a mathematical exploration.

On the one hand, the guiding motivation of these investigations is the
conceptual and, therefore, philosophical task of providing a formal represen-
tation of apparently clear concepts together with a consideration, whether
these formally defined notions correspond with our intuitions.

On the other hand, it is not sufficient to provide only some simple formal
definitions; in order to understand the introduced formal notions, they and
their properties have to be investigated. The latter means that we have to
explore the introduced notions mathematically.

1.1 A Philosophical Analysis

In order to obtain a good intuition about the central notion of these investi-
gations, we provide a brief (philosophical) introduction.

1.1.1 The Notion of Occurrences

In philosophy, the notion of occurrences is usually considered in the context
of the distinction between types and tokens.1

Paradigmatic Example: We illustrate the informal notion of occurrences
on the base of a quote by Schiller:2

Es ist der Geist, der sich den Körper baut.

Counting the words in the quoted sentence may result in two different num-
bers: the sentence consists of eight different words, but we may count nine
occurrences of words, as the word “der” occurs twice in that sentence.3

1A brief survey of the philosophical debate about occurrences (in the context of the
distinction of types and token) is given by Wetzel in [35] and [36]. Also Quine, who
considers in his philosophical lexicon “Quiddities” [26] occurrences from a philosophical
point of view, does not treat them separately, but in the entry “Types versus Tokens”.

2The quote is taken from Schiller’s “Wallenstein” and found as an inscription on the
Adolphus Busch Hall at Harvard University, Cambridge, Massachusetts. The text of the
inscription is considered by Quine in his analysis in Quiddities [26].

3Here, we are not interested in grammatical subtleties: even if there is reason to un-
derstand the occurrences of “der” in the example sentence as occurrences of two different,
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Basic Analysis: Analysing this natural language example, we identify
the following three aspects (already mentioned by Wetzel)4 determining an
occurrence:

1. context: An occurrence is always an occurrence inside a (broader)
context, which is a syntactic entity. The word “der” occurs, in our
example, inside the quoted sentence.

2. shape: An occurrence is always an occurrence of a syntactic entity,
which we call the shape of that occurrence. In our example, both
occurrences of “der” are occurrences of the word “der”.

Other occurrences in the same context (in the same sentence) have dif-
ferent shapes; we find, for example, an occurrence of the word “Geist”
in the quoted sentence.

3. position: Two different occurrences of the same shape in the same
context can be distinguished by their positions. In our example, one
occurrence of the word “der” is to the left of the other occurrence of
that word; both occurrences can be distinguished, as they have different
positions.

The first two aspects are, usually, well-known syntactic entities; the crucial
aspect of a theory of occurrences is to find a good representation of the third
aspect, the position of an occurrence.

Dependence between the Aspects: As a consequence of the third aspect,
context and shape of an occurrence cannot determine, in general, the position
of an occurrence.

Unfortunately, it is not so clear, whether context and position together
should determine the shape or shape and position together the context. The
survey of the literature (given below) yields a great variety of approaches
to the notion of occurrences and, in particular, to the formal representation
of their positions. Some of these approaches satisfy that context and posi-
tion (or shape and position, respectively) determine the shape (the context),
others do not.

but homonymous words, we count (for the sake of the argument) both occurrences as
occurrences of the same word (having possibly different meanings).

4Wetzel writes: “The notion of an occurrence of x in y involves not only x and y, but
also how x is situated in y.” Cf. [36, §8]; emphasis by Wetzel.

-16-
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As context and shape are syntactic entities, they are usually understood
independently of their positions. This means that the considered determi-
nations between the different aspects depend only on the choice, how to
represent the position of an occurrence.

In any case: if the shape (the context, respectively) is not determined by
the other two aspects, then it becomes necessary to define the formal repre-
sentatives of occurrences in a way that the shape (the context, respectively)
is explicitly represented. Otherwise, we would be in the uncomfortable situa-
tion that the same formal object is intended to represent different informally
given occurrences. Consequently, such an approach has to be considered as
inaccurate.5

A central advantage of our own approach to occurrences (as discussed
below) is that even both determinations hold: context and position together
determine the shape of an occurrence as well as shape and position together
determine the context.

Types and Tokens: A common misconception of occurrences is to inter-
pret them as tokens in contrast to types. But the philosophical distinction
between types and tokens is independent of the notion of occurrences.6

It is possible to understand the example sentence as a type (as the abstract
idea of this sentence) or as a token (as the symbols actually written on the
page). Independently of the ontological status of the example sentence, we
find two distinct occurrences of the word “der”. In the first interpretation,
we have to understand them as occurrences of abstract types (namely as
occurrences of the abstract word “der” in the abstract example sentence),
in the second case as occurrences of concrete tokens (namely as occurrences
of concrete symbols on the page forming the word “der” inside the concrete
example sentence). Quine provides a distinct analysis of this situation:7

Tokens occur in tokens, types in types.

A more detailed discussion of the philosophical problem of types and tokens
as well as that of occurrences is interesting, but beyond the needs of our
investigations.

5In fact, the reasonable, but inaccurate approaches to occurrences found in the litera-
ture have to be rejected for exactly this reason.

6Cf. also Quine [26] or Wetzel [36, §1.2].
7Cf. Quine [26, p. 218].
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1.1.2 The Notion of Substitutions

We complement our philosophical analysis of the notion of occurrences by a
brief analysis of the (informal) concept of substitutions.

Traditional Associations: In the literature, the notion of a substitution is
usually associated with the idea of a (recursively definable) function and dis-
tinguished from the more general concept of replacement (which is described
in terms of an arbitrary relation). Another idea related with substitutions is
that of an (informal) process.

The distinction between substitutions as a process and as a function is
emphasised by Negri and von Plato in their logic textbook “Structural Proof
Theory” [22]. They understand a substitution as a performative act (without
explaining what it means that a substitution is performed) and contrast this
with the result of a substitution. This distinction is reflected in their notation:
[s/x] denotes the performative act of replacing a variable x by a term s, while
t(s/x) refers to the result of that substitution for a term t. Nevertheless, this
distinction does not seem to have much relevance: the substitution [s/x] is
defined via the usual recursive clauses for t(s/x).8

As another example, we mention Leitsch’s textbook “The Resolution Cal-
culus” [21]. There, a substitution is explicitly defined as a specific function
from the set of variables into the set of terms.9 Nevertheless, when discussing
the composition of substitutions, he writes:10

[. . . ] the action of substitution canonically extends to all terms;
there they represent specific endomorphisms of the term algebra.

Besides some obscurities,11 the association between substitutions and actions
is clearly present in the quote.

Substitution as Process: Similarly to Negri and von Plato, we understand
a substitution as a process.12 As in the case of occurrences, we can identify
some aspects determining this concept:

1. context: A substitution takes place in a syntactic entity, which is called
the context of a substitution.

8Cf. Negri and von Plato [22, p. 62f.].
9Cf. Leitsch [21, p. 10].

10Cf. Leitsch [21, p. 60].
11We do not understand, what an “action of substitution” is (according to Leitsch and in

contrast to a substitution). The word “they” seems to mean “the extended substitutions”,
but the grammatical reference is not so clear.

12But in contrast to them, we provide a mathematical object, the so called (formal)
substitutions, representing the informal process of a substitution.
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2. affected entities: A substitution affects some syntactic entities in the
context, namely those syntactic entities in the context, which are in-
tended to be replaced. These affected syntactic entities correspond to
the shape of an occurrence.

3. position: The affected (occurrences of) terms are determined by their
position in the context, exactly as in the case of occurrences.

4. inserted entities: In a substitution, the affected terms are eliminated
in the context at their position. Then, some (new) syntactic entities
are inserted at the same position.

5. result: Finally, a substitution results (as described) in a syntactic
entity, which we call the result of that substitution.

The three aspects context, affected entities and position as well as the three
aspects result, inserted entities and position, respectively, are occurrence as
discussed above; in particular, both occurrences have a common position.
Under this perspective, the notion of a substitution is a quite natural gener-
alisation of the notion of an occurrence.

Our Terminology: In the informal parts of our investigations, we do
not follow the traditional distinction between substitution and replacement.
The informal expressions “substitute” and “replace” are used almost syn-
onymously; as long as we do not refer to formally defined substitutions, the
informal expressions “substitution” and “replacement” are also used synony-
mously.

Additionally, we introduce the notion of an explicit substitution function,
which is based on our formal notion of substitutions, but different from them
(and also different from the substitution functions defined as usual); more
precisely, the explicit substitution functions are defined as sets of substi-
tutions and, therefore, mapping ordered pairs of occurrences and suitable
sequences of syntactic entities to the result of the respective formal substitu-
tion. The relationship between the explicit and the traditional substitution
functions is established by the so called concept of an explication method.13

1.2 Relevance of Occurrences

We consider the relevance of the notion of occurrences in the formal sciences.

13See the subsection about occurrences in these investigations for some more details
about our concrete definition of substitutions and of (explicit) substitution functions.
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Usual Attitude: The (inductive) definitions of the syntactic entities avail-
able in a formal language are quite precise; but usually, there is paid little
attention to the notion of occurrences. One reason for this ignorance could be
that there are a great number of questions concerning occurrences, which can
be answered purely on the basis of the inductive definitions of the involved
syntactic entities.

Solvable Problems: We provide some examples of problems solvable on
the basis of the inductive definition of the involved syntactic entities:

1. replacing all occurrences: A prominent problem related to occurrences
is the replacement of all (free) occurrences of a variable (in a term or
a formula) by an arbitrary term. A substitution function solving this
problem is easily defined recursively.

2. counting all occurrences: Another problem related with the notion of
occurrences is to count the number of all occurrences of a given term
in a term. Again, such a multiplicity function is defined easily along
the inductive structure of the second term.

Common aspect of these solvable problems is that they deal with all occur-
rences and not with an arbitrary occurrence. As a consequence, we have
access to the intended occurrences via the inductive structure of the under-
lying syntactic entities.

Limitations: Nevertheless, there are problems not solvable on this induc-
tive base. Situations, in which we have to deal with such problems, can be
recognised by the use of some ad hoc solutions to mark the positions of the
intended occurrences. Such ad hoc solutions are, for example: pointing at the
intended occurrence (in talks), using unique labels to identify the intended
occurrences or highlighting them by using different colours or by underlining
them.

Simple and Hard Problems: The need to use ad hoc methods to identify
intended occurrences motivates the following (informal) distinction:

• simple problems: Simple problems are solvable only via the inductive
structure of the underlying syntactic entities without a reference to the
position of the occurrences under discussion.

• hard problems: Hard problems are not solvable on the base of the
inductive definition of the syntactic entities under discussion, but need
an explicit reference to the position of the intended occurrences.
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It is worth mentioning that most of the hard problems, which we discuss in
these investigations, are solvable with reference to the position, without an
explicit reference to the full notion of occurrences.

Example Problem: We illustrate the concept of hard problems (with
regard to the notion of occurrences) by the following example problem for-
mulated in the formal language LPA of arithmetics.

1. intended occurrences: As common context of the occurrences under
discussion, we choose the following standard term of LPA:

t ≏ (0 + 1) + (0 + 1)

There are two single occurrences of the term 0 in t as well as there are
two single occurrences of the term 0 + 1 in t. Let us choose now one
occurrence of 0 and another occurrence 0 + 1 in t.

2. hard question: A natural question regarding the chosen occurrences is,
whether the intended occurrence of 0 lies within the intended occur-
rence of 0 + 1 or not. If we have chosen both times the left occurrence
(the right ones, respectively), then the answer is “yes”; otherwise, the
answer is “no”.

Obviously, the answer to the question is independent of the inductive
structure of the involved terms, as we are discussing the same terms,
whether the answer is “yes” or “no”. Consequently, the question under
discussion has to be counted as hard.

The Discharge Function: Another interesting problem related with the
notion of occurrences is the definition of the discharge function for derivations
in Gentzen’s calculus of Natural Deduction.14 This function marks some
previously undischarged assumptions as discharged.

From the perspective of a theory of occurrences, it seems suitable to repre-
sent inference steps by occurrences of arbitrary derivations and assumptions
by occurrences of atomic derivations;15 in particular, it is reasonable to de-
fine assumptions as multiple occurrences, as we are entitled by the inference

14The calculus of Natural Deduction is introduced by Gentzen in his “Untersuchungen
über das logische Schließen” [13]; Peter Schroeder-Heister mentioned in a discussion that
the term “discharge function” is due to Prawitz [23].

15Motivated by the analogous terminology for terms and formulae, we use the expres-
sion “atomic derivation” to denote derivations, which are generated in one step (having
no proper subderivations); this means that atomic derivations are syntactically equal to
formulae.
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rules to discharge arbitrary many assumptions of the right form.16 In other
words: the discharge function maps occurrences to multiple occurrences.

In order to define such a discharge function formally (and, therefore, to
define the notion of a derivation adequately), it is necessary to introduce
first a suitable theory of occurrences (capable of representing multiple occur-
rences).17 As a consequence, we have to understand the adequate introduc-
tion of derivations in the calculus of Natural Deduction as a hard problem
in the sense discussed above.

Relevance: The hard problems discussed so far seem to be intuitively clear
and it seems to be without great impact to solve them formally. Neverthe-
less, even simple problems deserve to be treated adequately, in particular,
in a foundational discipline such as logic. Furthermore, an elaborate formal
treatment of occurrences allows to address formal problems with a greater
precision; in the conclusion of these investigations, we sketch some more
problems benefitting from an adequate treatment of occurrences.

1.3 Occurrences in these Investigations

We provide a brief survey of the central formal notions of these investigations,
in particular of the formal occurrences and their generalisations.18

Principal Approach: In contrast to the example sentence formulated in a
natural language, we are interested in occurrences in and of syntactic entities
of formal languages, as terms, formulae and derivations. A formal occurrence
will be defined as an ordered triple of the following kind:

〈context, shape, position〉

Context and shape are a meaningful combination of the usual standard syn-
tactic entities (for example, the terms, the formulae or the derivations of a

16Prawitz [23, pp. 25-29] suggests to define assumptions as specific formula occurrences
in a derivation. A detailed analysis of derivations and of occurrences in derivations sug-
gests not to follow Prawitz’s intuitions. Otherwise, we would have to distinguish formula
occurrences at the leaves of formula trees from other formula occurrences. The latter can
be achieved by checking, whether the formula occurrences are also subderivations. It seems
reasonable to avoid this complication and to define assumptions directly as occurrences of
atomic subderivations.

17As we do not discuss in these investigations occurrences in derivations, this problem
is not addressed here. Consequently, we mention only in the section about future work
some more details.

18A more detailed survey of the concepts discussed in this section and of our results is
given in section §17 Conclusion: Results.
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formal language). The position will be given by so called nominal forms, as
introduced by Schütte [29], which are generalisations of the standard syntac-
tic entities capable of representing positions.

Informal Notation of Occurrences: Occasionally, if we have to refer
to informally given occurrences, we use the method of highlighting (by un-
derlining) to indicate the intended occurrences. This method is needed in
these investigations, in particular, for the illustration of the correspondence
between informally given occurrences and their formal representatives.19

Generalisations of Occurrences: The following generalisations of the
notion of occurrences are considered in these investigations:

1. single occurrence: The most intuitive examples of occurrences are the
single occurrences; these are occurrences, in which the shape of an
occurrence is intended exactly once in its context.

In the term t ≏ 0 + (0 + 1), there are exactly two single occurrences of
the term 0:

0 + (0 + 1) ; 0 + (0 + 1)

2. multiple occurrence: A slight generalisation of the single occurrences
is the notion of a multiple occurrence; these are occurrences, in which
the shape is simultaneously intended more than once.

Recalling the example above, we identify a third occurrence in t having
the shape 0, namely the following multiple occurrence:

0 + (0 + 1)

Observe that we have to underline both single occurrences of 0 sepa-
rately to indicate the multiple occurrence of 0, as the symbols “+” and
“(” are not contained in that occurrence.

As this notion of occurrences is the most general which is equipped with
a trivial identity, it is chosen in these investigations as the standard
notion; single occurrences are subsumed under this concept.

3. multi-shape occurrence: Another quite natural generalisation of the
concept of occurrences is to drop the limitation that only a single shape
can be intended; in such a multi-shape occurrence, the shape of an
occurrence is not given as a simple syntactic entity, but as a finite

19This is another example of the inevitable gap between informally given concepts and
their formalisations, as discussed by Robinson [27] with respect to proofs.
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sequence of such entities. More formally, a multi-shape occurrence will
be given as the following kind of ordered triple:

〈context, sequence of shapes, position〉

We provide an example of such a multi-shape occurrence, again in the
example term t ≏ 0 + (0 + 1):

0 + (0 + 1)

Here, we already observe the limitations of the method of highlight-
ing: the sequence of shapes and, therefore, the formal representative
of the indicated occurrence is not uniquely determined. The sequence
of shapes (and also the position) depends on the way, how we intend
the intended occurrence. We provide some suitable sequences and their
consequence on the way of intending:

(a) 〈0, 1〉 // 〈1, 0〉: The indicated multi-shape occurrence subsumes a
multiple occurrence of 0 and a single occurrence of 1. Depending
on the chosen sequence of shapes, the subsumed occurrences are
indicated from the left to the right or vice versa.

(b) 〈0, 0, 1〉: In contrast to both sequences above, a sequence con-
taining three entries indicates that three single occurrences are
subsumed. The latter means, in particular, that both occurrences
of 0 are indicated separately (and not together, as in the example
above).

These observations motivate the identification of the formal multi-
shape occurrences representing the same informal occurrence (differ-
ing only in the way of marking the intended positions) via a suitable
equivalence relation.

4. substitution: The last generalisation of the notion of occurrences dis-
cussed in these investigations are the (formal) substitutions, which are
the formal representatives of the process of a substitution (as discussed
above). A substitution is introduced as a generalisation of the multi-
shape occurrences and is given by the following kind of quintuple:

〈context, sequence of affected terms,

position,

sequence of inserted terms, result〉
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The first three entries are a multi-shape occurrence as well as the last
three entries (in inverse order). Additionally, it is demanded that both
sequences have the same length.

For convenience, we also introduce so called simplified substitutions,
which are the analogous generalisation of our standard occurrences. In
other words, in a simplified substitution, affected and inserted shapes
are simple syntactic entities.

Presupposing that the intended terms are intended in their natural
order, we can illustrate informally a substitution by providing both
multi-shape occurrences constituting the substitution:

0 + (0 + 1) ◮ 1 + (2 + 3)

This illustration can be read as follows: in the context 0 + (0 + 1)
the substitution affects the sequence 〈0, 0, 1〉 of terms at the indicated
positions. These terms are replaced by the terms given in the sequence
〈1, 2, 3〉, which results in the term 1 + (2 + 3).

As in the case of multi-shape occurrences and for similar reasons, we
have to introduce a non-trivial identity relation for substitutions.

Substitution Functions: Substitution functions (according to our termi-
nology) are closely related with formal substitutions. We provide a sketch of
their introduction.

1. explicit substitution functions: We can understand a quintuple as an
ordered pair of a quadruple and of the last entry of that quintuple.
Recalling the set theoretical definition of a function as a specific set
of ordered pairs, it is canonical to understand a set of substitutions
as a function. Such a function is what we call an explicit substitution
function.

The argument of an explicit substitution function can be understood as
an ordered pair of a multi-shape occurrence (the first three entries) and
of a suitable sequence of syntactic entities. The result of an application
of an explicit substitution function on a multi-shape occurrence and on
a suitable sequence is, indeed, the result of the respective substitution.

2. traditional substitution functions: The traditional (recursively defined)
substitution functions are described in these investigations as implicit
substitution functions. These are functions such that there is an im-
plicitly given method, the explication method, transforming the function
into an explicit substitution function.
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Types of Occurrences: These investigations focus on a simple case of
occurrences, namely on occurrences of terms in terms of a first order formal
language. Context and shape of such occurrences are standard terms (or
sequences of them) of a first order language, the position is given by nominal
terms, which is the mentioned generalisation with respect to standard terms.

The formal theory of occurrences and substitutions of terms in terms is
sufficiently general to be understood as a blueprint for the (basic) treatment
of various other kinds of occurrences.
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2 Occurrences in the Literature

We provide a brief survey of the development of the notion of occurrences
as found in the literature with special focus on the logic literature, but also
including some examples from philosophy and computer science.

2.1 Unreflected Use of Occurrences

It is not surprising that in the beginning of modern logic, occurrences and
substitutions are treated naively: the focus was on the development of the
formal language itself.

Frege: As an example of such a naive treatment of occurrences and substi-
tutions, we mention Frege’s discussion of bounded substitution in his “Be-
griffsschrift”:20

Es ist natürlich gestattet, einen deutschen Buchstaben überall
in seinem Gebiete durch einen bestimmten anderen zu ersetzen,
wenn nur an Stellen, wo vorher verschiedene Buchstaben standen,
auch nachher verschiedene stehen.

Frege permits here the uniform replacement of a bound variable (notated
with German letters and referred to by “deutsche Buchstaben”) by another
variable everywhere inside the scope of the quantifier binding this variable.
Frege formulates a side condition: the variables have to be different in the
result of a substitution at all places (in German,“an allen Stellen”), where
they have been different before substitution.

The side condition is non-trivial: we deal with occurrences of variables
in formulae, and we have to relate such occurrences in different formulae,
namely in the formulae before and after substitution. Frege provides nei-
ther an explanation nor a critical consideration of the concept of position
(the places) nor a definition of a substitution function specifying formally
the intended substitution; these meta-lingual concepts are used naively as
primitive concepts.

Hilbert and Ackermann: Besides technical improvements, we can still
observe such an unreflected treatment of occurrences and substitutions in
the logic textbook “Grundzüge der theoretischen Logik” [16] by Hilbert and
Ackermann.

20Cf. Frege [7, p. 21].
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When discussing the substitution of variables, for example, they formulate
the demand of replacing uniformly the variables via a reference to all places,
where they occur. In their own words:21

[. . . ] aber immer so, daß die gleiche Variable an allen Stellen, an
denen sie vorkommt, auch immer in gleicher Weise ersetzt wird
[. . . ]

A priori, substitution is not understood here as a function, but as an ar-
bitrary replacement, as the possibility of a non-uniform replacement is (im-
plicitly) considered. Only by the demand of uniformity substitution becomes
a function. The formulation of this demand is necessary, as the concept of
substitution is used here naively and without a (recursive) definition.22 Also
the concept of “all places of occurrence” is used naively, without a formal
explication.

We have to mention a subtle improvement with regard to Frege: while
Frege refers in his discussion to German letters (which is an accentuation
chosen by Frege to denote variables), Hilbert and Ackerman refer to the
variables themselves (which are a type of symbols having a special role).

We summarise: Hilbert and Ackermann deal with the concept of oc-
currences and their positions, but these concepts are naively understood as
primitive notions of the metalanguage. They are neither aware of the non-
triviality of these phenomena nor providing formal representatives.

2.2 Awareness of Occurrences

The situation slightly improves, for example, with Gentzen and Prawitz.
They are aware of the distinction between syntactic entities and their occur-
rences, but their explanations and definitions are only rephrasing our infor-
mal intuitions; no (mathematical) object is introduced to represent formally
occurrences or, at least, their positions.

Gentzen: In his “Untersuchungen über das logische Schließen”23, Gentzen
introduces a number of terms intended to denote different types of occur-
rences: the S-formulae are occurrences of formulae in a sequent (of the Se-
quent Calculus), the D-formulae occurrences of formulae in a derivation of

21Cf. Hilbert and Ackermann [16, p. 75]
22If substitution would be defined as a function, as usual, then the uniformity would be

a provable property of the function.
23All quotes in this paragraph are taken from the English translation [14] of Gentzen’s

paper by Szabo; due to some subtle differences, it is worth to pay additional attention to
the German original [13]. Subsequently, we mention some of these subtleties.
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Natural Deduction, the D-sequents occurrences of sequents in a derivation of
the Sequent Calculus and, finally, the D-S-formulae occurrences of formu-
lae in a sequent occurring in a derivation (again of the Sequent Calculus).
Gentzen abstains explicitly from introducing terminology for occurrences of
variables.

The terminology is meant to denote occurrences, but the introduction is
apodictic and does not provide any method to deal with occurrences on a
formal base. The D-formulae, for example, are introduced as follows:24

The formulae which compose a derivation so defined are called D-
formulae (i.e., derivation formulae). By this we wish to indicate
that we are not considering merely the formula as such, but also
its position in the derivation.25

Instead of providing a formal representative of occurrences or, at least, a for-
mal object representing their positions, Gentzen only rephrases some (good)
intuitions. He explains, for example, in the case of D-formulae the difference
between such occurrences and the underlying syntactic entities as follows:26

Thus by ‘A is the same D-formula as B’ we mean that A and B

are not only formally identical, but occur also in the same place
in the derivation. We shall use the words ‘formally identical’ to
indicate identity of form regardless of place.27

24Cf. Gentzen [14, p. 73].
25Considering also the position of a formula in a derivation is the translation of con-

sidering the formula in connection with its position (“verbunden mit ihrer Stellung”, cf.
Gentzen [13, p. 181f.]). In the English translation, a consideration of a formula is accom-
panied by a second consideration, namely by the consideration of the position. In the
German original, the consideration of a formula as such is replaced by an alternative con-
sideration of formula and position together. The latter means that Gentzen understands
an occurrence as a kind of a composition of shape and position (without providing a formal
method of establishing this connection, as, for example, by an ordered pair of shape and
position). In particular, Gentzen neglects in his conception of an occurrence the context.
The latter is remarkable, as Gentzen’s terminology reflects the type of context.

26Cf. Gentzen [14, p. 73]; the accentuation in the quote is due to Szabo. Gentzen
uses, in the German original [13, p. 182], letter-spacing as accentuation, in contrast to an
accentuation by italics used at other places.

27There are two identical occurrences of the phrase “formally identical” in the English
quote. This is different in the German original. The first occurrence of “formally identical”
is the translation of an informal description of formal identity (in our terminology, of
syntactic equality); Gentzen writes “der Form nach gleich”, which is, in English, “equal
according to the form”. The second occurrence of this phrase is the introduction of a
terminus technicus, namely of the expression “formally identical”, which is in German
expressed by “formal gleich”. Cf. Gentzen [13, p. 182].
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We conclude that Gentzen is aware of the distinction between the syntactic
entities and their occurrences, but he only deals with occurrences on the base
of (good) intuitions, instead of treating them formally.

Prawitz: Similarly to Gentzen’s approach to occurrences, Prawitz intends
in “Natural Deduction” [23] to “take for granted the notion of an occurrence
of a formula or (synonymously) a formula occurrences in a formula-tree.”28

Nevertheless, Prawitz explains subsequently the concept of an occurrence
by recalling our intuitions; as in Gentzen, no formal object is introduced
representing these occurrences or their positions.

Due to this intuitive account to the notion of occurrences, it is not surpris-
ing that Prawitz uses the method of highlighting to indicate occurrences. For
example, the correspondence between informal argumentations and deriva-
tions (of Natural Deduction) is illustrated as follows:29

1. occurrences of sentences: First, Prawitz provides an informal argumen-
tation and enumerates the sentences (accompanied by corresponding
formulae representing the sentences).

This means that occurrences of sentences in an informal argumentation
are marked (and this way identified) by individual labels.

2. occurrences of formulae: In the derivation representing the informal
argumentation, he labels formula occurrences corresponding with sen-
tences (with their formalisation) in the informal argumentation by the
respective labels. In particular, two different occurrences of the same
formula are labeled by the label “(4)” to indicate that these specific two
occurrences both correspond with the previously marked occurrence of
sentence (4) in the informal argumentation.

This means that the labels in the derivation are not used to identify
occurrences, but to relate them with occurrences of sentences in the
informal argumentation.

In the course of his investigations, Prawitz reuses, in another example, the
labels in the derivation to refer to the marked formula occurrences; this way,
the role of the labels in the derivation changes, as they now individuate
occurrences.30

This example illustrates that rephrasing the intuitive properties of occur-
rences improves only apparently the situation. Rephrasing does not provide

28Cf. Prawitz [23, p. 25]; the accentuation is due to Prawitz.
29Cf. Prawitz [23, pp. 18-19].
30More precisely, Prawitz distinguishes even between occurrences of the label (4) in the

derivation by referring to its left and to its right occurrence; cf. Prawitz [23, p. 52].
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any methods for the treatment of occurrences; when actually dealing with
occurrences, we have to step back to highlighting.

2.3 Inaccurate Theories of Occurrences

The next step in the evolution of the theories of occurrences is, what we call
an inaccurate theory of occurrences: a basic theory of occurrences is provided
(together with a mathematical object intended to represent occurrences for-
mally), but this theory does not capture our intuitions about occurrences
adequately.

Quine: Such an inaccurate theory of occurrences is proposed by Quine in
his textbook “Mathematical Logic”.31 Presupposing that a syntactic entity
is a sequence of symbols,32 Quine suggests to identify “an occurrence of a
word or sign in an expression as the initial segment of the expression up to
and including that word or sign.”33

As already observed by Simons,34 Quine’s approach is not sufficient. In
order to illustrate this, we contrast our example sentence by Schiller with the
following quote taken from Goethe’s ballade “Der Erlkönig”:

Es ist der Vater mit seinem Kind.

We can observe two kinds of fallacies:35

1. fallacy of the context: The leftmost occurrence of the word “der” in the
sentence by Goethe is different from the leftmost occurrence of the same
word in the sentence by Schiller; nevertheless, their representatives
according to Quine are equal, namely the sequence “Es ist der”.

2. fallacy of the shape: The leftmost occurrence of the word “der” in
the sentence by Schiller (or, equivalently, by Goethe) is different of the
leftmost occurrence of the letter “r” in the same sentence; nevertheless,
their representatives according to Quine are equal, namely the sequence
“Es ist der”.

31Cf. Quine [25, p. 297f.]; in Quiddities [26, pp. 216ff.], Quine recalls his conception of
occurrences and provides an informal explanation.

32This presupposition is unproblematic; using, for example, a prefix notation, we can
easily transform trees into linear sequences of symbols (as long as the underlying language
is well-behaved).

33Cf. Quine [26, pp. 218f.].
34Cf. Simons [30, p. 196].
35Both kinds of fallacies are considered by Simons [30] and recalled by Wetzel [35].
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Both fallacies have the same source: the context (the shape, respectively)
is neither given explicitly in the formal representative of the intended oc-
currence (the initial segment) nor determined by the formal representative.
As a consequence, the same representative (according to Quine’s approach)
represents different (informally given) occurrences. The latter means that
Quine’s approach to the notion of occurrences is inaccurate.

There are strategies to avoid the fallacies of Quine’s approach:

1. encoding: Instead of identifying occurrences with sequences represent-
ing the position of the informally given occurrences, we could define the
formal representative as a triple containing context, shape and position.

This is the strategy suggested byWetzel to improve Quine’s approach.36

2. determination: Choosing a better representation of the position, we
can simplify the representation of an occurrence as follows: if the con-
text and the position determine the shape, then we do not need to en-
code the shape of an occurrence; it is sufficient to define an occurrence
using only context and position. (Analogously, if shape and position
determine the context.)37

For example, as suggested by Simons:38 instead of using only an initial
segment of the context to represent the position, where the shape be-
gins, we could use additionally a final segment to represent the position
where the shape ends. The shape is determined, if we know addition-
ally the context, and the context is determined, if we know additionally
the shape. Simons considers to define an occurrence via the context
and the two segments representing the position, but for philosophical
reasons, he is not satisfied with the result of this improvement.

Improving Quine’s approach, as discussed, is sufficient. Nevertheless, the re-
sulting theories would be so called weak theories of occurrences (as discussed
below).

36For some details see our subsequent discussion of Wetzel’s account to occurrences.
37In fact, our own choice to represent the position of occurrences by nominal forms

has the advantage that both context and position determine the shape as well as shape
and position determine the context. Nevertheless, we decided to encode all three relevant
aspects of an occurrence.

38Cf. Simons [30, p. 197].
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2.4 Weak Theories of Occurrences

A reasonable theory of occurrences provides a sufficient formal representative
of informally given occurrences. Such a theory of occurrences is called weak,
if the method of representing the position of an occurrence is limited to sin-
gle occurrences. The representation of the different generalisations of single
occurrences (namely the standard occurrences, the multi-shape occurrences
and the substitutions) is beyond the capacity of these weak theories. We
comment some of these weak theories found in the literature.

Wetzel: We mentioned already Wetzel’s attempt of improving Quine’s
approach to occurrences in her article “What are occurrences of expressions?”
[35]. She presupposes (as Quine) that expressions are finite sequences of
symbols as, for example, the following two sequences of symbols xi and yi:

x = 〈x0, . . . xn〉 ; y = 〈y0, . . . ym〉

In a first step, Wetzel defines, whether “x starts in y at i” by the demand
that the entries xk and yk+i have to be equal for all 0 ≤ k ≤ n.39 Then she
defines, whether “x occurs in y at least n times” via the condition that the
set of starting positions contains at least n elements.40 More formally:

|{i; x starts in y at i}| ≥ n

Without providing a definition, she presupposes the notion of the nth occur-
rence of an expression x in an expression y. These nth occurrences are her
notion of occurrences.41 Due to philosophical concerns, she finally suggests
to “adopt as the nth occurrence of x in y the ordered triple 〈n, x, y〉.”42

As Wetzel does not tell us her definition, we have to figure out the missing
details. We suggest: a triple 〈n, x, y〉 is called the nth occurrence of x in y,
if the following both conditions are satisfied:

1. There is i such that x starts in y at i.

2. The cardinality of the set of starting positions up to i equals to n. More
formally:

|{k; k ≤ i and x starts in y at k}| = n

39Cf. Wetzel [35, p. 219]; accentuation by Wetzel.
40Cf. Wetzel [35, p. 219].
41Whether occurrences (according to Wetzel) are defined only on the base of the nth

occurrences or the nth occurrences themselves, is clarified, when Wetzel [35, p. 217] writes:
“Every occurrence of x in y has these parameters [the number n and the expressions x

and y], and they uniquely individuate the occurrence.”
42Cf. Wetzel [35, p.219].
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Observe that we do not use the set of all starting positions, as introduced by
Wetzel, but subsets of this set. The full set is only needed, if we introduce
(as Wetzel) the property that x occurs in y at least n many times.43

We analyse Wetzel’s (improved) account to occurrences:

1. Wetzel’s account of occurrences is capable of representing occurrences,
as she encodes the context, the shape and the position of an occur-
rence. As the representative of the position is only able to mark single
positions, she provides a weak theory of occurrences.

2. Neither position and context determine the shape nor position and
shape determine the context.

3. We do neither see the advantage of the nth occurrence over an occur-
rence starting in i nor do we see the advantage of encoding the starting
position by natural numbers in contrast to initial segments.

Presupposing context and shape, we are able to determine the starting
position i on the base of the number n as well as the corresponding
initial segment of y on the base of the starting position i and vice
versa. All of these approaches are equivalent, provided context and
shape are encoded.44

4. According to our own intuitions, it seems that the property of an oc-
currence, namely to be the nth occurrence of a given shape in a given
context, is not essential to the notion of occurrences, but a contingent
fact. As a consequence, we would prefer Quine’s (improved) definition,
because an initial segment represents more directly the position of an
occurrence than the number of preceding occurrences with the same
shape.

The advantage of Quine’s approach becomes more visible, if we try to
provide the definition of the notion of an occurrence (in contrast to the
nth occurrence): an occurrence (according to Wetzel) has to be a triple

43Wetzel [35, p. 217] uses this property in an identity criterion for the nth occurrence of x
in y; there, she demands besides the usual condition for the identity of ordered triples that
the expression x indeed occurs sufficiently often. The latter condition is not superfluous,
as an occurrence not satisfying this condition would not be an occurrence at all.

44It seems that Wetzel does not recognise, why her approach to occurrences is an im-
provement on Quine’s approach. Instead of using Quine’s method of representing a posi-
tion, she develops her own method and discusses this in detail; but the reason, why her
approach to occurrences is better than Quine’s is not her way of representing positions,
but the fact that she encodes all necessary aspects of an occurrence.
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〈ξ, x, y〉, where (besides other conditions) ξ is the number of preceding
occurrences of the same context and the same shape. We have to refer
in a recursive clause to previously defined occurrences; this is not the
case, if ξ is the starting position i or the corresponding initial segment
of y, the latter as suggested by Quine.

Van Dalen: Van Dalen provides in his textbook “Logic & Structure” a
brief excursus on the notion of occurrences (of formulae in formulae).45 The
distinction between syntactic entities and their occurrences is motivated only
by convenience. This is contrasted by his concluding remark that he “will
not be overly formal in handling occurrences [. . . ], but it is important that
it can be done.”46

Referring to trees of formulae (a recursively defined representation of formu-
lae in tree form), van Dalen first defines:

[A]n occurrence of a formula [φ] in a given formula ψ is a pair
(φ, k), where k is a node in the [parsing] tree of ψ.

We analyse the situation:

1. circularity: The representation of the position of an occurrence by a
node k is problematic: a parsing tree is not defined as a set of distinct
nodes equipped with a suitable relation, but recursively on the base of
subtrees. (The nodes of this tree are labelled with full formulae and
not only with the main logical symbol and atomic formulae.) Conse-
quently, a node in such a tree can only be understood as an occurrence.
Occurrences are introduced in terms of occurrences. This means that
the definition, as stated, is circular.47

2. fallacy of the context: Van Dalen discusses only occurrences in a given
formulae;48 this way, he avoids trivially the fallacy of the context.

45Cf. van Dalen [33, p. 12f.]; all quotes are taken from this excursus.
46We agree with van Dalen with respect to the importance of the notion of occurrences;

therefore, we reject that occurrences should be understood as a matter of convenience.
Having developed an adequate theory of occurrences, we may deal with them informally
for convenience reasons.

47Due to this circularity, we could call van Dalen’s conception of occurrences an apparent
theory of occurrences.

48This is, at least, what he claims first. In the next sentence, where he provides his
circular definition, he only speaks about occurrences without a restriction to a given
context. Cf. van Dalen [33, p. 12].
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Van Dalen himself improves immediately his circular definition of an occur-
rence by discussing an alternative (and better) account to the representation
of the position. A position (a node) in a tree of formula is represented by
a sequence of natural numbers encoding the path from the top node of the
formula tree to the top node of the intended occurrence: an entry “0” means
the left direct subtree, an entry “1” means the right direct subtree.49

We communicate some observations:

1. limited notion: Even if we assume that the fallacy of the context is
avoided trivially by restricting the notion of an occurrence to a pre-
viously fixed context: having a concrete definition of the position of
an occurrence at hands, we observe that shape and position do not
determine the context.

Therefore, van Dalen discusses only a limited notion of occurrences. Of
course, encoding additionally the context would change the situation.

2. lies-within relation: The hard problem of deciding, whether an occur-
rence lies within another occurrence, has a quite natural solution: we
have to check only, whether the respective sequences representing the
positions of the occurrences are initial segments of each other or not.

The improved version of van Dalen’s approach to occurrences captures ad-
equately the concept of single occurrences, but it is limited to this special
case. For the latter reason, van Dalen’s suggestion of a theory of occurrences
(its improved version) is a weak theory.

Huet: Huet provides in his article “Confluent Reductions: Abstract Prop-
erties and Applications to Term Rewriting Systems” [18, p. 807] a variation
of a weak theory of occurrences based on sequences of natural numbers.50

These finite sequences are used as a position of what we call an occur-
rence, but are called occurrences by Huet.51 As we sketched above, this kind
of position is sufficient to define a lies-within relation for occurrences; addi-
tionally, Huet introduces the concept of disjoint occurrences describing that

49This account of representing positions in a tree is easily generalised to the case of trees
having finitely, but arbitrary many direct subtrees by using the remaining natural numbers.
It seems that even the infinite case can be represented via infinite ordinal numbers.

50In particular, this article is worth mentioning, as the proposed treatment of occur-
rences became standard in the term-rewriting community.

51This means that Huet does not distinguish between the concept of a position and of
an occurrence.
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two single occurrences do not lie within each other.52

Based on this abstract notion of occurrences (of positions), Huet defines
recursively and in parallel the set of occurrences of a standard term (defined,
essentially, via the usual inductive clauses), which is the set of suitable posi-
tions, and the subtermM/u of a standard termM at such an occurrence u (at
such a position u). The definition of occurrences is concluded by introducing
the way of speaking that a (suitable) sequence u of natural numbers “is an
occurrence of M/u in M”53 and by defining a special substitution function
for single occurrences.

We communicate some observations:

1. Huet does not introduce a formal object, which we would call an oc-
currence, but only (abstract) positions.

2. As a consequence of his abstract approach, the same occurrence (in
Huet’s terminology) can have different contexts as well as different
shapes. But this principle problem has no impact on Huet’s theory of
occurrences, as he relates the standard terms with their set of suitable
positions and as he considers only occurrences, where the context is
(implicitly) clear.

3. Huet sketches an elaborate theory of occurrences (of positions), but
this theory is restricted to single occurrences, which means that the
theory under discussion is a weak theory.

Avenhaus: As an example of the influence of Huet, we discuss briefly the
notion of occurrences as introduced by Avenhaus in his text book “Reduk-
tionssysteme” [2]. As in van Dalen’s account of occurrences (and in contrast
to Huet), he presupposes a representation of the standard syntactic entities
in tree form (so called parsing trees) and defines the position of an occur-
rence via sequences describing the position of the intended occurrence in the
parsing tree.

Avenhaus’ approach is an improvement in comparison to van Dalen, as he
provides a basic theory of occurrences:54 he defines recursively the set O(t) of
all positions in a term t (given as the discussed sequences of natural numbers).

52This is what we call the independence of occurrences, but restricted to single occur-
rences. See section 8.2.4 for a brief discussion, why this restricted relation is not sufficient
to capture the concept of independence in the general case.

53Cf. Huet [18, p. 807].
54Cf. Avenhaus [2, pp. 81f.].
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Furthermore, he introduces the notation t/p to denote an occurrence in a
term t at a position p ∈ O(t) (without calling the introduced notion explicitly
an occurrence). As context and position determine the shape, this definition
of an occurrence is adequate; in particular, he introduces a function mapping
an occurrence to its shape.

Nevertheless, the occurrences as introduced by Avenhaus are only single
occurrences; therefore, the resulting theory is a weak theory of occurrences.

2.5 Flat Notion of Occurrences

A special case of an inaccurate theory of occurrences is a theory in which
only a flat notion of occurrences is used. The latter means that the central
aspect of an occurrence, its position, is not subsumed in the conception of
an occurrence. In other words: the expression “occurrence” belongs to the
terminology of such a theory, but this expression refers only to the fact,
whether a syntactic entity occurs somewhere, without specifying, where this
syntactic entity occurs.

Leitsch: An example of such a flat notion of occurrences is found in Leitsch
[21]. Leitsch defines, whether a term (a formula, respectively) occurs in a
term (in a formula) in terms of that recursive definition, which we would use
to define the concept of being a subterm of a term (of being a subformula of
a formula).

Worth mentioning here: this flat notion of an occurrence is, indeed, used
by Leitsch to define in the next step the subformula relation: “A is called a
subformula of B if A occurs in B.”55

Curry: Wemention Curry’s textbook “Foundations of Mathematical Logic”
[4]. There, Curry develops a general and elaborate approach to languages;56

in particular, he develops a notion of occurrences, which “corresponds to
current practise with syntactical systems, where an occurrence is identified
with the initial segment which ends at the last letter of the occurrence.”57

This means that Curry introduces, at most, a weak theory of occurrences.
Nevertheless, this does not prevent Curry from introducing also a flat

notion of occurrences. In particular, he uses the term “occurrence” to define
(according to the expected recursive clauses), whether a variable occurs in a
term or in a formula, respectively.58

55Cf. Leitsch [21, p. 7].
56A detailed analysis of Curry’s approach to languages is left for future work.
57Cf. Curry [4, p. 102].
58Cf. Curry [4, p. 318].
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René Gazzari Occurrences in the Literature

2.6 Implicit Theory of Occurrences

We conclude our survey with a brief comment on Schütte.

Schütte: Schütte provides in “Proof Theory” [29] the nominal forms used
in these investigations to represent the positions of occurrences.

More precisely, Schütte provides an inductive definition for two kinds of
nominal forms depending on each other: the p-forms and the n-forms. These
nominal forms are used to mark the position of special occurrences of subfor-
mulae in propositional formulae, namely the p-parts and the n-parts. As these
occurrences determine (by their positions) semantic properties of formulae,
Schütte is able to discuss semantic properties of propositional formulae based
only on syntactic notions.59

Even though the central concepts related to the notion of (a specific kind
of) occurrences are already present here, Schütte does not make the notion of
an occurrence explicit, nor does he develop a general theory of occurrences;
an investigation of such a theory seems to be outside of the focus of his
investigations. For this reason, we consider Schütte’s treatment of nominal
forms as an implicit theory of occurrences.

59Cf. Schütte [29, pp. 10ff.].
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3 Preliminaries

We provide the mathematical and logical concepts and notations used in
these investigations.

3.1 General Mathematics

A basic set theory is presupposed; we mention some details.60

3.1.1 Basic Concepts of Set Theory

Basic Notions: ∅ is the empty set. ∈ is the membership relation, ⊂ the
strict subset relation (or, equivalently, set inclusion). ∪ and ∩ denote the
union and the intersubsection of two sets, respectively. Occasionally, we use
generalised union and intersubsection, as usual in set theory:

⋃

X =
⋃

x∈X

x = {z; ∃x ∈ X : z ∈ x}

⋂

Y =
⋂

y∈Y

y = {z; ∀y ∈ Y : z ∈ y}

Thereby, X and Y have to be sets of sets and Y may not be empty.
X\Y = {x ∈ X; x /∈ Y } is the difference of X and Y , p(X) is the

power set (the set of all subsets) of a set X. An ordered pair 〈X, Y 〉 can be
defined as 〈X, Y 〉 = {{X}, {X, Y }} according to Kuratowski’s suggestion.61

Furthermore, X × Y = {〈x, y〉; x ∈ X, y ∈ Y } is the cartesian product of
two sets X and Y . Ordered pairs and cartesian products can be generalised
canonically to arbitrary, but finite many arguments.

Definite Descriptions: If we can prove that exactly one element x con-
tained in a given set X satisfies a description φ, then we refer occasionally
to this element via its definite description:

! x ∈ X : φ(x)

60Such a basic set theory can be developed and justified on the base of the axiomatic
set theory ZF formulated in a first of language. Most of the mathematical concepts used
in these investigations can be found in any good set theory textbook; we suggest Jech
“Set Theory” [19] for a distinct presentation of ZF. A detailed and precise development
of the set theoretical concepts used in these investigations are beyond the needs of these
investigations.

61Cf. Kuratowski [20].
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Such definite descriptions are useful, for example, for a distinct formulation
of suitable definitions.

Ordinal Numbers: We presuppose ordinal numbers (or, equivalently, or-
dinals) as defined by von Neumann [34] (as ǫ-transitive sets well-ordered by
∈).62 In particular, Ω denotes the proper class of all ordinals, α′ = α∪{α} is
the successor of α for all ordinals α ∈ Ω.63 A non-empty ordinal α is called a
limit ordinal, if α =

⋃

α. We have the following transfinite induction princi-
ple for ordinals: If a property holds for ∅, and if this property is transferred
from α to α′ and from all β ∈ λ to λ (where α is arbitrary ordinal and λ
arbitrary limit number λ), then this property holds for all ordinals α.

Natural Numbers: Natural numbers are understood as finite ordinals.
This means that a natural number is identified with the set of its predecessors:
0 = ∅ and n′ = n∪{n} = {0, . . . n}. The set of all natural numbers is denoted
by ω, which is the first infinite ordinal number and, in particular, the first
limit ordinal.

Addition and multiplication can be defined via their canonical recursive
definitions. Both operations can be generalised to arbitrary, but finitely
many arguments; additionally, we use infinite sums and products, if almost
all arguments are 0 or 1, respectively.

It is convenient that set inclusion and the lesser-than relation coincide
with respect to the natural numbers. More formally, for all n,m ∈ ω: n ∈ m,
if and only if n < m. Equivalently: n ∈ m′, if and only if n ≤ m.

The natural numbers and the set of natural numbers itself are, essentially,
the only ordinals used in these investigations; they can be provided as the
elements of the ordinal ω′ = ω ∪ {ω}.

3.1.2 Relations

A relation R is a subset of a cartesian product. In the case of a binary
relation R ⊆ X ×X on a set X, we use also infix notation, as usual.

62A set is ǫ-transitive, if all of the elements of that set are subsets of that set; the concept
of well-ordering is introduced below.

63Reinhard Kahle mentioned in a discussion that the notation α′ to denote the successor
of α was introduced by Dedekind [5, p. 21] with respect to the natural numbers. It is worth
mentioning here that Dedekind did not coin this notation especially for natural numbers.
He introduced this notation to denote the image φ(a) of an object a under the application
of an arbitrary functions φ; only in the discussion of the natural numbers, the use of this
notation is related to successor function.
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Basic Properties (Binary Relations): We provide the definitions of
basic properties of a binary relation R on a set X.

1. reflexive: R is reflexive, if 〈x, x〉 ∈ R for all x ∈ X.

2. anti-reflexive: R is anti-reflexive, if 〈x, x〉 /∈ R for all x ∈ X.

3. symmetric: R is symmetric, if 〈x, y〉 ∈ R implies 〈y, x〉 ∈ R for all
x, y ∈ X.

4. anti-symmetric: R is anti-symmetric, if 〈x, y〉 ∈ R and 〈y, x〉 in R
implies that x = y for all x, y ∈ R.

This means: if R is anti-reflexive, then there are no x, y ∈ R such that
〈x, y〉 ∈ R and 〈y, x〉 ∈ R.

5. transitive: R is transitive, if 〈x, y〉 ∈ R and 〈y, z〉 ∈ R implies that
〈x, z〉 ∈ R for all x, y, z ∈ X.

Closure Operations: The closure of a binary relations R on a set X with
respect to a (basic) property is the smallest relation R̂ extending R having
this property; we can construct such a closure as the intersubsection of all
suitable relations. Alternatively, we can define the closure operations with
respect to the basic properties as follows:

1. reflexive closure: X= = {〈x, x〉; x ∈ X} is the identity relation for X;
the relation Rr = R ∪X= is the reflexive closure of R.

2. symmetric closure: R−1 = {〈y, x〉; 〈x, y〉 ∈ R} is the inverse relation
of R; the relation Rs = R ∪R−1 is the symmetric closure of R.

3. transitive closure: In contrast to reflexivity and symmetry, the tran-
sitive closure cannot be defined directly, but only with the help of an
ascending chain of relations:

R0 = R ; Rn′ = Rn ∪ {〈x, z〉; ∃y ∈ X : 〈x, y〉 ∈ Rn, 〈y, z〉 ∈ R}

The relation Rt =
⋃

{Rn; n ∈ ω} is the transitive closure of R.

Equivalence Relation: Let R ⊆ X ×X be a binary relation on a set X.
R is an equivalence relation on X, if R is reflexive, symmetric and transitive.
The set [x]R = {y ∈ R; 〈x, y〉 ∈ R} is called the equivalence class of xmodulo
R for all x ∈ X.
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Order Relations: Let <⊆ X ×X be a binary relation on X.

1. partial order: The ordered pair 〈X,<〉 is called a partial order, if < is
anti-reflexive and transitive.

As a consequence, < is anti-symmetric.

2. linear order: A partial order 〈X,<〉 is called a linear order, if all pairs
of elements of X are pairwise comparable (more formally, if x = y or
x < y or y < x for all x, y ∈ X).64

3. well-order: A linear order 〈X,<〉 is called a well-order, if every non-
empty set ∅ 6= Y ⊆ X contains a least element with respect to R. (A
definition of the least element is given below.)

We introduced strict order relations (which means anti-reflexive order re-
lations). Occasionally, non-strict order relations are considered, which are
the reflexive version of their strict counterparts. As reflexivity and transi-
tivity do not imply anti-symmetry, we have to demand the latter property
axiomatically. Usually, we stick to the traditional notational conventions: if
“<” denotes a strict order relation, then “≤” its non-strict version.65

The following terminology is used to denote different kinds of extreme
elements x ∈ X in a partial order 〈X,<〉.

1. least//greatest element: x is the least element (or the minimum) with
respect to <, if x is smaller than all other elements in the partial order
(more formally, if x = y or x < y for all y ∈ X); analogously, x is the
greatest element (or the maximum).

2. minimal//maximal element: x is a minimal element with respect to
R, if there is no smaller element in the partial order (more formally,
if y < x implies x = y for all y ∈ X); analogously, x is a maximal
element.

Order Relation Modulo Equivalence Relation: Let R ⊆ X ×X be a
binary relation on X and ≡ ⊆ X×X an equivalence relation on X. If R and
≡ are compatible, then the relation R induces canonically a relation R/≡ on
the set X/≡ = {[x]≡; x ∈ X} of all equivalence classes with respect to ≡.

64This property is also called trichotomy.
65Occasionally, we consider relations, where “<” denotes already the non-strict version.
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Thereby, compatibility means that the following condition is satisfied for all
x, x′, y, y′ ∈ X:

x ≡ x′ , y ≡ y′ , 〈x, y〉 ∈ R ⇒ 〈x′, y′〉 ∈ R

In the course of our investigations, we come into the situation that the in-
duced relation R/≡ has some nice properties, which the relation R does not
have, but where we are still interested in dealing with the objects x ∈ X
themselves and not with the respective equivalence classes. In order to deal
with such a situation, we introduce the following ways of speaking:

1. basic properties: We say that R has a basic property with respect to
≡, if the induced relation R/≡ has this property.

2. order: We say that R is a partial order modulo ≡, if the induced
relation R/≡ is a partial order on the set X/≡.

3. extreme elements: An element x ∈ X is extreme with respect to ≡ (in
one of the senses given above), if the respective equivalence class [x]R
is so in 〈X/≡, R/≡〉.

Observe that least and greatest elements are not determined uniquely,
but up to the respective equivalence.

This means that a partial order modulo an equivalence relation is a partial
order, if we neglect the differences identified by the equivalence relation.

3.1.3 Functions

A subset F ⊆ X × Y of a cartesian product of two sets X and Y is called
a function from X to Y , if the following condition is satisfied for all x ∈ X
and y, y′ ∈ Y :

1. functionality: If 〈x, y〉 ∈ F and 〈x, y′〉 ∈ F , then y = y′.

In this case, we also write F : X → Y . The set dom(F ) = X is the domain
of F and codom(F ) = Y the codomain of F . Furthermore, we define:

1. preimage: The set pre(F ) = {x ∈ X; ∃y ∈ Y : 〈x, y〉 ∈ F} is the
preimage of F .

2. image: The set img(F ) = {y ∈ Y ; ∃x ∈ X : 〈x, y〉 ∈ F} is the image
of F
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The function F is total, if dom(F ) = pre(F ); in the course of these investi-
gations, we presuppose that all functions are total. For x ∈ pre(F ): we use
the usual term notation for functions and we write F (x) = y, if 〈x, y〉 ∈ F ,
and F (x) 6= y otherwise. Furthermore, F|X′ = F ∩ (X ′×Y ) is the restriction
of F to arguments in X ′ for subsets X ′ ⊂ X of the domain.

The set Func(X, Y ) is the set of all functions F : X → Y . If X = Y ,
then we also write Func(X). Occasionally, we use the set theoretic notation
Y X to denote alternatively the set Func(X, Y ). If the domain X of F is a
cartesian product of length n (this means that X = Z0 × . . . Zn−1 for some
suitable Zk), then we say that F is n-ary.

Basic Function Properties: Let F : X → Y be an arbitrary function.
We recall the basic function properties:

1. injective: F is injective, if for all x, x′ ∈ X the following condition is
satisfied: if F (x) = F (x′), then x = x′.

2. surjective: F is surjective, if for all y ∈ Y the following condition is
satisfied: there is x ∈ X such that F (x) = y.

3. bijective: F is bijective, if F is injective and surjective.

In order to discuss the standard function properties, the following notions
are useful. Let y ∈ Y be an element of the codomain of F .

1. isolated: y is isolated by F , if at most one element x of the domain is
mapped by F to y (formally, if |{x ∈ X;F (x) = y}| ≤ 1).

2. hit: y is hit by F , if there is an element x ∈ X of the domain which is
mapped by F to y (formally, if there is x ∈ X such that F (x) = y).

The relationship to the standard function properties of functions is obvious.

Special Functions:

1. permutation: Let X be arbitrary. A bijective function F : X → X is
called a permutation of X; the set of all permutations on X is denoted
by Sym(X).

2. natural function: A function F ∈ Func(ω) is called a natural function.
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Functions on Power Sets: Let F : X → Y be an arbitrary function. The
function F induces canonically a function F̂ : p(X) → p(Y ) on the power set
of X as follows:

F̂ (Z) = {F (x); x ∈ Z}

The induced function is usually denoted by the same symbol as the original
function, but this convention is problematic: if there are members x ∈ X such
that x ⊆ X (which is the case for ordinals), then F (x) can be ambiguous.
In order to avoid such ambiguities, we introduce the following notational
convention:

• The same function symbol is used for the induced function on the power
set as for the original function, but squared brackets for the arguments
indicate the induced function.

Investigate, for example, the function F : ω → ω : x 7→ 2 on the set of
natural numbers. We easily calculate:

F [2] = F [{0, 1}] = {F (x); x ∈ 2} = {2, 2} 6= {0, 1} = 2 = F (2)

Function Spaces: Let X, Y and Z be arbitrary sets.

