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Zusammenfassung 

Die Parkinson-Krankheit (PD) geht mit motorischen sowie einer Vielzahl nicht-

motorischer Symptome (NMS) einher. Kognitive Störungen sind eines der häufigsten NMS bei 

der PD und verringern die Lebensqualität der Patienten. Patienten mit einer leichten kognitiven 

Störung (PD-MCI) haben ein erhöhtes Risiko an einer Parkinson-Demenz (PDD) zu erkranken, 

jedoch entwickeln nicht alle PD-MCI Patienten letztendlich eine PDD. Bislang kann kein 

einzelner Marker die Entwickelung einer PDD innerhalb kurzer Zeit vorhersagen. Daher bleibt 

die Identifizierung von Risikofaktoren für die Progredienz kognitiver Störungen eine wichtige 

Forschungspriorität. Ziel der vorliegenden Arbeit war es Zusammenhänge zwischen möglichen 

Risikomarkern bei nicht dementen PD-Patienten zu untersuchen. 

Die Beeinträchtigung in der Ausführung der Aktivitäten des täglichen Lebens (ADL) im 

Zusammenhang mit kognitiven, aber nicht motorischen, Funktionen ist das Kernkriterium einer 

PDD-Diagnose. In der ersten Publikation konnten anhand neu entwickelter Scores, basierend 

auf dem Functional Activities Questionnaire (FAQ), kognitiven von motorischen Einflüssen 

auf die ADL-Funktion unterschieden werden. PD-MCI Patienten mit kognitiv-assoziierten 

ADL-Beeinträchtigungen zeigten stärkere Defizite in den kognitiven Domänen 

Aufmerksamkeit und Sprache als PD-MCI Patienten mit primär motorisch bedingten ADL-

Dysfunktionen. Basierend auf diesen Studienergebnissen zielte die zweite Veröffentlichung 

darauf ab den Zusammenhang zwischen kognitiven Störungen und weiteren Prodromalmarkern 

der PDD (Depressionen, Angstzustände, Schlafstörungen und Halluzinationen, DASH) zu 

untersuchen. Der DASH-Score konnte zwischen kognitiven Gruppen unterscheiden und wies 

signifikante Assoziationen mit kognitiv-assoziierten ADL-Beeinträchtigungen, definiert durch 

den FAQ, auf. Eine Kombination aus der DASH-Belastung und kognitiven ADL-

Beeinträchtigungen erscheint vielversprechend, um eine Risikogruppe für PDD unter PD-MCI 

Patienten zu identifizieren. 

Da auch bei der PD eine Alzheimer Pathologie bestehen kann, befasste sich die letzte 

Veröffentlichung mit dem Hippocampus als ein struktureller Prodromalmarker und den 

Biomarkern Amyloid-β und Tau im Liquor bei PD-Patienten. Obwohl beide eine Rolle bei der 

PDD spielen, ist deren Zusammenhang mit der kognitiven Progression noch unklar. Die 

Studienergebnisse legen nahe, dass die Hippocampal-Amygdaloid Transition Area das 

Potenzial hat den kognitiven Status bei PD-Patienten zu differenzieren. Dahingegen waren die 

Hippocampus-Teilfelder mit den kognitiven Domänen Gedächtnis, Sprache, räumliches 

Arbeitsgedächtnis und exekutiven Funktionen assoziiert. Es wurde keine Assoziation zwischen 
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den Hippocampus-Teilfeldern und Amyloid-β 1-42 gefunden, jedoch korrelierten die Tau 

Werte mit kleineren Hippocampus-Volumen. 

Insgesamt unterstreichen die Ergebnisse dieser Arbeit, dass die Kombination von 

verschiedenen Demenzrisikomarkern (insbesondere ADL-Funktion und DASH-Symptome) 

Assoziationen mit der kognitiven Funktion aufweisen können, auch im prodromalen Stadium 

der PDD. Längsschnittstudien sind erforderlich, um festzustellen, ob bei diesen identifizierten 

Gruppen tatsächlich ein erhöhtes Risiko besteht eine PDD zu entwickeln.  
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Summary 

Parkinson's disease (PD) is associated with motor as well as a variety of non-motor 

symptoms (NMS). Cognitive disorders are one of the most common NMS in PD and reduce 

patients’ quality of life. Patients with mild cognitive impairment (PD-MCI) are at higher risk 

of developing Parkinson's disease (PDD), but not all eventually develop PDD. Currently, no 

single marker can predict the development of a PDD in a short time. Therefore, identifying risk 

factors for the progression of cognitive disorders remains an important research priority. The 

aim of the present thesis was to investigate the relationships between possible risk markers in 

non-demented patients. 

Loss of the ability to perform activities of daily living (ADL) related to cognitive, but not 

motor, functioning is the core criterion for diagnosing PDD. In the first publication we were 

able to differentiate cognitive from motor influences on ADL function based on newly 

developed scores from the Functional Activities Questionnaire (FAQ). PD-MCI patients with 

cognitive-driven ADL impairments exhibited stronger deficits in the attention and language 

domains than those with motor-driven ADL dysfunction. Based on these study results, the 

second publication aimed to investigate the relationship between cognitive disorders and other 

prodromal markers of PDD (depression, anxiety, sleep disorders and hallucinations, DASH). 

The DASH score was able to differentiate between cognitive groups and was significantly 

associated with cognitive ADL impairment, as defined by the FAQ. A combination of DASH 

burden and cognitive ADL impairment shows promise in characterizing a risk group for PDD 

among PD-MCI. 

The last publication was primarily concerned with coexisting Alzheimer's pathology in 

PD, namely the hippocampus as a structural marker and Alzheimer's pathology (amyloid-β and 

tau) in cerebrospinal fluid as a biomarker. Although both play a role in PDD development, their 

association with cognitive progression is still unclear. Study results suggest that the 

hippocampal amygdaloid transition area has the potential to differentiate cognitive status in PD, 

while hippocampal subfields were associated with memory, language, spatial working memory, 

and executive functions. No association was found between hippocampal subfields and 

amyloid-β 1-42; however, tau values correlated with smaller hippocampal volumes.  

The results of this work emphasize that combinations of dementia risk markers (especially 

ADL function and DASH symptoms) show associations with cognitive function in the 

prodromal stage of PDD. Longitudinal studies are now needed to determine whether the groups 

identified are at a high risk for developing dementia.  
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1. Introduction 

With the continual rise in the aging population, age-related neurodegenerative disorders 

are becoming more common, presenting serious health problems in the elderly. Parkinson’s 

Disease (PD) is the second most common neurodegenerative disease after Alzheimer’s Disease 

(AD), affecting approximately 1% of individuals over the age of 65 (Miller & O'Callaghan, 

2015; Thomas, 2009). PD presents clinically with a complex motor disorder known as 

parkinsonism, which worsens following the pathological deposition of misfolded α-synuclein 

protein aggregates (McCann, Stevens, Cartwright, & Halliday, 2014; Smith et al., 2019). 

Patients also present with various non-motor symptoms (NMS) that have a substantial impact 

on PD patients and their quality of life (Balzer-Geldsetzer et al., 2011; Kramberger et al., 2010). 

One of the most debilitating NMS in PD is cognitive dysfunction, which can range from 

mild cognitive impairment (PD-MCI) to dementia (PDD). While patients with PD-MCI are at 

greater risk of developing PDD, not all will eventually develop dementia. Some will remain 

stable or even revert back to normal cognition (Kehagia, Barker, & Robbins, 2013; Lawson et 

al., 2017). No specific factor has been able to predict conversion to dementia in the short term. 

There is a critical need for the identification of specific factors and sub-groups of patients that 

are at a high risk for cognitive deterioration and PDD. Identification of such a risk group is 

paramount in order provide early treatment and rehabilitation therapies, in the hopes of 

maintaining patients’ quality of life for as long as possible. Therefore, this thesis will be 

concerned with examining different clinical and structural markers and their association with 

each other and with cognitive impairment in PD. 

 

1.1. Parkinson’s Disease 

First described by James Parkinson in 1817, PD affects millions of people worldwide, 

with the prevalence of the disease expected to increase substantially in the future (Kramberger 

et al., 2010; Parkinson, 2002). In Germany, the incidence is 100-200 new diagnoses per 100,000 

inhabitants per year (Waldthaler & Timmermann, 2019), with a prevalence of 1,800 cases per 

100,000 inhabitants over the age of 65 (Schroder et al., 2011). The risk of developing PD 

increases with age: 1.8% at 65 years, 2.4% at 70 years, and 2.6% for all over 85 years (de Rijk 

et al., 2000). The average age of onset lies between 50 and 60 years, and life expectancy is 

around 15 years post diagnosis (de Rijk et al., 2000). 
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1.1.1. Motor symptoms 

Symptoms of PD arise from the degeneration of the nigrostriatal dopamine system, 

characterized by the loss of dopamine-producing neurons within the substantia nigra pars 

compacta (Dickson, 2012; Schulz-Schaeffer, 2015). Once the concentration of dopamine falls 

below 60-70%, cardinal motor symptoms begin to present themselves (Rodriguez-Oroz et al., 

2009). Idiopathic PD presents with four cardinal motor features: bradykinesia, (i.e., a slowness 

of movement), rest tremor, rigidity, and postural instability, which manifests in advanced PD 

(Beitz, 2014; Berardelli, Rothwell, Thompson, & Hallett, 2001; Massano & Bhatia, 2012; 

Postuma et al., 2015). PD can be diagnosed clinically by neurologists with considerable 

accuracy when robust criteria are used (Hughes, Daniel, Ben-Shlomo, & Lees, 2002; Postuma 

et al., 2015), with an autopsy necessary for disease confirmation (Miller & O'Callaghan, 2015). 

There is no cure for PD, and existing therapies have not been able to slow or reverse progression 

of the disease (Rao, Hofmann, & Shakil, 2006). While levodopa therapy remains the gold 

standard of symptom management in PD (Zappia, Colosimo, & Poewe, 2010), other available 

pharmacological treatments include: dopamine agonists, indirect dopamine transmission 

enhancers, anticholinergics, and glutamine antagonists (Kaakkola, 2000; Magennis, Lynch, & 

Corry, 2014; Rascol, Ferreira, Thalamas, Galitsky, & Montastruc, 2001). However, treatment 

is still difficult, due to the number of motor and non-motor symptoms combined with the 

progressive nature of the disease.  

 

1.1.2. Non-Motor Symptoms 

The focus of research has long been on understanding and treating the motor symptoms 

in Parkinson’s Disease, yet it is becoming increasingly evident that NMS are an integral part of 

the disease spectrum and considerably influence patients’ quality of life (Bonnet, Jutras, 

Czernecki, Corvol, & Vidailhet, 2012; Kramberger et al., 2010). These NMS are often reported 

as more disabling than motor symptoms (Chaudhuri & Martinez-Martin, 2008), and can 

increase the patient’s loss of independence (Hermanowicz, Jones, & Hauser, 2019), 

socioeconomic burden (Vossius, Larsen, Janvin, & Aarsland, 2011), placement in nursing 

homes (Aarsland, Larsen, Tandberg, & Laake, 2000), and risk of mortality (Levy et al., 2002). 

NMS in PD are numerous and include: cognitive impairment, depression, anxiety, sleep 

disorders and dysfunctions (e.g., excessive daytime sleepiness), fatigue, sensory symptoms 

(e.g., pain or olfactory dysfunction), hallucinations, orthostatic hypotension, gastrointestinal 

dysfunction (e.g., constipation), increased salivation, and dopamine dysregulation syndrome 
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(Bonnet et al., 2012; Chaudhuri & Martinez-Martin, 2008; Chaudhuri, Odin, Antonini, & 

Martinez-Martin, 2011; Kadastik-Eerme et al., 2016; Kramberger et al., 2010; Miller & 

O'Callaghan, 2015; Rodriguez-Oroz et al., 2009; Titova & Chaudhuri, 2018; Zhang, Liu, Ye, 

Cohen, & Zhang, 2015). Some NMS, such as loss of smell, gastrointestinal problems, and rapid 

eye movement (REM) sleep behavior disorder, can even be regarded as the earliest clinical 

symptoms of PD as they can occur years before the motor manifestation (Berg et al., 2015; 

Bonnet et al., 2012; Pellicano et al., 2007). Previous studies have shown 97% to 100% of 

patients present with at least one NMS (Barone et al., 2009; Bugalho et al., 2016; Kim et al., 

2013; Salari et al., 2017). These NMS increase in terms of occurrence and severity throughout 

the disease course of PD, reflecting a widespread pathology of the central and peripheral 

nervous systems (Erro et al., 2016; Mou, Ding, & Fernandez-Funez, 2019).  

 

1.1.3. Neuropathology of PD 

The Braak staging model has been proposed to explain the spread of α-synuclein 

pathology throughout the disease course (Braak et al., 2003). Pathogenesis begins gradually in 

the brainstem and continues to spread through the limbic cortex into the neocortex, following a 

caudal-to-rostral pattern (Figure 1). In stages 1 and 2, Lewy neurites form in the medulla 

oblongata and the olfactory system, affecting sense of smell and REM sleep. Pathology spreads 

upwards to the midbrain in stage 3, involving the formation of Lewy bodies in the substantia 

nigra and leading to the characteristic motor symptoms in PD. Neuropathological alterations  

 

 
Figure 1. The Braak staging system of Parkinson’s Disease, showing the initiation sites in the olfactory 

bulb and the medulla oblongata, through to the later infiltration of Lewy pathology into cortical regions. Reprinted 
by permission from Springer Nature: Springer, Nature Reviews Neurology, (Doty, 2012), Copyright 2012. 
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continue to spread upwards to the paralimbic cortex and hippocampus in stage 4, possibly 

manifesting as early cognitive dysfunction (Braak, Rub, Jansen Steur, Del Tredici, & de Vos, 

2005). Stages 5 and 6 show widespread pathology in the neocortex, manifesting as the full range 

of symptomatology seen in PD patients.  

Apart from degeneration of the nigrostriatal dopamine system, PD is now being 

recognized as a multisystem disorder. Further degeneration has been shown in various neuronal 

systems, including the dopaminergic mesolimbic and mesocortical pathways, the cholinergic 

system of the basal nucleus of Meynert, the serotonergic system of the dorsal raphe nuclei, and 

the noradrenergic system of the locus coeruleus (Jellinger, 2012; Tibar et al., 2018; Uc et al., 

2005). The involvement of multiple neurotransmitter systems supports the range of NMS seen 

from the pre-motor to the final stages of PD, most notably cognitive impairment, and aids in 

the understanding of their pathophysiology (Zis et al., 2014). 

 

1.2. Cognitive Impairment in PD 

One of the most common and debilitating NMS in PD is cognitive impairment, which is 

associated with shorter life expectancy (Marder et al., 1991), and contributes to significant 

caregiver distress and placement in a nursing home (Aarsland, Larsen, Karlsen, Lim, & 

Tandberg, 1999). Cognitive impairments in PD can range from normal cognition (PD-CN) or 

slight deficits (PD-MCI) to PDD (Jellinger, 2013). Recently, PD-MCI has been defined as an 

intermediate stage of cognitive dysfunction and a prodromal stage of PDD (Goldman & Litvan, 

2011). The prevalence of PD-MCI ranges between 20-50% in epidemiological studies 

(Aarsland et al., 2010; Foltynie, Brayne, Robbins, & Barker, 2004; Muslimovic, Post, 

Speelman, & Schmand, 2005), and longitudinal studies report that between 39-50% of PD-MCI 

patients progress to PDD within 5 years (Domellof, Ekman, Forsgren, & Elgh, 2015; Pedersen, 

Larsen, Tysnes, & Alves, 2017). However, PD-MCI is a heterogeneous concept; while some 

patients progress to PDD, others remain cognitively stable or revert back to PD-CN (Lawson et 

al., 2017). Diagnosis necessitates dysfunction to be present in at least two cognitive domains, 

with preserved activities of daily living (ADL) function. The most common domains affected 

include executive functions (decision making and planning), memory (retrieval rather than 

encoding deficits), visuospatial skills, and attention, whereas language and procedural learning 

are usually less affected (Aarsland et al., 2009; Barone et al., 2011). Table 1 provides an 

overview of the diagnostic criteria for both PD-MCI and PDD according to recent consensus 

criteria.  
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Table 1. Diagnostic criteria for PD-MCI and PDD 
 PD-MCI (Litvan et al., 2012) PDD (Emre et al., 2007) 
I. Core Features 
 PD Diagnosis according to United Kingdom Brain 

Bank Criteria 
PD Diagnosis according to United Kingdom 
Brain Bank Criteria  

 Gradual decline in cognition reported by patient, 
informant, or clinician 

Dementia syndrome with subtle onset (>1 year 
after PD diagnosis) and slow progression 

 Cognitive deficits observed on neuropsychological 
testing or a global cognitive assessment 

Impairment in at least one cognitive domain, 
representing a decline from premorbid levels  

 Cognitive deficits do not interfere with activities of 
daily living, although mild functional impairments 
may be present 

Cognitive deficits are severe enough to 
interfere with daily life (social, occupational, 
or personal care), unrelated to motor or 
autonomic symptoms 

II. Associated Clinical Features 
  Cognitive features 

- Impaired attention, executive functions, 
memory, and visuo-spatial functions 

- Language functions are mostly preserved 

  Behavioral features (e.g. apathy, depression 
and anxiety, hallucinations and delusions, 
excessive daytime sleepiness) 

III. Exclusion Criteria / Features making diagnosis of PDD uncertain 
 Diagnosis of PDD Unknown time interval between the onset of 

motor symptoms and cognitive dysfunctions 
 Comorbid conditions interfering with cognitive 

testing (e.g. severe anxiety, depression, psychosis) 
Diseases that also result in cognitive 
impairments (e.g. vascular abnormalities), but 
are not the primary reason for dementia 

 Other explanations for cognitive impairment (e.g. 
traumatic brain injury, stroke, major depression) 

 

IV. Features making reliable diagnosis of PDD impossible 
  Cognitive symptoms or behavioral problems 

occurring only in the context of other diseases 
or accompanying circumstances (e.g. acute 
confusion due to intoxication or systemic 
diseases) 

  Features compatible with “Probable Vascular 
dementia” criteria 

Subtype Classification 
 Single domain PD-MCI 

- Deficits on two tests within a single cognitive 
domain 

Probable PDD 
- Core features present, typical profile of 

cognitive deficits, presence of at least one 
behavioral symptom 

- No group III or IV features present 

 Multiple domain PD-MCI 
- Deficits on two tests in two or more cognitive 
domains 

Possible PDD 
- Core features present, atypical profile of 

cognitive deficits, behavioral symptoms can 
be exhibited 

- Or, one or more group III features present, 
no group IV features present 

PD, Parkinson’s Disease; PD-MCI, Parkinson’s Disease with Mild Cognitive Impairment; PDD, Parkinson’s Disease Dementia 
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In PDD, impairment is more widespread, affecting multiple cognitive domains and 

representing a decline from premorbid levels, with functional impairments severe enough to 

impact ADL (Emre et al., 2007). PD patients have a four-to-six-fold increase in their risk of 

developing dementia compared to healthy elderly persons (Aarsland, Zaccai, & Brayne, 2005; 

Janvin, Aarsland, & Larsen, 2005; Williams-Gray et al., 2009). The mean duration between 

disease onset and development of dementia is 10 years (Hughes et al., 2002), with the 

cumulative prevalence of PDD in patients surviving more than 10 years at 75% (Buter et al., 

2008; Hely, Reid, Adena, Halliday, & Morris, 2008). As the presence of PDD is a burden not 

only to the patient but also to their caregivers, the identification of risk factors for progression 

to PDD is of the utmost importance (Anang et al., 2014; Janvin et al., 2005). 

 

1.3. Risk Markers for Cognitive Impairment and Dementia in PD 

Although various demographical factors have been associated with the conversion to 

dementia in PD, the clinical, neuropathological, and structural mechanisms underlying 

cognitive impairment still are not well understood (Aarsland, 2016; Arnaldi et al., 2017). 

Diffuse cortical and subcortical Lewy body pathology (as detailed in section 1.1.3.) has been 

shown to drive the progression of cognitive impairment (Aarsland, Perry, Brown, Larsen, & 

Ballard, 2005; Irwin et al., 2012). However, its influence has been debated and studies argue 

for the involvement of other factors (Farlow & Cummings, 2008). A number of risk markers 

for PDD have been proposed, which will be explained in further detail in the following sections. 

 

1.3.1. Demographical Markers 

Presence of PD-MCI and older age (over 60 years) are the most established risk factors 

for PDD (Aarsland et al., 2001a; Anang et al., 2014; Delgado-Alvarado, Gago, Navalpotro-

Gomez, Jimenez-Urbieta, & Rodriguez-Oroz, 2016; Hanganu & Monchi, 2016; Kulisevsky et 

al., 2013; Litvan et al., 2011; Pagonabarraga & Kulisevsky, 2012). Other demographic risk 

factors reported include disease duration (Litvan et al., 2011), the severity of motor symptoms 

(Williams-Gray, Hampshire, Barker, & Owen, 2008), postural instability/gait difficulty 

phenotype (Kelly et al., 2015), lower educational level (Kandiah et al., 2013), and male sex 

(Szewczyk-Krolikowski et al., 2014). However, it is important to note that both older age and 

lower educational level are risk factors for dementia in the general population and therefore not 

specific to PD (Marinus, Zhu, Marras, Aarsland, & van Hilten, 2018). 
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1.3.2. Activities of Daily Living 

The core criterion for diagnosing dementia is the loss of the ability to perform activities 

necessary for independent living. Impairment in ADL results in increased caregiver burden, 

with patients ultimately requiring alternative care or placement in a nursing home (Desai, 

Grossberg, & Sheth, 2004; Tabert et al., 2002). In patients with PDD, ADL impairments 

correlate with global deterioration in daily functioning skills (Sabbagh et al., 2007), as well as 

deterioration in higher skills, for example making medical decisions (Griffith, Dymek, 

Atchison, Harrell, & Marson, 2005). There are two types of ADL that can be defined: basic 

ADL, which include self-maintenance skills (e.g. toileting, dressing, and eating), and 

instrumental ADL, which are more complex activities (e.g. shopping, preparing meals, and 

managing finances or medication) (Marshall et al., 2015; Sikkes, de Lange-de Klerk, 

Pijnenburg, Scheltens, & Uitdehaag, 2009).  

As instrumental ADL require more complex processes, they are more likely to be 

susceptible to early cognitive decline and are affected earliest in the disease compared to basic 

ADL (Rosenthal et al., 2010; Sikkes et al., 2009). While it is possible that cognition and ADL 

function decline in parallel (Leroi, McDonald, Pantula, & Harbishettar, 2012; Reginold et al., 

2012), there has been limited attention directed towards understanding this relationship (Martin 

et al., 2013). Recent studies have demonstrated that PD-MCI patients already show the first 

signs of ADL dysfunction, which may be indicative of a risk group for PDD development 

(Beyle et al., 2018; Cheon, Park, & Kim, 2015; Fellows & Schmitter-Edgecombe, 2019; Foster, 

2014; Glonnegger et al., 2016; Pirogovsky et al., 2014). The association between PD-MCI and 

ADL dysfunction needs to be evaluated in further studies to understand their relationship and 

whether their combination presents a high-risk group. 

It is important to note that the diagnosis of dementia necessitates that ADL dysfunction 

is caused by cognitive deficits. This is a particular challenge in PD, as there are many sources 

of functional deficits. Most notably, the motor symptoms of PD interfere with virtually all ADL 

(Brod, Mendelsohn, & Roberts, 1998). The combination of progressive motor dysfunction in 

PD and aging often leads to a poorer ability to perform ADL tasks (Lee et al., 2014b; Skinner, 

Lee, Roemmich, Amano, & Hass, 2015). A previous study found that independence loss was 

predicted by advanced age, shorter disease duration, higher motor disability, and presence of 

PD-MCI at diagnosis (Bjornestad, Tysnes, Larsen, & Alves, 2016). This suggests that early 

functional deficits in ADL are caused by both motor and cognitive impairment, becoming more 

prominent with disease progression. 
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To date, no validated measure is able to distinguish cognitive from motoric influences on 

ADL in PD (Holden et al., 2018). The breakdown of motor and cognitive processes may also 

affect ADL differentially, as cognitive and motor dysfunction in PD do not share the same 

neuropathological substrates (Cahn et al., 1998; Slachevsky et al., 2019). It is of utmost 

importance to develop diagnostic measures able to differentiate between these two sources of 

ADL impairment to avoid false dementia classifications (Almeida et al., 2017; Benge & Balsis, 

2016). Moreover, ADL function in different cognitive impairment levels should be studied, so 

as to understand the progression of ADL impairment and its association with cognition 

(Weintraub, Moberg, Duda, Katz, & Stern, 2004). 

