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Abstract

Learning to solve optical flow in an end-to-end fashion from examples is attractive as deep

neural networks allow for learning more complex hierarchical flow representations directly

from annotated data. However, training such models requires large datasets, and obtaining

ground truth for real images is challenging. Due to the difficulty of capturing dense ground

truth, existing optical flow datasets are limited in size and diversity. Therefore, we present

two strategies to address this data scarcity problem:

First, we propose an approach to create new real-world datasets by exploiting temporal

constraints using a high-speed video camera. We tackle this problem by tracking pixels

through densely sampled space-time volumes recorded with a high-speed video camera. Our

model exploits the linearity of small motions and reasons about occlusions from multiple

frames. Using our technique, we are able to establish accurate reference flow fields outside

the laboratory in natural environments. Besides, we show how our predictions can be used

to augment the input images with realistic motion blur. We demonstrate the quality of

the produced flow fields on synthetic and real-world datasets. Finally, we collect a novel

challenging optical flow dataset by applying our technique on data from a high-speed camera

and analyze the performance of state of the art in optical flow under various levels of motion

blur.

Second, we investigate how to learn sophisticated models from unlabeled data. Unsuper-

vised learning is a promising direction, yet the performance of current unsupervised methods

is still limited. In particular, the lack of proper occlusion handling in commonly used data

terms constitutes a major source of error. While most optical flow methods process pairs of

consecutive frames, more advanced occlusion reasoning can be realized when considering

multiple frames. We propose a framework for unsupervised learning of optical flow and

occlusions over multiple frames. More specifically, we exploit the minimal configuration

of three frames to strengthen the photometric loss and explicitly reason about occlusions.

We demonstrate that our multi-frame, occlusion-sensitive formulation outperforms previous

unsupervised methods and even produces results on par with some fully supervised methods.

Both directions are essential for future advances in optical flow. While new datasets

allow measuring the advancements and comparing novel approaches, unsupervised learning

permits the usage of new data sources to train better models.
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Kurzfassung

Tiefe neuronale Netze ermöglichen das Erlernen von komplexeren hierarchischen Re-

präsentationen und machen somit das Ende-zu-Ende Lernen des optischen Flusses attraktiv.

Jedoch erfordert das Trainieren solcher Modelle große Datensätzen und die Erzeugung von

Grundwahrheiten für reale Bilder ist sehr aufwendig. Aufgrund der Schwierigkeiten dichte

Grundwahrheiten zu erfassen, sind existierende Datensätze begrenzt in ihrer Größe und

Vielfalt. Wir präsentieren zwei Strategien, um diesen Datenmangel zu lösen:

Zunächst schlagen wir einen Ansatz zur Erstellung neuer realen Datensätze vor, wobei

wir mithilfe von Hochgeschwindigkeitskameras strenge zeitliche Annahmen ausnutzen.

Wir lösen dieses Problem, indem wir Pixel durch dichte Raum-Zeit-Volumen verfolgen,

die mit der Hochgeschwindigkeitskamera aufgenommen wurden. Unser Modell nutzt die

Linearität kleiner Bewegungen und schätzt Verdeckungen über mehrere Bilder. Mit unserer

Technik sind wir in der Lage, außerhalb des Labors in natürlicher Umgebung genaue

Referenzflussfelder zu erzeugen. Außerdem zeigen wir, wie unsere Vorhersagen genutzt

werden können, um Bilder mit realistischer Bewegungsunschärfe zu ergänzen. Wir bewerten

die Qualität der erzeugten Flussfelder mit synthetischen und realen Datensätzen. Schließlich

generieren wir einen neuartigen, herausfordernden optischen Fluss Datensatz, indem wir

unsere Methode auf Daten einer Hochgeschwindigkeitskamera anwenden. Wir nutzen

diesen Datensatz, um den Stand der Technik im optischen Fluss unter unterschiedlich

starker Bewegungsunschärfe zu analysieren.

Außerdem untersuchen wir, wie man aus Daten ohne Grundwahrheiten anspruchsvolle

Modelle lernen kann. Unüberwachtes Lernen ist eine vielversprechende Richtung, aber die

Leistung der derzeitigen Methoden ist immer noch begrenzt. Insbesondere das Fehlen einer

korrekten Handhabung von Verdeckungen in dem gebräuchlichen fotometrischen Vergleich

stellt eine große Fehlerquelle dar. Während die meisten optischen Fluss Methoden Paare

von aufeinanderfolgenden Einzelbildern verarbeiten, kann eine bessere Schätzung von Ver-

deckungen realisiert werden, wenn mehrere Einzelbilder betrachtet werden. Wir entwickeln

eine Methode für das unüberwachte Lernen von optischem Fluss und Verdeckungen mit

mehreren Bildern. Genauer gesagt, nutzen wir die minimale Konfiguration von drei Bildern,

um den fotometrischen Vergleich zu verstärken und explizit Verdeckungen zu schätzen. Wir

zeigen, dass unsere Formulierung die bestehenden unüberwachten Zwei-Bild-Methoden

übertrifft und sogar vergleichbare Ergebnisse mit einigen überwachten Methoden liefert.

Beide Strategien sind für künftige Fortschritte im Bereich des optischen Flusses von

wesentlicher Bedeutung. Während neue Datensätze es ermöglichen, die Fortschritte zu

messen und neue Ansätze zu vergleichen, erlaubt das unüberwachte Lernen die Nutzung

neuer Datenquellen, um bessere Modelle zu trainieren.
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Abbreviations and Symbols

Acronyms

ANN Approximate Nearest Neighbor

CNN Convolutional Neural Network

EPE Average End-point Error

FN False Negative

FP False Positive

GPU Graphical Processing Unit

GT Ground Truth

HFR High-Frame-Rate

LiDAR Light Detection and Ranging

MAP Maximum A Posteriori

MP-PBP Max Product Particle Belief Propagation

MRF Markov Random Field

PBP Particle Belief Propagation

ReLU Rectified Linear Unit

RGB Red, Green and Blue

SOR Successive Over-Relaxation

TGV Total Generalized Variation

TN True Negative

TP True Positive

TRW-S Tree-Reweighted Sequential Message Passing

TV Total Variation

Notation

Scalars Regular lower (greek) case a,b,c,α,β ,γ
Vectors Bold lower (greek) case a,b,c,ααα,βββ ,γγγ
Matrices Bold upper case A,B,C
Sets Calligraphic upper case A,B,C
Functions Calligraphic lower and upper case f(·),g(·),F(·),G(·)
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Acronyms

Other symbols:

Number sets R,N
Element i of vector x x(i)

Element x = (i, j)T
of matrix A A(x) = A(i, j)

Sample i x(i)

Element-wise multiplication ·⊙ ·
Inner product 〈 ·, ·〉
Lp Norm ‖ · ‖p

Iverson bracket (1 if true, 0 otherwise) [·]
Vector or matrix transpose aT ,AT

Jacobian of matrix A JA

Divergence of a vector field U = (u(x,y),v(x,y))T
div(U) = ∂u

∂x
+ ∂v

∂y

Forward difference in x- and y-direction ∇x,∇y

Fixed symbols:

Energy and loss functions E(·),L(·)
Unary and pairwise potentials of a Markov Random Field ψU ,ψP

Image i Ii

Continuous, discrete image space 0 ⊂ R
2,Ω ⊂ N

2

Optical flow in continuous, discrete image space U,U
Occlusion mask in discrete image space O

Robust penalty function ρ(x)
Fixed parameters µ,ω,λ
Trainable parameters of a neural network θ
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1 Introduction

We Humans easily navigate and interact in our 3D world while relying only on 2D observa-

tions - projections of the world onto our retina. Nevertheless, we are able to safely perform

even complex tasks such as driving a vehicle in urban areas with many traffic participants

or on highways with high speed. Thereby, the perception of the motion of objects is an

essential cue to obtain a proper understanding of our world. Early psychological studies by

Gibson [Gib50; Gib58; Gib66] suggest that humans and animals use optic flow, the change

of the retinal image over time, to understand the structure, and be aware of motion in the

3D world. On the one hand, the optic flow of the static scene induced by the change of

the observer’s location, also called parallax, helps us to perceive distances [Gib50]. When

we move around in the world, we can observe how static objects in our proximity move

fast while static objects in the far distance move slowly. On the other hand, the optic flow

provides information about our motion in the world. A forward motion causes a radial

expansion of the optic flow. Shortly before passing (or colliding with) objects, we observe

an explosive acceleration of the optic flow. Therefore, flying animals and insects also rely on

motion cues for collision avoidance [Gib58], and it has been shown that the time-of-collision

can be computed from the optic flow [Lee76].

Optical Flow in Computer Vision: Intelligent systems need a similar understanding of

the world to navigate and interact in it. For instance, a vehicle driving autonomously needs

to be aware of other traffic participants, detect the road, traffic signs, and traffic lights.

Computer vision addresses the perception of intelligent systems and aims to obtain a high-

level understanding of the 3D world from images or other sensory input. The optical flow

problem was introduced and defined by Horn and Schunck [HS81] in computer vision as

the apparent motion of brightness patterns between two consecutive images. One example

illustrating the optical flow is provided in Fig. 1.1 with a BMX biker doing a flip. It is

common to visualize the optical flow with a color encoding where the hue and saturation

represent the direction and magnitude of the motion, respectively. For better illustration, we

also overlay the color encoding with sparse directional vectors.

As indicated by the psychological studies, the optical flow is an important cue to address

computer vision problems. If we consider the problem of autonomous driving, different

traffic participants are likely to show different motion patterns, and the motion of the road,

traffic signs and lights are only caused by parallax. An autonomous vehicle also needs to

take into account the braking distance for collision avoidance, which is proportional to

the driving speed. Towards this goal, it is essential to make accurate predictions of the

future trajectory of traffic participants. The observed optical flow can be used to make

such predictions into the future and allows a system to take them into consideration when

planning the future route.
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1 Introduction

Figure 1.1: Optical Flow. An example of a challenging sequence of a BMX rider performing

a flip. The right image is a visualization of the optical flow with the typical color encoding

shown on the bottom left corner and sparse directional vectors. The color encoding uses the

hue and saturation to visualize the orientation and magnitude accordingly.

Optical flow was initially used for video compression and frame interpolation. In both

cases, new images are synthesized by mapping image information from the past into the

future using optical flow. In the meanwhile, it serves as input for several computer vision

tasks dealing with scene analysis. In ego-motion estimation [Gei09; BW16], the optical flow

between images from a monocular camera can be used to recover the motion of a system.

Furthermore, it has been used to reconstruct the 3D world from images in structure-from-

motion pipelines [HJ92; VBW08; WLF14], to track different objects in a scene [Zhu+17b;

Zhu+17a; Zhu+18; Wan+18a], and to detect actions performed in short video clips [SZ14;

FPZ16].

Estimating Optical Flow: Horn and Schunck [HS81] also proposed the first approach

addressing the optical flow problem based on a variational formulation, assuming the

brightness of a pixel to be constant over time. While research on this problem has already

been carried out for several decades, occlusions, large displacement, and fine details are

still challenging for modern methods. One major problem of the optical flow definition is

that the motion of the brightness patterns does not necessarily correspond to the motion

field, which is the 2D projection of the 3D motion of objects relative to the camera. A good

example illustrating this problem was given by Horn and Schunck [HS81] using a uniform

sphere. In the case of a rotational motion of the sphere, the apparent motion will be zero

because of the uniform appearance, while the motion field will be the 2D projection of the

rotational motion. Even in the case of specular reflections, the apparent motion will not

reflect the rotational motion of the sphere but the motion of the light source or camera. In

tasks such as image interpolation and compression, this ambiguity is not problematic since

the task is to replicate brightness patterns. However, the motion field is more relevant in

scene analysis since it provides information about the world, e.g., the structure and object

2



motion. Therefore, optical flow is usually used as an approximation of the motion field.

The large degree of ambiguities inherent to the ill-posed optical flow problem can only

be resolved using prior knowledge about the appearance and motion of image sequences.

Early approaches addressing the optical flow problem [HS81; BA93] integrate simple local

smoothness assumptions about the optical flow field using continuous optimization. The

introduction of higher-order priors [BKP10; RBP14], patch-based formulations [YMU14;

YL15; SSB12] and semantics [Sev+16; Bai+16] allowed the consideration of information

over larger image regions to overcome the limitations of local priors.

More recently, deep neural networks [Dos+15; RB16; Ilg+17; Sun+18b] have been

successfully applied to the optical flow problem. Learning to solve optical flow in an end-to-

end fashion from examples is attractive as deep neural networks allow for learning even

better priors from annotated data directly. However, training such models requires large

datasets, and obtaining ground truth for real images is challenging. Existing approaches

train primarily on synthetic data [Dos+15; May+16], which is cheap to create but does not

represent the distribution of real-world scenes. In this work, we discuss two approaches

to address this data scarcity problem for optical flow methods. First, we propose a novel

approach to generate reference optical flow fields for natural scenes that can be used for

evaluation and training of optical flow methods. Second, we consider the problem of learning

optical flow from data without any annotations.

Generating Data using High-Speed Cameras: The recent strong progress in other com-

puter vision tasks was mostly driven by high-capacity models (deep neural networks) trained

on very large annotated datasets. One prominent example is the advancement in image clas-

sification initiated by ImageNet [KSH12; Rus+15]. Other examples are object localization

with MS COCO [Lin+14] and semantic segmentation with Cityscapes [Cor+16].

The acquisition of such large annotated datasets for the optical flow problem is compli-

cated. In contrast to other problems like stereo and reconstruction, where active sensors such

as structured light or laser scanners can be used, there exists no such sensor to record the

optical flow ground truth. Furthermore, a sub-pixel accurate manual annotation is infeasible

even with crowdsourcing efforts such as Amazon Mechanical Turk [Ama]. Baker et al.

[Bak+11] addressed this problem in a lab setting using fluorescent ink in combination with

UV light to track pixels over time. Geiger, Lenz, and Urtasun [GLU12] and Kondermann

et al. [Kon+16] use a laser scanner and obtain correspondences by reprojecting the points

into the image plane. While this only provides ground truth for the static scene, Menze

and Geiger [MG15] also manually annotates dynamic objects such as cars by aligning 3D

CAD models. However, these methods do not scale up and can only be applied in certain

environments because of the complex setup.

To address these problems, we propose to exploit the power of high-speed video cameras

for creating accurate optical flow reference data in a variety of natural scenes. The idea is to

leverage the temporal information from high-frame-rate sequences to accurately estimate the

optical flow of the corresponding sequences in a standard frame rate. Considering the large

space-time volume spanned by the High-Frame-Rate (HFR) sequence directly is difficult

because of the large number of unknown parameters. Therefore, we split the problem into

two simpler subproblems: First, we estimate the optical flow between intermediate HFR
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frames, and second, we combine the intermediate optical flow fields to obtain the low-frame-

rate optical flow. This can be done simply by estimating the optical flow fields between

intermediate HFR frames using a popular optical flow method and summing up the flow

fields along the trajectories. However, this approach achieves weak performance since small

errors are accumulated to a large drift, and occlusions are not taken into account.

Instead, we develop a multi-frame extension of a classical variational approach to leverage

temporal information in HFR sequences. While the majority of optical flow methods only

consider two frames for estimation, a multi-frame formulation has the advantage that more

observations can be used to resolve ambiguities and improve the estimation in occluded

regions. In addition, this formulation allows us to reason about occlusions elegantly and

obtain sharper motion boundaries. Finally, we propose a dense tracking method addressing

the drift and occlusion estimation problem of the simple accumulation. We make the

optimization over the large space-time volume spanned by the HFR sequence feasible

by considering the solution of intermediate frames using our multi-frame approach. Our

method achieves very accurate motion estimations in visible and occluded regions on a

synthetic dataset. Eventually, we use it to benchmark several state-of-the-art optical flow

methods and analyze their performance.

Unsupervised Learning of Flow and Occlusions: The problem with supervised learning

is the dependency on accurate annotations. The diversity and size of the dataset are important

for training sophisticated models and avoiding overfitting. In the case of overfitting, a

model is not able to generalize to data following a different distribution as the training

data, which might lead to weak performance on new observations. Especially in safety-

critical applications such as autonomous driving, the learned models must be reliable and

achieve comparable performance as during training. Sophisticated models consisting of

a large number of trainable parameters are prone to overfitting since they can memorize

characteristics of the training dataset [GBC16].

In contrast, unsupervised learning opens the opportunity to learn optical flow from any

data source available, as from large internet video collections. While several approaches have

been proposed for learning optical flow in an unsupervised fashion [YHD16; Vij+17; PHC16;

Ren+17; Wan+18b; MHR18], none have achieved competitive results with supervised

methods. One major reason for the weak performance is the loss used for learning. Inspired

by classical methods, the loss enforces the assumption that brightness patterns are constant

over time (photometric loss). While this assumption provides good guidance in textured

visible regions, it is strongly misleading in occluded regions due to the lack of information.

Only a few approaches [Wan+18b; MHR18] proposed heuristics to estimate these oc-

cluded regions and ignore them during learning. We propose a formulation using three

frames to jointly learn optical flow and occlusions in an unsupervised fashion. Instead

of just masking out occluded regions in the photometric loss, we model the occlusions

and provide a training signal to learn them simultaneously. This differentiable occlusion

reasoning allows us to train the model end-to-end and obtain better occlusions. Furthermore,

our three frame formulation leverages future and past information to improve the predictions

in occluded regions. Eventually, our unsupervised method outperforms all previous methods

and even achieves comparable results to a few supervised methods.
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1.1 Contribution

The contributions of this thesis can be summarized as:

• We create a novel real-world dataset obtained using a high-speed camera:

– We generate the reference data using an accurate multi-frame optical flow

method and long-term tracking formulation.

– Our multi-frame optical flow method leverages strong temporal constraints to

jointly reason over optical flow and occlusions for accurate motion estimation

from HFR sequences with sharp motion boundaries.

– Our long-term tracking formulation leverages the accurate flow estimates ob-

tained with our multi-frame optical flow approach to make the optimization

feasible. Our formulation allows us to alleviate the drift problem and handle

occlusions.

– Finally, we provide an evaluation of several state-of-the-art optical flow ap-

proaches on our novel dataset. We synthesize motion blur and consider different

motion lengths in our benchmark. In our analysis, we identify the strengths and

weaknesses of the different approaches.

• We present a scheme for unsupervised learning of optical flow and occlusions:

– We propose a photometric loss that leverages multiple frames to obtain a training

signal for both the optical flow and occlusions. We make our loss differentiable

by using continuous occlusion variables. This allows us to train the whole model

end-to-end.

– The photometric loss ignores occlusions by either focusing on past or future

information, depending on the occlusion. Misleading gradients are suppressed

during training by relying only on available image information.

– We propose a multi-frame extension of a state-of-the-art network that allows

us to learn occlusions. At the same time, we suggest a few changes of the

architecture to improve the performance of the network.

1.2 Overview

We start with the mathematical foundations of methods used in this thesis in Chapter 2

and an introduction to the optical flow problem in Chapter 3. We discuss different methods

to address the optical flow problem and relate them to the approaches proposed in this

thesis. Finally, we review the available datasets for the optical flow problem. We are

particularly interested in the questions of how they are created and what their limitations

are. Chapter 4 treats the problem of generating optical flow ground truth in natural scenes

from HFR sequences. We develop a method to generate reference data, which is accurate

enough for the evaluation of other methods and training of deep neural network models.

Towards this goal, our formulation leverages strong temporal constraints in HFR sequences
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to reason over optical flow and occlusions jointly. Using this method, we create a novel

real-world dataset and use it to compare state-of-the-art optical flow methods. In Chapter 5,

we consider the problem of learning optical flow from data without any annotations. We

extend a state-of-the-art architecture to leverage multiple frames for unsupervised learning

of optical flow and occlusions. The multi-frame formulation allows us to use past or future

information to improve the estimation in occluded regions. We present different losses for

this task and show how our formulation outperforms all previous unsupervised methods.

Finally, we conclude our work in Chapter 6 and discuss different future directions for

both approaches. Besides individual future opportunities, we also see great potential in

combining the presented ideas to create larger and more diverse datasets for the optical flow

problem.
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In this chapter, we will shortly introduce the mathematical foundations of the methods

used in the presented approaches. We will first give a brief introduction into the calculus of

variations (Section 2.1), which will be the foundation of our HFR flow estimation method

described in Section 4.2. Afterwards in Section 2.2, we will introduce the concept of Markov

Random Fields (MRFs) and how inference is performed in such probabilistic models. In

Section 4.3, we will derive a simple MRF from our objective function to make optimization

feasible. In addition, we will rely on graph cuts to optimize our binary occlusion variables

in our HFR flow estimation discussed in Section 4.2. Finally, we introduce Convolutional

Neural Networks (CNNs) in Section 2.3 that we will be the foundation of the second part

(Chapter 5) on unsupervised learning.

2.1 Calculus of Variations

Several computer vision problems such as optical flow, denoising, deblurring, depth estima-

tion, and 3D reconstruction can be formulated as finding a continuous function mapping

image pixels to real values (e.g., flow, intensity, or 3D structure). While the discretization

of images needs to be taken into account with some approximations like bilinear interpola-

tions, such continuous formulations have the advantage that well understood mathematical

concepts can be applied. The mathematical field calculus of variations [Els12] covers the

problem of finding maxima and minima of functionals. A functional S is a mapping from

functions F with argument p ∈ 0 ⊆ R
d of d dimensions and derivative F′ to real numbers,

and is usually defined as integral over functions and their derivatives:

S (F (p)) =
∫

0

L(p,F(p),F′(p))dp (2.1)

The derivatives of the functions allow incorporating constraints on the functions. Con-

straining the solution space is beneficial when dealing with inverse problems arising in

computer vision. Usually, many solutions can explain the same observations due to the

loss of information when capturing images, such as 3D information. However, assumptions

based on properties of the real world can be easily enforced on the solution using the calcu-

lus of variations. A popular assumption that will be used in this thesis is the smoothness

constraint that favors smooth functions.

The extremum of a functional can be obtained by setting the derivative of the functional to

zero and solving the second-order partial differential equation, the Euler-Lagrange equation.
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Figure 2.1: Markov Random Field. Illustration of the neighborhood of random variable

Xi with unary term ψU
i and pairwise terms ψP to its four neighbors.

Thus, a function F is the extremum of S if the Euler-Lagrange equation is satisfied:

∂L

∂F
+

d

∑
i

∂

∂ p(i)
·

(
∂L

∂F′
i

)

=
∂L

∂F
+div(

∂L

∂F′
) = 0 (2.2)

with F′
i =

∂F
∂ p(i) .

Variational optical flow approaches [HS81; LK81; Bro+04] have been very popular due

to the elegant incorporation of constraints and their high accuracy, especially for small

motion, as discussed in detail in Chapter 3. In optical flow, we can formulate an energy

functional E over flow fields U consisting of a data term ED and a smoothness prior ES

E(U) =
∫

0

ED(U)+ES(U) (2.3)

with 0 the image space. While the data term uses image evidence to validate the flow fields,

the smoothness assumption is a constraint on the derivative of flow fields. Eventually, we

use the Euler-Lagrange equation to find the flow field U that minimizes the energy. For the

generation of reference data from HFR sequences, we will estimate small motions between

intermediate frames in Section 4.2. These estimates should be as accurate as possible since

we rely on them in our dense tracking formulation (Section 4.3). Small errors complicate

the dense tracking problem and might lead to larger drift. Therefore, we extend a variational

approach to estimate the optical flow and occlusions between HFR frames by incorporating

strong temporal constraints leading to great improvements in visible and occluded regions.
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2.2 Bayesian Formulation

Bayesian formulations [Bar12; Sze11] provide another elegant framework to address com-

puter vision problems. In contrast to the calculus of variations, they simultaneously model

the degree of belief and can be easily applied to problems involving discrete variables.

Similar to variational approaches, constraints on the solutions can be incorporated using

priors. Eventually, similar energies, as in Eq. (2.3), can be derived from probabilistic models.

We will rely on such probabilistic models to infer binary occlusions variables in Section 4.2

and to jointly infer continuous and discrete variables in Section 4.3 while enforcing temporal

and spatial assumptions.

MRFs are popular probabilistic models for grid-based inference problems. The model

is defined over an undirected graph G = (V,C). Each node represents a pixel, which is

associated with a random variable, and the edges C represent the dependency between the

random variables. In our case, we are interested in hidden variables X with discrete state

space while considering the images as observations Z (Fig. 2.1). Now, we can infer our

hidden variables by maximizing the posterior distribution using the Bayes rule

P(x|z) =
P(z|x) ·P(x)

P(z)
= ηP(z|x) ·P(x), (2.4)

with x denoting X = x, z denoting Z = z and a proportional factor η such that ∑x P(x|z) = 1.

Computations in this graph are made feasible using the Markov property, which states

that each random variable is conditionally independent, given a subset of random variables

(maximal cliques of G). This way, the joint probability is factorized into a product of

conditional probabilities over nodes i and pair of cliques (i, j) ∈ C:

P(z|x) =
N

∏
i=1

P(zi|xi) =
N

∏
i=1

exp
(
ψU

i (xi)
)

(2.5)

P(x) = ∏
(i, j)∈C

P(xi|x j) = ∏
(i, j)∈C

exp
(
ψP

i j (xi,x j)
)

(2.6)

Thus, we can rewrite the posterior distribution using the unary potential ψU and pairwise

potential ψP

P(x|z) = η
N

∏
i=1

exp
(
ψU

i (xi)
)
· ∏
(i, j)∈C

exp
(
ψP

i j (xi,x j)
)
. (2.7)

Inference in an MRF is performed using Maximum A Posteriori (MAP) by maximizing

the negative log-likelihood, which is equivalent to minimizing the energy EMRF(X). Since

η is constant, we can ignore the proportional factor during minimization.
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EMRF(X) = log(P(x|z))

= ∑
p

ψU
i (xi)+ ∑

p∼q

ψP
i j(xi,x j). (2.8)

Note that the equation is similar to Eq. (2.3) when considering a discrete image space. The

first term can be considered as data term ED and the second term as smoothness constraint

ES . Instead of integrating over the image space, we consider the discretized image space

and sum over pixels.