1. identity function: The function idX : X → X : x 7→ x is the identity
function for X.66

2. composition: If F : X → Y and G : Y → Z are two functions such
that the codomain of the first is the domain of the second, then the
composition F ◦G is defined as follows: F ◦G : X → Z : x 7→ G(F (x))

Let X ⊆ Func(X) be a set of functions. The ordered triple 〈X, ◦, idX〉
is a function space, if both Func(X) is closed under the composition ◦ of
functions and contains the respective identity function idX . More formally:

F ∈ X and G ∈ X ⇒ F ◦G ∈ X ; idX ∈ X

The symmetric group 〈Sym(X), ◦, idX〉 is a function space; in particular, it
is also an algebraic group. The latter means that the group axioms are sat-
isfied: the composition is associative, there is a neutral element, the identity
function, contained in the set of function and there is an inverse function for
all functions in the set of functions.

Sequences: A function x : α → X from an ordinal α into a set X is called
a sequence with entries in X. The ordinal α = lng(x) is the length of the
sequence F .

66Observe that idX = X=.
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1. sets of sequences: Xα = Func(α,X) is the set of all sequences x in X
of length α. Additionally, we introduce the following notation:

X<α =
⋃

β<α

Xβ ; X≤α =
⋃

β≤α

Xβ

2. notation: We use the usual notation of sequences, which means that
sequences are notated analogously to ordered pairs. In particular, for
α ∈ Ω:

x = 〈xβ; β ∈ α〉

Thereby, xβ ∈ X for all β ∈ α. Ordinals β ∈ α are also called positions
in the sequence x and xβ is the entry of x at the position β.

3. empty sequence: The empty sequence is denoted by ǫ.

Sequences versus Tuples: There is a small caveat: a finite sequence
x = 〈x0, . . . xn〉 of length n

′ and the corresponding ordered n′-tuple 〈x0, . . . xn〉
are different mathematical objects (for 0 6= n ∈ ω). Nevertheless, as there is
a bijective correspondence between both kinds of entities, we identify both
without any further comment. Analogously, we identify a sequence of length
1 (an ordered 1-tuple) with its single entry.

Chains: Let 〈X,<〉 be a partial order, α ∈ ω′ an ordinal number and
x = 〈xβ; β ∈ α〉 ∈ Xα a sequence of length α.

1. ascending chain: The sequence x is an ascending chain, if xβ ≤ xβ′ for
all β such that β′ ∈ α; the sequence is a proper ascending chain, if even
xβ < xβ′ for all β such that β′ ∈ α.

2. stationary: Let α = ω and x an ascending chain. x is stationary, if
there is k ∈ ω such that xk = xl for all l ∈ ω such that k ≤ l.

Analogous terminology is presupposed for descending chains.

3.1.4 Axiom of Choice

The following statement is called the Axiom of Choice (AC):

• There is a choice function F : X →
⋃

X on X for every set X of sets
not containing the empty set; thereby, a choice function on X satisfies
the condition F(X) ∈ X for all X ∈ X .
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The Axiom of Choice is independent of the usual axioms of set theory; the
Axiom of Choice guarantees the existence of mathematical objects without an
explicit construction. For these reasons, the Axiom of Choice is of interest for
the philosophy of mathematics. It is good mathematical practise to announce
explicitly, if this axiom is used in a proof.

There is a great number of interesting statements (related with various
fields of mathematics) equivalent to the Axiom of Choice. In the course of
these investigations, we apply the Enumeration Theorem (ET) which is one
of the equivalences of the Axiom of Choice:

• There is an ordinal α ∈ Ω and a bijection F : α → X for every set X.

In other words, every set X can be enumerated by a suitable ordinal α. The
advantage of the Enumeration Theorem (in contrast to the Axiom of Choice)
is that it allows proofs by transfinite induction along the well-order of α for
the enumerated set X.

3.2 Formal Languages

We provide our conception of a formal first order language. This introduction
is guided by the needs of our investigations; some concepts contained in a
complete introduction are omitted without any comment.

This introduction can be seen as a guideline to the definitions of the anal-
ogous concepts formulated with respect to the generalisations of the standard
syntactic entities, which are discussed in the course of these investigations.

Basic Terminology: We mention some basic terminology.

1. syntactic entity: The expression “syntactic entity” is used to denote
all kinds of objects defined in a (formal) language, as, for example,
the symbols of an alphabet, the terms and formulae of the respective
language, the derivations in a calculus etc.

2. syntactic equality: The symbol “≏” denotes in the metalanguage
the syntactic equality between two syntactic entities; this symbol-by-
symbol equality is the strictest possible (as long as we do not distinguish
between occurrences or tokens of the same syntactic entities).

3. standard entity: We introduce in the subsequent investigations various
generalisations of the syntactic entities usually defined in formal lan-
guages; to distinguish the usually defined syntactic entities from their
generalisations, we call the former kind of entities also “standard”. For
examples, the terns and formulae of a first order language are also called
standard terms and standard formulae.
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3.2.1 Principle Approach to Formal Languages

We discuss our principle approach to formal languages.

Principle Conception of Languages:

1. associated sets: In our understanding, a formal language L is different
from the various sets of syntactic entities associated with that language.
In particular, a formal language is different from its set of formulae, but
also different from its alphabet and of its set of terms. The advantage
of this philosophical position is the possibility to associate new sets to a
given language, in particular, to associate sets containing the generali-
sations of the standard syntactic entities (which we intend to introduce
in our investigations), and still to speak about the same language.

2. identification: It seems reasonable to identify a formal language L with
an extended signature, in which not only the non-logical symbols are
codified (together with their arities), but all of the available symbols
(together with their use).67

Nevertheless, a detailed development of a philosophically justified no-
tion of a formal language is beyond the needs of our investigations.
For this reason, we abstain here from the introduction of a mathe-
matical object representing formal languages, and use this expression
informally, and according to our intuitions.

3. signature: For the purposes of our investigations, we are also not in-
terested in the exact conception of signatures determining the available
non logical symbols together with their arities. The underlying formal
mechanisms are not relevant; it is sufficient to know that this determi-
nation is somehow done. For this reason, we also abstain here from a
definition of signatures.

67For the non-logical symbols, it seems sufficient to codify their arities. But there are
more factors determining the use of symbols: for example, it makes a difference, whether
we allow nested quantification of the same variable, whether we allow the quantification
of a variable which does not occur in the scope of the quantifier, etc. If we intend to
distinguish languages also with respect to such differences, we would have to codify all of
the generation rules in the extended signature. On the other hand, there may be reasons to
subsume different generation rules under the same language: at least, our generalisations
of the standard entities are generated to different and new rules, and we still would like to
associate them to the same language as the underlying entities. Also, one may argue that
it makes no difference, which exact symbol is used in a language; for example, we may
identify languages of group theory using “+”, “·”, or “◦” as symbol for the binary group
operation, we may identify languages using different sets of of symbols as the same sort of
variables, etc.
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Specific Languages:

1. logical symbols: To keep the complexity of our investigations as low
as possible, we prefer formal languages with few logical symbols. Usu-
ally, we presuppose the falsum (⊥), the implication (→), the universal
quantifier (∀), and the equality symbol (=).68 The negation (¬) and
the biimplication (↔) are understood as the usual abbreviations.

Our investigations are easily carried over to languages, in which nega-
tion and biimplication are proper symbols or in which other logical
symbols are available, as, for example, the conjunction (∧), the dis-
junction (∨), or the existential quantifier (∃).

2. paradigmatic language: We discuss in the theoretical parts of our in-
vestigations a paradigmatic formal language L. In such a paradigmatic
language, we presuppose some constant symbols c, some n′-ary function
symbols f , and some m-ary relation symbols R, but without specifying
the number of these symbols or their arities.69 Our investigations are
easily carried over to concrete formal languages.

3. languages of arithmetics: In most of our examples, we use a first
order language LPA of arithmetics. Such a language consists, at least,
of a constant symbol 0, a unary function symbol S for the successor
function, and two binary function symbols + and · for addition and
multiplication, respectively. If necessary, we may extend the alphabet
of LPA by constant symbols for every natural number n ∈ ω, and some
relations symbols as < for the smaller-than relation.

4. other languages: Occasionally, it is convenient to discuss other formal
languages; their non-logical symbols (and the arities of these symbols)
will be obvious from the context.

3.2.2 Standard Syntactic Entities

We introduce the standard syntactic entities of a formal language L, as far
as needed in these investigations. As we focus in these investigations on term
occurrences in terms, it is sufficient to introduce the alphabet and the terms.
The introduction of formulae is omitted.

68In classical logic, this set of logical symbols is sufficient.
69We mention here the relation symbols only for completeness reason.
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3.1 DEF (Alphabet): The alphabetA of L contains the following symbols,
sorted by their type.

1. object variables: Countable many variables vk (for k ∈ ω).

Vx = {vk; k ∈ ω} is the set of all variables.

The symbols x, y, z (also with indices k ∈ ω) etc. are used as metavari-
able for variables.

2. logical constants: ⊥, →, ∀, =

3. non-logical constants: some constant symbols c, some n′-ary function
symbols f , and some m-ary relation symbols R (where n,m ∈ ω)

4. auxiliary symbols: parentheses “(” and “)”, the comma “,”, etc.

3.2 DEF (Terms): The set T of the terms of L is defined inductively
according to the following inductive clauses:

c | x | f(t0, . . . tn)

Terms generated according to the first two clauses are called atomic; other-
wise, they are called complex.

Notation (Definitions): If it seems convenient, we separate the clauses
in our definitions by the symbol “|”. This notation is similar to the notation
found in theoretical computer science with respect to production rules for
formal grammars. Nevertheless, our definition is still to be understood as a
traditional inductive definition. This means that, for example, the definition
of the terms has to be understood as follows:

1. constant symbols: Every constant symbol c is a term.

2. variables: Every variable x is a term.

3. function symbols: If f is an n′-ary function symbol and if t0, . . . tn are
n′-many terms, then f(t0, . . . tn) is a term.

Such an inductive definitions is to be understood finitely: only objects gen-
erated in finitely many steps according to the given clauses are contained in
the inductively defined domain (here, in the set of all terms).

-51-



René Gazzari Preliminaries

Remarks (Terms):

1. metavariables: The symbols t, s, r etc. are used as metavariables for
arbitrary terms.

2. notation: Usual notational conventions are presupposed. In particular:

(a) binary symbols: Binary function symbols can be notated infix.

(b) parentheses: Unnecessary parentheses can be omitted (according
to the usual conventions).

3. direct subterms: The terms tk (with k ∈ n′) out of which a complex
term t ≏ f(t0, . . . tn) is generated are called the direct substerms of the
term t; atomic terms have no direct subterms.

If s is a direct subterm of a term t, then we also write s ⊳1 t.

3.2.3 Subterms of Terms

We introduce the subterm relation for terms and, via these notions, some
canonical sets of variables.

3.3 DEF (Subterms of Terms): The set Sub(t) of (proper) subterms of
a tern t is defined recursively as follows:

1. t atomic: Sub(t) = ∅

2. t ≏ f(t0, . . . tn) complex: Sub(t) = {t0, . . . tn} ∪
⋃

k∈n′ Sub(tk)

A term s is a (strict) subterm of a term t (formally, s ⊳ t), if it is contained
in the set of proper subterms (formally, if s ∈ Sub(t)).

Remarks (Subterms of Terms):

1. all subterms: Sometimes, it is convenient to use the non-strict (or,
equivalently, the weak) version of the notion of subterms. This notion
can be defined as follows.

• Sub′(t) = {t} ∪ Sub(t) is the set of all subterms of t.

Furthermore, if s is contained in the set of all subterms of t (formally,
if s ∈ Sub′(t)), then s is called a subterm of t (formally, s E t).
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It is checked almost immediately that the set of all subterms of a term
t can be characterised as follows:

Sub′(t) = {t} ∪
⋃

s⊳1t

Sub′(s)

2. closure operations: The different versions of the subterm relations on
the set T of all terms are related by closure operations:

(a) strict subterm relation: The strict subterm relation ⊳ is the tran-
sitive closure of the direct subterm relation ⊳1.

(b) subterm relation: The subterm relation E is the reflexive closure
of the strict subterm relation ⊳.

3. partial order: The strict subterm relation ⊳ is a strict partial order
on the set T of all terms. Atomic terms are the minimal elements
with respect to this relation. There are infinite ascending chains with
respect to the strict subterm relation, if and only if there are function
symbols available in underlying the formal language; otherwise, there
are only trivial chains of length 1.

The set of variables occurring in a term is inroduced via the set of all sub-
terms.

3.4 DEF (Variables in Terms and Formula):

1. set of variables: Vx(t) = Sub′(t) ∩Vx

Notation (Set of Variables): We use the designator Vx in two different
meanings. First, the symbol Vx denotes a set of symbols, namely the set of
all variables of a formal language L. Second, Vx is a function symbol for a
(related) function. This ambiguity is not problematic, as the meaning of the
symbol is clear from the context of its use. We will use similar simplifications
of the notation in our investigations.

3.2.4 Multiplicity Function

The multiplicity function counts, how often a subterm occurs in a terms;
this function is closely related with the subterm relation, but provides a finer
insight in the structure of terms.
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3.5 DEF (Multiplicity): The multiplicity function mult : T×T → ω is
defined recursively (in its second argument) as follows:

1. t atomic: mult(s, t) =

{

1 if s ≏ t
0 otherwise

2. t ≏ f(t0, . . . tn) complex: mult(s, t) =

{

1 if s ≏ t
∑

k∈n′ mult(s, tk) otherwise

We say that mult(s, t) is the multiplicity of the term s in the term t.

Remarks (Multiplicity):

1. subterm relation: The (weak) subterm relation can be characterised
with the help of the multiplicity functions as follows:

s E t if and only if mult(s, t) 6= 0
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4 Basic Theory of Nominal Terms

We provide the basic theory of nominal terms. Besides the introduction of the
nominal terms themselves, we carry over the standard auxiliary functions and
relations, as given in the preliminaries, and introduce some auxiliary func-
tions and relations especially coined for nominal terms. Finally, we provide
a basic categorisation of nominal terms.

4.1 Introduction of Nominal Terms

Nominal terms are generated according to the same clauses as the standard
terms together with an additional clause generating so called nominal symbols
as a new kind of atomic terms. The introduction of nominal terms is guided
by our conception of formal languages as presented in the preliminaries.

4.1 DEF (Symbols): The alphabet A of L is extended by a new sort of
symbols as follows:

1. nominal symbols: Countable many nominal symbols ∗k (for k ∈ ω).

V∗ = {∗k; k ∈ ω} is the set of all nominal symbols.

Remarks (Symbols):

1. notation: We use the symbol ∗ as an abbreviation for the nominal sym-
bol ∗0. In particular, the symbol ∗ is not a metavariable for arbitrary
nominal symbols.

2. disjoint types: We presuppose that symbols of different types are dif-
ferent; in particular, nominal symbols are different from variables and
the non-logical symbols of L.

4.2 DEF (Nominal Terms): The set T of nominal terms of L is defined
inductively as follows:

∗k | x | c | f(t0, . . . tn)

Nominal terms generated according to the first three clauses are called atomic;
otherwise, they are called complex. The nominal terms tk out of which a com-
plex nominal term t ≏ f(t0, . . . tn) is generated (k ∈ n′) are called the direct
subterms of t; atomic nominal terms have no direct subterms. If s is a direct
subterm of t, then we also write s ⊳1 t.

-55-
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Remarks (Nominal Terms):

1. standard term: Obviously, a nominal term is a standard term, if the
first clause of the definition is not applied in its generation. If a nominal
term t is not a standard term, then t is a proper nominal term.

2. notation: We agree upon the following conventions:

(a) metavariables: The symbols t, s, r (also with indices k ∈ ω) etc.
are used as metavariables for nominal terms. In order to emphasise
that a nominal term is a standard term, we also use the symbols
t, s, r (again also with indices k ∈ ω) etc. as metavariables.

(b) usual conventions: The usual notational conventions, as sketched
in the preliminaries, are presupposed.

(c) sequences: We use the symbols t, s, r etc. to mean arbitrary se-
quences (finite or infinite) of nominal terms. Usually, the symbols
tk, sk, rk etc. are used to denote the k-th entries of the respective
sequences.

(d) constant sequences: Constant sequences 〈tk; k ∈ ω〉 satisfying
that all entries tk are equal to a nominal term t are occasionally
denoted by ct. More formally:

ct = !〈tk; k ∈ ω〉 ∈ Tω : ∀k ∈ ω.tk ≏ t

Examples (Nominal Terms): We provide some examples of nominal
terms of the language LPA of arithmetics.

0 ; ∗0 ; ∗0 + (0 + ∗0) ; (∗0 + ∗1) + (∗0 + v0)

Observe that we use the convenient infix notation for binary function symbols
and that we omit unnecessary parentheses according to the usual conventions.

Nominal Forms by Schütte: Our definition of nominal terms is inspired
by Schütte’s notion of nominal forms as introduced in his logic book “Proof
Theory” [29]; also, the denomination of the nominal symbols ∗k as “nominal
symbols” is already present there. Schütte defines a nominal form (implic-
itly) as an arbitrary non-empty string of symbols of the extended alphabet;
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interesting nominal forms are defined (inductively) as a subset of the set of
all strings.70

Our approach to nominal forms is slightly different: we extend the usual
inductive clauses for specific types of syntactic entity. This way, the specific
types of nominal forms are defined directly, without a detour over the set
of all strings. As an advantage, we do not have to identify suitable nominal
forms in the set of all strings. The term nominal form is used in these
investigations to subsume all kinds of such generalisations of the standard
syntactic entities.

As mentioned in the survey of the literature, Schütte discusses first two
kinds of nominal forms, which we would both call specific propositional nom-
inal formulae. Additionally, Schütte discusses nominal forms in the context
of formulae in first order languages. Due to his general definition of nominal
forms (as arbitrary sequences), the nominal symbols may represent there the
positions of different kinds of syntactic entities, namely the positions of vari-
ables as well as of subformulae.71 In particular, Schütte uses nominal forms
for an elaborate formulation of substitutions.

Simulation of Nominal Terms: We mention that we may simulate nom-
inal symbols and nominal terms inside the usual framework of standard logic
by, for example, the following convention: variables v2k with even indices 2k
have the role of usual standard variables and variables v2k+1 with odd indices
2k + 1 are understood as the nominal symbols.

Such an adhoc-convention is found in literature in several contexts (when-
ever we want to distinguish two different kinds of variables with two different
uses); nevertheless, we abstain here from such an simulative account, as this
would obscure the special role of nominal symbols in contrast to the standard
variables in a formal language.

Another drawback of the simulative account to occurrences is the pre-
supposition of suitable variables in the formal language. A formal first order
language without variables seems unusual, but possible: the terms of such
a language would only consists of constant symbols and function symbols
applied on constant terms. In the theory of occurrences of formulae in for-
mulae of a formal first order language the problems becomes clearer: in the

70Schütte provides two definitions of nominal forms (p. 11 and p. 14), but both times of
a specific kind having some additional restrictions. For this reasons, we have to extract
the exact definition of nominal forms according to Schütte, and we are not able to present
a precise definition.

71We would define two different kinds of nominal forms, namely nominal formulae, in
which the nominal symbols represent subformulae, and a second type, in which the nominal
symbols represent variables.
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general case, there are no propositional variables (zero-ary relation symbols)
available in such a language; for simulating nominal formulae in such a situa-
tion, we would have to extend the underlying formal language by introducing
suitable variables. Nothing is gained by not using nominal symbols instead.

Similarity of Nominal Terms: We say that two complex nominal terms
t and s are similar (formally, t ∼ s), if they have the same main function
symbol. The latter means that there are an n′-ary function symbol f and
suitable nominal terms tk and sk (with k ∈ n′) such that:

t ≏ f(t0, . . . tn) and s ≏ f(s0, . . . sn)

Obviously, similarity is an equivalence relation on the set of complex nominal
terms, but not on the set of all nominal terms.

4.2 Standard Auxiliary Functions and Relations

The definitions of the standard auxiliary functions and relations (as defined
in the preliminaries with respect to standard terms) are easily carried over
from their canonical versions.

These auxiliary notions are, in particular, the set of (proper) subterms
Sub(t), the (strict) subterm relation ⊳, the set Vx(t) of variables and the
multiplicity function mult(s, t).

4.3 Specific Auxiliary Functions

Besides the auxiliary functions mentioned above, we introduce additionally
some auxiliary functions coined especially for the treatment of nominal terms.

First, we provide the definition of the set of nominal symbols in a nominal
term, which is the nominal version of the set of variables in a nominal term.

4.3 DEF (Nominal Symbols in Nominal Terms): The set V∗(t) of
nominal symbols in a nominal term t ∈ T is defined as follows:

V∗(t) = Sub′(t) ∩V∗

4.3.1 Place Function

Furthermore, we introduce the set of free places of a nominal term, which is
the set of indices of nominal symbols occurring in that nominal term.
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4.4 DEF (Free Places): The function place : T → p(ω) is defined recur-
sively as follows:

1. t atomic:

place(t) =

{

{k} if t ≏ ∗k ∈ V∗

∅ otherwise

2. t ≏ f(t0, . . . tn) complex: place(t) =
⋃

k∈n′ place(tk)

The set place(t) is the set of the free places of a nominal term t.

Remarks (Free Places):

1. set of nominal symbols: The sets V∗(t) and place(t) are related. We
have for all k ∈ ω:

k ∈ place(t) ⇔ ∗k ∈ V∗(t)

2. recursive definition: In order to have a recursive definition at hands,
we preferred to define directly the set of free places of a nominal term,
instead of using a characterisation via the set of nominal symbols.

4.3.2 The Nominal Rank

The set of free places allows the introduction of a new rank function for
nominal terms: the (nominal) rank, which is the smallest natural number
containing all free places of a nominal term.

4.5 DEF (Rank Function): The (nominal) rank function rank : T → ω
is defined as follows:

rank(t) = min(n ∈ ω; place(t) ⊆ n)

Remarks (Rank Functions):

1. subterm relation: The rank function weakly respects the subterm re-
lation:

• If s ⊳ t, then rank(s) ≤ rank(t).

Even if the subterm relation is strict, we only obtain, in the general
case, a non-strict inequality on the right side; it is impossible to improve
this bound. Investigate the following example in the language LPA:
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(a) strict subterms: s ≏ ∗k ⊳ t ≏ S(∗k).

(b) rank: rank(s) = k′ = rank(t)

2. standard terms: We may use the rank function to characterise standard
terms.

• t is a standard term, if and only if rank(t) = 0.

3. n-ary nominal terms: The n-ary nominal terms t (for arbitrary n ∈ ω)
can be characterised via the condition place(t) = rank(t). (Observe
that the inclusion place(t) ⊆ rank(t) is trivial by the definition of the
rank function.)

4.3.3 The Weight Functions

We provide two more rank function especially coined for nominal terms,
namely the weight of a nominal term, which is the number of nominal symbols
occurring in that nominal term, and its dual function counting the standard
atomic subterms.

4.6 DEF (Weight Function): The weight function weight : T → ω is
defined recursively as follows:

1. t atomic:

weight(t) =

{

1 if t ∈ V∗

0 otherwise

2. t ≏ f(t0, . . . tn) complex: weight(t) =
∑

k∈n′ weight(tk)

Remarks (Weight):

1. multiplicity: We may express the weight of a nominal term via the
multiplicity function:

weight(t) =
∑

k∈ω

mult(∗k, t) =
∑

k∈place(t)

mult(∗k, t)

2. subterm relation: The weight function is a rank function respecting
weakly the subterm relation.

• weight: If s ⊳ t, then weight(s) ≤ weight(t).
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Even if the subterm relation is strict, we have only, in the general
case, a non-strict inequality on the right side. Investigate the following
example in LPA:

(a) strict subterms: s ≏ ∗k ⊳ t ≏ S(∗k).

(b) weight: weight(s) = 1 = weight(t)

3. standard terms: We may use the weight function to characterise stan-
dard terms.

• t is a standard term, if and only if weight(t) = 0.

We provide the definition of the dual weight function counting the standard
atomic subterms of a nominal term.

4.7 DEF (Dual Weight Function): We define recursively the dual weight
function weight : T → ω as follows:

1. t atomic:

weight(t) =

{

0 if t ∈ V∗

1 otherwise

2. t ≏ f(t0, . . . tn) complex:

weight(t) =
∑

k∈n′

weight(tk)

Remarks (Dual Weight Function):

1. multiplicity function: We can characterise the dual weight function via
the multiplicity function:

weight(t) =
∑

t∈T0 atomic

mult(t, t) =
∑

t∈Sub′(t) atomic

mult(t, t)

2. proper nominal terms: We can use the dual weight function only
to characterise nominal terms, which are not generated with the help
of atomic standard terms (which can be understood as pure nominal
terms).

As a consequence, we obtain the following, slightly weaker condition
for proper nominal terms:
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• If weight(t) = 0, then t /∈ T0 is a proper nominal term.

Observe that the other direction does not hold: there are proper nom-
inal terms t having a dual weight different from 0. Investigate the
following example in the language LPA:

t ≏ 0 + ∗0 /∈ T0 ; weight(t) = 1 6= 0

3. subterm relation: The dual weight function is a rank function respect-
ing weakly the subterm relation.

• weight: If s ⊳ t, then weight(s) ≤ weight(t).

Even if the subterm relation is strict, we only obtain, in the general
case, a non-strict inequality on the right side. Investigate the following
example in LPA:

(a) strict subterms: s ≏ ∗k ⊳ t ≏ S(∗k).

(b) weight: weight(s) = 0 = weight(t)

4. terminology: The weight function and the dual weight function are
insofar dual to each other, as both functions complement each other in
the following sense: the sum of weight and dual weight is the multi-
plicity of all atomic subterms. More formally:

weight(t) +weight(t) =
∑

t∈Sub′(t) atomic

mult(t, t)

4.4 Basic Categorisation of Nominal Terms

With the help of the place function and the multiplicity function, we are able
to provide a basic categorisation of the nominal terms.

4.8 DEF (Basic Categorisation): Let t ∈ T be a nominal term.

1. n-ary: The nominal term t is called n-ary (with n ∈ ω), if exactly the
numbers k ∈ n are a free places in t (formally, if place(t) = n).

In particular, t is unary, if place(t) = {0} = 1.

2. simple //multiple: The nominal term t is called simple, if no nominal
symbol occurs more than once (formally, if mult(∗k, t) ∈ {0, 1} for all
k ∈ ω); otherwise, t is called multiple.

3. single: The nominal term t is called single, if t is unary and simple.
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Remarks (Basic Categorisation):

1. zero-ary: Standard terms are, according to the categorisation above,
exactly the 0-ary nominal terms.

2. arity of proper subterms: The proper subterms of a complex n-ary
nominal term are, in general, not n-ary. Investigate, for example the
binary nominal term ∗0 + ∗1 in the language of arithmetics LPA. The
first direct subterm ∗0 is unary (and not binary), and the second direct
subterm ∗1 is not n-ary, for no n ∈ ω.

3. simplicity of proper subterms: The proper subterms of a complex sim-
ple nominal term are simple; in particular standard terms are simple.

4. Schütte: The concept of simple nominal forms is already found in
Schütte [29]; he additionally uses the concept of n-place nominal forms
(no nominal symbol ∗k with k > n may occur).

Notation (Restricted Sets of Nominal Terms): We agree upon the
following notational conventions for indicating that a set of nominal terms is
restricted to specific nominal terms:

1. n-ary: The restriction of a set of nominal terms to n-ary nominal terms
(with n ∈ ω) is indicated by the subscript n. For example:

• T0 is the set of all standard terms.

• T1 the set of all unary nominal terms.

2. simple: The restriction of a set of nominal terms to simple nominal
terms is indicated by the subscript s. For example:

• Ts is the set of all simple nominal terms.

3. special sets: The restriction of a set of nominal terms to standard
terms and unary terms is indicated by a superscript ∗.72 For example:

• T∗ = T0 ∪ T1 is the set of all standard terms or unary nominal
terms.

72The subscript ∗ is used in a way not consistent with the concept of restrictions. In
V∗, for example, the subscript ∗ is used to indicate the type of symbols collected in this
set.
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Furthermore, the restriction of a set of nominal terms to n-ary nominal
terms of arbitrary arity is indicated by the subscript ω. For example:

• Tω =
⋃

k∈ω Tk is the set of all n-ary nominal terms of arbitrary
arity.

Meaningful combinations of these labels are permitted; these labels are not
only used to restrict the set T of all nominal terms, but also with other sets
and functions, which we introduce in the course of these investigations.
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5 The General Substitution Function

We introduce the general substitution function, which is the central tool for
dealing with nominal terms. This functions allows the simultaneous replace-
ment of the nominal symbols in a nominal term according to an infinite
sequence of nominal terms. Applications on finite sequences are explained.

Furthermore, the essential equality of sequence of nominal terms is intro-
duced identifying sequences such that an application of the general substitu-
tion function on a given nominal term and on the sequences have the same
result. We conclude the introduction of the general substitution function
by considering the subterms of nominal terms under the application of this
function.

5.1 Introduction of the General Substitution Function

We provide the formal definition of the general substitution function.

5.1 DEF (General Substitution Function): The binary general substi-
tution function ·[·] : T× Tω → T is defined recursively (in the first argument)
for arbitrary (but infinite) sequences s = 〈sk; k ∈ ω〉 ∈ Tω of nominal terms
as follows:

1. t atomic: t[s] ≏

{

sk if t ≏ ∗k
t otherwise

2. t ≏ f(t0, . . . tn) complex: t[s] ≏ f(t0[s], . . . tn[s])

An application of the general substitution function results in the simultane-
ous replacement of all occurrences of nominal symbols in the first argument
by the respective entries of the second argument.

Remarks (General Substitution Function):

1. conception: The general substitution function is a simple function (ac-
cording to the distinction discussed in the introduction of these investi-
gations), as we do not replace specific occurrences of nominal symbols,
but all such occurrences.

Nevertheless, the general substitution function is a simple function in
the realm of nominal terms, which is a more general realm than that of
standard terms. Due to the generalisation of the domain, we are able
to address successfully hard problems of the realm of standard terms.
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2. Schütte: Schütte [29] provides two intensional definitions of the gen-
eral substitution function (with respect to propositional logic (p. 11)
and first order logic (p. 14)) by describing informally the result of an
application of the general substitution function.

5.2 Categorisation of the Preimage

The following categorisation of the preimages of the general substitution
function (depending on the result of an application of this function) will be
useful many times in the course of these investigations.

5.2 Proposition (Categorisation of the Preimage): Let r ∈ Tω be an
arbitrary sequence of nominal terms. The following statements hold for all
nominal terms t ∈ T:

1. nominal symbol: If t[r] ∈ V∗, then t ∈ V∗.

2. constant symbol: If t[r] ≏ c, then t ∈ V∗ ∪ {c}.

3. variable: If t[r] ≏ x, then t ∈ V∗ ∪ {x}.

4. complex term: If t[r] ≏ f(s0, . . . sn) ≏ s, then t ∈ V∗ or t ∼ s.

The latter means that there are nominal terms tk (for all k ∈ n′) such
that t ≏ f(t0, . . . tn) and, in particular, tk[r] ≏ sk for all k ∈ n′.

Proof. We check each statement; let r ∈ Tω and t ∈ T be arbitrary.

1. nominal symbol: We assume t[r] ∈ V∗. We exclude according to
clause (2) of the definition of the general substitution function that
t is complex (otherwise, t[r] would be complex too). Therefore, t is
atomic. Furthermore, we can exclude that t is a constant symbol or a
variable, as in this case, we would have according to clause (1) of the
definition of the general substitution function that t ≏ t[r] ∈ V∗. The
latter is a contradiction. The only remaining possibility is that t ∈ V∗

is a nominal symbol.

2. constant symbol: We assume t[r] ≏ c for a constant symbol c. Ad-
ditionally, we assume t /∈ V∗ and prove that t ≏ c. As above, we
conclude that t must be atomic. As t /∈ V∗, we immediately obtain
by clause (1) of the definition of the general substitution function that
c ≏ t[r] ≏ t.

3. variables: Analogously to the proof of statement (2).
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4. complex term: We assume t[r] ≏ f(s0, . . . sn) ≏ s and t /∈ V∗. Accord-
ing to clause (1) of the definition of the general substitution function,
we can exclude that t is atomic, as t[r] would be atomic, too. There-
fore, t has to be complex. The latter means that there is an m′-ary
function symbol g and m′-many nominal terms tk (k ∈ m′) such that
t ≏ g(t0, . . . tm). According to clause (2) of the general substitution
function, we obtain:

f(s0, . . . sn) ≏ t[r] ≏ g(t0[r], . . . tm[r])

Comparing the leftmost nominal term with the rightmost, we conclude
stepwise that f ≏ g, then n = m and finally that tk[r] ≏ sk for all
k ∈ n′. In particular, t ∼ s. q.e.d.

5.3 Application on Finite Sequences

The general substitution function is defined as a function on infinite sequences
(as second argument). In contrast to this definition, we are interested in ap-
plications of this function on finite sequences or even on single arguments. In
order to explain such applications, we have to discuss the notion of neutrality
and suitable extension of finite sequences.

5.3 DEF (Neutrality): Let α ∈ ω′ arbitrary, and t = 〈tk; k ∈ α〉 ∈ Tα be
a (finite or infinite) sequence of nominal terms.

1. neutral entry: An entry tk of the sequence t is called neutral, if tk is
the respective nominal symbol ∗k (formally, if tk ≏ ∗k). In this case, k
is called a neutral position of t.

2. neutral sequence: The sequence eα = 〈∗k; k ∈ ω〉 is called the neutral
sequence of length α. If α = ω, we abbreviate eα by e; we also say that
e is the neutral sequence (without reference to its length).

3. ω-extension: An infinite sequence s = 〈sk; k ∈ ω〉 is the ω-extension
of the sequence t, if t is an initial segment of s which is extended by
neutral entries. Formally, if the following condition is satisfied for all
positions k ∈ ω:

• If k ∈ lng(t), then sk ≏ tk; otherwise, sk ≏ ∗k.

The ω-extension of t is denoted by ω(t).
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Remarks (Neutrality):

1. neutral sequence: Applying the general substitution function on a nom-
inal term t and the neutral sequence e results in the nominal term t, as
the nominal symbols ∗k are replaced by themselves. (Simple induction
over the structure of t.) Furthermore, e is the uniquely determined
(infinite) sequence with this property. (If there is a position k in a
sequence s such that the entry sk is not neutral, then ∗k[s] ≏ sk 6≏ ∗k.)

2. neutral positions: We have the (good) intuition that the neutral posi-
tions of a sequence do not affect an application of the general substi-
tution function: if we apply this function on a sequence with neutral
positions, then the respective nominal symbols ∗k in the first argument
are replaced by themselves.73

3. α-extension: The notion of an ω-extension of arbitrary sequences is
easily generalised to α-extensions (for arbitrary ordinal numbers α – as
long as we have a sufficient supply of nominal symbols).74 In particular,
we may use such α-extensions to identify proper initial segments of
sequences (namely, if we chose an α such that α < lng(t)).

Using ω-extension, we can explain an application of the general substitution
function on a nominal term and a finite sequence.

5.4 DEF (Finite Substitution): Let α ∈ ω be a finite ordinal. An
application of the general substitution function on a nominal term t ∈ T and
a finite sequence t ∈ Tα of length α is defined as follows:

t[t] ≏ t[ω(t)]

A single nominal term as second argument is understood as the respective
sequence of length one.

73In order to prove this observation formally, we would have to identify the occurrences
of nominal terms in the result of such an application of the general substitution function,
which are the images of a specific nominal symbol ∗k in the first argument. We would
have to prove that these occurrences of nominal terms are exactly the nominal symbols
∗k. In order to identify these occurrences of nominal terms in the result, we need a
theory of occurrences of nominal terms in nominal terms. Such a theory can be developed
analogously to the theory of occurrences of terms in terms, but on the base of nominal
terms (and would presuppose a new kind of nominal symbols ⋆k). We abstain here from
doing so, and are satisfied with the intuitive description given above.

74As our account to nominal terms only provides nominal symbols ∗k for ordinals k ∈ ω,
we have to restrict here α to be finite or ω itself. But this is not a principle restriction.
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Remarks (Finite Substitution):

1. alternative account: An alternative account to finite substitutions
would be to alter the definition of the general substitution function
in a way that its second argument could be (also) a finite sequence. In
this case, we would replace (in the atomic clause) a nominal symbol ∗k
only by sk, if the condition k ∈ lng(s) is satisfied.

As “not-replacing a nominal symbol” has the same effect as “replacing
that symbol by itself”, there is no extensional difference between both
accounts.

Nevertheless, dealing with the general substitution function would be
more involved in the alternative account, as we would have to consider
the length of the arguments. In particular, we would have to consider
many case distinctions with respect to the length of sequences and the
nominal symbols present in the first argument.

2. notation: When notating an application of the general substitution
function on a finite sequence (of length greater than zero), we may
omit the parentheses signifying the sequence. Thus, we may write:

t[s0, . . . sn] instead of t[〈s0, . . . sn〉]

3. neutral sequences: As ω(eα) = e for all α ∈ ω′, the finite neutral
sequences are neutral with respect to an application of the general
substitution function.

Generation Forms: We can represent the generation of complex nominal
terms t ≏ f(t0, . . . tn) as an application of the general substitution function
on a very simple type of nominal term together with the sequence of its direct
subterms as follows:

t ≏ f(∗0, . . . ∗n)[t0, . . . tn]

This observation motivates to call the nominal term tf ≏ f(∗0, . . . ∗n) the
generation form of the n′-ary function symbol f . Observe that two complex
nominal terms t and s are similar (t ∼ s), if and only if they are generated
with the help of the same generation form.
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5.4 Essential Equality

We introduce essential equality, which is a class of equivalence relations on
sequences of nominal terms depending on a previously chosen nominal term.

5.5 DEF (Essential Equality): Let t ∈ T arbitrary. Two (finite or
infinite) sequences s, r ∈ T≤ω of nominal terms are called essentially equal
with respect to t (formally, s ≡t r), if the following condition is satisfied:

ω(s)|place(t) = ω(r)|place(t)

Remarks (Essential Equality):

1. well-defined: Recall that an infinite sequence of nominal terms is de-
fined in these investigations as a function from ω into the set T of nom-
inal terms; such function can be restricted to a subset of ω, namely to
the set place(t). Therefore, essential equality is well-defined.

2. conception: Essential idea of essential equality is the pointwise compar-
ison of the entries of both sequences t and s at the positions contained
in the set of free places of the nominal term t.

Such a comparison becomes problematic, if one or both sequences are
too short: if there is a number k ∈ place(t) such that k /∈ lng(t) or
k /∈ lng(s), then there are no entries to compare. In order to avoid such
a complication, we compare the ω-extensions of the sequences instead
of the sequences themselves.

3. pointwise characterisation: Two sequences s and r are essentially equal
with respect to a nominal term t, if and only if the following conditions
are all satisfied for all k ∈ place(t):

(a) common entries: If k ∈ min(lng(s), lng(r)), then sk ≏ rk.

(b) s longer: If k ∈ lng(s)\lng(r), then sk ≏ ∗k.

(c) r longer: If k ∈ lng(r)\lng(s), then rk ≏ ∗k.

Observe that at least one of these conditions is trivially satisfied, as it
is impossible that both s is longer than r and vice versa.
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Simple Observations (Essential Equality): We communicate some sim-
ple observations about essential equality.

1. standard terms: If t is a standard term, then essential equality is
trivially given. This means that s ≡t r for all sequences s and r.

2. complex term: Let t ≏ f(t0, . . . tn) be a complex term. Two sequences
s and r are essentially equal with respect to t, if and only if both
sequences are essentially equal with respect to all direct subterms of t.
Formally:

s ≡t r ⇔ s ≡tk
r for all k ∈ n′

3. ω-extension: A sequence s and its ω-extension ω(s) are essentially
equal with respect to all nominal terms t.

Essential Equality as Equivalence Relation: It is easily checked that
essential equality ≡t with respect to a nominal term t is an equivalence
relation on the set of all sequences T≤ω for all nominal terms t ∈ T. We
mention some more details.

1. canonical representatives: Canonical representatives t of an equivalence
classes [s]t of a sequence s with respect to essential equality ≡t (with
respect to t) can be obtained via the following demands:

(a) The sequence t is infinite.

(b) All positions k of t, which are not contained in place(t), are
neutral.

(c) t and s are essentially equal with respect to t.

More sophisticatedly, the canonical representative t of [s]t is given as
follows:

t = s|place(t) ∪ {〈k, ∗k〉; k ∈ ω\place(t)}

2. finite representatives: The special role of n-ary nominal terms t be-
comes visible, if we investigate the equivalence classes [s]t of essential
equality with respect to such nominal terms: there is another canonical
representative, namely the finite initial segment of ω(s) of length n.

We find a similar canonical representative of [s]t with respect to arbi-
trary nominal terms t, but there we have to investigate sequences with
length rank(t); and we have to replace the entries at positions k with
k ∈ rank(t)\place(t) by neutral entries.
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The reason to introduce the concept of essential equality is that we obtain a
purely syntactical criterion, whether two applications of the general substi-
tution function on a given nominal term have the same result or not.

5.6 Proposition (Essential Equality): Let t ∈ T. The following state-
ment holds for all sequences s, r ∈ T≤ω: the result of an application of the
general substitution function on t and on one of the sequences equals to an
application on that term and the other sequence, if and only if both sequences
are essentially equal with respect to t. Formally:

s ≡t r ⇔ t[s] ≏ t[r]

Proof. By induction over the structure of t. As the substitution with finite
sequences is defined in terms of the ω-extensions (which are essentially equal
to the original sequences), we may assume without loss of generality that
both sequences are infinite.

1. t ≏ ∗k: We have both that ∗k[s] ≏ sk and ∗k[r] ≏ rk.

Assuming s ≡t r, we obtain sk ≏ rk, as place(t) = {k}. Therefore:

t[s] ≏ sk ≏ rk ≏ t[r]

Otherwise, if s 6≡t r, then sk 6= rk (as we still have place(t) = {k}).
And therefore, t[s] 6≏ t[r]. This means that the stated equivalence
holds.

2. t atomic standard term: As t is a standard atomic term, we immedi-
ately obtain for all sequences s and r:

s ≡t r and t[s] ≏ t ≏ t[r]

Again, the stated equivalence holds.

3. t ≏ f(t0, . . . tn) complex: Let s and r be two sequences of nominal
terms such that s ≡t r. This implies that s ≡tk

r for all k ∈ n′.
This means that we may apply n′-many times induction hypothesis
and obtain tk[s] ≏ tk[r] for all k ∈ n′. We calculate:

t[s] ≏ f(t0[s], . . . tn[s])
(IV )
≏ f(t0[r], . . . tn[r]) ≏ t[r]

Otherwise, if s 6≡t r, then there is a k ∈ n′ such that s 6≡tk
r. By

induction hypothesis, we obtain that tk[s] 6≏ tk[r]. Therefore:

t[s] ≏ f(. . . tk[s] . . .)
(IV )

6≏ f(. . . tk[r] . . .) ≏ t[r]

Again, the stated equivalence holds. q.e.d.
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René Gazzari The General Substitution Function

We communicate some corollaries of the proposition about essential equality.
First, we show that standard terms are invariant under the application of the
general substitution.

5.7 Corollary (Standard Terms): t[t] ≏ t for all sequences t ∈ T≤ω and
all standard terms t ∈ T0.
Proof. Let t be a standard term and t an arbitrary sequence of nominal
terms. We first observe that t ≡t e, as place(t) = ∅. Therefore:

t[t] ≏ t[e] ≏ t

The first equality is due to the proposition about essential equality, the second
due to the neutrality of the neutral sequences e (as mentioned before). q.e.d.

Next, we provide some criteria, whether applications of the general substitu-
tion function on a given nominal term results in the same nominal term.

5.8 Corollary (Criteria for Equality): The following statements are
equivalent for all nominal terms t ∈ T and all sequences t, t′ ∈ T≤ω:

1. t[t] ≏ t[t′]

2. s[t] ≏ s[t′] for all s ∈ Sub′(t).

3. ∗k[t] ≏ ∗k[t
′] for all k ∈ place(t).

Proof.

1. (1) ⇒ (2): Let t[t] ≏ t[t′]. Therefore, t ≡t t
′. As place(s) ⊆ place(t),

for all s ∈ Sub′(t), we obtain t ≡s t
′. The latter means s[t] ≏ s[t′].

2. (2) ⇒ (3): Immediate, as ∗k ∈ Sub′(t) for all k ∈ place(t).

3. (3) ⇒ (1): As ∗k[t] ≏ tk, statement (3) is only a slight reformulation
of essential equality. The latter implies (1). q.e.d.

As a last corollary, we show that we may replace substitutions with infinite
sequences by substitutions with suitable finite sequences, namely with initial
segments of these sequences of sufficient length (greater than the rank of
the nominal term on which the general substitution function is applied).
Additionally, if the nominal term, on which the general substitution function
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is applied, is n-ary, then the initial segment of length n is the uniquely
determined sequence of that length with this property.

5.9 Corollary (Initial Segments): Let t ∈ T be an arbitrary nominal
term, n = rank(t) its (finite) rank, and α ∈ ω such that n ≤ α. Furthermore,
let t ∈ Tω be an infinite sequence and s = α(t) its initial segment of length
α. The following statements hold:

1. initial segment: t[t] ≏ t[α(t)]

2. n-ary: If t is n-ary and α = n, then s is uniquely determined sequence
of length n such that t[t] = t[s].

Proof.

1. initial segment: By definition of the rank, place(t) ⊆ rank(t). As
rank(t) = n ≤ α, we have that tk = sk for all k ∈ place(t). Therefore,
t ≡t α(t) = s. As a consequence, t[t] ≏ t[α(t)].

2. n-ary: We presuppose that t is n-ary and α = n. Let r ∈ Tn such
that t[s] ≏ t[t] ≏ t[r]. Due to the proposition about essential equality,
s ≡t r. As a consequence, sk = rk for all k ∈ place(t) = n. The latter
means that s = r. q.e.d.

Remarks (Initial Segments):

1. uniqueness: If t is not n-ary, then s is not uniquely determined: there
is k ∈ n\place(t). We may exchange sk in s by arbitrary nominal
term s without loosing essential equality.

2. minimality: In general, the sequence s as constructed above, is not of
minimal length. If the last entries of s are neutral, then every proper
initial segment of s in which only these neutral entries are missing, is
still essentially equal to t. Nevertheless, this possibility to shorten s

depends on the special choice of t. If the n-th entry of t is not neutral,
then s is of minimal length.

3. relevance: The relevant aspect of the proposition about initial segments
is that we may replace any substitution with infinite sequences by a
substitution with a finite sequence. Nevertheless, this cannot be done
uniformly: the finite initial segment has to be long enough, in the
general case as long as the rank of the nominal term on which the
substitution is applied.
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5.5 Subterms under Substitution

If the general substitution function is applied on a nominal term and a
sequence, the subterms of some entries (determined by the free places of
the nominal term) become subterms of the result. We investigate this phe-
nomenon in some details.

5.10 Proposition (Subterms under Substitution): Let t ∈ T be a
nominal term, s = 〈sk; k ∈ ω〉 ∈ Tω a sequence of nominal terms. The
following statement holds:

⋃

k∈place(t)

Sub′(sk) ⊆ Sub′(t[s])

Proof. By induction over the structure of t.

1. t atomic: If t ∈ V∗ is a nominal terms, then there is k ∈ ω such that
t ≏ ∗k. As place(∗k) = {k} and as ∗k[s] ≏ sk, the stated inequality
holds trivially (we even have equality of both sides).

Otherwise, t is a standard term, and we have place(t) = ∅. Therefore,
the union on the left side equals ∅, which is a subset of any set.

2. t ≏ f(t0, . . . tn) complex: Recall that t[s] ≏ f(t0[s], . . . tn[s]). Apply-
ing n′-many times induction hypothesis, we obtain for all l ∈ n′:

⋃

k∈place(tl)

Sub′(sk) ⊆ Sub′(tl[s])

The following both equations hold:

(a) Sub′(t[s]) = {t[s]} ∪
⋃

l∈n′ Sub
′(tl[s])

(b) place(t) =
⋃

l∈n′ place(tl)

Therefore, we may calculate as follows:

⋃

k∈place(t)

Sub′(sk) =
⋃

l∈n′

⋃

k∈place(tl)

Sub′(sk)

⊆
⋃

l∈n′

Sub′(tl[s]) ⊆ Sub′(t[s])

q.e.d.
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René Gazzari The General Substitution Function

If we focus on the free places (which means on the atomic nominal subterms),
then we have a stronger result: the set of free places of the result of an
application of the general substitution function is exactly the union of the
free places of the entries determined by the free places of the nominal term.

5.11 Proposition (Free Places under Substitution): Let t ∈ T be a
nominal term, s ∈ Tω a sequence of nominal terms. The following equation
holds:

place(t[s]) =
⋃

k∈place(t)

place(sk)

Proof. By induction over the structure of t.

1. t atomic: If t ≏ ∗k, then t[s] ≏ sk, and the stated equation holds
trivially. Otherwise, t is a standard term with place(t) = ∅. As
t[t] ≏ t, the left side of the equation equals to ∅. The same is true for
the right side, as an empty union is empty.

2. t ≏ f(t0, . . . tn) complex: Recall that t[s] ≏ f(t0[s], . . . tn[s]). Apply-
ing n′-many times induction hypothesis, we obtain for all l ∈ n′:

place(tl[s]) =
⋃

k∈place(tl)

place(sk)

The following both equations hold:

(a) place(t[s]) =
⋃

l∈n′ place(tl)

(b) place(t) =
⋃

k∈n′ place(tk)

Therefore, we may calculate as follows:

place(t[s]) =
⋃

l∈n′

place(tl[s])

=
⋃

l∈n′

⋃

k∈place(tl)

place(sk) =
⋃

k∈place(t)

place(sk)

q.e.d.
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6 Homomorphisms on Nominal Terms

Homomorphisms are structure preserving functions; in the case of nominal
terms, this structure is given by the standard symbols (the non-logical sym-
bols, variables and auxiliary symbols) of the underlying formal language. We
introduce these functions and discuss their close relationship to the general
substitution function.

Furthermore, we provide criteria for special homomorphisms, with focus
on isomorphisms, based on their restrictions to the set of nominal symbols.
The discussion is complemented by a brief survey of the underlying algebraic
structures discussed in these investigations. Additionally, the expansions and
contractions of sequences of nominal terns according to so called simple ho-
momorphisms are investigated. Similarly to essential equality, they provide
a criterion for the equality of the result of applications of the general substi-
tution function.

6.1 Introduction of Homomorphisms

We provide the formal definition of homomorphisms on nominal terms.

6.1 DEF (Homomorphisms):

1. homomorphisms: A function F : T → T is called a homomorphisms
(on nominal terms), if the following conditions are satisfied:

(a) t constant symbol or variable: F (t) ≏ t

(b) t ≏ f(t0, . . . tn) complex: F (f(t0, . . . tn)) ≏ f(F (t0), . . . F (tn))

Hom(T) is the set of all homomorphisms on T.

2. special homomorphisms: Let F ∈ Hom(T) be a homomorphism.

(a) simple homomorphism: F is simple, if F (∗k) ∈ V∗ for all k ∈ ω.

Homs(T) denotes the set of all simple homomorphisms on T.

(b) isomorphism: F is called an isomorphism, if F is bijective.

Hom◦(T) denotes the set of all isomorphisms on T.

(c) constant homomorphism: F is called a constant homomorphism,
if there is a nominal term t ∈ T such that F (∗k) ≏ t.
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Remarks (Homomorphisms):

1. simple homomorphism: A simple homomorphism maps nominal sym-
bols to nominal symbols (which are, in particular, simple nominal
terms), but not to arbitrary simple nominal terms. The latter means
that the simplicity of homomorphisms is independent of the simplicity
of nominal terms.

2. constant homomorphisms: A constant homomorphism is not a constant
function (as no structure preserving function can be constant), but its
restriction to the set of nominal symbols is constant.

3. function spaces: The composition of simple, bijective and constant
homomorphisms are simple, bijective and constant, respectively.

As idT is not a constant homomorphism, the constant homomorphisms
do not form a function space, but the simple homomorphisms and the
isomorphisms do as well as the set of all homomorphisms.

Universal Homomorphism: Homomorphisms are closely related with the
general substitution function; we provide some details.

1. restrictions to sequences: Immediately by definition, every restriction
Fs : T → T : t 7→ t[s] of the general substitution function to a previ-
ously chosen sequence s is a homomorphism.

2. homomorphisms: Vice versa, every homomorphism F on nominal
terms equals to the restriction Fs of the general substitution function
determined by the sequence s = 〈F (∗k); k ∈ ω〉.

This means that there is a bijective correspondence between homomorphisms
and the restrictions of the general substitution function to sequences (and
therefore also a correspondence to sequences of nominal terms). In particular,
we can relate special homomorphisms with special sequences as follows:

1. simple homomorphisms: A sequence s is a sequence of nominal sym-
bols, if and only if the corresponding homomorphism Fs is simple.

2. constant homomorphisms: A sequence s is a constant sequence, if and
only if the corresponding homomorphism Fs is a constant homomor-
phism.
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Under this perspective, the general substitution function may be understood
as a universal homomorphism codifying (in its second argument) all homo-
morphisms on nominal terms.

Conceptual Remark (Homomorphisms): To deal with homomorphisms
(instead of the general substitution function) means to focus on the first
argument of the general substitution function, namely on nominal terms. It
seems convenient to argue in the realm of homomorphisms, when we are not
interested in the concrete choice of the sequences.

Due to the bijective correspondence between homomorphisms and restric-
tions of the general substitution function, we are able to carry over results
belonging to one realm to the other. We mention some important properties
of homomorphisms:

Properties of Homomorphisms:

1. unique definability: Every function F0 : V∗ → T uniquely determines
a homomorphism F satisfying the condition F|V∗

= F0.

2. essential equality: F (t) = G(t), if and only if F|V∗(t) = G|V∗(t).

3. preimage: The preimage t of the result F (t) of an application of a
homomorphisms F is given by the categorisation of the preimage with
respect to the general substitution function.

6.2 Criteria for Special Homomorphisms

We provide criteria for the special homomorphisms (with focus on isomor-
phisms) based on their restrictions to the set of nominal terms.

6.2 Proposition (Criterion - Isomorphism): A homomorphism is an
isomorphism, if and only if its restriction to nominal symbols is a permutation
on that set. More formally, for all F ∈ Hom(T): F ∈ Hom◦(T), if and only
if F|V∗

∈ Sym(V∗).

Proof. We have to show two directions.

1. “⇒”: We assume that F ∈ Hom◦(T) is an isomorphism. We first show
that F0 = F|V∗

is a function into V∗. Assume that not. This means
that there is a nominal symbol ∗k ∈ V∗ such that F0(∗k) ≏ s /∈ V∗.
We distinguish as follows:
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(a) s constant symbol of variable: If s is a constant symbol or a
variable, then we have that F (s) ≏ s according to the definition
of homomorphisms. As F0 is a restriction of F we may calculate
as follows:

F (∗k) ≏ F0(∗k) ≏ s ≏ F (s)

As ∗k 6≏ s, we obtain that F is not injective. This is a contradic-
tion.

(b) s ≏ f(s0, . . . sn) complex: As F0 is a restriction of F , we obtain
F (∗k) ≏ f(s0, . . . sn). As F is surjective, there are nominal terms
tk (with k ∈ n′) such that F (tk) ≏ sk for all k ∈ n′. As F is a
homomorphism, we may calculate as follows:

F (∗k) ≏ f(s0, . . . sm)

≏ f(F (t0), . . . F (tn)) ≏ F (f(t0, . . . , tn))

As ∗k 6≏ f(t0, . . . tn), we obtain that F is not injective. This is
again a contradiction.

The assumption that F0(∗k) /∈ V∗ leads in all cases to a contradiction.
Therefore, F0 : V∗ → V∗ is, in deed, a function into the set of nominal
symbols. Additionally, F0 is injective, F0 is the restriction of an injec-
tive function, namely of F . We still have to show that F0 is surjective:
let ∗k ∈ V∗ arbitrary. As F is surjective, there is a nominal term t

such that F (t) ≏ ∗k. According to the categorisation of the preimage,
t ∈ V∗. The latter means that F0(t) ≏ ∗k.

2. “⇐”: Let F ∈ Hom(T) be a homomorphism such that its restric-
tion F0 = F|V∗

∈ Sym(V∗) is a permutation. Observe that F is the
uniquely determined homomorphism extending F0. We show by induc-
tion over the structure of nominal terms that every nominal s is hit by
F and isolated with respect to F .

(a) s nominal symbol: Let s ∈ V∗ be a nominal symbol. As the
restriction F0 ∈ Sym(V∗) of F is a permutation, and therefore
surjective, there is a nominal symbol ∗k ∈ V∗ satisfying the con-
dition F (∗k) ≏ F0(∗k) ≏ s. Therefore, s is hit by F .