 

1.3.3. NMS Burden 

Another important feature used in the diagnosis of PDD is the presence of additional 

behavioral NMS, such as mood disorders (depression or anxiety), hallucinations or delusions, 

apathy, and excessive daytime sleepiness (Emre et al., 2007). Presence of one of these features 

strengthens the diagnosis from possible to probable PDD, as detailed in Table 1. These 

behavioral features have also been commonly associated with PD-MCI (Aarsland et al., 2007; 

Delgado-Alvarado et al., 2016; Monastero, Di Fiore, Ventimiglia, Camarda, & Camarda, 2013). 

Presence of visual hallucinations (Uc et al., 2009) and sleep disturbances (excessive daytime 

sleepiness or REM sleep behavior disorder) (Levy et al., 2002; Pagonabarraga & Kulisevsky, 

2012) have been shown to be associated with subsequent PDD development. However, these 

NMS have only been studied independently of one another. A novel study by Naismith and 

Lewis (2011) examined a specific cluster of NMS, namely: depression, anxiety, sleep 

disturbances, and hallucinations, summing up their presence into a “DASH” score. They found 

that a higher DASH score was associated with poorer working memory and executive functions, 

even in non-demented patients, which could provide a simple measure for identifying patients 

who might progress to PDD.  

The symptoms of the DASH score have been shown to significantly affect health related 

quality of life (Huang et al., 2018; Pfeiffer, 2016; Prakash, Nadkarni, Lye, Yong, & Tan, 2016), 

however their association with cognition in PD has hardly been studied. Previous research 

studies have looked at the individual symptoms of the DASH score separately with respect to 

the relationship with cognition in PD (Fenelon, Mahieux, Huon, & Ziegler, 2000; Gjerstad, 

Alves, & Maple-Grodem, 2018). One study found that the most common neuropsychiatric 

symptoms associated with PD-MCI are depression, apathy, anxiety, and hallucinations 
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(Aarsland et al., 2007), while another study concluded that depression, sleep disorders, apathy 

and anxiety were associated with the presence of PD-MCI (Monastero et al., 2013). It is 

therefore important to determine whether individual NMS or the combination (DASH score) 

are possible markers for subsequent cognitive impairment or dementia in PD.  

 

1.3.4. Hippocampal Atrophy 

Apart from clinical features, pathological changes assessed using imaging biomarkers can 

assist with the prediction of dementia in PD. Atrophy of the hippocampus is one of the most 

established early neuroimaging marker for conversion to dementia in AD (Apostolova et al., 

2012), with greater reductions in volume correlating with steeper cognitive decline (Leow et 

al., 2009; van de Pol et al., 2006). Hippocampal atrophy also occurs in a number of other 

dementias (Aybek et al., 2009; Laakso et al., 1996), and has been suggested as a biomarker of 

early cognitive decline in PD (Weintraub et al., 2011). Greater hippocampal atrophy has been 

found in demented compared to non-demented PD patients (Bouchard et al., 2008; Burton, 

McKeith, Burn, Williams, & O'Brien, 2004; Lin & Wu, 2015; Nagano-Saito et al., 2005; 

Rodriguez-Oroz et al., 2015; Summerfield et al., 2005; Xia et al., 2013). Compared to healthy 

controls, more severe atrophy has been shown in PD (Camicioli et al., 2003; Jokinen et al., 

2009; Junque et al., 2005; Noh et al., 2014; Tam, Burton, McKeith, Burn, & O'Brien, 2005) as 

well as PDD patients (Ibarretxe-Bilbao et al., 2008; Summerfield et al., 2005). Even newly 

diagnosed drug-naïve PD patients have more hippocampal atrophy in comparison with healthy 

controls (Bruck, Kurki, Kaasinen, Vahlberg, & Rinne, 2004; Lee et al., 2014a), and this atrophy 

is associated with cognitive decline (Apostolova et al., 2012; Beyer et al., 2013b). Other studies 

have found no difference in hippocampal size between PD-MCI and PD-CN patients (Beyer et 

al., 2013a; Xu, Yang, Hu, & Shang, 2016) or between PD patients and controls (Carlesimo et 

al., 2012; Femminella et al., 2016; Lee et al., 2013). 

It has been suggested that hippocampal volume in PD-MCI patients shows an accelerated, 

age-related decline, preceding the onset of dementia (Schneider et al., 2017). However, 

presence of hippocampal atrophy is more variable and its association with specific cognitive 

domains and predictive value for cognitive progression and PDD development is still unclear 

(Femminella et al., 2016). Different factors can account for divergent results in hippocampal 

atrophy, namely the methods used (e.g. manual vs. automated segmentation), varying imaging 

analyses (e.g., region of interest vs. voxel-based morphometry analyses), small sample sizes, 

differences in neuropsychological tests used, or poorly matched patient groups. The 
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classification of cognitive impairment is also different among studies; some have grouped PD-

CN and PD-MCI into a combined “non-demented” group, blurring the distinction between mild 

and no cognitive impairments.  

Importantly, most researchers to date have only considered the hippocampus as a whole 

structure, instead of as distinct sub-structures that are differently affected by Lewy body 

pathology (La et al., 2019). Previous magnetic resonance imaging (MRI) studies in healthy 

controls have demonstrated that different hippocampal subfields are involved in the various 

stages of memory processing (Mueller, Chao, Berman, & Weiner, 2011). Each subfield has a 

distinct effect on memory, with complex interactions between the subfields possibly 

influencing both the pathophysiological and the cognitive processes in PD (Foo et al., 2017). 

Examining the relationship between hippocampal subfields and cognition in PD patients, 

especially in PD-MCI, is important to determine their predictive value as a marker for 

progression of cognitive decline. 

 

1.3.5. Cerebrospinal Fluid Biomarkers 

While the motor symptoms in PD are due to the spreading of ɑ-synuclein pathology, 

concurrent AD pathology, namely amyloid-beta plaques and neurofibrillary tau tangles, also 

plays a role in PD. Cerebrospinal fluid (CSF) levels of Amyloid-β 1-42 (Aβ42), phosphorylated 

tau (p-tau), and total tau (t-tau) are the most established biomarkers of AD, and have promise 

as biomarkers of PD, showing associations with cognitive decline and dementia in PD 

(Modreanu et al., 2017; Yousaf, Pagano, Niccolini, & Politis, 2019).  

Aβ42 pathology in the brain increases with age, and can be found in approximately 30-

50% of PDD patients (Berlyand et al., 2016; Boller, Mizutani, Roessmann, & Gambetti, 1980; 

Braak et al., 2005). Smith et al. (2019) did not find an association between PDD and Aβ42, 

however their results showed that severity of deposition was linked to rapid cognitive decline, 

which has been replicated in other studies (Blennow & Hampel, 2003; Compta et al., 2009; 

Halliday & McCann, 2008; Siderowf et al., 2010). Low levels of Aβ42 have been linked to 

impaired cognitive performance and PDD in both cross-sectional (Aarsland et al., 2017; Beyer 

et al., 2013a; Carlesimo et al., 2012; Hanagasi, Tufekcioglu, & Emre, 2017) and longitudinal 

studies (Alves et al., 2014; Backstrom et al., 2015; Brockmann et al., 2015; Hall et al., 2015; 

Parnetti et al., 2014). In contrast to these straightforward findings, a few studies have not been 

able to demonstrate an association between lower Aβ42 levels and cognitive decline (Buddhala, 

Campbell, Perlmutter, & Kotzbauer, 2015; Mollenhauer et al., 2016). 
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Research examining the association between tau pathology and cognitive decline in PD 

is less consistent. Some studies have shown higher levels of tau in PDD compared to non-

demented patients (Hall et al., 2012; Modreanu et al., 2017; Mollenhauer et al., 2006), while 

others do not demonstrate any difference in tau levels in these patients (Montine et al., 2010; 

Parnetti et al., 2008; Prell, Witte, & Grosskreutz, 2019; Vranova et al., 2014). Elevated tau 

levels have been associated with poorer memory and naming performance (Compta et al., 2009; 

Siderowf et al., 2010), with pathology predominantly affecting the entorhinal cortex and 

hippocampus (Smith et al., 2019). More research is still needed to determine what role both 

Aβ42 and tau pathology play in cognitive progression in PD. 

 

1.4. Association between PDD Risk Markers 

Identification of risk factors and prodromal markers for progression to PD-MCI and PDD 

remains a key research priority (Svenningsson, Westman, Ballard, & Aarsland, 2012). Evidence 

suggests that neither clinical, imaging, or biomarker assessments alone can reliably detect 

which patients will progress to PDD (Biundo, Weis, & Antonini, 2016), due to the heterogeneity 

of PD-MCI patients (Delgado-Alvarado et al., 2016; Kalia, 2018) and the nature of the various 

underlying neuropathological and neurotransmitter deficits (Park et al., 2019). It has been 

suggested that distinct PD-MCI subtypes exist, each with different underlying pathologies and 

outcomes (Monchi, Hanganu, & Bellec, 2016). In AD, risk models combining clinical features 

and biomarkers exist to aid in the prediction of dementia (Schrag, Siddiqui, Anastasiou, 

Weintraub, & Schott, 2017). This emphasizes that the combination of various risk markers may 

substantially increase the likelihood of developing dementia, yet only a few studies have 

examined such combined marker models in PD (Delenclos, Jones, McLean, & Uitti, 2016). 

Identifying specific associations characterizing those patients at high-risk for developing PDD 

would allow tailored treatments and therapeutic interventions aimed at delaying cognitive 

decline and maintaining patients’ quality of life for as long as possible (Hogue, Fernandez, & 

Floden, 2018). 

 

2. Objectives 

The main aim of this thesis was to explore the onset, severity, and associations between 

various potential PDD risk markers in the prodromal stage of dementia in PD. Evaluating 

symptom patterns and co-occurrence of risk markers can be beneficial for classifying patients 
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at high risk of subsequent PDD conversion within a short time period, however not enough 

studies have investigated this in PD. Using cross-sectional studies, we examined various 

associations between cognition, ADL, NMS burden, hippocampal atrophy, and CSF biomarkers 

in non-demented PD patients.  

 

2.1. Publication 1  

“Assessment of cognitive-driven activity of daily living impairment in non-demented 

Parkinson's patients” 

The goal of this study was to use the Functional Activities Questionnaire (FAQ), a widely 

implemented ADL questionnaire, to identify a combination of items that could differentiate 

cognitive- from motor-related influences on ADL function. It is important to be able to separate 

these two impacts on daily function, as only cognitive-driven ADL impairment is a requirement 

for the diagnosis of dementia. As it has been shown that even non-demented PD patients present 

with mild ADL disabilities, the profile of both cognitive and motor ADL dysfunction was 

compared between PD-CN and PD-MCI patients. Lastly, the association between cognitive-

driven functional ADL impairment in PD-MCI patients and neuropsychological tests 

performance was examined, to determine whether these patients pose a risk group to be 

evaluated in future longitudinal studies.  

a. Can we differentiate cognitive and motor influences on ADL using the FAQ? 

b. Do PD-MCI patients have more cognitive-driven ADL impairment compared to PD-

CN patients? 

c. Is there a difference in the cognitive profile between PD-MCI patients with more 

cognitive ADL impairment compared to those with more motor ADL impairment? 

 

2.2. Publication 2 

“Association of Cognitive Activities of Daily Living (ADL) Function and Nonmotor 

Burden in Nondemented Parkinson’s Disease Patients” 

This publication examined the DASH score and its relation to cognitive impairment and 

mild ADL dysfunction in a large cohort of non-demented PD patients. All three markers are 

important diagnostic criteria for probable PDD, and so their combination may characterize a 

risk group for development of dementia in the short-term. We first aimed to replicate the 
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original DASH score in our larger cohort and compared its performance to a second score 

developed using a different NMS scale. On a cross-sectional level we investigated the 

association of both DASH scores to the presence of PD-MCI and mild cognitive-driven ADL 

impairment, defined based on the results of the first study. Additionally, the association of 

DASH scores and ADL impairment was examined only in the PD-MCI group, to determine 

whether a specific accumulation of prodromal symptoms is associated with lower cognitive 

function. 

a. Can the DASH score be replicated using a more validated NMS scale as its basis? 

b. What is the association between the DASH scores, cognition, and ADL impairment? 

c. Is there a specific profile of NMS burden and ADL impairment in PD-MCI patients? 

 

2.3. Publication 3 

“Hippocampal Subfields, Cognition and CSF Biomarkers in Non-Demented Parkinson’s 

Disease Patients” 

In this last publication, we examined hippocampal volume loss in non-demented PD 

patients, as its presence is variable and the associations with specific cognitive domains is still 

undetermined. As it is currently unclear whether hippocampal volume loss is primarily 

associated with cognitive impairment or pathological Aβ42 levels, we compared hippocampal 

subfield volumes between patients stratified by both cognitive group and by Aβ42 status. 

Additionally, the association between prevalence and severity of clinical symptoms related to 

hippocampal atrophy in the total sample was evaluated by investigating the relationship 

between hippocampal subfield volumes, neuropsychological test performance, CSF biomarker 

profiles, and ADL impairment. 

a. Are there differences in hippocampal subfield volumes between PD-CN and PD-MCI 

patients? 

b. Do hippocampal subfield volumes differ between Aβ42 positive and negative 

patients? 

c. How are hippocampal subfield volumes associated with other risk markers for PDD 

development (cognitive performance, CSF biomarker profiles, and ADL 

impairment)? 
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3. Results and Discussion 

Specific progression markers for cognitive decline and PDD have been identified, 

including the presence of PD-MCI and older age. However, not all factors can predict a definite 

conversion within a short time period. This highlights the importance of identifying risk factors 

or combinations of different markers to characterize those PD patients at risk for cognitive 

decline. While many previous markers have been determined for AD where cognitive 

progression is straightforward, it is unknown how these markers also affect PD patients and 

whether they are applicable for studying this disease. Moreover, the identification of a risk 

group for dementia in PD is also difficult, due largely to the heterogeneous nature of the PD-

MCI construct (Lawson et al., 2017). The Braak staging model emphasizes the concept that PD 

is a multisystem neurodegeneration, affecting both motor and non-motor systems, instead of 

being solely a dopaminergic disease (Braak et al., 2003). It is therefore necessary to explore 

different and novel areas of symptoms and examine specific aggregations of markers in relation 

to cognitive changes in PD, specifically to define a high-risk group for PDD. Identification of 

these prognostic factors is imperative to allow clinicians to plan and initiate treatment strategies 

to delay the progression of cognitive decline and maintain patient’s quality of life for as long 

as possible. 

 

3.1. Influence of ADL Impairment on Cognition in PD 

A diagnosis of PDD necessitates that cognitive impairment is severe enough to impact 

daily activities. Assessing the impact of cognitive dysfunction on ADL is a challenge in PD, 

due to the interacting effect of motor impairment on severity of daily function (Benge & Balsis, 

2016; Beyle et al., 2018; Cahn et al., 1998; Cheon et al., 2015). Commonly, ADL is assessed 

though an informant, such as a family member or close friend, who can reliably give 

information regarding the patients’ level of functioning (Cahn-Weiner et al., 2007). However, 

it is important to note that caregivers and patients cannot accurately distinguish cognitive and 

motor influences on ADL function, reflected in either over- or underreporting ADL functions 

(Shulman et al., 2006). Moreover, most ADL assessments used for PD patients have been 

designed for use in other neurodegenerative diseases (such as AD) and do not take into account 

motor impairments. When using simple ADL measurements, unadjusted for physical ability, 

ADL impairment might be overstated (Benge & Balsis, 2016), highlighting the need to 

differentiate cognitive from motor influences on ADL. 
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3.1.1. Results of Publication 1 

Data from 216 non-demented PD patients enrolled in the cross-sectional “Amyloid-Beta 

in cerebrospinal spinal fluid as a risk factor for cognitive dysfunction in Parkinson’s Disease” 

(ABC-PD) study were analyzed. All patients underwent comprehensive motor and 

neuropsychological assessments, and the FAQ was used to assess ADL impairments (Pfeffer, 

Kurosaki, Harrah, Chance, & Filos, 1982). The FAQ is a short, 10-item questionnaire that 

assesses instrumental ADL, and has been shown to have the highest discriminatory power to 

discriminate between demented and non-demented elderly patients among ADL self-reported 

scales (Juva et al., 1997).  

Regression analyses using the FAQ items, the Montreal Cognitive Assessment (MoCA) 

and the Unified Parkinson’s Disease Rating Scale Part III (UPDRS-III) were conducted to 

differentiate subscores of the FAQ primarily reflecting patients’ global cognition (FAQC) or 

PD-related motor severity (FAQM). By dividing the cognitive by the motor subscore, a quotient 

(FAQQ) was calculated where values >1 indicated more cognitive-driven compared to motor-

driven ADL impairment. 

Results showed PD-MCI patients had more impairment on measures assessing motor, 

cognitive, and ADL function than PD-CN. Compared to PD-CN, both the FAQC and FAQM 

subscores were significantly higher in PD-MCI patients. A subgroup analysis was conducted 

only in PD-MCI patients (n=89), using the FAQQ cutoff of 1 to split patients into two groups. 

PD-MCI patients with an FAQQ>1 demonstrated more impairment tests assessing attention 

(p=0.019) and language (p=0.033) compared to those with an FAQQ<1. Overall, this publication 

was able to differentiate cognitive and motor influences on daily function as well as characterize 

a PD-MCI group with more cognitive- compared to motor-driven ADL impairments as a 

possible risk group for conversion to PDD. 

 

3.1.2. Differentiation of Cognitive and Motor Influences 

In this first study we aimed to differentiate the cognitive and motor influences on ADL in 

PD patients using items from the FAQ. Items most associated with the MoCA included financial 

capabilities (accounting, and assembling tax records), as well as remembering appointments 

and important events. Marshall et al. (2015) demonstrated that the FAQ items remembering 

appointments and assembling tax records were best able to distinguish between PD-CN and 

PD-MCI patients, and were also able to predict conversion to PD-MCI over time. Results are 

also in line with a previous study in PD that found keeping appointments, following recent 
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events, managing finances, and using a telephone were specific ADL items unaffected by motor 

dysfunction, but able to identify dementia (Cheon et al., 2015). Financial abilities have been 

shown to be impaired in PD-MCI patients (Pirogovsky et al., 2014), and greater difficulties in 

keeping track of events for the PD-MCI group may suggest an early memory deficit affecting 

ADL function. Memory is known to be affected early in PD (Muslimovic et al., 2005), even in 

the prodromal phase of PD (Fengler et al., 2017; Liepelt et al., 2008; Yilmaz et al., 2016), 

possibly driving this association between keeping track of current events and cognitive ADL 

impairment. 

The items significantly associated with disease-related motor severity in PD included 

using appliances, shopping alone, engaging in skills and hobbies, travelling out of the house, 

and meal preparation. As these items can be significantly affected by motor impairment (e.g. 

inability to use household appliances due to rigor or tremor), these associations can be expected 

(Shulman et al., 2008; Skinner et al., 2015; Stella, Banzato, Quagliato, Viana, & Christofoletti, 

2008; Stewart, Fernandez, Okun, Jacobson, & Hass, 2008). Previous studies determined that 

motor symptoms interfere with ADL to a different extent than cognitive dysfunction (Benge & 

Balsis, 2016; Rasovska & Rektorova, 2011), which is confirmed through the current findings. 

This is an important step to aid in accurately identifying and diagnosing PDD, as well as helping 

to develop instruments to focus solely on cognitive-driven ADL dysfunction.  

This current publication stands out from a study by Almeida et al. (2017) that proposed 

eliminating two items from the FAQ considered by the authors to be particularly vulnerable to 

motor severity. Using their modified (8-item) questionnaire, a cut-off of 3.5 (sensitivity of 47% 

and a specificity of 88%) differentiated between PD patients with and without ADL 

impairments. The claim that the two items using household appliances and preparing a balanced 

meal were triggered by motor influences was based on a hypothesis instead of previous 

literature. The authors also chose to validate their modified FAQ and new cut-off using a second 

informant-based questionnaire that measures changes in ADL impairment over two years, 

instead of using motor and cognitive scales as confirmation. Contrary to this approach, we chose 

a data-driven method that included all FAQ items in the analyses to enable a more systematic 

separation of cognitive and motor contributions, using associations with validated scales for 

measuring cognition and motor severity. Being able to attribute ADL impairment to the correct 

source is a considerable challenge for both clinicians and researchers, and this research has 

taken a considerable step towards distinguishing cognitive and motor influences.  
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3.1.3. Cognitive Profiles Associated with ADL Impairments 

Beyond differentiating influences on ADL, we wanted to examine whether PD-MCI 

patients had more cognitive-driven ADL impairment compared to PD-CN patients. There is 

growing evidence that even non-demented patients with PD can demonstrate functional 

impairment (Manning et al., 2012; Young, Granic, Yu Chen, Haley, & Edwards, 2010), which 

may be a potential marker for faster progression to PDD. In general, PD patients are four times 

more likely to lose their independence in ADL than healthy controls, and this loss is irreversible 

in most patients (Bjornestad et al., 2016). In our study, PD-MCI patients showed greater 

cognitive and motor ADL impairments than PD-CN patients, possibly reflecting how increasing 

PD-related disease severity is associated with greater impairments in cognition (Lawson et al., 

2014) as well as ADL (Holden et al., 2018). Both the FAQC and the FAQM were higher in PD-

MCI patients, showing that the progressive nature of the disease affects both cognitive function 

and motor severity (Domellof et al., 2015). However, as disease duration was comparable 

between the two groups, it can be stated that both cognitive and motor ADL impairments are 

more severe in PD-MCI than PD-CN. 

In PD-MCI, deficits in ADL function have also been shown to be related to worsening 

cognition and increased risk for PDD in cross-sectional (Cheon et al., 2015; Fellows & 

Schmitter-Edgecombe, 2019; Foster, 2014; Glonnegger et al., 2016; Pirogovsky et al., 2014), 

and longitudinal studies (Beyle et al., 2018). Current results demonstrated that one-third of the 

PD-MCI group showed more cognitive ADL impairments than motor-related ADL impairment,  

the percentage of which is very similar to the number of PD patients (26-39%) who converted 

to PDD within five years in previous studies (Broeders et al., 2013; Pedersen et al., 2017). PD-

MCI patients with mild ADL deficits may therefore correspond to a high-risk group for 

conversion to PDD. Interestingly, we also found that 17% of PD-CN patients demonstrated 

more cognitive compared to motor ADL impairments. It is possible that this group represents a 

pre-MCI stage, indicating possible conversion to PD-MCI within a few years, however this 

needs to be evaluated further in longitudinal studies. In AD, a higher incidence of dementia was 

shown for patients who had increased ADL impairments at baseline (Di Carlo et al., 2016). For 

PD, a longitudinal study found that after 31 months, 21.7% of PD-CN patients had converted 

to PD-MCI (Gasca-Salas et al., 2014). These results again hint that the PD-CN group with ADL 

impairments could progress to PD-MCI in the short term. Further research into newly diagnosed 

PD patients has shown that even untreated PD patients demonstrate impaired ADL function 

compared to age-matched controls (Hariz & Forsgren, 2011), where approximately 15% of 

patients were functionally dependent at diagnosis (Bjornestad et al., 2016). However, loss of 
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independence was assessed using interviews in these patients, limiting the interpretation of 

these findings in relation to ADL scales. It would be interesting to examine both cognitive and 

motor ADL impairments PD patients longitudinally, to examine whether cognition and 

cognitive ADL, as well as disease severity and motor ADL, develop in parallel.  