2.2.1 Inference

Different algorithms [Bar12] have been developed to infer hidden variables in such graphical

models. A popular optimization method to compute the Maximum A Posteriori (MAP)

estimate of MRF is loopy belief propagation. Towards this goal, messages (intermediate

results) are passed in forward and backward direction in the graph. While belief propagation

provides an exact solution on trees, the cycles (loops) in graphs only allow for an approxi-

mate solution. Two variants of belief propagation exist. The max-product algorithm directly

returns the maximum in each step while the sum-product algorithm computes marginal

distributions of each node. Different algorithms have been proposed to improve the results

on graphs. Tree-Reweighted Sequential Message Passing (TRW-S) [Kol06] splits the graph

into a set of trees to compute probability distributions over these trees and use them to

reweight the messages during belief propagation. In addition, TRW-S computes a lower

bound on the energy, which allows comparing the energy of the approximation to the lower

bound (global optimum).

Particle Belief Propagation

These inference techniques become computationally infeasible when dealing with contin-

uous or even a combination of continuous and discrete variables. Inspired by the particle

filter, Koller, Lerner, and Anguelov [KLA99] suggest to discretize the continuous variables

and sample the discrete variables. Thus, each distribution will be represented by a finite set

of samples (particles). The set of particles can either be drawn for each message or each

variable. Both approaches yield the correct solution when the number of particles goes to

infinity. However, drawing the set of particles for each variable has the advantage that they

can be considered as possible values of these random variables. Thus, inference reduces to

an alternation between finding the MAP of the discrete MRF and resampling particles from

the current solution [IM09].

Ihler and McAllester [IM09] suggest initializing the particles using local potentials, but

in the case of continuous variables, this is difficult because of the high dimensional space.

While random sampling has been used successfully [Bes+14], a data-driven initialization

provides better results. In each iteration, the particles can be resampled by drawing from a

Gaussian distribution centered at the current solution. Besse et al. [Bes+14] also suggested
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Figure 2.2: Neural Network Multi-layer neural network with one hidden layer.

to use the particles from neighbors in each iteration to generate new samples and spatially

propagate particles.

Our dense tracking formulation discussed in Section 4.3.3 consists of discrete and contin-

uous variables. We rely on Particle Belief Propagation (PBP) to make optimization feasible

by discretizing the continuous variables and sampling the discrete variables. This allows

us to derive a simpler MRF that can be optimized using the TRW-S algorithm. We use a

data-driven initialization of the particles, and in each iteration, we resample particles from

local neighborhoods for spatial propagation.

Graph Cuts

Another popular method to compute the MAP estimate of an MRF with discrete variables

by optimizing the energy function in Eq. (2.8) is graph cuts [BVZ99; KZ04]. Especially for

binary variables, graph cuts algorithms are attractive since they return the optimal solution

[GPS89]. Therefore, we rely on graph cuts to optimize our binary occlusions variables when

estimating the optical flow between HFR frames in Section 4.2.4. We alternate between

a continuous optimization of the optical flow using a variational approach and a discrete

optimization of the occlusions variables. In each iteration given our current optical flow

estimates, graph cuts will return the optimal solution of our binary occlusion variables.

For binary variables, a new graph G′ is constructed consisting of nodes V′= {v0, . . . ,vN ,s, t}
with {v0, . . . ,vN} representing the pixels and two terminal nodes {s, t} (source and sink)

representing the binary states (our occlusion states). The edge weights between the pixel

and terminal nodes correspond to the unary terms with corresponding binary states, and

the edge weights between pixel nodes correspond to the pairwise terms. A minimum cut in

G′ is a partitioning S,T ⊂ V′ of nodes such that s ∈ S, t ∈T, S∩T = /0 while the sum of

edge weights going from S to T is minimal. Finding the minimum cut on the graph yields

the global optimum of the energy function.
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2.3 Neural Networks

The discrete and continuous optimization methods discussed so far are computationally

expensive. Learning-based approaches instead learn to solve such problems from data

directly. While the learning itself is still computationally demanding, the application of

learned models is usually much more efficient than classical optimization methods. However,

large datasets are necessary to learn such sophisticated models. In Chapter 5, we will follow

a learning-based approach while relying on data without annotations. This gives us the

liberty to use any data available.

Feed-forward neural networks can approximate arbitrary functions f∗(x) = y by learning

a mapping f(x,θ) = y with θ the parameters of the network [GBC16]. A neural network

usually consists of several layers each mapping output (activation) of the previous layer or

the input of the network with a different function. For example, Fig. 2.2 shows a 2-layer

neural network with densely connected layers. In a densely connected layer, each neuron

passes the weighted sum over all neurons from the previous layer and a bias b1,b2 through

a transfer function f1,f2:

h = f1(w
T
1 x+b1) (2.9)

y = f2(w
T
2 h+b2) (2.10)

In this case, the learned parameters are the weights and bias θ = (w1,w2,b1,b2). The

simplest transfer (activation) function is the linear function f(x) = x. However, with this

transfer function, only linear functions f∗ can be represented. Therefore, non-linear functions

are usually used instead in the hidden layers. The most popular activation function is

the Rectified Linear Unit (ReLU), which allows for faster training than other non-linear

functions such as the sigmoid:

ReLU(x) = max(0,x) (2.11)

2.3.1 Learning

Training is performed using gradient descent with respect to the network weights θ . Usually,

large datasets are used during training, and computing the gradients for the complete datasets

is too expensive. Therefore, the gradients are approximated using stochastic gradient descent

by iteratively sampling a random subset from the dataset (batch) of size N and computing

the gradients with respect to this subset:

θ = θ +µ ·
1

N

N

∑
i=1

∇L(ŷi,yi,θ), (2.12)

with L the loss function, ŷi the label, yi the network output, and µ the learning rate.
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Back-propagation efficiently computes the gradients of each layer using the chain rule.

This way gradients and activations from proceeding layers can be reused in the computation

of the gradients of the current layer:

∂y

∂x
=

∂y

∂h2

∂h2

∂h1

∂h1

∂x
(2.13)

with h1,h2 the output of different hidden layers.

The learning rate affects the speed and convergence of the training. A too-large learning

rate might lead to divergence, while a too-small learning rate might take too long to converge.

Therefore, several approaches propose adapting the learning rate during training. AdaGrad

[DHS11] adapts the learning rate of each parameter individually based on the sparsity of

parameters. This way, extreme updates are reduced while small and less frequent updates

are amplified. RMSProp [HSS12], in contrast, uses a running average over the gradients to

adapt the learning rate. ADAM [KB15] extends this idea by taking the running average of

the gradients and second moments of the gradients to adapt the learning rate.

2.3.2 Convolutional Neural Networks

Convolutional neural networks have been proposed to maintain spatial information when

processing images [GBC16]. In contrast to standard neural networks, CNNs consider two-

dimensional inputs X, feature maps H, and outputs Y. The output of hidden layers in a CNN

are usually referred to as feature maps. The most common layers are convolutional layers,

which learn a kernel K of dimension (M,N) to convolve the input X at pixel (i, j):

H(i, j) = (K∗X)(i, j) =
M−1

∑
m=0

N−1

∑
n=0

X(i−m, j−n) ·K(m,n) (2.14)

The kernel size is preset as well as the step size (stride) in which the convolution is

applied. Convolutional layers have the useful property of equivariance, meaning that the

output changes in the same way as the input. For instance, if we apply a shift operation

onto the image and pass it through the convolution, it would be equal to passing the image

through the convolution and applying the shift operator, afterwards. In optical flow, this is a

desirable property since if we shift the input images, the optical flow should be shifted by

the same amount but should not change beyond that.

Other common layers of CNNs are pooling, unpooling layers, and transposed convolu-

tions. Pooling layers summarize neighborhoods of the input using some statistics, which

results in a reduction of the input resolution. The most popular pooling layers are max and

average pooling, which take the maximum or average from the neighborhood. Unpooling

layers use stored indices from a previous pooling layer to approximately invert the pool-

ing operation and restore the input resolution of the pooling layer. This is often used in

encoder-decoder architectures [YHD16; Ren+17; PHC16; Wan+18b; MHR18] consisting

of a contracting network reducing the resolution in each layer (encoder) and expanding
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network increasing the resolution (decoder). Transposed convolutions, also referred to as

deconvolutions or fractionally strided convolutions, instead increase the input resolution by

inserting zero activations between neurons of the input before convolving it with a kernel.

2.3.3 Regularization

One way to improve generalization of neural network is to use regularization. The different

layers already enforce some kind of regularization on the network by applying specific

operations. Another form of regularization is enforced on the parameters of the network.

Weight decay jointly minimizes the loss function with the squared L2 norm of the network

parameters. This favors solutions that use fewer features and should lead to focusing on

important features. We will use weight decay in Chapter 5 to improve the generalization of

our model.

Another popular and powerful way to regularize neural networks is by sharing weights of

different branches in the network. Siamese network consists of two branches sharing the

parameters to extract meaningful features from different inputs. This can be extended to an

arbitrary amount of inputs, which will learn the same feature embedding for all inputs. We

will be using this idea to extract features from multiple images in our network architecture

(Section 5.2). In specific, we would like to learn the same feature embedding for all input

images. This allows us eventually to match the features extracted of the different images

to estimate the optical flow. In addition, to the strong regularization of the network, it also

leads to a reduction of the parameters and, thus, faster training. While such networks can

be trained independently with a triplet loss comparing a baseline input to a positive and

negative example using a metric, we will be training our complete model end-to-end.
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Considering two images, the reference I0 and target I1 image taken at time step t = 0 and

t = 1, we are interested in the dense motion field U mapping each pixel p from I0 to a

pixel in I1, as illustrated in Fig. 1.1. The estimation of optical flow was firstly addressed

with a variational approach proposed by Horn and Schunck [HS81]. In concurrent work,

Lucas and Kanade [LK81] proposed a local approach for the registration of image patches

using a least-square formulation. Besides these differential approaches, frequency-based

[Hee88] and phase-based approaches [FJ90] were also investigated that uses responses

of different spatio-temporal filters to estimate the motion, but these approaches could

not prevail against the differential approaches. Differential approaches were extended to

handle large displacements [Ana89] and deal with outliers [BA93]. In addition, more

general assumptions [SPC09; ZPB07; Mül+11; Pan12] and better optimization methods

[Bro+04; SRB14] were presented. The introduction of sparse feature matching [BM11]

allowed further improvements on large displacements and lead to novel approaches based

on interpolation schemes [Rev+15], discrete optimizations [MHG15; GG16; CK16], and

learning-based approaches [WB15]. Eventually, deep neural networks [Dos+15; RB16;

Ilg+17; Sun+18b] were proposed to learn even better models directly from data. In this

chapter, we will introduce the concepts of the different approaches in detail and relate them

to the approaches presented in this thesis.

3.1 Variational Approaches

Variational methods rely on the calculus of variations discussed in Section 2.1 to estimate a

continuous flow field U. Towards this goal, they minimize global energy E(U) consisting of

a data term ED , measuring the photo-consistency, and a smoothness term ES , encouraging

similarity between spatial neighbors:

E(U) =
∫

0

ED (U,p)+ES (U,p)dp (3.1)

with pixel p ∈ 0.

Horn and Schunck [HS81] assume that the intensity of a pixel is constant over time and

propose the brightness constancy assumption:

ED (U,p) = ρ (I0 (p)− I1 (p+U (p))) (3.2)

with a penalty function ρ . A first-order Taylor expansion leads to a linearized version that

holds for small displacements.
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(a) (b)

Figure 3.1: Aperture Problem The motion of a moving line observed through a small

aperture is ambiguous (a) since the motion component parallel to line cannot be observed

(b).

For a single pixel in isolation, this assumption yields one equation with two unknowns,

which does not result in a unique solution. This problem is also known as the aperture

problem in the flow literature and can be well illustrated with the following example. Let

us consider a moving line visible through a small aperture, as illustrated in Fig. 3.1a. In

this case, only the motion component perpendicular to the line can be observed, while the

motion component parallel to the line could be arbitrary (Fig. 3.1b). In order to solve the

aperture problem, additional constraints need to be introduced. The smoothness assumption

is the most common constraint, which encourages similarity of spatially neighboring flow

vectors as in Eq. (3.3). This assumption is motivated by the fact that objects in the real

world usually follow a rigid motion or deformation. Therefore, neighboring pixels of the

same object should have similar motion, and discontinuities typically occur only at object

boundaries.

ES (U,p) = ρ

(
∂U

∂x

)

+ρ

(
∂U

∂y

)

(3.3)

Variational optical flow formulations achieve high precision due to continuous optimiza-

tion, especially in the case of small sub-pixel motions. Therefore, we follow a variational

formulation for the estimation of the motion field between frames captured with a high

frame rate in Section 4.2. We extend a variational formulation to multiple frames and jointly

reason about occlusions. In Chapter 5, we use the brightness constancy assumption as

supervision signal for learning optical flow estimation without ground truth. Joint learning

of occlusions allows us to handle occluded regions, which violate the brightness constancy

assumption.

3.1.1 Robustness

The original formulation [HS81] uses a quadratic penalty function in the data and smooth-

ness term. Minimizing the squared error corresponds to maximizing the likelihood estimate

while assuming a normally distributed error. This has strong limitations as violations of the

brightness constancy (e.g., illumination changes) and smoothness assumption (e.g., discon-

tinuities) cannot be handled. Black and Anandan [BA93] propose to replace the penalty
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function by a robust function such as the truncated quadratic or Lorentzian function. Robust

penalty functions alleviate this problem by reducing the impact of outliers to zero but are

also more difficult to optimize because of the non-convexity. In contrast, the Charbonnier

penalty function turns out to be better suited for optimization while being more robust than

the quadratic function [SRB14].

ρ (x) =
√

x2 + ε2 (3.4)

We will use the Charbonnier penalty in Chapter 4 and Chapter 5 to reduce the influence

of outliers in the optimization.

3.1.2 Data Terms

While the robust function already reduces the impact of outliers, it does not resolve the prob-

lem of model violations. Illumination changes usually occur in real scenes and, therefore,

new pixel- and patch-based data terms have been investigated that can better handle these

violations. A popular pixel-based data term that can better handle illumination changes is

the gradient constancy assumption. Instead of assuming that the brightness is constant over

time, we assume that the image gradients in x (∇x) and y (∇y) direction are constant over

time. In case of illumination changes, this assumption is more likely to hold since the image

gradients will not be affected.

ED (U,p) = ρ (∇xI0 (p)−∇xI1 (p+U (p)))+ρ (∇yI0 (p)−∇yI1 (p+U (p))) (3.5)

Patch-based data terms such as the normalized cross correlation [SPC09], mutual infor-

mation [Pan12] and census transform [Mül+11] compare image statistics of small patches

centered around a pixel. However, the optimization for a joint occlusion reasoning becomes

cumbersome since the occlusion states of each pixel need to be taken into account while

computing the statistics. A simplification would model the occlusion of a patch by the

occlusion of the center pixel. In our experiments, the joint occlusion reasoning worked

better with the gradient constancy assumption. Therefore, we use this assumption in Sec-

tion 4.2.1, Section 4.3.1, and Section 5.3.1 when dealing with real data in combination with

the brightness constancy assumption.

3.1.3 Regularization

Flow discontinuities frequently occur near motion boundaries caused by objects moving in

front of each other. The original formulation by Horn and Schunck [HS81], cannot handle

these discontinuities due to a homogeneous, non-robust smoothness term. Total Variation

(TV) regularization used in Zach, Pock, and Bischof [ZPB07] replaces the quadratic penal-

ization by the L1 norm to preserve discontinuities in the flow field. In addition, the image

gradients are often used to reduce the smoothness term in case of image gradients since

they often occur with object boundaries. We use such regularization terms in Chapter 4 and

Chapter 5 to encourage similar motion between neighbors and propagate information into

ambiguous regions.
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However, like the original formulation by Horn and Schunck, this model also biases the

solution towards fronto-parallel surfaces leading to artifacts in the estimation results, in

particular in the presence of strongly slanted planes (e.g., the road surface). Thus, higher-

order regularizations like the Total Generalized Variation (TGV) model have been proposed

[BKP10]. TGV priors can better represent real data as they leverage a piecewise affine

motion model. The non-local Total Generalized Variation [RBP14] is an extension of this

model, which enforces the piecewise affine assumption in a local neighborhood. This allows

them to improve the performance in regions where the data term is ambiguous in comparison

to TGV, which considers only direct neighbors. Especially in street scenes that we consider

in Chapter 5, the TV regularization is often violated. Therefore, we replace the first-order

regularization when training on street scenes by a second-order regularization. We enforce

the second-order regularization only on neighboring pixels since we use simple gradient

descent for training and more sophisticated optimization techniques are necessary for larger

neighborhoods.

3.2 Large Displacements

One major challenge, in particular for variational methods, is the estimation of large

displacements since linear approximations are used that only hold in the case of pixel

motion. In variational formulations, this problem is typically addressed with a coarse-to-fine

strategy [Ana89; BA96; Bro+04], estimating the flow on a coarser resolution to initialize the

estimation on a finer resolution. These iterative optimization schemes use a warping function

to transform the target image according to the current optical flow estimate with bilinear

interpolation to handle sub-pixel precision. Thus, only the residual flow field between I0

and I′1 needs to be estimated in each iteration with

I′1(p) =I1 (p+U (p)) . (3.6)

While this strategy works for large structures of little complexity by capturing the

dominant motion in the scene, fine geometric details are often lost in the process. Besides,

textural details important for correspondence estimation are lost at coarse resolutions, hence

leading the optimizer to a local minimum. These problems can be alleviated by integrating

sparse feature correspondences into the variational formulation as proposed by Brox and

Malik [BM11]. The feature matches, obtained from nearest neighbor search on a coarse

grid, are used as soft constraint in a coarse-to-fine optimization. Revaud et al. [Rev+15] go

one step further and completely replace the coarse-to-fine strategy by an interpolation of

sparse matches as initialization of the dense optimization at full resolution. They propose to

use the geodesic distance for interpolation, which is aware of image edges. Sparse matches

are obtained using DeepMatching, a deep neural network matching approach introduced by

Weinzaepfel et al. [Wei+13].

In addition, discrete optimization methods [MHG15; GG16; CK16] were proposed

to address large displacements. Menze, Heipke, and Geiger [MHG15] use Approximate

Nearest Neighbor (ANN) search to generate a set of proposals as candidates to be used in
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a discrete optimization framework. Inference is made feasible by restricting the number

of matches to the most likely ones and by exploiting the truncated form of the pairwise

potentials. Motivated by the success of Siamese networks in stereo [ŽL16], Güney and

Geiger [GG16] extend this work to learning features for 2D patch matching. They further

investigate the importance of the receptive field size exploiting dilated convolutions as

proposed by Yu and Koltun [YK16] for semantic segmentation. While several works

[MHG15; GG16] use pruning to make inference feasible, Chen and Koltun [CK16] propose

a discrete optimization over the full space. Min-convolutions [FH12; Che+14] are used to

reduce the complexity and to effectively optimize the large label space using a modified

version of TRW-S [Kol06].

A more sophisticated search strategy than ANN was proposed by Bailer, Taetz, and

Stricker [BTS15; BTS17]. They propose a hierarchical search scheme that addresses the

correspondence problem on different scales, similar to the coarse-to-fine scheme of varia-

tional methods. While simple ANN has many outliers due to missing regularization, they

rely on spatial propagation and random search to reduce the number outliers. The remaining

outliers are removed based on a consistency check between flow fields, and the interpolation

scheme presented by Revaud et al. [Rev+15] is used to fill the resulting gaps. Schuster et al.

[Sch+18] extend the approach with a novel interpolation scheme that detects edges more

robust than Revaud et al. [Rev+15] using a random forest.

Wulff and Black [WB15] present a different approach to obtain dense optical flow from

sparse matches. In their approach, the optical flow field is represented as a weighted sum

of basis flow fields learned from reference flow fields, which have been estimated from

Hollywood movies. They estimate the optical flow by finding the weights that minimize

the error with respect to the detected sparse feature correspondences. While this results

in overly smooth flow fields, the so called PCA Flow approach is very fast compared to

variational and discrete optimization methods. A slower but more accurate version based on

a layered representation of the scene is also proposed to better handle flow discontinuities.

In Section 4.2.1, we consider HFR sequences that mostly follow small motions. Therefore,

we rely on an initialization obtained from Revaud et al. [Rev+15] followed by a variational

coarse-to-fine method. This allows us to strongly reduce the number of scales used during

the optimization while obtaining good estimates for larger motions. In contrast, the dense

tracking formulation discussed in Section 4.3.1 relies on a discrete optimization over a set

of proposal trajectories to make the optimization feasible.

3.3 Classic Multi-Frame Optical Flow

While the majority of optical flow methods use two input frames, few works have exploited

the properties of temporal coherence in video sequences. The early frequency and phase-

based approaches [Hee88; FJ90; GH02] apply spatio-temporal filters on space-time volumes

spanned by a video sequence. Edges in the temporal domain correspond to the motion vector

of the corresponding brightness patches and can be detected using a predefined set of filters.

Similarly, [BB87] propose epipolar-plane image analysis to recover the rigid camera motion

from imagery that is dense in time.
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Simple variational formulations incorporate temporal information [WS01; SVB13; ZBW11;

RDR13] with a penalty on the magnitude of flow gradients. These methods only work for

very small motions and a small number of frames as the change of location is not taken into

account. Several works [Vol+11; SS07; SSB10] incorporate constant velocity priors into the

variational optical flow estimation process. A constant acceleration model has been used

by Black and Anandan [BA91] and Kennedy and Taylor [KT14] and layered approaches

have been proposed by Sun et al. [Sun+13] and Sun, Sudderth, and Black [SSB12]. Wang,

Fan, and Wang [WFW08] proposed a general multi-frame extension for local optimization

methods. They suggest two different data terms one comparing the reference image to all

others and the other comparing all successive frames. In their formulation any motion model

can be used but they use a constant velocity model in the experiments. We incorporate both

data terms in our variational formulation (Section 4.2.1) for the estimation of the optical

flow in HFR sequences. We also rely on a constant velocity model but, in contrast, we

jointly estimate occlusions and use them to weight our data terms accordingly.

Unfortunately, none of the methods mentioned above are directly applicable to our data

generation problem discussed in Chapter 4, which requires dense pixel tracking through

large space-time volumes. Lim and Gamal [LG01] and Lim, Apostolopoulos, and Gamal

[LAG04; LAG05] use Lucas-Kanade algorithm on the high frame rate and combine the

estimation along the trajectories to obtain the low frame rate flow. While they show the

benefit of temporally oversampling for optical flow estimation, they also observe that

motion aliasing has a strong impact on the accuracy of the flow estimation and arises not

only from high frequency motions but also from high spatial frequencies. Sand and Teller

[ST08] combine sparse optical flow between frames with long range tracking. However,

the approach is computationally expensive and can, therefore, not be applied densely. In

contrast, we follow a two-stage approach: We first estimate temporally local flow fields

and occlusion maps using a novel discrete-continuous multi-frame optimization, exploiting

linearity within small temporal windows. We expect that most objects move approximately

with constant velocity over short time intervals due to the physical effects of mass and

inertia. Second, we reason about the whole space-time volume based on these predictions.

Multi-frame formulations are also better suited for reasoning about the visibility of pixels.

In a simple two frame formulation, image information is only provided for visible pixels and

occlusions can only be detected by large inconsistency of the image regions. By considering

additional frames (past and future), information about the actual motion of the pixel can

be recovered and used for better occlusion reasoning. Therefore, we use this property in

Chapter 4 to improve the optical flow estimation in occluded regions and obtain sharper

motion boundaries. Occluded regions are even more problematic in unsupervised learning of

optical flow due to the weak photometric terms used for training. Therefore, we leverage a

multi-frame formulation in Chapter 5 to learn optical flow and occlusions in an unsupervised

fashion. More specifically, we focus on the minimal case of three frames, which allows us

to reason about the visibility of a pixel while expecting only little appearance changes that

mostly adhere to the brightness constancy assumption.
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3.4 Deep Learning for Optical Flow

Most optical flow approaches do not incorporate high-level information making it hard to

overcome ambiguities that require reasoning about larger image regions. A few notable

exceptions are methods incorporating semantic information into their formulation [Bai+16;

Sev+16] and layered approaches [Sun+13; SSB12; YMU13; YMU14]. Convolutional neural

networks are able to learn high-level assumptions from data directly. In contrast to previous

formulations, more sophisticated models can be learned that better represent the real world.

However, the limited amount of annotated data hindered the development of deep learning

approaches until Dosovitskiy et al. [Dos+15] presented the large-scale synthetic dataset

Flying Chairs. They created the dataset by rendering 3D chair models on top of images

from Flickr. With the dataset, they proposed FlowNet to learn optical flow end-to-end

using a CNN. FlowNet consists of a contracting part that extracts important features and an

expanding part that produces the high resolution optical flow field as output. They propose

two different architectures: a simple network (FlowNetSimple) stacking the images and a

complex network (FlowNetCorr) correlating features of the separately processed images.

This first attempt to learning optical flow end-to-end demonstrated that it was possible to

learn optical flow estimation from data, despite not yet reaching the performance of state-

of-the-art traditional methods on KITTI or Sintel. However, due to the parallel Graphical

Processing Unit (GPU) implementation, FlowNet was able to run in real time as opposed to

most of the classical algorithms implemented on the CPU.