Assume that F (t) ≏ s for a nominal term t ∈ T. According to the
categorisation of the preimage, we obtain that t ∈ V∗. Therefore,
F0(t) ≏ F (t) ≏ s ≏ F0(∗k). As F0 is injective, t ≏ ∗k, and s is,
indeed, isolated by F .
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(b) s constant symbol or variable: Let s be a constant symbol or
a variable. As F is a homomorphism, we have that F (s) ≏ s.
Therefore, s is hit by F .

Assume that F (t) ≏ s for a nominal term t ∈ T. According to
the categorisation of the preimage, t ∈ V∗ ∪{s}. We can exclude
that t ∈ V∗, as the restriction F0 of F to V∗ is a function into
V∗. Therefore, we obtain that t ≏ s. The latter means that s is
isolated by F .

(c) s ≏ f(s0, . . . sn) complex: Applying n′-many times induction
hypothesis, we obtain that sk is hit and isolated by F for all
k ∈ n′. As sk is hit by F , there are nominal terms tk ∈ T such
that F (tk) ≏ sk for all k ∈ n′. Therefore:

F (f(t0, . . . tn)) ≏ f(F (t0), . . . F (tn)) ≏ f(s0, . . . sn) ≏ s

This means that s is hit by F .

Assume that F (t) ≏ s for a nominal term t ∈ T. According
to the categorisation of the preimage, we obtain that t ∈ V∗

or t ∼ s. The former is excluded as argued before. Therefore,
t ≏ f(t′0, . . . t

′
n) for suitable nominal terms t′k ∈ T (with k ∈ n′).

We calculate as follows:

f(s0, . . . sn) ≏ s ≏ F (t) ≏ f(F (t′0), . . . F (t
′
n))

As a consequence, we have that F (t′k) ≏ sk for all k ∈ n′. As
sk is isolated by F , we also obtain that t′k ≏ tk for all k ∈ n′.
The latter means that t ≏ f(t0, . . . tn), and therefore, s is also
isolated by F .

As all nominal terms s ∈ T are hit and isolated by F , the homomor-
phism F is surjective and injective. The latter means that F is, indeed,
bijective and, therefore, an isomorphism. q.e.d.

Remarks (Criterion for Isomorphism):

1. simple homomorphisms: As the restriction of an isomorphism to the
set V∗ of nominal symbols is a permutation, we immediately obtain
that every isomorphism is a simple homomorphism. Nevertheless, the
converse does not hold: there are simple homomorphisms, which are
no isomorphisms. Investigate, for example F induced by the function
F0 satisfying that F0(∗k) ≏ ∗0 for all k ∈ ω. Therefore:

Hom◦(T) ( Homs(T) ( Hom(T)
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2. “bijective” sequences: Isomorphisms correspond with sequences s of
nominal symbols, in which each nominal symbol ∗k is exactly once an
entry of s. In comparison to the set Tω of sequences of nominal terms
and to the set V∗

ω of sequences of nominal symbols, there is no natural
set of such “bijective” sequences. For this reason, we abstained from
introducing artificially this set.

More Criteria: We mention some more criteria for other kinds of special
homomorphisms:

1. simple homomorphism: Immediately by definition: a homomorphism
F is simple, if and only if its restriction F|V∗

is a function into the set
of nominal symbols.

2. constant homomorphism: Immediately by definition: a homomorphism
F is a constant homomorphism, if and only if its restriction F|V∗

is a
constant function.

3. surjective homomorphism: A homomorphism F is surjective, if and
only if the set of nominal symbols is contained in the image of its
restriction F|V∗

to that set. More formally, if and only if V∗ ⊆ F [V∗].

In order to prove the direction “⇒”, it is sufficient to mention that all
nominal symbols ∗k are hit by a surjective F and, due to the categori-
sation of the preimage, the preimage of ∗k is a nominal symbol ∗l. As
a consequence, V∗ ⊆ img(F|V∗

) = F [V∗].

In order to prove the direction “⇐”, we have to show by an induction
over the structure of nominal terms that if all nominal symbols are hit
by F , then already all nominal terms are hit by F .

4. injective homomorphisms: Simple homomorphisms are injective, if and
only if their restriction to the set of nominal symbols is injective. (One
direction is immediate, the other direction is proved, as in the case
of surjective homomorphisms, by induction, but with respect to the
property of being isolated by F .)

The situation is more involved in the general case of arbitrary injective
homomorphisms. In this case, the injectivity of the restriction is not
sufficient. Investigate the homomorphism F induced by the following
function F0:

F0(∗0) ≏ ∗0 + ∗0 ; F0(∗n′) ≏ ∗n
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Obviously, F0 is injective, but the induced homomorphism F is not, as
the following equation holds:

F (∗1 + ∗1) ≏ F (∗1) + F (∗1) ≏ ∗0 + ∗0 ≏ F (∗0)

Nevertheless, it is possible to provide a criterion based on the restriction
of F to nominal symbols: we have to check, whether F|V∗

(∗k) is isolated
by F (and not only by F|V∗

) for all k ∈ ω.75

6.3 Excursus: Sequence Spaces and Function Spaces

For completeness reasons, we provide a brief excursus on the relationship
between some algebraic structures present in our investigations.76

We already mentioned that homomorphisms and sequences of nominal
terms correspond bijectively via the restrictions of the general substitution
functions to the respective sequences. Introducing a suitable composition of
sequences and, based on this notion, of sequence spaces, we can extend this
correspondence to an isomorphism between the respective algebraic struc-
tures.

6.3 DEF (Composition of Sequence): The composition ◦ : Tω×Tω → Tω

of sequences of nominal terms is defined as follows:

◦ : 〈t, s〉 7→ 〈tk[s]; k ∈ ω〉

Remarks (Composition of Sequences):

1. non-commutative: The composition of sequences is not commutative:

c∗3 ◦ c∗5 = 〈∗3[c∗5 ]〉 = c∗5

c∗5 ◦ c∗3 = 〈∗5[c∗3 ]〉 = c∗3

Recall that ct is the infinite constant sequence with the entry t at each
position.

2. neutral sequence: It is easily checked that the neutral sequence e is
left-neutral and right-neutral with respect to the composition ◦ of se-
quences. Observe that the reason for neutrality is different in both

75We abstain here from a detailed proof, as injective, but not surjective homomorphisms
are beyond the needs of our subsequent investigations.

76We abstain here from a detailed discussion, as the correspondences discussed below
are beyond the needs of our investigations.
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cases: if e is the left argument, then e “choses” the arguments from
the right sequence in the order as given in the right sequence; if e is
the right argument, then the nominal symbols in the entries of the left
sequence are replaced by themselves.

We introduce the sequence spaces formally.

Sequence Spaces: Let X ⊆ Tω be a set of sequences of nominal terms.
The triple 〈X, ◦, e〉 is called a sequence space, if the following conditions are
satisfied:

1. closed under composition: The set X is closed under the composition
of sequences. Formally, x ◦ y ∈ X for all x, y ∈ X.

2. neutral element: The neutral sequence e is contained in X.

We extend the bijective correspondence between sequences and homomor-
phisms to the respective spaces.

Correspondence: Sequences // Homomorphisms: There is a bijective
correspondence between the sequence space of all sequences of nominal terms
and the function spaces of all homomorphisms via the following isomorphism:

Φ : Tω → Hom(T) : t 7→ Ft

This means that the respective spaces are isomorphic:

〈Tω, ◦, e〉 ∼= 〈Hom(T), ◦, idT〉

In particular, the proper subspace of all sequences of nominal symbols is
isomorphic to the subspace of all simple homomorphisms.

〈V∗
ω, ◦, e〉 ∼= 〈Homs(T), ◦, idT〉

Relating the nominal symbols with their indices, we may observe an addi-
tional isomorphism between function spaces:

Correspondence: Homomorphisms // Natural Functions: There is a
bijective correspondence between the simple homomorphisms and the natural
functions via the following isomorphism:

Ψ : Homs(T) → Func(ω) : F 7→ {〈k, !l : F (∗k) ≏ ∗l〉; k ∈ ω}
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This means that the respective function spaces are isomorphic:

〈Homs(T), ◦, idT〉 ∼= 〈Func(ω), ◦, idω〉

In particular, the proper subspace of isomorphisms on nominal terms is iso-
morphic to the symmetric group of the natural numbers:

〈Hom◦(T), ◦, idT〉 ∼= 〈Sym(ω), ◦, idω〉

Overview: Corresponding Spaces: The following overview illustrates
the correspondences between the different algebraic spaces as sketched above.
We do not display all existing subspaces, but only some canonical; we may
easily find more (corresponding) subspaces.

General Substitution Function

·[·] : T× Tω → T

↓↓↓

Sequences Homomorphisms Natural Functions

〈Tω, . . .〉 ∼= 〈Hom(T), . . .〉

∨ ∨

〈V∗
ω, . . .〉 ∼= 〈Homs(T), . . .〉 ∼= 〈Func(ω), . . .〉

∨ ∨

〈Hom◦(T), . . .〉 ∼= 〈Sym(ω), . . .〉

It is worth to mention that the concept of homomorphism seems to be the
most general concept. In order to find a sequence space isomorphic to iso-
morphisms on nominal terms, we would have to introduce the (more or less)
artificial notion of bijective sequences, and in order to find a function space
in the context of natural numbers isomorphic to homomorphisms on nomi-
nal terms, we would have to discuss the natural numbers as a suitable term
algebra.
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6.4 Expansions and Contractions of Sequences

We provide a criterion for two nominal terms, namely a nominal term and its
image under an application of a simple homomorphism, deciding, whether an
application of the general substitution function on these nominal terms has
the same result. Similarly to essential equality, the second arguments have
to be related. This relationship is captured by the notions of expansions and
contractions of sequences according to a simple homomorphism.

6.4 DEF (Expansion and Contraction): Let t ∈ T be a nominal term,
F ∈ Homs(T) a simple homomorphism and s, r ∈ Tω two infinite sequences
of nominal terms.

1. expansion: s is called an F -expansion (or an expansion according to
F ) of r with respect to t, if the following condition is satisfied for all
k ∈ place(t):77

sk ≏ rF (k)

In this case, r is called an F -contraction (or a contraction according to
F ) of s with respect to t.

2. contractible: The sequence s is called F -contractible with respect to t,
if the following condition is satisfied for all k, l ∈ place(t):

F (∗k) ≏ F (∗l) ⇒ sk ≏ sl

3. relevant entries: If s is an expansion of r according to F , then we use
the following terminology:

(a) expansion: An entry sk of s is called relevant, if k ∈ place(t);
the respective position k of s is also called relevant.

(b) contraction: An entry rk of s is called relevant, if k ∈ place(F (t));
the respective position k of r is also called relevant.

The definition applies analogously to finite sequences s and r provided that
they are long enough. The latter means:

rank(t) ≤ lng(s) ; rank(F (t)) ≤ lng(r)

77Observe that we do not distinguish in the notation between the simple homomorphism
F and the natural function induced by F . As long as the corresponding natural function is
only applied on labels of nominal symbols or on numbers explicitly representing free places
of a nominal term (as done in the definition), this ambiguity of notation is unproblematic.
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Remarks (Expansion and Contraction):

1. terminology: Let s be an expansion of r according to a simple homo-
morphism F (with respect to a nominal term t). If a relevant position
l of r is hit by two different relevant positions k, k′ of s, then the entry
rl is “expanded” into the entries sk and sk′ . Changing the perspective,
the entries sk and sk′ of s are “contracted” into the entry rl of r.

The length of the sequences does not, in the general case, behave as
expected: if both sequences are infinite, then expansion and contraction
are of the same length; even in the finite case, a contraction can be
much longer than the corresponding expansion, namely if the relevant
positions of the contraction are greater than those of the expansion.

Nevertheless, the relevant positions (of both sequences) are finite, and
the number of the relevant positions of the contraction is smaller than
that of the expansion.

2. contractibility: Every sequence r can be expanded (according to ar-
bitrary simple homomorphisms and with respect to arbitrary nominal
terms) without any problem. But the contraction of a sequence s ac-
cording to a simple homomorphism F and with respect to a nominal
term t can be problematic, namely if we would have to “contract”
two different positions with differing entries into a single entry of a
contraction. Exactly this problem is excluded by the property of con-
tractibility.

Example (Expansion and Contraction): We provide a detailed example
illustrating our terminology.

1. simple homomorphism: Let F be the simple homomorphism induced
by:

∗0 7→ ∗1 ; ∗k′ 7→ ∗k

2. nominal term: Let t ≏ ∗0+(∗1+ ∗2); therefore, F (t) ≏ ∗1+(∗0+ ∗1).

3. expansion: Investigate r = 〈r0, r1, . . .〉.

If we intend to expand the sequence r according to F with respect to t,
then {0, 1} is the set of relevant positions of r. The relevant positions
in an expansion s of r are given by the set {0, 1, 2}. We provide the
relevant entries of such an expansion:

s = 〈s0, s1, s2, . . .〉 = 〈r1, r0, r1, . . .〉
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Observe that the entry r1 of r is expanded into the entries at the posi-
tions 0 and 2 of s.

4. contractibility: Let s = 〈s0, s1, s2, . . .〉 be a sequence, which we intend
to contract according to F with respect to t.

Contractibility demands that s0 ≏ s2, as F (∗0) ≏ ∗1 ≏ F (∗2).

5. general substitution function: We already can observe the relevance of
our terminology with respect to applications of the general substitution
function:

t[s] ≏ (∗0 + (∗1 + ∗2))[r1, r0, r1]

≏ r1 + (r0 + r1)

≏ (∗1 + (∗0 + ∗1))[r0, r1] ≏ F (t)[r]

Subsequently, we provide a precise formulation of this observation and
prove that statement.

Simple Observations (Expansion and Contraction): We discuss some
observations about expansions and contractions. For this purpose, let t ∈ T

and F ∈ Homs(T), s and r ∈ Tω.

1. converse criterion: Using a little bit sloppy notation, we can provide
a converse criterion for expansions and contractions:

Let s be F -contractible with respect to t. The sequence r is a con-
traction of the sequence s, if the following condition is satisfied for all
relevant positions l ∈ place(F (t)) of r:

rl ≏ sF−1(l)

Here, F−1(l) can be made precise as min(k ∈ place(t); F (∗k) ≏ ∗l).
78

2. standard terms: Let t ∈ T0 be standard. As there are no relevant po-
sitions, all sequences s are trivially F -expansions (and F -contractions)
of all sequences r with respect to t. (Recall that both place(t) = ∅
and F (t) ≏ t for standard terms t.)

78Observe that F is, in general not invertible, not even if we restrict F to the nominal
terms occurring in F (t). Using here the notation of the inverse function makes insofar
sense, as we are not interested in the preimage of F , but in the entries of the sequence
s determined by each of the preimages of F . Due to contractibility, these entries are
syntactically equal.
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3. essential equality: Essential equality is compatible with the concepts
of expansions and contractions. More precisely:

Let s be an F -expansion of the sequence r with respect to t. A sequence
s′ is an F -expansion of a sequence r′ with respect to t, if and only if
the following both conditions are satisfied:

(a) expansion: s ≡t s
′

(b) contraction: r ≡F (t) r
′

The stated equivalence holds immediately by definition.

4. isomorphism: Let F ∈ Hom◦(T) be an isomorphism. The following
both statements are equivalent:

(a) s is an F -expansion of r with respect to t.

(b) r is an F−1-expansion of s with respect to F (t).

Assuming (a) we obtain (b), as rl ≏ rF (F−1(l)) ≏ sF−1(l) for all relevant
positions l ∈ place(F (t) of r; the second equation holds, as the position
F−1(l) ∈ place(t) is relevant in s. The other direction holds, as F is
the inverse of the isomorphism F−1.

In particular, the relevant entries of an F -expansion are a rearrange-
ment of the relevant entries of the respective F -contraction (at shifted
positions). We can improve this observation by formulating more re-
strictions on F :

(a) If F|V∗(t) is a permutation of V∗(t), then the rearrangement takes
place at the same positions.

(b) If that restriction is the identity function, then the relevant posi-
tions are pointwise equal. The latter means that F -expansion and
F -contraction are essentially equal sequences with respect to t.

In the next proposition, we provide the criterion for the equality of applica-
tions of the general substitution function on a nominal terms and on their
images under a simple homomorphism.

6.5 Proposition (Expansions and Contractions): Let t ∈ T a nominal
term, F ∈ Homs(T) a simple homomorphism and s, r ∈ Tω two sequences of
nominal terms. Then the following two statements are equivalent.

1. equality: t[s] ≏ F (t)[r]

2. expansion: s is an F -expansion of r with respect to t.
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Proof. By induction over the structure of t.

1. t ∈ V∗ atomic: Let t ≏ ∗k ∈ V∗. As F is simple, we have that
F (t) ≏ ∗l for a number l ∈ ω. Furthermore, t[s] ≏ sk and F (t)[r] ≏ rl.

As place(t) = {k}, we have that s is an F -expansion of r, if and only
if sk ≏ rF (k) ≏ rl. The latter means that t[s] ≏ F (t)[r]. Therefore,
both statements are equivalent.

2. t /∈ V∗ atomic: As t /∈ V∗, but atomic, we have that t is a standard
term. Therefore, both statements (1) and (2) hold trivially, which
means that they are equivalent.

3. t ≏ f(t0, . . . tn−1) complex: First, observe that the following state-
ments hold:

(a) t[s] ≏ F (t)[r], if and only if tk[s] ≏ F (tk)[r] for all k ∈ n′.

(b) s is an F -expansion of r with respect to t, if and only if s is an
F -expansion of r with respect to tk for all k ∈ n′.

Applying n′ many times induction hypothesis, we also obtain that the
following statement holds for all k ∈ n′:

(a) tk[s] ≏ F (tk)[r], if and only if s is an F -expansion of r with respect
to tk.

Putting the pieces together, we obtain that statement (1) with respect
to t is equivalent to statement (2) with respect to t, as demanded.
q.e.d.

Remark (Generalisation): We mention that the concepts and results in
this section can be generalised. As expansion and contraction depend only
on the behaviour of the simple homomorphism F on the nominal symbols
occurring in t, we can carry over the definition and our observations to
arbitrary homomorphisms locally agreeing with F ; the latter means to all
homomorphisms essentially equal to F with respect to t.
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7 Relations Based on Homomorphisms

We discuss two relations both based on homomorphisms, namely the isomor-
phism of nominal terms and the less-structured relation.

7.1 The Isomorphism of Nominal Terms

The isomorphisms induce canonically an equivalence relation on the set of
nominal terms: two nominal terms are called isomorphic, if there is an iso-
morphism mapping one to the other.79

7.1.1 Introduction of the Isomorphism of Nominal Terms

We provide the formal definition of the isomorphism of nominal terms.

7.1 DEF (Isomorphism of Nominal Terms): Let t, s ∈ T arbitrary.
The nominal terms t and s are isomorphic (formally, t ∼= s), if there is an
isomorphism F ∈ Hom◦(T) such that F (t) ≏ s.

Examples (Isomorphic Nominal Terms): We provide some examples
illustrating the concept of isomorphic nominal terms in the language LPA of
arithmetics. For this purpose, let t ≏ ∗0 + (∗1 + ∗0).

1. We investigate a nominal term s ≏ ∗k + (∗l + ∗m). We have t ∼= s, if
and only if there is a permutation π ∈ Sym(ω) such that π(0) = k,
π(0) = m and π(1) = l. The latter is the case, if and only if k = m
and l 6= k (if l = k or l = m, then π is not injective).80

2. Let s ≏ (∗k + ∗l) + ∗m. We have that t 6∼= s. (One reason is that the
right direct subterm of t is complex; applying a homomorphism on t

maps the right direct subterm to a complex nominal term – but the
right direct subterm of s is atomic. As a consequence, there is not even
a homomorphism F such that F (t) ≏ s.)

79The less-structured relation is introduced analogously, but with respect to the more
general notion of arbitrary homomorphisms.

80Due to the bijective correspondence between simple homomorphisms determined by
their restriction on the set of nominal symbols and the natural functions, it is sufficient to
discuss here permutation on ω.
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Remarks (Isomorphic Nominal Terms):

1. relabelling nominal terms: Intuitively, it is clear that isomorphic nom-
inal terms are equal modulo the relabelling of their nominal symbols
according to a permutation of the set natural numbers (and not neces-
sarily of the free places of that nominal term).

2. equivalence relation: As the function space 〈Hom◦(T), ◦, idT〉 is, in
particular, an algebraic group, the isomorphism ∼= of nominal terms is
an equivalence relation on the set T of nominal terms:

(a) reflexive: As idT ∈ Hom◦(T), ∼= is reflexive.

(b) symmetric: As F−1 ∈ Hom◦(T) for all F ∈ Hom◦(T), ∼= is
symmetric.

(c) transitive: As F ◦ G ∈ Hom◦(T) for all F,G ∈ Hom◦(T), ∼= is
transitive.

As a first result, we show that the restriction of the isomorphism of nominal
terms to the set T∗ = T0 ∪ T1 of all standard terms and unary nominal terms
coincides with syntactic equality.

7.2 Proposition (Restriction to T∗): The following statement holds for
all nominal terms t, s ∈ T∗:

t ∼= s ⇔ t ≏ s

In particular, the equivalence classes with respect to ∼=|T∗ are singletons.
Proof. Let t ∼= s for t, s ∈ T∗. This means that there is an isomorphism
F ∈ Hom◦(T) such that F (t) ≏ s. If t ∈ T0 is a standard term, then we
immediately obtain that t ≏ s (invariance on standard terms). Otherwise,
t ∈ T1 is unary. Due to the proposition about the free places under sub-
stitution (in its version for homomorphisms) and that F|V∗

∈ Sym(V∗), we
obtain:

place(s) = place(F (t))

=
⋃

k∈place(t)

place(F (∗k))

= place(F (∗0)) = place(∗k) = {k}
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Therefore, s is not a standard term. As s ∈ T∗, we obtain that s is unary, and
therefore that k = 0. As, F (∗0) = idT(∗0), we obtain via essential equality:

s ≏ F (t) ≏ idT(t) ≏ t

This completes the direction “⇒”; the converse direction holds, as ∼= is, in
particular, reflexive. The triviality of the equivalence classes is immediate.

q.e.d.

7.1.2 Sequences of Indices

In order to simplify the discussion of isomorphic nominal terms, we introduce
subsequently sequences of indices providing the indices of nominal symbols
occurring in a nominal term. In order to define such sequence, we define
first a special minimum function for nominal terms providing, essentially,
the index of its leftmost nominal symbol.

7.3 DEF (Minimum Function): The minimum function min : T → ω′

for nominal terms is defined recursively as follows:

1. t ≏ ∗k ∈ V∗: min(t) = k

2. t standard atomic: min(t) = ω

3. t ≏ f(t0, . . . tn) complex:

min(t) =

{

ω if min(tk) = ω for all k ∈ n′

min(tk) otherwise, for suitable k

In the second clause, k is suitable, if k is the smallest index such that
the minimum of the respective direct subterm is finite. More formally,
with the help of the minimum function for natural numbers:

k = min(l ∈ n′; min(tl) 6= ω)

Remarks (Minimum Function):

1. maximum function: An analogous maximum function max : T → ω′

mapping a nominal term to the index of its rightmost nominal symbol
can be defined analogously to the definition of the minimum function.
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Simple Observations (Minimum Function):

1. standard terms: A nominal term t is standard, if and only if its mini-
mum is infinite (formally, if and only if min(t) = ω).

2. free places: If t /∈ T0 is a proper nominal term, then min(t) ∈ place(t).

3. minimum function under substitution: Let F ∈ Hom(T) be an ar-
bitrary homomorphism. If t /∈ T0 is a proper nominal term, then we
can provide the minimum of the result of an application of F on t as
follows:

min(F (t)) = min(F (∗k))

Here, k = min(t) is the index of the leftmost nominal symbol in t. If
F is a simple, then we can simplify the result:

min(F (t)) = !l ∈ ω : F (∗k) ≏ ∗l

Observe that if t is a standard term, then min(F (t)) = ω for all ho-
momorphisms F , as F (t) ≏ t is standard.

Determining all Nominal Symbols: Via the minimum function for nom-
inal terms, we can identify all nominal symbols occurring in a nominal term
in the order of their leftmost occurrences.

1. We presuppose that the first k-many indices n0, . . . nk−1 of the nominal
term t are already determined.

2. Let Fk be the uniquely determined homomorphism induced by the fol-
lowing function F on nominal symbols:

F : V∗ → T : ∗l 7→

{

xl if l ∈ {n0, . . . nk−1}
∗l otherwise

3. Investigate the minimum of Fk(t): If min(Fk(t)) = ω, then we have
already determined all indices of nominal symbols in t in the order of
their leftmost occurrences.

Otherwise, min(Fk(t)) = l ∈ ω. As n0, . . . nk−1 are the first k-many
nominal symbols in t and as if these nominal symbols are replaced by
standard terms in Fk(t), nl = l is the next index of a nominal symbol
according to their leftmost occurrences. We proceed with step (1).

As nominal terms are finite, the algorithm stops after finitely many steps.
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René Gazzari Relations Based on Homomorphisms

The sequence of indices of a nominal term is generated according to the
algorithm presented above and contains the indices of all nominal symbols
occurring in that nominal term in the order of their leftmost occurrences.
We provide the formal definition of the sequence of indices.

7.4 DEF (Sequence of Indices): The sequence σ(t) of the indices of a
nominal term t ∈ T is defined with the help of intermediate sequences σ(t, k).
The latter are defined recursively on k ∈ ω:

1. k = 0: σ(t, 0) is the empty sequence (formally, σ(t, 0) = ǫ).

2. k′: We assume that σ(t, k) = 〈n0, . . . nk−1〉 is already defined. Let Fk

be the homomorphism determined by:

F : V∗ → T : ∗l 7→

{

xl if l ∈ {n0, . . . nk−1}
∗l otherwise

We define as follows:

σ(t, k′) =

{

σ(t, k) if min(Fk(t)) = ω
〈σ(t, k),min(Fk(t))〉 otherwise

Finally, we define: σ(t) =
⋃

k∈ω σ(t, k).

Remarks (Sequence of Indices):

1. finiteness: As long as k < |place(t)|, the intermediate sequences
are proper initial segments of the next intermediate sequence. This
changes for l > k = |place(t)|: all sequences are equal (formally,
σ(t, k) = σ(t, l)). As a consequence, σ(t) is a finite sequence of natural
numbers.

2. entries: The entries of σ(t) are the free places of t in the order of
their leftmost occurrence in t (which means that the entries are not
necessarily sorted in their natural order).

3. n′-ary: If t is n′-ary (for a suitable n ∈ ω), then Fn′ (as defined in the
definition above) is determined by a the following function F on the
set of all nominal symbols:

∗k 7→ xk for k ∈ n′ ; ∗k 7→ ∗l for k /∈ n′

This means that Fn′ is the restriction of the general substitution func-
tion to the sequence 〈x0, . . . xn〉.
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4. rightmost occurrences: If we would use a maximum function, as men-
tioned above, then we could determine the indices of the nominal sym-
bols according to the order of their rightmost occurrences (from the
right to the left). Observe that the sequence of the indices with respect
to both functions are not necessarily converse to each other. Investigate
the following nominal term in the language of arithmetics:

(∗0 + ∗1) + (∗0 + ∗0)

We obtain in both cases the sequence σ(t) = 〈0, 1〉.

In the next proposition, we discuss how the sequence of indices is influenced
by isomorphisms.

7.5 Proposition (Sequence of Indices): Let t ∈ T an arbitrary nominal
term with sequence σ(t) = 〈n0, . . . nk−1〉 for (k ∈ ω) and F ∈ Hom◦(T) an
isomorphism. The sequence σ(F (t)) of indices of the nominal term F (t) can
be calculated as follows:

σ(F (t)) = 〈F (n0), . . . F (nk−1)〉

Proof. By induction over the length k of the sequences σ(t) of indices:

1. 0: If lng(σ(t)) = 0, then t ∈ T0 is standard. This means that F (t) ≏ t

and, therefore, σ(F (t)) = ǫ. The stated equality holds trivially.

2. k′: Let t ∈ T such that σ(t) = 〈n0, . . . nk〉 (the latter means that
lng(σ(t)) = k′). In particular, we have that t is a proper nominal term.
Let s ≏ F (t). We first observe that min(s) = min(F (t)) = F (n0).

Let G = F1 be the homomorphism as used in the construction of σ(t);
this means that F1 is induced by the following function on the set of
nominal symbols:

∗k 7→

{

xk if k = n0

∗k otherwise

It is easily checked that F ◦G = G◦F . We define as follows: t′ ≏ G(t)
and s′ ≏ G(s). We calculate as follows:

s′ ≏ G(s) ≏ G(F (t)) ≏ F (G(t)) ≏ F (t′)

The latter means that t′ ∼= s′ via the isomorphism F . As we replaced
the leftmost nominal symbol of t in the nominal term t′ by a suitable
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variable, we have σ(t′) = 〈n1, . . . nk〉. This means that σ(t′) is a se-
quence of length k; therefore, we may apply induction hypothesis and
obtain σ(s′) = 〈F (n1), . . . F (nk)〉. As min(s) = F (n0) and as we re-
placed in s′ this nominal symbol by a variable, we obtain, as demanded,
that σ(s) = 〈F (n0), . . . F (nk)〉. q.e.d.

With the help of the proposition above, we obtain immediately as a corollary
the following criterion for the identity of isomorphic nominal terms.

7.6 Corollary (Sequences of Indices): Let t, s ∈ T. The following
statement holds:

t ≏ s ⇔ t ∼= s and σ(t) = σ(s)

Proof. The direction “⇒” is trivial; we prove the other direction. Let t ∼= s

and σ(t) = σ(s) = 〈n0, . . . nk−1〉 for suitable k, n0, . . . nk−1 ∈ ω. According
to the proposition above, we obtain:

〈n0, . . . nk−1〉 = σ(s) = σ(F (t)) = 〈F (n0), . . . F (nk−1)〉

This means that F|V∗(t) = idV∗(t). Therefore, F is essentially equal to idT

with respect to t. The latter means s ≏ F (t) ≏ idT(t) ≏ t. q.e.d.

7.1.3 Normal Nominal Terms

Via the sequences of indices, we are able to define normal nominal terms and
to show that these nominal terms are the canonical representatives of the
equivalence class with respect to the isomorphism of nominal terms.

7.7 DEF (Normal Nominal Term): A nominal term t ∈ T is called
normal (with respect to the isomorphism of nominal terms), if its sequence
of indices is an initial segment of the sequence 〈k; k ∈ ω〉 of natural numbers.
More formally, if σ(t) = 〈k; k ∈ lng(σ(t)) 〉.

Remarks (Normal Nominal Terms):

1. characterisation: A nominal term t is normal, if and only if t is n-ary
(for n ∈ ω) and if the labels of the leftmost occurrences of its nominal
symbols are sorted according to the natural order.
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2. special cases: All standard terms t are normal; all unary nominal terms
are normal. This observation is as expected, as the equivalence classes
of nominal term t ∈ T∗ are, as we have seen already, trivial.

3. alternative account: We based the definition of the sequences of indices
on the minimum function for nominal terms; alternatively, we could
have used the analogous maximum function for nominal terms. In this
scenario, we would collect in the sequence of indices the labels of the
rightmost occurrences of nominal symbols (from the right to the left).
Using the same definition of normal nominal forms, but with respect to
the alternative sequence of indices, would result in alternative normal
nominal terms.

There are cases, where a nominal term is normal with respect to both
versions of normality, as the nominal term ∗0 + (∗1 + ∗0). But in
the general case, the normal forms are different: ∗0 + ∗1 is normal
with respect to our notion of normality, the nominal term ∗1 + ∗0 with
respect the alternative notion. (Observe that both nominal terms are
isomorphic and, therefore, representing the same equivalence class).

Normal nominal terms are the canonical representatives of equivalence classes
with respect to the isomorphisms of nominal terms.

7.8 Proposition (Normal Nominal Terms): Let t ∈ T be an arbitrary
nominal term. There is a uniquely determined normal nominal term s ∈ T

isomorphic to t.
Proof. First, we show the existence of such a nominal term. We investigate
the sequence of indices of t: σ(t) = 〈n0, . . . nk−1〉 for suitable natural num-
bers k, n0, . . . nk−1 ∈ ω. By construction, the indices in σ(t) are all different.
We extend σ(t) to an infinite sequence σ of natural numbers as follows:

1. The first k entries sl are equal to the the entries of σ(t) (if σ(t) is not
the empty sequence).

2. The entry sl of σ is the smallest number not yet occurring in the initial
segment 〈s0, . . . sl−1〉 of σ for all l ≥ k.

The sequence σ is a natural function. By construction, σ is injective (we
extend by new entries) and surjective (investigate an arbitrary l ∈ ω such
that l is not already an entry of σ(t) and, therefore, trivially contained in
σ: after finitely many steps of constructing σ, all previously unused numbers
below l are used for extending σ(t) and we have to use l in the next extension
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René Gazzari Relations Based on Homomorphisms

step). σ corresponds to a permutation G0 on the set of nominal symbols; let
F0 be the inverse function to G0, and F the homomorphism induced by F0.
Obviously, F is an isomorphism. By construction, we have F (∗nl

) = ∗l for all
l ∈ k (for all nl contained in σ(t)). As a consequence, σ(s) = 〈0, 1, . . . k− 1〉
for s ≏ F (t). The latter means that s is normal. By construction, we
also have that t ∼= s, and the existence of the canonical representative is
proved. We obtain uniqueness from the corollary to the proposition about the
sequence of indices: if r is normal and isomorphic to t, it is also isomorphic
to s and as r is normal, we also have σ(s) = σ(r). Therefore, s ≏ r. q.e.d.

Alternative Approach (Normal Form): In the proof above, we have
used the injective fragment σ(t) of a natural function to generate an isomor-
phism and the inverse isomorphism was used to map t to its normal form.
Alternatively, we could have proceeded more directly by using transpositions
(or more precisely, homomorphisms induced by transpositions or the identity
function) with the following algorithm:

1. If min(t) = ω, then t is a standard term, and nothing more is to
be done; t is its own normal form. Otherwise, let α = min(t). If
n 6= 0, then T = (∗0 ∗α) is a transposition of nominal symbols mapping
∗0 to ∗α and vice versa. Let T0 be the isomorphism induced by T and
s0 ≏ T (t). (If n = 0, then we use T0 = idT.) Observe that min(s0) = 0,
and the first nominal symbol is sorted in s0.

2. Having sorted this way the first k′-many nominal symbols, we proceed
as follows: Let α = min(sk[x0, . . . xk]). If α = ω then nothing more is
to be done; the nominal term sk is the demanded normal form of t. If
α = k′, then Tk′ = idT, otherwise let Tk′ be induced by the transposition
T = (∗k′ ∗α). (Observe that α < k′ is not possible.) Then the nominal
symbol ∗k′ is, additionally, sorted in sk′ ≏ Tk′(sk).

The normal form s of t is directly constructed by the algorithm. But the
isomorphism F mapping t to s is only implicitly given: in order to obtain
F , we have to compose all transpositions Fk used in the algorithm. Observe
that, in general, this isomorphism is different from that used in the proof
of the proposition above. Nevertheless, the normal forms are equal; both
isomorphisms are essentially equal with respect to t.
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7.2 The Less-Structured Relation

We discuss the less-structured relation, which is defined analogously to the
isomorphism of nominal terms, but on the base of arbitrary homomorphisms.

7.2.1 Introduction of the Less-Structured Relation

We provide the formal definition of the less-structured relation.

7.9 DEF (Less-Structured Relation): Let t, s ∈ T. The nominal term
t is less-structured than the nominal term s (formally, t ≤ s), if there is a
homomorphism F ∈ Hom(T) such that F (t) ≏ s.

Remarks (Less-Structured Relation):

1. terminology: The denomination of the less-structured relation is moti-
vated by the idea that replacing a nominal symbol in a nominal term by
a (more complex) nominal term results in a nominal term having more
structure (in terms of the symbols of the underlying formal language).

2. alternative characterisation: Wemay equivalently characterise the less-
structured relation as follows:

t ≤ s ⇔ ∃t ∈ Tω : t[t] ≏ s

3. isomorphic nominal terms: By definition (and due to symmetry), we
have immediately that isomorphic nominal terms are also related by
the less-structured relation. More formally:

t ∼= s ⇒ t ≤ s and s ≤ t

Subsequently, we prove that the other direction also holds.

Examples (Less-Structured Relation): We provide some examples of
less-structured nominal terms in the language LPA of arithmetics.

∗ ≤ ∗[∗+ ∗] ≏ ∗+ ∗ ≤ ∗+ ∗[0] ≏ 0 + 0 ; 0 + 0 6≤ ∗+ ∗ 6≤ ∗

The first inequality holds, as F (0+0) ≏ 0+0 6≏ ∗+∗ for all homomorphisms
F ; the second, as the preimage of ∗ under a homomorphism is a nominal
symbol and, therefore, not ∗+ ∗.
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7.2.2 Criterion for Isomorphic Nominal Terns

Before we discuss the properties of the less-structured relation, we provide a
criterion for the isomorphism of nominal terms based on the less-structured
relation.

7.10 Proposition (Criterion - Isomorphic Nominal Terms): Let
t, s ∈ T be two nominal terms. The nominal terms t and s are isomor-
phic, if and only if t is less-structured than s and vice versa. Formally:

t ∼= s ⇔ t ≤ s and s ≤ t

Proof. As stated before, the direction “⇒” is immediate; therefore, it is
sufficient to prove “⇐” by induction over the structure of t.

1. t /∈ V∗ standard atomic: The condition t ≤ s already implies that
s ≏ t, as t is standard. In particular, t ∼= s.

2. t ∈ V∗ nominal symbol: Let t ≏ ∗k. As s ≤ t, there is a homomor-
phism F ∈ Hom(T) such that F (s) ≏ t. We obtain by the categorisa-
tion of the preimage that s ≏ ∗l ∈ V∗ is also a nominal term. If t ≏ s

nothing more is to be done. Otherwise, the transposition T0 = (∗k ∗l)
induces an isomorphism T ∈ Hom◦(T) witnessing t ∼= s.

3. t ≏ f(t0, . . . tn) complex: As t ≤ s and s ≤ t, there are two homo-
morphisms F,G ∈ Hom(T) such that F (t) ≏ s and G(s) ≏ t. As
homomorphisms are structure preserving, we obtain that t and s are
similar. The latter means that there are nominal terms s0, . . . sn such
that s ≏ f(s0, . . . sn). In particular, F (tk) ≏ sk and G(sk) ≏ tk for all
k ∈ n′. The latter means that we have both that tk ≤ sk and sk ≤ tk

for all k ∈ n′. Applying n′-many times induction hypothesis, we obtain
isomorphisms Hk ∈ Hom◦(T) such that Hk(tk) ≏ sk for all k ∈ n′.

As F (tk) ≏ Hk(tk) and G(sk) ≏ H−1
k (sk), we have that F and Hk are

essentially equal with respect to tk as well as G and H−1
k with respect

to sk for all k ∈ n′.

We investigate the restriction F|V∗(t) of F to the set of nominal symbols
occurring in t:

(a) into V∗(s): Let l ∈ place(t) be arbitrary. There is k ∈ n′ such
that l ∈ place(tk). Due to essential equality, we obtain:

F (∗l) ≏ Hk(∗l) ∈ V∗(sk) ⊆ V∗(s)

This means that F|V∗(t) is a function into the set V∗(s).
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(b) surjective: Let l ∈ place(s) be arbitrary. There is k ∈ n′ such
that l ∈ place(sk). As Hk is an isomorphism, there is an index
l̂ ∈ place(tk) ⊆ place(t) such that Hk(∗l̂) ≏ ∗l. Due to essential
equality, we obtain:

F (∗l̂) ≏ Hk(∗l̂) ≏ ∗l

As a consequence, every nominal symbol ∗l ∈ V∗(s) is hit by the
restriction F|V∗(t) of F . Therefore, F|V∗(t) is surjective.

(c) injective: Let l, l̂ ∈ place(t) such that F (∗l) ≏ F (∗l̂). As before,

there are k, k̂ ∈ n′ such that l ∈ place(tk) and l̂ ∈ place(tk̂). We
calculate:

∗l ≏ H−1
k (Hk(∗l)) ≏ G(Hk(∗l))

≏ G(F (∗l))

≏ G(F (∗l̂))

≏ G(Hk̂(∗l̂)) ≏ H−1

k̂
(Hk̂(∗l̂)) ≏ ∗l̂

As a consequence, the restriction F|V∗(t) is injective.

Putting the pieces together, we have that the function

F|V∗(t) : V∗(t) → V∗(s)

is bijective. The function F|V∗(t) is easily extended to a permutation
H0 ∈ Sym(V∗) of the set of all nominal symbols. Finally, the per-
mutation H0 induces canonically an isomorphism H ∈ Hom◦(T). By
construction, F and H are essentially equal with respect to t. There-
fore, H(t) ≏ F (t) ≏ s. The latter means that t ∼= s. q.e.d.

Remark (Criterion - Isomorphic Nominal Terms): The proposition
above can be seen as the less-structured analogy of Bernstein’s Theorem in
set theory stating that if x ≤ y and y ≤ x, then x ≡ y, where “≤” means
“to be smaller” and where “≡” means “to be of the same size”.81 As in our
case, these relations are defined via the existence of injective and bijective
functions, respectively.

81The theorem is found, for example, in Jech [19, p. 28]; observe that the terminology
there is slightly different and that the theorem is referenced as Cantor-Bernstein Theorem.
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7.2.3 Partial Order Modulo Isomorphism

Having proved the criterion for isomorphic nominal terms, we can investigate
the less-structured relation and prove, in particular, that the less-structured
relation is a partial order on the set of nominal termsmodulo the isomorphism
of nominal terms.82

7.11 Proposition (Less-Structured Relation): The following state-
ments hold:

1. partial order: The less-structured relation ≤ is a partial order modulo
the isomorphism of nominal terms on the set of nominal terms.

2. least elements: The nominal symbols are the least elements with re-
spect to the less-structured relation.

3. maximal elements: The standard terms are maximal with respect to
the less-structured relation.

Proof. We check each property.

1. reflexive: We have to show that t ≤ s for all nominal terms t, s ∈
T satisfying the condition t ∼= s. But this is, as mentioned before,
immediate.

2. anti-symmetric: We have to show that if t ≤ s and s ≤ t, then t ∼= s

for all nominal terms t, s ∈ T. This is exactly, what was proved in the
proposition above.

3. transitive: We have to show that if t ≤ s and s ≤ r, then t ≤ r for
all t, s, r ∈ T. This is trivial, as the set Hom(T) is closed under the
composition of functions.

4. least elements: Let t ∈ V∗ be a nominal symbol. We have to show
that t ≤ s for all nominal terms s ∈ T. Let s ∈ T arbitrary and F be
the homomorphism induced by the constant function F0 : ∗k 7→ s. By
construction, F (t) ≏ s, and therefore t ≤ s.

5. maximal elements: Let t ∈ T0 be a standard term. We have to show
that if t ≤ s, then t ∼= s for all nominal terms s ∈ T. This is trivial, as
applying a homomorphism F on the standard term t always results in
the standard term t. q.e.d.

82The latter means that the isomorphism of nominal terms is the relevant underlying
equality relation (instead of syntactic equality). Cf. the preliminaries, section § 3.1.2 about
relations.
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Remarks (Less-Structured Relation):

1. standard and unary nominal terms: If we restrict the less-structured
relation to the set T∗ of standard terms and unary nominal terms, then
isomorphism of nominal terms and syntactic equality coincide. As a
consequence, the restriction of the less-structured relation to this set
is, indeed, a partial order.

2. proper chains: As a consequence of the proposition above, every pair
of a nominal symbol ∗k and of a standard term t is a proper chain with
respect to the less-structured relation. More formally:

∗k < t

There are longer proper chains, if and only if there are function symbols
f available in the underlying formal language L. In this case, there are
even infinite proper chains.

For example, if f is a unary function symbol, then t = 〈tk; k ∈ ω〉 is a
proper chain, where the tk are defined as follows:

t0 ≏ ∗ ; tk′ ≏ f(tk)

The sequence t is a chain: let F be the homomorphism induced by the
function F0 : V∗ → T : ∗k 7→ f(∗k). We obtain that F (tk) ≏ tk′ and,
therefore, tk ≤ tk′ for all k ∈ ω.

In order to prove that t is a proper chain, we have to show that different
entries are not isomorphic. Assume that k 6= l, but tk ∼= tl for positions
k, l ∈ ω. Observe that the sequences of indices of tk and tl are equal
(we have both σ(tk) = 〈0〉 and σ(tl) = 〈0〉). Due to the corollary of
the proposition about the sequences of indices, we obtain immediately
that tk ≏ tl. But this is obviously a contradiction. Therefore, different
entries in t are not isomorphic and t is, indeed, a proper chain.
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8 Elimination Forms and Occurrences

We introduce elimination forms of standard terms capable of representing the
position of occurrences and, based on this notion, the notion of (standard)
occurrences of terms in terms.

8.1 Elimination Forms

The elimination forms of standard terms are nominal terms less-structured
than the respective standard term. After the introduction of this notion, we
discuss the complete elimination function illustrating the underlying concept
of elimination and we provide the number of some specific elimination forms.

8.1.1 Introduction of Elimination Forms

We provide the formal definition of elimination forms.

8.1 DEF (Elimination Form): Let t ∈ T0 be a standard term, t ∈ T a
nominal term, α ∈ ω′ an ordinal and s ∈ Tα a sequence of nominal terms of
length α.

1. elimination form: The nominal term t is called an elimination form
of t, if t is less-structured than t (formally, if t ≤ t).

2. eliminated sequences and entries: We say that the sequence s is elim-
inated in t (with respect to t), if t[s] ≏ t; in this case, we also say that
the entries sk are eliminated in t for all k ∈ α.

Furthermore: if k ∈ place(t), then the entry sk is actually eliminated,
and if all entries of s are actually eliminated, then we say that the
sequence s is actually eliminated.

3. sets of elimination forms: Furthermore, we define the following sets of
elimination forms:

• E(t) = {t ∈ T; t ≤ t} is the set of all elimination forms of t.

• E(t, s) = {t ∈ T; t[s] ≏ t} is the set of all elimination forms of t,
in which the sequence s is eliminated.
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Remarks (Elimination Forms):

1. notation: Recall our notational conventions allowing the restriction
of sets of nominal terms.83 The use of those labels is permitted with
respect to sets of elimination forms as defined above.

2. limit cases: Every standard term t is an elimination form of itself, in
which no term is actually eliminated (in which the empty sequence ǫ
is actually eliminated). There are no other standard terms s 6≏ t such
that s is an elimination form of t. More formally:

E0(t) = {t}

Additionally, every nominal symbol ∗k is a trivial elimination form of
every standard term t. More formally, for all k ∈ ω:

∗k ∈ E(t)

3. actually eliminated terms: All subterms of a standard term are stan-
dard. As a consequence, we obtain:

(a) free places: The free places of an elimination form must be con-
tained in the length α of the eliminated sequence s (formally,
place(t) ⊆ α).

(b) actually eliminated terms: If a nominal term sk is actually elimi-
nated, then sk is a standard term. (If we have k ∈ place(t), then
also sk ∈ Sub′(t[s]).)

(c) actually eliminated sequence: If a sequence s is actually eliminated
in t, then place(t) = α, and s is a finite sequence of standard
terms. As a consequence, the length of an actually eliminated
sequence s is bound by the number of subterms of the standard
term t.

4. alternative characterisation: The following conditions are equivalent:

(a) A nominal term t is an elimination form of a standard term t.

(b) There is a homomorphism F ∈ Hom(T) such that F (t) ≏ t.

(c) There is a sequence s ∈ Tω of nominal terms such that t[s] ≏ t.

(d) There is a sequence s ∈ T0
ω of standard terms such that t[s] ≏ t.

83Cf. section § 4.4 about the basic categorisation of nominal terms.
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Conceptual Remarks: We discuss briefly some aspects of the concept of
elimination forms.

1. relative notion: The notion of an elimination form is a relative notion;
every nominal term is an elimination form of some standard terms, but,
in the general case, not of all standard terms.

Investigate, for example, the nominal term t ≏ ∗ + ∗ in the language
LPA of arithmetics. The nominal term t is an elimination form of a
standard term t, if and only if there is a standard term s such that
t ≏ s + s. In particular, t is neither an elimination form of atomic
terms, nor of terms generated by another function symbol (as 0 ·0), nor
of a sum, if the direct subterms are different (as in 0 + 1).

2. change of perspective: The relativity of the notion of elimination forms
corresponds to a change of perspective. We had, essentially, an upward
view on nominal terms. The central question was: what can be gen-
erated out of a given nominal term via an application of the general
substitution function. Discussing elimination forms means to take a
downward perspective. We first chose the result (the standard term)
and then we ask: what are the nominal terms such that we can generate
this result by an application of the general substitution function.

3. elimination of subterms: The underlying idea of elimination forms is
that such nominal terms are the result of the replacement of occurrences
of subterms in a given standard term by suitable nominal symbols.

This replacement cannot be given, in the general case, by a recursive
function, as the intended elimination affects arbitrary occurrences. In
particular, it may even happen that two different occurrences of the
same shape are eliminated by different nominal symbols: investigate,
for example, the nominal term (∗0 + ∗1) understood as an elimination
form of the standard term (0 + 0). There is no function mapping the
standard term 0 to ∗0 as well as to ∗1.

This means: in order to describe the elimination as a function, we need
a function on occurrences of terms in standard terms.

4. representing positions: The underlying idea of these elimination forms
is that they represent the positions of the actually eliminated subterms
of the standard term. This way, they are able to define the position of
occurrences and, therefore, occurrences themselves. Observe that it is
not necessary to define a function actually eliminating the subterms,
the existence of elimination forms is sufficient.
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Special Elimination Forms: We briefly mention some special kinds of
elimination forms.

1. n-ary elimination forms: Let t be an n-ary elimination form of a
standard term t. In contrast to arbitrary elimination forms, there is
a sequence s of standard terms actually eliminated in t; this sequence
s is uniquely determined, all entries of s are subterms of t, and s is
of length n. Furthermore, s is an initial segment of every sequence s′

eliminated in t (with respect to t).

2. simple elimination forms: In a simple elimination form t of a stan-
dard term t, each occurrence of an eliminated subterm is eliminated
separately.

3. unary elimination forms: In a unary elimination form t of a standard
term t, all the eliminated occurrences of a subterm are of the same
shape.

8.1.2 The Complete Elimination Function

In order to illustrate the concept of the elimination of subterms, we introduce
the complete elimination function. This recursively defined function maps a
pair of standard terms to that elimination form of the first argument, in
which all occurrences of the second argument are eliminated.84

8.2 DEF (Complete Elimination Function): The complete elimination
function elim : T0 × T0 → T⋆ is defined recursively (in the first argument) as
follows for arbitrary standard terms s ∈ T0:

1. t atomic: elim(t, s) =

{

∗ if t ≏ s
t otherwise

2. t ≏ f(t0, . . . tn):

elim(t, s) =

{

∗ if t ≏ s
f(elim(t0, s), . . . elim(tn, s)) otherwise

An application of the complete elimination function eliminates all occurrences
of the term s in the term t by replacing the standard term s in the standard
term t by the nominal symbol ∗.

84As we eliminate all occurrences, this function is a simple function (according to our
distinction given in the introduction) and is definable recursively.
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In the next proposition we show that the complete elimination functions
works as demanded.

8.3 Proposition (Complete Elimination Function): Let t, s ∈ T0 be
two arbitrary standard terms and t ≏ elim(t, s). The following statements
hold:

1. The nominal term t is an elimination form of t in which the term s is
eliminated. Formally, t[s] ≏ t.

2. The nominal term is proper (and unary), if and only if s is a subterm
of t. Formally, if s ∈ Sub′(t), then t ∈ T1; otherwise, t ≏ t ∈ T0.

3. All occurrences of s are eliminated in t. Formally, s /∈ Sub′(t).

Proof. All statements are proved in parallel by induction over the structure
of the term t:

1. t atomic: We distinguish two case:

• t ≏ s: If t ≏ s, then elim(t, s) ≏ ∗. Therefore, t[s] ≏ t.
Furthermore, s ∈ Sub′(t) and t ∈ T1. Finally, s /∈ Sub′(t).

• t 6≏ s: If t 6≏ s, then elim(t, s) ≏ t. Therefore, t[s] ≏ t. Further-
more, s /∈ Sub′(t) and t ≏ t ∈ T0. Finally, still s /∈ Sub′(t).

2. t ≏ f(t0, . . . tn): The case t ≏ s is treated as in the atomic case.
Therefore, we may assume that t 6≏ s. Let tk ≏ elim(tk, s) for all
k ∈ n′. Due to the definition of elim, we have:

elim(t, s) ≏ f(elim(t0, s), . . . elim(tn, s)) ≏ f(t0, . . . tn)

Applying n′-many times induction hypothesis, we obtain that all three
statements hold with respect to the tk. We show each statement with
respect to t ≏ f(t0, . . . tn):

(a) In order to show that t is an elimination form of t in which s is
eliminated, we calculate as follows:

t[s] ≏ f(t0[s], . . . tn[s]) ≏ f(t0, . . . tn) ≏ t

The second equation holds, as tk is an elimination forms of tk in
which s is eliminated for all k ∈ n′.
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(b) We assume that s ∈ Sub′(t). As s 6≏ t, we have s ∈ Sub(t). The
latter means that there is k ∈ n′ such that s ∈ Sub′(tk). As a
consequence, tk ∈ T1, and therefore t ∈ T1 (recall that tl ∈ T0∪T1

for all l ∈ n′).

Otherwise, s /∈ Sub′(t). Therefore, s /∈ Sub′(tk) for all k ∈ n′.
Therefore, tk ≏ tk ∈ T0. The latter implies that t ≏ t ∈ T0.

(c) Due to induction hypothesis, we have that s /∈
⋃

k∈n′ Sub
′(tk).

As t 6≏ s (even in the case that t ≏ t), we obtain s /∈ Sub′(t).

q.e.d.

Generalisations (Complete Elimination Function): We discuss briefly
some generalisations of the complete elimination function allowing the elim-
ination of more than one term in a given standard term.

1. towards a generalisation: A natural idea to eliminate more than one
term in a standard term is to apply successively the complete elimi-
nation function more than once. There are some technical problems
to be solved: having applied the complete elimination function on a
standard term results, in the intended case, in a unary nominal term,
which is not in the domain of the complete elimination function; fur-
thermore, we may not use in the next elimination step the nominal
symbols already used for elimination.

Even, if we solve these technical problems, there remains an undesired
property: the result of the elimination of finitely many terms depends,
in general, on the order of the eliminations. If t(s0, s1) denotes the
result of first eliminating s0 in t and then eliminating s1, then we obtain,
for example:

0 + 0(0, 0 + 0) ≏ ∗+ ∗(0 + 0) ≏ ∗+ ∗

6≏ ∗ ≏ ∗(0) ≏ 0 + 0(0 + 0, 0)

Observe that the resulting nominal terms are not only different, but
different in an essential way: they have a different structure.85 In
particular, the results are not isomorphic.

There are some possibilities to deal with this phenomenon.

85In the section about relations beyond homomorphisms, we introduce the equivalence
of nominal terms capturing the concept of “having the same structure”.
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1. presupposed order of elimination: We can define a complete elimination
function elim : T0×T0

<ω such that elim(t, s) is the result of eliminating
in t the arguments given in the sequence s in a specified order. In the
example above, this order was “from the left to the right”.

2. restricted arguments: We can also avoid the problem by restricting
the arguments by demanding that all arguments s and s′ given in the
sequence s satisfy the following both conditions:

s 6⊳ s′ and s′ 6⊳ s

In this case, the elimination of the entries of s in the standard term t
does not depend on the order of the separate elimination steps (up to
the isomorphism of nominal terms).

3. fixed arguments: A variation of the solution by restricted arguments is
to fix suitable arguments a priori. Actually, a complete elimination of
the first n variables v0, . . . vn−1 in a standard term t is of some practical
use. Observe that the variables vk satisfy the condition for restricted
arguments formulated in the clause above.

8.1.3 Counting Elimination Forms

We are able to count (formally) the number of (specific) elimination forms
of a given standard term.86

In a first proposition, we show that the number of simple unary elimination
forms, in which exactly one occurrence of a given subterm is eliminated,
equals to the multiplicity of that subterm in the term.

8.4 Proposition (Simple Unary Elimination Forms): Let t, s ∈ T0 be
two arbitrary standard terms. The following equation holds:

|E1,s(t, s)| = mult(s, t)

Proof. By induction over the structure of t; let s ∈ T0 be arbitrary.

1. t atomic: Due to the categorisation of the preimage, ∗ is the only
simple unary elimination form of t. We distinguish two cases:

• t ≏ s: If t ≏ s, then ∗ is the only simple unary elimination form
of t in which s is eliminated. Correspondingly, mult(s, t) = 1.

86As all nominal symbols are elimination forms of an arbitrary standard terms, the
number of all elimination forms of a standard term is in any case infinite.
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• t 6≏ s: If t 6≏ s, then there is no simple unary elimination form of
t in which s is eliminated. Correspondingly, mult(s, t) = 0.

As a consequence, we have in both cases |E1,s(t, s)| = mult(s, t).

2. t ≏ f(t0, . . . tn) complex: If t ≏ s, then again we have that ∗ is the only
suitable elimination form and that mult(s, t) = 1. Otherwise, t 6≏ s.