As PD-MCI has been defined as an important risk factor for PDD development (Aarsland 

et al., 2001a; Hanganu & Monchi, 2016; Litvan et al., 2011; Pedersen, Larsen, Tysnes, & Alves, 

2013), we wanted to examine the differences in cognitive and motor ADL influences 

specifically in this group. Our results showed that PD-MCI patients with more cognitive-driven 

ADL impairment exhibited stronger deficits in the attention/working memory and language 

domains than those with predominantly motor-driven ADL impairment. These results are in 

line with a previous study that found that attentional deficit was the single strongest predictor 

of ADL performance related to dementia in PD, even after they controlled for sex, age, 

educational level, motor impairment, and cognitive functions (Bronnick et al., 2006). In our 

study cohort, attention also contributed to cognitive ADL skills when controlling for age, sex, 

educational level, and motor functions, emphasizing the role of attention in cognitive 

impairment. Recent studies have demonstrated greater attention deficits in PDD patients, 

emphasizing attention as a possible marker for conversion to PDD in PD-MCI (Biundo et al., 

2014; Miura, Matsui, Takashima, & Tanaka, 2015; Pedersen et al., 2013). This attentional 

deficit may be explained by increased impairment in cholinergic and noradrenergic pathways, 

affecting the control of arousal and vigilance of PD patients. Stage 3 of the Braak model notes 

that pathology affects the basal nucleus of Meynert, a cluster of acetylcholine-rich neurons that 

project to various regions in the cortex affecting arousal, vigilance, and selective attention 

(Braak et al., 2003; Bronnick et al., 2006; Perry & Perry, 2004). In PDD patients, cholinergic 

deficit is severe, and can be improved using cholinesterase inhibitors. Rivastigmine, for 

example, has been shown to have a positive effect on ADL, attention, and verbal fluency in 

PDD patients (Emre et al., 2004; Meng, Wang, Song, & Wang, 2019), with the best response 

shown in patients with severe deficits in attention (Wesnes, McKeith, Edgar, Emre, & Lane, 

2005). Therefore, attention plays an important role in PDD, and, as this study shows, in PD-

MCI patients as well. Together with mild ADL deficits, they may pose a risk group for patients 

at risk of developing PDD.  

Deficits in language were also shown in the PD-MCI group with cognitive ADL 

impairments, in line with previous studies demonstrating that language problems arise during 

conversion to dementia (Bastiaanse & Leenders, 2009; Chung et al., 2019; Hobson & Meara, 

2004). The dual-syndrome hypothesis proposes that cognitive deficits such as semantic fluency, 
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language, and picture copying are predictors for conversion to PDD, as their posterior-cortical 

basis is related to impairment in multiple neurotransmitter systems, while fronto-striatal deficits 

including working memory and executive functions, related to dopaminergic dysfunction, are 

not predictors (Martinez-Horta & Kulisevsky, 2011; Williams-Gray et al., 2009; Williams-

Gray, Foltynie, Brayne, Robbins, & Barker, 2007). However, discrepancies have been noted in 

other studies demonstrating that cortical thinning in frontal regions predicted conversion to 

dementia (Chung et al., 2019; Compta et al., 2013). Our study agrees with the dual-syndrome 

hypothesis, as no differences were found in executive function between the two PD-MCI 

groups. While an earlier study also did not find a relationship between ADL and executive 

functions (Liepelt-Scarfone et al., 2013), other studies have shown efficient performance of 

ADL in PD relies on executive functions, which are affected early in the disease (Barbosa et 

al., 2017; Cahn et al., 1998; Higginson, Lanni, Sigvardt, & Disbrow, 2013). However, the 

validity and use of tests measuring executive functions have been debated in the literature, with 

studies claiming their inability to represent cognitive abilities in real-world situations (Chaytor 

& Schmitter-Edgecombe, 2003). A previous study found a relationship between instrumental 

ADL performance and memory, executive functions and processing speed, suggesting 

impairment these domains may predict PDD (Beyle et al., 2018). They specifically noted that 

worsening instrumental ADL function was characterized by trial and error behavior, which 

reflects executive functioning. However, this was a study using performance-based measures 

of ADL and therefore may assess different aspects of instrumental ADL than questionnaires. 

Longitudinal studies are therefore needed to examine this relationship in more detail. 

 

3.1.4. Limitations of ADL Assessment and the FAQ  

There are some limitations of the ADL assessment used in this study that need to be 

addressed. Patient-reported questionnaires are frequently used to provide insight into how 

cognitive impairment in PD affects their daily life (Foster & Hershey, 2011; Koerts, Van Beilen, 

Tucha, Leenders, & Brouwer, 2011). However, there are downsides to using patients’ report of 

impairment, namely that PD patients have been shown to rate themselves as less impaired on 

measures of ADL than their caregivers (Christ et al., 2013; Leritz, Loftis, Crucian, Friedman, 

& Bowers, 2004; Shulman et al., 2006; Wadley, Harrell, & Marson, 2003). For the ABC-PD 

study, it was not specified a-priori who should fill out the FAQ. If a caregiver was not available, 

patients were asked to fill out the FAQ themselves. This potential bias was controlled for by 

examining the relationship between cognitive group and who filled out the FAQ, categorized 
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as either subjective (patient) or objective (spouse, child, close friend, or another informant), 

before conducting data analyses. As the relation between both was not significant, it was 

concluded that there was no difference in self vs. informant assessment between groups and 

therefore the groups were not separated in further analyses. These results are in line with other 

studies that have not found differences in how caregivers and patients report ADL disabilities 

(Brown, MacCarthy, Jahanshahi, & Marsden, 1989; Liepelt-Scarfone et al., 2013). It cannot be 

ruled out that some over-reporting of ADL dysfunction may have still occurred, as both patients 

and informants may have rated based on motor abilities instead of cognitive function 

(Kulisevsky et al., 2013). However, as the aim was to separate cognitive and motor influences, 

it is likely that this potential bias would have been eliminated through the analyses.  

Shortcomings of the FAQ should also be mentioned, specifically that it was not originally 

designed for use in pathological aging or even as an informant-based measure. The FAQ has 

been found in older adults to be dependent on age and education, where functional dependence 

declined especially in adults over 85 years (Bezdicek, Stepankova, Martinec Novakova, & 

Kopecek, 2016). To overcome this potential bias age, sex, and disease duration were included 

in the individual FAQ item regressions. Using these covariates, any gender bias that may have 

affected the ADL domains would also have been eliminated. It has been shown that, out of 

different ADL domains, only shopping and cleaning were shown to be more severely impacted 

by disease severity in women than in men, possibly due to the general gender differences in 

these activities (Sperens et al., 2020).  

In conclusion, this first study was able to differentiate the cognitive from motor influences 

on ADL impairment in PD using a validated ADL assessment. It was further shown that PD-

MCI patients were more impaired on measures of cognition and ADL function than PD-CN 

patients. Moreover, PD-MCI patients with more cognitive ADL impairments showed 

significantly worse attention and language deficits compared to those with more motor-driven 

ADL dysfunction. A specific profile of cognitive impairment, namely deficits in attention and 

language, combined with mild ADL dysfunction could contribute to an accelerated cognitive 

decline resulting in PDD development. This is an association which further longitudinal studies 

need to examine. 

 

3.2. NMS Burden as a Risk Factor for Cognitive Impairment 

Based on results of the first study, the second publication aimed to further our 

understanding of clinical markers potentially predicting dementia in PD. PDD patients present 
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with widespread cognitive impairment, typically affecting multiple domains, as well as a 

decline from premorbid levels, with functional impairments severe enough to impact ADL 

(Emre et al., 2007). Further classification as probable PDD requires at least one behavioral 

feature to be present. These NMS, which have also been commonly associated with PD-MCI 

(Aarsland et al., 2007; Delgado-Alvarado et al., 2016; Monastero et al., 2013), have generally 

been studied independently of one another instead of as a combination of symptoms potentially 

influencing conversion to dementia. Naismith and Lewis (2011) showed that patients with 

greater severity of DASH symptoms had worse cognitive functioning, postulating this score 

could provide a simple measure for identifying patients who might progress to PDD. 

 

3.2.1. Results of Publication 2 

Two-hundred twenty-six PD patients recruited through the aforementioned ABC-PD 

study were included into the analyses. As with Publication 1, a comprehensive motor and 

neuropsychological examination was conducted in all patients, and the FAQ was used to 

calculate cognitive (FAQC) and motor (FAQM) ADL impairment. Using the Parkinson’s 

Disease Questionnaire (PDQ-39) which assesses quality of life in PD (Peto, Jenkinson, & 

Fitzpatrick, 1998), we replicated the DASH score developed by Naismith and Lewis (2011). To 

determine validity of this questionnaire as the basis, we constructed a second DASH score based 

on questions from the NMS-Scale (Chaudhuri et al., 2007), which was developed specifically 

for the assessment of NMS in PD. NMS-Scale items were chosen based on close similarity to 

the original questions from the PDQ-39, to form the DASH-NMS and DASH-PDQ scores, 

respectively.  

Correlation analyses tested the relationships among DASH scores and other PDD risk 

factors, including cognitive status and ADL impairments. Binary logistic regressions analyses 

further compared PD-CN and PD-MCI in relation to both DASH scores. Results of the 

Spearman correlation showed that the DASH-PDQ was associated with the levodopa-

equivalent daily dose of anti-parkinsonian medication intake, disease duration, the MoCA 

score, as well as both FAQ subscores. In contrast, the DASH-NMS was significantly associated 

with a variety of different neuropsychological assessments, specifically with the MoCA and the 

scores of the attention/working memory, visuospatial functions, and language domains. 

Additionally, the DASH-NMS was correlated to the cognitive and motor subscores of the FAQ, 

but not to other clinical or demographical disease variables. The binary logistic regression 

showed the FAQC was the only statistically significant predictor of the DASH-NMS (p=0.01). 
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PD-MCI patients were then split according to the 50th percentile of the DASH-NMS into 

low vs high DASH burden groups, and those with high DASH burden were further divided into 

subgroups with high and low cognitive ADL impairment. The high-risk group (PD-MCI with 

high DASH-NMS burden and cognitive ADL dysfunctions) showed the lowest MoCA scores 

(p=0.036), indicating a lowered global cognitive function. This difference was statistically 

significant between the high-risk group and patients with a low DASH burden (adjusted 

p=0.045). Overall, these results demonstrate that the combination of these two prodromal 

markers (increased DASH burden and cognitive-driven ADL impairment) may present a risk 

group within PD-MCI patients who are at risk for conversion to PDD within a short time. 

 

3.2.2. DASH Score Reproducibility 

NMS burden was examined using the two DASH scores, constructed from the NMS-

Scale and the PDQ-39. We found that the DASH-NMS scale could distinguish PD-CN from 

PD-MCI, while the DASH-PDQ could not. Results also showed that the DASH-PDQ was 

associated with demographic variables primarily reflecting certain motor parts of the disease, 

notably showing a stronger association with motor-driven ADL impairment (FAQM) than the 

DASH-NMS. This correlation reflects the high association of the DASH-PDQ with motor parts 

of the disease. The DASH-NMS was unaffected by these and therefore can be seen as being 

independent of motor influences, similar to the FAQC described in the first study.  

These findings can be further explained by the main differences between the scales. First, 

the PDQ-39 is a self-rated questionnaire, while the NMS-Scale is interview-based. Second, both 

scales are scored differently; while the PDQ-39 is rated on a scale of 0-4, the items of the NMS-

Scale are classified according to severity (0-3) and frequency (1-4) and then multiplied to obtain 

a total score (0-12). Third, each scale has a different aim: the PDQ-39 assesses quality of life 

associated with Parkinson’s Disease symptoms, while the NMS-Scale examines specific non-

motor symptoms occurring in Parkinson’s Disease. Taken together, the PDQ-39 is self-rated 

with a smaller item score range than the NMS, which is scored by an experienced interviewer 

and has been designed to specifically quantify NMS (Chaudhuri et al., 2007). As the goal was 

to develop an instrument that is primarily associated with cognitive functions, we propose the 

NMS-Scale is a superior questionnaire than the PDQ-39 to construct the DASH score. Future 

studies should continue to examine both DASH scores in relation to cognitive decline to 

confirm this suggestion. 
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3.2.3. Relation of DASH Scores to Cognition and ADL Impairments 

Associations between both DASH Scores and cognition were examined in detail. The 

DASH-NMS score was highly correlated with attention/working memory, visuospatial 

functions, and language domains. Impairment in these specific domains has been associated 

with conversion to dementia (Bastiaanse & Leenders, 2009; Biundo et al., 2014; Bronnick et 

al., 2006), as discussed in section 3.1.3. of this thesis. Moreover, attention and language deficits 

were also more prominent in the PD-MCI patients with cognitive-driven ADL dysfunctions 

identified by the first study of this thesis. These results demonstrate that a greater DASH burden 

affects cognitive domains implicated in PDD, strengthening the hypothesis that a specific 

combination of NMS may lead to a higher risk for conversion to dementia in PD. 

Similar to the comparison of ADL dysfunctions in PD-MCI, the DASH-NMS did not 

show a significant relationship with executive functions, which are often noted to be the earliest 

functions impaired in PD (McKinlay, Grace, Dalrymple-Alford, & Roger, 2010). Along with 

findings supported by the data of our first study, the current results again argue in favor of the 

dual-syndrome hypothesis describing that functions with a posterior-cortical basis may better 

predict conversion to PDD than dopaminergic-dependent frontal functions. NMS in PD have 

been shown be driven by a multisystem neurotransmitter dysfunction, in addition to the ongoing 

dopaminergic degeneration. Depression in PD results as changes in serotonergic pathways, 

presenting even as early as the second stage in the Braak model, where deposition of Lewy 

bodies affects the brainstem, notably in the dorsal raphe nucleus and locus coeruleus (Simuni 

et al., 2018; Zhang et al., 2016). The serotonergic dorsal raphe nucleus is known to play a role 

in sleep/wake cycles, whereas the noradrenergic locus coeruleus is involved in attention and 

response to stress or panic and additional neuronal loss in adrenergic neurons throughout the 

brain may cause anxiety (Jellinger, 2015). Visual hallucinations, emerging as a result of cortical 

Lewy body deposition in the temporal-occipital regions, also predict accelerated cognitive 

deterioration and development of dementia in PD patients (Aarsland, Ballard, Larsen, & 

McKeith, 2001b; Harding, Broe, & Halliday, 2002). Interestingly, presence of visual 

hallucinations has been linked with executive dysfunctions in previous studies (Schapira, 

Chaudhuri, & Jenner, 2017), although the current data was not able to confirm this association. 

However, the results suggest a strong association between cognition and the combination of 

these specific NMS, promoting their usefulness in examining cognitive decline in PD. The 

spread of pathology and additional degeneration of various neurotransmitter systems early in 

the disease course drives the development of NMS and cognitive dysfunction.  
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Differing from the original study (Naismith & Lewis, 2011), the DASH-PDQ did not 

show any associations with cognition in our cohort. This can be attributed to the difference in 

sample size (53 vs. 226 patients), and the more extensive neuropsychological testing applied in 

our cohort. It is also notable that the DASH-PDQ, which only measures frequency of NMS, 

could not differentiate cognitive status. In contrast, the DASH-NMS was significantly 

correlated with cognitive domains shown to have a higher PDD risk, and significantly 

distinguished PD-MCI from PD-CN patients. Perhaps the important aspect of the DASH score 

that needs to be examined is not frequency of symptoms, but their severity. Increasing severity 

of NMS is also reflected in the spread of pathology through the peripheral and central nervous 

systems (Erro et al., 2016; Mou et al., 2019). Few studies to date have examined how the 

severity of specific NMS progresses in PD, focusing instead on their frequency in different 

diseases stages. Overall, the current findings highlight the role of severity of DASH symptoms 

in cognitive decline, which is a good starting point for future studies. 

The additional study of ADL impairments in relation to cognitive dysfunction is 

important, as they are crucial for the differential diagnosis of PDD. Santos-Garcia et al. (2018) 

even found that patients with a higher NMS burden and lowered autonomy to carry out ADL, 

among other factors, were at a higher risk of death in the short term. In the second publication, 

both DASH scores showed a high association with ADL function, which would be expected as 

PD patients report that NMS have a significant negative impact on their daily life and social 

activities (Hermanowicz et al., 2019). A further analysis showed that cognitive-driven ADL 

impairment was the most significant predictor of the DASH-NMS score. This is a relatively 

novel finding, as the relationship between individual DASH symptoms and ADL impairment 

has been sparsely investigated, and studies examining this have solely focused on depression 

and ADL. One study found that patients with more severe depression scored lower on ADL 

measures than patients without depression (Piccinni et al., 2012), while another noted the 

negative impact of depression was stronger than the severity of motor impairment on ADL 

function (Dissanayaka et al., 2011). In contrast to these findings, results from other studies 

could not confirm a significant link between depression and ADL in PD (Foster, 2014; Laatu, 

Karrasch, Martikainen, & Marttila, 2013; Lawrence, Gasson, Kane, Bucks, & Loftus, 2014). In 

fact, one study has even shown that problems with ADL increase the risk of developing 

depression in PD (Marinus et al., 2018). This calls attention to the fact that the influences of the 

individual DASH symptoms on ADL function are unclear and need to be studied further. As 

motor and cognitive impairment as well as NMS burden and severity increase with disease 

duration, it is probable that a combination of these factors will lead to poorer ability to perform 
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ADL (Benge & Balsis, 2016). Furthermore, the combination of higher burden of DASH 

symptoms and mild cognitive-related ADL impairment in PD patients may define a group at 

risk for subsequent PDD development, which longitudinal studies need to verify. 

 

3.2.4. Profile of PD-MCI Patients with both DASH Burden and ADL Impairment 

As it has been shown that prodromal features of PD are more meaningful when combined 

(Liepelt-Scarfone et al., 2017), it may be beneficial to also examine the associations between 

varying risk markers. This was the rationale behind examining both the DASH-NMS score and 

ADL impairments (both independent criteria for the diagnosis of dementia) together, and how 

they relate to cognitive function (another criterion for PDD). The association of the DASH-

NMS and ADL impairment was examined only in the PD-MCI group, which has previously 

been defined as the risk group for PDD (Anang et al., 2014). Only the DASH-NMS score was 

used for these analyses, as it showed significant correlations with cognitive function, whereas 

the DASH-PDQ did not. It was postulated that patients with a high DASH burden (DASH-

NMS Score >1) would be those who had increased risk of developing PDD. Using this median 

split allowed for the simplification of analyses between the two groups, by using an unbiased, 

artificial cut-off. Alternatively, quartiles could have been used to divide the sample, yet this 

would have been disadvantageous as the sample size per group would have been too small for 

further analyses.  

Results showed that a higher burden of DASH-NMS symptoms corresponded to a more 

affected global cognitive status, as assessed by the MoCA. This effect remained when 

stratifying the groups according to both non-motor burden and the FAQQ. Specifically, this 

association was significant between patients with a combined high DASH burden and 

cognitive-driven ADL impairment, compared to patients with only a low DASH burden. The 

MoCA is a validated screening tool for cognitive impairment in PD, and studies have confirmed 

that the MoCA is sensitive for assessing early cognitive impairment (Sulzer et al., 2018; 

Zadikoff et al., 2008). However, its prognostic ability for predicting cognitive decline seems to 

be rather low (Faust-Socher et al., 2019). In the regression, the MoCA did not predict the 

DASH-NMS score, showing that cognitive impairment per se does not increase the risk for 

higher NMS burden. Rather, this association is modulated by the severity of cognitive-driven 

ADL impairment, reflected by the addition of the FAQC score. Based on the results of the 

present cross-sectional study, we are not able to conclude if cognitive impairment is the main 

cause of ADL impairment, and whether it also facilitates progression of NMS in PD. 
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Longitudinal studies should therefore aim to further investigate this relationship and whether 

there is a causal relationship between NMS burden, ADL function, and cognitive decline.  

If specific risk factors for PDD conversion can be specified, appropriate therapeutic 

measures can be taken to improve functioning and hopefully prevent conversion to PDD or 

slow down worsening of both cognitive and ADL dysfunction. Non-pharmacological 

treatments aiming to improve ADL functions such as cognitive training (Hindle, Petrelli, Clare, 

& Kalbe, 2013) have been described to be effective in maintaining cognitive status in the short- 

and long-term in PD (Nousia et al., 2020). Other methods for training both cognition and ADL 

function focus on endurance and coordination, such as Exergames, physiotherapy, Nordic 

walking, and dancing (Barry, Galna, & Rochester, 2014; Bombieri et al., 2017; Schenkman et 

al., 2012). Improving cognitive function could also concurrently improve NMS, however this 

needs to be examined in further studies (Leung et al., 2015; Petrelli et al., 2015). Targeted 

treatment of the separate DASH symptoms would also be beneficial, as both pharmacological 

(Chaudhuri, Healy, Schapira, & National Institute for Clinical, 2006; Schapira et al., 2017; 

Titova & Chaudhuri, 2018) and non-pharmacological (Cusso, Donald, & Khoo, 2016) 

treatments exist to ameliorate these symptoms. It is unclear whether addressing these symptoms 

has the potential to delay or prevent cognitive decline, yet targeted treatment should at least 

lead to an overall improved quality of life. 

 

3.2.5. Limitations of the DASH Scores 

The most important limitation that needs to be mentioned is that the presence and severity 

of anxiety, depression, and sleep disturbances are not independent from each other in PD. 

Depression and anxiety are often comorbid in PD (Menza, Marin, Kaufman, Mark, & Lauritano, 

2004; Yamanishi et al., 2013), and have been shown to be associated with the occurrence and 

progression of excessive daytime sleepiness over time, possibly reflecting the spreading of 

pathology within the brainstem (Amara et al., 2017). A recent cluster analysis was able to 

distinguish six different subtypes of NMS in early and untreated PD patients: cognition, apathy, 

depression/anxiety, REM sleep behavior disorders (including visual hallucinations), lower limb 

pain, and olfactory disturbance (Sauerbier, Jenner, Todorova, & Chaudhuri, 2016). This 

suggests that while depression and anxiety might be too related to be examined as separate 

entities in the DASH score, they are still distinct from both sleep disturbances and cognition. 

Thus, our findings that DASH and cognition are separate and can influence each other remains 

a valid assumption. Also, there is a significant benefit to this interaction, specifically that the 
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amelioration of symptoms becomes easier. Treatment of the central symptom (e.g. depression) 

can lead to improvements seen in associated symptoms (e.g. sleep disturbances and anxiety) 

(Engels et al., 2019). Perhaps treatment of the DASH symptoms can lead to improvements in 

cognition and ADL functioning, however this is purely speculative and would need to be 

examined in future studies.   

It should also be noted that NMS can also be largely influenced by dopaminergic drugs 

or even emerge as side-effects of these medications (Zis et al., 2014). Sleep disorders in PD are 

thought to result from an interplay between neurodegeneration, side effects of PD medications, 

nightly persistence of motor symptoms, and other comorbid diseases (such as sleep apnea) 

(Salawu & Olokoba, 2015). Hallucinations are not only an expression of PD pathology, but can 

also be induced or enhanced by dopamine replacement therapy (Schaeffer & Berg, 2017). 

Depressive symptoms have been shown to significantly improve one year after time of 

diagnosis (Larsen, Dalen, Pedersen, & Tysnes, 2017), with the authors attributing this to an 

improvement of psychological and social factors after receiving a diagnosis, as well as initiation 

of dopaminergic medications. However, previous studies did not find that NMS improved with 

the initiation of dopamine therapy (de la Riva, Smith, Xie, & Weintraub, 2014), nor that 

progression of NMS was associated with the dosage or type of dopaminergic medication 

(Simuni et al., 2018). A factor analysis showed cognitive impairment, depression, excessive 

daytime sleepiness, and psychosis did not improve when patients were given dopamine 

replacement therapy (van Rooden et al., 2010). Based on these conflicting results, it is not 

possible to determine whether treatment with dopaminergic medication would have affected 

our PD sample. While patient groups did not differ in the daily dosage of antiparkinsonian 

medications, the effects that medication may have had up until the point of testing cannot be 

ruled out. Future studies should therefore not only examine the predictive value of the DASH 

score, but also how these symptoms are associated with dopamine replacement therapy and 

whether these have a positive or negative influence on cognition. 