In contrast to the contracting and expanding networks, Ranjan and Black [RB16] present

SPyNet, an architecture inspired by the coarse-to-fine strategy leveraged in traditional

optical flow estimation techniques. Each layer of the network represents a different scale

and only estimates the residual flow with respect to the image warped according to the

flow of the previous layer. This formulation allowed them to achieve similar performance

as FlowNet while being faster and 96 % smaller in terms of network weights, making it

attractive for embedded systems with limited compute capabilities. Ilg et al. [Ilg+17] present

FlowNet2, an improved version of FlowNet, by stacking the architectures and fusing the

stacked network with a subnetwork specialized on small motions. Similar to SPyNet, they

also input the warped image into the stacked networks. Each stacked network estimates

the flow between the original frames instead of the residual flow as in SPyNet. In contrast

to FlowNet and SPyNet, they use the FlyingThings3D dataset [May+16] consisting of

22k renderings of static 3D scenes with moving 3D models from the ShapeNet dataset

[SCH15]. PWC-Net [Sun+18b] combines the classical ideas of coarse-to-fine warping

[RB16] and cost volume filtering [Dos+15] with a Siamese network that proved to learn

rich feature representations [ŽL16]. This combination of classical ideas into the network

architecture allows them to achieve state-of-the-art performance with a small number of

network weights. Recently, Hur and Roth [HR19] suggested an iterative residual refinement

scheme for FlowNet2 and PWC-Net inspired by classical optimization methods. They

propose to apply backbone networks in an iterative fashion while sharing the weights of the

networks. In each iteration, a residual estimation problem will be addressed by warping the

target image according to the previous optical flow.
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3.4.1 Unsupervised Learning

The dependency of deep neural networks on large annotated datasets has recently motivated

the development of unsupervised learning techniques. Impressive results have been demon-

strated for single image depth prediction [Gar+16; XGF16; GMB17; Zho+17; Vij+17],

ego-motion estimation [ACM15; Zho+17; Vij+17] and optical flow [PHC16; YHD16;

Lon+16; All+17; Vij+17; Ren+17; Wan+18b; MHR18].

In a typical unsupervised optical flow framework, a photometric loss is used in combi-

nation with a smoothness loss for untextured regions [PHC16; YHD16; Lon+16; All+17;

Vij+17; Ren+17; Wan+18b; MHR18; Ran+19a]. More specifically, the target image is

warped according to the predicted flow and compared to the reference image using a photo-

metric loss. Typically, an encoder-decoder network [YHD16; Ren+17; PHC16; Wan+18b;

MHR18] is used. Pătrăucean, Handa, and Cipolla [PHC16] combine the simple encoder-

decoder network with a convolutional LSTM to incorporate information from previous

frames. For unsupervised learning of optical flow, single view depth, camera motion, and

semantic segmentation, Ranjan et al. [Ran+19a] present a new framework called competitive

collaboration. In the spirit of expectation-maximization, a set of neural networks act as

competitors for describing the motion of the static and dynamic part of the scene while a

moderator network assigns each pixel to be either static or dynamic. In an iterative proce-

dure, first, the competitors are trained based on the current assignment by the moderator.

Then, the moderator is trained based on the current ability of the competitors to explain the

different types of motion.

Recently, several approaches [MHR18; Wan+18b] noticed that occluded regions introduce

errors in the photometric loss that cause misleading gradients during training. They propose

to mask out occluded regions in order to avoid this problem. While both of them jointly learn

the forward and backward flow, Meister, Hur, and Roth [MHR18] use a forward-backward

consistency check and Wang et al. [Wan+18b] create a range map with the backward

flow, counting the correspondences for each pixel in the reference frame. However, both

approaches use a heuristic to obtain the final occlusion map. Another recent work on

unsupervised learning of depth and ego-motion [Zho+17] predicts explainability masks to

exclude dynamic objects and occlusions using a photometric loss function. While [Zho+17]

only addresses static scenes, we target the general unconstrained optical flow problem and

learn to jointly predict flow and occluded regions in this setting.

In contrast to the heuristics used in [MHR18; Wan+18b], we propose to jointly learn

the optical flow and occlusions in Chapter 5. We relate flow and occlusion estimates in

our photometric loss by weighting information from the future and the past according to

occlusion estimates. This joint formulation allows us to train our occlusion-aware model

from scratch in contrast to Meister, Hur, and Roth [MHR18] that requires pre-training

without occlusion reasoning.

3.5 High Speed Flow

With some exceptions (Wulff and Black [WB15], Timofte and Gool [TG15], Weinzaepfel

et al. [Wei+13], Farneback [Far03], and Zach, Pock, and Bischof [ZPB07]), most of the
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Figure 3.2: Accuracy vs Efficiency. Trade-off between performance and speed on KITTI

2012 [GLU12].

classical optical flow approaches are very inefficient and cannot be applied in real-time,

which is necessary for applications such as autonomous driving. The trade-off between

accuracy and speed for different algorithms on the KITTI 2012 benchmark [GLU12] is

illustrated in Fig. 3.2.

While variational approaches yield a good precision, they belong to the slowest set of

methods for motion estimation. The duality-based approach for total variation optical flow

proposed by Zach, Pock, and Bischof [ZPB07] allows an efficient GPU implementation that

performs in real-time (30 Hz) on a resolution of 320×240. Sparse matching approaches are

usually more efficient than variational formulations but often need variational refinement as

post processing step to achieve sub-pixel precision. The approach proposed by Kroeger et al.

[Kro+16] allows to trade-off accuracy and run-time. They obtain fast patch correspondences

with inverse search resulting in a dense flow field when aggregating patches across multiple

scales. This allows them to estimate optical flow at up to 600 Hz but at the cost of accuracy.

The recent introduction of deep learning to the optical flow problem yielded several near

real-time approaches (Dosovitskiy et al. [Dos+15] and Ranjan and Black [RB16]) including

(Ilg et al. [Ilg+17] and Sun et al. [Sun+18b]), which achieve state-of-the-art performance on

popular datasets.

In the generation of reference data discussed in Chapter 4 the efficiency is not crucial

since the method is applied offline. However, we rely on sparse matches to improve the

efficiency when estimating the motion between HFR frames. In contrast, our unsupervised

learning scheme (Chapter 5) is applied to a network based on PWC-Net that achieves near

real-time performance.
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3.6 Confidence Measures

A confidence measure to assess the quality of the estimated flow is desirable, considering

the remaining challenges in optical flow. For instance, in applications that use optical flow

estimates such as action recognition, the importance of these estimates can be adjusted with

a good confidence measure. Bad flow estimates would have a lower impact, while good

estimates would have a high impact.

Several measures based on spatial and temporal gradients have been proposed [Ura+88;

Ana89; SAH91] to quantify the uncertainty in the optical flow estimate. In contrast,

algorithm-specific measures propose confidence estimates for a specific group of meth-

ods, i.e., variational methods [BW06] and general methods for pixel-based minimization

problems [KN11]. While Bruhn and Weickert [BW06] propose a confidence measure

based on the energy function optimized by the variational method, Kybic and Nieuwenhuis

[KN11] uses bootstrap resampling, which repeatedly run the optical flow computation while

randomly replacing the contributions of some pixels to the energy.

Learning-based measures [Kon+07; KMG08; Mac+13] learn a model that relates the

success of flow algorithm success to spatio-temporal image data or the computed flow

field. Kondermann et al. [Kon+07] use linear subspace projection of the optical flow and

define a confidence based on the reconstruction error using the linear basis. In contrast,

Kondermann et al. [Kon+07] learn a probabilistic motion model from annotated training

data and use hypothesis testing of flow estimates based on the derived model to compute

confidences. Mac Aodha et al. [Mac+13] learn a classifier to directly measure the quality

of the optical flow predictions based on multiple feature types, such as temporal features,

texture or distance from image edges.

Several approaches [WKR17; Ilg+18; GR18] proposed to estimate the optical flow

and confidences simultaneously. Wannenwetsch, Keuper, and Roth [WKR17] formulate a

probabilistic method based on general energy formulations. The optical flow is estimated

by minimizing the expected loss over the posterior, while confidences are measured using

the marginal entropy of the posterior. They rely on a mean-field approximation to make

inference tractable. Recently, Gast and Roth [GR18] propose lightweight probabilistic

CNNs. Instead of learning a two-dimensional optical flow field, they learn the mean and

standard deviation of a Gaussian distribution. Furthermore, they suggest to learn distribution

in each layer and describe how to propagate the probabilistic activations in forward and

backward direction. In concurrent work, Ilg et al. [Ilg+18] suggest two approaches for learn

uncertainties using CNNs. In a simple approach, they train a set of different models and

estimate uncertainty empirically. Since training several models is expensive, they propose

an extension of FlowNet [Dos+15] in the spirit of [GR18] by replacing some optical flow

layers by the mean and standard deviation of a Gaussian.

In the generation of new reference data discussed in Chapter 4, such a measure would

allow us to weigh the importance of each estimate according to the confidence. This is

beneficial when using the reference data for evaluation or training of methods. In this thesis,

we focus our attention on the challenging estimation problem and will only rely on heuristics

to remove regions where our approach fails. However, a probabilistic extension that jointly

estimates the optical flow and confidence similar to the works [Ilg+18; GR18] would be of
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(a) Middlebury (b) KITTI 2015 (c) HCI Benchmark

Figure 3.3: Real Datasets. Examples from the real optical flow datasets Middlebury

[Bak+11], KITTI 2015 dataset [Gei+13; MG15], and MCI Benchmark [Kon+16].

great interest for future studies.

3.7 Datasets

The acquisition of optical flow ground truth is very difficult since no sensor exists that can

capture optical flow ground-truth in natural scenes. Thus, there are only a few real datasets

for the optical flow problem. In Fig. 3.3, we show three examples for each dataset.

The first unified optical flow benchmark Middlebury was proposed by Baker et al.

[Bak+11] providing a test environment and evaluation server for optical flow approaches.

The benchmark consists of sequences with non-rigid motion, synthetic sequences and a

subset of the Middlebury stereo benchmark sequences (static scenes). For all non-rigid

sequences, ground truth flow is obtained by tracking hidden fluorescent textures sprayed

onto the objects. The process is very time consuming and cannot be applied on scenes

outside of the laboratory. Therefore, the Middlebury dataset is limited in size and missing

real world challenges like complex structures, lightning variation and shadows. In addition,

Middlebury only contains small motions of up to twelve pixels, which do not allow the

investigation of challenges related to fast motions.

In contrast, the KITTI Benchmark introduced by Geiger, Lenz, and Urtasun [GLU12]

and Geiger et al. [Gei+13] provides optical flow ground truth for real street scenes. The

dataset has been captured from an autonomous driving platform equipped with senor suite

consisting of high-resolution cameras and a Velodyne 3D laser scanner. They obtain sparse

ground truth for the static part of the scene by projecting accumulated 3D laser point clouds

onto the images. In KITTI 2015 [MG15], the ground truth for vehicles is added by fitting

accurate 3D CAD models to all vehicles in motion. Both KITTI 2012 and 2015 comprise

194 training and 195 test image pairs at a resolution of 1280 × 376 pixels each. However, a

multi-view extension of the dataset is provided consisting of approximately 4000 images
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without annotations. While KITTI provides annotated data and an evaluation server, it is still

limited in size for deep learning. Therefore, the KITTI dataset is usually used for evaluation

and fine-tuning.

Similar to KITTI, Kondermann et al. [Kon+16] present the HCI Benchmark, an optical

flow dataset and online benchmark for street scenes consisting of 28,504 image pairs. The

benchmark specifically includes realistic, systematically varied radiometric and geometric

challenges for autonomous driving. In contrast to the mobile laser scanning solution of

KITTI, the static scene is scanned only once using a high-precision laser scanner in order

to obtain a dense and highly accurate ground truth of all static parts. However, ground

truth for dynamic objects is missing and dynamic regions are manually masked out. The

major limitation of the HCI Benchmark is that all sequences were recorded in a single street

section, thus lacking in diversity. While this enabled better control over the content and

environmental conditions, it is the major reason why the datasat is still rarely used in the

optical flow literature.

The proposed techniques for the generation of optical flow ground truth have several

advantages and disadvantages. Middlebury’s approach based on fluorescent textures provides

very accurate ground truth but is restricted to a lab environment and needs a time consuming

preparation. In contrast, KITTI generates ground truth outside of the lab. However, the

re-projection of laser measurements into the images only allow for sparse ground truth and

the setup is not applicable in arbitrary environments. In addition, cars are the only class of

dynamic objects where approximate ground truth is provided. Finally, the technique used

in HCI Benchmark can further improve on the precision of the optical flow ground truth

in comparison to KITTI but is restricted to a certain area that was scanned in advance. In

conclusion, all real datasets so far are restricted to a certain environment or setting and

are missing complex scenes with non-rigid objects. We tackle this problem in Chapter 4

with a novel approach to obtain accurate reference data from High-Speed video cameras by

tracking pixel through densely sampled space-time volume. In contrast to previous methods,

our approach allows the acquisition of optical flow ground truth in challenging everyday

scenes and, in addition, to augment the data with realistic effects such as motion blur to

compare methods in varying conditions. Using this approach, we generate 160 diverse

real-world sequences of dynamic scenes with a significantly larger resolution (1280×1024

pixels) than previous optical datasets and compare several state-of-the-art optical techniques

on this data under varying conditions.

3.7.1 Synthetic Datasets

The problem of acquiring optical flow ground truth can also be resolved by creating synthetic

datasets. While the synthetic optical flow datasets provide many examples for training deep

neural networks, they lack in realism and are limited in diversity, as can be observed in

Fig. 3.4. Therefore, large-scale synthetic datasets are usually used for pre-training and,

afterwards, the pre-trained models are fine-tuned on small, more realistic datasets.

Butler et al. [But+12] take advantage of the open source movie Sintel, a short animated
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(a) MPI Sintel (b) Flying Chairs (c) Flying Things (d) Playing for Ben.

Figure 3.4: Synthetic Datasets. Examples from the synthetic optical flow datasets MPI

Sintel [But+12], Flying Chairs [Dos+15], Flying Things [May+16], and Playing for

Benchmark [RHK17].

film. They create the MPI Sintel optical flow benchmark1 by rendering scenes with optical

flow ground truth. Sintel consists of 1,628 frames and provides three different datasets

with varying complexity that are obtained using different passes of the rendering pipeline.

Similar to Middlebury, they provide an evaluation server for comparison.

The limited size of optical flow datasets hampered the training of deep high-capacity

models. Thus, Dosovitskiy et al. [Dos+15] introduced a simple synthetic 2D dataset of

flying 3D chairs rendered on top of random background images from Flickr to train a CNN.

As the limited realism of this dataset proved insufficient to learn highly accurate models,

Mayer et al. [May+16] presented another large-scale dataset consisting of three synthetic

stereo video datasets with optical flow ground truth: FlyingThings3D, Monkaa, Driving.

FlyingThings3D provides everyday 3D objects flying along randomized 3D trajectories

in a randomly created scene. Inspired by the KITTI dataset, a driving dataset has been

created, which uses car models from the same pool as FlyingThings3D and additionally

highly detailed tree and building models from 3D Warehouse. Monkaa is an animated short

movie similar to Sintel used in the MPI Sintel benchmark.

Recently, powerful game engines have been used to generate synthetic datasets. In Playing

for Data, Richter et al. [Ric+16] extract pixel-accurate semantic label maps for images from

the commercial video game Grand Theft Auto V. This work was extended in [RHK17] to

obtain dense correspondences from the game engine. Towards this goal, they developed a

tool, which operates between the game and graphics hardware. Their algorithm allows them

to produce dense optical flow annotations for around 250,000 images synthesized by the

photo-realistic open-world computer game with minimal human supervision. They provide

an evaluation server and split the dataset into a training, validation, and test set consisting of

134K, 50K, and 70K frames.

1http://sintel.is.tue.mpg.de/
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The generation of pixel-level annotations is very laborious for most computer vision tasks.

Only a few tasks such as 3D reconstruction can directly obtain ground truth from sensors

(Kinect, LiDAR). Most tasks rely on manual annotations and allow the distribution of the

work with crowdsourcing solutions such as Amazon Mechanical Turk [Ama]. However,

no sensor exists that directly captures optical flow ground truth, and the dense manual

annotation of subpixel accurate motion is unfeasible.

As a consequence, less training data is available, preventing progress in learning-based

optical flow methods. While Middlebury [Bak+11] or KITTI [GLU12; MG15] provide real

examples with ground truth, both datasets are very limited in size and diversity. Middlebury

was recorded in a lab setting, and KITTI only consists of street scenes. Synthetic datasets

[But+12; Dos+15; May+16] provide an attractive alternative to real images. However, the

generation of synthetic datasets requires detailed 3D models and, thus, sometimes faces

legal issues [Ric+16]. In addition, it remains an open question whether the realism and

variety attained by rendered scenes are sufficient to match the performance of models trained

on real data.

Special setups have been used to track pixels densely over time in image sequences.

While Middlebury used fluorescent ink in combination with UV-light to obtain dense

correspondences, KITTI used a LiDAR laser scanner to track the pixels of the static scene.

However, both approaches are somewhat limited in the scenarios where they can be used.

For a diverse and realistic dataset, a setup would be desirable that can be used in any

condition. Therefore, we propose to exploit the power of high-speed video cameras for

creating accurate optical flow reference data in a variety of natural scenes, see Fig. 4.1. In

High-Frame-Rate (HFR) sequences the optical flow problem is much simpler because of

smaller motion magnitudes (smaller search space) and minor appearance changes.

The recent advances in visual sensing hardware that is able to record high frame rates

lead to many hand-held high-speed cameras. Current consumer cameras like the iPhone

(since Model 6 1) or the GoPro (since model 4 2), for instance, are able to shoot 1 Megapixel

videos at up to 240 fps. Besides the advancements in traditional camera technology, event-

based vision sensors [Mue+15; Kim+14; MGS15] are emerging that transmit only sparse

differential intensity information and, thus, have the potential of increasing frame rates even

further up to the physical transmission limits. For our dataset, we use the Fastec TS5Q

camera3. In contrast to consumer cameras, the Fastec is able to record QuadHD (2560 ×

1http://www.apple.com/de/iphone-6/specs
2https://shop.gopro.com/hero4/hero4-black/CHDHX-401.html
3http://www.fastecimaging.com/products/handheld-cameras/ts5
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Figure 4.1: Illustration. This figure shows reference flow fields with large displacements

established by our approach. Saturated regions (white) are excluded in our evaluation.

1440 Pixels) videos with up to 360 fps. In addition, we do not need a special setup that

might restrict the usage of the camera since it is a hand-held camera with external memory.

We record videos at high spatial and temporal (> 200 fps) resolutions and propose a

novel approach to predict very accurate correspondences at regular spatial and temporal res-

olutions. Towards this goal, we track pixels densely over a large number of high-resolution

input frames. The high spatial resolution provides fine textural details while high tem-

poral resolution ensures small displacements allowing the integration of strong temporal

constraints. Unlike Middlebury [Bak+11], our approach does not assume special lighting

conditions or hidden texture. Compared to KITTI [GLU12; MG15], our method applies to

non-rigid dynamic scenes, does not require a laser scanner, and provides dense estimates. In

addition, our approach allows for realistically altering the input images, e.g., by synthesizing

motion blur as illustrated in Fig. 4.14.
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Figure 4.2: Slow Flow Formulation. We address the hard problem of dense pixel tracking

through the space-time volume by splitting the problem into many simpler problems, namely

the motion estimation between intermediate frames (1. High-Speed Flow). Finally, we use

the intermediate solutions to solve the tracking problem (2. Dense Tracking).

4.1 Formulation

Let us consider a HFR video sequence I = {I1, . . . ,IN} consisting of N image frames

It ∈ R
w×h×c of resolution w× h and c channels. Besides the color intensities from the

input sequence, we also consider the image gradients ∂ I
∂x

and ∂ I
∂y

, as proposed by [Bro+04].

In contrast to the image intensities, the image gradients are less affected by illumination

changes and therefore lead to more robust data terms. Similar to previous approaches, we

control the influence of the image gradients with a weight ωG we multiply to the channels.

This results in c = 9 feature channels for each image It in total.

Our final goal is to estimate the optical flow U1→N from frame 1 to N, exploiting all

intermediate frames. Direct optimization of the full space-time volume is expensive and

hard since it involves many unknown variables and a highly non-convex energy function.

Therefore, we split the task into two simpler problems, as illustrated in Fig. 4.2:

1. “Flowlets”: We first estimate very accurate small-displacement flow fields {Ut→t+1}
between intermediate frames as described in Section 4.2

2. “Dense Tracking”: We formulate a dense tracking problem in Section 4.3, which uses

the Flowlets to estimate the final flow field U1→N

4.2 Multi-Frame High-Speed Flow

First, we would like to discuss how to accurately estimate the optical flow between in-

termediate images of a HFR sequence. Given the HFR, the motion estimation problem

between two intermediate frames is much simpler. On the one hand, we can expect that only
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Figure 4.3: Flowlets Formulation. Illustration of the linear hard constraint and occlusions

variables for T = 2. While the blue pixel is occluded in the past, the brown pixel is occluded

in the future. Note that by definition, all pixels are visible in the reference frame Ī0.

small motions will occur and thus only need to consider a reduced search space. On the

other hand, only small changes occur in the scene because of the short time period between

intermediate frames. Thus, simple assumptions such as the brightness constancy or linear

motion assumptions are more likely to hold.

The Flowlets will be used as input to our dense tracking formulation. While the optical

flow between intermediate frames is small, we would like to track pixels over longer periods,

which will eventually result in large motions. Thus, small errors in the Flowlets could

potentially accumulate over time to a large drift. As discussed in Section 3.1, variational

approaches are among the most accurate approaches for optical flow estimation. We use

a variational formulation to tackle the Flowlets estimation and alleviate the drift problem.

However, if we use a classical variational approach to compute the Flowlets and naively

combine them with a summation along the trajectory, we obtain large drift in visible regions

and occlusions, as can be observed in Fig. 4.4. Therefore, we extend the formulation to

multiple frames and jointly reason over occlusions.

Let {Ī−T , . . . , Ī0, . . . , ĪT} with Īt = Is+t denote a short window of images from the video

clip (e.g., T = 2), centered at reference image Ī0 = Is. For each pixel p ∈ 0 ⊂ R
2 in the

reference image Ī0 we are interested in estimating a continuous function U(p) = (u,v) ∈R
2

that describes the displacement of p from frame t = 0 to t = 1 as well as an occlusion map

O(p) ∈ {0,1} where O(p) = 1 indicates that pixel p is occluded in the future (i.e., occluded

at t > 0).

Modeling all possible occlusions states for each pixel would add h ·w · 2 ·T unknown

binary variables to our minimization problem. However, for small temporal windows,

we can use a simplified assumption, which only models future and past occlusions (one

binary variable). Since this is a much simpler problem to solve, it allows a more efficient

optimization, which is more likely to find a good solution. Fig. 4.3 visualizes our formulation

for T = 2 and shows one example for a future and past occlusion. Per definition, all pixels

are visible in the reference frame Ī0. The blue pixel is occluded by the wing of the small

dragon in the past. In contrast, the brown pixel is occluded by the wing in the future.

32



4.2 Multi-Frame High-Speed Flow

Figure 4.4: Naive Accumulation. We compare the result of a naive accumulation (bottom-

left) to our results (bottom-right) and the ground truth (top-right) on the Temple Scene from

Sintel (top-left).

In a short temporal window, we can also expect roughly linear motion because of our

high input frame rate. Thus, we enforce constant velocity as a powerful hard constraint, as

illustrated by the red arrows in Fig. 4.3. While the hard constraint incorporates additional

observations for the motion estimation, it does not introduce additional unknown variables

and allows for efficient processing of multiple high-resolution input frames. In contrast, a

soft constant velocity constraint would introduce h ·w variables for each additional frame

and could lead to an intractable model.

We formulate the energy functional

E (U,O) =
∫

0

ED (U (p) ,O(p))+ES (U (p))+EO (O(p))dp, (4.1)

with ED the data term and regularizers ES,EO, which is minimal when U,O are the correct

optical flow and occlusion mask for a given temporal window.

4.2.1 Data Terms

We design our data term to compare the reference frames with all other frames while taking

into account the visibility of each pixel.

Thus, our data term ED measures the photo-consistency between the reference frame and

future frames if pixel p is occluded in the past or visible in the entire temporal window

(O(p) = 0). Otherwise, if the pixel is occluded in the future, the photo-consistency between

the reference frame and past frames is measured, see Fig. 4.5 for an illustration.

In contrast to a formulation that considers all frames equally in a symmetric window

(“Symmetric”) or future direction (“Future”), the joint occlusion reasoning allows us to focus

only on relevant information for the motion estimation task. Without occlusion reasoning,

dominant motions (such as the foreground motion of the finger) affect the estimation in
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Figure 4.5: Flowlets Data Terms. Illustration of the successive and reference data terms.

occluded regions resulting in blurring artifacts at motion discontinuities, as illustrated in

Fig. 4.6. The joint occlusion reasoning obtains sharp boundaries and small errors even in

occluded regions.

We define the data term as

ED (U (p) ,O(p)) =

{

EF (U (p))−µOP if O(p) = 0

EP (U (p)) otherwise
(4.2)

where the bias term µOP favors future data terms in case neither future nor past occlusions

occur.

The future and past photo-consistency terms illustrated in Fig. 4.5 are defined as

EF (U (p)) =µA

T−1

∑
t=0

EA
t (U (p))+µR

T

∑
t=1

ER (U (p)) (4.3)

EP (U (p)) =µA

−1

∑
t=−T

EA
t (U (p))+µR

−1

∑
t=−T

ER (U (p)) (4.4)

with weighting factors µA,µR and measure photo-consistency between adjacent frames

EA
t (U(p)) =ρ(Īt(p+ t ·U(p))− Īt+1(p+(t +1) ·U(p))) (4.5)

and with respect to reference frame Ī0 [WFW08]:

ER
t (U(p)) =ρ(Īt(p+ t ·U(p))− Ī0(p)), (4.6)
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with ρ(·) denoting a robust ℓ1 penalty function, which operates on the feature channels of Ī.