In the latter case: immediately, ∗ is not an elimination form of t in
which s is eliminated. This implies, due to the categorisation of the
preimage, that an elimination form t of t (in which s is actually elim-
inated) satisfies t ≏ f(t0, . . . tn) for some suitable nominal terms tk

(for k ∈ n′). The term s is actually eliminated in t, if and only if
there is k ∈ n′ such that s is eliminated in tk (with respect to tk).
Furthermore, t is additionally simple, if and only if there is only one
such k ∈ n′ and if the respective nominal term tk is simple. Therefore:

|E1,s(t, s)| =
∑

k∈n′

|E1,s(tk, s)|

Applying n′-many times induction hypothesis and recalling the defini-
tion of the multiplicity function, we continue calculating and obtain:

|E1,s(t, s)| =
∑

k∈n′

mult(s, tk) = mult(s, t)

q.e.d.

All Simple Unary Elimination Forms: As an immediate consequence
of the proposition above, the number of all simple unary elimination forms
of a standard term t is given as follows:

|E1,s(t)| =
∑

s∈T0

mult(s, t) =
∑

s∈Sub′(t)

mult(s, t)

We complement the result above and provide in the next proposition the
number of all elimination forms of a standard term, in which a given subterm
is eliminated.

8.5 Proposition (Unary Elimination Forms): Let t, s ∈ T0 be two
arbitrary standard terms. The following equation holds:

|E1(t, s)| = 2mult(s,t) − 1
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Proof. Recalling that t is the only standard elimination form of t in which
the term s is (trivially) eliminated (more formally, E0(t, s) = {t}), it is suffi-
cient to prove the following slightly modified equation:

|E∗(t, s)| = 2mult(s,t)

We prove the latter equation by induction over the structure of t; let s ∈ T0.

1. t atomic: E∗(t) = {∗, t}. We distinguish two cases:

• t ≏ s: If t ≏ s, then both ∗ and t are elimination forms of t in
which s is eliminated. Furthermore, mult(s, t) = 1, and therefore:

|E∗(t, s)| = 21 = 2mult(s,t)

• t 6≏ s: If t 6≏ s, then only ∗ is an elimination form of t (contained
in E∗(t)) in which s is eliminated. Furthermore, mult(s, t) = 0,
and therefore:

|E∗(t, s)| = 20 = 2mult(s,t)

2. f ≏ f(t0, . . . tn): The case that t ≏ s is treated as above. Therefore, we
may assume without loss t 6≏ s; the latter excludes ∗ as an elimination
form of t in which the term s is eliminated. Due to the categorisation
of the preimage, we obtain that every elimination form t of t equals
to a nominal term t ≏ f(t0, . . . tn) for some suitable nominal terms
tk (with k ∈ n′). The term s is eliminated in t, if and only if s is
eliminated in all direct subtermms tk with respect to the respective
subterm tk of t (for all k ∈ n′). This means that the elements t of
E(t, s) are determined by the combination of such elimination forms.
Therefore:

|E∗(t, s)| =
∏

k∈n′

|E∗(tk, s)|

Applying n′-many times induction hypothesis and recalling the defini-
tion of the multiplicity function, we calculate as follows:

|E∗(t, s)| =
∏

k∈n′

2mult(s,tk) = 2
∑

k∈n′ mult(s,tk) = 2mult(s,t)

q.e.d.

All Unary Elimination Forms: As an immediate consequence of the
proposition above, we provide the number of all unary elimination forms of
a standard term t as follows:

|E1(t)| =
∑

s∈Sub′(t)

(2mult(s,t) − 1)
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8.2 Standard Occurrences

With the help of the elimination forms, we are able to represent adequately
the position of occurrences and, therefore, to introduce the formal notion
of an occurrence (of terms in terms). We accompany the introduction of
occurrences with a brief discussion of some applications of this notion.

8.2.1 Introduction of Occurrences

We provide the definition of occurrences of terms in terms.

8.6 DEF (Occurrences): Let t, s ∈ T0 be two standard terms, t ∈ T be
an arbitrary nominal term.

1. occurrence: The triple o = 〈t, s, t〉 is called a (standard) occurrence of
the term s in the term t at the position t, if t is an elimination form
of t in which the term s is actually eliminated (formally, if both t /∈ T0

and t ≏ t[s]).

If t is simple (and therefore single), then o is called single; otherwise,
o is called multiple. Furthermore, if t ≏ ∗ is a nominal symbol (i.e.
o = 〈t, t, ∗〉), then o is also called trivial.

2. projections: Let o = 〈t, s, t〉 be an occurrence. We define as follows:

(a) context: The standard term t ≏ con(o) is the context of o.

(b) shape: The standard term s ≏ shape(o) is the shape of o.

(c) position: The nominal term t ≏ pos(o) is the position of o.

3. sets of occurrences: We introduce the following sets of occurrences:

(a) all occurrences: O1 = {〈t, s, t〉 ∈ T0
2 × T1; t ≏ t[s]} is the set of

all occurrences.

(b) occurrences in t: O1(t) = {o ∈ O1; con(o) ≏ t} is the set of all
occurrences with context t.

(c) occurrences of s: O1(t, s) = {o ∈ O1; con(o) ≏ t, shape(o) = s}
is the set of all occurrences with context t and shape s.
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Remarks (Occurrences):

1. terminology: In order to distinguish the occurrences, as defined above,
from their generalisations discussed in the course of these investiga-
tions, we call the former also standard occurrences; in order to simplify
terminology, we usually omit the denomination “standard”, as long as
the reference is clear from the context.

2. Notation: Sets of occurrences are notated with the label “1”; in con-
trast to the labels used for sets of nominal terms, this label refers to
the number of shapes and not to the arity of the position. This no-
tational convention is motivated by our notation with respect to the
generalisations of standard occurrences.

As long as it is meaningful, we permit also the use of additional labels
indicating further restrictions analogously to the restrictions of sets of
nominal terms.

Examples (Occurrences): We illustrate the notion of occurrences by an
example in the language LPA of arithmetics: we provide all occurrences in
the standard term t ≏ (0 + 0) + 0. First, we provide all single occurrences;
the formal occurrences are accompanied by their informal representation, in
which the positions of the intended occurrences are underlined:

• (0 + 0) + 0  〈t, 0, (∗+ 0) + 0〉

• (0 + 0) + 0  〈t, 0, (0 + ∗) + 0〉

• (0 + 0) + 0  〈t, 0, (0 + 0) + ∗〉

• (0 + 0) + 0  〈t, 0 + 0, ∗+ 0〉

• (0 + 0) + 0  〈t, (0 + 0) + 0, ∗〉

Observe that the first three occurrences have the same shape 0. The other
subterms of t determine uniquely a (single) occurrence, as the multiplicity of
these subterms in t is equal to 1. Besides the single occurrences, there are
the following multiple occurrences of 0 in t:

• (0 + 0) + 0  〈t, 0, (∗+ ∗) + 0〉

• (0 + 0) + 0  〈t, 0, (∗+ 0) + ∗〉

• (0 + 0) + 0  〈t, 0, (0 + ∗) + ∗〉

• (0 + 0) + 0  〈t, 0, (∗+ ∗) + ∗〉
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René Gazzari Elimination Forms and Occurrences

Observations (Occurrences):

1. subterm property: Due to the proposition about subterms under sub-
stitution, it is immediate that the shape s of an occurrence o in a term
t is a subterm of the context t. More formally:

shape(o) ∈ Sub′(con(o))

2. redundant information: Occurrences codify redundant informations:

(a) Context and position determine the shape.

(Due to essential equality with respect to the position.)

(b) Shape and position determine the context.

(Trivial, as the general substitution function is a function.)

But:

(c) Context and shape do not, in general, determine the position.

(Only if the multiplicity of the shape in the context equals 1.)

As discussed in the introduction, statement (c) is a necessary property
of any meaningful concept of the notion of occurrences; by statements
(a) and (b), our approach is distinguished from simpler approaches
resulting in weak theories of occurrences.

3. equivalent definitions: As a consequence of the redundancies mentioned
above, there are two equivalent alternatives of defining occurrences par-
simoniously; we decided to encode all three aspects of an occurrences,
in order to obtain an faithful formal representation of occurrences ac-
cording to our informal intuitions.

4. bijective correspondence: Due to the mentioned redundancies, there is
a bijective correspondence between occurrences in a standard term and
the unary elimination forms of this term (representing the positions of
the respective occurrences). As a consequence, a great number of the
hard problems (not solvable on the base of the recursive structure of
standard terms) are solvable with reference to the position of occur-
rences without an explicit reference to the full notion of occurrences.

5. definable occurrences: Some special occurrences are “recursively” de-
finable. For example, using the (recursively defined) complete elimi-
nation function, we can explicitly provide for all standard terms t and
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all subterms s ∈ Sub′(t) of t the occurrence o = 〈t, s, elim(t, s)〉 in
which all occurrences of the subterm s of t are intended. (Observe that
if s /∈ Sub′(t), the tuple given above is not an occurrence at all, as
elim(t, s) is, in this case, not a proper nominal term.)

8.2.2 Application: Counting Occurrences

The main advantage of a formal notion of occurrences is the possibility of
discussing intuitively clear results on formal grounds. As a first formal result,
we provide the number of occurrences in a given standard term.

8.7 Proposition (Counting Occurrences): Let t, s ∈ T0 be tow standard
terms. The following statements hold:

1. single occurrences: The number of single occurrences of the term s in
the term t equals to the multiplicity mult(s, t) of s in t. More formally:

|O1,s(t, s)| = mult(s, t)

2. occurrences: The number of arbitrary occurrences of the term s in
the term t equals to the number of possibilities to combine some single
occurrences in a (multiple) occurrence. More formally:

|O1(t, s)| = 2mult(s,t) − 1

Proof. Due to the bijective correspondence between unary elimination
forms and occurrences, we can immediately carry over the analogous results
proved with respect to unary elimination forms. q.e.d.

8.2.3 Application: The Lies-Within Relation

The paradigmatic example of a hard problem was the question, whether an
intended occurrence lies within another intended occurrence (in the same
context). Having introduced the theory of occurrences so far, we are able
to provide the necessary methods for a formal treatment of this problem:
the informal concept of an occurrence lying within another is, essentially,
captured by the less-structured relation on nominal terms. We provide the
definition of the formal lies-within relation for occurrences.

8.8 DEF (Lies-Within Relation): An occurrence o = 〈t, s, t〉 lies-within
an occurrence o′ = 〈t′, s′, t′〉 (formally, o ≤ o′), if the following both condi-
tions are satisfied:
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1. same context: Both occurrences share their contexts (formally, t ≏ t′).

2. less-structured position: The position t′ of o′ is less-structured than
the position t of o (formally, t′ ≤ t).

Example (Lies-Within Relation): We illustrate the lies-within relation
by providing all occurrences in the standard term t ≏ (0 + 0) + 0 according
to their order given by the lies-within relation.

〈t, 0, (∗+ 0) + 0〉
〈t, 0, (0 + ∗) + 0〉
〈t, 0, (∗+ ∗) + 0〉







≤ o = 〈t, 0 + 0, ∗+ 0〉

〈t, 0, (0 + 0) + ∗〉
〈t, 0, (∗+ 0) + ∗〉
〈t, 0, (0 + ∗) + ∗〉
〈t, 0, (∗+ ∗) + ∗〉







































≤ 〈t, t, ∗〉

Observe that the position ∗ of the trivial occurrence 〈t, t, ∗〉 is less-structured
than every position of an occurrence in t and that the position t ≏ ∗+ 0 of
the occurrence o is less-structured than the positions of the occurrences in
the leftmost column, as we may obtain these positions by replacing ∗ in t by
the nominal terms ∗+ 0, 0 + ∗ and ∗+ ∗, respectively.

Additionally, we provide the occurrences discussed above in informal no-
tation by underlining the intended positions.

(0 + 0) + 0
(0 + 0) + 0
(0 + 0) + 0







≤ o = (0 + 0) + 0

(0 + 0) + 0
(0 + 0) + 0
(0 + 0) + 0
(0 + 0) + 0







































≤ (0 + 0) + 0

Remarks (Lies-Within Relation):

1. shared context: We demand in the definition of the lies-within rela-
tion that related occurrences have the same context; correspondingly,
occurrences in different terms are not related by this relation, even if
their positions are comparable.

2. converse relation: Observe that in the lies-within relation the less-
structured relation is inverted: the position of a greater occurrence
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(with respect to the lies-within relation) is smaller (with respect to
the less-structured relation) than the position of a smaller occurrence
(again, with respect to the lies-within relation). Under this perspective,
the lies-within relation is converse to the less-structured relation.

3. respecting the subterm relation: The lies-within relation respects the
subterm relation: if an occurrence o lies-within an occurrence o′, then
the shape of o is a subterm of the shape of o′. More formally:

o ≤ o′ ⇒ shape(o) ∈ Sub′(shape(o′))

4. partial order: The lies-within relation is a partial order on the set
O of all occurrences. The trivial occurrences 〈t, t, ∗〉 are maximal with
respect to the lies-within relation for all standard terms t; an occurrence
〈t, s, t〉 is minimal with respect to the lies-within relation, if and only
if its shape s is atomic.

Hard Problem: The hard problem (as discussed in the introduction) of
deciding, whether an intended occurrence lies within another intended oc-
currence, is solved: in order to provide a formally justified answer, we have
to check, whether the formal occurrences representing the informally given
occurrences are related by the lies-within relation or not.

8.2.4 Excursus: Independence of Occurrences

We conclude our introduction of occurrences with a brief consideration of the
(yet) informal concept of the independence of occurrences.

Independence of Occurrences:

1. intuition: Roughly spoken, two occurrences are considered as inde-
pendent, if their positions do not interfere. We provide an example (in
informal notation) illustrating this intuition:

o = 0 + (0 + 0) ; o′ = 0 + (0 + 0) ; o′′ = 0 + (0 + 0)

While the pairs o and o′ as well as o′ and o′′ are independent, the pair
o and o′′ is not, as o′′ lies within o.

2. first approach: An obvious idea to define the independence of two
occurrences o and o′ (having a shared context) is to demand that neither
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o lies within o′ nor vice versa. Unfortunately, this idea only works fine
with respect to single occurrences.

Having multiple occurrences at hands, we easily find counterexamples
of pairs of occurrences satisfying the formal condition, but which are
not independent according to our intuitions. Investigate the following
two examples (again given in informal notation):

0 + (0 + 0) ; 0 + (0 + 0) and 0 + (0 + 0) ; 0 + (0 + 0)

In the first example, a common intended occurrence of a subterm is
marked by both positions (we would call such a pair of occurrences
weakly independent). In the second example, the second occurrence is
partially separated from and partially inside the first occurrence.

3. towards a definition: As a consequence of the existence of the coun-
terexamples, we have to dismiss the first idea to define independence.
Actually, we develop only later in the course of our investigations the
methods necessary to discuss independence adequately.
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9 Relabelling Nominal Symbols

We introduce new methods for the treatment of nominal terms, namely two
(in a way dual) functions, both allowing to relabel the nominal symbols oc-
curring in a nominal term (without changing the structure of these nominal
terms): the unification function, mapping all nominal symbols to the dis-
tinguished nominal symbol ∗, and the simplification function, mapping each
nominal symbol to different nominal symbols.

The formal treatment of the simplification function demands the intro-
duction of some new methods: first, we introduce the extended minimum
function mapping a set of natural numbers and a natural number k to the
set containing containing the first k members of the set. Via this function, we
introduce a labelling function relabelling the nominal symbols occurring in a
nominal term according to a given set of labels. Additionally, we investigate
shift operations increasing (or decreasing) the labels of all nominal symbols
in a nominal term by a fixed number.

9.1 The Unification Function

We provide the formal definition of the unification function.

9.1 DEF (Unification Function): The unification function uni : T → T

is defined recursively as follows:

1. t atomic:

uni(t) ≏

{

∗0 if t ∈ V∗

t otherwise

2. t ≏ f(t0, . . . tn) complex: uni(t) ≏ f(uni(t0), . . .uni(tn))

Remarks (Unification Function):

1. terminology: The unification function is called so, as it unifies all
nominal symbols in a nominal term turning this way proper nominal
terms into unary nominal terms.

The introduction of this function is not motivated by the concept of
unification as discussed in the theory of substitution. There unification
means to find a unifying substitution such that applying such a sub-
stitution on each member of a given set of expressions results always
in the same expression.87 In particular, we are not searching here for
such a (most general) unifier.

87Cf., for example, Baader and Siekmann [3] for more details.
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René Gazzari Relabelling Nominal Symbols

Nevertheless, we there is a relationship to the concept of unification:
subsequently, we identify via an equivalence relation nominal terms,
which are mapped by the unification function onto the same nomi-
nal term. In slightly different terminology: we identify nominal terms
unified by the unification function.

2. alternative definition: The unification function is the restriction of the
general substitution function to the constant sequence c∗ = 〈∗; k ∈ ω〉
in which each entry equals to the nominal symbol ∗. Therefore:

uni(t) ≏ t[c∗]

In particular, the unification function is a simple homomorphism, but
not an isomorphism.

3. elimination form: In the general case: as different nominal symbols
are unified by the unification function, applying this function on an
elimination form t of a standard term t does not result in an elimination
form of t. Investigate, for example, the following example:

∗0 + ∗1 ≤ 0 + 1 but uni(∗1 + ∗0) ≏ ∗0 + ∗0 6≤ 0 + 1

Basic Properties (Unification Function): The unification function has
the following properties:

1. restriction to T∗: The restriction of the unification function to the set
T∗ of standard terms and unary nominal terms is the identity function
on this set. More formally:

uni|T∗ = idT∗

(It is sufficient to mention that the constant sequence c∗ is essentially
equal to the neutral sequence e with respect to each nominal term
t ∈ T∗.)

2. idempotence: The unification function is idempotent. More formally,
for all nominal terms t:

uni(t) ≏ uni(uni(t))

(Immediate, as uni(t) ∈ T∗ for all nominal terms t ∈ T.)
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René Gazzari Relabelling Nominal Symbols

3. isomorphic nominal terms: Isomorphic nominal terns have the same
unification. More formally, for all t, s ∈ T:

t ∼= s ⇒ uni(t) ≏ uni(s)

(Induction over the structure of t.)

4. weight and dual weight: The unification function does neither change
the number of nominal symbols nor that of standard atomic terms in
a nominal term. More formally:

weight(t) = weight(uni(t)) ; weight(t) = weight(uni(t))

(Induction over the structure of t.)

9.2 The Extended Minimum Function

In order to define the simplification function, we have to introduce first the
extended minimum function, a generalisation of the minimum function. This
function maps, if it is possible, a set of natural numbers to the set of the first
k elements of this set. We provide the formal definition of this function.

9.2 DEF (Extended Minimum Function): The extended minimum
function min : p(ω) × ω → p(ω) is defined recursively (in the second argu-
ment) as follows:

1. k = 0: min0(X) = ∅

2. k + 1: mink+1(X) =

{

{min(X)} ∪mink(X\{min(X)}) if X 6= ∅
∅ otherwise

The set mink(X) contains the first k members of X (according to the well-
order of ω), if X contains at least k members; otherwise, mink(X) is equal
to the set X itself.

Examples (Extended Minimum Function): We illustrate the extended
minimum function by discussing some examples:

1. Let E = {2n; n ∈ ω} be the set of even numbers.

min2(E) = {min(E)} ∪min1(E\{min(E)})

= {0} ∪min1({2, 4, 6, . . .})

= {0} ∪ {2} ∪min0({4, 6, . . .})

= {0} ∪ {2} ∪ ∅ = {0, 2}
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2. Recall that 2 = {0, 1} and 3 = {0, 1, 2}.

min3(2) = {min(2)} ∪min2(2\{min(2)})

= {0} ∪min2({1})

= {0} ∪ {1} ∪min1(∅)

= {0} ∪ {1} ∪ ∅ = {0, 1} = 2

And:

min2(3) = {min(3)} ∪min1(3\{min(3)})

= {0} ∪min1({1, 2})

= {0} ∪ {1} ∪min0({2})

= {0} ∪ {1} ∪ ∅ = {0, 1} = 2

More generally: minn(m) = min(n,m) for all n,m ∈ ω.

9.3 The Labelling Function

With the help of the extended minimum function, the labelling function
is defined. This function relabels the nominal symbols in a nominal term
according to a given set of labels. We provide the formal definition.

9.3 DEF (Labelling Function): The labelling function λ : T× p(ω) → T

is defined recursively (in its first argument) as follows:

1. t atomic: λ(t, X) =

{

∗min(X) if t ∈ V∗ and X 6= ∅
t otherwise

2. t ≏ f(t0, . . . tn) complex: λ(t, X) = f(λ(t0, X0), . . . λ(tn, Xn))

Here, the sets Xk are defined recursively as follows for all k ∈ n′:

Xk = minwk
(X\

⋃

l<k

Xl) where wk = weight(tk)

Conception (Labelling Function): We investigate the labelling function
in some details.

1. weight: Recall that the weight function provides the number of nominal
symbols occurring in a nominal term.
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2. complex case: In the complex case, the labelling function is applied
to the direct subterms tk and a sets Xk containing as many labels as
the direct subterms have nominal symbols (provided that the set X is
sufficiently large). Furthermore, if a direct subterm tk is left of a direct
subterm tl, then the labels provided in Xk are all strictly smaller than
the labels contained in Xl.

Observe that if the initial setX of labels contains at least as many mem-
bers as the weight of the initial nominal term t on which the labelling
function is applied, then the intermediate sets Xk have all sufficiently
many members, namely exactly as many members as nominal symbols
occur in the respective subterm.

3. atomic case: In the typical case, the nominal term t is a nominal
symbol and the respective set X a singleton or the nominal term t is
a standard term and the respective set X empty. In the first typical
case, the label of the nominal symbol is replaced by the label contained
in X, in the latter case nothing happens.

We discuss the unintended cases: it is possible that the set of labels
contains more than one member, if we apply the labelling function
directly on an atomic nominal term. In this case, a nominal symbol
becomes relabelled with the smallest label and the standard terms still
remain unchanged.

On the other hand, if the initial set X of labels is not sufficiently large,
then it may also happen, that the labelling function is applied on an
atomic nominal term and the empty set. In this case, the the nominal
term also remains unchanged.

4. homomorphisms: In the typical case (if t is not simple and if X is
sufficiently large), the same nominal symbol ∗k is mapped by the la-
belling function to different nominal symbols. As a consequence, an
application of the labelling function cannot be replaced, in general, by
an application of a homomorphism.

5. standard terms: The labelling function is invariant on standard terms.

Putting the pieces together: if k = min(|X|,weight(t)), then λ(t, X) is the
result of replacing the labels of the first k nominal symbols in t (from the
left to the right) by the first k labels contained in X.
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Examples (Labelling Function): We illustrate the labelling function by
some examples.

1. Let t ≏ (∗+ ∗) + ∗.

λ(t, ω) ≏ λ(∗+ ∗,min2(ω)) + λ(∗,min1(ω\min2(ω)))

≏ λ(∗+ ∗, {0, 1}) + λ(∗, {2})

≏ (λ(∗, {0}) + λ(∗, {1})) + λ(∗, {2})

≏ (∗0 + ∗1) + ∗2

2. Let t ≏ (∗0 + ∗5) + ∗0.

λ(t, {5}) ≏ λ(∗+ ∗, {5}) + λ(∗, ∅)

≏ (λ(∗, {5}) + λ(∗, ∅)) + λ(∗, ∅)

≏ (∗5 + ∗5) + ∗0

3. Let t ≏ ∗+ (∗+ ∗); recall that E = {2n; n ∈ ω}.

λ(t,E) ≏ λ(∗, {0}) + λ(∗+ ∗, {2, 4})

≏ λ(∗, {0}) + (λ(∗, {2}) + λ(∗, {4}))

≏ ∗0 + (∗2 + ∗4)

9.4 The Shift Operations

We introduce the shift operations for nominal terms increasing and decreasing
uniformly the labels of all nominal symbols in a nominal term.

9.4 DEF (Shift Operations): Let n ∈ ω be arbitrary.

1. right shift: The n-th right-shift operation ·+n : T → T is defined recur-
sively as follows:

(a) t atomic: t+n ≏

{

∗k+n if t ≏ ∗k
t otherwise

(b) t ≏ f(t0, . . . tn) complex: t+n ≏ f(t0
+n, . . . tn

+n)

2. left shift: The n-th left-shift operation ·−n : T → T is defined recursively
as follows:

(a) t atomic: t−n ≏







∗k if t ≏ ∗k+n

∗0 if t ≏ ∗k for k ∈ n
t otherwise

(b) t ≏ f(t0, . . . tn) complex: t−n ≏ f(t0
−n, . . . tn

−n)
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Remarks (Shift Operations):

1. simple homomorphism: Immediately by definition, the shift operations
are simple homomorphisms. Besides the trivial case n = 0, the right-
shift operation is not surjective, the left-shift operation is not injective.
Therefore, these shift-operation are no isomorphisms. Nevertheless,
the left-shift operations are right-inverse to the respective right-shift
operations. More formally, for arbitrary number n and all nominal
terms t:

(t+n)
−n
≏ t

2. alternative definition: The n-th right-shift operation is the restriction
of the general substitution function to the following sequence of nominal
symbols:

e+n = 〈∗k+n; k ∈ ω〉

This means that t+n ≏ t[e+n] for all nominal terms t and all natural
numbers n ∈ ω.

The n-th left-shift operation is the restriction of the general substitution
function to the following sequence of nominal symbols:

e−n = 〈∗k−̇n; k ∈ ω〉

Here, −̇ is the (recursively definable) total subtraction on ω, where
results below 0 are replaced by 0.

3. isomorphism: Every application of a right-shift operation can be re-
placed by an application of a suitable isomorphism. In other words:
there is an isomorphisms F for every nominal term t and every natural
number n such that:

F (t) ≏ t+n

Investigate the following set for m = rank(t):

S = {〈∗k, ∗k+n〉; k ∈ rank(t)} ∪ {〈∗k+m, ∗k〉; k ∈ n}

The function S is a permutation of the set {∗k; k ∈ rank(t) + n}.
This function S is easily extended to a bijective function F0 on V∗.
The latter function induces an isomorphism F essentially equal to the
n-th right-shift operation with respect to the nominal term t.

It is not possible to provide uniformly (independently of the nominal
term under discussion) an isomorphism for a right-shift operation (be-
sides the trivial case n = 0).
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4. notation: Occasionally, we omit in our notation the natural number
n specifying the concrete shift operation. We may read t+ as “the
nominal term t in which the labels of its nominal symbols are suitably
increased”; analogously, with respect to the left-shift operations. This
is done in cases, where n is clear from the context or when we are not
interested in the exact specification.

9.5 The Simplification Function

The simplification function is defined as an application of the labelling func-
tion on a sufficiently large set of labels. We provide the formal definition.

9.5 DEF (Simplification Function): We define the simplification func-
tion simp : T → T as follows for all nominal terms t ∈ T:

simp(t) ≏ λ(t,weight(t))

Remarks (Simplification Function): Our observations about the la-
belling function are easily carried over to the special case of the simplification
function.

1. result: As we supply sufficiently many labels, an application of the
simplification function results in a simple nominal term.

As the nominal symbols are sorted in simp(t) ≏ λ(t,weight(t)), the
simplification function results in a normal nominal term.

2. alternative definition: We may use any superset of the set weight(t)
in the definition of the simplification function. In particular, we have

simp(t) ≏ λ(t, ω)

3. homomorphisms: The simplification function is not a homomorphism.

In the next proposition, we relate the simplification of a complex nominal
term with the simplifications of its direct subterms.

9.6 Proposition (Complex Simplified Nominal Terms): The following
equation holds for all complex nominal terms t ≏ f(t0, . . . tn) ∈ T:

simp(t) ≏ f(simp(t0)
+n0 , . . . simp(tn)

+nn)
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Here, the natural numbers nk specifying the shift operations are defined
recursively as follows (for all k ∈ n′):

nk =
∑

l<k

weight(tl)

Proof. It is sufficient to mention that the simplification simp(tk) of the
direct subterms tk are all normal and simple; this means that each of their
nominal symbols is sorted from the left to the right according to the natural
numbers. In order to simplify the complex nominal term t, we can simplify
all direct subterms and then shift their labels as many steps as there are
nominal symbols left of them in the complex nominal term. q.e.d.

Remarks (Complex Simplified Nominal Terms):

1. similarity preserving: The proposition above illustrates that the sim-
plification function is not structure preserving (we have to shift nomi-
nal terms in the direct subterms), but still well-behaved, as the main
function symbol is preserved; this property could be called similarity
preserving.

2. relevance: From a technical point of view, the proposition above is
relevant and useful, as it allows to carry over the recursive structure
of nominal terms to their simplifications. The latter means: via the
proposition above, we are able to prove statements about simplified
nominal terms by induction over simplified nominal terms.

We provide the basic properties of the simplification function.

Basic Properties: The simplification function has the following properties:

1. identity: If t is a standard term, then t ≏ simp(t). Otherwise, we
have that t ≏ simp(t), if and only if t is simple and normal.

(Induction over the structure of t.)

2. idempotence: The simplification function is idempotent. More for-
mally:

simp(simp(t)) ≏ simp(t)

(It is sufficient to mention that simp(t) is simple and normal.)
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3. absorption: The simplification function absorbs the unification func-
tion and vice versa. More formally:

simp(uni(t)) ≏ simp(t) ; uni(simp(t)) ≏ uni(t)

(Induction over the structure of t.)

4. isomorphic nominal terms: If t and s are isomorphic nominal terms,
then their simplifications are equal. More formally:

t ∼= s ⇒ simp(t) ≏ simp(s)

(Isomorphism of nominal terms implies that the respective unifications
are equal. Absorption implies that the simplifications of the respective
unifications are equal.)

5. weight and dual weight: The simplification function does neither change
the number of nominal symbols nor that of standard atomic terms in
a nominal term. More formally:

weight(t) = weight(simp(t)) ; weight(t) = weight(simp(t))

(Induction over the structure of t.)

In contrast to the unification function, the simplification function preserves
the property of being an elimination form.

9.7 Proposition (Simplification of Elimination Forms): Let t ∈ T and
t ∈ T0. If t is an elimination form of t, then also simp(t). More formally, if
t ≤ t, then simp(t) ≤ t.
Proof. By induction over the structure of t.

1. t atomic: If t is an atomic standard term, then t ≤ t implies t ≏ t.
Furthermore, simp(t) ≏ t. Therefore, simp(t) ≤ t.

Otherwise, t ∈ V∗ is a nominal symbol. In this case, t ≤ t for all
standard terms t. The same holds for simp(t) ≏ ∗.

2. t ≏ f(t0, . . . tn) complex: t ≤ t implies that t ≏ f(t0, . . . tn) is sim-
ilar to t. In particular, we have tk ≤ tk for all k ∈ n′. Applying
induction hypothesis n′-many times, we obtain simp(tk) ≤ tk for all
k ∈ n′. The latter means that there are n′-many sequences sk of length
place(simp(tk)) actually eliminated in simp(tk). Recall:

simp(t) ≏ f(simp(t0)
+, . . . simp(tn)

+)
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Here, simp(tk)
+ means that the nominal symbols of simp(tk) are

suitably shifted. As a consequence:

simp(t)[s0 ◦ . . . sn] ≏ t

Here, ◦ denotes the concatenation of finite sequences. The latter means
that simp(t) is, indeed, an elimination form of t. q.e.d.

Remarks (Simplification of Elimination Forms):

1. generalisation: The proposition above is the special case of a more
general observation:

t ≤ s ⇒ simp(t) ≤ s and t ≤ uni(s)

In general, the other inequalities do not hold. More formally:

t ≤ s 6⇒ t ≤ simp(s) or uni(t) ≤ s

Investigate the following both examples:

∗+ ∗ ≤ ∗+ ∗ but ∗+∗ 6≤ ∗0 + ∗1 ≏ simp(∗+ ∗)

∗0 + ∗1 ≤ ∗0 + ∗1 but uni(∗0 + ∗1) ≏ ∗+ ∗ 6≤ ∗0 + ∗1

9.6 Inverting a Simplification

As mentioned before, the simplification function is not a homomorphism.88

Nevertheless, the situation is different, if we investigate the inverse direction:
there is a simple homomorphism mapping the simplification of a nominal
term to the nominal term itself.

9.8 Proposition (Preimage of the Simplification): Let t ∈ T arbitrary.
There is a simple homomorphism F such that F (simp(t)) ≏ t.
Proof. By induction over the structure of t.

1. t ∈ V∗ atomic: Let t ≏ ∗k. The constant homomorphism F induced
by the function F0 : ∗l 7→ ∗k is simple and satisfies the demanded
condition F (simp(t)) ≏ F (∗) ≏ ∗k.

88Even applications of the simplification function cannot be replaced, in general, by a
homomorphism.
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2. t /∈ V∗ atomic: As t is a standard term, every simple homomorphism,
in particular the identity function, satisfies the demanded condition.

3. t ≏ f(t0, . . . tn) complex: Applying the induction hypothesis n-many
times, we obtain simple homomorphisms Fk satisfying the condition
Fk(simp(tk)) ≏ tk for all k ∈ n′. Furthermore, we have:

simp(t) ≏ f(simp(t0)
+, . . . simp(tn)

+)

Recall that ·+ denotes a suitable shift of the labels of nominal symbols.

By definition of the simplification function, the free places of simp(t)
are the disjoint union of the free places of its direct subterms. More
formally:

place(simp(t)) =
˙⋃

k∈n′

place(simp(tk)
+)

We define a homomorphism F−
k as the composition of a suitable left-

shift and the respective homomorphism Fk for every k ∈ n′ such that
the following condition is satisfied for all k ∈ n′:

F−
k (simp(tk)

+) ≏ F (simp(tk))

Having these modified functions F−
k at hands, we define a function F0

on the set of all nominal symbols as follows:

F0(∗l) ≏

{

F−
k (∗l) for k satisfying l ∈ place(simp(tk)

+)
∗0 otherwise, if there is no such k

The function F0 is well-defined, as the respective sets of free places
are disjoint. Furthermore, F0 induces canonically a homomorphism F .
By construction, the homomorphism F is simple and essentially equal
to F−

k with respect to simp(tk)
+ for all k ∈ n′. Therefore, we may

calculate as follows:

F (simp(t)) ≏ f(F (simp(t0)
+), . . . F (simp(tn)

+))

≏ f(F−
0 (simp(t)+), . . . F−

n (simp(tn)
+))

≏ f(F0(simp(t)), . . . Fn(simp(tn)))

≏ f(t0, . . . tn) ≏ t

q.e.d.
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10 Relations Beyond Homomorphisms

On the base of the methods discussed in the last section, we introduce two
new binary relations on the set of nominal terms, namely the equivalence of
nominal terms and the covered-by relation (in a weak and in a strong version).

10.1 The Equivalence of Nominal Terms

The equivalence of nominal terms identifies nominal terms, which differ only
with respect to the labels of their nominal symbols. We provide the formal
definition of the equivalence of nominal terms.

10.1 DEF (Equivalence of Nominal Terms): Let t, s ∈ T. The nominal
terms t and s are equivalent (formally, t ≡ s), if their unifications are equal
(formally, if uni(t) ≏ uni(s)).

Remarks (Equivalence of Nominal Terms):

1. alternative characterisation: Equivalently, we could have defined the
equivalence of nominal terms with respect to the simplification func-
tion. More formally:

t ≡ s ⇔ simp(t) ≏ simp(s)

(Almost immediate, due to absorption.)

2. direct subterms: Two complex nominal terms t and s are equivalent,
if and only if the following both conditions are satisfied:

(a) similarity: t ≏ f(t0, . . . tn) ∼ f(s0, . . . sn) ≏ s

(b) subterms: tk ≡ sk for all k ∈ n′

(Essentially, as uni is a homomorphism.)

3. equivalence relation: It is easily checked that the equivalence of nomi-
nal terms is, indeed, an equivalence relation.

(Essentially, as syntactic equality is an equivalence relation.)

4. normal form: There are two distinguished representatives in each
equivalence class with respect to the equivalence of nominal terms,
namely the unification and the simplification of any element in the
respective class. More formally, for all nominal terms t:

[t]≡ = [uni(t)]≡ = [simp(t)]≡
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Observe that both representatives of the equivalence of nominal terms
are also normal with respect to the isomorphism of nominal terms. The
converse does not hold: there are normal nominal terms (with respect
to the isomorphism of nominal terms) such that they are no canonical
representatives of the equivalence of nominal terms. Investigate, as an
example, the normal nominal term t ≏ ∗0 + (∗1 + ∗0):

uni(t) ≏ ∗0 + (∗0 + ∗0) 6≏ t 6≏ ∗0 + (∗1 + ∗2) ≏ simp(t)

This means that the isomorphism of nominal terms is a finer equivalence
relation on the set of nominal terms than the equivalence of nominal
terms.

5. restriction to T∗: The restriction of the equivalence of nominal terms
to the set T∗ of standard terms and unary nominal terms is the identity
relation on nominal terms. More formally, for all t, s ∈ T∗:

t ≡ s ⇔ t ≏ s

(Immediate, as uni|T∗ = idT∗ .)

Observe that if we use the simplification function for identifying equiv-
alent nominal terms, then we have to deal with n-ary nominal terms,
where n is equal to the multiplicity of the nominal symbol ∗ in the
respective nominal term. Nevertheless, in the restriction to T∗ only
unary nominal terms are related (even if this is decided outside of T∗).

6. recursive characterisation: Our observation with respect to the direct
subterms of equivalent complex nominal terms motivates the following
recursive characterisation of equivalent nominal terms: two nominal
terms t and s are equivalent, if and only if one of the following condi-
tions is satisfied:

(a) t ∈ V∗ atomic: The nominal tern s is a nominal symbol (s ∈ V∗).

(b) t /∈ V∗ atomic: The nominal term s is equal to t (s ≏ t).

(c) t ≏ f(t0, . . . tn): The nominal term s i s similar to t and the
respective direct subterms are already equivalent. Formally: there
are nominal terms sk ∈ T (for k ∈ n′) satisfying the following both
conditions:

s ≏ f(s0, . . . sn) and tk ≡ sk for all k ∈ n′

(Straightforward induction over the structure of t.)
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Conceptual Remark (Equivalence of Nominal Terms): We discuss
the advantages of the different characterisations of the equivalence of nominal
terms:

1. unification: The unification function is a (very simple) homomorphism;
using the unification function, we can easily check, whether two nominal
terms are equivalent. (To calculate the simplification function is more
involved.)

2. simplification function: The advantage of the simplification function
is that, under a certain perspective, no information is lost under an ap-
plication of this function.89 This property of the simplification function
is of use in theoretical discussions.

3. recursive characterisation: The recursive characterisation of the equiv-
alence of nominal terms corresponds, essentially, to the characterisation
in terms of the unification function. But sometimes it is convenient to
have a recursive characterisation at hands allowing inductions over the
structure of equivalent nominal terms.

Furthermore, the recursive characterisation is interesting from a theo-
retical point of view: we introduce subsequently a number of relations
having a definition similar to this characterisation. The different prop-
erties of these relations correspond to variations of the atomic clauses.

Observations (Equivalence of Nominal Terms): We provide some
observations about the equivalence of nominal terms.

1. weight functions: The weight functions are compatible with the equiv-
alence of nominal terms. More formally, for all nominal terms t and s

satisfying t ≡ s:

weight(t) = weight(s) ; weight(t) = weight(s)

(Straightforward induction over the structure of t using the recursive
characterisation of the equivalence of nominal terms.)

89The concept of an information loss is understood here informally and is associated with
the idea of inverting an application of the respective function: to obtain the preimage of an
application of the unification function, we have to use methods beyond homomorphisms,
whereas the preimage of an application of the simplification function can be given via a
simple homomorphism. This phenomenon corresponds to the observation that, for exam-
ple, the property of being an elimination form of a standard term is preserved under the
application of the simplification function, whereas it may be lost under the application of
the unification function.
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2. simple homomorphism: If there is a simple homomorphism F such
that F (t) ≏ s, then t and s are equivalent. More formally:

∃F ∈ Homs(T) : F (t) ≏ s ⇒ t ≡ s

(Straightforward induction over t.)

Observe that the other direction does not hold in general. Investigate,
for example, the nominal terms t ≏ ∗0+(∗0+∗1) and s ≏ ∗0+(∗1+∗1).
There is no homomorphism F at all such that F (t) ≏ s. But we have
t ≡ s, as uni(t) ≏ uni(s).

In the next proposition, we show that if the nominal term t is simple, then
the other direction of our observation holds.

10.2 Proposition (Criterion: Simple Homomorphism): Let t, s ∈ T.
If t is simple, then the following statement holds: if t ≡ s, then there is a
simple homomorphism F ∈ Homs(T) such that F (t) ≏ s.
Proof. By induction over the structure of the simple homomorphism t:

1. t ∈ V∗ atomic: t ≡ s implies that s ∈ V∗. Obviously, there is
F ∈ Homs(T) such that F (t) ≏ s.

2. t /∈ V∗ atomic: t ≡ s means that t ≏ s. Obviously, there is F ∈
Homs(T) such that F (t) ≏ s.

3. t ≏ f(t0, . . . tn): t ≡ s implies that s ≏ f(s0, . . . sn) and tk ≡ sk for
all k ∈ n′. Applying n′-many times induction hypothesis, we obtain
simple homomorphism Fk such that F (tk) ≏ sk. Observe that there is
exactly one l ∈ n′ such that ∗k ∈ place(tl) for all k ∈ place(t), as t
is simple. Therefore, the following definition of a function F̂ on the set
of all variables is well-defined:

F̂ : ∗k 7→

{

Fl(∗k) for l with k ∈ place(tl), if k ∈ place(t)
∗k otherwise

F̂ induces canonically a homomorphism F . By construction, F is sim-
ple and F is essentially equal to Fk with respect to tk for all k ∈ n′.
Therefore:

F (t) ≏ f(F (t0), . . . F (tn))

≏ f(F0(t0), . . . Fn(tn)) ≏ f(s0, . . . sn) ≏ s

q.e.d.
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10.2 The Covered-By Relation

A nominal term is covered by another nominal term, if the latter is the result
of replacing (locally) some nominal symbols in the former nominal term by
some standard terms. As this replacement is independently of the concrete
labels of the respective nominal symbols, the covered-by relation corresponds
to the equivalence of nominal terms. We discuss first a weak version of this
relation, where the nominal symbols, which are not covered by a standard
term, may be different in both nominal terms.

10.2.1 Introduction of the Covered-By Relation

We provide the definition of the covered-by relation.

10.3 DEF (Covered-By Relation): Let t, s ∈ T. The nominal term t

is covered by the nominal term s (formally, t ≪ s), if one of the following
conditions is satisfied:

1. t ∈ V∗ atomic: s ∈ V∗ or s ∈ T0

2. t /∈ V∗ atomic: s ≏ t

3. t ≏ f(t0, . . . tn) complex: If the following both conditions are satisfied:

(a) t and s are similar. Formally: there are nominal terms sk ∈ T

(for k ∈ n′) such that s ≏ f(s0, . . . sn).

(b) The direct subterms of t are covered by the respective direct sub-
terms of s. Formally, for all k ∈ n′: tk ≪ sk for all k ∈ n′.

Remarks (Covered-By Relation):

1. local replacement: Due to clause (1) of the definition of the covered-by
relation, nominal symbols in the covered nominal term can be covered
by an arbitrary nominal symbol or by a standard term. The latter
corresponds to our intuition that some nominal symbols of the covered
nominal term are replaced locally by some standard terms.

This local replacement can be understood as a substitution as given by
the general substitution function, but not applied on the full nominal
term, but locally (directly to the respective nominal symbol). This
“locality” corresponds to the fact that we do not consider the labels
of the nominal symbols. Subsequently, we use the informal expression
“local” to refer to similar phenomena.
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2. less-structured relation: Besides that the covered-by relation is a re-
lation beyond homomorphisms (as the labels of the covered nominal
symbols are neglected), the covered-by relation reminds on the less-
structured relation.

Nevertheless, there is a conceptional difference to the less-structured
relation: if we would define the covered-by relation in full analogy to
the less-structured relation, we would have to allow arbitrary nominal
terms to cover a nominal symbol. By restricting these nominal terms
to standard terms (and nominal symbols), the covered-by relation be-
comes a hybrid between the less-structured relation and the notion of
elimination forms (which are nominal terms less-structured than stan-
dard terms).

3. elimination forms: If a nominal term t is an elimination form of a
standard term t, then t is covered by t. More formally:

t ≤ t ⇒ t ≪ t

The converse direction does not hold in the general case. Investigate,
for example:

∗+ ∗ ≪ 0 + 1 but ∗+∗ 6≤ 0 + 1

This clash of nominal symbols can be resolved by the use of the sim-
plification function: if t is covered by s, then the simplification of t is
less structured than s (and even less structured than the unification of
s). More formally:

t ≪ s ⇒ simp(t) ≤ uni(s)

10.2.2 Criterion for the Covered-By Relation

We provide two equivalent conditions for the the covered-by relation based
on the unification function and on the simplification function.

10.4 Proposition (Criterion - Covered-By Relation): The following
three statements are equivalent for all nominal terms t, s ∈ T.

1. covered-by: t ≪ s

2. unification: uni(t) ≪ uni(s)

3. simplification: simp(t) ≪ simp(s)
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René Gazzari Relations Beyond Homomorphisms

Proof. We first prove the equivalence of the statements (1) and (2) in
parallel, by induction over the structure of t.

1. t ∈ V∗ atomic: uni(t) ≏ ∗ ∈ V∗.

Let t ≪ s. By definition, s ∈ T0 or s ∈ V∗. We have uni(s) ≏ s ∈ T0

or uni(s) ≏ ∗ ∈ V∗. As a consequence, uni(t) ≪ uni(s).

Let t 6≪ s. As t ∈ V∗, s /∈ T0 ∪V∗. Therefore, s is a complex proper
nominal term and, therefore, uni(s) /∈ T0 ∪ V∗. As a consequence,
uni(t) 6≪ uni(s).

2. t /∈ V∗ atomic: uni(t) ≏ t /∈ V∗, but atomic.

If t ≪ s, then t ≏ s by definition of the covered-by relation. Therefore,
uni(s) ≏ uni(t). As a consequence, uni(t) ≪ uni(s).

If t 6≪ s, then t 6≏ s. Assume uni(s) ≏ uni(t) ≏ t. This would imply
that s ≏ t, which is already excluded. Therefore uni(s) 6≏ uni(t). As
a consequence, uni(t) 6≪ uni(s).

3. t ≏ f(t0, . . . tn) complex:

Let t ≪ s. First, we obtain that t ∼ s ≏ f(s0, . . . sn). As the
unification function is structure preserving, also uni(t) ∼ uni(s).

Second, tk ≪ sk for all k ∈ n′. Applying n′-many times induction
hypothesis, we obtain uni(tk) ≪ uni(sk) for all k ∈ n′. As the homo-
morphism uni is structure preserving, these are the direct subterms of
uni(t) and of uni(s), respectively. Therefore, uni(t) ≪ uni(s).

Let uni(t) ≪ uni(s). As t is complex, uni(t) is also complex. There-
fore, uni(t) ∼ uni(s). As uni is structure preserving, we also obtain
that t ∼ s ≏ f(s0, . . . sn).

Furthermore, the direct subterms of uni(t) are covered by the re-
spective direct subterms of uni(s). As uni is structure preserving,
these direct subterms are uni(tk) and uni(sk). The latter means that
uni(tk) ≪ uni(sk) for all k ∈ n′. Applying n′-many times induction
hypothesis, we obtain tk ≪ sk for all k ∈ n′. As a consequence, t ≪ s.

We show the equivalence between (1) and (3):

“⇒” Let t ≪ s. As uni absorbs simp and with the equivalence shown
above, we obtain:

uni(simp(t)) ≏ uni(t) ≪ uni(s) ≏ uni(simp(s))

Applying a second time the equivalence proved above, we obtain that
simp(t) ≪ simp(s).
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“⇐” Let simp(t) ≪ simp(s). Similarly as above, we obtain:

uni(t) ≏ uni(simp(t)) ≪ uni(simp(s)) ≏ uni(s)

As a consequence, t ≪ s.

q.e.d.

10.2.3 Partial Order modulo Equivalence

In the next proposition, we show that the covered-by relation is a partial
order modulo the equivalence of nominal terms.

10.5 Proposition (Partial Order): The covered-by relation is a partial
order modulo the equivalence of nominal terms on the set of nominal terms.
A nominal term is maximal with respect to the covered-by relation (modulo
the equivalence of nominal terms), if and only if it is a standard term, and
minimal, if and only if its dual weight equals to zero.
Proof. We check the relevant statements.

1. reflexive: We have to show that if t ≡ s, then t ≪ s.

First, we observe t ≪ t for all nominal terms t ∈ T (⋆) (trivial induc-
tion).

Let t ≡ s, which means uni(t) ≏ uni(s). By (⋆), uni(t) ≪ uni(s).
By the criterion for the covered-by relation (unification), we also have
t ≪ s.

2. maximal terms: First, we show that standard terms are maximal.
The latter means that if t ≪ s, then t ≡ s for all standard terms
t and nominal terms s. In order to show this statement, we prove
(by induction over the structure of the standard term t) the stronger
statement that t≪ s implies t ≏ s.

(a) t atomic: t≪ s implies by definition t ≏ s.

(b) t ≏ f(t0, . . . tm) complex: t ≪ s implies first that t ∼ s, which
means that s ≏ f(s0, . . . sn) for some nominal terms sk. Further-
more, we have that tk ≪ sk for all k ∈ n′. Applying n′-many
times induction hypothesis, we obtain that tk ≏ sk for all k ∈ n′.
As t ∼ s, the latter implies t ≏ s.
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We can conclude immediately t ≡ s, as t ≏ s implies uni(t) ≏ uni(s).

Second, we show by induction that proper nominal terms are not max-
imal. This means that if t /∈ T0, then there is a nominal term s such
that t ≪ s and t 6≡ s.

(a) t atomic: t /∈ T0 implies that t ∈ V∗. Investigate, for example,
the nominal term s ≏ v0 ∈ T0. By definition of the covered-by
relation, t ≪ s. As uni(t) ≏ ∗ 6≏ v0 ≏ uni(s), we also have that
t 6≡ s.

(b) t ≏ f(t0, . . . tn): Let t /∈ T0. Therefore, there is k ∈ n′ such
that tk /∈ T0. By induction hypothesis, we obtain that there is a
nominal term sk such that both tk ≪ sk and tk 6≡ sk.

Let sl ≏ tl for all k 6= l ∈ n′ and s ≏ f(s0, . . . sn).

First, we observe that t ∼ s. Furthermore, we obtain by reflexiv-
ity (statement (1)) that tl ≪ sl for all k 6= l ∈ n′. As we also have
tk ≪ sk, we can conclude that t ≪ s. Finally, we have t 6≡ s, as
tk 6≡ sk.

By both inductions, we have shown that a nominal term t is maxi-
mal with respect to the covered-by relation (modulo the equivalence of
nominal terms), if and only if t is a standard term.

3. anti-symmetric: We have to show that if t ≪ s and s ≪ t, then
t ≡ s. This is proved by an induction over the structure of t.

(a) t ∈ V∗ atomic: t ≪ s implies that s ∈ V∗ or s ∈ T0. The
second case is excluded, as s ≪ t would imply, by statement (2),
the contradiction that t ≏ s ∈ T0. Therefore, s ∈ V∗. The latter
implies uni(t) ≏ ∗ ≏ uni(s), which means that t ≡ s.

(b) t /∈ V∗ atomic: t ≪ s implies t ≏ s. We obtain immediately
that uni(t) ≏ uni(s), which means that t ≡ s.

(c) t ≏ f(t0, . . . tn) complex: Let t ≪ s and s ≪ t. By t ≪ s, we
obtain t ∼ s, which means that s ≏ f(s0, . . . sn) for some suitable
nominal terms sk. Furthermore, by t ≪ s and s ≪ t we obtain
both tk ≪ sk and sk ≪ tk for all k ∈ n′. Applying n′-many times
induction hypothesis, we obtain tk ≡ sk for all k ∈ n′. The latter
implies t ≡ s, as t ∼ s.
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4. transitive: We show by induction over the structure of t that if t ≪ s

and s ≪ r, then t ≪ r.

(a) t ∈ V∗ atomic: Let t ≪ s and s ≪ r. As t ∈ V∗, we have that
s ∈ V∗ or s ∈ T0.

• If s ∈ V∗: s ≪ r implies that r ∈ V∗ or r ∈ T0. In both
subcases, t ≪ r.

• If s ∈ T0: by maximality of standard terms (statement (2)),
s ≪ r implies that s ≏ r. Therefore, t ≪ r.

In all cases, we have shown that t ≪ r.

(b) t /∈ V∗ atomic: Let t ≪ s and s ≪ r. As t /∈ V∗, we have that
t ∈ T0. Due to the maximality of standard terms (statement (2)),
t ≪ s implies that t ≏ s. Therefore, t ≏ s ≪ r.

(c) t ≏ f(t0, . . . tn) complex: Let t ≪ s and s ≪ r. First, we obtain
that t ∼ s and s ∼ r. This means that there are suitable nominal
terns sk and rk such that:

s ≏ f(s0, . . . sn) ; r ≏ f(r0, . . . rn)

In particular, t ∼ r.

Furthermore, we have tk ≪ sk and sk ≪ rk for all k ∈ n′. Ap-
plying n′-many times induction hypothesis, we also have tk ≪ sk

for all k ∈ n′. Therefore, t ≪ r.

5. minimal terms: First, we show by induction that nominal terms with
dual weight zero are minimal. The latter means that if both t ≪ s

and weight(s) = 0, then t ≡ s for all nominal terms t and s.

(a) s atomic: weight(s) = 0 implies that s ∈ V∗. As t ≪ s,
we obtain by case distinction t ∈ V∗. Therefore, we have that
uni(t) ≏ ∗ ≏ uni(s), which means that t ≡ s.

(b) s ≏ f(s0, . . . sn) complex: Let t ≪ s. We can exclude the case
that t ∈ V∗, as s /∈ T0 (as weight(s) = 0). We can also exclude
the case that t /∈ V∗, but atomic (as in this case t ≏ s, which
is a contradiction). Therefore, t is complex. t ≪ s implies that
t ∼ s, which means that t ≏ f(t0, . . . tn) for suitable nominal
terms tk. Furthermore, we have that tk ≪ sk for all k ∈ n′.

As weight(s) = 0, we have that weight(sk) = 0 for all k ∈ n′.
Therefore, we may apply n′-many times induction hypothesis and
obtain that tk ≡ sk for all k ∈ n′. Therefore, t ≡ s.
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Next, we show, again by induction, that nominal terms with non-zero
dual weight are not minimal. This means that if weight(s) 6= 0, then
there is a nominal term t such that t 6≡ s and t ≪ s for all nominal
terms s.

(a) s atomic: weight(s) 6= 0 means that s /∈ V∗. Therefore, s ∈ T0

is a standard term. The nominal term t ≏ ∗ satisfies both that
t ≪ s and t 6≡ s (the latter, as their unifications are different).

(b) s ≏ f(s0, . . . sn) complex: If s ∈ T0, then t ≏ ∗ satisfies the
demanded conditions.

Otherwise, s /∈ T0 is a proper nominal term. As weight(s) 6= 0
there is k ∈ n′ such that weight(sk) 6= 0. By induction hypothe-
sis, there is a nominal term tk such that both tk ≪ sk and tk 6≡ s.

Let tl ≏ sl for all k 6= l ∈ n′ and t ≏ f(t0, . . . tn). By construc-
tion, we have t ∼ s. As tk 6≡ sk, we have t 6≡ s. By reflexivity of
the covered-by relation, we have tl ≪ sl for all k 6= l ∈ n′. As we
also have that tk ≪ sk, we can conclude t ≪ s.

By both inductions, we have shown that a nominal term s is mini-
mal with respect to the covered-by relation (modulo the equivalence of
nominal terms), if and only if weight(s) = 0. q.e.d.

10.2.4 Chains with Respect to the Covered-By Relation

In the next proposition, we show that the strict version of the covered-by re-
lation is compatible with the dual weight function and conversely compatible
with the weight function. As an immediate consequence, the weight func-
tions turn out to be a useful tool for the discussion of chains with respect to
the covered-by relation.

10.6 Proposition (Weight of Covered Nominal Terms): Let t, s ∈ T

be two nominal terms such that both t ≪ s and t 6≡ s. The following both
statements hold:

1. decreasing weight: weight(t) > weight(s).

2. increasing dual weight: weight(t) < weight(s).
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Proof. We prove both statements in parallel by induction over the structure
of the nominal term t.

1. t atomic: t ≪ s and t 6≡ s means that t ∈ V∗ and s ∈ T0. Therefore:

weight(t) = 1 > 0 = weight(s) ; weight(t) = 0 < weight(s)

Observe that we only know that weight(s) 6= 0, as the nominal term
s can be complex.

2. t ≏ f(t0, . . . tn) complex: Let t ≪ s and t 6≡ s. As t ≪ s, we have
both that t ∼ s ≏ f(s0, . . . sn) for some suitable nominal terms sk and
tk ≪ sk for all k ∈ n′.

t 6≡ s means that the respective unifications are not equal, and there-
fore, there is k ∈ n′ such that tk 6≡ sk. By induction hypothesis, we
obtain:

weight(tk) > weight(sk) ; weight(tk) < weight(sk)

Furthermore, for all k 6= l ∈ n′:

weight(tk) ≥ weight(sk) ; weight(tk) ≤ weight(sk)

(Equality holds, if the respective pairs of nominal terms are equivalent,
otherwise we obtain strict inequality by induction hypothesis.)