In conclusion, in the second study we were able to construct a novel DASH-NMS score 

based on the original DASH score developed by Naismith and Lewis (2011). We assume the 

DASH-NMS to be a more viable score for assessing NMS burden as it could differentiate 

between PD-CN and PD-MCI patients, and demonstrated significant associations with specific 

cognitive domains and cognitive-driven ADL impairment. PD-MCI patients with a high NMS 

burden and more cognitive ADL impairment showed worse global cognitive functioning, as 

assessed by the MOCA, than PD-MCI patients with only a low DASH burden. Therefore, the 

combination of DASH burden and cognitive ADL impairment may characterize a risk group of 
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PD-MCI patients who will progress to PDD in the short-term. Longitudinal studies are needed 

to investigate whether these patients are indeed a high-risk group and to further examine the 

relationship between NMS burden, ADL function, and cognitive decline. 

 

3.3. The Hippocampus as a Structural Marker for Cognitive Impairment 

In recent years, there has been a shift in the view that the hippocampus is not affected in 

PD. Grey matter atrophy in various brain structures, including the bilateral hippocampal 

formation, has been shown to occur in PD-MCI patients, with neuronal loss in these regions 

correlating with global cognition as well as motor impairment (Melzer et al., 2012). 

Hippocampal atrophy has also been linked to CSF Aβ42 levels, which have been shown to be 

lowered in PD patients compared to controls and are associated with a rapid cognitive decline 

(Backstrom et al., 2015; Buddhala et al., 2015). The hippocampus, especially its subfield 

volumes as a potential imaging marker for cognitive impairment, and its association CSF 

biomarkers, cognition, and ADL impairments has only been sparsely studied in PD patients. 

 

3.3.1. Results of Publication 3 

Data of 45 patients was collected as part of the baseline visit of the longitudinal study 

“Non-demented patients with Parkinson’s Disease with and without low Amyloid-beta 1-42 in 

cerebrospinal fluid” (ABC-PD Longitudinal). All patients underwent a neurological and 

neuropsychological examination, MRI imaging, as well as a lumbar puncture to determine CSF 

Aβ42, phosphorylated tau (p-tau), and total tau (t-tau) levels. The cohort was stratified 

according to either cognitive diagnosis or CSF Aβ42 biomarker status. According to the Level 

I criteria recommended by the Movement Disorder Society (Litvan et al., 2012), the Montreal 

Cognitive Assessment (MoCA) (Nasreddine et al., 2005) score was used to define the PD-CN 

(≥26 points) and PD-MCI (<26 points) groups. For the biomarker analyses, an Aβ42 cut-off of 

600 pg/mL (Lerche et al., 2019) divided the sample into two groups: Aβ42+ (<600 pg/mL) and 

Aβ42– (≥600 pg/mL). Freesurfer image analysis suite 6.0 (Iglesias et al., 2015) was used to 

segment the hippocampus of each patient into 12 distinct subfields: hippocampal tail, 

subiculum, Cornu Ammonis (CA) 1, hippocampal-fissure, presubiculum, parasubiculum, 

molecular layer, granule cell layer of the dentate gyrus (GC-DG), CA2-3, CA4, fimbria, and 

the hippocampal-amygdaloid transition area (HATA). 
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Linear regression models were used to compare hippocampal subfield volumes in the two 

study groups (cognition and Aβ42 status), correcting for estimated intracranial volume (ICV). 

Partial correlations assessed the association between neuropsychological tests, CSF biomarkers, 

FAQ subscores and hippocampal subfields, while controlling for ICV. PD-MCI patients 

performed worse than PD-CN patients on a number of neuropsychological tests, which 

confirmed an accurate division of the cognitive groups. The linear regression showed PD-MCI 

patients had smaller HATA (p=0.04) and a trend towards smaller CA1 (p=0.05) volumes than 

PD-CN. No significant differences were found for hippocampal subfield volumes or cognitive 

tests after group stratification according to CSF Aβ42 levels. Results of the correlation analyses 

revealed smaller hippocampal subfield volumes were associated with worse memory, language, 

spatial working memory and executive functioning as well as higher CSF tau levels. 

Interestingly, greater severity of ADL impairment, measured by the FAQ and its subscores, was 

associated with larger hippocampal subfield volumes. Overall, our results show that the HATA 

can differentiate cognitive groups, and that hippocampal subfield volume, but not CSF Aβ42, 

is a promising marker for cognitive decline. 

 

3.3.2. Hippocampal Structures Differentiating Cognitive Groups 

Studies investigating the association between hippocampal atrophy and cognition in PD 

have been inconclusive. While some studies demonstrate greater hippocampal atrophy in 

cognitively impaired patients, especially in PDD compared to non-demented patients (Nagano-

Saito et al., 2005), others could not replicate this finding (Xu et al., 2016). Heterogeneity in 

these previous studies may arise from researchers regarding the hippocampus as a whole 

structure, instead of as consisting of many separate substructures with distinct characteristics. 

In our study, there was also no difference in the volume of the whole hippocampus between 

PD-CN and PD-MCI patients, but study groups differed in the volumes of the HATA region. 

The results showed that only the HATA region was smaller in PD-MCI patients than in PD-

CN. While this was an unexpected finding, a previous longitudinal study also found an 

involvement of the HATA in PD cognition (Foo et al., 2017). They demonstrated that the right 

HATA, along with left fimbria and right CA1 volumes, was smaller in PD-MCI patients than 

PD-CN at baseline. Furthermore, left HATA volume at baseline was among the most significant 

predictors of conversion to PD-MCI after 18 months. Combined with our current results, this 

highlights the role of the HATA in both differentiating cognitive impairment, as well prediction 

potential for cognitive decline.  



 

 30 

Research into hippocampal subfields has proposed that smaller CA1 and subiculum 

regions are associated with an increased risk of conversion from mild cognitive impairment to 

AD (Apostolova et al., 2006). This general pattern of neurodegeneration seen in AD has been 

associated with the progression of cognitive dysfunction in PD (Weintraub et al., 2012), with 

studies reporting smaller CA1 volumes in PD-MCI patients compared to PD-CN (Beyer et al., 

2013b; Foo et al., 2017; Low, Foo, Yong, Tan, & Kandiah, 2019). While this could not be 

replicated in our results, a trend that almost reached significance was noted in CA1 volume 

between PD-CN and PD-MCI. As the CA1 is one of the output regions of the hippocampus, it 

has been suggested to play a role in attention (Muzzio, Kentros, & Kandel, 2009), and atrophy 

of this region could aggravate further cognitive decline. This would be in line with the previous 

publications of this thesis, highlighting attentional deficits as a possible risk factor for cognitive 

deterioration. More longitudinal studies are needed to examine its role in cognitive progression, 

as it has been sparsely studied in relation to PD and our current research only allows us to make 

inferences from cross-sectional data. 

It is possible that so few differences were found between our two cognitive groups as 

hippocampal atrophy has been shown to be present in PD-CN as well as PD-MCI patients 

(Apostolova et al., 2012). The Braak staging model postulates that in stages 3 to 4, Lewy bodies 

and neurites spread to involve the amygdala, entorhinal cortex, and hippocampus (Braak et al., 

2005), which may be reflected as hippocampal atrophy on MRI. In stage 3, pathology also 

affects the substantia nigra, resulting in the onset of motor symptoms in PD. Concurrent 

involvement of both these structures may be found early in the disease course, possibly 

reflecting hippocampal atrophy as an early marker of cognitive progression (Aybek et al., 

2009). This is a plausible explanation for the similar hippocampal volumes, as our patient 

groups did not differ in terms of disease duration. There has also been considerable divergence 

in how PD-MCI was diagnosed between studies examining the hippocampus. Different studies 

have compared different cognitive groupings: all PD patients compared to controls, non-

demented (combining both PD-CN and PD-MCI) vs. demented patients, or PD-CN and PD-

MCI. This heterogeneity hinders the interpretation of our data, as we cannot compare with 

results using different diagnostic criteria. It is possible that our cognitive groups would show 

more hippocampal atrophy compared to controls, or more compared to PDD patients, yet this 

was not examined in our study. It is also unclear whether grouping PD-CN and PD-MCI patients 

would be advantageous. Further studies should therefore examine atrophy in specific cognitive 

groups while aiming to maintain a standardized diagnosis of PD-MCI. Nevertheless, mean 

hippocampal volume has been previously found to be a significant predictor for the progression 
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from PD-CN to PD-MCI, and from PD-MCI to PDD (Kandiah et al., 2014). This also highlights 

the importance of longitudinal studies. Examining the extent of atrophy in PD patients 

compared to both healthy controls and PDD patients would be extremely beneficial to 

determine whether there is a spectrum of atrophy in PD that correlates with cognitive decline. 

 

3.3.3. Associations Between Hippocampal Subfields and Neuropsychological Tests 

Besides examining the profile of PD-CN and PD-MCI patients, we wanted to determine 

how hippocampal subfields were related to neuropsychological test performance in our sample. 

Atrophy of medial temporal lobe structures has been assumed to run in parallel and may even 

give rise to the memory impairment seen in PD (Ibarretxe-Bilbao, Tolosa, Junque, & Marti, 

2009). The organization of the hippocampal subfields forms a unidirectional circuit (Pereira et 

al., 2013). After receiving input from the entorhinal cortex, the GC-DG projects to the CA2-3 

region, which in turn projects to the CA1. The CA1 then sends its projections to the major 

output region, the subiculum, which branches out into numerous cortical and subcortical regions 

(Duvernoy, Cattin, & Risold, 2013). Complex interactions between each subfield may influence 

both the pathophysiological and the cognitive processes in PD (Foo et al., 2017). Hippocampal 

volumes correlated with memory tests, supporting the notion that atrophy of these structures 

runs in parallel to cognitive decline (Ibarretxe-Bilbao et al., 2009). The Paired Associates 

Learning subtest of the computer-based Cambridge Neurological Test Automated Battery 

(CANTAB) was shown to correlate with almost all hippocampal structures, most importantly 

the CA1, CA2-3, CA4, and DG regions. Previous studies have shown that input hippocampal 

regions, such as the CA2-3 and DG, are associated with learning and encoding, output regions 

including the subiculum are related to recall, and the CA1 region is responsible for 

consolidation and later retrieval (Carr, Viskontas, Engel, & Knowlton, 2010; Eldridge, Engel, 

Zeineh, Bookheimer, & Knowlton, 2005; Mueller et al., 2011; Pereira et al., 2013). Our results 

reflect these findings, with errors made on the PAL test encompassing all aspects of memory. 

This specific subtest has even been shown in AD patients to be strongly associated with 

hippocampal volume (Nathan et al., 2017), characterizing hippocampal-dependent memory loss 

in the earliest stages of AD. 

Verbal learning and recall have been associated with bilateral hippocampal atrophy in 

non-demented and demented PD patients (Bouchard et al., 2008; Ibarretxe-Bilbao et al., 2008; 

Junque et al., 2005; Noh et al., 2014), most notably in the CA1, CA3 and subiculum (Bouchard 

et al., 2008). We could not replicate these findings using paper-and-pencil based tests, possibly 
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reflecting that computerized tests are more sensitive than paper-and-pencil tests in relation to 

hippocampal volume. More research is necessary to examine sensitivity of both types of tests 

for detecting cognitive impairment and hippocampal atrophy in PD. 

Our results in publication 3 also showed significant associations between the subfields 

and recognition memory. For the CANTAB recognition subtest, the strongest correlations were 

with the GD-DG and CA1 regions, with weak correlations also for the CA4 and HATA. The 

pencil-and-paper subtest showed weak correlations with the hippocampal tail, subiculum, and 

CA1 regions. This is an interesting finding, as PD patients generally demonstrate intact 

recognition memory (Aggleton & Brown, 1999; Bouchard et al., 2008; Cohn, Giannoylis, De 

Belder, Saint-Cyr, & McAndrews, 2016), although this notion has been debated (Das, Hwang, 

& Poston, 2019; Higginson, Wheelock, Carroll, & Sigvardt, 2005). Recognition scores have 

been associated with left hippocampal volume (Camicioli et al., 2003) as well as right 

subiculum and CA1 areas (Beyer et al., 2013b), in concordance with our findings. As there is 

no current agreement on the role of recognition memory in PD, further studies are needed to 

evaluate our study findings on the relationship between recognition memory and hippocampal 

volume. 

Spatial working memory was negatively correlated to the parasubiculum, CA4, DG and 

fimbria, where a higher number of errors was related to smaller volumes. The fimbria has been 

shown to play a role in spatial working memory performance in rats (Sutherland & Rodriguez, 

1989), with reduced volume in PD-MCI patients potentially characterizing an early marker of 

visuo-spatial dysfunction (Foo et al., 2017). While the deficit in spatial working memory in PD 

can be explained by disruption of visuo-spatial processing circuits involving the caudate 

nucleus (Possin, Filoteo, Song, & Salmon, 2008), the current study findings also emphasize the 

role of memory, specifically encoding, and the hippocampus. Future studies should examine 

whether fimbria volumes are predictive of cognitive decline and visuo-spatial dysfunction 

longitudinally. Based on these results, we would have also expected to find associations 

between hippocampal volumes and visuospatial functions. However, we did not, which is in 

contrast to previous studies (Aggleton, 2012; Rektorova et al., 2014; van Strien, Cappaert, & 

Witter, 2009). Moreover, this pattern does not reflect the dual-syndrome hypothesis supported 

by the earlier studies of this thesis, where posterior cortical changes reflect the progressive 

nature of cognitive decline. Instead, results from this hippocampal study reflect the notion of 

fronto-striatal dysfunction and dopamine loss in these regions in relation to cognitive 

impairment. 
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The extent to which working memory, including spatial working memory, is related to 

executive functions and mediated by frontal circuits (Kehagia et al., 2013) is unclear. A 

previous study has shown that tests measuring spatial working memory and set-shifting, which 

are mediated by fronto-striatal systems, are impaired in PD (Riekkinen et al., 1998). Others 

have been unable to show an association between hippocampal and frontal functions (Beyer et 

al., 2013b; Ibarretxe-Bilbao et al., 2009). In this study we identified significant correlations 

between a measure of executive function (Stockings of Cambridge task) and the molecular 

layer, the DG, and the fimbria. Correlations between an information sampling task, measuring 

impulsivity in reactions which is often affected in PD, and hippocampal volumes (DG, CA4, 

fimbria, HATA and whole hippocampus) were also detected in our study. It is possible that 

these executive dysfunctions, which have shown to be impaired in the earliest stages of 

cognitive decline, reflect impairment in fronto-striatal loops (McKinlay et al., 2010). Studies 

show that there is a gradient of neuropathology affecting the hippocampus (Summerfield et al., 

2005), with the extent of cognitive impairment relating to the deposition of Lewy bodies and 

neurites (Churchyard & Lees, 1997). This study reflects an early cognitive impairment 

characterized by hippocampal atrophy and executive dysfunctions, which will, however, need 

to be replicated in longitudinal studies and cohorts with varying stages of cognitive decline. 

Overall, results emphasize the role of hippocampal subfield atrophy as a potential marker for 

cognitive decline in PD, showing associations with different memory functions as well as 

executive functions, which needs to be verified in future studies. 

 

3.3.4. CSF Biomarker Profile in Relation to Cognition and Hippocampal Volume 

Stratifying the sample based on Ab42 levels (Aβ42+, <600 pg/mL; Aβ42–, ≥600 pg/mL) 

did not reveal any differences on demographical variables or neuropsychological test scores. 

This was a surprising result, as low Ab values have previously been shown to be associated 

with cognitive decline (Brockmann et al., 2015; Zhang et al., 2013). Aβ42 pathology has been 

specifically related to deficits in attention/working memory (Leverenz et al., 2011), memory 

(Stav et al., 2015), visual memory (Yarnall et al., 2014), verbal fluency (Compta et al., 2009), 

and slowed processing speed (McMillan & Wolk, 2016). The current results did not support 

these previous findings. Moreover, longitudinal studies have emphasized that pathological 

Ab42 levels predict development of PDD (Alves et al., 2014; Backstrom et al., 2015; Hall et 

al., 2015; Parnetti et al., 2014). Lower 42 levels were expected in the PD-MCI group, as they 
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are at risk for PDD development (Anang et al., 2014), yet this was also not replicated by the 

current research. 

Some studies, however, have recently debated the influence of Ab42 in PD patients, 

especially relating to cognitive decline (Melzer et al., 2019; Winer et al., 2018). Lower levels 

of Ab42 were found in PD-MCI patients who subsequently developed PDD, yet Ab42 levels 

were not significantly lower in PD-MCI patients compared to PD-CN in a cross-sectional 

analysis (Weil, Costantini, & Schrag, 2018). One study did not find a difference in Ab protein 

accumulation between PD-CN and PD-MCI patients, however the baseline presence of 

pathological Ab42 levels was weakly correlated with cognitive decline over three years 

(Gomperts et al., 2013). It is possible that the presence of Ab42 does not reflect the severity of 

cognitive impairment, but rather predicts decline over time (Sasikumar & Strafella, 2020). Two 

previous studies have shown that patients with lower Aβ42 levels developed PDD within two 

years (Siderowf et al., 2010; Terrelonge, Marder, Weintraub, & Alcalay, 2016). It is possible 

that patients in the current study with low Ab42 values may progress to PDD faster than those 

with normal levels, however our cross-sectional analyses impede this evaluation.  

No differences were found in hippocampal subfield volumes between both Ab42 groups. 

This is a novel finding, as very few studies have examined the relationship between 

hippocampal volume and CSF biomarkers in PD to date. A previous study did not find that 

mean hippocampal volume was a significant predictor of CSF biomarker levels (Beyer et al., 

2013a). Their associations in the PD-CN group suggest that changes in CSF and brain structures 

develop before the manifestation of clinically relevant cognitive symptoms. However, only 

newly diagnosed drug-naïve patients were measured in this study. Ab42 levels have been shown 

to be associated with ventricular enlargement (Beyer et al., 2013a), and with atrophy in frontal, 

parietal, and occipital cortices, but not with atrophy in the temporal lobe (Compta et al., 2012; 

Compta et al., 2013). It is possible that the hippocampus is not affected by Ab42 pathology in 

PD, which our current results support. More research is still needed to determine the association 

between these two markers in PD. 

Previous studies in both AD and PD suggest that some of the heterogeneity in the 

relationship between Aβ42 burden and cognitive function may be explained through other CSF 

biomarkers, such as total tau, phosphorylated tau and ɑ-synuclein (Compta et al., 2009; 

Halliday, Holton, Revesz, & Dickson, 2011; Parnetti et al., 2014). Studies in AD show 

associations between greater hippocampal atrophy, lower Aβ42, and higher t-tau and p-tau 

(Tarawneh et al., 2015; Wang et al., 2012). Ab42, t-tau and p-tau have previously been linked 
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to hippocampal atrophy and ventricular enlargement in AD (Apostolova et al., 2010b), yet in 

PD the results are more heterogeneous. Stav et al. (2016) did not find associations between CSF 

biomarkers and hippocampal volumes, even though subiculum volumes were reported to be 

smaller in PD patients compared to controls. We also identified a moderate correlation between 

lower subiculum volumes and higher values of total tau in our PD sample. While it still remains 

unclear whether neurodegeneration seen in PD is due to the underlying PD pathology, or AD 

pathology (Laakso et al., 1996), our findings argue for a greater role of tau pathology in 

hippocampal atrophy than Ab42. 

 

3.3.5. Associations Between Hippocampal Subfields and ADL Dysfunction 

Beyond examining the relation between hippocampal volume and cognition, we looked 

at the correlation between subfield volumes and measures of ADL function, namely the FAQ 

and the subscores developed in the first publication. Interestingly, our study argued that greater 

severity of ADL impairment was associated with larger hippocampal subfield volumes. This 

may mirror compensation strategies of the hippocampus, to counteract already occurring daily 

relevant cognitive deficits in a vulnerable phase of the disease, however this is purely 

speculative. The relationship between hippocampal atrophy and ADL impairments has been 

sparsely studied in PD, and even in AD research studies are lacking. One cross-sectional study 

showed hippocampal volume independently predicted the severity of ADL deficits in AD 

patients (Brown, Devanand, Liu, Caccappolo, & Alzheimer's Disease Neuroimaging, 2011), 

another demonstrated associations between instrumental ADL and grey matter volume in the 

medial temporal lobe, predominantly the hippocampus, and the cingulate cortex (Jutten et al., 

2019). Longitudinal studies in AD patients showed severity of atrophy in the hippocampus is 

correlated with deterioration of ADL deficits after one year (Choi et al., 2018), and baseline 

temporal atrophy predicts worsening of instrumental ADL function (Marshall et al., 2014). Both 

hippocampal and grey matter loss have been associated with a rapid decline in instrumental 

ADL function in AD (Cahn-Weiner et al., 2007; Slachevsky et al., 2019). A separate study only 

indirectly examined ADL and hippocampal atrophy; they found that in early AD, impaired 

cognition led to impaired ADL, attributing this to reductions in grey matter in the temporal and 

parietal cortices (Vidoni, Honea, & Burns, 2010).  

As the current study sample only included non-demented PD patients, ADL impairment 

assessed with the FAQ was most likely at a mild stage and not severe enough to show negative 

correlations to hippocampal volume. We also did not examine the correlations separately 
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between PD-CN and PD-MCI patients, to determine whether there was a different association 

between cognition, hippocampal volume, and ADL function. For AD patients, it has been 

postulated that severity of both hippocampal atrophy and instrumental ADL dysfunction merely 

reflects the advanced disease state (Overdorp, Kessels, Claassen, & Oosterman, 2016). It would 

be imperative to separate patients based on cognitive status (PD-CN, PD-MCI, and PDD) in 

future studies. Moreover, it is possible that cross-sectional analyses are less reliable, and 

longitudinal studies are instead needed to determine whether baseline volumes of hippocampal 

atrophy are predictive of decline in ADL function in the long-term. 

 

3.3.6. Limitations of Hippocampal Acquisition, Segmentation, and Analysis 

There are some limitations that need to be addressed. Only a small sample of the study 

cohort were able to undergo MRI evaluation as not all patients are able to obtain MRI scans, 

due to various factors (e.g. implanted metal devices or severity of motor symptoms). This may 

cause inclusion bias and affect the reliability of findings, as more severely affected subjects are 

excluded. However, an important strength of the current study is that a 3 Tesla scanner was 

used, as a higher field strength has been shown to be associated with better segmentation results 

(Kruggel, Turner, Muftuler, & Alzheimer's Disease Neuroimaging, 2010). This scanner was 

also kept consistent over all patients to reduce bias caused by using different machines. 

It is also necessary to note the limitations of the segmentation program used, most 

importantly that it is not based on histological landmarks and therefore definition of the distinct 

subfields may be inaccurate and should be interpreted with caution. The FreeSurfer software is 

not validated against manual segmentation, with a tendency to over-estimate subfield volumes 

(Van Leemput et al., 2009; Wenger et al., 2014; Wolf, Fischer, de Flores, Chetelat, & Fellgiebel, 

2015), yet this is a well-known problem in hippocampal subfield analyses (Iglesias et al., 2015). 

There is great need for a standardized segmentation technique that specifies, for example, 

number of segmented subfields as well as border definitions for segments, as different 

segmentation techniques in previous studies contribute to the variability in study results. 

However, FreeSurfer still provides useful information, and by combining information from T1, 

T2, and Fluid-Attenuated Inversion Recovery (FLAIR) sequences enhances the precise 

identification of hippocampal subfield boundaries.  

Although the study group was predominantly male, we corrected for a possible bias 

towards larger hippocampal size by including the intracranial volume into our correlations. 

Previous studies have also found significant correlations between the hippocampus, disease 
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severity (Apostolova et al., 2012; Bouchard et al., 2008), and age (Apostolova et al., 2010a; 

Camicioli et al., 2003). As motor severity, assessed using the UPDRS-III, and disease duration 

were not significant between cognitive groups in our cohort, disease progression and severity 

as an indicator for differences in hippocampal volume can be excluded. One study found 

hippocampal volume was correlated with age, but not with disease duration, disease onset, 

education, global cognition, or UPDRS-III scores (Apostolova et al., 2010a). We did not look 

at demographic correlations as we were more interested in associations to cognition and CSF 

markers, and therefore cannot exclude the influence of demographic factors. Nonetheless, as 

they were not significant between stratified groups, we chose not to include these potential 

cofounders. Lastly, due to lack of a healthy control group, hippocampal volumes in PD patients 

could not be compared to normal ageing effects.  