Both data terms serve a different purpose. While the data term on adjacent frames allows

for small appearance changes over time, the data term wrt. to the reference frame reduces

the drift.

4.2.2 Normalization of Data Terms

The data terms introduced in Eq. (4.5) and Eq. (4.6) are highly non-linear in Ī and need

to be linearized to optimize Eq. (4.1) using the calculus of variations as described in

Section 4.2.4. Towards this goal, the first-order Taylor approximation is used. However,

Simoncelli, Adelson, and Heeger [SAH91] and Lai and Vemuri [LV98] show that this

approximation leads to a weighting of the data term according to the image gradient. This

results in high weights when the linear assumption is violated, and they propose to use a

normalization of the data term to alleviate this problem. The normalization terms of Eq. (4.5)

and Eq. (4.6) are derived as

θA
t (p, i) =

(∥
∥t ·∇Īt(p+ t ·U(p), i)− (t +1) ·∇Īt+1(p+(t +1) ·U(p), i)

∥
∥2

2
+ ε2

)−1

θR
t (p, i) =

(

t2 ·
∥
∥∇Īt(p+ t ·U(p), i)

∥
∥2

2
+ ε2

)−1

with θR , θA denoting vectors of dimension c, θR
t (p, i) the i’th column of the vector

θR
t (p), Īt(p, i) the i’th channel of frame Īt(p). ∇xĪt(x,y, i) = Īt(x,y, i)− Īt(x−1,y, i) denotes

the forward difference in direction x and ε = 0.001 is a small constant to prevent the

amplification of errors with small gradients. Using these normalization factors, we obtain

the normalized data terms

EA
t (U(p)) = ρ

(

θA
t (p)⊙

(
Īt (p+ t ·U(p))− Īt+1 (p+(t +1) ·U(p))

))

(4.7)

ER
t (U(p)) = ρ

(

θR
t (p)⊙

(
Īt (p+ t ·U(p))− Ī0(p)

))

, (4.8)

with ⊙ the element-wise multiplication.

4.2.3 Regularization

Even though our data terms incorporate additional temporal observations, they will not

resolve all ambiguities, for example, such caused by untextured regions or occlusions. This

will affect both our flow and occlusions variables. Therefore, we impose additional spatial

smoothness constraints on the flow (ES) and occlusion variables (EO):

ES(U(p)) =µFS exp(−κ‖∇Ī0(p)‖2) ·ρ(‖∇U(p)‖2
2) (4.9)

EO(O(p)) =µOS‖∇O(p)‖2 (4.10)

The smoothness constraints encourage similar flow and occlusion variables between
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Figure 4.6: Results with Occlusion Reasoning. Visualization of the Average End-point

Error (larger errors in brighter colors) using a symmetric data term (ED = EF+EP), future

photo-consistency (ED = EF) and our full model (ED as defined in Eq. (4.2)).

neighboring pixels. In the case of ambiguities, these constraints allow propagating informa-

tion from neighboring regions. However, the weighting factor κ = 10 in Eq. (4.9) encourages

flow discontinuities at image edges.

4.2.4 Optimization

We minimize Eq. (4.1) by interleaving variational optimization [Bro+04] of the continuous

flow variables U with MAP inference [BVZ99] of the discrete variables O. Depending on

the scene and frame rate, we might have larger motions than one pixel. Instead of relying on

a scale pyramid (coarse-to-fine) to avoid local minima, we use sparse matching between the

reference frame 0 and frame T in combination with the interpolation scheme from EpicFlow

[Rev+15] to obtain a good initialization for the optical flow. The alternating variational and

discrete optimization yield highly accurate flow fields for small displacements, which form

the input to our dense pixel tracking stage.

Discrete Optimization

During the discrete optimization of the occlusion variables, we keep the optical flow U fixed

and minimize E(O). Since we model only two occlusion states (past or future occlusion),

minimizing our energy reduces to a binary optimization problem of the data term ED (O(p))
and regularization EO(O(p)). As discussed in Section 2.2.1, graph cuts approaches are

guaranteed to reach the global optimum for such discrete optimization problems. Therefore,

we use graph cuts in each iteration to find the optimal solution of our occlusion variables

for the current energy. Since we consider the future and past frame, our data terms will

always provide information about the appearance of the pixel. In contrast to a two frame

formulation, we do not need to account for the trivial solution where all pixels are occluded

and the data term is not providing any information.
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Continuous Optimization

We assume that our occlusion variables are fixed and find the minimum of our functional

E(U) using the Euler-Lagrange equation as discussed in Section 2.1.

We follow the same strategy as [Bro+04] and use the non-linear data term proposed in

Section 4.2.1. For better readability, we define

Īt =Īt (p+ t ·U (p)) , (4.11)

ĪA =Īt − Īt+1, (4.12)

ĪR =Īt − Ī0, (4.13)

θA =θA
t (p), (4.14)

θR =θR
t (p), (4.15)

and obtain the following Euler-Lagrange equation for Eq. (4.1)

0 =µA ·O(p)
−1

∑
t=−T

ρ ′
(

θA ⊙ ĪA
)

·
(

JT
Īt
· t −JT

Īt+1
· (t +1)

)

·
(

θA ⊙ ĪA
)

+µA · (1−O(p))
T−1

∑
t=0

ρ ′
(

θA ⊙ ĪA
)

·
(

JT
Īt
· t −JT

Īt+1
· (t +1)

)

·
(

θA ⊙ ĪA
)

+µR ·O(p)
−1

∑
t=−T

ρ ′
(

θR ⊙ ĪR
)

·JT
Īt
· t ·

(

θR ⊙ ĪR
)

+µR · (1−O(p))
T

∑
t=1

ρ ′
(

θR ⊙ ĪR
)

·JT
Īt
· t ·

(

θR ⊙ ĪR
)

−α · exp
(
−κ‖∇Ī0 (p)‖2

)
·div

(
ρ ′
(
‖∇U‖2

2

)
·∇U

)
, (4.16)

with JĪt
the Jacobian of Īt .

We handle the non-linearities in U with the same numerical approximation as Brox et al.

and use fixed-point iterations combined with a scale pyramid to avoid local minima (coarse-

to-fine). However, we rely on an EpicFlow initialization u0 to start on a finer scale than

Brox et al. and use the variational optimization for refinement. Denoting uk, k = 0,1, . . . ,N
the estimate of U(p) at pixel p in iteration k, we rewrite the equation system as follows

Īk
t =Īt

(

p+ t ·uk
)

, (4.17)

ĪA,k =Īk
t − Īk

t+1, (4.18)

ĪR,k =Īk
t − Īk

0, (4.19)

θA,k =
(∥
∥t ·∇Īk

t − (t +1) ·∇Īk
t+1

∥
∥

2

2
+ ε2

)−1

(4.20)

θR,k =
(

t2 ·
∥
∥∇Īk

t

∥
∥

2

2
+ ε2

)−1

(4.21)

In each fixed-point iteration k+ 1, we use the approximation of the Jacobians JT
Īk
t

and
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normalization factors θA,k and θR,k from the previous iteration k.

0 =µA ·O(p)
−1

∑
t=−T

ρ ′
(

θA,k ⊙ ĪA,k+1
)

·
(

JT
Īk
t
· t −JT

Īk
t+1

· (t +1)
)

·θA,k ⊙ ĪA,k+1

+µA · (1−O(p))
T−1

∑
t=0

ρ ′
(

θA,k ⊙ ĪA,k+1
)

·
(

JT
Īk
t
· t −JT

Īk
t+1

· (t +1)
)

·θA,k ⊙ ĪA,k+1

+µR ·O(p)
−1

∑
t=−T

ρ ′
(

θR,k ⊙ ĪR,k+1
)

·JT
Īk
t
· t ·θR,k ⊙ ĪR,k+1

+µR · (1−O(p))
T

∑
t=1

ρ ′
(

θR,k ⊙ ĪR,k+1
)

·JT
Īk
t
· t ·θR,k ⊙ ĪR,k+1

−α · exp
(
−κ‖∇Ī0 (p)‖2

)
·div

(

ρ ′
(

‖∇uk+1‖2
2

)

·∇uk+1
)

. (4.22)

With the first-order Taylor expansion, we handle the non-linearities in the images Īt and

now optimize over duk. Therefore, we insert the following equations

uk+1 =uk +duk, (4.23)

Īk+1
t ≈Īk

t +JĪk
t
·duk, (4.24)

into Eq. (4.22) and get

0 =µA ·O(p)
−1

∑
t=−T

[

ρ ′
(

θA,k ⊙
(

ĪA,k +JĪk
t
· t ·duk −JĪk

t+1
· (t +1) ·duk

))

·
(

JT
Īk
t
· t −JT

Īk
t+1

· (t +1)
)

·θA,k ⊙
(

ĪA,k +JĪk
t
· t ·duk −JĪk

t+1
· (t +1) ·duk

)]

+µA · (1−O(p))
T−1

∑
t=0

µA

[

ρ ′
(

θA,k ⊙
(

ĪA,k +JĪk
t
· t ·duk −JĪk

t+1
· (t +1) ·duk

))

·
(

JT
Īk
t
· t −JT

Īk
t+1

· (t +1)
)

·θA,k ⊙
(

ĪA,k +JĪk
t
· t ·duk −JĪk

t+1
· (t +1) ·duk

)]

+µR ·O(p)
−1

∑
t=−T

ρ ′
(

θR,k ⊙
(

ĪR,k +JĪk
t
· t ·duk

))

·JT
Īk
t
· t ·θR,k ⊙

(

ĪR,k +JĪk
t
· t ·duk

)

+µR · (1−O(p))
T

∑
t=1

ρ ′
(

θR,k ⊙
(

ĪR,k +JĪk
t
· t ·duk

))

·JT
Īk
t
· t ·θR,k ⊙

(

ĪR,k +JĪk
t
· t ·duk

)

−α · exp
(
−κ‖∇Ī0 (p)‖2

)
·div

(

ρ ′
(

‖∇

(

uk +duk
)

‖2
2

)

·∇
(

uk +duk
))

. (4.25)

Finally, we introduce inner fixed-point iterations over duk,l for the non-linearities in the

robust function ρ , and solve the resulting equation system using Successive Over-Relaxation

(SOR). We use bilinear interpolation for evaluating Ī.
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4.3 Dense Tracking

Given the Flowlets {Ut→t+1} from the previous section, our goal is to estimate the final

optical flow field U1→N from frame 1 to frame N. In the following, we formulate the problem

as a dense pixel tracking task.

Let H= {H1, . . . ,HN} and V = {V1, . . . ,VN} denote the location and visibility state of

each pixel of reference image I1 in each frame of the full sequence. The domain of a pixel

p ∈ Ω in image It is defined as Ω = {1, . . . ,w}×{1, . . . ,h}. Instead of the optical flow,

Ht ∈ R
w×h×2 describes a location field and H1 comprises the location of each pixel in the

reference image. Thus, we obtain the optical flow from frame 1 to frame N by U1→N =
HN −H1. In addition, Vt ∈ {0,1}w×h is a visibility field (1=“visible”, 0=“occluded”), and

by definition, all pixels are visible in the reference frame, V1 = 1w×h. The trajectory and

visibility variables along the trajectory of each pixel p ∈ Ω in reference image I1 from frame

1 to frame N are represented by hp = {H1(p), . . . ,HN(p)} and vp = {V1(p), . . . ,VN(p)}.

Our goal is to jointly estimate dense pixel trajectories H∗ =H\H1 and the visibility label

of each point in each frame V∗ = V\V1. Again, we cast this task as an energy minimization

problem

ET (H∗,V∗) =λDA ∑
t<s

ψDA
ts (Ht ,Vt ,Hs,Vs)

︸ ︷︷ ︸

Appearance Data Term

(4.26)

+λDF ∑
s=t+1

ψDF
ts (Ht ,Vt ,Hs,Vs)

︸ ︷︷ ︸

Flow Data Term

+λUT ∑
p∈Ω

ψUT
p (hp)

︸ ︷︷ ︸

Temporal Flow

+λUS ∑
p∼q

ψUS
pq (hp,hq)

︸ ︷︷ ︸

Spatial Flow

+λVT ∑
p∈Ω

ψVT
p (vp)

︸ ︷︷ ︸

Temporal Vis.

+λVS ∑
p∼q

ψVS
pq(vp,vq)

︸ ︷︷ ︸

Spatial Vis.

,

where ψDA
ts , ψDF

ts , ψUT
p , ψUS

pq , ψVT
p , ψVS

pq are data, smoothness and occlusion constraints, and

{λ} are linear weighting factors. Here, p ∼ q denotes all neighboring pixels p ∈ Ω and

q ∈ Ω on a 4-connected pixel grid.

4.3.1 Data Terms

We use all intermediate frames between 1 and N to enforce a constant appearance (Fig. 4.7a).

However, we can now also directly constraint the trajectories using the information from the

Flowlets. Each Flowlet describes a part of the trajectory, as illustrated in Fig. 4.7b with the

trajectory in red and the Flowlets as black arrows. We use a combination of the appearance

and flow data terms to leverage as much information as possible.

The appearance data term ψDA
ts robustly measures the photo-consistency. In such long

sequences, appearance changes are much more likely to occur. Therefore, we measure the

photo-consistency between each combination of frame t and frame s at all visible pixels.

Towards this goal, the features It ,Is are warped according to the respective location fields
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(a)

(b)

Figure 4.7: Dense Tracking Data Terms. Illustration of (a) the appearance data term and

(b) the flow data term from the dense tracking formulation. The trajectory hp is illustrated

in red while the visibility state vp is represented by the transparency of the image and flow

field. The flow data term (b) compares the trajectory to the Flowlets Ut→t+1 represented by

the color encoding and the black arrows.

Ht and Hs.

ψDA
ts (Ht ,Vt ,Hs,Vs) = ∑

p∈Ω

Vt(p)Vs(p)‖It(Ht(p))− Is(Hs(p))‖1 (4.27)

with Vt(p) ∈ {0,1} indicating the visibility of pixel p in frame t. For extracting features at

fractional locations p′
t we use again bilinear interpolation. Similarly to the reference and

successive data term introduced in Section 4.2.1, comparing adjacent frames allows small

appearance changes while the comparison of remote frames alleviates the drift problem.

The flow data term ψDF
ts measures the agreement between the predicted location field

and the Flowlets:

ψDF
ts (Ht ,Vt ,Hs,Vs) = ∑

p∈Ω

Vt(p)Vs(p)‖Hs(p)−Ht(p)−Ut→s(Ht(p))‖1 (4.28)

While the appearance term reduces long-range drift, the flow term helps guide the optimiza-

tion to the global optimum.
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4.3.2 Regularization

While our data terms incorporate many observations from our HFR sequence, we still need

additional constraints to resolve ambiguities.

In the case of occlusions, our data terms will not provide any information about the

trajectory. The temporal flow term ψUT
p and spatial flow term ψUS

pq allow propagating

information in space and time from neighboring trajectories. Towards this goal, ψUT
p robustly

penalizes deviations from the constant velocity assumption and ψUS
pq encourages similar

trajectories at reference pixels p and q

ψUT
p (hp) =

N−1

∑
t=2

‖ht−1
p −2ht

p +ht+1
p ‖

1
(4.29)

ψUS
pq (hp,hq) =ξ (p,q)

N

∑
t=2

‖(ht
p −ht−1

p )− (ht
q −ht−1

q )‖
2

(4.30)

with ht
p the location of reference pixel p in frame t and ξ (p,q) = exp(−κ‖∇I1(

p+q
2
)‖2)

with κ = 10 a weighting factor, which encourages flow discontinuities at image edges.

However, a trivial solution to our energy so far would be to set every pixel occluded. We

can resolve this problem by encouraging the visible state. In addition, we can make similar

temporal and spatial assumptions on our occlusion variables as on our trajectories. Usually,

occlusions are caused by other objects affecting a larger image region instead of single

pixels. In addition, occlusions usually last for a certain time period and do not change every

frame. Thus, we expect the occlusion variables to change smoothly over time and space.

We introduce the temporal visibility term ψVT
p that penalizes temporal changes of the

visibility of a pixel p via a Potts model (first part) and encodes our belief that the majority

of pixels in each frame should be visible (second part). Finally, the spatial visibility term

ψVS
pq encourages neighboring trajectories to take on similar visibility labels modulated by

the contrast-sensitive smoothness weight ξ .

ψVT
p (vp) =

N−1

∑
t=1

[vt
p 6= vt+1

p ]−λV

N

∑
t=1

vt
p, (4.31)

ψVS
pq(vp,vq) =ξ (p,q)

N

∑
t=1

[vt
p 6= vt

q]. (4.32)

Here, vt
p denotes if pixel pixel p in frame t is visible or not.

4.3.3 Optimization

Unfortunately, finding a minimizer of Eq. (4.26) is a very difficult problem that does

not admit the application of black-box optimizers: First, the number of variables to be

estimated is orders of magnitude larger than for classical problems in computer vision.

For instance, a sequence of 100 QuadHD images results in more than 1 billion variables

to be estimated. Second, our energy comprises discrete and continuous variables, which
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make optimization hard. Finally, the optimization problem is highly non-convex due to the

non-linear dependence on the input images. Thus, gradient descent techniques quickly get

trapped in local minima when initialized with constant location fields.

In this section, we introduce several simplifications to make approximate inference in our

model tractable. As the choice of these simplifications will crucially affect the quality of the

retrieved solutions, we will discuss in-depth each of these choices in the following.

Derivation of MRF

We use Max Product Particle Belief Propagation (MP-PBP), discussed in Section 2.2.1, to

make the optimization of our discrete-continuous objective feasible. We iteratively discretize

the continuous variables, sample the discrete variables, and perform TRW-S [Kol06] on the

resulting discrete MRF. More specifically, we create a discrete set of trajectory and visibility

hypotheses {(h
(1)
p ,v

(1)
p ), . . . ,(h

(M)
p ,v

(M)
p )} for each pixel p. Estimating X = {xp|p ∈ Ω}

with xp = (hp,vp) ∈ {(h
(1)
p ,v

(1)
p ), . . . ,(h

(M)
p ,v

(M)
p )} can be phrased as inference in a simpler

Markov Random Field:

By inserting our definitions of the data and smoothness terms, we obtain

E(H∗,V∗) =λDA ∑
p∈Ω

∑
t<s

vt
p vs

p ‖It(h
t
p)− Is(h

s
p)‖1

+λDF ∑
p∈Ω

∑
s=t+1

vt
p vs

p ‖hs
p −ht

p −Ut→s(h
t
p)‖1

+λUT ∑
p∈Ω

N−1

∑
t=2

‖ht−1
p −2ht

p +ht+1
p ‖

1

+λUS ∑
p∼q

ξ (p,q)
N

∑
t=2

‖(ht
p −ht−1

p )− (ht
q −ht−1

q )‖
2

+λVT ∑
p∈Ω

N−1

∑
t=1

[vt
p 6= vt+1

p (p)]−λV

N

∑
t=1

vt
p +λVS ∑

p∼q

ξ (p,q)
N

∑
t=1

[vt
p 6= vt

q]

Finally, re-arranging the terms yields

E(H∗,V∗) = ∑
p∈Ω

[

λDA ∑
t<s

vt
p vs

p ‖It(h
t
p)− Is(h

s
p)‖1

+λDF ∑
s=t+1

vt
p vs

p ‖hs
p −ht

p −Ut→s(h
t
p)‖1

+λUT

N−1

∑
t=2

‖ht−1
p (p)−2ht

p +ht+1
p ‖

1
+λVT

N−1

∑
t=1

[vt
p 6= vt+1

p ]−λV

N

∑
t=1

vt
p

]

+ ∑
p∼q

ξ (p,q)

[
N

∑
t=2

λUS
‖(ht

p −ht−1
p )− (ht

q −ht−1
q )‖

2
+

N

∑
t=1

λVS
[vt

p 6= vt
q]

]

,
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which can be written as a unary (ψU ) and pairwise term (ψP)

E(X) = ∑
p

ψU
p (xp)+ ∑

p∼q

ψP
pq(xp,xq) (4.33)

where xp = (hp,vp)

ψU
p (xp) =λDA ∑

t<s

vt
p vs

p ‖It(h
t
p)− Is(h

s
p)‖1

+λDF ∑
s=t+1

vt
p vs

p ‖hs
p −ht

p −Ut→s(h
t
p)‖1

+λUT

N−1

∑
t=2

‖ht−1
p (p)−2ht

p +ht+1
p ‖

1
+λVT

N−1

∑
t=1

[vt
p 6= vt+1

p ]−λV

N

∑
t=1

vt
p

ψP
pq(xp,xq) =ξ (p,q)

[
N

∑
t=2

λUS
‖(ht

p −ht−1
p )− (ht

q −ht−1
q )‖

2
+

N

∑
t=1

λVS
[vt

p 6= vt
q]

]

Given this discrete set, the optimization of Eq. (4.26) is equivalent to the MAP solution

of the simpler MRF given in Eq. (4.33).

Hypothesis Generation

A common strategy for MP-PBP [TM09; GG15] is to start from a random initialization

and to generate particles by iteratively resampling from a Gaussian distribution centered at

the last MAP solution. This implements a stochastic gradient descent procedure without

the need for computing gradients. Unfortunately, our objective is highly non-convex, and

random or constant initialization will guide the optimizer to a bad local minimum close to

the initialization.

We, therefore, opt for a data-driven hypothesis generation strategy. We accumulate

the precomputed Flowlets between all subsequent frames of the input video sequence in

temporal direction (forward and backward). As not all pixels are visible during the entire

sequence, we detect temporal occlusion boundaries using a forward-backward consistency

check and track through partially occluded regions with spatial and temporal extrapolation.

We use EpicFlow [Rev+15] to spatially extrapolate the consistent parts of each Flowlet,

which allows propagating the flow from the visible into occluded regions. For temporal

extrapolation, we predict point trajectories linearly from the last visible segment of each

partially occluded trajectory. This strategy works well in cases where the camera and objects

move smoothly (e.g., on Sintel or recordings using a tripod) while the temporal linearity

assumption is often violated for hand-held recordings. However, spatial extrapolation is

usually able to establish correct hypotheses in those cases.

After each run of TRW-S, we resample the particles by sampling hypotheses from

spatially neighboring pixels. This allows the propagation of high-quality motions into

partial occlusions. In practice, we create a nearest neighbor tree based on the consistent

accumulations and retrieve the nearest neighbors for p in a certain radius. We leverage non-

maximum suppression based on the following similarity criterion between two hypotheses
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h1 and h2 to encourage diversity amongst hypotheses:

Sim(h1,h2) =
N

∑
t=2

‖(ht
1 −ht−1

1 )− (ht
2 −ht−1

2 )‖
2

(4.34)

Assuming that the motion of occluders and occludees differs in most cases, we set the

visibility of a hypothesis by comparing the local motion prediction with the corresponding

Flowlet. If the predicted flow differs significantly from the Flowlet estimate for a particular

frame, the pixel is likely occluded.

Spatial Resolution

While a high (QuadHD) input resolution is important to capture fine details and attain sub-

pixel precision, we decided to produce optical flow reference data at half resolution (1280×
1024 Pixels), which is still significantly larger than all existing optical flow benchmarks

[Bak+11; But+12; GLU12].

While using the original resolution for the data term, we estimate H and V directly at the

output resolution, yielding a 4 fold reduction in model parameters. Note that we do not lose

precision in the optical flow field as we continue evaluating the data term at full resolution.

To strengthen the data term, we assume that the flow in a small 3×3 pixel neighborhood of

the original resolution is constant, yielding 9 observations for each point p in Eq. (4.27).

Temporal Resolution

While we observed that a high temporal resolution is important for initialization, our

temporal smoothness constraints operate more effectively at a coarser resolution as they are

able to regularize over larger temporal windows. Additionally, we observe in our experiments

in Section 4.4.2 that it is not possible to choose one optimal frame rate due to the trade-off

between local estimation accuracy and drift over time, which agrees with the findings in

[LAG05].

Therefore, we use two different frame rates for the hypotheses generation and choose the

highest frame rate based on the robust upper 90% quantile of the optical flow magnitude

computed at a smaller input resolution with classical techniques [Rev+15]. This allows us

to choose a fixed maximum displacement between frames. In practice, we chose the largest

frame rate that yields maximal displacements of ∼2 pixels and the lowest frame rate that

yields maximal displacements of ∼8 pixels, which empirically gave the best results. Finally,

our dense pixel tracking algorithm operates on keyframes based on the lowest frame rate.

Flowlet observations of larger frame rates are integrated by accumulating the optical flow

between keyframes.

4.4 Evaluation & Analysis

Before we use our method to create reference flow fields for challenging sequences, we first

validate our approach by quantifying the error of the reference fields on synthetic and real
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data with ground truth. All of our real-world sequences are captured with a Fastec TS5Q

camera 4, which records QuadHD (2560×1440) videos with up to 360 fps.

We empirically determined the optimal weighting parameters for our formulation. For the

Flowlets, we use µG = 6.0,µA = 1.0,µR = 2.0,µOP = 500,µFS = 4.0,µOS = 0.1, and for

the dense tracking formulation, we use µG = 10.0,λDA
= 1.0,λDF

= 1.0,λUT
= 0.1,λUS

=
10.0,λVT

= 1.0,λVS
= 0.1,λV = 1.0.

In all of our experiments, we consider two standard metrics:

• Average End-point Error (EPE) is the average Euclidean distance between the

estimated and ground truth flow:

EPE =
1

|Ω| ∑
(x,y)∈Ω

∥
∥U1→N (x,y)−UGT

1→N (x,y)
∥
∥

2

We separately report the EPE in occluded and visible regions to better analyze the

impact of the proposed model components.