Altogether:

weight(t) =
∑

k∈n′

weight(tk) >
∑

k∈n′

weight(sk) = weight(s)

weight(t) =
∑

k∈n′

weight(tk) <
∑

k∈n′

weight(sk) = weight(s)

q.e.d.

Remarks (Weight of Covered Terms):

1. minimal and maximal terms: As a corollary of the proposition above,
we obtain that:

• Standard terms t are maximal, as their weight equals to zero.

• Nominal terms t having no standard terms as atomic subterms
are minimal, as their dual weight equals to zero.

Observe that we proved already a stronger statement in the proposition
about the covered-by relation.
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2. chains: Another immediate consequence of the proposition above is
that every chain t = 〈tk; k ∈ ω〉 with respect to the covered-by relation
becomes stationary (modulo the equivalence of nominal terns). More
precisely:

(a) ascending chains: If t is an ascending chain (this means tk ≪ tk′

for all k ∈ ω), then there is k ∈ ω such that tk ≡ tl for all l ∈ ω
such that k < l.

(b) descending chains: If t is a descending chain (this means tk′ ≪ tk

for all k ∈ ω), then there is k ∈ ω such that tk ≡ tl for all l ∈ ω
such that k < l.

Furthermore, if all nominal terms tk in the chain are standard terms or
unary terms (formally, if tk ∈ T∗ for all k ∈ ω), then both statements
hold even with respect to syntactic equality instead of the equivalence
of nominal terms.

Finally, we observe that there are proper chains of length greater than
2, if and only if there is a proper function symbol available in the
underlying formal language L.

10.2.5 Intermediate Nominal Terms

We conclude our introduction of the covered-by relation by providing the
number of intermediate nominal terms (modulo the equivalence of nominal
terms) modulo the equivalence of nominal terms.

10.7 Proposition (Intermediate Nominal Terms): Let t, s ∈ T such
that t is minimal and s is maximal with respect to the covered-by relation.
If t ≪ s, then number of intermediate nominal terms r ∈ T∗ (intermediate
means that r satisfies the condition t ≪ r ≪ s) equals to 2weight(t).
Proof. By induction over the structure of t.

1. t atomic: As t is minimal, we have that t ∈ V∗ and weight(t) = 1.
As s is maximal, we have that s ∈ T0 is a standard term. Trivially,
t ≪ s. Furthermore, r ∈ T∗ is intermediate, if and only if r ∈ {∗, s}.
Therefore, the postulated statement holds with respect to atomic nom-
inal terms t.

2. t ≏ f(t0, . . . tn) complex: t ≪ s implies that t ∼ s ≏ f(s0, . . . sn) for
suitable nominal terms sk and tk ≪ sk for all k ∈ n′. As t is minimal,
weight(t) = 0. Therefore, weight(tk) = 0 for all k ∈ n′. This means
that the direct subterms of t are also minimal. Furthermore, as s is

-145-
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maximal, s is a standard term. Therefore, the direct subterms of s are
also standard terms, which means that they are also maximal.

Every intermediate nominal term r ∈ T∗ satisfies the following condi-
tions:

• r ≏ f(r0, . . . rn) for nominal terms rk (as t ≪ r implies t ∼ r).

• tk ≪ rk ≪ sk for all k ∈ n′ (as t ≪ r ≪ s).

• rk ∈ T∗ for all k ∈ n′ (as r ∈ T∗).

Observe that every combination of nominal terms rk (for k ∈ n′) sat-
isfying the conditions given above results in exactly one intermediate
nominal term r. Therefore, applying n′-many times induction hypoth-
esis, we can calculate the number m of intermediate nominal terms as
follows:

m =
∏

k∈n′

2weight(tk) = 2
∑

k∈n′ weight(tk) = 2weight(t)

q.e.d.

Remarks (Intermediate Nominal Terms):

1. infinite intermediate terms: Observe that if we drop the restriction in
to the set T∗ the proposition above, then the number of intermediate
nominal terms is trivially infinite, as the equivalence classes of the
minimal nominal terms are infinite.

Slightly changing the perspective: the number of strictly intermediate
nominal terms is infinite or zero, as strictly intermediate nominal terms
are proper nominal terms with infinite equivalence classes.

2. modulo equivalence: The proposition above is formulated for terms
contained in T∗. Recalling that statements modulo an equivalence re-
lation are to be understood as the respective statement with respect
to the respective equivalence classes, we can read the result above as a
statement about the number of intermediate terms modulo the equiv-
alence of nominal terms. (Observe that there is exactly one canonical
representative in the set T∗ of every equivalence class with respect to
the equivalence of nominal terms.)
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10.3 The Strong Covered-By Relation

Besides the covered-by relation, as introduced above, we need in the course
of our investigations the strong version covered-by relation. In the weak
version, a nominal symbols of the covered nominal term was either covered
by a standard term or by an arbitrary nominal symbol. In the strong version,
we demand with respect to the second case that these nominal symbols are,
additionally, equal. As a consequence of this restriction, the strong covered-
by relation turns out to be a proper partial order (and not only modulo the
equivalence of nominal terms).

10.3.1 Introduction of the Strong Covered-By Relation

We provide the definition of the strong covered-by relation.

10.8 DEF (Strong Covered-By Relation): Let t, s ∈ T. The nominal
term t is strongly covered by the nominal term s (formally, t ≪∗ s), if one
of the following conditions is satisfied:

1. t ∈ V∗ atomic: s ≏ t or s ∈ T0

2. t /∈ V∗ atomic: s ≏ t

3. t ≏ f(t0, . . . tn) complex: If the following both conditions are satisfied:

• t and s are similar. Formally: there are nominal terms sk ∈ T

(for k ∈ n′) such that s ≏ f(s0, . . . sn).

• The respective direct subterms are strongly covered by each other.
Formally: tk ≪∗ sk for all k ∈ n′.

Remarks (Strong Covered-By Relation):

1. covered-by relation: Immediate by the definition, strongly covered
nominal terms are also related by the covered-by relation. More for-
mally, for all nominal terms t and s:

t ≪∗ s ⇒ t ≪ s

2. restriction: The restriction of the strong covered-by relation to the set
T∗ of standard terms and unary nominal terms equals to the respective
restriction of the covered-by relation. Formally, for all t, s ∈ T∗:

t ≪∗ s ⇔ t ≪ s
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10.3.2 Partial Order

In the next proposition, we show that the strong version of the covered-by
relation is, indeed, a partial order on the set of nominal terms (and not only
modulo the equivalence of nominal terms).

10.9 Proposition (Partial Order): The strong covered-by relation is a
partial order on the set T of all nominal terms. Minimal elements are nominal
terms having a dual weight equal to zero, standard terms are maximal.
Proof. We check the relevant properties.

1. reflexive: ∗k ≪∗ ∗k for all nominal symbols ∗k ∈ V∗ according to clause
(1) of the definition; t ≪∗ t for standard atomic nominal terms t is
given by clause (2); t ≪∗ t for complex nominal terms t by induction
hypothesis and clause (3).

2. maximal terms: We have to show for all standard terms t: if t ≪∗ s,
then t ≏ s. This is immediate, if t is atomic, as t ≪∗ s is given by
clause (2) of the definition. If t ≏ f(t0, . . . tn) is complex, then t ≪∗ s

implies that t ∼ s ≏ f(s0, . . . sn). Furthermore, tk ≪∗ sk for all k ∈ n′.
Applying n′-many times induction hypothesis, we obtain tk ≏ sk for
all k ∈ n′. The latter means that t ≏ s.

3. minimal terms: We have to show for all nominal terms t having dual
weight 0: if s ≪∗ t, then t ≏ s. s ≪∗ ∗k is only possible according to
clause (1) of the definition, which means that s ≏ ∗k. Standard atomic
nominal terms have dual weight 1 6= 0. If t ≏ f(t0, . . . tn) has a dual
weight of 0, then all direct subterms tk have a dual weight of 0. As t
cannot be a standard term (due to its dual weight), s ≪∗ t has to be
given by clause (3) of the definition. Therefore, t ∼ s, which means
that s ≏ f(s0, . . . sn), and sk ≪∗ tk for all k ∈ n′. Applying n′-many
times induction hypothesis, we obtain tk ≏ sk for all k ∈ n′. The latter
means that t ≏ s.

4. transitive: We have to show for all nominal terms t, s, r: if t ≪∗ s and
s ≪∗ r, then t ≪∗ r. If t ∈ V∗, then s ≏ t or s ∈ T0. In the first case,
trivially t ≪∗ r; in the second case: as standard terms are maximal,
we obtain s ≏ r and, therefore, t ≪∗ r. If t is atomic and standard,
then immediately t ≏ s and, therefore, trivially, t ≪∗ s. Finally, if
t ≏ f(t0, . . . tn) is complex, then we obtain successively that t ∼ s

and s ∼ r. Furthermore, denoting the direct subterms as expected, for
all k ∈ n′:

tk ≪∗ sk and sk ≪∗ rk
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Applying n′-many times induction hypothesis, we obtain tk ≪∗ rk and,
therefore, t ≪∗ r.

5. anti-symmetry: We have to show for all nominal terms t and s: if
t ≪∗ s and s ≪∗ t, then t ≏ s. If t ∈ V∗, then t ≪∗ s implies
s ≏ t (and nothing more is to be done) or s ∈ T0. As standard terms
are maximal, the latter is impossible, as s ≪∗ t 6≏ s. If t is standard
atomic, then t ≪∗ s implies immediately by clause (2) of the definition
t ≏ s. If t ≏ f(t0, . . . tn), then t ≪∗ s implies t ∼ s ≏ f(s0, . . . sn)
and tk ≪∗ sk for all k ∈ n′. Furthermore, s ≪∗ t implies sk ≪∗ tk

for all k ∈ n′. Applying n′-many times induction hypothesis, we obtain
tk ≏ sk for all k ∈ n′ and, therefore, t ≏ s. q.e.d.

10.3.3 Chains and Intermediate Terms

We conclude our introduction of the strong covered-by relation by carrying
over the results about chains and the number of intermediate nominal terms.
In order to do so, we briefly discuss the weight and dual weight of strongly
covered nominal terms

10.10 Proposition (Weight and Dual Weight): Let t, s ∈ T. The
following both statements hold:

1. weight: If t 6≏ s and t ≪∗ s, then weight(t) > weight(s)

2. dual weight: If t 6≏ s and t ≪∗ s, then weight(t) < weight(s)

Proof. Both statements are proved as in the analogous proposition with
respect to the covered-by relation, but with reference to syntactic equality
instead of the equivalence of nominal terms. q.e.d.

Remarks (Weight and Dual Weight):

1. covered-by relation: We already mentioned that if t ≪∗ s, then also
t ≪ s (with respect to the non-strict version of both relations). Due to
the proposition above, we can carry over this observation to the strict
case. More formally: if t ≪∗ s and t 6≏ s, then t ≪ s and t 6≡ s.
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2. chains: As an immediate consequence, we can carry over our results
concerning chains:

(a) ascending chains: Ascending chains with respect to the strong
covered-by relation are stationary.

(b) descending chains: Descending chains with respect to the strong
covered-by relation are stationary.

(c) intermediate terms: If t ∈ T is minimal and s ∈ T is maximal
with respect to the strong covered-by relation, then the number of
intermediate nominal terms between t and s equals to 2weight(t).
More formally:

|{r ∈ T; t ≪∗ r ≪∗ s}| = 2weight(t)
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11 Multi-Shape Occurrences

We investigate themulti-shape occurrences, the generalisation of the standard
occurrences allowing not only to represent a single shape (at possibly multiple
positions), but a finite sequences of shapes.

11.1 Introduction of Multi-Shape Occurrences

We provide the formal definition of the multi-shape occurrences.

11.1 DEF (Multi-Shape Occurrences): Let t ∈ T0 be standard term,
s ∈ T0

n a finite sequence of standard terms (for n ∈ ω) and t ∈ T a nominal
term.

1. multi-shape occurrence: The triple o = 〈t, s, t〉 is called an n-place
multi-shape occurrence, if t is an elimination form of t in which the
sequence s is eliminated (formally, if t ≏ t[s]).

In this case, the numbers k ∈ n are also called the places of o.

2. projections: The standard term t ≏ con(o) is called the context, the
sequence s = shape(o) the sequence of shapes and the nominal term
t ≏ pos(o) the position of o.

3. sets of occurrences: We use O, O(t) and O(t, s) to denote the ex-
pected sets of multi-shape occurrences; On, On(t) and On(t, s) are the
respective restrictions to occurrences having n places (for n ∈ ω).

Remarks (Multi-Shape Occurrences):

1. standard occurrences: Identifying the shape of a standard occurrence
with the sequence of length 1 containing the respective term as only
entry, the standard occurrences become a special case of multi-shape
occurrences.

2. n-place occurrence: The denomination as n-place occurrence does not
depend on the position of a multi-shape occurrence, but on the finite
length n of its sequence of shapes.

3. standard properties: If meaningful, then we attribute properties of
the position pos(o) also to the respective multi-shape occurrence o. In
particular, we distinguish n-ary, simple, multiple and single multi-shape
occurrences.
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4. restrictions on the position: In contrast to the standard notion of
occurrences, there is no a priori restriction on the position of a multi-
shape occurrence. A posteriori, we observe that rank(t) ≤ n = lng(s).
(The position is an elimination form of a standard term and therefore,
all nominal symbols have to be replaced by entries of the sequence of
shapes.) In particular, the limit case that the position is a standard
term and, therefore, syntactically equal to the context (formally, that
con(o) ≏ pos(o)) is not excluded.

5. redundancies: As the notion of standard occurrences, the notion of
multi-shape occurrences is redundant. We provide the details:

• Position and sequence of shapes determine the context.

• Context and position partially determine the sequence of shapes.

• Context and sequence of shapes do not determine the position.

Partial determination means determination up to essential equality
with respect to the position. (In particular, the length of the sequence
of shapes is not determined, but has the rank of the position as lower
bound.)

6. empty occurrence: The limit case of a 0-place occurrence o = 〈t, ǫ, t〉,
where ǫ is the empty sequence, is subsumed in the definition of multi-
shape occurrences. We can use such empty occurrences as a mathe-
matical objects representing the informal concept of “no occurrence”.

11.2 Representation of Informal Occurrences

We presuppose that informally given occurrences in the same context and of
the same shapes at the same informally given positions are equal, indepen-
dently of the way how these positions are actually given. As a consequence
and in contrast to the simple case of standard occurrence, different multi-
shape occurrences can represent the same informally given occurrence. We
provide some examples illustrating this phenomenon.
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Example (Identical Occurrences): Let 0 + 0 be an informally given
occurrence in the context t ≏ 0 + 0 (where the intended positions are un-
derlined). We provide some exemplary multi-shape occurrences representing
the intended occurrence:

1. o1 = 〈t, 〈0〉, ∗0 + ∗0〉

The representation is parsimonious, as we use the minimal possible
numbers of nominal symbols for representing the intended positions,
but for this reason the position is not a simple nominal term. Fur-
thermore, the position of o1 is normal and the sequence of shapes does
not contain unnecessary entries (which is possible, as the position is,
in particular, n-ary).

2. o2 = 〈t, 〈0, 0〉, ∗0 + ∗1〉

The representation is not parsimonious, as we use different nominal
symbols to represent the same shape (at different positions), but simple.
As in the example above, the position is normal and the sequence of
shapes does not contain unnecessary entries.

3. o2 = 〈t, 〈0, 0〉, ∗1 + ∗0〉

In contrast to the second example, the labels of the position are per-
muted. Therefore, the position is simple, but not normal. The sequence
of shapes does still not contain unnecessary entries.

4. o4 = 〈t, 〈2, 0, 0, 1〉, ∗1 + ∗2〉

The sequence of shapes is longer than the rank of the position. There-
fore, the last entry of the sequence of shapes can be omitted without
any loss. As the position is not n-ary, the first entry of the sequence of
shapes is unnecessary; we may replace this entry by arbitrary standard
terms. But it is not possible to eliminate this entry without relabelling
the nominal symbols in the position.

We additionally investigate the occurrence 0+1 in the standard term t ≏ 0+1:

1. o = 〈t, 〈1, 0〉, ∗1 + ∗0〉

The representation is parsimonious and simple together. (This is pos-
sible as the multiplicity of each intended shape in t is equal to 1.)

2. There is no multi-shape occurrence o′ = 〈t, s, t〉 representing the infor-
mally given occurrence satisfying the condition that the position t is
the unification uni(∗1 + ∗0) ≏ ∗0 + ∗0 of the position pos(o) of o, as
there are two different shapes which must be eliminated in t.
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3. Observe that we may use the simplification simp(∗1 + ∗0) ≏ ∗0 + ∗1 as
position and obtain, for example, the following multi-shape occurrence:

〈t, 〈0, 1〉, ∗0 + ∗1〉

We could have used instead as shape any sequence of standard terms
extending the sequence 〈0, 1〉.

Analysing these examples, we observe:

1. context: The context of all multi-shape occurrences representing the
informally given occurrence are equal and, in particular, equal to the
context of the informally given occurrence.

2. position: The positions of the multi-shape occurrences representing the
same intended occurrence are all equivalent. Nevertheless, there are, in
the general case, equivalent nominal terms not capable of representing
the intended position.

3. shapes: As every extension of a suitable sequence of shapes result again
in a suitable sequence of shapes, the number of formal representatives
of the same informally given occurrence is infinite.

11.3 Equivalence of Occurrences

Even though it is not possible to provide a formal criterion, whether a multi-
shape occurrence represents, indeed, an informal occurrence, we can take our
observations from above to provide an equivalence relation on multi-shape
occurrences identifying those occurrences which represent the same informal
occurrence (according to our intuition). The definition of this equivalence
relation can be understood as the formalisation of our informal concept of
representation.

11.3.1 Introduction of the Equivalence of Occurrences

We provide the formal definition of the equivalence of occurrences.

11.2 DEF (Equivalence of Occurrences): Two multi-shape occurrences
o and o′ are equivalent (formally, o ≡ o′), if the following both conditions are
satisfied:

1. context: Both multi-shape occurrences have a common context (for-
mally, con(o) ≏ con(o′)).
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2. position: The same intended occurrences are marked by the respective
positions (formally, pos(o) ≡ pos(o′)).

Remarks (Equivalence of Occurrences):

1. equivalence relation: It is easily checked that the equivalence of occur-
rences is, indeed, an equivalence relation on multi-shape occurrences.

2. shapes: We do not have to formulate restrictions on the sequence
of shapes, as the shapes are determined by context and position up
to essential equality; the entries in the sequence of shapes, which are
not determined by essential equality do not have any influence on the
question, whether the same occurrence is represented.

3. caveat: As already seen in the examples, we cannot choose, in general,
every nominal term equivalent to a given position to generate equiva-
lent multi-shape occurrences. If n is the number of different actually
eliminated entries in the sequence of shapes of a given multi-shape oc-
currence, then the position of an equivalent occurrence has to have at
least n different free places. This restriction is, in general, not satisfied
by the unification of the position, but trivially by its simplification.

This means that we may use the unification of positions to check
whether these positions are equivalent, but we may not use, in gen-
eral, the unification function to generate equivalent occurrences.

Towards Normal Occurrences: There are two (incompatible) strate-
gies to define a normal form for multi-shape occurrences with respect to the
equivalence of occurrences:

1. exhaustive use of nominal symbols: One idea is to use as many nominal
symbol in the position as possible. In such a position, each nominal
symbol is only used once for the elimination of a single intended sub-
term. As a consequence, such positions are simple.

2. parsimonious use of nominal symbols: The other idea is to use as
few nominal symbols in the position as possible. In such parsimonious
positions, subterms of equal shape are eliminated by the same nominal
symbol.

In order to obtain actually a normal form for occurrences, we have to elim-
inate additionally unnecessary entries in the sequence of shapes and to de-
mand a distinguished order of the nominal symbols in the position.
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In order to do so, we introduce subsequently “interesting” properties of
multi-shape occurrences and their places and discuss transformations related
to these properties. Finally, we prove the existence of uniquely determined
normal forms (with respect to both principle ideas sketched above).

11.3.2 Regular Occurrences

A multi-shape occurrences is called regular, if every entry of the sequence
of shapes is actually eliminated in the position of that occurrence; addition-
ally, we demand that the position of such a regular occurrence is normal
with respect to the isomorphism of nominal terms. We provide the formal
definition.

11.3 DEF (Regular Occurrence): Let o = 〈t, s, t〉 be an n-place multi-
shape occurrence (for n ∈ ω).

1. vacuous places: The place k of the occurrence o is vacuous (for k ∈ n),
if the respective nominal symbol ∗k does not occur in the position
pos(t) of o (formally, if k /∈ place(t)); otherwise, the place k is called
non-vacuous.

2. vacuous occurrence: The occurrence o is called partially vacuous, if
there is a place k ∈ n such that o is vacuous at the place k, and
completely vacuous, if all places k ∈ n are vacuous.

3. regular occurrence: The occurrence o is called regular, if there is no
vacuous place k ∈ n (formally, if place(t) = n) and if the position t

of o is normal with respect to the isomorphism of nominal terms.

Remarks (Regular Occurrences):

1. normality: We included in the definition of regular occurrences that
they have a normal position. This way, we avoid subsequently to de-
mand explicitly that an occurrences under discussion has a normal
position. Furthermore, we avoid the explicit ambiguity of discussing
occurrences having a normal position (with respect to the isomorphism
of nominal terms) without being normal (with respect to the equiva-
lence of occurrences).

2. empty occurrences: An empty occurrence o = 〈t, ǫ, t〉 is regular, as
o has no vacuous places and a normal position; nevertheless, such an
occurrence o is also completely vacuous. Empty occurrences are the
only occurrences being both regular and completely vacuous.
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3. vacuous places: Vacuous places do not affect which informal occurrence
is represented by a multi-shape occurrence. In other words: if we
eliminate vacuous places in a multi-shape occurrence, then the same
informal occurrence is represented as before.

In the next proposition, we show that we can eliminate vacuous places in an
occurrence.

11.4 Proposition (Regular Occurrences): Let n ∈ ω. Every n-place
multi-shape occurrence o = 〈t, s, t〉 can be transformed into an equivalent
occurrence o′, which is regular.
Proof.

1. k-ary and normal position: In a first step, we transform the position
t of o into its normal form t′ (with respect to the isomorphism of
nominal terms) via a suitable isomorphism F . In particular, t is k-ary
for a natural number k = |place(t)| ≤ n.

Additionally, we rearrange the sequence of shapes according to the
isomorphism F . Let s′′ be the result of this rearrangement. The triple
o′′ = 〈t, s′′, t′〉 is an occurrence and, in particular, equivalent to o.

2. regular: In order to transform o′′ into a regular occurrence, we have to
eliminate the vacuous entries of the sequence s′′ (which are the entries
at the positions l such that k ≤ l < n): let s′ = k(s′′) be the initial
segment of s′′ of length k. The resulting occurrence o′ = 〈t, s′, t′〉 is
still equivalent to o and, in particular, regular. q.e.d.

Convention (Attribution of Properties): In order to avoid limit cases
and undesired exceptions, we agree upon the convention that all proper-
ties subsequently attributed to a place of a multi-shape occurrence are only
attributed to non-vacuous places. Furthermore, properties of multi-shape oc-
currences, which we introduce subsequently, depend only on the non-vacuous
places.

11.3.3 Simple Normal Form

We define the first kind of canonical representatives of an equivalence class
with respect to the equivalence of occurrences, namely the simple normal
forms.
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11.5 DEF (Simple Normal Form): An occurrence o = 〈t, s, t〉 is in
simple normal form, if o is regular and simple.

Remarks (Simple Normal Form):

1. simple occurrence: Recall: an occurrence is simple, if its position is so.

2. empty occurrences: Recall that standard terms are, in particular, sim-
ple nominal terms; therefore, an empty occurrence o = 〈t, ǫ, t〉 is in
simple normal form. As the equivalence class of the position t is the
singleton {t}, we obtain that exactly the occurrence o′ = 〈t, s, t〉 are
equivalent to o (for arbitrary finite sequences s ∈ T0

<ω of standard
terms). If s is not the empty sequence, then o′ is not regular, as there
are vacuous places.

3. standard occurrences: A standard occurrence o = 〈t, s, t〉 is in simple
normal form, if and only if t is simple. As t is also unary, the latter is
equivalent to the condition that o is a single occurrence.

We show in the next proposition that every multi-shape occurrence can be
transformed into a uniquely determined equivalent occurrence in simple nor-
mal form.

11.6 Proposition (Simple Normal Form): Let o = 〈t, s, t〉 be a multi-
shape occurrence. There is a uniquely determined multi-shape occurrence o′

in simple normal form and equivalent to o.
Proof. We first transform o into its simple normal form o′ and then we show
that o′ is uniquely determined.

1. position: The position t′ of o′ is constructed via the simplification
function: t′ ≏ simp(t).

Recall that the nominal term t′ is, by construction, normal with respect
to the isomorphism of nominal terms and simple. Furthermore, t′ ≡ t,
as the simplification function is idempotent.

2. sequence of shapes: Due to the proposition about elimination forms
(in the section about simplification), t ≤ t implies t′ ≏ simp(t) ≤ t.
Hence, t′ is an elimination form of the context t of o.

As a consequence, there is a sequence r of standard terms eliminated in
t′ with respect to t. As t′ is m-ary (for m = weight(t)), the uniquely
determined initial segment s′ = m(r) of r is essentially equal to r with
respect to t′. Therefore, t′[s′] ≏ t′[r] ≏ t.
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3. occurrence: Let o′ = 〈t, s′, t′〉. As t′[s′] ≏ t and as lng(s′) = m, o′

is an m-place multi-shape occurrence. As t is m-ary and normal, o′ is
regular. As t is simple, o′ is already in simple normal form.

4. uniqueness: Let o′′ = 〈t′′, s′′, t′′〉 be an occurrence in simple normal
form and equivalent to o. As the equivalence of occurrences is an
equivalence relation, we obtain o′ ≡ o′′. As equivalent occurrences
have the same context, we obtain t ≏ t′′. As equivalent occurrences
have equivalent positions, we obtain that t′ ≡ t′′. Therefore, we have:

t′ ≏ simp(t′) ≏ simp(t′′) ≏ t′′

The second equation holds, as t′ ≡ t′′, the other two equations, as both
t′ and t′′ are simple and normal (with respect to the isomorphism of
nominal terms). Due to uniqueness of the actually eliminated sequence,
we obtain finally s′ = s′′. Therefore, o′ = o′′ and o′ is, indeed, the
uniquely determined normal form of o. q.e.d.

Remarks (Simple Normal Form):

1. actually eliminated sequence: In the proof above, the sequence s′ of
actually eliminated shapes of the normal occurrence o′ was obtained
via the argument that if t is an elimination form of t, then also its
simplification simp(t).

Alternatively, we could have argued that there is a simple homomor-
phism F mapping simp(t) to t. Due to the proposition about expan-
sions and contraction, we could have obtained s′ as an F -expansion of
the sequence s. In particular, if we analyse the application of simp
on t, we may obtain concretely the homomorphism F (up to essential
equality) and, therefore, also the concrete sequence s′ of shapes of the
normal form o′.

11.3.4 Redundant and Parsimonious Occurrences

We call two places in a multi-shape occurrence uniform, if the same shape is
eliminated in these places; if such places are different, then they are redun-
dant. If there are no redundant places in a multi-shape occurrence, then this
occurrence is called parsimonious. We provide the formal definitions.
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11.7 DEF (Parsimonious Occurrences): Let o = 〈t, s, t〉 be an n-place
multi-shape occurrence (for n ∈ ω).

1. uniform places: Two places k, l ∈ place(t) are called uniform, if the
respective shapes sk and sl (contained in the sequence s of shapes) are
equal (formally, if sk ≏ sl).

2. redundant // parsimonious places: A place k ∈ place(t) is called
redundant, if there is a place l ∈ place(t) different from k (k 6= l) such
that k and l are uniform; otherwise, k is called parsimonious.

3. uniform occurrence: The occurrence o is called uniform, if all of its
places k, l ∈ place(t) are pairwise uniform.

4. redundant // parsimonious occurrence: The occurrence o is called re-
dundant, if there are redundant places k ∈ place(t); otherwise o is
called parsimonious.

Remarks (Redundant and Parsimonious Occurrences):

1. uniformity of places: The uniformity of places is an equivalence relation
on the set place(t) of free places of the position t of an occurrence o.
The equivalence classes with respect to this relation are denoted as
follows:

[k]u = {l ∈ place(t); k and l are uniform}

A place k ∈ place(t) of an occurrence o is parsimonious, if and only if
its equivalence class [k]u is a singleton.

2. sequence of shapes: A regular occurrence o is parsimonious, if and
only if all entries sk of the sequence s of shapes are pairwise different.
More generally: an arbitrary occurrence o is parsimonious, if and only
if the entries sk of the sequence s of shapes at non-vacuous places k are
pairwise different.

3. limit case: Unary occurrence o = 〈t, s, t〉 (these are the standard
occurrences) are uniform and parsimonious. The empty occurrences
o = 〈t, ǫ, t〉 are trivially uniform and parsimonious.

In the next proposition, we show that we can eliminate redundant places of a
multi-shape occurrence and that we can transform this way every occurrence
into an equivalent and parsimonious occurrence.
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11.8 Proposition (Parsimonious Occurrences): Let n ∈ ω be arbitrary.
Every n-place multi-shape occurrence o = 〈t, s, t〉 can be transformed into
an equivalent occurrence o′, which is parsimonious.
Proof.

1. simple homomorphism: Let F ∈ Homs(T) be the simple homomor-
phism induced by the following function on the set of all nominal terms:

F : ∗k 7→

{

∗min([k]u) if k ∈ place(t)
∗k otherwise

Due to the definition of the uniformity relation the following statement
holds for all k ∈ place(t): sk ≏ sl for all l ∈ [k]u, in particular for
l = min([k]u). Therefore, sk ≏ sF (k) for all k ∈ place(t). The latter
means that the sequence t is an F -expansion of itself with respect to
the position t of o.

As s is finite, we have to check two side conditions: the conditions
rank(t) ≤ lng(s) is satisfied by the fact that o is an occurrence and
the condition rank(F (t)) ≤ lng(s), as F (k) ≤ k for all k ∈ place(t).

Due to the proposition about expansions and contractions, we obtain:

t ≏ t[s] ≏ F (t)[s]

2. parsimonious occurrence: We define as follows: o′ = 〈t, s, F (t)〉. As
F (t) is an elimination form of t, in which the sequence s is eliminated,
o′ is an n-place multi-shape occurrence.

Furthermore, o′ is by construction parsimonious, as all uniform places
of o are mapped to the same place, namely to the minimum of their
equivalence class. Finally, as F is a simple homomorphism, t and
F (t) are equivalent (with respect to the equivalence of nominal terms).
Therefore, o ≡ o′. q.e.d.

Remarks (Parsimonious Occurrences): We discuss briefly some special
cases of the proposition above:

1. vacuous places: If o is not already parsimonious, then the transfor-
mation of o into the parsimonious occurrence o′ generates vacuous
places. More precisely, if k 6= min([k]u), then k /∈ place(F (t)) for
all k ∈ place(t); as we do not change the sequence of shapes, such k
become vacuous places in o′.
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2. simple occurrence: Only if o is simple and parsimonious, the trans-
formed occurrence o′ is simple. More precisely, for all k ∈ place(F (t)):

mult(∗k, F (t)) =
∑

l∈[k]u

mult(∗l, t)

3. m-ary positions: If the position t of the n-place occurrence o is m-ary
(for m ≤ n), then we can provide the position t′ ≏ F (t) of o′ via the
following application of the general substitution function:

t′ ≏ t[∗min([0]u), . . . ∗min([m−1]u)]

In general, t′ is not k-ary for no k ∈ ω.

11.3.5 Parsimonious Normal Form

We introduce the second kind of normal occurrences (with respect to the
equivalence of occrences), namely the parsimonious normal forms.

11.9 DEF (Parsimonious Normal Form): An occurrence o = 〈t, s, t〉 is
in parsimonious normal form, if o is regular and parsimonious.

Remarks (Parsimonious Normal Form):

1. empty occurrence: The empty occurrences 〈t, ǫ, t〉 are trivially in par-
simonious normal form.

2. standard occurrences: By definition, standard occurrences 〈t, s, t〉 are
in parsimonious normal form.

In the next proposition, we show that every multi-shape occurrence can be
transformed into a uniquely determined equivalent occurrence in parsimo-
nious normal form.

11.10 Proposition (Parsimonious Normal Form): Let o = 〈t, s, t〉
be a multi-shape occurrence. There is a uniquely determined occurrence o′

equivalent to o and in parsimonious normal form.
Proof. We first transform o into its parsimonious normal form o′ and then
we show that this normal form is uniquely determined.

1. parsimonious occurrence: In a first step, we transform o into an occur-
rence o′′ according to the proposition about parsimonious occurrences.
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2. regularity: In a second step, we transform o′′ into a multi-shape occur-
rence o′ = 〈t, s′, t′〉 according to the proposition of regular occurrences.

By construction, o ≡ o′ and o′ is regular. In order to see that o′ is
parsimonious, we have to recall the construction used in the proposition
about regular occurrences: in a first step, the places are rearranged
according to an isomorphism. An application of an isomorphism does
not change the size of equivalence classes with respect to the uniformity
of the places. Therefore, the rearranged occurrence is parsimonious as
o′′ is so. In the second step, vacuous places are eliminated by reducing
the length of the sequence of shapes. Again, this does not change the
fact, whether an occurrence is parsimonious or not. Therefore, o′ is,
indeed, parsimonious.

3. uniqueness: Let o′′ = 〈t, s′′, t′′〉 be another occurrence in parsimonious
normal form and equivalent to o.

We first discuss the case that o has a standard position t ∈ T0. In
this case, the equivalence of the three positions implies that they are
already equal, formally: t′ ≏ t ≏ t′′. Due to regularity of o′ and o′′,
the shapes of o′ and o′′ are the empty sequence, formally: s′ = ǫ = s′′.
Therefore, o′ = o′′.

We investigate the case that the position t of o is a proper nominal
term. Furthermore, we may assume, without loss of generality, that o
is in simple normal form. (If simp(o) is the simple normal form of o,
then o ≡ simp(o). As the equivalence of occurrences is an equivalence
relation, both o′ and o′′ are equivalent to simp(o).)

As o is simple, there are simple homomorphisms F ′ and F ′′ such that:

F ′(t) ≏ t′ ; F ′′(t) ≏ t′′

Recalling that t, t′ and t′′ are proper nominal terms, we argue as
follows: as t′ and t′′ are normal with respect to the isomorphism of
nominal terms, we have both that min(t′) = 0 and min(t′′) = 0. As
min(t) = 0, we may calculate as follows:

0 = min(t′) = min(F ′(t)) = min(F ′(∗0))

0 = min(t′′) = min(F ′′(t)) = min(F ′′(∗0))

As a consequence, F ′(∗0) ≏ ∗0 and F ′′(∗0) ≏ ∗0.

Furthermore, as t′ and t′′ are the positions of parsimonious occurrences,
we have that F ′(∗k) ≏ ∗0 ≏ F ′′(∗k) for all k ∈ [0]u.
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Iterating the argumentation (discussing the next leftmost nominal sym-
bol and the equivalence class of its label with respect to the uniformity
relation) finitely many times, we obtain that F ′ and F ′′ are essentially
equal with respect to t, and therefore:

t′ ≏ F ′(t) ≏ F ′′(t) ≏ t′′

The shape s′ is the uniquely determined initial segment of all sequences
eliminated in t′ with respect to the context t. As t′′ ≏ t′, the same
holds for s′′ = s′. Therefore, o′ = o′′. The latter means that the
parsimonious normal form is, indeed, uniquely determined. q.e.d.
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12 Independence of Nominal Terms

Two occurrences (in the same context) are independent, if the respective
shapes do not overlap. Crucial aspect of this concept of independence is the
position of occurrences. In order to prepare the introduction of independent
occurrences, we discuss in this section the independence of nominal terms.

Two sufficiently similar nominal terms are called independent, if the nom-
inal symbols of one nominal term are locally covered by a standard term in
the other nominal term and vice versa. We investigate first a weak version
of this relation, where it is additionally permitted that a nominal symbol is
locally covered by the same nominal symbol; for the strong version (discussed
in the next section), the latter is excluded.

12.1 Formal Introduction of Independence

We introduce the notion of independent nominal terms.

12.1 DEF (Independent Nominal Terms): Let t, s ∈ T be arbitrary.
The nominal terms t and s are independent (formally, t || s), if one of the
following conditions is satisfied:

1. atomic nominal terms: The nominal terms t and s are both atomic
and equal.

2. nominal symbol: One nominal term is a nominal symbol and covered
by the other nominal term which is standard.

Formally: (t ∈ V∗ and s ∈ T0) or (t ∈ T0 and s ∈ V∗).

3. complex nominal terms: The nominal terms t and s are similar and
the respective direct subterms are independent.

Formally: t ≏ f(t0, . . . tn) ∼ f(s0, . . . sn) ≏ s and tk || sk for all
k ∈ n′.

Furthermore, a set S ⊆ T is called independent, if all pairs t, s ∈ S of nominal
terms in S are independent.

Remarks (Independent Nominal Terms):

1. atomic nominal terms: In clause (1) of the definition, we only demand
that t and s are atomic. This means that the following both cases
are subsumed: t and s are equal standard atomic terms (variables or
constant symbols) as well as they are equal nominal symbols.
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2. locally covered-by: Independence of nominal terms is related with the
strong covered-by relation, as in both relations nominal symbols may
be covered by themselves or by standard terms. Due to clause (2) of
the definition, the independence relation becomes a local symmetric
version of the strong covered-by relation. As symmetry is given locally,
independent nominal terms are, in general, not covering each other.
Observe the following example:

∗+ x || x+ ∗ but ∗+x 6≪∗ x+ ∗ and x+ ∗ 6≪∗ ∗+ x

3. sufficiently similar: Independent nominal terms are “sufficiently” sim-
ilar. The latter means that if we neglect the covered nominal symbols
and their standard covering in both nominal terms, then they are equal.
This similarity is guaranteed in the definition above by clause (1), de-
manding equality, and by clause (3), demanding similarity. In other
words: if we replace the standard subterms found in clause (2) by the
respective nominal symbol, then the results of these replacements are
equal nominal terms.

Basic Properties (Independence): We communicate some basic prop-
erties of the independence relation.

1. standard terms: The restriction of the independence relation to stan-
dard terms equals to the syntactic equality. More formally, t || s implies
t ≏ s for all standard terms t and s.

2. reflexivity: The independence relation is reflexive. More formally, t || t
for all nominal terms t.

3. symmetry: The independence relation is symmetric. More formally,
t || s implies s || t for all nominal terms t and s.

4. non-transitive: The independence relation is not transitive. There are
nominal terms t and s and r such that t || s, s || r, but t 6 || r.

Investigate, for example, t ≏ x0, s ≏ ∗0 and r ≏ x1.

5. independent set: Subsets of independent sets are independent.

12.2 Independence of Covered Nominal Terms

As already mentioned, the notion of independence is closely related with the
strong covered-by relation. As a first proposition, we show that strongly
covered nominal terms are independent.
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12.2 Proposition (Covered Nominal Terms): Let t, s ∈ T. If t ≪∗ s,
then t || s.
Proof. By induction over the structure of t.

1. t ∈ V∗ atomic: t ≪∗ s means that s ≏ t or s ∈ T0. In both cases,
t || s (according to different clauses).

2. t /∈ V∗ atomic: t ≪∗ s means that s ≏ t. Therefore, t || s (according
to the first clause of definition).

3. t ≏ f(t0, . . . tn) complex: t ≪∗ s means that t ∼ s (therefore, there
are nominal terms sk such that s ≏ f(s0, . . . sn)) and tk ≪∗ sk for
all k ∈ n′. Applying n′-many times induction hypothesis, we obtain
tk || sk for all k ∈ n′. Therefore, t || s. q.e.d.

We improve the result and show that intermediate nominal terms with respect
to the strong covered-by relation are independent.

12.3 Proposition (Intermediate Nominal Terms): Let t, s ∈ T be
two nominal terms such that t ≪∗ s. The following statement holds for all
nominal terms r, r′ ∈ T: if t ≪∗ r ≪∗ s and t ≪∗ r

′ ≪∗ s, then r || r′.
Proof. By induction over the structure of t.

1. t ∈ V∗ atomic: As t ≪∗ s, we can distinguish the following two cases:

(a) s ≏ t: As r, r′ ≪∗ s, both r, r′ ≏ s. Therefore, r || r′.

(b) s ∈ T0: Again as r, r ≪∗ s, both r, r′ ∈ {t, s}. Investigating all
possible combinations we obtain r || r′.

2. t /∈ V∗ atomic: t ≪∗ r, r
′ implies r ≏ t ≏ r′. Therefore, r || r′.

3. t ≏ f(t0, . . . tn) complex: As t ≪∗ r ≪∗ s and t ≪∗ r′ ≪∗ s, we
obtain that all involved nominal terms are similar. Furthermore, we
have that the respective direct subterms are all strongly covered-by as
determined by the complex nominal terms. More formally and denoting
the direct subterms as expected, for all k ∈ n′:

tk ≪∗ rk ≪∗ sk and tk ≪∗ r
′
k ≪∗ sk

Applying n′-many times induction hypothesis, we obtain rk || r
′
k for all

k ∈ n′. Therefore, we have r || r′. q.e.d.
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An immediate consequence of the proposition above is that the set of all
intermediate nominal term between two nominal terms (with respect to the
strong covered-by relation) is independent. We provide the formal statement:

12.4 Corollary (Intermediate Nominal Terms): Let t, s ∈ T. The set
S = {r ∈ T; t ≪∗ r ≪∗ s} of intermediate nominal terms between t and s

is independent.

12.3 The Merge Functions

We introduce two operations on nominal terms, the merge function and the
dual merge function. Their intended application is the transformation of
independent nominal terms into a common nominal term representing both
arguments. More precisely, the merge function is intended to result in a
nominal term, in which the nominal symbol of both argument are all present,
and the dual merge function in a nominal term, in which only the common
nominal symbols of both arguments are present.90

We provide the formal definition of both merge functions.

12.5 DEF (Merge Functions):

1. merge function: The binary merge function µ : T × T → T is defined
recursively (in the first argument) as follows:

(a) t atomic: µ(t, s) ≏

{

t if t ∈ V∗

s otherwise

(b) t ≏ f(t0, . . . tn) complex:

µ(t, s) ≏

{

f(µ(t0, s0), . . . µ(tn, sn)) if t ∼ s ≏ f(s0, . . . sn)
s otherwise

2. dual merge function: The binary dual merge function µ : T× T → T is
defined recursively (in the first argument) as follows:

(a) t atomic: µ(t, s) ≏

{

s if t ∈ V∗

t otherwise

90In the course of our investigations, we are mainly interested in the merge function.
The dual merge function is additionally investigated for systematic reasons.
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(b) t ≏ f(t0, . . . tn) complex:

µ(t, s) ≏

{

f(µ(t0, s0), . . . µ(tn, sn)) if t ∼ s ≏ f(s0, . . . sn)
t otherwise

Basic Properties (Merge Functions): We communicate some basic
properties of both merge functions.

1. idempotence: Both merge functions are idempotent. More formally,
for all nominal terms t:

µ(t, t) ≏ t ; µ(t, t) ≏ t

(Straightforward induction.)

2. absorption: Strongly covered nominal terms are absorbed by the merge
functions. More formally, for all nominal terms t and s:

t ≪∗ s ⇒ µ(t, s) ≏ t and µ(t, s) ≏ s

(Straightforward induction.)

3. non-commutative: Neither merge function is commutative. Investigate
the following typical counterexamples:

(a) clash of nominal symbols:

µ(∗0, ∗1) ≏ ∗0 6≏ ∗1 ≏ µ(∗1, ∗0)

µ(∗0, ∗1) ≏ ∗1 6≏ ∗0 ≏ µ(∗1, ∗0)

(b) clash of structure:

µ(1 + 2, 1 · 2) ≏ 1 · 2 6≏ 1 + 2 ≏ µ(1 · 2, 1 + 2)

µ(1 + 2, 1 · 2) ≏ 1 + 2 6≏ 1 · 2 ≏ µ(1 · 2, 1 + 2)

4. non-associative: Neither merge function is associative. Investigate the
following typical counterexamples:

µ(µ(∗+ ∗, 1 · 1), 1 + 1) ≏ µ(1 · 1, 1 + 1) ≏ 1 + 1

6≏ ∗+ ∗ ≏ µ(∗+ ∗, 1 + 1) ≏ µ(∗+ ∗, µ(1 · 1, 1 + 1))

µ(µ(∗+ ∗, 1 · 1), 1 + 1) ≏ µ(∗+ ∗, 1 + 1) ≏ 1 + 1

6≏ ∗+ ∗ ≏ µ(∗+ ∗, 1 · 1) ≏ µ(∗+ ∗, µ(1 · 1, 1 + 1))

Observe that both counterexamples depend on a clash of structures.
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Due to the clashes of nominal symbols and of structure, the merge functions
do not behave well. The situation changes, if the merge functions are applied
on independent arguments:

1. avoiding clashes: The clash of structure is avoided, as complex inde-
pendent nominal terms are similar and generated out of independent
direct subterms. The clash of nominal symbols is avoided, as nominal
symbols are independent, if and only if they are equal.

2. alternative approach: The clash of nominal symbols could be avoided
by discussing the properties of the merge function modulo the equiv-
alence of nominal terms; in such an approach, we would modify the
definition of independence such that arbitrary nominal symbols would
become independent.

12.4 Merging Independent Nominal Terms

We investigate the properties of both merge functions.

12.4.1 Commutativity

In the next proposition, we show that the restriction of both merge function
to independent arguments is commutative.

12.6 Proposition (Commutativity): Let t, s ∈ T be arbitrary nominal
terms. If t || s, then µ(t, s) ≏ µ(s, t) and µ(t, s) ≏ µ(s, t).
Proof. By induction over the structure of t.

1. t ∈ V∗ atomic: We have µ(t, s) ≏ t and µ(t, s) ≏ s. We distinguish
the following cases:

(a) s ∈ V∗: As t || s, we obtain that t ≏ s. Therefore, µ(s, t) ≏ t

and µ(s, t) ≏ s.

(b) s /∈ V∗: Independently of the actual shape of s (whether s is
atomic or complex), we obtain µ(s, t) ≏ t and µ(s, t) ≏ s.

2. t /∈ V∗ atomic: We have µ(t, s) ≏ s and µ(t, s) ≏ t. We distinguish
the following cases:

(a) s ∈ V∗: Immediately, µ(s, t) ≏ s and µ(s, t) ≏ t.

(b) s /∈ V∗: t || s implies that t ≏ s. Therefore, µ(s, t) ≏ s and
µ(s, t) ≏ t
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René Gazzari Independence of Nominal Terms

3. t ≏ f(t0, . . . tn) complex: We distinguish as follows:

(a) s ∈ V∗: Immediately:

µ(t, s) ≏ s ≏ µ(s, t) and µ(t, s) ≏ t ≏ µ(s, t)

(b) s /∈ V∗: t || s implies that t ∼ s ≏ f(s0, . . . sn) (for some nominal
terms sk) and that tk || sk for all k ∈ n′. Applying n′-many times
induction hypothesis, we obtain for all k ∈ n′:

µ(tk, sk) ≏ µ(sk, tk) ; µ(tk, sk) ≏ µ(sk, tk)

Therefore, we may calculate as follows:

µ(t, s) ≏ f(µ(t0, s0), . . . µ(tn, sn))

≏ f(µ(s0, t0), . . . µ(sn, tn)) ≏ µ(s, t)

µ(t, s) ≏ f(µ(t0, s0), . . . µ(tn, sn))

≏ f(µ(s0, t0), . . . µ(sn, tn)) ≏ µ(s, t)

q.e.d.

12.4.2 Associativity

In the next proposition, we show that the restriction of both merge function
to independent arguments is associative.

12.7 Proposition (Associativity): Let S = {t, s, r} ⊆ T be an indepen-
dent set of nominal terms. The following both equations hold:

µ(µ(t, s), r) ≏ µ(t, µ(s, r)) ; µ(µ(t, s), r) ≏ µ(t, µ(s, r))

Proof. By induction over the structure of t.

1. t ∈ V∗ atomic: We calculate as follows:

µ(µ(t, s), r) ≏ µ(t, r) ≏ t ≏ µ(t, µ(s, r))

µ(µ(t, s), r) ≏ µ(s, r) ≏ µ(t, µ(s, r))
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2. t /∈ V∗ atomic: We calculate as follows:

µ(µ(t, s), r) ≏ µ(s, r) ≏ µ(t, µ(s, r))

µ(µ(t, s), r) ≏ µ(t, r) ≏ t ≏ µ(t, µ(s, r))

3. t ≏ f(t0, . . . tn) complex: We distinguish two cases:

(a) t ∼ s ∼ r: If all three nominal terms are similar, then there are
nominal terms sk and the rk (for k ∈ n′) such that:

s ≏ f(s0, . . . sn) ; r ≏ f(r0, . . . rn)

As t, s and r are all complex, their pairwise independence is given
according to clause (3) of the definition. Therefore, we obtain that
the set {tk, sk, rk} is independent for all k ∈ n′. Applying n′-many
times induction hypothesis, we obtain for all k ∈ n′:

µ(µ(tk, sk), rk) ≏ µ(tk, µ(sk, rk))

µ(µ(tk, sk), rk) ≏ µ(tk, µ(sk, rk))

A simple calculation yields:

µ(µ(t, s), r) ≏ µ(t, µ(s, r))

µ(µ(t, s), r) ≏ µ(t, µ(s, r))

(b) not(t ∼ s ∼ r): We first discuss the case that t 6∼ s. Im-
mediately, t || s cannot be given according to clause (3) of the
definition of independence. As t is complex, clause (1) is also ex-
cluded. Therefore, independence is given according to clause (2).
This means that t ∈ T0 is standard and s ≏ ∗k ∈ V∗ is a nominal
symbol. Analogous argumentation holds with respect to r in the
case that t 6∼ r.

If both nominal terms s, r ∈ V∗, then their independence is given
according to clause (1), which means that s ≏ ∗k ≏ r.

If one of the nominal terms is similar to t, lets say s, then the
independence of s and r must be given according to clause (2).
Therefore, s ∈ T0 is a standard term. As t is a standard term
independent from s, we obtain that t ≏ s.

We summarise the situation: there is a nominal symbol ∗k such
that s or r (or both) are equal to ∗k. If one of both nominal terms
is different from ∗k, then this nominal term is equal to t.
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In each case, we have that µ(s, r) ≏ ∗k. Furthermore, µ(t, s) ≏ s.
Therefore:

µ(µ(t, s), r) ≏ µ(s, r) ≏ ∗k ≏ µ(t, ∗k) ≏ µ(t, µ(s, r))

We also have that µ(s, r) ∈ {t, ∗k} and both µ(t, t) ≏ t and
µ(t, ∗k) ≏ t. Therefore:

µ(µ(t, s), r) ≏ µ(t, r) ≏ t ≏ µ(t, µ(s, r))

q.e.d.

12.4.3 Weight of Merged Nominal Terms

In the next proposition, we show that the weight of nominal terms can be
calculated, if the merge functions are applied to independent nominal terms.
More precisely, the number of nominal symbols in the merged nominal term
equals to the sum of the nominal symbols in both nominal terms decreased
by the number of nominal symbols locally covered by themselves. The latter
number is the number of nominal symbols in the result of applying the dual
merge function on both arguments.

12.8 Proposition (Weight of Merged Nominal Terms): Let t, s ∈ T

be nominal terms. If t || s, then the following equations holds:

weight(µ(t, s)) = weight(t) +weight(s)−weight(µ(t, s))

Proof. By induction over the structure of t.

1. t ∈ V∗ atomic: Recalling that µ(t, s) ≏ t and µ(t, s) ≏ s, we obtain:

weight(µ(t, s)) = weight(t)

= weight(t) +weight(s)−weight(s)

= weight(t) +weight(s)−weight(µ(t, s))

2. t /∈ V∗ atomic: Independence of t and s can be given according to
clause (1) of the definition, which means that t ≏ s, or according to
clause (2), which means that s ∈ V∗.
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In the first case, the equation holds trivially, as both µ and µ are
idempotent:

weight(µ(t, s)) = weight(t)

= weight(t) +weight(s)−weight(s)

= weight(t) +weight(s)−weight(µ(t, s))

In the second case, we may use the commutativity of both merge func-
tions and calculate as above.

3. t ≏ f(t0, . . . tn) complex: Again, we have to distinguish two cases.
If independence is given according to clause (2) of the definition, we
obtain, in particular, that s ∈ V∗. Using again commutativity of
both merge functions, we may again calculate as in clause (1) of this
proof. Otherwise, independence is given according to clause (3) of the
definition. The latter means both that t ∼ s ≏ f(s0, . . . sn) and that
tk || sk for all k ∈ n′. Applying n′-many times induction hypothesis,
we calculate as follows:

weight(µ(t, s)) = weight(f(µ(t0, s0), . . . µ(tn, sn)))

=
∑

k∈n′

weight(µ(tk, sk))

=
∑

k∈n′

weight(tk) +weight(sk)−weight(µ(tk, sk))

= weight(t) +weight(s)

−weight(f(µ(t0, s0), . . . µ(tn, sn)))

= weight(t) +weight(s)−weight(µ(t, s))

Observe that the first and the last calculation step presuppose the
similarity of t and s. q.e.d.

12.4.4 Covered-By Relation

We discuss the relationship of the merge functions (restricted to independent
arguments) and the strong covered-by relation. In a first proposition, we
show that independent nominal terms are between the results of both merge
functions with respect to the strong covered-by relation.
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12.9 Proposition (Covered-By Relation - I): Let t, s ∈ T. If t || s,
then the following statements hold: µ(t, s) ≪∗ t, s and t, s ≪∗ µ(t, s).
Proof. As both merge functions are commutative for independent nominal
terms, it is sufficient to show that µ(t, s) ≪∗ t ≪∗ µ(t, s); this is done by
induction over the structure of t for an arbitrary nominal term s ∈ T.

1. t ∈ V∗ atomic: Independence of t and s means s ≏ t (clause (1) of
the definition) or s ∈ T0 (clause (2) of the definition). In both cases,
we have t ≪∗ s. Therefore:

µ(t, s) ≏ t ≪∗ t ; t ≪∗ s ≏ µ(t, s)

2. t /∈ V∗ atomic: Independence of t and s means s ≏ t (clause (1) of
the definition) or s ∈ V∗ (clause (2) of the definition). In both cases,
we have s ≪∗ t. Therefore:

µ(t, s) ≏ s ≪∗ t ; t ≪∗ t ≏ µ(t, s)

3. t ≏ f(t0, . . . tn) complex: We distinguish two cases:

(a) t ∼ s: As t ∼ s, there are nominal terms sk (for k ∈ n′) such
that s ≏ f(s0, . . . sn). Independence of t and s is given according
to clause (3) of the definition. Therefore, tk || sk for all k ∈ n′.
Applying n′-many times induction hypothesis, we obtain for all
k ∈ n′:

µ(tk, sk) ≪∗ tk ≪∗ µ(tk, sk)

As t ∼ s, we also have:

µ(t, s) ≏ f(µ(t0, s0), . . . µ(tn, sn))

µ(t, s) ≏ f(µ(t0, s0), . . . µ(tn, sn))

This means both that t ∼ µ(t, s) and t ∼ µ(t, s). Therefore:

µ(t, s) ≪∗ t ≪∗ µ(t, s)

(b) t 6∼ s: If t 6∼ s, then independence of t and s is only possible
according to clause (2) of the definition of independence. Cor-
respondingly, t ∈ T0 and s ∈ V∗. As a consequence, s ≪∗ t.
Therefore:

µ(t, s) ≏ s ≪∗ t ; t ≪∗ t ≏ µ(t, s)

q.e.d.
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In the proposition above, we have seen that the result of an application of the
merge function (restricted to independent arguments) is a lower bound of its
arguments and that the result of an application of the dual merge function
(again restricted to independent arguments) an upper bound. In particular,
we obtain as a corollary that the result of merging two independent nominal
terms is strongly covered by the result of dual merging them.

12.10 Corollary (Covered-By Relation - I): Let t, s ∈ T be nominal
terms. If t || s, then µ(t, s) ≪∗ µ(t, s).
Proof. Immediate consequence of the proposition above, as the strong
covered-by relation is transitive. q.e.d.

In the next proposition, we show a complementary result: if a nominal term
is below two independent nominal terms, then also below the result of an
application of the merge function on the independent nominal terms; anal-
ogously, if a nominal term is above two independent nominal terms, then
also above the result of an application of the dual merge function on the
independent nominal terms.

12.11 Proposition (Covered-By Relation - II): Let t, s ∈ T be two
independent nominal terms. The following statements hold for all nominal
terms r ∈ T.

1. merge function: If r ≪∗ t and r ≪∗ s, then also r ≪∗ µ(t, s).

2. dual merge function: If t ≪∗ r and s ≪∗ r, then also µ(t, s) ≪∗ r.