Overall, the findings from the third publication add to our understanding of how the 

hippocampus is affected in PD, and how it is associated with CSF biomarkers, cognition, and 

ADL dysfunction. Hippocampal subfields showed significant associations with cognitive 

functions, namely memory, spatial working memory, language, and executive functions, and 

specifically the HATA was able to differentiate between cognitive groups. No substantial 

association was found for CSFAβ42 levels, yet tau levels showed significant associations with 

the subiculum. While further longitudinal studies are urgently needed, structural changes in 

hippocampal subfields may present early risk markers for cognitive progression and 

development of PDD. 

 

3.4. General Research Limitations 

There are some overarching limitations of this thesis that need to be addressed. It is 

important to note that the cross-sectional analysis design of all three studies impedes any 

definitive conclusions as to how the identified risk markers predict cognitive decline and PDD 

development. The large scale of the ABC-PD study disallowed for all factors to be controlled, 

such as test administration by the same neuropsychologist and similar time frames of testing 

for each patient. However, such variables are difficult to control in clinical settings. Moreover, 

there was no post-mortem verification of PD diagnosis, nevertheless participants were seen by 

an experienced neurologist to confirm the diagnosis according to the most recent clinical 

consensus criteria. Patients where a differential diagnosis after study inclusion was given were 

excluded from the analyses. 
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Patients with severe depressive symptoms, as indicated by a Beck-Depression-Inventory 

II (Beck, Steer, & Brown, 1996) score >19 points, were also excluded from analyses in all three 

papers. The reasoning was that severe depression been shown to negatively affect cognition in 

PD (Chagas et al., 2014; Ng, Chander, Tan, & Kandiah, 2015). Presence of major depression is 

also an exclusion factor for the diagnosis of both PD-MCI and PDD (Emre et al., 2007; Litvan 

et al., 2012), which would have made our PD-MCI sample less clear-cut. It would have 

therefore been difficult to determine the relationship between the clinical and structural 

markers, and cognitive function. Moreover, for the second study, a major depressive episode 

would introduce bias into the DASH score, with depression driving a correlation between higher 

DASH scores and worse cognitive performance, driven by severe depression. Naismith and 

Lewis (2011) did not include patients with major depressive disorder defined by the Beck 

Depression Inventory-II values. As one of the aims was to replicate this score in a larger cohort, 

we attempted to keep the set-up of the study as similar as possible, leading to the exclusion of 

patients with major depression. For the third study, it should be noted that hippocampal atrophy 

in PD may result from other factors apart from PDD or PD-related neuropathology. Major 

depression has been shown to negatively influence the size of the hippocampus in the general 

population (van Mierlo, Chung, Foncke, Berendse, & van den Heuvel, 2015). Although our PD 

patients were not clinically depressed at the time of visit, we cannot rule out that a possible 

occurrence of minor depressive symptoms during their lifetime may have had an effect on 

hippocampal volume. 

To diagnose PD-MCI, criteria set forth by the Movement Disorder Society, as well as 

their guidelines for allocating each neuropsychological subtest to a cognitive domain, were used 

(Litvan et al., 2012). Classification in the first two papers was based on the comprehensive 

Level-II criteria, which recommends using at least two tests for each of the five cognitive 

domains. However, the assignment of neuropsychological tests to the specific domains has been 

debated, as certain tests can be sensitive to more than one domain or even have overlapping 

features with other tests (e.g. visuospatial tests include components of attention and executive 

function) (Williams-Gray et al., 2007). Variations between study centers therefore leads to the 

heterogeneity in diagnosing PD-MCI throughout the literature. While we did not conduct a 

factor analysis to determine how each neuropsychological test loads on the five cognitive 

domains, it may be beneficial for future studies, especially within this cohort, to examine this 

and determine whether the Level-II guidelines used are accurate. For the third paper, we only 

used Level-I classification based on the MoCA score, but stratification was supported by 
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between-group differences on both computerized and paper-pencil neuropsychological tests, 

where PD-MCI patients performed significantly worse on measures of attention and language. 

 

4. Conclusion 

The diagnosis of PDD indicates an important milestone of the disease, as it is associated 

with a higher likelihood of a rapid disease progression, reduced quality of life, and mortality. 

Therefore, it is of the utmost priority to identify features and valid assessments that detect 

cognitive impairment in PD at an early stage and can predict development of PDD with high 

accuracy. Distinctive clinical symptoms (ADL impairment and NMS burden) as well as 

structural markers (hippocampal volumes and CSF biomarkers) were examined to determine 

their relationship to cognitive function in non-demented PD patients in the prodromal stage of 

PDD. A combination of ADL impairments and DASH burden as well as a specific cognitive 

profile including deficits in attention, visuo-spatial functions, and language, possibly reflect an 

at-risk group for PDD conversion. Structural changes in hippocampal subfield volumes may 

also present early risk markers for cognitive decline, and our results suggest that the HATA has 

the potential to differentiate cognitive status in PD. Hippocampal atrophy may occur very early 

in the disease course, underlying future cognitive decline and reflecting impaired frontal 

functions evident in early PD. While Ab42 deposition did not reflect cognition, CSF total tau 

levels were associated with hippocampal atrophy, and may present a better progression marker 

for cognitive impairment in PD. 

In conclusion, this thesis emphasizes that examining combinations of dementia risk 

markers can be beneficial for characterizing sub-groups of PD-MCI patients, which would 

allow tailored treatments and therapeutic interventions aimed at delaying cognitive decline and 

maintaining patients’ quality of life for as long as possible. Clinical, structural, and CSF risk 

markers, as well as specific combinations of these factors, showed associations with cognitive 

function in the prodromal stage of PDD. Longitudinal studies are now needed to determine 

whether the groups identified are at high risk for developing dementia, and how the individual 

markers predict cognitive progression.  
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The core criterion for Parkinson’s disease dementia (PDD) is the impairment in activities

of daily living (ADL) function primarily caused by cognitive, notmotor symptoms. There is

evidence to assume that mild ADL impairments in mild cognitive impairment (PD-MCI)

characterize those patients at high risk for dementia. Data of 216 Parkinson’s disease (PD)

patients assessed with comprehensive motor and neuropsychological assessments were

analysed. Based on linear regression models, subscores of the Functional Activities

Questionnaire (FAQ) primarily reflecting patients’ global cognitive status (FAQC) or PD-

related motor severity (FAQM) were developed. A quotient (FAQQ) of both scores was

calculated, with values >1 indicating more cognitive- compared to motor-driven ADL

impairment. Both FAQC and FAQM scores were higher in PD-MCI than cognitively

normal (PD-CN) patients, indicating more severe cognitive- and motor-driven ADL

impairments in this group. One third (31.6%) of the PD-MCI group had a FAQQ score >1,

which was significantly different from patients with PD-CN (p = .02). PD-MCI patients

with an FAQQ score >1 were more impaired on tests assessing attention (p = .019) and

language (p = .033) compared to PD-MCI patients with lower FAQQ values. The
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differentiation between cognitive- and motor-driven ADL is important, as the loss of

functional capacity is the defining factor for a diagnosis of PDD. We were able to

differentiate the cognitive-driven from the motor-driven ADL impairments for the FAQ.

PD-MCI patients withmore cognitive- compared tomotor-driven ADL impairments may

pose a risk group for conversion to PDD and can be targeted for early treatments.

It is becoming increasingly evident that various non-motor symptoms are an integral part

of Parkinson’s disease (PD; Chaudhuri & Martinez-Martin, 2008). The presence and

severity of non-motor symptoms modulate the rate of PD progression with a high impact

on patients’ quality of life (Fereshtehnejad, Zeighami, Dagher, & Postuma, 2017). One

clinical milestone of the disease is the conversion to Parkinson’s disease dementia (PDD),

increasing the risk for nursing home placement and mortality (Bjornestad, Pedersen,
Tysnes, & Alves, 2017).

Parkinson’s disease dementia is a frequent non-motor symptom especially in later

stages of the disease (Jellinger, 2013). One of the greatest risk factors for PDD is the

presence of mild cognitive impairment in PD (PD-MCI; Delgado-Alvarado, Gago,

Navalpotro-Gomez, Jimenez-Urbieta, & Rodriguez-Oroz, 2016). However, only 30% of

patients with PD-MCI have been reported to convert to dementia within a short time

period, while others reach a stable cognitive status or revert to normal cognition

(Santangelo et al., 2015). The identification of a high-risk group for PDD among those
with PD-MCI is therefore essential.

The core feature for differentiating PDD from PD-MCI is the loss of the ability to

perform activities that are necessary for independent living (Svenningsson, Westman,

Ballard, & Aarsland, 2012). This decline is typically measured by assessing activities of

daily living (ADL), which can be divided into basic (e.g., self-maintenance skills) and

instrumental functions (e.g., complex skills). To justify the diagnosis of PDD, ADL

disabilities should be primarily caused by cognitive, not motor problems (Marshall et al.,

2015). As PD is primarily a movement disorder, the distinction between motor and non-
motor contributions to ADL in PD is an obvious challenge (Cheon, Park, & Kim, 2015).

There has been limited attention directed towards understanding the relationship

between ADL impairments and cognitive decline in PD (Dubois et al., 2007). Loss of

instrumental ADL functions in some patients precedes cognitive decline and PDD

(Reginold et al., 2012), yet cognition and ADL function might worsen in parallel

(Rosenthal et al., 2010). Little is known about the nature of ADL performance in PD-MCI,

although in some patients with PD-MCI, the first signs of ADL disabilities have been

reported (Glonnegger et al., 2016; Martin et al., 2013; Pirogovsky et al., 2013).
Therefore, mild ADL impairment in PD-MCI may characterize those patients at high risk

for PDD.

In a recent paper, Almeida et al. (2017) modified the Pfeffer Functional Activities

Questionnaire (FAQ), a validated assessment for ADL impairment, to exclude some

questions whichmight pertain tomotor skills. Their data confirmed that the FAQ is a valid

measure for functional impairment in PD. However, as an external validation criterion, an

informant-based questionnaire was used. It is known that caregivers have difficulties

rating whether cognitive or motor impairment contributes to ADL impairment in PD
(Benge&Balsis, 2016). Therefore, the aim of the present studywas to further differentiate

between these two potential causes of ADL impairment in PD and to define a subgroup of

patients with PD-MCI and cognitive-driven ADL impairment. Through a data-driven

approach, we developed new FAQ subscores for the assessment of cognitive- and motor-

driven ADL problems. Furthermore, as we believe PD-MCI patients with more cognitive-
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driven ADL impairments will progress faster to PDD, we hypothesized that these patients

would perform worse on cognitive tests than PD-MCI patients with more motor-driven

ADL impairments.

Materials and methods

Study design and participants

Data were analysed within the frame of the ongoing, single-site ‘Amyloid-Beta in

cerebrospinal spinal fluid as a risk factor for cognitive dysfunction in Parkinson’s Disease’
(ABC-PD) study. Inclusion criteria for the ABC-PD study were: age between 50 and

85 years, diagnosis of PD according to the United KingdomPDBrain Bank (UKBB) criteria

(Hughes, Daniel, Kilford, & Lees, 1992), ability to communicate with the investigator and

understand study requirements (i.e., give informed consent), and no participation in a

medication study 4 weeks prior to examination. Exclusion criteria included diagnosis of

PDD according to the ICD-10, any disability or other neurodegenerative diseases

preventing the participant from giving informed consent, deep brain stimulation, and

current or previous alcohol, drug, or medication abuse (except nicotine). Two hundred
fifty-seven non-demented PD patients who agreed to provide cerebrospinal fluid were

recruited between 31 March 2014 and 31 August 2017. We excluded 41 (16%) patients

due to presence of concomitant neurological diseases (13, 5.1%), signs of major

depression indicated by the Beck-Depression Inventory-II Score >20 points (24, 9.3%),

previous alcohol abuse (2, 0.8%), and incomplete motor data (2, 0.78%). A total of 216 PD

patients were included in the final analyses.

The study was approved by the local ethics committee, and all patients gave written

informed consent.

Assessments

Demographic variables, including age, sex, age of onset, and disease duration, were

assessed for each patient. Medication intake was collected, including the daily dose of all

dopamimetics expressed by the levodopa-equivalent daily dose (LEDD; Tomlinson et al.,

2010). Motor function was assessed using the Unified Parkinson’s Disease Rating Scale
Part III (UPDRS-III) including the modified Hoehn & Yahr scale (Goetz et al., 2008).

Neuropsychological assessment

Global cognitive status was assessed using the Montreal Cognitive Assessment (MoCA;

Nasreddine et al., 2005). Additionally, patients underwent a comprehensive neuropsy-

chological battery, including theGerman version of the Consortium to Establish a Registry

for Alzheimer’s Disease (CERAD-PLUS) battery (Fillenbaum et al., 2008); the Similarities,
Digit Symbol Test, and Letter-Number-Sequencing subtests of the Wechsler Intelligence

Test for Adults (WIE; Aster, Neubauer, & Horn, 2006), and the Recognition of Incomplete

Words (subtest 12) from the Leistungspr€ufsystem (LPS) 50+ (Sturm, Willmes, & Horn,

1993). Raw cognitive test scores were converted to age-corrected (WIE and LPS 50+) and

age- and education-corrected (CERAD-PLUS) z-scores. For the final analyses, z-scoreswere

averaged over each cognitive domain to provide composite domain scores. Each cognitive

subtest was assigned to one of the following five cognitive domains: executive functions,

attention/working memory, memory, language, and visuo-constructive abilities. Table S1
shows theallocationof eachneuropsychological subtest to its cognitivedomain,witheach
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domain includingat least twomeasures.PatientswerediagnosedwithPD-MCIaccordingto

the Level-II recommendations of the Movement Disorder Task Force if impairment was

present in at least two tests (1.5 standard deviations below norm population), but was not

yet potent enough to interfere severely with ADL function, as verified through a
personalized interview with the patients and/or caregivers (Litvan et al., 2012). PD

patients who did not meet these criteria were classified as cognitively normal (PD-CN).

ADL assessment

The Pfeffer Functional Activities Questionnaire, a subjective questionnaire consisting of
10 items, was used to assess instrumental ADL (Pfeffer, Kurosaki, Harrah, Chance, & Filos,

1982). The ability to perform each item is rated from 0 to 3 (0 = normal or never did but

could do now; 1 = has difficulty but does by self or never did but would have difficulty

now; 2 = requires assistance; 3 = dependent), for a total impairment score of 30 points.

If a caregiver (a spouse, child, close friend, or other informant that was specified further)

was not available, we asked the patients to fill out the FAQ themselves.

The FAQ is one of the most commonly used scales in research on pathological ageing

and dementia and has been translated into a number of different languages (Assis Lde, de
Paula, Assis, de Moraes, &Malloy-Diniz, 2014; Bezdicek, Stepankova, Martinec Novakova,

& Kopecek, 2016; Cruz-Orduna et al., 2012; Sanchez, Correa, & Lourenco, 2011).

Although the FAQ is an indirect measure of ADL function (based on self- and informant

reports of dysfunctions), the questionnaire shows promising sensitivity and specificity for

discriminating between non-impaired and demented subjects (85–98% and 71–91%,

respectively; Teng et al., 2010).

Statistical analyses

Study data were collected and managed using REDCap electronic data capture tools

hosted at the Hertie Institute for Clinical Brain Research (Harris et al., 2009). Statistical

analyses were performed using SPSS version 24 (SPSS Inc, Chicago, IL, USA), and all a-

levels were set at 0.05. Assumptions of normalitywere tested using the Shapiro–Wilk test.

Demographic variables were examined using the nonparametric Pearson chi-squared test
or Mann–Whitney U-test as appropriate, except for the normally distributed UPDRS-III

total score, which was analysed using an independent-samples t-test. A separate chi-

squared test was performed to examine the relation between cognitive group (PD-CN and

PD-MCI) and who filled out the FAQ. The FAQ reporter was categorized as either

subjective (patient) or objective (spouse, child, close friend, or other informant).

In the first part of the analysis (part 1), the FAQ subscores and the quotient were

constructed, by differentiating the cognitive and motor aspects of the FAQ items. Ten

linear regressions were conducted, with each FAQ item as the dependent variable, the
MoCAandUPDRS-III scores as independent variables, and age, sex, anddisease duration as

covariates. Based on the items that were primarily associated with the cognitive aspect

(FAQC, predicted by theMoCA score in the regressionmodel), a subscore of the FAQ scale

was built and put in relation to those items that were primarily associated with the motor

aspect (FAQM, predicted by the UPDRS-III score), as detailed in the results section. The

quotient (FAQQ) was then calculated from these two subscores, with scores >1 showing

more cognitive- compared to motor-driven ADL impairment, and scores <1 describing

moremotor- compared to cognitive-driven ADL impairment. Additionally, nonparametric
correlations between each UPDRS-III item and the FAQ subscores were conducted.
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In a second step (part 2), three binary logistic regressionswere conducted to compare

theperformances of PD-MCI and PD-CN, for eachof the newFAQsubscores (FAQC, FAQM,

and FAQQ), while correcting for group differences in UPDRS-III and LEDD scores.

For the third step (part 3), the groupof PD-MCI patientswas divided into those patients
that had an FAQQ >1 (PD-MCIQ>1) indicating more cognitive- compared to motor-related

ADL impairment, and those with an FAQQ ≤1 (PD-MCIQ≤1), showing more motor-

compared tocognitive-drivenADL impairment.Abinary logistic regressionwasconducted

to identifywhichclinicalparameters independentlypredict groupclassification, including

all composite domain scores (executive functions, attention/working memory, language,

memory, and visuospatial abilities) as predictors, with all numerical clinical and

demographical variables as covariates. A post hoc Mann–Whitney U-test was conducted

todeterminewhichspecific subtestswere statistically significantbetween the twogroups.

Results

Demographics

Of all 216 PD patients, 89 (41.2%) were diagnosed as PD-MCI and 127 (58.8%) as PD-CN.

Patients with PD-MCI had more severe motor problems as assessed by the UPDRS-III and
Hoehn & Yahr scores, as well as higher LEDD doses, higher FAQ scores, and lower MoCA

scores, indicatingmoresevereADLandglobalcognitive impairment thanthePD-CNgroup.

All other demographic and clinical variables were not statistically different between the

two groups (see Table 1 for details). The chi-squared test between cognitive group and

FAQ reporter (subjective vs. objective) was not significant X2 (1, N = 216) = 1.896,

p = .213.

Part 1: Construction of FAQ quotient

Table 2 gives an overview ofwhether each individual FAQ itemwasmore associatedwith

the UPDRS-III orwith theMoCA. Item 7 showed a significant relationship to both tests and

was included in both the FAQC and FAQM. In contrast, item 8 was not found to be

associatedwith either theMoCAor theUPDRS-III andwas therefore included as a constant

in both subscores. For item 5, the linear regression model was not stable when including

all three covariates, so the model was recalculated after excluding disease duration and

sex, to create a more stable model.
Basedontheregressionsconducted, thesetof itemsforthecognitiveaspectwasdefined

as Scog ¼ 1; 2; 7; 8; 9, while the set of items for the motoric aspect was defined as

Smot ¼ 3; 4; 5; 6; 7; 8; 10. If si denotes the score obtained in item i for a patient and si,max

denotes themaximumscorepossible for item i, then theFAQC for eachpatient is definedas

FAQC ¼

X

i�Scog

si

si;max

and the FAQM for each patient is defined as

FAQM ¼

X

i�Smot

si

si;max
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FAQQ: The quotientwas formedby dividing the cognitive aspect by themotoric aspect

(after adding the constant of 1 to avoid divisions by zero).

FAQQ ¼
FAQC þ 1

FAQM þ 1

The FAQC was significantly correlated to the speech, facial expression, rigidity of the
neck, arising from chair, gait, freezing of gait, postural stability, posture, and body

bradykinesia UPDRS-III items (p < .042). The FAQM was significantly correlated to all

individual UPDRS-III items, except for the tremor items (p < .030 for all significant

correlations). The FAQQwas significantly correlated to the following UPDRS-III items: left

finger tapping, right and left handmovements, right and left rapid alternatingmovements,

right and left leg agility, arising from chair, gait, freezing of gait, and body bradykinesia

(p < .046). For more details, please see Table S2.

Part 2: Comparison of the clinical profile of PD-CN and PD-MCI

Using the formulas mentioned above, the FAQC and FAQM subscores, as well as the FAQQ,

were calculated. PD-MCI patients had higher values on both the FAQC (PD-CN:

Median = 0.0, 0–0.40; PD-MCI: Median 0.0, 0–0.67; p = .022) and the FAQM (PD-CN:

Median = 0.0, 0–0.52; PD-MCI: Median = 0.05, 0–0.71; p = .005) scores, indicating more

impaired ADL functions compared to PD-CN patients. The FAQQ also differentiated

significantly between the two groups (PD-CN: Median = 1.00, 0.84–1.22; PD-MCI:

Median = 1.00, 0.75–1.28; p = .032). In total, 32.6% of PD-MCI compared to 17.3% of PD-
CN patients showed an FAQQ score >1 (p = .02).

Table 1. Demographic and clinical characteristics of the population

Total sample

N = 216

PD-CN

n = 127

PD-MCI

n = 89 p-value

Male gender: n (%) 140 (64.8) 83 (65.4) 57 (64) .89

Age (years) 66.2 (48.1–83.7) 66.0 (48.1–79.9) 67.6 (50.6–83.7) .06

Education years 13 (8–21) 13 (8–21) 12 (8–21) .19

Age at onset (years) 60.7 (36.4–79.5) 60.3 (36.4–77.6) 61.2 (45.5–79.5) .25

Disease duration years 3.9 (0–18.4) 3.7 (0.1–18.4) 4.9 (0–15.4) .11

LEDD 494.3 (0–1,574) 422.5 (0–1,574) 560 (0–1,380) .006*

UPDRS-III (0–108) 25 (1–56) 22 (1–56) 29 (3–52) .002*

Hoehn &Yahr: n (%) .004*

1 29 (13.4) 21 (16.5) 8 (9)

2 122 (56.5) 79 (62.2) 43 (48.3)

3 64 (29.2) 26 (20.5) 37 (41.6)

4 2 (0.9) 1 (0.8) 1 (1.1)

BDI-II score (0–20) 7 (0–19) 6 (0–19) 7 (0–19) .15

MoCA (0–30) 26 (16–30) 27 (18–30) 25 (16–30) <.001*

FAQ score (0–30) 0 (0–21) 0 (0–14) 2 (0–21) <.001*

Notes. Results are expressed as Median (Range), except where noted; asterisks denote statistically

significant differences (p < .05).

BDI-II, Beck-Depression Inventory-II; FAQ, Functional Activities Questionnaire; LEDD, levodopa-

equivalent daily dose; MoCA, Montreal Cognitive Assessment; PD-CN, Parkinson’s disease with no

cognitive impairment; PD-MCI, Parkinson’s disease with mild cognitive impairment; UPDRS-III, Unified

Parkinson’s Disease Rating Scale-III.
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Part 3: Cognitive profile of PD-MCI patients with and without cognitive-driven ADL

impairment

Of all 89 PD-MCI patients, 29 (32.6%) had FAQQ values >1, and 60 (67.4%, PD-MCIQ≤1

scored below this cut-off. The frequency of males was comparable between both PD-MCI

subgroups (PD-MCIQ≤1 63.3%, PD-MCIQ>1 65.5%; p = 1.0). Among the PD-MCIQ≤1 group,

6 (10.0%) patients had a Hoehn & Yahr Stage of 1, 29 (48.3%) of 2, 24 (40.0%) of 3 and 1

(1.7%) of 4, compared to 2 (6.9%); 14 (48.3), 13 (44.8), and no patients of the PD-MCIQ>1

group, respectively. Logistic regression analyses showed that PD-MCIQ>1 was more
impaired in tests assessing attention/working memory (p = .033) and language perfor-

mance (p = .019) than the PD-MCIQ≤1 group (see Table 3 and Figure 1), while motor

symptom severity was not statistically different between groups (p = .095). The post hoc

Mann–Whitney U-test revealed the z-scores of the Digit Symbol Test (p = .025) and the

Boston Naming Test (p = .019) from the attention/working memory and language

domains, respectively, were significantly different between both PD-MCI groups.