• F1-Score defined as the harmonic mean of precision and recall for occlusion esti-

mates:

precision =
T P

T P+FP

recall =
T P

T P+FN

Prediction

Occluded Visible

G
T Occluded T P FN

Visible FP T N

F1-Score = 2 ·
precision · recall

precision+ recall

4.4.1 Datasets

As there exists no publicly available HFR dataset with optical flow ground truth, we created

two novel datasets for this purpose.

MPI Sintel: We selected a subset of 19 sequences from the MPI Sintel training set [But+12]

and re-rendered them in Blender based on the “clean” pass of Sintel at 1008 frames per

second, using a resolution of 2048×872 pixels. The image quality and realism are identical

to that of the original MPI Sintel training set (“clean” pass), except for objects that include

physically simulated deformations, like the main character’s hair (Fig. 4.8) or some clothes,

as all physical simulations in Sintel are pre-computed at 24 frames per second. While perfect

ground truth flow fields can be obtained in this synthetic setting, the rendered images lack

realism and textural details.

Real-World Sequences: We thus recorded a second data set of static real-world scenes

using our Fastec TS5Q camera. With the dense reconstruction pipeline consisting of Visu-

4http://www.fastecimaging.com/products/handheld-cameras/ts5
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Figure 4.8: HFR MPI Sintel We re-rendered the MPI Sintel dataset at 1008fps clean pass

to obtain dense accurate ground truth. In this frame rate, we had to remove some effects like

the hair of the main character. On the left, we show the original Ambush scene in contrast

to the re-rendered version on the right.

alSFM [Wu13]5 and PMVS2 [FP10]6, we create an accurate 3D point cloud from images

recorded with the Fastec TS5Q camera. We make sure to obtain a good dense reconstruction

by adding a large set of DSLR images (yielding in total 100 - 200 images per reconstruction)

to the set of high-speed images and manually deleting points that seem to be wrong. Given

the 3D point cloud, we can re-project the points into the images and compute the flow

between two images. We will be limited to static scenes, and the flow fields will only

be sparse in this evaluation. Thus, we will not have such complex motions as in Sintel.

However, this experiment will still give us an idea of the performance on our high-speed

data since we use the same camera. Our reconstruction dataset consists of 4 point clouds

with 20 sequences in total for the evaluation. The point clouds, after manually removing

outliers, are shown in Fig. 4.9. In the 20 sequences, we used different camera motions and

viewpoints for a diverse dataset.

4.4.2 Importance of Frame Rate

Our HFR version of the Sintel dataset allows us to analyze the impact of frame rate on

the performance. In the following experiment, we use the naive accumulation of Flowlets

on different frame rates to compare them on the original frame rate of 24fps. In addition,

we exclude occluded regions since the naive accumulation ignores occlusions. We obtain

different frame rates by skipping frames at the highest frame rate of 1008fps. Note that for

some frame rates, linear interpolation is necessary to obtain the flow in the original frame

rate of 24fps. In the sequences Ambush and Market, the linear interpolation of non-linear

motions causes errors that are not entirely following the expected trend.

In Fig. 4.10, we show the estimation error (EPE) with a temporal window size of 3, 5, 9,

and 13 frames using different frame rates (x-axis). Overall, we observe decreasing errors

with higher frame rates. Interestingly, however, this holds true only until a certain frame

rate for a temporal window size of 3 and 5 frames. The reason for the error to increase

after the optimal frame rate is the accumulation of small estimation errors that causes a

significant drift for higher frame rates. Larger temporal windows perform weaker on lower

5A visual Structure-from-Motion system
6A visual Multi-View-Stereo system
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Augustus MPI Roof

Sternwarte

Figure 4.9: Reconstruction Dataset The reconstructed point clouds for 4 different scenes

used for evaluating the reference flow fields.

frame rates but at the same time show a smaller drift over time. Using a larger temporal

window can be considered as using a lower frame rate with additional temporal information

since we impose the hard constant velocity constraint over a longer time period. Therefore,

the optimal frame rate is higher with larger temporal frame rates than with smaller ones,

e.g., 144fps using 3 frames and 504 fps using 9 frames temporal windows. The optimal

frame rate also highly depends on the scene. Whereas higher frame rates perform better for

Ambush, Cave, Market, and Temple, the lowest frame rate of 24fps is optimal for Bamboo

and Mountain. In Bamboo and Mountain, we have already very small motions in the original

frame rate, thus higher frame rates only lead to a larger drift.

We can therefore conclude as in [LAG05] that while very high frame rates help in general,

the optimal frame rate depends not only on the available resources but also on the imaging

modalities and the scenario at hand. Thus, it is impossible to choose a single optimal frame

rate across all sequences. We therefore use an adaptive frame rate according to the 90%

quantile in our dense tracking approach, as described before.

4.4.3 Validation on MPI Sintel

The MPI Sintel data set also allows us to validate our full approach for generating reference

data in a low frame rate. Thus given the 1008fps sequence, we use our approach to generate

the reference flow field in the original frame rate of 24fps and compare it to the ground truth.

47



4 Generating Reference Flow with High-Speed Cameras
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Figure 4.10: Importance of Frame Rate. The EPE on MPI Sintel of non-occluded pixels

for different frame rates (x-axis) using temporal window size 3,5,9 and 13 for the Flowlets

with naive accumulation.

Table 4.1 shows our results on this dataset evaluated in all regions, only the visible regions,

only the occluded regions or regions close to the respective motion boundaries (“Edges”).

We also provide the performance on individual scenes in Table 4.2 for a more detailed

discussion. We compare our results to Epic Flow [Rev+15] at standard frame rate (24fps),

a simple accumulation of EpicFlow flow fields at 144 fps (beyond 144 fps we observed

accumulation drift on MPI Sintel), our multi-frame Flowlets (using a windows size of 5)

accumulated at the same frame rate and at 1008 fps, as well as our full model.

Compared to computing optical flow at regular frame rates (“Epic Flow (24fps)”), the

accumulation of flow fields computed at higher frame rates increases performance in non-

occluded regions (“Epic Flow (Accu. 144fps)”). In contrast, occluded regions are not

handled by the simple flow accumulation approach and we can observe a small increase in

EPE. The proposed multi-frame flow integration (“Slow Flow (Accu. 144fps)”) improves

performance further. This is due to our multi-frame data term, which reduces drift during the

accumulation. In addition, errors decrease in particular in occluded regions and at motions

boundaries (Edges) because of the occlusion reasoning, which considers only the visible

frames in case of occlusions. While motion boundaries improve when accumulating multi-

frame estimates at higher frame rates (“Slow Flow (Accu. 1008fps)”), the accumulation of
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Methods All (Edges) Visible (E.) Occluded (E.)

Epic Flow (24fps) 5.53 (16.23) 2.45 (10.10) 16.54 (20.68)

Epic Flow (Accu. 144fps) 4.73 (12.76) 1.04 (4.41) 17.09 (18.44)

Slow Flow (Accu. 144fps) 4.03 (12.03) 0.78 (4.43) 15.24 (17.28)

Slow Flow (Accu. 1008fps) 5.38 (11.78) 1.35 (2.60) 19.18 (17.93)

Slow Flow (Full Model) 2.40 (10.34) 0.75 (4.02) 9.07 (15.10)

Table 4.1: Average Performance on MPI Sintel. The performance in EPE of our dense

pixel tracking method and various baselines on MPI Sintel with dense ground truth.

flow errors causes drift resulting in an overall increase in error. This confirms the necessity to

choose the frame rate adaptively depending on the expected motion magnitude, as discussed

in Section 4.3.3. Using our full model (“Slow Flow (Full Model)”), we obtain the overall

best results, reducing errors wrt. EpicFlow at original frame rate by over 60% in visible

regions and over 40% in occluded regions.

Table 4.2 provides deeper insights into the performance of our method. Especially in

sequences with large and complex motions like “Ambush”, “Cave”, “Market”, and “Temple”,

we observe significant improvement. We improve in particular in the occluded regions and

at motion boundaries due to the propagation of neighboring hypotheses and our occlusion

reasoning. However, in scenes like “Bamboo” and “Mountain”, the motions are already

rather small, which causes a stronger drift problem when considering higher frame rates.

In Table 4.3, we compare the occlusion estimation of our method (last row) to a naive

estimate that sets all pixels in the image to occluded (first row) and two-frame EpicFlow in

combination with a simple forward-backward check (second row). We report F1-Measure of

the estimated occlusion area wrt. the Sintel occlusion ground truth. Our method outperforms

both baselines and works best at large occluded regions. The Sintel scenes Bamboo and

Mountain comprise very fine occlusions due to small motions that are hard to recover. On

Mountain, EpicFlow even outperforms our method in terms of occlusion estimation.

MPI Sintel also contains several easy scenes (e.g., “Bamboo”, “Mountain”) where state-

of-the-optical flow algorithms perform well due to the relatively small motion (around 10

pixel in average). Thus the overall improvement of our method is less pronounced compared

to considering the challenging cases alone. However, on more complex scenes with non-rigid

Methods Ambush Bamboo Cave Market Mountain Temple

Epic Flow (24fps) 6.80 0.35 9.07 6.40 1.13 6.84

Epic Flow (Accu. 144fps) 7.09 0.50 5.23 4.88 0.99 6.73

Slow Flow (Accu. 144fps) 5.71 0.32 4.86 4.60 0.74 5.46

Slow Flow (Accu. 1008fps) 8.02 0.75 5.55 5.42 1.62 7.88

Slow Flow (Full Model) 2.85 0.25 4.76 2.37 0.96 2.53

Table 4.2: Detailed Results on MPI Sintel Scenes. The performance in EPE of our dense

pixel tracking method and various baselines on several scenes of MPI Sintel.
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Methods Ambush Bamboo Cave Market Mountain Temple Average

All Occluded 0.40 0.06 0.31 0.27 0.10 0.37 0.28

EpicFlow F/B 0.84 0.27 0.55 0.74 0.86 0.77 0.76

Full Model 0.90 0.41 0.75 0.79 0.75 0.85 0.82

Table 4.3: Occlusions on MPI Sintel Scenes. Evaluation of the occlusion estimates of our

dense pixel tracking method and various baselines on several scenes from MPI Sintel using

the F1-Measure.

Scene Augustus Sternwarte MPI Roof

Magnitude 100 200 300 100 200 300 100 200 300

Epic Flow 1.23 5.89 21.63 2.15 5.49 11.03 0.87 23.05 59.36

Slow Flow 1.17 2.56 3.71 2.04 4.99 7.59 0.86 2.01 2.70

Table 4.4: Validation on Real-World Sequences. The accuracy of our dense pixel tracking

method and EpicFlow wrt. different motion magnitudes on real-world scenes with ground

truth provided by 3D reconstruction.

objects and larger motions our method always outperforms EpicFlow.

4.4.4 Validation on Real-World Sequences

Using a synthetic data set raises the question of how good the rendered data represent

the real world? Instead of answering this question, we also validate our approach on our

real-world data set recorded with the Fastec TS5Q comprising of several static scenes.

Note that since we obtain our ground truth from 3D reconstruction, we only have sparse

annotations and can only consider simple static scenes. However, this should already give

us an idea of the performance in real scenes.

In Table 4.4, we compare our approach to an EpicFlow baseline at regular frame rates.

Since we have to rely on static and highly textured scenes for a good reconstruction, our

baseline already performs very well on small flow magnitudes of ∼ 100 pixels on all

scenes. However, the advantage of our approach over the baseline becomes clear with larger

magnitudes ∼ 200 pixels and ∼ 300 pixels. Especially on MPI Roof, EpicFlow is failing

with objects moving out of the scenes, which results in large errors at the image boundaries.

In contrast, our approach still achieves similar performance with 200 and 300px motion

magnitudes.

In Fig. 4.11, we show the generated flow fields from our approach for different flow

magnitudes, and in Fig. 4.12, we compare our flow fields to the Epic Flow baseline. All

flow illustrations are generated using the Middlebury [Bak+11] color scheme, and for the

comparison of two flow fields we normalize by the maximum flow of both. For 100px

magnitudes, we observed similar performance of our approach and Epic Flow. Therefore

we omitted these flow fields here. In the case of occlusions, Epic Flow is having trouble

to estimate the correct flow, whereas our motion boundaries are much better. For instance,

the large occlusions by the statue in the first and second row. At the same time, we observe

50



4.4 Evaluation & Analysis
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A
u

g
u

st
u

s
S

te
rn

w
a
rt

e
M

P
I

R
o
o
f

Figure 4.11: Estimation on Real-World Sequences. Slow Flow estimation examples with

100px, 200px, 300px motion magnitudes for the reconstruction dataset.
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Figure 4.12: Comparison on Real-World Sequences. Comparison of Slow Flow and Epic

Flow estimations on the reconstruction dataset.
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that repetitive patterns as the bench moving out of the image in the last row are very

troublesome for Epic Flow but can easily be handled by our approach. Furthermore, fine

details are better maintained with our approach than Epic Flow, as can be seen with the

ceiling of the pavilion in the third and the chairs as well as tables in the fourth row. Our

approach is capable of capturing these fine details due to our formulation. The joint flow and

occlusion reasoning on HFR sequences based on a variational approach allows for subpixel-

accurate flow estimations and sharp motion boundaries. The dense tracking formulation

combines these Flowlets while reducing the drift and modeling the occlusions. In contrast,

EpicFlow interpolates sparse matches between the first and last frames and uses a variational

formulation without occlusion reasoning for refinement.

This difference in performance increases even further if we add motion blur to the input

images of the baseline, as described in the following section. We conclude that our technique

can be used to benchmark optical flow performance in the presence of large displacements

where state-of-the-art methods fail.

4.5 Real-World Benchmark

In this section, we leverage our method to create reference flow fields for challenging

real-world video sequences. We have recorded 160 diverse real-world sequences of dynamic

scenes using the Fastec TS5Q high-speed camera. For each sequence, we have generated

reference flow fields using the approach described in the previous sections. We introduce

challenges for a thorough evaluation of optical flow approaches. On the one hand, we vary

the magnitude of the motion by using different numbers of Flowlets in our optimization such

that the 90% quantile of each sequence reaches a value of 100, 200, or 300 pixels motion. By

grouping similar motion magnitudes, we are able to isolate the effect of motion magnitude

on each algorithm from other influencing factors. On the other hand, we synthesize motion

blur as described in the following section to analyze the performance of modern optical

flow algorithms in the presence of motion blur. In all evaluations using our benchmark, we

exclude saturated regions that do not carry enough information for our method.

In Fig. 4.13, we show some examples of the generated reference flow fields from our

benchmark.

4.5.1 Motion Blur

One interesting and challenging property of real-world videos is motion blur. Motion blur is

caused by long shutter times and large motions when different observations are integrated

into one pixel. While the reduction of the shutter time minimizes the motion blur, often

a higher shutter time is necessary due to adverse lighting conditions. Therefore, motion

blur is often be observed in real video sequences. Motion blur is challenging for optical

flow methods since high-frequency information is lost. Especially, methods based on sparse

matches are affected because it becomes harder to extract good features from the images for

matching.

In our real-world HFR sequences, we have almost no motion blur due to the short shutter
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Figure 4.13: Real-World Reference Data. Reference data of different flow magnitudes for

some real-world sequences.
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(a) Input Image (b) Simple Average (c) Low Frame Rate (d) High Frame Rate

Figure 4.14: Motion Blur. Using HFR videos and our technique (described in Section 4.2),

we are able to add realistic motion blur (d) to the images (a). In contrast, using a simple

average over HFR frames (b) or low frame rates with a classical optical flow method results

in severe staircase artifacts (c).

time required for the acquisition. However, we can synthesize the motion blur to make the

benchmark more realistic and challenging. Given a HFR sequence, we can approximate the

motion blur by averaging over a set of frames. However, the motion in our HFR sequences

is still too large (> 1px), which leads to staircase artifacts, as can be seen in Fig. 4.14b.

We alleviate this problem by first blurring our frames from the HFR sequence. Given our

Flowlets, we can blur each frame according to the pixels motion. In particular, for each

reference and target frame of our benchmark, we apply on all neighboring frames in the

HFR sequence (in past and future direction) adaptive line-shaped blur kernels obtained from

the estimated flow of the corresponding Flowlet. Tracing the corresponding pixels along

the optical flow (u,v) for pixel (x,y) of an image I can be efficiently implemented using

Bresenham’s line algorithm [Bre65], as described in Algorithm 1. Finally, we approximate

the motion blur of each frame of the final frame rate by averaging all blurred neighboring

frames. We can control the strength of motion blur by adapting the size of the neighborhood

we use in the average.

Changing the neighborhood can be considered as simulating different shutter times since

information over shorter or longer periods of time is integrated. As illustrated in Fig. 4.14d,

this results in realistic motion blur. For comparison, we also show the blur result when

applying the adaptive blur kernel on the low frame rate inputs directly (Fig. 4.14c).

For our benchmark, we consider four different levels of motion blur beside the sharp

image, i.e., averaging over 1, 3, 5, or 7 blurred frames. The different level of motion blur for

the corresponding reference frames are shown in Fig. 4.15. In scenes Animals, Ball, Kids,

and Motocross, the foreground has the dominant motion, which yields a stronger blur on

the foreground whereas the scenes BMX and Road also have a quite blurry background. All

in all, the motion blur seems very realistic and creates new interesting challenges in our

benchmark.

4.5.2 Benchmark

In this section, we benchmark several state-of-the-art techniques on our challenging novel

optical flow dataset. We compare 8 state-of-the-art optical flow techniques. More specifically,
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Algorithm 1 Blurring based on Bresenham’s Line Algorithm

function BLURPIXEL(I,x,y,u,v) # pixel (x, y) with flow (u, v)

Iblurred = 0

num = 0 # count summed pixels

err = abs(u)−abs(v) # initial error bound

i = 0, j = 0 # pixel steps

while true do

Iblurred = Iblurred + I(x+ i,y+ j) # sum pixels in motion direction

num = num+1

if i > 0 or j > 0 then

Iblurred = Iblurred + I(x− i,y− j) # sum pixels in opposite direction

num = num+1

end if

if i == u and j == v then

return Iblurred/num # return average

end if

if err ≥−0.5 ·abs(v) then # large error in x-direction

i = i+ sign(u) # step in x-direction

err = err−abs(v) # add error in y-direction

end if

if err ≤ 0.5 ·abs(u) then # large error in y-direction

j = j+ sign(v) # step in y-direction

err = err+abs(u) # add error in x-direction

end if

end while

end function
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No blurring 1 Frame 3 Frames 7 Frames

A
n

im
a
ls

B
a
ll

K
id

s
M

a
ra

th
o
n

M
o
to

cr
o
ss

R
o
a
d

B
M

X

Figure 4.15: Real-World Motion Blur. Different levels of blurring of the reference frame.
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we evaluate DiscreteFlow [MHG15], Full Flow [CK16], ClassicNL [SRB14], EpicFlow

[Rev+15], Flow Fields [BTS15], LDOF [BM11], PCA Flow [WB15], FlowNet [Dos+15],

SPyNet [RB16], FlowNet2 [Ilg+17], and PWC-Net [Sun+18b; Sun+18a] using the recom-

mended parameter settings, but adapting the maximal displacement to the input. While

FlowNet and SPyNet were trained on FlyingChairs [Dos+15], FlowNet2 was trained on

FlyingChairs, FlyingThings3D [May+16] and a new version of FlyingChairs with small

motions proposed in their paper. Instead, PWC-Net was trained on Sintel [But+12], KITTI

[GLU12], HD1K [Kon+16] and Middlebury [Bak+11] as described by Sun et al. [Sun+18a].

We are interested in benchmarking the performance of these methods wrt. two important fac-

tors: motion magnitude and motion blur, for which a systematic comparison on challenging

real-world data is missing in the literature.

Fig. 4.16 shows our evaluation results in terms of EPE over all sequences. We use three

different plots according to the magnitude of the motion ranging from 100 pixels (easy) to

300 pixels (hard). For each plot we vary the length of the blur on the x-axis. The blur length

is specified with respect to the number of blurred frames at the highest temporal resolution,

where 0 indicates the original sharp images.

As expected, for the simplest case (100 pixels without motion blur), most methods

perform well, with FlowNet2 [Ilg+17] and PWC-Net [Sun+18b] outperforming the other

baselines. Interestingly, increasing the blur length impacts the methods differently. While

matching-based methods like PCA Flow [WB15], EpicFlow [Rev+15] and DiscreteFlow

[MHG15] suffer significantly, the performance of learning-based approaches such as

FlowNet [Dos+15], SPyNet [RB16], FlowNet2 [Ilg+17], and PWC-Net [Sun+18b] re-

mains largely unaffected. Similarly, only modest loss in performance can be observed for

ClassicNL [SRB14], which uses image pyramids instead of feature matches to handle large

motions. A similar trend is visible for larger flow magnitudes, where the difference in

performance becomes more clearly visible. As expected, the performance of all methods

decreases with larger magnitudes. One would expect that approaches based on feature

matching are less effected by larger magnitudes than the variational approaches but we can

observe a similar drop in performance for all methods. This might be due to scenes with

non-rigid objects that contain many cases of self occlusions and affects feature matching

approaches as well as variational approaches. We further note that some methods (e.g.,

Full Flow [CK16]), which perform well on synthetic datasets such as MPI Sintel [But+12]

produce large error on our dataset. This underlines the importance of optical flow datasets

with real-world images as the one proposed.

In Tables 4.5, 4.6, 4.7, we show the performance on different scene types (columns),

and using different levels of motion blur (rows). We grouped our sequences in different

scenes with similar objects and motions. In the scenes Motocross, BMX, Rally, Kids and

Ball we have only a few objects moving in contrast to Marathon, Town, Road and Animals.

Furthermore, the objects in Kids, BMX, Marathon, Animals and Town are mostly non-rigid,

which causes complex non-linear motion and self occlusions.

We observe some methods to have particular difficulties in the scenes Motocross, Town,

Rally and Road. In Motocross for instance Full Flow [CK16], ClassicNL [SRB14], LDOF

[BM11] and FlowNet [Dos+15] achieve around 5 to 6 pixel EPE whereas the others achieve

1 to 3 pixel EPE in the simple case of 100px motion magnitude. This gap still remains
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Figure 4.16: Performance on Real-World Benchmark State-of-the-art comparison on the generated reference data wrt. motion

magnitude and blur.
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with larger motion magnitudes. In the scene Town the methods Full Flow [CK16], FlowNet

[Dos+15] and in Rally the methods Full Flow [CK16], LDOF [BM11] have this kind of

difficulties. Besides these difficulties with some scenes, we observe the strongest impact of

larger motion magnitudes in scenes with non-rigid objects. For all methods the performance

decreases strongly for larger (200 and 300 pixel) motion magnitudes. In BMX, for example,

the EPE of the best performing method PWC-Net [Sun+18b] increases from 1.22 to 2.45

and 4.41 pixel. The reasons are complex non-linear motions, appearance changes and self

occlusions that become more problematic with larger motion magnitudes. With stronger

motion blur, we observe the strongest loss in performance for all methods in the scenes

Town and Animals. This is primarily caused by a complex non-linear camera motion that

makes it hard to find good matches in the large background region. Only the approaches

ClassicNL [SRB14], FlowNet [Dos+15], FlowNet2 [Ilg+17], and PWC-Net [Sun+18b], not

using feature matches, are not affected as strongly as the others.

In conclusion, the performance on the different scenes are giving us important insights

into the strengths and weaknesses of the different methods. Whereas the methods Full Flow

[CK16], ClassicNL [SRB14], LDOF [BM11] and FlowNet [Dos+15] have difficulties with

some scenes in general, the motion magnitude has an adversarial effect on all methods. The

motion magnitude affects the performance in particular when dealing with non-rigid objects

and the motion blur is problematic for feature matching methods, especially with complex

camera motion.

4.5.3 Qualitative Results

Finally, we show some qualitative results for DiscreteFlow [MHG15], Epic Flow [Rev+15]

and FlowNet2 [Ilg+17] on the 300px magnitude reference data without blur (Fig. 4.17) and

with blur length 7 (Fig. 4.18). The illustrations are normalized by the maximum flow of

the reference data. The results discussed in the previous section can also be observed in

the visualization of the flow fields. Without blur, FlowNet2 is the closest to the reference

data in almost all sequences. Increasing the blur length to 7 frames strongly affects the

performance of DiscreteFlow and Epic Flow whereas FlowNet2 still achieves good results

in all sequences except for BMX.

4.5.4 Remaining Problems

While our analysis in Section 4.4 showed the high accuracy of our method that justified the

usage as a benchmark for modern optical flow methods, we see great potential to improve

upon our results. In Fig. 4.17, we show some examples of the generated reference flow

fields from our benchmark.

In the scenes Ball, Marathon, Motocross, and Road, the resulting flow fields look almost

perfect, but small errors are visible in Animals, Kids, and BMX. On the one hand, details

are missing, e.g., small parts of the wheel in BMX, and on the other hand, errors occur in

occluded regions, e.g., next to the head of the right kid with 300px magnitude and under

the head of the horse. Thus, we see great potential in improving our occlusions estimates.