Proof. We prove the first statement by induction over the structure of t:

1. t ∈ V∗ atomic: If r ≪∗ t, then immediately r ≪∗ t ≏ µ(t, s).

2. t /∈ V∗ atomic: If r ≪∗ s, then immediately r ≪∗ s ≏ µ(t, s).

3. t ≏ f(t0, . . . tn): We distinguish some cases:

(a) t 6∼ s: As in the standard atomic case, we have:

If r ≪∗ s, then immediately r ≪∗ s ≏ µ(t, s).

(b) t ∼ s, r atomic: Let r ≪∗ t and r ≪∗ s. As t and s are
complex, the strong covered-by relation must be given according
to clause (1) of the definition, which means that r ∈ V∗ and that
both t, s ∈ T0. As t || s, the latter implies t ≏ s. Therefore:

r ≪∗ t ≏ µ(t, s)
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(c) t ∼ s, r complex: Let r ≪∗ t and r ≪∗ s. As r is complex, the
strong covered-by relation must be given according to clause (3)
of the definition. Therefore, r ∼ t and r ∼ s. As a consequence,
there are nominal terms sk and rk (for k ∈ n′) such that:

s ≏ f(s0, . . . sn) ; r ≏ f(r0, . . . rn)

As r is strongly covered by t and s, we have also that rk ≪∗ tk

and rk ≪∗ sk for all k ∈ n′. Applying n′-many times induction
hypothesis, we obtain rk ≪∗ µ(tk, sk) for all k ∈ n′. Therefore,
the following statement holds:

r ≪∗ f(µ(t0, s0), . . . µ(tn, sn)) ≏ µ(t, s)

We prove the second statement by induction over the structure of t.

1. t ∈ V∗ atomic: If s ≪∗ r, then immediately µ(t, s) ≏ s ≪∗ r.

2. t /∈ V∗ atomic: If t ≪∗ r, then immediately µ(t, s) ≏ t ≪∗ r.

3. t ≏ f(t0, . . . tn) complex: We distinguish two cases:

(a) t 6∼ s: As in the standard atomic case:

If t ≪∗ r, then immediately µ(t, s) ≏ t ≪∗ r.

(b) t ∼ s: First, we observe that t ∼ s ∼ r. (Similarity with r is
given, as r is strongly covering complex nominal terms.) There-
fore, there are nominal terms sk and rk (for k ∈ n′) such that:

s ≏ f(s0, . . . sn) ; r ≏ f(r0, . . . rn)

As t ≪∗ r and s ≪∗ r, we also have tk ≪∗ rk and sk ≪∗ rk

for all k ∈ n′. Applying n′-many times induction hypothesis, we
obtain µ(tk, sk) ≪∗ rk for all k ∈ n′. Therefore:

µ(t, s) ≏ f(µ(t0, s0), . . . µ(tn, sn)) ≪∗ r

q.e.d.

Remarks (Proposition - Covered-By Relation - II):

1. independence: Observe that we do not use independence in the proof of
the second statement of the proposition above. In the first statement,
independence is only needed in that complex case in which t ∼ s,
but r is atomic. This case is not possible with respect to the second
statement, as r is above t (and also above s) with respect to the strong
covered-by relation and, therefore, complex.
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2. complementary statements: There are complementary statements to
those of the proposition above:

(a) dual merge function: If r ≪∗ t and r ≪∗ s, then r ≪∗ µ(t, s).

(b) merge function: If t ≪∗ r and s ≪∗ r, then µ(t, s) ≪∗ r.

Both statements can even be weakened by replacing “and” by “or”
and are an immediate consequence of the first proposition about the
covered-by relation together with transitivity of the strong covered-by
relation.

12.4.5 Preservation of Independence

The merge functions preserve independence of nominal terms. More pre-
cisely, if three nominal terms are pairwise independent, then also the result
of merging two of them and the third.

12.12 Proposition (Preservation of Independence): If S = {t, s, r} is
an independent set of nominal terms, then both µ(t, s) || r and µ(t, s) || r.
Proof. By induction over the structure of t.

1. t ∈ V∗ atomic: Immediately:

µ(t, s) ≏ t || r ; µ(t, s) ≏ s || r

2. t /∈ V∗ atomic: Immediately:

µ(t, s) ≏ s || r ; µ(t, s) ≏ t || r

3. t ≏ f(t0, . . . tn) complex: We distinguish as follows:

(a) t ∼ s ∼ r: As all nominal terms are similar, there are nominal
terms sk and rk such that:

s ≏ f(s0, . . . sn) ; r ≏ f(r0, . . . rn)

Pairwise independence of the three nominal terms means that the
sets {tk, sk, rk} are independent for all k ∈ n′. Applying n′-many
times induction hypothesis, we obtain both that µ(tk, sk) || rk and
µ(tk, sk) || rk for all k ∈ n′ and, as a consequence, that µ(t, s) || r
and µ(t, s) || r.
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(b) not(t ∼ s ∼ r): One of the nominal terms s or r is not similar to
t; this nominal term is a nominal symbol ∗k and therefore t ∈ T0

a standard term (both due to independence). Furthermore, if the
both nominal terms s and r are not similar to t, then they have
to be the equal. If it is not the case that both nominal terms s
and r are nominal symbols, then the other nominal term is equal
to the standard term t.

This means: µ(t, s) ∈ {∗k, t} and r ∈ {∗k, t}. In any case,
µ(t, s) || r.

Furthermore, µ(t, s) ≏ t, and, therefore, immediately µ(t, s) || r.

q.e.d.

As a consequence of the proposition above, the extensions of independent
sets of nominal terms by the result of merging some elements of such a set
is again independent.

12.13 Corollary (Independent Extensions): Let S ⊆ T be an indepen-
dent set of nominal terms. The sets S′ = S∪{µ(t, s)} and S′′ = S∪{µ(t, s)}
are independent for all nominal terms t, s ∈ S.
Proof. We show the independence of the set S′; the proof with respect to S′′

is analogous. Let r ∈ S′ be arbitrary. It is sufficient to show r || µ(t, s). (All
other pairs of nominal terms are contained in S and, therefore, independent.)
The case r ≏ µ(t, s) is trivial, as independence is reflexive. We may assume,
therefore, that r ∈ S. The latter means that {t, s, r} ⊆ S is an independent
set. According to the proposition above, we have r || µ(t, s). q.e.d.

12.5 Independent Sets of Nominal Term

The aim of this section is to show that independent sets of nominal terms
are finite. In order to do so, we use the following version of Lindenbaum’s
Theorem:91 every independent set of nominal terms can be extended to a
maximal independent set of nominal terms.

91Lindenbaum’s Theorem is passed down by Tarski [31] and is formulated with respect
to the consistency of formula sets in (countable) formal languages. Cf. Gazzari [8] for a
brief discussion of different abstract versions of this theorem (equivalent to the Axiom of
Choice) and of the distinction of these theorems from other (set-theoretical) statements.
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12.5.1 Maximal Independent Sets

In a first step, we introduce maximal independent sets.

12.14 DEF (Maximally Independent Sets): An independent set S ⊆ T

of nominal terms is maximal, if the following conditions is satisfied for all
nominal terms s ∈ T: if S ∪ {s} is independent, then s ∈ S.

Maximal independent sets contain a least and a greatest element with respect
to the strong covered-by relation.

12.15 Proposition (Maximally Independent Sets): Let S ⊆ T be a
maximal independent set. Then the following statements hold:

1. the least element: S contains a least element t ≏ min(S) with respect
to the strong covered-by relation. This element is minimal in T; in
particular, weight(t) = 0.

2. the greatest element: S contains a greatest element s ≏ max(S) with
respect to the strong covered-by relation. This element is maximal in
T; in particular, weight(s) = 0 which means that s ∈ T0 is standard.

Proof. We first discuss statement (1).

1. construction: First, we observe that S is not empty. (As independence
is reflexive, the empty set is not maximal.) This means that there is
r′ ∈ S. As descending chains with respect to the strong-covered by
relation are finite, we find after finitely many steps a minimal element
t ∈ S below r′. Minimality means that we have for all r ∈ S: if r ≪∗ t,
then t ≏ r.

2. the least element ∈ S: The nominal term t is the least element of S:
Let r ∈ S be arbitrary. As t || r, the set S ∪ {µ(t, r)} is an independent
extension of S. As S is maximal, we obtain that µ(t, r) ∈ S. As still
t || r, we obtain both that µ(t, r) ≪∗ t and µ(t, r) ≪∗ r. As t is
minimal with respect to ≪∗, we have that t ≏ µ(t, r) and, therefore,
t ≏ µ(t, r) ≪∗ r. Therefore, the nominal term t is the least element
of S with respect to ≪∗.

3. minimal in T: The nominal term t is minimal in T: Let t′ ∈ T such
that t′ ≪∗ t. We have for arbitrary r ∈ S:

t′ ≪∗ t ≪∗ r
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Due to transitivity of the strong covered-by relation, we obtain that
t′ ≪∗ r. As covered nominal terms are independent, the latter implies
t′ || r. Therefore, the set S′ = S∪{t′} is independent. As S is maximal,
we obtain that t′ ∈ S. As t is the least element of S, we also have that
t ≪∗ t′. Due to anti-symmetry of the strong covered-by relation, we
obtain t ≏ t′. The latter means that t is, indeed, a minimal element
in T with respect to the strong covered-by relation. Minimal elements
with respect to the strong covered-by relation have dual weight 0.

Statement (2) is proved analogously: a nominal term s ∈ S is constructed
via an ascending chain; it is shown that s is the greatest element of S and
a maximal element in T. Finally, we mention that maximal elements with
respect to the strong covered-by relation are standard terms and that they
have weight 0. q.e.d.

12.5.2 Extensions of Independent Sets

In the next proposition, we show that every independent set can be extended
to a maximal independent set.

12.16 Proposition (Lindenbaun’s Theorem (with AC)): Let S ⊆ T

be an independent set of nominal terms. There is a maximal independent
extension S′ of S. The latter means that the following three conditions are
satisfied: S ⊆ S′, S′ is independent and if a set S′ ∪ {s} is independent, then
s ∈ S′.
Proof. By the Axiom of Choice (AC), we may presuppose a (transfinite)
enumeration of the set T of all nominal terms. The latter means that there
is an ordinal γ ∈ Ω such that T = {tα; α ∈ γ}. We construct a sequence Sα
(with α ∈ γ′) of extensions of S as follows:

1. α = 0: S0 = S

2. α = β′ successor:

Sα =

{

Sβ ∪ {tβ} if Sβ ∪ {tβ} independent
Sβ otherwise

3. α limit ordinal: Sα =
⋃

β∈α Sβ

Finally, let S′ = Sγ. We check the properties of S′:

1. extension: By construction, S ⊆ S′.
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2. independence: Sα is independent for all α ∈ γ′: S0 is independent by
presupposition. If Sβ is independent, then also Sβ′ (immediately, by
construction). If α is a limit ordinal, such that Sβ is independent for
all β ∈ α, then also Sα (assuming that not, there are two nominal terms
t, s ∈ Sα such that t 6 || s. As the Sβ are ascending, there is a β ∈ α
such that t, s ∈ Sβ, which is a contradiction to the independence of the
set Sβ). In particular, S′ = Sγ is independent.

3. maximality: S′ is maximal: Let s ∈ T such that the set S′ ∪ {s} is
independent. As we enumerated T, there is β ∈ γ such that s ≏ tβ. By
construction of the Sα, we have Sβ∪{s} ⊆ S′∪{s}. Therefore, Sβ∪{s}
is independent (as a subset of an independent set). By construction,
s ≏ tβ ∈ Sβ′ ⊆ S′.

We conclude that S′ is, indeed, a maximal independent extension of S.
q.e.d.

With the help of Lindenbaum’s Theorem for independent sets of nominal
terms, we prove that independent sets of nominal terms are finite.

12.17 Proposition (Finiteness of Independent Sets): Let S ⊆ T be a
set of nominal terms. If S is independent, then S is finite. In particular, if
S is maximal independent, then |S| = 2weight(t) for the least element t ∈ S

with respect to the strong covered-by relation.
Proof. We first discuss maximal independent sets S ⊆ T: According to
the proposition about maximal independent sets, there are a nominal term
t ≏ min(S) a nominal term s ≏ max(S). Investigate the following set:

S′ = {r ∈ T; t ≪∗ r ≪∗ s}

As t is the least and s the greatest element of S with respect to the strong
covered-by relation, S ⊆ S′. As intermediate nominal terns are independent,
S′ is independent. As S is maximal independent, S′ ⊆ S. Therefore, S = S′.
The number of intermediate nominal terms between a minimal nominal term
t and a maximal nominal term s equals to 2weight(t), which is the size of S
and, in particular, finite.

If S ⊆ T is an arbitrary independent set, then S is according to Linden-
baum’s Theorem a subset of a maximal independent set S′. As S′ is finite, S
is also finite. q.e.d.
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Avoiding the Axiom of Choice: In Lindenbaum’s Theorem, the existence
of maximal independent extensions of independent sets of nominal terms
is proved under the presupposition of the Axiom of Choice. Nevertheless,
it seems that this result can be proved constructively, without the strong
presupposition of the Axiom of Choice:

1. constructing an extension: Let ∅ 6= S ⊆ T be a non-empty independent
set of nominal terms. (If S = ∅, then {∗0, x0} is a maximal independent
extension.) Crucial aspect of the constructive proof is an explicit con-
struction of the least element t and the greatest element s of a maximal
independent extension S′ of S.

There are nominal terms t′ ∈ S with minimal dual weight. We have
to show that merging two different of these nominal terms results in
a nominal term with strictly lower dual weight. We add all nominal
terms generated this way to S and repeat the procedure until we obtain
a nominal term with dual weight zero. This nominal term will be the
least element of the maximal independent extension. (If the procedure
terminates too early, as there is a uniquely determined nominal term t′

with minimal dual weight, then we can use an arbitrary nominal term
below t′ having dual weight zero.)

Analogously, a nominal term s above S is constructed with the help of
the dual merge function satisfying that its weight equals to zero.

We define S′ = {r ∈ T; t ≪∗ r ≪∗ s}.

2. properties: We have to show that S′ has all desired properties. This
proof succeeds, as we know already that the sets S′ are exactly the
maximal independent sets of nominal terms.

12.5.3 Merging Independent Sets

As independent sets of nominal terms are finite, we are motivated to intro-
duce the set versions of the merge functions.

12.18 DEF (Set Version - Merge Functions): The set versions of both
merge functions are defined recursively (over the cardinality of independent
sets S of nominal terms) and in parallel as follows:

1. S = {s} singleton: µ({S}) ≏ s and µ({S}) ≏ s

2. s ∈ S 6= {s} not a singleton:

µ(S) = µ(µ(S\{s}), s) and µ(S) = µ(µ(S\{s}), s)
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Remarks (Set Version - Merge Functions):

1. well-defined: As the restrictions of both merge functions (their version
for nominal terms) to independent sets of nominal terms are associative
and commutative, both merge functions are defined in the complex case
independently of the choice of the nominal term s.

2. empty sets: The set versions of both merge functions are not defined
on the empty set; the reason is that there are no suitable distinguished
nominal terms in the set T of nominal terms.

The situation is different, if we presuppose an underlying maximal in-
dependent set S′ such that the arguments S for the merge functions
are subsets of S′. The set S′ contains a least element t and a greatest
element t (both with respect to the strong covered-by relation). In such
a context, we presuppose:

µ(∅) ≏ t ; µ(∅) ≏ t

Under such circumstances, the recursive clauses in the definition of the
merge functions also hold with respect to singletons. More formally,
for all s ∈ S′:

µ({s}) ≏ µ(µ(∅), s) ; µ({s}) ≏ µ(µ(∅), s)

3. extreme elements: Merging an independent set S results in a bound to
the set S. More precisely:

(a) greatest lower bound: µ(S) is the greatest lower bound of S with
respect to the strong covered-by relation; in particular, if S is
maximal, then µ(S) = min(S).

(b) least upper bound: µ(S) is the least upper bound of S with respect
to the strong covered-by relation; in particular, if S is maximal,
then µ(S) = max(S).

12.6 Formal Introduction of Strong Independence

Two nominal terms are strongly independent, if they are independent and if
they satisfy additionally that no nominal symbol is locally covered by itself.
We provide the formal definition of this version of independence of nominal
terms.
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12.19 DEF (Strong Independence): Two nominal terms t, s ∈ T are
strongly independent (formally, t ||∗ s), if one of the following conditions is
satisfied:

1. atomic nominal terms: The nominal terms t and s are atomic, stan-
dard and equal.

2. nominal symbols: (t ∈ V∗ and s ∈ T0) or (t ∈ T0 and s ∈ V∗).

3. complex nominal term: t ≏ f(t0, . . . tn) ∼ f(s0, . . . sn) ≏ s and
tk ||∗ sk for all k ∈ n′.

A set S ⊆ T of nominal terms is called strongly independent, if all pairs of
different elements are strongly independent. Formally, if for all t, s ∈ S:

t 6≏ s ⇒ t ||∗ s

Basic Properties (Strong Independence): We communicate some basic
properties of the strong independence relation.

1. independence: Strongly independent nominal terms are, in particular,
independent. More formally, for all nominal terms t and s:

t ||∗ s ⇒ t || s

(Immediate, as both relations are defined identically, besides the addi-
tional demand of being standard in clause (1) of strong independence.)

2. reflexivity: Strong independence is not reflexive: a nominal term is
strongly independent of itself, if and only if it is a standard term. More
formally, for all nominal terms t:

t ||∗ t ⇔ t ∈ T0

(Proof of “⇒” by contraposition, of “⇐” directly; both directions by
straightforward induction.)

3. strongly independent sets: Subsets of strongly independent sets are
strongly independent. (Immediate.)

4. symmetry: Strong independence is symmetric. More formally, for all
nominal terms t and s:

t ||∗ s ⇒ s ||∗ t

(Straightforward induction.)
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5. standard terms: If a standard term t and a nominal term t are inde-
pendent, then they are already strongly independent. More formally,
for all standard terms t and all nominal terms t:

t || t ⇒ t ||∗ t

(Straightforward induction.)

Recalling that strongly covered nominal terms are independent, we
obtain that if the nominal term t is (strongly) covered by the standard
term t, then they are strongly independent. More formally:

t ≪∗ t ⇒ t ||∗ t

6. equivalence of nominal terms: Strong independence is compatible with
the equivalence of nominal terms. The latter means that the following
condition is satisfied for all nominal terms t, s and r:

t ||∗ s and s ≡ r ⇒ t ||∗ r

(Straightforward induction.)

12.7 Merging Strongly Independent Nominal Terms

We investigate the relationship between strong independence of nominal
terms and both merge functions.

12.7.1 Weight of Merged Nominal Terms

If two strongly independent nominal terms are merged, the number of nom-
inal symbols in the result equals the sum of the number of nominal symbols
in both arguments; if they are dual merged, then all nominal symbols vanish.

12.20 Proposition (Weight of Merged Nominal Terms): Let t, s ∈ T

be nominal terms. If t and s are strongly independent (formally, t ||∗ s),
then the following both equations hold:

1. merge function: weight(µ(t, s)) = weight(t) +weight(s)

2. dual merge function: weight(µ(t, s)) = 0

Proof. Let t, s ∈ T be strongly independent. First, we observe that
µ(t, s) ∈ T0 is a standard term. (This is easily checked by a straightforward
induction.) As a consequence, we obtain immediately the second equation,
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namely that weight(µ(t, s)) = 0. We recall the general result with respect
to independent nominal terms:

weight(µ(t, s)) = weight(t) +weight(s)−weight(µ(t, s))

Due to the second equation, the first equation follows immediately. q.e.d.

12.7.2 Unique Covering

In the next proposition, we show that independent sets containing strongly
independent nominal terms are strongly covered by a uniquely determined
standard term.

12.21 Proposition (Unique Covering): Let S ⊆ T be an independent
set of nominal terms. If S contains strongly independent elements t and s,
then t ≏ µ(t, s) is the uniquely determined standard term strongly covering
all elements of S.
Proof. Let S ⊆ T independent and t, s ∈ S such that t ||∗ s. Let t ≏ µ(t, s).
According to the proposition above, t ∈ T0 is a standard term.

As S is independent, S∪{µ(t, s)} is also independent. Therefore, there is
a maximally independent set S′ extending the latter set. µ(S′) is a standard
term covering all elements of S′; in particular, t ≪∗ µ(S′). As standard
terms are maximal with respect to the strong covered-by relation, we obtain
t ≏ µ(S′). As S is a subset of S′, we have r ≪∗ t for all r ∈ S.

We still have to show that t is uniquely determined. Let t′ ∈ T0 such that
r ≪∗ t

′ for all r ∈ S. Therefore, t′ || r for all r ∈ S and, as a consequence,
S ∪ {t′} is independent. As both t and s are contained in this independent
set, we obtain that its extension S∪ {t′, µ(t, s)} = S∪ {t, t′} is independent.
Therefore, t || t′ and, as both are standard terms, also t ≏ t′. q.e.d.

As a corollary, we obtain that we may extend strongly independent sets
(containing two strongly independent elements) by their unique covering.

12.22 Corollary (Unique Covering): Let S ⊆ T be a strongly inde-
pendent set. If S contains strongly independent elements t and s, then
S ∪ {µ(t, s)} is strongly independent.
Proof. Let t ≏ µ(t, s) ∈ T0 for strongly independent t, s ∈ S. It is sufficient
to check that r ||∗ t for all r ∈ S. Let r ∈ S arbitrary. Due to the proposition
above, we obtain r ≪∗ t. As a consequence, we obtain r || t. As t ∈ T0 is
standard, the latter implies r ||∗ t. q.e.d.
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12.7.3 Preservation of Strong Independence

We discuss the conditions such that a transformation of a strongly indepen-
dent set remains strongly independent.

Remark (Extensions of Strongly Independent Sets): It follows almost
immediately from the corollary above that an extension S′ = S ∪ {µ(t, s)}
of a strongly independent set S by the result of an application of the dual
merge function on elements of S is again strongly independent.

This is, in general, not true with respect to an extension S′ = S∪{µ(t, s)}
by the result of an application of the merge function. Investigate, for example:

S = {(∗+ 0), (0 + ∗)} ; r ≏ µ(∗+ 0, 0 + ∗) ≏ ∗+ ∗

We have neither r ||∗ (∗ + 0) nor r ||∗ (0 + ∗). In particular, S ∪ {r} is not
strongly independent (but independent).

Nevertheless, the situation changes, if we replace in S the strongly inde-
pendent arguments by the result of an application of the merge function on
these arguments: the resulting set is still strongly independent. In order to
show this result, it is convenient to investigate first some cases under which
the merge function preserves strong independence.

12.23 Proposition (Preservation of Strong Independence): Let S ⊆ T

be strongly independent. Let t, s, r ∈ S such that t 6≏ r 6≏ s. If µ(t, s) 6≏ r,
then µ(t, s) ||∗ r.
Proof. In a first step, we discuss some observations.

1. If t ≏ s, then µ(t, s) ≏ t ∈ S. By presupposition, t 6≏ r and, therefore,
µ(t, s) 6≏ r. As S is strongly independent, we obtain µ(t, s) ||∗ r. As a
consequence, we can presuppose subsequently t 6≏ s.

2. By presupposition, t 6≏ r 6≏ s. As all three nominal terms are contained
in the strongly independent set S, we immediately obtain that t ||∗ r

and r ||∗ s.

In general, we do not have t 6 ||∗ s, as we do not demand t 6≏ s. (Recall
that the restriction of strong independence to proper nominals is even
anti-reflexive.)

We prove our statement by induction over the structure of t.

1. t ∈ V∗ atomic: As t ||∗ r, we obtain r ∈ T0.

Assuming that s ∈ T0, we obtain s ≏ r, as s ||∗ r. This is a contra-
diction to the presupposition s 6≏ r. Therefore s /∈ T0. As s ||∗ r, we
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obtain s ∈ V∗. Therefore, t 6 ||∗ s. As S is strongly independent, the
latter implies t ≏ s. According to our first observation, we already
have µ(t, s) ||∗ r.

2. t /∈ V∗ atomic: As t ||∗ r, we have r ∈ V∗. Therefore, s ||∗ r implies
s ∈ T0. As S is strongly independent, we have that t ≏ s or t ||∗ s.
As both t ∈ T0 and s ∈ T0, strong independence implies again t ≏ s.
Therefore, t ≏ s, which means according to our first observation that
µ(t, s) ||∗ r.

3. t ≏ f(t0, . . . tn) complex: As t ||∗ r, we have that t ∼ r or both that
t ∈ T0 and r ∈ V∗. We discuss both cases separately:

(a) t 6∼ r: As already observed, t ∈ T0 and r ∈ V∗. As s ||∗ r, we
also have that s ∈ T0. As discussed above, t ∈ T0 and s ∈ T0

implies that t ≏ s. Again according to our first observation, the
latter implies µ(t, s) ||∗ r.

(b) t ∼ r: Assuming that r 6∼ s, we obtain due to strong indepen-
dence that s ∈ V∗ and r ∈ T0. As t /∈ V∗, we obtain t 6≏ s

and, therefore, t ∈ T0 (again due to strong independence). As
t ||∗ r, we obtain t ≏ r (both nominal terms are standard). This
contradicts our presuppositions.

Therefore, r ∼ s. Due to similarity, there are nominal terms sk
and rk such that:

s ≏ f(s0, . . . sn) ; r ≏ f(r0, . . . rn)

Without loss of generality, we assume that t 6≏ s. We have pair-
wise different nominal terms contained in a strongly independent
set of nominal terms. Therefore, these nominal terms are pairwise
strongly independent. As these nominal terms are all similar (and
complex), we obtain for all k ∈ n′:

tk ||∗ sk ; tk ||∗ rk ; sk ||∗ rk

We show µ(tk, sk) ||∗ rk for arbitrary k ∈ n′. We have to distin-
guish some cases:

• If tk ≏ sk, then µ(tk, sk) ≏ tk and, therefore, µ(tk, sk) ||∗ r.

• Otherwise tk 6≏ sk.
If tk ≏ rk, then strong independence implies that tk ∈ T0 and
rk ∈ T0. As tk 6≏ sk, strong independence also implies that
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s ∈ V∗. This means that µ(tk, sk) ≏ sk ∈ V∗ and, therefore,
µ(tk, sk) ||∗ rk.
If sk ≏ rk, then strong independence implies that sk ∈ T0

and rk ∈ T0. Analogously to the case before, we can conclude
that tk ∈ V∗. Again, we obtainµ(tk, sk) ∈ V∗ and, therefore,
µ(tk, sk) ||∗ rk.
Finally, we have to investigate the case that tk 6≏ rk 6≏ sk.
Here, we can apply induction hypothesis (observe that the
set Sk = {tk, sk, rk} is strongly independent) and we obtain
again µ(tk, sk) ||∗ rk.

We summarise: µ(tk, sk) ||∗ rk for all k ∈ n′ and in all subcases.

As t ∼ s, we can calculate as follows:

µ(t, s) ≏ f(µ(t0, s0), . . . µ(tn, sn)) ∼ r

As all respective pairs of the direct subterms of µ(t, s) and of r
are strongly independent, we conclude that µ(t, s) ||∗ r

q.e.d.

The proposition about the replacement of two strongly independent nominal
terms by the result of merging both is an immediate consequence of the
proposition above. We communicate this corollary.

12.24 Corollary (Preservation of Strong Independence): Let S ⊆ T

be strongly independent. The set S′ = (S\{t, s}) ∪ {µ(t, s)} is strongly
independent for all nominal terms t, s ∈ S.
Proof. We have to show for all r, r′ ∈ S′: if r 6≏ r′, then r ||∗ r′. Let
r, r′ ∈ S′ be arbitrary, but different (r 6≏ r′). If r, r′ ∈ S, then r ||∗ r′ is
trivially satisfied, as S is strongly independent. Otherwise and without loss
of generality, r′ ≏ µ(t, s) ∈ S′\S. As r 6≏ r′, we have that r′ ∈ S\{t, s}. The
latter means that t 6≏ r 6≏ s. Furthermore, {t, s, r} ⊆ S. Therefore, {t, s, r}
is strongly independent. As r 6≏ r′ ≏ µ(t, s), we may apply the proposition
above and obtain r ||∗ r

′. q.e.d.

12.8 The Completion Function

We complement the results of this section by discussing briefly the completion
function mapping pairs of nominal terms, in the intended case of strongly
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independent arguments, to a relation describing, how the locally covered
nominal symbols in both arguments are covered. Changing the perspective,
the completion function describes, in the intended case, how to complete the
arguments to their unique covering. Additionally, the image of the comple-
tion function may contain the falsum (⊥) indicating that the arguments are
not intended. We provide the definition of this function.

12.25 DEF (Completion Function): The binary completion function
comp : T× T → p(ω × T) ∪ {⊥} is defined as follows:

1. atomic nominal terms: If both t and s are standard atomic and equal:

comp(t, s) = ∅

2. nominal symbols: If (t ≏ ∗k and s ≏ r) or (s ≏ ∗k and t ≏ r) for
k ∈ ω and r ∈ T0:

comp(t, s) = {〈k, r〉}

3. complex nominal terms: If t ≏ f(t0, . . . tn) ∼ f(s0, . . . sn) ≏ s

comp(t, s) = .
⋃

k∈n′

comp(tk, sk)

4. otherwise: comp(t, s) = {⊥}

Observations (Completion Function): The following observations are
easily checked:

1. the falsum: The falsum (⊥) contained in the result of an application of
the completion function indicates that the arguments are not strongly
independent. More precisely, for all nominal terms t and s:

⊥ ∈ comp(t, s) ⇔ t 6 ||∗ s

2. relation: The result comp(t, s) of an application of the completion
function on strongly independent nominal terms t and s is a relation
between natural numbers and standard terms. The ordered pair 〈k, r〉
is contained in the result, if and only if the nominal symbol ∗k in
one argument is locally covered by the standard term r in the other
argument.
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3. function: The result comp(t, s) of an application of the completion
function on strongly independent nominal terms t and s is a function
(on a set of natural numbers), if and only if there is no k ∈ ω such that
〈k, r〉 and 〈k, r′〉 are contained in comp(t, s) for different terms r 6≏ r′.

This condition is, for example, satisfied, if the sets of free places of
the nominal terms t and s are disjoint and if both nominal terms are
simple. More formally, if place(t) ∩ place(s) = ∅ and if t, s ∈ Ts.

(Observe that this condition is sufficient, but not necessary.)

The domain dom(comp(t, s)) of the result of such an application is
the union place(t)∪place(s) of the sets of free places of the arguments.

4. sequence: The result comp(t, s) of an application of the completion
function on strongly independent nominal terms t and s is a (finite)
sequence, if the result is a function on a natural number n ∈ ω.

This condition is, for example, satisfied, if t is n-ary and s is the result
of shifting the nominal symbols in an m-ary nominal term r by n steps
(for n,m ∈ ω). More formally, if there are n,m ∈ ω and a nominal
term r such that:

t ∈ Tn ; r ∈ Tm ; s ≏ r+n

(As before, this is a sufficient condition, but not necessary.)

Relevance: We provide some applications of the completion functions:

1. covering: Let t, s ∈ T be two strongly independent nominal terms.
Without loss of generality, we assume additionally that both nominal
terms are in simple normal form.

The result comp(t, s+n) = t◦s (where n = place(t)) of an application
of the completion function on t and the suitably shifted version of s
can be understood as the concatenation of two finite sequences t and s

of standard terms satisfying the following conditions:

(a) suitable lengths: lng(t) = place(t) and lng(s) = place(s)

(b) eliminated sequences: The following equations hold:

µ(t, s) ≏ µ(t, s+n)[t ◦ s] ≏ t[t] ≏ s[s]

Observe that µ(t, s+n) ≏ µ(t, s).
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2. elimination form: Let t ∈ T0 be a standard term and t ∈ Tn an
n-ary nominal term (for n ∈ ω). If t is an elimination form of t,
then comp(t, t) is the uniquely determined sequence of standard terms
actually eliminated in t. More formally:

t ≤ t ⇒ t[comp(t, t)] ≏ t

Observe that this is a special case of the general case discussed above,
as elimination forms of a standard term are strongly independent of
the standard term.

Variants (Completion Function): There are some interesting variants
of the completion function:

1. standard terms: If we restrict the second argument to standard terms,
then the falsum (⊥) contained in the result of an application indicates
that the first argument is not covered by the second argument.

2. independence: If we drop the restriction in the first clause that the
atomic arguments have to be standard, then the falsum (⊥) contained
in the result of an application indicates that the arguments are not
independent.

As ordered pairs 〈∗k, ∗k〉 are mapped by this version of the comple-
tion function to the empty set, completing the arguments (as discussed
above) does not result in a standard term, but in a nominal term in
which the nominal symbols locally covered by themselves still occur.

12.9 Excursus: Correspondence to Set Theory

We conclude our discussion of the (strong) independence of nominal terms
with a brief excursus on the relationship between the theory of nominal terms
and set theory.

First Observations: The size of maximal independent sets motivates to
identify such sets with power sets. Our results with respect to the weight
of merged and dual merged nominal terms remind on the analogous results
with respect to the size of sets under union and intersection; in particular,
strongly independent nominal terms behave as disjoint sets.

Correspondence: Let S ⊆ T be a maximal independent set and X a set
such that |X| = weight(µ(S)). We may observe the following correspondence
between the maximal independent set S and the power set p(X) of X:
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1. union and intersection: The dual merge function µ corresponds with
set intersection ∩, the merge function µ with set union ∪.

2. empty set and full set: The greatest element µ(S) corresponds with
the empty set, the least element µ(S) with the full set X.

3. singletons and subsets: The single nominal terms t correspond with
singletons {x}; once such a concrete correspondence Φ is established,
this correspondence can be extended to all subsets Y ⊆ X by demand-
ing that this extension respects the merge function with respect to
strong independence. More formally, by demanding for all t, s ∈ S:

t ||∗ s ⇒ Φ(µ(t, s)) = Φ(t) ∪ Φ(s)

4. disjointness: Strong independence corresponds with disjointness.

5. subset relation: The strong covered-by relation corresponds inversely
with set inclusion. This means for all nominal terms t, s ∈ S:

t ≪∗ s ⇒ Φ(s) ⊆ Φ(t)

6. complement: A straightforward idea for constructing the complement
in a maximal independent set would be to investigate the completion of
a nominal term t to the greatest element µ(S) and complete the least
element µ(S) partially according to that completion. More formally,
for arbitrary nominal term t ∈ S:

s = comp(t, µ(S)) ∪ {〈k, ∗k〉; k ∈ ω\place(t)} ; ν(t) ≏ µ(S)[s]

Here, ν(t) is meant to be the complement of t satisfying the following
both equations:

µ(t, ν(t)) ≏ µ(S) ; µ(t, ν(t)) ≏ µ(S)

Unfortunately, the direct construction given above only works, if the
least element µ(S) of S is simple; otherwise, there are clashes of nominal
symbols leading to undesired results.

In the general case, we may use well-known equalities to define the
complement. For example, for all t ∈ S:

ν(t) ≏ µ(s; µ(t, s) ≏ µ(S)) or ν(t) ≏ µ(s; µ(t, s) ≏ µ(S))

The sketched correspondence yields that 〈S, µ, µ, ν, µ(S), µ(S)〉 is a (non-
trivial) finite boolean algebra for all maximal independent sets S ⊆ T.
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13 Independent Occurrences

The concept of independence is carried over to (multi-shape) occurrences and
sets of occurrences. Applications of this concept are discussed.

13.1 Introduction of Independent Occurrences

We provide the formal definition of independent occurrences.

13.1 DEF (Independence of Occurrences):

1. independent occurrences: Two (multi-shape) occurrences o and o′ are
independent (formally, o ||∗ o′), if they have the same context and if
their positions are strongly independent. Formally, if the following
both conditions are satisfied:

con(o) ≏ con(o′) and pos(o) ||∗ pos(o
′)

2. independent sets: A set O ⊆ O of multi-shape occurrences is indepen-
dent, if pairwise different occurrences contained in O are independent.
Formally, if the following condition is satisfied for all o, o′ ∈ O:

o 6= o′ ⇒ o ||∗ o
′

Remarks (Independence of Occurrences):

1. context: If two occurrences with strongly independent positions have
a common context, then this context is the uniquely determined cov-
ering of the positions. Nevertheless, it is possible that the contexts
are different, even if the respective positions are strongly independent.
Investigate the following example:

t0 ≏ ∗+ 1 ; t1 ≏ 0 + ∗

The nominal terms t0 and t1 are strongly independent, their unique
covering is the standard term t ≏ 0 + 1. There are infinitely many
occurrences with these positions, but a context different from t. For
example:

o0 = 〈1 + 1, 1, t0〉 ; o1 = 〈0 + 2, 2, t1〉

The occurrences are not independent, as their contexts are different.
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Typical Examples (Independent Occurrences): We mention some
typical examples of independent occurrences.

1. atomic shape: Single occurrences in the same context having an atomic
standard term as shape are independent or equal.

2. equal shape: Single occurrences in the same context having an equal
shape are independent or equal.

Independence of Occurrences: We discuss the relevant aspects of the
independence of occurrences.

1. overlapping shapes: The intended shapes of independent occurrences
do not overlap, as nominal symbols in the respective positions have
to be covered locally by standard terms and cannot be covered by a
nominal symbol marking the same position.

2. locally lying within: The intended shapes of independent occurrences
do not lie locally within each other, as nominal symbols marking their
positions are locally covered by a standard term.

In particular, the positions of independent occurrences are not related
by the less-structured relation, which means that the occurrences do
not lie within each other. (Observe that this condition is, in general
strictly weaker than its local version mentioned before.)

3. symmetry: Independence of occurrences is symmetric, as the strong
independence of nominal terms is so.

4. reflexivity: An occurrence o is independent of itself, if and only if its
position is trivial (which means that it is equal to the context). In par-
ticular, the empty occurrences 〈t, ǫ, t〉 are independent of themselves.
The restriction of independence to occurrences having proper nominal
terms as position is anti-reflexive. More formally, for all occurrences o:

pos(o) ∈ T0 ⇔ o ||∗ o

5. transitivity: Independence of occurrences is not transitive. This follows
from symmetry and anti-reflexivity of occurrences with proper nominal
terms as position.
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6. equivalence of occurrences: As strong independence is compatible with
the equivalence of nominal terms (and determining their unique cov-
ering), independence of occurrences is also compatible with the equiv-
alence of occurrences. The latter means that the following statement
holds for all occurrences o, o′ and o′′:

o ||∗ o
′ and o′ ≡ o′′ ⇒ o ||∗ o

′′

We summarise our observations: the formal notion of independence of oc-
currences captures faithfully our intuitions about the informal concept of
independent occurrences.

Besides of having a good formal representation of the informal concept of
independence, the independence of occurrences is of specific interest in the
theory of occurrences: the methods introduced so far, allow to relate inde-
pendent occurrences with a single occurrence representing these independent
occurrences. Subsequently, we discuss this relationship in some details.

13.2 Merging Independent Occurrences

First, we investigate, how independent occurrences can be merged into one
occurrence representing the independent occurrences.

13.2 DEF (Merged Occurrences): Let O 6= ∅ be a non-empty set of
independent occurrences. Furthermore, let t be the uniquely determined
context of the elements o of O. We define as follows:

1. position: The position of the merged occurrence is given as follows:

t ≏ simp(µ(pos(o); o ∈ O))

2. sequence of shapes: The sequence of shapes is given as follows:

s = comp(t, t)

As t is n-ary and simple and as t is strongly covered by t, we have that
s is, indeed, a sequence of standard terms; in particular, the sequence
s is actually eliminated in t with respect to t.

3. merged occurrence: The merged occurrence µ(O) is given as follows:

µ(O) = 〈t, s, t〉

By construction, µ(O) is an occurrence representing all occurrences con-
tained in O.
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Remarks (Merged Occurrences):

1. simplification: The simplification function is used in the construction
of the position to avoid clashes of nominal symbols.

Due to such clashes, the nominal term s ≏ µ(pos(o); o ∈ O) is, in gen-
eral, strongly covered by the common context t, but not an elimination
form of t. Investigate, for example, the following occurrences in the
standard term t ≏ 0 + 1:

o = 〈t, 0, ∗+ 1〉 ; o′ = 〈t, 1, 0 + ∗〉  s ≏ ∗+ ∗ 6≤ t

2. commutativity: Due to the use of the simplification function, merging
occurrences is commutative. Using other methods of avoiding clashes
of nominal symbols can result in a function, which is only commutative
modulo the equivalence of occurrences.

Alternative Construction (Merged Occurrences): If we presuppose
that the positions of the involved independent occurrences are all n-ary nom-
inal (not necessarily each for the same n ∈ ω), then we may construct alter-
natively the merged occurrence (of two occurrences o and o′) as follows:

1. alternative position: The alternative position of the merged occurrence
is defined as follows:

ta ≏ µ(pos(o),pos(o′)+n)

2. alternative sequence of shapes: The alternative sequence of shapes can
be given directly as follows:

s = shape(o) ◦ shape(o′)

3. alternative occurrence: The alternative is oa = 〈t, sa, ta〉.

Observe that the resulting merged occurrences µ(o, o′) and µ(o, o′) are
not equal, but equivalent.

As independent sets are finite, the alternative construction can be generalised
canonically to arbitrary sets of independent occurrences by merging the oc-
currences successively. Again, the concrete result depends on the order of
merging, but the different results are all equivalent.
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Application (Merging Occurrences): There are applications of the
method of merging occurrences, but the interesting applications are found in
theories of other kinds of occurrences. We mention some:92

1. congruence: Two single occurrences in a derivation (of Natural Deduc-
tion) are congruent, if their shape is necessarily equal due to inference
rules. Congruence classes can be simultaneously replaced; this replace-
ment can be described formally with the help of the merged occurrence
with respect to the congruence class.

2. assumptions: Assumptions in a derivation (of Natural Deduction)
can be understood as single occurrences of subderivations with atomic
shape (which is a formula). Inference rules, as the introduction of the
implication, allow to discharge some assumptions. In order to describe
adequately the discharge of assumptions, it is convenient to deal with
the occurrence representing all actually discharged assumptions. This
occurrence can be obtained by merging the actually discharged assump-
tions.

13.3 Splitting up Occurrences

We discuss, how to split up an occurrence into independent occurrences such
that each free place of the position of the original occurrence determines one
independent occurrence representing this place:

13.3 DEF (Splitting up Occurrences): Let o = 〈t, s, t〉 be an arbitrary
multi-shape occurrence.

1. generating sequence: Let k ∈ place(t) arbitrary. We define a sequence
sk of nominal terms as follows:

s′l ≏







∗ if k = l
sk if l ∈ place(t)\{k}
∗l otherwise

; sk = 〈s′l; l ∈ ω〉

2. position: For every k ∈ place(t): rk ≏ t[sk].

3. separated occurrences: For every k ∈ place(t): ok = 〈t, sk, rk〉.

92More details about these applications are mentioned in the section about future work.
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Remarks (Splitting up Occurrences):

1. independence of positions: By construction, rk is a unary elimination
form of t in which the kth entry sk of the sequence s is actually elim-
inated. The nominal symbols ∗l in rk are locally covered by sl for
k 6= l ∈ place(t) and by ∗ for k = l. As a consequence, the set

S = {tk; k ∈ place(t)}

is strongly independent.

2. representation: The occurrence ok represents the kth place of the oc-
currence o and, therefore, the set

O = {ok; k ∈ place(t)}

represents the occurrence o separated with respect to the places of o. In
particular, O is an independent set of occurrences such that µ(O) ≡ o.

Observe, that equality does not hold in general, as µ(O) is, by construc-
tion, in simple normal form.

Application (Splitting up Occurrences):

1. generalisation of occurrences: The methods of splitting up an occur-
rence into independent occurrences and merging independent occur-
rences provide a formal representation of the informal concept that
a set of occurrences represents an occurrence or, conversely, that an
occurrence subsumes some occurrences. This way, we can describe for-
mally the (informal) relationship between single occurrences and their
generalisations, the standard occurrences and the multi-shape occur-
rences.
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14 Formal Notion of Substitutions

The formal notion of substitutions (according to the introduction) and basic
methods related to this notion are introduced; the equivalence of substitu-
tions is introduced and the existence of normal substitutions (with respect
to the equivalence of substitutions) is proved.

14.1 Introduction of Substitutions

We provide the formal definition of the notion of substitutions capable to
represent the simultaneous replacement of finitely many term occurrences in
a term according to a given sequence of terms.

14.1 DEF (Substitution): Let n ∈ ω.

1. substitution: A quintuple s = 〈t, s, t, s′, t′〉 is called a (formal) substi-
tution of n-many terms, if the following both conditions are satisfied:

(a) o = 〈t, s, t〉 is an n-place multi-shape occurrence.

(b) o′ = 〈t′, s′, t〉 is an n-place multi-shape occurrence.

In this case, a number k ∈ n is called a place in the substitution s.

2. projections: The standard term t ≏ con(s) is called the context, the
finite sequence s = aff(s) of standard terms is called the sequence of
affected terms, the nominal term t ≏ pos(s) is called the position, the
finite sequence s′ = ins(s) of standard terms is called the sequence of
inserted terms and the standard term t′ ≏ res(s) is called the result of
the substitution s.

The occurrence o = 〈t, s, t〉 is also denoted as the occurrence affected
by the substitution s.

3. standard properties: We attribute (meaningful) properties of the posi-
tion t of a substitution s also to the substitution s itself. In particular,
we distinguish n-ary, simple, multiple and single substitutions.

4. sets of substitutions: The set S is the set of all substitutions.

We use the label n ∈ ω to restrict sets S of substitutions to substitutions
of n-many terms. This means for a set S ⊆ S of substitutions:

Sn = {s ∈ S; lng(aff(s)) = n}
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René Gazzari Formal Notion of Substitutions

Observe that this notation is similar to the restrictions of sets of nom-
inal terms; but instead of referring to the arity of the relevant nominal
term, we refer here to the length of the relevant sequences.

Remarks (Substitution):

1. restrictions: According to the definition of substitutions of n-many
terms (based on the definition of multi-shape occurrences), we have the
following a posteriori restrictions: both sequences s and s′ of standard
terms are of equal length, namely of length n; the position t of a
substitution satisfies rank(t) ≤ n.

2. redundancies: The redundancies mentioned with respect to the multi-
shape occurrences can be observed analogously with respect to substi-
tutions s. We provide the details:

• The sequence s of affected terms and the position t determine the
context t; the sequence s′ of inserted terms and the position t

determine the result t′.

• The context t and the position t determine partially the sequence
s of affected terms, the result t′ and the position t determine
partially the sequence s′ of inserted terms.

• Neither context t and sequence s of affected terms nor result t′

and sequence s′ of inserted terms determine (neither separately
nor together) the position t.

3. simplified substitutions: The definition of substitutions is based on
the notion of multi-shape occurrences; using the standard notion of
occurrences instead, results in the simplified substitutions:

• A quintuple s = 〈t, s, t, s′, t′〉 is called a simplified substitution, if
both 〈t, s, t〉 and 〈t′, s′, t〉 are (standard) occurrences.

In contrast to the definition of standard occurrences, we drop the de-
mand that the position is a unary nominal terms. As a consequence,
s = 〈t, s, t, s′, t〉 is a limit case of simplified substitutions.

Identifying single terms with sequences of length one, such a simplified
substitutions can be understood as a (standard) substitutions of one
term.
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4. limit cases: The limit case of a substitution s of zero terms is subsumed
in the definition of substitutions. In this case, s = 〈t, ǫ, t, ǫ, t〉. Such a
substitution is also called an empty substitution.

Another limit case is a substitution s (of one term) in which the full
context is replaced. In this case, s = 〈t, t, ∗, s, s〉. Such a substitution
is also called a total substitution.

5. substitution relation: The idea to define a substitution relation relating
all such pairs of standard terms t and s such that there is a substitution
transforming the first term into the second term does not seem to be
useful: due to the existence of total substitutions, such a relation would
be the full cartesian product T0 × T0.

This means: it is not interesting, whether we can transform a term
into another term via a substitution, but it is interesting, how such a
transformation is given.

14.2 Equivalence of Substitutions

We already observed that all pairs of standard terms can be related by a
substitution transforming the first term into the second. The aim of this
section is to identify all substitutions relating two given standard terms and
to identify (non-trivial) representatives of the equivalence classes with respect
to this equivalence of substitutions.

14.2.1 Introduction of the Equivalence of Substitutions

We provide the formal definition of the equivalence of substitutions.

14.2 DEF (Equivalence of Substitutions): Two substitutions s ∈ S
and s′ ∈ S are equivalent (formally, s ≡ s′), if they have the same context
and the same result. More formally, if:

con(s) ≏ con(s′) and res(s) ≏ res(s′)

Remarks (Equivalence of Substitutions):

1. equivalence relation: It is easily checked that the equivalence of substi-
tutions is, indeed, an equivalence relation on the set of all substitutions.

2. multi-shape occurrences: Analogously to the equivalence of multi-shape
occurrences, the equivalence of substitutions demands that the context
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and result (the two standard terms) are equal. Nevertheless, there is
an obvious difference between both concepts of equivalence: there is no
restriction on the position of equivalent substitutions.

As a consequence, we may, in principle, apply the transformations dis-
cussed with respect to multi-shape occurrences also on substitutions
(in parallel to both multi-shape occurrences constituting a substitu-
tion), as the transformations do not change context and result. But
we have to consider more conversions, namely conversion transforming
the position into a position not equivalent to the former position.

14.2.2 Towards Normal Substitutions

We discuss briefly our approach to identify interesting normal substitutions.

Total Substitutions: It is immediate that the total substitution

〈con(s), con(s), ∗, res(s), res(s)〉

is a trivial representatives of the equivalence class [s] of a substitution s.
Subsequently, we identify two more types of distinguished elements of the
equivalence class [s], namely the simple and the parsimonious normal form
of s.

Principle Strategy: As in the case of multi-shape occurrences, we identify
“interesting” properties of substitutions and we provide conversions trans-
forming arbitrary substitutions into equivalent substitutions having these
interesting properties.

Simple Properties and Associated Conversions: The demands on
equivalent multi-shape occurrences are stronger than on substitutions. They
have to have the same context (which corresponds to the demand of having
the same context and the same result) and equivalent positions (what we do
not demand in the case of substitutions).

As a consequence, we can carry over, in principle, the properties and the
conversions discussed with respect to multi-shape occurrences to substitu-
tions (applying them in parallel to both multi-shape occurrences constituting
together a substitution).

We call these properties simple, as the associated transformations of arbi-
trary substitutions into substitutions having these properties are, essentially,
only a relabelling of the nominal symbols of the position together with the
corresponding parallel rearrangement of the entries of both sequences and
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the elimination of superfluous entries (or the duplication of entries). In par-
ticular, the transformations do not alter the position up to the equivalence
of nominal terms.

New Conversions: Due to the more complex situation (of two multi-shape
occurrences with common position), we can identify a new “interesting” prop-
erties not discussed with respect to multi-shape occurrences:

1. trivial substitutions: A substitution, in which some corresponding en-
tries in both sequences of standard terms are equal, is called (partially)
trivial, as in such a substitution a subterm of the context is replaced
by itself. The conversion eliminating such trivial places is the transfor-
mation of these places into vacuous places. Observe that this transfor-
mation changes the positions in a way that the equivalence of nominal
terms is lost.

2. reducible substitutions: A substitution, in which a pair of affected and
inserted term is similar, is called reducible. Instead of replacing the
affected term by a similar term, we can split up the substitution and
replace the direct subterms of the affected term by the direct subterms
of the inserted term. We provide an example:

• Let t ≏ f(t0, . . . tn) be a complex term, which is transformed by
a total substitution s into a similar term s ≏ f(s0, . . . sn). This
means:

s = 〈t, t, ∗, s, s〉

• Instead of this total substitution, we can transform t into s by a
substitution s′ affecting each direct subterm separately:

s′ = 〈t, 〈t0, . . . tn〉, f(∗0, . . . ∗n), 〈s0, . . . sn〉, s〉

Obviously, the positions are not equivalent (with respect to the equiv-
alence of nominal terms), but the substitutions are (according to the
definition above).

We have two strategies to reach a distinguished representative with
respect to the phenomenon observed above: the first strategy would be
to demand that the number of affected terms is as small as possible.
This results in the total substitution as the trivial representative of each
equivalence class. The other strategy is to demand that the complexity
of the affected terms is as small as possible; in other words, to reduce
pairs of affected and inserted terms until they become irreducible.
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Two Different Normal Forms: As already observed with respect to
the multi-shape occurrences, we find two different normal forms, namely the
simple and the parsimonious normal forms.93

Subsequently, we discuss the mentioned properties and their associated con-
versions.

14.2.3 Regular Substitutions

As a first kind of substitutions, we introduce the regular substitutions having
a normal position (with respect to the isomorphism of nominal terms) and
no vacuous places.

14.3 DEF (Regular Substitution): Let s = 〈t, s, t, s′, t′〉 be a substitu-
tion of n-many terms (for n ∈ ω).

1. vacuous place: A place k ∈ n of the substitution s is called vacuous,
if the respective nominal symbol ∗k does not occur in the position t

(formally, if k /∈ place(t)); otherwise, the place k is called non-vacuous.

2. vacuous substitution: The substitution s is called partially vacuous, if
there is a vacuous place k ∈ n; s is called completely vacuous, if all
places k ∈ n are vacuous.

3. regular substitution: The substitution s is called regular, if there is no
vacuous position k ∈ n (formally, if place(t) = n) and if the position
t of s is normal with respect to the isomorphism of nominal terms.

Remarks (Regular Substitutions):

1. principle observations: The principle observations stated with respect
to multi-shape occurrences also hold with respect to substitutions.

In the next proposition, we state that every substitution can be transformed
into an equivalent substitution, which is regular and normal.

93Observe that the total substitution is both simple and parsimonious; as a consequence,
the total substitution is a simple as well as a parsimonious normal form.
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14.4 Proposition (Regular Substitution): Every substitution s can be
transformed into equivalent substitution s′ such that s′ is regular.
Proof. The transformation is done analogously to the case of multi-shape
occurrences; but instead of transforming only one sequence of shapes, we have
to transform both sequences in parallel in the same way as the sequence of
shapes. q.e.d.

Convention (Attribution of Properties): As in the case of multi-shape
occurrences, we presuppose that all properties attributed subsequently to a
place in a substitution are only attributed to non-vacuous places. Properties
attributed subsequently to substitutions only depend on the non-vacuous
places.

14.2.4 Trivial Substitutions

A place in a substitution is trivial, if the respective entries of both sequences
agree. Similarly to vacuous places, trivial places do not influence a substi-
tution, as the respective term affected by the substitution is replaced, but
replaced only by itself. We provide the formal definition.

14.5 DEF (Trivial Substitutions): Let s = 〈t, s, t, s′, t′〉 be a substitution
of n-many terms (for n ∈ ω).

1. trivial place: A place k ∈ place(t) is called trivial, if the respective
entries of the sequence of affected terms and of the sequence of inserted
terms are equal (formally, if sk ≏ s′k).

2. trivial substitution: The substitution s is called partially trivial, if there
is a trivial place k ∈ place(t); s is called completely trivial, if all places
k ∈ place(t) are trivial.

If s has no trivial positions k ∈ place(t), then s is called non-trivial.

In the next proposition, we show that we can eliminate trivial positions.

14.6 Proposition (Trivial Substitutions): Every substitution s can be
transformed into a equivalent substitution s′ such that s′ is non-trivial.
Proof. We eliminate the trivial positions by replacing the nominal symbols
marking trivial positions by the respective terms contained in both sequences.
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For this purpose, investigate the following function F0 : V∗ → T on the set
of all nominal symbols:

F0(∗k) ≏

{

sk if sk ≏ s′k
∗k otherwise

Let F be the homomorphism induced by F0. It is easily checked that F (t)
is still an elimination form of both standard terms t and t′ in which the
sequences s and s′, respectively, are eliminated.

In the substitution s′′ = 〈t, s, F (t), s′, t′〉, the trivial places of s are now
vacuous. Obviously, s ≡ s′′. q.e.d.

14.2.5 Simple Substitutions

In the next proposition, we show that every substitution can be transformed
into an equivalent and simple substitution.

14.7 Proposition (Simple Substitution): Let n ∈ ω. Every substitution
s = 〈t, s, t, s′, t′〉 of n-many terms can be transformed into an equivalent
substitution s′ such that s′ is simple and regular.
Proof. Analogously to the proof of the existence of simple normal forms of
multi-shape occurrences.

1. simple position: Let t′ ≏ simp(t). By construction, the nominal term
t′ is simple and normal with respect to the isomorphism of nominal
terms.

2. sequences: Due to the proposition about elimination forms (in the
section about simplification) we obtain both that t′ ≤ t and t′ ≤ t′.
As a consequence, there are uniquely determined sequences r and r′

actually eliminated in t′ with respect to t and t′, respectively. (In
particular, lng(r) = place(t′) = lng(r′).)

3. substitution: As a consequence, s′ = 〈t, r, t′, r′, t′〉 is a regular and
simple substitution equivalent to s. q.e.d.

Remark (Simple Substitutions):

1. rearrangement of sequences: Recall that there is a simple homomor-
phism F such that t ≏ F (t′), as t′ is the simplification of t. Further-
more, the following both equations hold:

t ≏ t′[r] ≏ F (t′)[s] ; t′ ≏ t′[r′] ≏ F (t′)[s′]
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Therefore, r is an F -expansion of s and r′ an F -expansion of s′.