Discussion

In PD, cognitive decline and dementia are often experienced as more disabling than the

motor symptoms, and further contribute to caregiver distress and nursing home

placement (Aarsland, Larsen, Karlsen, Lim, & Tandberg, 1999). There is a need for the

identification of prodromal markers to diagnose PDD at an early stage and start

appropriate treatment as soon as possible, to maintain patients’ quality of life and their
independence from caretakers. We show that even PD-MCI patients can already exhibit

mild impairments in ADL and that these patients exhibited stronger deficits in the

cognitive domains attention and language than PD-MCI patients without any ADL

impairment. This combination may identify a subgroup of PD patients at particularly high

risk for subsequent conversion to PDD.However, as thiswas an exploratory analysis using

cross-sectional data and non-demented PD patients, further longitudinal studies are

needed to examinewhether this particular groupwill indeed progress to dementia faster.

Table 2. Association of each FAQ item with cognitive and motor status

FAQ item Median (Range)

MoCA UPDRS-III

b-weight p-value b-weight p-value

1: Accounting and finances 0.00 (0–3) �0.21 .007* 0.04 .56

2: Tax and business records 0.00 (0–3) �0.26 <.001* 0.04 .60

3: Shopping alone 0.00 (0–3) 0.01 .91 0.30 <.001*

4: Skills and hobbies 0.00 (0–3) �0.02 .79 0.30 <.001*

5: Using appliances 0.00 (0–2) �0.02 .76 0.18 .01*

6: Meal preparation 0.00 (0–3) �0.07 .35 0.19 .008*

7: Tracking current events 0.00 (0–2) �0.20 .007* 0.24 .001*

8: Information uptake 0.00 (0–3) �0.14 .07 0.13 .07

9: Remembering important events 0.00 (0–3) �0.17 .02* 0.09 .23

10: Travelling out of house 0.00 (0–3) �0.12 .11 0.15 .04*

Notes. Asterisks denote statistically significant differences (p < .05).

FAQ, Functional Activities Questionnaire; MoCA, Montreal Cognitive Assessment; UPDRS-III, Unified

Parkinson’s Disease Rating Scale-III.
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For this approach, we used the FAQ, which was divided into two subscores, the FAQC

and the FAQM, to differentiate cognitive- and motor-driven aspects of ADL function.

Contrary to the approach by Almeida et al. (2017), we chose to include all FAQ items in

our analyses and separate the cognitive and motor contributions using a data-driven

analysis. Their approachwas theory-driven by validating theirmodified FAQ and its cut-off

using a separate, informant-based questionnaire assessing ADL impairment changes over

2 years, instead of using motor and cognitive scales as validation. Our results suggest that

separating the FAQ itemsmore correlated to cognitive aspects from thosemore correlated
to motoric aspects can help to identify patients that present with cognitive-driven ADL

dysfunctions. Furthermore, our approach was data-driven, as we derived the individual

subscores from our patient data, as well as validated using a variety of motor assessments

and cognitive tests.

We took into account the associations between the UPDRS-III items and each of the

FAQ subscores by examining the correlations between all variables. There were strong

associations between the FAQM and all UPDRS-III items except tremor, which were to be

expected as the FAQMmeasuresmotor-relatedADL impairment. Correlations between the
FAQC and theUPDRS-III scores show the following pattern: strong positive correlations to

the items arising from chair, gait, freezing of gait, postural stability, posture, and body

bradykinesia. Studies have confirmed that cognition is associated with the postural

instability/gait disturbance (PIGD) phenotype; in particular, that poorer cognitive

performance and a higher risk for conversion to PDD are associated to gait impairments,

freezing of gait, and postural instability (Kelly et al., 2015; Williams-Gray, Foltynie,

Figure 1. Clustered box-and-whisker plots for each cognitive domain representing the cognitive-driven

(PD-MCIQ>1) and motor-driven (PD-MCIQ≤1) ADL subgroups of all PD-MCI patients; boxes represent

the interquartile range and whiskers denote the minimum and maximum.
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Brayne, Robbins, & Barker, 2007). In our sample, the FAQC was positively correlated to

these PIGD items so that higher cognitive ADL impairment denoted a higher PIGD-related

motor impairment. The FAQQ showed significant negative associations to some of the

PIGD items, as well as agility of both the hands and the legs. We would expect this
direction, as a higher FAQM denotes a smaller motor component. Further longitudinal

studies are needed to investigate the predictive value of the FAQ scores for motor and

cognitive worsening and PDD.

Examining the subscores FAQC and the FAQM, we found that bothweremore severely

impaired in patients with PD-MCI than PD-CN. In our sample, around 30% of PD-MCI

patients had more problems with ADLs associated to cognitive, rather than to motor

problems. Previous longitudinal studies have indicated similar percentages of PD-MCI

patients who converted to PDD: Broeders et al. (2013) found that 26% of PD-MCI patients
converted after a 5-year follow-up, while Pedersen, Larsen, Tysnes, and Alves (2017)

found that 39.1% of patients with baseline or incident PD-MCI progressed to dementia

within 5 years. In a newly diagnosed PD cohort, around 33% showed cognitive decline

within 3 years from the baseline visit (Lawson et al., 2017). PD-MCI patients with mild

ADL deficits may correspond to a group at risk for PDD conversion.

To date, very little attention has been directed towards understanding ADL

performance in PD-MCI patients, with most studies focusing solely on patterns of

cognitive loss, rather than functional changes, in this group. We showed that PD-MCI
patients with more cognitive-driven ADL impairments had greater deficits in attention/

working memory domains, as well as in the language domain. Bronnick et al. (2006)

showed that for PDD patients, attentional dysfunction is a primary factor associated with

functional impairment. Attention contributed to ADL skills evenwhen controlling for age,

sex, educational level, and motoric functions. A study by Bezdicek et al. (2016) found

that, in healthy older adults, the FAQ was dependent on both age and education, but not

on gender. In our sample, attention contributed to ADL skills even when controlling for

age, sex, educational level, and motoric functions. Recent studies have also shown
attention deficits in PDD, highlighting attention deficits as a possible marker for

conversion to PDD in PD-MCI (Biundo et al., 2014; Miura, Matsui, Takashima, & Tanaka,

2015; Pedersen, Larsen, Tysnes, & Alves, 2013). Other studies have demonstrated that

language problems arise in the transition to dementia, with patients presenting problems

understanding and producing language, together with impaired sentience comprehen-

sion (Bastiaanse & Leenders, 2009). These findings are reflected in our cohort of PD-MCI

patients with cognitive-driven ADL dysfunctions.

It is possible that a specific profile of cognitive impairment combined with mild
impairments in ADL function could contribute to faster cognitive decline resulting in

PDD. Research shows that patients experience limitations in functional capacity early in

the disease course, and report having difficulty with instrumental ADL (Foster & Hershey,

2011). They specifically show deficits in the performance of cognitive-loaded instrumen-

tal ADLs, and later cognitive decline more predominantly affects their ability to perform

these functions (Brennan et al., 2016). Mild cognitive impairment coupled with mild

cognitive-driven ADL dysfunctions may pose as a risk factor for faster conversion to PDD,

an association which further longitudinal studies should examine.
When specifically examining PD-MCI patients, it becomes evident that they not only

have higher scores on the FAQC, but also on the FAQM, compared to PD-CN patients.

Previous literature has shown an association between cognitive dysfunction and higher

motor symptoms, with patients who developed PDD declining more in motor functions

than patients who did not develop dementia (Domellof, Ekman, Forsgren, & Elgh, 2015).
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Motor symptom worsening does not imply cognitive decline in PD, however increasing

cognitive impairment is associated with higher PD severity (Lawson et al., 2014). Higher

scores on the FAQM can therefore be explained by the progressive nature of the disease

and by the severity of motor symptoms as a risk factor for PDD development. As PD-MCI
patients did not have a longer duration of illness, it can be stated that their symptoms, both

motor and cognitive, are more severe than PD-CN patients.

Limitations

There are a few limitations to this study that need to be mentioned. The first is the cross-

sectional design of the study,which does not allow us to followpatients over time to track

cognition and gain information about possible cognitive decline. However, as this was
intended as an exploratory analysis to identify a possible risk group for PDD, the cross-

sectional nature of the data is justified. As already stated, additional longitudinal studies are

still needed to confirm whether this specific group is at risk for subsequent PDD

development. The second limitation is that only patientswho agreed to a lumbar puncture

were included in the ongoing study, which potentially biases the study group. A further

limitation is the small sample size for the PD-MCIQ>1 group, despite the large sample size

for the total PD-MCI group. However, as we expect these patients to progress faster to

PDD,we assumed from the start that thiswould be a small sample group, the size ofwhich
is comparable to previous literature. It is also important to note that the existing

assessments used to measure ADLs were all developed for Alzheimer’s disease and not for

PD; however, our aim was to validate one of these questionnaires for use in PD. In recent

years, specific questionnaires have been developed to assess ADL function in PD patients,

such as the Parkinson’s Disease Activities of Daily Living Scale (Hobson, Edwards, &

Meara, 2001), the Parkinson Disease Cognitive Functional Rating Scale (Kulisevsky et al.,

2013), and the Penn Daily Assessment Questionnaire (Brennan et al., 2016). To the

author’s knowledge, these specific scales have not been translated into many different
languages,which is an important aim for future research. As the FAQ is one of the fewADL

scales that has been translated into multiple languages for use in other countries, we

believe that by using the FAQ, our results can be applicable to various cohorts. However,

the FAQ itself is, as already stated, an indirect measure of ADL function and has been

shown to be dependent on age and education level in healthy adults (Bezdicek et al.,

2016). In healthy adults, more deficits were found in ADL function with increasing age,

possibly reflecting an age-related decline in speed of processing. However, our binary

logistic regression analysing the PD-MCI groups with and without ADL impairments
included age and education as covariates, to control for their potential influence. We can

therefore assume that our results are independent of these two factors and greater

impairment, especially in the attention domain, is not mediated by age-related ADL

worsening or reduced speed of processing. Another limitation is that we constructed the

FAQ subscores and Quotient in one cohort and have not validated it in a separate,

independent cohort. Future cross-sectional and longitudinal studies could validate these

scores. Lastly, an important limitation is that instead of a performance-based measure, a

self-/informant-based reportwas used,which canhave various forms of bias including lack
of insight or emotional factors, leading to over- as well as underestimation of actual

abilities (Shulman et al., 2006). It is furthermore possible that ADL impairments were

over-reported in this study, as patients or informants could have given the highest score

for some items based onmotor abilities, and not cognition.However, aswewere aiming to
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disentangle these two factors (cognitive and motor aspects of ADL), we did not take this

further into account.

Conclusion

The differentiation between cognitive- and motor-driven ADL is important, as the loss of

functional capacity is the defining factor for a diagnosis of PDD. PD-MCI has been shown

to be a risk factor for subsequent PDD; however, there are no clear progressionmarkers to

identify patients who will develop dementia. Using a validated ADL assessment

questionnaire, the FAQ, we were able to differentiate the cognitive-driven from the

motor-drivenADL impairments in a cohort of non-demented PDpatients. PD-MCI patients

with more cognitive- compared to motor-driven ADL impairments may pose a risk group
for conversion to PDD and can be targeted for early treatments. Future longitudinal

studies are still needed to confirm that this particular group is at a higher risk for

developing subsequent PDD than those patients without mild impairments in ADL

function.
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Supporting Information

The following supporting informationmay be found in the online edition of the article:

Table S1. List of neuropsychological tests and corresponding cognitive domains for

the diagnosis of Parkinson’s disease patients withmild cognitive impairment (PD-MCI)

versus cognitively normal (PD-CN).

Table S2. Correlations between individual UPDRS-III items and FAQ sub-scores.
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Supplementary Table 2: Correlations between individual UPDRS-III items and FAQ sub-
scores 
UPDRS-III Item FAQC FAQM FAQQ 

rs p-value rs p-value rs p-value
1. Speech 0.16 0.016* 0.22 0.001* -0.08 0.25 
2. Facial Expression 0.15 0.029* 0.19 0.0046* -0.02 0.81 
3. Rigidity Neck 0.14 0.042* 0.22 <0.001* -0.06 0.36 
3. Rigidity RUE 0.07 0.33 0.15 0.030* -0.04 0.57 
3. Rigidity LUE 0.07 0.32 0.16 0.021* -0.06 0.41 
3. Rigidity RLE 0.11 0.099 0.25 <0.001* -0.06 0.39 
3. Rigidity LLE 0.13 0.053 0.26 <0.001* -0.10 0.14 
4. Finger Tapping R 0.06 0.40 0.17 0.013* -0.12 0.08 
4. Finger Tapping L 0.02 0.74 0.20 0.003* -0.22 <0.001*
5. Hand Movements R 0.03 0.64 0.16 0.017* -0.14 0.034*
5. Hand Movements L 0.004 0.95 0.20 0.003* -0.25 <0.001*
6. Rapid Alternating Movements R 0.03 0.70 0.17 0.013* -0.14 0.039*
6. Rapid Alternating Movements L 0.02 0.79 0.23 <0.001* -0.22 <0.001*
7. Foot Tapping R 0.08 0.27 0.14 0.037* -0.04 0.52 
7. Foot Tapping L 0.07 0.34 0.17 0.012* -0.10 0.13 
8. Leg Agility R 0.10 0.15 0.27 <0.001* -0.14 0.046*
8. Leg Agility L 0.09 0.19 0.23 <0.001* -0.16 0.022*
9. Arising from Chair 0.28 <0.001* 0.43 <0.001* -0.15 0.028*
10. Gait 0.15 0.029* 0.29 <0.001* -0.15 0.03*
11. Freezing of Gait 0.22 0.001* 0.35 <0.001* -0.17 0.014*
12. Postural Stability 0.22 0.001* 0.28 <0.001* -0.07 0.33 
13. Posture 0.19 0.006* 0.24 <0.001* -0.04 0.56 
14. Body Bradykinesia 0.18 0.01* 0.32 <0.001* -0.15 0.028*
15. Postural Tremor RUE -0.03 0.72 -0.04 0.52 0.057 0.41 
15. Postural Tremor LUE 0.11 0.11 0.30 0.66 0.11 0.12 
16. Kinetic Tremor RUE 0.06 0.37 0.05 0.47 -0.02 0.75 
16. Kinetic Tremor LUE 0.11 0.11 0.05 0.43 0.10 0.15 
17. Rest Tremor RUE -0.07 0.32 -0.09 0.17 0.007 0.92 
17. Rest Tremor LUE 0.04 0.53 0.10 0.88 0.073 0.29 
17. Rest Tremor RLE -0.03 0.63 -0.05 0.47 0.033 0.62 
17. Rest Tremor LLE -0.04 0.54 0.001 0.99 -0.10 0.89 
17. Rest Tremor Lip/Jaw -0.03 0.65 0.04 0.58 -0.01 0.88 
18. Constant of Rest Tremor -0.09 0.17 -0.10 0.13 0.032 0.66 
Note. Asterisks denote statistically significant differences (p<0.05); FAQ, Functional 
Activities Questionnaire; FAQC, cognitive sub-score of the Functional Activities 
Questionnaire; FAQM, motor sub-score of the Functional Activities Questionnaire; FAQQ, 
quotient of the cognitive and motor sub-scores of the Functional Activities Questionnaire; L, 
left; LLE, left lower extremity; LUE, left upper extremity; R, right; RLE, right lower 
extremity; rs, Spearman’s rho; RUE, right upper extremity; UPDRS-III, Unified Parkinson’s 
Disease Rating Scale-III 
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Abstract 

Objective 

In Parkinson’s disease (PD), non-motor symptoms (NMS) considerably influence disease 

progression and cognitive decline. Depression, anxiety, sleep disturbances and hallucinations 

(DASH), may indicate a risk for dementia (PDD). Mild impairments in activities of daily living 

(ADL) caused by cognitive dysfunction are also present in the prodromal stage of PDD. The 

association of both factors has been sparsely investigated. Aim was to evaluate these specific 

NMS in a large non-demented PD cohort and their co-occurrence with cognitive dysfunction 

and ADL impairments.  

Methods 

Data of 226 PD patients was analyzed. Using corresponding items, two DASH scores 

were constructed from the NMS-Scale and Parkinson’s Disease Questionnaire (PDQ-39). 

Correlations between DASH scores and PDD risk factors were examined. PD patients with mild 

cognitive impairment (PD-MCI) were additionally split into patients with low and high DASH 

burden, the latter group additionally stratified by presence of cognitive-driven ADL 

impairment. 

Results 

DASH-NMS scores differed significantly between PD-MCI and cognitively normal (PD-

CN) patients (p=0.04), while the DASH-PDQ did not (p=0.73). The only significant predictor 

of the DASH-NMS score was cognitive-driven ADL (p=0.01). PD-MCI patients with a high 

DASH burden and more cognitive ADL impairment presented with worse global cognition than 

patients with a low burden (p=0.045). 

Conclusion 

Our results show that the DASH-NMS is superior to the DASH-PDQ score, related to the 

severity of cognitive impairment, and strongly influenced by cognitive-driven ADL 
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impairment. Presence of DASH symptoms and cognitive-ADL in PD-MCI patients may define 

a risk group for PDD conversion. 

Keywords: Activities of daily living; Cognitive Dysfunction; Neuropsychological Tests; Non-

motor symptoms; Parkinson’s disease 

Key Points 

Question: A key research priority in Parkinson’s disease is the identification of risk 

factors that can predict cognitive decline and conversion to dementia. 

Findings: The present study suggests that a specific burden of nonmotor symptoms in 

combination with cognitive-driven activity of daily living impairment is related to more severe 

cognitive impairment in Parkinson’s Disease. 

Importance: This association may be able to characterize a group at risk of developing 

Parkinson’s Disease dementia within a short time period. 

Next Steps: Longitudinal studies are now needed to determine progression of these factors 

and their suitability for assessing conversion to dementia in Parkinson’s disease. 
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Association of cognitive ADL function and non-motor burden in non-demented Parkinson’s 

Disease patients 

Non-motor symptoms (NMS) in Parkinson’s disease (PD) considerably influence 

patients’ quality of life (Bonnet, Jutras, Czernecki, Corvol, & Vidailhet, 2012) and are often 

reported as more disabling than motor symptoms (Chaudhuri & Martinez-Martin, 2008). 

Almost all patients present with at least one NMS during the disease course (Barone et al., 

2009), with some of the most common symptoms including: depression, sleep problems, 

apathy, anxiety, fatigue, visual disturbances, and cognitive symptoms (McKinlay et al., 2008). 

As NMS tend to increase in terms of occurrence and severity in PD and can manifest several 

years before motor disability (Berg et al., 2015), it is important to monitor their severity during 

the disease course. 

Cognitive impairments are some of the most commonly reported NMS (Munhoz, Moro, 

Silveira-Moriyama, & Teive, 2015), with 80% of PD patients progressing from normal 

cognition (PD-CN), to mild cognitive impairment (PD-MCI) and Parkinson’s disease dementia 

(PDD) (Aarsland, Andersen, Larsen, Lolk, & Kragh-Sorensen, 2003). Recognition and 

diagnosis of PDD is essential, as it is associated with shorter life expectancy, and contributes 

to significant caregiver distress and nursing home placement (Aarsland, Larsen, Karlsen, Lim, 

& Tandberg, 1999; Marder et al., 1991). The defining feature of dementia is the loss of the 

ability to perform activities that are necessary for independent living (activities of daily living, 

ADL) (Desai, Grossberg, & Sheth, 2004). It has been proposed that mild cognitive ADL 

dysfunction already occurs in a subgroup of PD-MCI patients, potentially characterizing those 

at high risk for PDD (Becker et al., 2018; Beyle et al., 2018). 

Presence of PD-MCI and older age are the most established risk factors for PDD, others 

include disease duration and severity of motor symptoms (Anang et al., 2014). Recently, NMS 

associated with cognitive impairment have been further explored. Two studies found the NMS 

depression, apathy, anxiety, and hallucinations are most commonly associated with PD-MCI 



ADL and NMS burden in PD 

 B–6 

(Aarsland et al., 2007; Delgado-Alvarado, Gago, Navalpotro-Gomez, Jimenez-Urbieta, & 

Rodriguez-Oroz, 2016) while another described the symptoms of depression, sleep disorders, 

apathy and anxiety as associated with the presence of mild cognitive impairment (Monastero, 

Di Fiore, Ventimiglia, Camarda, & Camarda, 2013). Naismith and Lewis (2011) examined a 

specific constellation of NMS and their relation to cognitive impairment: depression, anxiety, 

sleep disturbances, and hallucinations, summed into a “DASH” score. In their study with 53 

non-demented patients, greater severity of DASH symptoms was strongly associated with 

poorer executive function. They therefore suggested that increased severity of these symptoms 

have the potential to detect cognitive decline in PD.  

It is important to note that PD-MCI is a heterogeneous concept. Some patients progress 

to PDD, others remain cognitively stable, and some even revert back to PD-CN (Lawson et al., 

2017). This highlights the importance of identifying markers that characterize a group at risk 

for progression to PDD. Possible and probable prodromal PD is defined as an accumulation of 

risk and prodromal markers associated with a higher likelihood of disease onset (Berg et al., 

2015). Analogous to this concept, we evaluated whether combinations of PDD risk markers are 

more common in PD-MCI and associated with lower cognitive function. Impairments in 

cognition and ADL function, and presence of behavioral features are independently necessary 

for the diagnosis of dementia (Emre et al., 2007); therefore examining their interaction may 

propose a potential risk group for PDD development. 

The overall purpose of this study was to evaluate specific NMS (the DASH score) and 

their co-occurrence with cognitive impairment and cognitive ADL dysfunction. The first aim 

was to evaluate the DASH score devised by Naismith and Lewis (2011) and replicate their 

results in a large cohort of non-demented PD patients. To examine the efficacy and 

generalizability of their score, we constructed a second DASH score using NMS-Scale items, 

as detailed below. A second aim was, on a cross-sectional level, to examine the association of 

both DASH scores to other known risk factors for PDD, specifically presence of PD-MCI and 



ADL and NMS burden in PD 

B–7 

mild cognitive-driven ADL impairment. Additionally, the association of DASH scores and 

ADL impairment was examined only in the PD-MCI group, to determine whether a specific 

accumulation of prodromal symptoms is associated with lower cognitive function. 

Methods 

Study design and participants 

Data were analyzed as part of the “Amyloid-Beta in cerebrospinal spinal fluid as a risk 

factor for cognitive dysfunction in Parkinson’s Disease (ABC-PD)” study. Patients were 

included in the study if they: had a definite diagnosis of PD according to the United Kingdom 

PD Brain Bank criteria (Hughes, Daniel, Kilford, & Lees, 1992), were between 50-85 years, 

were able to give informed consent, agreed to a lumbar puncture, did not have a diagnosis of 

PDD or concomitant diseases affecting cognition, deep brain stimulation or previous alcohol or 

drug abuse. The study was approved by the local Ethics Committee; all patients gave written 

informed consent. 

Between April 2014 and April 2018, 255 non-demented patients were recruited. Twenty-

nine patients were excluded [major depression indicated by the Beck-Depression Inventory-II 

Score ≥20 points (25, 9.8%) and incomplete data (4, 1.6%)] for a total of 226 PD patients in the 

final analyses. 

Assessments 

Demographics (age, sex, education years, age of onset, and disease duration) were 

assessed for each patient, daily dose of all antiparkinsonian medication was expressed using the 

levodopa equivalent daily dose (LEDD) (Tomlinson et al., 2010). The Unified Parkinson’s 

Disease Rating Scale Part III (UPDRS-III) and Hoehn & Yahr staging were used to assess motor 

severity. All motor and cognitive assessments were performed in the “On” medication state.  