We relied on simple linear assumptions in combination with spatial propagation to handle
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Blur Method Kids Motocross BMX Marathon Town Rally Road Animals Ball Avg

0 Discrete Flow 1.16 2.00 1.71 2.22 0.66 0.63 3.28 0.76 0.21 1.62

Full Flow 1.22 6.68 1.99 2.61 4.30 6.84 5.33 2.62 2.07 3.99

ClassicNL 1.67 6.87 3.35 3.82 0.88 1.57 5.51 1.34 1.66 3.12

Epic Flow 1.57 3.35 2.61 2.84 1.19 1.24 3.97 0.99 0.36 2.26

Flow Fields 1.19 2.71 1.92 2.69 0.68 0.71 3.63 0.78 0.23 1.83

LDOF 1.59 5.60 3.27 3.02 1.30 5.85 6.81 1.88 0.72 3.67

PCA Flow 2.15 2.75 3.17 3.49 1.33 1.70 4.45 1.87 0.66 2.67

FlowNetS 2.38 5.33 3.75 4.47 3.31 2.44 6.43 1.88 1.91 3.93

SPyNet 1.70 6.62 3.28 3.83 2.01 1.68 5.80 1.11 2.67 3.36

FlowNet2 0.77 1.25 1.29 1.22 0.44 0.59 1.51 0.51 0.17 0.95

PWCNet 0.69 1.76 1.22 1.18 0.51 0.51 1.05 0.44 0.23 0.88

1 Discrete Flow 1.24 2.43 2.02 2.50 3.10 0.99 3.37 1.76 0.32 2.37

Full Flow 1.29 6.90 2.42 2.93 5.34 7.10 5.32 2.95 1.38 4.34

ClassicNL 1.73 6.98 3.54 4.03 1.92 1.63 5.49 1.84 1.34 3.43

Epic Flow 1.63 4.17 2.83 3.14 2.72 1.43 4.40 1.47 0.60 2.85

Flow Fields 1.28 2.90 2.18 2.91 1.93 0.93 3.54 1.28 0.31 2.21

LDOF 1.67 6.29 3.71 3.57 4.04 2.31 7.17 3.43 0.76 4.35

PCA Flow 2.24 3.07 3.50 3.70 5.64 1.85 4.61 3.23 0.70 3.79

FlowNetS 2.41 5.00 3.82 4.45 3.30 2.22 6.46 1.95 1.51 3.89

SPyNet 1.77 6.88 3.47 4.05 2.41 1.94 5.77 1.49 3.13 3.58

FlowNet2 0.78 1.40 1.39 1.34 0.63 0.64 1.53 0.59 0.23 1.04

PWCNet 0.71 1.86 1.15 1.29 4.09 0.54 1.05 0.80 0.30 1.60

3 Discrete Flow 1.32 3.24 2.30 3.26 7.42 1.22 3.54 3.28 0.54 3.60

Full Flow 1.40 7.27 2.68 3.02 6.35 6.18 5.13 2.89 1.22 4.48

ClassicNL 1.79 6.82 3.59 4.22 2.88 1.70 5.38 2.05 1.37 3.63

Epic Flow 1.66 4.95 3.25 3.29 3.48 1.59 4.58 2.03 2.21 3.29

Flow Fields 1.32 3.20 2.41 3.32 3.11 1.12 3.71 1.74 0.57 2.64

LDOF 1.87 6.67 4.01 3.58 5.36 2.28 7.42 4.45 1.04 4.87

PCA Flow 2.70 4.26 4.06 3.89 9.10 1.96 4.93 4.93 1.15 4.97

FlowNetS 2.47 5.92 4.03 4.57 3.56 2.23 6.52 2.11 1.62 4.10

SPyNet 1.85 7.03 3.62 4.11 2.73 2.16 5.77 1.75 3.41 3.74

FlowNet2 0.80 1.70 1.49 1.47 1.90 0.75 1.55 0.71 0.30 1.36

PWCNet 0.75 2.00 1.24 1.30 7.31 0.66 1.08 1.00 0.36 2.26

5 Discrete Flow 1.72 4.49 3.55 4.40 23.42 1.79 3.97 7.73 1.00 7.70

Full Flow 1.73 7.57 3.43 3.88 9.20 4.78 5.50 4.34 1.65 5.40

ClassicNL 2.12 7.25 4.31 4.84 5.22 2.15 5.50 3.67 1.52 4.56

Epic Flow 2.03 5.84 3.91 3.99 6.63 1.98 4.86 3.75 3.68 4.48

Flow Fields 1.68 4.75 3.59 4.07 6.54 1.65 4.29 3.70 1.20 4.10

LDOF 2.24 7.73 5.06 4.10 7.94 2.57 7.80 6.31 1.63 6.02

PCA Flow 3.34 5.32 5.44 5.20 18.08 2.51 5.20 10.38 1.72 7.91

FlowNetS 2.64 6.36 4.31 4.99 5.07 2.49 6.54 2.67 1.82 4.61

SPyNet 2.10 7.61 4.10 4.50 4.07 2.68 5.98 2.53 3.57 4.35

FlowNet2 0.91 1.99 1.64 1.76 5.42 0.85 1.65 1.06 0.40 2.16

PWCNet 0.90 2.49 1.50 1.59 8.99 0.84 1.15 1.91 0.53 2.84

7 Discrete Flow 2.33 5.99 5.12 4.92 14.71 2.42 4.60 9.87 1.58 7.01

Full Flow 2.17 8.37 4.61 4.77 11.95 5.46 5.88 6.86 2.07 6.73

ClassicNL 2.56 8.13 5.28 5.55 7.90 2.85 5.73 5.69 2.00 5.74

Epic Flow 2.58 7.16 4.98 5.03 15.38 2.62 5.21 6.43 4.95 6.99

Flow Fields 2.29 6.03 4.82 6.04 10.91 2.51 4.69 7.16 1.82 6.02

LDOF 2.83 8.79 6.12 4.94 11.03 3.20 8.22 8.36 2.56 7.38

PCA Flow 4.54 7.99 7.84 8.24 23.86 3.36 5.75 18.57 2.90 11.20

FlowNetS 2.92 7.17 4.66 5.56 6.89 3.03 6.67 3.55 2.15 5.32

SPyNet 2.48 8.33 4.70 5.05 5.99 3.24 6.26 3.50 3.76 5.16

FlowNet2 1.09 2.42 1.98 2.03 3.45 1.06 1.79 1.59 0.51 2.04

PWCNet 1.14 3.33 2.13 2.09 8.11 1.16 1.27 3.23 0.91 3.13

Table 4.5: Performance on Real-World Scenes State-of-the-art comparison on the gener-

ated reference data with 100 pixel motion magnitude wrt. motion blur.
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Blur Method Kids Motocross BMX Marathon Town Rally Road Animals Ball Avg

0 Discrete Flow 2.44 5.26 3.79 3.96 0.87 0.59 3.58 1.51 0.41 2.63

Full Flow 4.56 15.12 8.99 8.42 4.69 14.94 9.95 15.15 10.40 9.93

ClassicNL 4.12 12.18 8.27 8.99 1.44 2.55 8.57 3.55 9.33 6.14

Epic Flow 3.30 6.55 5.42 5.14 1.52 0.96 5.41 1.78 1.49 3.71

Flow Fields 2.62 4.77 4.39 5.90 0.93 0.61 5.39 1.67 0.89 3.26

LDOF 3.67 9.10 6.57 5.60 1.78 6.41 10.96 2.90 8.48 6.08

PCA Flow 3.78 6.18 6.36 5.28 1.66 1.68 6.18 2.79 1.97 4.24

FlowNetS 4.84 10.77 7.21 8.67 3.88 3.48 8.84 3.85 6.09 6.44

SPyNet 3.90 14.40 7.16 7.79 2.61 2.35 9.17 3.41 11.43 6.42

FlowNet2 1.43 2.52 2.52 2.44 0.59 1.13 3.33 0.86 0.60 1.88

PWCNet 1.27 3.72 2.45 2.31 0.63 0.44 2.08 0.74 0.50 1.63

1 Discrete Flow 2.50 7.61 4.21 4.15 3.20 1.02 3.78 3.51 1.01 3.71

Full Flow 4.59 13.94 8.90 8.82 5.73 14.52 10.06 15.49 11.27 10.10

ClassicNL 4.13 11.84 8.60 9.37 2.46 2.66 8.44 4.06 8.36 6.41

Epic Flow 3.47 7.93 5.84 7.04 3.10 1.17 5.45 2.34 5.09 4.53

Flow Fields 2.52 5.36 4.26 5.53 2.08 0.95 5.45 2.37 1.43 3.62

LDOF 3.78 10.56 7.35 6.42 4.61 2.85 11.12 6.90 7.83 7.21

PCA Flow 4.16 6.57 6.61 6.80 6.03 1.78 6.73 4.62 2.90 5.66

FlowNetS 4.84 10.81 7.37 8.82 3.86 3.40 8.73 4.04 5.39 6.45

SPyNet 3.92 14.57 7.47 7.99 2.98 2.60 9.09 3.72 11.70 6.62

FlowNet2 1.42 2.91 2.83 2.61 0.76 1.39 3.20 0.98 0.47 2.00

PWCNet 1.28 3.77 2.27 2.56 4.07 0.54 2.11 1.15 0.65 2.34

3 Discrete Flow 2.97 7.35 4.93 6.11 7.34 1.34 4.20 8.03 2.29 5.50

Full Flow 4.62 14.20 8.76 8.65 6.71 12.40 10.00 14.84 10.33 9.99

ClassicNL 4.23 11.80 8.59 9.51 3.43 2.74 8.18 4.23 7.94 6.56

Epic Flow 3.65 8.62 6.10 6.58 3.93 1.42 5.85 3.36 9.04 5.08

Flow Fields 2.87 6.28 4.91 7.03 3.40 1.05 5.21 2.78 2.50 4.21

LDOF 4.29 12.93 8.87 6.61 6.09 2.89 11.79 10.53 7.90 8.60

PCA Flow 5.12 7.85 10.61 7.67 11.36 1.91 6.69 7.26 4.02 7.84

FlowNetS 4.91 11.20 7.67 9.07 4.12 3.50 8.63 4.50 5.46 6.65

SPyNet 3.97 14.79 7.67 8.18 3.29 2.79 9.07 3.94 12.25 6.80

FlowNet2 1.45 3.52 2.73 2.72 2.05 1.42 3.22 1.29 0.66 2.35

PWCNet 1.32 4.07 2.28 2.59 6.68 0.68 2.22 2.18 0.76 3.03

5 Discrete Flow 3.68 11.00 8.33 7.93 19.97 1.92 4.96 17.02 4.12 10.31

Full Flow 4.64 15.19 9.92 8.77 9.62 9.67 9.80 14.76 9.43 10.51

ClassicNL 4.42 12.59 9.14 9.95 5.70 3.40 8.17 5.57 7.78 7.41

Epic Flow 4.18 12.39 6.69 7.11 7.69 1.68 6.31 6.40 12.24 6.88

Flow Fields 3.08 8.52 6.76 7.58 6.45 1.66 5.74 6.70 4.33 6.03

LDOF 5.00 14.92 11.63 7.30 8.71 3.35 11.81 12.92 7.72 10.11

PCA Flow 6.59 9.04 11.92 9.85 19.58 3.41 7.57 16.50 6.71 11.55

FlowNetS 5.18 11.49 8.05 9.65 5.59 3.68 8.59 4.80 5.74 7.12

SPyNet 4.14 14.81 8.19 8.74 4.65 3.24 9.10 4.64 13.24 7.34

FlowNet2 1.53 4.32 2.83 3.08 5.53 1.06 3.35 3.05 0.93 3.36

PWCNet 1.45 4.65 2.77 2.86 8.51 0.76 2.29 3.92 1.46 3.80

7 Discrete Flow 4.50 10.82 11.06 9.12 16.49 2.81 5.63 20.52 6.55 10.93

Full Flow 5.01 15.43 10.00 8.73 12.18 8.62 10.24 14.19 9.68 10.97

ClassicNL 4.78 13.55 10.06 10.55 8.21 4.47 8.14 7.19 8.17 8.46

Epic Flow 4.74 14.66 7.80 7.62 14.28 2.46 6.76 15.12 13.01 9.90

Flow Fields 3.86 10.45 7.50 8.96 11.34 3.04 6.08 10.25 6.13 8.07

LDOF 5.63 16.44 13.22 8.39 11.61 4.61 12.32 15.49 8.63 11.70

PCA Flow 7.69 12.93 15.59 12.65 28.13 4.03 8.31 20.76 9.18 15.12

FlowNetS 5.59 12.02 8.52 10.46 7.40 4.06 8.74 5.67 6.54 7.86

SPyNet 4.41 15.02 8.68 9.51 6.54 3.78 9.10 5.52 14.05 8.03

FlowNet2 1.68 5.18 3.11 3.43 3.54 1.31 3.42 5.82 1.15 3.56

PWCNet 1.64 4.90 3.50 3.26 8.68 1.15 2.32 4.52 2.34 4.13

Table 4.6: Performance on Real-World Scenes State-of-the-art comparison on the gener-

ated reference data with 200 pixel motion magnitude wrt. motion blur.

62



4.5 Real-World Benchmark

Blur Method Kids Motocross BMX Marathon Town Rally Road Animals Ball Avg

0 Discrete Flow 4.74 7.27 6.31 5.69 1.34 1.38 7.43 2.65 4.72 4.62

Full Flow 9.43 29.38 21.68 14.34 14.28 25.11 22.05 43.26 11.68 22.71

ClassicNL 7.60 14.84 13.55 16.44 4.99 3.27 16.73 8.19 10.59 10.97

Epic Flow 6.11 8.02 8.80 7.45 2.23 1.62 11.38 3.85 5.48 6.44

Flow Fields 4.84 7.63 7.59 9.47 1.46 0.89 12.07 2.66 5.06 6.10

LDOF 7.44 14.91 12.92 13.28 4.41 6.84 21.15 31.44 10.50 14.92

PCA Flow 6.93 9.11 9.18 7.47 2.47 2.20 13.40 4.38 6.00 7.24

FlowNetS 8.56 17.11 12.83 15.07 6.34 5.31 16.29 18.86 8.75 12.76

SPyNet 7.71 17.95 12.38 14.43 5.95 3.48 17.36 13.55 12.21 12.02

FlowNet2 2.44 4.09 3.73 3.60 0.87 1.38 6.92 1.35 0.60 3.21

PWCNet 2.47 4.85 4.41 3.90 0.85 0.77 4.20 1.89 0.50 2.86

1 Discrete Flow 5.07 7.59 7.59 6.67 3.67 1.96 7.75 5.30 5.05 5.84

Full Flow 9.75 28.73 21.80 14.37 15.22 25.82 22.23 43.83 11.97 23.05

ClassicNL 7.58 14.81 13.89 16.62 6.06 3.50 16.78 8.33 9.94 11.25

Epic Flow 6.37 9.60 8.96 9.12 3.92 1.84 12.18 4.25 7.61 7.35

Flow Fields 4.97 7.33 7.73 10.69 2.86 1.39 11.54 3.45 5.34 6.50

LDOF 7.68 15.97 14.28 13.94 8.99 3.60 21.37 32.49 9.93 16.03

PCA Flow 7.79 9.25 9.74 10.42 8.85 3.07 13.63 11.85 6.63 9.95

FlowNetS 8.70 17.40 12.68 15.21 6.00 4.95 16.08 19.79 8.16 12.77

SPyNet 7.72 18.37 12.60 14.49 6.21 3.76 17.18 13.43 12.62 12.12

FlowNet2 2.48 4.34 3.87 3.71 1.08 1.50 6.74 1.59 2.56 3.35

PWCNet 2.51 4.73 3.84 3.88 5.52 0.84 4.18 3.10 2.66 3.84

3 Discrete Flow 5.59 8.71 8.18 9.70 10.40 2.24 7.77 7.00 6.09 7.82

Full Flow 10.03 29.65 21.44 14.78 15.84 24.35 22.42 44.49 11.37 23.25

ClassicNL 7.56 14.71 13.93 15.98 7.30 3.60 16.57 7.49 9.55 11.27

Epic Flow 6.95 10.32 8.55 8.26 4.30 2.06 11.59 4.57 9.59 7.38

Flow Fields 5.70 9.69 8.18 10.99 4.20 1.50 11.61 4.00 6.19 7.20

LDOF 8.42 18.86 15.70 14.49 11.54 3.95 21.93 34.19 9.92 17.41

PCA Flow 10.12 10.24 11.48 11.75 18.95 3.18 13.85 16.51 7.51 13.11

FlowNetS 9.02 17.96 13.10 15.94 7.13 5.14 15.95 21.27 8.25 13.36

SPyNet 7.83 18.75 12.87 14.60 6.55 4.03 17.05 13.13 13.01 12.23

FlowNet2 2.57 5.24 4.16 4.27 1.83 1.84 6.62 2.39 2.68 3.78

PWCNet 2.65 4.65 3.96 3.99 9.98 1.01 4.28 4.48 2.74 4.92

5 Discrete Flow 7.18 11.18 11.34 11.86 18.39 3.40 9.14 19.43 7.18 12.33

Full Flow 10.35 30.34 22.48 15.60 17.93 18.85 22.30 45.90 10.90 23.64

ClassicNL 7.79 15.40 14.75 16.37 9.64 4.47 16.25 8.32 9.45 12.03

Epic Flow 7.89 14.27 10.01 9.82 8.03 2.64 12.25 7.27 13.03 9.43

Flow Fields 6.33 13.63 9.82 13.15 7.77 3.79 12.53 7.66 7.45 9.54

LDOF 9.83 19.75 19.61 15.24 14.22 5.32 22.13 34.62 9.65 18.87

PCA Flow 10.91 12.53 18.00 22.38 31.03 4.72 15.06 27.50 9.24 19.26

FlowNetS 9.56 18.09 13.84 16.32 10.86 5.30 15.79 21.24 8.41 14.20

SPyNet 8.09 19.35 13.35 15.03 7.87 4.67 17.01 13.26 13.73 12.72

FlowNet2 2.78 5.85 4.89 4.54 5.12 1.62 6.69 6.47 2.85 5.13

PWCNet 2.90 5.48 4.86 4.69 11.14 1.30 4.37 5.93 3.14 5.65

7 Discrete Flow 8.30 12.48 12.69 11.99 21.10 4.83 10.71 35.31 9.02 15.88

Full Flow 10.83 29.48 22.88 16.45 19.06 16.31 22.64 45.52 11.36 23.75

ClassicNL 8.20 16.22 15.44 17.20 11.70 5.47 15.87 8.87 9.81 12.75

Epic Flow 8.32 16.49 10.75 11.53 19.46 3.49 12.83 12.49 13.86 12.91

Flow Fields 8.46 12.93 11.94 14.15 13.71 4.47 12.72 10.45 8.81 11.59

LDOF 10.54 21.29 22.36 15.33 16.18 8.13 22.26 34.78 10.28 20.09

PCA Flow 12.41 13.80 23.17 16.25 33.66 5.23 16.33 39.06 11.17 22.11

FlowNetS 10.18 18.59 14.31 16.78 12.69 5.60 15.77 17.72 9.00 14.27

SPyNet 8.40 19.98 13.91 15.56 9.41 5.32 16.96 13.42 14.31 13.27

FlowNet2 3.02 6.44 5.87 4.94 6.05 1.86 6.88 7.23 3.07 5.71

PWCNet 3.30 6.05 5.68 5.16 10.82 2.02 4.73 6.51 3.75 6.05

Table 4.7: Performance on Real-World Scenes State-of-the-art comparison on the gener-

ated reference data with 300 pixel motion magnitude wrt. motion blur.
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4 Generating Reference Flow with High-Speed Cameras

occlusions. However, more sophisticated motion models will improve the results. Especially,

learning-based methods have the advantage that such motion models can be learned from

data directly. The limited annotations can be resolved by relying on semi-supervised or

unsupervised schemes, as discussed in the next chapter.

In addition, the consideration of a confidence measure for the generated reference data

seems very promising. Such a measure allows reducing or even excluding less reliable

estimates from the evaluation. Ideally, a probabilistic version of our approach could simulta-

neously provide point estimates and a measure of confidence.
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4.5 Real-World Benchmark

Reference Data DiscreteFlow Epic Flow FlowNet2
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Figure 4.17: Comparison of DiscreteFlow, Epic Flow and FlowNet2 without blur to the

reference data of 300px magnitude.
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4 Generating Reference Flow with High-Speed Cameras

Reference Data DiscreteFlow Epic Flow FlowNet2
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Figure 4.18: Comparison of DiscreteFlow, Epic Flow and FlowNet2 with 7 frames blur

length to the reference data of 300px magnitude.
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5 Unsupervised Learning of Multi-Frame

Flow and Occlusions

Learning to solve optical flow in an end-to-end fashion [Dos+15; RB16; Ilg+17; Sun+18b]

from examples is attractive as deep neural networks allow for learning more complex

hierarchical flow representations directly from annotated data. However, training such

models requires large datasets, and obtaining ground truth for real images is challenging.

While the approach described in Chapter 4 allows creating new real-world datasets, the

process is still time-consuming and might incorporate errors. In addition, deep models

trained in a supervised fashion suffer from the overfitting problem. The best performance of

modern methods is usually achieved by fine-tuning on the training set of the dataset used

for evaluation, and the fine-tuned models perform very poorly on other datasets. Thus, it is

essential to train modern optical flow methods on data that follows a similar distribution as

the data where the method will be applied eventually.

Alternatively, learning optical flow can be framed as an unsupervised learning problem.

In contrast to supervised learning, any video sequence can be used for learning without

relying on optical flow annotations. Thus, large video collections from the web can be

leveraged to learn strong models. In addition, unsupervised learning enables fine-tuning

models on data of the final application since annotations are not necessary.

Learning optical flow in an unsupervised fashion is usually realized by minimizing a

photometric loss [YHD16; Vij+17; PHC16; Ren+17; Wan+18b; MHR18], measuring how

well the predicted flow warps the target image to the reference frame. Particularly problem-

atic in this setting are occluded regions [Wan+18b; MHR18], which provide misleading

information to the photometric loss function. This problem is illustrated in Fig. 5.1, with

an example from the synthetic MPI Sintel dataset [But+12]. The photometric loss com-

pares the reference image (Fig. 5.1(b)) to the target image that is warped according to the

optical flow estimate (Fig. 5.1(d)). Note that occluded regions in the target image cannot

be recovered correctly, even when using the ground truth optical flow field (Fig. 5.1(e)).

Instead, the so-called ghosting effects occur, i.e., parts of the occluder remain visible in the

occluded regions. Recent works [Wan+18b; MHR18] propose to exclude these regions in

the photometric loss by inferring occluded regions using the backward flow, i.e., the flow

from the target frame to the reference frame. However, these approaches depend heavily on

an accurate flow prediction and use heuristics (e.g., thresholding) to infer occlusions.

We propose to model temporal relationships over multiple frames in order to learn optical

flow and occlusions jointly. For this purpose, we extend the two-frame architecture proposed

by Sun et al. [Sun+18b] to multiple frames. We estimate optical flow in both past and

future direction together with an occlusion map within a temporal window of three frames.

The occlusion map encodes the state of each pixel as either visible in the past, future, or
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5 Unsupervised Learning of Multi-Frame Flow and Occlusions

(a) Past (b) Reference (c) Future

(d) Warped (c) by (e) (e) Ground Truth

(f) 2F PWC-Net (g) 3F PWC-Net (h) Our Results

Figure 5.1: Motivation. Unsupervised optical flow estimation is challenging as commonly

used photometric terms are violated in occluded regions. This example from our MPI Sintel

[But+12] illustrates the problem of ghosting effects (d) when warping the target frame (c)

according to the true flow (e). Classical two-frame approaches produce blurry results near

occlusion boundaries (f). Using multiple frames without occlusion reasoning neither solves

the problem (g). In contrast, our multi-frame model with explicit occlusion reasoning leads

to accurate flow estimates with sharp boundaries (h).

throughout the temporal window. Our unsupervised loss evaluates the warped images from

the past and the future based on the estimated flow fields and occlusion map. In addition to

typical spatial smoothness constraints, we introduce a constant velocity constraint within

the temporal window. This allows reasoning about occlusions in a principled manner while

leveraging temporal information for more accurate optical flow prediction in occluded

regions.

In ablation studies (Section 5.4.3) performed on our RoamingImages dataset, which we

have created based on randomly moving image patches from Flickr, we show the advantage

of our formulation in comparison to a two-frame and multi-frame formulation without

occlusion modeling. Eventually in Section 5.4.5, we compare our approach on the popular

datasets KITTI 2015 [Gei+13; MG15] and MPI Sintel [But+12] to the state of the art in

unsupervised as well as supervised learning of optical flow. Surprisingly, our model trained

only on the simplistic RoamingImages dataset outperforms all previous unsupervised optical

flow approaches trained on FlyingChairs. By unsupervised fine-tuning on the respective

training sets, we further improve our results, reducing the gap to several supervised methods.
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5.1 Formulation

Figure 5.2: Unsupervised Formulation. Illustration of our multi-frame formulation with

the past UP(p), future flow UF(p) and occlusions O(p). The green pixel is visible in all

frames, the blue pixel is occluded in the past IP, and the brown pixel is occluded in the

future IF .

5.1 Formulation

Now, we develop an approach for unsupervised learning of optical flow and occlusions by

leveraging multiple frames. In unsupervised learning of optical flow, only the photometric

loss provides guidance. The photometric loss warps the target frame according to the flow

estimate and compares the warped target frame to the reference frame. Local ambiguities

caused by untextured regions are handled with an additional spatial smoothness constraint

that propagates information between neighboring pixels. However, learning optical flow

in an unsupervised fashion is complicated due to ambiguities caused by non-Lambertian

reflectance, occlusions, large motions, and illumination changes. Considering multiple

frames can help to resolve some of the ambiguities, in particular, those caused by occlusions.

We thus develop a multi-frame formulation to train a convolutional neural network to predict

flow fields and occlusions jointly.

Let I = {IP,IR,IF} denote three consecutive RGB frames It ∈R
W×H×3 from video with

a standard frame rate. Our goal is to predict the optical flow UF ∈ R
W×H×2 from reference

frame IR to future frame IF while leveraging past frame IP. In this short temporal window,

we assume the motion to be approximately linear. The simplest way to enforce a linear

motion is using a hard constraint, as in Section 4.2, by predicting only one flow field and

warping both images IP,IF to reference image IR according to this flow field for computing

the photometric loss. However, realistic scenes usually contain more complex motions,

which violate this hard constraint (e.g., road surface in KITTI). Therefore, we formulate a

soft constraint by predicting two optical flow fields and encouraging constant velocity: We

denote UF the flow field from reference frame IR to future frame IF , and UP ∈ R
W×H×2 the

flow field from reference frame IR to past frame IP.