The latter means that the entries of r are a rearrangement of the rele-
vant entries of s, where possibly some entries of s become duplicated;
analogously, r′ of s.

2. simple normal form: In the corresponding proof with respect to multi-
shape occurrences, we additionally argued that the positions t and t′

are equivalent (with respect to the equivalence of nominal terms) and
that the resulting normal occurrence is unique.

Both statements hold, in principle, also here. But: we do not need
the equivalence of positions for the equivalence of substitutions and
uniqueness only holds up to the equivalence of the positions. As we
have substitutions in an equivalence class with non-equivalent positions,
simplicity (together with regularity) is not sufficient to determine a
normal form.

14.2.6 Redundant and Parsimonious Substitutions

We introduce redundant substitutions. In contrast to the corresponding
property of multi-shape occurrences, it is not sufficient that the same term
occurs twice in the sequence of affected terms or in the sequence of inserted
terms. In order to attribute redundancy, we have to demand that pairs of
affected and inserted terms together occur twice. We provide the formal
definition.

14.8 DEF (Redundant and Parsimonious Substitution): Let n ∈ ω
and s = 〈t, s, t, s′, t′〉 be a substitution of n-many terms.

1. uniform places: Two places k, l ∈ place(t) are called uniform, if the
same term is replaced by the same term in both places (formally, if
both sk ≏ sl and s

′
k ≏ s′l).

2. redundant // parsimonious places: A place k ∈ place(t) is called
redundant, if there is a place l ∈ place(t) different from k (k 6= l) such
that the places k and l are uniform; otherwise, k is called parsimonious.

3. uniform substitution: The substitution s is called uniform, if all places
k, l ∈ place(t) are pairwise uniform.

4. redundant substitutions: The substitution s is called redundant, if there
is a redundant place k ∈ place(t); otherwise, s is called parsimonious.
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René Gazzari Formal Notion of Substitutions

Remarks (Redundant Substitution):

1. uniformity: The uniformity of places is obviously an equivalence rela-
tion on the set place(t) of free places of the position of a substitution.
Equivalence classes with respect to this relation are denoted as follows:

[k]u = {l ∈ place(t); k and l uniform}

We already introduced the analogous relation with respect to the po-
sition of multi-shape occurrences. Observe that both relations are, in
general, different; more precisely, the uniformity relation with respect
to substitutions is finer than the uniformity relation with respect to
occurrences, as two equations have to be satisfied instead of one.

2. substitutions of one term: A non-vacuous substitution of one term
(which is not necessarily a simple substitution) is uniform and parsimo-
nious. If the position t has more than one free places, then uniformity
implies redundancy.

In the next proposition, we show that we can eliminate redundant places in
a substitution.

14.9 Proposition (Parsimonious Substitutions): Let n ∈ ω. Every
substitution s = 〈t, s, t, s′, t′〉 of n-many terms can be transformed into an
equivalent substitution s′ such that s′ is parsimonious.
Proof. Analogously to the corresponding proof with respect to multi-shape
occurrences.

1. simple homomorphism: Let F ∈ Homs(T) be the simple homomor-
phism induced by the following function on the set of all nominal terms:

F : ∗k 7→

{

∗min([k]u) if k ∈ place(t)
∗k otherwise

As in the case of the multi-shape occurrences, we obtain that both s

and s′ are F -expansions of themselves. Due to the proposition about
expansions and contractions, we obtain:

t ≏ t[s] ≏ F (t)[s] ; t′ ≏ t[s′] ≏ F (t)[s′]

2. parsimonious substitution: We define as follows: s′ = 〈t, s, F (t), s′, t′〉.
As F (t) is an elimination form of t and of t′, in which the sequence s

and s′ are eliminated, respectively, s′ is a substitution of n-many terms.
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Furthermore, s′ is by construction parsimonious, as all uniform places
of s are mapped to the same place, namely to the minimum of their
equivalence class. As we did not change context and result, s ≡ s′.

q.e.d.

14.2.7 Reducible Substitutions

A substitution is reducible, if it is possible to simplify pairs of standard terms
contained in both sequences of affected terms and inserted terms due to
similarity. We provide the formal definition.

14.10 DEF (Reducible Substitution): Let n ∈ ω and s = 〈t, s, t, s′, t′〉
be a substitution of n-many terms.

1. reducible place: A place k ∈ place(t) is called reducible, if the corre-
sponding entries in the sequences of affected terms and inserted terms
are similar (formally, if sk ∼ s′k); otherwise, k is called irreducible.

2. reducible substitution: The substitution s is reducible, if there are
reducible places k ∈ place(t); otherwise, s is called irreducible.

Recall that the strategy of eliminating reducible places in a substitution is
to split up reducible places into many places, in which the direct subterms
of the respective affected term are replaced by the direct subterms of the
corresponding inserted term.

Such a reduction step reduces the complexity of the involved terms, but
raises the number of terms replaced by the substitution. In order to prove
that a transformation based on such a reduction step terminates, we have to
introduce a suitable rank function for substitutions.

14.11 DEF (Rank Function): We define as follows:

1. rank of pairs: The rank rank(t, s) of an ordered pair of standard terms
t, s ∈ T0 is defined as follows:

rank(t, s) =







1 +
∑

k∈n′ rank(tk, sk) if t ∼ s

0 otherwise

Recalling that similar terms are complex and have the same arity, we
presuppose (as usually) in the case t ∼ s that n′ is the common arity
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of t and s and that the tk and the sk are the direct subterms of t and
s, respectively.

2. rank of a substitution: Let n ∈ ω and s = 〈t, s, t, s′, t′〉 a substitution
of n-many terms. The rank rank(s) is defined as follows:

rank(s) =
∑

k∈place(t)

rank(sk, s
′
k)

Remarks (Rank Function):

1. vacuous places: The rank of a substitution does not depend on vacuous
places; only the rank of pairs of entries of the sequences of affected terms
and of inserted terms at non-vacuous places are summed up to the rank
of a substitution.

2. reducibility: Let k ∈ place(t) be a non-vacuous place in a substitution
s. The rank rank(sk, s

′
k) of the respective entry sk of the sequences of

affected terms and of the entry s′k of the sequences of inserted terms
equals zero, if and only if the entries are not similar. The latter means
that the place k is irreducible.

As a consequence: the rank rank(s) of a substitution s equals zero, if
and only if all non-vacuous places k ∈ place(t) are irreducible. The
latter means that s is irreducible.

In the next proposition, we show that we may transform every substitution
into an irreducible substitution.

14.12 Proposition (Irreducible Substitutions): Let n ∈ ω. Every
substitution s = 〈t, s, t, s′, t′〉 of n-many terms can be transformed into an
equivalent substitution s′ such that s′ is irreducible.
Proof. Essentially, by induction over the rank of a substitution s.

1. reduction step: Let s = 〈t, s, t, s′, t′〉 be a reducible substitution of
n-many terms. This means:

• There is k ∈ place(t) ⊆ n such that sk ∼ s′k.

• There arem ∈ ω, anm′-ary function symbol f and standard terms
rl, r

′
l ∈ T0 (for l ∈ m′) such that:

sk ≏ f(r0, . . . rm) ; s′k ≏ f(r′0, . . . r
′
m)
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Let t′′ be the result of replacing the nominal symbol ∗k by the nominal
term s ≏ f(∗n+0, . . . ∗n+m). More formally:

t′′ ≏ t[∗0, . . . ∗k−1, s]

Observe that k /∈ place(t′′) ⊆ n+m. Furthermore: replacing the new
nominal symbols ∗n+l in t′′ by standard terms al has the same result
as replacing ∗k in t by f(a0, . . . am) (†).

We extend the sequences of the affected terms and of the inserted tersm
by the direct subterms of tk and of t′k, respectively. This means:

r = 〈s, r0, . . . rm〉 ; r′ = 〈s′, r′0, . . . r
′
m〉

By the observation (†), the following both equations hold:

t′′[r] ≏ t ; t′′[r′] ≏ t′

This means that s′′ = 〈t, r, t′′, r′, t′〉 is a substitution of n + m-many
terms and equivalent to s. By the definition of the rank function, it is
clear that the rank of s′′ is the rank of s lowered by one. More precisely:

• As the place k becomes vacuous in the reduction step, the rank of
the substitution is lowered by rank(sk, s

′
k) = 1+

∑

l∈m′ rank(rl, r
′
l).

• By the new non-vacuous places n + 0, . . . n + m, the rank is in-
creased by

∑

l∈m′ rank(rl, r
′
l)

2. reduction: Let s be an arbitrary substitution. If s is reducible, then
we can apply the reduction step as discussed above. After finitely
many applications of this reduction step, we obtain a substitution s′,
equivalent to s and of rank 0. The latter means that s′ is irreducible.

q.e.d.

Remarks (Irreducible Substitution):

1. properties of conversed substitutions: The transformation of a substi-
tution into an irreducible substitution does not result in a substitution
having good properties: in the reduction step, a reducible place is
transformed into a vacuous place; furthermore, if the respective pairs
of direct subterms of the affected term and the inserted term are equal,
then the reduction step results in a trivial place; also redundancies may
easily occur.
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2. uniqueness: The irreducible substitution generated in the proof above
is not uniquely determined, but depends on the order of the places to
which the reduction step is applied.

3. alternative account: The reduction step provided in the proof can not
only result in trivial places, but can, in general, also be applied to
trivial places. From the perspective of efficiency, it seems better not to
treat such trivial places, but to eliminate them (later).

In the next proposition, we show that the transformations discussed before
result in irreducible substitutions, if applied to such substitutions.

14.13 Proposition (Compatibility of Transformations): Let s be an
irreducible substitution and s′ the result of a transformation of s associated
with a property discussed before. The substitution s′ is irreducible.
Proof. We check each transformation; observe that each pair of 〈sk, s

′
k〉 of

affected term and inserted term have rank zero for all k ∈ place(t), where
t is the position of an irreducible substitution s.

1. regularity: The transformation into a regular substitution rearranges
the arguments of the sequences of intended terms and arguments; this
does not change the rank of the substitution, as the nominal symbols
are relabelled according to this rearrangement. Additionally, vacuous
places are eliminated, which also does not change the rank of a substi-
tution, as only non-vacuous places determine the rank.

2. triviality: The elimination of trivial positions lowers, in principle, the
rank of the substitution under discussion. If we presuppose that the
rank is already zero, then only places with rank zero are eliminated.
The latter means that the transformation into a non-trivial substitution
does not alter the rank.

3. elimination of redundancies: Redundant places are calculated multiple
times, when calculating the rank of a substitution. Eliminating such
redundancies lowers, in principle, the rank; but as in the case of the
elimination of trivial places, only places with rank zero are combined
into a single place. Therefore, again, the rank is not affected by this
transformation.

4. simplification: Transforming a substitution into a simple substitution
can increase the rank of that substitution, as places are duplicated.
But again, these places have rank zero, and therefore, the rank of the
substitution is not altered. q.e.d.
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14.2.8 Normal Substitutions

As in the case of normal occurrences, we can introduce two incompatible
variants of normal substitutions. We provide the formal definition.

14.14 DEF (Normal Substitution): Let n ∈ ω and s ∈ S be a substitu-
tion of n-many terms.

1. simple normal form: The substitution s is in simple normal form, if s
is regular, non-trivial, irreducible and simple.

2. parsimonious normal form: The substitution s is in parsimonious nor-
mal form, if s is regular, non-trivial, irreducible and parsimonious.

Remarks (Normal Substitutions):

1. existence: Due to the propositions proved in this section, it is clear that
every substitution can be transformed into an equivalent substitutions
in simple normal forms as well as in parsimonious normal form.

In the next proposition, we show that the simple normal form of substitutions
is uniquely determined.

14.15 Proposition (Simple Normal Substitution): The simple normal
form of a substitutions is uniquely determined.
Proof. We prove by induction over the structure of the context t of sub-
stitutions that equivalent substitutions s and s′ in simple normal form are
equal.

1. t atomic: As s ≡ s′, we immediately obtain:

• t ≏ con(s) ≏ con(s′) and t′ ≏ res(s) ≏ res(s′).

Let t and t′ be the positions of s and s′, respectively. We show that
t ≏ t′. As t is atomic, we first obtain that both t, t′ ∈ {t} ∪V∗ (both
nominal terms are elimination forms of t). We distinguish two cases:

(a) t ≏ t′: We can exclude t, t′ ∈ V∗, as the resulting substitution
would have a trivial place. This means that both t ≏ t ≏ t′.

(b) t 6≏ t′: In this case, we can exclude that t, t′ ∈ {t} (both nominal
terms are elimination forms of t′). Therefore, t, t′ ∈ V∗. Due to
regularity, we obtain that t ≏ ∗ ≏ t′.
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Again due to regularity, we obtain that the sequences of affected terms
and of inserted terms in both substitutions are (pairwise) equal. (If
t ≏ t′, then all four sequences are the empty sequence, otherwise, the
sequences of affected terms both are 〈t〉 and the sequences of inserted
terms 〈t′〉.) As a consequence, s = s′.

2. t ≏ f(t0, . . . tn) complex: Again as s ≡ s′, we immediately obtain:

• t ≏ con(s) ≏ con(s′) and t′ ≏ res(s) ≏ res(s′).

Let t and t′ be the positions of s and s′, respectively. We show that
t ≏ t′. As t is complex, we obtain that t ∼ t or t ∈ V∗ (analogously
with respect to t′). We distinguish two cases:

(a) t 6∼ t′: We have t 6∼ t 6∼ t′, as both nominal terms are also elim-
ination forms of t′. Therefore, both nominal terms are contained
in V∗ and due to regularity equal to ∗.

(b) t ∼ t′: We can exclude that t, t′ ∈ V∗. Otherwise, the places de-
termined by the labels of t and t′, respectively, would be reducible,
as the respective entries in the sequences of intended terms and of
the arguments would be similar.

As t, t′ /∈ V∗, we have t ∼ t ∼ t′. This means that there are
suitable nominal terms sk, s

′
k ∈ T (for k ∈ n′) such that:

t ≏ f(s0, . . . sn) ; t′ ≏ f(s′0, . . . s
′
n)

As both t and t′ are simple and normal (with respect to the iso-
morphism of nominal terms), there are simple and normal nominal
terms tk, t

′
k ∈ T (for k ∈ n′) such that for all k ∈ n′:

sk ≏ t+k ; s′k ≏ t′k
+

Recall that ·+ indicates a suitable right-shift of the labels of nom-
inal symbols.

The nominal terms tk and t′k are both elimination forms of both
standard terms tk and t

′
k. Using suitable segments of the sequences

of affected terms and of the sequences of inserted terms of s and s′,
respectively, we easily obtain regular substitutions sk and s′k both
with context tk and result t′k. We can exclude trivial places in all
of these substitutions, as neither s nor s′ have such. This means
that all constructed substitutions are in simple normal form.

Applying n′-many times the induction hypothesis, we obtain that
sk = s′k for all k ∈ n′ and, in particular, tk ≏ t′k for all k ∈ n′.
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The suitable right-shift of the labels in sk and s′k only depends on
the weight of the nominal terms tl, where l < k. Therefore, we
already have sk ≏ s′k. The latter means that t ≏ t′.

Due to regularity, the sequences of affected terms and of inserted terms
are uniquely determined by the position t and by context and result,
respectively. Therefore, s = s′. q.e.d.

In the next proposition, we show that the parsimonious normal form of sub-
stitutions is uniquely determined.

14.16 Proposition (Parsimonious Normal Substitution): The parsi-
monious normal form of a substitution is uniquely determined.
Proof. Let s and s′ be two equivalent substitutions, both in parsimonious
normal form of n-many and n′-many terms, respectively. We can transform
both substitutions into equivalent substitutions s′′ and s′′′, respectively, both
simple and regular. As s and s′ are irreducible and without trivial places, s′′

and s′′′ are irreducible and without trivial places. The latter means that s′′

and s′′′ are both in simple normal form and therefore equal.

• Let t, t′ and t′′ be the positions of the respective substitutions. We
obtain:

t′′ ≏ simp(t) ; t′′ ≏ simp(t′)

• Let s the sequence of intended terms and s′ the sequence of inserted
terms, both of s′′. This means:

s′′ = 〈t, s, t′′, s′, t′〉

Investigate the equivalence class [0]u with respect to the simple position t′′.
This equivalence class contains all labels of nominal symbols in t′′ in which
the term s0 is eliminated and replaced by the term s′0.

Both nominal terms t and t′ have to be the result of a homomorphism F
applied on t′′ satisfying F (∗k) = ∗0 for all k ∈ [0]u. (The leftmost nominal
symbol of t as well as of t′ have to be ∗0.) Furthermore, in t and in t′ the
same standard term must be eliminated, namely the standard term s0 and
be replaced by the same standard term, namely by s′0. As a consequence,
these standard terms have to be the first entries of the sequences of intended
terms and of the arguments, in both substitutions s and s′. Iterating this
argumentation, we obtain that t ≏ t′, the equality of the respective sequences
and, finally, that s = s′.

q.e.d.
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14.3 Construction of Simple Normal Substitutions

We have proved that a substitution can be transformed stepwise into a normal
substitution. In this section, we provide a direct construction method for a
simple normal substitutions out of two standard terms.

In a first step, we determine the difference between to standard terms.
This difference is that nominal term, which is covered by both standard
terms and in which the nominal symbols represent the positions of as simple
as possible standard terms.

14.17 DEF (Difference Function): We define recursively (in the first
argument) the difference function δ : T0 × T0 → T as follows:

1. t atomic: δ(t, t′) ≏

{

t if t ≏ t′

∗ otherwise

2. t ≏ f(t0, . . . tn) complex:

δ(t, t′) ≏

{

f(δ(t0, t
′
0), . . . δ(tn, t

′
n)) if t ∼ s ≏ f(t′0, . . . t

′
n)

∗ otherwise

Remarks (Difference Function):

1. image: By construction, δ(t, t′) ∈ T∗ for all standard terms t and t′.
More precisely, δ(t, t′) is a standard term, if and only if t ≏ t′; in this
case, δ(t, t′) ≏ t. Otherwise, δ(t, t′) is unary.

2. elimination form: In general, δ(t, t′) is neither an elimination form of
t nor of t′, as the nominal symbols can mark the positions of different
subterms of t and of t′, respectively.

But it is easily seen, that δ(t, t′) is covered by both standard terms t
and t′. As a consequence, the simplification simp(δ(t, t′)) of δ(t, t′) is
a common elimination form of both t and t′.

3. substitution: As t ≏ simp(δ(t, t′)) is n-ary (for an n ∈ ω), there are
two uniquely determined sequences s and s′ of standard terms, both of
length n, such that:

t ≏ t[s] ; t′ ≏ t[s′]

As a consequence, s = 〈t, s, t, s′, t′〉 is a substitution. Observe that
we can even calculate both sequences with the help of the completion
function:

s = comp(t, t) ; s′ = comp(t, t′)
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By construction, the substitution s is regular (recall that t is normal
with respect to the isomorphism of nominal terms) and simple.

Furthermore, it is easily seen that s contains neither reducible places
nor trivial places. Therefore, s is in simple normal form.

14.4 Application: Calculations

Calculations, as found in everyday mathematics, can be represented formally
as sequences of substitutions. We sketch some details of this correspondence.

Principle Terminology (Calculations):

1. calculation step: A (justified) calculation step is formally represented
by a substitution; corresponding pairs of affected and inserted terms
determine the equations used as justifications for the respective calcu-
lation step.

We provide an example in the language LPA of arithmetics to illustrate
this correspondence:

(5 + 3) · (4 + 2) = 8 + 6

The calculation step is, for example, represented by the following sub-
stitution:

〈(5 + 3) · (4 + 2), 〈5 + 3, 4 + 2〉, ∗0 + ∗1, 〈8, 6〉, 8 + 6〉

The following equations, determined by corresponding pairs of affected
and inserted terms, are used as a justification in the calculation step:

5 + 3 = 8 ; 4 + 2 = 6

2. justifications: We can distinguish calculation steps with respect to
their justifications: a calculation step is valid, if its justifications are all
valid, otherwise the calculation step is false.

There are different (possible) sources for the validity of a justification;
we mention some:

(a) list: There is a previously given list of valid equations.

For example, the set of all true equations over a given domain, in
which only one function symbol occurs. In the case of addition
over the natural numbers, this is the symmetric closure of the
following set:

{0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 0, 0 + 2 = 2, 1 + 1 = 2, . . .}
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(b) definitions: All instances of definitional axioms of the underlying
theory.

For example, the following both axioms defining the addition in
arithmetics:

x+ 0 = x ; (x+ y)′ = x+ y′

(c) lemmata: All instances of lemmata previously proved in the un-
derlying theory.

In arithmetics, for example, the propositions that addition and
multiplication are commutative:

x+ y = y + x ; x · y = y · x

(d) side calculations: Equations, which are previously calculated on
the base of valid justifications.

3. equivalence of substitutions: The representing substitutions are deter-
mined by a calculation step only up to the equivalence of substitutions.
In order to obtain uniquely determined substitutions, we suggest the
following conventions:

(a) regularity: We assume that a representing substitution is regular;
this means that the position is normal (with respect to the iso-
morphism of nominal terms) and that the substitution does not
have vacuous places.

(b) simple: We assume that the representing substitutions is simple.

This convention is convenient form a technical point of view, as
each single calculation subsumed in one calculation step is repre-
sented by a separate nominal symbol in the representing substi-
tution.

(c) justifications: In the intended case, a calculation step is given
together with its justifications. As a consequence, we cannot de-
mand that the representing substitution is irreducible.

Otherwise, if a calculation step is given without justifications, then
we assume that the substitution is, indeed, irreducible. In this
case, the representing substitution is in simple normal form.

4. limit case: It seems reasonable to demand that at least one term is
affected in a calculation step.
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This restriction to proper calculation steps corresponds with the de-
mand that the representing substitution is not empty, which means
that it has a proper nominal term as position.

Furthermore, it seems reasonable to demand that in a calculation step
the affected terms are different from the result of the calculations.

This restriction to non-trivial calculation steps corresponds with the
demand that the representing substitution has no trivial places.

5. calculation: A calculation is a sequence of subsequent calculation steps.

A calculation is represented by a sequence of substitutions satisfying
the condition that the result of every substitution in that sequence
agrees with the context of the next substitution (if there is a next).

Properties of Calculations: Properties of informal calculation steps and
calculations are reflected by the properties of the representing substitutions.

1. total calculation step: A calculation step is total, if the complete term
is affected by the calculation step. In this case, the justification is the
same equation as established by the calculation step.

Total calculation steps are represented by total substitutions.

2. single calculation step: A calculation step is called single, if only a
single occurrence is affected by the calculation step.

Investigate the following example:

(5 + 3) · (5 + 3) = 8 · (5 + 3) ; (5 + 3) · (5 + 3) = 8 · 8

The first calculation step is single, the second not.

Single calculation steps correspond with substitutions of one term with
a unary and simple position.

3. uniform calculation step: A calculation step is called uniform, if only
one kind of subterm is replaced by the same term; otherwise, it is called
multiform. Investigate the following examples:

(5 + 3) · (5 + 3) = 8 · 8 ; (5 + 3) · (3 + 5) = 8 · 8

The first calculation step is uniform, the second multiform.

Uniform calculation steps correspond with uniform substitutions, in
which all corresponding pairs of affected and inserted terms are equal.
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4. elementary: A calculation step is called elementary, if its justifications
are of a very simple kind. It is plausible that this notion depends on
the underlying concept of the validity of justifications.

Investigate the following example:

3 + (3 + 3) = 9 ; 3 + (3 + 3) = 3 + 6 = 9

Presupposing the list of valid equations as discussed above, the first cal-
culation is elementary. In this scenario, the second calculation is not
even valid, as the justification is not contained in the list of valid equa-
tions. Permitting additionally side calculations, the second calculation
becomes valid, but not elementary.

The analogous distinction can be made in the arithmetical example
based on definitions and rules:

(x+ x) + 0 = x+ x ; x+ 0 = 0 + x

The first calculation is elementary, as it is an instance of the first defin-
ing axiom x+0 = x for the addition; the second is not, as it is only an
instance of the commutativity rule.

The notion of reducibility seems related with the concept of elementary
calculation steps. Investigate the following example, understood as a
total calculation step:

5 + (2 + 4) = 5 + 6

The justification of this calculation step (which is the equation itself)
can be reduced to the equation 2+4 = 6. Observe that such a reduction
is only possible, if the reduced equations are still valid. (There are
artificial scenarios, in which this is not the case.)

It seems plausible to demand irreducibility of the justifications as a
necessary condition for elementary calculation steps.

5. two-in-one step calculation: A calculation step is called two-in-one,
if two (or more) subsequent calculation steps are subsumed (sloppily)
into one step. Investigate the following example:

3 + (3 + 3) = 9 ; 3 + (3 + 3) = 3 + 6 = 9

Presupposing that only elementary equations are permitted as justifi-
cations, we have the reasonable intuition that the first calculation is a
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two-in-one step calculation, but that the second calculation has none
such steps. This intuition can be captured by the following definition:

A calculation step is called two-in-one, if the calculation step itself is
not correct, but if it can be transformed into a sequence of correct
calculation steps. Observe that non-elementary (but valid) calculation
steps are not two-in-one.
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15 Independent Substitutions

We discuss some operations on substitutions: in particular, we discuss how to
split up a substitution into a sequence of independent substitutions and vice
versa. In the light of these operations, we have to consider a new concept of
the identity of substitutions, namely an identity of substitutions in different
contexts and with different results.94

15.1 Introduction of Independent Substitutions

We provide the formal definition of independent substitutions.

15.1 DEF (Independent Substitutions):

1. independent substitution: Two substitutions s, s′ ∈ S are called inde-
pendent (formally, s ||∗ s′), if their positions are strongly independent
(formally, if pos(s) ||∗ pos(s

′)).

2. independent set: As set S ⊆ S is called independent, if pairwise dif-
ferent substitutions contained in S are independent. Formally, if the
following condition is satisfied for all s, s′ ∈ S:

s 6= s′ ⇒ s ||∗ s
′

Remarks (Independent Substitutions):

1. context and result: In contrast to independent occurrences, we do not
demand that the contexts or the results of independent substitutions
are equal.

Observe that equality of the result would mean that they are equal to
the uniquely determined covering of the positions of the independent
substitutions; analogously, equal results are equal to that covering.

2. notation: It is convenient to introduce the following notation repre-
senting that a standard term t′ is the result of a substitution s with
context t.

t ◮s t′

94Recall that the concept of the identity of substitutions discussed so far is based on
the equivalence of multi-shape occurrences; as a consequence, the contexts of the involved
substitutions are equal as well as their results.
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Occasionally and if the substitutions sk have labels k, we simplify the
notation and write t ◮k t

′ instead of t ◮sk t
′.95

15.2 Merging Substitutions

We carry over the definition of the merge function for nominal terms to inde-
pendent substitutions. After a brief discussion of the general case, we identify
restrictions on the merge function yielding interesting interpretations.

15.2 DEF (Merged Substitution): Let s0 = 〈t0, s, t0, r, t
′
0〉 be a substi-

tution of n-many terms with n-ary position t0 and s1 = 〈t1, s
′, t1, r

′, t′1〉 a
substitution of m-many terms with m-ary position t1 (for n,m ∈ ω) such
that both substitutions are independent (formally, such that s0 ||∗ s1). The
merged substitution µ(s0, s1) is defined as follows:

1. position: The position of the merged substitution is the result of an
application of the merge function on the positions of both arguments,
the second argument suitably shifted for avoiding clashes of nominal
symbols. More formally:

t ≏ µ(t0, t1
+n)

2. sequences of intended terms and arguments: The sequences of intended
terms and arguments of the merged substitution are the concatenation
of the respective sequences.

3. context and result: The context and the result of the merged sub-
stitution are the standard terms determined by the position and the
respective sequences. More formally:

t ≏ t[s ◦ s′] ; t′ ≏ t[r ◦ r′]

4. merged substitution: Finally, the merged substitution µ(s0, s1) is given
as follows:

µ(s0, s1) = 〈t, s ◦ s′, t, r ◦ r′, t′〉

95The symbol ◮s can be understood as a relation symbol between standard terms;
nevertheless, the underlying relation is trivial, as the related standard terms t and t′ are
the uniquely determined context and result of the substitution s.
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Remarks (Merged Substitution):

1. substitution: The merged substitution µ(s0, s1) is, indeed, a substitu-
tion. It is sufficient to mention:

place(t) = n+m = lng(s ◦ s′) = lng(r ◦ r′)

As a consequence, both t and t′ are standard terms; by construction,
s ◦ s′ is eliminated in t with respect to t and r ◦ r′ with respect to t′.

2. commutativity: Merging substitutions is only commutative modulo
the equivalence of substitutions, as we shift the nominal symbols of the
position of the second argument to avoid clashes of nominal symbols.
More formally, for all independent substitutions s0 and s1:

µ(s0, s1) ≡ µ(s1, s0)

3. alternative definition: We presupposed that the positions of the inde-
pendent substitutions are n-ary and m-ary, respectively. In principle,
we could drop this restriction and proceed here as in the case of oc-
currences: instead of demanding regularity, we could directly merge
the positions and then apply the simplification function. The resulting
position would be equivalent to t.

The problem of such an alternative approach is the loss of control over
the origin of the nominal symbols: investigate a nominal symbol ∗k of
simp(µ(t0, t1)). There is no simple method of determining, whether ∗k
was originally a nominal symbol in t0 or in t1 and, in particular, which
one. But this information is needed for the definition of the affected
and the inserted sequences of the merged substitution.

In the case of occurrences, it was possible to define the suitable sequence
of shapes via the completion function applied on the merged position
and the previously known context. This is not possible in the case
of merged substitutions, as neither the context nor the result of the
merged substitution are previously given.

Analysis (Merging Substitutions): We analyse the relationship between
the independent substitutions s0 and s1 being merged and the merged sub-
stitution s.

Let r ≏ µ(t0, t1) be the unique covering of the positions of the indepen-
dent substitutions. There are (uniquely determined) sequences a and b of
standard terms such that the following statements hold:
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1. merged substitution: r ≏ t[a ◦ b]

2. first substitution: t0 ≏ t[〈∗0, . . . ∗n−1〉 ◦ b]

3. second substitution: t1 ≏ t[a ◦ 〈∗0, . . . ∗m−1〉]

As a consequence, the substitutions under discussion can be given as follows:

1. the first substitution: t[s0, b] ≏ t0[s0] ◮0 t0[r0] ≏ t[r0, b]

2. the second substitution: t[a, s1] ≏ t1[s1] ◮1 t1[r1] ≏ t[a, r1]

3. the merged substitution: t[s0, s1] ◮s t[r0, r1]

We easily identify four more substitutions transforming the context of the
merged substitution into the contexts of the first substitution (ss,b) and of the
second substitution (sa,s) and the results of the first and of the second substi-
tution into the result of the merged substitution (sr,b and sa,r, respectively).
Therefore, we obtain the following situation:

t[s0, s1]







◮s,b t[s0, b] ◮0 t[r0, b] ◮r,b

◮a,s t[a, s1] ◮1 t[a, r1] ◮a,r







t[r0, r1]

Under this perspective, µ(s0, s1) is a minimal substitution subsuming both
independent substitutions s0 and s1.

Special Cases (Merging Substitutions): More interesting as the com-
plete picture given above are some special cases:

1. common context (• ⇒): Both arguments of the merge function share
the same context. In other words:

a = s0 and b = s1

In this case, the merged function is a substitution on the common
context and results in a standard term, in which both substitutions are
applied in parallel.

2. common result (⇒ •): The special case that both substitutions share
the same result is dual to the first case. We can characterise this case
as follows:

a = r0 and b = r1
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In this case, the merged substitution is a substitution applied on a
standard term and resulting in the common result, such that both
substitutions are applied in parallel.

3. intermediate term (→ • →): In the third interesting case, the result
of the first substitution is the context of the second. This case can be
characterised as follows:

a = r0 and b = s1

In contrast to the previous special cases, here the merged substitution
represents a sequence of substitutions, in which the first argument is
applied first and then the second.

4. missing case (→ ◦ →): The last interesting case is dual to the third:
the context of the first substitution is the result of the second substi-
tution. This case can be characterised as follows:

a = s0 and b = r1

Again, the merged substitution represents a sequence of substitutions,
but here a substitution, in which the second argument is applied first
and then the first argument.

We summarise our observations: whenever we have wto independent substi-
tutions satisfying the conditions given in one of the interesting cases, we can
apply the merge function on both substitutions and obtain the characterised
merged substitution.

15.3 Splitting up Substitutions

We intend to split up a given substitution into a sequence of independent sub-
stitutions. In order to discuss this operation on substitutions, we introduce
the so called intermediate substitutions. These are substitutions possibly
occurring in a sequence, in which a given substitution is split up. These in-
termediate substitutions are defined with the help of a signature determining
them.

15.3 DEF (Signature): Let s ∈ S be a substitution of n-many terms with
an n-ary position (for n ∈ ω). A sequence σ = 〈σ0, . . . σn−1〉 ∈ {0,±1}n of
length n having entries in {0,±1} is called a signature with respect to the
substitution s.
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We associate a uniquely determined substitution to each signature.

15.4 DEF (Associated Substitution): Let s = 〈t, s, t, s′, t′〉 be a substi-
tution of n-many terms with an n-ary position (for n ∈ ω) and σ a signature
with respect to the substitution s.

1. associated sequence: Let rσ = 〈r0, . . . rn−1〉 ∈ Tn be that sequence of
nominal terms with length n that satisfies the following condition for
all k ∈ n:

rk ≏







sk if σk = −1
∗k if σk = 0
s′k if σk = +1

2. associated position: The associated position tσ is defined as follows:

tσ ≏ t[rσ]

3. associated substitution: The associated substitution σ(s) is defined as
follows:

σ(s) = 〈tσ, s, tσ, s
′, t′σ〉

Where:

tσ ≏ tσ[s] ≏ t[rσ][s] ; t′σ ≏ tσ[s
′] ≏ t[rσ][s

′]

Furthermore, a substitution s′ is called an intermediate substitution with
respect to s, if there is a signature σ such that s′ is the respective associated
substitution (formally, if s′ = σ(s)).

Remarks (Signature):

1. associated substitution: The associated substitution σ(s) is, by con-
struction, a substitution.

2. entries of the signature: The free places of the position tσ of the
associated substitution σ(s) are determined by the entries of σ equal
to 0. More formally:

place(tσ) = {k ∈ n; σk = 0}

If an entry σk equals to −1, the nominal symbol ∗k of the position t

of s are replaced in tσ by the respective subterm of the context t of s;
otherwise, if σk equals to +1, by the respective subterm of the result t′

of s.
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Therefore, an entry −1 represents that the respective place is not yet
replaced, an entry +1 that the respective entry is already replaced and
an entry 0 that the respective place is actually replaced (all replace-
ments according to the substitution s). In other words, σ(s) is, indeed,
an intermediate substitution with respect to s.

3. trivial signature: We investigate some limit cases:

(a) no entry equals zero: If no entry σk equals zero, then the position
tσ of the associated substitution is a standard term. As a conse-
quence, context and result are equal, the associated substitution
σ(s) represents no replacements of a term.

(b) all entries equal zero: If all entries σk equal zero, then the posi-
tion tσ of the associated substitution is equal to the position t of
s. Therefore, the associated substitution σ(s) equals to s. More
precisely:

σ(s) = s ⇔ σ = 〈0, . . . 0〉

4. independence: Two intermediate substitutions σ(s) and σ′(s), deter-
mined by the signatures σ and σ′, are independent, if the following
both conditions are satisfied for all k ∈ n:

(a) no common free places: It is not the case that σk = 0 and σ′
k = 0.

(b) no clash of structure: If both σk 6= 0 and σ′
k 6= 0, then σk = σ′

k.

We call such signatures also independent.

In order to merge independent intermediate substitutions, it is convenient to
provide a slight variation µi of the merge function for substitutions.

15.5 DEF (Merged Intermediate Substitutions): Let s = 〈t, s, t, s′, t′〉
be a substitution of n-many terms with an n-ary position (for n ∈ ω). Fur-
thermore, let σ and σ′ be two signatures with respect to s as well as s′ = σ(s)
and s′′ = σ′(s) the respective substitutions.

1. position: The position ti of the merged substitution is given as follows:

ti ≏ µ(tσ, tσ′)

2. merged substitution: The merged substitution µi(s
′, s′′) is given as

follows:
µi(s

′, s′′) = 〈ti[s], s, ti, s
′, ti[s

′]〉
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Merging Intermediate Substitutions:

1. well-defined: By construction, µi(s
′, s′′) is a substitution for all pairs

σ and σ′ of signatures.

2. merging independent substitutions: Let σ and σ be two signatures such
that the associated substitutions are independent.

3. compatibility with signatures: Let the signature σ′′ = 〈r0, . . . rn−1〉 be
defined as follows:

rk =

{

0 if σk · σ
′
k = 0

σk otherwise

If a clash of structure is avoided (guaranteed by the condition that
σk = σ′

k for all k ∈ n satisfying σk 6= 0 and σ′
k 6= 0), then σ′′ determines

the merged substitution. More formally:

µi(σ(s), σ
′(s)) = σ′′(s)

This holds, in particular, for independent signatures σ and σ′.

Observe that σ′′ represents an intermediate substitution, in which a
place k is replaced, if this place is replaced in one of the arguments.
The status of all other places (whether the place is already replaced
or not yet) is equal to the status of both arguments, if the sequences
satisfy the clash of structure condition.

4. complementary: Two intermediate substitutions σ(s) and σ′(s) are
called complementary, if the following condition is satisfied for all k ∈ n:

σk = 0 ⇔ σ′
k 6= 0

It is immediate that complementary intermediate substitutions are in-
dependent.

Splitting up a Substitution: Let s be a substitution of n-many terms
with an n-ary position.

1. sequence of signatures: A sequence σ0, . . . σm of signatures is called a
split sequence, if the following conditions are all satisfied:

(a) initial signature: In the initial signature σ0, all entries are either
−1 or 0.
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(b) successor signature: In a successor signature σk+1, all entries 1 of
σk are preserved, all entries 0 of σk are 1 and entries −1 of σk are
−1 or become 0.

(c) final signature: In the final signature σm, all entries are either +1
or 0.

Furthermore, we demand that at least one place is replaced in the
substitution represented by a signatures:

(a) non-triviality: Every signature σk has an entry equal to 0.

Each split sequence determines a sequence of intermediate substitutions such
that subsequent substitutions are independent and such that merging them
successively results in the original substitution.

15.4 Identity of Intermediate Substitutions

We have the intuition that two intermediate substitutions are equal, if their
signatures differ only with respect to non-zero entries: the difference between
such substitutions is their position in suitable split sequences, but the same
transformation of terms is represented. We provide an equivalence relation
on intermediate substitutions capturing this intuition.

15.6 DEF (Similarity of Intermediate Substitutions): Let s ∈ S
be a substitution of n-many terms (and n-ary position). Two intermediate
substitutions s′ and s′′ are similar, if their signatures σ′ and σ′′ have at the
same positions the entry 0. More formally, for all k ∈ n:

σ′
k = 0 ⇔ σ′′

k = 0

Remarks (Similarity of Intermediate Substitutions):

1. equivalence relation: It is immediate that the similarity relation is an
equivalence relation on the set of intermediate substitutions.

2. equivalence of substitutions: If two different intermediate substitutions
are similar, then they neither have a common context nor a common
result (even if some non-zero entries of their signatures are equal). As
a consequence, similar, but different intermediate substitutions are not
equivalent (with respect to the equivalence of substitutions).

-232-
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3. simplified variant: If the underlying substitution s is simple, then
each position in a signature corresponds with a single occurrence of a
nominal symbol in the position of s (and not, as in the general case,
with multiple occurrences of the same nominal symbol).

This means: if we define signatures and intermediate substitutions with
respect to the simplification s′ of s (which is not the simple normal
form of s, as we do not reduce the entries in the affected and inserted
sequences), then we obtain more intermediate substitutions. The re-
sulting simplified variant of the similarity relation is finer than the
similarity relation as defined above: we can identify the transformation
represented by a single occurrence of a nominal symbol independently
of other occurrences of the same nominal symbol.

Example (Similarity of Intermediate Substitutions): Similarity of
intermediate substitutions becomes interesting, when we have two different
sequences of independent substitutions satisfying the condition that merging
these sequences results in the same merged substitution. Recall that substi-
tutions represent calculation steps and investigate the following calculations:

1. first calculation: (5 + 3) + (6 + 4) = 8 + (6 + 4) = 8 + 10

2. second calculation: (5 + 3) + (6 + 4) = (5 + 3) + 10 = 8 + 10

3. merged calculation: (5 + 3) + (6 + 4) = 8 + 10

We meet the presuppositions: merging the first and the second calculations,
respectively, results in the third calculation; the first two calculations are
represented by sequences of independent substitutions. We provide the re-
spective signatures:

1. first calculation: σ0 = 〈0,−1〉 and σ1 = 〈1, 0〉.

2. second calculation: σ2 = 〈−1, 0〉 and σ3 = 〈0, 1〉.

This means that the substitutions determined by σ0 and σ3 are similar, as
well as those determined by σ1 and σ2. This corresponds with our intuitions
about the calculations: the first calculation step in (1) and the second in (2)
are both “calculating 5 + 3”, the remaining two calculation steps are both
“calculating 6 + 4”. In other words: the first and the same calculations are
the same, besides the order of their calculation steps.
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16 Application: Substitution Functions

Based on the formal notion of substitutions, we introduce a class of special
functions, the so called (explicit) substitution functions. In a second step,
we introduce implicit substitution functions, which are functions having an
explication method turning them into explicit substitution functions. Having
introduced both kinds of substitution functions, we illustrate that functions
usually understood as substitution functions are, indeed, implicit substitu-
tion functions.

16.1 Explicit Substitution Functions

Even though the substitutions are not defined in these investigations as a spe-
cific kind of functions, there is a strong tie between both notions: a formal
substitution can be understood as an element of a (set theoretical) function.
This motivates to call functions consisting of substitutions explicit substitu-
tion functions. We provide the formal definition of these functions.

16.1 DEF (Explicit Substitution Function): A set S ⊆ S of substitu-
tions is called an explicit substitution function.

Remarks (Explicit Substitution Function):

1. terminology: The explicit substitution functions are called explicit, as
the substitutions are explicitly present (as elements) in such a function.

We have to show that explicit substitution functions are, indeed, (set theo-
retical) functions.

16.2 Proposition (Explicit Substitution Functions): Every explicit
substitution function S ⊆ S is a function.
Proof.

1. basic observation: Presupposing the standard recursive definition of
an n-tuple (for 2 < n ∈ ω), a substitution

s = 〈t, s, t, s′, t′〉

= 〈〈〈t, s, t〉, s′〉, t′〉

= 〈〈o, s′〉, t′〉

is an ordered pair satisfying the condition that the first entry is an
ordered pair of anm-place occurrence and a sequence of standard terms
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(of lengthm) and the second entry is a standard term. This means that
every set S ⊆ S of substitutions is, indeed, a set of ordered pairs.

2. unique image: As the result t′ of a substitution s is uniquely determined
by its position t (contained in the first argument) and the sequence s′

of arguments (the second argument), it is immediate that every pair of
a multi-shape occurrences and sequences of arguments is mapped by
an explicit substitution function S to a uniquely determined standard
term. This means that an explicit substitution function is, indeed, a
function. q.e.d.

We discuss the domain of explicit substitution functions; in particular, we
develop conditions for well-behaved explicit substitutions functions.

Domain of Explicit Substitution Functions: The domain dom(S) of
an explicit substitution function S can easily be reconstructed:

dom(S) = {〈o, s′〉 ∈ O × T0
<ω; ∃t ∈ T0 : 〈o, s′, t′〉 ∈ S}

On its domain, an explicit substitution function is (trivially) a total function.

Well-Behaved Substitution Functions: It seems natural to demand the
following restriction for a substitution function S:

• If two compatible ordered pairs 〈o, s〉 and 〈o′, s′〉 are contained in the
domain dom(S), then also the pairs 〈o, s′〉 and 〈o′, s〉.

Thereby, the ordered pairs 〈o, s〉 and 〈o′, s′〉 are compatible, if the length
of both sequences agree (formally, if lng(s) = lng(s′)).

The restriction to compatible pairs is necessary: a pair 〈o, s〉 contained in the
domain dom(S) of an explicit substitution function S is an initial segment
of a substitution s contained in S. This means: the length of the sequence
s (the sequence of inserted terms of the substitution s) has to agree with
the length of the shape shape(o) of o (the sequence of affected terms of
the substitution s). If we drop the restriction to compatible pairs, then
the condition formulated above cannot be satisfied by explicit substitution
functions containing substitutions of different many terms.

In order to capture this intuitive demand more precisely, we introduce the
notion of closed subsets of cartesian products.
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16.3 DEF (Closed Subsets of Cartesian Products): Let X, Y be two
sets. A subset Z ⊆ X × Y of the cartesian product of X and Y is called
closed, if there are sets X0 ⊆ X and Y0 ⊆ Y such that Z = X0 × Y0.

A subset of a cartesian product is closed, if it is a cartesian product of some
subsets of its arguments. With the help of this notion, we categorise explicit
substitution functions.

16.4 DEF (Closed Substitution Function): Let S ⊆ S be an explicit
substitution function.

1. component: The n-th component domn(S) of the domain dom(S) is
defined as follows for every n ∈ ω:

domn(S) = {〈o, s〉 ∈ dom(S); lng(s) = n}

2. complete: The explicit substitution function S is closed, if its domain
dom(S) ⊆ O × T0

<ω is closed.

3. weakly closed: The explicit substitution function S is weakly closed, if
each component domn(S) is closed (for all n ∈ ω).

Remarks (Closed Substitution Functions):

1. fixed number of terms: If an explicit substitution function is closed,
then it contains only substitutions of a previously fixed number of
terms. This means that there is at most one non-empty component
domn(S). More formally: there is n ∈ ω such that domm(S) = ∅ for
all n 6= m ∈ ω.

2. closed substitution functions: As a consequence of the last observa-
tion, closed substitution functions are also weakly closed (as empty
components are closed cartesian products).

3. maximal substitution function: As the are (different) substitutions of
different many terms, the maximal explicit substitution function S is
not closed, but weakly closed.

4. intuitive demands: It is easily checked that the weakly closed substi-
tution functions are exactly those substitution functions, which satisfy
our informal demands for being well-behaved. In the case of explicit
substitution functions containing only substitutions of a fixed number
of terms, these substitution functions are even closed.
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Examples (Closed Substitution Functions): We provide some exam-
ples of closed explicit substitution functions:

1. empty set: The empty set ∅ ⊆ S is a (trivial) explicit substitution
function and, in particular, closed.

2. Every singleton {s} ⊆ S is a closed substitution function.

3. A set {s, s′} ⊆ S of two substitutions is closed, if and only if one of the
following both conditions is satisfied:

(a) affected occurrence: The respective affected occurrences are equal.
More formally:

〈con(s), aff(s),pos(s)〉 = 〈con(s′), aff(s′),pos(s′)〉

(b) inserted terms: The respective sequences of inserted terms are
equal. More formally:

ins(s) = ins(s′)

Observe that if both conditions are satisfied, then s = s′.

4. Let o = 〈0 + 0, 〈0, 0〉, ∗0 + ∗1〉 be an occurrence in the language LPA of
arithmetics. Investigate the following sets S and S′ of substitutions of
two terms:

S = {〈o, 〈n, n〉, n+ n〉; n ∈ ω}

S′ = {〈o, 〈n,m〉, n+m〉; n,m ∈ ω, n 6= m}

Both substitution functions are closed. Additionally, we may observe
that S and S′ are disjoint and that their union S ∪ S′ is again closed.

16.2 Implicit Substitution Functions

In order to classify functions traditionally associated with substitutions as
substitution functions, we introduce the concept of the so called implicit sub-
stitution functions. Such implicit substitution functions can be transformed
via an explication method into an explicit substitution function. We provide
the formal definition of these notions.
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16.5 DEF (Implicit Substitution Function): Let X and Y be arbitrary
sets and F : X → Y a function from X into Y .

1. explication method: An ordered pair M = 〈G,H〉 is called an explica-
tion method for F , if the following both conditions are satisfied:

(a) explication method for the domain: G : X → O × T0
<ω is a

function from the domain X of F into the set of ordered pairs
of multi-shape occurrences and finite sequences of standard terms
(into the domain of an explicit substitution function).

(b) explication method for the codomain: H : Y → T0 is a function
from the codomain Y of F into the set of standard terms (into the
codomain of an explicit substitution function).

2. explication: The set F/M = F/〈G,H〉 = {〈G(x), H(F (x))〉; x ∈ X} is
called the explication of F with respect to the explication method M.

3. implicit substitution function: The function F is called an implicit
substitution function with respect to the explication method M, if the
respective explication F/M is an explicit substitution function.

Remarks (Implicit Substitution Function):

1. codomain: We demand (for symmetry reason) in the definition above
that the explication method H for the codomain is a function on the
codomain, and not on the image of an implicit substitution function
F . This makes no (essential) difference, as the function F can also be
understood as a function into its image. Furthermore, the definition of
an explication only depends on the restriction of the method H to the
image of F .

2. terminology: The implicit substitution functions F are called so, as
their elements 〈x, y〉 ∈ F represent (in a way) the substitutions con-
tained in the corresponding explicit substitution function F/M. This
representation can be described, in the intended case, informally and
is made explicit by the explication method M.

3. explicit substitution functions: Every explicit substitution function S is
an implicit substitution function with respect to the trivial explication
method M = 〈iddom(S), idimg(S)〉; observe that S = S/M.
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4. dependency of the methods: The methods G and H for domain and
codomain of an implicit substitution function F are not independent:
as the position of the affected occurrence together with the inserted
sequence (both determined byG) determine the result of a substitution,
the method H for the codomain is (essentially) uniquely determined.
More formally, for all x ∈ X:

H(F (x)) = pos(π0(G(x)))[π1(G(x))]

Here, π0 and π1 are the respective projections for ordered pairs.

5. simplified implicit substitution functions: Subsequently, we are mainly
interested in implicit substitution functions satisfying the condition
that their explication method for the codomain is the identity function.
These are, in the intended case, the traditional substitution functions,
which are not applied on multi-shape occurrences and sequences of
standard terms, but on a simplification of them, and where the result
is a already a standard term.

In order to simplify the terminology in such cases (whereH = idimg(F )),
we write F/G instead of F/〈G,H〉 and call slightly sloppy the explication
method G for the domain already the explication method itself. In this
simplified case, the explication is given as follows:

F/G = {〈G(x), F (x)〉; x ∈ X}

Ambiguity of Explication: Due to the generality of the concept of ex-
plication, there are (besides limit cases) infinitely many explication methods
M classifying any function F : X → Y as an implicit substitution function.
Investigate, for example, the following constant functions for t ∈ T0:

Gt : X → O × T0
<ω : x 7→ 〈〈t, t, ∗〉, t〉 ; Ht : Y → T0 : y 7→ t

Presupposing that X 6= ∅ and Y 6= ∅, we obtain:

F/〈Gt,Ht〉 = {〈t, t, ∗, t, t〉} ⊆ S

There are some obvious ways of restricting the concept of implicit substitu-
tion functions:

1. simplified substitution functions: As mentioned above, we may demand
that the method H for the codomain is the identity function. This
demand would restrict the notion of an implicit substitution function
to functions mapping into the set of standard terms.
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2. meaningful representation: Another possibility is to demand that the
explication method M provides a “meaningful” representation of the
implicit substitution function. Demanding, for example, that the ex-
plication method G for the domain is injective, guarantees that differ-
ent arguments x and x′ of the implicit substitution function represent
different substitutions. Also, it seems reasonable to demand that the
explication of an implicit substitution function has to be weakly closed.

In particular, via such demands we are able to rule out pathological
explications of functions (classifying these functions in a pathological
way as implicit functions) provided that the functions under discussion
are not trivial. (If, for example, a function F is defined on a singleton
X, then every explication F/M has to be a singleton, which seems to
be a pathological substitution function.)

3. identifying substitution functions: A more subtle way of restricting
the concept of implicit substitution functions is to identify explica-
tion methods M (via a suitable equivalence relation) satisfying the
condition that the argument x is explicated by equivalent methods to
equivalent substitutions for all elements x ∈ X.

This demand does not exclude functions from being an implicit substi-
tution function, but minimises their possibility of representing explicit
substitution functions.96

We abstain here from discussing such restrictions of the concept of explication
in more details and focus on the possibilities provided by this concept; the
(philosophical) task of improving this concept by providing better restrictions
is left to future work.

16.3 Examples: Implicit Substitution Function

We illustrate that it is possible to describe functions traditionally associated
with substitution as implicit substitution functions.

16.3.1 The Complete Substitution Function

The complete substitution function Sc : T0
3 → T0 maps a triple 〈t, s, r〉 of

standard terms to the result of the simultaneous replacement of all occur-
rences of the term s in the term t by the term r.

96In particular, this demand motivates the identification of explicit substitution func-
tions.
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Traditional Definition: The complete substitution Sc is defined recur-
sively (using the traditional notation t[s/r] instead of Sc(t, s, r)) as follows:

1. t atomic: t[s/r] ≏

{

r if s ≏ t
t otherwise

2. t ≏ f(t0, . . . tn) complex:

t[s/r] ≏

{

r if s ≏ t
f(t0[s/r], . . . tn[s/r]) otherwise

Informal Analysis: In a complete substitution, the affected occurrence is
that occurrence in t, in which all occurrences of the term s are intended. The
latter means that the respective position is an elimination form of t in which
all occurrences of s are eliminated. The sequence of inserted terms is given
by the standard term r.

Theory of Occurrences: The complete substitution function Sc(t, s, r) can
be analysed within the theory of occurrences. We mention central aspects:97

1. complete occurrence: A one-place occurrence o = 〈t, s, t〉 is complete,
if its position equals to the result of an application of the complete
elimination function elim on the context and the shape of o (formally,
if t ≏ elim(t, s)). Alternatively, a complete occurrence can be charac-
terised by the demand that the context does not occur in the position
(formally, by mult(s, t) = 0).

The set of all complete occurrences is denoted by O1,c.

2. complete substitution: A substitution s = 〈t, s, t, s′, t′〉 of one term is
complete, if the affected occurrence o = 〈t, s, t〉 is complete.

The set of all complete substitutions is denoted by S1,c.

3. characterisation: The complete substitution function can be under-
stood as the composition of the complete elimination function and the
general substitution function. More formally, for all standard terms
t, s, r ∈ T0:

Sc(t, s, r) ≏ elim(t, s)[r]

97The complete elimination function is defined in the section about elimination forms
and occurrences as a recursively definable example for the concept of elimination.
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Explication Method: A (simplified) explication method for the complete
substitution function Sc is a function G : T0

3 → O × T0
<ω transforming an

ordered triple 〈t, s, r〉 of standard terms into an ordered pair of a multi-shape
occurrence o (of one term) and a sequence of standard terms (of length one).
A suitable explication method is easily found:

G(t, s, r) = 〈 〈t, s, elim(t, s)〉, r 〉

The image of G equals the cartesian product O1,c × T0
1 (a closed subset of

O × T<ω), which becomes the domain of the respective explication.

Explicit Substitution Function: The corresponding explicit substitution
function Sc/G is the set of all complete substitutions and given as follows:

Sc/G = {〈G(t, s, r),Sc(t, s, r)〉; t, s, r ∈ T0}

= {〈t, s, elim(t, s), r, elim(t, s)[r]〉; t, s, r ∈ T0} = S1,c

Observe that the explication S1,c of the complete substitution function Sc has
the closed domain dom(S1,c) = O1,c×T0

1 of all pairs of complete occurrences
and sequences of standard terms of length one.

16.3.2 The Simultaneous Substitution Function

The simultaneous substitution function Ss : T0 × T0
<ω → T0 has a standard

term t and a finite sequence s of standard terns as arguments and replaces
simultaneously all occurrences of the first n variables v0, . . . vn−1 in t (where
n = lng(s) is the length of the second argument) by the respective entries of
the second argument.

Traditional Definition: The simultaneous substitution function Ss is
defined recursively (in the first argument, for an arbitrary finite sequence
s = 〈s, . . . sn−1〉 of standard terms) as follows:

1. t atomic: Ss(t, s) ≏

{

sk if t ≏ vk for a k ∈ lng(s)
t otherwise

2. t ≏ f(t0, . . . tm) complex:

Ss(t, s) ≏ f(Ss(t0, s), . . .Ss(tm, s))
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Informal Analysis: In a simultaneous substitution, the affected occurrence
is a complete occurrence in the standard term t of the first n variables vk,
where n is the length of the inserted sequence s.98

Theory of Occurrences: We analyse the simultaneous substitution func-
tion Ss in the light of the theory of occurrences.

1. elimination function: In order to provide an explication method for
Ss, we have to construct a suitable position. It is convenient to use the
following generalisation elim : T0 × ω → T of the complete elimination
function.

(a) t atomic: elimn(t) ≏

{

∗k if t ≏ vk and k ∈ n
t otherwise

(b) t ≏ f(t0, . . . tm) complex:

elimn(t) ≏ f(elimn(t0), . . . elimn(tm))

This version of the complete elimination function eliminates the first n
variables v0, . . . vn−1 in a standard term.