Global cognitive functioning was assessed using the Montreal Cognitive Assessment 

(MoCA) (Nasreddine et al., 2005). All patients underwent a comprehensive neuropsychological 

battery assessing five cognitive domains. Executive functions: semantic and phonemic fluency 
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and Trail Making Test Part B subtests of the Consortium to Establish a Registry for Alzheimer’s 

Disease–Plus Battery (CERAD-PLUS) (Morris, Mohs, Rogers, Fillenbaum, & Heyman, 1988). 

Attention/working memory: Digit-Symbol and Letter-Number-Sequencing subtests of the 

“Wechsler Intelligenztest für Erwachsene” (WIE, intelligence test for adults) (Aster, Neubauer, 

& Horn, 2006; Petermann, 2012). Language: Boston Naming Test from the CERAD-PLUS and 

Similarities subtest of the WIE. Memory: word list learning, recall, and discriminability as well 

as recall of constructional praxis subtests of the CERAD-PLUS. Visuospatial functions: 

constructional praxis subtest from the CERAD-PLUS and fragmented words subtest of the 

“Leistungsprüfsystem 50+” (LPS50+; cognitive test battery for adults aged 50 and above) 

(Sturm, Willmes, & Horn, 1993). CERAD-PLUS raw scores were converted to age- and 

education-corrected z-scores, while raw scores for the WIE and LPS50+ subtests were 

converted to age-corrected z-scores. All reference values, determined in a healthy population, 

were taken from the respective test manual; z-scores were averaged over each cognitive domain 

to provide domain scores. Only z-scores and composite domain scores were used in the final 

analyses. Level-II recommendations of the Movement Disorder Task Force were used to 

classify patients as PD-MCI: impairment (1.5 standard deviation below population norms) 

needed to be present in at least two tests, while ADL function needed to be substantially 

preserved (Litvan et al., 2012). Patients who did not meet these criteria were classified as PD-

CN. 

Instrumental ADL impairment was measured using the Functional Activities 

Questionnaire (FAQ) (Pfeffer, Kurosaki, Harrah, Chance, & Filos, 1982). Cognitive, motor and 

quotient subscores of the FAQ (FAQC, FAQM, and FAQQ, respectively) were calculated for 

each patient, their construction has been described elsewhere (Becker et al., 2018). The FAQC 

was calculated based on FAQ item association to the MoCA (e.g. handling finances and tax 

records, tracking current events, and remembering current events), and the FAQM was based on 

item association to the UPDRS-III (e.g. shopping, playing a game of skill/working on a hobby, 



ADL and NMS burden in PD 

B–9 

traveling out of the neighborhood). The FAQQ divides the cognitive by the motor part with a 

cut-off of 1 distinguishing more cognitive- (>1) from motor-driven (≤1) ADL impairments.  

DASH Score 

For each of the scales described below, a DASH score was built-up using the items 

assessing depression, anxiety, sleep disturbances, and hallucinations (see Table 1), resulting in 

two separate scores based on separate instruments both evaluating the same symptom 

combination.  

The Parkinson’s Disease Questionnaire-39 (PDQ-39) was developed to evaluate the 

impact of PD on the quality of life of patients (Peto, Jenkinson, & Fitzpatrick, 1998). The 

questionnaire is self-reported and consists of 39 items, answered on a scale from 0 (never) to 4 

(always). 

The NMS-Scale is an interview-based tool quantifying a wide range of NMS, with 30 

questions distributed over nine NMS domains (Chaudhuri et al., 2007). Each item can be 

classified with regard to severity (0-3) and frequency (1-4), multiplied to obtain a total score. 

Naismith and Lewis (2011) used PDQ-39 items to construct their DASH score. However, 

as quality of life is not the central issue addressed by the DASH, we chose to construct a second 

DASH score based on the NMS-Scale, which has been developed specifically for the 

assessment of NMS in PD. Items from the NMS-Scale were chosen by the authors based on 

similarity (wording, specific construct measured, number of questions chosen) to the original 

PDQ-39 questions. In the following paper we refer to the scores as the DASH-PDQ and the 

DASH-NMS. As Naismith and Lewis (2011) showed a greater severity of DASH symptoms 

was associated with cognition, we examined severity of symptoms using the DASH burden 

(defined using a median-split). 

Statistical Analyses 

Study data was collected and subsequently managed using REDCap electronic data 

capture tools (Harris et al., 2009). Data analyses were carried out using IBM SPSS version 25 
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(SPSS Inc., Chicago, IL, USA). Assumptions of normality were tested with Shapiro-Wilk tests. 

Data that was not normally distributed was described descriptively by median and 

minimum/maximum, with frequencies shown as percentages. Cross-tables and chi-squared 

tests were calculated for categorical variables while non-parametric Mann-Whitney U tests 

were used for interval variables. Significant demographic variables were included in further 

analyses as covariates. All a levels were set at 0.05. 

Analyses were split into two parts. First, both DASH scores were compared using 

Spearman’s correlation coefficient. Two binary logistic regressions examined the relation 

between cognitive group (PD-CN vs. PD-MCI) and each DASH score, with age, LEDD, and 

UPDRS-III score as cofounders. Spearman’s correlation coefficients were calculated for each 

DASH score, with the MoCA, the five cognitive domain scores, age, LEDD, disease duration, 

and age at onset as covariates. As only the DASH-NMS score was able to differentiate between 

cognitive groups, a post-hoc linear regression was performed with all significant variables from 

the Spearman’s correlation as predictors. 

In the second part, only the PD-MCI subgroup was analyzed. Patients were split 

according to the 50th percentile of the DASH-NMS. A Mann-Whitney-U test was performed 

between these two groups, the MoCA, and all cognitive domains. Only patients with a high 

DASH burden (DASH-NMSH) were additionally stratified according to the FAQQ cutoff of 1, 

as these patients were defined as the risk group. An independent samples Kruskal-Wallis test 

(significance level adjusted by Bonferroni correction for multiple tests) and post hoc Dunn’s 

pairwise tests were performed between all three resulting DASH-NMS groups, the MoCA, and 

all five cognitive domain scores.   

Results 

Demographics 

Of all patients, 131 (58%) were diagnosed as PD-CN and 95 (42%) as PD-MCI. Nine 

(9.5%) PD-MCI patients were classified as single-domain, and 86 (90.5%) were classified as 
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multi-domain PD-MCI, with impairment in two (45.3%), three (27.4%), four (11.6%) and five 

(6.3%) domains. Compared to PD-CN patients, PD-MCI patients were significantly older, took 

more antiparkinsonian medications, had greater motor severity, and a lower global cognitive 

status (see Table 2). All other demographic comparisons were not statistically significant. 

Characteristics of the DASH scores and correlations cognition  

The DASH-PDQ (Mdn=1, Range 0-15) and the DASH-NMS (Mdn=1, Range 0-27) were 

moderately but significantly correlated to one another (rs=0.55, p<0.001). Relation between 

cognitive group and the DASH scores was examined using binary logistic regression. The 

DASH-NMS model was statistically significant χ2(4)=25.67, p<0.001, explaining 14.5% 

(Nagelkerke R2) of the variance. The DASH-NMS significantly differentiated between 

cognitive groups (p=0.04), as did the UPDRS-III (p=0.007). The model using the DASH-PDQ 

was also statistically significant χ2(4)=21.20, p<0.001, explaining 12.0% (Nagelkerke R2) of 

the variance. In this model, only the UPDRS-III significantly differed between groups 

(p=0.006), while the DASH-PDQ score did not (p=0.73). 

Results of the Spearman’s correlation (see Table 3) showed the DASH-PDQ was 

correlated with LEDD, disease duration, MoCA score, as well as both subscores of the FAQ. 

In contrast, the DASH-NMS was significantly correlated with MoCA score, attention/working 

memory, visuospatial functions, and language domains, as well as both FAQ subscores. A post-

hoc multivariate linear regression model examining the relation between the DASH-NMS and 

all significant variables identified in the previous correlation analysis was stable: 

F(6,219)=5.91, p<0.001 with an R2 of 0.14. In this model, the FAQC was the only statistically 

significant predictor of the DASH-NMS (p=0.01) (see Supplementary Table 1). 

PD-MCI subgroup analysis  

The 50th percentile of the DASH-NMS was identified (score=1) and used to divide the 

PD-MCI into patients with high (DASH-NMSH, >50th percentile) and low (DASH-NMSL, ≤50th 

percentile) NMS burden. Demographic and clinical variables were comparable between groups 



ADL and NMS burden in PD 

 B–12 

(see Supplementary Table 2). MoCA scores were lower in DASH-NMSH compared to DASH-

NMSL patients (U=809.5, p=0.017), the visuo-spatial domain showed a trend for more 

impairment in DASH-NMSH patients (U=879, p=0.065). 

The DASH-NMSH group was additionally stratified according to the FAQQ cutoff into 

DASH-NMSH+ (more cognitive ADL dysfunction) and DASH-NMSH– (more motor ADL 

dysfunction) groups. A Kruskal-Wallis test showed the MoCA was lowest in patients with high 

DASH burden and cognitive-driven ADL impairment (p=0.036, see Figure 1). Post-hoc Dunn’s 

pairwise comparison indicated that MoCA performance differed significantly only between the 

DASH-NMSL and DASH-NMSH+ groups (adjusted p=0.045).  

Discussion 

The disease course of PD is associated with an increased likelihood of developing 

cognitive deficits including PDD (Goldman & Litvan, 2011). The aim of the present study was 

to examine the association of the DASH score with cognitive function and other potential PDD 

prodromal markers in a large non-demented PD cohort. Of all patients, 58% were classified as 

PD-CN, and 42% as PD-MCI. Our results reflect previous studies showing that PD-MCI is 

associated with increasing age and greater motor severity, indicated by higher UPDRS-III 

scores and increased daily intake of levodopa in our cohort (Aarsland et al., 2010; Biundo et 

al., 2014; Caviness et al., 2007).  

Results show that the DASH-NMS score was able to differentiate between PD-CN and 

PD-MCI while the DASH-PDQ score did not. This is likely due to the different purposes for 

which the two assessments (PDQ-39 and NMS-Scale) were developed. As described earlier, it 

is questionable whether the PDQ-39 is suitable as the basis for the DASH score. The NMS-

Scale has been explicitly developed to assess NMS in PD (Chaudhuri et al., 2007) and seems a 

more promising scale for assessing DASH symptoms. As the DASH-NMS score was more 

closely associated with cognitive impairment, it can be assumed that an assessment validated 

for NMS is essential to the formation of the DASH score. Results also show that the DASH-
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PDQ, in contrast to the DASH-NMS, was associated with demographic variables primarily 

reflecting certain motor parts of the disease, even showing a stronger association to motor-

driven ADL impairment (FAQM). While the goal of Naismith and Lewis (2011) was to use the 

original DASH score to develop an instrument that is primarily associated to cognitive 

functions, using PDQ-39 items does not seem optimal. We show that the NMS-Scale is a viable 

alternative and may have more predictive value, with further studies needed to confirm this. 

Our results show a high correlation of the DASH NMS score with specific cognitive 

domains, namely attention/working memory, visuospatial functions, and language. These 

domains have been shown in the literature to be associated with PDD. Stronger deficits in 

attention have been shown to be present in PD-MCI patients that convert to PDD (Biundo et 

al., 2014; Bronnick et al., 2006; Miura, Matsui, Takashima, & Tanaka, 2015). Language 

problems have also been shown to arise in transition from PD-MCI to dementia (Bastiaanse & 

Leenders, 2009), as have problems in the visuospatial domain (Kehagia, Barker, & Robbins, 

2010). Interestingly, the DASH-NMS did not show a significant relationship with executive 

functions, which are often described as particularly impaired in PD (McKinlay, Grace, 

Dalrymple-Alford, & Roger, 2010). However, there are studies that point to the heterogeneity 

of impaired cognitive domains, with executive functions not necessarily showing in all PD 

patients (Kehagia et al., 2010). In addition, there are studies that describe that other (especially 

posterior) functions are more important for the prediction of PDD, suggesting deficits in 

executive tasks may occur early in PD, but may not be the dominating area for predicting 

dementia development at later stages (Williams-Gray et al., 2009).  

The DASH-PDQ was not significantly correlated with any cognitive domains, differing 

from the original study results where correlations with poorer working memory and set-shifting 

performance were found. This may be due to the sample size difference: the original DASH 

was developed in a small sample of 53 patients while our dataset consisting of 226 patients 

could be considered more representative of the population of interest. As discussed above, 
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studies have shown that executive functions in PD patients are affected very early on, especially 

using task change tests which Naismith and Lewis (2011) found correlated with the DASH-

PDQ. Further studies are needed to examine the relationship between the DASH-PDQ and 

cognitive impairment, especially executive functions. 

It is interesting to note the different associations with cognition of both DASH scores. 

The DASH-PDQ measures only the frequency of NMS, and could neither distinguish between 

cognitive groups, nor was it correlated with any of the cognitive domains measures. However, 

the DASH-NMS, which assesses both frequency and severity of NMS, was able to classify PD-

MCI patients and showed a high correlation to cognitive domains that have been reported to be 

associated with a higher PDD risk (Becker et al., 2018; Bronnick et al., 2006; Kehagia et al., 

2010). While the number of NMS that a patient presents can determine their quality of life 

(Titova & Chaudhuri, 2018), our results show that the severity of the NMS may determine their 

risk for cognitive decline and ADL impairment. NMS have been shown to increase in terms of 

occurrence and severity throughout the disease course, reflecting the spread of pathology in the 

peripheral and central nervous systems (Erro et al., 2016; Mou, Ding, & Fernandez-Funez, 

2019). One study found that PD patients who were older, had more severe motor symptoms, a 

higher NMS burden, and a lowered ability to carry out ADL were at a higher risk of death in 

the short term (Santos-Garcia et al., 2018). It is possible that targeted treatment of the separate 

DASH components would be beneficial, as both pharmacological (Schapira, Chaudhuri, & 

Jenner, 2017; Titova & Chaudhuri, 2018) and non-pharmacological (Cusso, Donald, & Khoo, 

2016) treatments exist to ameliorate these symptoms. As previous studies examining NMS have 

focused mainly on their frequency and prevalence in PD patients, it is important for future 

studies to examine how the severity of NMS affect cognitive decline and changes in ADL 

function. 

The additional study of ADL impairments in relation to cognitive dysfunction is 

important, as it is crucial for the diagnosis of PDD. Both FAQ subscores had a clear correlation 
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to both DASH scores, showing an association between the amount of DASH symptoms and 

ADL functioning in both cognitive (FAQC) and motor (FAQM) areas. Moreover, cognitive-

driven ADL impairment was the most significant predictor of the DASH-NMS score. Previous 

work has shown the FAQC subscore differentiates between the cognitive groups PD-CN and 

PD-MCI (Becker et al., 2018), while the current study shows the DASH-NMS also 

differentiated between the cognitive groups and was highly associated to the FAQC. It is 

possible that higher burden of DASH symptoms and mild cognitive-related ADL impairment 

are possible prodromal markers for subsequent PDD development. Splitting the PD-MCI group, 

known to be of higher risk for PDD (Anang et al., 2014), using the 50th percentile showed that 

a higher burden of DASH symptoms results in lowered global cognitive status, assessed by the 

MoCA. This effect remained when stratifying the groups according to both non-motor burden 

and the FAQQ, specifically between patients with increased DASH burden and more cognitive-

driven ADL impairment compared to those without both characteristics. Given that the cross-

sectional study design impedes any definitive conclusions, we can only speculate that the 

combination of these two prodromal markers may present a risk group within PD-MCI patients 

that are at risk for conversion to PDD within a short time period. Long-term studies are therefore 

urgently needed to evaluate the predictive value of the DASH-NMS score and the FAQ 

subscores for PDD development. 

Some limitations of this study need to be mentioned. The cross-sectional design of the 

study and the exclusion of PDD patients does not allow the determination of the predictive 

value of both DASH scores in relation to the development of cognitive disorders or PDD, 

despite the high association of the DASH-NMS score with cognitive domains. The DASH-

NMS score was constructed based on the similarity to the DASH-PDQ questions; as no 

procedure was used to remove subjectivity, further studies should compare whether full 

versions of the NMS-Scale are more suitable than using only the DASH-NMS items. 

Comparisons between the DASH scores and the full questionnaires (PDQ-39 and NMS-Scale) 



ADL and NMS burden in PD 

 B–16 

should be examined in future studies, to determine whether the DASH scores have a better 

predictive value than simply using the full questionnaires. Moreover, as the results of the DASH 

scores were dependent on the underlying survey instruments, the creation and validation of a 

uniform scale explicitly for the collection of the DASH symptoms should be considered. 

Exclusion of patients with major depressive disorder, characterized by a BDI-II score ≥20, is 

an important limitation of this study, as depression is one of the factors contributing to the 

DASH score. It has been shown that severe depression negatively affects cognition (Chagas et 

al., 2014; Ng, Chander, Tan, & Kandiah, 2015), which could have biased the relationship 

between the DASH and cognitive domain scores. Naismith and Lewis (2011) did not include 

patients with major depression in their original study, and as the aim was to replicate their study 

in a larger cohort, these patients were also excluded. Lastly, it should be noted that the 

assignment of neuropsychological tests to specific cognitive domains has been debated, as 

certain tests can be sensitive to more than one domain or even have overlapping features with 

other tests (e.g. visuospatial tests include components of attention and executive function) 

(Williams-Gray, Foltynie, Brayne, Robbins, & Barker, 2007). In this paper, we adhered to the 

PD-MCI guidelines set forth by (Litvan et al., 2012) to determine the appropriate cognitive 

domain for each test.  

In conclusion, we developed a novel DASH-NMS score that was able to differentiate 

between cognitive groups with significant associations to cognitive domains associated with 

PDD development and cognitive-driven ADL impairment. PD-MCI patients with a high burden 

of DASH symptoms and more cognitive-driven ADL impairment performed worse on the 

MoCA than patients with low DASH burden. The combination of DASH burden and cognitive 

ADL impairment shows promise in characterizing a risk group for PDD among PD-MCI; 

longitudinal studies are now needed to determine progression of these factors and their 

suitability for assessing conversion to PDD. 
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Table 1. Construction of the DASH-PDQ-39 and DASH-NMS Scores 

Item DASH-PDQ-39 
Symptoms based on scale from 
0 (never) to 4 (always) 

DASH-NMS 
Symptoms assessed over last month, 
scored with respect to severity (0, none 
– 3, severe) and frequency (1, rarely – 
4, very frequently) 

 Due to having Parkinson/s 
Disease, how often during the 
last month have you…. 
 

 

Depression 17. …felt depressed? 3.10. Does the patient seem sad or 
depressed or has he/she reported such 
feelings? 

Anxiety 21. …felt anxious? 3.9. Does the patient feel nervous, 
worried or frightened for no apparent 
reason? 

Sleep 
Disturbances 

30. …unexpectedly fallen 
asleep during the day? 

2.3. Does the patient doze off or fall 
asleep unintentionally during daytime 
activities? (For example, during 
conversations, during mealtimes, or 
while watching television or reading). 

Hallucinations 33. …had distressing dreams or 
hallucinations? 

4.13. Does the patient indicate that 
he/she sees things that are not there? 
 

Maximum 
Points 

16 48 

DASH-NMS, Depression-Anxiety-Sleep Disturbances-Hallucinations Score from the Non-
Motor Symptoms-Scale; DASH-PDQ-39, Depression-Anxiety-Sleep Disturbances-
Hallucinations Score from the Parkinson’s Disease Questionnaire-39 
 
  



ADL and NMS burden in PD 

 B–22 

Table 2. Demographic and clinical characteristics of the population 
Characteristic Total Sample 

N=226 
PD–CN 
n=131 

PD–MCI 
n=95 

p–value 

Male Gender: n (%) 145 (64.2) 84 (64.1) 61 (64.2) 1.00 
Age (years) 66.19 

(48.07-83.67) 
65.15 

(48.07-79.93) 
67.95 

(50.01-83.67) 
0.03* 

Education Years 13 (8-21) 13 (8-21) 12 (8-21) 0.07 
Age at Onset (years) 60.58 

(36.43-79.49) 
59.78 

(36.43-77.63) 
61.36 

(41.02-79.49) 
0.16 

Disease Duration (years) 3.88 (0-18.40) 3.67 (0.11-18.40) 4.85 (0-15.37) 0.09 
LEDD 480 (0-1574) 417.5 (0-1574) 560 (0-1380) 0.003* 
UPDRS-III 25 (1-56) 22 (1-56) 28 (3-52) <0.001* 
Hoehn & Yahr: n (%) 0.002* 

1 30 (13.3) 22 (16.8) 8 (8.4) 
2 129 (57.1) 82 (62.6) 47 (49.5) 
3 65 (28.8) 26 (19.8) 39 (41.1) 
4 2 (0.9) 1 (0.8) 1 (1.1) 

MoCA 26 (16-30) 27 (18-30) 25 (16-30) <0.001* 
BDI-II Total Score 6 (0-19) 6 (0-19) 7 (0-19) 0.18 

Results are expressed as Median (Range) except where noted; Asterisks denote statistically 
significant differences 
BDI-II, Beck Depression Inventory-II; LEDD, Levodopa-Equivalent Daily Dose; MoCA, 
Montreal Cognitive Assessment; PD-CN, Parkinson’s Disease with no cognitive impairment; 
PD-MCI, Parkinson’s Disease with mild cognitive impairment; UPDRS-III, Unified 
Parkinson’s Disease Rating Scale-III  
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Table 3. Correlations between the DASH scores, demographic variables, cognitive domain 
scores, and FAQ subscores 
Measure DASH-NMS DASH-PDQ  

rs p-value rs p-value 
Age 0.10 0.13 0.13 0.05 
LEDD 0.06 0.37 0.20 0.002* 
Age at Onset 0.05 0.51 0.05 0.49 
Disease Duration 0.11 0.10 0.20 0.002* 
UPDRS-III Total Score 0.11 0.09 0.12 0.06 
MoCA Total Score -0.24 <0.001* -0.20 0.003* 
Executive Functions -0.07 0.28 0.007 0.92 
Attention/Working Memory -0.18 0.007* -0.11 0.10 
Memory -0.11 0.11 -0.10 0.15 
Visuospatial Functions -0.20 0.003* -0.11 0.09 
Language -0.13 0.04* -0.06 0.40 
FAQC 0.28 <0.001* 0.33 <0.001* 
FAQM 0.21 0.002* 0.27 <0.001* 
FAQQ 0.05 0.44 0.03 0.69 

Asterisks denote statistically significant differences 
DASH-NMS, Depression-Anxiety-Sleep Disturbances-Hallucinations Score from the Non-
Motor Symptoms Scale; DASH-PDQ, Depression-Anxiety-Sleep Disturbances-Hallucinations 
Score from the Parkinson’s Disease Questionnaire-39; FAQC, Functional Activities 
Questionnaire Cognitive subscore; FAQM, Functional Activities Questionnaire Motor subscore; 
FAQQ, Functional Activities Questionnaire Quotient; LEDD, Levodopa-Equivalent Daily 
Dose; MoCA, Montreal Cognitive Assessment; UPDRS-III, Unified Parkinson’s Disease 
Rating Scale-III  
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Figure 1. Box-and-whisker plot of MoCA Scores across the three PD-MCI groups; asterisks 
denote statistically significant differences 
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Supplementary Table 1. Results of the linear regression between the DASH-NMS score and 
significant predictors 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

95% 
Confidence 

Interval for B 
Factor B Std. 