Regardless of the motion model, photo-consistency is violated in occluded regions.

Considering three frames allows us to resolve this problem by reasoning about occlusions

in a data-driven fashion, as illustrated in Fig. 5.2. Let us consider a pixel p in reference

frame IR. Note that, by definition, the pixel is visible in the reference frame. Thus, there
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5 Unsupervised Learning of Multi-Frame Flow and Occlusions

Figure 5.3: Network Architecture. Given the input sequence I, we construct an image

and a feature pyramid. The optical flow is estimated in a coarse-to-fine manner: at level

l, two cost volumes are constructed from the features Fl of the past and future frame,

warped according to the current optical flow estimates Ul
P and Ul

F , respectively. The two

cost volumes are decoded resulting in the past flow Ul
P, future flow Ul

F , and an occlusion

map Ol at level l. The estimations are passed to the upsampling block to yield inputs for the

next level l +1 of the pyramid. See text for details.

are only three possible cases: Either it is visible in all frames, or it has been occluded in

the past, or it becomes occluded in the future. While there exists a possible fourth state,

i.e., when a pixel is solely visible in the reference frame, this is a very unusual case that

rarely occurs in practice and, therefore, can be discarded. Thus, the occlusion of each

pixel can be represented with three states. The advantage of the multi-frame formulation is

that we have observations in all three cases, which we can use to reason about the optical

flow and occlusions. More formally, we model occlusions by introducing a continuous

occlusion variable O ∈ [0,1]W×H×2 at every pixel, which allows us to correctly evaluate the

photometric loss by reducing the importance of occluded pixels. Let O(p) ∈ [0,1]2 denote

the occlusion at pixel p where ‖O(p)‖1 = 1. If O(p) = (1,0), we consider p as occluded

in the past, if O(p) = (0,1), pixel p is occluded in the future and if O(p) = (0.5,0.5),
pixel p is visible in all frames. While continuous occlusion variables make the formulation

differentiable, it also allows modeling pixels that are only partially occluded.

We propose to estimate UF , UP, and O jointly using a neural network while enforcing

‖O(p)‖1 = 1 with a softmax at the last layer of the network.

5.2 Network Architecture

As discussed in Section 3.4, several network architectures have been proposed for the

optical flow problem. The recently proposed PWC-Net architecture [Sun+18b] borrows

ideas from the classical optical flow and stereo methods. They extract meaningful features

Fl = {Fl
R,F

l
F} using a siamese network that consists of two convolutional neural networks
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5.2 Network Architecture

with shared weights, one processing the reference frame (Fl
R) and the other processing the

future frame (Fl
F ). Using strided convolutions, they extract features on different resolutions

while increase the number of output channels (16, 32, 64, 128, 192). In a coarse-to-fine

approach, they address a residual estimation problem on each scale by upsampling the

optical flow of the lower scale and warping the future features accordingly. In a so-called

cost volume, they correlate the features of the reference frame and the warped features of

the future frame. In specific, for each location p in the reference frame, they compute the

inner product between the feature of the reference frame and a local neighborhood N around

p of the warped future feature map.

C(Fl
R,F

l
F ,p) = {

1

|N|
〈Fl

R(p),F
l
F(n)〉 |n ∈ N} (5.1)

Finally, a fully convolutional decoder returns the optical flow for each level that is used to

warp the features to the next level. This results in a compact and discriminative representation

producing state-of-the-art performance.

Inspired by the supervised two-frame PWC-Net model, we develop our unsupervised

multi-frame and occlusion aware formulation illustrated in Fig. 5.3. Similar to PWC-Net, we

estimate the flow fields and occlusion maps in a coarse-to-fine manner. The first modification

we make is to add the past frame to the image and feature pyramids (Fl
P). In the original

PWC-Net, a cost volume is constructed based on the features of the reference frame and

the features of the future frame warped according to the flow estimate. In contrast, we

construct two cost volumes: one for the past and one for the future frame. The two separate

cost volumes allow our network to detect occlusions and choose the relevant information

for accurate optical flow estimation. Finally, we use three separate decoders for future

flow, past flow, and occlusion map, respectively. The cost volumes are stacked together

and form the input to the decoders. We upsample past flow, future flow, and occlusion map

predictions from the previous level and provide them accordingly as input to the decoders

together with the cost volume and the features of the reference frame. The original PWC-

Net uses transposed convolutions for upscaling. However, transposed convolutions have

been shown to introduce checkerboard artifacts and amplify activations [ODO16; Woj+17;

Ran+19b]. Therefore, we instead rely on simple bilinear interpolation for upsampling. For

all three decoders, we use the decoder architecture proposed in [Sun+18b] consisting of 5

convolutional layers with 128, 128, 96, 64, and 32 feature channels; just for the occlusion

decoder, we add a softmax at the end.

Our architecture with two flow decoders is designed to encourage constant velocity as a

soft constraint. We also experiment with an architecture using one flow decoder for both

directions. In that case, the inverse future flow is treated as the estimation for past flow. This

corresponds to a hard constraint as used in Section 4.2, which is useful in cases where the

linear assumption always holds, e.g., on our RoamingImages dataset.
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5 Unsupervised Learning of Multi-Frame Flow and Occlusions

5.3 Loss Functions

Our goal is to learn accurate optical flow and occlusions within a temporal window in an

unsupervised manner. Let θ denote the parameters of a neural network, which predicts

UF(θ), UP(θ) and O(θ) from the input images I. Our loss L(θ) is a linear combination

of a photometric loss LP(θ), smoothness constraints LSP
(θ),LSF

(θ),LSO
(θ), a constant

velocity constraint LCV (θ) and an occlusion prior LO(θ):

L =LP +LSF
+LSP

+LSO
+LO +LCV (5.2)

For clarity, we dropped the dependency on the parameters θ and the relative weights of the

loss functions. While the first two terms have been frequently employed by unsupervised

methods before [PHC16; YHD16; Lon+16; All+17; Vij+17; Ren+17; Wan+18b; MHR18],

we extend this formulation to the multi-frame scenario with a simple but effective linear

motion model and proper handling of occlusions. In the following, we describe each

individual term in detail.

5.3.1 Photometry

In unsupervised optical flow estimation, supervision is achieved by warping the images

according to the predicted optical flow and comparing the intensity or color residuals.

Unlike existing approaches [PHC16; YHD16; Vij+17; Ren+17; Wan+18b; MHR18], we

take advantage of multiple frames to strengthen the photometric constraint. Similar to the

works [Wan+18b; MHR18], our model takes occlusions into account. While these methods

use simple heuristics based on thresholding to obtain occlusion maps for masking, we

directly model occlusions in our formulation and use them to weight the contribution of

future and past estimates. Our approach is able to learn more sophisticated models that

allow for more accurate occlusion reasoning. Moreover, our approach allows the network to

avoid errors in occluded regions since a pixel is, by definition, always visible in at least two

frames. More formally, we formulate our photometric loss as

LP = ∑
p∈Ω

O(2)(p) ·δ (IP (p+ uP (p)) ,IR (p)) (5.3)

+ ∑
p∈Ω

O(1)(p) ·δ (IF (p+ uF (p)) ,IR (p))

where Ω denotes the domain of the reference image IR, uP, and uF denote the past and future

flow at pixel p, and O(i)(p) denotes the i’th component of occlusion variable O(p). Instead

of handling occlusions in the warping function, we instead use bilinear interpolation for

warping [Jad+15] and a robust function δ (·, ·), detailed below, to measure the photometric

error between the warped images I′P/F = IP/F

(
p+ uP/F (p)

)
and the reference image IR.

Afterwards, we use our occlusion estimates to weight the photometric errors accordingly.

If a pixel p is more likely to be occluded in the future, O(1)(p)< O(2)(p), the information

from the past frame has a larger contribution. Similarly, if a pixel p is likely occluded in the

past, O(1)(p)> O(2)(p), the future frame is weighted higher. In the case of pixel p being
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5.3 Loss Functions

(a) Reference (b) Optical Flow (c) Occlusions

Figure 5.4: Regularization. Additional constraints allow us to handle ambiguities in the

photometric loss. We visualize the ground truth flow (b) with the typical color coding and

the occlusions (c) with visible pixels in green, future and past occlusions in brown and blue.

We observe that the optical flow changes smoothly between neighboring pixels of the same

object, while occlusion states are identical in the corresponding regions. Finally, we observe

that the visible state is more likely to occur than the others.

visible within the whole window, O(1)(p)≈ O(2)(p), both future and past frames contribute

equally. This soft weighting of the data terms ensures that our photometric loss is fully

differentiable.

Several photometric error functions have been proposed in the classical optical flow

literature. The most popular is the brightness constancy assumption [HS81], which measures

the difference between pixel intensities or colors in Eq. (5.4). Instead of the original quadratic

penalty function, we use the generalized Charbonnier penalty ρ [BWS05] for robustness

against outliers in Eq. (5.6). In realistic scenes with illumination changes, the brightness

constancy assumption is often violated, and instead, a gradient constancy assumption is

considered by comparing the gradients of the pixel intensities in Eq. (5.5). Therefore, we

use the brightness constancy assumption when training on synthetic data and the gradient

constancy assumption when training on KITTI.

δBC(I1, I2) =ρ (I1 − I2) (5.4)

δGC(I1, I2) =ρ

(
∂ I1

∂x
−

∂ I2

∂x

)

+ρ

(
∂ I1

∂y
−

∂ I2

∂y

)

(5.5)

ρ(x) =∑
i

√

x2
i +0.0012 (5.6)

5.3.2 Regularization

As discussed in Chapter 3, the photometric loss alone does not sufficiently constrain the

problem due to the aperture problem and the ambiguity of local appearance. Thus, we

add additional regularizers that encourage smooth flow fields and regions with consistent

occlusion states, favors the visible state, and enforces a constant velocity.

Smoothness: The optical flow changes smoothly in image regions corresponding to the

same object, as can be seen in Fig. 5.4 (b). Thus similar to Section 4.2.3, we use the

following edge-aware smoothness loss for UP:

LSP
= ∑

p∈Ω

ξ (∇xIR(p)) ρ (∇xUP(p))+ ∑
p∈Ω

ξ (∇yIR(p)) ρ (∇yUP(p)) (5.7)
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5 Unsupervised Learning of Multi-Frame Flow and Occlusions

where ξ (x) = exp(−κ‖x‖2) with κ = 20 is a contrast sensitive weight to reduce the effect of

the smoothness assumption at image boundaries, ∇xI(x,y) = I(x,y)− I(x−1,y) and ∇xU,

accordingly, are the backward difference of the image and flow field in spatial direction

x. Following the works [MHR18; Wan+18b], we can replace the first-order smoothness

Eq. (5.7) by a second-order smoothness, which allows piecewise affine flow fields when

training on KITTI [GLU12]:

LSP
= ∑

p∈Ω

ξ (∇xIR(p))ξ (∆xIR(p)) ρ (∇xUP(p)−∆xUP(p)) (5.8)

+ ∑
p∈Ω

ξ (∇yIR(p))ξ (∆yIR(p)) ρ (∇yUP(p)−∆yUP(p)) ,

Here, ∆xI(x,y) = I(x+1,y)− I(x,y) and ∆xU, accordingly, denote the forward differences

in direction x. The smoothness for the future flow LSF
is defined accordingly.

Consistent Occlusions: Additionally, we introduce a regularizer, which encourages similar

occlusion states at neighboring pixels:

LSO
= ∑

p∈Ω

ξ (∇xIR(p)) ‖∇xO(p)‖2
2 + ∑

p∈Ω

ξ (∇yIR(p)) ‖∇yO(p)‖2
2

(5.9)

In contrast to the optical flow, the occlusions state is consistent in corresponding regions and

only changes abruptly between these regions, as can be observed in Fig. 5.4. The contrast

sensitive weighting allows abrupt changes between regions with different occlusion state.

Occlusion Prior: In Fig. 5.4 (c), we can also observe that the majority of pixels are typically

visible in all three frames, while occlusions only occur at motion boundaries. Therefore, we

introduce a prior that favors the visible state over the occlusion states. We encode this prior

as follows:

LO =− ∑
p∈Ω

O(1)(p) ·O(2)(p) (5.10)

Note that Eq. (5.10) is minimized when all pixels are visible (i.e., O(p) = (0.5,0.5)).

Constant Velocity: The photometric term and the previous constraints treat the future and

past flow separately. In the multi-frame setup, we can go one step further and assume a

linear motion model that corresponds to pixels moving with constant velocity within the

short temporal window. Despite its simplicity, constant velocity provides a reliable source

of information in case of occlusions in addition to spatial smoothness constraints. Under

this assumption, the future and past flow should be equal in length but differ in direction.

We can enforce this assumption with a hard constraint by predicting only one flow field, as

explained in Section 5.2, or as a soft constraint with a future and past flow field. The soft

constraint is enforced using a constant velocity loss that we formulate as follow:

LCV = ∑
p∈Ω

ρ (UP(p)+UF(p)) (5.11)

74



5.4 Experimental Results

5.4 Experimental Results

In this section, we analyze our approach in ablation studies showing the advantages of

the multi-frame formulation, occlusion reasoning, and constant velocity assumption for

unsupervised learning. In addition, we compare our method to other unsupervised and

supervised methods on established optical flow datasets.

We train our network end-to-end using ADAM [KB15] with β1 = 0.9, β2 = 0.999 and

weight decay for regularization. We use a batch size of 8 and start with a learning rate

of 1e− 4 for pre-training and 1e− 5 for fine-tuning. We pre-train our models for 700K

iterations by halving the learning rate after every 200K iteration. For training, we do not use

data augmentation because of the large size of RoamingImages.

For evaluation, we consider three standard metrics:

• Average End-point Error (EPE), as introduced in Section 4.4.

• Average Percentage of Bad Pixels based on a threshold, i.e., outlier ratio, which is

used for evaluation on the KITTI 2015 test set.

• F1-Score also introduced in Section 4.4.

5.4.1 Parameter Settings

Following the original PWC-Net model [Sun+18b], we weight the loss function at each

level according to the number of pixels, [0.005,0.01,0.02,0.08,0.32], and scale flow values

by 0.05 as in [Dos+15; Sun+18b].

We use different parameters for training our model on synthetic and real data. For pre-

training on RoamingImages and unsupervised fine-tuning on MPI Sintel [But+12] and

KITTI 2015 [Gei+13; MG15], we set the hyper-parameters as shown in Table 5.1. The

columns, except for the last two, correspond to the relative weights of different terms in

the loss function L(θ), as defined in (5.2). In particular, those are the parameters of the

photometric loss (ωP), smoothness constraints (ωS1,ωS2), the occlusion prior (ωO), and the

Table 5.1: Parameter Settings: In this table, we list the dataset specific hyper-parameters

that are used in our experiments: the relative weights of the loss functions in the first five

columns, the photometric error function as BC (Brightness Constancy) and GC (Gradient

Constancy) in the second to the last column, and the order of the smoothness loss in the last

column. Each row corresponds to a dataset.

Dataset ωP ωS1 ωS2 ωCV ωO δ (·, ·) LS

RoamingImages 2

0.1 0.1 0.0001 0.1

BC 1st

MPI Sintel 4 BC 1st

KITTI 2015 4 GC 2nd
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(a) RoamingImages (b) MPI Sintel (c) KITTI 2015

Figure 5.5: Datasets. The three datasets used in our experiments. For our ablation study

and pre-training, we created the synthetic dataset RoamingImages. Eventually, the public

datasets KITTI 2015 dataset [Gei+13; MG15] and MPI Sintel [But+12] allow a fair

comparison to state-of-the-art approaches.

constant velocity constraint (ωCV ). We use the same parameters for the Clean and Final

passes of MPI Sintel.

The column second to the last in Table 5.1 shows the photometric error function used

for the dataset. While the brightness constancy (BC) assumption works well with synthetic

data (RoamingImages and MPI Sintel), we utilize the gradient constancy (GC) assumption

when training on KITTI since it is more robust to illumination changes, which often occur

on KITTI.

Finally, we show the order of the smoothness function LS in the last column, as mentioned

in Section 5.3.2. We use first-order smoothness constraints (1st) on RoamingImages and

Sintel, and second-order smoothness constraints (2nd) on KITTI 2015. The second-order

smoothness constraint allows piecewise affine flow fields better suited to handle non-fronto-

parallel surfaces such as the road region in KITTI.

5.4.2 Datasets

We use three different datasets in our experiments shown in Fig. 5.5. We created a simple

dataset called “RoamingImages” to pre-train our model and perform ablation studies. For

comparison to other methods, we use two established optical flow datasets in an unsupervised

setting, the KITTI 2015 dataset [Gei+13; MG15] and MPI Sintel [But+12].

RoamingImages: Curriculum learning has proven important when training deep models

for optical flow estimation [May+18; YHD16; Ilg+17; RB16]. While deep learning ap-

proaches for optical flow typically use the FlyingChairs dataset [Dos+15], our multi-frame

formulation cannot be trained on this dataset as it provides only two frames per scene. Thus,

we have created our own “RoamingImages” dataset by moving a random foreground image

in front of a random background image according to random linear motion, as illustrated in

Fig. 5.5. The goal is to gradually learn temporal and occlusion relationships by keeping the

geometric relations simple in the beginning. We created 80,000 examples with a resolution

of 640x320 that we split into 90% training set and 10% test set.
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Table 5.2: Ablation Study: We compare our results (Ours) to PWC-Net (Classic) and

the multi-frame extension without occlusions (Multi). In addition, we analyze the effect

of the constant velocity assumption by turning it off (Ours-None), using a soft constraint

(Ours-Soft) or a hard constraint (Ours-Hard). We report flow results using EPE for all (All),

non occluded (NOC), and occluded (OCC) pixels.

Method Frames Occlusions Constant Velocity All NOC OCC F1

Classic 2 ✗ ✗ 14.14 9.07 32.03 -

Multi 3 ✗ hard 10.11 8.24 18.22 -

Ours-None 3 ✓ ✗ 8.37 6.47 16.26 0.76

Ours-Soft 3 ✓ soft 8.17 6.32 15.87 0.76

Ours-Hard 3 ✓ hard 6.93 6.89 8.55 0.83

MPI Sintel: The MPI Sintel dataset [But+12] was introduced in Section 3.7.1 and is one of

the most popular datasets for the fair comparison of methods. MPI Sintel provides ground

truth flow and occlusion masks for 1000 image pairs in the training set. Two different

rendering passes with different complexity are available (“Clean” and “Final”) . In addition,

MPI Sintel provides pixel-wise occlusion masks. The evaluation of a multi-frame approach

is problematic on MPI Sintel since the first frame of every sequence is missing a past frame.

We apply our approach on these frames by using the reference frame twice, as reference

and past frame.

KITTI 2015: In contrast to MPI Sintel, the KITTI 2015 dataset [Gei+13; MG15] introduced

in Section 3.7 provides real scenes for a fair comparison on an evaluation server. While

the optical flow training set contains only 200 annotated images, the multi-view extension

consists of approximately 4000 images. We use all frames except the annotated frames and

their neighbors in the training set (frames 9-12) for unsupervised fine-tuning of our model.

We will refer to this set as ‘KITTI 2015 MV’. For evaluation, they provide sparse optical

flow ground truth obtained using a laser scanner. The occlusions masks only contain regions

moving out of the image and, thus, ground truth for occlusions insides the image is not

available.

5.4.3 Ablation Study

In this section, we analyze different aspects of our approach on the RoamingImages dataset.

More specifically, our goal is to investigate the benefits of our multi-frame formulation with

occlusions in comparison to the two-frame case as well as the multi-frame case without

occlusion reasoning. In addition, we compare the hard constraint to the soft constraint as

well as to the case without any temporal constraints. We list our results in Table 5.2 and

discuss our findings in the next paragraph. To perform all experiments, we reduced the

number of iterations during training to 300K iterations, which already shows significant

differences.
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Multi-Frame and Occlusion Reasoning: We first analyze the importance of the multi-

frame assumption by training the original two-frame PWC-Net in an unsupervised fashion

on RoamingImages (Classic). We then extend PWC-Net to three frames but using only

one cost volume without occlusion reasoning (Multi). The multi-frame formulation leads

to a significant improvement in the performance, reducing the overall EPE from 14.14 to

10.11 (see Table 5.2). With the multi-frame formulation, even without occlusion reasoning,

the error in occluded regions is almost reduced by half. This confirms our motivation for

incorporating more information over multiple frames. The occlusion reasoning (Ours-Hard)

again reduces the error in occluded regions by half compared to the multi-frame formulation

without occlusion reasoning (Multi), reaching an overall EPE of 6.93. This clearly shows

the benefit of ignoring misleading information in accordance with the occlusion estimates.

Constant Velocity: As explained in Section 5.3.2, the constant velocity assumption can be

enforced in different ways with varying degrees of freedom. In Table 5.2, we compare the

soft constraint case (Ours-Soft) with separate flow fields for future and past optical flow, to

the hard constraint case (Ours-Hard) with only one flow estimate for both. In addition, we

show results without temporal constraint (Ours-None), i.e., turning off the constant velocity

term in the loss while still estimating two flow fields. As evidenced by our results, the hard

constraint achieves a significant improvement over the case without temporal constraint

on our RoamingImages dataset. In particular, in occluded regions, the error is reduced

from 16.26 to 8.55 EPE, demonstrating the advantage of the proposed temporal smoothness

constraint over a purely spatially regularized model. The soft constraint improves only

marginally over the case without temporal constraint, demonstrating the benefit of directly

encoding the temporal relationship into the model in our restricted scenario.

5.4.4 Analysis of Feature Maps

In this section, we would like to obtain a deeper understanding of the learned models. The

ablation studies so far show that the different design choices lead to overall improvements

of the model in terms of accuracy. However, we only consider the output of our model

and ignore how the network actually does these predictions. Several approaches have been

proposed to further analyze the performance of neural networks by visualizing feature maps

[Erh+09; Yos+15]. These ideas can be applied to optical flow networks as presented by

Ranjan et al. [Ran+19b].

In the same spirit, we show in Fig. 5.6 the feature activations of our unsupervised model

(trained on RoamingImages) and supervised PWC-Net (trained on FlyingChairs) given

stationary uniform noise as input. The noise is highly textured and should therefore be easy

to match between the images. However, since the noise is stationary, the motion should

be zero everywhere. Interestingly, PWC-Net and our unsupervised model show different

behavior in intermediate layers even though they share similarities in the architecture. While

PWC-Net predicts large motion magnitudes on lower scales (flow6-flow4), our model

correctly predicts almost no motion in these cases. Both models are trained with losses on

each scale to ensure faster and better training. However, it seems that our unsupervised

multi-frame guidance learns a better model on the lower scales than PWC-Net. Another
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Input corr6 flow6 upfeat6corr5 flow5 upfeat5corr4 flow4 upfeat4corr3 flow3 upfeat3corr2 flow2

Mean 0.0 12.2 4.4 0.3 250.9 157.3 0.0 31.1 83.0 0.0 1.5 14.5 0.0 0.0

PWC-Net

Input corr6 flow6 corr5 upfeat5flow5 corr4 upfeat4flow4 corr3 upfeat3flow3 corr2 upfeat2flow2

Mean 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0

Ours Future Flow

Input corr6 flow6 corr5 upfeat5flow5 corr4 upfeat4flow4 corr3 upfeat3flow3 corr2 upfeat2flow2

Mean 0.0 0.2 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ours Past Flow

Figure 5.6: Visualization of Feature Maps. Average norm of the feature maps of supervised

PWC-Net and our unsupervised model considering static uniform noise. The images are

normalized independently and rescaled to the same size. In addition, we report the average

norm of the feature maps (Mean).

problem can be observed in the transposed convolutions (upfeat6, upfeat5, upfeat4, upfeat3)

used by PWC-Net as mentioned in Section 5.2. We can observe checkerboard artifacts in

these layers as indicated in [ODO16; Woj+17] and an amplification of the feature activations

when considering the mean. By replacing the transposed convolutions with simple bilinear

interpolation of the flow fields, our model does not suffer from this problem anymore and

has low activations in all layers. One problem that both of the models have in common are

the spatial varying activations in the flow layers even though the motion is the same in all

locations. Considering the matching problem, the model should learn spatial invariance and

give the similar flow estimates for all pixels in this stationary scenario.

5.4.5 Quantitative and Qualitative Results

In Table 5.3, we compare our method to the state-of-the-art unsupervised approaches

DSTFlow [Ren+17], UnFlow [MHR18] and OccAwareFlow [Wan+18b], as well as the

leading supervised approaches FlowNet [Dos+15], SPyNet [RB16], FlowNet2 [Ilg+17], and

PWC-Net [Sun+18b] on MPI Sintel and KITTI 2015 (training and test set). In addition, we

show qualitative results on KITTI 2015 and MPI Sintel in Figures 5.7, 5.8, 5.9, 5.10.

While the constant velocity hard constraint works well on the simplistic RoamingImages

dataset, more realistic datasets like MPI Sintel and KITTI often exhibit non-linear motions,

which violate the constant velocity assumption. Therefore, we exploit the soft constraint

network on these datasets initialized based on the hard constraint network pre-trained on
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Table 5.3: Quantitative Results: In these tables, we compare our method to several state-

of-the-art supervised and unsupervised methods on the training sets (a) and test sets (b) of

MPI Sintel and KITTI 2015 datasets. We report the EPE for all (All), non occluded (NOC)

and occluded (OCC) pixels except for the KITTI test set where we report the error ratio for

all pixels (All) and non-occluded pixels (NOC). Parentheses indicate cases where training

was performed on the same dataset and ∗ marks cases where only the annotated samples

were excluded from training. Missing entries (-) were not reported for the respective method

and bold fonts highlight the best results among supervised and unsupervised methods.