2. characterisation: The simultaneous substitution function Ss can be
characterised with the help of the generalised elimination function elimn.
More formally, for all t ∈ T0 and s ∈ T0

<ω:

Ss(t, s) ≏ elimn(t)[s]

Here, n = lng(s).

Explication Method: The explication method G for Ss can be given as
follows:

G(t, s) = 〈 〈t, vn, elimn(t)〉, s 〉

Here, n = lng(s) and vn = 〈v0, . . . vn−1〉.

Explicit Substitution Function: The corresponding explicit substitution
function is given as follows:

Ss/G = {〈G(t, s),Ss(t, s)〉; 〈t, s〉 ∈ dom(Ss)}

= {〈t, vn, elimn(t), s, elimn(t)[s]〉; 〈t, s〉 ∈ dom(Ss)}

98Recall the generalisations of the complete elimination function discussed in the section
about elimination forms and occurrences; in particular, the complete elimination function
with fixed arguments.

-243-
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Again, n = lng(s). It is easily checked that Ss/G is, indeed, a set of substi-
tutions and therefore also an explicit substitution function.

Observe that Ss/G has not a closed domain, as Ss/G is applied to finite
sequences of arbitrary length. Nevertheless, the components of the domain
are closed for all n ∈ ω:

domn(Ss/G) = {〈t, vn, elimn(t)〉; t ∈ T0} × T0
n

As a consequence, the explication Ss/G of the simultaneous substitution func-
tion Ss is a weakly closed substitution function.

16.3.3 The General Substitution Function

The general substitution function is closely related to the simultaneous sub-
stitution function. But as the image of the general substitution function is
the set of all nominal terms (and not only the set of all standard terms), this
function cannot be analysed as a simplified implicit substitution function.

Nevertheless, we can carry over the theory of occurrences to nominal
terms (introducing a second kind of nominal symbols). In this extended
realm, the general substitution function is, indeed, an implicit substitution
function. In a slightly sloppy terminology: the general substitution function
is a kind of a “second order” substitution function.

Simulation of the General Substitution Function: It is worth to
mention that the general substitution function can even be analysed as an
implicit substitution function in the realm of standard terms, if we use non-
trivial explication methods for the codomain. Recalling that we can simulate
nominal symbols in a standard first order language, we define two auxiliary
functions as follows:99

1. simulation function: The simulation function σ : T → T0 transforms
nominal terms into standard terms by replacing nominal symbols by
even variables and variables by odd variables.

σ : t 7→















c if t ≏ c
v2k if t ≏ ∗k
v2k+1 if t ≏ vk
f(σ(t0), . . . σ(tn)) if t ≏ f(t0, . . . tn)

2. complete elimination function: We need additionally another variant
elim : T0 × ω → T of the complete elimination function eliminating

99The possibility of simulating nominal terms is already mentioned in the section about
the basic theory of nominal terms.
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in the simulated nominal term (which is a standard term) the first n
simulated nominal symbols (which are the first n even variables):

(a) t atomic: elimn(t) ≏

{

∗k if t ≏ v2k and k ∈ n
t otherwise

(b) t ≏ f(t0, . . . tm) complex:

elimn(t) ≏ f(elimn(t0), . . . elimn(tm))

With the help of both auxiliary functions, we can provide a suitable explica-
tion method for the general substitution function:

1. explication method for the domain: The affected occurrence is given by
the simulation of the first argument of the general substitution function,
in which the simulations of the nominal symbols are eliminated; observe
that it is sufficient to eliminate the first n simulated nominal symbols,
where n is the length of the second argument. The sequence of inserted
terms is given by the simulation of the second argument of the general
substitution function.

Therefore, the explication method G : T × T<ω → O × T0
<ω for the

domain can be defined as follows:

G : 〈t, s〉 7→ 〈〈σ(t), σ(vn), elimn(σ(t))〉, σ(s)〉

Here, n = lng(s). Furthermore, an application of σ on a sequence of
nominal terms is understood as the sequence of applications. The latter
means:

σ(vn) = 〈σ(vk); k ∈ n〉 ; σ(s) = 〈σ(sk); k ∈ n〉

The following equation is checked easily:

elimn(σ(t))[σ(vn)] ≏ σ(t)

As a consequence, the arguments for the general substitution function
are, indeed, mapped by the explication method G for the domain to
an ordered pair of a multi-shape occurrence and a suitable sequence of
standard terms.

2. explication method for the codomain: The explication method for the
codomain can be given as the simulation of the result of the respective
application of the general substitution function. Therefore:

H : T → T0 : t 7→ σ(t)
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The following equation is checked easily:

elimn(σ(t))[σ(s)] ≏ σ(t[s])

As a consequence, 〈G(t, s), H(t, s)〉 is, indeed, a substitution.

We conclude that the explication ·[·]/〈G,H〉 of the general substitution func-
tion is an explicit substitution function. The latter means that the general
substitution function is an implicit substitution function.

16.3.4 A Gödelised Substitution Function

The concept of explication is sufficiently general to identify recursive func-
tions (on natural numbers), which are representing the substitutions of terms
in terms, as implicit substitution functions. We provide some details.

1. Gödel numbering: We presuppose a Gödel numbering p·q : T0 → ω
of the terms of a (countable) formal language L. The number ptq is
called the Gödel number of the term t.100

Additionally, let γ = {ptq; t ∈ T0} ⊆ ω be the set of all Gödel numbers
of a term in the language L and γx = {pxq; x ∈ Vx} ⊆ γ the restriction
of γ to Gödel numbers of variables..

Furthermore, by [[n]] we mean the standard term t having the Gödel
number n; the latter means that [[·]] : γ → T0 is the inverse function of
the Gödel numbering. As the Gödel numbering is not surjective, the
function [[·]] is only defined on a proper subset of ω.

2. substitution function: The Gödelised substitution function Sγ : ω3 → ω
satisfies the following condition for all standard terms t, s ∈ T0 and for
all variables x ∈ Vx:

• Sγ(ptq, pxq, psq) = pt[x/s]q, where t[x/s] is the result of replacing
all occurrences of x in t by s.

We may presuppose that 0 /∈ γ is not a Gödel number of a standard
term and that an application of Sγ results in zero for all cases not given
above.101

100The method of Gödelising the syntax was used by Kurt Gödel [15] in the proof of
his seminal incompleteness theorems for formal arithmetics PA. A presentation of these
theorems and of the method of Gödelising the syntax is found in every good logic textbook.
101The existence of such substitution functions (and their representability in the formal

theory PA of arithmetics) is essential for Gödel’s proof of the incompleteness theorems.
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We establish that Sγ is an implicit substitution function:

1. explication method for the domain: We need that the following equality
holds:

G : 〈ptq, pxq, psq〉 7→ 〈〈t, x, elim(t, x)〉, s〉

Therefore:

G : 〈n,m, l〉 7→







〈〈[[n]], [[m]], elim([[n]], [[m]])〉, [[l]]〉 if n, l ∈ γ, m ∈ γx

〈〈v0, ǫ, v0〉, ǫ〉 otherwise

2. explication method for the codomain: We need that the following equal-
ity holds:

H : pt[x/s]q 7→ t[x/s]

Therefore:

H : n 7→







[[n]] if n ∈ γ

v0 otherwise

The explication Sγ/〈G,H〉 of the Gödelised substitution function is an explicit
substitution function; correspondingly, Sγ an implicit substitution function
(with non-trivial explication method for the codomain). Observe that triples
〈n,m, l〉 not representing a suitable substitution are mapped to the trivial
substitution 〈v0, ǫ, v0, ǫ, v0〉.

16.3.5 An Artificial Substitution Function

As a last example, we discuss a function mapping ordered pairs of natu-
ral numbers to variables and which is classified by (two different) artificial
explication methods as an implicit substitution function.

The Artificial Substitution Function: The artificial substitution func-
tion Sa : ω × ω → Vx : 〈k, l〉 7→ vl maps an ordered pair 〈k, l〉 of natural
numbers to the variable vl.

Explication Methods and Substitution Functions: We provide two
different explication methods transforming Sa into an explicit substitution
function:

1. replacement of variables: Assuming that both arguments k and l of Sa

represent variables and that the first variable is implicitly replaced by
the second, we obtain the following explication method:

G : ω2 → O × T0
<ω : 〈k, l〉 7→ 〈〈vk, vk, ∗0〉, vl〉
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The respective explication is, indeed, an explicit substitution function:

Sa/G = {〈vk, vk, ∗, vl, vl〉; k, l ∈ ω}

2. redundant argument: Assuming that the first argument is redundant,
that the second argument represents a variable and that implicitly the
total substitution of a fixed standard term t ∈ T0 is intended, we obtain
the following explication method:

G′ : ω2 → O × T0
<ω : 〈k, l〉 7→ 〈〈t, t, ∗0〉, vl〉

The respective explication is given as follows:

Sa/G′ = {〈t, t, ∗, vl, vl〉; l ∈ ω}

This last example illustrates that there are even meaningful explication meth-
ods transforming a function in non-trivial substitution function, but still via
an artificial explication method.

16.4 Conceptual Remarks

We conclude our discussion of substitution functions with a brief analysis of
our concept of implicit substitution functions and their explication.

1. principle achievement: We illustrated that the concept of explication is
capable of characterising functions traditionally understood as substi-
tution functions as such functions and to relate these functions with our
formal concepts of substitutions and (explicit) substitution functions.

In particular, the associated explicit substitution functions seem to
explicate the traditional substitution functions faithfully (according to
our intuitions).

2. underdetermination: We have seen that the explication method and
the resulting explicit substitution function is not determined by the im-
plicit substitution function itself. In particular, we have seen that there
are infinitely many trivial explication methods for arbitrary functions
classifying them trivially as implicit substitution functions.

The variability of possible explication methods is inherent to the con-
cept of implicit substitution functions (as defined here). This variability
corresponds to different (informal) interpretations of the substitutions
represented by an implicit substitution function.
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Nevertheless, this variability also demands further (philosophical) re-
search with the aim of formulating good restrictions on the concept
of explication, ruling out pathological and undesired cases of implicit
substitution functions.
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17 Conclusion: Results

The main results of these investigations are the adequate formal definitions
of the fundamental syntactic notions of occurrences and substitutions and
related concepts, which are usually used only informally in the field of logic
(and other related fields).

These investigations focus on the paradigmatic theory of occurrences of
terms in terms and are easily carried over to other kinds of occurrences. We
summarise central aspects of these investigations.

17.1 Theory of Nominal Terms

Occurrences and substitutions, as discussed in these investigations, are based
on the notion of nominal terms, essentially, as introduced by Schütte. We
provide a survey of the theory of nominal terms as far as developed in these
investigations.

17.1.1 Basic Theory of Nominal Terms

Nominal terms are the result of a generalisation of the standard terms (of a
formal first order language) by adding countable many nominal symbols ∗k
(a new kind of variables) to the alphabet of the underlying formal language
and by extending the inductive definition of standard terms by these nominal
symbols as new atomic expression.

Relevance of Nominal Terms: The nominal terms are crucial in these
investigations, as they are capable of representing formally the positions of
occurrences. More precisely, intended positions of subterms of a given stan-
dard term are represented by elimination forms of the given standard term.
These are nominal terms, in which the intended subterms are replaced by
suitable nominal symbols.

Using the same nominal symbol more than once in an elimination form
allows to mark simultaneously multiple positions of the same subterm in the
given standard term; using different nominal symbols allows even to mark
positions of different subterms. Due to this generality, the nominal terms
turn out to be superior to traditional concepts of formal occurrences, which
are only capable of representing single positions.
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Basic Categorisation: Depending on the nominal symbols occurring in a
nominal term, the following basic categorisation is given:

1. Nominal terms without nominal symbols are the standard terms of the
underlying formal language; nominal terms with nominal symbols are
also called proper.

2. A nominal term is n-ary, if exactly the first n nominal symbols ∗k occur
in that nominal term; in particular, a nominal term is unary, if exactly
the nominal symbol ∗0 occurs in it.

3. A nominal term is simple, if no nominal symbol occurs more than once;
otherwise, the nominal term is multiple.

Nominal terms, which are both unary and simple, are also called single.

General Substitution Function: The central tool for the treatment of
nominal terms is the general substitution function. This binary function
maps a nominal term and a sequence of nominal terms to the result of a
simultaneous replacement of the nominal symbols in the first argument by
the corresponding entries of the second argument.

The general substitution function is a universal homomorphism on nom-
inal terms (a function codifying all homomorphisms) preserving their struc-
ture given by the standard symbols of the alphabet (in the case of standard
terms, these are the variables, the constant symbols and the function symbols
of the underlying formal language).

17.1.2 Relations Based on Homomorphisms

Two fundamental relations, both based on homomorphisms, are introduced.

Isomorphism of Nominal Terms: Two nominal terms are isomorphic, if
there is an isomorphism (a bijective homomorphism) mapping one nominal
term to the other. Isomorphic nominal terms are equal up to a relabelling
of their nominal symbols according to a permutation of the set of natural
numbers.

The isomorphism of nominal terms is an equivalence relation on nominal
terms. A nominal term is normal (a canonical representative of its own
equivalence class) with respect to the isomorphism of nominal terms, if its
nominal symbols are sorted. The latter means that the labels of the leftmost
occurrences of each nominal symbol occurring in that nominal term are sorted
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according to the natural numbers. The isomorphism of nominal terms is used
to provide uniquely determined nominal terms in various situations.

Less-Structured Relation: Referring in the definition to arbitrary homo-
morphisms instead of isomorphisms, we obtain the less-structured relation:
a nominal term is less structured than another nominal term, if there is a
homomorphism mapping the first to the second. The denomination of this
relation reflects that an application of a homomorphism on a nominal term
results, in the typical case, in a more complex nominal term (having therefore
more structure).

The less-structured relation is a partial order on nominal terms modulo
the isomorphism of nominal terms; nominal symbols are the least elements
with respect to the less-structured relation, standard terms are maximal.

Central technical application of the less-structured relation is the definition
of the elimination forms of a standard term: elimination forms of a standard
term are those nominal terms, which are less structured than this standard
term. A sequence of standard terms is eliminated in an elimination form, if
applying the general substitution form on the elimination form and on the
sequence results in the respective standard term. An entry of an eliminated
sequence is actually eliminated, if the corresponding nominal symbol actually
occurs in the elimination form.

17.1.3 Relations Beyond Homomorphisms

Using methods beyond homomorphisms, some more relations are introduced:

Equivalence of Nominal Terms: Two nominal terms are equivalent, if
they are equal up to the labelling of their nominal symbols. The equiva-
lence of two nominal terms can be characterised by demanding that their
unifications or, equivalently, their simplifications are equal.

Thereby, the unification of a nominal term is the result of relabelling
all nominal symbols with the label zero; the simplification results from re-
labelling all nominal symbols from the left to the right according to the
natural numbers. If a nominal term is proper, then its unification is unary;
the simplification of a nominal term is simple.

The equivalence of nominal terms is, indeed, an equivalence relation. The
unification and the simplification of a nominal term are two, in general dif-
ferent representatives of the respective equivalence class. The equivalence
of nominal terms is used for the identification of positions differing only in
the order of representing multiple positions. In particular, this relation is

-252-
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used for the identification of generalised occurrences representing the same
informal occurrence.

Covered-By Relation: A nominal term is covered by another nominal
term, if some nominal symbols of the covered nominal term are replaced in the
other nominal term by a standard term. This replacement cannot be given,
in general, by the general substitution function, as the same nominal symbol
can be replaced by different standard terms at different positions. Such
replacements (independent on simultaneous replacements at other positions)
are called local.

In the weak version of the covered-by relation, a nominal symbol can
be locally covered by a different nominal symbol. This relation is a partial
order on nominal terms modulo the equivalence of nominal terms. Nominal
terms, in which all atomic subterms are nominal symbols, are minimal and
standard terms are maximal with respect to the weak covered-by relation.
Weakly covered nominal terms are useful as a substitute for elimination forms
in a context based on the equivalence of nominal terms.

In the strong version, nominal symbols can be covered locally by a stan-
dard term or by the same nominal symbol. In contrast to the weak version
of this relation, it is excluded that a nominal symbol is locally covered by a
different nominal symbol. As a consequence, the strong covered-by relation
becomes (in a way) a finitistic version of the weak covered-by relation. In
particular, the strong covered-by relation is a proper partial order on nominal
terms (and not only modulo the equivalence of nominal terms).

Independence of Nominal Terms: Two nominal terms are independent,
if the nominal symbols of one nominal term are locally covered by a standard
term in the other nominal term and vice versa; additionally, it is permitted
that nominal symbols are locally covered by the same nominal symbol. In
other words, independence of nominal terms is the local-symmetric version
of the strong covered-by relation.

Central tools for dealing with independent nominal terms are the merge
function and the dual merge function:

1. merge function: The merge function maps, in the intended case of
independent nominal terms, its arguments to a nominal term, in which
all nominal symbols of both arguments are present.

2. dual merge function: The dual merge function maps, again in the in-
tended case, its arguments to a nominal term, in which only the nominal
symbols are present, which are already present in both arguments.
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In the strong version of the independence relation, nominal symbols have to
be locally covered by standard terms; it is excluded that nominal symbols
are covered by the same nominal symbol. This strong independence relation
captures our intuitions about the independence of positions and is used to
define the analogous relations on occurrences and on substitutions.

The weak version of independence is investigated first, as this relation
behaves better (and well) with respect to both merge functions.

It is worth to mention that maximal independent sets of nominal terms
equipped with both merge functions form a finite boolean algebra. The
extreme elements of such a boolean algebra are minimal and maximal with
respect to the strong covered-by relation; strong independence corresponds
with disjointness.

17.2 The Notions of Occurrences and Substitutions

We communicate essential aspects of the different generalisations of the for-
mal notion of occurrences, as introduced in these investigations, together
with the discussed applications of these notions.

17.2.1 Standard Occurrences

The formal notion of a (standard) occurrence (of a term in a standard term)
is defined as an ordered triple of the following kind:

〈context, shape, position〉

Context and shape are standard terms, the position is a unary elimination
form of the context in which the shape is actually eliminated. Such formal
occurrences are capable of representing informal occurrences of one term at
single or multiple positions.

This formal notion of occurrences satisfies the following intuitions:

1. Context and shape do not, in general, determine the position.

2. Context and position determine the shape.

3. Shape and position determine the context.

The first statement is an essential property of occurrences, the other two
properties are (useful) consequences of using nominal terms as the represen-
tatives of the position.
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Applications: The notion of occurrences allows to solve hard problems
with respect to occurrences, which are not solvable only on the base of the
recursive structure of the context and of the shape of an occurrence. As
paradigmatic examples, formal solutions to the following hard problems are
presented:

1. counting occurrences: Counting formally the number of simple and the
number of arbitrary occurrences of a given term in a given standard
term.

2. the lies-within relation: Deciding formally for two occurrences in the
same context, whether one occurrence lies within the other or not.

17.2.2 Multi-Shape Occurrences

Multi-shape occurrences are a slight generalisation of standard occurrences:
the restriction to a single shape is dropped. The latter means that the multi-
shape occurrences are defined as ordered triples of the following kind:

〈context, sequence of shapes, position〉

As in the case of standard occurrences, the context is a standard term. The
sequence of shapes is a finite sequence of standard terms and the position
is an elimination form of the context in which the sequence of shapes is
eliminated. Identifying sequences of length one with their only entry, the
standard occurrences become a special case of the multi-shape occurrences.

The multi-shape occurrences are capable of representing informal occur-
rences of finitely many terms at arbitrary positions. From a technical point
of view, multi-shape occurrences are interesting, as central properties of sub-
stitutions (as introduced below) can be studied, in principle, in a simpler
context.

Equivalence of Occurrences: According to our intuitions, two informal
occurrences in the same context are equal, if the same shapes at the same
positions are intended.

This intuition is captured by an equivalence relation on multi-shape oc-
currences: two multi-shape occurrences are equivalent, if they have the same
context and if their positions are equivalent (with respect to the equivalence
of nominal terms). Essentially, such equivalent multi-shape occurrences only
differ in the way, how they mark the intended positions of their shapes.
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In order to provide canonical representatives of the equivalence classes, some
properties of multi-shape occurrences and of their places (which are positions
of entries in the sequence of shapes) are introduced:

1. vacuous place: A place of an occurrence is vacuous, if the respective
entry in the sequence of shapes is not actually eliminated in the position
(which means that the corresponding nominal symbol does not occur
in the position of such a multi-shape occurrence).

2. regular occurrence: An occurrence is regular, if there are no vacuous
places and if its position is normal with respect to the isomorphism of
nominal terms.

3. redundant place: A non-vacuous place of an occurrence is redundant,
if there is a different non-vacuous place such that the respective entries
in the sequence of shapes are equal.

4. parsimonious occurrence: An occurrence is parsimonious, if there are
no redundant places.

There are two, in the general case different normal forms representing each
equivalence class of occurrences:

1. simple normal form: A multi-shape occurrence is in simple normal
form, if it is regular and if its position is simple. Occurrences in simple
normal form are, in general, not parsimonious.

2. parsimonious normal form: A multi-shape occurrence is in parsimo-
nious normal form, if it is regular and parsimonious. Occurrences in
parsimonious normal form are, in general, not simple.

Independence of Occurrences: According to our intuitions, two informal
occurrences in the same context are independent, if the intended shapes do
not overlap. The latter means that they have no common shapes at the same
place and that no shape of one occurrences lies locally within a shape of the
other occurrence.

In order to capture this intuition, an independence relation on multi-
shape occurrences is introduced: two occurrences are independent, if they
have the same context and if their positions are strongly independent. The
independence relation is compatible with the equivalence of occurrences.
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Two operations on independent occurrences are introduced:

1. merging occurrences: A set of independent occurrences can be merged
into one occurrence representing all the shapes at all positions, which
are represented by one of the arguments contained in the set of inde-
pendent occurrences.

The merge operation for occurrences is a useful tool of the theory of
occurrences: when dealing with equivalence classes of single occurrences
in a given context (which are equal or independent), then it is possible
to merge the elements of the equivalence classes into one occurrence
representing the full equivalence class. Applications of this method are
mentioned in the section about future work.

2. splitting up occurrences: An occurrence can be split up into single (and
independent) occurrences, each of them representing a single shape at
a single position of the shapes represented by the argument.

Splitting up occurrences into independent occurrences and merging them is
also of philosophical interest, as this method reflects the relationship between
single occurrences, standard occurrences and multi-shape occurrences.

17.2.3 Substitutions

Formal substitutions are defined as quintuples of the following kind:

〈context, sequence of affected terms,

position,

sequence of inserted terms, result〉

The triple of context, sequence of affected terms and position is a multi-
shape occurrence as well as the triple of result, sequence of inserted terms
and position. Furthermore, it is demanded that both sequences have the
same (finite) length. Additionally, simplified substitutions are introduced as
substitutions based, essentially, on the notion of standard occurrences instead
of multi-shape occurrences.

A formal substitution represents the simultaneous replacement of the
standard terms given in the sequence of affected terms at the represented
positions in the context by the corresponding entries of the sequence of in-
serted terms. Simplified substitutions can only represent the replacement of
one term (possibly at multiple positions).

-257-
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Equivalence of Substitutions: According to our intuition, two informal
substitutions can be identified, if they have the same context and the same
result. This intuition is captured by the equivalence of substitutions.

Guided by the discussion with respect to the equivalence of occurrences,
normal forms for the equivalence of substitutions are provided with the help
of some properties for substitutions and for their places:

1. regular substitutions: The definition of vacuous places and regular
substitutions can be immediately carried over from the simpler case of
occurrences.

2. non-trivial substitutions: A substitution is non-trivial, if there is no
non-vacuous place such that the respective entries in both sequences
are equal. In such non-trivial substitutions no subterm of the context
is replaced by itself.

3. simple substitution: A substitution is simple, if its position is a simple
nominal term.

4. redundant place: Redundancy can be carried over from occurrences,
but has to be adapted to the more complex situation: a non-vacuous
place is redundant, if there is a different non-vacuous place such that
the affected terms at these places are equal as well as the inserted terms
at these places. In substitutions with redundant places, the same terms
at different positions are replaced by the same terms.

5. parsimonious substitution: A substitution is parsimonious, if there are
no redundant places.

6. reducible place: A place is reducible, if the respective entries in the
sequence of affected terms and inserted terms both are complex and
both have the same main function symbol. Reducible places can be
split up into finitely many places representing the replacement of the
direct subterms of the respective affected term by the corresponding
subterms of the respective inserted term.

7. irreducible substitution: A substitution is irreducible, if there are no
reducible places.

There are three, in the general case different normal forms representing each
equivalence class of substitutions:

1. complete substitution: A substitution of one term is complete, if the
affected term equals to the context, if the inserted term equals to the
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result and if the position is proper. (The latter implies that complete
substitutions are regular.) This trivial normal form is both simple and
parsimonious.

2. simple normal form: A substitution is in simple normal form, if it is
regular, non-trivial, irreducible and simple. In general, a substitution
in simple normal form is not parsimonious.

3. parsimonious normal form: A substitution is in parsimonious nor-
mal form, if it is regular, non-trivial, irreducible and parsimonious. In
general, a substitution in parsimonious normal form is not simple.

Calculations: Formal substitutions are capable of representing (informal)
calculations, as found in everyday mathematics. A calculation step can be
represented by a substitution and a calculation by a sequence of substitutions
satisfying the following condition: the result of a substitution in this sequence
is equal to the context of the next substitution (as long as there is a next).

The formal terminology introduced with respect to substitution provides
the capacity of reflecting different intuitively given properties of calculations
on formal grounds; in particular, the informal notion of an elementary cal-
culation step can be considered in this framework.

Independent Substitutions: Two substitutions are independent, if their
positions are strongly independent. In contrast to the independence of oc-
currences, equality of the contexts or of the results are not demanded, as this
restriction would be too strong.

Due to the strong independence of the positions, independence of sub-
stitutions captures the idea that subterms at independent positions in suffi-
ciently similar contexts are affected by independent substitutions. Sufficient
similarity of the contexts is given implicitly by the strong independence of
the positions.

As in the case of independent occurrences, two operations on independent
substitutions are introduced.

1. merging substitutions: The merge function for substitutions transforms
two independent substitutions into a new substitution. The position of
a merged substitution is defined, essentially, by merging the positions
of the arguments. The sequences of affected and inserted terms of the
merged substitutions are the concatenations of the respective sequences
of the arguments. The context and the result of the merged substitution
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are uniquely determined by its position together with the sequences of
affected terms and of inserted terms, respectively.

There are four interesting special cases of an application of the merge
function on substitutions: if the contexts of the arguments are equal,
then the merged substitution is the parallel application of both argu-
ments on the common context; dually, if the results are equal. Fur-
thermore, if the result of the first argument is equal to the context of
the second result, then the merged substitution is the sequential ap-
plication of the first and then of the second argument; similarly, if the
context of the first argument is equal to the result of the second argu-
ment, then the merged substitution is again the sequential application
of both arguments, but in the converse order.

2. splitting up substitutions: A substitution can be split up with the help
of intermediate substitutions. Such intermediate substitutions are, es-
sentially, constructed out of the substitution under discussion by modi-
fying the places of that substitution. Some nominal terms are replaced
by the suitable subterms of the context, some nominal terms are kept
and some are replaced by the suitable subterms of the result. This way,
the places of the underlying substitution are not yet, actually or already
replaced in an intermediate substitution.

A sequence of intermediate substitutions is a split sequence, if in the
first substitution no place is already replaced, if in the last substitution
all places are already replaced and if the remaining substitutions satisfy
the following condition: exactly the places already replaced and actu-
ally replaced in the previous substitution are already replaced, some not
yet replaced places of the previous substitution are actually replaced
and the remaining places are not yet replaced. Subsequent entries of a
split sequence are independent. A split sequence represents the substi-
tution under discussion, as merging successively the entries results in
the substitution under discussion.

Similarity of Substitutions: On the set of all intermediate substitutions
(with respect to a previously given substitution), another equivalence relation
is introduced: two intermediate substitutions are similar, if they agree on
their actually replaced places.

This equivalence relation allows the identification of the same replace-
ment in different intermediate substitutions (contained in different split se-
quences). The similarity of intermediate substitutions is not compatible with

-260-
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the equivalence of substitutions, because similar, but different substitutions
have different contexts and results.

In particular, the similarity of substitutions captures the intuition that
exchanging the order of two (independent) calculation steps in a calculation
results in the same calculation steps (in different order).

Substitution Functions: Due to the standard recursive definition of or-
dered n-tuples, a substitution can be understood as an ordered pair such that
the first entry is an ordered pair of a multi-shape occurrence and a sequence
of standard terms of suitable length and the second entry is that standard
term, which results from a replacement of the intended terms in the context
by the inserted terms at the marked positions. Therefore, a set of substi-
tutions is a function according to the set theoretical definition of functions.
Consequently, sets of substitutions are called explicit substitution functions.

Functions traditionally understood as substitution functions are not sub-
sumed under this definition, as the arguments of such functions are, usually,
no occurrences. In order to qualify such traditional substitution functions
as substitution functions, the concept of implicit substitution functions is
introduced. Such implicit substitution functions can be transformed via an
explication method into an explicit substitution function.

The potential and the limitation of the concept of implicit substitution
functions is illustrated by discussing central examples; in particular, it is
shown that (besides some typical substitution functions) the Gödelised sub-
stitution function, which is the Gödelisation of a substitution function for
terms and which is, therefore, a primitive recursive function on the natural
numbers, is an implicit substitution function. In these examples, the expli-
cation method is capable of transforming faithfully an implicit substitution
function into an explicit substitution function.

The limitation of the concept of implicit substitution functions is a philo-
sophical problem: explication methods are not determined by an implicit
substitution function, but depend on the intuitive interpretation of the sub-
stitutions given by an implicit substitution function. It remains a philosoph-
ical task to rule out undesired and pathological explication methods.
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18 Conclusion: Future Work

We provide a survey of future work related to our investigations of the notions
of occurrences and substitutions.

18.1 Fundamental Proof Theory

The idea of “Fundamental Proof Theory” is the investigation of fundamental
problems of proof theory on the base of the theory of occurrences and sub-
stitutions. We sketch some projects, which can be subsumed under the idea
of fundamental proof theory.

18.1.1 Proper Definition of Proofs

The aim of the project “Proper Definition of Proofs” is to provide adequate
definitions of the elementary objects and methods of Natural Deduction.102

As sketched in the introduction of these investigations, an adequate definition
of these notions has to be given on the base of a suitable theory of occurrences.
We provide some details:

1. formula tree: The basic objects of the calculus of Natural Deduction
are arbitrary formula trees; the more elaborate notion of a derivation
is defined only later and based on formula trees. The conclusion of
a formula tree, which is a formula and not an occurrence, is defined
recursively as expected.

2. inference step: An inference step can be represented by that occurrence
of a subtree of a formula tree, which has the conclusion of the intended
inference step as its conclusion. The premises of an inference step can
be defined as the conclusions of the direct subtrees of the respective
occurrence representing the inference step.

It is worth mentioning that no formula occurrence has to be intro-
duced to represent occurrences of the premises and of the conclusion
of an inference step. For an adequate development of the notion of a
derivation, it is sufficient to use the position of the respective inference
step and the positions of the direct subtrees instead.

3. assumption: A single assumption can be represented as a single occur-
rence of an atomic subtree of a formula tree.

102First ideas related with this project were presented at the sixteenth international
workshop Proof, Computation, Complexity (PCC 2017) in Göttingen, Germany.
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The representation of assumptions as formula occurrences in formula
trees seems inconvenient, as we would have to distinguish the assump-
tions from other formula occurrences. The obvious way to do so, would
be to check whether they are also occurrences of atomic subderivations.

In general, we are entitled by the inference rules to discharge more
than a single assumption in an inference step. Multiple occurrences
representing all single occurrences actually discharged in an inference
step can be obtained by applying the merge function on the respective
single occurrences.

4. dependence on assumptions: Inference rules allow to discharge only
assumptions on which the conclusion of an inference step or some of
its direct subtrees depend on. Similarly, some inference rules demand
restrictions on assumptions, on which the conclusion of an inference
step or some of its direct subtrees depend on.

This dependence can be decided formally by checking whether the re-
spective assumptions lie within the respective inference step or within
the respective occurrence of a direct subtree or not.

5. discharge function: From a technical point of view, it is convenient
to define a discharge function as a function mapping inference steps to
the multiple occurrence representing all assumptions discharged in that
inference step. Other approaches are possible. For example: mapping
the multiple assumption to the inference step, mapping the inference
step to the set of single assumptions etc. All of these approaches have in
common that the discharge function is, essentially, a function mapping
occurrences to occurrences.

6. inference rules: Under the perspective of a theory of occurrences,
it is convenient to define an inference rule as a function mapping, in
the most general case, the direct subtrees of an inference step, the
respective inference step and the respective discharge function to 1, if
the inference step is generated according to this rule, and to 0 otherwise.

7. rules function: In the general case, there is more than one possible
rule according to which an inference step could be generated. In order
to keep track of the actually applied inference rules, it is convenient
to define a rules function mapping the inference steps to the actually
applied rules.

8. intensionally defined derivations: A derivation can be defined inten-
sionally as a triple 〈D,L,R〉, where D is a formula tree together with a
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discharge function L such that each inference step is generated accord-
ing to the rules given by the rule function R. In particular, we observe
that a derivation is not an elementary syntactical entity anymore.

It is worth mentioning that the intensional definition of a derivation is more
natural in the theory of occurrences than the expected recursive definition.

The essential problem of a recursive definition is that the context of an
occurrence is determined uniquely by that occurrence. In other words, an
occurrence in a subderivation cannot be an occurrence in the derivation it-
self. As a consequence, a discharge function for a subderivation cannot be
extended to a discharge function for the derivation itself.

In order to overcome this problem, occurrences in subderivations have
first to be identified with occurrences in the derivation.

1. update: The generation of a complex derivation out of its direct sub-
derivation can be described with the help of so called generation forms,
which are a simple kind of nominal forms. Such generation forms can
be used to define updates of occurrences in the direct subderivations.
These updates are occurrences in the complex derivation, which corre-
spond to the occurrences in the direct subderivations as prescribed by
the generation forms.

Identifying the occurrences in the subderivations with their updates
captures the intuition that the occurrences in the subderivations are the
same as their updates (in a more complex context). This identification
is a philosophically interesting identity relation between occurrences in
different contexts: The identification is neither reflexive nor symmetric.
Furthermore, if the same subderivation is used more than once in the
generation of the complex derivation, then we have several, but different
updates in the complex derivation, each identified with the respective
occurrence in the subderivation, though not related with each other.

2. recursively defined derivation: The recursive definition of a complex
derivation can be given as follows: In a first step, the complex formula
tree is generated as prescribed by a generation form determined by the
inference rule. In accordance to this generation form, all the occur-
rences in the direct subtrees are updated. In particular, the discharge
function and the rule function have to be redefined with respect to the
updated occurrences. In a second step, the discharge function has to
be extended by the discharge done in the last generation step as well
as the rule function by the inference rule applied in the last generation
step.
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3. conversions: The proof conversions, as required for normalisation, can
be treated analogously to the (recursive) generation of derivations. In
contrast to the generation of derivations, the proof conversions are not
described by the generation forms, but by the position of that (multiple)
occurrence, which represents the assumptions, where the derivations
are concatenated according to the conversion schema. Additionally,
the maximal formula has to be eliminated in the converted derivation,
which is another transformation of derivations describable with the
methods introduced in these investigations.

We emphasise: in contrast to our naive intuitions (as well as to the intuitions
proposed by Prawitz in [23]), we do not need formula occurrences to define
the notion of a derivation.

18.1.2 The Calculus of Natural Calculation

The aim of the project “The Calculus of Natural Calculation” is the intro-
duction and investigation of the extension of Gentzen’s calculus of Natural
Deduction by proper term rules.103 Due to these term rules, a natural formal
representation of calculations inside of proofs, as it is found in mathematical
praxis, is possible.

1. term rules: Essential feature of the calculus of Natural Calculations is
the availability of proper term rules, which are inference rules such that
some premises or the conclusion are proper terms instead of the usual
formulae. In the basic version of the calculus of Natural Calculation,
a complete and sound set of term rules for the treatment of identity is
given.104

2. calculation: Essentially, a calculation step can be represented formally
in the extended calculus by an inference step satisfying that one premise
is the context (a term), another premise is the justification (an equation
or a side calculation) and the conclusion is the result (a term) of that
calculation step. A calculation is a tree of such calculation steps.

103Basic ideas and concepts related to the calculus of Natural Calculation are commu-
nicated partly on several occasions; we mention our talk [9] at the conference “Beyond
Logic” in Cerisy-la-Sale, France, 2017, and our talk [11] at the third conference on “Proof-
Theoretic Semantics” in Tübingen, Germany, 2019. A first article [12] about this calculus
is submitted.
104Natural Deduction, as introduced in Gentzen [13], has no identity rules; the term rules

introduced in Natural Calculation are meant to replace the traditional identity rules, as
found, for example, in the text book “Logic and Stucture” [33] by van Dalen.
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3. calculations inside proofs: In a pure calculation, the equations used as
justifications are assumptions and the conclusion is a term.

This is different, if the calculation is part of a proper proof: the equa-
tions are the conclusions of arbitrary subderivations, in which tradi-
tional inference steps with formulae as well as calculation steps may
occur. Additionally, the result of a calculation, which is an equation,
can be inferred from a calculation. This result can be used as a premise
for arbitrary inference steps, in particular for the traditional inference
steps with formulae.

We mention some aspects of this project related with a suitable theory of
occurrences:

1. proper definition of proofs: A proper definition of the derivations in
the extended calculus would be a technically demanding project, as we
would have to deal with trees, in which formulae may occur as well
as proper terms. Despite the technical effort, there seems to be little
insight obtainable beyond the results already achievable in the project
“Proper Definition of Proofs” as discussed above.105

It seems reasonable to avoid these technicalities, to focus on more elaborate
topics related with the extended calculus and to apply the formal methods
of a theory of occurrences and substitutions only where it promises benefits.
Subsequently, we concentrate on such topics.

1. precise definitions: Due to an adequate theory of occurrences, we are
able to provide precise formal definitions. In particular, the definitions
of the inference rules for formulae as well as for terms can be given
without reference to intuitions.

2. proof conversions for calculations: In order to prove completeness and
soundness of the basic version of the calculus of Natural Calculation, it
is convenient to introduce some proof conversions for calculations. In
particular, the t-variants of a calculation (where t is a unary nominal
term) are defined in terms of a theory of occurrences. Due to the
existence of formal objects representing the positions of occurrences,
these conversions can be introduced and investigated formally.

3. subatomic normalisation: In contrast to argumentations with formu-
lae, calculations with terms are more amenable to rearrangement. The

105Consequently, we suggest a detailed introduction of the derivations in the extended
calculus, based on our corresponding investigation of the calculus of Natural Deduction,
as a suitable student project in the field of logic.

-266-
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order of two independent calculation steps can be alternated; indepen-
dent calculation steps can be merged into a simultaneous calculation
step, a simultaneous calculation step can be split up into independent
calculation steps.

In contrast to this variability, the arrangement of calculations seems
also to be more restricted than the argumentation with formulae, as
possible calculation steps in a calculation depend on the available jus-
tifications. In particular, the complexity of the terms in a calculation
cannot depend on the complexity of previous or of subsequent terms
in that calculation; a property comparable to the subformula property
seems to be unprovable.

As a consequence, the introduction and investigation of normal calcu-
lations seems to be a demanding problem benefitting from the precision
and methods provided by the theory of occurrences and substitutions.

4. corresponding properties: Most of the term rules, by which the basic
version of the calculus of Natural Deduction is extended, can be un-
derstood as inference rules for the equality symbol. Due to the precise
formulation of these new inference rules, it is possible to associate the
properties of the equality symbol with features of the calculus.

This correspondence between the properties of the equality symbol and
its inference rules has an impact on philosophical theories of meaning,
as proof-theoretic semantics, which aim to establish the meaning of
logical constants by their inference rules.106

The basic version of the calculus of Natural Calculation provides complete
and sound term rules for the identity. There are more extensions of Natural
Calculation worth to be investigated:

1. smaller-than relation: With the help of negative and positive parts
of terms,107 it is possible to provide term rules for smaller-than cal-
culations, for example, in a theory of the integers. As in the case of
identity, the properties of the smaller-than relation correspond with
special features of the inference rules.

106According to Schroeder-Heister [28] proof-theoretic semantics is the proof-theoretic
alternative to denotational semantics; Gentzen’s remark [14, p. 80], that introduction rules
in Natural Deduction define the meaning of logical constants, is one of the roots of this
proof-theoretic approach to meaning.
107The analogous concept of positive and negative parts of propositional formulae is

already introduced by Schütte [29, p. 11]; he uses them to identify semantic properties of
formulae by applying only syntactic methods; Prawitz [23, p. 43] uses also such negative
and positive parts of formulae in his discussion of the form of normal derivations.
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René Gazzari Conclusion: Future Work

More generally, it is an interesting question, which properties of rela-
tions can be characterised by inference rules.

2. non-standard rules: Motivated by the term rules already discussed, we
find more interesting rules for the calculus of Natural Calculation. We
mention the following:

It is possible to introduce transition rules, which allow to infer the
Gödelnumber of a formula from that formula and vice versa. Such
transition rules could become reasonable, if the calculus of Natural
Calculation is additionally extended by term rules for a meaningful
calculation with Gödelnumbers.

Analogously, it is possible to introduce transition rules into the meta-
language: if a formula is derived from some assumptions, then we may
introduce the sequent representing the proved derivability statement;
if the antecedents of such a sequent are inferred as side premises, then
we may infer its succedent from that sequent. Extending the calculus
of Natural Calculation by suitable sequent rules makes these transition
rules reasonable.

The extension of the calculus of Natural Calculations into the meta-
language is interesting from a philosophical point of view, because the
sequents are natural formal representatives of the concept of lemmata
used in a proof.

18.1.3 On the Existence of Pure Proofs

The project “On the Existence of Pure Proofs” is motivated by the philo-
sophical discussion about pure proofs, as discussed by Arana [1], and aims to
show (on formal grounds) that every proof can be transformed into an equiv-
alent (or stronger) proof not using extraneous notions. We provide some
aspects of our account to this (philosophical) problem:108

1. principle approach: In the focus of the investigations is the formal
representation of informal mathematics in a calculus, which is accord-
ing to Gentzen “as close as possible to actual reasoning” [14, p. 68],
namely the calculus of Natural Deduction. We identify the non-logical
symbols of a (faithful) formal language as the formal representatives of
the notions present in the formalised proof.

108Some partial results are communicated in our talk [10] at the conference “Universal
Logic” in Vichy, France, 2018.
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2. concept of pureness: We distinguish between two kinds of pureness: a
derivation is called relatively pure with respect to a given set of non-
logical symbols, if only non-logical symbols contained in that set occur
in the derivation. Furthermore, non-logical symbols not contained in
that set are called extraneous.

A derivation is called absolutely pure, if the derivation is relatively pure
with respect to the set of non-logical symbols occurring in the undis-
charged essential assumptions and in the conclusion of that derivation.
Thereby, an assumption is called essential, if it does not vanish under
the process of normalisation.109

3. central claim: Every derivation can be transformed into an equivalent
(or stronger) derivation, which is absolutely pure.

4. partial solutions: It is a technical lemma found in every good text-
book on mathematical logic that we can replace constant symbols in
a derivation by suitable variables. As a consequence, we can eliminate
extraneous constant symbols in a derivation.

Due to the normalisation results by Prawitz [23], every derivation can
be transformed into an equivalent (or stronger) derivation in normal
form. Such normal derivations have the subformula property. The
latter means (besides some exceptions not relevant in our discussion)
that every formula occurring inside the derivation is a subformula of
an undischarged assumption or of the conclusion. Therefore, no extra-
neous relation symbol occurs in a normal derivation.

5. new methods: In order to prove the main theorem, we only have to show
that we can eliminate every extraneous function symbol in a derivation.
Doing so, we introduce two new methods in the theory of occurrences
(of terms in derivations).

(a) congruence of occurrences: Roughly spoken, two single occur-
rences in a derivation are congruent, if they have necessarily the
same shape due to the inference rules. As a consequence, we can
only replace an occurrence in a derivation, if we simultaneously
and uniformly replace a complete equivalence class with respect

109As we understand assumptions as occurrences of atomic derivations, the concept of an
essential assumption is defined by relating occurrences in different derivations. This can
be done with similar methods as the updates for the generation of complex derivations
and the analogous methods used for dealing with proof conversions, as discussed in our
project about the proper definition of proofs.

-269-
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to the congruence of occurrences. Again, we obtain a multiple oc-
currence representing the complete equivalence class by merging
the respective single occurrences.

(b) localisation: When introducing an implication, we are entitled
to discharge assumptions having the shape of the antecedent of
the introduced formula. As a consequence, occurrences in the
discharged assumption are congruent to occurrences in the an-
tecedent of the inferred implicative formula.

This means that besides the positions of such occurrences given by
nominal derivations, we have to deal with a second specification
of the respective occurrence, namely with its localisation in the
antecedent of a specific formula. Such localisations of occurrences
can be treated in a generalised theory of occurrences.

6. proof strategy: With similar methods as used in the proof of the subfor-
mula property by Prawitz, it is possible to show for normal derivations:
if an occurrence of a complex term is not replaceable by a variable
(due to the inference rules), then this occurrence is congruent to an
occurrence in an undischarged assumption or in the conclusion of that
derivation. As a consequence, we can transform every derivation into
an equivalent (or stronger) pure derivation in normal form.

This formal result on the existence of pure derivations seems to be a good
approach towards a clarification of the problem of pure proofs. Nevertheless,
there remain some philosophical obstacles, in particular:

1. defined notions: We can avoid the use of defined notions in a for-
mal language and replace them by abbreviations using only primitive
notions.

In set theory, for example, a formal language is sufficient, in which only
the binary ǫ-symbol is available as non-logical symbol. All the notions
usually defined, as the empty set (constant symbol), the power set
function (function symbol) or the set inclusion (relation symbol), can
be avoided by using the typical definitional clauses as abbreviations.

As a consequence, there can be notions present in a proof (in a deriva-
tion), which are not represented by non-logical symbols, but by formula
schemata.

In order to solve the underlying philosophical problem of pure proofs, we
have to consider such and similar phenomena and provide some convincing
solutions.
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18.2 More Theories of Occurrences and Substitutions

In principle, it is possible to carry over the theory of occurrences and sub-
stitutions to any meaningful combination of syntactic entities. There are, at
least, two reasons to investigate such a carry over:

1. new phenomena: There are some interesting phenomena, which are
not yet investigated.

2. new problems: There are some interesting problems such that the
solution of these problems demands the treatment of new types of oc-
currences.

The main motivation for the projects discussed above is given by the second
reason. Subsequently, we discuss briefly some types of syntactic entities
such that their definitions involve phenomena not present in a first order
language. As a consequence, an investigation of the corresponding theories
of occurrences seems to be interesting.110

Infinitary Languages: One essential property of first order languages is
that their syntactic entities are generated in finitely many steps. Dropping
this restriction, we obtain infinitary languages. We mention some applica-
tions of such infinitary objects:

1. power series: The infinite sums and, in particular, power series play a
central role in analysis. In order to generate such power series, we have
to drop the restriction that sums are generated in finitely many steps.

2. infinitary formulae: Introducing infinitary long formulae, the expres-
sive power of first order logic can be increased. For example, the class
of torsion groups can be axiomatised with the help of the following
inifinite axiom:111

∀x.(x = e ∨ x ◦ x = e ∨ x ◦ x ◦ x = e ∨ . . .)

In order to generate such axioms, we have to drop the restriction of
finite generation with respect to the disjunction.

110We do not see any problem, in principle, in the investigation of these new kinds of
occurrences; we assume that the investigation of these theories are suitable for student
projects.
111Cf. the logic textbook [6, p. 136] by Ebbinghaus e.a. for more details.
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Unique Readability: Every complex syntactic entity is generated out of
uniquely determined subentities. This can be different, for example, with
respect to regular languages as discussed in theoretical computer science. A
simple example of such a language is given by the following regular expres-
sion:

a(ba)∗|(ab)∗a

Depending on the chosen generation of the word aba, for example, it is gen-
erated out of the words ab and a or out of the words a and ba.

Compositional Languages: For the definition of derivations, Zimmer-
mann [37] uses special elimination rules, which he calls elimination rules by
composition. According to Zimmermann, such inference rules are explained
best with respect to the elimination rule for the disjunction. The usual three
subderivations are presupposed:

D0

A ∨B
;

A
D1

C

;
B
D2

C

The elimination by composition rule for disjunction allows to generate, for
example, the following derivation:

D0

A ∨B

A
D1

C

B
D2

C

We have to presuppose that there is at least one open assumption of B in
D2 and to chose one, where the derivation above the double line is composed
with the derivation below the double line.

Besides such subtleties, we may observe: the last inference step is rep-
resented by the double line; the conclusion of this inference step is not the
formula below that double line, but the conclusion of the subderivation D2.
Furthermore, the subderivation D2 is not a subtree (according to the usual
definition), but located in the middle of the full derivation.

This means that the notion of a derivation (in a calculus with such com-
positional rules) cannot be given in the traditional way, but have to use
non-trivial proof compositions. A detailed analysis of such derivations and
of more elaborate concepts as the discharge function, subderivations, proof
conversions etc. seems to be technically demanding and interesting.
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Natural Languages: It is quite obvious that we may, in principle, apply
the method of marking positions by nominal symbols also with respect to
the syntactic entities of natural languages. A detailed analysis, whether and
where this method may be used to achieve interesting results, is left to the
kind reader more experienced in linguistics.

Another strategy to find new theories of occurrences is not to change the
concept of the syntactic entities of the underlying language, but to vary the
concept of occurrences.

Type-Insensitive Occurrences: The occurrences discussed in our inves-
tigations could be described as type-sensitive occurrences. The latter means
that the shape of an occurrence is of the same syntactic type as the context
(or of a subtype of this type). We can generalise the notion of an occurrence
by dropping the restriction to such types (and loosing this way the central
advantage of the presented approach to occurrences).

In order to do so, we have first to generalise the notion of the underlying
syntactic entities. In the case of the standard terms of a formal language, for
example, we could introduce first arbitrary strings over the extended alphabet
(containing the nominal symbols). Standard terms would be defined as the
strings satisfying the usual inductive definition. Nominal terms would be
those strings, which are an elimination form of standard terms.

We illustrate this generalised notion of a nominal term; investigate the fol-
lowing string of symbols:

t ≏ (0∗) + 0

Applying the respective general substitution function on t and, for example,
on the string +0 results in the standard term (0 + 0) + 0.112

Such a type-insensitive account to occurrences becomes useful, when dis-
cussing derivations (of the calculus of Natural Deduction): we can identify
derivations being a part of another derivation without being a subderiva-
tion. Investigate the following generalised nominal derivation and standard
derivation:

D ≏
A A

∗
A

; D ≏
A A
A ∧A
A

The nominal derivation D is an elimination form of the derivation D in which
the atomic derivation F ≏ A ∧ A is actually eliminated in. While being a
part of D, the derivation F is obviously not a subderivation of D.

112Actually, this is how Schütte defines nominal forms, namely as arbitrary strings over
the extended alphabet. Cf. Schütte [29, p. 11].
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Multi-Type Occurrences: Another canonical generalisation of the con-
cept of occurrences is to drop the restriction that the sequence of shapes (of
multi-shape occurrences) contains only one type of syntactic entities. Such
a generalisation of the notion of occurrences seems only interesting, if there
are interesting problems, which can be solved on this base.

Nested Occurrences: Due to our choice of representing positions via the
nominal forms, we have a good concept of the lies-within relation, but we
are not able to represent such nested occurrences simultaneously.

A first idea to change the situation are resolvable occurrences represented
by an ordered quadruple as follows:

〈1 + (0 + 0), 0, ∗0 + 0, 1 + ∗0〉

There are two strategies to obtain an occurrence (according to our definition):
the intermediate nominal term ∗0 + 0 can be used together with the second
entry 0 to determine the shape 0 + 0 as well as to determine the position
1 + (∗0 + 0) together with the fourth entry 1 + ∗0. In other words, resolving
the quadruple results in the following both occurrences:

〈1 + (0 + 0), 0 + 0, 1 + ∗0〉 ; 〈1 + (0 + 0), 0, 1 + (∗0 + 0)〉

Observe that the second occurrence lies within the first; the quadruple rep-
resents the nested occurrences simultaneously.

A detailed analysis of this idea (or of better alternatives) can be interest-
ing; in particular, such an analysis could result in a more general concept of
occurrences.

18.3 Philosophical Discussions

Besides the formal character of our investigations, we consider the topics un-
der discussion as philosophically relevant. We sketch some, which we consider
to be interesting for further investigation.

Occurrences: In our investigations, we discussed the notion of occurrences
from a formal point of view and provided a good formal conception of this
notion. As already mentioned in the introduction, there is some philosophical
literature discussing occurrences (in the context of types and tokens). We
consider a our formal conception as a good starting point to a clarification
of the philosophical questions concerning occurrences.
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Formal Languages: We sketched in the preliminaries our own account
to formal languages. Central difference to the usual approach is that we do
not identify a formal language with some sets of syntactic entities, as, for
example, the set of all formulae. In our conception, a formal language is
identified with some underlying principles (maybe captured best by a signa-
ture) determining the syntactic entities available in the respective language.
Our approach to formal languages is supported by our intuitions; neverthe-
less, we did not clarify our conception in all details and left some principle
questions open.

Central philosophical problem is the identification of formal languages. In
particular: should we identify languages differing only in the available logical
symbols, or languages differing in the restrictions on the generation of their
syntactic entities.113 A more detailed investigation involving philosophical
literature (if there is any) seems necessary.

Formal Languages (Infinite Terms): Our considerations about the iden-
tity of formal languages motivates the following thought experiment: consider
a language of arithmetics, where we can apply the generation rules for terms
infinitely often. Consequently, we can define as follows:

ω = Sω(0)

It is interesting that this definition can be given without a change of the
generation rules for formulae. If we allow, additionally, that the standard
terms have no denotation, than we can add the following axiom to the usual
axioms of arithmetics:

∀x.x 6= Sω(0)

Using this axiom, we should be able to rule out the non-standard models
of arithmetics. The latter means that we transcend the expressive power of
standard first order languages via this extension of the generation rules for
terms.

We emphasise that this approach to logic excludes the presupposition
that every term has a denotation. (This is exactly, what we try to exclude
by the suggested axiom.) This restriction is insofar interesting, as we can
express in natural languages such non-existing concepts. Also, it seems that
mathematicians have to deal with the analogous phenomenon, when they
distinguish converging and non-converging sums. Finally, such an approach

113As an example for the latter question: should we identify a standard formal language
of arithmetics with a language, where we allow that the terms are generated by infinitely
many generation steps?
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to logic seems to be an interesting challenge for the proof-theoretic semantics
approach to meaning.

Informal Concepts of Mathematics: We have introduced suitable for-
mal representatives of the informal concepts of occurrences and substitutions.
This introduction is not only of its own value, but, more importantly, it per-
mits the discussion of more elaborate informal concepts, as the calculations
and the substitution functions. In particular, the formal representation of
informal properties of these elaborate concept can contribute to the philo-
sophical foundation of these notions.

We were able, for example, to uncover formal mechanisms allowing to
identify elementary calculations; similarly, we suggest in the project “Pure
Proofs” formal methods identifying pure derivations. We mention some more
philosophically interesting concepts probably benefitting from the precise
formal methods provided by a theory of occurrences:

1. identity of proofs: One important approach to the philosophical debate
about the identity of proofs is Prawitz suggestion to identify proofs
having the same normal form.114 An investigation of pure proofs has
impact on this philosophical position: pureness is a good reasons to
distinguish normal proofs from their pure version.

2. simplicity of proofs: Another interesting philosophical problem is the
simplicity of proofs, which is Hilbert’s 24th (unpublished) problem.115

Simplicity of a proofs seems to be a notion similar to pureness: intu-
itively clear, but demanding a formal foundation.

Implicit Substitution Functions: Functions, traditionally understood
as substitutions functions, were classified as substitution functions via the
concept of implicit substitution function. These are function having an ex-
plication method transforming them into explicit substitution function. The
basic method of explication seems, in principle, suitable, but undesired func-
tions are subsumed under the concept of substitution function. In order to
improve the result and to rule out the undesired and pathological functions,
some philosophically justified restrictions on the explication methods have
to be provided.
114Motivated by ideas of Kreisel, Prawitz [24] introduced the field of general proof theory,

in which the identity of proofs and related philosophical questions are investigated.
115Hilbert’s unpublished notes about the problem of providing a criterion for the simplic-

ity of proofs were discovered recently by Thiele [32]; maybe motivated by this discovery,
there is some recent discussion about this problem. A survey of the problem and some
recent contributions to the debate are found in Hipolito and Kahle [17].
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[12] René Gazzari. The Calculus of Natural Calculation. Studia Logica, 2020
(accepted).

[13] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathe-
matische Zeitschrift, 39:176–210, 1934.

[14] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo,
editor, The Collected Papers of Gerhard Gentzen, Studies in Logic and
the Foundations of Mathematics, pages 68–131. North-Holland, Ams-
terdam, 1969.
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