Error Beta t p-
value 

Lower 
Bound 

Upper 
Bound 

MoCA -0.082 0.105 -0.060 -0.780 0.436 -0.290 0.125
Attention/Working 
Memory -0.169 0.456 -0.029 -0.371 0.711 -1.067 0.729

Visuospatial 
Functions -0.609 0.366 -0.120 -1.661 0.098 -1.330 0.113

Language 0.376 0.435 0.066 0.864 0.388 -0.482 1.234
FAQC 10.346 3.976 0.253 2.602 0.010* 2.510 18.182 
FAQM 3.144 3.821 0.076 0.823 0.411 -4.386 10.674

Asterisks denote statistically significant differences 
FAQC, Functional Activities Questionnaire Cognitive subscore; FAQM, Functional Activities 
Questionnaire Motor subscore; MoCA, Montreal Cognitive Assessment 
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Supplementary Table 2. Demographic and clinical characteristics of the PD-MCI subgroup 
Measure DASH-NMSL 

n=48 
DASH-NMSH 

n=47 
p–value 

Male Gender: n (%) 31 (64.6) 30 (63.8) 1.00 
Age (years) 67.78 (50.01-82.20) 68.71 (50.54-83.67) 0.90 
Education Years 12.5 (8-21) 12 (8-21) 0.25 
Age at Onset (years) 62.48 (41.02-79.49) 60.77 (46.05-78.05) 0.71 
Disease Duration Years 3.76 (0-14.31) 5.88 (0.02-15.37) 0.30 
LEDD 502.5 (100-1120) 627 (0-1380) 0.12 
UPDRS-III 27.5 (4-49) 29 (3-52) 0.40 
Hoehn & Yahr: n (%) 0.22 

1 2 (4.2) 6 (12.8) 
2 27 (56.3) 20 (42.6) 
3 19 (39.6) 20 (42.6) 
4 0 (0) 1 (2.1) 

Results are expressed as Median (Range) except where noted 
LEDD, Levodopa-Equivalent Daily Dose; UPDRS-III, Unified Parkinson’s Disease Rating 
Scale-III 
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Abstract 

Objectives 

 The mechanisms underlying cognitive impairment in Parkinson’s disease (PD) are not 

well understood. Co-existing Alzheimer’s pathology, namely hippocampal atrophy and 

amyloid deposition, may play a role in the cognitive decline observed in PD. It is currently 

unclear whether hippocampal volume loss is primarily associated with cognitive impairment 

or Amyloid-β 1-42 burden. This study investigated hippocampal subfield volumes between 

both PD patients with (PD-MCI) and without (PD-CN) cognitive impairment and between 

patients with low and high Aβ42 levels. Additionally, we examined the relationship between 

hippocampal subfield volumes, cerebrospinal fluid (CSF) biomarkers (Aβ42, phosphorylated 

and total tau), neuropsychological tests, and activities of daily living. 

Methods 

Forty-five non-demented PD patients underwent CSF analyses and magnetic resonance 

imaging as well as comprehensive motor and neuropsychological examinations. Hippocampal 

segmentation was conducted using FreeSurfer image analysis suite 6.0. Regression models 

were used to compare hippocampal subfield volumes between groups, and partial correlations 

defined the association between variables while controlling for intracranial volume. 

Results  

The hippocampal-amygdaloid transition area was significantly smaller in PD-MCI than 

PD-CN. In contrast, no significant differences were found for hippocampal subfield volumes 

and cognition after group stratification according to CSF Aβ42 levels. Smaller hippocampal 

subfield volume was associated with worse memory, language, spatial working memory and 

executive functioning as well as higher CSF tau levels. 

Conclusion 

Hippocampal subfield volume showed associations to memory, visuospatial working 

memory and executive dysfunction, as well as to tau pathology, but not to CSF Aβ42 levels.  
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Introduction 

Over time, up to 80% of Parkinson’s disease (PD) patients progress from normal 

cognition (PD-CN), to mild cognitive impairment (PD-MCI) and PD dementia (PDD)1. The 

most prominent cognitive deficits occur in executive function, working memory, visuospatial, 

attention, and language domains2,3. However, mechanisms underlying cognitive impairment 

in PD are not well understood, making the identification of risk factors and prodromal 

markers for progression to PD-MCI and PDD key research priorities in the field. 

It is becoming increasingly evident that co-existing Alzheimer’s disease (AD) 

pathology plays a role in PD as well, especially in relation to cognitive decline. Hippocampal 

atrophy is an established early biomarker for AD, but is also common to other dementias4. In 

PD, pathological studies report atrophy in the medial temporal lobe, and hippocampal atrophy 

has been suggested as a biomarker of initial cognitive decline5. However, unlike in AD, 

presence of hippocampal atrophy in PD is more variable, and its association to specific 

cognitive domains is still unclear. Greater hippocampal atrophy has been found in PDD 

compared to non-demented PD patients6, and in both non-demented PD7 and PDD8 patients 

compared to controls. Density of Lewy bodies and Lewy neurites in the Cornu Ammonis 

(CA) 2-3 region of the hippocampus was shown to be higher in PDD than in non-demented 

PD patients9. This region along with the CA4 and dentate gyrus regions showed significantly 

smaller volumes in PD patients compared to controls10. Newly-diagnosed, untreated PD 

patients showed less hippocampal volume than controls in one study11, whereas other studies 

found no difference in hippocampal size between PD-MCI and PD-CN patients12 or between 

PD patients and controls13. These conflicting results may arise from studies considering the 

hippocampus as a whole structure, instead of a composite of sub-structures, which are 

differently affected by Lewy body pathology14. Moreover, the relationship between 

hippocampal atrophy and activity of daily living (ADL) function, the core criteria for 

diagnosing PDD, has rarely been examined. The few studies examining this interaction AD 

patients have identified hippocampal atrophy as a correlate of ADL function15, yet it is 

unclear if this association is also observed in PD patients. Understanding how both of these 

aspects are related can provide a better explanation for cognitive decline in PD. 

 Hippocampal atrophy has also been linked to cerebrospinal fluid (CSF) Amyloid-β 1-42 

(Aβ42) levels, an established biomarker for AD that reflects brain Amyloid-β burden12. 

Lowered CSF Aβ42 values have been shown in PD patients compared to controls16. 

Moreover, longitudinal studies indicate that low CSF Aβ42 levels at baseline are associated 

with a more rapid cognitive decline in PD17,18. Therefore, CSF Aβ42 has been proposed as a 
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risk factor for PDD development19. These low CSF Aβ42 levels in PD seem to be related 

specifically to deficits in verbal fluency, memory loss, and slowed processing speed20. 

However, to date, the association between Aβ42, hippocampal volume, and cognition using a 

comprehensive battery in PD has only been sparsely investigated21.  

  

Aim  

 As it is currently unclear whether hippocampal volume loss is primarily associated with 

cognitive impairment or pathological Aβ42 (as defined by low CSF Aβ42 levels), the aims of 

this study were two-fold. We compared hippocampal subfield volumes between both PD-CN 

and PD-MCI patients and between patients with low and high Aβ42. We hypothesized that 

patients with PD-MCI and those with low CSF Aβ42 levels have smaller hippocampal 

volumes especially in the CA2-3 and CA4 regions. Second, we investigated the relationship 

between hippocampal atrophy, cognitive performance, CSF biomarker profiles, and activity 

of daily living (ADL) impairment. 

 

Methods 

Study design and participants 

Data was analyzed as part of the longitudinal study “Non-demented patients with 

Parkinson’s disease with and without low Amyloid-beta 1-42 in cerebrospinal fluid.” Study 

inclusion criteria were: age 50-85 years, diagnosis of PD according to the United Kingdom 

PD Brain Bank criteria22 confirmed after at least one year of follow up, German as mother 

tongue, and ability to give informed consent and communicate with investigator. Exclusion 

criteria were: i) diagnosis of PDD, ii) cerebrovascular infarcts or hemorrhages on MRI, iii) 

concomitant diseases potentially affecting cognition (i.e., hepatic or renal failure, stroke, or 

traumatic brain injury), iv) deep brain stimulation, v) history of drug or alcohol abuse, vi) 

current major depressive episode defined by a Beck-Depression-Inventory II score >19 at 

time of visit, or vii) participation in medication study 4 weeks prior to baseline visit. The 

study was approved by the local Ethics Committee (Ethics-Nr: 686/2013BO1), and all 

patients gave written informed consent. 

Between April 2015 and September 2018, 100 non-demented PD patients completed the 

baseline visit of the study. All patients underwent a neurological and neuropsychological 

examination as well as lumbar puncture at screening conducted at least six weeks before 

imaging. CSF Aβ42, total tau and phosphorylated-tau levels were determined using 

commercially available ELISA kits (Fujirebio Europe, Gent, Belgium). A cut-off of 600 
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pg/mL23 was used to divide the sample into two groups: Aβ42+ (<600 pg/mL, n=50) and 

Aβ42– (≥600 pg/mL, n=50). As the sample was collected prospectively, groups could be 

matched according to gender, age, educational level, and disease duration. In total, 48 patients 

were eligible for Magnetic Resonance Imaging (MRI) scans. Scans of three patients were 

excluded due to an incomplete scan (n=1), and diagnosis of multiple system atrophy-

parkinsonian subtype established after the baseline visit (n=2). Therefore, clinical and 

imaging data of 45 patients were analyzed.  

Diagnosis of PD-MCI was made according to Level I criteria recommended by the 

Movement Disorder Society24, using the Montreal Cognitive Assessment (MoCA)25, a 

measure of global cognitive functioning. MoCA scores below 26 points classified PD-MCI, 

and higher values PD-NC. None of the patients had ADL impairment indicative of PDD, 

determined using the Functional Activities Questionnaire (FAQ) and a MoCA score below 18 

points.  

 

Assessments 

Demographic data were collected for each patient, including age, sex, education years, 

age of PD onset, and disease duration. Medication intake was collected, and anti-parkinsonian 

medication was expressed using the levodopa equivalent daily dose (LEDD)26. To assess 

disease severity, the Unified Parkinson’s Disease Rating Scale Part III (UPDRS-III) and 

Hoehn & Yahr scores were used.  

Comprehensive neuropsychological assessment included the Cambridge Neurological 

Test Automated Battery (CANTAB) and the Repeated Battery for the Assessment of 

Neuropsychological Status (RBANS). The CANTAB is a language-independent 

computerized assessment validated for elderly patients with neurodegenerative diseases27. Six 

subtests were chosen to measure: memory (Paired Associates Learning, PAL; Pattern 

Recognition Memory, PRM; Spatial Working Memory, SWM), attention/psychomotor speed 

(Match to Sample Visual Search, MTS), executive functions (Stockings of Cambridge, SOC), 

and information sampling (Information Sampling Task, IST). Table 1 provides an in-depth 

explanation of the CANTAB subtests and functions measured. The RBANS is a brief 

neurocognitive assessment battery for detecting and describing dementia in the elderly28. 

Twelve subtests measure: immediate memory (list learning and story memory), visuospatial/ 

constructional (figure copy and line orientation), language (picture naming and semantic 

fluency), attention (digit span and coding), and delayed memory (list recall, list recognition, 
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story memory, and figure recall). All RBANS subtests were administered and subsequently 

scored as described in the manual, providing age-group corrected z-scores for each subtest.  

For each patient, cognitive and motor subscores of the Functional Activities 

Questionnaire (FAQC and FAQM, respectively) were calculated in order to evaluate ADL 

dysfunction. Based on previous work29, these novel subscores were calculated based on the 

FAQ item association to the MoCA (FAQC) and the UPDRS-III (FAQM). 

 

MRI acquisition and hippocampal segmentation 

All MRI data were collected using a 3 Tesla Siemens Magnetom Prisma (software 

versions Syngo MR D13D and E11C). The following protocols were used: MPRAGE (T1): 

3D GE, repetition time (TR)/inversion time (TI)/echo time(TE) 2300/900/2.93 ms, flip angle 

9°, 176 slices with no gap, matrix 256x256, voxel size 1.0×1.0×1.0 mm³; SPACE (T2): 3D 

TSE, repetition time (TR)/echo time(TE) 3500/352.0 ms, variable flip angle, 64 slices with no 

gap, matrix 384x384, voxel size 0.5×0.5×1.5 mm³; FLAIR: 3D TSE, repetition time 

(TR)/inversion time (TI)/echo time(TE) 5000/1800/394 ms, variable flip angle, 192 slices 

with no gap, matrix 256x256, voxel size 1.0×1.0×1.0 mm³. 

 Hippocampal subfield segmentation and grey/white matter volumetric segmentation 

was performed using Freesurfer image analysis suite 6.0 (stable6-20170118) and the 

integrated hippocampal subfield segmentation module30, which is documented and freely 

available for download at http://surfer.nmr.mgh.harvard.edu. All T1-weighted images were 

preprocessed with the standard Freesurfer processing pipeline using the “recon-all” script. In 

addition to the default processing pipeline, the high-resolution T2-weighted images of each 

subject were submitted using the “hippocampal-subfield-T1T2” parameter. These T2 images 

were used simultaneously with the T1-weighted image to improve the results of the automatic 

hippocampus subfield segmentation algorithm30. The Freesurfer algorithms segments 12 

hippocampal subfields: hippocampal tail, subiculum, CA1, hippocampal-fissure, 

presubiculum, parasubiculum, molecular layer, granule cell layer of the dentate gyrus (GC-

DG), CA2-3, CA4, fimbria, and the hippocampal-amygdaloid transition area (HATA). The 

volume estimates of these subfields (combined for right and left hemispheres of each 

subfield) were then used in the final analysis. 

 

Statistical Analyses 

All data were collected and managed using REDCap electronic data capture tools 

hosted at the Hertie Institute for Clinical Brain Research31. Data analyses were carried out 
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using IBM SPSS version 25 (SPSS Inc., Chicago, IL, USA), with all a levels set at 0.05. 

Between-group analyses for demographic, cognitive and clinical variables were conducted by 

using chi-squared tests and Mann-Whitney-U tests for dichotomous and continuous variables, 

respectively. Linear regressions were calculated for each hippocampal subfield, with either 

diagnosis (PD-MCI, PD-CN) or CSF Aβ42 levels (Aβ42+ and Aβ42–) as independent 

variables, correcting for estimated intracranial volume (ICV). Partial correlations assessed the 

association between neuropsychological tests, CSF biomarkers, FAQ subscores and 

hippocampal subfields, while controlling for ICV.  

 

Data Availability 

Due to ethical restrictions imposed by the Ethics Committee of the Medical Faculty of 

the University of Tübingen relating to approved patient consent procedure and protection of 

patient privacy, requests for all relevant data should be sent to Dr. Inga Liepelt-Scarfone via 

inga.liepelt@uni-tuebingen.de or in case of unavailability, to Prof. Dr. Thomas Gasser 

directly via thomas.gasser@uni-tuebingen.de. The Ethics Committee has decided how the 

researchers should handle data of this particular study; however, the Ethics Committee does 

not have access to the actual data. 

 

Results 

 Demographic data for the total sample, cognitive groups (PD-CN and PD-MCI), and 

Aβ42 (Aβ42+ and Aβ42–) groups are reported in Table 2. The proportion of patients 

classified as PD-MCI did not significantly differ between the Aβ42 groups (χ²(1, N=45)=.024, 

p=1.00). 

 

Hippocampal volumes and cognition in PD-MCI vs. PD-CN 

 None of the demographic or clinical parameters differed significantly between cognitive 

groups. PD-MCI patients performed worse than PD-CN patients on the following RBANS 

subtests: semantic fluency (U=143, p=.03), and coding (U=144.5, p=.04). A non-significant 

trend towards the same direction was noted for list recognition (U=156.5, p=.06). Non-verbal 

recognition memory, as assessed by the PRM percent correct score, was also more affected in 

PD-MCI than PD-CN (U=140.5, p=.03). These results confirm the validity of our cognitive 

group assignment. PD-MCI patients had smaller HATA (p=.04) and a trend towards smaller 

CA1 (p=.05) volumes compared to PD-CN patients. 
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Hippocampal volumes in PD patients with high and low CSF Aβ42 levels 

Mean disease duration was shorter in Aβ42+ than in Aβ42– patients. Demographic, 

clinical, and neuropsychological test parameters were not significantly different between 

groups, neither were any hippocampal subfield volumes. 

 

Correlation analyses 

Hippocampal subfields were significantly correlated to CANTAB subtests assessing 

memory (-.53≤ r ≤.37, all p<.05) most notably the PAL test, the SOC subtest assessing 

executive functions (.32≤r≤.33, all p<.04), and information sampling (-.42≤r≤.38, all p<.04), 

independent of ICV (Table 3). Partial correlations revealed significant associations between 

RBANS memory subtests (-.31≤r≤.34, all p<.05) and the hippocampal tail, subiculum, CA1, 

parasubiculum, and whole hippocampus (Table 4). Significant associations were also shown 

between RBANS language tests (.32≤r≤.41, all p<.04) scores and the hippocampal tail, 

subiculum, presubiculum, parasubiculum and whole hippocampus.  

Partial correlations between hippocampal subfields and CSF markers revealed 

significant associations between the volume of the subiculum and CSF total tau levels (r=-.37, 

p=.01). The correlations between hippocampal fissure volume and both, CSF total tau (r=.28, 

p=.07) and CSF phosphorylated tau (r=-.28, p=.06) approached significance. 

Significant associations were found for the correlations between the FAQ total score 

and both the CA1 (r=.31, p=.04) and CA2-3 regions (r=.38, p=.01). Trends towards 

significance were observed for the correlations with the GC-DG (r=.29, p=.06) and whole 

hippocampus volume (r=.30, p=.05). The FAQC subscore was correlated only with the CA2-3 

(r=.32, p=.04) region. The correlation between FAQC and CA1 (r=.29, p=.06) approached 

significance. The FAQM was correlated with the hippocampal tail (r=.30, p=.04), CA1 (r=.33, 

p=.03), CA2-3 (r=.38, p=.01), and whole hippocampus (r=.33, p=.03). Trends were observed 

for the correlations with molecular layer (r=.29, p=.06) and GC-ML-DG (r=.28, p=.06). 

 

Discussion 

 This study examined whether hippocampal atrophy, a marker for AD, is associated with 

cognitive state and CSF Aβ42 levels in PD patients. The main findings of this study are (i) 

patients with PD-MCI have smaller HATA volumes than patients with PD-CN; (ii) PD 

patients with low and high CSF Aβ42 levels do not significantly differ regarding hippocampal 

subfield volumes and cognition; (iii) hippocampal subfield volumes in PD are correlated with 

memory, language, spatial working memory, and executive function performances; and (iv) 
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both the CA1 and CA2-3 volumes are positively correlated with cognition- and motor-

associated ADLs in PD. 

 In contrast to our expectation, PD-MCI patients did not have smaller CA2-3 and CA4 

volumes than had PD-CN patients; only the HATA region was smaller in PD-MCI. This 

result is, at least partly, comparable to a previous study that reported lower volumes of the 

right HATA in PD-MCI patients compared to PD-CN, with baseline left HATA volumes 

predicting conversion from PD-CN to PD-MCI32. The authors interpreted their finding in that 

way that HATA volume loss may be an early biomarker for visuospatial dysfunction in PD-

MCI. Deficits in visuospatial functions have been shown to predict rapid decline to PDD3, yet 

more studies are needed to examine the interplay between HATA, visuospatial deficits and 

cognitive decline.  

 The Aβ42+ and Aβ42– groups had comparable hippocampal subfield volumes and 

comparable cognitive test performances, which were unexpected results. Available studies on 

the influence of Aβ42 on cognitive impairment in PD have reported inconsistent results. A 

previous study found Aβ42 to be significantly lower in PD than in healthy controls but could 

not find significant correlations with ratings of neuropsychological testing16. As our study was 

cross-sectional, we cannot rule out that the Aβ42+ group may progress to PDD faster than the 

Aβ42– group, even if neuropsychological tests do not show a difference at baseline. It has 

previously been shown that patients with low CSF Aβ42 levels developed PDD within two 

years33, highlighting a role for Aβ and the importance of following our cohort longitudinally. 

 As the Aβ42 groups did not differ with regard to hippocampal volumes, we also 

examined the relationship to CSF total and phosphorylated tau levels, which have been shown 

to be increased in PD patients34. We identified a moderate correlation between lower 

subiculum volumes and higher values of total tau in our PD sample. To date, only a few 

studies have examined the relationship between hippocampal volume and CSF biomarkers 

(specifically Aβ42, p-tau and t-tau) in PD12,21. Stav, et al. 21 did not find associations between 

CSF biomarkers and hippocampal volumes, even though subiculum volumes were reported to 

be smaller in PD patients compared to controls. Future studies should examine the 

relationship between both Aβ42 and tau in relation to longitudinal changes in hippocampal 

volume. 

 Further correlation analyses demonstrated that CANTAB memory subtests, specifically 

the PAL total number errors, showed moderate to high correlations with numerous 

hippocampal subfields, most importantly the CA1, CA2-3, CA4, and DG regions. Fewer 

significant correlations were found for the RBANS variables, but most notably CA1 and 
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subiculum volumes were positively correlated with list recognition. Atrophy of medial 

temporal lobe structures has been assumed to run in parallel and may even underlie the 

memory dysfunctions associated with PD35. Previous studies have shown that input 

hippocampal regions, such as the CA2-3 and DG, are associated with learning and encoding, 

output regions including the subiculum are related to recall, and the CA1 region is responsible 

for consolidation and later retrieval10,36. Our results reflect these findings, with errors made on 

the PAL test encompassing all aspects of memory. Notably, CA1 and subiculum atrophy has 

been shown to be present in very early stages of AD, predicting conversion to MCI and 

dementia37. Our results emphasize the potential of hippocampal subfield atrophy as a 

promising biomarker for cognitive worsening in PD, which needs to be verified in future 

longitudinal studies. 

 Interestingly, poorer spatial working memory performance, expressed by a higher 

number of errors, was correlated to smaller parasubiculum, CA4, DG and fimbria volumes in 

our sample. While the hippocampus may be important for encoding spatial components of 

memory, it is unclear to what extent working memory, especially the SWM task, is related to 

executive functions and mediated by frontal circuits3. Upon further examination of the data, 

we found a correlation between executive function (SOC subtest) and the molecular layer, the 

DG, and the fimbria, as well as correlations between information sampling task variables, 

which measure impulsivity, and the DG, CA4, fimbria, HATA and whole hippocampus. 

Executive dysfunctions and hippocampal atrophy have been sparsely studied; one study did 

not confirm correlations between frontal functions and hippocampal volumes38. Our results 

also indicate that computerized tests are more sensitive than paper-and-pencil tests in relation 

to hippocampal volume, as CANTAB subtests are potentially less reliant on motor functions 

than the RBANS. Both computerized and paper-and pencil tests may also reflect AD 

pathology differently, although more research is necessary to examine sensitivity of both 

types of tests for detecting cognitive impairment and hippocampal atrophy in PD. 

Recently, mild impairments in activity of daily living (ADL) function have been 

proposed as a risk marker for PDD. PD-MCI patients presenting with mild cognitive-driven 

ADL dysfunction potentially characterize those at high risk for PDD29. Interestingly, greater 

severity of ADL impairment was associated with larger hippocampal subfield volumes. As we 

only included non-demented PD patients in our sample, ADL impairment assessed with the 

FAQ was only at a mild stage. Our finding, at a first view surprising, may mirror 

compensation strategies of the hippocampus, to counteract already occurring daily relevant 
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cognitive deficits in a vulnerable phase of the disease. This hypothesis may serve as a basis 

for longitudinal evaluation of this phenomenon. 

 

Limitations 

This study faces some limitations. First, we used automated segmentation of the 

hippocampus. Although this analysis technique guarantees highly standardized and objective 

results, the technique may still have downsides compared to manual segmentation39. To 

minimize risk of miss-segmentation, all Freesurfer calculations were manually counter-

checked. Second, we used the MoCA score for PD-MCI classification, although more 

complex classification strategies are available 24. Based on the CANTAB and RBANS results 

(PD-MCI patients performed worse on measures of attention and language), we argue that our 

approach is still valid. Deficits in attention and language have been shown to be associated 

with shorter time to conversion to PDD2,40. Third, results are based on a cross-sectional study 

design. However, we feel that our results are useful for the design of specifically designed 

prospective longitudinal studies, and our cohort will also be followed longitudinally. Finally, 

certain cognitive assessments, such as the figure copy/recall test and the digit-symbol test, 

may be influenced by motor impairment especially when paper-pencil tests are used. 

Consequently, future studies should evaluate motor dysfunction, and how those deficits 

interfere with neuropsychological test results. 

 

Conclusion 

In non-demented PD patients, hippocampal subfields showed associations with 

memory, spatial working memory, language, and executive functions, and to CSF tau levels. 

Interestingly, no relevant association was found between hippocampal sub regions and CSF 

Aβ42 levels. Our results suggest that the HATA has the potential to differentiate cognitive 

status in PD, and that CSF total tau levels are associated with hippocampal atrophy. These 

pilot results should be confirmed in future prospective studies, preferably with a longitudinal 

design.  
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