Methods MPI Sintel Clean MPI Sintel Final KITTI 2015

All NOC OCC All NOC OCC All NOC OCC

S
u
p
er

v
is

ed

FlowNetS [Dos+15] 4.5 - - 5.45 - - - - -

FlowNetS-ft [Dos+15] (3.66) - - (4.44) - - - - -

SPyNet [RB16] 4.12 - - 5.57 - - - - -

SPyNet-ft [RB16] (3.17) - - (4.32) - - - - -

FlowNet2 [Ilg+17] 2.02 - - 3.14 - - 10.06 - -

FlowNet2-ft [Ilg+17] (1.45) - - (2.01) - - (2.3) - -

PWC-Net [Sun+18b] 2.55 - - 3.93 - - 10.35 - -

PWC-Net-ft [Sun+18b] (1.70) - - (2.21) - - (2.16) - -

U
n
su

p
er

v
is

ed

DSTFlow [Ren+17] 6.93 5.05 - 7.82 5.97 - 24.3 14.23 -

DSTFlow-ft [Ren+17] (6.16) (4.17) - (6.81) (4.91) - 16.79* 6.96* -

UnFlow-CSS [MHR18] - - - 7.91 - - 8.10* - -

OccAwareFlow [Wan+18b] 5.23 - - 6.34 - - 21.3 - -

OccAwareFlow-ft [Wan+18b] (4.03) - - (5.95) - - 8.88* - -

UnFlow-CSS (R) [MHR18] 8.91 - - 10.01 - - 19.26 11.44 -

Ours-Hard 5.38 4.32 11.58 6.01 4.92 12.42 15.63 8.8 41.65

Ours-Hard-ft (6.05) (4.95) (12.10) (7.09) (5.97) (13.42) 11.58* 7.45* 27.29*

Ours-None-ft (4.74) (3.60) (11.42) (5.84) (4.72) (12.66) 6.65* 3.24* 19.33*

Ours-Soft-ft-Kitti 5.69 4.52 12.68 6.48 5.33 13.46 6.65* 3.42* 18.51*

Ours-Soft-ft-Sintel (3.89) (2.64) (11.21) (5.52) (4.32) (12.87) 15.69 7.87 46.34

(a) Training

Methods MPI Sintel Clean MPI Sintel Final KITTI 2015

All NOC OCC All NOC OCC All NOC

S
u
p
er

v
is

ed FlowNetS-ft [Dos+15] 6.69 - - 7.46 - - - -

SPyNet-ft [RB16] 6.64 3.01 36.19 8.36 4.51 39.69 35.07% 26.71%

FlowNet2-ft [Ilg+17] 3.60 1.46 24.30 5.74 2.75 30.11 11.48% 6.94%

PWC-Net-ft [Sun+18b] 3.86 1.45 26.17 5.17 2.44 26.22 9.60% 6.12%

U
n
su

p
er

v
is

ed

DSTFlow [Ren+17] 10.4 5.2 - 11.11 5.92 - - -

DSTFlow-ft-Kitti [Ren+17] 10.95 5.87 - 11.8 6.7 - 39.00% -

DSTFlow-ft-Sintel [Ren+17] 10.41 5.3 - 11.28 6.16 - - -

UnFlow-CSS [MHR18] 9.38 5.37 42.16 10.22 6.06 44.11 23.30% 14.68%

OccAwareFlow [Wan+18b] 8.02 - - 9.08 - - - -

OccAwareFlow-ft [Wan+18b] 7.95 4.08 39.53 9.15 5.21 41.31 31.20%* 23.53%*

Ours-Hard 8.35 4.81 37.14 9.38 5.76 38.84 48.93% 41.09%

Ours-Soft-ft 7.23 3.60 36.78 8.81 5.03 39.65 22.94% 13.85%

(b) Test
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RoamingImages. More specifically, we copy the parameters of the flow decoder in the

pre-trained network to the future and past flow decoders while inverting the sign of the past

flow decoder’s output. We empirically found this to yield a good initialization for further

fine-tuning. Afterwards, we fine-tune our model on the target datasets, i.e., KITTI 2015 MV

and MPI Sintel. Note that, during fine-tuning, the model is still trained in an unsupervised

fashion. In the following, we present our results in comparison to several state-of-the-art

approaches.

Pre-training: Since fine-tuning on a specific dataset makes a big difference, we first

consider unsupervised methods without fine-tuning to evaluate our pre-trained model on

RoamingImages. Our pre-trained model (Ours-Hard) achieves comparable results on MPI

Sintel Clean and significantly outperforms all other unsupervised models without fine-

tuning on MPI Sintel Final and KITTI 2015. While the best EPE obtained by a pre-trained

unsupervised model is 6.34 on MPI Sintel Final training and 21.30 on KITTI 2015 training

(Table 5.4a), our model achieves an EPE of 6.01 and 15.63, respectively. On MPI Sintel

Final, we are even on par with the model of OccAwareFlow [Wan+18b] fine-tuned on MPI

Sintel. This is particularly impressive considering the simplistic dataset used for training

our model consisting of linear motions and rectangular images. We observe similar results

on the test set of both datasets in Table 5.4b.

Hard vs. Soft Constraint: We compare our hard constraint network to our soft constraint

variant to demonstrate the necessity to relax the constant velocity assumption for more

complex datasets. While our model with hard constraint (Ours-Hard-ft) improves after fine-

tuning on KITTI 2015 training, its performance is still behind other unsupervised, fine-tuned

approaches. On MPI Sintel, the performance decreases after fine-tuning because the constant

velocity constraint is wrongly enforced on non-linear motion, which frequently occurs in

this dataset. Switching to the soft constraint version (Ours-Soft-ft) allows deviations from

constant velocity assumption and results in significant improvements on both datasets. For

completeness, we include our fine-tuned model without temporal constraint (Ours-None-ft)

in the comparison on the training sets. Similar to Table 5.2, the performance of the model

without temporal constraint (Ours-None-ft) is inferior to the one with the soft constraint

(Ours-Soft-ft) in all cases except the occluded regions (OCC) on MPI Sintel Final and not

occluded regions (NOC) on KITTI 2015. On KITTI 2015, the improvements in the occluded

regions are marginal due to dominating complex motions. We conclude that fine-tuning with

the soft constraint is in general beneficial even when complex motions violate the constant

velocity assumption.

Results with Fine-tuning: The performance significantly improves in non-occluded re-

gions on all datasets after fine-tuning using the soft constraint (Ours-Soft-ft). In occluded

regions, there are only minor improvements or even a degradation in performance (Sintel

Final). The soft constraint allows deviations from the constant velocity model resulting

in improvements in non-occluded regions with complex motion. However, less temporal

information is available for occluded regions when switching from the hard-constraint to

the soft-constraint. In other words, the predictions rely more on spatial information than on

temporal information. Still, the overall performance improves with the soft-constraint since
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Reference GT 2F PWC Ours GT Occ Ours

Figure 5.7: Qualitative Comparison: We compare our final results (fourth column) to

two-frame PWC-Net (third column) on examples from KITTI 2015 (upper three rows) and

MPI Sintel Clean (middle three rows) and MPI Sintel Final (bottom three rows). Our model

produces better flow estimates with sharper boundaries as well as accurate occlusion

estimates (last column).

non-occluded regions typically cover a larger area compared to occluded regions.

Our soft constraint model fine-tuned on MPI Sintel (Ours-Soft-ft) achieves an EPE of

3.89 and 5.52 on Clean and Final training, hence outperforming all other unsupervised

methods while even achieving comparable results to FlowNet fine-tuned on MPI Sintel

Clean. Similarly, on the test set, we outperform all other unsupervised methods with 7.23

and 8.81 EPE on Clean and Final, performing on par with supervised methods without

fine-tuning, e.g., FlowNet and SPyNet. Fine-tuning on KITTI 2015 MV improves the

performance to 6.59 in comparison to 8.10, the best-achieved EPE by an unsupervised

method so far. On the test set, we even achieve better performance than UnFlow that is

trained on a large synthetic dataset (Synthia [Ilg+17]) and KITTI Raw dataset.

Fig. 5.7 shows a qualitative comparison of our fine-tuned models on each dataset to

the two-frame formulation. Our multi-frame formulation with occlusions results in more

accurate optical flow fields with sharp motion discontinuities as well as occlusion estimates.

We show additional qualitative results of our fine-tuned models on KITTI 2015 (Fig. 5.8),

MPI Sintel Clean (Fig. 5.9), and Final (Fig. 5.10). Despite missing explicit supervision, our

models yield accurate and sharp optical flow predictions. However, large motions and fine

details can lead to some failure cases, as in the last three rows in Fig. 5.8, Fig. 5.9, and

Fig. 5.10.
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Table 5.5: Occlusion Estimates: We compare the performance of our occlusion estimation

to other approaches on MPI Sintel and KITTI 2015 using the F-Measure. Parentheses

indicate cases where training was performed on the same dataset while ∗ marks cases

where only the annotated samples were excluded from training. Note that S2D [LZS13] is a

supervised method.

Methods MPI Sintel Clean MPI Sintel Final KITTI 2015

S2D [LZS13] - 0.57 -

MODOF [XJM12] - 0.48 -

OccAwareFlow-ft [Wan+18b] (0.54) (0.48) 0.88*

Ours-Soft-ft (0.49) (0.44) 0.91*

Cross-dataset Performance: Table 5.4a also shows the cross-dataset performance of our

approach, i.e., trained on one dataset and tested on another, compared to the previous

approaches. Our model fine-tuned on KITTI 2015 performs similarly to the pre-trained

model on MPI Sintel and vice versa. This shows the generalization capability of our approach

without over-fitting to a specific dataset.

Occlusion Estimation: We evaluate our occlusion masks on both MPI Sintel and KITTI

2015 datasets. We compare our results quantitatively to OccAwareFlow [Wan+18b], S2D

[LZS13], and MODOF [XJM12] using the F-Measure (Table 5.5). While OccAwareFlow

[Wan+18b] obtains occlusion estimations considering the backward flow, S2D [LZS13]

uses a binary classification, and MODOF [XJM12] uses a discrete-continuous optimization

of an energy function.

With unsupervised fine-tuning on MPI Sintel (Ours-Soft-ft), we obtain comparable results

to OccAwareFlow [Wan+18b]. Learning occlusions on MPI Sintel in an unsupervised

fashion is very difficult since occlusions often occur in untextured regions with limited

guidance by the photometric loss. Even the supervised approach S2D struggles on the

MPI Sintel dataset, only reaching an F-Measure of 0.57. Moreover, similar to the original

PWC-Net [Sun+18b], we estimate the optical flow and occlusion mask on quarter resolution.

While larger occlusions are mostly estimated correctly, fine details are usually missing due

to downsampling, as can be observed in the qualitative results (Fig. 5.7). On KITTI 2015,

the occlusion masks only contain pixels moving out of the image. Considering these masks,

we reach the best performance with our unsupervised fine-tuned model (Outs-Soft-Kitti-ft).

Note that several occlusions missing in the ground truth masks are correctly estimated by

our method, e.g., the vehicles leaving the image in Fig. 5.7.

Contribution of RoamingImages: In contrast to other unsupervised approaches, we pre-

train our model on our RoamingImages dataset since there are no simple multi-frame

datasets available. This raises the question of whether the reason for the success of our

model is our dataset due to its size, simplicity, or some other factor. To dispel this doubt,

we pre-train UnFlow CSS [MHR18] on our dataset and compare its performance to our

pre-trained model. We use the code provided with default parameters only by changing the

learning rate to 1e−5. As shown in Table 5.4a, our pre-trained model (Ours-Hard) performs
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5 Unsupervised Learning of Multi-Frame Flow and Occlusions

significantly better than UnFlow CSS trained on the same data (UnFlow-CSS (R)) on all

datasets. This shows that the success of our approach is not solely based on our new dataset

but critically depends on the proposed multi-frame formulation.

84



5.4 Experimental Results

Reference GT Ours-ft GT Occ Ours-ft Occ

F
a
il

u
re

s

Figure 5.8: Qualitative Results: In this figure, we show our results with multiple frames

and occlusion reasoning (third column) on examples from KITTI 2015. Our model produces

accurate flow estimates with sharp boundaries as well as accurate occlusion estimates (last

column).
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Figure 5.9: Qualitative Results: In this figure, we show our results with multiple frames

and occlusion reasoning (third column) on examples from MPI Sintel Clean. Our model

produces accurate flow estimates with sharp boundaries as well as accurate occlusion

estimates (last column).
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Figure 5.10: Qualitative Results: In this figure, we show our results with multiple frames

and occlusion reasoning (third column) on examples from MPI Sintel Final. Our model

produces accurate flow estimates with sharp boundaries as well as accurate occlusion

estimates (last column).
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After the first success in 2015[Dos+15], deep neural networks have become the preferred

choice when addressing the optical flow problem. However, the limited number of real-

world datasets for optical flow poses a problem for the evaluation and training of modern

optical flow methods. In this thesis, we investigated two different directions to address this

data scarcity problem.

Generating Reference Data: In Chapter 4, we focused on the problem of generating new

datasets for the optical flow problem. We leverage the vast amount of temporal information

from high-speed cameras to generate reference data by tracking pixel densely through time.

We formulate an optimization problem over the large space-time volume and make it feasible

by splitting it into simple subproblems. First, we enforce strong temporal constraints while

estimating Flowlets, the optical flow between intermediate frames of the HFR videos. We

extended an accurate variational method to jointly infer the optical flow and occlusions

for a temporal window. Strong temporal constraints in the formulation allowed us also to

propagate information through time and improve the estimation in occluded regions. Second,

we formulate a dense tracking problem and use the intermediate flow results to establish

accurate reference data even with large displacements in the final frame rate. We discretized

the solution space and used MP-PBP for optimization with a data-driven initialization of the

particles.

We compared our approach to a popular two-frame formulation on an HFR version of

the MPI Sintel dataset and several real-world sequences. We conclude that the generated

reference data is precise enough for an insightful comparison of optical flow methods. Thus,

we created a real-world dataset using our approach with novel challenges for evaluating

the state of the art in optical flow. In our comparison, we observed that all methods except

FlowNet, SPyNet, FlowNet2, PWCNet and ClassicNL strongly suffer from motion blur.

The magnitude of the flow affects in particular FlowNet, SPyNet and variational approaches,

which cannot handle large displacements well compared to methods guided by matching

or optimizing local feature correspondences. However, the learning-based approaches

FlowNet2 and PWCNet outperform all others in all challenges.

While the multi-frame variational and dense tracking formulation achieve impressive

results, there is still great potential for improvements. Complex occlusions and untextured

regions are still causing errors in the estimation. On the one hand, the reliable detection

of occlusions is difficult, even when considering high frame rates. A joint optical flow

and occlusion formulation is a good direction since both problems are closely related to

each other. While occlusion estimates allow for a better explanation of the observations,

the optical flow causes occlusions and can be used to improve the predictions in occluded

regions. On the other hand, the estimation in untextured regions does not benefit from the
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additional temporal information given in HFR sequences since the problem will affect all

frames. In this case, we rely only on information from neighboring pixels, and in complex

scenes, this information is not sufficient to make accurate predictions.

Both problems cannot be resolved using classical optimization methods with simple

assumptions. More complex models are necessary, and a learning-based approach, as

investigated in the second part of the thesis, could learn such models directly from the data

without annotations. In the same spirit, better motion models can be learned to improve

the prediction of the optical flow in occluded regions as suggested by Maurer and Bruhn

[MB18]. In addition to the learning-based approach, a layered representation of the scene

into independently moving objects and the static scene would be beneficial, as in the works

[YMU13; YMU14; Bai+16; Sev+16; WSB17; Vij+17; Ran+19a]. Based on the epipolar

geometry between all images, the motion of each pixel in the static scene can be described

by the camera motion and the depth. In contrast to optical flow, the camera motion enforces

a strong constraint on the optical flow of the entire static scene, and the estimation of the

depth reduces to a 1D search problem along the epipolar line. In addition, all images can be

leveraged to infer the structure of the scene, since it is constant over time. Occlusions and

the motion in occluded regions of the static scene can be accurately estimated, given the

camera motion and structure of the scene. Since human-made environments usually consist

of many planar surfaces, untextured regions can be addressed with strong constraints on the

structure of the scene. The depth estimation problem could be further alleviated with the

introduction of a second synchronized high-frame-rate camera mounted at a fixed baseline.

Then, the resulting dataset could also be used for stereo matching and scene flow.

Finally, it would be interesting to incorporate a more reliable measure of confidence.

Instead of using simple flow consistency or color saturation to filter out bad estimates, a

probabilistic extension, as suggested by Gast and Roth [GR18], should be investigated. The

uncertainties from a probabilistic approach would allow a much more reliable measure of

confidence. The confidences could be taken into account in the evaluation of methods or

during training giving smaller weights to uncertain and higher weights to certain estimates.

Unsupervised Learning: While new annotated real-world datasets are from the utmost

importance for the evaluation of methods, the generation will always involve some additional

labor in addition to the acquisition. The acquisition can be avoided by using HFR videos from

the Internet, but the estimation is still computationally demanding because of the continuous

and discrete variables over the large space-time volume. In contrast, unsupervised learning

discussed in Chapter 5 allows using large Internet collections without any annotations.

While unsupervised learning of optical flow has been investigated before, many meth-

ods do not model occlusions and the few modeling occlusions use simple heuristics. In

combination with a photometric loss, this leads to strong misleading gradients in occluded

regions. Therefore, we presented a method for unsupervised learning of optical flow and

occlusions from multiple frames. We proposed modifications to a state-of-the-art two-frame

architecture for handling multiple frames in order to predict past and future optical flow

as well as an occlusion map within a temporal window. We formulated unsupervised loss

functions to exclude misleading information in occluded regions and incorporate a sim-

ple temporal model. In the experimental results, we show the benefits of the multi-frame
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formulation with occlusions over classical two-frame formulations and the importance of

directly modeling temporal relations. We achieve impressive results with proper modeling

and unsupervised training on a simple dataset outperforming all previous unsupervised

methods on complex datasets. After unsupervised fine-tuning, our approach is even on par

with some fully supervised methods.

Our results on unsupervised learning highlight the hidden potential of unsupervised

methods and motivate more in-depth examinations. However, the occlusion estimates of

our formulation are still very rough. Because of memory limitations during training, we

had to rely on lower output resolutions for the optical flow and occlusions estimates. This

has a large effect on the occlusion maps since the occlusions are in general bulkier, and

thin occlusions are lost. This problem can be resolved by considering lighter architectures

following similar ideas as SPyNet [RB16] or only estimating the occlusion mask on higher

resolution. The estimation of motion in occluded regions is also still very challenging.

While temporal information already improved the performance significantly, other sources

of supervision should be investigated. For instance, Liu et al. [Liu+19] suggest to train a

network in an unsupervised fashion and use the pre-trained model to create new training

examples for occluded regions by randomly covering image regions that were visible before.

This allows them to generate an arbitrary amount of pseudo ground truth for occluded

regions and refine the model on this data. Similar to the previous discussion, it would be

interesting to split the scene into independently moving objects and the static scene. While

Vijayanarasimhan et al. [Vij+17] and Ranjan et al. [Ran+19a] considered only one frame

to infer the structure, a three-frame formulation as we suggest would allow much more

accurate depth estimations. In addition, both do not take into account occlusions, which are

crucial for unsupervised learning.

Reference Data from Unsupervised Learning: As mentioned before, learning the detec-

tion of occlusions and the motion in these regions would be beneficial for the dense tracking

formulation. Therefore, a combination of both ideas to generate richer datasets is worth an

investigation. A big advantage of the learning-based approaches is efficiency since only a

forward pass is necessary. In contrast, the classical optimization methods used in the first

part of the thesis are very time-consuming. A more efficient approach allows the generation

of larger datasets in a shorter time and would, therefore, be very useful.

One simple way to combine the methods would be to replace the variational estimation

with a learned model. However, the learned model would need to achieve subpixel precision

on a large resolution while all models so far work on low resolutions due to the limited GPU

memory. This problem could be alleviated by approaching the dense tracking problem with

a temporal residual estimation problem similar to [LG01; LAG04; LAG05]. Considering

a reference frame R and target frame T = R+S with S intermediate frames from a HFR

sequence, we start with the motion estimation between R and T̂ = R+1 and incrementally

increase T̂ while using the previous motion estimation for warping. In each iteration, a

residual motion estimation problem is addressed, which is much simpler than the motion

estimation from R to T̂ . In addition, accumulated errors (drift) can be reduced by considering

new image information. The motion between intermediate HFR frames will be in the

magnitude of several pixels and, therefore, a shallow network will be sufficient to estimate
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the motion similar to the decoder networks used in PWC-Net and SPyNet. Such small

networks will meet the restricted memory requirements of GPUs and prevent overfitting.

In combination with an LSTM [PHC16], the previous motion estimation can be taken into

account to enforce temporal constraints. The memory of the LSTM would be used to store

the previous motion estimation and to provide this information for the estimation of the next

frames. Since only the Sintel dataset exists for HFR videos with optical flow ground truth,

we would need to relate to unsupervised learning or semi-supervised learning.

Deep Learning for Optical Flow: Deep learning has become the first choice when ad-

dressing the optical flow problem. In contrast to classical optimization methods, they allow

learning high-level representations from data, which constrain the solution space. Another

great advantage is the speed during inference. While the time-consuming training is per-

formed offline, the learned model is eventually applied with only one forward pass. In

addition, the high parallelization of GPUs can be exploited leading to real-time performance

of several optical flow networks [Dos+15; RB16; Ilg+17; Sun+18b].

The efficiency and high accuracy of optical flow networks will lead in the future to even

more interest in using correspondences for other problems. Similar to action recognition,

many computer vision problems will benefit from such dense correspondences. For instance,

only few approaches leverage temporal information in object detection [Zhu+17b; Zhu+17a;

Zhu+18; Wan+18a] and semantic segmentation [He+17; Ma+17; KVK16]. In these cases,

temporal consistency allows for more reliable systems since objects and semantics are

constant over time. The reliability of these systems will become more important in the

future since they are applied in safety-critical environments where each error can cause

fatalities. In addition, motion patterns are an insightful cue for detecting different objects in

a scene and provide important information about the behavior of these objects. All these

applications will set new goals and challenges for the optical flow community.

Nevertheless, convolutional neural networks used in the optical flow literature still share

some weaknesses. In [Ran+19b], we investigated adversarial attacks on several different

architectures for optical flow estimation. Adversarial attacks [Sze+13; GSS14; NYC15]

are popular to analyze the reliability of convolutional networks for objection classification.

These approaches seek small perturbations of the input that will cause the network to make

wrong predictions. Recently, physical attacks [Sha+16; AS17; Evt+17] have been introduced

that explore attacks in the physical world. For instance, Brown et al. [Bro+17] suggest

learning a patch that will cause the network to predict the wrong class. Such kind of attacks

can be easily replicated in the real world by just printing out the patch.

Inspired by these attacks, we optimized a small patch that is inserted into the input images

such that the angle between the flow prediction and the ground truth is maximized. We

considered encoder-decoder architectures FlowNet [Dos+15] and FlowNet2 [Ilg+17] as well

as spatial pyramid networks SPyNet [RB16], PWC-Net [Sun+18b], and our unsupervised

method. Spatial pyramid networks turned out to perform better in general under these attacks

than encoder-decoder networks. Eventually, we were able to find a successful attack for

each network architecture, which indicates that these models might not necessarily learn the

concept of motion.

Finally, we visualized the feature activations for all networks given a stationary uniform
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noise input, as discussed in Section 5.4.4. Our adaption of PWC-Net presented in Section 5.1

resolved the problem of checkerboard artifacts caused by transposed convolutions and

showed better behavior on lower scales. However, none of the models were spatial invariant

with respect to the matching problem. The activations of the flow layers were varying

spatially, while the motion was constant. It seems that spatial invariance cannot be learned

with the simple data augmentation of random spatial shifts as all approaches use this kind

of data augmentation. Instead, an additional loss could be introduced that enforces spatial

invariance during training. In addition, network architectures better suited for the optical flow

problem should be investigated by taking into consideration classical ideas. For example,

Hur and Roth [HR19] proposed iterative versions of popular networks inspired by classical

optimization, which lead to significant improvements. For unsupervised learning, better

optimization methods than simple gradient descent during training could be considered

since they also led to great improvements in classical approaches [SRB10].

Conclusion: In this thesis, we presented two directions to address the data scarcity problem

in optical flow. While there is still high potential to improve modern optical flow methods, a

proper evaluation of the methods is of the utmost importance to ensure steady advancements.

For this purpose, new challenging real-world benchmarks can be created using our reference

data generation approach, as presented in Chapter 4. In addition, new schemes for training

these methods without supervision are important for closing the gap between training

and testing performance, as discussed in Chapter 5. This thesis provided approaches and

important results for both directions, which will hopefully allow the community for further

advances in the optical flow problem.





A Publications

Publications [Jan+17b; Jan+18] are covered in this thesis:

J. Janai, F. Güney, J. Wulff, M. Black, and A. Geiger. “Slow Flow: Exploiting High-Speed

Cameras for Accurate and Diverse Optical Flow Reference Data”. In: Proc. IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR). 2017

J. Janai, F. Güney, A. Ranjan, M. Black, and A. Geiger. “Unsupervised Learning of Multi-

Frame Optical Flow with Occlusions”. In: Proc. of the European Conf. on Computer

Vision (ECCV). 2018
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covered in this thesis:
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A. Ranjan, J. Janai, A. Geiger, and M. Black. “Attacking Optical Flow”. In: Proc. of the

IEEE International Conf. on Computer Vision (ICCV). 2019
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I declare that this thesis has been created by me based on my own original research

mentioned above. My advisor Prof. Dr. Andreas Geiger was involved in all projects and my

advisor Prof. Dr. Michael Black was involved in the majority of projects. Both contributed

ideas and text to my publications. Prof. Dr. Andreas Geiger also contributed illustrative
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Dr. Fatma Güney also contributed to the code used in the benchmark and unsupervised
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All the experiments in this work are the result of my own work unless otherwise stated.
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